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Abstract 

This thesis consists of four essays exploring quantitative methods for investment 

analysis. Chapter 1 is an introduction to the topic where the backgrounds, 

motivations and contributions of the thesis are discussed. This Chapter proposes 

an expert system paradigm which accommodates the methodology for all four 

empirical studies presented in Chapters 2 to 5.  

In Chapter 2 the profitability of technical analysis and Bayesian Statistics in 

trading the EUR/USD, GBP/USD, and USD/JPY exchange rates are examined. For 

this purpose, seven thousand eight hundred forty-six technical rules are 

generated, and their profitability is assessed through a novel data snooping 

procedure. Then, the most promising rules are combined with a Naïve Bayes (NB), 

a Relevance Vector Machine (RVM), a Dynamic Model Averaging (DMA), a Dynamic 

Model Selection (DMS) and a Bayesian regularised Neural Network (BNN) model. 

The findings show that technical analysis has value in Foreign eXchange (FX) 

trading, but the profit margins are small. On the other hand, Bayesian Statistics 

seems to increase the profitability of technical rules up to four times.  

Chapter 3 introduces the concept of Conditional Fuzzy (CF) inference. The 

proposed approach is able to deduct Fuzzy Rules (FRs) conditional to a set of 

restrictions. This conditional rule selection discards weak rules and the generated 

forecasts are based only on the most powerful ones. In order to achieve this, an 

RVM is used to extract the most relevant subset of predictors as the CF inputs. 

Through this process, it is capable of achieving higher forecasting performance 

and improving the interpretability of the underlying system. The CF concept is 

applied in a betting application on football games of three main European 

championships. CF’s performance in terms of accuracy and profitability over the 

In-Sample (IS) and Out-Of-Sample (OOS) are benchmarked against the single RVM 

and an Adaptive Neuro-Fuzzy Inference System (ANFIS) fed with the same CF 

inputs and an Ordered Probit (OP) fed with the full set of predictors. The results 

demonstrate that the CF is providing higher statistical accuracy than its 

benchmarks, while it is offering substantial profits in the designed betting 

simulation. 
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Chapter 4 proposes the Discrete False Discovery Rate (DFDR+/-) as an 

approach to compare a large number of hypotheses at the same time. The 

presented method limits the probability of having lucky findings and accounts for 

the dependence between candidate models. The performance of this approach is 

assessed by backtesting the predictive power of technical analysis in stock 

markets. A pool of twenty-one thousand technical rules is tested for a positive 

Sharpe ratio. The surviving technical rules are used to construct dynamic 

portfolios. Twelve categorical and country-specific Morgan Stanley Capital 

International (MSCI) indexes are examined over ten years (2006-2015). There are 

three main findings. First, the proposed method has high power in detecting the 

profitable trading strategies and the time-related anomalies across the chosen 

financial markets. Second, the emerging and frontier markets are more profitable 

than the developed markets despite having higher transaction costs. Finally, for a 

successful portfolio management, it is vital to rebalance the portfolios on a 

monthly basis or more frequently. 

Chapter 5 undertakes an extensive investigation of volatility models for six 

securities in FX, stock index and commodity markets, using daily one-step-ahead 

forecasts over five years. A discrete false discovery controlling procedure is 

employed to study one thousand five hundred and twelve volatility models from 

twenty classes of Generalized AutoRegressive Conditional Heteroskedasticity 

(GARCH), Exponential Weighted Moving Average (EWMA), Stochastic Volatility 

(SV), and Heterogeneous AutoRegressive (HAR) families. The results indicate 

significant differences in forecasting conditional variance. The most accurate 

models vary across the three market categories and depend on the study period 

and measurement scale. Time-varying means, Integrated GARCH (IGARCH) and SV, 

as well as fat-tailed innovation distributions are the dominant specifications for 

the outperforming models compared to three benchmarks of ARCH (1), GARCH 

(1,1), and the volatility pool’s 90th percentile. 

Finally, Chapter 6 puts together the main findings from the four essays and 

presents the concluding marks.  
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Chapter 1   1 

1. Introduction 

1.1 Background and Motivation 

Walking down the pavements of financial districts in almost any country on earth 

could lead you to hear the terms fundamental or technical analysis. They are the 

most common approaches to find gainful investment opportunities across capital 

markets. In fundamental analysis, the expert tries to evaluate the intrinsic value 

of a security by examining multiple economic or financial factors. Traders using 

technical analysis inspect historical price charts to predict future market 

movements, irrespective of fundamental factors. These approaches have 

historically been conducted by professionals, who spent a notable proportion of 

their lives gaining experience on the trading floors. 

By the digital revolution in the 1970s to 1980s and the advent of advanced 

learning algorithms in 1990s, humans found themselves competing for jobs with 

new rivals: the machines. Computers can learn and improve their wisdom without 

the limitation of humans needs or constraints. If in the early days machines were 

used solely to replace manual labour, today they can beat the best human experts 

in the games chess and go, and bluff better in poker than humans (Newall, 2013; 

Newall, 2018). Neuroscience surveys show that the human brain could be 

thoroughly replicated in terms of computation speed and storage capacity in the 

digital world by 2020 (see e.g. Markram, 2012). Recent job market studies show 

that 1 out of 3 UK jobs in the finance industry is at “potential high risk” of 

automation by 2030 (see among others, Boston Consulting Group, 2015; PwC, 

2017). If in the 1980s replacing humans with machines was seen as an entertaining 

science fiction story like Blade Runner, three decades later it is an alert raised by 

the legendary physicist Stephen Hawking: 

"Humans, who are limited by slow biological evolution, couldn't compete and 

would be superseded [by machines]" (Hawking, 2014). 

In financial markets, a professional trader’s insights could potentially be 

replicated by a model running on a computer. Quantitative analysis is the new 

investment approach where models or algorithms light the path to the highest 

rewarding investments across multiple asset classes. The models have a mostly 
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statistical nature and take systematic risk into account. The investment strategies 

articulated by the quantitative approach can entail a wide range of complexity. 

Complexity ranges from the automation of simple technical rules to advanced 

strategies combining quantitative and fundamental analysis: the “quantamental” 

approach.  

This thesis brings together several quantitative solutions to financial decision 

making and analyses their performance through four empirical studies. The thesis 

adds to the literature of novel approaches to investments, where human expertise 

is partially or entirely imitated. In all empirical chapters, there are four common 

elements. First, a time series provides the population for the study. Second, 

multiple samples are taken from the population as IS and OOS. The number of 

elements within each sample varies, but the analyses are generally reported on 

an annual basis. The third common component is the quantitative strategy 

replicating human wisdom based on the IS observations (versus experience on the 

market) to predict the unseen cases (future) in the OOS. And the fourth element 

is a numerical scale to measure and compare model performance over time.  

The strategies and applications vary from one chapter to another. The 

quantitative strategies are chosen to cover a wide range of models used on a 

regular basis by top-tier investment corporations. The strategies originate from 

three categories of models: technical trading rules, Machine Learning (ML), and 

conventional statistical models. These models are deployed for financial 

predictions under Artificial Intelligence (AI) and Statistical Inference (SI) contexts. 

In AI, a learning algorithm is used to map an underlying relationship between a set 

of inputs and outputs by minimizing a loss function. The SI tries to draw a 

conclusion on the performance of the candidate model through hypothesis testing. 

In SI, many models are compared to find the genuinely superior ones. The goal is 

to make sure that findings are robust, rather than being affected by temporary 

market trends or pure luck. 

The design of studies amplifies the difference in performance of alternative 

models. For the AI surveys, FX and sports betting are chosen as models of high 

volatility markets, where the potential loss from wrong decisions is high. Such 

settings can exhibit the superiority of the novel AI models. For the SI surveys, 
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highly significant markets ‒ FX, stocks, and commodities ‒ are studied from around 

the globe to show the economic significance of market inefficiencies.  

1.2 Contribution and Structure  

The main focus of this research is developing original predictive systems driven 

by quantitative models. AI is an adaptive solution for making financial predictions 

by learning from the past to project the future. The AI systems require a training 

dataset to produce either a set of “if … then …” rules or optimize a set of 

parameters to predict a class or point. They are able to provide accurate 

estimation only when they are given the right amount of information for analysis. 

An insufficient number of observations causes a poor mapping (under-fitting) for 

the interaction between the input and output vectors, while an excessive supply 

of inputs can blur the model’s ability to connect the dynamics of inputs with the 

outputs (over-fitting). In the era of big data and countless predictive models, 

dealing with the dimensionality of the dataset is a prerequisite to the success of 

AI. Reducing the input space to the most informative subset is required for a 

profitable future of AI systems.  

I propose a paradigm where the learning algorithms are coupled with statistical 

approaches to battle the dimensionality problem. The paradigm is inspired by the 

concept of deep learning and is altered to detect the patterns in financial 

markets. Figure 1.1 presents the novel paradigm that can autonomously make 

investment decisions from raw data. The paradigm accommodates the 

methodology used in all chapters of this thesis.  

Figure 1.1: Proposed Paradigm for Financial Decision Making with Examples 

 
Note: This system can make decisions by scanning through publicly available raw data. In the Pre-

process layer, a large set of potential predictors is generated from the raw data. In the Filter layer, a 

statistical approach decides on the most informative subset of predictors. This guarantees that a right 

amount of data is fed to the learning algorithm. In the Learn stage, an AI method is used to detect 

the patterns between the selected predictors and a target series. The target series can originate from 
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any topic that a practitioner needs to decide on. The output of the AI model is the decision 

recommended by the developed expert system. 

The rest of this Section discusses the relevance of each chapter to this 

framework and the novelty of each empirical study. Chapter 2 presents the 

empirical evidence of superior performance in support of the paradigm in Figure 

1.1. The goal of this Chapter is to revisit the validity of technical trading rules and 

see whether it is possible to generate profit in the FX market using the proposed 

paradigm. First, a pool of seven thousand eight-hundred forty-six common 

technical trading rules is generated based on the time series of price and volume 

quotes over 2010-2016. An SI method ‒ Multiple Hypothesis Testing (MHT) ‒ is used 

to screen the potential set of outperforming candidates from the technical trading 

pool. The MHT is a platform that allows performance comparison of alternative 

candidates while controlling the probability of Type I errors (false positives). Then 

four Bayesian learning algorithms are used to construct portfolios based on the 

reduced set of inputs. The findings show the significant difference in trading 

performance between the proposed framework and the benchmarks in the FX 

market. 

In Chapter 3, the proposed framework is studied with a new set of models in an 

extremely risky environment. More specifically, a novel class of AI models for the 

learning component of Figure 1.1 is introduced and applied in predicting football 

match outcomes. In sports betting, the profit from a bet can exceed 100%, but 

might also lead to the total loss of the wager should the predicted outcome fail 

to occur. The raw data consists of the average quotes for winning different types 

of bets from the bookmakers and games’ statistics including goals scored and shots 

on target. The inputs are processed to form a set of eighty-three explanatory 

variables based on the odds and recent performance of each playing football team 

over 2005-2016. In the Filter unit, a Bayesian probabilistic approach (RVM) is used 

to find the subset of explanatory variables most helpful in predicting the bet 

outcome. Finally, in the Learn component a novel extension of rule-based models, 

namely CF inference system, is introduced to extract and apply the rules with the 

highest level of confidence. This modification to the ordinary Fuzzy Logic (FL) 

safeguards against under-fitting and over-fitting problems. The results present 

another successful implementation of the proposed paradigm and the superior 

performance of the CF algorithm.   
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Chapters 4 and 5 address Figure 1.1’s Filter module. In these chapters, a novel 

class of MHT is introduced in different applied settings. Chapter 4 presents the 

concept of DFDR+/- as a new MHT method. Then, a pool of twenty-one thousand 

one hundred ninety-five technical trading rules is analysed for the transaction 

costs, profitability, and robustness of the rules. The analysis is conducted for 

twelve stock markets around the globe over the period 2006-2015. The results 

highlight the role of transaction costs in financial markets, the gainful 

opportunities available in emerging and frontier markets, and ultimately the role 

of active trading. The findings are consistent with the theory of Adaptive Market 

Hypothesis (AMH) introduced by Lo (2004). 

Chapter 5 provides a novel application of the DFDR+/- method in risk 

management. In this Chapter, the largest pool of models in the volatility 

forecasting field1, is compiled based on high-frequency time-series over 2013-

2017. The models are applied to six assets from stock, currency, and commodity 

markets. The pool of one thousand five hundred and twelve unique volatility 

forecasting models is compared to find out whether there is any statistical 

difference in the predictive ability of volatility models. The models come from 

twenty classes of four common families of AutoRegressive (AR) models (GARCH, 

EWMA, SV, and HAR). The results show that advanced specifications provide 

superior accuracy in almost all markets compared to the three benchmarks.  

All in all, this thesis shows how the proposed paradigm in Figure 1.1 can 

generate superior performance by studying four cases in trading, betting and 

volatility forecasting. Finally, Chapter 6 delivers several concluding remarks. 

 

 

 

 

                                                           

1 To my best knowledge as of August 2018. 
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2. Trading the Foreign Exchange Market with 

Technical Analysis and Bayesian Statistics 

2.1 Introduction 

Technical analysis is the study of past market data in order to forecast the 

direction of financial asset prices. Its origins can be traced back to the Dow theory 

in 1900 when Charles H. Dow argued that the financial markets follow repetitive 

trends. Practitioners apply this principle in practice and many technical trading 

rules were developed over the next decades aiming to identify the future direction 

of financial assets. An industry was created based on the application of 

mathematics in trading. Today thousands of professionals trade financial series 

with mathematical models.  

The most heavily traded assets in financial markets are FX pairs with a 

turnover of up to $5.3 trillion daily in 2013 (Jorion, 1996; BIS, 2013). The enormous 

size of the FX market, the competition among market participants and the advent 

of technology have led to a continuous search for more advanced and complex 

trading rules. Researchers and practitioners borrow algorithms from mathematics, 

physics, genetics and computer science in an attempt to model series that have a 

non-linear and non-stationary structure. Some apply simple technical rules 

(Gençay et al. 2003; Qi and Wu, 2006; Neely et al., 2009; Cialenco and 

Protopapadakis, 2011) while others explore complex non-linear models (Neely et 

al., 1997; Gehrig and Menkhoff, 2006; Gardojevic 2007; Sermpinis et al., 2015). 

There are also academics that believe FX series follow a random walk and any 

profitable trading rules are due to luck (Meese and Rogoff, 1983; MacDonald and 

Taylor, 1994; Kilian and Taylor, 2003).   

This Chapter utilizes the latest developments in time-series modelling and 

statistics in order to discover whether simple technical rules are profitable in FX 

trading series. It also explores whether it is possible to combine simple technical 

rules with a set of some of the most up-to-date Bayesian models (RVM, DMA, DMS, 

and BNN) and derive superior trades.  

For this purpose, seven thousand eight hundred forty-six technical rules are 

generated and applied to three exchange rates (EUR/USD, GBP/USD, and 
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USD/JPY).  Next, the genuinely profitable trading rules are identified based on 

the Romano et al. (2008) test combined with the balancing procedure of Romano 

and Wolf (2010). These profitable rules are then combined with NB, RVM, DMA, 

DMS and BNN. It is worth noting that the RVM, DMA, DMS and BNN have not been 

used in a trading application2. The results show that superior trading performance 

is achievable by combining a data snooping procedure and Bayesian learning 

models. This Chapter finds that BNN, DMA, and DMS have the highest performance 

across the study periods. 

The motivation for this study derives from four sources: the AMH, the 

contradicting reports on the value of technical analysis in trading, the popularity 

of Bayesian techniques in financial forecasting, and the increased use of 

computational techniques in trading. The AMH has three main principles: traders 

need to be adaptive, the performance of trading models varies through time and 

in competitive environments the opportunities for profits are scarce. In other 

words, in highly efficient markets simple trading strategies have small power and 

traders need to seek complex statistical methods that are adaptive to the 

changing environment. The FX market ‒ the biggest capital market ‒ is most 

competitive and it is heavily affected by the intervention of central banks. It is 

interesting to check the effectiveness of simple trading rules in this environment 

and if possible to generate Bayesian combinations of simple rules that can beat a 

market. I also examine if the performance of the trading models varies through 

time and whether their profitability is less in “popular” exchange rates, as the AMH 

proposes. 

Technical analysis is considered a universal trading practice across different 

markets (Blume et al., 1994). Although theories around technical analysis vary, 

all of them are based on the idea of the recurrent nature of patterns in the 

securities’ price charts. Chartists believe that understanding these patterns can 

facilitate the prediction of future prices (Fama, 1965). This approach to prediction 

                                                           

2 To the best of my knowledge, RVM has only one related application (Fletcher et al., 2009) on FX 

carry trade. In this Chapter the RVM is used as a part of a set of AI models and its individual 

performance is not assessed. The BNN also has only one application in financial forecasting in 

Ticknor (2013). In his study, BNN is not evaluated in trading terms. I did not identify any related 

trading application of DMA and DMS although there are several studies with them in financial and 

economic modelling (such as Koop and Korobilis, 2012; and Byrne et al., 2016).  
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of financial markets can be traced back to Dow theory. The theory argues that the 

average values represent net interactions of all market participants over day-to-

day activities and discount all kind of news and events, even the unpredictable 

ones. It proposes three bands of trends known as primary, secondary and minor 

trends. The primary trends are major market movements known as bull and bear 

market. The secondary trend represents the corrections and recoveries over bull 

and bear markets respectively. Finally, the minor trends are daily meaningless 

fluctuations (Edwards et al., 2007). Several studies, such as Sweeney (1988), Brock 

et al. (1992) and Blume et al. (1994) demonstrate the utility and the profitability 

of technical analysis in financial markets. In these studies, a large universe of 

simple trading rules is generated, and their average performance is evaluated on 

stocks or stocks indices over a large period of time. Gençay (1998) uses technical 

rules as inputs to Artificial Neural Networks (ANNs) and generates profitable 

models, while Allen and Karjalainen (1999) use a genetic algorithm to identify 

profitable technical trading rules for the Standard and Poor's (S&P) 500 index. 

Although these preliminary studies seem promising, they ignore the data snooping 

bias.  

Data snooping occurs when a given dataset is used more than once for 

purposes of inference and model selection (White, 2000). This bias is prominent 

in trading applications where researchers rely on the same data set to test the 

significance of different trading rules individually. These individual statistics are 

generated from the same dataset and relate to each other. White (2000) 

formalises this bias and introduces the Bootstrap Reality Check (BRC), which 

considers the dependence of individual statistics. The introduction of BRC test 

allowed researchers to revisit technical analysis from a new angel. Sullivan et al. 

(1999) claim that, based on the BRC test, technical analysis has no value on Dow 

Jones Industrial Average (DJIA) index. Hansen (2005) argues that the BRC is too 

conservative and checks only whether there is any significant model. The BRC does 

not identify all such models. As a solution, Hansen (2005) introduces the Superior 

Predictive Ability (SPA) test, which is less conservative and seems more powerful 

(Hansen and Lunde, 2005). Hsu and Kuan (2005) study technical rules after taking 

into account data snooping with the SPA test and claim that it is possible to beat 

the market with complex rules. Romano and Wolf (2005) and Hsu et al. (2010) 

improve the BRC and the SPA test respectively and introduce stepwise procedures 
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Step-BRC and Step-SPA. These tests can identify all possible significant models. 

Further improvements in MHT procedures are made by Romano and Wolf (2007), 

Romano et al. (2008), Bajgrowicz and Scaillet (2012) and Hsu et al. (2014). The 

trend in recent data snooping literature is to relax the statistics by controlling the 

probability of making multiple false rejections (falsely “found” profitable 

strategies) and at the same time improve the efficiency of the tests. This is 

beneficial in trading applications, where large groups of technical rules are under 

study and the ability to make true rejections is the main concern. Based on the 

latest tests, Romano and Wolf (2007), Romano et al. (2008), Bajgrowicz and 

Scaillet (2012) and Hsu et al. (2014) conclude that it is possible to identify 

genuinely profitable trading rules by using an efficient MHT procedure. However, 

the same studies argue that the profit margins are small, and the trading 

performance varies through time.  

In FX market specifically, Gehrig and Menkhoff (2006) argue that technical 

analysis has by far the greatest importance for FX trading. Gençay et. al. (2003) 

generate positive annualized returns on four currency pairs with a real-time 

trading based on simple exponential Moving Average (MA) models. However, 

Cialenco and Protopapadakis (2011) argue that simple trading rules do not report 

statistically significant profitability in fourteen currencies. Meese and Rogoff 

(1983), Baillie and Bollerslev (1989), and Chinn and Meese (1995) claim that major 

exchange rates follow a random walk (at least in the short-run). Taylor (1992) 

reports that 90% of the chief FX dealers based in London place some weight to 

technical analysis in their decision processes. Yilmaz (2003) suggests that FX prices 

do not always follow a martingale3 process, especially during the periods of central 

banks interventions. Yang et al. (2008) argue that martingale behaviour cannot be 

rejected for major exchange rates. Contrary to these, MacDonald and Taylor 

(1994) develop a monetary model which outperforms the random walk for the 

GBP/USD exchange rate over short-run periods. Kilian and Taylor (2003) find 

strong evidence of predictability over horizons of 2 to 3 years with a similar model, 

but not over shorter horizons. Hsu et al. (2010) and Hsu et al. (2014) argue that 

                                                           

3 Martingale corresponds a sequence of random variables where the expected value for the next 

observation is equal to the present one or 𝐸(𝜁𝑡+1|𝜁1, … , 𝜁𝑡) = 𝜁𝑡. 
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technical analysis can beat the FX market. The same statement is made by Neely 

and Weller (2013) who add that traders need to be adaptive in their portfolios.   

Developments in statistics and computer science offer new potentials for 

wealth management. The developments include the advent of new tools in the 

fields of MHT and AI. Chui et al. (2016) and the Boston Consulting Group (2015) 

estimate that by 2025 the field of wealth management will be dominated by ML. 

In academia, there is a plethora of studies in this field.  Gençay (1998), Fernández-

Rodrı́guez et al. (2000), Jasic and Wood (2004), Gradojevic (2007), Sermpinis et 

al. (2013), and Sermpinis et al. (2015) apply ANNs ‒ a form of non-linear regression 

algorithms ‒ to the task of forecasting and trading financial series with some 

success. Alvarez-Diaz and Alvarez (2003), Pai et al. (2006), and Huang et al. (2010) 

develop models inspired by the evolution of species to financial forecasting with 

good results. Allen and Karjalainen (1999) use a genetic algorithm to identify 

profitable technical trading rules for the S&P 500 index. Lin and Pai (2010), Bekiros 

(2010) and Gradojevic and Gençay, (2013) apply FL in order to generate trading 

signals. Other studies, such as Ticknor (2013) and Gramacy et al. (2014), use 

Bayesian Statistics in financial forecasting problems. The literature in the area is 

extensive and promising. In the papers that have a trading application (see among 

others, Jasic and Wood, 2004; Gradojevic and Gençay, 2013) the proposed 

complex models significantly outperform simple trading rules. An explanation can 

be offered by the AMH which argues that complex models can survive better in 

informative markets.  

In a nutshell, the literature in technical analysis, data snooping and 

computational applications in trading, is wealthy and contradicting. Studies that 

do not consider the data snooping bias and involve models that require 

parametrization should be treated with scepticism. The data snooping bias should 

be examined with recent related tests that are not strict. Computational 

techniques seem able to generate profitable trades. However, it is not clear from 

the previous studies if computational models can outperform technical analysis, 

as the AMH claims.  
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2.2 Methodology 

In this study, a large set of technical trading rules on FX data is generated. The 

genuine profitable rules are identified with the Romano et al. (2008) test as 

modified based on the balancing procedure of Romano and Wolf (2010). Then, the 

profitable rules are combined with an NB, an RVM, a DMA, a DMS, and a BNN. The 

Bayesian methods are chosen from a wide range of complexity. Such choice allows 

quantifying the differences in performance of the learning models in practice. The 

next sections contain a short description of the data snooping procedure and the 

Bayesian techniques4.  

2.2.1 Data Snooping Test 

At the first stage for the modelling, the genuinely profitable trading rules are 

identified from a pool of 7846 technical rules. For this purpose, the Romano et al. 

(2008) test is combined with the balancing procedure of Romano and Wolf (2010). 

The benefits of the proposed approach are threefold. Firstly, it considers different 

measures of errors. Secondly, it is balanced since each individual hypothesis is 

treated fairly. Finally, it involves a resampling and subsampling approach that 

considers the dependence structure of the individual test statistics. These facts 

make it highly applicable in trading applications and more efficient compared to 

the Step-BRC and Step-SPA tests (Romano and Wolf, 2005; Hsu et al., 2010).  

The data snooping test is an MHT procedure in which a set of models are 

tested to identify the statistically different ones. As in any statistical test, there 

is the chance that a hypothesis is falsely rejected (Type I error). Familywise Error 

Rate (FWER) is the probability of having at least one false rejection. Traditional 

data snooping tests are too strict as they are attempting to control 

(asymptotically) the FWER. If the number of hypotheses is very large (as in this 

Chapter’s case), it is very difficult to make true rejections. In the asset 

                                                           

4 These algorithms are characterized by their complexity (except for NB).  For the sake of space and 

as their mathematical derivation already exist in the relevant literature, I present the general 

framework. For the data snooping procedure, the reader is referred to Romano et al. (2008) for 

the FWER control with one sided setup and for the balancing procedure to Romano and Wolf 

(2010). A detailed description of RVM is provided by Tipping (2001) while a complete 

mathematical derivation of DMA and DMS is provided by Raftery et al. (2010). The Bayesian 

training procedure of BNN is described in detail in Ticknor (2013).  
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management industry, professionals diversify their risk by investing in a large 

portfolio of models. The performance of any bad model is diluted by the much 

larger set of profitable rules. 𝑘-FWER determines the probability of having at least 

𝑘 false rejections. The data snooping approach of Romano et al. (2008) tries to 

control the 𝑘-FWER5.  

Let me consider a set of 𝒮 trading strategies over 𝑇 sample periods. For each 

trading strategy 𝑠 (where 𝑠 =  1 𝑡𝑜 7846), the aim is to test the hypothesis that a 

model 𝑠 beats a benchmark (𝜍) in terms of profitability. Let me define 𝜇𝑠 as the 

unconditional average profit of the strategy 𝑠 and 𝜃𝑠 = 𝜇𝑠 − 𝜇𝜍 as its difference 

from the benchmark. The null hypothesis is 𝐻0,𝑠: 𝜃𝑠 ≤  𝜃𝜍 , while the alternative is 

𝐻1,𝑠: 𝜃𝑠 >  𝜃𝜍. This setting tests the hypothesis that the technical rules have an 

equal or worse profitability compared to the benchmark 𝜍 . The test statistic is 

set as:  

Ζ𝑇,𝑠 =
𝑟̅𝑇,𝑠−𝑟̅𝑇,𝜍

𝜎̂𝑇,𝑠
                 (2.1) 

where the historical mean 𝑟̅𝑇,𝑠 and standard deviation 𝜎̂𝑇,𝑠 in the (2.1) are given 

by:   

𝑟̅𝑇,𝑠 =
1

𝑇
∑ 𝑟̂𝑡,𝑠

𝑇
𝑡=1 ,                        (2.2) 

𝜎̂𝑇,𝑠 = √
1

𝑇−1
∑ (𝑟𝑡,𝑠 − 𝑟𝑡,𝜍)

2𝑇
𝑡=1 .           (2.3) 

The 𝑘-FWER is controlled through the one-sided setup of the 𝑘-StepM method 

of Romano and Wolf (2005). Firstly, the strategies are sorted in a descending order 

based on the test statistics. After this is done, if 𝑏𝑘 is the 𝑘-largest test statistic, 

then Ζ𝑇,𝑏1
≥ ⋯ ≥ Ζ𝑇,𝑏𝒮

 . Next, the 𝑘-th largest test statistic and the 1 − 𝑎 (where 

𝑎 is the significance level) percentile of its sampling distribution are estimated. 

The individual hypotheses outside the confidence region are rejected. For the 

hypotheses not rejected, the process is repeated until the number of rejections is 

                                                           

5 Chapter 4 provides a comprehensive discussion on the MHT and introduces a novel approach to 

estimate and control the Type I error. 
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smaller than the desired 𝑘. For more details on the Step-M methods and the 

relevant bootstrap approach, see Romano et al. (2008) or Mazzocco and Saini 

(2012). In order to control the 𝑘-FWER, the innovations of Romano and Wolf (2010) 

are followed. They introduce an asymptotically balanced method that controls the 

average number of false rejections. Implicitly this approach considers the 

dependence structure of the individual test statistics, which leads to a more 

efficient control of false null hypotheses (Type II error6). In this application, most 

technical trading rules have some form of weak dependency. (For instance, two 

MA cross-over strategies with different fast-MA of 2 and 5 periods but a similar 

slow-MA of 75 periods).    

The selection of 𝑘 depends on the problem under study and the practitioner’s 

approach. If 𝑘 is 1, the method can be overly conservative and inefficient7. For 

this study, the 𝑘 is set to 39 (roughly 0.5% of the 7846 technical rules under 

study8). As a benchmark to the data snooping test (𝜍), a basic random walk model 

is applied since major exchange rates are widely suggested to follow a random 

walk (see among others, Meese and Rogoff, 1983; Baillie and Bollerslev, 1989; and 

Chinn and Meese, 1995).  

2.2.2 RVM 

The RVM approach proposed by Tipping (2001), seeks to find the most effective 

inputs based on probabilistic approaches to classification and regression problems. 

Throughout this process, the determined effective points are defined as relevance 

vectors. This Section summarizes the RVM structure.  

                                                           

6 Type II error corresponds to cases where a true alternative hypothesis is falsely not rejected. Since 

the goal of the MHT is controlling Type I error, the risk of ignoring the significant rules increases 

when the data snooping procedure is conservative. Table C.3 shows how excess 

conservativeness leads to Type II error where true discoveries are reported insignificant. 

7 Appendix C.1 provides evidence based on Monte Carlo simulations how 𝑘 = 1 can lead to very 

poor detection of significant models. 

8 The choice of 0.5% is based on approximating the set of initial rejections (including both true and 

false discoveries) with the top 5 percent of trading rules and allowing 10% of rejections to be the 

Type I error. This approximation can be improved by alternative statistical approaches to the 

rejections based on the test statistics and the bootstrap p-value (presented in Chapter 4). 

However, this approximation is chosen to find the most profitable trading rules. 



Chapter 2   14 

Assuming a supervised learning framework, I define a dataset 𝐷 with 𝜈 

predictors and 𝑇 training points, an input series set  𝒙 = {𝑥𝑖: 𝑖 = 1, … , 𝑇} and a 

target series set 𝒚 = {𝑦𝑖: 𝑖 = 1, … , 𝑇} . The general predictive formulation can be 

specified as: 

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜀𝑖             (2.4) 

where 𝜀𝑖 is the zero-mean Gaussian error term with distribution 𝜀𝑖 = 𝑦𝑖 − 𝑦̂𝑖 ∼

𝒩(0, 𝜎2), 𝑦̂𝑖  is the target point forecast, and 𝑓 is the transfer function. 

Given the basis function set 𝝋(𝒙) and the weight vector 𝒘, the RVM’s 

prediction under the linear model assumption can be expressed as: 

𝒚̂ = 𝑓(𝒙, 𝒘) = ∑ 𝑤𝑗𝜑𝑗(𝑥)𝜈
𝑗=1 + 𝑤0           (2.5) 

where 𝝋(𝒙) = [1, 𝐾(𝒙, 𝑥1), … , 𝐾(𝒙, 𝒙𝑇)]′ , 𝑤0 is the bias, and 𝒘 = [𝑤1, … , 𝑤𝜈].  

In the context of RVM, Radial Basis Function (RBF) is mostly considered as 

the basis function 𝐾. This is due to its simplicity and superior optimization 

performance (Park and Sandberg, 1991). Subsequently, the multivariate Gaussian 

likelihood of the dataset can be written as: 

𝑃𝑟(𝒚|𝒘, 𝜎2) = (2𝜋𝜎2)−𝑇/2exp (−
‖𝒚−Φ𝑤‖2

2𝜎2
)         (2.6) 

where 𝚽 is the 𝑇 × (𝑇 + 1) ‘design’ matrix with Φ𝑛𝑚 = 𝐾(𝑥𝑛, 𝑥𝑚−1) and Φ𝑛1 = 1 .  

Over-fitting can be expected in the maximum-likelihood estimation of 𝒘 and 

𝜎2 in Eq. (2.6). To overcome this, Tipping (2001) recommends setting prior 

constraints on parameters 𝒘 by adding a complexity term inspired by the 

traditional margin concept of Support Vector Machine (SVM) modelling. Gaussian 

priori in RVM context for an individual 𝑤𝑗 can be expressed as: 

𝑃𝑟(𝑤𝑗|𝛼𝑗) = (
𝛼𝑗

2𝜋
)1/2exp (−

𝛼𝑗𝑤𝑗
2

2
)           (2.7) 
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Similarly, for the whole set of 𝒘: 𝑃𝑟(𝒘|𝜶) = ∏ 𝒩(𝑇
𝑖=1 𝑤𝑖|0, 𝛼𝑖

−1), where 𝜶 =

[𝛼0, … , 𝛼𝑇]′ is a hyperparameter vector governing the prior defined over the weight 

𝒘 to control deviation of each 𝑤𝑗 from the zero mean.  

Given priori information controlling the generalisation ability and the 

likelihood distributions, applying Bayes’ rule generates the posterior over 𝒘 as: 

𝑃𝑟(𝒘|𝒚, 𝜶, 𝜎2) =
𝑃𝑟(𝒚|𝒘, 𝜎2

)𝑃𝑟(𝒘|𝜶)

𝑃𝑟(𝒚|𝜶,𝜎2)
           (2.8) 

In the case of a multivariate Gaussian distribution, the posterior takes the 

following form: 

𝑃𝑟(𝒘|𝒚, 𝜶, 𝜎2) = 𝒩(𝝁, 𝚺)            (2.9) 

The covariance and the mean of the distribution are estimated respectively by the 

following analytical solution of Eq.s (2.10 and 2.11): 

𝚺 = (𝚽′𝐁𝚽 + 𝐀)−1             (2.10) 

𝝁 = 𝚺𝚽′𝑩𝒕             (2.11) 

where  𝐀 = (𝛼0, … , 𝛼𝑇) and 𝐁 = 𝜎−2𝑰𝑇.  

To estimate the weights, the missing set 𝜶 in the above equations is treated 

as a hyperparameter. Therefore, the relevance vector learning model 

approximates the mode for the hyperparameter posterior i.e. maximization of 

𝑃𝑟(𝜶, 𝜎2) ∝ 𝑃𝑟(𝒚|𝜶, 𝜎2)𝑃𝑟(𝜶)𝑃𝑟(𝜎2) given 𝜶 and 𝜎2. Assuming uniform 

hyperperiors, the model optimization can be thought equivalent to the 

maximization of 𝑃𝑟(𝒚|𝜶, 𝜎2). By Integrating out the weights, the following is 

derived: 

𝑃𝑟(𝒚|𝜶, 𝜎2) = ∫ 𝑃𝑟(𝒚|𝒘, 𝜎2) 𝑃𝑟(𝒘|𝜶)𝑑𝒘             (2.12) 

where 𝑃𝑟(𝒚|𝜶, 𝜎2) can be computed by the following equation: 

𝑃𝑟(𝒚|𝜶, 𝜎2) = (2𝜋)−𝑇/2|𝑩−𝟏 + 𝜱𝑨−1𝜱′|
−1/2

exp {−
1

2
𝒚′(𝑩−𝟏 + 𝜱𝑨−1𝜱′)−1𝒚}    (2.13) 
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The marginal likelihood for hyperparameters in the Gaussian distribution form is 

given by: 

𝑃𝑟(𝒚|𝜶, 𝜎2) = 𝒩(0, 𝑩−𝟏 + 𝜱𝑨−1𝜱′)         (2.14) 

The estimation of the above hyperparameters is conducted through an 

iterative procedure similar to the gradient ascent on the objective function for 

Maximum A Posteriori (MAP) estimate of the weights (for more details refer to 

Ghosh and Mujumdar, 2008; and Candela and Hansen, 2004). The numerical 

approximation is adopted because there is no closed form solution. The MAP 

estimation is dependent on the hyperparameters 𝜶 and 𝜎2 in other words 𝐀 and 𝐁 

in Eq.s (2.10 and 2.11). 

Following Tipping (2001) the solution to Eq.s (2.10 and 2.11) is estimated 

through differentiating and setting Eq. (2.14) to zero. After rearranging we have:   

𝛼𝑚
𝑛𝑒𝑤 =

𝛾𝑚

𝜇𝑚
2              (2.15) 

where 𝜇𝑚 is the 𝑚-th posterior mean-weight from the equation set and 𝛾𝑚 ≡ 1 −

𝛼𝑚Σ𝑚𝑚. 

The Σ𝑚𝑚 is the 𝑚-th diagonal element of the covariance 𝚺 matrix calculated 

by the updated 𝜶 and 𝜎2. Parameter 𝛾𝑚 is interpreted as the degree to which 

associated 𝑤𝑚 is well-determined by the training data (MacKay, 1992). When the 

fit is not appropriate, the 𝑤𝑚 is constrained by priori with small 𝜎𝑚
2 . For example, 

for a high value of 𝛼𝑚, Σ𝑚𝑚 will tend to 𝛼𝑚
−1 and consequently 𝛾𝑚 approaches zero. 

On the other hand, when the fit is good, 𝛼𝑚 ≈ 0, this leads to Σ𝑚𝑚 ≈ 0, and finally 

𝛾𝑚 ≈ 1. Consequently, the range for 𝛾𝑚 is [0,1]. For the other hyperparameter 𝜎2 

differentiation results in the update of the noise variance estimation as: 

(𝜎2)𝑛𝑒𝑤 =
‖𝒕−𝚽𝝁‖2

𝑇−Σ𝑚𝛾𝑚
            (2.16) 

The learning process advances by reestimating the hyperparameters and 

updating the mean and covariance of the posterior in each iteration. This 

continues until the convergence is met at an iteration step or until the 
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incorporated stop criteria are activated to avoid reaching redundant loops. In 

practice during the iterative update of the hyperparameters, many 𝛼𝑗s approach 

infinity. In that way 𝑤𝑗s tend to form a delta function around zero. Consequently, 

many elements in 𝒘 and associated elements in 𝝋(𝒙) would be discarded from the 

operational model. The remaining basis functions that are associated with training 

points within the sample dataset produce a sparse solution for the RVM model. 

These remaining examples are the so-called relevance vectors. Tipping (2001) 

claims that the above predictive estimations are found to be robust by most 

empirical evidence. The predictive distribution for a given new point 𝑥∗ 

complemented by a 𝑦∗ class label is given by: 

𝑃𝑟(𝑦∗|𝑥∗, 𝜶𝑀𝑃, 𝜎𝑀𝑃
2 ) = ∫ 𝑃𝑟(𝑦∗|𝑥∗, 𝒘, 𝜎𝑀𝑃

2 ) 𝑃𝑟(𝒘|𝒚, 𝜶𝑀𝑃, 𝜎𝑀𝑃
2 )𝑑𝒘      (2.17) 

The Gaussian form is expressed as: 

𝑃𝑟(𝑦∗|𝑥∗, 𝜶𝑀𝑃, 𝜎𝑀𝑃
2 ) = 𝒩(𝑦̂∗, 𝜎∗

2)          (2.18) 

where 𝑦̂∗ = 𝝁′𝜱(𝑥∗) is the mean estimate of the target and 𝜎∗
2 = 𝜎𝑀𝑃

2 +

𝜱(𝑥∗)′𝚺𝜱(𝑥∗) is the corresponding uncertainty. The 𝜶𝑀𝑃 and 𝜎𝑀𝑃
2  are the most 

probable hyperparameter values obtained from Eq. (2.13). 

The predictive mean is generated through the reduced basis function and the 

input explanatory variables. The predictive variance confirms that the OOS 

prediction is consistently higher than the IS one due to extra uncertainty caused 

in the process of the weights prediction. 

2.2.3 DMA and DMS 

Financial trading series are dominated by structural breaks. Models with fixed 

coefficients work only for short periods. Time-Varying Parameter (TVP) models 

consider the parameters as a function of time and are estimated using state-space 

methods such as Kalman filter. Despite the benefits of the TVP models over static 

methods, the assumption is that the initial set of explanatory variables remains 

relevant over time. This can be undesirable in real environment applications.  
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The DMA proposed by Raftery et al. (2010) allows selecting different subsets 

of explanatory variables over time along with variable coefficients. Consider a 

candidate input set 𝑢 = 1, … , 𝑈, then the state-space model at time 𝑡 = 1, … , 𝑇 for 

the dependent variable 𝑦𝑡 can be presented under observational and state 

equations as: 

𝑦𝑡 = 𝐹𝑡
(𝑢)′

𝜁𝑡
(𝑢)

+ 𝜀𝑡
(𝑢)

,             (2.19) 

𝜁𝑡
(𝑢)

= 𝜁𝑡−1
(𝑢)

+ 𝜂𝑡
(𝑢)

,              (2.20) 

(
𝜀𝑡

(𝑢)

𝜂𝑡
(𝑢)) ~ 𝒩 (

𝑅𝑡
(𝑢)

     0

0     𝑉𝑡
(𝑢)),             (2.21) 

where 𝐹𝑡
(𝑢)

 in Eq. (2.19) is a subset from the 𝜈 potential predictors at each time. 

The 𝜁𝑡
(𝑢)

 is a 𝑝 × 1 , 𝑝 ≤ 𝜈 vector of time-varying regression coefficients evolving 

over time by Eq. (2.20). From the specification provided, it is immediately visible 

that the total number of candidate models is 𝑈 = 2𝜈. Unless 𝜈 is very small, 

updating the parameters becomes demanding and computationally very slow using 

a full Bayesian approach. Raftery et al. (2010) approximates the solutions of Eq.s 

(2.19 to 2.21) and thus makes the algorithm more efficient. However, the 

computational burden still increases exponentially when 𝑣 is large. This makes 

DMA impractical with standard computer processing when 𝜈 is larger than 20.  

The DMA averages the forecasts across candidate combination of models 

based on predictive likelihood through a recursive updating scheme. The 

predictive likelihood estimates the ability of model 𝑢 to predict 𝑦𝑡. The models 

containing better predictors receive higher predictive likelihood and are 

associated with higher weights in the averaging process. Respectively, at each 

time 𝑡 two vectors of weights for the model 𝑢 are calculated as 𝜔𝑡|𝑡−1,𝑢 and 𝜔𝑡|𝑡,𝑢. 

The first quantity denotes the weight of a specific model given information 

available at time 𝑡 − 1, while the latter one represents the dedicated weight to 

the specific model after the model update at time 𝑡. The DMS makes the prediction 

based on the highest value of weight which is calculated through the updating 

process. This can be mathematical expressed as: 
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𝜔𝑡|𝑡,𝑢 =
𝜔𝑡|𝑡−1,𝑢 𝐿𝑢(𝑦𝑡|𝑦1:𝑡−1)

∑ 𝜔𝑡|𝑡−1,𝑙
𝑈
𝑙=1  𝐿𝑙(𝑦𝑡|𝑦1:𝑡−1)

,           (2.22) 

where  𝐿𝑢(𝑦𝑡|𝑦1:𝑡−1) is the predictive likelihood measured by the realized value of 

𝑦𝑡. By using a forgetting factor 𝛿, as suggested by Raftery et al. (2010), the 

weights for the following period are formulated as: 

𝜔𝑡+1|𝑡,𝑢 =
𝜔𝑡|𝑡,𝑢

𝛿  

∑ 𝜔𝑡|𝑡,𝑙
𝛿𝑈

𝑙=1

.            (2.23) 

The 𝛿 controls the ‘forgetting’ of the entire model set and it can take values 

in the range of 0 < 𝛿 ≤ 1. Raftery et al. (2010) suggest 𝛿 = 0.99 as a benchmark, 

while Koop and Korobilis (2012) recommend 𝛿 ∈ [0.95,0.99]. The recursive 

calculation starts with a non-informative choice for the initial weight 𝜔0|0,𝑢 =
1

𝑈
 for 

𝑢 = 1, … , 𝑈. The other approximation is used in the estimation of the 𝑉𝑡
(𝑢)

. The 

second forgetting factor, 𝜆, explains the information loss over time. Representing 

the variance estimator 𝜁𝑡
(𝑢)

 by 𝐶𝑡
(𝑢)

, the conditional variance, 𝑉𝑡
(𝑢)

(there is no need 

to be estimated for each individual model), is calculated as: 

𝑉𝑡
(𝑢)

= (1 − 𝜆−1)𝐶𝑡−1
(𝑢)

.              (2.24) 

In other words, the 𝜆 controls the amount of shock affecting the coefficients 

𝜁𝑡
(𝑢)

. Identical to 𝛿, 𝜆 may also take values near to one. This determines the rate 

of which information loses effect on the model coefficients. Here, it should be 

noted that by setting 𝛿 = 1, the DMA is transformed to a TVP model with no change 

in the subset selection over time. Additionally, by setting 𝛿 = 𝜆 = 1, the DMA is 

simplified to conventional Bayesian Model Averaging with no time-varying 

characteristic.  

The term “forgetting factors” stems from the fact that observations at 𝑗 

periods ago have a contribution with factor 𝜆𝑗 to the model. As a simple analogy, 

in the case of having 𝜆 = 0.99 , it takes 69 periods for the shock from each 

observation to lose half of its effect on the coefficients. The half-life of the shock 

to the model is reduced to 14 periods for 𝜆 = 0.95 and further to 6 in the case of 

𝜆 = 0.90. The values of the forgetting factors can considerably affect the way 

models react to the changes of the environment.  Various surveys recommend the 
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direct use of 𝛿 = 𝜆 = 0.99 as a benchmark (Raftery et al., 2010; Aye et al., 2015). 

Koop and Korobilis (2012) argue that the performance of competing models with 

different forgetting factors are robust and perform efficiently. They also conduct 

a sensitivity analysis for the parameters that shows that the best OOS forecasting 

results are obtained by setting 𝛿 = 0.95 and 𝜆 = 0.99. The study of Koop and 

Korobilis (2012) is conducted on macroeconomic data and indicates that 

appropriate selection of parameters under volatile conditions can enhance the 

predictive ability of the DMA and DMS models. In this study, a wider variety of 

values e.g. {0.90,0.95,0.99,1} for the parameters are experimented to 

accommodate a more rapid update of the model specification. This choice 

accommodates the dynamics and nonlinearities of the market. The wide range for 

parameters also replicates the behaviour of expert traders on the market floor 

that constantly revise their trading strategy and if necessary rapidly switch from 

one approach to another9.  

2.2.4 BNN 

BNN is a specific extension of ANNs that are a class of non-linear models inspired 

by the work and functioning of biological neurones. In the most common set-up, 

an ANN has at least three layers. The first layer is called the input layer (where 

the technical rules are fed). The last layer is called the output layer (where the 

forecasted value is extracted). An intermediary layer of nodes, the hidden layer, 

separates the input from the output layer. The number of nodes in the hidden 

layer controls the complexity the model is able to fit. In addition, the input and 

hidden layer contain an extra node called the bias node. This node has a fixed 

value of one and has the same function as the intercept in traditional regression 

models. Normally, each node of one layer has connections to all the other nodes 

of the next layer.   

The training of the network is to adjust its weights so that the network maps 

the input value of the training data to the corresponding target value. It begins 

with randomly chosen weights and proceeds by applying a learning algorithm. The 

most common procedure is the backpropagation of errors (Shapiro, 2000) which 

                                                           

9 The reported results in Section 2.3 are based on the best performance measured in the IS. The 

IS in the DMA and DMS cases is the first 80% of observations. 
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looks for the minimum of the error function (commonly the Mean Squared Error 

(MSE) between the actual and forecasted values) in weight space using the method 

of gradient descent. 

Ticknor (2013) modifies the training procedure by applying Bayesian 

regularisation which trains the ANN based on: 

𝛺 = 𝛾1𝛦𝑆𝐸 + 𝛾2𝛦𝑤𝑒            (2.25) 

where 𝛦𝑆𝐸 is the sum of the squared errors, 𝛦𝑤𝑒 is the sum of the squared network 

weights and 𝛾1 and 𝛾2 are objective function parameters. In this framework, the 

ANN’s weights are considered random variables and their density function based 

on the rule of Bayes is: 

𝑃𝑟(𝑤|𝐷, 𝛾1, 𝛾2, 𝑀) =
𝑃𝑟(𝐷|𝑤,𝛾1,𝛭)𝑃𝑟(𝑤|𝛾2,𝛭)

𝑃𝑟(𝐷|𝛾1,𝛾2,𝛭)
         (2.26) 

where 𝑤 is a vector of the network weights, 𝐷 is a vector with the dataset 

(technical rules in this Chapter’s case) and 𝑀 is the underlying model (the ANN in 

this case). Based on Forsee and Hagan (1997), the optimization of parameters 𝛾1 

and 𝛾2 requires solving a Hessian matrix based on the Levenberg–Marquardt 

training algorithm. In order to protect the ANN from over-fitting, the early 

stopping procedure in the IS is applied.  

In BNN, overly complex models are penalized as unnecessary linkage weights 

and are effectively driven to zero. Burden and Winkler (2009) argue that the 

network calculates and trains on the nontrivial weights which converges to a 

constant as the network grows. Parsimonious ANNs limit the training time and the 

danger of over-fitting. Additionally, they do not require the validation step which 

is otherwise necessary on the traditional back-propagated ANNs. 

2.2.5 NB 

The RVM models the posterior 𝑃𝑟(𝑦|𝑥) from the attribute variable set 𝒙 to the 

class label set 𝒚. In the context of probabilistic classification, this approach is 

termed as discriminative learning. In discriminative classifiers, all training 

observations from any class 𝑦𝑖 are considered in establishing the model. Despite 
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evidence in favour of discriminative classification (Vapnik, 1998), there is a 

reverse approach to the probabilistic classification regarded as generative 

learning. The generative classifiers learn the joint probability 𝑃𝑟(𝑥, 𝑦), by using 

Bayes rules to calculate 𝑃𝑟(𝑦|𝑥) . Then, a classification model is obtained, which 

classifies each data point to the label 𝑦 with the highest posterior probability. 

Generative learning is particularly useful, when there is missing information in the 

dataset. 

The NB is a simple classifier that allocates each point of the dataset to the 

most likely class according to the generative approach. The model is named naïve 

because of its simplifying assumption that all variables 𝑥𝑖 are conditionally 

independent for a certain class 𝑦0. For a test sample with attribute variables 𝑥 =

𝑥0 of 𝜈 dimension and class label 𝑦 = 𝑦0 , the probability of each class can be 

calculated by the observed values of the predictive attributes 𝑥𝑗,𝑡, 𝑗 = 1, … , 𝑣 ;  𝑡 =

1, … , 𝑇. By using the Bayes rule, the posterior can be calculated as: 

𝑃𝑟(𝑦 = 𝑦0|𝑥 = 𝑥0) =
𝑃𝑟(𝑦=𝑦0)𝑃𝑟(𝑥 = 𝑥0|𝑦 = 𝑦0)

𝑃𝑟(𝑥=𝑥0)
        (2.27) 

The predicted label is the most probable class given by (2.27). Under the class-

conditional independence assumption, I have: 

𝑃𝑟(𝑥 = 𝑥0|𝑦 = 𝑦0) = ∏ 𝑃𝑟(𝑥𝑖 = 𝑥𝑖,0|𝑦 = 𝑦0)𝜈
𝑖=1          (2.28) 

The conditional distribution 𝑃𝑟(𝑥 = 𝑥0|𝑦 = 𝑦0) may take a multinomial 

(Gaussian) form for discrete (continuous) variables. Based on the training dataset 

and plugging the empirical probabilities in Eq.s (2.27 and 2.28), it is easy to make 

a natural classification as the naïve benchmark. 

In this Chapter, NB is used as a benchmark for other types of Bayesian 

probabilistic models. The attribute variables are the signals generated by the 

trading rules from a set of 𝑥 ∈ {−1, 0, 1}. This set represents short, hold or long 

positions respectively. Similarly, the class label is the one-step-ahead direction of 

the market change. For example, a class label 𝑦 ∈ {−1, 0, 1} represents the fall, 

no change or rise respectively of the market in the next period.  
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2.3 Empirical Section 

2.3.1 Dataset 

The proposed methodology is applied to the daily price (open, high, low, and 

close) and volume series for EUR/USD, GBP/USD, and USD/JPY exchange rates. 

The period under study is the start of 2010 until the end of 2016 and it is divided 

into four trading exercises. In each trading exercise, the first three years act as IS 

and the following year as OOS (i.e. in the first exercise the IS covers the years 

2010 until 2012 and the year 2013 acts as OOS). 

At the first stage, 7846 simple trading rules are generated for each of the 

three exchange rates at the IS periods of the four exercises. The trading rules 

consist of FIlter Rules (FIRs), MAs, Support and Resistance levels (S&Rs), Channel 

Breakouts (CBs), and On-Balance Volume indicators (OBVs). It is the same set of 

rules applied in the studies of Sullivan et al. (1999) and Bajgrowicz and Scallet 

(2012). For a description of these rules see Appendix A.1. All trading rules are 

generated through the logarithmic returns of the exchange rates.  The summary 

statistics of the logarithmic returns on daily close for the exchange rates under 

study are presented in the Table 2.1.  

[Table 2.1] 

All series exhibit positive kurtosis while the skewness is mixed but generally 

close to zero. The Jarque and Bera (JB) (1980) test reveals that the return series 

do not follow a normal distribution, while the Augmented Dicky-Fuller (ADF) 

(1979) shows that they are stationary. Each trading rule generates a daily trading 

signal for the relevant exchange rate and IS period. The trading signal can be long 

(buy), short (sell) or hold (no action). Based on these signals, the trading 

performance of each of the 7846 rules is generated. As transaction costs, I 

consider three basis points per trade based on industry rates10 and academic 

literature (see among others, Neely and Weller, 2003; Gradojevic, 2007). 

                                                           

10 See among others, www.interactivebrokers.com and www.fxall.com  
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2.3.2 Trading Application 

To evaluate the performance of the technical trading rules two metrics for 

adjusted returns are used. The first measure is annualized excess return that 

accounts for the returns relative to the risk-free rate benchmark. The second one 

is the Sharpe ratio that corresponds to the risk-adjusted returns. The Sharpe ratio 

is the most common performance evaluation used by asset managers (Rime et al., 

2010). The equal weight11 trading performance of the identified genuine technical 

rules is presented below.  

[Table 2.2] 

From Table 2.2, I note that in all cases the data snooping procedure was able 

to identify genuinely profitable trading rules based on the IS observations. The 

number of significant rules corresponds roughly to 5%-15% of the total number of 

trading rules under study. The average trading performance of the genuine trading 

rules is positive in all IS cases and in some OOS cases. The patterns are the same 

between the annualized excess return and the Sharpe ratios.  

These results allow me to argue that technical analysis seems to have value 

on the exchange rates and periods under study. There are genuine profitable 

simple technical rules in the IS. It is possible for investors and researchers to 

identify these rules with the help of recent developments in SI. This performance 

supports AMH, which argues that investors need to be adaptive in highly 

competitive trading environments. These results agree with Hsu et al. (2010), 

Neely and Weller (2013) and Hsu et al. (2014) that argue that technical analysis 

has some value. However, in line with the previous studies, I note that the 

performance of these rules is volatile probably due to the time-varying market 

                                                           

11 The equal weight corresponds to investing the 1/𝐶 of the total wealth to each of the 𝐶 trading rules 

identified from the data snooping procedure. The portfolio construction approach as presented in 

Bajgrowicz and Scallet (2012) has also been explored. In Bajgrowicz and Scallet (2012), the buy 

and sell signals counter each other while the neutral signs are considered risk free investments.  

The portfolios derived from this approach do not change the view of Table 2.1. However, as the 

scope of this study is to check the efficiency of technical analysis in FX and whether Bayesian 

techniques can improve their trading performance, the annualized averages are presented. 

Following this approach, the results of Table 2.2 can also be compared with the results of Section 

2.3.3 where the best trading rules are combined with the Bayesian techniques.  
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conditions. I also note that the profit margins are low, and the OOS trading 

performance is not always above the risk-free rate12.  

2.3.3 Bayesian Methods  

Although technical rules seem unreliable for trading, Bayesian techniques can 

offer an advantage to investors. Arguably, they could combine different trading 

signals and derive strongly positive trading performances. Complex models should 

be capable of encompassing the simple trading rules. Additionally, these models 

should be able to offer an advantage to highly competitive markets. More 

specifically, the dynamic nature of DMS and DMA and the non-linear adaptive 

nature of BNN should be able to handle the changing trends of the FX series under 

study. However, all these three methods are computationally demanding and 

combining them with all the identified trading rules is not feasible13. Thus, for the 

DMA, DMS and BNN the best 5, 10 and 15 technical rules are used as inputs based 

on accuracy, profitability and Sharpe ratio in the IS. For RVM, the algorithm 

requires a large set of potential predictors in order to identify the optimum 

relevant subset of inputs. Therefore, it is fed with all the identified genuine 

profitable technical rules.  In Tables 2.3 to 2.5, the trading performance of all the 

Bayesian methods in the OOS is presented. A Simple Average (SA) is also estimated 

as a naïve benchmark. The Giacomini and White (2006) test is applied to all 

combinations. The benchmark of the test is a simple random walk with no trend. 

[Tables 2.3 to 2.5] 

Tables 2.3 to 2.5 show that all Bayesian combinations are capable of 

producing positive returns and Sharpe ratios (see Appendix A.2), after transaction 

                                                           

12 As risk free rate, the effective federal funds rate is considered. The interest rate at which US 

depository institutions trade federal funds with each other overnight. 

13 For example, for DMA and the EUR/USD in the first forecasting exercise, the algorithm would have 

to estimate 2839 combinations. This task is feasible with the help of supercomputers (which were 

not available in this project) but it is unrealistic from a trading perspective where speed is 

essential. For an up-to-date personal computer (Intel core-i5 3470 64-bit processor with 8 GB 

memory), DMA needs around 30 mins to produce the results for one experiment with fifteen inputs 

(out of the twelve similar experiments, for each of the three exchange rates). This is increased to 

twenty-one hours for twenty inputs. Similarly, in BNNs, when the number of inputs is very large 

their algorithm becomes insufficient, they become prone to overfitting and their forecasting 

performance is crippled (Zhang et al., 1998; and Yegnanarayana, 2009). 
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costs for the exchange rates and the periods under study. The DMA and the BNN 

seem to outperform their Bayesian counterparts and the SAs. This can be 

explained by the dynamic nature and time-varying coefficients of DMA and the 

highly non-linear features of BNN. On the other hand, the RVM that explores the 

whole set of genuine rules presents a marginally better performance than NB. DMS 

presents a consistent lower trading performance than the relevant DMA models. 

In trading, model averaging almost always works better than model selection and 

thus these results are not surprising. In general, I find that the profitability 

increases three to four times with DMA and BNN, compared to the pool of surviving 

technical rules (see Table 2.2). In terms of risk, the Sharpe ratios for DMA and BNN 

are consistently positive with an average of 0.614 for both models with 15 inputs. 

The same metric is 0.2 for the OOS in Table 2.2. The comparison of the Sharpe 

ratio for the Bayesian models and survivors of the data snooping test shows major 

improvement in trading performance after adjusting for risk. It is also worth noting 

that all Bayesian combinations are statistically different from a random walk 

forecasts based on the Giacomini and White (2006) test.  

Based on these results, Bayesian Statistics has value in trading and can 

considerably increase the profitability of the underlying trading systems. The 

models under study (DMA, DMS, BNN and RVM) are characterized by their 

complexity but can offer investors substantially increased returns. Similar to the 

concept of AMH, in highly competitive markets (such as FX) simple rules have a 

small value. Traders should seek complex non-linear models that can offer them 

an advantage over their competitors. DMA and DMS search all possible input 

combinations and select the optimal subset at each step, while BNN imitates the 

work of biological neurons and maps the non-linear dataset through Bayesian 

statistics. Unlike the simple technical rules that can be estimated by hand, none 

of the three Bayesian models can be used without the help of computer 

processors. However, complexity is always translated to an increased 

computational burden. This study was limited to subsets of the genuine profitable 

                                                           

14 The trading performance is directly dependant on the modelling process, the empirical design, and 

the study period of a research. Thus, a direct comparison of the trading models from different 

studies directly may not be accurate unless similar conditions are replicated. However, the 

reported value for average Sharpe ratio is comparable to 0.4 in Neely et al. (2009) as a standard 

level in OOS for FX and 0.5 for the leading models in Neely and Weller (2013).  
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technical rules for DMA, DMS and BNN. While this protects the models from over-

fitting, applying the whole set of genuine rules might have led to better results.  

2.4 Conclusions 

In this study, I explore the utility of technical analysis and Bayesian Statistics in 

trading. For this purpose, 7846 technical rules are generated for the EUR/USD, 

GBP/USD and the USD/JPY exchange rates.  Then, the genuinely profitable trading 

rules are identified with the help of the Romano et al. (2008) data snooping test 

combined with the balancing procedure of Romano and Wolf (2010). Finally, the 

profitable rules are combined with NB, RVM, DMA, DMS and BNN models. The 

motivation for this research is the AMH which states that complex models should 

have an advantage in highly competitive markets. The promising forecasting 

performance of Bayesian Statistics in this Chapter’s study confirms the proposals 

of the AMH and validates the paradigm of Figure 1.1. 

In the results, I find that this Chapter’s data snooping procedure identifies 

5% to 15% of the technical rules as genuinely profitable. However, the generated 

portfolios based on them, present small annualized returns and Sharpe ratios over 

the OOS. When subsets of these rules are combined with the Bayesian models, I 

find that all Bayesian techniques increase the trading performance of the simple 

technical rules up to four times. Among the competing models, the DMA and the 

BNN clearly outperform their benchmarks. These results allow me to argue that 

market efficiency is variable, and it is possible to benefit from market 

inefficiencies with Bayesian Statistics.   

This Chapter’s results should go forward to convince traders and academics, 

to explore the recent development in statistics for procedures capable of 

providing an advantage in financial markets. These procedures might be 

characterized by complexity and are therefore inappropriate for high-frequency 

trading or large experiments. Nevertheless, the complex procedures in this 

Chapter can provide an edge in comparison to the traditional trading models.   
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3. Conditional Fuzzy Inference: Applications in 

Football Results Forecasting 

3.1 Introduction 

This Chapter introduces the concept of CF inference. In CF a set of FRs is 

generated in the IS and a power to each rule is assigned based on the rule’s 

frequency and accuracy. Then, all rules are ranked and the strongest are applied 

in the OOS.  For each OOS data point, membership functions are calculated and if 

certain conditions are met a weighted average of the strongest FRs is estimated. 

These conditions are based on the IS and ensure that the rule is strong enough for 

OOS estimation.  If the conditions for a data point are not satisfied and no strong 

rule is close, then no forecast is generated for that point. The CF process avoids 

weak rules and ensures that the generated forecasts are based on a weighted 

average of the most powerful FRs.  

The proposed methodology is advantageous to a series of issues. Firstly, it is 

useful in problems where the practitioner or the researcher is interested only in 

strong signals and the risk of having a poor forecast is greater than having no 

forecast. For example, in financial trading, betting on a sport or in any other 

sensitive decision-making process, poor forecasts lead to financial losses. In these 

environments the underlying series are volatile and decision makers are risk 

averse; abstaining from the market is better than making decisions under 

uncertainty. Secondly, CF can improve the OOS accuracy of the underlying system 

and offer transparency at the same time. This is beneficial in problems where 

complex models (such as ML) are necessary. Thirdly, the generated rules can be 

easily applied by non-experts as the number of rules applied is small and they are 

easily replicated. Lastly, the chosen rules do not suffer from over-fitting or under-

fitting problems. In ML and complex models, it is common for the performance to 

be driven by extensive experimentation. In these cases, the generated forecasts 

can be due to over-specification and have no generalisation value. In CF the weak 

signals are dropped and the noise within the model is reduced.  

A novel empirical study is designed and implemented in order to test the 

merits of the proposed methodology. CF and RVM will be applied to the most 

popular forecasting exercise in Europe and Asia, namely betting on European 



Chapter 3   29 

football15 games. Football games forecasting is a high return/risk exercise; a 

correct bet can offer substantial profits while a wrong decision leads usually to 

the total loss of the capital. Thus, it seems perfect exercise for the CF approach. 

More specifically, the proposed model forecasts both the result and the number 

of goals within football games at the three biggest football championships (the 

English Premier League, Italian Seria A and Spanish La Liga) from 2005 to 2016. 

The forecasts are evaluated through a realistic betting exercise based on the 

Betbrain average odds16. The aim of the exercise is to extract CF rules from 

selected features by RVM that are easily interpretable and can offer substantial 

profits to those who gamble on football games. The CF and RVM forecasts are 

benchmarked by those generated by an RVM model combined with an ANFIS model 

(the most popular fuzzy extraction structure), those from a single RVM model and 

those from an OP model. The comparison between CF and ANFIS will reveal the 

benefits of the proposed framework compared to an unconditional (ordinary) 

Fuzzy Inference Systems (FIS), while by benchmarking the results with the single 

RVM it will validate whether CF can increase the accuracy of the underlying 

system. OP is the most popular technique in football games forecasting. Thus, the 

comparison with CF offers a benchmark close to the relevant literature. In 

addition to the above, alternative football betting types are explored. There are 

three main forms of gambling in football games: betting on the result of the game 

(home win-draw-away win), betting on the result through the Asian handicap (win-

lose) and betting on the number of goals of a game (over or under 2.5 goals). The 

exercise will reveal whether consistent profits from football betting are possible 

and if the size of the profits differs between the three forms or the football 

championship.  

FL is introduced by Zadeh (1965). Its motivation is driven by the work and 

functioning of the human mind. Even though a tremendous amount of information 

presents itself to a human in any given situation ‒ an amount that would ‘choke’ 

a typical computer ‒ the human mind has the ability to discard the irrelevant 

elements and to concentrate only on the information that is relevant. The ability 

of the human mind to deal only with the part of the information that is relevant 

                                                           

15 Simply football for the remaining of the Chapter. 

16 Betbrain collects odds from 138 bookmakers and betting exchanges from across the globe. 
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is connected with its possibility to process fuzzy information (Zadeh, 1983). In 

that way the amount of information the brain has to deal with is reduced to a 

manageable level and the decision process is faster, simpler and more effective. 

FL can be described as multi-value logic that allows for intermediate values 

instead of the conventional evaluations like yes/no, up/low, on/off. These 

linguistic expressions are called FRs.  FRs are conditional statements in the “if … 

then …” form. They are widely used in studies with systems whose actions are 

incomprehensible (Bellman and Zadeh, 1970). In these studies, researchers apply 

an FIS in the IS to generate a set of FRs that maps the interactions between 

variables (see among others, Hruschka, 1988; Teodorović, 1994; Piramuthu, 1999; 

Kuo, 2001; and Chang et al., 2008; and Gradojevic and Gençay; 2013). This set of 

FRs reveals the structure of the system and how inputs relate to the outputs. 

However, this structure is rarely retained to the same extent in the OOS. In 

problems with dynamic data (such as finance or economic series or football games 

results) the relationship between inputs-outputs varies through time and the 

generated FRs in the IS cover only a part of the OOS. This leads to a reduction of 

accuracy and to systems that are interpretable but inaccurate. Another problem 

is the strength of the generated IS FRs. Different rules have different strengths 

and different degrees of accuracy.  Applying weak FRs in the OOS leads to poor 

forecasts. 

There are a few studies that apply FL to the context of sports forecasting.  

Rotshtein et al. (2005) propose a model for predicting the result of a football 

match from the previous results of both teams. Although they suggest that their 

model accounts for nonlinear dependencies through fuzzy knowledge, they are 

focusing on a very illiquid football betting market, the one of Finland, and they 

do not explore the betting profitability of their forecasts. Trawinski (2010) 

propose a fuzzy model for extracting FRs in order to predict basketball game 

results. The author compares ten FR learning algorithms against a standard OLS, 

but they do not present robust empirical results or any betting application of 

football. Finally, Bastos et al. (2013) propose a static and a dynamic Poisson-

Gamma model to predict the outcome of World Cup football results based on the 

number of goals scored by each team. In their application, a fuzzy C-means 

algorithm is used for clustering. Nonetheless, they do not offer any betting 



Chapter 3   31 

application, while their forecasting exercise is limited to a football event 

occurring only every four years.  

The majority of researchers in football games forecasting apply OP, 

probabilistic or SVM methods. OP applications are common in the literature of 

football forecasting due to the ordered nature of the football result variable, as a 

result can be ordered as away team winning, draw and home team winning the 

game. Kuypers (2000) applies OP in order to test how the betting market 

participants utilize available information and claims that an expected profit 

maximizing bookmaker could set market inefficient odds. That suggests that 

betting arbitrage is indeed possible. Audas et al. (2002) use OP to forecast games 

outcomes in English football and examine the effect of managerial change on 

teams’ performances. One of their main findings is that within-season managerial 

change could be attributed to the fact that owners are willing to gamble in order 

to stave off the threat of relegation. Dobson and Goddard (2003) test the 

persistence of sequences in match results through OP and Monte Carlo analysis. 

Their study utilizes a 30-season English Football League and Premier League 

dataset and they find that there is negative persistence for sequences of 

consecutive wins and sequences of consecutive matches without a win. Goddard 

and Asimakopoulos (2004) and Goddard (2005) both apply OP to forecast English 

football outcomes based on teams’ quality and past performance indicators. Their 

results indicate that this approach ‒ which is followed in this Chapter ‒ is robust 

and provides high forecasting performance. The work of Forrest et al. (2005) 

investigates whether odd-setters can forecast implicitly English football results. 

They use as a benchmark an OP model and they find that bookmakers forecasts 

are improving over time, while OP fails to outperform them. Graham and Stott 

(2008) show that there are systematic biases in bookmakers’ odds, but they do 

not manage to achieve betting profitability applying OP forecasts. Finally, Forrest 

and Simmons (2008) examine the efficiency of betting odds in the Spanish La Liga. 

They argue that betting odds are influenced by the relative number of fans of each 

club in a match, with supporters of the more popular teams being offered higher 

odds.  

Bayesian and Poisson probabilistic approaches are also found in this strand 

of the literature. Meeden (1981) demonstrates the optimal strategy for a Bayesian 
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bettor playing against a Bayesian bookmaker. Dixon and Coles (1997) forecast the 

number of goals and the results of football games with forecasting systems based 

on the Poisson distribution.  Rue and Salvesen (2000) apply successfully Bayesian 

Statistics and Markov chain Monte Carlo iterative simulation techniques to the task 

of forecasting the final ranking of Premier League and how each team's properties 

vary during the season 1997-1998. Crowder et al. (2002) estimate the probabilities 

of home win, draw and away win with refinements of the independent Poisson 

model for 92 soccer teams in the English Football Association fixtures over 1992–

1997. A Bayesian Network (BN) is used by Joseph et al. (2006) to predict football 

forecasting results. Although their approach provides high statistical accuracy, it 

is only focusing only on one English Premier League team. Vlastakis et al. (2009) 

applies Poisson count and multinomial logit regressions in order to encompass 

forecasts for football betting. Their results suggest that there is evidence of weak-

form efficiency in the betting market. The work of Karlis and Ntzoufras (2008) 

proposes a Bayesian approach to model the goal margins, while Min et al. (2008) 

combine Bayesian inference and rule-based reasoning in order to forecast the 

result of football games. Baio and Blangiardo (2010) propose a Bayesian 

Hierarchical model to predict the results of the Italian Serie A based on the 

defensive/offensive mentality of the team. Constantinou et al. (2012) suggest a 

pi-BN for English Premier league match forecasting. Their model applies time-

dependent data with weighted degrees of uncertainty and exhibits high statistical 

accuracy along with profitability over the publicly available odds. A similar 

approach is applied by Owramipur et al. (2013). Their proposed BN is applied to 

the task of forecasting Barcelona FC’s results in the 2008-2009 Spanish league 

using as inputs psychological and non-psychological factors that can affect the 

team’s performance. Finally, Koopman and Lit (2015) and Angelini and De Angelis 

(2017) refine previously traditional Poisson models and improve upon the accuracy 

of the Dixon and Coles (1997) model. Their applications are based on the Premier 

league and their profitability is tested with a basic betting strategy. 

Other studies in the field utilize SVMs frameworks. Vlastakis et al. (2008) 

applies SVMs to the task of predicting power over European football match scores 

using match result and Asian Handicap odds data from the English Premier league. 

SVMs performs better than a Poisson model and the authors note that the size of 

the Asian Handicap appears to be a significant predictor of both home and away 
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team scores. Gomes et al. (2016) propose a pervasive decision support system that 

utilizes SVM to predict the number of football corners and goals of Premier 

League, while in a similar application Martins et al. (2017) consider SVM as 

benchmark for their football match results’ forecasts of several championships. 

Recently, Baboota and Kaur (2018) compare the forecasting performance of 

several techniques on predicting the rank probability scores for the English 

Premier League using teams’ past performance indicators as inputs. Their results 

suggest that linear SVM is not performing well, but SVM with radial basis kernel 

efficiently predicts the home and away wins outperforming other techniques such 

as Naïve Bayes. 

With the previous background in mind, the following table positions this 

Chapter’s proposed methodology in the above literature and illustrates how this 

work differs from other relevant studies. None of the previous studies, apply a 

conditional FL framework similar to the one introduced in this Chapter or has 

extensive betting application that incorporates the Kelly criterion. 

[Table 3.1] 

In a nutshell, Operational Research (OR) methods seem promising in football 

metrics.  The recent literature argues that the football betting market is at least 

weak efficient (see among others, Kuypers, 2000; Goddard and Asimakopoulos, 

2004; and Vlastakis et al., 2009). The above literature makes football games 

forecasting an ideal fieldwork for the proposed CF. It is a forecasting exercise that 

is characterized by its difficulty, uncertainty and high public interest.  

The remainder of this Chapter is organised as follows. Section 3.2 introduces 

the concept of CF and describes in detail the methodology. Section 3.3 describes 

the dataset used and the empirical application on football betting. In Section 3.4 

some concluding remarks are presented, while in Appendix B several technical 

details are explored and the mathematical background on ANFIS and OP are 

provided. 
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3.2 Methodology 

This Section summarizes all the relevant information regarding the proposed 

methodology. Initially, the CF method is motivated. Then, its mathematical and 

technical description is explained in detail. Finally, short descriptions of the 

benchmarks and Kelly criterion are provided.  

3.2.1 RVM – Underlying System  

RVM is a sparse kernel model to tackle the problem of large-scale data-processing. 

The Bayesian learning framework used in RVM can generate precise forecasts while 

reducing the feature space to the most important (“relevant”) vector. RVM’s solid 

probabilistic approach allows the inference of the optimal hyperparameters and 

vectors’ weights from the data. In this Chapter’s proposed approach, RVM will 

serve for both feature selection and prediction. The selected features (relevance 

vectors) are applied to an ANFIS and a novel extension of FIS named CF. For the 

mathematical details of ANFIS and RVM, the reader is referred to Appendix B.4 

and Section 2.2.2 respectively. 

3.2.2 Conditional Fuzzy Inference 

3.2.2.1 Motives 

FL frameworks are traditionally applied in decision processes, where the level of 

uncertainty is high and a complete problem formulation is difficult. In FL, an FIS 

is applied and a set of FRs are extracted for prediction and decision-making 

(Sugeno, 1985)17. The most popular FIS is the ANFIS of Jang (1993).  

ANFIS is an FIS framework that utilizes the benefits of ANNs and FL principles 

(Polat and Güneş, 2007). The training algorithm of ANFIS is forward and backward 

oriented, which is a common approach in OR applications18. Nonetheless, the 

                                                           

17 For the identification and parameterization of a FIS the interested reader should refer to studies 

such as Gustafson and Kessel (1979), Bezdek et al. (1984), Jang (1993), Chiu (1994) and 

Angelov and Filev (2004). 

18 In the forward stage, the premise parameters are fixed, and the consequent parameters are 

estimated by the least squares method. In the backwards one, the consequent parameters are 

kept fixed and the errors are back-propagated. Then, the premise parameters are optimised 

through the gradient descent method (Shapiro, 2002). 
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methods of defuzzification vary in the literature. For example, Jang (1993) 

classifies possible defuzzification functions in three main categories. In the first 

category a crisp output for each rule is estimated and then a weighted average of 

each rule’s output forms the aggregate output as the fuzzy model’s output. The 

applied weights are based on the firing strength of the rules and the output 

membership function. The second category of defuzzifiers involves applying a 

“max” operator to qualified fuzzy outputs that meet some criteria (e.g. minimum 

firing strength) and then the aggregate output is determined by a function such 

as the mean of maxima, the maximum criterion and so forth. The third category 

is the Sugeno approach, namely for each rule’s output, a general linear model 

based on inputs is estimated and the aggregate output is the weighted average of 

all rules involved. The ANFIS model follows the third type of defuzzification 

method. For the exact mathematical formulation of ANFIS, I refer the reader to 

Jang (1993).  

The conditional approach in the second category that is overlooked in the 

ANFIS structure can be promising. If all FRs extracted through the training process 

are not of the same quality, the user might prefer to use the FRs partially rather 

than entirely. The ANFIS adopts the double pass algorithm to optimise the rule 

specifications but may lead to over-fitting and to undesirable performance for the 

previously unobserved points. In other words, the problem is that in the OOS the 

membership grade may not be strong enough for some or all rules. This eventually 

leads to bad forecasts. This problem is common in ML where the OOS performance 

is either considerably worse than the IS’s one (over-fitting), or the model is 

inadequately trained (under-fitting).  

The proposed methodology in this study combines the merits of the second 

and the third defuzzification approach. A crisp output based on a simple linear 

model is highly favourable in case of large-scale problems. On the other hand, 

when a dataset comes with remarkable noise a selective procedure for the FRs 

aggregation can control the uncertainty. The next Section explains the algorithm 

for the CF. 

3.2.2.2 Algorithm 

Let me define the firing strength for rule 𝑖 = 1, … , 𝑀 as:  
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𝓌́𝑖
∗ = ∏ 𝜇́𝑖𝑘(𝑥𝑘

∗ , 𝑚𝑓)𝐾
𝑘=1                      (3.1) 

where 𝜇.́ (. ) is the membership grade calculated based on a given membership 

function 𝑚𝑓 and a 𝐾-dimensional test data point with input vector 𝑥∗ = [𝑥1
∗, … , 𝑥𝐾

∗ ].  

The choice of the membership function can be central to the model’s fit and 

its predictive ability. Based on Guillaume (2001), for most inputs of a fuzzy 

system, it can be intuitively accepted that as an observation places farther from 

the centre of a rule, the associated membership grade falls. Thus, it can be 

assumed that the membership function needs to come with a bell shape. The 

Gaussian membership function offers such smooth shape around centres of 

clusters and therefore it is a fitting one for this study. Such choice is suitable for 

forecasting applications like this Chapter’s (see among others, Wang and Mendel, 

1992; Jang, 1993; Kuncheva, 2000; Cheng and Lee, 2001; and Akkoç, 2012). For 

football forecasting specifically, Vlastakis et al. (2008), Igiri (2015) and Baboota 

and Kaur (2018) that apply SVM to football match prediction, employ the Gaussian 

kernel to their models. Other membership functions (i.e. univariate/multivariate 

sigmoid, triangular, and trapezoid) were also experimented in the IS. In all cases, 

the IS accuracy was worse than the one acquired with the Gaussian membership 

function. Under a Gaussian distribution assumption, the membership grade for the 

𝑘-th element of rule 𝑖 is given by: 

𝜇́𝑖𝑘(𝑥𝑘
∗ , 𝑚𝑓) = exp {− (

𝑥𝑘
∗ −𝑐𝑖𝑘

𝑎𝑖𝑘
)

2

}                               (3.2) 

where 𝑎𝑖𝑘 and 𝑐𝑖𝑘 are specified for the FRs through the training process.  

The CF proposes eligibility criteria for the defuzzifier function to discard 

rules with unsatisfactory membership grades from the set of rules that form the 

fuzzy output. This process involves two components: the criteria set up and a 

satisfactory threshold (Θ). The criteria set up determines the evaluation function 

for each rule and can take one of the forms offered in Eq.s (3.3 and 3.4) below: 

𝐶𝑖
∗ = { 1, 𝓌́𝑖

∗1/𝐾
≥  Θ

0,      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
             (3.3) 

where 𝓌́𝑥∗,𝑖
1/𝐾

 is given by Eq. (3.1). Or alternatively:  
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𝐶𝑖
∗ = {

1, min𝑘(𝜇́𝑖𝑘(𝑥𝑘
∗ , 𝑚𝑓)) ≥ Θ

0,                         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                             (3.4) 

The criteria set up can be defined as an average of membership grades for 

each rule compared to Θ (Eq. (3.3)) or as the minimum membership grade 

compared with Θ (Eq. (3.4)). Both procedures generate an indicator whether the 

rule should be applied or not. In the Eq.s (3.3 and 3.4), 𝐶𝑖
∗ is the indicator to 

determine whether the rule 𝑖 is qualified (𝐶𝑖
∗ = 1) as an eligible rule for the 

specific test observation to be applied. Alternatively, the rule is considered as 

weak if 𝐶𝑖
∗ = 0. The other component to shape the eligibility criteria is the 

threshold parameter. Θ determines the average power required for a rule to be 

considered as a strong rule. I propose defining the Θ as: 

Θ =  max  (𝓌𝜆
1/𝐾, Λ)                            (3.5)  

Under this setting, the threshold level originates from two sources. Firstly, 

from the training dataset reflected in 𝓌𝜆
1/𝐾 and secondly, from a general value 

allocated to membership grade represent a strong rule (Λ). Θ is simply the larger 

of the two quantities. Alternative settings for Θ depending on the nature of 

application might be used as well. In Eq. (3.5) 𝓌𝜆
1/𝐾 is the 𝐾-th root of average 

firing strength of a rule 𝜆 that is the minimum acceptable level of firing strength 

based on the training dataset. In other words, 𝓌𝜆
1/𝐾 is the endogenous threshold 

based on the IS. To set 𝜆 the following procedure is pursued:  

Firstly, the arithmetic average membership grade for each rule 𝑖 and input 

element 𝑘 is computed over the IS dataset 𝜇̅𝑖𝑘(. ). Secondly, the average firing 

strength 𝓌𝑖 is given by:  

𝓌𝑖 = ∏ 𝜇̅𝑖𝑘(. )𝐾
𝑘=1                                (3.6) 

Thirdly, the FRs are sorted in a descending order of average firing strength 

(sorted list). In the sorted list, the rules on the top are ones that data-points place 

closest to the centres of the FRs. An arbitrary percentile level for the top strongest 

rules is selected based on the complexity of the problem and the aims of the 

researcher (e.g. ten). Then, the 90th percentile rule on the sorted list is selected. 

The equivalent index (row) of the selected rule on the original list of rules is the 𝜆. 
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Unlike 𝜆 and 𝓌𝜆
1/𝐾 that are endogenous, Λ is a fixed quantity that 

determines the general quality of a strong rule. The membership grade ranges 

from zero to one. The closer the data-point gets to the centre of a rule, the higher 

will be the membership grade. Ideally, if the data-point and the rule centre 

overlap, the membership grade is equal to one. The further the data-point gets, 

the lower the membership grade becomes. This implies that the FR is getting 

weaker. The choice of Λ depends on the problem under study and the 

practitioners’ needs. In problems where uncertainty is high, and a wrong forecast 

can have a considerable impact, Λ should be set high (over 0.8). This will reduce 

on the one hand the uncertainty but on the other hand, it will also reduce the 

number of CF forecasts generated. In problems where wrong forecasts have a 

small effect on the utility function of the practitioner, Λ can be set lower. This 

will lead to more CF forecasts that retain some level of risk.   

The combination of the endogenous and the exogenous threshold ensures 

that the applied rules for forecasting are correctly fitted. Over-fitting and under-

fitting are the most significant challenges in ML. If an FIS is over-fitted, the 

average membership grades, the average firing strengths and accordingly the 

𝓌𝜆
1/𝐾 are high. As the model is overly specified to match the training samples, 

once the OOS data-points are fed the average membership grades for the new 

observations will fall below the 𝓌𝜆
1/𝐾. In the CF, the model will drop these rules 

and looks for any remaining rule that can satisfy the 𝓌𝜆
1/𝐾 threshold. This ensures 

that model forecasts properly even if the original FIS is over-fit. If the CF is unable 

to identify for a single point any relevant strong rule, then no forecast is 

generated. Similarly, in case of an under-fit model, the IS measure  𝓌𝜆
1/𝐾 is low. 

However, there might be still some rules that are strong and fit enough for certain 

points in the OOS. Λ ensures that under-fit rules with low 𝓌𝜆
1/𝐾 are not applied.  

In order to grasp the main contribution of the CF over the ANFIS, the five-

layer ANFIS structure is presented in Figure 3.1 below: 
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Figure 3.1: ANFIS Architecture 

 

Note: This is a typical five-layer ANFIS structure, assuming A and B fuzzy sets,  f1(x, y) and f2(x, y) 
the estimated outcomes for each rule through a polynomial combination of the inputs and 

 O1, O2, O3, O4, O5 the outputs of each layer. First layer stores the parameters of cluster centres for 
each input and the membership grade for each input is calculated. In the second layer, the 
membership grades are aggregated for each rule through the Π operator. The outcome of this 

layer is the firing strength representing the power of the associated rule (wi =  μAi
(x)  ×  μBi

(y),

i = 1, 2). In the third layer, the firing strengths are adjusted by the normalizing operators (N1 and 

N2) for each fuzzy rule. Layer 4 nodes are adaptive as they are being fed with inputs x, y to 

generate the output for each fuzzy rule separately w̅ifi(x, y), i = 1, 2. Finally, the defuzzified ANFIS 

realizations in the last node are a simple aggregation of its inputs via sum operator Σ.  

The proposed CF modifies the last layer. The modification is able to grasp 

the strongest possible FRs and drop the mediocre and poor ones. In the CF model, 

the final layer outcome can be presented as: 

𝑂́∗ = 𝑂́5(𝑥∗, 𝑂4, 𝑂3, 𝑂2, 𝑂1, 𝐴, 𝐶, 𝑃, 𝑄, 𝑅, 𝜆, Λ)                           (3.7) 

As the equation implies the difference in CF compared to ANFIS is in the 

defuzzifier module, where the aggregate output is modified to include the 

eligibility criteria. The CF output 𝑂́∗ is computed through a node function 𝑂́5 given 

the input vector 𝑥∗, ANFIS specification, and threshold parameters. The ANFIS 

specification include training nodes (𝑂1, … , 𝑂4), premise parameters set {𝐴, 𝐶} and 

consequent parameters set {𝑃, 𝑄, 𝑅}. The CF threshold parameters are {𝜆, Λ}. I 

propose two defuzzification functions. Firstly, by calculating a weighted average 

of outputs for qualified FRs and secondly the output of the strongest qualified rule 

represented in Eq.s (3.8 and 3.9) below: 

𝑂′5 =
∑ 𝓌́𝑖𝐶𝑖𝑓𝑖

𝑀
𝑖=1

∑ 𝓌́𝑖
𝑀
𝑖=1 𝐶𝑖

                               (3.8) 

Or alternatively: 
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𝑂′5 = 𝑓𝜈(. ), 𝑣 = arg max(𝓌́𝑖)
𝑖

                     (3.9) 

In Eq.s (3.8 and 3.9), 𝑂′5 is the node function for the last layer of CF. For 

each rule 𝑖 the firing strength 𝓌́𝑖 is estimated by Eq. (3.1), while the conditional 

indicator 𝐶𝑖 is given by Eq. (3.3 or 3.4) based on threshold parameters estimated 

in Eq.s (3.5 and 3.6). 𝑓𝑖 is the regression output estimated by the FR (traditionally 

as with any Sugeno fuzzy approach). Finally, in Eq. (3.9) 𝑣 is the argument of 

maxima for the firing strength 𝓌́𝑖.  

The above-mentioned modification is very crucial, as it can provide 

predictions for points (observations) where strong rules are nearby and at the 

same time satisfy endogenous and exogenous threshold specifications. The final 

CF outcome is a weighted average only of the strongest rules. This attribute is 

innovative in FL, as it is able to offer interpretability of the final result, protection 

against substantial forecast errors and under- or over-fitting in the underlying 

decision-making system. To enlighten the novelty of the CF method, a 

comparative graph of the rules selected in the case of CF and ANFIS is presented 

in Figure 3.2.   

Figure 3.2: Rule selection comparison between CF and ANFIS 

 
Note: The figure shows the selection of fuzzy rules with respect to the distance from centres (𝜇) in 

units of standard deviation (𝜎) and the corresponding strength. In ANFIS (whole distribution) all fuzzy 
rules are accepted irrespective of the strength, but in CF (dark grey peak of the distribution) only the 
strongest rules are selected to for defuzzification stage. 

From the figure above, it is clear that CF is selecting rules that are on the 

peak of the distribution of the ANFIS selection and within small distances from the 
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centre. The flowchart for the modelling module of the Chapter is presented in 

Figure 3.3. The flowchart shows the steps taken for the model synthesis of CF.  

Figure 3.3: Modelling Flowchart of Chapter 3. 

 
Note: The study utilizes the generated input pool to generate four sets of predictions. The proposed 

methodology is the CF betting model. In the modelling process of this study, the OP model is fed 

directly the input pool to generate forecasts. The RVM is also fed the whole input pool and generates 

the RVs. Based on the RVs, its performance is explored, while the selected RVs are the inputs of 

the ANFIS and CF.  

Figure 3.3 shows that in the first stage, the system inputs are fed into RVM 

that selects the RVs and derives a series of forecasts. Then based on these 

forecasts, the CF approach is applied and a series of FRs, their associated 

membership function and their firing strength are generated. In this Chapter’s 

application, I apply CF following the evaluation function of Eq. (3.3), while the CF 

output is calculated based on Eq. (3.8)19. Here it should be noted that the CF 

model synthesis is based upon the algebra offered by Zadeh (1965), Jang (1993) 

and Singpurwalla and Booker (2004). The alternative definition of the indicator in 

Eq.s (3.3 and 3.4) are based on AND and PRODUCT operators in the FL context, 

whereas the defuzzification methods in Eq.s (3.8 and 3.9) are based on the 

                                                           

19 The results of my empirical application are almost similar with both evaluation functions (Eq. (3.3 

or 3.4)) and defuzzification functions (Eq. (3.8 or 3.9)).  
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discussion of Jang (1993). The theoretical analysis of this algebra is provided in 

Singpurwalla and Booker (2004).  

In terms of applying CF, football betting is a high risk-high return exercise. 

A wrong bet usually results in the total loss of the invested capital. Thus, Λ is set 

high to 0.90. This will result in a stricter selection for CF and resembles the real-

world practice where bettors are highly selective on the games that they will bet. 

In the OOS, for each point the membership grades for the FRs are estimated and 

based on the eligibility criteria, a signal might be generated. In case a signal is 

generated the relevant bet is placed. If a signal is not generated, I abstain from 

the market. A detailed illustrative example of the CF application is provided in 

Appendix B.1. 

3.2.3 Benchmarks 

This approach is benchmarked as mentioned earlier against a basket of forecasting 

models, namely the OP, the RVM solely and the ANFIS using the selected RVs from 

the RVM. The flowchart of Figure 3.3 makes apparent that the CF model needs to 

be benchmarked with ANFIS. With this comparison, I will be able to quantify if the 

modification of the last layer of ANFIS is successful and whether the conditional 

approach is beneficial. 

The benchmark selection can establish the gradual performance change 

among candidate models (RVM, ANFIS, CF and OP). RVM can optimize the global 

parameters that affect the input variable space. Its Bayesian probabilistic 

approach is beneficial by firstly producing sparse solutions able to reduce the 

input space for other models and secondly optimal parameters that allow the RVM 

to forecast efficiently. This is very important, as traditional methods such as cross-

validation are not able to achieve this (Tipping, 2001). Therefore, RVM is used as 

a screening procedure for generating the reduced input set for ANFIS and CF. OP 

originates from Logistic Regression (LR) models and tries to estimate the 

probability of each outcome for a dependent variable. Depending on the number 

and nature of the possible choices that the dependent variable can take, the 

choice of the LR type can be binomial, multinomial and ordinal. Given that the 

outcomes of football matches can be ordered as home team winning, draw and 

away team winning the game, the OP model is suitable for this football betting 
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application. Additionally, in the literature of football betting, OP is one of the 

most popular methods (see among others, Koning, 2000; Forrest et al., 2005; and 

Graham and Stott, 2008). Therefore, the use of OP model as another benchmark 

is justified, especially since it uses the whole input pool as in the case of RVM. 

The mathematical details of OP (as earlier with ANFIS) are provided in the 

Appendix B.5. 

3.2.4 Kelly Criterion Application 

At any investment (such as in football betting) there are three main areas to cover. 

These are the investment strategy, the timing of the investment (whether to 

invest or not), and the size of the invested capital. The investment strategy can 

be guided by statistical models (RVM, ANFIS, CF, and OP in this Chapter’s case). 

The timing of the investment can be guided also by a conditional procedure like 

CF or the investor’s preference. The optimal size of the investment or football bet 

can be determined through the Kelly criterion. 

Consider the case of having an initial capital 𝒳0. The goal is to maximise the 

expected value of capital after 𝓃 trial (𝒳𝓃). Now suppose that a gambler is 

interested in a bet with win (loss) probability 𝓅 (𝓆) and payoff 𝒷 for every unit 

wager. The purpose is to maximise: 

𝑔(𝒻) = 𝐸[log(𝒳𝓃/𝒳0)] = 𝓅 log(1 + 𝒷𝒻) + 𝓆 log (1 − 𝒻)                                           (3.10) 

where 𝒻 denotes the fraction invested in the bet and 𝑔(𝒻) is the growth 

based on the fraction invested in each bet. The optimal fraction (𝒻𝑜𝑝𝑡) based on 

Kelly (1956) and Thorp (2008) is given by: 

𝒻𝑜𝑝𝑡 =
𝒷𝓅−𝓆

𝒷
                               (3.11) 

In order to apply the Kelly criterion, I need the corresponding probabilities 

𝓅. These are readily available in the OP framework, as the estimated conditional 

probabilities of each outcome. RVM and CF have a different structure and the 

winning probabilities are not readily provided. However, the CF framework allows 

me to resemble the Kelly criterion and following a similar procedure to extract 
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the optimal fractions 𝒻𝑜𝑝𝑡20. The firing strength can determine how probable it is 

to use the specific rule 𝑖 for bet 𝓀. By aggregating this measure and normalising 

it for the rules with similar output I provide an approximated conditional 

probability for each ordinal outcome. 

More specifically, I associate the winning probability with the conditional 

probability of each outcome to happen. For a bet 𝓀 to be placed the normalised 

conditional firing strength 𝓌̃𝑖
𝓀 for all the eligible FRs is estimated by:  

𝓌̃𝑖
𝓀 =

𝐶𝑖
𝓀𝓌́𝑖

𝓀

∑ 𝐶𝑖
𝓀𝓌́𝑖

𝓀5
𝑖=1

, ∀𝑖                              (3.12) 

In the next step the 𝓌̃𝑖
𝓀s are aggregated for the rules that fall under same 

ordinal outcome:  

𝜋̂𝒶
𝓀 = ∑ 𝓌̃𝓈

𝓀
𝓈  | 𝑓𝓈

𝓀(. ) ≈ 𝒶                               (3.13) 

where the 𝑓𝓈
𝓀(. ) represents the predicted output of the rule 𝓈. The procedure to 

interpret the regression output 𝑓𝓈
𝓀(. ) to a class label 𝒶 is the same in OP. By 

setting 𝓅 = 𝜋̂𝓀,𝒶 in Eq. (3.11), the optimal fraction for each outcome of the bet is 

given. It should be noted that when the CF does not find any eligible rule for the 

bet, the winning probability is zero and the 𝒻𝑜𝑝𝑡 becomes negative. A bet is only 

placed in case of having a positive 𝒻𝑜𝑝𝑡.  

3.3 Empirical Study 

In this Section, the empirical application is presented. The purpose of the 

application is to demonstrate the merits of the CF concept and to examine 

whether consistent profits in football betting from simple FRs are possible. 

Initially, I describe the dataset used. Then, the empirical results from this 

Chapter’s novel football betting application are presented. 

                                                           

20 Singpurwalla and Booker (2004) demonstrate that probability theory has a sufficiently rich structure 

for incorporating fuzzy sets within its framework. 
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3.3.1 Dataset 

All models are applied to forecast the results and the number of goals of football 

games in the English Premier League, Italian Seria A and Spanish La Liga from 2005 

to 2016. The dataset of this study is publicly available at http://www.football-

data.co.uk. 

In football game result forecasting, there are three different outcomes 

(home win, draw and away win). An alternative approach based on the Asian 

handicap is also explored. Asian handicap is a form of betting on a football game 

result in which teams are handicapped according to their form. The strongest 

(favourite to win) team has a goal deficit in the start of the game while the 

weakest (the underdog) team has a head start. For example, assume there is a 

football game (team A vs team B) and team A has a handicap size of -1.5. If the 

game ends 2-1 and a gambler has bet on team A, they will lose the bet as the goals 

leads (1) is less than 1.5. Asian handicap has become increasingly popular as 

bookmakers offer higher winning chance compare to the traditional win-draw-lose 

odds. In the number of goals forecasting, gamblers bet whether the total number 

of goals in a game will or will not exceed 2.5.  

The models under study require a series of inputs that are bookmakers’ odds 

and past teams’ performance indicators. The Betbrain average odds are used in 

this study. These inputs are summarized in Table 3.2. 

[Table 3.2] 

The previous literature in football forecasting applies sub-sets of Table 3.2. 

RVM is able to select its inputs from a large set of potential predictors through a 

probabilistic framework. Thus, it is not necessary to restrict the inputs to smaller 

sets or apply additional techniques to reduce the dimensions of the predictors’ 

pool. For example, Dixon and Robinson (1998), Oberstone (2009), Baio and 

Blangiardo (2010), and Angelini and De Angelis (2017) use the number of goals 

scored in a match to improve forecasting accuracy of the final football outcome. 

Other studies consider the odds of home win/draw/away win for football game 

predictions (see among others, Dixon and Coles, 1997; Crowder et al., 2002; 

Dobson and Goddard, 2003; Constantinou et al., 2012; and Boshnakov et al., 

http://www.football-data.co.uk/
http://www.football-data.co.uk/
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2017). The number of corner kicks implies offensive pressure and is considered a 

good proxy for higher scoring probability. Thus, Andersson et al. (2009) apply this 

variable in their football betting models. Oberstone (2011) and Martins et al. 

(2017) apply shots on target as another proxy of the offensive capacity of a team. 

Most of the inputs in Table 3.2 are based on the performance of the home/away 

team during the last three games. Incorporating teams’ recent performance 

indicators (points of last three games, goals scored in the last three games, etc.) 

is crucial for the adaptiveness of the CF process and their utility are supported by 

Goddard and Asimakopoulos (2004), Goddard (2005), and Rotshtein et al. (2005). 

Here it should be noted that in the football betting literature it is well-accepted 

practice to use bookmaker odds for modelling and forecasting football outcomes 

(Goddard and Asimakopoulos, 2004; Štrumbelj and Šikonja, 2010; Štrumbelj, 2014; 

Schumaker et al., 2016). Additionally, using fixed-odds, like mine from BetBrain, 

is considered advantageous as bettors know the final odds at the time of betting 

(Feess et al., 2016). This is why fixed-odds betting applications are widely found 

in the respective literature (see among others, Dixon and Pope, 2004; Forrest and 

Simmons, 2008; and Constantinou et al., 2012). 

The implemented forecasting exercises span over the period of 2005 to 2016. 

The forecasts from the models are evaluated in terms of accuracy through the 

relevant Betbrain average odds, the average profit per bet, the proportional 

cumulative annualized return and the Kelly Criterion (see Section 3.2.4). The 

average profit per bet is defined as: 

  
∑ 𝑥𝑞 𝑏𝑞 −|𝑄|𝑞

|𝑄|
, 𝑞 ∈ 𝑄                      (3.14) 

where 𝑄 is the set of games on the season that a bet is placed, 𝑥𝑞 takes the value 

of 1 if the bet on game 𝑞 is won based on the relevant forecast and 0 otherwise, 

𝑏𝑞 is the relevant Betbrain average odd and |𝑄| is the cardinality of set 𝑄. The 

proportional cumulative annualized return is estimated simply by betting at each 

game always the 5% of the total capital which initially is 100 units. For each 

subsequent game, I continue to bet the 5% of the total remaining pot. The 

proportional cumulative annualized return is the accumulated return in the end 

of the season. This practice resembles the reality where gamblers bet a proportion 

of their wealth. 



Chapter 3   47 

The IS consists of three football seasons21 and the OOS by the following two 

seasons (i.e. in the first forecasting exercise for the Premiership, the football 

seasons 2006-2007, 2007-2008 and 2008-2009 act as IS and the seasons 2009-2010 

and 2010-2011 act as OOS). The estimation is not rolled forward from the first 

(2009-2010) to the second season (2010-2011) of the OOS. Thus, the second OOS 

season act as robustness to the models. In all seasons the first three home and the 

first three away games of a team are discarded from the exercise. Otherwise, if 

team A plays against team B and one of the two teams has fewer than three home 

and three away games, this game is excluded from the exercise (both as IS and 

OOS data)22. The following Section present this Chapter’s findings from all the 

forecasting exercises. 

3.3.2 Empirical Results 

In Tables 3.3 to 3.5 there are the accuracy ratios of all the models in the OOS 

while their relevant IS performance is in Appendix B.2. The number of models that 

CF is applied is presented in Appendix B.3. The Pesaran-Timmermann (PT) (1992) 

test for the aggregate performance of the models is also estimated. The null 

hypothesis of the test is that the relevant model is unable to classify correctly the 

underlying series23.  

[Tables 3.3 to 3.5] 

From the tables above, I note that the CF approach is clearly improving the 

accuracy of the underlying system (RVM). It generates forecasts based on the 

                                                           

21 I have experimented also with two and four seasons as IS. The accuracy ratios in both IS and 

OOS are very close to the ones presented in Table B.4 of the Appendix B.2. 

22 This is happening for two reasons. It is well-known amongst football enthusiasts that the behaviour 

of teams at the start of the season is volatile. This happens either due to changes to the roster of 

the team during the summer or due to the different training during that period (for example, a team 

that has qualification games for the European Championships is forced to start its preparation 

earlier than the rest). Secondly, this process ensures that all series are smooth. For example, in 

the first game of the season the input series Points of H team – Points of A team would have been 

equal to 0 and the rest of the inputs would have to be drawn from the previous season. 

23 I did not estimate the PT test for each separate year for two reasons. Firstly, I am interested in the 

average performance of the models and not their individual accuracy for a specific year and 

championship. Secondly and more importantly, the CF approach selects a subsample of games 

and generates forecasts only for them (see Appendix B.3). In some cases, the number of CF 

forecasts is too small for the test and given the test’s assumptions this can cripple the test’s 

efficiency (Pesaran and Timmermann, 1992). 
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strongest rules which in turn leads to an improved predictability. In most of 

exercises, CF is up to 10% more accurate than RVM. On the other hand, ANFIS leads 

to slightly poorer accuracy ratios than those obtained by RVM. A finding consistent 

with the related literature (see Martens et al., 2007). The OP presents the worst 

performance in game result and close accuracies to ANFIS and RVM for over-under 

and the Asian handicap. It is interesting to note that all models for all years, 

championships and seasons provide accuracies better than the ones of a random 

classifier (which is 33.33% for the game result and 50% for the Asian handicap and 

number of goals exercises). As expected, the accuracy falls in the second OOS 

season, but it is still higher than those of a random model.  

However, the PT test reveals that only the CF is capable of classifying 

accurately the underlying series even two seasons ahead in all exercises. Its 

benchmarks seem to work well in game result but lose power in over-under and 

the Asian handicap exercises. I also note that the accuracies are higher for the 

Premiership. This might imply that the English championship has less noise or in 

other words is easier to be forecasted.  

The previously discussed accuracy ratios might seem promising, but they do 

not guarantee profitability. The risk in football gambling is that almost always the 

bookmakers’ odds differ between the seasons and championships. For example, 

the odds offered for the Asian handicap are lower than their game result 

counterparts24. Betting agencies naturally possess superior information and modify 

the odds by exploiting the bettor’s cognitive biases in a way that mitigate their 

risk and increase their profitability (Cain et al., 2000; Forrest and Simmons, 2008; 

Newall, 2017).  Tables 3.6 to 3.8 present the average profit per bet for the models, 

championships and seasons under study. 

[Tables 3.6 to 3.8] 

The CF approach seems to clearly outperform its benchmarks and offers 

impressive profits. The average profit per bet of CF is clearly above 10% in the 

first year of the OOS in all cases. This profit is substantially reduced in the second 

                                                           

24 Because the number of potential outcomes in the Asian handicap (2) is less than the game result 

(3) the odds decrease.  
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year of the OOS but still remains positive. On the other hand, the other three 

models under study seem to present negative profits per bet in the majority of 

cases even at the first year of the OOS. Comparing Tables 3.6 to 3.8 with the 

associated accuracy results (Tables 3.3 to 3.5), I note that statistical accuracy is 

not synonymous of betting profitability. There are cases where the PT test 

indicates that the underlying model classifies accurately the underlying series and 

the related average profit per bet is negative.  

The average profit per bet considers that the forecaster will invest in all 

games the same amount of capital irrespective of their previous performance. In 

reality, forecasters will probably modify their invested capital based on the 

previous record and follow a more adaptive strategy. Thus, in Tables 3.9 to 3.11 I 

present the proportional cumulative annualized return. This measure assumes that 

the forecaster always bets the 5% of their total pot. So, for example, in the first 

game in any give exercise the gambler will bet the 5% of their total pot which if 

it is 100 units which is 5 units. If the forecaster wins the bet and their earnings 

are 4 units, their total pot will be now 104 units. Thus, in the next game the 

forecaster will bet 5.2 units. The proportional cumulative annualized return offers 

a more realistic approach in betting where participants modify the size of their 

bets based on their previous record.  

[Tables 3.9 to 3.11] 

I note that the pattern of the CF’s profitability is similar with the one 

obtained by the previous metric. This profitability varies throughout the seasons 

and the championships but remains positive in the first year of the OOS. On the 

other hand, now the average profitability of CF in the second year of the OOS is 

not always positive. The other models present a consistent negative performance 

in all exercises25.  

The Kelly criterion allows me to bet based on the probability of a favourable 

outcome. The proportion of capital that is dedicated for each game is based on 

the probability of wining the bet based on CF or OP. Tables 3.12 and 3.13 present 

                                                           

25 The results of my empirical application are similar with both evaluation functions (Eq. (3.3 or 3.4)) 

and weighted average functions (Eq. (3.8 or 3.9)). 
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the average profit per bet of the CF and the OP based on the Kelly criterion 

respectively. 

[Tables 3.12 and 3.13] 

From Tables 3.12 and 3.13 an increase in the profitability in most exercises 

of CF and OP with the Kelly criterion is observed. This increase is profound in the 

cases where the studied models were presenting negative results previously, 

namely the second OOS year of CF and all OP exercises. In first year of the OOS 

for CF, where CF had already positive profit per bet, the results remain similar. 

As discussed earlier bookmakers’ odds are biased to exploit the bettors’ 

behaviour. The nominator of the Kelly fraction (Eq. (3.11)) is the so called “edge” 

or expected return of the bet. The edge considers both the correct prediction 

probability and the odds. When the odds are biased the edge decreases. Thorp 

(2008) argues that Kelly criterion may need millions of trials to dominate other 

strategies in case of having a low edge. On the other hand, Maclean et al. (2010) 

find Kelly criterion to be very risky in the short term and argue that despite its 

promising long-run growth properties, it may lead to poor return outcomes. In this 

Chapter’s exercise, Kelly improves the betting performance in case of having 

enough trials, such as in OP where a bet is placed for each game. Similarly, when 

CF loses power and the forecasts deteriorate (as of the second year of OOS), Kelly 

can reduce the exposure to the risk and control the size of losses. On the other 

hand, for CF in the first year of OOS, where the model produces already significant 

profits, the Kelly criterion seems to have no effect on the results. This happens as 

the number of games of CF is applied is small and the model produces significant 

positive results that are not affected by the odds’ biases.  

This Chapter’s empirical application has demonstrated the merits of CF. In a 

forecasting exercise where uncertainty and noise are high, CF has managed to 

generate forecasts that are accurate and profitable. These forecasts are 

generated from a transparent process that reveals also the factors that determine 

the target series. I note that although forecasting accurately the game result, 

number of goals and the result based on the Asian handicap do not seem a 

strenuous task with this Chapter’s models, profitability is only obtained through 

CF. CF selects the forecasts of the underlying system that are strong enough for 

OOS estimation. That increases the level of accuracy to a level that is translated 
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to profitability. However, this level of accuracy naturally is being reduced in the 

second year of the OOS, to same cases below the level of profitability. In terms 

of the efficiency of the football betting market, I note that is possible to generate 

consistent profits with CF. However, the practitioner needs to be adaptive and re-

estimate their model at a frequent basis. At last, I note that in most cases, this 

Chapter’s models are more accurate and profitable in the English Premiership. I 

assume that the English championship has less noise or in other words, it is easier 

to be forecasted26. At last, I demonstrate the benefits of the Kelly criterion and 

how it can be translated within the CF context. Its probabilistic nature seems 

highly beneficial in football betting in cases where the underlying model has a low 

power.  

3.4 Conclusions 

This study introduces the concept of CF and demonstrates its utility. CF generates 

a set of FRs in the IS and estimates their average firing strength. These rules are 

ranked and applied in the OOS. CF generates forecasting signals at points where 

strong rules are nearby and satisfy an endogenous and an exogenous threshold. 

The forecasting signal is a weighted average of the strongest rules. CF is useful in 

OR problems where uncertainty is high and poor forecasts are associated with 

substantial losses. It can offer transparency, protection against under and over-

fitting while at the same time improves the forecasting accuracy of the underlying 

system.  

In order to demonstrate its merits, a forecasting exercise is designed on the 

game result, Asian handicap and the number of goals of football games in the 

Premiership, La Liga and Seria A championships. CF is combined with RVM and 

generates forecasts in six consecutive seasons. These forecasts are evaluated in 

terms of statistical accuracy and betting profitability. In terms of the results, an 

active approach with higher frequency of retaining the forecasting models, 

improves the consistency of all models with the population dynamics. CF presents 

higher statistical accuracy and betting profitability than an RVM, RVM-ANFIS and 

                                                           

26 It is well known amongst football fans, that in the English Premiership, teams’ competition is higher. 

The number of teams that fight for the championship or to avoid relegation is higher than the one 

in La Liga and Seria A. Also, some of the biggest bookmakers originate from UK while football 

betting in the English Premiership is widely prevalent in Europe and Asia. 
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OP model. CF improves the accuracy of the underlying system (RVM) and RVM 

combined with ANFIS (the most common FIS). These results are translated into 

positive betting performance for the proposed procedure and negative for its 

benchmarks. The procedure outperforms not only the most popular fuzzy approach 

but also improves the predictability of the underlying system. This contrasts the 

common dilemma with developing transparent decision systems that sacrifice 

accuracy for interpretability (Martens, 2007). I also note that the Kelly ratio can 

further improve the profitability of CF and limit the losses of OP in the majority 

of cases.  

CF can be a useful tool to practitioners and academics who deal with decision 

making problems that demand complex non-linear techniques. In areas such as 

medicine, finance and economics it can improve researchers’ understanding of 

the underlying nature of the series. Where the public interest is concerned, in 

areas such as meteorology or football gambling, it can offer decision rules that 

are simple and interpretable. It is an attractive alternative to the numerous 

unconditional fuzzy inference approaches that dominate the literature. 
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4. Technical Analysis and the Discrete False 

Discovery Rate: Evidence from MSCI Indexes 

4.1 Introduction 

 Technical analysis, commonly referred to as Chartism, is the type of investment 

analysis, which uses a class of graphical representations of financial asset’s time 

series in order to explore trading opportunities. While technical trading is widely 

used by both investors and academics over the past century, there is a long and 

ongoing discussion on whether it genuinely has a predictive power and can 

generate sustainable profit in equities markets. Previous literature is split into 

studies highlighting the genuine profitability of technical analysis (see among 

others, Brock et al., 1992; Hsu et al., 2010) and those arguing against that (see 

among others, Sullivan et al., 1999; Bajgrowicza and Scaillet, 2012). 

Nonetheless, a comprehensive and up-to-date analysis of technical trading 

on equity indexes is still on demand from both academics and practitioners 

because the majority of previous studies tend to be narrowly focused on specific 

aspects of technical analysis on equity indexes. For example, a single market 

index, a restricted number and classes of technical trading rules, a “sterilized” 

exercise of technical analysis (e.g. no transaction costs involved) are totally 

different from what traders use in practice.  

In the meantime, the use of a large universe of technical trading rules 

involves the appearance of the data snooping bias, which has been regularly 

investigated by the relevant literature. This issue has recently become widely 

known due to the enormous amount of data analysed by investors. The data 

snooping arises when a large pool of technical trading rules is exploited. The main 

concern is selection of certain rules whose performance are due to luck and so, 

not statistically significant. 

Furthermore, even if technical analysis demonstrates significant 

predictability and excess profitability in specific markets and time periods, still 

there are several questions to be addressed. What level of transaction cost can 

repel all market participants? Are there are some short-term anomalies in market 

efficiency allowing profitability? If yes, how long does this profitability persist 
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and are the markets during these periods under stress or turmoil? What is the 

optimal IS to OOS ratio for achieving the best performance? These are the key 

research questions for this study answered by applying the proposed DFDR+/- 

method. 

This Chapter conducts an extensive study of technical trading in the equities’ 

markets. I study daily time-series of nine individual MSCI indexes and three general 

MSCI indexes replicating the performance of Developed, Emerging, and Frontier 

markets covering the period from 2006 to 2015. To analyse the technical trading, 

the Hsu et al. (2016) universe of 21,000 rules is considered. Their universe 

incorporates five main classes of technical trading indicators and oscillators. 

Additionally, I propose a new method of controlling for data snooping bias 

while adjusting for the potential issues found in previous techniques. This 

Chapter’s novel methodology is based on the False Discovery Rate (FDR) and 

specifically tries to expand the FDR+/- approach of Barras et al. (2010) in numerous 

ways. Their FDR+/- method is one of the most promising MHT27 techniques. It can 

detect a sufficiently large number of statistically significant positive rules while 

allowing for a small number of false discoveries. When common resampling 

procedures (e.g. bootstrapping) are employed to compute each rule’s 

corresponding p-values, a large set of homogeneous discrete p-values are realized, 

rather than uniformly distributed continuous ones (Storey, 2002; Storey et al., 

2004; Barras et al., 2010; Brajgowicz and Scaillet, 2012). In addition, previous 

approaches of FDR+/- can lead to unnecessary conservativeness and consequently 

poor estimations of the proportion of rules. Such estimations rise the probability 

of Type II error where a significant rule is overlooked. The proposed DFRD+/- 

circumvents these issues by considering a large-scale homogeneous discrete p-

values framework, while dynamically estimating the FDR hyperparameters. 

Hence, I provide a fully adaptive, computationally efficient approach to limit data 

snooping in the real world which can assist investors in analyzing their portfolios. 

                                                           

27 The MHT deals with the problems where a large number of hypotheses are tested simultaneously. 

Testing the same rejection level for all hypotheses independently leads to a higher probability of 

making at least one Type I error compared to an individual test. The probability of having false 

inference increases exponentially as the number of studied hypotheses increase. 
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The proposed method is employed to perform several robustness checks and 

give answers to the research questions about the validity of the technical analysis. 

Specifically, an analysis of break-even transaction costs of the outperforming 

trading rules is exercised, while their OOS performance is investigated in a rolling-

forward structure as fund managers do in practice. Moreover, the performance 

persistence of technical rules is analysed together with their performance during 

periods of turmoil by using stress measures from the Office of Financial Research 

(OFR). Finally, an innovative method for selecting the significant technical trading 

rules is introduced by cross-validating their performance between the full sample 

and IS and OOS subsamples. 

In most problems in finance and economics researchers are dealing with a 

series of multiple competitive models or factors. In order to distinguish the 

genuine and significant ones, they most resort to MHT frameworks. The most 

common MHT approaches are the FWER, the FDR, and the False Discovery 

Proportion (FDP). 

FWER is defined as the probability of having at least one Type I error. In 

other words, it measures the probability of having at least one false discovery. A 

testing method is said to control the FWER at a significance level 𝛼 if FWER≤ 𝛼. 

Naturally, when a researcher performs a large number of hypothesis tests, it is 

highly likely to evidence at least one Type I error. There are several approaches 

to control the FWER. The most naïve method to control the FWER, is the 

Bonferroni correction. In this approach, the adjusted rejection zone is made by 

dividing the significance level α over the number of tests. Then they run each test 

with a significance level 𝛼/𝑙 (where 𝑙 is the number of tests). The larger the 

number of tests, the smaller the common critical p-value. The Bonferroni 

correction is characterized by its simplicity but is criticized for loss of power and 

a high probability of Type II errors (Benjamini and Hochberg, 1995). A less strict 

approach to control the FWER, is the stepwise method of Holm (1979). For a set 

of 𝑙 tests, the null hypothesis for the 𝑗-th p-value (𝑝𝑗) is rejected if 𝑝𝑗 ≤ 𝛼/(𝑙 −

𝑗 + 1), 𝑗 = 1 … 𝑙. The criterion becomes less and less strict for large p-values and 

thus Holm’s method rejects more hypotheses than the Bonferroni correction. 

However, both methods ignore the dependence structure of the individual p-

values which makes them overly conservative.   
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White (2000) introduced the BRC to counter the problems of Bonferroni and 

Holm approaches.  In his approach, the FWER is asymptotically controlled by 

estimating the sampling distribution of the largest test statistic and considering 

the dependence structure of the individual test statistics. BRC applies 

bootstrapping to get less conservative critical values than the previous 

approaches. The main limitation of BRC is that it only checks if the model or 

strategy that appears best within a set of candidates beats the benchmark. It also 

has low power when strong underperformers exist in the hypothesis testing pool 

and the p-values are still conservative (Romano et al., 2008). 

 To address the problems of BRC, Romano and Wolf (RW) (2005) introduce 

the StepM test in an attempt to statistically validate as many outperforming 

strategies as possible. The RW test improves upon the BRC in a similar way the 

stepwise Holm method improves the single-step Bonferroni approach. The RW test 

initially identifies the most robust strategies through a step-down approach, until 

a false discovery is observed. The first step of the RW is the same as in the BRC 

test. In the next step, the remaining strategies are again evaluated over a new 

critical value (based on bootstrap) and these iterations continue until no further 

strategies are rejected. Given that RW is based on bootstrap estimates, it is safe 

to assume that it is less conservative (regardless the correlation structure of the 

p-values) and still asymptotically controls FWER (as BRC does). However, it still 

remains a strict approach since the procedure terminates once a false rejection is 

identified. To solve this issue Romano et al., (2008) relax the strict FWER criterion 

by introducing the 𝑘-StepM method. The innovation of this method is that it allows 

for 𝑘 number of false rejections before it stops compared to its predecessor. If 

the false selections are less than 𝑘 the procedure continues in subsequent steps 

similar to RW. This makes the outcome less conservative, but the results are quite 

sensitive to the selection of 𝑘.  

The FDR is based on the idea of allowing for a specific number of false 

negatives when a practitioner observes a quite large number of rejections, and by 

this way increasing the power of the test while relaxing the testing framework. 

Introduced by Benjamini and Hochberg (1995) as a more tolerant error metric, the 

FDR measures the proportion of false discoveries among true rejections of the null 

hypothesis. Specifically, they suggest that if 𝐹 and 𝑅 is the number of the total 
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Type I errors (false discoveries) and total null hypothesis (total discoveries) 

respectively, then the FDR is estimated as 𝐹𝐷𝑅 = 𝐸(𝐹/𝑅). Benjamini and 

Hochberg (1995) conclude that if all tested null hypotheses are true, then FDR is 

equivalent to FWER. However, if the number of true discoveries is lower than the 

total null hypotheses tested, then FDR is smaller than FWER. In addition, the FDR 

measures and controls the expected FDP, or in other words, it controls the FDR at 

level ζ (i.e., 𝐹𝐷𝑅 = 𝐸(𝐹𝐷𝑃) ≤ ζ)28. Over the years many studies have tried to 

develop further the FDR measure by improving the power and/or the adaptiveness 

of the tests. However, the common idea remains the same in all of them as 

identifying as many true rejections as possible without including too many false 

ones (Benjamini and Yekutiely, 2001; Storey, 2003; Storey and Tibshirani, 2003; 

Storey et al., 2004, Liang and Nettleton, 2012; Liang, 2016). In financial 

applications, Barras et al. (2010) introduce for the first time an FDR approach 

similar to the one of Storey (2003) which focuses on measuring the proportion of 

false discoveries among mutual funds generating positive alphas, while trying to 

identify those displaying significant positive performance. 

The relevant literature reflects the superiority of the FDR process (see among 

others, Harvey et al., 2015; Bajgrowicz and Scaillet, 2012; Liang, 2016). The 

advantage of this method originates from the fact that by tolerating a certain 

(usually small) amount of Type I errors, the FDR improves the power of detecting 

more significant discoveries, compared to its stricter competitor: FWER. The FWER 

guards against a single erroneous selection and may lead to missed findings. The 

FDR approach uses lower critical values that allow a larger number of significant 

strategies to be selected. This is particularly important in finance and trading 

applications as investors prefer several alternative strategies, rather than 

constructing their whole strategy on a single trading tool. Additionally, the FDR 

test takes into account all outperforming rules in the population and it doesn’t 

terminate when a single rule, even the best, yields a lucky performance. FDR is 

also able to identify a higher number of positive outperforming rules compared to 

the 𝑘-FWER (Psaradellis et al., 2017).  

                                                           

28 ζ is user defined and should not be confused with 𝛼. 
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The other pathway toward the MHT is FDP. This approach is based on 

controlling the probability of a user-specified proportion of false rejections for a 

single sample. This is comparable to the FDR approach that controls the expected 

proportion of false rejections across different samples. Controlling FDP can lead 

to more conservative estimates compared to the respective FDR ones (Genovese 

and Wasserman, 2006). Sun et al. (2015) suggest that in conditions of strong 

dependence FDP can be highly volatile. Also, Fan and Han (2017) report that true 

discoveries in FDP estimates can be relatively small for large datasets. Therefore, 

practically the FDR application is more suitable when analyzing large datasets and 

aiming to make confidence statements about the realized average FDP across the 

various datasets, as in this Chapter’s case (Benjamini, 2010). 

Based on the theoretical discussion above and characteristics of this 

Chapter’s dataset, the FDR approach fits the scope of this Chapter’s application 

better. This Chapter’s dataset is a large universe of technical rules and I explore 

the dynamics of the MHT findings in different markets and periods.  

The rest of this study is as follows. In Section 4.2, the theoretical grounds of 

the DFDR+/- is discussed. Section 4.3 contains the details on the trading universe, 

the chosen stock markets and the performance metrics used to compare the pool 

of technical rules. Section 4.4 presents the characteristics for the set of true 

discoveries with an ex-post approach. Section 4.5 includes an ex-ante analysis 

with backtesting of the DFDR+/- discoveries over the OOS. Section 4.6 provides the 

concluding marks. Finally, Appendix C includes a numerical comparison of the 

proposed DFDR+/- with the RW through Monte Carlo simulations and studies the 

robustness of the methodology with a shorter IS period. 

4.2 Methodology 

4.2.1 Overview of the FDR Procedure 

The FDR is defined as the proportion of false discoveries among true rejections of 

the null hypothesis. FDR is an expectation and thus its control does not require an 

additional specification on the probabilistic level (as in the FWER). Methods to 

control the FDR have been suggested by Benjamini and Hochberg (1995), 

Benjamini and Yekutieli (2001) and Storey (2002). The method of Benjamini and 
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Hochberg (1995) assumes that the p-values are mutually independent which is not 

plausible (discussed in Section 4.2.2). The Benjamini and Yekutieli (2001) 

approach assumes that p-values have a more arbitrary dependence structure, but 

it is less powerful. Storey (2002) improves its power with an approach based on 

the assumption that, for a two-tailed test, the true null p-values are uniformly 

distributed over the interval [0,1], whereas the p-values of alternative models lie 

close to zero. His approach utilizes information from the centre of the test 

statistics’ distribution ‒ which is mainly dominated by non-outperforming rules ‒ 

in order to correct luck in the tails. A key point towards this direction is the precise 

estimation of the proportion of rules satisfying the null hypothesis (𝜋0) where 𝜑𝑗 =

0, in the entire population. A conservative estimator of the 𝜋0 parameter is given 

by 

𝜋0̂(𝜆) =
#{𝑝𝑗>𝜆;  𝑗=1,…,𝑙}

𝑙(1−𝜆)
            (4.1) 

where 𝜆 ∈ [0,1) is a tuning parameter indicating which specific level the null p-

values exist. The required inputs for the FDR approach are mainly the (two-sided) 

corresponding p-values of the performance metrics (𝜑𝑗) of each individual rule 

associated with the null hypothesis of no-abnormal performance (𝐻0𝑗: 𝜑𝑗 = 0) 

against the alternative of abnormal performance (𝐻𝐴𝑗: 𝜑𝑗 > 0 𝑜𝑟 𝜑𝑗 < 0 ) . 

Furthermore, there is no need for a priori knowledge of the p-values distribution. 

The stationary bootstrap resampling technique of Politis and Romano (1994) is 

applied to obtain the individual p-values. It is applicable in cases where the time 

series are weakly dependent (which is the case in technical rules performance). 

In this application, I am interested in identifying only the positive 

outperformers. In other words, the focus is on the case where 𝜑𝑗 > 0. For this 

reason, the FDR+/- method of Barras et al. (2010) is incorporated to this Chapter’s 

approach. In the context of technical trading rules performance, the FDR+ is 

described as the expected value of the proportion of erroneous selections, 𝐹+, 

over the significant and positive rules, 𝑅+ , (i.e., 
𝐹+

𝑅+). The number of 𝐹+ represents 

the rules, whose p-values falsely reject the true null (i.e., 𝐻0𝑗: 𝜑𝑗 = 0 ) in favour 

of the alternative and exist among 𝑅+. On the other hand, 𝑅+ portrays the number 

of rules rejecting the 𝐻0𝑗, in a two-tailed test, and their performance metric 𝜑𝑗 
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is positive. The estimate of FDR+ is given by 𝐹𝐷𝑅̂+ = 𝐹̂+

𝑅̂+⁄  where  𝐹̂+ and 𝑅̂+ are 

the estimators of 𝐹+and 𝑅+, respectively. For example, an FDR+ of 100% conveys 

that no trading strategy genuinely outperforms the benchmark and any existing 

performance is purely out of luck. In general, the FDR produces a sensible trade-

off between true positives and false selections, while having higher power 

compared to FWER. Due to its less conservative character, the FDR method is 

capable of identifying outperforming rules even if the performance of best rule is 

due to data snooping effect, contrary to previous methods. 

Following Storey (2002), the frequency of false discoveries or the number of 

lucky rules, 𝐹+, in the right tail of the distribution of performance metrics, 𝜑𝑗 at 

a given significance level 𝛾 is estimated as:  

𝐹̂+ = 𝜋0 × 𝑙 × 𝛾/2             (4.2) 

where 𝜋0 is the proportion of rules satisfying the null hypothesis, 𝜑𝑗 = 0, in the 

entire population, 𝑙 is the number of the entire population and 𝛾/2 is the 

probability of a positive non-genuine rule exhibiting luck due to symmetry 

conditions.  

4.2.2 Issues Regarding Existing FDR Methods  

This section presents a discussion of possible issues arising in both the multiple 

hypothesis setup and the control of FDR based on previous methods. The 

procedure of Benjamini and Hochberg (1995) assumes that the multiple 

hypotheses tested are independent of each other. A considerable number of 

trading rules in this Chapter’s trading universe are structurally similar to each 

other. For example, MAs, are highly correlated since a limited spectrum of 

parameters are considered to construct the universe. Several efforts have been 

made to address “weak dependence” conditions of the test statistics under which 

the FDR approach (Benjamini and Yekutiely, 2001; Storey, 2003; Storey and 

Tibshirani, 2003; Storey et al., 2004; Farconemi, 2007; Wu, 2008). They argue that 

when the number of tests increases to infinity, the dependence effects diminishing 

to zero due to asymptotics. Likewise, in this Chapter’s empirical investigation, 

the technical trading rules display dependence within specific classes (e.g. MAs), 
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while each class is independent to another as five different families of technical 

rules are considered. Therefore, I need to first check whether a weak dependence 

condition holds for this Chapter’s dataset before further assessments. 

Another critical problem about MHT is when for a large number of test 

statistics ‒ usually in thousands ‒ the number of observations is relatively small, 

just as in this Chapter’s case. Specifically, I consider 21,195 technical trading rules 

over an IS horizon of two years (i.e., 520 observations). Bootstrapping procedures, 

as mentioned earlier, are commonly used in these cases to calculate the 

corresponding p-values and so to perform hypothesis testing. This is beneficial 

since they need a few distributional assumptions and they are robust to outliers. 

However, performing a resampling procedure on each trading rule, generates p-

values which are discrete rather than continuous because of the finite number of 

bootstraps employed. This leads to the detection of large-scale homogeneous 

discrete p-values, sharing the same support points. Previous studies either 

controlling FDR or FWER, overcome this issue by assuming that the true null p-

values are continuous and follow a uniform distribution as described above 

(Storey, 2002; Storey et al., 2004; Romano and Wolf, 2005; Romano and Wolf, 

2007; Barras et al., 2010; Brajgowicz and Scaillet, 2012). Nevertheless, the true 

null discrete p-values tend to be stochastically larger than uniformly distributed 

and the direct application of existing methods on them can lead to 

misspecification (Pounds and Cheng, 2006). 

Moreover, in a two-sided test and for continuous true null p-values uniformly 

distributed, holds 𝑃𝑟(𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 𝛾) = 𝛾 for all  𝛾 ∈ [0,1]. Whereas for the discrete 

ones I observe only a certain number of support points (i.e., 𝑉 = {𝛾1, … , 𝛾𝑣, 𝛾𝑣+1} 

with 0 < 𝛾1 < ⋯ < 𝛾𝑣  < 𝛾𝑣+1 ≡ 1) with potentially many ties. Using bootstrapping 

techniques to compute the associated p-values for each rule I end up with p-values 

satisfying a discrete condition with common support points. To illustrate further, 

every p-value is usually calculated by comparing the value of each performance 

metric with the value of its corresponding quantiles of bootstrapped metrics 

(Sullivan et al., 1999). This means that, large values of observed test statistics 

provide evidence against the null and the corresponding p-values are given as 𝑝𝑗 =

1

𝐵
∑ (𝐵

𝑖=1 𝜑𝑗𝑏 ≥ 𝜑𝑗). P-values computed this way are attached with support points of 

the form: 𝑉 = {
1

𝐵
,

2

𝐵
, … ,

𝐵−1

𝐵
, 1}, which also verify a discrete nature. Thus, an FDR 
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framework which takes into account large discrete p-values might help in 

improving further the existing methods. 

Another issue appears in the calculation of 𝜆 parameter and so in the 

estimation process of 𝜋0, which is the key estimator for controlling FDR. 

Generally, poor selection of 𝜆 can cause unnecessary conservativeness in 𝜋0̂ and 

of 𝐹𝐷𝑅̂. For example, not all values of  𝜆 ∈ [0,1) under a discrete setup generate 

are ideal 𝜋0̂  estimates. For example, imagine a candidate set of 𝜆, 𝛬 =

{𝜆0, 𝜆1, … , 𝜆𝑣} with 𝜆0 ≡ 0. It can be shown that if one arbitrarily selects 𝜆 from 𝛬 

for some fixed element 𝑞 ∈ {0, … , 𝑣} based on a support point, then 𝜋0̂(𝜆)  is a 

conservative estimator of 𝜋0 (Liang, 2016). On the other hand, if 𝜆 does not belong 

to this set but lies in between two support points, (e.g., 𝜆𝑖 < 𝜆 < 𝜆𝑖+1), then 

choosing as 𝜋0̂(𝜆) >  𝜋0̂(𝜆𝑖), can lead to an extra and unnecessary conservativeness 

in the estimation of the proportion of rules with no abnormal performance.  

In terms of choosing 𝜆, a small value can lead to estimators with large 

positive bias, while a large value of 𝜆 leaves only a small number of p-values on 

its right-hand-side to estimate 𝜋0, yielding an increase on the variance of 

estimators. Thus, one should always achieve a good trade-off between the two 

when choosing 𝜆. Previous literature follows a common approach to choose 𝜆 

under a continuous set up; they visually examine the histogram of all p-values and 

set the 𝜆 parameter equal to the support point above which the number of p-value 

occurrences become fairly flat. The rationale lies on the assumption that 

bootstrapped p-values share equally spaced support points and each support 

contains a uniform number of true null p-values. A histogram approach might 

involve an extra bias towards on how the researcher conceives a specific level of 

a histogram’s flatness. To address this issue, the next Section concentrates on 

selecting 𝜆 dynamically, as a fixed quantile of p-values, based on the data 

characteristics, while discarding any undesired conservativeness from the 

calculations.  

Finally, MHT frameworks are computationally demanding most of the times 

since they involve bootstrapping procedures. Moreover, FDR approach requires to 

set the tuning parameter by taking into account the graphical representation of 

p-values, which considerably increases the computational time needed for 
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controlling FDR. This Chapter’s proposed dynamic approach is computationally 

more efficient in terms of time and selecting the outperforming rules based on an 

algorithmic setup, which can also help practitioners making better decisions in 

portfolio construction and OOS estimation. 

4.2.3 DFDR+/- 

This Section presents this Chapter’s new specification based on the FDR and 

homogeneous discrete p-values to identify outperforming trading rules while 

accounting for data snooping. This study is the first in the field of finance to 

propose an adaptive FDR approach employing a dynamic parameterization, while 

considering discrete p-values, as a tool for controlling data snooping.  

This Chapter’s approach concentrates on large-scale homogeneous discrete 

p-values. Following Kulinskaya and Lewin (2009), assume that by using the 

bootstrapping procedure (described in Section 4.2.2) I acquire discrete p-values, 

which satisfy a uniform condition while sharing the same discrete support 𝑉. 

Furthermore, I need to consider as 𝑁 = {𝑛1, … , 𝑛𝑣+1} the number of occurrences of 

every component in 𝑉, i.e., 𝑛𝑖 = #{𝑝𝑗 = 𝜆𝑖} for 𝑖 = 1, … , 𝑣 + 1 in order to express 

the empirical distribution of the computed p-values. Thus, the empirical 

distribution of homogeneous discrete p-values with common support points is 

thoroughly explained by (𝑉, 𝑁). Proceeding to the FDR approach calculation, the 

𝐹+, 𝑅+ and FDR+ also represent step functions with possible change points at the 

support points. Then it is adequate only to acquire their values at the specific 

support points to control the FDR29. Given that, the distribution function of the 

null discrete p-values on every support point is almost identical to that of 

continuous p-values. This is the key step in extrapolating a method for discrete p-

values from similar continuous p-values approaches. 

This paragraph explains the novel approach to improving the FDR+/- 

methodology to accommodate discrete p-values, while dynamically selecting 𝜆 

under a stopping time rule. I define this stopping time condition as the point in 

which holds 𝐸[𝜋0̂(𝜆𝑞)] ≥ 𝜋0, while 𝑞 is the exact stopping time with respect to 𝑛𝑖 

                                                           

29 Suppose that 𝛾 is a time-running parameter from zero to one, then the continuous time processes 

𝐹+, 𝑅+ and FDR+ relax to discrete stochastic process on the support points. 
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(for 𝑖 = 0, … , 𝑣), which includes the p-values up to 𝜆𝑞,  when 𝑞 = 𝑖. I also determine 

the whole procedure up to the stopping time 𝑞, as {0 ≡ 𝑛0, … , 𝑛𝑞}. Then I just set 

the effective 𝜆 equal to 𝜆𝑞. I check every support point instead of checking every 

single p-value for the stopping condition. If 𝑞 is an appropriate stopping time, it 

must also hold 𝐸[𝐹𝐷𝑅̂(𝜆𝑞)] ≥ 𝐹𝐷𝑅. The rationale of this approach is related to the 

idea of discovering the smallest support point, in which the number of 

appearances of p-values, 𝑛𝑖 , to each right-hand side are almost equal. However, 

such a stopping time condition is very general as numerous stopping time rules 

can be designed fulfilling the above criteria since the true right-hand side counts 

are unobservable. The right-boundary procedure of Liang and Nettleton (2012) 

solves this issue by only considering the average of the remaining counts, been 

already known beforehand. The right-boundary specification guarantees 

conservative estimation for 𝜋0 and FDR. It relies on a grid of candidate points for 

𝜆 in line with data characteristics and a stopping time condition, at least for a 

continuous space (Liang and Nettleton, 2012). I adopt the same approach and 

extend it to discrete p-values. It is worth noting that the right-boundary procedure 

performs effectively for both independent and weakly dependent p-values, as 

observed in this Chapter’s case (see, Liang and Nettleton 2012; Liang, 2016). Liang 

(2016) provides evidence of computing an FDR estimator using the Discrete Right-

Boundary (DRB) procedure, while certain limits exist. His results clearly satisfy a 

special case of the weak dependence condition of Storey et al. (2004). 

The idea of DRB is to find the first 𝜆, in which the values of 𝜋0̂(𝜆) stop 

decreasing and satisfying in that way the stopping time condition. For this reason, 

I consider a candidate set for 𝜆, 𝛬 = {𝜆1, . . , 𝜆𝑛}, in which I place its components in 

an ascending order, 0 ≡ 𝜆0 < 𝜆1 <. . . < 𝜆𝑛 < 𝜆𝑛+1 ≡ 1 (and 𝜆 ⊆ 𝛬). Then I select 

the best 𝜆, as the minimum 𝜆𝑞, which fulfils that  𝜋0̂(𝜆𝑖) ≥ 𝜋0̂(𝜆𝑖−1), (i.e., 𝑞 =

min {1 ≤ 𝑖 ≤ 𝑛 − 1 ∶  𝜋0̂(𝜆𝑖) ≥ 𝜋0̂(𝜆𝑖−1)} ). Specifically, I use the set 𝛬 to separate 

the interval between zero and one, (0,1], into 𝑛 + 1 bins with the 𝑖-th bin being 

(𝜆𝑖−1, 𝜆𝑖] for 𝑖 ∈ {1, … , 𝑛 + 1} and 𝑤𝑖 = #{𝑝𝑗 ∈ (𝜆𝑖−1, 𝜆𝑖] } being the number of p-

values in the 𝑖-th bin. If the intervals between 𝜆s are equal, then this approach 

actually chooses the right boundary of the first bin whose number of p-values is 

no larger than the average of the corresponding number to its right. In this way, I 

achieve the stopping condition when the downward trend of the number of p-

values in each bin is neutralized, as I move forward, to a level which the random 
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variants of rest p-values are fairly equal. Finally, acquiring the optimal 𝜆 in this 

way, I can easily calculate a conservative estimator for 𝜋0 based on Storey’s (2002) 

formula as have been already mentioned in previous sections. 

The rest of the steps for the selection of outperforming rules remain similar 

with the Barras et al., (2010) in the FDR specification. In terms of bootstrapping 

though, I generate 1,000 bootstraps of returns, and retain the same bootstrap 

draws of the time series sample period for each trading rule’s returns. By this way, 

I bootstrap the cross-section of trading rules returns through time in order to 

preserve the cross-sectional dependencies (Kosowski et al., 2006; Fama and 

French, 2010; Yan and Zheng, 2016). The application of stationary bootstrap also 

allows me to preserve the autocorrelations in returns structures. I then use the 

“point estimates” procedure of Storey et al. (2004) on generated p-values, under 

weak dependence to select the outperforming rules, while setting a target for 

false discoveries. I can also extrapolate the proportion of trading rules displaying 

nonzero performance as 𝜋𝛢 = 1 − 𝜋0 in the entire universe of technical trading 

rules by using the FDR approach. This may be useful for an investor who wants to 

divide 𝜋𝛢 into the proportions of positive, 𝜋𝐴
+, and negative, 𝜋𝐴

−, rules in the 

population. Appendix C.1 describes the precise steps of achieving this, the 

estimation of 𝜆 and so of  𝜋0̂, as well as the computation of 𝜋𝐴
+ and 𝜋𝐴

−. In this 

Chapter’s Monte Carlo simulation presented ‒ also in the Appendix C.1 ‒ I provide 

evidence that this Chapter’s DFDR+/- procedure, achieves a good trade-off 

between the bias and variance in various weakly dependent settings. 

4.2.4 FDR Portfolio Construction 

I construct portfolios of technical trading rules by setting the 𝐹𝐷𝑅̂+ equal to 

10%, which achieves a good trade-off between the wrongly chosen rules and the 

truly outperforming ones according to the relevant literature. I find that results 

reveal a stability when 𝐹𝐷𝑅̂+ levels range from 5% to 30%. Hence, for the 10%-

FDR+ portfolio, 90% possess significant predictability while 10% of the rules 

selected do not have genuine predictive power among the outperforming rules. 

Moreover, I use the forecast-averaging technique and set equal weights to the 

signals pooled from the chosen rules to calculate the portfolio performance. 
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Each trading rule might generate a long, short or a neutral signal at a time-

step. I invest an equal proportion of my wealth to the signals generated by each 

individual rule. Following previous studies (see among others, Brock et al., 1992; 

Bajgrowicz and Scaillet, 2012), a trading position is opened when a long or short 

signal is produced and liquidated when the signal is either reversed or neutralized. 

Should a neutral position be raised, the fund is assumed to be invested in the risk-

free asset or the saving account. The gross daily return is calculated by the change 

in the closing value of the underlying index. A one-way transaction cost is 

deducted from the gross return when a position is terminated. The excess return 

is then estimated to compare the profitability of the trading rules with the risk-

free rate. The mathematical presentation of deriving the return time-series is 

explained in Section 4.3.3. 

4.3 Dataset, Technical Trading Rules and Performance 

metrics 

This Section presents the details of the environment where the DFDR+/- is applied. 

In Section 4.3.1 the dataset with the information regarding the studied markets is 

introduced. Section 4.3.2 describes the technical rules universe and Section 4.3.3 

covers the performance measures used to compare the trading rules for different 

markets.  

4.3.1 Dataset 

I study nine MSCI indexes that replicate the performance of United States (US), 

United Kingdom (UK), Japan, Brazil, China, Russia, Estonia, Jordan, and Morocco 

stock markets and the three categorical MSCI indexes that replicate the World 

(Developed), Emerging, and Frontier market indexes. The MSCI indexes are market 

capital-weighted indexes that reflect the holding returns of US investors in 

different markets. They are denoted in US dollars and are important references 

to institutional investors30 (see among others, Hsu, 2010; Bena et al., 2017). They 

include large and mid-cap segments of the benchmark markets and thus mitigate 

liquidity and tradability issues. The sample period for all time-series start from 1 

                                                           

30 99% of the top global investment managers are applying MSCI indexes (see, P&I AUM data and 

MSCI clients as of December 2017). 
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January 2004 and end on 31 December 2016. The summary statistics of the log 

returns of the twelve series and of the risk-free rates series are presented in Table 

4.1. 

[Table 4.1] 

All indexes are leptokurtic while the risk-free rate series is behaving very 

close to the normal curve. UK, Brazil and Russia have very high kurtosis. All time-

series except for the Frontier index and the risk-free rate exhibit negative 

skewness (the UK has the least). The positive autocorrelation coefficient is seen 

for all times series except for Japan and US; however, the reported coefficient is 

not statistically significant for Japan.  

4.3.2 Technical Rules 

Technical trading aims to recommend long or short positions for the next period 

based on historical quotes for open, high, low and close prices along with other 

characteristics such as previous trends, momentums and directional movements. 

In this study, 21,195 rules are utilized following the work of Hsu et al. (2016). This 

universe of trading rules includes FIRs, Relative Strength Indicators31 (RSIs), MAs, 

S&Rs and CBs. These technical indicators are common in practice and are available 

in trading websites, numerous research papers and textbooks in Finance. 

Appendix A.1 presents short descriptions of FIR, MA, S&R and CB rules. For 

the exact characteristics of the studied technical trading universe, the reader is 

referred to Hsu et al. (2016). In total, 21,195 technical rules are generated for 

each of the twelve MSCI indexes under study.  

4.3.3 Excess Returns, Transaction Costs and Performance 

metrics 

In this Section, I define the daily excess return for every index examined as well 

as the performance metrics employed in accounting for transaction costs. Firstly, 

                                                           

31 RSIs are momentum oscillators that measure the speed and change of price movements. 

Momentum is measured as the ratio of higher closes to lower closes: stocks with more or stronger 

positive changes have a higher RSI than stocks which have had more or stronger negative 

changes. RSI is considered overbought when above 70 and oversold when below 30. 
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I calculate the daily gross return from buying and holding the index during the 

prediction period as:   

𝑟𝑡 = ln (
𝑃𝑡

𝑃𝑡−1
)                  (4.3) 

where, ln (
𝑃𝑡

𝑃𝑡−1
) is the daily gross return from buying the pair and holding it for 

one day, 𝑃𝑡 is the spot price on day 𝑡 and 𝑃𝑡−1 is the spot price on the previous 

day. Each calendar year is assumed to have 26032 trading days on average. 

Secondly, I need to consider the impact of transaction costs into the 

technical trading simulation. For that reason, I treat transaction costs 

“endogenous” to the trading process. For instance, I deduct one-way transaction 

costs every time a long or short position is closed according to the next period’s 

index value prediction. I estimate the one-way transaction costs taken at time 𝑡 

for trading rule 𝑗 as: 

𝑇𝐶𝑗,𝑡 = 𝐼𝑗,𝑡 × 𝑡𝑐 × 𝑃𝑡             (4.4) 

where, 𝐼𝑗,𝑡 is the indicator set to 1 when a position is closed for the studied trading 

rule and the transaction cost 𝑇𝐶𝑗,𝑡 is deducted (0 otherwise) at time 𝑡 and 𝑡𝑐 

represents the level of transaction costs used.  

The transaction cost can negatively affect the performance of the portfolios 

(Cesari and Cremonini, 2003). Industry-based factsheets along with the academic 

literature recommend a transaction cost of 25-75 basis points (bp) for trading MSCI 

indexes (Cesari and Cremonini, 2003; Investment Technology Group, 2013; Eurex, 

2018). MSCI (2013) suggests transaction costs up to 50 bp for their indexes. The 

same survey shows that higher transactions cost (75 bp) leads to making the 

indexes out of money. In this study, I consider a one-way proportional transaction 

cost of 25 bp for advanced markets (US, UK, Japan and Developed) and 50 bp for 

                                                           

32 In finance literature each calendar year is expected to have 252 trading days. However, since 

markets operate on different schedules around the world the number of trading days differ in this 

case. 
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the other markets. These costs correspond to fees, bid-ask spread and slippage. 

These costs are realistic for large institutional investors.  

In terms of performance metrics, I provide the annualized mean excess 

return and Sharpe ratio criteria. In this way, I consider an absolute criterion based 

on each technical trading rule’s returns ‒ the mean excess return ‒ and a relative 

performance criterion reporting the ratio of the mean excess return to the total 

risk of the investment in terms of excess returns’ standard deviation ‒ the Sharpe 

ratio. Consider the trading signal 𝑠𝑗,𝑡−1 triggered from a trading rule 𝑗, 1 ≤ 𝑗 ≤  𝑙 

(where 𝑙 = 21,195) at the end of each prediction period 𝑡 − 1 (𝜏 ≤ 𝑡 ≤ 𝑇) , where 

𝑠𝑗,𝑡−1 = 1, 0, 𝑜𝑟 − 1 represents a long, neutral or short position respectively taken 

for time 𝑡. The mean excess return criterion 𝑓
𝑗,𝑡

 for the trading rule 𝑗 is given by:  

𝑓
𝑗,𝑡

=
1

𝑁
∑ [𝑠𝑗,𝑡−1𝑟′𝑡 − 𝑇𝐶𝑗,𝑡 − ln (1 + 𝑟𝑓,𝑡)] 𝑇

𝑡=𝜏 , 𝑗 = 1, … , 𝑙             (4.5) 

where 𝑁 = 𝑇 − 𝜏 + 1 is the number of days examined and the term [. ] is the excess 

return net for the risk-free rate 𝑟𝑓 at time 𝑡. The 𝜏 is the activation period since 

some of the technical trading rules use lagged values of indexes up to one year 

(260 days). For the risk-free rate, I use the effective federal funds rate reported 

by Federal Reserve in the US. Since the quotes for the risk-free rate are reported 

on an annual basis, I transform the rates to the daily basis as, 𝑟𝑓,𝑡 = (1 + 𝑆𝑡)
1

260 −

1, where 𝑟𝑓,𝑡 is the estimated daily rate and 𝑆𝑡 is the quoted federal funds rate.  

Finally, the Sharpe ratio metric expression 𝑆𝑅𝑗  for trading rule 𝑗 at time 𝑡 is 

defined by: 

𝑆𝑅𝑗,𝑡 =
𝑓̅𝑗

𝜎𝑗̂
, 𝑗 = 1, … , 𝑙,            (4.6) 

where 𝑓
𝑗,𝑡

 and 𝜎𝑗,𝑡̂ are the mean excess return and the estimated standard 

deviation of the mean excess return respectively. An important feature of the 

Sharpe ratio metric is its direct link with the actual test statistic of the empirical 
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distribution of a rule’s returns (Harvey and Liu, 2015)33. This theoretical 

connection together with popularity of the Sharpe ratio in trading industry makes 

the Sharpe ratio the most appropriate criterion for this Chapter’s proposed MHT 

framework34.  

Through Eq.s (4.5 and 4.6) each rule’ performance metric (𝜑𝑗) is calculated 

and tested for significant positive difference compared to a benchmark. Following 

Sullivan et al (1999) and Bajgrowicz and Scaillet (2012), this Chapter’s benchmark 

is the risk-free rate that corresponds to abstaining from the market when no 

profitable opportunity is expected. Alternatively, the benchmark can be defined 

as the buy and hold strategy on the MSCI World index or further to a combination 

of bonds and stock indexes35. 

4.4 IS Performance 

This Section provides an ex-post analysis for the technical rules. In Section 4.4.1 

the number of strategies identified as genuine profitable in the IS and their 

relevant profitability is presented. Section 4.4.2 reports a break-even transaction 

cost analysis. The corresponding results based on one-year IS are presented in 

Appendix C.2.  

                                                           

33 The test statistic of a given sample of historical returns (𝑟1, 𝑟2, … 𝑟𝑡), testing the null hypothesis that 

the average excess return is zero, is usually defined as 𝓉 =
𝜇̂

𝜎̂ √𝑇⁄
, while the corresponding Sharpe 

ratio is given by the formula 𝑆𝑅 =
𝜇̂

𝜎̂
 . The statistic 𝓉 was used in Chapter 2 to compare the trading 

universe. 
34 Financial literature has a wealth of alternative performance assessment measures e.g. the Sortino 

ratio (Sortino and Price, 1994) and Manipulation-Proof Performance Measure (MPPM) 
(Goetzmann et al., 2007). Although the results vary with the alternative choice of the test statistic, 
similar trends are observed with the Sortino ratio and the annualized excess return as 
performance metrics. 

35 The choice of a relevant benchmark is central to the hypothesis testing and the set of discoveries. 

Although different possible specifications could be considered, the scope of this study is limited 

to proposing the new MHT procedure in the most common and verified setting. Exploring different 

choices of the statistic and the benchmark remains for other studies such as the application in 

Chapter 5. 
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4.4.1 Identification and IS Profitability 

Table 4.2 presents the percentage and standard deviations of the survivor rules 

identified by the 10%-DFDR+ approach. The IS periods are set to two years and the 

portfolios are re-adjusted on a monthly basis.  

[Table 4.2] 

I note that the percentage of identified rules varies throughout the years and 

the markets. The higher number of identified rules are in the UK, Russia and the 

Frontier markets indexes. There is no obvious trend in the percentage of identified 

rules in terms of years.  The peaks are in 2006, 2009, and 2010 while the lowest 

is in 2012. It is interesting to note that this Chapter’s procedure identifies 

profitable rules for all indexes and all years. This means that the null hypothesis 

of no positive Sharpe ratio is rejected in all cases. The relevant trading 

performance (Eq. (4.5)) of the portfolios generated in the IS is presented in Table 

4.3. 

[Table 4.3] 

There is significant profitability after transaction costs for all indexes. 

Emerging markets present an increased profitability compared to their 

counterparts in terms of annualized return. There is no obvious trend on the 

profitability of technical analysis. There is a peak for the years 2009 and 2010 and 

consistent stable Sharpe ratios for the following years.  There is also no connection 

between the percentage of identified rules and the trading performance of the 

generated portfolios.  

4.4.2 Break-even Transaction Costs 

In this Section, I perform a break-even analysis of technical trading rules’ excess 

profitability over the IS period. Following relevant studies in the field (see, 

Bessembinder and Chan 1998; Bajgrowicz and Scaillet 2012; Hsu et al., 2016) I 

adopt as a break-even cost the size of one-way transaction costs, which make the 

excess profitability (i.e. mean return) of the best-performing technical trading 

rule to diminish to zero. The more the break-even costs surpass the actual ones 

the more robust a rule’s excess profitability is assessed. 
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Figure 4.1 displays the size of average break-even transaction costs (in 

percentage) for the best-performing technical trading rule under the Sharpe ratio 

metric and for each index separately. I select the best-performing rule for every 

month based on the previous two years period that acts as the IS. Then the 

procedure is repeated for all 12 months per year, while rebalancing is performed. 

The average break-even transaction cost per year is estimated by dividing the sum 

of the best rule’s monthly break-even transaction costs by twelve. The same 

procedure for the overall 10-year period is applied.  

Figure 4.1. Break-even Cost for the Top Performing Survivor of the DFDR+ Procedure (IS 2 

Years) 

Note: The values are in percentages and calculated as the transaction cost that sets the excess 
return to zero over the period under study. The IS period is set in two years, while the same results 
for IS of one year are available in Figure C.1. The values are calculated by repeating the procedure 
at the start of each month and averaging over 12 months.  

The major trend reveals by the figure is that frontier markets achieve the 

highest break-even transaction costs, with second and third best the emerging and 

developed markets respectively, at least for the first four years. In particular, 

Morocco (i.e., 33-38%), Russia (i.e., 21-43%) and Brazil (i.e., 12-42%) dominate in 

terms of excess profitability robustness over that period, while on the other hand 

an advanced market, namely Japan (i.e., 52%) reports the highest break-even 

costs over 2009 and 2011. For the rest over the years, there is a decay of break-
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even transaction costs, except for 2014, in which case the developed markets 

recover compared to the rest. For instance, the break-even transaction costs of 

the corresponding developed markets’ index as well as the US span from 14% to 

20%. Undeniably, there are still some emerging (i.e. Russia and Brazil) and frontier 

(i.e. Estonia and Morocco) markets, which score similar or even higher break-even 

costs. 

In general, I observe a downward trend of break-even costs and so excess 

profitability over the years, reaching their lowest levels in recent years and 

especially in 2015. However, this trend is not stable all the time. Figures 4.1 and 

C.4 (see Appendix C) reports a cyclicality in technical trading rules profitability, 

which is more consistent with the AMH. Specifically, most of the countries exhibit 

high break-even costs on 2006 facing a small decay in 2007, while they return to 

higher levels from 2008 to 2010, in which years the also reach a characteristic 

peak. During the following years, there is a considerable decay on their size, with 

a slight recovery only in 2014, which doesn’t clearly remain on 2015. So, except 

the years in which break-even costs report their highest values (i.e. 2008-2010), 

there is a relatively consistent performance of technical trading rules, especially 

in recent periods. 

4.5 OOS Performance 

This Section provides a comprehensive analysis for the portfolios constructed on 

the surviving rules of the DFDR+ procedure with an ex-ante approach. Section 4.5.1 

presents the excess profitability of the DFDR+ portfolios over the OOS. Section 

4.5.2 studies the performance persistence by measuring the number of periods a 

DFDR+ portfolio can generate a return above the risk-free rate. In Section 4.5.3, a 

novel cross-validation practice is provided that considers both IS and OOS and 

preserves the order of the underlying time-series. Finally, Section 4.5.4 focuses 

on interpreting the excess returns of the portfolio over the different period by 

considering the level of financial stress in markets. 

4.5.1 Excess Return 

Following previous studies in the field, I employ an OOS experiment based on the 

significant technical trading rules found by the DFDR+ procedure. I create 
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portfolios of outperforming trading rules for each index based on their IS 

performance and evaluate them in OOS. I consider three OOS horizons ‒ one, three 

and six months ‒ following a two-year IS period36. For instance, in the case of one-

month OOS, I select the significantly positive rules based on their previous two 

year’s performance tested by the 10%-DFDR+ approach as my portfolio selection 

tool (see Section 4.2.4). Then the portfolio’s performance is evaluated in the 

following one-month period. I rebalance the DFDR+ portfolio every month in a 

rolling-forward structure within a year and I repeat the same procedure for all the 

years in this Chapter’s study period (i.e. 2006-2015). By this way, I dynamically 

build and evaluate the portfolios like a profit-seeking investor. I utilize the OOS 

periods of three and six months in a similar manner. 

Table 4.4 reports the average excess annualized mean returns (Eq. (4.5)) 

followed by the Sharpe ratios (Eq. (4.6)) in parenthesis. For every index, a two-

year IS and a one-month OOS are considered. The values in Table 4.4 are 

calculated as the corresponding OOS averages of twelve DFDR+ portfolios built for 

every index after rolling-forward the IS by one month during one-year time span. 

[Table 4.4] 

OOS evidence shows that technical trading portfolios outperform in almost 

all markets during the earlier years and especially during 2006. In terms of 

developed markets, the UK and the US MSCI indexes both demonstrate positive 

mean returns and Sharpe ratios. Regarding the emerging markets, excess 

profitability is even more profound, with all three markets (i.e. Russia, China and 

Brazil) providing outstanding mean returns and Sharpe ratios (e.g., 59.59% and 

2.62 respectively for China). A similar performance is observed for the case of 

Morocco.  However, this trend does not seem to persist for 2007 where only a 

limited number of the emerging (China and Brazil) and the frontier markets 

(Morocco) retain their positive performance. Focusing now on the next years and 

especially in 2008 and 2009, almost all markets present extraordinary 

performance, which is more solid for frontier markets compared to the others. 

                                                           

36 I also set the IS period covering one year, however the corresponding portfolios of significant rules 

perform slightly worse than those constructed with a two-year IS period. The relevant tables and 

discussions are provided in Appendix C.2. 
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The years 2008 and 2009, corresponding to the global financial crisis period, during 

which most of the markets faced extreme downward trends and experiences 

severe losses. This environment seems beneficial for this Chapter’s technical 

trading portfolio as it mainly consists of momentum rules that can use such big 

trends. This also explains the negative performance for most cases in 2010, which 

was a turning point year for most of the markets. Additionally, the under-

performance of the DFDR+ portfolios continues for the rest of the years, signifying 

decay on technical trading rules performance. There are only a few exceptions 

(i.e. UK, US, China, Estonia and Morocco) on specific periods in which technical 

trading can still achieve some returns in over the recent periods but even these 

do not seem to be retained for more than one year. Considering the categorical 

MSCI indexes (Developed, Emerging and Frontier) the DFDR+ portfolios’ 

performances are not generally consistent with the corresponding performance of 

portfolios on their constituent indexes (e.g. Developed compared to the US). Only 

Frontier markets index provides a more solid positive performance over the study 

period, generating positive mean returns and Sharpe ratios even in the latest 

years. 

Table 4.5 displays the average excess annualized mean returns and Sharpe 

ratios (in parenthesis) after transaction costs for every index using the same two-

year period as IS but a three-month as OOS period. All values are computed as the 

OOS averages of the twelve portfolios per annum for every index in rolling-forward 

structure.  

[Table 4.5] 

The main finding in Table 4.5 is the similar pattern with those of using one 

month as the OOS period, with most of the developed and all of the emerging 

markets and Morocco from frontier markets to demonstrate healthy performance 

metrics in 2006. A performance, which is only preserved by some of the emerging 

markets (i.e. China and Brazil) and Morocco in 2007. During the global financial 

crisis period (i.e.2008-2009) the picture is the same as in Table 4.4, with technical 

trading rules outperforming, but this time mainly during 2008. Consequently, four 

out of the nine country-specific markets switch to negative returns in 2009. This 

might be a result of a longer-term OOS period examined and failure to tuning for 

new trends. Once again, the performance of technical trading rules diminishes 
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over the most recent periods, however, almost the same countries as before (i.e. 

US, UK, China and Estonia) demonstrate excess profitability on specific periods. 

This may indicate specific patterns in market trends during these years, exploited 

by technical trading rules. In terms of the categorical MSCI indexes, the most 

promising index remains the Frontier index. However, the robust excess 

profitability for the Frontier index over most of the years is no longer stable as in 

Table 4.4. In almost half of the years, the Frontier index yields negative returns. 

Finally, Table 4.6 presents the OOS performance of DFDR+ portfolios by 

applying a six-month post-sample period in a rolling-forward structure.  

[Table 4.6] 

As in the case of one and three months OOS periods, there is a considerable 

evidence of excess profitability of technical trading rules across most of the 

markets examined during the earlier years, while it reaches its highest level in 

2008. A considerable decay is observed over the more recent years, but some level 

of excess profitability remains for specific indexes and periods. Interestingly, I 

observe that the profitable indexes have been reduced almost to half, especially 

during profitable years such as 2008, compared to Tables 4.4 and 4.5, in which a 

smaller post sample period is applied. However, technical trading is still able to 

identify and predict quite well some indexes based on the evidence of all three 

OOS periods considered. For example, US and UK indexes in 2013 and 2014 from 

developed markets, China index in 2015 from emerging markets and Estonia in 

2014 from frontier markets yield consistently positive performance metrics. This 

signifies the presence of some patterns, which can be captured by technical 

analysis. Regarding the categorical indexes, two out of three, namely the 

Emerging and Frontier indexes generate quite healthy mean returns and Sharpe 

ratios in some periods, which span even to recent years. 

Analysing Tables 4.4 to 4.6, the performance of technical trading rules in 

emerging and frontier markets is stronger compared to the developed markets at 

least in profitable periods (i.e. 2006 and 2008) during which the former ones 

achieve higher mean returns and Sharpe ratios. This is also validated when the 

OOS period is changed. However, none of the markets seems to be consistent in 

terms of performance over the entire study period.  
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4.5.2 Performance Persistence 

The results in Section 4.5.1 recommend that technical rules and this Chapter’s 

approach can benefit from short-term market inefficiencies. However, market 

efficiency should diminish any profitability sooner or later. In this Section, I check 

how fast this profitability decays and whether there are anomalies between the 

different markets and periods. This element is overlooked in the related literature 

where the empirical evaluation is static and limited to specific periods. In real-

world trading environments, practitioners are adaptive and rebalance their 

portfolios on a frequent basis. 

Table 4.7 presents the persistence of this Chapter’s generated portfolios for 

the two-year IS and one-month OOS case. I measure persistence as the number of 

consecutive months for which my portfolios have a trading performance above the 

relevant risk free-rate.  

[Table 4.7] 

I note that in most cases, traders need to rebalance the portfolios on more 

than a monthly basis. These results are expected considering the level of 

efficiency of financial markets and the mediocre trading performance of the 

trading rules in the previous section. However, it should be noted that there is a 

handful of cases where the measured robustness is higher than unit. In other 

words, there are cases where market efficiency was weak enough to allow 

profitability for static portfolios. Persistence is higher for the years 2007 and 2008 

that can be attributed to the turbulence due to the global financial crisis and its 

side-effects to market efficiency. Interestingly, the market with the higher 

persistence is the US, the largest and more liquid index under study. In Table 4.8, 

I repeat the same exercise for the IS 2 years and OOS 3 months case.  

[Table 4.8] 

The persistence is decreased for most cases and years. I note that in 2008 

the average persistence of my portfolios is more than one. Else, my portfolios 

retain their profitability after the first three OOS months. I note that the US 

retains a persistence larger than one on average. This is surprising as someone 
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might expect frontier and emerging markets to have stronger persistence than 

developed markets. Table 4.9 presents the same exercise for IS 2 years and OOS 

6 months. 

[Table 4.9] 

From Table 4.9, the further persistence decreased is observed. There are 

years (especially for frontier markets) where persistence is zero. It means that 

none of the generated portfolios has a trading performance higher the relevant 

risk-free rate for the first six months of the OOS. Similar to the previous two cases, 

I note a peak for the year 2008. 

 The results in this Section highlight the importance of holding periods in 

trading, a fact overlooked in the related literature. I note that there are a few 

cases where the portfolios might have a negative profitability in the first month 

of the OOS but some of them bounce back in the following periods (see, for 

example, persistence for the year 2008 in Tables 4.7 to 4.9). In these cases, 

adaptiveness seems not to always lead to increase profits while patience is often 

rewarded. However, the majority of the results highlight the importance of 

rebalancing the portfolios. Emerging and frontier markets do not seem to offer a 

safe haven to static portfolios.  The observed trends allow me to remark that 

persistence is stronger at the peak of the global financial crisis of 2008. These 

results lead to further explore whether financial stress levels affect the 

profitability of technical analysis (see, Section 4.5.4). This exercise also highlights 

the importance of choosing the IS and OOS length. This choice can be seen as a 

trade-off between Type I and Type II errors on the modelling part (Harvey and Liu, 

2015). On the empirical side, it can be seen as how adaptive a trader should be 

and how persistent are the technical rules.  

4.5.3 OOS Cross-validation 

Backtesting to measure the performance of a trading strategy over the unseen 

market conditions is a common approach for both academia and industry. 

However, it can lead to false inference sometimes. For instance, an OOS 

simulation doesn’t always represent a true futuristic replication since the 

practitioner is already informed about what happened in the economy. In other 
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words, the outcome is always realized beforehand. Additionally, the data splitting 

in IS and OOS horizons plays an important role in the success of OOS experiment 

and the performance of the trading strategies over specific periods (see Sections 

4.5.1 and 4.5.2). Furthermore, it is very likely to overlook true alternative (i.e. 

false negatives) when only a part of the full sample data is reserved for performing 

an IS-OOS backtesting. 

In this Section, the robustness of the OOS performance is revisited in an 

innovative way based on a cross-validation experiment between the findings of IS 

and OOS. I explore a method proposed by Harvey and Liu (2015), which involves a 

combination of the full sample and the IS-OOS evidence in order to search for the 

intersection of survivors. If the IS period is not too short (i.e. two years) compared 

to the OOS corresponding periods (i.e., one, three and six months, respectively) I 

retain the IS-OOS test results computed previously. Those involve the genuine 

technical trading rules survived in OOS after employing the DFDR+ approach at 10% 

target of false rejections and while considering the Sharpe ratio metric as this 

Chapter’s test statistic. In this case, I also employ the DFDR+ method to select the 

significantly positive rules for a full sample horizon with a more lenient target 

rate (i.e., 20%). I consider three full sample periods corresponding to each of the 

three different OOS periods examined plus the IS period, while I utilize the 

aggregate dataset each time (e.g. two years and one-month full sample in the first 

case). Then, I merge the findings observed by the IS-OOS and the full sample 

simulations in order to identify the potential intersection of significant rules 

provided by the two approaches. Finally, I evaluate the performance of the rules 

belonging in the intersection. At my best knowledge, this is the first time of such 

an approach is deployed. 

Tables 4.10 to 4.12 report the results of the cross-validation test as described 

above. The tables report the average OOS annualized mean excess returns of 

twelve cross-validated portfolios. The portfolios are constructed similar to the 

previous sections (4.5.1 and 4.5.2) while accounting for transaction costs together 

with the average percentage of cross-validated rules out of the total number of 

surviving rules ‒ presented in Table 4.2 ‒ (in parenthesis) are reported. 

[Table 4.10] 
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 Table 4.10 exhibits the results of my cross-validation exercise for the one-

month OOS case. Profitability is very high, especially during the global financial 

crisis (i.e., 2008-2009). For the rest of the periods, emerging markets demonstrate 

the highest performance and report very healthy returns with only a slight decay 

during the most recent years. The frontier markets exhibit a similar pattern in 

profitability. For developed markets, the performance of technical trading rules 

seems promising over most periods, while the returns yielded are quite lower 

compared to the ones of developed and frontier markets. Positive profitability 

was naturally expected, as cross-validated rules are a subset of the profitable OOS 

rules. The percentages of cross-validated rules vary considerably. For the 

developed indexes, these numbers span from 0.01% to 17.41% (both for the US), 

while for emerging indexes range from 0.01% (China and Brazil) to 18.07% (China) 

across all periods. Moreover, the relevant percentages of cross-validated rules for 

frontier indexes spread from 0.01% (i.e., Morocco, Jordan) to 18.14% (i.e., 

Morocco). On average, the percentage across all markets and periods is 2.47% or 

30 rules. This number demonstrates the value of technical analysis in trading. 

Table 4.11 has the results of the exercise for the 3 months OOS case. 

[Table 4.11] 

I observe the same characteristics in technical trading rules performance; 

however, the magnitude of generated returns are smaller compared to the ones 

obtained in the one-month OOS period. The percentage of the cross-validated 

rules is on the same levels as the previous case.  Table 4.12 presents the 6 months 

OOS case. 

[Table 4.12] 

The evidence provided by performing the cross-validation experiment in a 

six-month OOS horizon reveals even lower returns compared to the relevant ones 

using one and three months across all indexes and overall post-sample periods. 

This finding is consistent with the one in Section 4.5.1 describing the OOS results 

profitability since the significant rules are exposed to longer post-sample periods 

uncertainty. In terms of profitability patterns, all market indexes are able to 

achieve high returns during the earlier years (i.e., 2006-2009), with emerging 

indexes being more profitable, while frontier and developed markets come second 
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and third respectively. However, developed market indexes’ returns seem to 

diminish over the recent periods and especially after 2008 and 2009 in which years 

they achieve their highest returns. Regarding the emerging market indexes, 

technical trading returns remain more robust and yield high returns even in recent 

years (i.e., 2014, 2015), while no specific pattern is observable at least for the 

Russian and Brazil indexes. On the contrary, the considerable decay in profitability 

is more profound in frontier markets indexes from 2009 to 2010 relative to the 

developed indexes. These findings are generally the same for the corresponding 

categorical MSCI market indexes. In addition, the average percentage of cross-

validated rules has slightly increased compared to the relevant amounts of the 

three-month OOS period. For instance, these percentages reach 25.83% (US) for 

developed indexes, while they have moved up to 15.23% (China) and 20.98% 

(Morocco) for emerging and frontier indexes respectively. 

This Section finds that a limited number of genuine profitable technical rules 

exist. The DFDR+ approach can identify subsets of these rules as demonstrated in 

Section 4.4.1. The percentages of cross-validated rules might seem small, but it 

should be noted that the scope of this Section is to check whether truly profitable 

rules at both the IS and OOS do exist. This exercise allows me to suggest with 

further confidence that technical analysis has value in trading. The results can 

also be seen as the performance of an “oracle” trader that applies technical rules 

in studied dataset.   

4.5.4 Financial Stress 

The previous sections note a peak on the technical rules’ performance for the 

years 2008 and 2009 that correspond to the recent global financial crisis. The 

performance of the portfolios deteriorates in the following years, but there are 

still cases where they present excess profitability after transaction costs even in 

developed markets. This Chapter’s results contradict the previous recent 

literature that finds no recent excess profitability after transaction costs for 

technical analysis (see among others, Hsu et al., 2010; Bajgrowicz and Scaillet, 

2012; Taylor, 2014)37. The authors argue that the popularity of Exchange-Traded 

                                                           

37 As discussed before, none of the previous literature presents an extensive empirical application 

as the one presented in the previous sections. Previous authors also applied more conservative 

and time consuming MHT frameworks and limited their empirical applications to specific years or 
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Funds (ETFs), algorithmic trading, market liquidity, derivatives or the effect of 

other macroeconomic factors have eliminated excess profitability in recent years. 

Although the effect of these factors cannot be discarded, the results suggest 

exploring the effect of financial stress on the portfolios.  

The literature is rich in financial stress indexes. The difference is based on 

the components that are used to construct them, their frequency and the market 

that they are applied to. In this Chapter’s study, I apply the OFR stress daily 

indexes. They are constructed for 33 market financial variables and cover the US, 

other developed economies and emerging markets38. I match the findings for the 

US, Developed and Emerging indexes from Section 4.5.1 with the stress levels as 

reported by the related US, other developed39 and Emerging markets’ OFR stress 

indexes. The stress levels are averaged based on the daily OFR indexes for each 

month. A month is then classified as either high or low stress. Then for each year, 

the trading performance over the high- and low-stress is measured separately. 

Table 4.13 presents the performance of my portfolios under high and low financial 

market stress.  

[Table 4.13] 

The table offers two main findings that highlight the complexity of the 

financial markets. Firstly, there is no solid verdict about the stress. Speculators 

might consider benefiting from disruptions in the normal financial market 

activities over highly stressed periods. This can lead to a higher reward but might 

also cause unexpected losses. For example, consider the case of 2010 ‒ the year 

in which most markets present negative trading performance in Section 4.5.1. A 

                                                           

periods.  For example, let me consider the case of the MSCI US index, the 2 years IS and 1-

month OOS (see, Table 4.4). If the application was limited only to year 2014 or 2015, the 

interpretation would be unrealistic. The flexibility and adaptiveness of DFDR+/- along with the 

recent developments in computational power allowed me to conduct an empirical analysis that 

unveils previously unknown patterns.    

38 Other indexes (such as the St. Louis Fed Financial Stress Index and the Kansas City Financial 

Stress Index) focus on a specific index while others stop before my sample (such as the IMF 

stress index). My criteria to select the index are to cover as many markets as possible from the 

ones under study and to apply the all indexes to been constructed with the same methodology.  

39 I note that the MSCI and the OFR indexes don’t match perfectly. For example, the “other advanced” 

OFR index does not include US. However, among the more cited financial stress indices, OFR is 

the closest to my study.  
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trading practice over the high-stress period exclusively in the US market could 

almost hedge the loss while the same practice for the Emerging index could lead 

to a 20% loss. Therefore, the decision to invest in such conditions depends on the 

risk preference of the investors. Secondly, comparing the average performance of 

different trading practices (high, low and the original) provides mixed results. 

Financial markets operate continuously and digest the inbound flow of information 

on a regular daily basis. Fundamental developments are not priced in financial 

markets as expected by central banks (Kontonikas et al., 2013). Stress indexes 

like the OFR index try to cover the fundamental factors. Segregating the markets 

into high-stress and low-stress submarkets based on such measures does not 

necessarily provide a superior market insight. 

4.6 Conclusion 

This study uses a novel MHT approach to measure the profitability of technical 

analysis. The DFDR+/- is a simple and efficient tool for comparing a large-scale set 

of inputs with structural dependence and discrete p-values. Specifically, the FDR 

approach is used to assess a technical trading universe from five main families of 

oscillators and indicators. The tested null hypothesis is that under an unbiased 

evaluation, different variants of the technical rules are practically the same and 

provide no significant profit.  

A thorough experiment is designed to quantify the merits of the DFDR+/- 

method and test the validity of technical rules. Monte Carlo simulation is selected 

to compare the proposed method with an FWER benchmark under deterministic 

conditions. After validation by random data, the DFDR+ tests the null hypothesis 

for the trading universe. Then, significantly positive rules based on the DFDR+ are 

used to construct equal-weight portfolios. The portfolios backtest technical rules 

in the stock markets in Africa, America, Asia, and Europe. The backtesting 

investigates the transaction costs and the IS and OOS profitability after transaction 

costs and risk-free rate. The same backtesting process also studies the persistence 

of the DFDR+ portfolios as well as the cross-validation of the constituent of the 

portfolios with a novel approach that preserves the natural order of the time series 

under study. This experiment structure makes the findings tangible for both 

academic and industrial audiences. 



Chapter 4   84 

This Chapter’s results explain why technical analysis is very popular in 

practice and highlight circumstances where technical analysis fails to generate 

positive performance. The null hypothesis is rejected for all twelve markets 

confirming that significant technical rules exist. This study shows that financial 

market dynamics play an important role in profitability and there is no evidence 

of one single profitable rule for trading over a long time. Emerging and frontier 

markets with a lower level of competition generally present better investment 

opportunities. No evidence is found that inclusion of fundamental factors like the 

financial stress index would increase the predictive power of technical analysis. 

This study finds the missing element in the academic literature for reviewing 

technical trading: rebalancing. Technical trading focuses on detecting trends over 

short-term and speculates on these trends. The profitable rules are bound to a 

specific market and time. Testing decades of financial time series as in the 

literature (see among others, Cialenco and Protopapadakis, 2011; Fang et al., 

2014; Hsu et al., 2016) is an impractical approach to analysing a trading strategy 

and therefore leads to criticism of technical analysis. The profitable trading 

strategies are short-lived and vanish once other market activists discover either 

an identical or a similar strategy. There are also cases where the portfolios failed 

to generate positive profit, however, there is always at least one profitable 

market over the ten years studied. The findings can be summarized as: there is 

always a trout in the trading lake, but once caught it must be used while it is 

fresh. 

The DFDR+/- is applied to a trade analysis application. The empirical evidence 

shows its strength in comparing the large pool of candidate models. Such a pool 

of candidates exists across different fields e.g. finance, genetics, and computer 

science. One pathway for future research can be oriented toward unbiased 

comparison of alternative models in other disciplines by using the proposed 

procedure. This study compares a large pool of simple technical trading rules. 

With the rise of new AI models for trading, future studies in this area can be also 

oriented toward providing an unbiased comparison of complex AI models to find 

the most successful ones for trading.  
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5. Revisiting Financial Volatility Forecasting: 

Evidence from Discrete False Discovery Rate 

5.1 Introduction 

Market volatility is a “latent” economic variable which is not directly observable 

from the market. This is different from the price of a stock, which can be directly 

identified. Because market volatility is both latent and of great economic 

importance, a large and growing literature attempts to compare different 

volatility models based on their forecast accuracy. The magnitude of market 

volatility at each time is of crucial importance to option pricing models, 

quantitative risk management and asset pricing (Harvey and Whaley, 1992; Poon 

and Granger, 2003; Brooks and Persand, 2003). Although volatility and risk have 

subtle differences, volatility is often used as a convenient proxy for risk in 

investment decisions. Christoffersen and Diebold (2000) argue that successful 

volatility forecasting improves such decisions. The aim of this study is to find the 

most successful volatility forecasting models through an unbiased simultaneous 

statistical comparison of all candidate models. 

Various statistical models have been introduced to capture how volatility 

varies over time. The GARCH models of Engle (1982) and Bollerslev (1986) are 

widely recognized by both researchers and practitioners. Different extensions of 

the GARCH models have been introduced over time. The most common classes of 

GARCH models are: the absolute value model of Taylor (1986) and Schwert (1989), 

Exponential GARCH (EGARCH) of Nelson (1991), the asymmetric GJR-GARCH model 

of Glosten et al. (1993), the Threshold GARCH model (TGARCH) of Zakoian (1994), 

the Integrated GARCH (IGARCH) of Engle and Bollerslev (1986), Fractionally 

Integrated GARCH (FI-GARCH) of Baillie et al. (1996), and the RiskMetrics (RM) – a 

non-stationary extension– of JP Morgan (1996). Poon and Granger (2003) provide 

an extensive review of various classes of GARCH models. 

The SV method of Taylor (1982) is an alternative technique for modelling 

time-varying volatility. SV focuses on the latent feature of conditional volatility 

and models it by a stochastic process (Sadorsky, 2005). Among others, Ghysels et 

al. (1996), Broto and Ruiz (2004), Sadorsky (2005), Asai et al. (2006), and Chan 

and Grant (2016) review the SV literature and estimation models. Yu (2002) and 
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Chan and Grant (2016) argue that SV models outperform their GARCH counterparts 

in the stock market and crude oil volatility forecasting. 

A simple estimation of conditional volatility is the HAR by Corsi (2009) that 

utilizes daily, weekly and monthly components. The HAR provides an efficient 

long-memory regression model able to mimic the actions of different market 

participants (Hansen and Lunde, 2011). Despite its simple structure, HAR emerged 

as a very successful volatility forecasting method, often outperforming both 

GARCH and SV models (Corsi, 2009; Hansen and Lunde, 2011; Bollerslev and 

Quaedvlieg, 2016).  

In this Chapter, I ask two research questions: 

1) Among the more popular volatility models, is there a specification or 

family of volatility models, that prevails in terms of forecasting 

accuracy? Particularly, are GARCH (1,1) and ARCH (1) truly the more 

accurate specifications? 

2) Does the individual market characteristics play any role in that?  

To proceed, I need a measurement scale for the volatility models and a 

performance comparison framework to find the best ones. A practical scale to 

measure the true (latent) conditional variance is the Realized Volatility (RV), 

where daily RV is constructed upon aggregation of the squared high-frequency 

intra-daily returns (Andersen and Bollerslev, 1998; and Andersen et al., 2003). RV 

is widely used in the literature (see among other Brooks and Persand, 2003; 

Andersen et al., 2005; Bollerslev et al., 2016). As this Chapter’s performance 

comparison framework, I use the MHT approach of DFDR+/- discussed in Chapter 4. 

In this Chapter’s application, I review the literature in financial volatility 

forecasting, identify the most promising models and their variants, and I examine 

their accuracy through the 4th Chapter’s discrete FDR approach. The volatility 

forecasting comparison literature can be traced back to Dimson and Marsh (1990). 

They study UK stock market volatility over the 1955-1989 and report that under 

an unbiased evaluation, “relatively sophisticated forecasting methods” 

underperform the naïve benchmarks. In contrary, Andersen and Bollerslev (1998) 
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study Deutschemark to US dollar (DM/$) and Japanese yen to US dollar spot 

exchange rates over 1987-1992 and report that ARCH and GARCH models provide 

accurate volatility forecasts. Kang et al. (2009) study four GARCH classes (GARCH, 

IGARCH, CGARCH, AND FIGARCH) and use the forecast accuracy test (Diebold and 

Mariano, 1995) comparing one, two, and five days ahead forecasts for the three 

crude oil time series. Their results show a significant difference in forecasting OOS 

volatility between the competing oil price models. However, none of the 

mentioned papers uses a formal MHT error controlling approach to evaluate the 

models. 

Wei et al. (2010) expanded the pool of Kang et al. (2009) to nine GARCH 

classes of models (RiskMetrics, GARCH, IGARCH, GJR, EGARCH, APARCH, FIGARCH, 

FIAPARCH and HYGARCH) and deploy the Hansen (2005) SPA test. Their results 

show that no model outperformed its counterparts in forecasting the volatility of 

Brent and West Texas Intermediate (WTI) crude oil prices. Bollerslev and 

Quaedvlieg (2016) introduce the HAR Quarticity (HARQ) model and use the RC test 

to compare their model against eight AR and HAR specifications. Their OOS study 

for the daily S&P 500 index RV shows limited significant differences between the 

candidate models. Hansen and Lunde (2005) bring together a large pool of three 

hundred and thirty volatility models and compare them based on the SPA test. 

They report mixed results for the FX market and the stock market. They find no 

significant improvement in favour of exotic extensions of GARCH models compared 

to a GARCH (1,1) and an ARCH (1) benchmarks for DM/$ volatility. For IBM stock 

the benchmark is outperformed by at least some models in the pool. Nevertheless, 

their approach is not able to detect the superior ones individually. Bao et al. 

(2006) compare sixteen volatility models for Value at Risk (VaR), based on the RC 

test. They study risk models for three periods in five Asian countries. Their findings 

show that there are no superior models over the crisis periods and VaR models 

generally behave similarly. Esposito and Cummins (2016) expand the studied pool 

of Bao et al., (2006) and deploy a 𝑘-FWER approach to MHT by using the Romano 

et al. (2008). Esposito and Cummins (2016) study sixteen OOS periods for one-

step-ahead and ten-step-ahead forecasts and report that superior models exist 

under a more powerful MHT procedure. The literature of volatility forecasting has 

no record of MHT applications based on the FDR approach.  
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By considering alternative specifications for each class of volatility models 

and a range of different plausible parameterizations for each specification (see 

Hansen and Lunde, 2005), I construct a very large pool of possible volatility 

models. I study multiple classes of assets (FX, the stock market, and commodities) 

and conduct this Chapter’s empirical analysis over five periods of one calendar 

year. One of the most common practices in volatility forecasting is to estimate a 

model based on historical data and project it forward (Figlewski, 1997; Bollerslev 

et al., 2016; Esposito and Cummins, 2016). Analysis of future predictions can 

reflect the model’s strength. Investigating one-day ahead is an almost unanimous 

practice for trading purposes among risk managers (Christoffersen and Diebold, 

2000). Following this literature and the industry’s well-accepted practice, I use 

the one-step-ahead RV forecasting accuracy as the performance measure. In terms 

of forecast evaluation, I compare the candidate models based on the novel DFDR+/- 

technique. First, I apply the stationary bootstrap resampling of Politis and Romano 

(1994) to generate the individual p-values. Then, Liang’s (2016) adaptive approach 

is used to provide a more realistic analysis for the discrete space p-values. Next, 

the FDR+/- model of Barras et al. (2010) is deployed to control the expected 

probability of having a certain proportion of false positives. Finally, the step-wise 

algorithm in Bajgrowicz and Scaillet (2012) is used to find the set of true 

discoveries based on the FDR+. This procedure is introduced in Section 4.2 as 

Discrete FDR+ (DFDR+). Thus, I try to find the set of superior volatility forecasting 

models by applying the DFDR+ technique.  

The rest of this study is organized as follows: in Section 5.2 the pool of 1,512 

time-varying volatility models and their specifications are discussed. Section 5.3 

focuses on the MHT method ‒ DFDR+ ‒ used to compare the volatility models. 

Section 5.4 introduces the data applied and the performance metrics used to 

measure the accuracy of the individual models. Section 5.5 presents the empirical 

results and Section 5.6 provides some concluding remarks. Finally, several 

technical details and robustness checks are included in Appendix D.  

5.2 The Conditional Volatility Pool 

This Section covers the specifications of the time-varying volatility models 

considered in the forecast comparison practice. Given a daily price process {𝓍𝑡}, 

the logarithmic return is given by 𝓇𝑡 = log(𝓍𝑡) − log(𝓍𝑡−1) , 𝑡 = 1, … , 𝐾 + 1. The 
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dataset is then split into two sets of sub-samples: training (IS) and test (OOS). The 

first 𝐾 observations are used as an IS set to estimate a predictive conditional 

volatility model for the last observation (OOS).  

Given a 𝜎-algebra ℱ𝑡−1, based on information available at time 𝑡 − 1, the 

conditional density function for {𝓍𝑡} is given by 𝑓(𝓇|ℱ𝑡−1). The conditional mean 

and variance can be defined as 𝜇𝑟𝑡
= 𝐸(𝓇𝑡|ℱ𝑡−1) and 𝜎𝑡

2 = var(𝓇𝑡|ℱ𝑡−1) 

respectively. Following Hansen and Lunde (2005), I define the standardized return 

as 𝜉𝑡 = (𝓇𝑡 − 𝜇𝑟𝑡
)/𝜎𝑡 and the corresponding density function is given by ℊ(𝜉|ℱ𝑡−1). 

Given a parametric specification for 𝑓, the conditional mean and the variance of 

{𝓍𝑡} are denoted by 𝓂𝑡 = 𝜇(ℱ𝑡−1, 𝜃) and ℎ𝑡
2 = 𝜎2(ℱ𝑡−1, 𝜃) respectively where 𝜃 is 

a vector of parameters. 

I construct my volatility forecasting models based on the {𝜉𝑡} process. As a 

result, depending on the selection of the conditional mean and variance, multiple 

extensions of the standardized returns can be considered. The rest of this Section 

presents the characteristics of the candidate models studied for their predictive 

ability.  

5.2.1 Conditional Mean and Variance   

In order to generate the {𝜉𝑡} series, an estimation of the conditional mean (𝜇𝑟𝑡
) is 

necessary. I consider three estimations of 𝜇𝑟𝑡
 denoted by 𝓂𝑡. First, I assume a 

fixed zero-mean process 𝓂𝑡 = 0. Second, I generalize my first case by allowing a 

non-zero mean based on the location of unconditional mean 𝓂𝑡 = 𝜔0. Finally, I 

consider a time-varying process based on the conditional variance as 𝓂𝑡 = 𝜔0 +

𝜔1𝜎𝑡−1
2 . Financial time series are known to often have heavy tail distributions. To 

accommodate this, I consider four alternative distributions for the innovations, 

namely the Gaussian, Student’s t (Bollerslev, 1987), skewed t (Hansen, 1994) and 

the Generalized Error Distribution (GED) (Nelson, 1991).  

The RV derived from the intraday returns is used as a proxy for the latent 

𝜎𝑡
2. First, each trading day 𝑡 is split into 𝒯 intraday periods, where the return for 

the 𝓉 period is given by 𝓇𝑡,𝓉 = log(𝓍𝑡,𝓉) − log(𝓍𝑡,𝓉−1) for 𝓉 = 1, … , 𝒯. Under the 

assumptions of zero-mean and conditionally uncorrelated returns for intraday 

periods, the daily RV is defined as: 
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𝑅𝑉𝑡 = ∑ 𝓇𝑡,𝓉
2𝒯

𝓉=1 .                           (5.1) 

Most stock markets are open over certain weekday working hours and are 

closed on the weekends. In this case, only a subset of 𝒯 quotes is reported for 

each day, which explains the gaps that exist in the time series of the asset price. 

To account for this issue, two solutions are considered in the literature (Andersen 

and Bollerslev, 1998; Hansen and Lunde, 2005; and Huang et al., 2013). The first 

solution is to scale the available information 𝑅𝑉𝑡 by a constant as a measure of 

volatility for the full day40. An alternative is to adjust the RV by adding the 

overnight return as:   

𝐴𝑅𝑉𝑡 = 𝑅𝑉𝑡 + 𝓇𝑡,𝑜𝑛
2 .             (5.2) 

In Eq. (5.2), 𝑟𝑡,𝑜𝑛 is the overnight return given by 𝓇𝑡,𝑐𝑜 = log(𝓍𝑡+1,𝑜) −

log(𝓍𝑡,𝑐), where 𝓍𝑡,𝑐 is the closing price of day 𝑡 and 𝓍𝑡+1,𝑜 is the opening price of 

the following day. Since Hansen and Lunde (2005) find that ARV is a ‘noisy’ 

measure for the daily volatility, I revisit it an alternative proxy to the 𝜎2. This 

allows me to identify possible differences between the models. 

5.2.2 Forecasting Models 

Four common families of volatility forecasting models are used in this study 

(GARCH, EWMA41, SV, and HAR).  The specification of the GARCH family models is 

very common. The MA-based models, GARCH-MA and SV-MA are adopted from 

Chan and Grant (2016), where innovations are assumed to follow a first-order MA 

process. The asymmetric SV with leverage (SV-L) is adopted from Asai and McAleer 

(2011). Finally, HAR models are adopted from Corsi (2009) and log-HAR from Huang 

et al. (2013). The equations for each class of volatility models are given in Table 

5.1. 

[Table 5.1] 

                                                           

40 I studied this approach as well. All estimated constants fall in a confined range of (0.9, 1.1) which 

is easy to capture by volatility forecasting models. 

41 RM is a specific case of the EWMA. 
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In GARCH (𝓅, 𝓆) models (Eq.s (5.4 to 5.14)), 𝓅 > 0, 𝓆 > 0, 𝒶𝑢 ≥ 0, 𝑢 =

1, … , 𝑞, 𝒷𝑟 ≥ 0, 𝑟 = 1, … , 𝓅. For 𝓅 = 0, the GARCH process reduces to ARCH (𝓆) as 

in Eq. (5.3). In GJR-GARCH (Eq. (5.10)), 𝐼{𝜀𝑡<0} is a dummy variable accounting for 

leverage equal to the unit when the criterion 𝜀𝑡 < 0  is satisfied or otherwise zero. 

In NGARCH and APARCH (Eq. (5.13 and 5.14)), the 𝛿 is an extra parameter 

estimated along with other parameters. In asymmetric models (Eq.s (5.7), (5.8), 

(5.9), (5.10), (5.12), (5.14), and (5.17)) 𝜂 corresponds to the leverage effect. In 

EGARCH and SV-L (Eq.s (5.12 and 5.17)),  𝐸|𝑒𝑡−𝑢| = (𝜋/2)−1/2 given 𝑒𝑡~𝒩(0,1). 

For other distributions (t-student, GED and skewed-t) the quantity should be 

computed accordingly as in Harvey and Sucarrat (2014). However, in this Chapter 

the same quantity (𝜋/2)−1/2 is used as an approximation for other distributions, 

following Hansen and Lunde (2005). 

In FIGARCH (Eq. (5.15)), 𝒶(𝐿) and 𝒷(𝐿) are lag operators such that 𝒶(𝐿) =

𝒶1𝐿(1) + ⋯ + 𝒶𝓆𝐿(𝑞) and 𝒷(𝐿) = 𝒷1𝐿(1) + ⋯ + 𝒷𝓅𝐿(𝓅). The (1 − 𝐿)𝑑 corresponds to 

fractional lag with degree 𝑑 in the interval (0,1). Also, 𝜁𝑡 = 𝜀𝑡
2 − 𝜎𝑡

2 is a zero-mean 

martingale process representing innovations for the conditional variance. In SV 

models, ℎ𝑡 = 𝑙𝑜𝑔(𝜎𝑡
2) and 𝜇ℎ is the unconditional mean of ℎ𝑡. The considered lag 

for all GARCH and SV models is one and two. 

For EWMA models (Eq. (5.18)), a range of parameter υ − interpreted as the 

decay factor − is studied from the set {0.8, 0.82, … , 0.98}. JP Morgan (1996) 

proposes a decay factor of 0.94 in their RM model. In HAR models (Eq.s (5.19 and 

5.20)), 𝜎̃𝑡
𝑑 is the daily conditional variance like 𝜎𝑡

2 in Eq.s (5.3 to 5.18). The 𝜎̃𝑡
𝑑 is 

regressed on previous daily 𝜎̃ 𝑡−1
𝑑 , weekly 𝜎̃𝑡−1

𝑤  and monthly 𝜎̃𝑡−1
𝑚𝑛 values for the {𝜎̃𝑡

𝑑} 

process (Eq.s (5.19 and 5.20)).  

Based on the above, I generate 1,512 specifications by combining 

specifications for different variables. The candidate models are based on three 

specifications for conditional mean and two for conditional variance for 

generating the underlying standardized return series. Then, four innovation 

distributions are considered for the twenty classes of the forecasting models. 

Appendix D.1 includes more details regarding the above specifications and the 

characteristics of the models considered in the pool.  
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5.3 DFDR+ 

The DFDR+ is a step-wise procedure to find the set of true rejections in MHT while 

controlling the false discoveries asymptotically. The procedure is able to 

efficiently balance the control of both Type I and Type II errors in model selection. 

This technique is built upon the premises of FDR, but it is adjusted for more 

adaptive hyperparameters and accounts for the discrete feature space. For the 

mathematical presentation of the DFDR+ method, refer to Sections 4.2.1 to 4.2.3.  

In this application, I use the DFDR+ to find the set of outperforming volatility 

forecasting models. A continuous uniform distribution of the p-values may not be 

realistic, due to the finite number of the bootstrap replications and the 

dependence between alternative volatility models. Therefore, a discrete 

approach is more consistent with the studied universe of candidate models 

discussed in Section 5.2. The exact steps of the DFDR+ approach that lead to the 

extraction of the superior volatility models are presented in Appendix D.2. 

5.4 Model setup 

5.4.1 Data 

I conduct this Chapter’s empirical analysis for six markets (three exchange rates, 

two stock indexes and one commodity) based on daily returns and high-frequency 

RVs. The exchange rates are European Union euro to US dollar (EUR/USD), British 

pound to US dollar (GBP/USD), and US dollar to Japanese yen (USD/JPY); stock 

market indexes are the DJIA and the Financial Times Stock Exchange 100 (FTSE 

100); the commodity is the Gold spot price in US dollar (XAU/USD). The daily RVs 

are constructed as a summation of five-minute squared returns, following recent 

practices in volatility modelling (Li and Xi, 2016; Bollerslev et al., 2016). The RV 

approximations are based on 𝒯 = 288 for EUR/USD, GBU/USD, USD/JPY and 

XAU/USD, 𝒯 = 102 for FTSE 100, and 𝒯 = 78 for DJIA42. This Chapter’s dataset 

starts on January 1st, 2012 and ends on December 31st, 2017. For each trading day, 

                                                           

42 The exchange rates and the commodity are traded 24 hours on weekdays (Sunday to Friday, 

22:00 to 22:00 GMT). The London Stock Exchange is open Monday to Friday, 08:00 to 16:30, 

while the New York Stock Exchange is open Monday to Friday, 14:30 to 21:00 GMT. The source 

of the applied data is Bloomberg. 
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one year of IS is used to predict the one-step-ahead conditional volatility. Thus, 

the OOS period is between January 1st, 2013 and December 31st, 2017. The OOS 

period is split into five sub-periods of one calendar year and the models are 

compared separately for each year to explore the dynamics in performance over 

time. Table 5.2 presents the summary statistics for the daily logarithmic returns 

of the time series.  

[Table 5.2] 

 

The dataset has more observations for globally traded securities (exchange 

rates and commodity) than the stock indexes. The mean and median return is 

negative for EUR/USD, GBP/USD, and XAU/USD. The standard deviation is higher 

in the gold market, while exchange rates appear to have lower standard deviations 

compared to the stock indexes. All securities are leptokurtic with negative 

skewness (except for EUR/USD). The statistic for the JB test rejects the null 

hypothesis of a normal distribution. This justifies the choice of the multiple 

innovation distributions under study. Ljung and Box (1978) statistics show 

rejection of serial independence for EUR/USD and FTSE 100 at 5% confidence level. 

The unit root tests of the ADF and the Philips and Perron (1988) (P-P) find no 

evidence for non-stationarity in the return series.  

5.4.2 Performance Metrics 

In this Section, I present a set of measures to compare the candidate models. In 

volatility forecasting literature it is widely common to use a loss function and a 

benchmark to compare the volatility models (Brooks and Persand, 2003; Hansen 

and Lunde, 2005; Wei et al., 2010; Huang et al., 2013; Sermpinis et al., 2015; 

Bollerslev et al., 2016; and Wang et al., 2018). Following the literature, I define 

𝜑𝑖 as the test statistic for accuracy comparison as:  

𝜑𝑖 = −(ℒ𝑖 − ℒ0), 𝑖 = 1, … , 𝑚                        (5.21) 

where ℒ𝑖 is the calculated loss function for the candidate model 𝑖 compared to 

the one of the benchmarks, ℒ0. Finding the most appropriate loss function is a 

rather difficult task because there is no formal theory supporting such a selection 

(Lopez, 2001). I consider six loss functions constructed on the Mean Absolute Error 

(MAE), Mean Square Error (MSE), and logarithmic likelihood functions. The chosen 
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loss functions cover the ones in Hansen and Lunde (2005) and Wei et al. (2010). 

The specifications of the loss functions are presented in Table 5.3.  

[Table 5.3] 

The benchmark choice is crucial when using MHT approaches. In this 

Chapter’s case, three different benchmarks are used to track the variations in the 

number of discoveries in each test. These benchmarks are an ARCH (1) as in Eq. 

(5.3), a GARCH (1,1) as in Eq. (5.4) with Gaussian innovations and RV as conditional 

variance, and the 90th percentile (PRC 90) of the entire pool based on the IS 

performance. Therefore, I use two model-dependent benchmarks and one pool-

dependent benchmark. This choice allows the comparison between a model and 

the standard benchmarks in the literature and reveals whether there are any 

significant differences between the top-performing models. By using the proposed 

setting, I transform the loss functions into the gain functions to find the models 

on the right (positive) tail. The null hypothesis is then redefined to test whether 

a candidate is able to provide higher accuracy compared to the alternative 

benchmarks of ARCH (1), GARCH (1,1), or PRC 90. 

5.5 Results 

In this Section, I present the outcomes of the empirical analysis. To find the set 

of superior volatility models, five years of one-day-ahead predictions were 

generated. Then a test statistic was calculated for each year based on a chosen 

loss function and compared to a benchmark by the DFDR+. In the testing 

procedure, I set the FDR controlling target to 10%. I compare the models in the 

volatility pool based on their performance over each of the five study periods 

separately (2013 to 2017). The results presented in the rest of this Section are 

based on the MSE1 as the loss function. Appendices D.3 to D.8 present the same 

type of analysis for alternative choices of the loss function.  

5.5.1 Model Performance 

The first step in evaluating the pool’s performance is to depict the population 

density for accuracy of the volatility models. The aim is to examine the 
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characteristics of the distribution and identify potential points of increased 

density. This is shown in Figure 5.1 below:  

Figure 5.1: Model Performance Density 

 
Note: The figures present the density of average loss across the pool based on the MSE1 benchmark. 

The 𝑥 axis is  𝜑̃𝑖 = 1/5 ∑ (−ℒ𝑖,𝓈)5
𝓈=1  where 𝓈 stands for the OOS subperiods of one year. The 

polygonal presents the location of the benchmarks studied. The square, pentagram, and hexagram 

correspond to the ARCH (1), GARCH (1,1), and PRC 90 respectively.  

 

From Figure 5.1, I note that the population distribution is characterized by 

its wide range, sparsity and clear evidence of increased density around certain 

points. The wide range is due to a small proportion of the outlying models. The 

sparsity and increased density are due to the dependence structure in the 

volatility pool and the modest changes between similar models. The sparse 

pattern of the sample loss justifies the choice of a discrete p-value assumption 

and the DRB method used for the FDR modelling. The performance of the three 

benchmarks is highlighted. The ARCH (1) and the GARCH (1,1) loss are mostly 

either overlapping or very close. However, their positions are relatively dynamic 

with respect to the whole pool. In the currency and commodity markets, the ARCH 

(1) and GARCH (1,1) are not in the top 10 percentiles, while for the stock market 

they outperform 90% of the models in the pool. Therefore, volatility models come 

with a range of performances and compete in a close race without a clear winner. 

Appendix D.3 presents similar results for the other loss functions. The comparison 

of the loss functions shows that the sparsity pattern persists but varies remarkably 
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from one market to another. In the following sections, the MHT is used to find the 

superior models. 

5.5.2 True Discoveries 

Table 5.4 presents the number of outperforming models for different markets over 

the OOS period (2013 to 2017). In the table, the volatility models are compared 

against the ARCH (1), the GARCH (1,1), and the PRC 90 benchmarks. The values 

correspond to the size of the true discoveries set measured for each calendar year.  

[Table 5.4] 

There are several interesting findings derived from the table. Initially, the 

various specifications of the volatility models provide a significant edge in 

forecasting over the benchmarks. The PRC 90 is the most difficult benchmark to 

beat on average for all assets. The set of superior volatility models are time and 

asset dependent. For all markets, there is at least one case where no significant 

difference in the volatility pool is detected. The relative strength of the ARCH (1) 

and GARCH (1,1) models vary based on the market and the loss functions. In FX 

and commodity markets, GARCH (1,1) is a more difficult model to beat. This is 

inferred from the multiple cases where the set of discoveries is confined to the 

model with lowest p-value. In the stock markets the ARCH (1) has a higher strength 

compared to both GARCH (1,1) and the PRC 90 as the number of models beating 

the ARCH (1) is lower on average compared to the counterpart benchmarks. 

Finally, by comparing all markets it is observed that the average number of 

rejections is the least with the DJIA and greatest with the EUR/USD. Appendix D.4 

explores the same analysis for other loss functions. Among the loss functions, 

QLIKE and R2LOG give the lowest and highest average number of rejections 

respectively.   

5.5.3 Distribution 

In this Section, I investigate the role of innovations assumed for the volatility 

models. GARCH and SV models require a distribution for innovations, whereas 

EWMA and HAR models do not use it. I consider four distributions for the GARCH 

models and three (Gaussian, t, and skewed t) for the SV models. Therefore, there 
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are 372 volatility models with Gaussian, t, and skewed t distributions, 324 with 

GED, and 72 with no distribution. Table 5.5 exhibits the average proportion of the 

models from each distribution found to be significant in each test.  

[Table 5.5] 

The results show that the innovations are crucial to volatility modelling. A 

very limited number of models without a fitting distribution are able to 

outperform the benchmarks and they never end up in the top 10 percentiles of 

the pool. For the exchange rates (EUR/USD, GBP/USD, and USD/JPY) the GED 

performed the best on average. For the DJIA, the t is the leading distribution 

whereas, for the FTSE 100 and the Gold, the skewed t has the highest survival 

rate. Among the examined distributions, the skewed t forms the highest 

percentage of significant models across the markets. Inspection of alternative loss 

functions in Appendix D.5 shows that the best distribution is unchanged with the 

QLIKE loss function, but changes to the GED for the MAE functions. On the other 

hand, the R2LOG shows the best survival rates for the Gaussian distribution. A 

paired t-test for equal means based on all loss functions, study periods and 

markets, is conducted to compare the average proportions of different 

distributions to the Gaussian. The category of models without any distribution is 

the only significantly different one. 

5.5.4 Mean Estimation  

The standardized return is built on two variables: a mean and a variance 

component. Here, I explore the contribution of the mean estimation to the 

superior volatility models. I study three different specifications to estimate the 

daily return for generating standardized return series in Section 5.2. The 

specifications are a zero-mean, an unconditional mean and a time-varying 

(conditional) mean regressed on the previous day RV or ARV. The number of 

models with each specification is equal to 504. Figure 5.2 plots the average 

proportion of surviving models based on each estimation technique.  
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Figure 5.2: Survival Rate for Alternative Means Specifications Across the Markets. 

 
Note: The figure presents the average proportion of models with each mean estimation choice. The 

‘Uncond.’ and ‘Cond.’ stand for unconditional and conditional mean specifications.  The ARCH (1) 

and GARCH (1,1) models use zero mean, Gaussian distribution and RV specifications. PRC 90 

stands for the benchmark based on the 90th percentile of the entire volatility pool. The performance 

scale is MSE1.  

The results show an increase in the proportion of surviving models as the 

accuracy of the estimated location is improved. The paired t-test shows no 

difference between the average for zero-mean and unconditional mean processes, 

while the survival rate of the conditional mean is significantly different from both 

other processes. The order of the mean specifications is the same for all loss 

functions exhibited in Appendix D.6.  

5.5.5 Conditional Variance  

The second component forming the standardized return is the variance proxy. In 

Section 5.4, I focus on the role of the mean estimation, whereas in this section I 

focus on the conditional variance. I use two alternative proxies: the RV (Eq. (5.1)) 

and the ARV (Eq. (5.2)). Half of the models in the pool (756) are allocated to each 

specification. Figure 5.3 demonstrates the average success rates for models with 

RV and ARV.  
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Figure 5.3: Conditional Variance Survival Proportion Dynamics Across the Markets 

 
Note: The figure presents the average success rate of alternative variance specifications. The RV 

and ARV correspond to the realized variance and the adjusted realized variance based on five-

minute squared returns as in Eq.s (5.1 and 5.2) respectively. The ARCH (1) and GARCH (1,1) models 

use zero mean, Gaussian distribution and RV specifications. PRC 90 stands for the benchmark 

based on the 90th percentile of the entire volatility pool. The performance scale is MSE1.  

Unlike with the conditional mean, there is not a solid consensus about the 

variance specifications. The paired t-test shows significant differences between 

the two variance specifications. For the PRC 90, the RV is the dominant variance 

proxy across the markets on average for all loss functions. Additionally, the RV 

leads to a higher (or almost similar) rate of surviving models in the currency 

market for all three benchmarks. For the DJIA and Gold, the ARV performs better 

for the ARCH (1). For the UK stock market, ARV is the leading variance for both 

ARCH (1) and GARCH (1,1) benchmarks. The alternative loss functions are 

demonstrated in Appendix D.7. The patterns are generally stable and in favour of 

RV for the different loss functions except for the MAE2 where the ARV performs 

better on average across the markets. The relative difference between 

specifications is once again at a maximum with the R2LOG. 

5.5.6 Class 

In this Section, I try to find the successful classes of volatility forecasting models. 

I study fourteen classes of GARCH models, three classes of SV models, two classes 

of HAR models and one class of EWMA models (see Table 5.1 for equations and 

Appendix D.1 for the count of models in each class). Table 5.6 displays the average 

proportion of surviving models in each class based on all three benchmarks.  

[Table 5.6] 
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The results show that the best performing class of models across the 

exchange rate and commodity markets is by far the IGARCH. The gap between the 

IGARCH and second top performing class (NGARCH) is maximized to over 50% for 

GBP/USD. The SV and the SV-MA are the top two classes for both US and UK stock 

markets. The highest average across the markets belongs to the IGARCH and the 

SV. The top-class patterns are subject to the choice of loss function. The dynamics 

across loss functions are presented in Appendix D.8.  For the MAE scales, the only 

difference is that ARCH outperforms the SV for the FTSE 100. The QLIKE changes 

the top-performing class for the Gold to the FI-GARCH. The major divergence in 

patterns comes with the R2LOG where the leading class of volatility models is the 

SV with leverage (SV-L) for the currency markets and on average. The TGARCH, 

GJR-GARCH, and IGARCH are the best fitting forecasting models for the DJIA, FTSE 

100 and Gold respectively.  

Four classes of models ‒ log-GARCH, EGARCH, HAR, and log-HAR ‒ fail to beat 

the benchmarks in any markets based on the MSE1. These low-performing models 

account for the outliers in Figure 5.1. The underperforming pattern is consistent 

with most loss functions. However, with the R2LOG even the least successful 

classes manage to beat the benchmark at least for some periods. This is the only 

loss function where the leveraged models perform superior to their counterparts.  

5.6 Conclusion 

This study performs a statistical comparison of 1,512 models to find the most 

accurate ones in forecasting the OOS volatility. The study is conducted for the 

most liquid assets in financial markets: EUR/USD, GBP/USD, and USD/JPY from 

currency pairs, DJIA and FTSE 100 from stock indexes, and the Gold from the 

commodity market. A novel bootstrap MHT procedure (DFDR+) is applied to 

compare the pool of volatility models based on six loss functions. The test 

hypothesis is that all volatility models are equally accurate compared to the most 

common benchmarks in the literature.  

The results suggest that, if the models are specified correctly they are able 

to beat the ARCH (1), and GARCH (1,1) benchmarks, and 90% of their counterparts 

in one-step-ahead forecasting accuracy. I study the characteristics of the set of 

best forecasting models from 2013 to 2017. The range for the number of 
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outperforming models is from zero to several hundred based on multiple factors. 

The factors are time, market, and loss functions. The superior models are 

generally constructed with a fat-tailed distribution and a continuously updated 

estimation of the return series mean.  

Several classes of GARCH and SV models consistently outperformed the 

benchmarks with a significant lead compared to the other classes. Differential 

models like IGARCH and standard SV models exhibited the highest success. Some 

classes consistently failed to beat any benchmarks across the markets. The 

logarithmic models (log-GARCH and EGARCH) and those without a fitting 

distribution (RM and HAR) exhibit the least success. The latter is in contrary to 

the apparent success of HAR models in the volatility forecasting literature (see 

among others Corsi, 2009; Bollerslev and Quaedvlieg, 2016). However, none of the 

previous works presented any formalized hypothesis testing results for HAR family 

relative to GARCH or ARCH benchmarks. Therefore, one major finding of this 

research is that under an unbiased evaluation, HAR models fail to produce 

significant improvements over this Chapter’s benchmarks. 

The findings in this Chapter put forward the importance of the MHT 

framework in risk management tasks, such as finding the best models for financial 

forecasting and decision making. Although there is no single “sacred” model to 

predict the future under market certainty, the MHT helps to find the most 

promising models statistically proven to be better than many other traditional 

approaches. New research in this field could explore new MHT techniques with a 

higher power, alternative proxies of volatility, exploration of the optimal loss 

functions for each market, and coupling the time-related characteristics of the 

discoveries with the dynamics in the markets or the economic fundamentals.  
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6. Conclusion 

6.1 Summary 

This thesis introduces several quantitative solutions for investments through four 

empirical chapters. The first chapter introduces an expert system paradigm 

(Figure 1.1) for decision-making. The paradigm first generates a pool of predictors 

from the raw dataset. The raw dataset is determined by the underlying problem. 

The predictors can be simple technical trading rules, AR models, or even betting 

odds. In the next step, the most informative predictors are chosen from the 

potential pool of inputs by an SI method. The final step in the paradigm is 

allocating optimal weights to the selected predictors to make predictions.  

The second chapter provides the first application of the proposed paradigm 

to FX. A pool of eight thousand technical trading rules is used to generate 

profitable trading strategies. This chapter combines an FWER approach to 

hypothesis testing with four Bayesian AI methods ― NB, RVM, DMA/DMS, and BNN. 

The results show the success of the proposed system in predicting the most liquid 

currency pairs.  

The third chapter introduces an original AI method, namely CF. The CF is 

accommodated in the Figure 1.1 framework and is combined with a probabilistic 

SI component. The CF is then applied in a sport-betting application, where poor 

predictions may lead to total loss of the investment. The performance of CF is 

compared to three benchmarks: OP, RVM and ANFIS. The results in the third 

chapter show the superior performance of the CF compared to the other models 

and serve as further evidence for the success of the proposed paradigm. 

The fourth chapter develops a new tool for the Filter layer of Figure 1.1. The 

DFDR+/- approach can compare many structurally similar models at once. The new 

method is validated by Monte Carlo simulations and then applied in analysing 

twenty-one thousand technical rules. The results show that technical trading can 

be profitable if frequently updated investment strategies are used with the latest 

market developments.  
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The fifth chapter shows another possible application of the proposed MHT 

approach. The DFDR+/- approach is used to compare one thousand five hundred 

volatility-forecasting models. This chapter focuses on illustrating the properties 

of the most successful models for forecasting one-step-ahead volatility. This 

chapter’s findings show that some classes of volatility models can significantly 

outperform the benchmarks ARCH (1), GARCH (1,1), and 90% of their counterparts. 

The results from the four empirical chapters can be summarized as: 

quantitative methods are practical and productive. The proposed tools in this 

thesis, together with the unceasing development of statistical methods, and 

exponential increase in computer capacity, are an alarming combination. 

Quantitative trading does not require any finance knowledge and is still able to 

predict markets, meaning that AI may replace experienced traders. The finance 

literature needs more focus on OR to keep up with the developments in other 

fields. Academics should also be aware of differences in theory and in real-world 

practice. The industry puts a lot more weight on what can increase the 

shareholders’ profit irrespective of the theories. This thesis tries to compare 

statistical methods from an investor point of view to bridge that gap. Studies like 

this should help to keep the academic finance literature closer to developments 

in top-tier trading desks. Pursuing this path in future theses in quantitative finance 

can safeguard against divergence between academia and industry.   

6.2 Limitations 

This thesis tries to propose alternative systems for financial decision-making. The 

proposed systems rely on inference and/or learning from the developments 

observed in the datasets. This replicated experience-based knowledge offers 

major improvements in investment decisions; however, it has certain constraints 

of which two main ones are addressed here. 

The first and foremost issue with the AI models is the unseen observations. 

This corresponds to cases where the OOS is very different from the IS. In this 

situation, the predictive model either does not have any information about the 

new observations or has irrelevant information with regards to new developments 

in the OOS. For instance, consider the stock trading application in Chapter 4. Since 

no information about the global financial crisis over 2008-2009 is provided to the 
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predictive models the performance around this time is extremely volatile. Humans 

naturally have the inherent feature of instinct for such complex situations. The 

existing inference and learning paradigms are unable to replicate the instinct and 

offer accurate decisions based on that. Nevertheless, finding a solution to this 

problem could potentially lead to machines that are both more flexible and 

unbiased in cognitive behaviour.  

The second problem confining this research is computing resources. In the 

era of big data and data-science finding the best strategies based on the countless 

sources of information seems very promising. However, analysing such datasets 

can be a difficult task from a computation point of view. The Bayesian models in 

Chapter 2 (BNN, DMA, and DMS) provide excellent performance by learning from 

15 explanatory variables. However, increasing the number of inputs from 15 to 20 

slows down the computations 32 times. Another computational limit encountered 

in this research was in Chapter 4. The Bootstrapping procedure used there requires 

the generation of random orders 1000 times for matrices of 21000 rules by 500 

periods. In addition, Chapter 5 retrains 1500 volatility-forecasting models every 

day for more than 1000 days. None of these computations was feasible on a 

standard PC. To deal with the dimensionality of empirical studies, cloud- and 

parallel- computing was used. Further robustness checks and benchmark 

comparison could be explored if more computing resources were available. With 

the growth of computers, less of these problems are expected in future. 

6.3 Future Works 

The focus of this thesis was to combine AI and SI approaches to articulate decision 

systems for investment management. I tried to quantify the marginal contribution 

of the new models compared the common benchmarks within the borders of the 

proposed paradigm presented in Figure 1.1. Improvements to the discussed 

methods can be made both external and internal to the boundaries of the 

paradigm. Externally, data-science is rich in approaches toward designing 

predictive models. Thus, one area of interest is to see how different methods for 

predictive systems perform compared relative to each other in practice. 

Internally, the proposed paradigm is composed of three main components: a pool 

of alternatives, an AI model and an SI one. All these components could be 

developed further in future.  
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The academic literature is suggesting new predictive models in every 

heartbeat. As time passes, the datasets become more accessible and accurate. 

Combining the new techniques with the new datasets leads to new applications 

with larger pools of candidates. 

The future works in AI can be oriented toward using optimization techniques 

in Bayesian models to speed up the learning procedure. This allows maximizing 

the benefits of strong learning capacity of the Bayesian models while controlling 

the computational burden. Also analyzing different AI systems through an MHT 

procedure can show the true differences in the predictive ability of candidate 

models. The application for such research can be any field where pattern 

recognition is important e.g. finance, business analytics, engineering. Another 

area of interest could be modifying ML algorithms to form a conditional approach 

similar to CF. Greater performance compared to the unconditional model is 

expected since this approach can reduce the exposure of the model to the 

unmatched observations in the OOS. 

The MHT plays an integral role in three out of four essays of this thesis. It 

can provide an understanding of which subset of candidates is able to perform 

superior relative to a benchmark under an unbiased evaluation. The Monte Carlo 

simulation in Appendix C shows the major improvement from an early testing 

procedure to the most recent ones like DFDR+/-. Nevertheless, the power of the 

MHT procedures yet needs to be improved. For instance, the DFDR+/- is able to 

find only half of the true discoveries when performances are close among the 

candidates (see Table C.2). Consequently, the unnecessary conservativeness of 

the MHT procedures is still an issue has to be resolved in future. 
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Appendices 

Appendix A 

A.1 Technical Trading Rules 

Technical trading strategies involve using quotes for open, high, low and close 

prices along with the trading volumes of every ticker under study. Their purpose 

is to recognize patterns or trends in the price charts. I consider five classes of 

technical indicators. The studied classes are FIR, MA, S&R, CB, and OBV. Short 

descriptions of these rules are presented in the following subsections. 

A.1.1 FIR 

The filter strategy is based on making a financial decision to undertake a long or 

short position when the security price moves a certain amount e.g. 𝑥 percent 

upward or downward. A buy order is placed when the 𝑥 percentage upward 

movement is seen in the market and this position is held until the price falls 𝑥 

percent where the position is first neutralized. Then a short position is opened 

and kept until a subsequent upward movement is seen. Movements that are 

smaller than the filter level in either direction are discarded as noise. 

Tuning the FIRs is at the analyst’s discretion. The definition of 

upward/downward movement, the holding process and liquidating/closing the 

position can be subjective. Upward (downward) movements are recognized as an 

uptrend when the price exceeds the last high (low) by 𝑥 percent. The last high 

(low) can be defined either as the highest (lowest) close price observed in a long 

(short) position; or the maximum (minimum) close price over the last 𝑑 days. The 

position holding can also be modified. Another case is considered in which the 

position is opened by the FIR and held for ℎ days where signals over this period 

are ignored. The strategy may also include a neutral position where positions are 

closed in case of 𝑦 percent backward movement compared to extrema level. The 

filter level for liquidating the position must be less than the filter level for opening 

a position.  

Consider the following sets of possible 𝑥, 𝑦: 
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𝑥 ∈  {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 40, 50} 𝑖𝑛 % 

𝑦 ∈ {0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 7.5, 10, 15, 20} 𝑖𝑛 %,  

(#𝑥 = 24, #𝑦 = 12)  

Then, the number of 𝑥 − 𝑦 combinations, given that 𝑦 < 𝑥, are #(𝑥 − 𝑦) = 185. 

For these combinations, I experiment with the following 𝑑, ℎ:   

𝑑 ∈ {1, 2, 3, 4, 5, 10, 15, 20}, (#𝑑 = 8) 

ℎ ∈ {5, 10, 25, 50}, (#ℎ = 4) 

Based on the above, in this application I examine a total of 497 filter rules 

as calculated below: 

#𝐹 = #𝑥 + #𝑥 × #𝑑 + #𝑥 × #ℎ + #(𝑥 − 𝑦) = 24 + 192 + 96 + 185 = 49     (A.1)  

A.1.2 MA 

In technical trading MAs play an integral role. Trends are not considered robust 

until they are reflected in MAs. When a change in price is also visible in the MAs, 

it means that the news or change source is important enough to last over a period 

of time and can be taken into account. Uptrends start to form when a fast MA 

exceeds the slow MA. The fast MA can simply be the price quote or a short-term 

average. The long positions are kept so long as the price remains above the MA 

benchmark. When the price falls below the MA, the downtrend is initiated. At this 

point the previous position is liquidated and a sell position is opened. The new 

position remains open until another upward penetration is observed. MA crossover-

based strategies may appear from a wide variation. In second chapter, simple 

forms of MA crossover along with some filter and delays are taken into account. A 

common application of MA is having a fast and slow MA and looking for their 

crossovers signalling/which signal up and downtrends. 

A buy signal can be generated when the fast MA goes beyond the slow MA.  

The fast and slow MAs come with parameters 𝑛 and 𝑚 respectively showing the 

number of days taken into consideration (𝑛 < 𝑚). Similarly, a sell signal is created 
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when the fast MA drops below the slow MA, which suggests the formation of a 

downtrend. The fast and slow MA strategy can be accompanied by a band (𝑏) filter 

to avoid the noise in trend detection. Trends are deemed solid only if the fast MA 

can exceed the slow MA by 𝑏 percent. Alternatively, the time lag 𝑙 is considered 

between opening a position and taking any action. During the lag period, all signals 

are ignored. Another innovation is holding each position for a fixed period of  ℎ 

days no matter what the signals are after the opening of the positions. In second 

chapter’s application, I consider innovations separately and impose only one filter 

at a time. 

I consider the following sets of possible 𝑛, 𝑚: 

𝑛 ∈ {2, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, 200, 250}, (#𝑛 = 15) 

𝑚 ∈ {2, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, 200}, (#𝑚 = 14)  

Then, the number of 𝑛 − 𝑚 combinations, given are 𝑚 < 𝑛 are #(𝑛 − 𝑚) =

105. 

For these combinations, I experiment with the following 𝑏, 𝑙, ℎ:   

𝑏 ∈ {0.1, 0.5, 1, 1.5, 2, 3, 4, 5} 𝑖𝑛 %, (#𝑏 = 8) 

𝑙 ∈ {2, 3, 4, 5}, (#𝑙 = 4) 

ℎ ∈ {5, 10, 25, 50}, (#ℎ = 4) 

The band filter is set at 1% . A 10-day holding period is applied to all 

combinations of MA crossovers. For the fast  and slow MA I set respectively 𝑛 =

1, 2, 5  and 𝑚 = 50, 150, 200. I also include 9 cases of double-filters. Based on the 

above, in this application I examine in total 2049 MA rules as calculated below: 

#𝑀𝐴 = #𝑛 + #(𝑛 − 𝑚) + #𝑏 × (#𝑛 + #(𝑛 − 𝑚)) + #𝑙 × (#𝑛 + #(𝑛 − 𝑚)) + #ℎ ×

(#𝑛 + #(𝑛 − 𝑚)) + 9 = 15 + 105 + 960 + 480 + 480 + 9 = 2049       (A.2) 
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A.1.3 S&R  

The S&R trading rules are based on the premise that the price should remain in a 

trading range capped by a resistance and floored by a support level. Breaching 

these levels suggests that a stock or an exchange rate would move in the same 

direction. The S&R rules are constructed similarly to the FIRs. The only difference 

is that trading signals are generated when the rate under study breaks the support 

or resistance barriers by a certain percentage. The S&R levels can be defined as 

the intra-day low and intra-day high quotes over the past 𝑛 days. Another variation 

in the definition of the S&R is to calculate the support and resistance level based 

on the minimum and maximum closing prices over the past 𝑒 days. Alternative 

S&Rs are set by using a fixed band filter for noise removal: the holding period ℎ, 

the 𝑙-day lag before making any decisions, a combination of a fixed holding period 

on a position, and a delay in decision making before undergoing any new positions.  

Based on the above, I consider the following possible sets: 

𝑛 ∈ {5, 10, 15, 20, 25, 50, 100, 150, 200, 250}, (#𝑛 = 10) 

𝑒 ∈ {2, 3, 4, 5, 10, 20, 25, 50, 100, 200}, (#𝑒 = 10) 

𝑏 ∈ {0.1, 0.5, 1, 1.5, 2, 3, 4, 5} 𝑖𝑛 %, ( #𝑏 = 8) 

𝑙 ∈ {2, 3, 4, 5}, (#𝑙 = 4) 

ℎ ∈ {5, 10, 25, 50}, (#ℎ = 4) 

In accordance with these sets, I examine a total of 1220 S&R rules as 

calculated below:  

#𝑆&𝑅 = [(#𝑛 + #𝑒) × (1 + #ℎ)] + [(#𝑛 + #𝑒) × (1 + #ℎ) × #𝑏] + [(#𝑛 + #𝑒) × #ℎ ×

#𝑙] = 100 + 800 + 320 = 1220           (A.3) 

A.1.4 CB 

Based on the principles of S&R, practitioners can detect time-varying support and 

resistance levels that drift together within a certain range. This creates the so-
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called trading channel. Once a trading channel is formed, then a CB rule can be 

applied. The premise behind the CB rule is that once the trading channel is 

breached, there will be a substantial trend towards the same direction. A channel 

is formed when the highest observed price remains within a 𝑐%  range above the 

lowest price over the past 𝑛 days. The trend is considered significant, when the 

price breaks one of the channel borders, which generates a buy (sell) order after 

an upward (downward) breakout. As in the previous categories discussed in 

Sections A.1.1 to A.1.3, I also consider CB alternatives with a fixed filter band 𝑏 

and holding period ℎ.    

Here I look at the following possible sets: 

𝑛 ∈ {5, 10, 15, 20, 25, 50, 100, 150, 200, 250}, (#𝑛 = 10) 

𝑐 ∈ {0.5, 1, 2, 3, 5, 7.5, 10, 15} 𝑖𝑛 %, (#𝑐 = 8) 

𝑏 ∈ {0.1, 0.5, 1, 1.5, 2, 3, 4, 5} 𝑖𝑛 %, (#𝑏 = 8) 

ℎ ∈ {5, 10, 25, 50}, (#ℎ = 4) 

Given 𝑏 < 𝑐 , the number of 𝑐 − 𝑏 combinations are #(𝑐 − 𝑏) = 43. 

In this application I examine in total 2040 CB rules:  

#𝐶𝐵 = #𝑛 × #𝑐 × #ℎ + #𝑛 × #(𝑐 − 𝑏) × #ℎ = 320 + 1720 = 2040      (A.4) 

 

A.1.5 OBV 

In the technical trading context, prices and trading volumes are expected to move 

together. Trading volumes confirm the potential significance of price moves. In 

case of major economic events or important news, increased trading volumes 

reflect decisions in favour of or against the price change. Therefore, monitoring 

the volumes and their changes can be a useful source of information for the 

practitioner. The OBV line is simply a running total of positive and negative 

volumes. In other words, if the closing price is above (below) the prior close price, 

then the current OBV is the sum (difference) of the previous OBV and the current 



Appendices   111 

volume. When the volume is not increasing during bullish days, it is a sign that 

buying pressure is weakening and the upward trend is probably not sustainable. 

OBVs are usually used with MAs to generate trading signals. In this scenario, the 

average OBV is calculated and then combined with slow and fast MAs. In second 

chapter’s application, I use the MAs as in Section A.1.2, excluding the 9 double-

filter cases. Based on these, I examine a total of 2040 OBV rules as calculated 

below: 

#𝑂𝐵𝑉 = #𝑛 + #(𝑛 − 𝑚) + #𝑏 × (#𝑛 + #(𝑛 − 𝑚)) + #𝑙 × (#𝑛 + #(𝑛 − 𝑚)) + #ℎ ×

(#𝑛 + #(𝑛 − 𝑚)) = 15 + 105 + 960 + 480 + 480 = 2040        (A.5) 

A.1.6 Trading Universe 

The Trading Universe (𝑇𝑈) consists of the total number of trading rules 

reported in the previous subsections: 

#𝑇𝑈 = #𝐹 + #𝑀𝐴 + #𝑆&𝑅 + #𝐶𝐵 + #𝑂𝐵𝑉 = 497 + 2049 + 1220 + 2040 + 2040 =

7846               (A.6) 

 

A.2 Sharpe Ratio 

Tables A.1 to A.3 present the trading performance of all combinations in terms of 

annualized Sharpe ratio after transaction costs. 

[Tables A.1 to A.3] 
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Appendix B 

B.1 CF Illustration Example 

In this Appendix, I present a detail CF example for the Premiership, the first 

forecasting exercise and the game result as a target. The IS is the seasons 2006 to 

2007, 2007 to 2008 and 2008 to 2009 and the OOS is the season 2009 to 2010. 

As mentioned above, the first step is to collect the generated RVs when 

feeding all the inputs of Table 3.1 into RVM. For the specific case, a set of 12 RVs 

are selected and based on these, the RVM generates a series of IS forecasts. The 

RV set is presented below in Table B.1.  

[Table B.1] 

Based on these forecasts, a set of FRs is derived. In this exercise, 13 rules 

are generated which cover the whole IS. The rules have the form:  

If (BbAv>2.5 is cluster 𝐴𝑖,1) and (BbAHh is cluster 𝐴𝑖,2) and (BbAvAHH is 

cluster 𝐴𝑖,3) and (BbAvAHA is cluster 𝐴𝑖,4) and (PtH3H is cluster 𝐴𝑖,5) and 

(PtA3A is cluster 𝐴𝑖,6) and (StH1 is cluster 𝐴𝑖,7) and (StA1 is cluster 𝐴𝑖,8) and 

(CkH3 is cluster 𝐴𝑖,9) and (CkH2 is cluster 𝐴𝑖,10) and (CkH1H is cluster 𝐴𝑖,11) 

and (CkA2A is cluster 𝐴𝑖,12), then the output is the result of regression 𝛿. 

where 𝐴𝑖,𝑘  is the cluster specified for input element 𝑘 of the 𝑖-th rule. The FRs 

are specified by the premise and consequent parameters. The premise parameters 

determine the clusters specification: the centres (𝑐𝑖) and the standard deviations 

(𝜎𝑖)  for each rule. These are presented in Table B.2. 

[Table B.2] 

The output of each rule is associated with a regression 𝛿 specified with 

consequent parameters. The parameters of these regressions for each rule are 

presented in Table B.3. 

[Table B.3] 
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From the table, it is easy to extract the regression specification for the first 

rule 𝛿1
∗ : 

𝛿1
∗ = −2.706 + 1.042𝑥1,1

∗ − 0.755𝑥1,2
∗ + 1.0721𝑥1,3

∗ + 0.484𝑥1,4
∗ − 0.041𝑥1,5

∗ +

0.207𝑥1,6
∗ − 0.138𝑥1,7

∗ − 0.088𝑥1,8
∗ − 0.197𝑥1,9

∗ − 0.016𝑥1,10
∗ + 0.152𝑥1,11

∗ + 0.074𝑥1,12
∗   

                (B.1) 

where 𝑥∗ = [𝑥1
∗, … , 𝑥12

∗ ] is the vector of observed values for 𝐾 = 12 relevance 

vectors. 

The next step is to evaluate the strength of the generated rules. To 

determine the CF threshold, the algorithm of Section 3.2.2.2 is followed. Firstly, 

all rules are evaluated based on the Gaussian membership function. For each of 

these rules, the average firing strength (𝓌1/12 ) is estimated. The FRs are sorted 

based on the average firing strength over the IS in a descending order (the sorted 

list). The 90th percentile of the sorted list determines the endogenous threshold. 

In this case, the rule number one is the 90th percentile of the sorted list (𝜆 = 1). 

Thus, the endogenous threshold level is set to 𝓌1
1/12 = 0.85. Figure B.1 presents 

the average firing strength of all 13 rules.  

Figure B.1: Average Firing Strength for the  𝔀𝟏/𝟏𝟐 

 
Note: The figure presents the average firing strength for each one of the 13 generated 

rules based on the 12 selected RVs. 

As the general threshold level (0.90) is greater than the endogenous one 

(0.85), the effective threshold (Θ) is set to 0.90. Given the specifications of the 
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FRs and the effective threshold, the performance of the CF model can now be 

evaluated. At each test point, average membership grade for each rule is 

calculated by plugging the premise parameters of Table B.1. Comparison of the 

membership grade with the Θ in the evaluation function of Eq. (3.3) determines 

the signal. Based on Eq. (B.1), the evaluation function becomes: 

𝐶𝑖
∗ = { 1, 𝓌𝑖

∗́ 1/12
≥  0.9

0,         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                                                      (B.2) 

If the geometric mean of the membership grades of all the inputs (12 

elements) is greater than 0.9, the rule is considered strong and qualifies for 

decision-making and a decision is made based on the CF model. The weighted 

average of the regressions for the qualified rules determines the CF output (Eq. 

(3.8)). Based on the Eq. (3.8), I have: 

𝑂∗́ =
∑ 𝓌́𝑖𝐶𝑖

∗𝑓𝑖
13
𝑖=1

∑ 𝓌́𝑖
13
𝑖=1 𝐶𝑖

∗                                                         (B.3) 

In the game result forecasting, the match outcome (𝑂∗́ ) is a weighted 

average of the regressions specified for each rule (see Table B.2). The weight for 

each rule’s regression is normalized amount of 𝓌́𝑖𝐶𝑖
∗ as of Eq. (3.12). Finally, for 

betting purposes the estimated value must be interpreted and classified (𝑂́𝑎𝑑𝑗
∗ ) 

under three labels of “win (+1)”, “draw (0)” or “lose (-1)”. The regression outputs 

are classified according to the following transfer function: 

𝑂́𝑎𝑑𝑗
∗ = {

1,                                0.5 < 𝑂∗́ < ∞

0,                         − 0.5 < 𝑂∗́ ≤ 0.5 

−1,                        − ∞ <  𝑂∗́ ≤  −0.5 

                                                         (B.4) 

B.2 IS Performance 

The IS accuracy ratios of RVM are presented in Table B.4.  

[Table B.4] 
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B.3 CF Games  

In Table B.5 I present the number of games that the CF has generate a forecast 

for the relevant exercises.  

[Table B.5] 

B.4 ANFIS 

ANFIS has been applied successfully in many different aspects of science (Chang 

and Chang, 2006; Polat and Güneş, 2007; Mathur et al., 2016). ANFIS consists of 

five layers (see Figure 3.1). Each layer is involved in a specific task of fuzzy 

modelling through adaptive nodes, pertaining parameters and a processing 

function, which is updated by a hybrid learning algorithm. In the figure, the 

adaptive nodes are presented by squares whereas a circle indicates a fixed node. 

The outcome for each node 𝑘 in layer 𝑗 is denoted by 𝑂𝑘
𝑗
. 

The first layer of ANFIS is made of adaptive nodes where the distance of each 

input to each rule is estimated through a membership function and reported as 

membership grade. The membership function as proposed by Jang (1993) for input 

𝑥 and fuzzy set 𝐴 for rule 𝑖 is denoted by 𝜇𝐴𝑖
(𝑥): 

𝜇𝐴𝑖
(𝑥) = exp {− (

𝑥−𝑐𝑖

𝑎𝑖
)

2

}                    (B.5) 

where 𝑎𝑖 and 𝑐𝑖 are called premise parameters. The most popular membership 

function is the Gaussian, and this is followed in this study.  

The outcome for each node at layer one can be presented as: 

𝑂𝑘
1 = 𝜇𝐴𝑖

(𝑥), 𝑘 = 1, 2;  𝑖 = 1,2           (B.6) 

𝑂𝑘
1 = 𝜇𝐵𝑖

(𝑦), 𝑘 = 3, 4;  𝑖 = 1,2           (B.7) 

In the second layer (nodes Π), a weight (firing strength) is allocated to each 

node that represents the power of the associated rule. Therefore, the number of 

nodes is equal to the number of rules. The weight of rule 𝑖 is the product of the 
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membership grade of the fuzzy set A and the membership grade of the fuzzy set 

B.  

𝑂𝑘
2 = 𝑤𝑖 =  𝜇𝐴𝑖

(𝑥)  × 𝜇𝐵𝑖
(𝑦), 𝑘 = 𝑖 = 1, 2          (B.8) 

where  𝑤𝑖 is the firing strength of rule 𝑖.  

The third layer (nodes N) also involves fixed type nodes with normalising 

functionality for the firing strength estimated for each fuzzy rule. Thus: 

𝑂𝑘
3 = 𝑤̅𝑖 =

𝑤𝑖

∑ 𝑤𝑖
, 𝑘 = 𝑖 = 1, 2           (B.9) 

The next layer has adaptive nodes. Each node is fed with the inputs and its 

output is estimated as: 

𝑂𝑘
4 = 𝑤̅𝑖𝑓𝑖(𝑥, 𝑦) = 𝑤̅𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖), 𝑘 = 𝑖 = 1, 2      (B.10) 

where 𝑤̅𝑖 is the normalized firing strength for each rule. The parameters set {𝑝𝑖,

𝑞𝑖, 𝑟𝑖} are called consequent parameters. 

The last layer simply aggregates all its inputs. The result is simply the 

defuzzified ANFIS model realisations: 

𝑂1
5 = ∑ 𝑤̅𝑖𝑓𝑖

2
𝑖=1 =

∑ 𝑤𝑖𝑓𝑖
2
𝑖=1

∑ 𝑤𝑖
2
𝑖=1

          (B.11) 

A hybrid learning algorithm is required to estimate the premise and 

consequent parameters. The training algorithm of ANFIS is consisted by two 

stages, a forward and a backwards. In the forward stage, the premise parameters 

are fixed and the consequent parameters are estimated by the least square 

method. In the backwards one, the consequent parameters are kept fixed and the 

errors are backpropagated. Then, the premise parameters are optimised through 

the gradient descent method (Shapiro, 2002).  
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B.5 OP 

Consider the case of having 𝒜 potential outcomes for dependent ordinal 

variable 𝓎 under study by a set of independent variables 𝔁. Under a linear 

assumption, I want to specify the regression model: 

𝓎𝒿
∗ = 𝓍𝒿′𝜷 + 𝜀𝒿           (B.12) 

where for the observation 𝒿 = 1, … , 𝒯 a latent continuous variable 𝓎𝒿
∗ is 

estimated by a set of coefficients 𝜷 and noise term 𝜀𝒿. If I assume that 𝜀𝒿 follows 

a logistic distribution, the model becomes LR type whereas selecting a standard 

normal distribution derives the OP model. For outcome 𝒶 = 1, … , 𝒜 the connection 

between the latent variable 𝓎𝒿
∗ and the observed ordinal variable 𝓎𝒿 can be 

presented as: 

𝓎𝒿 = 𝒶 ⟺  𝜗𝒶−1 < 𝑦𝒿
∗ ≤ 𝜗𝒶          (B.13) 

where 𝜗𝒶s are the threshold parameters estimated by training dataset. Let me set 

the lower bound 𝜗0 as −∞, the upper bound 𝜗𝒜 as +∞ and the order as 𝜗0 < ⋯ <

𝜗𝒜. 

In LR one is interested in interpreting the change in the independent 

variables into the probability of a certain outcome. The conditional probability of 

ordinal outcome 𝒶  is given by: 

𝑃𝑟(𝓎𝒿 = 𝒶 ) = 𝑃𝑟(𝜗𝒶 −1 < 𝑦𝒿
∗ ≤ 𝜗𝒶 ) = 𝑃𝑟(𝜗𝒶 −1 < 𝑥𝒿′𝜷 + 𝜀𝒿 ≤ 𝜗𝒶 )             (B.14) 

By rearranging I have: 

𝑃𝑟(𝓎𝒿 = 𝒶) = 𝑃𝑟(𝜗𝒶 −1 −  𝓍𝒿
′𝜷 < 𝜀𝒿 ≤ 𝜗𝒶 −  𝓍𝒿

′𝜷) 

= 𝑃𝑟(𝜀𝒿 ≤ 𝜗𝒶 −  𝓍𝒿
′𝜷) − 𝑃𝑟(𝜀𝒿 ≤ 𝜗𝒶 −1 −  𝓍𝒿

′𝜷)      (B.15) 

By letting 𝜀𝒿~𝒩(0,1) I obtain: 

𝑃𝑟(𝓎𝒿 = 𝒶) = Ζ (𝜗𝒶 −  𝓍𝒿
′𝜷) − Z (𝜗𝒶 −1 −  𝓍𝒿

′𝜷)       (B.16) 
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where Z is the standard normal distribution function. The parameters are 

estimated through a maximum likelihood procedure by a likelihood function ℒ as: 

ℒ(𝜗, 𝜷) = ∏ ∏ [Z(𝜗𝒶 −  𝓍𝒿
′𝜷) − Z(𝜗𝒶 −1 −  𝓍𝒿

′𝜷)]
𝓏𝒿,𝒶𝒜

𝒶=1
𝒯
𝒿=1      (B.17) 

where 𝓏𝒿,𝒶 is an indicator variable equals to one when the ordinal outcome 𝒶 for 

the sample 𝒿 is observed (𝓎𝒿 = 𝒶) or zero otherwise. The maximum likelihood 

estimates are given then by: 

𝜕 ln ℒ

𝜕𝜗
= 0 and  

𝜕 ln ℒ

𝜕𝜷
= 0.          (B.18) 

The estimated conditional probability for each outcome (𝜋̂𝒿,𝒶) is given by 

plugging in the optimal parameters (𝜗∗ and 𝜷∗) from Eq. (B.18).  

𝜋̂𝒿,𝒶 = Z(𝜗𝒶
∗ −  𝓍𝒿

′𝜷∗) − Z(𝜗𝒶−1 −  𝓍𝒿
′𝜷∗)        (B.19) 

Finally, for each observation 𝒿, predicted outcome is the one with maximum 

𝜋̂𝒿,𝒶 as:  

𝓎̂𝒿 = arg max  (𝜋𝒿,𝒶).
𝒶

           (B.20) 

 

 

 

 

 

 

  



Appendices   119 

Appendix C 

C.1 Monte Carlo simulations 

In this Appendix, I present supporting evidence of the finite sample performance 

of the DFDR+/- test using a Monte Carlo experiment. The main goal is the 

exploration of the empirical level and power of the test in accurately estimating 

the proportions of outperforming, underperforming and neutral trading rules. 

Even though I am mainly focused on the FDR rate and its power on the rejection 

frequency of rules with significant returns (either positive or negative), I also 

compare it with the power of the FWER rate and especially with the RW method. 

Before setting up the simulations it is necessary to ensure that my 

experiment correctly embodies the empirical properties of the technical trading 

strategies employed, such as their time series and cross-sectional dependencies 

(see also Barras et al., 2010; Hsu et al., 2010; Bajgrowicz and Scaillet, 2012). I 

have previously demonstrated that the technical trading rules are fully 

characterized by a weak form of dependence, this holds especially for those 

belonging in the same family (e.g. MAs). This is the main property I need to take 

that into consideration when constructing my experiment. By this way, I can also 

examine whether the DFDR+/- has indeed a good response to weak dependence 

conditions. Towards this direction and I resample simultaneously matrices of  𝒷 ×

𝑙 returns, where 𝒷 the random block size of is consecutive time series observations 

(𝒷 = 10) under the stationary bootstrap and  𝑙 = 21,195 denotes the trading rules 

universe as in the empirical exercise. This approach also allows me to preserve 

the cross-sectional dependencies among the strategies of the same class, while I 

preserve also autocorrelation every time the same bootstrap replication is applied 

to all trading rules. For the Monte Carlo experiment, I randomly select the original 

155-day sample (i.e. seven months) from 1 July 2013 to 1 February 2014 to 

simulate the trajectories and I generate the 155-day trajectories for the 𝑙 =

21,195 trading rules as in the empirical exercise. I employ the stationary bootstrap 

to create every realized trajectory similar to calculating the p-values of the 

empirical study. I generate 1,000 bootstrap replications of returns, where each 

replication has similar statistical properties.  
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In order to obtain the true power of DFDR+/- test in selecting the proportions 

of outperforming, underperforming and neutral rules I need to control these 

proportions beforehand, likewise observing them a priori. I can then compare 

them with their corresponding estimations based on the DFDR+/-. I adjust 20% of 

the simulated strategies to outperform the benchmark, 50% to deliver “neutral” 

returns with no significant performance and 30% to underperform the benchmark 

during the simulation process. The selected outperforming (underperforming) 

strategies consist only of neighbouring rules, ranked in terms of highest (lowest) 

returns in the sample to avoid ending up with a group of similar outperforming or 

underperforming having slightly different parameters. 

In of terms of the specific procedure followed, I achieve the control of 

outperforming, “neutral” and underperforming rules by recentering the generated 

returns of each trading rule with its own mean and I utilize that across all five 

families of rules. This leads to all trajectories having almost zero-mean properties 

but retaining their corresponding, unique standard deviations. I then shift the 

paths of the outperforming and underperforming rules by some positive and 

negative value respectively, while keeping each rule’s corresponding standard 

deviation the same. Such a parallel transition does not affect empirical properties 

of the paths, other than the mean (see Paparoditis and Politis, 2003). The notion 

is to carry the trajectories of different strategies in such a way as to exactly 

acquire the same, positive Sharpe ratio for all outperforming rules and the same 

negative Sharpe ratio for all underperforming rules. I specify both chosen positive 

and negative Sharpe ratios in advance43.  

As about the target Sharpe ratios employed for shifting the paths of 

outperforming and underperforming strategies, I follow the study of Bajgrowicz 

and Scaillet (2012) and select Sharpe ratios closely related to the ones obtained 

in this Chapter’s empirical exercise. I set three specific targets of positive Sharpe 

ratios for the outperforming rules, i.e., 2, 3, 4; and three specific targets of 

negative Sharpe ratios for the underperforming rules, i.e., -2, -3, -4. All of them 

correspond to annualized Sharpe ratios as those calculated from the daily returns 

                                                           

43 I multiply the corresponding standard deviation of each rule by the pre-specified Sharpe ratio and 

I add up the calculated value to each data point so that the mean for the rule becomes Sharpe 

ratio times sigma. 
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of each strategy. I then consider pairs of the Sharpe ratios above in order to adjust 

the outperforming and underperforming rules, while shifting their trajectories 

towards the target. Take the (2, -2) pair, for example, I design 20% of the rules to 

yield an equal Sharpe ratio of 2 (i.e., outperforming) and likewise, all 30% of the 

rules share an equal Sharpe ratio of -2 (i.e., underperforming). The rest 50% of 

this Chapter’s trading universe show zero performance. This results in nine 

possible combinations of positive and negative Sharpe ratio pairs representing 

fixed alternative hypotheses against the null of a Sharpe ratio being equal to zero. 

The above levels seem to match 4th Chapter’s historical sample results since I 

obtain positive annualized Sharpe ratios up to 4 for the best-performing strategies 

and negative annualized Sharpe ratios down to -4 for the worst-performing ones. 

However, the outperformance versus underperformance pair of 

(2, -2) still portrays a quite challenging setup for my portfolio construction 

method. 

I present the results of this Chapter’s Monte Carlo experiments in Tables C.1 

to C.3 below. Table C.1 displays the annualized mean excess return quartiles for 

the controlled outperforming and underperforming technical trading rules based 

on the 1,000 Monte Carlo replications for the nine combinations of Sharpe ratios 

examined. 

[Table C.1] 

In general, the annualized mean returns I obtain seem quite analogous to their 

corresponding Sharpe ratio levels, either positive or negative.  

Focusing on the estimation power of DFDR+/- approach, Table C.2 presents 

the estimates for the proportions of outperforming (𝜋𝐴
+̂), underperforming (𝜋𝐴

−̂) 

and neutral (𝜋0̂) strategies under the Sharpe ratio metric and for the nine possible 

Sharpe ratio pairs. It also reports the success of the estimators in tracking the 

actual proportions of outperforming (𝜋𝐴
+ = 20%), underperforming (𝜋𝐴

− = 30%), 

and neutral (𝜋0 = 50%) trading rules. I employ the “point estimates method” of 

Storey et al, (2004) to obtain the estimators of these proportions based on the 

Monte Carlo results. Based on a series of Monet Carlo experiments using the 

DFDR+/- test in this Chapter’s technical trading rules universe, this time I keep the 
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cut-off threshold fixed to 𝛾∗ = 0.4, as at this point 𝜋𝐴
+̂ and 𝜋𝐴

−̂  become constant. 

In other words, they include both genuine and false selections of trading rules and 

so represent the total number of outperforming and underperforming rules 

respectively. 

[Table C.2] 

The DFDR+/- approach seems to provide quite robust estimators for the 

outperforming, underperforming and neutral proportions of technical trading 

rules, with only small deviations from their true corresponding ones. For instance, 

looking the (3, -3) Sharpe ratios pair, the estimator for the outperforming rules 

(i.e., 𝜋𝐴
+̂), is 15.23%, the relevant estimator for underperforming rules (i.e., 𝜋𝐴

−̂) 

is 27.68% and the one for neutral rules (i.e., 𝜋0̂) is 57.09%, which are quite close 

to their true levels of 20%, 30% and 50% respectively. This clearly highlights the 

power of this Chapter’s method in accurately identifying the true proportions of 

outperforming, underperforming and neutral rules in the entire population. 

Finally, I present in Table C.3 the performance of constructed portfolios of 

outperforming rules under the DFDR+ approach based on the Monte Carlo 

simulation and for each of the nine Sharpe ratio combinations. I control the DFDR+ 

at a prespecified level similar to this Chapter’s empirical exercise. For instance, I 

build two different types of DFDR+ portfolios by setting the targets of erroneous 

selections at 10% and 20% respectively. In terms of performance and power, the 

table reports the actual FDR achieved (FDR+) in comparison with its fixed level 

adjusted in advance (i.e., 10% and 20%), the proportions of genuinely best-

performing rules over the total number of outperforming rules denoted as 

“power”, and the absolute number of genuinely best-performing trading rules as 

“portfolio size”44. As mentioned before and for comparison purposes against an 

FWER method, I also run the same experiment and findings using the RW test, 

while controlling the FWER at the 5% and 20% level respectively. 

                                                           

44 I compute the actual FDR for the positive tail (FDR+) by replacing the actual proportion of neutral 

trading rules (i.e., 𝜋0 = 50%) instead of the estimated one (i.e., 𝜋0̂) in 𝐹𝐷𝑅+ =
𝜋0×𝑙×𝛾/2

#{𝑝𝑘≤𝛾,   𝜑𝑘>0;𝑘=1,…,𝑙}
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[Table C.3] 

 The findings of Table C.3 reveal that the DFDR+ approach is superior in terms 

of finite sample power than the more conservative FWER approaches such as the 

RW approach. Specifically, the DFDR+ reports a robust power in rules selection and 

portfolio size, while it closely tracks the actual false discovery rate across all 

conditions and Sharpe ratio pairs. For example, consider again the (3, -3) Sharpe 

ratios pair, the 10%-DFDR+ portfolio efficiently converges to its FDR rate at 8% and 

successfully discovers on average 64.74% of the best-performing rules. On the 

other hand, the relevant 5%-RW portfolio discovers only 0.01% of the best-

performing rules on average, while it meets its target rate only at 0.04%. When it 

comes to portfolios’ sizes the 10%-DFDR+ outstandingly outperforms the 5%-RW 

approach by sufficiently selecting 3,048 rules, while the FWER method detects 

only 0.6. Increasing the target rate of the FWER to 20% doesn’t improve this 

picture since it slightly improves the power of selection to 0.07% and the portfolio 

size to 3.47 rules. The 20%-DFDR+ though performs even better by detecting on 

average 66.3% of the outperforming rules and forms a portfolio of 3,321 trading 

rules. In terms of target rate, the 20%-DFDR+ portfolio falls below 20% and achieves 

an FDR+ of 10.59%. Asymptotic theory is the most possible reason for this outcome, 

but the 20%-DFDR+ portfolio is still able to successfully deal with data snooping 

bias as seen above. In overall, this Chapter’s Monte Carlo experiments 

undoubtedly reveal that the DFDR+/- method has a greater power over conservative 

FWER methods, such as the RW procedure, especially in a big-data framework, 

while they highlight the main drawback of the FWER methods, such as the RW 

approach, which terminate as soon as a false rejection is discovered, even in cases 

I allow for a bigger target rate (i.e. 20%). 

C.2 Robustness Exercise 

The exercises in Sections 4.4 and 4.5 are repeated by setting the IS period 

to 1 year and the OOS to 3, 6 and 9 months, respectively. Figure C.1 and Tables 

C.4 and C.5 address the IS studies while Tables C.6 to C.8 report corresponding 

results for the OOS.  

Tables C.4 and C.5 present the same analysis as in Section 4.4.1 for the IS of 

one year. Table C.4 presents the percentage and standard deviations of the 
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survivor rules identified by the 10%-DFDR+ approach, analogous to Table 4.2. 

Likewise, Table C.5 displays the annualized returns and Sharpe ratios of significant 

rules after one-way transaction costs, analogous to Table 4.3.  

[Tables C.4 and C.5] 

Comparing the corresponding Tables 4.2 and 4.3 to Tables C.4 and C.5, I 

conclude that using one year as this Chapter’s backtesting period the performance 

of trading rules its quite better in terms both of excess mean return and Sharpe 

ratio criteria. This can be expected since the bigger the sample period the more 

exposed are the technical trading rules to fluctuations and market risks in general, 

leading to lower performance most of the times. Realizing higher IS returns in 

smaller sample horizons is a common phenomenon not only for the relevant 

literature but also for the trading desks. 

As a robustness check for Section 4.4.2, Figure C.1 presents the break-even 

transaction cost for an IS period of one year, analogous to Figure 4.1. The average 

break-even cost for the two-year and one-year cases are 9% and 8% respectively. 

The highest performance in Figure C.1 belongs to Russia with 65% in 2009. This is 

comparable to the two-year case where the best performance ‒ 51% ‒ is reported 

in 2009 by Japan. The lowest performance in Figures 4.1 and C.1 is almost the 

same and equal to 1%. Thus, comparison of the results from the two figures show 

that the average level of break-even cost is higher for the two-year IS, but the 

performance range is wider for the one-year case. The robustness check for the 

transaction cost shows that longer IS period leads to detection of more stable 

pattern even though short-term approach might lead to a higher temporary 

reward.  
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Figure C.1. Break-even Cost for the Top Performing Survivor of the DFDR+ Procedure (IS 1 

Year) 

  

Note: The values are in percentages and calculated as the transaction cost that sets the excess 
return to zero over the period under study. The IS period is set to one year. The values are calculated 
by repeating the procedure at the start of each month and averaging over 12 months. 

From technical trader point of view, what matters most is the OOS simulation 

findings rather than the IS ones. Tables C.6 to C.8 correspond to one year as an IS 

period while considering the OOS periods of one, three and six months 

respectively.  

[Table C.6 to C.8] 

In this case, I observe opposing evidence with regards to the IS period chosen 

each time. For example, comparing Tables 4.4 to 4.6 corresponding to the IS 

period of two years and the same OOS periods with Tables C.6 to C.8, the results 

are in favour with the first approach. I may attribute these findings to including 

more information (larger historical sample) when searching for a predictive 

technical trading rule IS resulting in better OOS performance. Moreover, I can also 

justify the above findings to technical trading rules’ specific characteristics and 

parameterizations. For instance, I utilize technical trading rules, even of the same 
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family, whose lagged values span from one day up to one year (e.g. a double MA 

of two and five days respectively; a double MA of 150 and 250 days respectively). 

This means that they need different learning times in order to capture all the 

available market trends, momentum or reversals. Choosing a small IS period (i.e. 

one year) might provide enough information for trading rules utilizing short 

periods of previous market returns (i.e. a double MA of two and five days) but not 

enough inputs for trading rules looking back at longer periods of market 

movements (i.e. a double MA of 150 and 250 days respectively). Hence, in my 

opinion considering a sufficient enough horizon based on a strategy’s properties, 

while setting an optimal IS, OOS ratio, is equally important to the selection of the 

best predictive rule. 

I investigate further the above optimality in the IS and OOS ratio with respect 

to sample periods chosen by looking the corresponding performances of the 

significant technical trading rules over the three different OOS periods (i.e. one, 

three and six months) examined and the IS period of one year in this Appendix. In 

terms of average annual performance of all markets considered (i.e. last row), 

Tables C.6 to C.8 reveal specific patterns in OOS excess profitability of technical 

trading rules according to both mean return and Sharpe ratio metrics. Specifically, 

from 2006 to 2009 employing the short OOS period of one month achieves higher 

mean returns as well as Sharpe ratios compared to the longer periods used (i.e., 

three and six months), which display a decay as the OOS periods becomes larger 

during these years. On the contrary, there is a turning point in this phenomenon 

for the 2010-2012 period. The longer the OOS period the better greater the mean 

return and Sharpe ratio. Despite that, I must note that both metrics appear 

negative during these years. For the rest of the years (i.e., 2013-2015), technical 

trading rules seem to perform better using the OOS period of one month, yielding 

even positive metrics in 2015. In general, profitability diminishes as I approach 

the most recent periods for all OOS periods and across all markets considered. 

This evidence is consistent with the general findings presented in Section 4.5.1 

when a two-year IS horizon was considered. 

When it comes to each market’s average performance over the full ten-year 

period (i.e., last column) the picture is quite different. There is no clear evidence 

towards the support of a specific OOS period in general and sometimes both 

performance metrics employed provide contradictory results. I conclude that the 
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most suitable OOS horizon depends on the specific market studied. For developed 

markets, the performance of trading rules seems to improve according to the 

Sharpe ratio as I expand the OOS period, but this is not the case when the mean 

excess return is adopted as the performance criterion. As about the emerging 

markets and frontier markets results provide an opposing order, in which the 

shorter OOS periods employed the better technical trading rules performance, 

which is consistent with both mean return and Sharpe ratio. Despite that, I must 

also mention that technical trading rules underperform the benchmark most of 

the times, especially in the developed markets, which once again justifies the 

usage of the IS period of two years. 
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Appendix D 

This Appendix includes characteristics of the volatility models used, the fine steps 

taken in the methodology section and remainder results for the five loss functions 

not presented in the main text. Initially, the volatility models’ pool is specified in 

Appendix D.1. The pseudo-algorithm of the DFDR+ approach is provided in 

Appendix D.2. The models’ performance density distributions is given in Appendix 

D.3. Appendix D.4 presents the true discoveries dynamics over time for different 

distributions and the error distribution analysis results are shown (Appendix D.5). 

The mean and conditional variance robustness checks are presented in Appendices 

D.6 and D.7 respective. Finally, Appendix D.8 presents the results for different 

classes studied.  

D.1 Specification of the Pool 

Table D.1 provides the characteristics of the models under study. I study twenty 

classes of volatility models from four families (GARCH, SV, EWMA, and HAR), up 

to four distributions45 for innovation distribution fitted for the standardized return 

process, three specifications for mean and two definitions of the conditional 

variance.  

[Table D.1] 

D.2 Model Selection Algorithm 

The following procedure is followed to find the superior models compared to the 

benchmark. The steps are the same for all 6 loss functions.  

1. Calculate the centred test statistics given the loss functions in Eq.s (5.22 to 

5.27) and the benchmarks (ARCH (1), GARCH (1,1), or 90th percentile of the 

pool). 

2. Generate 𝐵 = 1000 stationary bootstrap to generate the set of centered null 

test statistics 𝜑𝑏,𝑖
′ , for 𝑏 = 1, … , 𝐵. 

3. Calculate the p-values (𝑝̂𝑖) for 𝑚 = 1512 models. 

                                                           

45 The combination of GED and SV generated poor fitting for common optimization algorithms. 

Therefore, I discarded this combination from the pool to meet my computational constraints.  
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4. Estimate the optimal tuning parameter 𝜆∗ and estimated null proportion 

𝜋̂0(𝜆∗) as: 

a. Select the number of 𝜆 support points (𝑛 = 20).  

b. Define the 𝛬 = {𝜆1, … , 𝜆𝑛} 

c. Compute the estimated null proportion as 𝜋̂0(𝜆𝑙) =
#{𝑝𝑖>𝜆𝑙}

(1−𝜆𝑙)𝑚
 for 𝑖 =

1, … , 𝑚 and 𝑙 = 1, … , 𝑛 

d. Find the first 𝑙 where 𝜋̂0(𝜆𝑙) ≥ 𝜋̂0(𝜆𝑙−1)  

5. Choose a target FDR+ controlling level (𝛼) e.g. 10% 

6. Sort the p-values in an ascending order where 𝑝̂𝑅1
≤ ⋯ ≤ 𝑝̂𝑅𝑚

 

7. Define step by  𝑗 = 1 and corresponding significance region with 𝛾𝑗
′ = 𝑝̂𝑅𝑗

 

8. Compute the 𝐹𝐷𝑅̂
𝛾𝑗

′
+ (𝜋̂0). 

a. If the 𝐹𝐷𝑅̂
𝛾𝑗

′
+ < 𝛼 

i. Reject all 𝑃𝑖 ≤ 𝑃𝑅𝑗
 

ii. Set 𝑗 = 𝑗 + 1 , 𝛾𝑗
′ = 𝑝̂𝑅𝑗

 and go back to 8.  

b. Otherwise if the 𝐹𝐷𝑅̂
𝛾𝑗

′
+ ≥ 𝛼 

i. Reject all 𝑝̂𝑖 ≤ 𝑝̂𝑅𝑗
 

ii. Terminate the process 

 

D.3 Densities for Other loss Functions  

This Appendix presents the average performance of the volatility pool over the 

whole study period (2013-2017). The performance is measured based on six loss 

functions. The MSE1 is presented in the main text. The other five loss functions 

provided here are MAE1, MAE2, MSE2, R2LOG, and QLIKE. The specifications of 

the loss functions are provided in Table 5.3. 
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Figure D.1: Model Performance Density for 𝐌𝐀𝐄𝟏 

 

Note: The figures present the density of average loss across the pool based on the MAE1 benchmark. 

The 𝑥 axis is  𝜑̃𝑖 = 1/5 ∑ (−ℒ𝑖,𝓈)5
𝓈=1  where 𝓈 is the OOS subperiods of one year. The polygonal 

present the location of the benchmarks studied. The square, pentagram, and hexagram correspond 

to the ARCH (1), GARCH (1,1), and PRC 90 respectively.  

Figure D.2: Model Performance Density for 𝐌𝐀𝐄𝟐 

 

Note: The figures present the density of average loss across the pool based on the MAE2 benchmark. 

The 𝑥 axis is  𝜑̃𝑖 = 1/5 ∑ (−ℒ𝑖,𝓈)5
𝓈=1  where 𝓈 is the OOS subperiods of one year. The polygonal 

present the location of the benchmarks studied. The square, pentagram, and hexagram correspond 

to the ARCH (1), GARCH (1,1), and PRC 90 respectively.  
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Figure D.3: Model Performance Density for 𝐌𝐒𝐄𝟐 

 
Note: The figures present the density of average loss across the pool based on the MSE2 benchmark.  

The 𝑥 axis is  𝜑̃𝑖 = 1/5 ∑ (−ℒ𝑖,𝓈)5
𝓈=1  where 𝓈 is the OOS subperiods of one year. The polygonal 

present the location of the benchmarks studied. The square, pentagram, and hexagram correspond 

to the ARCH (1), GARCH (1,1), and PRC 90 respectively.  

 

Figure D.4: Model Performance Density for 𝐑𝟐𝐋𝐎𝐆 

 
Note: The figures present the density of average loss across the pool based on the R2LOG 

benchmark.  The 𝑥 axis is  𝜑̃𝑖 = 1/5 ∑ (−ℒ𝑖,𝓈)5
𝓈=1  where 𝓈 is the OOS subperiods of one year. The 

polygonal present the location of the benchmarks studied. The square, pentagram, and hexagram 

correspond to the ARCH (1), GARCH (1,1), and PRC 90 respectively.  
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Figure D.5: Model Performance Density for 𝐐𝐋𝐈𝐊𝐄 

 
Note: The figures present the density of average loss across the pool based on the QLIKE 

benchmark.  The 𝑥 axis is  𝜑̃𝑖 = 1/5 ∑ (−ℒ𝑖,𝓈)5
𝓈=1  where 𝓈 is the OOS subperiods of one year. The 

polygonal present the location of the benchmarks studied. The square, pentagram, and hexagram 

correspond to the ARCH (1), GARCH (1,1), and PRC 90 respectively. 

 

D.4 True Discoveries Dynamics over Time for Other Distributions 

In this Appendix, the number of the true discoveries for each year over 2013-2017 

are presented. The true discoveries are the rejections of the DFDR+ tests based on 

six loss functions. The results for the MSE1 are presented in the main text. The 

other five loss functions provided here are MAE1, MAE2, MSE2, R2LOG, and QLIKE. 

The specifications of the loss functions are provided in Table 5.3. 

[Tables D.2 to D.6] 

D.5 Error Distribution Analysis for Other Loss Functions 

This Appendix focuses on the fitted innovations distribution used to generate the 

standardized return series. The Tables D.7 to D.11 present the proportion of the 

models with each error distribution that survive the tests. The values correspond 

to averages over the whole study period (2013-2017). The test survivors are based 

on six loss functions. The results for the MSE1 are presented in the main text. The 

other five loss functions provided here are MAE1, MAE2, MSE2, R2LOG, and QLIKE. 

The specifications of the loss functions are provided in Table 5.3. 
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[Tables D.7 to D.11] 

 

D.6 Mean Analysis of Other Loss Functions 

This Appendix studies the success rate for three specifications of the conditional 

mean used to generate the standardized return series. The Figures D.6 to D.10 

present the proportion of the models with each estimated mean specification that 

survive the tests. The values correspond to averages over the whole study period 

(2013-2017). The test survivors are based on six loss functions. The results for the 

MSE1 are presented in the main text. The other five loss functions provided here 

are MAE1, MAE2, MSE2, R2LOG, and QLIKE. The specifications of the loss functions 

are provided in Table 5.3. 

Figure D.6: Conditional Mean Survival Proportion Dynamics Across the Markets for 𝐌𝐀𝐄𝟏 

 
Note: The figure presents the average proportion of models with each mean estimation choice. The 

‘Uncond.’ and ‘Cond.’ stand for unconditional and conditional mean specifications.  The ARCH (1) 

and GARCH (1,1) models use zero mean, Gaussian distribution and RV specifications. PRC 90 

stands for the benchmark based on the 90th percentile of the entire volatility pool. The performance 

scale is MAE1.  
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Figure D.7: Conditional Mean Survival Proportion Dynamics Across the Markets for 𝐌𝐀𝐄𝟐 

 
Note: The figure presents the average proportion of models with each mean estimation choice. The 

‘Uncond.’ and ‘Cond.’ stand for unconditional and conditional mean specifications.  The ARCH (1) 

and GARCH (1,1) models use zero mean, Gaussian distribution and RV specifications. PRC 90 

stands for the benchmark based on the 90th percentile of the entire volatility pool. The performance 

scale is MAE2.  

 

 

 

 

 

Figure D.8: Conditional Mean Survival Proportion Dynamics Across the Markets for 𝐌𝐒𝐄𝟐 

 
Note: The figure presents the average proportion of models with each mean estimation choice. The 

‘Uncond.’ and ‘Cond.’ stand for unconditional and conditional mean specifications.  The ARCH (1) 

and GARCH (1,1) models use zero mean, Gaussian distribution and RV specifications. PRC 90 

stands for the benchmark based on the 90th percentile of the entire volatility pool. The performance 

scale is MSE2.  
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Figure D.9: Conditional Mean Survival Proportion Dynamics Across the Markets for 𝐑𝟐𝐋𝐎𝐆 

 
Note: The figure presents the average proportion of models with each mean estimation choice. The 

‘Uncond.’ and ‘Cond.’ stand for unconditional and conditional mean specifications.  The ARCH (1) 

and GARCH (1,1) models use zero mean, Gaussian distribution and RV specifications. PRC 90 

stands for the benchmark based on the 90th percentile of the entire volatility pool. The performance 

scale is R2LOG.  

 

 

Figure D.10: Conditional Mean Survival Proportion Dynamics Across the Markets for 𝐐𝐋𝐈𝐊𝐄 

Note: The figure presents the average proportion of models with each mean estimation choice. The 

‘Uncond.’ and ‘Cond.’ stand for unconditional and conditional mean specifications.  The ARCH (1) 

and GARCH (1,1) models use zero mean, Gaussian distribution and RV specifications. PRC 90 

stands for the benchmark based on the 90th percentile of the entire volatility pool. The performance 

scale is QLIKE.  

 

D.7 Conditional Variance Analysis for Other Loss Functions 

This Appendix examines the role of the conditional variance used to generate the 

standardized return series. The Figures D.11 to D.15 present the proportion of the 

models with either of two variance approximations that survive the tests. The 

values correspond to averages over the whole study period (2013-2017). The test 
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survivors are based on six loss functions. The results for the MSE1 are presented 

in the main text. The other five loss functions provided here are MAE1, MAE2, 

MSE2, R2LOG, and QLIKE. The specifications of the loss functions are provided in 

Table 5.3. 

Figure D.11: Conditional Variance Survival Proportion Dynamics Across the Markets for 

𝐌𝐀𝐄𝟏 

 
Note: The figure presents the average success rate of alternative variance specifications. The RV 

and ARV correspond to the realized variance and the adjusted realized variance based on five 

minutes squared returns as in Eq.s (5.1 and 5.2). The ARCH (1) and GARCH (1,1) models use zero 

mean, Gaussian distribution and RV specifications. PRC 90 stands for the benchmark based on the 

90th percentile of the entire volatility pool. The performance scale is MAE1.  

Figure D.12: Conditional Variance Survival Proportion Dynamics Across the Markets for 

𝐌𝐀𝐄𝟐 

 
Note: The figure presents the average success rate of alternative variance specifications. The RV 

and ARV correspond to the realized variance and the adjusted realized variance based on five 

minutes squared returns as in Eq.s (5.1 and 5.2). The ARCH (1) and GARCH (1,1) models use zero 

mean, Gaussian distribution and RV specifications. PRC 90 stands for the benchmark based on the 

90th percentile of the entire volatility pool. The performance scale is MAE2.  
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Figure D.13: Conditional Variance Survival Proportion Dynamics Across the Markets for 

𝐌𝐒𝐄𝟐 

 
Note: The figure presents the average success rate of alternative variance specifications. The RV 

and ARV correspond to the realized variance and the adjusted realized variance based on five 

minutes squared returns as in Eq.s (5.1 and 5.2). The ARCH (1) and GARCH (1,1) models use zero 

mean, Gaussian distribution and RV specifications. PRC 90 stands for the benchmark based on the 

90th percentile of the entire volatility pool. The performance scale is MSE2.  

 

 

 

 

Figure D.14: Conditional Variance Survival Proportion Dynamics Across the Markets for 

𝐑𝟐𝐋𝐎𝐆 

 
Note: The figure presents the average success rate of alternative variance specifications. The RV 

and ARV correspond to the realized variance and the adjusted realized variance based on five 

minutes squared returns as in Eq.s (5.1 and 5.2). The ARCH (1) and GARCH (1,1) models use zero 

mean, Gaussian distribution and RV specifications. PRC 90 stands for the benchmark based on the 

90th percentile of the entire volatility pool. The performance scale is R2LOG. 
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Figure D.15: Conditional Variance Survival Proportion Dynamics Across the Markets for 

𝐐𝐋𝐈𝐊𝐄 

 
Note: The figure presents the average success rate of alternative variance specifications. The RV 

and ARV correspond to the realized variance and the adjusted realized variance based on five 

minutes squared returns as in Eq.s (5.1 and 5.2). The ARCH (1) and GARCH (1,1) models use zero 

mean, Gaussian distribution and RV specifications. PRC 90 stands for the benchmark based on the 

90th percentile of the entire volatility pool. The performance scale is QLIKE.  

 

D.8 Class Analysis for Other Loss Functions 

This Appendix investigates the success rate of each of twenty classes of volatility 

forecasting models. The formulation for all classes of the forecasting model are 

presented in Eq.s (5.3 to 5.20) of Table 5.1. The Tables D.12 to D.16 present the 

proportion of the models from each class that survive the tests. The values 

correspond to averages over the whole study period (2013-2017). The test 

survivors are based on six loss functions. The results for the MSE1 are presented 

in the main text. The other five loss functions provided here are MAE1, MAE2, 

MSE2, R2LOG, and QLIKE. The specifications of the loss functions are provided in 

Table 5.3. 

[Tables D.12 to D.16] 
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Tables 

Table 2.1: Descriptive Statistics 

Note: The mean and standard deviations are reported in basis points. Reported values of zero for 

the JB and ADF (without any lagged difference) tests correspond to p-values less than 1 over 100 

(p<0.01) 

 

 

 

Period Statistic EUR/USD GBP/USD USD/JPY 

2
0
1
0

.0
1
.0

4
 - 2

0
1

3
.1

2
.3

1
 

(1
) 

Mean (bp) -4.59 -0.28 1.25 

Standard Deviation (bp) 62.2 50.9 63.1 

Kurtosis 3.78 3.25 8.91 

Skewness -0.12 -0.07 -0.55 

JB p-value 0.00 0.00 0.00 

ADF p-value 0.00 0.00 0.00 

2
0
1
1

.0
1
.0

3
 - 2

0
1

4
.1

2
.3

1
 

(2
) 

Mean (bp) -0.97 -0.02 0.38 

Standard Deviation (bp) 53.8 43.9 59.3 

Kurtosis 4.28 3.51 9.27 

Skewness -0.14 -0.11 0.06 

JB p-value 0.00 0.00 0.00 

ADF p-value 0.00 0.00 0.00 

2
0
1
2

.0
1
.0

2
 - 2

0
1

5
.1

2
.3

1
 

(3
) 

Mean (bp) -1.68 -0.13 4.30 

Standard Deviation (bp) 54.5 45.5 56.7 

Kurtosis 4.95 3.96 6.51 

Skewness 0.17 0.17 0.05 

JB p-value 0.00 0.00 0.00 

ADF p-value 0.00 0.00 0.00 

2
0
1
3

.0
1
.0

2
 - 2

0
1

6
.1

2
.3

0
 

(4
) 

Mean (bp) -2.19 -0.04 0.29 

Standard Deviation (bp) 54.7 62.1 64.8 

Kurtosis 5.48 4.47 6.81 

Skewness 0.11 -3.42 -0.27 

JB p-value 0.00 0.00 0.00 

ADF p-value 0.00 0.00 0.00 
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Table 2.2: Trading Rules Excess Annualized Return and Sharpe Ratio 

Exercise Asset IS Performance OOS Performance Surviving Rules Count 

2013 

EUR/USD 3.07% (0.29) -1.23% (-0.72) 839 

GBP/USD 1.1% (0.29) 0.21% (0.05) 788 

USD/JPY 3.24% (0.07) -3.37% (-0.65) 870 

2014 

EUR/USD 5.71% (1.01) 3.69% (0.96) 819 

GBP/USD 5.67% (2.62) 4.41% (1.56) 368 

USD/JPY 6.7% (0.58) 6.19% (1.07) 439 

2015 

EUR/USD 3.18% (1.45) 2.21% (0.41) 1144 

GBP/USD 6.42% (1.85) 1.47% (0.27) 1047 

USD/JPY 12.5% (2.13) -6.58% (-0.94) 523 

2016 

EUR/USD 10.31% (0.25) 2.04% (0.41) 1147 

GBP/USD 4.85% (0.14) 1.91% (0.22) 981 

USD/JPY 8.77% (1.43) -1.31% (-0.33) 337 

Total Average 5.96% (1.01) 0.8% (0.19) 775.17 

Note: The table presents the excess annualized returns (above the risk-free rate) of the technical 

rules after transaction costs. The values in parentheses correspond to the Sharpe ratios. Trading 

rules correspond to the number of genuine trading rules identified in the IS by the Romano et al. 

(2008) test combined with the balancing procedure of Romano and Wolf (2010). 
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Table 2.3: EUR/USD Trading Performance – Annualized Return 

Exercise Measure Accuracy 
Profit-
ability 

Sharpe 
Ratio 

Exercise Measure Accuracy 
Profit-
ability 

Sharpe 
Ratio 

1 

SA (5) -2.88% -0.60% -0.09% 

3 

SA (5) 0.26% 1.24% -2.37% 

SA (10) 1.17% -2.11% -0.19% SA (10) -2.18% -1.46% -3.12% 

SA (15) -1.44% -0.68% -2.22% SA (15) -0.99% -1.08% -0.64% 

NB (5) 1.06% 0.63% 1.10% NB (5) 4.23% 2.14% 2.27% 

NB (10) 2.09% 1.58% 2.18% NB (10) 0.86% 1.52% 2.72% 

NB (15) 1.80% 1.31% 1.82% NB (15) 1.18% 1.74% 3.07% 

DMA (5) 4.34% 4.55% 4.99% DMA (5) 7.79% 4.95% 4.59% 

DMA (10) 6.89% 4.26% 6.02% DMA (10) 6.85% 4.54% 6.98% 

DMA (15) 5.30% 5.49% 5.40% DMA (15) 6.01% 6.49% 5.23% 

DMS (5) 3.74% 6.86% 4.09% DMS (5) 6.23% 3.92% 4.30% 

DMS (10) 5.02% 5.06% 5.43% DMS (10) 6.97% 4.22% 4.44% 

DMS (15) 4.80% 4.99% 2.63% DMS (15) 6.12% 4.36% 5.86% 

BNN (5) 6.01% 5.91% 4.82% BNN (5) 5.08% 4.77% 4.82% 

BNN (10) 6.48% 6.51% 5.01% BNN (10) 6.00% 5.29% 7.27% 

BNN (15) 6.12% 6.00% 5.96% BNN (15) 5.37% 4.90% 6.08% 

RVM 4.35% 4.35% 4.35% RVM 4.41% 4.41% 4.41% 

2 

SA (5) 0.27% -0.70% 1.95% 

4 

SA (5) 0.21% -0.32% -2.69% 

SA (10) 1.89% -0.82% 1.60% SA (10) -2.46% 1.24% -3.01% 

SA (15) 0.16% 1.78% 2.26% SA (15) -1.32% 1.08% -1.44% 

NB (5) 1.82% 2.04% 1.11% NB (5) 2.28% -2.66% 1.82% 

NB (10) 2.74% 1.79% 3.04% NB (10) 3.18% 1.80% 1.49% 

NB (15) 1.72% 1.96% 2.00% NB (15) 3.33% 3.02% 2.77% 

DMA (5) 3.86% 6.97% 7.09% DMA (5) 6.36% 5.46% 5.14% 

DMA (10) 6.08% 3.82% 6.18% DMA (10) 5.07% 6.28% 5.80% 

DMA (15) 6.15% 3.43% 5.72% DMA (15) 6.74% 5.28% 4.14% 

DMS (5) 3.99% 3.26% 5.17% DMS (5) 4.50% 3.35% 5.02% 

DMS (10) 4.24% 3.14% 6.03% DMS (10) 5.29% 5.80% 5.93% 

DMS (15) 5.40% 3.25% 6.12% DMS (15) 6.80% 5.94% 4.01% 

BNN (5) 3.77% 3.01% 6.32% BNN (5) 6.21% 5.12% 5.57% 

BNN (10) 6.42% 5.38% 5.38% BNN (10) 6.01% 6.01% 7.44% 

BNN (15) 5.37% 5.04% 7.49% BNN (15) 7.28% 6. 05% 6.19% 

RVM 3.28% 3.28% 3.28% RVM 4.24% 4.24% 4.24% 

Note: The table presents the annualized excess return (above the risk-free rate) for the top rules out 

of the data-snooping procedure survivors. Three fixed levels (5, 10, and 15) are studied SA, NB, 

DMA, DMS, DMA and BNN while the RVM is selecting the most relevant rules endogenously. The 

best rules are selected based on three measures of IS accuracy, profitability, and Sharpe ratio. All 

returns are after transaction costs. The values in bold correspond to the best performing combination 

for each criterion and exercise.  
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Table 2.4: GBP/USD Trading Performance – Annualized Return 

Exercise Measure Accuracy 
Profit-
ability 

Sharpe 
Ratio 

Exercise Measure Accuracy 
Profit-
ability 

Sharpe 
Ratio 

1 

SA (5) 1.92% -3.10% 0.08% 

3 

SA (5) -0.48% 1.25% -1.32% 

SA (10) 0.80% -0.77% -3.32% SA (10) 1.66% -1.92% 2.61% 

SA (15) -0.53% -0.05% -2.48% SA (15) 1.58% -0.99% -2.58% 

NB (5) 2.70% 1.56% 1.10% NB (5) 1.85% 2.00% 2.52% 

NB (10) 2.43% 2.70% 3.09% NB (10) 2.55% 3.80% 3.39% 

NB (15) 3.82% 3.78% 1.67% NB (15) 3.44% 4.09% 1.22% 

DMA (5) 4.57% 4.87% 3.98% DMA (5) 5.96% 4.17% 4.32% 

DMA (10) 3.89% 5.63% 6.22% DMA (10) 5.68% 4.79% 5.04% 

DMA (15) 6.66% 5.95% 3.76% DMA (15) 7.19% 7.24% 4.44% 

DMS (5) 4.60% 4.18% 4.16% DMS (5) 6.07% 3.05% 3.41% 

DMS (10) 3.92% 5.67% 3.69% DMS (10) 6.01% 4.42% 5.30% 

DMS (15) 5.20% 5.04% 3.02% DMS (15) 6.22% 6.92% 5.37% 

BNN (5) 4.89% 5.28% 6.12% BNN (5) 5.14% 5.35% 5.02% 

BNN (10) 6.38% 5.00% 4.74% BNN (10) 4.55% 5.84% 3.11% 

BNN (15) 7.29% 6.48% 3.70% BNN (15) 6.17% 6.90% 6.29% 

RVM 4.61% 4.61% 4.61% RVM 3.72% 3.72% 3.72% 

2 

SA (5) 0.71% 0.71% -2.49% 

4 

SA (5) -0.13% 1.99% 0.36% 

SA (10) 2.22% 0.90% 1.00% SA (10) 1.98% 1.25% 2.58% 

SA (15) 2.40% 0.06% -0.86% SA (15) 1.02% 0.34% -.17% 

NB (5) 2.42% 2.42% 1.94% NB (5) 2.78% 2.30% 2.79% 

NB (10) 2.62% 3.00% 1.15% NB (10) 3.05% 3.43% 3.18% 

NB (15) 1.88% 4.04% 0.77% NB (15) 2.85% 4.02% 3.60% 

DMA (5) 3.64% 3.64% 5.57% DMA (5) 4.70% 4.87% 5.34% 

DMA (10) 4.03% 3.85% 5.67% DMA (10) 5.36% 5.61% 5.98% 

DMA (15) 6.53% 5.29% 4.09% DMA (15) 7.78% 7.40% 5.09% 

DMS (5) 3.00% 3.00% 5.42% DMS (5) 3.21% 3.91% 4.09% 

DMS (10) 4.48% 3.04% 4.50% DMS (10) 4.39% 5.20% 4.44% 

DMS (15) 5.57% 5.05% 3.59% DMS (15) 6.40% 6.17% 4.82% 

BNN (5) 5.16% 4.16% 4.94% BNN (5) 5.03% 6.02% 5.28% 

BNN (10) 5.21% 5.87% 5.14% BNN (10) 5.83% 5.95% 5.31% 

BNN (15) 6.29% 5.14% 4.21% BNN (15) 6.01% 7.54% 3.15% 

RVM 4.19% 4.19% 4.19% RVM 4.27% 4.27% 4.27% 

Note: The table presents the annualized excess return (above the risk-free rate) for the top 

rules out of the data-snooping procedure survivors. Three fixed levels (5, 10, and 15) are 

studied SA, NB, DMA, DMS, DMA and BNN while the RVM is selecting the most relevant 

rules endogenously. The best rules are selected based on three measures of IS accuracy, 

profitability, and Sharpe ratio. All returns are after transaction costs. The values in bold 

correspond to the best performing combination for each criterion and exercise. 
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Table 2.5: USD/JPY Trading Performance – Annualized Return 

Exercise Measure Accuracy 
Profit-
ability 

Sharpe 
Ratio 

Exercise Measure Accuracy 
Profit-
ability 

Sharpe 
Ratio 

1 

SA (5) -2.24% 2.72% 3.09% 

3 

SA (5) -2.75% -1.77% -2.96% 

SA (10) -0.20% 3.54% 4.07% SA (10) -1.72% -1.45% 1.04% 

SA (15) -1.16% 0.98% 3.74% SA (15) 0.21% -0.93% -1.52% 

NB (5) 2.44% 3.85% 3.45% NB (5) 2.09% 2.26% -1.59% 

NB (10) 2.18% 2.86% 4.24% NB (10) 3.58% 0.32% 0.30% 

NB (15) 3.07% 2.04% 3.62% NB (15) 2.77% 2.70% 0.45% 

DMA (5) 3.84% 5.88% 7.22% DMA (5) 4.42% 4.50% 6.19% 

DMA (10) 4.43% 4.45% 5.51% DMA (10) 4.67% 4.21% 5.70% 

DMA (15) 5.18% 6.96% 6.29% DMA (15) 5.40% 6.36% 4.02% 

DMS (5) 5.62% 4.74% 6.65% DMS (5) 4.83% 3.91% 2.72% 

DMS (10) 5.09% 3.86% 4.93% DMS (10) 4.79% 3.09% 4.85% 

DMS (15) 4.14% 6.19% 4.30% DMS (15) 4.91% 6.44% 3.26% 

BNN (5) 4.10% 5.09% 4.84% BNN (5) 5.99% 5.43% 4.36% 

BNN (10) 5.03% 4.88% 5.47% BNN (10) 4.85% 4.90% 5.70% 

BNN (15) 6.15% 6.01% 5.70% BNN (15) 4.23% 6.58% 5.51% 

RVM 5.22% 5.22% 5.22% RVM 4.01% 4.01% 4.01% 

2 

SA (5) -2.28% 1.88% 2.31% 

4 

SA (5) -3.33% -2.63% -2.79% 

SA (10) -3.63% 2.46% 1.65% SA (10) -2.09% -2.96% -1.82% 

SA (15) 0.10% 0.44% 0.80% SA (15) 0.86% -0.62% -3.10% 

NB (5) 2.12% 2.48% 1.15% NB (5) 1.61% 2.60% -1.37% 

NB (10) 2.92% 1.37% 2.18% NB (10) 1.87% 2.15% 2.44% 

NB (15) 3.06% 2.24% 3.24% NB (15) 2.12% 2.04% 1.28% 

DMA (5) 5.00% 5.40% 6.03% DMA (5) 7.33% 7.07% 4.69% 

DMA (10) 5.97% 6.76% 5.88% DMA (10) 5.36% 8.30% 5.91% 

DMA (15) 6.03% 5.54% 3.22% DMA (15) 6.08% 7.32% 6.54% 

DMS (5) 3.04% 4.45% 2.11% DMS (5) 5.70% 6.07% 4.63% 

DMS (10) 4.06% 2.75% 4.31% DMS (10) 4.92% 7.11% 4.82% 

DMS (15) 5.42% 5.91% 5.06% DMS (15) 5.67% 6.04% 5.28% 

BNN (5) 4.91% 6.36% 3.42% BNN (5) 6.78% 5.23% 4.55% 

BNN (10) 5.74% 5.06% 5.35% BNN (10) 6.00% 5.82% 6.71% 

BNN (15) 6.00% 6.12% 5.88% BNN (15) 6.84% 5.09% 4.90% 

RVM 4.75% 4.75% 4.75% RVM 5.47% 5.47% 5.47% 

Note: The table presents the annualized excess return (above the risk-free rate) for the top rules out 

of the data-snooping procedure survivors. Three fixed levels (5, 10, and 15) are studied SA, NB, 

DMA, DMS, DMA and BNN while the RVM is selecting the most relevant rules endogenously. The 

best rules are selected based on three measures of IS accuracy, profitability, and Sharpe ratio. All 

returns are after transaction costs. The values in bold correspond to the best performing combination 

for each criterion and exercise.  
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Table 3.1: Football Forecasting Literature Comparison 

Relevant Studies Main model 
Betting 

Application 

Kelly 

Criterion 
Profitability 

This study 
Conditional Fuzzy 

Logic Yes Yes Yes 

Audas et al. (2002), Dobson 

and Goddard (2003), Goddard 

(2005) 

Ordered Probit N/A N/A N/A 

Forrest et al. (2005), Graham 

and Scott (2008) 
Ordered Probit Yes N/A N/A 

Kuypers (2000), Goddard and 

Asimakopoulos (2004), 

Forrest and Simmons (2008) 

Ordered Probit Yes N/A Yes 

Rotshtein et al. (2005), 

Trawinski (2010), Bastos and 

Rosa (2013) 

Fuzzy Logic N/A N/A N/A 

Meeden (1981), Dixon and 

Coles (1997), Rue and 

Salvesen (2000), Vlastakis et 

al. (2009), Constantinou et al. 

(2012), Koopman and Lit 

(2015), Angelini and De 

Angelis (2017) 

Probabilistic 

Approach Yes N/A Yes 

Joseph et al. (2006), Karlis 

and Ntzoufras (2008), Min et 

al. (2008), Crowder et al. 

(2002), Baio and Blangiardo 

(2010), Owramipur et al. (2013) 

Probabilistic 

Approach N/A N/A N/A 

Vlastakis et al. (2008) 
Support Vector 

Machine Yes N/A Yes 

Gomes et al. (2016), Martins et 

al. (2017), Baboota and Kaur 

(2018) 

Support Vector 

Machine N/A N/A N/A 
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Table 3.2: Inputs Series 

Points of H 
team –Points 

of A team 
before the start 

of the game 

Points of H in the 
last 1,2,3 games 
and from the start 

of the season 

Points of A in the 
last 1,2,3 games 
and from the start 

of the season 

Points of H in the 
last 1,2,3 games 
and from the start 

of the season 
when H plays at 

home 

Points of A in 
the last 1,2,3 
games and 

from the start 
of the season 
when A plays 

at away 

Number of 
goals of H 

team in the last 
1,2,3 games 
and from the 
start of the 

season 

Number of goals 
of A team in the 
last 1,2,3 games 
and from the start 

of the season 

Number of goals 
of H team in the 
last 1,2,3 games 
and from the start 

of the season 
when H team 
plays at home 

Number of goals 
of A team in the 
last 1,2,3 games 
and from the start 

of the season 
when A team 
plays away 

Number of 
shots on target 

of H team in 
the last 1,2,3 
games and 

from the start 
of the season 

Number of 
shots on target 

of H team in 
the last 1,2,3 
games and 

from the start 
of the season 

Number of shots 
on target of A 

team in the last 
1,2,3 games and 
from the start of 

the season 

Number of shots 
on target of H 

team in the last 
1,2,3 games and 
from the start of 
the season when 
H team plays at 

home 

Number of shots 
on target of H 

team in the last 
1,2,3 and from the 

start of the 
season games 
when A team 
plays at away 

Number of 
corner kicks of 
H team in the 

last 1,2,3 
games and 

from the start 
of the season 

Number of 
corner kicks of 
A team in the 
last 1,2,3 and 
from the start 
of the season 

games 

Number of corner 
kicks of H team in 

the last 1,2,3 
games and from 
the start of the 
season when H 
team plays at 

home 

Number of corner 
kicks of A team in 

the last 1,2,3 
games and from 
the start of the 
season when A 
team plays at 

away 

H team booking 
points in the last 
1,2,3 games and 
from the start of 

the season 

A team 
booking points 
in the last 1,2, 
3 games and 
from the start 
of the season 

Betbrain 
average home 

win odds 

Betbrain average 
draw odds 

Betbrain average 
away win odds 

Betbrain average 
over 2.5 goals 

odds 

Betbrain 
average under 
2.5 goals odds 

Betbrain size of 
handicap 

(home team) 

Betbrain average 
Asian handicap 

home team odds 

Betbrain average 
Asian handicap 
away team odds 

  

Notes: There are six main categories of predictors. The first one is based on the odds offered by the 
bookies and the other five originate from the performance of the teams over the past games. The 
inputs categories are: (i) odds for match outcome, number of goals and Asian handicap size bets 
(home team winning, draw, away team winning, over 2.5 goals, under 2.5 goals, home team win, 
and away team win Asian handicaps – 8 total), (ii) Points achieved, (iii) Goals scored (iv) Corner 
kicks, (v) Shots on target, (vi) Booking points. For the last five categories, 15 different types of 
measures are introduced to make sure all types of developments are considered. Team H is the 
home team and team A is the away team. Booking points are 25 points per red card and 10 per 
yellow card in a game. The total number of inputs is 83. 
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Table 3.3: Accuracy Ratios (Game Result) 

Note: The values in the table represent the OOS accuracy ratios. Row 1 corresponds to the first year 
of the OOS and row 2 to the second year of the OOS. For example, for the first cell on the left corner 
68.75% is the OOS accuracy of CF for the 2009-2010 Premiership season and the 63.60% is the 
performance of the exact same model (same specification and rules) for the 2010-2011 season of 
the same championship. A random classifier provides 33.33% accuracy ratio in this example. ** and 
* indicates that according to the PT (1992) test, the forecasts are statistically accurate in classifying 
the football game result at the 99% and 95% level respectively.  

 
 

 

 

 

 

 IS  

Model Championship OOS 
2006-
2009 

2006-
2010 

2007-
2011 

2008-
2012 

2009-
2013 

2010-
2014 

Average 

CF 

Premiership 
1 68.75% 75.00% 66.67% 61.54% 72.73% 66.65% 68.56%** 

2 63.60% 50.03% 62.50% 57.14% 67.41% 50.00% 58.45%** 

La -Liga 
1 60.00% 48.33% 57.69% 50.04% 55.81% 46.55% 53.07%** 

2 63.60% 43.50% 56.68% 43.47% 44.68% 41.60% 48.92%** 

Seria A 
1 53.33% 54.50% 61.53% 60.00% 57.45% 61.50% 58.05%** 

2 53.06% 52.63% 54.56% 66.10% 66.70% 53.57% 57.77%** 

RVM 

Premiership 
1 46.05% 37.84% 38.25% 44.33% 35.02% 52.02% 42.25%** 

2 41.22% 37.58% 42.61% 40.23% 34,66% 46.32% 41.59%** 

La -Liga 
1 40.33% 36.00% 39.38% 39.33% 35.67% 41.33% 38.68%** 

2 33.67% 36.99% 43.33% 35.33% 41.00% 37.00% 37.89%* 

Seria A 
1 51.35% 50.34% 45.92% 44.96% 40.60% 39.08% 45.38%** 

2 47.97% 44.22% 46.22% 34.90% 39.44% 40.27% 42.17%** 

ANFIS 

Premiership 
1 45.70% 40.20% 35.91% 39.18% 40.67% 39.33% 40.17%** 

2 35.81% 39.93% 37.46% 37.00% 36.67% 41.33% 38.03%** 

La -Liga 
1 40.00% 36.67% 41.10% 35.33% 34.33% 40.33% 37.96%* 

2 38.33% 34.59% 41.00% 36.67% 40.00% 36.03% 37.77%* 

Seria A 
1 42.91% 35.47% 42.18% 42.44% 40.27% 40.14% 40.57%** 

2 34.80% 41.16% 43.70% 36.24% 38.38% 41.61% 39.31%** 

OP 

Premiership 
1 46.70% 44,93% 43,60% 38,49% 46.67% 47,00% 46.69%** 

2 45.61% 47,65% 41,90% 43,33% 39.66% 39.32% 41.53%** 

La -Liga 
1 47.67% 52.67% 52.40% 48.67% 42.67% 51.67% 49.29%** 

2 42.60% 49.66% 49.00% 47.33% 54.33% 44.33% 47.88%** 

Seria A 
1 47.30% 44.59% 48.30% 45.80% 46.64% 37.68% 45.05%** 

2 47.97% 44.30% 46.72% 45.30% 41.55% 42.28% 44.69%** 
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Table 3.4: Accuracy Ratios (Asian Handicap) 

Note: The values in the table represent the OOS accuracy ratios. Row 1 corresponds to the first year 
of the OOS and row 2 to the second year of the OOS. For example, for the first cell on the left corner, 
73.68% is the OOS accuracy of CF for the 2009-2010 Premiership season and the 56.25% is the 
performance of the exact same model (same specification and rules) for the 2010-2011 season of 
the same championship. A random classifier provides 50.00% accuracy ratio in this example. ** and 
* indicates that according to the PT (1992) test, the forecasts are statistically accurate in classifying 
the football game result at the 95% and 90% level respectively.  

 

 

 

 

 

 

 IS  

Model Championship OOS 
2006-
2009 

2006-
2010 

2007-
2011 

2008-
2012 

2009-
2013 

2010-
2014 

Average 

CF 

Premiership 
1 73.68% 78.57% 72.73% 61.11% 68.42% 66.67% 70.20%** 

2 56.25% 65.38% 66.67% 55.89% 63.16% 65.71% 62.18%** 

La -Liga 
1 87.50% 69.62% 54.63% 66.67% 62.96% 58.33% 66.62%** 

2 63.60% 60.91% 62.71% 55.29% 64.28% 61.76% 61.43%** 

Seria A 
1 71.88% 70.96% 85.71% 57.14% 70.58% 67.74% 70.67%** 

2 59.45% 62.07% 52.38% 53.06% 58.49% 51.43% 56.15%* 

RVM 

Premiership 
1 69.07% 57.77% 54.36% 51.20% 54.00% 53.67% 56.68% 

2 58.45% 54.36% 47.77% 56.00% 50.67% 49.33% 52.76% 

La -Liga 
1 72.67% 63.12% 55.82% 53.05% 55.67% 53.00% 58.89%* 

2 62.67% 56.51% 53.67% 57.33% 56.33% 55.33% 56.97%* 

Seria A 
1 71.28% 59.12% 53.74% 49.16% 52.35% 50.70% 56.06%* 

2 56.76% 53.74% 50.00% 49.06% 51.06% 53.02% 52.27% 

ANFIS 

Premiership 
1 54.00% 57.00% 52.92% 48.66% 49.32% 54.64% 52.76% 

2 52.70% 51.34% 47.08% 47.10% 50.33% 46.33% 49.15% 

La -Liga 
1 54.00% 63.67% 57.88% 52.67% 52.00% 51.33% 55.26% 

2 54.67% 51.03% 52.67% 53.33% 50.10% 51.67% 52.25% 

Seria A 
1 70.27% 57.77% 54.08% 52.52% 49.33% 49.29% 55.54%* 

2 57.77% 53.06% 44.54% 48.99% 50.35% 49.12% 50.64% 

OP 

Premiership 
1 64.53% 58.45% 54.03% 46.05% 55.00% 48.67% 54.46% 

2 59.80% 54.36% 45.70% 50.00% 48.67% 47.33% 50.98% 

La -Liga 
1 65.67% 57.67% 54.11% 53.00% 50.67% 49.00% 55.02% 

2 54.67% 55.14% 55.00% 49.67% 51.00% 49.00% 52.41% 

Seria A 
1 66.22% 52.36% 52.72% 52.94% 47.32% 48.24% 53.30% 

2 56.42% 52.38% 52.94% 48.66% 48.59% 48.99% 51.33% 
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Table 3.5: Accuracy Ratios (Number of Goals) 

Note: The values in the table represent the OOS accuracy ratios. Row 1 corresponds to the first year 
of the OOS and row 2 to the second year of the OOS. For example, for the first cell on the left corner, 
78.57% is the OOS accuracy of CF for the 2009-2010 Premiership season and the 75.71% is the 
performance of the exact same model (same specification and rules) for the 2010-2011 season of 
the same championship. A random classifier provides 50.00% accuracy ratio in this example. ** and 
* indicates that according to the PT (1992) test, the forecasts are statistically accurate in classifying 
the football game result at the 95% and 90% level respectively.  

 
 
 
 
 
 
 
 
 

 

 

 IS  

Model Championship OOS 
2006-
2009 

2006-
2010 

2007-
2011 

2008-
2012 

2009-
2013 

2010-
2014 

Average 

CF 

Premiership 
1 78.57% 73.68% 72.70% 62.50% 75.02% 69.23% 71.95%** 

2 75.71% 66.67% 71.43% 65.21% 70.59% 56.75% 67.73%** 

La -Liga 
1 66.66% 65.93% 72.41% 72.02% 71.19% 62.50% 68.45%** 

2 60.87% 62.50% 62.61% 70.03% 72.70% 58.51% 64.54%** 

Seria A 
1 85.69% 83.33% 70.00% 64.29% 71.43% 72.97% 74.62%** 

2 60.00% 52.17% 57.41% 58.62% 75.00% 59.46% 60.44%** 

RVM 

Premiership 
1 50.17% 50.00% 55.37% 52.23% 51.67% 57.00% 52.74%** 

2 48.99% 55.03% 51.20% 51.67% 51.00% 53.00% 51.82%* 

La -Liga 
1 57.00% 53.33% 53.42% 54.67% 51.00% 60.33% 54.96%** 

2 50.67% 52.05% 52.34% 53.30% 48.33% 54.67% 51.89% 

Seria A 
1 53.04% 58.45% 53.74% 48.32% 48.32% 56.34% 53.04%* 

2 55.74% 51.36% 54.62% 47.65% 54.58% 50.34% 52.38% 

ANFIS 

Premiership 
1 53.26% 50.14% 51.68% 47.08% 49.00% 53.00% 50.69% 

2 46.96% 50.34% 48.80% 55.33% 43.67% 53.67% 49.80% 

La -Liga 
1 52.33% 52.00% 54.45% 50.33% 58.00% 49.33% 52.74%* 

2 52.00% 47.33% 53.67% 45.33% 52.05% 47.00% 49.56% 

Seria A 
1 50.34% 53.04% 51.70% 52.94% 54.03% 61.62% 53.95%** 

2 47.30% 53.74% 44.96% 51.68% 56.34% 49.33% 50.56% 

OP 

Premiership 
1 49.83% 49.66% 46.98% 49.48% 49.33% 55.33% 50.10% 

2 48.99% 52.68% 46.39% 51.33% 57.33% 51.00% 51.29% 

La -Liga 
1 53.33% 54.67% 54.79% 52.67% 56.00% 56.10% 54.59%** 

2 48.00% 53.42% 53.35% 56.67% 57.00% 55.67% 54.02%** 

Seria A 
1 46.62% 56.76% 50.68% 55.46% 47.32% 51.06% 51.32% 

2 45.13% 49.12% 47.28% 45.30% 50.70% 50.67% 48.03% 
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Table 3.6: Average Profit per Bet (Game Result) 

 IS  

Model Championship OOS 
2006-
2009 

2006-
2010 

2007-
2011 

2008-
2012 

2009-
2013 

2010-
2014 

Average 

CF 

Premiership 

1 17.71% 19.33% 25.07% 26.81% 29.92% 14.50% 22.21% 

2 3.59% 10.00% 9.69% 0.52% -0.50% 2.16% 4.24% 

La -Liga 

1 10.89% 12.16% 10.45% 16.61% 7.92% 3.70% 10.29% 

2 1.13% 3.10% 2.15% 0.78% 2.80% -1.09% 1.48% 

Seria A 

1 5.17% 12.10% 23.19% 12.04% 7.24% 16.24% 12.66% 

2 -2.61% -10.00% 1.42% 3.24% 3.54% 1.26% -0.53% 

RVM 

Premiership 

1 7.10% -8.76% -9.81% 1.09% -1.80% 5.23% -1.16% 

2 -6.00% -13.74% 9.57% -7.51% -8.34% -0.58% -4.43% 

La -Liga 

1 -5.45% -0.45% -0.32% -1.05% 1.92% 2.03% -0.55% 

2 -13.23% -11.30% -0.49% -14.80% -6.23% -6.09% -8.69% 

Seria A 

1 4.58% 4.19% 2.79% 3.16% -7.39% -1.22% 1.02% 

2 -5.05% -3.34% -11.85% -14.02% -3.26% -8.61% -7.69% 

ANFIS 

Premiership 

1 -2.57% -3.07% -2.91% 8.26% -15.17% -12.23% -4.62% 

2 -7.09% -12.56% -21.83% -5.06% -5.43% -7.09% -9.84% 

La -Liga 

1 -5.08% -9.58% -6.00% -17.29% -11.82% 0.40% -8.23% 

2 -7.72% -9.65% -10.67% -21.71% -5.19% -5.26% -10.03% 

Seria A 

1 -1.70% -1.15% 2.63% -1.34% -3.22% 0.88% -0.65% 

2 -18.26% -7.33% 0.42% -16.40% -7.38% -1.74% -8.45% 

OP 

Premiership 

1 -8.19% 1.24% -8.07% -16.31% 7.26% -6.78% -5.14% 

2 -9.02% -15.86% -17.71% -8.05% -7.31% -7.29% -10.88% 

La -Liga 

1 -6.75% -0.29% 7.50% -2.65% -25.15% -0.62% -4.66% 

2 -11.30% -6.80% -5.22% -7.18% 1.30% -13.29% -7.08% 

Seria A 

1 -3.76% 1.33% -5.87% -1.18% -0.15% -14.86% -4.08% 

2 -4.42% -1.02% 17.71% -3.88% -7.67% -19.38% -3.11% 

Note: All values in the Table represent the average profit per season. Row 1 corresponds to the first 
year of the OOS and row 2 to the second year of the OOS. For example, for the first cell on the left 
corner, 17.71% is the average profit per bet of CF for the 2009-2010 Premiership season and the 
3.59% is the performance of the exact same model (same specification and rules) for the 2010-2011 
season of the same championship. 
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Table 3.7: Average Profit per Bet (Asian Handicap) 

 IS  

Model Championship OOS 2006-
2009 

2006-
2010 

2007-
2011 

2008-
2012 

2009-
2013 

2010-
2014 

Average 

CF Premiership 1 25.00% 10.47% 12.53% 8.45% 26.09% 13.05% 15.93% 

2 2.65% 3.78% 6.02% 4.62% -1.18% -1.30% 2.43% 

La -Liga 1 24.08% 11.14% 9.36% 14.97% 15.20% 9.88% 14.11% 

2 2.63% 1.43% 2.14% 3.57% 1.98% 5.28% 2.84% 

Seria A 1 23.98% 13.73% 10.54% 7.79% 10.26% 16.58% 13.81% 

2 4.23% -3.33% 2.52% -4.14% 3.74% 3.45% 1.08% 

RVM Premiership 1 -0.58% -4.63% -0.37% -6.20% -2.96% -4.07% -3.14% 

2 -1.19% -5.07% -9.27% -8.14% -8.52% -5.14% -6.22% 

La -Liga 1 7.10% 3.02% 4.49% -1.55% -1.48% 1.62% 2.20% 

2 7.02% 1.30% 0.41% -3.84% -1.70% 1.32% 0.75% 

Seria A 1 4.04% -2.18% 1.84% -0.40% -2.61% -3.24% -0.43% 

2 -4.03% -0.15% -5.54% -3.42% -13.06% -7.14% -5.56% 

ANFIS Premiership 1 -2.38% 0.04% -8.72% 0.16% 0.51% 1.02% -1.56% 

2 -5.24% -11.74% -10.26% -4.44% -5.13% -1.42% -6.37% 

La -Liga 1 -6.06% 8.77% 6.60% 0.64% -2.73% -5.22% 0.33% 

2 -6.40% 2.39% -1.50% -5.99% -9.95% 0.26% -3.53% 

Seria A 1 0.07% -3.28% 2.89% -4.25% -6.73% -2.32% -2.27% 

2 -2.22% -6.12% -8.64% -9.41% -14.27% -7.65% -8.05% 

OP Premiership 1 2.97% 1.32% 0.90% -8.38% -0.82% -5.79% -1.63% 

2 0.03% -0.14% -8.02% -7.19% -8.18% -11.03% -5.76% 

La -Liga 1 -0.34% -3.84% -0.18% -0.10% -5.55% 0.50% -1.59% 

2 -2.97% 0.45% 1.36% -7.59% -1.42% -6.55% -2.79% 

Seria A 1 6.45% -5.97% -1.04% -0.01% -5.22% -10.61% -2.73% 

2 0.56% -4.96% 5.62% -8.40% -4.84% -3.70% -2.62% 

Note: All values in the Table represent the average profit per season. Row 1 corresponds to the first year of the 

OOS and row 2 to the second year of the OOS. For example, for the first cell on the left corner, 25.00% is the 

average profit per bet of CF for the 2009-2010 Premiership season and the 2.65% is the performance of the 

exact same model (same specification and rules) for the 2010-2011 season of the same championship. 
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Table 3.8: Average Profit per Bet (Number of Goals) 

 IS  

Model Championship OOS 2006-
2009 

2006-
2010 

2007-
2011 

2008-
2012 

2009-
2013 

2010-
2014 

Average 

CF Premiership 1 17.44% 16.25% 9.14% 11.64% 28.78% 17.62% 16.81% 

2 2.80% -1.08% -0.46% 2.83% 7.07% 4.77% 2.66% 

La -Liga 1 13.41% 15.44% 19.49% 14.14% 14.65% 9.87% 14.50% 

2 0.42% 2.15% 5.14% 0.28% 3.33% 0.83% 2.03% 

Seria A 1 17.22% 10.28% 6.45% 20.93% 14.32% 19.03% 14.71% 

2 1.20% -0.96% -0.25% 6.97% 2.44% 3.27% 2.11% 

RVM Premiership 1 1.77% 0.14% -0.42% -3.76% -4.80% -8.84% -2.65% 

2 0.95% -1.20% -4.88% -4.03% -12.51% -15.76% -6.24% 

La -Liga 1 1.70% -1.96% -0.95% -3.00% 4.11% -3.06% -0.53% 

2 -6.16% -5.54% -2.28% -5.45% -5.78% -6.49% -5.28% 

Seria A 1 -1.47% -0.51% -3.46% -6.13% -0.02% -1.35% -2.16% 

2 -1.53% -2.79% -6.56% -9.97% -1.58% -6.40% -4.81% 

ANFIS Premiership 1 -6.57% -5.43% 0.12% -3.22% -5.20% -3.38% -3.95% 

2 -9.84% -6.64% -8.55% -6.35% -5.95% -4.18% -6.92% 

La -Liga 1 -4.20% -2.12% 0.78% -2.92% 0.12% -3.66% -2.00% 

2 -7.13% -3.56% -4.02% -5.26% -3.92% -7.46% -5.23% 

Seria A 1 -2.84% -2.48% -4.16% -2.42% -2.60% -0.32% -2.47% 

2 -4.61% -5.07% -10.49% -6.93% -3.30% -5.02% -5.90% 

OP Premiership 1 -7.95% -11.28% -0.16% -3.86% -1.96% 3.15% -3.68% 

2 -7.80% 0.43% -15.66% -6.35% 5.78% -9.50% -5.52% 

La -Liga 1 -0.80% -8.90% -0.18% -10.24% -1.81% -5.10% -4.51% 

2 -8.75% -5.94% -10.17% 5.07% -12.75% -4.20% -6.12% 

Seria A 1 -13.14% -0.66% -4.76% 0.03% -13.08% -10.74% -7.06% 

2 4.59% -9.44% 2.22% -14.16% -1.59% -4.86% -3.87% 

Note: All values in the Table represent the average profit per season. Row 1 corresponds to the first 
year of the OOS and row 2 to the second year of the OOS. For example, for the first cell on the left 
corner, 17.44% is the average profit per bet of CF for the 2009-2010 Premiership season and the 
2.80% is the performance of the exact same model (same specification and rules) for the 2010-2011 
season of the same championship. 
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Table 3.9: Proportional Cumulative Annualized Return (Game Result) 

Note: All values in the Table represent the proportional cumulative annualized return per season. 
Row 1 corresponds to the first year of the OOS and row 2 to the second year of the OOS. For 
example, for the first cell on the left corner, 40.26% is the average profit per bet of CF for the 2009-
2010 Premiership season and the 38.08% is the performance of the exact same model (same 
specification and rules) for the 2010-2011 season of the same championship. 

 
 
 
 
 
 
 
 

 IS  

Model Championship OOS 2006-
2009 

2006-
2010 

2007-
2011 

2008-
2012 

2009-
2013 

2010-
2014 

Average 

CF Premiership 1 40.26% 7.42% 10.89% 11.22% 19.58% 6.91% 16.05% 

2 38.08% 1.35% 1.52% -4.63% 11.11% -5.70% 6.96% 

La -Liga 1 -0.14% 14.58% 22.39% 18.14% 29.46% 10.04% 15.75% 

2 -2.52% 3.25% 11.81% -0.48% -9.60% -5.85% -0.57% 

Seria A 1 15.34% 10.95% 28.64% 32.30% 32.01% 10.17% 21.57% 

2 -1.63% -32.41% 2.01% -5.02% -17.08% -6.29% -10.07% 

RVM Premiership 1 -15.14% -15.74% -20.17% -29.53% -12.47% -17.24% -18.38% 

2 -27.12% -45.78% -54.28% -35.52% -60.05% -58.30% -46.84% 

La -Liga 1 -33.45% -20.64% -19.25% -28.65% -17.53% -21.02% -23.42% 

2 -55.26% -57.36% -38.27% -47.20% -42.08% -47.36% -47.92% 

Seria A 1 0.15% -14.21% -7.50% -12.37% -32.55% -47.32% -18.97% 

2 -25.13% -60.93% -16.06% -61.27% -59.77% -62.83% -47.67% 

ANFIS Premiership 1 -5.26% -10.25% -24.07% -30.17% -9.52% -16.29% -15.93% 

2 -29.16% -15.57% -36.49% -33.60% -23.41% -23.47% -26.95% 

La -Liga 1 -32.55% -33.24% -32.24% -16.47% -10.26% -45.07% -28.31% 

2 -68.26% -38.56% -69.41% -23.54% -15.05% -52.14% -44.49% 

Seria A 1 -55.85% -26.37% -6.84% -47.29% -14.54% -13.25% -27.36% 

2 -60.24% -48.70% -21.58% -55.28% -67.78% -33.88% -47.91% 

OP Premiership 1 -52.66% -23.85% -36.44% -25.68% -15.22% -40.28% -32.36% 

2 -64.66% -32.10% -52.13% -43.69% -19.65% -56.09% -44.72% 

La -Liga 1 -15.14% -36.60% -35.06% -59.07% -22.18% -28.46% -32.75% 

2 -18.44% -68.12% -62.38% 60.57% -56.87% -55.41% -33.44% 

Seria A 1 -62.48% -18.93% -50.38% -37.57% -37.55% -40.16% -41.18% 

2 -66.64% -46.18% -55.37% -66.88% -59.85% -58.74% -58.94% 
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Table 3.10: Proportional Cumulative Annualized Return (Asian Handicap) 

 IS  

Model Championship OOS 
2006-
2009 

2006- 
2010 

2007- 
2011 

2008- 
2012 

2009- 
2013 

2010- 
2014 

Average 

CF 

Premiership 
1 17.98% 13.23% 18.85% 12.57% 19.21% 16.93% 16.46% 

2 -9.83% 2.19% 17.00% 9.59% -8.73% -3.02% 1.20% 

La -Liga 
1 22.20% 8.26% 6.05% 14.42% 18.11% 9.64% 13.11% 

2 3.25% -0.12% -5.47% 0.68% 0.12% 6.33% 0.80% 

Seria A 
1 11.85% 6.50% 17.31% 6.19% 15.28% 12.94% 11.68% 

2 3.03% 1.30% 1.05% -0.32% 9.27% 4.97% 3.22% 

RVM 

Premiership 
1 -20.14% -60.66% -28.58% -18.60% -52.05% -38.52% -36.43% 

2 -33.96% -64.59% -32.55% -68.63% -59.15% -59.33% -53.04% 

La -Liga 
1 -30.24% -54.59% -20.61% -16.87% -36.43% -4.24% -27.16% 

2 -44.39% -58.12% -47.02% -43.38% -41.82% -9.25% -40.66% 

Seria A 
1 -39.25% -31.86% -40.58% -53.99% -50.13% -32.31% -41.35% 

2 -58.13% -33.60% -67.50% -64.20% -60.24% -64.55% -58.04% 

ANFIS 

Premiership 
1 -12.47% -26.63% -20.55% -26.30% -19.34% -13.76% -19.84% 

2 -64.42% -56.97% -40.17% 48.59% -65.24% -39.75% -36.33% 

La -Liga 
1 -45.74% -30.54% -35.14% -17.18% -50.94% -63.65% -40.53% 

2 -54.80% -60.04% -43.11% -32.82% -55.87% -65.71% -52.06% 

Seria A 
1 -33.75% -40.40% -50.14% -50.79% -41.72% -20.20% -39.50% 

2 -53.45% -56.25% -62.17% -59.24% -55.27% -45.37% -55.29% 

OP 

Premiership 
1 -52.64% -47.52% -28.16% -30.28% -43.38% -60.08% -43.68% 

2 -64.03% -61.47% -51.21% -55.02% -65.17% -68.67% -60.93% 

La -Liga 
1 -19.52% -56.76% -26.90% -25.94% -37.89% -42.22% -34.87% 

2 -50.73% -61.23% -56.47% -49.57% -46.37% -57.03% -53.57% 

Seria A 
1 -54.07% -42.87% -34.31% -50.37% -61.68% -48.39% -48.62% 

2 -57.26% -63.01% -60.47% -65.17% -66.33% -64.17% -62.74% 

Note: All values in the Table represent the proportional cumulative annualized return per season. 

Row 1 corresponds to the first year of the OOS and row 2 to the second year of the OOS. For 

example, for the first cell on the left corner, 17.98% is the average profit per bet of CF for the 2009-

2010 Premiership season and the -9.83% is the performance of the exact same model (same 

specification and rules) for the 2010-2011 season of the same championship. 
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Table 3.11: Proportional Cumulative Annualized Return (Number of Goals) 

 IS  

Model Championship OOS 
2006-
2009 

2006-
2010 

2007-
2011 

2008-
2012 

2009-
2013 

2010-
2014 

Average 

CF 

Premiership 

1 7.29% 24.58% 19.03% 6.68% 3.81% 33.46% 15.81% 

2 0.85% 8.04% -1.69% -3.42% -2.03% -6.21% -0.74% 

La -Liga 

1 10.24% 12.48% 5.87% 33.61% 9.56% 12.57% 14.06% 

2 -9.22% 4.65% -8.56% 4.18% 2.55% 0.87% -0.92% 

Seria A 

1 9.17% 10.66% 11.54% 14.03% 25.19% 11.86% 13.74% 

2 3.63% 0.57% 3.12% 7.35% -1.25% 2.63% 2.68% 

RVM 

Premiership 

1 -21.14% -15.58% -31.61% -58.47% -14.87% -18.40% -26.68% 

2 -56.24% -41.28% -59.35% -65.55% -40.16% -51.81% -52.40% 

La -Liga 

1 -26.24% -16.38% -46.72% -57.43% -32.55% -30.04% -34.89% 

2 -41.02% -38.45% -63.23% -58.06% -59.67% -60.12% -53.43% 

Seria A 

1 -30.25% -29.03% -32.19% -41.13% -10.36% -37.35% -30.05% 

2 -65.02% -50.14% -48.21% -56.01% -40.62% -46.18% -51.03% 

ANFIS 

Premiership 

1 -42.14% -39.43% -41.02% -23.48% -66.86% -23.17% -39.35% 

2 -49.56% -51.17% -49.52% -49.08% -70.35% -49.61% -53.22% 

La -Liga 

1 -61.63% -60.78% -19.22% -40.79% -23.95% -42.25% -41.44% 

2 -63.28% -61.36% -53.24% -67.59% -59.31% -52.22% -59.50% 

Seria A 

1 -52.78% -55.90% -56.32% -50.63% -57.05% -54.00% -54.45% 

2 -59.55% -58.37% -60.24% -62.47% -59.88% -60.12% -60.11% 

OP 

Premiership 

1 -39.45% -49.56% -55.32% -58.48% -47.22% -52.17% -50.37% 

2 -60.17% -58.16% -59.42% -62.21% -55.66% -63.14% -59.79% 

La -Liga 

1 -48.87% -30.45% -43.60% -49.62% -43.46% -63.46% -46.58% 

2 -65.24% -48.80% -66.75% -63.96% -60.17% -62.85% -61.30% 

Seria A 

1 -41.13% -32.87% -63.55% -60.32% -57.08% -58.45% -52.23% 

2 -63.48% -65.17% -65.22% -66.57% -63.42% -65.01% -64.81% 

Note: All values in the Table represent the proportional cumulative annualized return per season. 
Row 1 corresponds to the first year of the OOS and row 2 to the second year of the OOS. For 
example, for the first cell on the left corner, 7.29% is the average profit per bet of CF for the 2009-
2010 Premiership season and the 0.85% is the performance of the exact same model (same 
specification and rules) for the 2010-2011 season of the same championship. 
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Table 3.12: Kelly Criterion (CF) 

 IS  

Exercise Championship OOS 
2006-
2009 

2006-
2010 

2007- 
2011 

2008- 
2012 

2009- 
2013 

2010-
2014 

Average 

Game 
Result 

Premiership 

1 17.03% 20.27% 23.93% 25.90% 27.88% 15.34% 21.73% 

2 5.91% 12.45% 11.67% 4.88% 3.33% 6.16% 7.40% 

La -Liga 

1 12.13% 15.27% 10.38% 17.57% 8.35% 4.91% 11.44% 

2 4.49% 7.66% 5.02% 6.32% 5.29% 3.45% 5.37% 

Seria A 

1 6.17% 11.13% 24.61% 11.93% 8.10% 15.77% 12.95% 

2 2.78% -4.50% 3.12% 8.12% 6.34% 6.25% 3.69% 

Asian 
Handicap 

Premiership 

1 26.10% 10.43% 14.18% 7.01% 24.25% 13.33% 15.88% 

2 3.88% 5.51% 7.08% 4.90% 3.44% 3.67% 4.75% 

La -Liga 

1 24.88% 11.52% 12.43% 15.90% 13.13% 10.88% 14.79% 

2 4.97% 3.11% 6.78% 5.69% 3.55% 7.28% 5.23% 

Seria A 

1 21.23% 14.10% 12.15% 8.79% 9.31% 17.08% 13.78% 

2 5.22% 3.46% 4.57% 0.94% 4.74% 3.94% 3.81% 

Number 
of Goals 

Premiership 

1 16.58% 17.31% 10.64% 12.23% 27.07% 19.84% 17.28% 

2 3.51% 2.37% 4.27% 4.59% 9.68% 6.54% 5.16% 

La -Liga 

1 12.60% 15.86% 18.32% 15.91% 14.67% 11.32% 14.78% 

2 2.69% 3.23% 5.67% 4.25% 6.87% 3.85% 4.43% 

Seria A 

1 17.54% 11.32% 6.03% 19.67% 15.41% 19.43% 14.90% 

2 5.20% 2.19% 3.14% 7.37% 6.42% 6.44% 5.13% 

Note: All values in the Table represent the average profit per season of CF with the Kelly criterion. 
Row 1 corresponds to the first year of the OOS and row 2 to the second year of the OOS. For 
example, for the first cell on the left corner, 17.03% is the average profit per bet of CF for the 2009-
2010 Premiership season and the 5.91% is the performance of the exact same model (same 
specification and rules) for the 2010-2011 season of the same championship. 
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Table 3.13: Kelly Criterion (OP) 

 IS  

Exercise Championship OOS 
2006-
2009 

2006-
2010 

2007-
2011 

2008-
2012 

2009-
2013 

2010-
2014 

Average 

Game 
Result 

Premiership 

1 0.53% 2.35% 1.59% -3.08% 7.35% -1.71% 1.17% 

2 -0.92% -2.15% -3.62% -2.29% -3.00% -0.35% -2.06% 

La -Liga 

1 3.90% 0.41% 8.38% -1.53% -10.05% -0.09% 0.17% 

2 1.45% -4.17% -3.84% -5.16% 2.99% -2.69% -1.90% 

Seria A 

1 -0.33% 2.61% 0.84% 0.36% 1.35% -2.50% 0.39% 

2 -3.71% -0.64% -6.35% -0.61% -3.80% -1.06% -2.70% 

Asian 
Handicap 

Premiership 

1 4.77% 3.49% 1.62% -3.25% -0.08% -1.14% 0.90% 

2 1.32% 0.41% -3.65% -2.09% -3.43% -1.35% -1.47% 

La -Liga 

1 5.48% -1.01% 11.45% 2.80% -5.46% -0.19% 2.18% 

2 3.90% -2.34% 4.17% -6.61% 0.08% -0.90% -0.28% 

Seria A 

1 8.18% -2.24% 1.05% 2.80% -1.80% -3.95% 0.67% 

2 1.01% 0.14% -3.27% -1.42% -2.12% -2.62% -1.38% 

Number of 
Goals 

Premiership 

1 -1.88% -0.43% 0.78% -1.03% 0.10% 5.48% 0.50% 

2 -0.76% 1.08% -2.27% 0.39% -1.27% -1.68% -0.75% 

La -Liga 

1 -0.08% 1.38% 1.37% -1.91% -1.00% -1.95% -0.37% 

2 -0.61% 0.58% -2.28% -3.15% -1.32% -0.50% -1.21% 

Seria A 

1 4.26% -0.08% -2.58% 1.05% -13.08% 6.58% -0.64% 

2 -1.26% -6.92% -6.75% -14.05% -1.55% -1.58% -5.35% 

Note: All values in the Table represent the average profit per season of OP with the Kelly criterion. 
Row 1 corresponds to the first year of the OOS and row 2 to the second year of the OOS. For 
example, for the first cell on the left corner, 0.53% is the average profit per bet of CF for the 2009-
2010 Premiership season and the -0.92% is the performance of the exact same model (same 
specification and rules) for the 2010-2011 season of the same championship. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Tables                   179 

Table 4.1: Summary statistics of the daily return series under study (12 MSCI indexes and the federal funds rate).  

Market Mean (bp) Max (%) Min (%) Std. dev. (%) Kurtosis Skewness 
First AC 

(significance) 

Developed 1.55 9.10 -7.33 1.02 12.86 -0.50 0.12 (*) 

US 1.45 11.04 -9.51 1.18 15.11 -0.36 -0.10 (*) 

UK 1.60 17.32 -36.26 1.29 212.22 -6.62 0.01 

Japan 2.66 12.77 -20.75 1.27 62.62 -2.12 -0.07 

Emerging 1.91 10.07 -9.99 1.27 11.38 -0.49 0.22 (*) 

Russia 1.83 42.37 -58.10 2.35 172.93 -2.26 0.02 

China 3.32 14.05 -12.84 1.74 10.10 -0.04 0.03 (*) 

Brazil 3.59 37.69 -46.23 2.19 109.54 -0.39 0.02 

Frontier 1.95 12.54 -9.32 1.62 8.74 0.20 0.06 (*) 

Estonia 2.96 5.50 -7.70 1.06 6.47 -0.13 0.16 (*) 

Morocco 0.99 5.69 -9.07 0.83 15.56 -1.38 0.26 (*) 

Jordan 1.21 7.82 -9.08 1.10 13.03 -0.71 0.07 (*) 

Federal funds 

rate 
0.53 0.02 0.00 0.01 2.78 1.18 1.00 (*) 

Note: The mean daily returns are reported in basis points (bp). Maximum, minimum and standard deviation are presented in percentages (%). The last column reports the 
first-order autocorrelation coefficients. Coefficients notated with (*) are significant at 1% (*) level for the Ljung-Box Q statistic. The study period for all time-series is 01/01/2004 
to 31/12/2016. 
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Table 4.2: Percentage and standard deviation of the DFDR+/- procedure survivors (IS 2 years).  

Market 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 

Developed 
0.34 

(0.97) 
1.16 

(1.87) 
0.43 

(1.03) 
2.39 

(1.78) 
2.84 

(1.56) 
3.52 

(7.03) 
0.24 

(0.06) 
3.50 

(7.02) 
16.24 

(11.37) 
0.33 

(0.15) 
3.10 

(3.28) 

US 
0.01 

(0.00) 
0.02 

(0.01) 
0.16 

(0.32) 
0.91 

(1.12) 
1.54 

(0.94) 
8.33 

(9.49) 
0.28 

(0.07) 
7.75 

(10.55) 
31.49 
(3.55) 

19.58 
(13.81) 

7.01 
(3.99) 

UK 
20.08 
(9.08) 

15.52 
(10.26) 

0.32 
(0.38) 

12.97 
(10.21) 

20.89 
(6.96) 

9.41 
(9.88) 

0.18 
(0.04) 

0.15 
(0.06) 

8.72 
(11.71) 

0.29 
(0.09) 

8.85 
(5.87) 

Japan 
3.59 

(6.56) 
0.11 

(0.04) 
0.69 

(1.49) 
3.20 

(1.32) 
2.58 

(0.29) 
1.09 

(1.40) 
0.29 

(0.05) 
0.27 

(0.07) 
0.18 

(0.03) 
0.16 

(0.04) 
1.22 

(1.13) 

Emerging 
2.87 

(5.39) 
1.26 

(1.19) 
1.12 

(1.46) 
3.35 

(0.97) 
6.04 

(4.46) 
9.01 

(10.21) 
0.36 

(0.09) 
0.39 

(0.10) 
0.19 

(0.08) 
0.24 

(0.12) 
2.48 

(2.41) 

Russia 
14.39 
(7.39) 

16.22 
(9.55) 

1.77 
(3.48) 

25.64 
(7.84) 

17.61 
(4.78) 

10.90 
(10.65) 

0.28 
(0.10) 

0.44 
(0.11) 

0.58 
(0.14) 

0.90 
(0.30) 

8.87 
(4.43) 

China 
2.59 

(3.38) 
32.32 

(15.03) 
5.14 

(9.68) 
0.93 

(0.56) 
3.72 

(6.77) 
3.59 

(7.16) 
0.28 

(0.01) 
0.27 

(0.07) 
0.20 

(0.09) 
0.81 

(0.52) 
4.99 

(4.33) 

Brazil 
22.52 
(13.6) 

8.62 
(7.28) 

8.84 
(8.44) 

17.79 
(5.10) 

20.84 
(5.19) 

8.71 
(9.74) 

0.09 
(0.07) 

0.27 
(0.35) 

1.02 
(0.38) 

0.32 
(0.14) 

8.9 
(5.03) 

Frontier 
14.14 

(12.40) 
1.10 

(0.45) 
3.85 

(7.50) 
29.22 
(7.27) 

25.26 
(9.00) 

7.24 
(9.64) 

0.37 
(0.19) 

0.47 
(0.23) 

4.39 
(7.36) 

1.49 
(1.26) 

8.75 
(5.53) 

Estonia 
17.37 

(16.94) 
0.35 

(0.71) 
4.34 

(7.12) 
7.91 

(2.73) 
7.52 

(4.13) 
10.23 

(10.14) 
0.19 

(0.05) 
4.35 

(7.18) 
8.86 

(6.51) 
0.66 

(1.26) 
6.18 

(5.68) 

Morocco 
7.36 

(8.27) 
26.96 
(8.76) 

17.24 
(9.58) 

4.82 
(2.90) 

0.64 
(0.63) 

0.15 
(0.06) 

0.34 
(0.34) 

0.65 
(0.62) 

0.15 
(0.05) 

0.22 
(0.10) 

5.85 
(3.13) 

Jordan 
20.26 
(11.4) 

1.57 
(2.22) 

1.77 
(1.67) 

4.27 
(1.34) 

1.52 
(0.62) 

0.67 
(0.84) 

0.21 
(0.05) 

0.09 
(0.03) 

0.11 
(0.03) 

0.18 
(0.07) 

3.06 
(1.83) 

Average 
10.46 
(7.95) 

8.77 
(4.78) 

3.81 
(4.35) 

9.45 
(3.60) 

9.25 
(3.78) 

6.07 
(7.19) 

0.26 
(0.09) 

1.55 
(2.20) 

6.01 
(3.44) 

2.10 
(1.49) 

5.77 
(3.89) 

Note: The table reports the percentage and standard deviations of the survivor rules adjusted by the total number of rules. For example, in 2006 for the Developed market, 

the average number of surviving rules is 72 (0.0034×21195) and their standard deviation is 206 (0.0097×21195). The average is estimated from the twelve portfolios whose 
OOS is on 2006. The first portfolio’s IS from 01/01/2004-31/12/2005 and the remaining eleven are calculated by rolling-forward the IS by one month.  
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Table 4.3: Annualized Returns and Sharpe Ratios after Transaction Costs (IS 2 Years) 

Market 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 

Developed 
10.67% 
(1.62) 

11.87% 
(1.44) 

14.93% 
(1.39) 

27.00% 
(1.66) 

24.73% 
(1.62) 

8.65% 
(1.79) 

8.06% 
(1.75) 

7.92% 
(1.65) 

9.36% 
(1.57) 

5.64% 
(2.39) 

12.88% 
(1.69) 

US 
8.65% 
(0.95) 

10.41% 
(1.11) 

14.36% 
(1.11) 

25.44% 
(1.19) 

24.93% 
(1.20) 

9.54% 
(1.38) 

8.45% 
(1.50) 

10.73% 
(1.51) 

10.55% 
(1.48) 

7.50% 
(1.24) 

13.05% 
(1.27) 

UK 
10.13% 
(1.21) 

11.00% 
(1.21) 

15.50% 
(0.90) 

23.53% 
(0.99) 

28.08% 
(1.16) 

11.32% 
(1.25) 

4.89% 
(2.19) 

5.48% 
(1.33) 

11.53% 
(1.52) 

8.02% 
(1.99) 

12.95% 
(1.38) 

Japan 
14.23% 
(1.02) 

13.37% 
(0.98) 

9.13% 
(0.73) 

19.31% 
(1.10) 

18.57% 
(1.18) 

7.24% 
(1.17) 

7.05% 
(1.38) 

5.73% 
(1.64) 

3.70% 
(1.64) 

3.14% 
(1.83) 

10.15% 
(1.27) 

Emerging 
19.92% 
(2.35) 

22.49% 
(2.09) 

26.91% 
(1.84) 

37.28% 
(2.04) 

34.96% 
(1.98) 

12.36% 
(1.88) 

12.61% 
(2.08) 

12.86% 
(2.09) 

8.83% 
(2.11) 

6.25% 
(1.89) 

19.45% 
(2.03) 

Russia 
22.47% 
(0.95) 

22.45% 
(0.98) 

16.30% 
(0.70) 

46.59% 
(1.18) 

47.53% 
(1.30) 

15.61% 
(1.15) 

14.90% 
(1.74) 

17.32% 
(1.75) 

11.51% 
(1.76) 

22.86% 
(1.65) 

23.76% 
(1.32) 

China 
23.05% 
(1.65) 

24.14% 
(1.73) 

35.52% 
(1.68) 

43.71% 
(1.52) 

32.85% 
(1.37) 

8.73% 
(1.37) 

5.51% 
(2.33) 

8.40% 
(1.90) 

12.01% 
(1.75) 

14.51% 
(1.65) 

20.84% 
(1.70) 

Brazil 
24.90% 
(1.35) 

27.61% 
(1.06) 

30.54% 
(1.02) 

37.87% 
(1.25) 

35.75% 
(1.22) 

11.15% 
(1.17) 

11.41% 
(1.98) 

15.05% 
(1.83) 

13.20% 
(1.85) 

17.85% 
(1.48) 

22.53% 
(1.42) 

Frontier 
16.79% 
(2.60) 

17.46% 
(2.33) 

20.21% 
(1.95) 

29.42% 
(2.06) 

28.96% 
(2.24) 

12.98% 
(2.39) 

10.32% 
(2.17) 

10.23% 
(2.24) 

9.39% 
(2.27) 

10.49% 
(2.02) 

16.62% 
(2.23) 

Estonia 
18.07% 
(1.81) 

20.66% 
(1.64) 

29.00% 
(1.77) 

42.44% 
(1.73) 

40.75% 
(1.78) 

18.93% 
(1.47) 

13.62% 
(1.77) 

12.09% 
(1.58) 

13.37% 
(1.38) 

10.94% 
(1.37) 

21.99% 
(1.63) 

Morocco 
21.44% 
(2.07) 

21.55% 
(1.91) 

24.35% 
(1.71) 

27.58% 
(1.60) 

16.92% 
(1.54) 

4.60% 
(1.99) 

10.91% 
(1.17) 

12.83% 
(1.21) 

4.86% 
(1.95) 

3.47% 
(1.34) 

14.85% 
(1.65) 

Jordan 
33.77% 
(1.97) 

25.68% 
(1.56) 

21.99% 
(1.59) 

28.3% 
(1.59) 

22.09% 
(1.43) 

12.05% 
(1.79) 

9.5% 
(1.83) 

4.60% 
(1.91) 

6.92% 
(1.52) 

5.79% 
(1.55) 

17.07% 
(1.67) 

Average 
18.67% 
(1.63) 

19.06% 
(1.50) 

21.56% 
(1.37) 

32.37% 
(1.49) 

29.68% 
(1.50) 

11.10% 
(1.57) 

9.77% 
(1.82) 

10.27% 
(1.72) 

9.60% 
(1.73) 

9.70% 
(1.70) 

17.18% 
(1.60) 

Note: The table reports the average IS annualized returns and Sharpe ratios of twelve portfolios for two years of IS after transact ion costs (rolling-forward by one month). 

For example, the 10.67% annualized return of the Developed markets (2006) is calculated as the average IS annualized return of twelve portfolios. The first portfolio’s IS 

return is calculated over the period of 01/01/2004-31/12/2005. The remaining eleven are calculated by rolling-forward the IS by one month. The same logic applies to the 

Sharpe ratios. The last column and raw presents the average performance per market across all years and per year respectively.  
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Table 4.4: Annualized Returns and Sharpe Ratios after Transaction Costs (IS 2 Years and OOS 1 Month) 

Market 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 

Developed 
-3.66% 
(-0.54) 

-4.72% 
(-0.43) 

10.63% 
(0.41) 

4.14% 
(0.25) 

-17.79% 
(-2.91) 

-1.92% 
(-0.5) 

-3.23% 
(-1.27) 

0.35% 
(0.13) 

-2.07% 
(-0.42) 

-1.43% 
(-0.64) 

-1.97% 
(-0.59) 

US 
1.81% 
(0.2) 

-6.16% 
(-0.45) 

22.72% 
(0.77) 

-3.64% 
(-0.19) 

-14.07% 
(-1.49) 

-1.65% 
(-0.31) 

-1.37% 
(-0.5) 

7.02% 
(1.31) 

5.73% 
(0.77) 

-5.28% 
(-0.71) 

0.51% 
(-0.06) 

UK 
15.94% 
(1.55) 

-3.14% 
(-0.27) 

16.5% 
(0.41) 

19.58% 
(1.16) 

-12.73% 
(-1.47) 

-4.12% 
(-0.58) 

-3.83% 
(-3.7) 

1.67% 
(0.67) 

-7.09% 
(-0.97) 

-2.8% 
(-0.45) 

2% 
(-0.36) 

Japan 
-11.33% 
(-0.76) 

-8.68% 
(-1.8) 

41.53% 
(1.4) 

11.47% 
(0.51) 

-2.11% 
(-0.37) 

-7.87% 
(-1.62) 

-3.3% 
(-1.31) 

-3.95% 
(-1.03) 

-5.75% 
(-2.27) 

-2.98% 
(-1.13) 

0.7% 
(-0.84) 

Emerging 
1.75% 
(0.15) 

-1.93% 
(-0.15) 

43.52% 
(1.1) 

4.25% 
(0.29) 

-7.22% 
(-1.09) 

-3.14% 
(-0.52) 

-0.93% 
(-0.23) 

-1.71% 
(-0.55) 

-3.71% 
(-1.28) 

-1.16% 
(-0.31) 

2.97% 
(-0.26) 

Russia 
45.77% 
(1.25) 

-9% 
(-1.33) 

45.64% 
(1.01) 

13.09% 
(0.47) 

-20.64% 
(-2.1) 

-9.9% 
(-1.02) 

-2.42% 
(-0.44) 

-4.63% 
(-0.92) 

6.92% 
(0.44) 

-12.48% 
(-0.98) 

5.24% 
(-0.36) 

China 
59.59% 
(2.62) 

29.16% 
(1.17) 

-2.1% 
(-0.05) 

-19.48% 
(-1.04) 

-8.93% 
(-1.09) 

-10.76% 
(-1.4) 

-0.29% 
(-0.64) 

-3.54% 
(-1.42) 

-4.51% 
(-0.66) 

11.46% 
(0.82) 

5.06% 
(-0.17) 

Brazil 
7.53% 
(0.28) 

67.85% 
(1.2) 

48.86% 
(0.9) 

15.4% 
(0.68) 

-15.81% 
(-1.67) 

-5.12% 
(-0.73) 

-7.98% 
(-2.42) 

-3.03% 
(-0.49) 

-7.35% 
(-0.6) 

-1.07% 
(-0.07) 

9.93% 
(-0.29) 

Frontier 
-11.64% 
(-2.04) 

14.24% 
(1.44) 

64.67% 
(2.24) 

11.12% 
(1.04) 

0.26% 
(0.06) 

-12.4% 
(-3.55) 

-0.27% 
(-0.09) 

4.2% 
(0.98) 

7.75% 
(1.39) 

2.33% 
(0.32) 

8.03% 
(0.18) 

Estonia 
-4.93% 
(-0.62) 

-7.76% 
(-0.45) 

65.08% 
(1.46) 

2.83% 
(0.1) 

6.06% 
(0.3) 

-24.12% 
(-2.6) 

6.26% 
(0.98) 

-4.29% 
(-0.69) 

12.92% 
(1.23) 

-13.23% 
(-2.11) 

3.88% 
(-0.24) 

Morocco 
34% 

(1.87) 
21.97% 
(1.65) 

25.32% 
(1.2) 

1.5% 
(0.1) 

-10.22% 
(-2.17) 

-2.49% 
(-0.87) 

1.19% 
(0.1) 

-4.9% 
(-0.48) 

-0.64% 
(-0.61) 

-0.36% 
(-0.17) 

6.54% 
(0.06) 

Jordan 
-0.62% 
(-0.04) 

-3.47% 
(-0.43) 

37.89% 
(1.32) 

-9.46% 
(-0.81) 

-0.12% 
(-0.02) 

-0.79% 
(-0.13) 

-4.59% 
(-1.55) 

-2.27% 
(-1.03) 

-4.63% 
(-1.23) 

-1.32% 
(-0.37) 

1.06% 
(-0.43) 

Average 
11.18% 
(0.33) 

7.36% 
(0.01) 

35.02% 
(1.02) 

4.23% 
(0.21) 

-8.61% 
(-1.17) 

-7.02% 
(-1.15) 

-1.73% 
(-0.92) 

-1.26% 
(-0.29) 

-0.2% 
(-0.35) 

-2.36% 
(-0.48) 

3.66% 
(-0.28) 

Note: The table reports the average OOS annualized returns and Sharpe ratios of twelve portfolios for two years of IS and one month of OOS after transaction costs (rolling-

forward by one month). For example, the -3.66% annualized return of the Developed markets (2006) is calculated as the average OOS annualized return of twelve portfolios. 

The first portfolio’s OOS return is calculated over January 2006 using as IS the period 01/01/2004-31/12/2005. The remaining eleven OOS returns are calculated by rolling-

forward the IS by one month. The same logic applies to the Sharpe ratios. The last column and raw presents the average performance per market across all years and per 

year respectively.   
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Table 4.5: Annualized Returns and Sharpe Ratios after Transaction Costs (IS 2 Years and OOS 3 Months) 

Market 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 

Developed 
-4.54% 
(-0.62) 

-3.26% 
(-0.27) 

24.85% 
(0.99) 

-5.42% 
(-0.4) 

-13.37% 
(-2.23) 

-2.42% 
(-0.53) 

-2.91% 
(-1.22) 

-1.35% 
(-0.46) 

0.20% 
(0.04) 

-2.24% 
(-1.06) 

-1.05% 
(-0.57) 

US 
4.28% 
(0.48) 

-4.93% 
(-0.36) 

34.43% 
(1.12) 

-14.00% 
(-0.89) 

-9.63% 
(-1.10) 

-5.86% 
(-0.86) 

-0.98% 
(-0.41) 

5.41% 
(1.03) 

6.43% 
(0.86) 

-4.84% 
(-0.68) 

1.03% 
(-0.08) 

UK 
14.9% 
(1.48) 

-13.25% 
(-0.88) 

35.36% 
(0.79) 

9.70% 
(0.67) 

-9.29% 
(-1.03) 

-5.68% 
(-0.8) 

-2.07% 
(-2.10) 

0.82% 
(0.31) 

-5.53% 
(-0.81) 

-2.75% 
(-0.46) 

2.22% 
(-0.28) 

Japan 
-16.79% 
(-0.96) 

-9.00% 
(-1.81) 

29.70% 
(1.03) 

4.98% 
(0.23) 

-1.76% 
(-0.35) 

-5.78% 
(-1.53) 

-3.03% 
(-1.25) 

-2.77% 
(-0.86) 

-2.84% 
(-1.70) 

-3.67% 
(-1.49) 

-1.10% 
(-0.87) 

Emerging 
-4.31% 
(-0.42) 

-2.01% 
(-0.15) 

15.33% 
(0.49) 

-1.19% 
(-0.10) 

-5.19% 
(-0.79) 

-0.19% 
(-0.03) 

-1.92% 
(-0.52) 

-0.38% 
(-0.11) 

-4.35% 
(-1.74) 

-1.54% 
(-0.4) 

-0.57% 
(-0.38) 

Russia 
37.24% 
(1.11) 

-6.90% 
(-0.54) 

31.94% 
(0.95) 

3.01% 
(0.13) 

-17.55% 
(-1.79) 

-7.51% 
(-0.82) 

-0.09% 
(-0.02) 

-5.58% 
(-1.08) 

0.52% 
(0.04) 

-12.47% 
(-1.08) 

2.26% 
(-0.31) 

China 
35.48% 
(1.70) 

29.13% 
(1.20) 

3.30% 
(0.09) 

-8.37% 
(-0.51) 

-6.97% 
(-0.89) 

-4.61% 
(-0.71) 

-0.42% 
(-0.87) 

-3.18% 
(-1.24) 

-6.54% 
(-1.04) 

3.89% 
(0.32) 

4.17% 
(-0.19) 

Brazil 
1.52% 
(0.06) 

50.70% 
(1.05) 

7.94% 
(0.18) 

11.17% 
(0.52) 

-14.63% 
(-1.55) 

-3.96% 
(-0.59) 

-5.03% 
(-1.62) 

-5.62% 
(-0.91) 

-7.23% 
(-0.65) 

-2.33% 
(-0.18) 

3.25% 
(-0.37) 

Frontier 
-11.37% 
(-2.03) 

9.60% 
(1.01) 

75.78% 
(2.65) 

-2.44% 
(-0.31) 

2.13% 
(0.50) 

-6.28% 
(-1.67) 

0.37% 
(0.13) 

1.03% 
(0.26) 

1.24% 
(0.25) 

4.47% 
(0.60) 

7.45% 
(0.14) 

Estonia 
-1.93% 
(-0.18) 

-11.44% 
(-0.79) 

55.63% 
(1.37) 

11.29% 
(0.40) 

-3.33% 
(-0.20) 

-17.59% 
(-1.95) 

0.50% 
(0.09) 

-4.46% 
(-0.83) 

5.34% 
(0.53) 

-8.70% 
(-1.61) 

2.53% 
(-0.32) 

Morocco 
17.57% 
(1.12) 

24.57% 
(1.92) 

9.62% 
(0.55) 

-7.56% 
(-0.63) 

-8.20% 
(-1.83) 

-2.49% 
(-0.87) 

-1.49% 
(-0.15) 

-6.25% 
(-0.62) 

-0.98% 
(-0.83) 

-2.83% 
(-1.49) 

2.19% 
(-0.28) 

Jordan 
-2.77% 
(-0.20) 

-1.36% 
(-0.16) 

32.59% 
(1.22) 

-12.14% 
(-1.12) 

-0.37% 
(-0.05) 

-0.28% 
(-0.05) 

-4.27% 
(-1.46) 

-2.94% 
(-1.19) 

-2.37% 
(-0.65) 

-0.49% 
(-0.14) 

0.56% 
(-0.38) 

Average 
5.77% 
(0.13) 

5.15% 
(0.02) 

29.71% 
(0.95) 

-0.91% 
(-0.17) 

-7.35% 
(-0.94) 

-5.22% 
(-0.87) 

-1.78% 
(-0.78) 

-2.11% 
(-0.47) 

-1.34% 
(-0.48) 

-2.79% 
(-0.64) 

1.91% 
(-0.33) 

Note: The table reports the average OOS annualized returns and Sharpe ratios of four portfolios for IS of two years and OOS of three months after transaction costs (rolling-

forward by one month). For example, the -4.54% annualized return of the Developed markets (2006) is calculated as the average OOS annualized return of twelve portfolios. 

The first portfolio’s OOS return is calculated over the period 01/01/2006-31/03/2006 using as IS the period 01/01/2004-31/12/2005. The remaining eleven OOS returns are 

calculated by rolling-forward the IS and the OOS by one month. The same logic applies to the Sharpe ratios. The last column and raw presents the average performance 

per market across all years and per year respectively. 
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Table 4.6: Annualized Returns and Sharpe Ratios after Transaction Costs (IS 2 Years and OOS 6 Months) 

Market 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 

Developed 
1.05% 
(0.14) 

-1.88% 
(-0.15) 

13.92% 
(0.57) 

-2.48% 
(-0.22) 

-9.35% 
(-1.49) 

-5.75% 
(-1.16) 

-2.58% 
(-1.14) 

0.74% 
(0.26) 

-0.82% 
(-0.17) 

-0.75% 
(-0.32) 

-0.79% 
(-0.37) 

US 
0.53% 
(0.06) 

-6.82% 
(-0.46) 

26.57% 
(0.90) 

-7.22% 
(-0.53) 

-6.95% 
(-0.82) 

-5.85% 
(-0.72) 

0.63% 
(0.25) 

4.77% 
(0.95) 

5.66% 
(0.75) 

-6.46% 
(-0.95) 

0.49% 
(-0.06) 

UK 
15.09% 
(1.45) 

-12.07% 
(-0.91) 

42.99% 
(0.98) 

1.97% 
(0.16) 

-8.36% 
(-0.92) 

-7.78% 
(-0.93) 

-1.18% 
(-1.27) 

0.68% 
(0.29) 

-7.72% 
(-1.20) 

-2.01% 
(-0.32) 

2.16% 
(-0.27) 

Japan 
-18.42% 
(-1.02) 

-9.13% 
(-1.59) 

35.99% 
(1.11) 

0.61% 
(0.04) 

-2.46% 
(-0.51) 

-3.60% 
(-1.18) 

-2.15% 
(-0.83) 

-2.42% 
(-0.88) 

-1.25% 
(-0.86) 

-3.34% 
(-1.29) 

-0.62% 
(-0.70) 

Emerging 
-1.43% 
(-0.15) 

4.61% 
(0.34) 

18.10% 
(0.57) 

0.35% 
(0.03) 

-2.69% 
(-0.41) 

-4.97% 
(-0.78) 

0.87% 
(0.21) 

-0.65% 
(-0.18) 

-2.32% 
(-0.88) 

-1.87% 
(-0.45) 

1.00% 
(-0.17) 

Russia 
17.28% 
(0.68) 

-2.67% 
(-0.20) 

34.27% 
(0.94) 

-4.48% 
(-0.22) 

-15.42% 
(-1.54) 

-11.21% 
(-1.05) 

-1.32% 
(-0.28) 

-10.12% 
(-1.83) 

0.31% 
(0.02) 

-5.83% 
(-0.48) 

0.08% 
(-0.39) 

China 
25.95% 
(1.35) 

25.27% 
(1.01) 

0.34% 
(0.01) 

-5.22% 
(-0.33) 

-3.90% 
(-0.48) 

-5.51% 
(-0.76) 

-0.45% 
(-0.91) 

-4.18% 
(-1.71) 

-5.06% 
(-0.78) 

0.65% 
(0.06) 

2.79% 
(-0.25) 

Brazil 
-5.00% 
(-0.22) 

42.45% 
(0.99) 

-24.49% 
(-0.66) 

11.68% 
(0.57) 

-14.25% 
(-1.54) 

-8.22% 
(-1.00) 

-3.92% 
(-1.24) 

-2.79% 
(-0.42) 

-11.07% 
(-0.98) 

5.69% 
(0.40) 

-0.99% 
(-0.41) 

Frontier 
-7.46% 
(-1.31) 

3.34% 
(0.37) 

59.03% 
(2.54) 

-2.60% 
(-0.39) 

1.46% 
(0.34) 

-6.31% 
(-1.78) 

1.02% 
(0.36) 

1.84% 
(0.48) 

-3.06% 
(-0.68) 

5.85% 
(0.79) 

5.31% 
(0.07) 

Estonia 
-2.18% 
(-0.18) 

0.50% 
(0.04) 

43.59% 
(1.21) 

13.47% 
(0.50) 

-4.13% 
(-0.29) 

-17.81% 
(-1.96) 

3.27% 
(0.58) 

-5.76% 
(-1.20) 

0.73% 
(0.08) 

-4.64% 
(-0.74) 

2.7% 
(-0.2) 

Morocco 
11.92% 
(0.83) 

20.50% 
(1.67) 

-3.46% 
(-0.25) 

-10.05% 
(-0.92) 

-7.16% 
(-1.46) 

-2.89% 
(-1.13) 

-2.86% 
(-0.30) 

-5.93% 
(-0.62) 

-1.86% 
(-1.42) 

-2.17% 
(-1.07) 

-0.4% 
(-0.47) 

Jordan 
-6.88% 
(-0.57) 

-0.36% 
(-0.04) 

29.07% 
(1.17) 

-12.65% 
(-1.22) 

0.07% 
(0.01) 

-3.22% 
(-0.61) 

-4.53% 
(-1.75) 

-2.88% 
(-1.14) 

-2.6% 
(-0.76) 

-0.29% 
(-0.09) 

-0.43% 
(-0.50) 

Average 
2.54% 
(0.09) 

5.31% 
(0.09) 

22.99% 
(0.76) 

-1.39% 
(-0.21) 

-6.09% 
(-0.76) 

-6.93% 
(-1.09) 

-1.10% 
(-0.53) 

-2.23% 
(-0.50) 

-2.42% 
(-0.57) 

-1.27% 
(-0.37) 

0.94% 
(-0.31) 

Note: The table reports the average OOS annualized returns and Sharpe ratios of two portfolios for IS of two years and OOS of six months after transaction costs (rolling-

forward by one month). For example, the 1.05% annualized return of the Developed markets (2006) is calculated as the average OOS annualized return of twelve portfolios. 

The first portfolio’s OOS return is calculated over the period 01/01/2006-30/06/2006 using as IS the period 01/01/2004-31/12/2005. The remaining eleven OOS returns are 

calculated by rolling-forward the IS and the OOS by one month. The same logic applies to the Sharpe ratios. The last column and raw presents the average performance 

per market across all years and per year respectively. 
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Table 4.7: Monthly Performance Persistence for IS 2 Years (1 month rolling-forward) 

Market 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 

Developed 1.00 0.58 0.75 0.83 0.42 0.75 0.50 0.67 0.83 0.75 0.71 

US 1.17 0.42 1.08 1.08 1.33 1.17 1.00 1.92 0.83 0.25 1.03 

UK 0.92 0.58 0.50 1.08 0.42 0.58 0.08 0.75 0.42 1.00 0.63 

Japan 0.17 0.50 0.58 0.92 1.58 0.58 0.25 0.17 0.08 0.42 0.53 

Emerging 0.50 0.92 1.17 1.33 0.33 0.75 0.58 0.17 0.17 0.83 0.68 

Russia 0.42 0.25 0.17 0.33 0.33 0.67 0.67 0.33 0.92 0.33 0.44 

China 2.17 2.92 0.42 0.58 0.42 0.42 0.83 0.42 0.67 1.08 0.99 

Brazil 0.67 0.58 0.67 0.75 0.33 0.42 0.33 0.58 0.92 0.50 0.58 

Frontier 0.42 1.67 2.25 0.50 0.58 0.17 0.75 0.67 1.33 1.25 0.96 

Estonia 0.50 0.42 0.75 0.58 0.75 0.17 0.67 0.42 1.08 0.25 0.56 

Morocco 1.92 2.00 1.25 0.42 0.25 0.33 0.58 0.92 0.42 0.58 0.87 

Jordan 0.42 0.75 2.08 0.50 0.83 0.83 0.25 0.75 0.58 0.58 0.76 

Average 0.85 0.97 0.97 0.74 0.63 0.57 0.54 0.65 0.69 0.65 0.73 

Note: The table reports the average number of consecutive months that the monthly OOS returns of the twelve portfolio returns are above the risk-free rate. This average is 
calculated by generating the monthly OOS in consecutive months for each of the twelve portfolios mentioned in Table 4.4. For example, in Developed markets (2006) for the 
first portfolio, I calculate the OOS returns for 2006 (January, February, etc.). If the OOS returns over the first month are below the relevant risk-free rate, I assign a value of 
0. If the OOS returns remain above the risk-free rate during the first month e.g. in January but not for February, I assign the value of 1. Otherwise, I assign a value of 2 or 
more. This process is repeated for the remaining eleven portfolios of the year. The analysis is done using the maximum 18 months of OOS calculations for each portfolio. 
The last column and raw presents the average monthly performance persistence per market across all years and per year respectively. 
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Table 4.8: Quarterly Performance Persistence in Months for IS 2 2 Years (3 months rolling-forward) 

Market 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 

Developed 0.33 0.67 1.08 0.75 0.42 0.33 0.25 0.58 1.17 0.50 0.61 

US 1.17 1.00 2.58 0.42 0.58 0.50 0.58 1.67 2.17 0.42 1.11 

UK 2.17 0.58 1.17 0.67 0.33 0.33 0.00 0.75 0.42 0.50 0.69 

Japan 0.33 0.17 1.33 0.83 0.67 0.17 0.17 0.33 0.08 0.25 0.43 

Emerging 0.83 0.67 0.83 1.08 0.33 0.67 1.42 0.50 0.17 0.75 0.73 

Russia 1.50 0.50 0.83 0.67 0.33 0.33 0.92 0.25 0.83 0.33 0.65 

China 1.75 1.08 0.42 0.17 0.42 0.42 0.42 0.08 0.58 0.75 0.61 

Brazil 1.00 0.58 0.50 1.08 0.17 0.25 0.33 0.58 0.75 1.00 0.63 

Frontier 0.50 1.42 1.25 0.50 0.75 0.25 1.33 0.75 0.42 1.25 0.84 

Estonia 0.25 0.67 1.25 0.75 0.67 0.08 0.75 0.25 1.08 0.25 0.60 

Morocco 1.00 2.83 0.67 0.33 0.00 0.17 0.33 0.42 0.25 0.17 0.62 

Jordan 0.42 0.75 1.17 0.00 0.42 0.58 0.42 0.17 0.67 0.50 0.51 

Average 0.94 0.91 1.09 0.60 0.42 0.34 0.58 0.53 0.72 0.56 0.67 

Note: The table reports the average number of consecutive months that the quarterly OOS returns of the twelve portfolio returns are above the risk-free rate. This average 

is calculated by generating the quarterly OOS in consecutive quarters for each of the twelve portfolios mentioned in Table 4.5. For example, in Developed markets (2006) 

for the first portfolio, I calculate the OOS returns for 2006 (January to March, February to April, etc.). If the OOS returns over the first three months are below the relevant 

risk-free rate, I assign a value of 0. If the OOS returns remain above the risk-free rate only during the first 3 months of the OOS e.g. in January to March but not from February 

to June, I assign the value of 1. Otherwise, I assign a value of 2 or more. This process is repeated for the remaining eleven portfolios of the year. The analysis is done using 

a maximum of 18 months (6 quarters) of OOS calculations for each portfolio. The last column and raw presents the average performance per market across all years and 

per year respectively. 
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Table 4.9: Semi-annual Performance Persistence in Months for IS 2 Years (6 months rolling-forward) 

Market 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 

Developed 0.50 0.42 1.25 0.50 0.42 0.08 0.17 0.75 0.58 0.33 0.50 

US 1.00 0.75 1.67 0.33 0.42 0.17 1.17 2.00 1.83 0.17 0.95 

UK 1.83 0.17 0.92 0.67 0.08 0.00 0.00 0.42 0.25 0.50 0.48 

Japan 0.00 0.33 1.33 0.50 0.25 0.25 0.17 0.17 0.08 0.08 0.32 

Emerging 1.25 0.67 1.42 1.00 0.50 0.42 1.25 0.42 0.67 0.25 0.78 

Russia 1.25 0.42 1.17 0.50 0.08 0.33 0.67 0.00 0.67 0.17 0.53 

China 1.58 0.83 1.17 0.42 0.50 0.08 0.00 0.00 0.08 0.83 0.55 

Brazil 1.33 1.83 0.67 1.00 0.08 0.00 0.08 0.25 0.25 1.25 0.68 

Frontier 0.67 0.75 1.50 0.33 0.50 0.08 1.08 1.33 0.75 1.00 0.80 

Estonia 0.50 0.75 2.08 1.25 0.50 0.00 0.67 0.00 0.67 0.42 0.68 

Morocco 1.58 1.83 0.42 0.00 0.00 0.08 0.50 0.17 0.00 0.08 0.47 

Jordan 0.33 1.00 1.83 0.00 0.67 0.25 0.00 0.00 0.75 1.08 0.59 

Average 0.99 0.81 1.28 0.54 0.33 0.15 0.48 0.46 0.55 0.51 0.61 

Note: The table reports the average number of consecutive months that the semi-annual OOS returns of the twelve portfolio returns are above the risk-free rate. This average 
is calculated by generating the semi-annual OOS in consecutive quarters for each of the twelve portfolios mentioned in Table 4.6. For example, in Developed markets (2006) 
for the first portfolio, I calculate the OOS returns for 2006 (January to June, February to July, etc.). If the OOS returns over the first six months are below the relevant risk-
free rate, I assign a value of 0. If the OOS returns remain above the risk-free rate only during the first 6 months of the OOS e.g. in January to June but not from July to 
December, I assign the value of 1. Otherwise, I assign a value of 2 or more. This process is repeated for the remaining eleven portfolios of the year. The analysis is done 
using a maximum of 18 months (3 semesters) of OOS calculations for each portfolio. The last column and raw presents the average performance per market across all years 
and per year respectively. 
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Table 4.10: Annualized Returns Based on the Cross-validated Surviving Rules (IS of 2 Years and OOS 1 Month)  

Market 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 

Developed 
27.05% 
(0.02%) 

23.08% 
(0.38%) 

103.68% 
(0.09%) 

93.3% 
(1%) 

45.17% 
(0.73%) 

46.44% 
(3.19%) 

36.01% 
(0.03%) 

17.92% 
(3.22%) 

21.53% 
(7.76%) 

27.87% 
(0.06%) 

44.21% 
(1.65%) 

US 
8.19% 
(0%) 

18.04% 
(0.01%) 

87.67% 
(0.04%) 

84.56% 
(0.33%) 

50.42% 
(0.38%) 

34.72% 
(4.82%) 

24.13% 
(0.05%) 

26.95% 
(7.41%) 

21.08% 
(17.41%) 

21.33% 
(8.32%) 

37.71% 
(3.88%) 

UK 
23.8% 

(9.29%) 
27.1% 

(6.91%) 
89.14% 
(0.08%) 

85.49% 
(6.76%) 

56.82% 
(7.79%) 

50.13% 
(5.17%) 

27.01% 
(0.01%) 

20.6% 
(0.03%) 

40.89% 
(4.1%) 

36.97% 
(0.07%) 

45.8% 
(4.02%) 

Japan 
29.93% 
(0.02%) 

6.87% 
(0.02%) 

59.93% 
(0.02%) 

66.47% 
(1.3%) 

39.6% 
(0.61%) 

32.77% 
(0.14%) 

36.79% 
(0.02%) 

29.92% 
(0.03%) 

6.11% 
(0.01%) 

9.93% 
(0.01%) 

31.83% 
(0.22%) 

Emerging 
58.41% 
(0.58%) 

70.48% 
(0.57%) 

163.42% 
(0.54%) 

116.68% 
(1.7%) 

51.44% 
(2.99%) 

53.04% 
(1.74%) 

39.71% 
(0.08%) 

27.96% 
(0.09%) 

30.23% 
(0.05%) 

47.04% 
(0.04%) 

65.84% 
(0.84%) 

Russia 
86.02% 
(4.44%) 

27.64% 
(2.67%) 

140.78% 
(0.85%) 

183.65% 
(8.59%) 

67.8% 
(6.09%) 

74.31% 
(6.62%) 

75.11% 
(0.06%) 

44.42% 
(0.11%) 

109.66% 
(0.13%) 

91.44% 
(0.23%) 

90.08% 
(2.98%) 

China 
99.78% 
(2.08%) 

99.23% 
(18.07%) 

170% 
(1.23%) 

104.07% 
(0.35%) 

55.13% 
(0.18%) 

49.38% 
(1.62%) 

43.64% 
(0.01%) 

27.92% 
(0.03%) 

37.37% 
(0.07%) 

78.59% 
(0.21%) 

76.51% 
(2.38%) 

Brazil 
106.43% 
(6.81%) 

103.96% 
(3.32%) 

172.44% 
(1.62%) 

122.07% 
(6.6%) 

65.04% 
(7.76%) 

39.45% 
(3.15%) 

36.28% 
(0.01%) 

51.21% 
(0.08%) 

59.73% 
(0.31%) 

79.44% 
(0.08%) 

83.6% 
(2.97%) 

Frontier 
34.04% 
(5.02%) 

45.26% 
(0.65%) 

131.42% 
(2.91%) 

90.36% 
(14.16%) 

40.02% 
(10.53%) 

30.28% 
(2.11%) 

26.5% 
(0.12%) 

25.28% 
(0.18%) 

26.89% 
(2.37%) 

35.09% 
(0.71%) 

48.51% 
(3.88%) 

Estonia 
42.02% 
(7.72%) 

64.11% 
(0.1%) 

246.5% 
(2.06%) 

119.29% 
(3.52%) 

141.52% 
(3.22%) 

52.77% 
(1.96%) 

43.17% 
(0.04%) 

31.11% 
(1.68%) 

51.85% 
(2.55%) 

29.85% 
(0.03%) 

82.22% 
(2.29%) 

Morocco 
97.25% 
(4.06%) 

42.05% 
(18.14%) 

77.99% 
(9.32%) 

51.52% 
(1.75%) 

37.84% 
(0.11%) 

16% 
(0.02%) 

36.57% 
(0.07%) 

40.51% 
(0.29%) 

10.15% 
(0.01%) 

16.5% 
(0.03%) 

42.64% 
(3.38%) 

Jordan 
89.39% 
(7.42%) 

45.23% 
(0.46%) 

103.32% 
(0.93%) 

52.78% 
(1.82%) 

35.76% 
(0.59%) 

37.43% 
(0.24%) 

27.1% 
(0.05%) 

14.9% 
(0.01%) 

18.51% 
(0.03%) 

22.1% 
(0.03%) 

44.65% 
(1.16%) 

Average 
58.52% 
(3.95%) 

47.75% 
(4.27%) 

128.86% 
(1.64%) 

97.52% 
(3.99%) 

57.21% 
(3.41%) 

43.06% 
(2.56%) 

37.67% 
(0.05%) 

29.89% 
(1.1%) 

36.17% 
(2.9%) 

41.35% 
(0.82%) 

57.80% 
(2.47%) 

Note: The table reports the average OOS annualized returns of twelve cross-validated portfolios for IS of two years and OOS of one month after transaction costs (rolling-
forward by one month). In the parentheses, I report the average percentage of cross-validated rules from the total pool of rules. For example, Table 2 reports that 2628 rules 
(0.124×21195) survive on average in the case of frontier markets (2006). This table estimates that from those rules, 132 rules (0.0502×2628) are surviving both in the IS 
and OOS and they generate an average OOS annualized return of 34.04%. 
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Table 4.11: Annualized Returns Based on the Cross-validated Surviving Rules (IS of 2 Years and OOS 3 Months)  

Market 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 

Developed 
12.96%  
(0.02%) 

15.73%  
(0.04%) 

64.58%  
(0.3%) 

36.66%  
(0.85%) 

21.51%  
(0.6%) 

22.21%  
(0.09%) 

20.42%  
(0.04%) 

12.8%  
(3.17%) 

9.11%  
(7.13%) 

12.15%  
(0.07%) 

22.81%  
(1.23%) 

US 
7.35% 
(0%) 

6.38% 
(0%) 

65.08%  
(0.12%) 

32.66%  
(0.25%) 

22.13%  
(0.36%) 

14.94%  
(4.77%) 

11.58%  
(0.07%) 

17.34%  
(5.61%) 

9.81%  
(25.83%) 

10.4%  
(9.17%) 

19.77%  
(4.62%) 

UK 
19%  

(15.16%) 
22.96%  
(6.83%) 

69.49%  
(0.18%) 

46.82%  
(5.78%) 

26.64%  
(7.74%) 

18.44%  
(5.03%) 

9.38%  
(0.01%) 

16.23%  
(0.02%) 

14.79%  
(0.22%) 

20.89%  
(0.08%) 

26.46%  
(4.11%) 

Japan 
10.12%  
(0.76%) 

3.73%  
(0.02%) 

41.04%  
(0.28%) 

43.49%  
(1.04%) 

22.62%  
(0.62%) 

12.87%  
(0.11%) 

19.49%  
(0.03%) 

11.58%  
(0.03%) 

3.39%  
(0.01%) 

5.76%  
(0.01%) 

17.41%  
(0.29%) 

Emerging 
31.64%  
(0.43%) 

38.19%  
(0.57%) 

75.18%  
(0.63%) 

50.2%  
(1.66%) 

23.89%  
(1.71%) 

34.06%  
(4.92%) 

23.63%  
(0.07%) 

18.35%  
(0.1%) 

15.51%  
(0.04%) 

20.47%  
(0.06%) 

33.11%  
(1.02%) 

Russia 
44.72%  
(9.77%) 

14.1%  
(6.37%) 

53.41%  
(1.04%) 

104.76% 
(12.61%) 

31.66%  
(5.06%) 

39.9%  
(3.35%) 

32.95%  
(0.07%) 

25.2%  
(0.1%) 

60.47%  
(0.13%) 

42.05%  
(0.2%) 

44.92%  
(3.87%) 

China 
54.69%  
(2.01%) 

74.44%  
(15.23%) 

75.41%  
(0.86%) 

46.09%  
(0.36%) 

22.33%  
(0.19%) 

25.56%  
(3.19%) 

19.85%  
(0.01%) 

14.43%  
(0.03%) 

17.94%  
(0.05%) 

49.18%  
(0.27%) 

39.99%  
(2.22%) 

Brazil 
57.35%  

(10.46%) 
68.62%  
(3.21%) 

87.29%  
(2.16%) 

57.1%  
(8.46%) 

23.59%  
(7.2%) 

13.57%  
(3.13%) 

16.7%  
(0.01%) 

29.39%  
(0.08%) 

28.77%  
(0.37%) 

43.54%  
(0.09%) 

42.59%  
(3.52%) 

Frontier 
21.22%  
(1.96%) 

28.95%  
(0.56%) 

108.66%  
(3.44%) 

33.05%  
(14.01%) 

21.13%  
(11.5%) 

15.07%  
(2.29%) 

16.44%  
(0.14%) 

15.11%  
(0.16%) 

18.46%  
(0.73%) 

20.69%  
(0.73%) 

29.88%  
(3.55%) 

Estonia 
30.96%  
(2.65%) 

30.7%  
(0.04%) 

99.4%  
(2.55%) 

63.69%  
(3.78%) 

49.29%  
(2.38%) 

23.41%  
(0.3%) 

20.84%  
(0.05%) 

14.3%  
(0.12%) 

27.51%  
(2.27%) 

8% 
(0.04%) 

36.81%  
(1.42%) 

Morocco 
50%  

(2.44%) 
29.76%  

(20.98%) 
52.44%  
(6.93%) 

18.75%  
(1.65%) 

17.55%  
(0.1%) 

6.13%  
(0.02%) 

15.83%  
(0.08%) 

17.1%  
(0.24%) 

7.59%  
(0.01%) 

3.75%  
(0.01%) 

21.89%  
(3.25%) 

Jordan 
41.88%  
(8.19%) 

21.65%  
(0.28%) 

65.41%  
(0.91%) 

16.62%  
(1.38%) 

20.99%  
(0.56%) 

17.82%  
(0.26%) 

11.97%  
(0.06%) 

11.41%  
(0.01%) 

7.3%  
(0.03%) 

7.93%  
(0.03%) 

22.3%  
(1.17%) 

Average 
31.82%  
(4.49%) 

29.6%  
(4.51%) 

71.45%  
(1.62%) 

45.82%  
(4.32%) 

25.28%  
(3.17%) 

20.33%  
(2.29%) 

18.26%  
(0.05%) 

16.94%  
(0.81%) 

18.39%  
(3.07%) 

20.4%  
(0.9%) 

29.83%  
(2.52%) 

Note: The table reports the average OOS annualized returns of twelve cross-validated portfolios for IS of two years and OOS of one month after transaction costs (rolling-

forward by one month). In the parentheses, I report the average percentage of cross-validated rules from the total pool of rules. For example, Table 2 reports that 2628 rules 

(0.124×21195) survive on average in the case of frontier markets (2006). This table estimates that from those rules, 52 rules (0.0196×2628) are surviving both in the IS and 

OOS and they generate an average OOS annualized return of 21.22%. 
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Table 4.12 Annualized Returns Based on the cross-validated surviving rules (IS of 2 Years and OOS 6 Months)  

Market 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 

Developed 
13.22%  
(0.02%) 

8.9%  
(0.03%) 

45.74%  
(0.08%) 

22.7%  
(0.73%) 

12.31%  
(0.45%) 

12.04%  
(0.07%) 

10.16%  
(0.02%) 

8.82%  
(3.21%) 

5.13%  
(10.2%) 

10.06%  
(0.07%) 

14.91%  
(1.49%) 

US 
4.97% 
(0%) 

7.09%  
(0.01%) 

50.45%  
(0.03%) 

20.32%  
(0.18%) 

13.2%  
(0.25%) 

11.41%  
(0.07%) 

9.18%  
(0.07%) 

13.54%  
(7.34%) 

7.65%  
(27.92%) 

9.06%  
(4.63%) 

14.69%  
(4.05%) 

UK 
16.89%  

(17.58%) 
15.15%  
(3.46%) 

57.18%  
(0.19%) 

30.06%  
(4.59%) 

17.02%  
(7.38%) 

11.72%  
(0.21%) 

7.73%  
(0.01%) 

12.62%  
(0.03%) 

10.12% 
(0.1%) 

15.6%  
(0.07%) 

19.41%  
(3.36%) 

Japan 
1.65%  

(0.02%) 
1.17%  

(0.01%) 
40.34%  
(0.17%) 

26.61%  
(1.12%) 

12.19%  
(0.48%) 

7.81%  
(0.12%) 

10.42%  
(0.04%) 

5.66%  
(0.03%) 

2.52%  
(0.02%) 

5.63%  
(0.02%) 

11.4%  
(0.2%) 

Emerging 
19.85%  
(0.46%) 

31.44%  
(0.77%) 

68.91%  
(0.33%) 

28.07%  
(1.49%) 

14.62%  
(3.44%) 

26.61%  
(1.8%) 

17.52%  
(0.08%) 

11.14%  
(0.12%) 

11.06%  
(0.03%) 

16.32%  
(0.05%) 

24.55%  
(0.86%) 

Russia 
23.72%  
(9.25%) 

10% 
(5.9%) 

60.63%  
(1.2%) 

59.59%  
(10.61%) 

21.97%  
(4.92%) 

21.17%  
(3.3%) 

18.7%  
(0.06%) 

14.59%  
(0.08%) 

42.1%  
(0.11%) 

27.76%  
(0.22%) 

30.02%  
(3.56%) 

China 
36.6%  

(2.42%) 
56.76%  

(14.35%) 
54.33%  
(0.7%) 

24.73%  
(0.38%) 

12.09%  
(1.74%) 

14.03%  
(0.08%) 

8.3%  
(0.01%) 

9.2%  
(0.02%) 

17.33%  
(0.06%) 

30.88%  
(0.28%) 

26.42%  
(2%) 

Brazil 
26.05%  
(6.44%) 

50.74%  
(5.66%) 

57.57%  
(2.61%) 

33.43% 
(10.36%) 

13.81%  
(5.86%) 

12.13%  
(0.06%) 

10.35%  
(0.01%) 

20.98%  
(0.13%) 

18.28%  
(0.3%) 

49.05%  
(0.1%) 

29.24%  
(3.15%) 

Frontier 
16.76%  
(1.61%) 

18.92%  
(0.52%) 

86.73%  
(2.72%) 

19.73%  
(13.14%) 

12.41%  
(13.1%) 

9.47%  
(0.73%) 

11.17%  
(0.14%) 

13.55%  
(0.23%) 

10.2%  
(0.46%) 

16.49%  
(0.54%) 

21.54%  
(3.32%) 

Estonia 
23.28%  
(1.38%) 

25.66%  
(0.05%) 

78.2%  
(1.96%) 

43.24%  
(4.44%) 

23.12%  
(2.67%) 

12.24%  
(0.25%) 

14.04%  
(0.07%) 

6.54%  
(0.11%) 

17.91%  
(1.56%) 

7.16%  
(0.04%) 

25.14%  
(1.25%) 

Morocco 
35.66%  
(2.28%) 

22.89%  
(25.24%) 

34.85%  
(5.99%) 

9.48%  
(1.34%) 

12.06%  
(0.07%) 

4.82%  
(0.02%) 

9.27%  
(0.1%) 

11.46%  
(0.07%) 

1.84%  
(0.01%) 

3.39%  
(0.02%) 

14.57%  
(3.51%) 

Jordan 
26.1%  

(7.34%) 
14.5%  

(0.24%) 
54%  

(1.05%) 
10.79%  
(1.03%) 

13.75%  
(0.58%) 

10.64%  
(0.23%) 

5.9%  
(0.04%) 

5.08%  
(0.01%) 

6.5%  
(0.02%) 

5.79%  
(0.03%) 

15.31%  
(1.06%) 

Average 
20.4%  

(4.07%) 
21.94%  
(4.69%) 

57.41%  
(1.42%) 

27.4%  
(4.12%) 

14.88%  
(3.41%) 

12.84%  
(0.58%) 

11.06%  
(0.06%) 

11.1%  
(0.95%) 

12.55%  
(3.4%) 

16.43%  
(0.51%) 

20.6%  
(2.32%) 

Note: The table reports the average OOS annualized returns of twelve cross-validated portfolios for IS of two years and OOS of one month after transaction costs (rolling-

forward by one month). In the parentheses, I report the average percentage of cross-validated rules from the total pool of rules. For example, Table 2 reports that 2628 rules 

(0.124×21195) survive on average in the case of frontier markets (2006). This table estimates that from those rules, 42 rules (0.0161×2628) are surviving both in the IS and 

OOS and they generate an average OOS annualized return of 16.76%. 
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Table 4.13: Financial Stress Performance  
Market Period Financial Stress 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 

US 

IS
 o

f 2
 Y

e
a
rs

 - O
O

S
 1

 M
o

n
th

 

High - 
-9.96% 
(-0.59) 

22.72% 
(0.77) 

-3.64% 
(-0.19) 

-18.27% 
(-2.18) 

-0.57% 
(-0.17) 

-5.08% 
(-2.16) 

- - 
-3.86% 
(-0.75) 

-2.67% 
(-0.75) 

Low 
1.81% 
(0.2) 

-3.36% 
(-0.32) 

- - 
-0.28% 
(-0.02) 

-2.42% 
(-0.39) 

0.53% 
(0.18) 

7.02% 
(1.31) 

5.73% 
(0.77) 

-5.41% 
(-0.71) 

0.45% 
(0.13) 

Other Developed 
High - 

-0.72% 
(-0.06) 

10.63% 
(0.41) 

4.14% 
(0.25) 

-16.24% 
(-2.88) 

-2.15% 
(-0.55) 

-4.86% 
(-1.81) 

- - 
-0.37% 
(-0.07) 

-1.37% 
(-0.59) 

Low 
-3.66% 
(-0.54) 

-6.02% 
(-0.57) 

- - 
-33.23% 
(-3.59) 

0.61% 
(0.16) 

0.11% 
(0.05) 

0.35% 
(0.13) 

-2.07% 
(-0.42) 

-1.53% 
(-0.85) 

-5.68% 
(-0.7) 

Emerging 
 

High - 
-13.42% 
(-4.45) 

43.52% 
(1.1) 

1.78% 
(0.11) 

-20.32% 
(-3.13) 

-4.89% 
(-0.69) 

3% 
(0.74) 

26.12% 
(4.45) 

-4.83% 
(-4.01) 

-1.48% 
(-0.37) 

3.28% 
(-0.69) 

Low 
1.75% 
(0.15) 

-0.82% 
(-0.06) 

- 
7.8% 
(0.7) 

-4.37% 
(-0.66) 

-1.87% 
(-0.36) 

-3.65% 
(-0.94) 

-3.94% 
(-1.45) 

-3.61% 
(-1.21) 

0.48% 
(0.29) 

-0.91% 
(-0.39) 

US 

IS
 o

f 2
 Y

e
a
rs

 - O
O

S
 3

 M
o

n
th

s
 

High - 
-7.54% 
(-0.44) 

34.43% 
(1.12) 

-14% 
(-0.89) 

-16.52% 
(-1.78) 

-10.15% 
(-1.41) 

-1.75% 
(-1.81) 

- - 
-2.11% 
(-1.37) 

-2.52% 
(-0.94) 

Low 
4.28% 
(0.48) 

-2.28% 
(-0.26) 

- - 
5.43% 
(0.75) 

0.39% 
(0.06) 

-0.72% 
(-0.27) 

5.41% 
(1.03) 

6.43% 
(0.86) 

-5.09% 
(-0.69) 

1.73% 
(0.25) 

Other Developed 
High - 

-0.9% 
(-0.06) 

24.85% 
(0.99) 

-5.42% 
(-0.4) 

-13.37% 
(-2.23) 

-2.42% 
(-0.53) 

-3.85% 
(-1.49) 

- - 
2.95% 
(1.7) 

0.26% 
(-0.29) 

Low 
-4.54% 
(-0.62) 

-4.91% 
(-0.48) 

- - - - 
-1.58% 
(-0.76) 

-1.35% 
(-0.46) 

0.2% 
(0.04) 

-2.7% 
(-1.26) 

-2.48% 
(-0.59) 

Emerging 
 

High - 
-37.03% 
(-4.22) 

15.33% 
(0.49) 

-8.44% 
(-0.67) 

-11.01% 
(-1.97) 

-0.71% 
(-0.12) 

-3.53% 
(-0.79) 

- 
-2.5% 
(-1.18) 

-2.07% 
(-0.51) 

-6.24% 
(-1.12) 

Low 
-4.31% 
(-0.42) 

6.45% 
(0.45) 

- 
6.49% 
(0.62) 

-4.64% 
(-0.7) 

0.55% 
(0.09) 

-0.76% 
(-0.25) 

-0.38% 
(-0.11) 

-4.96% 
(-1.9) 

1.1% 
(0.45) 

-0.05% 
(-0.20) 

US 

IS
 o

f 2
 Y

e
a
rs

 - O
O

S
 6

 M
o

n
th

s
 

High - 
-11.35% 

(-0.7) 
26.57% 

(0.9) 
-8.53% 
(-0.62) 

-13.35% 
(-1.36) 

-6.68% 
(-0.81) 

-1.1% 
(-1.27) 

- - - 
-2.41% 
(-0.64) 

Low 
0.53% 
(0.06) 

2.57% 
(0.23) 

- 
7.78% 
(0.78) 

6.53% 
(1.59) 

-3.35% 
(-0.43) 

0.98% 
(0.35) 

4.77% 
(0.95) 

5.66% 
(0.75) 

-6.46% 
(-0.95) 

2.11% 
(0.37) 

Other Developed 
High - 

-0.42% 
(-0.03) 

13.92% 
(0.57) 

-2.48% 
(-0.22) 

-9.35% 
(-1.49) 

-5.75% 
(-1.16) 

-4.53% 
(-2.14) 

- - 
1.34% 
(0.54) 

-1.04% 
(-0.56) 

Low 
1.05% 
(0.14) 

-3.33% 
(-0.34) 

- - - - 
-0.61% 
(-0.25) 

0.74% 
(0.26) 

-0.82% 
(-0.17) 

-1.79% 
(-0.77) 

-0.79% 
(-0.19) 

Emerging 
 

High - 
-15.65% 
(-1.52) 

18.1% 
(0.57) 

2.91% 
(0.23) 

- 
-5.57% 
(-0.88) 

-1.23% 
(-0.24) 

- 
0.35% 
(0.15) 

-1.87% 
(-0.45) 

-0.42% 
(-0.3) 

Low 
-1.43% 
(-0.15) 

15.56% 
(1.03) 

- 
-1.46% 
(-0.16) 

-2.69% 
(-0.41) 

-3.17% 
(-0.49) 

2.99% 
(1.18) 

-0.65% 
(-0.18) 

-3.63% 
(-1.32) 

- 
0.69% 
(-0.06) 

Note: The table reports the average OOS annualized returns and Sharpe ratios of the portfolios generated in Section 4.5.1. High and low corresponds to high and low 
financial stress conditions as reported by the OFR stress indexes. – indicates that for this year and market there was no period with high (or low) financial stress. 
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Table 5.1: List of GARCH, SV, EWMA, and HAR volatility models. 

Model Definition Equation 

ARCH 𝜎𝑡
2 = 𝜔 + ∑ 𝒶𝑢𝜀𝑡−𝑢

2

𝓆

𝑢=1

 (5.3) 

GARCH/ GARCH-MA 𝜎𝑡
2 = 𝜔 + ∑ 𝒶𝑢𝜀𝑡−𝑢

2

𝓆

𝑢=1

+ ∑ 𝒷𝑟𝜎𝑡−𝑟
2

𝓅

𝑟=1

 (5.4) 

IGARCH 𝜎𝑡
2 = 𝜔 + 𝜀𝑡−1

2 + ∑ 𝒶𝑢(𝜀𝑡−𝑢
2 − 𝜀𝑡−1

2 )

𝓆

𝑢=2

+ ∑ 𝒷𝑟(𝜎𝑡−𝑟
2

𝓅

𝑟=1

− 𝜀𝑡−1
2 ) (5.5) 

Taylor- Schwert 𝜎𝑡 = 𝜔 + ∑ 𝒶𝑢|𝜀𝑡−𝑢|

𝓆

𝑢=1

+ ∑ 𝒷𝑟𝜎𝑡−𝑟

𝓅

𝑟=1

 (5.6) 

A-GARCH 𝜎𝑡
2 = 𝜔 + ∑[𝒶𝑢𝜀𝑡−𝑢

2 + 𝜂𝑢𝜀𝑡−𝑢]2

𝓆

𝑢=1

+ ∑ 𝒷𝑟𝜎𝑡−𝑟
2

𝓅

𝑟=1

 (5.7) 

NA-GARCH 𝜎𝑡
2 = 𝜔 + ∑ 𝒶𝑢(𝜀𝑡−𝑢 + 𝜂𝑢𝜎𝑡−𝑢)2

𝓆

𝑢=1

+ ∑ 𝒷𝑟𝜎𝑡−𝑟
2

𝓅

𝑟=1

 (5.8) 

TGARCH 𝜎𝑡 = 𝜔 + ∑ 𝒶𝑢[(1 − 𝜂𝑢)𝜀𝑡−𝑢
+ + (1 + 𝜂𝑢)𝜀𝑡−𝑢

− )2]

𝓆

𝑢=1

+ ∑ 𝒷𝑟𝜎𝑡−𝑟

𝓅

𝑟=1

 (5.9) 

GJR-GARCH 𝜎𝑡
2 = 𝜔 + ∑[𝒶𝑢 + 𝜂𝑢𝐼{𝜀𝑡−𝑢<0}]𝜀𝑡−𝑢

2

𝓆

𝑢=1

+ ∑ 𝒷𝑟𝜎𝑡−𝑟
2

𝓅

𝑟=1

 (5.10) 

log-GARCH log (5. 𝜎𝑡) = 𝜔 + ∑ 𝒶𝑢|𝑒𝑡−𝑢|

𝓆

𝑢=1

+ ∑ 𝒷𝑟 log(5. 𝜎𝑡−𝑟) 

𝓅

𝑟=1

 (5.11) 

EGARCH log (5. 𝜎𝑡
2) = 𝜔 + ∑[𝒶𝑢𝑒𝑡−𝑢 + 𝜂𝑢(5. |𝑒𝑡−𝑢| − 𝐸|𝑒𝑡−𝑢|)]

𝓆

𝑢=1

+ ∑ 𝒷𝑟 log(5. 𝜎𝑡−𝑟
2 ) 

𝓅

𝑟=1

 (5.12) 

NGARCH 𝜎𝑡
𝛿 = 𝜔 + ∑ 𝒶𝑢|𝜀𝑡−𝑢|𝛿

𝓆

𝑢=1

+ ∑ 𝒷𝑟𝜎𝑡−𝑟
𝛿

𝓅

𝑟=1

 (5.13) 

APARCH 𝜎𝑡
𝛿 = 𝜔 + ∑ 𝒶𝑢[|𝜀𝑡−𝑢| − 𝜂𝑢𝜀𝑡−𝑢]𝛿

𝓆

𝑢=1

+ ∑ 𝒷𝑟𝜎𝑡−𝑟
𝛿

𝓅

𝑟=1

 (5.14) 

FI-GARCH [1 − 𝒶(𝐿) − 𝒷(𝐿)](1 − 𝐿)𝑑𝜀𝑡
2 = 𝜔 + [1 − 𝒷(𝐿)]𝜁𝑡 (5.15) 

SV/ SV-MA ℎ𝑡 = 𝜇ℎ + ∑ 𝜙𝑟 [ ℎ𝑡−𝑢 − 𝜇ℎ]

𝓅

𝑟=1

+ 𝑒𝑡 (5.16) 

SV-L ℎ𝑡 = 𝜇ℎ + ∑[𝒶𝑢𝑒𝑡−𝑢 + 𝜂𝑢(5. |𝑒𝑡−𝑢| − 𝐸|𝑒𝑡−𝑢|)]

𝓆

𝑢=1

+ ∑ 𝒷𝑟 [ ℎ𝑡 − 𝜇ℎ]

𝓅

𝑟=1

+ 𝑒𝑡 (5.17) 

EWMA 𝜎𝑡
2 = 𝜐𝜎𝑡−1

2 + (1 − 𝜐)𝜀𝑡−1
2  (5.18) 

HAR 𝜎̃𝑡
𝑑 = 𝜔 + 𝒷𝑑𝜎̃ 𝑡−1

𝑑 + 𝒷𝑤𝜎̃𝑡−1
𝑤 + 𝒷𝑚𝑛𝜎̃𝑡−1

𝑚𝑛 + 𝜀𝑡 (5.19) 

log-HAR log(5. 𝜎̃𝑡
𝑑) = 𝜔 + 𝒷𝑑 log(5. 𝜎̃𝑡−1

𝑑 ) + 𝒷𝑤 log(5. 𝜎̃𝑡−1
𝑤 ) + 𝒷𝑚𝑛 log(5. 𝜎̃𝑡−1

𝑚𝑛) + 𝜀𝑡 (5.20) 
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Table 5.2: Summary Statistics of Log Returns 

 EUR/USD GBP/USD USD/JPY DJIA FTSE 100 XAU/USD 

Observations 1877 1877 1877 1509 1516 1871 

Mean (%) -0.004 -0.008 0.02 0.047 0.021 -0.01 

Median (%) -0.009 -0.006 0.024 0.049 0.044 -0.003 

Maximum (%) 3.036 2.849 3.496 3.876 3.515 4.666 

Minimum (%) -2.334 -8.429 -3.697 -3.64 -4.780 -9.363 

Std. Dev. (%) 0.491 0.497 0.554 0.729 0.863 0.878 

Skewness 0.279 -2.473 -0.222 -0.274 -0.161 -0.68 

Excess Kutosis 3.36 45.114 4.336 2.321 2.262 10.42 

JB 907.212* 161086.828* 1485.565* 357.574* 329.717* 8607.565* 

Q (20) 32.22* 25.782 15.907 26.061 41.636* 19.858 

ADF -30.646* -42.391* -43.135* -39.507* -19.189* -44.118* 

P-P -45.057* -42.391* -43.135* -39.507* -39.023* -44.118* 

Note: The JB statistic tests whether the skewness and kurtosis of a sample dataset match the normal 
distribution. Q (20) is the Ljung–Box statistic which tests if the data is distributed independently. 
Serial correlation of order up to the 20th is considered. ADF and P-P are the statistics of the 
augmented Dickey-Fuller and Phillips-Perron unit root tests respectively. The lag length for the unit 
root tests is set based on the lowest Akaike Information Criteria (AIC) value. * indicates rejection at 
the 5% significance level. 
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Table 5.3: Loss Functions 

Type Definition Equation 

𝐌𝐀𝐄𝟏 ℒ𝑀𝐴𝐸1
= 𝐾−1 ∑ |𝐾

𝑡=1 𝜎𝑡 − 𝜎̂𝑡|                                        (5.22) 

𝐌𝐀𝐄𝟐 ℒ𝑀𝐴𝐸2
= 𝐾−1 ∑ |𝐾

𝑡=1 𝜎𝑡
2 − 𝜎̂𝑡

2|                                                                                (5.23) 

𝐌𝐒𝐄𝟏 ℒ𝑀𝑆𝐸1
= 𝐾−1 ∑ (𝜎𝑡 − 𝜎̂𝑡)2𝐾

𝑡=1   (5.24) 

𝐌𝐒𝐄𝟐 ℒ𝑀𝑆𝐸2
= 𝐾−1 ∑ (𝜎𝑡

2 − 𝜎̂𝑡
2)2𝐾

𝑡=1   (5.25) 

𝐑𝟐𝐋𝐎𝐆 ℒ𝑅2𝐿𝑂𝐺 = 𝐾−1 ∑ [log(𝜎𝑡
2𝜎̂𝑡

−2)]2𝐾
𝑡=1   (5.26) 

𝐐𝐋𝐈𝐊𝐄 ℒ𝑄𝐿𝐼𝐾𝐸 = 𝐾−1 ∑ (log(𝜎̂𝑡
2) + 𝜎𝑡

2𝜎̂𝑡
−2)𝐾

𝑡=1   (5.27) 

Note: The conditional volatilities estimated by the forecasting models are presented by 𝜎̂𝑡 and 
compared to the actual ones 𝜎𝑡. 𝐾 is the number of forecasting points, set by the number of trading 

days in each calendar year. I choose the 𝐾 adaptively based on the dataset rather than a fixed 
quantity.  
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Table 5.4: Variation in Number of True Discoveries 

Asset Benchmark 
Study Period 

Average 
2013 2014 2015 2016 2017 

 ARCH (1) 4 469 969 481 716 527.8 

EUR/USD GARCH (1,1) 12 452 2 496 96 211.6 

 PRC 90 1 26 1 60 96 36.8 

 ARCH (1) 265 1 726 175 114 256.2 

GBP/USD GARCH (1,1) 96 3 4 110 126 67.8 

 PRC 90 96 1 1 97 113 61.6 

 ARCH (1) 399 1 1 944 332 335.4 

USD/JPY GARCH (1,1) 1 440 1 534 274 250 

 PRC 90 7 1 1 2 10 4.2 

 ARCH (1) 1 34 105 32 33 41 

DJIA GARCH (1,1) 1 118 304 33 38 98.8 

 PRC 90 91 103 105 42 40 76.2 

 ARCH (1) 190 2 1 1 4 39.6 

FTSE 100 GARCH (1,1) 203 48 360 1 19 126.2 

 PRC 90 91 37 106 50 64 69.6 

 ARCH (1) 326 3 471 589 2 278.2 

XAU/USD GARCH (1,1) 414 3 448 24 211 220 

 PRC 90 56 1 1 1 2 12.2 

Note: The table presents the size of the rejection set for different markets based on the MSE1 

benchmark. The DFDR+ always rejects the lowest p-value before any further computations. 

Therefore, the cases with 1 discovery can be interpreted as no discoveries at all. The ARCH (1) and 

GARCH (1,1) benchmarks are zero mean, with Gaussian distribution and RV as the conditional 

variance specification. PRC 90 corresponds to the 90th percentile of the entire volatility pool. 
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Table 5.5: Innovation Distribution Survival Rate Across the Markets. 

Asset Benchmark Gaussian t Skewed t GED No dist. 

 ARCH (1) 36.56% 34.95% 36.13% 38.58% 3.33% 

EUR/USD GARCH (1,1) 14.78% 14.41% 14.78% 14.44% 1.67% 

 PRC 90 2.63% 2.31% 3.01% 2.22% 0.00% 

 ARCH (1) 17.69% 17.96% 16.34% 19.01% 1.67% 

GBP/USD GARCH (1,1) 4.52% 4.73% 5.16% 4.38% 0.00% 

 PRC 90 4.19% 4.35% 4.35% 4.20% 0.00% 

 ARCH (1) 24.68% 22.80% 17.42% 27.78% 5.56% 

USD/JPY GARCH (1,1) 17.85% 17.63% 14.78% 19.14% 1.39% 

 PRC 90 0.48% 0.11% 0.05% 0.56% 0.00% 

 ARCH (1) 2.96% 3.55% 2.85% 1.91% 0.00% 

DJIA GARCH (1,1) 7.26% 7.53% 6.29% 5.99% 1.39% 

 PRC 90 5.38% 6.34% 5.65% 3.58% 0.00% 

 ARCH (1) 2.69% 2.96% 2.69% 2.59% 0.28% 

FTSE 100 GARCH (1,1) 8.49% 8.98% 9.68% 7.16% 2.78% 

 PRC 90 4.95% 5.27% 5.27% 3.64% 0.28% 

 ARCH (1) 17.10% 18.66% 24.46% 16.42% 1.39% 

XAU/USD GARCH (1,1) 12.37% 15.11% 20.91% 12.22% 0.56% 

 PRC 90 0.54% 0.70% 1.67% 0.43% 0.00% 

Average  10.28% 10.46% 10.64% 10.24% 1.13% 

Note: The table presents the average proportion of models with each distribution able to beat the 

three benchmarks. For example, the first value 36.56% means that on average 136 models out of 

372 Gaussian models outperformed the ARCH (1) benchmark for the EUR/USD. The ARCH (1) and 

GARCH (1,1) models use zero mean, Gaussian distribution and RV specifications. PRC 90 stands 

for the benchmark based on the 90th percentile of the entire volatility pool. The performance scale is 

MSE1. The ‘No dist.’ column corresponds to models without any distribution and the value in bold is 

the maximum in each row. 
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Table 5.6: Classes Survival Rates 

Class EUR/USD GBP/USD USD/JPY DJIA FTSE 100 XAU/USD Average 

ARCH 10.83% 1.67% 14.86% 17.50% 24.44% 18.75% 14.68% 

GARCH 19.17% 2.99% 14.79% 3.13% 8.61% 13.26% 10.32% 

IGARCH 43.19% 65.14% 28.82% 7.01% 1.94% 23.47% 28.26% 

Taylor/Sch
wert 

19.65% 10.83% 17.43% 11.81% 6.53% 19.86% 14.35% 

A-GARCH 18.96% 2.92% 14.10% 0.35% 0.42% 7.01% 7.29% 

NA-GARCH 19.44% 2.99% 13.19% 0.35% 0.56% 6.74% 7.21% 

TGARCH 26.46% 10.07% 15.63% 0.35% 0.42% 8.19% 10.19% 

GJR-
GARCH 

17.22% 2.78% 11.88% 0.00% 0.00% 6.46% 6.39% 

log-
GARCH 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

EGARCH 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

NGARCH 21.46% 11.67% 18.06% 2.85% 1.81% 17.01% 12.14% 

APARCH 21.39% 10.56% 18.54% 0.21% 0.56% 11.67% 10.49% 

FI-GARCH 12.15% 2.08% 15.21% 13.82% 17.08% 22.43% 13.80% 

GARCH-
MA 

18.96% 3.13% 16.25% 3.75% 10.97% 17.50% 11.76% 

SV 11.11% 1.67% 15.56% 29.44% 26.67% 18.89% 17.22% 

SV-MA 11.11% 2.22% 15.56% 28.33% 26.11% 17.78% 16.85% 

SV-L 21.94% 8.06% 0.00% 0.83% 0.00% 0.00% 5.14% 

RM 2.00% 0.67% 2.78% 0.56% 1.33% 0.78% 1.35% 

HAR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

log-HAR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Note: The table presents the average proportion of each class of volatility models able to beat the 

three benchmarks. For example, the first value 10.83% means that on average 5 models out of 48 

ARCH models outperformed the three benchmarks for the EUR/USD. The equation and the count of 

models for all classes are given in Table 5.1 and Table D.1 respectively. The performance scale is 

MSE1 and the value in bold shows the maximum of each column. 
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Table A.1: EUR/USD Trading Performance – Sharpe Ratio 

Note: The table presents the annualized Sharpe Ratio for the top rules out of the data-snooping 

procedure survivors. Three fixed levels (5, 10, and 15) are studied SA, NB, DMA, DMS, DMA and 

BNN while the RVM is selecting the most relevant rules endogenously. The best rules are selected 

based on three measures of IS accuracy, profitability, and Sharpe ratio. All returns are after 

transaction costs. The values in bold correspond to the best performing combination for each criterion 

and exercise.  

Exercise Measure Accuracy 
Profit-
ability 

Sharpe 
Ratio 

Exercise Measure Accuracy 
Profit-
ability 

Sharpe 
Ratio 

1 

SA (5)  -0.22 -0.08 -0.02 

3 

SA (5) 0.19 0.34 -0.22 

SA (10) 0.20 -0.18  0.06 SA (10) -0.22 -0.07 -0.37 

SA (15) -0.14 -0.11  -0.21 SA (15) -0.12 -0.28 -0.20 

NB (5) 0.18  0.14  0.18 NB (5) 0.42 0.40 0.44 

NB (10) 0.33  0.29  0.35 NB (10) 0.25 0.36 0.47 

NB (15) 0.30  0.26  0.31 NB (15) 0.27 0.37 0.49 

DMA (5) 0.44 0.46 0.48 DMA (5) 0.80 0.61 0.54 

DMA (10) 0.62  0.44 0.58 DMA (10) 0.71 0.58 0.72 

DMA (15) 0.57 0.59 0.55 DMA (15) 0.62 0.69 0.65 

DMS (5) 0.50 0.67 0.52 DMS (5) 0.57 0.49 0.61 

DMS (10) 0.48 0.55  0.58 DMS (10) 0.69 0.54 0.63 

DMS (15) 0.47  0.49 0.26 DMS (15) 0.68 0.56 0.69 

BNN (5) 0.59 0.57 0.48 BNN (5) 0.70 0.58 0.71 

BNN (10) 0.60 0.63 0.52 BNN (10) 0.77 0.66 0.74 

BNN (15) 0.59  0.58 0.55 BNN (15) 0.64 0.68 0.72 

RVM 0.50 0.50 0.50 RVM 0.63 0.63 0.63 

2 

SA (5) 0.09 -0.07 0.12 

4 

SA (5) 0.17 -0.08 -0.22 

SA (10)  0.19 -0.11 0.14 SA (10) -0.20 0.20 -0.29 

SA (15)  0.08 0.22 0.17 SA (15) -0.12 0.18 -0.10 

NB (5)  0.18 0.28 0.13 NB (5) 0.36 -0.24 0.25 

NB (10)  0.26 0.26 0.18 NB (10) 0.38 0.26 0.11 

NB (15)  0.17 0.26 0.15 NB (15) 0.41 0.33 0.28 

DMA (5)  0.32 0.41 0.53 DMA (5) 0.64 0.47 0.39 

DMA (10)  0.44 0.30 0.55 DMA (10) 0.56 0.52 0.42 

DMA (15)  0.48 0.32 0.59 DMA (15) 0.65 0.49 0.37 

DMS (5)  0.35 0.29 0.53 DMS (5) 0.40 0.38 0.38 

DMS (10)  0.37 0.26 0.55 DMS (10) 0.73 0.41 0.40 

DMS (15) 0.44 0.24 0.49 DMS (15) 0.74 0.44 0.42 

BNN (5) 0.36 0.22 0.52 BNN (5) 0.69 0.41 0.54 

BNN (10) 0.51 0.34 0.48 BNN (10) 0.65 0.50 0.70 

BNN (15) 0.40 0.33 0.62 BNN (15) 0.76 0.51 0.59 

RVM 0.31 0.31   0.31 RVM 0.47 0.47 0.47 
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Table A.2: GBP/USD Trading Performance – Sharpe Ratio 

Exercise Measure Accuracy 
Profit-
ability 

Sharpe 
Ratio 

Exercise Measure Accuracy 
Profit-
ability 

Sharpe 
Ratio 

1 

SA (5) 0.30 -0.40 -0.03 

3 

SA (5) -0.07 0.14 -0.21 

SA (10) 0.12 -0.08 -0.39 SA (10) 0.23 -0.24 0.27 

SA (15) -0.15 -0.02 -0.26 SA (15) 0.19 -0.13 0.31 

NB (5) 0.32 0.21 0.13 NB (5) 0.27 0.22 0.26 

NB (10) 0.33 0.28 0.34 NB (10) 0.31 0.39 0.42 

NB (15) 0.38 0.39 0.20 NB (15) 0.37 0.43 0.17 

DMA (5) 0.43 0.51 0.41 DMA (5) 0.64 0.45 0.46 

DMA (10) 0.38 0.57 0.65 DMA (10) 0.62 0.49 0.51 

DMA (15) 0.65 0.63 0.36 DMA (15) 0.79 0.81 0.48 

DMS (5) 0.44 0.40 0.42 DMS (5) 0.64 0.32 0.39 

DMS (10) 0.37 0.59 0.38 DMS (10) 0.62 0.46 0.57 

DMS (15) 0.56 0.48 0.32 DMS (15) 0.68 0.72 0.57 

BNN (5) 0.42 0.51 0.63 BNN (5) 0.53 0.60 0.54 

BNN (10) 0.61 0.50 0.45 BNN (10) 0.48 0.63 0.32 

BNN (15) 0.75 0.66 0.38 BNN (15) 0.71 0.70 0.68 

RVM 0.41 0.41 0.41 RVM 0.39 0.39 0.39 

 2 

SA (5) 0.09 0.11 -0.29 

4 

SA (5) -0.05 0.18 0.05 

SA (10) 0.20 0.14 0.14 SA (10) 0.18 0.14 0.27 

SA (15) 0.24 0.04 -0.11 SA (15) 0.09 0.07 -0.04 

NB (5) 0.26 0.33 0.23 NB (5) 0.26 0.26 0.25 

NB (10) 0.28 0.41 0.20 NB (10) 0.29 0.37 0.34 

NB (15) 0.19 0.43 0.15 NB (15) 0.31 0.48 0.37 

DMA (5) 0.37 0.39 0.56 DMA (5) 0.48 0.51 0.59 

DMA (10) 0.50 0.42 0.61 DMA (10) 0.51 0.62 0.64 

DMA (15) 0.72 0.63 0.49 DMA (15) 0.83 0.78 0.52 

DMS (5) 0.45 0.31 0.57 DMS (5) 0.36 0.41 0.43 

DMS (10) 0.57 0.33 0.48 DMS (10) 0.42 0.50 0.49 

DMS (15) 0.69 0.58 0.34 DMS (15) 0.67 0.66 0.52 

BNN (5) 0.61 0.45 0.53 BNN (5) 0.52 0.64 0.57 

BNN (10) 0.65 0.67 0.57 BNN (10) 0.57 0.61 0.56 

BNN (15) 0.76 0.61 0.49 BNN (15) 0.64 0.80 0.36 

RVM 0.43 0.43 0.43 RVM 0.48 0.48 0.48 

Note: The table presents the annualized Sharpe Ratio for the top rules out of the data-snooping 

procedure survivors. Three fixed levels (5, 10, and 15) are studied SA, NB, DMA, DMS, DMA and 

BNN while the RVM is selecting the most relevant rules endogenously. The best rules are selected 

based on three measures of IS accuracy, profitability, and Sharpe ratio. All returns are after 

transaction costs. The values in bold correspond to the best performing combination for each criterion 

and exercise.  
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Table A.3: USD/JPY Trading Performance – Sharpe Ratio 

Exercise Measure Accuracy 
Profit-
ability 

Sharpe 
Ratio 

Exercise Measure Accuracy 
Profit-
ability 

Sharpe 
Ratio 

1 

SA (5) -0.30 0.31 0.32 

3 

SA (5) -0.21 -0.19 -0.31 

SA (10) -0.09 0.4 0.45 SA (10) -0.15 -0.16 0.10 

SA (15) -0.21 0.15 0.40 SA (15) 0.03 -0.12 -0.17 

NB (5) 0.26 0.42 0.42 NB (5) 0.17 0.25 -0.19 

NB (10) 0.22 0.29 0.46 NB (10) 0.39 0.07 0.04 

NB (15) 0.34 0.25 0.34 NB (15) 0.27 0.26 0.06 

DMA (5) 0.38 0.64 0.76 DMA (5) 0.45 0.48 0.63 

DMA (10) 0.47 0.48 0.61 DMA (10) 0.46 0.45 0.59 

DMA (15) 0.53 0.74 0.65 DMA (15) 0.58 0.67 0.41 

DMS (5) 0.60 0.49 0.69 DMS (5) 0.46 0.40 0.28 

DMS (10) 0.55 0.40 0.52 DMS (10) 0.42 0.33 0.47 

DMS (15) 0.43 0.63 0.46 DMS (15) 0.53 0.68 0.30 

BNN (5) 0.46 0.55 0.50 BNN (5) 0.62 0.56 0.45 

BNN (10) 0.54 0.51 0.57 BNN (10) 0.51 0.53 0.62 

BNN (15) 0.68 0.63 0.60 BNN (15) 0.43 0.69 0.50 

RVM 0.54 0.54 0.54 RVM 0.41 0.41 0.41 

 2 

SA (5) -0.25 0.17 0.25 

4 

SA (5) -0.40 -0.24 -0.30 

SA (10) -0.42 0.25 0.18 SA (10) -0.23 -0.28 -0.21 

SA (15) 0.06 0.10 0.05 SA (15) 0.09 -0.11 -0.35 

NB (5) 0.24 0.26 0.11 NB (5) 0.18 0.24 -0.16 

NB (10) 0.28 0.14 0.24 NB (10) 0.20 0.20 0.21 

NB (15) 0.36 0.20 0.36 NB (15) 0.23 0.21 0.15 

DMA (5) 0.53 0.56 0.64 DMA (5) 0.76 0.74 0.43 

DMA (10) 0.64 0.73 0.60 DMA (10) 0.55 0.86 0.58 

DMA (15) 0.67 0.58 0.35 DMA (15) 0.63 0.75 0.67 

DMS (5) 0.32 0.47 0.25 DMS (5) 0.59 0.62 0.45 

DMS (10) 0.41 0.33 0.46 DMS (10) 0.49 0.70 0.49 

DMS (15) 0.56 0.62 0.53 DMS (15) 0.60 0.62 0.54 

BNN (5) 0.50 0.70 0.40 BNN (5) 0.71 0.54 0.43 

BNN (10) 0.63 0.53 0.57 BNN (10) 0.62 0.59 0.70 

BNN (15) 0.62 0.64 0.61 BNN (15) 0.69 0.52 0.48 

RVM 0.49 0.49 0.49 RVM 0.56 0.56 0.56 

Note: The table presents the annualized Sharpe Ratio for the top rules out of the data-snooping 

procedure survivors. Three fixed levels (5, 10, and 15) are studied SA, NB, DMA, DMS, DMA and 

BNN while the RVM is selecting the most relevant rules endogenously. The best rules are selected 

based on three measures of IS accuracy, profitability, and Sharpe ratio. All returns are after 

transaction costs. The values in bold correspond to the best performing combination for each criterion 

and exercise.  
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Table B.1: Relevance Vectors 

Betbrain average 
over 2.5 goals 

odds (BbAv>2.5) 
 

Betbrain size of 
handicap (home 
team) (BBAHh) 

 

Betbrain average 
Asian handicap 

home team odds 
(BbAvAHH) 

 

Betbrain average 
Asian handicap 
away team odds 

(BbAvAHH) 
 

Points of H in the 

last 3 games 

when H plays at 

home 

(PtH3H) 

Points of A in the 

last 3 games 

when A plays 

away 

(PtA3A) 

Number of shots 

on target of H 

team in the last 1 

game (StH1) 

Number of shots 

on target of A 

team in the last 1 

games 

(StA1) 

Number of 

corner kicks on 

target of H team 

in the last 3 

game (CkH3) 

Number of 

corner kicks on 

target of H team 

in the last 2 

game (CkH2) 

Number of 

corner kicks on 

target of H team 

in the last 1 

game plays 

home (CkH1H) 

Number of 

corner kicks on 

target of A team 

in the last 2 

game plays 

away (CkA2A) 

   

Note: Team H is the home team and team A is the away team. The parentheses represent the 
relevant abbreviation of the RV. In total, 12 RVs are selected. 
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Table B.2: Cluster Characteristics for the Generated Rules 

Rule 
Input 
variable 

1 2 3 4 5 6 7 8 9 10 11 12 13 

BbAv>2.5 
2.136 

(0.168) 
2.117 

(0.128) 
1.96 

(0.122) 
2.034 

(0.153) 
1.998 

(0.173) 
2.003 

(0.170) 
2.093 

(0.154) 
1.754 

(0.160) 
2.015 

(0.149) 
1.767 

(0.156) 
2.055 

(0.135) 
2.032 

(0.203) 
2.134 

(0.100) 

BbAHh 
0.000 

(0.797) 
-0.502 
(0.793) 

0.002 
(0.793) 

0.000 
(0.793) 

-0.001 
(0.795) 

0.001 
(0.795) 

-0.001 
(0.797) 

-1.502 
(0.793) 

-0.002 
(0.795) 

-1.500 
(0.794) 

-0.500 
(0.796) 

-0.751 
(0.795) 

-0.245 
(0.795) 

BbAvAHH 
1.83 

(1.419) 
1.971 
(1.42) 

1.82 
(1.417) 

1.941 
(1.421) 

1.519 
(1.419) 

2.05  
(1.42) 

1.579 
(1.419) 

1.79 
(1.419) 

1.7  
(1.416) 

2.031 
(1.427) 

1.809 
(1.419) 

1.84 
(1.416) 

1.88  
(1.42) 

BbAvAHA 
1.99 

(1.715) 
1.889 

(1.713) 
1.9  

(1.717) 
1.81 

(1.715) 
2.36 

(1.713) 
1.741 

(1.715) 
2.29  

(1.715) 
2.08 

(1.716) 
2.099 

(1.713) 
1.83 

(1.714) 
2.08 

(1.715) 
2.04 

(1.715) 
1.981 

(1.716) 

PtH3H 
4  

(1.589) 
6.001 

(1.593) 
3  

(1.592) 
4.001 

(1.588) 
0.999 

(1.591) 
6.999 

(1.596) 
3  

(1.589) 
6.001 

(1.593) 
6.999 

(1.589) 
6.998 

(1.593) 
8.999 

(1.592) 
3.999 

(1.594) 
4  

(1.59) 

PtA3A 
2.997 

(1.587) 
1  

(1.589) 
1.999 

(1.591) 
6  

(1.59) 
1.001 

(1.591) 
5.002 

(1.594) 
5  

(1.592) 
3  

(1.592) 
2.997 

(1.587) 
0  

(1.591) 
0.999 

(1.591) 
0.001 

(1.592) 
3.003 
(1.59) 

StH1 
4.001 

(3.889) 
2.999 

(3.889) 
6  

(3.889) 
4  

(3.89) 
6.001 

(3.889) 
6  

(3.89) 
4.999 

(3.888) 
8  

(3.889) 
7  

(3.888) 
9  

(3.889) 
3.999 

(3.888) 
4  

(3.889) 
4.001 

(3.891) 

StA1 
5.999 

(3.712) 
6  

(3.712) 
3  

(3.713) 
6.002 

(3.713) 
7.999 

(3.711) 
9  

(3.714) 
6  

(3.711) 
10  

(3.712) 
3  

(3.711) 
5  

(3.712) 
7  

(3.712) 
4  

(3.713) 
5 

(3.713) 

CkH3 
13  

(6.187) 
15  

(6.187) 
19  

(6.187) 
13  

(6.187) 
13  

(6.187) 
17  

(6.187) 
19  

(6.187) 
16  

(6.187) 
16.999 
(6.187) 

19  
(6.188) 

9  
(6.187) 

9  
(6.187) 

21  
(6.187) 

CkH2 
7.001 

(4.773) 
11  

(4.774) 
14  

(4.773) 
10  

(4.774) 
8.001 

(4.773) 
9.001 

(4.773) 
13  

(4.773) 
12  

(4.773) 
11  

(4.773) 
10  

(4.774) 
5  

(4.773) 
5.999 

(4.773) 
16  

(4.773) 

CkH1H 
3.999 

(3.358) 
6.001 
(3.36) 

6.001 
(3.36) 

6  
(3.359) 

5  
(3.358) 

4.999 
(3.358) 

10.001 
(3.357) 

8  
(3.359) 

6  
(3.358) 

6  
(3.358) 

2.999 
(3.358) 

4.001 
(3.36) 

12  
(3.358) 

CkA2A 
7.999 

(4.064) 
11  

(4.067) 
10  

(4.065) 
7.001 

(4.068) 
9  

(4.067) 
10  

(4.066) 
12  

(4.065) 
8  

(4.067) 
8.001 

(4.067) 
8  

(4.066) 
9.999 

(4.065) 
7.999 

(4.064) 
4  

(4.065) 

Note: The values in the Table represent the centre (standard deviation) of the relevant cluster. For instance, consider the first input (BbAv>2.5); to determine which rule an 

observation belongs to, the membership grade is calculated by the membership function of exp (−(x∗,1 − 2.136)
2

/(2 × 0.1682)) where x∗,1 is the given odd for the Betbrain 

average for greater than 2.5 goals for the match. The firing strength (weight) of each rule is the product of the membership grades for all inputs. 
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Table B.3: Regression coefficients for the generated rules 

Rule 

Coefficient 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Intercept -2.706 -9.438 10.118 2.951 -10.841 0.159 -4.962 2.463 10.566 -8.081 -12.303 15.935 3.463 

BbAv>2.5 1.042 1.68 -2.443 -0.18 0.855 -0.305 0.675 -0.991 0.256 1.118 -0.82 -0.446 4.488 

BbAHh -0.755 -0.196 -0.503 -0.256 -1.064 -0.742 -0.338 -0.431 -0.723 -0.7 -0.402 -1.759 -3.1 

BbAvAHH 1.072 2.361 -2.385 -0.962 2.639 -0.251 0.459 -0.191 -4.478 1.548 4.102 -6.554 -3.701 

BbAvAHA 0.484 1.055 -1.057 -1.099 1.544 0.119 1.22 -0.353 -0.646 0.952 1.537 -2.011 -1.609 

PtH3H -0.041 -0.141 0.163 0.074 0.043 -0.094 -0.016 -0.096 -0.194 0.074 0.417 0.037 -0.343 

PtA3A 0.207 -0.443 0.108 0.087 0.142 0.054 0.225 0.158 0.022 0.171 0.365 -0.743 0.097 

StH1 -0.138 0.083 0.049 -0.008 0.022 -0.017 0 0.013 -0.002 0.008 -0.138 0.057 -0.118 

StA1 -0.088 0.124 -0.161 0.011 -0.042 0.031 -0.032 0.078 0.156 0.062 -0.083 0.206 -0.105 

CkH3 -0.197 0.045 0.139 0.02 0.078 0.033 -0.023 -0.069 0.001 -0.059 -0.041 0.028 -0.079 

CkH2 -0.016 -0.028 -0.124 0.043 0.029 -0.058 0.035 0.111 0.038 -0.021 0.016 -0.055 0.03 

CkH1H 0.152 -0.005 -0.056 -0.083 0.046 0.065 0 -0.04 -0.147 0.161 0.151 -0.115 0.059 

CkA2A 0.074 -0.093 0.05 -0.029 -0.017 0.044 -0.053 -0.025 0.03 0.031 0.061 0.08 -0.005 
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Table B.4: IS Accuracy 

Model Championship 
2006-

2009 

2006-

2010 

2007-

2011 

2008-

2012 

2009-

2013 

2010-

2014 
Average 

Game 
Result 

Premiership 87.52% 86.95% 85.94% 83.68% 87.90% 86.54% 86.42% 

La -Liga 87.90% 80.14% 83.27% 84.49% 88.23% 84.38% 84.74% 

Seria A 80.82% 84.06% 79.74% 82.61% 88.12% 83.47% 83.14% 

Asian 
Handicap 

Premiership 88.01% 85.22% 83.14% 79.29% 83.36% 84.63% 83.94% 

La -Liga 87.70% 88.34% 84.44% 81.42% 81.11% 79.94% 83.83% 

Seria A 84.47% 79.89% 82.61% 83.05% 81.06% 81.77% 82.14% 

Number of 
Goals 

Premiership 86.19% 81.50% 84.55% 83.07% 80.39% 84.48% 83.36% 

La -Liga 85.43% 81.22% 79.39% 81.00% 79.71% 84.19% 81.82% 

Seria A 83.20% 78.32% 84.53% 82.16% 86.92% 82.94% 83.01% 

Note: All values in the Table represent accuracy ratios 
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Table B.5: CF Forecasts 

Note: All values in the Table represent number of games that CF generated forecasts for the 
respective championship and season. Row 1 corresponds to the first year of the OOS and row 2 to 
the second year of the OOS. For example, for the first cell on the left corner, 26 is the number of 
forecasts generated by CF for the 2009-2010 Premiership season and the 21 is the number of 
forecasts generated by the exact CF model (same specification and rules) for the 2010-2011 season 
of the same championship. All other models under study are unconditional and generate forecasts 
for every single game.  
 

 

 

 IS 

Model Championship OOS 
2006-
2009 

2006-
2010 

2007-
2011 

2008-
2012 

2009-
2013 

2010-
2014 

Game 
Result 

Premiership 
1 26 25 22 23 21 30 

2 21 18 18 17 23 16 

La -Liga 
1 15 60 26 28 43 58 

2 21 23 19 23 47 48 

Seria A 
1 25 23 21 25 40 24 

2 49 38 22 19 27 28 

Asian 
Handicap 

Premiership 
1 29 21 24 28 29 22 

2 26 36 32 24 18 35 

La -Liga 
1 27 59 48 39 27 24 

2 48 37 59 45 24 34 

Seria A 
1 32 31 24 21 17 31 

2 37 58 21 32 53 35 

Number 
of Goals 

Premiership 
1 24 19 21 26 24 13 

2 16 36 34 42 76 52 

La -Liga 
1 24 51 29 25 59 80 

2 23 48 55 40 22 94 

Seria A 
1 27 26 24 28 24 37 

2 30 46 54 29 26 37 
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Table C.1: Annualized Mean Excess Returns for Quartiles of Different Combination of Sharpe Ratio Levels.  

Outperforming SR Quartile 

Underperforming SR 

-2 -3 -4 

Outperforming Underperforming Outperforming Underperforming Outperforming Underperforming 

2 

1st 6.50 -8.93 6.80 -16.28 6.60 -24.69 

2nd 16.28 -16.08 16.92 -23.84 16.51 -32.74 

3rd 19.14 -22.55 19.83 -30.71 19.25 -39.62 

3 

1st 11.51 -8.69 11.37 -16.83 11.43 -24.64 

2nd 25.14 -15.86 24.63 -24.52 24.81 -32.82 

3rd 27.94 -22.53 27.38 -31.05 27.54 -39.55 

4 

1st 16.44 -8.88 16.32 -16.66 16.64 -24.19 

2nd 33.56 -16.00 33.43 -24.34 34.22 -32.23 

3rd 36.19 -22.47 36.08 -30.97 36.90 -39.13 

Note: The table reports the quartiles of the distribution of the annualized mean excess return (in percentages) induced by positive and negative Sharpe ratio pairs applied in 
the Monte Carlo simulations for the out- and under-performing strategies. The pairs are created with the annualized Sharpe ratio for out- and under-performing rules set to 
2, 3, 4 and -2, -3, -4 respectively. The quantities presented correspond to the average values over 1000 Monte Carlo simulations. The proportion of rules that are neutrally 
performing (𝜋0), outperforming (𝜋𝛢

+) and underperforming (𝜋𝛢
−) and are set to 50%, 20% and 30% respectively. 
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Table C.2 Estimation of Neutral, Positive, and Negative Proportions by the DFDR+/- Procedure Versus the Actual Ones.  

Outperforming SR Proportion 

Underperforming SR 

-2 -3 -4 

2 

𝜋0 = 50% 73.08 62.93 60.97 

𝜋𝛢
+ = 20% 9.39 11.91 11.17 

𝜋𝛢
− = 30% 17.53 25.17 27.86 

3 

𝜋0 = 50% 66.43 57.09 53.44 

𝜋𝛢
+ = 20% 14.35 15.23 16.09 

𝜋𝛢
− = 30% 19.22 27.68 30.47 

4 

𝜋0 = 50% 64.35 53.55 50.21 

𝜋𝛢
+ = 20% 16.28 18.08 18.89 

𝜋𝛢
− = 30% 19.37 28.36 30.91 

Note: The quantities presented correspond to the average values estimated over 1000 Monte Carlo simulations. The proportion of rules that are neutrally performing (𝜋0), 

outperforming (𝜋𝛢
+) and underperforming (𝜋𝛢

−) and are set to 50%, 20% and 30% respectively. The table provides the estimates when annualized Sharpe ratio for out- and 
under-performing rules is set to 2, 3, 4 and -2, -3, -4 respectively. 
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Table C.3: True FDR, Accuracy and the Positive-performing Portfolio Size through Different Methods.  

Outperforming  
SR 

Portfolio Type 

Underperforming SR 

-2 -3 -4 

FDR+ Power Portfolio size FDR+ Power Portfolio size FDR+ Power Portfolio size 

2 

10%-DFDR + 12.92 39.46 1995.71 12.67 42.01 2118.86 12.05 40.31 2014.43 

20%-DFDR + 13.79 39.92 2110.78 15.03 43.3 2369.41 14.65 41.66 2281.92 

5%-RW 0.86 0.01 0.53 0.90 0.01 0.52 0.71 0.01 0.48 

20%-RW 8.42 0.05 3.03 8.28 0.06 3.33 7.11 0.05 2.90 

3 

10%-DFDR + 8.44 64.74 3076.41 8.00 64.74 3048.45 8.78 62.89 3039.27 

20%-DFDR + 9.54 65.29 3212.88 10.59 66.30 3321.58 11.55 64.62 3343.04 

5%-RW 0.31 0.01 0.52 0.04 0.01 0.60 0.08 0.01 0.57 

20%-RW 3.21 0.07 3.47 2.30 0.07 3.41 2.97 0.07 3.49 

4 

10%-DFDR + 6.45 82.39 3790.07 6.62 83.57 3879.56 7.83 83.01 3945.84 

20%-DFDR + 7.80 83.35 3948.29 9.53 85.49 4194.29 10.5 84.89 4244.14 

5%-RW 0.00 0.02 0.65 0.01 0.02 0.73 0.00 0.02 0.68 

20%-RW 0.53 0.09 3.87 0.31 0.10 4.38 0.34 0.09 3.73 

Note: The table reports the FDR+ and accuracy in percentages and the portfolio size (out of 21195). Accuracy is estimated by the ratio of actual outperformers discovered by 
the underlying procedure. I consider confidence target levels of 10% and 20% for the DFDR+ and benchmark it against the procedure in Romano and Wolf (2005) for the 
target levels of 5% and 20%. The quantities refer to average values over 1000 Monte Carlo simulations for different combinations pairs when annualized Sharpe ratio for out- 
and under-performing rules are set to 2, 3, 4 and -2, -3, -4 respectively. 
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Table C.4: Percentage and Standard Deviation of the DFDR+/- Procedure Survivors (IS 1 Year).  

Market 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 

Developed 
1.37 

(2.82) 
0.20 

(0.20) 
1.34 

(3.22) 
5.44 

(4.12) 
4.32 

(7.72) 
2.10 

(5.26) 
0.42 

(0.20) 
8.93 

(11.28) 
7.72 

(12.61) 
0.45 

(0.12) 
3.23 

(4.76) 

US 
0.02 

(0.02) 
0.11 

(0.12) 
0.57 

(1.27) 
2.53 

(2.68) 
6.02 

(9.25) 
2.15 

(5.61) 
2.06 

(5.34) 
16.75 

(15.89) 
16.24 

(16.68) 
0.32 

(0.13) 
4.68 

(5.70) 

UK 
11.52 
(6.91) 

14.52 
(11.99) 

2.75 
(6.43) 

39.02 
(9.20) 

13.40 
(14.60) 

0.57 
(0.23) 

0.24 
(0.07) 

2.29 
(6.25) 

3.17 
(8.59) 

0.37 
(0.11) 

8.78 
(6.44) 

Japan 
13.19 

(13.86) 
1.26 

(2.59) 
2.70 

(4.57) 
7.01 

(2.60) 
4.90 

(7.97) 
0.66 

(0.22) 
0.49 

(0.20) 
2.27 

(5.30) 
0.23 

(0.10) 
0.44 

(0.15) 
3.32 

(3.76) 

Emerging 
4.87 

(9.35) 
1.94 

(2.38) 
1.01 

(1.33) 
6.74 

(5.01) 
10.21 

(11.65) 
0.48 

(0.30) 
0.61 

(0.19) 
0.37 

(0.21) 
0.32 

(0.17) 
0.53 

(0.67) 
2.71 

(3.12) 

Russia 
31.04 

(19.00) 
1.92 

(3.65) 
2.81 

(6.59) 
33.80 

(12.19) 
11.24 

(12.74) 
2.65 

(5.77) 
0.75 

(0.45) 
0.94 

(0.63) 
0.96 

(0.38) 
1.39 

(0.77) 
8.75 

(6.22) 

China 
7.34 

(8.51) 
27.46 

(23.36) 
0.96 

(0.61) 
2.90 

(5.44) 
5.68 

(9.01) 
0.46 

(0.70) 
0.37 

(0.08) 
0.91 

(0.47) 
0.31 

(0.25) 
5.60 

(9.06) 
5.20 

(5.75) 

Brazil 
33.66 

(30.99) 
8.85 

(12.55) 
16.00 

(15.17) 
34.05 
(9.11) 

10.67 
(11.65) 

0.26 
(0.20) 

0.40 
(0.40) 

0.97 
(0.53) 

1.44 
(0.61) 

1.24 
(1.46) 

10.75 
(8.27) 

Frontier 
9.18 

(14.08) 
6.12 

(8.23) 
3.58 

(9.53) 
38.73 

(14.25) 
7.03 

(8.80) 
1.64 

(0.80) 
0.51 

(0.30) 
3.05 

(5.17) 
8.17 

(9.53) 
2.80 

(1.58) 
8.08 

(7.23) 

Estonia 
0.66 

(1.28) 
0.83 

(0.50) 
6.04 

(9.17) 
7.08 

(5.44) 
10.04 

(10.78) 
1.09 

(0.98) 
0.47 

(0.30) 
25.02 
(8.96) 

1.76 
(2.35) 

1.50 
(2.86) 

5.45 
(4.26) 

Morocco 
19.28 

(22.47) 
4.67 

(4.39) 
12.35 

(10.54) 
2.02 

(1.55) 
0.31 

(0.23) 
0.18 

(0.06) 
1.84 

(2.17) 
0.22 

(0.06) 
0.42 

(0.16) 
0.59 

(0.82) 
4.19 

(4.24) 

Jordan 
0.89 

(1.19) 
1.25 

(1.03) 
2.38 

(2.98) 
4.38 

(2.67) 
0.39 

(0.11) 
0.82 

(0.96) 
0.35 

(0.13) 
0.26 

(0.21) 
0.27 

(0.10) 
0.38 

(0.21) 
1.14 

(0.96) 

Average 
11.08 

(10.87) 
5.76 

(5.92) 
4.37 

(5.95) 
15.31 
(6.19) 

7.02 
(8.71) 

1.09 
(1.76) 

0.71 
(0.82) 

5.17 
(4.58) 

3.42 
(4.29) 

1.30 
(1.49) 

5.52 
(5.06) 

Note: The table reports the percentage and standard deviations of the survivor rules adjusted based on the number of the total number rules. For example, in 2006 for the 

Developed market, the surviving rules are 290 (0.0137×21195) and their standard deviation is 598 (0.0282×21195). The average is estimated from the twelve portfolios 
whose OOS is on 2006. The first portfolio’s IS from 01/01/2004-31/12/2005 and the remaining eleven are calculated by rolling-forward the IS by one month.  
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Table C.5: Annualized Returns and Sharpe Ratios after Transaction Costs (IS 1 Year) 

Market 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 

Developed 
16.19%  
(2.04) 

16.91%  
(1.97) 

23.67%  
(1.92) 

50.74%  
(2.18) 

16.38%  
(2.36) 

14.66%  
(2.13) 

12.49%  
(2.27) 

15.27%  
(2.28) 

9.74%  
(2.31) 

7.01%  
(3.14) 

18.31%  
(2.26) 

US 
11.78%  
(1.35) 

14.38%  
(1.56) 

23.21%  
(1.43) 

48.31%  
(1.65) 

16.47%  
(1.86) 

15.01%  
(2.21) 

12.84%  
(2.20) 

14.94%  
(2.03) 

12.91%  
(1.84) 

5.48%  
(2.33) 

17.53%  
(1.85) 

UK 
10.71%  
(1.31) 

15.37%  
(1.52) 

18.59%  
(0.95) 

49.79%  
(1.41) 

22.49%  
(1.86) 

19.64%  
(1.97) 

7.26%  
(2.42) 

12.81%  
(2.04) 

11.88%  
(2.58) 

11.17%  
(2.85) 

17.97%  
(1.89) 

Japan 
23.33%  
(1.36) 

13.65%  
(0.93) 

13.77%  
(1.04) 

34.03%  
(1.39) 

12.38%  
(1.31) 

15.59%  
(1.68) 

7.84%  
(2.21) 

16.86%  
(1.90) 

5.81%  
(2.35) 

8.31%  
(2.19) 

15.16%  
(1.64) 

Emerging 
29.38%  

(2.6) 
33.62%  
(2.51) 

41.64%  
(2.19) 

69.6%  
(2.51) 

20.41%  
(2.54) 

18.18%  
(2.35) 

21.84%  
(2.49) 

15.57%  
(2.59) 

9.46%  
(2.46) 

13.92%  
(2.48) 

27.36%  
(2.47) 

Russia 
39.42%  
(1.26) 

26.95%  
(1.19) 

28.83%  
(0.95) 

99.79%  
(1.78) 

27.57%  
(1.43) 

28.66%  
(2.12) 

31.19%  
(2.26) 

23.39%  
(2.02) 

17.13%  
(2.23) 

47.18%  
(2.18) 

37.01%  
(1.74) 

China 
34.17%  
(2.22) 

41.65%  
(2.32) 

55.04%  
(2.10) 

69.05%  
(1.90) 

19.00% 
(1.86) 

10.95%  
(1.98) 

13.55%  
(2.70) 

19.17%  
(2.07) 

18.40% 
(2.34) 

23.90%  
(1.97) 

30.49%  
(2.14) 

Brazil 
28.63%  
(1.42) 

31.85%  
(1.22) 

40.21%  
(1.22) 

68.74%  
(1.51) 

24.13%  
(1.88) 

12.54%  
(1.76) 

29.99%  
(2.48) 

17.52%  
(2.17) 

21.09%  
(2.48) 

32.27%  
(1.69) 

30.7%  
(1.78) 

Frontier 
24.2%  
(2.69) 

25.08%  
(2.63) 

28.36%  
(2.27) 

55.37%  
(2.87) 

21.1%  
(3.21) 

16.34%  
(2.53) 

13.5% 
(2.30) 

12.6%  
(2.82) 

10.67%  
(2.85) 

17.95%  
(2.46) 

22.52%  
(2.66) 

Estonia 
18.92%  
(1.87) 

38.79%  
(2.27) 

44.25%  
(2.25) 

75.54%  
(2.36) 

38.34%  
(2.14) 

33.91%  
(2.17) 

15.69%  
(2.35) 

19.76%  
(1.93) 

11.87%  
(1.63) 

15.01%  
(1.89) 

31.21%  
(2.09) 

Morocco 
36.42%  
(3.04) 

39.55%  
(2.48) 

32.95%  
(2.13) 

37.99%  
(2.16) 

12.64%  
(2.35) 

8.85%  
(2.31) 

18.02%  
(1.64) 

6.82%  
(2.35) 

8.32%  
(2.04) 

9.68%  
(1.31) 

21.12%  
(2.18) 

Jordan 
41.04%  
(2.21) 

29.06%  
(1.92) 

32.41%  
(2.15) 

46.15%  
(2.02) 

16.23%  
(2.40) 

17.99%  
(2.28) 

12.73%  
(2.21) 

8.33%  
(1.99) 

10.38%  
(1.84) 

5.46%  
(2.54) 

21.98%  
(2.16) 

Average 
26.18%  
(1.95) 

27.24%  
(1.88) 

31.91%  
(1.72) 

58.76%  
(1.98) 

20.60% 
(2.10) 

17.69%  
(2.12) 

16.41%  
(2.30) 

15.25%  
(2.18) 

12.31%  
(2.25) 

16.45%  
(2.25) 

24.28%  
(2.07) 

Note: The table reports the average IS annualized returns and Sharpe ratios of twelve portfolios for one year of IS after transaction costs (rolling-forward by one month). For 

example, the 16.19% annualized return of the Developed markets (2006) is calculated as the average IS annualized return of twelve portfolios. The first portfolio’s IS return 

is calculated over the period of 01/01/2005-31/12/2005. The remaining eleven are calculated by rolling-forward the IS by one month. The same logic applies to the Sharpe 

ratios. The last column and raw presents the average performance per market across all years and per year respectively.  
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Table C.6 Annualized Returns and Sharpe Ratios after Transaction Costs (IS 1 Year and OOS 1 Month) 

Market 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 

Developed 
11.09%  
(1.27) 

-15.38% 
(-1.66) 

3.43% 
(0.16) 

3.68%  
(0.25) 

-8.94% 
(-1.96) 

-13.85% 
(-1.67) 

-2.57% 
(-0.87) 

6.76%  
(1.09) 

-6.95% 
(-1.77) 

-3.07% 
(-1.15) 

-2.58% 
(-0.63) 

US 
8.51%  
(0.96) 

-13.79% 
(-1.11) 

5.5% 
(0.21) 

0.28%  
(0.02) 

-9.76% 
(-1.47) 

-12.72% 
(-1.55) 

-1.17% 
(-0.35) 

11.66%  
(1.55) 

0.51%  
(0.08) 

-0.56% 
(-0.3) 

-1.15% 
(-0.2) 

UK 
16.38%  
(1.49) 

1.7% 
(0.17) 

7.01%  
(0.31) 

19.95%  
(1.1) 

-13.86% 
(-2.08) 

-11.93% 
(-1.09) 

-2.91% 
(-2.43) 

-2.07% 
(-0.36) 

-5.19% 
(-1.27) 

-4.14% 
(-0.92) 

0.49% 
(-0.51) 

Japan 
-10.2% 
(-0.63) 

-4.73% 
(-0.77) 

19.12%  
(0.67) 

2.08%  
(0.09) 

-7.74% 
(-1.41) 

-13.7% 
(-1.64) 

-2.77% 
(-1.62) 

-2.29% 
(-0.19) 

-6.09% 
(-3.11) 

-4.72% 
(-0.91) 

-3.11% 
(-0.95) 

Emerging 
3.72%  
(0.31) 

7.74%  
(0.44) 

23.23%  
(0.64) 

0.81%  
(0.05) 

-7.53% 
(-1.25) 

-14.17% 
(-2.25) 

-8.37% 
(-1.86) 

-3.3% 
(-0.95) 

-9.02% 
(-2.94) 

-4.63% 
(-0.79) 

-1.15% 
(-0.86) 

Russia 
10.33%  
(0.43) 

-8.26% 
(-0.9) 

49.31%  
(0.83) 

9.41%  
(0.36) 

-10.31% 
(-1.04) 

-27.52% 
(-2.51) 

-3.66% 
(-0.51) 

-5.97% 
(-0.9) 

8.68%  
(0.43) 

-15.74% 
(-1.27) 

0.63% 
(-0.51) 

China 
58.42%  
(2.72) 

13.24%  
(0.57) 

-0.35% 
(-0.01) 

-13.12% 
(-0.69) 

-10.18% 
(-1.41) 

-19.89% 
(-2.41) 

-2.99% 
(-1.57) 

-6.18% 
(-0.93) 

-8.73% 
(-1.12) 

11.91%  
(0.77) 

2.21% 
(-0.41) 

Brazil 
-10.06% 
(-0.43) 

17.71%  
(0.67) 

84.71%  
(1.47) 

21.25%  
(0.98) 

-12.27% 
(-1.62) 

-18.28% 
(-2.17) 

-14.19% 
(-2.37) 

-3.53% 
(-0.63) 

-4.38% 
(-0.36) 

9.01% 
(0.4) 

7% 
(-0.41) 

Frontier 
-12.23% 
(-1.35) 

15.77%  
(1.53) 

33.12%  
(1.56) 

11.75%  
(1.15) 

4.54% 
(1.1) 

-2.12% 
(-0.36) 

-7.06% 
(-2.01) 

-4.42% 
(-1.16) 

0.68%  
(0.13) 

9.22%  
(1.18) 

4.93%  
(0.18) 

Estonia 
-18.25% 
(-1.59) 

-8.47% 
(-0.55) 

68.02%  
(1.5) 

12.74%  
(0.52) 

1.8% 
(0.13) 

-6.9% 
(-0.42) 

1.27% 
(0.2) 

-3.46% 
(-0.43) 

6.46%  
(0.67) 

-14.41% 
(-2.55) 

3.88% 
(-0.25) 

Morocco 
19.55%  
(1.26) 

7.48% 
(0.6) 

32.43%  
(1.41) 

-4.1% 
(-0.34) 

-5.82% 
(-1.52) 

-6.47% 
(-1.65) 

2.66%  
(0.22) 

-6.1% 
(-2.37) 

-1.88% 
(-1.21) 

-3.56% 
(-0.56) 

3.42% 
(-0.42) 

Jordan 
-8.63% 
(-0.57) 

2.5% 
(0.27) 

39.35%  
(1.31) 

-7.1% 
(-0.6) 

-5.33% 
(-1.44) 

-4.97% 
(-0.72) 

-5.6% 
(-1.27) 

-5.18% 
(-1.26) 

-4.02% 
(-0.94) 

-2.6% 
(-1.24) 

-0.16% 
(-0.64) 

Average 
5.72%  
(0.32) 

1.29% 
(-0.06) 

30.41%  
(0.84) 

4.8%  
(0.24) 

-7.12% 
(-1.16) 

-12.71% 
(-1.54) 

-3.95% 
(-1.2) 

-2.01% 
(-0.55) 

-2.49% 
(-0.95) 

-1.94% 
(-0.61) 

1.20% 
(-0.47) 

Note: The table reports the average OOS annualized returns and Sharpe ratios of twelve portfolios for one year of IS and one month of OOS after transaction costs (rolling-

forward by one month). For example, the 11.09% annualized return of the Developed markets (2006) is calculated as the average OOS annualized return of twelve portfolios. 

The first portfolio’s OOS return is calculated over January 2006 using as IS the period 01/01/2005-31/12/2005. The remaining eleven OOS returns are calculated by rolling-

forward the IS by one month. The same logic applies to the Sharpe ratios. The last column and raw presents the average performance per market across all years and per 

year respectively.   
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Table C.7: Annualized Returns and Sharpe Ratios after Transaction Costs (IS 1 Year and OOS 3 Months) 

Market 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 

Developed 
-2.28% 
(-0.30) 

-13.59% 
(-1.43) 

11.16%  
(0.57) 

-5.01% 
(-0.38) 

-8.71% 
(-1.93) 

-11.44% 
(-1.39) 

-1.66% 
(-0.62) 

3.71%  
(0.66) 

-1.28% 
(-0.36) 

-3.35% 
(-1.41) 

-3.25% 
(-0.66) 

US 
3.83% 
(0.48) 

-13.72% 
(-1.20) 

19.13%  
(0.75) 

-7.39% 
(-0.47) 

-7.10% 
(-1.11) 

-11.95% 
(-1.56) 

0.11%  
(0.04) 

8.93%  
(1.23) 

2.91%  
(0.44) 

-1.35% 
(-0.57) 

-0.66% 
(-0.20) 

UK 
16.96%  
(1.51) 

-5.58% 
(-0.53) 

14.57%  
(0.52) 

9.43% 
(0.66) 

-8.81% 
(-1.28) 

-16.99% 
(-1.55) 

-2.29% 
(-1.84) 

1.33%  
(0.25) 

-4.49% 
(-1.10) 

-1.92% 
(-0.44) 

0.22% 
(-0.38) 

Japan 
-18.53% 
(-1.12) 

-0.83% 
(-0.12) 

24.25%  
(0.84) 

-0.44% 
(-0.02) 

-5.29% 
(-1.05) 

-14.05% 
(-2.07) 

-2.44% 
(-1.20) 

-4.51% 
(-0.44) 

-3.76% 
(-2.28) 

-5.09% 
(-0.96) 

-3.07% 
(-0.84) 

Emerging 
-6.89% 
(-0.60) 

-0.68% 
(-0.04) 

8.65% 
(0.30) 

3.29% 
(0.26) 

-5.16% 
(-0.91) 

-5.96% 
(-0.91) 

-5.4% 
(-1.24) 

-3.66% 
(-0.95) 

-6.26% 
(-2.31) 

-7.74% 
(-1.39) 

-2.98% 
(-0.78) 

Russia 
11.32% 
(0.50) 

-19.86% 
(-1.82) 

50.97%  
(0.92) 

0.85% 
(0.04) 

-8.58% 
(-0.92) 

-27.03% 
(-2.69) 

-1.60% 
(-0.24) 

-6.99% 
(-1.05) 

1.75% 
(0.10) 

-14.57% 
(-1.25) 

-1.37% 
(-0.64) 

China 
31.65%  
(1.52) 

13.12%  
(0.55) 

-12.97% 
(-0.51) 

-8.78% 
(-0.52) 

-8.99% 
(-1.42) 

-8.86% 
(-1.30) 

-3.07% 
(-1.73) 

-7.99% 
(-1.26) 

-7.77% 
(-1.10) 

5.67% 
(0.40) 

-0.80% 
(-0.54) 

Brazil 
-14.85% 
(-0.69) 

24.47%  
(0.75) 

52.01%  
(1.21) 

11.24%  
(0.55) 

-7.63% 
(-0.97) 

-9.45% 
(-1.21) 

-10.83% 
(-1.98) 

-0.58% 
(-0.09) 

-4.63% 
(-0.43) 

-1.16% 
(-0.06) 

3.86% 
(-0.29) 

Frontier 
-16.7% 
(-2.16) 

7.56% 
(0.68) 

29.16%  
(1.59) 

-2.46% 
(-0.32) 

3.26% 
(0.80) 

-8.84% 
(-1.66) 

-4.11% 
(-1.10) 

-4.45% 
(-1.40) 

-5.22% 
(-1.28) 

6.75%  
(0.84) 

0.5% 
(-0.40) 

Estonia 
-16.4% 
(-1.38) 

-10.4% 
(-0.77) 

65.84%  
(1.54) 

5.71% 
(0.25) 

-2.00% 
(-0.17) 

-12.07% 
(-0.82) 

4.74%  
(0.73) 

-3.48% 
(-0.46) 

2.14%  
(0.24) 

-9.68% 
(-2.18) 

2.44% 
(-0.30) 

Morocco 
6.81% 
(0.50) 

14.73%  
(1.12) 

11.77%  
(0.62) 

-7.6% 
(-0.85) 

-6.11% 
(-1.80) 

-6.56% 
(-1.81) 

-2.05% 
(-0.19) 

-4.1% 
(-2.16) 

-2.41% 
(-1.60) 

-2.01% 
(-0.33) 

0.25% 
(-0.65) 

Jordan 
3.76% 
(0.27) 

5.43% 
(0.59) 

22.25%  
(0.88) 

-11.33% 
(-1.13) 

-5.80% 
(-1.74) 

-1.03% 
(-0.15) 

-7.32% 
(-2.06) 

-6.12% 
(-1.45) 

-3.78% 
(-1.21) 

-2.23% 
(-1.20) 

-0.62% 
(-0.72) 

Average 
-0.11% 
(-0.12) 

0.05% 
(-0.18) 

24.73%  
(0.77) 

-1.04% 
(-0.16) 

-5.91% 
(-1.04) 

-11.19% 
(-1.43) 

-2.99% 
(-0.95) 

-2.33% 
(-0.59) 

-2.73% 
(-0.91) 

-3.06% 
(-0.71) 

-0.46% 
(-0.53) 

Note: The table reports the average OOS annualized returns and Sharpe ratios of four portfolios for IS of one year and OOS of three months after transaction costs (rolling-

forward by one month). For example, the -2.28% annualized return of the Developed markets (2006) is calculated as the average OOS annualized return of twelve portfolios. 

The first portfolio’s OOS return is calculated over the period 01/01/2006-31/03/2006 using as IS the period 01/01//2005-31/12/2005. The remaining eleven OOS returns are 

calculated by rolling-forward the IS and the OOS by one month. The same logic applies to the Sharpe ratios. The last column and raw presents the average performance 

per market across all years and per year respectively. 
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Table C.8: Annualized Returns and Sharpe Ratios after Transaction Costs (IS 1 Year and OOS 6 Months) 

Market 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 

Developed 
-5.63% 
(-0.78) 

-8.98% 
(-0.86) 

5.18% 
(0.31) 

-2.7% 
(-0.25) 

-5.56% 
(-1.30) 

-8.33% 
(-1.14) 

-0.57% 
(-0.23) 

3.08% 
(0.57) 

-1.39% 
(-0.41) 

-2.00% 
(-0.76) 

-2.69% 
(-0.49) 

US 
2.85% 
(0.36) 

-13.17% 
(-1.06) 

11.5% 
(0.53) 

-3.28% 
(-0.25) 

-4.6% 
(-0.77) 

-7.73% 
(-1.10) 

1.19% 
(0.38) 

6.1% 
(0.89) 

2.69% 
(0.39) 

-2.28% 
(-0.88) 

-0.67% 
(-0.15) 

UK 
17.37% 
(1.50) 

-11.36% 
(-1.00) 

9.35% 
(0.45) 

7.37% 
(0.53) 

-5.19% 
(-0.73) 

-11.88% 
(-1.14) 

-1.75% 
(-1.53) 

1.02% 
(0.21) 

-4.33% 
(-1.14) 

-3.64% 
(-0.81) 

-0.30% 
(-0.37) 

Japan 
-19.27% 
(-1.15) 

-5.64% 
(-0.77) 

18.15% 
(0.57) 

-4.71% 
(-0.29) 

-4.35% 
(-0.91) 

-11.51% 
(-1.79) 

-1.66% 
(-0.53) 

-7.96% 
(-0.89) 

-2.73% 
(-1.72) 

-4.56% 
(-0.83) 

-4.42% 
(-0.83) 

Emerging 
-10.01% 
(-0.94) 

0.18% 
(0.01) 

15.81% 
(0.55) 

5.71% 
(0.47) 

-2.45% 
(-0.45) 

-8.8% 
(-1.30) 

-2.79% 
(-0.59) 

-6.14% 
(-1.48) 

-5.29% 
(-2.08) 

-4.36% 
(-0.73) 

-1.81% 
(-0.65) 

Russia 
-1.91% 
(-0.11) 

-22.93% 
(-2.14) 

82.47% 
(1.20) 

-5.17% 
(-0.25) 

-6.1% 
(-0.74) 

-17.8% 
(-1.59) 

-2.53% 
(-0.41) 

-10.39% 
(-1.56) 

0.65% 
(0.04) 

-8.66% 
(-0.71) 

0.76% 
(-0.63) 

China 
26.65% 
(1.37) 

11.83% 
(0.52) 

-4.14% 
(-0.15) 

-5.06% 
(-0.32) 

-4.39% 
(-0.74) 

-8.11% 
(-1.30) 

-2.50% 
(-1.57) 

-10.32% 
(-1.58) 

0.65% 
(0.08) 

0.00% 
(0.00) 

0.46% 
(-0.37) 

Brazil 
-20.72% 
(-0.96) 

31.88% 
(0.83) 

24.5% 
(0.80) 

8.45% 
(0.44) 

-3.76% 
(-0.48) 

-9.81% 
(-1.45) 

-7.86% 
(-1.47) 

-0.85% 
(-0.13) 

-11.6% 
(-1.07) 

-10.01% 
(-0.54) 

0.02% 
(-0.4) 

Frontier 
-13.27% 
(-1.96) 

3.57% 
(0.34) 

22.57% 
(1.34) 

-3.1% 
(-0.48) 

2.78% 
(0.68) 

-7.36% 
(-1.51) 

-1.9% 
(-0.52) 

-2.31% 
(-0.68) 

-6.02% 
(-1.69) 

7.67% 
(0.95) 

0.26% 
(-0.35) 

Estonia 
-14.15% 
(-1.14) 

-5.34% 
(-0.42) 

37.53% 
(1.05) 

8.79% 
(0.40) 

-0.14% 
(-0.01) 

-17.09% 
(-1.28) 

2.31% 
(0.38) 

-4.37% 
(-0.68) 

-4.17% 
(-0.56) 

-8.15% 
(-1.61) 

-0.48% 
(-0.39) 

Morocco 
1.15% 
(0.09) 

14.15% 
(1.06) 

-0.90% 
(-0.06) 

-7.89% 
(-0.97) 

-5.22% 
(-1.49) 

-4.44% 
(-1.19) 

-2.55% 
(-0.26) 

-1.92% 
(-1.01) 

-2.92% 
(-1.74) 

-5.03% 
(-0.82) 

-1.56% 
(-0.64) 

Jordan 
4.05% 
(0.31) 

3.48% 
(0.38) 

19.08% 
(0.84) 

-11.84% 
(-1.27) 

-4.89% 
(-1.33) 

-1.70% 
(-0.26) 

-7.22% 
(-2.06) 

-5.10% 
(-1.05) 

-3.28% 
(-1.27) 

-2.66% 
(-1.41) 

-1.01% 
(-0.71) 

Average 
-2.74% 
(-0.28) 

-0.19% 
(-0.26) 

20.09% 
(0.62) 

-1.12% 
(-0.19) 

-3.65% 
(-0.69) 

-9.55% 
(-1.26) 

-2.32% 
(-0.70) 

-3.26% 
(-0.62) 

-3.14% 
(-0.93) 

-3.64% 
(-0.68) 

-0.95% 
(-0.50) 

Note: The table reports the average OOS annualized returns and Sharpe ratios of four portfolios for IS of one year and OOS of six months after transaction costs (rolling-

forward by one month). For example, the -5.63% annualized return of the Developed markets (2006) is calculated as the average OOS annualized return of twelve 

portfolios. The first portfolio’s OOS return is calculated over the period 01/01/2006-31/06/2006 using as IS the period 01/01//2005-31/12/2005. The remaining eleven OOS 

returns are calculated by rolling-forward the IS and the OOS by one month. The same logic applies to the Sharpe ratios. The last column and raw presents the average 

performance per market across all years and per year respectively.
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Table D.1: Specification of the Volatility Forecasting Pool 

Class Count Family Error Distribution Mean Variance 

1. ARCH 48 GARCH Gaussian, t, skewed-t & GED 
Zero, unconditional and 

conditional 
RV & ARV 

2. GARCH 96 GARCH Gaussian, t, skewed-t & GED 
Zero, unconditional and 

conditional 
RV & ARV 

3. IGARCH 96 GARCH Gaussian, t, skewed-t & GED 
Zero, unconditional and 

conditional 
RV & ARV 

4. Taylor/ Schwert 96 GARCH Gaussian, t, skewed-t & GED 
Zero, unconditional and 

conditional 
RV & ARV 

5. A-GARCH 96 GARCH Gaussian, t, skewed-t & GED 
Zero, unconditional and 

conditional 
RV & ARV 

6. NA-GARCH 96 GARCH Gaussian, t, skewed-t & GED 
Zero, unconditional and 

conditional 
RV & ARV 

7. TGARCH 96 GARCH Gaussian, t, skewed-t & GED 
Zero, unconditional and 

conditional 
RV & ARV 

8. GJR-GARCH 96 GARCH Gaussian, t, skewed-t & GED 
Zero, unconditional and 

conditional 
RV & ARV 

9. log-GARCH 96 GARCH Gaussian, t, skewed-t & GED 
Zero, unconditional and 

conditional 
RV & ARV 

10. EGARCH 96 GARCH Gaussian, t, skewed-t & GED 
Zero, unconditional and 

conditional 
RV & ARV 

11. NGARCH 96 GARCH Gaussian, t, skewed-t & GED 
Zero, unconditional and 

conditional 
RV & ARV 

12. APARCH 96 GARCH Gaussian, t, skewed-t & GED 
Zero, unconditional and 

conditional 
RV & ARV 

13. FI-GARCH 96 GARCH Gaussian, t, skewed-t & GED 
Zero, unconditional and 

conditional 
RV & ARV 

14. GARCH-MA 96 GARCH Gaussian, t, skewed-t & GED 
Zero, unconditional and 

conditional 
RV & ARV 

15. SV 36 SV Gaussian, t & skewed-t 
Zero, unconditional and 

conditional 
RV & ARV 

16. SV-MA 36 SV Gaussian, t & skewed-t 
Zero, unconditional and 

conditional 
RV & ARV 

17. SV-L 72 SV Gaussian, t & skewed-t 
Zero, unconditional and 

conditional 
RV & ARV 

18. RM 60 EWMA - 
Zero, unconditional and 

conditional 
RV & ARV 

19. HAR 6 HAR - 
Zero, unconditional and 

conditional 
RV & ARV 

20. log-HAR 6 HAR - 
Zero, unconditional and 

conditional 
RV & ARV 

Total 1512     
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Table D.2: Variation in Number of True Discoveries for 𝐌𝐀𝐄𝟏 

Asset Benchmark 
Study Period 

Average 
2013 2014 2015 2016 2017 

 ARCH (1) 9 573 1013 489 893 595.4 

EUR/USD GARCH (1,1) 27 520 1 512 96 231.2 

 PRC 90 5 16 1 81 96 39.8 

 ARCH (1) 450 1 751 178 132 302.4 

GBP/USD GARCH (1,1) 102 1 2 113 132 70 

 PRC 90 96 1 1 97 132 65.4 

 ARCH (1) 457 1 1 1162 346 393.4 

USD/JPY GARCH (1,1) 1 42 1 701 296 208.2 

 PRC 90 1 1 1 1 46 10 

 ARCH (1) 1 39 137 3 39 43.8 

DJIA GARCH (1,1) 1 116 268 3 34 84.4 

 PRC 90 113 93 106 18 48 75.6 

 ARCH (1) 273 1 1 1 1 55.4 

FTSE 100 GARCH (1,1) 274 48 276 1 19 123.6 

 PRC 90 102 2 82 1 33 44 

 ARCH (1) 433 1 716 819 3 394.4 

XAU/USD GARCH (1,1) 526 1 663 43 102 267 

 PRC 90 5 2 1 2 1 2.2 

Note: The table presents the size of the rejection set for different markets based on the MAE1 

benchmark. The DFDR+ always reject the lowest p-value before any further computations. Therefore, 

the cases with 1 discovery can be interpreted as no discoveries at all. The ARCH (1) and GARCH 

(1,1) benchmarks are zero mean, with Gaussian distribution and RV as the conditional variance 

specification. PRC 90 corresponds to the 90th percentile of the entire volatility pool. 
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Table D.3: Variation in Number of True Discoveries for 𝐌𝐀𝐄𝟐 

Asset Benchmark 
Study Period 

Average 
2013 2014 2015 2016 2017 

 ARCH (1) 9 560 1018 493 894 594.8 

EUR/USD GARCH (1,1) 28 521 1 513 96 231.8 

 PRC 90 6 21 1 75 96 39.8 

 ARCH (1) 477 1 760 177 132 309.4 

GBP/USD GARCH (1,1) 102 1 1 113 132 69.8 

 PRC 90 96 1 1 97 132 65.4 

 ARCH (1) 375 1 1 1164 347 377.6 

USD/JPY GARCH (1,1) 1 7 1 649 296 190.8 

 PRC 90 1 1 1 1 50 10.8 

 ARCH (1) 1 39 166 3 38 49.4 

DJIA GARCH (1,1) 1 126 302 3 38 94 

 PRC 90 113 91 107 18 48 75.4 

 ARCH (1) 272 8 1 1 1 56.6 

FTSE 100 GARCH (1,1) 277 48 335 1 19 136 

 PRC 90 104 1 77 1 32 43 

 ARCH (1) 405 1 736 780 1 384.6 

XAU/USD GARCH (1,1) 458 3 687 41 7 239.2 

 PRC 90 5 1 1 1 1 1.8 

Note: The table presents the size of the rejection set for different markets based on the MAE2 

benchmark. The DFDR+ always reject the lowest p-value before any further computations. Therefore, 

the cases with 1 discovery can be interpreted as no discoveries at all. The ARCH (1) and GARCH 

(1,1) benchmarks are zero mean, with Gaussian distribution and RV as the conditional variance 

specification. PRC 90 corresponds to the 90th percentile of the entire volatility pool. 
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Table D.4: Variation in Number of True Discoveries for 𝐌𝐒𝐄𝟐 

Asset Benchmark 
Study Period 

Average 
2013 2014 2015 2016 2017 

 ARCH (1) 5 482 984 463 763 539.4 

EUR/USD GARCH (1,1) 13 447 1 481 96 207.6 

 PRC 90 1 25 1 46 96 33.8 

 ARCH (1) 290 1 720 174 87 254.4 

GBP/USD GARCH (1,1) 97 4 2 112 101 63.2 

 PRC 90 96 1 1 93 91 56.4 

 ARCH (1) 275 1 1 996 336 321.8 

USD/JPY GARCH (1,1) 1 364 1 545 282 238.6 

 PRC 90 5 3 1 1 10 4 

 ARCH (1) 1 34 114 52 38 47.8 

DJIA GARCH (1,1) 3 122 358 53 39 115 

 PRC 90 84 102 109 59 40 78.8 

 ARCH (1) 189 19 1 1 3 42.6 

FTSE 100 GARCH (1,1) 199 48 440 1 17 141 

 PRC 90 87 36 127 1 65 63.2 

 ARCH (1) 327 1 502 699 2 306.2 

XAU/USD GARCH (1,1) 426 3 475 23 158 217 

 PRC 90 56 3 1 1 2 12.6 

Note: The table presents the size of the rejection set for different markets based on the MSE2 

benchmark. The DFDR+ always reject the lowest p-value before any further computations. Therefore, 

the cases with 1 discovery can be interpreted as no discoveries at all. The ARCH (1) and GARCH 

(1,1) benchmarks are zero mean, with Gaussian distribution and RV as the conditional variance 

specification. PRC 90 corresponds to the 90th percentile of the entire volatility pool. 
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Table D.5: Variation in Number of True Discoveries for 𝐑𝟐𝐋𝐎𝐆 

Asset Benchmark 
Study Period 

Average 
2013 2014 2015 2016 2017 

 ARCH (1) 158 810 1101 570 1098 747.4 

EUR/USD GARCH (1,1) 173 755 178 581 217 380.8 

 PRC 90 118 113 65 133 75 100.8 

 ARCH (1) 699 169 835 484 143 466 

GBP/USD GARCH (1,1) 195 341 364 320 143 272.6 

 PRC 90 100 97 22 102 6 65.4 

 ARCH (1) 804 68 54 1344 440 542 

USD/JPY GARCH (1,1) 78 314 54 962 413 364.2 

 PRC 90 101 68 52 64 66 70.2 

 ARCH (1) 133 352 621 247 79 286.4 

DJIA GARCH (1,1) 76 374 619 230 80 275.8 

 PRC 90 122 82 116 104 78 100.4 

 ARCH (1) 960 244 39 337 90 334 

FTSE 100 GARCH (1,1) 958 297 50 221 108 326.8 

 PRC 90 85 115 39 110 70 83.8 

 ARCH (1) 932 102 821 1098 518 694.2 

XAU/USD GARCH (1,1) 906 140 773 573 678 614 

 PRC 90 75 84 101 112 85 91.4 

Note: The table presents the size of the rejection set for different markets based on the R2LOG 

benchmark. The DFDR+ always reject the lowest p-value before any further computations. Therefore, 

the cases with 1 discovery can be interpreted as no discoveries at all. The ARCH (1) and GARCH 

(1,1) benchmarks are zero mean, with Gaussian distribution and RV as the conditional variance 

specification. PRC 90 corresponds to the 90th percentile of the entire volatility pool. 
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Table D.6: Variation in Number of True Discoveries for 𝐐𝐋𝐈𝐊𝐄 

Asset Benchmark 
Study Period 

Average 
2013 2014 2015 2016 2017 

 ARCH (1) 2 498 959 469 528 491.2 

EUR/USD GARCH (1,1) 10 489 1 491 96 217.4 

 PRC 90 1 12 1 73 96 36.6 

 ARCH (1) 212 1 517 178 102 202 

GBP/USD GARCH (1,1) 96 181 1 109 114 100.2 

 PRC 90 96 1 1 97 110 61 

 ARCH (1) 536 1 1 886 326 350 

USD/JPY GARCH (1,1) 1 485 2 489 267 248.8 

 PRC 90 4 1 1 1 10 3.4 

 ARCH (1) 1 34 92 18 31 35.2 

DJIA GARCH (1,1) 1 111 247 18 38 83 

 PRC 90 102 103 126 31 39 80.2 

 ARCH (1) 174 24 1 1 5 41 

FTSE 100 GARCH (1,1) 185 47 253 1 22 101.6 

 PRC 90 92 42 89 80 64 73.4 

 ARCH (1) 326 1 418 497 2 248.8 

XAU/USD GARCH (1,1) 447 3 411 30 230 224.2 

 PRC 90 56 1 1 1 2 12.2 

Note: The table presents the size of the rejection set for different markets based on the QLIKE 

benchmark. The DFDR+ always reject the lowest p-value before any further computations. Therefore, 

the cases with 1 discovery can be interpreted as no discoveries at all. The ARCH (1) and GARCH 

(1,1) benchmarks are zero mean, with Gaussian distribution and RV as the conditional variance 

specification. PRC 90 corresponds to the 90th percentile of the entire volatility pool. 
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Table D.7: Innovation Distribution for 𝐌𝐀𝐄𝟏 

Asset Benchmark Gaussian t Skewed t GED No dist. 

 ARCH (1) 40.70% 40.27% 40.32% 42.84% 7.50% 

EUR/USD GARCH (1,1) 16.24% 15.70% 15.91% 15.56% 3.89% 

 PRC 90 2.96% 2.74% 3.12% 2.16% 0.00% 

 ARCH 20.32% 20.32% 20.32% 22.59% 3.33% 

GBP/USD GARCH (1,1) 4.57% 4.62% 5.32% 4.57% 1.67% 

 PRC 90 4.52% 4.52% 4.68% 4.44% 0.00% 

 ARCH 28.92% 26.61% 20.11% 31.79% 12.50% 

USD/JPY GARCH (1,1) 14.89% 14.19% 10.97% 16.91% 6.11% 

 PRC 90 1.02% 0.48% 0.11% 1.23% 0.00% 

 ARCH 3.01% 3.28% 2.58% 3.15% 0.83% 

DJIA GARCH (1,1) 5.97% 6.77% 5.00% 5.49% 0.83% 

 PRC 90 5.54% 6.08% 5.22% 4.01% 0.00% 

 ARCH 3.87% 4.03% 3.82% 3.58% 0.28% 

FTSE 100 GARCH (1,1) 8.23% 8.71% 9.78% 7.04% 1.94% 

 PRC 90 2.96% 3.06% 3.49% 2.65% 0.00% 

 ARCH 23.28% 28.33% 31.51% 25.56% 3.33% 

XAU/USD GARCH (1,1) 15.32% 18.23% 23.33% 16.79% 1.39% 

 PRC 90 0.05% 0.00% 0.43% 0.12% 0.00% 

Average  11.24% 11.55% 11.45% 11.69% 2.42% 

 Note: The table presents the average proportion of models with each distribution able to beat the 

three benchmarks. For example, the first value 40.7% means that on average 151 models out of 372 

Gaussian models outperformed the ARCH (1) benchmark for the EUR/USD. The ARCH (1) and 

GARCH (1,1) models use zero mean, Gaussian distribution and RV specifications. PRC 90 stands 

for the benchmark based on the 90th percentile of the entire volatility pool. The performance scale is 

MSE1. The ‘No dist.’ column corresponds to models without any distribution and the value in bold is 

the maximum in each row. 
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Table D.8: Innovation Distribution for 𝐌𝐀𝐄𝟐 

Asset Benchmark Gaussian t Skewed t GED No Dist. 

 ARCH (1) 40.59% 40.22% 40.22% 42.84% 8.06% 

EUR/USD GARCH (1,1) 16.18% 15.75% 15.97% 15.68% 3.89% 

 PRC 90 2.90% 2.69% 3.12% 2.28% 0.00% 

 ARCH (1) 20.97% 20.70% 20.91% 22.78% 3.89% 

GBP/USD GARCH (1,1) 4.57% 4.62% 5.27% 4.57% 1.67% 

 PRC 90 4.52% 4.52% 4.68% 4.44% 0.00% 

 ARCH (1) 27.80% 25.32% 19.62% 30.25% 12.50% 

USD/JPY GARCH (1,1) 13.66% 12.80% 9.78% 15.93% 6.11% 

 PRC 90 1.02% 0.59% 0.16% 1.30% 0.00% 

 ARCH (1) 3.49% 3.66% 2.85% 3.58% 0.83% 

DJIA GARCH (1,1) 6.77% 7.69% 5.38% 6.05% 0.83% 

 PRC 90 5.59% 6.08% 5.16% 3.95% 0.00% 

 ARCH (1) 3.92% 4.03% 4.03% 3.52% 0.83% 

FTSE 100 GARCH (1,1) 9.03% 9.46% 10.38% 8.21% 2.78% 

 PRC 90 3.01% 2.90% 3.49% 2.47% 0.00% 

 ARCH (1) 23.01% 27.04% 30.43% 25.56% 3.33% 

XAU/USD GARCH (1,1) 14.68% 15.97% 19.52% 15.93% 1.39% 

 PRC 90 0.00% 0.00% 0.38% 0.12% 0.00% 

Average  11.21% 11.34% 11.19% 11.64% 2.56% 

Note: The table presents the average proportion of models with each distribution able to beat the 

three benchmarks. For example, the first value 40.59% means that on average 150 models out of 

372 Gaussian models outperformed the ARCH (1) benchmark for the EUR/USD. The ARCH (1) and 

GARCH (1,1) models use zero mean, Gaussian distribution and RV specifications. PRC 90 stands 

for the benchmark based on the 90th percentile of the entire volatility pool. The performance scale is 

MSE1. The ‘No dist.’ column corresponds to models without any distribution and the value in bold is 

the maximum in each row. 
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Table D.9: Innovation Distribution for 𝐌𝐒𝐄𝟐 

Asset Benchmark Gaussian t Skewed t GED No Dist. 

 ARCH (1) 36.94% 35.97% 36.67% 39.81% 3.89% 

EUR/USD GARCH (1,1) 14.41% 13.98% 14.30% 14.63% 1.94% 

 PRC 90 2.31% 2.15% 2.74% 2.16% 0.00% 

 ARCH (1) 17.31% 17.80% 16.13% 19.32% 1.67% 

GBP/USD GARCH (1,1) 4.09% 4.25% 4.78% 4.38% 0.28% 

 PRC 90 3.76% 3.87% 3.92% 4.14% 0.00% 

 ARCH (1) 23.87% 21.61% 16.67% 26.54% 6.39% 

USD/JPY GARCH (1,1) 16.83% 16.94% 13.82% 18.46% 2.50% 

 PRC 90 0.38% 0.11% 0.16% 0.49% 0.00% 

 ARCH (1) 3.33% 3.98% 3.44% 2.22% 0.83% 

DJIA GARCH (1,1) 8.23% 8.92% 7.53% 6.60% 2.50% 

 PRC 90 5.38% 6.72% 5.81% 3.58% 0.83% 

 ARCH (1) 3.06% 3.17% 2.85% 2.59% 0.56% 

FTSE 100 GARCH (1,1) 9.41% 9.95% 10.86% 8.09% 3.33% 

 PRC 90 4.35% 4.84% 4.78% 3.40% 0.28% 

 ARCH (1) 18.87% 20.38% 25.16% 20.19% 1.67% 

XAU/USD GARCH (1,1) 12.26% 14.68% 20.43% 12.35% 1.11% 

 PRC 90 0.59% 0.70% 1.77% 0.37% 0.00% 

Average  10.30% 10.56% 10.66% 10.52% 1.54% 

Note: The table presents the average proportion of models with each distribution able to beat the 

three benchmarks. For example, the first value 36.94% means that on average 137 models out of 

372 Gaussian models outperformed the ARCH (1) benchmark for the EUR/USD. The ARCH (1) and 

GARCH (1,1) models use zero mean, Gaussian distribution and RV specifications. PRC 90 stands 

for the benchmark based on the 90th percentile of the entire volatility pool. The performance scale is 

MSE1. The ‘No dist.’ column corresponds to models without any distribution and the value in bold is 

the maximum in each row. 
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Table D.10: Innovation Distribution for 𝐑𝟐𝐋𝐎𝐆 

Asset Benchmark Gaussian t Skewed t GED No Dist. 

 ARCH (1) 53.44% 50.05% 50.05% 51.36% 13.61% 

EUR/USD GARCH (1,1) 28.28% 25.05% 26.18% 24.63% 7.22% 

 PRC 90 8.71% 7.15% 6.61% 4.94% 1.67% 

 ARCH (1) 33.76% 31.61% 31.77% 30.62% 7.50% 

GBP/USD GARCH (1,1) 20.65% 19.78% 18.17% 15.93% 4.17% 

 PRC 90 5.32% 4.30% 4.41% 4.07% 0.00% 

 ARCH (1) 39.95% 35.54% 29.41% 41.60% 23.61% 

USD/JPY GARCH (1,1) 27.31% 24.41% 19.78% 26.91% 15.28% 

 PRC 90 6.45% 4.30% 3.17% 5.68% 0.00% 

 ARCH (1) 20.32% 18.82% 17.58% 20.56% 12.22% 

DJIA GARCH (1,1) 19.25% 17.80% 17.42% 19.75% 12.78% 

 PRC 90 7.80% 6.56% 5.48% 7.53% 3.06% 

 ARCH (1) 21.88% 21.18% 22.69% 23.77% 17.22% 

FTSE 100 GARCH (1,1) 21.88% 20.32% 22.04% 23.33% 16.94% 

 PRC 90 5.38% 5.54% 5.05% 6.05% 6.67% 

 ARCH (1) 45.81% 45.65% 49.19% 48.64% 18.61% 

XAU/USD GARCH (1,1) 39.25% 41.34% 47.10% 39.20% 16.67% 

 PRC 90 7.42% 6.45% 6.02% 5.12% 1.11% 

Average  22.94% 21.44% 21.23% 22.21% 9.91% 

Note: The table presents the average proportion of models with each distribution able to beat the 

three benchmarks. For example, the first value 53.44% means that on average 199 models out of 

372 Gaussian models outperformed the ARCH (1) benchmark for the EUR/USD. The ARCH (1) and 

GARCH (1,1) models use zero mean, Gaussian distribution and RV specifications. PRC 90 stands 

for the benchmark based on the 90th percentile of the entire volatility pool. The performance scale is 

MSE1. The ‘No dist.’ column corresponds to models without any distribution and the value in bold is 

the maximum in each row. 
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Table D.11: Innovation Distribution for 𝐐𝐋𝐈𝐊𝐄 

Asset Benchmark Gaussian t Skewed t GED No Dist. 

 ARCH (1) 34.09% 32.69% 34.89% 34.26% 2.78% 

EUR/USD GARCH (1,1) 15.38% 15.05% 15.65% 13.95% 1.11% 

 PRC 90 2.69% 2.42% 2.96% 2.04% 0.00% 

 ARCH (1) 14.09% 13.98% 13.33% 14.44% 1.67% 

GBP/USD GARCH (1,1) 6.88% 7.31% 7.80% 5.68% 0.00% 

 PRC 90 4.14% 4.46% 4.41% 3.89% 0.00% 

 ARCH (1) 26.02% 23.98% 18.06% 28.95% 4.17% 

USD/JPY GARCH (1,1) 17.63% 17.58% 14.95% 19.07% 0.56% 

 PRC 90 0.38% 0.05% 0.05% 0.49% 0.00% 

 ARCH (1) 2.74% 3.06% 2.26% 1.60% 0.00% 

DJIA GARCH (1,1) 6.08% 6.24% 5.38% 5.06% 1.11% 

 PRC 90 5.91% 6.61% 5.81% 3.70% 0.00% 

 ARCH (1) 2.85% 3.17% 2.80% 2.47% 0.28% 

FTSE 100 GARCH (1,1) 6.88% 7.31% 8.01% 5.43% 1.94% 

 PRC 90 5.27% 5.54% 5.48% 3.95% 0.00% 

 ARCH (1) 14.84% 16.67% 23.44% 13.58% 0.56% 

XAU/USD GARCH (1,1) 12.42% 15.48% 21.24% 12.65% 0.56% 

 PRC 90 0.54% 0.70% 1.67% 0.43% 0.00% 

Average  9.93% 10.13% 10.45% 9.54% 0.82% 

Note: The table presents the average proportion of models with each distribution able to beat the 

three benchmarks. For example, the first value 34.09% means that on average 127 models out of 

372 Gaussian models outperformed the ARCH (1) benchmark for the EUR/USD. The ARCH (1) and 

GARCH (1,1) models use zero mean, Gaussian distribution and RV specifications. PRC 90 stands 

for the benchmark based on the 90th percentile of the entire volatility pool. The performance scale is 

MSE1. The ‘No dist.’ column corresponds to models without any distribution and the value in bold is 

the maximum in each row. 
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Table D.12: Classes Survival Analysis for 𝐌𝐀𝐄𝟏 

Class EUR/USD GBP/USD USD/JPY DJIA FTSE 100 XAU/USD Average 

ARCH 11.39% 1.11% 9.44% 17.64% 22.50% 17.50% 13.26% 

GARCH 20.63% 3.19% 15.00% 3.61% 10.63% 16.32% 11.56% 

IGARCH 48.75% 66.88% 31.18% 7.36% 3.13% 34.93% 32.04% 

Taylor/Schwert 21.25% 13.47% 17.99% 9.93% 6.25% 23.61% 15.42% 

A-GARCH 20.97% 3.19% 16.46% 0.56% 0.21% 14.51% 9.32% 

NA-GARCH 21.25% 3.19% 16.11% 0.56% 0.35% 14.86% 9.39% 

TGARCH 30.14% 16.25% 17.15% 0.28% 0.14% 15.28% 13.21% 

GJR-GARCH 22.64% 3.19% 12.92% 0.00% 0.00% 10.56% 8.22% 

log-GARCH 0.35% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 

EGARCH 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

NGARCH 22.01% 13.75% 20.00% 1.53% 1.81% 21.67% 13.46% 

APARCH 22.36% 13.54% 20.76% 0.56% 0.28% 16.81% 12.38% 

FI-GARCH 13.26% 1.81% 10.69% 12.29% 15.83% 19.79% 12.28% 

GARCH-MA 20.14% 3.40% 16.39% 4.44% 11.81% 19.65% 12.64% 

SV 11.11% 1.11% 11.11% 26.67% 20.56% 15.56% 14.35% 

SV-MA 11.11% 1.11% 11.11% 26.11% 20.00% 15.56% 14.17% 

SV-L 26.94% 10.00% 0.00% 0.83% 0.00% 1.11% 6.48% 

RM 4.56% 2.00% 7.44% 0.67% 0.89% 1.89% 2.91% 

HAR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

log-HAR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Note: The table presents the average proportion of each class of volatility models able to beat the 

three benchmarks. For example, the first value 11.39% means that on average 5 models out of 48 

ARCH models outperformed the three benchmarks for the EUR/USD. The equation and the count of 

models for all classes are given in Table 5.1 and Table D.1 respectively. The performance scale is 

MAE1 and the value in bold shows the maximum of each column. 
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Table D.13: Classes Survival Analysis for 𝐌𝐀𝐄𝟐 

Class EUR/USD GBP/USD USD/JPY DJIA FTSE 100 XAU/USD Average 

ARCH 11.39% 0.97% 7.78% 18.47% 22.22% 15.14% 12.66% 

GARCH 20.69% 3.26% 14.44% 4.58% 11.18% 15.63% 11.63% 

IGARCH 49.79% 66.81% 30.83% 7.64% 3.06% 33.33% 31.91% 

Taylor/Schwert 21.25% 13.75% 17.29% 10.35% 7.43% 22.08% 15.36% 

A-GARCH 21.04% 3.26% 16.04% 0.56% 0.35% 14.10% 9.22% 

NA-GARCH 21.39% 3.26% 15.07% 0.56% 0.56% 13.61% 9.07% 

TGARCH 30.49% 17.15% 15.90% 0.28% 0.14% 13.47% 12.91% 

GJR-GARCH 23.40% 3.19% 11.74% 0.00% 0.00% 9.10% 7.91% 

log-GARCH 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

EGARCH 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

NGARCH 22.01% 13.96% 19.17% 2.71% 2.08% 21.94% 13.65% 

APARCH 22.50% 13.75% 19.79% 0.56% 0.56% 16.32% 12.25% 

FI-GARCH 13.33% 2.01% 10.00% 13.26% 16.11% 18.33% 12.18% 

GARCH-MA 20.21% 3.75% 15.83% 5.21% 12.50% 18.47% 12.66% 

SV 11.11% 1.11% 8.89% 27.78% 21.11% 15.00% 14.17% 

SV-MA 11.11% 1.11% 8.33% 25.56% 21.11% 15.00% 13.70% 

SV-L 23.61% 10.00% 0.00% 0.83% 0.00% 1.11% 5.93% 

RM 4.78% 2.22% 7.44% 0.67% 1.44% 1.89% 3.07% 

HAR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

log-HAR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Note: The table presents the average proportion of each class of volatility models able to beat the 

three benchmarks. For example, the first value 11.39% means that on average 5 models out of 48 

ARCH models outperformed the three benchmarks for the EUR/USD. The equation and the count of 

models for all classes are given in Table 5.1 and Table D.1 respectively. The performance scale is 

MAE2 and the value in bold shows the maximum of each column. 
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Table D.14: Classes Survival Rate for 𝐌𝐒𝐄𝟐 

Class EUR/USD GBP/USD USD/JPY DJIA FTSE 100 XAU/USD Average 

ARCH 11.11% 1.53% 14.03% 17.08% 23.19% 17.92% 14.14% 

GARCH 19.44% 3.06% 14.44% 3.82% 8.89% 15.00% 10.78% 

IGARCH 43.96% 65.14% 27.64% 7.29% 1.94% 24.44% 28.40% 

Taylor/Sch
wert 

20.14% 11.04% 17.85% 12.64% 7.08% 20.83% 14.93% 

A-GARCH 19.58% 2.99% 13.47% 0.35% 1.46% 8.06% 7.65% 

NA-GARCH 20.00% 2.99% 11.32% 0.35% 1.18% 8.40% 7.37% 

TGARCH 28.33% 11.11% 15.07% 0.42% 0.69% 8.68% 10.72% 

GJR-
GARCH 

18.82% 2.85% 10.90% 0.00% 0.07% 7.08% 6.62% 

log-GARCH 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

EGARCH 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

NGARCH 21.46% 12.08% 17.36% 4.10% 2.57% 17.78% 12.56% 

APARCH 21.46% 11.04% 17.08% 0.42% 0.83% 12.36% 10.53% 

FI-GARCH 12.64% 1.74% 14.44% 17.29% 17.22% 22.85% 14.36% 

GARCH-MA 19.31% 3.13% 16.32% 5.14% 11.53% 17.78% 12.20% 

SV 11.11% 1.11% 14.44% 30.00% 26.11% 17.78% 16.76% 

SV-MA 11.11% 1.11% 14.44% 28.33% 26.11% 17.22% 16.39% 

SV-L 14.17% 0.83% 0.00% 0.83% 0.00% 0.00% 2.64% 

RM 2.33% 0.78% 3.56% 1.67% 1.67% 1.11% 1.85% 

HAR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

log-HAR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Note: The table presents the average proportion of each class of volatility models able to beat the 

three benchmarks. For example, the first value 11.11% means that on average 5 models out of 48 

ARCH models outperformed the three benchmarks for the EUR/USD. The equation and the count of 

models for all classes are given in Table 5.1 and Table D.1 respectively. The performance scale is 

MSE2 and the value in bold shows the maximum of each column. 
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Table D.15: Classes Survival Rate for 𝐑𝟐𝐋𝐎𝐆 

Class EUR/USD GBP/USD USD/JPY DJIA FTSE 100 XAU/USD Average 

ARCH 11.53% 7.64% 12.64% 11.25% 12.64% 28.89% 14.10% 

GARCH 20.76% 3.89% 18.75% 12.92% 15.14% 27.43% 16.48% 

IGARCH 47.29% 59.10% 37.01% 22.57% 23.54% 55.76% 40.88% 

Taylor/Schwert 22.78% 19.38% 22.78% 13.19% 13.40% 36.53% 21.34% 

A-GARCH 21.46% 5.00% 20.69% 18.68% 20.83% 27.78% 19.07% 

NA-GARCH 22.78% 5.07% 20.28% 18.54% 24.72% 29.03% 20.07% 

TGARCH 31.04% 21.67% 22.43% 24.44% 26.53% 37.78% 27.31% 

GJR-GARCH 25.69% 3.26% 20.69% 19.58% 27.57% 28.19% 20.83% 

log-GARCH 25.97% 27.43% 20.83% 5.69% 7.22% 19.93% 17.85% 

EGARCH 45.90% 24.58% 11.94% 4.44% 5.00% 12.15% 17.34% 

NGARCH 22.85% 19.93% 24.03% 12.71% 13.61% 36.32% 21.57% 

APARCH 25.07% 20.35% 23.68% 18.68% 20.28% 38.61% 24.44% 

FI-GARCH 13.47% 3.82% 14.03% 13.75% 14.86% 27.71% 14.61% 

GARCH-MA 21.11% 5.63% 20.83% 17.22% 15.14% 32.50% 18.74% 

SV 11.11% 7.78% 14.44% 11.11% 12.22% 26.67% 13.89% 

SV-MA 11.11% 7.78% 14.44% 11.11% 12.22% 26.67% 13.89% 

SV-L 81.11% 63.33% 45.56% 8.89% 6.67% 43.61% 41.53% 

RM 7.00% 4.00% 15.56% 9.44% 15.67% 13.44% 10.85% 

HAR 20.00% 6.67% 0.00% 10.00% 6.67% 3.33% 7.78% 

log-HAR 20.00% 6.67% 0.00% 10.00% 6.67% 3.33% 7.78% 

Note: The table presents the average proportion of each class of volatility models able to beat the 

three benchmarks. For example, the first value 11.53% means that on average 6 models out of 48 

ARCH models outperformed the three benchmarks for the EUR/USD. The equation and the count of 

models for all classes are given in Table 5.1 and Table D.1 respectively. The performance scale is 

R2LOG and the value in bold shows the maximum of each column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tables          229 

 

  

 

Table D.16: Classes Survival Rate for 𝐐𝐋𝐈𝐊𝐄 

Class EUR/USD GBP/USD USD/JPY DJIA FTSE 100 XAU/USD Average 

ARCH 10.83% 7.64% 14.17% 18.19% 24.17% 20.14% 15.86% 

GARCH 16.81% 1.18% 14.51% 2.43% 7.99% 12.85% 9.29% 

IGARCH 41.46% 59.31% 31.18% 6.32% 1.18% 22.29% 26.96% 

Taylor/Schwert 18.61% 10.00% 17.85% 8.75% 4.10% 18.26% 12.93% 

A-GARCH 16.88% 1.25% 14.17% 0.49% 0.14% 6.11% 6.50% 

NA-GARCH 17.50% 1.25% 14.38% 0.49% 0.14% 6.04% 6.63% 

TGARCH 23.75% 6.46% 15.90% 0.35% 0.07% 7.01% 8.92% 

GJR-GARCH 14.86% 1.18% 13.82% 0.00% 0.00% 6.18% 6.01% 

log-GARCH 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

EGARCH 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

NGARCH 19.65% 10.63% 18.06% 1.18% 2.15% 16.11% 11.30% 

APARCH 19.79% 9.65% 19.51% 0.28% 0.14% 10.42% 9.97% 

FI-GARCH 12.15% 5.63% 14.72% 12.71% 16.04% 22.71% 13.99% 

GARCH-MA 16.94% 2.01% 15.49% 2.99% 10.42% 16.39% 10.71% 

SV 11.11% 7.78% 15.56% 31.11% 26.67% 18.89% 18.52% 

SV-MA 11.11% 7.78% 14.44% 30.00% 26.67% 17.78% 17.96% 

SV-L 34.17% 10.00% 0.00% 0.83% 0.00% 0.00% 7.50% 

RM 1.56% 0.67% 1.89% 0.44% 0.89% 0.44% 0.98% 

HAR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

log-HAR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Note: The table presents the average proportion of each class of volatility models able to beat the 

three benchmarks. For example, the first value 10.83% means that on average 5 models out of 48 

ARCH models outperformed the three benchmarks for the EUR/USD. The equation and the count of 

models for all classes are given in Table 5.1 and Table D.1 respectively. The performance scale is 

QLIKE and the value in bold shows the maximum of each column. 
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