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Abstract 

Conventional silicon-based electronics have developed dramatically in recent years; however, 

their optimum integration level is reaching its limits. To meet the requirements of dealing with 

this explosion of data, opto-electronic integrated circuits have provided a way out. Optical 

waveguides are crucial components which can be applied in opto-electronic integrated circuits 

to achieve specific functionalities, such as frequency conversion and frequency combs. 

Frequency conversion offers the possibility of converting the frequency components generated 

by lasers to a previously inaccessible frequency region in order to extend the application fields, 

such as gas sensing and optical communications.  A frequency comb is a series of equally 

spaced frequency components, which could be utilized for frequency standards and optical 

clocks.  

This thesis has simulated frequency mixing processes, including second-harmonic generation 

and four-wave mixing in the optical waveguides based on second- and third-order 

nonlinearities in order to realize frequency conversion and generation of frequency combs. The 

focus of this thesis are silicon-based and AlGaAs waveguides because of their particular 

material characteristics. Silicon is the base of electronic devices so that silicon-based 

waveguides are complementary metal-oxide-semiconductor compatible and can be integrated 

with other electronic elements on a single chip. AlGaAs is a direct-band gap semi-conductor 

and has a small two-photon-absorption co-efficient. Both silicon and AlGaAs have a high 

refractive index and ensure the confinement of modes in waveguides. In addition, both have 

strong nonlinearity, leading to efficient nonlinear interactions and significant frequency mixing 

processes. 

This method of simulation was based on the finite-difference time-domain algorithm, 

incorporating linear dispersion and nonlinearity. Material dispersion was described as Lorentz 

medium and incorporated through Sellmeier equations. Geometric dispersion was taken into 

account in mode solver, which was applied in order to produce the fundamental modes for 

excitation sources. Second- and third-order nonlinearities (including Kerr-nonlinearity and 

Raman scattering) were incorporated with a piecewise linear recursive convolution method, 

which was solved by the Newton-Raphson method. In addition, a perfectly matched layer 

absorbing boundary condition and circular boundary condition were designed in the 
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simulations. Programs were written in Fortran 95 and parallel computation was applied to 

improve the efficiency.  

This thesis has simulated four-wave mixing of five optical waveguides: GaAs suspended 

waveguide, deep-etched multi-layer Al0.25Ga0.75As  waveguide, Al0.3Ga0.7As -on-insulator 

waveguide, silicon-on-insulator waveguide and silicon nitride-on-insulator waveguide. Phase 

matching conditions and phase mismatch factors were discussed for these waveguides. The 

results of four-wave mixing were observed when the phase matching conditions were satisfied. 

In deep-etched multi-layer Al0.25Ga0.75As waveguide, Raman scattering was incorporated and 

the results of simulation showed a good match with experimental data. This thesis has also 

simulated second-harmonic generation of highly birefringent AlGaAs waveguide. Type-I 

phase matching condition was achieved so that efficient second-harmonic generation was 

obtained. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

As part of the Information Age in which we now all live, the explosion of network and data 

has led to the rapid development of silicon-based electronics. However, the technology of very-

large-scale integration circuits (VLSI) is approaching fundamental limits so that it is difficult 

to achieve smaller sizes and higher performance. Fortunately, optoelectronic integrated circuits 

(OEICs)[1] can complement the conventional silicon-based electronics, using light for 

communication rather than electrons. It is not confined by the limitations and makes possible 

faster computational speed and higher complexity[2].  

In this thesis, there is a focus on the nonlinear effects of optical waveguides, which are treated 

as components of OEICs with specific functionalities. Different from bulks that can only 

propagate optical wave with high intensity in a short distance and depends on the beam, optical 

waveguides is capable of propagating high intensity through the whole length. This thesis aims 

to simulate the frequency-mixing processes of electromagnetic waves inside optical 

waveguides and to realize frequency conversion and generation of the frequency comb based 

on the second-order and third-order nonlinearities.   

Given that not all the frequency components are accessible through lasers, frequency 

conversion is vital to convert accessible frequencies to the desired frequencies. Typical 

examples are super-continuum generation, parametric oscillation, Raman conversion, sum 

frequency generation (SFG), difference frequency generation (DFG) and second-harmonic 

generation (SHG), which is also known as frequency doubling. Frequency conversion provides 

a way to reach the new light sources and a variety of applications, such as gas sensing and 

optical communication.   

https://en.wikipedia.org/wiki/Very-large-scale_integration
https://en.wikipedia.org/wiki/Very-large-scale_integration
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A frequency comb is a laser source that can produce a sequence of discrete frequency 

components which are equally spaced. The description of frequency components in a frequency 

comb is as follows:   

           𝑓𝑛 = 𝑓0 + 𝑛𝑓𝛾         (𝑛 = 1, 2, 3, 4…)                                                                        (1.1) 

where 𝑓0 is the carrier offset frequency; 𝑛 is an integer; and 𝑓𝛾 is the spacing between comb 

tooth. Frequency combs have attracted attention and been developed since the 1990s. In 2005, 

two physicists - John L. Hall[3] and Theodor Wolfgang Hänsch[4] - were awarded one  half of 

the Nobel Prize in Physics for "their contributions to the development of laser-based 

precision spectroscopy, including the optical frequency comb technique"[5].  There are several 

ways to generate a frequency comb which have been demonstrated in recent research such as 

four-wave mixing (FWM)[6]–[11], electro-optic modulation of a continuous-wave (CW) 

laser[12]–[14] and mode-locked laser[15][16]. Frequency combs became popular because of 

their attractive applications, where the comb needs to be widened to an octave to ensure the 

highest frequency in the spectrum at at least twice the lowest frequency. 

One typical application of frequency combs is frequency standard[17]. It offers a fundamental 

frequency with great accuracy for reference or calibration. Therefore, time standard is also 

achieved based on the frequency standard and is applied in optical clocks[18]–[21], which 

provide greater  precision and stability than normal cesium atomic clocks. Moreover, thanks to 

the development of the frequency comb, extreme precise laser spectroscopy[13][22] is possible. 

The previous measurements of spectroscopy limited the precision until the invention of the 

frequency comb synthesiser by Theodor Wolfgang Hänsch et al[4].  

1.2 Introduction of optical waveguides 

Optical waveguides are the structures that guide the electromagnetic wave in the optical 

spectrum and they have attracted an increasing amount of attention in the past two decades 

because of their optical properties, such as linear dispersion and certain nonlinear effects.  

1.2.1 Silicon-on-insulator waveguide    

Silicon-on-insulator (SOI) waveguide is a popular waveguide because silicon is a good choice 

as optical material for OEICs. Silicon has a mature low-cost fabrication technology and it is 
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transparent in the telecommunication wavelength range 1.3-1.7 μm. In addition,  as the base of 

microelectronic chips, silicon provides the possibility of integrating silicon photonic devices 

and complementary metal-oxide-semiconductors (CMOS) on the same substrate[23]. 

Figure1.1 shows a basic structure of SOI strip waveguide, where the electromagnetic wave is 

mainly propagated in the silicon layer. SOI has  shown a high refractive index contrast[24] 

between the silicon core layer and its oxide cladding layer, as well as the high mode 

confinement and large nonlinear co-efficient[25]. Much relevant research about frequency-

mixing processes of SOI waveguide has been carried out  in recent years, such as self-phase 

modulation (SPM)[26]–[29], cross-phase modulation (XPM)[30][31] , FWM[32]–[40], 

SFG[41], DFG[42][43]  and SHG[44]–[46]. These have indicated that the SOI waveguide has 

a great potential for a range of applications: wavelength conversion based on FWM[32]–[40] 

and XPM[31], super-continuum generation[47]–[49], parametric amplifier[50] and de-

multiplexing[51][52]. Some engineered SOI waveguides  optimize the group velocity 

dispersion (GVD) in order to satisfy phase matching conditions and improve conversion 

efficiency[53][54] or to find the balance between nonlinear effects and linear dispersion to 

generate soliton[55][56], which is known as dispersion-free propagation. 

 

 

 

 

Fig. 1.1 Structure of SOI strip waveguide. 

However, silicon has two great limitations. Firstly, it is an indirect-bandgap semi-conductor, 

with difficulty in producing pumped laser. Secondly, its energy gap is so small that it suffers 

two-photon-absorption (TPA) and free-carrier-absorption (FCA) in the telecommunication 

frequency range. TPA is a phenomenon that an electron is excited to a higher energy state by 

absorbing the energy of two photons, while FCA is a phenomenon that a carrier, an electron or 

a hole, is excited from an excited energy state to another unoccupied energy state in the same 

band, both of which lead to a significant loss of power when the optical wave with high power 

is propagated in SOI waveguide.  

  Silicon  

Silicon dioxide 
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Silicon nitride is an alternative form of silicon with a larger energy gap. It is also CMOS 

compatible and has an obvious Kerr effect[57]. In addition, TPA is not expected in silicon 

nitride around 1.55 μm. Its refractive index varies from 1.57 to 2.76, depending on the SiH4/N2 

flow ratio[58][59] and the deposition temperature[60] - much larger than the refractive index 

of silicon dioxide - and ensures the mode confinement in the waveguide. SPM and GVD of 

silicon nitride waveguide have been demonstrated[57], as well as frequency comb 

generation[61], super-continuum generation[62][63] from visible spectrum to near-infrared  

and SHG[64]. 

1.2.2 AlGaAs waveguide    

AlGaAs is an ideal candidate and is considered as “the silicon of nonlinear optical 

materials”[65]. Similar to silicon, AlGaAs has a high refractive index so that it is capable of 

retaining a strong optical confinement mode and ensures sufficient nonlinear interaction inside 

the AlGaAs waveguide. The refractive index relies on the aluminium concentration, providing 

a flexible adjusting refractive index in a broad range[66]. In addition, AlGaAs is found to have 

broadband transparency in the telecommunication frequency range. AlGaAs not only have a 

high second-order nonlinear co-efficient[67], but also have strong Kerr nonlinearity that the 

value of nonlinear refractive index 𝑛2 is 500 times higher than that of silica[68]. Apart from 

the excellent nonlinear performance, AlGaAs is a direct-band gap semi-conductor, which is 

promising for utilisation in OEICs or all-optical chips as a laser source.  

Table 1.1 Comparison of nonlinear properties of optical materials.  

Material Refractive index 𝑛2(cm2/W) 𝛼2(cm/GW) 

Silicon 3.48[24]  4× 10−14[34] 0.5[34] 

Silicon nitride 1.57-2.76[58]  2.4× 10−15[69] Negligible 

GaAs 3.37[66] 1.59× 10−13[68] 15[70] 

Al0.18Ga0.82As 3.28[66] 1.5× 10−13(TE)[68] 

1.43× 10−13(TM)[68] 

0.05[68] 
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Al0.2Ga0.8As 

Al0.7Ga0.3As 

Al0.7Ga0.3As 

Table 1.1 shows a comparison between four different optical materials at a wavelength of 1.55 

μm, where 𝛼2 is the TPA co-efficient. Silicon shows the highest refractive index and a large 

nonlinear refractive index, as well as the largest TPA in the table. Although silicon nitride has 

a lower refractive index and a smaller nonlinear refractive index when compared with silicon, 

its TPA is negligible. In contrast, GaAs has a relatively high refractive index and the largest 

nonlinear refractive index. However, its TPA co-efficient is 30 times that of silicon, which may 

cause the dramatic power loss. Compared with the above materials, AlGaAs is a perfect 

material for nonlinear optics. Taking Al0.18Ga0.82As as an example, it has a high refractive 

index, a large nonlinear refractive index and a small TPA co-efficient. 

A typical structure of deep-etched AlGaAs multi-layers waveguide is depicted in Figure 1.2, 

in which the core layer has a lower Al concentration so it has a higher refractive index than 

those of cladding layers. Two decades ago, a large nonlinear phase shift in AlGaAs waveguides 

was found[71] and reference [68] measured the nonlinear refractive index for both TE- and 

TM-polarized modes, as well as the two- and three-photon absorption co-efficients of a 

AlGaAs channel waveguide, where the core layer is  Al0.18Ga0.82As . Thanks to the 

improvement in fabrication technology, much more attention has been focused on AlGaAs 

waveguide in the past few years; in particular, the nonlinear effects. Many nonlinear frequency-

mixing processes have been demonstrated based on the second-order nonlinearity: SHG[72]–

[76], SFG[77] and DFG[78][79], and third-order nonlinearity: SPM[80][81], XPM[80]–[83] 

and FWM[80][84]–[88]. In addition, geometric dispersion and material dispersion were taken 

into consideration and zero-GVD was studied by engineering the structure of AlGaAs 

nanowire[89][90].  

 

 

 

 

Fig. 1.2 Structure of deep-etched AlGaAs strip waveguide. 

1.3 Introduction of computational electromagnetics 



6 
 

Computational electromagnetics (CEM)[91] is a typical technique in order to obtain the 

effective solution of the approximation to  Maxwell’s equations, involving the analysis of the 

interaction in both electric and magnetic fields in the problem domain. Therefore, CEM is 

applied widely in the simulations of many research fields: Radar Cross Section (RCS), aircraft, 

antenna, biomedical application and optical waveguides. With regard to optical waveguides, 

the general utilized methods are classified as the numerical methods of CEM, which include 

finite element method (FEM), finite-difference time-domain method (FDTD), beam 

propagation method (BPM), discrete dipole approximation (DDA) and method of moments 

(MoM). These methods have been developed to calculate the energy flux, power flow direction, 

radiation, scattering, absorption and normal modes of optical waveguides, simplifying the real 

irregular and complex structure of devices and simulating the propagation of electromagnetic 

waves in the realistic three-dimensional models.  

Finite element method 

The finite element method is a popular computational method based on the approximation 

solution of partial differential equations (PDE). In this approach, the whole problem domain is 

divided into a set of small sub-divisions which are called finite elements and each element has 

its own equations. Final values can be obtained by solving those sets of element equations and 

combining the results in mathematical ways. The initial concept of FEM was firstly  suggested 

by Courant in 1943[92]. In 1950s and 1960s, a similar approach was proposed by a Chinese 

scientist Feng and it was called the finite difference method based on variation principle. Many 

books about FEM have been published since the 1970s[93]–[96]. Compared with other 

numerical methods, FEM attracts more attention when it is utilized for scientific research and 

industrial application. It is a good choice for researchers because of its many advantages. It can 

easily turn complex geometry into a collection of simple elements so that it is efficient in 

dealing with the various material properties and various desired precisions over the whole 

problem domain. Moreover, local effects are easily incorporated because of the 

mesh discretization. 

Finite-difference time-domain method 

The finite-difference time-domain method is a finite-difference method (FDM) that is applied 

in the time-domain. It is a grid-based numerical analysis method, computing the central-

http://en.wikipedia.org/wiki/Polygon_mesh
http://en.wikipedia.org/wiki/Discretization
http://en.wikipedia.org/wiki/Finite-difference_time-domain_method
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difference approximation to the time-dependent partial differential equations, and has been 

used for simulating electromagnetic models for many years. FDTD can be traced back to 1966, 

Yee[97] presented a set of difference equations of Maxwell’s curl equation, which were 

discretized in space and time with a central-difference format. Electric and magnetic 

components were sampled as discrete points in both the space and time domain. Figure 1.3 

shows the Yee space lattice with electric and magnetic field vector components in three-

dimensional space. Electric components have been placed in the middle of the edges and 

magnetic components have been placed in the middle of surfaces.    

 

 

 

 

 

 

Fig. 1.3 Yee space lattice: position of electric and magnetic field components. Source: K. S. Yee IEEE Trans. 

Antennas Propag, 14(3), 302-307, 1966. 

It was Taflove who developed the FDTD acronym in 1980[98]. He introduced the first model 

of sinusoidal steady-state electromagnetic-penetration in cylindrical metal cavity based on 

FDTD. In the next year (1981), Mur[99] reported absorbing boundary condition (ABC) which 

could be used for both two- and three-dimension FDTD models with second-order accuracy. 

The first simulation of waveguide structures was published by Choi and Hoefer[100] in 1986. 

After that, the FDTD method began to be utilized for modelling linear dispersive materials 

(1990-1991)[101]–[103] and simulating the propagation of optical pulses in nonlinear 

dispersive media between  1992 and  1994[104][105]. In 1994, Berenger[106] presented a form 

of highly effective ABC that could be applied in two-spatial dimensions, which was known as 

a perfectly matched layer (PML). In the same year, PML was extended from two dimensions 

to three dimensions by Katz, Thiele and Taflove[107]. FDTD has been developed and widely 

javascript:void(0);
javascript:void(0);
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used in many scientific research areas since 1994 and is still one of the most popular numerical 

methods.  

FDTD is a dominant technique in electro-magnetic computation because of its three main 

advantages. Compared with other numerical methods, FDTD (1) can calculate all points of the 

problem domain directly and simulate electric and magnetic fields realistically, and (2) is it 

also able to cover a wide range of frequencies in a single simulation. Since every component 

of E and H in every time step is calculated, (3) means that displaying the movement of �⃑�  and 

�⃑⃑�  is possible so that it is not difficult to work out what is going on inside the waveguide to 

ensure it works correctly.  

Beam propagation method                                                                                                         

The beam propagation method is a simple and useful way to simulate the propagation of light 

in optical waveguides based on the slowly varying envelope approximation of differential 

equations, which are treated as paraxial one-way models. In the 1970s, BPM was first 

introduced to solve the problem of the propagation of waves in a large domain with long 

distance, only involving the spatial variable z rather than time. BPM is suitable for both 

isotropic and general anisotropic[108] optical material. In addition, it can be applied with a 

finite-difference method (FDM)[109] or FEM[110] in the same simulation. 

However, BPM does have limitations. It depends on the slowly varying envelope 

approximation so it is less valid when utilized in small structures or in waveguides with high 

refractive-index contrast. Normally, it is applied in paraxial one-way models. It can be used in 

two-direction propagation with the iterations of reflections, but it may cause the issue of 

convergence. 

Discrete dipole approximation  

Discrete dipole approximation is a widely used method in the computation of absorption and 

scattering of target materials with arbitrary geometry. In 1964, DeVoe[111] proposed the initial 

idea of DDA, to which was later added retardation effects by Purcell and Pennypacker  

(1973)[112].They used a set of point dipoles instead of a scatterer. In 1988, Goedecke and 

O’Brien[113] derived DDA from the integral equations of an electronic field based on the 

http://en.wikipedia.org/wiki/Edward_Mills_Purcell
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digitized Green's function algorithm and developed the coupled dipole method in two ways. A 

scatterer consists of small cubic particles, which are polarized and interact with each other 

when induced by the electric field[114]. The interaction between these particles and between 

optical wave and arbitrary structures is taken into consideration in the DDA method. DDA 

became  more popular after Draine and Flatau wrote a DDSCAT package in FORTRAN[115]. 

The package includes the calculations for interaction between the electromagnetic waves and 

devices of various shapes (e.g., sphere, ellipsoids, regular tetrahedron, cuboid, cylinder, and 

hexagonal prism) which is considered as a convenient and simple tool for simulation. 

Method of moments 

Method of moments[116] is known as a boundary technique. This method involves computing 

boundary values through utilizing Green’s formula to solve linear partial differential equations, 

which is expressed as a boundary integral equation. Compared s with other numerical methods, 

MoM is more efficient in many ways because it only focuses on boundary values, rather than 

the values over the entire problem domain. Firstly, MoM can achieve a reduction in spatial 

dimensions, meaning reduction in numerical discretization. Secondly, the behaviour of an 

optical wave can be simulated at infinity automatically in MoM without the approximation of 

mesh. Thirdly, handling mesh with MoM is much easier when the boundaries are moving[117]. 

MoM has been  popular  since the 1980s and is now widely used to obtain numerical 

results[118]–[120]. MoM, however, is only applicable in solving problems with a small volume 

ratio. In terms of larger computational domain, volume-discretization techniques, such as FEM 

and FDM, are more effective than MoM, which will cause rapid growth in storage requirements 

and time of calculation. 

Following the numerical methods introduced above, the mode solver has been developed as a 

tool to compute the fundamental and high-order TE and TM modes of optical waveguides, as 

well as their effective indices. Mode solver was proposed primarily based on the FEM[121]–

[124] and FDM[125][126]. Thanks to the development and application of these efficient 

numerical methods, a large amount of simulation results have been obtained and these provide 

the theoretical support for fabrication and further design of optical waveguides. Although these 

techniques have been shown to have a big success in the research into optical waveguides, they 

still face many challenges.  

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
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For instance: 

(1) Difficulty in incorporating arbitrary material dispersion. 

(2) Difficulty in handling optical second- and third-order nonlinearities 𝜒(2) and 𝜒(3). 

(3) Difficulty in solving waveguide formats, especially in one long spatial dimension. 

(4) Difficulty in tackling anisotropy (for instance, birefringence).  

This thesis introduces high-fidelity simulations of GaAs/AlGaAs waveguides and silicon-

based waveguides with an implementation of FDTD method, incorporating linear dispersion, 

including geometric- and material-dependent dispersions, and second- and third-order 

nonlinearities in three-dimension models with one long spatial dimension. 

The extant commercial softwares and research codes based on FDTD method, such as 

Lumerical FDTD solutions and Remcom XFdtd, offering the simulations of three-dimensional 

waveguides with linear dispersion and nonlinearities. However, they are not capable of 

simulating wave propagation in six directions (+x, -x, +y, -y, +z, -z) in one time to provide a 

realistic model, which is handled in the simulations in this thesis. Moreover, in this thesis, a 

three-dimension model was designed with a cyclic boundary condition so that the memory 

requirement and computation time are significantly decreased. The current limitation of the 

code is that the propagation loss and TPA are not incorporated, which will be improved in the 

future work. 

1.4 Overview of the thesis  

In Chapter 1, the research background of optical waveguides and the development of typical 

numerical methods applied for electromagnetic simulations are briefly introduced.  

In Chapter 2, the basic finite-difference time-domain method is discussed; starting from the 

introduction of Maxwell’s equations and FDTD updating equations, to the analysis of 

numerical dispersion and stability. Then the excitation source and PML absorbing boundary 

condition in FDTD simulation are highlighted. At the end of the chapter, linear dispersion and 

nonlinearity are described, as well as piecewise linear recursive convolution (PLRC) method. 
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In Chapter 3, the simulation of optical waveguides is introduced. The basic model, the 

implementation of FDTD algorithms and the waveguide source computed in mode solver are 

presented. The approach of incorporating linear dispersion and nonlinearity in FDTD technique 

is demonstrated where both second- and third-order nonlinearities are considered. In addition, 

phase matching conditions of FWM and SHG are discussed. Then the parameters of PML are 

optimized. Finally, the parallel programming based on OpenMP and high-performance 

computation (HPC) are highlighted. 

In Chapter 4, four-wave mixing processes in three optical waveguides - GaAs suspended 

waveguide, deep-etched multi-layer Al0.25Ga0.75As waveguide and Al0.3Ga0.7As-on-insulator 

waveguide - are simulated. FWM results were observed in all the waveguides with widths that 

satisfy the phase matching condition, which is discussed based on GVD and phase mismatch 

factor. 

In Chapter 5, four-wave mixing processes in two dielectric waveguides - silicon-on-insulator 

waveguide and silicon rich silicon nitride-on-insulator waveguide - are simulated. According 

to GVD and phase mismatch factor, phase matching condition of FWM is discussed. FWM 

results were observed in all the waveguides when the widths satisfy the phase matching 

condition. 

In Chapter 6, second-harmonic generation in a highly birefringent Al0.3Ga0.7As-on-insulator 

waveguide is simulated. The SHG result was observed in the waveguide when the width 

achieved the type-I phase matching condition.  

In Chapter 7, a conclusion to this research is offered with suggestions for future research. 
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Chapter 2 

The Finite-Difference Time-Domain Method 

 

This chapter presents the basic theory of the finite-difference time-domain method, introducing 

the updating equations of electric and magnetic fields in multiple dimensions. In addition, 

numerical dispersion and stability are analyzed and typical excitation sources applied in the 

simulation are introduced as well as absorbing boundary conditions. Finally, linear dispersion 

and nonlinearity are incorporated in the updating equations, making them suitable for all linear, 

dispersive or nonlinear materials. 

2.1 Introduction to the FDTD method 

FDTD is a popular time-domain numerical algorithm in solving approximation values of 

electric and magnetic fields in Maxwell’s equations. In this method, the whole problem domain 

is formed of discrete points and every field components of each point is calculated at each time 

step from the values of the previous time steps, simulating the propagation of optical pulses in 

waveguides.  

2.1.1 Maxwell’s equations   

Generally, FDTD is based on the differential form of Maxwell’s equations in time domain: 

           ∇ × �⃑⃑� =
𝜕�⃑⃑� 

𝜕𝑡
+ 𝐽                                                                                                                       (2.1a) 

           ∇ × �⃑� = −
𝜕�⃑� 

𝜕𝑡
− �⃑⃑�                                                                                                                  (2.1b) 

           ∇ ∙ �⃑⃑� = 𝜌𝑒                                                                                                                              (2.1c) 

           ∇ ∙ �⃑� = 𝜌𝑚                                                                                                                             (2.1d) 

where �⃑�  is the electric field (V/m); �⃑⃑�  is the electric flux density (C/m2); �⃑⃑�  is the magnetic 

field (A/m); �⃑�  is the magnetic flux density (Wb/m2); 𝐽  is the electric current density (A/m2); 
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�⃑⃑�  is the magnetic current density (V/m2); 𝜌𝑒  is the electric charge density (C/m3); and 𝜌𝑚 is 

the magnetic charge density (Wb/m3).  Formula (2.1a-b) is the curl of the electromagnetic 

field, being used for derivation to obtain updating equations in FDTD, while formulas (2.1c-d) 

are divergence of the electromagnetic field and are employed to check the simulation results of 

FDTD. In the first two equations, 𝐽  and �⃑⃑�  can be expressed as follows: 

           𝐽  = 𝐽 𝑖 + 𝜎𝑒�⃑�                                                                                                                          (2.2a) 

          �⃑⃑� = �⃑⃑� 𝑖 + 𝜎𝑚�⃑⃑�                                                                                                                       (2.2b) 

where 𝐽 𝑖  and �⃑⃑� 𝑖  are independent sources of electric and magnetic field energy; 𝜎𝑒  is the 

electric conductivity (S/m); and  𝜎  𝑚 is the magnetic conductivity (Ω/m). It is noted that �⃑⃑� , 𝜌𝑚 

and 𝜎𝑚 are non-physical and will always be zero because the existence of magnetic monopole 

has not yet been proven. However, when we consider a magnetic current source or magnetic 

loss, they are treated as having equivalent magnetic current density and equivalent magnetic 

conductivity. 

In general, the constitutive relationships between  �⃑⃑� , �⃑�  and  �⃑� , �⃑⃑�  in the time domain are 

described as:  

          �⃑⃑� (𝑡) = [ 𝜀(𝑡, �⃑�  )] ∗ �⃑� (𝑡)                                                                                                           (2.3a)    

          �⃑� (𝑡) = [ 𝜇(𝑡)] ∗ �⃑⃑� (𝑡)                                                                                                              (2.3b)   

where 𝜀 is the electric permittivity (F/m); and 𝜇 is the magnetic permeability (H/m). �⃑⃑�  is the 

convolution of permittivity and �⃑� , while �⃑�  is the convolution of permeability and �⃑⃑� . If we 

consider the medium is anisotropic, the dielectric permittivity and the magnetic permeability 

are tensors. When the medium is linear, isotropic and non-dispersive, the permittivity and the 

permeability are constants, so the relationships are codirectional and proportionate, 

          �⃑⃑� (𝑡) =  𝜀�⃑� (𝑡) =  𝜀𝑟𝜀0�⃑� (𝑡)                                                                                      (2.4a)                       

          �⃑� (t) =  𝜇�⃑⃑� (𝑡) =  𝜇𝑟𝜇0�⃑⃑� (𝑡)                                                                                    (2.4b) 

where 𝜀𝑟 is the relative permittivity; 𝜀0 is free-space permittivity (8.85 × 10−12 F/m); 𝜇r is the 

relative permeability; and 𝜇0 is the free-space permeability (4π × 10−7 H/m). When equations 
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(2.2a-b) and (2.3a-b) are substituted into equations (2.1a-b), Maxwell’s curl equations are re-

written as:  

          ∇ × �⃑⃑� =  𝜀
𝜕�⃑� 

𝜕𝑡
+ 𝐽 𝑖 + 𝜎𝑒�⃑�                                                                                                       (2.5a) 

          ∇ × �⃑� =  −𝜇
𝜕�⃑⃑� 

𝜕𝑡
− �⃑⃑� 𝑖 − 𝜎𝑚�⃑⃑�                                                                                                (2.5b)      

As a result, in three dimensional space, these two vector equations can be decomposed as six 

scalar equations in a Cartesian co-ordinate system, taking Ex and Hx as examples:   

            
𝜕𝐸𝑥

𝜕𝑡
 =  

1

𝜀𝑥
( 

𝜕𝐻𝑧

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑧
− 𝜎𝑥

𝑒𝐸𝑥 − 𝐽𝑖𝑥)                                                                                            (2.6a) 

           
𝜕𝐻𝑥

𝜕𝑡
 =  

1

𝜇𝑥
( 

𝜕𝐸𝑦

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑦
− 𝜎𝑥

𝑚𝐻𝑥 − 𝑀𝑖𝑥)                                                                                        (2.6b)           

2.1.2 FDTD updating equations 

To further solve the value of electric and magnetic fields in scalar formulas, difference 

approximation is utilized, which is effective for continuum functions. Table 2.1 shows the 

expressions and accuracy of three typical methods: forward difference, backward difference 

and central difference. The errors of forward and backward difference are determined by ∆𝑥, 

but in contrast, the main error of central difference is caused by (∆𝑥)2 so that it achieves higher 

order accuracy.  

Table 2.1 Comparison between three types of difference approximations. 

Central difference approximation is used in FDTD to obtain approximation values of 

Maxwell’s equations according to Yee grid. It is noted that field components �⃑�  and �⃑⃑�  are not 

Types Expression Accuracy 

 Forward difference    𝑓′(𝑥) ≈
𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
   First - order accuracy 

 Backward difference    𝑓′(𝑥) ≈
𝑓(𝑥) − 𝑓(𝑥 − ∆𝑥)

∆𝑥
   First - order accuracy 

 Central difference 𝑓′(𝑥) ≈
𝑓 (𝑥 +

∆𝑥
2 ) − 𝑓(𝑥 −

∆𝑥
2 )

∆𝑥
 

 Second - order accuracy 

javascript:void(0);
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coincident in space or time. In general, the electric field is sampled at each time step: 0, ∆𝑡, 

2∆𝑡 , 3∆𝑡 , …n∆𝑡 , while the magnetic field is sampled at each half time step:  
1

2
∆𝑡 , (1 +

1

2
)∆𝑡, (2 +

1

2
)∆𝑡, (3 +

1

2
)∆𝑡, … (n +

1

2
)∆𝑡. Distributions of �⃑�  and �⃑⃑�  in various dimensional 

space are depicted in the following Figures. 

In the one dimensional case, position does not change in two directions (take y-direction and 

z-direction as an example), so derivatives with respect to y and z should be equal to zero. 

Therefore, one-dimension problems can be classified as two separate types: one is involved in 

the components 𝐸𝑦 and 𝐻z and the other one is involved in 𝐸z and 𝐻y.  

 

 

                     Fig. 2.1a Electric and magnetic components  𝐸y  and  𝐻z  of FDTD in one dimension.   

 

 

                     Fig. 2.1b Electric and magnetic components  𝐸z  and  𝐻y  of FDTD in one dimension. 

According to the distribution of the positions of electric and magnetic field components in one-

dimension space as shown in Figure 2.1 and central difference approximation, it is possible to 

obtain the updating equations of �⃑�  and �⃑⃑� . Taking 𝐸y  and 𝐻𝑧 for instance,     

             
𝜕𝐸𝑦

𝜕𝑡
 =  

1

𝜀𝑦
(  − 

𝜕𝐻𝑧

𝜕𝑥
 − 𝜎𝑦

𝑒𝐸𝑦 − 𝐽𝑖𝑦)                                                                                                              

             
𝐸𝑦

𝑛+1(𝑖) – 𝐸𝑦
𝑛(𝑖)

∆𝑡
 =  

1

𝜀𝑦(𝑖)
[  −

𝐻𝑧

𝑛+
1
2(𝑖)−𝐻𝑧

𝑛+
1
2(𝑖−1)

∆𝑥
 − 𝜎𝑦

𝑒𝐸𝑦

𝑛+
1

2(𝑖)  − 𝐽
𝑖𝑦

𝑛+
1

2(𝑖)]                         (2.7)                                                                                                                                                                                                                                                                                                                                                                         

where the electric field at (n+0.5) ∆𝑡 is expressed as average values of those at (n+1) ∆𝑡 and 

n∆𝑡. 

             𝐸𝑦

𝑛+
1

2(𝑖)  =  
𝐸𝑦

𝑛+1(𝑖) + 𝐸𝑦
𝑛(𝑖)

2
                                                                                                               (2.8)                                                                                                                                                                                                                                                                                                                                                                         

(i-2) (i+2) (i+1) ( i ) (i-1) (i-2) 
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X 

(i+2) 

(i-2) (i-1) ( i ) 

𝐻𝑦 𝐸𝑧 

(i-2) (i-1) ( i ) (i+1) (i+2) (i+1) 
X 

(i+2) 
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As a consequence, electric field components are updated by their values at the previous time 

step and the values of the magnetic field, as well as current source. Similarly, updating 

equations of the magnetic field are simplified as: 

             
𝜕𝐻𝑧

𝜕𝑡
 =  

1

𝜇𝑧
( − 

𝜕𝐸𝑦

𝜕𝑥
− 𝜎𝑧

𝑚𝐻𝑧 − 𝑀𝑖𝑧)                                                                                                            

             
𝐻𝑧

𝑛+
1
2(𝑖) − 𝐻𝑧

𝑛−
1
2(𝑖)

∆𝑡
 =  

1

𝜇𝑧(𝑖)
[  −

𝐸𝑦
𝑛(𝑖+1) − 𝐸𝑦

𝑛(𝑖)

∆𝑥
 −  𝜎𝑧

𝑚𝐻𝑧
𝑛(𝑖) − 𝑀𝑖𝑧

𝑛 (𝑖)]                         (2.9)                                                                                                                                                                                                                                                                          

where the magnetic field at n∆𝑡 can be expressed as average values of those at (n+0.5) ∆𝑡 and 

(n-0.5) ∆𝑡. 

             𝐻𝑧
𝑛(𝑖)  =  

𝐻𝑧

𝑛+
1
2(𝑖) + 𝐻𝑧

𝑛−
1
2(𝑖)

2
                                                                                                   (2.10)      

Therefore, magnetic field components are updated by their  values at the previous time step 

and the values of the electric field, as well as current source.                                                                                                                                                                                                                                                                                                                                                                   

 

 

 

 

 
    

  Fig. 2.2a Electric and magnetic components                          Fig. 2.2b Electric and magnetic components                           

  of FDTD in two-dimension TEz  mode.                                 of FDTD in two-dimension TMz  mode.        

When the problem domain increases to a two-dimension space, the position does not change in 

one direction (take z-direction for an example), so derivatives with respect to z should be equal 

to zero. Scalar equations are simplified as two separate modes: transverse-electric mode with 

respect to z (TE𝑧 mode) which is involved in three components 𝐸𝑥, 𝐸𝑦 and 𝐻𝑧 and transverse-

magnetic mode with respect to z ( TM𝑧 mode) which is involved in the other three 

components 𝐻𝑥, 𝐻𝑦 and 𝐸𝑧. The distribution of the positions of the field components in the two 

modes are depicted in Figures 2.2a and 2.2b respectively.  
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With regard to a three-dimension space, all six field components are taken into consideration. 

Figure 2.3 shows the positions of �⃑�  and �⃑⃑�  components. Every �⃑⃑�  component is surrounded by 

four �⃑�  components. In the meantime, the �⃑�  component is surrounded by four �⃑⃑�  components. 

According to the Yee grid in Fig. 2.3, scalar equations of six field components are simplified 

with central difference approximation of derivatives of time and space. Taking 𝐸x and 𝐻x as 

examples,     

          
𝜕𝐸𝑥

𝜕𝑡
 =  

1

𝜀𝑥
( 

𝜕𝐻𝑧

𝜕𝑦
 −  

𝜕𝐻𝑦

𝜕𝑧
 − 𝜎𝑥

𝑒𝐸𝑥 − 𝐽𝑖𝑥)                                                                                                              

          
𝐸𝑥

𝑛+1(𝑖,𝑗,𝑘) − 𝐸𝑥
𝑛(𝑖,𝑗,𝑘)

∆𝑡
 =  

1

𝜀𝑥(𝑖,𝑗,𝑘)
[ 

𝐻𝑧

𝑛+
1
2(𝑖,𝑗,𝑘)−𝐻𝑧

𝑛+
1
2(𝑖,𝑗−1,𝑘)

∆𝑦
 −  

                                               
𝐻𝑦

𝑛+
1
2(𝑖,𝑗,𝑘)−𝐻𝑦

𝑛+
1
2(𝑖,𝑗,𝑘−1)

∆𝑧
 − 𝜎𝑥

𝑒𝐸𝑥

𝑛+
1

2(𝑖, 𝑗, 𝑘)  − 𝐽
𝑖𝑥

𝑛+
1

2(𝑖, 𝑗, 𝑘)]    (2.11)                                                                                                                                                                                                                                                                                                                                                                         

          
𝜕𝐻𝑥

𝜕𝑡
 =  

1

𝜇𝑥
( 

𝜕𝐸𝑦

𝜕𝑧
 −  

𝜕𝐸𝑧

𝜕𝑦
− 𝜎𝑥

𝑚𝐻𝑥 − 𝑀𝑖𝑥)                                                                                                            

          
𝐻𝑥

𝑛+
1
2(𝑖,𝑗,𝑘) − 𝐻𝑥

𝑛−
1
2(𝑖,𝑗,𝑘)

∆𝑡
 =  

1

𝜇𝑥(𝑖,𝑗,𝑘)
[ 

𝐸𝑦
𝑛(𝑖,𝑗,𝑘+1) − 𝐸𝑦

𝑛(𝑖,𝑗,𝑘)

∆𝑧
 −     

                                                  
𝐸𝑧

𝑛(𝑖,𝑗+1,𝑘) − 𝐸𝑧
𝑛(𝑖,𝑗,𝑘)

∆𝑦
 −  𝜎𝑥

𝑚𝐻𝑥
𝑛(𝑖, 𝑗, 𝑘) − 𝑀𝑖𝑥

𝑛 (𝑖, 𝑗, 𝑘)]           (2.12)                                                                                                                                                                                                                                                                          

 

 

 

 

 

 

Fig. 2.3 Distribution of electric and magnetic components of FDTD in three dimensions. 

2.2 Numerical dispersion and stability 
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2.2.1 Numerical stability 

Given that the points of the electric field and the magnetic field are discrete in the problem 

domain, the sampling period is important. To ensure the stability of the values, the relationship 

between the time step and the size of grid must obey the Courant–Friedrichs–Lewy (CFL) 

condition[127]. According to the CFL condition,  

              C = ∆t ∗ ∑
𝑢𝑥𝑖

∆𝑥𝑖

𝑛
𝑖=1 ≪ Cmax                                  (n=1, 2, 3)                                               (2.13) 

where C is the courant number; ∆t is the time step (s); 𝑢𝑥𝑖 is the magnitude of velocity (m/s); 

∆𝑥𝑖 is the size of grid (m); and n is the number of dimensions. Typically, the maximum of the 

courant number is 1. Therefore, formula (2.13) can be re-written for a three dimensional FDTD 

case[128]: 

              ∆𝑡 ≪
1

𝑐

𝑛
√

1

(∆𝑥)2
+

1

(∆𝑦)2
+

1

(∆𝑧)2

                                                                                                       (2.14) 

where c is the velocity of light in free space (m/s); and n is the refractive index. If ∆𝑥 = ∆𝑦 

= ∆𝑧, formula (2.14) is simplified:      

              ∆𝑡 ≪
𝑛∆𝑥

𝑐√3
                                                                                                                             (2.15) 

Nevertheless, the CFL condition ensures the stability rather than the accuracy. It only provides 

a basic relationship between grid size and time step. 

2.2.2 Numerical dispersion 

Generally, FDTD is a good approximation of a realistic electro-magnetic field. However, 

difference approximation causes error, leading to biased phase velocity, which is so-called 

numerical dispersion. A one-dimensional formula of numerical dispersion is described as:                              

              [ 
1

𝑐∆𝑡
sin (

𝜔∆𝑡

2
) ]2 = [ 

1

∆𝑥
sin (

𝑘𝑥 ∆𝑥

2
) ]2                                                                                (2.16) 

where 𝜔 is the angular frequency (rad/s); and 𝑘𝑥 is the wave number.  It is not difficult to 

extend to the three-dimension case: 
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              [ 
1

𝑐∆𝑡
sin (

𝜔∆𝑡

2
) ]2 =  [

1

∆𝑥
sin (

𝑘𝑥∆𝑥

2
) ]2 + [ 

1

∆𝑦
sin (

𝑘𝑦∆𝑦

2
) ]2 + [ 

1

∆𝑧
sin (

𝑘𝑧∆𝑧

2
) ]2      (2.17) 

When ∆𝑥  → 0, ∆𝑦  → 0, ∆𝑧  → 0,  ∆𝑡  → 0, an ideal three-dimension dispersion formula is 

obtained based on L'Hopital's rule: 

              𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2  =  (

𝜔

𝑐
)2                                                                                          (2.18) 

Hence, the smaller the grid size and time step are, the better the results are. Because of 

numerical dispersion, different frequency components have different phase velocities.  Over 

time, the shape of the pulse changes. Therefore, to ensure the stability of late-time propagation 

of the optical pulse, the size of the grid also depends on the frequency. Generally, in the 

reasonable FDTD simulations, the corresponding wavelength of the highest frequency 

component should be at least 20 times larger than the size of the cell. 

2.3 Excitation source  

The excitation source is established by assigning a time function to a source point in the 

waveguide, giving initial values of the electro-magnetic pulse in the time domain. Then the 

optical wave carries the desired frequency and propagates in six directions from the source 

point. Generally, according to a feature of the source point, the excitation source is divided into 

two types: hard source and current source. Moreover, on the basis of different pulses, the 

excitation source has many types and those typical for the FDTD method are sinusoidal pulse 

and Gaussian pulse. 

2.3.1 Hard source and current source  

Hard source is defined in that the source point of the excitation source is a specific component 

of �⃑�  or �⃑⃑�  in the FDTD grid. For example, in a one-dimensional space, 𝐸𝑦 hard source is set up 

as: 

              𝐸𝑦(𝑖𝑠) =  𝐸0 𝑓(𝑡)                                                                                                              (2.19) 

where 𝑖𝑠 is the position of the source point; 𝐸0 is the amplitude; and 𝑓(𝑡) is the independent 

time function. The pulse would propagate in both +x and –x directions from the source point.  
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In contrast, in current sources, the source point is a component of 𝐽 𝑖 and �⃑⃑� 𝑖, but the way to 

build the excitation source is similar to the formula (2.19). For example, in a three-dimensional 

space, 𝐽 𝑖 current source is set up as: 

              𝐽𝑖𝑥(𝑖𝑠, 𝑗𝑠, 𝑘𝑠) =  𝐽0 𝑓(𝑡)                                                                                                      (2.20) 

where (𝑖𝑠, 𝑗𝑠, 𝑘𝑠) is the position of the source point in the Yee grid; and 𝐽0 is the amplitude. 

Current source is independent of other parameters in the waveguide. According to the equation 

(2.6), electric field and magnetic field are updated by 𝐽 𝑖  and  �⃑⃑� 𝑖  so that the source would 

propagate in all six directions from the source point.  

2.3.2 Sinusoidal pulse and Gaussian pulse     

In the FDTD algorithm, the time function in the formulas (2.19) and (2.20) is usually 

considered as a sinusoidal pulse or Gaussian pulse. Theoretically, the sinusoidal pulse is an 

ideal single-frequency pulse. Nevertheless, the excitation source of the FDTD method has 

limited time, which means the sinusoidal pulse would have additional frequency components. 

As a consequence, the sinusoidal pulse is utilized to simulate CW excitation.   

As for the modelling of pulsed laser excitation, the bandpass Gaussian pulse is a suitable choice. 

It can build a pulse that contains a certain range of frequency and the bandwidth is easy to 

adjust. In addition, it is simple to set two or three frequencies in the Gaussian pulse to simulate 

frequency mixing processes. The expression of Gaussian-shaped pulse (based on cosine wave) 

is:  

              𝑓(𝑡) = cos (𝜔𝑐(𝑡 − 𝑡0))e
−(

𝑡−𝑡0
𝜏

)
2

                                                                                       (2.21) 

where  𝜔𝑐 is the central frequency; 𝑡0 is the time of delay and used for moving pulse to the 

positive time domain, making sure that the incident wave starts from zero value; and 𝜏 is the 

parameter involving bandwidth. To have a better understanding of the Gaussian pulse, we do 

Fourier transform of formula (2.21) and obtain the frequency domain:   

             𝑓(𝜔) =  
𝜏√𝜋

2
𝑒−(

𝜏(𝜔−𝜔𝑐)
2

)
2

+
𝜏√𝜋

2
𝑒−(

𝜏(𝜔+𝜔𝑐)
2

)
2

                                                                    (2.22) 
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To build an example of Gaussian pulse that contains a wavelength from 1.3 μm to 1.8 μm, the 

first step is to obtain the value of parameter 𝜏. It is important to consider that the amplitude of 

the effective highest or lowest frequency component is one tenth of the central frequency and 

according to the formula (2.22), 𝜏 should satisfy: 

             0.1 =  𝑒−(
𝜏(𝜔max−𝜔)

2
)
2

                                                                                                          (2.23) 

where 𝜔max = 2𝜋𝑓max , so   

             𝜏 =  
2√2.3

𝜋 Δ𝑓
       ;       Δ𝑓 =  𝑓max − 𝑓min                                                                               (2.24) 

 

 

 

 

 

 

 

 

 

Fig. 2.4 Time domain and frequency domain of Gaussian pulse. The central wavelength is 1.55 μm. 

Once 𝜏 is gained, it is easy to build the desired Gaussian pulse, as long as the delay constant 𝑡0 

is big enough to ensure that the pulse starts from a neglectable value. As is shown in Figure 

2.4, Gaussian pulse with a central wavelength 1.55 μm has zero value when t=0, and the whole 

pulse is finished in 160 fs. The corresponding bandwidth Δ𝑓 is highlighted in the frequency 

domain, which is decided by the width of the frequency at one tenth of the peak value.  

Δ𝑓 
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Another way to determine the values of parameters in Gaussian pulse is based on the laser 

source used in the experiments. Once the duration of the pulse has been obtained, the time-

delay constant and bandwidth are obtained. 

2.4 Absorbing boundary conditions 

Given the discretization and computational burden of the FDTD algorithm, it is impossible to 

simulate infinite problem space, otherwise the computer storage and running time would be 

major issues. To address these issues, boundary conditions have been created to cut the problem 

domain as necessary. In order to build a realistic environment of propagation for the optical 

pulse in both the waveguide and the air, the special boundary conditions must ensure that the 

radiation energy of the waveguide is absorbed at the boundary without any reflections. 

2.4.1 Perfectly matched layer 

Compared to other absorbing boundary conditions, a perfectly matched layer is the best choice 

in this case[129]. To update the electric and magnetic field, every component of �⃑⃑�  and �⃑⃑�  

should be divided as two sub-components[130]. Taking �⃑⃑�  as an example, 

           μ
𝜕𝐻𝑥𝑦

𝜕𝑡
+ 𝜎𝑚𝑦𝐻𝑥𝑦 = −

𝜕𝐸𝑧

𝜕𝑦
                                                                                                     (2.25a) 

           μ
𝜕𝐻𝑥𝑧

𝜕𝑡
+ 𝜎𝑚𝑧𝐻𝑥𝑧 =

𝜕𝐸𝑦

𝜕𝑧
                                                                                                         (2.25b)         

           μ
𝜕𝐻𝑦𝑥

𝜕𝑡
+ 𝜎𝑚𝑥𝐻𝑦𝑥 =

𝜕𝐸𝑧

𝜕𝑥
                                                                                                       (2.25c) 

           μ
𝜕𝐻𝑦𝑧

𝜕𝑡
+ 𝜎𝑚𝑧𝐻𝑦𝑧 = −

𝜕𝐸𝑥

𝜕𝑧
                                                                                                    (2.25d) 

           μ
𝜕𝐻𝑧𝑥

𝜕𝑡
+ 𝜎𝑚𝑥𝐻𝑧𝑥 = −

𝜕𝐸𝑦

𝜕𝑥
                                                                                                    (2.25e) 

           μ
𝜕𝐻𝑧𝑦

𝜕𝑡
+ 𝜎𝑚𝑦𝐻𝑧𝑦 =

𝜕𝐸𝑥

𝜕𝑦
                                                                                                          (2.25f) 

where the values of conductivity 𝜎 are as follows: 

           𝜎𝑚𝑥=𝜎𝑚𝑦≠ 0                                                                                                                           (2.26a) 

           𝜎𝑚𝑧=0                                                                                                                                      (2.26b) 
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In addition, the values of 𝜀,μ, 𝜎𝑒𝑥, 𝜎𝑒𝑦, 𝜎𝑚𝑥 and 𝜎𝑚𝑦 should satisfy the impedance matching 

conditions: 

           
𝜎𝑒𝑥

𝜀
=

𝜎𝑚𝑥

μ
                                                                                                                              (2.27a)                                                                                                                     

           
𝜎𝑒𝑦

𝜀
=

𝜎𝑚𝑦

μ
                                                                                                                               (2.27b)    

Figure 2.5 shows the distribution of conductivity in the electric and the magnetic fields of two 

dimensional PML. In x direction, conductivity  𝜎𝑒𝑦  and  𝜎𝑚𝑦  are   required   and   in   y-

direction, conductivity 𝜎𝑒𝑥 and 𝜎𝑚𝑥 are required. Every corner contains four components of 

conductivity. If we combine formula (2.25a-f) and Figure 2.5, updating equations of �⃑�  and �⃑⃑�  

in the PML area are obtained. 

 

 

 

 

 

 

Fig. 2.5 Conductivity distribution of PML in two dimension. 

However, significant wave reflection at PML surface is observed when 𝜎 is a constant [131]. 

To weaken the reflection error and improve the modelling results, a polynomial grading method 

and geometric grading method of increasing PML loss parameter from zero at the interface 

were proposed by Berenger in the reference [129]. The loss parameter of polynomial-graded 

PML is defined as: 

           𝜎(𝜌) = 𝜎max(
𝜌

𝛿
)𝑛pml                                                                                                            (2.28a)                                                                                                                                                    

           𝜎max = −
(𝑛pml+1)𝜀0𝑐 ln𝑅(0)

2∆𝑠𝑁
                                                                                                     (2.28b)                                                                                                                                                       
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where 𝛿 is the thickness of PML. 𝜎 increases from zero at  𝜌 = 0, the inner surface of PML, to 

𝜎 = 𝜎max at 𝜌 = 𝛿 , when 𝑛pml  = 1, formula (2.28a) is a linear function. For many optimal 

FDTD simulations, 𝑛 = 2, 3 or 4. In the formula (2.28b), ∆𝑠 is the size of PML mesh and N is 

the number of PML cells. 𝑅(0) is the reflection factor. It is demonstrated in the reference [132] 

that for 10-cell-thick PML and 5-cell-thick PML, the optimal values of 𝑅(0) are 𝑒−16 and 𝑒−8, 

respectively.  

Similarly, the loss parameter of geometric-graded PML is defined as: 

             𝜎(𝜌) = 𝜎0(𝑔
𝜌

∆𝑠)                                                                                                                  (2.29a) 

             𝜎0 = −
𝜀0𝑐ln𝑔

2∆𝑠(𝑔𝑁−1)
ln𝑅(0)                                                                                                   (2.29b) 

where 𝜎0 is the starting value of PML conductivity; and 𝑔 is the geometric scaling factor. 

2.4.2 Convolution perfectly matched layer   

Although PML works well for most FDTD cases, it is ineffective in absorbing an evanescent 

wave unless it is placed far away from the obstacle[133]. Nevertheless, this solution increases 

the requirement of memory and runtime. Another issue is that it suffers from late-time 

reflections when the simulation field is too large or running time is too long. Convolution 

perfectly matched layer (CPML)[134] is an implementation of complex frequency-shifted 

(CFS) PML[135], which is efficient in absorbing an evanescent wave and stabilises the  longer 

propagation. In general, in the stretched co-ordinate, updating equations of the electric and 

magnetic fields of PML in the frequency domain are expressed as [136]. Taking 𝐸𝑥  as an 

example, 

            jωε𝐸𝑥 +  𝜎𝐸𝑥 =
1

𝑠𝑒𝑦

𝜕

𝜕𝑦
𝐻𝑧 −

1

𝑠𝑒𝑧

𝜕

𝜕𝑧
𝐻𝑦                                                                                  (2.30)    

where 𝜎 is the conductivity of lossy medium; 𝑠𝑒𝑦 and 𝑠𝑒𝑧 are the stretched-coordinate metrics, 

            𝑠𝑒𝑦 = 1 + 
𝜎𝑒𝑦

jω𝜀0
                    ;          𝑠𝑒𝑧 = 1 + 

𝜎𝑒𝑧

jω𝜀0
                                                                                 (2.31)       
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In formula (2.31), 𝜎𝑒𝑦  and 𝜎𝑒𝑧  are conductivities of PML. Here the method proposed by 

Kuzouglu and Mittra[134] is applied to describe  𝑠𝑒𝑦 and 𝑠𝑒𝑧 ,       

            𝑠𝑒𝑦 = 𝜅𝑒𝑦 + 
𝜎𝑒𝑦

𝛼𝑒𝑦+jω𝜀0
      ;        𝑠𝑒𝑧 = 𝜅𝑒𝑧 + 

𝜎𝑒𝑧

𝛼𝑒𝑧+jω𝜀0
                                                              (2.32)                                            

 where  𝜅𝑒𝑦  ≥1, 𝜅𝑒𝑧  ≥1, 𝛼𝑒𝑦  ≥0, 𝛼𝑒𝑧  ≥0. As with the formula (2.27a-b), the conductivity of 

electric and magnetic field should satisfy the matching conditions: 

            𝜅𝑒𝑖 = 𝜅𝑚𝑖    ;    
𝜎𝑒𝑖

𝜀0
  =  

𝜎𝑚𝑖

𝜇0
     ;     

𝛼𝑒𝑖

𝜀0
  =  

𝛼𝑚𝑖

𝜇0
                    (i = x, y, z)                                     (2.33)                                            

In the FDTD method, the relationship between �⃑⃑�  and �⃑⃑�  is fixed and simple no matter whether 

the media are dispersive or nonlinear. Thus, in the simulation of waveguide in this thesis, values 

of magnetic fields are used for updating �⃑⃑�  instead of updating �⃑� , so equation (2.30) is modified: 

            
𝜕𝐷𝑥

𝜕𝑡
 +  𝜎

𝐷𝑥

𝜀
 = 𝑠𝑒𝑦̅̅ ̅̅  ∗

𝜕

𝜕𝑦
𝐻𝑧 − 𝑠𝑒𝑧̅̅ ̅̅ ∗

𝜕

𝜕𝑧
𝐻𝑦                                                                             (2.34)    

where  𝑠𝑒𝑦̅̅ ̅̅  and 𝑠𝑒𝑧̅̅ ̅̅  are the Laplace transform of 
1

𝑠𝑒𝑦
  and 

1

𝑠𝑒𝑧
 ,  so the multiplication in the 

frequency domain becomes a convolution in the time domain. Taking 𝑠𝑒𝑦̅̅ ̅̅  for instance

        𝑠𝑒𝑦̅̅ ̅̅   = 
𝛿(𝑡)

𝜅𝑒𝑦
 +  𝜉𝑒𝑦(𝑡)                                                                                              (2.35a)    

         𝜉𝑒𝑦(𝑡) = −
𝜎𝑒𝑦

𝜀0𝜅𝑒𝑦
2
 𝑒

[− (
𝜎𝑒𝑦

𝜀0𝜅𝑒𝑦
 + 

𝛼𝑒𝑦

𝜀0
 ) 𝑡]

𝑢(𝑡)                                                                    (2.35b)    

Substitute formula (2.35a) for 𝑠𝑒𝑦̅̅ ̅̅  in formula (2.34),  

            
𝜕𝐷𝑥

𝜕𝑡
+ 𝜎

𝐷𝑥

𝜀
 =

1

𝜅𝑒𝑦
 

𝜕

𝜕𝑦
𝐻𝑧 −

1

𝜅𝑒𝑧

𝜕

𝜕𝑧
𝐻𝑦 + 𝜉𝑒𝑦(𝑡) ∗

𝜕

𝜕𝑦
𝐻𝑧 − 𝜉𝑒𝑧(𝑡) ∗

𝜕

𝜕𝑧
𝐻𝑦                 (2.36)    

In order to further solve the convolution in the formula (2.36), it is important to utilize the 

discrete-time convolution to simplify it:  

            ∫ 𝜉𝑒𝑦(𝑡) 𝑑𝑡
(𝑚+1)∆𝑡

𝑚∆𝑡
 = ∫

−𝜎𝑒𝑦

𝜀0𝜅𝑒𝑦
2  𝑒

[− (
𝜎𝑒𝑦

𝜀0𝜅𝑒𝑦
 + 

𝛼𝑒𝑦

𝜀0
 ) 𝑡](𝑚+1)∆𝑡

𝑚∆𝑡
 𝑑𝑡     
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                                                = 𝑎𝑒𝑦 𝑒
[− (

𝜎𝑒𝑦

𝜀0𝜅𝑒𝑦
 + 

𝛼𝑒𝑦

𝜀0
 ) 𝑚∆𝑡]

                                                              (2.37)    

where     

            𝑏𝑒𝑦 = 𝑒
[− (

𝜎𝑒𝑦

𝜀0𝜅𝑒𝑦
 + 

𝛼𝑒𝑦

𝜀0
 ) ∆𝑡]

                                                                                       (2.38a)    

            𝑎𝑒𝑦 =
𝜎𝑒𝑦

𝜎𝑒𝑦𝜅𝑒𝑦+𝛼𝑒𝑦𝜅𝑒𝑦
2
  (𝑏𝑒𝑦 − 1)                                                                           (2.38b)    

With formula (2.37-2.38), the convolution in the formula (2.36) becomes a sum function: 

            𝜉𝑒𝑦(𝑡) ∗
𝜕

𝜕𝑦
𝐻𝑧 = ∑ 𝑎𝑒𝑦 𝑒

[− (
𝜎𝑒𝑦

𝜀0𝜅𝑒𝑦
 + 

𝛼𝑒𝑦

𝜀0
 ) 𝑚∆𝑡]𝑛−1

𝑚=0
𝜕

𝜕𝑦
𝐻𝑧

𝑛−𝑚+1/2
                              (2.39)    

However, formula (2.39) indicates that at every time step, the values of �⃑⃑�  need to be stored 

and the sum function has to be calculated, which is memory and time-consuming. Thanks to 

the recursive convolution (RC) method[137], it is not necessary to save the values in every 

time step, as long as the value at the previous time step is stored . As a consequence, formula 

(2.36) is simplified: 

            
𝜕𝐷𝑥

𝜕𝑡
+ 𝜎

𝐷𝑥

𝜀
 =

1

𝜅𝑒𝑦
 

𝜕

𝜕𝑦
𝐻𝑧 −

1

𝜅𝑒𝑧

𝜕

𝜕𝑧
𝐻𝑦 + 𝜓𝑒𝑦

𝑛+1/2
− 𝜓𝑒𝑧

𝑛+1/2
                                                    (2.40)    

where   

            𝜓𝑒𝑦
𝑛+1/2

 =   𝑏𝑒𝑦𝜓𝑒𝑦
𝑛−1/2

 +  𝑎𝑒𝑦  
𝜕

𝜕𝑦
𝐻𝑧                                                                                (2.41a)    

            𝜓𝑒𝑧
𝑛+1/2

 =   𝑏𝑒𝑧𝜓𝑒𝑧
𝑛−1/2

 +  𝑎𝑒𝑧  
𝜕

𝜕𝑧
𝐻𝑦                                                                                 (2.41b)    

where  𝑏𝑒𝑦 and  𝑎𝑒𝑦 are defined in the formula (2.38a-b), 𝑏𝑒𝑧 and  𝑎𝑒𝑧 are expressed in similar 

ways. Values of parameters 𝜎, κ , and α are analyzed and optimized in the reference [134][138].  

2.5 Linear material dispersion  
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When the optical pulse propagates in the dispersive material, the velocities of frequency 

components vary. Different frequencies have different dielectric permittivities, leading to 

various refractive indices, which decides the velocity inside the medium: 

           𝑣 =
𝑐

𝑛
        ;          𝑛 = √

𝜀

𝜀0
                                                                                       (2.42)    

In the earlier sections, the relationship between �⃑⃑�  and �⃑� , �⃑�  and �⃑⃑�  was treated as a simple 

collinear equation. However, in a linear and non-dispersive medium, it has a more complicated 

expression. Generally, the relationship is expressed as the equation (2.3), where �⃑⃑�  is the 

convolution of permittivity and �⃑� . It is known that convolution requires all values from earlier 

times, which increases the computer storage burden. Debye relaxation[139] and Lorentzian 

resonance are employed to describe the material dispersion and both of them have an 

exponentially decaying envelope, therefore, only require the previous value. In this thesis, 

Lorentz dispersion was chosen as linear material dispersion because its susceptibility is a 

decaying exponential sinusoidal function and it is easy to implement in the time domain.  

2.5.1 Lorentz dispersion 

In general, in a linear, dispersive and isotropic medium, the electric flux density �⃑⃑�  in the time 

domain is expressed as the convolution: 

            �⃑⃑� (𝑡) =  𝜀0𝜀∞�⃑� (𝑡) + 𝜀0 ∫ �⃑� (𝑡 − 𝜏)𝜒(1)(𝜏)𝑑𝜏
𝑡

𝜏=0
                                                         (2.43)          

where 𝜒(1)(𝑡)  is the linear susceptibility. The relative permittivity of Lorentz medium with P 

pole pairs in the frequency domain is: 

            𝜀(𝜔) = 𝜀∞ + ∑
(𝜀𝑠,𝑝−𝜀∞)𝜔𝑝

2

𝜔𝑝
2+2𝑗𝜔𝛿𝑝−𝜔2

𝑃
𝑝=1                                                                             (2.44) 

where 𝜀∞ is the relative permittivity at infinite frequency; 𝜀𝑠,𝑝 is the relative permittivity at 

zero frequency of p’th pole pair; 𝜔𝑝 is the frequency of p’th pole pair, which is undamped 

resonant frequency; and  𝛿𝑝 is the damping coefficient of p’th pole pair. By doing inverse 

Fourier transform of the equation (2.44), the linear susceptibility of each pole pair in the time 

domain is obtained:  
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            𝜒(1)(𝑡) =
(𝜀𝑠−𝜀∞)𝜔0

2

√𝜔0
2−𝛿2

 𝑒−𝛿𝑡 sin (√𝜔0
2 − 𝛿2 𝑡)U(𝑡)                                                  (2.45) 

As a result, equation (2.43) is re-written as: 

            �⃑⃑� (𝑡) =  𝜀0𝜀∞�⃑� (𝑡) + 𝜀0 ∑ ∫ �⃑� (𝑡 − 𝜏)𝜒𝑝
(1)

(𝜏)𝑑𝜏
𝑡

𝜏=0
𝑃
𝑝=1                                           (2.46) 

2.5.2 Piecewise linear recursive convolution of linear medium 

Piecewise linear recursive convolution (PLRC) method was firstly presented in 1996 by Kelley 

and Luebbers[140] to analyse the linear dispersive media and it is an implement of RC. PLRC 

owns the advantages of RC, such as fast speed, few requirements for memory and an easy 

application in multiple poles. In addition, it improves the accuracy of RC and it is no longer a 

drawback. In this thesis, PLRC is the primary technique for computing the linear susceptibility 

functions and was subsequently extended to solve the nonlinear case in Section 2.6.  

Using the PLRC method, �⃑� (𝑡) is assumed to be linear in a time interval:          

            �⃑� (𝑡)  =   𝐸𝑛 + 
𝐸𝑛+1−𝐸𝑛

𝛥𝑡
 (𝑡 − 𝑛𝛥𝑡)              

            𝑛Δ𝑡 ≤ 𝑡 ≤ (𝑛 + 1)Δ𝑡                                                                                                            (2.47) 

Similarly, 

            �⃑� (𝑛Δ𝑡 −  𝜏)  =   𝐸𝑚+1 + 
𝐸𝑚−𝐸𝑚+1

𝛥𝑡
 [𝜏 − (𝑛 − 𝑚 − 1)𝛥𝑡]                            

            (𝑛 − 𝑚 − 1)𝛥𝑡 ≤ 𝜏 ≤ (𝑛 − 𝑚)𝛥𝑡                                                                                        (2.48) 

If we make �⃑⃑� (𝑡) = �⃑⃑� (𝑛Δ𝑡) and �⃑� (𝑡) = �⃑� (𝑛Δ𝑡), then the formula (2.46) is modified as: 

            𝐷𝑛 = 𝜀0𝜀∞𝐸𝑛 + 𝜀0 ∑ ∑ [𝐸𝑚+1𝑛−1
𝑚=0

𝑃
𝑝=1 (𝜓𝑝,0

𝐿 )𝑛,𝑚 + (𝐸𝑚 − 𝐸𝑚+1) (𝜓𝑝,1
𝐿 )𝑛,𝑚]     (2.49) 

where, 

            (𝜓𝑝,0
𝐿 )𝑛,𝑚 = ∫ 𝜒𝑝

(1)
(𝜏)𝑑𝜏

(𝑛−𝑚)Δ𝑡

(𝑛−𝑚−1)Δ𝑡
                                                                                        (2.50a) 
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            (𝜓𝑝,1
𝐿 )𝑛,𝑚 = 

1

𝛥𝑡
∫ [𝜏 − (𝑛 − 𝑚 − 1)𝛥𝑡]𝜒𝑝

(1)(𝜏) 𝑑𝜏
(𝑛−𝑚)Δ𝑡

(𝑛−𝑚−1)Δ𝑡
                                 (2.50b) 

However, 𝜒𝑝
(1)

(𝜏) is defined in the formula (2.45) and it cannot apply RC directly to update 

values. According to the solution proposed by Luebbers in Reference[137], a complex format 

of susceptibility is defined as follows:                        

            �̂�𝑝
(1)(𝑡) =  𝛼𝑝

𝐿 𝑒−𝛾𝑝
𝐿 𝑡                                                                                                           (2.51a) 

            𝜒𝑝
(1)(𝑡) = 𝑅𝑒 [ �̂�𝑝

(1)(𝑡) ]                                                                                                       (2.51b) 

Compared to the formula (2.44), it is simple to determine the parameters in the formula (2.51): 

            𝛼𝑝
𝐿 = − 𝑗

( 𝜀𝑠−𝜀∞ ) 𝜔0
2

√𝜔0
2−𝛿2

                                                                                                             (2.52) 

            𝛾𝑝
𝐿 = 𝛿 − 𝑗√𝜔0

2 − 𝛿2                                                                                                           (2.53) 

where 𝑗  = √−1. Now that the linear susceptibility is expressed in exponential form, it is 

possible to utilize PLRC to update parameters:  

            (𝜓𝑝,0
𝐿 )𝑛+1,𝑚 = (𝜓𝑝,0

𝐿 )𝑛,𝑚 𝑒−𝛾𝑝
𝐿Δ𝑡                                                                                        (2.54a)  

            (𝜓𝑝,1
𝐿 )𝑛+1,𝑚 = (𝜓𝑝,1

𝐿 )𝑛,𝑚 𝑒−𝛾𝑝
𝐿Δ𝑡                                                                                        (2.54b) 

Then, the RC approach can be employed to solve the sum function in formula (2.49), which is 

simplified as:  

            𝐷𝑛 = 𝜀0𝜀∞𝐸𝑛 + ∑ (𝑃𝑝
𝐿)𝑛𝑃

𝑝=1                                                                                              (2.55) 

            (𝑃𝑝
𝐿)𝑛 = (𝑃𝑝

𝐿)𝑛−1𝑒−𝛾𝑝
𝐿Δ𝑡 + 𝜀0[ 𝐸

𝑛(𝜓𝑝,0
𝐿 )𝑛,𝑛−1  + (𝐸𝑛−1 − 𝐸𝑛) (𝜓𝑝,1

𝐿 )𝑛,𝑛−1]       (2.56)                               

 By substituting equation (2.56) into equation (2.55), a linear updating equation is obtained.  

Once the value of 𝐷𝑛  has been obtained, together with the values of the previous time step 

(𝑃𝑝
𝐿)𝑛−1 and 𝐸𝑛−1, it is possible to gain a linear equation of 𝐸𝑛 which is simple to solve.   



30 
 

2.6 Nonlinearity 

When electromagnetic waves are propagated in a nonlinear medium, some special 

characteristics appear and these are described as nonlinearity. This is usually observed at a very 

high intensity. A variability of material’s dielectric permittivity with the intensity of electric 

field or magnetic field leads to various velocities. The typical nonlinear optical effects are 

frequency-mixing processes, such as second-order nonlinear effects and third-order nonlinear 

effects. This approach to incorporate nonlinearity into FDTD algorithm is discussed in this 

section.  

2.6.1 Nonlinear electric susceptibility theory 

In Section 2.5.1, the electric polarization vector �⃑�  was highlighted in the linear dispersion. 

There are higher-order terms in the nonlinear case: 

            �⃑� =   𝜀0(𝜒
(1)�⃑� +  𝜒(2)�⃑� 2 +  𝜒(3)�⃑� 3  + ⋯ )                                                                             (2.57) 

where 𝜒(1) is the first-order(linear) dielectric susceptibility; 𝜒(2) is the second-order dielectric 

susceptibility; and 𝜒(3)  is the third-order dielectric susceptibility. Second-order and higher 

order dielectric susceptibilities are nonlinear. The even-order susceptibility only exists in those 

crystals that are anisotropic and non-centrosymmetric; in contrast, the odd-order crystals exist 

in all types of materials.  

2.6.2 Second-order nonlinear effects  

 

 

 

 

 

 

Fig. 2.6 Sum-frequency generation in second-order nonlinear crystal. 
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In the second-order nonlinear crystal, there are three-wave mixing processes: sum-frequency 

generation, difference-frequency generation and second-harmonic generation. Figure 2.6 

describes the process of SFG. After propagation through the second-order nonlinear medium, 

the incident pulse which carries two different frequency components 𝜔1  and  𝜔2  would 

generate a new frequency 𝜔3, the sum of 𝜔1 and 𝜔2. SHG is a special case of SFG when 𝜔1 =

 𝜔2.  

SFG is also explained using a quantum transition description[141]. In the energy-level diagram 

(Figure 2.6) a molecule jumps from the ground state to an intermediate state by absorbing the 

energy of a photon whose frequency is 𝜔1, then this molecule leaves the intermediate state for 

a virtual state by absorbing the energy of another photon whose frequency is 𝜔2. With the 

annihilation of the two photons, the molecule is excited. After that, the excited molecule returns 

to the initial ground state and in the meantime, a new photon of sum frequency is generated. 

In order to incorporate second-order nonlinearity into FDTD technique, the second term of 

polarization vector in equation (2.57) is simplified in Reference[142]. The only purely 

electronic and instantaneous part which is obtained is: 

            �⃑� 𝑖(𝑡)
(2) = 𝜀0𝜒

(2)�⃑� 𝑗(𝑡)�⃑� 𝑘(𝑡)                                                                                                           (2.58) 

where the second-order nonlinear susceptibility 𝜒(2)  is an electric constant. The quadratic 

equation (2.58) is easily added in updating equations of the electric field.  

2.6.3 Third-order nonlinear effects 

In general, third-order non-linear effects are caused by instantaneous Kerr-type nonlinearity 

and Raman scattering. Kerr effect results in four-wave mixing, self-phase modulation and 

cross-phase modulation. 

2.6.3.1 Introduction 

In the third-order non-linear optical system, the relationship between �⃑⃑�  and �⃑�  is expressed as: 

            �⃑⃑� (𝑡) = 𝜀0𝜀∞�⃑� (𝑡) + 𝜀0 ∑ ∫ �⃑� (𝑡 − 𝜏)𝜒𝑝
(1)(𝜏)𝑑𝜏

𝑡

𝜏=0
𝑃
𝑝=1                 
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                         + 𝜀0 ∑ ∭  �⃑� (𝑡 − 𝜏)�⃑� (𝑡 − 𝜏1)�⃑� (𝑡 − 𝜏2)𝜒𝑝
(3)( 𝑡, 𝜏, 𝜏1, 𝜏2) 𝑑𝜏𝑑𝜏1𝑑𝜏2

𝑡

0
𝑃
𝑝=1  (2.59) 

where 𝜒𝑝
(3)( 𝑡, 𝜏, 𝜏1, 𝜏2)  is the third-order susceptibility function. Using Born-Oppenheimer 

(BO) approximation[142], 𝜒𝑝
(3)( 𝑡, 𝜏, 𝜏1, 𝜏2) is simplified as the following expression: 

            𝜒𝑝
(3)( 𝑡, 𝜏, 𝜏1, 𝜏2) =  𝛿(𝑡 − 𝜏1) 𝛿(𝜏2 − 𝜏) [ 𝑅

𝑝′
(3)

( 𝜏1 − 𝜏2)  + 𝐾
𝑝′
(3)

𝛿(𝜏1 − 𝜏2) ]      (2.60) 

where 𝛿 is the Dirac delta function; 𝑅
𝑝′
(3)

 is the parameter represents Raman scattering[143]; 

and 𝐾
𝑝′
(3)

  is a constant, representing Kerr-type nonlinearity[144]. Substitute formula (2.60) to 

formula (2.59), �⃑⃑�  is modified as follows:   

            �⃑⃑� (𝑡) = 𝜀0𝜀∞�⃑� (𝑡) + 𝜀0 ∑ ∫ �⃑� (𝜏)𝜒𝑝
(1)(𝑡 − 𝜏)𝑑𝜏

𝑡

𝜏=0
𝑃
𝑝=1                 

                         + 𝜀0 �⃑� (𝑡)∑ ∫ |�⃑� (𝜏)|
2𝑡

𝜏=0
𝑃
𝑝=1 [ 𝑅

𝑝′
(3)

( 𝑡 − 𝜏)  + 𝐾
𝑝′
(3)

𝛿(𝑡 − 𝜏) ]𝑑𝜏               (2.61) 

2.6.3.2 Optical Kerr effect 

In 1875, John Kerr[145] found a new relationship between electricity and light, which is 

considered as quadratic electro-optic effect and it took his family name.  The Kerr effect is 

instantaneous nonlinearity, leading to an induced change in the refractive index that depends 

on the intensity or the square of the electric field. Therefore, the refractive index is given by  

            𝑛 = 𝑛0 + 𝑛2𝐼                                                                                                                            (2.62) 

where n0 is the linear refractive index of material; n2 is the nonlinear refractive index; and I is 

the intensity of the wave:     

            𝐼 =  
𝜀0𝑐𝑛0

2
𝐸2                                                                                                                        (2.63)           

As a consequence, permittivity is expressed as:   

            𝜀 = 𝜀0𝜀𝑟 = 𝜀0(𝑛0 + ∆𝑛)2 ≈ 𝜀0 (𝑛0
2 + 2𝑛0𝑛2𝐼)                                                                     (2.64) 
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It is known that, in a linear case, the relationship between �⃑⃑�  and �⃑�  is: 

            �⃑⃑� (𝑡)  =  𝜀0�⃑� (𝑡)  +  �⃑� (𝑡)(1)  =  𝜀0 [1 +  Re ( 𝜒(1)) ] �⃑� (𝑡) 

                      = 𝜀0𝜀𝑟
′�⃑� (𝑡)                                                                                                                 (2.65)  

where 

             𝜀𝑟
′ = 𝑛0

2  = 1 +  Re ( 𝜒(1))                                                                                               (2.66) 

When it is extended to the nonlinear case, the polarization vector is modified as: 

             �⃑� (𝑡) = �⃑� (𝑡)(1) + �⃑� (𝑡)(3) = 𝜀0 [ Re ( 𝜒(1))  +  Re ( 𝐾(3))|�⃑� (𝑡)|
2
] �⃑� (𝑡)             (2.67) 

As a consequence, equation (2.65) has been re-written as: 

             �⃑⃑� (𝑡)  =  𝜀0�⃑� (𝑡)  +  �⃑� (𝑡)  =  𝜀0 [1 +  Re ( 𝜒(1))  +  Re ( 𝐾(3)) |�⃑� (𝑡)|
2
] �⃑� (𝑡) 

                      = 𝜀0[𝜀𝑟
′ +  Re ( 𝐾(3))|�⃑� (𝑡)|

2
] �⃑� (𝑡)  =  𝜀�⃑� (𝑡)                                                 (2.68) 

By substituting formula (2.66) and (2.68) for 𝜀 in formula (2.64), then: 

             𝜀0(𝑛0
2  + 2𝑛0𝑛2𝐼)  =  𝜀0 [𝑛0

2  +  Re (𝐾(3))|�⃑� (𝑡)|
2
]                                                            (2.69) 

By replacing 𝐼 with equation (2.63), it becomes possible to gain the real part of third-order 

nonlinear susceptibility (Kerr coefficient):   

             Re (𝐾(3))  =  𝑛0
2𝑛2𝜀0𝑐                                                                                                         (2.70) 

2.6.3.3 Four-wave mixing 

Four-wave mixing is an attractive frequency-mixing process caused by the Kerr effect. If the 

input wave contains three frequencies 𝜔1, 𝜔2 and 𝜔3, output wave obtained would contain 

frequencies ±𝜔1 ± 𝜔2 ± 𝜔3. However, the newly generated frequencies that most influence 

optical wave are the frequencies  𝜔i + 𝜔j − 𝜔k . FWM is also presented in the interaction 
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between the two frequency components. Figure 2.7 shows the quantum transition of the FWM 

process. A molecule jumps from the ground state to virtual state by absorbing the energy of 

two photons of frequencies 𝜔1 and 𝜔2, and then returns to the ground state and releases energy; 

in the meantime, two new photons of new frequencies 𝜔3 and 𝜔4 are created. The second sub-

figure in Figure 2.7 indicates the values of incident frequency components and new generated 

frequency components. It is noted that (𝜔1 > 𝜔2): 

            𝜔3 = 2𝜔1 − 𝜔2    ;     𝜔4 = 2𝜔2 − 𝜔1                                                                                (2.71) 

It is interesting that the interval between the two adjacent frequencies is constant and is equal 

to the difference in the original two frequencies. Over time, more new frequency components 

are produced so that a frequency comb is generated. 

 

 

 

 

 

Fig. 2.7 Four-wave mixing in third-order nonlinear medium. 

2.6.3.4 Self-phase modulation and cross-phase modulation 

In third-order nonlinear medium, apart from four-wave mixing, self-phase modulation and 

cross-phase modulation are also primary frequency-mixing processes. All of these three effects 

result from Kerr nonlinearity. The comparison of polarization vectors of three effects is as 

follows: 

           FWM: �⃑� (𝑡)(3) = 𝜀0  [Re ( 𝐾(3))|�⃑� 𝑖(𝑡)|
2
] �⃑� 𝑗

∗(𝑡)   (𝑖 ≠ 𝑗)                                                   (2.72a) 

           SPM: �⃑� (𝑡)(3) = 𝜀0  [Re ( 𝐾(3))|�⃑� 𝑖(𝑡)|
2
] �⃑� 𝑖(𝑡)                                                                        (2.72b) 

Virtual state 

Ground state 

ℎ𝜔2 

ℎ𝜔1 

ℎ𝜔3 

ℎ𝜔4 𝜔3 𝜔1 𝜔2 𝜔 𝜔4 
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           XPM: �⃑� (𝑡)(3) = 𝜀0  [Re ( 𝐾(3))|�⃑� 𝑖(𝑡)|
2
] �⃑� 𝑗(𝑡)   (𝑖 ≠ 𝑗)                                                    (2.72c) 

SPM is the phase shift which happens in the optical wave, leading to a wider frequency 

spectrum. It is applied to spectral broadening and super-continuum. In contrast, XPM is the 

interaction and the one frequency component that affects the phase of another frequency 

component in the optical wave.  

2.6.3.5 Raman scattering 

Raman scattering is a phenomenon where the frequency of optical wave changes after it is 

scattered. In general, a photon exhibits Rayleigh scattering when it is scattered from a molecule 

or atom and has the same frequency as the incident pulse. However, a fairly small portion of 

photons exchange their energy with the molecule or atom, having a lower frequency than 

incident pulse. Reference [128] gives an equation to describe Raman response: 

            𝑅(3)(𝑡)  =  𝑅0
(3)

 
𝜏1
2+𝜏2

2

𝜏1𝜏2
2  𝑒

−
𝑡

𝜏2  sin (
𝑡

 𝜏1
)U(𝑡)                                                               (2.73) 

where 𝑅0
(3)

 is the strength of Raman scattering; 1/𝜏1 is the optical phonon frequency; and 𝜏2 

is the lifetime of the optical phonon.  

2.6.4 Piecewise linear recursive convolution of nonlinear medium 

As with the linear case, a nonlinear medium also employs PLRC to compute the approximation 

value of an electric field based on the value of the electric flux density. Equation (2.57) 

indicates the polarization vector which has higher-order terms. In this thesis, second and third-

order susceptibility are considered. Second-order nonlinearity is applied only when focusing 

on the SHG process and it is simple to incorporate it in the FDTD method. Thus, in most cases, 

optical waveguide has only linear dispersion and third-order non-linearity. So the relationship 

between �⃑⃑�  and �⃑�  is given by: 

    �⃑⃑� (𝑡)  =  𝜀0𝜀∞�⃑� (𝑡)  +  ∑ �⃑� 𝑝
𝐿(𝑡)𝑃

𝑝=1  +  �⃑� (𝑡) ∑  �⃑� 𝑝′
𝑁𝐿(𝑡) + 𝜀0

𝑃′

𝑝′=1 𝐾
𝑝′
(3)

 |�⃑� (𝑡)|
2
�⃑� (𝑡)      (2.74) 

where 

https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Atom
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Atom
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            �⃑� 𝑝
𝐿(𝑡)  =  𝜀0 ∫ �⃑� (𝜏)𝜒𝑝

(1)(𝑡 − 𝜏)𝑑𝜏
𝑡

𝜏=0
                                                                                   (2.75) 

            �⃑� 𝑝′
𝑁𝐿(𝑡)  =  𝜀0 ∫ |�⃑� (𝜏)|

2
 𝑅

𝑝′
(3)

( 𝑡 − 𝜏)𝑑𝜏
𝑡

𝜏=0
                                                                            (2.76) 

Formula (2.75) is solved in Section 2.5.2. Similarly, using equation (2.48), it is possible to 

obtain a further expression of the formula (2.76):  

            (𝑃𝑝′
𝑁𝐿)𝑛 = 𝜀0 ∑ [ (𝐸𝑚+1𝑛−1

𝑚=0 )2 (𝜓𝑝′,0
𝑁𝐿 )𝑛,𝑚 + 2𝐸𝑚+1(𝐸𝑚 − 𝐸𝑚+1)(𝜓𝑝′,1

𝑁𝐿 )𝑛,𝑚  

                                + (𝐸𝑚 − 𝐸𝑚+1)2(𝜓𝑝′,2
𝑁𝐿 )𝑛,𝑚 ]                                                                           (2.77) 

where, 

            (𝜓𝑝′,0
𝑁𝐿 )𝑛,𝑚 = ∫  𝑅

𝑝′
(3)

(𝜏)𝑑𝜏
(𝑛−𝑚)Δ𝑡

(𝑛−𝑚−1)Δ𝑡
                                                                                      (2.78a) 

            (𝜓𝑝′,1
𝑁𝐿 )𝑛,𝑚 = 

1

𝛥𝑡
∫ [𝜏 − (𝑛 − 𝑚 − 1)𝛥𝑡] 𝑅

𝑝′
(3)

(𝜏) 𝑑𝜏
(𝑛−𝑚)Δ𝑡

(𝑛−𝑚−1)Δ𝑡
                               (2.78b) 

            (𝜓𝑝′,2
𝑁𝐿 )𝑛,𝑚 = 

1

(𝛥𝑡)2
∫ [𝜏 − (𝑛 − 𝑚 − 1)𝛥𝑡]2 𝑅

𝑝′
(3)

(𝜏) 𝑑𝜏
(𝑛−𝑚)Δ𝑡

(𝑛−𝑚−1)Δ𝑡
                         (2.78c) 

In order to utilize RC approach, it is possible to  define a complex format of non-linear 

susceptibility as a linear case as presented in reference [137]:                        

            �̂�
𝑝′
(3)

(𝑡) =  𝛼𝑝′
𝑁𝐿 𝑒−𝛾𝑝′

𝑁𝐿 𝑡                                                                                                            (2.79) 

            𝑅
𝑝′
(3)

(𝑡) = 𝑅𝑒 [ �̂�
𝑝′
(3)

(𝑡)]                                                                                                        (2.80) 

According to the equation (2.73),  

            𝛼𝑝
𝑁𝐿 = −j 

𝜏1
2+𝜏2

2

𝜏1𝜏2
2 𝑅0

(3)
                                                                                                                   (2.81) 

            𝛾𝑝
𝑁𝐿 = 

1

𝜏2
− 𝑗

1

𝜏1
                                                                                                                     (2.82) 

Therefore, the exponential form in equation (2.79) gives the following recursive iteration:  

            (𝜓𝑝′,0
𝑁𝐿 )𝑛+1,𝑚 = (𝜓𝑝′,0

𝑁𝐿 )𝑛,𝑚 𝑒−𝛾𝑝′
𝑁𝐿Δ𝑡                                                                                   (2.83a)  
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            (𝜓𝑝′,1
𝑁𝐿 )𝑛+1,𝑚 = (𝜓𝑝′,1

𝑁𝐿 )𝑛,𝑚 𝑒−𝛾𝑝′
𝑁𝐿Δ𝑡                                                                                   (2.83b) 

            (𝜓𝑝′,2
𝑁𝐿 )𝑛+1,𝑚 = (𝜓𝑝′,2

𝑁𝐿 )𝑛,𝑚 𝑒−𝛾𝑝′
𝑁𝐿Δ𝑡                                                                                   (2.83c) 

Then, it is possible to employ the RC approach to solve the sum function in formula (2.77), 

which is re-written as:  

            (𝑃𝑝′
𝑁𝐿)𝑛 = (𝑃𝑝′

𝑁𝐿)𝑛−1𝑒
−𝛾

𝑝′
𝑁𝐿Δ𝑡

+  𝜀0 [ (𝐸
𝑛)2(𝜓𝑝′,0

𝑁𝐿 )𝑛,𝑛−1 

+2𝐸𝑛(𝐸𝑛−1 − 𝐸𝑛)(𝜓𝑝′,1
𝑁𝐿 )𝑛,𝑛−1 + (𝐸𝑛−1 − 𝐸𝑛)2(𝜓𝑝′,2

𝑁𝐿 )𝑛,𝑛−1 ]           (2.84)                                                               

As a consequence, the updating equation of electric field in dispersive and nonlinear medium 

is a cubic equation, which could be solved by Newton’s iteration. 

This chapter introduced the FDTD algorithm and PLRC method in incorporating linear 

dispersion and nonlinearity. Together with the excitation source and PML absorbing boundary 

condition, simulation of optical waveguide is possible to obtain, which will be demonstrated in 

Chapter 3.   
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Chapter 3 

Simulation for Optical Waveguides 

 

This chapter introduces the methods of simulation adopted for nonlinear optical waveguides, 

presents the way to incorporate linear dispersion and nonlinearity and analyses the optimization 

of PML absorbing boundary conditions. In addition, parallel programing and high-

performance computation are applied.  

3.1 Basic simulation of optical waveguide 

3.1.1 Basic model  

Based on the FDTD algorithm, the simulations of optical waveguides started from simple one-

dimensional cases and subsequently extended to two- and three-dimensional space.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 Values of E-field in one-dimension program in MATLAB. 

One-dimension program without linear dispersion and nonlinearity was done in MATLAB to 

validate the code. The movement of optical pulse was revealed based on the values of 
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component 𝐸𝑧. The excitation source was set at the beginning of E-field and its amplitude is 2 

V/m. Figure 3.1 shows the values of E-field when the pulse propagates 75 μm in +x direction 

and the peak value of pulse is 2 V/m. In the lossless propagation, the peak value of pulse 

maintains 2 V/m, which is in agreement with the theory result. 

Because an optical waveguide is now treated as a transmission medium of an optical pulse, 

even in three dimensional cases, the main energy of pulse propagates in one dimension. 

Therefore, the basic model of optical waveguides in the simulations has one extended 

longitudinal dimension. Perfectly matched layer is applied to limit the transverse simulation 

dimensions while circular boundary condition is applied on the longitudinal dimension. 

 

 

 

 

 

 

Fig. 3.2 A three-dimensional model of optical waveguides in the simulation. X-y plane is bounded with PML 

absorbing boundary conditions while z-direction has circular boundary. 

A basic three-dimensional model of optical waveguides in the simulation is shown in Figure 

3.2. The circular boundary condition is designed for the longitudinal dimension to re-use the 

channel for many times as long as the beginning of the optical pulse cannot catch up with the 

tail. This does not only reduce the size of the problem domain and dramatically decrease 

memory requirement, but also save the time for computation. At this point the transverse 

dimensions, x-y plane, are surrounded by PML absorbing boundary conditions so that the 

radiation energy is propagated in x- and y-directions and would be absorbed eventually without 

reflections.  

Figure 3.3 shows how the circular boundary condition works. In order to exhibit the 

propagation of the energy of an optical pulse, energy flux is introduced. Energy flux is the sum 

y 

x 
z 

PML 
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of Poynting vector ( 𝑆  = �⃑�  × �⃑⃑�  ) over the whole cross-section, representing the rate of energy 

transfer along the longitudinal direction in Figure 3.2, which is defined by: 

           ∬(�⃑� × �⃑⃑� ) dS                                                                                                              (3.1) 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 Propagation of energy flux over x-y plane in optical waveguide with circular boundary condition in z-

direction. Sub-figures (a)-(f) represent the distribution of energy flux in z-direction at 600, 1000, 1400, 1800, 2200 

and 2600 time steps, respectively.  

In Figure 3.3, six sub-figures represent the energy flux over transverse dimensions in a optical 

waveguide at various time steps. In sub-figure (a), the pulse starts from the left end of the 

waveguide at 600 time steps. Over time, it propagates longer distance and reaches the right side 

at around 1800 time steps. Thanks to the cyclic boundary condition, the pulse continues to 

propagate and occurs at the left-beginning again. Therefore, although the pulse seems at the 

same position in sub-figures (b) and (f), the propagation time is 1000 and 2600 time steps 

respectively. Indeed, the propagation distance in sub-figure (f) is 200 grids longer. As a 

consequence, long-distance propagation does not require a waveguide with the actual length in 

the simulation. 

a b 

c d 

e f 
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3.1.2 Implementation of FDTD algorithm 

In general, only the electric field �⃑�  and the magnetic field �⃑⃑�  are updated in the FDTD 

algorithm. Since the updating equation between �⃑⃑�  and �⃑⃑�  stays the same in all the simulations 

in this thesis and the relationship of �⃑⃑�  and �⃑�  varies in the different mediums, �⃑⃑�  is updated as 

an intermediate step. The main steps of the FDTD approach in the simulation are briefly shown 

as a flow diagram in Figure 3.4. 

 

 

 

 

Fig. 3.4 Flow diagram of the simulation of waveguides 

The first step is setting the problem domain and the values of parameters, such as the structure 

of the waveguide and the linear dispersion or nonlinear characteristics of the medium. The 

models of optical waveguides vary depending on the materials and design. For instance, deep-

etched AlGaAs waveguide consists of multiple layers of AlGaAs with different Al 

concentrations, bounded by both air layer and PML. In contrast, silicon nitride nanowire may 

be built of core layer (silicon nitride), cladding layer (silicon dioxide) and PML absorbing 

boundary condition. The following sections in this chapter introduce the way to incorporate the 

parameters of materials, including linear dispersion and nonlinearity.  

The second step is inputting excitation sources to the optical waveguide. The incident source 

of waveguides is usually calculated with the mode solver in MATLAB (this will be further 

discussed in Section 3.2). Thus, the optical wave is initially propagated inside the waveguide 

as a well-confined mode so that the main energy is maintained in propagation. 

The third step is running the updating loop. At each time step, �⃑⃑� , �⃑⃑�  and �⃑�  of all the spatial 

points are updated. In the updating loop, magnetic field �⃑⃑�  is the first to be updated by the 

Update 

 �⃑⃑�  

Update   

�⃑⃑�  

Update   

�⃑� e 

Input excitation 

source 

Output 

Set problem domain and 
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42 
 

values of �⃑� , and then �⃑⃑�  is updated by the values of �⃑⃑� . After that,  E⃑⃑  is updated based on the 

values of �⃑⃑� . Because the excitation source is set as a hard source in the simulations, 𝐽  and �⃑⃑�  

are equal to zero. As a result, Maxwell’s equations are modified as: 

           ∇ × �⃑� = − μ
∂�⃑⃑� 

∂𝑡
                                                                                                         (3.2a)              

           ∇ × �⃑⃑� =
𝜕�⃑⃑� 

𝜕𝑡
                                                                                                               (3.2b) 

According to the formulae (3.2a-b), updating equations of �⃑⃑�  and �⃑⃑�  are obtained and remain 

the same in various mediums. As for the updating equation of �⃑� , it is simple in the cases of 

linear and non-dispersive material, where permittivity is a constant and �⃑�  is updated: 

           �⃑� =
�⃑⃑� 

ε
                                                                                                                           (3.3)    

While in birefringence material, the permittivity is a tensor. In the dispersive and nonlinear 

medium, �⃑⃑�  is the convolution of �⃑�  and permittivity, solved by PLRC (as was introduced in the 

previous chapter). 

The final step is output. It is important to focus on the energy flux, which is defined in formula 

(3.1), rather than the electric or magnetic field. To analyse the output data, firstly, fast Fourier 

transform (FFT) is used to describe energy flux in the frequency domain. Secondly, self-

deconvolution is utilized to depict the actual power spectrum of the output wave, because in 

the FFT convolution, multiplication in the time domain corresponds to the convolution in the 

frequency domain.  

3.1.3 Numerical stability  

To ensure the numerical stability in the simulations of optical waveguides, CFL conditions 

must be fulfilled. In the practical simulations, in order to save memory and runtime, grid sizes 

of the three dimensions are not always uniform. Therefore, for a three-dimensional case, the 

common choice of grid size and time step satisfy the condition:       

           ∆𝑡 = 
∆min

2𝑐
                                                                                                                     (3.4) 
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where ∆min is the minimum value of grid sizes. Another possible cause of unstable values is 

that the grid size is not small enough when it is compared to the wavelength. As was shown in 

Section 2.2.2, the maximum value of the grid size should be: 

           ∆max ≪ 
λmin

20
                                                                                                              (3.5) 

The numerical stability of simulation is guaranteed by the formulae (3.4) and (3.5). The size of 

grid could be adjusted based on the geometry of waveguide and cuboidal grids with 

significantly difference values in each dimension does not cause instability.  

Besides, Lorentz resonance may lead to numerical instability so that one should either be 

careful when fitting the refractive index into Sellmeier equation or engineer the damping 

coefficient to avoid the instability. 

3.2 Waveguide source 

The excitation source was described in the time domain and discussed in Section 2.3. 

Simulating the CW case, the sinusoidal wave is the ideal choice. While simulating the pulsed 

laser source, Gaussian pulse is the most suitable because it can create an optical wave with the 

desired frequency. Now that the simulations of the optical waveguide in this thesis are three-

dimensional, incident sources should be analysed in the space domain as well. 

To launch a polarized mode in simulation to achieve efficient propagation, mode solver[146] 

is applied to calculate the fundamental mode of optical waveguides. Mode solver is a toolbox 

running in MATLAB. Having the width and height of waveguide, as well as the refractive 

indices of all the materials, mode solver is able to compute the fundamental and higher-order 

modes of waveguides with the full- or semi-vector finite difference method. In this thesis, all 

the waveguides are simulated in three dimensions and all six components of electric and 

magnetic fields are updated, so the full-vector technique is applied. What mode solver provides 

is not only the effective index of waveguide, but also the magnitude of all the components of 

 �⃑�  and  �⃑⃑� . It is shown in Figure 3.5 that the TE fundamental mode of a silicon channel 

waveguide is calculated in mode solver using full-vector method. The core layer of the 

waveguide is silicon and its height and width are 200 nm and 400 nm, respectively. The upper 

cladding layer is air layer while the lower cladding layer is silicon dioxide. Six components of 
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the fundamental mode are plotted in the six sub-figures. Therefore, the main energy of mode 

is propagated in 𝐻𝑦 and 𝐸𝑥 components, in contrast, other components have relatively smaller 

magnitudes. Once the mode of the waveguide is obtained, the values of the fundamental mode 

are treated as the peak values of incident pulse. Together with the Gaussian pulse, the 

waveguide source in space and time domain is determined. 

 

Fig. 3.5 TE fundamental mode in Silicon channel waveguide. Electric field components and magnetic field 

components which is computed with full-vector method in mode solver in MATLAB. 

3.3 Incorporating linear material dispersion 

As was highlighted in Section 2.5.1, the linear material dispersion is considered as Lorentzian 

resonance. To incorporate Lorentz dispersion in the simulation, it is necessary to fit the 

experimental measurements of refractive index into the Sellmeier equation over a specified 

wavelength range. The Sellmeier equation is defined as: 

           𝑛2  = 𝐴 + 
𝐵1∗𝜆2

𝜆2−𝐶1
 +  

𝐵2∗𝜆2

𝜆2−𝐶2
 + 

𝐵3∗𝜆2

𝜆2−𝐶3
                                                                         (3.6)    
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where 𝑛 is the refractive index and parameters A, B, C are the fitting co-efficients. Equation 

(3.6) is an example of three pole pairs and the number of pole pairs could be adjusted to provide 

a good fit.  

The Sellmeier equation has a similar description to equation (2.44). Equation (2.44) depicts the 

Lorentz resonance in the frequency domain while equation (3.6) depicts Lorentz resonance in 

the wavelength domain. By comparing these two equations, it is relatively simple to get the 

values of relative permittivity at zero- or infinite-frequency, as well as the resonant frequency 

of each pole pair. Therefore, the linear susceptibility in the equation (2.45) is obtained. 

Furthermore, updating equations of �⃑�  in the linear dispersive medium can be gained based on 

the formulas (2.48-2.56).  

3.4 Incorporating nonlinearity   

In the simulation of second-order nonlinear cases, the only required parameter is the second-

order nonlinear susceptibility. Therefore, the second-order polarization vector defined in the 

quadratic equation (2.58) is obtained and easily incorporated. In the simulation of third-order 

nonlinear cases, both the Kerr effect and Raman scattering are taken into consideration. 

According to the formula (2.70), the real part of Kerr-type nonlinearity is gained as long as the 

nonlinear refractive index of material is measured. With regard to the Raman-type nonlinearity, 

all the parameters in the formula (2.73) should be provided, including Raman strength, phonon 

frequency and phonon lifetime. After that, third-order nonlinearity is incorporated in the 

simulation on the basis of equations (2.74-2.84) and a cubic equation is obtained. 

In general, materials have odd-order susceptibilities, such as linear dispersion and third-order 

nonlinearity. Second-order nonlinearity only exists in anisotropic and non-centrosymmetric 

material. Because the higher-order nonlinearities are not included in the simulations in this 

thesis, the updating equation of �⃑�  is usually a cubic equation whether the second-order 

nonlinearity exists or not. To further solve the cubic equation of  �⃑� , the Newton-Raphson 

method is applied and it is effective in finding the real root, which is expressed as:  

           𝑥1 = 𝑥0 − 
𝑓(𝑥0)

𝑓′(𝑥0)
         ….       𝑥𝑛+1 = 𝑥𝑛 − 

𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
                                                  (3.7)                               
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where 𝑥0 is the initial guess of the root. In this simulation of optical waveguides, 𝑥0 is the value 

of �⃑�  at the previous time step and �⃑�  is updated through several iterations. In general FDTD 

cases, three iterations could guarantee 10−4 convergence criterion[147].  

3.5 Phase matching conditions 

In the optical waveguide, frequency-mixing processes caused by nonlinearity have attracted 

much attention. Generally, phase matching conditions should be fulfilled to attain efficient 

interactions among waves inside the waveguide. Otherwise, even strong nonlinearity cannot 

ensure the generation of new frequency components. Therefore, the phase matching conditions 

of SHG and FWM need to be discussed. 

3.5.1 Phase matching condition of SHG 

In the second-order nonlinear medium, the electric field �⃑� (𝜔) of the incident wave and the 

electric field �⃑� (2𝜔) of the generated frequency-doubled wave of SHG case are described as: 

             �⃑� 1(𝜔, 𝑧)  =  𝑎1𝐴1(𝑧)𝑒
𝑖𝑘1𝑧                                                                                       (3.8a) 

             �⃑� 2(2𝜔, 𝑧)  =  𝑎2𝐴2(𝑧)𝑒
𝑖𝑘2𝑧                                                                                                (3.8b) 

where 𝑎1 , 𝑎2  are the unit vectors along the polarization direction; 𝐴1(𝑧) , 𝐴2(𝑧)  are the 

amplitude functions; and 𝑘1 and 𝑘2 are the magnitude of wave vectors of two waves. The phase 

mismatch factor of SHG is defined as: 

             Δ𝑘 = 2𝑘1 − 𝑘2                                                                                                         (3.9) 

Therefore, coherence length - the effective interaction length - is determined by Δ𝑘: 

           𝑙𝑐 = 
𝜋

Δ𝑘
                                                                                                                  (3.10) 

It is noted that Δ𝑘 ≠ 0 is in the equation (3.10). When Δ𝑘 = 0, the coherence length is infinite, 

so it is called phase matching condition. The comparison of the efficiency of SHG in 

waveguides is indicated in the Figure 3.6: the red line means the second-harmonic power 
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against distance in the phase-matched waveguide while the blue line means the second-

harmonic power against distance in the phase-mismatched waveguide. 

When the phase matching condition is satisfied, the second-harmonic power grows 

significantly from zero value as the propagation distance increases. In contrast, in the phase-

mismatched waveguide, the second-harmonic power grows gradually from zero value when 

the propagation distance increases from zero to a coherence length 𝑙𝑐 . However, as the 

propagation distance grows from 𝑙𝑐 to 2𝑙𝑐, the second-harmonic power drops from the peak to  

zero value again. The change is periodic and repeated every two coherence lengths.  

 

 

 

 

 

 

 

Fig. 3.6 Second-harmonic power. The red line represents phase-matched waveguide and the blue line represents 

phase-mismatched waveguide. 

In order to attain efficient SHG, the phase matching condition should be satisfied. When the 

optical pulse is propagated inside a second-order medium, in phase-matched SHG frequency-

mixing processes, conservation of energy and momentum is maintained within the interaction 

among three waves: 

            ℏ𝜔1 + ℏ𝜔1 = ℏ𝜔2                                                                                                   (3.11) 

            𝑘1 + 𝑘1 = 𝑘2                                                                                                            (3.12) 

where ℏ is the Plank constant. Substitute 𝜆 =
2𝜋𝑐

𝜔
 and 𝑘 =

2𝜋𝑛

𝜆
 into equation (3.11-3.12), and 

equations are modified as: 
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            𝜆1 = 2𝜆2                                                                                                                   (3.13) 

            
4𝜋𝑛𝜔1

𝜆1
 = 

2𝜋𝑛2𝜔1

𝜆2
                                                                                       (3.14) 

As a consequence, the phase matching requirement of SHG is: 

          𝑛𝜔1
= 𝑛2𝜔1

                                                                                               (3.15) 

where 𝑛 means the refractive index. However, the optical waveguide has multiple layers of 

different materials, so 𝑛 is not decided by a certain material but by the effective refractive index 

of the waveguide. Generally, for normal dispersion, if the frequency increases, the effective 

index of waveguide should also increase. Thus, it seems impossible to achieve the phase 

matching condition described in the equation (3.15) unless the polarization of the initial wave 

and generated wave are different. According to the difference in the effective index caused by 

different polarizations, there are two ways to fulfill phase matching conditions. 

Table 3.1 Two types of phase matching condition of SHG (TE and TM modes are fundamental). 

Table 3.1 indicates two types of phase matching conditions in SHG. In the Type I phase 

matching condition the incident wave has TE polarization while the generated wave has TM 

polarization with doubled frequency. In the Type II phase matching condition, for [001] – 

grown zinc-blende crystalline structure, the incident wave consists of two perpendicular linear 

polarizations - TE fundamental mode and TM fundamental mode - while the second-harmonic 

wave consists of TE polarization.  

3.5.2 Phase matching condition of FWM 

Type                       Wave                              Wave 1 Wave 2 Wave 3 

Type I TE (𝜔1) TE (𝜔1) TM (2𝜔1) 

Type II TE (𝜔1) TM (𝜔1) TE (2𝜔1) 

Phase matching condition 𝑛(eff1) + 𝑛(eff2) =  2𝑛(eff3) 
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In the third-order nonlinear medium, FWM is the essential frequency-mixing process. The 

input wave contains two or three frequency components and new frequency components are 

produced. Similar to the equation (3.8) in the SHG case, (taking two incident frequency 

components as an example) the electric field �⃑� (𝜔𝑖) of the incident wave and the electric field 

�⃑� (𝜔𝑗) of the generated wave are described as: 

             �⃑� 𝑖(𝜔𝑖, 𝑧)  =  𝑎𝑖𝐴𝑖(𝑧)𝑒
𝑖𝑘𝑖𝑧        (i = 1,2)                                                                (3.16a) 

             �⃑� 𝑗(𝜔𝑗, 𝑧)  =  𝑎𝑗𝐴𝑗(𝑧)𝑒
𝑖𝑘j𝑧        (j = 3,4)                                                                         (3.16b) 

As a result, the phase mismatch factor of FWM is defined as: 

             Δ𝑘 = 𝑘1 + 𝑘2 − 𝑘3 − 𝑘4                                                                                        (3.17) 

The previous section explained that Δ𝑘 = 0 was required for phase matching. While in the 

phase-matched FWM process, conservation of energy and momentum is maintained within the 

interaction among four waves: 

            ℏ𝜔1 + ℏ𝜔2 = ℏ𝜔3 + ℏ𝜔4                                                                                      (3.18) 

            𝑘1 + 𝑘2 = 𝑘3 + 𝑘4                                                                                                  (3.19) 

As for general FWM cases, it is difficult to achieve the phase matching condition described in 

the formulae (3.18-3.19). A key parameter GVD is introduced and applied in order to evaluate 

the efficiency of interaction among frequency components in FWM. First, wave vector is 

defined as: 

            𝑘(𝜔) =  
𝑛(𝜔) 𝜔

𝑐
                                                                                                        (3.20)    

For small changes in frequency, the Taylor series is appropriate for the expression of the 

approximation value of the wave vector: 

  𝑘(𝜔) =  
𝑛(𝜔0)𝜔0

𝑐
+ 

𝑛′(𝜔0)𝜔0+𝑛(𝜔0)

𝑐 
(𝜔 − 𝜔0) +

1

2
 
𝑛′′(𝜔0)𝜔0+2𝑛′(𝜔0)

𝑐
(𝜔 − 𝜔0)

2 + ⋯       
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            =  𝑘(𝜔0) + 𝑘′(𝜔0)(𝜔 − 𝜔0) + 
1

2
 𝑘′′(𝜔0)(𝜔 − 𝜔0)

2 + Ο(𝜔 − 𝜔0)
3                 (3.21)                                                                                                  

where 𝜔0  is the central frequency; 𝑘(𝜔0) is inversely proportional to the phase velocity;  

 𝑘′(𝜔0) is the reciprocal of group velocity; and 𝑘′′(𝜔0) is known as group velocity dispersion 

[148]. Phase velocity depicts the velocity of phase of any one frequency component in the 

propagating wave while group velocity describes the velocity of the wave envelope. Usually, 

GVD is utilized to describe how the duration of the propagating wave is affected by the 

dispersion of the waveguide, including material and geometric dispersion. Indeed, it is a 

parameter which depicts the difference among the wave velocities in the wave that carry 

different frequencies. Large GVD means the difference is significant, which results in a small 

overlap among waves, even walk-off effect. Walk-off effect means that there is no overlap and 

no interaction between waves with various velocities. As a consequence, there are few effective 

interactions among the waves so that the frequency-mixing processes caused by nonlinearity 

are weak. On the contrary, small GVD provides large overlap and effective interactions among 

waves. Hence, zero-GVD point is the phase matching condition of FWM. 

Equation (3.21) has demonstrated GVD as the second order derivative of wave vector with 

respect to frequency. As long as the effective index in equation (3.20) is expressed as a function 

of frequency, GVD could be calculated. Now that the effective index of waveguide is decided 

by linear dispersion, which is caused by material-dependent dispersion and geometry-

dependent dispersion, the zero-GVD point is looked for by engineering the structure of the 

waveguide. 

With mode solver, a sequence of effective indices for optical waveguides is computed through 

changing the wavelength of incident wave and the corresponding refractive index of materials. 

Then the data is fitted into the following formula over a limited wavelength range: 

          𝑛(𝜆) = b0 + b1(𝜆 − 𝜆0) + b2(𝜆 − 𝜆0)
2 + b3(𝜆 − 𝜆0)

3 + b4(𝜆 − 𝜆0)
4              (3.22) 

where 𝜆0 is the central wavelength and b0-b4 are the co-efficients of fitting. According to the 

equation (3.21), the value of GVD is easily gained. To find the zero-point of GVD, the structure 

of the waveguide is engineered. For example, the height of the waveguide is set as constant 

and the width is changed to check GVD values. When comparing the values of GVD among 

different structures, zero-GVD could be finally achieved by adjusting the geometry. 
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3.6 Optimization of PML  

PML and CPML absorbing boundary conditions were proposed in Section 2.4. PML works 

well in short-time simulations but it is memory-consuming for long-time cases, in which the 

thickness of PML should increase a lot to avoid reflection. CPML is a better choice to save the 

memory and to absorb the evanescent wave when the runtime of simulation is lengthy. 

However, calculation of CPML is much more complicated than PML, which means the times 

of calculation are significantly increased and the simulation with CPML is time-consuming. 

As a consequence, it is a compromise between memory and time. To evaluate the values of co-

efficients in PML, optimization in a one-dimension PML test was carried out. 

 

        

 

 

 

 

 

 

 

 

 
 

 

Fig. 3.7 (a) PML in one-dimension model in the simulation; (b) Energy flux of waveguide in one-dimension 

polynomial-graded PML test. The thickness of PML is 30 grids. The coefficient of polynomial n=2.5 and the 

maximum of conductivity is 2 × 104. 

PML Propagation direction 
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Figure 3.7a indicates the structure of a one-dimensional model with PML. PML is set at the 

right end of the waveguide. Figure 3.7b displays a result in one-dimension polynomial-graded 

PML test where the thickness of PML is 30 cells. Therefore, the peak value of energy flux in 

the waveguide is approximately 1.3 W . When the pulse reaches PML, most energy is absorbed 

and the reflected energy flux is -8 × 10−6 W, so the reflection ratio is 6 × 10−6. With regard 

to normal PML, the reflection at the boundary determines how long the program can run 

without instability being caused by PML. In Section 2.4.1, there was discussion about the 

significant wave reflection at PML surface which was observed when the conductivity was a 

constant. In the simulation of 10-cell thick PML, if the conductivity is a constant, the smallest 

reflection ratio can be as large as 0.01 so geometric-graded and polynomial-graded 

conductivity are considered in this section.  

Geometric-graded PML is defined in the equation (2.29). In principle, both 𝑔 and 𝜎0 could 

affect the reflection, so the comparison of reflection ratio with various combinations of co-

efficients in 10-cell geometric-graded PML are shown in Table 3.2. Values of 𝑔 are decreased 

from 4 to 1.5, then the value of 𝜎0 is selected when the smallest reflection ratio is gained in 

several tests. Apparently, the best reflection ratio obtained in Table 3.2 is 7.5 × 10−4 when 𝑔 

=1.8 and 𝜎0 = 5 × 104. 

Table 3.2 Comparison of reflection ratio in 10-cell geometric-graded PML. 

In contrast, polynomial-graded PML got better results than geometric-graded PML. 

Polynomial-graded PML is defined in the equation (2.28). The example in Figure 3.6 has the 

co-efficient of polynomial-graded PML 𝑛 = 2.5 and the maximum of conductivity 𝜎max  = 2 

PML              Parameters       𝑔 𝜎0 Reflection ratio 

 

 

Geometric 

Grading 

4 2 × 105. 1.4 × 10−2. 

3 5 × 104 7.1 × 10−3. 

2 5 × 104 1.5 × 10−3 

1.8 5 × 104 7.5 × 10−4 

1.5 5 × 104 3.5 × 10−3 
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× 104 , which is the optimum choice for 30-cell thick PML. The second row in Table 3.3 

represents the best result for 10-cell case in polynomial grading method. The reflection ratio is 

2.5 × 10−4, only one third of the value in geometric grading method. Furthermore, Table 3.3 

presents more results of reflection error and optimum values of parameters for various 

thicknesses of polynomial-graded PML. It is apparent that the reflection ratio drops rapidly 

from 2.5 × 10−4 to 6 × 10−6 as the thickness increases gradually from 10 cells to 30 cells. 

According to the convergence criterion of Newton iteration in FDTD cases, which was 

discussed in Section 3.4, reflection ratio 10−4 is reasonable. Therefore, in the simulations in 

this thesis, the thickness of PML is usually set as 10 cells with polynomial grading model. 

Table 3.3 Comparison of reflection ratio in polynomial-graded PML.  

PML         Parameters     Thickness 𝑛 𝜎max Reflection ratio 

 

 

Polynominal 

Grading 

10 cells 2.5 5 × 104 2.5 × 10−4 

12 cells 2.5 4.5 × 104 1.8 × 10−4 

16 cells 2.5 3 × 104 9.2 × 10−5 

20 cells 2.5 2.5 × 104 2.0 × 10−5 

30 cells 2.5 2 × 104 6 × 10−6 

3.7 OpenMP and high-performance computation      

In this thesis, all the simulations have been programmed with Fortran 95 and compiled with 

GCC on an Eclipse platform. However, when the problem domain contains too many points or 

the propagation distance is long, the FDTD algorithm requires a large amount of memory and 

this also leads to much more computational burden. Therefore, OpenMP is applied in the 

simulation. Compared to the normal calculation, OpenMP is a parallel computing method, 

providing a possibility that multiple threads are calculated at the same time with shared 

memory.  
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Thanks to OpenMP, the run time of simulations has been reduced dramatically. For instance, 

the run time of a program is 180 hours in the normal way. When the program is compiled with 

OpenMP and runs with 8 threads, its run time is decreased to 28 hours. Figure 3.8 indicates the 

operating principle of OpenMP. At the beginning, the program runs with the master thread. 

When in the parallel regions, it runs with four threads with shared memory, then the four 

threads join together again until the next parallel region. 

 

 

 

Fig. 3.8 Operating principle of OpenMP with four threads. 

To further improve the efficiency of the simulation, high performance computation is utilized. 

HPC is treated as a supercomputer, having many nodes and each node has many cores. For 

example, Miffy and Buckethead are parts of HPC at the University of Glasgow. Miffy provides 

1256 cores over 156 compute nodes, where two nodes have 12 cores and other nodes have 8 

cores. In contrast, Buckethead provides 444 cores over 49 nodes. Most nodes have 4 cores and 

other nodes have 28 or 32 cores. The degree of parallelization of OpenMP is determined by the 

number of cores on one node, so that the parallel computation accelerates significantly with 

HPC. Moreover, cloud computation makes it possible to remotely use HPC on users’ own 

computers, which is convenient and efficient. Simulations in this thesis have used three HPC 

sources: Miffy and Buckethead (HPC at the University of Glasgow, a partner of ARCHIE-

WeSt), Cirrus (EPCC at the University of Edinburgh) and ARCHIE-WeSt.  

This chapter presented the main steps of simulations for optical waveguides, introduced details 

of obtaining excitation source and incorporating linear dispersion and nonlinearity, and 

demonstrated the optimization of PML. Moreover, the specific HPC sources applied in the 

simulations were introduced. Based on this chapter, six optical waveguides are simulated and 

proposed in the following chapters. 
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Chapter

Four-Wave Mixing of GaAs/AlGaAs Waveguides  



This chapter presents simulations of the four-wave mixing process for three optical waveguides: 

the GaAs suspended waveguide, the deep-etched multi-layer Al0.25Ga0.75As waveguide and 

the Al0.3Ga0.7As-on-insulator waveguide. Models and excitation sources are introduced. The 

method of incorporating linear dispersion and nonlinearity are also presented. Either linear 

dispersion or nonlinearity could be turned on or turned off so that it was flexible enough to 

check the linear and nonlinear characteristics. FWM was observed in these waveguides based 

on Kerr effects and Raman scattering.  

4.1 GaAs suspended waveguide 

GaAs suspended waveguide was carried out in the simulation as a relatively simple and well-

bounded example. GaAs has a high refractive index and provides a strong mode confinement 

in the GaAs suspended waveguide. Material dispersion was incorporated in the simulation 

through a Sellmerier equation. Then the GVD and phase mismatch factor Δ𝑘 were discussed, 

based on material and geometric dispersions, which are the key parameters in evaluating the 

efficient nonlinear interactions among waves and determining the phase matching condition of 

FWM. Moreover, Kerr-type nonlinearity was taken into consideration in order to simulate 

FWM process. Thanks to the large nonlinear refractive index of GaAs, obvious FWM was 

observed when the excitation source had high intensity and comb generation was achieved in 

TE fundamental mode. 

4.1.1 Basic model 

The basic model of GaAs suspended waveguide in the simulation is shown in Figure 4.1, where 

the cross-section consists of three layers. The core layer is GaAs. Its height is 0.5 μm and its 

width is 0.5 to 1.0 μm. The height is based on the most nonlinear research of AlGaAs 

waveguides[84], [89], [149]. The range of width was decided by the mentioned references and 

mode solver, which was utilized to make sure that only the fundamental modes exist. Once the 
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waveguide is suspended, 0.5 μm-thick air layer is set as a cladding layer to provide a realistic 

environment for wave propagation. In addition, the outer layer is 0.5 μm-thick PML absorbing 

boundary condition, making sure that the problem domain is limited and that the energy which 

escapes away from the core layer in the propagation would be absorbed eventually. The 

thickness of air layer was determined in mode solver and it ensures the fundamental modes 

were not absorbed by the PML but well confined by the waveguide. The grid size is not uniform 

to three dimensions and the time step is determined by the smallest grid size: 

          ∆𝑥 = 40 nm;                ∆𝑦 = ∆𝑧 = 50 nm                                                           

          ∆𝑡 =  
∆𝑥

2𝑐
                                                                                                      (4.1) 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Cross-section of GaAs suspended waveguide in the simulation. 

4.1.2 Excitation source 

The structure of the GaAs suspended waveguide gives a high refractive index contrast, 

providing mode confinement for propagation of the optical wave. With the application of a 

mode solver, geometric dispersion of waveguide can be incorporated and excitation source is 

obtained. Only the area of the waveguide and the surrounding air layer have an initial value. 

Peak values of the magnetic field in incident x-y plane of GaAs suspended waveguide are 

described in Figure 4.2 and the width of the core layer is 1 μm. Figure 4.2a shows TE 

fundamental mode of GaAs suspended waveguide at wavelength 1.55 μm, whose effective 

index is 3.06, while Figure 4.2b shows TM fundamental mode at the same wavelength with a 

lower effective index 2.95. It is possible to conclude that both the TE and the TM modes are 
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well confined and the main energy of optical pulse is propagated in the core layer. As a 

consequence, together with cosine wave and Gaussian envelope function, an incident wave can 

be gained, which is defined as: 

          g(𝑡, 𝑥, 𝑦) =  𝐻0(𝑥, 𝑦)cos (𝜔𝑐(𝑡 − 𝑡0)) e
−(

𝑡−𝑡0
𝜏

)2
                                                        (4.2) 

where 𝐻0(𝑥, 𝑦) is the values of mode in x-y plane shown in Figure 4.2, and  𝜔𝑐 is the central 

frequency of the pulse. If the incident wave contains two separate frequencies 𝜔1 and 𝜔2, then 

the formula (4.2) is modified as:  

           g(𝑡, 𝑥, 𝑦) =  𝐻0(𝑥, 𝑦)[cos (𝜔1(𝑡 − 𝑡0))  +  cos (𝜔2(𝑡 − 𝑡0))]e
−(

𝑡−𝑡0
𝜏

)2
                    (4.3) 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2a Magnetic field in TE fundamental mode in x-y plane of GaAs suspended waveguide at wavelength 

1.55 μm. The width of core layer is 1.0 μm and the effective index of waveguide is 3.06. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2b Magnetic field in TM fundamental mode in x-y plane of GaAs suspended waveguide at wavelength 

1.55 μm. The width of core layer is 1.0 μm and the effective index of waveguide is 2.95. 
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It is noted that the relationship between the duration and spectral bandwidth satisfies a universal 

inequality[150]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

             ∆𝑡 ∆𝜔 ≥  
1

2
                                                                                                              (4.4) 

However, formula (4.4) can lead to the quantum-mechanical time–energy uncertainty principle, 

which means the bandwidth of frequency must be broad enough to create a Gaussian pulse with 

a given duration. On the other hand, to build a Gaussian pulse with a narrow bandwidth, the 

duration must be a certain length. This is especially true in the case described in the formula 

(4.3) where the incident wave contains two frequencies and, therefore, the bandwidths of both 

frequencies should be limited. In the reference [150], the Fourier inequality for pulses is 

expressed as: 

             ∆𝜏 ∆𝜐 ≥  K                                                                                                                             (4.5) 

where ∆𝜏 is the duration at half maximum; ∆𝜐 is the frequency full width at half maximum 

(FWHM); and the value of K is 0.441 for Gaussian pulse.  

4.1.3 Material dispersion  

The material dispersion of GaAs was described as Lorentz medium. In order to determine the 

parameters and incorporate the linear dispersion in the simulation, the refractive index of GaAs 

should be expressed as the Sellmeier equation as defined in equation (3.6). Skauli et al [151] 

measured the refractive index of GaAs in the wavelength range from 0.967 to 17 μm, and fitted 

the experimental data into a Sellmeier equation with three pole pairs at room temperature. The 

Sellmeier equation obtained is as follows: 

            𝑛2(𝜆) = B1 + 
B2𝜆2

𝜆2−B3
+ 

B4𝜆2

λ2−B5
+ 

B6𝜆2

λ2−B7
                                                                                         (4.6) 

where B1=5.3725; B2=5.4667; B3=0.1964; B4=0.0243; B5=0.7650; B6=1.9575; 

B7=1362.8400; and 𝜆 is the wavelength and its unit is μm. The refractive index of GaAs given 

by formula (4.6) has been plotted in Figure 4.3. It decreases gradually from 3.503 at wavelength 

1.0 μm to 3.330 at wavelength 2.1 μm. Therefore, the parameters in the equation (2.43) – 

permittivities and resonant frequencies – are not difficult to obtain based on equation (4.6): 
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           𝜀∞ = 5.3725;            𝜀s1 = 10.8393;          εs2 = 5.3968;        εs3 = 7.3300;              (4.7a)                                             

           𝜔1 = 2.7999 eV;      𝜔2 = 1.4185 eV;       𝜔3 = 0.0336 eV                                       (4.7b)      

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 Refractive index of GaAs in the wavelength range from 1.0 to 2.1 μm. 

Together with a mode solver, both the geometric and material dispersion of GaAs suspended 

waveguide could be incorporated in the simulation. Group velocity dispersion is observed in 

Figure 4.4, in which the pulses contain a range of frequency components. Figure 4.4 shows the 

propagation of energy flux over four cross-sections of GaAs suspended waveguide in time 

domain. Sub-figure (a) represents the incident plane while (b) - (d) are cross-sections with 2000 

cells, 3000 cells and 4000 cells away from the incident plane, respectively. In addition, FWHM 

of pulses in the figure are indicated in order to compare the widths. Compared to the shape of 

input wave in sub-figure (a), waves in sub-figure (b) - (d) have smaller amplitudes and bigger 

widths in time domain. The input wave has the largest peak value of 80.5 W and the smallest 

of FWHM 15 fs. Over time, as the propagation distance gradually increases to 4000 cells in 

sub-figures (b) - (d), the peak value gradually drops to 36.1 W while the FWHM grows to 21 

fs. Therefore, the longer distance the optical pulse is propagated, the lower peak value and 

wider width it has. These results are caused by linear dispersion. In dispersive media, a 

variability of the material’s dielectric permittivity leads to various velocities of a propagating 

wave with various frequencies. Thus, lower frequency components run faster than higher ones 
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a b 

c d 

FWHM = 15 fs  FWHM = 18 fs  

FWHM = 19.5 fs  FWHM = 21 fs  

in GaAs suspended waveguide, resulting in a broadening of the width of wave in time domain 

as the propagation distance increases. It is noted that the power level in Figure 4.4 was raised 

to unreasonable values in the simulation in order to confirm the existence of the nonlinear 

frequency mixing processes. 

 

 

 

 

 

 

 

 

 
 

 

Fig. 4.4 Propagation of energy flux in GaAs suspended waveguide in time domain. Sub-figure (a) is the incident 

plane while (b), (c) and (d) are cross-sections where the propagation lengths are 2000 ∆z , 3000 ∆z  and 4000 ∆z, 
respectively.     

4.1.4 Phase matching condition of FWM 

It was suggested in Chapter 3 that phase matching condition allows the infinite coherent length 

for efficient FWM processing. To achieve phase matching, Δ𝑘=0 is required. According to the 

Taylor expansion in equation (3.21), when the frequency shifts in a small range, the odd terms 

in the right-hand side are cancelled so that GVD is the primary term. Therefore, Δ𝑘 is generally 

a quadratic equation but it would become a quartic equation when GVD is around zero. As a 

result, both GVD and Δ𝑘 were taken into account to determine the phase matching condition, 

being affected by the combination of material and geometric dispersions. 
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Using the method introduced in Section 3.5.1, GVD of GaAs suspended waveguide with 

various widths in TE and TM fundamental modes in a wavelength range 1.3-1.8 μm were 

obtained. Usually, GVD is also defined as a derivative with respect to wavelength rather than 

angular frequency, which is called group delay dispersion parameter (D parameter). D 

parameter can be gained as follows: 

           𝐷 =  − 
𝜆

c

𝑑2𝑛

𝑑𝜆2                                                                                                              (4.8) 

GVD is usually specified with a unit of ps·ns/km while D parameter is specified with a unit of 

ps/nm/km. If D parameter is positive, the waveguide has anomalous dispersion; If D parameter 

is negative, the waveguide has normal dispersion. 

 

 

 

 

 

 

 

 

 

Fig. 4.5 GVD and D of GaAs suspended waveguides with various widths in TE and TM fundamental modes at 

wavelength 1.55 μm. 

In Figure 4.5, GVD and D of GaAs suspended waveguide are plotted with various widths at 

wavelength 1.55 μm involving two polarizations. The blue line connects several GVD points 

in TE fundamental mode. It has a relative large positive value about 30 ps·ns/km when the 

width is as small as 200 nm, then drops sharply to a negative value -8 ps·ns/km at width 300 
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nm, from which it increases slowly as the width becomes bigger. When the width is around 

760 nm, GVD and D of waveguide in TE fundamental mode are close to zero value and it 

continues to grow to positive value again. Theoretically, there are two zero points of GVD in 

the figure; one is between 270 and 280 nm, the other is 760 nm. However, as shown in the first 

sub-figure of Figure 4.6, GVD of waveguide with various widths in TE fundamental modes at 

a wide wavelength range 1.3-1.8 μm are compared. For small widths, such as 270 nm and 280 

nm, higher order dispersion terms become significant. In contrast, in the case of 760 nm, the 

GVD shows a stable trend and maintains small values in the whole wavelength range. 

Therefore, 760 nm is better as the zero point of GVD in TE fundamental mode at 1.55 μm.  

 

 

 

 

 

 

 

 

 

 

Fig.4.6 GVD of GaAs suspended waveguides with various widths in TE and TM fundamental modes at 

wavelength 1.3-1.8 μm. 

Moreover, according to the D parameter in TE fundamental mode, the waveguide has normal 

dispersion when the width is less than 280 nm or larger than 760 nm; the waveguide has 

anomalous dispersion when the width is between 280 and 760 nm. In Figure 4.4, the width of 

simulated waveguide was 1000 nm and it contained normal dispersion. Therefore, the lower 
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frequency components propagate faster than the higher ones, meaning the pulse was up-chirped, 

leading to the increase of the width of optical pulse in time domain. In comparison, there was 

no broadening in the pulses in Figure 3.2 where the simulation without linear dispersion. The 

spreading of pulse can be obtained based on GVD and propagation distance: 

         Chirp = Propagation distance × GVD × Bandwidth                                                    (4.9) 

For an example, in Figure 4.4, the bandwidth of excitation source is 
𝑐

𝜆1
− 

𝑐

𝜆2
, where 𝜆1 and 𝜆2 

are 1.4 and 1.7 μm, respectively. The GVD of waveguide with a width of 1000 nm is 0.8 

ps·ns/km. According to formula (4.9), when the propagation distance is 4000 cells, the chirp is 

calculated as 6.1 fs, which confirmed the broadening 6 fs in Figure 4.4. 

The red line in Figure 4.5 represents the GVD of TM fundamental mode at wavelength 1.55 

μm. After decreasing from a negative value -1.5 ps·ns/km at width 200 nm to -2.5 ps·ns/km at 

width 300 nm, the GVD increases slightly but keeps negative values as the width grows from 

300 to 1000 nm. There is no zero-point of GVD and D in the width range. A further look of 

GVD at a wider wavelength range 1.3-1.8 μm in Figure 4.6, suggests that the GVD of 

waveguide in TM fundamental mode grows when the wavelength decreases so it could reach 

the zero value at a shorter wavelength. 

Furthermore, in order to prove that the waveguide with width 760 nm has a better situation for 

phase matching in TE fundamental mode at wavelength 1.55 μm than those with other widths, 

phase mismatch factor Δ𝑘 of GaAs suspended waveguides with various widths are compared 

in Figure 4.7. Optical parametric oscillator (OPO) could convert a pump wave into two waves: 

signal wave and idler wave. In the FWM process, the relationship between the frequencies of 

these waves is: 

             𝜔p + 𝜔p = 𝜔s + 𝜔i                                                                                                                         (4.10) 

Therefore, the effective index contrast ∆𝑛 and phase mismatch factor Δ𝑘 are defined as: 

             ∆𝑛 = 2𝑛eff
p

− 𝑛eff
s − 𝑛eff

i                                                                                                     (4.11) 

           Δ𝑘 = 2𝜋 (
2𝑛eff

p

𝜆𝑝
− 

𝑛eff
s

𝜆𝑠
−

𝑛eff
i

𝜆𝑖
)                                                                                       (4.12) 
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where  𝑛eff
p

, 𝑛eff
s , 𝑛eff

i  are the effective index of waveguide when the wave contains pump 

frequency, signal frequency and idler frequency, respectively.  

 

 

 

 

 

 

 

 

 

 
 

Fig.4.7 Phase mismatch factors of GaAs suspended waveguides with various widths in TE fundamental mode. 

The pump wavelength is 1.55 μm and the signal wavelength range is 1.2-2.0 μm. 

In Figure 4.7, Δ𝑘 of GaAs suspended waveguide with various widths in TE fundamental mode 

were obtained at pump wavelength 1.55 μm and signal wavelength 1.2-2.0 μm. Quartic 

expressions of Δ𝑘 are revealed when the GVD is around zero value at width 280 nm and 760 

nm. However, because of the influence from high order dispersion terms, the absolute value of 

Δ𝑘 in the waveguide with a width of 280 nm maintains small values in a narrow wavelength 

range and increases dramatically as the difference between the signal wavelength and pump 

wavelength grows. In comparison, when the width is 760 nm, Δ𝑘 keeps small values in the 

whole wavelength range, providing a long, coherent length for FWM. In addition, Δ𝑘 of width 

800 nm case is also quartic as a result of the small GVD, but it has larger values than the 760 

nm case. With regard to other widths shown in Figure 4.7, Δ𝑘 is quadratic and has larger 
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absolute values, in which width 600 nm has the shortest coherent length. In conclusion, width 

760 nm is the best choice for the phase matching of FWM process in TE fundamental mode at 

wavelength 1.55 μm. 

4.1.5 Results of FWM 

In the simulation of GaAs suspended waveguide, Kerr-type nonlinearity was incorporated. The 

nonlinear refractive index of GaAs 𝑛2  = 1.59×10−13  cm2 · W−1  was demonstrated in the 

reference [68]. Then, the formula (2.70) was utilized to calculate the real part of Kerr-type 

nonlinear parameters. Given that the zero-point of GVD in TM fundamental mode at 

wavelength 1.55 μm does not exist, this section only focuses on TE fundamental mode. The 

width of the GaAs suspended waveguide was set as 760 nm to simulate the FWM process. A 

comb generation was obtained and FWM results among waveguides with various widths were 

compared.  

 

 

 

 

 

 

 

 

 

Fig.4.8 FFT of energy flux over three cross-sections of GaAs suspended waveguide with a width of 760 nm. Sub-

figures represent the incident plane and cross-sections where the propagation lengths are 800∆z and 1800∆z, 

respectively. 
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In Figure 4.8, the excitation source is defined in equation (4.2) with a central wavelength 1.55 

μm. Optical pulses were transferred from time domain to frequency domain with FFT algorithm, 

providing a clear comparison of frequency components. In order to evaluate the propagation of 

the pulse, energy flux was calculated, which is defined in equation (3.1). Energy flux of three 

cross-sections in GaAs suspended waveguide were chosen for comparison. The first is the 

incident plane so that the frequency range is the same as the excitation source whose central 

frequency is 194 THz. Therefore, the FFT of energy flux shows the sum of frequency 388 THz 

and the difference frequency in the left pulse. The second cross-section is 800 cells away from 

the incident plane. The peak values of pulses decreases and frequency ranges became wider. 

More peaks occur in the right pulse. As for the final sub-figure, the distance of propagation 

increases to 1800 cells and the change is more significant. Therefore, over time, optical pulse 

travels much longer and more frequency components are generated because of FWM. 

 

 

 

 

 

 

 

 

Fig. 4.9 FFT of energy flux over the incident plane of GaAs suspended waveguide with a width of 760 nm. 

Different from the above simulation, the excitation source in Figures 4.9 and 4.10 contains two 

frequencies. Figure 4.9 depicts the FFT of energy flux in the incident plane of GaAs suspended 

waveguide. The incident two frequencies are 187.5 THz (𝜔1) and 200 THz (𝜔2), and their 

corresponding wavelengths are 1.6 μm and 1.5 μm. Therefore, the FFT of energy flux shows 

the sum frequency of any two frequency components between the pulses: 375 THz (2𝜔1), 387.5 
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THz (𝜔1 + 𝜔2) and 400 THz (2𝜔2), as well as the difference frequency: -12.5 THz (𝜔1 − 𝜔2), 

0 THz (𝜔1 − 𝜔1 and 𝜔2 − 𝜔2) and 12.5 THz (𝜔2 − 𝜔1).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10 The comparison between the central parts of FFT of energy flux over various cross-sections of GaAs 

suspended waveguide with a width of 760 nm. Sub-figures represent the incident plane and cross-sections where 

the propagation lengths are 100∆z and 200∆z, respectively. 

In order to have a better understanding of comb generation and newly produced frequency 

components, Figure 4.10 indicates the central pulse - difference part - of FFT of energy flux in 

various cross-sections of GaAs suspended waveguide. The cross-section in the first sub-figure 

is the incident plane so that the frequency range is similar to the excitation source described in 

Figure 4.9, giving initial frequency pulses for comparison. At this point, the second cross-

section is 100 cells away from the incident plane. The peak values of original pulses drop but 

more frequency pulses are generated. The interval of adjacent pulses is constant and is equal 

to 12.5 THz, which is exactly the difference of the original two frequencies. When the 
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propagation distance increases to 200 cells in the third sub-figure, the peak values of pulses 

generated in the second sub-figure grow and more pulses occur. It is possible to conclude that 

as the pulse is propagated at a longer distance, more frequency pulses are generated with a 

constant difference, leading to comb generation. 

Furthermore, to confirm the crucial role of the phase matching condition, FWM results between 

waveguides with various widths were compared. Based on the discussion in the previous 

section, zero GVD was achieved when the width is 760 nm in TE-polarized fundamental mode 

at wavelength 1.55 μm. In addition, widths 600 nm and 920 nm were chosen to provide a 

comparison with 760 nm case. To clearly compare the FWM efficiency between these three 

waveguides, the focus was on the first newly generated frequency pulse. Therefore, the incident 

power was set much lower and the frequency bandwidth of the excitation source was larger 

than those in the simulation of comb generation in Figure 4.9 and Figure 4.10. In the following 

simulations, the excitation source was based on TE fundamental mode and equation (4.3), 

including two wavelengths 1.5 μm and 1.6 μm, whose corresponding frequencies are 200 THz 

and 187.5 THz.  

 

 

 

 

 

 

 

 

 

 

Fig. 4.11 FFT of energy flux of GaAs suspended waveguide with a width of 600 nm. Comparison of frequency 

components between the incident plane and the cross-section where the propagation length is 2000 cells. 
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Figure 4.11 shows the FWM results of GaAs suspended waveguide with a width of 600nm. 

The first sub-figure describes the FFT of energy flux over the incident plane, so the sum and 

difference frequency of incident pulse are indicated: 375 THz, 387.5 THz and 400 THz, 0 THz 

and 12.5 THz, respectively. In contrast, the second sub-figure means the FFT of energy flux 

over the cross-section are 2000 cells away from the incident plane. Although the peak values 

of original pulses decrease, there is no sign of new frequency components after 2000-cell 

propagation. In Figure 4.12, the FWM of waveguide with width 760 nm is presented. 

Compared to the initial pulses in the first sub-figure, a new frequency pulse in the left part is 

generated and there is an obvious broadening in the sum frequency pulse. The frequency range 

of two parts significantly spread.  

 

 

 

 

 

 

 

 

 

 

Fig. 4.12 FFT of energy flux of GaAs suspended waveguide with a width of 760 nm. Comparison of frequency 

components between the incident plane and the cross-section where the propagation length is 2000 cells. 

When the width increases to 920 nm in Figure 4.13, the frequency range is slightly broadened 

in the second sub-figure. There is no newly generated pulse in the left part and the broadenings 

are much smaller than those in 760 nm case. As a consequence, based on the comparison of 

the three widths, GaAs suspended waveguide with width 760 nm has the best FWM result in 

the TE fundamental mode at wavelength 1.55 μm, which agrees with the results of Δ𝑘 in Figure 

4.7. Considering the coherent length is 2000 cells, which is equal to 100 μm,  Δ𝑘 should be less 
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than 0.01μm−1. When the width is 760 nm, Δ𝑘 is quartic and maintains the required values in 

the whole wavelength range: 1.2-2.0 μm. As for widths 600 nm and 920 nm, the ranges of 

signal wavelength with desired Δ𝑘 are 1.45-1.67 μm, and 1.36-1.8 respectively. Therefore, the 

wavelength components involved in nonlinear interaction in coherent length in 760 nm is the 

greatest, causing the most efficient FWM process. It is noted that two-photon absorption of 

GaAs is not involved in this simulation, which will have effects in the nonlinear wave mixing 

process.  

 

 

 

 

 

 

 

Fig. 4.13 FFT of energy flux of GaAs suspended waveguide with a width of 920 nm. Comparison of frequency 

components between the incident plane and the cross-section where the propagation length is 2000 cells. 

4.2 Al0.25Ga0.75As waveguide 

This section introduces the simulation of a deep-etched Al0.25Ga0.75As waveguide[152]. It has 

a multi-layer structure and all layers consist of AlGaAs. AlGaAs provide a wide range of 

refractive indices which are flexible and easy to adjust with alloy fraction. As a result of the 

variation of the refractive index of AlxGa1−xAs, the core layer contains a lower concentration 

of Al while the cladding layers contain a higher concentration. In the simulation, both material 

and geometric dispersions were incorporated, based on which GVD and phase mismatch factor 

were obtained as the key parameters to determine the phase matching condition of FWM. 
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Moreover, Kerr effect and Raman scattering were taken into account to simulate the FWM 

process. The results of FWM were in good agreement with the measurement of Al0.25Ga0.75As 

waveguide in the experiment and the comparison is shown in Section 4.2.7.  

4.2.1 Basic model  
 

 

 

 

 

 

 

 

 

 

 

 

 

                                 Fig. 4.14 Cross-section of Al0.25Ga0.75As waveguide in the simulation. 

The cross-section of the deep-etched Al0.25Ga0.75As waveguide is depicted in Figure 4.14. This 

waveguide has a multi-layer structure, where the 0.5 μm-thick core layer is Al0.25Ga0.75As and 

cladding layers are Al0.75Ga0.25As. The thickness of upper cladding and lower cladding is 0.3 

μm and 1.7 μm, respectively. The width of AlGaAs layers is between 0.6 and 1.0 μm. Apart 

from the basic structure, a 1.0 μm-thick outer layer of air is designed for the three sides of 

AlGaAs to simulate the realistic environment of propagation for optical wave. Then 0.5 μm-

thick PML absorbing boundaries are set to cut off the problem domain and to make sure that 

no significant reflection occurs on the boundary. However, considering the lower cladding 

layer has nonlinearity and PML is nondispersive and an optical pulse would reflect back when 

it reaches the inner boundary of PML. Therefore, a 0.5 μm-thick buffer layer is set between the 

lower Al0.75Ga0.25As layer and PML to improve the absorption efficiency of radiation energy. 

The buffer layer consists of Al0.75Ga0.25As only with linear dispersion. It is noted that for 
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guided modes, there would be low radiance in the buffer layer. The grid sizes are uniform in 

the three dimensions and time step is decided by the grid size: 

           ∆𝑥 = ∆𝑦 = ∆𝑧 = 50 nm;                            ∆𝑡 =  
∆𝑥

2𝑐
                                         (4.13) 

4.2.2 Excitation source  

The structure of Al0.25Ga0.75As waveguide gives a high refractive index contrast, providing 

mode confinement for propagation of an optical wave. Using mode solver, excitation source 

was obtained. The area of waveguide (including buffer layer) and surrounded air layer have 

initial values. Values of magnetic fields in the incident x-y plane of Al0.25Ga0.75As waveguide 

(width = 0.7 μm) are described in Figures 4.15 and 4.16. Figure 4.15 shows the TE fundamental 

mode of Al0.25Ga0.75As waveguide at wavelength 1550nm with an effective index of 3. Figure 

4.16 shows the TM fundamental mode at the same wavelength with a higher effective index of 

3.05. Both TE and TM mode are well confined and the main energy of the optical pulse is 

propagated in the core layer. Therefore, the incident wave is built of Gaussian pulse and values 

of mode, which is defined in formula (4.2) and formula (4.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.15 Magnetic field in TE fundamental mode in x-y plane of Al0.25Ga0.75As waveguide at wavelength 1.55 

μm. The width of core layer is 0.7 μm and the effective index of waveguide is 3.00. 



73 
 

 

 

 

 

 

 

 

 

 

Fig. 4.16 Magnetic fields in TM fundamental mode in x-y plane of Al0.25Ga0.75As waveguide at wavelength 1.55 

μm. The width of core layer 0.7 μm and the effective index of waveguide is 3.05. 

4.2.3 Material dispersion 

Material dispersion of AlGaAs was described as Lorentz medium. In order to determine the 

resonances and parameters, the refractive index of AlGaAs should be expressed as Sellmeier 

equation defined in formula (3.6). It was demonstrated in reference [66] that the experimental 

data of refractive indices of AlxGa1−xAs were fitted into a modified general function:  

           𝑛2(𝑥) = 𝐴(𝑥) + 
𝐶0(𝑥)

(𝐸0(𝑥)2−𝐸2)
 +  

𝐶1(𝑥)

(𝐸1(𝑥)2−𝐸2)
+ 𝑅(𝑥)                                         (4.14a) 

           𝑅(𝑥) = (1 − 𝑥) 
𝐶2

(𝐸22−𝐸2)
 +  𝑥 

𝐶3

(𝐸32−𝐸2)
                                                         (4.14b) 

where x is the Al concentration; E0(x) and E1(x) are resonant energies; E = ℎ𝑐/𝜆 is the energy 

of the photon; R(x) is the reststrahlen correction, E2 and E3 are GaAs-like and AlAs-like 

transverse phonon energies; A(x), C0(x), C1(x), C2, C3 are fitting co-efficients and values are 

specified in the reference. When x=0, equation (4.14) describes the refractive index of GaAs 

with three pole pairs. When x=1, equation (4.14) describes the refractive index of AlAs with 
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Al0.75Ga0.25As 

three pole pairs. Generally, for 0<x<1 case, equation (4.14) describes the refractive index of 

AlGaAs with four pole pairs. It is noted that equation (4.14) is accurate only when 0.176≤x≤1. 

 

 

 

 

 

 

 

 

 

Fig. 4.17 Refractive index of  AlGaAs. The Red line represents  Al0.25Ga0.75As  and the blue line 

represents Al0.75Ga0.25As. 

Therefore, according to equation (4.6), the relative permittivities and resonant frequencies of 

 Al0.25Ga0.75As and Al0.75Ga0.25As are obtained: 

 Al0.25Ga0.75As: 

           𝜀∞ = 3.8636;  𝜀𝑠1 =3.8910;  𝜀𝑠2 = 10.0758;  𝜀𝑠3 =5.4693;  𝜀𝑠4 = 4.3538               (4.15a)                                             

           𝜔1 = 1.7877 eV;                  𝜔2 = 3.2941 eV; 

           𝜔3 = 0.0333 eV;                    𝜔4 = 0.04523 eV                                                           (4.15b)       

Al0.75Ga0.25As: 

           𝜀∞ = 2.4226;  𝜀𝑠1 =2.5184;  𝜀𝑠2 = 8.6577;   𝜀𝑠3 =2.9578;  𝜀𝑠4 = 3.8933                (4.16a)                                             

           𝜔1 = 2.5778 eV;                   𝜔2 = 4.1163 eV;       

           𝜔3 = 0.0333 eV;                    𝜔4 = 0.04523 eV                                                           (4.16b)       

Data calculated from the equation (4.16) are plotted in Figure 4.17, in which the refractive 

indices of Al0.25Ga0.75As and Al0.75Ga0.25As in a limited wavelength range 1.3-1.8 μm are 
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FWHM = 17 fs  FWHM = 21 fs  FWHM = 26 fs  

FWHM = 40 fs  FWHM = 35 fs  FWHM = 31 fs  

a b c 

d e f 

shown in the red and blue lines. When the wavelength increases, the refractive index of both 

slowly decreases. It is clear that the core layer has a higher refractive index than cladding layers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.18 Propagation of energy flux in  Al0.25Ga0.75As waveguide in time domain.  Subfigure (a) is the incident 

plane and (b), (c), (d), (e) and (f) are cross-sections where the propagation lengths are 400∆z, 800∆z, 1200∆z, 

1600∆z and 2000∆z, respectively. 

Group velocity dispersion of  Al0.25Ga0.75As waveguide is observed in Figure 4.18, in which 

the excitation source contains a range of frequency components. Figure 4.18 indicates the 

propagation of energy flux in  Al0.25Ga0.75As waveguide in time domain, as well as the FWHM 

of pulses. Sub-figure (a) represents the incident plane and the pulse has a peak value of 41 W 

with FWHM 17 fs. In contrast, sub-figures (b) - (f) are cross-sections at 400 cells, 800 cells, 

1200 cells, 1600 cells and 2000 cells away from the incident plane, respectively. Over time,  

the propagation distance increases to 2000 cells and the peak value of pulses drops gradually 

to 12 W while the FWHM grows to 40 fs, almost three times as wide as the width of the original 

pulse in sub-figure (a). The broadening of pulses in the time domain is caused by linear 

dispersion in that lower frequency components run faster than those at a higher frequency. 
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4.2.4 Phase matching condition of FWM 

Phase matching condition is satisfied when the phase mismatch factor Δ𝑘=0. GVD plays an 

important role in the Taylor expansion of 𝑘 so its values are plotted in Figure 4.19. D parameter, 

another expression of GVD, is also indicated. Figure 4.19 shows the GVD and D of 

 Al0.25Ga0.75As waveguide with various widths in TE and TM fundamental modes. The blue 

line connects the GVD points in TE fundamental mode. GVD starts from a relatively large 

positive value approximately 18 ps·ns/km at width 200 nm and decreases dramatically to 

negative value -4 ps·ns/km at width 300 nm. After that, starts to grow gradually as the width 

increases. GVD approaches zero when the width is 700 nm and keeps increasing to a positive 

value again as the width increases to 1000 nm. Therefore, it is possible to find two zero points 

of GVD in the figure; one is between 280 and 290 nm and the other is 700 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.19 GVD and D of  Al0.25Ga0.75As waveguides with various widths in TE and TM fundamental modes at 

wavelength 1.55 μm. 

In order to further analyze these two widths, the left sub-figure in Figure 4.20 depicts GVD of 

 Al0.25Ga0.75As waveguide with various widths in TE fundamental modes in a wavelength 
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range of 1.3-1.8 μm. When the width is small, such as 280 nm and 290 nm, higher order 

dispersion terms have a big effect and GVD changes significantly when the wavelength 

changes. In comparison, for a large width such as 760 nm, GVD has a more stable trend and 

show small values in the plotted wavelength range. Consequently, 700 nm is better as the width 

of  Al0.25Ga0.75As waveguide for zero-GVD in TE fundamental mode at wavelength 1.55 μm.  

 

 

 

 

 

 

 

 

 

Fig. 4.20 GVD of  Al0.25Ga0.75As  waveguides with various widths in TE and TM fundamental modes at 

wavelength 1.3-1.8 μm. 

The red line in Figure 4.19 connects the GVD points of waveguides in TM fundamental mode 

at wavelength 1.55 μm. From a value of 3 ps·ns/km at width 200 nm, GVD decreases slowly 

to 1 ps·ns/km as the width grows to 1000 nm. Unlike the TE fundamental mode, it is difficult 

to find a zero-GVD point in TM fundamental mode at wavelength 1.55 μm. In a wider 

wavelength range 1.3-1.8 μm (shown in Figure 4.20) GVD of  Al0.25Ga0.75As waveguide in 

TM fundamental mode maintains positive values over the limited range. Therefore, phase 

matching in TM fundamental mode cannot be achieved when the wavelength range is between 

1.3 and 1.8 μm. The results of GVD analysis shown in Figures 4.19 and 4.20 have a close 

match with the GVD of similar AlGaAs waveguides presented in references [84] and [89]. 
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Fig. 4.21 GVD vs. waveguide width for a wavelength of 1.55 μm. Source: J. Meier, W. S. Mohammed, A. Jugessur, 

L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express, vol. 

15, no. 20, pp. 12755–12762, 2007.     

 

 

 

 

 

 

Fig. 4.22 GVD vs. wavelength for width of 668 nm, 323 nm and 280 nm. Source: J. Meier, W. S. Mohammed, A. 

Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. 

Express, vol. 15, no. 20, pp. 12755–12762, 2007. 

Figure 4.21 and Figure 4.22 depict the GVD of a multi-layer AlGaAs waveguide at wavelength 

1.55 μm reported in reference [89]. The core layer is 0.5  μm-thick  Al0.2Ga0.8As  and the 

cladding layers are Al0.7Ga0.3As.  The thickness of upper cladding and lower cladding is 0.2 

μm and 2 μm, respectively. Comparing Figure 4.21 against Figure 4.19, the trends of GVD 

curves are similar. In TM mode, GVD in both figures keep positive values in the width range 
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200 to 1000 nm. They decrease gradually from a value of around 3 ps·ns/km at a width of 200 

nm to around 1 ps·ns/km as the width increases to 1000 nm. In TE mode, GVD in both figures 

start from positive values at a width of that smaller than 300 nm, drop to the smallest value of 

around -4.5 ps·ns/km at a width of around 300 nm, and rise to positive values again. In Figure 

4.19, zero-GVD is achieved when the width is between 280 and 290 nm or around 700 nm. In 

comparison, in Figure 4.21, there are also two zero-GVD points, a further look of which is 

shown in Figure 4.22: one width is 280 nm, the other one width is 668 nm. The trends of GVD 

lines of waveguides with various widths in a limited wavelength range 1.3 -1.8 μm in Figure 

4.22 and Figure 4.20 are in a good agreement. For small widths, such as 280 nm, the GVD is 

influenced dramatically by the wavelength, which is caused by high-order terms of dispersion. 

In contrast, when the widths are large, such as 668nm and 700 nm, the GVD decreases 

gradually as the wavelength increases. In conclusion, the results of GVD of the Al0.25Ga0.75As 

waveguide simulated in this chapter and those of  Al0.2Ga0.8As  waveguide proposed in 

reference [89] are similar. 

With regard to D parameter, in TM fundamental mode, it keeps negative values so the 

waveguide has normal dispersion in the width range. In TE fundamental mode, the waveguide 

has normal dispersion when the width is less than 290 nm or larger than 700 nm; the waveguide 

has anomalous dispersion when the width is between 290 and 700 nm. In Figure 4.18, the width 

of simulated waveguide was 800 nm and the excitation source was based on TM fundamental 

mode so it contained normal dispersion and the pulse was up-chirped. According to formula 

(4.9), the spreading of optical pulse could be calculated. The bandwidth of excitation source is 

𝑐

𝜆1
− 

𝑐

𝜆2
, where 𝜆1 and 𝜆2 are 1.1 and 2 μm, respectively. The GVD of waveguide with a width 

of 800 nm is 1.85 ps·ns/km and the propagation distance is 2000 cells. Therefore, the chirp is 

calculated as 22.7 fs, which confirmed the broadening 23 fs in Figure 4.18. 

In order to further determine the phase matching condition based on the values of Δ𝑘, Figure 

4.23 depicts Δ𝑘 of  Al0.25Ga0.75As waveguide with four widths in TE fundamental mode when 

the pump wavelength is 1.55 μm and the signal wavelength range is 1.2-2.0 μm.  Points with 

four colours represent the waveguide with widths 290 nm, 600 nm, 700 nm and 800 nm, 

respectively. Blue and red points mean widths 290 nm and 700 nm, (as discussed above) and 

waveguides with both widths close to zero GVD in TE fundamental mode at wavelength 1.55 

μm. Therefore,  Δ𝑘 shows quartic curve in both cases. Compared with the 700 nm case, Δ𝑘  in 
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290 nm case keeps small values in a shorter wavelength range and its absolute value increases 

markedly when the wavelength is smaller than 1.4 μm or larger than 1.7 μm, causing shorter 

coherent length for nonlinear interactions. As a result, 290 nm is not suitable for the FWM 

process. With regards to the other widths of 600 nm and 800 nm, Δ𝑘 is quadratic and has larger 

absolute values when compared with 700 nm case. When the width is 700 nm, Δ𝑘 maintains 

small values over the whole wavelength range 1.2-2.0 μm.  It is concluded that at wavelength 

1.55 μm, width 700 nm provides the best conditions for phase matching of FWM in TE 

fundamental mode. 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 4.23 Phase mismatch factors of  Al0.25Ga0.75As waveguides with various widths in TE fundamental mode. 

The pump wavelength is 1.55 μm and the signal wavelength range is 1.2-2.0 μm. 

4.2.5 Results of FWM  

Phase matching condition of  Al0.25Ga0.75As waveguide was analyzed in the previous section 

so that the width was set as 700 nm to simulate FWM process. The excitation source contains 
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either two frequencies or one narrow frequency range with a central wavelength 1.55 μm based 

on TE fundamental mode. Kerr-type nonlinearity was incorporated in the simulation. It was 

suggested  in the reference [152] that the nonlinear refractive index of AlGaAs 𝑛2 = 1.98 ± 0.5 

×10−13cm2 · W−1. Then, the real part of Kerr parameter was gained from formula (2.70).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.24 FFT of energy flux in Al0.25Ga0.75As waveguide with a width of 700 nm. Sub-figures represent the 

incident plane and cross-sections where the propagation lengths are 400∆z and 800∆z, respectively.  

Figure 4.24 shows the FFT of energy flux over three cross-sections of the  Al0.25Ga0.75As 

waveguide. The first cross-section represents the incident plane so the frequency range is the 

same as the excitation source, which contains two frequencies - 187.5 THz and 200 THz - 

where the corresponding wavelengths are 1.6 and 1.5 μm, respectively. Hence, the FFT of 

energy flux shows the sum frequencies in the right pulse: 375 THz, 387.5 THz and 400 THz, 

as well as the difference frequencies in the left pulse: 0 THz and 12.5 THz. Then the second 
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cross-section is 400 cells away from the incident plane, in which the frequency ranges of pulses 

broaden and peak values drop. More peaks occur in the sum-frequency pulse and a new small 

peak is generated in the difference-frequency pulse. As for the last sub-figure, the propagation 

distance increases to 800 cells and the frequency ranges of pulses spread further. Therefore, 

over time, the propagation distance grows and more frequency components are generated 

because of FWM. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 4.25 FFT of energy flux over three cross-sections of  Al0.25Ga0.75As waveguide with a width of 700 nm. Sub-

figures represent the incident plane and cross-sections where the propagation lengths are 600∆z and 1000∆z, 

respectively.  

Different from the excitation source in Figure 4.24, Figure 4.25 contains a narrow range of 

frequency components. Figure 4.25 indicates the FFT of energy flux over three cross-sections 

of  Al0.25Ga0.75As waveguide with a width of 700 nm. In the first cross-section, which is the 

incident plane, the frequency range is similar to the excitation source, containing a frequency 

range with a central frequency of 194 THz. Its corresponding wavelength is 1.55 μm. As a 
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consequence, the FFT of energy flux shows the sum frequency 388 THz in the right pulse and 

the difference frequency in the left pulse. When the propagation distance increases to 600 and 

1000 cells in the following sub-figures, the peak values of original pulses decrease while the 

frequency ranges are extended significantly. The final sub-figure has the longest propagation 

length so it has the widest frequency range, which is caused by the generation of  frequency 

components in FWM process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 4.26 Power spectrums of Al0.25Ga0.75As waveguides with various propagation lengths in wavelength domain. 

The width of waveguide is 700nm. The lines represent wavelength components of the power propagated through 

the incident plane and cross-sections where the propagation lengths are 200∆z, 400∆z, 600∆z, 800∆z and 1000∆z, 

respectively.  

Furthermore, the comparison of the power spectrums of Al0.25Ga0.75As  waveguides with 

various lengths in wavelength domain is illustrated in Figure 4.26 to prove the generation of 

new wavelength components. In order to compare the simulation results with experimental data, 

power spectrum is described in dBm. In the experiment, optical laser was used as a source 

of 120-fs (FWHM) optical pulses at a repetition rate of 82 MHz. Power was calculated based 

on these parameters and energy flux obtained from the simulation. Six lines represent six cross-
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sections. The blue line represents the incident plane and it is utilized as the original pulse for 

comparison. Then the second red line represents the cross-section which is 200 cells away from 

the incident plane and pulse does not show much difference. When the propagation distance 

increases to 400 cells, broadenings occur on both sides while the peak value decreases. The 

broadenings keep spreading and the peak value keeps dropping as the propagation distance 

grows to 600 cells, 800 cells and 1000 cells. In the shorter wavelength range, the broadening 

is more obvious than in the longer wavelength range because of the generation of more 

wavelength components. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.27 Phase of the power spectrums of Al0.25Ga0.75As  waveguides with various propagation lengths in 

wavelength domain. The width of waveguide is 700nm. The lines represent the phase of wavelength components 

of the power propagated through the incident plane and cross-sections where the propagation lengths are 200∆z, 

400∆z, 600∆z, 800∆z and 1000∆z, respectively. 

In addition, Figure 4.27 depicts the corresponding phase of the power spectrums in Figure 4.26. 

In the incident plane, the phase of power pulse is zero, the same as the incident pulse. When 

the propagation distance increased, Kerr-type nonlinearity happened and new wavelength 

components were generated. The phase became quadratic, spread to a wider wavelength range 
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and shifted to the shorter wavelength range. The longer the propagation distance, the wider the 

wavelength range of phase. Kerr-type nonlinearity here is considered as FWM process. 

Therefore, the phenomenon shown in Figures 4.25-4.27 is caused by FWM. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.28 Power spectrums of Al0.25Ga0.75As waveguides with various incident powers in wavelength domain. 

The width is 700 nm and the propagation distance is 1000 cells. The blue line represents the lowest power while 

the red line represents the highest power. 

Apart from the propagation distance, incident power also affects the efficiency of FWM. In 

Figure 4.28, the power spectrums are Al0.25Ga0.75As waveguides with a range of incident 

power but a certain propagation distance is plotted. The width of the waveguide is 700 nm and 

the length is 1000 cells. Five lines represent five different incident powers. The blue line means 

the lowest power and the red line means the highest power. The yellow and purple lines do not 

make much difference when compared to the blue line. However, with regards to high power 

cases, such as the green and red lines, new wavelength components were produced so that the 

wavelength range was extended to a wider one. The red line represents the highest power so it 

also has the widest wavelength range. Again, in order to confirm the generation of wavelength 

components caused by FWM, Figure 4.29 indicates the phase of power spectrums plotted in 
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Figure 4.28 in wavelength domain. With regard to low power cases, the phases are close to 

zero value. When the power increases, the phase is described as quadratic curves and shifts to 

the shorter wavelength range, leading to a wider wavelength range. Therefore, it is FWM that 

causes the broadenings in wavelength domain of the pulses. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.29 Phase of the power spectrums of Al0.25Ga0.75As waveguides with various incident powers in wavelength 

domain. The width is 700 nm and the propagation distance is 1000 cells. The blue line represents the lowest power 

while the red line represents the highest power. 

To compare the efficiency of FWM in Al0.25Ga0.75As waveguide with various widths and to 

demonstrate the importance of phase match condition, relatively long-distance propagation is 

simulated. Fig. 4.30 shows the comparison of the power spectrum of Al0.25Ga0.75As waveguide 

with three widths of 600 nm, 700 nm and 800 nm in wavelength domain. The propagation 

length of waveguide is 7000 cells and is equal to 0.35 mm. The blue line represents the 

waveguide with a width of 600 nm. It has a wider wavelength range when compared with the 

original power spectrum of incident pulse as described in Figure 4.26. However, it has the 

smallest width of wavelength range in Figure 4.28. With regard to the green line, which 

represents the waveguide with a width of 800 nm, its wavelength range is wider than 600 case 
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but narrower than 700 nm case. Therefore, the waveguide with a width of 700 nm has the most 

efficient FWM process. The result agrees with the values of phase mismatch factor plotted in 

Figure 4.23. Considering the coherent length is 350 μm, the absolute value of Δ𝑘 should be 

less than 0.0029 μm−1. When the widths of waveguide are 600 nm and 800 nm, the wavelength 

ranges with required Δ𝑘 are 1.46-1.65 and 1.45-1.66, respectively. With regard to the 700 nm 

case, Δ𝑘 of the almost whole wavelength range 1.2-2.1 μm meets the requirement. Therefore, 

it is concluded that Al0.25Ga0.75As waveguide with a width of 700 nm has the most wavelength 

components involved in the FWM process and achieves the most efficient FWM in TE 

fundamental mode at wavelength 1.55 μm. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.30 Comparison of power spectrums of Al0.25Ga0.75As waveguides with three widths 600 nm, 700 nm and 

800 nm in wavelength domain. The propagation distance is 7000 cells. 

4.2.6 Raman scattering 

Though Kerr-type nonlinearity is dominant in the third-order frequency mixing process in 

Al0.25Ga0.75As waveguide, it is worthwhile checking the effect of Raman scattering. Values of 
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Raman parameters of AlGaAs are inferred from the parameters of GaAs and AlAs that were 

demonstrated in reference [153]. Therefore, the optical phonon frequency 1/𝜏1  and optical 

phonon lifetime 𝜏2 are obtained as follows:          

            Al0.25Ga0.75As:           𝜏1=114 fs;            𝜏2=8.77 ps                                                (4.17a) 

Al0.75Ga0.25As:          𝜏1
′=98.47 fs;         𝜏2

′ ==5.05 ps                                               (4.17b)     

Raman strength[154] has a linear relationship with Kerr nonlinearity. Therefore, the Raman 

response described in equation (2.73) was obtained and was incorporated in the simulation. In 

Figure 4.31, the effect of Raman scattering in third-order frequency mixing process of 

Al0.25Ga0.75As waveguide is indicated. The width of waveguide is 700 nm and lines represent 

the cross-sections whose propagation lengths are 200 cells, 400 cells, 600 cells, 800 cells and 

1000 cells, respectively. Figure 4.31a shows the Kerr effect and Figure 4.31b shows the Kerr 

effect and Raman scattering. The structures of waveguide and incident wave are the same in 

both simulations. The only difference is that the simulation of second sub-figure contains 

Raman scattering of  Al0.25Ga0.75As  and  Al0.75Ga0.25As . The primary trends of power 

spectrums in two graphs are similar, as well as the broadenings of wavelength range. It is 

possible to conclude that Raman scattering does not have a significant influence on the third-

order frequency mixing process in Al0.25Ga0.75As  waveguide in TE fundamental mode at 

wavelength 1.55 μm. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.31a Kerr effect of Al0.25Ga0.75As waveguide with a width of 700 nm. 
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Fig. 4.31b Kerr effect and Raman scattering of Al0.25Ga0.75As waveguide with a width of 700 nm. 

4.2.7 Comparison with experimental results 

Simulation results of Al0.25Ga0.75As waveguide were a good match with the experimental data, 

although the length of waveguide in simulation is relatively short. Figure 4.30 indicates the 

power spectrums of Al0.25Ga0.75As  waveguide with a range of incident powers in the 

simulation. The width of waveguide is 600 nm and the length is 2000 cells, which is equal to 

0.1 mm. In contrast, Figure 4.31 shows the experimental data of the same waveguide but with 

a longer length of 2.5 mm, which is provided by Stuart May. The input wave was defined in 

equation (4.2) with a central wavelength 1550 nm and the duration was determined by the 

optical laser that provides 120-fs (FWHM) optical pulses at a repetition rate of 82 MHz.  

Figure 4.30 and Figure 4.31 compare the power spectrums of Al0.25Ga0.75As waveguides with 

various incident powers in the shorter wavelength range between simulations and experiments. 

In Figure 4.30, dark blue line represents the lowest power (P1) while the purple line represents 

the highest power (P9). In both figures, in lower power cases, when the incident power 

increases, the power spectrum spreads to a broader wavelength range, such as the grey lines. 

With regards to the higher powers, the broadening becomes larger and a new pulse occurs at 

around wavelength 1.15 μm. When the incident power keeps increasing, the power spectrum 

maintains similar wavelength range, leading to the bunching of higher power curves in both 
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figures. In addition, in the two figures, the peak at wavelength 1.55 μm in low power cases 

becomes less obvious in higher power cases. Therefore, the simulation results of nonlinear 

frequency processes in Al0.25Ga0.75As waveguide in agreement with the experimental data.  

 

 

 

 

 

 

 
 

 

Fig. 4.32 Simulation results: power spectrums of Al0.25Ga0.75As waveguides with various incident powers. The 

width is 600 nm and the propagation distance is 2000 cells. 

 

 

 

 

 

 

 

 

Fig. 4.33 Experimental results: power spectrums of Al0.25Ga0.75As waveguides with various incident powers. The 

width is 600 nm and the propagation distance is 2.5 mm. Source: provided by Prof. Marc Sorel and Stuart May. 
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4.3 Al0.3Ga0.7As-on-insulator waveguide 

This section presents the simulation of Al0.3Ga0.7As-on-insulator waveguide. Al0.3Ga0.7As has 

a high refractive index (3.2 at wavelength 1550 nm) while silicon dioxide has a relatively low 

one (1.4 at wavelength 1550 nm). Strong refractive index contrast leads to mode confinement 

in the propagation of an optical pulse. Linear dispersion was incorporated in the simulation 

including material-dependent dispersion and geometry-dependent dispersion. GVD and phase 

mismatch factor were discussed to determine the phase matching condition of FWM in TE 

fundamental mode. Based on the large nonlinear refractive index of Al0.3Ga0.7As, FWM was 

observed in the Al0.3Ga0.7As-on-insulator waveguide.  

4.3.1 Basic model  

 

 

 

 

 

 

 

 

 

Fig. 4.34 Cross-section of Al0.3Ga0.7As-on-insulator waveguide in the simulation. Source: Stuart May. 

Fig. 4.34 describes the cross-section of Al0.3Ga0.7As-on-insulator waveguide in the simulation. 

The core layer is Al0.3Ga0.7As whose height is 0.27 μm and width is between 0.4 and 1 μm. 

The structure and height of core layer were suggested by Stuart May. Because the height of the 

core layer is small, the cladding layer-silicon dioxide-is set as thick as 2 μm to guarantee the 

mode confinement in waveguide. In addition, the outer layer is 10-cell thick PML, ensuring 

the problem domain is limited and the energy of radiation would be absorbed eventually. The 

grid sizes and time step are defined as: 

          ∆𝑥 = 50 nm;         ∆𝑦 = 45 nm;       ∆𝑧 = 50 nm                                                           

PML 

  

  

  

SiO2 

 Al0.3Ga0.7As 0.27 μm 

0.45 μm 

2 μm 

2 μm 

0.45 μm 

0.4-1.0 μm 
X 

Y 

https://www.google.co.uk/search?rlz=1C1GGRV_enGB755GB755&q=geometry-dependent+dispersion&spell=1&sa=X&ved=0ahUKEwj5vO7z8uHaAhWBjqQKHXkXDU8QBQglKAA
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          ∆𝑡 =  
∆𝑦

2𝑐
                                                                                                   (4.18) 

4.3.2 Excitation source 

 

 

 

 

 

 

 

 

 

 

Fig. 4.35 Magnetic field in TE fundamental mode of x-y plane of Al0.3Ga0.7As -on-insulator waveguide at 

wavelength 1.55 μm. The width is 0.7 μm and the effective index of waveguide is 2.29. 

Mode solver was used to incorporate geometric dispersion and to obtain the peak values of 

excitation source in the incident plane. Fig. 4.35 plots the values of the magnetic field in the 

incident x-y plane of Al0.3Ga0.7As-on-insulator waveguide with a width of 0.7 μm in TE 

fundamental mode at wavelength 1550 nm, whose effective index is 2.29.  TE mode is well 

confined and main energy of optical pulse is propagated in the core layer. Consequently, the 

incident wave was obtained based on the Gaussian pulse and values of mode, which is defined 

in formulae (4.2) and (4.3). The duration and time delay are decided by the laser source used 

in the experiment which provides a source of 120-fs (FWHM) optical pulses at a repetition rate 

of 82 MHz. 

4.3.3 Material dispersion 

Material dispersion of AlGaAs was described as Lorentz resonance. In order to determine the 

resonances and parameters, the refractive index of Al0.3Ga0.7As and silicon dioxide should be 

expressed as equation (3.7). According to the equation (4.13), a modified function for refractive 

index of Al0.3Ga0.7As was obtained with four pole pairs when x is equal to 0.3. It was shown 

in the reference [24] that the refractive index of silicon dioxide was based on a Sellmeier 
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equation with three pole pairs. As a result, the relative permittivities and resonant frequencies 

of Al0.3Ga0.7As and silicon dioxide can be obtained as follows: 

 Al0.3Ga0.7As: 

           𝜀∞ = 3.6569;  𝜀𝑠1 =3.6900;  𝜀𝑠2 = 9.9303; 𝜀𝑠3 =5.1555;  𝜀𝑠4 = 4.2452                  (4.19a)                                             

           𝜔1 = 1.8627 eV;                  𝜔2 = 3.4011 eV;        

           𝜔3 = 0.0333 eV;                  𝜔4 = 0.04523 eV                                                        (4.19b)       

Silicon dioxide: 

           𝜀∞ = 1;      𝜀𝑠1 =1.6635;      𝜀𝑠2 = 1.4407;      𝜀𝑠3 =1.8990                                      (4.20a)                                              

           𝜔1 = 18.6523 eV;                𝜔2 = 10.7875 eV;                𝜔3 = 0.1253 eV             (4.20b)     

In Figure 4.36, the refractive indices in a wavelength range 1.2 - 2.0 μm have been plotted. The 

red line represents Al0.3Ga0.7As and the blue line represents silicon dioxide, both of which 

decrease gradually when the wavelength increases. It is clear that the core layer has a higher 

refractive index than the cladding layer.   

 

 

 

 

 

 

 

 

Fig. 4.36 Refractive index of AlGaAs and silicon dioxide in a wavelength range 1.2-2.0 μm. Red line represents 

Al0.3Ga0.7As and blue line represents silicon dioxide. 

Now that geometric dispersion can be incorporated in mode solver and material dispersion can 

be incorporated based on the equations (4.19-4.20), it is possible to simulate the linear 

dispersion of Al0.3Ga0.7As-on-insulator waveguide. In Figure 4.37, the propagation of energy 

flux, over time, of four cross-sections in Al0.3Ga0.7As-on-insulator waveguide is shown. Sub-
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a b 

c d 

FWHM = 48 fs FWHM = 50 fs 

FWHM = 55 fs FWHM = 53 fs 

figure (a) represents the incident plane while (b)-(d) are cross-sections that are 400 cells, 800 

cells and 1200 cells away from the incident plane, respectively. Compared to the input pulse in 

sub-figure (a), which has a peak value of 201 W and FWHM 48 fs, the pulses in subfigures (b)-

(d) have smaller peak values but wider widths in time domain. The pulse with the smallest 

amplitude 97 W is in the sub-figure (d) and its FWHM is 55 fs. Therefore, the longer the 

distance the optical pulse is propagated, the lower peak value and wider width it has, and this 

is caused by linear dispersion. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.37 Propagation of energy flux in Al0.3Ga0.7As-on-insulator waveguide in time domain. Energy flux of four 

cross-sections are described in time domain. Subfigure (a) is the incident plane and (b), (c) and (d) are cross-

sections where the propagation lengths are 400∆z, 800∆z and 1200∆z, respectively. 

4.3.4 Phase matching condition of FWM 

In order to evaluate the nonlinear interactions and determine the phase matching condition of 

FWM, Figures 4.38 and 4.39 plot GVD, D and the phase mismatch factor ∆𝑘 of Al0.3Ga0.7As-
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on-insulator waveguide in TE fundamental mode. In Figure 4.38(b), GVD and D parameters 

of waveguides are shown with various widths at wavelength 1.55 μm. GVD starts from a 

positive value of 1.03 ps·ns/km at width 400 nm, then drops sharply to a negative value -0.42 

ps·ns/km as the width increases to 500 nm. It then rises to a positive value of 0.42 ps·ns/km at 

width 900 nm. It is clear that there are two zero points of GVD in the figure; one is around 440 

nm, the other one is 700 nm. To take a further comparison of the GVD of waveguides with 

these two widths, Figure 4.38(a) indicates the GVD of waveguides with various widths in TE 

fundamental modes in a wavelength range from 1.3-1.8 μm. Seven lines represent the 

waveguides with seven widths between 400 nm and 900 nm. When the width is as small as 440 

nm, higher order terms of dispersion matter and GVD are dramatically affected by the change 

of wavelength. In contrast, with regards to 700 nm, the GVD has a more stable trend and keeps 

relatively small values in the whole wavelength range. Therefore, 700 nm is better than 440 

nm for treatment as the zero point of GVD in TE fundamental mode at 1.55 μm. 

 

 

 

 

 

 

 

 

 

Fig. 4.38 (a) GVD of Al0.3Ga0.7As-on-insulator waveguides with various widths in TE fundamental mode at 

wavelength 1.3-1.8 μm; (b) GVD and D of Al0.3Ga0.7As-on-insulator waveguides with various widths in TE 

fundamental mode at wavelength 1.55 μm. 
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According to D parameter, the waveguide has normal dispersion when the width is less than 

440 nm or larger than 700 nm; the waveguide has anomalous dispersion when the width is 

between 440 and 700 nm. In Figure 4.37, the width of simulated waveguide was 400 nm so it 

contained normal dispersion and the pulse was up-chirped. According to formula (4.9), the 

spreading of optical pulse could be calculated. The bandwidth of excitation source is 
𝑐

𝜆1
− 

𝑐

𝜆2
, 

where 𝜆1 and 𝜆2 are 1.1 and 2 μm, respectively. The GVD of waveguide with a width of 900 

nm is 1.04 ps·ns/km and the propagation distance is 1200 cells. Therefore, the chirp is 

calculated as 6.9 fs, which confirmed the broadening 7 fs in Figure 4.37. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.39 Phase mismatch factors of Al0.3Ga0.7As-on-insulator waveguides with various widths in TE fundamental 

mode. The pump wavelength is 1.55 μm and the signal wavelength range is 1.2-2.0 μm. 

In addition, Figure 4.39 compares the values of Δ𝑘 of  Al0.25Ga0.75As waveguides with six 

widths in TE fundamental mode when the pump wavelength is 1.55 μm and the signal 

wavelength range is 1.2-2.0 μm.  The widths of waveguides are 440 nm, 500 nm, 600nm, 700 

nm, 800 nm and 900 nm, respectively. As was discussed above, 440 nm and 700 nm satisfy the 
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zero value of GVD so Δ𝑘  in these two cases are quartic. When the width is 700 nm, Δ𝑘 

maintains small values in the whole wavelength range from 1.2-2.0 μm. However, in the 440 

nm case, the absolute value of Δ𝑘  is small in a relatively narrow wavelength range and 

increases significantly as the difference between the signal wavelength and pump wavelength 

grows. When the width is 800 nm and 900 nm, Δ𝑘 is quadratic and its absolute value grows 

dramatically as the difference between the pump wavelength and signal wavelength increases. 

With regard to the widths 500 nm and 600 nm, Δ𝑘 shows a quartic curve because the difference 

between 440 nm and 700 nm is small, as are their GVD values, but they still have a poorer 

situation for phase matching than the 700 nm case. In conclusion, compared with the 700 nm 

case, Δ𝑘 of waveguides with those four widths have larger absolute values, leading to a shorter 

coherent length and a less efficient FWM process. As a consequence, it has been shown that 

the width 700 nm is the phase matching condition of FWM in  Al0.25Ga0.75As waveguide in 

TE fundamental mode at wavelength 1.55 μm. 

 4.3.5 Results of FWM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.40 FFT of energy flux in Al0.3Ga0.7As-on-insulator waveguide with a width of 700 nm. Sub-figures 

represent the incident plane and cross-sections where the propagation lengths are 400∆z and 800∆z, respectively. 



98 
 

According to the phase matching condition of FWM discussed in the previous section, the 

width of Al0.3Ga0.7As-on-insulator waveguide was set as 700 nm in TE fundamental mode at 

wavelength 1550 nm. The parameter of Kerr-type nonlinearity was obtained based on the 

nonlinear refractive index of AlGaAs[152]. In the simulation shown in Figure 4.40, the 

excitation source contains two frequencies. As depicted in the first sub-figure, the frequency 

components of the excitation source are 187.5 THz and 200 THz, where the corresponding 

wavelengths are 1.6 and 1.5 μm. Therefore, the FFT of energy flux shows the difference and 

sum of frequencies: 0 THz, 12.5 THz, 375 THz, 387.5 THz and 400 THz. When the propagation 

distance increases to 400 cells, pulses spread to wider frequency ranges and more peaks occur. 

The final sub-figure represents the cross-section that is 800 cells away from the incident plane, 

where the broadenings are more dramatic and pulses have the widest frequency range because 

of the generation of most new frequency components in FWM process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.41 FFT of energy flux over three cross-sections of Al0.3Ga0.7As-on-insulator waveguide with a width of 

700 nm. Sub-figures represent the incident plane and cross-sections where the propagation lengths are 600∆z and 

1000∆z, respectively. 
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The simulation in Figures 4.41-4.43 is different from the simulation in Figure 4.40 and has an 

excitation source which contains a narrow range of frequency components. Figure 4.41 

illustrates the FFT of energy flux over three cross-sections of Al0.3Ga0.7As -on-insulator 

waveguide in the frequency domain. The first sub-figure represents the incident plane so that 

the frequency components are the same as the incident pulse. The central frequency is 194 THz 

and its corresponding wavelength is 1.55 μm. Therefore, the FFT of energy flux indicates a 

double-frequency pulse at 388 THz and a difference-frequency pulse at 0 THz. Then, the 

second cross-section is 600 cells away from the incident plane; its pulses have broadenings 

when compared with the original pulses. More peaks occur in the right pulse. When the 

propagation distance increases to 1000 cells, both pulses further spread so that the frequency 

ranges are the widest in the figure. Therefore, more wavelength components are produced when 

the pulse is propagated a longer distance in the Al0.3Ga0.7As-on-insulator waveguide. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.42 Power spectrums of Al0.3Ga0.7As -on-insulator waveguides with various propagation lengths in 

wavelength domain. The width of waveguide is 700 nm. The lines represent wavelength components of the power 

propagates through the incident plane and cross-sections where the propagation lengths are 100∆z, 200∆z, 400∆z, 

600∆z, 800∆z and 1000∆z, respectively. 
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To offer a clear view on the generation of wavelength components, Figure 4.42 plots the power 

spectrums of Al0.3Ga0.7As -on-insulator waveguide with various propagation lengths in 

wavelength domain. In the incident plane, the power spectrum is described in the blue line and 

it is used as an initial power pulse for comparison. In short-distance cases, such as 100 and 200 

cells, there are no obvious changes. When the propagation distance increases to 400 cells, 

broadenings occur on both sides of the power spectrum so that the wavelength range is 

extended. The broadenings keep spreading and the peak value keeps decreasing as the 

propagation distance grows to 600 cells, 800 cells and 1000 cells, respectively. The broadening 

on the left side - shorter wavelength range - is more significant than the one on the right side.  

 

 

 

 

 

 

 

 

 

 

Fig. 4.43 Phase of the power spectrums of Al0.3Ga0.7As-on-insulator waveguides with various propagation lengths 

in wavelength domain. The width of waveguide is 700 nm. The lines represent the phase of wavelength 

components of the power propagates through the incident plane and cross-sections where the propagation lengths 

are 100∆z, 200∆z, 400∆z, 600∆z, 800∆z and 1000∆z, respectively. 

In addition, the phase of power spectrums in Figure 4.42 is indicated in Figure 4.43. The phase 

of power pulse is zero in the incident plane and is quadratic for other cases. When the 

propagation distance is short, the phase is close to zero. In 400 cells case, the width of 
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wavelength range of phase becomes wider and it continues to grow and shift to the shorter 

wavelength range as the propagation distance increases to 600 cells, 800 cells and 1000 cells, 

respectively. This result explains the phenomenon in Figures 4.41 and 4.42 and confirms that 

the generation of new wavelength components is caused by FWM. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.44 Power spectrums of Al0.3Ga0.7As-on-insulator waveguides with various incident powers in wavelength 

domain.  The width is 700 nm and the propagation distance is 1000 cells. The blue line represents the lowest 

power while the green line represents the highest power. 

Figure 4.44 also compares the power spectrums of Al0.3Ga0.7As-on-insulator waveguide with 

various incident powers and a certain propagation distance. The width of the waveguide is 700 

nm and the propagation distance is 1000 cells. Five lines represent five different incident 

powers, where the blue line means the lowest power and the green line means the highest power. 

The blue line has the smallest wavelength range and the red line does not show much difference. 

When the power increases to the yellow line, the broadenings occur on both sides of the power 

spectrum and the wavelength range becomes wider. With regards to the high power cases, such 

as the purple and green lines, the broadenings become more significant and the width of the 

wavelength range is further extended. In addition, the phase of the power spectrums in Figure 



102 
 

4.44 is illustrated in Figure 4.45. Phase is described as quadratic curves for all the cases. The 

higher the incident power, the wider the wavelength range of the phase is. Therefore, it is FWM 

that leads to the generation of new wavelength components in Figure 4.44.  

 

Fig. 4.45 Phase of the power spectrums of Al0.3Ga0.7As-on-insulator waveguides with various incident powers in 

wavelength domain.  The width is 700 nm and the propagation distance is 1000 cells. The blue line represents the 

lowest power while the green line represents the highest power. 

Furthermore, to prove the significance of phase matching condition, the FWM results of 

Al0.3Ga0.7As-on-insulator waveguide with various widths are compared. Three widths are 600 

nm, 700 nm and 900 nm, where 700 nm satisfies the phase matching condition of FWM in 

Al0.3Ga0.7As-on-insulator waveguide in TE fundamental mode at wavelength 1.55 μm. The 

comparison of power spectrums of Al0.3Ga0.7As-on-insulator waveguide with three widths in 

the wavelength domain is shown in Figure 4.46. The propagation length of the waveguide is 

4000 cells and is equal to 200 μm. The blue line represents the power spectrum of the 

waveguide with a width of 600 nm. It has a relatively wide wavelength range when compared 

with the initial power spectrum depicted in Figure 4.40. However, in Figure 4.46, the 

wavelength range of blue line is wider than 900 nm case but is narrower than 700 nm case. 
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Therefore, the waveguide with a width of 700 nm shows the most efficient FWM in the 

comparison. This result is also in agreement with the values of Δ𝑘 plotted in Figure 4.39. The 

coherent length is 200 μm, so the absolute value of Δ𝑘  should be less than 0.005 μm−1 . 

Therefore, as shown in Figure 4.39, the wavelength ranges of waveguides with widths 600 nm, 

700 nm and 900 nm have the desired Δ𝑘  are 1.39-1.74 μm, 1.24-2 μm and 1.42-1.7 μm, 

respectively. Therefore, Al0.3Ga0.7As-on-insulator waveguide with a width of 700 nm has the 

most wavelength components involved in nonlinear interaction in a coherent length of 200 μm 

and achieves the most efficient FWM process in TE fundamental mode at wavelength 1.55 μm. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.46 Comparison of power spectrums of Al0.3Ga0.7As-on-insulator waveguide with three widths 600 nm, 700 

nm and 900 nm in wavelength domain. The propagation distance is 4000 cells.  

4.4 Conclusion 

This chapter has introduced the simulations of FWM processes with FDTD algorithm discussed 

in previous two chapters in three waveguides: the GaAs suspended waveguide, the deep-etched 

multi-layer Al0.25Ga0.75As  waveguide and the Al0.3Ga0.7As -on-insulator waveguide. The 
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excitation source was obtained through Gaussian pulse and TE mode at wavelength 1.55 μm. 

In these waveguides, there were two widths that satisfied zero-GVD and the waveguide with 

the smaller width was strongly affected by the high-order terms of dispersion, so that the bigger 

width was better and chosen for phase matching, which was proved by phase mismatch factor. 

GaAs suspended waveguide was a relatively simple example. Because of the high refractive 

index and large co-efficient of Kerr-type nonlinearity of GaAs, super-continuum and 

generation of frequency comb based on FWM were realized when the width of waveguide was 

760 nm and phase matching condition was achieved. However, TPA of GaAs was not taken 

into account and it may cause power loss and influence FWM. In contrast, AlGaAs has the 

advantages of GaAs and small TPA co-efficient, as well as the flexibility of adjusting refractive 

index in a wide range, so that it is ideal for real optical devices. In the simulation of the deep-

etched multi-layer Al0.25Ga0.75As  waveguide, the results of GVD and phase matching 

condition of FWM were similar to the similar waveguides presented in the references. Power 

spectrums and their phases were analysed and compared between the waveguides with various 

propagation distances, incident powers or widths. Results of FWM were observed in the 

waveguide with a width of 700 nm. Although Kerr effect was dominant in the deep-etched 

multi-layer Al0.25Ga0.75As waveguide, Raman scattering was incorporated to check its effect. 

The simulation results of the waveguide with a width of 600 nm showed a good agreement 

with the super-continuum in the experimental measurements. With regard to the Al0.3Ga0.7As-

on-insulator waveguide, it has a newly designed structure and phase matching condition of 

FWM was fulfilled when the width was 700 nm. Comparisons of power spectrums and 

corresponding phases between the waveguides with various propagation distances, incident 

powers or widths were shown. It was demonstrated that efficient FWM was realized when the 

phase matching condition was satisfied. 
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Chapter 5 

Four-Wave Mixing of Silicon-Based Waveguides 

 

This chapter presents the simulations of four-wave mixing process for two silicon-based 

waveguides: the silicon-on-insulator waveguide and the silicon rich silicon nitride (SRSN)-on-

insulator waveguide. Models and methods to incorporate linear dispersion and nonlinearity are 

demonstrated. Either linear dispersion or nonlinearity could be turned on or turned off so that 

it was flexible enough to check the linear and nonlinear characteristics. FWM was observed in 

both waveguides based on Kerr-type nonlinearity.  

5.1 Silicon-on-insulator waveguide 

A silicon-on-insulator waveguide is a typical waveguide because of the mature and low-cost 

fabrication technology of silicon, as well as the potential application in integrated circuits. The 

contrast of refractive index between silicon and silicon dioxide ensures strong mode 

confinement inside the waveguide. In simulation, both material-dependent dispersion and 

geometric-dependent dispersion are taken into account. Kerr-type nonlinearity is incorporated 

to simulate the FWM process. The phase matching condition of FWM is discussed based on 

the GVD and phase mismatch factor. Moreover, waveguides with various distances, incident 

powers or widths are compared to show the results of FWM.  

5.1.1 Basic model 

The structure of silicon-on-insulator waveguide in the simulation is depicted in Figures 5.1 and 

3.1. X-y plane is bounded by PML absorbing boundary conditions while the z-direction has 

cyclic boundary conditions. Figure 5.1 depicts a cross-section of the silicon-on-insulator 

waveguide. The core layer is silicon, according to the suggestion from Professor David 

Hutchings, the thicknesses of silicon wafers in the experiments are 0.22 μm, 0.34 μm and 

0.4 μm. The height is 0.22 μm and the width is between 0.3 and 0.8 μm because this set of 

values do not allow the existence of high-order modes in the waveguide and provide the 
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possibility of finding zero value of GVD when the excitation source is based on TE 

fundamental mode. In contrast, the cladding layer is 1-μm thick silicon dioxide and the 

thickness was decided in mode solver to make sure the mode was confined. To cut off the 

problem domain and absorb the energy escapes from the waveguide, the outer layer is 10-cell 

thick PML absorbing boundary. The grid sizes and the time step are defined as: 

         ∆𝑥 = 50 nm;       ∆𝑦 = 44 nm;       ∆𝑧 = 50 nm                                                           

         ∆𝑡 =
∆𝑦

2𝑐
                                                                                                        (5.1) 

 

 

 

 

 

 

Fig. 5.1 Cross-section of silicon-on-insulator waveguide in the simulation.  

5.1.2 Excitation source  

To build an excitation source of waveguide for FDTD simulation, a mode solver toolbox is 

utilized to incorporate geometric dispersion and to calculate the TE fundamental mode. Figure 

5.2 describes the peak values of the magnetic field in the incident x-y plane of silicon-on-

insulator waveguide (width = 0.4 μm) in TE fundamental mode at wavelength 1550 nm with 

an effective index of 2.25. Apart from PML area, the core layer and the cladding layer of the 

waveguide have the initial values. In Figure 5.2, TE fundamental mode is well confined and 

the main energy of optical pulse is propagated in the core layer. According to the values of the 

magnetic field shown in Figure 5.2 and formula (4.2), the excitation source is determined. 

When simulating the FWM process, the duration and time-delay constant are decided by the 

laser source used in experiment, which provides a source of 120-fs (FWHM) optical pulses at 

a repetition rate of 82 MHz. 
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Fig. 5.2 Magnetic field in TE fundamental mode in x-y plane of silicon-on-insulator waveguide at wavelength 

1.55 μm. The width of core layer is 0.4 μm and the effective index of waveguide is 2.25. 

5.1.3 Material dispersion  

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 Refractive index of silicon and silicon dioxide in a wavelength range 1.2-2.0 μm. The red line represents 

silicon and the blue line represents silicon dioxide. 

Material dispersions of silicon and silicon dioxide are described as the sum of Lorentz 

resonances. In order to gain the parameters and incorporate the linear dispersion in the 

simulation, the refractive index should be expressed as a Sellmeier equation. The refractive 

index of silicon[24] is presented as a Sellmeier equation with three pole pairs. Therefore, the 

relative permittivities and resonant frequencies of silicon are obtained:  
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         𝜀∞=1;              𝜀𝑠1=11.6684;             𝜀𝑠2=1.0030;             𝜀𝑠3=2.5413                       (5.2a)                                                         

         𝜔1=4.1120 eV;                      𝜔2=1.0926 eV;                     𝜔3=0.0011 eV                  (5.2b)    

The relative permittivities and resonant frequencies of silicon dioxide were presented in 

formulae (4.16-4.17). Based on the Sellmeier equations, the refractive indices of silicon and 

silicon dioxide over a limited wavelength range 1.2–2.0 μm are plotted in Figure 5.3. The red 

line represents silicon while the blue line represents silicon dioxide, both of which decrease 

slowly when the wavelength increases. At wavelength 1.55 μm, the refractive index of silicon 

and silicon dioxide are 3.478 and 1.444, respectively. Therefore, silicon has a much higher 

refractive index than silicon dioxide, leading to a strong refractive index contrast between the 

core layer, the cladding layer and mode confinement.      

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 Propagation of energy flux in silicon-on-insulator waveguide in time domain. Sub-figure (a) is the incident 

plane while (b), (c) and (d) are cross-sections where propagation lengths are 400∆z , 800∆z  and 1200∆z , 

respectively. 

FWHM = 24 fs  
a b 

c d 

FWHM = 16 fs 

FWHM = 33 fs FWHM = 41 fs   
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Together with the mode solver, both geometric dispersion and material dispersion of silicon-

on-insulator waveguide could be incorporated in the simulation. Group velocity dispersion is 

observed in Figure 5.4 where the pulse contains a range of frequency components. The 

propagation of energy flux over four cross-sections of silicon-on-insulator waveguide is shown 

in time domain. In addition, the FWHM of pulses in sub-figures was measured to compare the 

width. Sub-figure (a) represents the incident plane. It has a peak value of 79.8 W and FWHM 

16 fs. When the propagation distance increases to 400 cells, 800 cells and 1200 cells in sub-

figures (b) - (d), the magnitude of energy flux pulse drops gradually to 49.9 W while FWHM 

grows to 41 fs. This phenomenon is caused by linear dispersion, which causes a range of 

velocities among various frequencies: lower frequency components run faster than higher ones. 

Therefore, the FWHM of pulse in time domain becomes larger as the propagation distance 

increases. 

5.1.4 Phase matching condition of FWM 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5 (a) GVD of silicon-on-insulator waveguide with various widths in TE fundamental mode at wavelength 

1.5-1.6 μm; (b) GVD and D of silicon-on-insulator waveguide with various widths in TE fundamental mode at 

wavelength 1.55 μm. 
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Similar to AlGaAs waveguides, in the silicon-on-insulator waveguide, GVD and phase 

mismatch factor Δ𝑘 are also utilized to evaluate the overlap and nonlinear interactions among 

waves in FWM process as they are influenced by linear dispersion. As discussed in Chapter 3, 

Δ𝑘=0 is required for phase matching. For small frequency shifts, the odd terms in the Taylor 

expansion are cancelled and GVD is the leading term. Therefore, for small changes in 

frequency, Δ𝑘 is generally a quadratic equation but it would become a quartic equation when 

GVD is approximately zero. According to the approach introduced in Section 3.5.1, the GVD 

of silicon-on-insulator waveguide with various widths in TE fundamental mode is obtained and 

plotted in Figure 5.5. D parameter, which is defined in equation (4.8), is also indicated in the 

second y-axis in sub-figure (b). 

In Figure 5.5(a), seven lines represent the GVD of a silicon-on-insulator waveguide with widths 

of 300 nm, 350 nm, 400 nm, 500 nm, 600 nm, 700 nm and 800 nm, respectively. For short-

width cases, such as 300 nm and 350 nm, GVD maintains positive values over the wavelength 

range 1.5-1.6 μm and rises sharply as the wavelength increases. When the width is 400 nm, 

GVD starts from a negative value of -1.1 ps·ns/km at wavelength 1.5 μm and increases 

gradually to a positive value of 0.9 ps·ns/km at wavelength 1.6 μm. As for larger widths such 

as 500 nm, 600 nm, 700 nm and 800 nm, GVD lines have relatively stable trends and keep 

negative values over the whole limited wavelength range. In addition, Figure 5.5(b) provides a 

clear comparison of GVD and D of silicon-on-insulator waveguides with several widths at 

wavelength 1.55 μm. GVD points start from a relatively large positive value of 14 ps·ns/km at 

short width 300 nm, then drops sharply at first and decreases more slowly afterwards to a 

negative value of -1.9 ps·ns/km as the width rises to 500 nm. When width is 400 nm, GVD 

approaches zero. From the smallest value at width 500 nm, GVD grows slowly as the width 

increases to 800 nm but it keeps its negative values. Theoretically, there are two zero-points of 

GVD: one is around 400 nm and the other one is larger than 800 nm. However, when the width 

is larger than 800 nm, high-order modes are propagated in the waveguide and this may cause 

radiation and the loss of power. Therefore, width 400 nm is chosen as the zero point of GVD 

for the further analysis of Δ𝑘. 

With regard to D parameter, it is negative and the waveguide has normal dispersion when the 

width is less than 400 nm; it is positive and the waveguide has anomalous dispersion when the 

width is between 400 and 800 nm. In Figure 5.4, the width of simulated waveguide was 350 

nm so it contained normal dispersion and the pulse was up-chirped. The bandwidth of 
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excitation source is 
𝑐

𝜆1
− 

𝑐

𝜆2
, where 𝜆1 and 𝜆2 are 1.1 and 2 μm, respectively. The GVD of 

waveguide with a width of 350 nm is 3.8 ps·ns/km and the propagation distance is 1200 cells. 

Therefore, the chirp is calculated as 24.6 fs, which confirmed the broadening 25 fs in Figure 

5.4.  

 

 

 

 

 

 

 

 

 

Fig. 5.6 Phase mismatch factors of silicon-on-insulator waveguides with various widths in TE fundamental mode. 

The pump wavelength is 1.55 μm and the signal wavelength range is 1.3-1.8 μm. 

In Figure 5.6, Δ𝑘 of silicon-on-insulator waveguide with various widths in TE fundamental 

mode is compared when the pump wavelength is 1.55 μm and the signal wavelength is 1.3-1.8 

μm. Points with four colors represent widths of 300 nm, 350 nm, 400 nm and 500 nm, 

respectively. There is no significant difference between the four widths when the wavelength 

range is 1.54-1.56 μm and Δ𝑘 is around zero, which is ideal for phase matching. However, 

apart from this narrow range, the values of Δ𝑘 vary.  As shown in the first sub-figure, when the 

width is 400 nm, Δ𝑘 is a quartic equation of wavelength and maintains relatively small values 

in the whole range. In contrast, for the other three widths, Δ𝑘  is quadratic and has larger 

absolute values, causing shorter coherent lengths. Now that phase matching condition is 

decided by Δ𝑘, it is possible to draw the conclusion that at wavelength 1.55 μm, width 400 nm 
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is a good choice for phase matching of FWM in TE fundamental mode. In reference [155], the 

observation of FWM phenomenon was reported in silicon wire waveguide with a similar 

structure: the height of core layer is 200 nm and the width is 400 nm, when the wavelength of 

the pump and idler light were 1546.9 nm and 1547.7 nm, respectively. 

5.1.5 Results of FWM 

The previous section discussed that a width of 400 nm satisfies the phase matching condition 

when the excitation source is based on the TE fundamental mode and the range of wavelength 

components is from 1.3 to 1.8 μm. Therefore, 400 nm is applied as the width of waveguide to 

simulate the FWM process. The Kerr effect is incorporated into the simulation. The nonlinear 

refractive index of silicon 𝑛2 = 4×10−14 cm2 · W−1 is demonstrated in the reference [34] and 

the real part of Kerr parameter is obtained according to formula (2.70).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7 FFT of energy flux over three cross-sections of silicon-on-insulator waveguide with a width of 400 nm. 

Sub-figures represent the incident plane and cross-sections where the propagation lengths are 600∆z and 1000∆z, 

respectively. 
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Figure 5.7 shows the FFT of energy flux over three cross-sections of a silicon-on-insulator 

waveguide. The first sub-figure represents the incident plane so that the frequency range is the 

same as the excitation source, which contains a narrow range of frequency components with 

the central frequency 194 THz, whose corresponding wavelength is 1.55 μm. As a result, the 

FFT of energy flux shows the sum frequency 388 THz in the right pulse and a difference 

frequency in the left pulse. In contrast, the cross-section in the second sub-figure is 600 cells 

away from the incident plane. The width of pulses becomes wider and two peaks occur in the 

double-frequency pulse. As for the third cross-section, the propagation distance increases to 

1000 cells. The broadenings are more significant in pulses and more peaks occur in the double-

frequency pulse because of the generation of new frequency components.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.8 Power spectrums of silicon-on-insulator waveguides with various lengths in wavelength domain. The 

width of waveguide is 400nm. The lines represent wavelength components of the power propagated through the 

incident plane and cross-sections where the propagation lengths are 200∆z, 400∆z, 600∆z, 800∆z and 1000∆z, 

respectively. 

In order to have a better understanding of the FWM process in the silicon-on-insulator 

waveguide, Figure 5.8 compares the wavelength components of the power spectrums in various 
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cross-sections of silicon-on-insulator waveguide. Power is described in unit dBm, as being 

calculated by energy flux and parameters of laser source. The first blue line represents the 

incident plane and it provides an initial power spectrum for the comparison. The second line 

does not show much difference because of its short propagation length which is 200 cells. Then 

the third red line depicts the power spectrum of the cross-section which is 400 cells away from 

the incident plane. It has a wider wavelength range than the blue line with broadenings on both 

sides. The broadenings of pulse become wider as the distance of propagation increases to 600 

and 800 cells. When the propagation length grows to 1000 cells, more pulses occur and more 

new wavelength components are generated.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.9 Phase of the power spectrums of silicon-on-insulator waveguides with various lengths in wavelength 

domain. The width of waveguide is 400nm. The lines represent the phase of wavelength components of the power 

propagated through the incident plane and cross-sections where the propagation lengths are 200∆z, 400∆z, 600∆z, 

800∆z and 1000∆z, respectively. 

Furthermore, Figure 5.9 indicates the phase of power spectrums in Figure 5.8 in wavelength 

domain. For the incident pulse, the phase is zero in a wavelength range 1.4-1.7. When the 

propagation distance increases, the phase becomes a quadratic curve and the range of 
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wavelength components becomes wider. In addition, it shifts to the shorter wavelength range. 

Therefore, it is proved that the broadenings in Figures 5.7 and 5.8 are caused by Kerr-type 

nonlinearity, which is treated as FWM process here. 

Other than the propagation distance, incident power is also a factor which affects the efficiency 

of FWM. Figure 5.10 indicates the power spectrums of silicon-on-insulator waveguides with a 

range of incident power but a certain propagation distance. The width of the waveguide is 400 

nm and the length is 1000 cells. The five lines in the figure represent five different incident 

powers and the blue line means the lowest power and the green line means the highest power. 

Compared to the blue line, the red line and yellow line do not make much difference. However, 

when the power increases to the purple and green lines, broadenings occur on both sides and 

the wavelength ranges become wider, meaning more wavelength components were generated. 

Therefore, the higher the incident power is, the more efficient the FWM is.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.10 Power spectrums of silicon-on-insulator waveguides with various incident powers in wavelength domain. 

The width is 400 nm and the propagation distance is 1000 cells. The blue line represents the lowest power while 

the green line represents the highest power. 
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Similarly, the corresponding phase of the power spectrums in Figure 5.10 is plotted in Figure 

5.11 to determine the generation of wavelength components is resulted from FWM. In Figure 

5.11, as for low power cases, phase is close to zero in the incident wavelength range. With 

regards to the relatively high power cases, such as purple and green lines, phase is shown as 

quadratic curve and the wavelength range is extended. In addition, the phase shifts to the shorter 

wavelength range. Therefore, the phenomenon described in Figures 5.10 is caused by FWM. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11 Phase of the power spectrums of silicon-on-insulator waveguides with various incident powers in 

wavelength domain. The width is 400 nm and the propagation distance is 1000 cells. The blue line represents the 

lowest power while the green line represents the highest power. 

To further compare the efficiency of FWM and prove the significance of phase matching in 

silicon-on-insulator waveguide, waveguides with various widths but the same incident power 

and propagation distance are simulated. According to the values of GVD and phase mismatch 

factor plotted in Figure 5.5 and 5.6, three widths of 300 nm, 400 nm and 500 nm were chosen, 

of which 400 nm is close to phase match condition. Figure 5.12 shows the comparison of power 

spectrums of silicon-on-insulator waveguide with these three widths in wavelength domain. 
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The length of the waveguide is 1000 cells and is equal to 50 μm. In Figure 5.12, when the width 

is 300nm, the power spectrum spreads but it still has a relatively narrow wavelength range. In 

the 500 nm case, the wavelength range of power pulse is wider than the one with 300 nm but 

is smaller than the one with 400 nm. Therefore, the power spectrum of the 400 nm case has the 

widest wavelength range with generated new pulses. The results discussed above are in 

agreement with the values of Δ𝑘 in Figure 5.6. To gain a coherent length of 50 μm, the absolute 

value of Δ𝑘 should be less than 0.02 μm−1. When the width is 400 nm, the range of signal 

wavelength with the required Δ𝑘 is the widest one: 1.35-1.85 μm. With regards to widths of 

300 nm and 500 nm, the corresponding wavelength range is 1.51-1.61 μm and 1.42-1.70 μm, 

respectively. As a consequence, the silicon-on-insulator waveguide with a width of 400 nm has 

the most efficient FWM process in the TE fundamental mode at wavelength 1.55 μm. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.12 Comparison of power spectrums of silicon-on-insulator waveguides with three widths 300 nm, 400 nm 

and 500 nm in wavelength domain. The propagation distance is 1000 cells. 

5.2 Silicon rich silicon nitride-on-insulator waveguides 
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With a larger energy gap of material, silicon nitride is an alternative to silicon in SOI waveguide. 

Moreover, at a wavelength of 1550 nm, silicon nitride does not have TPA which exists in 

silicon. According to the variation in the SiH4/N2 flow ratio, the refractive index of silicon 

nitride could be adjusted in a wide range of 1.57-2.76. In this simulation, the refractive index 

depends on the measurement result provided by Stuart May in the experiment which is 2.42 at 

wavelength 1550 nm, meaning silicon nitride contains rich silicon. Therefore, silicon nitride 

here is called silicon rich silicon nitride. In the simulation of SRSN-on-insulator waveguide, 

both linear dispersion and Kerr-type nonlinearity were taken into consideration. Results of 

FWM were observed and the significance of phase matching condition is discussed. 

5.2.1 Basic model  

 

 

 

 

 

 

Fig. 5.13 Cross-section of SRSN-on-insulator waveguide in the simulation. 

The cross-section - x-y plane - of SRSN-on-insulator waveguide in the simulation is described 

in Figure 5.13 and z-direction has cyclic boundary conditions. The core layer is SRSN the 

height of which is 0.7 μm and width is 0.4-0.9 μm. The height of SRSN was suggested by 

Stuart May based on the experimental condition. Because the refractive index contrast between 

SRSN and silicon dioxide is not as strong as that between silicon and silicon dioxide, the 

thickness of the cladding layer is set as 3 μm, ensuring the optical wave is propagated as a well 

confined mode inside the waveguide. In addition, the outer layer is 10-cell thick PML so that 

the problem domain is limited and energy escape away from the waveguide will be absorbed 

eventually. Based on the size of the waveguide and wavelength components of pulse, the grid 

size is uniform and the time step has been decided by the grid size:  
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          ∆𝑥 = ∆𝑦 = ∆𝑧 = 50 nm;                           ∆𝑡 =  
∆𝑥

2𝑐
                                         (5.3)                            

5.2.2 Excitation source 

The mode solver in MATLAB has been utilised to gain the TE fundamental mode of the SRSN-

on-insulator waveguide. The SRSN core layer and silicon dioxide cladding layer have initial 

values while the initial value of the PML area is zero. Figure 5.14 shows the magnetic field in 

the incident x-y plane of waveguide (width = 0.5 μm) in TE fundamental mode at wavelength 

1550 nm, where the effective index is 1.98. The TE mode is well confined and the main energy 

of the optical pulse is propagated in the core layer. In the simulation, the excitation source was 

a combination of Gaussian pulses and amplitude, which was determined by the values of fields 

in Figure 5.14. Formula (4.2) contains a range of frequency components and formula (4.3) 

contains two frequencies. The duration and time delay are decided by the laser source used in 

the experiment which provides a source of 120-fs (FWHM) optical pulses at a repetition rate 

of 82 MHz. 

 

 

 

 

 

 

 

Fig. 5.14 Magnetic field in TE fundamental mode of x-y plane of silicon SRSN-on-insulator waveguide at 

wavelength 1.55 μm. The width of core layer is 0.5 μm and the effective index of waveguide is 1.98. 

5.2.3 Material dispersion 

Lorentz resonance is used to describe the material dispersion of SRSN and silicon dioxide. The 

relative permittivities and resonant frequencies of silicon dioxide were proposed in formulae 
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(4.16-4.17). With regard to silicon nitride, its refractive index has a wide range, being 

determined by the Si/N ratio. In this simulation, the refractive index of SRSN was based on a 

value measured in the experiment: 2.42 at wavelength 1.55 μm. To determine the ratio of Si/N 

and obtain a refractive index over a range of wavelength, a collinear relationship between 

stoichiometric co-efficients of silicon nitride and amorphous silicon was built. Firstly, the 

refractive index of Si3N4 is described as a Sellmeier equation with two pole pairs [61]: 

          𝑛Si3N4

2  =  A1 +
A2∗𝜆2

𝜆2−A3
+

A4∗𝜆2

λ2−A5
                                                                                       (5.4)                                               

where A1=1; A2=3.0249; A3=0.1350^2; A4=40314; A5= 1239.8420^2. Secondly, the 

refractive index of amorphous silicon is described as a Sellmeier equation with one pole 

pair[156]: 

          𝑛a−Si
2  = B1 +

B2∗𝜆2

𝜆2−B3
                                                                                                         (5.5)                                                                   

where B1=2.3961; B2=8.9468; B3= 0.1843. Then, the collinear relationship is expressed as: 

          y1 = x*A1+(1-x)*B1; 

          y2 = x*A2+(1-x)*B2; 

          y3 = x*A3+(1-x)*B3; 

          y4 = x*A4; 

          y5 = A5;                                                                                                                      (5.6) 

And the refractive index of SRSN is described as the Sellmeier equation with these co-

efficients: 

          nSRSN
2  = y1 + 

y2∗𝜆2

𝜆2−y3
+

y4∗𝜆2

𝜆2−y5
                                                                                        (5.7)                                                              

According to the single point of the refractive index in the measurement, the value of x is 

0.7538 and the composition of SRSN is determined. The relative permittivities and resonant 

frequencies of SRSN are obtained:    
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          𝜀∞ = 1.3437;                 𝜀𝑠1 = 5.8267;                𝜀𝑠2  = 40315.3;                               (5.8a)                                                                   

          𝜔1 = 5.0997 eV;           𝜔2 = 0.0012 eV                                                                   (5.8b)                                                       

Figure 5.15 shows the refractive index of SRSN based on equation (5.7) in the first sub-figure 

and shows the refractive index of silicon dioxide in the second sub-figure in a wavelength range 

of 0.8-2.0 μm. Both lines decrease gradually as the wavelength increases and the core layer has 

a higher refractive index than the cladding layer. The refractive index of SRSN and silicon 

dioxide are 2.42 and 1.44 when the wavelength is 1.55 μm. 

 

 

 

 

 

 

Fig. 5.15 Refractive index of SRSN and silicon dioxide at wavelength 0.8-2.0 μm. The red line represents SRSN 

and the blue line represents silicon dioxide. 

Material dispersion is incorporated with Sellmeier equations and the geometric dispersion is 

incorporated in mode solver. The linear dispersion of the SRSN-on-insulator waveguide is 

involved in the simulation and group velocity dispersion is observed in Figure 5.16 through the 

propagation of energy flux over various cross-sections in the time domain. Sub-figure (a) 

represents the incident plane and it has the highest peak value at 17.3 W and the smallest at 

FWHM 30 fs. When the propagation distance is 400 cells, the pulse shown in sub-figure (b) 

becomes wider and the peak value decreases. Over time, the propagation distance of the optical 

pulse increases to 800 cells and 1200 cells in sub-figures (c) and (d). The peak value continues 

to drop to 3.9 W while the FWHM grows to 60 fs. This phenomenon has resulted from linear 

dispersion where lower frequency components run faster than higher ones. Therefore, as the 

propagation distance grows, the pulse becomes wider in time domain.  
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FWHM = 30 fs  FWHM = 40 fs  

FWHM = 50 fs  FWHM = 60 fs  

a b 

c d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.16 Propagation of energy flux in SRSN-on-insulator waveguide in time domain. Sub-figure (a) is the 

incident plane while (b), (c) and (d) are cross-sections where propagation lengths are 400∆z, 800∆z and 1200∆z, 

respectively.  

5.2.4 Phase matching condition of FWM 

To determine the phase matching condition of FWM in the SRSN-on-insulator waveguide and 

to achieve efficient nonlinear interactions, GVD, D and phase mismatch factor ∆𝑘 are plotted 

in Figures 5.17 and 5.18. Figure 5.17(a) shows the GVD of the SRSN-on-insulator waveguide 

with various widths in TE fundamental mode in a limited wavelength range 1.5-1.6 μm. Seven 

lines represent the waveguide with seven widths. GVD maintains positive values over the 

whole wavelength range when the widths are 400 nm and 450 nm. As for the widths 600 nm, 

700 nm, 800 nm and 900 nm, GVD maintains negative values over the whole wavelength range. 

Only when the width is 500 nm, does GVD increase gradually from a negative value of -0.8 

ps·ns/km at wavelength 1.5 μm to 0.5 ps·ns/km at wavelength 1.6 μm. In Figure 5.17(b), GVD 

of waveguides with various widths at wavelength 1.55 μm are compared. Another expression 

of GVD - D parameter - is also plotted in the right y-axis in sub-figure (b). GVD has the largest 

value of 4.1 ps·ns/km at width 400 nm, then drops dramatically to 1.6 ps·ns/km at width 450 
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nm. After that, GVD continues to drop to a negative value of -0.2 ps·ns/km at width 500 nm. 

For bigger widths 600 nm, 700 nm, 800 nm and 900 nm, GVD stays negative and far away 

from zero when compared to the GVD at width 500 nm.  Theoretically, there are two zero-

points of GVD: one is around 500 nm and the other is larger than 900 nm. However, when the 

width is larger than 900 nm, high-order modes occur and this may cause radiation and the loss 

of power.  Consequently, a width of 500 nm is chosen as the zero point of GVD for the further 

analysis of Δ𝑘 in Figure 5.18. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.17 (a) GVD of SRSN-on-insulator waveguide with various widths in TE fundamental mode at wavelength 

1.5-1.6 μm; (b) GVD and D of SRSN-on-insulator waveguide with various widths in TE fundamental mode at 

wavelength 1.55 μm. 

According to D parameter, the waveguide has normal dispersion when the width is less than 

500 nm; the waveguide has anomalous dispersion when the width is between 500 and 900 nm. 

In Figure 5.16, the width of simulated waveguide was 400 nm so it contained normal dispersion 

and the pulse was up-chirped. The bandwidth of excitation source is 
𝑐

𝜆1
− 

𝑐

𝜆2
, where 𝜆1 and 𝜆2 

are 1.1 and 2 μm, respectively. The GVD of waveguide with a width of 400 nm is 4.1 ps·ns/km 

and the propagation distance is 1200 cells. Therefore, the chirp is calculated as 30.2 fs, which 

confirmed the broadening 30 fs in Figure 5.16.  
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Figure 5.18 shows the ∆𝑘 of the SRSN-on-insulator waveguide with various widths in TE 

fundamental mode at signal wavelength 1.3-1.8 μm. The pump wavelength is 1.55 μm. Points 

with five colours represent five widths 400 nm, 450 nm, 500 nm, 600 nm and 800 nm, 

respectively. In the limited central wavelength range 1.545-1.555 μm, the difference between 

the five widths is negligible and the value of phase mismatch factor is approximately zero, 

which satisfies the phase matching. However, in a wider wavelength range, Δ𝑘 is a quadratic 

equation of wavelength where the widths are 400 nm, 450 nm, 600 nm and 800 nm so that the 

absolute value of Δ𝑘 increases as the difference between wavelength and central wavelength 

1.55 μm increases. In contrast, Δ𝑘 is a quartic equation in 400 nm case and has relatively small 

values in the whole range, ensuring long coherent length. It is possible to conclude that the 

SRSN-on-insulator waveguide with width 500 nm is suitable for the phase matching of FWM 

in TE fundamental mode at wavelength 1.55 μm. 

 

 

 

 

 

 

 

 

 

Fig. 5.18 Phase mismatch factors of SRSN-on-insulator waveguide with various widths in TE fundamental mode 

at wavelength 1.5-1.6 μm. 

5.2.5 Results of FWM 
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Fig. 5.19 FFT of energy flux in SRSN-on-insulator waveguide with a width of 500 nm. Sub-figures represent the 

incident plane and cross-sections where the propagation lengths are 200∆z and 400∆z, respectively. 

As was discussed in the previous section, a width of 500 nm was chosen for the phase matching 

in TE fundamental mode at a wavelength of 1.55 μm. Therefore, the width of SRSN-on-

insulator waveguide was set as 500 nm to simulate the FWM process based on Kerr-type 

nonlinearity. The nonlinear refractive index of silicon nitride 𝑛2  = 4×10−14  cm2 · W−1  is 

presented in the reference [69] and the real part of Kerr parameter has been obtained according 

to formula (2.70). In this simulation of FWM, the excitation source contains two frequencies 

or one narrow frequency range. In Figure 5.19, the FFT of energy flux over three cross-sections 

of the SRSN-on-insulator waveguide is shown. The first cross-section is the incident plane so 

that the frequency range is the same as the excitation source, which contains two frequencies - 

187.5 THz and 200 THz - where the corresponding wavelengths are 1.6 and 1.5 μm, 

respectively. Therefore, the FFT of energy flux shows the sum of any two frequency 

components: 375 THz, 387.5 THz and 400 THz, as well as the difference in any two frequency 
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components: 0 THz and 12.5 THz. In the second cross-section which is 200 cells away from 

the incident plane, the frequency ranges of pulses have been extended and more peaks occur in 

the sum-frequency pulse. When the propagation distance increases to 400 cells in the third 

cross-section, the broadening of pulses are much more significant, meaning more frequency 

components were generated as a result of FWM. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.20 FFT of energy flux over three cross-sections of SRSN-on-insulator waveguide with a width of 500 nm. 

Sub-figures represent the incident plane and cross-sections where the propagation lengths are 600∆z and 1000∆z, 

respectively. 

An obvious FWM process was observed in Figures 5.19 where the excitation source contains 

two frequencies. In contrast, in the simulation shown in Figures 5.20-5.22, the excitation source 

contains one frequency range. Figure 5.20 shows the FFT of energy flux over three cross-

sections of SRSN-on-insulator waveguide with width 500 nm. The first sub-figure represents 

the incident plane so that the frequency range is the same as the excitation source, containing 

a frequency range with a central frequency of 194 THz, whose corresponding wavelength is 

1.55 μm. Therefore, the FFT of energy flux shows the sum frequency 388 THz in the right 
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pulse and the difference frequency in the left pulse. Then, in the second cross-section which is 

600 cells away from the incident plane, the peak value of sum frequency pulse drops but two 

peaks occur and the central pulse spreads slightly. As for the last cross-section, the propagation 

length is 1000 cells. It has wider broadenings and more peaks occur in sum frequency pulse, 

which is caused by the generation of more frequency components. 

 

 

 

 

 

 

 

 

 

Fig. 5.21 Power spectrums of SRSN-on-insulator waveguides with various propagation lengths in wavelength 

domain. The width of waveguide is 500nm. The lines represent wavelength components of the power propagated 

through the incident plane and cross-sections where the propagation lengths are 200∆z, 400∆z, 600∆z, 800∆z, 

1000∆z, 1200∆z and 1400∆z, respectively. 

Figure 5.21 illustrates the power spectrums over various cross-sections of SRSN-on-insulator 

waveguide to further check the wavelength components and to determine the existence of the 

FWM process. Power is described in unit dBm based on the laser source. The blue line 

represents the incident plane and it is utilized as the original pulse for comparison. The red line 

represent the cross-section which is 200 cells away from the incident plane and the pulse show 

slight broadenings on both sides. When the propagation distances increase to 400 cells, 600 

cells, 800 cells, 1000 cells, 1200 cells and 1400 cells, the peak value of power spectrum drops 

and the broadenings keep spreading. The broadening in the short wavelength range in more 



128 
 

significant than the one in the other side. Therefore, the wavelength range of the power 

spectrum becomes wider as the propagation distance increases.  

Moreover, Figure 5.22 indicates the corresponding phase of the power spectrums plotted in 

Figure 5.21. The phase of power pulse is zero in the incident plane and is quadratic for other 

cases. The wavelength range of phase becomes wider as the propagation distance increases 

from 0 to 1400 cells and it is in agreement with the power spectrums. The phase shifts to the 

shorter wavelength range and the corresponding phenomenon in Figure 5.21 is the broadening 

of power spectrums in shorter wavelength. As a result, it is FWM that cause the generation of 

new wavelength components in Figure 5.21. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.22 Phase of the power spectrums of SRSN-on-insulator waveguides with various propagation lengths in 

wavelength domain. The width of waveguide is 500nm. The lines represent the phase of wavelength components 

of the power propagated through the incident plane and cross-sections where the propagation lengths are 200∆z, 

400∆z, 600∆z, 800∆z, 1000∆z, 1200∆z and 1400∆z, respectively. 

Furthermore, in Figure 5.23, the power spectrums of SRSN-on-insulator waveguides with 

various incident powers are shown but a certain propagation distance, is compared. The width 

of the waveguide is 500 nm and the propagation distance is 1000 cells. Five lines represent five 
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different incident powers, where the blue line means the lowest power and the green line means 

the highest power. The blue pulse has the smallest wavelength range and the red line does not 

show much difference. With higher powers in the yellow and purple lines, the broadenings 

occur on both sides and the wavelength range becomes wider. These changes are more 

significant in the green line, which has the highest power and widest frequency range. Besides, 

the phase of the power spectrums in Figure 5.23 is indicated in Figure 5.24. Phase is close to 

zero in low power case and described as quadratic curves in high power cases. The higher the 

incident power is, the wider the wavelength range is, which matches the power spectrums. 

Consequently, new wavelength components generated in Figure 5.23 is caused by FWM.  

 

 

 

 

 

 

 

 

 

Fig. 5.23 Power spectrums of SRSN-on-insulator waveguides with various incident powers in wavelength domain. 

The width is 500 nm and the propagation distance is 1000 cells. The blue line represents the lowest power while 

the green line represents the highest power. 

In order to confirm the significance of phase matching in the SRSN-on-insulator waveguide, 

waveguides with various widths but the same incident power and propagation length are 

simulated and compared. Three widths of 400 nm, 500 nm and 800 nm are chosen based on 

the values of GVD and the phase mismatch factor plotted in Figures 5.17 and 5.18, in which 
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500 nm is close to zero value of GVD and maintains a small ∆𝑘 in the wavelength range 1.3-

1.8 μm. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.24 Phase of the power spectrums of SRSN-on-insulator waveguides with various incident powers in 

wavelength domain. The width is 500 nm and the propagation distance is 1000 cells. The blue line represents the 

lowest power while the green line represents the highest power. 

Figure 5.25 compares the power spectrums of SRSN-on-insulator waveguides with the above 

three widths in wavelength domain. The propagation length of the waveguide is 1400 cells and 

is equal to 70 μm. The blue and green lines represent the waveguides with widths of 400 nm 

and 800 nm, respectively. They have broadenings on both sides when compared to the similar 

original power spectrum shown in Figure 5.21. However, they show a smaller wavelength 

range than 500 nm case. Therefore, the waveguide with a width of 500 nm shows the most 

efficient FWM in the comparison, which matches the values of Δ𝑘 plotted in Figure 5.18. 

Considering the coherent length is 70 μm, the absolute value of Δ𝑘 should be less than 0.014 

μm−1. As for widths 400 nm and 800 nm, the ranges of signal wavelength with desired Δ𝑘 are 

1.48-1.63 μm and 1.47-1.64 respectively. When the width of the waveguide is 500 nm, the 

value of Δ𝑘 is satisfied in the almost whole wavelength range plotted in Figure 5.18. Therefore, 

SRSN-on-insulator waveguide with a width of 500 nm has the most wavelength components 
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involved in nonlinear interaction in a coherent length of 70 μm and achieves the most efficient 

FWM process in TE fundamental mode at wavelength 1.55 μm. 

 

 

 

 

 

 

 

 

 

Fig. 5.25 Comparison of power spectrums of SRSN-on-insulator waveguides with three widths 400 nm, 500 nm 

and 800 nm in wavelength domain. The propagation distance is 1400 cells.  

5.3 Conclusion 

This chapter has presented the simulations of FWM processes with FDTD algorithm for two 

silicon-based waveguides: the silicon-on-insulator waveguide and the SRSN-on-insulator 

waveguide. The excitation source was based on Gaussian pulse and TE mode at wavelength 

1.55 μm. In these waveguides, there were two widths that satisfied zero-GVD and the 

waveguide with the bigger width allowed the existence of high-order modes, so that the smaller 

width was chosen for phase matching.  

According to the thicknesses of wafers in fabrication, the heights of silicon-on-insulator 

waveguide and SRSN-on-insulator waveguide were designed as 220 nm and 700 nm, 

respectively. GVD and phase mismatch factors were discussed and phase matching conditions 
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of FWM in two waveguides were achieved when the widths were 400 nm and 500 nm, 

respectively. In the simulations of two waveguides, power spectrums and their phases of the 

waveguides with various propagation distances, incident powers or widths were compared. 

Broadening in the power spectrums were much bigger in the shorter wavelength range. 

Efficient FWM was realized when the phase matching condition was satisfied. 
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Chapter 6 

Second-Harmonic Generation of Highly Birefringent AlGaAs 

Waveguide 

 

This chapter introduces a simulation of SHG in a highly birefringent Al0.3Ga0.7As-on-insulator 

waveguide. Basic models and material dispersion of waveguide are presented. Because of the 

strong contrast in the refractive index between Al0.3Ga0.7As and silicon dioxide, an optical 

wave is propagated as a well-confined mode in the waveguide. Mode solver was applied to 

obtain TE and TM modes and type-I phase matching condition of SHG was achieved. The 

incorporated nonlinearities included second-order nonlinearity and third-order Kerr-type 

nonlinearity. Efficient SHG was observed in a suitably designed waveguide.  

6.1 Basic model  

 

 

 

 

 

 

 

 

 

 

Fig. 6.1 Cross-section of highly birefringent Al0.3Ga0.7As waveguide in the simulation. 

Figure 6.1 describes the cross-section of highly birefringent Al0.3Ga0.7As waveguide in the 

simulation and Al0.3Ga0.7As is the core layer with a height of 105 nm and the width is between 

0.6 and 1.1 μm. The cladding layer is silicon dioxide with a thickness of 1.05 μm, caused by a 

low refractive index and offers COMS compatibility. In addition, the outer layer of x-y plane 
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is 10-cell thick PML, ensuring the problem domain is bounded and that the radiation energy 

would eventually be absorbed. The grid sizes and the time step (which is determined by the 

smallest grid size) are defined as follows: 

          ∆𝑥 = 50 nm;         ∆𝑦 = 35 nm;       ∆𝑧 = 50 nm                                                           

          ∆𝑡 =  
∆𝑦

2𝑐
                                                                                                     (6.1) 

6.2 Linear dispersion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2 Propagation of energy flux in highly birefringent Al0.3Ga0.7As waveguide in time domain. Subfigure (a) 

is the incident plane while (b), (c) and (d) are cross-sections where propagation lengths are 400∆z, 600∆z and 
1000∆z, respectively. 

 

The simulation of FWM in a Al0.3Ga0.7As -on-insulator waveguide was demonstrated in 

Chapter 4, where the refractive index of Al0.3Ga0.7As and silicon dioxide was plotted in Figure 

4.34, and the parameters of Lorentz dispersion were described in the equations (4.19 and 4.20). 

Different from the Al0.3Ga0.7As-on-insulator waveguide in Chapter 4, this waveguide has a 

FWHM = 90 fs  FWHM = 94 fs  

FWHM = 117 fs FWHM =100 fs  

a b 

c d 
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different structure with a smaller height and this simulation not only considers the third-order 

nonlinearity but also the second-order nonlinearity. 

Figure 6.2 depicts the group velocity dispersion of a highly birefringent Al0.3Ga0.7As 

waveguide. It reflects the propagation of energy flux in four cross-sections in the time domain. 

Sub-figure (a) represents the incident plane while (b) - (d) are cross sections that are 400 cells, 

600 cells and 1000 cells away from the incident plane, respectively. In addition, the FWHM of 

pulses are also indicated in four sub-figures. The input wave in the sub-figure (a) has the largest 

peak value (165 W) and the smallest FWHM (90 fs). Over time, the propagation distance 

increases in sub-figure (b) – (d), and the peak value gradually drops from to 91 W while the 

FWHM grows to 117 fs. This phenomenon is caused by linear dispersion. The excitation source 

contains a range of frequency components and in the Lorentz medium, the lower frequency 

components run faster than the higher ones, resulting in the broadening of the pulse in the time 

domain. 

6.3 Phase matching condition of SHG 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.3 Type-I phase matching condition of SHG in highly birefringent Al0.3Ga0.7As waveguide. The red line 

represents the effective indices of TE fundamental mode at wavelength 1550 nm and the blue line represents the 

effective indices of TM fundamental mode at wavelength 775 nm in the waveguides with various widths.  
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The effective index of highly birefringent Al0.3Ga0.7As  waveguide is dependent on the 

polarization; for instance, effective indices are different in the TE and TM mode. It was 

highlighted in Chapter 3 that there are two types of phase matching conditions of SHG. As 

shown in Figure 6.3, Type-I phase matching condition is achieved when that width is 1050 nm. 

The red and blue lines represent the effective indices of TE fundamental mode at 1550 nm and 

those of TM fundamental mode at 775 nm of waveguides with a variety of widths, respectively. 

When the width of waveguide increases, both lines grow. The red line starts at a lower initial 

value about 1.42 while the blue line starts from 1.67. With a faster growth, the red line catches 

up with the blue line at the width 1050 nm with the effective index 1.97, and overtakes it at 

larger widths. The goal is the point of intersection and this satisfies the Type-I phase matching 

condition. 

6.4 TE mode and TM mode 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6.4 Magnetic and electric fields in TE fundamental mode of x-y plane in highly birefringent Al0.3Ga0.7As 

waveguide at wavelength 1550 nm. The width is 1050 nm and the effective index of waveguide is 1.97. 

 

 

With mode solver, the values of six field components were obtained. Apart from the PML area, 

the Al0.3Ga0.7As core layer and surrounded silicon dioxide layer have initial values. Figure 6.4 

describes the TE fundamental mode in both magnetic and electric fields in the x-y plane of 
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highly birefringent Al0.3Ga0.7As waveguide (width = 1050 nm) at wavelength 1550 nm, where 

the effective index is 1.97. Six sub-figures represent six components of magnetic and electric 

fields. It is shown that the TE mode is well confined in the central part of the waveguide and 

the main energy of optical pulse is propagated in 𝐻y and 𝐸x.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.5 Magnetic and electric fields in TM fundamental mode of x-y plane in highly birefringent Al0.3Ga0.7As 

waveguide at wavelength 775 nm. The width is 1050 nm and the effective index of waveguide is 1.97. 

Figure 6.5 shows the TM fundamental mode in both magnetic and electric fields in the x-y 

plane of highly birefringent Al0.3Ga0.7As waveguide width = 1050 nm) at wavelength 775 nm, 

where the effective index is 1.97. Six sub-figures represent six components of magnetic and 

electric fields. TM mode is also well confined and the main energy of optical pulse is 

propagated in 𝐸y and 𝐻x. 

6.5 Results of SHG 

Based on the discussion of phase matching condition in the previous section, in order to 

simulate the efficient SHG, the width of the waveguide was set as 1050 nm. According to the 

type-I phase matching condition, the excitation source is TE fundamental mode at 1550 nm 

while the output is TM fundamental mode at 775 nm. Therefore, in this simulation, the 
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excitation source consists of TE fundamental mode at wavelength 1550 nm and Gaussian pulse 

which is defined in the formula (4.2). The output of simulation of the values of 𝐸y is over the 

whole cross-section. Kerr-type third-order nonlinearity of AlGaAs was incorporated based on 

the value of nonlinear refractive index 𝑛2 given in Chapter 4. Second-order susceptibility 𝜒(2) 

of AlGaAs is 180pm/V[67] and was incorporated to simulate three-wave mixing in highly 

birefringent Al0.3Ga0.7As waveguide. In general, second-order nonlinearity causes sum and 

difference frequency generation, where SHG is a special case of SFG. If the phase of SHG is 

not matched, SHG power would grow at first, drop and then grow again, as shown in Figure 

3.5. Therefore, efficient SHG could be realized when the phase matching condition is fulfilled. 

Other than the phase matching condition, another major issue that affects the efficiency of SHG 

is the interaction length. It is noted that it is not an issue if the excitation source is CW plane-

wave sources. With regards to ultrashort pulses, frequency conversion is influenced by the 

effective interaction length, which is determined by the duration of incident pulse and group 

velocity mismatch (GVM). GVM can lead to temporal walk-off, which means the temporal 

overlaps between the waves with various group velocities are lost after a certain propagation 

distance. GVM is defined as follows: 

          𝑉1 = 
𝜕𝜔1

𝜕𝑘1
  ;   𝑉2 =  

𝜕𝜔2

𝜕𝑘2
                                                                                                                                (6.2) 

          𝛽 =  
1

𝑉2
− 

1

𝑉1
                                                                                                                   (6.3) 

where 𝑉1 and 𝑉2  are group velocities of the fundamental pulse and the second-harmonic pulse 

and 𝛽 is the GVM. Then the interaction length is expressed as: 

          𝑙 =  
𝑡𝑝

𝛽
                                                                                                                          (6.4) 

where 𝑡𝑝 is the FWHM of incident pulse. Therefore, the duration of incident pulse should be 

decided reasonably to ensure an adequate interaction length. Otherwise, a walk-off effect 

occurs and undermines the efficiency of SHG.  

Figure 6.6 indicates the FFT of 𝐸y component over six cross-sections of a highly birefringent 

Al0.3Ga0.7As waveguide with a width of 1050 nm, which nearly satisfies the phase matching 
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condition. The incident pulse was based on TE fundamental mode at wavelength 1550 nm 

(corresponding frequency is 194 THz) with a duration of 117 fs, so its primary energy was 

propagated in 𝐸x  and 𝐻y  components. In contrast, the newly generated frequency in SHG 

process was twice that of the initial frequency and the polarization was TM fundamental mode 

at 775 nm (corresponding frequency is 388 THz), where 𝐸y and 𝐻x carried the main energy. 

Therefore, the FFT of 𝐸y illustrates the power of SHG. In Figure 6.6, sub-figures represent the 

cross-sections that are 20 cells, 40 cells, 60 cells, 80 cells, 100 cells and 120 cells away from 

the incident plane, respectively. It is known that, in the incident plane, the magnitude of 𝐸y at 

frequency 388 THz is zero. When the propagation distance increases to 120 cells, magnitude 

of 𝐸y at frequency 388 THz keeps growing to 7.23×109 V/m.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6 FFT of 𝐸y component over cross-sections in highly birefringent Al0.3Ga0.7As waveguide with a width of 

1050 nm. Sub-figures are cross sections where the propagation lengths are 20∆z, 40∆z, 60∆z, 80∆z, 100∆z and 

120∆z respectively. 
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To further prove the significance of phase matching, the result of SHG in a phase-mismatched 

highly birefringent Al0.3Ga0.7As  waveguide with a width of 600 nm is also plotted for 

comparison with the phase matched example. According to the equations (3.9-3.10), the 

coherent length is infinite in a phase-matched waveguide. With regard to the width 600 nm, 

the coherent length is:  

         𝑙𝑐 = 
𝜋

2𝑘1− 𝑘2
  = 

𝜋
4𝜋𝑛𝜔1

𝜆1
 − 

2𝜋𝑛2𝜔1
𝜆2

 ≈ 58 ∆z                                                            (6.5)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.7 FFT of 𝐸y component over cross-sections in highly birefringent Al0.3Ga0.7As waveguide with a width of 

600 nm. Sub-figures are cross sections where the propagation lengths are 20∆z, 40∆z, 60∆z, 80∆z, 100∆z and 

120∆z respectively. 

Figure 6.7 shows the FFT of 𝐸y  component over six cross-sections of highly birefringent 

Al0.3Ga0.7As waveguide with a width of 600 nm. Initially, the magnitude of 𝐸y produced in 

SHG rises from zero at the incident plane to 4.19×109 V/m at a distance of 60 cells in the third 
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sub-figure. Then, the value decreases to 1.05×109 V/m as the distance increases to 100 cells. 

After that, it starts to rise again in a longer propagation distance. This phenomenon is caused 

by the limited coherent length, which is between 50 and 60 cells. With regards to the results of 

the phase-matched highly birefringent Al0.3Ga0.7As waveguide in Figure 6.6, the value of 𝐸y 

at the newly generated frequency in SHG process never drops. Therefore, phase matching 

condition ensures efficient SHG. 

6.6 Conclusion 

This chapter has introduced a simulation of SHG process with FDTD algorithm in a highly 

birefringent Al0.3Ga0.7As-on-insulator waveguide. Linear dispersion, second- and third-order 

nonlinearities were incorporated. The height of this waveguide was 105 nm and Type-I phase 

matching condition was achieved when the width was 1050 nm: the effective index of 

waveguide in TE fundamental mode at 1550 nm was equals to the effective index of waveguide 

in TM fundamental mode at 775 nm.  

In addition, GVM was discussed in case the efficiency of SHG would be undermined by the 

temporal walk-off. In the phase-matched waveguide, the SHG power grew as the propagation 

distance increased. In contrast, in the phase-mismatched case, the SHG power was limited by 

the coherent length. It grew as the propagation distance increased from zero to the coherent 

length, after which, the SHG power dropped when the propagation distance increased from one 

coherent length to two coherent lengths. It was concluded that efficient SHG was realized when 

the Type-I phase matching condition was satisfied. 
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Chapter 7 

Conclusion and Future Work 

 

7.1 Conclusion 

This thesis has presented the simulations of six optical waveguides, based on FDTD algorithms 

with the incorporation of linear dispersion (including geometric and material dispersions) and 

nonlinearity through the PLRC method. Basic models of waveguides were built with an outer 

PML absorbing boundary condition in an x-y plane and with circular boundary conditions in a 

z-direction. The excitation source was defined as a combination of Gaussian pulse and TE 

fundamental mode, which was generated by mode solver. Material dispersion was described as 

Lorentz medium and incorporated through Sellmeier equations. Second- and third-order 

nonlinearities were incorporated in order to simulate SHG, FWM and Raman scattering. 

GaAs suspended waveguide was designed and simulated as a simple example. GVD, D and 

phase mismatch factors were discussed in order to determine the phase matching condition of 

FWM. The structure could be engineered to achieve zero-GVD. When the width was 760 nm, 

the phase matching condition of FWM in TE fundamental mode at wavelength 1.55 μm was 

satisfied. Results of FWM were observed through the FFT of energy flux in Figures 4.8 – 4.10, 

where super-continuum and the generation of frequency comb were realized. 

In the simulations of deep-etched Al0.25Ga0.75As  waveguide and Al0.3Ga0.7As-on-insulator 

waveguide, material dispersions were expressed in the form of Sellmeier equations with four 

pole pairs. GVD, D and phase mismatch factors were discussed and, as a result, the widths that 

fulfilled phase matching conditions of FWM in TE fundamental mode at wavelength 1.55 μm 

were obtained: both were 700 nm. When the excitation source had high intensity, FWM 

happened in both waveguides. Power spectrums and their phases of waveguides with various 

propagations or incident powers were plotted and compared. The broadening in the shorter 

wavelength range was much larger. In addition, Raman scattering was also taken into 

consideration in Al0.25Ga0.75As waveguide but it did not make much difference because the 

Kerr-effect was dominant. Moreover, simulation results of this waveguide were in strong 

agreement with the experimental measurements in Figures 4.30 and 4.31.  
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With regard to the simulations of silicon-on-insulator waveguides and silicon nitride-on-

insulator waveguides, following the discussion of GVD, D and phase mismatch factors, widths 

of waveguides achieved phase matching conditions of FWM in TE fundamental mode at 

wavelength 1.55 μm were 400 nm and 500 nm, respectively. Power spectrums and their phases 

of waveguides with various propagations or incident powers were plotted and compared in 

order to determine the generation of new wavelength components in FWM process. The power 

spectrums spread further in a shorter wavelength range. 

As for the simulation of highly birefringent AlGaAs waveguides, it was not only linear 

dispersion and Kerr-type nonlinearity, but also second-order nonlinearity, which was 

incorporated. With an analysis of effective indices of waveguides with various widths in TE 

and TM fundamental modes, type-I phase matching condition of SHG was found: when the 

width was 1050 nm, the effect of the waveguide in TE fundamental mode at wavelength 1550 

nm was equal to the one in TM fundamental mode at wavelength 775 nm. GVM was discussed 

in order to ensure the enough interaction length and avoid walk-off in the simulation. In the 

comparison between the phase-matched and phase-mismatched waveguides, it was 

demonstrated that SHG power was limited by the coherent length and efficient SHG was 

realized when the phase matching condition was achieved.  

In conclusion, in the simulation of FWM process in TE fundamental mode at wavelength 1.55 

μm, GaAs/AlGaAs waveguides had two zero-GVD points and the larger widths were 

confirmed as phase matching condition because the smaller ones were affected significantly by 

the higher-order term of dispersion. In contrast, in the simulations of silicon-based waveguides, 

there were also two zero-GVD points but the larger widths allowed the existence of higher-

order modes of optical wave. Thus, phase matching conditions were satisfied when the widths 

were decided as the smaller ones. Therefore, phase mismatch factors of GaAs/AlGaAs 

waveguides were much smaller than those of silicon-based waveguides when the phase 

matching conditions of FWM were fulfilled, leading to the wider broadenings in the power 

spectrums in wavelength domain. The observation of FWM results in all these five optical 

waveguides were indicated through the broadenings of power spectrums when the excitation 

sources contain a single or two frequency components. Among the GaAs/AlGaAs waveguides, 

Al0.3Ga0.7As-on-insulator waveguide has the most efficient frequency conversion caused by 

FWM process. Silicon nitride-on-insulator waveguide has a higher FWM efficiency than that 

of silicon-on-insulator waveguide.  
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Therefore, it is proved that this simulation framework is capable of simulating a wide range of 

optical waveguides with various materials and structures. Not only linear dispersion, but also 

nonlinearity (including second- and third-order nonlinear effects) could be taken into 

consideration to simulate SHG, FWM and Raman scattering. The size of grid could be adjusted 

flexibly based on the structure and the wavelength of excitation source. The simulation results 

could give some advices on fabrication, such as the designed structure and materials of 

waveguide, the duration of excitation sources, the wavelength range of generated super-

continuum and the comparisons of the efficiency of FWM/SHG between the waveguides with 

various widths.  

7.2 Future work  

The simulation demonstrated in this thesis can be widely applied for many optical waveguides 

and is suitable for linear dispersive, nonlinear, isotropic and anisotropic materials. It could be 

used for simulating linear dispersion, second- and third-order nonlinear frequency mixing 

processes. However, there is still room for improvement.  

The first goal would be to incorporate propagation loss and TPA. Both cause power loss in the 

propagation of optical waves in waveguides. To take propagation loss into consideration, 

permittivity should be treated as a complex number rather than a real number. With regard to 

TPA effect, the nonlinear polarization due to TPA should be expressed based on TPA co-

efficient and incorporated in FDTD algorithm[156]. As a result, more realistic simulation can 

be achieved when TPA and propagation loss are taken into account.  

The second goal would be increase the lengths of waveguides in the simulations. Parallel 

computation and HPC resource are crucial parts because the programs for long-distance 

simulation are time- and memory-consuming. Then, to maintain the stability of FDTD 

algorithm in long-time simulation, CPML should be utilized to replace normal PML.  

The third goal would be to extend the simulation for magneto-optic materials. This involves 

incorporating magneto-optical susceptibility to simulate the rotation of polarization in the 

optical waveguides, which is known as the Faraday Effect. Typical applications are optical 

isolators and circulators[157].   
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