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ABSTRACT

Cryptosporidium and Eimeria are two coccidian parasites that infect a 

wide range of animals including humans for Cryptosporidium, resulting in disease 

and, in some cases, death of the host. Infection involves tliree stages: ingestion, 

excystation and the subsequent invasion of the epithelial cells lining the 

gastrointestinal or respiratory (as can be the case for Cryptosporidium) tract. The 

mechanisms employed by the parasites to withstand the hostile environment of 

the host, and to penetrate to and invade a host cell are not clearly understood. The 

objective of this study was to provide more information on these tliree steps to 

infection, to elucidate the mechanisms involved for Cryptosporidium and Ehneria 

tenella, and to establish the extent to which these features are shared by the 

parasites.

An in vitro procedure for inducing Cryptosporidium excystation was 

optimised. Anaerobic reducing conditions produced the highest excystation rates, 

with oocysts from different species excysting most efficiently at the pH values 

akin to their in vivo locations in the gastrointestinal tract. Oocyst age affected the 

excystation process, with the number of sporozoites released declining with 

increasing age.

A novel method for detennining the viability of sporozoites was 

developed. This employed the use of the vital stains acridine orange and bis- 

benzimide using fluorescence microscopy. Sporozoite survival during incubation 

with different pH buffers varied with the species of parasite, exemplifying that 

each species is adapted for suiwival at the pH similar to their infection site in vivo.
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Inhibitors of mitochondrial function had little effect on either C  parvum or E. 

tenella. These data are consistent with C. parvum lacking a mitochondrion, and 

E. tenella sporozoites not requiring the function of this organelle. C. muris was, 

to an extent, affected by some of the metabolic inhibitors, suggesting that this 

species either relies in part on a mitochondrion, or that the inhibitors were 

affecting other processes in the parasite.

Biotinylated probes and antibodies raised against Leishmania mexicana 

cysteine proteinases were used to analyse the lysates of C. parvum, E. tenella and 

Toxoplasma gondii for the presence of proteinases. Evidence was found for the 

presence of both cysteine and serine proteinases in all of the coccidia, with the 

apparent localisation of a cysteine proteinase on the surface of E. tenella 

sporozoites. Stage-specific differences were observed when sera against 

L. mexicana cysteine proteinases were used to analyse unsporulated oocysts and 

sporozoites of E. tenella.

A survey of a range of enzyme activities showed the presence of a number 

of enzymes and some apparent variations between life cycle stages. However 

attempts to detect sialidase in Cryptosporidium and Eimeria using fluorogenic 

substrates were not successful.

A system was developed to study the penetration of mucus layers. The 

results showed that C. parvum sporozoites and E. tenella sporozoites and 

merozoites were able to penetrate the layers and, through the use of specific
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enzyme inhibitors, that motility, cysteine and serine proteinases, polyamines and 

sialidase were involved in mucus penetration by the parasites.

Host cell invasion by C  parvum sporozoites and E. tenella sporozoites and 

merozoites was investigated using Madin Darby Bovine Kidney (MDBK) cells 

and specific enzyme inhibitors. The results suggest that cysteine, serine, métallo- 

and aspartic proteinases play a role in sporozoite invasion, as do polyamines, 

whereas sialidase was not important. Invasion by merozoites also involved 

cysteine proteinases and polyamines, but sialidase did appear to have a role.

The MDBK cell cycle was analysed using bromodeoxyuridine (BrdU) 

labelling and 4,6,-diamino-2-phenylindole (DAPI) staining and its influence on 

parasite invasion was investigated. Sporozoites of both E. tenella and C. parvum 

invaded the host cells at the highest rate when the host cells were four hours into 

S phase. It was also discovered that more MDBK cells from cultures infected 

with E. tenella were in S phase than in control cultures.

Thus the studies performed provide information on how Cryptosporidium 

and Eimeria survive within the hosts intestinal tract and penetrate to and invade a 

host cell. The two parasites appear to employ some similar mechanisms to 

facilitate the infection process, yet there are stage-specific features of each 

parasite.
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CHAPTER ONE

1.1 General review

1.1.1 Introduction

Ciyptosporidiosis is a disease caused by the protozoan parasite Ciypiosporidium 

which belongs to the subclass of Coccidia along with other parasites including Eimeria 

and Toxoplasma. Cryptosporidium infects the mucosal epithelium of the digestive and 

respiratory tracts and, although named almost ninety years ago, it was not until recently 

that much research has been performed on this organism. Found to be primarily a 

gastrointestinal disease, cryptosporidiosis is known to manifest as a self-limiting 

diarrhoeal illness in immunocompetent humans, lasting 3-20 days depending on the 

immune and nutritional status of the host (Current and Garcia, 1991). In contrast, life 

threatening cholera-like symptoms are seen in immunocompromised patients. Indeed, 

approximately 10-20% of AIDS (Acquired Immune Deficiency Syndrome) patients 

develop cryptosporidiosis (Fayer and Leek, 1984; Goodgame, 1996). Additionally 

Cryptosporidium has a major economic significance due to the high mortality in young 

animals infected with this parasite (Wang, 1982), with Cryptosporidium having been 

reported as the fourth most widespread diarrhoea-causing pathogen in cattle (Müller et 

ai, 1993). It is estimated that in the United States there is an annual cost of $6.2 million 

due to cryptosporidial diarrhoea in cattle (Sterling and Arrowood, 1993).



1.1.2. History

In 1907 Tyzzer named a protozoan parasite infecting the gastric epithelium of 

laboratory mice as Cryptosporidium muris to highlight the fact that this parasite has no 

sporocysts (cry/>fo-absent or concealed). In 1910 he then proceeded to describe the life 

cycle of this organism although he could not verify its intracellular nature. It was not 

until 1976 that the first human case of cryptosporidiosis was reported (Nime et ai,

1976), after which further reports were rare until Cryptosporidium was recognised to 

produce a diarrhoeal illness which is life-tlireatening in immune deficient patients. 

Between 1968 and 1981 other Cryptosporidium species were named after every host in 

which they were observed, bringing the total to more than 20 species (Sterling and 

Arrowood, 1993). It was not until later that cross-transmission and morphological 

studies showed that there are possibly only six species; C parvum which infects humans 

and mammals (Tyzzer, 1912); C muris usually present in rodents but has been observed 

in cattle (Muller et al, 1993; Bukhari and Smith, 1996); C. baileyi and C. meleagridis 

which infect birds (however a C  baileyi infection was also reported in an HIV-positive 

patient, Ditrich et ai, 1991); C. serpent is which is found in reptiles and C. nasorum 

which occurs in fish (Levine, 1984; Webster et a i, 1993). Indeed further investigation 

has revealed that there are some differences - especially between the oocysts of the 

various Cryptosporidium species. One such study used western blotting and 

immunofluorescence to analyse the oocyst strains, it was obseiwed that C parvum and 

C. baileyi were much more closely related antigenically than either was to C. muris 

(Nina et ai, 1992). Isoenzyme studies using electrophoretic mobilities on 

Cryptosporidium (Ogunkolade et ai, 1993) and Eimeria (Johnston and Fernando, 1997)



were also able to distinguish between species, strains and clones.

The differences between human and animal isolates have also been investigated. 

Isoenzyme studies have shown consistent differences in electrophoretic mobilities 

between animal and human isolates of C  parvum (Awad-el-Kariem et al, 1993; 

Ogunkolade (3/., 1993; Awad-el-Kariem c/a/., 1995).

Recently more molecular techniques have enabled researchers to study the 

differences between isolates. Random amplified polymorphic DNA (RAPD) analysis 

was used successfully to distinguish C. serpent is and C. parvum isolates, with C  parvum 

being able to be divided into a further two groups; human or animal isolates (Morgan et 

al, 1995). Similarly a PCR-restriction fragment length polymorphism method was able 

to distinguish between Ciyptosporidium species and between human and animal isolates 

(SpmoetaL,  1997).

In terms of phylogeny, RNA data has revealed that Cryptosporidium appears to 

be less related to other coccidia - namely Eimeria, Toxoplasma and Sarcocystis - and is 

hypothesised to be monophyletic with Plasmodium (Johnson et ai, 1990; Bar ta et ai, 

1991).

1.1.3. Life cycle

A detailed study on the life cycle of Cryptosporidium was performed by Tyzzer 

in 1910 and 1912. The life cycle of C. parvum is illustrated in Figure 1.1.3.1. and for 

which the following summaiy is given. The life cycle of Cryptosporidium is 

monoxenous (completed in a single host) and can be divided into five major stages; 

oocysts, sporozoites, trophozoites, merozoites and gametes. The life cycle starts when



Figure 1.1.3.1: Diagrammatic representation of C. parvum life cycle in the 
mucosal epithelium of an infected mammal
(From Current and Garcia, 1991 )
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excystation of ingested oocysts (-4.0 x 3 |Lim, Reduker et al, 1985), which occurs (a) in 

the gastrointestinal or respiratory tract, results in the release of four sporozoites (4.0 x 

0.6 pm, Reduker el aL, 1985). These penetrate (b) host epithelial cells which envelop 

the sporozoite in a parasitophorous vacuole (PV) surrounded by the host cell membrane.



The PV remains extracytoplasmic - unlike other coccidia - and is connected to the host 

cell via a 'feeder organelle' from which the parasite is thought to obtain nutrients directly 

from the host cell (Wang, 1982; Marcial and Madara, 1986; Tzipori, 1988). The 

sporozoite (c) develops into a trophozoite (-3.0 x 3.0 pm, O'Donoghue, 1995) which 

undergoes a process called merogony (asexual division) (d) and (e) to produce 

merozoites. These organisms may either invade epithelial cells to produce additional 

Type I meronts (5.3 x 1.0 pm), or go on to form Type II meronts (f) (4.7 x 1.2 pm) 

(Sterling and Arrowood, 1993). Type II meronts then proceed to enter adjacent 

epithelial cells and produce macrogamonts (h) (4.0 x 4.0 pm, O'Donoghue, 1995) and 

microgamonts (g) (4.0 x 5.0 pm. Sterling and Arrowood, 1993). These produce gametes 

which in turn produce a zygote (i) which may go on to form a thin-walled oocyst (1) 

which is thought to auto-infect the host. However 80% of oocysts are thick-walled 

(Sterling and Arrowood, 1993) and fully sporulate to produce four infective sporozoites 

before being shed by the host. This is an unusual feature among coccidia as many 

others, for example Eimeria, are released as unsporulated oocysts. In fact, Caryospora 

and Sarcocystis are the only other coccidians known to sporulate before release from the 

host; interestingly Caryospora is also capable of autoinfection (Payer and Ungar, 1986).

1.1.4. Transmission

It is now known that, as for the other coccidia, Cryptosporidium parvum can be 

transmitted via a number of routes including contaminated water and food (Petersen,

1995); and, for Cryptosporidium, animal to animal, animal to person and person to



person (Baxby and Taylor, 1983) with different isolates being able to infect certain hosts 

more readily, indicating the adaptibility and lack of host specificity of this parasite 

(Tzipori et ai, 1980; Tzipori, 1988). Hence cryptosporidiosis is more prevalent (4-20%, 

Smith and Rose, 1990) in areas of low standards of living and in less developed 

countries where livestock are in close contact with the inhabitants. Yet water-borne 

Cryptosporidium proves a problem for developed countries also (with a prevalence of 

0.6-20%, Smith and Rose, 1990) since intact oocysts are extremely resistant to most 

disinfectants (Riggs and Perryman, 1987) including chlorine (Hoepelman, 1996), and the 

routine cleansing used to eliminate most waterborne organisms (CuiTent and Garcia,

1991 ; Robertson et al, 1992). Indeed data from laboratories that screen for 

Cryptosporidium infections in the United States show positive diagnoses in the range 

0.5-0.9% of stool samples examined (Li and Stanley, 1996).

Prevalence of this parasite is also seasonal, with there being a higher rate during 

the warmer and wetter months (Current and Garcia, 1991). This presumably reflects 

increased contamination of water supplies from farm land. It has also been noticed that 

children are much more prone to infection than adults, with a peak incidence occurring 

in 1-5 year olds (Casemore, 1990). It is thought that immunity is gained through 

separate exposures over time, hence most individuals exhibit an immune response to 

Cryptosporidium as adults. It is known that the elimination of Cryptosporidium in 

neonatal calves occurs with the first appearance of IgA (Hoepelman, 1996).

The minimum number of oocysts required to cause 'full blown' cryptosporidiosis 

has not been determined unequivocally, and probably differs between patients due to 

immunological status etc.. However studies performed on mice indicate that this can 

occur with less than one thousand oocysts (Ernest et al, 1986). Recent studies led to the



authors concluding that the infection dose for healthy persons without previous exposure 

must be approximately 100 oocysts (Martins and Guerrant, 1995; Petersen, 1995).

1.1.5. Diagnosis

Various methods for the diagnosis of Cryptosporidium have been reported and 

most still rely on identifying oocysts in faecal, sputum or bile specimens, employing 

light and transmission electron microscopy to examine stained faecal smears (Boldorini 

et ai, 1996; Casemore et al., 1985). Immunofluorescence, including the use of flow 

cytometiy, has been developed for detecting oocysts in faecal samples and water 

providing an easy and rapid screening method (Tzipori, 1988; Campbell et ai, 1992; 

Grimason et ai, 1994; Ailes et al., 1995; Anowood et ai, 1995; Zimmerman and 

Needham, 1995; Garcia and Shimizu, 1997). PCR techniques for identifying C. parvum 

have been described (Laxer et a i, 1991; Webster et al, 1993), and further development 

has led to faster and simplified PCR techniques to detect oocysts in both faecal debris 

and water supplies (Leng et ai, 1996).

Recently an assay combining cell culture with reverse transcriptase PCR was 

developed. This enables water authorities to measure whether or not the detected 

Cryptosporidium oocysts in the water supply are a threat to the public safety (Rochelle 

etal., 1997).

1.1.6. Pathogenicity

Cryptosporidiosis in humans is primarily a gastrointestinal disease with the main



clinical feature being diarrhoea. Other symptoms that have been reported are nausea, 

vomiting - which may lead to the reported infections in the respiratory tract - fever, 

abdominal pain, anorexia, dehydration, and weight loss (Wang, 1982; Current and 

Garcia, 1991). The disease can be split into two categories. That of the 

immunocompetent, well nourished host where the illness manifests itself as a self 

limiting diarrhoea lasting on average 3 to 12 days, and that in the immunodeficient 

patient where ciyptosporidiosis may last indefinitely with symptoms of a cholera-like 

illness sometimes accompanied by extra-intestinal diseases like hepatitis, pancreatitis 

and respiratory problems (Current and Garcia, 1991). In addition, the dianhoeal 

symptoms, together with malnutrition, lead to further weight loss with prolonged illness 

which is often fatal (Bogaerts et ai, 1984). Hence the immunological status of the host 

detennines the extent and severity of the illness.

Cryptosporidium parvum occurs mainly in the epithelial cells in the 

gastrointestinal tract - predominantly in the ileum (Tzipori et ai, 1980; Hill et ai, 1991)

- and (ultrastructurally), it was observed that the majority of infected cells (85%) were at 

the villus tip with crypt cells rarely being infected (Moore et al, 1995). Maldigestion 

and malabsorption due to villous atrophy are thought to result in a watery diarrhoea 

containing fats, carbohydrates, proteins and fluid (Wang, 1982; Tzipori, 1988; Griffiths 

et al, 1994). However, some infections of C. parvum that involve these morphological 

changes due to atrophy do not result in diarrhoeal symptoms, leading to the suggestion 

that alternative mechanisms are responsible for the illness (Sears and Guerrant, 1994), It 

has been suggested that an enterotoxin-mediated mechanism is involved since there is 

no inflammation and the diarrhoea is of a secretory nature (Garza et al, 1986;



Massimilio et al., 1995). Indeed, one study demonstrated that nine out of eleven 

diarrhoea samples tested from patients with cryptosporidosis were of an enterotoxic 

nature. However the finding that not all samples contained enterotoxin indicated other 

mechanisms, such as villous atrophy, may be at least partly responsible for the diarrhoea 

(Guarino et ai, 1995). Parasites in the trachea also cause flattening of the epithelial 

cells in the lining, along with a thickening of the mucosa cells. This leads to a severe 

cough, hoarseness, wheezing, shortness of breath and croup (Current and Garcia, 1991; 

Sterling and Arrowood, 1993). It has been reported that HIV-positive patients have a 

17% prevalence of pulmonaiy ciyptosporidiosis (Hojlyng and Jensen, 1988) although it 

is still considered that respiratory ciyptosporidiosis is most likely secondary to an 

intestinal infection (Clavel et ai, 1996).

Two Cryptosporidium infections - a human case and that of a young foal (the 

first case reported in horses) - were reported to be complicated by an adenovirus 

infection (Bird and Smith, 1980). Additionally, a picobirnavirus was recently reported 

in association with a human Cryptosporidium infection (Gallimore et al, 1995). The 

nature of these associations remains unclear but, as suggested, it may be possible that 

the viruses replicate and transmit better in individuals infected with Cryptosporidium 

(Gallimore e? a/., 1995).

1.1.7. In  vitro culture

Research on Cryptosporidium has been impeded by the lack of an in vitro culture 

system that is able to support the good development and growth of this protozoan



parasite. Intracellular growth is possible with T. gondii tachyzoites and, more recently, 

bradyzoites (Weiss et al, 1994). Additionally, for Eimeria, reports have stated that first 

and second generation schizonts can be produced (Doran and Augustine, 1978).

However, both Eimeria and Cryptosporidium cannot be serially propagated under in 

vitro conditions.

For Cryptosporidium parvum the following cell lines have been tested as host 

cells for in vitro culture and intracellular stages: mouse fibroblast L929 cells, human 

enterocyte HT29.74 cells, Caco-2 cells (Petersen, 1993), human intestinal cells, human 

embryonic cells, MDCK cells (Tzipori, 1988), HCT-8 cells (Upton et al, 1995), RL95-2 

cells (Rasmussen et a/., 1993) and MDBK cells (Villacorta <?/<3/., 1996). However none 

was able to support Cryptosporidium propagation. Yet it was observed that human 

foetal lung cells, primary chicken kidney, porcine kidney cells and chicken embiyos all 

supported development from sporozoite to sporulated oocyst (Current and Long, 1983; 

Current and Haynes, 1984). More recently, bovine fallopian tube epithelial (BFTE) cells 

were assessed for in vitro cultivation of C. parvum and compared with MDCK cells.

The results showed that at 24 hours post-inoculation BFTE cells had an infection rate of 

39%, whereas the rate with MDCK cells was much lower (4%) (Yang et al, 1996). 

However autoinfection was not observed with either cell line.

Various media supplements have also been tested to see if they improve the 

growth of C  parvum in vitro. These include 10% foetal bovine serum; various sugars: 

glucose, galactose, maltose and mamiose; insulin; and the four vitamins: ascorbic acid, 

calcium panthothenate, folic acid and para-aminobenzoic acid. All were found to 

enhance C. parvum in vitro development (Upton et al, 1995) and a number of them also 

enhanced E. tenella development (Strout and Schmatz, 1990). Alternatively, glucose
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availability had no effect on E. tenella development in MDBK cells (Strout and 

Schmatz, 1990). In addition to the nutrients present in the media, enviromnental 

pressures also seem to play a part in parasite development (Upton et ai, 1994), and it 

was demonstrated that invasion was increased two fold by a 4% oxygen environment 

compared to atmospheric oxygen tensions (Strout and Schmatz, 1990).

The failure of in vitro culture of Cryptosporidium seems to be due to the fact that 

few sporozoites are able to develop and that there is a lack of autoinfective (thin wailed) 

oocysts as seen in the in vivo situation, thus Cryptosporidium in vitro only undergoes 

one developmental cycle (Tzipori, 1988; Rasmussen et aL, 1993). Additionally it has 

been observed that most microgametes fail to leave microgamétocytes, again leaving the 

cycle incomplete in vitro (Upton et ai, 1995) disallowing any studies to be performed 

on in vitro development after a certain point in time. Nevertheless studies are 

progressing with recent reports stating that C. parvum can be cultivated for up to 15 days 

with oocysts being produced, however most of these oocysts remained intracellular and 

therefore subculturing still remained unsuccessful (Lawton et aL, 1996).

1.2. Biochemistry of the coccidia

At present hardly anything is known about the biochemistry of Cryptosporidium, 

thus the following review on the biochemistry of the coccidia compares 

Cryptosporidium primarily with Eimeria.
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1.2.1. Energy metabolism

1.2.1.1. Pathways of carbohydrate metabolism

The pathways of carbohydrate metabolism in E. tenella are shown in Figure

1.2 . 1. 1.

1.2.1.1.1. Glycolysis

Glycolysis has been suggested to be the main source of energy for C. parvum due 

to the apparent lack of mitochondria and TCA cycle (Current, 1989) and it has also been 

obseived that parasite development was enhanced under reduced oxygen tensions 

(Upton ei aL, 1994).

The Embden-Meyerhoff glycolytic pathway (as seen in Figure 1.2.1.1. for E. 

tenella) in C. parvum, E. tenella and T. gondii is unusual in containing, at least in the 

stages investigated, a pyrophosphate-linked phosphofructokinase (PPi-PFK) instead of 

the conventional ADP-linked enzyme (Peng and Mansour, 1992; Denton et aL, 1994, 

1996a). These PPi-PFKs appear to be of the type I variety which is normally associated 

with fermentative micro-organisms. Their distribution, and the fact that their use 

increases the energetic yield of glycolysis by 50%, suggest that these coccidia are 

adapted for anaerobic modes of energy production, at least for parts of their life cycle 

(Coombs and Muller, 1995). Like other micro-organisms containing PPj-utilising 

glycolytic enzymes, the coccidia lack cytosolic pyrophosphatase activity. The key

12



Figure Pathways of energy metabolism operating in Eimeria tenella
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feature of type I PPj-PFKs is their lack of regulatory features. Since PFK is a key 

enzyme in regulating glycolytic flux in most eukaryotes, organisms which possess type I 

PPi-PFK’s must utilise relatively unusual mechanisms of glycolytic control. This feature 

has now raised interest as a novel target for therapy in T. gondii (Peng et al, 1995).

The PK from C. parvum shows no evidence of regulatory properties, and 

presents simple Michaelis-Menten kinetics with respect to both its substrates (Denton et 

aL, 1996a). The only other PK so far reported not to be under allosteric regulation is the 

type I enzyme from mammalian muscle (Fothergill-Gilmore and Michels, 1993). Yet in 

E. tenella and T. gondii it seems likely that glycolytic control is exerted, at least 

partially, through their pyiuvate kinase. Unlike some other micro-organisms which have 

a PPi-PFK, the coccidia species which have been investigated have an ADP-specific 

pyruvate kinase (PK) rather than a PPi-specific activity (Denton et at., 1994, 1996a). 

Hexokinase, another regulatory enzyme in most eukaryotes, appears to be unregulated, 

at least in Eimeria. Interestingly, the parasite appears to contain only one hexokinase 

which is capable of phosphoiylating both glucose (as in glycolysis) and fructose (as in 

the mannitol cycle) (Schmatz et al., 1989; Denton et al., unpublished).

All coccidia species which have been investigated contain high levels of lactate 

dehydrogenase (LDH), the enzyme capable of mediating NADH oxidation under 

anaerobic conditions. The enzyme was purified from E. stiedae and characterised by 

Fransden and Cooper (1972). The enzyme subunits proved highly resistant to 

dissociation and showed no obvious hybridisation with H subunits from chick heart - 

implying a fundamentally different subunit construction to the isoenzymes characterised
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from vertebrates. Structural data have now been obtained through analyses of the genes. 

Interestingly, Toxoplasma has two LDH genes which appear to be entirely stage-specific 

(Yang and Parmley, 1995). These genes encode an unusual five amino acid insert 

around the active site. Fructose 1,6-diphosphate aldolase of E. stiedae has also been 

purified and identified as a type 1 enzyme typical of those found in mammalian cells 

(Mitchell and Daron, 1982; Wang, 1982).

1.2.1.1.2. Mannitol metabolism

The mannitol cycle appears to be a common feature of all coccidia. Both 

mannitol 1-phosphate dehydrogenase and mannitol 1-phosphatase have been detected in 

C. parvum (Schmatz, 1989) and specific antibodies have been used to show that 

mannitol 1-phosphate dehydrogenase, but not its inhibitor, is present in the sexual stages 

of both Toxoplasma and Cryptosporidium, whereas both proteins occur in other stages of 

the life cycle (Schmatz et aL, 1997).

More research has been performed on Eimeria. When the total masses of lipid, 

protein and anthrone-sensitive carbohydrate were measured in unsporulated oocysts of 

E. acervulina, 25% of the oocyst dry mass was left unaccounted for (Wilson and 

Fairbairn, 1961). This missing component has now been shown to be predominantly 

mannitol (Schmatz, 1989; Schmatz et aL, 1989), a carbohydrate previously known to 

occur only in fungi. Further investigation revealed the presence of enzymes associated 

with a mannitol cycle. With the exception of hexokinase (which, as previously stated, 

can accept either glucose or fructose as substrates), the enzymes are all veiy specific in 

their reactions and their K^s suggest that the pathway acts only in one direction (as
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shown in Figure 1.2.1.1).

Schmatz and colleagues (1989) reported that mannitol was present at very high 

levels (up to 300 inM) in unsporulated oocysts of E. tenella but fell during sporulation to 

about 10 mM. In contrast, Michalski et a i, (1992) found only small amounts of 

mannitol (50-80 nmoles per 10  ̂oocysts) in unsporulated oocysts of the same species. 

They reported, however, that mannitol concentrations increased rapidly during the early 

stages of sporulation, concomitant with a decrease in ainyiopectin levels, and then 

diminished slowly and reached a basal level after 40 hours. These changes correlated 

with changing activities of the mannitol cycle enzymes. This discrepancy between the 

results of these two groups may be due to the fact that Michalski et aL, (1992) used 

oocysts obtained directly from the caecum rather than from faeces (the source used by 

Schmatz et aL, 1989) and that these may not have been fully mature such that the initial 

changes that occurred in their study may have been due to the final maturation of the 

oocysts which normally occurs within the host. Sporozoites also contain mannitol cycle 

enzymes and are capable of converting glucose into mannitol (Michalski et aL, 1992). 

Recent evidence suggests, however, that the synthetic part of the cycle is fully functional 

only during the sexual phase of the life cycle (Schmatz, 1997) and that this leads to the 

large concentration of mannitol in the oocyst. Most interestingly, this part of the cycle 

appears to be mainly controlled through the binding of a protein inhibitor of the first 

enzyme, mannitol 1-phosphate dehydrogenase (Schmatz, 1997).

How the degradation of mannitol is regulated remains unknown. It seems that 

there is only one hexokinase isoenzyme (rather than one specific for glucose that 

participates in glycolysis and one specific for fructose that functions in mannitol

16



mobilisation) which is not tightly controlled. It is clear that there must be co-ordinated 

regulation of the fluxes to and from mannitol and ainyiopectin and through glycolysis, 

but the details remain to be elucidated.

However the function of the mannitol cycle in coccidia is uncertain, as indeed is 

the case for fungi. An obvious possibility is that it is acting as an energy reserve. 

However several other roles have also been proposed (see Schmatz, 1989; Schmatz, 

1997) which include: (a) NADH generated during the breakdown of mannitol may be 

used directly for oxidative phosphorylation and so results in energy production; (b) the 

first part of the pathway may act as an electron sink for replenishment of NAD^ under 

anaerobic conditions; (c) mannitol may act as an osmoregulator, keeping the oocyst wall 

rigid during maturation; (d) mannitol may have a protective effect against superoxide 

ions; (e) mannitol phosphate might be polymerised and act as a structural component in 

the oocyst or sporocyst wall.

I.2.I.I.3. TCA cycle

No TCA cycle enzymes have been detected in C. parvum and, of the classical 

TCA cycle enzymes, only malate dehydrogenase in sporulated oocysts of E. tenella was 

detected (Smith et aL, 1994). Both phosphoenolpyruvate carboxykinase (PEPCK) and 

malic enzyme were present, however, and it was concluded that Eimeria sporulated 

oocysts lack a conventional TCA cycle but contain a PEPCK by-pass similar to that in 

anaerobic protozoa such as Giardia lamblia and Trichomonas vaginalis (Coombs and 

Muller, 1995). These results, however, conflict with the following statement: "There is 

ample evidence indicating a functional tricarboxylic acid cycle in coccidia" (Wang,
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1982). Yet the only evidence given as justification for this statement was the detection 

of isocitrate dehydrogense and malate dehdrogenase in unsporulated oocysts and the 

demonstration by cytochemical analysis of succinate dehydrogenase and isocitrate 

dehydrogense in Toxoplasma. Succinate dehydrogenase also was apparently detected 

cyto chemically in several stages of Eimeria (Beyer, 1970; Michael and Hodges, 1973), 

however others have seen no presence of this activity (Denton, 1994; Smith et aL, 1994).

Thus there is evidence both for and against a functional TCA cycle. A 

possibility is that the TCA cycle is operative in only some life cycle stages of the 

parasite. Sporulation of eimerian oocysts occurs only under aerobic conditions. It can 

be inhibited by inhibitors of the respiratory chain (see 1.2.1.1.4), and results in carbon 

dioxide production (Nakai et aL, 1983), thus suggesting that this form of the parasite 

may also have a functional, but perhaps only partial, TCA cycle. Conversely, however, 

the end products released by eimerian sporozoites and their lack of sensitivity to 

respiratory inhibitors (see section 1.2,1.1.4.) are consistent with the TCA cycle playing 

little part in their energy metabolism. There are few data on other developmental stages.

I.2.I.I.4. Respiratory chain

C. parvum has not been reported to possess a mitochondrion which is consistent 

with the lack of detectable TCA cycle enzymes and antioxidant enzymes such as 

catalase (Entrala et aL, 1997). However mitochondria have been reported to be present 

in C. muris (Uni et a l, 1987), suggesting that the metabolism of this species may differ 

very greatly from that of C. parvum and this is further discussed in Chapter 3.
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In contrast, all developmental stages of Eimeria species possess distinctive 

elongate, cristate mitochondria. The processes of sporulation and excystation are 

associated with vigorous respiratory activity which is reversibly inhibited by cyanide and 

other inhibitors of electron transport, implying that it is mediated, at least partially, by a 

cytochrome-containing respiratory chain.

The detailed composition of the cytochrome chain in Eimeria is yet to be 

elucidated but there is evidence that it differs from those found in mammalian 

mitochondria. Mitochondria isolated from unsporulated oocysts of E. tenella consumed 

oxygen in the presence of conventional respiratory substrates, including NADH and 

succinate (Wang, 1975; Fry and Williams, 1984). The isolated mitochondria were 

uncoupled with respect to oxidative phosphorylation: oxygen consumption was not 

dependent on ADP, and the uncoupler carbonyl ;/7-chlorophenylhydrazone had no effect 

(Fry and Williams, 1984). However this lack of coupling may be a result of damage 

caused during the isolation procedure. Spectrophotometric analysis revealed absorbance 

maxima characteristic of a- and b-type cytochromes but no clear indication of a c-type 

cytochrome. Interaction with carbon monoxide suggested that there might be two a-type 

cytochromes present, cytochrome â  of cytochrome oxidase and an o-type cytochrome. 

The mitochondrial respiration was inhibited by cyanide, azide, carbon monoxide 

(inhibitors of cytochrome oxidase) and also by antimycin A, which blocks CoQ- 

cytochrome reductase. However rotenone and amytal were largely without effect, 

suggesting that NADH-Q reductase was either absent or presented unusual properties. 

These findings are similar to those having been reported for Plasmodium which is 

thought to lack the NADH-Q reductase and use succinate dehydrogenase as the major
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feed-in point (Fry, 1991).

The quinoione and pyridine coccidiostats and the 2-hydroxynapthoqiiinones act 

by blocking different sections of the respiratory chain. The use of these led to the 

suggestion that E. tenella has a branched or parallel electron transport chain. If so, 

resistance to one of the diugs could be mediated by electron transport being diverted 

towards the less sensitive of the pathways. It is interesting to view these results in the 

light of the detection of two a-type cytochromes in the mitochondria; perhaps these 

represent two terminal oxidases.

Plastid-like organelles have been found to occur in coccidia and the DNA 

associated with them encodes components of an oxidative chain (Hackstein et a i, 1995) 

which may contribute to the cell's respiration (see section 1.2.2.2.)

1.2.1.1.5. Other pathways

No information is available on the following pathways for Cryptosporidium and 

so they focus on that which has been documented for Eimeria.

Pentose phosphate pathway

Glucose 6-phosphate dehydrogenase, the first enzyme of the pentose phosphate 

pathway, has been purified and characterised from unsporulated oocysts of E. stiedae 

(Fransden, 1976, 1978). Like mammalian enzymes, the enzyme was specific for NADP 

and could accept glucose, at a low rate, as well as glucose 6-phosphate. Purine
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triphosphates (ATP, ÏTP and GTP) and the pyrimidine triphosphates (CTP and UTP) 

were effective inhibitors of the enzyme at mM concentrations, while 

phosphoenolpyruvate (a powerful inliibitor of some bacterial enzymes) had no effect. 

There was, however, significant inhibition by oleic and linoieic fatty acids. 6- 

Phosphogluconate dehydrogenase activity has also been detected in starch gels of 

sporulated and unsporulated oocysts (Shirley, 1975). From the presence of these 

enzymes, it would seem likely that a functioning pentose phosphate shunt exists in 

Eimeria species. It could be envisaged that this pathway would be particularly 

important in the rapid growth situations of schizogony and gametogony where NADPH 

and ribose requirements would be high. Indeed, James (1980) has presented 

circumstantial evidence that the pathway is very active in isolated schizonts.

Gluconeogenesis

Fructose 1,6-bisphosphatase and glucose 6-phosphatase have both been detected 

in extracts of Eimeria and so it would seem that the parasites have gluconeogenic 

capabilities. This may relate to the importance of amylopectin and possibly mannitol as 

energy reserves, although at present there is no evidence that exogenous substrates other 

than carbohydrates are used in their synthesis. Perhaps the endogenous reserves of lipid 

can be converted to the carbohydrate stores.

Glyoxylate cycle

No isocitrate lyase or malate synthetase activity could be detected in crude 

extracts of E. tenella unsporulated oocysts (Wang, 1982) implying that a glyoxylate 

pathway is not present.
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1.2.1.2. Other catabolic pathways and enzymes

The possible use of amino acids as energy substrates has not been investigated in 

any great detail in any of the coccidia, although some studies have been performed on 

Eimeria and Toxoplasma. It was found that there was a marked decrease in the 

concentration of most free amino acids during sporulation of oocysts (Denton et aL, 

unpublished), however sporozoites of E. tenella did not consume amino acids from the 

incubation medium (Denton et aL, unpublished). Glutamate dehydrogenase (Wang et 

aL, 1979) and aspartate aminotransferase (Shirley and Roilinson, 1979) have been 

detected in oocyst extracts, but there are no reports on other enzymes possibly involved 

in amino acid breakdown, and it has been shown that most, if not all, of the intra-host 

stages of the parasite are capable of taking up amino acids from the environment, 

although these were mainly incorporated into parasite proteins (Kiylov and Svanbaev, 

1980).

ATPases are an important group of enzymes that regulate intracellular ATP and 

ion levels within cells (Pederson and Carafoli, 1987). ATPase activity has been detected 

by histochemical means in most stages o f Eimeria (Michael and Hodges, 1973; 

Vetterling and Waldrop, 1976), with the activity in Eimeria sporozoites (Thong, 

unpublished) and T. gondii tachyzoites (Takeuchi etal., 1980) having been 

characterised. Both parasites appear unusual in lacking (or having very low levels) of 

Na'VK'^-ATPase, the enzyme responsible for maintaining high potassium ion 

concentrations within most eukaryotic cells. The apparent absence of this enzyme
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within Toxoplasma led Takeuchi et al. (1980) to speculate that the parasite plasma 

membrane might be freely permeable to Na^ and and that transmembrane fluxes of 

these ions occumng during transition between different environments (in particular 

during invasion of host cells) might be important effectors of the parasite's metabolism.

In apparent support of this conjecture, they demonstrated that the parasite's protein 

synthesis was markedly stimulated by potassium ion concentrations up to 150 niM and 

also showed that there were significantly higher levels of Na^ than in lysates of 

tachyzoites. While lacking a Na" /̂K  ̂ATPase, both Eimeria and T. gondii contain Mĝ "̂ - 

ATPase activity (considered likely to be of the mitochondrial variety which participates 

in oxidative phosphorylation). Ca^"^-ATPase activity was also detected in membrane 

preparations of the parasites. The Mĝ "̂ - and ATPases oî Eimeria presented similar

kinetic parameters and pH optima to the equivalent ATPases in chick liver cells, but had 

significantly different inhibitor sensitivities (Thong, unpublished). In particular, the 

parasite enzymes were much less affected by azide than their host cell counterparts 

while N-ethyi maleimide proved to be a potent inhibitor of the eimerian Ca^'^-ATPase 

but had little effect on the host enzyme. The activities of a number of ionophores and 

synthetic anticoccidials were investigated but appeared not to inhibit the ATPases in 

Eimeria.

1.2,2. Nucleic acids

I.2.2.I. Genes and proteins

Information on a number of coccidian genes and the corresponding proteins has
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been gained including heat shock proteins (HSPs) in Eimeria (Laurent et a i, 1994; Dunn 

et al., 1995; Clark et ai, 1996), Ciyptosporidium (Khramtsov et al., 1995) and 

Toxoplasma (Lyons and Johnson, 1995;) which have been suggested to possibly target 

proteins to the apical complex; tubulin in Cryptosporidium (Edlind ei al., 1994, 1997) 

and Eimeria (Zhu and Keithly, 1996); NAD transhydrogenase in Eimeria (Kramer et al., 

1993) which encodes a protein apparently associated with the retractile body 

(Vermeulen et a i, 1993); acetyl CoA synthetase and hemolysin in C. parvum 

(Klrramtsov et a i, 1996 and Steele et al., 1995 respectively). However, some of the 

genes show no significant homology with any already characterised, for example, the 

acetyl CoA synthetase and hemolysin of Cryptosporidium, and so the role of the gene 

product remains to be elucidated. Analysis of RNA levels themselves and the 

expression of different genes has shown that there is variation during the life cycle (Ellis 

and Thurlby, 1991; Herbert ei al., 1992; Abrahamsen et a i, 1994, 1995) thus providing 

useful new insights into the specific adaptations of individual developmental stages. 

Molecular techniques have progressed most rapidly with Toxoplasma and are now used 

widely (Sibley et al., 1993; Donald and Roos, 1994; Sibley et a l, 1994b; Messina et a l, 

1995; Soldati et al., 1995; Seeber and Boothroyd, 1996).

The ways in which nucleic acids are synthesised, processed and catabolised in 

coccidia have not been studied to any great extent. Ribonuclease P of T gondii has been 

partially characterised (Mack ei a l, 1994), a type II topoisomerase gene has been 

identified in C. parvum (Christopher and Dykstra, 1994) and it has been reported that 

DNA polymerase activity of T gondii coixelated with virulence (Makioka and Ohtomo,

1995).
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1.2.2.2. Plastids of the coccidia

More recently extranuclear circular DNA closely related to that of plastids has 

been found in coccidia (Egea and Lang-Unnasch, 1995; McFadden et al., 1996). Similar 

DNA appears to be a characteristic of the Apicomplexa and is reported to be a 35 kb 

circular molecule (Kohler et al, 1997) which has been studied extensively in 

Plasmodium (Williamson et a l, 1994; Wilson, 1997) and T. gondii (Kohler et al, 1997). 

Kohler et a l (1997) reported this DNA molecule - which is similar to chloroplast 

genomes - to be localised to a membranous region in the tachyzoite, next to the nucleus 

and distinct from either the mitochondria or golgi apparatus. It appears, however, that 

there is high conservation between the different groups of parasites and the name 

‘ApicoplasE has been suggested for the organelle (Kohler et al, 1997). The DNA 

includes genes encoding RNA polymerase, tRNA and various ribosomal proteins 

(Jeffries and Johnson, 1996). Evidence has also been presented for the presence of a 

chlorophyll a-Dl complex in Toxoplasma (Hackstein et a l, 1995) and, as this is a key 

component of the electron transport chain of plastids, this is highly suggestive of 

electron transport occurring in the organelle. The importance and functional 

significance of the plastid is still a matter of debate but it is possible that in addition to 

energy metabolism it provides essential proteins. The findings that some herbicides - 

thought to act by inhibiting the components of the electron transport chain encoded by 

the plastid - have anticoccidial activity, (Hackstein et a l, 1995) and that malaria 

parasites are sensitive to inhibitors of plastid metabolism (see McFadden et a l, 1996) 

has led to great interest in this area.
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It has been reported that some Eimeria may contain viral nucleic acids (Revets et 

al, 1989; Ellis and Revets, 1990; Roditi et al, 1994; Lee et al, 1996). Sporulated 

oocysts of E. nieschulzi were seen to have an RNA-dependent RNA polymerase activity 

which was absent in both E. tenella and E. acervulina. This activity correlated with an 

unknown nucleic acid species which may represent the genomic RNA of a possible virus 

(Sepp et al, 1991; Roditi et a l, 1994). In another study, performed on E. necatrix and 

E. maxima, RNA molecules possibly of viral origin were isolated and thought to be 

located in the cytoplasm of the parasite (Ellis and Revets, 1990). Those of E. necatrix 

were icosahedral and 42-44 nm in diameter with no envelope (Lee et al, 1996).

The implications of these virus-like-particles (VLPs) have not been determined.

1,2.3 Protein and amino acid metabolism 

1.2.3.1 Protein synthesis

Few studies have reported on coccidian protein synthesis and have mainly been 

limited to determine the sensitivity of the parasites to some standard protein synthesis 

inhibitors which have activity against coccidia in vitro and in vivo suggesting that 

protein synthesis is an important target for chemotherapy. Hence little detail is known 

of the mechanisms of protein synthesis. The gene encoding elongation factor-2, a 

protein essential for protein synthesis, has been cloned from C parvum (Jones et 

a/., 1995), and Toxoplasma has been shown to contain a cyclophilin (High et a l, 1994; 

Page et a l, 1995) thought to be involved in protein folding.
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1.2.3.2. Protein catabolism

Parasite proteinases have attracted considerable attention in recent years 

(McKerrow, 1989; North et ai., 1990; McKerrow et al., 1993; North and Lockwood, 

1995; Coombs and Mottram, 1997), largely because they are considered to be good 

targets for chemotherapeutic attack. Coccidia undoubtedly possess many proteinases 

themselves, as is thought to be the case for all eukaryotic cells, but only a few have been 

reported to date and these are described in the introduction of Chapter Four.

1.2.4 Polyamine metabolism

Effects of inhibitors of ornithine decarboxylase (ODCase) and S- 

adenosylmethionine decarboxylase (SAMDCase) have provided the most useful 

information on the significance of polyamine metabolism in the coccidia species. 

However a recent report indicates that C  pai'vum polyamine biosynthesis occurs via the 

enzyme arginine decarboxylase (ADC) rather than ODC with a-DL- 

dipuoromethylornithine (DFMO » an enzyme-activated irreversible inhibitor of ODCase 

and an effective antitrypanosomal drug) having no effect on growth (Yaiiett et ai,

1996).

The efficacy of DFMO against E. tenelia infections in chickens was 

investigated by Hanson et al. (1981). When adminstered at 0.5% in drinking water, 

starting one day before infection and continuing for five days, the compound was as 

effective in preventing symptomatic coccidiosis as was 0.012% of amprolium. 

Following a 'cure' with DFMO, the birds were immune to reinfection by the parasite
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when challenged one week later. If, however, putrescine was administered along with 

the DFMO then no cure was effected. These results are similar to those obtained with 

other parasites and imply that DFMO acts specifically by blocking putrescine 

production, that its effects are cytostatic rather than directly cytotoxic, and it is 

ineffective if exogenous putrescine is available and can be scavenged by the parasite.

There have been very few reports on polyamine metabolism in coccidia. 

Spermidine was detected in sporulated oocysts of E. acervulina (van der Horst and 

Kouwenhoven, 1973). SAMDCase has also been investigated using crude extracts of 

E. stiedae oocysts (San-Martin Nunez et al, 1987). The enzyme differed from its 

counterparts in rat or rabbit liver in having a considerably lower K„„ a slightly higher pH 

optimum and being relatively insensitive to several potent inhibitors of the mammalian 

enzyme.

1.2.5. Lipid metabolism

Lipid distribution has been investigated using cytochemical techniques with 

several coccidia. Large numbers of intensely staining lipid droplets are present in the 

macrogamétocyte stages of E. tenelia, T. gondii (Ryley, 1973) Isospora belli 

(Lindsay and Blagbum, 1994). At least in Eimeria, these droplets appear to persist 

through the process of zygote development and into the sporulated oocysts, where they 

accumulate within the sporocyst structures. Small lipid droplets have also been reported 

in the microgamétocytes of the above mentioned species, as well as in the sporozoites of 

Eimeria. In the remaining stages of Eimeria, as well as the tachyzoites of Toxoplasma,

28



lipid staining is veiy diffuse and suggestive of only structural rather than storage lipids 

(Ryley, 1973; Fransden, 1970). Although the presence of these lipid droplets suggests a 

role as an energy store, the part that they play is far from clear. Using quantitative mass 

spectroscopy, Wilson and Fairbairn (1961) found that during sporulation the lipid 

content of E. acervulina oocysts decreased by about 50% and they concluded that the 

lipids were being used as an energy substrate. However a contradictory conclusion was 

obtained by Weppelman et al. (1976), working with E. tenelia oocysts. Using 

gravimetric analysis they found that although the fatty acid content of the oocysts fell by 

around 50% dui ing sporulation, this decrease was almost compensated for by a 30% 

increase in the weight of non-saponifiable lipids (in particular C24 and C26 fatty 

alcohols). From this they concluded that there was no net oxidation of lipids during 

sporulation, but rather a general incorporation of fatty acids into fatty alcohols. The 

newly synthesised fatty alcohols appeared to remain in the cytoplasm, although whether 

in the oocyst fluid, the sporocysts or the sporozoites was not determined.

Compositional studies have been carried out on tachyzoites of T. gondii 

(Foussard et a l, 1991), sporulated and unsporulated oocysts of E. tenelia (Weppelman et 

a i, 1976; Stotish et a l, 1978), and oocysts of C  parvum (Mitschler et al., 1994). In the 

last study, the host cells (Madin-Darby Bovine Kidney (MDBK)) cells, which are often 

used for in vitro growth of coccidial parasites) were also analysed with the results shown 

in Table 1.2.5.1. Phosphatidylcholine (PC) represents the major phospholipid in both T. 

gondii and C  parvum, and was also detected in the oocyst walls of E. tenelia. The 

proportion of PC in both the fonner two parasites was found to be high in comparison 

with MDBK cells and some other protozoa, for example Plasmodium falciparum (45%)
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Trypanosoma cruzi (44%).

Hexacosanoi is the predominant lipid present (-60%) in the oocyst walls of E. 

tenelia with phosphatidylcholine, ethanolamine, serine and lysophosphatidylcholine 

being the four predominant phospholipids (Stotish et al, 1978).

The phospholipid composition of C. parvum cysts is unusual in that the amount 

of cardiolipin (CL) is extremely low compared, for example, with the levels in MDBK 

cells. CL in eukaryotic cells is almost exclusively a component of the inner 

mitochondrial membrane, so this observation is consistent with the suggestion that

Table I.2.5.I.: Phospholipid composition of some coccidia extracts

Phospholipid Eimeria 
tenelia 

(oocyst wall)

Toxoplasma
gondii

(tachyzoites)

CryptosporidT 
-um pat'vum 

(oocysts)

MDBK cells

PC V 62.0 ± 4.2 65.5 ±4.1 40.6 ±1.8
PE V 11.2 ±4.2 7.3 ±1.8 27.2 ±3.6
PI/PS V 15.0 ±5.6 1.8 ±0.9 12.6 ±2.3
SM ? 8.0 ±4.3 24.4 ± 5.2 14.0 ± 1.5
CL ? ? 0.9 ±0.8 5.8 ±0.5
LPC V ? ? ?

Results are expressed % of total phosphate. Means ± SD. Key; PC- 
phosphatidylcholine; PE-phosphatidylethanolamine; Pl-phosphatidylinositol; PS- 
phosphatidylserine; SM-sphingomyelin; CL-cardiolipin; LPC-lysophosphatidyl 
choline; V, detected but not quantified; ?, not investigated.

C  parvum either lacks a mitochondrion altogether or has only a rudimentary structure 

(Cunent, 1989). It should be remembered, however, that CL was not detected at all in 

T. gondii and this parasite contains structures that resemble mitochondria on 

morphological criteria along with evidence for a functional TCA cycle and respiratory

30



chain.

The fatty acid compositions reported for coccidia are summarised in Table

1.2.5.2. It is important to take into account that the various sets of data are not directly 

comparable as they refer to different lipid fractions. However, Toxoplasma and 

Cryptosporidium are similar in containing 16:0, 18:1 and 18:2 as their major acyl chains 

while Eimeria contains predominantly 18:1 and has only trace amounts of 18:2. 

Recently the effect a high n-3 fatty acid on chickens infected with E. tenelia was

Table 1.2.5.2.: Fatty acid composition of some coccidia extracts

Fatty acid Eimeria tenelia 
Unsporulated Sporulated 

oocysts oocysts

T. gondii 
(tachyzoites)

C. parvum (oocysts) 
phospholipids neutral lipids

C 14:0 1 2 9 0 5
C16:0 12 8 17 31 27
C 16:1 1 3 nd trace 3
C 18:0 10 17 11 16 20
C 18:1 75 68 31 22 27
C 18:2 trace trace 20 29 15
C20:0 nd nd 6 trace 1

Results are expressed as % of total phospholipid in the fraction, 
nd: not detected.
Data taken from: Weppelman et a l, 1976; Stotish et a l, 1978; Foussard et al, 
1991; Mitschler et a l, 1994.

studied, with the hypothesis being that the fatty acids cause nutritionally oxidative stress. 

The effect was that degeneration of both asexual and sexual stages of the parasite was 

observed (Danforth e/n/., 1997).
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Mitschler et al. (1994) noted that the fatty acid profile of C. parvum was 

significantly different from that of MDBK cells and concluded that C parvum must 

have the ability either to synthesize or selectively sequester specific acyl chains.

Cholesterol is the only sterol that has been detected in either Toxoplasma or 

Cryptosporidium, and it has also been identified in Sarcocystis and Eimeria species. In 

Eimeria, several other components are also found in the non-saponifiable lipid fraction. 

From their retention times in gas-liquid chromatographic analysis, two of these 

components in E. acervulina were suggested to be squalene and progesterone (Van der 

Horst and Kouwenhoven, 1973). However, Weppelman et al. (1976) used E. tenelia 

extracts and found no evidence for these compounds but identified the non-saponifiable 

lipids as cholesterol and a range of fatty alcohols of 22-32 carbons (hexacosinol was the 

most abundant). In the unsporulated oocysts, the majority of these alcohols were located 

in the oocyst wall. It seems likely that they contribute to the impermeability and general 

resistance of this structure.

1.2.6. Treatment and control

As cryptosporidiosis is self-limiting in immunocompetent patients, oral or 

intravenous hydration is a sufficient therapy (Fayer and Ungar, 1986). However, in 

immunodeficient patients, for example AIDS patients, hydration is simply not enough 

since cryptosporidiosis is often severe and may be fatal. Chemotherapy against 

Cryptosporidium has proved ineffective (Tzipori, 1988) and there are few drugs active 

against Cryptosporidium, far fewer than against other coccidia. Many studies using 

various drugs have been carried out with some having been reported to inhibit C.
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parvum development in vitro. In some, an enzyme linked immunosorbent assay 

(ELISA) was used to evaluate growth and effects of various anti-microbials (Woods et 

aL, 1995). Whilst not all studies report the same activities, the data suggest that 

monensin and halofuginone inhibit parasite development by more than 90% (Yvore and 

Naciri, 1989; McDonald et al, 1990).

Dinitroaniline herbicides are known to inhibit plant tubulin polymerisation, thus 

arresting mitosis in cells (Arrowood et al, 1996). More recently, these compounds have 

been reported to have antiproliferative effects on a number of protozoan parasites 

including other apicomplexans. A study on the anticryptosporidial activity of 

dinitroaniline herbicides in vitr'o concluded that of the five tested all exhibited 

anticryptosporidial activity with no toxicity to the host cell itself (Arrowood et ai,

1996).

A newly discovered fungal product known as Apicidin also has interesting 

anticryptosporidial activity by inhibiting apicomplexan histone deacetylases (HDA) and 

therefore transcriptional control (Darkin-Rattray et ai, 1996).

However many of the drugs active in vitro showed little or no activity in vivo. 

Using animal models, halofuginone was seen to prevent acute cryptosporidiosis in the 

ileum of infected rats, yet it was less effective for chronic cryptosporidiosis of the colon 

- which is usually the case in immunocompromised patients (Rehg, 1995).

Azithromycin and sinefungin were also reported to prevent infection in 

immunosuppressed rats (Rehg, 1991; Brasseur et ai, 1993). However, against C. 

serpentis infections halofuginone and spiramycin did not provide any therapeutic aid 

(Graczyk ^/., 1996).

In clinical trials a study perfonned on zidovudine claimed that a HIV-positive
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patient fully recovered from Cryptosporidium after a four week course of treatment 

(Greenberg, et al, 1989). This may work indirectly by restoring T cell (CD4^) numbers 

as it kills the HIV virus. Alternately, Nousbaum et a/. (1991) reported that zidovudine 

alone could not resolve cryptosporidiosis but when used with SMS 201-995 (a 

somatostatin analogue) the infection was controlled within 15 days of treatment. 

Additionally spiramycin (a macrolide antibiotic) has been reported to resolve C  parvum 

infections in immunosuppressed patients (Portnoy et al, 1984) whereas diloxanide 

furoate, furazolidone, interleukin-2 , quinine and clindamycin were all reported to ease 

symptoms (Sterling and Arrowood, 1993). More recently paromomycin, an antibiotic 

poorly absorbed by intact gut epithelial cells (Hoepelman, 1996), has been used in 

clinical trials. The results showed all patients responded to the drug and there was 

improvement in both clinical and parasitological parameters (Annitage et al, 1992; 

White et al, 1994). Paromomycin and maduramicin also exliibited anti-cryptosporidial 

activity as assessed using a chemiluminescence immunoassay to evaluate in vitf^o growth 

of C  parvum (You et al, 1996). Additionally, paromomycin succeeded in curing 

respiratory cryptosporidiosis (Mohri et al, 1995).

Methods other than chemotherapy that have potential for preventing 

cryptosporidiosis have also been researched. Bovine colostrum hyperimmune to 

Cryptosporidium was seen to eliminate the infection of an AIDS patient after as little as 

48 h direct duodenal infusion (Ungar et al, 1990). However, other studies have reported 

no success using bovine colostrum (Tzipori, et al, 1986; Saxon and Weinstein, 1987) 

whereas others report no benefit from feeding children with immune mother's milk 

(Sterling er a/., 1991).
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An alternative method of reducing the prevalence of the infection is to eradicate 

oocysts from the water supply. Unfortunately, Oyptosporidium oocysts are extremely 

resistant to the majority of common disinfectants (Campbell et al, 1982). Recent 

studies have shown that ozone may be useful in controlling oocyst numbers (Owens et 

al, 1994). Both ozone and chlorine dioxide proved to be more effective than chlorine 

and monochlorine (Korich et al, 1990). However these studies also showed that C. 

parvum oocysts are some 40x fold more resistant to ozone and usual water treatments 

than are Giardia cysts (Korich et al, 1990), indicating that these cleansing techniques 

cannot be relied upon to eradicate infective C. parvum oocysts from the water supply.

The present situation has therefore led researchers to investigate 

disinfectants that may be used other than those used routinely. However the 

quest to find a compound that is effective in destroying oocyst viability but is not 

harmful to both humans and animals continues.

The search for drugs effective against Eimeria has been more successful 

than that involving Cryptosporidium. The drugs of choice for avian Eimeria are 

polyether ionophores (Dutton et a l, 1995, and see Table 1.2.6.1.) which have 

captured approximately 70% of the current market. It is anticipated that these 

compounds will dominate this market for many years to come because there has 

been no commercial launch of any novel class of synthetic or semisynthetic avian 

anticoccidial drug since the early 1980s. This is a major concern as resistance 

problems have arisen with current agents (Chapman, 1993; Edgar, 1993;

Vertommen and Peek, 1993). However experimental recombinant vaccines are 

now being developed and perhaps
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they will set the trend for cheap avian coccidiosis control in the future (Buxton, 1993; 

Wallach, 1993; Bamga, 1994; Buxton and Innes, 1995). However elucidation of the 

mechanisms of action and resistance of current drugs may lead to novel chemical 

strategies for obtaining the new anticoccidial drugs that are urgently required.

Yet in most cases the precise mechanism of action of the avian anticoccidial drugs 

listed in Table 1.2.6.1. is not known. When compared with the detailed information 

available on, for instance, many antimalarial drugs, current knowledge of the 

biochemical action of avian anticoccidial drugs is superficial There have been just a 

few recent papers on the effects of drugs on parasite morphology and site of action of 

anticoccidial drugs (Smith and Stout, 1980; Maes et a l, 1988; Verheyen et a l, 1988; 

Guyonnet et a i, 1990; Daszak et a l, 1991; Rather et a l, 1991; Zhu and MacDougald, 

1992; Conway et a l, 1993; Ferguson et a l, 1994). In addition, studies on the 

mechanism of resistance to ionophores in Eimeria have revealed differences in drug 

uptake (Augustine et a l, 1986) and protein content (Zhu et a l, 1994). Despite the 

major impact that drug resistance has had on anticoccidial chemotherapy (Chapman, 

1993; Edgar, 1993; Vertommen and Peek, 1993), and studies on the basis of resistance 

to some compounds (Pfefferkom et a l, 1989; Pfefferkorn and Borotz, 1994), the 

mechanisms of drug resistance have not been elucidated in detail in any case. More 

basic but focused research on coccidia is needed to provide better understanding of 

drug-parasite interactions.

There have been several recent reports of novel experimental compounds with
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anticoccidial activities including those against Oyptosporidium. Some of these 

interesting anticoccidial leads and their putative biochemical actions are given in Tables

1.2.6.2.(a) and (b). It is apparent that macrolides/azalides are well represented, 

suggesting that protein synthesis provides an important coccidial target. On the other 

hand, nothing is known about the identity of the molecular targets of many of the 

compounds. It remains to be seen whether any of these compounds or their analogues 

will become viable commercial products.

1.2.7. The oocyst wall

The ‘thick walled’ oocysts of C. parvum have three membranes and an outer wall 

of two chitinous layers, and the thin walled oocysts have a single unit membrane 

(Sterling and Arrowood, 1993). More recently, Oyptosporidium oocysts were reported 

to be similar to those of Eimeria in having two walls (Petersen, 1993). The first cloned 

C. parvum oocyst wall protein (COWP) has been ultrastructurally located to the inner 

layer of the oocyst wall (although the resolution could not distinguish the two layers of 

the wall) (Spano et al., 1997).

Three species of Cryptosporidium were analysed for oocyst wall composition 

using surface labelling and antibodies (Tilley et a l, 1990; Nina et a l, 1992). The oocysts 

of C  baileyi, C. mûris and C. parvum could all be distinguished, but C. parvum and 

C  baileyi were shown to be more similar to each other than either was to C. muris. 

Additionally oocysts of the same species of Cryptosporidium have been seen to vary in 

antigenic profiles according to their geographic location (Nina et al, 1992) and different 

isolates vary in vimlence (Petersen, 1992).
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The oocyst walls of E. tenelia have two layers, an outer 10 mn layer and an inner 

90 nm layer (Stotish et al, 1978). Studies perfonned using gas liquid chromatography 

have revealed that glucose is the predominant neutral sugar with small amounts of 

mannose and galactose (Stotish el al, 1978). Unsporulated oocyst walls were found to 

be 67% protein, 14% lipid and 19% carbohydrate. They contain an unusual 

polysaccharide, initially thought to be chitin but which on further analysis was found to 

differ in detail (Ryley, 1973). One of the protein components has been characterised 

(Eschenbacher et al., 1996).

1.2.8 Functional surface molecules

Parasite surfaces have received particular attention from scientists because of 

their role in the initial interaction of a parasite with its host. However many of the 

studies have used limited approaches for analysing surface molecules and most of the 

molecules detected in this way have been characterised only with respect to their 

mobility in gels and the presence or absence of carbohydrates or lipids. Very little 

research has been focused on this area in coccidia.

1.2.9 Glycosylation

There have been several reports on the presence of glycoproteins in Eimeria and 

Toxoplasma (Schwarz et aL, 1993), but in most cases the subcellular location of the 

molecules has not been established. Dieckmami-Schuppert et al. (1992) reported that 

exogenous dolichol pyrophosphoryl-oligosaccharides were utilised by T. gondii for
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glycosylation of its proteins. It was not until 1993 that biochemical evidence was 

obtained showing that T. gondii tachyzoites synthesise N-linked glycoproteins and the 

lipid-linked glycan precursor for N-linked oligosaccharides (Odenthal-Schnittler et a i, 

1993). Additionally in A. tenelia a protein extracted from oocysts walls indicated that 

O-linked carbohydrates were present (Eschenbacher et al., 1996).

1.2.10 GPI-ancliors

Many surface molecules are attached to the plasma membrane via 

glycosylphosphatidylinositol (GPI) anchors. However, this is an area in which coccidia 

have been investigated in much less detail than some other protozoan parasites. The 

major surface proteins on the tachyzoites of T. gondii do have GPI-anchors (Nagel and 

Boothroyd, 1989; Tomavo et aL, 1992a) and the parasite is capable of synthesising GPI 

and also N- and O-glycans (Tomavo et aL, 1992b; Schwarz and Tomavo, 1993). Some 

undefined antigens on the surface of Eimeria sporozoites are also attached via GPI- 

anchors (Gurnett et aL, 1990).

1.2.11 Lectins

Lectins are the class of carbohydrate-binding proteins present on most cell 

surfaces and are thought to be involved in cell-cell interactions, including host- 

parasite invasion. N-acetylglucosamine-specific lectins were seen to be the main 

ones of C. parvum oocysts (Llovo et aL, 1993). The sporozoites of C  parvum 

have also been studied for lectins with the aim of elucidating their role in
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sporozoite attachment to host cells (Thea et aL, 1992). Of the glycoproteins 

tested, bovine submaxillary mucin (BSM) and the blood group antigen-related Pi 

glycoprotein proved to be the most inhibitory on sporozoite haemagglutination 

activity. Galactose and N-acetylgalactosamine were the most effective 

monosaccharide inhibitors (Joe et al, 1994). Using invasion studies with MDCK 

cells, C  parvum sporozoites pre-incubated with BSM or fetuin showed a 

reduction in attachment by 77% and 63%, respectively (Joe et aL, 1994).

Invasion was also reduced by 28% and 27%, respectively, thus supporting the 

theory that lectins do play a major role in C. parvum host cell invasion.

Additionally it has been reported that both Toxoplasma and Cryptosporidium 

have a tlirombospondin-related adhesive protein that appeared to be located, at 

least in part, on the sporozoite surface and is likely to be involved in binding to 

the prospective host cell.

Three Eimeria species and various developmental stages of E. tenelia were 

evaluated for lectin activity using haemagglutination. It was found that Eimeria has 

lectins that are developmentally regulated (Strout et aL, 1994), suggesting stage-specific 

functions. The lectin specificity of each species was also found to be different. L(-)- 

fucose and D(+)-arabinose inhibited invasion of E. tenelia and E. acervulina, 

respectively, whilst none of the 30 monosaccharides tested inhibited E. maxima (Strout 

et aL, 1994). Additionally the pH optima of the lectins from the three species was found 

to differ and, to an extent, correlate with the in vivo conditions found in the part of the 

gut that each infects (Strout et aL, 1994). These results suggest that lectins may play a 

role in site-selection by these coccidial parasites (see Chapter 3 for further details). 

Lectins seem to play a role in host cell attachment, although the study of Baba et
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a i (1996) suggested that a lectin-like receptor on the host cell recognises galactose on 

the sporozoite surface.

1.2.12 Cell signalling

Cell signalling is an area of coccidian biology, however, that is largely 

unexplored. Genes encoding protein kinases and a phosphatase in T. gondii have been 

reported (Russell and Dwyer, 1993; Ng cf 1995), and evidence tor GTP-binding 

proteins has been presented (Halonen et al., 1996). A Ca -dependent protein kinase, 

with some plant-like features, has been cloned from E. tenelia (Dunn et aL, 1996). 

Interestingly it appears to be cytosolic in sporozoites but to move to the apical tip during

host cell penetration.
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Aims of study

The general aims of my project were to elucidate the mechanisms that enable the 

parasites Cryptosporidium and Eimeria to survive in the gastrointestinal tract of the host 

and to penetrate to and invade the host cells themselves.

It was intended that the following working hypotheses would be tested:

1. Sporozoites aie biochemically adapted for a period of anaerobiosis after excystation.

2. Sporozoites have surface enzyme activities or release enzymes that aid the parasite’s 

penetration through the mucus layer covering the host’s epithelial cells, and the 

subsequent invasion of a host cell.

3. The condition of the potential host cell affects its susceptibility to infection by the 

parasite, and infection of the host cell modifies its gi owth.

4. Eimeria and Cryptosporidium have similar biochemical adaptations.
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CHAPTER 2 

PARASITE MAINTENANCE AND EXCYSTATION TO PRODUCE 

SPOROZOITES

2.1. Introduction

Excystation, the process that results in the release of invasive sporozoites 

from oocysts, is the initial stage of Cryptosporidium and Eimeria infections. For 

some coccidia, for example Eimeria spp., studies began on excystation in the 

early 1960s and standard excystation protocols have been defined for this parasite 

which are widely accepted. In comparison fewer studies have been performed 

with Cryptosporidium to define a method of in vitro excystation. Initially, many 

researchers presumed that the process of excystation of Cryptosporidium would 

involve the same mechanisms as with Eimeria, The excystation of Eimeria 

oocysts has been observed to proceed via two steps: the first, an incubation under 

anaerobic reducing conditions, followed by a second step involving exposing the 

sporocysts to the pancreatic enzyme trypsin and also bile (Fayer and Leek, 1984). 

This results in the release of the sporozoites through an opening in the sporocyst 

wall called the steida body (Woodmansee, 1987). However Cryptosporidium 

oocysts differ from those in Eimeria in that they sporulate before leaving the host 

and also lack sporocysts (Sundermann et al, 1987), and the suture through which 

Cryptosporidium sporozoites are released is on the oocyst wall itself, as can be 

seen by electron microscopy (Reduker et ai, 1985). Thus it is not surprising that 

there are some differences between the excystation of oocysts of Cryptosporidium 

and Eimeria.
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An early study suggested that tap water and the temperature of 37°C was 

sufficient for C. parvum excystation (Fayer and Ungar, 1984). However this is in 

direct contrast to later reports which state that excystation fluid is essential to the 

process as well as a temperature of 37°C (Speer and Reduker, 1986). It has 

become generally accepted that the use of bile or bile salt and a temperature 

elevation to 37°C are important for excystation of C. parvum (Fayer and Ungar,

1986). Interestingly, C. muris is different: bile is not necessary for excystation, 

reflecting that excystation for this species occurs in the stomach of the host (Nina 

ei al, 1992b). Nevertheless, a number of excystation protocols have been 

reported by different researchers. Various preincubation treatments have been 

analysed to determine whether or not they increase excystation. Commonly used 

ones are sodium hypochlorite and bleach, although quite differing effects have 

been reported by different researchers (Reduker et ai, 1985; Sundennann et al., 

1987; Woodmansee, 1987; Robertson et ai, 1993). Supposedly, these cause an 

alteration in oocyst wall permeability (Robertson et al, 1992). Additionally the 

effect of a number of protease inhibitors on excystation was also studied. It was 

observed that the proteinase inhibitors phenylmethylsulfonyl fluoride (PMSF), 

diisopropyl fluorophosphate (DIFP), aprotinin and a  %-antitrypsin all inhibited 

excystation yet E64 did not, thus suggesting that serine proteinases are 

functionally associated with excystation (Forney et al, 1996b). However the 

mechanism by which these proteinase inhibitors inhibit this process is not fully 

understood and, as the authors clearly state, the oocysts had been pretreated with 

bleach, possibly providing a means for the inhibitors to penetrate the oocyst 

(Forney et ai, 1996). Preincubation with saliva was curiously noted to reduce the 

excystation of Cryptosporidium oocysts (Robertson et ai, 1993).

Bile/bile salt have been used in excystation media, with concentrations 

ranging from 0.15% (Woodmansee, 1987) to 0.75% (Fayer and Ungar, 1986).
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The lower concentrations of bile resulted in decreased excystation but better 

survival of the resulting sporozoites (Woodmansee, 1987). Surprisingly, the 

source of host bile was unimportant with C. baileyi. This suggests that 

Cryptosporidium differs from Sarcocystis, since with the latter parasite, bile is 

thought to play a major role in determining host specificity (Sundermann et ai, 

1987).

There are conflicting reports on whether tiypsin is necessary for the 

excystation of Cryptosporidium - as it is for Eimeria (Fayer and Leek, 1984; Fayer 

and Ungar, 1986; Woodmansee, 1987). Recent studies suggested that trypsin has 

no beneficial effect on the excystation process of Cryptosporidium (Robertson et 

al, 1992). This is believable, as the role of trypsin is thought to be to dissolve the 

steida body of the Eimeria sporocyst and, as mentioned above, Cryptosporidium 

does not possess such a structure (Sundermann et ai, 1987). Cryptosporidium 

also differs from other coccidia in that it appears not to require reducing 

conditions for excystation to occur (Fayer and Leek, 1984; Sundermann et ai, 

1987). Also, although excystation rates are reported to be higher at lower pH 

values (5.5-6.0), sporozoite survival is poor at pH <6.5 (Woodmansee, 1987).

For both Cryptosporidium and Eimeria the age of the oocyst sample is one 

factor that is often overlooked. Excystation decreases over time as oocysts are 

stored at 4°C, such that after several months they are unable to excyst (Fayer and 

Leek, 1984; Speer and Reduker, 1986) and infectivity to animals is lost by 18 

months (Yang et al, 1996). These observations support the hypothesis that, based 

on the findings, excystation is a process dependent on temperature, pH, age of 

oocysts and enzymes within the oocyst (Fayer and Leek, 1984; Woodmansee,

1987). Different oocyst isolates also have different excystation efficiencies 

although this may reflect the different purification techniques used (Campbell ei 

al, 1992; Robertson et al, 1993); for example centrifugation with percoll
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gradients, saturated sodium chloride or discontinuous sucrose gradients have been 

employed to isolate oocysts (Arrowood and Sterling, 1987).

Most researchers use different lengths of incubation period for 

excystation. A sixty minute incubation has been reported to be sufficient for 

maximal excystation (Woodmansee, 1987), whereas other researchers stated that 

maximal excystation occurs after four hours (Campbell et ai, 1992; Robertson et 

ai, 1993). However it has also been reported that excystation should not be 

stopped earlier than 30 minutes if high sporozoite numbers are required 

(Robertson e/a/., 1993).

The following experiments were performed to study and consequently 

optimise the in vitro excystation of Cryptosporidium and to provide more 

infonnation on this initial step in parasite infection.
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2.2. Materials and Methods

2.2.1. Maintenance of Cryptosporidium species

2.2.1.1. Infection of animals

Both the MD isolate of C  parvum (originally isolated from a deer and 

obtained from the Moredun Institute for Animal Research) and the RN 6 6  strain 

of C. muris (originally isolated from rats) were routinely passaged in mice.

Before infection with C  parvum female C57 mice (OLAC) were 

immunosuppressed using dexamethasone (10 mg m f\  SIGMA D-1756), 

administered subcutaneously (0.1 ml) on alternate days for one week. At the 

same time as the last dexamethasone injection, 10^-10  ̂purified C. parvum 

oocysts were administered orally. Faeces were collected on days 3-7 after the 

initial infection (day 0) and each day's collection was stored in 50 ml water at 

4°C.

C. muris was passaged in CB-17 SCID mice infected with 2x10^ oocysts. 

Faeces were isolated on each day after day 14 of infection and stored as described 

above.

This animal work was entirely earned out at Dr. V. McDonald’s 

laboratory at the London School of Flygiene and Tropical Medicine.

2.2.1.2. Monitoring infections

A smear was made from the faeces of an infected mouse and, after fixing, 

was stained using the Ziehl-Neelsen method. The smear was air-dried and fixed 

by covering in methanol and allowing to dry. The smear was then immersed in 

carbol fuschin for 30 min, rinsed with water and then covered with a 1% acid

50



alcohol solution (500 ml methanol, 5 ml concentrated hydrochloric acid) for a few 

seconds. The slide was rinsed with water and the acid alcohol step was repeated. 

The smear was then immersed in malachite green for a few seconds and was 

subsequently washed well with water. After drying, a number of fields 

(approximately ten) of the slide were obseiwed under oil immersion microscopy to 

determine whether oocysts were present in sufficient numbers to isolate from the 

faeces.

2.2.I.3. Isolating oocysts

The collected faeces and water mixture was shaken to produce a 

homogenate and passed through a 2 0 0  pm metal sieve into a beaker to remove 

large particles. More water was washed through the large particles in the sieve to 

obtain as many oocysts as possible. The sieved material was left to settle for 15 

min in the beaker whereupon the liquid above the sediment was poured off and 

centrifuged at 1000 x g for 10 min at 4°C. The supernatant was discarded and the 

pellets containing the oocysts were resuspended in 45 ml saturated salt solution 

(32% w/v sodium chloride). Each suspension was then transferred to a 50 ml 

sterile plastic conical tube and approximately 5ml of water was run down the side 

of each tube to form an upper layer. The tubes were then centrifuged at 1000 x g 

for 10 min at 4°C and the oocysts, having risen to the upper water layer, were 

pipetted off and pooled together in a sterile tube. Having pelleted the oocysts by 

centrifugation ( 1 0 0 0  x g for 1 0  min), the pellet was resuspended in the salt 

solution and the procedure repeated. All the oocysts collected in the upper water 

layers were pooled together. These were then washed twice in water and 

sedimented by centrifugation (1000 x g for 10 min) at 4°C and resuspended in 

potassium dichromate (2.5%, w/v) at a density of 10^-10  ̂oocysts m l'\
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2.2.2. Washing oocysts

2.2.2.1. Cryptosporidium

The required quantity of oocysts in potassium dichromate (2.5%, w/v) was 

centrifuged at 1000 x g for 10 min at 4°C. The pelleted oocysts were resuspended 

in RPMI and this procedure was repeated until the pink colour of RPMI remained 

after resuspension of the pellet (rather than turning yellow due to the residual 

dichromate).

2.2.2.2. Eimeria tenella

Sporulated oocysts of the RET 5 strain of E. tenella were grown in 

chickens and purified as previously described by Horton-Smith and Long (1959) 

after which they were stored in potassium dichromate (2.5%, w/v) at a density of 

-1x10^ oocysts niT\ These were obtained from Animal Health Discovery,

Pfizer Central Research, Kent. Before use the oocysts were pelleted (200 x g for 

5 min) and washed three times using phosphate buffered saline (PBS, pH 7.3) to 

remove the potassium dicluomate. Sporocysts were released by vortexing oocysts 

with glass beads (3 mm, BDH) for approximately 2-3 min. The sporocysts were 

then excysted in a solution of PBS containing 2% taurodeoxycholic acid 

(Calbiochem), 0.1% trypsin, 0.01% chymotrypsin and 20 mM magnesium 

chloride for 60 min at 44°C in a shaking water bath. The released sporozoites 

were then washed into RPMI.

2,2.3. Excystation of C. parvum  and C. muris
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Two reagents commonly employed to trigger excystation of 

Oyptosporidium are the bile salt taurodeoxycholic acid (TDC) and sodium 

hypochlorite (Robertson et al, 1992). Both of these were used and compared in 

the following studies.

(a) bile salt

Taurodeoxycholic acid was added to oocysts in RPMI to a concentration 

of 0.8% and mixed well. The mixture was incubated at 37°C for 60 min in an 

incubator or water bath.

(b) bleach

Washed oocysts were centrifuged at 1000 x g for 10 min at 4°C and 

resuspended in 10% (v/v) bleach (Tesco, 30-40% sodium hypochlorite (v/v)) in 

water. The mixture was placed on ice for 10 min before the parasites were 

washed 3 times in ice cold water, once in RPMI, resuspended in 1 ml RPMI and 

incubated at 37°C for 60 min in an incubator or water bath.

To calculate the percent excystation for both Cryptosporidium and 

Eimeria the following equation was used for all the studies in this chapter;

Original Oocyst Number - Remaining Oocyst Number
Original Oocyst Number x 100

2.2.4. pH buffers

The buffers used to study the effect of pH on the excystation process were 

as follows: pH 2, 0.2 M potassium chloride; pH 4,0.1 M sodium acetate; pH 6  

and 8  a phosphate buffer; and pH 9.5, 0.1 M sodium bicarbonate (McKenzie and 

Dawson, 1969). The oocysts were resuspended in 0.33 x RPMI and adjusted to 

the appropriate pH using the above buffers.
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2.3. Results

2.3.1. Comparison of bile salt and bleach for triggering excystation

The bile salt taurodeoxycholic acid and sodium hypochlorite procedures 

were tested for efficacy on C. parvum and C  muris excystations as described in

2.2.3. The percent excystation for each sample was calculated (see 2.2.3.) and the 

results are shown in Figure 2.3.1. and Table 2.3.1. for C. pat'vum and C. muris, 

respectively. In the case of C. parvum it was observed that the oocysts incubated 

with 0 .8 % bile salt achieved a greater initial rate of excystation which finally 

reached approximately 80% excystation in the 80 min incubation period. The 

oocysts treated with the bleach showed a much slower initial rate of excystation, 

although this did rapidly increase after 2 0  min to reach a final value of 

approximately 60% excystation. These results indicate that the bile salt was the 

preferred excystation stimulus for C  parvum (0.05<P<0.02). 1
I

The results obtained for C  muris are shown in Table 2.3.1. As was the j
I

situation for C  parvum the bleach treatment (approximately 33% excystation |

after the 80 min incubation period) was not as effective as the bile salt 

(approximately 44% excystation) in stimulating excystation (0.05<P<0.02).

However, in vivo C. muris excysts in the stomach where bile is not present and, as 

the results show, the absence of both bile salt or bleach treatment does not effect 

the excystation process of this species (approximately 45% excystation).

Nevertheless, sporozoites from both of the Cryptosporidium species appeared 

more motile in the presence of bile salt and it was therefore decided to use bile 

salt in the excystation mixture of both C. parvum and C  muris.
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2.3.2. Varying bile concentrations on C. parvum  excystation

Bile salt was found to be a better excysting agent than bleach for C 

parvum, hence the optimum concentration of bile salt was determined. Oocysts 

were incubated with a range of bile salt concentrations, samples were removed at 

2 0  min intervals and the percent excystation was detennined by microscopic 

observation. The results are shown in Figure 2.3.2. The results show that the 

lower concentrations of bile salt - 0.08% and 0.16% - resulted in a relatively low 

percent of excystation at approximately 50% and 70% respectively after the 80 

min incubation time. As the concentration of bile salt was increased to 0.4% or 

1 .0 % the degree of excystation also increased; however these respective 

concentrations resulted in the same level of excystation after the incubation 

period. It was decided therefore to use the lower concentration (0.4%) of bile salt 

in order to keep any detrimental effects this material may have to a minimum.

2.3.3. Varying incubation conditions

Once the most suitable bile salt concentration had been detennined, other 

optimal conditions for excystation were investigated. The effect of shaking the 

oocyst suspension during a 60 min incubation and the effect of storing the bile salt 

solution were studied. The percent excystation of oocysts incubated either with a 

freshly prepared or a frozen bile salt (-20°) solution (0.4%) were compared using 

the standard procedure. In addition samples were either placed on a shaker (350 

rotations min“i) during excystation and others were stationary. The results shown 

in Figure 2.3.3. indicated that the use of fresh bile and keeping the excysting 

mixture on a shaker during the incubation resulted in the highest excystation rate.
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2.3.4. Time course of excystation

To detemtiine the end point of the excystation process, samples of the 

excystation medium were removed every 2 0  min and percent excystation 

calculated. The results are shown in Figure 2.3.4. The number of released 

sporozoites increased until 80 min of the incubation and then rapidly decreased in 

number due to their low survival time in vitro. The number of shells counted, that 

is the excysted oocysts, did not equal the initial number of unexcysted oocysts, 

possibly due to the shells being hard to discern under the microscope since they 

have a tiansparent appearance in the haemocytometer. Thus it was seen that the 

minimum time required to excyst the majority of C. parvum oocysts was found to 

be approximately 80 min at 37°C.

2.3.5. Standard excystation conditions used

Taking into account the results from these preceding experiments all 

subsequent studies employed the following standard excystation procedure for 

both C  parvum and G muris: 0.4% bile salt, on a shaker (350 rotations min”ri at 

37°C for 80 min.

2.3.6. Effect of gaseous conditions on excystation

Four samples of oocysts and bile salt were prepared for excystation. Three 

were transferred to bijoux bottles and gassed by bubbling with the appropriate gas 

mixture for 2 min (2 Imin"^); one with 95% nitrogen/5% carbon dioxide and two 

with nitrogen. The other sample was not gassed and so was under aerobic 

conditions with air as the gas phase. All four samples were incubated on a shaker 

at 37°C for 80 min whereupon samples were removed and percent excystation
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detennined. The results shown in Table 2.3.2. revealed that the greatest percent 

excystation of C. parvum occurred with the samples gassed with 95% nitrogen/5% 

carbon dioxide (0.05<P<0.02) or nitrogen (0.01<P<0.002), that is the anaerobic 

conditions. However when observing the sporozoites they were equally motile in 

the anaerobic samples and aerobic samples, and in future experiments aerobic 

excystation was used since this method was less time consuming.

2.3.7. Effect of oocyst age on excystation

To determine whether the age of the oocysts used effected excystation, 

sets of oocysts collected at different times were subjected to the standard 

excystation procedure and the percent excystation determined. The results are 

shown in Table 2.3.3. It was observed that the older oocysts had a greater percent 

excystation after the incubation time, but fewer numbers of visible sporozoites 

were observed. The younger oocysts, although excysting less well, produced 

many more sporozoites which were much more motile than those released by the 

older sample.

2.3.8. Effect of pH on excystation

Oocysts were washed free of dichromate using non-buffered RPMI and 

resuspended in RPMI medium at different pH values: pH 2, pH 4, pH 6 , pH 8  and 

pH 9.5 (as described in 2.2.4.). The samples were excysted and the results are 

shown in Table 2.3.4. Both C  parvum and E. tenella excysted better at higher pH 

values in the range of 6.0-9.5 and 8.0-9.5 respectively. Yet both of these parasites 

had very low or no excystation rates at pH 2.0. Alternatively C. muris - known to 

excyst in the acidic environment of the stomach (approximately pH 2.0) - was
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seen to excyst at high rates over the whole range of pH values tested, especially at 

the extreme ends of the range, that is, pH 2 and pH 9.5.
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Figure 2,3.1: Com parison  of bile salt and bleach as
stim ulus o f  C. p a r v u m  excystation
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Figure 2.3.2: Efficacy of different bile salt concentrations 
as triggers for C. parvum  excystation
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Figure 2,3.3; Effect o f  different conditions on C. parvum  excystation
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Figure 2.3.4: Time course of C. parvum  excystation
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Table 2.3.1: Comparison of bile salt and bleach on C. muris excystation.

% EXCYSTATION

Bile 43.6 ±5.6

Bleach 33.3 ±3.3

Neither 45.2 ±5.6

Means ± SE from three experiments

Table 2.3.2: Percent excystment of C. parvum  oocysts present in various 
gaseous conditions.

% EXCYSTATION

Nitrogen 86.0 ±5.9

Nitrogen/Carbon dioxide 91.3 ±2.0

Air 71.0±2.1

Means ± SB from three experiments

Table 2.3.3: Percent excystment of C parvum  oocysts of different ages.

WEEKS SINCE ISOLATION 
OF OOCYSTS

% EXCYSTATION

1 0 85(1)

2 6 6  (3.4)

Mean of two experiments
Numbers in brackets represent numbers of sporozoites released per oocyst.

6 1
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2.4. Discussion

The purified oocysts from each species of Cryptosporidium were used in a 

number of experiments designed to both optimise the in vitro conditions for the 

excystation process and also to provide more data on the factors influencing this 

process.

When comparing the bile salt and bleach methods, results obtained from 

C. parvum showed that there was only a slightly higher percent excystation when 

bile salt was used. However, it was observed that the freshly excysted sporozoites 

were much more motile than those that had been excysted using the bleach 

method, suggesting that the bleach may have damaged the sporozoites in some 

manner. Additionally, C  muris also showed a reduction in excystation when the 

bleach treatment was used, again perhaps indicating that this method may have a 

detrimental effect either in the process of excystation itself, or on the resulting 

sporozoites. Having established that the bile salt method was the one to opt for 

the concentration to be used was determined. Results indicated that both 0.4% 

and 1 .0 % both gave approximately the same percent excystation after an eighty 

minute incubation at 37°C. To minimise any adverse effects that the bile salt may 

have on the sporozoites once excysted as previously reported (Woodmansee, 

1987), the lower concenti ation of bile salt was used - 0.4% - to excyst C. parvum. 

This chosen concentration lies within the documented range of between 0.15% 

(Woodmansee, 1987) and 0.75% (Payer and Ungar, 1986). C. muris, known to 

excyst in the stomach of the host where no bile is present, appears to be 

unaffected whether bile is present or not, indicating that this species does not 

require bile to excyst, which merely illustrates this parasite’s adaptations to its in 

vivo environment. However bile salt was added to the excystation mixture of C. 

muris since it was obseiwed that the presence of bile salt seemed to increase 

sporozoite motility in both species, as previously reported for C. parvum
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(Reduker and Speer, 1985; Woodmansee et al., 1987), suggesting that bile may be 

advantageous to sporozoite survival. Alternatively the bleach treatment appeared 

to have an adverse effect on C. muris excystation, possibly highlighting the fact 

that this procedure may damage the oocysts or sporozoites in some way (P<0.02).

Investigating variations on the incubation conditions involved shaking the 

sample, comparing fresh to bile salt previously stored at -2 0 ‘̂ C and monitoring a 

time course to determine the endpoint of the excystation process. Shaking the 

sample and using fresh bile salt both increased excystation markedly. The time 

course indicated that sporozoite numbers reached a maximum after an eighty 

minute incubation. Additionally to these results, excystation was found to be 

better under anaerobic conditions (P<0.02) reflecting the fact that C. parvum and 

indeed other coccidia excyst in vivo in the gastrointestinal tract where a low 

oxygen tension environment is present. Yet for E. tenella excystation, it has been 

reported that this process is unaffected and can proceed under both aerobic and 

anaerobic atmospheres (Wang, 1976). Once the sporozoites have been released 

from the oocyst the gaseous environment has no effect on C. parvum sporozoite 

survival (see Chapter 3), which is in agreement with results obtained from studies 

with Eimeria showing that the oxygen concentration only affects host cell 

invasion and not the sporozoites themselves (Wrede et al, 1993).

The importance of oocyst age in determining excystation efficiency is a 

factor that has not been studied to any great extent, though reports have stated that 

excystation declines with the age of the oocysts (Payer and Leek, 1984; Speer and 

Reduker, 1986). However the results obtained here showed that the newer oocyst 

sample had a lower percent excystation when compared with the older sample. 

Yet, in terms of number of sporozoites released, a higher yield was given by the 

new sample of oocysts. These results confirm those of a previous study which
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also investigated oocyst age and excystation. Results allowed the authors to 

conclude that the number of released sporozoites is a much more accurate 

criterion with which to measure excystation rather than empty oocysts (shells), 

since they also found more oocysts excysted in the older batches but released 

fewer sporozoites (Speer and Reduker, 1985). This may be due to the older 

oocysts being more permeable and thus excysting easier. However, whether the 

low yield was due to the sporozoites simply not leaving the oocysts, or leaving 

and then lysing, has not been determined. It was concluded that oocysts should 

be used when relatively fresh to maximise the number of sporozoites obtained.

The three species used in the pH studies; E. tenella, C. parvum and C. 

muris infect different host species as well as invading different regions of the 

gastrointestinal tract. E. tenella and C. parvum excyst in the small intestine 

(Strout et ai, 1994; Current, 1989) whereas C  muris excysts in the stomach 

(Current, 1989), thus the oocysts are exposed to different environments. Many 

factors may be involved in this site specific excystation, for example in Eimeria. 

different species, known to infect different regions of the gastrointestinal tract, 

possess lectins on their sporozoite surface which have different sugar specificities 

and may be involved in determining where each species infects (Strout et ai, 

1994). In terms of pH, the gastrointestinal tract differs quite widely, from 

approximately pH 2 in the stomach to pH 6 - 8  in the upper and middle intestine. 

From the results obtained in this chapter the higher pH values gave optimal 

excystations for both E. tenella and C. parvum whereas C  muris was capable of 

excysting over the range of pH values tested. More interestingly C. muris, unlike 

the other two species, was able to excyst extremely well at pH 2 and the resulting 

sporozoites could survive for up to sixty minutes in these conditions (see Chapter 

3) - ample time for invasion to occur.
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These results have shown how well these parasites are adapted to 

excysting in the environment they face in vivo. However, exactly how the 

different species arrive at the correct location for excystation and thus infection 

remains unknown. For Eimeria sporozoites it has been proposed that, once 

excysted, intraepithélial leukocytes transport sporozoites to their specific site of 

infection (Lawn and Rose, 1982; Pakandl el al, 1995), though for 

Cryptosporidium no research has been perfonned in this area. Yet this process of 

excystation must be investigated further if we are to understand more fully this 

initial step to the infection of the host.
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CHAPTER 3 

STUDIES ON SPOROZOITE VIABILITY

3.1. Introduction

The ways in which coccidian sporozoites are biochemically adapted to 

their enviromnent in the gut have not been fully elucidated. Most studies to date 

have focused on events after host cell invasion, little has been reported on events 

preceding this process and the factors that influence sporozoite viability.

Previous studies have assessed viability using phase contrast microscopy 

and judging whether the sporozoites are thought to be healthy and motile 

(Woodmansee et al, 1987; Upton and Tilley, 1989). Using these criteria, serum 

components like fetuin and albumin also appeared to enhance in vitro 

development and sporozoite motility of Eimeria as well as the presence of trypsin 

and cholic acid in the sporozoite medium (Upton and Tilley, 1992). Trypsin has 

also been seen to increase T. gondii tachyzoite and C  parvum sporozoite motility 

(Robertson et al, 1993; Mondragon et al, 1994). Motility studies performed on 

E. nieschulzi also indicated that high concentrations of mucin present increased 

the sporozoite motility (Upton and Tilley, 1992).

Length of time of sporozoite survival has also been used as a measure of 

viability. It was reported that the presence of glucose in the incubation medium 

increased the length of time that E. tenella sporozoites survived at 41 °C (Nakai 

and Ogimoto, 1983). The addition of bile to the excystation fluid has been
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reported to enhance Cryptosporidium sporozoite survival (Reduker and Speer,

1985), which is in agreement with the observation that the presence of bile 

maintained sporozoite motility and morphology (Woodmansee et ai, 1987). In 

contrast reduced oxygen tensions - akin to what the sporozoites experience in vivo 

- had no positive short tenn effects on E. nieschulzi and only increased sporozoite 

survival after an initial 15 hour incubation. For C. parvum, viability has been 

reported to decrease rapidly at pH values below 5.0 or above 8.0 (Hamer et ai,

1986), with sporozoite lysis observed at pH values under 6.2 (Woodmansee et al.,

1987), though just how long the sporozoites survived was not stated.

However, these methods using microscopic observation have significant

limitations, the foremost being that they are, to an extent, subjective.

Additionally motility is often intennittent, and difficult to assess with C. parvum 

due to its small size. Alternatively, methods to determine the viability of the 

oocyst stage of the life cycle have been well documented. The methods employed 

are either monitoring the oocyst infectivity in mice (Campbell et ai, 1982; Fayer 

and Nerad, 1996), the use of fiuorogenic dyes (Smith et al., 1991 ; Campbell et al, 

1992), or both of the afore mentioned methods (Black et al, 1996). A quick, easy 

and non-subjective method for determining sporozoite viability is required, to aid 

researchers in monitoring the effects of various physical and chemical factors 

including the effects of anticoccidial drugs.

The following experiments in this chapter were firstly designed to develop 

a viability assay for sporozoites, and then to use this technique to provide more 

information on the metabolism and survival of the sporozoite stages of Eimeria
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and Cryptosporidium.
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3.2. Materials and Methods

3.2.1. Separation of sporozoites from oocysts and shells

To separate C  parvum sporozoites from the unexcysted oocysts and 

oocysts shells, 800 pi samples containing a maximum of 2  x 1 0  ̂sporozoites ml'^ 

were filtered using 5 pm filters (Flowpore D, Flow Laboratories). The filters 

were moistened with 0.5 ml RPMI before the excystation mix was passed through 

slowly, the filters were then subsequently washed through with 0.5 ml RPMI. The 

recovery rate of sporozoites in the effluent was approximately 70%.

Similarly E. tenella sporozoites (RET 5) were filtered through cotton wool 

prewet with PBS. Having placed approximately 10 ml cotton wool in a 20 ml 

syringe the excystation mix was passed through, after which the cotton wool was 

subsequently rinsed with PBS.

3.2.2. Method of determining sporozoite survival

3.2.2.1. Motility studies

The sporozoite suspension was placed in a haemocytometer where the 

numbers of sporozoites could be counted. 1 0 0  sporozoites were counted in total 

with the number of 'healthy' sporozoites recorded as a percentage, that is those 

that have the curved shape and are motile as described previously (Russell and 

Sinden, 1981). A simple method involving microscopic (x40) observation of 

individual sporozoites was devised as a means of quantifying percent motility of 

the population. This involved observing each sporozoite individually (50 in total)
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for 20 seconds and judging if there was movement other than Brownian motion. 

The sporozoites move in two ways: 'flexing' and 'wiggling' (Russell and Sinden, 

1981) and if either of these was observed then the sporozoite was classed as 

motile. These studies were performed at 37°C in an aerobic enviromnent.

3.2.2.2. Vital stains

To confirm the results obtained from the motility studies, a more objective 

method was required to determine sporozoite viability. Thus a number of vital 

stains were tested on C  parvum sporozoites. Trypan blue and DNA intercalating 

dye 4,6,-diaminO"2-phenylindole (DAPI) did not provide a clear result due to the 

size of the sporozoites. Tiypan blue did not appear to stain the sporozoites, 

whereas those stained with DAPI were very hard to distinguish from the 

background fluorescence.

Eventually the vital stains acridine orange (Edward Gurr Ltd.) and bis- 

benzimide (Sigma) were used. The sporozoites were excysted and washed into 

RPMI or TBS for Ctyptosporidium and Eimeria respectively and, after adding any 

compound being studied, bis-benzimide (final concentration 0.2 mM, v/v) and 

acridine orange (final concentration 0.005%, v/v) were mixed into the sporozoite 

suspension. Slides were then prepared and viewed using a Zeiss fluorescence 

microscope (Carl Zeiss Inc., New York) with the relevant filters (acridine orange 

fluorescence: excitation filter, BP450-490 mn; mirror, FT510 nm; barrier filter, 

LP520 mn; bis-benzimide: excitation filter, G365 nm; mirror, FT510 mn; barrier 

filter, LP520 mn). With these two stains live and dead sporozoites differ between 

filters as is illustrated in Figure 3.2.1.
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Figure 3.2.1: Vital stains on E, tenella sporozoites. With the two stains bis-benzimide 

and acridine orange. Live sporozoites (freshly excysted and washed into RPMI or TBS) 

fluoresce brightly with the fluorescein filter (see Figure 3.2.1 (a)); compared with bright 

field microscopy where live sporozoites are clearly visible (Figure 3.2.1. (b)), live 

sporozoites are barely distinguishable with the bis-benzimide filter (see Figure 3.2.1

(c)). In contrast, dead sporozoites (killed by 10% formaldehyde) have a characteristic 

bright blue fluorescence when viewed with the bis-benzimide filter (see Figure 3.2.1

(d)).
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3.2.3. Metabolic inhibitors and pH buffers

The metabolic inhibitors used with their final concentrations are as 

follows: 10 mM potassium cyanide, 10 mM sodium azide, 0.5 mM antimycin A, 

1.0 mM Rotenone and 10% formaldehyde as the negative control. 

Oypiosporidimn and Eimeria sporozoites were suspended in RPMI and PBS, 

respectively, and incubated at 37°C.

The pH buffers used to adjust the sporozoites suspended in 0.33x RPMI to 

the required pH, are as follows: pH 2, 0.2 M potassium chloride, pH 4, 0.1 M 

sodium acetate, pH 6  and 8  a phosphate buffer and pH 9.5, 0.1 M sodium 

bicarbonate (McKenzie and Dawson, 1969). For the further pH studies on C. 

muris a 0.2 M Glycine-HCl pH buffer was used (McKenzie and Dawson, 1969).
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3.3. Results

3.3.1. Effect of bile salt on sporozoite survival

To determine whether bile salt had a detrimental effect on excysted 

sporozoites, C  parvum oocysts were subjected to the standard excystation 

procedure and the sporozoites obtained were either washed twice in RPMI to 

remove the bile salt, or not, and incubated at 37°C on a shaker (350 rotations min“ 

1). Samples were taken after a 60 min incubation and motile sporozoites were 

recorded as described in 3.2.2.1. (see Table 3.3.1.). The results suggest that, using 

motility as an indicator of viability, bile salt has a positive effect on motility of C. 

parvum sporozoites (P<0.10).

3.3.2. Effect of gaseous conditions on sporozoite survival

Samples of C. parvum oocysts were excysted for 80 min whereupon they

were filtered. The sporozoites obtained were gassed (2 Imin"^); one sample with 

95% nitrogen/5 % carbon dioxide and one with nitrogen for two minutes. The 

other sample was left in aerobic conditions. The samples were placed on a shaker 

(350 rotations min"^) and sporozoite survival was then monitored by removing 

aliquots at certain time points and counting numbers of sporozoites. The results 

are shown in Figure 3.3.1. The trend that was observed was that the optimum 

conditions of those tested here for sporozoite viability, was an anaerobic 

environment with CO2 present; however this time course needs to be repeated for 

statistical analysis to be perfonned.
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3.3.3. Effect of metabolic inhibitors on sporozoites

Samples of C. parvum and C  muris oocysts and A. tenella sporocysts were 

excysted and filtered to obtain sporozoites. Metabolic inhibitors were then added 

to duplicate sporozoite suspensions as described in 3.2.3. The samples were then

left on a shaker (350 rotations min“ )̂ at 37°C for 60 min. Aliquots were then 

removed and viability was assessed using the standard procedures (see 3.2.2.1. 

and 3.2.2.2.) with the results listed in Table 3.3.2. Both C. parvum and E. tenella 

sporozoites were unaffected by any of the metabolic inhibitors, whereas viability 

of C. muris appeared to be marginally decreased.

3.3.4. Effect of potassium cyanide on C. muris sporozoites

To determine the sensitivity of C. muris sporozoites to potassium cyanide 

the sporozoites were incubated for 60 min in a range of concentrations, after 

which the viability was assessed using the vital stain technique (see Table 3.3.3). 

The effect of the potassium cyanide was seen to be concentration related, that is, 

the higher the concentration the greater the detrimental effect on the sporozoites.

3.3.5. Salicylhydroxamic acid (SHAM) and potassium cyanide on E, tenella

sporozoites

SHAM “ the alternative oxidase inhibitor of trypanosomes (Wang, 1988; 

Grady et ai, 1993) - was used in conjunction with potassium cyanide with the 

final concentrations being 2 mM and 10 mM respectively. Having incubated the 

sporozoites for 60 min with these inhibitors the viability was assessed using the
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vital stains technique (see Table 3.3.4). The results indicated that SHAM when 

used alone and in conjunction with potassium cyanide had no adverse effects on 

E. tenella sporozoites.

3.3.6. Effect of varying pH on sporozoite viability

Sporozoites were resuspended 0.33x RPMI and adjusted to the following 

pH values using the appropriate buffers (see 3.2.3.): pH 2, 4, 6 , 8  and 9.5. The 

sporozoites were then incubated for 60 min at 37°C. The percent viability of the 

sporozoites was then examined and calculated using the vital stain technique (see

3.2.2.) and listed in Table 3.3.5. Both C  parvwn and E. tenella survived better at 

the higher pH levels with no viable sporozoites found at pH 2 after 60 min. 

However 20% of C. muris sporozoites were seen to be able to survive at pH 2 for 

60 min.

3.3.7. Effect of pH 2.0-3.0 on C. muris

Having established that some C. muris sporozoites could survive at pH 2 

for 60 min, their ability to withstand low pH was analysed further by using 

suspension media of differing pH values. C. muris oocysts were excysted and the 

resulting sporozoites resuspended in 0.33x RPMI before being adjusted to pH 

values ranging from 2.0 - 3.0 using the appropriate buffer (see 3.2.3.). After a 60 

min incubation at 37°C the percent viability was recorded for each sample using 

the vital stains technique (see Table 3.3.6). From the results obtained it was 

observed that small fluctuations in pH dramatically affected the percentage of 

viable sporozoites. For example when compared with pH 2.0, pH 2.4 had
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approximately twice as many sporozoites viable after the 60 min incubation. This 

may be a reflection of the in vivo situation, where small fluctuations in pH are 

caused by a number of factors like diet, immune status etc. (Johnson, 1987), 

increasing the infection chances of C  muris.

3.3.8. Time course of C. muris at pH 2.0

To analyse further the ability of C. tnuris sporozoites to survive at low pH, 

differing incubation periods were used. C  muris oocysts were excysted and the 

resulting sporozoites resuspended in 0.33x RPMI before being adjusted to pH 2.0 

using the appropriate buffer (see 3.2.3.). At 15 min intervals the number of viable 

sporozoites was recorded using the vital stains technique (see Table 3.3.6). It was 

observed that approximately 50% of the sporozoites were still viable after 15 min 

at pH 2. These numbers decreased quite rapidly during the 60 min incubation 

with approximately 20% left viable after a 60 min incubation. However these 

results demonstrate that C  muris can survive these extremes in pH long enough to 

invade the gastric epithelium in the in vivo situation.

3.3.9. Effect of anticoccidial drugs on sporozoites

C. parvum, C. muris and E. tenella oocysts were excysted and resuspended 

in RPMI medium at a density of 10^-10  ̂m f\ To 100 pi volumes the following 

anticoccidial drugs were added prior to a 60 min incubation at 37°C: monensin (4

pg mJ-l) and halofuginone (4 pg ml"^) with 10% formaldehyde as a negative 

control. After the 60 min incubation the percent viability of the sporozoites was 

quantified using the vital stain technique as described in 3.2.2. and recorded in
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Table 3.3.7. Not one of the compounds was seen to have any detrimental effects 

on E. tenella sporozoites. Alternatively halofuginone and monensin did have a 

small adverse effect on C  muris (0.02<P>0.01) and C  parvum (P>0.05) 

sporozoites respectively.
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Table 3.3.1: Effect of bile on C paivum  sporozoite survival

% MOTILITY

WASHED 69.2 ± 15.8

UNWASHED 96.3 ±3.7

Means ± SE from three experiments

Figure 3.3.1:Effect of gaseous conditions on C parvum sporozoite survival

100

i

0 50 100 150 200 250
Time (min)

Means of two experiments
Time course measuring numbers of sporozoites under different gaseous conditions: air 
(open circle), nitrogen (closed circle) and nitrogen/5% carbon dioxide (closed triangle).
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3.4. Discussion

The preceding experiments were designed to provide more 

information on how Cryptosporidium and Eimeria sporozoites survive in their in 

vivo environments. The pH studies and metabolic inhibitors indicated how the 

parasites are adapted for living in the gastrointestinal tract. The presence of bile 

salt increased the motility of C  parvum sporozoites and did not appear to have 

any adverse effects on survival, which is in agreement with previous reports 

(Reduker and Speer, 1985; Woodmansee et ai, 1987). Additionally C  pai'vum 

sporozoites survived for a longer period of time imder anaerobic conditions as in 

the in vivo situation where they are exposed to a low oxygen tension environment. 

The sporozoites of Cryptosporidium do not sui-vive for any reasonable length of 

time under in vitro conditions, and the general consensus, though no research has 

been performed in this area, is that they are thought to lyse and disappear. The 

reason for this phenomenon is unknown, although it may be that the sporozoites 

simply exhaust their internal energy supplies. However this lysis must be taken 

into account when using Cryptosporidium sporozoites for in vitro studies, since 

the results obtained may not be a true reflection of the experimental results if the 

sporozoites are dying anyway. For this reason incubations with Cryptosporidium 

sporozoites were kept to a maximum of 60 minutes in my studies.

To analyse further the ability of the different sporozoite species to 

survive in a largely anaerobic environment, a variety of metabolic inhibitors was 

used. However, since assessment of motility - which has been widely used as a 

viability test in the past (Upton and Tilley, 1992, 1995) - is an extremely 

subjective method influenced by various external factors, for example 

temperature, a new method of determining viability was developed. This
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involved the use of the two vital stains, acridine orange and bis-benzimide, used 

in conjunction with a fluorescence microscope as described in 3.2.2.2. The 

acridine orange crosses the cell membrane and stains the sporozoite which 

fluoresces a yellow/orange colour. This stain was used to locate the sporozoites 

under the fluorescent microscope. The other stain - bis-benzimide - only stains 

dead sporozoites, since it is unable to cross intact membranes. However once 

dead, the bis-benzimide crosses the cell membrane and the sporozoites fluoresce a 

distinctive bright blue. This two-stain method provided a quicker and more 

reliable method when compared with motility as can be seen from the 

comparative results in Table 3.3.2. The two-stain method is also a very fast 

technique which does not require an incubation period. This is an important 

feature of the assay since - as previously discussed - the sporozoites of 

Cryptosporidium do not survive for a long period of time in vitro.

The inhibitors potassium cyanide, sodium azide and rotenone had no 

effect on either C. parvum or E. tenella as assessed by both methods to assess 

viability. These results indicated that sporozoites of these two species did not 

require a functional respiratory chain. This is in agieement with previous reports 

which have stated, on evidence from enzyme studies, that they are adapted for 

anaerobiosis (Denton ei ah, 1994; Denton et al, 1996). In fact C. parvum 

sporozoites have been reported not to possess a mitochondrion (Current, 1989).

In contrast potassium cyanide and sodium azide did have a detrimental effect on 

C  muris, although only a minority of sporozoites were affected. A previous 

report on the ultrastructure of C. muris stated that this species does contain a 

mitochondrion (Uni et ai, 1987); thus if active this would certainly explain the 

adverse effects of the cyanide and azide. However the fact that only a small 

number of sporozoites in the C. muris population was affected (even at 10 mM
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potassium cyanide, see Table 3.3.3) raises the question of whether a functional 

respiratory chain is actually necessary, and further studies are needed to clarify 

this. It may be that the potassium cyanide is having some effect other than on the 

respiratory chain on the sporozoites of this species, possibly on the surface of the 

parasites. However the results from rotenone are not unusual since another 

related coccidian Plasmodium has also been reported to be unaffected by this 

inhibitor (Fry, 1991), suggesting that NADH-Q reductase is either absent or has 

unusual properties.

Salicylhydroxamic acid (SHAM) is an inliibitor of the alternative 

oxidase involved in reoxidising NADH formed by glycolysis in tiypanosomes 

(Van der Meer et al., 1979). The oxidase is not inhibited by any of the 

mitochondrial inhibitors, for example cyanide and azide, however SHAM is 

known to inhibit the trypanosomal oxidase in vitro at a concentration of 6  pM 

even after a short incubation time of 30 min (Opperdoes et ai, 1976). However 

as can be seen from the results in Table 3.3.4, SHAM appeared to have no 

detrimental effect on coccidian sporozoites and it may be concluded that these 

parasites may have no alternative oxidase pathway via this system. Recent 

research has revealed that these coccidian parasites contain plastids. The plastid 

may contain proteins involved in photosynthesis or an electron-transport chain 

(Jeffries and Johnson, 1996), possibly enabling these parasites to use a plastid 

oxidase if their own respiratory chain is inhibited.

The effect of pH on the three species was also studied. As mentioned 

in Chapter 2, these species not only excyst and infect different hosts but also 

different regions of the gastrointestinal tract. E. tenella and C. parvum infect the 

intestine (Current, 1989; Strout et al, 1994), whereas C  muris infects the
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stomach (Current, 1989). Thus the species are exposed to different environments 

including pH. The upper and middle intestine have a pH of 6-8 which, as the 

results illustrate in Table 3.3.6, are optimal for C parvum and E. tenella survival. 

However the results for C. parvum indicate that the sporozoites used in these 

experiments were not as sensitive to pH changes as previously reported. Hamer et 

al. (1986) and Woodmansee et al. (1987) stated that C. parvum sporozoite 

survival was reduced at pH values below 5.0 or above 8.0, and below 6.2 

respectively. The results obtained here showed that C. parvum can survive at a 

pH as low as 4.0 and as high as 9.5. The pH of the mammalian stomach is knovm 

to be approximately 2.0 (Johnson, 1987), and from Tables 3.3.5. and 3.3.6. the 

results show that C. muris sporozoites are viable over the whole pH range tested 

including pH 2. Additionally minor increases in pH - possibly akin to normal 

fluctuations in the stomach - result in significantly larger numbers of viable 

sporozoites. A time course of C  muris at pH 2.0 (see Table 3.3.7.) shows that 

approximately half of the sporozoites survived for fifteen minutes, which is 

reported to be sufficient time for Cryptosporidium to invade a host cell (Lumb et 

al, 1988). The mechanisms that enable these sporozoites to withstand the strong 

acid conditions present in the stomach are unknown. However, other 

microorganisms are known to have either structural (surface resistance) or 

metabolic (to reduce the acidity in the immediate enviromnent) mechanisms to 

aid them (Chan et ai, 1992; Batt et al, 1996).

The anticoccidial drugs used appeared to have no effect on E. tenella 

or C. parvum sporozoites (see Table 3.3.7.). It should be noted however that the 

strain of E. tenella used in the project is a strain known to be more resistant to 

ionophorous drugs than other strains, and this may have affected the outcome of



the experiment, at least with monensin. Yet for both C. parvum and C. muris 

monensin and halofuginone were seen to have a slight detrimental effect. This 

relatively small effect may have been due to the short length of time the parasites 

were exposed to the drugs before viability was assessed. Possibly with a longer 

incubation, a greater reduction in viability would be observed. Indeed these drugs 

are thought to inhibit parasite development within the host cell (Yvore and Naciri, 

1989; McDonald et al, 1990; Rehg, 1995), and may not affect the sporozoite 

viability to any great extent.

The results obtained in this chapter have illustrated how these 

sporozoites are adapted to living in the in vivo enviromnent of low oxygen tension 

and extremes of conditions. However, more studies must be performed, for 

example, whether or not C. muris does possess a mitochondrion in the sporozoite 

stage, before we can attempt to fully understand how these sporozoites are 

capable of initiating the infection process.
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CHAPTER 4 

ENZYME AND PROTEINASE STUDIES

4.1. Introduction

Studies on the enzymes of Cryptosporidium have, in comparison with 

other coccidia such as Eimeria and Toxoplasma, been scarce. The enzymes that 

have been detected in the coccidial organisms are listed in Tables 4.1.1 (a), (b) 

and (c). My study has concerned three gioups of enzymes in particular: 

proteinases, sialidase and glycolytic enzymes. The aims were to provide more 

information on the roles these enzymes play in enabling the parasite to survive in 

the gastrointestinal tract and invade their host cells.

Coccidian proteinases, enzymes that catalyse the splitting of peptide bonds 

in proteins, have been little researched, and only recently for Cryptosporidium. In 

contrast, many studies have been performed on other parasites to elucidate the 

role(s) of proteinases in various stages of their life cycles. Putative functions of 

some parasite proteinases include host cell invasion and survival once inside the 

cell, as is the case fox Plasmodium (McKerrow et a i ,1993) and amoebae where 

mRNA levels for cysteine proteinases are higher in pathogenic strains than in non- 

pathogenic strains (McKerrow, 1993); evasion of the immune system; and 

changes between life cycle stages involving the activation of various enzymes and 

proteins for differentiation as is the case for Trypanosoma cruzi (McKerrow et
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TabJes 4.1.1.: Key and references

: detected 
X : apparently absent

1 Denton et al. ( 1994, 1996a and unpublished)
2 Fransden and Cooper ( 1972)
3 Mitchell and Daron (1982)
4 Micheal and Hodges (1973)
5 Fransden (1976, 1978)
6 Smith et ah ( 1994)
7 Andrews et a l (1990)
8 Shirley (1975)
9 Rollinson et al. ( 1979)
10 Hoseke/ aA (1988)
11 Farooqui and Hanson (1988)
12 San-Martin Nunez (1987)
13 Farooqui and Hanson ( 1987)
14 Wang et al. ( î979)
15 Beyer(1970)
16 Wang (1975)
17 Karkhanis et al. (1993)
18 Heller and Scholtyseck (1970)
19 Fransden (1970)
20 Schmatz et al. (1989)
21 Michalski et al. (1992)
22 Peng and Mansour ( 1992)
23 Sibley et al. (1994a)
25 Shirley er a/. (1977)
26 Vetterling and Waldrop ( 1976)
27 Darde e/ a/. (1992)
28 Manafi et al. ( 1993)
29 Takeuchi el al. ( 1980)
30 Darde e/ oA (1988)
31 Barnert et al. ( 1988)
32 Awad-El-Kariem et a l (1993, 1995)
33 Ogunkolade et a l (1993)
34 Atkinson and Collins, (1981)
35 Farooqui et al. (1987)
36 Chaudry et al. (1985)
37 Chaudiy er a/. (1986b)
3 8 Gupta et al. ( 1992)
39 Gupta ef a/. (1993)
40 Fulton and Spooner ( 1960)
41 Metsis et al. ( 1995)
42 Entrala and Mascarô, ( 1997)
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ai, 1995). Out of all of these functions, the one that has drawn the most attention 

for the coccidia is the first, that is, host cell invasion.

The first stage in infection for both Cryptosporidium and Eimeria is the 

excystation of ingested oocysts. This stage has been studied, though more for the 

latter parasite. Very low proteinase activities were found in spomlated or 

unsporulated oocysts of E. tenella (Wang and Stotish, 1975, 1978), and were 

completely inhibited by PMSF thus implicating a serine proteinase. Later studies 

detected high levels of proteinase activity in the order sporozoites > sporulated 

oocysts > unsporulated oocysts (Farooqui and Hanson, 1983). Indeed, more 

recently a serine proteinase from E. tenella sporulated oocysts was purified and 

characterised (Michalski et al, 1994).

Additionally three leucine aminopeptidase activities located primarily in 

the cytoplasm surrounding the sporocysts in E. tenella sporulated oocysts were 

detected (Wang and Stotish, 1978). These activities were greatly reduced in the 

absence of metal ions and inhibited by chelating agents, thus indicating a métallo- 

proteinase. These activities were not found in either sporozoites or merozoites.

The role of proteinases in host cell invasion has been analysed in a number 

of ways, the foremost with the use of specific inhibitors. The proteinase 

inhibitors ai-antitrypsin, antipain, aprotinin, leupeptin, soybean trypsin inhibitor 

and phenylmethylsulfonyl fluoride (PMSF) all reduced C. parvum infection of 

bovine fallopian tube cells (Forney et al, 1996a). Similarly, E. vermiformis 

sporozoite host cell invasion of Madin Darby Bovine Kidney (MDBK) cells was 

inhibited by the proteinase inhibitors: antipain, leupeptin, aprotinin, L-1- 

tosylamide-2-phenyl-ethyl chloromethyl ketone (TPCK) and N-a-p-tosyl-L-lysine
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chloromethyl ketone (TLCK) (Fuller and McDougald, 1990). The serine 

proteinase inhibitor PMSF appeared to be most effective at reducing invasion 

(Adams and Bushell, 1988; Fuller and McDougald, 1990). It should be noted that 

PMSF is toxic to both C  pai'vum and E. tenella sporozoites (see Chapter 3), and 

may be adversely effecting the outcome of these studies.

Another approach adopted is to study the invasive stage(s) themselves.

Low levels of proteinase activity detected in E. tenella invasive sporozoites and 

merozoites appeared to be sensitive to inhibition by PMSF and to a lesser degree 

by TPCK and TLCK (Fuller and McDougald, 1990). These activities associated 

with the sporozoites and merozoites had different pH optima and inhibitor 

sensitivities, implying stage-specific proteinases. In Cryptosporidium, an arginine 

aminopeptidase activity was seen to be localised in C. parvum sporozoite 

membranes (Okhuysen et al, 1994) and was suggested to be involved in 

excystation. This arginine peptidase was not detected in intact Cryptosporidium 

oocysts or excysted shells. More recently, a metallo-dependent cysteine 

proteinase was identified again on C  parvum sporozoite surfaces (Nesterenko et 

al, 1995), and the human serine proteinase inhibitor - a -1-antitrypsin - was seen 

to bind to C. parvum sporozoite membranes (Forney et al, 1996b). For E. tenella, 

a gene with high homology to those encoding aspartic proteinases in other 

organisms has been reported (Laurent et a l, 1993). Immunolocalisation studies 

suggested that the enzyme was associated with the refractile bodies of the 

invasive sporozoite.

Coccidial invasion is accompanied by the release of material from the 

rhoptries, dense granules and micronemes (Strobel et al, 1992; Petersen, 1993; 

Sterling and Arrowood, 1993) and is described in greater detail in Chapter 6.
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The dense granules of Sarcocystis muris contain a proteinase which has been 

suggested to play a role in host cell invasion, possibly by modifying the 

parasitophorous vacuole in some way (Strobel el al, 1992).

Aside from proteinase studies other enzymes have been analysed in the 

coccidia. Sialidases (neuraminidases) are enzymes which hydrolyse and thus 

cleave the O-glycosidic linkage between sialic acids and underlying glycoproteins 

or glycolipids. Sialic acid residues are thought to act as receptors on cell surfaces 

for a number of micro-organisms, including the influenza virus (Pedroso de Lima, 

1995). Many studies have been perfonned on tiypanosomes which are now 

known to contain a trans-sialidase activity which transfers sialic acid residues on 

the host cell to parasite glycoproteins used in host cell invasion with infective 

forms possessing higher levels of this activity (Schenkman and Eichinger, 1993). 

Similarly the apicomplexan parasite P. falciparum invades erythrocytes and was 

previously reported to use sialic acid on the erythrocyte surface as a binding site. 

However, a recent report was unable to detect a parasite sialidase activity as well 

as the finding that the influenza virus sialidase inhibitor had no effect on parasite 

invasion or development (Clough et al, 1996). A past study also reported the 

detection of sialidase on the surface of invasive stages of E. tenella, the activity 

being some 20-fold higher on merozoites than sporozoites (Pellegrin et a l, 1993). 

It has been suggested that the enzyme plays a role in desialylating intestinal 

mucins and so reducing the viscosity of the environment and aiding migration of 

the parasite. The enzyme could also be involved in modifying the surface of the 

host cell prior to and during invasion.

97



Glycolytic enzymes have raised great interest in Eimeria and 

Cryptosporidium since these parasites face a largely anaerobic environment in the 

gastrointestinal tract. Many enzymes have been detected as shown in Table 

4.1.1., and the exact pathways involving these enzymes are described more fully 

in Chapter 1. Possibly the most interesting result is that C. parvum, E. tenella and 

T. gondii contain, at least in the stages investigated, a pyrophosphate-linked 

phosphofructokinase (PPi-PFK) instead of the conventional ADP-linked enzyme 

(Peng and Mansour, 1992; Denton et al., 1994, 1996a). This conclusion was 

confirmed for Cryptosporidium in a more recent study (Entrala and Mascarô, 

1997). Additionally, the pyruvate kinase (PK) from C parvum shows no evidence 

of regulatory properties (Denton et al., 1996a).

However, research techniques and subsequent results have varied widely. 

The following experiments in this chapter have utilised a number of techniques in 

an attempt to firstly detect these activities, and then in the case of the proteinases, 

to localise where these enzymes are present in the parasite.
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4.2. Materials and Methods

4.2.1. Suiwey of enzyme activities

4.2.1.x. Parasites

C  parvum and E. tenella oocysts and sporozoites were obtained as 

described previously (see Chapter 2). The oocysts were homogenised by 

vortexing with glass beads (425-600 pm, Sigma for C  parvum and 3 mm, BDH 

for E. tenella) in lysis buffer (50 mM HEPES, pH7, with 20% (v/v) glycerol and 

0.25% (v/v) Triton X-100) at a density of 1x10  ̂mb* and 1.5x10? mb* for C  

parvum and E. tenella oocysts respectively. Sporozoites were suspended in lysis 

buffer at a density of lxlO<̂  mb  ̂for both parasites and vortexed briefly.

Lysates were aliquoted and stored at -20°C until required.

4.2.1.2. Detection of activities

The commercially available APIzym kit (API Systems SA) compares 

semiquantitative assays for nineteen enzyme activities including three 

aminopeptidases, six glycosidases, two esterases, one alkaline phosphatase, one 

lipase, trypsin and chymotrypsin, one acid phosphatase, one a-mannosidase and 

one a-fucosidase. The assays involve the use of chromogenic enzyme substrates 

and the activities are detected using the two reagents provided: A and B. Reagent 

A contained Tris and sodium dodecyl sulphate (SDS); reagent B contained fast 

blue BB salt in 2-methoxyethanol. The principle of detection is based on the 

liberation of (3-napthol from the substrates which is detected by the indicator.

The enzyme strip was placed in a moist incubation tray and 100 pi of the 

parasite lysates were added to each reaction well. The strip was then incubated
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for 24 h at 37°C, after which the two reagents A and B were used to detect the 

enzyme activities. One drop of each reagent was added to each reaction well, 

after which the strip was exposed to a 100 W light source to destroy excess 

reagent B. Having allowed any colour to develop for 10 min, the positive 

reactions were graded according to their intensity using the APIzym colour 

reaction chart.

4.2.2. Proteinase detection

4.2.2.1. Preparation of samples

C. parvum oocysts were washed in RPMI (Labtech, 1640) to remove the 

potassium dichromate (1000 x g for 10 min), resuspended in lysis buffer and 

homogenised using glass beads (see section 4.2.1.1.). The lysate was aliquoted 

and stored at -20 C.

Eimeria tenella oocysts (sporulated and unsporulated) were washed in 

phosphate buffered saline (PBS: 0.01 M phosphate buffer, 2.7 mM potassium 

chloride and 137 mM sodium chloride, pH 7.4) to remove the potassium 

dichromate (200 x g for 5 min). The sample was then resuspended in lysis buffer 

(as above) and homogenised using (3 mm) glass beads (BDH). The lysate was 

aliquoted and stored at -20°C.

Eimeria tenella sporozoites were obtained as described previously 2.22.2, 

resuspended in lysis buffer (as above), aliquoted and stored at -20°C until 

required.
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Toxoplasma gondii tachyzoites were lysed simply by adding lysis buffer 

(as above) and the lysate was stored at -20°C.

Leishmania mexicana amastigotes were haivested and washed three times 

in a 0.25 M sucrose and centrifuged to a pellet and stored at When

required, the pellet was resuspended in 0.25 M sucrose with 0.1% Triton X-100 to 

an equivalent of 1 x 10  ̂nil~T The lysate was then spun in a microfrige for 5 min 

and the supernatant removed and stored at -20°C.

Samples were diluted 1:1 with sample buffer (0.5 M Tris/HCl pH 6,8, 5% 

(v/v) glycerol, 10% (v/v) SDS, 5% (v/v) mercaptoethanol and bromophenol blue, 

as per Laemmli, 1970), with the addition (for the protein gels only) of proteinase 

inhibitors: E*-64 (1 mM), pepstatin (1 pM) and PMSF (200 mM). Samples were 

then boiled for 10 min. Some samples, as indicated, were incubated with the 

appropriate inhibitor for 30 min at 37°C before the sample buffer was added.

4.2.2.2, Preparation and running of gels

SDS - polyaciylamide gel electiophoresis (SDS-PAGE) was used to 

analyse the protein content of the samples. The separating gels (10% or 12%) and 

the stacking gels (-5%) were prepared (according to Laemmli, 1970) using stock 

solutions; 30% acrylamide solution, 1.5 M Tris buffer (pH 8.8), 0.5 M Tris buffer 

(pH 6.8), 10% ammonium persulphate solution, with the addition of N,N,N',N'- 

Tetramethylethylenediamine (TEMED) and distilled water. Gels were run for 

approximately 40 min at 200 volts. They were either stained for proteins using
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Coomassie Blue (0.05% (w/v) Coomassie Brilliant Blue Colloidal R-250, 25% 

(v/v) isopropanol and 10% (v/v), acetic acid) for 60 min before being placed in 

destain (10% (v/v) acetic acid and 12.5% (v/v) methanol), or subjected to Western 

blotting (see 4.2.2.4.).

4.2.2.3. Determination of molecular weights

Apparent molecular weight markers of the proteins were determined by 

comparing their mobility with those of Wide Range Rainbow Markers 

(Amersham): myosin (220 kDa), phosphorylase b (97.4 kDa), bovine serum 

albumin (66 kDa), ovalbumin (46 kDa), carbonic anhydrase (30 kDa), trypsin 

inhibitor (21.5 icDa), lysozyme (14.3 kDa).

4.2.2.4. Western blot transfer

After SDS-PAGE the gel and a hybond-C nitrocellulose membrane were 

sandwiched between filter papers soaked in Transfer buffer (20 mM Tris, 150 

mM glycine, 20% (v/v) methanol) to aid current conductance, and placed in a wet 

blotter (BioRad). The apparatus was set at 100 volts for 60 min with a maintained 

temperature of 4°C.

4.2.2.5. Proteinase detection using biotinylated inhibitors and Western 

blotting

For studies on proteinases, samples were lysed as described in section

4.2.2.1. and stored at -20 C. A stock solution of the biotinylated peptidyl
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diazomethane probe (Biosyn) was used initially in a 3 mM solution in 

dimethylfluoride and incubated with the sample for 30 min at 37°C before adding 

sample buffer and boiling (see 4.2.1.). The biotinylated inhibitors used were: 

biotin-Phe-AIa-CHN2 for cysteine proteinase detection; biotin-Arg-Arg-CH2Cl for 

the detection of cathepsin B-like enzymes, and subtilisin-like processing enzymes; 

biotin-Arg~CH2Cl, recommended for detecting trypsin-like activities; and biotin- 

Phe-CH2C1, recommended for detecting chymotrypsin-like activities.

Samples were then electrophoresed on a 10% separating gel along with 

pre-stained Rainbow markers (Amersham). The protein bands were then 

transferred to nitrocellulose as described in 4.2.2.4. After protein transfer, the 

blot was blocked overnight at 4°C in a 3% (w/v) bovine serum albumin (BSA) 

solution in Tris-buffered saline (TBS: 20 mM-Tris, 1 M HCl, 137 mM NaCl, pH 

7.6) containing 0.1% Tween-20 and 0.01% merthiolate. The nitrocellulose was 

then incubated with streptavidin/alkaline phosphatase (1:500 stock dilution in 

TBS) (Biosyn) in a solution containing 0.25% BSA for 120 min at room 

temperature with gentle shaking. The blot was then washed six times with TBS 

(pFI 9.5) before alkaline phosphatase activity was detected using one BCIP/NBT 

(5-bromo-4-chloro-3-indolyl phosphate/nitro blue tétrazolium) tablet (Sigma) per 

blot dissolved in 10 ml of distilled water.

4.2.2.6. Localisation of proteinases using a biotinylated inhibitor and

fluorescence microscopy

To determine where the proteinases were located in the sporozoite stage 

itself fluorescence microscopy was used. E. tenella sporozoites were obtained as 

described previously in 2.2.2.2, and air-dried on a glass microscope slide. The
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slides were immersed in methanol (100%) for 10 min, after which they were 

rehydrated in PBS (pH 7.4 containing 10% (v/v) foetal calf serum, Labtech) for 30 

min at room temeperature. Having washed the slides twice in PBS (containing 

0.05% (v/v) Tween-20), one slide was preincubated with either E64 (1.5 mM), 

PMSF (1.5 mM), or neither for 10 min. The slides were washed three times and 

immersed in PBS containing biotin-Arg-Arg-CH2C1 (100 pM). After an 

incubation for 30 min at 37°C, the slides were washed twice and a streptavidin- 

FITC conjugate was placed on the slides for 15 min at room temperature. The 

slides were washed briefly twice with PBS-Tween-20 and viewed using a Zeiss 

fluorescence microscope (Carl Zeiss, Inc., New York) with either phase contrast 

microscopy or the FITC filter (fluorescence; excitation filter, BP450-490 nm; 

mirror, FT510 nm; barrier filter, LP520 nm).

4.2.2.7. Detection using antisera raised against L, mexicana cysteine

proteinases

Attempts were made to detect proteinases in the coccidia samples using 

antibodies raised against Types I and IIL. mexicana cysteine proteinases. 10% 

gels were run and blotted as described in 4.2.2.4. The nitrocellulose membranes 

were then blocked in TBS (pH 7.6) containing 10% (v/v) horse serum and 5% 

(w/v) dried milk before being incubated with an ?eati-lmcpa primary antibody 

(Mottram et al, 1992) (1:500 in TBS with 10% horse serum and 5% dried milk). 

The membranes were washed three times in high volumes of TBS (pH 7.6) before 

incubating with a secondaiy anti-rabbit-Horse Radish Peroxidase (HRP) conjugate 

(1:2000 in TBS, pH 7.6 with 10% (v/v) horse serum and 5% (w/v) dried milk).

The membranes were washed and the HRP activity detected using the ECL
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(Amersham) detection method and autoradiography film.

4.2.3. Sialidase detection 

4.2.3.1 Parasites

E. tenella merozoites were prepared using a drug-sensitive strain of the 

parasite - Wis F96. Madin Darby Bovine Kidney (MDBK) cells were inoculated 

onto glass coverslips at a density of 5 x 10"̂  per well in a 24-well plate and grown 

overnight in 0.5 ml RPMI medium (Labtech, 1640) containing 10% heat 

inactivated foetal calf serum (Labtech), 2 mM L-Glutamine (Sigma), 25 pg mf* 

gentamycin (Sigma) and 2.5 pg mf^ amphotericin B in a moist incubator with 5% 

C02/95% air. The sporozoites of E. tenella were excysted and filtered as 

described in 2.2.2.2. and 3.2.1 and resuspended in RPMI containing 10% heat 

inactivated foetal calf serum, 2 mM L-glutamine and 0.25 mg mf^ gentamycin at 

a density of 8 x 10̂  sporozoites mV\ Once the MDBK cells had been rinsed three 

times with serum-free RPMI, 200 pi volumes o f the sporozoite suspension were 

added to each well. The 24-well plate was then incubated at 41 °C for 5 h in a 5% 

0 0 2 /9 5 % air environment, after which the medium was replaced with 0.5 ml 

fresh medium. The cells were then incubated for 42-46 h in identical conditions 

after which the first generation merozoites could be collected as they were 

released. The collected merozoites were then resuspended in lysis buffer (as 

previously described) with the following proteinase inhibitors; E64 (1 mM), 

PMSF (2 mM) and pepstatin (10 pM). After a brief vortex, the samples were 

aliquoted and stored at -20°C until required.
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4.2.3.2. Fluorometric assay of sialidase

Sialidase was detected as described previously for E. tenella (Peilegrin et 

aL, 1993). Briefly 2’-(4-methylumbelliferyl)-a-N-acetyl-D-neuraminic acid (4- 

MU-Neu5Ac, Sigma) was used as a substrate which is hydrolysed by the sialidase 

to release a fluorogenic product which can be measured using a fluorescence 

spectrophotometer (Potier et al, 1979). The final concentration o f the substrate 

in the assay was 0.25 mM in 0.2 M sodium acetate buffer, pH 5.0 in a total 

volume of 200 pi. After a 60 min incubation at 37°C, the reaction was stopped by 

adding 1.5 ml 0.5 M glycine-NaOH, pH 10.5, and the fluorescence was measured 

on a fluorescence spectrophotometer with an excitation wavelength of 365 nm 

and an emission wavelength o f450 nm.

4.2.3.3 Fluorescent staining of sialidase in polyacrylamide gel electrophoresis

An alternative method for detecting sialidases has been previously 

described using polyacrylamide gel electrophoresis (PAGE) (Berg et al, 1985). 

Samples o f E. tenella merozoite lysate and Clostridium perfringens sialidase 

(Sigma) were loaded onto 10% gels prepared as in 4.2.2.2 after which they were 

run at 150 volts for approximately 40 min. The gel was then preincubated in 

substrate buffer (0.2 M acetate buffer, pH 5.0, containing 5 mM calcium chloride) 

for 30 min. The gel was then placed in solutions of substrate buffer containing 

0.5 mM 4“MU-Neu5Ac and incubated at 37°C for 60 min. The presence of 

fluorescence was observed by irradiation with UV light of 366 nm. After 

documentation of the fluorescent band the same gel was stained with Coomassie 

brilliant blue as previously described in 4.2.2.2.
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4.3. Results

4.3.1. Survey of enzyme activities

The APIzym kit was considered to be a convenient method to investigate a 

large number of enzyme activities rapidly and with relatively small amounts of 

material. The results of the APIzym kit (see Table 4.3.1.) indicate that a variety 

of enzymes are present in Cryptosporidium and Eimeria including alkaline 

phosphatase, esterases, lipases, arylamidases, acid phosphatase and a 

phosphohydrolase. Trypsin was detected only in E. tenella sporozoites and 

chymotrypsin detected only in C. parvum oocysts. However none of the parasite 

stages was positive for any of the following: a-galactosidase, |3-galactosidase, P- 

glucuronidase, a-glucosidase, P-glucosidase, N-acetyl-p-glucosaminidase, a- 

mannosidase and a-fucosidase.

4.3.2. Proteinase detection using biotinylated inhibitors

4.3.2.I. Proteinase detection using biotin-Phe-AIa-diazomethane

For the detection of cysteine proteinases, biotin-Phe-Ala-CHN] was used 

at a concentration of 100 pM with E. tenella unsporulated oocysts, C  parvum 

oocysts and T, gondii tachyzoites as described in 4.2.2.5. (typical results are 

shown in Figures 4.3.1., 4.3.2. and 4.3.3. respectively). Many bands were 

detected with each lysate. To confirm the bands which were due to a cysteine 

proteinase, samples were preincubated with the irreversible cysteine proteinase
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inhibitor E64 (1.5 mM) for 10 min at room temperature prior to adding the 

biotinylated inhibitor. E64 binds and inhibits all cysteine proteinase activity, thus 

preventing the biotinylated probe from binding and resulting in the loss or 

inhibition of the band(s) due specifically to cysteine proteinase activity. The 

results reveal a cysteine proteinase activity detected in all organisms used - 

including L  mexicana used here as a positive indicator that the method is 

working. A single band of 46 kDa for E, tenella, ~48 kDa for C. pat'vum and ~35 

kDa for T. gondii was detected and seen to be inhibited by preincubation with E64 

(shown by arrows in the coiTesponding figures).

4.3.2.2. Effect of removing excess inhibitor

To determine whether any of the bands being detected were due to excess 

biotinylated probe, lysates incubated with biotin- Phe-Ala- CHNg were 

centrifuged in a Microcon concentiator (Micon) thus removing the unbound 

biotinylated probe from the proteins. The samples were then run on gels and 

blotted as described in 4.2.5. The results (see Figure 4.3.4.) demonstrate that the 

bands detected were similar in samples containing unbound inhibitor and those 

from which the unbound inhibitor had been removed.

4.3.2.3. Proteinase detection using biotin-Arg-Arg-diaxomethane

To detect cathepsin B- and subtilisin-like processing enzymes the biotin- 

Arg-Arg-CHzCl was used at a concentration of 10 pM, as recommended by the 

manufacturer. To observe which of the proteins detected were cysteine 

proteinases the lysate was also preincubated with E64 (1.5 mM) as in 4.3.1.1.

The results for the different lysates are shown in Figures 4.3.5, 4.3.6. and 4.3.7. 

Many bands were detected for each sample, yet the preincubation with E64 

indicated that for E. tenella, C. parvum and T. gondii a 46 kDa, 48 kDa and 35 

kDa band cysteine proteinase activity was detected. Additionally to the
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preincubation with E64, the serine proteinase inhibitor PMSF was used. The 

lysates were preincubated with this inhibitor to detennine whether any of the 

activities detected were due to a serine proteinase activity. A number of bands 

were seen to be partially inhibited, yet the one thought to represent the cysteine 

proteinase activity was not, thus confirming the results.

4.3.2.4. Localisation of cysteine proteinases in E, tenella

To give an indication of where the proteinases are located in the intact 

parasites, live E. tenella sporozoites were incubated with E64 for 10 min at room 

temperature. The inhibitor cannot cross the cell membrane and should therefore 

bind only to cysteine proteinases present on the sporozoite surface. Having been 

washed three times in PBS (pH 7.4, 1000 x g for 5 min) the sporozoites were 

lysed as described in 4.2.2.1. Sporozoites which had not been preincubated with 

E64 were also lysed and both of these samples were run on gels and blotted (see

4.2.2.4.). The results are shown in Figure 4.3.8. A couple of bands, present in the 

lysate, were not present when the live sporozoites preincubated with E64 were 

lysed (indicated by small arrows). However the band of 46 kDa, detected in the 

sporozoite lysate - as with the unsporulated oocysts lysate (see Figure 4.3.5, 

indicated by large arrow) - was inhibited by preincubation with E64. This band 

was not present when intact sporozoites were incubated with E64, thus indicating 

that the activity is present on the surface of the sporozoites.

4.3.2.5. Proteinase detection using biotin-Phe-diazoinethane and biotin-Arg- 

diazomethane

The detection of chymotrypsin-like and trypsin-like proteinases was 

performed using biotin-Phe-CH2Cl and biotin-Arg-CH2Cl respectively at final

concentrations of 10 juM. To ensure that binding was detecting the presence of 

these serine proteinases, lysates were also preincubated with PMSF ( 1 mM final 

concentration) as for E64 in 4.3.2.1. For the biotin-Phe-CH2Cl (chymotrypsin-
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like) probe the results are shown in Figures 4.3.9, 4.3.10. and 4.3.11. for E. tenella 

sporulated oocysts, C. parvum oocysts and T. gondii tachyzoites respectively. The 

biotin-Arg-CH2CI (trypsin-like) probe gave typical results as shown in Figures

4.3.12, 4.3.13. and 4.3.14. for E. tenella sporulated oocysts, C parvum oocysts 

and T. gondii tachyzoites respectively. With E. tenella, a band of -50 ld)a was 

due to a serine proteinase activity as it was inhibited by PMSF (but not by E64). 

With C. parvum a number of bands were inhibited by PMSF. However, two 

bands (-51 kDa and -48 kDa) were consistently inhibited using this method of 

detection (see Figure 4,3.10.). Similarly with T. gondii, the PMSF-preincubated 

lysate showed an overall reduction in band intensity (see Figure 4.3.14.).

However, consistently a band of -64 kDa was seen to be inhibited by the serine 

proteinase inhibitor. The results obtained with the inhibitor that binds to tiypsin- 

like enzymes were similar to those using the detection of chymotrysin-like 

enzymes for both E. tenella and C. parvum. A  band o f-50 kDa for E. tenella (see 

Figure 4.3.12.) and a band o f -48 kDa for C  pai-vum (see Figure 4.3.13.) were 

detected. However, for T. gondii the band found to be inhibited by PMSF was 

-58 kDa in size (see Figure 4.3.14.).

4.3.2.6. Localisation of proteinases using biotin-Arg-Arg-peptidyl 

diazomethane

Typical results of labelling E. tenella sporozoites with biotin-Arg-Arg-CH^ 

Cl and streptavidin-FITC (as described in section 4.2.2.6.) are shown in Figure 

4.3.15. Preincubation with proteinase inhibitors did not inhibit the labelling, 

indicating that this was due to non-specific binding.
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4.3.3, Detection of proteinases using antisera raised against L. mexicana

cysteine proteinases

4.3.3.1. Detection of the Type I cysteine proteinases of X. mexicana

Western blots of samples of E. tenella unsporulated oocysts and 

sporozoites (see Figure 4.3.16.) and T. gondii tachyzoites and C. parvum oocysts 

(see Figure 4.3.17.) did not detect any proteins cross reacting with the antibody 

raised against the L. mexicana Type I cysteine proteinase. The L  mexicana 

sample did show a band of -30 kDa, as in agreement with previous documented 

studies and thus confirming that the method was working.

4.3.3.2. Detection of the Type H cysteine proteinases of L. mexicana

Western blots of E. tenella unsporulated oocysts and sporozoites (see 

Figure 4.3.18.) did cross react with the antibody raised against the L. mexicana 

Type II cysteine proteinase. A band o f-47 kDa was seen for the sporozoite 

lysate, but not for the oocyst stage. For T. gondii tachyzoites and C  parvum 

oocysts (see Figure 4.3.19.) no cross reaction was observed.

4.3.4. Sialidase detection

4.3.4.1. Fluorometric assay

Clostridium perfringens sialidase (Sigma) was used to ensure the assay 

was working and to provide a standard curve for a reference using the method 

described in 4.2.3.2. (see Figure 4.3.20.). The sialidase inhibitor 2-deoxy-2,3- 

dehydrO“N-acetylneuraminc acid (5NeuAc2en) was also used in increasing 

concentrations to ensure the assay was working (see Figure 4.3.21.).

Having established the assay, E. tenella merozoite lysates were assayed for 

activity. The merozoites were used at a final concentration of 1.25 x 10  ̂in the
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incubation mixture however no activity was seen in these lysate samples (data not 

shown).

4.3.4.2. Fluorescent staining of sialidase in polyacrylamide gel electrophoresis

0.1 U of enzyme activity of the Clostridium perfringens sialidase was run 

on a 10% gel along with E. tenella merozoites (3.6x10"^ per well) - the samples 

were not boiled before the addition of the sample buffer (see 4.2.2.1.) - thus 

ensuring the preservation of enzyme activity. Once the gels were run and 

incubated as described in 4.2.3.3, photographs were taken of the gel for both the 

fluorescent staining and the following coomassie brilliant blue staining (see 

Figures 4.3.22 (a) and (b)). The results showed a band of fluorescence for the 

Clostridium perfringens sample at approximately 33 IcDa, yet the E. tenella 

sample showed no activity.
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Arrow indicates band consistently inhibited by preincubation with E64, thus indicating 
cysteine proteinase activity in C  parvum oocysts.
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Figure 4 .3 .1.. Pioleiiiase deteclioii in lysates o f/:’, lenella unsporulated oocysts
(equivalent to 2 x 10- per well) and L. mexicana amastigotes (1 x 10^ per 
well) using biotin-Phe-Ala-CHNi. Lane 1 - Rainbow markers (molecular 
weights indicated on the left o f picture); Lane 2 - E. tenella preincubated 
with F64 ( 1.5 mM); Lane 3 - E. tenella with biotinylated inhibitor (100 
pM); Lane 4 - E. tenella lysate; Lane 5 - L. mexicana preincubated with 
E64 (1.5 mM); l ane 6 - L. mexicana with biotinylated inhibitor; Lane 7 - 
L. mexicana supernatant traction.

4 6 ^
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Figure 4.3.2.; Proteinase detection in lysates of ( '. parvum oocysts (3 x 1(H per 
well) using biotin-Phe-Ala-CHNi Lane 1 - lysate pre incubated with E64 
(1.5 mM); Lane 2 - lysate with biotinylated inhibitor. Lane 3 - lysate. 
Molecular weights markers indicated on the left o f picture.
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Arrow indicates band that is consistently inhibited by preincubation with E64, thus 
indicating a cysteine proteinase activity in T. gondii tachyzoites.
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Figure 4.3.3.; Proteinase detection in lysates o f gomlii tachyzoites (3 x 10̂ ’ per 
well) Bio-Phe-Ala-CHN]. Lane 1 - lysate; Lane 2 - lysate with 
biotinylated inhibitor; Lane 3 - lysate preincubated with E64 (1.5 mM).

4 6 ^
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Figure 4.3.4.; Effect o f removing excess biotin-Phe-Ala-CHN] from samples o f  
lend  la unsporulated oocyst lysates (4 x 10̂  per well) and A. mexicana
amastigotes lysates ( 2 x 10  ̂per well). Lane 1 - Rainbow markers 
(molecular weights indicated on the left o f picture); Lane 2 - E. tenella 
from which probe has been removed; Lane 3 ~E. tenella lysate with excess 
probe present. Lane 4 - L. mexicana sample from which excess probe has 
been removed; Lane 5 - A. mexicana lysate with excess probe present.  ̂  ̂^



Arrows indicate bands that are consistently inhibited by preincubation with E64, thus 
indicating cysteine ])roteinase activities in E. tenella sporulated oocysts and C  parvum 
oocysts.



Figure 4.3.5.: Proteinase detection in lysates o f /:. tenella unsporulated oocysts
(2.5 X 10̂ ’ per well) using biolin-Arg-Arg-CHiCl (10 pM). Lane 1 - 
Rainbow markers (molecular weights indicated on the left o f picture); 
Lane 2 - lysate pre incubated with E64 ( 1.5 mM); Lane 3 - lysate 
preincubated with PMSF( 1.5 mM); Lane 4 - lysate with biotinylated 
inhibitor; Lane 5 - lysate.

4 6 ^

30*-

Figure 4.3.6.: Proteinase detection o f ( parvum  oocysts (3.9 x 10 per well ) using 
biotin-Arg-Arg-CHzCl ( 10 pM). Lane 1 - lysate with biotinylated 
inhibitor; Lane 2 - lysate; Lane 3 - lysate preincubated with E64; Lane 4 - 
Rainbow markers (molecular weights indicated on lelf side o f picture).
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Arrowhead indicates band consistently inhibited by preincubation with E64, thus 
indicating cysteine proteinase activity in T gondii tachyzoites.

Large arrowhead indicates band consistently removed by preincubating E. tenella 
sporozoite lysate or live sporozoites (before lysing) with E64, thus indicating cysteine 
proteinase activity may be present on E. tenella sporozoite surface. Small arrowheads 
indicate bands inhibited when live sporozoites were preincubated with E64.
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Figure 4.3.7.. Proteinase detection in lysates o f 7’. gonUu tachyzoites ( 1.6 \  10' per 
well) using biotin-Arg-Arg-CH^Cl. Lane 1 - lysate; L,ane 2 - lysate with 
biotinylated inhibitor; Lane 3 - lysate pre incubated with E64; Lane 4 - 
Rainbow markers (molecular weights indicated on left side o f picture).
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Figure 4.3.8.; Localisation o f proteinases in lysates o f E. tenella sporozoites (5 x 
10̂  per well) using biotin-Arg-Arg-CHiCl. Lane 2 - E. tenella lysate 
preincubated with E64; Lane 3 - E. tenella lysate with biotinylated 
inhibitor; Lane 4 - E. tenella lysate; Lane 5 - E. tenella sporozoites 
preincubated with E64 before lysis.
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Arrows indicate bands consistently inhibited by preincubation with PMSF, thus 
indicating serine proteinase activities in E. tenella sporulated oocysts and C  parvum 
oocysts.
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Figure 4.3.9.: Proteinase detection in lysates of/:, tenella sporulated oocysts (3.9 
X 10̂  per well) using biotin- Phe-CHiCl ( 10 pM). Lane 1 - Rainbow 
markers (molecular weights indicated on left side o f picture); Lane 2 - 
Lysate prcincubatcd with PMSF (1.5 mM); Lane 3 - lysate prcincubatcd 
with C64 ( 1 mM); Lane 4 - lysate with biotinylated inhibitor; Lane 5 - 
lysate.
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Figure 4.3.1 0 .: Proteinase detection in lysates o f ( pan'um  oocysts (3 x 10̂ ’ per 
well) using biotin-Phe-CHjCI ( 10 pM). Lane 1 - lysate; Lane 2 - lysate
with biotinylated inhibitor; Lane 3 - lysate preincubated with PMSF ( 1.5 
mM). 18



Arrow indicates bands consistently inhibited by preincubation with PMSF, thus 
indicating a serine proteinase activity in T. gondii tachyzoites.
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Figure 4.3.11.; Proteinase detection in lysates o f T. gondii tachyzoites ( 1.6 x 10̂  
per well) using biotin-Phe-CH^Cl (10 pM). Lane 1 - lysate; Lane 2 - lysate 
with biotinylated inhibitor; Lane 3 - lysate preincubated with PMSF ( 1.5 
mM).

66* -
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Figure 4.3.12.: Proteinase detection in lysates o f /:. tenella sporulated oocysts (5.9 
X 10̂  per well) using biotin-Arg-CHjCl (10 pM). Lane 1 - Rainbow 
markers (molecular weights indicated on left o f picture); Lane 2 - lysate 
preincubated with PMSF ( 1.5 mM); Lane 3 - lysate preincubated with E64 
(1.5 mM); Lane 4 - lysate with biotinylated inhibitor; Lane 5 - lysate.
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Arrows indicate bands consistently inhibited by preincubation with PMSF, thus 
indicating serine proteinase activities in C parvum oocysts and T. gondii tachyzoites.
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Figure 4.3.13.: Proteinase detection in lysates o f ( '. parvum oocysts ( 1.2 .\ 1(X’ per 
well) using biotin-Arg-CHjCI (10 pM). Lane 1 - lysate; Lane 2 - lysate 
with biotinylated inhibitor. Lane 3 - lysate preincubated with PMSF ( 1.5 
mM). Molecular weights indicated on left o f picture.
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Figure 4.3.14.: Proteinase detection in lysates o f T. gondii tachyzoites (3.1x104  
per well) using biotin-Arg-CH2CI (10 pM). Lane 1 - lysate preincubated 
with PMSF ( 1.5 mM); l.ane 2 - lysate with biotinylated inhibitor. Lane 3 
lysate. Molecular weights indicated on left side o f picture. j2 0



Figure 4.3.15.; Localisation o f proteinases using hiotin-Arg-Arg-CHiCI.
(a) K. tenella sporozoites incubated with biotin-Arg-Arg-CH2CI (100 pM ) as seen 
under the FITC filter o f a fluorescence microscope; (b) and (c) (same field) E. 
tenclla sporozoites without biotin-Arg-Arg-CH^CI as seen under phase contrast 
microscopy and the FITC Alter respectively.
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Figure 4.3.16.: Proteinase detection using antisera raised against Type I L
mcxicanu cysteine proteinases in lysates o f E. tenella unsporulated oocysts 
and sporozoites. Lane I - E. tenella unsporulated oocysts (2 x 10 per 
well); Lane 2 - E. tenella sporozoites (3 x 10̂  per well);Lane 3 - L.
mexicana amastigotes ( 5 x 10̂  per well). Lanes 4 - 6  as before but with 
preimmune serum. Molecular weights indicated on left side o f picture.

Figure 4 .3 .17.: Proteinase detection using antisera raised against Type I L.
mexicana cysteine proteinases in lysates o f E gondii tachyzoites and ( 
parvum oocysts. Lane 1 - T. gondii tachyzoites (2 x 10̂  per well); Lane 2 - 
( parvum oocysts (4 x 10̂  per well); Lane 3 - L  mexicana amastigotes (5 
X 10̂ ’ per well). Lanes 4-6 as before but with preimmune serum.
Molecular weights indicated on left side o f picture.
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Arrow indicates band o f activity detected in E. tenella sporozoites detected by anti
serum raised against Type IIL  mexicana cysteine proteinases.
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Figure 4.3 18.; Proteinase detection using antisera raised against Type II A. 
mexicana cysteine proteinases in lysates o f  E. tenella oocysts and 
sporozoites. Lane I - L. mexicana amastigotes (5 x 10  ̂per well); Lane 2 
E. tenella sporozoites (3 x 10̂  per well); Lane 3 - E. tenella unsporulated 
oocysts (2 X 10̂  per well). Lanes 4-6 as before but with preimmune 
serum Molecular weights indicated on right side o f picture.

€ # ^ 3 0
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Figure 4.3.19.: Proteinase detection using antisera raised against Type II A.
mexicana cysteine proteinases in lysates o f 7! gondii tachyzoites and ( 
parvum oocysts. Lane I - A. mexicana amastigotes (5 x 10̂  per well);
Lane 2 - ( ’. par\’um (4 x 10̂  per well); Lane 3 - A. gondii (2 x 10̂ ’ per 
well); Lane 4 - Rainbow markers (molecular weights indicated on right o f 
picture). Lane 5-8 as before but with preimmune serum. J2 3



F i g u r e  4 . 3 . 2 0 :  S t a n d a r d  c u r v e  u s i n g  C l o s t r i d i u m  p e r f r i u g e n s  
s ial id ase
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Figure 4.3.21: Effect of siaiidase inhibitor on Clostridium  
perfringens  sialidase activity
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Arrow indicates fluorescent band of sialidase activity in C  perfringens.



Figure 4.3.22.; Fluorescent staining o f siaiidases in polyacrylamide gel electrophoresis. 
Lane I - E. (cfiella merozoite lysate (3.6 x 10̂  per well); Lane 2 - ( 'lostridium 
perfringens purified enzyme (0 .1 U). (a) fluorescent staining; (b) coomassie 
brilliant blue staining o f same gel.
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4.3 Discussion

The results from the APIzym kit (see Table 4.3.1.) indicated that a variety 

of enzymes are present in the Cryptosporidium and Eimeria, and that life cycle 

stage variations may be present. However, none of the parasite stages examined 

contained any of the following; a-galactosidase, (3-galactosidase, (3- 

glucuronidase, a-glucosidase, (3-gIucosidase, N-acetyl-p-glucosaminidase, a- 

mannosidase and a-fucosidase all of which were reported absent in T. gondii 

(with the exceptions of P-galactosidase and p-glucuronidase, Manafi et ai, 1993). 

Trypsin was detected in the sporozoite stage of E. tenella (though not present in 

the oocyst lysate), but this result should be treated with caution since it may be 

possible that the trypsin used in the in vitro excystation procedure may not have 

been totally removed from the parasite lysate.

Establishing these enzymatic profiles enables us to understand more about 

the parasites themselves as well as providing a means of characterising these 

microorganisms. It may also provide a way of determining differences between 

strains or isolates of the parasites. Indeed Manafi et a l (1993) did see differences 

in the enzymatic profiles in a number of Toxoplasma strains, and with isoenzyme 

differences having been reported in different Cryptosporidium isolates (Awad-el- 

Kariem et al, 1995), this method may also be able to distinguish between strains 

and isolates, thus making it easier to identify the isolates being studied.

Detection of proteinase activity in coccidia has mainly been performed
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using techniques like gelatin gels (Michalski et ai, 1994; Forney et ai, 1996). 

However these methods are relatively insensitive, requiring a reasonable amount 

of parasite material. When the amount of material is limiting, as it is for these 

parasites, a more sensitive method is needed. Recently developed biotinylated 

probes (McGinty et al, 1993) were reported to be highly sensitive in detecting 

proteinase activity. The results shown here employed four biotinylated probes 

that were thought to bind to and inhibit a number of proteinase activities.

The first two probes, biotin-Phe-Ala-CHN] and biotin-Arg-Arg-CH2Cl, 

were specific for cysteine proteinase activities. Many bands were seen using this 

detection system, so to ensure that the biotinylated probe was binding specifically 

to cysteine proteinases, we preincubated lysates with E64, an irreversible cysteine 

proteinase inhibitor. This inhibitor will bind to the cysteine proteinase active site, 

thus preventing the biotinylated probe from binding, and therefore enabling us to 

see the bands that are actually due to cysteine proteinases and not just nonspecific 

binding. Indeed, at least one band was consistently inhibited by the preincubation 

process, indicating that this method (including the preincubation of the lysates) 

was a valid one. For all three parasites studied it was observed that both the 

probes detected bands of the same molecular weight: for E. tenella and for C. 

parvum a 46 IcDa band was seen to be present (see Figures 4.3.1 .and 4.3.5, for E. 

tenella', and Figures 4.3.2. and 4.3.6. for C. parvum)', and for 7’. gondii a band of 

approximately 35 kDa was observed (see Figures 4.3.3. and 4.3.7.). These results 

indicated that there was at least one cysteine proteinase present in these 

apicomplexan parasites. Whether the activity was present on the invasive stage 

remained unknown. Using the Bio-Arg-Arg-CH2Cl probe for cysteine proteinase
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detection, localisation of the activity on E, (enella sporozoites was attempted (see 

Figure 4.3.8.). Since E64 does not pass through intact membranes it will bind and 

block any surface cysteine proteinase activity. The sporozoites preincubated with 

E64 before lysis showed that the same 46 IdDa band was removed along with a 

couple of others, thus indicating that this cysteine proteinase activity, for E, 

tenella, does appear to be present on the invasive sporozoite surface. This is 

similar to a recent report on C. parvum where a metallo-dependent cysteine 

proteinase of -24 kDa was detected and partially purified (Nesterenko et al.,

1995). These results, along with the finding that cysteine proteinase inhibitors 

inhibited mucus penetration and host cell invasion (see Chapter 5 and 6), indicate 

cysteine proteinases may play a role in these processes.

Serine proteinase activity was detected using a chymotrypsin-like probe 

biotin-Phe-CI-fCl and a trypsin-like probe biotin-Arg-CH2Cl. Again to ensure 

that the bands detected were due to a serine proteinase activity the lysates were 

preincubated with PMSF, the irreversible serine proteinase inhibitor (as described 

before for E64). Similar blots were seen using both the probes for C. panmm  and 

E. tenella with bands of activity seen at -48 IcDa for both of these parasites (see 

Figures 4.3.9. and 4.3.12. for E. tenella-. Figures 4.3.10. and 4.3.13. for C. 

parvum) thus indicating that, indeed, a serine proteinase activity has been 

detected. Recently, a serine proteinase was purified and characterised from E  

tenella sporulated oocysts. The molecular weight reported was -  20 kDa, and this 

activity was suggested to be involved in host cell invasion (Michalski et al,

1994). Indeed, serine proteinase inhibitors were seen to inhibit mucus penetration
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and host cell invasion of sporozoites (see Chapters 5 and 6 respectively, 

suggesting an involvement of a serine proteinase(s) in these processes.

For T. gondii the chymotiy/psin-like label detected an activity of -  65 kDa 

(see Figure 4.3.11.), whereas the trypsin-like label detected one at -58 kDa (see 

Figure 4.3.14.) indicating that the probes are detecting two distinct activities.

In addition to the Western blotting procedure, the biotinylated probes were 

used to attempt to localise the proteinase activities on live sporozoites, using 

fluorescence microscopy. However these experiments were unsuccessful. 

Preincubation with proteinase inhibitors did not inhibit the fluorescence, 

suggesting that this was simply due to non-specific binding.

Antisera raised against L. mexicana Type I and Type II cysteine 

proteinases were also used to probe the lysates. Antisera against Type I 

proteinases did not cross react with any activity in any of the coccidia. The Type 

II antisera did not cross react with any activity in Cryptosporidium, Toxoplasma 

or E. tenella unsporulated oocysts, but did show an activity in E. tenella 

sporozoites at approximately 46 kDa - the same molecular weight of the band 

being detected by the biotinylated probes specific for cysteine proteinases. This 

indicates stage specificity in proteinases present in Eimeria, as is the case for L. 

mexicana (Lockwood et ai, 1987). Since it is the invasive sporozoite stage that 

possesses this activity, it may be that this activity is necessary for this life cycle 

stage, and may be used in penetration of mucus and invasion o f host cells.

The failure to detect sialidase activity using the protocol previously 

described for E. tenella (Pellegrin et ai, 1993) may be due to a number of
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reasons. For example not enough parasite material present, or the fluorescence 

spectrophotometer not being sensitive enough. The sialidase inhibitor strongly 

inhibited mucus penetration (see Chapter 5) (although host cell invasion was not 

affected), thus suggesting that sialidase is important in the penetration process. 

However, until it is determined that this inhibitor is specifically inhibiting the 

parasite enzyme, no definite conclusions cannot be drawn, since this inhibitor 

may be affecting the parasite in some other way. It would be useful to obtain 

antibodies, raised against the siaiidases of other organisms, to try to detect the 

enzyme. Immunofluorescence or gold particle labelling could be used on 

sporozoites and merozoites to localise the enzyme in these invasive stages and to 

see if the sialidase inhibitor did inhibit this labelling process.

The studies performed in this chapter have attempted to provide more 

information on the proteinases and sialidase of the coccidia. Cysteine proteinase 

and serine proteinase activity was detected in all of the coccidia, but localisation 

of these activities remains to be determined. Sialidase was not detected using 

methods previously described, and other methods of detection should be 

attempted.
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CHAPTER FIVE

MUCUS PENETRATION

5.1. Introduction

Mammalian intestinal epithelial cells are covered by a mucus layer of on 

average 400 pm thick (Cohen and Laux, 1995). The presence of this gel network 

in the gastrointestinal tract has been suggested to have a variety of functions 

including a protective barrier against enteric pathogens including bacteria and 

parasites. Many studies have investigated how organisms penetrate the mucus 

layer in both the gastrointestinal and respiratory tracts; for example Escherichia 

coli (Smith, 1992) and Slrepiococcuspneumoniae (Rayner et al,, 1995) 

respectively and along with a number of reviews (Cohen and Laux, 1995; Freter, 

1988). How interaction with the mucus layer occurs has not been elucidated for 

many organisms, but for E, coli (Smith, 1992) and Entamoeba histolytica (Tse 

and Chadee, 1991) mucus is thought to contain receptors for attachment. Yet for 

many gut-parasites, although interactions with the host cells have been 

extensively studied, the first step in host infection, the penetration o f the mucus 

layer, has been largely ignored.

Epithelial goblet cells secrete mucins which foiin a gel network (mucus). 

This consists o f a mixture of glycoproteins, peptides, lipids, water, electrolytes 

and various serum and cellular macromolecules (for example IgA) (Tse and
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Chadee, 1991). Two distinct physical forms of mucus have been described in the 

intestine, a water-insoluble gel layer attached to the mucosal surface of the 

epithelial cells and a water-soluble viscous solution in the lumen (Tse and 

Chadee, 1991). Mucins or mucus glycoproteins consist of a polypeptide 

backbone attached to which are oligosaccharide side chains which contain 

varying amounts of five major sugars: galactose, fucose, N-acetylgalactosamine, 

N-acetyiglucosamine and sialic acid. These mucins are characterised by their 

large extended structure and high carbohydrate content (>80% w/w) found 

attached to the protein core via O-glycosidic links (Carlstedt et ai, 1985; Tse and 

Chadee, 1991). Eight different core regions of mucin glycoproteins have been 

described (Hounsell et al, 1996). The mucus layer is thought to have two main 

roles: firstly, it plays a non-specific role by providing a physicochemical barrier 

against enteric pathogens; and secondly, it has specific roles like providing 

selective adhesion sites for various microorganisms (Neutra and Forstner, 1987; 

Van Klinken et al., 1995; Batt et ai, 1996; Hounsell et al., 1996). These 

functions are the focus of my attention in this chapter.

The methods used to study the effects that microorganisms have on the 

mucus have been numerous. One example has been to measure mucin lysis using 

agar plates and colonies of Candida albicans with mucus incorporated into the 

medium (Colina et al, 1996). Another method involved observing the movement 

of Trichomonas vaginalis through mucus having placed the mucus on slides to 

monitor the distance travelled by the pathogen over certain time periods (Paget 

and James, 1994). However in vitro studies have not been performed to any great 

extent on any of the mucus penetrating microorganisms. Indeed most studies

132



performed have focused on the histology and morphology of mucus goblet cells in 

the in vivo infection.

Certain molecules on cell surfaces are known to be involved in cell-cell 

recognition. One such molecule is sialic acid - a negatively charged carbohydrate 

found in mucus almost exclusively at the terminal ends of the mucin 

oligosaccharides - and it is thought to play a role in cell-surface recognition 

(Carlstedt el ai, 1985; Schenkman and Eichinger, 1993). In rat intestinal mucus 

sialic acid was estimated to be 13.2% of the total carbohydrate composition 

(Neutra and Forstner, 1987). Sialic acid has been implicated in host invasion by 

various organisms including the influenza virus (Pedroso de Lima et al., 1995;), 

Trypanosoma cruzi (Schenkman ei al., 1991) and Plasmodium falciparum (Cross 

and Takle, 1993). T. cruzi trypomastigotes have a trans-sialidase activity which 

transfers host sialic acids onto the parasite surface thus creating an epitope 

involved in host cell invasion, with infectivity correlating with higher activities 

(Schenkman el ai, 1991; Cross and Takle, 1993). Studies have shown that 

glycosidases and proteinases can act more effectively on glycoproteins, and so 

degrade the mucus layer, after the removal of terminal sugars such as sialic acids 

(Engstler and Schauer, 1993). Thus sialidase can play a part in penetration of 

mucus layers by microorganisms. Indeed, there is some evidence that Eimeria 

may have an effect on mucus since a recent study on three species {E. fenella, E. 

maxima and E. necatrix) detected sialidase activity in both the sporozoite and 

merozoite stages of the parasites - the latter possessing 10-20 times higher activity 

(Pellegrin el ai, 1993). The sialidase was observed to have optimal activity at
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40°C (chicken intestine is 40-43 °C) and was resistant to the proteinases normally 

present in the intestine. It was suggested - but with no experimental data - that the 

sialidase desialylates the mucus thus reducing the viscosity of the environment 

and facilitating parasite migration (Pellegrin et ai, 1993). The sialidase could 

also be involved in modifying the surface of the host cell prior to and during 

invasion (Pellegrin et ai, 1993).

It was also reported recently that an aspartyl proteinase of Candida 

albicans appears to be involved in mucin proteolysis (Colina et ai, 1996).

Motility studies performed on E. nieschuhi also indicated that high 

concentrations of mucin present increased the sporozoite motility (Upton and 

Tilley, 1992). Additionally C parvum infections were seen to alter the mucosal 

viscosity with high amounts of mucus becoming dislodged - possibly due to 

enzyme degradation by the parasite (Hill et al, 1991).

Although there were these few reports suggesting that coccidian parasites 

may be able to affect the mucus lining, there have been no reports on the ability of 

the parasites to penetrate the mucus and, if so, if it is by way of mechanical 

movement by the sporozoite and/or due to the release of parasite enzymes, for 

example sialidase, to break down the mucin network. The following experiments 

were designed to give a greater insight into the process of mucus penetration.
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5.2, Materials and Methods

5.2.1. Parasites

5.2.1.1. Sporozoites

Sporozoites were excysted as described in 2.3.5. for C. parvum and

2.2.2.2. for E. tenella. These were then separated from oocysts as described in 

3.2.1 and used immediately.

5.2.1.2. E. tenella merozoites

A. tenella merozoites were prepared as described previously in section

4.2.3.I.

5.2.2. Preparation of mucus layers

To study mucus penetration, desiccated porcine gastric mucus (Sigma) 

was reconstituted by mixing with RPMI. The mucus was then added to 12 pm 

culture plate inserts (Millipore) which had already been placed in 400 pi RPMI in 

wells of a 24 well plate. The mucus was added to a depth of 400 pm, 500 pm or 

700 pm for C. parvum sporozoites E. tenella merozoites and E. tenella 

sporozoites respectively, according to the differences in size between the parasites
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(see Figure 5.2.1).

Figure 5.2.1: Preparation of mucus layers for mucus penetration studies.

MUCUS

SPOROZOITES

RPMI

Having allowed the mucus to set for at least 30 min at room temperature, 

sporozoites were added to the inserts as illustrated in Figure 5.2.1 at 

concentrations ranging from 10*̂ -10̂  mf^ in 200 pi volumes. The inserts were 

incubated at 37°C in 24-well culture plates for 60 or 120 min in an aerobic 

environment. The number of parasites that had penetrated the mucus layer, thus 

ending up in the RPMI under the culture plate insert, could then be counted by 

microscopic observation and expressed as percentage penetration.

5.2.3. Enzyme inhibitors and additional compounds

To try and elucidate the mechanisms that may be involved in parasite 

penetration both sporozoites and merozoites were incubated with a range of 

inhibitors and/or additional compounds before being added to the mucus.
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The enzyme inhibitors used were as follows: cysteine proteinase 

inhibitors, trans-epoxysuccinyl-Ieucylamido-[4-guanidino]butane (E64), 1.5 mM: 

N-a-p-tosyl-L-lysine-chloromethyl ketone (TLCK), 25 pM; Z-phenylalanine 

diazomethane (ZFA), 10 pM; a metallo-proteinase inhibitor: 

ethylenediaminetetraacetic acid (EDTA), 1 mM; an aspartic proteinase inhibitor 

(pepstatin, 1 pM); serine proteinase inhibitors: aprotinin, 100 pM; leupeptin, 100 

pM (which also inhibits some cysteine proteinases); ai-antitrypsin, 0.5 mg m f'; 

the polyamine biosynthesis inhibitor DFMO (a specific inhibitor of ornithine 

decarboxylase, 2 mM); a sialidase inhibitor (2-deoxy-2,3-dehydro-N- 

acetylneuraminic acid (5NeuAc2en), 0.1 mM; the actin microfilament inhibitor 

cytochalasin D, 10 pM; and, as a negative control, formaldehyde (10%, v/v).

To further analyse the sialidase activity a lectin was employed which was 

obtained from the legume plant Maackia amuriensis (Vector laboratories). This 

lectin is known to specifically bind sialic acid residues and was used at a final 

concentration of 0.1 mg mf* and preincubated with the sporozoites for 30 min at 

37°C.

To further investigate the effect of poly amines on mucus penetration, the 

mucus was reconstituted with RPMI containing a final concentration of 1 mM 

putrescine.
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5.3. Results

5.3.1. Effect of various mucus concentrations on sporozoite penetration

A range of mucus concentrations was prepared and placed in prewetted 

culture plate inserts. C. parvum and E. tenella sporozoites were then added as 

illustrated in Figure 5.2.1 and incubated at 37°C for 60 and 120 min for C  

parvum and E. tenella respectively. The percentage of C. parvum and E, tenella 

sporozoites that penetrated the mucus is illustrated in Figures 5.3.1. and 5.3.2, 

respectively. It was observed that for both parasites, as the mucus concentration 

increased the percentage penetration decreased (after 9% for E. tenella) to 

approximately 2% at a 12% mucus concentration. For C. parvum it was decided 

that the 60 min incubation time should be used since the sporozoites of this 

species are known to die very quickly in in vitro conditions (see Chapter 3), 

whereas for E. tenella the 120 min incubation was chosen. 0.4 mm and 0.7 mm 

depths of mucus were used for C. parvum and E. tenella sporozoites, respectively, 

which simply reflects the size difference between these two parasites. For C  

parvum 6% mucus was used since this concentration has been used previously for 

T. vaginalis (Paget and James, 1994), which resulted in approximately 4% 

penetration after a 60 min incubation. Yet for E, tenella the concentration of the 

mucus did not appear to affect sporozoite penetration until after 9%, which was 

chosen and gave an approximate percentage penetration of 60% after a 120 min 

incubation.

These conditions were used in the following experiments.
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5.3.2. Effect of media supplements on the penetration of mucus by C parvum

1% glucose and 10% foetal calf serum (FCS) (heat inactivated) were 

added to the RPMI into which the C. parvum sporozoites penetrate. After a 60 

min incubation the results were recorded and are shown in Table 5.3.1.

Compared with the control both glucose (though not statistically significant) and 

foetal calf serum (P<0.02) appeared to inhibit penetration.

5.3.3. Effect of enzyme inhibitors on mucus penetration

C. pai'vum and E. tenella sporozoites were filtered and resuspended in 

RPMI at a density of 10^-10  ̂m f\  Enzyme inhibitors were added to the 

sporozoite suspensions as described in 5.2.3. and were preincubated for 10 min at 

room temperature after which sporozoites were either given three washes in 

RPMI (10 min and 5 min at 1000 x g for C  parvum and E. tenella respectively) or 

not. The sporozoites were added to the mucus (6% and 9% mucus concentrations 

for C. parvum and E. tenella respectively) and incubated for 60 min or 120 min 

for C. parvum and E. tenella, respectively, whereupon the number of sporozoites 

that had penetrated was determined. For the sporozoites that were washed free of 

the inhibitors the results are shown in Figures 5.3.3. and 5.3.5. respectively for C. 

parvum and E. tenella. The results obtained with the inhibitors present are shown 

in Figures 5.3.4. and 5.3.6. for C. parvum and Æ tenella respectively.

For both parasites, the negative control fonnaldehyde, cytochalasin D, the
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sialidase inhibitor (5NeuAc2en), and the serine proteinase (aprotinin, leupeptin, 

antitrypsin) and cysteine proteinase (E64, TLCK, ZFA) inhibitors all greatly 

inhibited penetration. However the métallo- (EDTA) and aspartic proteinase 

(pepstatin) inhibitors had very little - if any effect - on the penetration process. 

These results were also true when the inhibitors had been washed off from the 

sporozoites, although these results were only repeated twice and further 

experimental data would be needed for statistical analysis.

5.3.4. Effect of the Maackia amurensis lectin II on E. tenella penetration

Freshly excysted E. tenella sporozoites were preincubated with a Maackia 

amurensis lectin (Vector laboratories, California) which specifically binds sialic 

acids (Fischer and Brossmer, 1995). The final concentration of lectin in the 

sporozoite suspension was 0.1 mg mf* (as described in 5.2.3.). After a 30 min 

incubation sporozoites were either washed three times in RPMI (1000 x g for 5 

min) to remove unbound lectin, or the sporozoites were not washed and therefore 

the lectin remained in the sporozoite suspension. The sporozoites were then 

added to the mucus layers and incubated for 120 min, whereupon the penetration 

of the sporozoites through the mucus was determined.

The results (Figure 5.3.7.) show that the lectin inlhbited parasite 

penetration when it was present throughout the experiment (P<0.10). However 

when the sporozoites were washed, there was no inhibitory effect. This would
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suggest that the effect was on the mucus layer when the lectin was present 

throughout the experiment.

5,3.5. Competition between the M  amurensis lectin H and sialidase

To determine to what extent the lectin competed with the sialidase 

activity, the following experiment was performed. E. lenella sporozoites were 

preincubated with the M  amurensis lectin as described in 5.2.3. after which 

sialidase of Clostridium perfringens (0.5 mg mf^) was added to the sporozoite 

suspension which was then added to the mucus layer. Samples of sporozoites 

were also incubated with the lectin or sialidase alone, at the same concentrations 

and conditions as in the combined sample. Parasite penetration was allowed to 

proceed for 120 min at 37°C and the penetration determined and the percent 

inhibition calculated (see Figure 5.3.8.). It was observed that the addition of 

sialidase increased mucus penetration by cleaving the sialic acid residues from the 

mucus and therefore decreasing viscosity. As before in 5.3.4. the presence of the 

M  amurensis lectin inhibited mucus penetration by the sporozoites. When the 

sialidase and lectin were used together the penetration was increased, suggesting 

that the lectin did indeed compete or inhibit the action of the sialidase on the 

mucus layer, possibly by binding to, and therefore protecting, the sialic acid 

residues in the mucus from the sialidase activity.

141



5.3.6. Reversai of sialidase inhibition

Whether enzyme inhibition could be reversed by adding the enzyme back 

to the suspension was investigated. E. tenella sporozoites were incubated with 

the sialidase inhibitor 5NeuAc2en (0.1 mM, as described in 5.2.3.) for 10 min at 

room temperature, and then sialidase (0.5 mg ml"') was added to one sample of 

sporozoites. The sporozoites were then added to the mucus layer and the results 

recorded after the 120 min incubation at 37°C (see Figure 5.3.9.). The results 

show that the sialidase added to the sporozoite suspension when added to the 

mucus layer did reverse the effect of the sialidase inhibitor action, thus suggesting 

that 5NeuAc2en was inhibiting the E. tenella sialidase enzyme, rather than having 

another non-specific effect.

5.3.7 Effect of polyamines on E. tenella mucus penetration

Having observed that the polyamine biosynthesis inhibitor DFMO 

inhibited mucus penetration, the extent to which polyamines affected this process 

was analysed with E. tenella sporozoites. In these experiments 11% mucus (0.7 

mm depth) was used; sporozoite penetration was less than maximal with this 

concentration and therefore it was possible to observe increases in penetration 

rates. To determine the effect that polyamines may have on the mucus, it was 

reconstituted with putrescine as described in 5.2.3. in the samples stated (see 

Figure 5.3.10.). DFMO and formaldehyde were also used where stated at
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concentrations of 2 mM and 10% respectively as described in 5.2.3. The 

percentage penetration was increased when the mucus was reconstituted with 

putrescine, indicating that the polyamine has a mucolytic effect. This effect is 

greatly decreased in the presence of DFMO.

5.3,8 E, tenella penetration of chicken mucus from different regions of the 

GIT

Mucus (Pfizer) collected from different regions of the chicken 

gastrointestinal tract (duodenum, jejunum, ileum/jejunum) was placed on culture 

plate insert filters as described in 5.2.2 at depths of 0.7 mm. E. tenella 

sporozoites were then added and, after the usual 120 min incubation period, the 

percentage penetrations calculated (Figure 5.3.11.). The results indicate a 

difference in the penetration o f the different mucus samples, with there being 

significantly lower penetration through the duodenum sample than those from the 

jejunum (?<0.01) and ileum/jejunum (P<0.01) areas.

5.3.9. Effect of inhibitors on E. tenella merozoite penetration

E. tenella merozoites were prepared as described in 5.2.1.2. and washed 

into serum-free RPMI (1000 x g for 10 min) and resuspended at a density of 1 x 

10*" ml '. Mucus layers were prepared as described in 5.2.2. with a mucus 

concentration of 9% as for E. tenella sporozoites but a depth of 0.5 mm to allow
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for the smaller size of the merozoite stage. The merozoites were incubated with a 

number of the enzyme inhibitors as described in 5.2.3.: E64, 5NeuAc2en, 

aprotinin, DFMO and formaldehyde for 10 min at room temperature after which 

the suspensions were added to the mucus layers in 200 pi volumes and incubated 

at 3T C  for 120 min. Experiments using washed merozoite samples were not 

performed since the merozoites themselves are very fragile. The percentage 

penetrations were calculated (see Figure 5.3.12.). The control percentage 

penetration was on average approximately 30-40%. It was observed that the 

negative control inhibited penetration greatly (-80%) with DFMO, the serine 

proteinase inhibitor aprotinin and the sialidase inhibitor (5NeuAc2en) also 

showing large inliibition. E64 however did not have any inhibitory effect on 

penetration.

5.3.10. Effect of increasing sialidase inhibitor concentration on E, tenella

merozoite mucus penetration

E. tenella merozoites were obtained and prepared along with the mucus 

layers as described in 5.3.10. The merozoites were incubated for 10 min and then 

added to the mucus layers with 0.1, 0.2 and 0.3 mM 5NeuAc2en, as well as 

formaldehyde (10%, v/v) as the negative control. The percentage inhibitions were 

calculated (see Figure 5.3.13.). From the results it was observed that as the 

sialidase inhibitor concentration increased so did the percent inhibition, as might 

have been expected.
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Figure 5.3.1: Penetration of  C. pa r v u m  through
different  mucus  concentrations

% Penetra tion
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Means ± SE from three experiments
Mucus penetration during 60 min (open circles) and 120 min (closed circles)

Figure 5.3.2.: Penetration of E, tenella through different mucus 
concentrations
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Means ± SE from three experiments
Mucus penetration during 60 min (open circles) and 120 min (closed circles)
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Table 5.3,1: Effect of additional compounds in the medium on C parvum  
mucus penetration

% PENETRATION

CONTROL 1% GLUCOSE 10% PCS

60 min 4.8 ±0.9 2.9 ±0.6 1.4 ±0.5

Mean ± three repetitions
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Figure 5.3.7.: E, tenella mucus penetration with or without the 
Maackia amurensis lectin
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Means ± SE from three experiments
Mucus penetration with or without the presence of the M  amurensis lectin (0.1 
m gm l“l)

Figure 5.3.8.: Competition between lectin and sialidase
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Means ± SE from three experiments
Competition between M  amurensis lectin (0.1 mg ml" ̂  ) and Clostridium 
perfringens sialidase (0.5 mg ml"l)
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Figure 5.3.9.: Effect of sialidase on 5NeuAc2en inhibition
3 0  —1

5 N e u A c 2 e n  5 N e u A c 2 e n + s ia l i d a s eConti'ol

Means ± SE from three experiments
Reversal of sialidase inhibition from the the sialidase inhibitor 5NeuAc2en (0.1 
mM) using C. perfr ingens sialidase (0.5 mg ml"^)

Figure 5.3.10.: Effect of polyamines on mucus and DFMO inhibition
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Figure 5.3.11.: Penetration rates of E. tenella through chicken mucus 
from different regions of the gastrointestinal tract
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Figure 5.3.12.: Effect of inhibitors on E. tenella merozoites
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Figure 5.3.13,: Effect of increasing sialidase inhibitor concentration on E. 
tenella merozoite mucus penetration
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5.4 Discussion

The experiments performed showed that both C. parvum and E. tenella 

sporozoites are able to penetrate mucus layers in vitro. The in vivo situation that 

the parasites face however probably varies considerably from the conditions in 

these studies. The mucus layer of the gastrointestinal tract is known to vary in 

thickness and viscosity due to factors like diet, stress and immune status (Neutra 

and Forstner, 1987). Additionally other environmental factors are also involved, 

for example, fluctuations in pH throughout the gastrointestinal tract. Yet this in 

vitro method gives us an indication of mechanisms that may be involved in mucus 

penetration by these parasites, and enables research in an area which has not 

previously been studied.

The presence of media supplements was investigated to determine 

whether two common agents may result in chemotaxis of the sporozoites through 

the mucus layers. The results shown in Table 5.3.1. indicated that the presence of 

glucose in the underlying medium did not positively effect parasite penetration. 

This may imply that, at least for nutrients, chemotaxis does not play an important 

role in this process o f penetrating to the host cells - unlike in the case of bacteria 

(Freter, 1988) - indicating another means by which the parasites know where to 

migrate to.

The use of inhibitors provides some clues as to the mechanisms involved 

in mucus penetration. The fonnaldehyde-killed parasites were seen to be greatly 

inhibited in penetrating the mucus layers: -90% inhibition for C  parvum and
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-60% inhibition for E. tenella, which supports the hypothesis that the parasites 

actively penetiate the mucus layer. The lower inhibition of E. tenella probably 

reflects the fact that these sporozoites are larger and therefore even some dead 

sporozoites pass through the mucus due to gravity. The actin microfilament 

inhibitor cytochalasin D inhibited E. tenella sporozoite penetration by -70% and 

it can be concluded that motility, plays a role in the penetration process as it has 

been reported to do in host cell invasion (Russell and Sinden, 1981).

The sialidase inhibitor used inhibited penetration of both parasites, 

although to a greater extent with E. tetwlla. Sialidase activity has been detected 

in both sporozoites and merozoites of E. tenella (Pellegrin et al, 1993), thus these 

results are consistent with this finding. Sialidase has not been reported in 

Cryptosporidium^ and my studies failed to detect any activity with either parasite 

(see Chapter 4), however the finding that the sialidase inhibitor does inhibit C. 

parvum penetration may indicate the presence of this activity, though more 

studies on the enzyme itself are necessary. Pellegrin et #7(1993) suggested that 

the sialidase may be desialylating the mucus gel network and thus enabling the 

parasites to penetrate more easily, and my results provide the first evidence that 

the parasite’s enzyme activity is directly involved in interacting with mucus.

The ornithine decarboxylase inliibitor DFMO inhibited mucus penetration in 

both C. parvum and E. tenella, by -40% and -65% respectively. Indeed polyamines 

have been suggested to have a ‘mucolytic’ effect, thus enabling organisms to penetrate 

mucus more easily (Paget and James, 1994) possibly by disrupting the mucin gel- 

network in some way. DFMO was used in a study of E. tenella infections in broiler 

chickens (Hanson et ai, 1981), and found to be effective in preventing the symptoms. If
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cured with DFMO, immunity to infection was gained (Hanson et ai, 1981). It was 

concluded that DFMO acted specifically by blocking putrescine production o f the 

parasite (Hanson et ai, 1981) (see 1.2.5.). This finding along with my evidence that 

DFMO inhibits mucus penetration suggests that putrescine secretion may be involved in 

mucus penetration. However for C. parvum it has been reported that polyamine 

metabolism does not occur via ODC but via the enzyme arginine decarboxylase (ADC) 

and that DFMO has no effect on gi'owth (Yarlett et al, 1996). Yet in a study on AIDS 

patients that had Cryptosporidium infections, 10 of 17 patients had complete resolution 

when treated with DFMO (Rolston et ai, 1989). These results together suggest that 

DFMO is having an adverse effect on the parasite but not through the inhibition of ODC, 

possibly by damaging the sporozoite surface.

The serine proteinase inhibitors used were ai-antitrypsin, leupeptin (which also 

inhibits a number of cysteine proteinases) and aprotinin. With both parasites, inhibition 

was seen using all of these inhibitors, thus indicating that serine proteinase activity is 

important in mucus penetration. This is in direct contrast with the results obtained when 

using the aspartic proteinase inhibitor pepstatin and the metalloproteinase inhibitor 

EDTA which, for E. tenella, showed no inhibition. Yet EDTA is known to be reversible 

and would be removed during washing. Indeed, when present in the sporozoite 

suspension, E. tenella mucus penetration was inhibited For C. pai^um, both pepstatin 

and EDTA showed an inhibition o f -30% indicating a possible role for aspartic and 

métallo- proteinase activities in mucus penetration, which is similar to reports on 

Candida albicans which is reported to possess an aspartyl proteinase involved in mucin 

proteolysis (Colina et a i, 1996). These results also suggest that there may be 

differences in the mechanisms of E. tenella and C. parvum mucus penetration.
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The cysteine proteinase inhibitor results were similar for both the parasites. The 

peptidyl diazomethane Z-phenylalanine appeared to vaiy widely in its effect on 

penetration. However both E64 and TLCK inhibited this process for both C  parvum and 

E. tenella at -50-60%. These results indicate that there is a surface cysteine proteinase 

activity, since E64 - which cannot cross intact cell membranes - inhibited mucus 

penetration. These results are consistent with the findings o f the cysteine proteinase 

(Nesterenko et al., 1995) of C. parvum which appears to be surface located as well as the 

aminopeptidase (Okhuysen et al., 1994) which were thought possibly to aid the parasite's 

penetration of the mucus layer and/or invasion of a host cell.

To further investigate the role that the sialidase activity was playing in this 

process of mucus penetration, a Maackia amurensis lectin specific for sialic acid 

residues was used (see Figure 5.3.7.). If the lectin remained in the sporozoite suspension 

when added to the mucus layer (compared to the washed sample) an inhibition of 

approximately 30% was seen. The results suggest that the lectin bound to the sialic acid 

residues known to terminate a high proportion of the mucin glycoproteins, and in doing 

so protected the mucin network from the action of the parasite sialidase and therefore 

inliibited the penetration by the parasite. However the action of the lectin may not be 

specific. It may be possible that the lectin has an effect on the parasites themselves by 

being reversibly bound and removed during the washing, therefore removing the 

inhibitory effect. More experiments would have to be performed to determine if the 

lectin was binding to the sporozoites, possibly by labelling the lectin with a fluorescent 

marker and using microscopic observation to determine firstly if the lectin binds to the 

sporozoites, and then if  washing removes it. To investigate the effect o f the lectin
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further we chose to see whether the C  perfringens sialidase competed with the lectin on 

the mucus layer (see Figure 5.3.8.). When E. tenella sporozoites were added with 

sialidase present no inhibition was seen, unlike when the lectin was present and a high 

percentage inhibition was observed in the mucus penetration. However when the lectin 

and sialidase were both present in the sporozoite suspension the inliibition of the lectin 

was abolished. This indicates that, although the lectin was bound to a number of sialic 

acid residues, the sialidase overcame this effect due to the concentration of both the 

lectin and sialidase present.

Similarly, whether the effect of the sialidase inhibition could be reversed simply 

by adding the enzyme back into the experiment was investigated (see Figure 5.3.9.). E. 

tenella sporozoites incubated either with the sialidase inliibitor or with the sialidase 

inhibitor followed by the addition of external sialidase (C. perfringens) were observed. 

The inhibition by the sialidase inhibitor (-60%) was indeed reversed when the sialidase 

enzyme was present. These results give an indication that the sialidase inhibitor in these 

studies is inhibiting the parasite sialidase. However to prove that the sialidase inhibitor 

does specifically inhibit the E. tenella enzyme, enzyme studies would need to be 

performed. These were attempted in Chapter 4 but any sialidase activity from E. tenella 

sporozoites or merozoites was not detected.

The effect of polyamines on the mucus layer was also investigated further with 

the use of the polyamine putrescine (see Figure 5.3.10.). When the mucus layer was 

reconstituted with 1 mM putrescine there was approximately a five times increase in 

mucus penetration by E. tenella sporozoites, thus confirming the suggestion that 

polyamines may act as mucolytic agents. However if the sporozoites were incubated
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with DFMO before adding to the mucus layer reconstituted with putrescine, the 

percentage penetration was greatly decreased to approximately equal the control. The 

results reveal that if the parasite polyamine production is inhibited using DFMO, the 

addition of external putrescine abolishes - to a limited extent - this inhibitory effect.

Thus confirming the fact that polyamines may be involved in mucus penetration as has 

been found for Trichomonas vaginalis (Paget and James 1994).

The differences between the various regions of the gastrointestinal tract are due 

to a number of factors, including pH and the molecules/chemical s present in these 

regions. Indeed different species of Eimeria are known to preferentially invade specific 

regions of the intestine (Strout et ai, 1994). From our results obtained using the 

different chicken mucus samples collected from the duodenum, the jejunum and the 

ileum/jejunum it was observed that the percent penetration by E. tenella was seen to 

vary between the samples (see Figure 5.3.11.). This would therefore indicate that there 

are differences in the mucus composition throughout the gastrointestinal tract, possibly 

contributing to the species-specific penetration and subsequent invasion of the different 

areas. However any conclusions drawn from these results should be treated with caution 

since the composition of the mucus samples used was not known and these samples had 

been stored for a number of years prior to use in these experiments. Whether the 

concentration of the mucus was similar in each sample is not known and obviously the 

number of times the samples had been freeze-thawed, therefore disrupting the 

glycoprotein network, is also unknown.
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E. tenella merozoite mucus penetration was also studied using a number of 

specific enzyme inhibitors (see Figure 5.3.12.). Unlike with the sporozoite stage, E64 

did not inhibit penetration, suggesting that surface cysteine proteinase activity is not 

involved and indicating possible differences between life cycle stages of E. tenella.

Both the serine proteinase inhibitor and DFMO inhibited mucus penetration as observed 

for the sporozoite stage, but the sialidase inhibitor only gave an inhibition o f -45%, 

compared to an inhibition of -80% with the sporozoites at the same final concentration. 

This would suggest that the merozoites do contain higher amounts of sialidase activity 

as was reported by Pellegrin et al. (1993). Even three times the concentration of 

inhibitor used on the sporozoites did not achieve the same degree of inhibition on 

merozoites (see Figure 5.3.13.) and resulted in approximately 70% inhibition.

The results obtained in this chapter derived from use of a novel method, 

showed that C. parvum sporozoites and E. tenella sporozoites and merozoites are 

able to penetrate mucus layers; and elucidated some of the activities or processes 

that are involved. The use of a variety of enzyme activities namely cysteine and 

serine proteinases, polyamines and sialidase in both parasites, along with motility 

and site specificity enable the parasites to penetrate the area of the gastrointestinal 

tract that they infect. However many questions remain unanswered and these 

studies simply represent a start in understanding the process of mucus penetration 

and the mechanisms involved.
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CHAPTER SIX 

HOST CELL INVASION

6.1. Introduction

An important area of research, when any pathogenic intracellular micro

organism is concerned, is studying attachment to and invasion of host cells. 

Knowing the mechanisms and processes involved aids researchers to understand 

how the parasite is adapted to glowing in its specific host and, perhaps more 

importantly, develop methods to prevent the infection. Studies on host cell 

invasion by the coccidia have varied extensively, both the approaches and 

methods used. The attachment and invasion process has been monitored with 

respect to time for each of the coccidia with C. parvum, E. magna and 7! gondii, 

taking fifteen minutes, five to ten minutes and fifteen to thirty seconds, 

respectively, (Jensen and Edgar, 1976; Lumb et ai, 1988) while the host cell 

membrane remained intact throughout the whole process (Jensen and Edgar,

1976; Lumb e/ #7, 1988; Moriaski c /#7, 1995). However one feature that 

Cryptosporidium apart from the other coccidia is that the parasitophorous vacuole 

remains at the host cell surface rather than deep within the cytoplasm (Lumb et 

al, 1988; Sterling and Arrowood, 1993).

How coccidia travel to the host cell for attachment and invasion has not 

been studied to any great extent. Lawn and Rose (1982) demonstrated using 

electron microscopy that E. tenella sporozoites did not directly enter ciypt 

epithelial cells, in fact they were shown to be carried in the cytoplasm of 

intraepithélial lymphocytes (lELs). Once at the crypts, a process likened to
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"reversed phagocytosis" was reported to occur. This involved the sporozoites 

coming out of the lELs and subsequently being able to then invade the crypt 

enterocytes (Lawn and Rose, 1982). More recently a study involving E. magna 

reported that sporozoites were observed in lELs at the specific site of infection in 

the host (Pakandl et al, 1995). However Vervelde et al, (1995) reported that 

lELs were rarely seen to contain E. tenella sporozoites. The reason for this 

discrepancy may be due to variations in experimental procedures between 

researchers; for example, different strains and routes of inoculating Eimeria.

Motility has often been a focus o f attention in coccidian biology and has 

been implicated in penetration and host cell invasion. Colchicine (a microtubule 

inhibitor) and cytochalasin D (an actin inhibitor) have been reported to inhibit 

invasion by both C parvum and Eimeria (Russell and Sinden, 1981 ; Russell,

1983; Wiest et al, 1993; Wiest et al, 1994), T. gondii (Aguirre-Cmz et al, 1996; 

Dobrowolski and Sibley, 1996) and Neospora caninum (Hemphill et al, 1996), 

supporting the hypothesis that motility plays a role in the invasion process.

Indeed a point mutation in the single copy actin gene ACTl of T. gondii abolished 

the inliibitory effect of cytochalasin on host cell invasion by tachyzoites 

(Dobrowolski and Sibley, 1996) thus suggesting that cytochalasin may inhibit 

actin by binding to the protein encoded by its gene and that actin has a major role 

in the host cell invasion process. C parvum has also been reported to contain an 

actin gene (Kim et al, 1992) and actin and actomyosin have been detected in 

Eimeria sporozoites (Baines and King, 1989; Preston and King, 1992). Myosin 

has been located at the anterior pole of Toxoplasma (Schwartzman and 

Pfefferkom, 1983), and microtubules have been detected in the pellicle 

(Schwartzman and Krug, 1985).

The parasite’s attachment to the host cell is the initial step in the invasion 

process. Structures present on both the parasites and the host cells and the
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attachment mechanisms involved have been studied. The findings vary 

considerably according to the particular cell type used (see section 1.1.7.). For 

example, it was found that with C  parvum, differentiated HT29.74 cells were five 

times more susceptible to infection than undifferentiated cells. This suggests that 

the process of differentiation may produce structures that facilitate parasite 

infection (Flanigan et al, 1991).

The receptor sites used in attachment and therefore invasion have been 

studied. Using immunofluorescence and immunoprécipitation, T. gondii 

tachyzoites were seen to be covered in a laminin layer (Furtado et al, 1992), and 

antibodies against both laminin and Pi-integrins blocked attachment (Joiner,

1991; Furtado el al., 1992). It was suggested that laminin may create a bridge 

between tachyzoites and host cells thus facilitating host cell attachment. Anti- 

fibronectin serum was seen to reduce T. gondii host cell invasion as well as 

cycloheximide - the protein synthesis inhibitor (Rosales et al, 1995). This 

suggested that fibronectin host cell receptors and protein synthesis (possibly by 

the parasite and host cell) are involved in the attachment and invasion process 

(Rosales et al, 1995). In contrast when glycosylated receptors on T. gondii 

tachyzoites were blocked, host cell invasion was not affected (Mack et al, 1994).

The Apicomplexa were given their name as a group of parasites because 

they possess an apical complex (illustrated in Figure 6.1.1.). This is thought to be 

involved in host cell attachment and invasion. Organelles present at the apical 

complex include rhoptries, micronemes and the larger dense granules. Unusually 

C, parvum has a single rhoptiy whilst other coccidians have at least two (Tetley et
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Figure 6.1.1: Diagram of a sporozoite of Eimeria to show the principal 

structures.

t

• - 1 pp

Key to Figure 6.1.1: C, conoid; DB, dark bodies; ER, endoplasmic reticulum; IM, 
inner membranous complex; L, lipid inclusion; Ml, mitochondrion; MN, 
micronemes; MP, micropore; N, nucleus; NU, nucleolus; OM, outer membrane; 
P, polar ring; PL, plastid-like organelle; PP, posterior polar ring; R, 2 , preconoidal 
rings; RB, retractile bodies; RH, rhoptries; V, vesicle. The apical complex also 
characteristically contains dense granules (not shown). Modified from 
Scholtyseck (1979).
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ai, 1995). It is now widely agreed that these organelles are indeed involved in 

host cell attachment and invasion (Jensen and Edgar, 1976; Joiner, 1991; Perkins, 

1992; Jacobson and Doyle, 1996). In terms of these organelles, host cell invasion 

has been described as a series of events for T. gondii: attachment to the host cell 

triggers the micronemes to release their contents; the invagination of the host cell 

membrane to finally form the parasitophorous vacuole (PV) is initiated by the 

release of the rhoptry contents; and the dense granule release appears to be 

delayed until the parasite is fully within the PV (Carruthers and Sibley, 1997).

For C. parvimt two monoclonal antibodies raised against the oocysts and 

sporozoites were seen to label the subset of small dense granules in the 

sporozoites and also to label the parasitophorous vacuole membrane. This 

labelling suggested that these granules may be exocytosed during host cell 

invasion (Bonnin et ai, 1995). Similarly antibodies raised against a V. caninwn 

antigen Nc-p43, usually located on the parasite surface and within the dense 

granules and rhoptries, were seen to inhibit parasite attachment and subsequent 

invasion (Hemphill, 1996).

Some analysis of the apical complex organelles has been performed. 7’ 

gondii tachyzoite rhoptries were seen to be composed of 75% phosphatidylcholine 

with a cholesterol to phospholipid ratio o f 1.5:1 (Joiner, 1991), and Sarcocystis 

miiris dense granules were reported to contain a cysteine proteinase (Strobel ei 

ah, 1992). However, antibodies raised to rhoptries, micronemes and dense 

granules of T. gondii had no effect on invasion of the tachyzoite stage yet this may 

be due to the fact that the antibodies could not access these organelles and may 

therefore not be a true result (Grimwood and Smith, 1996).

Homologues of the heat shock proteins (hsp 70) have been detected in E. 

tenella sporozoites and, using monoclonal antibodies, have been seen to be 

occasionally located at apical complexes (Laurent et aL, 1994; Dunn et ai, 1995).
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It was suggested that this cytoplasmic hsp may be involved in targetting proteins 

to the apical complex (Laurent et ai, 1994).

Another approach used to analyse invasion is to use specific enzyme 

inhibitors in an attempt to elucidate the mechanisms involved in the host cell 

invasion process. Various compounds have been tested and conflicting results 

have been reported. The addition of exogenous phospholipase A% (PLA2)

increased T. gondii host cell invasion, although exactly how this enzyme may 

influence invasion remains to be defined (Saffer and Schwartzman, 1991). In 

contrast exposing E. tenella sporozoites to PLA2 reduced their capacity to invade 

(Crane and McGaley, 1991), indicating that different mechanisms may be 

involved in host cell invasion by these two parasites.

Proteinases are another area of major research in parasites and have been 

suggested to play roles in survival in the host cell in other parasites (McKerrow et 

al, 1993; Coombs and Mottram, 1997). Proteinase inhibitors have been 

investigated previously in temis o f their effect on invasion of host cells by various 

coccidia; however, most investigators failed to test the toxicity of these 

compounds on the sporozoites themselves (Adams and Bushell, 1988; Fuller and 

McDougald, 1990: Fomey et al, 1996). E. vermiformis sporozoite invasion was 

reported to be inhibited by 5 mM phenylmethylsulfonyl fluoride (PMSF) but not 

by antipain, leupeptin, chymostatin, tosyl-lysine chloromethyl ketone (TLCK), 

tosylamido-2-phenylethyl chloromethyl ketone (TPCK) or pepstatin (Adams and 

Bushell, 1988). These results are similar to findings with C parvum infection on 

bovine fallopian tube cells, in that serine proteinase inhibitors including PMSF 

inhibited host cell infection (Fomey et al, 1996). In contrast, E. tenella 

sporozoite invasion was inhibited by most of the afore-mentioned inhibitors 

(chymostatin was not tested) and aprotinin (Fuller and McDougald, 1990).
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There have been few reports concerning the importance of environmental 

conditions for host cell invasion. Under reduced oxygen conditions, E. nieschiilzi 

sporozoite motility and invasion was seen to be unaltered although survival time 

of the parasites in MDBK cells did seem to be increased (Upton and Tilley, 1995).

The presence of divalent cations including manganese, calcium and zinc 

increased attachment o f C. parvum sporozoites (Hamer et al, 1994). More 

recently, an increase in calcium concentration in the parasitophorous vacuole has 

been suggested to be the signal for Toxoplasma to exit the host cell (Pingret et al, 

1996).

One aspect of host cell invasion that appears to have been largely 

overlooked is the effect of parasitism on the host cell. It has been reported that 

when E. tenella infects chick kidney cells, a number of morphological changes 

were observed in the host cells, including a decrease in cell-cell contact and cell- 

substrate contact (Urquhart, 1981a). It was concluded that the parasite must 

disrupt the actin microfilament bundles of the host cells, thus possibly resulting in 

the loss o f surface glycoproteins known to be directly linked to these 

microfilaments and therefore, in turn, resulting in a loss of adhesion by the cells 

(Urquhart, 1981 a). However this phenomenon did not merely occur in parasitised 

cells. Non-parasitised cells - when present in the same culture - also exhibited 

these morphological changes. It was further noted that parasitised cells 

underwent an increase in DNA synthesis, possibly due to the demands on the host 

cell by the parasite (Urquhart, 1981b). Non-parasitised cells in the same culture 

also showed an increase in DNA synthesis (though not as large as those that were 

parasitised), thus indicating that a factor was released into the medium either by 

the parasite or parasitised cell and that this induced other cells to progress into S
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phase (Urquhart, 1981b). Notably, however, parasitised cells also remained in S 

phase longer than non-parasitised cells suggesting the presence of another factor 

that is not released into the medium since this phenomenon is only seen with 

parasitised cells (Urquhart, 1981b). Studies involving E. necatrix have revealed 

that invasion with this species also induces a number of changes in chick crypt 

cells: an overall increase in surface area (~ 5 fold); an increase in DNA 

replication; an increase in mechanical resistance of the plasma membrane; an 

increase in gel-phase lipid in the plasma membrane; infected cells become 

migratoi-y; and a major protein in the plasma membrane appears (~ 36 kDa) 

(Fernando and Pasternak, 1983). Additionally to these changes, the host cell 

membrane also becomes extremely sensitive to proteolytic attack possibly due to 

the membrane becoming ‘leaky’ as the infection progresses (Fernando and 

Pasternak, 1983).

A study in 1977 (De Laat et al.) investigated the lipid layers of the cell 

membrane of Cl 300 mouse neuroblastoma cells. The microviscosity of the lipid 

varied throughout the cell cycle reaching a maximum during mitosis, then 

decreasing to remain at a low level during S phase. Thus, the cell membrane of 

mitotic cells was reported to be more rigid than that of cells in the interphase. 

Indeed as cells progress through the cell cycle major changes occur in 

morphology, geometry and mechanical properties (Needham, 1991). Perhaps not 

surprisingly then, two studies on T. gondii attachment (Grimwood et al., 1996) 

and invasion (Dvorak and Crane, 1981) have found that host cells are more 

susceptible to infection during the S phase of their mitotic cycle. This is 

consistent with other researcher’s observations that non-confluent cells (30-60% 

in S phase) are invaded more readily than confluent cells (majority in G J (Dvorak 

and Crane, 1981).
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The aims of the experiments in this chapter were initially to set up an in 

vitro invasion assay to monitor parasite invasion of the host cells. Once 

established, the use of non-toxic enzyme inhibitors (as assessed by the vital stains 

technique, see Chapter 3) could be used to observe the effects they may have on 

the invasion process. The MDBK cell cycle was mapped out and its effect on 

parasite invasion analysed.
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6.2. Materials and Methods

6,2.1. Parasites

1.5 X 10  ̂C. parvum oocysts were washed three times in RPMI (Labtech, 

1640) to remove the potassimn diclnomate and then excysted as described in

2.2.3, The resulting sporozoites were separated from unexcysted oocysts and 

shells by micropore filtration (see 3.2.1.) and used immediately.

1.0 X 10̂  £■. ienella sporulated oocysts were washed free of potassium 

dichromate and excysted as described in 2.2.2.2. The excystation mixture was 

then filtered through pre-wetted cotton wool and the purified sporozoites were 

resuspended in RPMÏ and used immediately.

E. Ienella merozoites were cultured as described in section 4.2.3.1. These 

were collected and resuspended in RPMI at a density of 2-3 xlO^ merozoites mV\

6.2.2. Host cell culture

Madin Darby Canine Kidney (MDCK) and Madin Darby Bovine Kidney 

(MDBK) cells were seeded at 5 x lO'̂  per well in 0.5 ml RPMI containing 10% 

(v/v) heat inactivated foetal calf serum (Labtech), 2 mM L-glutamine (Sigma), 25 

pg mT  ̂ gentamycin (Sigma) and 2.5 pg mf^ amphotericin B (GIBCO) in a 24- 

well plate on glass coverslips (Surgipath, 13 mm). These were incubated for 24 h 

at 37°C in a 5% CO2 moist incubator and then used immediately.

Monkey kidney (COS) cells (Peters et ai, 1995) were cultured as 

described for MDBK cells with the omission of amphotericin B from the medium, 

since this appeared to have a detrimental effect on growth.
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6.2.3. Invasion assay

The MDCK, MDBK or COS cells on coverslips in wells were rinsed three 

times in serum-free RPMI and the freshly excysted sporozoites were added to 

each well in 0.2 ml volumes. The 24-well plates were then incubated at 37°C in a 

5% CO2 moist incubator for 60 min, after which the coverslips were washed twice 

in serum-free RPMI. Having added 0.25 ml serum-free RPMI to each well, the 

cells were incubated for a further 60 min to allow attached sporozoites to invade. 

The RPMI was then removed from the wells which were then washed twice in 

serum-free RPMI, the cells fixed in 75% ethanol for 60 min at room temperature 

and the coverslips air dried. The coverslips were then stained in 10% Giemsa’s 

stain (BDH) in Giemsa buffer (3 g/L anhydrous disodium hydrogen 

orthophosphate and 0.6 g/L potassium dihydrogen orthophosphate, pH 7.2) for 60 

min at room temperature. The preparations were rinsed twice with deionised 

water before being allowed to air dry. The coverslips were then mounted onto 

glass slides using canada balsam (Sigma). 200 host cells were observed in fields 

from one side of the covers lip to the other, under oil immersion microscopy, and 

the number of parasites that had invaded them counted. The results were 

expressed as the number of parasites per 100 host cells.

6.2.4. Enzyme inhibitors

To study the mechanisms that may be involved in host cell invasion, 

sporozoites and merozoites were incubated with a range of inhibitors before being 

added to the host cells.

The inhibitors were as follows: the cysteine proteinase inhibitors: trans-
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epoxysuccinyl“L-leucineamido(4"guanido)butane (E64, 1.5 mM), N-p-tosyl-L- 

lysine chloromethyl ketone (TLCK, 25 jnM) and Z-phenylalanine (ZFA - a 

peptidyl diazomethane, 10 pM); the serine proteinase inhibitors aprotinin (100 

pM), leupeptin (also known to inhibit a number of cysteine proteinases (100 pM)) 

and ai-antitrypsin (0.5 mg mf^); the polyamine biosynthesis inhibitor 

difluoromethyl ornithine (DFMO, 2 mM); a sialidase inhibitor 2,3-dehydro-2- 

deoxy-N-acetylneuraminic acid (5NeuAc2en, 0.1 mM); a metalloproteinase 

inhibitor ethylenediaminetetraacetic acid (EOTA, 1 mM); an aspartic proteinase 

inhibitor pepstatin (1 pM) and the negative control fonnaldehyde (10%, v/v).

With these final concentrations of inhibitors parasites were incubated for 10 min 

at room temperature.

6.2.5. 4,6,-diamiiio-2-phenylindole (DAPI) staining of MDBK cells

MDBK cells were fixed with 75% ethanol for 60 min. The ethanol was 

removed and the cells allowed to air-diy before the coverslips were stored at 

-20°C until processed. For processing the cells were thawed to room temperature 

and rehydrated with PBS containing 10% (v/v) foetal calf serum for 30 min at 

room temperature. Having washed the cells twice with PBS, the cells were 

incubated with the DNA intercalating dye 4,6,-diamino-2-phenylindole (DAPI) 

(0.01 mg ml'* in PBS) for 10 min at room temperature. They were then rinsed 

twice in PBS and the coverslips mounted on slides with non-fluorescing glycerol. 

Cells containing DNA that are stained with DAPI fluoresce brightly with a 

characteristic blue fluorescence when viewed with a Zeiss fluorescence 

microscope (Carl Zeiss Inc., New York) with the following filters: excitation 

filter, G365 nm; mirror, FT510 mii; barrier filter, LP520 nm).
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6.2.6, Bromodeoxyuridine (BrdU) labelling for cells in S phase

Cells were rinsed three times in serum-free RPMI after which medium 

containing 40 pM bromodeoxyuridine (BrdU) and an equimolar concentration of 

2-deoxycytidine was added to the cells which were incubated at 37°C for at least 

60 min. Medium was then removed and the cells fixed with 75% ethanol for 60 

min. The ethanol was removed and the wells were allowed to air diy before the 

coverslips were stored at -20°C until processing. Once defrosted, the fixed cells 

were denatured with 1.5 M HCl for 20 min at room temperature to allow antibody 

access. The cells were then washed ten times in PBS (pH 7.2) before adding the 

anti-BrdU antibody supplied as a working strength solution (Amersham) and 

incubating for 70 min at room temperature. Having been washed twice in PBS, 

the cells were incubated with the secondary anti-mouse antibody linked to 

fluoroscein isothiocyanate (FITC) for 45 min at room temperature, after which 

they were rinsed briefly with PBS (pH 7.2). The cells were then counter-stained 

with DAPI (as described in 7.2.4.) for 10 min and, after two rinses, were placed 

on slides with non-fluorescing glycerol. The MDBK cells could then be observed 

for labelling using the relevant filters; [DAPI (as described above in 6.2.4.);

BrdU:excitation filter BP450-490 mn; mirror, FT510 nm; barrier filter, LP520 

nm] on the Zeiss fluorescence microscope, and the percentage of cells labelled 

with BrdU (the cells in S phase) could be calculated.

6.2.7. Analysis of MDBK cell cycle

The MDBK cell cycle could be mapped once the periods of mitosis, S
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phase, Gi and G% were established. To do this the cells were synchronised by 

incubating with 2 mM hydroxyurea (Sigma) in growth medium for 24 h. This 

arrests cells at the G %/S interphase (Krakoff et ai, 1968) by inhibiting the 

reduction of deoxyribonucleotides and thus DNA synthesis. Once released from 

this block by washing the cells three times in serum-free RPMI, the cells progress 

through the cell cycle reasonably synchronously enabling their cell cycle stages to 

be monitored. The periods of mitosis and S phase were monitored using DAPI 

staining and BrdU labelling as previously described in 6.2.4. and 6.2.5. 

respectively. Cells were fixed and stained at half hourly intervals for mitosis, and 

hourly for BrdU labelling.
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6.3. Results

6.3.1. C parvum and E, tenella sporozoite invasion of MDBK cells

Typical results for both C. parvum and E. ienella MDBK cell invasion as 

described in 6.2.3. are illustrated in Figures 6.3.1, and 6.3.2.

6.3.2. BrdU labelling of MDBK cells

Typical staining results using DAPI and BrdU labelling on MDBK cells as 

described in 6.2.6. are illustrated in Figure 6.3.3.

6.3.3. Varying the number of sporozoites in the invasion assay

Freshly excysted and filtered E. ienella and C. parvum sporozoites were 

added to MDCK and MDBK cells in different numbers to determine the optimum 

number to use in future experiments. The results are shown in Figures 6.3.4. and

6.3.5. for MDCK cell invasion; and 6.3.6. and 6.3.7. for MDBK cell invasion. 

Assuming the cells have progressed through one cell cycle in the 24 h attachment 

incubation prior to the addition of the parasites, a 20:1 sporozoite to cell ratio (2 x 

10  ̂sporozoites per well) resulted in the optimum invasion rates for both host cell 

types (higher ratios resulted in damage to the host cells). MDCK cells appeared 

to be more susceptible to infection than MDBK cells. However the use of 

microscopic observation as the method of detennining parasite infection required 

being able to distinguish between parasites that were attached and those that had
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Figure 6.3.1.: C. parvum invasion of MDBK cells

As seen under x 100 oil immersion microscopy after Giemsa’s staining o f the cell 

preparation. The arrow indicates a C. parvum sporozoite attaching to a MDBK 

cell prior to invasion; n-MDBK cell nucleus; scale bar = 10 pm.

Figure 6.3,2.: E. tenella invasion of MDBK cells

As seen under xlOO oil immersion microscopy after Giemsa’s staining of the cell 

preparation. The large arrow illustrates an invaded E. tenella sporozoite clearly 

surrounded by a parasitophorous vacuole; the small arrow points to an attached 

sporozoite (not invaded); n-MDBK cell nucleus; scale bar = 10 pm
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Figure 6.3.3.: Brdli labelling o f M DBK  cells

Figure 6.3.3.(a) x40 DAPI stained MDBK cells under the DAPI filter o f a Zeiss 
fluorescence microscope; Figure 6.3.3.(b) (mirror image o f  Figure 6.3.3.(a)) BrdU labelling 
of same field as Figure 6.3.3.(a). Two MDBK cells clearly show BrdU incorporation 
shown by fluorescence with the FITC filter indicating that these cells are in S phase 
compared to two cells which are not labelled; scale bar = 10 pm.

76

J



invaded. As the MDBK cells appeared to spread out to a greater degree than 

MDCK cells on the substrate, it was far easier to distinguish invasion from 

attachment with this cell line, and therefore the combination of MDBK cells with 

2x10^ sporozoites per well was chosen for future experiments.

6.3.4. Effects of inhibitors on invasion

Freshly excysted and filtered sporozoites or freshly collected merozoites 

were incubated with a range of inhibitors for 10 min at room temperature (see

6.2.4.). None of the inhibitors used had any adverse effects on the sporozoites 

themselves as determined using the vital stain viability test (see Chapter 3), and 

these samples were accompanied with appropriate controls, for example, if 

solvents had been used to solubilise the inhibitors. The sporozoites were then 

washed three times after which they were added to the appropriate MDBK wells 

in 0.2 ml volumes for the invasion assay. The results are presented in Figures

6.3.8. and 6.3.9. for C. parvum and E, tenella sporozoites and 6.3.10. for E". 

tenella merozoites respectively. Invasion by the negative controls (incubated with 

10% formaldehyde), was inhibited by approximately 90%. This validates the 

assay used, confirming that intracellular and extracellular parasites could be 

distinguished reasonably efficiently. The sialidase inhibitor did not have any 

effect on C  parvum or E. tenella sporozoite host cell invasion, but did appear to 

be involved in E. tenella merozoite invasion where it inhibited this process by -  

30%. The ornithine decarboxylase inhibitor DFMO gave -40% inhibition for 

both C. parvum sporozoites and E. tenella sporozoites and merozoites. All of the 

proteinase inhibitors except ai-antitrypsin (which had no effect on C. parvum host 

cell invasion) and aprotinin (which did not appear to have any effect on E. tenella
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merozoite invasion) inhibited the invasion by both parasites to varying degrees.

6.3.5. Effect of the Maackia anmrensis lectin on E, tenella host cell invasion

To confirm the results that sialidase was not important for E. ienella host 

cell invasion, the Maackia amurensis lectin - which is specific for sialic acid 

residues - was employed. Freshly excysted E. tenella sporozoites were prepared 

and incubated with the M. amurensis lectin (Mai II, Vector laboratories; final

concentration 0.1 mg ml"^) for 30 min at 3TC , with 10% formaldehyde used as a 

negative control. After this time, sporozoites were either washed three times in 

RPMI medium to remove the lectin and formaldehyde, or the sporozoites were 

unwashed so that the lectin was still present in the sporozoite suspension when 

they were added to the host MDBK cells for the invasion assay. The results are 

shown in Figure 6.3.11. and they indicate that the lectin had no effect on the E. 

tenella host cell invasion (P>0.10).

6.3.6. Analysis of MDBK cell cycle

To determine the duration o f the various phases in the cell cycle of the 

MDBK cells (that is, mitosis, M phase; Gi; DNA synthesis, S phase and Gi), two 

methods were employed; DAPI staining (as described in 6.2.5.) to monitor the 

nucleus and therefore mitosis, and 5-bromodeoxyuridine (BrdU) labelling (as 

described in 6.2.6.) to monitor the occurrence o f DNA synthesis and so the S 

phase of the cells.

The S phase of the MDBK cells lasted for approximately 5 h after the 

release from the hydroxyurea block, and mitosis was obsei'ved to occur at
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approximately 10 h. Having calculated the doubling time of the cells from the 

rate of growth in the cultures, the cell cycle could be mapped and is illustrated in 

Figure 6.3.12. The whole cycle was calculated to take approximately 20 h.

6.3.7. Influence of MDBK cell cycle on the invasion by C. parvum  and E.

tenella sporozoites

MDBK cells were inoculated onto glass coverslips as described in 6.2.2.

To determine the extent to which the host cell cycle influences parasite invasion, 

the invasion of sporozoites into synchronised MDBK cells was compared with 

invasion of an asynchronous population. The cells were then rinsed three times in 

serum-free RPMI to remove the hydroxyurea and growth medium was added (see

6.2.2.) to allow the cells to progress into S phase. 2 x 10  ̂E. tenella or C parvum 

sporozoites were then added at specific time intervals after the hydroxyurea 

release to both the synchronous and asynchronous cell populations for invasion 

assays as described before in 6.2.3. The results are illustrated in Figures 6.3.13. 

and 6.3.14. for both E. tenella and C  parvum respectively. The results obtained 

with E. tenella were from analysing the whole cell cycle time of the MDBK ceils. 

No difference was seen in the invasion rates except for one time point - 4 h into S 

phase (P>0.10). This increase in MDBK cell invasion is a rapid one which 

appears to last only one hour (see Figure 6.3.12.). Similar results were obtained 

with C. parvum sporozoites when the MDBK S phase was analysed for invasion.

A large increase in invasion at the 4 h time point was observed (0.01<P>0.002). 

These results suggest that MDBK cells are more susceptible to invasion by the 

parasites 4 hours into S phase (by approximately 3x and 2x for C  parvum and E. 

tenella respectively).

The initial invasion rates at time 0 h for E. tenella are much higher for
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both synchronous and asynchronous cultures. This may be due to the fact that the 

host cells at this time point are rinsed three times in serum-free RPMI to remove 

the hydroxyurea block. After this point the host cells are only rinsed twice before 

the sporozoites are added, possibly leaving a residue of the growth medium on the 

cells, which may affect sporozoite invasion. Indeed it has been mentioned by 

other researchers that foetal calf serum inhibits sporozoite invasion, probably due 

to a number of components thought to be present in the sermn, for example 

proteinase inhibitors (personal communications).

6.3.8. Influence of cell cycle of COS cells on their susceptibility to invasion by

E, tenella sporozoites

To investigate whether the phenomenon found with MDBK cells, which 

are more susceptible to infection by E. tenella sporozoites 4 h into S phase, also 

occurred with other mammalian cells, COS cells were employed. Synchronous 

cultures were prepared using hydroxyurea (as described in section 6.2.2.) and, 

having removed the hydroxyurea by washing the cells thiee times, E. tenella 

sporozoites were added to the cultures as described for MDBK cells (section

6.3.7.). The results are given in Figure 6.3.15. Although there was a significant 

increase at 4 h in the synchronous cells (P<0.01), there was no significant 

difference between these and the asynchronous cells, indicating that this feature is 

one that is not shared with MDBK cells.

6.3.9. Effect on MDBK cell cycle by infection with E. tenella and C.

parvum

To determine whether E. tenella and C  parvum invasion induces MDBK
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cells to enter and remain in S phase (as previously reported for E. tenella, 

Urquhait, 1981b), infected cultures were compared with non-infected cultures 

with respect to the numbers of host cells in S phase. MDBK cultures were grown 

and infected with E. tenella and C. parvum sporozoites as described in sections

6.2.2. and 6.2.3., respectively. Wells either had 2 x 10  ̂sporozoites added or not 

and incubated at 37°C for 20 h (the time taken for one cell cycle in noimal 

cultures). In addition, the supernatant of infected cultures was used to see if this 

alone induced the host cells to enter S phase. For this, supernatants from MDBK 

cell cultures that had been incubating with sporozoites for 120 min at 37°C were 

collected. These were centrifuged to remove any sporozoites and the supernatant 

added to non~infected cultures which were also then incubated for 20 h at 37°C. 

After the incubations, the cells were processed for BrdU labelling as described in 

section 6.2.6.

The results for E. tenella and C. parvum are shown in Figures 6.3.16. and 

6.3.17, respectively. The results for E. tenella indicate that there may be an 

increase in the number of cells in S phase in the infected cultures compared with 

non-infected cultures. However, this result is not statistically significant. The 

supernatant from infected cultures had no effect when used alone. With C  

parvum, no difference was seen between infected and non-infected cultures. This 

may reflect the fact that C  parvum invades at a very low rate (-6%, 1 sporozoite 

per cell) into MDBK cells when compared with E. tenella (-40%, 2 sporozoites 

per cell), thus C  parvum may not produce a noticeable difference.

6.3.10. Effect of E, tenella invasion on MDBK cell proliferation

If the invasion of E. tenella was inducing MDBK cells to remain in S
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phase, the rates of MDBK proliferation in infected cultures should, theoretically, 

be lower than those in non-infected cultures. To study this, MDBK cells were 

either infected with E. tenella sporozoites (as described in 6.2.3.) or not, and 

incubated for 20 h (the time for one cell cycle in normal cultures) at 37°C. After 

this incubation, host cells were tiypsinised from the glass coverslips by incubating 

for 10 min with HEPES 10 mM (pH 7.5 containing sodium chloride, 140 mM; 

potassium chloride, 5 mM; calcium chloride, 1 mM; magnesium chloride, 1 mM; 

D-glucose, 10 mM and trypsin, 0.05%) and the number of cells determined using 

a haemocytometer. The results shown in Table 6.3.1. indicate that infected 

MDBK cells proliferated significantly more slowly than non-infected cultures 

(P<0.10).
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Figure 6.3.4.: MDCK invasion using different numbers of C. parvum
sporozoites
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Figure 6.3,5,: MDCK invasion using different numbers of E. tenella 
sporozoites
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Figure 6.3.6.: MDBK invasion using different numbers of G parvum
sporozoites
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Figure 6.3.7.: MDBK invasion using different numbers oiE. tenella 
sporozoites
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Figure 6.3.10.: Effect of inhibitors on E. tenella merozoite COS cell
invasion
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Figure 6.3.11.: E. tenella MDBK cell invasion with and without the 
presence of the M. amurensis lectin
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Figure 6.3.16.: Effect on MDBK cell cycle by Infection with E. tenella
6 0

40

Infected
T

Infected s/n* Non infected

a

Means ± SE from three experiments
Infection rate is approximately 20% of MDBK cells infected with 2 
sporozoites
'^s/n - supernatant from infected cultures added to noninfected cultures 

Figure 6.3.17,: Effect on MDBK cell cycle by infection with C. parvum

40

c3 20

Infected Infected s/n Noninfected
Means ± SE from three experiments
Infection rate is approximately 6% of MDBK cells infected with 1 
sporozoite
*s/n - supernatant from infected cultures added to noninfected cultures
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Table 6.3,1.: Effect of E, tenella invasion on MDBK cell proliferation

NUMBER OF CELLS 
PER WELL AFTER 20 h

(X  1 0 " )

INFECTED CULTURE 6.5 ± 4,3

NON-INFECTED CULTURE 16.0 ± 6.9

Means ± SE from three experiments
Initial density of MDBK cells: 5 x 1 0 ^  number of sporozoites added: 2 x 
10'̂
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6.4 Discussion

The invasion assay and a method o f measuring host cell invasion using 

Giemsa’s staining and microscopic observation proved a successful and rapid 

technique for both Cryptosporidium and Eimeria compared, for example, with 

other studies that have used longer incubations for the Cryptosporidium invasion 

process (Rosales et al, 1995; Forney et ai, 1996). The method was validated 

since invaded parasites could be distinguished from those that were merely 

attached to the cells. MDBK cells were used routinely for sporozoite invasion 

assays, but E. tenella merozoites did not invade these cells to any measurable 

extent (on average 1%), so COS cells were used for this life cycle stage. The 

results obtained therefore should be treated with caution when comparing E. 

tenella sporozoites and merozoites, since the host cell line may have affected the 

results due to differences in, for example, receptors (number and type) and 

differentiation of the host cell (known to affect C. parvum invasion, Flanigan et 

ai, 1991).

To investigate the enzymes that might be involved in host cell invasion a 

number of enzyme inhibitors were used, as was done for the mucus penetration 

studies (see Chapter 5). The negative controls, that is the sporozoites killed with 

10% formaldehyde, were seen to be inhibited by 90-100% for C  pai'vum and E. 

tenella sporozoites and merozoites. These results validate the assay and lead to 

the conclusion that dead parasites did not invade the cells and suggests that host 

cell invasion therefore required an active process by the parasites themselves. 

This is consistent with data reported for T. gondii where it was also concluded 

that invasion was an active process (Morisaki ei al, 1995).

An interesting result was that, in direct contrast to the findings that
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sialidase activity appears to be important in mucus penetration (see Chapter 5), 

the sialidase inhibitor had no effect on host cell invasion of sporozoites. This 

result was confirmed when, in a similar experiment to that involving the mucus in 

5.3.4., the Maackia amurensis lectin, which specifically binds sialic acids, was 

used. The presence o f this lectin did not inhibit host cell invasion by the parasites 

(see Figure 6.3.11.), thus indicating that sialic acids and sialidase do not play a 

role in this invasive process by sporozoites. This is in direct contrast with another 

apicomplexan parasite Plasmodium which is known to possess a sialidase activity 

and to use sialidase receptors on the host eiythrocyte cell surface to invade 

(Clough et al, 1996). Alternatively, E. tenella merozoite invasion of COS cells 

was seen to be inhibited by approximately 30% by the sialidase inhibitor. This 

stage of the E, tenella life cycle has been reported to have twenty times more 

sialidase activity than sporozoites (Pellegrin et al, 1993), and it could be that 

there are stage-specific differences in the mechanisms used to invade the host 

cells. It should be noted however that the difference in host cell lines used for the 

sporozoite and merozoite invasion assays may well affect these results. COS cells 

may have more sialic acid residues on their surface thus requiring sialidase 

activity to cleave these and possibly reveal attachment sites for the invading 

microorganism.

The polyamine biosynthesis inhibitor DFMO inhibited host cell invasion 

by approximately 40% for both E. tenella and C. parvum sporozoites, and 

approximately 55% for E. tenella merozoites. It has been reported that 

polyamines are involved in differentiation in Trypanosoma brucei (Pegg and 

McCann, 1988) and the release of the polyamine putrescine may also provide 

more protective roles since it is known to act as an anti-inflammatory agent and 

has antioxidant functions (Yarlett and Bacchi, 1991). Yet the role that
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polyamines play in C  parvum and E. tenella host cell invasions remains unclear. 

The report that C. parvum does not possess a functional ornithine decarboxylase 

suggests that the DFMO (Yarlett et al, 1996) must be having some other effect at 

least on this parasite. However more research is required before anything can be 

concluded, for example electron microscopy may reveal alterations to the 

sporozoite surface induced by DFMO.

The serine proteinase inhibitors that were used inhibited host cell invasion 

by both C  parvum and E. tenella sporozoites, though to a greater extent in the 

latter parasite. No effect was seen when aprotinin was used on E. tenella 

merozoites, again possibly highlighting stage-specific differences, ai-antitrypsin 

did not inhibit C. parvum at all, possibly indicating that this inhibitor due to its 

high specificity, inhibits fewer serine proteinases. These results confirm previous 

findings by Fuller and McDougald ( 1990) and Forney et a l (1996) on E. tenella 

and C  parvum sporozoites respectively, and hopefully resolve the conflicting 

results that other researchers have reported. It should be noted, however, that the 

widely used serine proteinase inhibitor phenylmethy 1 sulfbnyl fluoride (PMSF) 

was excluded from the studies. This was due to this inhibitor proving to be toxic 

to the sporozoites after a 60 min incubation whereupon it lowered viability by 

approximately 60%, as tested using the vital stains method.

Although they had no effect on mucus penetration (see 5.3.3.), the 

inhibitors of aspartic proteinases (pepstatin) and metallo-proteinases (EDTA) did 

have a large effect on sporozoite host cell invasion, again highlighting the 

different mechanisms that appear to be involved in these two procedures. Yet 

EDTA is known to be a reversible inhibitor and would be removed from the 

sporozoites during the washing. This inhibitor must therefore have an effect on 

the sporozoites during the ten minute incubation, possibly by affecting calcium
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ion concentrations. The result from the aspartic proteinase confirms the report 

that Eimeria has a gene with high homology to those encoding aspartic 

proteinases in other organisms (Laurent et a l, 1993). This proteinase is thought 

to be associated with the refractile bodies of the sporozoite (Laurent et al., 1993), 

and antibodies raised against the recombinant protein inhibited invasion by 

sporozoites.

The cysteine proteinase inhibitors also inhibited host cell invasion by 

sporozoites of E, tenella and C  parvum and merozoites of E. tenella, thus 

indicating a role for these activities in this process. Other parasites are thought to 

utilise proteinases to invade the host cell (McKerrow, 1993), and indeed a 

metallo-dependent cysteine proteinase has been detected on the surface of the 

invasive C  parvum sporozoite. Indeed, the use of biotinylated probes specific for 

cysteine and serine proteinases indicated that both of these activities were 

detected in C. pat'vum, E. tenella and T. gondii extracts, with the apparent 

localisation of a cysteine proteinase activity on the surface of E. tenella 

sporozoites (see Chapter 4). The roles of these proteinase activities may be to 

modify the host cell membrane or parasitophorous vacuole in some way, though 

more research needs to be performed (Strobel et ai, 1992; McKerrow et ai,

1993).

Most previous studies have focused on the means by which the parasite 

may effect infection. Another area of interest however, is whether the host cells 

play a role in determining the extent to which they are invaded. Clearly the cell 

cycle of the host cell itself could be important in this process.

The cell cycle of the MDBK cells was mapped out having already 

established the cell cycle time as approximately twenty hours from doubling times
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in culture. Once this was completed a comparison of invasion of asynchronous 

and synchronous cultures, was performed for both C. parvwn and E. tenella (see 

Figures 6.3.9. and 6.3.10. respectively).

For both parasites it was seen that, with synchronous cultures there was a peak of 

invasion four hours into S phase. Further analysis revealed that this peak is very 

narrow and only appears to last for one hour. This suggests that there are 

differences in the host cell at this four hour point in S phase compared with the 

rest of the cell cycle. Interestingly T. gondii tachyzoites were also seen to attach 

(Grimwood et ai, 1996) and invade (Dvorak and Crane, 1981) host cells to a 

greater extent in host cell S phase. The possibility that the host cell membrane is 

easier to penetrate in S phase may be a plausible explanation for this 

phenomenon. Certainly the microviscosity of host cell membranes was reported 

to be at a low level in S phase (De Laat et ai, 1977). There is also the possibility 

that surface receptors on the host cells are developmentally regulated and that 

one(s) important for parasite invasion are upregulated at S phase, allowing more 

parasites to attach and consequently invade. Yet when this experiment was 

performed with E. tenella invasion in synchi'onous COS (monkey kidney) cells 

there was no increase in invasion four hours into S phase, indicating that this 

phenomenon is not shared amongst mammalian cells, thus raising questions on 

the situation in vivo. However not all of the COS cell cycle was analysed. It may 

be that different mammalian cells are more susceptible to invasion at different 

times of their life cycle according to the parasite in question.

Invasion of MDBK cells by E. tenella induced the host cells to enter and 

remain in S phase as has been previously reported for E. tenella (Urquhart,

1981b). On average approximately 20% of MDBK cells were invaded with two 

sporozoites. Compared with the mean value of cells in S phase in the noninfected
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culture there was approximately a 15% increase, possibly correlating with the 

number of cells invaded and thus induced into S phase. When the supernatant 

from infected cultures was added to non-infected cultures no increase in cells in S 

phase was observed. This disagrees with previous reports that stated a possible 

factor(s) may be released into the medium, either by the host cell or by the 

parasite, to induce non-infected cells to also enter S phase (Urquhart, 1981b). 

However, the incubation periods used in my studies were much shorter than those 

previously reported which may explain the discrepancy. The reason for this 

induction is not clear, it may be that, since the parasite finds it easier to enter the 

cells during S phase, it is in the parasites best interest to induce the host cells into 

this optimal invasion stage. Indeed during microscopic observation of the 

infected cultures, it was frequently noted that in an infected cell more than one 

parasite was present (as mentioned above). This may be due to the first parasite 

entering the cell (since invasion occurs throughout the host cell cycle) and 

inducing the host cell to enter S phase thus facilitating other sporozoite invasion. 

However, no difference was seen vrtth C. parvum. This could be due to the low 

invasion rates in this cell line (approximately 6%), which would cause veiy few 

cells to enter S phase and be distinguishable fi’om the non-infected culture.

The effect of E. tenella invasion also dramatically reduced proliferation of 

MDBK cells (see Table 6.3.1.). This could perhaps be attributed to cell death in 

the infected cultures. However, only 20% of the MDBK cells were infected, and 

even if these cells were killed, it still does not account for the extent of the 

reduction in proliferation of these cultures. This result is consistent with the 

findings that invasion induces the host cells to enter and remain in S phase, thus 

disrupting the cell cycle and inhibiting proliferation.
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The results obtained from these studies provide more information on the 

invasion process by C  parvum sporozoites and E. tenella sporozoites and 

merozoites. Proteinases, polyamines and sialidase (for merozoites) all appear to 

play a role in this process, along with the influence of the host cell cycle.
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CHAPTER SEVEN

GENERAL DISCUSSION

The general aims of the project were to study how the coccidian parasites 

of the Cryptosporidium species and Eimeria tenella are adapted to surviving and 

infecting the host, focusing on three aspects, in particular: excystation, penetration 

to and invasion of the host epithelial cells.

Excystation for Cryptosporidium was optimised before ensuing 

experiments were performed. The studies indicated that a number of factors may 

affect the excystation process, including the age of the oocysts used. As the age 

of the oocysts increased, the number of viable sporozoites released decreased. 

Consequently a decision was made to use oocysts up to a maximum age of 8 

weeks after the initial date of preparation to minimise, and possibly eliminate, any 

influence that the age of the sporozoites will have on the experimental findings. 

Environmental factors were also seen to affect the excystation process. For C. 

parvum, anaerobic reducing conditions were seen to be optimal, along with a pH 

similar to that found in the in vivo situation for C. parvum, C. muris and E. 

tenella. This is in agreement with previous reports on C. parvum (Fayer and 

Leek, 1984; Sundermann et ai, 1987).

2 0 0



Studies performed on the sporozoite stage, at least for Cryptosporidium 

parvum, had to be limited to sixty minute incubations due to the very short 

survival time for the sporozoites of this species. Some of the 

inhibitors/compounds may not have been fully effective in this short time period 

and this must be taken into account when the results are examined. Similarly 

other researchers should beware of this problem of the short in vitro life of C. 

parvum sporozoites lest their studies are affected by this phenomenon. 

Additionally, motility is not an easily well defined criterion of viability for 

Cryptosporidium or Eimeria sporozoites, which has led to the necessity to 

develop a fast and non-subjective viability assay. This assay involved the use of 

the vital stains acridine orange and bis-benzimide which, when used in 

conjunction with a fluorescence microscope, enabled the researcher to distinguish 

easily between viable and non-viable sporozoites. The assay was then used to 

assess the effect of the various inhibitors/compounds, and to ensure that the 

variety of enzyme inhibitors used in the mucus penetration and host cell invasion 

assays were not toxic to the sporozoites themselves.

The metabolic inhibitors potassium cyanide, sodium azide and rotenone 

did not affect the viability of either C. parvum or E. tenella sporozoites, indicating 

that neither of these parasites requires an active respiratory chain in this life cycle 

stage. Indeed there is now good evidence that C  parvum sporozoites do not have 

a recognisable mitochondrion (see Appendix I) and the parasite is thought to be 

anaerobically adapted (Denton et al., 1994, 1996a). It may be useful, however, to 

measure oxygen uptake by these parasites after reports on the findings of plastids
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- containing extrachromosomal DNA ~ which .may themselves contain an electron 

transport system (Jeffries and Johnson, 1996). However the equipment required 

to measure the fluctuations in oxygen concentrations would have to be highly 

sensitive, and a large amount of parasite material would be required - an 

overriding factor when working with these parasites. It may also be interesting to 

investigate other stages of the parasites to see if the plastid is functional in these. 

An alternative approach would be possibly to inhibit the plastid electron transport 

chain and examine to what extent the parasite is affected. It has already been 

reported that certain herbicides - thought to inhibit the plastid respiratory 

components - have anticoccidial activity (Hackstein el ai, 1995).

Salicylhydroxamic acid (SHAM), an inhibitor of the alternative oxidase 

system known to occur in Trypanosomes (Opperdoes et al., 1976), was used on E. 

tenella sporozoites. However no inhibition was seen.

C. muris viability was marginally reduced by potassium cyanide and 

sodium azide. Indeed a mitochondrion has been reported to be present in C. 

muris sporozoites (Uni ei ai, 1987), though whether it is functional in this stage 

has not been ascertained. However the finding that these respiratory inhibitors 

only reduced the viability of the sporozoites to a certain degree, raises questions 

on how dependent these sporozoites are on a respiratory chain. It may be possible 

that the inhibitors are having an alternative effect on C. muris sporozoites, 

possibly damaging the surface in some way. Or perhaps the length of the sixty 

minute incubation is too short to reflect the true effect of the inhibitors.
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Studies on the effect of pH indicated that the sporozoites of each species 

are adapted for surviving in the areas of the gastrointestinal tract that each infects 

in vivo. This was particularly evident for the gastric parasite C. muris, which was 

able to survive pH 2.0 - similar to that of the stomach. The conclusion drawn was 

that this species must have some structural or metabolic adaptation(s) enabling it 

to survive these extreme conditions. Further studies, possibly at the electron 

microscope level, may reveal ultrastructural differences, such as an extra 

membrane surrounding the sporozoite. The pH of the incubation fluid was tested 

before and after the incubation with the sporozoites, yet the method used is not 

sensitive enough to monitor small fluctuations, which as the studies reveal, 

increase survival greatly. The reason for this lack of sensitivity was simply due to 

the fact that the pH meters available could not be used on such small volumes of 

fluid.

Enzyme and proteinase studies were perfonned to a limited extent. Use of 

an enzyme kit (APIzym) indicated the presence of stage-specific enzymes (though 

non-quantifiabiy), possibly resulting from the switching on and off of certain 

genes throughout the life cycle. Biotinylated probes (as used before for Fasciola 

hepatica, McGinty ei al., 1993) and antibodies raised against L. mexicana 

cysteine proteinases were used to probe for proteinases in the coccidial lysates. 

Both cysteine proteinase and serine proteinase activities were detected, which is 

consistent vrith the results obtained from the mucus penetration and host cell 

invasion experiments in which proteinases were seen to play a role in both these 

processes. However these data do not allow us to pinpoint which enzymes are
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involved in penetration and invasion, and a greal deal more work is required, such 

as isolation and purification of the proteinases and enzyme assays, Obsei'ving the 

localisation of the proteinases was attempted using the biotinylated probes on live 

sporozoites with an alkaline phosphatase-fluoroscein isothiocyanate (FITC) 

conjugate. Yet there was no apparent difference when the sporozoites were 

preincubated with proteinase inhibitors, suggesting that the binding of the probe 

was non-specific to the live sporozoites. Alternatively it could possibly be due to 

the proteinase inhibitors not causing a large enough decrease in fluorescence for 

the naked eye to distinguish, and it may be useful to measure the fluorescence 

with an extremely sensitive device. Another way would be the use of specific 

antibodies raised against a variety of proteinases. These could be used to label 

live or fixed parasites and examine them under the microscope, and by employing 

immuno-gold particle or fluorescence try to localise the activities in the invasive 

stages.

Sialidase is an activity that has been previously reported in E. tenella 

merozoites and sporozoites (Pellegrin ei al, 1993). The results obtained indicated 

that sialidase was used by C  parvum sporozoites and E. tenella sporozoites and 

merozoites in mucus penetration (Chapter 5); and by E. tenella merozoites in host 

cell invasion (Chapter 6). Yet the attempt to detect sialidase using fluorogenic 

substrates was not successful. This may have been due to the limited amount of 

material available for the assay systems. Another method would be to try and 

detect this activity with the use of specific antibodies raised against the sialidase
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of other organisms. But it is necessary to prove that the sialidase inhibitor used in 

these studies does inhibit the parasite enzyme and is not having some other effect.

The sialidase inhibitor inhibited E. tenella sporozoite mucus significantly, 

whereas the merozoite stage was not inhibited as greatly. This is consistent with 

the evidence suggesting that merozoites have 20-fold more sialidase than the 

sporozoite stage (Pellegrin et al., 1993). The presence of this larger amount of 

sialidase indicated that it may be important for merozoite survival, and is possibly 

involved in the interactions with the enviromnent. Merozoites have to invade, 

leave and reinvade epithelial cells, possibly coming into contact - if not having to 

traverse - the mucus layer, thus requiring more sialidase. Alternately the sialidase 

may be required internally - as is the case for Trypansoma cruzi (Schenkman and 

Eichinger, 1993J. Indeed COS cell invasion by merozoites was seen to be 

inhibited by the sialidase inliibitor unlike sporozoite invasion of MDBK cells, 

indicating further roles for sialidase in the merozoite stage. However the 

difference in the host cell type used may influence the results obtained and, until 

work can be performed with the same host cell type, these results must be treated 

with caution.

The host cell cycle was mapped and, in terms of invasion, was more 

susceptible four hours into S phase for both C  parvum and E. tenella. This is 

consistent with results obtained using MDBK cells and T. gondii attachment 

which was seen to be optimal at five hours into S phase (Dvorak and Crane,

1981). Yet this feature is not shared amongst mammalian cells as was observed 

when using COS cells.
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In conclusion these experiments have studied the mechanisms employed 

by Ciyptosporidiwn and Eimeria tenella to survive, penetrate to and invade the 

host. Many problems were faced whilst working with these parasites, the primary 

one being the limited amount of parasite material available. The development of 

an in vitro cultivation system appears to be the solution to this lack o f material, 

and research is continuing on this area in many laboratories. Once established, 

this will provide all the life cycle stages, allowing ultrastructuial, biochemical and 

molecular comparisons between stages of each parasite, and between the different 

apicomplexans.
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APPENDIX I: A 3-D RECONSTRUCTION OF 
CRYPTOSPORIDIUM PARVUM

INTRODUCTION

Coccidian protozoan parasites - a subclass of the Apicomplexa - include 

organisms responsible for several important diseases of man and animals. 

Prevalence of these infections - due to drug resistance and other factors - is 

increasing, highlighting the economic and social implications. The coccidia 

include the gastrointestinal parasite Cryptosporidium parvum, which infects 

susceptible domestic stock and man. Water-borne cysts are ingested from which 

invasive sporozoites emerge and invade gut epithelial cells. The parasites 

proliferate causing primarily a diarrhoeal disease. In the immunocompetent 

humans, illness resolves within 3-20 days (Current and Garcia, 1991). However, 

cryptosporidiosis is a major and potentially life-threatening complication for 

AIDS patients and other immunocompromised individuals.

The process of cell invasion by the sporozoite is a dynamic event of much 

interest in cell biology. The sequential attachment and entry into the host cell 

involves recognition molecules as well as specifically timed secretion of the 

contents of discrete compaitments from within the sporozoite. The structures 

thought to mediate attachment and invasion are collectively housed in the anterior 

region of the sporozoite and termed the apical complex (Jensen and Edgar, 1976; 

Joiner, 1991; Perkins, 1992; Jacobson and Doyle, 1996). To date no detailed 

description of the 3 dimensional structure of the infective stages of C. parvum
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have been reported. This may be due to the difficulties in preserving integrity 

using conventional chemical fixation approaches, and the technical tedium of 

analysing multiple serial thin sections for 3D reconstructions. By using 

cryotechniques and EFTEM to image thick sections, unique images of this 

parasite have been generated, permitting new insights into the organisation of the 

cellular and macromolecular components involved.
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MATERIALS AND METHODS

Parasites

C. parvum oocysts were washed three times in RPMI (Gibco, 1000 x g for 

10 min at 4°C) and pelleted. These were either processed whole, or excysted at 

37°C using 0.4% tauiodeoxycholic acid (Calbiochem), on a shaker (350 rotations 

min'^) for 80 min after which the liberated sporozoites were pelleted by 

centrifugation (1000 x g for 10 min at 4°C). Concentrated parasites were then 

resuspended in 50 pi of medium and transfered immediately to carriers for 

cryofixation

Cryopreparation

Live parasites were impact frozen on a copper mirror using a Leica MM80 

ciyofixation system and then held at below-190°C under liquid nitrogen prior to 

transfer to a dewar-based cryo substitution system, where specimens were slowly 

dehydrated in 1% osmium tetroxide in acetone for 6 days at -85°C. After 

controlled overnight wann-up to 0°C (5°C/hr) and removal of ciyosubstitution 

medium by exchange with fresh acetone, the retrieved specimens were infiltrated 

with increasing concentrations of Spurrs resin in acetone and finally polymerised 

at 60°C for 24 hours.
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Energy Filtering Electron Microscopy (EFTEM) and 3D Reconstruction

0.5 pm or 0.15 pm thick sections were collected in ribbons o f 12 onto 

carbon reinforced, Formvar-coated slot grids and stained in methanolic uranyl 

acetate for 15 min followed by lead citrate for 10 min to fully contrast the entire 

specimen thickness. Specimen contrast was also selected by EFTEM .

Image series were photographically recorded at 80kV in a Zeiss 902 EFTEM at 

100 eV energy loss to optimise contrast for 0.5 pm sections and at 30 eV for 0.15 

pm sections.

Colour coded acetate traces performed on prints were used to derive 

digitised reconstruction profile data which was input via bit pad using "3D- 

HVEM” PC software (developed at Univ of Boulder, Colorado, USA). 

Reconstructions were photographed from the monitor screen with an SLR camera 

using Fuji 400 daylight reversal film.
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RESULTS

The distribution of organelles in the sporozoite is depicted in a 

longitudinal section (see Fig.l), showing the characteristic conical shaped apical 

complex region and the posteriorly located nucleus of the invasive sporozoite. 

Between the nucleus and apical complex are found the various elements of the 

secretory machinery such as the small spherical micronemes and larger dense 

granules. Centrally located in the apical region is the single rhoptry. One or 2 

large crystalline bodies - 2 in this sporozoite - ai'e found to either side of, or 

posterior to, the nucleus. The spacing of the sub-imit structures in these organelles 

was 35 nm. In the non-dividing sporozoites, the nucleus exhibits peripheral 

condensed chromatin and a central nucleolus, and has distinct widely spaced 

nuclear membranes - the outer of which is ribosome-studded. On the anterior 

aspect of the nucleus the outer nuclear membrane extends into the cytoplasm, 

excluding ribosomes from this region. The plastid body is found anterior to the 

nucleus close to this region. No conventional Golgi apparatus or mitochondrion 

have been identified in cryoprocessed sporozoites (or in oocyst precursor stages).

The whole apical complex of C  parvum sporozoites stereo imaged in a 

0.5 pm thick section revealed only a single rhoptry (Fig.2). Also seen in this view 

- though not common to all sporozoites examined - was a micropore structure 

which appeared to connect with the suface membrane just below the conoid.

Serial 0.15 pm sections [see Fig.3 (a), (b) & (c)] through the same region as in
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Fig.2, confirmed the existence o f a single rhoptry, and showed details of the 

conoid, polar rings and the distribution of micronemes. Spherical dense granules 

are absent from this part of the sporozoite. The flask-shaped rhoptry consists of a 

bulb attached to the thin membrane at the tip of the conoid by a long tubular neck. 

A conspicuous differentiated region in the centre of the bulb was observed [Fig.3 

(a), arrow] of paracrystalline appearance detailed in Fig. 3 (d).

Structures associated with the nuclear region include the tongue-like 

extension of the outer nuclear membrane (see Fig.l) found on the anterior aspect 

of the nucleus which may have a specialised as yet unknown function.

Favourable sections show this structure to contain nuclear pores or similar 

membrane fenestrations [Fig. 4(a)]. Separate from the nucleus, but always closely 

apposed to it, lies a ribosome-studded 300 nm diameter spherical organelle 

interpreted as being a double membrane-bound plastid body, similar to that 

recently described in other Coccidian parasites [see Fig. 4(b)] (Kohler et al,

1997). The plastid body appears to lie usually to the posterior of the nucleus - but 

may be anteriorly located and is present in encysted parasites [Fig 4(c)].

3D analysis of serial sectioned parasites [see Fig. 5 (a), (b)] shows the 

relative shape, size and distribution of organelles, and provides a means of 

estimating relative volume percentages. A sporozoite's internal organisation can 

be visualised by stereo viewing as in Fig. 5(a). A reconstruction of an 8 section 

series part is shown in Fig. 3 (a) - (c). Similarly, the organisation of nascent 

sporozoites within the thick-walled oocyst is seen stereoscopically in Fig. 5 (b).
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To simplify visualisation, the upper profiles of the reconstmction, the 

considerable volume occupied by the oocyst residual body and the outline of 

individual sporozoites have been omitted. The alignment of sporozoites within 

the oocyst is seen with their anterior end pointing towards the region containing 

the suture (not shown) through which the parasites emerge (Reduker et ai, 1985).

The disposition of the 4 nascent sporozoites within the thick-walled 

sporulated oocyst is shown in Fig. 6(a). There are 4 profiles of individual 

sporozoites and the remainder of the central and peripheral area are occupied by 

the residual body from which the sporozoites arise. The cyst wall suture through 

which the sporozoites will eventually emerge is not visible in this section. Dense 

granules, micronemes, rhoptiy and a nucleus are all clearly preserved and appear 

typical of organelles described for excysted sporozoites. The natui e of the thick 

walled oocyst is visible in Fig. 6(b) and displays a regularly spaced triple layer 

structure in addition to an underlying diffuse gianular layer.
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Figure 1; Longitudinal 
section (0.15 pm) through a 
sporozoite showing the 
distribution o f internal 
organelles. The prominent 
apical complex (ac) 
containing the micronemes 
(mn) and rhoptry (r) are 
found at the tapering anterior 
of the cell with the nucleus 
(n) and adjacent crystalloid 
bodies (cb) at the posterior 
rounded end. Dense granules 
(dg) are found mostly in 
the centre portion o f the cell. 
Visible also are the plastid 
(p) and extended nuclear 
membrane region (nme). 
Scale bar = 0.5 pm
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Figure 2: Stereo pair o f 0.5 pm thick sections o f  the entire apical complex region 
of a sporozoite. The fused image reveals the single rhoptry, its tubular neck 
coursing through numerous micronemes to terminate at the apical complex tip. 
The neck o f the rhoptry arches over a micropore (arrowhead) an invaginated 
specialisation o f the cell membrane, thought to be a feeding structure.
Scale bar = 0.25 pm
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Figure 3: Apical complex 
ultrastructure.
(a - c) Serial sections (0.15 pm ) 
through the entire apical complex to 
show details o f the arrangement o f  
organelles. The sequence illustrates 
the numerous spherical micronemes 
being funnelled into the extended 
conoid where the single rhoptiy 
terminates - dense granules are 
excluded from this region. The 
paracrystalline sub-structure inside 
the rhoptry bulb region is visible 
(arrowed). Scale bar = 0.25 pm 
(d) Higher magnification o f the 
same rhoptry bulb in (a) from the 
preceding section where the detail o f  
the paracrystalline structure is more 
evident. Scale bar = 0.2 pm
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Figure 4: Nucleus-associated ultrastructure (0.15 pm sections)

(a) Specialisation o f the outer 
nuclear membrane on the 
anterior aspect o f the 
sporozoite nucleus. The 
membrane tongue-like 
extension (arrowhead) 
exhibits circular profiles 
resembling nuclear pores in 
glancing section. Scale bar = 
0.25 pm

(b) Spheroidal membrane- 
bound plastid body 
(arrowhead) anterior to the 
sporozoite nucleus.

(c) Ribosome-studded 
nuclear associated organelle 
(arrowhead) which has been 
observed both anterior or 
posterior to the nucleus. This 
organelle o f unknown 
function is seen in an 
encysted sporozoite closely 
apposed to the posterior 
aspect o f the nucleus.
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Figure 5: Stereo images o f  (a) reconstructed sporozoite and (b) partial 
reconstruction o f an oocyst. Spherical dense granules, micronemes and the 
plastid structure are represented in the section plane occupied by their equatorial 
profile. Larger organelles are represented in all section planes in which they 
occur. Images are rotated 180° between views and elements in the display which 
would be hidden from view by the colour filling procedure are normally 
overwritten. Visualisation o f the internal arrangement o f the oocyst has been 
assisted removing the first 4 section planes.

Colour coding : cell boundary/oocyst wall - green; micronemes - blue; rhoptry - 
yellow; rhoptry sub-structure - red; dense granules - dark green; 
nucleus - pink; crystalloid body - orange; plastid - white.
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Figure 6:

(a) Equatorial section showing 4 sporozoite profiles and the residual body fully 
formed in the thick-walled oocyst. Integrity o f the oocyst content is not 
compromised by the presence o f a the thick wall structure when cryofixation 
is employed.
Scale bar = 0.5 pm

(b) Enlargement o f a region o f the oocyst wall showing three layer structure 
(arrowheads) underlying diffuse material (arrow). The intervening material 
between cyst wall and sporozoite fills all space unoccupied by cellular 
structure. Scale bar = 100 nm
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DISCUSSION

The rationale behind applying any form of cellular fixation must include 

the requirement to stabilise cellular constituents in as near to the natural state as 

possible. However, artefacts associated with chemical fixation, are now well 

documented (Lee et al, 1982). Slow penetration of fixatives and continued 

activity of metabolic processes after their administration (Kellenberger et ai, 

1992), are important considerations - especially in relation to resistant stages such 

as oocysts. Retention of the integrity of cellular architecture in labile and short 

lived stages such as sporozoites, may be compromised if chemically-fixed 

membranes remain osmotically active as is reported for other cells (Bowers & 

Masters, 1988). In order to avoid such problems the cryofixation route to 

specimen preparation was employed.

The Cryptosporidium parvum sporozoite is a motile, short lived organism 

whose function is to invade gut epithelial cells after emerging from the oocyst. A 

flexing movement nonnally visible by DIG interference microscopy presumably 

assists parasite invasion which is acheived by anterior end attachment to the host 

cell membrane, followed by a secretion process involving the organelles of the 

apical complex invasion (Jensen and Edgar, 1976; Joiner, 1991; Perkins, 1992; 

Jacobson and Doyle, 1996). The micropore (or micropyle) seen below the conoid 

in the stereo pair images is considered to be a feeding structure (Current, 1989) 

but was infrequently encountered in this study.
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Rhoptry

Two to twenty elongated flask-shaped rhoptry structures are said to be 

found in motile apicomplexan stages (Scholtyseck, 1979) and 2 rhoptries are 

reported as being present in C. parvum merozoites (Current, 1989). Only one of 

these secretoiy structures has been demonstrated here by stereo thick section and 

3D analysis in the Cparvum sporozoite. The periodic structure within the single 

rhoptry bulb region gives an indication of a pentameric sub-unit arrangement and 

suggests an ordered lipid or lipoprotein nature judging by high contrast, stemming 

from an apparent affinity for osmium teroxide. In the rhoptries of other 

sporozoites or merozoites, processed by conventional aldehyde and osmium 

fixation at higher temperatuie (ie above 4°C), such organisational order is not 

observed. This is presumably due to the absence of solvent effects which may 

disorganise lipid arrays at higher temperatures.

Micronemes

A large number of micronemes (167 counted in one reconstructed 

sporozoite) - secretory granules - thought to be involved in penetration of the 

target cell membrane - occupied the anterior one third of the sporozoites. The 

few published micrographs of sporozoites of Cryptosporidium spp (Uni et al, 

1987; Lumb et ai, 1988) show few micronemes, suggesting premature discharge 

of these structures. The name “microneme” means “thread-like structure” and 

derives from past observations on other invasive stage apicomplexans where these 

organelles appear elongated (Scholtyseck, 1979). In this study, the micronemes 

are spherical, constant sized and regularly spaced within the cytoplasm, and line
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up to the tip of the apical complex alongside the rhoptry neck. Some doubt must 

be expressed as to the reported shape of microneme structures in conventionally 

fixed preparations where an elongate appearance may be artefactual: it has been 

observed that micronemes isolated from Eimeria parasites when exposed to 

glutaraldehyde assume an elongate shape (Tomley, unpublished).

Dense granules

A population of spherical, 300 mn diameter, darkly stained granules were 

found in the region extending between nucleus and apical complex, varying 

somewhat in electron density. However, this may be a feature of variable stain 

penetration through the thick section or only partial inclusion of the entire 

granule. Sub-populations of dense granules although not morphologically 

distinguishable have been defined using immunoelectron microscopy by Bonnin 

et al (1995). The proteins localised in this specific dense granule sub-set were 

also found on the host cell parasitophorous vacuolar membrane confirming the 

view that dense granules are exocytosed during establishment of the infection.

Crystalloid Bodies

Prominent, nonmembrane-boimd crystalloid bodies occurring either 

behind or to either side of the nucleus are a feature of the sporozoite, but are 

without defined function. Although possibly serving as storage or energy reserve 

sites in the cell. Nothing is known of their composition, yet the regularly spaced 

lattice appearance suggests a protein or lipoprotein crystalloid nature.
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Plasüd body

A single plastid - characterised by the double membrane spaced halo 

surrounding a ribosome-filled spheroid - is identified here in C.parvwn. The size 

and position of this structure fits the description of other plastid bodies which 

have been extensively studied in Plasmodium (Williamson et ai, 1994; Wilson, 

1997) and Toxoplasma gondii (Kohler et ai, 1997). The juxtaiiuclear site 

facilitating partitioning during division of the organelle thought to accompany 

parasite nuclear division. The discovery and intense interest in these plant-like 

organelles (as indicated from DNA sequencing), stems from the observations 

made on the parasite sensitivity to dinitroaniline herbicides (Hackstein et al.,

1995) whose effect is thought to be inhibiting components of the respiratory chain 

encoded by the plastid. Thus a therapeutic approach based on differential 

sensitivity to herbicide derivatives may be expected to show promise.

The plastid may contain an electron transport chain essential to sporozoite 

metabolism and may tie in with the lack of an identifiable mitochondrion in this 

stage.

This report represents the first study on the 3 dimensional organisation of 

the infective sporozoite stage of C. parvum. A single rhoptry was found to be 

present in this stage of the parasite; and evidence of a plastid. Future research to 

compare other life cycle stages of this parasite; and different species of 

Cryptosporidium would be of great interest.
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