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ABSTRACT 

The thesis examined the effects of climatic change on livestock production within 

Scotland. In order to achieve this, a systems model of the dairy, beef and sheep 

enterprises was developed. The forage component describes the processes of 

photosynthesis, respiration and partitioning in grass and grass - white clover based 

systems, and the effect of temperature and CO2 concentrations on these processes. 

The effects of water and nutrient stress on crop development are also incorporated 

into the sub-model. In the grass - white clover sward, the sub-model permits the 

sward to have different proportions of grass and white clover at each layer through 

the sward. The description of grazing by the livestock links the forage production 

sub-model to the sub-models describing the allocation of energy obtained from the 

grazed swards and concentrate feeding within the dairy cow, beef steer, and ewe 

and lambs. 

The assessment of the effect of climate change on livestock production within 

Scotland requires an understanding of the linkages between climate and livestock 

production. Therefore, in order to predict the effect of changing the climate on 

animal production requires the development of a systems model, which describes 

the linkages between climate, forage and livestock production. In addition, the 

development of a systems model permits the effects to be assessed across a wide 

range of sites and a number of possible changes in climate. Consequently, the 

effects of climate change on livestock production were assessed by running the 
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model at five locations across Scotland, namely; Auchincruive, Blyth Bridge, 

Craibstone, Drummond Castle and Wick. The changes in climate that were 

assessed were increases in temperature of +1°C, +2°C and +3°C, changes in 

rainfall pattern and elevation of the ambient concentration of CO2 from 350 ppmv to 

520 ppmv. 

Climatic change primarily affects livestock production through its effects on forage 

production. Under climatic change, the model predicted that the length of the 

growing and grazing season will increase with the extensions occurring at both ends 

of the season. Relative to current climatic conditions elevated CO2 concentrations 

coupled with the associated changes in climate resulted in an enhancement in 

harvestable dry-matter yield that ranged from 20% to nearly 60% and increases in 

the percentage of white clover in the harvestable material by up to 126%. Equally, 

the model has shown that livestock production is also enhanced under climate 

change. Accordingly, milk production, and the daily gain in Iiveweight of beef steers 

and lambs was simulated to increase by 3-13%,1-12% and 4-28% respectively. 

The larger increases tended to occur on grass - white clover swards. On the other 

hand, the harvestable dry-matter yield from grass swards was reduced with elevated 

temperatures, while the yield obtained from grass - white clover swards tended to 

increase marginally with temperature at elevated ambient CO2 concentrations. 

In general, global warming is predicted to increase forage and livestock production 

within Scotland. However, the location of the site is also important in determining 

the effect of climate change as the magnitude and, in some cases, the directions of 

the changes varied between sites. The effects of climate change were also 
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dependent on the actual level of changes in temperature. In addition, there were 

interactions between CO2 concentration and both temperature and rainfall, as well 

as interactions between temperature and rainfall. Although the three enterprises 

showed similar trends in their response to climate change, there were differences in 

the magnitude of the response as well as differences in the factors that resulted in 

significant changes. There were also differences in the response of the grazed and 

the ungrazed swards. This underlines the complexity of the interactions and the 
,. 

difficulty of extrapolating the results to other locations and to other levels of climatic 

conditions. The advantage of developing a model is that all these complex 

interactions can be captured and potentially the site - specific consequences of 

climate change on forage and livestock production predicted. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

This chapter specifically examines the background, the aims and objectives of the 

thesis under the following sections: 

1. climate forcing; 

2. predicted climate change; 

3. effects of carbon dioxide and climate change on crop productivity; 

4. the impact of climate change on agriculture; 

5. the implications of climate change for forage and livestock production; 

6. the role of modelling; and finally 

7. the aims of the study. 

1.2 Climate Forcing 

Modification of the radiation balance of the earth, referred to as 'climate forcing', can 

be due either to natural or anthropogenic factors. Cloud, water vapour, ice and snow 

cover, as well as climate forcing. affect the meteorological system and determine how 

the climate changes. Natural climate forcing is the result of changes in solar radiation 

due to changes in the orbit of the earth, and natural aerosols in the atmosphere. 

These include particles of sea salt, smoke, minerals and volcanic dust. The 

anthropogenic factors that are influencing climate change are man-made tropospheric 

aerosols and increasing concentrations of the greenhouse gases. These gases 

include carbon dioxide (C02), methane (CH4). nitrous oxide (N20). ozone (03) and 
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chloroflurocarbons (CFCs), and they absorb the infra-red radiation. Industrialisation 

and urban pollution have increased both the anthropogenic factors. Mechanised 

agriculture has also increased the aerosols in the atmosphere. 

The changes in the solar radiation received by the earth vary on a time-scale ranging 

from ten years to hundreds of thousands of years. Three orbital effects have been 

identified. First, there is the shape of the earth's orbit that has a cyclical period of 

95000 years and influences the total radiation intercepted by the earth. The second, 

which modifies the summer - winter contrast is the axial tilt, and this has a cycle of 

41000 years. The final orbital effect is due to the axial path wobble which results in a 

shift in the timing when the earth is closest to the sun. This has a 2100-year cycle, 

and it determines the relative warmth of the summer and winter in the respective 

hemispheres. Sunspots result in an increased emission of solar radiation, especially if 

they are located near the equator of the sun. The maximum number of sunspots 

occurs on an eleven-year cycle. 

The aerosols that occur in the stratosphere are mainly due to volcanic eruptions 

(Hansen and Lacis, 1990), and these particles can exist in the atmosphere for periods 

of one to three years. These particles in the stratosphere obstruct the sunlight from 

reaching the surface of the earth. The effect of a large volcanic eruption such as EI 

Chich6n in March 1982 could, during the following decade, result in a forcing effect on 

global temperature of approximately one third of that exerted by the greenhouse 

gases (Barry and Chorley, 1992). However, these particles in the atmosphere 

backscatter the short-wave radiation and thus increase the surface albedo and cause 

cooling, whereas the greenhouse gases would increase global temperature. The 
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other natural aerosols and the man-made aerosols are in the troposphere. These 

aerosols are likely to be washed out of the atmosphere by precipitation or fall out by 

dry deposition within a few weeks (Gates, 1993). In contrast, urban pollutants tend to 

absorb infra-red radiation warming the atmosphere and reduce the solar radiation 

reaching the surface of the earth (Barry and Chorley, 1992). In most circumstances 

the aerosols have a cooling effect on the climate (Hansen and Lacis, 1990). 

The greenhouse gases are transparent to incoming radiation, but they affect the 

atmosphere by absorbing the outgoing infra-red radiation. The overall result is to 

increase the temperature of the atmosphere. Without the greenhouse effect the earth 

would be approximately 33°C colder than it is at present and life as we know it would 

not exist (Schneider, 1990). Prior to the industrial revolution, the concentration of 

carbon dioxide in the earth's atmosphere was 275 ± 10 parts per million by volume 

(ppmv) (Neftel, Moor, Oescheger, and Stu affe r, 1985). This had increased to 353 

ppmv by 1990 (Intergovernmental Panel on Climate Change (IPeC), 1990) and 358 

ppmv by 1994 (IPCC, 1996). Thus, in recent years the rate of increase is 1.5 ppmv 

per year (IPCC, 1996). Table 1-1 shows the pre-industrial and the present 

concentrations of some of the greenhouse gases as well their annual rates of 

increase. During the period 1850 to 1989, anthropogenic greenhouse forcing has 

been equivalent to a 1 % increase in solar radiation received by the earth, with 

approximately 57% of the increase occurring since 1958 (Hansen and Lacis, 1990). 

They calculated the greenhouse forCing for the periods 1850 to 1957 and 1958 to 

1989 as 0.87 Wm-2 and 1.17 Wm-2
, and the contribution that each gas has made is 

shown in Figure 1-1. The Global Warming Potential (GWP) is an index of the relative 
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contribution of the emissions of the different greenhouse gases to the radiative forcing 

of the atmosphere over a given time period (Hammitt, Jain, Adams and Wuebbles, 

1996). This is typically expressed as the radiative forcing due to the instantaneous 

release of 1 kg of a trace gas in a constant atmosphere relative to the effects of 

releasing 1 kg of CO2• The net GWP is composed of the direct warming effects and 

the indirect cooling effects. The GWP and the lifetime of some of the greenhouse 

gases is shown in Table 1-2 (IPCC, 1996). Evidently the GWP of the 

hydroflurocarbons and the flurocarbons (see IPCC 1996) is substantial. 

Table 1-1 The concentration of the greenhouse gases and their contribution to 

global warming in 1994 

Gas Pre-lndustrial Current Concentration Increase per year (%) 

Concentration (ppmv) (ppmv) 

CO2 -280 358 0.4 

CH4 -0.70 1.72 0.6 

N201 -275*10-3 312*10-3 0.2 

CFC-11 1 0 0.268*10-3 0 

HCFC-222 0 0.110*10-3 5 

Note 1 Estimated from 1992-1993 data 

2 A CFC substitute 

Source IPCC (1996) 
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Figure 1-1 The contributions that greenhouse gases have made to radiative forcing 

for the periods 1850--1957 and 1958-1989. 
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Table 1-2 The Global Warming Potential and the lifetime of some of the greenhouse 

gases 

Gas Lifetime GWP Direct Effects Index for Time Horizons of 

years 20 years 100 years 500 years 

CO2 variable 1 1 1 

CH4 12±3 56 21 6.5 

N20 120 280 310 170 

HFC-23 264 9,100 11,700 9,800 

HFC-32 5.6 2,100 650 200 

HFC-41 3.7 490 150 45 

HFC-125 32.6 4,600 2,800 920 

HFC-134 10.6 2,900 1,000 310 

Sulphur hexafluroide 3,200 16,300 23,900 34,900 

Perfluromethane 50,000 4,400 6,500 10,000 

Perfluroethane 10,000 6,200 9,200 14,000 

Perfluropropane 2,600 4,800 7,000 10,100 

Perflurobutane 2,600 4,800 7,000 10,100 

Source IPCC (1996) 
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1.3 Predicted Climate Change 

The IPCC (1992) reported that over the last 100 to 130 years the mean global air 

temperature had increased by 0.45 ± 0.15°C. However, during the last 40 years the 

mean global temperature has increased by about 0.2°C to 0.3°C (IPCC, 1996). With 

the increases in the anthropogenic greenhouse gases there will be a concomitant 

change in climate. During the 1980s three General Circulation Models (GCMs), 

namely GISS (Goddard Institute for Space Studies), GFDL (Geophysical Fluid 

Dynamics Laboratory) and UKMO (United Kingdom Meteorological Office), were 

developed which predicted the climatic conditions under an instantaneous doubling of 

the atmospheric CO2 concentration (see Table 1-3). These equilibrium GCMs contain 

no information about when the future climate will be realised. Transient GCMs have 

now been developed which model the atmospheric CO2 as increasing gradually over 

time. 

Table 1-3 The climate change scenarios predicted by the GeMs under doubled 

concentrations of atmospheric CO2 

Change in average global 

GCM Year1 CO2 Temperature Precipitation 

(ppmv) (OC) (%) 

GISS 1982 630 4.2 11 

GFDl 1988 600 4.0 8 

UKMO 1986 640 5.2 15 

Note 1 Year when calculated 
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The IPCC (1992) developed six scenarios (IS92a to IS92f) for the predicted emissions 

of the greenhouse gases to the year 2100. The scenarios differ in terms of population 

growth, economic growth, energy supplies, CFC emissions and other factors that may 

- affect the emissions of the greenhouse gases. The CO2 concentrations for the IPCC 

scenarios and the associated best guess changes in the global mean temperatures for 

20S0 and 2100 are shown in Figure 1-2 and Figure 1-3 respectively. The upwelling-

diffusion energy-balance model was used to calculate the future temperatures (Wigley 

and Raper, 1990). However, depending on the sensitivity of the climate to enhanced 

CO2 levels, the change in global mean temperature by the year 2100 for the full set of 

IS92 scenarios range from 0.9°C to 3.SoC (lPCC, 1996). 

Source IPCC (1996) 
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Figure 1-2 The atmospheric CO2 concentrations for the IS92 scenarios 

8 



Source IPCC (1996) 
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Figure 1-3 The projected global mean surface temperature changes for the IS92 

scenarios 

These scenarios are not predictions of future emission levels but are illustrative of a 

wide range of feasible assumptions, and thus the IPCC Working Group I does not 

favour anyone particular scenario. However, the IPCC (1996) is uncertain regarding 

its predictions for the timing, magnitude and regional pattern of climate change. The 

temperature increase in the northern hemisphere predicted by the GCMs will be 

greater than in the southern (Viner, Hulme and Raper, 1995). Accordingly, there is 

considerable uncertainty regarding the effects that climate change will have on 

agriculture at a regional level (Parry and Carter, 1988; Parry, Carter, and Porter 1989; 

Parry, 1990). 
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1.4 The Effect of CO2 and Climate Change on Crop Production 

The ambient concentration of CO2 directly affects the physiology of plants, as shown 

in Figure 1-4. These effects result in plant yield being influenced by the ambient 

concentration of CO2• It is therefore critical that the effects of increasing the CO2 

concentrations on plant growth and development can be determined when assessing 

the consequences of climate change on crop production. This section examines the 

effects of CO2 on plant growth and concludes by discussing the effect of changes in 

ambient CO2 concentration on plant yield. 

Photosynthesis Respiration 

Carbon dioxide 

Stomatal density Growth habit 

Transpiration 

Partitioning of dry 
matter 

Figure 1-4 The aspects of plant growth that are affected by the ambient 

concentration of CO2. 

1.4.1 Effects of Enhanced CO2 on the Photosynthesis Process 

The process of photosynthesis is partly dependent on the availability of CO2. The CO2 

enters the plant cells through the stomata by diffusion, it is then combined with water 

10 



and converted into carbohydrates by photosynthetic enzymes. The response of the 

plants to increased CO2 concentration is affected by whether the early products of the 

photosynthetic pathway are based on compounds with three (C3 plants) or four (C4 

plants) carbon atoms. Under current ambient conditions of CO2 the rate of 

photosynthesis of C4 plants is higher than that for C3 plants. However, as CO2 

concentration increased to 700 ppmv the rate of photosynthesis for C3 plants has been 

observed to increase by 66%, whereas it increased by only 4% for C4 plants (Kimball, 

Mauney, Nakayama and Idso, 1993a). In C4 plants the rates of photosynthesis are 

independent of the concentration of oxygen (02) within the plant, but with C3 plants 

light stimulates the process known as photorespiration. In this process the 

carbohydrates are combined with O2 to release CO2 and water into the atmosphere. 

This occurs because the O2 and the CO2 compete for the receptor sites on the 

enzyme Rubisco. At current concentrations of CO2 Tolbert and Zelitch (1983) 

reported that the net gain in carbon in C3 species from photosynthesis can be reduced 

by as much as 50% by photorespiration. Thus, the increased rate of photosynthesis 

as a result of an enhanced CO2 environment is due in part to two factors. First, there 

is a reduction in the loss of carbohydrates through the photorespiration process. 

Second, the supply of the substrate (C02) is increased. 

Jolliffe and Tregunna (1968), and Berry and Bjorkman (1980) reported that as 

temperature rises to the optimum the stimulation of photosynthesis increases. As the 

solubility of the CO2 compared to O2 is reduced with increasing temperature and the 

specificity of the enzyme Rubisco for CO2 is also reduced, increasing the 

concentration of the CO2 within the plant will have more of an inhibitory effect on 
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photorespiration at higher rather than lower temperatures. Long (1991) predicts that 

as the concentration of CO2 increases to 500 ppmv and then to 650 ppmv, the 

optimum temperature for photosynthesis of C3 crops will increase by 3°C and 5°C 

respectively. 

The concentration of nitrogen has been recognised as a limiting factor in the 

photosynthesis process (Field and Mooney, 1986; Gastal and Saugier, 1989). 

Nevertheless, Nijs, 8ehaeghe and Impens (1995) observed that the relative effect of 

leaf nitrogen concentration at elevated CO2 concentrations only marginally affects the 

stimulation of photosynthesis. In experiments with perennial ryegrass (Lolium 

perenne) they noted that the maximum carboxylation rate was reduced in leaves with 

the same concentration of nitrogen when the concentration of CO2 was increased. 

The efficiency of nitrogen is therefore reduced at increased concentrations of CO2 . 

1.4.2 Effects of Enhanced CO2 Concentrations on Respiration 

The effect of an enriched CO2 atmosphere on respiration differs between plants and 

organs within plants. The results of Poorter, Gifford, Kriedemann and Wong (1992) 

who surveyed published reports as well as conducting their own experiments revealed 

that enhancing atmospheric CO2 levels on leaf respiration expressed per unit of leaf 

area ranged from 50% inhibition to a 200% stimulation. However, when the 

respiration rate is expressed on a dry weight basis, the rates are decreased .. This is 

as a result of starch accumulation which may occur under increased CO2 

concentrations (Farrar and Williams, 1991), but does not require a high input of 

metabolic energy (Poorter, 1993). The accumUlation of starch can result in the 

specific leaf area declining when plants are grown at elevated CO2 levels (Poorter, 
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1993). The effect on root respiration ranged from inhibiting the rate by 45% to a 30% 

stimulation (Poorter et a/., 1992). Nevertheless, in many of the experiments the 

respiration rates were only measured once. 

1.4.3 Effects of Enhanced CO2 Concentrations on Transpiration 

With the increase in CO2 concentrations the rates of transpiration per unit leaf area are 

expected to decrease. This is because the enriched CO2 atmosphere will cause 

partial closure of the stomata, which will restrict the rate of transpiration more than it 

restricts the process of photosynthesis. Doubling the current levels of CO2 is 

predicted to decrease the rates of transpiration by between 25% and 50% (Cure and 

Acock, 1986), and stomatal conductance by 40% (Morrison, 1987). For some 

species, Pearcy and Bjorkman (1983) reported a doubling of the water use efficiency 

with a doubling of the concentration of CO2 in the atmosphere, where the water use 

efficiency is defined as the ratio of photosynthesis to transpiration. Nevertheless, as 

the size of the plants may increase with increasing CO2, the total water requirements 

of the crop may not necessarily be reduced. 

The water that is lost through transpiration cools the leaf surface. Thus, as a result of 

enriching the atmosphere with CO2 and the partial closure of the stomata the 

temperature of the leaf is likely to rise. Idso, Kimball and Mauney (1987a) and Jones, 

Allen and Jones (1985) have shown that the temperature of the leaf can rise by 

between 1°C and 3°C. Initially as less water is transpired, the water vapour pressure 

within the leaves will increase and the humidity of the surrounding air will drop (Wolfe 

and Erickson, 1993). Both these factors will contribute to increasing the rates of 

transpiration per unit of leaf area. 
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1.4.4 Effects of Enhanced CO2 Concentrations on the Stomata 

The stomatal density has been observed to decrease in plants grown at 

concentrations of CO2 below 350 ppmv (Woodward 1986, 1987; Woodward and 

Bazzaz, 1988). However, according to Woodward (1988), Woodward and Bazzaz 

(1988) and Jarvis (1989) enhancing the CO2 levels has not resulted in an increased 

stomatal density. In contrast Ferris, Nijs, Behaeghe and Impens (1996a) observed 

that the stomatal density of perennial ryegrass leaves was increased by enhanced 

CO2 concentrations during the summer, but decreased during the spring. 

Nevertheless the stomatal density has been observed by Oberbauer, Strain and 

Fletcher (1985) to decrease in a species of tropical tree (Pentaclethra macr%ba). 

1.4.5 Effects of Enhanced CO2 Concentrations on Growth Habits 

The increased rate in photosynthesis may not result in as large an increase in either 

growth or yield. Allen (1991a) reported that a 50% increase in photosynthesis in 

soybean resulted in a 40% increase in biomass and only a 30% increase in 

marketable seed yield. The leaf area index of the crop which intercepts the light has 

an important effect on the productivity of the crop. However, an increased leaf area 

may exacerbate any water or nutrient deficiency experienced by the crop. Depending 

on the water and nutrient status of the crop and how it partitions the biomass between 

the root, shoot, leaves, stems, fruits and seed, enhanced atmospheric CO2 levels may 

have a beneficial or detrimental effect on marketable yield. 

The different growth habits of plants may be affecting their response to augmented 

CO2 concentrations. Five factors that may explain some of the differences have been 

identified by Poorter (1993). First, species with strong sinks or the ability to increase 
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the sink size may be more responsive. Second, nitrogen fixing plants may be more 

responsive as the nodules represent a large sink (Arnone and Gordon, 1990), but 

under many experimental conditions the plants are grown under nutrient rich 

conditions and thus nitrogen fixation would not be occurring (Poorter, 1993). Third, 

crops which have been selected for vigour, as opposed to wild species, seem to be 

more responsive. Fourth, there appears to be a significant correlation between plant 

growth rate and its response to CO2 enhancement. Fifth, the review of Cure and 

Acock (1986) indicated that dicotyledonous species were more responsive than 

monocotyledons. 

1.4.6 Effects of Enhanced CO2 Concentrations on the Partitioning of Dry Matter 

Dry matter partitioning in the plant is influenced by other environmental factors as well 

as the atmospheric concentration of CO2• It is revealed from a survey of experiments 

which included perennial ryegrass and white clover (Trifolium repens) compiled by 

Stulen and den Hertog (1993) that, where water and nutrient are non-limiting, 

enhanced CO2 tends not to affect the rootshoot ratio and the leaf weight ratio. 

However, when the plants were subjected to either water or nutrient stress the 

rootshoot ratio tended to increase. An increase in the rootshoot ratio has also been 

observed in some field grown crops (Lawlor and Mitchell, 1991). An enriched CO2 

atmosphere affects the branching of the roots as opposed to the rate of elongation of 

the individual root axes (Stulen and den Hertog, 1993). Flowering, seed set and 

senescence were affected unpredictably (Woodward, Thompson and McKee, 1991). 

In cotton, senescence was reported to increase with augmented CO2 concentrations 
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(Chang, 1975), remain the same for wheat (Triticum aestivum) (Gifford, 1977) and 

decrease for a C3 grass (Carter and Peterson, 1983). 

There is a lack of understanding of resource allocation in plants grown under an 

enhanced CO2 environment (Woodward et al., 1991). This problem may be partly 

explained by experimental conditions as plants usually have been grown in small pots, 

and thus the response is a measure of the effect of CO2 and the limited soil resources. 

However, two further problems affect the ability to predict how individual species are 

going to respond to CO2, First, the size and strength of the assimilate sink that may 

influence the rate of photosynthesis (Jarvis, 1989), cannot be predicted. Second, the 

chemical composition of the exported assimilates may change with CO2 (Madore and 

Grodzinski, 1985) which in turn may influence the conversion of the assimilates to 

plant material (Woodward et al., 1991). 

1.4.7 Effects of Enhanced CO2 Levels on Plant Yield 

The effects of enhanced CO2 on the plant growth characteristics outlined in Figure 1-4 

influence plant yield. However the responses of plant yield to increased ambient 

concentration of CO2 are modified by: 

• the levels of water and nutrient stress; 

• long-term exposure to enhanced concentrations of CO2; and 

• growth under field conditions. 

The net effect of enhanced CO2 levels on plant yield are described in this section. 
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1.4.7.1 Plant Yield 

During the past four decades tree ring data from high-altitude conifers has indicated 

an increase in the growth rates which corresponds to the increase in atmospheric 

concentration of CO2 (La Marche, Graybill, Fritts and Rose, 1984). Nevertheless, 

Johnson, Polley and Mayeux (1993) reported that the sensitivity of photosynthesis to 

CO2 concentration is higher at levels below, as opposed to above, current 

concentrations (350 ppmv). The enrichment of the CO2 levels in 50%-75% of the 

commercial greenhouses world-wide has yielded increases of between 30% and 40% 

for some crops when the CO2 concentration approaches 1000 ppmv (Wittwer, 1986). 

This indicates that CO2 has beneficial effects for crops grown under greenhouse 

conditions. Nevertheless, the CO2 concentrations in greenhouses without CO2 

supplementation is depleted to a level of 200-250 ppmv (Goldsberry, 1986), and thus 

the yield increases reported are larger than would occur if the control environment had 

been maintained at current ambient levels. Kimball (1983) predicted that increasing 

CO2 concentrations from 330 ppmv to 660 ppmv would increase yields by 33% with a 

95% confidence limit of ± 6%. When CO2 concentrations were increased to 1000 

ppmv yield increases are predicted to be as much as 67% ± 10%. However, Wittwer 

and Robb (1964) recognised that the quantity of water and fertilisers applied to the 

crop has to be increased in order to maximise the benefit of the CO2 enriched 

atmosphere. The ideal controlled growing conditions experienced in a greenhouse 

may be partly responsible for the large increase in yield. 

Nevertheless, Poorter (1993) having surveyed 156 species from 89 reports stated that 

the response between and within species to augmented CO2 concentrations was 
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highly variable. In some cases, plants described as being highly responsive in one 

report are unaffected in another. This may be due to interactions between the 

environment and CO2 levels which are affecting growth (Wong, 1993; Potvin and 

Strain, 1985; Tolley and Strain, 1984) and intraspecific variation (Potvin and Strain, 

1985). It has been observed that the response of plants grown in competition under 

elevated CO2 was influenced by whether they were grown in open-top or growth 

chambers (Stewart and Potvin, 1996). The chambers differ in the rooting area and the 

environmental conditions experienced by the plants. Another possible explanation is 

that there is variation in plant weight within the experiment that may be affecting the 

weight ratio of the plants grown at enhanced CO2 levels to the control plants (Poorter, 

1993). 

1.4.7.2 Water and Nutrient Stressed Crops 

Under water stressed conditions, the predicted effect of an enriched CO2 atmosphere 

could be as large as, if not larger than, the yield response predicted for non-stressed 

conditions (Kimball, 1986a). A similar response has been observed for field grown 

cotton (Gossypium species) (Kimball, 1986b) and rice (Oryza sativa) (Allen, 1991 b) 

which were grown under nitrogen stressed conditions. When cotton was grown under 

nitrogen stress that was severe enough to depress yields of cotton (Kimball, Mauney, 

Nakayama and Idso, 1993b), under a doubling of CO2 concentration the yields 

increased regardless of whether the crops experienced water stress. In these 

experiments the relative response of plants at low nitrogen levels was higher than 

those at high nitrogen levels. However, the results of maize (Zea mays) and cotton 

grown in a greenhouse indicate that the response was proportionally smaller for low 
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nitrogen treatments (Wong, 1979). Nevertheless the maximum yield with CO2 

enrichment occurs when the nitrogen available to the crop is at its optimum level. 

When phosphorus is limiting, enhancing the atmospheric CO2 concentrations has 

been reported as having no effect on yield (Gourdriaan and de Ruiter, 1983). On the 

other hand, Conroy, Barlow, and Bevege (1986) found that growth was still stimulated 

when Pinus radiata was supplied with varying quantities of water and phosphorus. 

1.4.7.3 Long-Term Exposure to Enhanced CO2 

Once the plants have become acclimatised to the higher concentration of CO2 the 

beneficial effect of yield tends to decline (Kramer, 1981; Bazzaz, 1990). From Cure 

and Acock's (1986) literature review and experiments conducted by Yelle, Beeson, 

Trudel and Gosselin (1989), Wolfe and Erickson (1993) calculated that the short-term 

response of photosynthesis to doubling the CO2 concentration was approximately 

double the long-term response for C3 and C4 crops, as shown in Table 1-4. Sage, 

Sharkey and Sieman (1989) examined the effect of increased CO2 concentration on 

five dicotyledon species. The activity of the enzyme Rubisco, after prolonged 

exposure to CO2 levels of 950 ppmv, was reduced by between 30% and 60%. 

However, no two species showed the same quantitative response to CO2 enrichment. 

According to Besford, Ludwig, and Withers (1990) the loss in extractable Rubisco 

activity may account for the decrease in the maximum rate of photosynthesis. Another 

explanation for the acclimatisation of the plants to increased CO2 is that more 

carbohydrate is being supplied than can be utilised. Delucia, Sasek, and Strain( 1985), 

and Nafziger and Keller (1976) suggest that for some species the over supply of 

carbohydrates results in the enlargement of starch grains within the cells of the leaves, 
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which causes damage to the organelles that are important in the photosynthesis 

process. The effect may be less significant in indeterminate crops as they have a 

continuous demand for carbohydrates. 

Table 1-4 The net photosynthetic response of C3 and C4 crops to increasing the 

CO2 concentration from 300-350 ppmv to 680 ppmv 

Photosynthetic Crop Change in net photosynthesis from 

pathway doubling the CO2 concentration 

(%) 

Common name Latin name Short term Long term 

C3 Barley Hordeum vulgare +50 +14 

Cotton Gossypium +60 +13 

species 

Rice Oryza sativa +42 +46 

Soybeans Glycine max +78 +42 

Wheat Triticum aestivum +41 +27 

Tomato Lycopersicon +30 +9 

esculentum 

Average ~ crop +50 +25 

C4 Maize Zea mays +26 +4 

Sorghum Sorghum species -3 +6 

Average C4 crop +25 +5 
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Sasek, Delucia and Strain (1985) observed that the inhibition of photosynthesis was 

reversed when there was a parallel reduction in leaf starch. Down regulation, 

reduction in photosynthetic capacity, may be more pronounced in plants that have a 

reduced sink strength (Van Oosten and Besford, 1996). Because glasshouse crops 

have been selected for high yield and growth, and thus sink strength, the effect of 

down regulation may not have been observed in these crops. A diminished response 

over time might also occur because of the experimental conditions under which the 

plants are grown. This may occur if the plants are grown too close to one another or 

are grown in small pots that may result in self shading or in the plants becoming pot 

bound and thus subjecting the plants to water and nutrient stress (Poorter, 1993). 

According to Poorter (1993), it is also possible that after a period of time the 

stimulation in growth rate will be offset by the increased size of the plants and the 

accompanying lower relative growth rate. The relative growth rate tends to decline 

over time in fast growing plants. luo, Field and Mooney (1994) suggest that the 

maximum rate of photosynthesis is down regulated through nitrogen dilution and 

feedback inhibition by the end products. However, the down regulation may be 

partially or completely compensated for by the increased leaf mass per unit area. 

At low temperatures, the rate of photosynthesis of plants that have become 

acclimatised to increasing concentrations of CO2 may be lower thc;m under current 

levels of CO2. Oechel and Reichers (1987) observed that CO2 enrichment had little 

effect on the natural vegetation of the tundra, whereas there was a significant increase 

in the productivity of a warm wetland vegetation at a low latitude site (Drake and 

leadley, 1991). However, other environmental factors may have contributed to these 
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results. Nevertheless, Idso, Kimball, Anderson and Mauney (1987b) predicted the 

growth rates from a regression analysis from an experiment conducted in open top 

canopy chamber as -60%, 0%, 30% and 100% at 12°C, 18°C, 22°C and 30°C 

respectively. The species studied were carrot (Oaucus carota), radish (Raphanus 

sativa), water hyacinth (Eichhornia crassipes), water fern (Azolla pinnata) and cotton. 

However, the growth of the aquatic species appeared to be more inhibited at elevated 

CO2 concentrations and at temperatures below 18°C than the terrestrial species. In a 

similar experiment on carrot and radish, Idso and Kimball (1989) observed that a 

temperature increase of above 12°C resulted in a positive growth response. 

1.4.7.4 Plants Grown in the Field 

Under field conditions the yield is determined by the interactions that occur between 

light, temperature, water and nutrients as well as the ambient concentration of CO2• 

The competition for water, nutrients and light may be intensified by elevated 

atmospheric CO2 concentrations and this will have implications for intraspecific 

competition (Schenk, Manderscheid, Hugen and Weigel, 1995). Korner (1995) 

reported that species, that were found to be responsive to elevated CO2 in container 

experiments inside greenhouses, were completely unaffected under field conditions. 

Nevertheless, yield increases of between 20% and 80% for C3 crops have been 

obtained from experiments performed in open top chambers when the plants were 

supplied with water and nutrients (Wolfe and Erickson, 1993). In experiments with 

open top chambers, the light levels and variations in humidity and temperature are 

more realistic than under greenhouse conditions. Nevertheless, the air temperature 

will be a few degrees higher and the movement of air around the crop will be reduced 
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compared to the natural environment (Lawlor and Mitchell, 1991). Both these factors 

will have effects on the rates of transpiration of the crop. The use of open top 

chambers under current CO2 concentrations also tends to increase the growth of 

crops. This has been demonstrated by Rogers, Bingham, Cure, Smith and Surano 

(1983) and Rogers, Cure and Smith (1986) for maize and soybean (Glycine max) 

respectively. 

In experiments involving complex ecosystems, the species mix used was often 

dictated by the investigator rather than natural selection (Korner, 1995). According to 

Korner (1995) this may have resulted in the system changing from the starting balance 

of species as soon as the experiments have started. The results that were assumed 

to be due to the enhanced atmospheric conditions may simply reflect the momentary 

status of the successional process. However, it is very difficult from field studies to 

unravel the complex interactions of the processes involved. 

1.5 The Impact of Climate Change on Agriculture 

The impact of climate change on agriculture will be twofold, namely the direct effect of 

increased CO2 on plant growth and the indirect effects of increased annual average 

temperatures and changes in rainfall patterns. Two broad approaches have been 

used to assess the effects of climate change on agriculture. The first has estimated 

the shifts in climatic resources, and the consequent shifts in land use and farming 

types, and the second has considered the possible changes in yield at specific sites. 
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1.5.1 Effect on Cereal Crop Yields 

Assuming there is no direct physiological effect of CO2, Rosenzweig and Parry (1994) 

predicted that the yield of wheat, rice, coarse grains and protein crops would decline 

everywhere under the GISS, GFDL and UKMO GCMs. Nevertheless, the reductions 

in the mid to high latitudes were less than those experienced in the lower latitudes. 

When the direct effects of CO2 are included, the GISS and GFDL GeMs predict that 

there will be a positive effect on agricultural production at the middle and high 

latitudes, while there will be a negative effect in the low latitudes. However, with the 

exception of Australia and parts of Europe, the UKMO scenario forecasts yield 

reductions. Leemans and Solomon (1993) investigated the effects of the GFDL 

scenario on the change in distribution and yield of ten crops on a world-wide scale, 

and the results are shown in Table 1-5. Nevertheless, yields in areas where the crops 

are currently grown are predicted to decline by approximately 15% for all crops except 

tropical maize, rice, sugar cane and cassava. The yields of these crops are expected 

to increase by between 0.4% and 3.5%. On the other hand, the area grown of all 

these crops is predicted to increase by between 10% and 32% of the current area, 

which is sufficient to result in an overall increase in yield. 
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Table 1-5 Future potential yields of major crops 

Crop Area of land with a Increase in total 

Common name Genera decrease in yield increase in yield yield 

(103 km2
) (103 km2

) (%) 

Temperate maize Zea 12,026 19,667 27.7 

Tropical maize Zea 29,372 15,502 12.7 

Spring wheat Triticum 14,963 13,824 28.1 

Winter wheat Triticum 17,062 12,035 30.2 

Rice Oryza 32,824 15,771 13.4 

Millet1 29,014 22,605 20.7 

Soybeans G/ycine 19,179 14,870 17.4 

Beans Phaseo/us 34,515 14,154 12.2 

Sugarcane Saccharum 22,637 10,413 16.2 

Cassava Manihot 33,353 5,951 14.8 

Note 1 Millet is a very heterogeneous crop. The genera of millet included in this 

study were Elusine, Panicum, Setaria, Echinochloa, Pennisetum and 

Sorghum. 

Increasing the average annual temperature by 2°C would result in increasing the land 

area suitable for growing grain maize by 2,400,000 km2
, approximately 25% (Kenny 

and Harrison, 1992). A northward shift of approXimately 200-350 km °C-1 in western 

Europe and 250-400 km °C-1 in eastern Europe is predicted for grain maize 
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production under global warming (Carter, Porter and Parry, 1992). In contrast, 

Saarikko and Carter (1996) predict a shift northwards of 160-180 km oC-1 for spring 

wheat. Harrison and Butterfield (1996) predict, using the transient UKMO scenario, 

that by the middle of the next century the land area suitable for growing winter wheat 

will have expanded into mid-Scandinavia and most of Russia, while the area suitable 

for growing sunflowers will have expanded into northern Germany, central England, 

northern Poland, southern Finland and southern Sweden. 

With regards to considering the consequence of climate change on agricultural production 

a significant proportion of work has concentrated on the four major cereals, namely wheat, 

maize, soybean and rice. The effects of global warming on wheat, maize, soybean and 

rice production has been assessed in several countries and continents, and is shown in 

Table 1-6-Table 1-9 respectively. The predictions from wheat models have been 

compared against actual yields of wheat grown under enhanced CO2 (Mitchell, Lawlor, 

Mitchell, Gibbard, White, and Porter, 1995; Moot, Henderson, Porter and Semenov, 

1996). 

1.5.2 Effect on Arable Crop Yields 

The effects of climate change on agricultural production have also been assessed for 

grapevines (Vitis vinifera) in Italy (Bindi, Fibbi, Gozzini, Orlandini and Miglietta, 1996), 

cauliflower (Brassica oleracea) and pea (Pisum sativum) in Europe (Kenny, Harrision 

and Parry, 1993), potatoes (Solanum tuberosum) in England and Wales (Davies, 

Jenkins, Pike, Shao, Carson, Pollock and Parry, 1996), faba bean (Vicia faba) in 

Scotland (Peiris et al., 1996) and groundnuts (Arachis hypogea) in USA (Peart et al., 

1995). 
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Table 1-6 The countries and continents where the effect of global warming on 

wheat production has been assessed. 

Country/Continent 

Argentina 

Australia 

Bangladesh 

Britain 

Citation 

Rodriguez and Fernandez (1995) 

Wang, Handoko and Rimmington (1992) 

Karim, Hussain and Ahmed (1996) 

Favis-Mortlock, Evans, Boardman and Harris (1991) 

Mitchell (1996) 

Peiris; Crawford, Grashoff, Jefferies, Porter and Marshall (1996) 

Semenov, Wolf, Evans, Eckersten and Iglesias (1996) 

Brazil Siqueira, Farias and Sans (1994) 

Canada Toure, Major and Lindwall (1994) 

Brklacich and Stewart (1995) 

Europe Nonhebel (1996) 

Finland laurila (1995) 

France Delecolle, Ruget, Ripoche and Gosse (1995) 

Japan Seino (1995) 

Russia and the former Soviet States Menzhulin, Koval and Badenko (1995) 

Spain Semenov et al. (1996) 

US Stockle, Dyke, Williams, Jones, and Rosenberg (1992) 

Adams, Fleming, Chang, McCarl and Rosenzweig (1995) 

Mearns, Rosenzweig, Goldenberg (1996) 

Riha, Wilks and Simoens (1996) 

Rosenzweig and Tubiello (1996) 
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Table 1-7 The countries and continents where the effect of global warming on 

maize production has been assessed. 

Country/Continent 

Brazil 

China 

European Community 

France 

Japan 

Philippines 

Spain 

US 

Venezuela 

Zimbabwe 

Citation 

Siqueira et a/. (1994) 

Wang and Lin (1996) 

Wolf and Van Diepen (1994) 

Delecolle et al. (1995) 

Seino (1995) 

Buan, Maglinao, Evangelista and Pajuelas (1996) 

Iglesias and Minguez (1995) 

Cooter (1990) 

Stockle et al. (1992) 

Adams et a/. (1995) 

Peart, Curry, Rosenzweig, Jones, Boote, Allen (1995) 

Phillips, Lee and Dobson (1996) 

Riha et a/. (1996) 

Xevi, Gilley and Feyen (1996) 

Maytin, Acevedo, Jaimez, Andressen, Harwell, Robock and 

Azocar (1995) 

Makadho (1996) 
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Table 1-8 The countries and continents where the effect of global warming on 

soybean production has been assessed. 

Country/Continent 

Brazil 

China 

us 

Citation 

Siqueira et a/. (1994) 

Jin, Ge, Chen and Zheng (1994) 

Stockle et a/. (1992) 

Adams et a/. (1995) 

Curry, Jones, Boote, Peart, Allen and Pickering (1995) 

Phillips et a/. (1996) 

Riha et a/. (1996) 

Table 1-9 The countries and continents where the effect of global warming on rice 

production has been assessed. 

Country/Continent 

Asia 

Bangladesh 

China 

Japan 

Philippines 

Citation 

Matthews, Kropff, Bachelet and Laar (1995) 

Neue, Ziska, Matthews and Dai (1995) 

Karim et a/. (1996) 

Jin, Ge, Chen and Zheng (1995) 

Horie, Kropff, Centeno, Nakagawa, Nakano, Kim and Ohnishi 

(1995) 

Seino (1995) 

Buan et a/. (1996) 
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1.5.3 Effect on Forage Crop Yields 

With respect to grassland systems, Bergthorsson, Bj6msson, Dyrmundsson, 

Gudmundsson, Helgadottir and Jonmundsson (1988) assessed the effects of climate 

change on the production of hay in Iceland using a regression model based on 

temperature and nitrogen fertiliser application rates. Hunt, Trilica, Redente, Moore, 

Detling, Kittel, Walter, Fowler, Klein, and Elliot (1991) have developed a model which 

has the specific objectives of predicting the seasonal and year-to-year dynamics of 

primary producers, microbes, and soil fauna and nitrogen availability in grasslands. 

The effects of CO2 level and climate change on these dynamics were also described. 

The model has been developed for monocultures of crested wheatgrass (Agropyron 

cristatum) and blue grama (Boute/oua gracilis) which are native to the US. The SPUR 

model (Simulation of Production and Utilization of Rangelands) can Simultaneously 

simulate the growth of 15 plant species typically found in the US (Hanson, Skiles and 

Parton, 1988). It has been used to assess the effects on grassland and livestock 

production in the US (Baker, Hanson Bourdon and Eckert, 1993; Hanson, Baker and 

Bourdon, 1993) and Mongolia (Bolorsetseg and Tuvannsuren, 1996). Coffin and 

Lauenroth (1996) used an individual-plant based gap dynamics simulation model 

(STEPPE-GP), which was developed for shortgrass steppe communities, coupled with 

a multi-layer soil-water layer model (SOILWAT) to assess the effects of climate 

change on C3 and C4 grasses across the eastern states of the US. Thornley, Fowler 

and Cannell (1991), and Sheehy, Gastal, Mitchell, Durand, Lemaire and Woodward 

(1996) have developed models of temperate grasslands typically found in Western 

Europe which are capable of being used to assess the effects of climate change on 

the vegetative stage of growth. The model of Thornley et a/. (1991) has been used to 
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assess how temperature and the concentration of CO2 effect the total above- and 

below-ground carbon sequestered in a simulated sward. 

Bergthorsson et al. (1988) predicted that increasing the annual average temperature in 

Iceland by 4°C and the precipitation by 15% would result in the yield of hay increasing 

by 66%. The model described by Hunt et al. (1991) for US temperate grasslands 

predicted that increasing the annual average temperature by 3°C would have little 

effect on annual primary production, whereas enhancing the CO2 concentration would 

increase the yield. In contrast Hanson et al. (1993) predicted that increasing the 

atmospheric concentration of CO2 would not significantly increase plant production in 

north-eastern Colorado. Nevertheless, when enhanced CO2 concentrations were 

coupled with increased temperature and precipitation, the yield of forage was 

increased although it was of poorer quality, which ultimately led to reduced animal 

production. Global warming is predicted to enhance the yield of rangeland forage 

crops in the US (Baker et al., 1993). However, in California this is not predicted to 

result in increased animal intake and in the Southern Great Plains the animal intake 

was actually decreased. Coffin and Lauenroth (1996) predicted that there will be a 

change in the balance of species in the grassland communities of eastern US with C4 

grasses becoming more dominant with global warming. In Mongolia the effect of 

climate change is likely to be negative for forage and livestock production in the Gobi 

desert area and favourable in the colder regions (Bolorsetseg and Tuvannsuren, 

1996). Increasing the annual average temperature by 2°C reduces carbon 

sequestered by approximately 15% (Thornley et al., 1991). In contrast, increasing 

carbon sequestration was enhanced by 34% and 64%, when the CO2 concentration 
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was increased from 280 ppmv to 350 ppmv, and from 350 ppmv to 600 ppmv 

respectively. 

1.6 Importance of Forage and Livestock Production 

Climate change and the associated increased concentration of atmospheric CO2 have 

an effect on grassland and animal production. Nevertheless, the direction of the effect 

is partly dependent on the actual change in temperature and rainfall as well as the 

species of grasses grown. However, to date the majority of the work studying the 

effects on forage and livestock production under climate change and incorporating the 

effects of enhanced atmospheric CO2 concentrations has largely been based on 

grasslands typically found in the US (Hunt et al., 1991; Baker et al., 1993; Hanson et 

al., 1993; Coffin and Lauenroth, 1996). Although there are indications that increased 

levels of CO2 will result in increased production of perennial ryegrass (Casella, 

Soussana and Loiseau, 1996; Jones, Jongen and Doyle, 1996a; Jones, Jongen, 

Garvey and Baxter, 1996b), there is no indication of how changes in the temperature 

and precipitation during the growing season will impact on forage and livestock 

production in the UK or Scotland. 

In Scotland, livestock production, excluding pigs and poultry, account for 

approximately 60% of total outputs from agriculture which in 1994 was valued at 

£1799.5 million (Scottish Office Agriculture, Environment and Fisheries Department 

(SOAEFD), 1995). Of the land area used for crops and grassland in Scotland, 63.6% 

of the area is under grass which is mainly utilised for livestock production. Thus, the 

dairy, beef and sheep enterprises are Significant in Scotland both in terms of the land 

area which they utilise and the contribution these livestock enterprises make to 
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agricultural output. In terms of the nutritional value of herbage, British ruminant 

livestock gain 71 % of their metabolisable energy (ME) and 67% of their crude protein 

requirements from conserved grass and grazing (Holmes, 1989). On an enterprise 

basis, in Britain the dairy cows derived 60%, beef cattle 79%, and sheep 97% of their 

daily feed energy from grass (Jollans, 1981). 

In Britain, forage production in lowland areas is commonly based on perennial 

ryegrass (Robson, Parsons and Williams, 1989). Although, perennial ryegrass and 

white clover are important forage species in British livestock production only 20% of 

the grassland in the United Kingdom contains more than 5% of white clover (Robson 

et a/., 1989). This species has an important environmental role as it can fix its own 

nitrogen. It also has a higher nutritive value than grass and it tends to stimulate intake 

(Thomson, 1984). The importance of white clover to livestock systems may be altered 

under a global warming scenario. 

Livestock production is dependent on the production of herbage, and thus any impact 

of climate change and of increased concentration of greenhouse gases on forage and 

hence livestock production will be of prime importance to Scottish agriculture. 

Consequently, it is necessary to gain an understanding of how forage and hence 

livestock production will be influenced in the UK under enhanced CO2 and the 

associated changes in climate. 

1.7 Role of Plant Growth Modelling 

In a changing climate, the success of agriculture is dependent on its ability to adapt. 

However, the crop-climate interactions are complex and the climatic variables are 
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changing throughout the life of the plant (Kimball et a/., 1993a). For this reason plant 

models that incorporate the effects of enhanced atmospheric CO2 concentrations and 

the interactions of the crops with all the climatic variables are required for predicting 

the effect of climate change on crop growth (Kimball et a/., 1993a). However, 

according to Reynolds and Acock (1985) only the essential parts of the system should 

be described, and Pachepsky, Haskett and Acock (1996) listed the following criteria 

for a good model: 

1 . the minimum number of parameters with reasonable error; 

2. the simplest form with minimum error; 

3. based on physical, chemical and biological laws where possible; 

4. the minimum deviation between predicted and empirical values; and 

5. the minimum variance of output. 

1.8 The Aims and Hypotheses 

The aims of this study have been: 

1. to develop a simulation model of grass and grass - white clover swards, which is 

capable of quantifying the effect that climate change could have on the productivity 

of grassland in Scotland, 

2. to develop models capable of simulating the effect of the projected changes in 

forage production under global warming and enhanced CO2 levels on dairy, beef 

and sheep production within Scotland, 
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3. to assess the separate as well as the joint effects of changes in temperature and 

rainfall on forage production and the livestock enterprises, and 

4. to assess how important including the yield - enhancing effects of elevated CO2 , as 

distinct from the temperature effects of global warming, are on forage production 

and the livestock enterprises. 

The hypotheses that will be tested are: 

1. The growing season will be lengthened by increases in the annual average 

temperature. 

2. Production from grass and grass - white clover swards will be enhanced by: 

a) elevated ambient CO2 levels; 

b) increases of 1°C, 2°C and 3°C in the annual average temperature; 

c) changes in the rainfall pattern; and 

d) elevated CO2 coupled with increases in the annual average temperature 

and changes in rainfall. 

3. The effect of increases in the annual average temperature will not result in linear 

increases in the yield from the grass sward or in the components of yield from 

grass - white clover sward. 

4. The proportion of white clover harvested from mixed swards will be increased by: 

a) elevated ambient CO2 levels; 
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b) increases of 1°C, 2°C and 3°C in the annual average temperature; 

c) changes in the rainfall pattern; and 

d) elevated CO2 coupled with increases in the annual average temperature 

and changes in rainfall. 

5. The grazing season for dairy cows, beef cattle and sheep will be increased by: 

a) elevated ambient CO2 levels; 

b) increases of 1°C, 2°C and 3°C in the annual average temperature; 

c) changes in the rainfall pattern; and 

d) elevated CO2 coupled with increases in the annual average temperature 

and changes in rainfall. 

6. The production from dairy cows, beef cattle and sheep will be enhanced by: 

a) elevated ambient CO2 levels; 

b) increases of 1°C, 2°C and 3°C in the annual average temperature; 

c) changes in the rainfall pattern; and 

d) elevated CO2 coupled with increases in the annual average temperature 

and changes in rainfall. 

7. The production from dairy cows, beef cattle and sheep grazing grass - white clover 

swards will show a greater percentage increase in the production levels than those 

grazing pure grass swards. 
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8. The trends in production will not be affected by site. 

1.9 Chapter Structure of Thesis 

Chapter 2 describes the current knowledge of the effect of increases in ambient 

temperature and global warming on grass and white clover production grown in both 

monocultures and in a mixture. This chapter also reviews the current state of models 

of forage and livestock production systems. The development of the model describing 

grass and grass - white clover production from cut and grazed swards is outlined in 

Chapter 3. The models of dairy cow, beef steer and sheep production are described 

in Chapter 4, while the forage production and livestock models are validated against 

experimental data in Chapter 5. In Chapter 6 the effects of climate change on forage 

and livestock production in Scotland are explored, while Chapter 7 discusses the 

effects of climate change in relation to the hypotheses outlined in Section 1.8, Chapter 

1. Chapter 7 also outlines possible future developments of the models. 
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CHAPTER 2 

THE CURRENT KNOWLEDGE REGARDING GLOBAL WARMING AND 
MODELLING OF GRASSLAND SYSTEMS - AN APPRAISAL 

2.1 Introduction 

Chapter 1 has illustrated the effects of climate change on crop and agricultural 

production. This chapter specifically describes the effects of changes in CO2 and the 

associated changes in climate on forage crops, notably on grass and white clover 

growth. The approach adopted, as outlined in Chapter 1, to assess the impacts of 

climate change on forage and livestock production is the development of a 

mechanistic model. Consequently, this chapter concludes with a review of the current 

state of models of forage and livestock production systems. 

2.2 The Effects of Climate Change on Forage Production 

The plant processes of photosynthesis, respiration, transpiration and partitioning for 

perennial ryegrass and white clover plants under a global warming scenario will be 

affected by both the changes in CO2 concentrations and the associated increases in 

temperature. This may lead to changes in growth habit and ultimately plant yield. 

This section therefore describes the effects of: 

1. elevated temperature on plant growth; and 

2. global warming on: 

2.1 . shoot biomass; 

2.2. root biomass; 

2.3. rate of photosynthesis; 

2.4. rate of dark respiration; 
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2.5. rate of transpiration; 

2.6. leaf growth characteristics and habit; and 

2.7. nitrogen concentration 

for both monocultures of perennial ryegrass and white clover. The effects of global 

warming on the mixed sward are also discussed for the following: 

1. yield composition of the sward; 

2. water stress; and 

3. leaf growth characteristics. 

2.2.1 Perennial Ryegrass Production 

2.2.1.1 Effect of Elevated Temperature 

Some aspects of plant growth are enhanced by increases in ambient temperature, 

while others are reduced. These effects are outlined in this section. Rising 

temperature increases the rates of leaf appearance, leaf extension and growth, while 

the rates of leaf death, senescence and weight per unit leaf length decline (Clark, 

Newton, Bell and Glasgow, 1995). However, according to Davies (1977) and Robson 

et al. (1989), there is a considerable degree of synchronisation between the 

appearance of new leaves and the death of existing leaves. The final size and shape 

of the leaf, and the rate and duration of leaf expansion are also influenced by 

temperature, with the optimum temperature for most aspects of leaf growth of northern 

temperate grasses being in the region 20-25°C (Robson, Ryle and Woledge, 1988). 

Davidson and Robson (1986) reported that the specific leaf area increased with 

temperature. In contrast, increased ambient temperatures during the summer result in 

decreasing the specific leaf area (Ferris, Nijs, Behaeghe and Impens, 1996b). 
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The affect of temperature on the rate of photosynthesis is variable. On one hand, 

Woledge and Dennis (1982) reported an increase in the rate of photosynthesis with 

elevated temperature, while on the other, Nijs and Impens (1996) reported a 

decrease. Increasing the ambient air temperature can result in the vapour pressure 

deficit also increasing, which will reduce the rates of stomatal conductance and 

photosynthesis (Woledge, Bunce, and Tewson, 1989), and the density of the stomata 

is also increased (Ferris et a/., 1996a). The rate of respiration is also increased with 

elevated temperatures (Robson, 1981). Nijs and Impens (1997) reported that 

increasing the ambient temperature by 4°C reduced the final yield by 12% relative to 

the control over a 90-day growing period. 

2.2.1.2 Effect of Global Warming 

2.2.1.2.1 Effect of Global Warming on Shoot and Root Biomass 

With global warming, shoot production is enhanced, although the effects on root 

production are variable. Consequently, the impact of elevated ambient CO2 

concentrations on the rootshoot ratio is also variable. The evidence for these impacts 

is outlined below. 

Enhancing the atmospheric CO2 concentration by 300 ppmv increased the shoot 

biomass by 11-22% after 57 days of growth (Schenk et a/., 1995). A similar 

response was observed by Nijs, Impens and Behaeghe (1989a). On the other hand 

the yield enhancement reported by Schenk, Jager, and Weigel (1997a) was between 

5% and 9% when the atmospheric CO2 concentration was increased from 380 ppmv 

to 670 ppmv. However, the response between years may differ as observed by 

Schapendonk, Dijkstra, Groenwold, Pot and Van de Geijn (1996), who reported an 
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increase of 19.9% in the accumulated carbon in the first year of the experiment and 

25.1% in the second for a doubling of the atmospheric CO2 levels. Jones et al. 

(1996b) observed that doubling the CO2 concentration of field-grown swards resulted 

in an increase in yield of 20%, 28%, 21 % and 8% in the first, second, third, and fourth 

years respectively. However, an increase of 43% in the harvestable yield of young 

spaced plants was detected (Jones et al., 1996b). On the other hand, Schenk et al. 

(1995) observed that plant density did not affect the enhanced growth. 

Over a growing season Casella et al. (1996) observed increases of 6% in the yield of 

the material harvested from the May, June and October cuts, whereas the yield was 

enhanced by 48% for the July and September cuts when the swards were subjected to 

a lack of moisture. In contrast Jones et al. (1996a) reported a greater increase in yield 

for May and August than for June and July. Although the dry-matter yield was 

enhanced by CO2 concentration, the relative daily growth rate was unaffected by CO2 

level (Bunce and Caulfield, 1991). In contrast, Hardacre, Laing and Christeller (1986) 

reported an increased growth rate, although the effect of elevated CO2 was reduced at 

high irradiance levels. Nevertheless, Nijs and Impens (1996) observed a reduction in 

yield of 29% for a perennial ryegrass sward grown under winter conditions 

experienced in Belgium. Coupling the elevated CO2 with an increase in temperature 

of 4°C reduced the decrease to 13%. However, in another experiment, Nijs and 

Impens (1997) reported that elevating the ambient concentration of CO2 increased the 

yield by 38%, while coupling the increased CO2 levels with a temperature increase of 

4°C reduced the increase to 19%. The level of nitrogen fertiliser application may also 

affect the enhancement of yield by increased CO2 concentrations; with lower nitrogen 

application resulting in greater increases in harvestable material (Casella et a/., 1996). 
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Nevertheless, there was no significant interaction between nitrogen and CO2 on the 

yield. The response of different cultivars of perennial ryegrass to enhanced CO2 

differs (Campbell, Laing, Greer, Crush, Clark, Williamson and Given, 1995). 

The effect of increasing the temperature coupled with elevated CO2 concentrations on 

yield appears to be partly dependent on the initial temperature. Casella et al. (1996) 

observed that increasing the temperature up to 18.5°C had a positive affect, whereas 

increasing the temperature above this level had a negative affect. Nijs and Impens 

(1996) and Nijs and Impens (1997) observed decreases in yield of between 12% and 

14% when the ambient temperature was elevated by 4°C. On the other hand, 

increasing the temperature in France during the summer had no significant effect 

(Casella et al., 1996). However, as the leaf emergence and extension rates are 

dependent on temperature, the enhancement of shoot growth by increased CO2 

concentrations will be influenced by the ambient temperature. 

The effect of increasing the CO2 concentration from 390 ppmv to 690 ppmv on root 

biomass ranged from -4% at four plants per pot to +107% at 36 plants per pot (Schenk 

et aI., 1995). In contrast to the weight of shoot material, which increased exponentially 

over the growing period, Nijs and Impens (1997) reported that the weight of roots did 

not increase after 55 days of growth. Increasing the level of nitrogen fertiliser at 

enhanced CO2 concentrations also augmented the root biomass (Soussana, Casella 

and Loiseau, 1996). 

Ryle, Powell and Tewson (1992a) observed a reduction in the rootshoot ratio with 

elevated CO2 concentrations. In contrast Nijs, Impens and 8ehaeghe (1989a) 

reported an increase of 22% in the rootshoot ratio, while Schapendonk et al. (1996) 
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observed an increase in the ratio of 18% in the first year of the experiment and 58% in 

the second. Jongen, Jones, Hebeisen and Blum (1995) also observed that the 

rootshoot ratio increased with elevated CO2 although the magnitude of the response 

was affected by the time of year the measurements were made and the rate of 

nitrogen application. This was confirmed by Soussana et al. (1996), although at low 

nitrogen application rates enhancing the CO2 levels had no effect on the rootshoot 

biomass. 

The optimal distribution of resources and biomass between the root and the shoot is 

often assumed to balance the nitrogen uptake of roots and the carbon uptake of the 

shoots (Nijs and Impens, 1997). However, Nijs and Impens (1997) observed that this 

functional equilibrium does not hold for enhanced ambient CO2 conditions as the 

uptake of carbon was excessive relative to the nitrogen uptake. Nevertheless, 

increasing the temperature for ambient and elevated CO2 conditions did maintain the 

balanced activity of the root and the shoots (Nijs and Impens, 1997), although the 

availability of moisture can affect the below ground respiration rate and hence the 

below ground biomass (Casella and Soussana, 1997). 

2.2.1.2.2 Effect of Global Warming on the Rate of Photosynthesis 

Enhancing the concentration of CO2 in the atmosphere from 340 ppmv to 680 ppmv 

increased the rate of net photosynthesis of young expanded leaves by 35-46%, and 

this increased to 60-75% when expressed on a whole plant basis (Ryle et al., 

1992a). Comparable with this, Nijs et al. (1989a) reported an increase of 45% in the 

rate of gross leaf photosynthesis at light saturation when CO2 was enhanced from 350 

ppmv to 600 ppmv. However, in perennial ryegrass the plants become acclimatised to 
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the CO2 conditions as the rate of net photosynthesis declines over time (Ryle et a/., 

1992a, Casella and Soussana, 1997). Notwithstanding, the down regulation of 

photosynthesis may not negate the gains made by the substantial increase in the rate 

of photosynthesis under elevated CO2 (Casella and Soussana, 1997). Jones et a/. 

(1996b) observed that acclimatisation occurred towards the end of the regrowth 

period, and thus the interval between cuts may affect whether acclimatisation was 

observed for agricultural grasses. The photochemical efficiency was also enhanced 

with elevated CO2 concentrations (Nijs et a/., 1989a). In contrast, the extinction 

coefficient was not affected by enhanced CO2 (Casella and Soussana, 1997). Nijs 

and Impens (1993) observed that 91% of the stimulation of the rate of CO2 uptake was 

the result of increases in the rate of photosynthesis and the photochemical efficiency. 

Nevertheless, in the longer-term the stimulation effect of enhanced CO2 concentration 

was reduced (Greer, Laing and Campbell, 1995) or in some cases resulted in a 

reduction in the rate compared to ambient conditions (Nijs and Impens, 1996). 

Combining the increased CO2 levels with increased ambient air temperature resulted 

in the rate of photosynthesis being increased compared to the rate under enhanced 

CO2 only (Nijs and Impens, 1996). Nevertheless, Greer et a/. (1995) observed that the 

maximum stimulation occurred at 18°C. 

2.2.1.2.3 Effect of Global Warming on the Rate of Dark Respiration 

The canopy dark respiration rates were observed to increase by a factor of thirteen 

when CO2 was increased from 350 ppmv to 600 ppmv (Nijs et a/., 1989a), and was 

affected by the drought status of the sward (Casella and Soussana, 1997). 

Nevertheless, CO2 concentration did not significantly affect the rates of respiration 

expressed per kilogram of material of either leaves or the whole plant (Ryle et a/., 

44 



1992a). In contrast, Bunce and Caulfield (1991) and Schapendonk and Goudriaan 

(1995) reported that enhancing the CO2 concentration decreased the rate of 

respiration per kilogram of herbage. Thus, the plants either had a lower maintenance 

respiration requirement or an increased growth conversion rate. 

2.2.1.2.4 Effect of Global Warming on the Rate of Transpiration 

The stomatal conductance and transpiration rates were also reduced at elevated CO2 

levels resulting in an increased water use efficiency (Ryle et al., 1992a). 

Nevertheless, the effect of augmented CO2 concentrations on the water use efficiency 

was affected by the available soil moisture and the level of nitrogen application 

(Casella et a/., 1996). 

2.2.1.2.5 Effect of Global Warming on the Leaf Growth Characteristics 

The effect of enhanced CO2 concentrations on leaf growth is dependent on the 

individual characteristic. The ambient concentration of CO2 does not appear to affect 

the growth, senescence per tiller or lamina weight per unit length of the perennial 

ryegrass (Clark et a/., 1995). However, according to Clark et a/. (1995), the rate of 

senescence was a function of the efficiency of the harvesting procedure, and may not 

reflect the effect of enhanced CO2 on senescence. Ryle et al. (1992a) observed that 

augmenting the atmospheric CO2 levels resulted in a significant reduction in the 

specific leaf area. The reduction in specific leaf area is exacerbated during the 

summer compared to the spring when the CO2 levels are enhanced (Ferris et al., 

1996b). Differences have also been observed between spring and summer on the 

effect of CO2 and temperature on leaf growth characteristics (Ferris et al., 1996b). 

Roumet and Roy (1996) observed that wild species of L. perenne had a lower specific 
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leaf area than cultivated varieties and were less responsive than the cultivated 

varieties to enhanced CO2. The lower specific leaf areas were associated with higher 

concentrations per unit of leaf area of nitrogen, lignin and cellulose, and by a higher 

proportion of dense tissues. Although the effect of CO2 on the thickness of leaves was 

insignificant, enhancing the CO2 concentration and the temperature increased the 

thickness of leaves in summer and decreased it in spring relative to the controls 

(Ferris et al., 1996a). 

2.2.1.2.6 Effect of Global Warming on Tillering 

The tiller number of perennial ryegrass has been reported to increase with elevated 

CO2 (Schapendonk et al., 1996). However, in contrast, no effect on tiller numbers was 

observed in perennial ryegrass swards either grown in monoculture (Ryle et al., 

1992a; Schenk et aI, 1995) or grown in a mixed sward (Clark, et al., 1995). 

2.2.1.2.7 Effect of Global Warming on Nitrogen Concentration 

The nitrogen concentration within the above-ground plant is decreased under global 

warming, although the impact on the total nitrogen yield is dependent on the effect of 

global warming on both the nitrogen concentration and the plant biomass. The effect 

of growing perennial ryegrass under enhanced CO2 conditions resulted in a significant 

reduction in the nitrogen concentration within the leaf (Ryle et al., 1992a; Soussana 

and Hartwig, 1996). This resulted in the nitrogen concentration in the total shoot 

weight and the whole plant also being Significantly lower (Ryle et al., 1992a). 

Similarly, Schenk et al. (1995) observed a reduction in the nitrogen concentration of 

the shoot, although the concentration in the root biomass was unchanged by elevated 

CO2- Nevertheless, the total nitrogen yield obtained from the shoots was unchanged, 
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while the total nitrogen yield harvested in the root material was increased (Schenk et 

al., 1995). Soussana et al. (1996) observed that enhancing the CO2 concentration 

resulted in a decrease in the nitrogen yield, whereas increasing the temperature 

alleviated the decline resulting from increasing the CO2 concentration. On the other 

hand, Nijs and Impens (1996) observed that enhanced CO2 and temperature during 

the winter had no significant effect of the leaf nitrogen levels. However, the effect on 

the nitrogen concentration of the leaf laminae varied throughout the growing season 

with the spring and the autumn cuts having enhanced nitrogen concentrations, while 

the nitrogen concentration for the summer cuts was not affected (Soussana et al., 

1996). Nevertheless, the influence of global warming on the nitrogen levels within the 

plant is affected by the level of nitrogen fertiliser applied (Soussana et al., 1996). 

2.2.1.3 Conclusions Regarding the Effect of Climate Change on Perennial 

Ryegrass 

Increasing the ambient temperature: 

• increases the rates of leaf appearance, leaf extension and plant growth; and 

• increases the rate of respiration. 

Nevertheless, increasing the temperature has been observed to both increase and 

decrease: 

• leaf senescence; 

• specific leaf area; and 

• the rate of photosynthesis. 
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Elevating the ambient concentration of CO2: 

• increases in shoot biomass production, although the magnitude varies inter­

and intra-seasonally and acclimatisation may occur, while the level of 

response also varies with nitrogen fertilisation rate and ambient 

temperature; 

• is inconclusive as far as root biomass production is concerned; 

• has an inconclusive effect on the rootshoot ratio; 

• enhances the rate of photosynthesis, although acclimatisation may occur; 

• either has no effect or decreases the rate of respiration; 

• decreases in the rate of transpiration and stomatal conductance; 

• reduces the specific leaf area; 

• has no affect on leaf growth and senescence; 

• either has no effect or increases the number of tillers; 

• decreases the nitrogen concentration of the above-ground plant, while in the 

root the concentration is unchanged; and 

• has a variable effect on the total nitrogen yield. 

2.2.2 White Clover Production 

2.2.2.1 Effect of Elevated Temperature 

As with the perennial ryegrass crop, temperature affects the rate of crop development, 

and the direction of the change is again dependent on the actual process. Elevating 

the ambient temperature increases the rate of leaf appearance, leaf weight, leaf area, 

the length of the petiole and the growth per growing point (Clark, et a/., 1995; Davies 
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and Jones, 1992}, but decreases the branching of apical meristems and the lifespan of 

the leaves (Hart, 1987). In contrast, leaf size is apparently not affected by 

temperature (Junttila, Svenning and Solheim, 1990). However, the rate of 

development also differs between cultivars (Davies and Jones, 1992; Junttila et al., 

1990). As regards the components of yield, increasing the temperature resulted in the 

growth rate of the shoot being enhanced, whereas the growth rate of the root was 

unaffected, and thus resulted in a decrease in the rootshoot ratio (Hatch and 

MacDuff, 1991). In contrast, Ryle and Powell (1992) observed that the root growth 

rate was reduced by increasing temperature. As the rate of development increases 

with higher temperatures, the leaf:stem ratio tends to decline and thus reduces the 

digestibility of the crop (Buxton, 1996). 

The rates of photosynthesis (Campbell et al., 1995; Ryle, Woledge, Tewson and 

Powell, 1992b; Woledge and Dennis, 1982) and respiration (Woledge and Dennis, 

1982) are enhanced by raising the ambient temperature, whereas the rates of 

transpiration and stomatal conductance decline (Ryle et al., 1992b). Nevertheless, if 

the vapour pressure deficit increases with the temperature, the rates of stomatal 

conductance and photosynthesis are reduced, although white clover is less sensitive 

to increases in the vapour pressure deficit than perennial ryegrass (Woledge et al., 

1989). The relative growth rates and the leaf protein content are also enhanced by 

increasing temperature (Campbell et al., 1995). As the temperature increases, the net 

uptake of nitrogen increases, but the proportional contribution of the nitrogen uptake 

supplied by biologically 'fixed' nitrogen declines (Hatch and MacDuff, 1991). 
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2.2.2.2 Effect of Global Warming 

2.2.2.2.1 Effect of Global Warming on Shoot and Root Biomass 

Global warming enhances the rates of shoot and biomass production, although the 

effects on the rootshoot ratio are variable. The evidence for these effects is outlined 

in this section. The effect of increasing atmospheric CO2 levels by 300 ppmv was an 

increase of 29% and 66% respectively in shoot and root biomass after 57 days of 

growth (Schenk et al., 1995). Nevertheless, the increase in the shoot biomass 

harvested over a four-month period was between 16% and 38% when the 

atmospheric CO2 concentration was increased from 380 ppmv to 670 ppmv (Schenk 

et al., 1997a). Similarly, during an experiment, where the plants were continually 

defoliated, increasing the concentration of CO2 resulted in an increased shoot and root 

biomass throughout the 81 days (Ryle and Powell, 1992). Nevertheless Ryle, Powell 

and Davidson (1992c) observed that, after an initial period, the relative growth rate of 

plants grown at current ambient conditions was similar to those grown at enhanced 

CO2 levels. However, the effect of elevated CO2 on the growth rate is affected by the 

irradiance levels experienced by the crop with high light levels resulting in a greater 

increase than low light levels (Hardacre et al., 1986). On the other hand, planting 

density did not influence the effect of climate change on the yield of white clover 

(Schenk et al., 1995). 

As regards the rootshoot ratio, Ryle and Powell (1992) reported that it was decreased 

by both increased concentrations of CO2 and elevated temperatures. Nijs, Impens 

and 8ehaeghe (1989b), and Ryle et al. (1992c) also observed the same effect with 

increasing CO2 concentrations. In contrast, Scheidegger and N6sberger (1984) 

reported an increase in the rootshoot ratio with increasing CO2 levels in the first 
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growth period, whereas, after defoliation, CO2 had no effect. Significantly, in a field 

experiment the effect of increased concentrations of CO2 on the rootshoot ratio was 

influenced by the application rate of nitrogen (Jongen et al., 1995). This suggests that 

the reduction in the rootshoot ratio may be partly due to some physical restriction of 

root growth. 

2.2.2.2.2 Effect of Global Warming on the Rate of Photosynthesis 

The rate of gross leaf photosynthesis at light saturation was stimulated by 90% when 

CO2 was enhanced from 350 ppmv to 600 ppmv (Nijs et al., 1989b). According to 

Ryle et al. (1992b), the rate of whole plant photosynthesis was elevated by 57-75% 

when CO2 levels were augmented from 340 ppmv to 680 ppm v and the temperature 

was increased by 3°C. Nevertheless, they only observed a 17-29% increase in the 

rate of net leaf photosynthesis measured at constant irradiance levels and enhanced 

CO2 levels. As the irradiance increased the stimulation of the rate of net 

photosynthesis with elevated CO2 levels also increased (Ryle et al., 1992b). As with 

perennial ryegrass, the stimulation of the rate of CO2 uptake was the result of 

increases in the rate of photosynthesis and the photochemical efficiency (Nijs and 

Impens, 1993; Nijs et al., 1989b). Ryle et al. (1992b) and Nijs et al. (1989b) observed 

no reduction in the rate of net photosynthesis with acclimatisation. 

2.2.2.2.3 Effect of Global Warming on the Rate of Dark Respiration 

The eleven-fold increase in rates of dark respiration observed by Nijs et al. (1989b) 

when CO2 levels were enhanced from 350 ppmv to 600 ppmv may be partly 

connected to the increased plant size. However, the rate of leaf respiration may also 
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have been elevated. In contrast, Ryle et al. (1992b) observed no significant effect on 

leaf or plant rates of respiration expressed per kilogram of material. 

2.2.2.2.4 Effect of Global Warming on the Rate of Transpiration 

Augmenting the ambient levels of CO2 increases the resistance of the stomata and 

decreased transpiration rates which results in increasing the water use efficiency (Ryle 

et al., 1992b; Nijs et al., 1989b). This effect was observed to be enhanced under 

increasing irradiance levels (Ryle et al., 1992b). 

2.2.2.2.5 Effect of Global Warming on the Leaf and Stolon Growth 

Characteristics 

Augmenting the CO2 concentration results in significantly increased lamina weight per 

unit area (Clark et al., 1995) and weight of a fully expanded trifoliate leaf. (Clark et al., 

1995; Ryle et al., 1992c). After a six-week experimen,t, white clover plants grown at 

680 ppmv had twice the total expanded leaf surface than those grown at 340 ppmv 

(Ryle, et al., 1992c). Increasing leaf number contributed 70% of the increase, with the 

remaining 30% due to the expansion of the individual leaf area. The leaf appearance 

rate and the lamina area per petiole were unaffected by enhanced CO2 

concentrations, although there was a tendency for the leaf area to increase under 

elevated CO2 and increasing temperature (Clark et al., 1995). Enhanced CO2 

increases the number of stolons rather than the number of leaves per plant (Ryle and 

Powell, 1992). The specific leaf area can be reduced by elevated CO2 (Ryle and 

Powell, 1992; Overdieck and Reining, 1986). Ryle et al. (1992c) observed a similar 

trend for the first half of a six-week experiment. However, in the second three-week 

period the specific leaf areas for both CO2 treatment levels were similar. On the other 
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hand, Manderscheid, Bender, Schenk and Weigel (1997) observed that the specific 

leaf area was not affected by elevated CO2 concentrations. 

2.2.2.2.6 Effect of Global Warming on Nitrogen Concentration and the 

Biologically Fixed Nitrogen 

Increased CO2 levels tends to decrease the nitrogen concentration of the root (Schenk 

et al., 1995) and shoot (Zanetti, Hartwig, Luscher, Hebeisen, Frehner, Fischer, 

Hendrey, Blum and N6sberger, 1996), although the total nitrogen in the shoot and root 

is increased (Zanetti et al., 1996; Schenk et al., 1995). Similarly, Soussana and 

Hartwig (1996) reported that the yield of nitrogen harvested in the plant material was 

augmented with elevated CO2 concentrations. Nevertheless, Ryle and Powell (1992) 

reported that, in plants grown under enhanced CO2 levels, the nitrogen concentration 

within the leaves fell and that of the stolons increased, although the nitrogen 

concentration of the root, nodules and total biomass was unaffected. 

The nitrogen fixed by white clover was increased by the equivalent of 74 kg nitrogen 

ha -1 when atmospheric CO2 concentration was raised from 390 ppmv to 690 ppmv 

(Schenk et al., 1995). Similarly, Zanetti et al. (1996) also reported increases in the 

symbiotically fixed nitrogen in swards containing white clover as either a monoculture 

or in a mixture. However, a greater enhancement in the fixed nitrogen was observed 

for mixtures. This increase in nitrogen fixation as a result of enhanced CO2 could be 

due to an increase in the number of nodules per plant and the mean weight per nodule 

(Ryle and Powell, 1992). On the other hand, the increase could be due to reduced 

soil nitrogen availability resulting from increased nitrogen demand by the system 

(Zanetti et al., 1996). In contrast, Crush (1993) predicted that the effect of CO2 

concentration on the ability of white clover to fix nitrogen would have limited effect. 
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2.2.2.3 Conclusions Regarding the Effect of Climate Change on White Clover 

The impacts of elevated ambient temperature on white clover production are that 

• leaf weight, leaf area, length of the petiole, senescence and leaf growth are 

enhanced; 

• the growth rate of the shoot is increased; 

• the rates of photosynthesis and respiration are increased; 

• the rate of stolon branching declines; 

• the rate of transpiration and stomatal conductance are reduced; and 

• the growth rate of the root is either decreased or is not affected. 

Increasing the ambient CO2 concentration: 

• increases shoot and root biomass production; 

• has no conclusive effect on roots hoot ratio, but the effect can be influenced 

by the application rate of fertiliser; 

• enhances the rate of photosynthesis, but no acclimatisation was observed; 

• has no conclusive effect on the rate of respiration; 

• decreases the rate of transpiration; 

• increases the lamina weight; 

• has either no effect or increases the rate of leaf appearance and lamina 

area; 

• either reduces or has no effect on the specific leaf area; 

• decreases the nitrogen concentration of the leaves, although the effect on 

the stolons and root is variable; 
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• either has no effect or increases the total nitrogen yield; and 

• increases the rate of biologically fixed nitrogen by the white clover. 

2.2.3 Effect of Global Warming on Production of Mixed Perennial Ryegrass and 

White Clover Swards 

2.2.3.1 Effect of Global Warming on the Sward Yield and Composition 

Global warming tends to increase the yield harvested from mixed swards as Overdieck 

and Reining (1986) reported a 60% increase in production at ambient temperatures. 

Similarly, Newton, Clark, Bell, Glasgow and Campbell (1994) reported that augmented 

CO2 levels resulted in an increase of 7.2% in herbage accumulation and 50.6% in root 

material. However, this increase in above-ground pasture growth with elevated CO2 

concentrations was only significant when the temperature was maintained at the 

highest level used in the experiment. 

According to Schenk et al. (1997a), the enhancement in yield for the mixed sward was 

lower than that observed for pure white clover swards. Increasing the CO2 

concentration from 330 to 900 ppmv for simulated grass - white clover swards 

resulted in an increase in growth rate of 32%, whereas the growth rate was increased 

by 39% and 52% respectively for grass and white clover grown in monoculture 

(Hardacre et al., 1986). However, the actual yield of white clover harvested 

decreased when the ambient concentration of CO2 was elevated from 525 ppmv to 

700 ppmv, although both yields were significantly higher than for ambient conditions 

(Clark, Newton, Bell and Glasgow, 1997). On the other hand, the growth rates of the 

perennial ryegrass were suppressed for CO2 concentrations of 525 ppmv compared to 
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either the control (325 ppmv) or CO2 concentrations of 700 ppmv. The response of 

mixed swards to elevated CO2 also varied during the season (Clark et al., 1997). 

They observed that the growth rates of the white clover increased throughout the 

season with the biggest increase occurring in the late autumn. Nevertheless, 

acclimatisation was not observed in turf taken from a mixed sward (Newton, Clark, Bell 

and Glasgow, 1996), although it is recognised that the CO2 fertilisation effects are not 

necessarily independent of the duration of the experiment (Clark et al., 1997). 

Nonetheless, according to Clark et al. (1997) increasing the experimental period from 

1 year to 14 months actually increased the yield response. 

In grass - white clover pasture turf, doubling the current ambient concentrations of 

atmospheric CO2 (350 ppmv) is reported to have increased in the proportion of white 

clover from 22% to 38%, while decreasing perennial ryegrass from 34% to 22% 

(Newton et al., 1994). Schenk et al. (1997a) and Zanetti et al. (1996) have also 

observed that enhancement of white clover in the sward was greater than that 

experienced by the perennial ryegrass component. A similar effect of white clover 

becoming more dominant at elevated CO2 concentrations is described for a mixed 

white clover - Poa pratensis sward (Stewart and Potvin, 1996), and in mixtures 

containing several species (Clark et al., 1997; Campbell et al., 1995; Newton, Clark, 

Bell, Glasgow, Tate, Ross, Yeates and Sagger, 1995), Nevertheless, Overdieck and 

Reining (1986) observed that the growth of the shoots and the roots of perennial 

ryegrass continued to be enhanced at elevated CO2 levels, whereas the growth of 

white clover was unaffected after the first cut. It has also been observed that 

increased ambient daily temperature at current concentrations of CO2 increased the 
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proportions of white clover biomass and leaf area in the mixed sward (Faurie, 

Soussana and Sinoquet, 1996). 

The yield response of the components to enhanced levels of CO2 varied with the 

application of nitrogen fertiliser. In mixed swards, when no nitrogen was applied, 

elevating the CO2 concentration to 670 ppmv increased the white clover yield by 

between 20 and 42%, while the effect on the yield of perennial ryegrass ranged from a 

decrease of -33% to an increase of 5% (Schenk, Jager and Weigel, 1997b). In 

contrast, when the nitrogen fertiliser was increased to 200 kg ha-1
, Schenk et 81. 

(1997b) observed that the enhancement in the yield of white clover (16-38%) tended 

to be reduced, whereas the enhancement in the yield of perennial ryegrass tended to 

be increased (-1-9%) relative to the situation where no nitrogen was applied. 

Similarly, the proportion of white clover biomass and leaf area in the mixed sward was 

decreased by nitrogen fertiliser applications (Faurie et al., 1996). 

According to Zanetti et 81. (1996), the change in the sward composition with elevated 

CO2 will have implications for the enhancement in the nitrogen fixed symbiotically by 

the white clover. As the proportion of white clover in the sward increases the demand 

for nitrogen by the sward will decrease and therefore the decrease in the available soil 

nitrogen is reduced. Consequently, as the nitrogen fixed by the white clover is a 

function of the nitrogen demands of the system, the increase in nitrogen fixation with 

elevated CO2 will decline as the proportion of white clover in the sward increases. 

However, Hardacre et al. (1986) observed that the growth responses of perennial 

ryegrass, white clover and the mixed sward were influenced by the light levels under 

which they were grown. In the cases of white clover and mixed swards, there was 
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also a significant interaction between the light levels and the CO2 concentration. At 

high light levels this resulted in the response of the mixed sward to increased CO2 

levels being of the same magnitude as the ryegrass sward, whereas at low light levels 

and low rates of fertiliser applications the response was similar to that of a white clover 

sward. 

2.2.3.2 Effect of Global Warming on Mixed Swards under Water Stress 

Under water-stressed conditions, the rate of photosynthesis of a mixed sward was 

enhanced under elevated CO2 (Newton et al., 1996). The root length density was also 

significantly increased by CO2, but was not significantly affected by soil moisture 

deficit. However, at elevated CO2 levels the root length density was unaffected by 

drought, whereas it was reduced under ambient concentrations of CO2 . Nevertheless, 

this was not observed for the above ground growth rate. After rewatering, the growth 

of the turf under ambient conditions was enhanced. Thus, the relative enhancement 

of increased CO2 concentrations on the above-ground growth was reduced. The 

effect of water stress at elevated CO2 on the composition of the turf was to reduce the 

proportion of white clover and increase the proportion of C3 grasses (Newton et al., 

1996). 

2.2.3.3 Effect of Global Warming on the Leaf Growth Characteristics 

In a 1:1 mixture of perennial ryegrass and white clover, the number of leaves per plant 

does not appear to be affected, but the area of each leaf is apparently increased 

under elevated CO2 conditions (Overdieck and Reining, 1986). The specific leaf area 

is also observed to decline for both the perennial ryegrass and white clover 

components. However, it was only significant for the white clover (Overdieck and 
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Reining, 1986). Similarly, Clark et al. (1997) observed that the specific leaf area of the 

white clover declines with elevated CO2 levels, although the specific leaf area of the 

perennial ryegrass is not affected. 

The growth response per growing point to enhanced CO2 levels is increased at higher 

temperatures (Clark et al., 1995). Similarly, elevating the ambient concentration of 

CO2 also tends to increase the growth per growing point, although this is not 

significant (Clark et al., 1997). Nevertheless, the number of white clover growing 

points increases with elevated CO2 concentrations and this effect is the major 

determinant of the increased yield (Clark et al., 1997). On the other hand, Clark et al. 

(1997) observed that for CO2 concentrations of 525 ppmv the number of grass tillers 

at the start of the second year is approximately half of those found at the 325 ppmv 

and 700 ppmv CO2 levels. 

As white clover tends to have a higher growth rate than perennial ryegrass in the 

spring and summer (Woledge, Reyner, Tewson and Parsons, 1992) the enhanced 

CO2 concentrations may result in a greater stimulus to white clover than perennial 

ryegrass. This will result in the proportion of white clover in the sward being 

increased. Elevating the ambient concentration of CO2 increases the height of the 

clover component, whereas the height of the perennial ryegrass component declines 

(Schenk et al., 1997b). 

2.2.3.4 Conclusions Regarding the Effect of Climate Change on Mixed Perennial 

Ryegrass and White Clover Swards 

Augmenting the ambient concentration of CO2 modifies the growth of mixed swards in 

the following ways: 
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• the yield increases; 

• the percentage of white clover in the sward is also increased; 

• the change in yield for each component is dependent on the rate of nitrogen 

fertiliser applications and the level of water stress experienced by the crop; 

• leaf area increases; 

• the specific leaf area of white clover declines while the reduction the specific 

leaf area for the perennial ryegrass component is either non-existent or is 

smaller than exhibited by the white clover component; and 

• the number of growing pOints for the white clover component tends to 

increase, whereas the number of perennial ryegrass tillers declines. 

2.3 Modelling Forage Production 

The objective of modelling forage production systems is to simulate interactions of all 

the important factors influencing the growth of forage. This requires an understanding 

of a complex system, which can be broken down into several discrete elements. This 

review summarises the developments and evolution of forage production models. The 

elements that require to be modelled include environmental and physiological factors 

and are summarised in Figure 2-1. In grasslands and moorlands that contain more 

than one species, recognition is needed that there is competition between herbage 

species for the limited resources. This can therefore result in different responses 

between species to enhanced CO2 and temperature, and thus it is inappropriate to 

model pastures as a "green box" (Campbell et al., 1995) or predict the effect on 

mixtures by studying monocultures (Diaz, 1995). 
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There are two broad approaches to modelling, namely empirical and mechanistic. 

The first is based on statistically derived relationships. This requires a large bank of 

data from which the relationships are estimated. Empirical models tend to be specific 

to the localities from where the data were originally derived. The second approach, 

mechanistic modelling, requires that the mechanisms of plant growth are described 

within the model. These mechanisms include photosynthesis, respiration and 

partitioning. The relationships describing the individual processes are empirically 

derived. The representation of the photosynthesis process in mechanistic crop growth 

models varies from empirically based relationships through semi-empirical 

descriptions to complex biochemical models. 
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Figure 2-1 Environmental and Physiological Factors that affect Herbage Yield. 

An inherent part of the modelling process is the validation phase. This consists of two 

stages, namely; 

1. validation at the level of the assumptions; and 
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2. validation of the simulations based on the combination of individual 

equations. 

However, the validation process is essentially a subjective procedure. This is because 

models may be partly dependent upon non-quantitative, subjective knowledge and the 

available data may be of doubtful validity (Dillon and Anderson, 1990). 

The review of modelling will be divided into the following sections: 

1. empirical grassland models; 

2. models of the photosynthesis process; 

3. mechanistic grassland models; 

4. models of the grazing situation; and 

5. systems models. 

2.3.1 Empirical Grassland Models 

Sinclair and Corrall (1978), from trials on irrigated and non-irrigated swards, proposed 

a model to predict the observed differences in yield. Subsequently Corrall (1984) 

developed the model by dividing the growing season into three stages in order that the 

effect of the changes in physiological development of the grasses could be 

incorporated. Herbage growth rate has also been described by Brereton and Ryan 

(1984) as a function of the daily temperature from May-September, radiation and the 

soil moisture deficit. 

A number of empirical models describing grass growth have been derived from 

grassland manuring (GM20) trials (Morrison, Jackson and Sparrow, 1980). Doyle, 

Corrall, Thomas, Le Du and Morrison (1983) used this data to determine site 
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classifications, which were an indication of the potential of the sites. In this model, 

they predicted grass growth from available water capacity, mean summer rainfall and 

fertiliser nitrogen as well as the site classification. Doyle and Lazenby (1984) further 

developed the model in order that it could predict growth at a range of sites. The 

effect of the cut number, assuming the herbage was cut every four weeks, and soil 

nitrogen was incorporated into an empirical model of grass growth by Doyle, Ridout, 

Morrison and Edwards (1986). The model was further extended to describe the 

partitioning of the grass area between cutting and grazing for the dairy herd, and the 

effects of altitude on grass growth were also incorporated (Doyle and Edwards, 1986). 

Dowie, Doyle, Spedding and Pollot (1988) incorporated latitude, altitude and drainage 

into a similar model. 

Empirical models have also been developed to predict the yield of grass - clover 

swards. In the model developed by Doyle and Morrison (1983) the quantity of 

nitrogen available for grass growth is dependent on the applied nitrogen, the level of 

soil nitrogen, the nitrogen 'fixed' by the clover and the nitrogen excreted by the grazing 

stock. Soil moisture has an effect on the uptake of the various forms of nitrogen. 

Grass growth is dependent on the available nitrogen, whereas clover growth is 

dependent on the seasonal growth profiles, water and a competition effect that is 

based on the quantity of nitrogen fertiliser applied. Doyle, Morrison and Peel (1987) 

refined the model to incorporate the effects of temperature, radiation and soil moisture 

deficit on clover growth. In the model by Cacho, Finlayson and Bywater (1995), 

forage production is predicted by a sigmoid curve with leaf mass as the input variable. 

The effects of botanical composition, soil temperature, water and nutrient availability 

modifies the herbage production. 
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There are even fewer multi-species models of forage production. Armstrong, Gordon, 

Hutchings, IlIius, Milne and Sibbald (1997a) have developed an empirical model of 

forage growth for seven dwarf-shrub dominated and five grass-dominated vegetation 

types which are commonly found in hill areas of the UK. The empirical description of 

grass growth is based on models of Doyle and Lazenby (1984), and Doyle and 

Edwards (1986). Blackburn and Kothmann (1989) have developed a model that 

predicts the standing biomass, crude protein and digestibility of live and dead parts of 

a sward, which can be composed of several different species of grasses and forbes. 

The model was designed to be integrated with a diet selection model. However, it 

does not simulate growth. 

The effect of climate change on the distribution of agricultural grassland in England 

and Wales was predicted by the model developed by Rounsevell, Brignall and 

Siddons (1996), which is based on a range of yield and trafficability/poaching classes. 

Incorporated in the model is a simple water balance model based on potential 

evapotranspiration and rainfall. However, the model is based on empirical evidence 

under current climatic conditions and does not predict dry-matter yield. As such, this 

model is only appropriate for assessing the long-term effects of changes in climate 

rather than year-to-year variability. 

2.3.2 Models of the Photosynthesis Process 

2.3.2.1 Empirical Models 

Most empirical models describe net photosynthesis in terms of the relative growth rate 

(Torssell and Kornher, 1983). Thus, Bootsma and Boisvert (1991) and Bootsma, 

Boisvert and Dumanski (1994) described net biomass production as a function of the 

65 



maximum rate of biomass production, which is modified by the fraction of the day that 

is overcast and the maximum leaf photosynthesis rate. Incorporated in Bootsma and 

Boisvert (1991) and Bootsma et al. (1994) models of grass and lucerne production are 

the effect of moisture stress on yield and the effects of temperature and daylength on 

the cutting schedule. Armstrong and Castle (1995) have described a model of grass 

growth where the maximum growth rate is modified by radiation, crop weight, nitrogen 

supply, temperature and the soil water balance. Models have also been developed 

where the rate of net photosynthesis is dependent on the radiation received by the 

crop and the efficiency of conversion of radiation to herbage (e.g. Broad and Hough, 

1993; Brereton and Hope-Cawdery, 1988). These models have often been refined to 

include Beer's law and thus the effect of light attenuation through the canopy (e.g. 

Maas, 1993; Amir and Sinclair, 1991a). The effect of increased atmospheric CO2 can 

be incorporated into these models by predicting the increase in the efficiency of 

conversion with increased CO2 from experimental data (Easterling, Crosson, 

Rosenberg, McKenney and Frederick, 1992). 

According to Johnson and Thornley (1984), the rectangular hyperbola is the most 

widely used empirical model for describing leaf gross photosynthesis. In their model, 

the function was integrated through the canopy to calculate canopy gross 

photosynthesis. The light intercepted by the canopy is described by Beer's law, and 

the photosynthetic activity of each leaf is a function of the irradiance received by that 

leaf. The effect of shading of leaves from direct sunlight on the rate of photosynthesis 

can be included in the model. However, this model results in a poor fit to experimental 

data (Marshall and Biscoe, 1980). 
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2.3.2.2 Semi-Empirical Models 

The non-rectangular hyperbola is a semi-empirical model, which results in an 

extremely good fit to the experimental data (Marshall and Biscoe, 1980). As with the 

rectangular hyperbola, the radiation intercepted by the leaf is described by Beer's law, 

and canopy gross photosynthesis is calculated by integration. With the non­

rectangular model, the maximum rate of photosynthesis and the initial slope of the 

curve (photochemical efficiency) reflect the underlying physiological process; however, 

this is not the case with the rectangular hyperbola (Marshall and Biscoe, 1980). 

Johnson, Parsons and Ludlow (1989) have extended the model of photosynthesis, 

outlined by Marshall and Biscoe (1980), to mixed canopies. Thornley et al. (1991) 

even incorporated the effect of increasing atmospheric CO2 concentrations by defining 

the maximum rate of leaf photosynthesis and the photochemical efficiency as 

functions of the atmospheric CO2 levels. The photochemical efficiency is also 

dependent on the CO2 conductance and the photorespiration constant, but 

independent of temperature (Thornley et al., 1991). A positive correlation between the 

maximum rate of leaf photosynthesis and the leaf nitrogen concentration has been 

observed in perennial ryegrass (Woledge and Pearse, 1985) as well as a number of 

other species (DeJong, 1982; Sands, Cromer, and Kirschbaum, 1992, Sheriff, 1992; 

Connor, Hall and Sadras, 1993). However, the function describing the relationship 

between leaf CO2 assimilation and leaf nitrogen may differ between species (Sinclair 

and Horie, 1989). This has been incorporated into the model by either modifying the 

rate by the nitrogen concentration of the plant (Thornley, et al. 1991) or by a linear 

ramp function (Thornley, 1991). 
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Hikosaka and Terashima (1995) have developed a model of leaf photosynthesis 

where the dependence of the process on radiation is described by the non-rectangular 

hyperbola. The quantity of the enzymes per leaf and light harvesting complexes 

required for the photosynthesis process are determined by the model; from this the 

nitrogen content per leaf was calculated. However, the model calculated the allocation 

of nitrogen between the photosynthetic components for a given maximum rate of leaf 

photosynthesis. 

2.3.2.2.1 Incorporating the Daily Fluctuations of Temperature and Irradiance in 

the Model of Photosynthesis 

The rate of gross photosynthesis is dependent on temperature and irradiance that 

fluctuate throughout the day. Johnson and Thornley (1984) have incorporated the 

daily variations in temperature and irradiance into their model of gross photosynthesis, 

while still using the mean daily values for these variables. This has required the 

expansion of the equation for photosynthesis into a Taylor series. The coefficients of 

variation of temperature and radiation, the correlation coefficient between temperature 

and radiation, and the second derivatives of photosynthesis with temperature and 

radiation incorporate the effects of the daily fluctuations into the model. 

Sands (1995a) has developed a simple model that calculates the daily canopy 

photosynthesis that incorporates the within-day variation in radiation. The model 

assumes that photosynthetically active radiation within the canopy follows Beer's law, 

and the effect of daily variation in radiation in the model has been simplified into 

formulae that require no integration. The variation in temperature has been 

incorporated into the model by calculating the function for the average morning and 

average afternoon temperature. The effects of nitrogen on canopy photosynthesis 
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have been built into the model by assuming that the maximum rate of leaf 

photosynthesis is linearly dependent on nitrogen concentration (Sands, 1995b). 

However, this assumes that the nitrogen concentration in the canopy declines with the 

solar radiation intercepted and that the nitrogen is optimally distributed for 

photosynthesis (Sands, 1995b). Nevertheless, within the model, the effects of soil and 

water status have been ignored. The daily model of canopy photosynthesis (Sands, 

1995a) has been extended to calculate annual canopy photosynthesis, incorporating 

the daily and seasonal variations in radiation and temperature (Sands, 1996). The 

annual intercepted radiation is calculated from daily values, which incorporated details 

of the canopy structure and development. The acclimatisation of photosynthesis to 

seasonal variation in temperature has also been included in the model. 

2.3.2.3 Complex Biochemical Models 

Hunt et al. (1991) have described a model of net photosynthesis where the rate is 

dependent on the intracellular and ambient concentration of CO2, and the stomatal 

and the boundary layer resistance. This is modified by the effect of temperature on 

the rates of gross photosynthesis and respiration, and the effect of transpiration on the 

rate of gross photosynthesis. The effects of CO2 and shoot nitrogen levels modified 

by light intensity on fixation rate are incorporated into the model. Long (1991) has 

also described a biochemical based mechanistic model of leaf photosynthesis that 

was developed by Farquhar, von Caemmerer and Berry (1980) and Farquhar and von 

Caemmerer (1982). The model describes the response of Rubisco, an enzyme that 

fixes the CO2 in the plant, and photosynthesis to the concentration of CO2 and O2, 

The rate of photosynthesis in the canopy is calculated separately for leaves in direct 

sunlight and in the shade. From the model, the effects of increased temperature and 
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enhanced CO2 levels on the rate of photosynthesis can be predicted. In the model 

described by Long (1991), the intracellular concentration of the CO2 is dependent on 

leaf temperature. However, the intracellular CO2 concentration is defined as a 

function of the ambient concentration of CO2, the rate of net photosynthesis and the 

stomatal conductance to water vapour in the models described by 8aldocchi (1994) 

and Nikolov, Massman and Schoettle (1995). In the equation described by Nikolov et 

a/. (1995), the boundary layer conductance to water vapour is also included, whereas 

Leuning (1995) included the water vapour deficit. However, this results in a model 

where the rates of photosynthesis and the stomatal conductance are interdependent 

and affect each other through the intracellular concentration of CO2 (Aphalo and 

Jarvis, 1993). Nikolov et a/. (1995) solved the set of equations using an iterative 

method. However, in non-linear biological systems iterative solutions can become 

unstable, and thus 8aldocchi (1994) developed an analytical solution. 

Nevertheless, these models are describing net photosynthesis at the level of the leaf. 

Friend and Cox (1995) and Leuning, Kelliher, De Pury and Schulze (1995) have 

developed models that are solved simultaneously for net photosynthesis and stomatal 

conductance at the canopy level. In the model by Leuning et a/. (1995) 

evapotranspiration was then determined using the Penman-Monteith (Monteith, 1965) 

equation that incorporates stomatal conductance. Nevertheless, the models do not 

incorporate the effects of water stress on stomatal conductance, and hence the effects 

of stress on net photosynthesis and transpiration are not included. 

70 



2.3.3 Mechanistic Models 

Mechanistic models of forage growth have followed three broad strategies. The first 

describes crop growth in terms of net photosynthesis with other factors modifying the 

quantity of assimilate that is converted into actual growth. The net photosynthesis has 

been described either in terms of the growth rate or the radiation use efficiency. The 

second approach describes all crop growth processes at the level of the individual 

tiller, whereas the level used for the third approach is at the total sward. The process 

of photosynthesis in the second approach has been calculated from either the 

rectangular or the non-rectangular hyperbola. In the models of the total sward, the 

process of photosynthesis has been described by the non-rectangular and rectangular 

hyperbolae as well as other empirical equations. The one exception is the model of 

forage production described by Hunt et al. (1991) in which a biochemical description of 

photosynthesis is employed. 

2.3.3.1 Models Describing the Process of Net Photosynthesis 

In the model of grass growth, described by Brereton and Hope-Cawdery (1988), the 

rate of dry-matter growth is dependent on the solar radiation received at the crop 

surface, the efficiency of conversion and whether the plant is vegetative or 

reproductive. The effect of hourly air temperatures is also incorporated into this 

model. Broad and Hough (1993) extended the model to include the effect of the leaf 

area index on the radiation intercepted. 

Torssell and Kornher (1983) developed a model of grass growth where the herbage 

mass in any given time period is dependent on the existing biomass, the leaf area 

index and the weather. The influence of weather is based on indices for temperature, 
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radiation and plant available soil water. The model developed by Lemaire, Gosse and 

Chartier (1984) based the process of accumulating aerial dry matter on the global 

incident radiation, leaf area index, the efficiency of conversion of photosynthesis and a 

rootshoot partitioning coefficient. Within the model, temperature and nitrogen have 

an effect on the ratio of leaf expansion and leaf senescence. The relationship 

between dry-matter production, radiation and the effect of conversion of solar energy 

was modelled by SZ8SZ (1984). The physiological stage of development as well as 

factors relating to soil, water and climate affected the efficiency of conversion of 

radiation to dry matter. The influences of management factors are described in the 

model by empirical relationships or statistical variables. 

Gustavsson, Angus and Torssell (1995) have developed a model that simulates the 

above-ground dry-matter growth, concentrations of crude protein and the 

metabolisable energy of stands of timothy, where the dry-matter growth is based on 

the model by Torssell and Kornher (1983). The crude protein concentration is 

estimated in relation to nitrogen uptake and the dry matter growth of the grass. The 

nitrogen uptake is dependent on the supply of available soil nitrogen, which is 

dependent on the fertiliser applied, mineralisation and the removal of the crop, and the 

capacity of the crop to absorb nitrogen. The factors used to determine the 

metabolisable energy content are the crude protein concentration, the phasic 

development, which is dependent on temperature and photoperiod, and the 

digestibility of the organic matter. The model is used to predict the dry matter, crude 

protein content and the metabolisable energy of timothy and meadow fescue swards 

in Sweden (Gustavsson et al., 1995; Gustavsson, 1995). However, the first sampling 

date from the swards is used as calibration data for the model, and the forward 
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predictions are made for the subsequent harvests (Gustavsson et a/., 1995; 

Gustavsson, 1995). 

2.3.3.2 Models at the Level of the Individual Tiller 

Johnson, Ameziane and Thornley (1983), Johnson and Thornley (1983 and 1985) and 

Thornley and Verberne (1989) have developed the Hurley model of grass growth that 

is only concerned with modelling the vegetative phase of growth. In this model the 

processes of photosynthesis, respiration, partitioning of the assimilate and 

senescence are described. The plant in the Hurley model is divided into structural and 

storage components. The models of Johnson and Thornley (1983 and 1985) have 

extended the model of Johnson et a/. (1983) by describing the tiller in terms of four 

age categories of leaves. Each age category was divided into structural and storage 

components. As there are usually three live leaves per tiller, each age category 

contains one leaf per tiller, and the fourth category contains the senescencing leaves. 

The effect of temperature on photosynthesis is described by a Q 10
1 relationship by 

Johnson et a/. (1983), whereas Johnson and Thornley (1983 and 1985) assumed the 

effect could be described by a linear relationship. In the models by Johnson and 

Thornley (1983 and 1985), respiration is also affected by temperature. The models by 

Johnson et a/. (1983) and Johnson and Thornley (1983) have assumed that crop 

growth is unconstrained by water and nutrients. The effect of available nitrogen 

(Johnson and Thornley, 1985) has also been incorporated into the model. In this 

model, temperature has an effect on the rate of nitrogen uptake, which then affects the 

partitioning of the assimilate between the root and shoot compartments. Thornley and 

1 0 10 _ the factor by which the rate increases for a temperature increment of 10° K 
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Verberne (1989) have extended the modelling of nitrogen in the model by describing 

the influence of animal excreta on the soil nitrogen and organic matter. Thornley et at. 

(1991) and Thornley (1996) have extended the Hurley model by including the effects 

of ambient concentration of CO2 and water on grass growth. Parsons, Harvey, and 

Johnson (1991) have further developed the model of Johnson and Thornley (1983, 

1984) in order to incorporate the growth of clover in grass - clover swards, where 

clover growth is described at the level of the stolon. 

2.3.3.3 Models of the Total Sward 

McMurtrie and Wolf (1983) developed a model of grass and tree growth that described 

the processes of photosynthesis, respiration and assimilate partitioning. In the model, 

the intensity of the radiation reaching the grass is reduced by the radiation intercepted 

and reflected by the tree canopy. Competition for water and nutrients is incorporated 

into the model by modifying the rates of photosynthesis for the grass component and 

reducing the fraction of the assimilates partitioned to the leaves of the trees. Caloin 

(1994) modified this model in order to analyse dry-matter partitioning in Dactylis 

g/omerata. The plant is assumed to be vegetative and is described in two 

compartments, namely the shoot and the root. Duru, Durcrocq and Tirilly (1995) have 

developed a model of the vegetative regrowth of cocksfoot and tall fescue swards, 

where photosynthesis is described as a function of the global radiation, the leaf area 

index and the radiation use efficiency. Incorporated in the model is the influence of 

nitrogen status on the leaf area index and the radiation use efficiency. The nitrogen 

status is defined as the ratio of the herbage nitrogen concentration to the optimum 

nitrogen concentration. 
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The model developed by Sheehy, Cobby and Ryle (1980) describes the sward canopy 

in terms of the vegetative development. However, grass growth is not constrained by 

water and nutrients. The processes of photosynthesis, respiration, partitioning of 

assimilate and senescence are outlined in the model. They assumed that the effect of 

the different stages of environmental factors would exert their influence on the 

partitioning assimilates through their affect on canopy photosynthesis, and thus fixed 

allocation rules are used to partition the photosynthate. The sward is described in 

terms of the leaf, root and stem compartments. Sheehy ef al. {1996} extended the 

earlier model to include the effects of nitrogen and CO2 on vegetative grass growth. 

The photosynthetic response to changes in ambient CO2 concentrations is based on 

the work of Thornley ef al. (1991). In order to include the effects of nitrogen on plant 

growth the sections in the earlier model describing the partitioning of assimilates and 

the transformation of assimilates into plant tissue are replaced. The rates of growth of 

the structural material were controlled by the concentration of nitrogen in the substrate 

pool. However, if there are insufficient carbohydrates to provide the skeleton of the 

new material and to support the respiratory cost of synthesis, the actual growth of the 

structural material are modified. Within the model, the translocation of substrates from 

one compartment to another is described using the concept of pressure driven flow 

that has been modelled by Sheehy, Mitchell, Durand, Gastal and Woodward (1995). 

Saugier, Ripley, and Lueke (1974) incorporated the effect of water use on crop growth 

in their model of a matador grassland. They modelled the growth in terms of radiation, 

energy balance and micro climate, water flow, soil heat flow, photosynthesis and 

production. Doyle, Barrs, and Bywater (1989) described a model of the growth of a 

grass sward where the processes included were photosynthesis, effect of water and 
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nutrient availability, assimilate partitioning and senescence. In New Zealand, where 

the model was developed, the primary limiting nutrient is phosphate. The effects of 

water and phosphate stress are incorporated into the model by reducing the 

photosynthate in proportion to the stress experienced by the crop. The sward is 

divided into the leaf, stem and root. In this model, the only process affected by 

temperature is photosynthesis. In the Stockpol model developed by Marshall, McCall 

and Johns (1991), the pasture is divided into leaf, stem and dead material. Equations 

dependent on the pasture mass, time of year and the pasture cover govern the 

movement of pasture among the compartments. 

The mechanistic models previously described are not capable of modelling a sward 

containing several plant communities. However, the SPUR (simulation of production 

and utilization of rangelands) model described by Hanson et al. (1988) can 

simultaneously simulate the growth and competition effects of a forage that consists of 

a homogenous mixture of up to fifteen plant species at a range of sites. In the model, 

the flow of carbon and nitrogen through the shoots, roots, propagules and standing 

dead are described for each species. In the SPUR model, actual soil evaporation is a 

function of the soil moisture status, and the potential transpiration is calculated as a 

function of the actual evaporation and the leaf area index (Hanson et al., 1993). 

Within the model, the effects of enhanced CO2 have been incorporated by assuming 

that it only affects the rate of net photosynthesis. 

Laidlaw, Withers and Watson (1994) have developed a model of a grass - clover 

sward where photosynthesis is described by the rectangular hyperbola. The 

maximum rate of photosynthesis is adjusted by temperature and soil moisture deficit. 
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The model describes vegetative and reproductive growth by modifying the assimilate 

partitioning and senescence coefficients. Thornley, Bergelson and Parsons (1995) 

have developed a model of a grass - clover sward with the purpose of investigating 

the steady states, stability and species dynamics of a mixed community. The sward is 

a horizontally homogenous soup with no differentiation of the herbage mass into 

leaves or shoots. An empirical relationship based on the leaf area index is used to 

describe photosynthesis, and the effects of the response of the sward to radiation and 

CO2 concentration are subsumed into the parameters. The assimilate is partitioned 

between the grass and clover component in relation to their effective leaf areas, and 

the partitioning between root and shoot is based on a teleonomic (goal - seeking) 

model (Thornley and Johnson, 1990). Included in the representation of the sward is a 

description of nitrogen uptake and a simple soil model. 

2.3.3.4 Models Based on a Biochemical Photosynthesis Model 

Hunt et al. (1991) developed a model of grass growth for a C3 and a C4 species grown 

as monocultures. Within the model, the effects of water stress, nitrogen uptake and 

the ambient concentration of CO2 are represented. It is assumed that the rates of 

photosynthesis and transpiration are influenced by the water stress experienced by 

the crop. The translocation of the carbon and nitrogen in the plant are dependent on 

currently available photosynthate and the total nitrogen content of the root 

respectively, and the level of water stress experienced by the crop. The effects of 

mycorrhizal fungi, bacteria and above-ground herbivores on the crop are also 

incorporated in the model. The model developed by Chen and Coughenour (1994) 

also describes grass growth for C3 and C4 species. The plant growth sub-model 

describes leaf photosynthesis, stomatal conductance, biomass production and the 
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spatial distribution of the root system. The canopy microclimate, soil water dynamics 

and soil thermal dynamics are also described in this framework. 

2.3.4 Models of the Grazing Situation 

Forage production and quality can be greatly influenced by the grazing management 

of swards. Animal intake of forages can be described by empirical and mechanistic 

models. One approach adopted in mechanistic models is to describe the intake in 

terms of factors that impose limits to intake. Another approach was to describe intake 

in terms of the eating characteristics of the animal. 

The empirical relationships between animal and feed characteristics and intake have 

been described by several empirical models (e.g. Agricultural Research Council, 1980; 

Christian, Freer, Donnelly, Davidson, and Armstrong, 1978; Graham, Black, and 

Faichiney, 1976). In these models, the typical animal characteristics included are 

weight and/or age. The attributes of the feed usually included are either 

metabolisability or feed quality and/or availability. In modelling the intake of the 

grazing dairy cow, Meijs and Hoekstra (1984) incorporated green herbage availability 

and compound feeds. 

Mechanistic models that have assumed that herbage availability is the only limiting 

factor have been outlined by Zemmelink (1980), Johnson and Parsons (1985), 

Parsons et al. (1991), Woodward and Wake (1993) and Woodward, Wake and McCall 

(1995). Woodward and Wake (1993) and Woodward et al. (1995) assumed that the 

intake rate of an animal depended only on the available herbage mass in the field. In 

relationships described by Zemmelink (1980), Johnson and Parsons (1985), and 

Parsons et al. (1991), intake was related to the maximum possible intake and either 
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the quantity of green herbage (Zemmelink, 1980) or the mass of leaves (Johnson and 

Parsons, 1985; Parsons et al., 1991) per unit area. The model by Parsons et 81. 

(1991) was capable of describing the intake of the grass and clover components for 

grass - white clover mixtures. Thornley and Verberne (1989) have extended the 

model of Johnson and Parsons (1985) to describe actual intake in terms of carbon and 

nitrogen. 

In the MIAMH model (Genin and Quiroz, 1993), the potential physical capacity of the 

animal has an effect on intake. The model describes the composition of the diet for 

ruminants grazed on rangelands. As well as the physical limit to intake, the model 

incorporates four other indices. These indices relate to the probability of encountering 

the species, the composition of the bite in terms of leaf and stem, the quality of the 

species and the preference of the animal for the particular species. 

In the models, described by Forbes (1977) and Finlayson, Cacho and Bywater (1995), 

both the physical and physiological limits to intake on a daily basis are considered. 

The physical limits are related to the size of the animal or the rumen and the 

digestibility of the feed, whereas the physiological limits are dependent on the energy 

requirements of the animal. Further developments to the model described by Forbes 

(1977) included decreasing the time-step to one minute and increasing the detail 

describing the limits to intake and the resulting rate at which the energy becomes 

available (Forbes, 1980). Doyle et al. (1989) presumed that daily intake was 

determined by the minimum of the physiological limits, the physical limits and the 

herbage availability. The herbage availability limits are described by the equation of 

Zemmelink (1980). 
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The models of Armstrong and Sibbald (1992), Baker, Bourdon and Hanson (1992), 

Forbes and Hodgson (1985), Parsons, Thornley, Newman and Penning (1994a) and 

Ginnett and Demment (1995) describe intake in terms of bite size, bite rate and time 

spent grazing. Armstrong and Sibbald (1992) describe the off-take of six grassland 

types and heather for a heather moorland where off-take is partitioned between each 

of the vegetation types. This model has been extended to describe the intake of ewes 

and lambs grazing seven dwarf-shrub-dominated and five-grass-dominated vegetation 

types, which are commonly found in the hill areas of the UK (Armstrong, Gordon, 

Hutchings, IlIius, Milne and Sibbald, 1997b). In this model, the intake is limited by 

either the diet digestibility or grazing time. In the latter case, intake is predicted from 

the bite weight and the bite rate. Diet selection is affected by the crude protein 

content of each of the functional plant groups in the FORAGE model (Baker et al., 

1992). The model of Parsons et al. (1994a) describes the selection and intake of two 

species in a mixed sward where the vertical and horizontal distribution of the 

components differed within the field. The rate of intake in the model of Ginnett and 

Demment (1995) behaves as a Michaelis - Menten function. However, when the 

model was tested on giraffes, it was found that the average time required to crop a 

bite affected the mean bite size, and that prehension and mastication were not 

mutually exclusive activities. In contrast, in sheep it has been observed that 

prehension and mastication biting were mutually exclusive (Penning, Parsons, Orr and 

Treacher, 1991). Nevertheless, in the spring Penning et al. (1991) observed that the 

sward surface height affected grazing time, ruminating time, bite rate, mastication rate 

and bite mass for sheep. However, the total intake was unaffected. 
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Thornley, Parsons, Newman and Penning (1994) have developed a model of forage 

intake and selection in a two - species temperate sward that was based on cost -

benefit analysis. Thus, the ruminant livestock attempts to select grass and clover from 

the sward so that marginal benefit equalled marginal cost. The results of this model 

suggest that the upper limit on uptake is not defined by the physiological or 

morphological constraints. The model developed by Newman, Parsons, Thornley, 

Penning and Krebs (1995) describes the intake of ruminant livestock from a two -

species sward. In this model, an abbreviated model of the gut is combined with a 

terminal reward function that describes the probability that the animal would survive to 

reproduce. The livestock must choose between grazing species 1, grazing species 2, 

grazing whichever species it encounters, resting or ruminating. 

2.3.4.1 Modelling the Effect of Climate on Forage Quality 

Forage quality can also be affected by the climate. Empirical models describing the 

effects of temperature, radiation, photoperiod and water stress on the metabolisable 

energy content (Fagerberg and Nyman, 1994) and crude protein content (Fagerberg 

and Nyman, 1995) of a timothy and meadow fescue mixture, red clover sward, and a 

grass - red clover mixture have been developed. However, the crude protein model 

requires that the initial value of the protein content has to be determined for each 

situation (Fagerberg and Nyman, 1995). 

2.3.5 Systems Models 

The systems models considered incorporate plant growth, the grazing animal and the 

output of the livestock. However, currently there are only four systems models of 

farmed livestock that are commonly grazed in Britain, with three describing beef 
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production (Hanson et al., 1993; Doyle et al., 1989; Doyle et al., 1987) and one 

describing the sheep system (Cacho et al., 1995). 

Doyle et al. (1987) have described an empirical model of a beef production system 

from grass - white clover swards which describes herbage production, dry-matter 

intake and liveweight gain. A model of a rotationally grazed 18-month beef system, 

incorporating mechanistic models of grass growth, intake and animal growth, was 

described by Doyle et al. (1989). The animal growth component was based on the 

model by Oltjen, Bywater, Baldwin and Garrett (1986). The model developed by 

(Hanson et al., 1993) also incorporates models of pasture growth (SPUR - Hanson et 

al. 1988), intake (FORAGE - Baker et al., 1992) and the Colorado beef cattle 

production model (CBCPM). CBCPM is a modification of the Texan A&M beef model 

developed by Sanders and Cartwright (1979). It is a life-cycle simulation model that 

operates at the level of the individual animals. 

The system model of sheep production developed by Cacho et al. (1995) incorporates 

a simplified pasture production model and mechanistic models of intake and sheep 

production (Finlayson et al., 1995). The pasture production under grazing was 

estimated by a sigmoid equation. 

2.4 Conclusion 

The forage models developed to date have been primarily concerned with predicting 

herbage production during the growing season (e.g. Sheehy et al., 1996; Caloin, 1994; 

Broad and Hough, 1993; Johnson and Thornley 1985 and 1983; Johnson et al., 1983; 

McMurtrie and Wolf, 1983) or have been used as a grassland management tool 

(Dowie et al., 1988; Doyle et al., 1986; Doyle and Lazenby, 1984; Doyle et al., 1983). 
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The models developed as grassland management tools examine the effects of 

climate, and the decisions taken by the farmer with respect to nitrogen application 

rates and cutting dates on the production of herbage. Gustavsson et al. (1995) have 

predicted the forage metabolisable energy and crude protein content of the herbage, 

while Parsons et al. (1991) have incorporated off-take of the herbage by sheep. 

The models that have incorporated the effects of enhanced CO2 on the photosynthesis 

process and are thus capable of exploring the effects of climate change on the 

production of forage have been developed by Hunt et al. (1991), Thornley et al. 

(1991), Sheehy et al. (1996) and Hanson et al. (1988). However, Hunt et al. (1991), 

Thornley et al. (1991) and Sheehy et al. (1996) have described only the vegetative 

growth phase of a sward containing a single species. In contrast, the model of 

Hanson et al. (1988) can describe the growth of 15 plant species. 

The effect of water stress on forage production has been incorporated into the models 

developed by Thornley (1996), Rounsevell et al. (1996), Cacho et al. (1995), Hanson 

et al. (1993), Hunt et al. (1991), Doyle et al. (1989), Doyle et al. (1987), Szasz (1984), 

Doyle and Morrison (1983), McMurtrie and Wolf (1983), Torssell and Kornher (1983) 

and Saugier et al. (1974). Nevertheless the models developed by Rounsevell et al. 

(1996), Cacho et al. (1995), Doyle et al. (1987), and Doyle and Morrison (1983) are 

empirical, and thus can only be successfully used under the conditions and sites for 

which they were developed. The inclusion of water stress in the mechanistic model 

permits the effects of climate on forage production to be studied. However, only the 

models of Thornley (1996), Hanson et al. (1993) and Hunt et al. (1991) describe the 

effects of water stress and the ambient concentration of CO2 on crop development, 
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and thus are suitable for studying the effect of climate change on forage production. 

Nevertheless, the models by Hanson et al. (1993) and Hunt et al. (1991) have been 

developed for describing species more commonly found in the US, and the model of 

Hunt et al. (1991) is primarily concerned with predicting the effect of climate change 

on microbes, fungi and soil fauna. In contrast, the Hurley model incorporating the 

water sub-model developed by Thornley (1996) is primarily concerned with describing 

vegetative growth at the level of the individual tiller. 

In conclusion, the aim of this study is to examine the effects of changes in climate and 

enhanced ambient CO2 concentrations on the production of grass and grass - white 

clover swards throughout the growing season as well as the production of livestock 

grazing these swards. Consequently, a model of grass and grass - white clover 

growth has been constructed which describes vegetative and reproductive growth as 

well as the effect of water and nutrient stress on crop development. The removal of 

herbage by both cutting and grazing has been described within the model. This model 

is specified in Chapter 3 and the models describing livestock production are outlined in 

Chapter 4. 
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3.1 Introduction 

CHAPTER 3 

THE FORAGE MODEL 

This chapter will describe the structure of the model of grass - white clover sward 

under cutting and its extension to include the removal of herbage through grazing. 

3.2 Grass - White Clover Model 

The model of the sward assumes that it is either pure grass or a grass - white clover 

mixture and that the sward is divided into paddocks. Forage production is calculated 

for each paddock on a daily basis and is presumed to be dependent on herbage 

mass, temperature, radiation, atmospheric CO2 concentration, available nutrients and 

water. There are five state variables, leaf dry matter (OL, kg OM ha-1), stem dry matter 

(Os, kg OM ha-1), root dry matter (DR, kg OM ha-1), dead material (OD, kg OM ha-1) and 

the leaf area index of the crop (L, ha leaf ha-1 (ground». There are also five driving 

variables, namely the mean daily temperature (T, °C), the level of photosynthetically 

active radiation (PAR, MJ ha-1 (ground) da{\ the atmospheric concentration of CO2 

(C02 , kg CO2 m-3
), the available moisture (W, mm) and the available nitrogen (N, kg 

ha-1 da{\ Essentially temperature, photosynthetically active radiation and 

atmospheric CO2 concentration are presumed to modify the rates of gross 

photosynthesis (P, kg CO2 ha-1 (ground) day-\ Net photosynthesis (Pn, kg CO2 ha-1 

(ground) da{1) is then derived by deducting respiration losses (R, kg CO2 ha-1 

(ground) da{\ Intuitively water and nutrient stress will modify the rate of gross 
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photosynthesis. However, the effect of stress on crop growth has been estimated 

from grass and grass - white clover harvestable yield data. The rate of respiration is 

not modelled as a constant proportion of gross photosynthate and consequently 

harvestable yield will be more closely related to net photosynthesis than gross 

photosynthesis. Hence, it has been assumed in the model that water and nutrient 

stress modify the rate of net photosynthesis. The net photosynthate, modified for 

stress, is then partitioned between leaf, stem and root. The resultant leaf, stem and 

root material are then either harvested or pass into the dead pool through 

decomposition. There is no evidence for acclimatisation occurring in either white 

clover (Ryle et al., 1992b; Nijs et al., 1989b) or grass -" white clover swards (Newton et 

a/., 1996) under global warming and the evidence for acclimatisation for pure grass 

swards is inconclusive (Jones et aI, 1996a; Jones et aI, 1996b; Ryle et a/., 1992a). It 

is therefore assumed within the model that the effect of enhanced CO2 and 

temperature is not diminished over time. 

For convenience the model may be divided into seven sub-models concerned with: 

1. calculation of photosynthetically active radiation; 

2. effect of temperature; 

3. photosynthesis; 

4. respiration; 

5. water and nutrient stress; 

6. assimilate partitioning and senescence; and finally 

7. herbage accumulation under cutting. 

A schematic representation of the pasture growth is shown in Figure 3-1. The 

principal variables and parameters contained in the model are listed in Appendix I. 
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Within the model, time is measured in days from 1 January. The grass and white 

clover components within the model are distinguished separately and are divided into 

leaf, stem, root and dead material. In the case of grass, 'stem' comprises tillers and 

latent developing leaves as well as true stem. For white clover the stolons and 

petioles are included in the 'stem' component. 

Temperature Carbon dioxide 

Water 

Rate of conversion 
to leaf area index 

Light 

Nutrients 

Rate of gross 
photosynthesis 

Rate of respiration 

Rate of partitioning 

Rate of 
senescence 

Rate of 
decomposition 

Figure 3-1 A schematic representation of the pasture growth model. 
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3.2.1 Sub-model 1 - Calculation of Photosynthetically Active Radiation 

The solar radiation which is photosynthetically active is within the 400 to 700 nm 

waveband, which constitutes approximately 50% of the total radiation (Jones, 1985). 

The photosynthetically active radiation (PAR, MJ ha-1 (ground) dat1
) is therefore half 

the actual daily radiation (10, MJ ha-1 (ground) dat1) which is related to the duration of 

bright sunshine hours and can be calculated from the 'Angstrom' formula (van Wijk 

and Scholte Ubing, 1963): 

10 = RX * (alpha + beta * Sun/Daylen) (3.1 ) 

where Sun is the number of sunshine hours per day and RX (MJ ha-1 (ground) dat1
) 

is the daily clear sky radiation. Following McGechan and Glasbey (1988), the 

following formulae are used to calculate the coefficients alpha and beta: 

alpha = A1-A2*lat (3.2) 

beta = 81 + 82 * lat (3.3) 

where lat is the latitude of the site in degrees, and A 1, A2, 81 and 82 are selected for 

each month of the year from 'Angstrom' tables shown in Table 3-1 (McGechan and 

Glasbey, 1988). The calculation of RX, the daily clear sky radiation in MJ ha-1 

(ground) dai1, and of Daylen, the effective day length in hours are described in 

Appendix II. 
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Table 3-1 'Angstrom' coefficients for estimating the daily radiation from sunshine 

hours. 

Month A1 A2 81 82 

January 0.34507 0.00301 0.34572 0.00495 

February 0.33459 0.00255 0.35533 0.00457 

March 0.36690 0.00303 0.36377 0.00466 

April 0.38557 0.00334 0.35802 0.00456 

May 0.35057 0.00245 0.33550 0.00485 

June 0.39890 0.00327 0.27292 0.00578 

July 0.41234 0.00369 0.27004 0.00568 

August 0.36243 0.00269 0.33162 0.00412 

September 0.39467 0.00338 0.27125 0.00564 

October 0.36213 0.00317 0.31790 0.00504 

November 0.36680 0.00350 0.31467 0.00523 

December 0.36262 0.00350 0.30675 0.00559 

3.2.2 Sub-model 2 - Effect of Temperature 

Temperature is primarily seen in the model as modifying the rates of gross 

photosynthesis and maintenance respiration. It is assumed in the model that the 

average daily temperature, even under global warming conditions, is less than or 

equal to the optimum temperature for growth. Hence the rate of photosynthesis or 

respiration is modelled as increasing linearly with temperature to a maximum at 20°C. 
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Essentially the growing season is presumed to commence when the average daily air 

temperature exceeds 4.SoC (Stg, °C) for seven consecutive days for grass (Broad and 

Hough, 1993) and 6°C (Stc, °C) for white clover (Peel, 1988). Should daily air 

temperature in spring fall again below these thresholds, growth ceases and 

recommences when the temperature requirement has been re-attained. In the 

autumn, grass growth is assumed to cease when the average daily temperature falls 

below 8°C (Broad and Hough, 1993) (End, °C) for three consecutive days and does 

not restart before the spring. In the model, it has been presumed that white clover 

growth also ceases at 8°C. 

3.2.3 Sub-model 3 - Photosynthesis 

3.2.3.1 Monoculture 

The canopy gross photosynthesis (P, kg CO2 ha-1 (ground) da{1) for a monoculture is 

defined by Johnson and Thornley (1984) as: 

P = 2 ~8 * [(Ph +Pmax - ~(Ph + Pmax)2 -4 *8 *Pmax *Ph )d£ 
o 

(3.4) 

where 

Ph = a *k *PAR * e-kl 
(1-m) 

(3.5) 

and PAR is the photosynthetically active radiation in MJ ha-1 (ground) da{1, Pmax is the 

leaf photosynthetic rate in kg CO2 ha-1 (leaf) da{1 at saturating light levels (PAR ---+ (0) 

and at ambient atmospheric CO2 concentration, k is the light extinction coefficient, m is 
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the leaf transmission coefficient, l is the canopy leaf area index (ha (leaf) ha-1 

(ground», .e is the cumulative leaf area index, a is the photochemical efficiency of 

photosynthesis (kg CO2 MJ-1) and e is a dimensionless single leaf photosynthesis 

parameter with values between 0 and 1. 

However, although long (1991) reported that the optimum temperature for 

photosynthesis increases with enhanced CO2, this has not been included in the model. 

A complex biochemical model would be required to model changes in the .optimum 

temperature under global warming, necessitating the definition of additional 

parameters. Nevertheless, the rate of leaf photosynthesis at saturating light levels 

(P~ax' kg CO2 (leaf) dai1) is dependent on temperature (Woledge and Dennis, 1982) 

and following Johnson and Thornley (1983) the functional form is described as: 

T-T 
pT = pO * 0 * Daylen· for T > To 

max max T -T ' 
Ref 0 

(3.6) 

where P~ax (kg CO2 (leaf) h-1
) is the maximum hourly rate of leaf photosynthesis, T 

(OC) is the mean daily temperature, To CC) is the temperature at which photosynthesis 

ceases and T Ref (OC) is the temperature at which P max is unconstrained by 

temperature. The light saturated daily rate of photosynthesis can then be calculated 

by multiplying the maximum hourly rate of leaf photosynthesis (P ~ax' kg CO2 ha -1 (leaf) 

h-1) by the effective day length (Daylen, h), where Daylen is based on civil twilight as 

defined by equation (11.4), Appendix II. 
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The maximum rate of leaf photosynthesis is also affected by the irradiance in which 

the leaves are grown (Woledge, 1971). However, two contrasting approaches have 

been used to model the effect of irradiance on the rate of leaf photosynthesis. The 

first approach developed by Ludlow and Charles-Edwards (1980) assumes that the 

relationship is a linear function which passes through the origin. It is assumed to be a 

function of the irradiance intercepted by the leaves and can therefore be described by 

the extinction coefficient and the leaf area index of the sward. The second approach 

proposed by Acock, Charles-Edwards, Fitter, Hand, Ludwig, Warren-Wilson and 

Withers (1978) assumes that the leaves maintain sufficient photosynthetic machinery 

in their growth environment. Consequently, the maximum rate of leaf photosynthesis 

is a constant and is defined by the leaves at the top of the canopy. However, Johnson 

et al. (1989) observed that the former approach tended to under-predict, whereas the 

latter approach tended to over-predict the rate of canopy photosynthesis. Hence, 

Johnson et al. (1989) developed an equation which seeks to describe the variation in 

the maximum rate of leaf photosynthesis with the intercepted irradiance. Accordingly, 

Pmax (kg CO2 (leaf) day·1) is presumed to be described by: 

P =p T *[1_
8

*(1_e-(k*L))] max max 2 (3.8) 

where E is the rate of decline of P~ax (kg CO2 (leaf) day"1) with irradiance. Although 

there is no theoretical basis for equation (3.8), it is a physiological plausible 

approximation (Johnson et al., 1989). It is assumed in equation (3.4) that 

photosynthetically active radiation and temperature do not vary throughout the day. 

The photochemical efficiency is stimulated for both grass (Nijs et al., 1989a) and white 
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clover (Nijs and Impens, 1993; Nijs et al., 1989b) under global warming. 

Consequently, following Thornley et al. (1991), the effect of atmospheric CO2 on a and 

P ~ax can be described by: 

* 1-lU 
a = a max r*C0

2 

(3.9) 

(3.10) 

where U max is the maximum value of the photochemical efficiency (kg CO2 MJ-1
), CO2 

is the atmospheric concentration of CO2 (kg CO2 m-3
), 't is the CO2 conductance 

parameter (m S-1) and m represents the photorespiration coefficient constant (kg m-2 

S-1). The CO2 saturated value of the maximum hourly rate of leaf photosynthesis is 

denoted by P';~2 (kg CO2 ha-1 (leaf) h-1
) and KPmax is the CO2 concentration at which 

P';~2 is half its maximal value (kg CO2 m-3
). Following Thornley (1991), the ambient 

atmospheric CO2 concentration measured in ppmv was converted to kg CO2 m-3 by: 

CO = CO * 10-6 * K 0 * Atm * CO 
2 2, ppmv T + K Atm P 2 

o Sea 

(3.11 ) 

where CO2, ppmv is the atmospheric concentration of CO2 measured in ppmv, T is the 

ambient temperature measured in degrees Celsius, Ko is O°C measured in degrees 

Kelvin and pC02 (kg CO2 m-3) is the density of CO2 at one atmosphere. Atm (Pa) and 
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Atmsea (Pa) are the atmospheric pressure measured at the site and sea-level 

respectively. 

Following Johnson et a/. (1983), the leaf area index is assumed to be proportional to 

the leaf dry weight. It is therefore assumed that leaf area index (L, ha (leaf) ha-1 

(ground» and leaf dry weight (DL' kg OM ha-1) are related as follows: 

(3.12) 

where A is the specific leaf area (ha leaf (kg DMr\ It is recognised that equation 

(3.12) represents a gross simplification in that it implies that the specific leaf area (A, 

ha leaf (kg DMr1) is not temperature dependent. However, data to describe the 

effects of temperature on the specific leaf areas of grass and white clover over an 

entire growing season are not available, although there is evidence to suggest that 

increased temperature will increase the specific leaf area (Davidson and Robson, 

1986). In addition, given the way that the effects of temperature on photosynthesis 

are modelled (equation (3.6», arguably the effects on the specific leaf area may 

already have been incorporated indirectly. In contrast, enhanced atmospheric CO2 

concentrations tend to decrease the specific leaf area of both the grass (Ferris et a/., 

1996b; Ryle et a/., 1992a; Overdieck and Reining, 1986) and white clover (Ryle and 

Powell, 1992; Overdieck and Reining, 1986). However, the differences for grass were 

not always significant (Overdieck and Reining, 1986), and for both components the 

magnitude of the differences between the specific leaf area under elevated and 

current concentrations of CO2 varied throughout the season (Overdieck and Reining, 

1986). As there is a lack of data that describe how specific leaf area changes with 
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CO2, it has had to be assumed in the model that CO2 concentrations do not affect the 

specific leaf area of either of the components. 

3.2.3.2 Mixture 

The rate of canopy photosynthesis for a mixture can be derived by summing the rate 

for the individual components (Johnson et al., 1989). In the case of a grass - white 

clover mixture, the irradiance incident on the leaves for either component depends 

upon the leaf area of both grass and white clover. The rate of canopy gross 

photosynthesis (Pj' kg CO2 ha-1 (ground) dai1) for either component 0) is represented 

by: 

where 

a J" * kJ" *PAR -(k *g +k *g ) Ph" = * egg c c 

J (1-m j ) 

(3.14) 

and dR/de describes the vertical distribution of each component through the depth of 

the canopy (L, ha (leaf) ha-1 (ground)). Subscript g refers to grass and c to white 

clover. The dependency of the maximum rate of leaf photosynthesis on the irradiance 

in which the leaves are grown is described by: 

P =pT *[1_&*(1_e-(kg*e9+kc *ic ))] 
max max 2 (3.15) 
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where P ~ax (kg CO2 (leaf) dai1) is the rate of leaf photosynthesis at saturating light 

levels modified by the effect of temperature and s is the rate of decline of p.:x with 

irradiance. In order to solve equation (3.13), it is necessary to describe the vertical 

leaf distribution through the depth of the canopy. In grass - white clover swards, 

under continuous grazing, the vertical distribution of the grass and white clover leaves 

is approximately homogenous (Johnson et a/., 1989). However, in a cut sward, 

Woledge (1988) observes a predominance of white clover in the upper layers of the 

canopy. The effects of rotational grazing on a sward are similar to a cutting regime. It 

is therefore probable that white clover will predominate in the upper layers of a 

rotationally managed sward. The vertical distribution of white clover through the 

sward has been estimated from data obtained from Woledge et a/. (1992) and can be 

described by: 

(3.16) 

where f! (ha (leaf) ha-1 (ground» is the cumulative leaf area index which is leaf area 

index being used at the specified step in the integration process, L (ha leaf ha-1 

(ground» is the leaf area index of the sward and a1 and a2 are constants. The 

proportion of grass leaf area at a given depth in the canopy can therefore also be 

determined. Simpson's rule has been used to integrate equation (3.13). 

3.2.4 Sub-model 4 - Respiration 

The total respiration requirement of the sward can be divided into growth and 

maintenance components. The growth respiration is related to the gross 
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photosynthate, and the maintenance respiration is related to the mass of the plant and 

the growth conversion efficiency (Thornley, 1976). The maintenance respiration 

requirement increases linearly with temperature (Johnson and Thornley, 1983). The 

following equation describes the respiration requirements of each component (Rj, kg 

CO2 ha-1 dai1) of the sward: 

T-T 
R.=(1-Y.)*P.+r.*Y.*M.* o. forT>To 

J J J J J J T -T' 
Ref 0 

(3.17) 

where Yj is the growth conversion coefficient (kg CO2 (kg C02r1) measuring the 

conversion yield of the growth process, rj (kg CO2 (kg DMr1 dai1) is the maintenance 

respiration coefficient, Pj (kg CO2 ha-1 dai1) is the canopy gross rate of 

photosynthesis and Mj (kg DM ha-1) is the total dry-matter weight of the particular 

component j (Johnson and Thornley, 1983). As the effect of increased ambient CO2 

on the rate of respiration per kilogram is inconclusive for pure grass swards (Ryle et 

a/., 1992a; Schapendonk and Goudriaan, 1995; Bunce and Caulfield, 1991) and is 

reported as having no effect in white clover swards (Ryle et a/., 1992b), it has been 

assumed within the model that enhanced CO2 has no effect on the rate of respiration. 

3.2.5 Sub-model 5 - Water and Nutrient Stress 

The effect of a reduction in the availability of water or plant nutrients will be to reduce 

the rate of net photosynthesis of each component, either by reducing the efficiency of 

photosynthesis or by reducing the length of the growing period. The effects of water 

and nutrient stress on photosynthesis have been modelled by reducing the net 

photosynthate in proportion to the stress experienced by the crop. 
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The principal limiting nutrient for pasture in Scotland is nitrogen. The daily available 

nitrogen (N, kg ha-1 dai1) is expressed as a proportion of the nitrogen at saturating 

level (Nmax, kg ha-1 dai\ The available soil water (W, mm) is expressed as a 

proportion of the soil water required for maximum growth (Wmax, mm). The empirically 

derived relationships expressing the effect of water and nutrient stress on the 

photosynthate for grass and white clover have been estimated from part of the GM23 

data (J. Gilbey, personal communication). The proportionate reduction in 

photosynthesis due to stress for grass (.p9) and white clover (.pc) are presumed to be 

described by: 

.pg = (/31 * ~W/Wmax + /32 * ~N/Nmax )2 (3.18) 

(3.19) 

where /31-/34 are constants. Where nitrogen is non-limiting, the empirical 

observations and the fitted equations imply that white clover is slightly less sensitive to 

water stress than grass. 

3.2.5.1 Estimation of Nitrogen Availability 

The amount of nitrogen (N, kg ha-1 dai1) that is available to the sward is dependent 

on the available pool of nitrogen in the soil, the fertiliser nitrogen applied, and the 

quantity of nitrogen that is biologically 'fixed' by the white clover. It is assumed that 

the soil nitrogen is released over a period of 245 days commencing from the start of 

the growing season. Fertiliser nitrogen was applied between 1 March and 1 April. If 

growth starts before 1 April, the fertiliser nitrogen is assumed to be applied ten days 
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after the start of growth. If this had not occurred by 1 April then the fertiliser nitrogen 

is assumed to be applied on that date. In grass - white clover swards, the nitrogen 

available to the grass that is 'fixed' biologically by the white clover (Nc, kg ha-1 da{1) 

increases linearly with the proportion of white clover ground cover following the 

observation of Cowling (1982) and is described by the following relationship: 

Lc 
NC=K*-

L 
(3.20) 

where L (ha (leaf) ha-1 (ground» is the total leaf area index of the sward, Lc (ha (leaf) 

ha-1 (ground» is the leaf area index of the white clover component and K is a constant. 

White clover can take up much of the available soil nitrogen (Vallis, Henzell, and 

Evans, 1977). However, according to Harris (1987), it may be assumed that in many 

situations no soil nitrogen is absorbed by the white clover. The application of fertiliser 

nitrogen to pot-grown grass - white clover mixtures has shown that ryegrass takes up 

approximately 95% of the available fertiliser nitrogen (Walker, Adams and Orchiston, 

1956). Thus, it has been assumed that the white clover 'fixes' sufficient nitrogen for its 

own requirements and that the fertiliser and soil nitrogen are used solely by the grass 

component, although it is recognised that this is a simplification of what happens in 

reality. 

3.2.5.2 Estimation of Moisture Availability 

Within the model it is assumed that the sward growth is unconstrained at an average 

soil moisture deficit of up to 12.5 mm (Garwood, Tyson, and Sinclair, 1979). 

Consequently, Wmax (mm) is defined as: 
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Wmax =AWC-12.5 (3.21) 

where AWe (mm) is the available water capacity (AWC). With regard to the 

availability of water, the soil is assumed to be at field capacity on 1 January. The 

change in available water on subsequent days is assumed to equal the difference 

between rainfall and the actual evapotranspiration (AET, mm da{\ The potential 

evapotranspiration rates (PET, mm da{1) are calculated using a Penman equation 

(Penman, 1948) and can be described by the following equation: 

R 
,1. *_0 +S*V 

Lv 
PET=----­

.6.+S 
(3.22) 

where A is the slope of the saturation vapour pressure (mbars Oe-1), Ro is the radiation 

corrected for the soil heat flux (J m-2), Lv is the latent heat of vaporisation of water (J 

kg-1) and S is the psychrometric constant (mbars Oe-1). The evaporation component 

due to the wind and the vapour pressure deficit is denoted by the variable V (kg m-2
). 

The equations describing the slope of the saturation vapour pressure (A, mbars Oe-1), 

net radiation (Ro, J m-2) and the evaporation component due to wind and vapour 

pressure (V, kg m-2) are described in Appendix III. 

Following Amir and Sinclair (1991b) the calculation of actual evapotranspiration is 

calculated using a two-stage model. During the stage 1, the actual evapotranspiration 

(AET, mm) is presumed to be equal to the potential evaporation rate (PET, mm) until 

the proportion of available soil water (W, mm) falls to less than 0.5 (Amir and Sinclair, 

1991b). In stage 2, the actual evapotranspiration rate (AET, mm) is defined as: 
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AET = PET *(F. - ~S2 -1); for W < 0.5 * AWe (3.23) 

where S2 is the number of days since the proportion of available soil water fell below 

0.5 and AWC (mm) is the available water capacity. When the fraction of soil water 

has increased to 0.5, the calculation of the actual evaporation rate returns to stage 1. 

Waterlogging of the ground is presumed to occur if the soil water content is at the 

water holding capacity for seven consecutive days. 

A doubling of the current concentration of CO2 is predicted to decrease the rates of 

transpiration per unit of leaf area by between 25% and 50% (Cure and Acock, 1986). 

However, due to increases in the leaf temperature and the water vapour pressure 

within the leaf as a result of the decrease in the rates of transpiration (Wolfe and 

Erickson, 1993), transpiration rates per unit of leaf area are likely to increase. The 

result of a more efficient use of water per unit of leaf area does not necessarily result 

in a reduction of the total water requirements as global warming can result in larger 

plants. As the process of transpiration and photosynthesis are linked (Farquhar and 

Sharkey, 1982; Wong, Rowan, and Farquhar, 1979), the successful modelling of 

transpiration would require a more complicated form of the photosynthesis and 

transpiration equations. These equations would also require to incorporate the effects 

of water stress. Both of the equations would require additional parameters to be 

defined, some of which are not available for grass and white clover. It is recognised 

that it is a simplification, but on balance it was decided to model potential 

evapotranspiration by equation (3.22). 
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3.2.6 Sub-model 6 - Assimilate partitioning and senescence 

The net photosynthesis is expressed as kg CO2 ha-1 (ground) dai1
, which is 

converted to dry matter by multiplying the net photosynthesis by the efficiency of 

converting CO2 to dry matter (e, kg CH20 (kg C02r\ Following Doyle et al. (1989), 

pasture growth occurred when there was photosynthate surplus to the requirements 

for tissue maintenance and growth respiration. A fixed proportion (p) of the 

photosynthate is assumed to be partitioned to the root (Johnson et al., 1983). 

Although enhanced CO2 affects the rootshoot ratio of both grass and white clover, the 

proportion of the photosynthate allocated to the root is not presumed to be altered by 

the CO2 concentration. This is because both increases and decreases in the ratio 

have been reported for both grass (Schapendonk et al., 1996; Sousanna et al., 1996; 

Jongen et al., 1995; Ryle et al., 1992a; Nijs et al., 1989a) and white clover (Jongen et 

al., 1995; Ryle et al., 1992c; Nijs et al., 1989b; Scheidegger and N6sberger, 1984) 

plants. The remaining photosynthate is partitioned between the leaves and stem in 

the proportions of 'A and (1 - 'A). Losses, through senescence, offset the production of 

new leaf and stem material. The rates of leaf (yd and stem (Ys) losses control the rate 

of senescence of the herbage. The senescent material passes into the pool of dead 

material, where it remains until it decomposes at a rate of YO' The photosynthate 

partitioned to the above-ground herbage (MG, kg OM ha-1
), and the daily change in the 

quantity of leaf (deltal, kg OM ha-1
), stem (deltas, kg OM ha-1

) and dead material 

(deltao, kg OM ha-1
) for each crop are described by the following equations: 

(3.24) 
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(3.25) 

(3.26) 

(3.27) 

where DL (kg DM ha-1
), Ds (kg OM ha-1

) and DD (kg DM ha-1
) represent respectively 

the leaf dry matter, stem dry matter and dead material per hectare. After the growing 

season has ended, the processes of respiration and senescence are still assumed to 

occur. The respiration losses are partitioned between the leaf and stem components 

in the proportions of A and (1 - A). 

Sheehy et al. (1980) observed that, for grass, the physiological stage of development 

affected the proportion of photosynthate partitioned to the leaves (Ag) and the rate of 

leaf senescence (YL, g). In spring, during the reproductive phase, less assimilate is 

partitioned to the leaves. The apparent life of the leaves is increased, implying a lower 

rate of leaf loss. The commencement of the reproductive phase of each species 

varies with temperature and light (Cooper, 1960). However, for simplicity, the 

changes in physiological states are assumed to occur on designated days. In white 

clover, there is less of a difference in growth between reproductive and vegetative 

phases (Spedding and Diekmahns, 1972). For white clover the proportion of 

photosynthate partitioned to the leaves (Ac) and stem, and the rate of leaf senescence 

(YL c) is therefore presumed to be independent of the physiological stage of the crop. 
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3.2.7 Sub-model 7 - Herbage Accumulation under Cutting 

In the case of a grass sward, the actual quantity of herbage harvested under cutting is 

equated with the quantity of leaf and stem material in the sward less the predefined 

residual quantity of leaf (RL, kg ha-1
) and stem (Rs, kg ha-1

) material that remains per 

hectare on the paddock. However, in a grass - white clover sward, the actual 

quantities of leaf and stem material for each component have to be determined. The 

preferential removal of white clover under cutting from the sward is determined from 

the selection coefficient v (Ridout and Robson, 1991) defined as: 

(3.28) 

where Wd (gd) and Ws (gs) are the quantities in kg OM ha-1 of white clover (grass) 

harvested and in the sward respectively. This is a generic equation where the 

variables can represent either leaf area or dry matter, where dry matter consists of leaf 

and stem weights. Woledge et al. (1992) determined the selection coefficient for white 

clover leaf area (VL) and dry matter (VD) in a cut sward. In the model, equation (3.28) 

has been re-arranged, as described in Appendix IV, in order that the quantities of 

white clover and grass leaf mass harvested can be calculated. 

If the stem material of either the grass or white clover component calculated to be 

removed by equation (3.28) is greater than is present in the sward, then the amount of 

grass and clover stem material actually cut is in proportion to the amount of grass and 

white clover material in the sward. The white clover dead material removed from the 

sward is in the same proportion as the white clover stem material removed. 
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3.3 Herbage Removal under Grazing 

A schematic representation of the extended model is provided in Figure 3-2. Within 

the model, the leaf area index of the crop is altered as the livestock graze. This 

affects the rate of photosynthesis and the growth rate of the crop, which in turn 

influences crop morphology in terms of the leaf-to-stem ratio in the sward. Changes in 

the leaf-to-stem ratio further regulate the digestibility of the herbage on offer and so 

influence the intake of the livestock. In a mixed sward, diet selection is also presumed 

to alter the composition of the sward, with the preferred species being disadvantaged. 

The botanical composition of the sward and the diet are thus changed by grazing in a 

dynamic way. 

Basically, a spring-calving dairy herd, beef cattle or sheep rotationally grazed during 

the summer period on a pure grass or a grass - white clover sward is simulated. The 

pasture is divided into a maximum of twelve equal-sized paddocks. The sward is 

assumed to be composed of pure grass or a grass - white clover mixture. The 

extension of the model describing grazing includes a further six sub-models 

governing: 

8. rules for conservation; 

9. grazing rules; 

10. calculation of actual herbage intake; 

11. determination of the quantities of leaf, stem and dead material removed; 

12. determination of the quantities of grass and white clover removed; and 

finally 

13. determination of energy intake of grazing animals. 

105 



Temperature Carbon dioxide Nutrients 

Water Light 
I I 

Leaf area index .... Daily r 
Inputs 

.4~ 

V Rate of V Rate of net 

~ 
I~ 

conversion to ~ ~ photosynthesis and 
leaf area index partitioning .. ~ 

Leaf OM Stem OM 

J 

... 
Green Matter ~ V Rate of 

~ 
senescence , 

Dead Matter 

~ Rate of )K ...... 
decomposition 

~ V Digestibility of the 

I~ crop 

,,~ Stocking rate 

Intake 

Preferential ) removal of ~ 
leaf 

~ 
Partitioning of 

~ 
energy 

" 
,. , , .. 

Leaf OM on 
Milk 

Live-weight " paddock change 

Figure 3-2 A schematic diagram of the grazing model. 
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3.3.1 Sub-model 8 - Rules for Conservation 

Within the model, it is assumed that half the area would be set aside for the first 

conservation cut and a third of the area for the second. However, if there is a 

shortage of pasture for grazing, the paddocks set aside for conservation are grazed. 

Any paddock that has not been grazed during the 30 days prior to the date of cutting is 

cut for conservation. The rules for determining the amount of conserved herbage from 

a mixed sward are described in section 3.2.7. 

3.3.2 Sub-model 9 - Grazing Rules 

Combellas and Hodgson (1979) have observed that the intake of herbage by the dairy 

cow approaches an asymptotic value with increasing herbage allowance. At low 

herbage allowances, once the available herbage had been consumed the animals 

abandon any attempt to graze closer to the ground (Le Du, Combellas, Hodgson and 

Baker, 1979). Thus, in the model, it has been assumed that the livestock will not 

graze below a predefined herbage mass. This herbage mass has been defined for 

dairy cows, beef cattle and sheep. Under ideal conditions, the herbage mass 

available for grazing permits the livestock to consume the maximum daily intake of dry 

matter, and therefore their level of production is not constrained by the availability of 

the daily allowance of herbage. 

In the model, the start of the grazing season is presumed to occur when the herbage 

mass on the paddock to be grazed has increased by 2.5% from the base level and 

there is also sufficient herbage mass on the paddock to allow grazing. For dairy cows 

and sheep, parturition is also assumed to have occurred before the grazing season 

commences. It is assumed that the livestock will remain on the paddocks until at least 

107 



15 September. The grazing season is considered to end when one of the following 

criteria is met: 

1. the metabolisable energy available from dry-matter intake does not meet the 

metabolisable energy of maintenance and, in the case of dairy cows and 

sheep, the pregnancy requirements as well; or 

2. the predicted dry-matter intake falls to less than 20% of the potential level; 

or 

3. the available soil moisture has been greater than or equal to the available 

water capacity for seven consecutive days and thus poaching is likely to 

occur. 

Grazing can still occur after the growing season has ended. The rotation of the 

livestock around the paddocks on a day-to-day basis is determined solely by quantity 

of herbage on each paddock (see Figure 3-3). The herbage biomass produced per 

hectare is converted to a per paddock basis by multiplying by the size of the paddock. 

When there is an ample supply of herbage, the livestock is moved if the available 

herbage mass on the grazed paddock is less than 95% of that required for maximum 

dry-matter intake. If there is a shortage of herbage, the paddock with greatest 

herbage mass is grazed, assuming that it has a greater herbage mass than the 

predefined minimum required for the specified grazing ruminant. However, if the 

herbage mass on that paddock is less than 75% of that required for maximum dry­

matter intake, the paddocks set aside for silage production are used for grazing. 
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3.3.3 Sub-model 10 - Calculation of Actual Herbage Intake 

Graze 
paddock 

The intake of dry matter by grazing ruminant animals is assumed to be regulated by 

three factors: (i) the feed availability; (ii) the physiological limit on intake; and (iii) the 

physical ability of the animal to consume feed (Loewer, Smith, Gay and Fehr, 1983). 
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The actual intake on any given day is determined by the most limiting factor as 

schematically represented in Figure 3-4. The calculations of the physiological limit to 

intake and the physical ability of the animal to consume feed, are described in the 

documentation for the individual livestock types, see Chapter 4. 
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Figure 3-4 A schematic representation of the factors limiting intake 

3.3.3.1 Feed Availability 

When the quantity of herbage available for consumption is less than that required for 

95% of maximum daily intake, the daily allowance of green herbage regulates intake. 
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The green herbage allowance is taken to be the green herbage mass above the 

minimum herbage mass required for grazing. Zemmelink (1980) described the 

relationship for tropical grasses between herbage intake (IF, kg OM head-1 dai1) and 

the daily allowance of green herbage (H, kg OM head-1 dai1) as: 

(3.29) 

where b1 is a constant and 'max is the maximum daily intake of herbage in kg OM 

head-1 dai1 and is described by the following relationship: 

Imax = LWT°.75 * F max -leone * CRePlace (3.30) 

where LWT (kg head-1
) is the liveweight of the specified ruminant, Fmax is the 

maximum dry-matter per kg of metabolic weight (kg OM (liveweight)-O.75 head-1 dai1) 

and leone (kg OM head-1 dai1) is the dry-matter intake of concentrates. Following 

Grainger and Mathews (1989), the rate of substitution of forage by concentrates 

(CReplace' kg OM herbage (kg OM concentratesr1
) is defined as: 

(3.31 ) 

Although this equation was derived for cows, it has been assumed in the model that it 

also applies to sheep. In the absence of any established relationships for temperate 

grasses, equation (3.29) has been adopted. 

In order to determine the quantity of herbage required the variable HReq (kg OM head-1 

dai1) is substituted for H in equation (3.29) and rearranged to give: 
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1-[~]b1 = exp(-HReq/lmax) b1 
I max 

(3.32) 

=> -In [1- [~]b1 1 = b1 * HReq 

I max I max 
(3.33) 

=> HReq = In (3.34) 

It is assumed in the model that the specified livestock will be moved to the next 

paddock when the available herbage mass on the grazed paddock is less than 95% of 

that required for maximum dry-matter intake. Hence the ratio of IF:lmax is defined as 

0.95. The quantity of herbage (HMove, kg OM paddock-1
) required for all the specified 

livestock to consume 95% of the maximum daily intake of dry matter, and therefore 

meet their potential level of production was defined as: 

(3.35) 

where SR (stock ha-1
) is the number of grazing livestock per forage hectare and 

HPadcrit (kg OM paddock-1
) is the minimum critical herbage mass per paddock 

required for grazing to occur. This is defined as the critical herbage mass per hectare 

(HCrit, kg OM ha-1
) multiplied by the area per paddock (Pha, ha paddock-1

). 
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3.3.4 Sub-model 11 - Determination of the Quantities of Leaf, Stem and Dead 

Material Removed 

Observations by Jamieson and Hodgson (1979) have shown that grazing lambs and 

calves preferentially select green material. It has been assumed that grazing dairy 

cows, beef cattle and sheep also preferentially select green material. The proportions 

of leaf, stem and dead material in the sward also differ from the proportions in the diet 

(Rattray and Clark, 1984). Accordingly, following Doyle et al. (1989) the mean daily 

intakes of leaf (lL, kg OM head-1 dai\ stem (Is, kg OM head-1 dai1) and dead 

material (ID' kg OM head-1 dai1) have been assumed to be given by to be given by: 

(3.36) 

(3.37) 

(3.38) 

where ~L and ~s represent the proportions of green herbage accounted for by leaves 

and stem, respectively, I (kg OM dai1) is the total intake of herbage by the grazing 

livestock and b2 is a constant. 

3.3.5 Sub-model 12 - Determination of the Quantities of Grass and White Clover 

Removed 

In a grass - white clover sward, the quantities of leaf, stem and dead material of the 

individual components consumed are determined using the formulae described for 
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calculating the quantities of grass and white clover stem and leaf material that are cut 

for conservation (equations (3.28) and Appendix IV). However, evidence suggests 

that sheep selectively graze white clover from mixed swards. Ridout and Robson 

(1991) reported selection coefficients of 2.25 (1.55-3.29) and 2.52 (1.61-3.95) for 

white clover versus all other components in the sward and white clover versus grass 

respectively. Hence, the selection coefficient for grazing sheep is greater than the 

value for cutting. 

Penning, Parsons, Orr, Harvey and Yarrow (1995) reported that cattle spent between 

57% and 81% of their time grazing the white clover component of swards containing 

25% and 75% white clover respectively. Similarly, Cosgrove, Anderson and Fletcher 

(1996) reported that during the grazing season cattle have been observed to spend 

between 45% and 65% of their time grazing white clover, although the lower value is 

not significantly different from 50%. As sheep and goats are able to attain a faster bite 

rate on legumes than on grass (Gong, Hodgson, Lambert and Gordon, 1996), it has 

been assumed that this also applies to cattle. Consequently, it is assumed that cattle 

also selectively graze white clover from a mixed sward. Accordingly, the value of the 

selection coefficient for grazing (vcow) is assumed to be greater than the value for 

cutting. Nevertheless, it is acknowledged that it is debatable as to whether cattle (A, 

Hameleers, personal communication) actively select white clover from mixed swards. 

3.3.6 Sub-model 13 - Determination of Energy Intake of Grazing Animals 

Although there may be direct effects of climatic change on the nutritive value of the 

forage crop (Gustavsson et al., 1995; Fagerberg and Nyman, 1994; Fagerberg and 

Nyman, 1995). these have been ignored, because they are likely to be dwarfed by 
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those due to changes in botanical composition. The proportionate digestibility, 

expressed as the digested organic matter in the dry matter consumed (D-value) of the 

grass (Gdg) and white clover (Cdg) components of the diet are thus given by: 

(3.39) 

(3.40) 

where d9L, g, dgs, g, dgo, g, dgL, c, dgs, c and dgo, c are the respective proportionate 

digestibilities of the leaf, stem and dead components of the grass and white clover 

portions of the diet. The overall digestibility of the herbage consumed (dg) is therefore 

represented by: 

(3.41 ) 

In the model, the proportionate digestibilities of grass and white clover have been 

assumed to decrease as the season progresses (Osbourn, 1980). Thus, for six weeks 

at about the time the growth of grass changes from being reproductive to vegetative, 

the digestibilities of the leaf and stem fractions of both the grass and white clover 

components are reduced on a daily basis in the following manner. 

(3.42) 

dgs = dg s *Rdg s (3.43) 
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where RdgL and Rdgs are the percentages of the previous day's digestibility values. 

The digestibility of the grass stem is reduced in the same manner for a further four 

weeks. The seasonal observed and modelled D-values for the leaf and stem 

components for grass and white clover are shown in Figure 3-5 and Figure 3-6. The 

observed values for the grass components were obtained from Wilman, Ojuederie and 

Asare (1976) while observed values of the white clover component were assumed to 

decline at a rate of 0.8 units of D-value per week from early May to mid June 

(Osbourn, 1980). There is a tendency for the modelled value to be higher than the 

observed values. However, grazing animals tend to select herbage of higher D-value 

than the herbage on offer with difference ranging from 3 to 10 units of D-value on 

stripped grazed pastures (Osbourn. 1980). 
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Figure 3-5 The observed and modelled D-values of the leaf and stem component for 

grass. 
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Figure 3-0 The observed and modelled D~values· of the leaf and stem component for 

white clover. 

The ME value of 1 kg of ingested herbage (MFod, MJ (kg DMr1) is presumed to be 

given by (McDonald, Edwards and Greenhalgh, 1988): 

MFod = 16 *dg (3.44) 

The ME value of the diet (MEe, MJ head-1 dai1) can therefore be described by: 

(3.45) 

where 

TFod = MFod *1 (3.46) 
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and 

T Cone = M Cone * I Cone (3.47) 

Mcone and leone are the metabolisable energy of concentrates (MJ (kg OMr1) and the 

intake (kg head-1 day-1) of concentrate consumed. 

3.4 Initial Conditions, and the Values of the Parameters and Variables 

The solution of the model requires the specification of initial values of the state 

variables, and 83 variables and parameters. The derivation of the initial value and 

parameters are described in the following sections: 

1. initial values of the state variables; 

2. parameter value required to calculate the day length; 

3. parameter values for the length of the growing season; 

4. photosynthesis and respiration; 

5. partitioning; 

6. water and nutrient stress; and finally 

7. herbage intake. 

3.4.1 Initial Values of the State Variables 

The initial conditions of the leaf dry matter (OL, kg OM ha-1), stem dry matter (Os, kg 

OM ha-1), dead material (Do, kg OM ha-1) and the leaf area index of the crop (L, ha leaf 

ha -1 (ground», as well as the proportion of white clover in a mixed sward on 1 January 

must be defined. In the model it was assumed that the total quantity of dry matter on 

a paddock at the beginning of a year is 2700 kg ha-1 (Carton, Brereton, Q'Keeffe, and 

Keane, 1988) This has been divided between leaf, stem and dead fractions in the 
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same proportions as Doyle et al. (1989). Assuming that the proportion of white clover 

in a mixed sward is 0.1 (Orr, Parsons, Penning and Treacher, 1990), the initial 

conditions for pure grass and mixed grass - white clover swards are given in Table 3-

2. 

Table 3-2 Initial Conditions for Grass and Grass - White Clover Swards 

Sward Parameter Value Source1 

Grass Do 900.0 1 

Ol 1350.0 1 

Os 450.0 1 

L 3.48 2 

Grass - White Clover Oo,c 90.0 1 

OO,g 810.0 1 

Ol,C 135.0 1 

Ol,9 1215.0 1 

Os,c 45.0 1 

OS,g 405.0 1 

Lc 0.50 2 

Lg 3.13 2 

Source 1 1 See text; 2 Calculated from equation (3.12). 
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3.4.2 Parameter Value Required to Calculate the Day Length 

There are four possible definitions of day length which are defined in relation to the 

angle between the upper part of the sun's disc and the horizon, and are described by: 

1. an angle of 0° between the upper part of the sun's disc and the horizon; 

2. the sun being 6° below the horizon, defined as civil twilight; 

3. the sun being 12° below the horizon, defined as nautical twilight; and 

4. the sun being 18° below the horizon, defined as astronomical twilight. 

According to France and Thornley (1984) it is uncertain as to which is the most 

appropriate biological definition of day length. Consequently, it has been assumed in 

the model that the day length is defined by civil twilight and thus the zenith angle (z, 

degrees) is defined as 96°. 

3.4.3 Parameter Values for the Length of the Growing Season 

The parameter values for the start of grass (Stg, °C) and white clover growth (Slc, °C) 

and end of the growing season (End, °C) are given in Table 3-3. 
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Table 3-3 The Values of the Variables Defining for the Length of the Growing for 

Grass and Grass - White Clover Swards 

Sward Parameter Value Source1 

Grass Sfg 4.5 1 

End 8.0 1 

White Clover Stc 6.0 2 

End 8.0 1 

Source 1 1 Broad and Hough, 1993; 2 Peel, 1988 

3.4.4 Values of the Parameters and Variables for the Photosynthesis and 

Respiration Processes 

The variables required for the equations describing photosynthesis and respiration are 

given in Table 3-4 for grass and white clover. The calculation of the rate of 

photosynthesis requires that the CO2 saturated maximum rate of leaf photosynthesis 

be defined. In a mixed sward the vertical distribution of the grass and white clover 

components must also be described. In addition, the respiration coefficients for white 

clover have been defined. These values and the conversion of CO2 to dry matter have 

been estimated in the text. 

LIBRARY 
SCOTIISH AGRICULTURAL COLLEGE 

AUCHINCRUIVE 
AYR KA65HVIi 
TEL 01292 52520S 

121 



Table 3-4 Variables Values for Photosynthesis and Respiration for the Grass and 

White Clover Components 

Parameter Value Source1 Parameter Value Source1 

<X.max,e 0.01 1 kg 0.5 2 

<X.max,9 0.01 1 KPmax 1.281 e-3 8 

0.70 2 me 0.1 2 

e 0.682 3 mg 0.1 2 

e 0.95 4 re 0.05 3 

peo2 1.9636 5 rg 0.05 9 

't 0.0015 1 RL 675 10 

tiJ 0.3e-6 1 Rs 325 10 

0.00368 6 P~ax, e 
43.2 3 

0.00258 6 P~ax, 9 
43.2 3 

Atm 101325 5 To 0.0 11 

Atmsea 101325 5 TRef 20.0 11 

ko 273.15 5 Ye 0.63 3 

kc 0.8 7 Yg 0.83 9 

1 
Source 1 Thornley et al. (1991); 2 Johnson et al. (1989); 3 See text; 4 Johnson and 

Thornley (1985); 5 Thornley (1991); 6 Davidson and Robson (1986); 7 

Brown and Blaser (1968); 8 Thornley and Cannell (1992); 9 Mogensen 

(1977); 10 Doyle et al. (1989); 11 Johnson et al. (1983). 

122 



3.4.4.1 Maximum Rate of Leaf Photosynthesis at Ambient Concentrations of 

CO2 

The maximum value used in models for the rate of leaf photosynthesis for grass 

growth at ambient concentration of COz varies between 0.75 mg COz m-z (leaf) S-1 

(Johnson et al., 1989) and 1.5 mg COz m-z (leaf) S-1 (Johnson et al., 1983). Woledge 

and Dennis (1982) measured the maximum rate of net leaf photosynthesis for grass 

as approximately 1.1 mg CO2 m-z (leaf) S-1. Consequently, in order to allow for the 

difference between net and gross photosynthesis, the value used in the model for the 

maximum rate of leaf photosynthesis at ambient concentrations of COz (P ~ax. g) is 1.2 

mg COz m-z (leaf) S-1. This was converted to 43.2 kg CO2 ha-1 (leaf) h-1. This value 

was then substituted into equation (3.10) in order to calculate the COz saturated value 

of the maximum rate of leaf photosynthesis (P ,;~~ g' kg CO2 ha -1 (leaf) h -1) for the 

specified ambient concentration of COz. The rate of leaf photosynthesis and the 

response to both irradiance and temperature is similar for both perennial ryegrass and 

white clover (Woledge and Dennis, 1982). Thus, the same value was used for the 

CO2 saturated value of the maximum rate of white clover leaf photosynthesis (P ~ax c' 

3.4.4.2 White Clover Respiration Coefficients 

The respiration coefficients for grass were taken from published sources, while the 

values for the respiration coefficients for white clover (re , kg CO2 (kg DMr1 dai1 and 

Ye, kg COz (kg COzr1) were obtained by averaging the results of McCree (1970), 

McCree and Silsbury (1978) and McCree and Amthor (1982). These were all based 

on experiments on white clover in growth chambers. 
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3.4.4.3 Vertical distribution of Clover through the Depth of the Canopy 

Woledge et al. (1992) have made observations on the vertical distribution of grass and 

white clover through the depth of the canopy throughout the growing season. These 

data were used to obtain a relationship for the vertical distribution of the proportion of 

white clover leaf area through the depth of the canopy to the total leaf area of the 

sward. Examination of the plots of the data suggested a relationship of the form of 

equation (3.16). However, the Durbin-Watson statistic for the ordinary least squared 

regression revealed that there was a positive correlation between the error terms, and 

thus the exact maximum likelihood method in Microfit (Pesaran and Pesaran, 1991) 

was used to obtain estimates of the coefficients. The estimated relationship is: 

dR [ J2 _c = 1.594 *i-0.581* i 
dR L L (3.48) 

± 0.124 ± 0.122 

where R (ha (leaf) ha-1 (ground» is the cumulative leaf area index which is leaf area 

index being used at the specified step in the integration process L is the leaf area 

index of the sward (ha (leaf) ha-1 (ground». The R2 for the equation was 0.99. The 

parameter values for a1 and a2 in equation (3.16) are therefore 1.594 and 0.581 

respectively. 

3.4.4.4 Conversion of CO2 to Dry Matter 

Dry matter is assumed to be in the form of carbohydrates (CH20). The molecular 

weights are used to convert the CO2 to dry matter assuming a conversion of one 

molecule of CO2 to one molecule of CH20. The molecular weight of CO2 and CH20 

are 44 g mor1 and 30 g mor1 respectively. 
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3.4.5 The Partitioning Coefficients 

The partitioning coefficients for the grass and the white clover components are given 

in Table 3-5. 

Table 3-5 Partitioning Coefficients for the Grass and White Clover Components 

Sward Parameter Value Source1 

Grass YO,g 0.025 1 

reproductive YL, 9 0.0146 2 

vegetative YL, 9 0.0311 2 

Ys, 9 0.0259 2 

reproductive Ag 0.60 2 

vegetative Ag 0.68 2 

P 0.1 3 

White Clover YO,c 0.025 1 

YL, c 0.024 4 

Y5, c 0,0259 2 

Ag 0.33 5 

P 0.29 5 

Source1 1 Doyle et al. (1989); 2 Sheehy et al. (1980); 3 Johnson et al. (1983); 4 

Chapman, Clark, Land and Dymock (1984); 5 Chapman, Robson and 

Snaydon (1991) 
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3.4.6 Values of the Parameters and Variables for the Calculation of Water and 

Nutrient Stress 

The effect of water and nutrient stress on sward growth has been modelled by 

reducing the photosynthate in proportion to the stress experienced by the crop. This 

requires that the potential rate of evapotranspiration and the nitrogen available to the 

crop are defined. The variables required to calculate the potential rate of 

evapotranspiration which is described in equation (3.22) and Appendix III) are defined 

in Table 3-6. The estimation of the parameters required for the equations which 

describe the nitrogen that is 'fixed' by the white clover and the proportionate reduction 

in the photosynthate, resulting from the water and nutrient stress, are described in the 

following section. 

Table 3-6 Values of the Variables Required for the Potential Evapotranspiration 

Equation 

Parameter Value Parameter Value 

be1 0.47 D8 0.5 

be2 0.065 es1 6.1078 

bs1 0.17 es2 17.269 

bs2 0.83 ev1 0.2625 

bt1 0.0048985 ev2 0.0062137 

DO 0.95 Lv 2465000.0 

d1 4097.93 S 0.66 

Source Agricultural and Food Research Council (1991) 
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3.4.6.1 Water and Nutrient Stress on the Grass Component 

The estimation of the effect of water and nutrient stress is based on data from the 

grass - white clover grassland manuring trials (GM23) conducted by the Grassland 

Research Institute, Hurley. (J. Gilbey, personal communication). The effect of 

irrigation on yield of pure grass swards at varying levels of nitrogen use had been 

investigated at the Grassland, Research Institute, Hurley during the period 1978-

1981. In order to obtain estimates for J31 and J32, the parameters defined for equation 

(3.18), the yields are expressed as a proportion of the irrigated yield at an application 

rate of 600 kg of nitrogen fertiliser per hectare. At that level of application rate it is 

assumed that the sward is not stressed by the lack of nitrogen, and thus the yield is 

presumed to be maximised for a sward that is irrigated and receives 600 kg N ha-1
• 

Hence the ratio of the non-irrigated to irrigated yield, where the irrigated sward 

receives 600 kg N ha-1
, cannot be greater than one. The soil moisture deficit, obtained 

from the Biotechnology and Biological Science Research Council (BBSRC) ARCMET 

database for Hurley, was expressed as a proportion of the available water capacity. 

Similarly, the quantity of nitrogen applied is expressed as a proportion of the maximum 

rate of fertiliser nitrogen. On examination of the data, it was found that the distribution 

of all the variables was skewed. Thus, in order to obtain a normal distribution, the 

square roots of the variables were used in the regression analysis. The value 

obtained from the ordinary least squares regression analysis for J31 was 0.366 with a 

95% confidence interval of 0.317-0.415, and J32 had a value of 0.664 with a 95% 

confidence interval 0.609-0.719. The R2 had a value of 0.70. 
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3.4.6.2 White Clover Water Stress 

The effect of water stress on white clover growth was also investigated using data 

from GM23 (J. Gilbey, personal communication) which was conducted at Hurley. The 

data for the period 1979-1981 were used to obtain values for ~3 and ~4. As for the 

grass stress equation, it was assumed that the non-irrigated:irrigated yield could not 

be greater than one. The analysis of the ordinary least squared regression revealed 

that there was a positive correlation between the error terms, and thus the exact 

maximum likelihood method in Microfit (Pesaran and Pesaran, 1991) was used to 

obtain estimates of the coefficient. The value of variable ~3' was found to be 0.216, 

with a 95% confidence of 0.098-0.335 and the value of P4 was 0.789 with a 95% 

confidence interval of 0.628-0.951. The R2 for the regression analysis was 0.75. 

3.4.6.3 Nitrogen Biologically &fixed' by White Clover 

The quantity of nitrogen biologically fixed by white clover was estimated from 

observations by Frame and Boyd (1987) at SAC Auchincruive on the amount of 

nitrogen harvested in white clover and the proportion of white clover in the sward 

under varying levels of nitrogen application. The harvested yield was re-expressed in 

terms of the leaf area index. Increasing fertiliser nitrogen usage was expected to 

reduce the quantity of nitrogen biologically 'fixed' by white clover. However, the 

coefficient for the variable expressing the quantity of fertiliser nitrogen applied was 

found to be insignificant. The relationship between the nitrogen biologically 'fixed' (Nc, 

kg ha-1
) and the proportion of white clover leaf area in the sward (Lc!L) was estimated 

using the exact maximum likelihood method in Microfit (Pesaran and Pesaran, 1991) 
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as there was a positive correlation between the error terms. The estimated equation 

is: 

Nc = 1.085 * Lc 
L 

(3.49) 

with a 95% confidence interval of 1.033-1.141 and an R2 of 0.99. The value of the 

coefficient K is therefore 1.085. Nevertheless, the values quoted for the UK for the 

nitrogen 'fixed' by white clover are extremely variable as they range from 55 kg N ha-1 

(Munro and Hughes, 1966) to over 300 kg N ha-1 (J. Gilbey, personal communication). 

However, the maximum 'fixation' resulting from equation (3.49), for a mixed sward 

containing 50 per cent white clover over a 245 day growing period, is only 133 kg N 

ha-1. Consequently, the nitrogen available to the grass component of the crop over 

the growing season was increased by 100 kg N ha-1. 

3.4.7 Herbage Intake 

The values ascribed to the parameters required for equations (3.29), (3.31), (3.36) 

and (3.37), and the values of the coefficients for the preferential removal of white 

clover by cutting and grazing livestock are given in Table 3-7. The digestibility 

coefficients for the leaf, stem and dead fractions of the grass component and the 

proportionate reduction in the digestibility for both the grass and white clover 

components are given in Table 3-8. The estimation of the digestibility coefficients for 

the white clover fractions of leaf, stem and dead material and the parameters for the 

preferential removal of white clover by the grazing livestock are described in the text. 

It is assumed that the metabolisable energy of the concentrates is 12.5 MJ (kg DMr1 
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(Doyle et al., 1987). The critical herbage mass required to permit grazing (Herit, kg OM 

ha-1) and the maximum dry-matter intake (Fmax, kg OM (liveweight)-O·75 dai1) are 

defined for each livestock category. 

Table 3-7 Parameter values for the removal of herbage under cutting and grazing 

Parameter Value Source1 

b1 1.23 1 

b2 4.662 2 

SRi -0.445 3 

SR2 0.315 3 

Vd, cut 1.22 4 

VI, cur 0.98 4 

Vd, graze 1.46 5 

VI, graze 1.15 5 

1 
Source 1 Doyle et al. (1989); 2 Lantinga (1985); 3 Grainger and Mathews (1989); 4 

Woledge et al. (1992); 5 See text 
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Table 3-8 Presumed digestibilities of the different components of the grass and 

clover crops 

Feed Variable Proportionate Digestibilities Source1 

Grass 0.7 1 

dgS,9 0.7 1 

dgo, 9 0.5 1 

Rd9L,9 0.997 1 

Rdgs, 9 0.996 1 

White Clover 0.8 2 

dgs,c 0.7 2 

dgo,c 0.5 3 

Rd9L, c 0.998 4 

Rdgs,c 0.998 4 

Source1
: 1 Wilman et al. (1976); 2 Wilman and Altimimi (1984); 3 See text; 4 

Osbourn (1980) 

3.4.7.1 Selection Coefficient for the Preferential Removal of White Clover by 

Grazing Animals 

Woledge et al. (1992) have determined the selection coefficients for white clover leaf 

and dry matter from two experiments on grass - white clover swards. The selection 

coefficients for white clover leaf material for the two experiments have values of 1.8 

and 1.22, and the corresponding values for dry matter are 1.56 and 0.94. As sheep 

are known to preferentially select white clover from a mixed diet (Edwards, Newman, 
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Parsons, Krebs, 1997; Parsons, Newman, Penning, Harvey, Orr, 1994b), it was 

assumed that the selection coefficients for the grazing livestock would be increased 

compared to a cut sward. The values used for the grazing ruminant were set at 1.46 

and 1.15 for leaf and dry matter respectively while the corresponding values for the cut 

sward were 1.22 and 0.94. Nevertheless, the selection coefficients used for the 

grazing animal are within the range observed by Woledge et al. (1992), and they 

maintain the approximate ratio of the preferential removal of leaf to the removal of dry 

matter. 

3.4.7.2 Digestibility of the White Clover Components 

Wilman and Altimimi (1984) estimated the true digestibility, equivalent to the digestible 

organic matter in the dry matter (N. Offer, personal communication) of the leaf and 

stem components of white clover. These values were corrected for the ash 

component to give the digested organic matter expressed as a percentage of the dry 

matter consumed (D-value). It was assumed that the ash component of the white 

clover was 92.5 g kg-1 (Givens and Moss, 1990). The white clover 'stem' material was 

assumed to consist of mainly of stolons and petioles, although it also includes some 

stalk material. The digestibility of the dead material in a grazed grass - white clover 

sward (Francis and Smethan, 1985) is of similar values to the digestibilities Wilman et 

al. (1976) quoted for Italian ryegrass. Thus, in the model, the d~gestibility of white 

clover dead material (d9Dc) was presumed to equal the value used for ryegrass. 
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3.5 Conclusion 

The theoretical basis of the forage model and the removal of herbage by cutting and 

grazing have been. described in this chapter. Chapter 4 describes the livestock 

production models where the animals consume herbage produced by the forage 

model. The validation of the forage model is described in Chapter 5 which also 

describes the validation of the livestock models. 
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CHAPTER 4 

THE RUMINANT LIVESTOCK MODELS 

4.1 Introduction 

The livestock enterprises that are modelled are (i) a spring-calving dairy herd; (ii) an 

eighteen-month beef finishing system; and (iii) a sheep flock which is lambed in the 

spring. During the summer period, the livestock are rotationally grazed on a pure 

grass or grass - white clover sward. The pasture is divided into twelve equally sized 

paddocks. Herbage production is calculated, for each paddock, on a daily basis and 

is dependent on the existing herbage mass, the availability of nutrients, temperature, 

radiation and ambient concentration of CO2 (see Chapter 3). The principal variables 

and parameters are listed in Appendix V and the time-scale of the model is a day. 

4.2 Dairy Cow Model 

The spring-calving herd is represented in the model by the 'average dairy cow', which 

is turned-out after calving and when there is sufficient herbage for grazing. Within the 

model, it is assumed that 25% of the herd are replaced annually. Therefore, in the 

model it is assumed that the 'average dairy cow' is composed of 25% first-year heifer, 

25% second-year heifer and 50% cow in later lactation. 

For convenience the model, which has a time interval of a day, is divided into three 

sub-models which are concerned with: 

1. factors controlling herbage intake; 
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2. calculation of the herbage intake; and finally 

3. the partitioning of the metabolisable energy (ME) between the 

requirements of the cow. 

4.2.1 Sub-model 1 - Factors Controlling Herbage Intake 

Herbage intake by grazing ruminant livestock is assumed in the model to be 

regulated by three factors (Loewer et al .• 1983): 

1. the feed availability; 

2. the physiological limit on intake; and 

3. the physical ability of the animal to consume feed. 

The actual intake of the grazing ruminant on any given day was determined by the 

most limiting factor (see Figure 3-4). 

4.2.1.1 Feed Availability 

The feed availability constraint on herbage intake has already been described in 

section 3.3.3.1. 

4.2.1.2 Physiological Limit to Intake 

The physiological limit to intake is considered to be regulated by the daily 

metabolisable energy (ME. MJ head-1 dai1) requirements of the animal. Energy 

requirements of the dairy cow are divided into those for i) maintenance (EM. MJ 

head-1 dai\ ii) pregnancy (Ep. MJ head-1 dai\ iii) milk production (EL• MJ head-1 

dai\ and iv) growth and fattening (EF• MJ head-1 dai1). 
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4.2.1.2.1 Requirements for Maintenance 

Hulme, Kellaway and Booth (1986) described the maintenance requirements of the 

dairy cow by the following relationship: 

1.4 * 0.28 * LWT°.75 * exp (-0.03 * Age) * 
EM = + 0.1 Eprod km 

(4.1) 

where LWTo.75 (kg head-1) is the metabolic liveweight of the cow, Age is the age in 

years and Eprod (MJ head-1 dai1) is the energy required for production. In the model, 

Eprod (MJ head-1 dai1) is defined as the previous day's energy requirements for the 

actual production of milk and liveweight gain. In the model it is therefore assumed 

that Eprod (MJ head-1 dai1) on the previous day will be of the same order as the 

actual energy requirements on the present day. The net utilisation efficiency of ME 

for maintenance (km) is related to the metabolisability of the feed, while the mean age 

of the 'average dairy cow' is assumed to be four years. 

4.2.1.2.2 Energy Requirements for Pregnancy 

The daily energy requirements for pregnancy (Ep , MJ head-1 dai1) have been 

derived using relationships for a 40 kg calf specified in Agricultural Research Council 

(1980) and are described as: 

Ep * 0.0201 * exp (-0.0000576 * DayP) 
Ep=~----------~------------L 

kc 
(4.2) 

where 
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log (Ep) = 151.665 -151.64 * exp (-0.0000576 * DayP) (4.3) 

where DayP is the number of days since conception and kc is the net utilisation 

efficiency of ME for pregnancy. 

4.2.1.2.3 Energy Requirements for Milk Production 

The potential energy requirements for lactation (EL, MJ head-1 day-1) have been 

derived from estimates of the potential milk yield (Y, kg head-1 day-1) based on a 

Wood's lactation curve (Wood, King and Youdan, 1980). The potential daily milk 

yield of the 'average dairy cow' is taken to be the weighted average of the potential 

daily milk yield of each age cohort. Following Wood ef al. (1980), the milk yield of 

each age cohort (i) is described as: 

Y = PotttWb;*exp (-Wctt) (4.4) 

where Wb and Wc are constants describing the shape of the lactation curve, and t is 

the time in weeks since the beginning of lactation. Pot (kg head-1 day-1) was defined 

by Wood et al. (1980) as the milk yield when: 

(4.5) 

This occurs shortly after calving. The effect of seasonality and date of calving on 

yield noted by Wood (1969) were estimated by Mainland (1985). Following Mainland 

(1985), these were incorporated into the model by correcting for the percentage 
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deviation in the lactation curve per month due to seasonal variation (Sy, % deviation) 

and the date of calving (Cy , % deviation). The daily milk yield is therefore defined as: 

(4.6) 

where Mn represents the month number since the start of the year and a month is 

assumed to be a period of five weeks. The energy requirements for milk yield (EL' MJ 

head-1 dai1) have then been derived as follows: 

(4.7) 

where LE (MJ kg-1) is the net energy value of 1 kg of milk containing 4% fat and k, is 

the proportionate efficiency with which ME is assumed to be utilised for milk 

production and is related to the metabolisability of the feed. 

4.2.1.2.4 Energy Requirements for Fattening 

Finally, the estimates of the daily energy requirements for growth and fattening (EF' 

MJ head-1 dai1) assume that the potential growth (Aw, kg head-1 dai1) of an animal 

can be described by a Gompertz equation (Taylor, 1968): 

L\ = -N * LWT * In (LWTJ 
W Wt 

M 

(4.8) 

where 
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N= 1 
36*Wt 0.27 

M 

(4.9) 

where LWT (kg head-1
) is the liveweight and WtM (kg head-1

) is the weight of the 

animal at maturity. Thus EF (MJ head-1 dai1) can be described by: 

(4.10) 

where Nw (MJ kg-1
) is the net energy requirement for 1 kg of liveweight gain. The 

proportionate efficiency of ME utilisation for growth and fattening for a lactating cow is 

denoted by kfl and is considered to be a function of the metabolisability of the feed. 

4.2.1.2.5 Physiological Energy Requirements 

The physiological energy requirements (Eph, MJ head-1 dai1) of the 'average dairy 

cow' are then obtained by summing the four elements (EM, Ep, EL and EF, MJ head-1 

dai\ ' However, the energy retention of ruminant livestock is not linearly related to 

intake; it is estimated to decline by between 0.3% and 1.4% per unit increase in 

feeding level (van Es, 1976; Schiemann, Jentsch and Wittenburg, 1971). The 

physiological intake has consequently been corrected for feeding level, as 

recommended by the Agricultural Research Council (1980), in the following manner: 

E 
Level=~ 

EM 

CPh =EPh *(1+0.018*(Level-1)) 

(4.11 ) 

(4.12) 
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where CPh (MJ head-1 dai1) is the ME, corrected for feeding level, required for the 

daily physiological production of milk and growth. The physiological limit to herbage 

intake (IPh, kg OM head-1 dai1) is given by: 

I 
_ C Ph -Mconc 

Ph- MFod 

(4.13) 

where Mconc (MJ head-1 dai1) represents the daily metabolisable energy intake of 

concentrates and MFod is the metabolisable energy value of ingested herbage per kg 

dry matter as defined by equation (3.44). 

4.2.1.3 Physical Limit to Intake 

With feeds having a low digestibility, the actual intake may be lower than the 

physiological requirement. Feed intake is controlled by the rate of passage of 

undigested material through the digestive tract and the rate is positively related to the 

digestibility of the feed (Conrad, Pratt and Hibbs, 1964). Following Kahn and 

Spedding (1984) the physical limit (lA, kg OM head-1 da{1) on daily intake is 

accordingly assumed to be given by: 

d max *LWT 
IA =----

1- dgoiet 

(4.14) 

where dmax (kg OM (kg Iiveweightr1 da{1) represents the ability of the digestive tract 

to process and void undigested feed residues and d9Diet represents the average 

digestibility of the feed in terms of the proportion of digestible organic matter in the 

dry matter. The stage of lactation is considered to have an influence on the cow's 
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ability to process undigested feed residues. Following Kahn and Spedding (1984), 

dmax is increased linearly up to a maximum value on day 150 of lactation and then 

decreased linearly back to the base level at the end of lactation. At the same time, 

following the recommendations of the Agricultural Research Council (1980), the 

physical limit to herbage intake is corrected for the effects of concentrate feeding. 

This is because, as the level of concentrates increases, the intake of herbage 

decreases, so that the net effect of supplementing the diet only results in a small 

increase in the dry-matter intake (Mayne, 1990). Thus, the physical limit to herbage 

intake was described as follows: 

IA = IA -ICone * CReplace (4.15) 

where leone (kg OM head-1 dai1) is the quantity of concentrates fed and CRePlace (kg 

OM herbage (kg OM concentratesr1) is the substitution rate of concentrates for 

forage defined by equation (3.31). 

4.2.2 Sub-model 2 - Calculation of Herbage Intake and Metabolisable Energy 

The actual daily intake (I, kg OM head-1 dai1) can be derived from equations (3.29), 

(4.13) and (4.15) on the basis of the most restrictive factor such that: 

(4.16) 

However, this provides no information on the composition of the diet in terms of leaf, 

stem and dead material or grass and white clover which are described in sections 

3.3.4 and 3.3.5 respectively. The actual intake of energy from the herbage and 
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concentrates consumed is specified in section 3.3.6. It has been assumed in the 

model that the quantity of concentrates (I Cone' kg head-1 da{1) fed to the 'average 

dairy cow' is determined by the milk yield and is thus described as: 

I Cone = Y * I e, kg (4.17) 

where 

Ie, kg = le,1 *OMe *kg I (4.18) 

where Ic, kg (kg OM concentrates head-1 kg-1 milk) is the dry-matter quantity of 

concentrates fed per kilogram of milk whereas Ic, I (kg head-1 r1 milk) is the fresh 

weight of concentrates fed per litre of milk. The variables OMc (kg OM kg-1 fresh 

weight) and kgl (kg milk r1 milk) convert the concentrates from fresh weight to dry 

weight and the milk yield from litres to kilograms respectively. 

However, the efficiencies of conversion of metabolisable energy are dependent on 

the metabolisability of the feed {ME, MJ {kg OMr\ which is defined by the following 

equation: 

Teone + TFod 

ME = ( ) leone +1 *GE 
(4.19) 

where T Cone (MJ head-1 da{1) is the ME intake of the concentrates, T Fod (MJ head-1 

da{1) is the ME intake of the forage, I (kg OM head-1 da{1) and Icone (kg OM head-1 

da{1) are the forage and concentrates consumed respectively and GE {MJ (kg OMr1) 

is the gross energy of the feed. The net utilisation efficiency of ME for maintenance 
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(km), lactation (k,) and for growth and fattening for a lactating cow (kfl) have been 

defined by the Agricultural Research Council (1980) as: 

k m =0.35*ME +0.503 (4.20) 

k, = 0.35 *ME +0.42 (4.21 ) 

(4.22) 

The actual intake (I, kg OM head-1 da{1) and the ME value (MFo(j, MJ head-1 da{1) of 

the herbage affects the metabolisability (ME, MJ (kg OMr1) of the feed, which in turn 

affects the efficiencies of conversion (km' ~ and kfl). These efficiency factors are 

important in determining the potential energy requirements for maintenance (EM, MJ 

head-1 da{1), milk production (EL' MJ head-1 day-1) and liveweight gain (EF' MJ head-1 

da{1) (see equations (4.1), (4.7) and (4.10». In order to get the most accurate 

prediction of the physiological energy requirements, the efficiencies, and therefore 

the metabolisability, are based on the intake determined by herbage availability (IF, kg 

OM head-1 da{\ If IPh (kg OM head-1 da{1) is less than IF (kg OM head-1 da{\ the 

components of intake, ME, and the efficiencies are recalculated for an intake of IPh 

(kg OM head-1 da{\ In the modellA (kg OM head-1 da{1) is then determined, and if 

IA (kg OM head-1 day-1) is the most limiting factor, the components of intake, ME and 

the efficiencies are re-determined. This meant that the efficiency of conversions used 

in calculating the energy partitioned to milk, and growth and fattening are based on 

the actual intake of the animal. 
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Once the components of actual herbage intake have been determined the quantities 

consumed are then deducted from their respective components on the paddock being 

grazed. The total intake of ME (MEc, MJ head-1 dai\ is composed of the forage 

and concentrate ME. Nevertheless, as the energy retained by ruminant livestock is 

not linearly related to intake, the ME consumed (MEc, MJ head-1 dai1) must be 

corrected for feeding level. The actual ME that is available for the maintenance, 

pregnancy, milk production, and growth and fattening (MEl, MJ head-1 dai1) is thus 

defined as: 

where 

MEI= MEc 
1 + 0.018 * (Level-1) 

ME 
Level=--c 

EM 

4.2.3 Sub-model 3 - Partitioning of the Metabolisable Energy 

(4.23) 

(4.24) 

Within the model, the energy intake is partitioned between maintenance, pregnancy, 

growth and fattening and actual milk production as shown in Figure 4-1. The energy 

requirements for maintenance and pregnancy are considered to have priority. If 

there is insufficient energy available to meet the potential energy requirements of the 

animal, it is assumed that the potential energy requirements for milk (EL' MJ head-1 

dai1) and growth (EF' MJ head-1 dai1) are reduced by an equal amount (Bruce, 

Broadbent and Topps, 1984 ). Accordingly, the energy available for actual milk 

production (EAL' MJ head-1 dai1) is described by: 
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(4.25) 

where EL (MJ head-1 dai1) and EF (MJ head-1 dai1) represent the daily potential 

energy requirements for milk production, and growth and fattening. The actual 

energy available for growth is denoted by AE (MJ head-1 dai\ 

There are four different possible ME intake (MEl, MJ head-1 dai1) conditions which 

can occur and they are: 

1. metabolisable energy intake meets the physiological requirements of the 

dairy cow; 

2. metabolisable energy intake meets the maintenance and pregnancy 

requirements of the dairy cow but not the potential energy requirements for 

milk production and growth and fattening; 

3. metabolisable energy intake meets the maintenance requirements of the 

dairy cow but the requirements for pregnancy and the potential energy 

requirements for milk production and growth and fattening are not fulfilled; 

and 

4. metabolisable energy intake does not meet the requirements for 

maintenance and pregnancy. 
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Figure 4-1 A schematic diagram of the partitioning of metabolisable energy in the 

dairy cow 
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The decision rules for these four possible situations are described in detail in 

Appendix VI and are outlined below. 

• In the first case, the average dairy cow achieves potential milk and growth 

production. 

• The second case occurs when the metabolic energy intake is insufficient to 

meet the energy requirements for potential milk and growth production, but 

the energy is sufficient to meet maintenance and pregnancy requirements. 

As a result of the energy deficit the potential energy requirements for milk 

and growth are reduced in equal amounts. If, as a consequence of the 

deficit in energy intake, the maternal body is catabolised the energy 

released from the maternal body production is used by the dairy cow for 

milk production. 

• When the intake of metabolisable energy is insufficient to meet the 

requirements of pregnancy, case 3, there is catabolism of maternal body 

tissue to meet these requirements. The energy required for milk production 

by the dairy cow is also obtained from catabolising the maternal body. In 

these circumstances, the energy available for milk production may become 

less than zero. If this occurs, no milk is produced and the quantity of 

maternal body catabolised is restricted to the shortfall in energy 

requirements for pregnancy. 

• In the final case, the metabolisable energy available is insufficient to meet 

the maintenance and pregnancy requirements. Consequently, the 

maternal body is catabolised to meet these energy requirements. Similarly 
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to case 3, the energy available from milk is also obtained from catabolising 

the maternal body. If there is no energy available for milk production, 

catabolism of the matern~1 body is restricted to the energy required for 

maintenance and pregnancy. 

4.3 Beef Model 

The beef enterprise is assumed to be an eighteen-month beef finishing system, and 

thus the calves are presumed to be born in the autumn and finished out of yards after 

the second winter. The beef model is concerned with representing the grazing phase 

of production. The cattle are considered to be turned out at approximately six months 

of age, in the spring, and yarded at the end of the grazing season. In the model, the 

beef steer is represented in the model by the 'average beef steer'. 

In the description, the model is divided into three sub-models concerned with: 

1. factors controlling herbage intake; 

2. calculation of the herbage intake; and finally 

3. the partitioning of the metabolisable energy (ME) between the 

requirements of the 'average beef steer' 

4.3.1 Sub-model 1 - Factors Controlling Herbage Intake 

The intake of herbage intake by grazing ruminant livestock is influenced by feed 

availability, the physiological requirements of the animal and the physical limit to 

intake, in the same way as for dairy cows. However, the estimation of the 

physiological requirements of the animal differs from that of the dairy cow. 
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4.3.1.1 Physiological Limit to Intake 

The physiological limit to intake for beef steers is determined by the daily 

metabolisable energy requirements arising from maintenance (EM, MJ head-1 da{\ 

and growth and fattening (EF' MJ head-1 da{1). The maintenance requirements (EM, 

MJ head-1 da{1) are described by equation (4.1) and the age (Age, yrs) at turn-out is 

presumed to be 180 days or 0.493 years. 

Within the model, the potential energy requirements for growth and fattening (EF' MJ 

head-1 da{1) of the 'average beef steer' is presumed to be determined from the 

potential gain in the protein (~p, kg head-1 day-1) and fat content (~F' kg head-1 day-1) 

of the empty body weight and is described by: 

(4.26) 

where PE (MJ kg-1) and FE (MJ kg-1) are the energy values of protein and fat 

respectively and kf is the proportionate efficiency of the ME utilisation for growth and 

fattening. The Agricultural Research Council (1980) defined kf by: 

k f = 0.78 *Me + 0.006 (4.27) 

where ME is the metabolisability of the feed; defined by equation (4.19). The 

calculation of the energy requirements for the potential liveweight gain therefore 

requires that the potential change in protein (~p, kg head-1 da{1) and fat (~F' kg 

head-1 day-1) must be ascertained. 
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4.3.1.1.1 Potential Gain in Protein 

The net synthesis of protein is calculated from the rates of protein synthesis and the 

degradation. The rate of protein synthesis is a function of the level of DNA in the 

body and the level of nutrition (Oltjen et a/., 1986). It is assumed within the model 

that the DNA in the body is regulated by the current level of DNA (g head-\ the DNA 

content of the animal at maturity (DN~ax, g head-1) and the level of nutrition. The 

change in DNA content for a given day (~ONA' g head-1 da{1) and the rate of protein 

synthesis (Ps, kg head-1 da{1) are therefore defined as: 

(4.28) 

*( )E2 * Ps = K2 T DNA Nut2 (4.29) 

where K1, K2 and E2 are the constants, and Nut1 and Nut2 are the nutritional effects 

on DNA accumulation and protein synthesis respectively. The predicted DNA content 

of the body, if the animal attains the potential liveweight gain (T DNA, g head-1) is 

therefore described as: 

TDNA =DNA+ ~DNA (4.30) 

The calculation of the energy required for the potential gain in protein assumes that 

the level of nutrition is optimal. According to Oltjen et a/. (1986) the protein content of 

the empty body determines the rate of protein degradation. Oltjen et a/. (1986) 

estimated the relationship describing the protein degradation (Po, kg head-1 da{1) 
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within the animal from work by Lobley, Milne, Lovie, Reeds and Pennie (1980) which 

is specified as: 

(4.31 ) 

where K3 is the protein degradation constant and P (kg head-1
) is the level of empty 

body protein. The net synthesis of protein per day (dp , kg head-1 dai1) is therefore 

described by: 

(4.32) 

The initial quantity of protein within the empty body (P, kg head-1
) has been defined 

by the Agricultural Research Council (1980) as: 

P = 10(LP1*Lo9(EBWj-LP2) (4.33) 

where LP1 and LP2 are constants. 

4.3.1.1.2 Potential Gain in Empty Body Weight 

The potential synthesis of fat is presumed to be a function of the potential gain in 

empty body weight and consequently the latter must be determined first. Following 

the Agricultural Research Council (1980) the empty body weight (EBW, kg head-1
) 

can be converted to the liveweight (LWT, kg head-1
) by: 

EBW = LWT -LEBW2 
LEBW1 
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where LEBW1 is a constant and LEBW2 is the coefficient appropriate for cattle with 

an initial gut fill of 300 g kg-1 empty body weight. Accordingly, the potential gain in 

empty body weight can be predicted from the potential gain in liveweight (Aw, .kg 

head-1 day"1) which is defined by: 

L\ = -N*Wt *In (WtN) 
W N Wt 

M 

(4.35) 

where N is defined by equation (4.9), W~ (kg head-1) is the mature weight of the 

steer and WtN (kg head-1) is the liveweight if the animal had grown at the normative 

growth rate. When herbage intake is limited, the actual liveweight gain will be less 

than the normative liveweight gain. However, during periods of plenty, the animals 

will compensate for periods of limited intake and will consequently have a higher 

liveweight gain than predicted from the Gompertz equation. Following Kahn and 

Spedding (1984) the attainment of normative weight will take 26 days. Within the 

model, the potential liveweight gain is calculated on a daily basis, allowing for 

compensatory growth required for any previous time period. Nevertheless, the total 

daily weight gain is limited to 1.5 kg head-1 day-1 (Kahn and Spedding, 1984). Using 

equation (4.34) the gain in liveweight is converted to a change in the empty body 

weight. Hence the gain in empty body weight (AEBW, kg head-1 day"1) is given by: 

L\EBW = EB -EBW (4.36) 

where EB (kg head-1) is the potential empty body weight on the present day and EBW 

(kg head-1) is the actual empty body weight on the previous day. 
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4.3.1.1.3 Potential Gain in Fat 

In the model the gain in empty body weight is a function of the net synthesis of 

protein andJat (Oltjen et al., 1986). Because the predicted gain in empty body weight 

(AEBw, kg head-1) and the net protein synthesis (Ap , kg head-1 dai1) has been 

determined, the predicted gain in fat (AF' kg head-1 dai1) can therefore be calculated 

as follows: 

_ Ap 
AF -AEBW-­

K4 

where K4 is a constant. 

4.3.1.1.4 Physiological Energy Requirements 

(4.37) 

The physiological energy requirements (Eph, MJ head-1 dai1) of the 'average steer' 

are then defined as: 

(4.38) 

As for the dairy cow model, the physiological energy requirements of the 'average 

steer' are corrected for feeding level; described in equations (4.11) and (4.12). The 

physiological limit to intake are therefore described by equation (4.13). 

4.3.2 Sub-model 2 - Calculation of Herbage Intake and Metabolisable Energy 

The actual herbage intake is determined by the minimum of IF (kg OM head-1 dai\ 

IPh (kg OM head-1 dai1) and IA (kg OM head-1 dai1). The methodology for 

determining the minimum value and the metabolisability of the feed are described in 
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section 4.2.2. Once the actual herbage intake has been determined, the quantity of 

the components consumed are then deducted from their respective components on 

the paddock being grazed. The total intake of ME (MEc, MJ head-1 dai1) is the 

combined ME from the intake of forage and concentrates which is corrected for 

feeding level according to the recommendations of the Agricultural Research Council 

(1980). Accordingly the actual ME (MEl, MJ head-1 dai1) that is available to the 

animal is defined by equation (4.23). 

4.3.3 Sub-model 3 - Partitioning of Metabolisable Energy 

In the model the metabolisable intake of the 'average steer' is partitioned between 

maintenance and growth (see Figure 4-2). It is assumed that there is sufficient 

herbage available to meet the maintenance requirements of the steers. The 

remaining energy which is utilised for growth is partitioned between fat and protein 

synthesis. Equations (4.28)-(4.32) describe the potential net gain in protein. 

However, the change in DNA content and protein synthesis defined by equations 

(4.28) and (4.29) are effected by the level of nutrition (LN). Hence, following Oltjen et 

al. (1986), the effect of the nutrition level (Nut1) on DNA synthesis (~DNA' g head-1 

dai1) and protein synthesis (Ps, kg head-1 dai1) are described by: 

Nut1 = N1+N2*LN (4.39) 

N4*L 
Nut2 =N3+ N 

NS+LN 
(4.40) 
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where N1, N2, N3, N4 and N5 are constants. Within the model, the level of nutrition 

(LN) is defined as: 

L = MEl 
N MEl 

N 

(4.41 ) 

where MEl (MJ head-1 dai1) is the actual intake and MEIN is the energy requirements 

for normal growth of a steer. According to Song and Dinkel (1978) there is a linear 

relationship between maximum ME intake per kilogram of metabolic body weight and 

the degree of maturity. The energy requirements for the normal growth of a British 

steer have been estimated by Oltjen et a/. (1986) from National Research Council 

recommendations (1976) and is described as: 

MEIN = (Nm1- Nm2 * EBWJ * EBW E2 * cal 
EBWM 

(4.42) 

where EBWM is the mature empty body weight, and Nm1, Nm2 and E2 are constants. 

The constant, cal (MJ MCar\ converts megacalories to megajoules. 

Once the net synthesis of protein (Ap , kg head-1 dai1) has been determined the net 

fat synthesis (AF, kg head-1 dai1) is calculated from the following equation (Oltjen et 

a/., 1986): 

(4.43) 
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The empty body weight of the steer is then determined by adding the gain in fat and 

protein to the existing fat and protein content of the body, while the liveweight the 

'average steer' is determined from: 

LWT = LEBW1 * (EBW -LEBW2) (4.44) 

ME available 
ME available 

from herbage 
from 

concentrates 

I 
+ ~ 

Total ME 
... intake 

Level of 
nutrition 

~y Rate of energy use 

~V Rate of net protein 
I'\. for maintenance 

1\ synthesis 

Energy 
Gain in protein available for 

fat synthesis 

V Rate of energy 
~~ energy utilisation 

for fat production 

Gain in fat 

Gain in EBW 

~/ Rate of conversion 1'\ of EBW to 
liveweight 

Gain in 
liveweight 

Figure 4-2 A schematic diagram of the partitioning of metabolisable energy in the 

beef steer 
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4.4 Sheep Model 

The sheep flock is assumed to be lambed in a shed in the spring, and the date of 

lambing is presumed to be 15 March. In the model, the flock is represented by the 

'average ewe' with the 'average number of lambs at foot'. The percentage of lambs 

weaned per ewe, in the model, is presumed to be no greater than 200%, although the 

lambing percentage is determined by the user. It is assumed that half the lambs are 

castrated males and the other half are females. The lambs are solely dependent on 

milk until they are five weeks old. After that period, if there is insufficient energy 

available from milk for potential growth, it is assumed that they would consume 

herbage. The lambs are assumed to be weaned at 16 weeks of age. It is presumed 

within the model that the date of turn-out is after the date of lambing and dependent 

on there being sufficient herbage on the paddocks to allow grazing. 

The time interval within the model is a day. For convenience the model may be 

divided into five sub-models concerned with: 

1. initial liveweight of the lambs; 

2. factors controlling herbage intake; 

3. calculation of the herbage intake; 

4. partitioning of the metabolisable energy in sheep; and finally 

5. partitioning of the metabolisable energy in lambs. 

4.4.1 Sub-model 1 - Initial Liveweight of the Lambs 

Dickenson, Hancock, Hovell, Taylor and Wiener (1962) predicted from egg transfer 

experiments that the lamb litter weight was dependent on the weights of both the 
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donor and recipient ewe at mating as well as the lamb litter size. France, Neal, 

Probert and Pollott (1983) assumed that the donor weight of the ewe at mating could 

be described by the average weight of the sire and dam breeds. The weight of the 

dam was presumed to specify the weight of the recipient ewe. Consequently, the 

lamb litter weight (Wtb kg litte(1) is defined as: 

(4.45) 

where 

WtD =Wt+Wts (4.46) 

and 

V1=(~JO'83 
WtD 

(4.47) 

where Wt (kg ewe-1
) is the liveweight of the ewe at mating, Wts (kg ewe-1

) is 

liveweight of ewe of the sire breed and n is the number of lambs in the litter. In the 

model the lamb litter weight is calculated for litter sizes of one and two lambs. The 

weight of the 'average lamb' is then calculated by weighting the lamb litter weights by 

the number of ewes with single and twin lambs. Following France et al. (1983), the 

liveweight of the ewe at lambing (LWT, kg ewe-1
) is presumed to be described by: 

LWT=Wt*Wt% (4.48) 
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where Wt% represents the maternal liveweight at lambing as a percentage of the 

liveweight at mating. 

4.4.2 Sub-model 2 - Factors Controlling Herbage Intake 

In the model of the sheep flock it is assumed that the lambs' diet will consist only of 

milk for the first five weeks. If there is sufficient herbage available they will then start 

to graze and will be weaned at 16 weeks. After weaning it is assumed that the sheep 

and the lambs will be grazing different paddocks. The lambs are assumed to graze 

the paddock with either sufficient herbage to meet their requirements or the greatest 

herbage mass and the ewes will graze the paddock that the lambs previously grazed. 

In the model the factors limiting intake must be described for the ewes and lambs 

independently as the factor limiting the dry-matter intake of ewes is not the same as 

that for lambs. 

4.4.2.1 Feed Availability 

During the period when the sheep and lambs are both grazing the same paddock it is 

assumed that they are equally competitive for herbage. The herbage required for 

maximum intake constrained by feed availability is determined from equation (3.34) 

for both the sheep and the lambs. The daily allowance of green herbage (H. kg OM 

(ewe + lambsr1 dai1) on the paddock that is being grazed is divided between the 

ewes and the lambs in the proportion of their maximum daily intake. The maximum 

daily intake for the ewe (IE, max. kg OM head-1 dai1) and lambs (IL, max. kg OM head-1 

dai1) is calculated from equation (3.30). and thus the maximum daily intake for the 

lambs per ewe (IEL, max. kg OM litte(1 dai1) is given by: 
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I _I * L% 
El. max - l, max 1 00 (4.49) 

where L % -represents the lambing percent. The daily allowance of green herbage for 

the lambs per ewe (HEL, kg OM litte(1 day-1) is therefore described as: 

H IEl.max *H 
El = 

I El. max + I E. max 

(4.50) 

Hence the daily allowance per lamb (HL, kg OM lamb-1 day-1) and per ewe (HE, kg OM 

H -H * 100 
l - El L% (4.51 ) 

(4.52) 

The feed availability limit to intake for the sheep (IE F, kg OM ewe-1 day-1) and lambs 

(IL, F, kg OM lamb-1 day-1) are therefore described by: 

(4.53) 

(4.54) 

where b1 is a constant. 
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4.4.2.2 Physiological Limit 

4.4.2.2.1 Physiological Limit to Intake for Ewes 

The metabolisable energy requirements (ME, MJ ewe-1 dai1) of the ewe determine 

the physiological limit to intake, where the energy demands are divided into those for 

maintenance (EM, MJ ewe-1 dai\ pregnancy (Ep , MJ ewe-1 dai\ milk production 

(EL, MJ ewe-1 day-1) and growth and fattening (EF, MJ ewe-1 dai\ 

4.4.2.2.1.1 Energy Requirements for Maintenance 

The energy requirements for maintenance include fasting heat production (Ms, MJ 

head-1 day-1) and the increase in heat production associated with muscular activity 

(Mw, MJ head-1 dai\ The following relationships described by Agricultural 

Research Council (1980) are used to determine the maintenance requirements (EM, 

MJ head-1 dai1) of the sheep: 

MB = 0.245 - 0.02164 * In (Age) * ( wt) 0.75 

1.08 

M =~*Wt 
w 1000 

(4.55) 

(4.56) 

(4.57) 

where the Age is the average age of the 'average ewe' in years, which is assumed to 

be three and Wt (kg ewe-1) is the liveweight. The proportionate net efficiency of use 

of ME for maintenance is represented by km• which is related to the metabolisability of 
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the feed and is defined by equation (4.20). The factor 1.08 converts liveweight to 

fasted weight. 

4.4.2.2.1.2 Energy Requirements for Pregnancy 

Following the Agricultural Research Council (1980) the daily energy requirements for 

pregnancy (Ep • MJ ewe-1 dai1) have been derived using relationships for a 4 kg lamb 

and are described as: 

where 

Ep = Ep * 0.07372 * exp (-0.00643 * DayP) 

kc 

log (Ep) = 3.322 - 4.979 * exp (-0.00643 * DayP) 

(4.58) 

(4.59) 

where DayP is the number of days since conception and kc is the net utilisation 

efficiency of ME for pregnancy. 

4.4.2.2.1.3 Energy Requirements for Milk Production 

In order to estimate the potential energy requirements for milk production the 

potential milk yield (Y. kg head-1 dai1) must be determined. Following France et al. 

(1983). the relationship described by Wood et at. (1980) which was derived for dairy 

cows is used to describe the lactation curve for ewes. Hence the potential milk yield 

is described as: 

(4.60) 
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where Pot (kg head-1 dai1) represents the scale parameter, Wb and Wc are 

constants describing the shape of the lactation curve and dL represents the number 

of days post partum. The potential milk yield of the ewe and thus the scale 

parameter (Pot, kg head-1 dai1) is dependent on the size of the litter (Meat and 

Livestock Commission, 1981). Consequently the milk yield for the 'average ewe' (Y, 

kg head-1 dai1) is average milk yield of a ewe with a single lamb and a ewe with twin 

lambs weighted by the number ewes with single and twin lambs. 

The energy content of the milk (EML, MJ kg-1
) produced by ewes is defined by the 

Agricultural Research Council (1980) as: 

E ML = 0.3280 *F + 0.0025 * dL + 2.303 (4.61) 

where F is the percentage fat content of the milk, and has a value of 7% (Agricultural 

Research Council, 1980). Hence the energy content of the milk (YE, MJ ewe-1 dai1) 

is: 

(4.62) 

and the ME required for milk production (EL, MJ head-1 dai1) is described by: 

(4.63) 

where kl is the proportionate efficiency with which ME is utilised for milk production. 
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4.4.2.2.1.4 Energy Requirements for Growth and Fattening 

Within the model it is assumed that the potential growth of a ewe can be described by 

the Gompertz equation and therefore the potential gain .in liveweight (dw. kg head-1 

da{1) is presumed to be described by equations (4.8) and (4.9), section 4.2.1.2. 

Accordingly, the daily energy requirement for growth and fattening (EF, MJ head-1 

da{1) is described as: 

E 
_Ilw *Nw 

F-
keff 

(4.64) 

where Nw (MJ kg-1
) is the net energy requirement for 1 kg of liveweight gain and the 

variable kett represents the proportionate efficiency of ME utilisation for growth and 

fattening. During the lactation phase of production, keff is designate by kfl, whereas 

during the dry phase of production it is denoted by kf, which is defined by equation 

(4.27). 

4.4.2.2.1.5 Physiological Energy Requirements 

The physiological energy requirements (Eph, MJ ewe-1 da{1) of the ewe are therefore 

described by: 

(4.65) 

The determination of the physiological limit to intake corrected for feeding level (IE, Ph, 

MJ ewe-1 da{1) is described by equations (4.11)-(4.13). 
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4.4.2.2.2 Physiological limit to intake for lambs 

The physiological limit to herbage intake for lambs gaining part of their energy 

requirements from forage is regulated by the energy requirements for maintenance 

(LM' MJ lamb-1 dai\ and growth and fattening (LF' MJ lamb-1 dai1 ). 

4.4.2.2.2.1 Energy Requirements for Maintenance 

It is assumed in the model, when the lambs start consuming herbage, that their 

maintenance requirements (LM' MJ lamb-1 dai1) are described by equations (4.55)-

(4.57). 

4.4.2.2.2.2 Energy Requirements for Growth and Fattening 

In the model it is assumed that the potential growth of lambs (AWL, kg head-1 dai1) 

can be described by the Gompertz equation which is represented by equations (4.8) 

and (4.9), section 4.2.1.2. The actual daily energy requirement for growth and 

fattening (LF' MJ head-1 dai1) is therefore represented by: 

(4.66) 

where ke denotes the proportionate efficiency of use of ME for growth and fattening. 

When the lamb is on an all-milk diet the proportionate efficiency of conversion is 

represented by kflb while the efficiency of conversion for a lamb consuming solid feed 

is represented by kf and defined by equation (4.27). The energy content of the 

liveweight gain (Ns, MJ head-1 dai1) is dependent on the liveweight of the lamb, and 

following the Agricultural Research Council (1980) is described by: 
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(4.67) 

where G1 and G2 are constants and LWTL (kg lamb-1) is the liveweight of the lamb. 

The Agricultural Research Council (1980) give values for the constants for lambs on 

all-milk diets and lambs on a"-solid diets. When the lambs are consuming herbage 

the constants for lambs on a"-solid diets are used. The energy values of the 

liveweight gain for castrate lambs are greater than those for female lambs. Within the 

model, it is assumed that the ratio of castrates to females is one. Consequently, the 

average of the energy values for castrates and females are used to determined the 

energy requirements for liveweight gain (LF' MJ head-1 dai\ 

4.4.2.2.2.3 Physiological Energy Requirements 

The physiological energy requirements are obtained by summing the elements (LM 

and LF, MJ lamb-1 dai1) which are then corrected for feeding level, and are described 

by equations (4.11) and (4.12). It is assumed when calculating the physiological limit 

to intake for lambs (IL Ph, kg DM lamb-1 dai1) that they are on an all-solid diet which is 

described in equation (4.13). 

4.4.2.3 Physical Limit to Intake 

In the model, it is presumed that the intake can be constrained by the physical 

characteristics of the animal. As Blaxter, Wainman and Wilson (1961) estimated the 

dry-matter content of the digestive tract per kilogram of metabolic weight, equation 

(4.14) has been expressed in terms of metabolic liveweight. The physical limit to 

intake for sheep is therefore described by: 
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d *LWT°.734 
I __ max ___ _ 

E,A -
1-dgoiet 

(4.68) 

where dmax (kg DM (kg liveweight)-O·734 dai1) represents the ability of the digestive 

tract to process and void undigested feed residues and dgoiet represents the average 

digestibility of the feed in terms of the proportion of digestible organic matter in the 

dry matter. The physical limit is corrected for the intake of concentrates to give the 

physical limit to herbage intake (IE, A, kg OM ewe-1 dai\ which is described by 

equation (4.15). The physical limit to herbage intake for lambs (IL A, kg OM lamb-1 

dai1) is also described by equations (4.68) and (4.15), where LWT is replaced by 

4.4.3 Sub-model 3 - Calculation of Herbage Intake and Metabolisable Energy 

The limits to intake for ewes and lambs are determined independently with the limit 

being the minimum of the feed availability, physiological limit to intake and the 

physical limit to intake. The methodology that is used to calculate actual intake and 

metabolisable energy has been described in section 4.2.2. The total intake of 

metabolisable energy is corrected for feeding level (Agricultural Research Council, 

1980) to give the actual energy available for meeting the requirements of the animal. 

The quantity of the components consumed is then deducted from their respective 

components on the paddock being grazed. 
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4.4.4 SUb-model 4 - Partitioning of the Energy in Sheep 

During the grazing season the ewe will either be lactating or dry. However, the 

requirements for energy and the efficiencies of utilisation of the energy will differ 

between the two stages of production. 

4.4.4.1 Lactation Phase of Production 

In the model, during the lactation phase of production, energy intake is partitioned 

between maintenance (EM, MJ head-1 day-\ milk production (EL' MJ head-1 day-1) 

and liveweight change (EF' MJ head-1 day-\ During the lactation phase of 

production, it is assumed that the ewe is not pregnant. Consequently, there are three 

different ME intake conditions which can occur and they are defined as: 

MEI~ C Ph (4.69) 

(4.70) 

(4.71) 

where CPh (MJ head-1 day-1) is the ME, corrected for feeding level, required for the 

daily physiological production of milk and growth, defined by equation (4.12). As for 

the dairy cow, Figure 4-1 describes the general rules used for partitioning the 

metabolisable energy in the lactating ewe. In the model it is presupposed that the 

maintenance requirements will have priority. Following the model of the dairy cow, it 

is assumed that if there is insufficient energy available to meet the potential energy 

requirements of the ewe then the requirements for milk and fattening will be reduced 
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in equal amounts. The methodology for partitioning the energy in the ewe when the 

conditions outlined in equations (4.69), (4.70) and (4.71) are prevailing is described in 

Appendix VI. 

4.4.4.2 Dry Phase of Production 

During the dry phase of production the partition of available energy between 

maintenance, pregnancy and liveweight gain is presented schematically in Figure 4-

3. Specifically, it is assumed that maintenance and pregnancy are regarded to have 

priority. Any surplus energy is presumed to be used for liveweight gain. If there is 

insufficient energy to meet the maintenance and pregnancy requirements of the ewe, 

the deficit is met by catabolising maternal body. Hence the pregnancy requirements 

for energy from the maternal body are described by equations (VI.23) and (VI.24) in 

Appendix VI. As in the dairy cow model, it is assumed that the efficiency of utilisation 

of energy for maintenance is not affected by the source of the energy. 

4.4.5 Sub-model 5 - Partitioning of the Energy in Lambs 

The energy intake of the lambs is partitioned between maintenance and liveweight 

gain as shown in Figure 4-4. It is assumed within the model that the energy intake of 

the lamb will be sufficient to meet the maintenance requirements. The maintenance 

requirements and the efficiency of liveweight gain differ between lambs on an all-milk 

diet and those on an all-solid diet. The lambs consume an all-milk diet for the first 

five weeks and they are assumed to be weaned at 16 weeks of age. It is presumed 

that lambs consuming a proportion of herbage in the diet have similar efficiencies of 

conversion of ME as those on an all-solid diet. 
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4.4.5.1 Milk Diet 

The maintenance requirements of a lamb on an all-milk diet is composed of fasting 

heat production (Ms, MJ head-1 dai1) and the heat production associated with 

muscular activity (Mw, MJ head-1 dai\ Following the Agricultural Research Council 

(1980) the heat production associated with muscular activity is described by equation 

(4.56), while the fasting heat production (Ms, MJ head-1 dai1) is defined as: 

M =0.35* L (
lWT JO.75 

B 1.05 
(4.74) 

Accordingly, the maintenance requirements of the lamb (lM' MJ head-1 dai1) are 

described by: 

(4.75) 

where km1b is the proportionate efficiency of utilisation of milk for maintenance. 

It is assumed that the milk produced by the 'average ewe' is shared equally among 

the 'average lambs at foot'. Accordingly, the actual milk energy consumed by each 

lamb (lM, MJ head-1 dai1) can then be determined from the following equation: 

lM=Y * l% 
E 100 

(4.76) 

where l % represents the percentage of the number of live lambs per ewe at weaning 

and YE (MJ head-1 dai1) is the energy content of the milk produced. 
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The surplus energy to maintenance which is used for liveweight gain (dw• kg head-1 

dai1) is therefore described by: 

(4.77) 

The proportionate efficiency of utilisation of milk for liveweight gain is represented by 

kflb• and Ns (MJ kg-1) is the average energy required for 1 kg of liveweight gain for a 

castrate and female lamb defined by equation (4.67). 

4.4.5.2 Solid Diet 

If the ewe is still lactating the total energy available for production consists of the 

energy obtainable from herbage and milk. The maintenance requirements of the 

lamb consuming herbage are described in equations (4.55)-(4.57). Hence, the 

liveweight gain (dw• kg head-1 day-1) of the lamb can be described by the following 

equation: 

(4.78) 

where MEIL (MJ lamb-1 dai1) is the total energy consumed after correcting for 

feeding level and kf is the proportionate efficiency of ME utilisation for growth. 
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4.5 Initial Conditions and Parameter Values 

4.5.1 Dairy Cow Model 

The model of the 'average dairy cow' requires the specification of the initial conditions 

of three variables at the beginning of the grazing season which are listed in Table 4-

1. The solution of the equations also requires the specification of parameters. The 

values ascribed to the parameters required for the milk production equations 

(equations (4.4)-(4.7)) are listed in Table 4-2 and Table 4-3, and the remaining 

parameters are listed in Table 4-4. 

4.5.1.1 Estimated Values and Fitted Equations 

The values for the average age (Age, yrs) and the mature weight (WtM' kg head-1
) of 

the dairy cow cannot be derived directly from published sources and therefore they 

had to be estimated. 

4.5.1.1.1 Age of the 'Average Dairy Cow' (Age, yrs) 

Hulme et at. (1986) assumed that the first-year heifers are 2.5 years old and that the 

second-year heifers are 3.5 years old. It is therefore assumed in this model that the 

cows would be approximately 4.5 and 5.5 years old. As 25% of the cows are 

replaced annually, the average age of the herd is four years. 
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Table 4-1 Initial Conditions of the Variables at the Start of the Grazing Season 

Parameter Value 

0.63 

0.7 

LWT 525 

1 
Source 

1 

2 

3 

Source1 1 Beever and Oldham (1986); 2 Hulme et al. (1986); 3 0stergaard (1979) 

Table 4-2 Parameter Values Required to Define the Potential Level of Milk 

Production 

Parameters Values 

1st Year Heifers 2st Year Heifers Cows 

0.127 0.138 0.183 

0.021 0.031 0.036 

17.3 23.3 24.9 

Source Mainland (1985) 
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Table 4-3 The Monthly Values for the Seasonal and Calving effects on Milk Yield 

Month Seasonal Effect Calving Effect 

(Sy) (Cy) 

1 -0.075 0.009 

2 -0.045 -0.016 

3 -0.027 -0.035 

4 0.050 -0.033 

5 0.111 -0.024 

6 0.135 -0.026 

7 0.083 -0.025 

8 0.062 -0.006 

9 0.026 0.016 

10 -0.023 0.032 

11 -0.071 0.044 

12 -0.090 0.037 

13 -0.092 0.029 

Source Mainland (1985) 
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Table 4-4 Parameter Values 

Parameter Value Source1 

Age 4 1 

d9Conc 0.82 2 

dmax 0.0086 3 

Fmax 0.136 4 

GE 18.4 5 

HCrit 900 6 

Ie" 0.15 7 

kbc 0.18 8 

kt" 0.84 5 

kc 0.133 5 

LE 3.1 5 

NL 19 9 

Nw 19 9 

WtM 672.5 1 

Source1 1 See text; . 2 0stergaard (1979); 3 Kahn and Spedding (1984); 4 

McDonald et al. (1988); 5 Agricultural Research Council (1980); 6 Ministry 

of Agriculture and Fisheries (1985); 7 Hollinshead (1995); 8 Robinson, 

McDonald, Fraser and Gordon (1980); 9 Agricultural and Food Research 

Council (1993) 
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4.5.1.1.2 Mature Weight of the 'Average Dairy Cow' (WtM' kg head-1
) 

At the start of lactation Devir, Zur, Maltz, Genizi and Antler (1995) observed that the 

dairy cows lost approximately 5% of their body-weight. They also observed that the 

body weight of Israeli-Holstein cows at the end of the lactation was in the region of 

115-129% of the initial body weight. However, this was affected by the date of 

calving. Accordingly, the mature body weight of the 'average dairy cow' has been 

assumed to be described by: 

Wt M = (LWT * 1.05) * 1.22 (4.79) 

where LWT represents the liveweight on the date of turn-out. The factor 1.05 and 

1.22 respectively convert the liveweight at the date of turn-out to the liveweight just 

post calving, and the liveweight to the mature weight. This gives a mature weight of 

672.5 kg which equates with the maximum body weight observed by Devir et al. 

(1995) of approximately 680 kg. 

4.5.2 Beef Model 

In the model the initial conditions of one variable and the values of twenty-seven 

parameters must be defined in order to solve the equations, which are shown in 

Table 4-5. Following Hulme et al. (1986), the initial value of the variable km is defined 

as 0.7. 
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Table 4-5 Parameter Values 

Parameter Value Source1 Parameter Value Source1 

Age 0.49 1 LEBW1 1.09 3 

cal 4.184 2 LEBW2 14.0 3 

dmax 0.0086 3 LP1 0.8893 7 

DNA1 0.32827 1 LP2 0.5037 7 

DNA2 0.91183 1 N1 -0.7 4 

DN~ax 385 4 N2 1.7 4 

E2 0.73 4 N3 0.83 4 

FE 39.3 3 N4 0.2 4 

Fmax 0.1 5 N5 0.15 4 

Herit 750 6 Nm1 0.438 4 

K1 0.00429 4 Nm2 0.2615 4 

K2 0.0472 4 PE 23.6 3 

K3 0.143 4 WtM 750 4 

K4 0.2201 4 

So'urce1 1 See text; 2 Agricultural Research Council (1980); 3 Kahn and Spedding 

(1984); 4 Oltjen et al. (1986); 5 McDonald et al. (1988); 6 Ministry of 

Agriculture and Fisheries (1985); 7 Agricultural Research Council (1980) 
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4.5.2.1 Estimated Value and Fitted Equations 

The initial value for the average age (Age, yrs) and the initial quantity of DNA within 

. the empty body cannot be derived directly from the text. Consequently the initial 

conditions of these variables have been estimated. 

4.5.2.1.1 Age of the 'Average Steer' (Age, yrs) 

In the model it is assumed that the beef cattle are 180 days old at tum-out. 

4.5.2.1.2 DNA Content at Turn-Out (DNA, kg head-1
) 

The empty body protein content has been measured by Lobley et al. (1980) as 34.0 

kg for a heifer weighing 209 kg empty body weight. It was assumed by Oltjen et al. 

(1986) that the initial protein content of an animal at 200 days old is 34.2 kg and the 

DNA content is 172 g. In order to estimate the initial DNA content, it is assumed that 

an animal weighing 200 kg empty body weight contains 172 g of DNA. The model is 

run for 180 days for an animal weighing 200 kg empty body weight at turn-out, 

assuming that it is growing at potential and therefore there is no effect of feeding. An 

equation of the same form as equation (4.33) is used to estimate the DNA (DNA, g 

head-1
) of the 'average steer'. Accordingly, the equation is taken to be: 

Log (DNA) = DNA 1 + DNA2 * Log (EBW) (4.80) 

The relationship yielded from the regression procedure in SPSS (SPSS Inc, 1990) is: 

Log (DNA) = 0.14256 + 0.91183 * Log (EBW) 
(4.81 ) 

±0.0165 ±0.0070 

180 



with an R2 equal to 0.998. 

4.5.3 Sheep Model 

At the beginning of the grazing season the initial conditions of four variables are 

defined, and the values are listed in Table 4-6. The values ascribed to the 

parameters required for milk production (equation (4.60» are listed in Table 4-7. The 

parameters required to determine the energy required for 1 kg of liveweight gain for 

ewe lambs and castrates on both milk and solid diets are defined in Table 4-8, and 

the remaining parameters required in the model are shown in Table 4-9. 

Table 4-6 Initial Conditions of the Variables at the Start of the Grazing Season 

Variable 

Wt 

Wts 

Value 

0.63 

0.7 

60 

70 

Source1 

1 

2 

3 

3 

Source1 1 Beever and Oldham (1986); 2 Hulme et al. (1986); 3 See Text 
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Table 4-7 Parameter Values Required to Define the Potential Level of Milk 

Production 

Parameters Values 

Single Lambs Twin Lambs 

Wb 0.318 0.299 

We 0.020 0.019 

1.024 1.170 

Source Torres-Hernandez and Hohenboken (1980) 

Table 4-8 Parameter Values Required to Define the Energy Required for 1 kg of 

Liveweight Gain 

All Milk Diet Solid Diet 

Ewe Lambs Castrate Ewe Lambs Castrate 

G1 3.67 5.6 4.4 2.1 

G2 0.472 0.338 0.32 0.45 

Source Agricultural Research Council (1980) 
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Table 4-9 Parameter Values 

Variable Value Source1 

Age 3 1 

dmax 0.1 2 

FL. max 0.130 3 

Fs. max 0.225 4 

HCrit 500 5 

kt,1 0.84 6 

knb 0.7 6 

km1b 0.85 6 

F 7 6 

NL 23.9 7 

Nw 23.9 7 

W~ 75 1 

Source1 1 See Text; 2 Blaxter et al. (1961); 3 Elsen, Wallach and Charpenteau 

(1988); 4 Penning, Parsons, Orr and Hooper (1994); 5 Ministry of 

Agriculture and Fisheries (1985); 6 Agricultural Research Council (1980); 7 

Agricultural and Food Research Council (1993) 

4.5.3.1 Estimated Value and Fitted Equations 

The values for the density of sheep milk, the average age (Age, yrs), the liveweights 

of the dam (Wt, kg head-1
) and the dam of the sire breed (Wts, kg head-\ and the 
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mature weight (WtM' kg head-1
) of the sheep cannot be derived directly from 

published sources, and therefore they have had to be estimated. 

4.5.3.1.1 Density of Sheep Milk 

It is assumed that the composition of sheep milk is 7.15 fat and 18.2% total solids 

(Harding, 1995). The density (d, kg r1) of sheep milk is determined from (British 

Standards Institution, 1959) 

d = 1 + T -1.22 * F - 0.72 
0.25 *1000 

(4.82) 

where T and F are the percentages of total solids and fat in the milk. Consequently 

the density was estimated to be 1.035 kg r1. 

4.5.3.1.2 Age the 'Average Ewe' (Age, yrs) 

It is assumed that in a low-ground sheep system that the ewe will have its first lamb 

crop at one year old and that it will have five lamb crops. Hence the average age of 

the ewe is three years. 

4.5.3.1.3 Liveweights of the Dam and the Dam of the Sire Breed (wt, kg head-1
, 

LWT s, kg head-1
) 

In the model, it is assumed that the lambs produced are from Scottish Blackface 

ewes crossed with Suffolk rams. It is presumed that the average weight of the 

Scottish Blackface ewe is 60 kg and that the average weight of the Suffolk is 70 kg. 
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4.5.3.1.4 Mature Weight of the 'Average Ewe' (WtM' kg head-1
) 

The mature weight of crossbreeds range from 72 to 80 kg (Meat and Livestock 

Commission, 1986). In the model, a mature weight of 75 kg is used for the breeding 

ewe. 

4.6 Conclusions 

The models of forage production and the grazing dairy cows, beef cattle and sheep 

that have been described in this chapter and Chapter 3 are validated in Chapter 5. 

The partitioning of energy within the dairy cow has also been validated and is 

described in Chapter 5. 
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CHAPTER 5 

VALIDATION OF THE FORAGE AND LIVESTOCK MODELS 

5. 1 Introduction 

This chapter outlines the statistical technique used to assess the ability of the forage 

and livestock sub-models to predict production. The validation of the sub-models will 

be divided into the following sections: 

1. herbage production; 

2. dairy production; 

3. beef production; and finally 

4. sheep production. 

5.2 Statistical Technique 

The statistical technique used to assess the ability of the forage and livestock models 

to simulate production is Theil's inequality coefficient (u), which was defined by Theil 

(1970) as: 

(5.1 ) 

where Y p and Yo are the predicted and observed values respectively and n is the 

number of observations. The numerator of this equation is the root mean square 

error, while the denominator scales Theil's inequality statistics so that it always falls 
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between zero and one, with zero indicating a perfect fit. If the value of Theil's 

inequality is one the simulated values are: 

1. always zero when actual values are non-zero; or 

2. non-zero when actual values are zero; or 

3. positive (negative) when actual values are negative (positive). 

As the difference between the actual and the simulated values are squared, large 

errors are penalised more than small errors. This technique also assesses the 

model's ability to duplicate turning points or rapid changes in the data. 

Theil's inequality coefficient can be decomposed into the following equation: 

(5.2) 

where Yp , Yo' O'p, and 0'0 are the means and standard deviations of the predicted and 

observed series respectively, and p is the correlation coefficient between the two 

series. The bias (UM), variance (us) and covariance (uc) proportions of the inequality 

coefficient are therefore defined as: 

(5.3) 

(5.4) 
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(5.5) 

The bias proportion (UM) is an indication of the systematic error, while the variance 

proportion (us) represents the ability of the model to replicate the degree of variability 

in the observed data. The covariance proportion represents the error remaining after 

accounting for the bias and variance proportions. The ideal distribution of inequality 

over the three sources is UM = Us = 0, and Uc = 1 (Pindyck and Rubenfeld, 1981). 

They regarded values of UM and Us greater than 0.2 as large. 

5.3 Herbage Growth Validation 

The ability of the model to simulate grass and grass - white clover production between 

sites and at different fertiliser nitrogen rates were investigated for three sites using 

data from the GM20 (Morrison et al., 1980) and GM23 (J.Gilbey, personal 

communication) trials. The GM20 trial and GM23 trials were conducted during the 

periods 1970-1973 and 1978-1981 respectively. The sward types used in the 

validation process were based on S23 perennial ryegrass for the grass model and a 

Blanca and S23 mixture for the grass - white clover model. The first criterion in 

choosing the sites was that daily weather data was obtainable from the BBSRC 

ARCMET database. The sites, shown in Figure 5-1, were also chosen to represent 

northern, central and southern locations and they had a range of available soil water 

capacities. Consequently High Mowthorpe and Rosemaund, situated in northern and 

central England respectively and used in both the GM20 and GM23 trials, were 

employed to validate the grass and grass - white clover models. The southern site 
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was represented by Seale Hayne for the grass model and Liscombe for the grass -

white clover model. The weather data were obtained for High Mowthorpe, 

Rosemaund, Starcross and Hawkridge (Biotechnology and Biological Research 

Council (BBSRC», with the latter two being in the vicinity of Seale Hayne and 

Liscombe respectively. 

In both trials, the herbage was cut between five and seven times per year. The 

seventh cut was taken at the end of the growing season if there was sufficient herbage 

to harvest. For the purpose of validation, the cuts were grouped into three: the first 

and second cuts; the third and fourth cuts; and the remaining cuts. The dates of the 

actual cuts are shown in Table 5-1 and Table 5-2 for the grass and the grass - white 

clover swards respectively. The fertiliser rates from the GM20 trial used to validate the 

grass model were 0, 150, 300, 450 and 600 kg nitrogen ha-1 y(\ with a sixth of the 

application applied at each dressing. In the GM23 trial, the nitrogen fertiliser 

application rate of 0 kg ha-1 
y(1 was tested in the model at all three sites, namely High 

Mowthorpe, Liscombe and Rosemaund. For all years at High Mowthorpe and 

Liscombe 200 kg ha-1 
y(1 of nitrogen were applied. However, at Rosemaund 300 kg 

ha-1 
y(1 of nitrogen were applied in 1978 and 1979, whereas in 1980 and 1981 the 

application rate was 200 kg ha-1 
y(1. Accordingly, the appropriate rates were used for 

each year at each site to validate the model. In both trials, the nitrogen was applied as 

six equal dressings with the first application in the spring and the remaining 

applications after cuts 1-5. 
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Rosemaund 

• 

Figure 5-1 The location of the sites used to validate the grass and grass - white 

clover model 
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Table 5-1 The dates of cutting at High Mowthorpe, Rosemaund and Seale Hayne 

for the GM20 trial 

Cut High Mowthorpe Rosemaund Seale Hayne 

1 14 May 10 May 6 May 

2 11 June 7 June 3 June 

3 9 July 5 July 1 July 

4 6 August 2 August 29 July 

5 3 September 30 August 26 August 

6 1 October 27 September 23 September 

7 10 November 10 November 10 November 

Source: Morrison et al. (1980) 
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Table 5-2 The dates af cutting at High Mawtharpe, Liscambe and Rasemaund far 

the GM23 trial 

Site Cut 1978 1979 1980 1981 

High Mowthorpe 1 10 May 16 May 12 May 13 May 

2 8 June 13 June 11 June 11 June 

3 5 July 9 July 9 July 9 July 

4 5 August 8 August 5 August 10 August 

5 30 August 3 September 3 September 11 September 

6 25 September 27 September 30 September 15 October 

Liscombe 1 8 May 8 May 8 May 6 May 

2 5 June 5 June 5 June 3 June 

3 3 July 3 July 3 July 1 July 

4 1 August 31 July 31 July 28 July 

5 29 August 28 August 28 August 26 August 

6 15 November 16 November 25 September 23 September 

~~.~ ••• __ ._. __ •• ___ • ______ ••••• __ ._. ___ ._. ________ •• __ ................... ____ • __ •••••• ___ ._ ••• _. __ • _____ on._ •• __ ••••••••• __ •• u ••• u •••••••••••• uou.u ••• __ ••••••••••••••• ___ •• ___ • _____ ••• ______ •• __ .owo_. ___ •••• __ •••••••• _ •••• _ .... o ••• _u ••••• 

Rosemaund 1 9 May 8 May 8 May 8 May 

2 5 June 5 June 5 June 5 June 

3 3 July 3 July 3 July 3 July 

4 2 August 31 July 31 July 31 July 

5 29 August 28 August 28 August 28 August 

6 25 September 25 September 25 September 25 September 

7 17 November 
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The data required to run the model are the latitude of the site, the available water 

capacity and the available soil nitrogen (see Table 5-3 and Table 5-4). The available 

water capacity was measured in the GM20 trial. However, this data were not 

obtainable from the GM23 trial. Nevertheless, all the sites used for the validation 

process were in the locality of sites used in the GM20 trial. It was therefore assumed 

that, although the water capacities might differ for the two trials, they would be 

representative of the soils within that region. Consequently the available water 

capacity for High Mowthorpe and Rosemaund was presumed to be the same in both 

trials, and it was assumed that the Liscombe site could be represented by Cannington 

from the GM20 trial. In the GM20 trial, it was assumed that the available soil nitrogen 

could be approximated from the annual yield of nitrogen harvested in the grass that 

had had no nitrogen fertiliser applications (see Table 5-4). In the GM23 trial, pure 

swards of S23 had been grown at a range of nitrogen levels including 0 kg ha-1 y(1. It 

was therefore assumed that the nitrogen removed in the harvested grass from the 

sward that had had no nitrogen fertiliser applied, averaged over the four years of the 

experiment, would give an estimate of the amount of soil nitrogen that would be 

available for the growth of the sward, as shown in Table 5-4. Accordingly these values 

were used in the model as the quantity of available soil nitrogen for crop growth. 

The grass model was specifically run for the period 1970-1973 for Seale Hayne and 

High Mowthorpe at the five nitrogen levels. However, as the 1973 grass yield data for 

Rosemaund was unobtainable, the model was only run for the period 1970-1972 for 

this site. The period used to test the grass - white clover model at High Mowthorpe, 

Rosemaund and Liscombe was 1978-1981. 
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Table 5-3 The latitude and the available water capacity of the sites 

Site Latitude Available Water Capacity 

(0) (mm)i 

High Mowthorpe 54.0 86 

Rosemaund 52.0 132 

Seale Hayne 50.5 109 

Liscombe 51.0 66 

Source: 1 Morrison et al. (1980) 

Table 5-4 The available soil nitrogen for the grass and grass - white clover swards 

at High Mowthorpe, Rosemaund, Seale Hayne and Liscombe 

Sward Type Year High Rosemaund Seale Hayne Liscombe 

Mowthorpe (N kg ha-i ) (N kg ha-i ) (N kg ha-i ) 

(N kg hOI-i) 

Grass1 70 22 98 40 

71 14 44 58 

72 41 47 75 

73 109 59 

Grass - white 78--81 76 37 105 

clovef 

Source: 1 Morrison et al. (1980); 2 J. Gilbey (personal communication) 
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5.3.1 Results for Grass Validation 

The value of Theil's inequality coefficient, and the bias, variance and covariance 

proportions of the coefficients over the four years and five nitrogen levels for Seale 

Hayne and High Mowthorpe are shown in Table 5-5. The corresponding values for 

Rosemaund measured over three years and five nitrogen levels are also shown in 

Table 5-5. The results indicate that the proportions of Theil's inequality coefficient due 

to bias and variance at High Mowthorpe are large. Nevertheless, this is not the case 

for Seale Hayne and Rosemaund. The ratios of the predicted to observed dry-matter 

yields averaged over years for each cut and nitrogen level are shown for the three 

sites in Table 5-6-Table 5-8. A breakdown by year of the observed and predicted 

dry-matter yields is given in Appendix VII. There is a tendency for the model to under­

predict at nitrogen fertiliser application levels of zero kg ha-1 y(1 and 150 kg ha-1 y(1. 

However, at High Mowthorpe the dry-matter yield obtained from the second and third 

cuts, when no fertiliser nitrogen had been applied, was undE~r-estimated while at Seale 

Hayne the dry-matter yield was under-estimated for all cuts. In contrast at 

Rosemaund there was no distinct pattern. At fertiliser application rates of 150 kg ha-1 

y(1, with the exception of the first cut at Rosemaund and the third cut at High 

Mowthorpe, which were always under-predicted for all years, the dry-matter yields 

were both under- and over- predicted for all cuts and all sites, see Appendix VII. 

However at fertiliser application rates 300-600 kg ha-1 y(1 the dry-matter yields 

tended to be over-estimated (see Table 5-6-Table 5-8). 
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Table 5-5 Theil's inequality coefficient and bias (uMJ, variance (us) and covariance 

(ue) proportions of the coefficients for High Mowthorpe, Seale Hayne and 

Rosemaund 

Site Inequality Bias Variance Covariance 

Coefficient proportion proportion proportion 

High Mowthorpe 0.23 0.225 0.205 0.570 

Seale Hayne 0.18 0.000 0.015 0.985 

Rosemaund 0.18 0.009 0.042 0.949 

Table 5-6 The ratio of the predicted yield:observed yield averaged over years for 

each cut and nitrogen level at High Mowthorpe 

Nitrogen Level Cut 

1 2 3 Total 

o 2.27 0.10 0.00 0.79 

150 1.28 0.88 0.55 0.90 

300 1.13 1.30 1.07 1.17 

450 1.32 1.97 2.06 1.78 

600 1.35 2.54 2.83 2.24 

Total 1.47 1.36 1.30 1.38 
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Table 5-7 The ratio of the predicted yield:observed yield averaged over years for 

each cut and nitrogen level at Rosemaund 

Nitrogen Level Cut 

1 2 3 Total 

o 0.99 0.14 0.00 0.38 

150 0.78 1.01 0.49 0.76 

300 0.94 1.41 0.85 1.07 

450 1.04 1.87 0.92 1.28 

600 1.13 2.69 1.23 1.68 

Total 0.98 1.42 0.70 1.03 

Table 5-8 The ratio of the predicted yield:observed yield averaged over years for 

each cut and nitrogen level at Seale Hayne 

Nitrogen Level Cut 

1 2 3 Total 

o 0.71 0.18 0.00 0.30 

150 0.84 1.01 1.04 0.96 

300 0.89 1.11 1.09 1.03 

450 1.04 1.39 1.51 1.31 

600 0.92 1.61 1.53 1.35 

Total 0.88 1.07 1.03 0.99 
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5.3.2 Results for Grass - White Clover Validation 

The values of Theil's inequality coefficient over the four years and two nitrogen levels 

are shown in Table 5-9-Table 5-11 for the grass, white clover and combined dry­

matter yields for High Mowthorpe, Liscombe and Rosemaund respectively. The 

results reveal that systematic bias only occurred at the Rosemaund site. The ratios of 

the predicted to the observed dry-matter yields averaged over years are presented in 

Table 5-12-Table 5-14, while the annual values are given in Appendix VII. At a/l sites 

and a/l fertiliser application rates, there was a tendency for the dry-matter yield of 

grass from the second cut to be over-estimated. The grass yield from the third cut at 

the zero nitrogen application rate was under-estimated at High Mowthorpe (see Table 

5-12). Theil's inequality coefficient and the ratio of the predicted to the observed dry­

matter yield have rather high values for the white clover yield at Liscombe for both 

fertiliser application rates. However, the observed dry-matter yield of white clover at 

this site in 1981 for 0 and 200 kg nitrogen ha-1 y(1 was practically zero (0.045 t ha-1 

and 0.008 t ha-1 respectively). In contrast the white clover yields in 1979 were 

particularly high. The model also failed to adequately predict the white clover yields at 

Rosemaund. At this site, the reason why the model failed to predict the yield of white 

clover adequately was that the total yield tended to be composed of predominately 

white clover, whereas the yield at the other two sites was dominated by grass. The 

model also failed to predict the observed white clover yields of 4.5 t DM ha -1 and 5.3 t 

DM ha-1 at Rosemaund for 1978 and 1979 at fertiliser application rates of 300 kg ha-1
. 

However, white clover was usually projected to disappear at nitrogen fertiliser levels of 

150-250 kg ha-1 (Williams, 1980). Nevertheless, the model in general proved to be 

reasonably valid for the grass and the combined yield. Even in the case of white 
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clover, although the model did not accurately predict the dry-matter yield, both under­

and over- predicting at all sites, it did give reasonable predictions in terms of the 

general trends of white clover yield. 

Table 5-9 Theil's inequality coefficient and bias (uMJ, variance (us) and covariance 

(ue) proportions of the coefficients for the grass, white clover and 

combined dry-matter yields at High Mowthorpe 

Component Nitrogen Inequality Bias Variance Covariance 

Level Coefficient proportion proportion proportion 

(N kg ha·1) 

Grass 0 0.20 0.017 0.021 0.962 

White clover 0.26 0.051 0.001 0.948 

Combined 0.19 0.055 0.143 0.802 

Grass 200 0.19 0.137 0.290 0.573 

White clover 0.28 0.015 0.425 0.560 

Combined 0.16 0.110 0.276 0.614 
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Table 5-10 Theil's inequality coefficient and bias (uMJ, variance (us) and covariance 

(ud proportions of the coefficients for the grass, white clover and 

combined dry-matter yields at Liscombe 

Component Nitrogen Inequality Bias Variance Covariance 

Level Coefficient proportion proportion proportion 

(N kg ha-1
) 

Grass 0 0.25 0.008 0.196 0.796 

White clover 0.50 0.001 0.073 0.926 

Combined 0.26 0.000 0.406 0.594 

Grass 200 0.21 0.012 0.504 0.484 

White clover 0.64 0.153 0.526 0.321 

Combined 0.17 0.179 0.403 0.418 
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Table 5-11 Theil's inequality coefficient and bias (uMJ, variance (us) and covariance 

(uc) proportions of the coefficients for the grass, white clover and 

combined dry-matter yields at Rosemaund 

Component Nitrogen Inequality Bias Variance Covariance 

Level Coefficient proportion proportion proportion 

(N kg ha-1
) 

Grass 0 0.16 0.307 0.161 0.532 

White clover 0.43 0.352 0.134 0.514 

Combined 0.28 0.452 0.386 0.162 

Grass 200/3001 0.21 0.007 0.643 0.350 

White clover 0.62 0.681 0.105 0.214 

Combined 0.23 0.303 0.476 0.221 

Note 1 The nitrogen application rate was 300 kg ha-1 
y(1 in 1978 and 1979, and 200 

kg ha-1 
y(1 in 1980 and 1981_ 

201 



Table 5-12 The ratio of the predicted yield:observed yield averaged over years for 

each cut and nitrogen level at High Mowthorpe 

Nitrogen Level Cut Grass White Clover Combined 

o 1 1.10 0.65 0.92 

2 1.55 1.02 1.20 

3 0.37 1.41 0.99 

Total 1.01 1.03 1.04 

200 1 0.78 1.29 0.82 

2 1.55 1.30 1.35 

3 0.82 1.73 0.92 

Total 1.05 1.44 1.03 

Grand Total 1.03 1.23 1.03 
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Table 5-13 The ratio of the predicted yield:observed yield averaged over years for 

each cut and nitrogen level at Liscombe 

Nitrogen Level Cut Grass White Clover Combined 

o 1 1.00 119.56 0.91 

2 1.78 9.54 1.52 

3 0.76 5.53 1.59 

Total 1.18 44.87 1.34 

200 1 0.84 0.57 0.82 

2 1.27 4.67 0.96 

3 1.31 81.67 1.04 

Total 1.14 28.97 0.94 

Grand Total 1.16 36.92 1.14 
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Table 5-14 The ratio of the predicted yield:observed yield averaged over years for 

each cut and nitrogen level at Rosemaund 

Nitrogen Level Cut Grass White Clover Combined 

o 1 0.85 0.32 0.59 

2 1.03 0.67 0.72 

3 0.39 2.73 1.68 

Total 0.76 1.24 1.00 

200/3001 1 0.84 0.39 0.71 

2 1.47 0.25 0.81 

3 2.66 1.35 2.02 

Total 1.66 0.66 1.18 

Grand Total 1.21 0.95 

Note 1 The nitrogen application rate was 300 kg ha-1 y(1 in 1978 and 1979, and 200 

kg ha-1 y(1 in 1980 and 1981. 

5.3.3 Herbage Production Under Enhanced Atmospheric CO2 

The ability of the forage model to simulate production under enhanced atmospheric 

CO2 conditions was investigated by running the model at CO2 concentrations of 520 

ppmv and 700 ppmv for High Mowthorpe, Liscombe, Rosemaund and Seale Hayne. 

The annual dry-matter yields obtained for the grass and grass - white clover swards at 

CO2 concentrations of 520 and 700 ppmv have been expressed as a proportion of the 

yield obtained at a CO2 concentration of 350 ppmv (see Table 5-15 and Table 5-16). 

With a doubling of CO2 concentrations, enhancements in annual dry-matter yield of 
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between 8% and 28% for swards that had an annual nitrogen application of 600 kg N 

ha-1 and were not subjected to water stress were reported (Jones et al., 1996b). 

Nevertheless, enhancements in yield of 43% for young plants (Jones et al., 1996b) at 

double current concentrations of CO2, and 48% (Casella et al., 1996) and 54% (Jones 

et al., 1996a) for yields obtained during part of the season have been reported. 

Increases in yield of white clover plants of between 45% (Ryle and Powell, 1992) and 

229% (Ryle et al., 199,2b) have been observed when CO2 concentrations have been 

elevated to 680 ppmv. On the other hand, the yield from a mixed sward containing a 

1: 1 mixture of grass white clover was enhanced by 58% when CO2 concentrations 

were elevated from 300 ppmv to 620 ppmv (Overdieck and Reining, 1986). 

Nevertheless, Jongen et al. (1995) observed changes of +13% and -7% for the yield of 

the grass harvested in August and November respectively. The comparable figures 

for the white clover component were +24% and +39%. The enhancement in yield from 

the grass and the grass - white clover sward predicted by the model falls within the 

ranges quoted in the literature. Consequently, it is assumed that the model of the 

grass and grass - white clover swards can adequately predict the effect of enhanced 

CO2 levels on production. 
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Table 5-15 The ratio of the yield obtained at CO2 concentrations of 520 ppmv to the yield obtained at CO2 concentrations of 350 

ppmv and the ratio of the yield obtained at CO2 concentrations of 700 ppmv to the yield obtained at CO2 

concentrations of 350 ppmv for High Mowthorpe, Seale Hayne and Liscombe for each nitrogen level 

Nitrogen Level Yield at 520 ppmv:Yield at 350 ppmv Yield at 700 ppmv:Yield at 350 ppmv 

(N kg ha-1
) High Mowthorpe Rosemaund Seale Hayne High Mowthorpe Rosemaund Seale Hayne 

0 1.06 1.39 1.37 1.09 1.60 1.56 

150 1.43 1.35 1.34 1.70 1.55 1.55 

300 1.30 1.28 1.26 1.47 1.43 1.41 

450 1.26 1.25 1.23 1.40 1.35 1.36 

600 1.24 1.23 1.21 1.37 1.35 1.33 

Total 1.26 1.30 1.28 1.40 1.46 1.44 
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Table 5-16 The ratio of the yield obtained at CO2 concentrations of 520 ppmv to the yield obtained at CO2 concentrations of 350 

ppmv and the ratio of the yield obtained at CO2 concentrations of 700 ppmv to the yield obtained at CO2 

concentrations of 350 ppmv for grass, white clover and the combined yield at High Mowthorpe, Liscombe and 

Rosemaund 

Site Nitrogen Level Yield at 520 ppmv:Yield at 350 ppmv Yield at 700 ppmv:Yield at 350 ppmv 

. (N kg ha-1
) Grass White Clover Combined Grass White Clover Combined 

High Mowthorpe o 1.14 1.50 1.39 1.21 1.73 1.56 

200 1.28 1.19 1.26 1.44 1.28 1.41 

Liscombe o 1.25 1.30 1.28 1.35 1.48 1.44 

200 1.27 0.93 1.23 1.42 0.97 1.37 

Rosemaund o 1.17 1.54 1.45 1.22 1.78 1.64 

200/3001 1.28 1.04 1.26 1.44 1.01 1.40 

Note 1 The nitrogen application rate at Rosemaund was 300 kg ha-1 
y(1 in 1978 and 1979, and 200 kg ha-1 y(1 in 1980 and 

1981. 
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5.4 Dairy Model 

The ability of the model to simulate milk production was investigated for a non-grazing 

and a grazing situation, and are described in this section. 

5.4.1 Non-Grazing Validation 

0stergaard (1979) reported a four-year experiment on the effect of different levels of 

concentrate feeding on the food intake and liveweight change of dairy cows and milk 

production. This data were used to assess the model's ability to predict the liveweight 

change of the dairy cows and monthly milk production. The experimental period was 

for 36 weeks from on average seven days after parturition. Each cow was fed a basal 

diet through the lactation which is described in Table 5-17, and the cows were 

allocated to one of eight concentrate feeding regimes (see Table 5-18). The 

strategies for the concentrate feeding regime were: 

• LO low level of concentrates with an equal quantity fed daily; 

• L05 low level of concentrates with the quantity fed being reduced by 

0.5 kg every four weeks; 

• MO medium level of concentrates with an equal quantity fed daily; 

• M05 medium level of concentrates with the quantity fed being 

reduced by 0.5 kg every four weeks; 

• M1 medium level of concentrates with the quantity fed being 

reduced by 1.0 kg every four weeks; 

• M21 medium level of concentrates with the quantity fed being 

increased over the first twelve weeks, and thereafter reduced; 

• HO high level of concentrates with an equal quantity fed daily; and 

• H15 high level of concentrates with the quantity fed being increased 

over the first twelve weeks, and thereafter reduced. 
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The quantity of concentrates fed during each of the 36 weeks of the experiments is 

shown in Table 5-18-Table 5-20. 0stergaard (1979) reported that the dry-matter 

percentage of the concentrates was 0.87, while the energy value was 13.23 MJ kg-1
• 

The liveweights of the heifers and cows post partum for each of the feeding regimes 

are shown in Table 5-21. For each of the concentrate feeding regimes the silage was 

fed ad libitum. 0stergaard (1979) described the voluntary intake of silage (SI, kg fresh 

weight head-1 dat1
) by: 

SI = a - b * ecx + d * x (5.6) 

where x denotes the week of lactation and the coefficients a, b, c and d are given for 

heifers and cows, and for each concentrate regime in Table 5-22. In the model it is 

presumed that the dry-matter percentage of the silage is 22% (0stergaard, 1979). 

Table 5-17 Components, quantity and energy value of the basal diet 

Component Quantity Energy Value 

kg OM head·1 day·1 MJ kg·1 OM 

Fodder Beet 2.7 10.73 

Molasses 1.0 11.92 

Beet-top silage 1.0 8.94 

Barley straw 0.7 3.34 

Source 0stergaard (1979) 
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Table 5-18 Feeding regime strategies and quantity of concentrates fed during the 

first 12 weeks of the experiment 

Week of Concentrate Feeding Regime (kg fresh weight head-i day-i) 

Lactation LO L05 MO M05 M1 M21 HO H15 

1 4.5 6.5 6.0 8.0 10.5 3.0 7.5 6.0 

2 4.5 6.5 6.0 8.0 10.0 3.5 7.5 6.5 

3 4.5 6.5 6.0 8.0 10.0 4.0 7.5 6.5 

4 4.5 6.5 6.0 8.0 9.5 4.5 7.5 7.0 

5 4.5 6.0 6.0 7.5 9.5 5.0 7.5 7.0 

6 4.5 6.0 6.0 7.5 9.0 5.5 7.5 7.5 

7 4.5 6.0 6.0 7.5 9.0 6.5 7.5 7.5 

8 4.5 6.0 6.0 7.5 8.5 7.0 7.5 8.0 

9 4.5 5.5 6.0 7.0 8.5 7.5 7.5 8.0 

10 4.5 5.5 6.0 7.0 8.0 8.0 7.5 8.5 

11 4.5 5.5 6.0 7.0 8.0 8.5 7.5 8.5 

12 4.5 5.5 6.0 7.0 7.5 9.0 7.5 9.0 

Source 0stergaard (1979) 
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Table 5-19 Feeding regime strategies and quantity of concentrates fed during the 

second 12 weeks of the experiment 

Week of Concentrate Feeding Regime (kg fresh weight head-1 day-i) 

Lactation LO LOS MO MOS M1 M21 HO H1S 

13 4.5 5.0 6.0 6.5 7.5 9.0 7.5 9.0 

14 4.5 5.0 6.0 6.5 7.0 8.5 7.5 9.0 

15 4.5 5.0 6.0 6.5 7.0 8.5 7.5 8.5 

16 4.5 5.0 6.0 6.5 6.5 8.0 7.5 8.5 

17 4.5 4.5 6.0 6.0 6.5 8.0 7.5 8.5 

18 4.5 4.5 6.0 6.0 6.0 7.5 7.5 8.5 

19 4.5 4.5 6.0 6.0 6.0 7.5 7.5 8.0 

20 4.5 4.5 6.0 6.0 5.5 7.0 7.5 8.0 

21 4.5 4.0 6.0 55 5.5 7.0 7.5 8.0 

22 4.5 4.0 6.0 5.5 5.0 6.5 7.5 8.0 

23 4.5 4.0 6.0 5.5 5.0 6.5 7.5 7.5 

24 4.5 4.0 6.0 5.5 4.5 6.0 7.5 7.5 

Source 0stergaard (1979) 
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Table 5-20 Feeding regime strategies and quantity of concentrates fed during the 

third 12 weeks of the experiment 

Week of Concentrate Feeding Regime (kg fresh weight head-1 day-') 

Lactation LO L05 MO M05 M1 M21 HO H15 

25 4.5 3.5 6.0 5.0 4.5 6.0 7.5 7.5 

26 4.5 3.5 6.0 5.0 4.0 5.5 7.5 7.5 

27 4.5 3.5 6.0 5.0 4.0 5.5 7.5 7.0 

28 4.5 3.5 6.0 5.0 3.5 5.0 7.5 7.0 

29 4.5 3.0 6.0 4.5 3.5 5.0 7.5 7.0 

30 4.5 3.0 6.0 4.5 3.0 4.5 7.5 7.0 

31 4.5 3.0 6.0 4.5 3.0 4.5 7.5 6.5 

32 4.5 3.0 6.0 4.5 2.5 4.0 7.5 6.5 

33 4.5 2.5 6.0 4.0 2.5 4.0 7.5 6.5 

34 4.5 2.5 6.0 4.0 2.0 3.5 7.5 6.5 

35 4.5 2.5 6.0 4.0 2.0 3.5 7.5 6.0 

36 4.5 2.5 6.0 4.0 1.5 3.0 7.5 6.0 

Source 0stergaard (1979) 
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Table 5-21 Uveweight of the herd post partum, kg heacf1 

LO 

Heifers 480 

Cows 547 

LOS 

481 

540 

Source 0stergaard (1979) 

MO 

477 

530 

MOS 

473 

538 

213 

M1 

479 

537 

M21 

473 

547 

HO 

485 

537 

H1S 

484 

529 



Table 5-22 Estimates of the coefficients for the model of silage intake (equation (5.6)) 

a b c d 

Heifers LO 28.0 13.5 -0.234 -0.045 

L05 28.7 13.1 -0.154 0.077 

MO 26.7 15.5 -0.228 0.065 

M05 18.5 7.9 -0.396 0.266 

M1 15.1 4.6 -0.287 0.370 

M21 25.2 16.1 -0.789 0.101 

HO 108.8 96.0 -0.035 -1.657 

H15 22.5 9.1 -0.262 0.084 

Cows LO 34.2 21.2 -0.298 -0.066 

L05 37.7 21.9 -0.188 -0.207 

MO 26.7 12.1 -0.287 0.025 

M05 28.6 15.8 -0.265 -0.004 

M1 33.2 21.4 -0.163 -0.012 

M21 28.5 12.4 -0.656 0.074 

HO 28.5 14.7 -0.213 -0.111 

H15 27.6 14.7 -0.307 -0.035 

Source 0stergaard (1979) 
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Although the experimental groups were not composed of 43% heifers, the reported 

milk yields and liveweights are for a herd of that composition. Hence during the 

validation this was the assumed herd composition in the model. The predicted milk 

yields were compared with the average daily 4% fat corrected milk yield over three 12 

week periods and over nine four week periods (see Figure 5-2). The values of the 

Theil's inequality coefficients for the fat corrected milk yield and the liveweight change 

of the dairy herd are shown in Table 5-23. The bias, variance and covariance 

proportions of the coefficients are also shown in Table 5-23. For all the concentrate 

regimes, milk production was under-estimated which is revealed in the estimation of 

bias (UM). Nevertheless the predicted milk yield was at least 90% of the observed yield 

during the first two of the 12 week periods, although this fell to approximately 80% for 

the third period. In contrast the magnitude of the liveweight change was over-

estimated for all the concentrate regimes during the first 24 weeks of the experiment, 

and under-estimated for the final 12 weeks. 
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• Predicted 

Figure 5-2 The observed and predicted fat corrected milk yield averaged over the 

eight concentrate feeding regimes. 
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Table 5-23 Theil's inequality coefficient and bias (u,.J, variance (us) and covariance 

(ue) proportions of the coefficients for the milk yield and liveweight 

change 

Variable Measurement Inequality Bias Variance Covariance 

Period Coefficient proportion proportion proportion 

Milk Yield 3*9 weeks 0.602 0.800 0.087 0.113 

Milk Yield 12*4 weeks 0.604 0.834 0.080 0.086 

Liveweight 3*9 weeks 0.207 0.04 0.042 0.949 

However, the under-estimation of milk yield may be due to the potential milk yield of 

the Danish cows and heifers being approximately 10% higher during the first two 

weeks of the lactation than the potential yield parameter defined for cows in the South­

West of Scotland. Increasing the potential milk yield by 10% resulted in a Theil's 

inequality coefficient of 0.037 with a bias proportion of 0.363. 

5.4.2 Grazing Validation 

The ability of the model to simulate milk production from a dairy herd grazing pasture 

was investigated using data from a trial carried out during the period 1983-1987 at 

An Foras Taluntais, Johnstown Castle, Wexford (M. Ryan, personal communication) 

as shown in Figure 5-3. The trial was conducted on grass and grass - white clover 

swards with a high and low stocking density for each sward type. The dairy herds 

were rotationally grazed round a twelve-paddock system. On the grass - based 

system in the trial, half the area was set aside for first-cut silage production and a third 

for the second cut. With respect to the grass - white clover system, nitrogen was 
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applied to the four paddocks that were set aside for silage production, whereas no 

nitrogen was applied to the grazed paddocks. The mean date of calving was early 

February and the mean date of turn-out was the 9 April, with the mean experimental 

period running from 18 April to 15 October (Ryan, 1989). 

Loughry 

• 

Figure 5-3 The location of Johnstown Castle used to validate the dairy model, and 

Greenmount and Loughry used to validate the beef model 
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For the validation process the model was specifically run for the period 1985-1987 

for dairy herds on both sward types. Calving was assumed to occur on 7 February 

and the dates of turn-out and yarding were presumed to be 9 April and 15 October 

respectively. The nitrogen rates and the stocking densities used in the model for each 

year are shown in Table 5-24 (Ryan, 1988; Ryan, 1989). The 'average dairy cow' was 

assumed to weigh 525 kg at turnout. In the model it was also assumed that the 

quantity of concentrates fed per day was determined by the milk yield and 

consequently the 'average cow' was fed 0.15 kg fresh weight of concentrates per litre 

of milk (Hollinshead, 1995). The weather data for the site were provided by the Irish 

Meteorological Office, Dublin (personal communication). The soil type was assumed 

to be either a shallow soil over chalk or rock or a gravel or coarse sandy soil with an 

available water capacity of between 40 and 80 mm (Baker, Doyle and Lidgate, 1991). 

The sward type was presumed to be permanent grassland. Hence it was assumed in 

the model that the available "vater capacity of the soil was 60 mm and the soil nitrogen 

status was 120 kg ha-1
• In the model it was presumed that the dates of the 

conservation cuts were 1 June and 27 July. 
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Table 5-24 The rates of nitrogen application and stocking densities for each sward 

type for each year 

Year Low Stocking Density High Stocking Density 

Nitrogen Density Nitrogen Density 

(kg ha-1
) (cows ha-1

) (kg ha-1
) (cows ha-1

) 

Grass 

1985 354 2.49 352 3.23 

1986 329 2.49 329 3.23 

1987 307 2.36 307 3.10 

Grass - White Clover 

1985 399 2.10 399 2.55 

1986 327 2.10 327 2.55 

1987 366 1.98 366 2.4 

With respect to the grass - based system, there was a tendency to over-predict 

towards the end of the grazing season at both stocking densities (see Figure 5-4-

Figure 5-6). This trend was also apparent for the predicted milk yields from the grass 

- white clover based system for both stocking densities in 1985 (see Figure 5-4) and 

1986 (see Figure 5-5). Nevertheless, the values of Theil's inequality coefficient for 

both systems, shown in Table 5-25 and Table 5-26, indicated a reasonably good fit, 

although there was a tendency for bias. 
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Grass - Based System 
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Figure 5-4 Observed and predicted daily milk yields for the 'average cow' at An 

Foras Taluntais, Johnstown Castle, 1985 
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Grass - Based System 

Low Stocking Density High Stocking Density 
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Figure 5-5 Observed and predicted daily milk yields for the 'average cow' at An 

Foras Taluntais, Johnstown Castle, 1986 
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Grass - Based System 
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Figure 5-6 Observed and predicted daily milk yields for the 'average cow' at An 

Foras Taluntais, Johnstown Castle, 1987 
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Table 5-25 Theil's inequality coefficient and bias (uMJ, variance (us) and covariance 

(ue) proportions of the coefficients for grass - based dairy systems 

Stocking Year Theil Bias Variance Covariance 

Density Statistic 

Low 1985 0.069 0.575 0.020 0.405 

1986 0.070 0.470 0.184 0.346 

1987 0.051 0.291 0.131 0.578 

1985-1987 0.064 0.443 0.084 0.473 

High 1985 0.082 0.494 0.168 0.338 

1986 0.053 0.154 0.141 0.705 

1987 0.075 0.622 0.000 0.378 

1985-1987 0.071 0.418 0.075 0.507 
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Table 5-26 Theil's inequality coefficient and bias (uMJ. variance (us) and covariance 

(ue) proportions of the coefficients for grass - white clover based dairy 

systems 

Stocking Year Theil Bias Variance Covariance 

Density Statistic 

Low 1985 0.064 0.370 0.117 0.507 

1986 0.100 0.629 0.175 0.196 

1987 0.075 0.647 0.007 0.346 

1985-1987 0.081 0.535 0.070 0.395 

High 1985 0.076 0.367 0.094 0.539 

1986 0.059 0.132 0.352 0.516 

1987 0.058 0.463 0.028 0.509 

1985-1987 0.065 0.306 0.061 0.633 

5.5 Beef Cattle Model 

Data from a trial conducted at Greenmount and Loughry, Northern Ireland (Stewart 

and Haycock, 1984) were used to investigate the ability of the beef model to simulate 

production from a grazing beef herd (see Figure 5-3). During the period 1977-1982, 

a typical high nitrogen 18 - month beef system was compared with a system that was 

dependent on white clover and a low input of nitrogen. In the trial, each system was 

divided into ten equally sized paddocks which were rotationally grazed. The first-cut 

silage, which was approximately two thirds of the area, was cut in the third or fourth 

week in May and further cuts were taken later in the summer. The calves were turned 
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out to grass in April. At Greenmount, the mean weight at turn-out over the trial period 

was 180 kg, whereas at Loughry it was 200 kg. The land area per system and the 

stocking densities used during the experimental period at each site are shown in Table 

5-27. 

Table 5-27 The area per system and the stocking densities at Greenmount and 

Loughry for the grass and grass - white clover systems 

Site Area per system Stocking Density (Cattle ha·1) 

(ha) Grass Grass - White Clover 

Greenmount 7.5 4.53 3.33 

Loughry 7.0 4.57 3.29 

For the validation process, the model was specifically run for the period 1978-1982. 

Turn-out and yarding were assumed to occur on the 14 April and 31 October 

respectively. Following the recommendations of the Meat and Livestock Commission, 

(1982), the calves were fed 0.86 kg OM of concentrates per day for the three weeks 

after turn-out and for the months of September and October. The application rates of 

nitrogen are shown for each year in Table 5-28. While the rates are shown per 

hectare in the grass - white clover system, approximately 30 kg ha-1 was applied to 

the areas intended for grazing, and the remaining nitrogen was applied to the areas 

selected for first-cut silage production. The weather data for Cookstown, which was 

obtained from the BBSRC ARCMET database, were used to represent the conditions 

at the Loughry site, whereas the weather station at Hillsborough was assumed to 

represent the weather at the Greenmount site. The soil at the Greenmount site was 
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described as a dull reddish brown clay and at Loughry the soil was a dark red - brown 

clay loam or a sandy silt loam (Stewart and Haycock, 1984). Accordingly, the 

available soil water capacity was assumed to be 120 mm. The sward type was 

presumed to be permanent grassland and therefore the soil nitrogen status had a 

value of 120 kg ha-1
. The dates of the conservation cuts were taken to be 1 June and 

27 July. 

The liveweight gains observed and predicted by the model are shown in Table 5-29. 

The observed and predicted number of paddocks harvested for the first and second 

cuts and the quantity of silage harvested per head are shown in Table 5-30 and Table 

5-31 respectively. Specifically, if no grazing had occurred twenty paddocks were 

recorded as being cut for silage, as each of the ten paddocks were cut twice. Apart 

from the grass - white clover system at Loughry, there was a tendency to under­

predict daily liveweight gain. In contrast the number of paddocks harvested for silage 

for the grass and the grass - white clover based systems at both Greenmount and 

Loughry tended to be over-predicted (see Table 5-30), although the quantity of silage 

harvested was always under-predicted (see Table 5-31). The tendency to under­

estimate silage production was also apparent in the proportion of Theil's inequality 

coefficient accounted for by bias (see Table 5-32 and Table 5-33). However, the 

values of Theil's inequality coefficient for both systems over the five - year period 

reveal that the model predictions for liveweight gain, the number of paddocks cut for 

silage and the quantity of silage harvested per head are reasonable (see Table 5-32 

and Table 5-33). 
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Table 5-28 The rates of nitrogen application for each sward type for each year. 

Year Greenmount Loughry 

Nitrogen (kg ha-1
) Nitrogen(kg ha-1) 

Grass 

1978 275 299 

1979 297 299 

1980 302 299 

1981 307 299 

1982 362 299 

Grass - White Clover 

1978 48 33 

1979 48 45 

1980 51 45 

1981 51 45 

1982 52 53 
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Table 5-29 The observed and predicted live weigh t daily live weight gain at 

Greenmount and Loughry for the grass and grass - white clover systems 

Year Liveweight Gain (kg head·i day·i) 

Greenmount Loughry 

Observed Predicted Observed Predicted 

Grass 

1978 0.73 0.63 0.77 0.60 

1979 0.86 0.66 0.90 0.67 

1980 0.94 0.68 0.79 0.72 

1981 0.78 0.68 0.75 0.69 

1982 0.92 0.69 0.75 0.69 

Grass - White Clover 

1978 0.91 0.82 0.85 0.84 

1979 0.92 0.88 0.99 0.91 

1980 1.01 0.88 0.83 0.88 

1981 0.81 0.90 0.75 0.89 

1982 0.93 0.89 0.69 0.84 
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Table 5-30 The observed and predicted number of paddocks cut for silage at 

Greenmount and Loughry for the grass and grass - white clover systems 

Year Number Paddocks Cut for Silage 

Greenmount Loughry 

Observed Predicted Observed Predicted 

Grass 

1978 10 9 11 10 

1979 5 12 12 11 

1980 11 14 16 11 

1981 8 13 12 12 

1982 12 13 10 10 

Grass - White Clover 

1978 10 10 13 9 

1979 8 13 11 12 

1980 8 13 13 10 

1981 6 14 10 12 

1982 12 13 13 10 
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Table 5-31 The observed and predicted quantity of silage per head at Greenmount 

and Loughry for the grass and grass - white clover systems 

Year Quantity of Silage (t head-i) 

Greenmount Loughry 

Observed Predicted Observed Predicted 

Grass 

1978 0.69 0.58 1.05 0.47 

1979 0.62 0.62 1.09 0.69 

1980 1.13 0.70 1.47 1.03 

1981 0.88 0.72 1.12 0.88 

1982 1.03 0.54 1.00 0.85 

Grass - White Clover 

1978 0.81 0.48 1.69 0.53 

1979 1.11 0.67 1.50 0.71 

1980 1.18 0.54 1.48 0.86 

1981 0.78 0.79 1.30 0.95 

1982 0.89 0.52 1.49 0.79 
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Table 5-32 Theil's inequality coefficient and bias (uMJ, variance (us) and covariance 

(ue) proportions of the coefficients for the Iiveweight gain and the number 

of paddocks cut for silage for grass - based systems. 

Theil Bias Variance Covariance 

Statistic 

Greenmount 

Liveweight gain 0.094 0.892 0.065 0.043 

Number Paddocks 0.164 0.229 0.335 0.436 

Silage head-1 0.226 0.684 0.185 0.131 

Loughry 

Liveweight gain 0.063 0.599 0.133 0.268 

Number Paddocks 0.077 0.000 0.035 0.965 

Silage head-1 0.174 0.795 0.013 0.192 

231 



Table 5-33 Theil's inequality coefficient and bias (uMJ, variance (us) and covariance 

(ue) proportions of the coefficients for the Iiveweight gain and the number 

of paddocks cut for silage for grass - white clover based systems. 

Theil Bias Variance Covariance 

Statistic 

Greenmount 

Liveweight gain 0.042 0.178 0.340 0.482 

Number Paddocks 0.177 0.266 0.072 0.662 

Silage head-1 0.292 0.788 0.020 0.192 

Loughry 

Liveweight gain 0.077 0.281 0.407 0.312 

Number Paddocks 0.097 0.062 0.002 0.936 

Silage head-1 0.291 0.715 0.031 0.254 

5.6 Sheep Model 

5.6.1 Experimental Data Used for Validation 

The ability of the sheep model to simulate production was only tested for grass swards 

as no data were available to compare the model results with production from a grass -

white clover sward. The production from grass swards was tested against two sets of 

experimental data. The first experiment was conducted at the Hartwood Research 

Station, Scotland (Maxwell, Sibbald, Dalziel, Agnew and Elston, 1994) and the second 

was conducted at the Bronydd Mawr Research Station, Wales (Sibbald, Maxwell, 

Morgan, Jones and Rees, 1994), as shown in Figure 5-7. 
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Figure 5-7 The location of Harthi/l and Bronydd Mawr 
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Maxwell et al. (1994) conducted the experiment at Hartwood during the period 1983-

1985 at two sward heights. The ewes were stocked at either 10 or 15 ha-1 and the 

mean date of turnout was 5 and 27 April for the low and high sward heights 

respectively. In the experiment mating commenced on the 26 October, and 

consequently the mean date of lambing was presumed to be 27 March. The lambing 

percentage for the high stocking density (15 ewe ha-1
) was 137, while it was 150 for 

the low stocking density (10 ewe ha-1
). As the lambs were weaned during mid July, it 

was assumed in the model that the date of weaning was 15 July. The quantity of 

nitrogen fertiliser applied to the sward was 153 kg ha-1 which was assumed to have 

been utilised by the sward by the 30 September. During the trial, silage cuts were 

taken in the first week of June and by the 10 August. Hence in the model the silage 

was assumed to be cut on 1 June and 10 August. For the validation process the 

model was specifically run for the periC?d 1983-1985 at two stocking densities and for 

turnout dates of 5 and 27 April. It was assumed in the model that the sheep were 

rotationally grazed, using a twelve - paddock system. The soil water capacity was 

presumed to be 60 mm, while the available soil nitrogen was taken to be 120 kg ha-1
. 

Weather data for Blyth Bridge was obtained from the BBSRC ARCMET database to 

represent the climatic conditions at Hartwood. The latitude of the site is 56 degrees. 

The trial at Bronydd Mawr Research Station was only conducted for the year 1984 

(Sibbald et al., 1994). The experiment consisted of four treatments which were: 

1. nitrogen fertiliser application rate of 100 kg ha-1 plus a stocking density of 12 

ewe ha-1. , 

2. nitrogen fertiliser application rate of 100 kg ha-1 plus a stocking density of 20 

ewe ha-1
; 
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3. nitrogen fertiliser application rate of 200 kg ha-1 plus a stocking density of 12 

ewe ha -1; and finally 

4. nitrogen fertiliser application rate of 200 kg ha-1 plus a stocking density of 20 

ewe ha-1
• 

As the first and second silage cuts at the site were taken in early June and 10 August 

respectively, it was assumed in the model that the dates of silage cuts were the 1 June 

and 10 August. In 1984 the ewes were mated from 20 October and thus is was 

assumed that the ewes had been mated from the same date in the previous year. 

Assuming a gestation period of 142 days and that lambing occurs over a three-week 

period it was presupposed in the model that the average date of lambing was 21 

March. For both stocking densities the lambing percentage was 120%. The date of 

turnout was the 9 May, while the date of weaning was 21 July. The weight of the 

average lamb at turnout at a stocking density of 12 ewe ha-1 was 12.4 kg. This was 

increased to 12.9 kg for the higher stocking density (20 ewe ha-1
). As with the 

Hartwood site it was assumed in the model that soil contained 120 kg of nitrogen that 

could be utilised by the crop and that the soil water capacity was 60 mm. The latitude 

of the site was taken to be 52 degrees and weather data from the Trawscoed 

meteorological weather station (BBSRC ARCMET database) was taken to represent 

the weather at Bronydd Mawr Experimental Station. 

5.6.2 Validation of Model 

The results for the experiment conducted at Hartwood (Maxwell et al., 1994) were 

averaged over the two sward heights which are shown along with the predicted values 

in Table 5-34. Sibbald et al. (1994) reported the proportion of paddocks harvested 

and the liveweight of the lambs at weaning for both stocking densities averaged over 
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the two fertiliser nitrogen application rates for the trial conducted at Bronydd Mawr. 

On the other hand the quantity of silage available per ewe was reported for each 

stocking density at each nitrogen fertiliser. The observed and predicted results are 

given in Table 5-35. Theil's inequality coefficient for the proportion of paddocks 

harvested, the liveweight of the lambs and the silage produced per ewe for Bronydd 

Mawr and Hartwood are shown in Table 5-36. As some of the data reported by 

Maxwell et al. (1994) and Sibbald et al. (1994) had been averaged over years or 

treatments, the bias, variance and covariance proportions of Theil's inequality 

coefficients were not calculated. 

Table 5-34 The predicted and observed results from the experiment conducted at 

Hartwood 

Stocking Density 

10 ewe ha-1 15 ewe ha-1 

Observed Predicted Observed Predicted 

Liveweight lamb (kg head-i) 

1983 27.9 32.2 26.8 32.9 

1984 34.4 32.2 31.6 32.7 

1985 33.1 30.2 30.2 30.2 

Silage (kg DM ewe-\ 1983-1985 213 389 39 91 

Proportion of paddocks harvested, 0.278 0.299 0.076 0.097 

1983-1985 
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Table 5-35 The predicted and observed results from the experiment conducted at 

Bronydd Mawr 

Stocking Density 

12 ewe ha-1 20 ewe ha-1 

Observed Predicted Observed Predicted 

Proportion paddocks harvested 0.429 0.333 0.075 0.063 

Liveweight lamb (kg head-1
) 29.5 30.8 29.1 29.2 

Silage (kg OM ewe-1
) 

100 kg N ha-1 130 82 o o 

200 kg N ha-1 238 184 54 34 

Table 5-36 Theil's inequality coefficients 

Bronydd Mawr Hartwood 

Proportion paddocks harvested 0.120 0.295 

Liveweight lamb (kg head-1
) 0.015 0.052 

Silage (kg OM ewe-1
) 0.297 

The results of the validation indicate that at the Hartwood site there was a tendency to 

over-estimate the liveweight of the lambs, but only at the higher stocking density (15 

ewe ha-1
)_ The prediction of the quantity of silage was high at both stocking densities 

at the Hartwood site. However, in contrast, silage production was under-estimated at 

Sronydd Mawr. Nevertheless, in general the results indicate that the model gives 
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reasonable predictions for the weight of the lambs at weaning and the quantity of 

silage produced. 

5.7 Conclusions 

The models of forage and livestock production based on grass and grass - white 

clover swards give reasonable predictions of actual productions. These models are 

therefore suitable to be used to assess the effects of changes in temperature, rainfall 

and atmospheric CO2 concentrations on forage and livestock production within 

Scotland. Chapter 6 will assess how the changes in climate will affect livestock 

farming. 
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6.1 Introduction 

CHAPTER 6 

RESULTS 

The effect of global warming and increases in the atmospheric concentration of CO2 

on grass and grass - white clover production and livestock production have been 

explored. The scenarios used have consisted of ten years of data for current climatic 

conditions and for seven global warming scenarios at two levels of CO2 concentration 

for five sites within Scotland. The sites were chosen as representative of the main 

areas of livestock production which utilise improved pastures in Scotland. 

Nevertheless, the choice of sites was restricted by the availability of weather data. 

This chapter analyses how temperature, rainfall and CO2 affect herbage and livestock 

production, while Chapter 7 assesses how livestock production will be affected by the 

combined effects associated with global warming. 

Under global warming, the expected concentration of CO2, when all the radiative 

forcing effects of all the "greenhouse" gases including CO2 is double the pre-industrial 

level, is 520 ppmv (Wigley and Raper, 1992). The concentrations used in the model 

are thus 350 ppmv, representing current levels, and 520 ppmv. As the temperature 

changes predicted by Viner et a/. (1995) are similar for the winter and summer period, 

the average daily temperatures throughout the year were increased by the same daily 

increase. The temperature changes used to simulate the effect of global warming 

were current temperatures +1°C, +2°C, and +3°C, as this permitted an assessment of 

the effect of temperature on livestock production. For the climate change scenarios 
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the rainfall on rainy days was increased according to estimates by Viner and Hulme 

(1994) and is shown in Table 6-1. The scenarios were therefore created by increasing 

the daily temperature and rainfall measurements for the base climate by the 

appropriate amounts. The base climate was obtained from the BBSRC ARCMET 

database for period 1979-1988 for five sites, namely Auchincruive (Auch), Blyth 

Bridge (Blyth), Craibstone (Craib), Drummond Castle (Drum) and Wick (Wick) and are 

shown in Figure 6-1. The sixteen scenarios used in the model are described in Table 

6-2. 

6.1.1 Soil Characteristics 

The volumetric water content and the stoniness of the soil have been obtained from 

the soil association maps (Macaulay Institute for Soil Research, 1982). Following 

Bibby, Douglas, Thomasson and Robertson (1991), this information has been used to 

calculate the available water capacity of the soil at each site and is shown in Table 6-

3. It is assumed that the rooting depth is 1 metre. It has also been assumed that all 

sites are under predominately permanent grassland, so that available soil nitrogen 

was taken to be 120 kg ha-1 (Baker et al., 1991). 
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Figure 6-1 The location of the sites 
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Table 6-1 The change in the rain on rainy days predicted under a doubling of the 

atmospheric CO2 concentration 

Month Change rainfall Month Change rainfall 

(mm) (mm) 

January 1.5 July 0.1 

February 1.3 August 0.0 

March 1.0 September -0.2 

April 0.7 October 1.1 

May 0.8 November 1.0 

June 0.4 December 1.1 

242 



Table 6-2 Temperature, rainfall and CO2 concentrations for the climate scenarios 

Scenario Temperature Rainfall CO2 Concentration 

Change (ppmv) 

OA3 +0 No 350 

OA5 +0 No 520 

083 +0 Yes 350 

085 +0 Yes 520 

1A3 +1 No 350 

1A5 +1 No 520 

183 +1 Yes 350 

185 +1 Yes 520 

2A3 +2 No 350 

2A5 +2 No 520 

283 +2 Yes 350 

285 +2 Yes 520 

3A3 +3 No 350 

3A5 +3 No 520 

383 +3 Yes 350 

385 +3 Yes 520 
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Table 6-3 The available water capacity of the sites 

Site Available water capacity (mm) 

Auchincruive 160 

Blyth Bridge 161 

Craibstone 104 

Drummond Castle 189 

Wick 149 

6.2 Statistical Analysis 

The differences between the treatment effects, namely temperature, rainfall and 

ambient concentration of CO2, have been assessed using analysis of variance. 

Although this technique is fairly robust, the data should meet the following criteria: 

1. the distribution of the population of observations is normal; 

2. the treatment and environmental effects are additive; and 

3. experimental errors are random, independently and normally distributed 

about the zero mean and with a common variance. 

If these assumptions are not met, the level of significance and sensitivity of the F-test 

can be affected. In most cases, with non-normality of the data the true level of 

significance is greater than the apparent level (Steel and Torrie, 1981) and thus the 

null hypothesis is rejected when it is true. In the case of non-additivity, the 

components of error contributed by the various observations do not supply estimates 

of a common variance and thus the error is heterogeneous. Hence, non-additivity of 
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the data results in false significance levels for certain specific comparisons of 

treatment means. Nevertheless, the significance level for the F-test may be little 

affected. The final assumption implies that the experimental error should be normally 

distributed and the errors have a common variance. However if the distributions of the 

experimental errors are skewed, the error component of a treatment tends to be a 

function of the treatment mean and hence the error is heterogeneous, which may 

arise due to the erratic behaviour of the response to certain treatments. 

Consequently, when a 5% level of significance is being used as the criteria for 

detecting differences between the populations, the actual level of significance actually 

being detected may be 7% or 8% (Steel and Torrie, 1981). However, Steel and Torrie 

(1981) indicate that for most biological data that the failure of the data to fulfil the 

above criteria are usually unimportant. On the other hand, the process of 

randomisation of experimental treatments results in the errors being independent of 

each other. 

On examination of the data it is apparent that the treatments are non-additive, and 

that there is a tendency for the distribution of the error to be skewed. Nevertheless, 

transforming the data did not appear to improve either the additivity assumption or the 

normality of the distribution of the errors. Accordingly, while the size of the F-ratios 

predicted from the analysis of variance will be used to assess whether the treatment 

effects were significant, it is recognised that the level of significance may actually be 

slightly higher than 5%. As a consequence, there is the possibility of acceptance of 

some non-existent significant differences. However, it is not possible to make specific 

comparisons between treatment levels. Significance at the 5% level is indicated by 

"***". Where there is a significant interaction between factors, only the interaction 
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effects will be noted and described. The effects of climate change on livestock 

production within Scotland are analysed separately in terms of: 

1. forage production; and 

2. livestock production. 

6.3 Impact of Global Warming on Forage Production 

The quantity of nitrogen applied to the pure grass sward is 300 kg ha-1, with a third 

applied in the spring and a third after both the first cut and second cuts. In the spring 

50 kg ha-1 of nitrogen is applied to the grass - white clover swards. For dairy 

enterprises based on a two-cut pasture system, the dates for the first cut range from 

the end of May to the beginning of June with the second cut taken approximately eight 

weeks later at Auchincruive, Blyth Bridge, Craibstone and Drummond Castle (A. Gill, 

D. Younie, A. Waterhouse, personal communication). At Wick, the first cut on dairy 

farms tends to be taken in mid-June (D. Birkbeck, personal communication). 

Accordingly, the silage cuts were assumed to be taken on the 1 June and eight weeks 

later on the 27 July for both the pure grass and the grass - white clover swards. 

However, it is recognised that the cutting dates for beef and sheep enterprises 

compared to the dairy enterprise tend to be later in the season. On farms with 

predominately grass - white clover swards the silage dates tend to be approximately a 

week later than those utilising pure grass swards (K. Leach, personal communication). 

Nevertheless, the same cutting dates for all enterprises, swards and locations were 

used, as these permitted comparisons to be made. It also allowed comparisons to be 

made between grazed and ungrazed swards. 

246 



6.3.1 Effect of Global Warming on the Length of the Growing Season 

Generally, increases in temperature resulted in the growing season starting earlier 

and finishing later in the year. Consequently the length of the growing season for 

grass and white clover also increased with temperature as underlined in Table 6-4. 

Site also had a significant effect on the commencement and the termination of the 

growing season. However, as regards the date when growth commenced and the 

length of the growing season for pure grass and for the grass component of the mixed 

swards, there was a significant interaction between site and temperature. Similarly, 

there was a significant interaction between temperature and site for the 

commencement of white clover growth. Nevertheless, temperature did not have a 

linear effect on the start date of the growing season for both grass and white clover 

and for the length of the growing season for grass (see Figure 6-2-Figure 6-4). On 

the other hand, the effect of temperature on the end date of the growing season for 

both grass and white clover was approximately linear with an increase of 10 days per 

degree temperature rise. Similarly, the length of the growing season for white clover 

was also linearly affected by temperature, with an increase of approximately 19 days 

per degree of temperature increase. The temperature constraint for the end of the 

growing season is the same for both the grass and white clover components. 
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Table 6-4 The effect of site and temperature on the start and end dates and the 

length of the growing season for grass and white clover 

Component 

Grass 

White Clover 

Factors 

Site 

Temperature 

Site * Temperature 

Site 

Temperature 

Site * Temperature 

o 
-2 

CD -4 
2! 
:: -6 

~ -8 
CD 

: -10 
>-
~ -12 

-14 

Start Date 

*** 

*** 

*** 

*** 

*** 

*** 

-16 -L-________ _ 

Auch Blyth Craib Drum 

End Date Length 

*** *** 

*** *** 

*** 

*** *** 

*** *** 

Wick 

Figure 6-2 The change in the commencement of the growing season per degree of 

temperature change at each site for grass 
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Figure 6-3 The change in the commencement of the growing season per degree of 

temperature change at each site for white clover 
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Figure 6-4 The change in the length of the growing season per degree of 

temperature change at each site for grass 

6.3.2 Effect of Global Warming on the Yield 

6.3.2.1 Grass Swards 

The dry-matter yield of herbage from the pure grass sward for the first and second 

cuts and hence the total yield differed between sites. The main effects of CO2, 

temperature and rainfall also significantly affected yield, although there were no 

interaction effects. Increasing the ambient concentration of CO2 or presuming a 

change in the rainfall pattern increased production throughout the season (see Table 

6-5), whereas increasing the temperature resulted in decreasing yields. Although the 
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change in yield per degree was approximately linear for the second-cut yield, this was 

not the case for the first-cut yield (see Figure 6-5). Hence the change in total yield did 

not decrease linearly with temperature. Nevertheless, the change in yield for a 2°C 

and 3°C increase in temperature resulted in similar decreases per degree of 

temperature increase for all cuts. The proportion of the total yield harvested at the 

first cut was significantly decreased from 60.4% to 59.4% by elevating the ambient 

concentration of CO2. 

Table 6-5 The increase in dry-matter yield from changing the rainfall pattern and 

increasing the ambient concentration of CO2 

Cut 

Total 

Percentage increase in OM yield from base level 

Climate change rainfall pattern Elevated CO2 (520 ppmv) 

0.00 

-0.05 
Q) 

(!! 
Cl 
~ -0.10 
... 
GI 

Co -0.15 
::i: 
Q 

- -0.20 

-0.25 

3.0 

2.8 

3.0 

1st Cut 2nd Cut Total Yield 

19.7 

25.0 

21.8 

01°C 

B 2°C 

o 3°C 

Figure 6-5 The change in the dry-matter yield per degree of temperature change 
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6.3.2.2 Grass - White Clover Yields 

The combined and the component dry-matter yields of the grass - white clover sward 

were significantly affected by site, temperature, and rainfall pattern. However, in 

contrast to the pure grass sward, the site * temperature and the temperature * CO2 

interactions were significant for some of the components of yield. The percentage 

changes in the components of yield, relative to the base conditions for a change in the 

rainfall pattern and the CO2 concentration, are shown in Table 6-6. The seasonality of 

production was also significantly affected by enhanced CO2 concentration. Thus, the 

percentage of total yield and total grass yield harvested from the first cut was 

decreased by 1.1% and 2.0% respectively. In contrast the percentage of the total 

white clover yield obtained from the first cut was enhanced by 2.5% by augmenting 

the CO2 conditions. The effect of temperature on the second cut and total combined 

yields was not linear and indeed the effect was not consistent between these two 

components of yield (see Figure 6-6). The percentage of grass and white clover 

harvested from the first cut was significantly increased with elevated temperatures 

(see Figure 6-7). 
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Table 6-6 The percentage change in the components of dry-matter yield from the 

base level for the components significantly affected by rainfall and CO2 

level 

Cut 

First 

Second 

Total 

Note: 

Component Percentage increase in dry-matter yield from base level 

Climate change rainfall pattern Elevated CO2 (520 ppmv) 

grass 2.23 18.39 

white clover 9.27 25.791 

combined 3.63 19.86 

% white clover 5.49 4.48 

grass 2.42 30.861 

white clover 13.66 17.02 

combined 6.26 25.76 

% white clover 6.65 -7.63 

grass 2.29 21.72 

white clover 11.23 21.75 

combined 4.47 21.72 

% white clove,-2 6.45 

1 The was a significant interaction between temperature and CO2 

concentration. 

2 The effect of CO2 concentration on the percentage of white clover in the 

total yield was not significant. 
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Figure 6-6 The change in the dry-matter yield per degree of temperature change for 
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Figure 6-7 The change in the percentage of grass and white clover harvested from 

the first cut per degree of temperature change 

6.3.2.2.1 Site - Temperature Interactions on Yields 

There was a significant interaction between site and temperature for the first-cut yield 

of grass, white clover and the combined yield (see Figure 6-8 and Figure 6-9). The 

yield of grass obtained from the first cut tended to decrease with increased 

temperature (see Figure 6-8). The exceptions were at a 1°C temperature increase at 

Auchincruive, Craibstone and Drummond Castle and at a 2°C temperature increase at 

Craibstone. In contrast, the first-cut yield of white clover was increased by 

temperature at all sites (see Figure 6-9). The net result of increasing the temperature 
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on the first-cut combined yield was that the yield was increased at all sites and for all 

scenarios, except for a 1°C temperature increase at Wick. Nevertheless, the effect of 

temperature at each site on the components of the first-cut yield and the combined 

yield is not linear. The percentage of white clover in the material harvested from the 

first cut is increased with elevated temperatures, although the effect per degree was 

not linear (see Table 6-7). In contrast to the first-cut, the second-cut white clover yield 

was decreased for a 1°C temperature increase at Auchincruive and Drummond Castle 

(see Figure 6-10). This resulted in the percentage of white clover harvested from the 

second cut remaining unchanged at Auchincruive and decreasing at Drummond 

Castle for a 1°C temperature increase (see Table 6-7). The total yield of grass and 

white clover was also significantly affected by a site * temperature interaction. The 

total grass tended to decrease with elevated temperatures, although an increase of 

1°C enhanced the grass yield at Craibstone and Drummond Castle (see Figure 6-11). 

On the other hand, the total yield of white clover was increased at all sites, except at a 

1°C decrease at Drummond Castle (see Figure 6-12). 
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Figure 6-8 The change in the first-cut grass dry-matter yield per degree of 

temperature change 
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Figure 6-9 The change in the first-cut white clover yield per degree of temperature 

change. 
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Table 6-7 The change in the percentage of white clover in the harvested material 

per degree of temperature change at each site 

Cut Site Change per degree of temperature change (t) 

1°C 2°C 3°C 

1 sl cut yield Auchincruive 0.01 0.04 0.06 

Blyth Bridge 0.04 0.05 0.05 

Craibstone 0.01 0.04 0.05 

Drummond Castle 0.01 0.04 0.04 

Wick 0.05 0.06 0.05 

2nd cut yield Auchincruive 0.00 0.03 0.08 

Blyth Bridge 0.05 0.07 0.07 

Craibstone 0.02 0.05 0.07 

Drummond Castle -0.03 0.03 0.04 

Wick 0.08 0.08 0.07 

Total yield Auchincruive 0.00 0.03 0.06 

Blyth Bridge 0.04 0.06 0.06 

Craibstone 0.01 0.04 0.06 

Drummond Castle -0.01 0.03 0.03 

Wick 0.06 0.06 0.06 
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Figure 6-10 The change in the second-cut white clover yield per degree of 

temperature change at each site 
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Figure 6-11 The change in the total grass yield per degree of temperature change at 

each site 
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Figure 6-12 The change in the total white clover yield per degree of temperature 

change at each site 

6.3.2.2.2 Temperature - CO2 Interactions on Yields 

There was a significant interaction between temperature and ambient CO2 level for the 

first-cut white clover yield, the second-cut grass yield and the total white clover yield 

(see Figure 6-13 and Table 6-8). At current climatic conditions, increasing the CO2 

concentrations resulted in an increase of 0.09 tOM, 0.14 t OM and 0.34 t OM for the 

first-cut and total white clover yields and the second-cut grass yields, respectively. 

The effect of enhanced CO2 concentrations was to increase white clover yields, with 

the effect being more pronounced at higher temperatures. In contrast, the second-cut 

grass yield was decreased at current concentrations of CO2 and the rate of decrease 

was greater at higher temperature levels (see Table 6-8). Nevertheless, increasing 

the ambient concentration of CO2 increased the quantity of grass harvested in the 

second cut, although this effect diminished with increasing temperature. 
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Figure 6-13 The change in the first-cut white clover yield per degree of temperature 

for each level of ambient CO2 concentration relative to current climatic 

conditions 

Table 6-8 The change in the first-cut and total white clover yield, and the second­

cut grass yield per degree of temperature for each level of ambient CO2 

concentration relative to the base climate. 

Cut CO2 Concentration Change per degree of temperature change (t) 

(ppmv) 

1st white clover 350 0.09 0.15 0.17 

520 0.20 0.25 0.26 

2nd grass 350 -0.05 -0.07 -0.08 

520 0.28 0.08 0.00 

Total white clover 350 0.12 0.23 0.27 

520 0.28 0.38 0.42 
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6.4 Livestock Production 

Dairy cows, beef cattle and sheep were rotationally grazed on a twelve-paddock grass 

or grass - white clover system. The pure grass swards were grazed at three stocking 

densities which are typical values for United Kingdom farming systems (see Table 6-

9). Following Ryan (1988) the stocking densities on the grass - white clover swards 

were reduced by approximately 16%. Nitrogen was applied throughout the season to 

the pure grass and the grass - white clover swards and the application rates are 

shown in Table 6-10. The silage cuts were presumed to be taken on 1 June and 27 

July. In both the grass and the grass - white clover based system in the trial, half the 

area was set aside for first-cut silage production and a third for the second cut. 

Table 6-9 The stocking densities for the grass and grass - white clover swards for 

dairy cows, beef cattle and sheep. 

Sward Type Dairy Cows Beef Cattle Sheep 

(head ha-1
) (head ha-1

) (head ha-1
) 

Grass 2.00 3.08 9.52 

2.25 3.46 12.50 

2.50 3.85 13.89 

Grass - white clover 1.68 2.58 8.00 

1.89 2.91 10.50 

2.10 3.23 11.67 
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Table 6-10 The nitrogen application rates for grass and grass - white clover swards 

for dairy cows, beef cattle and sheep. 

Sward Type 

Grass 

Grass - white clover 

Dairy Cows 

(kg ha-1
) 

300 

50 

Beef Cattle 

(kg ha-1
) 

300 

50 

Sheep 

(kg ha-1
) 

150 

50 

The date of turnout was determined by the availability of herbage. Nevertheless, 

neither the dairy cattle nor the sheep were turned out if this was less than four days 

after the date of parturition. The date of calving was assumed to be 15 February 

whereas the date of lambing was presumed to be 15 March. In the beef enterprise, 

the average age of the cattle at turnout was assumed to be 180 days. At turnout the 

weights of dairy cows, beef cattle and ewes were assumed to be 525 kg head-1
, 200 

kg head-1 and 60 kg head-1 respectively. The lambing percentage for a lowground 

flock was taken to be 150%. The lambs were a product of a cross between a Scottish 

Blackfaced ewe and a Suffolk ram, with the average weight of the ewe and ram 

assumed to be 60 and 70 kg head-1 respectively. The dates of yarding for the dairy 

and beef enterprises were determined by the herbage availability. On the other hand, 

the lambs were assumed to be sold at twenty weeks of age, and consequently the 

lambs were removed from the paddocks on the 2 August. The weight of the ewes is 

also reported for this date. 

The dairy cows were assumed to be fed 0.15 kg fresh weight of concentrates per litre 

of milk produced per day. With respect to the beef enterprise, during the first three 
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weeks of grazing and from the first week in October the cattle were fed at a rate of 

0.86 kg DM head-1
. On the other hand, the ewes were not fed any concentrates 

during the grazing season. 

6.4.1 The Effect of Global Warming on the Grazing Season 

6.4.1.1 Date of Turnout 

The date of turnout was significantly earlier in the season with increases in 

temperature and the ambient concentration of CO2 for the dairy, beef and sheep 

enterprises. This occurred for both the grass and the grass - white clover based 

systems. However, there was a significant interaction between temperature and site, 

and temperature and CO2 concentration for all livestock enterprises grazing both 

sward types. Although the effect of temperature differed at the five locations, the 

effect was similar across all the enterprises for both the grass and grass - white clover 

swards. This is illustrated for the dairy enterprise in Figure 6-14 and Figure 6-15. 

However, the temperature did not have a linear effect on the date of turnout at any 

site. Except for Drummond Castle, a 1°C increase in daily temperature had a larger 

effect per degree than either a 2°C or 3°C rise in temperature. Similarly, a 1°C 

increase in temperature had the greatest effect per degree change on the date of 

turnout on both grass and grass - white clover based systems (see Table 6-11). This 

effect was observed for both the current and elevated levels of the ambient 

concentration of CO2 . The effect of temperature at each CO2 level for all enterprises 

grazing both sward types was that turnout was earlier in the spring than at current 

temperatures. Nevertheless, the date of turnout was earlier for the elevated CO2 than 

current CO2 conditions for all temperature scenarios. 
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Figure 6-15 The effect of change in the date of turnout per degree of temperature 

change at each site for the dairy enterprise on the grass - white clover 

based systems 

6.4.1.2 Date of Yarding 

With respect to the dairy and beef enterprises the date of yarding was determined by 

the model. In contrast to the effect of global warming on the date of turnout, the 

factors that were significant differed between sward types. Moreover, the factors that 

were significant differed between the dairy and beef enterprises grazing the pure 

grass sward, although this was not the case for the grass - white clover swards. 
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6.4.1.2.1 Grass - Based Enterprises 

With respect to the dairy enterprise grazing the pure grass swards, the date of yarding 

was significantly affected by a site * temperature * CO2 interaction, rainfall * CO2 

interaction and the stocking density. In contrast the yarding date for beef enterprise 

was significantly affected by the two-way interactions between site and temperature, 

site and CO2, site and rainfall, temperature and CO2, and rainfall and CO2 . Similarly 

for the dairy enterprise, stocking rate also had a significant effect. 

At all sites increasing the ambient concentration of CO2 resulted in the grazing season 

ending later in the season for the dairy enterprise than under current CO2 conditions. 

Nonetheless, the effect of temperature within each CO2 level differed between sites 

(see Figure 6-16). With a temperature increase of OOC, increasing the ambient 

concentration of CO2 resulted in the grazing season in the autumn being extended by 

between 4.1 and 13.6 days. In general, the change in the date of yarding was not 

linearly affected by temperature, although the effect was approximately linear at 

current CO2 concentrations at the Wick site. In the same way, the date of yarding for 

the beef enterprise was later in the season for each temperature scenario at elevated 

CO2 concentrations than at ambient levels (see Table 6-12). Increasing the 

concentration of CO2 at current climate temperature levels resulted in the grazing 

season finishing 5 days later than under current concentrations of CO2 (350 ppmv). 
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Table 6-11 The effect of elevated CO2 on the date of turnout for the grass and grass 

- white clover based systems 

Enterprise Sward 

Dairy Grass 

Beef 

Sheep 

Dairy Grass - white clover 

Beef 

Sheep 

CO2 Level 

(ppmv) 

350 

520 

350 

520 

350 

520 

350 

520 

350 

520 

350 

520 

265 

Change in days per degree of 

temperature change 

-8.0 -4.2 -3.9 

-10.2 -6.3 -5.3 

-8.0 -4.2 -3.4 

-10.2 -6.3 -5.1 

-7.0 -3.6 -2.7 

-10.0 -5.6 -4.3 

-8.5 -4.6 -4.1 

-10.4 -6.9 -5.7 

-8.5 -4.6 -4.1 

-10.4 -6.9 -5.7 

-7.4 -4.4 -3.9 

-9.4 -6.3 -5.3 



12 
10 

CD 
8 CD ... 

Cl 6 CD 
c 4 ... 
CD 2 Q. 
r/I 0 
>- -2 as 
C 

-4 
-6 

350 520 350 520 350 520 350 520 350 520 

Auch Blyth Craib Drum Wick 
Carbon dioxide concentration (ppmv) 

Figure 6-16 The effect of change in the date of yarding per degree of temperature 

change at each site and at CO2 concentration for the dairy enterprise on 

the grass - based systems relative to current climatic conditions 

Table 6-12 The change in the date of yarding for the beef enterprise grazing on a 

grass - based system at CO2 concentrations of 350 and 520 ppmv 

CO2 Concentration Change per degree of temperature change (days) 

(ppmv) 

350 -0.5 -1.4 -2.1 

520 5.8 2.5 1.4 

However, the effect per degree increase in temperature tends to decrease with 

increasing temperature. The effect of temperature on the date of yarding at each site 

differed both in magnitude and direction (see Figure 6-17). The date of yarding was 

later in the season at all sites when the CO2 concentration was increased to 520 ppmv 

(see Table 6-13). Nevertheless, the effect ranged from 5.1 days at Drummond Castle 

to 11.7 days at Wick (see Table 6-13). 
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Figure 6-17 The change in the date of yarding per degree of temperature change at 

each site for the beef enterprise on the grass - based systems 

Table 6-13 The effect of increasing the ambient concentration of CO2 and changing 

to a global warming rainfall pattern on the date of yarding for the beef 

enterprises on the grass - based systems at each of the sites 

Change in date of yarding with 

elevated CO2 concentrations global warming rainfall patterns 

(Days) (Days) 

Auchincruive 8.5 -2.9 

Blyth Bridge 5.6 -2.7 

Craibstone 6.2 -4.5 

Drummond Castle 5.1 -3.7 

Wick 11.7 -0.3 

On the other hand, under the rainfall pattern associated with global warming, the date 

of yarding was earlier in the season than under current climatic conditions (see Table 

6-13). The decrease ranged from 0.3 days at Wick to 4.5 days at Craibstone. For 
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both the dairy and beef enterprises changing the rainfall pattern resulted in the date of 

yarding being earlier in the season than for the current rainfall (see Table 6-14), due to 

an increased risk of poaching. This effect was apparent at both current and elevated 

ambient concentrations of CO2. Nevertheless, increasing the CO2 concentration for 

both rainfall patterns resulted in yarding being later in the season than at current CO2 

levels. 

Table 6-14 The effect of elevated CO2 and changing to a global warming rainfall 

pattern on the date of yarding for the dairy and beef enterprises on the 

grass - based systems 

Enterprise CO2 Concentration 

(ppmv) 

Dairy 350 

520 

Beef 350 

520 

Change in date of yarding with changing rainfall 

patterns (Days) 

Current Global Warming 

-0.4 

9.9 7.8 

-1.8 

8.5 4.6 

Increasing the stocking rate resulted in the date of yarding being earlier in the season 

for both the dairy and beef enterprises. The change for the dairy enterprise was 

between -1.7 and -1.9 days when the stocking densities were increased by 0.25 dairy 

cows ha-1
. The corresponding figure for the beef enterprise was -1.5 days when 

stocking density was increased by 0.38 steers ha-1
• 
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6.4.1.2.2 Grass - White Clover Swards 

In the grass - white clover based systems the factors that had a significant effect on 

the date of yarding for both the dairy and beef enterprises were site and temperature, 

site and CO2, site and rainfall, rainfall and CO2 and stocking density. The date of 

yarding tended to be later in the season at elevated temperatures, which is illustrated 

for the dairy enterprise in Figure 6-18. Except for a temperature increase of 1°C at the 

Craibstone site, the effect of temperature on the date of yarding for the beef system 

tended to be marginally greater (0.08-1.15 days) than that experienced by the dairy 

enterprise. However, the exceptions were a 1°C and 2°C increase in temperature at 

Wick for the dairy enterprise, and a 2°C temperature increase at Wick for the beef 

enterprise. Nevertheless, the effect was not linear with temperature (see Figure 6-18). 

Increasing the ambient concentration of CO2 resulted in the date of yarding being later 

in the season than under current CO2 levels, although the magnitude of the effect 

varied between sites (see Table 6-15). On the other hand, except for Wick, the 

yarding date was earlier in the season when the rainfall was changed under global 

warming (see Table 6-15). The date of yarding was later in the season with elevated 

CO2 concentrations, although this effect was diminished with a global warming rainfall 

pattern (see Table 6-16). At CO2 concentrations of 350 ppmv changing the rainfall 

pattern resulted in an earlier removal of stock from the paddocks. Increasing the 

stocking density of the dairy herd by 0.21 cows ha-1 resulted in the yarding date being 

1.9 days earlier. Similarly for the beef enterprise, increasing the stocking density by 

0.33 steers ha-1 resulted in the stock being removed between 1.3 and 1.4 days earlier 

than for a stocking density of 2.58 steers ha-1
. 
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Figure 6-18 The change in the date of yarding per degree of temperature change at 

each site for the dairy enterprise on the grass - white clover based 

systems 
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Table 6-15 The effect of increasing the ambient concentration of CO2 and changing 

to a global warming rainfall pattern on the date of yarding for the dairy 

and beef enterprises on the grass - white clover based systems at each 

of the sites 

Enterprise Change in date of yarding with 

elevated CO2 global warming rainfall 

concentrations patterns 

(Days) (Days) 

Dairy Auchincruive 7.8 -3.4 

Blyth Bridge 5.3 -2.6 

Craibstone 6.1 -5.3 

Drummond Castle 4.1 -3.8 

Wick 14.5 0.8 

Beef Auchincruive 5.4 -6.3 

Blyth Bridge 2.2 -3.8 

Craibstone 3.5 -8.2 

Drummond Castle 2.3 -5.4 

Wick 13.4 0.7 
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Table 6-16 The effect of elevated CO2 and changing to a global warming rainfall 

pattern on the date of yarding for the dairy and beef enterprises on the 

grass - white clover based systems 

Enterprise CO2 Concentration 

(ppmv) 

Dairy 350 

520 

Beef 350 

520 

6.4.1.3 Length of the Grazing Season 

6.4.1.3.1 Grass - Based Enterprises 

Change in date of yarding with changing rainfall 

patterns (Days) 

Current Global Warming 

-1.5 

8.9 4.7 

-3.5 

6.4 0.8 

The length of the grazing season for both the dairy and beef enterprises on grass -

based systems was significantly affected by stocking rate and rainfall pattern. The 

interactions between site and temperature, site and CO2, temperature and CO2 were 

also significant for both enterprises. The effect of increasing the stocking density was 

to reduce the length of the grazing season by between 1.7 and 1.9 days for an 

increase of 0.25 cows ha-1 for the dairy enterprise. The corresponding figure for the 

beef enterprise was an increase of 0.38 steers ha-1 resulting in a reduction of 1.5 days 

in the length of grazing season. Changing the rainfall to a pattern associated with 

global warming resulted in the grazing being reduced by 1.2 and 2.7 days for the dairy 

and beef enterprises respectively. Except for temperature increase of 2°C and 3°C at 
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Wick, the length of the grazing season was increased at all sites for both the dairy 

(see Figure 6-19) and beef enterprises. A similar pattern was also predicted for the 

beef enterprise. Although temperatures have a similar effect on both the dairy and 

beef enterprises at each site, the effect on length of the grazing season is not linear 

with temperature. Elevating the CO2 concentration from 350 ppmv to 520 ppmv 

resulted in the grazing season being extended at all sites, although the extension 

varied between sites (see Table 6-17). The length of the grazing season was also 

increased by enhanced CO2 levels at all temperatures (see Table 6-18). At current 

temperatures the grazing season was lengthened by 7.4 and 5.4 days for the dairy 

and beef enterprises respectively with elevated concentrations of CO2. However, the 

increase in the length of the grazing season was greatest when the temperature was 

increased by 1°C and the rate of increase per degree increase in temperature 

diminished as the temperature was increased by 2°C and 3°C. 
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Figure 6-19 The change in the length of the grazing season per degree of 

temperature change at each site for the dairy enterprise on the grass -

based systems 
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Table 6-17 The effect of increasing the ambient concentration of CO2 on the length 

of the grazing season for the dairy and beef enterprises on the grass -

based systems at each of the sites 

Site Change in length of the grazing season with elevated CO2 concentrations 

(Days) 

Dairy Beef 

Auchincruive 13.7 12.2 

Blyth Bridge 8.2 6.7 

Craibstone 13.5 11.0 

Drummond Castle 9.9 7.5 

Wick 14.5 14.4 

Table 6-18 The change in the length of the grazing season for the dairy and beef 

enterprise grazing on a grass - based system at CO2 concentrations of 

350 and 520 ppmv 

Enterprise CO2 Concentration Change per degree of temperature change 

(days) 

(ppmv) 

Dairy 350 6.7 2.2 0.7 

520 17.4 9.1 6.0 

Beef 350 7.5 2.8 1.3 

520 16.0 8.8 6.5 
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6.4.1.3.2 Grass - White Clover Based Swards 

With respect to the grass - white clover sward the length of the grazing season was 

significantly affected by the site * CO2 interaction, site * temperature interaction, site * 

rainfall and stocking density for both the dairy and beef enterprises. However, for the 

dairy enterprise the interactions between temperature and CO2 and temperature and 

rainfall pattern were also significant. Increasing the stocking density reduced the 

length of the grazing season by 1.9 days for an increase of 0.21 cows ha-1 and 

between 1.3 and 1.4 days for an increase of 0.33 steers ha-1
. The effect on the length 

of grazing for the dairy and beef enterprises differed between sites, with the difference 

ranging from a reduction of 8.3 days at Blyth Bridge to an increase of 1.3 days at Wick 

(see Table 6-19). Nevertheless, the reduction in the length of the grazing season for 

the dairy enterprise with the global warming rainfall pattern was increased at elevated 

ambient concentrations of CO2. Enhancing the CO2 concentration increased the 

length of the grazing season (see Table 6-20). However, the greatest increase per 

degree of temperature enhancement at both current and elevated CO2 levels occurred 

when the temperature was increased by 1°C. Moreover the magnitude differed 

between sites (see Table 6-21). At all sites increasing the temperature increased the 

length of the grazing season, although the magnitude differed between sites for both 

the dairy (see Figure 6-20) and beef enterprises. A similar pattern to that illustrated 

for the dairy enterprise was also predicted in respect of the effect of temperature on 

the length of the grazing season for the beef enterprise. 
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Table 6-19 The effect of changing from the current rainfall pattern to a rainfall under 

global warming on the length of the grazing season for the dairy and beef 

enterprises on the grass - based systems at each of the sites 

Site Change in length of the grazing season (Days) 

Dairy Beef 

Auchincruive -3.2 -6.1 

Blyth Bridge -2.7 -3.9 

Craibstone -5.3 -8.3 

Drummond Castle -4.1 -5.6 

Wick 1.4 1.3 

Table 6-20 The change in the length of the grazing season for the dairy and beef 

enterprise grazing on a grass - white clover based system at CO2 

concentrations of 350 and 520 ppmv 

Enterprise CO2 Concentration Change in length of the grazing season per degree of 

temperature change (days) 

(ppmv) 1°C 2°C 3°C 

Dairy 350 9.6 5.4 4.8 

520 18.7 11.5 9.6 

Beef 350 9.8 5.6 5.4 

520 16.9 10.9 9.2 

276 



Table 6-21 The effect of increasing the ambient concentration of CO2 on the length 

of the grazing season for the dairy and beef enterprises on the grass -

white clover based systems at each of the sites 

Site Change in length of the grazing season with elevated CO2 concentrations 

(Days) 

Dairy Beef 

Auchincruive 11.2 8.8 

Blyth Bridge 7.5 4.3 

Craibstone 9.9 7.4 

Drummond Castle 7.0 5.2 

Wick 17.4 16.3 
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Figure 6-20 The change in the length of the grazing season per degree of 

temperature change at each site for the dairy enterprise on the grass -

white clover based systems 
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6.4.1.4 Proportion of Paddocks Harvested 

6.4.1.4.1 Grass - Based Enterprises 

The factors that significantly affected the proportion of paddocks cut over the grazing 

season were: 

• Dairy - rainfall pattern, stocking rate and interactions between site and 

temperature, and site and CO2; 

• Beef - rainfall pattern, and interactions between site and temperature, site and 

CO2, site and stocking rate, temperature and CO2, and CO2 and stocking 

rate; and 

• Sheep - rainfall pattern, and interactions between site and temperature, site and 

CO2, site and stocking rate, temperature and CO2, temperature and 

stocking rate, and CO2 and stocking rate. 

The effect of changing to a global warming rainfall pattern increased the percentage of 

paddocks cut by 1.1 %, 1.6% and 1.7% for the beef, sheep and dairy enterprises 

respectively. Although there was an interaction effect between site and temperature, 

the response of the three enterprises was similar across all sites. Consequently, the 

results are only shown for the dairy enterprise (see Figure 6-21). On the other hand, 

the relative magnitudes of the effect of CO2 at each site differed between enterprises 

(see Table 6-22). For the beef and sheep enterprises the effect of CO2 on the 

percentage of paddocks harvested was also affected by the ambient temperature (see 

Table 6-23). Nevertheless, the effect of temperature per degree of increase tended to 

decline as the temperature increased. 
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Figure 6-21 The change in the percentage of paddocks harvested throughout the 

season per degree increase in temperature for the grass - based dairy 

enterprise at each site 

Table 6-22 The change in the percentage of paddocks harvested throughout the 

season with elevated CO2 concentrations at each site for the grass -

based enterprises 

Enterprise Site (%) 

Auch Blyth Craib Drum Wick 

Dairy 10.6 9.2 9.0 9.8 6.8 

Beef 6.7 6.0 5.3 5.4 9.1 

Sheep 10.3 8.3 7.2 7.5 10.1 
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Table 6-23 The change in the percentage of paddocks harvested for the beef and 

sheep enterprises grazing on a grass - based system at CO2 

concentrations of 350 and 520 ppmv 

Enterprise CO2 Concentration Change in the percentage of paddocks harvested per 

degree increase in temperature 

(ppmv) 

Beef 350 -2.6 -1.3 -1.2 

520 3.8 1.9 1.3 

Sheep 350 -2.8 -2.1 -1.9 

520 5.2 2.6 1.5 

Increasing the dairy stocking rate from 2.0 to 2.25 cows ha-1 reduced the percentage 

of paddocks harvested from 55.5% to 50.3%. Similarly increasing the stocking density 

to 2.5 cows ha-1 resulted in the percentage of paddocks harvested declining to 45.7%. 

A similar reduction was observed for the beef enterprise when the stocking densities 

were increased from the low to the medium and to the high stocking densities, 

although the change differed between sites (see Table 6-24). Equally, the effect for 

the sheep enterprise also differed between sites, but the magnitude of the decrease 

was larger than that observed for the beef enterprise (see Table 6-24). As the 

stocking density increased, the enhancement in the percentage of paddocks 

harvested with CO2 was increased for the beef and sheep enterprises. On the other 

hand, as the stocking density increased the reduction in the percentage of paddocks 

harvested per degree increase in temperature was enhanced (see Figure 6-22). 
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Table 6-24 The change in the percentage of paddocks harvested relative to the 

lowest stocking density (3.08 steers ha-1
, 9.52 ewes ha-1

) at each site for 

the beef and sheep enterprises on the grass - based systems 

Enterprise Change in percentage of paddocks harvested 

medium stocking density high stocking density 

Beef Auchincruive -3.5 -8.4 

Blyth Bridge -3.4 -7.1 

Craibstone -4.2 -7.9 

Drummond Castle -3.6 -7.3 

Wick -4.8 -10.1 

Sheep Auchincruive -13.0 -21.8 

Blyth Bridge -11.7 -18.0 

Craibstone -13.7 -21.5 

Drummond Castle -11.0 -17.9 

Wick -19.0 -27.4 
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Figure 6-22 The change in the percentage of paddocks harvested per degree 

increase in temperature relative to the current temperature scenario for 

each stocking density 

6.4.1.4.2 Grass - White Clover Based Enterprises 

The factors that significantly affected the percentage of paddocks harvested 

throughout the season for all enterprises were rainfall and the interaction between site 

and temperature. In addition the following factors were also significant: 

• Dairy - interaction between site and CO2; 

• Beef - interaction between CO2 and stocking rate; and 

• Sheep - interaction between site and CO2 , site and stocking rate, temperature 

and CO2, temperature and stocking rate. 

The effect of changing to a global warming rainfall pattern increased the percentage of 

paddocks harvested by 1.1 %, 2.1 % and 2.2% for the sheep, beef and dairy 

enterprises respectively. The effect of temperature on the percentage of paddocks 

varied at each site (see Figure 6-23 and Figure 6-24). Although the effect was similar 

for the dairy and sheep enterprises, which tended to experience an increase, the 

effect for the beef enterprise was usually a decline (see Figure 6-24). Site also 

influenced the magnitude of the effect of elevating the ambient concentration of CO2 
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on the percentage of paddocks harvested for the dairy and sheep enterprises. The 

enhancement for the dairy enterprise ranged from 7.7% at Craibstone to 9.8% at 

Wick. The comparable figures for the sheep enterprise ranged from 3.9% at 

Craibstone to 6.5% at Wick. In the case of the beef enterprise, increasing the 

concentration of CO2 increased the percentage of paddocks harvested by 7.0%. At 

the elevated concentrations of CO2 the effect of temperature per degree increase on 

the percentage of paddocks harvested from the sheep system diminished as 

temperature increased (see Figure 6-25). 
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Figure 6-23 The change in the percentage of paddocks harvested throughout the 

season per degree increase in temperature for the grass - white clover 

based dairy enterprise at each site 
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Figure 6-24 The change in the percentage of paddocks harvested throughout the 

season per degree increase in temperature for the grass - white clover 

based beef enterprise at each site 
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Figure 6-25 The change in the percentage of paddocks harvested throughout the 

season per degree increase in temperature for the grass - white clover 

based sheep enterprise at current and elevated CO2 concentrations 

Increasing the stocking density reduced the percentage of paddocks harvested (see 

Table 6-25), although the magnitude differed between sites for the sheep system. For 

the sheep enterprise, the change in the paddocks harvested per degree increase in 

temperature was approximately linear, at a stocking density of 8 ewes ha-1
, as shown 

in Figure 6-26. However, this was not the case at the higher stocking densities. 
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Table 6-25 The change in the percentage of paddocks harvested with increased 

stocking density relative to the base stocking density for all enterprises 

grazing on a grass - white clover based system 

Enterprise Change in percentage of paddocks harvested 

medium stocking density high stocking density 

Dairy -5.4 -10.4 

Beef -3.7 -7.4 

Sheep Auchincruive -11.3 16.1 

Blyth Bridge -9.2 -12.8 

Craibstone -10.0 -13.7 

Drummond Castle -9.3 -14.0 

Wick -10.4 -16.4 
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Figure 6-26 The change in the percentage of paddocks harvested per degree 

increase in temperature relative to the current temperature scenario for 

each stocking density 
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6.4.1.5 Total Yield Per Head 

6.4.1.5.1 Grass - Based Enterprises 

The total dry-matter yield per head from the grass - based system was significantly 

affected by rainfall pattern and interactions between site and temperature and CO2 

and stocking rate for all enterprises. In addition, the site * CO2 and site * stocking rate 

effects were significant for the dairy and sheep enterprises. The global warming 

rainfall pattern resulted in the total yield harvested increasing by 86.2 kg DM cow-1, 

60.4 kg DM stee(1 and 14.5 kg DM ewe-1. Except for a temperature rise of 1°C at 

Drummond Castle, increasing the temperature reduced the yield for all enterprises, 

which corresponds to the pattern observed for the cut swards (see Figure 6-5). A 

similar pattern to that illustrated for the dairy enterprise (see Figure 6-27) was also 

predicted for the beef and sheep enterprises, although the magnitude of the absolute 

changes differed. Nevertheless, the percentage changes in dry-matter yield per head 

for the dairy, beef and sheep enterprises were of a similar magnitude ranging from 

-18.4-3.4%, -15.0-2.5% and -17.3-7.5% per degree increase in temperature 

respectively. Elevating the concentration of CO2 increased the total yield, whereas 

increasing the stocking density reduced the total yield (see Table 6-26). 

Consequently, for all enterprises increasing the CO2 levels at the highest stocking 

density resulted in a lower yield than the lowest stocking density at current 

concentrations of CO2 (see Table 6-26). This was also the case for the medium 

stocking density for the sheep enterprise. At all sites for the dairy and sheep 

enterprises increasing the stocking rate decreased the yield per head (see Table 6-

27). On the other hand, increasing the ambient concentration of CO2 increased the 

yield by between 40.2% at Craibstone and 46.0% at Auchincruive for the dairy 
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enterprise, while for the sheep enterprise the range was from 42.0% at Drummond 

Castle to 60.5% at Wick. 
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Figure 6-27 The change in the total dry-matter yield per cow per degree increase in 

temperature at each site for the dairy enterprise on the grass - based 

systems 

Table 6-26 The change in the total dry-matter yield per head at current and elevated 

concentrations of CO2 for all grass - based enterprises 

Enterprise CO2 Concentration Change in the total dry-matter yield (kg OM head-1
) 

(ppmv) Low Medium High 

Dairy 350 -290.0 -505.6 

520 634.9 234.4 -76. 1 

Beef 350 -221.0 -401.1 

520 416.2 153.0 -64.4 

Sheep 350 -126.4 -167.8 

520 96.7 -47.5 -97.6 
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Table 6-27 The change in total yield per head relative to the base stocking density 

for the dairy and sheep enterprises grazing on a grass - based system 

Enterprise Site 

Dairy Auchincruive 

Blyth Bridge 

Craibstone 

Drummond Castle 

Wick 

Sheep Auchincruive 

Blyth Bridge 

Craibstone 

Drummond Castle 

Wick 

Change in the total dry-matter yield per head 

(kg OM head-1
) 

Medium High 

-349.8 -593.4 

-381.6 -664.0 

-354.0 -631.0 

-394.5 -709.8 

-246.3 -443.3 

-132.0 -181.5 

-139.8 -184.1 

-143.7 -192.5 

-143.0 -193.6 

-118.0 -153.6 

6.4.1.5.2 Grass - White Clover Based Enterprises 

The harvested dry-matter yield from the grass - white clover based systems was 

significantly affected by rainfall pattern for all enterprises. The interactions that were 

significant for the dairy, beef and sheep enterprises were between site and 

temperature, site and CO2 level, site and stocking rate and CO2 level and stocking 

rate. In addition the interaction between temperature and CO2 level was significant for 

the sheep enterprise. Under the rainfall pattern associated with global warming, the 
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total dry-matter yield per head for the dairy, beef and sheep enterprises was increased 

by 7.1 %, 6.9% and 6.8% respectively. The direction and magnitude of the change per 

head were dependent on site and enterprise (see Figure 6-28-Figure 6-30). 

Increasing the stocking density at all sites for all enterprises decreased the yield per 

head (see Table 6-28), although increasing the CO2 concentration resulted in an 

increase in the yield (see Table 6-29). However, the increase varied substantially 

between sites. At all stocking densities, increasing the level of CO2 enhanced the 

yield harvested (see Table 6-30). Nonetheless, only at the medium stocking density 

for the dairy enterprise did the effect of increasing the CO2 concentration mitigate the 

effect of increasing the stocking density from the base level. For the sheep enterprise 

the effect of enhanced CO2 levels per degree of temperature increase was reduced as 

temperature increased (see Figure 6-31). Increasing the ambient concentration of 

CO2 at current temperatures resulted in the yield per ewe increasing by 35%. 

160 ~---------------------------

140 
.. 120 
~ ~ 100 
~; 80 
~ -£ 60 
~: 40 

::!: CD 20 
~~ O+--r-.,.,... ............ -h:::"....-----f-t­

.:.: -20 
-40 

~O L-----------------------------
Auch Blyth Craib Drum Wick 

Figure 6-28 The change in the total dry-matter yield per cow per degree increase in 

temperature at each site for the dairy enterprise on the grass - white 

clover based systems 
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Figure 6-29 The change in the total dry-matter yield per steer per degree increase in 

temperature at each site for the beef enterprise on the grass - white 

clover based systems 
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Figure 6-30 The change in the total dry-matter yield per ewe per degree increase in 

temperature at each site for the sheep enterprise on the grass - white 

clover based systems 
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Table 6-28 Effect of change in stocking rate on the percentage change in total dry­

matter yield per head relative to the base stocking density for the dairy, 

beef and sheep enterprises grazing on a grass - white clover based 

system 

Enterprise Site Change in the total dry-matter yield per head (%) 

Medium Stocking Rate High Stocking Rate 

Dairy Auchincruive -18.0 -32.3 

Blyth Bridge -19.4 -33.8 

Craibstone -19.6 -34.4 

Drummond Castle -18.1 -32.3 

Wick -21.6 -37.9 

Beef Auchincruive -15.4 -27.0 

Blyth Bridge -15.0 -27.0 

Craibstone -15.8 -27.5 

Drummond Castle -14.8 -26.8 

Wick -16.1 -29.3 

Sheep Auchincruive -39.0 -51.1 

Blyth Bridge -37.3 -48.5 

Craibstone -38.2 -49.8 

Drummond Castle -37.3 -49.0 

Wick -40.3 -53.5 
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Table 6-29 Effect of change in CO2 concentration on the percentage change in total 

dry-matter yield per head relative to the current CO2 concentrations for all 

enterprises grazing on a grass - white clover based system for each site 

Site Change in the total dry-matter yield per head (%) 

Dairy Beef Sheep 

Auchincruive 39.7 32.2 40.1 

Blyth Bridge 39.9 30.0 35.0 

Craibstone 38.5 30.6 34.5 

Drummond Castle 36.9 29.3 36.3 

Wick 52.1 34.6 44.5 

Table 6-30 Effect of changes in stocking rate and CO2 concentration on the change 

in the total yield per head at current and elevated concentrations of CO2 

for all grass - white clover based enterprises 

Enterprise CO2 Concentration Change in the total dry-matter yield (%) 

(ppmv) Low Medium High 

Dairy 350 -20.4 -35.7 

520 37.4 12.3 -7.2 

Beef 350 -15.7 -27.8 

520 30.4 10.7 -4.9 

Sheep 350 -39.7 -51.5 

520 34.5 -15.6 -31.6 
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Figure 6-31 The percentage change in the total dry-matter yield per ewe per degree 

increase in temperature for current and elevated CO2 concentrations for 

the sheep enterprise on the grass - white clover based systems 

The percentage of white clover in the harvested yield was significantly affected by 

rainfall pattern and an interaction between site and temperature for all enterprises. 

The CO2 concentration was also significant for the dairy and beef enterprises, while 

stocking rate had a significant effect on the percentage of white clover in the beef 

enterprise. The rainfall pattern increased the percentage of white clover by 1.36%, 

1.44% and 1.93% for the dairy, beef and sheep enterprises respectively. Except for a 

1°C rise at Auchincruive and Drummond Castle, increasing the temperature increased 

the percentage of white clover in the sward, as illustrated for the dairy enterprise in 

Figure 6-32. The pattern of the results for the beef and sheep enterprises was similar, 

although the change per degree increase in temperature for a 1°C rise at Drummond 

Castle for the beef enterprise was close to zero. The effect of increasing the CO2 

levels resulted in the percentage increasing by 0.59% for the dairy system and by 

0.68% for the beef system. On the other hand, the percentage was reduced by 

between 0.48% and 0.52% for an increase of 0.33 steers ha-1
. 
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Figure 6-32 The change in the percentage of white clover in the harvested yield per 

degree increase in temperature at each site for the dairy enterprise 

6.5 Animal Production 

6.5.1 Dairy Farming 

6.S.1.1 Grass - Based Systems 

The milk yield per dairy cow grazing on a grass sward was affected by rainfall pattern 

and interactions between site and stocking rate, CO2 concentration and stocking rate, 

and site, temperature and CO2 concentration. The global warming rainfall pattern 

increased the yield per day by 0.51 %. However, increasing the stocking rate reduced 

the milk yield, although the rate of decrease differed between sites (see Table 6-31). 

The milk yield tended to be increased with elevated temperatures and augmented CO2 

levels (see Figure 6-33). Nevertheless, at Drummond Castle the yield was decreased 

for temperature scenario 1 at current CO2 levels and for temperature scenario 1 at 

elevated CO2 concentrations. A similar pattern was observed at Wick, but in this case 

the milk yield was only increased when the temperature was elevated by 2°C or 3°C at 

a CO2 concentration of 520 ppmv. At current temperatures increasing the ambient 

concentration of CO2 changed the milk yield be between -1.03% at Wick to +0.23% at 
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Blyth Bridge. Increasing the CO2 concentration at the medium and high stocking 

density reduced the decrease in the milk yield that occurred, compared to the low 

stocking rate at current concentrations of CO2 (see Table 6-32). However, at the low 

stocking rate increasing the CO2 concentration resulted in a decrease in the yield. 

Table 6-31 The percentage change in the milk yield for the dairy herd grazing a 

grass - based system for each site 

Site Percentage change in the milk yield per day 

Medium High 

Auchincruive -0.17 -0.56 

Blyth Bridge -0.29 -0.51 

Craibstone -0.29 -0.69 

Drummond Castle -0.17 -0.34 

Wick -0.91 -1.76 
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Figure 6-33 The percentage change in the daily milk yield per degree increase in 

temperature at each level of CO2 concentration for each site 
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Table 6-32 The percentage change in the daily milk yield per head at current and 

elevated concentrations of CO2 at al/ stocking densities grazing a grass -

white clover sward 

CO2 Concentration Percentage change in the milk yield (%) 

(ppmv) Low Medium High 

350 -0.57 -1.25 

520 -0.28 -0.40 -0.57 

6.5.1.2 Grass - White Clover Based Systems 

In the case of the dairy herd grazing the grass - white clover sward the significant 

factors were rainfall pattern, stocking rate and CO2 levels. There was also a 

significant interaction between site and temperature. As with the grass - based 

system, changing to a global warming rainfall pattern increased the daily milk yield by 

1.12%. The effect of increasing the atmospheric CO2 levels resulted in an increase of 

0.89%. On the other hand, increasing the stocking density from 1.68 cows ha-1 to 

1.89 cows ha-1 reduced the milk yield by 0.33%. The milk yield was reduced by 0.82% 

when the stocking density was increased from 1.68 cows ha-1 to 2.1 cows ha-1
. 

Except for a 1°C rise in temperature at Drummond Castle, increasing the temperature 

increased the milk yield, although the effect per degree of temperature increase was 

not linear (see Figure 6-34). 
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Figure 6-34 The percentage change in the daily milk yield per degree increase in 

temperature for each site 

6.5.2 Beef Production 

6.5.2.1 Grass - Based Systems 

For the grass - based beef enterprise, the daily gain in liveweight of the steers was 

significantly affected by the rainfall pattern, CO2 concentration , stocking rate and the 

interaction between site and temperature. Increasing the stocking rate from 3.08 

steers ha-1 to 3.46 steers ha-1 and from 3.08 steers ha-1 to 3.85 steers ha-1 reduced 

the daily gain in liveweight by -0.65% and -1.45% respectively. On the other hand 

increasing the CO2 concentration increased the daily gain by 2.31%, while changing to 

a global warming rainfall pattern resulted in an increase of 0.79%. The percentage 

increase in the daily gain varied between sites, and at four of the five sites the 

increase per degree was greatest when the temperature was increased by 1°C (see 

Figure 6-35). 

297 



7 ,------

CD 
Cl 

6 

5 

.! 4 
c:: 
CD 
~ 3 
CD 
a.. 2 

o 
Auch Blyth Craib Drum Wick 

Figure 6-35 The percentage change in the live weight gain per day per degree 

increase in temperature at each site for a grass - based beef system 

6.5.2.2 Grass - White Clover Based Systems 

On grass - white clover based systems the factors that were significant were rainfall 

pattern and the interactions between site and temperature, site and CO2 level, 

temperature and CO2 level and CO2 level and stocking density. The global warming 

rainfall pattern increased the daily gain by 1.45%. Similarly, the effect of elevating the 

CO2 conditions to 520 ppmv increased the daily gain but the percentage enhancement 

differed between sites (see Table 6-33). At current temperatures increasing the CO2 

concentration increased the percentage daily gain by 1.4%. Except for a 1°C increase 

at Drummond Castle, daily gain was increased with temperature (see Figure 6-36). 

Nevertheless, the effect was not linear with temperature. The effect of temperature on 

daily gain at current concentrations of CO2 was similar for each degree increase (see 

Figure 6-37). However, this was not the case at CO2 concentrations of 520 ppmv. At 

both current and elevated CO2 concentrations increasing the stocking rate reduced 

the percentage gain (see Table 6-34). However, at elevated CO2 levels the daily gain 

was higher than at the lowest stocking density for current CO2 levels (see Table 6-34). 
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Table 6-33 The percentage change in the daily gain of the beef steer with elevated 

concentrations of CO2 at each site 

520 

CO2 Concentration Percentage change in the liveweight (%) 

(ppmv) Auch Blyth Craib 

2.46 1.91 1.47 
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Figure 6-36 The percentage change in the live weight gain per day per degree 

increase in temperature at each site for a grass - white clover based beef 

system 
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Figure 6-37 The percentage change in the liveweight gain per day per degree 

increase in temperature at each CO2 level for a grass - white clover 

based beef system 

Table 6-34 The percentage change in the liveweight daily gain of the steer at current 

and elevated concentrations of CO2 at all stocking densities for a grass -

white clover based beef enterprise 

CO2 Concentration Percentage change in the liveweight (%) 

(ppmv) Low Medium High 

350 -1.39 -3.12 

520 1.45 0.90 0.26 

6.5.3 Sheep Production 

6.5.3.1 Liveweight of Lambs on Grass and Grass - White Clover Based Systems 

The daily gain in liveweight of lambs reared on grass and grass - white clover based 

systems was significantly affected by rainfall pattern and the interactions between site 

and temperature and site and CO2 level. In the case of the grass - white clover sward 

stocking rate was also significant. The effect of rainfall was to increase the daily 
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liveweight gain by 1.07% and 2.17% for grass and grass - white clover systems 

respectively. The percentage increase per degree increase in temperature was higher 

for the grass - white clover swards (see Figure 6-39) than the pure grass (see Figure 

6-38). However, a 1°C increase at Drummond Castle and a 3°C increase at Wick for 

the grass - based system actually reduced the daily gain in liveweight. The 

percentage increase with elevated CO2 levels was greater for the grass - white clover 

swards than for the pure grass swards (see Table 6-35). The daily weight gain of 

lambs grazing the grass - white clover pasture was reduced by 2.63% as stocking 

rate was increased from the low to the medium rate. The comparable figure for 

increasing from the low to the high rate was a reduction of 3.28%. 
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Figure 6-38 The percentage change in the live weight gain per day per degree 

increase in temperature at each site for a grass - based sheep system 
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Figure 6-39 The percentage change in the live weight gain per day per degree 

increase in temperature at each site for a grass - white clover based 

sheep system 

Table 6-35 The percentage change in the daily gain of the lamb with elevated 

concentrations of CO2 at each site for the grass and the grass - white 

clover based system 

Sward Percentage change in the liveweight with elevated CO2 (%) 

Auch Blyth Craib Drum Wick 

Grass 6.46 6.82 5.42 5.64 11.81 

Grass - white clover 11.67 9.75 10.47 7.48 18.54 

6.5.3.2 Liveweight of Ewes on Grass and Grass - White Clover Based Systems 

The liveweight of the ewe was significantly affected by the two-way interaction of site 

with temperature for both the grass and grass - white clover based systems. In the 

grass - based system, the interaction between site, CO2 and stocking density, and 

temperature and stocking density were also significant. The other factors that were 

significant for the grass - white clover system was the interactions of CO2 and 
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stocking density with site, and the interaction between stocking density and CO2 level. 

The rainfall factor was also significant for the grass - white clover based enterprise. 

The ewe liveweight for the grass - based system increased with temperature at all 

sites, although the magnitude differed between sites (see Figure 6-40). Increasing the 

stocking rate increased the liveweight of the ewe at each site (see Figure 6-41). At 

elevated CO2 concentrations increasing the stocking level increased the percentage 

change. Nevertheless, except for the highest stocking density at Wick, the increase 

with stocking density was greater at current concentrations of CO2 (see Figure 6-41). 

At elevated temperatures increasing the stocking rate was associated with enhanced 

liveweight of the ewe (see Figure 6-42). 
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Figure 6-40 The percentage change in the live weight of the ewe per degree increase 

in temperature at each site for a grass - based sheep system 
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Figure 6-41 The percentage change in the live weight of the ewe for each stocking 

density at current and elevated CO2 level at each site for a grass - based 

sheep system 
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Figure 6-42 The percentage change in the live weight of the ewe per degree increase 

in temperature at each stocking density for a grass - based sheep 

system 

Changing to a global warming rainfall pattern on grass - white clover sward increased 

the liveweight of the ewe by 0.52%. The liveweight was also increased by increasing 

temperatures at each site (see Figure 6-43). In contrast to the ewes grazing the pure 

grass swards, increasing the stocking rate tended to decrease the liveweight (see 

Table 6-36). Nevertheless, the magnitude of the reduction was decreased as the 

stocking density was increased and the ewe liveweight was actually increased for the 
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Craibstone and Wick sites. Increasing the ambient concentration CO2 also increased 

the liveweight at all sites (see Table 6-37). However, as stocking rate increased the 

reduction in liveweight was increased, although the difference compared to the lowest 

stocking rate at ambient concentrations of CO2 was reduced by elevating the CO2 

levels (see Table 6-38). 
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Figure 6-43 The percentage change in the live weight of the ewe per degree increase 

in temperature at each site for a grass - white clover based sheep system 
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Table 6-36 The percentage change in the live weight of the ewe at each site for the 

medium and high stocking densities on a grass - white clover based 

system for each site 

Site Percentage change in the liveweight of the ewes 

From 8 to 10.5 ewes ha-1 From 10.5 to 11.67 ewes ha-1 

Auchincruive -5.62 -0.26 

Blyth Bridge -5.03 -0.45 

Craibstone -5.05 0.44 

Drummond Castle -5.90 -0.78 

Wick -1.29 1.02 

Table 6-37 The percentage change in the liveweight of the ewe with elevated 

concentrations of CO2 at each site 

CO2 Concentration Percentage change in the liveweight (%) 

(ppmv) Auch Blyth Craib Drum Wick 

520 4.24 3.35 4.08 3.57 2.41 
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Table 6-38 The percentage change in the Iiveweight of the ewe at current and 

elevated concentrations of CO2 at all stocking densities for a grass -

white clover based sheep enterprise 

CO2 Concentration Percentage change in the liveweight (%) 

(ppmv) Low Medium High 

350 -3.38 -2.96 

520 5.58 -0.55 -0.99 

6.6 Conclusions 

The consequences of global warming for livestock production occur primarily through 

its effect on forage production. Relative to current climatic conditions the 

enhancement in harvestable yield range from 20% to nearly 60% and the percentage 

of white clover in the harvested material can increase by up to 126%. Equally, the 

model has shown that livestock production can also be enhanced. Thus, the increase 

in milk production, and the daily gains in liveweight for the beef steers and lambs 

range from 3%-13%, 1 %-12%, and 4%-28% respectively. The larger increases 

tend to occur on grass - white clover swards. However, the increases in harvestable 

forage yield per livestock unit on grass swards with enhanced CO2 concentration 

diminish with temperature. In contrast, the effect of CO2 concentrations on the yield 

obtained from grass - white clover swards tend to increase marginally with 

temperature. 

The increased length of the grazing season for both grass and grass - white clover 

swards will reduce the need for winter forage, although global warming appears to 
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increase the production of silage. This may reduce the requirement for concentrate 

feeding for livestock production, especially for the beef and sheep systems. As the 

yields from the grass - white clover swards under global warming are similar to those 

obtained from grass - based systems under current conditions there may be a switch 

from grass - based systems to mixed grass - legume production. This would have 

the added benefit of reducing fertiliser nitrogen inputs into the system which may 

result in environmental benefits. Nevertheless, the environmental consequences of 

fertiliser nitrogen and nitrogen fixed by the white clover have not been included in the 

model. Similarly, a switch to grass - white clover swards coupled with the increase in 

the percentage of white clover in the harvested material would be expected to 

increase livestock production during the winter feeding period. This is due to white 

clover having a higher nutritive value than grass and it also tends to stimulate herbage 

intake (Thomson, 1984). This may again reduce the quantity of concentrates that are 

required during the winter period. Nevertheless, the model simulations have not been 

extended to cover the winter period, so the effects of global warming on livestock 

production during this period remain a matter for inference. 

The enterprise with the most benefits from global warming is the sheep system, and 

therefore farmers may switch to sheep production from other livestock enterprises. 

There will also be a tendency for the production from all the livestock enterprises to 

increase so that there will tend to be an increase in the quantity of the products 

available for sale. This could lead to declining product prices, although reduced costs 

through reduced use of purchased feed and fertilisers may be sufficient for farm 

profitability to be maintained. However, this economic consequence has not been 

explored. In Chapter 7 the effect of global warming on livestock production in relation 
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to the hypothesis outlined in Chapter 1, and the effects that climate change will have 

on livestock production in Scotland will be discussed. 
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7. 1 Introduction 

CHAPTER 7 

DISCUSSION 

This chapter will discuss the results analysed in Chapter 6 against the background of 

the original hypotheses outlined in Chapter 1. In particular it will draw together the 

findings in order to ascertain the effects of global warming on Scottish livestock 

production. This chapter will then outline the consequences of global warming for 

livestock production, further developments of the model that could be made and the 

advancement to knowledge made by the model. 

7.2 Hypothesis One: The Effect of Temperature on the Length of the 

Growing Season 

This hypothesis recognises that temperature has an impact on when the herbage 

mass in the paddocks starts to grow in the spring and when growth ceases in the 

winter. It states that the growing season will be lengthened by increases in the annual 

average temperature. Although it must be recognised that temperature controls the 

period of growth in the forage model, the results for both the grass and white clover 

components indicated that the length of the growing season was increased (see 

Figure 6-4). However, for the grass component the effect differed between sites and 

the effect was not a linear function of rising temperature (see Figure 6-4). The 

increase in the length of the growing season was between 15.6 and 25.6 days per 

degree increase for an overall increase of 3°C in temperature. The range was 
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reduced to 16.8 to 20.5 per degree increase for the 1°C and 2°C elevation in 

temperature. On the other hand, the effect on the length of the growing season for the 

white clover component was approximately linear with the increase of between 18.8 

and 19.1 days per degree increase in temperature. These results are in broad 

agreement with the results of Flohn (1985), who stated that, in high latitudes, a 1°C 

change in the global mean air temperature could change the length of the growing 

season by three to four weeks. However, the results suggest that the change would 

be slightly less. In contrast, Hanson et al. (1993) predicted that the length of the 

growing season would increase in the Great Plains of America by about 30 days with 

mean annual temperature enhancements of 4.9°C-6.3°C. Nevertheless, it must be 

recognised that the effect on length of the growing season is due to both an earlier 

commencement and a later cessation of growth. The commencement of growth for 

both the grass and white clover components differed between sites, while cessation of 

growth did not differ across the five locations. 

7.3 Hypothesis Two: The Effect of Global Warming on Forage 

Production 

The second hypothesis states that increases in CO2 , rises in temperature, and 

anticipated changes in the rainfall pattern will all combine to increase the harvestable 

dry-matter yield from both the grass and grass - white clover swards. 

7.3.1 Effect of Increasing the Ambient Concentration of C02 

With the exception of the first-cut white clover yield, the yield of all the cuts for both the 

grass and grass - white clover swards were enhanced by elevated CO2, Similarly, the 

experiments of Schenk et al. (1997a), Jones et al. (1996a), Jones et al. (1996b) and 

311 



Schapendonk et al. (1996), Casella et al. (1996), Schenk et al. (1995), Nijs et al. 

(1989a) for grass showed that yield was increased when the ambient concentration of 

CO2 was increased. Evidence from the model predictions of Thornley and Cannell 

(1997) also suggests that increasing the ambient CO2 will increase herbage mass 

production. This also occurred with white clover stands (Schenk et al., 1997a, Schenk 

et al., 1995; Ryle and Powell, 1992) and mixed swards (Schenk et al., 1997a, 

Hardacre et al., 1986). The level of increase under enhanced CO2 conditions is also 

in a similar range to the predictions of Kimball (1983), who stated that the average 

increase in yield for C3 crops would be 33% as CO2 concentrations increased from 

330 ppmv to 660 ppmv. In contrast, the model of Hanson et al. (1993) predicted no 

change in yield under enhanced CO2, Similarly, Newton et al. (1995) observed little 

change in the yield from mixed swards when the CO2 concentration was elevated. 

Nevertheless, the effect on the predicted yield varied throughout the season, as also 

occurred in experiments (Casella et al., 1996; Jones et al., 1996a; Schapendonk et al., 

1996). In contrast to Schenk et al. (1997a) and Hardacre et al. (1986), the percentage 

increase in total yield was similar for the grass and the grass - white clover swards. 

Nevertheless, the magnitude of the increase was less for the mixed swards as the 

harvestable yield under current conditions is greater for pure grass swards. 

The prime reason for the increased yield with elevated CO2 concentration is due to the 

augmenting effect that the enhanced levels have on the rate of photosynthesis (Ryle 

et al., 1992a; Ryle et al., 1992b; Nijs et al., 1989a, Nijs et al., 1989b). However, the 

augmentation effect is greater for the rate of photosynthesis than dry-matter 

production (Nijs et al., 1989a). Nevertheless, acclimation can occur (Ryle et al., 
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1992a; Jones et al., 1996b; Casella and Soussana, 1997) and so reduce the effect of 

the enhanced concentration of CO2. But this consequence has not been observed in 

mixed swards (Newton et al., 1996) and does not always occur for pure grass swards 

(Jones et al., 1996a). 

7.3.2 Effect of Increasing the Temperature on Yield 

Contrary to expectations, the effect of increasing the average daily temperature 

reduced the harvestable dry-matter yield for all cuts from the pure grass sward (see 

Figure 6-5). Nevertheless, there is experimental evidence for this phenomenon (Nijs 

and Impens, 1996; Nijs and Impens, 1997). The model developed by Thornley and 

Cannell (1997) also predicts that the production of grass will decline with increased 

ambient temperatures, although Armstrong's (1996) model predicts increased yields. 

In contrast, the total dry-matter yield harvested from the grass - white clover sward 

was enhanced with elevated temperatures, although a 1°C increase did reduce the 

yield from the second cut. Elevating the daily temperature, below the optimum 

temperature for the process, increased the rates of photosynthesis and respiration. 

The rate of transpiration will also increase under elevated temperatures, which may 

increase the stress experienced by the plant and hence decrease the rate of dry­

matter production. Consequently, the net effect on the dry-matter yield can either be 

an increase or a decrease depending on the balance of the processes. Casella et al. 

(1996) observed no change in the harvested yield obtained with increased 

temperature during the summer months in France and decreases in yield have also 

been reported (Nijs and Impens, 1996; Nijs and Impens, 1997). Furthermore, there is 

no evidence of changes in temperature at current ambient concentrations of CO2 
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increasing yield. In contrast, the reduction in yield that can occur with elevated 

concentrations of CO2 can be reduced when the ambient temperature is elevated (Nijs 

and Impens, 1996), but it must be recognised that the opposite effect can also occur 

(Nijs and Impens, 1997). 

7.3.3 Effect of Changing to a Global Warming Rainfall Pattern 

The importance of the rainfall pattern is noted by Ojima, Parton, Schimel, Scurlock and 

Kittel (1993) who showed that their predictions of forage production across seven 

ecoregions for climate change without enhanced ambient CO2 conditions were 

correlated to the changes in rainfall. The model simulation predicted that the effect of 

changing the rainfall pattern to one associated with global warming was to increase 

the dry-matter yield of all cuts from the grass and the grass - white clover swards. 

The yield enhancement for the pure grass swards was similar for all cuts (see Table 6-

5). In contrast, the enhancement for the grass - white clover sward was higher for the 

second cut than the first (see Table 6-6). Although, the enhancement for the grass 

component was lower (2.2%-2.4%) than that observed for the pure grass swards 

(2.8% -3.0%), the increase in the white clover yield was much higher (9.3%-13.7%). 

As the daily rainfall on rainy days is increased, except for August and September, 

under the global warming rainfall pattern, the harvestable yield is increased as the 

stress experienced by the crop is reduced. Although increasing the ambient 

concentration of CO2 reduces the stomatal conductance and hence the rate of 

transpiration, this effect is not included in the model of forage production (Ryle et al., 

1992a; Ryle et al., 1992b; Nijs et al., 1989b). Consequently, the effect of changing the 
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rainfall pattern under enhanced ambient concentrations of CO2 is likely to understate 

the change in yield. 

7.3.4 Effect of Increasing the Ambient Concentration of CO2, Temperature and 

Changing to a Global Warming Rainfall Pattern 

The effect of increasing the ambient concentration of CO2 coupled with changing to 

the rainfall pattern associated with global warming resulted in the dry-matter yield from 

the grass sward increasing (see Table 7-1). The increase in the ambient 

concentration of CO2 resulted in enhancement of the yield relative to only changing 

the weather variables. This is a result that was also reported by Ojima et at. (1993). 

Nevertheless, the rate of increase declined as the temperature increased. Similarly, 

Thornley and Cannell (1997) observed that the enhancement in production resulting 

from elevated CO2 levels was reduced as the ambient temperature increased. 

Equally, the enhancement in dry-matter yield of the grass component from the mixed 

sward also tended to decline with increases in temperature (see Table 7-2). On the 

other hand, the white clover and the combined yields increased with increases in 

temperature. There is experimental evidence for increases in ambient temperature 

coupled with elevated CO2 levels both increasing (Nijs and Impens, 1996) and 

decreasing (Nijs and Impens, 1997) the yield of perennial ryegrass compared to that 

obtained when only the CO2 conditions were enhanced. Nevertheless, Nijs and 

Impens (1996) reported a decrease in yield when the temperature was elevated by 

4°C and the atmospheric concentration of CO2 was enhanced. 
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Table 7-1 The percentage increase in dry-matter yield for the elevated CO2 levels 

and the global warming rainfall pattern relative to current conditions for 

the grass sward 

Cut Percentage Change 

O°C 1°C 2°C JOC 

1st 21.0 19.1 14.6 11.7 

2nd 28.3 23.6 19.1 15.2 

Total 23.9 20.9 16.4 13.1 
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Table 7-2 The percentage increase in dry-matter yield for the elevated CO2 levels 

and the global warming rainfall pattern relative to current conditions for 

the grass - white clover sward 

Component Cut Percentage Change 

O°C 1°C 2°C JOC 

Grass 1st 21.0 22.7 14.4 4.6 

2nd 37.8 30.9 17.6 2.5 

Total 25.6 24.9 15.3 4.0 

White clover 1st 29.5 58.0 131.8 203.7 

2nd 25.0 32.4 83.3 134.0 

Total 27.2 45.3 107.7 169.1 

Combined 1st 22.1 27.3 30.0 31.0 

2nd 34.1 31.3 36.2 39.8 

Total 25.9 28.6 31.9 33.8 

7.4 Hypothesis Three: The Effect of Changes in Temperature on Yield 

The third hypothesis states that the increases in annual average temperature will not 

result in linear changes in the yield from grass swards or the components of yield from 

grass - white clover swards. It recognises that many of the processes involved in 

plant growth have an optimum temperature. 

For the pure grass swards the increases in the dry-matter yield harvested at the first 

cut were approximately linear for temperature increase of 2°C and 3°C with a 
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decrease of 0.13 tOM ha-1 °e-1 (see Figure 6-5). On the other hand, a temperature 

increase of 1°C resulted in a higher yield with a decrease of 0.09 t OM ha-1
. In 

contrast the decrease in yield for the second cut was approximately linear for all 

temperature increases (see Figure 6-5). The net effect on the total yield was that a 

1°C increase resulted in significantly higher yield than either the 2°C or 3°C increase in 

temperature which had an approximately linear effect. Similarly, temperature 

increases of 2°C and 3°C resulted in an approximately linear increase in the combined 

second-cut yield harvested from the grass - white clover sward (see Figure 6-6), 

although the percentage increase differed by 0.5%. However, a 1°C increase resulted 

in a decrease in the harvested yield. Although the increase in the total yield per 

degree of temperature increase was approximately linear for the total combined yield, 

the 2°C and 3°C scenarios were +0.2% and -0.2% different respectively from the 

predicted change in yield for a 1°C temperature increase. 

As the annual average temperature for the study sites ranged from 7.0oe at Blyth 

Bridge to 8.7°e at Auchincruive, it was not expected that location would significantly 

influence the yield. Nevertheless, the different responses of yield to increases in 

temperature indicate that the balance of changes that occur are effected by the 

response of the different processes to changes in temperature. With respect to 

transpiration the availability of water interacts with temperature to determine the level 

of stress experienced by the crop and consequently the rate of dry-matter production. 
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7.5 Hypothesis Four: The Effect of Global Warming on the 

Percentage of White Clover in the Sward 

The hypothesis is concerned with the effect changes in CO2, temperature, and 

changes in rainfall pattern will have on the proportion of white clover in the harvested 

yield obtained from mixed swards. The combined effects of changes in CO2, 

temperature and the rainfall pattern are also discussed. The hypothesis states that 

the percentage of white clover in the harvested material will be augmented by 

changes in the climatic conditions associated with global warming and elevated CO2 

concentrations. 

7.5.1 Effect of Increasing the Ambient Concentration of CO2 

Elevating the concentration of CO2 resulted in the percentage of white clover 

harvested in the total dry-matter yield being neither increased nor decreased. This is 

contrary to the experimental evidence of Schenk et al. (1997a), Clark et al. (1997), 

Stewart and Potvin (1996), Campbell et al. (1995), Newton et al. (1995) and Newton et 

al. (1994). In particular, Clark et al. (1997) observed that the percentage of white 

clover in the sward declined as the CO2 concentration was increased from 525 ppmv 

to 700 ppmv. Against this, Overdieck and Reining (1986) observed that the above­

ground dry-matter production of white clover did not respond to enhanced 

concentrations of CO2 after the first cut, whereas the dry-matter yield of the perennial 

ryegrass component from a mixed sward tended to increase with elevated CO2 after 

this cut. Although, the first-cut grass yield and the second-cut white clover yield were 

significantly increased by elevated CO2, the percentage of white clover in the first cut 
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was increased from 19.7% to 20.6% with elevated CO2, whereas the percentage 

harvested in the second cut was decreased from 34.9% to 32.2%. 

However, the results of Newton et al. (1994).and Campbell et al. (1995) also indicated 

that there was an interaction between the temperature and the ambient concentration 

of CO2 on the dry-matter yield response and consequently the percentage of white 

clover in the harvested material. Against this, the model assumes that elevating the 

concentration of CO2 influences the rate of photosynthesis of both the grass and white 

clover components in the same manner. Furthermore, it does not describe the effects 

of CO2 enhancement on the rates of branching and tillering of the grass and white 

clover components. This may be critical, as Newton et al. (1995) relate the increase in 

the percentage of white clover in the harvested material to the effects that CO2 has on 

the axillary buds and consequently on rates of branching and tillering. 

7.5.2 Effect of Increasing the Temperature 

In contrast to the effect of CO2 on the percentage of white clover in the harvested 

yield, the effect of temperature was dependent on the location of the site (see Table 6-

7). Nevertheless, with the exception of the Wick site, there was a general tendency for 

the percentage of white clover harvested in all cuts per degree of temperature 

increase to be enhanced as temperature was elevated. There was a tendency for the 

2°C and 3°C increase to result in a similar increase per degree of temperature change 

in the percentage of white clover within the harvested material. In contrast, the 

percentage increase per degree of temperature change was enhanced as the 

temperature increase was elevated from +1°C to +2°C. Nevertheless, the changes in 

the percentage of white clover harvested were small. This tendency for the 
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percentage of white clover in the sward to increase as the temperature increased is 

evident in the experiments of Newton et al. (1994) and Campbell et al. (1995) . 

7.5.3 Effect of Changing to a Global Warming Rainfall Pattern 

Changing to a global warming rainfall pattern also resulted in the percentage of white 

clover increasing in the harvested material (see Table 6-6). The availability of water is 

increased under the global warming rainfall pattern, as the rainfall is increased in ten 

months of the year. The percentage change is a result of the reduction in water stress 

having greater impact on the white clover component than the grass component (see 

Figure 7-1). 

1 

0.8 ... 
0 ... 0.6 (J 
n:I 

LL 
1/1 0.4 1/1 
CD ... ... 0.2 UJ 

0 
0 0.5 1 

Proportionate water stress 

_ Grass Stress 

_ White elO\er 

Stress 

Figure 7-1 The effect of water stress on the grass and white clover components at a 

proportionate nitrogen stress level of 0.5. 

7.5.4 Effect of Increasing the Ambient Concentration of CO2, Temperature and 

Changing to a Global Warming Rainfall Pattern 

Under all climate scenarios, the percentage of white clover in the sward increases 

when the temperature is elevated (see Table 7-3). On the other hand, elevating the 

CO2 levels reduces the percentage of white clover in the sward at temperature 
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changes of O°C and 1°C. Consequently, the increase in the percentage of white clover 

in the sward under the global warming rainfall pattern and current concentrations of 

CO2 is mitigated when the concentration of CO2 is elevated at temperature changes of 

O°C and 1°C. Indeed, at temperature increases of OOC and 1°C the global warming 

scenario results in a decrease in the percentage of white clover in the harvested 

second-cut yield. 

Table 7-3 The percentage of white clover in the sward 

Climate Cut Percentage 

ODC 1DC 2DC 3°C 

Ambient CO2 and current rainfall 1st 13 15 21 27 

2nd 27 29 36 44 

Total 18 20 26 32 

Ambient CO2 and global warming rainfall 1st 14 16 22 29 

2nd 28 31 38 47 

Total 19 21 28 35 

Elevated CO2 and current rainfall 1st 13 16 22 29 

2nd 23 25 34 43 

Total 17 19 26 34 

Elevated CO2 and global warming rainfall 15t 14 16 24 31 

2nd 24 27 36 46 

Total 18 20 28 36 
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7.6 Hypothesis Five: The Effect of Global Warming on the Length of 

the Grazing Season for Livestock Systems 

This hypothesis recognises that the length of the growing season is lengthened as the 

ambient temperature increases, and that the yield of herbage is elevated under the 

growing conditions associated with global warming. Consequently, this hypothesis 

examines how the grazing season will be affected by CO2 concentrations, increases in 

the ambient temperature and changing to a global warming rainfall pattern. The 

hypothesis will also consider how the combined changes of CO2, temperature and 

rainfall will affect the length of the grazing season. As the sheep were removed during 

the summer, the effect of climate change on the date of yarding and the length of the 

grazing season will only be examined for the dairy and beef enterprises, although the 

effects on the date of turnout will be discussed for the three enterprises. 

7.6.1 Effect of Increasing the Ambient Concentration of CO2 

Although the effect of CO2 on the date of turnout was similar for all enterprises on both 

the grass and grass - white clover swards, there was an interaction between CO2 

level and temperature (see Table 6-11). The effect of increasing the ambient 

concentration of CO2 resulted in the livestock being turned out earlier in the season 

than under current climatic conditions, although the increase at each level of 

temperature was reduced as the ambient temperature was elevated. Against this, the 

effect of CO2 concentrations on the date of yarding was dependent on enterprise, 

although the general trend was for elevated CO2 concentrations to result in yarding 

occurring later in the season than under current climatic conditions. Furthermore, the 

change in the date of yarding differed between the sites (see Figure 6-16, Table 6-13 
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and Table 6-15). As with to the date of turnout, elevating the temperature on the 

grass - based system resulted in a smaller increase in the date yarding (see Figure 6-

16 and Table 6-12). Equally, on both the grass and the grass - white clover based 

systems the effect of elevating the CO2 concentration was also reduced under the 

rainfall pattern associated with global warming for both the dairy and beef enterprises 

(see Table 6-14 and Table 6-16). The net result for the dairy and beef enterprises 

was that elevating the CO2 concentration lengthened the grazing season, although the 

magnitude of the change differed between sites (see Table 6-17 and Table 6-19). The 

level of enhancement at each level of temperature also decreased as the temperature 

increased (see Table 6-18). The prime reason for this result, as well as the earlier 

turnout date for the sheep enterprise, is that enhanced concentrations of CO2 increase 

the herbage production and thus the availability of herbage for consumption. 

7.6.2 Effect of Increasing the Temperature 

Increasing the ambient temperature resulted in the grazing starting earlier in the 

season than under current climatic conditions for all enterprises on both the grass and 

grass - white clover swards (see Figure 6-14 and Figure 6-15), although the 

magnitude of the change differed between sites. Nonetheless, the greatest effect per 

degree of temperature increase occurred when the elevation in ambient temperature 

was 1°C at all sites and at both the CO2 concentrations associated with current and 

global warming climates (see Table 6-11). 

In respect of the yarding date for the dairy and beef enterprises on a grass - based 

system, at elevated concentrations of CO2, increasing the ambient temperature 

reduced the number of days increase per degree of temperature change (see Figure 
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6-16 and Table 6-12). Nevertheless, for the dairy enterprise, in general, this effect 

was not apparent at current concentrations of CO2 (see Figure 6-16). In contrast, for 

the beef enterprise increasing the temperature at current concentrations of CO2 

increased the reduction in the number of days per degree of temperature change (see 

Table 6-12). In addition, the effect of temperature on the date of yarding, for the beef 

and dairy systems based on pure and mixed swards differed between sites and 

enterprises in the magnitude and the direction of the change (see Figure 6-16, Figure 

6-17 and Figure 6-18). 

The effect of temperature elevation on the length of the grazing season differed 

between sites (see Figure 6-19 and Figure 6-20). In general, a temperature elevation 

of 1°C resulted in a larger increase than changes of 2°C and 3°e in the length of the 

grazing season per degree increase in temperature. Nevertheless, the Drummond 

Castle site did not exhibit this pattern for all enterprises and both sward types. 

Furthermore, for the grass - based dairy and beef systems reductions in the length of 

the grazing season occurred at the Wick site for temperature elevations of 2°C and 

3°e (see Figure 6-19). The effect of temperature was also increased when the CO2 

concentration was augmented for the grass - based dairy and beef enterprises (see 

Table 6-18). 

Although increasing the ambient temperature extends the growing season, the 

herbage yield from the grass - based systems declined as temperature was elevated. 

This is a result of the net effect of elevated temperature on the processes of 

photosynthesis, respiration and transpiration. Nevertheless, at the beginning and end 

of the season, water stress is unlikely to occur. The effect of temperature on the 
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length of the grazing season will be determined by how herbage growth is affected. 

As the temperature was increased the difference between the length of the grazing 

and growing season was also increased, although this was more apparent for the 

grass - based systems than for those based on a mixed sward (see Table 7-4 and 

Table 7-5). It must be recognised that the start of the growing season is defined as 

when continuous growth commences. Hence, if the daily air temperature requirement 

is attained and then falls below the threshold, growth ceases and recommences when 

the temperature requirement has been re-attained for growth. Consequently, grazing 

can commence before the growing season has been recorded as commencing. This 

would indicate that the prime reason for the length of the grazing season to increase is 

the enhanced rate of photosynthesis that occurs with elevated temperatures. 

Nevertheless, as the increase in the length of the growing season declines as 

temperature elevation increases, the rate of dry-matter production approaches an 

asymptotic value. Consequently, the increase in herbage mass available for 

consumption, and thus the increase in the length of the grazing season, decrease with 

temperature elevation. 
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Table 7-4 The difference in the length of the growing and grazing seasons for the 

grass - based enterprises 

Enterprise Site Difference between length of growing and grazing 

season (days) 

aoe 1°C 2°C 3°C 

Dairy Auch 4 15 39 78 

Blyth -14 1 13 21 

Drum -11 -15 8 41 

Craib -13 3 12 50 

Wick -5 11 31 65 

Beef Auch -2 9 31 69 

Blyth -17 -4 7 14 

Drum -16 -19 2 32 

Craib -16 -1 7 43 

Wick -14 0 22 57 
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Table 7-5 The difference in the length of the growing and grazing seasons for the 

grass - white clover based enterprises 

Enterprise Site Difference between length of growing and grazing 

season (days) 

ooe 1°C re 3°C 

Dairy Auch -31 -22 -5 7 

Blyth -14 -5 10 20 

Drum -22 -26 -8 6 

Craib -28 -14 -2 11 

Wick -19 -6 14 33 

Beef Auch -35 -27 -10 1 

Blyth -18 -8 7 16 

Drum -26 -29 -12 2 

Craib -30 -16 -5 8 

Wick -28 -16 3 22 

7.6.3 Effect of Changing to a Global Warming Rainfall Pattern 

Changing the rainfall pattern to one associated with global warming had no effect on 

the date of turnout for any of the enterprises based on both pure grass and grass -

white clover swards. On the other hand, the date of yarding for both the dairy and 

beef enterprises in respect of both sward types was earlier in the season than under 

current rainfall patterns (see Table 6-14 and Table 6-16). However, at elevated CO2 
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concentrations changing to a global warming rainfall pattern resulted in the difference 

in the date of yarding between current and global warming rainfall patterns being 

larger than for current ambient concentrations of CO2, With respect to the dairy and 

beef grass - based systems, the length of the grazing season was reduced by the 

global warming rainfall pattern. Although the effects of changing the rainfall pattern on 

the length of the grazing season for grass - white clover based systems differed 

between sites, the general trend was a reduction (see Table 6-19). However, the 

length of the grazing season was increased at the Wick site. Nevertheless, the 

reductions varied between sites for both the dairy and beef enterprises. 

Armstrong (1996) also predicted a reduction in the length of the grazing season, 

although the climate change scenario was based on a 10% increase in winter rain and 

a 10% decrease in summer rainfall. However, since changing to a global warming 

rainfall pattern resulted in enhanced yields, the probable reason for the reduction in 

the length of the grazing season was due to the ground becoming waterlogged and 

hence the livestock being removed from the paddocks. 

7.6.4 Effect of Increasing the Ambient Concentration of CO2, Temperature and 

Changing to a Global Warming Rainfall Pattern 

There are some site differences in the response of the length of the grazing season to 

the changes in the climatic conditions for the both the grass and grass - white clover 

systems for both the dairy and beef enterprises. These are illustrated for the dairy 

enterprise in Table 7-6-Table 7-7. However, the general trend across sites for all the 

enterprise systems is that the rate of increase in the length of the grazing season with 

temperature is enhanced at elevated ambient concentrations of CO2, Similarly, the 
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reduction in the length of the grazing season with the global warming rainfall pattern is 

increased at augmented CO2 levels. With respect to the turnout date for the sheep 

enterprises, the general trend is that the temperature response is increased with 

elevated CO2 concentrations. The response for the grass - white clover based 

systems for all enterprises to changing the climate was greater than that for the grass 

- based systems (see Table 7-6-Table 7-7). 

Table 7-6 The length of the grazing season for the dairy herd based on a grass 

sward for each climate scenario 

Site Climate Length of Grazing Season (Days) 

O°C 1°C 2°C lOC 

Auch Ambient CO2 and current rainfall 175 181 176 171 

Ambient CO2 and global warming rainfall 174 181 176 171 

Elevated CO2 and current rainfall 184 194 191 191 

Elevated CO2 and global warming rainfall 180 191 190 191 

Blyth Ambient CO2 and current rainfall 165 170 169 173 

Ambient CO2 and global warming rainfall 165 170 170 173 

Elevated CO2 and current rainfall 170 178 180 188 

Elevated CO2 and global warming rainfall 168 177 178 181 

Craib Ambient CO2 and current rainfall 170 187 183 177 

Ambient CO2 and global warming rainfall 169 187 182 176 

Elevated CO2 and current rainfall 176 201 201 198 

Elevated CO2 and global warming rainfall 173 196 198 197 
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Table 7-6 Continued 

Site Climate Length of Grazing Season (Days) 

O"C 1°C 2"C 3°C 

Drum Ambient CO2 and current rainfall 177 180 182 173 

Ambient CO2 and global warming rainfall 175 177 181 179 

Elevated CO2 and current rainfall 183 188 195 195 

Elevated CO2 and global warming rainfall 179 183 193 192 

Wick Ambient CO2 and current rainfall 162 163 159 156 

Ambient CO2 and global warming rainfall 163 164 160 158 

Elevated CO2 and current rainfall 176 180 175 169 

Elevated CO2 and global warming rainfall 176 179 175 171 

331 



Table 7-7 The length of the grazing season for the dairy herd based on a grass -

white clover sward for each climate scenario 

Site Climate Length of Grazing Season (Days) 

Auch Ambient CO2 and current rainfall 181 188 190 194 

Ambient CO2 and global warming rainfall 178 187 190 195 

Elevated CO2 and current rainfall 190 202 203 212 

Elevated CO2 and global warming rainfall 183 195 199 207 

Blyth Ambient CO2 and current rainfall 164 174 176 186 

Ambient CO2 and global warming rainfall 164 173 175 181 

Elevated CO2 and current rainfall 170 179 187 198 

Elevated CO2 and global warming rainfall 168 178 184 189 

Craib Ambient CO2 and current rainfall 174 195 194 197 

Ambient CO2 and global warming rainfall 171 192 190 193 

Elevated CO2 and current rainfall 180 205 208 215 

Elevated CO2 and global warming rainfall 174 198 201 205 

Drum Ambient CO2 and current rainfall 179 185 189 195 

Ambient CO2 and global warming rainfall 176 181 187 191 

Elevated CO2 and current rainfall 185 190 199 207 

Elevated CO2 and global warming rainfall 181 185 196 198 
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Table 7-7 Continued 

Site Climate Length of Grazing Season (Days) 

O°C 1°C 2'lC 

Wick Ambient CO2 and current rainfall 165 168 166 

Ambient CO2 and global warming rainfall 166 169 168 

Elevated CO2 and current rainfall 177 186 185 

Elevated CO2 and global warming rainfall 179 186 186 

7.7 Hypothesis Six: The Effect of Global Warming on Livestock 

Production 

3°C 

164 

166 

185 

186 

As global warming has effects on the length of the grazing season and the yield of 

herbage from ungrazed swards, this hypothesis examines the knock-on effects of 

these changes on the saleable products from the livestock enterprises. It will also 

consider the consequence for the forage production per head that is produced for 

winter feeding of the stock, and changes in the proportion of paddocks harvested. 

This hypothesis will therefore discuss the effect of elevated CO2 levels, changes in 

temperature, changes in rainfall pattern and the changes associated with a global 

warming climate scenario on livestock production. 

7.7.1 Effect of Increasing the Ambient Concentration of CO2 

7.7.1.1 Forage Production and the Proportion of Paddocks Harvested 

At all stocking rates for all enterprises on both the grass and grass - white clover 

based systems increasing the concentration of CO2 in the atmosphere increased the 
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dry-matter yield of herbage per head (see Table 6-26 and Table 6-30). Thornley and 

Cannell (1997) also predicted that enhancing the CO2 concentration would increase 

the yield under a grazing simulation. However, with the exception of the beef 

enterprise grazing a pure grass sward, the magnitude of the response differed 

between sites (see Table 6-27 and Table 6-29). In respect of the difference in 

response between grass and grass - white clover swards, except for the dairy 

enterprise at Wick, the percentage increase in the harvested yield was higher for 

grass swards than for grass - white clover swards. Nevertheless, at the enhanced 

atmospheric concentrations of CO2 the response of the harvested yield per ewe on 

grass - white clover based systems declined as temperature increased (see Figure 6-

31). Increasing the ambient concentration of CO2 also had an enhancing effect on the 

proportion of white clover harvested per livestock unit from the mixed swards for the 

dairy and beef enterprises, although in both cases the change was less than 1 %. This 

effect was not apparent for the sheep system. 

The percentage of paddocks harvested increased with elevated CO2 concentration for 

all enterprises grazing the grass swards. Nevertheless, the magnitude of the 

response differed between sites for all enterprises (see Table 6-22). However, for the 

beef and sheep enterprises the rate of increase was reduced when the temperature 

was elevated by 2°C or 3°C, compared to a temperature elevation of 1°C (see Table 6-

23). On the other hand, the enhancement in the percentage of paddocks harvested 

decreased with stocking density for the beef and sheep enterprises (see Table 6-24). 

Equally, the percentage of paddocks harvested for the grass - white clover based 

systems increased with the elevated CO2, although the magnitude of the increase was 
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affected by the location of the site for the dairy and sheep enterprises. On the other 

hand, at elevated ambient CO2 concentrations, the rate of increase declined with 

increased temperature for the sheep enterprise (see Figure 6-25). 

These results indicate that the increase in the conserved herbage yield per livestock 

unit at the CO2 concentration associated with global warming is partly due to the 

increased yield per paddock as well as an increase in the number of paddocks 

available for taking conservation cuts. 

7.7.1.2 Livestock Production 

Although the total milk yield throughout the grazing season was increased with 

enhanced atmospheric CO2 conditions, both the direction and magnitude of the effect 

on the average daily milk yield were also influenced by the location of the site and the 

presumed temperature scenario (see Figure 6-33). In contrast, the daily milk yield 

from cows grazing a grass - white clover sward increased with elevated ambient 

concentrations of CO2 , Nevertheless, the increases in total milk yield ranged between 

4.7%-10.9% and 4.9%-10.3% for the grass and grass - white clover swards 

respectively, while the change in the daily milk yield for the grass and grass - white 

clover based systems tended to be less than ±2% and +1% respectively. The 

increase in the total milk yield is therefore partly due to the increase in daily milk yield, 

where it occurred, and partly to a consequence of the increased length of the grazing 

season. 

The daily gain in liveweight of the beef steers was elevated under enhanced CO2 

conditions. However, the rate of increase varied between sites for the grass - white 

clover systems (see Table 6-33), and the enhancement with temperature was also 
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greater at elevated concentrations of CO2 (see Figure 6-37). On the other hand, the 

rate of enhancement with elevated CO2 increased with stocking density (see Table 6-

34). This increased gain in liveweight occurred as a result of the enhanced forage 

production that took place on ungrazed swards. Accordingly, the enhancement in 

forage production resulted in increased rates of intake and consequently liveweight 

gain. There was a tendency for the percentage of white clover in the harvested 

material from grazed swards to increase with elevated CO2 conditions, although the 

rate of enhancement declined with temperature. It is therefore likely the proportion of 

white clover in the grazed swards was affected in a similar manner. As white clover 

has a higher nutritive value than grass (Thomson, 1984), the increased percentage of 

white clover in the sward is likely to result in this pattern of liveweight change for grass 

- white clover swards. 

As for the sheep systems, increasing the ambient concentration of CO2 increased the 

rate of daily liveweight gain of the lambs grazing both the grass and grass - white 

clover systems (see Table 6-35). In contrast, with the exception of the lowest stocking 

density on the grass - based system, increasing the CO2 concentration tended to 

decrease the liveweight of the ewe (see Figure 6-41). However, on the grass - white 

clover system the ewe liveweight increased with elevated CO2 concentrations, 

although the magnitude varied with site (see Table 6-37). As the percentage of white 

clover in the harvested material from the sheep system was not affected by CO2 

concentrations, the increased ewe liveweight and daily liveweight gain of the lambs 

was probably due to the enhanced yield of grazed herbage. Although this was not 

measured, the harvested yield was observed to increase (see Table 6-29). 
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Nevertheless, although the harvested yield from the grass sward was increased (see 

Table 6-26), this did not result in increased ewe liveweights, although the lamb 

liveweight gain was enhanced. 

7.7.2 Effect of Increasing the Temperature 

7.7.2.1 Forage Production and the Proportion of Paddocks Harvested 

The response of harvestable yield per unit of livestock to elevating the ambient 

temperature differed between the grass and the grass - white clover swards, and also 

differed between sites. In general, on the grass - based systems increasing the 

ambient temperature reduced the harvestable yield (see Figure 6-27). Thornley and 

Cannell (1997) also predicted the decline in yield with elevated temperatures for a 

grazed sward. Nevertheless, although increasing the temperature reduced the total 

harvestable yield from the ungrazed grass swards, elevating the ambient temperature 

by 1°C at the Drummond Castle site increased the dry-matter yield per livestock unit. 

Similarly, for the same temperature scenario, the yield was also increased at that site 

for the grass - white clover swards, although the total yield from ungrazed swards was 

enhanced at all locations with elevated temperatures. On the other hand, at current 

concentrations of CO2, increasing the temperature had little effect on the harvestable 

yield per ewe from the grass - white clover swards, but at enhanced concentrations 

the temperature had the effect of reducing the augmentation of yield (see Figure 6-

31). 

The effect of elevating the ambient temperature on the percentage of white clover in 

the material harvested per livestock unit was similar to that for the ungrazed swards. 

Accordingly, the general trend was for elevated temperatures to increase the 
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percentage of white clover, although reductions in the percentage occurred for a 1°C 

increase in temperature at some locations. 

For the dairy, beef and sheep enterprises on the grass - based system, increasing the 

temperature reduced the percentage of paddocks harvested. The rate of decrease 

tended to decline as temperature was increased (see Figure 6-21). However, the 

magnitude of the response differed between sites for all enterprises. On the other 

hand, the reduction with temperature was increased at elevated CO2 concentrations 

for the beef and sheep enterprises (see Table 6-23). With respect to the sheep 

enterprise, as the stocking density increased the reduction per degree increase in 

temperature was increased. In contrast, the percentage of paddocks harvested from 

the grass - white clover swards tended to increase for the dairy and sheep 

enterprises, although the pattern and the magnitude for each temperature rise differed 

between sites (see Figure 6-23). Nevertheless, at current concentrations of CO2 the 

change per degree increase in temperature was approximately linear for the sheep 

enterprise, although the rate declined at the higher concentrations of CO2 (see Figure 

6-25). However, the general trend for the beef enterprise was a reduction (see Figure 

6-24). In contrast to grass swards, the rate of increase per degree increase in 

temperature declined as the ewe stocking density increased. 

Consequently, the reduction in the herbage yield per livestock unit for the grass -

based systems (see Figure 6-27) may be caused by two factors. The first, and the 

more significant effect, is the reduction in dry-matter yield from grass swards that 

occurs when the temperature is elevated (see Figure 6-5). Secondly, the number of 

paddocks harvested was reduced by enhanced temperatures (see Figure 6-21). This 
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resulted in a further reduction in the harvestable yield per livestock unit. Similarly, the 

herbage yield per livestock unit obtained on grass - white clover swards was the result 

of both changes in the harvested material obtained from ungrazed swards and in the 

percentage of paddocks harvested. Nevertheless, augmenting the temperature 

tended to increase the total dry-matter yield from ungrazed grass - white clover 

swards (see Figure 6-6). The general tendency was for enhanced temperature to 

increase the percentage of paddocks harvested for the dairy and sheep enterprises 

(see Figure 6-23). Nevertheless, this was not the case for the beef enterprise (see 

Figure 6-24). Consequently, the general trend for the dairy and sheep enterprises 

was for the dry-matter yield per livestock unit to increase (see Figure 6-28 and Figure 

6-30). On the other hand, the reduction in the percentage of paddocks harvested for 

the beef enterprise tended to result in a decline in the herbage yield per head (see 

Figure 6-29). However, the response varied between sites. 

7.7.2.2 Livestock Production 

In general the rate of enhancement in the daily milk yield declined as temperature 

increased for both the grass and grass - white clover based systems (see Figure 6-33 

and Figure 6-34) and a similar pattern was also evident for the total milk yield. 

However, in some locations the daily milk yield declined with some of the temperature 

scenarios, even though this did not necessarily result in a decline in total milk yield. 

Milk yield has been reported to increase as the temperature is elevated to 15°C-

20°C, although this effect does not occur when the daily rainfall is greater than 5 mm 

per day (D'Hour and Coulon, 1994). 
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In the model, the effect of increasing the ambient temperature resulted in the 

liveweight gain of the beef steers increasing, although the effect varied between sites 

for both sward types (see Figure 6-35 and Figure 6-36). However, at some localities, 

the magnitude of the response differed between the grass and the grass - white 

clover systems. In general, the rate of the change declined with temperature. 

Nevertheless, for the grass - white clover systems this tended only to occur at 

augmented CO2 levels (see Figure 6-37). 

The response of the liveweight gain of lambs for both sward types was similar to that 

which occurred for the beef system (see Figure 6-38 and Figure 6-39). However, the 

response of the weight gain in lambs to temperature did not alter with the ambient 

concentration of the CO2 , Similarly, temperature enhanced the ewe liveweight at the 

end of the season (see Figure 6-40 and Figure 6-43). On pure grass swards the 

percentage enhancement in the ewe liveweight increased with stocking density (see 

Figure 6-42). However, the increase in the liveweight of the ewes and lambs with 

temperature was not associated with increased harvestable yields per head from the 

grass - based system. On the other hand, the yield harvested from the grass - white 

clover system did tend to increase with elevated temperatures and therefore the 

growth rate on the pastures utilised for grazing may have also been enhanced (see 

Figure 6-30). Similarly, the percentage of white clover in the harvested material also 

tended to increase with elevated temperatures. Hence the nutritive value of the dry 

matter consumed would have been increased and this would have led to higher 

liveweight gains. 
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7.7.3 Effect of Changing to a Global Warming Rainfall Pattern 

7.7.3.1 Forage Production and the Proportion of Paddocks Harvested 

Under a global warming rainfall pattern, the herbage yield per unit of livestock was 

increased. Nevertheless, the percentage increase in yield was greater for the grass -

white clover sward than for the grass sward for both the dairy and beef enterprises. In 

contrast, this was not the case for the sheep enterprise. With respect to the grass -

based systems, the sheep enterprise experienced the greatest increase, while the 

beef enterprise had the smallest response. On the other hand, the greatest increase 

occurred for the dairy system, while the sheep enterprise showed the smallest 

response for grass - white clover based systems. This pattern of response was also 

observed for the percentage of paddocks harvested. 

In general changing to a global warming rainfall pattern resulted in the percentage of 

paddocks harvested increasing. Except for the dairy enterprise based on the grass 

system, this trend was repeated for all enterprises on both sward types. Nevertheless, 

the effect was most pronounced for increases in the ewe stocking density on the grass 

- white clover swards. The global warming rainfall pattern resulted in a higher dry­

matter yield from both grass and grass - white clover ungrazed swards, and the 

percentage of paddocks harvested tended to increase under grazing. Accordingly, 

these two factors are probably the cause of the enhanced yield per unit of livestock 

that occurs under a global warming rainfall pattern. 

7.7.3.2 Livestock Production 

The daily milk yield for both the grass and grass - white clover swards increased when 

the rainfall was changed from the current pattern to one associated with global 
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warming. Nevertheless, the magnitudes of the changes were small at 0.51 % and 

1.12% for the grass and the grass - white clover swards respectively. 

There was generally a tendency for the liveweight for steers to increase when the 

rainfall pattern was altered to one associated with global warming as the daily gain in 

liveweight was increased by 0.79% and 1.45% for the grass and mixed forage 

systems respectively. However, the rate of increase was elevated at enhanced CO2 

concentrations. The comparable increases under a changed rainfall pattern on the 

change in liveweight gain for the lambs were 1.07% and 2.17%, although CO2 

concentration had no effect in this case. In contrast, the ewe liveweight for the grass -

based system was not influenced by the rainfall pattern, although the effect for the 

grass - white clover systems was an increase of 0.52%. In all cases, the 

enhancement in liveweight was coupled with an increase in the harvested yield per 

head and thus the growth rate on the grazed paddocks was probably augmented, 

which resulted in an increased dry-matter intake. Added to this, for grass - white 

clover swards, is the increase in the percentage of white clover, with a higher nutritive 

value, when the rainfall pattern was changed to one associated with global warming. 

7.7.4 Effect of Increasing the Ambient Concentration of CO2, Temperature and 

Changing to a Global Warming Rainfall Pattern 

7.7.4.1 Forage Production and the Proportion of Paddocks Harvested 

The production of herbage per livestock unit increases as CO2 is elevated on both the 

grass and grass - white clover based systems. Similarly, changing to a global 

warming rainfall pattern also increases the dry-matter yield, albeit a smaller increase. 

These findings are illustrated for the dairy enterprise in Table 7-8. The model 
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predictions of Hanson et al. (1993) and Baker et al. (1993) also predicted that the 

climate scenarios associated with the GFDL, GISS and UKMO Global Circulation 

Models would enhance the standing green biomass in the United States. The general 

effect of temperature on the herbage yield per unit of livestock for the grass - based 

systems declined with temperature elevation (see Table 7-8), although it must be 

recognised that at some sites under certain temperature scenarios the yield increased 

with temperature. However, the general trend was contrary to the results of Thornley 

and Cannell (1997), who predicted that the rate of decrease in yield would increase as 

the temperature increased. In contrast, the herbage yield per dairy cow and per ewe 

on grass - white clover swards generally tended to increase, although the variations 

between sites was greater than on pure grass swards. Similarly, the herbage yield for 

the beef system was dependent on the location of the site. 

The major effects of global warming on the percentage of white clover in the harvested 

material are that elevating the temperature and changing to the rainfall pattern 

associated with global warming results in an enhancement of the white clover 

percentage for all enterprises. Nevertheless, the increase in temperature has a larger 

influence than changing the rainfall pattern. In contrast, increasing the ambient 

concentration of CO2 has little effect on the composition of the harvested material. 

However, the rate of enhancement with temperature varies between the enterprises 

(see Table 7-9). 
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Table 7-8 The dry-matter yield of herbage per dairy cow for each sward type for 

each climate scenario 

Sward type Climate Herbage Mass (t OM ha-1) 

O°C 1°C 2°C 3°C 

Grass Ambient CO2 and current rainfall 1.35 1.25 1.19 1.12 

Ambient CO2 and global warming rainfall 1.43 1.32 1.26 1.19 

Elevated CO2 and current rainfall 1.91 1.77 1.68 1.61 

Elevated CO2 and global warming rainfall 2.03 1.89 1.79 1.70 

Grass - white clover Ambient CO2 and current rainfall 1.29 1.29 1.34 1.36 

Ambient CO2 and global warming rainfall 1.39 1.39 1.44 1.46 

Elevated CO2 and current rainfall 1.82 1.83 1.88 1.90 

Elevated CO2 and global warming rainfall 1.94 1.95 2.01 2.05 
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Table 7-9 The percentage of white clover in the harvested material for al/ 

enterprises for each climate scenario 

Enterprise Climate Percentage white clover 

O°C 1°C 2°C 3°C 

Dairy Ambient CO2 and current rainfall 11 12 12 13 

Ambient CO2 and global warming rainfall 11 12 13 14 

Elevated CO2 and current rainfall 17 18 21 23 

Elevated CO2 and global warming rainfall 18 19 22 24 

Beef Ambient CO2 and current rainfall 12 13 13 14 

Ambient CO2 and global warming rainfall 12 13 13 14 

Elevated CO2 and current rainfall 18 20 23 25 

Elevated CO2 and global warming rainfall 19 21 24 26 

Sheep Ambient CO2 and current rainfall 17 19 25 31 

Ambient CO2 and global warming rainfall 19 21 27 34 

Elevated CO2 and current rainfall 17 19 26 32 

Elevated CO2 and global warming rainfall 19 20 26 34 

The percentage of paddocks harvested under the grazing for the global warming 

scenario was primarily influenced by the ambient concentration of CO2• although 

changing the rainfall pattern also increased the percentages. However, in general, as 

the temperature increased the rate of response declined, although the direction of 

change differed at the five sites. 
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7.7.4.2 Livestock Production 

Global warming and the associated changes in climate and ambient concentrations of 

CO2 tend to result in small, but increasing changes to the daily milk yield. This 

contradicts the predictions of Klinedinst, Wilhite, Hahn and Hubbard (1993) who 

predicted that milk yield would decline across the United States with the climatic 

changes associated with the scenarios described by the GISS, GFDL and UKMO 

Global Circulation Models. Nevertheless, their predictions suggest that the decline in 

Europe would be of a smaller magnitude. Although the predictions of milk production 

from Hanson's et al. (1993) model for the GISS and UKMO scenarios also predicted a 

decline in milk yield, the results for the GFDL scenario predicted an enhancement 

during months two to six of the simulation. As the length of the grazing season is also 

increased with global warming, this tends to result in a greater rise in the total milk 

yield obtained during the grazing period than for the daily milk yield. 

The general trend was for the rainfall and CO2 effects of global warming to increase 

the liveweight of the dairy cows, although the CO2 changes resulted in larger 

increases than changes to the rainfall pattern associated with global warming. 

Similarly, this pattern of effects also occurred for the beef and sheep enterprises. 

Baker et al. (1993) also provided evidence of global warming increasing animal 

production in the northern latitudes, although their model predictions were for 

rangeland situations in the United States. On the other hand, although the predictions 

of Hanson et al. (1993) suggested that global warming would increase forage 

production, the daily gain in the liveweight of mature cows was predicted to decline. 

However, elevating the temperature reduced the liveweight of the cows, although 

enhancing the ambient concentration of CO2 more than compensated for the effects of 
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increasing the ambient temperature. In contrast, elevating the ambient temperature 

for the grass - white clover based beef system enhanced the daily liveweight gain, 

although the direction and magnitude of the effect for the grass - based system was 

dependent on the site, rainfall pattern and ambient concentration of CO2. On the other 

hand, increased temperature tended to increase the lamb liveweight gain and the ewe 

liveweight for both the grass and the grass - white clover based systems. 

7.8 Hypothesis Seven: The Differential Increase in the Response of 

the Grass and the Grass - White Clover Swards 

This hypothesis was concerned with whether there was a differential response of 

grass and grass - white clover swards to global warming. The rate of enhancement of 

the total dry-matter yield from grass - white clover swards was greater than for grass 

swards when the temperature was elevated and the rainfall pattern was changed to 

one associated with global warming (see Table 6-5, Table 6-6, Figure 6-5 and Figure 

6-6). In terms of herbage yield per head of livestock, for the dairy and sheep 

enterprises the yield declined from the grass swards, whereas the yield from grass -

white clover swards increased with elevated temperatures. Although the yield per 

steer declined for both systems, the reduction was less for the grass - white clover 

system. Except for the sheep enterprise, which revealed no difference, changing the 

rainfall had a larger percentage effect on the herbage yield per head from the mixed 

swards than from the pure grass system. However, in general, increasing the 

concentration of CO2 resulted in the grass - based system having larger percentage 

increases in yield. With respect to the milk yields and the liveweight gains, the grass -
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white clover system tended to respond more strongly to increases in temperature, 

rainfall pattern and ambient concentration of CO2. 

7.9 Hypothesis Eight: The Effect of the Location of the Site 

The issue here is whether the effects of climate change varied across the five sites. 

As the daily weather conditions averaged over the year across the five locations are 

fairly similar (see Table 7-10), it might be presumed that the results would not be 

affected by location. However, the general trends of the results indicate that there are 

differences in the response for both herbage and livestock production factors. Indeed, 

the effects of elevating the ambient concentration of the CO2 and· increasing the 

ambient temperature were dependent on the locality of the site. It is therefore 

concluded that the location of the site is an important factor in determining the 

response of livestock production in Scotland to the changes in CO2 concentration and 

the associated changes in climate. The seasonal distribution of temperature, rainfall 

and sunshine hours may be partly responsible for these differences. 

Table 7-10 The average daily climate at the five sites 

Site Temperature Rain Sunshine 

(OC) (mm) (h) 

Auchincruive 8.7 2.8 3.5 

Blyth Bridge 7.0 2.5 3.1 

Craibstone 7.5 2.4 3.7 

Drummond Castle 7.6 3.5 3.6 

Wick 7.4 2.3 3.2 
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7.10 The Advantages of Developing A Systems Model 

Climate change is recognised to impact on forage production. As changes in grass 

production and availability of forage impact on the production potential of livestock, 

climate change will also modify the levels of livestock production. To assess this 

impact it is necessary to understand the linkages between climate change and 

livestock production. Accordingly, the development of the systems model has made it 

possible to assess the effects of global warming across a wide range of climatic and 

CO2 changes. The interaction effects that occur between temperature, rainfall and 

ambient concentrations of CO2 on livestock and forage production can also be 

evaluated. In addition, using a model has permitted the assessment to be made at a 

number of different sites and for the dairy, beef and sheep enterprises. Consequently, 

comparisons between sites and enterprises can be made. The effects vary not only 

between sites and enterprises but also between different levels of changes in climate. 

Thus, the model has highlighted the dangers of extrapolating from either an empirical 

model developed for specific conditions or an experimental site to a different location, 

which has slightly different base climatic conditions. 

7.11 Further Developments Required 

There are several weaknesses in the model and therefore scope for future 

developments to be made. First, the model assumes that grass and white clover 

respond in the same manner to enhanced levels of CO2. Consequently, the increase 

in the percentage of white clover in the harvested material from the ungrazed swards 

does not increase. This is a situation that contradicts the results of Clark et al. (1997), 

Stewart and Potvin (1996), Campbell et al. (1995), Newton et al. (1995) and Newton et 
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at. (1994), who tend to predict increases in the percentage of white clover in the sward 

with enhanced CO2, Nevertheless, as the percentage of white clover in the grazed 

mixed swards did increase under the simulations, the increase would probably be 

enhanced if the different responses of grass and white clover to elevated CO2 were 

included. 

Second, the interaction between the nitrogen in the sward and the level of 

photosynthesis is not included. This is because the nitrogen uptake by the herbage is 

not described in the model. Nevertheless, the nitrogen in the sward can have knock­

on affects on how the grass and grass - white clover swards respond to the changes 

in climate and CO2 concentrations. In order to incorporate the effect of nitrogen on 

photosynthesis and herbage production in the model, a sub-model describing the 

nitrogen flows within the soil would be required. This is because the soil processes 

determine the quantity of nitrogen available for plant growth. This would have the 

added benefit of permitting the environmental effects of nitrogen in livestock systems 

to be studied. Thirdly, the description of the transfer of nitrogen from the white clover 

component to the grass component is weak, due to the paucity of data describing this 

function. If further data describing this relationship became available this linkage 

within the model could be improved. 

Fourth, the processes of tillering in grass and stolon development in white clover are 

not described in the model. The model also assumes that the switch over dates from 

vegetative to reproductive growth are not dependent on temperature and are not 

affected by the ambient concentration of CO2, On the other hand, the results of Luo, 

Chen, Reynolds, Field and Mooney (1997) reveal that the extent to which grassland 
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growth is stimulated by elevated CO2 is dependent on the extent to which the 

physiological processes of plant growth are influenced by the enhanced CO2, As the 

effect of elevated CO2 on the physiology and morphology of the plant to elevated CO2 

varies with species and environmental conditions (Bazzaz, 1990, Field, Chapin, 

Matson and Mooney, 1992), the effect of elevated CO2 on forage production and 

hence livestock production may vary from the model predictions. Consequently, it 

would be an advantage to incorporate the effects of CO2 and temperature on the 

morphology of the sward. The morphology of the sward also has implications for 

livestock production as the tiller density in the spring is known to have knock-on 

effects on milk production later in the season (Dowdeswell and Fisher, 1992). 

Fifth, the effect of the nitrogen concentration of the herbage on livestock production is 

not included in the model. The first step to incorporating these effects would be the 

inclusion of a sub-model describing the nitrogen flows within the soil and plant. 

Nevertheless, an additional sub-model describing the effects of nitrogen on animal 

production would be required. Sixth, the grazing action of the dairy, beef and sheep 

are described by the same function, although the mouth action of cattle and sheep 

differ (G. Fisher, personal communication). Consequently, the model could be 

improved by incorporating equations that describe the mouth action for each livestock 

type. Seventh, further data on the selection of leaf and stem as well as grass and 

white clover are required to improve the simulation of grazing. Eighth, the model 

could be extended to cover the winter feeding period so that the effect of global 

warming on livestock throughout the year could be assessed. Finally, it would be 

beneficial if an economic component could be added to the model in order to assess 
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for example the difference between the economic benefits accruing to the different 

livestock types. 

7.12 Advancement to Know/edge 

Although the model requires expansion, its development has permitted the effect of 

global warming on livestock production to be assessed for grass and grass - white 

clover swards. Consequently, the model describes the effects of temperature and 

CO2 concentration on plant growth. The model also describes the effect of water and 

nutrient stress on plant development and thus the consequences of changes in plant 

stress on livestock production. In the grass - white clover sward a major 

advancement has been made as the model permits the sward to have different 

proportions of grass and white clover at each layer through the sward. Nonetheless, 

the mOdel assumes that the sward is horizontally homogenous. The model has also 

advanced the state of knowledge by assuming that the livestock can preferentially 

select from grass - white clover swards. The development of the model has also 

identified areas where knowledge of forage growth and the interaction between the 

grazing animal and the sward require further research and data collection. This would 

result in an improvement in the understanding of livestock systems. 

7.13 Conclusions 

In conclusion, although climate change is predicted to increase forage and livestock 

production in Scotland, the effects were dependent on the actual level of the changes 

in temperature. Indeed, the magnitude and, in some cases, the directions of the 

changes were influenced by the location of the site. There were also interactions 
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between CO2 concentration and both temperature and rainfall, as well as an 

interaction between temperature and rainfall. Consequently, extrapolating results from 

other sites, and to other levels of the temperature, rainfall and CO2 may not give a true 

indication of how forage and livestock production actually reacts. There are also 

indications that the modelled responses of grazed and ungrazed swards have different 

reactions to climate change, and indeed there were also differences in the responses 

of the dairy, beef and sheep enterprises. Nevertheless, the general trends of the three 

livestock systems were similar. Within the context of current environmental concerns 

the greater enhancement of grass - white clover swards may result in farmers 

switching from grass to mixed sward production and thus reduce fertiliser nitrogen 

use. Similarly with enhanced yields and longer grazing season the requirement for 

concentrates may be reduced. 

Although there are several areas within the model that could be improved with existing 

knowledge and data, it must be recognised that some of the potential improvements 

would require further experimental work and data collection. The creation of a model 

that is capable of simulating non-homogenous vertically distributed grass - white 

clover swards has added to the knowledge base. Another addition to the knowledge 

of the modelling of forage production has been the incorporation of stress effects. In 

addition the model permits the effect of changes in climate on livestock production 

across Scotland to be assessed. 
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