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Summary 
 
A million copies of short interspersed nuclear elements (SINEs) comprise 11% of 

the human genome, but despite this abundance, they are expressed at a very 

low level. Alu elements are estimated to harbour 33% of CpG sites in the human 

genome and DNA methylation of these sites is believed to silence their 

transcription. However, this study shows the presence of RNA polymerase III (Pol 

III) transcription machinery on methylated SINEs alongside methylated DNA-

binding proteins. Methylation of A- and B-block elements on the Pol III promoter 

is unable to inhibit Pol III loading at SINEs. Loss of DNA methylation in DNA 

methyl transferase1-null fibroblasts or following 5-azacytidine treatment neither 

changes expression levels nor the occupancy of the Pol III machinery on SINEs. 

H3K9-trimethylation, along with SUV39H1 and associated heterochromatin 

protein 1 (HP1), is found to be enriched at SINEs. Treatment with chaetocin, a 

SUV39H1 H3K9-methyltransferase inhibitor, elevates Pol III loading and 

expression of SINEs. Thus, H3K9 methylation, and not DNA methylation, is 

responsible for SINE transcriptional inhibition. 

This suggests an alternative role for DNA methylation on these repetitive 

sequences. Homologous recombination events between Alu elements are 

implicated in several human diseases, including some cancers. Reduction in DNA 

methylation causes a two-fold increase in the rate of Alu-driven inter-

chromosomal translocation events. Hence, DNA methylation serves not to inhibit 

transcription of SINEs but instead it plays a role in inhibiting homologous 

recombination between these elements. 

Chromatin can pose a physical barrier to transcription by limiting polymerase 

accessibility to DNA. Studies showing effects of chromatin modifications caused 

by c-MYC and of remodeling by various complexes, clearly highlight the 

significance of chromatin in the regulation of Pol III transcription. Recently 

published ChIP-sequencing data also indicate that tRNA genes may be subject to 

the same chromatin-mediated transcriptional control as is seen for Pol II-

transcribed genes. SWI/SNF is an evolutionarily conserved ATP-dependent 

chromatin remodeling complex. SNF5, a core SWI/SNF subunit, is a bona fide 

tumour suppressor and is commonly lost or mutated in malignant rhabdoid 

tumours. 
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SNF5, along with SWI/SNF ATP-hydrolysis subunits, BRG1 and BRM, is found to 

occupy Pol III-transcribed loci. SNF5 knockdown or a BRG1/BRM dual-knockdown 

leads to a significant increase in tRNA expression. However, a corresponding 

increase in Pol III transcription apparatus occupancy at tRNA genes is not 

observed. c-Myc null rat fibroblasts have elevated levels of SWI/SNF enrichment 

at tRNA genes compared to c-Myc wild-type cells, suggesting that Pol III 

induction by c-MYC evicts the SWI/SNF complex.  Thus, SWI/SNF chromatin 

remodeling complex represses Pol III transcription and this repression may have 

to be overcome in order to increase Pol III transcriptional output. SWI/SNF 

subunits are lost and Pol III transcription is elevated in many human cancers, 

suggesting that these findings may be of clinical significance. 

The mechanistic details of this repression are still unclear. SWI/SNF subunits co-

immunoprecipitate with TFIIIC subunits, suggesting that Pol III transcriptional 

machinery is responsible for its recruitment. However, SWI/SNF occupancy at 

tRNA genes is highly correlated with Pol III enrichment, indicating that the mode 

of repression is not through inhibition of polymerase loading. SNF5 knockdown 

leads to higher levels of Pol III enrichment downstream of a tRNA locus. Thus, 

SWI/SNF may spatially limit the area available to Pol III transcriptional apparatus 

and, therefore, inhibit transcriptional elongation, termination or facilitated 

recycling. 
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Chapter 1 Introduction 
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1.1 Transcription by RNA polymerase III 

The central dogma of molecular biology was first articulated by Francis Crick, 

where he described how the hereditary DNA information within a cell is 

recognised by RNA polymerases and transcribed into complementary RNA 

molecules. These RNA molecules are further recognised by the cellular apparatus 

that translates them to produce proteins. Thus the transcription of DNA to RNA 

is an essential part of the central dogma (Crick, 1970). In eukaryotes, the task of 

transcribing nuclear genes is divided between three highly-related enzymes, RNA 

polymerase I, II and III (hereon referred to as Pol I, Pol II and Pol III) (Roeder and 

Rutter, 1969). Derivatives of Pol II that transcribe short interfering RNAs (Pol IV) 

or of noncoding RNAs (Pol V) have also been identified in Arabidopsis (Ream et 

al., 2009). An RNA polymerase of the mitochondrial origin, named snRNAP-IV, 

has also been found to transcribe mRNA of certain mammalian protein coding 

genes in the nucleus (Kravchenko et al., 2005). 

Each of the three classical RNA polymerases is devoted to the transcription of 

specific genes. Pol I distinctively transcribes only one type of gene, the large 

tandemly repeated, ribosomal RNA (rRNA) genes. The untranslated RNA products 

of Pol I transcription are essential components of the cellular translation 

apparatus [reviewed in (McStay and Grummt, 2008; Russell and Zomerdijk, 

2006)]. Pol II transcribes genes encoding messenger RNAs (mRNAs) that are used 

as templates for protein synthesis. Pol II is also responsible for transcription of 

most small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs) and micro 

RNAs [reviewed in (Baumann et al., 2010)]. The genes transcribed by Pol III are 

classified as class III genes. These encode a diverse group of small untranslated 

RNAs that are involved in various cellular processes like transcription, RNA 

splicing and translation. Pol III-transcribed genes include the 5S rRNA and tRNA 

genes (White, 2001).  

Gene transcription is subject to a high degree of regulation that allows the cell 

to constantly adjust its RNA and protein content in response to environmental 

changes and metabolic requirements (White, 2001). Pol III-transcribed RNAs are 

important contributors to cellular protein synthesis and are thus considered 

crucial for the regulation of cell growth and proliferation. The deregulation of 
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Pol III transcription is observed in human diseases like cancer and is, therefore, 

an area of active research (White, 2004). 

1.1.1 Class III genes 

With 17 subunits, Pol III is the largest eukaryotic nuclear RNA polymerase, and is 

responsible for 10% of all nuclear transcription. Pol III transcription gives rise to 

small untranslated RNAs, which are usually shorter than 400nt in length (White, 

2002). Some of the Pol III-transcribed RNAs are described below. 

1.1.1.1 5S ribosomal RNA (rRNA) 

Eukaryotic ribosomes are composed of two unequal subunits, which are made up 

of four RNA molecules (28S, 5.8S, 5S and 18S) and approximately 80 protein 

subunits. The four rRNAs are required in equal stoichiometry, one molecule of 

each per ribosome (Phillips and McConkey, 1976). 5S rRNA is produced by Pol III, 

whereas the other rRNAs are transcribed by Pol I. 5S rRNA is approximately 120nt 

long and is found associated with the large ribosomal subunit. Eukaryotes 

contain multiple copies of the 5S rRNA genes, for example the human genome 

contains 200 to 300 5S genes, many of which are found arranged in tandem 

arrays (Lander et al., 2001). 

1.1.1.2 Transfer RNAs (tRNAs) 

Transfer RNAs are 70-90nt long adaptor molecules, which facilitate the 

translation of mRNA molecules. Each tRNA recognises a specific three nucleotide 

codon on the mRNA and translates that codon to a specific amino acid (Crick, 

1968). Pol III transcribes pre-tRNA molecules which, when processed, adopt an L-

shaped secondary structure. The 3' end of the tRNA comprises the amino acid 

attachment region, whereas the opposite end contains a three nucleotide 

anticodon that recognises and binds to the appropriate triplet codon on the 

mRNA (Hopper and Phizicky, 2003). There are 506 tRNA genes and 110 predicted 

pseudogenes annotated in the hg19 human genome database (Chan and Lowe, 

2009). Different tRNAs recognising the same amino acid but varying triplet 

codons are termed ‘isoacceptors’ and each isoacceptor group is named after the 

amino acid it recognises. The distribution of tRNA genes is mainly random 
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throughout the genome; however some clustering is observed (Lander et al., 

2001). 

1.1.1.3  U6 small nuclear RNA (snRNA) 

Small nuclear riboproteins (snRNPs) are structurally-related RNA-protein 

complexes found within eukaryotic nuclei. U6 snRNA, together with the Pol II-

transcribed U1, U2, U4 and U5 snRNAs, is an essential part of the most abundant 

snRNP called the spliceosome. This multisubunit ribonucleoprotein is essential 

for pre-mRNA splicing. There are multiple copies of U6 snRNA genes in the 

human genome, which show a high degree of evolutionary conservation 

(Valadkhan, 2005). 

1.1.1.4 7SL RNA and short interspersed nuclear elements  

The 7SL RNA forms the structural backbone of the signal recognition particle 

(SRP) and provides the scaffold for its six protein components. SRP is responsible 

for the transport of nascent polypeptide chains to the endoplasmic reticulum. In 

eukaryotes, 7SL RNA contains a small Alu domain and a large S-domain, which 

are separated by a long linker region (Batey et al., 2000). The Alu domain, which 

binds SRP9/14, retards the ribosomal elongation of the peptide before its 

association with the endoplasmic reticulum. The S-domain binds the signal 

peptide and targets it to the ER membrane-bound SRP receptor (Mason et al., 

2000). The 7SL RNA is ~300nt long and is highly conserved through evolution. 

Some SINEs are 7SL derived repeat elements found within mammalian genomes 

and will be discussed in section 1.5. 

1.1.1.5 Other class III genes encoding ribonucleoprotein components 

Various ribonucleoproteins (RNPs) contain Pol III-transcribed RNAs as their RNA 

components, for example 7SK, H1 and mitochondrial RNA processing (MRP) RNA. 

7SK is an abundant 330nt long Pol III-transcribed RNA that has only been 

identified in vertebrates to date. 7SK functions as a negative regulator of Pol II 

transcription by binding to the elongation factor P-TEFb and repressing the 

phosphorylation of Pol II CTD (Yang et al., 2001). H1 RNA is a component of 

RNase P endoribonuclease that processes the 5' termini of pre-tRNAs 
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(Bartkiewicz et al., 1989), whereas the structurally related MRP RNase is mainly 

involved in pre-RNA processing (Gold et al., 1989).  

Thus, RNA Pol III transcribes multiple RNA species, which together contribute to 

the regulation of global protein synthesis. In addition to the above mentioned 

RNAs, Pol III is also found to transcribe less well known RNAs such as vault RNAs 

(van Zon et al., 2003), Y RNAs (Deutscher et al., 1988) and the neural specific 

BC1/BC200 RNAs (Cao et al., 2006). Pol III transcription is also involved in 

production of various viral RNAs such as the adenoviral VA and Epstein-Barr viral 

EBER RNAs (Rosa et al., 1981). The size of the Pol III transcriptome has expanded 

considerably in recent years and it now also includes snoRNAs, microRNAs, stem-

bulge RNAs and other unclassified non-coding RNAs (Dieci et al., 2007). 

1.1.2 Class III gene promoters and assembly of the transcription 
complex 

The selective transcription of genes by Pol I, Pol II and Pol III is dictated by the 

identification of distinct promoters by their specific transcription factors.  

1.1.2.1 Class III gene promoters 

The majority of class III gene promoters comprise of regulatory elements that 

are within the transcribed region, downstream of the transcription start site 

(TSS). These promoter elements, known as internal control regions (ICRs), were 

identified by mutation analysis in yeast and are found to be present as 

discontinuous conserved sequences separated by non-essential regions (Koski et 

al., 1980; Kurjan and Hall, 1982). Three different types of promoters are 

identified by Pol III transcription apparatus, type I and type II promoters that are 

found within the gene, and type III promoters that are located entirely upstream 

of the TSS [reviewed in (Schramm and Hernandez, 2002)](See Figure 1.1). 

Type I promoters are unique to 5S rRNA genes and consist of three internal 

elements; an A-block (+50 to +64), an intermediate element (+67 to +72) and a 

C-block (+80 to +92). These promoter sequences are highly conserved between 

different species and mutations within the A- and C-block sequences are 

detrimental to transcription (Pieler et al., 1985). A change in the spacing 
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between these elements also leads to diminished transcription (Pieler et al., 

1987).  

 

Figure 1.1 Schematic diagram of general types of Pol III-transcribed promoters 
The TSS is indicated by +1 and the site of transcription termination is indicated by Tn. The 
approximate positions of various promoter elements are depicted including the intermediate 
element (IE), proximal sequence element (PSE) and distal sequence element (DSE). The known 
consensus sequences for A-block and B-block elements are also shown (Galli et al., 1981) 
[adapted from (Schramm and Hernandez, 2002)] 

 

The most common Pol III promoters are found within tRNA genes and are termed 

type II promoters. This promoter class consists of two highly conserved A-block 

and B-block sequences that are separated by a variable distance. Interblock 

separation of ~30 to 60bp is thought to be optimal for transcription, however a 

distance as great as 365bp can be tolerated (Baker et al., 1987; Fabrizio et al., 

1987). The A-block sequences of the type I and II promoters are homologous, but 

in the latter case they are much closer to the TSS (Ciliberto et al., 1983). 

In contrast to type I and II promoters, type III promoters are external and lie 

upstream of the transcribed region. The best characterised type III promoter 

belongs to the human U6 gene where the regulatory sequences include a TATA 

box (-30 to -25), a proximal sequence element (PSE, -66 to -47) and a distal 
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sequence element (DSE, -244 to -214) (Das et al., 1988). The U6 PSE and DSE are 

homologous and interchangeable with elements found upstream of the Pol II-

transcribed U2 gene. Surprisingly, it is the presence of the TATA box (generally a 

feature of Pol II-transcribed genes) that defines U6 as a Pol III-transcribed locus 

(Lobo and Hernandez, 1989). Other genes containing type III promoters include 

the 7SK RNA, H1 RNA and MRP RNA genes (White, 2002). 

Some promoters recognised by the Pol III machinery cannot be classified as any 

of the conventional promoter types. For instance, the EBER2 gene requires all 

the elements of a type II promoter as well as those of a type III promoter for its 

transcription by Pol III (Howe and Shu, 1989). The optimal transcription of the 

7SL gene requires the internal A- and B-box elements alongside a 37bp sequence 

found upstream of the TSS (Ullu and Weiner, 1985).  

1.1.2.2 Preinitiation complex formation 

Transcription by an RNA polymerase is preceded by the formation of a 

preinitiation complex (PIC). Different Pol III promoter types require a different 

cocktail of transcription factors for PIC formation [reviewed in (Schramm and 

Hernandez, 2002) and (White, 2002)]. The core transcription apparatus required 

for Pol III transcription is conserved from yeast to mammals, however certain 

transcription factor subunits in mammals have diverged considerably from their 

yeast counterparts (Huang and Maraia, 2001). The PIC formation of various 

promoter types is discussed below and depicted in Figure 1.2. 

Type II promoters found at tRNA genes require a large multi-subunit 

transcription factor complex called TFIIIC. Human TFIIIC, with an aggregate mass 

of more than 500kDa (Geiduschek and Kassavetis, 2001), comprises of TFIIIC220, 

TFIIIC110, TFIIIC102, TFIIIC90, TFIIIC63 subunits (Kovelman and Roeder, 1992; 

Yoshinaga et al., 1989) and the recently identified TFIIIC35 subunit (Dumay-

Odelot et al., 2007). The primary binding affinity of TFIIIC to the Pol III promoter 

is determined by the binding of TFIIIC220 to the B-block element. However, this 

alone is not sufficient for the recruitment of TFIIIC, which also requires IIIC220 

to interact with TFIIIC110 (Shen et al., 1996; Yoshinaga et al., 1987).  
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TFIIIC63 recognises the A-block sequence and contributes to the recruitment of 

TFIIIC (Hsieh et al., 1999b), however the B-block binding is the major 

determinant of promoter efficiency (Baker et al., 1986). TFIIIC90 forms a 

flexible linker between the two TFIIIC sub-complexes (TFIIIC63/102 and 

TFIIIC110/220) and forms what appears as a dumbbell shaped transcription 

factor under the electron microscope (Schultz et al., 1989). This structure and 

the flexible central linker allow the recruitment of TFIIIC to promoters with 

variable distances between the A- and B-blocks. On promoters with large inter-

block separation, the intervening DNA can be looped out to allow TFIIIC binding 

(Baker et al., 1987). Six TFIIIC subunits have been identified in yeast and five of 

them were found to be conserved in humans. The human homologue to the sixth 

yeast TFIIIC subunit, TFIIIC35, has been recently identified. Even though TFIIIC35 

shows considerable sequence divergence from its yeast conterpart (Tfc7), the 

interactions with other TFIIIC subunits are conserved from yeast to man. TFIIIC35 

is found to interact with TFIIIC63 and, to a lesser extent, with TFIIIC90 in vitro. 

TFIIIC35 also localises within active transcription complexes (Dumay-Odelot et 

al., 2007). 

Once recruited, TFIIIC further recruits another transcription factor TFIIIB, which 

comprises of the TATA-binding protein (TBP), TFIIB-related factor 1 (BRF1) and B 

double prime 1 (Bdp1) (Schramm and Hernandez, 2002). BRF1 forms a stable 

complex with TBP (Kassavetis et al., 1991; Khoo et al., 1994), whereas Bdp1 

interacts very weakly with this complex in the absence of a DNA template (Huet 

et al., 1994). An N-terminal TFIIB-like domain of BRF1 interacts with TBP, 

although the primary binding site was recognised to lie within the C-terminal 

part of BRF1 (Khoo et al., 1994). In addition, BRF1 is also found to interact with 

TFIIIC102 (Kassavetis et al., 1992b), which is thought to be the primary point of 

contact of TFIIIB and TFIIIC (Schramm and Hernandez, 2002). Further 

interactions of BRF1 with TFIIIC63 and TFIIIC90, alongside the binding of TBP to 

TFIIIC63 and TFIIIC102 contribute to the recruitment of TFIIIB to the TFIIIC-bound 

promoters (Hsieh et al., 1999a; Hsieh et al., 1999b).  

The recruitment of TFIIIB is followed by the recruitment of Pol III via protein-

protein interactions. TBP and BRF1 interact with multiple Pol III subunits and 

these interactions are crucial for the recruitment of the polymerase. The role of 

Bdp1 in the recruitment of Pol III is less defined, however it contains a SANT 
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domain which is essential for TFIIIC-dependent, but not for TFIIIC-independent 

Pol III transcription on type III promoters (Schramm et al., 2000). Moreover, 

TFIIIC subunits are also capable of interacting with the polymerase, which 

contributes to the polymerase recruitment and stabilises the PIC (Schramm and 

Hernandez, 2002).  

 

Figure 1.2: Transcription complex assembly on class III gene promoters 
The promoter elements are recognised by the transcription factors shown associated with them. All 
TFIIIC subunits are depicted in blue, TFIIIB subunits in green and Pol III subunits in yellow. [Figue 
adapted from (Dumay-Odelot et al., 2010)) 

 

5S rRNA genes lack the B-block sequence and, therefore, cannot be recognised 

by TFIIIC. TFIIIC recruitment on type I promoters is dependent on a 40kDa 

adapter transcription factor called TFIIIA, which was the first transcription 

factor to be purified to homogeneity (Engelke et al., 1980). This single 

polypeptide contains nine zinc finger domains which bind to the A-block, IE and 
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the C-block promoter elements (Miller et al., 1985). Similar to B-block binding 

by TFIIIC on type II promoters, the C-block binding by TFIIIA on type I promoters 

determines the overall binding affinity (Hanas et al., 1983). It is not completely 

clear how TFIIIC binds TFIIIA, but together they form a complex that recruits 

TFIIIB and consequently Pol III to the 5S rRNA gene promoters (Bieker et al., 

1985). 

The PIC formation at type III promoters requires a different set of transcription 

factors. The PSE is identified by snRNA activator protein complex (SNAPc) and 

the TATA box is recognised by TBP (Schramm et al., 2000). Both SNAPc and TBP 

can bind weakly to these promoter elements; however co-operative binding 

greatly enhances their promoter affinity (Mittal and Hernandez, 1997). TBP 

bound to the TATA box is found within an alternative form of TFIIIB that contains 

BRF2 instead of BRF1 (Schramm et al., 2000). The DSE is recognised by Oct-1, 

which also binds and promotes SNAPc promoter occupancy, thereby stimulating 

transcription (Mittal et al., 1996). However, Oct-1 is not essential for basal in 

vitro transcription (Hu et al., 2003). Given the distance between the two 

elements, a positioned nucleosome may be required to juxtapose PSE and DSE in 

order to facilitate Oct-1 and SNAPc interaction (Stunkel et al., 1997). The PIC 

formation is completed by the recruitment of Pol III to the promoter by SNAPc 

and TFIIIB (Schramm and Hernandez, 2002). 

1.1.3 Pol III: transcription initiation, elongation and termination 

With an aggregate mass of 600-700 kDa, Pol III is the largest eukaryotic RNA 

polymerase. Pol III consists of 17 subunits in humans and yeast, all of which are 

found to be essential for its function and for cell viability (Geiduschek and 

Kassavetis, 2001). Five of the subunits are shared by all three classical RNA 

polymerases, whereas an additional two are shared between Pol I and Pol III. 

Ten of the seventeen subunits are unique to Pol III (Breant et al., 1983; Buhler 

et al., 1980). The Pol III-specific subunits are thought to be responsible for its 

nuclear localisation and binding specificity for Pol III-specific transcription 

factors, as well as for its elongation and termination properties. 

Following the successful formation of PIC, the DNA at the transcription initiation 

site is melted by Pol III, forming a transcription bubble. TFIIIB is responsible for 



 

11 

correctly positioning the polymerase at the TSS (Kassavetis et al., 1990). 

Moreover, mutations of specific domains in BRF1 and Bdp1 can impair the 

transcription initiation, even though the polymerase recruitment is unaffected. 

This suggests that TFIIIB may also be involved in transcription bubble formation. 

The presence of A/T rich sequences found around the TSS is thought to promote 

the formation of the transcription bubble, due to the lower thermodynamic 

stability of A:T bonds (Kassavetis et al., 1992a). The recruitment of Pol III and 

the formation of the transcription bubble are the rate-limiting steps for Pol III 

transcription, whereas the synthesis of an initial 17bp transcript takes mere 

seconds (White, 2002). 

Once transcription is initiated, the 14bp long transcription bubble moves along 

the gene as transcription proceeds. Pol III dissociates from TFIIIB without a 

considerable delay in elongation (Kassavetis et al., 1992a). Moreover, the 

presence of TFIIIC does not seem to significantly delay the progress of Pol III 

either. It is presently unclear how Pol III passes through DNA that is bound by 

TFIIIC; however some experiments propose the transient dissociation of TFIIIC to 

allow the polymerase to pass (Bardeleben et al., 1994). Unlike the other 

polymerases, Pol III does not require specific elongation factors, possibly due to 

the small size of the Pol III-transcribed genes (White, 2002). Pol III transcription 

proceeds until it reaches a stretch of four thymidine residues, where the 

transcription terminates (Galli et al., 1981). It has been proposed that the La 

autoantigen and NF1 polypeptides are required for efficient termination of Pol III 

transcription (Maraia, 2001). 

Once transcription is terminated, Pol III does not dissociate from the template, 

but is recycled to the TSS. The repeat rounds of transcription by the recycled 

polymerase occur much more rapidly than the initial round (Dieci and Sentenac, 

1996). The La protein is also thought to promote polymerase recycling (Maraia et 

al., 1994). Thus once assembled, the Pol III transcription complexes can produce 

multiple transcripts with remarkable efficiency due to polymerase recycling. 

1.1.4 Regulation of Pol III transcription 

The synthesis of rRNA (including 5S rRNA) is an important step in ribosome 

production and consequently protein translation. Moreover, the cellular tRNA 
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levels also affect the rate of protein translation. Thus, Pol III transcriptional 

products are vital for cellular protein synthesis and, thus, cell growth. 

Therefore, Pol III transcription within a cell is subject to tight regulation (White, 

2002).  

The first evidence for the regulation of Pol III transcription in eukaryotic cells 

came from the 5S rRNA genes in Xenopus oocytes. 5S rRNA is highly expressed in 

the oocyte, whereas its expression is greatly diminished following oogenesis. The 

Xenopus laevis genome contains 21300 copies of oocyte-specific 5S rRNA genes 

and 400 copies of somatic 5S rRNA genes. The oocyte genes are only expressed 

during oogenesis, whereas the somatic genes are expressed both before and 

after oogenesis. This differential regulation of these two gene types is in part 

due to their different affinities to TFIIIA. Following oogenesis, a considerable 

drop in the TFIIIA protein levels is observed, and the limited amount of TFIIIA 

binds the high affinity somatic 5S genes (Ginsberg et al., 1984; White, 2002). 

Initial studies also found Pol III transcription to be regulated by various viral 

proteins including the adenoviral E1A protein (Berger and Folk, 1985) and the 

SV40 small τ antigen (Loeken et al., 1988). 

The regulation of Pol III transcription is now known to occur in three primary 

ways: i) changes in transcription factor availability (Figure 1.3a), ii) post-

translational modification (primarily phosphorylation) of transcription factors 

(Figure 1.3b), and iii) regulation by chromatin. The first two modes of regulation 

are discussed briefly below, whereas the third mode of regulation is discussed in 

chapter 6. 

1.1.4.1 Changes in transcription factor levels 

The first example for this mode of transcriptional regulation was obtained from 

studies investigating the E1A viral protein. The infection of cells by E1A was 

found to upregulate the cellular TFIIIC110 protein levels and cause increased Pol 

III transcription (Sinn et al., 1995). The hepatitis B virus X protein was also 

shown to upregulate Pol III transcription by causing an increase in TBP protein 

levels (Wang et al., 1995). Cell lines transformed by either SV40 or Py were 

shown to overexpress Bdp1, whereas the human papillomavirus 16 was found to 
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cause elevated BRF1 levels in cervical carcinomas (Daly et al., 2005; Felton-

Edkins and White, 2002; Larminie et al., 1999).  

JNK1 and JNK2 can modulate the levels of ELK1 occupancy on BRF1 and TBP 

promoters, thereby inducing or suppressing their expression respectively. The 

levels of Bdp1 respond similarly to JNK1 and JNK2 protein levels due to 

alterations in TBP occupancy at the Bdp1 gene promoter. Thus JNKs regulate Pol 

III transcription by altering the levels of all three TFIIIB subunits (Zhong and 

Johnson, 2009).  c-MYC is also seen to bind E-boxes within the BRF1 gene 

promoter and upregulate its expression levels (Unpublished Data, Lynne 

Marshall). Thus, multiple proteins are capable of elevating levels of Pol III TFs 

and thereby induce Pol III transcription. 

The levels of Pol III transcription can also be limited by reducing the availability 

of its TFs. Rb and p53 proteins were found to target BRF1 and TBP respectively, 

and sequester them away from the transcription complexes, thereby reducing 

Pol III transcriptional output (Crighton et al., 2003; Larminie et al., 1997). Rb-

family proteins p107 and p130 have been shown to have similar properties 

(Sutcliffe et al., 1999). Recently, BRCA1 has been shown to cause reduced BRF1 

and BRF2 proteins levels and repress Pol III transcription, however it still remains 

to be resolved whether this is a direct or indirect effect (Veras et al., 2009).  

1.1.4.2 Post translational modification of transcription factors 

Over the past decade Pol III transcriptional regulation has been shown to be a 

battle ground for kinases. Both activating and inhibitory phosphorylation events 

on Pol III transcription factors contribute to determining the overall 

transcriptional output of Pol III. CK2 (Johnston et al., 2002) and ERK (Felton-

Edkins et al., 2003a) can directly interact with and phosphorylate BRF1, thereby 

facilitating its recruitment to promoters. Contrary to this, the phosphorylation 

of BRF1 by cyclin-dependent kinases (Cdks) can lead to transcriptional inhibition. 

Cdc2-cyclin B kinase was found to be sufficient for repressing transcription from 

Xenopus 5S rRNA genes (Gottesfeld et al., 1994).  BRF1 was also shown to be 

hyperphosphorylated by kinases other than cdc2-cyclin B during mitosis, which 

leads to dissociation of Bdp1 from the gene promoters and subsequent repression 

of transcription (Fairley et al., 2003). Recent findings attribute this mitotic 



 

14 

repression of Pol III transcription to Polo-like kinase 1 (Plk1) [(Fairley et al., 

2011), submitted]. 

Maf1 is a target for multiple signalling cascades including the PI3K/AKT, TORC1 

and PP2A pathways. Maf1 was found to associate with Pol III-transcribed genes 

and interacts with TFIIIC, TFIIIB and Pol III. Repression by MAF1 leads to reduced 

PIC formation at Pol III transcribed promoters (Desai et al., 2005; Goodfellow et 

al., 2008). However, phosphorylated Maf1 is unable to repress Pol III 

transcription, which makes Pol III transcription sensitive to Maf1 phosphorylation 

by TORC1 or PKA and dephosphorylation by PP2A (Kantidakis et al., 2010; Moir et 

al., 2006; Oficjalska-Pham et al., 2006). The regulation of Pol III transcription by 

all these phosphorylation events makes it highly sensitive to the metabolic state 

of the cell.    
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Figure 1.3: Schematic for the regulation of Pol III transcription 
a) Mechanisms that influence cellular transcription factor availability. b) Kinases and 
phosphorylation events that influence Pol III transcriptional output. The arrows do not indicate 
direct protein-protein interactions.      indicates a phosphorylation event. P 
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1.1.5 Pol III and cancer 

It is clear that the control of Pol III transcription is of vital importance for the 

correct regulation of cell growth and metabolism. Therefore, in order to 

upregulate its growth and proliferation, a cell must elevate the Pol III 

transcriptional output. Indeed, many studies have reported the overexpression 

of Pol III-transcribed RNAs in various tumour types [reviewed in (White, 2004; 

White, 2008)]. The levels of various Pol III transcription factors are also found to 

be upregulated in multiple cancers (White, 2004). TFIIIC is overexpressed in 

ovarian carcinomas (Winter et al., 2000), whereas BRF2 is found to be 

overexpressed in human breast, bladder and lung cancers (Lockwood et al., 

2010; Melchor et al., 2007). Recent analysis of tissue microarrays has found 

elevated levels of BRF1 in prostate tumours (Noor Nam, unpublished data).  

Thus, elevated Pol III transcription seems to be a feature of tumours; however 

this may simply be the outcome of deregulation of multiple oncoproteins and 

tumour suppressors. The question whether elevated Pol III transcription could 

cause cancer was answered recently by Marshall et al, where the authors 

demonstrate that a modest increase in BRF1 protein levels and a consequent 

increase in Pol III transcriptional output is sufficient for oncogenic 

transformation. Surprisingly, a small increase in initiator tRNA (tRNAi
Met) was 

sufficient to reproduce these effects. An increase in c-MYC and cyclin D1 protein 

translation was observed as a result of elevated Pol III transcription. It is still 

unclear whether the observed oncogenic effects of BRF1 and tRNAi
Met are 

dependent on upregulation of c-MYC and cyclin D1 (Marshall et al., 2008). But it 

is clear that an elevation in Pol III transcriptional output can cause cellular 

transformation. 

1.1.6 Recent insights 

Recently, multiple studies have analysed Pol III and its transcriptional targets by 

ChIP-sequencing (Barski et al., 2010; Canella et al., 2010; Moqtaderi et al., 

2010; Oler et al., 2010; Raha et al., 2010). These have revealed many aspects of 

Pol III transcription that were previously unknown and have shed light on the 

complexity of its regulation in mammalian cells (White, 2011). The first 

unexpected finding was the presence of Pol II 200bp upstream of Pol III-bound 
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loci, which in most cases does not correspond to the presence of a Pol II 

transcription unit (Barski et al., 2010; Oler et al., 2010; Raha et al., 2010). Basal 

Pol II transcription factors, such as TFIIB, are also present (Barski et al., 2010). It 

is not known what brings Pol II to these loci; however one can hypothesise that it 

may be the common transcription factor TBP or common transcriptional 

regulators like Myc, which are found to be associated with both Pol II and Pol III 

transcription complexes. Further biochemical and genetic analyses are required 

in order to understand if Pol II-enrichment at Pol III-transcribed loci is of 

functional relevance. It was also observed that active tRNA genes, i.e. those 

highly enriched for Pol III, often reside within or close to annotated Pol II 

promoters (Moqtaderi et al., 2010; Oler et al., 2010). This may reflect a 

preference for the open chromatin environment associated with Pol II genes.  

Another unexpected finding was the presence of TFIIIC on its own at multiple 

intergenic loci (Moqtaderi et al., 2010; Oler et al., 2010). These loci were first 

identified in yeast and were named ETC (extra TFIIIC) loci (Moqtaderi and Struhl, 

2004). ETC loci are often found near binding sites for the CCCTC-binding factor 

(CTCF) and, thus, may have a role in genome organisation. ETC sites are also 

often found in intergenic sequences between evenly spaced, but divergently 

transcribed Pol II genes (Moqtaderi et al., 2010). Since TFIIIC-binding sites have 

been shown to have barrier or insulator activities, these ETC sites may serve a 

similar purpose and regulate the differential transcription of neighbouring genes 

(Simms et al., 2008; Valenzuela et al., 2009). 

The ChIP-seq data also show remarkable differences in Pol III-loading at tRNA 

genes between different cell lines. Despite having similar promoters and using 

the same core transcription apparatus, 26% of tRNA loci showed cell-type 

specific differences in Pol III occupancy (Barski et al., 2010). However, recent 

ChIP-seq. analysis in 6 different species has revealed that despite differences at 

individual tRNA genes, the additive Pol III-loading at all tRNA genes coding for a 

particular isotype is highly conserved (Kutter et al., 2011). These data suggest 

that the regulation of Pol III transcription is not as simple as it has been thought 

to be. 



 

18 

1.2 Chromatin 

The average diameter of the human nucleus is only about 5 microns and 2 

metres of DNA has to be contained within this small space. This is achieved by 

wrapping 146bp of the negatively charged DNA around an octamer of positively 

charged histone proteins. This forms the basic monomer of the chromatin, a 

nucleosome. These monomers are held together by linker DNA to form the 

classic ‘beads on a string’ conformation as viewed by X-ray crystallography 

(Thoma et al., 1979). Linker histone (H1/H5) binding organises a further 20bp of 

DNA into the nucleosome and also defines the geometry of the DNA entering and 

exiting the nucleosome. The angles of entry and exit further organise the 

nucleosomes into a 30-nm fibre which is then tethered onto an axial scaffold 

protein core to form higher order structures (Moser and Swedlow, 2011). 

Depending on the extent of chromatin compaction, the eukaryotic genome can 

be categorised into two distinct environments. The regions with relatively 

relaxed environment which permit gene transcription are classed as 

‘euchromatin’. In contrast, the more tightly packaged non-permissive regions 

with inactive genes are classed as ‘heterochromatin’ (Kouzarides, 2007). 

The nucleosome core comprises of dimers of core histone proteins H2A, H2B, H3 

and H4. These histone proteins have highly basic N-terminal tails which protrude 

from the core nucleosome and can make contacts with the nearby nucleosomes 

and other proteins. Histone tails are known to be targets of post-translational 

modifications such as acetylation, phosphorylation, ubiquitilation, methylation, 

deamination, ADP ribosylation, ß-N-acetylglucosamination, sumoylation and 

proline isomerisation. These histone tail modifications can directly influence the 

structure of the chromatin by altering the binding affinity of the nucleosome to 

the DNA. Moreover, they also act as signals for the recruitment of effector 

protein complexes (Bannister and Kouzarides, 2011). Only the post-translational 

histone modifications considered during this study will be discussed in detail. 

1.2.1 Histone Acetylation 

Histone acetylation is the characteristic euchromatic mark and, since its 

discovery, is almost invariably associated with transcriptional activation (Allfrey 

et al., 1964). Acetylation reduces the overall positive charge of histones, thus 
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reducing the affinity of the nucleosome to the negatively charged DNA. This in 

turn enables easier access by transcription factors to their target sequences. 

Acetylation occurs at numerous lysine residues on histone tails, including H3K9, 

H3K14, H3K18, H4K5, H4K8 and H4K12. Multiple lysine residues can get 

acetylated at the same time giving rise to hyper-acetylated regions of the 

genome. The genomic histone acetylation levels are highly dynamic and are 

regulated by opposing activity of the histone acetyl-transferases (HATs) and 

histone deacetylases (HDACs) (Kouzarides, 2007).  

HATs catalyse the transfer of the acetyl group from acetyl-CoA to an amino 

group in the lysine side chain. HATs can be divided into three main families 

based on their acetyltransferase domains, GNAT superfamily (Gcn5-related N-

acetyltransferase), MYST family (named for its founding members MOZ, 

Ybf2/Sas3, Sas2, and Tip60) and p300/CBP (CREB-binding protein) family 

(Sterner and Berger, 2000). In addition, multiple other proteins including (Hsieh 

et al., 1999a) and circadian rhythm protein CLOCK (Doi et al., 2006) have been 

shown to have HAT activity. To complicate the picture, HATs have also been 

shown to acetylate numerous non-histone proteins (Lee and Workman, 2007).  

HATs are found to exist as multisubunit complexes in yeast, like the SAGA (spt-

Ada-Gcn5) complex, the ADA complex (contains Ada but none of the other SAGA 

subunits), the NuA4 and the NuA3 complexes. The primary HAT complexes in 

humans are the GCN5/PCAF complex and Tip60 complex (Sterner and Berger, 

2000). Other human HAT complexes like STAGA and TFTC have also been 

identified. The unique individual subunit compositions of these complexes define 

their targeting and specific acetylation activity. For example, the SAGA complex 

preferentially acetylates H3K9 and to a lesser extent H3K14, whereas the NuA3 

complex prefers to acetylate H3K14. The Elongator complex (another GNAT 

family complex in yeast) prefers to acetylate H3K9, just like the SAGA complex. 

But unlike SAGA, which is targeted to gene promoters, the Elongator is targeted 

to gene bodies. The targeting of HAT complexes to active genes is also mediated 

by transcriptional regulators like c-MYC and TRRAP (Lee and Workman, 2007). 

Lysine acetylation is recognised by proteins containing a recognition domain 

called a bromodomain. For example, Pol II transcription factor TFIID subunit1 

contains a bromodomain, thus directly linking histone acetylation to 

transcriptional activation. Certain HATs themselves contain bromodomains and 
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this maintains their occupancy at acetylated regions of the genome (Kouzarides, 

2007). 

Counteracting the activity of the HAT complexes, are the HDAC complexes which 

deacetylate histone tail lysines and repress transcription. Four different classes 

of HDACs have been identified: Class I (containing scRpd3 histone deacetylase-

like proteins including HDAC1 and HDAC2), class II (containing scHda1 histone 

deacetylase-like proteins), class III (are homologous to scSir2 and referred to as 

Sirtuins) and class IV (with only one member HDAC11). Sertuins are different 

from the other classes because they require NAD+ as a cofactor (Cress and Seto, 

2000). HDACs recognise an acetylated aminoalkyl group and catalyse the removal 

of the acetyl group by cleaving an amide bond (Leipe and Landsman, 1997). 

HDACs on their own show little substrate specificity, but their presence within 

co-repressor complexes like NuRD, Sin3a or Co-REST provides specificity to their 

activity. HDAC-containing complexes can be recruited by DNA-binding proteins 

such as MBDs and p53 (Cress and Seto, 2000). 

1.2.2 Histone methylation 

Histones can be methylated at lysine and arginine residues. Unlike lysine 

acetylation, its methylation does not alter the charge of the residue, but 

changes its hydrophobic and steric properties. Lysines can be mono-, di- or tri- 

methylated depending on the functional properties of the histone lysine 

methyltransferase (HKMT) responsible. Each histone can be methylated at 

multiple sites and, depending on the location of the methylation, this has a 

positive or negative influence on transcription. In general, H3K4, H3K36 and 

H3K79 methylation are associated with transcriptionally active chromatin, 

whereas H3K9, H3K27 and H3K20 methylation marks inactive chromatin 

(Upadhyay and Cheng, 2011). 

The majority of HKMTs, contain a highly conserved, 130 amino acid SET domain 

that uses S-adenosylmethionine (Adomet) as a methyl donor. HKMT are relatively 

specific with respect to the lysine side chain they can methylate and how many 

methyl moieties they can place upon that particular side chain. Well-studied 

human HKMTs include SUV39H1, G9a, SETDB1 (H3K9 methylases), EZH2 (H3K27 

methylase), MLL1-5, SET1A, SET1B (H3K4 methylases), SET2, NSD1 (H3K36 
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methylases), SpSet9, SUV420H1, SUV420H2 (H3K20 methylases) and DOT1 (H3K79 

methylase) (Kouzarides, 2007).  

Depending on its position, histone lysine methylation is recognised by specific 

proteins. For example, Heterochromatin Protein 1 (HP1) chromodomain 

recognises H3K9 methylation and promotes the formation of repressive 

chromatin (Bannister et al., 2001). On the other hand, H3K4 methylation is 

recognised by bromodomain-PHD-transcription-factors (Li et al., 2006), CHD1 (an 

ATP-dependent chromatin remodelling enzyme) (Sims et al., 2005), as well as 

HAT complexes (Saksouk et al., 2009), thus associating this modification with 

active chromatin. H3K27 methylation is recognised by the polycomb group 

proteins (PCG), which are known to be global epigenetic transcriptional 

repressors. PRC1 (Polycomb Repressive Complex 1), once recruited in a H3K27-

dependent or -independent manner, can in turn interact with EZH2 and 

propagate this repressive mark further (Margueron et al., 2009). Thus, the 

overall effect of a histone lysine methylation mark is defined by the effector 

proteins it recruits. 

Histone methylation was considered to be an irreversible modification until the 

discovery of lysine-specific demethylase 1 (LSD1) (Shi et al., 2004). Multiple 

members of the jumonji C (jmjC)-domain-family, like JHDM1, JHDM2, JHDM3 and 

JMJD2 have also been shown to have histone demethylase activity. LSD1 and 

jmjC enzymes also demonstrate a level of substrate-specificity, where LSD1 

primarily demethylates H3K4, JHDM1 demethylates H3K36, whereas JHDM2 and 

JHDM3 demethylate H3K9 and H3K36 residues (Kouzarides, 2007). 

1.2.3 Chromatin remodelers 

In addition to the effects of post-translational histone modification, the 

chromatin fibre is also actively reorganised by ATP-dependent remodelling 

complexes. The hydrolysis of ATP to ADP provides the energy required to move a 

nucleosome along the DNA in cis or completely reposition the nucleosome in 

trans. Thus chromatin remodelers make DNA/chromatin available to proteins 

that need to access DNA or histones directly for their function. Moreover, 

chromatin remodelling can also lead to nucleosome positioning and make 

specific regions of the DNA inaccessible (Hargreaves and Crabtree, 2011). 
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1.3 SWI/SNF chromatin remodelling complex 

A screen for sucrose non-fermenting (SNF) yeast mutants identified the first 

components of the SWI/SNF complex, which were later characterised as 

chromatin remodelling proteins (Carlson et al., 1984). The SWI genes were later 

identified from mutants defective in mating type switching (Peterson and 

Herskowitz, 1992). Strains containing mutations in histone H2A and H2B failed to 

show the effects of SNF gene deletions. Moreover, swi2/snf2 and snf5 mutants 

showed altered sensitivity of the suc2 gene to nuclease digestion, suggesting 

that these proteins altered the nucleosome occupancy at their target loci 

(Hirschhorn et al., 1992). 

Brahma (BRM) was identified as an activator of homeotic genes in Drosophila and 

was found to be a homolog of the yeast swi2/snf2 gene (Tamkun et al., 1992). 

BRG1 was identified by a cDNA screen as the human BRM homolog and was later 

found to be involved in regulation of murine Hox genes (Khavari et al., 1993; 

Randazzo et al., 1994). INI1 (integrase interactor 1), the human homolog of 

yeast snf5, was first identified in a yeast two hybrid screen as a binding partner 

of human immunodeficiency virus-type 1 (HIV1) integrase (Kalpana et al., 1994).  

Swi2/snf2, a highly conserved member of the SWI/SNF family, was found to 

exhibit DNA-stimulated ATPase activity. Mutations in the nucleoside-binding site 

impaired snf2 activity, indicating that ATP hydrolysis by snf2 was necessary for 

transcriptional activation by SWI/SNF (Laurent et al., 1993). Purified yeast 

SWI/SNF complex was shown to exhibit ATPase activity, which was required to 

drive transcription from a nucleosomal GAL4 template (Cote et al., 1994). 

Partially-purified human homolog of the yeast SWI/SNF complex was also shown 

to mediate ATP-dependent nucleosome disruption and the binding of 

transcription factors to nucleosomal templates (Kwon et al., 1994). Thus, it was 

proposed that the primary role of the SWI/SNF complex was to promote 

transcriptional activation via nucleosomal eviction driven by ATP hydrolysis. 

Microarray data analysis on snf2Δ or swi1Δ yeast strains revealed that 5% of yeast 

genes are regulated by the SWI/SNF complex. Moreover, the data also 

demonstrated that SWI/SNF represses more genes than it activates (Sudarsanam 

et al., 2000). Microarray data from SNF5 null mouse embryonic fibroblasts (MEFs) 
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also suggested a repressive role of SWI/SNF complex. The number of genes 

repressed by SWI/SNF is three-fold higher than the number of activated genes 

(Isakoff et al., 2005). Deletion of BRG1 in mouse ES cells followed by 

transcription analysis also revealed that BRG1 represses most of its direct targets 

(Ho et al., 2009a). Thus, despite its original identification as a transcriptional 

activator, a genome-wide repressive role is now attributed to the SWI/SNF 

chromatin remodelling complex. 

A novel 15-subunit complex with the capacity to remodel the structure of 

chromatin (RSC) was later identified in yeast. The Sth1, Rsc6 and Rsc8 

components of RSC were found to be significantly similar to the swi2/snf2, 

Swp73 and Swi3p components of the SWI/SNF complex respectively. It was 

observed that unlike the SWI/SNF complex, RSC is abundant in a yeast cell and is 

essential for cell viability (Cairns et al., 1996). Sth1 was later recognised as the 

ATPase essential for RSC activity (Du et al., 1998). The human homolog of the 

yeast RSC, the SWI/SNF-B complex, was termed the PBAF complex, since it 

contains a unique factor called BAF180 that shows homology to the chicken 

polybromo gene (Xue et al., 2000). RSC has been shown to have roles in DNA 

repair, sister chromatid cohesion, chromosome segregation and ploidy 

maintenance (Hargreaves and Crabtree, 2011).  

1.3.1 Composition of the SWI/SNF complex 

Purified yeast SWI/SNF complex, with an estimated molecular mass of ~1MDa, 

was shown to be composed of 10 subunits including swi1, swi2/swi2, swi3, snf5 

and snf6 (Cote et al., 1994; Smith et al., 2003). However, its mammalian 

counterpart is twice as large in size and shows considerable heterogeneity in its 

subunit composition between different cell lines and tissues (Wang et al., 1996a; 

Wang et al., 1996b). Mammalian SWI/SNF complex normally consists of 9-12 

subunits. Only four of these, called the core subunits, are required for 

remodelling activity in vitro. Reconstitution experiments showed that BRG1 or 

BRM can promote nucleosome remodelling independently in vitro. However, the 

addition of BRM-associated factors, BAF155 and BAF170, along with SNF5 (also 

known as BAF47) increases this basal activity to levels similar to that of 

immunoprecipitated SWI/SNF complexes (Phelan et al., 1999).  
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An individual SWI/SNF complex can only contain one of the two ATPases, such 

that BRM/BAF complexes are structurally distinct from BRG1/BAF complexes 

(Wang et al., 1996a; Wang et al., 1996b). The functional differences between 

these two complex types are still unclear and are an area of active investigation. 

A subset of SWI/SNF subunits, including BRG1 and BRM, can also be found as part 

of alternative chromatin remodelling complexes, such as the WINAC nucleosome 

assembly complex, the nucleosomal methylation activated complex (NUMAC) and 

the nuclear receptor corepressor-1 (NCoR-1) complex [for review see (Trotter 

and Archer, 2008)] 

SNF5 is present in all the SWI/SNF complex variants and is thought to be 

essential for SWI/SNF function. SNF5 contains a highly-conserved central 

functional domain, which comprises of acidic repeat sequences. Mutations within 

this functional domain were found to influence the complex assembly step or the 

post-recruitment catalytic remodelling step (Geng et al., 2001). The mechanistic 

role of SNF5 in the remodelling step is still unclear, but it may be required for 

binding of SWI/SNF to a nucleosome (Dechassa et al., 2008). Homozygous loss of 

SNF5 has been shown to cause preimplantation embryonic lethality in mice 

(Guidi et al., 2001). Core subunits, BAF155 and BAF170, are thought to provide 

the protein scaffold that is important for complex assembly (Tang et al., 2010). 

In yeast, inactivation of any single subunit leads to dissolution and subsequent 

inactivation of the complex (Hargreaves and Crabtree, 2011). 

Other known components of the mammalian SWI/SNF complex include 

BAF250a/b, BAF200, BAF180, BAF60a/b/c, BAF57, and BAF53A/B (Reisman et 

al., 2009). Unlike yeast SWI/SNF, the mammalian complex also contains actin or 

actin-related proteins (ARPs). Actin forms a tight complex with BRG1 via the 

conserved N-terminal HAS domain, however its precise function within the 

complex is still unclear (Szerlong et al., 2008). Actin can bind to myosin and act 

as an ADP-exchange factor, thus increase the rate of ATP-hydrolysis by myosin 

(Lymn and Taylor, 1971). Actin and ARPs may serve a similar role within the 

SWI/SNF complex. 

The subunit composition of the human SWI/SNF complex varies dramatically in a 

tissue-specific manner (Wang et al., 1996a). Moreover, using low stringency 

immunoprecipitations and sequential chromatin immunoprecipitations, a recent 
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study has shown that SWI/SNF subunit composition can vary to a great degree 

even within the same cell type. Five different promoters regulated by the 

SWI/SNF complex showed varying subunit occupancy, leading to the proposition 

that each complex may be tailored to specific target requirements (Ryme et al., 

2009). 

 This variability is thought to contribute significantly to the regulation of 

transcriptional programs during development. For example, pluripotent ES cells 

contain the esBAF version of the SWI/SNF complex, which comprises of BRG1, 

BAF155 and BAF53a, but not BRM, BAF170 or BAF53b. This complex is a part of 

the core pluripotency transcriptional network and is essential for ES cell self-

renewal and pluripotency (Ho et al., 2009a; Ho et al., 2009b). Since BRG1 plays 

an essential role in the ES cell compartment, its deletion causes early embryonic 

lethality (Bultman et al., 2000). In contrast, BRM null mice are viable, however 

they show significant elevation in the levels of BRG1, indicating that BRG1 may 

compensate for the loss of BRM (Reyes et al., 1998). 

Differentiation of ES cells into neuronal precursors is associated with an 

activation of BRM and BAF170 and the repression of BAF60b. In post mitotic 

neurons, repression of BAF53a and the activation of BAF53b, BAF45b and BAF45c 

is observed. Preventing this subunit switch impairs neuronal differentiation. 

Thus, varying the subunit composition of SWI/SNF complexes can lead to specific 

alterations in the transcriptional program which is essential for cellular 

differentiation (Lessard et al., 2007). 

1.3.2 ATP-hydrolysis, structure of SWI/SNF and mechanisms of 
remodelling 

Human BRG1 is approximately 74% identical to human BRM, 52% identical to 

Drosophila BRM and 33% identical to yeast swi2/snf2 (Khavari et al., 1993; 

Reisman et al., 2009). All snf2-family proteins contain a DNA-dependent ATPase 

domain. Early experiments showed that the addition of dsDNA causes more than 

a five-fold increase in the ATPase activity of recombinant swi2/snf2 (Laurent et 

al., 1993). The snf2 gene family is homologous to many helicases of the DEAD/H 

family and all its members contain seven conserved helicase-related motifs 

within the ATPase domain. These motifs enable snf2 proteins to specifically 
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recognise regions of double-stranded to single-stranded DNA transition, thus 

allowing SWI/SNF to localise to regions of active replication, repair and 

transcription (Muthuswami et al., 2000). A recent study has shown that the 

ATPase domain is capable of binding independently to DNA or ATP. However, 

only the ATPase domains which bind DNA first are capable of ATP hydrolysis 

(Nongkhlaw et al., 2009). 

 

Figure 1.4: Schematic depicting the domains in the BRG1 and BRM ATPases. 
Human BRG1 and BRM show 74% sequence identity. Multiple minigenes occur within both ORFs, 
however the functions of the resulting proteins are unclear. Both BRG1 and BRM also have an 
alternatively spliced exon [Figure adapted from (Reisman et al., 2009)] 

 

In addition to the ATPase domain, snf2 family members also contain a C-terminal 

bromodomain that binds acetylated lysines on histone tails. However, the 

presence of this bromodomain is not essential for function, since its deletion 

does not affect BRM-mediated transcriptional activation (Muchardt and Yaniv, 

1993; Trouche et al., 1997). Furthermore, a BRM mutant lacking the 

bromodomain was able to fully rescue the BRM knockout phenotype in flies 

(Elfring et al., 1998). BRG1 and BRM also contain a QLQ domain and an Rb-

binding (LxCxE) domain, both of which are involved in protein-protein 

interactions. BRM also contains a polyQ expansion repeat domain, which is not 

found in BRG1. The functional properties of this domain are still unknown 

(Reisman et al., 2009).  

Multiple attempts have been made to determine the structure of the SWI/SNF 

and RSC complexes. The yeast and human RSC complexes are shown to have a 

large central cavity surrounded by four regions of high density. The central 
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cavity is large enough to accommodate an entire nucleosome (Tang et al., 2010). 

However, the yeast SWI/SNF seems to be structurally different, as it contains an 

asymmetric shallow surface trough with dimensions matching the contour of a 

nucleosome. DNA footprinting and protein crosslinking experiments revealed 

that SWI/SNF subunits within and around the surface trough make extensive 

contacts with the DNA and the histone octamer. The catalytic Swi2/snf2 subunit 

contacts the nucleosomal DNA two helical turns from the dyad axis and also 

interacts with the histone octamer. SNF5 binds the DNA only weakly, but makes 

multiple contacts with the histone core (Dechassa et al., 2008; Tang et al., 

2010).  

Based on the structural and interaction data, a model for the remodelling 

activity of the SWI/SNF complex was proposed (Figure 1.5). The remodelling 

begins with a ~20bp translocation of SWI/SNF along the nucleosomal DNA 

towards the dyad axis. The DNA between the translocation site and an anchor 

point on the other side of the trough is displaced from the nucleosome, forming 

a loop. The translocation and the loop formation steps are thought to require 

ATP hydrolysis. This loop then propagates through the nucleosomal DNA causing 

the nucleosome to slide along the DNA (Dechassa et al., 2008). In addition to 

this, the extensive contacts made by the SWI/SNF complex with the nucleosome 

may also cause large disruptions in the nucleosome-DNA interactions and may 

facilitate the complete dissociation of the nucleosome by histone chaperones 

(Tang et al., 2010).  

1.3.3 Transcriptional regulation by SWI/SNF 

SWI/SNF has been linked to the activities of a large number of transcriptional 

regulators including Rb, c-MYC, p53, AP-1, EKLF, TGFβ, Myo-D, Sox2, Utf1 and 

Oct4. SWI/SNF has also been functionally linked to transcriptional regulation by 

various steroid receptors (Reisman et al., 2009). The best characterised 

interaction of SWI/SNF is with the retinoblastoma protein (Rb). As previously 

mentioned, the ATPases BRG1 and BRM both contain an Rb-binding (LxCxE) 

domain. BRG1 was shown to bind directly and specifically to hypo-

phosphorylated Rb in a yeast two-hybrid screen and by co-immunoprecipitation 

experiments (Dunaief et al., 1994).  
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Figure 1.5: Schematic model for the chromatin remodelling activity of the SWI/SNF complex. 
The SWI/SNF complex contains a central trough that makes multiple contacts with the 
nucleosome. The left arm of the complex depicts the higher wall of the trough (a). A 20bp 
translocation of the left arm leads to disruptions in the DNA-histone contacts causing the formation 
of a loop (b). This step is thought to require ATP hydrolysis and is necessary for the remodelling 
activity. The loop propagates around through the nucleosome and exits through the lower wall of 
the trough depicted by the right arm (c-d). This causes a unidirectional displacement of the 
nucleosome along the DNA (e)(Dunaief et al., 1994). 
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The interaction with BRG1/BRM is required for Rb induced cell cycle arrest. 

Constitutively active Rb is unable to cause cell cycle arrest in BRG1- and BRM-

deficient cells. This defect can be rescued by co-expressing BRG1, but not an 

LxCxE mutant form of BRG1 (Zhang et al., 2000). Moreover, SNF5-induced G1 

arrest in SNF5-deficient cells was also found to depend upon the presence of 

functional Rb (Versteege et al., 2002). Rb co-operates with SWI/SNF to repress 

the activity of E2F1 transcription factors (Trouche et al., 1997). Conditional 

inactivation of SNF5 was shown to alter expression of various Rb-E2F-regulated 

genes (Guidi et al., 2006). The Rb repressor complex is found to contain HDACs 

and SWI/SNF, which together repress the transcription of cyclins-E and -A. 

Hyper-phosphorylation of Rb by cyclin-D-CDK4 causes the disruption of the Rb 

repressor complex, allowing E2F1 to induce cyclin-E, which enables S-phase 

entry (Zhang et al., 2000). 

Despite this, direct interaction with Rb may not be necessary for SWI/SNF to 

regulate the cell cycle. Re-expression of BRG1 and SNF5 in deficient cells was 

found to induce p21 and p16 respectively, both of which inhibit Rb 

phosphorylation by CDKs (Kang et al., 2004; Oruetxebarria et al., 2004). There is 

also functional interaction between SWI/SNF and p53. BAF53 binds p53, and 

SWI/SNF activity is required for p53-mediated cell cycle control (Wang et al., 

2007). Knockdown of SNF5 was found to cause cell cycle arrest and apoptosis in 

a p53-dependent manner (Kato et al., 2007).  

SWI/SNF is also required for transcriptional transactivation by c-MYC. A repeat 

domain of SNF5 was found to directly interact with the C-terminal region of c-

MYC. Mutations in either SNF5 or BRG1 abrogate the ability of c-MYC to 

transactivate its target loci (Cheng et al., 1999). Moreover, BAF53 also binds c-

MYC and is critical for c-MYC oncogenic activity (Park et al., 2002). Thus, 

SWI/SNF complex is involved in genome-wide transcriptional regulation and has a 

critical role in cell growth and proliferation. 

ChIP-sequencing analysis has shown that SWI/SNF localises near transcription 

regulatory elements, including enhancer sequences and regions critical for 

chromosome organisation, for example CTCF binding sites and replication 

origins. Gene-specific analysis and genome-wide assays suggest the involvement 

of SWI/SNF complex in cell cycle control and chromosomal organisation 



 

30 

(Euskirchen et al., 2011). Taken together, the available data suggests that the 

SWI/SNF complex is a master regulator of gene expression. 

1.3.4 SWI/SNF and cancer 

Many components of the SWI/SNF complex are lost, mutated or silenced in 

multiple cancers. SNF5 is a bona fide tumour suppressor, the homozygous loss of 

which leads to highly aggressive paediatric rhabdoid tumours (Versteege et al., 

1998). SNF5 is also found deleted in both chronic and acute phase CML (Grand et 

al., 1999). Heterozygous knockout of SNF5 causes tumours in mice that are 

similar to human malignant rhabdoid tumours (MRT). Conditional deletion of 

SNF5 in mice leads to lymphomas or rhabdoid tumours with 100% penetrance 

within 10 weeks (Roberts et al., 2002).  

Relative to SNF5, the ATPase subunits of SWI/SNF are lost in a greater number of 

human tumours. BRG1 and BRM expression is lost in lung, bladder, colon, breast, 

melanoma, esophageal, head/neck, pancreas and ovarian cancers [reviewed in 

(Reisman et al., 2009)]. Consistent with these data, BRG1+/- mice acquire 

mammary tumours within one year (Bultman et al., 2008). However, the tumour 

phenotype observed is significantly different from that in the SNF5+/- mice, 

indicating that these two proteins are not functionally equivalent. Loss of BRM, 

although non-transforming in mice, was found to cause distinct abnormalities in 

cell cycle control. Moreover, BRM heterozygote and null mice showed a 

significant increase in the number of lung tumours when treated with the 

carcinogen urethane (Glaros et al., 2007). The interplay of SWI/SNF with various 

tumour suppressors and oncoproteins may contribute significantly to its tumour 

suppressor activity. However, the mechanistic details of this activity are still 

unclear and more work is required in order to understand these. 
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1.4 DNA Methylation 

DNA methylation is an epigenetic modification found in both prokaryotic and 

eukaryotic genomes. The occurrence of a methyl group at the 5th position of the 

cytosine nucleotide ring was first proposed by Wheeler and Johnson in 1904 

(Figure 1.6). Naturally occurring 5-methylcytosine (5mC) was first discovered by 

Johnson and Coghill in 1925, following hydrolysis of nucleic acids from Tubercule 

Bacillus (Johnson and Coghill, 1925). In prokaryotes, both cytosine and adenine 

residues are found to be methylated, whereas in multicellular eukaryotes only 

cytosine bases are methylated. In human somatic cells, 5mC constitutes 1% of all 

DNA bases and usually occurs in the context of CpG dinucleotides (meCpG) 

(Ehrlich et al., 1982; Ehrlich and Wang, 1981; Gruenbaum et al., 1981).  

Non-CpG methylation is widely prevalent in plants and forms a part of the host 

restriction system which protects the plant genome from foreign DNA (Finnegan 

et al., 1998). Non-CpG methylation in mammals is limited to the ES cell 

compartment and was initially recognised in mouse ES cells (Ramsahoye et al., 

2000). Recently, the single-base-resolution map of the human DNA methylome 

revealed that nearly a quarter of DNA methylation in human ES cells exists at 

non-CpGs (Lister et al., 2009). This methylation is lost in differentiated cells, 

and is thought to have a role in maintaining stem cell pluripotency. The recent 

discovery of 5-hydroxymethylcytosine (hmC)(Figure 1.6), which occurs by 

hydroxylation of 5mC by Tet enzymes, adds to the repertoire of identified 

cytosine modifications (Tahiliani et al., 2009). Preliminary evidence suggests 

that hmC is involved in pluripotency, differentiation and carcinogenesis (Munzel 

et al., 2011). However, only meCpG and the associated literature will be 

discussed here. 

 

Figure 1.6: Molecular structures for 5-methylcytosine and 5-hydroxymethylcytosine 
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CpG methylation is essential for genomic imprinting, X-chromosome inactivation 

and spatiotemporal regulation of transcription during embryogenesis. It is also 

thought to be necessary for immobilization of mammalian retrotransposons, 

minimising genomic transcriptional noise and regulation of tissue specific 

transcriptional programmes (Bird and Wolffe, 1999). Despite these useful 

properties, the major hazard of the presence of 5mC is its mutability. 

Spontaneous deamination of cytosine results in uracil, which being an alien DNA 

base, is recognised by uracil glycosylases and corrected back to cytosine. 

However, deamination of 5mC leads to the formation of thymidine, which being 

a genuine DNA component is inefficiently repaired (Duncan and Miller, 1980). 

Glycosylases that can act on T:G mismatches have been identified, but due to 

the high frequency of deamination (approximately four C to T transitions per day 

in germ cells) mismatches are not always repaired (Millar et al., 2002). 

Due to this high mutability, most regions of vertebrate genomes are distinctly 

devoid of CG dinucleotides. However, there are punctuated CpG-rich regions 

called CpG islands (CGIs). These ~1000 bp sequences have 10 times higher CpG 

content than the bulk genomic DNA, but these CpGs are distinctly devoid of 

methylation (Bird et al., 1985). This lack of DNA methylation has recently been 

attributed to the action of Tet1 enzymes and hmC, which were shown to 

preferentially associate with CGIs in mouse ES cells (Wu et al., 2011). CGIs 

contain unstable nucleosomes, and are found to be associated with origins of 

replication and transcription start sites. Proteins containing a “CXXC” motif 

specifically recognise unmethylated CpGs. Cfp1 (CXXC finger protein 1), a 

component of the Set1/COMPASS complex, localises at the vast majority of CGIs 

and causes high levels of H3K4me3 at these elements. This H3K4 methylation 

allows transcription initiation even at ‘orphan’ promoter-less CGIs (Deaton and 

Bird, 2011). Adrian Bird described CGIs as ‘beacons for transcriptional initiation’ 

(Personal communication). 

1.4.1 DNA methyltransferases 

Methylated CpGs are not randomly distributed throughout genomes and this 

observation suggests that DNA methylation is an enzymatic process. In vitro 

assays revealed that DNA polymerases are unable to distinguish between 

unmethylated and methylated cytosines, indicating that cytosines already 
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incorporated into DNA are methylated by an enzyme. The first DNA methylase 

was identified in E.coli and was shown to use AdoMet as the methyl donor (Gold 

et al., 1966). 

It is now well-established that two different types of DNA methyltransferases 

(DNMTs) exist within mammalian cells: de novo methyltransferases and 

maintenance methyltransferases. Timothy Bestor and co-workers purified the 

first mammalian DNA methyltransferase from Friend murine erythroleukemia 

cells and named it DNMT1 (Bestor and Ingram, 1983). Initially its de novo 

methylation activity was identified, however further biochemical studies 

revealed that it has an increased preference for hemimethylated DNA. This was 

unlike the previously identified prokaryotic DNA methylases, which do not 

distinguish between hemimethylated and unmethylated DNA. The cloning and 

sequencing of mouse DNMT1 revealed a C-terminal catalytic domain which is 

similar to its prokaryotic counterparts. However, the mammalian enzyme also 

has a large N-terminal domain which is absent from the bacterial enzyme (Bestor 

et al., 1988; Lei et al., 1996). This N-terminal domain is thought to be 

responsible for the preference for hemimethylated DNA that has earned DNMT1 

its classification as the maintenance methyltransferase.   

Methylation maintenance refers to the process that maintains methylation 

patterns following DNA replication. The parental DNA strand retaining its 

methylation is used as a template for the methylation of the newly synthesised 

daughter strand. The palindromic nature of the CpG dinucleotide allows for the 

faithful reproduction of the methylation patterns onto the nascent daughter 

strands. The N-terminal domain of DNMT1 contains a replication fork targeting 

domain, which is responsible for its association with the replication fork (Liu et 

al., 1998). DNMT1 binds proliferating cell nuclear antigen (PCNA), an auxiliary 

factor for DNA replication, thus tightly coupling DNA methylation with 

replication (Chuang et al., 1997).  

DNMT1 knockout (Dnmt1-/-) mice were reported to be embryonically lethal, 

however ES cells carrying this mutation showed no detectable effect on viability 

or proliferation in culture (Li et al., 1992). In contrast to ES cells, differentiated 

cells do not tolerate the loss of DNMT1 well. Deletion of DNMT1 in proliferating 

neural cells leads to functional impairment and poor survival (Fan et al., 2001). 
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Fibroblast cells undergo apoptosis in the absence of DNMT1, through a p53-

dependent mechanism (Jackson-Grusby et al., 2001). 

DNMT2 is the most conserved of all known cytosine methyltransferases. It lacks 

the N-terminal recognition domains and more closely resembles bacterial DNA 

methylases. The strong conservation of all catalytic motifs indicates that DNMT2 

should be a DNA cytosine methyltransferase; however, it does not show any in 

vitro or in vivo DNA methylation activity (Okano et al., 1998). There is recent 

evidence to suggest that DNMT2 may be involved in tRNA methylation (Goll et 

al., 2006) and RNA processing during cell stress (Thiagarajan et al., 2011). 

Moreover, DNMT2 has also been shown to have a role in retrotransposon silencing 

and telomere integrity in Drosophila somatic cells (Phalke et al., 2009).  

Pre-implantation embryos show a dramatic drop in 5mC levels between the 8-

cell and blastocyst stages, which is a consequence of the exclusion of DNMT1 

from the nucleus. Following this, there is a rapid gain in 5mC levels and adult 

levels are reached by gastrulation (Carlson et al., 1992). The de novo DNMTs 

(mammalian DNMT3 family), as their name suggests, are responsible for 

establishing novel genomic DNA methylation patterns. DNMT3a and DNMT3b are 

highly expressed during early embryogenesis when most of the de novo 

methylation occurs and their deletion leads to impaired embryonic development 

(Lei et al., 1996). DNMT3a and DNMT3b do not show any preference for 

hemimethylated over fully unmethylated DNA substrate, which reflects their de 

novo methylation function (Okano et al., 1998). It has been proposed that they 

may also play a role in the maintenance of methylation (Hsieh, 2005; Liang et 

al., 2002). DNMT3a and DNMT3b double-knockout ES cells show disruption of de 

novo methylation; however, this does not cause demethylation at imprinted loci 

(Okano et al., 1999).  

The third member of the DNMT3 family, DNMT3L, is expressed specifically in 

germ cells and lacks the methyltransferase activity. However, DNMT3L was 

shown to be crucial for establishment of genomic methylation imprints. DNMT3L-

null females show a loss of methylation from imprinted regions of the genome, 

whereas null males are sterile with a complete absence of germ cells (Bourc'his 

et al., 2001). DNMT3L has been shown to stimulate the activities of DNMT3a and 

DNMT3b by direct interaction (Suetake et al., 2004). DNMT3L was shown to 
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interact with histone H3 tails with unmethylated K4 residues and target de novo 

methylation (Ooi et al., 2007). DNMT1 and DNMT3 family members are thought 

to interact with each other and together they establish genomic methylation 

patterns (Kim et al., 2002). 

1.4.2 DNA methylation and transcriptional repression 

Evidence accumulated over the past three decades suggests that DNA 

methylation plays an important role in transcriptional silencing. There are two 

primary ways in which the presence of meCpG is thought to suppress 

transcription. The first way is by reducing the affinity of transcription factors for 

their cognate DNA recognition sequences (Bird and Wolffe, 1999; Watt and 

Molloy, 1988). Many transcription factors have GC-rich binding sites and the 

presence of a methyl moiety may sterically hinder the specific contacts required 

for their recruitment to this target DNA (Figure 1.7a). Even though it doesn’t 

alter the structure of the double helix significantly, the presence of the methyl 

group reduces the flexibility of the DNA molecule. Many transcription factors 

require bending of the DNA for successful binding and the increased inflexibility 

may impede bending of methylated DNA (Derreumaux et al., 2001). However, 

certain transcription factors, for example SP1 and CTF, are unperturbed by 

methylation of their recognition sequences (Ben-Hattar et al., 1989).  

The second way in which DNA methylation can inhibit transcription is through 

the recruitment of methylated DNA-binding proteins (MBPs) (Figure 1.7 b). 

MeCP2 was the founding member of this family of proteins and was 

demonstrated to possess a methyl CpG-binding domain (MBD) sequence motif 

that is sufficient and necessary for 5mC binding (Lewis et al., 1992; Nan et al., 

1993). MeCP2 is found to be concentrated on methylation-rich pericentromeric 

heterochromatin in mouse cells. On the other hand, MeCP2 shows a much more 

diffused chromosomal localisation in human or rat cells which do not contain 

highly methylated satellite DNA (Nan et al., 1997). This chromosomal 

localisation of MeCP2 is disrupted in Dnmt1 mutant mouse ES cells, indicating 

that it specifically binds methylated DNA (Nan et al., 1996). 
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Figure 1.7: Modes of transcriptional repression by DNA methylation 
DNA methylation can inhibit transcription by a) inhibiting transcription factor (TF) binding to its 
cognate recognition element (RE) and/or b) recruiting methylated DNA-binding proteins and 
associated inhibitory complexes [Adapted from (Klose and Bird, 2006)] 

 

The role of MeCP2 in transcriptional repression was first demonstrated in vitro 

where it significantly repressed transcription from methylated promoters. This 

repression seemed to depend on the presence of its central transcriptional 

repression domain (TRD)(Nan et al., 1997). MeCP2 was also found to associate 

with DNMT1, suggesting a close co-ordination between DNA methylation and 

transcriptional repression following DNA replication (Kimura and Shiota, 2003). 

Despite this, imprinted genes that are known to be misexpressed in the absence 

of DNMTs are not misexpressed in the absence of MeCP2. This suggests that 

MeCP2 is not the only MBP recruited by DNA methylation patterns.  

Indeed a sequence homology search with the MBD domain of MeCP2 revealed the 

presence of MBD1 in 1997 (Cross et al., 1997), followed by MBD2, MBD3 and 

MBD4 in 1998. All these new members, except MBD3, were shown to have 

specific methylated DNA-binding activity in vitro and in vivo. None or very low 

levels of MBP transcripts are detected in ES cells, except MBD3 transcripts can 

clearly be detected in all cell types (Hendrich and Bird, 1998). MBD3-null mice 

show early embryonic lethality, whereas MBD1 and MBD2 is dispensable for 
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mouse development and viability (Hendrich et al., 2001). MBD3 seems different 

to other MBPs and how MBD3 is targeted to its chromosomal loci was a mystery 

for a long time. However, some years ago, MBD3 was shown to interact with c-

Jun in a yeast two hybrid screen (Nateri et al., 2004). Recently, the same group 

went on to show that unphosphorylated c-Jun recruits MBD3 to AP-1 target genes 

to inhibit expression, and this repression is relieved by c-Jun N-terminal 

phosphorylation by Jun-kinases (Aguilera et al., 2011). 

MeCP2 has a 75 amino acid MBD domain, the disruption of which eliminates the 

chromosomal localisation of the protein. The MBD domain is the only common 

sequence feature amongst the MBP family members, the exception being MBD2 

and MBD3 which are highly homologous (Dhasarathy and Wade, 2008). The MBD 

motifs from various species form a very similar, wedge-shaped structure. One 

side of the wedge is formed of beta sheets and the other side contains a short 

alpha helix (Dhasarathy and Wade, 2008). The recognition of meCpGs is due to 

four highly conserved residues: two arginines, an aspartic acid and a tyrosine. 

These form a hydrophilic patch that makes contacts within the major grove of 

the DNA. These contacts were found to be mediated by several highly structured 

water molecules. Thus, the MBD domain recognises hydration of the major 

groove of methylated DNA rather than cytosine methylation per se (Ho et al., 

2008). MBD2 was recently shown to bind its target sequence in a single 

orientation. This binding orientation was reversed by partially reversing the 

sequence surrounding the meCpG. Moreover, a guanine residue directly following 

the meCpG significantly reduced the binding affinity. These data suggest the 

binding preferences of MBPs may also depend on sequences surrounding the 

meCpG (Scarsdale et al., 2011). 

MBD1 was found to be recruited to both methylated and non-methylated CpGs. 

In addition to the MBD domain, MBD1 was found to contain three CXXC motifs 

that enable its binding to non-methylated CpGs. However, only one of these 

CXXC copies is conserved and able to bind DNA, while the other two may have 

roles in protein-protein interactions (Jorgensen et al., 2004). Point mutations in 

the CXXC domains that completely abolish unmethylated CpG binding, do not 

alter MBD1 binding to its target genes via the MBD domain. Thus, despite having 

binding preferences distinct from MBD2 and MeCP2, these findings suggest that 

MBD1 is primarily a methyl CpG binding protein (Clouaire et al., 2010). 
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There are two reports in the literature where MBD4 has been associated with 

transcriptional repression of methylated p16INK4a and hMLH1 genes (Fukushige et 

al., 2006; Kondo et al., 2005). However, the role of MBD4 in genome-wide 

transcriptional repression is still questionable (Hendrich and Bird, 1998). Aside 

from the MBD domain, it has a glycosylase domain which was shown to be 

involved in repair of the G:T and G:U mismatches resulting from deamination of 

5mC and C residues. Due to this function, MBD4 is considered a crucial 

component of the base excision repair machinery (Aziz et al., 2009). 

The Kaiso family of transcription factors are the newest members of the MBP 

family. Kaiso was identified as a p120 catenin binding partner using a yeast two-

hybrid screen. Sequence analysis revealed that the Kaiso protein contained an N-

terminal BTB/POZ protein-protein interaction domain and three C-terminal DNA-

binding zinc fingers (Daniel and Reynolds, 1999). Further studies have shown 

that Kaiso behaves as a methylation-dependent transcriptional repressor and 

preferentially recognises two concurrent meCpG residues (Prokhortchouk et al., 

2001). In vivo, Kaiso is required to maintain DNA methylation-dependent 

transcriptional silencing during early Xenopus development (Ruzov et al., 2004). 

p120-catenin is usually bound to E-cadherin and regulates its function and 

stability. However, following Wnt-stimulated phosphorylation, p120 is released 

from E-cadherin and associates with Kaiso (Del Valle-Perez et al., 2011). This 

association leads to nuclear export of Kaiso and enabling its binding to 

methylated CpGs at repressed promoters (Zhang et al., 2011). Thus, Kaiso 

provides a bridge between membrane signalling and DNA methylation-dependent 

transcriptional repression. Moreover, Kaiso has been shown to localise at the 

mitotic spindle and the centrosome, suggesting that Kaiso’s transcriptional 

regulation may be linked to the control of the cell cycle (Soubry et al., 2010). 

1.4.3 DNA methylation and chromatin 

There is a clear bidirectional relationship between the DNA methylation and 

histone modification systems. It has been known for a long time that DNA 

methylation can influence histone modification patterns. DNA methylation levels 

of human HGMT gene variants demonstrated a direct correlation with their 

promoter accessibility and inverse correlation with their expression. This early 
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observation suggested that DNA methylation could effect the chromatin 

environment and thus influence transcription (Davey et al., 1997).  

DNA methylation was shown to directly influence the positioning of nucleosomes 

at specific sequences in vitro (Davey et al., 1997). The transcription inhibition 

activity of MBPs is closely linked with their ability to recruit inhibitory chromatin 

complexes through their TRDs. The transcriptional repression by MeCP2 was 

found to involve Sin3A/HDAC co-repressor complex (Nan et al., 1998). MeCP2 

TRD directly interacts with and recruits Sin3A, HDAC1 and HDAC2 to target loci. 

The transcriptional repression by MeCP2 can be alleviated by treatment with 

HDAC inhibitor trichostatin A (TSA) (Jones et al., 1998). MeCP2 has also been 

shown to co-immunoprecipitate with the BRM subunit of the SWI/SNF chromatin 

remodelling complex, which subsequently inhibits the transcription of the 

methylated genes (Harikrishnan et al., 2005).  

MBD3 was identified as one of the seven subunits of the Mi-2/NuRD HDAC 

complex along with Swi2/Snf2 helicase/ATPase domain containing Mi2, HDAC1 

and HDAC2 (Zhang et al., 1998). MBD2 has also been shown to interact with Mi-

2/NuRD (Zhang et al., 1999) and Sin3A complexes (Boeke et al., 2000). Kaiso co-

purifies with NCoR complex containing HDAC3, whereas Kaiso-like protein 

ZBTB38 has been shown to interact with several HDACs and co-repressor CtBP 

(Clouaire and Stancheva, 2008). 

MeCP2 TRD was also shown to interact with proteins showing histone 

methyltransferase activity (Fuks et al., 2003b). However, this interaction could 

be mediated by DNMT1, since MeCP2 interacts with DNMT1 (Kimura and Shiota, 

2003) and DNMT1 has been shown to interact with SUV39H1 (Fuks et al., 2003a). 

Treatment with 5-azacytidine, a cytosine analogue that inhibits DNMTs, was 

shown to cause a loss of H3K9 methylation at the p14ARF/p16INK4α locus (Nguyen 

et al., 2002). MBD1 has also been shown to associate with SETDB1, SUV39H and 

HP1 (Fujita et al., 2003). MBD1 was found to recruit SETDB1 to newly replicated 

DNA and facilitate methylation of H3-K9, thus coupling DNA and histone 

methylation (Sarraf and Stancheva, 2004). There seems to be a direct link 

between DNA methylation and H3K9 methylation. 



 

40 

Genomic analysis has revealed strong inverse correlation of DNA methylation 

with H3K4 methylation, while finding no correlation with methylation of H3K27 

(Laurent et al., 2010). In contrast to meCpG, unmethylated CGIs are found to be 

enriched for H3K4 methylation and lack H3K9 methylation (Deaton and Bird, 

2011). The maintenance of this reciprocal methylation of H3K4 and H3K9 in 

response to the DNA methylation state is intriguing. It could be due to different 

preferences in histone methylases recruited by MBD and CXXC protein families. 

However, Jumonji proteins are thought to contribute considerably to this inverse 

correlation. For example, PHF8 contains an N-terminal PHD domain that binds 

H3K4me3 and a Jumonji domain that demethylates H3K9me2 (Loenarz et al., 

2010). JARID Jumoji family proteins bind H3K9me3 and demethylate H4K4Me3 

(Iwase et al., 2007).  

Thus DNA methylation recruits chromatin-associated repressors such as HDACs, 

HKMTS and HP1 through MBPs. However, the inverse influence of chromatin 

modification on DNA methylation has also become clear (Cheng and Blumenthal, 

2010). H3K9 methylation has been shown to be required for recruitment of 

DNMTs via their interactions with G9a, GLP, SUV39H1 and HP1 at various loci 

(Cheng and Blumenthal, 2010; Fuks et al., 2003a; Lehnertz et al., 2003). A loss 

of DNA methylation in DNMT knockout cells does not lead to reduction in 

H3K9me3 levels (Dong et al., 2008; Lehnertz et al., 2003; Matsui et al., 2010), 

implying that H3K9 methylation is not dependent on the presence of meCpG as 

previously observed following 5-azacytidine treatment (Nguyen et al., 2002). In 

addition to this, a Snf2 family ATPase, LSH, was also found to be required for 

efficient DNA methylation. LSH was found to cooperate with G9a and facilitate 

histone and DNA methylation at target loci (Myant et al., 2011). 

Methylation of H3K4 is thought to inhibit de novo methylation by suppressing the 

chromatin binding of DNMT3L (Ooi et al., 2007), DNMT3a and DNMT3b (Zhang et 

al., 2010). The de novo DNMTs were also shown to be catalytically less active on 

H3K4 methylated chromatin compared to unmodified or H3K9 methylated 

chromatin (Zhang et al., 2010). Despite this, orphan CGIs that show high levels 

of H3K4me3 are only partially resistant to DNA methylation, indicating that H3K4 

methylation may not be sufficient for protecting gene promoters from DNA 

methylation (Thomson et al., 2010). The presence of transcriptional apparatus 

may also be required to provide complete immunity from DNA methylation 
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(Deaton and Bird, 2011). Thus, the relationship between DNA methylation and 

histone modifications is a complex bidirectional affair. 

1.4.4 DNA Demethylases 

DNA methylation levels in somatic cells do not fluctuate much. However, during 

embryonic development and reprogramming during gametogenesis, there is a 

requirement for DNA methylation to be in a spatiotemporal flux. DNA 

demethylation is also thought to be important during immune response, 

neurogenesis and tumorigenesis. This defined demethylation must require an 

active removal of the 5mC mark (Zhu, 2009). In contrast to the well known 

processes of DNA methylation, the enzymatic chemistry responsible for the 

removal of the methyl moiety from DNA was unknown for a long time. The 

chemistry necessary for active demethylation is energetically challenging and 

requires the disruption of a carbon-carbon bond.  

Passive loss of meCpG through mutagenesis and spontaneous deamination were 

the only candidate mechanisms for DNA demethylation until the discovery of the 

first mammalian demethylase, MBD2b, in 1999 (Bhattacharya et al., 1999). 

MBD2b was shown to have DNA demethylase activity in vitro, however, this 

turned out to be “a red herring” and the findings could not be replicated by 

other groups (Boeke et al., 2000). Moreover, mice with mutant MBD2b show 

normal embryonic demethylation phases (Santos et al., 2002).  

Another proposed mechanism for DNA demethylation is through base excision 

repair (BER), which is initiated by DNA glycosylases. MBD4 has been found to 

have DNA glycosylase activity that cleaves the glycosidic bond between the 5mC 

base and the deoxyribose. An endonuclease removes the deoxyribose and the 

gap is then filled in by the BER machinery. A thymine DNA glycosylase (TGD) has 

also been shown to have DNA glycosylase activity. However, both MBD4 and TGD 

show low in vitro glycosylase activity and much stronger G:T mismatch repair 

activity. Furthermore, no defect in DNA methylation was observed in MBD4 

knockout mice (Zhu, 2009). However unlike other DNA glycoslases, knockout or 

catalytic inactivation of TDG leads to enryonic lethality in mice (Cortellino et 

al., 2011). TGD-/- MEFs show imbalanced histone modification and CpG 
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methylation at promoters of multiple genes with altered transcription (Cortazar 

et al., 2011).  

Active enzymatic deamination of 5mC may also contribute to DNA 

demethylation. As previously stated, Tet1 enzymes deaminate 5mC and the hmC 

produced by this action can be reverted back to cytosine by DNA glycosylases 

and BER (Guo et al., 2011; Wu et al., 2011). DNMT1 cannot recognise 

hydroxymethylation a property which will also facilitate passive DNA 

demethylation (Zhu, 2009). Both DNMT3a and DNMT3b have also been found to 

deaminate meCpGs in vitro, thus contributing to DNA demethylation (Metivier et 

al., 2008). Moreover, DNMT3b was recently shown to interact with TGD and 

MBD4 and enhance their mismatch repair efficiency (Boland and Christman, 

2008). Thus, de novo methyltransferases seem to have yet another function. 

Deamination coupled with mismatch repair seems to be the two step mechanism 

required for active demethylation in cells.  

1.5 Short Interspersed nucleotide elements 

The earliest reports of mammalian repetitive DNA date back to 1959, when Paul 

Doty and colleagues fractionated mammalian genomic DNA by centrifugation 

through density gradients and reported the presence of discrete satellite 

fractions (Sueoka et al., 1959). Following these initial studies, multiple groups 

embarked on the quest to characterise this fraction (Kit, 1961; Waring and 

Britten, 1966). Repetitive sequences were consequently shown to occupy large 

proportions of mammalian genomes (Britten and Kohne, 1970). Electron 

microscopy (Wu et al., 1972) and CsCl equilibrium sedimentation (Kram et al., 

1972) indicated an interspersion of repetitive sequences in Drosophila DNA. 

However, it was not until 1973 that the existence of interspersed genomic 

repeats was clearly demonstrated by Roy Britten and co-workers. Using various 

physiochemical techniques that exploited the different thermodynamic 

properties of repeat sequences, they provided evidence for the presence of 

interspersed repeat sequences in Xenopus (Davidson et al., 1973) and sea urchin 

genomes (Graham et al., 1974). 

In 1975, Carl Schmid entered the stage and published back-to-back reports with 

Paul Britten studying the interspersion of unique single copy and repetitive DNA 
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in sea urchin and Drosophila genomes (Davidson et al., 1975; Manning et al., 

1975). By the end of that year, Schmid et al, using C0t renaturation values, 

thermal elution and thermal hyperchromism, had demonstrated that at least 52% 

of the human genome consists of long interspersed single copy sequences of an 

average length of 2kb and their shorter counterparts, with the average length of 

0.4kb (Schmid and Deininger, 1975). Approximately a third of the short 

interspersed repeats where shown to exist as inverted repeats. HeLa nuclear 

RNA was also found to contain 300nt inverted repeats that are resistant to 

single-strand specific nucleases (Fedoroff et al., 1977; Jelinek et al., 1974a); 

these were later attributed to transcription from the inverted nucleotide 

repeats. At least half of the human 300bp inverted repeats were found to have a 

site for AluI restriction endonuclease; thus, they were named the Alu family of 

SINEs. Early estimates predicted that the Alu SINEs populate at least 3% of the 

human genome and with 500,000 copies were dispersed over 30-60% of the 

genome (Houck et al., 1979). Following the publication of the partial nucleotide 

sequence of Alu SINEs in 1980 (Rubin et al., 1980), various primate genomes 

were also shown to contain related repeat families (Houck and Schmid, 1981).  

At the same time, Kramerov et al screened for DNA sequences complementary to 

pre-mRNA with double-stranded ‘fold back’ structures and discovered the 

murine B1 and B2 repeats (Kramerov et al., 1979). They predicted that these 

repeats were present in excess of 105 copies in the mouse genome. Nucleotide 

sequence of B1 SINEs was found to be similar to that of the human Alu sequences 

(Krayev et al., 1980), whereas B2 repeats were found to have a different 

sequence. The authors suggested that B1 and B2 repeats may have possible roles 

in genome organisation, DNA replication and pre-mRNA processing (Krayev et al., 

1982). William Ramsey and co-workers used a computational approach to show 

that murine B2 elements were derived from a tRNA sequence. The B2 elements 

have a 5' tRNA lysine-like sequence and terminate in a relatively divergent 3' A-

rich sequence. The presence of the internal tRNA promoter was suggested to 

drive transcription by Pol III (Lawrence et al., 1985).  

Sequence comparisons showed that T1 RNase resistant double stranded ‘fold 

back’ RNA are comprised in part of Alu transcripts (Jelinek et al., 1974b; Rubin 

et al., 1980). Alu sequences were estimated to comprise 18-25% of HeLa nuclear 

RNA (Fedoroff et al., 1977). The presence of Alu sequences in the human v-sis 
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gene (Dalla-Favera et al., 1981) and two B1 sequences in rat growth hormone 

genes (Gutierrez-Hartmann et al., 1984; Page et al., 1981) provided specific 

examples where SINEs are transcribed by Pol II. Thus, it was clear that SINEs 

could be ‘read through’ by Pol II as a part of an mRNA molecule.   

However, previous in vitro transcription assays had shown that cloned human 

DNA containing β-globin genes could be transcribed by Pol III from a 

transcription unit located approximately 1500bp upstream of the TSS (Duncan et 

al., 1979). Sequence comparison analysis revealed that this transcription unit 

belonged to the Alu SINE family, thus indicating that Alus were transcribed by 

Pol III (Jelinek et al., 1980). Later that year, Alan Weiner reported that 7SL RNA 

could form strong hybrids with Alu DNA; however, these hybrids were imperfect 

and could be digested by T1 RNase (Weiner, 1980). These sequence similarities 

were confirmed when the 7SL cDNA was cloned and sequenced two years later. 

The authors also reported differences between Alu and 7SL sequences; however 

at this point 7SL was thought to be a conserved subset of Alu repeats and the 

observed differences were due to divergent Alu family members (Ullu et al., 

1982). Following two years of sequence homology and conservation analysis it 

was concluded that 7SL was an older conserved parent element from which Alu 

repeats had arisen (Ullu and Tschudi, 1984).  

Our knowledge of the SINE family of repeats has come on in leaps and bounds 

since these early seminal works. It is now well-established that most mammalian 

SINE elements are derived from tRNA genes, except the human Alu and murine 

B1 families, which are derived from the 7SL locus (Daniels and Deininger, 1985; 

Okada, 1991b). SINEs are found throughout mammalian genomes; however, they 

are enriched in the gene-coding euchromatic regions and reside in the negative 

bands in Giemsa/Quinacrine metaphase staining. This is contrary to long 

interspersed nucler repeats (LINEs) that reside in the Giemsa/Quinacrine positive 

bands (Korenberg and Rykowski, 1988). Despite this relative abundance in gene-

rich regions, very few SINEs are found within the 5' noncoding or coding regions 

of exons, where insertions may prove very deleterious. However, there are 

multiple examples of Drosophila, sea urchin, human and mouse SINEs that have 

provided an invaluable source of regulatory variation in evolution by insertions 

into vital regions of the genome (Britten, 1997; Deininger and Batzer, 1999). 
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1.5.1 SINEs and transposition 

Individual Alu repeats are surrounded by short direct repeats and terminate in a 

polyA-rich 3' end. These observations suggest that Alu elements are dispersed 

through an RNA intermediate via retrotransposition (Jagadeeswaran et al., 

1981). With over 1 million insertions, Alu elements are the most abundant 

retrotransposons in the human genome. The completion of whole genome 

sequencing has revealed that Alus comprise around 10% of the human genome 

(Lander et al., 2001; Smit, 1999). On average, there is one Alu insertion 

approximately every 3kb. Surprisingly, Alu elements are estimated to have 

originated only 65 million years ago, and are considered a young retrotransposon 

family. MIR elements, an older SINE family, have been estimated to have arisen 

130 million years ago. However, despite their age, they only show 120,000 

insertions within the human genome (Jurka et al., 1995). Comparatively, Alus 

have shown a phenomenal rate of expansion. Alu family shows 18% sequence 

divergence from the parental 7SL sequence and there is a further 14% sequence 

divergence of various Alu subfamilies from the Alu consensus sequence 

(Deininger and Daniels, 1986). 

B1 and B2 are the most abundant murine SINE families. The mouse SINEs are 

relatively less abundant than the human counterparts, but show higher 

divergence from the parental genes. Mouse B1 elements, with 564,000 repeats, 

show 25% divergence from the murine 7SL sequence and various B1 subfamilies 

show a further 8% divergence from the consensus. Mouse B2 sequences, with 

348,000 repeats, show 34-39% divergence from the parental tRNA, and B2 

subfamilies show a further 10% sequence variability from the consensus 

(Deininger and Daniels, 1986; Waterston et al., 2002). 

It is well-established that the propagation of Alu sequences occurs through the 

process of reverse transcription of a Pol III transcribed Alu RNA via 

retrotransposition. Alu sequences lack protein-coding ORFs. It is believed that 

they piggyback on the LINE retrotransposition machinery. LINE elements code for 

a functional reverse transcriptase, which also shows endonuclease activity (Feng 

et al., 1996; Mathias et al., 1991). This provides the infrastructure required for 

SINE retrotransposition by target-primed reverse transcription (TPRT). The 

endonuclease domain nicks one strand and the exposed 3'-OH is used to prime 
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the reverse transcription. Once the transposon cDNA is fully synthesised, the 

second strand is nicked and the transposition event is completed by ligating the 

5' end of the transposon to the genomic DNA. The short tandem repeats found at 

3' ends of many SINE insertion sites are thought to arise due to addition of 

untemplated nucleotides followed by template switching (Batzer and Deininger, 

2002; Cost et al., 2002; Luan et al., 1993). 

Even though LINE L1 reverse transcriptase exhibits a strong preference for L1 

RNA, Alu elements have been remarkably successful in hijacking it for their own 

means, thus earning the name “a parasite’s parasite” (Schmid, 2003; Wei et al., 

2001). But with 1 million insertions in 65 million years, Alus are more successful 

at transposition compared to L1 elements, which have 500,000 insertions in 160 

million years. So why is Alu ‘in-trans’ transposition better than LINE ‘in-cis’ 

transposition? Firstly, Alu flanking sequences have a conserved endonuclease 

cleavage motif that is highly homologous to the L1 endonuclease motif (Jurka, 

1997). Moreover, the size of the A-rich tail was found to be highly correlated 

with increased transposition of Alu subfamilies (Roy-Engel et al., 2002). Alu RNA 

is known to interact with SRP9 and SRP14 with high affinity (Chang et al., 1996), 

which would enable its interaction with the large ribosomal subunit. This could 

increase the chances of Alu RNA interacting with the nascent L1 reverse 

transcriptase before its L1 RNA counterpart. A longer A-rich tail hanging out of 

the ribosome would improve these chances further (Boeke, 1997; Schmid, 2003). 

LINE L1 codes for two proteins, ORF1p and ORF2p, which are both deemed 

necessary for LINE retrotransposition. However, Alus are only thought to require 

ORF2p, even though the presence of ORF1p is beneficial to their transposition 

(Wallace et al., 2008). This may also provide SINEs with an advantage and 

explain their augmented prevalence compared to LINEs. 

Apart from the Alu family, the MIR family is the other major SINE family resident 

in the human genome. This older family is thought to be transcriptionally and 

transpositionally silent (Smit and Riggs, 1995). MIRs are 260bp tRNA-derived 

sequences and comprise 0.2-0.3% of the human genome (Lander et al., 2001). 

These old elements provide a fossilised record of the period when, prior to the 

expansion of the LINE L1 and its Alu parasite, the genome had to withstand the 

expansion of the LINE L2 and its MIR parasite. The impact of these transposable 
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elements on the evolution of the human genome should not be underestimated 

(Cordaux and Batzer, 2009). 

The rate of Alu expansion has varied throughout primate evolution (Shen et al., 

1991). 65 million years of mutagenesis, methyl CpG deamination (Cooper and 

Krawczak, 1989) and ADAR editing of Alu RNA (Chen and Carmichael, 2008) have 

caused many Alu sequences to diverge significantly from the parental consensus. 

Despite this there is 70% homology between all Alu family members. This 

indicates that not all Alu sequences are capable of transposition, and only a few 

‘master Alu genes’ were responsible for the spread of this SINE family. These 

master genes can be classified into subfamilies depending on 18 individual 

diagnostic mutations. The evolution of each subfamily can be explained by the 

sequential accumulation of alterations and these in turn indicate the age of the 

subfamily (Shen et al., 1991).  

The nomenclature for the Alu subfamilies follows a alphabetical progression 

from the oldest (J) to the intermediate (S) and the young (Y) (Batzer et al., 

1996). Two of the oldest and largest subfamilies, Alu-J and Alu-S, represent 

approximately 83% of all Alu sequences. Alu-S is further sub-divided into Alu-Sx, 

-Sp, -Sq, -Sc and –Sb sub-classes (Jurka and Milosavljevic, 1991; Jurka and Smith, 

1988). Alu-Y is the youngest subfamily and shows the least amount of sequence 

divergence from the master gene. Studying the prevalence of the various 

subfamilies in various primate species has revealed that most Alus originated 60 

to 40 million years ago and the rate of transposition has decreased dramatically 

since then (Shen et al., 1991).  



 

48 

 

1.5.2  SINE DNA and RNA structures 

A typical Alu element has a dimeric sequence, with the left and the right 

monomeric arms linked by a variable length central A-rich linker. Both arms are 

believed to have evolved separately and fused together later to form the 

contemporary dimeric element. Since retrotransposons frequently insert into the 

A-rich tail of other retrotransposons, such a fusion can be easily conceived 

(Okada, 1991a). The sequence of the right arm is very similar to the 7SL 

sequence, except for the loss of 155bp that form the S domain of the 7SL 

molecule. The left arm has the same 155 nucleotides missing, but has undergone 

a further 31bp deletion (Weiner et al., 1986). The 3' end comprises of an A-rich 

tail of variable length (Figure 1.8a). The left arm of the consensus Alu sequence 

has functional A and B-boxes required for the recruitment of Pol III transcription 

apparatus. Moreover, the left arm lacks a terminator sequence and thus allows 

the transcription of the whole element, since the A and B-boxes in the right arm 

are degenerate and non-functional (Batzer and Deininger, 2002).  
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Figure 1.8: DNA sequence schematics and RNA secondary structures of SINEs. 
a) Schematic depicting the DNA sequence and domains of human Alu and murine B1 and B2 
SINEs. Functional A and B-boxes of a Pol III promoter are shown (adapted from (Batzer and 
Deininger, 2002; Krayev et al., 1980; Maraia, 1991)). b) Models for the secondary structures of 
SINE RNA molecules (adapted from (Mariner et al., 2008)).  
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The monomeric mouse B1 sequence is similar to the human Alu right monomer, 

however the internal deletion of the 7SL sequence extends 14nt further. The B2 

SINEs are generally ~190bp long, with a 5' tRNA-like region, followed by a tRNA 

unrelated sequence and an AT-rich tail (Figure 1.8a). Both B1 and B2 elements 

contain functional Pol III promoters; however, they lack conventional Pol III 

transcription terminator sequences (Krayev et al., 1980; Krayev et al., 1982; 

Maraia, 1991; Singh et al., 1985).  

As previously mentioned, SINEs can be transcribed by Pol II as a part of mRNAs. 

Alu sequences were identified in more than 80 fully spliced cDNA sequences, 82% 

of which were located in the 3'-UTRs and 14% in the 5'-UTRs (Yulug et al., 1995). 

It is widely believed that SINE transcription by Pol III is a rare event in vivo 

(discussed further in chapter 3). Human Alu RNA is a ~300nt molecule and its 

secondary structure consists of two 7SL-like arms linked by an A-rich linker 

(Sinnett et al., 1991). Mouse B1 RNA is the monomeric equivalent of one of the 

Alu arms and shows the highly conserved 7SL folding pattern (Labuda et al., 

1991; Maraia, 1991). The B2 RNA has a more complex secondary structure 

consisting of a central bulge, one long arm and three short arms. The long arm is 

made up of three stems, two bulges and a loop (Espinoza et al., 2007) (Figure 

1.8b). 

1.5.3  Functional significance of SINEs 

For a long time, SINEs were considered to be junk filler DNA that was of no 

functional significance; however, this point of view has dramatically altered. 

Several groups have observed that Pol III-derived SINE transcripts are elevated 

following cell stress, indicating that the transcripts may serve a purpose (Li et 

al., 1999; Liu et al., 1995; Rudin and Thompson, 2001; Schutz et al., 2005). The 

prevalence of SINEs in mammalian genomes also indicates that they may provide 

a selective advantage and may have one or more cellular functions. 

Heat-shock response is an elegant example of a rapid and robust mechanism of 

cellular defence against environmental stress. A well-known feature of heat-

shock response is the dramatic change in cellular transcription, whereby the 

transcription of heat-shock response genes is upregulated and the transcription 

of a multitude of housekeeping genes is downregulated. The heat-shock 
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transcription factor 1, elongation factor eEF1A and non-coding heat-shock RNA1 

play important roles in inducing expression of heat-shock proteins (Sarge et al., 

1991; Shamovsky et al., 2006). However, the mechanism for the transcriptional 

inhibition of housekeeping genes remained elusive until recently. 

Both human and mouse SINEs show dramatic increases in Pol III-mediated 

transcription during heat-shock response. However, this increase is unique to 

SINEs and other Pol III-transcribed RNAs remain unaffected (Li et al., 1999; Liu 

et al., 1995). James Goodrich and co-workers have shown that Alu RNA and B2 

RNA specifically bind to Pol II and inhibit mRNA transcription by interfering with 

preinitiation complex formation (Allen et al., 2004; Espinoza et al., 2007; 

Mariner et al., 2008). Only one arm of Alu RNA seems to show the transcriptional 

inhibition, even though both the arms can bind the polymerase. The inhibitory 

effect is attributed to two loosely-structured repression domains, which can 

transmit their inhibitory function in trans to other Pol II-binding RNA molecules. 

Both B1 and B2 RNAs can bind Pol II; however, only B2 RNA contains the 

inhibitory domains required to inhibit transcription (Shamovsky and Nudler, 

2008). 

The increase in levels of Pol III-transcribed SINE transcripts is very transient and 

upon recovery from stress, the abundance of SINE RNA rapidly decreases to its 

basal level (Liu et al., 1995). This is thought to be due to the very short half-life 

of Alu transcripts. In K562 cells, the half life of Alu RNA following actinoMycin 

block was calculated to be 0.5hrs (Li et al., 2000). This is extremely short 

compared to the parental 7SL RNA, which has a half life of ~10hrs. Using 

transiently-expressed Alu deletion constructs, it has been shown that the right 

Alu monomer is inherently unstable and causes the full-length transcript to be 

rapidly degraded (Li and Schmid, 2004). Moreover, Alu RNA was recently shown 

to be a direct target of DICER1-dependent degradation in human and mouse 

retinal pigmented epithelium. The elevated levels of Alu RNA in the absence of 

DICER1 were shown to directly contribute to disease progression in geographic 

atrophy, an untreatable advanced form of age-related macular degeneration 

(Kaneko et al., 2011). 

SINE transcripts exist as full length nuclear and 3' processed cytoplasmic small 

cytoplasmic RNAs (scRNAs) (Maraia, 1991; Matera et al., 1990). However, it was 
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observed that very high expression of Alu RNA by transient transfections was 

unable to increase the abundance of scAlu RNA. This suggests that the level of 

these scRNAs is very tightly regulated by factors other than the abundance of 

the primary transcript (Chu et al., 1995). These cytoplasmic transcripts have 

been shown to associate with SRP9 and SRP14 with high affinity (Chang et al., 

1996). The Alu domain of the 7SL RNA is thought to be responsible for blocking 

protein chain elongation until the protein reaches the ER membrane (Siegel and 

Walter, 1988). As assumed previously, Alu-SRP9/14 complexes were shown to 

inhibit protein translation in vitro. However, Alu-SRP9/14 particles seemed to 

act at the chain initiation step, rather than chain elongation, and resulted in 

lower polysome levels (Hasler and Strub, 2006). 

Full length Alu transcripts have also been shown to interact with dsRNA-

regulated protein kinase (PKR), which upon binding dsRNA, autophosphorylates 

and inhibits translation initiation via phosphorylation of eIF2α (Williams, 1999). 

Low level Alu transcripts activate PKR, whereas high levels of Alu transcripts 

have a strong inhibitory effect on PKR activity thus elevating global translation 

(Chu et al., 1998). Moreover, it was shown that the right arm of Alu RNA 

increase translation of specific mRNAs in a PKR-independent manner. In this 

case, levels of global translation are not affected (Rubin et al., 2002). The 

interaction of Alu RNA with poly(A)-binding protein, a regulator of translation, 

could also contribute to its translational regulation (Kondrashov et al., 2005). 

Therefore, SINE RNA seems to be capable of modulating cellular protein 

translation in multiple ways. 

Adenosine-to-inosine (A-to-I) RNA editing is a post-transcriptional alteration of 

dsRNA by adenosine deaminases ADAR1, ADAR2 and ADAR3 (Bass, 2002). It has 

been observed that the primary targets of this process are 3' UTRs containing 

reversely oriented Alu elements (Athanasiadis et al., 2004). It was recently 

reported that there are 333 human genes which contain such Alu sequences. 

Edited mRNAs have been shown to be retained in the nucleus, thus inhibiting the 

protein expression (Chen et al., 2008). Varying degrees of A-to-I editing has also 

been thought to contribute to transcript diversity (Barak et al., 2009). 

When Krayev et al sequenced mouse B1 SINE, they also observed that two 

regions within the B1 sequence were homologous to intron-exon junctions. This 
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was one of the earliest suggestions that SINE sequences may be involved in pre-

mRNA splicing (Krayev et al., 1982). We know now that internal exons containing 

SINEs, predominantly in antisense orientation, are generally alternatively spliced 

(Sorek et al., 2002). SINEs are responsible for generating new exons by a process 

termed as exonisation. There are 7810 Alus within the human genome that are 

prone to exonisation; these may contribute considerably to protein diversity and 

also potentially lead to genetic disorders (Sorek et al., 2004).  

SINEs have also been implicated in driving human miRNA transcription (Borchert 

et al., 2006; Monteys et al., 2010) and influence targeting of mRNAs by RNAi 

(Smalheiser and Torvik, 2006). Alus have also been shown to be sites of cohesin 

loading onto DNA, thus contributing potentially to genome organisation (Hakimi 

et al., 2002). Transcription at SINEs is also thought to influence the local 

chromatin environment. By serving as boundary elements, SINEs are thought to 

block the spread of heterochromatin and thus help regulate transcription 

(Lunyak et al., 2007). However, the boundary element function may be a general 

feature of Pol III transcribed loci, where the binding of TFIIIC is seen to be 

sufficient for stopping heterochromatin spreading (Raab et al., 2011). Thus, 

SINEs seem to provide modulatory and evolutionary contributions to mammalian 

genomes and are a lot more than a mere nuisance. 

However, SINEs and their transcripts also have a darker side to them. SINE 

transcript overexpression has recently been shown to be cytotoxic in retinal cells 

and cause geographic atrophy, an untreatable form of human blindness (Kaneko 

et al., 2011). Moreover, SINE retrotransposition has the potential to disrupt vital 

genetic pathways and be of great detriment to the cell. SINE sequences are also 

responsible for chromosomal instability through transpositions and deletions 

caused by erroneous repair [reviewed in (Konkel and Batzer, 2011) and Discussed 

further in chapter 5]. 

Increasing amounts of evidence are emerging for the role of SINE transcripts in 

modulating various cellular processes. It seems that SINE elements and their 

transcripts also play a role in human diseases, and therefore it is vital to 

understand transcriptional regulation of SINEs (chapter3 and chapter4). 
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1.6 General Aims 

The general aim of this study was to study the effects of DNA methylation on 

transcription by Pol III at SINEs. The effect of chromatin remodelling by SWI/SNF 

at tRNA genes was also investigated. 
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Chapter 2 Methods and materials 
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2.1 Cell Culture and treatments 

All cell culture was performed in a class II hood, using aseptic techniques, sterile 

equipment and reagents. All cell lines were cultured in humid incubators set at 

37oC and 5% CO2.  

HeLa, A31, MEF and IMR90 cells were cultured in DMEM (Dulbecco’s Modified 

Eagle Medium) supplemented with 10% foetal bovine serum (FBS), 2mM L-

glutamine, 100U/mL penicillin-streptoMycin. Dmnt1 wild-type and knockout 

MEFs were cultured in DMEM supplemented with 10% FBS, 2mM L-glutamine, 

100U/ml penicillin-streptoMycin, 2mM sodium pyruvate, 1% non-essential amino 

acids and 0.01% β-mercaptoethanol. Hom6.9 cells were cultured in DMEM 

supplemented with 10% ES batch-tested FBS, 2mM L-glutamine, 100U/ml 

penicillin-streptoMycin, 1% non-essential amino acids, 5x105 U leukemia 

inhibitory factor (ESGRO® LIF, Millipore) and 0.01% β-mercaptoethanol. ES cells 

were grown on plates coated with 0.1% gelatine. 

For cell passaging, the media was aspirated from a 75-85% confluent flask/plate 

and the adhered cells were washed with 2ml of buffered trypsin-EDTA (0.05% 

trypsin, 0.02% EDTA). A further 2ml of buffered trypsin-EDTA was added after 

the wash and the flask was left at 37oC for approximately 2 mins. Following 

trypsinisation, fresh medium was immediately added to the dissociated cells in 

order to neutralise the trypsin and cell suspensions were transferred to new 

flasks/plates. 

2.1.1 Cryo-freezing and recovery 

Cryo-freezing was used for storage of all cell lines. Cells were trypsinised as 

described, pelleted by centrifugation at 500g for 5mins, and resuspended in 70% 

FBS, 20% DMEM and 10% dimethyl sulphoxide (DMSO, Sigma). Cells were frozen 

gradually by submerging the cryo-vials in propanol and placing the propanol 

container in -80oC overnight. The cells were transferred to liquid nitrogen 

storage the following day. For cell recovery after liquid nitrogen storage, the 

cryo-tubes were rapidly thawed at 37oC and the cells were washed in media at 

37oC to remove the DMSO. The cells were then cultured in small 25cm2 flasks. 
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2.1.2 Drug treatments 

Cells were treated with 4µM 5-azacytidine (Sigma) in DMEM for 16 – 72hrs 

depending on the cell type and 5ug/ml bleoMycin (Calbiochem) in water for 16 

hours. Indicated concentrations of Chaetocin (Sigma) in dH2O and 50µg/ml α-

amanitin (Sigma) in dH2O were used to treat cells for 24 hours.  

2.2 Translocation assay 

Maria Jasin generously provided Hom6.9 cells on which the translocation assays 

were conducted as previously [Elliott, 2005 #2797]. 7 x 106 cells were plated per 

10cm gelatinised dish 16hrs prior and the growth media was changed 2hrs prior 

to the experiment. The cells were washed quickly with PBS and trypsinised with 

2ml of buffered trypsin-EDTA (0.05% trypsin, 0.02% EDTA). These cells detach 

relatively quickly and should not be trypsinised for longer than 1min. The trypsin 

was neutralised using 8ml of media and the cells were passed gently through a 

10ml pipette to ensure a single cell suspension. The cells were pelleted by 

centrifugation at 500g for 5mins at room-temperature and washed once with 

10ml PBS. The cell pellet was then resuspended in 2ml PBS. 900μl of this cell 

suspension was transferred to two sterile microfuge tubes and 25μg of pTK-hyg 

and pCBAS (provided by Maria Jasin) plasmids were added to the tubes. The cell 

suspension was then transferred into 4mm electroporation cuvettes without 

introducing bubbles. The cells were elecroporated using a GenePulser XcellTM 

electroporator (BIO-RAD) at 250V, 950μF and infinite resistance settings. The 

cells were then allowed to recover in the cuvettes for 20 minutes. Cells were 

treated at room-temperature throughout the electroporation procedure. 

The cells were then resuspended in appropriate volume of warm growth medium 

and plated on labelled gelatinised plates. Cells were allowed to recover for 

10hrs after electroporation and treated for 16 hrs with 4μM 5-azacytidine or 

5μg/ml bleoMycin for 16hrs. Following drug treatment, the cells were washed 

with PBS and provided with fresh growth medium. 24hrs following media 

replacement, selection in 200µg/ml neoMycin was performed for 8-10days. One 

plate for each treatment was left without selection in order to ascertain loss of 

cell viability. The colonies obtained following selection were fixed for 10 
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minutes with methanol and stained with 1:40 GIEMSA stain. The clones were 

then counted manually. 

2.3 RNAi and protein overexpression 

Transient transfections were performed using Lipofectamine2000® (Invitrogen) 

and Opti-MEM® reduced serum media (Invitrogen). 2 x 105 cells were seeded in 

10cm plates 16-24 hrs prior to transfection. The growth medium aspirated off 

and the cells were washed in PBS twice. After removing the PBS, 5ml of warm 

Opti-MEM® was added to the medium. The transfection solution per plate was 

prepared by adding siRNA (Table 2.3) or 5-10μg plasmid to 1.5ml Opti-MEM® and 

20μl of Lipofectamine2000® to 1.5ml Opti-MEM® in separate tubes. Following 

5min incubation at room-temperature, these two solutions were mixed and 

incubated at room-temperature for 20mins to allow complex formation. This 

transfection solution was then added to the 10cm plate with cells in 5ml Opti-

MEM® and the cells were incubated at 37oC 5% CO2 for 6hours. The Opti-MEM® 

was then replaced with growth medium and the cells were left to grow for 48hrs 

before harvesting. For knockdown ChIP assays, the transfection process was 

repeated twice on consecutive days to ensure a reproducible knockdown.  

2.4 Preparation of protein extracts 

Cells were cultured in either 10cm plates or 6-well plates to about 80% 

confluency before harvesting. Preparation was performed on ice, as rapidly as 

possible, in order to avoid protein denaturation. The maintenance medium was 

aspirated and cells were washed twice with ice-cold PBS. They were then 

scraped into microextraction buffer (MEB) (20mM HEPES pH7.8, 150mM NaCl, 

25% glycerol, 50mM NaF, 0.2mM EDTA, 0.5% Triton X-100, 0.5% NP40, 1mM PMSF, 

1mM DTT, 1µg/ml protease and phosphatase inhibitor cocktail) and transferred 

to sterile microfuge tubes. 100-500µl of buffer was used per plate depending on 

cell type and plate size. The cell lysates were then passed through a 26G needle 

five times and centrifuged at 13000g for 10mins at 4oC. The supernatants were 

aliquoted and snap-frozen on dry ice, before being stored at -80oC. 
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2.5 Determination of protein concentrations 

The protein concentrations of protein extracts were determined using Bradford’s 

reagent diluted 1 in 5 with dH2O. For each experiment, a standard curve was 

constructed by measuring the absorbance at 595nm of 1, 2, 4, 6, 8 and 10µg of 

BSA in 1ml of diluted Bradford’s reagent. The absorbance readings of protein 

extracts were performed in duplicates at 595nm, and the protein concentration 

of each sample was determined by plotting the average reading on the standard 

curve. 

2.6 Sodium-dodecyl sulphate polyacrylamide gel 
electrophoresis  

Protein extracts containing 10-20µg of protein per lane were resolved by 

denaturing SDS-PAGE typically on a 7.8% or 10% polyacrylamide (375 mM Tris 

pH8.8, 0.1% SDS) minigel with a 4% polyacrylamide (120mM Tris pH6.8, 0.1% SDS) 

stacking gel. Prior to loading, samples were boiled at 100oC for 2 mins in 1x 

protein sample buffer (62.5mM Tris pH6.8, 0.5% SDS, 5% β-mercaptoethanol, 10% 

glycerol, 0.125% bromophenol blue). Electrophoresis was performed in 1x SDS 

running buffer (0.1% SDS, 76.8 mM glycine, 10mM Tris pH8.3) at 150V. 

2.7 Western blot analysis 

After separation by SDS-PAGE, the resolved proteins were transferred to 

nitrocellulose membranes using a Bio-Rad Mini Trans-Blot Electrophoretic 

Transfer Cell system. The transfer was carried out in 1x transfer buffer (76.8mM 

glycine, 10mM Tris pH8.3, 20% methanol) at 50V for 2hrs at 4oC for proteins 

smaller than 100 kDa and overnight for bigger proteins. The proteins transferred 

to the nitrocellulose were visualised by staining with 1x Ponceau S solution 

(Sigma) to ensure their efficient transfer. Subsequently, the membranes were 

washed with PBS and then blocked in milk buffer (32.5mM Tris, 150mM NaCl, 

0.2% Tween-20, 5% skimmed milk powder) for 30-60mins at room-temperature. 

The membranes were then incubated in the presence of the appropriate primary 

antibody (Table 2.2) diluted in milk buffer for 2 hours at room-temperature or 

overnight at 4oC. Following incubation with the primary antibody, the 

membranes were washed three times for 5mins in PBS 0.5% Tween-20, in order 
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to remove any unbound primary antibody. The membranes were then incubated 

for 45mins at room-temperature in the appropriate secondary antibody at a 

dilution of 1:1000 in milk buffer. The membranes were then washed for 

approximately 45mins with PBS 0.5% Tween-20 with regular changes of wash 

buffer. The bound antibodies were then detected with enhanced 

chemiluminescence (ECL) reagents according to manufacturer’s instructions 

(Amersham). 

2.8 Co-immunoprecipitation assay 

50µg of protein extracts were used per reaction. The protein extract was 

incubated overnight at 4oC with 5μg of IgG or appropriate antibody (Table 2.2) 

and 1μg/ml protease inhibitor cocktail made up to the total volume of 250μl 

with PBS/NP-40 (PBS, 0.015% NP40). 10Units of DNaseI or heat-denatured DNaseI 

were added prior to the overnight incubation. 30μl of DynaI® protein G magnetic 

beads were used for each reaction. The beads were washed three times in 

PBS/NP-40 using a magnetic rack and then blocked with 50μl of PBS/NP-40 

1mg/ml BSA for 15mins at room-temperature using a rotating wheel. Once the 

blocking buffer was removed from the beads, the appropriate IP sample was 

added and incubated with the beads for 30mins at room-temperature or 2hrs at 

4oC on a rotating wheel. The beads were then washed 4-6 times in PBS/NP-40. 

To elute the proteins, 50μl of protein sample buffer was added and the beads 

were incubated for 10mins at 70oC on a shaker. The co-IP samples were 

collected into fresh microfuge tubes and were resolved next to 20% input (i.e. 

10μg protein extract). SDS-PAGE and Western blotted were performed as 

described above. 

2.9 Gene expression analysis 

2.9.1 RNA extraction 

Total RNA was extracted using TRI reagent (Sigma-Aldrich) according to 

manufacturer’s specifications. The maintenance medium was aspirated and the 

cells were washed two times in ice-cold PBS. 1ml or 500µl of TRI was used per 

10cm plate or 6-well plate respectively, and the cells were harvested with a cell 

scraper. The samples were incubated for 5mins at room-temperature to allow 
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complete dissolution of nucleoprotein complexes, before addition of 0.2ml of 

chloroform per 1ml of TRI. Each sample was thoroughly mixed using a vortex for 

1min. The samples were then centrifuged at 13000g for 15mins at 4oC, which 

resulted in the separation of the samples into three phases. The top aqueous 

phase containing the RNA was carefully transferred into new microfuge tubes 

and 0.5ml isopropanol was added to precipitate the RNA. The samples were 

mixed by vortexing briefly and centrifuged at 13000g for 10mins at 4oC. Once the 

supernatant had been removed, the RNA pellet was washed in 70% ethanol and 

briefly dried, before resuspension in 10-15µl RNase-free water. The RNA 

concentration was determined by spectrophotometry at 260nm, considering that 

OD of 1 at 260nm corresponds to 40µg/ml of RNA. 

2.9.2 cDNA synthesis 

cDNA was synthesised using the SuperScriptIII reverse transcriptase (Invitrogen). 

0.2µg and 0.4µg of RNA was mixed with 2µl of 1x hexanucleotide mix (Roche) 

and made up to a final volume of 25µl with RNase-free water. This mix was then 

incubated at 80oC for 10mins and cooled down rapidly on ice to allow primer 

annealing. 14μl of reaction mix (8µl of First Strand Buffer (Invitrogen), 4µl of 

0.1M DTT and 2μl of 10mM dNTP mix) with 1μl of SuperScriptIII was added to the 

random primed RNA mix. This was then incubated at 42oC for 1hour to allow 

cDNA synthesis and the reaction was stopped by boiling the samples at 70oC for 

15mins. cDNA was stored at -20oC. In order to rule out DNA contamination of the 

RNA samples, a duplicate tube for each sample was incubated with the reaction 

mix without the SuperScriptIII. DNA contamination could be detected in the PCR 

reaction for the SuperScriptIII negative samples. cDNA prepared with 0.2 and 

0.4μg RNA determined the quantitative nature of the cDNA synthesis reaction. 

RT- PCR primers are described in (Table 2.1). 

2.10 Chromatin immunoprecipitation (ChIP) assays.  

Cells were grown in 10cm plates to about 80% confluency and approximately one 

10cm plate of cells was used per IP. Formaldehyde, to the final concentration of 

1%, was added to the cell maintenance medium for 10mins at room-temperature 

in order to cross-link the protein-DNA complexes. A 15min cross-linking step was 

performed in ChIP assays for SWI/SNF subunits, SUV39H1 and HP1 proteins. The 
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cross-linking was stopped by the addition of 0.125M final concentration of 

glycine and the plates were left at room-temperature for 5mins. The plates were 

then transferred to ice and the cells were scraped in the culture 

media/formaldehyde/glycine solution into a 50ml Falcon® tube. The cells were 

pelleted by centrifugation at 500g for 5mins and washed twice in ice-cold PBS 

and twice in ice-cold PBS 0.5% NP-40. The cells were then resuspended in high 

salt buffer (PBS, 0.5% NP-40, 1M NaCl) and incubated in ice for 30mins. This was 

followed with one wash in PBS 0.5% NP-40 and incubation in low salt buffer 

(10mM Tris-CL pH8.0, 1mM EDTA, 0.1M NaCl, 0.5% NP-40) in ice for 30mins. 

Following this incubation, the cells were pelleted as previously, resuspended in 

1ml of low salt buffer, and passed five times through a 26G needle. The final 

volume was made up to 2.7ml with low salt buffer and 300μl 20% w/v N-

Laurylsarcosine sodium salt was added to the cell suspension. Once mixed, this 

solution was then layered carefully on top of a 40ml LSB/100mM sucrose cushion 

and centrifuged at 4000g for 10mins at 4oC. The resultant pellet was 

resuspended in 2ml TE (10mM Tris pH8.0, 1mM EDTA) and passed through 

another sucrose cushion. The pelleted chromatin was then resuspended in 2ml 

TE and was sheared into fragments smaller than 0.5kb by sonicating in a water 

bath sonicator (BioruptorTM, Diagenode) at full power for 30 (30sec on/off) 

cycles at 4oC. 200μl 11xNET buffer (1.56M NaCl, 5.5mM EDTA, 5.5% NP-40, 

550mM Tris-Cl pH7.4) was added to the sonicated material, which was then 

centrifuged at 13000g for 5mins at 4oC. The supernatant was aliquoted evenly 

into microfuge tubes and 10% of this was kept as the input sample. 5-25μg of the 

appropriate antibody (Table 2.2) was added to each labelled aliquot tube and 

this mix was then incubated overnight at 4oC to allow the antibody protein 

interaction. 

The next day, 50μl of protein A/G sepharose beads (washed three times in 1xNET 

buffer) were added to the IP samples and were allowed to incubate for a further 

2hrs at 4oC. The beads were then recovered on 5ml polypropylene columns, 

washed twice in ice-cold RIPA buffer (50mM Tris-Cl pH8.0, 150mM NaCl, 0.1% 

SDS, 0.5% deoxycholate, 1% NP-40), twice with ice-cold LiCl buffer (10mM Tris-Cl 

pH8.0, 250mM LiCl, 0.5% deoxycholate, 0.5% NP-40, 1mM EDTA) and twice with 

ice-cold TE. Following removal of excess TE from the last wash, the bound 

chromatin was eluted with 400μl TE/1%SDS at room-temperature. The eluted 
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material was digested overnight with 0.125mg/ml proteinase K at 420C. DNA 

purification was performed with Qiagen PCR purification kit using 

manufacturer’s instructions. The ChIP DNA was then analysed by PCR. 

2.10.1 Sequential ChIP assay 

For sequential ChIP analysis, the primary ChIP antibodies were freshly 

crosslinked to the sepharose beads using DMP (Pierce) the day before each 

sequential ChIP reaction. This was done in order to reduce background caused by 

primary antibody elution following the first ChIP. 100μl of protein G sepharose 

beads per IP were washed three times in 1ml HEPES lysis buffer (20mM HEPES-

NaOH pH8.5, 150mM NaCl, 1% NP-40, 2mM EDTA). 5μg of antibody was added to 

the beads and the solution was made up to 1ml with HEPES lysis buffer. The 

beads and the antibody were incubated at 4oC overnight on a rotating wheel to 

allow antibody-binding. 

The next day, the beads were washed three times in 1ml HEPES lysis buffer and 

two times in 1ml 100mM HEPES-NaOH pH8.5. The beads were then incubated in 

1ml of freshly prepared cross-linking buffer (100mM HEPES-NaOH pH8.5, 

10mg/ml DMP) for 1hr at room-temperature on a rotating wheel. Following 

cross-linking, the beads were washed twice in 1ml HEPES cross-linking wash 

buffer and the reaction was then quenched with 100μl 1M glycine pH7.5 for 

30mins at room-temperature. The beads were then washed twice in HEPES lysis 

buffer and used for the ChIP reaction in 100mM HEPES-NaOH pH 8.5. Following 

the first ChIP reaction the eluate in TE/1% SDS was diluted 1 in 10 before the re-

ChIP in order to reduce the amount of SDS in the solution. 

2.10.2 ChIP-ChOP assay 

ChIP DNA was spiked with 100ng of unmethylated PCR product containing a 

HpaII/MspI site, which was obtained by PCR using pCDNA3 primers on a empty 

pCDNA3 vector. This cocktail was digested for 1 hr with 1μg of HpaII (Invitrogen) 

or MspI (NEB). Mock digestions with buffer only were also performed in order to 

ascertain the digestion efficiency. The digested samples were normalized to the 

unmethylated DNA in order to normalise for the differences in digestion 

efficiency between the two enzymes.  
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2.10.3 ChIP-sequencing 

ChIP-bisulphite sequencing for Pol III-binding at Alu loci was performed by 

Andrew Oler (NIH) using the Illumina Bisulfite sequencing protocol. The Qiagen 

EpiTech kit was used for bisulfite conversion. ChIP-sequencing data for the Pol 

III, TFIIIC and SWI/SNF subunits was mined from the UCSC hg18 genome 

database. 

2.11 Methylcollector assay 

Separation of genomic DNA according to CpG methylation status was achieved by 

affinity chromatography with immobilised recombinant MBD2b and MBD3L1 using 

a MethylCollectorTM Ultra kit (Active Motif), according to the manufacturer's 

specifications. 

2.12 Polymerase chain reaction (PCR) 

Each PCR reaction had a total volume of 20μl and contained 1μl of template 

DNA, 20pmol of the appropriate primers, 0.5U of Taq DNA polymerase 

(Promega), 1 x Taq DNA polymerase buffer (Promega), 1.5mM MgCl2 and 0.2mM 

dNTPs. The cycling parameters and primers used are listed in Table 2.1. The 

PCRs were performed using a Dyad® Peltier thermal Cycler (BIO-RAD). The 

samples were resolved on 5% polyacrylamide native gels next to a 100bp DNA 

ladder. 

Quantitative PCR (qPCR) was performed using the C1000TM Thermal Cycler (BIO-

RAD). The qPCR reaction had a total volume of 10μl and contained 0.5μl of 

template DNA, 5μl of 2 x PerfeCTaTM SYBR® Green FastMixTM and 0.25μM of 

appropriate primers. An appropriate standard curve encompassing the samples 

within the linear range was constructed for each qPCR. Each sample was loaded 

in duplicate to avoid pipetting errors. The expression levels in qRT-PCR assays 

were obtained using ΔΔC(t) of the average of duplicate samples and the average 

of loading control, e.g. ARPP P0. The ChIP signal was quantified with the formula 

(Avg. IP/Avg. Input)-(Avg. Neg. IP/Avg. Input). Data from multiple experiments 

were then used to calculate overall average and standard deviation values. 
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Table 2.1: PCR primers for various analyses in mouse and human cells 
PCR amplification was performed with the following cycling parameters: 95oC for 30sec, T(a) for 
30sec, 72oC for 30sec for n cycles, where T(a) and n are specified for each primer pair. The same 
qPCR programme was used for all primer pairs, i.e. 95oC for 30sec, 60oC for 30sec, 72oC for 30sec 
for 45 cycles. The species specificity of a primer pair is mentioned next to its name, i.e. [m] for 
mouse, [r] for rat and [h] for human primers. 

Locus name [Species]   Primers T(a) N 
28S rRNA [m] F CCCGACGTACGCAGTTTTAT 58 oC 23-25 
 R CCTTTTCTGGGGTCTGATGA   
5S rRNA [h, m] F GGCCATACCACCCTGAACGC 58 oC 16-18 
 R CAGCACCCGGTATTCCCAGG   
7SL [h, m] F GTGTCCGCACTAAGTTCGGCATCAATATGG 70 oC 25-30 
 R TATTCACAGGCGCGATCCCACTACTGATC   
7SL set1 [h] F CCGTGGCCTCCTCTACTTG 60 oC 22-27 
 R TTTACCTCGTTGCACTGCTG   
7SL set2 [h] F CGTCACCATACCACAGCTTC 60 oC 22-27 
 R CGGGAGGTCACCATATTGA   
7SL set3 [h] F GTTGCCTAAGGAGGGGTGA 60 oC 22-27 
 R TCTCTTGAGAGTCCAAAATTAA   
7SL set4 [h] F TTTTTGACACACTCCTCCAAGA 60 oC 22-27 
 R ATCTGGTCAAAGCAACATACACTG   
7SL set5 [h] F TGCCTCCAGATAAAACTGCTC 60 oC 22-27 
 R ACCCCACTAGAACCCTGACA   
Alu (ch6) [h]  F CCAGAAAAATTACCAATTAGTTC 53 oC 25-30 
  R GGGCCTATTGACTATGCTTAC   
Alu (ch10) [h] F GATTCTCAACAGCAGAATTCCA 53 oC 25-30 
  R CATGTTTGAGAATGTCTACTTC   
Alu (ch19) [h] F CCACGTGTTTATCTGTAAGGTG  53 oC 25-30 
  R GTTAGGAGCTAGAAGGAGCCT   
Alu (C19J) [h] F CTACTCAAAATATTAAACATAGGC 53 oC 25-30 
  R GCTGCAACGCTGCTATGAAC   
Alu (ch22) [h] F GTTCTGACACACTTGGAGAAA 53 oC 25-30 
  R GTTGTTGTTATTGCACAACTCA   
Alu RNA [h] F CTTACACGTGTCATCCCAGC 58 oC 30-32 
  R GACAGTGTCTCACTCTGCTACC   
Alu (MLL) [m] F CGATTACCCTGTTATCCCTAGGCTGGGCACAGTGGT 60 oC 25-30 
 R AAGCTAGCGGCTGAAATTCTCCTCTTC   
APC [h] F GAGGAAGGTGAAGCACTCAGTT 60 oC 23-25 
 R AGGGTGAGACATGGAGAGAAGA   
Apo-E [m] F TTCGGAAGGAGCTGGTAAGAC 57 oC 23-25 
  R CGACAGTCCCGTACTCCTTC   
Apo-E [h] F CAGCGGAGGTGAAGGACGTC 57 oC 23-25 
  R CTCCTCCTCTCCCCAAG   
Apo-E mRNA [m] F GTTTCGGAAGGAGCTGACTG 57 oC 30-32 
  R AGCGCAGGTAATCCCAGAAG   
Apo-E mRNA [h] F GGTCGCTTTTGGATTACCT 57 oC 30-32 
  R TTCCTCCAGTTCCGATTTGT   
ARPP P0 [h, m] F GCACTGGAAGTCCAACTACTTC 58 oC 16-20 
 R TGAGGTCCTCCTTGGTGAACAC   
B1 [m] F TGGTGGTGCATGCCTTTAAT 58 oC 10-12 
  R CCTGGTGTCCTGGAACTCACT   
B2 [m] F GGGGCTGGAGAGATGGCT 58 oC 10-12 
  R CCATGTGGTTGCTGGGAT   
B1 (c9) [m] F GCATGCATACCACTCCACAC 58 oC 25-30 
  R CAGAGAATCTGCAGTCGTATTTCC   



 

66 

B2 (c9) [m] F CTGCCTTCAGACACACCAGAAG 58 oC 25-30 
  R GATGGAAGAGGTTTTGCCAAG   
BRG1 cDNA [m] F TACAGGCTTCAGGCTCGAAT 60 oC  
 R TCTCCAGGGCTGTGTCTCTT   
BRM cDNA [m] F TATGTCGCCAATCTGACCAA 60 oC  
 R AGGTCACTCATCTGGCTGCT   
GAPDH mRNA [m] F TCCACCACCCTGTTGCTGTA 60 oC 23-25 
  R ACCACAGTCCATGCCATCAC   
p53BP2 mRNA [m] F GTTGGTTTCGGCGAGAAGG 60 oC 23-25 
  R GAAGCCAAGCGAGAACGAG   
p16 cDNA [m] F TCTGGAGCAGCATGGAGTCC 58 oC 22-25 
  TCGCAGTTCGAATCTGCACC   
p21 promoter [m] F CTCTGGGAAGCCAGAAGTTGTT 58 oC 25-30 
 R GGTCCAGTCCTGCATCTAAGT   
p21 promoter [h] F TATTGTGGGGCTTTTCTG 58 oC 25-30 
 R CTGTTAGAATGAGCCCCCTTT   
pre-tRNALeu [h, r, m] F GTCAGGATGGCCGAGTGGTCTAAGGCGCC 68 oC 20-25 
 R CCACGCCTCCATACGGAGACCAGAAGACCC   
pre-tRNATyr [h, r, m] F CCTTCGATAGCTCAGCTGGTAGAGCGGAGG 65 oC 20-25 
 R CGGAATTGAACCAGCGACCTAAGGATCTCC   
pre-tRNAi

Met [m] F CTGGGCCCATAACCCAGAG 55oC 20-25 
 R TGGTAGCAGAGGATGGTTTC   
pCDNA3 F ATTATGCAGAGGCCGAGG 58 oC 20 
 R CCATCTTGTTCAATCATGCG   
SNF5 cDNA [m] F AGCGTGTCATCATCAAGCTG 58 oC 22-25 
 R CACTGTGGGAAGTGGGTTCT   
tRNALeu downstream F CTTGGGAAGAAAACACTGGCAGTGGT 60 oC 22-25 
 R CAGACAGCTTGGTAGTGTGGCCG   
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Table 2.2 Antibodies used for various analyses in human and mouse cells 
The supplier and the catalogue numbers are listed for the antibodies used, alongside the 
application for which that particular antibody was used. WB stands for Western Blotting. Most 
antibodies were used at a 1:1000 dilution, except the actin and Tubulin antibodies that were used 
at a 1:400 dilution for Western blotting. 

 

Protein recognised Supplier Cat./I.D. No. Application 

TFIIA SantaCruz Biotechnology sc-25365 ChIP 

TAFI48 SantaCruz Biotechnology sc-6571 ChIP 

SUV39H1 SantaCruz Biotechnology sc-25366 ChIP 

SUV39H1 Upstate Biotechnology 05-615 ChIP 

HP1 SantaCruz Biotechnology sc-28735 ChIP 

Histone H3 Abcam ab1791 ChIP 

Histone H4 Upstate Biotechnology 07-108 ChIP 

BRF1 In house 128 ChIP, co-IP 

BRF1 In house 482 WB, co-IP 

TFIIIC110 In house 3208 WB, co-IP 

TFIIIC220 In house Ab7 WB, ChIP, co-IP 

TFIIIC220 In house Ab2 WB, ChIP, co-IP 

Rpc155 In house 1900 WB, ChIP 

MBD1 Imgenex IMG-306A ChIP 

MBD2 Sigma-Aldrich M7318 ChIP 

MeCP2 Sigma-Aldrich M9317 ChIP 

H3K9me3 Cell Signalling Technology 9754S ChIP 

H3K27me3 Cell Signalling Technology 9756S ChIP 

Ini1 SantaCruz Biotechnology sc-13055 ChIP, co-IP 

Ini1 Abcam ab12167 WB 

BRG1 SantaCruz Biotechnology sc-10768 ChIP, co-IP 

BRG1 Abcam ab4081 WB 

BRM SantaCruz Biotechnology sc-28710 ChIP, co-IP 

BRM Abcam ab15597 WB, co-IP 

HDAC1 SantaCruz Biotechnology sc-7872 ChIP 

HDAC2 SantaCruz Biotechnology sc-7899 ChIP 

ac-H3 Upstate Biotechnology 06-599 ChIP 

Actin SantaCruz Biotechnology sc-1615 WB 

TFIIB SantaCruz Biotechnology sc-225 WB 

α-Tubulin Sigma-Aldrich T9026 WB 

HA SantaCruz Biotechnology sc-805 WB 

TBP In house 4C8/26 WB 

c-MYC SantaCruz Biotechnology sc-764 ChIP, WB 

DNMT1 Abcam ab87656 WB 
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Table 2.3: siRNA oligos used for protein knockdowns in mouse cells 
The oligo pairs were ordered from Invitrogen and resuspended in RNase-free water. The 
scrambled control oligos were also ordered from Invitrogen. 

 

Oligo pair name 5' to 3' sequence 
Sense oligo GCUCCGAGGUGGGAAACUAtt SNF5 siRNA1 
Antisense oligo UAGUUUCCCACCUCGGAGCcg 
Sense oligo GCUUUUACCUGGAACAUGAtt SNF5 siRNA2 
Antisense oligo UCAUGUUCCAGGUAAAAGCgt 
Sense oligo CGAGGUUCUCUGUACAAGAtt SNF5 siRNA3 
Antisense oligo UCUUGUACAGAGAACCUCGga 
Sense oligo GAGCGAAUCCGUAAUCAUAtt BRM siRNA1 
Antisense oligo UAUGAUUACGGAUUCGCUCct 
Sense oligo GCUUCUCUGUCACAACGCAtt BRM siRNA2 
Antisense oligo UGCGUUGUGACAGAGAAGCat 
Sense oligo GGUCAACGGUGUCCUCAAAtt BRG1 siRNA1 
Antisense oligo UUUGAGGACACCGUUGACCat 
Sense oligo CACCUAACCUCACCAAGAAtt BRG1 siRNA2 
Antisense oligo UUCUUGGUGAGGUUAGGUGgg
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Chapter 3 DNA methylation and Pol III 
transcription of SINEs 
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3.1 Introduction 

The large numbers of SINEs present within mammalian genomes could potentially 

provide a huge reservoir for Pol III transcription factors, thus contributing 

significantly to the global regulation of essential Pol III-transcribed genes. The 

first clear evidence of Alu transcription by Pol III was provided by Peter 

Geiduschek and co-workers in 1981, when they in vitro transcribed a series of 

clones containing Alu sequences using a soluble Pol III system (Fuhrman et al., 

1981). Despite their relative genomic abundance, very low levels of Pol III-

transcribed SINE RNA can be detected in cells (Maraia et al., 1993; Matera et al., 

1990; Paulson and Schmid, 1986; Sinnett et al., 1992). Many Alus have highly 

degenerate promoters and thus were thought to be incapable of recruiting Pol III 

transcription apparatus. It has been reported that transcription from Alu Pol III 

promoters may require the presence of conserved 7SL upstream sequence (the 

first 37 nucleotides upstream of 7SL TSS) (Ullu and Weiner, 1985). A 7SL-like 

terminator sequence was also shown to increase Alu transcription in cells, thus 

suggesting that the lack of an efficient terminator may also reduce SINE 

transcription (Chu et al., 1995). In contradiction with these reports, it has been 

shown that Alu elements can be strongly transcribed both in vitro and in vivo 

(Fuhrman et al., 1981; Liu et al., 1995). 

However, DNA methylation has been thought to be primarily responsible for the 

inhibition of Pol III-driven SINE transcription (Liu et al., 1994; Liu and Schmid, 

1993; Schmid, 1991). The Alu consensus sequence contains 24 CpG sites and Alus 

account for up to one-third of all CpG sites within the human genome. In most 

normal tissues, these Alu CpGs are found to be methylated (Rubin et al., 1994; 

Schmid, 1991). In vitro transcription assays using nuclear extracts showed that 

DNA methylation inhibits Alu transcription at low template concentrations, 

however no such inhibition was observed at higher template concentrations. This 

lack of inhibition at higher Alu concentrations was attributed to limiting 

concentrations of MBPs in the extracts (Liu and Schmid, 1993).  Methylation of a 

single CpG within the A-box was seen to inhibit transcription. 

Further evidence came from treatment of HeLa cells with 5-azacytidine, a DNA 

demethylating agent. 5-azacytidine is a cytosine analogue, which incorporates 

into DNA during replication and inhibits the methylation of cytosine residues by 
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DNA methyltransferases (Jones and Taylor, 1980). Treatment with 5-azacytidine 

was shown to cause a 5-to 8-fold increase in full length Alu transcripts (Liu et 

al., 1994). K562 cells, which show considerably lower level of DNA methylation 

on Alus than other cell types, have highly elevated levels of Alu transcripts. 

ActinoMycin D treatment was used to show that this abundance is due to 

increased levels of SINE transcription and not increased transcript stability. Two 

independent studies have also shown that methylated Alu sequences transiently 

transfected into cells are transcribed at a reduced rate compared to their 

unmethylated counterparts (Li et al., 2000; Yu et al., 2001). SINEs have also 

been shown to be target sequences for MBPs, which may contribute to the 

transcriptional repression. The fraction of human genomic DNA fragments that 

was retained by an MBD column was found to be highly enriched for Alu 

sequences (Brock et al., 1999). MeCP2 was also shown to selectively bind Alu 

sequences by ChIP assays in MCF7 cells (Koch and Stratling, 2004).  

Most lines of evidence for DNA methylation-mediated inhibition of SINE 

transcription arise from in vitro and artificial systems. Not only is there a 

distinct lack of endogenous data, but also there are many unexplained 

curiosities within the existing literature. For example, an unmethylated PV Alu 

repeat stably transfected into mouse cells was found to be transcriptionally 

silent (Leeflang et al., 1992).  Demethylated Alu templates transiently 

transfected into HeLa cells were inactive, whereas these templates were highly 

expressed in 293 cells (Liu et al., 1995). Co-transfection of methylated Alu 

sequences with the MeCP2 TRD relieved the methylation mediated 

transcriptional repression, rather than compounding it (Yu et al., 2001). Cell 

stress cannot alleviate the transcriptional repression of transiently transfected 

methylated Alus (Li et al., 2000), although cell stress is able to elevate 

endogenous SINE transcription without altering DNA methylation (Chu et al., 

1998; Liu et al., 1995).  

Therefore, it seems we still lack a clear understanding of how DNA methylation 

regulates SINE transcription in cells. Increasing amounts of evidence are 

emerging for the role of SINE transcripts in modulating various cellular 

processes. Therefore it is increasingly important we try to understand the 

transcriptional regulation of these sequences. This chapter will try and address 

this question in detail. 
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3.2 Results 

3.2.1 Alu sequences are occupied by Pol III transcription 
apparatus and MBPs in multiple human cell lines 

Since low levels of Pol III-synthesised SINE transcripts are clearly detected in 

cells (Paulson and Schmid, 1986), ChIP assays for Pol III transcription machinery 

were performed in order to investigate the polymerase loading on these 

elements. HeLa cells were subjected to ChIP analysis with antibodies against the 

Rpc155 subunit of Pol III, the BRF1 subunit of TFIIIB and the 220kDa subunit of 

TFIIIC (Figure 3.1). ChIP with an antibody against histone H3 was performed to 

provide a positive control IP. ChIPs with beads only (mock) and an antibody 

against RNA polymerase I specific transcription factor TAFI48 (Rudloff et al., 

1994) were performed to provide the negative controls. 

Analysis was performed at five randomly-chosen Alu loci at five independent 

genomic locations. The primers were designed within the flanking unique DNA 

sequences to allow specific amplification of these loci. Alu(ch19) is a primer set 

aimed at an Alu located centrally within a long stretch of tandem Alu repeats. 

The selected Alu elements all belong to the AluS subfamily and have 7-13 CpGs 

each. Primers that amplify two copies of the human 7SL gene, an actively-

transcribed Pol III gene, provide the positive control for Pol III transcription 

apparatus occupancy. The apolipoprotein E precursor (Apo-E) gene, which is a 

Pol II-transcribed locus and is known to be silenced by DNA methylation 

(Ballestar et al., 2003), provides a negative control for Pol III transcription 

apparatus occupancy. 

Surprisingly, the enrichment of Pol III transcription machinery at Alu loci is 

clearly above background. The Apo-E gene does not show any enrichment for Pol 

III transcription apparatus, showing the specificity of the ChIP reaction. The 7SL 

locus shows a considerably higher enrichment for Pol III and TFIIIB compared to 

the Alu loci. The Alu consensus sequence shows 67% reduction (p<0.05) in Pol III 

occupancy compared to the 7SL loci (data not shown). Individual Alu sequences 

show much lower polymerase occupancy compared to the 7SL loci, whereas no 

such differences are observed for TFIIIC occupancy. 
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Figure 3.1: Pol III transcription apparatus occupies Alu SINEs in HeLa cells 
ChIP assay in HeLa cells with antibodies against Rpc155, BRF1 and TFIIIC220 at Alu loci on 
chromosome 6, 10, 19 and 22. Alu(ch19J) is also on chromosome 19. 7SL and Apo-E loci 
respectively provide the positive and negative controls for Pol III transcription apparatus 
occupancy. ChIPs with beads only (Mock) and TAFI48 antibody provide the negative controls, 
whereas ChIP with histone H3 antibody provides the positive control. Serial dilutions of the inputs 
show the quantitative nature of the PCR. 
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The presence of Pol III transcription apparatus at various SINEs was startling, 

seeing that the transcription of these sequences is believed to be inhibited by 

DNA methylation. Previous studies have suggested that this inhibition may be in-

part due to the presence of MBPs at SINEs (Brock et al., 1999; Koch and 

Stratling, 2004). In order to investigate this possibility, HeLa cells were 

subjected to ChIP assays with antibodies against MBD1, MBD2 and MeCP2 (Figure 

3.2). Beads only and TAFI48 ChIPs provide the negative control IPs, whereas 

histone H3 ChIP provides the positive control. The Apo-E locus provides a 

positive control for the presence of MBPs (Ballestar et al., 2003), whereas 7SL 

locus provides the negative control. 

Alu loci, previously showing the occupancy of Pol III transcription apparatus, also 

seem to be enriched for all three MBPs. The 7SL locus does not show any MBP 

enrichment, indicating the specificity of the assay. MeCP2 occupancy on Alus is 

higher than MBD1 and MBD2. However, this was not due to higher IP efficiency of 

the MeCP2 antibody since the opposite is observed on the Apo-E locus, which 

shows considerably higher MBD1 occupancy. The presence of MBPs also suggests 

that these specific Alu loci are methylated. 

The enrichment of Pol III transcription apparatus and MBPs at these Alus is 

intriguing, however this could be a cell type-specific effect. In order to rule out 

this possibility, ChIP assays with antibodies against Pol III transcription apparatus 

and MBPs were performed in IMR90 human diploid fibroblasts (Figure 3.3), 

HCT116 colon carcinoma (data not shown) and HEK293 embryonic kidney cells 

(data not shown). All human cells lines analysed show the occupancy of Pol III 

transcription apparatus and MBPs on Alu SINEs. The Pol III enrichment at Alus is 

consistently lower than at the 7SL locus, whereas no such difference is observed 

for transcription factor occupancy. MBPs show variable enrichment at SINEs in 

different cell lines, however MBP occupancy is always observed at SINEs.  
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Figure 3.2: MBPs occupy Alu SINEs in HeLa cells 
ChIP assay in HeLa cells with antibodies against MBD1, MBD2 and MeCP2 at Alu loci on 
chromosome 6, 10, 19 and 22. Alu(ch19J) is also on chromosome 19. Apo-E and 7SL loci 
respectively provide the positive and negative controls for MBP occupancy. ChIPs with beads only 
(Mock) and TAFI48 antibody provide the negative controls, whereas ChIP with histone H3 antibody 
provides the positive control. Serial dilutions of the inputs show the quantitative nature of the PCR. 
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Figure 3.3: Pol III transcription apparatus and MBPs occupy Alu SINEs in IMR90 cells 
ChIP assay in IMR90 cells with antibodies against Rpc155, BRF1, TFIIIC220, MBD2 and MeCP2 at 
Alu loci on chromosome 6, 10, 19 and 22. 7SL and Apo-E loci respectively provide the positive and 
negative controls for Pol III transcription apparatus occupancy and visa versa for MBP occupancy. 
ChIP for TAFI48 provides the negative control. Serial dilutions of the inputs show the quantitative 
nature of the PCR. 
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3.2.2 B1 and B2 SINEs are occupied by Pol III transcription 
apparatus and MBPs in multiple mouse cell lines 

Steady state expression of mouse B1 RNA is low in cultured cells (Maraia, 1991), 

whereas B2 transcripts are a little more abundant (Ryskov et al., 1983). There 

are some reports suggesting that B1 sequences in the mouse genome are 

methylated (Jeong and Lee, 2005; Yates et al., 1999), however there is not 

much evidence in the literature for B2 sequence methylation. Both B1 and B2 

SINE transcript levels are upregulated in response to cell stress (Li et al., 1999). 

This indicates that murine SINEs may be regulated in the same manner as their 

human counterparts. However, nothing is known about the regulation of B1 and 

B2 SINE transcription by DNA methylation.  

Since Pol III transcribed B1 and B2 RNA can be clearly detected in cells, the 

occupancy of Pol III transcription apparatus was investigated on these mouse 

SINEs. Mouse fibroblasts were subjected to ChIP assays with antibodies against 

Pol III transcription apparatus (Figure 3.4). Primers against the consensus B1 and 

B2 sequences were used to detect enrichment on most mouse SINEs. Moreover, 

enrichment at two specific SINEs, B1(ch9) and B2(ch9), was also analysed using 

primers designed against flanking DNA. Primers amplifying three different copies 

of the murine 7SL gene provide the positive control for Pol III transcription 

machinery. 

As observed on human Alu SINEs, B1 and B2 SINES also show clear enrichment of 

Pol III and the transcription factors TFIIIB and TFIIIC. The negative control Apo-E 

shows no enrichment for the transcription apparatus, indicating the specificity 

of the assay. Pol III enrichment is considerably lower on SINEs compared to the 

actively transcribed 7SL loci, however no such difference is seen in TFIIIB and 

TFIIIC occupancy. B2 consensus sequence shows higher Pol III loading compared 

to its B1 counterpart (p<0.05). This indicates that the comparatively higher 

levels of B2 transcripts seen in mouse cells (Ryskov et al., 1983) could be due to 

increased Pol III loading onto these elements. The presence of Pol III on B1 and 

B2 sequences was also confirmed in mouse ES cells (Figure 3.14). 
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Figure 3.4: Pol III transcription apparatus occupies B1 and B2 SINEs in MEFs 
ChIP assay in MEFs with antibodies against Rpc155, BRF1 and TFIIIC220 at B1 and B2 genomic 
consensus sequences. B1(ch9) and B2(ch9) are specific SINEs on chromosome 9. 7SL and Apo-E 
loci respectively provide the positive and negative controls for Pol III transcription apparatus 
occupancy. ChIPs with TAFI48 antibody and histone H3 antibody provide the negative and positive 
controls, respectively. Serial dilutions of the inputs show the quantitative nature of the PCR. 
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The binding of MBPs to B1 and B2 sequences in mouse fibroblasts was also 

investigated using ChIP assays (Figure 3.5). Clear enrichment of all three MBPs is 

detected on mouse SINEs, suggesting that both murine SINE families are 

methylated. The 7SL locus does not show any enrichment, indicating the 

specificity of the reaction. Compared to MBD1 and MBD2, MeCP2 showed higher 

enrichment on SINEs. However the positive control, Apo-E, shows higher MBD1 

binding and lower MBD2 and MeCP2 occupancy. Elevated MeCP2 occupancy 

seems to be a feature of SINEs. No significant differences are observed in MBP 

loading between B1 and B2 sequences (p>0.1). So in spite of having similar levels 

of MBPs, B2 SINEs are still capable of higher polymerase loading.  

Thus it seems that both human and murine SINEs are occupied by Pol III 

transcription apparatus and MBPs. 
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Figure 3.5: MBPs occupy B1 and B2 SINEs in MEFs 
ChIP assay in MEFs with antibodies against MBD1, MBD2 and MeCP2 at B1 and B2 genomic 
consensus sequences. B1(ch9) and B2(ch9) are specific SINEs on chromosome 9. Apo-E and 7SL 
loci respectively provide the positive and negative controls for MBP occupancy. ChIPs with beads 
only and TAFI48 antibody provide the negative controls, whereas histone H3 antibody provides the 
positive control. Serial dilutions of the inputs show the quantitative nature of the PCR. 
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3.2.3 Human and mouse cells contain sufficient Pol III 
transcription factors to occupy SINEs 

SINEs are very abundant in human and mouse genomes. If all these loci are 

enriched for Pol III transcription apparatus, then the cell would require a huge 

reservoir of these transcription factors. Previous estimates in yeast have shown 

TBP, BRF1 and Bdp1 to be equimolar with ~1000 molecules per cell each (Sethy-

Coraci et al., 1998). In HeLa cells, the number of TBP molecules has been 

estimated to be 1.9 x105 per cell (Kimura et al., 1999). So there seems to be 

sufficient TBP in a cell. But are there enough of Pol III specific transcription 

factor molecules per cell? 

Table 3.1: TBP, BRF1 and TFIIIC110 protein quantification. 
HeLa and MEF total cell extracts were subjected to quantitative western blot analysis. The number 
of molecules per cell was estimated using total cell extracts from a known cell number and a 
recombinant protein titration. Errors represent standard deviations. n=3 [TFIIIC110 (n=1) data 
provided by Damian Grazcyk] 

 

Molecules/Cell HeLa MEF 
TBP 5.1x105 ± 1.6x105 2.9x106 ± 0.2x105 
BRF1 6.4x105 ± 0.9x105 1.4x106 ± 2.8x105 
TFIIIC110 5x105   

 

In order to quantify the number of molecules of Pol III transcription factors per 

cell, HeLa and MEF total cell extracts obtained from a known number of cells 

were used alongside titrations of purified recombinant proteins in Western blot 

analysis. Table 3.1 shows the estimated molecules per cell counts for TBP, BRF1 

and TFIIIC110. All three proteins have roughly half a million molecules per HeLa 

cell. MEFs have an estimated 3million TBP molecules and 1.4million BRF1 

molecules. Thus it seems that these transcription factors have enough protein 

molecules per cell to occupy all SINE sequences. 
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3.2.4 The presence of MBPs and DNA methylation does not inhibit 
polymerase loading onto SINEs 

The data so far suggest that SINEs in human and mouse cells occupied by Pol III 

transcription apparatus are also enriched for MBPs. However, these two protein 

subsets could be binding to the same locus at different times or in different 

cells, i.e. not simultaneously. In order to investigate this possibility, sequential 

ChIP assay was performed on HeLa cells (Figure 3.6). The primary ChIP was 

performed with an antibody against the 155kDa subunit of Pol III. TAFI48 

antibody provided the negative control for this IP and did not show any 

enrichment at Pol III transcribed sequences, indicating the specificity of the 

primary reaction (data not shown).  

The chromatin obtained from the Pol III ChIP was then subjected to sequential 

ChIP with antibodies against MBPs. 100% input was taken from the primary ChIP 

material in order to make the input dilutions. Secondary ChIPs with Pol III and 

BRF1 antibodies provide the positive controls. The Pol III re-ChIP signal is nearly 

as strong as the undiluted input, indicating the specificity of the primary ChIP 

and the efficiency of the secondary reaction.  

Sequential ChIPs show clear enrichment of MBPs on Pol III-bound Alu loci, 

indicating their co-occupancy. The 7SL locus, which is clearly enriched for BRF1 

and Pol III in the sequential ChIP, remains negative for MBP occupancy. Alu(ch22) 

shows a distinct lack of MBD1 co-occupancy. This was due to experimental 

variation, and other repeats showed MBD1 co-occupancy at this locus. Different 

Alu loci show variable MBP co-occupancy in different experiments; however MBP 

co-occupancy is almost invariably seen. Thus it seems that the presence of MBPs 

is not sufficient to exclude Pol III from Alu sequences. 
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Figure 3.6: Pol III transcription apparatus and MBPs co-occupy Alu SINEs 
Sequential ChIP assay in HeLa cells where the first ChIP performed with antibody against Rpc155 
was followed with a second ChIP with antibodies against MBD1, MBD2 and MeCP2. TAFI48 
provides the negative control for the first (data not shown) and second ChIPs. Re-ChIPs with 
Rpc155 and BRF1 antibodies provide the positive controls. 7SL locus provides the negative control 
for MBP occupancy. Serial dilutions of the inputs show the quantitative nature of the PCR. 
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DNA methylation can directly inhibit the binding of transcription factors to their 

cognate sequences (Watt and Molloy, 1988). Since methylation of a single CpG 

within the A-box was seen to inhibit transcription (Liu and Schmid, 1993), this 

could be the mode of transcriptional inhibition at SINEs. In order to find out if 

Pol III transcription apparatus can occupy methylated DNA, material obtained 

from Pol III and TFIIIC ChIP was subjected to methylation-sensitive digests 

(Figure 3.7). Restriction endonucleases HpaII and MspI are isoschizomers that 

cleave at CCGG sequences. Cleavage by HpaII is prevented by the presence of a 

5-methyl group at the internal cytosine of its recognition sequence, whereas 

MspI can cleave the DNA irrespective of its methylation status (Waalwijk and 

Flavell, 1978). 

HeLa DNA obtained from Pol III, TFIIIC, MBD2 and MeCP2 ChIPs was spiked with 

100ng of an unmethylated PCR product containing a central CCGG sequence. 

This cocktail was then digested with HpaII and MspI for 1 hour. PCRs against the 

unmethylated ‘spike’ were used to normalise for the differences in the digestion 

efficiency between the two enzymes. These normalised samples were then 

subjected to PCRs targeting an Alu sequence that contains two CCGG sites, one 

near the 5' end and another towards the 3' end of its sequence. 

It can be seen that the Alu(ch6) DNA in the input sample is resistant to HpaII 

digestion compared to MspI digestion, indicating that this sequence is 

methylated in HeLa cells. As expected, the DNA from the positive control MBD2 

and MeCP2 ChIPs is also methylated. Moreover, this resistance to HpaII digestion 

remains following Pol III and TFIIIC ChIPs. Surprisingly, this suggests that Pol III 

and TFIIIC are capable of occupying methylated Alu sequences. 
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Figure 3.7: Pol III transcription apparatus occupies methylated Alu DNA 
a) Schemaic for the ChIP-ChOP assay. b) ChIP-ChOP assay in HeLa cells where ChIP with 
antibodies against Rpc155, TFIIIC220, MBD2 and MeCP2 was followed by restrictions digests with 
DNA methylation-sensitive endonuclease HpaII and its methylation-insensitive isoschizomer MspI. 
The ChIP DNA was spiked with 100ng of unmethylated PCR product prior to digestion, which was 
then used to normalise for digestion efficiency. PCR for Alu(ch6) was performed using the 
normalised sample dilutions. 
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It is unlikely that only the CpGs within the restriction endonuclease recognition 

sites are methylated and the surrounding CpGs are unmethylated. However, the 

enzymatic approach is a crude one and in order to thoroughly investigate the 

methylation status of the polymerase-bound SINEs, ChIP bisulphite sequencing 

was performed on input DNA and Pol III ChIP DNA (Figure 3.8) by Andrew Oler 

from Bradley Cairns Lab. 

Sodium bisulphite treatment of fully denatured DNA causes the conversion of 

cytosine residues to uracil. However, 5-methylcytosine residues are non-reactive 

to sodium bisulfite. Upon sequencing the DNA, one could determine the 

methylation status of the CpGs by looking for unconverted cytosine residues 

(Grunau et al., 2001). With the advent of high-throughput and massively parallel 

sequencing techniques, bisulphite sequencing has become a powerful technique 

and has been successfully used for methylation analysis of various genomes 

(Bernstein et al., 2007; Smith et al., 2009). ChIP-bisulphite sequencing is a 

variation on this technique, where DNA obtained from ChIP is converted with 

sodium bisulphite and sequenced. This is used to shed light on the methylation 

status of DNA bound to particular proteins.  

Prior to bisulphite treatment, both input and Pol III ChIP DNA were spiked with 

unmethylated lambda DNA. The efficiency of bisulphite conversion was 

determined to be 99.87% based on the conversion of cytosine residues in this 

‘spike’ DNA. Bisulfite conversion has been previously shown to introduce single 

strand breaks, thus making the DNA prone to breaking (Munson et al., 2007).  

Bisulfite treatment is also thought to cause DNA degradation through 5mC-

selective hydrolysis and depyrimidination (Tanaka and Okamoto, 2007). Due to 

these technical shortcomings, small insert size distribution (median 80bp, peak 

60bp) was observed in the ChIP bisulfite sequencing data. Unique alignments 

depend on fragments covering unique flanking regions alongside the consensus 

sequence. The small insert size resulted in low numbers of unique alignments for 

Alu sequences, which meant the overall coverage of Alus was low. Due to these 

technical limitations the sequencing data was aligned to 14 consensus sequences 

for different Alu families (Figure 3.8). 
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All Alu families show higher level of DNA methylation (5% to 14%) compared tRNA 

genes (0% to 5%). Alus are also generally less enriched for Pol III than tRNA 

genes, which is in agreement with the data previously obtained by ChIP-PCR. As 

expected, Pol III ChIP DNA does not show a decrease in Alu methylation 

compared to the Input sample. Input DNA also shows the presence of CpG 

methylation on A- and B-box sequences. However, Pol III ChIP sample also shows 

the presence of DNA methylation at these crucial regulatory sequences.  

The newer AluY elements have higher methylation than their older AluJ or AluS 

counterparts. The same pattern is observed for A- and B-box methylation, where 

B-box methylation is 13% in AluJ, 30-50% in AluS and 55-65% in AluY. Thus it 

seems Alu methylation diminishes with age. However, the younger Alu elements 

also show higher Pol III loading compared to the older families. AluY families 

show more than two-fold higher Pol III occupancy than AluJ families (data not 

shown). Thus the newer Alu families are able to load more Pol III despite having 

a higher level of methylation. 

These data strengthen the opinion that DNA methylation, including methylation 

within the A- and B-box sequences, is unable to inhibit Pol III loading onto SINEs. 
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Figure 3.8: ChIP-bisulphite sequencing analysis of Alu consensus sequences 
Bisulphite sequencing of input and Rpc155 ChIP DNA from HeLa cells aligned to 14 consensus 
sequences for various SINE families. 99.87% efficiency was calculated for the bisulphite 
conversion reaction. The Y-axis represents % of unconverted cytosine residues obtained in the 
Input fraction and the Pol III ChIP fraction (i.e. Rpc155_Fraction) respectively (Data provided by 
Andrew Oler).  
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3.2.5 Loss of DNA methylation neither increases Pol III loading 
onto SINEs, nor does it elevate SINE expression 

From the evidence so far, it is clear that human and mouse SINEs are occupied 

by Pol III transcription apparatus and this polymerase loading is not prevented by 

the presence of MBPs or DNA methylation. However, this is contrary to what is 

suggested by the existing literature, where SINE transcription is reported to be 

inhibited by DNA methylation (see section 3.1). So what does the absence of DNA 

methylation on SINEs do to the polymerase loading onto these elements? And 

how does it affect their cellular transcript levels? 

Dnmt1-/- mice were reported to be embryonically lethal, however ES cells 

carrying this mutation showed no detectable effect on viability or proliferation 

in culture (Li et al., 1992). Deletion of the first exon of Dnmt1 led to 80% 

genomic demethylation, where the residual DNA methylation was attributed to 

activity of de novo methyltransferases DNMT3a and DNMT3b (Lei et al., 1996). It 

has been observed that only Dnmt1 mutants show this marked loss of genomic 

methylation. Dnmt3a and Dnmt3b double knockout ES cells show disruption of de 

novo methylation however this does not cause demethylation at imprinted loci 

(Okano et al., 1999), whereas loss of DNMT2 shows little effect on genomic 

methylation (Okano et al., 1998). 

In cortrast to ES cells, differentiated cells do not tolerate the loss of DNMT1 

well. Deletion of Dnmt1 in proliferating neural cells lead to functional 

impairment and poor survival (Fan et al., 2001). Fibroblast cells undergo 

premature senescence in the absence of DNMT1 through a p53-dependent 

mechanism (Jackson-Grusby et al., 2001). Lande-Diner et al obtained a viable 

Dnmt1 null MEF cell line by crossing Dnmt1-/- animals to a p53-/- null background 

(Lande-Diner et al., 2007). These cells grow at normal exponential rates and do 

not show senescence even after 100 passages. Since these cells are 

differentiated, they lack de novo methyltransferase activity and have no residual 

maintenance methyltransferase. Due to progressive loss of DNA methylation, 

their genome was shown to be severely hypomethylated compared to control 

p53-/- fibroblasts. Thus, these cells provide an ideal ‘methylation free’ 

environment to study the effect of DNA methylation on SINE transcription. 
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The levels of genomic methylation in p53-/- and Dnmt1-/- p53-/- MEFs were 

analysed by methylation-sensitive restriction digests (Figure 3.9). 1µg of 

genomic DNA obtained from both cell types was subjected to 30 minute 

digestion with HpaII and MspI. The digested material was then resolved on a 1% 

agarose gel alongside mock-digested DNA. The undigested material stays at the 

top of the lane, whereas MspI-digested DNA forms a smear in the entire lane 

lacking a clear ‘table’ at the top. It can be clearly seen that the genomic DNA 

from Dnmt1 null MEFs is readily digested by HpaII, unlike its counterpart from 

the control cells. Moreover, the smear formed by HpaII digest is very similar to 

the one formed by MspI digestion, suggesting that the Dnmt1-/- genome is almost 

completely demethylated. 

In order to study the effect of the loss of DNA methylation on SINEs, both the 

p53-/- and Dnmt1-/- p53-/- cells were subjected to ChIP assay with antibodies 

against Pol III transcription apparatus (Figure 3.10). ChIP with MBD2 antibody 

provided the control for the DNA methylation status. The ChIPs from the two 

different cell types were normalised to serial input dilutions. Apo-E locus was 

unoccupied by Pol III in both the control and null cells. Moreover, MBD2 

occupancy on the Apo-E locus shows a dramatic reduction in the Dnmt1 null 

cells, indicating the loss of DNA methylation. The occupancy of transcription 

apparatus on the positive control, 7SL, does not alter upon DNMT1 loss. This 

suggests that there is no overall change in Pol III loading at generic Pol III 

transcribed loci. 

Surprisingly, neither B1 nor B2 sequences show any change in polymerase 

loading. This is also confirmed on the specific B1 and B2 loci on chromosome 9. 

There are no alterations in TFIIIB or TFIIIC loading on SINEs either, whereas MBD2 

occupancy on SINEs is clearly diminished, indicating that these sequences are 

demethylated. This result, contrary to expectations, suggests that loss of DNA 

methylation does not cause any elevation in Pol III loading onto SINEs. 
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Figure 3.9: Dnmt1-/- cells have markedly reduced DNA methylation 
Restriction digests on 1µg genomic DNA from p53-/- and p53-/- Dnmt1-/- cells with DNA methylation-
sensitive endonuclease HpaII and its methylation-insensitive isoschizomer MspI.  
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Figure 3.10: Loss of DNA methylation and MBP occupancy does not alter Pol III 
transcription apparatus occupancy on SINEs 
ChIP assay in p53-/- and p53-/- Dnmt1-/- MEFs with antibodies against Rpc155, TFIIIC220 and BRF1 
at B1 and B2 genomic consensus sequences. B1(ch9) and B2(ch9) are specific SINEs on 
chromosome 9. ChIP with MBD2 antibody indicates the DNA methylation status of the locus. Apo-E 
and 7SL loci respectively provide the positive and negative controls for MBP occupancy and visa 
versa for Pol III transcription apparatus. ChIPs with beads only and TAFI48 antibody provide the 
negative controls. The ChIPs were normalised to serial dilutions of the inputs. 
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It is possible that a few of the B1 and B2 SINEs in the Dnmt1-/- cells have 

elevated polymerase loading, but this increase can not be detected by the 

consensus primers. This is a limitation of the ChIP PCR approach and ChIP 

sequencing is required to detect these genome wide locu-specific changes. 

However, increased transcription at these few SINEs would still lead to a 

detectable increase in cellular transcript levels. 

SINEs are widely transcribed by Pol II as a part of mRNA transcripts (Yulug et al., 

1995). In order to study the effects of DNA methylation loss on Pol III-driven SINE 

transcription, one must discriminate between Pol II-transcribed and Pol III-

transcribed RNA. Traditional approaches have used primer extension technique, 

where the larger Pol II-transcribed RNA extension products can be resolved from 

the smaller Pol III-transcribed RNA products (Liu et al., 1994). 

At low concentrations, α-amanitin specifically inhibits Pol II transcription whilst 

allowing normal Pol I and Pol III transcription (Lindell et al., 1970). Therefore in 

order to discriminate between Pol II and Pol III driven SINE transcription, p53-/- 

and p53-/- Dnmt1-/- cells were treated with 50µg/ml α-amanitin for 24hrs. Any 

changes observed in the SINE transcript levels following this treatment cannot be 

a response of genes transcribed by Pol II. Total RNA from mock-treated and α-

amanitin-treated cells was subjected to RT-PCR analysis using primers against B1 

and B2 consensus transcripts (Figure 3.11). The reaction was normalised to Pol I-

transcribed 28S rRNA levels. c-MYC mRNA provides the control for the successful 

ablation of Pol II transcription. Apo-E mRNA shows elevated transcription in 

Dnmt1-/- cells, indicating that the DNA methylation-dependent transcriptional 

repression of this locus is lost in these cells. However, the Apo-E transcript 

levels are not reduced following α-amanitin treatment, which could be due to 

higher transcript stability.  

Contrary to expectations, SINE transcript levels are not elevated in the absence 

of DNA methylation. This result remains unchanged following α-amanitin 

treatment. Therefore, we conclude that a genetic ablation of DNA methylation 

neither elevates Pol III loading onto SINEs, nor does it elevate cellular SINE 

transcript levels. 
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Figure 3.11: Loss of DNA methylation does not elevate SINE expression in Dnmt1-/- cells 
Analysis by RT-PCR of expression levels of B1 and B2 transcripts in p53-/- and p53-/- Dnmt1-/- 
MEFs. Apo-E mRNA provides a positive control for loss of DNA methylation. Cells were treated 
with 50µg/ml α-amanitin for 24hrs. c-MYC mRNA provides a control for α-amanitin treatment. 28S 
rRNA provides the loading control. 
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The major drawback of using a genetic approach for reducing DNA methylation is 

that the cells may compensate for the alterations caused by the genetic deletion 

and use alternative pathways for silencing SINEs. It was therefore deemed 

necessary to use an acute pharmacological approach to reduce DNA methylation 

and study alteration in SINE transcription. Levels of Alu transcripts were shown 

to be highly elevated following 5-azacytidine treatment of HeLa cells for eight 

days (Liu et al., 1994). However, this long treatment may be unnecessary since 

clear demethylation of HeLa DNA could be seen following 72hr treatment of 

HeLa cells with 4µM 5-azacytidine (Figure 3.12). 

Methylcollector assay (Active Motif) was performed on sonicated genomic DNA 

from HeLa cells that were mock-treated or treated with 4µM 5-azacytidine for 

72hrs. The assay uses his-tagged recombinant MBD2b/MBD3L1 protein, which 

shows remarkable affinity to meCpG (Jiang et al., 2004) and specifically binds 

methylated DNA. PCRs were then performed on the collected (methylated) and 

wash-through (unmethylated) fractions. 7SL and APC loci, which provide controls 

for unmethylated DNA, are eluted in the wash-through fraction in both 

untreated and 5-azacytidine treated cells. Apo-E locus, which provides the 

positive control for DNA methylation, is present in the collected fraction in the 

untreated cell, whereas, upon 5-azacytidine treatment it is eluted in the wash-

through, suggesting that it was successfully demethylated.  

It can be clearly seen that Alus, which elute in the methylated fraction in 

untreated cells, are demethylated by 5-azacytidine treatment and elute in the 

unmethylated fraction. Thus, it is sufficient to treat HeLa cells for 72 hours with 

4µM of 5-azacytidine in order to demethylate the majority of Alu repeats. This 

treatment was used in the following experiments to study the SINE transcript 

levels and promoter Pol III loading. 
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Figure 3.12: 5-azacytidine treatment reduces DNA methylation on Alus 
Methylcollector assay on genomic DNA from HeLa cells treated with 4µM 5-azacytidine for 72hrs. 
me-CpG lanes contain methylated DNA retained by the methylcollector and the CpG lanes contain 
unmethylated DNA collected from the wash-through. Apo-E PCR provides the positive control for 
methylated DNA, whereas APC and 7SL PCRs provide the negative controls. 



 

97 

Total RNA from mock-treated or 5-azacytidine-treated MEF and HeLa cells was 

subjected to RT-PCR analysis in order to detect the levels of cellular SINE 

transcripts (Figure 3.13). ARPP P0 mRNA was used to normalise the PCR 

reactions (Laborda, 1991). As expected, Apo-E mRNA levels are increased 

following 5-azacytidine treatment and DNA demethylation, whereas no change is 

observed in the levels of pre-tRNALeu in HeLa cells. However, contrary to 

previous reports, neither mouse nor human SINE transcript levels show any 

increase after demethylation.  

ChIP assay with antibodies against MBPs and Pol III was then performed on 

chromatin from mock-treated and 5-azacytidine-treated mouse ES cells (Figure 

3.14). It was observed that 16hrs of 5-azacytidine treatment was enough to 

demethylate SINEs in this cell type. The ChIPs from the untreated and treated 

cells were normalised to serial input dilutions. 7SL sequence provides the 

negative control for MBP occupancy and positive control for Pol III occupancy. 5-

azacytidine treatment leads to a clear eviction of MBD2 and MeCP2 from B1 and 

B2 consensus sequences, indicating that this DNA has been successfully 

demethylated. However, as observed in the Dnmt1-/- cells, 5-azacytidine 

treatment does not lead to increased polymerase loading onto murine SINEs. 

Alu(MLL) is a transgenic Alu sequence, which is introduced into these mouse ES 

cells (Elliott et al., 2005). This ectopic sequence also shows Pol III loading and 

loss of methylation is unable to elevate this polymerase occupancy either. 

Thus, it can be concluded that genetically or pharmacologically stimulated loss 

of DNA methylation does not alleviate SINE transcriptional repression. 
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Figure 3.13: 5-azacytidine treatment does not elevate SINE expression 
Analysis by RT-PCR of expression levels of B1 and B2 transcripts in MEFs and Alu transcripts in 
HeLa cells following treatment with 4µM 5-azacytidine for 16hrs and 72hrs respectively. Apo-E 
mRNA provides the positive control and ARPP P0 mRNA provides the loading control. 
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Figure 3.14: 5-azacytidine treatment does not alter Pol III occupancy on SINEs 
ChIP assay in mouse ES cells with antibody against Rpc155 at B1 and B2 genomic consensus 
sequences following treatment with 4µM or without 5-azacytidine for 16hrs. ChIP with beads only 
and TAFI48 antibody provide the negative controls. ChIPs with antibodies against MBD2 and 
MeCP2 indicate the DNA methylation status of the loci. 7SL locus provides positive control for Pol 
III binding and negative control for MBP occupancy. Alu(MLL) is an ectopic Alu sequence 
introduced into the mouse genome (Refer to chapter 4). The ChIPs were normalised to serial 
dilutions of the inputs. 
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3.3 Discussion 

Recently published genome wide studies have suggested the presence of Pol III 

on SINES. Using ChIP-sequencing for Pol III in K562 cells, Kevin Struhl and co-

workers reported ~1000 Pol III enriched loci that had not been previously 

described. 90% of these sites are found to be located near SINEs and comprise 

~61% of total Pol III binding sites in the genome. These sites showed considerably 

reduced polymerase loading compared to tRNA genes, however enrichment 

levels were clearly above background (Moqtaderi et al., 2010). This could be 

unique to K562 cells, which have reduced DNA methylation on SINEs (Li et al., 

2000). However, ChIP-sequencing in IMR90 cells (Canella et al., 2010) and HeLa 

cells (Oler and Cairns) has also revealed the clear presence of Pol III on Alus 

sequences.  

In agreement with these genome-wide approaches and contrary to expectations, 

this chapter provides clear evidence for the presence of Pol III transcription 

apparatus on human and mouse SINE sequences. SINEs show a distinct reduction 

in Pol III loading compared to the actively transcribed 7SL locus. No such 

difference is observed in TFIIIB or TFIIIC occupancy. As yet the reason for this 

defect in Pol III recruitment on SINEs is unclear. 

In order for transcription apparatus to occupy the sheer number of SINES, a cell 

would require a large amount of Pol III transcription factors. Estimates from 

quantitative western blots suggest that TBP, BRF1 and TFIIIC110 are equimolar in 

MEF (2x106 mol./cell) and HeLa cells (5x105 mol./cell). Since TBP is required for 

all nuclear transcription (Cormack and Struhl, 1992) it could be reasoned that a 

cell would require a higher amount of this transcription factor. The relatively 

high amounts Pol III specific transcription factors means that the cell possesses 

sufficient quantities of these molecules to quench the thirst of SINEs for these 

transcription factors. MEFs show higher amount of all three transcription factors 

quantified compared to HeLa cells, which may be to maintain equal 

concentrations over the larger nuclear volume observed in MEFs (personal 

observation). 
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As very low levels of SINE transcripts are present in a cell (Maraia et al., 1993; 

Paulson and Schmid, 1986), it seems that the preassembled transcription 

complexes on SINEs are transcriptionally inactive or have very low 

transcriptional output. The innate unstable nature of SINE transcripts (Li and 

Schmid, 2004) and degradation by DICER1 (Kaneko et al., 2011) may also 

contribute to the low transcript levels. The quick transcriptional response of 

SINEs to cell stresses (Li et al., 1999; Liu et al., 1995) may require the presence 

of these poised transcription complexes. 

For more than a decade, DNA methylation has been thought to be primarily 

responsible for inhibiting SINE transcription. One mode of transcriptional 

repression by DNA methylation is through the recruitment of MBPs, which can 

repress transcription through their transcription repression domains (Hendrich 

and Bird, 1998). This study demonstrates the enrichment of MBPs on both human 

and mouse SINEs. B2 elements also seem to be occupied by MBPs, for which 

there is no previous precedent. MBD1, MBD2 and MeCP2 have been previously 

shown to have differing binding preferences. For example, high affinity binding 

of MeCP2 to DNA requires a stretch of four or more A/Ts adjacent to the meCpG, 

whereas MBD1 prefers to bind meCpGs within TCGCA and TGCGCA sequences 

(Clouaire et al., 2010). MeCP2 shows higher occupancy on SINEs compared to 

MBD1 and MBD2, however the reason for this is unclear since the SINEs studied 

are not distinctly enriched for CpGs flanked by A/Ts. However, the presence of 

various MBPs is not enough to inhibit polymerase recruitment to these 

sequences. Sequential ChIP assays revealed that Pol III is able to co-occupy SINE 

sequences alongside MBPs. 

DNA methylation can also repress transcription by directly inhibiting 

transcription factor binding to their recognition sequences (Watt and Molloy, 

1988). A considerable number of DNA-binding proteins require contact with 

cytosine in the major groove of the double helix. Most mammalian transcription 

factors have recognition sites which are within GC-rich sequences (Bird and 

Wolffe, 1999). Indeed, the consensus B-block binding sequence in Pol III 

promoters has a central CG dinucleotide (Galli et al., 1981). The methylation of 

an A-block CpG was shown to be deleterious for Alu transcription in vitro, 

although the methylation of surrounding CpGs was found to be equally disruptive 

(Liu and Schmid, 1993). 
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This study clearly demonstrates that TFIIIC and Pol III are capable of recruitment 

to methylated DNA in cells. It is possible that TFIIIC averts the binding inhibition 

by meCpG due to the numerous points of contacts it makes with the DNA 

(Bartholomew et al., 1990; Braun et al., 1992; Gabrielsen et al., 1989; Kovelman 

and Roeder, 1992; Yoshinaga et al., 1989). However, as B-block binding 

determines the promoter affinity of this multi-subunit transcription factor, it is 

possible that B-block CpG methylation would be more deleterious to TFIIIC and 

therefore Pol III recruitment.  

Bisulfite sequencing revealed the presence of DNA methylation on Pol III 

occupied Alu sequences. Analysis of 14 Alu family consensus sequences shows 

that there is no difference in the DNA methylation levels between the input and 

Pol III ChIP samples. Pol III ChIP sample also contains Alu sequences methylation 

within the A- and B-boxes. These data suggest that Pol III loading is not affected 

by DNA methylation, even when A- and B-box regulatory elements are 

methylated. 

Moreover, the young AluY elements show higher DNA methylation compared to 

their older AluJ and AluS counterparts, which may have lower CpG content due 

to a loss of meCpGs through deamination (Duncan and Miller, 1980). Despite 

having higher DNA methylation, AluY families show higher Pol III loading 

compared to AluJ or AluS elements. This may be due to the more intact A- and 

B-boxes found within these younger transposons which show the least amount of 

sequence divergence from the master Alu gene (Shen et al., 1991). Therefore, 

DNA methylation is not found to negatively correlate with RNA Pol III loading at 

SINEs. 

This study finds no evidence to support the idea that DNA methylation inhibits 

SINE transcription. In Dnmt1-/- cells, loss of DNA methylation does not elevate 

Pol III loading onto SINEs, neither does it increase SINE expression. This result is 

also confirmed with 5-azacytidine treatment of human and mouse cells, which is 

surprising and contradictory to the existing literature. 5-azacytidine treatment 

of HeLa cells was previously shown to cause 5- to 8-fold elevation in Alu 

transcripts (Liu et al., 1994). However, the cells were treated for 8 days with 5-

azacytidine, and the transcriptional effect observed may have been due to 

downstream effects of this long treatment. The authors confirmed that Alus 
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were demethylated, but this does not prove that demethylation was directly 

responsible for upregulation of Alu expression. 5-azacytidine has been shown to 

cause DNA damage (Juttermann et al., 1994; Murakami et al., 1995) and SINE 

transcription is upregulated in response to DNA damaging agents (Rudin and 

Thompson, 2001). The present study found that 16 – 72hr treatment of mouse 

and human cells was sufficient to cause SINE demethylation, but does not lead 

to elevation of SINE expression. Moreover, this expression data is strongly 

supported by the promoter occupancy analysis. 

There have been multiple studies showing DNA methylation dependent inhibition 

of SINE transcription in vitro (Kochanek et al., 1993; Liu and Schmid, 1993) and 

following transient transfections (Koch and Stratling, 2004; Yu et al., 2001). DNA 

methylation inhibited Alu transcription at low template concentration, whereas 

no such inhibition was observed at higher template concentrations which would 

more accurately represent the high SINE copy number found in vivo (Liu and 

Schmid, 1993). Co-transfection of methylated Alu sequences with the MeCP2 TRD 

relieved the methylation-mediated repression, rather than compounding it (Yu 

et al., 2001). In agreement with this, there is evidence in our lab that a genetic 

loss of MeCP2 does not lead to elevation in cellular SINE transcript levels 

(Unpublished data, Jana Vávrová). Cell stress response is able to elevate SINE 

transcription without affecting DNA methylation status (Chu et al., 1998; Liu et 

al., 1995), suggesting that transcription through methylated SINE DNA may be 

possible. Thus, it is possible that SINE transcriptional inhibition is achieved 

through chromatin modifications. This possibility has been investigated in 

Chapter 4. 

This chapter demonstrates that human and mouse SINEs are occupied by Pol III 

transcription apparatus and this occupancy is unaffected by the presence of DNA 

methylation and MBPs. Moreover, genetically or pharmacologically stimulated 

loss of DNA methylation does not elevate SINE transcriptional repression. 
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Chapter 4 Chromatin and Pol III mediated 
transcription of SINEs 
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4.1 Introduction 

As previously described, human and mouse SINE elements are occupied by Pol III 

transcription apparatus. However, Pol III loading on SINEs is considerably 

diminished compared to actively transcribed 7SL genes. Loss of DNA methylation 

neither leads to increased cellular SINE transcript levels, nor does it cause 

increased Pol III loading at SINEs. The presented data, along with the 

observation that cell stresses can alleviate SINE transcription from methylated 

templates (Chu et al., 1998; Liu et al., 1995), suggest that SINE transcription is 

being inhibited by mechanisms other than DNA methylation. 

Reconstitution experiments have shown that an Alu element can direct the 

rotational positioning of a nucleosome. Moreover, it was also observed that the 

methylation of this Alu template enhanced its capacity to position nucleosomes 

(Englander et al., 1993). This positioned nucleosome completely abrogated the 

Pol III-dependent in vitro transcription of the Alu template. The positional 

information was found to be an intrinsic property of the Alu family and could 

influence the conformation of the chromatin surrounding the element (Englander 

and Howard, 1995). These studies suggest that repressive chromatin could be an 

intrinsic feature of SINEs and may be responsible for their transcriptional 

repression. 

There are clear structural and functional differences between Alu chromatin 

obtained from unstressed cells and that from cells stressed with viral infections. 

Stressed Alu chromatin is more readily transcribed in vitro and is more 

accessible to enzymatic digestion (Li et al., 2000; Russanova et al., 1995). There 

is genome-wide increase in chromatin accessibility of Alu and other repetitive 

sequences following heat shock (Kim et al., 2001), whereas the levels of DNA 

methylation are unaltered (Chu et al., 1998; Liu et al., 1995). These 

observations suggest that transcriptional repression at SINEs is primarily 

maintained by repressive chromatin.  
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The relationship between DNA methylation and chromatin modifications is well 

established. Chromatin modifications are well-known downstream effectors of 

DNA methylation (see section 1.4.3). However, there is increasing evidence to 

suggest that chromatin modifications are required for the maintenance of DNA 

methylation at many locations. For example, H3K9 methylation by G9a, GLP and 

SUV39H have been shown to be necessary for maintaining DNA methylation at 

retrotransposons and satellite repeats (Dong et al., 2008; Lehnertz et al., 2003). 

Loss of DNA methylation does not lead to a decrease in H3K9me3 (Gilbert et al., 

2007; Lehnertz et al., 2003), whereas loss of K9MTs leads to a loss of DNA 

methylation (Dong et al., 2008; Lehnertz et al., 2003). 

Alu sequences have been shown to be enriched for H3K9 methylation (Kondo and 

Issa, 2003), which is a mark for repressive chromatin and transcriptional 

repression. H3K9me3 modification is responsible for the recruitment of the 

heterochromatin protein 1 (HP1) family of highly conserved non-histone 

proteins, which were identified as a component of heterochromatin in 

Drosophila. However, more recently HP1 has also been shown to cause silencing 

of euchromatic genes (Fanti and Pimpinelli, 2008). 

HP1 contains an N-terminal chromodomain which recognises H3K9 methylation. 

However, this recognition is not sufficient for the recruitment of HP1 to 

chromatin. SUV39H1 was the first K9MT identified to interact with HP1 and this 

protein-protein interaction was found to be crucial for HP1 targeting. Once 

recruited to a target HP1 can in turn recruit more SUV39H1 and propagate the 

H3K9me3 modification (Stewart et al., 2005). HP1 is now known to recognise the 

SET domain found in all K9MTs (Fritsch et al., 2010). Thus, HP1 and SUV39H1 can 

together mediate the formation of non-permissive chromatin. HP1α and HP1β 

isoforms are associated with gene repression, whereas HP1γ is associated with 

transcriptional activation (Kwon and Workman, 2010).  

Recently, Barski et al showed that levels of H3K9me3 displayed a clear negative 

correlation with Pol III loading at tRNA loci (Barski et al., 2010). This chapter 

investigates the possibility that H3K9me3 may be responsible for the repression 

of Pol III-mediated SINE transcription. 
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4.2 Results 

4.2.1 SINEs are enriched for H3K9me3, SUV39H1 and HP1. 

H3K9me3 at SINEs was shown to be sensitive to 5-azadeoxycytidine treatment, 

indicating that the presence of this modification depends on DNA methylation 

(Kondo and Issa, 2003). However, there is contradictory evidence that the 

genetic loss of DNMTs does not lead to a reduction of H3K9me3 from repeat 

sequences (Lehnertz et al., 2003). H3K9me3 along with H3K27me3, which causes 

transcriptional repression through recruitment of the polycomb group of 

proteins, are enriched at silent tRNA loci and correlate with diminished Pol III 

loading (Barski et al., 2010). To investigate the role of these repressive histone 

modifications in transcriptional silencing of SINEs, comparative ChIP assays were 

performed at SINEs in Dnmt1 wild-type and null MEFs (Figure 4.1). 

ChIPs with beads only (mock) and TAFI48 antibody provide the negative controls. 

ChIP with histone H3 provides the positive control and also controls for the 

nucleosome occupancy. The ChIP DNA was normalised to serial input dilutions. 

7SL gene, which was previously shown to be highly enriched for Pol III, shows a 

complete absence of both H3K9me3 and H3K27me3. Apo-E locus only shows the 

presence of H3K27me3. Trimethylation at H3K9 and H3K27 residues is observed 

on both mouse SINE families in control cells. Alu SINEs are also enriched for 

H3K9me3 in HeLa cells (Figure 4.2). 

Histone H3 occupancy is unaltered following the loss of DNA methylation in 

Dnmt1-/- cells. Thus, any change observed in the levels of histone modifications 

is not a function of altered nucleosome occupancy. There is a clear reduction in 

H3K27me3 at SINEs and Apo-E gene in Dnmt1-/- cells, whereas, the H3K9me3 at 

SINEs is unperturbed. This is contradictory to what was previously observed with 

5-azadeoxycytidine treatment (Kondo and Issa, 2003) and suggests that H3K9me3 

at SINEs is not dependent on DNA methylation. SINEs were found to have very 

low enrichment for active marks such as H3 acetylation, H4 acetylation and 

H3K4me3, indicating a repressive chromatin environment (data not shown). 
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Figure 4.1: Histone H3 Lysine 9 trimethylation on SINEs is unaltered in Dnmt1 null cells 
ChIP assay in p53-/- and p53-/- Dnmt1-/- MEFs with antibodies against histone H3, histone H3 Lys9 
trimethylation (H3K9me3) and histone H3 Lys27 trimethylation (H3K27me3) at B1 and B2 genomic 
consensus sequences. B1(ch9) and B2(ch9) are specific SINEs on chromosome 9. ChIPs with 
beads only and TAFI48 antibodies provide the negative controls. ChIPs were normalised to serial 
dilutions of the inputs. 
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Therefore, SINEs are enriched for H3K9me3 and the presence of this histone 

modification is independent of DNA methylation. Histone lysine 

methyltransferases responsible for the methylation of H3K9 (K9MTs) include 

SUV39H1, G9a and SETDB1 (Kouzarides, 2007). SUV39H is thought to be 

responsible for H3K9me3 at pericentric repeat sequences (Lehnertz et al., 2003). 

Moreover, SUV39H knockout mouse ES cells show elevated levels of B1 and B2 

SINE transcripts (Martens et al., 2005). These observations suggest that SUV39H 

may have a role in SINE transcriptional repression. 

In order to investigate the presence of SUV39H1 and associated HP1 at SINEs, 

chromatin from HeLa cells was subjected to ChIP assays with an antibody against 

H3K9me3, two antibodies against SUV39H1 and an antibody against all HP1 

isoforms (Figure 4.2). Histone H3 antibody provides a positive control, whereas 

TAFI48 antibody provides a negative control. Promoter of the human p21 gene, 

which has previously been shown to be occupied by SUV39H1, provides a positive 

control PCR (Cherrier et al., 2009). 7SL locus, that was previously seen to be not 

enriched by H3K9me3, provides a negative control PCR. Serial input dilutions 

show the quantitative nature of the PCRs. 

Three of the four Alu loci tested show the clear presence of both SUV39H1 and 

HP1. Alu(ch6) is enriched for H3K9me3, however it is not enriched for SUV39H1. 

The lack of HP1 at this site indicates that SUV39H1 occupancy may be necessary 

for HP1 recruitment at SINEs. It has been previously shown that the presence of 

H3K9me3 is insufficient for the recruitment of HP1 to its target loci. The 

presence of SUV39H1, but not G9a, alongside H3K9me3 was found to be required 

for successful HP1 recruitment (Stewart et al., 2005). Thus, the H3K9me3 at 

Alu(ch6) may be due to the activity of a alternative K9MT. 

Thus, it can be concluded that SINEs are enriched for H3K9me3, SUV39H1 and 

HP1. 
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Figure 4.2: Histone H3 Lysine 9 methyltransferase SUV39H1 and HP1 occupy Alu sequences 
ChIP assay in HeLa cells with antibodies against H3K9me3, two different antibodies against 
SUV39H1 and an antibody against HP1 at Alu loci on chromosome 6, 10, 19 and 22. ChIP with 
TAFI48 antibody provides the negative control. 7SL and p21 promoter respectively provide the 
negative and positive controls for the ChIP. Serial dilutions of the inputs show the quantitative 
nature of the PCR. 
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4.2.2 SUV39H1 inhibits SINE transcription irrespective of DNA 
methylation status 

Chaetocin, a fungal metabolite from chaetomium minutum, was initially 

described in the 1970s. It was identified as a specific inhibitor of SUV39H 

methyltransferase both in vitro and in vivo (Greiner et al., 2005). More recently, 

chaetocin has been used to demonstrate SUV39H1 mediated repression of the 

p21WAF1 gene in microglial cells (Lakshmikuttyamma et al., 2010) and repression 

of p15INK4B and E-cadherin genes in myeloid leukaemia cell lines (Cherrier et al., 

2009). The anti-myeloma activity of chaetocin was initially reported to be 

mediated via imposition of oxidative stress, however the apoptosis observed has 

now been shown to be also due to derepression of the p21 gene promoter 

(Cherrier et al., 2009). 

In order to investigate the role of H3K9me3 and SUV39H1 in SINE transcriptional 

repression, control and Dnmt1-/- cells were treated with increasing 

concentrations of chaetocin for 24hrs. Total RNA obtained from mock and 

chaetocin treated cells was subjected to RT-PCR analysis using primers against 

B1 and B2 consensus transcripts (Figure 4.3). Expression levels were normalised 

to ARPP P0 mRNA levels. Since the Apo-E locus was not found to be enriched for 

H3K9me3 (Figure 4.1), Apo-E mRNA levels do not respond to chaetocin treatment 

as expected. This demonstrates the specificity of the response. 

A dose-dependent increase in both B1 and B2 expression is observed following 

chaetocin treatment of Dnmt1 wild-type and null cells. An increase in levels of 

Alu transcripts was also observed in response to chaetocin treatment of HeLa 

cells (data not shown). These results suggest that SUV39H1 is responsible for 

SINE transcriptional inhibition. Moreover, chaetocin is able to derepress SINE 

transcription regardless of SINE DNA methylation status. 
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Figure 4.3: SUV39H inhibitor, Chaetocin, de-represses SINE transcription irrespective of the 
DNA methylation state 
Analysis by RT-PCR of expression levels of B1 and B2 transcripts in p53-/- and p53-/- Dnmt1-/- 
MEFs following treatment with the shown concentrations of chaetocin for 24hrs. ARPP P0 mRNA 
provides the loading control.  
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The increase observed in SINE transcript levels in response to chaetocin 

treatment could be a function of increased transcript stability or reduced 

degradation and not elevated transcription. Since, SINEs show reduced Pol III 

occupancy compared to actively transcribed Pol III genes (Chapter 3), the 

release from transcriptional repression may lead to elevation in Pol III loading. 

Thus, the Pol III loading at SINEs could be considered a surrogate for the 

transcriptional activity.  

Therefore, in order to establish if the observed effect was transcriptional, the 

levels of Pol III occupancy at SINEs were analysed following chaetocin treatment. 

HeLa cells treated with 100nM chaetocin were subjected to ChIP assays with 

antibodies against H3K9me3, Pol III and TFIIIC (Figure 4.4). TAFI48 antibody 

provides the negative control, whereas, histone H3 antibody provides the 

positive control. 7SL gene provides the positive control PCR for Pol III 

transcription factor occupancy, whereas Apo-E gene provides the negative 

control PCR. ChIPs were normalised to serial input dilutions. 

As expected, chaetocin treatment leads to a decrease in H3K9me3 enrichment 

at most Alu sequences analysed. No change in H3 enrichment is observed, 

suggesting that the decrease in H3K9mes is not due to an overall loss of 

nucleosomes but a specific reduction in the post-translational histone 

modification. Alu(ch6) does not show a decrease in H3K9me3 levels, but this 

locus is also not enriched for SUV39H1 (Figure 4.2). Since, at concentrations 

used, chaetocin is a specific inhibitor of SUV39H (Greiner et al., 2005), this 

suggests that H3K9 at Alu(ch6) is methylated by an alternative K9MT. As 

expected, the Pol III and TFIIIC occupancy on Alu(ch6) is not affected by 

chaetocin treatment.  

All Alu loci showing a decrease in H3K9me3 in response to chaetocin treatment 

show a concordant elevation in Pol III loading. This suggests that the elevated 

SINE expression observed by RT-PCR is due to an increase in Pol III-mediated 

transcription at SINEs. No increase in TFIIIC occupancy is observed following 

chaetocin treatment, suggesting that H3K9me3 specifically represses polymerase 

recruitment at SINEs. Chaetocin causes no increase in Pol III loading at the 7SL 

locus, which indicates that the elevated Pol III-loading on SINEs is not part of a 

global increase in cellular Pol III transcription. 
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Figure 4.4: Chaetocin treatment leads to increased polymerase loading onto selected SINEs 
without altering TFIIIC occupancy 
ChIP assay in HeLa cells with antibodies against H3K9me3, RPC155 and TFIIIC220 at Alu loci on 
chromosomes 6, 10, 19 and 22 following treatment with 100nM chaetocin for 24hrs. ChIPs with 
TAFI48 and H3 antibodies provide the negative and positive controls respectively. 7SL and Apo-E 
loci respectively provide the positive and negative controls for polymerase occupancy. The 
samples were normalised to serial dilutions of the inputs. 
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ChIP assays in Dnmt1 wild-type and null MEFs with antibodies against H3K9me3, 

MBD2 and Pol III were performed in order to investigate the interplay between 

DNA methylation and H3K9 methylation at SINEs (Figure 4.5). Just like the 

human SINEs, both B1 and B2 SINE sequences show reduced H3K9me3 and 

elevated Pol III occupancy in response to chaetocin treatment. However, the Pol 

III loading on a tRNALeu gene, negative for H3K9me3, is unaltered. 

Chaetocin is able to elevate Pol III loading onto SINEs both in the presence and 

absence of DNA methylation. H3K9me3 can recruit DNMTs and induce 

methylation of the target sequences (Cheng and Blumenthal, 2010). The DNA 

methylation at SINEs could be a result of such targeting. However, this is not 

found to be the case since MBD2 occupancy in Dnmt1 wild-type cells is unaltered 

following the loss of H3K9me3. Moreover, this MBD2 occupancy and the implied 

DNA methylation at B1 and B2 SINEs is unable to perturb the chaetocin-mediated 

increase in Pol III transcription, indicating that Pol III may be able to transcribe 

through methylated DNA at SINEs. 
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Figure 4.5: Chaetocin treatment leads to increased polymerase loading onto SINEs without 
altering and irrespective of the DNA methylation state 
ChIP assay in p53-/- and p53-/- Dnmt1-/- MEFs with antibodies against H3K9me3, MBD2 and 
RPC155 at B1 and B2 genomic consensus sequences following treatment with 100nM chaetocin 
for 24hrs. ChIPs with TAFI48 and H3 antibodies provide the negative and positive controls 
respectively. Apo-E and tRNALeu genes respectively provide the negative and positive controls for 
polymerase occupancy and visa versa for MBD2 occupancy. ChIPs were normalised to serial 
dilutions of the inputs. 
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4.2.3 SINE transcription and histone deacetylation 

The data so far indicate that in human and mouse cells the transcriptional 

repression of SINEs is due to the trimethylation of H3K9 by SUV39H1 and this 

repression is independent of DNA methylation. H3K9 methylation is thought to 

impose transcriptional silencing through the recruitment of HP1. However, the 

presence of H3K9 methylation has also been shown to cause deacetylation of H3 

and H4 in an HP1-independent manner (Stewart et al., 2005). There is a 

functional interaction of SUV39H1 with HDAC1, HDAC2 and HDAC3, which causes 

this HP1-independent silencing (Vaute et al., 2002). Moreover, DNA methylation 

also recruits HDACs via MBPs (Zhang et al., 1999) and therefore the involvement 

of HDACs in SINE transcriptional silencing cannot be excluded. 

To investigate this, total RNA from Dnmt1 wild-type and null cells was subjected 

to RT-PCR analysis following 6hr treatment with 100nM TSA (Figure 4.6). The 

expression levels were normalised to ARPP P0 mRNA levels. The levels of B1 and 

B2 consensus transcripts are elevated two-fold (p<0.05) following TSA treatment 

of wild-type cells, which suggests that HDACs may contribute to SINE 

transcriptional repression. In stark contrast, SINE expression is not increased 

following TSA treatment of Dnmt1 null cells (p>0.1). This surprisingly suggests 

that there is a switch from HDAC-dependent SINE repression in wild-type cells to 

a HDAC-independent repression in Dnmt1 null cells. The DNA methylation 

coupled HDAC-mediated repression indicates that DNA methylation may have a 

minor contribution in SINE transcriptional repression. 
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Figure 4.6: SINE expression is sensitive to TSA treatment in a DNA methylation-dependent 
manner. 
Analysis by RT-PCR of expression levels of B1 and B2 transcripts in p53-/- and p53-/- Dnmt1-/- 
MEFs following treatment with 100nM TSA for 6hrs. ARPP P0 mRNA provides the loading control. 
The quantification was performed using ImageJ. 
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To further study the involvement of DNA methylation and HDACs in SINE 

silencing, chromatin from Dnmt1 wild-type and null cells was subjected to ChIP 

assays with antibodies against HDAC1, HDAC2 and Pol III (Figure 4.7). TAFI48 

antibody provides the negative control. Sequential input dilutions demonstrate 

the quantitative nature of the PCRs and tRNALeu gene provides the negative 

control for HDAC occupancy. B1, B2 and Apo-E genes are clearly enriched for 

HDAC1 and HDAC2 in wild-type cells. Since the Apo-E gene does not show 

H3K9me3 enrichment, HDACs at this locus are recruited by MBPs only. A 

reduction in HDAC1 and HDAC2 enrichment is observed following the loss of DNA 

methylation, whereas no resultant increase in Pol III loading is seen at SINEs.  

The release of HDACs in Dnmt1-/- cells does not cause elevation in histone 

acetylation at SINEs (data not shown). Residual HDAC occupancy can still be seen 

in Dnmt1-/- cells, which may be recruited by SUV39H1. However, the SINEs which 

are still occupied by HDACs seem to be insensitive to TSA treatment and the 

reason for this is unclear. SINE transcription might be more sensitive to an acute 

loss of HDAC activity following TSA treatment of wild type cells. However, long 

term removal of HDAC-dependent repression in Dnmt1 null cells may be 

compensated for by a switch to ‘HP1 only’ repression, which causes the SINE 

transcription to become HDAC-independent in Dnmt1-/- cells. 
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Figure 4.7: Loss of DNA methylation leads to reduced HDAC occupancy at SINEs 
ChIP assay in p53-/- and p53-/- Dnmt1-/- MEFs with antibodies against HDAC1 and HDAC2 at B1 
and B2 genomic consensus sequences. ChIPs with TAFI48 and Pol III antibodies provide the 
negative and positive controls respectively. Apo-E and tRNAleu genes respectively provide the 
positive and negative controls for HDAC occupancy and visa versa for Pol III occupancy. The 
ChIPs were normalised to serial dilutions of the inputs. 
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SINE expression shows clear differences in the sensitivity to TSA treatment in the 

presence and absence of DNA methylation. In order to look for any effect of DNA 

methylation on SINE transcriptional sensitivity to chaetocin treatment, RT-PCR 

data in Figure 4.3 was further analysed by ImageJ densitometry (Figure 4.8). The 

expression data were normalised to ARPP P0 mRNA levels. Both B1 and B2 

expression shows an increased sensitivity to chaetocin treatment in Dnmt1 null 

cells compared to the wild-type controls. These results collectively suggest that 

the DNA methylation may be contributing to transcriptional inhibition of SINEs, 

possibly through HDACs. However, this inhibition is superseded by HDAC-

independent repression by H3K9me3-mediated repressive chromatin.  
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Figure 4.8: SINE expression shows increased sensitivity to chaetocin treatment in absence 
of DNA methylation 
Quantification by ImageJ of expression levels of B1 and B2 transcripts in p53-/- and p53-/- Dnmt1-/- 
MEFs following treatment with shown concentrations of chaetocin for 24hrs. The expression was 
normalised to ARPP P0 mRNA levels. 
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4.3 Discussion 

There is a considerable amount of evidence in the literature correlating DNA 

methylation with H3K9 methylation. DNA methylation can recruit K9MTs via 

MeCP2, whereas K9MTs can in turn lead to DNA methylation by recruiting DNMTs. 

These two represent conserved pathways that cooperate to achieve 

transcriptional repression (Cheng and Blumenthal, 2010).  

K9MTs G9a and GLP have been shown to be required for DNA methylation at 

various loci, including retrotransposons and satellite repeats. G9a-/- cells show 

reduced DNA methylation, whereas no reduction in H3K9me3 or HP1 occupancy 

is observed. Despite the loss of DNA methylation, G9a-/- cells do not show 

elevated expression of these repeat sequences. Therefore, transcriptional 

repression at repeats in G9a-/- cells is dependent on H3K9 methylation (Dong et 

al., 2008). Similarly, H3K9 methylation is sufficient to maintain endogenous LTR 

retroviral silencing in Dnmt1/3a/3b triple knockout mouse ES cells which lack 

DNA methylation (Matsui et al., 2010).  

SUV39H was also shown to be required for directing H3K9me3 and DNMT3b-

dependent DNA methylation at pericentric repeats. Dnmt1 single or 

DNMT3a/DNMT3b double-deficient mouse ES cells neither show reduced 

H3K9me3 nor show increased transcription at these repeats. However, unlike the 

G9a-/- cells, SUV39H-/- cells show loss of H3K9me3 and elevated repeat 

transcription (Lehnertz et al., 2003). From these studies, the presence of 

H3K9me3 seems to be responsible for transcriptional repression, whereas the 

presence of DNA methylation is optional. 

CTIP2, which gets recruited to the p21WAF1 promoter through interactions with 

DNMTs and HDACs, cooperates with SUV39H1 to cause transcriptional repression 

in a DNA methylation-dependent manner (Cherrier et al., 2009). At the p16INK4a 

and the E-cadherin loci in myeloid leukaemia cells, H3K9 methylation and 

transcriptional silencing also seem dependent on DNA methylation. 5-azacytidine 

treatment of these cells is sufficient to dissociate SUV39H1 from these loci and 

cause transcriptional de-repression (Lakshmikuttyamma et al., 2010). However, 

elegant time-course experiments with colorectal cancer cells show that, even 

though the loss of DNA methylation leads to reduction in H3K9 methylation at 
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the p16 locus, it’s re-silencing following multiple passages is first established by 

H3K9 trimethylation and then followed by DNA methylation (Bachman et al., 

2003). In these examples, transcriptional repression is lost by the removal of 

DNA methylation, however the initial establishment of repression may be due to 

H3K9 methylation. It is becoming clearer that histone modification are not mere 

effectors of DNA methylation mediated silencing, but, on the contrary, may be 

responsible for the establishment of silencing. DNA methylation simply seems to 

be responsible for ‘locking in’ the repressed state per se. 

SINEs have been previously shown to be enriched for H3K9 methylation (Kondo 

and Issa, 2003). H3K9me3 and H3K27me3 marks also correlate with low Pol III 

loading on inactive tRNA genes (Barski et al., 2010). The data presented in this 

chapter show SINEs to be enriched for H3K9me3 and H3K27me3. Although both 

H3K9me and H3K27me pathways are often found overlapping in transcriptionally 

silenced regions, the crosstalk between these pathways is not well understood. 

Dnmt1 null cells show a loss of H3K27me3 modification, suggesting that 

polycomb group proteins that recognise this mark may be recruited to SINEs in a 

DNA methylation-dependent manner. However, loss of DNA methylation does not 

lead to alleviation of SINE transcriptional repression (Chapter 3). Since the 

reason for repression in the absence of DNA methylation was being investigated, 

H3K27me3 was not studied further. 

Kondo et al had observed that H3K9me3 at SINEs is sensitive to 5-

azadeoxycytidine treatment, suggesting that the presence of this modification at 

SINEs is dependent on DNA methylation (Kondo and Issa, 2003). However, 

contrary to these findings, Dnmt1 null cells do not show a reduction in H3K9me3 

at SINEs. It is possible that an acute removal of DNA methylation by 5-

azadeoxycytidine causes a temporary decrease in H3K9me3 by disturbing the 

repression equilibrium at these loci, whereas this cannot be seen in stable 

genetic deletions. 5-azacytidine may also be causing a reduction of H3K9me3 

due to associated cytotoxicity and cell stress responses (Juttermann et al., 

1994). 

The H3K9me3 observed at SINEs is accompanied by K9MT SUV39H1 and 

associated HP1. Since, H3K9me3 occupancy is not sensitive to loss of DNA 

methylation, the same can be assumed for SUV39H1 and HP1. Apo-E locus is not 
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enriched for H3K9me3 and can therefore be transcriptionally de-repressed 

following loss of DNA methylation (Chapter3).  

Chaetocin, a specific SUV39H inhibitor, has recently been used to show the 

SUV39H1-mediated transcriptional repression of p16, p21 and E-cadherin loci 

(Cherrier et al., 2009; Lakshmikuttyamma et al., 2010). In the data presented 

here, chaetocin treatment causes a clear de-repression of SINE transcription, 

which is accompanied by a decrease in H3K9me3 and increased Pol III occupancy 

at SINEs. In 2005, Martens et al observed that B1 and B2 SINE transcript levels 

were elevated following SUV39H1h2 knockout in mouse ES cells. However, 

Dnmt1-/- and Dnmt3ab-/- cells did not show a similar elevation in SINE transcript 

levels (Martens et al., 2005). The data obtained in Chapters 3 and 4 agree with 

these findings. 

No increase in TFIIIC enrichment is observed following chaetocin treatment, 

suggesting that H3K9me3 inhibits transcription by specifically limiting the 

polymerase recruitment at SINEs. B1 and B2 expression levels increase in 

response to chaetocin treatment even in Dnmt1-/- cells, indicating that SUV39H1 

and H3K9me3 can maintain SINE transcriptional inhibition even in the absence of 

DNA methylation. Moreover, in wild-type cells, a reduction in H3K9me3 does not 

cause reduced MBD2 occupancy, indicating that these epigenetic modifications 

are not dependent on each other at SINEs. However, these data are obtained 

from a 24hr drug treatment that does not allow for a passive loss of DNA 

methylation and a genetic deletion of SUV39H1 may show a loss of DNA 

methylation at SINEs. 

HDACs are associated with both DNA methylation and H3K9me3-mediated 

transcriptional silencing (Vaute et al., 2002; Zhang et al., 1999). B1 and B2 

expression is found to be sensitive to TSA treatment in control cells. However, 

this is found not to be the case in absence of DNA methylation in Dnmt1-/- cells. 

Dnmt1-/- cells also show a reduction in HDAC1 and HDAC2 occupancy at SINEs, 

whereas, no consequent elevation in Pol III loading is observed. These data 

together suggest that HDAC-dependent silencing of SINEs is reliant on DNA 

methylation; however this repression is superseded by an alternative mechanism 

in the absence of DNA methylation, involving H3K9me3 and HP1.  
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This chapter demonstrates that DNA methylation and H3K9me3 provide two 

different mechanisms for SINE transcriptional repression, the former being 

HDAC-dependent and the later being HDAC-independent. However, H3K9 

methylation is the primary cause of SINE transcriptional repression that 

supersedes DNA methylation. 
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Chapter 5 DNA methylation and 
recombination at SINEs 
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5.1 Introduction 

Alu sequences show a high level of CpG methylation in most somatic tissues 

(Rubin et al., 1994; Schmid, 1991). DNA methylation also seems to be feature of 

murine SINEs (Jeong and Lee, 2005; Yates et al., 1999). The data obtained 

during this study clearly demonstrate that a loss of DNA methylation does not 

cause elevated SINE expression. Even though DNA methylation seems to have a 

contribution to SINE transcriptional inhibition, this contribution is relatively 

minor and is superseded by repression due to H3K9 trimethylation. So why is DNA 

methylation so prevalent on SINEs and does it serve any other purpose? 

Hypomethylation is common in solid tumours such as metastatic hepatocellular 

carcinomas (Lin et al., 2001), cervical cancers (Kim et al., 1994) and prostate 

tumours (Bedford and van Helden, 1987), and is also found in non-solid tumours 

such as B-cell chronic lymphocytic leukaemias (Wahlfors et al., 1992). Genomic 

hypomethylation correlates with increased disease progression and poor 

prognosis (Ehrlich, 2002). Hypomethylation is also often linked to chromosomal 

instability (CIN) in multiple human diseases (Ehrlich, 2005). 

Loss of methylation on centromeric satellite repeats is observed in multiple 

tumour types, including Wilms tumours, breast adenocarcinomas, ovarian 

epithelial carcinomas and hepatocellular carcinomas (Ehrlich, 2005). Pericentric 

repeat hypomethylation has been shown to be highly correlative with CIN in 

hepatocellular carcinomas (Wong et al., 2001). The best example for the link 

between DNA hypomethylation and CIN is provided by the rare recessive 

autosomal disorder known as immunodeficiency, centromeric instability and 

facial anomalies syndrome ICF). Biallelic mutations in DNMT3B cause 

hypomethylation at centromeric repeats leading to CIN in ICF (Xu et al., 1999). 

The loss of DNA methylation has been thought to lead to elevated transcription 

of transposable elements and thus contribute to genomic instability via an 

increase in transposition. This may be true for LINE and IAP (intercisternal A 

particle) elements (Bourc'his and Bestor, 2004; Howard et al., 2008; Jurgens et 

al., 1996), but no such evidence for Alu elements has been published. Moreover, 

the data presented in the previous chapters would argue against this possibility, 
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since the loss of DNA methylation does not lead to an elevation in SINE 

expression. 

Double-strand breaks are a threat to genomic stability and the two primary 

cellular mechanisms for dealing with this threat are homologous repair (HR) and 

non-homologous end joining (NHEJ). HR uses an identical sequence from the 

sister chromatid as a template for repair, whereas NHEJ simply ligates the 

broken ends back together. The choice between HR and NHEJ can depend on 

multiple factors such as the stage of the cell cycle, the DNA structure and the 

difficulty of repair. NHEJ is thought to be the preferred repair pathway for DSBs, 

but when the repair is more complicated HR machinery is engaged (Helleday et 

al., 2007). 

A third repair pathway called single strand annealing (SSA) is used particularly if 

two adjacent repeat sequences are involved. During SSA, the double-stranded 

DNA on both the repeat sequences is resected to give single-stranded DNA 

(ssDNA), which are then aligned and ligated. One of the repeat alleles and any 

intermediate DNA are always lost during SSA. Therefore, this repair pathway is 

highly mutagenic and can lead to permanent large deletions or chromosomal 

translocations (Haber, 2006).   

Alu sequences are homologous repeats and are, therefore, prime substrates for 

SSA. Erroneous repair between Alu repeats can be quite deleterious, since Alus 

are spread throughout the protein-coding regions of the genome (Korenberg and 

Rykowski, 1988). Areas of higher than average Alu density appear to be 

particularly associated with genomic instability. Alus are often found in the 

vicinity or even within the breakage points of translocations (Kolomietz et al., 

2002). Recombination between Alu sequences has been implicated in the 

etiology of several human genetic diseases, including α-thalassemia (Nicholls et 

al., 1987), hypercholesterolemia (Lehrman et al., 1987) and many cancers 

(Kolomietz et al., 2002). 

Erroneous repair at Alu sequences and DNA hypomethylation are both directly 

linked to genomic instability. So, does DNA methylation at Alus repress 

erroneous repair? 
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A model system designed by Elliot et al was employed to answer this question 

(Figure 5.1). Two homologous Alu elements have been stably inserted at the Rb 

locus on chromosome 14 and the Pim1 locus on chromosome 17 in a mouse ES 

cell line called Hom6.9 (Elliott et al., 2005). The Alu was derived from the mixed 

lineage leukaemia gene (MLL), where the erroneous recombination between Alu 

sequences in introns 6 and 1 gives rise to a MLL self-fusion protein (So et al., 

1997). These Alu sequences are inserted 3' and 5' of the neoMycin 

phosphotransferase gene splice donor and splice acceptor portions. An I-SceI site 

is inserted 5' and 3' of the Alu sequences respectively (Elliott et al., 2005). 

A targeted double-strand break can be introduced by electroporating the cells 

with a plasmid coding for the I-SceI restriction endonuclease. It was observed 

that an erroneous recombination event occurred with the frequency of 5.0 ± 4.0 

x 10-5, resulting in chromosomal translocation. The chromosome derived as a 

result of this translocation contained the functional neoMycin 

phosphotransferase gene. The translocation frequency was scored by counting 

the number of resistant colonies following neoMycin selection and dividing the 

colony count by the total number of cells seeded (Elliott et al., 2005). So what 

effect would demethylation of these Alu elements have on translocation 

frequency? 

 

Figure 5.1: Schematic – Translocation assay 
Homologous Alu elements (blue boxes) from the human MLL gene are inserted on chromosomes 
17 and 14 in mouse ES cells (Hom6.9 cells). These homologous Alu elements are 3' and 5' of the 
splice donor and splice acceptor portions of neoMycin resistance gene (neoSD and neoSA, yellow 
boxes). Double strand breaks (DSB) are generated by the I-SceI endonuclease. Erroneous repair 
can give rise to chromosomal translocations, where the derivative chromosome causes the cells to 
become neoMycin resistant. The frequency of this event was quantified to be 5.0 ± 4.0 
translocations/105 cells. (Elliott et al., 2005). 
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5.2 Results 

5.2.1 Ectopic Alus in mouse ES cells are methylated and sensitive 
to 5-azacytidine 

In order to investigate the effect of DNA methylation on translocation frequency 

at the Alu(MLL) element in the Hom6.9 cell line, it was first necessary to 

determine the DNA methylation status of these Alu sequences. The data in 

previous chapters show that the MBP enrichment at Alu elements is a clear 

indication of their DNA methylation status. Thus, in order to establish the 

methylation status of Alu(MLL), Hom6.9 cells were subject to ChIP assay with 

antibodies against MBD2 and MeCP2 (Figure 5.2). The polymerase occupancy at 

these ectopic Alu loci was also investigated using an antibody against the RPC155 

subunit of Pol III. Beads-only and TAFI48 antibody provide the negative controls. 

The pol II-transcribed p21 gene promoter provides the positive control for MBP 

occupancy (Cherrier et al., 2009) and negative control for Pol III occupancy, 

whereas, the tRNALeu gene provides the reverse control. 

PCR with primers recognising both the ectopic Alu(MLL) sequences shows the 

clear presence of MBD2 and MeCP2, indicating that these sequences are 

methylated. Higher enrichment of MeCP2 is observed at Alu(MLL) loci compared 

to MBD2, which is in agreement with the previous findings at endogenous Alu 

sites in human cells. Moreover, Pol III occupancy is also observed; however 

Alu(MLL) shows considerably less Pol III occupancy compared to tRNALeu gene 

(Note: The Pol III band in the tRNALeu PCR is overexposed).   

Treatment of Hom6.9 cells for 16hrs with 5-azacytidine is able to demethylate 

their genomes and cause considerable reduction in MBP enrichment at B1 and B2 

SINEs (Figure 3.13). Clear eviction of MBPs from Alu(MLL) loci is also observed, 

however, 5-azacytidine does not cause an increase in Pol III occupancy at SINEs. 

These results confirm that Alu(MLL) behaves in a manner similar to Alu 

sequences within human cells, and DNA methylation alongside Pol III occupancy 

are inherent features of SINEs. Moreover, these data suggest that any findings 

using this artificial system can be extrapolated to Alu sequences in human cells. 
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Figure 5.2: Ectopic Alus in the mouse genome behave similarly to Alus in the human 
genome 
ChIP assay in Hom6.9 cells with antibodies against MBD2, MeCP2 and RPC155 at Alu(MLL) 
sequences on chromosomes 17 and 14. ChIPs with beads only and TAFI48 antibody provide the 
negative controls. tRNAleu and p21 promoter, respectively, provide the positive and negative 
controls for polymerase occupancy and visa versa for MBP occupancy. Serial dilutions of the inputs 
show the quantitative nature of the PCR. 
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5.2.2 DNA methylation suppresses rearrangement at SINEs 

The translocation assay was performed on Hom6.9 cells as described in Elliot et 

al, 2005 (Figure 5.4). Cells were allowed to recover for 10hrs following 

electroporation with I-SceI vector (pCBAS) and then were treated with 5-

azacytidine for 16 hours . This duration of treatment is sufficient to demethylate 

Alu(MLL) sequences as it leads to clear eviction of MBPs (Figure3.14). However, 

any alterations observed in the translocation frequency could result from the 

cytotoxic effects of 5-azacytidine (Juttermann et al., 1994; Murakami et al., 

1995). To rule out this possibility, cells were alternatively treated with 

bleoMycin, an agent that causes double strand breaks. Cells treated with 5-

azacytidine and bleoMycin showed the presence of γ-H2Ax foci as viewed by 

immunofluorescence (data not shown). 

Negative control cells electroporated with pTK hyg plasmid do not survive 

selection with neoMycin, since there is no targeted DSB at the Alu(MLL) loci. 

Moreover, 5-azacytidine or bleoMycin treatments do not alter this result. These 

data indicate that the drug treatment on its own is not sufficient to cause the 

translocation event and that the number of colonies obtained in the 

translocation experiment reflects the frequency of erroneous repair at the 

Alu(MLL) loci. 

The untreated cells electroporated with pCBAS (I-SceI) show the clear presence 

of colonies following 8-10 day selection with neoMycin. This indicates that the 

translocation assay was successful and, unlike pTK hyg, pCBAS can lead to 

targeted DSB at Alu(MLL) loci which can then be subjected to erroneous repair. 

The translocation frequency is calculated to be 3.5 ± 2 translocations/105 cells, 

which is similar to what was previously reported by Elliot et al. 5-azacytidine 

treatment leads to a small but insignificant increase in the total number of 

colonies observed following neoMycin selection. On the other hand, a dramatic 

reduction in the total colony count is observed following bleoMycin treatment.  
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Figure 5.3: Translocation assay following 5-azacytidine and bleoMycin treatments 
Translocation assay was performed in Hom6.9 cells with 25µg of I-SceI plasmid (pCBAS) and 
negative control plasmid (pTK hyg). The cells were then treated with 4µM 5-azacytidine and 5µg/ml 
bleoMycin for 16hours. To obtain resistant colonies, selection for 8 to 10 days with 200µg/ml 
neoMycin was performed. Colony counts were performed following GIEMSA staining. 
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However, the total colony count is not a true reflection of the translocation 

frequency following drug treatment, since both the drugs are cytotoxic and lead 

to a substantial reduction in cell numbers on control plates not selected with 

neoMycin. 5-azacytidine and bleoMycin cause ~65% and ~85% loss in cell viability 

respectively. Therefore, the colony counts must be normalised to this loss in cell 

viability. 

Once normalised, the translocation frequency was plotted relative to the 

translocation frequency observed in control cells (Figure 5.4). 5-azacytidine 

shows a significant elevation in chromosomal translocation frequency compared 

to untreated control cells (p<0.01), whereas bleoMycin is unable to cause any 

alteration. These data indicate that the increased translocation is due to the 

demethylating property of 5-azacytidine and not its cytotoxicity. Moreover, an 

overall elevation in cellular DNA repair following bleoMycin treatment does not 

lead to an increase in erroneous repair at Alu(MLL). 

Therefore, it can be concluded that DNA methylation inhibits erroneous repair at 

SINEs, thus contributing to genomic stability. 
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Figure 5.4: Loss of DNA methylation elevates the rate of recombination at SINEs 
Relative incidence of translocation between homologous Alu elements in Hom6.9 cells was 
calculated by counting the number of neoMycin resistant colonies. The count was obtained from 
three independent biological repeats each performed in triplicates. This count was first normalised 
to the average loss of cell viability following drug treatment and then to the average number of 
colonies on the untreated plates. 
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As previously stated, Alu sequences provide prime targets for SSA-mediated 

mutagenesis. Elliot et al had previously reported that Hom6.9 cells undergo 

chromosomal translocation via the SSA repair pathway (Elliott et al., 2005). 

However, the dramatic increase in translocation frequency following the loss of 

DNA methylation could be due to an alteration in the repair pathway used.  

In order to investigate this, seven clones were picked from the control and 5-

azacytidine-treated Hom6.9 plates. The genomic DNA from these clones was 

subjected to PCR with primers flanking the Alu(MLL) sequences on different 

chromosomes (Figure 5.5). Since SSA would lead to the loss of one of the 

Alu(MLL) allele and NHEJ will not, the size of the PCR product obtained would be 

different depending on the repair pathway used for the translocation. Alus 

recombined as a result of SSA would be expected to give a 1kb PCR product, 

whereas Alus recombined as a result of NHEJ would result in a 1.3kb PCR 

product. DNA from Hom6.9 cells not subjected to the translocation protocol 

provides the negative control and demonstrates the specificity of the PCR 

reaction. 

A 1kb product is obtained from the PCR reaction on DNA from all the untreated 

clones, indicating that SSA is the repair pathway that causes the translocation. 

Moreover, 5-azacytine treated clones show no deviation from this pattern, 

indicating that a loss of DNA methylation does not lead to alteration in the 

repair pathway responsible for the erroneous repair. It is possible that the 

observed increase in translocation frequency is due to an increase in the kinetics 

of SSA repair. However, the details of how DNA methylation represses SSA repair 

are still unclear. 

Thus, DNA methylation serves to suppress erroneous repair at SINEs, possibly by 

suppressing error-prone repair pathways like SSA. 
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Figure 5.5: Increased recombination in the absence of DNA methylation is not due to a 
change in the repair pathway used 
PCR on DNA from clones picked following translocation assay in Hom6.9 cells with or without 5-
azacytidine treatment. The schematic on top depicts the location of the primer pair used (black 
arrows) and the different possible PCR product sizes depending on the repair pathway. Neg lane 
shows the PCR reaction on DNA from Hom6.9 cells that did not undergo the translocation protocol. 
M lanes are 1kb and 100bp DNA ladders. 
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5.3 Discussion 

Repetitive elements comprise at least 45% of the human genome and present 

ample opportunity for genomic recombination. With 1 million copies, Alu 

elements are the most abundant repeats in the human genome. Since Alus are 

spread throughout the protein-coding regions, rearrangements due to Alus can 

have devastating effects on genomic stability and have been implicated in many 

human diseases (Deininger et al., 2003; Konkel and Batzer, 2011; Lander et al., 

2001). 

Using a model for rearrangements driven by identical Alu elements, this chapter 

has shown that DNA methylation significantly suppresses interchromosomal 

translocation between identical Alu SINEs (p<0.01). It has been previously 

reported that translocations between identical Alu elements arise due to 

erroneous SSA repair (Elliott et al., 2005). A loss of DNA methylation does not 

lead to an alteration in the repair pathway used, but causes an increase in the 

translocation frequency. However, the reason for elevated SSA at the Alu(MLL) 

loci in the absence of DNA methylation is still unclear. 

RPA32 is a component of the replication protein A (RPA) complex, which binds 

single-stranded DNA obtained following strand resection. RPA binding is thought 

to facilitate single-strand annealing and thus promote SSA (Helleday et al., 

2007). Preliminary ChIP experiments on HeLa cells with an antibody against 

RPA32 show that 5-azacytidine treated Alus are more abundantly bound by this 

ssDNA-binding protein compared to untreated or bleoMycin-treated Alus (data 

not shown). These data, although preliminary, suggest that a loss of DNA 

methylation may lead to increased amounts of RPA-bound ssDNA within the cell. 

Thus DNA methylation may either inhibit the strand-resection kinetics or RPA-

binding to ssDNA. 

The interplay between DNA methylation and repair is not a new finding. DNMT1 

is recruited to sites of DSB repair via its interaction with PCNA and DMAP1 (Lee 

et al., 2010; Mortusewicz et al., 2005). This is thought to cause de novo 

methylation at recombined loci and silence them (Cuozzo et al., 2007). 

However, depletion of DMAP1 leads to elevated levels of HR, suggesting that the 
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recruitment of DNMT1 to the sites of DSB repair may somehow throttle the 

repair process (Lee et al., 2010). 

As previously mentioned, DNA hypomethylation has been correlated with CIN in 

multiple human diseases. Dnmt1-null cells show a high amount of chromosomal 

translocations as seen by chromosome painting (Karpf and Matsui, 2005). 

Demethylation by 5-azacytidine has also been shown to induce sister chromatid 

exchange in vitro and in vivo. This effect of 5-azacytidine has been shown to be 

due to its demethylating activity rather than the associated cytotoxicity 

(Albanesi et al., 1999; Morales-Ramirez et al., 2007). The data presented in this 

chapter demonstrate that Alu sequences may contribute to the genomic 

instability observed in the absence of DNA methylation.  

5-azacytidine and its analogues are FDA-approved treatments for 

myelodysplastic syndrome and other leukemias, where demethylation is thought 

to reactivate repressed tumour suppressor genes and cause tumour regression 

(Christman, 2002). Clinical trials with 5-azacytidine in patients with melanoma 

and renal cell carcinoma have also been reported (Gollob et al., 2006). 

However, 5-azacytidine treatment has also been associated with genome-wide 

DNA damage, CIN and reversal of differentiation in ES cells (Christman, 2002; 

Tsuji-Takayama et al., 2004). CIN caused by DNA demethylation could lead to 

multi-drug resistance and tumour relapse by causing tumour heterogeneity (Lee 

et al., 2011; Sotillo et al., 2010). In addition to these existing studies, the data 

obtained in this chapter would advise a careful review of the use of DNA 

demethylating agents in therapy. 

It must be noted that a 20% sequence divergence between Alu sequences causes 

a shift from SSA to NHEJ as the preferred mode of repair. This, however, does 

not lead to any alterations in the overall translocation frequency (Elliott et al., 

2005). The effects of DNA demethylation on NHEJ may not be similar to its 

effects on SSA. Crucially, NHEJ does not require the strand resection step 

(Helleday et al., 2007), which, according to preliminary data, seems to be the 

process influenced by DNA methylation. 

Since different Alu sequences show ~14% sequence divergence from the Alu 

consensus sequence (Deininger and Daniels, 1986), it is likely that the majority 
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of recombination events between Alus in vivo result from NHEJ as opposed to 

SSA. Elliot et al have also designed a system to study chromosomal translocation 

events between heterologous Alu elements. Initial attempts to use this Het-Alu 

system were unsuccessful due to extremely high cell death following 

electroporation. However, the effect of DNA demethylation on the translocation 

frequency in the Het-Alu cell line must be analysed in order to fully understand 

the mechanisms of erroneous repair. 

The Alu(MLL) elements used in the translocation assay in the Hom6.9 cells are 

occupied by  Pol III. This indicates that, even in this artificial system, the 

recruitment of Pol III is an inherent feature of SINEs. Moreover, these ectopic 

Alus show the same preference for MeCP2 binding over MBD2 binding that is seen 

at endogenous Alus in the human genome. Thus, this ectopic Alu sequence seems 

to behave in a manner very similar to endogenous SINEs. So is its transcription 

inhibited by H3K9me3? What effects would treatments with chaetocin or TSA 

have on the translocation frequency at these ectopic Alus? In addition to this, 

does the Pol III machinery interfere with the translocation event? Would B-block 

mutations or knockdown of TFIIIC elevate the translocation frequency by making 

more of the DNA available for erroneous repair? All these questions still remain 

to be answered.  

From the data obtained so far, it is clear that DNA methylation negatively 

regulates erroneous repair at homologous Alu elements and protects the genome 

from instability. But how this is achieved is still an unanswered question. 
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Chapter 6 Chromatin remodelling and Pol III 
transcription 
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6.1 Introduction 

Pol III transcriptional output is of vital importance for cellular growth and 

proliferation, and therefore, is subjected to tight regulation (see section 1.1.4). 

The previous chapters reveal that transcription of mammalian SINE sequences by 

Pol III is inhibited by H3K9 trimethylation. The first identified example of 

regulation of Pol III transcription by chromatin comes from the Xenopus 5S rRNA 

genes. The oocyte 5S genes show lower affinity for TFIIIA compared to the 

somatic 5S genes, and therefore less stable transcription complexes are formed. 

Following mid-blastula transition (MBT), the cellular levels of TFIIIA drop and the 

oocyte genes lose their expression due to their lower TFIIIA affinity. Introduction 

of excess TFIIIA is able to raise repression of oocyte 5S genes, but this effect is 

transient. The organisation of the oocyte 5S genes into compact chromatin by 

histone H1 is thought to contribute significantly to their silencing following MBT 

(Wolffe and Brown, 1988). 

Indeed, a positioned nucleosome near the 5S ICR was found to inhibit 

transcription initiation and downstream nucleosomes were shown to block 

elongation in an oocyte nuclear extract (Morse, 1989). Multiple other studies 

have shown that repressive chromatin structure, once formed over the 5S gene, 

can inhibit the binding of TFIIIA and inhibit transcription (White, 2002). 

However, TFIIIA can easily bind 5S ICR upon removal or acetylation of histone 

tails, suggesting that post-translational histone modifications play a decisive role 

in Pol III transcriptional regulation (Lee et al., 1993). A positioned nucleosome is 

also thought to be required to juxtapose PSE and DSE within the U6 promoter in 

order to facilitate the Oct-1 and SNAPc interaction (Stunkel et al., 1997). Alu 

sequences have been shown to be able to position nucleosomes, where a 

positioned nucleosome is able to repress Pol III-dependent Alu transcription 

(Englander and Howard, 1995). 

In contrast, the literature suggests that tRNA transcription is not influenced by 

chromatin (White, 2002). Manipulating the levels of histone H1 in Xenopus 

oocytes causes alterations in 5S rRNA expression, but tRNA expression is 

unaffected (Bouvet et al., 1994). Moreover, Drosophila tRNA genes were found 

to have increased sensitivity to micrococcal nuclease (MNase) and DNaseI 

digestion, indicating that tRNA genes are distinctly devoid of nucleosomes 
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(DeLotto and Schedl, 1984). tRNA genes are found to be transcriptionally active 

in hepatocytes and inactive in erythrocytes. Here, the correspondence between 

chromatin accessibility and transcription seems to break down, since tRNA genes 

show similar DNaseI sensitivity in both these cell types (Coveney and Woodland, 

1982).  

This insensitivity of tRNA loci to chromatin regulation has been attributed to the 

intrinsic HAT activity of TFIIIC. Immunopurified TFIIIC was found to be able to 

bind A- and B-block sequences and initiate transcription of a tRNA gene within 

an in vitro reconstituted chromatin template. Two TFIIIC subunits, TFIIIC90 and 

TFIIIC110 were found to have intrinsic HAT activity, where the former 

preferentially acetylates H3K14 residue and the latter acetylates H3, H4 and H2B 

(Hsieh et al., 1999a; Kundu et al., 1999). In addition to this the small size of 

tRNA genes could also account for their insensitivity to chromatin-mediated 

transcriptional inhibition. PIC assembly is thought to be the major rate-limiting 

step in Pol III transcription, and, once the PIC is in place, the small size of the 

tRNA gene means that transcriptional elongation is not a substantial hurdle 

(White, 2002). Pol II transcription can be repressed by chromatin during the 

elongation step, whereas Pol III may be able to escape this repression due to the 

relatively short elongation step. Thus, the ability of TFIIIC to form a PIC in a 

repressive chromatin environment and the relatively short size of tRNA genes 

may explain their insensitivity to chromatin-mediated transcriptional repression. 

Contrary to what a substantial amount of literature suggested at the time, tRNA 

genes were found to be incorporated into inactive chromatin in chick embryos 

and tRNA gene transcription was found to be influenced by nucleosome 

positioning. It was also shown that when a tRNA gene is located at the edge of a 

nucleosome, its transcription is drastically repressed. Intriguingly, when the 

tRNA gene is positioned in the middle or close to the dyad axis, transcription is 

elevated 30-fold (Wittig and Wittig, 1982). These data suggest that nucleosome 

positioning may play an important role in tRNA gene transcription. In addition to 

this, a yeast tRNA gene was also found to be repressed when inserted into the 

silent HMR mating-type locus (Schnell and Rine, 1986). 

More recently, various other studies have also indicated that chromatin may in 

fact influence the transcription of tRNA genes. Different tRNA genes in the 
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mulberry silkworm Bombyx mori were found to be occupied by a nucleosome 

within the 5'-upstream region and this nucleosome occupancy correlated with 

poor expression. The positioned nucleosome was found to impair TFIIIB 

recruitment and the addition of excess TFIIIC with intrinsic HAT activity was able 

to relieve transcription. Moreover, deletion of the upstream sequence also led to 

the loss of transcriptional repression. This suggests that, despite the similarity of 

their ICR sequences, differential expression of tRNA isoacceptor genes in cells 

may be achieved by their unique flanking sequences and associated chromatin 

(Parthasarthy and Gopinathan, 2005). 

c-MYC was found to induce tRNA expression by inducing Gcn5-mediated histone 

acetylation. Once it is recruited to the promoters, potentially through its binding 

with TFIIIC (unpublished data, Kirsteen Campbell), c-MYC was found to recruit 

Gcn5 via its interaction with TRRAP. Gcn5 acetylates histone H3 and promotes 

transcription at tRNA genes by promoting TFIIIB and Pol III recruitment. Histone 

H4 acetylation and TFIIIC enrichment does not change in response to c-MYC, 

indicating that TFIIIC may be able to occupy tRNA genes within a repressive 

chromatin environment, potentially by acetylating H4. However, TFIIIC 

occupancy on its own may not be sufficient for optimal PIC formation in a 

repressive chromatin environment (Kenneth et al., 2007). The initial evidence 

for TFIIIC itself having HAT activity was weak and it has now been shown that 

TFIIIC directly interacts with p300 and recruits it to tRNA genes. The recruitment 

of p300 not only acetylates the histones, but also stabilizes the binding of TFIIIC 

to the core promoter elements (Mertens and Roeder, 2008).  

The mammalian histone chaperone FACT (facilitates chromatin transcription) 

subunit SSRP1 was found to associate with tRNA, 5S rRNA and 7SL loci. 

Knockdown of SSRP1 leads to a reduction in tRNA and 7SL rRNA expression, 

indicating that FACT facilitates Pol III transcription (Birch et al., 2009). Loss of 

Sth1, the ATPase subunit of the yeast RSC complex, was also found to cause a 

reduction in Pol III transcriptional output. This is accompanied by a loss of Pol III 

loading and an elevation in nucleosome density (Parnell et al., 2008). Recently, 

FACT and RSC complexes were shown to regulate the transcription of a yeast 

tRNATyr gene by specific deposition of H2A.Z-containing nucleosomes that flank 

the transcribed region (Mahapatra et al., 2011).  
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In addition to these studies, recent ChIP-seq and RNA-seq analyses have revealed 

that active tRNA genes are marked by histone modifications associated with 

active transcription of Pol II-transcribed genes. Active tRNA loci are enriched for 

histone acetylation, H3K4me1/2/3 and H2A.Z, whereas inactive tRNA genes show 

inactive chromatin marks such as H3K9me3 and H3K27me2/3 (Barski et al., 

2010). 

Thus, it seems that tRNA genes are not exempt from chromatin-mediated 

regulation. However, the effects of chromatin on tRNA transcription are still 

poorly understood and there is a distinct lack of studies that look at these. 

Regulation by chromatin may contribute significantly to defining Pol III 

transcriptional output and understanding these regulatory mechanisms may be of 

vital importance. 
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6.2 Results 

6.2.1 A defined chromatin structure and SWI-SNF chromatin 
remodelling complex at Pol III-transcribed genes 

Before chromatin-mediated transcriptional regulation could be studied, it was 

necessary to define the chromatin structure of a Pol III-transcribed gene. This 

has been done in yeast, however a mammalian locus has not been investigated 

so far. The small size of tRNA genes makes it difficult to perform a detailed 

analysis of the chromatin structure and associated histone marks. However, the 

7SL locus is 300bp long and can be utilised for such analysis. ChIP assays in 

conjunction with mapping PCRs were used to map the location of the Pol III 

transcription apparatus, nucleosomes and histone modifications. Such an 

approach has been previously used to map Maf1 localisation on the 7SL gene 

locus (Goodfellow et al., 2008). 

HeLa chromatin was subjected to ChIP assays with antibodies against RPC155, 

BRF1 and TFIIIC. Antibodies against core histones H2A, H2B and H3 were used to 

map the nucleosome occupancy. Active chromatin marks acetyl-H3 and H3K4 

trimethylation were also investigated in order to gain an idea about the state of 

the chromatin. Beads-only and TAFI48 antibody provided the negative controls 

for each ChIP. The mapping primers amplify five different regions within and 

around the 7SL locus (Figure 6.1). 

Pol III and TFIIIB occupancy peaks at the beginning of the gene (primer set 2), 

whereas the TFIIIC is more evenly distributed across the locus. This is in 

agreement with the known model for the PIC formation on type II promoters 

(Figure 1.2) and with what was observed previously (Goodfellow et al., 2008). 

The 7SL promoter region shows a distinct decrease in core histone occupancy 

and an increase in the acetyl-H3 and H3K4me3. 
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Figure 6.1: Chromatin structure of a Pol III-transcribed 7SL locus 
ChIP in HeLa cells with antibodies against RPC155, BRF1, TFIIIC220; core histones H2A, H2B, 
H3; activating histone modifications acetyl-histone H3 and lysine4 trimethyl-histone H3. PCRs 
performed with mapping primers (top schematic) at 7SL locus. ChIPs with beads only and TAFI48 
antibodies provide the negative controls. The plotted values were calculated using the following 
equation y=[(IP/Input)-(Avg. Neg. IP/Input)] and highest y=1. ChIP values for histone modifications 
were further normalised to total histone H3 levels. 
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These data show that the 7SL locus has a well-defined chromatin structure with 

a nucleosome-free region over the transcribed sequence. MNase digestions 

coupled with scanning PCRs also confirmed these findings, where the DNA 

amplified by the 7SL set2 primers was found to be hypersensitive to digestion 

(data not shown). Thus, the 7SL gene seems to have a chromatin structure 

similar to the tRNA genes in this respect and can be used as a model (Barski et 

al., 2010). 

The presence of such defined chromatin structure could be a result of active 

transcription and highly organised transcription apparatus. However, the 

presence of acetyl-H3 and H3K4me3 marks suggest that some degree of 

chromatin remodelling may be involved. In addition to this, there was previous 

evidence in the lab to suggest the presence of SWI/SNF chromatin remodelling 

complex at tRNA genes (Niall Kenneth, unpublished data). The presence of such 

a remodelling complex could explain the highly ordered chromatin structure 

observed on the 7SL gene. 

Chromatin from A31 mouse fibroblasts was subjected to ChIP assays with 

antibodies against SNF5, BRG1 and BRM subunits of the SWI/SNF complex (Figure 

6.2). Beads only (Mock) and TAFI48 antibodies provide the negative controls, 

whereas, a Pol III antibody provides the positive control. The Pol II-transcribed 

ARPP P0 locus provides the negative control PCR. All three SWI/SNF subunits 

were found to occupy multiple tRNA and 5S rRNA genes. BRG1 and BRM ATPase 

subunits do not show considerable differences in enrichment levels.  

A literature search revealed that SWI/SNF occupancy on tRNA genes has also 

been observed in ChIP-seq experiments on HeLa chromatin (Euskirchen et al., 

2011). Further data mining revealed that 33.5% of all annotated tRNA genes 

were occupied by at least one SWI/SNF subunit (Figure 6.3). Core subunits 

BAF155 and BAF170 were found to be enriched on 146 and 193 tRNA loci, 

respectively. SNF5 was found to occupy 150 tRNA loci, whereas BRG1 was seen 

to occupy 55 tRNA genes. This relatively low gene count for BRG1 occupancy 

could be due to lower antibody efficiency or the presence of BRM as the ATPase 

subunit at many loci. BRM ChIP-seq. was not performed by the authors. Thus, 

the core subunits of the SWI/SNF chromatin remodelling complex are present at 

multiple tRNA genes and may have a role in their transcriptional regulation. 
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Figure 6.2: SWI/SNF subunits occupy Pol III-transcribed genes 
ChIP in A31 mouse fibroblasts with antibodies against SNF5, BRG1 and BRM at tRNA and 5S 
rRNA loci. ChIPs with beads only and TAFI48 antibodies provide the negative controls, whereas 
ChIP with RPC155 antibody provides the positive control. ARPP P0 gene provides the negative 
control for the ChIP. Serial dilutions of inputs show the quantitative nature of the PCR. 
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Figure 6.3: Considerable proportion of human tRNA loci are occupied by SWI/SNF subunits 
Venn diagrams with ChIP sequencing data for SNF5, BRG1, BAF155 and BAF170 subunits  at 
tRNA loci annotated in hg18 human genomic database (data mined from (Euskirchen et al., 2011) 
by Ann Hedley]. 
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6.2.2 SWI/SNF directly represses transcription at tRNA and 5S 
rRNA genes 

Since a substantial number of tRNA genes are enriched for the SWI/SNF complex, 

one can predict that this complex may play a role in their transcriptional 

regulation. SWI/SNF has been implicated in the etiology of many human cancers 

(see section 1.3.4). The core SWI/SNF subunit SNF5 is a bona fide tumour 

suppressor (Versteege et al., 1998), whereas other SWI/SNF subunits are also 

lost or silenced in multiple tumours (Reisman et al., 2009). Pol III transcription is 

also found to be elevated through various mechanisms in many human tumours. 

The regulation of Pol III transcriptional output is of high importance for cell 

growth and proliferation (see section 1.1.5). Therefore, studying the regulation 

of Pol III transcription by the SWI/SNF chromatin remodelling complex may be of 

therapeutic importance. 

SNF5 is one of the core SWI/SNF subunits that is essential for the chromatin 

remodelling activity (Phelan et al., 1999). SNF5 is thought to contribute to 

SWI/SNF recruitment to its target loci, and once recruited it also makes contacts 

with the histone core of the nucleosome (Dechassa et al., 2008; Geng et al., 

2001). Homozygous loss of SNF5 has been shown to cause preimplantation 

embryonic lethality in mice (Guidi et al., 2001). Thus, in order to investigate the 

role of SWI/SNF in Pol III transcriptional regulation, this essential subunit was 

knocked-down using RNAi in A31 mouse fibroblasts. 

Western blots were performed on protein extracts from A31 cells 72 hours 

following transient transfection with scrambled siRNA (sc siRNA) and SNF5 siRNA 

(Figure 6.4a). A substantial reduction in SNF5 protein levels is observed. TFIIB 

and actin provide the loading controls. The SNF5 antibody recognises a doublet 

in the Western blot since SNF5 has two splice variants, which result from 

alternative splicing at the end of exon 2 (Bruder et al., 1999). The functional 

differences between the splice variants are not known, but both the splice 

variants are knocked-down with the siRNA. The RNA from these cells was 

subjected to RT-PCR analysis (Figure 6.4b). ARPP P0 mRNA provides the negative 

control, since microarray data from SNF5 null MEFs did not show alteration in 

ARPP P0 transcript levels (Isakoff et al., 2005). SNF5 mRNA levels show a 

considerable decrease following the knockdown.  
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Figure 6.4: SNF5 knockdown elevates tRNA and 5S rRNA expression 
a) Analysis of SNF5 protein levels by Western blot in A31 mouse fibroblasts following transient 
transfections with 10nM scrambled (sc) siRNA or SNF5 siRNA for 72hrs. TFIIB and actin serve as 
loading controls. b) Analysis by RT-PCR of pre-tRNA and 5S rRNA levels following knockdown of 
SNF5 protein. SNF5 mRNA demonstrates the knockdown and ARPP P0 mRNA serves as loading 
control. c) Analysis by qRT- PCR of pre-tRNAleu and 5S rRNA expression levels. The expression 
was normalised to ARPP P0 mRNA levels. 
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Primers designed within the tRNA introns specifically amplify unprocessed pre-

tRNA molecules. Since the half-life of rat liver tRNAs was estimated to be 5 days 

(Hanoune and Agarwal, 1970), specific amplification of pre-tRNA molecules 

provides a better estimate of the current rate of transcription. Interestingly, 

various pre-tRNA and 5S rRNA transcripts show a three to four fold elevation in 

expression following SNf5 knockdown. It must be noted that the primers against 

5S rRNA detect the steady state levels. This elevation in expression was also 

confirmed using real-time RT-PCR (Figure 6.4c). 

An Rsc4 mutant yeast strain shows a two-fold increase in tRNA expression 

compared to wild-type (Mahapatra et al., 2011). However, the authors were 

looking at steady-state tRNA levels and may have underestimated the increase. 

Nonetheless, just like the yeast RSC complex, the mammalian SWI/SNF complex 

seems to be repressing Pol III transcription. A knockdown of SNF5 in HeLa cells is 

associated with transcriptional upregulation of p21 causing cell cycle arrest and 

apoptosis (Kato et al., 2007). In contrast, I observed no evidence of cell cycle 

arrest or apoptosis upon SNF5 knockdown in A31 cells. A31 cells have been 

shown to illicit a normal p53 and p21 response to γ-irradiation (Nozaki et al., 

1997). The data here would argue that the previous observations are cell type-

specific.  

However, the data obtained from RNAi-mediated knockdown of SNF5 must be 

treated with caution, since the biggest drawbacks of this technology are its off-

target effects [reviewed in (Echeverri and Perrimon, 2006)]. In order to 

ascertain the specificity of the observed results, two alternative siRNA 

sequences targeting SNF5 were used alongside the siRNA previously used. 

Variable levels of SNF5 knockdown were achieved with the three different 

siRNAs. A dose-dependent increase in pre-tRNALeu expression is observed, such 

that the siRNA showing the highest level of knockdown shows the greatest 

elevation in tRNA expression (Figure 6.5). These data indicate that the increase 

in Pol III transcriptional output due to SNF5 knockdown is not due to off-target 

effects, but is target-specific.  
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Figure 6.5: SNF5 knockdowns with multiple siRNAs elevate tRNA expression 
a) Analysis by Western blot of SNF5 protein levels in A31 mouse fibroblasts following transient 
transfections with 10nM sc siRNA or three different SNF5 siRNAs for 72hrs. Actin provides the 
loading control b) Analysis by qRT-PCR of pre-tRNATyr expression levels. Data were normalised to 
ARPP P0 mRNA levels. 
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From the ChIP data, it is clear that the SWI/SNF complex occupies tRNA loci. 

Therefore, one can assume that the effect of SNF5 knockdown on tRNA 

expression is direct. However, the interaction between SWI/SNF and Rb is well 

established. Loss of SNF5 directly or indirectly causes hyperphosphorylation of 

Rb, thus inactivating it (Oruetxebarria et al., 2004). Since Rb represses Pol III 

transcription, its inactivation could in turn cause elevation in tRNA expression 

(Larminie et al., 1997). Therefore, increased tRNA expression following SNF5 

knockdown could be Rb-mediated and not direct. 

The simian virus 40 oncoprotein large T antigen can bind and neutralise Rb 

protein. Cell lines transformed with the large T antigen show elevated tRNA 

expression compared to control cells (Felton-Edkins and White, 2002). Cl38 is 

one such SV40-transformed A31 mouse fibroblast cell line, which can be used to 

investigate the involvement of the Rb pathway in SWI/SNF-mediated repression 

of Pol III transcription. 

SNF5 protein was knocked-down in Cl38 cells using two different siRNAs (Figure 

6.6).  Whole cell extracts from cells transfected with sc siRNA and SNF5 siRNAs 

were subjected to Western blot analysis. A subsantial decrease in SNF5 protein 

levels is observed 72hrs post transfection. α-Tubulin and actin provide the 

loading controls. Total RNA from the control and knockdown cells was then 

subjected to RT-PCR analysis. ARPP P0 provides the loading control. Similar to 

A31 fibroblasts, Cl38 cells show elevated expression of pre-tRNAs and 5S rRNA 

following SNF5 knockdown. 

Despite the inactivation of Rb in Cl38 cells, loss of SNF5 still causes a substantial 

increase in the expression of Pol III products. These data suggest that the 

inhibition of Pol III transcription by SWI/SNF is independent of the Rb pathway. 
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Figure 6.6: SNF5 knockdown elevates tRNA and 5S rRNA expression in SV40-transformed 
cells 
a) Analysis by Western blot of SNF5 protein levels in SV40-transformed Cl38 mouse fibroblasts 
following transient transfections with 10nM sc siRNA or two different SNF5 siRNAs for 72hrs. α-
Tubulin and actin provide the loading controls. b) Analysis by RT-PCR of pre-tRNA and 5S rRNA 
levels following SNF5 knockdown in Cl38 mouse fibroblasts. SNF5 mRNA demonstrates the 
knockdown and ARPP P0 mRNA provides the loading control. 
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SWI/SNF is considered a master regulator of gene transcription and shows 

functional interactions with many other transcriptional regulators, including c-

MYC (see section 1.3.3). c-MYC may influence the expression of BRF1 by binding 

the E-boxes upstream of the BRF1 gene (unpublished data, Lynne Marshall). 

Therefore, the transcriptional regulation by SWI/SNF may be the result of 

altered expression of Pol III or its transcription factors. 

In order to rule out this possibility, levels of various subunits of the Pol III 

transcriptional apparatus were analysed by Western blot and RT-PCR analysis 

following SNF5 knockdown in A31 cells (Figure 6.7). Actin and ARPP P0 provide 

the loading controls for the Western blot and RT-PCR analysis respectively. No 

reproducible differences are observed in the protein or mRNA levels of RPC155, 

BRF1 and TFIIIC110. TBP protein levels do not change either. Even though an 

exhaustive analysis of all the subunits was not performed, the data obtained so 

far from the ChIP and knockdown assays suggest a direct involvement of SWI/SNF 

in regulating transcription at tRNA promoters. 
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Figure 6.7: SNF5 knockdown does not alter levels of Pol III transcription apparatus 
a) Analysis by Western blot of RPC155, TBP, TFIIIC110 and BRF1 protein levels in A31 mouse 
fibroblasts following transient transfections with 10nM sc siRNA or SNF5 siRNA for 72hrs. Actin 
provides the loading control. b) Analysis by RT-PCR of RPC155, BRF1 and TFIIIC110 mRNA 
levels following SNF5 knockdown. ARPP P0 mRNA provides the loading control. 
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6.2.3 BRG1 and BRM are both involved in repressing tRNA 
expression 

An individual SWI/SNF complex can only contain one of the two ATPases, such 

that BRM/BAF complexes are structurally distinct from BRG1/BAF complexes 

(Wang et al., 1996a; Wang et al., 1996b). The ChIP data indicate that both 

BRM/BAF and BRG1/BAF complexes occupy tRNA genes (Figure 6.2). However, 

these two different complex types may have different effects on tRNA 

transcription. Moreover, our conclusion that SWI/SNF represses Pol III 

transcription has been drawn from the knockdown of a single subunit. In yeast, 

the inactivation of any single subunit leads to dissolution and subsequent 

inactivation of the whole complex (Hargreaves and Crabtree, 2011). Therefore, 

would the reduction in the ATPase subunits of the SWI/SNF complex lead to a 

similar increase in tRNA expression, as observed following SNF5 knockdown? 

In order to test this, A31 cells were subjected to RNAi with two different siRNAs 

targeting each ATPase. A substanial decrease in BRG1 protein levels and a 50% 

decrease in BRG1 mRNA levels could be achieved with both the BRG1 siRNAs 

(Figure 6.8). However, BRG1 knockdown results in an elevation of BRM transcript 

levels. A substantial knockdown in BRM protein levels results in a similar 

increase in BRG1 protein and mRNA levels (Figure 6.9). 

A homozygous loss of BRG1 leads to embryonic lethality in mice, whereas BRM 

null mice are viable (Bultman et al., 2000; Reyes et al., 1998). This may reflect 

the important role of BRG1 in the maintenance of the ES cell compartment (Ho 

et al., 2009a; Ho et al., 2009b). However, BRM null mice show an upregulation in 

BRG1 protein levels in a manner similar to what is observed in Figure 6.10 (Reyes 

et al., 1998). Put together, these data indicate that a differentiated cell may 

compensate for the loss of one ATPase by upregulation of the other, although 

the presence of BRG1 is essential for ES cells. 

No elevation in tRNA expression is observed following BRG1 or BRM knockdowns. 

This suggests that the loss of any one ATPase is not sufficient to cause 

transcriptional upregulation at tRNA loci, and that the two ATPases can 

substitute for each other within BAF complexes associated with tRNA genes.  
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Figure 6.8: BRG1 knockdown does not alter tRNA expression 
a) Analysis by Western blot of BRG1 protein levels in A31 mouse fibroblasts following transient 
transfections with 10nM sc siRNA or two different BRG1 siRNAs for 72hrs. α-Tubulin provides the 
loading control. b) Analysis by qRT-PCR of BRM mRNA and pre-tRNA levels following BRG1 
knockdown. BRG1 mRNA demonstrates the knockdown. The data were normalised to ARPP P0 
mRNA levels. 

 



 

162 

 

 

 

 

 

Figure 6.9: BRM knockdown does not alter tRNA expression 
a) Analysis by Western blot of BRM or BRG1 protein levels in A31 mouse fibroblasts following 
transient transfections with 10nM sc siRNA and two different BRM siRNAs for 72hrs. α-Tubulin 
provides the loading control. b) Analysis by qRT-PCR of BRG1 mRNA and pre-tRNA levels 
following BRM knockdown. BRM mRNA demonstrates the knockdown. The data were normalised 
to ARPP P0 mRNA levels. 
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Since BRG1 and BRM compensate for each others activity at tRNA genes, a dual-

knockdown is required to investigate the effects of the loss of SWI/SNF ATPase 

subunits. siRNAs targeting both ATPase subunits were used in tandem in order to 

achieve a dual knockdown. However, since single ATPase knockdown upregulates 

the other ATPase subunit, a dual knockdown could not be achieved easily. 

In order to overcome this problem, a pool of two siRNAs against each ATPase was 

used. A31 cells were transfected with sc siRNA, BRG1 siRNA, BRM siRNA or a 

mixture of four different siRNAs, two against each ATPase (Figure 6.10). Even 

though BRG1 siRNA works quite efficiently on its own, the BRG1 siRNA pool is 

only able to reduce BRG1 mRNA and protein levels by 40% when BRM is knocked-

down in tandem. The BRM knockdown on the other hand is more successful and 

80% reduction in BRM protein levels can be observed in the dual-knockdown 

sample. 

Despite the poor knockdown of BRG1 protein, a two-fold increase in pre-tRNA 

and 5S rRNA expression can be seen following the dual-knockdown. These results 

indicate that BRM/BAF and BRG1/BAF complexes at tRNA genes are functionally 

equivalent and consolidate the hypothesis that SWI/SNF represses Pol III 

transcription. Moreover, the ATPase subunits are required for SWI/SNF-mediated 

repression of Pol III transcription and, therefore, this repression may be achieved 

through ATPase-dependent chromatin remodelling. 
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Figure 6.10: BRG1 and BRM dual-knockdown elevates tRNA expression 
a) Analysis by Western blot of BRG1 and BRM protein levels in A31 mouse fibroblasts 72hrs 
following transient transfections with 10nM sc siRNA, BRG1 siRNA, BRM siRNA or 5nm BRG1 
siRNA pool mixed with 5nM BRM siRNA pool. Actin provides the loading control. b) Analysis by 
qRT-PCR of BRG1 mRNA, BRM mRNA, pre-tRNA and 5S rRNA levels following BRG1, BRM and 
dual knockdowns. The data were normalised to ARPP P0 mRNA levels. 
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6.2.4 SWI/SNF subunits interact and co-localise with TFIIIC 

A reduction in the cellular SNF5 protein level causes an increase in Pol III 

transcription. The loss of SNF5 may either lead to the dissociation of the whole 

complex or reduce the specific targeting of the SWI/SNF complex to tRNA and 5S 

rRNA loci. However, SNF5 may just be a bystander in regulating Pol III 

transcription, and other subunits of the SWI/SNF complex may be responsible for 

its targeting. 

In order to investigate the specific role of SNF5 in the repression of SWI/SNF 

complex, a vector constitutively expressing HA-tagged SNF5 from a CMV 

promoter was transiently transfected into A31 cells (Figure 6.11). Western blots 

on protein extracts indicate a mere 25% increase in SNF5 protein levels in the 

pCDNA3HA.SNF5 transfected cells compared to the empty vector controls. HA-

SNF5 migrates as a third (higher) band on the SNF5 blot due to the presence of 

the three N-terminal HA moieties. The HA blot confirms the identity of this third 

band as HA-SNF5. TFIIB serves as a loading control.  

Despite this modest elevation in cellular SNF5 levels, RT-PCR expression analysis 

reveals a dramatic reduction in pre-tRNA and 5S rRNA expression. ARPP P0 serves 

as a loading control. A substantial increase in SNF5 mRNA is also observed, but 

the cells do not express such high amounts of SNF5 protein. This may be because 

the cells that express higher amounts of SNF5 do not survive the drastic 

reduction in Pol III products. 

Reintroduction of SNF5 into malignant rhabdoid tumour (MRT) cells causes an 

upregulation of p16 causing cellular senescence (Oruetxebarria et al., 2004), 

whereas overexpression of SNF5 in A31 cells did not show changes in the p16 

transcript levels. However, this experiment was performed over a relatively 

short time frame of 72hrs and maybe a longer time is required for SNF5 to 

trigger the senescence program. Moreover, the effects observed in the MRT cells 

may be specific to cells which lack SNF5 and may not apply to cells with 

endogenous SNF5.  

The data obtained by this experiment show that a modest increase in SNF5 

protein levels is sufficient to suppress Pol III transcriptional output. 
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Figure 6.11: SNF5 overexpression represses tRNA and 5S rRNA expression 
a) Analysis by Western blot of HA and SNF5 protein levels in A31 mouse fibroblasts following 
transient transfections with 5µg empty vector or pCDNA3HA.SNF5 for 72hrs. TFIIB provides the 
loading control. b) Analysis by RT-PCR of pre-tRNA and 5S rRNA levels following SNF5 
overexpression. SNF5 mRNA demonstrates the successful overexpression. ARPP P0 mRNA 
provides the loading control. 
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The data obtained so far indicate that SWI/SNF complex specifically represses 

tRNA expression. But how this is achieved is still unclear. c-MYC has been shown 

to upregulate tRNA expression by the recruitment of Gcn5 and histone 

acetylation. Myc-mediated induction leads to a change in the chromatin 

environment of tRNA genes (Kenneth et al., 2007). Moreover, SWI/SNF has been 

linked to Myc-mediated transcriptional transactivation (Cheng et al., 1999). 

However, in the case of tRNA transcription, Myc and SWI/SNF seem to have 

contradictory effects. 

In order to resolve the interplay between c-MYC and SWI/SNF at tRNA loci, c-

MYC wild-type and c-MYC null rat fibroblasts were subjected to ChIP assays with 

antibodies against SWI/SNF subunits. Myc-/- cells show a dramatic drop in the 

protein levels of Myc, as seen by Western blot (Figure 6.12a). However, a faint 

band can be observed in the blot, but the reason for this is unknown. But, since 

the wild-type and null cells have drastic differences in the cellular c-MYC levels, 

the system can still be used to investigate the influence of c-MYC on SWI/SNF 

occupancy at tRNA genes. 

Pol III ChIP was also performed in order to confirm the induction of transcription 

at the tRNA genes by c-MYC. TAFI48 antibody provided the negative control for 

the ChIP and the data were normalised to serial input dilutions. c-MYC wild-type 

cells show 2-3 fold increase in Pol III enrichment at tRNALeu and tRNATyr genes 

compared to null cells (Figure 6.12b). It must be noted that each tRNA primer 

set detects multiple genes coding for that tRNA isotype. This agrees with the 

published observation that c-MYC induces Pol III recruitment at tRNA genes 

(Kenneth et al., 2007). 

The transcriptional induction by c-MYC is accompanied by an eviction of SWI/SNF 

subunits from tRNA genes. Considerable reduction in SNF5, BRG1 and BRM 

enrichment at tRNALeu and tRNATyr genes is observed in c-myc+/+ cells compared 

to c-myc-/- cells. These data indicate that the eviction of SWI/SNF complex by c-

MYC may be necessary in order to overcome the transcriptional repression. A 

recent study has shown that Gcn5 can also acetylate Swi2/Snf2 subunit of the 

SWI/SNF complex (Kim et al., 2010). This acetylation was found to cause the 

dissociation of SWI/SNF complex from the chromatin and could be the 

mechanism by which c-MYC evicts the SWI/SNF complex from tRNA loci.  
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Figure 6.12: Myc evicts SWI/SNF subunits from Pol III transcribed loci 
a) Analysis by Western blot of c-MYC protein levels in c-myc+/+ and c-myc-/- rat fibroblasts. TFIIB 
provides the loading control. b) ChIP assay in c-myc+/+ and c-myc-/- rat fibroblasts with antibodies 
against SNF5, BRG1 and BRM at tRNA loci. ChIP with RPC155 antibody provides the positive 
control. ChIP with TAFI48 provided the negative control. 
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c-MYC was reported to cause elevated TFIIIB and Pol III occupancy at tRNA 

genes. However, no differences in the TFIIIC enrichment could be detected in 

response to Myc (Kenneth et al., 2007). TFIIIC, due to its associated HAT 

activity, is thought to be capable of penetrating repressive chromatin structures 

and binding its target sequences (Hsieh et al., 1999a; Kundu et al., 1999; 

Mertens and Roeder, 2008). Despite this, the binding of TFIIIC on its own may 

not be sufficient for optimal TFIIIB and Pol III recruitment, since Myc can readily 

open up the chromatin structure further to elevate TFIIIB and Pol III occupancy 

(Kenneth et al., 2007).  This suggests that TFIIIC may occupy Pol III transcribed 

genes within repressed chromatin and prime them for transcriptional activation 

by proteins like Myc. This is reflected in the ChIP-seq analysis, where less than 

50% of TFIIIC occupied sites are occupied by Pol III and BRF1 (Oler et al., 2010). 

Since SWI/SNF represses transcription in the absence of Myc, and TFIIIC is 

present prior to induction by Myc, is there a correlation between their 

enrichment at tRNA genes? Analysis performed on the existing ChIP-seq data sets 

for TFIIIC (Oler et al., 2010) and SWI/SNF subunits (Euskirchen et al., 2011) 

reveal a striking correlation between their occupancy at tRNA genes (Figure 

6.13). All but 12 tRNA loci enriched for at least one SWI/SNF subunit are also 

enriched for TFIIIC. Moreover, SNF5 occupies 145 of the 249 tRNA genes occupied 

by TFIIIC. The 12 tRNA genes which show SWI/SNF occupancy and no TFIIIC may 

be artefacts due to epitope masking during the immunoprecipitation. Thus, the 

majority of tRNA genes repressed by the SWI/SNF chromatin remodelling 

complex seem to be occupied by TFIIIC. 
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Figure 6.13: SWI/SNF occupancy on tRNA genes is highly correlative with TFIIIC occupancy 
Venn diagrams with ChIP sequencing data for SWI/SNF subunits (SNF5, BRG1, BAF155 and 
BAF170) mined from (Euskirchen et al., 2011) and TFIIIC63 data mined from (Oler et al., 2010)  at 
tRNA loci annotated in hg18 human genomic library. SWI/SNF (blue circle) indicates tRNAs 
occupied by one or more of the SWI/SNF subunits (data mined by Ann Hedley). 
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Since there is a significant correlation between TFIIIC and SWI/SNF occupancy at 

tRNA genes, it is fair to ask the question whether TFIIIC may be involved in 

SWI/SNF recruitment. In order to address this issue, co-immunoprecipitation (co-

IP) assays were performed on protein extracts from A31 fibroblasts. In the 

forward reaction, IP was performed with antibodies against the SWI/SNF subunits 

and the Western blot was performed with antibody against TFIIIC220 subunit 

(Figure 6.14). The IP samples are resolved next to 20% input and rabbit IgG, 

where the latter provides the negative control IP. IPs against all three SWI/SNF 

subunits successfully co-IP TFIIIC220 and the signals obtained were consistently 

above background. The BRM antibody shows the best co-IP with TFIIIC220; 

however this may not mean that BRM is responsible for complex recruitment. 

The better quality of the BRM co-IP may just be due to better antibody affinity 

or its better suitability for the assay. 

The reverse IP reaction was performed with an antibody against an alternative 

TFIIIC subunit, TFIIIC110. Since BRM provided the best co-IP for the forward 

reaction, the Western blot for the reverse reaction was performed against BRM. 

A clear co-IP of BRM with TFIIIC110 is observed in the reverse reaction. Thus, 

SWI/SNF and TFIIIC can be co-immunoprecipitated with antibodies against 

different subunits in both directions, indicating that these two multisubunit 

complexes interact with each other. 

However, this interaction may be mediated by DNA, where both the complexes 

are recruited to the same DNA sequence, but do not physically interact. In order 

to rule out this possibility, co-IP was performed in the absence and presence of 

DNaseI (Figure 6.14). DNaseI would digest any common DNA that may be holding 

the two complexes together. TFIIIC220 antibody was used for the co-IP, where 

rabbit IgGs and an alternative BRM antibody provide the negative and positive 

control IPs respectively. The addition of DNaseI does not abolish the co-IP of BRM 

with TFIIIC220, however it does cause a small reduction in the co-IP signal. This 

suggests that TFIIIC and SWI/SNF complexes primarily interact with each other 

independently of DNA; however the presence of DNA may promote the 

interaction slightly. The data together indicate that TFIIIC and SWI/SNF may co-

occupy tRNA genes, where the former may recruit the latter through protein-

protein interactions. Thus, TFIIIC may not only be priming tRNA genes for 

induction, but also keeping them repressed by recruiting the SWI/SNF complex. 
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Figure 6.14: SWI/SNF subunits co-immunoprecipitate with TFIIIC 
a) Analysis by Western blot for co-immunoprecipitation of SNF5, BRG1 and BRM with TFIIIC220 in 
A31 total cell extracts. The reverse co-immunoprecipitation of TFIIIC110 with BRM is shown in the 
bottom panel. IgG and TAFI48 serve as negative controls. b) Analysis of Western blot for co-
immunoprecipitation of TFIIIC220 with BRM in A31 total cell extract following overnight treatment 
with DNase. IgG and a second BRM antibody provide the negative and positive controls 
respectively. 
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6.2.5 SWI/SNF co-localises with Pol III and limits tRNA 
transcription 

The data obtained so far indicate that the SWI/SNF complex is recruited by 

TFIIIC and inhibits tRNA gene transcription. The polymerase loading on tRNA 

genes is generally considered to be a reliable surrogate measure for their 

transcriptional output. Since SNF5 knockdown leads to a drastic upregulation of 

tRNA expression, it may also be expected to cause increased Pol III loading at 

tRNA genes. Moreover, since SWI/SNF is a chromatin remodelling complex, an 

alteration in core histone occupancy at tRNA genes may also be expected upon 

reduction in SNF5. 

In order to study the effects of SNF5 knockdown upon Pol III transcription factor 

and histone occupancies at tRNA genes, A31 cells were subjected to ChIP assays 

following transfection with scrambled and SNF5 siRNAs. The knockdown of SNF5 

was verified by Western blot for each ChIP repeat, an example of which is shown 

in Figure 6.15a. ChIP for SWI/SNF subunits reveals a drop in SNF5, BRG1 and BRM 

occupancy at tRNALeu and tRNATyr genes following SNF5 knockdown. This 

indicates that a reduction in SNF5 leads to the loss of the entire SWI/SNF 

complex from tRNA genes. This may either be due to dissolution of the entire 

complex or just its dissociation from TFIIIC. Variability in the levels of 

knockdown obtained by transient transfections led to relatively large error bars. 

This may have resulted in the higher than expected BRG1 and BRM enrichment in 

the absence of SNF5 on the tRNALeu genes.  

In order to circumvent this problem, stable cell lines expressing multiple short-

hairpins against SNF5 were constructed. However, despite showing 50% reduction 

in SNF5 mRNA level, the cells did not show any reduction in SNF5 protein levels 

(data not shown). Therefore, these cell lines could not be used for further 

experiments. G401 cells containing an inducible SNF5 expression system in a 

SNF5 null background were also obtained (Oruetxebarria et al., 2004). However, 

these cells failed to show any Pol III transcriptional response to SNF5 induction 

(data not shown). Since these cells are obtained from an MRT cancer cell line, it 

is possible that the lack of Pol III response to SNF5 induction is due to some 

unknown genetic alterations. Therefore, this cell line could not be used for 

further experiments either. 
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Figure 6.15: SNF5 knockdown does not significantly alter histone levels or transcription 
apparatus occupancy at tRNA genes 
a) Analysis by Western blot of SNF5 protein levels in A31 mouse fibroblasts following transient 
transfections with 10nM sc siRNA and SNF5 siRNA for 72hrs. TFIIB provides the loading control. 
b) ChIP assay in A31 mouse fibroblasts following SNF5 knockdown with antibodies against histone 
H3, RPC155, BRF1 and TFIIIC220 at tRNA loci. ChIPs with SNF5, BRG1 and BRM antibodies 
provide the controls for the knockdown. ChIP with TAFI48 antibody provided the negative control. 
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Thus, the best system available was the transient transfection system. tRNALeu 

genes show considerable reduction in histone H3 occupancy following SNF5 

knockdown, whereas this reduction is less apparent at tRNATyr loci. However, the 

reduction in histone occupancy is consistently seen over multiple experiments 

Further experimentation is required to consolidate these data. 

 Surprisingly, despite the dramatic elevation in tRNALeu and tRNATyr expression 

following SNF5 knockdown, no increase in the loading of Pol III transcription 

factors at the respective genes is observed. This was an unexpected result since 

Pol III occupancy is generally concordant with tRNA expression, for example in 

response to c-MYC (Figure 6.12) and (Kenneth et al., 2007). The same 

experiment was performed with lower antibody concentration, reduced 

crosslinking and increased sonication in order to improve sensitivity, but the 

results remained unchanged. This could be a short-coming of the transient 

transfection system, as previously mentioned; however, this result prompted 

further analysis of the available ChIP-seq datasets (Figure 6.16). 

Surprisingly, there is a high degree of correlation between the ChIP-seq datasets 

for SWI/SNF subunits and Pol III. A vast majority of the tRNA genes occupied by 

SWI/SNF subunits are also utilised by Pol III. Thus, SWI/SNF seems to localise to 

genes that are likely to be transcribed. These data, contradict the repressive 

role of SWI/SNF complex revealed by SNF5 and BRG1+BRM knockdown, as well as 

the SNF5 overexpression experiments.  
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Figure 6.16: SWI/SNF occupancy at tRNA genes correlates well with polymerase loading 
Venn diagrams with ChIP sequencing data for SWI/SNF subunits (SNF5, BRG1, BAF155 and 
BAF170) mined from (Euskirchen et al., 2011), TFIIIC63 and RPC32 data mined from (Oler et al., 
2010) at tRNA loci annotated in hg18 human genomic library (data mined by Ann Hedley). 
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 In yeast, Rsc reduces the production of spurious transcripts from the SUP4 tRNA 

gene by defining the chromatin structure around the tRNA locus and providing a 

defined area for transcription. A nucleosome positioned downstream of the tRNA 

gene is also thought to throttle transcription, possibly by repressing efficient 

termination and facilitated recycling of the polymerase (Mahapatra et al., 2011). 

A similar situation may also exist in mammalian cells.  

In order to test this, locus specific primers were designed against a sequence 

200bp downstream of an actively transcribed tRNALeu gene which is occupied by 

SWI/SNF. Since the resolution of a ChIP assay is higher than 200bp, these primers 

will detect differences in the polymerase enrichment toward the end of the 

tRNA gene. Thus the ChIP signal obtained by PCR with these primers is likely to 

represent the polymerase molecules that are successful in transcriptional 

elongation. A significant increase in Pol III enrichment is detected by these 

primers following SNF5 knockdown, suggesting an elevation in transcriptional 

elongation (Figure 6.17).  

The data put together suggest that, even though SWI/SNF does not inhibit the 

overall Pol III loading at tRNA genes, it spatially limits the area bound by Pol III. 

The elevation in Pol III downstream of the tRNA locus also suggests that, 

SWI/SNF may repress tRNA transcription by inhibiting elongation or efficient 

termination by Pol III. Thus, SWI/SNF may be toning down transcription of active 

tRNA genes to maintain it at homeostatic levels.  
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Figure 6.17: SNF5 knockdown causes increased Pol III occupancy towards the end of a 
tRNA locus 
ChIP assay in A31 mouse fibroblasts following SNF5 knockdown with antibody against RPC155 at 
tRNALeu 200bp downstream sequence. TAFI48 provided the negative control (not shown). The 
plotted values were calculated using the % Input values for Pol III ChIP. 

 

 



 

179 

6.3 Discussion 

The SWI/SNF chromatin remodelling complex is found to be deregulated in many 

human cancers. SNF5 and many other SWI/SNF subunits are considered to be 

tumour suppressors and are lost in multiple tumour types. Despite this, the 

molecular mechanisms which cause cellular transformation in the absence of 

SWI/SNF are still not clear (Reisman et al., 2009). SWI/SNF regulates the cell 

cycle through its physical and functional interactions with proteins like Rb, p53 

and c-MYC, and these interactions may be crucial for its tumour suppressor 

activity (Cheng et al., 1999; Isakoff et al., 2005; Kato et al., 2007).  

Elevated Pol III transcription is also a characteristic of cancers. In addition to 

this, a modest increase in Pol III transcriptional output, by itself, can be 

tumorigenic (Marshall et al., 2008). Thus, the discovery that SWI/SNF inhibits Pol 

III transcription may be of considerable therapeutic significance. The loss of 

SWI/SNF in human cancers could lead to elevated Pol III transcriptional output, 

which in turn can promote cellular transformation. Thus, regulation of Pol III 

transcription may provide another dimension to SWI/SNF’s tumour suppressor 

potential. However, there are no published data studying the levels of Pol III 

transcription in tumours lacking SWI/SNF subunits. This is required in order to 

fathom the full implications of the findings in this chapter. Moreover, further 

experiments are required to ascertain whether elevated Pol III transcription is an 

integral part of the tumorigenic response in the absence of SWI/SNF. 

SWI/SNF is known to be required for Rb and p53-mediated tumour suppression 

and both these proteins also inhibit Pol III transcription (Felton-Edkins et al., 

2003b; Kato et al., 2007; Versteege et al., 2002). However, the effect of 

SWI/SNF on Pol III transcription seems independent of these two pathways, since 

cells transformed with the SV40 large T antigen still show elevated tRNA 

expression upon SNF5 knockdown. Thus, cells seem to employ multiple 

redundant pathways in order to keep the Pol III transcriptional output in check, 

SWI/SNF being one of them. 

SWI/SNF was found to be required for activation by c-MYC, since dominant-

negative mutants of SNF5 and BRG1 inhibit c-MYC-mediated transactivation 

(Cheng et al., 1999). However, c-MYC and SWI/SNF seem to have opposing 
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activities at tRNA genes, where transcriptional induction by c-MYC leads to 

eviction of SWI/SNF. c-MYC has been shown to recruit Gcn5 via its interaction 

with TRRAP at Pol III-transcribed genes. It has been recently shown that Gcn5 

acetylates Snf2 at two lysine residues, which upon acetylation interact with the 

Snf2 bromodomain and cause its eviction from the nucleosome (Kim et al., 

2010). This may be the mechanism by which Myc evicts the SWI/SNF complex 

from tRNA genes. Thus, SWI/SNF may play a role in counteracting the oncogenic 

effects of c-MYC, at least as far as Pol III transcription is concerned.  

Mice with single copy loss of different SWI/SNF subunits become tumour-prone. 

SNF5+/- mice acquire lymphomas and rhabdoid tumours with extremely high 

penetrance within 10 weeks, whereas BRG1+/- mice develop mammary tumours 

within a year (Roberts et al., 2002). But BRG1+/- tumours are not similar in 

morphology to the SNF5+/- tumours. Firstly, they are carcinomas and not 

sarcomas. Secondly, they arise due to haploinsufficiency of BRG1, rather than 

the loss of heterozygosity as seen in SNF5+/- tumours. In addition to this, BRG1+/-   

BRM-/- double mutant mice do not develop tumours similar to Snf+/- mice either. 

This suggests that the observed phenotypic differences are not simply due to the 

fact that BRG1 has a closely related paralog, whereas, SNF5 does not (Bultman 

et al., 2008). BRM null mice do not develop tumours spontaneously, but BRM loss 

does sensitise them to carcinogens (Glaros et al., 2007). Therefore mice lacking 

different SWI/SNF subunits show differing phenotypes, and accordingly, it has 

been suggested that there are functional differences between the tumour 

suppression properties of these proteins.  

However, as far as Pol III transcription is concerned, BRG1 and BRM can 

compensate for the loss of each other and the BRG1/BRM dual-knockdown 

produces the same effect as SNF5 knockdown. Therefore, both the BRG1/BAF 

and BRM/BAF complexes seem to behave in a similar manner. Moreover, the 

reduction in BRM leads to the upregulation of BRG1, and vice versa. This 

phenomenon was previously observed in MEFs obtained from BRM-/- mice; 

however, the upregulation of BRM mRNA following BRG1 reduction has not been 

previously reported (Glaros et al., 2007). This compensatory feedback loop 

depicts the importance of these ATPases for cellular homeostasis; however the 

mechanisms of this feedback loop still remain unclear. 
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The recruitment of the SWI/SNF complex to tRNA genes seems to occur via its 

interaction with TFIIIC. Not only is there a high degree of correlation between 

their enrichment at tRNA genes, but SWI/SNF subunits also co-IP with more than 

one TFIIIC subunit. Attempts to co-IP BRF1 and SWI/SNF were unsuccessful. 

Moreover, c-MYC does not alter the TFIIIC occupancy at tRNA genes, but it evicts 

SWI/SNF and causes the recruitment of TFIIIB and Pol III. This inverse correlation 

consolidates the hypothesis that SWI/SNF is recruited by TFIIIC, and not by TFIIIB 

or Pol III. It is still unclear which SWI/SNF subunit is responsible for its 

interaction with TFIIIC or if the presence of the whole complex is required. 

There is a considerable degree of overlap between the ChIP-seq enrichment for 

all the four subunits tested at tRNA genes, suggesting that the presence of the 

whole complex may be required for recruitment. Pull-down assays with SNF5 and 

BRG1 dominant negative mutants defective for complex formation may provide 

further insights into the role of particular subunits in SWI/SNF at tRNA genes (de 

La Serna et al., 2000; Geng et al., 2001). 

In yeast, the loss of RSC was initially found to cause an increase in nucleosome 

density at tRNA genes (Parnell et al., 2008). This suggests that RSC may be an 

activator of Pol III transcription. However, recent experiments have shown that 

a knockdown of RSC causes elevated tRNA expression. RSC deposits nucleosomes 

containing H2A.Z flanking the yeast SUP4 tRNA gene. The nucleosome positioned 

downstream of the transcribed region represses Pol III transcription, possibly by 

inhibiting facilitated polymerase recycling. This was proposed to help tone down 

transcription levels to maintain a balanced output (Mahapatra et al., 2011). The 

ChIP-seq data from HeLa cells indicate that SWI/SNF may occupy actively 

transcribed tRNA loci. In addition to this, no elevation in Pol III occupancy at 

tRNA genes is observed following SNF5 knockdown. Therefore, SWI/SNF may not 

behave like conventional inhibitors that repress the recruitment of the 

polymerase, but instead may somehow modulate transcription of active tRNA 

genes. Loss of SNF5 leads to elevated Pol III occupancy at the end of a tRNA 

gene, indicating that there may be increased transcriptional elongation. As 

observed previously, when a tRNA gene is located at the edge of a nucleosome, 

it transcription is dramatically reduced (Wittig and Wittig, 1982). One can 

envisage that SWI/SNF may achieve transcriptional repression via a nucleosome 
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positioned towards the end of tRNA genes, as is observed for the yeast SUP4 

gene.  

Therefore, SWI/SNF inhibits Pol III transcription, however, detailed analysis of 

nucleosome positioning, along with promoter and terminator accessibility assays, 

are required in order to ascertain its precise mechanisms. The role of Pol III 

transcription in formation of tumours following loss of SWI/SNF subunits also 

needs to be examined further. 
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SINE transcription can put a tremendous load on cellular metabolism by engaging 

a large fraction of the available Pol III transcriptional apparatus. Moreover, an 

abundance of SINE transcripts may impede essential cellular process like protein 

translation and may also be toxic to the cell (Hasler and Strub, 2006; Kaneko et 

al., 2011). Thus, it is important for the cell to silence SINE transcription and this 

has been thought to be achieved via DNA methylation (Liu et al., 1994; Liu and 

Schmid, 1993; Schmid, 1991). Contrary to expectations and common belief, this 

study finds the presence of Pol III transcriptional machinery at SINE loci enriched 

for DNA methylation and MBPs. Methylation of A- and B- block promoter 

sequences is found not to impede Pol III recruitment to SINEs. 

From the data presented, it is clear that silencing at SINEs is achieved by H3K9 

trimethylation and SUV39H1. However, it is still unclear how this is targeted to 

SINEs, especially in the absence of DNA methylation. HP1 is thought to be 

recruited to its target sequences via the RNAi machinery (Pal-Bhadra et al., 

2004) and an RNA component is required for HP1 localisation (Kwon and 

Workman, 2010). Alu transcripts have recently been shown to be targets of RNA 

processing by DICER1 (Kaneko et al., 2011). I have preliminary data to suggest 

that knockdown of DICER1 leads to elevated Pol III occupancy at Alu loci. Thus, 

it can be hypothesised that SINE RNA, once processed by the RNAi machinery, is 

responsible for targeting HP1 to SINE sequences. HP1, once recruited at SINEs, 

establishes H3K9 methylation and repressive chromatin via recruitment of 

SUV39H1. DNMTs are then recruited to fill in the last piece of the puzzle and 

lock down SINE transcription (Figure 7.1). The basal level of Pol III found at SINEs 

may be required to produce sufficient transcripts in order to maintain the 

hypothesised RNA-directed transcriptional repression. 

The RITS (RNA-induced transcriptional gene silencing) complex is thought to be 

vital for the establishment of RNA-directed transcriptional repression. RITS 

comprises of Argonaute (Ago1) protein, a chromodomain protein Chp1 and a 

novel protein Tas3. The slicer activity of Ago1 is thought to be crucial for siRNA 

processing, whereas Chp1 contributes to the H3K9me-binding ability of RITS 

(Grewal and Jia, 2007). RITS also recruits the RNA-directed RNA polymerase 

complex (RDRC), which is responsible for the production of dsRNA molecules that 

can be processed by DICER (Sugiyama et al., 2005). The involvement of RITS and 

RDRC in SINE transcriptional silencing is still unexplored. However, the 
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secondary structure of SINE RNA contains dsRNA regions that can be processed by 

DICER. Thus, RDRC may not be required for RNA-directed SINE transcriptional 

repression. 

Younger AluY elements, which are closer to the Alu consensus sequence, show 

higher levels of DNA methylation compared to their older AluJ and AluS 

counterparts. This could be due to such RNA-directed active targeting of DNA 

methylation via HP1, since the younger elements have higher sequence similarity 

to the consensus Alu sequence. However, the mechanism for the recruitment of 

DNMTs is still unclear from the data available and the methylation status of 

SINEs in SUV39H1h2 knockout cells needs to be analysed. 

The data obtained in chapters 3 and 4 suggest the following model for SINE 

transcriptional repression. In the presence of DNA methylation, transcription is 

repressed by HP1, H3K9 methylation, MBPs and HDACs. Transcription is sensitive 

to TSA since HDACs contribute to both MBP and SUV39H1-dependent repression. 

In the absence of DNA methylation, a loss of MBP and HDACs is observed, 

however HP1 and H3K9 methylation can still keep transcription repressed. Here 

the repression is insensitive to TSA treatment due to the reduced HDAC 

occupancy and a switch away from HDAC-dependent repression. Moreover, when 

control cells are treated with chaetocin, HDAC-dependent silencing only allows 

for a modest increase in transcription. But when DNA methylation and HDACs are 

lost in Dnmt1-/- cells, SINEs become more sensitive to chaetocin treatment.  

Further work is required to fully establish this as a model for SINE transcriptional 

repression. It may be necessary to detect micro- and pi-RNA derivatives of SINE 

RNA in cellular extracts and their association with RITS complex. The effects of 

DICER1-knockdown on SINEs also need to be studied thoroughly, including 

changes in HP1, SUV39H1 and H3K9me3 enrichments. Antisense oligonucleotides 

targeting SINE RNA may also be able to alleviate RNA-directed transcriptional 

repression and cause increased Pol III occupancy at SINEs.  
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Figure 7.1: Model for SINE transcriptional repression. 
a) Hypothetical HP1 targeting by processed SINE RNA b) HP1 recruits SUV39H1 and H3K9me3. 
c) DNMTs, MBPs and HDACs are then recruited. 
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HP1α isoform associates with heterochromatic regions and promotes gene 

silencing, whereas HP1γ associates with euchromatin and is thought to be 

involved in gene activation. In Drosophila, HP1c associates with heat-shock 

induced genes, where it colocalises with elongating Pol II and histone chaperone 

FACT (Kwon and Workman, 2010). SINEs are heat-shock induced genes, and 

therefore HP1 isoform switching may be involved in SINE transcriptional 

regulation. The presence of limiting levels of Pol III at suppressed SINE loci 

indicates that these sites are poised for transcriptional activation. However, the 

involvement of HP1 isoforms in the rapid transcriptional activation of SINEs 

following heat-shock still needs to be investigated. 

Repetitive elements provide ample opportunity for erroneous recombination 

events and these, if left unchecked, can threaten genomic stability. 

Recombination between SINEs can be particularly deleterious, since these 

elements populate the gene-rich regions of the genome (Konkel and Batzer, 

2011). The Alu consensus sequence contains 24 CpG sites and Alus account for up 

to one-third of all CpG sites within the human genome. In most normal tissues, 

these Alu CpGs are found to be methylated (Rubin et al., 1994; Schmid, 1991). 

From the data obtained during this study, it seems that the purpose of DNA 

methylation at SINEs is to ensure genomic stability by suppressing erroneous 

recombination between these sequences. Moreover, the data also imply that 

SINEs may contribute to the hypomethylation-associated genomic instability 

observed in many human diseases (Ehrlich, 2005).  

LINE transcription and retrotransposition has previously been shown to be 

suppressed either directly by DNA methylation or by MeCP2 overexpression (Yu 

et al., 2001). Since SINE retrotransposition depends on LINE proteins, by 

suppressing LINE transcription, DNA methylation may be able to suppress SINE 

transposition and further ensure genomic stability (Schmid, 2003). 

The mechanism by which DNA methylation suppresses recombination is not yet 

understood. Preliminary data suggest that DNA methylation may somehow 

reduce the amount of ssDNA generated in the cell following DNA damage. 

However, these data were obtained from 5-azacytidine treated HeLa cells, 

where damage may be being specifically targeted to methylated sequences, for 

example Alus. This experiment must be repeated in the Dnmt1-/- and wild-type 
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MEFs in order to consolidate the findings. Further work is also required to fully 

understand how DNA methylation can affect the availability of ssDNA and the 

kinetics of repair. Moreover, would NHEJ-mediated repair be affected by DNA 

methylation as is observed for SSA-mediated repair at SINEs? 

Recent publication of ChIP-seq analysis at Pol III-transcribed genes has revealed 

that tRNA genes may be subject to the same chromatin-mediated transcriptional 

control as is observed for Pol II-transcribed genes (White, 2011). However, it is 

still unclear whether tRNA loci have the permissive chromatin due to their 

proximity to Pol II-transcribed genes and enhancer elements, or whether the Pol 

III transcription apparatus establishes the permissive chromatin environment 

(Oler et al., 2010).  

However, the presence of SWI/SNF at tRNA loci was found not to correlate with 

the presence of Pol II (Euskirchen et al., 2011). In contrast, SWI/SNF and Pol III 

transcription apparatus occupancy at tRNA genes is highly correlative, suggesting 

that the former may be recruited by the latter. In addition to this, multiple 

SWI/SNF subunits co-IP with more than one TFIIIC subunit, suggesting there is 

direct interaction with the transcription complex. 

SWI/SNF is found to suppress Pol III transcription, where both BRG1/BAF and 

BRM/BAF complexes have similar activities. Despite this, no elevation in the 

enrichment for Pol III transcriptional apparatus is observed on tRNA loci 

following SNF5 knockdown. However, SNF5 knockdown does lead to an elevation 

in Pol III occupancy downstream of a tRNA locus. In addition to this, 

transcriptional activation by c-MYC leads to eviction of the SWI/SNF complex 

from the tRNA loci. These two observations consolidate the hypothesis that 

SWI/SNF directly represses transcription at tRNA loci, but it is still unclear how 

this is achieved. It may be achieved by limiting the space available to the 

transcriptional apparatus, possibly through positioned nucleosomes. Since there 

is more polymerase present downstream in the absence of SNF5, the presence of 

SWI/SNF may impede transcript elongation, efficient termination or facilitated 

recycling. Changes in DNA accessibility following SNF5 knockdown must be 

analysed by MNase/DNaseI digestion. Fine mapping the changes in the 

positioning of nucleosomes and Pol III transcriptional machinery following the 
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knockdown of SWI/SNF subunits will be required to resolve the mechanistic 

details of this repression. 

43% of SWI/SNF-enriched loci are found to correspond to enhancer regions and 

17% correspond to CTCF sites (Euskirchen et al., 2011). TFIIIC binding sites, 

especially ETC loci, are also found to localise near CTCF binding sites (Carriere 

et al., 2011; Moqtaderi et al., 2010). In addition to this, Pol III-occupied loci, 

when not near Pol II promoters, also have enhancer-like chromatin (Oler et al., 

2010). The correlation between TFIIIC, CTCF and SWI/SNF suggests a functional 

link between these complexes. 

Recent ChIP-seq analysis in 6 different species has revealed that, despite 

differences at individual tRNA genes, Pol III loading is highly conserved among 

amino acid isotypes, i.e. the total Pol III loading at the members of a particular 

tRNA isotype is highly conserved between species (Kutter et al., 2011). This 

observation suggests that higher order 3D organisation between tRNA isotype 

genes may be involved in the regulation of Pol III loading at individual tRNA loci. 

Moreover, this also indicates that there is a requirement to modulate individual 

tRNA gene expression in order to regulate overall cellular availability of each 

tRNA isotype. SWI/SNF may be involved in such 3D organisation and fine-tuning.  

The Pol III loading at tRNA isotypes was also found to correlate with the codon 

usage by the cellular transcriptome, i.e. the Pol III loading at a less-used isotype 

was lower and vice-versa (Kutter et al., 2011). H3K9me3 is found to negatively 

correlate with Pol III loading at tRNA genes (Barski et al., 2010). Thus, RNA-

directed transcriptional silencing may also be involved in the overall regulation 

of Pol III loading at tRNAs. One can envisage the scenario where, tRNA isotypes 

not used by the translational apparatus accumulate in the cell and feed back 

into the RNAi machinery and repress expression from their parent genes through 

the HP1-H3K9me3 pathway. 

Thus, the regulation of Pol III transcription is more complex than previously 

thought and a considerable amount of work is still required to fully understand 

it. 
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