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Abstract 

Human African trypanosomiasis (HAT) is a disease that is in desperate need of 

new pharmacological agents active against the causative parasite, the 

flagellated protozoan Trypanosoma brucei.  

In this thesis, new metabolomics techniques have been developed to study 

pathways in response to drug action with the aim of defining the mode of action 

of current and future drugs. Eflornithine, a polyamine pathway inhibitor, was 

used as a proof of principle, revealing both expected changes that correlate well 

with the literature and unexpected changes that lead to pathways and 

metabolites not previously described in bloodstream form trypanosomes. One 

metabolite not previously described in trypanosomes is acetylornithine, whose 

levels correlate well with ornithine and whose production comes directly from 

ornithine transported from the medium. Nifurtimox and the nifurtimox-

eflornithine combination therapy were assayed for changes to their 

metabolomes revealing changes in nifurtimox treatment that included 

alterations to sugar and purine levels. The combination therapy had reduced 

changes to some metabolites compared to each drug in isolation suggesting 

reasons for the combination‟s lack of synergy. Isotopically labelled metabolites 

were also of use in determining flux through the pathways identified as being 

affected by drug perturbation. These techniques, along with other biochemical 

techniques, were used to show arginase activity is absent in bloodstream form 

trypanosomes and that ornithine is not made from arginine when ornithine is 

present in the medium. Arginine can, however, be used to produce ornithine 

through an arginase-independent mechanism when exogenous ornithine is 

lacking. Evidence is also provided that parts of the pentose phosphate pathway, 

not thought to be active in bloodstream form trypanosomes, may still be active 

in in vitro grown cells. 

A mechanism of resistance to eflornithine involving the deletion of an amino 

acid transporter that is able to transport eflornithine is also described. It is 

hoped that simple PCR-based tests for this resistance mechanism will be of use 

in resistant foci in prescribing appropriate drugs to HAT patients. 
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1. Introduction 

Human African trypanosomiasis is a neglected disease with a paucity of useful 

drugs and resistance evident to many of those in use. For the drugs in use, the 

modes of action are largely unknown. This project was conceived with the aim of 

developing metabolomic technologies to analyse the mode of action and 

mechanism of resistance to trypanocidal chemotherapeutic agents.  

1.1  Protozoan parasites 

Protozoan parasites are responsible for many lethal and debilitating diseases 

worldwide. In the West, toxoplasmosis is the cause of around 40 % of first 

trimester miscarriages (Abdel-Hameed and Hassanein, 2004). Trypanosoma cruzi, 

the causative agent of Chagas disease, currently affects 10 million people in the 

Americas (Barfield et al., 2011). In South America, the Middle East and India 

Leishmaniasis affects 13 million people at any one time (Kato et al., 2010). 

Malaria is infamously linked with the statistic of “one child dies every 30 

seconds” and the fight against malaria is one of the top priorities of the WHO 

and the Bill and Melinda Gates Foundation. These parasites are all protozoa 

(single-celled eukaryotes) and, with the exception of toxoplasma, are all 

transmitted by biting insects. 

Trypanosomes are single-celled flagellated extracellular protozoa that reside in 

the nutrient-rich fluids of their host and can be found on all continents 

(Hamilton et al., 2007). Plants, animals and humans can all be infected with 

trypanosomes, with biting insects acting as a vector for transmission between 

hosts. Mechanical transfer may also occur through sexual intercourse (Rocha et 

al., 2004) or through blood sucking bats and insects (Vincent Alibu, University of 

Aberdeen,  personal communication), but such cases are rare and species 

dependent. 
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1.2 Human African Trypanosomiasis 

1.2.1 Causative species 

Human African trypanosomiasis (HAT), also known as sleeping sickness, a name 

too benign for the disease it causes, is caused by a single species of protozoan 

parasite - Trypanosoma brucei. Disease progression can vary dramatically 

depending on the geographical location, leading Hoare (1973) to postulate that 

there were two human-infective sub-species of Trypanosoma brucei parasite: T. 

b. rhodesiense and T. b. gambiense. More recent genetic analyses have shown 

that taxonomy of T. brucei is actually much more complicated than Hoare‟s 

model suggested : T. b. rhodesiense is now regarded as a host-range variant of 

T. b. brucei (a sub-species not able to infect humans) (Gibson, 2002;Balmer et 

al., 2011), with the added presence of a serum resistance protein, which allows 

T. b. rhodesiense to survive in human serum where T. b. brucei cannot. 

T. b. gambiense variants are now classed into two groups. Group one is less 

diverse and displays low virulence in rodents (Inoue et al., 1998) and group two 

is more genetically diverse, able to infect rodents and shows biological and 

genetic similarities to T. b. brucei (MacLeod et al., 2001).  

T. b. gambiense causes 90 % of all infections and is found in West and Central 

sub-Saharan Africa. T. b. rhodesiense causes the remaining 10 % of infections in 

East sub-Saharan Africa (Simarro et al., 2008). The tsetse fly (Glossina spp.) 

vectors for these two sub-species of T. brucei are physically separated by the 

mountains along the Rift Valley, which cause lower temperatures not conducive 

to insect survival and therefore prevent the two sub-species from mixing. The 

only country where the two sub-species of T. brucei co-exist is Uganda, where 

there still remains a spatial separation between the sub-species (Fig 1-1), mainly 

due to the different climatic and vegetative conditions required by the two 

species (Berrang-Ford et al., 2010). 
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Figure 1-1. The distribution of human African trypanosomiasis. Red spots show the location 
of T. b. gambiense, blue spots show T. b. rhodesiense. From (Berrang-Ford et al., 2010). 

 

In 2006 it was estimated that 50,000-70,000 people were infected with HAT 

(World Health Organisation, 2006), although true figures are often difficult to 

come by due to under-reporting. For example, during an epidemic of T. b. 

rhodesiense sleeping sickness in Uganda between 1988 and 1990, it was 

estimated that with every death from HAT, twelve cases went undetected (Odiit 

et al., 2005). The most up to date figures from the World Heath Organisation put 

the number of people infected at fewer than 10, 000. 
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1.2.2 Stages of HAT 

There are two stages of HAT, defined by the location of the parasites within the 

host. The first stage is characterised by parasite presence in the blood and 

lymph, but not the cerebral spinal fluid (CSF) of the host. Symptoms of the first 

stage of HAT can include swelling of the face, fever, loss of appetite, chancre, 

headaches and rashes, but not all of these symptoms need be present.  

The second stage of HAT occurs when parasites enter the CSF and then the brain 

and is when patients will usually present at a clinic. The symptoms of this more 

serious stage are confusion, personality changes, altered sleep-wake patterns, 

difficulty in walking and coma. If untreated, HAT is 100 % fatal. It is difficult to 

design new compounds to counter this most commonly presenting stage mainly 

because the blood-brain barrier evolved as a very tight border control between 

the body and the delicate tissue of the brain. It is notoriously difficult to design 

trypanocides (or indeed any compounds) that can cross the blood-brain barrier 

and as a result there are only two licensed compounds active in the latter stages 

of the disease; melarsoprol and eflornithine. 

1.2.3 History of control 

During the mid 20th century there was a huge effort to eradicate HAT and the 

disease was largely brought under control (Barrett, 2006). Unfortunately, due to 

huge political restructuring over much of sub-Saharan Africa, successful control 

programmes broke down and HAT saw a re-emergence (Barrett, 1999). At the 

end of colonial rule the feeling was that HAT had been all but eradicated and a 

culture of complacency was born. After a massive resurgence in the late 1990s 

(Barrett, 1999) control efforts were again stepped up and the situation is again 

coming under control (Simarro et al., 2011). The risk now is that control 

programmes will lose funding as governments see the disease as no longer posing 

an immediate critical problem. HAT is becoming closer to elimination and with a 

concerted effort could still be eradicated if regular screening is maintained, 

drugs are made available, drug resistance is combated and vector control 

programmes are not de-prioritised. 
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1.3 The T. brucei life cycle 

Compared to many parasites, trypanosomes have a relatively simple life cycle. 

They must, however, be able to survive in several vastly differing environments 

from the blood, lymph and cerebrospinal fluid of the mammalian host to the gut 

and salivary glands of the tsetse fly vectors (Fig 1-2). 

 

Figure 1-2. The Lifecycle of Trypanosoma brucei. The parasites develop through two 
mammalian stages and three insect stages in the tsetse fly vector. ST: stumpy form, SL: 
slender form, SIF: stumpy induction factor, PC: procyclic form, Epi: epimastigote form, 
Meta: metacyclic form, CCA: cisaconitate, GPEET: a type of procyclin, EP: a type of 
procyclin, PV: proventricular forms, BARP: brucei alanine rich protein, VSG: variable 
surface glycoprotein. From Fenn and Matthews (2007). 

Starting with the bite of an infected mammal by a tsetse fly, stumpy forms of 

the parasite are taken up with the vector‟s blood meal. Differentiation from 

variable surface glycoprotein (VSG)-expressing bloodstream forms to procyclin-

expressing insect forms, known as procyclic stages, takes place after pH and 

temperature triggers are activated. Citrate or cisaconitate (CCA) in the tsetse 
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midgut also appears to act as a trigger for stumpy to procyclic differentiation 

(Brun and Schonenberger, 1981;Czichos et al., 1986). Upon reaching the tsetse 

gut, parasite development and maturation takes 20-30 days (Aksoy et al., 2003). 

Procyclic stages can be cultured in rich medium in the laboratory and so are well 

studied in comparison to the later epimastigote and metacyclic insect stages. 

Procyclic trypanosomes express a surface coat of GPEET and EP procyclin, with 

GPEET down regulated in later stages of development (Vassella et al., 2004). 

After multiplication in the midgut of the tsetse fly, the cells migrate towards the 

salivary glands dividing asymmetrically on the way to produce the long, slender 

and the short epimastigote forms (Van Den et al., 1999). Short epimastigotes 

attach to the salivary gland and are thought to undergo sexual genetic exchange. 

A new surface coat of brucei alanine rich protein (BARP) is expressed here 

(Urwyler et al., 2007) and differentiation to the infective metacyclic forms takes 

place along with the acquisition of the VSG coat for evasion of the mammalian 

immune system. 

Within the bloodstream of the mammalian host there are two distinct stages: 

slender and stumpy. Differentiation from the long, slender, rapidly dividing 

bloodstream forms to less active, stumpy forms appears to work via a quorum-

sensing type mechanism where a soluble factor released by the slender 

trypanosomes builds up and promotes cell cycle arrest (Vassella et al., 

1997;Reuner et al., 1997). This soluble factor has been named stumpy induction 

factor (SIF) although it has, as yet, eluded numerous efforts at identification. 

There is some evidence from factors that mimic SIF‟s action that the cAMP 

pathway is involved in SIF induction of differentiation (Vassella et al., 1997; 

Laxman et al., 2006), but this will not be conclusive until SIF is identified. A 

collaboration between the Barrett group at the University of Glasgow and the 

Matthews group at the University of Edinburgh is attempting to characterise the 

metabolome of trypanosomes throughout the lifecycle, which may identify this 

elusive factor. 

Stumpy, bloodstream forms of T. brucei do not divide, which is a crucial 

characteristic for limiting parasitaemia within the host. Cell cycle arrest also 

seems to be important for the subsequent differentiation to procyclic forms 

when taken into a tsetse vector. Slender and intermediate forms cannot proceed 

to procyclic forms within the mammalian host, probably because they are 
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outwith the G1/G0 stage of growth (Matthews and Gull, 1994;Ziegelbauer et al., 

1990). Stumpy forms are primed to differentiate to procyclic forms upon uptake 

into the insect vector. This priming appears to involve production of a group of 

carboxylate transporters deemed PADs (Proteins Associated with Differentiation) 

(Dean et al., 2009). These transporters are sequestered in the flagellar pocket of 

the trypanosome ready for transfer to the surface when citrate and CCA promote 

differentiation to procyclic forms (Dean et al., 2009). 
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1.4 Trypanosome biology 

Trypanosomes are model organisms, in which many novel processes have first 

been discovered, including RNA (ribonucleic acid) editing, trans-splicing, 

glycosylphosphatidylinositol membrane anchoring and polycistronic transcription 

of protein-coding eukaryotic genes (Field and Carrington, 2009). RNA 

interference is possible in trypanosomes, allowing the analysis of the effects of 

reduced or elimated expression of individual genes in an inducible system. 

Trypanosomes can also be cloned in vitro making them a popular choice for 

genetic and metabolic studies too. 

African trypanosomes have a number of unusual features, which can make 

chemotherapy difficult and are described in detail below. 

1.4.1 Gene expression regulation 

Eukaryotic gene expression is usually controlled at the transcript level, 

producing less mRNA for a particular gene leading to reduced protein 

production. In trypanosomes, this method is not possible because genes are 

transcribed as multi-gene cistrons into pre-mRNA. These cistrons are often tens 

of genes long (Imboden et al., 1987;Daniels et al., 2010) meaning that the genes 

cannot be individually regulated at this level. Further evidence that expression 

is not regulated at the transcriptional level comes from an analysis of the level 

of the polycistronic transcript produced, which shows very little variation across 

the genome (Daniels et al., 2010).  

Gene regulation may occur when the cistrons are cut into individual genes or 

when the monocistronic pre-mRNAs are capped with a spliced leader sequence 

and polyadenylated to produce the final, functional mRNA (Huang and van der 

Ploeg, 1991). Another level of regulation may occur through mRNA degradation, 

which, contrary to most eukaryotes, occurs via two pathways attacking different 

ends of the transcript (Schwede et al., 2009). 
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1.4.2 Variable surface glycoproteins 

One of the most interesting aspects of the trypanosome is how they manage to 

survive extracellularly while avoiding clearance by the host immune system. The 

main reason trypanosomes are able to stay one step ahead of their host‟s 

defences lies in the fact that trypanosomes are covered in a thick VSG coat that 

they are able to shed and swap between generations. The coat is made of 

around 107 identical molecules with a conserved core structure of 

glycosylphosphatidylinositol anchored in the cell membrane and an exposed 

proteinacious antigen (Cross, 1975) (Fig 1-3). Only the exposed antigen of the 

VSG is capable of change and is able to do so via a repertoire of thousands of 

silent VSG genes and gene fragments that can be moved to one of several 

telomeric expression sites (Horn and Barry, 2005). There may be several million 

trypanosomes within a host at one time, all of which will be expressing the same 

VSG copy. The immune system will recognise this VSG and will launch an 

adaptive immune attack. Trypanosomes do not appear to recognise when they 

are under attack from the immune system (trypanosomes in the absence of an 

immune system act in the same way (Doyle et al., 1980)), but a number of 

trypanosomes within the several million will exchange their expressed VSGs and 

as the trypanosomes with the first copy are killed, those with the second copies 

are able to clonally expand. This leads to a characteristic cyclic parasitaemia 

with an associated periodic fever and is useful in the diagnosis of HAT. 
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Figure 1-3. The structure of variable surface glycoprotein. A: the superimposed structures 
of the N-terminal domains of two VSGs (MITat1.2 and ILTat1.24 ) to show the highly 
conserved structure. B: The dimeric structure of a VSG. One monomer is depicted in grey, 
the other in colours that correspond to regions of the primary structure below. From 
Schwede and Carrington (2010). 

The shedding of VSG is also problematic as it means that when antibodies are 

produced and adhere to the trypanosome‟s coat the molecule can be shed and 

the trypanosome can avoid destruction. Shedding affects the innate immune 

system in a similar way when complement binds in an attempt to construct its 

lysis machinery that would normally bind and make holes in the trypanosomes‟ 

cell membranes. The thickness of the coat and the presence of proteases is also 

problematic to complement-mediated lysis (Jokiranta et al., 1995). The 

thickness of the coat prevents access to the membrane and the proteases 

degrade proteinaceous immune machinery. 

1.4.3 Organelles 

T. brucei have many peculiarities in their organelles, which has led them to be 

considered as a very old species and are evident in the eukaryotic lineage (as 

Trypanosoma gray in the blood of crocodiles) from around 480 million years ago 
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(Teixeira et al., 2009). Whereas most eukaryotic cells have many small 

mitochondria, trypanosomes contain one large, spindle-shaped mitochondrion 

that spans the entire length of the cell joining the flagellum via the basal body. 

This mitochondrion contains its own DNA (deoxyribonucleic acid), as do other 

eukaryotic mitochondria, but unlike other eukaryotes the mitochondrial DNA is 

in a large complex with many copies of the same genome. This DNA complex is 

termed the kinetoplast.  The kinetoplastid DNA is organised into around 5, 000 

interlinking minicircles and around 25 maxicircles (Chen et al., 1995). The 

maxicircles have been known to encode the usual mitochondrial and ribosomal 

proteins for many years, but the minicircles eluded explanation for a long time. 

Now we know that the maxicircles‟ RNA transcripts are extensively edited before 

becoming functional and the minicircles provide guide RNAs to allow the editing 

(a series of uridine additions and deletions) to proceed (Benne et al., 

1986;Feagin et al., 1988;Blum et al., 1990; van der et al., 1991).  

There is an extensive electron transport chain in the procyclic trypanosome‟s 

mitochondrion, which is essential to provide the majority of energy production 

(Bochud-Allemann and Schneider, 2002;Coustou et al., 2003). Conversely, 

bloodstream form trypanosomes do not express cytochromes and lack many of 

the tri-carboxylic acid cycle intermediates required for oxidative 

phosphorylation (Clayton and Michels, 1996;Tielens and van Hellemond, 1998) 

and therefore require glycolysis to produce ATP (adenosine triphosphate).  

Glycolysis within the kinetoplastida occurs within a specialised organelle termed 

the glycosome. Bearing many similarities in structure, origin and replication to 

peroxisomes, glycosomes encompass the first seven enzymes of the glycolytic 

pathway bound by a single phospholipid bilayer (Opperdoesand Borst, 1977) (Fig 

1-4). In fact, 90 % of all the protein content of a glycosome comprises glycolytic 

enzymes (Michels et al., 2006). 
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Figure 1-4. Energy generation in procyclic form trypanosomes. Light grey arrows highlight 
the pathways utilised when glucose is the energy source, dark grey when proline or 
threonine are used. Excreted end products are represented with white text on a black 
background. Abbreviations: AA, amino acid; 1,3BPGA, 1,3-bisphosphoglycerate; C, 
cytochrome c; CoASH, coenzyme A; DHAP, dihydroxyacetone phosphate; F-6-P, fructose 6-
phosphate; FBP, fructose 1,6-bisphosphate; G-3-P, glyceraldehyde 3-phosphate; G-6-P, 
glucose 6-phosphate; Gly-3-P, glycerol 3-phosphate; OA, 2-oxoacid; PEP, 
phosphoenolpyruvate; 3-PGA, 3-phosphoglycerate; Pi, inorganic phosphate; PPi, inorganic 
pyrophosphate; SucCoA, succinyl-CoA; UQ, ubiquinone pool. Enzymes are: 1, hexokinase: 
2, glucose-6-phosphate isomerase; 3, phosphofructokinase; 4, aldolase; 5, triosephosphate 
isomerase; 6, glycerol-3-phosphate dehydrogenase; 7, glycerol kinase; 8, glyceraldehyde-3-
phosphate dehydrogenase; 9, glycosomal phosphoglycerate kinase; 10, cytosolic 
phosphoglycerate kinase; 11, phosphoglycerate mutase; 12, enolase; 13, pyruvate kinase; 
14, phosphoenolpyruvate carboxykinase; 15, pyruvate phosphate dikinase; 16, glycosomal 
malate dehydrogenase; 17, cytosolic (and glycosomal) fumarase (FHc); 18, glycosomal 
NADH-dependent fumarate reductase; 19, mitochondrial fumarase (FHm); 20, mitochondrial 
NADH-dependent fumarate reductase; 21, glycosomal adenylate kinase; 22, malic enzyme; 
23, unknown enzyme; 24, alanine aminotransferase; 25, pyruvate dehydrogenase complex; 
26, acetate:succinate CoA-transferase; 27, unknown enzyme; 28, succinyl-CoA synthetase; 
29, FAD-dependent glycerol-3-phosphate dehydrogenase; 30, rotenone-insensitive NADH 
dehydrogenase; 31, alternative oxidase; 32, F0F1-ATP synthase; I, II, III and IV, complexes of 
the respiratory chain. (Bringaud et al., 2006). 



13 

 
The net production of ATP within the bloodstream form T. brucei glycosome is 

zero. All usable ATP from glycolysis is therefore produced by pyruvate kinase 

(enzyme 13 in Fig 1-4) in the cytosol.  Sequestration of the glycolytic enzymes 

within the glycosome has been shown to be essential (Bakker et al., 

2000;Guerra-Giraldez et al., 2002;Furuya et al., 2002). Glycolysis in other 

organisms has negative feedback loops from glucose 6-phosphate or trehalose 6-

phosphate on hexokinase and phosphofructokinase to prevent the autocatalytic 

pathway from losing control (Haanstra et al., 2008). T. brucei has no such 

feedback and glycolysis is instead regulated by compartmentalisation allowing 

ATP levels to be controlled (Haanstra et al., 2008). Without this 

compartmentalisation, ATP produced by the latter stages of the pathway would 

be accessible to the early stages causing a turbo explosion within the pathway 

leading to death by accumulation of toxic intermediates (Haanstra et al., 2008). 

Flux balance analysis of glycolysis within the trypanosome highlights the rate of 

glucose transport to be the main regulator of glycolysis, and blocking glucose 

transport invokes an anti-homeostatic response, increasing the effects of the 

inhibition (Haanstra et al., 2011). Both of these studies used computer models of 

glycolysis to build hypotheses with regards to regulation and control, which can 

then be tested biochemically. They highlight the use of modelling within drug 

discovery and in gaining a greater overall understanding of metabolism.    

1.4.4 Biochemistry 

Biochemically, trypanosomes evolved to maximise host energy exploitation and 

therefore rely on their insect and vertebrate hosts for the biosynthetic 

metabolic components such as purines, fatty acids, and sterols (Fairlamb, 1989). 

The parasites retain the capacity to induce many pathways but maintain a 

stream-lined metabolism in periods of nutritional abundance (Fig 1-5), utilising 

an extensive transporter repertoire over the entire trypanosome surface and 

endocytosis in the flagellar pocket to salvage nutrients. When the T. b. brucei 

genome was published there were estimated to be nearly 400 transporters, 38 of 

which were apparent amino acid transporters (although these figures are refined 

as more information is garnered about the transporter repertoire) (Berriman et 

al., 2005). This is a significant proportion (more than 4 %) of the 9, 000 
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predicted genes, demonstrating how important salvage is to these parasites 

(Berriman et al., 2005).  

 

Figure 1-5. Metabolism within the trypanosome (right panel) is streamlined compared to a 
typical mammalian cell (left panel). Dots represent metabolites and lines represent 
biochemical transformations. From (Fairlamb, 1989) 

Figure 1-5 depicts the greatly increased complexity and number of metabolites 

in the generalised mammalian metabolome as compared to the trypanosome 

metabolome (Fairlamb, 1989;Nerima et al., 2010). 

The flagellar pocket is a small invagination in the plasma membrane of the 

trypanosome, at the root of the flagellum. The flagellar pocket serves as the 

only site of exocytosis and endocytosis (Field and Carrington, 2009) and is the 

origin of cell division in the parasite (Hammarton, 2007). 

The bloodstream is very rich in glucose as well as amino acids and other small 

molecules, allowing the trypanosome to use glucose as its main energy source. 

When the trypanosome is within the tsetse fly vector, however, glucose is scarce 

and proline (and to a lesser extent threonine) is used as a source of energy 

(Bringaud et al., 2006). This clearly requires extensive re-modelling of the 

trypanosome metabolome upon differentiation from bloodstream to insect 
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stages of the parasite, which in turn means that many genes and proteins will 

not be in use in some stages of the parasite‟s lifecycle.   

Another interesting aspect of trypanosome biochemistry is the production of 

trypanothione, a thiol unique to trypanosomatids. Trypanothione is produced 

upon the conjugation of two glutathione molecules with a spermidine group (Fig 

1-6). This thiol is more efficient than glutathione as it can form intramolecular 

disulphide bonds more rapidly than glutathione (Olin-Sandoval et al., 2010). 

Trypanothione has been the subject of much research in the hope that its 

essentiality (Li et al., 1996; Huynh et al., 2003;Comini et al., 2004) will allow 

selective drugs to be designed that abrogate its production. Indeed, the only 

trypanocide in use with a known mode of action is thought to abrogate the 

production of this unique thiol (Fairlamb et al.,1987). 
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Figure 1-6. The polyamine pathway. L-arginine and L-methionine are transported across the 
plasma membrane (represented by double line) into the cell. Metabolites are in boxes. 
Enzymes are in italics. ROS; Reactive oxygen species. 

It should be noted that although the arginase enzyme (EC: 3.5.3.1) has been 

annotated in many of the trypanosome databases, the identification is not 

robust and the possibility has been raised (Bakker et al., 2010) that the 

annotated gene does not encode arginase in trypanosomes.  
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1.5 Control strategies 

A multifaceted control strategy is possible in the fight against HAT. As T. b. 

rhodesiense (and possibly T. b. gambiense (Ezeani et al., 2008)) is zoonotic, 

animal reservoirs must be reduced where possible. Livestock may be treated 

with trypanocides and infected wild animals may be slaughtered. Financial 

problems, however, in many of the affected countries limit the drugs available 

to treat infected animals. The availability of new compounds to treat animals is 

also a limiting factor. Human trypanocides are not used in animals (with the 

exception of suramin in T. evansi (Muhammad et al., 2007)) to reduce the risk of 

resistance building through over-use. 

1.5.1 Tsetse control  

During the 1980s the future of the tsetse fly looked uncertain. It was 

internationally recognised that reduction in tsetse numbers would have a hugely 

positive impact in reducing the number of infected individuals, and as a result, a 

large control programme was initiated across a 330, 000 km2 area of Malawi, 

Mozambique, Zambia, Zimbabwe and Somalia (Jordan, 1985). Various strategies 

including aerial spraying, ground spraying, odour-baited traps and pyrethroid-

treated cattle were used with much celebrated success. In the 1990s, however, 

European spending priorities changed and the onus fell on the local farmers to 

treat their cattle and to communities to maintain traps. This led to the 

development of smaller treatment foci, which are far less effective due to the 

mobile nature of tsetse populations (Torr et al., 2005). The main problems 

associated with tsetse control are therefore political, although there is some 

work that can be done by the scientific community.  

The sterile insect technique (SIT) has been the focus of much research of late 

due to its potential in the control of plasmodium carrying mosquitoes. SIT has 

been used successfully to eliminate Glossina austeni in Zanzibar (Vreysen et al., 

2000), but was very costly and the longer-term benefits are unclear as the 

vector moves back into the treated area. Methods used to produce sterile insects 

include irradiating them before release (Franz and Robinson, 2011). Cheaper, 
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and more effective SITs may be developed, such as the use of viruses specific to 

the tsetse fly (Lietze et al., 2011), but are not available at present.  

1.5.2 Vaccines  

When variable surface glycoproteins (VSGs) were discovered in 1969 (Vickerman 

and Luckins, 1969) to be the trypanosome‟s main protection against the host 

immune system, researchers were excited to finally have an exposed epitope 

that they could purify and use to develop a vaccine. Indeed, early research 

suggested that the VSG repertoire was limited to no more than a dozen VSGs (Le 

Ray et al., 1978;Barry et al., 1979;Esser et al., 1982;Crowe et al., 1983). 

Attempts were made to vaccinate using irradiated metacyclic trypanosomes, 

which resulted in promising early results (Esser et al., 1982). However, when it 

was subsequently discovered that the mosaic nature of expressed VSGs means 

that the repertoire is virtually limitless (McCulloch and Horn, 2009), exposed 

antigen vaccination programmes fell out of favour.  

Trypanosomes require a highly developed cytoskeleton, integral to motility, 

flexibility and mechanical stability. As a consequence, β-tubulin and actin are 

highly expressed and have been used as vaccine candidates, producing some 

positive results (Lubega et al., 2002;Li et al., 2007;Li et al., 2009), although 

negative controls also offered some protection suggesting that the initially 

positive results are actually a result of a general immune system boost at a non-

specific level.  

Transmission blocking vaccines have been used successfully in experimental tests 

for malaria (Outchkourov et al., 2008), leishmania (Saraiva et al., 2006) and 

babesiosis(Willadsen et al., 1995;de la Fuente et al., 1998) and may be possible 

in trypanosomiasis too. Transmission blocking vaccines can follow a number of 

strategies. Interruption of the development of the parasites to the insect 

infective stage within the human body is one target. Similarly, development of 

the parasite within the midgut of the insect vector can be abrogated (as is the 

case with malaria and leishmania vaccine trials). Insect fecundity is also a 

target, taking advantage of the tsetse fly‟s requirement for albumin to provide 

osmoregulation during storage of the blood meal (Nogge and Giannetti, 1980). 

Antibodies against the insect mid-gut can also have devastating effects on the 
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vector population as was shown with babesiosis (Willadsen et al., 1995;de la 

Fuente et al., 1998). These methods hold their own controversies as they are 

often unspecific to the disease the arthropod vector is carrying. 

In different cattle species, infected with T. congolense, there is a significant 

disparity in the disease progression, enabling animals to be labelled as 

trypanosusceptible and trypanotolerant. It appears that the main difference 

between the trypanosusceptble and the trypanotolerant cattle is that the latter 

are able to mount an anti-congopain IgG, an immunoglobulin produced by white 

blood cells of the adaptive immune response. Congopain is a cathepsin-L like 

cysteine protease in T. congolense trypanosomes and is under investigation as a 

vaccine candidate for cattle (Boulange et al., 2011). Humans however, do not 

show the same spectrum of disease susceptibility as cattle and some researchers 

defined the cause of this discrepancy to be due to suppression of the immune 

system during human trypanosome infection (Murray et al., 1974;Murray et al., 

1974;Askonas et al., 1979;Clayton et al., 1979). More recently, it has been 

reported that in addition to immune suppression there is a significant reduction 

in several B cell responses (Radwanska et al., 2008). This destruction appears to 

be very rapid and permanent, explaining why the large majority of vaccines 

trialed up until now have shown promising initial results, but no long-term 

memory. This is a worry, not just for the future of trypanosome vaccination 

research, but also for vaccination programmes against the many other infections 

in the trypanosome-exposed population. A permanent destruction of B-cells, 

leading to a lack of herd immunity can vitiate a whole vaccination programme 

(e.g. for human immunodeficiency virus, schistosomiasis or malaria) so it may be 

beneficial to these programmes to invest in anti-trypanosome therapies before 

commencing vaccine trials. 

1.5.3 Chemotherapy 

There are only four drugs licensed for the treatment of HAT: pentamidine, 

suramin, melarsoprol and eflornithine (Fig 1-7). Although many of the drugs have 

been around for decades, we only know how one of these compounds, 

eflornithine, exerts its actions. 
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Figure 1-7. The four drugs licensed for use against HAT. Suramin and pentamidine are used 
in the early stages of infection. Melarsoprol and eflornithine in stage two of the disease 
when the CSF has been invaded. 

1.5.3.1 Pentamidine 

Pentamidine is a diamidine effective against stage one T. b. gambiense 

infections. It has been available since the early 1940s and has previously been 

heavily used as a prophylactic as well as a curative agent (Bacchi, 1993). The 

action of pentamidine appears to be multifactorial possibly due to the drug 

binding to DNA in regions of the minor groove rich in adenine and thymine 

(Moreno et al., 2010). Pentamidine isethionate is currently given for free by 

Sanofi-Aventis to the WHO and distributed by Médecins Sans Frontières. Four 

milligrams per kilogram are given daily or on alternate days by intramuscular 

injection for 7-10 days (Sands et al., 1985). Pentamidine is concentrated within 

trypanosomes principally via the P2 aminopurine permease (Lanteri et al., 

2004). High affinity and low affinity pentamidine transporters (HAPT and LAPT) 

also contribute to uptake (De Koning, 2001).  

An analogue of pentamidine containing a furan ring has been developed and was, 

until recently, in clinical trials for use against Pneumocystis jiroveci carinii 

pneumonia, advanced immunodeficiency syndrome and malaria in addition to 

HAT (Lanteri et al., 2004). It is administered as a pro-drug, DB289, and can be 

given orally, which is a major advantage for use in less developmentally 

advanced countries. The active compound of DB289, DB75 (2,5-bis-4-
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amidinophenylfuran), is also fluorescent due to its furan and benzene ring 

conjugation systems and has been seen to localise to the mitochondrion in yeast 

cells (Lanteri et al., 2004) along with other DNA containing organelles in the 

trypanosome (Mathis et al., 2006). The usability of DB75 on trypanosomes may 

be limited however, as the mechanism of uptake is via the P2 transporter 

(Lanteri et al., 2006) and so it is likely that the resistance mechanism will be the 

same as that for pentamidine (see section 1.6). DB289 was shown to be 

successful in phase III clinical trials as an oral drug against stage one HAT. During 

extended phase I trials, however, using a 14 day instead of the 10 day dose used 

in the phase III trials, serious toxic side effects were exposed and the drug has 

now been removed from clinical consideration (Paine et al., 2010).  

1.5.3.2 Suramin  

Suramin is a polysulphonated naphthalene derivative (Barrett et al., 2007) 

discovered by Oskar Dressel and Richard Kothe at Bayer in 1916 (Haberkorn et 

al., 2001) and has been used to treat “surra”, caused by T. evansi, in camels for 

many years (Zhou et al., 2004). The large, negatively-charged polyanion appears 

to inhibit many positively-charged enzymes unspecifically, so it is difficult to 

conclude which may be the determinant of drug action (Pepin and Milord, 

1994;Wang, 1995). Suramin (along with other naphthalene dyes) is selectively 

concentrated by trypanosomes through either receptor-mediated endocytosis 

when conjugated with low-density lipoproteins (Vansterkenburg et al., 1993) or 

some other mechanism (Pal et al., 2002). Suramin can be administered in stage 

one cases of T. b. gambiense and rhodesiense infection by five slow intravenous 

injections every 3-7 days for 28 days (Barrett et al., 2007). There has, however, 

been some treatment failure in T. b. gambiense, so suramin has been reserved 

for preferential use against T. b. rhodesiense, where pentamidine is ineffective. 

1.5.3.3 Melarsoprol 

Only melarsoprol and eflornithine are effective in the latter stages of the 

disease when the parasites have invaded the brain and CSF due to difficulties in 

other compounds in crossing the blood-brain barrier. Melarsoprol, a 

melaminophenyl arsenical, was first synthesised in 1949 and its action is based 

on the severely toxic arsenic moiety. The severely toxic nature of this drug 
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results in the death of around 5 % of recipients treated (in HAT (Blum et al., 

2001) and leukaemia patients (Soignet et al., 1999)), via a reactive arsenical 

encephalopathy.  It is not known how melarsoprol kills trypanosomes, but it is 

known to form stable adducts with thiols, particularly with dihydrotrypanothione 

to form MelT (Fairlamb et al., 1989). MelT then acts as a competitive inhibitor 

of trypanothione reductase, an essential enzyme that protects from oxidative 

stress (Bacchi, 1993). Adducts are also formed with lipoic acid (Barrett et al., 

2007) and glycolysis is targeted via fructose 6-phosphate 2-kinase (Bacchi, 1993). 

Actions on glycolysis do not appear to be the main mode of action of melarsoprol 

however, and the effects on this pathway are minimal (Bacchi, 1993). It is likely 

that there are more modes of action for melarsoprol. 

 Melarsoprol is distributed in glass vials and usually administered intravenously in 

glass syringes as the solvent (ethylene glycol) is known to dissolve plastic-ware. 

The recommended course is 10 days long with daily injections of 2.2 mg/kg 

(Brun et al., 2010). Melarsoprol is the only drug effective against late stage T. b. 

rhodesiense infections. 

1.5.3.4 Eflornithine 

Due to the unacceptable toxicity of melarsoprol, eflornithine (DL-α-

Difluoromethylornithine; DFMO) has been recommended by the WHO as the first 

line treatment in areas where T. b. gambiense is prevalent (Chappuis et al., 

2005;Balasegaram et al., 2006;Priotto et al., 2008). Eflornithine, manufactured 

by Sanofi-Aventis, is the only drug with a well understood mode of action. It was 

originally developed in the 1970s as an antineoplastic agent (Janne et al., 

1981;Heby et al., 2007) and is a suicide inhibitor of ornithine decarboxylase 

(ODC) in the polyamine pathway (Fig 1-5). ODC exists in trypanosomes as a 

homodimer and is dependent of pyridoxal 5‟-phosphate for its structural 

integrity (Grishin et al.,1999). ODC is irreversibly inhibited by the formation of 

adducts with eflornithine in the active site of the enzyme (Poulin et al., 1992). 

In mice these adducts form at residues lysine 69 and cysteine 360, forming a 

Schiff base to pyridoxal 5‟-phosphate (Poulin et al., 1992).   In the trypanosome 

enzyme, eflornithine also forms a schiff base with pyridoxal 5‟-phosphate and 

covalently binds to cysteine 360 (Grishin et al.,1999).  
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Eflornithine is only active against T. b. gambiense forms of HAT possibly due to a 

reduced rate of ODC turnover in this sub-species (Iten et al., 1997). The rate of 

turnover of ODC may be influenced by differences in the C-terminal peptides of 

the enzymes, as T. b. gambiense has been shown to lack a 36 amino acid region 

rich in proline, glutamate, aspartate, serine and threonine (PEST) when 

compared to the mouse orthologue (Phillips et al., 1987), which has a much 

faster turnover rate. These PEST regions appear to be indicators of enzyme 

instability (Ghoda et al., 1992). 

Eflornithine treatment is difficult to administer in the field as it has poor bio-

availability when given orally and therefore must be administered by intravenous 

infusion. Eflornithine‟s high IC50 (inhibitory concentration for 50 % growth 

reduction) (225 µM (Phillips and Wang, 1987) or 100 µM (Bellofatto et al., 1987) 

in vitro for procyclic stages) and low half life of around three hours, also dictate 

that large quantities of the drug are required (nearly 4 kg for a 50 kg patient 

(Brun et al., 2010)) for the treatment regime of 56 infusions over 14 days. It is 

logistically difficult to deliver and to administer the large quantities of drug 

required to the rural areas where patients are often diagnosed leading to a 

continued reliance on melarsoprol in some places. This problem is also driving 

research into combination therapies that might reduce the amount of drug 

required. 

ODC inhibition by eflornithine leads to an increase in levels of ornithine, S-

adenosyl methionine and decarboxylated S-adenosyl methionine, and a decrease 

in putrescine, spermidine and trypanothione after 48 hours (Fairlamb et al., 

1987). Bacchi et al. (1983) also recorded a decrease in putrescine and 

spermidine and an increase in dc-SAM, but also noted an increase in spermine. 

This is interesting as spermine is not thought to be synthesised or utilised in T. 

brucei and may even be toxic to the cells (Merkel et al., 2007). Margaret 

Phillips‟s lab in Texas recorded polyamine levels by high performance liquid 

chromatography after the addition of eflornithine to bloodstream form cells in 

vitro. The group reported a depletion of putrescine and decreases (to 20-40 % of 

untreated levels) of spermidine, glutathionyl-spermidine, glutathione and 

trypanothione after three days, in agreement with the other studies (Xiao et al., 

2009). Decarboxylated S-adenosyl methionine levels increased around 40 % after 
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treatment with eflornithine as the previous studies showed, but S-adenosyl 

methionine levels were unchanged (Xiao et al., 2009).  

Bacchi et al. (1995) found that trypanosomes rapidly incorporate heavy 

methionine into S-adenosyl methionine, methylthioadenosine, S-

adenosylhomocysteine, homocysteine, csytathione, cysteine and glutathione. 

When treated with eflornithine, these cells rapidly (within 30 minutes) 

accumulate S-adenosyl methionine but also accrue decarboxylated S-adenosyl 

methionine (Bacchi et al., 1995), albeit at a slower rate. 

Roles of spermidine include the formation of complexes with polynucleotides to 

alter their stability and transcription, the binding to membranes influencing 

stability and the enhancement of some enzyme catalysis (Li et al., 1996). 

Spermidine conjugates with two molecules of glutathione to form trypanothione, 

a thiol unique to trypanosomatids (Heby et al., 2007). The synthesis of 

polyamines is essential to parasite survival, since polyamines are important for 

G-S phase transition (Li et al., 1996) and protection against oxidative stress 

(Steenkamp, 2002). The increase in S-adenosylmethionine levels causes aberrant 

methylation of proteins (Yarlett and Bacchi, 1988). Levels of all proteins 

including VSG decrease with eflornithine addition (Bitonti et al., 1988;Heby et 

al., 2007). The reduction in VSG exchange associated with the decrease in VSG 

expression may allow easier recognition by the host immune system (Bitonti et 

al., 1988). Parasites treated with eflornithine are not actually killed by the drug 

directly, but are forced to differentiate to the non-replicative stumpy forms 

(Barrett et al., 2007). These stumpy forms of the parasite are auxotrophic for 

polyamines (Barrett et al., 2007) and are killed by the host immune system.  

1.5.3.5 Nifurtimox-eflornithine combination therapy 

Nifurtimox is a 5-nitrofuran pro-drug that has been used for more than 40 years 

to treat Chagas disease (American trypanosomiasis). To be active, the drug must 

undergo nitroreduction. In trypanosomes this nitroreduction is undertaken by 

NADH-dependent type I nitroreductases that are rare in eukaryotic cells 

(Wilkinson et al., 2008). 
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An eflornithine-nifurtimox combination therapy (NECT) has been gaining 

momentum as an alternative to eflornithine monotherapy in recent years 

(Priotto et al., 2009;Opigo and Woodrow, 2009). It has been suggested that 

eflornithine and nifurtimox work in synergy with one another, thus allowing 

lower doses of each drug to be prescribed. This postulated synergy is thought to 

be due to the reduction in polyamine levels (and consequently reduced 

trypanothione) during eflornithine treatment being insufficient to deal with the 

oxidative stress attributed to nifurtimox. That oxidative stress may be caused by 

nifurtimox is a matter of debate. It was observed that trypanosome extracts 

produced superoxide anions and nitro anion free radicals upon treatment with 

nifurtimox (Docampo and Stoppani, 1979;Docampo et al., 1981), but there is 

little evidence that the same results occur in vivo. N-acetylcysteine can 

antagonise oxidative stress via interactions with free radicals produced by 

nifurtimox (Enanga et al., 2003). When administered at 0.5 mM with nifurtimox 

on in vitro bloodstream form cells, N-acetylcysteine provided a mild protective 

effect (IC50 of 12.72 µM, compared to 3.37 µM without N-acetylcysteine) (Enanga 

et al., 2003). However, the over-expression of trypanothione reductase (which 

would be expected to counteract any induced oxidative stress) confers no 

difference in susceptibility to nifurtimox over wildtype controls (Kelly et al., 

1993). Given the current evidence, no conclusions can be made on the mode of 

action of nifurtimox although recent evidence implicates an open chain nitrile 

that attcks macromolecules such as DNA and protein (Hall et al., 2011). 

The administration of the combination therapy compared to eflornithine 

monotherapy is much easier to implement. Nifurtimox can be given orally (three 

times a day for 10 days) and the eflornithine infusions are reduced in frequency 

to 14 over seven days. Logistically, drugs are easier to transport due to the 

lower quantities required and the reduction in refrigeration costs (the cost is 

reduced from €107 to €39 per patient (Yun et al., 2010)). There are fewer 

infections at the site of infusion due to the reduced frequency of infusion and 

fewer side effects overall (Priotto et al., 2009). It will be interesting to 

determine how this combination works biochemically after noting its 

effectiveness in the field. 
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1.6 Drug resistance 

As with all monotherapies, resistance to each of the drugs used in isolation is a 

growing worry. A treatment failure has been defined as a resurgence of 

parasitaemia within 18 months (or 24 months in some studies) post treatment. It 

is difficult to note treatment failures due to the difficulties patients face in 

travelling to treatment centres, in most cases making patient monitoring very 

hard to implement. Treatment failures have been noted to all the drugs in the 

field (Barrett et al., 2011), but determination as to the cause of the treatment 

failure is difficult and could be due to a number of factors including re-infection 

and non-compliance with the treatment regimes.  Resistance to all the drugs in 

use has, however, been selected in the laboratory (Phillips and Wang, 1987;Scott 

et al., 1996;Scott et al., 1997; Bridges et al., 2007) allowing the study of the 

potential mechanisms of resistance, although these may not hold relevance in 

the field as life cycles are not completed and culture conditions are optimised in 

vitro. 

Resistance to stage one drugs is unlikely to be detected in the field as it will be 

assumed that treatment failures at stage one will have resulted from a mis-

diagnosis of a stage two infection and will therefore be re-treated as stage two. 

There are multiple ways to confer resistance to a drug including a reduction in 

drug uptake, an increase in drug efflux, the loss of pro-drug activation, an 

increased production of the target enzyme, metabolism of drug, alterations to 

the drug target and increased ability to bypass the inhibited drug target (Borst 

and Ouellette, 1995). Two of these resistance mechanisms are transporter-based 

and transporters have been implicated in resistance to two of the drugs in use 

against HAT as discussed below.  

Resistance to melarsoprol is a worry as it is the only drug available against late 

stage T. b. rhodesiense infections and treatment failures in some T. b. 

gambiense areas have already reached levels of 30 % (Legros et al., 1999;Brun et 

al., 2001;Stanghellini and Josenando, 2001). Parasites selected for resistance in 

the laboratory (Carter and Fairlamb, 1993;Barrett and Fairlamb, 1999;Maser et 

al., 1999;Stewart et al., 2005) have lost the P2 transporter, and several relapse 
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patients yielded parasite isolates deficient in P2 transport (Maser et al., 

1999;Matovu et al., 2001;Stewart et al., 2005). This is in contrast to the 

perceived fitness cost of losing the P2 transporter (Berger et al., 1995;Bray et 

al., 2003). 

Loss of transporters can confer some resistance, but the gain or increased 

expression of a transporter that serves as an efflux mechanism for a drug can 

also lead to resistance, as has been seen in the case of Multidrug Resistance 

Protein A (MRPA). A homologue of this transporter protein (PGPA) was originally 

identified in leishmania as being responsible for resistance to arsenite or 

antimony drugs. PGPA and MRPA transport metal-thiol conjugates out of the cell 

and overexpression of MRPA can lead to 10 fold resistance of T. b. brucei to 

melarsoprol in vitro (Shahi et al., 2002). Conversely, RNAi of MRPA in resistant 

isolates can increase sensitivity to melarsoprol (Alibu et al., 2006). 

During selection of pentamidine resistance in vitro the P2 and HAPT (and 

possibly LAPT) (Fig 1-8) transporters are usually lost in order, conferring 

increasing levels of resistance. Development of high levels of resistance appears 

to come with severe cost to parasite fitness (Berger et al., 1995;Bridges et al., 

2007), which appears to be linked to loss of HAPT (Bridges et al., 2007), thus 

restricting the chances of resistance developing in the field. Increased 

expression of MRPA does not provide a decreased sensitivity to pentamidine 

(Shahi et al., 2002).  

Visceral and cutaneous leishmaniasis is also occasionally treated with 

pentamidine and some resistance to this drug is emerging in Leishmania 

donovani (Sundar, 2001) and L. mexicana (Basselin et al., 2002). These 

resistance mechanisms have been studied and in L. mexicana appear to involve 

diminished uptake of the drug into the mitochondrion associated with decreased 

mitochondrial membrane potential (Basselin et al., 2002) and are not the same 

as the resistance mechanisms studied in trypanosomes so far. 
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Figure 1-8. Routes of uptake for each of the currently used trypanocidal drugs. P (orange) = 
pentamidine, M (green) = melarsoprol, N (purple) = nifurtimox, E (red) = eflornithine, S 
(magenta) = suramin.  Also, where known, cellular targets are marked, including ornithine 
decarboxylase (ODC) for eflornithine and the nitroreductase (NTR) that metabolises 
nifurtimox into its active form (N*).  Pentamidine binds to kinetoplast DNA (K). Resistance to 
eflornithine relates to loss of TbAAT6. Resistance to melarsoprol (or its active metabolite 
melarsen oxide) relates to loss of the TbAT1 (P2) and HAPT1 transporters.  Alternatively up-
regulation of TbMRPA and can cause resistance when melarsen oxide-trypanothione 
conjugates are pumped from the cell.  Pentamidine resistance also relates to loss of TbAT1 
and HAPT1 transporters. Suramin enters by receptor mediated endocytosis at the flagellar 
pocket and resistance may relate to changes in the endocytic pathway. Nifurtimox 
resistance can come around when the nitroreductase activity involved in its activation is 
diminished.  

 

Resistance to suramin was reported in the 1950s and resulted in its replacement 

with pentamidine as the recommended drug for early stage T. b. gambiense 

trypanosomiasis, although suramin is still used for T. b. rhodesiense HAT (Barrett 

et al., 2007). The mechanisms for suramin resistance may involve changes to 

receptor-mediated endocytosis of the drug (David Horn, unpublished 

observations). 
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Resistance to eflornithine has not been officially reported in the field to date, 

although numerous anecdotal reports from physicians in the field suggest that 

treatment failures are a real and increasing threat to eflornithine‟s use (Matovu, 

2011).  
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1.7 Transporters 

1.7.1 Roles for membrane transporters 

The lipid bilayer surrounding the trypanosome is permeable only to small 

lipophilic compounds. Larger compounds or lipophobic compounds must 

therefore gain entry via endocytosis or through transporter proteins. As noted 

earlier, trypanosomes have a high rate of endo and exocytosis within their 

flagellar pockets. The flagellar pocket also contains an aggregation of 

transporters, required for the uptake of many essential nutrients (Field and 

Carrington, 2009). 

Trypanosomes are exposed to ever-changing environments during their life cycle 

through insect and vertebrate hosts and as such have a varying repertoire of 

transporters on their surfaces (Besteiro et al., 2005;Berriman et al., 2005). 

These can serve both as a means to pick up essential nutrients and as 

environmental sensors (Holsbeeks et al., 2004). Putative transporters in 

trypanosomes can be identified by sequence or structural similarity with known 

transporters in other organisms. In addition, some genes encoding transporters in 

Leishmania spp. have been shown to have a conserved location (synteny) in 

trypanosomes (Jackson, 2007).  

As trypanosomes have such a reliance on nutrient uptake, much effort has been 

invested into transport research in the hope that essential transporters can be 

discovered and chemically blocked leading to new chemotherapies.  

Purine transport in particular has received much attention as one of the purine 

transporters (P2) carries melarsoprol and diamidines as well as purines (De 

Koning et al., 2004). A recognition motif that allows compounds to enter the 

transporter has been identified and it was hoped that this motif may be grafted 

onto other compounds to target drugs to the trypanosome‟s interior (Barrett and 

Fairlamb, 1999;De Koning and Jarvis, 1999).  

Glucose transport has also been a topic of trypanosomatid research as glycolysis 

is essential for bloodstream form trypanosomes. T. brucei express two glucose 

transporters, one, low affinity transporter in the bloodstream stage and one, 
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higher affinity transporter in the insect stages (Hasne and Barrett, 2000). A 

problem that arises when attempting to block glucose uptakes in bloodstream 

form is that blood glucose levels are in the milimolar range meaning that 

competitive inhibitors would be extremely difficult to administer (Hasne and 

Barrett, 2000).  

The transport of many amino acids has also been studied. L-proline transport in 

procyclic forms was found to be inhibited by L-alanine and L-cysteine (L'Hostis et 

al., 1993), L-methionine uptake was inhibited by D/L-homocysteine, L-leucine, 

L-phenylalanine and L-tryptophan (Hasne and Barrett, 2000) and L-glutamine and 

L-cysteine were shown to share a transporter (Marciano et al., 2009). The 

apparent high level of redundancy in amino acid transporters suggests that 

blocking these would not cause detriment to the cells. 

1.7.2 Transporter-mediated drug uptake 

The transport mechanisms have been putatively identified for suramin 

(Vansterkenburg et al., 1993), although these mechanisms have been much 

debated and it is now widely believed that suramin gains trypanosome entry via 

endocytosis (Barrett and Gilbert, 2006). Robust evidence exists for the role of 

the P2 transporter in pentamidine and melarsoprol uptake and HAPT and LAPT in 

pentamidine uptake (De Koning, 2001). HAPT may also play a role in melarsoprol 

uptake as has been eluded to in cross resistance studies where selection of high 

levels of pentamidine resistance due to loss of HAPT are also more resistant to 

cymelarsen (a melaminophenyl arsenical similar to melarsoprol) than loss of P2 

alone (Teka et al., 2011). 

 Eflornithine has been shown to be accumulated in Neurospora crassa by a 

permease for basic amino acids encoded by the pmb gene (Davis et al., 1994), 

and in procyclic form trypanosomes transport of eflornithine is saturable (Phillips 

and Wang, 1987) apparently following Michaelis-Menten kinetics. However, 

Bitonti et al. (1986) claimed that eflornithine transport is unsaturated at 10 mM 

in bloodstream form T. b. brucei and concluded that the drug enters by passive 

diffusion. This study did however, reveal a temperature sensitivity of 

eflornithine uptake in T. b. brucei and mammalian cells and a partial uptake 
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inhibition by salicylhydroxamic acid, both of which suggest an active transport 

mechanism (Bitonti et al., 1986).  

Since eflornithine is an amino acid, structurally similar to the basic amino acids 

arginine and lysine (Fig 1-9), it is possible that there is a shared uptake 

mechanism.  

 

Figure 1-9. Eflornithine (left), a basic amino acid, is a modification of ornithine (right).  

Using Andrew Jackson‟s classification system (Jackson, 2007), there are 48 

predicted amino transporters in T. b. brucei. This differs from the genome 

project prediction of 38 (Berriman et al., 2005), due to different prediction 

methods. These 48 transporters are divided into 17 groups based on sequence 

similarity, evolutionary relationships and synteny (Fig 1-10) (Jackson, 2007). 

None of these 17 groups contain a transporter annotated as being a transporter 

for basic amino acids, indeed the amino acid transporters are poorly annotated 

in general and most have not been functionally studied.  
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Figure 1-10. Amino acid transporters in T. brucei. There are 17 groups of amino acid 
transporters depicted here on the 11 chromosomes. There is a high concentration of 
transporters on chromosomes 4, 8, 10 and 11. AAT: amino acid transporter. From Jackson 
(2007). 
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1.8 Metabolomics 

Defined as the analysis of all the small molecules (Mr<1200) within a cell, 

metabolomics is a rapidly growing branch of the –omic technologies (Griffin, 

2006;Oldiges et al., 2007). Measurements of the levels of substrates, products 

and cofactors of enzymatic reactions can be used as indicators of deeper-lying 

biological alterations at the genomic, transcriptomic or proteomic level.  

There are a number of methods one can utilise to obtain information about 

metabolites within a cell. Nuclear magnetic resonance (NMR) can be used for 

targeted analyses as it is much more facile to quantify metabolites using a single 

internal standard, requires minimal separation and is non-destructive (Beckonert 

et al., 2007). It is, however, far less sensitive than other techniques and 

provides a much reduced coverage of the metabolome. Raman spectroscopy 

detects vibrations or rotations in metabolites as they are excited by a laser, but 

as with NMR spectroscopy, Ramen spectroscopy does not provide a large 

coverage of the metabolome. The alternative to NMR and Ramen spectroscopies 

lies in mass spectrometry.  

1.8.1 Mass spectrometry  

Mass spectrometry is a method that measures the mass of a metabolite by 

creating charged species at the ion source, which are separated on mass and 

detected by the completion of an electronic circuit that produces a signal in the 

detector (Fig 1-11).  
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Figure 1-11. A generalised mass spectrometer from Dunn (2008). The sample is usually 
introduced in solvent from a chromatographic column into the ESI source. It is then ionised 
and the mass is analysed by filtering or by time of movement along a plane or around a 
pole. The detected masses are recorded in mass spectra files, usually with the time 
dimension from the chromatography column mapped for each mass detected against the 
intensity of the signal. 

 

1.8.1.1 Chromatography 

When analysing a complex metabolite sample it is usual to conduct some 

separation of the metabolites using chromatography columns reducing the 

complexity of the sample and reducing ion suppression effects. Metabolites 

travel along a column as either a gas (gas chromatography, GC) or a liquid (liquid 

chromatography, LC) phase. GC-MS is frequently used for volatile substances 

such as explosives, flavours and fragrances, although other, less volatile 

compounds may have to be derivatised before they can be run as a gas (Dorman 

et al., 2010). The GC columns use phase partitioning to separate the mobile gas 

phase from a liquid phase on the inner surface of the column (Dorman et al., 

2010). Liquid chromatography is used for less volatile metabolites and is often 

considered more useful for metabolomics as metabolites have no requirement 

for derivatisation and sampling can therefore be more high-throughput.  

There are several LC-MS columns used to separate metabolite samples. 

Lipophilic metabolites can be separated well by reverse-phase LC, but polar 

metabolites are not retained on these columns. HILIC (hydrophilic interaction 

chromatography) columns are therefore more frequently used for separating 

metabolite samples (Cubbon et al., 2010). These columns use a stationary 

aqueous layer (such as water) and a mobile phase (such as acetonitrile) to 

separate metabolites based on both their polarity (more polar metabolites will 
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be retained for longer on the aqueous layer) and degree of salvation (Cubbon et 

al., 2010).  

1.8.1.2 Ionisation 

There are many types of ionisation used in mass spectrometry, with electrospray 

ionisation (ESI) being most commonly coupled to LC-MS. ESI works via the 

production of a large voltage potential that creates a charge on the metabolites 

in solvent pushed through an ultra fine needle (Careri and Mangia, 2011). 

Charged solvent droplets exit the needle and, as solvent evaporates, the charge 

density in the droplet increases until the electrostatic repulsion between ions 

overcomes surface tension, and the droplet breaks up. Ultimately, charged 

solute ions are transferred to the gas phase and enter the ion path of the mass 

spectrometer, where they can be manipulated by electrodes for mass analysis 

and detection.  

ESI can operate in two polarities (or modes), which means that a greater range 

of metabolites can be detected compared to techniques that operate in just one 

polarity. For example, some metabolites, such as amines are more stable in a 

protonated state and are therefore more easily detected by positive ionisation, 

whereas very acidic ions such as phosphates are more stable in a deprotonated 

form so are detected in negative mode (Watson, 2010).  

ESI has a tendency to create multiply-charged ions (Careri and Mangia, 2011), 

which must be dealt with in the data processing stages of analysis. ESI also has a 

capability to fragment metabolites, which can be cumbersome during data 

analysis, but can also be very useful when providing structural information that 

can aid metabolite identification. 

1.8.1.3 Mass analysers 

Mass analysers measure the mass of a metabolite by detecting the time the 

metabolite takes to travel a certain distance (time of flight spectroscopy), how 

the metabolite oscillates in a magnetic field (Fourier transform ion cyclotron 

resonance mass spectroscopy (FT-ICR)), how the metabolite travels around a 
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central electropole in an orbit (Orbitrap), or sieves metabolites based on their 

charge and mass (Quadrupole) (Dunn, 2008). 

1.8.1.4 Species detection 

The detector in the mass spectrometer creates an electronic signal when a 

charge or an electrical current is detected as a charged species hits or passes by. 

This signal is often very small so signal amplification is common in detectors.  

1.8.2 Applications 

As metabolomic techniques develop the number of studies that involve an 

element of mass spectrometry or aim to improve methods and data processing 

are also increasing at a profound rate. Researchers will use the parts of the 

technologies that are useful to them allowing different areas of metabolomics to 

evolve independently of one another. For this reason, different areas have their 

own softwares that are more frequently in use. The terms in use can also differ 

between different niches of research. Some of the terms are described below 

(Dunn, 2008). 
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1.8.2.1 Metabolic fingerprinting – a snapshot of a metabolome aimed at sorting 

samples into groups rather than gaining high resolution metabolic data. 

1.8.2.2 Metabolic Footprinting – the extracellular metabolome of an organism. 

(also known as the secretome) can be taken non-invasively. 

1.8.2.3 Metabolomic Profiling - an untargeted look at as many metabolites 

within the organism of interest as possible. Multiple extraction methods will 

be used to gain as global an overview as possible. Relative intensities of 

each of the metabolite will be measured, but no real quantification is 

attempted. 

1.8.2.4 Metabolite flux analysis – the rate at which carbon flows though a 

pathway. This can be measured using radio-labelled metabolites in a time 

course assay and can be useful in determining choke points within a 

pathway. 

1.8.2.5 Choke points – a critical enzyme in a pathway where metabolites do not 

have an alternative route to synthesise the products of the reaction. 

1.8.2.6 Metabonomics – a term that was at first used synonymously with 

metabolomics, but now refers to quantitative changes to a metabolome in 

response to pathophysiological or genetic stimuli. 

1.8.2.7 Biomarker studies - much effort is currently being invested into 

technologies aimed at the detection of biomarkers of disease in blood or 

urine of diseased humans or animal models. If biomarkers are discovered, 

these could potentially have a huge impact in the development of new 

diagnostic tests for diseases such as cancer, diabetes or heart disease.  

A major advantage of metabolomics over the other –omics technologies is that 

there are far fewer metabolites (around 3, 000 in the human metabolome (Kell, 

2006)) than genes (around 32, 000 in the human genome) or proteins (at least 

one per gene) and so the data set is often much more manageable (provided 

only the cell metabolites are detected with minimal contaminants and 

background ions). Metabolomics can also be a much cheaper method of analysis 



39 

 
because sample preparation is not as difficult and labour intensive as in 

proteomics, as gel separations and trypsin digests are not required. 

Transcriptomics requires the use of costly chips specific to the organism under 

investigation, which are not required in metabolomics. Variability in metabolite 

signal intensities does, however, often necessitate additional machine runs. 

High-throughput analyses can be performed with metabolomic technologies 

because metabolites are much more generic between organisms than proteins, 

RNA transcripts or genes (Kell et al., 2005). For example, the metabolite glucose 

has the same structure in every organism, whereas the gene coding for 

hexokinase may have subtle sequence differences even within a species, and the 

protein may have additional post translational modifications even within a clonal 

population of cells. 

1.8.2.8 Mode of action studies 

Drug discovery is a very expensive process and the licensing of a drug is much 

easier if more is known about the compound‟s mode of action. Whereas drug 

discovery used to be led by the active compound, with definition of the mode of 

action coming later, new research is much more often drawn from the discovery 

of a good metabolic target.  

Metabolomics can be an extremely useful technique when looking at a drug‟s 

effect on the small metabolites within a cell population. From a complex 

metabolome, a drug‟s mode of action may be inferred, allowing easier licensing 

and bringing down the cost of drug discovery. 

There are two approaches that metabolomic-based mode of action studies 

generally take. In the first, a metabolic fingerprint of the changes the drug 

induces in the metabolome is taken and compared using multivariate statistical 

analysis to drugs with known modes of action (Yi et al., 2007). The second takes 

a more detailed look at the individual metabolite abundance changes after drug 

introduction (Le Roch et al., 2008). This approach provides much more 

information on the mode of action of a drug, allows new modes of action to be 

defined and allows the prediction of off-target effects. In addition to 

determining the modes of action of drugs on pathogens, it would be possible to 
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predict any side effects on human cells and tissues. This would be hugely 

beneficial to reduce the amount of animal testing required for new compounds if 

side effects can be recognised before animal trials begin. It would also 

potentially reduce the cost of developing new compounds and speed up the time 

it takes for a compound to reach the market.  

If the pathways that a drug acts upon are known, then synergistic compounds 

can be sought and resistance mechanisms might be predicted. 

Once a potential target has been identified, then further analyses can be 

undertaken to dissect the exact mode of action. For example, if the potential 

target is an enzyme, then the enzyme may be knocked down by RNA 

interference and the phenotype, drug IC50 and metabolomes of the drug treated 

and the knocked down target cells can be compared.  

Jess Allen and colleagues at the University of Wales took metabolic fingerprints 

of Saccharomyces cerevisiae in response to antifungal drugs and analysed them 

by discriminant function and hierarchical cluster analyses (Allen et al., 2004). 

When compared to drugs of known action, new compounds could be 

discriminated into classes of predicted mode of action (Allen et al., 2004). 

Principal component analysis was used in a similar way to evaluate the mode of 

action of berberine on Staphylococcus aureus (Fig 1-12) (Yi et al., 2007).   
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Figure 1-12. A principal components analysis of modes of action in anti-Staphylococcus 
aureus drugs. A mathematical transformation produces a single point on the graph for each 
mass spectrum. The different symbols indicate mass spectra for different pharmacological 
compounds. Clustering of different symbols is an indication of a similar metabolic profile 
between those compounds and therefore a similar mode of action. Taken from Yi et al. 
(2007). 

 

These methods could have some use in putative drug classification if large 

comparison sets are available. However, many of the clusters are close together 

and would be largely influenced by small deviations in the data due to 

experimental error for example. These methods are also unable to determine 

the targets of the drugs, so target identification would always need to be 

undertaken alongside multivariate data analyses. Another drawback with the 

two approaches using pattern recognition is that drugs with novel modes of 

action cannot be classified.  

A more sensitive method of pattern recognition has been developed using 

artificial neural network analysis with NMR (Aranibar et al., 2001). This machine 

learning-based method uses a training set of metabolite profiles from herbicide-

treated Zea mays to build a decision tree that can classify the profiles of other 

herbicide-treated Z. mays plants (Aranibar et al., 2001). This method is similar 

to the previous two methods in that it is based on classification with spectra 
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from treatments with compounds with known modes of action, but machine 

learning can often reveal the individual metabolites responsible for 

classification. Aranibar‟s method used NMR spectra however, and was not of high 

enough sensitivity to define the metabolites important in the decision tree 

(Aranibar et al., 2001). The authors also point out the sampling procedures need 

to be highly reproducible for this method to be of use (Aranibar et al., 2001). 

Untargeted metabolome studies to look at the mode of action of a drug are very 

rare although some targeted analyses have started to emerge. In 2008 Karine Le 

Roch and colleagues used heavy labelled phoshphocholine precursors to look at 

the effects of a bisthiazolium compound, T4, on phosphocholine biosynthesis in 

Plasmodium falciparum (Le Roch et al., 2008). The group found a decrease in 

phosphocholine synthesis from choline and ethanolamine after treatment with 

T4 (Le Roch et al., 2008).  

In one untargeted metabolomics approach, FT-ICR-MS was used to analyse the 

modes of action of four toxins on the daphnid metabolome (Taylor et al., 2010). 

The number of features in this study is large and the results very clearly 

highlight relevant pathways (such as effects on fatty acid metabolism after 

treatment with propranolol (a beta blocker) and disruption of amino sugar 

metabolism with fenvalerate (a pyrethroid insecticide) treatment (Taylor et al., 

2010) affected by the toxins. Data reduction has, however, been inefficient 

leading to an increased potential for false positive metabolite identifications. 

Data reduction is major part of analysing metabolomics data and is something 

that the metabolomics community are focussing resources on at present. 

Where the genomics and proteomics communities have repositories that collect 

experimental data from the community (e.g. GenBank for genomics and UniProt 

for proteomics), the metabolomics community have been a step behind in the 

production of similar database. Since the release of the Human Metabolome 

Database (HMDB) however, researchers are beginning to appreciate the benefits 

of having a large, pooled reference dataset. There are difficulties in producing 

repositories  based on experimental data for metabolomics as techniques are so 

widely variable: column retention times will differ depending on the column and 

the solvents used and ionisation and fragmentation techniques will change the 

mass and the mass:charge ratio of the metabolite. The Wishart group at the 
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University of Alberta have gone to extensive lengths to produce reference 

metabolomes for human cerebrospinal fluid (Wishart et al., 2008) and human 

serum (Psychogios et al., 2011), running multiple metabolomics platforms on 

clinical samples and conducting thorough literature searches to produce a 

searchable metabolite databank that includes quantitation of metabolites across 

various disease states. Another notable advancement in recent years is the 

improvement in compound databases such as KEGG, PubChem, ChemSpider, 

MassBank and Metlin. These databases are extremely useful in the identification 

of metabolites as well as raising awareness of the number of isomers a particular 

metabolite may have.  

1.8.2.9 Biomarker discovery 

There has been a recent surge in metabolomics papers attempting the discovery 

of biomarkers to various diseases and toxicities. In general, these studies 

endeavour to compare the metabolites of a sample of disease tissue or the 

biofluid of an infected patient to healthy controls (Mamas et al., 2011).  

Biomarkers are already routinely used to diagnose non-infectious diseases such 

as neuroblastoma (catecholamines (Monsaingeon et al., 2003)), diabetes (insulin) 

and prostate cancer (sarcosine (Sreekumar et al., 2009)) and there have been 

recent attempts to diagnose infectious diseases as well. One group analysed the 

serum and plasma of people in an Onchocerca volvulus endemic foci and 

discovered 14 biomarkers that were able to distinguish between infected and 

non-infected individuals (Denery et al., 2010). This experiment was flawed, 

however in that there was not enough power behind many of the analyses and 

training sets used for the machine learning were also part of the test sample set, 

which forces the fit of the data to the model. The metabolic responses of mice 

to T. b. brucei infections have also been elucidated (Wang et al., 2008) using 

NMR. This study pin-pointed many changes in the blood and urine of the infected 

mice as compared to the same mice pre-infection, including an increase in 

lactate, which may be due to an upregulation of glycolysis (Wang et al., 2008).  

This increase in lactate was confirmed by another study that analysed the 

effects of co-infections of two T. b. brucei strains (Li et al., 2011).  
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1.8.2.10 Computational models 

As more and more quantitative metabolite information is created, efforts are 

increasingly being made to mathematically model the data to understand 

metabolism at a system-based level. It is the eventual aim to integrate genomic, 

transcriptomic and proteomic data with metabolomic information to form a 

“silicon cell”, which can be virtually perturbed generating an output that would 

be similar to a live cell‟s response. The rates of enzyme activity are key to these 

models and have already been used to build models of parts of trypanosome 

metabolism. A kinetic model of glycolysis uses ordinary differential equations to 

describe glucose uptake and metabolism to pyruvate and highlights the 

importance of compartmentation within these systems (Bakker et al., 

1997;Bakker et al., 2000). This model has helped to identify which enzymes 

within the pathway, would, when blocked, induce the greatest effects on 

glycolysis and would therefore be the most effective drugs. Enzymes within a 

pathway that consume just one substrate or produce just one product are known 

as choke points and these enzymes have been shown in P. falciparum to be 

better drug targets than other enzymes (Yeh et al., 2004). MetExplore, a web 

server designed to automatically build connections between metabolites 

creating an ab initio network reconstruction, has been developed by Cottret et 

al. at the Institut National de Recherche Agronomique (Cottret et al., 2010). 

Experimental data may be uploaded into MetExplore and information, such as 

how the relative levels of metabolites change after perturbation with a drug, 

can be mapped in the context of the whole metabolic network for the organism 

in question (Cottret et al., 2010). 

Ab initio models such as MetExplore are very useful, but could be even more 

useful once the community is able to record more quantitative measurements of 

the metabolites in the system. This would bolster the models and make more 

accurate predictions possible. 

1.8.2.11 Quantitative metabolomics 

A true quantification of metabolites is only really possible in a targeted analysis. 

Researchers have been developing methods to attempt a global quantification 

using universally heavy-labelled metabolites spiked into samples (Psychogios et 



45 

 
al., 2011;Wu et al., 2005;Kiefer et al., 2008). The ion suppression effects in 

these samples can be normalised by comparison to standards, but the data 

processing involved to deconvolute these data will be immense leading most 

people to pursue targeted analyses for quantification. 

Once a target has been identified, a heavy-labelled version of the metabolite of 

interest can be spiked into the samples over a range of concentrations, creating 

a calibration curve against which the metabolite of interest can be measured.   

1.8.2.12 Heavy metabolite tracking 

Another use of heavy metabolites is to measure the flux of metabolites through 

pathways of interest. A metabolite with one or more heavy atoms is added to a 

population of cells, tissue or whole organism, samples are taken over a range of 

time points and the heavy atom or atoms are traced through the pathways, cells 

or tissues. This technique has been used to compare the metabolome of 

cancerous and non-cancerous human lung tissue (Fan et al., 2009), finding a 

higher rate of glucose metabolism and anaplerotic pyruvate carboxylation in 

cancerous tissues.  

In P. falciparum, Olszewski et al. used 13C and/or 15N-labelled glucose, aspartate 

and glutamine to analyse the tricarboxylic acid cycle and found that, contrary to 

biochemical textbooks, a branched structure was found, meaning that several 

enzymes must operate in the reverse direction (Olszewski et al., 2010) within 

these parasites. This discovery was very surprising and has yet to be 

independently confirmed, but reveals the power of fluxomics in the 

metabolomic field.  

1.8.3 Sample preparation 

Sample preparation methods can vary enormously depending on the metabolites 

one is interested in detecting and the organisms under examination. Generally, a 

cellular sample for metabolic analysis is quenched in a solvent at extreme 

temperature (either hot or cold) to prevent further enzymatic processes. Cells 

are often washed and then lysed before cell debris is removed. Shin et al. (2010) 

evaluated sample preparation methods in the Gram negative bacterium 
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Saccharophagus degradans. They compared pure methanol, acetonitrile:water 

(1:1, v/v), acetonitrile:methanol:water (2:2:1) and water:isopropanol:methanol 

(2:2:5) for the metabolite intensity, total number of metabolites detected and 

the reproducibility of detected metabolites. They found that both 

acetonitrile:methanol:water and water:isopropanol:methanol performed well, 

but covered different ranges of metabolites. Similar studies have produced 

optimised extraction solvents for almost all cell populations and tissues including 

liver (Masson et al., 2010), erythrocytes (Darghouth et al., 2010), leishmania 

(t'Kindt et al., 2010;Saunders et al., 2010), adherent cell cultures (Danielsson et 

al., 2010) and plants (Kim and Verpoorte, 2010). The literature on the extraction 

of the trypanosome metabolome is lacking so optimisation of extraction methods 

is a priority. 

There have been efforts to standardise the techniques used for sample 

extraction and analysis within the metabolomics community (Jenkins et al., 

2004;Sansone et al., 2007), but as each organism requires different treatment 

during the extraction method, and methods will vary depending on what 

metabolites a researcher is interested in and what mass spectrometry 

instrument is in use, these efforts have not yet proven successful and are often 

abandoned.  

1.8.4 Computation in metabolomics 

Perhaps the main reason that metabolomics is not as widely used as the other –

omic technologies lies in the lack of reliable computational solutions for the 

deconvolution of the highly complex data. There are many programmes 

available, but of the ones that are freely available there is not one that 

accomplishes all the needs of the biologist without extensive training in 

computer languages. One of the biggest hurdles in deconvoluting the raw files 

from the mass spectrometer is in finding a way for the computer to recognise a 

peak relating to one mass eluting from the chromatography apparatus. Simple 

programmes can choose peaks that are of a certain abundance (such as the 

Xcalibur software), but these will miss the more subtle peaks that are robust but 

small. Other, more sophisticated programmes are able to recognise the shape of 

a peak and match this shape and the retention time of the peak across replicates 
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enabling a more robust mass identification and comparison between samples 

(Smith et al., 2006). 

Other issues in the software are in comparing samples and performing statistical 

analyses. If the programmes are too generous in their parameters then huge lists 

of metabolites are generated with a large proportion being false positives. 

Conversely, if the parameters are too strict then many of the smaller or more 

variable peaks will be lost. This is an issue that cannot be resolved without 

having an understanding of how reliable an individual user‟s data is and 

therefore cannot be automated and parameters must be user-defined. 

Another big issue in the simplification of metabolomics data is the number of 

related peaks that are generated from one metabolite. Masses may be multiply-

charged or fragmented or have isomers, isotopes or adducts, which all produce 

extra peaks relating to a parent metabolite. Reducing the data based on these 

features will be vital in producing a dataset that is able to be interpreted in a 

biological context. MzMatch is a new software that resolves many of these 

issues, by identifying and combining related peaks, but is also modular so that 

users can decide how robust they would like the filtering of their data to be 

(Scheltema et al., 2011). 

1.8.5 Trypanosome metabolism 

There have been notably few metabolomics studies in trypanosomes so far. 

Studies have focussed on glycolysis(Visser and Opperdoes, 1980; Mackenzie et 

al., 1983; Albert et al., 2005;Haanstra et al., 2008) and trypanothione synthesis 

(Fairlamb et al., 1987;Shim and Fairlamb, 1988;Xiao et al., 2009). These 

metabolites were recorded using either HPLC, NMR or classical biochemistry 

techniques. NMR has been used to quantify phosphorylated compounds in 

bloodstream and procyclic T. brucei (Moreno et al., 2000) and to analyse the 

effects of enzyme deletions in procyclic T. brucei (Coustou et al., 2005;Coustou 

et al., 2008). These studies are, however, all targeted to the pathways of 

interest and so could miss many interesting metabolite changes. 

The HILIC-Orbitrap mass spectrometry platform was previously used to analyse 

the changes that occur in the procyclic trypanosomes metabolism in an 
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untargeted way when they switch from a glucose (the carbon source in the in 

vitro growth medium SDM-79) to a proline (the carbon source available in the 

tsetse midgut) carbon source (Kamleh et al., 2008). This study revealed a shift in 

proline metabolism resulting in many changes including higher levels of 

glutamate, glutathione and carboxypyrroline in the proline-grown cells (Kamleh 

et al., 2008). 

Trypanosomes may be the ideal organisms to study the applications of 

metabolomics as they have a minimal set of metabolites (Fairlamb, 

2002;Breitling et al., 2006)  due to the parasitic nature of the organism‟s 

lifestyle i.e. they salvage many more metabolites from their host than other 

organisms. The bloodstream form of the parasite, for example, appears not to 

have a fully functional TCA cycle, whereas the insect stages do(Fairlamb, 

2002;van Weelden et al., 2005). This would suggest that some of the citric acid 

cycle intermediates are salvaged from the mammalian host, but are not salvaged 

in the insect vector. The bloodstream forms of the parasite therefore have to 

rely on substrate level phosphorylation (from glycolysis) for ATP production 

(Carter and Fairlamb, 1993;Besteiro et al., 2005). 

Trypanosomes are also relatively easy to grow in vitro in large numbers creating 

a large, clonal population on which metabolite extractions can be performed. 

1.9 Metabolomics at the University of Glasgow 

The Orbitrap mass spectrometer is a type of Fourier transform mass 

spectrometer that was developed by Alexander Makarov. The Orbitrap is much 

smaller than fourier transform ion cyclotron resonance (FT-ICR) mass 

spectrometers as it does not use electromagnets whereas FT-ICRs do. Instead, 

the Orbitrap uses an electric field to trap ions in separate kinetic energies 

orbiting around a central electrode (Makarov et al., 2006). This mass 

spectrometer achieves an ultra high mass accuracy of two parts per million 

(ppm) using ubiquitous plasticising agents as internal calibrant masses. A 

resolution of over 100, 000 fwhm (full width at half maximum, a measurement of 

pulse duration) is achieved allowing spectra to be generated in the order of up 

to three per second (Makarov et al., 2006). A high resolution mass spectrometer 



49 

 
permits non-isobaric metabolites to be distinguished between much more easily, 

allowing separation steps to be removed or reduced (Breitling et al., 2006). 

Scheltema et al. (2008) showed that the advertised mass accuracy of the 

Orbitrap (2 ppm) can be improved to 0.21 ppm using internal background ions 

for additional calibration. 

Generally it is thought that the use of buffers to help prevent cell damage needs 

to be limited as excess salt can clog the skimmer in the mass spectrometer 

(Mashego et al., 2007) causing inefficient ionisation. Ion suppression can also 

occur, whereby molecules with a stronger potential to catch the charge (e.g. 

salts) are preferentially ionised, abrogating the potential for other molecules to 

become charged. Salt accumulation can also limit the amount of sample that can 

be analysed by HPLC (high performance liquid chromatography) (Theobald et al., 

1997) as can high protein concentrations. 

To improve the confidence of identification of a metabolite, separation 

apparatus is often coupled to the mass spectrometer, which also has the 

advantage of minimising suppression effects by keeping metabolites separate as 

they enter the ionisation source. Chromatography columns are used that can 

separate on mass, charge or polarity. The ZIC-HILIC (hydrophilic interaction 

chromatography) uses acetonitrile and water to separate metabolites on the 

basis of their polarity. Less polar metabolites are washed through the column 

with the solvent phase, while more polar metabolites are retained for longer, so 

two masses with different hydrophobicities should be distinguishable by their 

retention time on the column. 

MzMatch is a modular programme developed by Richard Scheltema and Andris 

Jankeviks. The pipeline used in this project (IDEOM) was automated and given a 

graphical user interface (GUI) by Darren Creek. The components of the software 

used in our analyses are summarised in figure 1-13.  
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Figure 1-13. The metabolomics pipeline used at the University of Glasgow (Sheltema et al., 
2011). MzXML files are obtained by simple processing of the raw MS data. Peaks of 
metabolites eluting from the chromatography apparatus are the isolated and compared 
across replicates and samples. These are then filtered according to their relative standard 
deviation (rsd) and combined into one data set, which can be used to search metabolite 
databases allowing putative metabolite names to be assigned. 
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The accuracy of identification was improved by the development of a retention 

time predictor by Darren Creek. This algorithm predicts the time that a 

metabolite will exit our chromatography apparatus (the ZIC-HILIC column) for 

the metabolites which we do not have a standard for. Having retention times 

predicted aids enormously in the identification stage of the analysis and helps 

the computer distinguish between isomers more easily. 
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1.10 Aims 

Human African trypanosomiasis is a disease that has neared elimination in the 

past. There is a paucity of drugs that are effective against either early or late 

stages of the disease. Those that are available are often dangerously toxic and 

are difficult to transport to and store in places of need. Resistance to the drugs 

in use also poses a problem for the future of the available compounds. The 

mechanisms of resistance to many of the drugs have been investigated, but the 

drug that is increasing in use most rapidly, eflornithine, has no predicted 

mechanism of resistance. 

Metabolomics is a relatively new set of technologies that measure the presence 

and levels of small molecules within tissues or cell populations. There is a huge 

scope for useful applications of these new technologies.  

The aims of this project were to: 

1, Investigate the mechanism of resistance to eflornithine in order to combat it 

before it occurs in the field. A combination of classic biochemical and molecular 

techniques were used in addition to newer metabolomic techniques. 

2, Analyse the mode of action of drugs on trypanosomes using eflornithine as a 

proof of principle. 

3, Develop new metabolomic methodologies for the analysis of pathways in T. 

brucei. Quantification of specific metabolites and heavy metabolite tracking 

were used to analyse the flux of nitrogen through the bloodstream form 

polyamine pathway. 
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 2. Methods 

2.1 Trypanosome growth and resistance selection 

2.1.1 Culturing cells 

Bloodstream form trypanosomes were grown in HMI-9 (Biosera) (Hirumi et al., 

1977) supplemented with 10 % foetal calf serum (FCS, Biosera), incubated at 

37˚C, 5 % CO2. Procyclic form trypanosomes were grown in SDM-79 (Biosera) with 

10 % FCS at 28˚C. Generally, growth was in 10 ml medium in 25 cm2 Corning 

vented culture flasks (unvented for procyclic forms). A typical starting density of 

104 cells per ml was used (counted by haemocytometer), and cells reached 

stationary phase after 2-3 days for bloodstream form or 5 days for procyclic 

forms. Cells were bulked up for metabolomics and uptake assays in 175 ml 

medium in 500 cm2 Corning vented culture flasks. 

Leishmania mexicana were cultured in Homem medium (Biosera) with 10 % FCS. 

Conditions were the same as for procyclic trypanosomes. 

2.1.2 Selection of eflornithine resistance 

Wildtype bloodstream form 427 cells were grown in 5 ml cultures in 25 cm2 flasks 

as described above. The first drug concentration used on the wildtype cells was 

10 µM. At each passage, three flasks were created; 1, drug-free. 2, drug 

concentration equal to previous passage. 3, two times the drug concentration 

from the previous passage. Cells were cloned out and stabilated at various 

stages of the selection process for later analyses. 

2.1.3 Microscopy 

Trypanosomes were centrifuged at 1, 250 RCF and resuspended at a high density 

before smearing onto a glass slide. Smears were air dried and stained in 10 % 

Giemsa (v/v in water) for 24 hours and destained for several washes in water. 

Cells were observed with 100 x magnification under oil immersion with a Zeiss 

Axioplan 2 microscope and Velocity software. 
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2.1.4 Cloning of trypanosomes 

Clonal populations of cells were diluted to one parasite per ml medium and 200 

µL medium was added to each well of a 96 well plate. If fewer than 30 % 

(calculated for a 96 well plate using a poisson distribution) of the wells 

contained live cells after 14 days then the populations were considered to be 

clonal. 

2.1.5 Creating stabilates 

Stabilates were created from clonal populations of cells by adding 15 % glycerol 

to confluent cells at approximately 5 x 105 cells/ml. These were then wrapped in 

cotton wool and frozen at -80ºC before transferring to liquid nitrogen for long-

term storage. 

2.1.6 Alamar Blue assay  

The alamar Blue assay developed by Raz et al. (1997) for bloodstream form 

trypanosomes was used. Bloodstream form parasites were diluted to a 

concentration of 4 x 104 cells per ml. The drug under test was diluted in medium 

to twice the maximum desired concentration. 200 µL of drug in medium was 

added to the first two wells in the first column of a 96 well plate. 100 µL of 

medium was added to the remaining wells on the plate in the top four rows. The 

drug was serially diluted from left to right and top to bottom along the 96 well 

plate, leaving the last two wells drug free. 100 µL of 4 x 104 cells per ml 

parasites were added to each well. 

Plates were incubated for 48 hours at 37˚C, 5 % CO2 then 20 µL Resazurin dye 

(Sigma) at 0.49 µM was added to each well. Plates were incubated for a further 

24 hours then read on a fluorimeter (emission 530, excitation 595) (FLUOstar 

Optima, BMG Labtech).  

For isobologram analyses, alamar Blue assays were conducted for one drug in the 

presence of three different concentrations (IC50, 2 x IC50 and 0.5 x IC50) of 

another drug.  
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2.1.7 Mouse work 

All mouse work was conducted by Dr. Pui Ee Wong, University of Glasgow. 

Cells from culture were prepared for inoculation into adult female ICR (Institute 

of Cancer Research) mice by washing twice in CBSS (Carter‟s Buffered Salt 

Solution). They were re-suspended to a density of 5 x 105/ml and 0.2 ml (1 x 105) 

cells were injected intraperitontoneally into the mouse. 

Blood straws were defrosted into 0.2 ml CBSS and 0.2 ml of the resulting 

suspension was injected into the peritoneum.   

Mice were exsanguinated with 100 international units of heparin sodium per 1 ml 

of blood. Trypanosomes were purified on a PSG (Na2HPO4 (57 mM), NaH2PO4 (3.9 

mM), NaCl (44 mM), glucose (61 mM)) resin column. 

2.2 Metabolomics 

2.2.1 Metabolite extraction  

Mass spectrometry was undertaken by Darren Creek (University of Glasgow) or 

Muhammed Anas Kamleh (University of Strathclyde). Metabolite extraction 

methods were adapted from Leishmania spp extraction techniques developed by 

groups in Melbourne, Australia (Saunders et al., 2010) and Antwerp, Belgium 

(t‟Kindt et al., 2010). 

Cells were grown in 500 ml Corning flasks to a maximum volume of 175 ml in 

HMI-9. Cultures were kept in log phase growth (below 1 x 106/ml). At the time of 

harvest, 4 x 107 cells were rapidly cooled to 4 ˚C by submersion of the flask in a 

dry ice-ethanol bath, and kept at 4 ˚C for all subsequent steps. The cold cell 

culture was centrifuged at 1, 250 RCF for 10 minutes and the supernatant 

completely removed. Cell lysis and protein denaturation was achieved by 

addition of 200 µL of 4 ºC chloroform:methanol:water (ratio 1:3:1) plus internal 

standards (theophylline, 5-fluorouridine, Cl-phenyl cAMP, N-methyl glucamine, 

canavanine and piperazine, all at 1 µM), followed by vigorous mixing for 1 hour 

at 4 ºC.  
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Extract mixtures were centrifuged for two minutes at 16, 000 RCF, 4˚C. The 

supernatant was collected, frozen and stored at -80˚C until further analysis. 

2.2.2 Mass Spectrometry 

Samples were analysed on an Exactive Orbitrap mass spectrometer (Thermo 

Fisher) in both positive and negative modes (rapid switching), coupled to HPLC 

with a ZIC-HILIC column. The apparatus was operated by either Muhammed Anas 

Kamleh (University of Strathclyde) or Darren Creek (University of Glasgow). 

Exactive data was acquired at 25,000 resolution, with spray voltages +4.5kV and 

-2.6kV, capillary temperature 275 ˚C, sheath gas 20 units, auxillary gas 15 units 

and sweep gas 1 unit. Minor adjustments were made to the published (Kamleh et 

al., 2008) HPLC mobile phase gradient as follows: Solvent A is 0.1 % formic acid 

in water, and solvent B is 0.1 % formic acid in acetonitrile, 80 % B (0 min),  50 % 

B (12 min), 50 % B (26 min), 20 % B (28 min), 20 % B (36 min), 80 % B (37 min), 80 

% B (47 min).  

2.2.3 Metabolomics data processing 

2.2.3.1 Untargeted metabolomics 

Peaks of metabolite signals eluting from the chromatography apparatus were 

identified and relative quantitation was undertaken using mzMatch software 

developed by Richard Scheltema (University of Groningen) and Andris Jankevics 

(University of Glasgow) (Scheltema et al., 2011). An Excel-based macro system 

(IDEOM – IDEntification Of Metabolites) developed by Darren Creek (University of 

Glasgow, in press) was used to identify metabolites, merge related peaks and 

compare relative intensities of metabolites between sample sets. A retention 

time error of 5 % was allowed for retention times for which standards have been 

run and 35 % was allowed for calculated retention times. 

Raw files from the Orbitrap mass spectrometer were converted to mzXML using 

msconvert and metabolite peaks were picked using xcms (Smith et al., 2006). 

Data was filtered and reduced using mzMatch (Scheltema et al., 2011) with a rsd 

filter of one, an intensity filter of 10, 000 and a minimum number of detections 

of two. 



57 

 

2.2.3.2 Targeted metabolomics 

To analyse specific pathways, Xcalibur software (Thermo Scientific) was used to 

create a processing file with user-specified masses and retention times and run 

it through a sample list picking out all the metabolite relative intensities, using 

the Quan Browser, within a set of samples.  

Accuracy of metabolite identification was improved for targeted and untargeted 

analyses using retention times. These were either identified using standards and 

calibrated using an internal standard mix or calculated using an algorithm 

developed by Darren Creek.  

2.2.4 Radiolabel tracking 

Amino acids were obtained with 15N incorporation from Cambridge Isotope 

Laboratories (L-threonine (98 % enrichment, one incorporation, alpha-N, 

cat:NLM-742-0), L-glutamine (98 % enrichment, one incorporation, alpha-N, cat: 

NLM-1016-0), L-aspartic acid (98 % enrichment, one incorporation, alpha-N, NLM-

718-0), L-arginine (98 % enrichment, four incorporations, allo-N, cat: NLM-396-

0), L-ornithine (98 % enrichment, two incorporations, allo-N, cat: NLM-3610-0), 

L-lysine (95 - 99% enrichment, one incorporation, alpha-N, cat: NLM-143-0)) or 

Sigma Aldrich (L-proline (98 % enrichment, one incorporation, alpha-N, cat: 

608998), L-glutamate (98 % enrichment, one incorporation, alpha-N, cat: 

332143)).  

Cells were grown in 500 ml Corning flasks to a maximum volume of 175 ml in 

HMI-9. Cultures were kept in log phase growth (below 2 x 106/ml). At the time of 

harvest, cells were centrifuged at 1, 250 RCF for 10 minutes and the supernatant 

completely removed and resuspended in CBSS. Cells were split into aliquots of 4 

x 107 cells. Labelled and unlabelled amino acid was added at 1 mM. Cell extracts 

were prepared as method 2.2.1. 
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2.3 Molecular Biology 

2.3.1 Gene searches 

Nucleotide sequences for genes were located either via text searches for the 

gene names in GeneDB (www.genedb.org) or TriTrypDB (tritrypdb.org). For 

proteins that were not annotated, amino acid sequences for bacterial or 

protozoan microorganisms were taken from NCBI databases 

(www.ncbi.nlm.nih.gov ) and a BLAST (Basic Local Alignment Search Tool) search 

of these against the parasite genomes was performed in GeneDB or TriTrypDB. 

2.3.2 PCR 

Generally, genomic DNA was denatured at 94˚C for two minutes, followed by 30 

cycles of 94˚C for 15 seconds, annealing for 15 seconds (variable annealing 

temperatures between 50 and 65˚C) and extension at 72˚C for 30 seconds/500 

bases. A final elongation of 7 minutes was used. GoTaq polymerase (Promega) 

was used for low fidelity PCRs and KOD Hot Start polymerase (Novagen) for high 

fidelity reactions according to manufacturer‟s instructions. Mg2+ was used at 1.5 

mM and dNTPs at 200 µM. 

Approximately 10 ng of DNA in water was used in each reaction along with 100 

ng of each primer (Table 2-1). 

For PCR from blood cultures of trypanosomes, blood was spotted on to FTA® 

cards (Whatman) and washed four times with FTA® purification reagent (200 µL 

for five 2 mm discs, cut with a hole punch), then three times with TE buffer (10 

mM Tris-Cl, pH 7.5. 1 mM EDTA) (200 µL). Generally, one disc was used in each 

PCR reaction.  

Primer Sequence Gene 

AAT1 forward ATATGGATCCGCGATTTCTCACGAGCCTACG Tb927.4.3930 

AAT1 reverse ACATCTCGAGTACGACACCTCACCACCAAAA Tb927.4.3930 

AAT2 forward ATATGGATCCACATTCTTTACGAAGGTGAGT Tb927.4.3990 

AAT2 reverse ACATCTCGAGGATCACAATGACAAAATACAC Tb927.4.3990 

AAT3 forward GGAGAAGCACAAAAGCCCGA Tb927.4.4730 

AAT3 reverse GATGAAGAGTGCGGGGAATA Tb927.4.4730 

http://www.genedb.org/
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AAT4 forward ATATGGATCCGCTAATGAGGGAGAAGGGGAA 
Tb927.4.4840/4820/4860

/4830 

AAT4 reverse ACATCTCGAGGTGCCGAAGAGGTGAATGCCC 
Tb927.4.4840/4820/4860

/4830 

AAT5 forward ATATGGATCCACCGCGCGGTGGTGCCCTTCC Tb927.8.4710 

AAT5 reverse ACATCTCGAGTTCACATGACAAAGATAAGCG Tb927.8.4710 

AAT6 forward CCAATCGCGTGTTGATACGT Tb927.8.5450 

AAT6 reverse GCGGCACACCACAGCTCGGA Tb927.8.5450 

AAT7 forward ATATGGATCCGTGAGTCTATTTATGGCAACT Tb927.8.7600/7680 

AAT7 reverse ACATCTCGAGGCATGAGTGCACTACAATGGC Tb927.8.7600/7680 

AAT8 forward ACGGGTGAACCGTTCGTTAG 
Tb927.8.7740/Tb927.4.4

730 

AAT8 reverse GATTTGCGTAGGGGTCGTAA 
Tb927.8.7740/Tb927.4.4

730 

AAT9 forward ATATGGATCCTGATGTGGTAAAGGAAGTGAA Tb927.8.8220 

AAT9 reverse ACATCTCGAGATAGCCAAGATAATCACCAAC Tb927.8.8220 

AAT10 forward ATATGGATCCTCGTGTCTAAATGGGCTTCCG Tb927.8.8290/8300 

AAT10 reverse ACATCTCGAGCTTTGGGATGAAGAGACCCAA Tb927.8.8290/8300 

AAT11 forward ATATGGATCCTGCATGCATTAGTGGTGGTTA Tb09.211.1760 

AAT11 reverse ACATCTCGAGCCTCCAGGGATCTGGATGAAG Tb09.211.1760 

AAT12 forward AAGGGGAACGCTTTAGTGGT Tb10.70.1170 

AAT12 reverse TCTGCAAACAGTGATGAGGC Tb10.70.1170 

AAT13 forward ATATGGATCCAAACAGATCAATTCCCTGCGC Tb10.70.0300 

AAT13 reverse ACATCTCGAGACATAATTTGGCAACGAGCCC Tb10.70.0300 

AAT14 forward ATATGGATCCGTAAACGTCGGGCTGTGATTG Tb10.6k15.0450 

AAT14 reverse ACATCTCGAGAATTTCGCACAATGTCACCAC Tb10.6k15.0450 

AAT15 forward TCGAACGCTGCCTTCTTAAT Tb11.02.4520 

AAT15 reverse CCTTCTCGTATGCTTGCTCC Tb11.02.4520 

AAT16 forward ATATAAGCTTCCTCACTTACTGCGCATATTG Tb11.01.7500/7520 

AAT16 reverse ACATGGATCCGAGGGTATACTTCAATTAGGT Tb11.01.7500/7520 

AAT17 forward ATATGGATCCTTTTCCCTGCATATCCTGTCA Tb11.01.7590 

AAT17 reverse ACATCTCGAGGAACCTGGCACAGCTGCGCTT Tb11.01.7590 

ODC forward ATGACCACCAAATCAACCCC Tb11.01.5300 

ODC reverse TTATGATTTTTGACTTTTCAACTC Tb11.01.5300 

Tb-44_forwards CCTATGCTATGTTCACGCTG Tb927.8.5460 

Tb-44_reverse GCAGAACCCATCAGTAATGC Tb927.8.5460 

Tb927.8.5410_F TGGACAGCTGAGGCACATAG Tb927.8.5410 

Tb927.8.5410_R ACGCCTTAGTTCCTTGAGCA Tb927.8.5410 

Tb927.8.5420_F TCCTCGGTATAAGCCGATTG Tb927.8.5420 

Tb927.8.5420_R TCAACTGTTGGGTTTCCACA Tb927.8.5420 

Tb927.8.5430_F ATGGGCAACAACGGAAGTAG Tb927.8.5430 

Tb927.8.5430_R GTTGTGATACCGGGACAACC Tb927.8.5430 

Tb927.8.5480_F CAGCAACTGAGATGAAGGCA Tb927.8.5480 

Tb927.8.5480_R CGCGTCAAACTTCTTGAACA Tb927.8.5480 

Tb927.8.5490_R AAAACGAGAGCCAACTCGAA Tb927.8.5490 

Tb927.8.5490_R GTCAGCAAGCGCAGTGATTA Tb927.8.5490 

TbAAT6 RNAi 
forward 

GATCGGGCCCGGTACCAAATTTATTTTCGGGCC
ACC 

Tb927.8.5450 

TbAAT6 RNAi GATCTCTAGAGGATCCGTCTTCTGATTGCATCC Tb927.8.5450 
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reverse GGT 

Table 2-1. Primers used for PCRs and for the production of expression and RNA 
interference constructs. 

 

2.3.3 Constructs for RNAi, gene knock outs and overexpression 

The pRPaiSL (RNAi (Alsford and Horn, 2008)), pGL1688 (knock out, a gift from 

Jeremy Mottram) and pHD676 (overexpression (Biebinger et al., 1997)) 

constructs were created by PCR of a gene fragment (400 bases chosen using 

RNAit (http://trypanofan.path.cam.ac.uk/software/RNAit.html) for RNAi, gene 

flanking regions for knock out vectors and the whole gene for overexpression 

vectors). PCR products were created using the KOD high fidelity polymerase and 

treated with Taq polymerase to create a T overhang. These DNA fragments were 

ligated into the pGEM-T vector (Promega) using the instructions included in the 

kit. 2 µl of plasmid was added to 50 µl chemically competent DH5α Escherichia 

coli cells and left for 30 minutes on ice. Cells were heat shocked for 45 seconds 

at 42˚C then put on ice for two minutes. 1 ml of Luria broth was added and the 

cells were left to recover for one hour at 37˚C. 200 µl of cells were plated out 

onto an Luria broth agar plate with 50 µg/ml ampicillin. Colonies positive for the 

plasmid (by PCR) extracted from overnight cultures in Luria broth using a 

miniprep kit (Qiagen) and digested for ligation to the final construct using one 

unit of the digestion enzyme as specified in the literature (Biebinger et al., 

1997;Alsford and Horn, 2008;). 

2.3.4 Southern blot and hybridisation 

Southern blots were performed according to standard procedures (Sambrook and 

Russell, 2001). 

5-10 µg DNA was digested with Eco RI (Promega) and ran on a 0.7 % agarose gel 

with 8 µL SYBR Safe stain (10,000 x Invitrogen) in 100 ml. The gel was blotted 

using a hybond-N membrane (Amersham) and probed with Easytides 32P-ATP 

(Perkin Elmer) incorporated into the gene of interest using the Stratagene 

Prime-it kit with random primers used on β-actin, ornithine decarboxylase and 

TbAAT6 containing DNA fragments extracted from plasmids. 

http://trypanofan.path.cam.ac.uk/software/RNAit.html
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2.3.5 Transfection of Trypanosomes 

2 x 107 of bloodstream form cells (LaCount et al., 2000) were attained from 

cultures of no more than 1 x 106 cells/ml. These cells were centrifuged at 2,500 

RCF for 10 minutes and re-suspended in 100 µl T cell buffer (Lonza). 10 µg of 

linearised plasmid was added and cells were transferred to 0.4 cm gap 

transfection cuvettes. Cells were electroporated using programme X-001 on an 

Lonza Nucleofector II and then added to HMI-9 with 10 % FCS. After a recovery 

period of 24 hours, appropriate selection drugs were added (hygromycin (15 

µg/ml), neomycin (15 µg/ml), phleomycin (0.5 µg/ml) or puromycin (0.2 

µg/ml)). These cells were cloned out and stabilated. 

The same protocol was used for 29-13 procyclic trypanosomes, but with 5 x 107 

of no more than 5 x 106/ml cells. 

2.3.6 RNAi in trypanosomes 

2Ti bloodstream form cells (Alsford and Horn, 2008) were used to create the 

RNAi cell line with the pRPaiSL construct. Cells were grown in tetracycline-free 

medium and induced with 1 µg/ml tetracycline. The pRPaiSL plasmid (Alsford and 

Horn, 2008) (modified for use in 29-13 cells by Dr. Jane Munday, University of 

Glasgow) was also used to transfect 29-13 procyclic trypanosomes, which were 

inducible in the same way as the bloodstream form cells. 

2.3.7 Northern blot 

Northern blots were performed according to standard procedures (Sambrook and 

Russell, 2001). Certified RNA-free equipment was used and equipment was 

sprayed with RNaseZap (Ambion) or treated with DEPC water. 

20 µg RNA was extracted using Trizol reagent (Invitrogen), run on a 

formaldehyde (16 %), Na2HPO4 (18 mM), NaH2PO4 (2 mM), agarose (1 %)  gel, 

blotted using a hybond-N membrane (Amersham) and probed with Easytides 32P-

ATP (Perkin Elmer) incorporated into the gene of interest using the Stratagene 

Prime-it kit. 
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2.3.8 Tritiated amino acid uptake – cell preparation 

Radiolabelled amino acids were obtained from Sigma Aldrich (L-arginine (2,3-3H, 

specific activity: 60 Ci/mmol, concentration: 0.95 mCi/mL)), Moravec 

Biochemicals (L-proline (2,3,4,5-3H, specific activity: 71.3 Ci/mmol, 

concentration: 5.0 mCi/ml), L-eflornithine (specific activity: 1.6 Ci/mmol 

concentration: 1 mCi/ml), D-ribose (1-3H, specific activity: 14.3Ci/mmol, 

concentration: 1 mCi/ ml)) or American Radiolabeled Chemicals L-ornithine (4,5-

3H, specific activity: 40 Ci/ mmol, concentration: 1 mCi/ ml).  

2.3.8.1 Trypanosoma brucei brucei 

Mid-log phase cells were cultured to attain sufficient cell densities to permit use 

of more than 2 x 107 cells per reaction. Cells were centrifuged at 1, 250 RCF for 

10 minutes and re-suspended in CBSS buffer. Cells were centrifuged again at 1, 

250 RCF and re-suspended to approximately 2 x 108/ml in CBSS buffer. Cells 

were counted, using a haemocytometer, and stored on ice until ready to use. 

2.3.8.2 Leishmania mexicana 

Leishmania mexicana were harvested at logarithmic stage of growth (between 5 

x 105 and 2 x 107 cells per ml) and treated in the same way as T. b. brucei. 

2.3.9 Tritiated amino acid uptake – rapid oil/stop protocol 

A rapid oil/stop spin protocol, previously described by Carter & Fairlamb (1993), 

was used to determine uptake of radiolabelled compounds. 100 µl of oil (1-

Bromodo-decane, density: 1.066 g/cm3 (50 % mineral oil was used for 

Leishmania)) (Aldrich) and 100 µl radiolabelled compound in CBSS buffer was 

added to 0.5 ml Eppendorf tubes. These were centrifuged briefly to remove 

bubbles.  

Cells were added to the tubes at room temperature and centrifuged through the 

oil at 16, 000 RCF for one minute to stop the reaction after a specified length of 

time. 
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Cells were centrifuged for one minute at 16, 000 RCF in a centrifuge (Biofuge). 

The resulting cell pellet was flash frozen in liquid nitrogen and the base of the 

tube containing the pellet was cut into 200 µl of 2 % SDS in scintillation vials and 

left for 30 minutes. Three ml of scintillation fluid was added to each vial and 

these were left overnight at room temperature. A control with 200 µl SDS, 10 µl 

radiolabelled compound and three ml scintillation fluid (Optiphase „hisafe‟ 2; 

PerkinElmer) was included to work out the counts per minute of the radiolabel. 

Counts per minute were read on a 1450 microbeta liquid scintillation counter 

(Perkin Elmer) and normalised between samples for the cell density. This was 

then converted to moles of compound uptake per 107 cells. Michaelis-Menton 

kinetic analyses were performed using Graphpad Prism 5. 

2.3.10 Arginase assay 

A QuantiChrom Arginase assay kit (BioAssay Systems) was used to 

spectrophotometrically measure the amount of urea produced in the conversion 

of arginine to ornithine. L. mexicana and T. brucei cells were used at 1 x 108 per 

sample. Controls with no arginine and with no cells and a standard with 1 mM 

urea were used to calculate final urea production values. Urea levels were read 

on a spectrophotometer (Dynex) at a wavelength of 450 nM.   

2.4 Computational Analyses 

2.4.1 Heat maps  

Heat maps were created in Microsoft Excel. Using conditional formatting on a 

three colour scale with a minimum of blue set at 0.2 (ratio of 0 time point 

divided by comparison time point), yellow set at 1 and the maximal red set at a 

five.  

2.4.2 Metabolite identification 

Metabolites were identified from the mass and retention time information 

output of mzMatch using IDEOM, a software developed by Darren Creek at the 
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University of Glasgow (unpublished). Pathways were compared to the Metacyc 

and KEGG trypanosome metabolite databases. 

2.4.3 Statistics 

Graphs and Student‟s t-test values were created in Microsoft Excel. ANOVAs 

were performed in Graphpad Prism 5. 

2.4.4 Cladogram construction 

Cladograms were constructed using the CLC genomics workbench software 

alignment and tree building tools. A neighbour joining algorithm was used and 

the tree was bootstrapped 1, 000 times. 

2.4.5 Sequence Alignments 

Sequence alignments were created from amino acid sequences sourced through 

the NCBI database (www.ncbi.nlm.nih.gov ) in CLC workbench. A gap open cost 

of 10 and a gap extension cost of one were used. 
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 3. Resistance to eflornithine 

3.1 Introduction 

There are numerous drawbacks with the drugs currently available for the 

treatment of HAT. Side effects such as rashes (melarsoprol, suramin, 

eflornithine and pentamidine), renal problems (melarsoprol, eflornithine and 

pentamidine), encephalopathy (melarsoprol) and pain (melarsoprol, eflornithine 

and suramin) are often severe and can cause patients to deviate from 

recommended treatment regimes. Failure to complete the full treatment course 

can result in treatment failure and can expose parasites to sub-lethal levels of 

drug, that may result in the selection of drug resistance. Drug resistant parasites 

can also be selected through prophylactic use or from using sub-lethal levels of 

drug (which may be a problem if drugs are shared amongst communities with 

inadequate funding – a less prominent problem for HAT where drugs are 

distributed through dedicated health centres). 

Resistance can be difficult to detect. Currently relapse rates in the field are not 

systematically recorded. If a patient does relapse, it may not be clear whether 

they were re-infected or if the treatment failed for some reason. It has been 

shown that eflornithine in mice is not efficient at crossing the blood-brain 

barrier (Levin et al., 1983) and so levels of the drug may be sub-lethal in the 

brain and may therefore help to select resistant parasites (Sanderson et al., 

2008). In humans, however, there seems to be more uptake into the brain (Burri 

and Brun, 2003) and suramin has been shown to increase the concentration of 

eflornithine crossing the barrier in mice (Jennings, 1993;Sanderson et al., 2008). 

In humans it has been suggested that a transporter carriers eflornithine over the 

blood-brain barrier (O'Kane et al., 2006) creating CSF:plasma ratios of between 

0.1 and 0.9 (Barrett et al., 2007). 

Eflornithine is administered intravenously as a racemate in saline solution 

(Barrett et al., 2007). Patients must spend at least 14 days in hospital to receive 

a total of 56 infusions (Barrett et al., 2007). This extended hospital stay is 

clearly very costly to the family of the patient and the large drug volumes are 

difficult to transport to the places where they are required. These two big issues 



66 

 
with eflornithine treatment mean that many people with the disease die 

unnecessarily either because they cannot travel to a clinic and spend large 

amounts of time away from their families and livelihoods or because the drugs 

cannot be transported close enough to them. Efforts to reduce the amount of 

drug required (and therefore reduce transport issues) have resulted in 

nifurtimox-eflornithine combination therapy (NECT). However, this therapy does 

still require a 10 day stay in hospital. Greater efforts to reduce the quantities of 

drugs required would be beneficial. 

Eflornithine targets ornithine decarboxylase (ODC) in trypanosomes (Bacchi et 

al., 1983;Phillips et al., 1987), and this was shown to cause diminished 

polyamine biosynthesis (Bacchi et al., 1983) and reduced production of the 

trypanosome-specific redox-active metabolite trypanothione (Fairlamb et al., 

1987).  Accumulation of S-adenosyl methionine, measured by HPLC, has been 

reported in eflornithine-treated cells, which might perturb cellular methylation 

reactions (Yarlett and Bacchi, 1988) although more recent data, obtained 

through the use of RNA interference to reduce expression of ODC, increased 

levels of decarboxylated S-adenosyl methionine, but not of its precursor, S-

adenosyl methionine (Xiao et al., 2009).  

How eflornithine enters trypanosomes is a subject of debate.  An early report 

measuring the uptake of 14C-eflornithine in bloodstream form trypanosomes and 

in hepatoma human cells showed that eflornithine uptake was not saturable, 

generating the hypothesis that eflornithine enters trypanosomes by passive 

diffusion (Bitonti et al., 1986). However, studies on eflornithine resistant 

procyclic trypanosomes showed reduced accumulation of 14C-eflornithine  

(Phillips and Wang, 1987) and uptake of eflornithine was saturable (at 0.01 nmol 

per 107 cells) in the resistant line, which is typical of a transporter. Bellofatto et 

al (1987) also found uptake of eflornithine in procyclic cells to be temperature 

dependent and thus likely to be transporter mediated.  Indeed as a zwitterionic, 

charged amino acid, eflornithine would not be expected to diffuse across 

membranes and transport-mediated uptake is a more likely route of entry, 

perhaps via one of the numerous amino acid transporters that are encoded in the 

trypanosome genome.   
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In T. brucei, loss of transport has been shown to be a key determinant in 

resistance to melaminophenylarsenicals (Carter and Fairlamb, 1993) and 

diamidine drugs (Barrett and Fairlamb, 1999; Matovu et al., 2001;Stewart et al., 

2005). It would be interesting to determine whether loss of transport is also a 

factor in resistance to eflornithine. 

The mechanisms of drug resistance are often discovered after resistance has 

been detected in the field. It is an arms race where biologists are often caught 

on the back foot. Given the increased use of eflornithine, alone or in 

combination with nifurtimox, a better understanding of the risk of resistance is 

critical. Such an understanding may help limit its spread and allow the 

development of diagnostic tools. Fluorescence-based tests are available to 

predict the loss of the P2 transporter and therefore resistance to melarsoprol 

(Stewart et al., 2005). Genetic tests would be of less use to determine the 

status of the P2 transporter as different, often complex, genetic mutations are 

seen in different isolates (Stewart et al., 2010). 

As described above, eflornithine is now preferentially used in combination with 

nifurtimox. It was predicted that nifurtimox and eflornithine would work 

synergistically with one another as nifurtimox was shown to induce oxidative 

stress in cell extracts (Docampo and Stoppani, 1979;Docampo and Moreno, 

1984;Viode et al., 1999) and eflornithine reduces the thiol pool which would 

otherwise deal with this stress (Fairlamb et al., 1987). This synergism has not, 

however, been formally shown. If resistance to eflornithine is easily selected 

then it may be that the use of the combination therapy is under threat. In this 

chapter, I describe work revealing a molecular mechanism for resistance to 

eflornithine.  
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3.2 Results 

3.2.1 Selection of eflornithine resistant bloodstream form T. b. 

brucei.   

Although there has been anecdotal evidence of eflornithine treatment failures in 

the field (Enock Matovu, unpublished data), resistant samples have not, as yet, 

been isolated. To investigate mechanisms of eflornithine resistance, parasites 

were selected in vitro from a wildtype bloodstream form T. b. brucei strain 427 

by growth in increasing concentrations of eflornithine. T. b. brucei was used as 

it is a tractable, non-human infective sub-species, which has a much better 

annotated genome sequence than T. b. gambiense (although there is some 

concern that T. b. brucei is genetically more similar to T. b. rhodesiense (see 

section 1.2 of this thesis), and T. b. rhodesiense is insensitive to eflornithine).  

It took two months (24 passages) to attain a line demonstrating forty fold less 

sensitivity to drug, based on the IC50 value of eflornithine in the drug sensitive 

parent strain (Fig 3-1A). No altered growth phenotype was observed (data not 

shown). Two independent cell lines (DFMOR1 and DFMOR2) were generated in 

this way. The IC50 levels were also recorded by alamar Blue assay at various 

stages during the selection process to measure the levels of resistance. This is 

also shown in figure 3-1. It should be noted that eflornithine is thought to act in 

a cytostatic way (Bitonti et al., 1986), so IC50 levels should be taken as a relative 

measure of the resistance, rather than the absolute amount of drug required to 

kill the cells. In an in vivo assay, where there is a healthy immune system, it is 

likely that the IC50 will be lower. 

The resistant lines also grew in female ICR mice and exhibited resistance to both 

the minimum curative dose of 2 % w/v and a higher dose of 5 % w/v eflornithine 

whilst mice infected with wildtype cells were cured with the lower 2 % w/v 

dose.  Resistant cells remained susceptible to pentamidine (4 mg/kg, four daily 

doses) (Fig 3-1B), as was also seen in vitro (Table 3-1). This demonstrates that 

the in vitro selected mechanism for resistance is also operative in vivo.    
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Figure 3-1 Eflornithine resistance in T. b. brucei. (A), Selection of eflornithine resistance in 
T. b. brucei. Black triangles and left hand y-axis show the eflornithine concentration in 
which the parasites grew. Bars and the right hand y-axis show milimolar IC50 values at 
various stages of the selection process. One clone out of two is shown.  (B), Treatment of 
mice infected with wildtype or eflornithine resistant (DFMOR1) parasites. Closed circles; 
untreated, open diamonds; 2 % eflornithine, open squares; 5 % eflornithine, closed 
triangles; pentamidine (4 mg/kg).  

 

An alamar blue assay was used on the wildtype and DFMOR1 lines to determine 

whether there was cross-resistance with other trypanocides (Table 3-1). This 

would indicate a shared mode of entry, mode of action or drug efflux 

mechanism. There was no cross-resistance with other currently used 

trypanocides, although there was a significant increase in sensitivity to 

pentamidine. 
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Trypanocide Wildtype IC50 (nM) Resistant IC50 (nM) Average R:WT 

Suramin (n = 3) 4.6 ± 0.7 4.4 ± 0.4 0.99 

Melarsen Oxide (n = 2) 4.3 2.4 0.67 

Cymelarsan (n = 2) 6.3 3.7 0.73 

Nifurtimox (n = 5) 2, 940 ± 600 2, 880 ± 300 1.09 

Pentamidine (n = 5) 0.43 ± 0.1 0.1 ± 0.04 0.27* 

Eflornithine (n = 5) 22, 000 ± 3, 000 906, 000 ± 192, 000 41.46* 

Table 3-1 IC50 values for known trypanocides on wildtype and eflornithine resistant cell 
lines. Number of replicates are in parentheses, numbers represent mean ± s.e.m where 
appropriate. * indicates significance at a p = 0.05 level from a paired t-test. 

 

3.2.2 Analysis of resistant lines 

Initial metabolomics experiments were undertaken before a full protocol 

optimisation was completed. As a result, the intensities of some of the 

metabolites (notably the more water-soluble metabolites) may be reduced, but 

the relative intensities between the two groups remain valid. Briefly, the 

wildtype and DFMOR1 cells were grown to a density of 1-2 x 106/ml. These cells 

were concentrated by centrifugation (1, 250 RCF) to 1 x 109/ml. 2 x 108 cells 

suspended in HMI-9 were quenched in 800 µl 80ºC ethanol and the supernatant 

after centrifugation (at 16, 000 RCF) was flash frozen in liquid nitrogen.  

Samples were run on the Orbitrap at the University of Strathclyde, Glasgow by 

Dr. Muhammed Anas Kamleh.  

Significant differences between the untargeted metabolite profiles of wildtype 

and resistant cells were not apparent using multivariate statistical analysis 

(Appendix 8.1), nor were changes seen in any of the identified polyamine 

pathway metabolites. It was previously shown in eflornithine resistant procyclic 

stages of the parasite that an increased uptake of putrescine can relieve the 

blockage of ODC caused by eflornithine (Bacchi et al., 1993). An increase in 

putrescine was not observed in our analyses, however, so it seems that increased 

putrescine uptake is not required for resistance in bloodstream forms of the 
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parasite. There was a slight, although not significant, decrease in ornithine 

levels in the resistant cell line (Fig 3-2).  

 

Figure 3-2 Metabolomic analysis of eflornithine resistance.  Relative abundance of 
polyamine metabolites in wildtype (WT) and eflornithine resistant (R) cell extracts. Error 
bars show standard deviation. 

 

This reduction in ornithine in the resistant cell line could be explained by 

reduced ornithine uptake. This was investigated with tritiated ornithine at a 

concentration of 10 µM over a 30 minute time period using ribose uptake as a 

control (Fig 3-3). 
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Figure 3-3. The uptake of ornithine into wildtype and DFMOR1 cell lines. Tritiated ornithine 
was used to determine whether ornithine uptake was lost in the resistant cell line. Ribose 
uptake (inset) was monitored as a control (30 minute time point shown). Data shown is one 
of four replicates. P = 0.318 from a 2 tailed t-test comparing 0 and 30 minute time points. 

 

The reduced levels of ornithine in the resistant cells do not appear to be a 

consequence of reduced uptake (the difference in uptake seen in figure 3-3 is 

not reproducible or significant, especially when normalised to the difference in 

ribose uptake). It is therefore likely that the reduction in ornithine is due to a 

metabolic mechanism such as increased flux through ornithine decarboxylase. 

This could be analysed further by tracking the metabolism of isotopically-

labelled ornithine through wildtype and the resistant cell lines, but was not 

followed up as part of this work. This was because in a targeted analysis of 

eflornithine (m/z = 183.0940, RT = 19.72 minutes) accumulation using mass 

spectrometry, it was evident that eflornithine levels were greatly reduced in 

resistant cells compared to wildtype (Fig 3-4). This result indicated that 

exclusion of drug from the resistant line (DFMOR1) rather than changes to 

metabolism were responsible for loss of sensitivity.  
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Figure 3-4, The uptake of eflornithine (m/z = 183.0940, RT = 19.72) into wildtype and 
DFMOR1 cell lines. Wildtype (filled bars) show an increased accumulation of eflornithine 
compared to resistant cells (hatched bars) over one hour. Stars indicate a significant 
difference at a p=0.01 level between WT at time 0 and WT after 60 minutes. A hash indicates 
that R at time 0 and R after 60 minutes show no significant difference at a p=0.05 level. 

 

There are no known isomers of eflornithine and since the retention time 

detected is very similar to the predicted retention time from the empirical 

formula of eflornithine (-0.2 % error) we can be extremely confident that the 

detected peak represents eflornithine. 

The slight change in sensitivity to pentamidine observed in DFMOR1 was also 

investigated using metabolomics. A time course experiment (0, 1 and 2 hours) 

with 40 nM (ten times the IC50) pentamidine was conducted, but no significant 

differences in levels of any metabolites were observed apart from reduced 

ornithine levels in all resistant samples (data not shown) as seen in the 

comparison of wildtype and resistant cell lines. This indicates that visible 

changes to the metabolome are not seen within two hours of pentamidine 

treatment in wildtype or in resistant cells. 

Eflornithine targets the enzyme ornithine decarboxylase. Alterations to the 

amino acid composition of proteins is often responsible for drug resistance as 
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variants with diminished ability to bind drug are selected (Farooq and Mahajan, 

2004). To rule this out we amplified the ODC gene from the wildtype and the 

resistant cell line (DFMOR1 and DFMOR2) and found no differences in the 

sequence (Appendix 8.2). 

3.2.3 Loss of eflornithine accumulation into resistant cells.  

To determine quantitatively the relative transport rates of the drug in wildtype 

and resistant cells, 3H-eflornithine was used to measure accumulation in each 

cell type. Eflornithine was used at a concentration of 20 µM. Threonine uptake 

was assayed as a control (as threonine is another amino acid, but is uncharged 

and likely therefore to use alternative transport mechanisms). A greater rate of 

eflornithine uptake was observed in the wildtype cell line compared to the 

resistant line (DFMOR1), with around five fold more drug taken into wildtype 

cells after 30 minutes (Fig 3-5). Levels of threonine uptake were the same in 

both cell lines. 
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Figure 3-5. Quantitative uptake of eflornithine in wildtype and DFMOR1 cell lines. 
3
H-

eflornithine transported into wildtype (triangles) and resistant (circles) cells was measured 
over 30 minutes. Measurements are an average of four separate experiments, each with 
three internal replicates. Error bars are the standard error of the mean. Inset graph shows 
threonine uptake in the same cell lines. The y-axis shows nmol of threonine per 10

7
 cells. 

The x-axis shows the time in minutes.  

 

The transporter appears to be concentrative, as an internal concentration of 344 

µM is measured (assuming a trypanosome cell volume of 0.58 µL per 107 cells 

(Opperdoes et al., 1984)) compared to the external concentration of 20 µM. In 

procyclic cells the internal concentration measured by Bellofatto et al. was 47 

µM after 70 minutes in 100 µM tritiated eflornithine (1987), which led them to 

conclude that eflornithine is not transported. Phillips and Wang measured 180 

µM after 60 minutes in 54 µM (1987), also in procyclic cells, which led them to 

conclude that eflornithine is transported. Whether the transporter is active and 

concentrative within procyclic forms of the trypanosome is therefore 

inconclusive.  

It might have been expected that ornithine and eflornithine share an uptake 

mechanism. In fact, we found no appreciable difference in ornithine uptake 

between the wildtype and the resistant cell lines (Fig 3-3) but we saw much 
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reduced eflornithine uptake in the resistant line (Fig 3-5). These observations 

lead to three possible hypotheses: 1, Eflornithine and ornithine do not share an 

uptake mechanism, 2, an eflornithine efflux mechanism has no effect on 

ornithine or 3, ornithine is able to use a wider variety or transporters than 

eflornithine and loss of one does not prevent ornithine entry into the cell.  

To determine whether ornithine and eflornithine share an uptake mechanism 

ornithine uptake assays were performed in increasing competition with cold 

eflornithine (Fig 3-6) and cold ornithine as a control. 

 

Figure 3-6. Eflornithine inhibition of ornithine uptake in wildype 427 bloodstream form cells. 
Increasing concentrations of cold eflornithine (x-axis) do not significantly inhibit the uptake 
of tritiated ornithine (y-axis). Inset: tritiated ornithine uptake (y-axis) can be inhibited by cold 
ornithine (x-axis).  

 

Reciprocal experiments with ornithine inhibition of eflornithine uptake 

confirmed a lack of uptake cross inhibition (data not shown). Increasing 

concentrations of cold eflornithine have no effect on ornithine uptake suggesting 

either that ornithine is accumulated via multiple transporters, which can 

compensate for the inhibition of one transporter, or that the two amino acids do 

not share a transport mechanism.   
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Whether ornithine and eflornithine share a transporter or not remains to be 

concluded, but the data indicate a transporter phenotype for eflornithine 

resistance, as seen previously in selection of resistance to melamine-based 

arsenicals (Carter and Fairlamb, 1993) and diamidines (Barrett and Fairlamb, 

1999; Stewart et al., 2005; Lanteri et al., 2006;Bridges et al., 2007). As 

eflornithine is an amino acid analogue (Fig 1-9), we hypothesised loss of an 

amino acid transporter. Several members of this amino acid transporter family 

were characterised by Charles Ebikeme (University of Glasgow). The TbAAT7 

locus (which encodes at least nine amino acid transporters) was shown to 

transport threonine, glycine, cysteine, asparagine, alanine and serine, but none 

of the other 13 essential amino acids assayed (tyrosine was not assayed) 

(Ebikeme, 2008). With the exception of asparagine, which is a relatively poor 

substrate at this locus, all of these amino acids are neutral and have a small side 

chain of fewer than two carbon unit. The TbAAT5 locus was also investigated by 

RNAi and was shown not to transport proline (Ebikeme, 2008). It is not known 

which members of the amino acid permease superfamily transport lysine, 

arginine or ornithine, the closest amino acids to eflornithine based on structure 

and charge.  

To test the theory that eflornithine resistance occurs due to loss of an amino 

acid permease, all members of the amino acid permease gene family (Fig 3-7) in 

the T. brucei genome (Jackson, 2007) were systematically amplified from both 

wildtype and each of the two independently selected resistant lines. 
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In each of the independently selected lines only one single copy amino acid 

transporter gene, TbAAT6 (Tb927.8.5450), was shown to be absent (Fig 3-7). 

Southern blot analysis confirmed this and also demonstrated that there were no 

alterations in ODC copy number. 

TbAAT6 appears to be an orphan within the amino acid transporter family; it has 

no homologue in leishmania or T. cruzi and where other amino acid transporters 

appear in clusters on their chromosomes, many with tandem repeats, TbAAT6 

stands alone (Jackson, 2007). This is an advantage for molecular characterisation 

as it means that expression can be inhibited by RNA interference with less risk of 

unintentional knockdown of other genes with similar sequences. The 

identification of TbAAT6 also provides the possibility of expression in a 

heterologous system for further analysis of function. 

PCR analysis indicated a deletion of TbAAT6, and surrounding genes, from both 

resistant lines (DFMOR1 and DFMOR2) (Fig 3-8a). This result indicated the 

possibility that the TbAAT6 gene could play a role in eflornithine‟s entry into T. 

brucei and that its loss was responsible for drug resistance. The gene was 

amplifiable at day 34 of the selection process, but by day 50 was no longer 

amplifiable (Fig 3-8b), this correlates with the loss of sensitivity to eflornithine 

between days 34 and 50.  
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As eflornithine is less effective in T. b. rhodesiense parasites, the status of the 

rhodesiense gene was checked by PCR on DNA isolated from the field (a kind gift 

of Craig Duffy, University of Glasgow) and the gene was found to be present and 

of a similar size to the T. b. brucei gene. The sequence of this gene was not 

analysed, however, as the genome of T. b. rhodesiense is not published.  

Patients from the field who have been shown to be refractory to eflornithine 

treatment, or who have shown a resurgence of parasitaemia after eflornithine 

treatment, may routinely have a blood sample spotted on to an FTA® card. 

FTA® cards lyse cells, denature proteins and protect nucleic acids. Cards are 

washed to remove contaminating red blood cells and any parasite DNA can be 

amplified. Blood spots from eflornithine-relapse and eflornithine-cured patients 

were obtained from Omugo, Uganda courtesy of Enock Matovu, (Makerere 

University). Several attempts to amplify TbAAT6 or phospholipase C (as a 

positive control) were made using PCR and nested PCR without success. The 

parasitaemia within the samples was not recorded, but was thought to be very 

low, which may explain why parasites could not be detected even with the 

positive control. 

3.2.4 Functional confirmation of a role for TbAAT6 in eflornithine 

resistance.  

To confirm a role for TbAAT6 in eflornithine resistance we used RNA interference 

(Alsford and Horn, 2008) to ablate its expression in T. b. brucei. The pRPaiSL 

vector was used which integrates into a ribosomal spacer locus of the 

trypanosome DNA in the 2Ti cell line, completing a hygromycin resistance 

marker to achieve efficient integration rates and reproducible siRNA transcript 

levels. The vector contains a stem-loop system to create the double stranded 

RNA. This is thought to be more efficient than using opposing T7 promoters as 

intermolecular RNA interactions are more likely than intramolecular interactions 

(Alsford and Horn, 2008). 

The gene sequence to be used in the vector was chosen using the RNAit 

programme (http://trypanofan.path.cam.ac.uk/software/RNAit.html) using the 
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same 400 bases for each section of the stem-loop vector. Positive transfections 

were selected using hygromycin.   

Five cloned lines were selected and were induced with tetracycline for six days 

before commencing the alamar blue assay to determine the IC50 for eflornithine. 

The induced lines showed no growth defect over seven days (data not shown). 

All five of the TbAAT6RNAi mutants became resistant to eflornithine to an extent 

similar to the lines selected for resistance to the drug (40 x resistance factor) 

(Fig 3-9A). These cells did not become resistant to DB75, used as a control (data 

not shown).  Attempts to confirm knock down of TbAAT6 by northern analysis 

were unsuccessful, even with β-actin controls. 

Attempts were made to create a TbAAT6 null mutant line, but removal of the 

second allele of the gene was not achieved. This is unexpected as selection of 

resistance was very fast, implying that the gene would not be difficult to 

remove. It is therefore likely that other changes are required to enable the loss 

of TbAAT6. The line with just one allele of TbAAT6 was analysed in an alamar 

blue assay and was surprisingly found to be more sensitive to eflornithine than 

the wildtype parent line (IC50 10.7 ± 3.2 µM c.f. 47.5 ± 6.5 µM for wildtype 

(results are mean ± s.e.m, n = 4)). This may be due to a compensatory 

mechanism within the heterozygote line such as increased expression of the one 

allele, but has not been confirmed.  

A procyclic RNAi line for TbAAT6 was also created using the same construct as 

the bloodstream form, with a slight modification to remove the partial 

hygromycin resistance marker and replacing it with a full hygromycin resistance 

gene. This 29-13 derived line (Jane Munday, University of Glasgow) showed no 

growth defect over nine days when induced with tetracycline, but as neither 

induced or non-induced cells were sensitive to eflornithine (in an alamar blue 

assay with eflornithine concentrations up to 20 mM, data not shown), a 

resistance phenotype could not be determined. It is of note that the Horn group 

at the London School of Hygiene and Tropical Medicine reported a growth defect 

in RNAi ablation of TbAAT6 expression in procyclic cells during a large scale RNAi 

library screen, but that this defect was not reproduced in a targeted RNAi assay 

for TbAAT6 (David Horn, personal communication). 
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Next, we expressed the TbAAT6 gene in the eflornithine resistant trypanosomes 

using vector pHD676 (Biebinger et al., 1997).  This vector also integrates into 

the ribosomal spacer regions of the trypanosome DNA and constitutively 

expresses TbAAT6 using a PRRN promoter (a ribosomal RNA promoter) (Biebinger 

et al., 1997). Cloned cells in which the gene was re-expressed re-gained levels 

of eflornithine sensitivity similar to wildtype (Fig 3-9B).   

 

Figure 3-9 RNAi and re-expression of TbAAT6. (A) RNAi was induced for 12 days and the 
IC50 value to eflornithine measured. Stars indicate significant difference at a p = 0.05 level 
compared to wildtype, whereas a hash indicates that RNAi (773 ± 53 µM) and resistant lines 
(886 ± 200 µM) show no significant difference. (B) Re-expression of TbAAT6, IC50 values for 
eflornithine of the wildtype parent line (24.6 ± 5.8 µM), the resistant line (886 ± 200 µM) and 
the resistant line constitutively re-expressing TbAAT6 (111 ± 18 µM). Stars indicate a 
significant difference at a p = 0.05 level compared to resistant, whereas a hash indicates 
that wildtype and re-expressor show no significant difference. IC50 measurements were at 
least n = 5.   

 

Loss of expression of TbAAT6 is therefore both necessary and sufficient to confer 

resistance to eflornithine and its re-expression in defective lines is capable of 

restoring sensitivity, regardless of other changes to the cell. 

To analyse further the natural substrate of TbAAT6, a heterologous expression 

system without endogenous eflornithine uptake was sought. Leishmania were 
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found to transport eflornithine (Fig 3-10), so were eliminated as a potential 

expression system.  

 

Figure 3-10. Eflornithine uptake in L. mexicana. The increase in eflornithine signal from 1.25 
to 3 pmol per minute is indicative of uptake in Leishmania spp. Proline uptake (inset) was 
used as a control. 
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3.2.5 Further studies of TbAAT6 

Eflornithine is a chiral amino acid with L- and D- enantiomers. In the field, 

eflornithine is administered as a racemate and we know that both the L- and D- 

enantiomers are able to interact with trypanosome ornithine decarboxylase 

(Margaret Phillips, personal communication). The L-enantiomer does, however 

exhibit 20 fold more potency on the human ODC (Qu et al., 2003). We do not 

know, however, whether both enantiomers of eflornithine are able to enter the 

trypanosomes and knowing whether this is the case or not could have 

implications for drug formulations in the field. 

To determine the stereospecificity of TbAAT6, alamar blue assays were used to 

establish the IC50 values of each enantiomer of eflornithine (Fig 3-11).  
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Figure 3-11. Alamar blue assays on different enantiomers of eflornithine. The IC50 values for 
wildtype cells (top graph) were; L-eflornithine (42 µM), D-eflornithine (1277 µM), D/L-
eflornithine (23 µM). The IC50 values for resistant cells (bottom graph) were; L-eflornithine 
(2400 µM), D-eflornithine (3600 µM), D/L-eflornithine (800 µM). Points from an average of two 
experiments is shown with line of best fit. 

 

The L-enantiomer of eflornithine has a similar IC50 value to the L/D mixture used 

as the final drug in wildtype cells. The D-enantiomer has an IC50 value more 

similar to the resistant cell lines where uptake of the drug is not observed. As 

both isoforms are able to bind to ornithine decarboxylase, this suggests that D-

eflornithine is not internalised by TbAAT6. The L-enantiomer of eflornithine was 

not more efficacious than the D/L racemate of eflornithine. It is not known what 

the ratio of L to D eflornithine is in the racemate. It is possible that there is a 

high ratio of L-eflornithine already within the racemic eflornithine. 
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3.3  Discussion 

Note; parts of the work in this chapter have now been published (Vincent et al., 

2010) (Appendix 8-3). 

3.3.1 Selection of resistance 

In the absence of useful eflornithine refractory field isolates of trypanosomes, 

resistance was selected by increasing concentrations of drug. Resistance was fast 

to select for and the resistance gene, TbAAT6 appeared to be lost at a selection 

pressure of 200 µM eflornithine, after 40 days of selection. 

There was no cross-resistance with other known trypanocides, not unexpected 

now we know that the resistance is due to loss of an eflornithine transporter. 

The structures of the other trypanocides are very dissimilar to eflornithine and 

are therefore unlikely to share a transport mechanism. 

There was an increased sensitivity to pentamidine upon selection of eflornithine 

resistance. This is unlikely to be related to a transport mechanism for 

pentamidine as pentamidine uptake is well characterised and a role for TbAAT6 

in uptake is highly unlikely. It is therefore likely that there are other changes in 

the resistant cells apart from the loss of the transporter and the surrounding 

genes. This theory is supported by the slight increase in resistance seen when 

cells are grown in 64 µM eflornithine (Fig 3-1).  

The metabolomes of the resistant and wildtype cells were compared and the 

only difference was in ornithine levels, with around 40 % less in the resistant 

cells. Not all metabolites within the cells are detectable, however, in the 

metabolomic methods used, so changes may still occur in levels of metabolites 

that weren‟t detected. Other changes that could have occurred include greater 

expression of ornithine decarboxylase or another enzyme or post-translational 

modifications that alter the function of ODC or of other proteins. 
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3.3.2 Uptake of eflornithine 

Selection of eflornithine resistance results in reduced eflornithine uptake into 

the trypanosome. The loss of TbAAT6 either by gene deletion as observed in the 

selected drug resistance lines, or by RNAi is sufficient to render trypanosomes 

over 40 fold less sensitive to eflornithine than wildtype cells.   Furthermore, 

ectopic expression of TbAAT6 in trypanosomes that have deleted the gene is 

sufficient to restore wildtype levels of eflornithine sensitivity confirming that 

loss of TbAAT6 alone is necessary and sufficient to generate resistance. 

The fact that TbAAT6 was lost so easily is very interesting. In Leishmania, genes 

can be amplified easily by the creation of a circular amplicon. These are created 

by homologous recombination at tandem repeats around the area of interest 

(Grondin et al., 1996;Leprohon et al., 2009).  It is not known, however, if 

trypanosomes are able to amplify genes in the same way or if genes can be 

deleted by homologous recombination in this way. It is notable, however, that 

the amplification of circular replicons is frequently seen in Leishmania, but not 

T. brucei selected for drug resistance. As there is a high degree of repetition 

around TbAAT6, it is possible that this will aid recombination to remove the 

transporter, but this is yet to be proven as a mechanism of gene deletion. It is 

interesting that the entire TbAAT6 gene has been deleted, whereas smaller 

mutations may also result in loss of function. Both point mutations and whole 

genes losses have been seen in TbAT1 (Stewart et al., 2010).  

It has been shown that there is redundancy in the trypanosome amino acid 

transporter repertoire. This redundancy allows amino acid transporters to be lost 

without affecting the nutrients available to the cell and loss of transporters is 

not uncommon (e.g. (Lanteri et al., 2006)). It is still unclear, however, why the 

trypanosome would delete TbAAT6 at the genomic level rather than reduce its 

expression. It may be a function of the transcription of trypanosome mRNA being 

polycistronic, meaning that regulation at the transcriptional level is not possible. 

However the transporter regulation occurs, its plasticity allows quick adaptation 

to different environments. 

We have, as yet, been unable to assign a physiological function to TbAAT6 in 

African trypanosomes. Ornithine transport, which would be expected to share a 
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route of entry with its difluormethylated derivative, was not reduced 

significantly in the eflornithine resistant line. Ornithine was not able to inhibit 

uptake of eflornithine, providing further evidence that the two amino acids do 

not share a mechanism of uptake.  

TbAAT6 is one of a large family of related genes described in the kinetoplastida 

belong to the amino acid transporter 1 superfamily. Only a few other members 

of the family have been functionally characterised. These include an arginine 

transporter in Leishmania donovani (Shaked-Mishan et al., 2006), an arginine 

transporter in T. cruzi (Canepa et al., 2004) and polyamine transporters in L. 

major (Hasne and Ullman, 2005) and T. cruzi (Hasne et al., 2010). The TbAAT6 

gene is not syntenic with genes in Leishmania spp. or T. cruzi. Furthermore, the 

evolution of the AAT family (Jackson, 2007) makes it impossible, currently, to 

define specific functionality to any of these transporters, based on homology 

alone.   

 We also provide evidence that L, but not D-eflornithine enters the trypanosome 

via TbAAT6. As both enantiomers are known to inhibit ODC in humans (Qu et al., 

2003) and trypanosomes (Margaret Phillips, personal communication) and 

eflornithine is not thought to need any processing or activation then the higher 

IC50 value for D-eflornithine compared to L-eflornithine suggests that D-

eflornithine cannot be taken into the cell through TbAAT6.  It is possible to 

separate the enantiomers of eflornithine (Jansson-Lofmark et al., 2010), but the 

process of separation is very costly and inefficient. If the costs and efficiency 

can be optimised, however, then the cost at the field level would be very 

significantly reduced. The transportation, saline and administration costs would 

be significantly depreciated, which may make research into enantiomer 

separation a very worthwhile research avenue to pursue. However, in our in 

vitro assay racemic eflornithine is as effective as L-eflornithine, suggesting that 

the ratio of D to L is already low. 

3.3.3 Implications for the field 

Since eflornithine has only recently been implemented as first line treatment for 

stage two HAT, formal published reports of clinical resistance have not yet 

appeared, although unpublished data (Enock Matovu (Makerere University), 
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personal communication) points to a substantial increase in eflornithine 

treatment failures in Northern Uganda. Nifurtimox resistance has been selected 

in vitro and has been shown to be cross resistant with another emerging 

trypanocide, fexinidazole, currently in clinical trials (Torrelle et al., 2010). 

Given nifurtimox‟s lack of efficiency (Janssens and De Muynck, 1977), 

eflornithine resistance alone is likely to lead to large numbers of treatment 

failures from the combination.  If the loss of TbAAT6 is involved in resistance in 

the field, then it will be possible to implement a simple PCR-based test for 

resistance, allowing for more suitable treatments to be administered. Tests 

conducted so far with blood samples on FTA® cards were not successful. It is 

thought that this is due to very low levels of parasitaemia on the cards, so 

efficient methods of extracting DNA from the field samples will be required. 

Methods of concentrating trypanosomes in blood are continually improving to aid 

in HAT diagnosis (Buscher et al., 2009) and can also be used to detect resistance 

phenotypes by PCR.  Fluorescence-based tests are unlikely to be developed for 

use in the same way as for melarsoprol resistance (Stewart et al., 2005), as an 

amino acid transporter would be unlikely to import a large, charged fluorophore. 

It will be interesting to see if, now that the data on TbAAT6 is published, 

scientists in the field will start to report finding resistant parasites missing 

TbAAT6. 

Given the ease with which trypanosomes become resistant, it is perhaps 

surprising that resistance has not been seen in the field more often. It is of 

course possible that the loss of TbAAT6 would be detrimental to the survival of 

the parasites within the insect vector and therefore the mechanism of resistance 

would not be transmissible through the parasite‟s life cycle. Preliminary results 

with RNAi in procyclic forms do not show a growth defect or resistance to 

eflornithine, but without confirmation of knockdown by northern blot or reverse 

transcriptase real time PCR, conclusions on the function of TbAAT6 in procyclic 

cells cannot be drawn. David Horn‟s group developed a high throughput RNAi 

screen for trypanosomes and indicated that TbAAT6 is essential in procyclic form 

trypanosomes, but not bloodstream forms (Alsford et al., 2011). However, more 

targeted analyses of TbAAT6 counteract this data with evidence that TbAAT6 is 

not essential in procyclic forms (David Horn, personal communication). 
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Resistance to nifurtimox has been selected in vitro and cell lines were found to 

be cross resistant with other nitro-drugs including fexinidazole, a clinical trial 

candidate retaining their virulence and resistance in mice (Sokolova et al., 

2010). This highlights the need for combination therapies, and in particular, the 

need to provide combination therapies with drugs that work on different 

pathways. This also therefore highlights the need to understand the modes of 

action of all the drugs in use against HAT in order to design these combination 

therapies. Care must be taken, however, as resistance to one of the drugs within 

a combination therapy could mean that sub-lethal doses of monotherapy are 

inadvertently administered leading to the likely selection of multidrug resistant 

strains. Tests for the presence of resistant strains are therefore of paramount 

importance. 

The evidence presented in this chapter conclusively demonstrates that TbAAT6, 

an L-eflornithine transporter from the amino acid permease family, is lost in in 

vitro derived, eflornithine resistant, cell lines. This has since been 

independently corroborated in two high-throughput RNAi screens (Baker et al., 

2011;Burkard et al., 2010). 
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 4. Determining Drug mode of action by 

metabolomics 

4.1 Introduction 

It is very rare for a new chemotherapeutic agent to be licensed without prior 

knowledge of its mode of action (MOA). In 2009, 19 drugs were approved by the 

FDA‟s centre for drug evaluation and Research in the US, only one of which had a 

wholly unknown MOA (Hughes, 2010). A knowledge of the MOA reduces the risk 

of toxicity and allows synergism and resistance to be predicted. Currently, the 

MOA of a drug is predicted using expensive and time-consuming enzyme-based 

assays. 

Mode of action studies using metabolomic techniques are only just starting to be 

used (Aranibar et al., 2001; Allen et al., 2004;Bando et al., 2010;Sun et al., 2011  

and often involve clustering metabolic profiles from compounds with known 

MOAs without analysing the individual metabolites involved. This means that 

drugs with novel MOAs would not be detected, so new, unique compounds need 

another method for determining their MOA. 

There have been a limited number of studies that look at the individual 

metabolites within an organism and the changes that are induced in these 

metabolites in response to drugs. One such study used a systems biology 

approach to combine proteomic, transcriptomic and metabolomic data in the 

analysis of methamphetamine-induced perturbations to Drosophila homeostasis 

(Sun et al., 2011). Using GC-MS they observed decreased trehalose, a major 

blood sugar and antioxidant in insects, and using transcriptomics they also saw 

decreased aconitase (a regulator of antioxidant production and cell death) and 

alcohol dehydrogenase expression, which they attributed to increased oxidative 

stress caused by the drug (Sun et al., 2011). Unfortunately, the metabolomics 

branch of this study focussed on sugars, so levels of glutathione and other 

metabolites known to be important in oxidative stress were not analysed. 
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Another study looked at the toxicity of hydrazine, a metabolite of many drugs 

including the antihypertensive agent, hydralyzine (Bando et al., 2010). GC-MS 

was used to analyse the plasma and urine of rats treated with hydrazine, 

followed by principle components analysis (PCA) of the spectra. The loadings 

plots of the PCAs revealed the masses that were responsible for causing the 

highest degrees of separation between treated and untreated groups. Gas 

chromatography provides a highly reproducible separation, allowing masses to be 

matched to library entries for mass spectra of standards, providing an 

identification of the metabolites altered during hydrazine toxicity. The group 

recorded an increase in cysteine, glutamate, glycine (all glutathione precursors), 

ascorbate and oxoproline, due to the increase in oxidative stress as well as 

changes to the urea and tricarboxylic acid cycles (Bando et al., 2010). 

New lead compounds against HAT are rare and not seen as financially beneficial 

for most drugs companies. Knowing the MOA and potential side effects of a 

compound could bring down the cost of research by predicting side effects and 

toxicity before drugs reach clinical trials. If the cost of research can be brought 

down, then it is possible that the pharmaceutical industry will be persuaded to 

invest more in compound validation for this, and other deadly diseases. As 

trypanosomes are considered model organisms and have a relatively simple 

metabolome they could also be very useful for more general metabolomic MOA 

studies. This is especially true as trypanosome populations can be clonally 

expanded and can be grown to relatively large quantities. 

There are five drugs in use against HAT (see section 1.5.3 of this thesis). Of 

these five, only eflornithine has a known MOA (Fig 4-1). Eflornithine inhibits 

ornithine decarboxylase only (Poulin et al., 1992;Grishin et al., 1999), making it 

ideal for use as a proof of principle for MOA action studies using metabolomics. 

In addition to the four licensed drugs, nifurtimox has been recommended by the 

World Health Organisation for use against late-stage disease in combination with 

eflornithine (Priotto et al., 2009). The MOA for nifurtimox has, however, yet to 

be fully elucidated. 
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Figure 4-1. Eflornithine is an inhibitor of ornithine decarboxylase in the polyamine pathway. 
Enzymes are shown in italics, metabolites in boxes. The cell membrane is depicted by a 
double line and transporters as cylinders. The probable absence of arginase is discussed in 
chapter 5 of this thesis, although included here, representative of the classical pathway.  

 

ODC inhibition (Fig 4-1) by eflornithine has been studied in vivo and was shown 

to lead to an increase in levels of ornithine, S-adenosyl methionine and 

decarboxylated S-adenosyl methionine, and a decrease in putrescine, spermidine 

and trypanothione after 48 hours (Bacchi et al., 1983; Fairlamb et al., 1987). In 

vitro studies by Margaret Phillips‟s lab in Texas used HPLC after the addition of 

eflornithine to bloodstream form cells to measure polyamine levels. The group 

reported a complete depletion of putrescine and decreases in spermidine, 

glutathionyl-spermidine, glutathione and trypanothione levels after three days, 

in agreement with the in vivo studies (Xiao et al., 2009). The depletion in 

glutathione levels suggests that there is a feedback mechanism that controls the 

levels of glutathione when the polyamine levels are depleted as glutathione is 

not produced from ornithine. Decarboxylated S-adenosyl methionine levels 
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increased around 40 % after treatment with eflornithine as the previous studies 

showed, but S-adenosyl methionine levels were unchanged (Xiao et al., 2009). 

These targeted studies all focussed on metabolite levels in the polyamine 

pathway and therefore it would be interesting to conduct an untargeted assay on 

the alterations to the whole trypanosome metabolome on eflornithine addition. 

The Bacchi study administered eflornithine in drinking water (after dehydration 

for 12 hours) with rats consuming an average of at 1.7 g/kg/12 hours and 

recorded serum levels of 10-70 µM (Bacchi et al., 1983). The Fairlamb group also 

administered eflornithine in drinking water (after 12 hours of dehydration) and 

recorded an average of 560 µM after 12 hours, 400 µM after 36 hours and 1,340 

µM eflornithine in rat blood plasma after 48 hours (Fairlamb et al., 1987). The 

amount of eflornithine water consumed by the rats was not reported in the 

Fairlamb study so if higher levels were used then this would account for the 

difference in serum levels. Levels within the trypanosome did not appear to be 

higher than those in plasma (Fairlamb et al., 1987). The in vitro study (Xiao et 

al., 2009) administered eflornithine in medium at 12.5 µM (half the calculated 

IC50). 

It has been proposed in T. cruzi that nifurtimox induces oxidative stress (Maya et 

al., 1997) and this may be a reason why the nifurtimox-eflornithine combination 

is thought to be synergistic. Recently, however, Boiani et al. (2010) have 

presented evidence against the oxidative stress theory in T. cruzi. The team 

used Ellman‟s method (Ellman (1959)) to measure the thiol content of the cells 

after nifurtimox treatment and found that thiols (all sulfhydryl groups) decrease 

significantly, but reactive oxygen species are not produced and redox cycling is 

not upregulated except at very high doses (Boiani et al., 2010). The Wilkinson 

lab subsequently showed  that nifurtimox is metabolised to an open chain 

metabolite firstly through reduction by a type 1 (oxygen insensitive) 

nitroreductase before dehydration of the furyl hydroxylamine and furan ring 

opening (Hall et al., 2011). The group were only able to detect nifurtimox and 

the unsaturated open chain nitrile in their HPLC assay, suggesting that the 

intermediate, necessary steps are rapid. The open chain nitrile was saturated 

slowly at more than 24 hours. The open chain nitrile is likely to exert its effects 
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by binding to macromolecules rather than causing oxidative stress (Hall et al., 

2011).  

In this study we aimed to go beyond clustering techniques and look at how the 

metabolism of the trypanosome is altered in real time in response to drugs. An 

untargeted approach was taken, allowing an unbiased analysis of perturbations. 

Cell lysates were separated on a ZIC-HILIC column coupled to an Orbitrap mass 

spectrometer and MS data was deconvoluted using mzMatch (Scheltema et al., 

2011) and IDEOM (Darren Creek, University of Glasgow) softwares for automated 

processing. Metabolites of interest were selected on the basis of altered 

abundance and were verified and compared using Thermo Xcalibur software. 
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4.2 Results 

4.2.1 Eflornithine MOA 

4.2.1.1 Experimental design 

It has been reported that eflornithine is a cytostatic drug and a healthy immune 

system is required for cell clearance (Bitonti et al., 1986). Rats treated with 

dexamethasone, an antibody production inhibitor, at the same time as 

eflornithine were less able to clear trypanosome infections than controls not 

treated with dexamethasone (Bitonti et al., 1986). Nude (athymic) mice are 

cured of trypanosomes, but eventually succumb to relapse (Bitonti et al., 1986). 

The MOA in vitro may therefore differ from the MOA in vivo. The IC50 is likely to 

be higher as the cells will not die at the concentrations required to turn them 

into stumpy forms and may still metabolise the resazurin dye used in the alamar 

blue assay. The T. b. brucei 427 bloodstream form line used in these assays is 

monomorphic, however, and is therefore unable to transform into stumpy forms 

of the parasite. 

Eflornithine levels in blood reach 49.2 µM in children and 87.5 µM in adults (68.9 

µM in CSF) (Milord et al., 1993) during the standard treatment regime of 14 

days, which is higher, although not much higher, than the IC50 in vitro of 35 µM 

(Fig 4-2). This is in line with the Bacchi level recorded in mice of between 10 

and 70 µM, but not with the Fairlamb levels of 560 µM (Bacchi et al., 1983; 

Fairlamb et al., 1987). 
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Figure 4-2. The IC50 value of eflornithine in vitro is 35 µM. An average of five experiments is 
shown. Error bars depict standard error of the mean. 

 

Upon inspection of the cells in the alamar blue assay, it was found that the cells 

were still alive in many of the wells where the resazurin dye was not 

metabolised, although were dead at higher doses of the drug. Eflornithine was 

therefore acting cytostatically at 35 µM, and prevented the metabolism of the 

dye, but did not kill the cells at the IC50 dose. 

Although the Fairlamb study found that eflornithine was not concentrated within 

the trypanosome (Fairlamb et al., 1987), data from the previous chapter of this 

thesis clearly shows that eflornithine is transported into the trypanosome (Fig 3-

5). 

To determine the levels at which eflornithine is cytostatic and cytotoxic, time 

course assays were conducted with drug at various concentrations (Fig 4-3).  

Eflornithine was found to be cytostatic (cells remained at the same density 

before dying) even at 500 µM until around 55 hours in drug. There was no sign of 

stumpy formation, but as the 427 strain is monomorphic, this would not be 

expected. 
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Figure 4-3. Eflornithine time course. A time course was conducted with various 
concentrations of eflornithine.  Cells in 500 µM eflornithine do not die, until between 52 and 
69 hours, but do not increase in number. 

 

It was decided to conduct two experiments to determine eflornithine‟s MOA. In 

order to be able to detect the molecular target of the drug, levels below the IC50 

(20 µM) were used so that the metabolites changing in direct response to the 

target inhibition could be assayed without the risk of masking with general 

toxicity-related effects. To detect how the cell died from the drug, higher levels 

of drug were also used at 500 µM (14 times the IC50 value).  

Drug was added to the 427 bloodstream form wildtype cell line in growth 

medium so that cells were metabolising as normal apart from the perturbation 

by the drug.  

For the sub-IC50 experiments early time points (0 and one hour) were taken to 

determine the target of eflornithine. Later time points were also taken (24, 48 

and 72 hours) to determine later effects of the inhibition and to detect any off-

target effects.  

For the measurements of metabolites in dying cells more early time points were 

taken (at 0, 0.5, 1, 2 and 5 hours) to determine how quickly this higher dose of 

drug disseminates its effects through the metabolome. Later time points (24 and 
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48 hours) were taken as the cells were dying. Cells generally died at 

approximately 55 hours at this drug dose of 500 µM. 

Cells were quenched in chloroform:methanol:water (1:3:1), run on the Orbitrap 

mass spectrometer and changes in metabolite abundance were analysed using 

our in-house software, mzMatch (Scheltema et al., 2011) and IDEOM (Creek et 

al. in preparation for publication) (see method 2.2 of this thesis). Where there 

was more than one possible isomer for a metabolite mass the most likely 

metabolite (predicted from retention time on the column) is displayed. 

4.2.1.2 Sub IC50 metabolome 

The stringent filtering systems in the mzMatch and IDEOM software reduced the 

number of peaks in the spectra from several hundred thousand to 127 robust 

masses. The flexible parameters in IDEOM were standardised. A relative standard 

deviation allowance of one and an intensity filter of 10, 000 were chosen as 

filters to remove less robust peaks. The minimum number of detections across 

the replicates was set at two out of three replicates. 

The majority of metabolite levels were unaltered over the time points taken 

indicating a high state of robustness within the trypanosome metabolome. Only 

ornithine (M+H: 133.0971, RT: 27.9 minutes) from the polyamine pathway 

metabolites (Table 4-1) was found to be highly increased over the time course 

(Fig 4-4). Putrescine (M+H: 89.1073, RT: 36.91 minutes) was the only metabolite 

to significantly decrease over time. Acetylated versions of ornithine and 

putrescine were also identified and these correlated highly with their non-

acetylated counterparts. N-acetyl ornithine (M+H: 175.1077, RT: 15.3 minutes) 

showed the most striking correlation as shown in figure 4-4. Acetyl-putrescine 

(M+H: 131.1178, RT: 15.5 minutes) was seen in early samples (detected from 

more targeted analyses), but levels rapidly (after the 0 hour time point) fell 

below the level of detection (1, 000) from an average intensity of 41, 000 (peak 

height) before drug addition, correlating with the decrease in putrescine.  
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M/Z 
Retention 

Time 
Formula Isomers Name 

Ratio compared to 0 hour 
time point 

1 24 48 72 

297.0898 9.5 C11H15N5O3S 2 
Methylthio -
adenosine 

1.64 1.41 1.16 1.46 

174.1117 26.9 C6H14N4O2 1 Arginine 1.02 0.91 1.02 0.98 

130.1106 15.5 C6H14N2O 2 Acetylputrescine 0 0 0 0 

307.0841 14.5 C10H17N3O6S 3 Glutathione 2.20 2.69 1.48 1.00 

132.0899 27.9 C5H12N2O2 3 Ornithine 1.97 5.04 6.31 4.89 

149.0511 13.1 C5H11NO2S 4 Methionine 1.01 0.90 1.02 0.99 

174.1005 15.3 C7H14N2O3 4 Acetylornithine 2.59 6.22 7.53 5.01 

88.09997 36.8 C4H12N2 1 Putrescine 0.81 0.41 0.30 0.23 

398.1376 34.1 C15H23N6O5S 1 
S-Adenosyl-L-
methionine 

1.12 0.87 1.42 1.18 

360.6447 29.8 
C27H47N9O10S

2 
1 

Trypanothione 
disulfide 

1.29 1.16 1.24 0.98 

187.1686 35.2 C9H21N3O 2 Acetylspermidine 0.75 0.57 1.20 0.62 

182.0868 23.1 C6H12F2N2O2 1 Eflornithine 3824 3928 4691 5563 

Table 4-1. The metabolite levels of the polyamine pathway after treatment with eflornithine 
(peak height). Glutathionylspermidine, dc-S-adenosylmethionine, methylthioribose 1-
phosphate, methylthioribulose 1-phosphate and methylthio 2-oxobutanoate could not be 
detected. The isomers column states how many metabolites the mass could represent 
predicted from database searches. Spermidine was not identified in this analysis as it eluted 
from the column very late (42 minutes) and as such the whole peak was not detected. „M/Z‟ 
relates to the detected mass charge ratio (peak height) corrected for positive or negative 
ionisation. 

 

Yarlett and Bacchi have previously shown that adenosylmethionine and 

decarboxylated adenosyl methionine levels are greatly increased (48 fold and 

390 fold respectively over 36 hours) after eflornithine treatment (Yarlett and 

Bacchi, 1988). This increases the methylation index nearly 20 fold, causing 

aberrant methylation of proteins within the trypanosomes. Adenosylmethionine 

was not increased in our experiment and decarboxylated adenosylmethionine 

was not detected. The Yarlett experiment treated trypanosomes in rats with 4 % 

eflornithine in drinking water, but didn‟t record how much water the rats drank, 

so it is unknown whether the cells were exposed to a higher drug dose. 
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Figure 4-4. Ornithine, N-acetylornithine, putrescine and N-acetylputrescine levels upon the 
addition of eflornithine to wildtype cells in culture. Intensities (peak heights) are shown 
relative to the 0 hour time point level on the y-axis. A representative of three separate 
experiments is shown. 

 

It is interesting to see a recovery in affected metabolite levels at the 72 hour 

time point (e.g. glutathione, ornithine, acetylornithine and trypanothione 

disulphide (Table 4-1)). The cells appear to be adapting to the non-lethal dose of 

drug, perhaps through increased expression of ODC or reduced transport of 

eflornithine through TbAAT6. Levels of eflornithine stay high at 72 hours (Fig 4-

5), but this may be exogenous eflornithine that is carried over when the cells are 

quenched. The turnover rate of ODC is 18 hours in T. b. gambiense (Iten et al., 

1997). It therefore seems feasible that T. b. brucei are able to upregulate ODC 
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production within a 72 hour time scale. Ornithine decarboxylase protein 

regulation is noted for being complicated and levels are controlled at the level 

of transcription, translation, post translationally and through an inhibitor termed 

antizyme (Xiao et al., 2009). Antizyme binds to the ODC monomer preventing 

homodimerisation of the ODC subunits (Pegg, 2006). The inhibitor is produced by 

a +1 frame shift during ODC translation. The mistranslated enzyme bound to ODC 

is degraded by the 26 S proteosome, but binds an antizyme inhibitor with a 

higher affinity. Transcription of the antizyme inhibitor is stimulated during cell 

growth, freeing antizyme from ODC. Antizyme translation is upregulated by 

polyamines (Pegg, 2006). 

Isomers for each metabolite were identified using the IDEOM database, which 

incorporates information from KEGG, Lipidmaps, HMDB and Metacyc as well as 

metabolites manually added by our laboratory. There are three isomers for 

acetylornithine (Val-Gly, L-prolinylglycine, theanine), two for ornithine 

(diaminopentanoate and N4-acetyl-N4-hydroxy-1-aminopropane) and none for 

putrescine. Acetylputrescine had one isomer (aminocaproamide). Validation of 

the acetylornithine identification was conducted using isotopically labelled 

ornithine and is discussed further in section 5.3.3.5. 

Standards were run for ornithine, putrescine, methylthioadenosine, glutathione, 

S-adenosyl methionine and trypanothione disulphide to verify the identification 

of the masses in our assay by retention time. These standards were run for each 

metabolomics assay conducted and identifications were made when the 

retention times were within 5 % of the standard.  

The increase of ornithine and the decrease of putrescine after treatment of 

trypanosomes with eflornithine are in line with the published literature and 

predicted mode of action (Bacchi et al., 1983;Fairlamb et al., 1987;Xiao et al., 

2009) . Fairlamb et al. and Bacchi et al. also noted increases in S-adenosyl 

methionine, which are not replicated in our assay, and decarboxylated S-

adenosyl methionine, which was also not detected in our assay. The decreases in 

spermidine and trypanothione observed by Fairlamb and Bacchi were also not 

seen in our data. The Phillips group reported decreases in glutathionyl-

spermidine (a metabolite not detectable in our data) and glutathione and an 

increase in decarboxylated S-adenosyl methionine (in direct opposition to the 
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Fairlamb and Bacchi results) (Xiao et al., 2009) there may be differences 

between the in vitro and in vivo data if there is a carry over of some metabolites 

from the rat blood or from the medium. HMI-9 used in our experiments and the 

Phillips experiment contains some blood serum, but at 10 %, carry-over of 

polyamine metabolites from this would be less than with rat blood. HMI-9 is not 

expected to contain any of the polyamine pathway metabolites except for the 

amino acids. The decrease in glutathione observed by Phillips was not seen in 

our data. Xiao et al. used a similar drug concentration (12.5 µM) as our 

experiment (20 µM) and was in the same in vitro medium, so it might have been 

expected that results would have been similar.  

Glutathione would not be expected to be affected by an inhibition of ODC as its 

synthesis occurs in a different branch of the polyamine pathway (Fig 4-1). It 

may, however, be regulated via levels of another metabolite such as  

spermidine, which was decreased in the Phillips assay (Xiao et al., 2009), but not 

in ours. 

The Fairlamb group reported eflornithine serum levels of between 560 and 1,340 

µM (Fairlamb et al., 1987), which is much higher than the levels used in our 

assays so may be expected to exhibit more changes. The Bacchi group reported 

serum levels of 10 - 70 µM, which is in the same order of magnitude as our 

experiments. As these assays were both conducted in vivo however, any 

differences between the profiles may be due to the different growth conditions 

(Fairlamb et al., 1987). 

N-acetylornithine has not been seen in trypanosomes before. Differences in the 

retention times between ornithine (RT = 27.9 minutes) and acetylornithine (RT = 

15.3 minutes) suggest that ornithine has not been acetylated in the ionisation 

process during mass spectrometry as the ionisation occurs after chromatographic 

separation. Also, we have shown in subsequent experiments that ornithine in 

CBSS buffer solution or in medium does not spontaneously convert to 

acetylornithine (see chapter 5, particularly figure 5-13). N-acetylornithine is 

highly correlated with ornithine implying that it is closely linked in the 

metabolic network, which indicates a direct metabolic link between the two 

metabolites. There is a metabolic pathway in some bacteria that is able to 
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convert glutamate to ornithine via acetylornithine. This is discussed further in 

chapter 5. 

Acetylputrescine also appears to be a biologically relevant metabolite as it too 

has a significantly different retention time to putrescine. The metabolite has 

just one isomer, aminocaproamide, not thought to be a naturally occurring 

metabolite in trypanosomes. Acetylputrescine is used in the conversion of 

putrescine to aminobutanoate. There is no specific putrescine acetylase, but 

promiscuous acetyltransferases may be able to acetylate putrescine. There are 

at least 10 putative acetyltransferases annotated in TritrypDB (Tb427.01.4490, 

Tb427.05.2280, Tb427.07.2360, Tb427.07.2530, Tb427.08.3310, 

Tb427tmp.160.2010, Tb427.10.3150, Tb427.10.8310, Tb427.10.12830 and 

Tb427tmp.01.2886). 

Other metabolites that exhibited large fold changes over the 72 hours are shown 

in figure 4-5. 
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Figure 4-5. Heat map showing that the majority of metabolites are unchanged with the 
addition of low level eflornithine to wildtype cells. Yellow boxes show levels remaining the 
same. Red shows an increase and blue shows a decrease. Metabolites are classified down 
the left hand side. Red arrows highlight metabolites that consistently increase, blue 
highlights those consistently decreased over the time course. 

 

The metabolites highlighted with blue and red arrows indicate those masses with 

small, but consistent increases or decreases respectively. Ectoine is a pyrimidine 

breakdown product and its reduced levels may relate to the reduced levels of 

thymidine and thymine seen. Why this group of metabolites, normally involved 

in DNA synthesis, should be reduced, however, is unclear, but it could be that 

trypanosomes are stopping DNA synthesis as the trypanostatic drug takes effect. 

Urocanate (m/z: 139.0502, RT: 10.9 minutes) results from the loss of ammonia 

from histidine (m/z: 156.0767, RT: 25.0 minutes). As the retention times are not 
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similar, this loss is not thought to be a mass spectrometry artefact and may 

result from an enzymatic conversion through histidine-ammonia lyase. Levels of 

histidine are not significantly altered, but due to the high levels of amino acids 

in the medium (from 78 µM (tryptophan) to 4 mM (glutamine), histidine is at 271 

µM), changes in levels of these metabolites can be masked. Urocanate can be 

used to create more glutamate or oxoglutarate. All but one of the enzymes for 

this pathway are present in T. cruzi (histidine ammonia lyase 

(Tc00.1047053506247.220), urocanate hydratase (Tc00.1047053504047.5) and 

imidazolone propionase (Tc00.1047053509137.30)), but absent in T. brucei. An 

increase in glutamate may be required to keep glutathione levels stable. 

The phosphocholine-containing lipid shows reduced levels over the 72 hours (Fig 

4-5), as do phenolsulfan phthalein (phenol red – a pH indicator in the medium) 

and pyridoxal (vitamin B6). These three changes appear to hold no obvious 

connections either to the polyamine pathway or to one another, so their 

alterations may be explained by biological variation and perhaps, were the 

experiment to be repeated, these changes would not persist. 

Ornithine decarboxylase requires pyridoxal 5‟-phosphate as a cofactor in the 

conversion of ornithine to putrescine (Jackson et al., 2004). Pyridoxal 5‟ 

phosphate can be detected from the standard mix used to calibrate the masses 

from the Orbitrap mass spectrometer around six minutes after pyridoxal elutes. 

This standard mixture contains 1 µM pyridoxal 5‟-phosphate, but the intensity 

detected is relatively low, suggesting that it is either not well ionised or not well 

detected. The pyridoxal seen (m/z: 168.0655, RT: 14.0 minutes) (Fig 4-5) may 

be due to an increased phosphorylation of pyridoxal to provide more pyridoxal 

5‟-phosphate for ornithine decarboxylase. It would be interesting to see how 

levels of pyridoxal kinase (Tb927.6.2740) are affected by incubation with 

eflornithine or to see if kinase inhibitors are synergistic with eflornithine. 

4.2.1.3 The eflornithine toxicity metabolome 

At 500 µM eflornithine, bloodstream form trypanosomes stop dividing over 48 

hours in drug. This is reflected by many more changes to the metabolome 

(Appendix 8.4 and on included compact disc).  
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A targeted analysis of the polyamine pathway metabolites was undertaken using 

the Xcalibur Quan Browser from Thermo Scientific (Fig 4-6). Putrescine and 

spermidine decreased over the 48 hours in drug whereas ornithine and 

acetylornithine were seen to increase. Methythioadenosine increased over the 

first five hours in drug and then remained relatively level. This was not reported 

in previous studies. Trypanothione disulphide stayed level over the first five 

hours before decreasing slightly, but not significantly. The reported decrease in 

S-adenosylmethionine seen by Bacchi et al., (1983) and Fairlamb et al. (1987) 

and or the increase as seen by Xiao et al. (2009) was not observed, with levels 

staying relatively stable. In the sub IC50 experiment only ornithine, putrescine 

and their acetylated counterparts were altered. Higher doses therefore show a 

greater cascade effect through the metabolome after ODC inhibition. 

 

Figure 4-6. Polyamine metabolite changes in 500 µM eflornithine. X-axes indicate the time in 
hours since drug addition. Y-axes indicate the relative intensity (area under the curve) of 
each metabolite. ND: not detected. Methionine (M+H: 150.0581, RT: 11.9 minutes), S-
adenosylmethionine (M+H: 399.1444, RT: 22.7 minutes), methylthioadenosine (M+H: 
298.0968, RT: 7.82 minutes), arginine (M+H: 175.1190, RT: 25.3 minutes), ornithine (M+H: 
133.0971, RT: 21.9 minutes), acetylornithine (M+H: 175.1077, RT: 17.12 minutes), putrescine 
(M+H: 89.1072, RT: 23.9 minutes), spermidine (M+H: 146.1652, RT: 41.8 minutes), glutathione 
(M+H: 308.0910, RT: 15.3 minutes) and trypanothione disulphide (M+H: 722.2960, RT: 22.7 
minutes). * indicates a p-value less than 0.05 in a Student‟s paired t-test to the 0 time point, 
** indicates a p-value less than 0.001. N = 3. 
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It was hypothesised that the first few hours in drug would show eflornithine-

specific effects and the last two time points (24 and 48 hours) would show 

changes related to cell death, unspecific to eflornithine. 

Five hundred and seventy masses were putatively identified using the mzMatch 

and IDEOM softwares. This is much more than the number detected in the sub 

IC50 experiments as the samples were all run at the same time in this 

experiment, whereas in the previous experiment they were not, producing 

differences in machine efficiency. Table 4-2 shows all of the metabolites that 

change significantly over three replicate experiments for the first five hours 

(from paired t-tests comparing 0 and five hours, p<0.05).  

S-adenosylmethionine decarboxylase is thought to be stimulated by putrescine in 

humans and T. cruzi (Clyne et al., 2002) and weakly stimulated in T. brucei 

(Bitonti et al., 1986) meaning the decrease in putrescine caused by the blockage 

of ornithine decarboxylase activity would be expected to cause an increase in S-

adenosylmethionine and a decrease in decarboxylated-S-adenosylmethionine. As 

decarboxylated S-adenosylmethionine was not observed and S-

adenosylmethionine levels were not significantly altered, conclusions on this 

theory could not be drawn. 
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M/Z RT Formula Isomers Name 
Fold 

Change 

p-
value 

416.2325 7.6 C21H37O6P 1 
1-octadecanoyl-sn-glycero-2,3-

cyclic phosphate 
3.20 0.011 

222.0674 21.2 C7H14N2O4S 4 Cystathionine 2.75 0.011 

297.0896 7.8 C11H15N5O3S 2 Methylthioadenosine 2.23 0.013 

130.1107 13.3 C6H14N2O 2 Acetylputrescine 0.37 0.017 

568.2426 19.7 C23H36N8O7S 1 Arg-Cys-Gln-Tyr 4.31 0.017 

801.5525 7.8 C43H80NO10P 1 Phospho glycerol (17:0/20:4) 1.25 0.027 

114.0793 13.9 C5H10N2O 2 proline amide 1.61 0.029 

402.0227 19.7 C10H16N2O11P2 1 dTDP 1.30 0.030 

163.0666 8.6 C6H13NO2S 6 Methylmethionine 1.66 0.030 

182.0867 19.7 C6H12F2N2O2 1 Eflornithine 1.98 0.034 

101.0476 22.7 C4H7NO2 5 Azetidine 2-carboxylic acid 2.11 0.035 

133.0739 11.6 C5H11NO3 4 Hydroxyvaline 2.54 0.036 

174.1004 16.2 C7H14N2O3 5 Acetylornithine 3.03 0.036 

96.0209 15.5 C5H4O2 3 Furfural 1.47 0.038 

202.1317 8.3 C9H18N2O3 3 Leu-Ala 1.40 0.042 

 

Table 4-2. Metabolites changing significantly over the first five hours in 500 µM eflornithine. 
Peptides are shaded blue and lipids yellow. „M/Z‟ relates to the detected mass charge ratio 
(peak height) corrected for positive or negative ionisation. Fold change relates to the ratio 
of the five hour sample intensity compared to 0 hour intensity. P-values were calculated 
using a Student‟s t-test. 

 

The important thiols within the trypanosome are thought to include 

trypanothione, cysteine, methionine, glutathionylspermidine, 

methylthioadenosine and ovothiol A (Steenkamp, 2002) (Fig 4-7). The precise 

role of ovothiol A as an antioxidant is not well understood, but is thought to be 

absent in bloodstream form trypanosomes (Ariyanayagam and Fairlamb, 2001). 
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Figure 4-7. Thiols in T. brucei. Thiols are in shaded boxes. From KEGG and Vogt et al. 
(2001). 

 

There is a general increase in thiols (cystathionine, methylthioadenosine and 

methyl-methionine) seen over the first five hours in toxic doses of eflornithine 

(ovothiol A could not be measured as several peaks with the same mass were 

seen and the one corresponding to ovothiol A could not be determined). This 

may be due to an attempt by the cells to combat the oxidative stress caused by 

a reduction in trypanothione and spermidine levels. Cystathionine is a 

stereoisomer of a threonine-cysteine dipeptide, but the retention time matches 

that of the cystathionine standard (0.1 % error) so the identification of 

cystathionine can be made with a high degree of confidence. Levels of cysteine 

decrease (although not significantly) over the five hours suggesting that cysteine 

may combine with ketobutyrate to form cystathionine, which may, in turn, be 

used to produce homocysteine and methionine. The enzymes in this pathway, 

cystathione gamma lyase (Tb427tmp.211.3330) and homocysteine S-

methyltransferase (Tb927.1.1270), are present in T. b. brucei. Methionine levels 

do not increase, however, this may be due to high levels in the medium (200 µM) 

masking any changes within the cells. Homocysteine levels fall below the 

minimum peak intensity so cannot be analysed. S-adenosyl methionine and 
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methylthioadenosine were increased also, increasing the general thiol pool to 

counter any increased oxidative stress. 

Ornithine, putrescine and spermidine were not picked out in this automatic 

processing either because the peak picking software (XCMS) missed a peak or 

because the relative standard deviation was higher than the filter allowed. 

These metabolites were therefore analysed manually (Fig 4-6). 

The increases in hydroxyvaline, proline amide and the peptide levels may be 

indications of protein break down as cells die. 

The lipids, shaded in yellow in table 4-2, both increase with eflornithine 

addition. Trypanosomes are able to synthesise all major phospholipids 

(Serricchio and Butikofer, 2011), unlike most other eukaryotes. Trypanosomes do 

also take up a lot of lipids from the host serum (Voorheis, 1980;Bowes et al., 

1993) and it is unclear whether the increase in these lipids is due to enhanced 

synthesis, uptake or indeed from the breakdown of trypanosome membranes. 

Furfural is a sugar fragment and shares a retention time with glucose suggesting 

it is an ionisation artefact of glucose. Azetidine 2- carboxylic acid is also likely to 

be a fragment as it has no reported biological role except as a proline analogue 

in plants. It shares a retention time with adenosylmethionine and also shows the 

same pattern of perturbation (fold changes for one hour, two hours, five hours, 

24 hours and 48 hours of 1.35, 2.11, 1.31 and 3.53 compared to 1.87, 2.99, 1.46 

and 5.07 for adenosylmethionine) over the 48 hour assay, indicating that it is a 

fragment of adenosylmethionine. 

Thymidine diphosphate is significantly altered after five hours in eflornithine, 

but doesn‟t show a large change in levels (just a 30 % increase). Thymine and 

thymidine were seen to show an opposite trend in sub IC50 levels of eflornithine, 

but were not seen to be altered at this drug level.  

There were many more metabolites changing over the 48 hours. There were 45 

significantly changing metabolites (t-test on 0 and 48 hour time point, 

significance taken as p<0.05) (Table 4-3). 
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M/Z RT Formula 
Isomer

s 
name 

Fold 
change 

p-
value 

324.1055 14.8 C12H20O10 4 Fructose 1,2':2,3'-dianhydride 0.36 0.000 

130.1107 13.3 C6H14N2O 2 Acetylputrescine 0.21 0.001 

146.0691 17.5 C5H10N2O3 6 Glutamine 0.64 0.003 

155.0347 19.9 C3H10NO4P 3 Aminopropan-2-ol O-phosphate 0.31 0.005 

482.1712 17.5 C18H26N8O6S 1 Cys-Ser-His-His 0.32 0.005 

309.1687 10.9 C15H23N3O4 2 Pro-Pro-Pro 0.44 0.006 

176.0681 7.5 C7H12O5 7 Propylmalate 9.67 0.007 

147.0529 9.0 C5H9NO4 14 hydroxyisopropyloxamate 0.40 0.009 

117.0790 15.9 C5H11NO2 16 Betaine 0.22 0.010 

250.0904 15.8 C18H28N8O7S 1 Asn-Cys-Gln-His 0.17 0.012 

129.0902 21.1 C5H11N3O 3 piperazine-2-carboxamide 0.42 0.012 

89.0476 15.6 C3H7NO2 9 beta-Alanine 0.53 0.013 

157.0349 15.7 C10H20O7P2 6 [PR] Geranyl pyrophosphte 0.46 0.014 

466.1002 15.7 C17H19N6O8P 1 Adenylanthranilate 0.33 0.014 

174.1117 21.1 C6H14N4O2 2 Arginine 0.42 0.014 

165.0790 10.1 C9H11NO2 7 Phenylalanine 0.35 0.016 

133.0198 14.3 C4H7NO2S 1 Thiazolidine-4-carboxylate 0.23 0.016 

358.0840 17.5 C14H18N2O7S 1 Miraxanthin-I 0.62 0.016 

100.0160 7.1 C4H4O3 1 2-oxobut-3-enanoate 0.65 0.018 

347.0630 20.3 C10H14N5O7P 7 3'-AMP 0.35 0.018 

174.1003 11.0 C7H14N2O3 5 Ethylglutamine 0.46 0.018 

257.1029 20.7 C8H20NO6P 1 sn-glycero-3-Phosphocholine 0.31 0.022 

405.1381 16.1 C15H23N3O10 1 Glu-Glu-Glu 0.35 0.024 

147.0354 12.1 C5H9NO2S 1 Thiomorpholine 3-carboxylate 0.24 0.024 

150.0526 15.4 C5H10O5 37 Xylulose 0.63 0.024 

132.0535 17.9 C4H8N2O3 6 Asparagine 0.28 0.025 

180.0632 15.5 C6H12O6 57 Glucose 0.61 0.025 

259.0455 23.3 C6H14NO8P 8 Glucosamine 6-phosphate 0.25 0.026 

131.0583 16.5 C5H9NO3 14 Glutamate 5-semialdehyde 0.40 0.028 

250.0702 8.1 C20H28N4O7S2 1 Glu-Phe-Cys-Cys 0.25 0.028 

805.5621 7.6 C46H80NO8P 28 Phosphocholine (16:0/22:6) 0.50 0.030 

147.0531 15.9 C5H9NO4 14 Glutamate 0.40 0.031 

260.1371 10.5 C11H20N2O5 4 Glu-Leu 0.59 0.033 

154.0376 12.0 C6H6N2O3 2 Imidazol-5-yl-pyruvate 0.39 0.034 

268.9702 16.1 C12H17BrN2O13P2 1 
uridine-5'-diphosphate 

bromoacetol 
0.16 0.035 

565.4470 10.0 C30H64NO6P 4 Phosphocholine (10:2/12:2) 2.43 0.037 

793.5615 7.7 C45H80NO8P 28 Phosphocholine (15:0/22:5) 0.44 0.037 

136.0370 13.6 C4H8O5 3 Fatty acid trihydroxy (4:0) 0.32 0.037 

244.0693 12.0 C9H12N2O6 2 Pseudouridine 0.37 0.037 

246.1215 11.9 C10H18N2O5 6 Glu-Val 0.62 0.039 

137.0477 5.9 C7H7NO2 13 Anthranilate 2.61 0.039 

285.3032 6.1 C18H39NO 1 deoxy-sphinganine 2.94 0.041 

96.0209 15.5 C5H4O2 3 Furfural 0.57 0.043 

324.0356 23.2 C9H13N2O9P 4 Pseudouridine 5'-phosphate 0.16 0.043 

755.5471 7.7 C42H78NO8P 17 Phosphocholine (16:0/18:3) 0.38 0.045 

Table 4-3. Metabolites significantly changed after 48 hours in 500 µM eflornithine. 
Significance was calculated in IDEOM using the Student‟s paired t-test. Peptides are shaded 
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blue and lipids yellow. „M/Z‟ relates to the detected mass charge ratio (peak height) 
corrected for positive or negative ionisation. Fold change relates to the ratio of the 48 hour 
sample intensity compared to 0 hour intensity. 

 

The fact that the majority of metabolites decrease at the 48 hour time point 

suggests that the cell membrane has been compromised. The cells were 

observed under the light microscope and appeared more convoluted than 

healthy cells, but were clearly still alive and moving. Bacchi et al. reported 

double nuclei and two undulating membranes in eflornithine treated cells 

(Bacchi et al., 1983). The cells were fixed and Giemsa stained (Fig 4-8), but no 

differences in the cell architecture were obvious. The processing of the cells 

involves cooling them to 0 ºC in a dry ice–ethanol bath and two centrifugation 

steps (See methods section 2.2.1 of this thesis). These weakened cells are 

therefore potentially more leaky than cells that have not been compromised for 

so long in the drug. This is evident in the large amount of blue colouration at 48 

hours in the heat map (Fig 4-9), relating to a decrease in the majority of 

metabolites. 

Figure 4-8. Cells at 48 hours with (+) and without (-) 500 µM eflornithine treatment. 100 x 
magnification under oil immersion. 
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Figure 4-9. Heat map of cells in 500 µM eflornithine. Blue represents a decrease in 
metabolite intensity, red an increase and yellow represents unchanged levels. Metabolites 
are classified down the left hand side. Red arrows highlight metabolites that consistently 
increase, blue highlights those consistently decreased over the time course. 

 

There are only two metabolites that significantly increase at the 48 hour time 

point. Propylmalate (the only isomers in our database, methylhydroxyglutarate 

and validone, have RT errors of 7.6 % and 47.7 % respectively, compared to 1.4 % 

for propylmalate) (Fig 4-10). Increases steadily over the 48 hours in eflornithine 

and anthranilate stays relatively stable and then increases at the 48 hour time 

point (Fig 4-11). An unsaturated phosphocholine and deoxy-sphinganine also 

increase, whereas saturated phosphocholines decrease. The unsaturation of 

lipids means that hydrogen atoms are being lost from the carbon chains. This 

may be due to attack by reactive oxygen species, which would remove a 

hydrogen atom from the chain. The increase in deoxysphinganine may be a 

reflection of the degradation of sphingophospholipds, key structural components 
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of the membrane (Serricchio and Butikofer, 2011).  Free lipids generally 

decrease after 24 hours. This may indicate that the trypanosomes are using 

these free lipids in an attempt to maintain their cell membranes. 

 

Figure 4-10. Propylmalate levels increase in eflornithine. Error bars shown standard error of 
the mean from three replicates.  

 

Propylmalate has a retention time of 7.5 minutes, similar to the retention times 

of many of the phosphocholines, which are decreasing over the 48 hours. 

Propylmalate could therefore be a breakdown product of these lipids. 

 

Figure 4-11. Anthranilate levels increase after 48 hours in eflornithine. Error bars show 
standard error of the mean from three replicates. 



117 

 
 

Anthranilate is a precursor to tryptophan biosynthesis (or a breakdown product 

in its degradation) and can be degraded in the tricarboxylic acid cycle in many 

organisms (Choi et al., 2011). It has many stereoisomers, but anthranilate is the 

most likely based on the retention time and genes present in T. brucei. 

Anthanilate is interestingly also thought to be a precursor in quinolone (a 

kynurenine) quorum signalling in Pseudomonas aeroginosa. Kynurenines have 

also been shown to modulate the host immune response, reducing inflammatory 

responses (De Ravin et al., 2010), although some kynurenines (but not 

anthranilate) were shown to be antimicrobial (Narui et al., 2009). The decrease 

in adenylanthranilate concurrent with the increase in anthanilate suggests that 

anthranilate is being released from the base, perhaps in order to form more ATP 

for energy. Why anthranilate should be conjugated to adenine is unclear. 

Kynurenines can also be converted to nicotinamide through conjugation to a 

ribonucleotide. It is possible therefore that adenylanthranilate may be related to 

nicotinamide synthesis. Nicotinamidase has been annotated in the T. vivax 

(TvY486_0901400) and T. b. gambiense (Tbg972.9.2100) genomes, but its 

syntenic partner (Tb427tmp.160.2600) is not annotated in the T. b. brucei 

genome (despite 100 % similarity at the amino acid level to the T. b. gambiense 

gene). Nicotinamide (m/z: 123.0553, RT: 7.9 minutes) and ribosylnicotinamide 

(m/z: 255.0973, RT: 14.0 minutes) are detected in the data set, but are not 

significantly altered until the decrease, with the majority of metabolites, at 48 

hours. 

An adenine-anthranilate conjugate has not been reported previously in the 

literature. More analysis of the role of anthranilate in eflornithine-treated cells 

would be useful, perhaps with the use of isotopically labelled tryptophan. 

Interestingly, eflornithine levels in the cells did not increase significantly over 

the 48 hours although this is probably due to high levels of residual eflornithine 

from the medium masking any uptake.  

Some metabolites were seen to increase, but not significantly due to the large 

levels of variation see in the biological data. Sedoheptulose (m/z: 210.0738, RT: 

14.9 minutes), sedoheptulose phosphate (m/z: 290.0400, RT: 25.4 minutes) and 

http://tritrypdb.org/tritrypdb/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=TriTrypDB&primary_key=Tb427tmp.160.2600
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the water loss in-source fragment of sedoheptulose phosphate (m/z: 272.0296, 

RT: 25.4 minutes) showed the same trend (Fig 4-12).  

 

Figure 4-12. Sedoheptulose (top graph), sedoheptulose phosphate (middle graph) and the 
fragment of sedoheptulose phosphate increase with 500 µM eflornithine. X-axes show time 
in hours, Y-axes relative intensity (peak height). Error bars show standard error of the mean 
from three replicates. 
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Sedoheptulose phosphate is a seven carbon sugar of the pentose phosphate 

pathway formed, along with glyceraldehyde 3-phosphate, from ribose-5-

phosphate and xylulose-5-phosphate through transketolase (Tb927.8.6170) 

action. Transketolase has, however, been shown not to have activity in 

bloodstream-form trypanosomes (Stoffel et al., 2011).That being said, 

sedoheptulose 7-phosphate was evident in procyclic trypanosomes knocked out 

for transketolase, albeit at reduced levels, indicating an alternative source of 

the metabolite in these cells. Xyulose and ribose 5-phosphate levels are not 

altered over the time course to 48 hours, further suggesting an alternative 

source of sedoheptulose phosphate. The increase in sedoheptulose may also be 

indicative of stumpy formation if this is the mode of killing by eflornithine as 

was suggested by Alan Bitonti (Bitonti et al., (1986). 

 Sedoheptulose phosphate can also be formed through transaldolase 

(Tb927.8.5600) from erythrose 4-phosphate and fructose 6-phosphate but it is 

unclear why the trypanosomes would do this in response to eflornithine 

exposure. Moreover, this reaction requires a supply of erythrose 4-phosphate, 

usually produced by the absent transketolase. Trypanosomes might, therefore, 

have another, as yet unidentified, source of erythrose 4-phosphate (erythrose 4-

phosphate is not detected in this dataset, but erythrose (m/z: 119.0349, RT: 9.4 

minutes) is (Appendix 8-4)). Of note also is that aldolase can fuse sugar 

phosphates to yield longer chain bisphosphates that could then be cleaved with a 

bisphosphatase. For example, erythrose 4-phosphate and dihydroxyacetone 

phosphate would yield sedoheptulose 1,7-bisphosphate that could then yield 

sedoheptulose 7-phosphate by sedoheptulose 1,7-bisphosphatase 

(Tb427.02.5800) (Clasquin et al., 2011). 

To ensure that the metabolites seen as altered from eflornithine treatment are 

specific to eflornithine or if they are implicated in a more generalised drug 

response. Another trypanocide, nifurtimox, was also analysed by metabolomics. 
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4.2.2 Nifurtimox and eflornithine synergy 

The IC50 of nifurtimox was found to be 4 µM in bloodstream form T. b. brucei by 

alamar blue assay (Fig 4-13). Nifurtimox given orally (15 mg/kg) gives a 

maximum serum concentration of 2.6 µM (Gonzalez-Martin et al., 1992) and it 

appears to be concentrated in the CSF of mice from 6 µM in perfused serum to 

12 µM in the CSF (Jeganathan et al., 2011) indicating that nifurtimox would be 

more useful for stage two HAT where parasites have invaded the brain. 
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Figure 4-13. The IC50 value of nifurtimox in bloodstream form T. b. brucei is 4 µM. N = 4, 
error bars depict standard error of the mean. 

 

As eflornithine use in the field is increasingly being superceded by a nifurtimox-

eflornithine combination therapy, we wanted to see how the two drugs interact 

in trypanosomes.  

Alamar blue assays were used to ascertain whether the two drugs were 

synergistic in vitro. 

Interestingly, isobologram analyses (Fig 4-14) revealed that nifurtimox and 

eflornithine are not synergistic to one another‟s activity in vitro.  
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Figure 4-14.  Isobologram analysis shows that nifurtimox and eflornithine (DFMO) are 
antagonistic in vitro (top graph). DB75 (bottom left) was additive, but NA42 (bottom middle) 
and NA134 (bottom right) were midly antagonistic. Y-axes show the nifurtimox 
concentration in µM. X-axes show the combination drug used in µM (DB75) or nM (NA42 and 
NA134). Black points show the IC50 of the drugs in isolation. White points show the drug 
combination IC50s. N = at least 3. 

 

The average fractional inhibitory concentration (FIC) is used as a measure of 

interaction between two drugs and is a sum of the IC50 of the drug acting in 

combination divided by the IC50 of the drug acting alone. An FIC of 1.5 was 

recorded for eflornithine and nifurtimox (n = 3), where a value ≥1.4 is taken as 

antagonistic (Snyder et al., 2007). This was interesting given the theory that 

eflornithine would deplete cellular trypanothione thus rendering the cells more 

susceptible to oxidative stress induced by nifurtimox. The fact that eflornithine 

is trypanostatic, rather than trypanocidal may explain why the two drugs are 
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antagonistic in vitro i.e. if nifurtimox requires dividing cells to exert its effects 

then eflornithine combination would be counteractive. It would be interesting to 

measure nitroreductase activity in eflornithine-treated cells to ascertain 

whether it is down-regulated or not. Isobologram analyses with other 

trypanostatic drugs (adenosine analogues NA42 and NA134 (Rodenko et al., 

2007)) found antagonism with the adenosine analogue NA42 (FIC: 1.4) and with 

NA134 (FIC: 1.6), but not with DB75 (FIC: 1.1) suggesting that the antagonism 

may be due to the static nature of eflornithine‟s mode of action, although other 

factors may also be involved. 

4.2.3 Nifurtimox mode of action 

To ascertain the nifurtimox concentrations suitable for a sub IC50 and a 

nifurtimox to death study, growth curves were conducted in various 

concentrations of nifurtimox (Fig 4-15). 

 

Figure 4-15. Growth curves of wildtype T. b. brucei in nifurtimox. Cells in 6 µM nifurtimox fail 
to survive after 55 hours. Cells cultured in 60 µM nifurtimox start to die at 5 hours (data not 
shown). 

 

A level of 1.5 µM was chosen for the sub IC50 metabolome measurements as this 

was shown to be non lethal over 48 hours. 60 µM was used for toxicity 

experiments, but as the cells died at between 5 and 8 hours time points of 0, 1, 
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2 and five hours were taken. All metabolomics experiments were performed at 

least in triplicate. 

4.2.3.1 Sub IC50 metabolome 

After data reduction through the mzMatch and IDEOM softwares, 594 

reproducible metabolites were identified. Polyamine pathway metabolites were 

largely unchanged in cells challenged with 1.5 µM nifurtimox (Fig 4-16). This 

data adds support to the specific changes seen with DFMO treatment. Thiol 

levels within the cells also remained largely unchanged (Table 4-4), although 

some fluctuations were seen. Ovothiol (unconfirmed identification, due to an 

absence of an ovothiol standard) levels increased the most, but the increase was 

not statistically significant (p-value 0.079 from t-test). 
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Figure 4-16. Polyamine metabolite changes in 1.5 µM nifurtimox. X-axes indicate the time in 
hours since drug addition. Y-axes indicate the relative intensity (area under the curve) of 
each metabolite. ND: not detected. Methionine (M+H: 150.0581, RT: 12.4 minutes), S-
adenosylmethionine (M+H: 399.1444, RT: 26.7 minutes), methylthioadenosine (M+H: 
298.0968, RT: 9.1 minutes), arginine (M+H: 175.1190, RT: 23.8 minutes), ornithine (M+H: 
133.0971, RT: 24.0 minutes), acetylornithine (M+H: 175.1077, RT: 15.1 minutes), putrescine 
(M+H: 89.1072, RT: 29.6 minutes), spermidine (M+H: 146.1652, RT: 41.9 minutes), glutathione 
(M+H: 308.0910, RT: 19.6 minutes) and trypanothione disulphide (M+H: 722.2960, RT: 24.7 
minutes).  * indicates a p-value less than 0.05 in a Student‟s paired t-test to the 0 time point, 
** indicates a p-value less than 0.001. N = 3. 

 

Thiol 
Time point 

0 1 24 48 

Methylthiobutanoate 1.00 0.81 0.60 0.86 

Methylthioribose1phosphate 1.00 1.58 1.25 1.38 

Homocysteinethiolactone 1.00 0.84 1.39 0.72 

Cysteine 1.00 0.54 1.28 0.99 

Ovothiol A 1.00 2.40 1.77 1.13 

Table 4-4. Thiol levels in nifurtimox treated cells. Numbers show ratios (area under curve) 
compared to time 0. Methylthiobutanoate (M+H: 147.0122, RT: 6.0 minutes), 
methylthioribulose 1-phosphate (M+H: 259.0048, RT: 9.7 minutes), homocysteinethiolactone 
(M+H: 118.0320, RT: 13.25 minutes), cysteine (M+H: 122.0270, RT: 14.5 minutes) and ovothiol 
A (M+H: 202.0642, RT: 20.33 minutes). N = 3. 
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Metabolites found to be significantly altered (p<0.05 comparing 0 and 48 hour 

time points) in the T. b. brucei metabolome after challenge with nifurtimox are 

listed in Table 4-5. 

M/Z RT Formula Isomers Name 
Fold 
change 

P-
value 

78.0139 8.4 C2H6OS 3 Mercaptoethanol 470 0.005 

243.1219 15.5 C10H17N3O4 2 Ala-Gly-Pro 0.48 0.006 

219.0855 19.7 C7H13N3O5 3 Gly-Gly-Ser 0.69 0.006 

168.0899 7.5 C8H12N2O2 3 Cyclo(deltaAla-L-Val) 0.74 0.007 

309.1323 15.3 C14H19N3O5 3 Ala-Gly-Tyr 0.81 0.007 

243.1218 15.2 C10H17N3O4 2 Gln-Pro 0.38 0.008 

446.2373 9.2 C19H34N4O8 8 Asp-Leu-Leu-Ser 0.65 0.009 

222.0564 5.5 C8H14O5S 1 Methylthio propylmalate 0.64 0.013 

204.1110 15.2 C8H16N2O4 5 Val-Ser  0.57 0.020 

289.1638 12.9 C12H23N3O5 5 Leu-Ala-Ser 0.72 0.022 

281.2718 5.5 C18H35NO 1 Fatty acid (18:1) 1.35 0.023 

523.1906 13.5 C22H29N5O10 2 Asp-Phe-Asp-Gln 0.62 0.024 

358.1850 17.0 C15H26N4O6 3 Ala-Thr-Ala-Pro 0.75 0.031 

129.5949 24.2 C12H25N3O3 2 Leu-Lys 0.79 0.033 

254.1379 24.0 C11H18N4O3 2 Val-His 0.66 0.033 

310.1165 14.4 C14H18N2O6 2 Glu-Tyr 0.81 0.033 

181.0740 13.2 C9H11NO3 5 Threo phenylserine 0.83 0.033 

252.0857 16.7 C10H12N4O4 2 Ribosylpurine 1.47 0.037 

188.1526 24.7 C9H20N2O2 2 N6,N6,N6-Trimethyl lysine 0.77 0.038 

197.0798 15.1 C8H11N3O3 3 acetylhistidine 0.59 0.040 

276.0959 16.3 C10H16N2O7 2 Glu-Glu 2.04 0.041 

331.2106 10.9 C15H29N3O5 5 Leu-Leu-Ser 0.79 0.041 

174.1118 23.8 C6H14N4O2 1 Arginine 0.84 0.042 

231.1217 15.3 C9H17N3O4 3 Val-Asn 0.51 0.043 

229.1061 16.7 C9H15N3O4 2 Asn-Pro 2.05 0.044 

131.0946 11.6 C6H13NO2 9 Leucine 0.88 0.045 

Table 4-5. Metabolites significantly altered after treatment with sub IC50 levels of nifurtimox. 
Peptides are shaded blue and lipids yellow. „M/Z‟ relates to the detected mass charge ratio 
(peak height) corrected for positive or negative ionisation. Fold change relates to the ratio 
of the 48 hour sample intensity compared to 0 hour intensity. P-values were calculated 
using a Student‟s t-test. 

 

The metabolite with the smallest p-value was labelled as mercaptoethanol, but 

as mercaptoethanol is a stereoisomer of DMSO (dimethyl sulfoxide) and DMSO is 

used to dissolve the nifurtimox then the more likely metabolite is DMSO (even 

though the RT error for DMSO is 27.3 % from the calculated RT while for 

mercaptoethanol the RT error is 6.4 %). 



126 

 
Propylmalate was seen to increase in eflornithine toxicity studies, but 

methylthio propylmalate, a thiol derivative of propylmalate, is seen to decrease 

upon nifurtimox challenge. Methylthio propylmalate is not thought to be 

involved in any naturally occurring pathways (from KEGG). Propylmalate in the 

eflornithine study appeared to be a lipid fragment, methylthio propylmalate 

could equally be a lipid fragment (it elutes at the same time as a group of fatty 

acids and sphingolipids), although the thiol is not present in any of these lipids.  

Ribosylpurine (32.4 % error form calculated RT (the deoxyinosine isomer has a RT 

error of 45.6 %)) was seen to increase 47 % after 48 hours in 1.5 µM nifurtimox. 

When the whole time course is taken into consideration however, the relatively 

minor increase is not very convincing (Fig 4-17). 

 

Figure 4-17. Ribosylpurine increases slightly after treatment with sub IC50 levels of 
nifurtimox. Error bars show standard error of the mean over three biological replicates. 

 

All the peptides, amino acids and amino acid derivatives that had significant 

changes were decreased after 48 hours in nifurtimox except for the asparagine-

proline and glutamate-glutamate dipeptides. The Asp-Pro peak is, however, in a 

very noisy region and it is likely that the processing software removed the peak 

for the 0 hour time points due to the large amount of noise. This dipeptide is 

therefore not significantly altered over the time course. The glutamate 

dipeptide only doubled after 48 hours after having fluctuated at the one and 24 
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hour time points. The inconsistent increases in this metabolite‟s levels are 

probably just due to biological variation. 

The decreases in peptides may indicate a reduced uptake of peptides from the 

medium or a reduction in the breakdown of proteins, indicating that the cells 

are entering a more senescent state. However, the heat map (Fig 4-18) of 

metabolite levels shows a clear correlation between the one and 48 hour time 

points. In this assay, the one and 48 hour time points were extracted together as 

were the 0 and 24 hour time points. This trend indicates the paramount 

importance of extracting all metabolite samples on the same day at the same 

time and under the same conditions. 

Overall, not many metabolites were altered after nifurtimox challenge as shown 

in the heat map although a lot of the map is blue, depicting a decrease. This 

may mean that the 0 hour samples have a greater concentration of metabolites 

in them due to experimental error.  
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Figure 4-18. Heat map of metabolites altered after nifurtimox challenge at sub IC50. Blue 
represents a decrease in metabolite intensity, red an increase and yellow represents 
unchanged levels. Metabolites are classified down the left hand side. The red arrows 
highlight metabolites that consistently increase, blue highlights those consistently 
decreased over the time course. 

 

Arginine phosphate levels have previously been shown to increase  in T. cruzi 

treated with 10 µM nifurtimox (Miranda et al. 2006), but in these samples the 

relative intensity remains stable (data not shown). 

Analysis of nifurtimox levels in the cells showed that the drug levels decrease 

between 24 and 48 hours (Fig 4-19).  
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Figure 4-19. Nifurtimox levels in cells treated for 48 hours. Nifurtimox (M+H 288.0648, RT: 
5.5 minutes) decreases between the 24 and the 48 hour time points. N = 3. Error bars show 
standard error of the mean.  

 

Shane Wilkinson at the Queen Mary University of London showed that nifurtimox 

is reduced by type I nitroreductases to form a reactive open chain nitrile (Hall et 

al., 2011). This decrease in the nifurtimox levels may therefore be due to 

nifurtimox‟s metabolism to this open chain nitrile. A targeted search for the 

nitrile metabolite revealed no peaks for the mass in positive mode (M+H: 

256.0750), negative mode (M-H: 254.0606), positive mode with a sodium adduct 

(M+NaH: 278.0575) or negative mode with a sodium adduct (M-H+Na: 276.0431). 

Wilkinson‟s group postulated that the open chain nitrile may act as a Michael 

acceptor, attacking any carbon next to a ketone as a way of binding to 

macromolecules such as DNA and proteins. As the nitrile would be expected to 

be extremely reactive, it is unlikely that we would see it as a free metabolite 

and we therefore searched the data for any metabolite mass with an additional 

256.0750 atomic mass units (the nitrile adduct).  

The nitrile could not be detected as an adduct attached to any metabolites in 

our dataset. The mass spectrometry platform used scans for metabolites in a 

mass range of 70 - 1, 400 atomic mass units. The vast majority of 

macromolecules are outwith this range and therefore would not be detected. A 

proteomics assay on treated cells may reveal the metabolite attached to 
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proteins and larger peptides. A large number of peptides are detected in our 

datasets, however, none of these were discovered with a mass corresponding to 

their conjugation to the nitrile adduct. It is likely that the levels of the nitrile 

within the cells would be very low and this may be why no peaks could be 

detected. A higher dose of nifurtimox may reveal the presence of the nitrile.  

4.2.3.2 Nifurtimox toxicity 

A higher dose of eflornithine at 60 µM was used for toxicity experiments with 

samples collected after 0, 1, 2 and 5 hours in drug. After data reduction through 

the mzMatch and IDEOM softwares, 670 reproducible metabolites were identified 

(see included CD). Thirty metabolites showed a significant difference between 

the 0 and the 5 hour time point (Table 4-6). 

Over a third of the metabolites with significantly altered intensities were lipids, 

although the changes were not consistently up or down. The phosphocholines 

were all decreased over the time course, however, which may indicate that the 

cells are using these to increase synthesis of the other lipids. 

Purines (deoxyadenosine, AMP and GMP) are all increased whereas sugars and 

sugar phosphates (glucose 6-phosphate (two peaks probably representing 

different isomers as the retention times are different), succinate and 

deoxyribose (two peaks probably representing different isomers)) are decreased. 

The increase in purines and in uracil may be a result of RNA and DNA 

degradation as the nifurtimox active metabolite is thought to bind to 

macromolecules (Hall et al., 2011) and nucleic acid breakdown might be 

stimulated on modified DNA. Most of the peptides seen also increase, which may 

mean that nifurtimox also binds to proteins causing degradation. A targeted look 

for the nifurtimox metabolite (M+H: 258.0906) attached to macromolecules 

produced no hits with peptides, purines and pyrimidines. Since the Orbitrap only 

records masses up to 1,400, however, larger molecules with nifurtimox attached 

would not be detected. 

Formyldihydrofolate is likely to result from the spontaneous oxidation of 

formylfolate. Formyl tetrahydrofolate has been shown to be important in 
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regulating purine levels in leishmania (Vickers et al., 2009). However, the 

identity of this metabolite is not certain and the IDEOM software highlighted this 

mass as possibly relating to the phosphocholines, as a fragment.  

M/Z RT Formula Isomers Name 
Fold 

change 
P-

value 

434.2432 4.8 C21H39O7P 3 Lipophosphatidic acid (0:0/18:2) 1.36 0.002 

112.0274 7.9 C4H4N2O2 1 Uracil 2.62 0.003 

260.0298 17.4 C6H13O9P 46 Glucose 6-phosphate 0.46 0.003 

862.5579 4.4 C45H83O13P 9 Phosphatidylinositol (18:0/18:0) 1.26 0.006 

250.0987 16.6 C9H18N2O4S 1 Met-Thr 2.52 0.009 

141.0192 19.7 C2H8NO4P 2 Ethanolamine phosphate 0.44 0.011 

507.3691 9.6 C26H54NO6P 6 Phophocholine (18:1) 0.66 0.012 

118.0268 6.6 C4H6O4 7 Succinate 0.75 0.013 

260.0297 18.1 C6H13O9P 46 D-Glucose 6-phosphate 0.55 0.013 

260.1373 15.2 C11H20N2O5 4 Glu-Leu 1.32 0.013 

134.0578 7.8 C5H10O4 6 Deoxyribose 0.42 0.014 

266.1267 15.2 C13H18N2O4 1 Phe-Thr 2.56 0.014 

273.2667 12.0 C16H35NO2 1 Hexadecasphinganine 0.60 0.019 

134.0579 7.6 C5H10O4 6 Deoxyribose 0.41 0.019 

479.3376 9.9 C24H50NO6P 5 Phosphocholine (16:1) 0.49 0.020 

213.044 22.6 C13H22N4O8S2 2 Asp-Cys-Cys-Ser 0.49 0.021 

251.1018 13.2 C10H13N5O3 4 Deoxyadenosine 4.11 0.021 

602.5274 4.4 C39H70O4 1 Glycerolipid (15:0/8:0) 1.22 0.023 

701.5364 5.9 C39H76NO7P 11 
Phosphoethanolamine 

(16:0/18:1) 
1.39 0.028 

617.4785 4.8 C34H68NO6P 1 sphingeninephosphate (16:0) 0.74 0.030 

471.1503 10.1 C20H21N7O7 1 10-Formyldihydrofolate 0.73 0.030 

465.322 10.1 C23H48NO6P 3 Phosphocholine (15:1) 0.43 0.033 

446.3393 5.0 C28H46O4 22 Dehydroteasterone 11.32 0.035 

699.5197 5.8 C39H74NO7P 6 
Phosphoethanolamine 

(16:1/18:1) 
1.40 0.040 

347.0631 17.8 C10H14N5O7P 7 AMP 3.61 0.041 

774.5416 4.3 C42H79O10P 9 Phosphoglycerol (18:1/18:1) 1.30 0.041 

188.1161 17.5 C8H16N2O3 7 Val-Ala 2.35 0.041 

363.0580 17.5 C10H14N5O8P 5 GMP 1.52 0.044 

801.5518 7.9 C43H80NO10P 1 Phosphoglycerol (17:0/20:4) 0.78 0.046 

166.0057 39.3 C8H14NO9S2 1 Glucocapparin 0.88 0.048 

Table 4-6. Significantly changing metabolites with 60 µM nifurtimox. Peptides are shaded 
blue and lipids yellow. „M/Z‟ relates to the detected mass charge ratio (peak height) 
corrected for positive or negative ionisation. Fold change relates to the ratio of the five hour 
sample intensity compared to 0 hour intensity. P-values were calculated using a Student‟s t-
test. 

 

Dehydroxyteasterone is a hormone and would not be present in trypanosomes. 

Its levels increase steadily over the time course and the mass is likely to relate 

to nifurtimox, especially as the retention time is very similar to nifurtimox (RT: 
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5.4 minutes). However, the mass of dehydroxyteasterone (m/z 446.3393) minus 

the mass of the open chain nitrile (either saturated or unsaturated) or 

nifurtimox reveals no hits in the metabolite databases. The identity of this large, 

early eluting (and therefore non-polar) metabolite remains unknown for now, 

although fragmentation could be undertaken in the future to aid its 

identification. Metabolites of the polyamine pathway are not significantly 

altered over the nifurtimox time course (Fig 4-20) although there is a a slight 

increase in glutathione and decrease in trypanothione after 5 hours. Thiol levels 

are also not significantly altered (Table 4-7). The lack of changes in thiol and 

polyamine levels suggests that oxidative stress is not important in nifurtimox 

killing, although the redox state of the thiols was not measured so a definitive 

conclusion cannot be drawn. 

 

Figure 4-20. Polyamine metabolite changes in 60 µM nifurtimox. X-axes indicate the time in 
hours since drug addition. Y-axes indicate the relative intensity (area under the curve) of 
each metabolite. ND: not detected. Methionine (M+H: 150.0581, RT: 14.5 minutes), S-
adenosylmethionine (M+H: 399.1444, RT: 32.6 minutes), methylthioadenosine (M+H: 
298.0968, RT: 11.1 minutes), arginine (M+H: 175.1190, RT: 28.7 minutes), ornithine (M+H: 
133.0971, RT: 28.8 minutes), acetylornithine (M+H: 175.1077, RT: 18.0 minutes), spermidine 
(M+H: 146.1652, RT: 33.9 minutes), glutathione (M+H: 308.0910, RT: 16.7 minutes) and 
trypanothione disulphide (M+H: 722.2960, RT: 29.9 minutes). No metabolites showed 
significance at a p = 0.0.5 level in a t-test comparing levels to the 0 hour time point. N = 3. 
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Thiol 
Time Point 

0 1 2 5 

methylthiobutanoate 1.00 0.91 0.91 0.83 

deoxymethylthioadenosine 1.00 0.77 1.16 1.03 

cysteine 1.00 1.08 0.88 1.17 

methionine 1.00 0.95 1.24 1.25 

glutathione 1.00 0.63 0.59 1.22 

trypanothione disulphide 1.00 0.74 0.55 0.55 

adenosylmethionine 1.00 1.32 1.26 1.30 

Table 4-7. Thiol levels in 60 µM nifurtimox treated cells. Numbers show ratios compared to 
time 0 (area under curve). Methylthiobutanoate (M+H: 147.0122, RT: 5.8 minutes), 
deoxymethylthioadenosine (M+H: 298.0968, RT: 11.1 minutes), cysteine (M+H: 122.0270, RT: 
16.7 minutes), methionine (M+H: 150.0581, RT: 14.45 minutes), glutathione (M+H: 308.0910, 
RT: 16.6 minutes), trypanothione disulphide (M+H: 722.2960, RT: 29.8 and 
adenosylmethionine (M+H: 399.1444, RT: 32.7 minutes. Ovothiol A could not be detected. N 
= 3. 

 

Reduction of nifurtimox to its reactive metabolite requires several steps (Fig 4-

21) (Hall et al., 2011). 

 

Figure 4-21. The reduction of nifurtimox (a nitrofuran) to its active compound, a saturated 
open chain nitrile. (From (Hall et al., 2011)) 
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A targeted search for the metabolites in the reduction of nifurtimox to its 

saturated open chain nitrile revealed just the start and end metabolites of the 

pathway, not the intermediates (Fig 4-22). This indicates that the reduction is 

rapid and intermediates in the pathway do not persist or persist at very low, 

undetectable levels. 

 

 

Figure 4-22. Nifurtimox reduction in T. b. brucei. Nifurtimox (M+H: 288.0648, RT: 5.4 minutes) 
is reduced, through a number of steps to an open chain nitrile (M+H: 258.0906, RT: 5.7 
minutes). Neither metabolite is detected at the 0 time point (where no drug is added). N = 3. 

 

The high levels of nifurtimox observed are probably related to exogenous 

nifurtimox levels, which are very high as cells are not washed after quenching, 

rather than internal nifurtimox. The saturated open chain nitrile levels 
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decreased after an initial peak at one hour. This is interesting as it means that 

the pool of the active metabolite is not maintained during the nifurtimox time 

course, even though the levels of nifurtimox are high. Either uptake of 

nifurtimox must be reduced or the processing to the active metabolite is down 

regulated. The uptake mechanism of nifurtimox is unknown, but the current 

data are consistent with passive diffusion (Delespaux and De Koning, 2007). The 

Wilkinson group only recorded the saturated nitrile after 24 hours of drug 

exposure, whereas our assay shows its appearance after just one hour. This 

difference may be due to different experimental conditions as the Wilkinson 

group measured activity in purified nitroreductase (Hall et al., 2011), whereas 

whole cells were utilised for the study shown here. 

4.2.4 NECT metabolome 

The nifurtimox-eflornithine combination therapy is gaining momentum as a 

preferred treatment of late-stage T. b. gambiense HAT (Yun et al., 2010). 

Synergism of the two drugs has not be proven, however, either in vitro or in the 

field. 

As the nifurtimox-eflornithine combination therapy was shown to be antagonistic 

in our in vitro assay (as were other trypanostatic drugs in combination with 

nifurtimox (Fig 4-14)), we wanted to measure the metabolome of the 

combination therapy and compare it to the metabolomes of each drug in 

isolation. It was thought that the antagonism could be due to a decrease in 

nifurtimox reduction in non-dividing cells. The metabolome of NECT treated 

cells was therefore measured using drug levels that were toxic in the 

monotharapies (500 µM for eflornithine and 60 µM for nifurtimox) and the time 

points used in the nifurtimox toxicity assay (0, 1, 2 and 5 hours) (see included 

CD). A targeted look at nifurtimox reduction was conducted (Fig 4-23), but the 

reduction to the open chain nitrile was still achieved over the five hours. 
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Figure 4-23. Nifurtimox reduction in T. b. brucei treated with a nifurtimox-eflornithine 
combination. Nifurtimox (M+H: 288.0648, RT: 5.4 minutes) is reduced, through a number of 
steps to an open chain nitrile (M+H: 258.0906, RT: 5.7 minutes). Neither metabolite is 
detected at the 0 time point (where no drug is added). N = 3. 

 

The polyamine pathway metabolites were also analysed in the combination 

therapy using a targeted approach (Fig 4-24). Ornithine levels at one hour and 

trypanothione levels at five hours and putrescine levels showed significant 

differences at a level of p = 0.05 and p = 0.01 in a t-test compared to the 0 hour 

time point. The level of ornithine is generally increased and spermidine and 

putrescine are generally decreased, indicating that eflornithine is still able to 

inhibit ODC in the combination therapy. 
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Figure 4-24. Polyamine metabolite changes in NECT. X-axes indicate the time in hours since 
drug addition. Y-axes indicate the relative intensity (area under the curve) of each 
metabolite. ND: not detected. Methionine (M+H: 150.0581, RT: 14.5 minutes), S-
adenosylmethionine (M+H: 399.1444, RT: 32.7 minutes), methylthioadenosine (M+H: 
298.0968, RT: 11.1 minutes), arginine (M+H: 175.1190, RT: 28.7 minutes), ornithine (M+H: 
133.0971, RT: 28.8 minutes), acetylornithine (M+H: 175.1077, RT: 18.0 minutes), spermidine 
(M+H: 146.1652, RT: 33.7 minutes), glutathione (M+H: 308.0910, RT: 16.7 minutes) and 
trypanothione disulphide (M+H: 722.2960, RT: 30.0 minutes). * denotes significance at a p = 
0.05 level and ** denotes significance at a p = 0.01 level in a t-test comparing levels to the 0 
hour time point. N = 3. 

 

An untargeted analysis of the NECT metabolome revealed 36 significantly altered 

metabolites after five hours (p = 0.05) (Table 4-8). Interestingly, where 

ethanolamines were increased in the nifurtimox monotherapy, in the 

combination therapy the one ethanolamine with a significant alteration (at p = 

0.05) shows decreased intensity levels, as do the other lipids. AMP and uracil (in 

UMP) maintain their increase in intensity and the sugars maintain their decrease 

in intensity in line with the nifurtimox monotherapy.  
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M/Z RT Formula Isomers Name Ratio 
p-

value 

135.0544 16.4 C5H5N5 1 Adenine 3.03 0.001 

715.5148 6.9 C39H74NO8P 11 Phosphoethanolamine (14:0/20:2) 0.72 0.002 

134.0579 7.8 C5H10O4 6 Deoxyribose 0.18 0.002 

134.0580 7.4 C5H10O4 6 
(R)-2,3-Dihydroxy-3-

methylbutanoate 
0.18 0.002 

88.1001 36.1 C4H12N2 1 Putrescine 0.11 0.003 

71.0735 35.8 C4H9N 2 3-Buten-1-amine 0.18 0.005 

86.0368 14.8 C4H6O2 7 Diacetyl 1.67 0.006 

550.4962 5.1 C35H66O4 1 
1-O-(1Z-Tetradecenyl)-2-(9Z-

octadecenoyl)-sn-glycerol 
0.51 0.006 

70.0531 18.2 C3H6N2 3 beta-Aminopropionitrile 1.29 0.007 

266.0903 7.4 C12H14N2O5 1 p-aminobenzoyl glutamate 2.73 0.008 

264.1045 34.3 C12H17N4OS 1 Thiamin 1.92 0.009 

132.0899 28.8 C5H12N2O2 3 L-Ornithine 2.97 0.009 

241.0926 6.5 C21H30N4O7S 4 Ala-Met-Phe-Asp 1.55 0.011 

237.9952 9.5 C12H8OCl2 6 2,6-Dichloro-4'-biphenylol 0.29 0.011 

130.1107 36.1 C6H14N2O 2 N-Acetylputrescine 1.69 0.012 

520.1613 23.7 C19H32N6O5S3 1 Cys-Met-Met-His 1.23 0.013 

148.0735 5.5 C6H12O4 14 
(R)-2,3-Dihydroxy-3-
methylpentanoate 

1.58 0.013 

713.4997 5.8 C39H72NO8P 12 Phosphoethanolamine (16:0/18:3) 0.52 0.020 

338.0232 6.4 C8H8HgO2 1 mercuriphenyl acetate 0.56 0.021 

408.3751 5.1 C30H48 2 4,4'-Diapophytoene 1.36 0.027 

314.0590 5.5 C10H19O7PS 1 Malaoxon 1.29 0.030 

118.0268 6.6 C4H6O4 7 Succinate 0.49 0.030 

112.0274 7.9 C4H4N2O2 1 Uracil 1.93 0.031 

446.3394 5.1 C28H46O4 22 3-Dehydroteasterone 7.26 0.033 

188.1160 17.9 C8H16N2O3 7 Glycyl-leucine 1.79 0.033 

191.0616 6.0 C7H13NO3S 1 N-Acetylmethionine 0.47 0.033 

331.5544 20.3 C21H28N7O14P2 1 NAD+ 1.15 0.034 

185.9928 20.9 C3H7O7P 2 2-Phospho-D-glycerate 0.44 0.035 

192.1011 17.0 C17H28N4O6 1 Ala-Thr-Pro-Pro 0.68 0.037 

324.0358 14.3 C9H13N2O9P 4 3'-UMP 1.89 0.040 

130.1107 36.4 C6H14N2O 2 N-Acetylputrescine 1.52 0.042 

347.0631 17.8 C10H14N5O7P 7 AMP 3.00 0.043 

386.3555 5.2 C27H46O 14 [ST] cholest-7-en-3beta-ol 0.62 0.044 

390.2271 5.2 C20H30N4O4 1 Lys-Phe-Pro 1.68 0.044 

200.0300 6.5 C12H8OS 1 dibenzothiophene-5-oxide 1.38 0.044 

202.1428 26.6 C8H18N4O2 3 NG,NG-Dimethyl-L-arginine 1.56 0.047 

Table 4-8. Significantly changing metabolites with NECT. Peptides are shaded blue and 
lipids yellow. „M/Z‟ relates to the detected mass charge ratio (peak height) corrected for 
positive or negative ionisation. Fold change relates to the ratio of the five hour sample 
intensity compared to 0 hour intensity.  
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The combination therapy showed the same changes as were present in each of 

the monotherapies alone. This indicates that both of the drugs are able to exert 

their individual effects, but means that the basis for the antagonism shown is 

still unknown. It is also of value in offering additional independent corroboration 

of changes seen in monotherapy. 

There are also many metabolites with unknown identities. Dehydroteasterone is 

again present and shows the same upward trend as in the nifurtimox toxicity 

experiment. Other metabolites that have been identified here (such as 

mercuriphenyl acetate) are unlikely to be present in trypanosomes and therefore 

probably relate to other metabolites not in the regularly-used databases. These 

unusual metabolites will require further investigation. 

A comparison of selected metabolites from the three toxic dose drug treatments 

was conducted (Table 4-9). Some metabolites show an additive effect when in 

combination (succinate, peptides, deoxyribose, spermidine, sedoheptulose 

phosphate and putrescine) as might be expected in a combination therapy. Some 

of the metabolites show opposite trends in eflornithine and nifurtimox (glucose 

6-phosphate, dehydroteasterone, formyldihydrofolate, acetylornithine and AMP), 

meaning that the combination therapy shows a more moderate change. This is 

also true of the increase in ornithine levels, which is lessened in the combination 

therapy as compared to the eflornithine monotherapy. It is possible that a 

reduced impact on these metabolite levels may be responsible for the lack of 

synergy in the combination therapy.  
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  Ratio 1:5 hours 

Name Eflornithine Nifurtimox NECT 

Peptides (average) 1.22 1.07 1.61 

Lipids (average) 1.17 1.04 0.97 

Succinate 0.77 0.75 0.49 

Uracil 1.08 2.62 1.93 

D-Glucose 6-phosphate 
(average) 

1.25 0.51 0.72 

Deoxyribose 0.76 0.42 0.18 

3-Dehydroteasterone 0.76 11.32 7.26 

10-Formyldihydrofolate 1.59 0.73 0.85 

Acetylputrescine 0.37 0.97 1.61 

Cystathionine 2.75 1.09 1.13 

Methylthioadenosine 2.23 1.11 2.06 

Acetylornithine 3.03 0.93 1.25 

Ornithine 4.21 1.11 2.97 

Spermidine 0.82 0.87 0.45 

AMP 0.82 3.61 3 

Sedoheptulose 1.49 Not found 1.35 

GMP 1.24 1.52 1.25 

Sedoheptulose phosphate 2.14 1.82 6.17 

Putrescine 0.13 0.94 0.11 

Table 4-9. A comparison of metabolite levels in the three drug treatments. The ratio is the 
metabolite intensity at 5 hours compared to the intensity at the 0 hour time point. Blue 
shading indicates a decrease in metabolite levels, red and increase and yellow shading 
indicates that levels are not altered. 
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4.3 Discussion 

At low levels of drug (sub IC50) specific changes to the metabolome can be 

detected as was evidenced with eflornithine. The data reveal only very localised 

changes in the sub IC50 experiments, which is surprising considering the number 

of metabolites that are detected. It is clear with eflornithine that the specific 

changes are not disseminated through the metabolome revealing a degree of 

robustness within the metabolic network. A recovery was also noted between 48 

and 72 hours further demonstrating that trypanosomes are able to react to 

changes within the polyamine pathway and regulate the expression or kinetics of 

the enzymes. Acetylated ornithine and putrescine were detected, with 

acetylornithine correlating particularly well with ornithine levels. This 

metabolite has an unknown function within trypanosomes and is investigated 

further in chapter five. This proof of principle reveals the power of 

metabolomics for predicting the MOA of compounds with a metabolic (enzyme 

inhibition) mode of action. 

Changes to nifurtimox-treated cells (sub IC50 and at toxic doses) did not involve 

alterations to the polyamine pathway metabolites or thiols. It is unfortunate 

that the oxidation state of the metabolites cannot be measured on the platform 

used. Dr. Dong Hyun-Kim at the University of Glasgow is optimising a method to 

detect the oxidation state of all the thiols within the trypanosome. In this 

method reduced thiols are derivatised with bromobimane which, when 

conjugated to a thiol, fluoresces. The fluorescence, when read after samples 

have been separated by mass on a HPLC column, can inform the user as to the 

oxidation state of each thiol within a cell extract (Dr. Dong Hyun-Kim, personal 

communication and Petrotchenko et al. 2011). 

No robust, linear, significant changes were detected with sub IC50 levels of 

nifurtimox. Any significant changes at 48 hours were likely due to the processing 

method as there was a correlation between time points that were processed on 

the same day. This is a clear demonstration of the paramount importance of 

standardising protocols as much as possible and quenching all metabolic samples 

at the same time. 
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The lack of changes to the nifurtimox sub IC50 metabolome could serve to 

demonstrate that nifurtimox does not act metabolically. The reactive open chain 

nitrile, predicted to be the active compound of nifurtimox after processing with 

type I nitroreductases (Hall et al., 2011), could not be detected either alone or 

as an adduct to other metabolites, although the levels of nifurtimox were seen 

to be reduced between 24 and 48 hours. Higher doses of nifurtimox did not 

detect any of the intermediates of nifurtimox processing, but the open chain 

nitrile was detected after one hour. Levels of this active metabolite decreased, 

however, after the initial peak at one hour, suggesting that the processing of 

nifurtimox is somehow compromised or that the active metabolite is used more 

rapidly at later time points. 

4.3.1 Eflornithine MOA 

Eflornithine inhibited ODC relatively quickly with levels of ornithine and 

putrescine demonstrably altered after just five hours in drug. The drug was seen 

to be trypanostatic for 48 hours, before killing the parasites after compromising 

the membrane of the cell. It has been suggested that the irreversible 

transformation to non-dividing forms produces parasites that have a limited life 

span (Fairlamb and Cerami, 1992). Whether cells eventually die through 

apoptosis or through another form of lysis remains unexplained. 

One interesting observation from the eflornithine toxicity experiment is that 

levels of trypanothione are not greatly reduced. The levels fall by approximately 

50 %, similar to the decrease of 66 % seen by Fairlamb et al. (1987). It may be 

that this decrease is sufficient to exert the cytostatic effects of the drug or it 

may be that the reduction in levels of spermidine are more important. 

Spermidine is an essential polyamine known to modulate DNA stability, 

transcription, translation and apoptosis (Igarashi and Kashiwagi, 2010), but 

rescue experiments where spermidine is given exogenously to ODC knock down 

cells were unsuccessful (Xiao et al., 2009).  

Exogenous spermidine increases the life span of yeast, nematodes, flies and 

human immune cells in culture (Eisenberg et al., 2009). The mechanism for this 

death delay is not known, but was suggested that it may involve remodelling of 

chromatin and upregulation of autophagy, increasing resistance to oxidative 
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stress (Eisenberg et al., 2009). In human lymphocytes it has been shown that 60 

% of total spermidine is ionically bound to RNA (Igarashi and Kashiwagi, 2010), 

which demonstrates its importance in these immune cells.  

When spermidine levels in T. cruzi are reduced, lipid peroxidation was shown to 

be increased and the effects could not be rescued by trypanothione.  Spermine 

was observed to be more effective at lipid peroxidation rescue (Hernandez et 

al., 2006), but T. b. brucei are not capable of producing spermine (they do not 

contain a spermine synthase) and levels are very low or undetectable (Bacchi et 

al., 1983;Fairlamb et al., 1987). There is also no evidence seen of an increase in 

lipid peroxidation from our T. b. brucei data. 

Spermidine conjugated to glutathione has been found to increase as cells move 

into stationary phase of the growth cycle, but it is unclear whether this is a 

trigger for cytostasis or not (Shim and Fairlamb, 1988). Glutathionylspermidine 

was not detected in our assays, but if more spermidine is present then it may be 

that more glutathionylspermidine is being produced as the cells become 

stationary either exerting the effects of eflornithine or because of the effects of 

eflornithine. However, Fairlamb et al. found no increase in 

glutathionylspermidine over 48 hours (levels remain at approximately 0.25 

nmol/108 cells) despite the approximate three fold reduction in spermidine 

(Fairlamb et al., 1987). 

Free lipids decreased after 24 hours and the cells became more permeable after 

48 hours. The decrease in lipids at 24 hours may indicate an attempt to maintain 

the integrity of the membrane. 

An increase in sedoheptulose and sedoheptulose phosphate was an interesting 

observation in eflornithine-treated cells, especially as the transketolase required 

to produce the four or five carbon sugars required for the synthesis of seven 

carbon sugars is not present in bloodstream forms of the parasite (Stoffel et al., 

2011). It could be that eflornithine treated cells are differentiating into stumpy 

forms and transketolase is being expressed. Quantitative PCR analysis of 

transketolase expression would be useful to investigate this hypothesis. An 

alternative source of erythrose 4-phosphate is evident, however, as this four 

carbon sugar can be detected within bloodstream form cells and in procyclic 
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cells with the transketolase gene knocked out (Michael Barrett, unpublished). A 

possible alternative route could be through phosphoketolase (Ingram-Smith et 

al., 2005), although this enzyme is usually bacterial and no orthologues could be 

found in the trypanosome gene databases. This phosphoketolase would convert 

fructose 6-phosphate to phosphoacetate and erythrose 4-phosphate. The 

Bringaud group at the Centre National de Recherche Scientifique, Bordeaux, 

have noted a high rate of conversion of glucose to acetate, in support of this 

hypothesis (Frédéric Bringaud, personal communication).  

It is unclear whether the increases in sedoheptulose and sedoheptulose 

phosphate are a specific response to eflornithine treatment or whether they are 

a general reaction in dying cells. An assay with toxic doses of nifurtimox did not 

reveal changes in sedoheptulose or sedoheptulose phosphate. This may mean 

that the two drugs have different mechanisms of killing. 

4.3.2 Nifurtimox toxicity 

Toxic doses of nifurtimox revealed alterations to lipids (both increases and 

decreases), sugars (decreases in sugars and sugar phosphates) and uracil and 

purines (increases). More work will need to be done do ascertain why these 

metabolites‟ levels are altered with nifurtimox treatment. One way to 

investigate whether there has been an effect on glycolysis, the TCA cycle and 

the pentose phosphate pathway could be to provide exogenous ribose, succinate 

or sugar phosphates to the cells to see if the effects of nifurtimox can be 

lessened in an alamar blue assay. The decrease in deoxyribose could also be 

linked to DNA synthesis or breakdown, although there is a negative correlation 

between the DNA bases and deoxyribose. 

4.3.3 NECT 

The nifurtimox-eflornithine combination therapy, which was previously assumed 

to be synergistic, was shown to be mildly antagonistic in vitro although a 

metabolomic analysis revealed that both of the drugs were able to exert their 

effects in the combination therapy and nifurtimox was still reduced to its active 

form. The combination therapy has not, as yet, revealed any antagonism in the 

field, although its use has been limited so far. A synergistic effect in vivo may 
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not be evident in vitro if nifurtimox increases eflornithine entry into the brain 

allowing more of the drug to reach the late-stage trypanosomes. Studies have 

shown that very little eflornithine actually enters the brain on its own (CSF 

levels are recorded at 68.9 µM during the normal monotherapy treatment regime 

(Milord et al., 1993)), or in combination with nifurtimox in mice (10 - 40 nM 

using an artificial plasma perfusion with 1 µM eflornithine (Sanderson et al., 

2008)). It is however possible that nifurtimox could allow more entry of 

eflornithine across the blood-brain barrier in humans.  

Another reason why the drug combination is not synergistic in vitro may be that 

downstream effects of nifurtimox may only be possible in dividing cells so when 

growth arrest is induced by eflornithine, nifurtimox‟s efficiency is reduced. This 

hypothesis was confounded with the antagonism seen with the other 

trypanostatic compounds NA42 and NA134, adenosine analogues developed by 

Boris Rodenko (Rodenko et al., 2007). Metabolomic studies of NECT, however, 

revealed no major differences in nifurtimox reduction or the metabolome when 

compared the drugs tested in isolation. 

The power of using metabolomics to elucidate the mode of action of a drug is 

very clear; assays can be untargeted and can reveal the action of the drug at a 

range of doses and time points. The sensitivity of the assays is, however, a 

double-edged sword. The number of metabolites detected will inevitably lead to 

some metabolites showing significant alterations by chance rather than due to 

biological significance, if the number of replicates is not adequate. Care must 

also be taken to verify the identity of all mass identifications as there are many 

artefacts, isomers and fragments in the datasets, even after very stringent 

processing through the mzMatch and IDEOM softwares. 

The confidence of identification can be increased through the use of heavy label 

tracking. Cells can be cultured in medium containing heavy atoms in the form of 

a starter metabolite and this can be tracked through the cell in a resting state 

and after perturbation with a drug. In the case of eflornithine, heavy nitrogen 

could be tracked through the polyamine pathway from a starting metabolite of 

arginine in the growth medium. Rates of nitrogen incorporation could then be 

measured and compared with and without drug. If a build up of ornithine is toxic 

to the cells and they therefore have to produce acetylornithine to store the 
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ornithine then this incorporation would be observed. This technique has been 

tested before in E. coli  and was shown to be very effective in tracking heavy 

ammonia through the folate pathway after treatment with trimethoprim (Kwon 

et al., 2008).  

As metabolomics technologies and data processing softwares become more 

advanced, the utility of a metabolomics experiment to provide a read out of the 

perturbations in a cell system are likely to become more and more obvious to 

biologists. The relative ease and cost of sample preparation in comparison to 

proteomics, transcriptomics and genomics methods will be an attraction to 

many, but a great deal of skill and care is still required in the analysis of 

metabolic data. 

The advantages of metabolomics in the prediction of a mode of action of a drug 

should be obvious to anyone working in the pharmaceutical industry, but the low 

cost and ease of these assays will allow any lab scientist with access to a high 

resolution mass spectrometer to produce a list of metabolites altered in 

perturbation of a system. 
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 5. Ornithine Biosynthesis in T. b. brucei 

5.1 Introduction 

The unexpected discovery of N-acetylornithine in trypanosomes during 

eflornithine mode of action studies (section 4.2.1.2) prompted the further 

investigation of the polyamine pathway to ascertain whether a new pathway 

may contribute to the production of ornithine. 

Ornithine is a basic amino acid closely related in structure and charge to 

arginine and lysine (Fig 5-1). It is the second metabolite in the polyamine 

pathway where it loses a carboxyl group through the action of ornithine 

decarboxylase to become putrescine, which is in turn converted to spermidine 

and conjugated to two molecules of glutathione to form trypanothione, the 

trypanosome‟s main thiol (Fairlamb and Cerami, 1992). A thiol pool is imperative 

to all cells to react with damaging free radicals and protect them from oxidative 

stress. Blocking the polyamine pathway with eflornithine (an inhibitor of 

ornithine decarboxylase) in trypanosomes results in a cessation of the cell cycle 

and ultimately cell death.  

 

Figure 5-1. Lysine, ornithine and arginine (l-r). These basic amino acids are structurally 
related with a carboxyl group at one end and multiple amines at the other. Ornithine can be 
produced from arginine by the cleavage of a CN2H4 fragment, classically by the enzyme 
arginase. 

 

The polyamine pathway in eukaryotes commences upon the uptake or synthesis 

of arginine. Arginine uptake has been shown to occur in L. donovani and in T. 

cruzi. In L. donovani the rate of uptake has been reported to occur via LdAAP3 

(Km 1.9 µM, Vmax 16.9 pmol/min/106 cells) (Shaked-Mishan et al., 2006) and in T. 
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cruzi via TcAAAP411 (Km 30 µM) (Carrillo et al., 2010). These rates are relatively 

low (c.f. a Vmax of 1, 300 pmol/min/106 cells for high-rate glucose transport 

(Barrett et al., 1998) or 6.4 pmol/min/106 cells for the low-rate transport of 

adenosine (Carter and Fairlamb, 1993), but the rate of arginine uptake and the 

fate of arginine within the African trypanosome has yet to be fully investigated.  

Arginine is classically converted to ornithine by arginase, an enzyme of the urea 

cycle (Fig 5-2).  

 

Figure 5-2.The urea cycle. Enzymes in red are NAGS: N-acetylglutamate synthetase, CPS: 
carbamoyl phosphate synthase, OTC: ornithine transcarbamoylase, AS: argininosuccinate 
synthetase and AL: argininosuccinate lyase. Adapted from Brusilow and Horwich (1995). 
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Vertebrates generally have two arginase enzymes (Arg I and Arg II, whereas 

microorganisms more often encode just one arginase (NCBI protein database). 

The branch at the top of the urea cycle (Fig 5-2) provides carbamoyl phosphate 

to produce citrulline from ornithine. If ornithine transcarbamoylase can operate 

in the reverse direction, then this may be an alternative source of ornithine, 

either from the uptake of citrulline or aspartate or indeed from arginine.  

N-acetylornithine appears to correlate extremely closely with changes in 

ornithine levels after addition of eflornithine (see chapter 4). N-acetylation of 

ornithine as a sample preparation artefact is possible. However, it is clear that 

the acetylation is not an artefact of the ionisation process in these experiments 

for two reasons. One; acetylornithine and ornithine have different retention 

times and therefore any acetylation artefact must occur before entry into the 

column, which is unlikely as all enzymes are inactivated by the solvent. And two; 

when ornithine alone (or labelled ornithine in trypanosome growth medium) is 

added to the column, acetylornithine is not produced meaning a spontaneous 

non-enzymatic conversion is unlikely (data not shown). Furthermore, inspection 

of the T. brucei genome revealed the presence of a putative N-acetylornithine 

deacetylase (ArgE, Tb927.8.1910) predicted by sequence similarity to the 

Leishmania acetylornithine deacetylase-like genes LbrM.07.0280, LinJ.07.0430, 

LmjF.07.0270 and LmxM.07.0270. It is also syntenic with T. b. gambiense and T. 

congolense putative acetylornithine deacetylase genes. A putative aminoacylase 

(Tb927.1.3000) on TriTrypDB may also be able to acetylate ornithine, as has 

been seen in the B. stearothermophilus enzyme (which matches Tb927.1.3000 in 

a BLAST search with a score of p = 5.6e-61) (Sakanyan et al., 1993). 

N-acetylornithine is not a metabolite that has been observed in trypanosomes 

before. Indeed it has been predicted that only bacteria use N-acetylornithine in 

the conversion of glutamate to ornithine (Albrecht and Vogel 1964) (Fig 5-3). 

Although more recent data does predict a role of N-acetylglutamate synthase 

(NAGS) in mammals (a difference being that NAGS is inhibited in microbes and 

plants by arginine but stimulated in mammals (Caldovic et al., 2010)). However, 

trypanosomes are not predicted to have any of the enzymes for the glutamate to 

ornithine pathway (aside from the putative acetylornithine deacetylase) 

annotated in the genome and simple BLAST searches of the bacterial protein 

sequences do not draw any hits (data not shown).  
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Figure 5-3. Ornithine biosynthesis from glutamate in Escherichia coli. The plasma 
membrane is represented by double line, metabolites are in boxes, enzymes are in italics. 
From Albrecht and Vogel (1964). 

 

An enhanced understanding of the polyamine pathway may allow other 

synergistic compounds to be designed relieving the pressure on nifurtimox-

eflornithine combination therapy (which has been shown not to be synergistic in 

vitro, so may not be the best combination to use in the field (see section 4.2.2 

of this thesis)). The use of more combination therapies and more choice of drugs 

in general will reduce the risk of resistance occurring. 

Arginase, the first enzyme in the classical ornithine synthesis pathway, has been 

studied in myriad organisms including Helicobacter pylori (Zhang et al., 2011), 

Staphyococcus saprophyticus (Deutch, 2011), mammals (Cederbaum et al., 2004) 

and fish (Joerink et al., 2006;Srivastava and Ratha, 2010) but its role within 

trypanosomes is unknown. Arginase activity within the host has been shown to 
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be increased in the blood of mice upon trypanosome infection (Duleu et al., 

2004), but not in brain (Amrouni et al., 2011).  

Arginase has also been studied extensively in Leishmania species. It appears to 

be essential in L. mexicana  promastigotes (Riley et al., 2011), but not in L. 

mexicana amastigotes or L. major amastigotes (Gaur et al., 2007;Muleme et al., 

2009). Furthermore, the recombinant protein has been expressed, purified and 

characterised biochemically (da Silva et al., 2002;da Silva et al., 2008). In L. 

mexiana and L. braziliensis, the arginase gene is located on chromosome 34 

while in L. major and L. infantum it is on chromosome 35, which is the 

equivalent genomic position. The gene is missing in the syntenic region of T. 

brucei. Also within the arginase family of proteins are agmatinases and 

formiminoglutamases. There is an agmatinase-like gene predicted on 

chromosome 23 of the Leishmania species, and this does have a syntenic partner 

in T. brucei with the putative arginase at Tb927.8.2020 (also labelled as 

agmatinase in some databases, but as arginase in the T. brucei databases until 

2010). Fomiminoglutamases hydrolyse N-formimidoyl-L-glutamate to L-glutamate 

and formamide and are not well researched in comparison to arginases and 

agmatinases. 

5.2 Heavy isotope labelling 

The non-targeted nature of global metabolomics can often reveal unexpected 

metabolites and pathways that are not predicted to be present from the genome 

of an organism. This is especially true in parasites as many more of the pathways 

are likely to result from salvaged precursors (Fairlamb, 1989). 

The natural isotope pattern of metabolites is useful in the assignment of 

empirical formulae as the isotope ratio is unique to each element (Fig 5-4), but 

it can also be useful to track metabolites through a pathway. When done 

quantitatively and as a function of time this technique is known as fluxomics 

(Niittylae et al., 2009). 
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Figure 5-4. Isotope abundance patterns of guanamine (Miura et al., 2010). Peaks related to 
the parent metabolite (C17H28N10O4) are detected approximately one atomic mass unit from 
the parent ion relating to the 

13
C and the 

15
N

 
isotope. The 

13
C and 

15
N isotope labels can only 

be differentiated in high resolution instruments. 

 

The McConville group in Melbourne, Australia, recently used 13C labelled 

metabolites to interrogate central carbon metabolism in L. mexicana (Saunders 

et al., 2011). They were able to track glucose, aspartate and alanine though 

glycolysis, the pentose phosphate pathway and the tricarboxylic acid cycle using 

NMR and GC-MS (Saunders et al., 2011). These experiments provided a lot of 

information on the use of these pathways and gave indications as to the rates of 

these pathways; experiments that, without metabolomic techniques, would have 

taken a great deal more time and effort. In T. b. brucei, more focussed studies 
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using 13C proline revealed differences in glucose metabolism depending on the 

carbon source used in procyclic forms (Coustou et al., 2008). 

In trypanosomes, Van Weelden et al. (2005) tracked radio-labelled glucose, 

glycerol, proline and threonine using HPLC to analyse catabolic and anabolic 

functions of the TCA cycle after growing procyclic trypanosomes in glucose-rich 

and glucose-deprived media. They found that the TCA cycle does not always 

operate as a cycle and instead distinct branches of the cycle provide separate 

anabolic and catabolic reactions. For example, in the presence or absence of 

glucose, proline is transported into the mitochondrion where it is broken down 

to ketoglutarate and ultimately succinate. The succinate is not further 

catabolised to fumarate, but is instead expelled from the cell (van Weelden et 

al., 2005). Anabolic processes also occur from this “cycle”. In glycerol and 

glucose-deprived medium the cells reduced succinate excretion and instead used 

the succinate to produce malate through fumarate. This malate was then 

thought to be used in the cytosol for production of phosphoenolpyruvate to 

provide energy for the cell. The formation of citrate from oxalacetate and 

pyruvate forms another branch of the cycle. The citrate is then used for the 

formation of acetyl-coA for fatty acid biosynthesis. The oxalacetate must, 

however, be formed through malate dehydrogenase (van Weelden et al., 2005) 

meaning the malate branch of the cycle is not isolated from the other parts of 

the cycle. 

To analyse ornithine biosynthesis,15N may be a more useful isotope label than 13C 

as nitrogen is a less common element than carbon. This means that the natural 

isotope abundance will be lower compared to carbon, making the spectra easier 

to interpret. For tracking ornithine and subsequent polyamine synthesis it is also 

more beneficial to have the amine group labelled for following its fate through 

the polyamine pathway.  

In this chapter I address the question: “how do trypanosomes obtain ornithine?”. 

If ornithine can be produced via the deacetylation of N-acetylornithine then is N-

acetylornithine part of an alternative route for ornithine production in 

trypanosomes? If this is the case, then what would be the role of arginase, a 

gene for which Tb927.8.2020 was annotated in the TriTrypDB as recently as 
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autumn 2010? The biosynthesis of ornithine is investigated using biochemical, 

bioinformatic and metabolomic techniques. 

5.3 Results 

In order to assess the contribution of arginase to the production of ornithine, 

Tb927.8.2020 (annotated as arginase in trypanosome gene databases until 

autumn 2010) was analysed at the sequence and biochemical levels. 

5.3.1 Arginine uptake in bloodstream form T. b. brucei 

In most eukaryotes arginine serves as a precursor to ornithine. We therefore 

measured the rate of uptake of this amino acid into trypanosomes. Arginine 

uptake in T. b. brucei appeared to show a biphasic uptake pattern suggesting 

that there were two transporters responsible for arginine transport; one low 

affinity and one high affinity. The low affinity transporter was analysed over a 

substrate range of 125 to 2,000 µM and the high affinity transporter over a 

substrate range of 1.25 to 80 µM arginine.  The low affinity transporter gave an 

average apparent Km of 1,169 ± 300 µM and a Vmax of 91.6 ± 62.5 

pmol/minute/106 cells. The high affinity transporter gave an apparent Km of 26 ± 

1.9 µM and Vmax of 5.98 ± 2.78 pmol/minute/106 cells (Fig 5-5). Values are mean 

± standard error of the mean. 
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Figure 5-5. The uptake of arginine appears to use two transporters. A, Uptake via the high 
affinity transporter. B, Uptake via the low affinity transporter. Representative of two 
experiments for the low affinity and three experiments for the high affinity transporter. Error 
bars show standard error of the mean. 

 

Both transporters show a higher Km value than the L. donovani transporter (Km 

1.9 µM (Shaked-Mishan et al., 2006)), but the high affinity transporter shows a 
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similar Km to the measured constant in T. cruzi (30 µM (Carrillo et al., 2010)). 

The higher Km would be expected as human blood serum levels range from 63 - 

218 µM. 

5.3.2 The trypanosome “arginase” 

5.3.2.1 Arginase inhibitors do not work in T. b. brucei 

Ornithine is classically created through the hydrolysis of arginine by arginase 

(EC: 3.5.3.1). If trypanosomes used this route, arginase inhibitors would be 

useful against HAT as they would be expected to synergise with eflornithine. 

Arginase inhibitors (2S-amino- 6-boronohexanoic acid, methyl 2S-amino- 6-

boronohexanoic acid and 2S-amino- 6-boronohexanoic acid) were tested for 

activity against bloodstream-form trypanosomes. These compounds, which have 

shown activity against mammalian arginase (Christianson, 2005), did not kill 

trypanosomes in concentrations up to 100 µM (Kate Beckham, unpublished data). 

It may be that the concentrations of these inhibitors used were not high enough 

as another arginase inhibitor, N-hydroxy-nor-L-arginine, is used at 500 µM to 

inhibit macrophage arginase (Duleu et al., 2004). However, purified 

Tb927.8.2020 (from heterologous expression in E.coli) enzyme produced no 

detectable arginase activity through mass spectrometry analysis of trypanosome 

growth medium with and without enzyme (Kate Beckham, unpublished data).  

5.3.2.2 The T. b. brucei  “arginase” gene is divergent from other conserved 

arginases 

The gene in T.b. brucei 927 was labelled as an arginase by sequence homology 

and synteny with a putative leishmania arginase is Tb927.8.2020 in TritrypDB. 

This gene has since been re-named as an agmatinase-like gene in some, but not 

all, of the databases as it is syntenic with an agmatinase-like gene in leishmania. 

The characterised L. mexicana arginase (LmxM.34.1480) (Riley et al., 2011) is 

syntenic with L. major, L. braziliensis and L. infantum arginases, but is missing 

in T. brucei. The T. b. gambiense (Tbg972.8.1660), T. congolense 

(TcIL3000.8.2050) and T. vivax (TvY480.0801520) genes are still annotated as 

putative arginases. 
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Arginase amino acid sequences were compared between a range of species 

(Appendix 8-5) and a phylogenetic tree was produced using a neighbour-joining 

algorithm bootstrapped 1000 times (Fig 5-6). From the sequences included in the 

tree, the closest neighbours of Tb927.8.2020 were the L. mexicana agmatinase-

like protein, which has not had its agmatinase activity confirmed, and the 

bacterium, D. radiodurans, agmatinase (a confirmed agmatinase (Ahn et al., 

2004)), but with the largest branch size in the tree with a distance of 2.227 

(average substitutions per site) between the two genes, they are not close 

relatives.  
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Work by Perozich et al. (1998) analysed the catalytic and structural residues in a 

range of amino acid sequences from the arginase family of proteins, which 

includes agmatinases and formiminoglutamases. Thirty one sequences were 

compared and the highly conserved residues were identified. These residues 

showed very little divergence (over 80 % conserved over the 31 family members) 

between family members and different species (Perozich et al., 1998). The 

arginase alignment was compared to T. b. brucei at the sequence level. Many of 

the residues found to be structurally or functionally important by Perozich et al. 

were found to be missing in T. brucei (Table 5-1).  
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Conserved 
residue 
(human 

arginase 1 
position) 

Residue in 
Tb927.8.20

20 

Residue in 
LmxM.23.0070 
(agmatinase-

like) 

Residue in 
LmxM34.1480 

(arginase) 
Function of residue in protein 

Ser230 Ser222 Ser223 Ser241 Indirect metal binding 

Asp274 Asp265 Asp266 Asp285 Indirect metal binding 

His228 * Phe220 *Phe221 Met239* Indirect metal binding 

Pro14 * Asp18 Pro13 Pro21 Important for structural bends 

Pro28 Pro25 Pro25 Pro35 Important for structural bends 

Pro144 Pro160 Pro161 Pro157 Important for structural bends 

Pro238 Pro230 Pro231 Pro249 Important for structural bends 

Pro280 Pro271 Pro272 Pro291 Important for structural bends 

Gly23 * - *- Gly30 Start of first α-helix 

Gly142 * - *- Gly155 Important for structural bends 

Gly178 Gly177 Gly178 Gly189 Hold metal ligands in place 

Gly245 * Asp237 *Gln238 Gly256 Important for structural bends 

Gly250 Gly242 Gly243 Gly261 Important for structural bends 

His141 * - *- His154 Catalytic function 

Asp100 Asp123 Asp124 Asp113 Structural 

His101 * Gly124 *Gly125 His114 Metal-ligand 

Asp234 * Ser226 Asp227 Asp245 Metal ligand 

Glu256 * Asp248 *Asp249 Glu267 Subunit interaction 

Arg255 Arg247 Arg248 Arg266 Structural 

Ala243 Ala235 Ala236 Ala232 Structural 

Arg180 Arg179 Arg180 Arg191 Hold metal ligands in place 

Thr292 *Gly295 *Ser296 Thr303 Structural 

Table 5-1. Highly conserved residues across the arginase family. Strictly conserved 
residues are shaded (from Perozich et al., (1998)). Equivalent T. b. brucei residues predicted 
from an alignment in CLC workbench. * denotes a change from the conserved human 
residue. Tb927.8.2020 and LmxM.23.0700 show 225/332 Identity, Tb927.8.2020 and human 
arginase I show 58/332. Human arginase and L. mexicana arginase show 204/332 identity. 
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Of the four most highly conserved residues within the arginase family, three 

were altered or missing in Tb927.8.2020. Gly23 in the H. sapiens arginase begins 

the first α-helix in all the arginases compared in Perozich‟s study (1998) and is 

strictly conserved, but is absent in the T. b. brucei sequence.  

His141 is present in all members of the arginase family apart from two 

formiminoglutamases. Mutations to this residue (Cavalli et al., 1994;Vockley et 

al., 1996) have shown that it probably serves a catalytic function. This is further 

supported by its side chain‟s close proximity to the water molecule which 

bridges two manganese atoms (discovered through site-directed mutagenesis). 

This residue is therefore thought to be a proton shuttle during the catalysis of 

arginine (Kanyo et al., 1996; Perozich et al., 1998). This residue is completely 

absent in the T. b. brucei sequence and the L. mexicana agmatinase-like 

sequence, but is replaced with a tryptophan in the D. radiodurans sequence. It is 

therefore unlikely that Tb927.8.2020 would be able to catalyse arginine 

metabolism in the same way as other arginases. 

The side chain of Glu256 falls just 2.9 Ångströms away from the Arg255 of a 

different subunit and is therefore thought to be integral in interactions between 

arginase‟s multiple (rat and human arginases are homotrimers (Perozich et al., 

1998;Di Costanzo et al., 2005)) subunit interactions. The T. b. brucei enzyme 

has substituted Glu256 for Asp248. As aspartate has a shorter side chain than 

glutamate this may mean that the subunits cannot complex together properly, 

but without a crystal structure of Tb927.8.2020, this cannot be tested. 

Arg180 holds his101 and Asp234 in place for metal binding as well as helping to 

maintain the overall structure of the enzyme (Perozich et al., 1998) and is 

conserved in the T. b. brucei enzyme. 

Studies on the substrate specificity of arginase have found that hydrogen 

bonding between Thr135 and Asn130 are both essential to allow arginine binding 

in the active site. Agmatine binds 11 fold less well at this site. Site-directed 

mutagenesis of Asn130 to Asp130 reduces the binding affinity of arginine nine 

fold, while producing no effect on agmatine binding (Carvajal et al., 1999; 

Alarcon et al., 2006) . Tb927.8.2020 and LmxM.23.0070 (the leishmania 

agmatinase-like protein) both lack Thr135. A confirmed agmatinase from D. 
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radiodurans (an extremophilic bacterium (Ahn et al., 2004)) does, however, 

have a threonine in this position. Tb927.8.2020 has a serine at position 130 and 

LmxM.23.0070 has a glutamate, while the D. radiodurans agmatinase is missing 

this residue altogether providing further evidence that the predicted enzymes 

are not able to bind arginine. 

The main difference found between human arginase and the D. radiodurans 

agmatinase appears to be in loops four and five flanking the active site (Shishova 

et al., 2009). Residues from loops four and five in the D. radiodurans agmatinase 

(Asn153,Tthr155, Gly183, Asp187 and Ala190) do not, however, match the loops 

in the leishmania agmatinase-like sequence (-, -, Cys181, Ser183 and Asp186) or 

Tb927.8.2020 (-, -, Gln180, Ser182 and Asp185). 

Tb927.8.2020 has many residues in common with the L. mexicana agmatinase-

like protein sequence, which are different to the conserved arginase family 

residues and from the D. radiodurans agmatinase. This would suggest that 

trypanosome and leishmania genes do not code for arginases or agmatinases. No 

structural or activity research on formiminoglutaminases could be found in the 

literature so confirmed amino acid sequences could not be obtained and aligned 

with Tb927.8.2020. The function of this putative enzyme remains unknown. It 

would be interesting to knock out the gene to see if a function can be ascribed 

to it. The protein could also be heterologously expressed and characterised using 

metabolomic approaches. 

5.3.2.3 T. b. brucei has negligible arginase activity 

The overwhelming sequence data evidence suggests that TB927.8.2020 is not an 

arginase, or indeed a member of the greater arginase family, which includes 

agmatinase and formininoglutaminase. It does not, however, prove that there is 

an absence of arginase activity in bloodstream form T. b. brucei. To quantify 

arginase activity within the bloodstream form trypanosome a commercial 

arginase assay kit was used comparing the amount of urea produced over two 

hours in a cell extract. T. b. brucei extracts were compared to L. mexicana and 

published rat and human extracts. Results are summarised in table 5-2.  
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Species Arginase activity (Units/L) 

T. brucei brucei 0.128 ± 0.206 

L. mexicana 19.704 ± 0.841 

R. norvegicus plasma 

(from literature in assay kit) 
322 

H. sapiens plasma 

(from literature in assay kit) 
0.88 

Table 5-2 Arginase activities of T. b. brucei and L. mexicana. A unit is defined as 1 µmole of 
arginine converted to ornithine and urea per minute at pH 9.5 and 37ºC. N = 3. Results show 
mean ± S.E.M (n = 3).  

 

T. b. brucei has very low arginase activity in bloodstream forms. It has been 

shown that some parasites upregulate arginase activity upon infection of a 

mammalian host in order to diminish arginine pools, decreasing the ability of 

nitric oxide synthase to produce toxic nitric oxide (an alternative product of 

arginine metabolism) from arginine (e.g. Salmonella (Lahiri et al., 2008), L. 

mexicana (Gaur et al., 2007), L. major (Iniesta et al., 2005), Helicobacter pylori 

(Gobert et al., 2001) and hepatitis C (Cao et al., 2009)). Upregulation of 

arginase to increase conversion of host arginine to ornithine has also been 

observed in P. falciparum-infected red blood cells (Olszewski et al., 2009). 

These adaptations protect pathogens from toxic nitric oxide and increase the 

amount of ornithine available to make polyamines, further protecting them from 

oxidative stress. This  does not seem to be the case in trypanosomes, however, 

because inducible nitric oxide synthase knock outs in mice have no effect on T. 

cruzi infections (Cummings and Tarleton, 2004) and arginase activity does not 

even seem to be present in T. b. brucei. Duleu et al.(2004) have shown that 

mice are more susceptible to trypanosome infection if arginase I and II 

expression by macrophages is increased, the increase in expression appearing to 

be induced by the trypanosomes (Duleu et al., 2004). The arginase activity was 

shown to result in a reduction in nitric oxide production, probably through the 

diversion of arginine away from nitric oxide synthase (Duleu et al., 2004), but 

would also result in more ornithine for uptake by the trypanosome. 
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Foetal calf serum used in the lab is heat inactivated at 55 ºC for half an hour, 

but it has been shown that bovine arginase only loses half its activity at 77 ºC 

over 10 minutes (Rossi et al., 1983). The arginase activity detected in 

trypanosomes is very low and there could potentially be arginase activity carried 

over from the foetal calf serum (FCS) that the cells are grown in. Arginase assays 

on heat-inactivated (-0.204 units/L (a negative value is likely due to variation 

around a level of 0, rather than a decrease in urea)) and non heat-inactivated 

FCS (0.469 units/L) (one unit is defined as 1 µmole of arginine converted to 

ornithine and urea per minute at pH 9.5 and 37 ºC) revealed similar low levels of 

activity to the T. b. brucei cells, which are likely to be negligible variance 

around zero activity.  

Another test was used to ascertain whether there is arginase activity in the 

medium or not. Isotopically labelled arginine (four 15N labels) was added to HMI-

9 with 10 % FCS (heat inactivated) and to FCS (heat inactivated) alone and left 

for two hours (Fig 5-7). Cells washed four times in CBSS were also tested for one 

hour. 

 

Figure 5-7. Heavy ornithine production from heavy arginine in medium. FCS: foetal calf 
serum, medium is the trypanosome growth medium (HMI-9 + 10 % FCS), Values show the 
percentage of label (2 labels, M+H: 135.0988, RT: 25.7 minutes) compared to non-labelled 
ornithine (M+H: 133.1047, RT: 25.7 minutes). N = 3. Error bars show the standard error of the 
mean. 
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Labelled ornithine was detected in the washed cell sample and in the HMI-9 + 

FCS sample albeit at very low levels, but not in the FCS alone. There should be 

no enzymatic activity in the HMI-9 so it must be the FCS that is causing the 

conversion, but why there is no conversion in the FCS alone is unclear. It is 

possible that there are cofactors required for arginase activity that are available 

in the medium, but not in the FCS. Manganese is known to be required for 

arginase activity and is an essential component of the arginase activity kit. It is 

also possible that arginase inhibitors present in the serum are diluted out in the 

whole medium, allowing previously blocked activity to recommence. 

Labelled ornithine was detected in the cell samples that had been washed 

thoroughly (three replicates) (Fig 5-7), confirming that cells are able to convert 

arginine to ornithine, although without producing urea, which would have been 

detected in the assay kit. 

5.3.3 The production of Ornithine 

In the absence of arginase, there may be many routes biochemically able to 

produce ornithine. Some species of bacteria are able to convert glutamate to 

ornithine via acetylglutamate and acetylornithine (Fig 5-3) (Albrecht and Vogel, 

1964). The only enzyme of this pathway found in trypanosomes, acetylornithine 

deacetylase (Tb927.8.1910) was successfully knocked out indicating that it is not 

essential in normal bloodstream form in vitro growth conditions (Eduard 

Kerkhoven, unpublished data). The recombinant protein was expressed in E. 

coli, purified and was shown to have significant deacetylase activity on several 

amino acids (Eduard Kerkhoven, Darren Creek and Felicity Lumb, unpublished 

data) but it remains to be seen whether N-acetylornithine, ornithine or 

polyamine levels are altered in the knock out line.  

Heavy isotope distribution patterns were used with several amino acid 

precursors to determine the possible route(s) of ornithine biosynthesis. Data was 

collected in positive and negative ionisation modes, but polyamine relative 

levels were acquired from positive mode data as the amine groups are more 

readily ionised in positive mode. An untargeted approach using the IDEOM 

software was used to search for labelled metabolites (see section 2.2.3.1), 
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followed by a more quantitave analysis of the relative intensities of the 

metabolites using Thermo QuanBrowser. 

5.3.3.1 Glutamate distribution 

To assess whether glutamate might serve as a precursor of ornithine via the 

bacterial-like pathway (Fig 5-3) in T. b. brucei, 15N labelled glutamate was 

added to bloodstream form cells in CBSS buffer and the isotope distribution was 

analysed after two hours. Glutamate was not taken into the cells to any 

appreciable level (data not shown) over the time frame (two hours) and the 

conditions (in CBSS at room temperature) used so no isotope distribution was 

observable. This could indicate a lack of glutamate transport, although 

glutamate transport in T. b. brucei has been measured in the past at a relatively 

low Km of 158 µM and a Vmax of 36 pmol/minute/106 cells (Hasne, 2000) (which is 

between the values of the two arginine transporters measured here).  

The uptake of glutamate in L. mexicana was also seen to be very low in nutrient-

rich conditions with more glutamate produced (from glucose, aspartate and 

alanine) through the TCA cycle than taken up (Saunders et al., 2011). Abrogation 

of the TCA cycle using sodium fluoroacetate, resulting in growth arrest, is 

rescued by exogenous glutamate underlining the importance of glutamate to 

normal cell growth in these parasites (Saunders et al., 2011). It is thought that 

the glutamate transporter is expressed at low levels during periods of nutritional 

abundance to prevent leakage of intracellular glutamate, but that this 

transporter can be upregulated when required. 

Trypanosome intracellular glutamate pools may also be replenished through 

synthesis from other amino acids (and possibly glucose if the Saunders data is 

corroborated) rather than through uptake. 

5.3.3.2 Glutamine distribution 

Glutamate can be produced via the removal of an amine group from glutamine 

by glutamine synthetase (EC 6.3.1.2) or glutaminase (EC 3.5.1.2 or 3.5.1.38). To 

test this theory, 15N-labelled glutamine was applied to bloodstream form cells. 

The isotope distribution is shown in figure 5-8. 
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Figure 5-8. The isotope distribution of glutamine in ornithine biosynthesis. Metabolites are 
shown in boxes, enzymes in italics. Bar charts show the relative intensity (area under the 
curve (divided by 10

7
)) of 

14
N (red) and 

15
N (blue) metabolites. ND: not detected, NL: not 

labelled. Glutamine is detected at M+H: 147.0764 (
14

N) or 148.0734 (
15

N), RT: 15.7 minutes. 
Glutamate is detected at M+H: 148.0604 (

14
N), 149.0575 (

15
N), RT: 14.6 minutes. N-

acetylglutamate semialdehyde: M+H: 190.0710, RT: 5.5 minutes, acetylornithine: M+H: 
175.1077, RT: 14.5 minutes, ornithine: M+H: 133.0972, RT: 22.9 minutes. N = 3. 

 

Glutamate was labelled after two hours at 5 % of the 14N isotope level. As the 15N 

natural isotope abundance is 1 % and no labelled glutamate was detected in the 

control (HMI-9 plus FCS without cells) samples (data not shown), then this 

represents a significant amount of label and shows glutamine is taken into 

trypanosomes and converted to glutamate.  

Human glutaminase is thought to exist in two isoforms, termed the kidney and 

liver glutaminases (Erdmann et al., 2009). In most mammals kidney glutaminase 

is known to be localised to the mitochondrion while liver glutaminase was shown 

to be localised to the nuclei of rat and monkey brains (Olalla et al., 2002). A 

simple search for glutaminase in TriTrypdb reveals no annotated trypanosome 

gene and a BLAST search with rat glutaminase produces no trypanosome hits. A 

BLAST search with Ferrimonas balearica DSM 9799 glutaminase gives a very high 

p-value of 0.993 with a T. b. brucei gene termed “kinetoplastid-specific dual 

specificity phosphatase, putative” (Tb427.10.10670). It is very unlikely that this 

protein would have any glutamine deaminase function.  
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If glutaminase were present and were also located in the mitochondrion of T. b. 

brucei, separating the glutamate from other polyamine pathway enzymes (in L. 

major, trypanothione synthetase is located in the cytosol (Oza et al., 2005) and 

the trypanothione peroxidise system in T. brucei has been shown to be cytosolic 

(Tetaud et al., 2001) although the location of all the enzymes in T. brucei have 

yet to be determined), then further conversion to ornithine may be prevented. 

This would only be true, however, if glutamate were to be retained within an 

organelle, which is unlikely as it in required in many cellular processes including 

protein synthesis. 

Glutamine synthetases are ubiquitous and are found in all domains of life with 

three isoforms distinguishable by length (360, 450 and 730 amino acids) and 

many organisms having multiple isoforms (van Rooyen et al., 2011). A putative 

glutamine amidotransferase is annotated in TriTrypdb at Tb927.7.2100. 

Amidotransferases usually add an NH2 group to an acceptor (rather than 

removing the NH3 from glutamine) but it is possible that they could work in the 

reverse direction and remove an amide if thermodynamically favourable (Keq > 

800 (Benzinger and Hems, 1956)). Tb927.7.2100 appears to be expressed in 

bloodstream and insect stages of the T. brucei life cycle (from TriTrypDB) but 

exhibits no loss of fitness when knocked down (Alsford et al., 2011). 

Other members of the pathway in figure 5-3 including acetylglutamate and N-

acetyl-glutamyl phosphate could not be detected with the mass spectrometry 

platform used. This may be due to low levels in the trypanosome, poor ionisation 

or poor stability, or they may be absent. N-acetyl-glutamate semialdehyde, 

acetylornithine and ornithine were unlabelled after two hours, which is probably 

due to the non-existence of the pathway, although the conditions of the 

experiment (cells in CBSS at room temperature for two hours) might also 

influence this. In all, the fact that the orthologues of the key enzymes are 

absent, as are the key intermediates added to the fact that 15N-glutamine does 

not distribute to ornithine suggests that this pathway is unlikely in T. b. brucei. 

5.3.3.3 Proline distribution 

Another route to produce glutamate commences with the uptake of proline. 

Proline dehydrogenase (Tb927.7.210) converts L-proline to L-1-pyrroline 5-
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carboxylate, which is then oxidised by pyrroline 5-carboxylate dehydrogenase 

(putative at Tb927.10.3210). This also occurs within the mitochondrion (Coustou 

et al., 2008), so if glutamate is not further metabolised into the polyamine 

pathway then this would support the theory that glutamate is isolated from the 

polyamine pathway enzymes. 

The 15N amine distribution from proline was analysed in bloodstream form 

trypanosomes to detect conversions to glutamate and ascertain whether proline-

derived glutamate can be converted further to ornithine (Fig 5-9). Procyclic form 

trypanosomes were also studied for comparative purposes.  

 

Figure 5-9. The isotope distribution of proline in ornithine biosynthesis. Metabolites are 
shown in boxes, enzymes in italics. Bar charts show the relative intensity (area under the 
curve (divided by 10

7
)) of 

14
N (red) and 

15
N (blue) metabolites. ND: not detected, NL: not 

labelled. Proline is detected at M+H: 116.0706 (
14

N) or 117.0676 (
15

N), RT: 16.6 minutes. 
Glutamate is detected at M+H: 148.0604 (

14
N), 149.0575 (

15
N), RT: 17.9 minutes. 

Acetylornithine is at M+H: 175.1077, RT: 17.9 minutes and ornithine is at M+H: 133.0972, RT: 
27.5 minutes. N = 3 

 

In bloodstream form trypanosomes the 15N label from proline was detected in 

glutamate, but at only 3.1 % of the 14N label after two hours. This represents a 

slight increase from 1.9 % at 0 hours and 15N glutamate is not detected in the 

CBSS buffer. The fact that heavy glutamate is only detected at 0.17 % in samples 

where no label was added indicates that the 1.9 % seen may be due to a very 

fast uptake of proline and conversion to glutamate at the “0 hour” time point. 
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The first stage in the processing of the 0 hour time point involves a cooled 

centrifugation step (method 2.2.1) that should stop enzyme activity, but 

samples do not cool immediately in the centrifuge and are still in contact with 

the medium including heavy substrate so some enzymatic activity may still be 

taking place. However, since levels of heavy glutamate after two hours are still 

not very high, a rapid conversion seems unlikely and the high background at the 

0 time point remains unexplained. 

Levels of unlabelled glutamate in the two hour samples are increased. This may 

indicate a back-conversion of glutamate from another metabolite or from 

protein and may explain why the percentage of 15N label is relatively low. The 

increase in glutamate is mirrored in many amino acids (methionine, ornithine, 

arginine, leucine/isoleucine, valine, tyrosine and glutamine) but not all 

(phenylalanine, tryptophan, histidine and lysine do not change and alanine, 

serine, asparagine and threonine show a decreasing trend). If the increase in 

glutamate were due to an increase in protein degradation then you would expect 

all amino acids to display a similar trend, but this is not the case so the increase 

is more likely due to a metabolic change. The decreases in amino acids are 

probably due to a decrease in uptake from medium, as CBSS has no amino acid 

additives. 

Saunders et al. recently showed that the TCA cycle is used to sustain levels of 

glutamate within L. mexicana promastigotes (the insect stages). Glucose, 

aspartate and alanine were all converted to glutamate under normal culture 

conditions and inhibition of mitochondrial aconitase (required to convert citrate 

to ketoglutarate) caused a depletion in glutamate that lead to growth arrest 

that was rescued with exogenous glutamate (Sauders ét al., 2011). It may be 

that when trypanosomes are kept in glutamate-free medium (CBSS) for too long 

then they too need to produce more glutamate through the TCA cycle and 

through glutamine and proline. The uptake of glutamate in bloodstream form 

trypanosomes does not appear to be very efficient (see section 1.3.3.1) so levels 

may have to be maintained through anabolic or catabolic processes within the 

trypanosome. 

The IDEOM software also detected the heavy label in alanine (M+H: 90.0549 

(14N), 91.0519 (15N), RT: 18.0 minutes) at 28 % of the unlabelled after two hours. 
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Alanine could be an artefact caused by the fragmentation of proline or 

glutamate. If this were the case then the retention time of alanine (18.0 

minutes) would match the retention time of proline (16.6 minutes) or glutamate 

(17.9 minutes). As the retention times of glutamate and alanine are very similar, 

it cannot be determined whether the alanine is a fragment of glutamate or if it 

occurs enzymatically, but as the percentage of incorporation is higher than that 

for glutamate it can be assumed that the alanine peaks are not fragments. It has 

been shown that glutamate donates a nitrogen to pyruvate to produce alanine 

through L-alanine aminotransferase (Tb927.1.3950) (Fig 5-10) in procyclic 

trypanosomes, but this mechanism is not thought to exist in bloodstream forms 

of the parasite (Coustou et al., 2008). Derek Nolan‟s lab in Dublin, Ireland found 

that alanine aminotransferase knockouts could not be created in bloodstream-

forms, although high levels of RNA knock down resulted in no growth phenotype 

(Spitznagel et al., 2009), which indicates that alanine aminotransferase is 

important to bloodstream form trypanosomes, but very low levels are sufficient 

to maintain metabolic activity. 

 

Figure 5-10. The amine group from proline can be tracked to glutamate, aspartate and 
alanine in bloodstream cells. 1: Pyrroline dehydrogenase and Pyrroline carboxylate 
dehydrogenase, 2: TCA cycle to pyruvate and alanine aminotransferase, 3: aspartate 
aminotransferase. Percentages show the incorporation of heavy label as a percentage of 
unlabelled amino acid after two hours in heavy proline. 
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Other data from our laboratory shows that 13C-labelled glucose produces high 

levels of alanine in bloodstream form trypanosomes (Jana Anderson, University 

of Glasgow) as did early NMR experiments by Neil Mackenzie (Mackenzie et al., 

1983). This suggests that the endpoint of bloodstream form glycolysis may not 

always be pyruvate as has previously been thought (Opperdoes and Borst, 

1977;Bakker et al., 1997;Bringaud et al., 2006). 

Glutamine was also found to be labelled after two hours of 15N-proline exposure 

in bloodstream form parasites, but at levels of incorporation at only 1.3 % of 

unlabelled, the levels were not significantly higher than the expected natural 

isotope abundance of 1 %. Aspartate (M+H: 134.0447 (14N), 135.0417 (15N), RT: 

18.63 minutes) was heavily labelled at 78 % of unlabelled after two hours. 

Oxaloacetate can be transaminated from any donor amino acid by L-aspartate 

aminotransferase (Tb927.10.3660) to form aspartate. If oxaloacetate is 

generated from glutamate then ketoglutarate would be formed that could feed 

into the TCA cycle producing energy or other metabolites. This may be the case 

in procyclic forms, where aspartate was labelled at 118 % of unlabelled, but in 

bloodstream forms the TCA cycle is not thought to be active (Durieux et al., 

1991). Recent evidence, however, indicates that many of the enzymes of the 

TCA cycle are active, at least in cultured bloodstream forms (Jana Anderson, 

unpublished data), hence it is possible that the cycle is operative in cultured 

forms of the bloodstream-form parasite. Ketoglutarate (not detectable with our 

mass spectrometry method due to its high acidity) is a metabolite that is 

involved in many reactions, but usually as an end product, so the reasons for its 

hypothesised production increase in bloodstream forms is unclear.  

In procyclic forms of the parasite the same experimental setup resulted in 

greater incorporation of the label into glutamate (75 % of unlabelled), which 

could be tracked further into glutathione (17 %) and trypanothione disulphide 

(10 %). Glutamine was also labelled at 4.7 % and alanine had a greater 

incorporation than bloodstream forms at 81 %. Procyclic forms of the parasite 

have been shown to use proline as a carbon source when glucose is not available, 

reflective of the nutrient situation in the tsetse midgut (Coustou et al., 2008). 

The proline is converted to glutamate and further to ketoglutarate (Coustou et 

al., 2008), which enters the tricarboxylic acid cycle. This may provide energy for 

the cell or may be part of a reduced cycle providing, for example, citrate to be 
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converted to acetate for lipid synthesis (van Weelden et al., 2005). The greater 

incorporation of label into glutamate is likely to be due to this different energy 

source requirement in procyclic trypanosomes and the increased glutamate was 

able to disseminate its amine group down the polyamine pathway into 

glutathione and trypanothione.  Unfortunately, incorporation into the 

tricarboxylic acid cycle cannot be tracked as the heavy nitrogen is lost on 

aspartate during the formation ketoglutarate.  

The proline to glutamate pathway is in the mitochondrion of procyclic form 

trypanosomes. From this data it is clear that compartmentalisation of this 

pathway does not hinder further progress to trypanothione in insect stages. 

Glutamate was labelled in both stages of the parasite, but the label was not 

incorporated into ornithine in either stage. This does not disprove the existence 

of a glutamate to ornithine pathway in trypanosomes, but shows that it was not 

active in the conditions used and makes it less likely that acetylornithine is 

produced in this way. 

5.3.3.4 Lysine distribution 

Gaston et al. (2011) showed recently that lysine can be used to produce 

methylornithine through PylB, which may in turn become demethylated to 

become ornithine in the pyrrolysine pathway (Fig 5-11). 15N-lysine was therefore 

assessed for its potential contribution to the polyamine pathway with a 

conceivable route through methylornithine in T. brucei. 
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Figure 5-11. Lysine can be converted to methylornithine via PylB in Methanosarcina spp. 
SAM: S-adenosyl methionine, used in the conversion of lysine to methylornithine. From 
(Gaston et al., 2011).  

 

The heavy label was not found to be passed on to any of the polyamine 

metabolites during the two hour assay, nor was it passed on to any other 

metabolite detected by IDEOM. As methylornithine has the same mass as lysine 

(it is a stereoisomer) and a very similar predicted retention time on the HILIC 

column (a retention factor of 2.5 compared to 2.4 for lysine (from the Sequant 

retention time predictor at www.sequant.com/prediction)), it was not possible 

to ascertain whether heavy methylornithine had been obtained. A retention time 

more specific for the University of Glasgow metabolomic platform could be 

obtained by running a standard for methylornithine through the apparatus, but 

as it is likely that this would be difficult to separate from lysine and ornithine 

was not labelled in this experiment this avenue was not pursued. 

A search for genes annotated with pyrrolysine or PylB in kinetoplastids revealed 

no hits and a BLAST search with the Methanosarcina barkeri PylB protein 

sequence (GenBank accession: AAL40868.1) produced just one hit of a 

probability of 0.73 with a T. vivax hypothetical gene (TvY486_0044100). A BLAST 

search of the T. vivax hypothetical gene on the NCBI database produced no 

significant hits. It appears that this route of ornithine production does not exist 

in T. b. brucei. 
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5.3.3.5 Ornithine distribution 

No labelling of ornithine from glutamate, glutamine, proline or lysine was found. 

If the acetylornithine deacetylase enzyme works reversibly, then another 

possible means to seek the source of ornithine involves adding labelled ornithine 

to cells to allow the pathway involved in its production to be identified. 

Ornithine labelled with two heavy nitrogens was added to cells and was found to 

be taken up into the trypanosomes and converted to acetylornithine (Fig 5-12).  

 

 

Figure 5-12. The isotope distribution of ornithine. Metabolites are shown in boxes, enzymes 
in italics. Bar charts show the relative intensity (area under the curve (divided by 10

6
)) of 

14
N 

(red),
 15

N (green) and 2*
15

N (blue) metabolites. ND: not detected, NL: not labelled. Ornithine 
is detected at M+H: 133.0972, (

14
N), 134.0942 (

15
N), or 135.0912 (2*

15
N), RT: 22.8 minutes. 

Acetylornithine is detected at M+H: 175.1077 (
14

N), 176.1048 (
15

N), or 177.1018 (2*
15

N), RT: 
14.4 minutes. Spermidine is detected at M+H: 146.1652, (

14
N), 147.1622 (

15
N), or 148.1592 

(2*
15

N), RT: 37.7 minutes. Spermidine was not detected with 3*
15

N. Glutathione is detected at 
M+H: 308.0911, RT: 13.4 minutes and trypanothione disulphide at M+H: 722.2960, RT: 23.5 
minutes. N = 3. 

 

The acetylornithine was labelled at 287 % of unlabelled after two hours. This is a 

very significant back-conversion when compared to 0.7 % at 0 hours, which is 

interesting as acetylornithine deacetylase was thought to favour the 

deacetylation direction, with a Keq for amino acids usually in the range of 3 – 33 

(NIST database (Goldberg et al., 2004)), meaning you would need around 3 - 33 



176 

 
fold more ornithine to reverse the direction of the reaction. However, there may 

be other acetylases and acetyltransferases yet to be annotated within the T. b. 

brucei genome and clearly ornithine is being acetylated at a high rate in these 

experimental conditions. The relative levels of ornithine and acetylornithine 

support a Keq of around 100 (ornithine is detected at approximately 100 times 

the intensity of acetylornithine, data not shown) if there is no 

compartmentalisation of the two metabolites.  

Acetylornithine has the same mass as the glycine-valine dipeptide, prolinyl-

glycine and ethyl-glutamine (175.1077 (14N) or 177.1018 (2*15N)), but the 

retention times are different at 14.4 minutes for acetylornithine, a calculated 11 

minutes for the dipeptide and prolinyl-glycine and 12 minutes for ethyl-

glutamine (using RT calculator, developed by Darren Creek, University of 

Glasgow). Further confirmation that the detected mass relates to 

acetylornithine and not its isomers comes from a targeted analysis of the valine, 

proline, glutamine and glycine amino acids separately, which revealed no 15N 

incorporations making it highly unlikely that the amino acid derivatives were 

labelled and confirming that the mass detected was acetylornithine.   

It is interesting that the total levels of both ornithine and acetylornithine 

increase over the two hours in CBSS. It may be that the cells are stressed in this 

buffer solution and are therefore taking in increased ornithine for the production 

of trypanothione, although thiol production using the heavy metabolites is not 

observed in the two hour time frame. 

No metabolite further back along the glutamate to ornithine pathway (Fig 5-3) 

was labelled. This may be because this pathway is not in use or because the 

conditions and length of time used in the assay were not conducive to their 

labelling, but the most likely reason is that this pathway is absent in 

bloodstream form trypanosomes. 

Arginine was detected as its natural isotope, but a heavy isotope (of one, two or 

four labelled nitrogens) was not detected.  

Chapter 3 of this thesis showed that ornithine is transported into bloodstream 

form trypanosomes. Whether this transport would be sufficient to provide all the 
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amines for the polyamine pathway is unclear although a metabolic model of the 

polyamine pathway, developed by Dr. Xu Gu, University of Glasgow, suggests 

that it would be (Dr. X u Gu, personal communication). Ornithine was quantified 

in HMI-9 + FCS by spiking a range of concentrations of 2*15N ornithine into HMI-9 

for mass spectrometry. The absolute concentration of ornithine in HMI-9 + FCS 

could then be ascertained using a calibration curve for the known concentrations 

of the heavy isotope. Ornithine in HMI-9 + FCS was found to be at 77 µM from 

this method (Fig 5-13). Published levels of ornithine in human adult blood are 

54-100 µM (HMDB) and in CSF the levels are around 5 µM (HMDB). 

 

Figure 5-13. Ornithine quantification in medium. Ornithine levels (M+H : 133.0972, RT: 22.2 
minutes) in HMI-9 + 10 % FCS were quantified using a calibration curve of 2*

15
N ornithine 

(M+H : 135.0912,  RT: 22.2 minutes) spiked into HMI-9 + FCS over a range of concentrations. 
Ornithine levels were found to be at 77 µM. 

 

The level of ornithine in blood is similar to the reported arginine concentration 

of 70 µM found within trypanosomes (Smith et al., 2009). It seems possible 

therefore that sufficient ornithine could be transported into the trypanosome 

directly, bypassing the need for an arginase enzyme.  
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Ornithine uptake into bloodstream form trypanosomes was measured with an 

estimated Vmax (the curve was not adequately level for an accurate 

measurement) of 40 pmol/min/106 cells and a Km of approximately 300 µM (Fig 

5-14).  
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Figure 5-14. Ornithine uptake in bloodstream form T. b. brucei. One of two repeats is shown. 
Levels shown are for 10

7
 cells. 

 

The Km of a transporter is usually similar to the concentration of the substrate in 

the natural medium, allowing maximum efficiency of uptake, so this Km is very 

high when compared to the measured level of ornithine in blood and in HMI-9 + 

FCS and may not be very accurate. The measurement of ornithine uptake may be 

complicated if there are several transporters contributing to the total uptake 

rate. This would explain why the uptake curve was not saturated in increasing 

ornithine concentrations. More analysis of ornithine uptake is required. 

A longer-term analysis of ornithine amine incorporation would allow an 

assessment of how much ornithine contributes to the overall production of 

glutathionylspermidine and trypanothione. Ornithine is found in the serum used 

to produce the trypanosome growth medium. An attempt was made to create 

ornithine-free medium using ornithine transcarbamoylase (6 units per 500 ml 

medium) and 700 µM carbamoyl phosphate. Ornithine transcarbamoylase adds a 
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carbamoyl group to ornithine to create citrulline and is thought to greatly favour 

the citrulline direction thermodynamically (Reichard and Reichard, 1958). 2*15N- 

ornithine was then added to the medium with cells and the incorporation was 

analysed over four hours. Interestingly, heavy putrescine could not be detected 

in the cells over the four hour time course, but heavy spermidine (M+H: 

148.1593, RT: 42.0 minutes) increased steadily (Fig 5-15). This suggests that 

putrescine is a transient metabolite in these cells and the flux favours storage of 

spermidine.   

 

Figure 5-15. Spermidine is labelled from ornithine over four hours. Results are shown as a 
percentage of labelling. This study was performed just once so error bars are not available. 

 

The Bacchi et al. and Fairlamb et al. studies measured levels of putrescine and 

spermidine. The Bacchi study found natural levels of putrescine at an average of 

6.95 ± 2.22 nmol per mg protein (average of four ± s.e.m), four times lower than 

the spermidine levels (Bacchi et al., 1983). The Fairlamb study found levels of 

putrescine to be around three times lower than spermidine (Fairlamb et al., 

1987). This supports the theory that putrescine is not stored, but is instead 

rapidly converted to spermidine, although some labelled putrescine would still 

be expected. This assay for longer term incorporation in rich medium will need 

to be repeated, possibly over a longer period. 

Heavy trypanothione (with two heavy nitrogen labels M+H: 724.2901) was 

detected at 1.7 % of the 14N isotope after one hour and 1.8 % after two hours. 
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The heavy label was however, undetectable after four hours in heavy ornithine. 

As the heavy spermidine levels were high after four hours, the lack of heavy 

trypanothione is interesting. The cells were not under stress as they were 

growing in normal growth medium so were perhaps not producing any new 

trypanothione, but why the levels of heavy trypanothione already made should 

decrease is unclear. The trypanothione must have been metabolised, either back 

to spermidine or through some, as yet unidentified, pathway. From the mode of 

action studies with toxic doses of eflornithine in the previous chapter (section 

4.2.1.3) it was seen that trypanothione levels are not depleted significantly as 

the cells are dying whereas spermidine levels are. It was therefore thought that 

decreases in spermidine may be more important in eflornithine trypanocidal 

action than trypanothione. Maintaining high levels of spermidine in these 

experiments may therefore be attained by catalysis of the less important 

trypanothione. Glutathione levels in this assay decrease to approximately 30 % of 

the 0 hour level after four hours, in contradiction to this hypothesis, although 

the glutathione may also be catalysed to produce other metabolites, such as 

cysteine. 

5.3.3.6 Arginine distribution 

Since it seems that arginine can produce ornithine within the trypanosomes, in 

spite of an apparent absence of arginase, a more detailed analysis of the fate of 

arginine was performed. The role of arginine within the trypanosome was 

investigated using arginine labelled with four heavy nitrogen atoms (Fig 5-16). 
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Figure 5-16. The isotope distribution of arginine. Metabolites are shown in boxes, enzymes 
in italics. Bar charts show the relative intensity (area under the curve (divided by 10

6
)) of 

14
N 

(red), 
15

N (purple), 2*
15

N (blue) and 4*
15

N (green) metabolites. ND: not detected, NL: not 
labelled. Arginine is detected at M+H: 175.1190 (

14
N), 176.1160 (

15
N), 177.1131 (2*

15
N), 

179.1073 (4*
15

N), RT: 22.1 minutes. Ornithine is detected at M+H: 133.0972, (
14

N), 134.0942 
(
15

N), or 135.0912 (2*
15

N), RT: 22.8 minutes. Acetylornithine is detected at M+H: 175.1077 
(
14

N), 176.1048 (
15

N), or 177.1018 (2*
15

N), RT: 14.3 minutes. Spermidine: M+H: 146.1654, RT: 
37.9 minutes, glutathione: M+H: 308.0911, RT: 13.4 minutes, trypanothione disulphide: M+H: 
722.2960, RT: 23.6 minutes. N = 3 

 

Arginine was converted to ornithine (10 % of unlabelled) and further into 

acetylornithine (0.7 %) (confirmation was obtained that the potential isomer 

constituents for acetylornithine (glycine and valine) were not labelled (see 

section 5.3.3.5)). As there is no arginase activity within the trypanosome it is 

unclear how this conversion could take place. It is possible that there is an as 

yet unknown mechanism to convert arginine to ornithine without creating urea 

(urea would have been detected in the arginase activity kit).  

A targeted analysis of the urea cycle intermediates was undertaken to ascertain 

whether this cycle could be working in reverse to produce ornithine from 

arginine via argininosuccinate and citrulline. 14N peaks for citrulline were of very 
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low intensities (an average 14, 000 (area under the curve) where one would 

normally consider anything with an intensity below 10, 000 as noise), so labelled 

peaks would not have been expected.  Argininosuccinate could not be detected 

on our mass spectrometry platform, although it would be thought to be detected 

in either positive or negative ionisation mode, so its levels must be below the 

limit of detection or not present at all. The absence of detectable 

argininosuccinate and the lack of label detected in citrulline mean that it cannot 

be determined whether the ornithine produced was a result of the urea cycle 

(Fig 5-2) working in reverse or through some other mechanism. 

The IDEOM software detected labelling in 4*15N CDP ethanolamine (M+H: 

449.0423, RT: 22.2 minutes), 4*15N arginine phosphate (M+H: 257.0586, RT: 21.3 

minutes), 3*15N imidazole ethanamine (M+H: 115.0778, RT: 22.2 minutes) and 

3*15N piperazine carboxamide (M+H: 133.0883, RT: 22.2 minutes) as well as the 

ornithine and acetylornithine already discussed. The retention times of the 

masses labelled as imidazole ethanamine and piperazine carboxamide are similar 

to that of arginine (22.1 minutes) making it likely that they are fragments, 

adducts or other artefacts of the very abundant arginine peak. CDP 

ethanolamine, also has a similar retention time to arginine, but does not appear 

to be a fragment or be a related to arginine through an adduct multimer of a 

fragment. CDP ethanolamine may therefore be labelled with four heavy amide 

groups from arginine, although its synthesis from arginine is not obvious. The 

mass for the labelled CDP-ethanolamine if around 10 times higher than the mass 

of unlabelled CDP-ethanolamine, which is unlikely to occur naturally as arginine 

would have to be catabolised to small amine-containing compounds to 

reconstitute to CDP-ethanolamine. This mass is therefore thought not to be 

labelled CDP-ethanolamine, but is unexplained.  

Arginine phosphate has a retention time that differs by nearly one minute from 

arginine meaning that this is probably a real peak and arginine has been 

phosphorylated in these cells. There are three arginine kinase genes present in 

T. b. brucei (Tb.09.160.4560, Tb.09.160.4570 and Tb.09.160.4590), which are 

syntenic with a proven arginine kinase in T. cruzi (Pereira et al., 2003). 

A longer term assay in HMI-9 showed that ornithine is only produced from heavy 

arginine at very low levels over four hours (Fig 5-17), and heavy acetylornithine 
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was not produced at all. The retention times of ornithine and arginine are very 

similar in this assay (RT: 25.2 minutes for arginine, 25.7 for ornithine) meaning 

that the heavy ornithine seen could also be a fragment of arginine. This suggests 

that ornithine and acetylornithine are only made from the catalysis of arginine 

during stress conditions (e.g. in CBSS, where ornithine is lacking). Citrulline 

levels were much higher in this analysis, and 15N citrulline was detected at 0.3 % 

of light, although this was constant over all time points suggesting that the 

levels detected were merely the natural isotope. 

 

Figure 5-17. Ornithine is produced from heavy arginine over four hours, but only at very low 
levels. N = 1. 

 

Of the enzymes in the urea cycle, only Tb927.8.2020 (proven not to be an 

arginase) and a putative aspartate carbamoyltransferase (Tb427.05.3820) could 

be found with text searches. A BLAST search with this carbamoyltransferase 

protein sequence confirmed that it held a high degree of similarity with 

carbamoyltransferases from many other organisms. The argininosuccinate lyase 

or synthase could not be found in TriTrypDB from BLAST searches with gene 

orthologues from a range of other organisms. Arginine deiminase is predicted to 

be able to convert arginine to citrulline directly releasing ammonia instead of 

the urea released in the production of ornithine (detected in the arginase assay). 

This bypasses the need for argininosuccinate lyase and argininosuccinate 

synthase (Morada et al., 2011). A T. congolense gene in TriTrypDB is an 

orthologue of a group of bacterial glutamine deiminases (81 % identity with a 
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Pseudomonas gene), but a match in T. b. brucei could not be found. A BLAST 

search with a Helicobacter mustelae deiminase produced a tenuous match with 

Tb427tmp.211.1070, a hypothetical protein, but with a p value of just 0.996, it 

is not a good match. 

Apart from in the case of arginine deiminase, citrulline is only known to be made 

from ornithine-containing compounds (acetylornithine can be converted to 

acetylcitrulline and then deacetylated, or succinylornithine can be converted to 

succinylcitrulline and desuccinated). Uptake of citrulline in trypanosomes cannot 

be ruled out, indeed a protein predicted to transport ornithine and citrulline 

exists in mammals termed ORNT1 (Tonazzi and Indiveri, 2011;Camacho et al., 

2006), although BLAST searches in kinetoplasta revealed no orthologues. 
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5.4 Discussion 

Bloodstream form T. b. brucei take in ornithine.  This ornithine uptake would be 

unnecessary if the arginase enzyme were functioning. The lower rate of arginine 

uptake compared to Leishmania, which have relatively high levels of arginase 

activity, suggests that T. brucei require less arginine than other 

trypanosomatids. 

Ornithine was found to be present in the bloodstream form T. brucei growth 

medium at a level of 77 µM. It was thought that there may be arginase activity in 

the foetal calf serum used to prepare the trypanosome growth medium, which 

would produce the ornithine. The arginase assay and use of heavy arginine failed 

to substantiate this claim, as FCS alone was not seen to produce ornithine from 

arginine, although growth medium with 10 % FCS was able to produce a small 

amount. This may be due to cofactors in the growth medium or to the dilution of 

inhibitors in the FCS.  

Levels in human serum are similar to the 77 µM seen in the medium, but in 

cerebrospinal fluid are significantly less at around 5 µM (HMDB). The levels in 

tsetse haemolymph have not been measured. The metabolism of trypanosomes 

in CSF or in haemolymph is not well understood, although it is known that in the 

haemolymph (procyclic forms) trypanosomes rely much more on amino acid 

metabolism than glucose for energy (Coustou et al., 2008). 

In summary of the amino acid label distributions, glutamate and lysine were 

either not taken into the cell or were not converted to any other amine-

containing metabolites. The amine group from glutamine was incorporated into 

glutamate only. Proline was converted to glutamate, alanine, aspartate and 

glutamine in bloodstream-forms and further to glutathione and trypanothione 

disulphide in procyclic-forms. Ornithine was found to only label acetylornithine 

when in CBSS for two hours, but in HMI-9, spermidine and trypanothione 

disulphide were found to be labelled. Arginine labelled ornithine and 

acetylornithine when in CBSS, where ornithine is absent, but not when in 

ornithine-rich HMI-9, and arginine phosphate. Glutamate is not thought to be 

converted to ornithine and it seems likely that ornithine can be both taken up 
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through transport and synthesised from arginine. We can hypothesise from the 

evidence presented here that ornithine uptake is sufficient for polyamine 

synthesis in normal growth conditions but when no ornithine is present it can be 

synthesised from arginine. 

An interesting hypothesis for the reason that T. b. brucei do not encode an 

arginase within their genome is put forward by Canepa et al. (2011). Vertebrates 

use creatine phosphate as the main phosphagen for energy storage. T. brucei, 

Leishmania and T. cruzi parasites do not encode a creatine kinase (TriTrypDB), 

however, and are thought to use arginine phosphate instead as a stored source 

of energy. Arginine kinase would compete directly with arginase for arginine and 

it was suggested that trypanosomes and other arginase-lacking organisms 

evolved other ways to produce ornithine in order to create high levels of 

arginine phosphate for stored energy. T. brucei encodes at least three arginine 

kinases (Tb09.160.4560 (not essential (Alsford et al., 2011)), Tb09.160.4570 and 

Tb09.160.4590) and T. cruzi has one annotated (Tc00.1047053507241.30) and 

several putative arginine kinases, but leishmania do not have any annotated. The 

fact that leishmania possess an arginase, but no arginine kinase and neither of 

the trypanosomes have an arginase, but do have arginine kinases supports this 

arginine competition hypothesis. It should be noted that arginine phosphate has 

been observed in leishmania, although whether this phosphorylation occurs 

through arginine kinase or through an unspecific phosphatase is not verified 

(Malcolm McConville, personal communication). Further evidence for the 

hypothesis comes from studies in our lab that show arginine phosphate 

increasing upon introduction of the oxidative stress inducer, methylene blue 

(Dong-Hyun Kim, unpublished data).  

The absence of arginase in African trypanosomes is clear, but heavy arginine was 

still seen to be converted to ornithine although the way that this conversion 

takes place is unclear. The shortest routes from arginine to ornithine are through 

the urea cycle, requiring the cycle to operate in the opposite direction to 

normal or through arginine deiminase. The other intermediates in the urea cycle 

could not be detected, however, or were detected at very low levels, so proof of 

this theory could not be obtained. A different mass spectrometry platform (such 

as using a pHILIC column for the chromatography, which has been shown to 

provide better separation for succinate (Dr. Gavin Blackburn, University of 
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Strathclyde)) may allow better detection of arginosuccinate and citrulline to 

analyse incorporations from heavy arginine. Although if the problem is one of 

low abundance then simply using more cells may help. 

5.4.1 A role for acetylornithine 

Acetylornithine is produced from ornithine at detectable levels within a two 

hour time span, but the mechanism for this conversion is unclear. It was 

hypothesised that acetylornithine was produced from glutamate as a 

consequence of T. b. brucei’s lack of arginase activity. This hypothesis could not 

be proven in the time scale and conditions used and the pathway is unlikely to 

be present in bloodstream form trypanosomes.  

Ornithine is transported into cells and converted to acetylornithine rapidly, 

reaching a labelled level three times that of unlabelled after two hours in CBSS 

with heavy ornithine. The reasons for this conversion are unclear. In 

Mycobacterium tuberculosis it was shown that acetylornithine deacetylase 

reversibly transfers the acetyl group of acetylornithine to glutamate as part of 

arginine biosynthesis (Sankaranarayanan et al., 2010), but this pathway is 

thought to be confined to bacterial species and metabolites further along the 

pathway from acetylornithine were not observed in T. b. brucei. There may be 

other enzymes capable of the acetylation of ornithine that have yet to be 

verified in the T. brucei genome. 

If arginine to ornithine conversion were not possible, and uptake was the only 

source of ornithine, then it might be advantageous to store some ornithine as 

acetylornithine for use when blood levels are lower. However, arginine was 

observed to produce ornithine when exogenous ornithine was lacking through an 

alternative route to the classical arginase pathway. This route may be the urea 

cycle working in reverse, but could not be determined as levels of citrulline are 

too low for accurate measurement and argininosuccinate cannot be analysed on 

the mass spectrometry platform used. Furthermore, argininosuccinate lyase and 

synthase (or arginine deiminase) gene sequences could not be found within the 

T. brucei genome. The lack of gene sequences homologous to identified genes 

does not rule out their existence, however, especially in the case of arginine 

deiminase, where very few genes have been characterised. 
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The data appears to show that stress, either through eflornithine (section 4.2.1) 

or through nutritional deprivation (e.g. in CBSS) increases the production of 

acetylornithine. It has been shown in human cells that acetylation of polyamines 

occurs more in cancerous cells compared to healthy cells (Kingsnorth and 

Wallace, 1985) and these acetylated polyamines (spermidine and spermine) are 

involved in the generation of reactive oxygen species leading to apoptosis 

(Wallace et al., 2003). The enzymes required for this free radical production 

include an acetyltransferase and a polyamine oxidase. A polyamine oxidase 

could not be found in trypanosomes through BLAST searches with known 

polyamine oxidases, however, so the apoptosis mechanism may not be present in 

trypanosomes. 

5.4.2 The use of heavy labelling to interrogate pathways 

The advantages of using heavy labelling to interrogate pathways are clear. The 

mzMatch and IDEOM softwares were very useful for producing untargeted 

analyses of each experiment. They did not, however, always identify all of the 

metabolites that were labelled in each experiment. This is probably due to the 

rigorous filters built into the softwares that aim only to report those peaks with 

a high reproducibility, which may not always be appropriate for smaller scale 

biological experiments where creating a lot of power by increasing numbers of 

replicates isn‟t always possible or cost effective. A targeted approach was 

therefore also used to look for metabolites that were missed by the automated 

programmes. This is much more time consuming and requires a prior hypothesis 

to determine which metabolites to seek. More labelled metabolites were 

reported using a targeted approach. 

Levels of labelled metabolites were often relatively low in these experiments, 

which is probably reflective of the conditions used. The leishmania 13C labelling 

experiments performed by Saunders et al. (2011) were undertaken in a 

completely defined medium, which included amino acids, vitamins, heme, 

bovine serum albumin (BSA) and fatty acids (bound to the BSA). This more 

complete medium is likely to contain many more cofactors and essential 

nutrients for efficient labelling. Labelling in the leishmania experiments was also 

conducted for two days prior to quenching, allowing an equilibrium of labelled 
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to non-labelled atoms to be reached providing more detailed information on 

which metabolites are taken up from medium and which are produced through 

anabolic and catabolic reactions within the parasite. The van Weelden 

experiments were also conducted in rich medium replacing metabolites under 

test with heavy isotopes (van Weelden et al., 2005). The labelling in the 

experiments described in this chapter was mainly conducted in CBSS buffer 

solution at room temperature. This is sufficient to keep bloodstream form cells 

alive for up to eight hours, but the cells may not be metabolising as they 

normally would and may lack essential precursors and cofactors. The creation of 

drop out medium is quite time-consuming, however, and adaptation to the 

medium may be required by the parasites as was seen in the van Weelden 

experiments (van Weelden et al., 2005). A minimal defined medium for 

bloodstream form trypanosomes has not been created before, but is a priority 

for future metabolomics experiments. The relative ease of conducting 

experiments in CBSS and the lack of necessity of an adaptation stage means that 

parasites can be assayed with their metabolic machinery in a natural state. The 

medium also contains much fewer contaminating metabolites so cells do not 

require a washing step, which can be stressful to the cells and cause reactionary 

metabolism. Both protocols are therefore useful and complementary for 

measuring short term and longer term incorporations. 

One of the major disadvantages of mass spectrometry over nuclear magnetic 

resonance is that it is not quantitative. Here, we have shown that metabolites 

can be quantified using a calibration curve of the heavy isotope (Fig 5-13). A 

replete labelled metabolome could be created by growing a culture of cells on a 

labelled carbon source for several generations until every carbon in the 

metabolome were labelled as has be done previously by Kiefer et al. with M. 

Extorquens (2008). This metabolite mixture, could have each metabolite 

quantified and be used to spike into samples with unknown metabolite levels for 

quantification. This is an aim for the metabolomics community in the near future 

and is being validated in our laboratory by Dr. Dong-Hyun Kim. 
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 6. Final Conclusions 

The main findings of this thesis are: 

 Eflornithine resistance is rapidly selected in the laboratory (chapter 3). 

 In vitro resistance to eflornithine is due to the loss of TbAAT6, an amino 

acid transporter able to transport eflornithine into bloodstream form 

trypanosomes (chapter 3). 

 Metabolomic methods to predict the mode of action of drugs against T. 

brucei work in untargeted analyses (chapter 4). 

 Acetylornithine is produced in large quantities from ornithine and levels 

correlate highly with ornithine when the polyamine pathway is perturbed 

(chapter 4 and 5). 

 Ornithine is not produced from arginine under normal growth conditions, 

but is when cells are in buffer solution lacking nutrients (chapter 5). 

 Tb927.8.2020, previously annotated as arginase, is not an arginase 

(chapter 5). 

 Sedoheptulose, sedoheptulose phosphate and erythrose phosphate are 

present in in vitro grown bloodstream form T. b. brucei, suggesting some 

aldolase or transketolase action or possibly a novel phosphoketolase 

(chapter 4). 

 Nifurtimox-eflornithine combination therapy is not synergistic in vitro as 

has been shown in isobologram and metabolomic analyses (chapter 4). 

Studies into the mode of drug action and resistance in trypanosomes are of 

paramount importance if we are to achieve the aim of bringing this treatable 

disease under control. The drugs in use against HAT are insufficient due to lack 

of efficacy against late stage disease (pentamidine and suramin), unacceptable 

toxicity (melarsoprol) and emerging resistance (eflornithine and melarsoprol). 
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The latest therapy for use against HAT is the drug combination NECT. The uptake 

of this new therapy has been much more rapid than the uptake of eflornithine 

alone was in the 1990s, mainly due to the reduced quantities required and 

therefore the reduction in transportation costs. 

The emergence of resistance to eflornithine is of real concern and may thwart 

the use of the new combination therapy as nifurtimox monotherapy is ineffective 

at the dose used in the combination therapy. Tests for resistance in the field 

would therefore be extremely useful for assigning treatment regimes to 

patients.  

We present here a substantial body of evidence that an amino acid transporter, 

TbAAT6, is lost in eflornithine resistance in vitro and can be responsible for 

resistance when knocked down by RNAi. The natural substrate for this 

transporter is not known, but as the transporter is not essential in bloodstream 

forms of the parasite it is expected that the natural substrate would have 

multiple modes of entry to the cell or is able to be synthesised de novo by the 

parasite. It would be interesting to find out the natural substrate of TbAAT6. It 

is possible that this transporter is not essential in the artificial growth medium 

used in the laboratory, but in a different environment (e.g. in vivo) may have 

increased importance, although the fact that the resistance phenotype was 

retained in mice would contradict this argument. A different resistance 

mechanism may occur in the field. A cell line selected for eflornithine resistance 

was created by Frank Jennings (University of Glasgow) by passage through 

eflornithine treated mice. It will be interesting to test this cell line for the 

absence of TbAAT6.  

In the field the loss of TbAAT6 may have more detrimental effects on the 

parasite than it would in an in vitro environment. The human-infective strains 

may have different nutrient requirements or human blood may have a different 

nutrient availability than mouse blood that prevents the loss of TbAAT6. The 

monomorphic strains in the laboratory are also not passed through the tsetse fly 

vector so if TbAAT6 is essential for growth in the tsetse midgut or survival in the 

tsetse salivary glands, for example, then the resistance phenotype would not be 

passed on in the field. Studies on the essentiality of TbAAT6 in procyclic form 

trypanosomes were inconclusive. A TbAAT6 RNAi line showed no growth 
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phenotype when induced, but levels of gene knockdown were not measured. 

Another RNAi line for TbAAT6 created by David Horn‟s laboratory in London did 

reveal a lethal phenotype in a large scale RNAi assay (Baker et al., 2010), but on 

further, more targeted analyses, the knock down was found not to be essential 

in procyclic forms (David Horn, personal communication). It is of note that 

recent evidence suggests a role for TbAAT6 in proline uptake (Doris Rentsch, 

personal communication), which would be likely to have a negative effect, if 

lost, in procyclic forms of the parasite given their dependence on proline as an 

energy source. Growth curves for the procyclic TbAAT6 RNAi line should 

therefore be attempted in SDM80 medium, which lacks glucose, allowing proline 

to be used as an energy source. 

Attempts to assess the status of TbAAT6 in field isolates of eflornithine 

refractory parasites in blood samples were unsuccessful. The levels of 

parasitaemia in these samples were known to be very low. Methods of 

concentrating parasites for PCR in the field have been developed (Buscher et al. 

2009) as have more sensitive PCR methods (Ahmed et al., 2011) so it will be a 

priority in the field to optimise the protocols for testing the TbAAT6 status. 

Determining the mode of action of new active compounds against HAT is also 

going to be important for licensing, prediction of toxicity and the prediction of 

synergism with other compounds. Here we show a method for determining the 

mode of action of trypanocides using a metabolic approach. Eflornithine was 

used as a proof of principle with sub IC50 doses causing very localised changes to 

the metabolic network and higher doses causing many more changes as the cells 

are dying from the drug. The fact that the analysis was untargeted, but still 

picked out the metabolites that would be most expected to changes with 

eflornithine addition is very promising. 

For our studies of eflornithine toxicity it appears that spermidine levels may be 

more important than trypanothione in the mode of action of the drug. This is 

supported by the fact that spermidine levels are much more greatly affected 

than levels of trypanothione as the cells are dying (Fig 4-6) and that heavy 

trypanothione is converted back to spermidine in cells grown in HMI-9 (Fig 5-15). 

In similar experiments, administering eflornithine in drinking water to 

dehydrated rats, trypanothione levels were found to decrease (66% (Fairlamb et 
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al., 1987) and in vitro studies saw levels reduced to 40 % of untreated. In fact, 

our experiments did see a 40 % reduction in trypanothione disulphide after 48 

hours, but as the cells were losing their integrity at this point and the majority 

of metabolite levels are reduced, the reduction was not seen to be significant. 

As the other three studies only looked at a small range of metabolites, with no 

non-polyamine controls, it cannot be concluded whether their studies also 

suffered from a loss of cell wall integrity. The Phillips study saw a depletion in 

all metabolite levels tested apart from decarboxylated S-adenosylmethionine 

after three days at sub-IC50 levels (Xiao et al., 2009). In our studies, it is not 

thought that the membrane has been damaged at this drug level, but we do 

begin to see a recovery of treated cells at 72 hours (when the Phillips metabolite 

levels are recorded).  

After 24 hours in drug, trypanothione disulphide levels are only reduced to 75 % 

of the normal levels (Fig 4-6), whereas spermidine has suffered a much more 

profound loss to 33 % of normal growth levels. Phillips noted that adding 

exogenous spermidine rescued tryps that had knocked down ODC expression 

(Xiao et al., 2009), but it is unclear whether this spermidine was used to 

produce more trypanothione or not. It would be interesting to attempt an add 

back of trypanothione to treated cells, but whether this thiol would be taken 

into the cell is unknown and it may simply result in the back-conversion to 

spermidine. Trypanothione synthase has been shown to be essential (Wyllie et 

al., 2009) and pharmacological inhibition of trypanothione reductase has been 

shown to be very effective (Olin-Sandoval et al., 2010) but while trypanothione 

is essential to the cell, depleted levels of the thiol may not be the reason that 

trypanosomes die from eflornithine. 

Similar analyses with nifurtimox were more complex. It is unknown how 

nifurtimox kills trypanosomes, but it was thought to induce oxidative stress, 

which might have explained why it was thought to be synergistic with 

eflornithine as trypanosomes with reduced polyamines would be less able to 

detoxify reactive oxygen intermediates (Michael Barrett, personal 

communication). However, our studies have shown that the two drugs are not 

synergistic in vitro and that nifurtimox does not significantly affect any of the 

polyamines or other thiols in sub IC50 or toxicity assays. The apparent lack of 

synergy may be seen if nifurtimox is only effective on dividing cells and 



194 

 
eflornithine treatment causes trypanosomes to enter a static, non-dividing state. 

A type I nitroreductase has been shown to be important in the processing of the 

nifurtimox pro-drug to its active compound (Hall et al., 2011). This enzyme is 

NADH dependent and may only be active in growing cells, however our data 

shows that nifurtimox is still reduced to its active form in the combination 

therapy. Studies with other trypanostatic drugs show a similar antagonism, 

although this antagonism is not as pronounced as with eflornithine. The reasons 

for the reduced action in combination may be more complex than a requirement 

for growing cells in nifurtimox action. 

Acetylornithine and acetylputrescine were seen to highly correlate with 

ornithine and putrescine in the eflornithine mode of action studies. It was 

hypothesised that acetylornithine may be involved in the production of ornithine 

through a bacterial pathway commencing on the uptake of glutamate. This 

pathway could have been required to produce ornithine for polyamine synthesis 

as arginase activity is not seen in T. b. brucei. Glutamate was not seen to be 

transported into trypanosomes in our metabolite tracking assays, however, and 

glutamate produced from glutamine or proline was not traceable to ornithine in 

bloodstream forms. Uptake of ornithine was detected and may be sufficient to 

produce all of the ornithine required for the production of polyamines (with 

acetylornithine as a possible storage metabolite). Arginine to ornithine 

conversion was detected, even though no arginase activity can be detected in 

trypanosomes and the gene previously thought to encode an arginase was shown 

not to have many of the arginase catalytic residues. The mechanism for this 

conversion has not been discovered through metabolite tracking. Possible 

mechanisms include the urea cycle working in reverse to convert arginine to 

ornithine via argininosuccinate and citrulline or through arginine deiminase 

conversion of arginine to citrulline and to ornithine. It would be useful to 

investigate these theories further using heavy citrulline, longer-term assays and 

metabolomic platforms that can assay argininosuccinate levels. 

Arginase is thought to be important in many parasitic organisms to divert 

arginine away from host nitric oxide synthases reducing the amount of toxic 

nitric oxide in the parasite‟s environment. Trypanosomes lacking arginase may 

therefore be vulnerable to nitric oxide when grown inside their vertebrate host. 

A high level of conversion of arginine to arginine phosphate in T. b. brucei, seen 
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in arginine tracking experiments, may therefore be used to divert arginine from 

nitric oxide synthase. 

There are three arginine kinases in trypanosomes, which appear to have been 

acquired through horizontal gene transfer from arthropod vectors. Vertebrates 

lack arginine kinases (Hoffman and Ellington, 2011), possibly because they are in 

direct competition with high rates of arginase activity. Vertebrates therefore use 

creatine phosphate as a phosphagen store, where T. brucei uses arginine 

phosphate. 

In T. cruzi, it was shown that over expression of arginine kinase improved their 

capability to deal with oxidative stress (Pereira et al., 2003) and H2O2 treatment 

results in a time-dependent increase in arginine kinase expression (Miranda et 

al., 2006). A knockout of one arginine kinase in T. b. brucei produced no growth 

phenotype. Attempts are being made in our laboratory to knockout all three 

arginine kinases in T. b. brucei. 

These results together suggest that the trypanosomatids lack an arginase as they 

use arginine phosphate as a phosphagen store to deal with oxidative stress and 

high rates of arginine kinase activity are not compatible with high arginase 

activity. 

The untargeted nature of metabolomics can reveal many interesting leads in a 

large dataset. Acetylornithine was one such metabolite that had an unexpected 

presence in the trypanosome data and was investigated further. Other 

metabolites that were thought not to be present in bloodstream form parasites 

were sedoheptulose and sedoheptulose phosphate, which will require further 

investigations. Malate is also consistently seen in bloodstream form data in this 

laboratory. As the TCA cycle is not thought to be operative in bloodstream 

stages, malate was an unexpected discovery. Studies that looked at the absence 

of a TCA cycle in bloodstream stages used parasites grown in animals rather than 

in vitro (Ryley, 1956; Grant and Fulton, 1957; Ryley, 1962) so it may be that a 

difference in culture conditions (e.g. more amino acids in the medium) induces a 

metabolic shift in these parasites. Alternatively, these metabolites may be 

evidence that there is some mitochondrial energy generation after all. More 

analyses, using heavy labelled glucose are being undertaken in our laboratory. 
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More analysis of nifurtimox‟s mode of action is also warrented. Our analyses 

reveal no changes in polyamine or thiol levels, although significant changes in 

sugar, sugar phosphate and DNA base levels are observed. 

Automatic processing methods failed to highlight metabolites that had small, but 

robust changes across the drug perturbation time courses. Groups of related 

metabolites (such as sedoheptulose and sedoheptulose phosphate) were also not 

highlighted as being significant in the automated processing. A group at INRA-

ENVT, Toulouse, are using metabolic network modelling to map metabolic 

changes, helping to highlight areas of the network that are changed, rather than 

looking at individual metabolite levels (Jourdan et al., 2010), which may help to 

highlight small changes that occur in a group of related metabolites. 

The uses of metabolomic studies are not limited to the description of drug mode 

of action, but can be used to ascribe metabolic phenotypes to any kind of 

cellular perturbation such as gene knockouts to ascribe gene function, effects of 

nutrient starvation and describing resistance mechanisms as was used in the 

comparison of wildtype and eflornithine resistant trypanosomes in this thesis 

(section 3.2.2). Combining these metabolomics approaches with heavy isotope 

labelling of metabolites will provide extra power to the data, aiding in the 

identification of metabolites and as a measure of the rate of flux through 

pathways.  

6.1 Future work 

An assessment of the status of TbAAT6 in eflornithine treatment areas will be 

important to determine whether loss of TbAAT6 confers resistance to 

eflornithine in T. b. gambiense in a field setting.  

The role of acetylornithine in T. brucei has not been determined. As there are 

several potential enzymes capable of the acetylation of ornithine, knocking each 

one out and tracking heavy labelled ornithine through the pathway would be 

time consuming. If acetylornithine has a role in providing ornithine when 

exogenous levels are reduced and before the arginine production commences 

then studying levels as cells adapt to ornithine depleted medium would be 

useful. Depletion of ornithine in medium using ornithine carbamoyl transferase 
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was not successful in this thesis, but may work after some optimisation. 

Otherwise a defined medium could be created. 

The mechanism by which arginine is converted to ornithine is yet to be verified. 

Using higher numbers of cells to analyse whether 15N isotope labels from arginine 

are transferred to citrulline or argininosuccinate will be informative. A more 

detailed search for the enzymes of the urea cycle or the arginine deiminase may 

also reveal the way by which arginine can form ornithine in the absence of 

arginase. 

Further analysis of nifurtimox MOA will be a priority for the future as will be 

further analysis of nifurtimox and eflornithine action in combination. This will be 

imperative to advise on the implementation of the combination therapy in the 

field, which is being taken up at a much faster rate than eflornithine was as a 

monotherapy. 

It would be interesting to determine how the oxidation states of thiols within 

the drug treated trypanosomes are altered during treatment. Methods to 

measure the oxidation state of the thiols are available and are being optimised 

for use in our metabolomic platform (Dong Hyun-Kim, University of Glasgow), 

but methods are complicated and involve the rapid derivitisation of the oxidised 

and reduced thiols to prevent further changes when cells are lysed. These 

methods will be particularly useful in further studies into nifurtimox‟s mode of 

action to ascertain why the drug is antagonistic with eflornithine.  
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 8. Appendix 

8.1  A comparison of wildtype and DFMOR1 metabolite levels 

Putative metabolite Formula m/z Polarity RT (minutes) 
DFMOR1 vs 

WT 
P 

value 
WT 

intensity 
WT sd 

DFMOR1 
insensity 

DFMOR
1 sd 

5'-Methylthioadenosine C11H15N5O3S 298.0971 + 8.1 1.3 0.34 524 162 697 220 

glutathionylspermidine C17H34N6O5S 435.2378 + 32.25 0.8 0.61 7 5 6 2 

L-Ornithine C5H12N2O2 133.0978 + 21.98 0.5 0.47 76 70 39 25 

N-acetylglutamate semialdehyde C7H11NO4 174.0754 + 10.07 1.0 0.98 801 71 805 199 

N-Acetylornithine C7H14N2O3 175.1077 + 14.16 0.9 0.81 123 78 111 29 

Putrescine C4H12N2 89.10727 + 29.82 0.9 0.50 399 32 361 76 

S-Adenosyl-L-methionine C15H22N6O5S 399.1455 + 25.13 1.1 0.90 12 4 12 8 

Spermidine C7H19N3 146.1653 + 41.61 1.1 0.86 1301 330 1361 437 

Trypanothione disulfide C27H47N9O10S2 722.295 + 23.15 1.0 0.97 87 17 88 35 

3-Methyl-2-oxobutanoic acid C5H8O3 115.0401 - 6.07 1.0 0.94 1172 542 1218 817 

4-Aminobutanoate C4H9NO2 102.0561 - 14.03 1.2 0.63 372 128 442 192 

4-Trimethylammoniobutanoate C7H15NO2 146.1176 + 9.21 1.0 0.92 102 24 104 26 

8-Methoxykynurenate C11H9NO4 218.0459 - 10.01 0.9 0.60 21 3 18 7 

Adenine C5H5N5 136.0617 + 11.72 1.0 0.96 2423 1242 2378 1110 

Anthranilate C7H7NO2 138.0554 + 14 0.2 0.01 322 41 70 2 

Benzoate C7H6O2 123.0443 + 6.48 1.3 0.26 11 2 15 4 

Carnitine C7H15NO3 162.1124 + 13.54 1.2 0.58 1111 477 1318 337 

Choline phosphate C5H14NO4P 184.0734 + 19.66 1.4 0.29 1572 344 2270 861 

CMP-N-trimethyl-2- C14H26N4O10P2 473.1199 + 20.1 1.1 0.54 47 12 52 5 
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aminoethylphosphonate 

D-Glucosamine 6-phosphate C6H14NO8P 258.0382 - 15.84 1.7 0.09 23 2 38 9 

Glutathione C10H17N3O6S 308.0908 + 13.19 1.2 0.79 6 3 7 1 

Imidazole-4-acetaldehyde C5H6N2O 111.0552 + 16.5 1.4 0.21 19 4 27 8 

L-Arginine phosphate C6H15N4O5P 255.0852 + 19.77 1.2 0.75 177 93 204 104 

L-Cystathionine C7H14N2O4S 223.0748 + 18.72 1.1 0.40 105 14 118 20 

N4-Acetylaminobutanal C6H11NO2 130.0867 + 11.21 0.9 0.27 82 7 75 7 

N-acetyl-D-glucosamine-6-
phosphate 

C8H16NO9P 324.0462 + 14.99 1.3 0.49 26 7 33 15 

O-Acetylcarnitine C9H17NO4 204.1227 + 11.11 1.2 0.54 160 20 190 69 

Phenylpyruvate C9H8O3 163.0401 - 5.52 0.9 0.42 1527 186 1331 315 

trans-4-Hydroxy-L-proline C5H9NO3 132.066 + 14.23 0.8 0.24 147 31 110 34 

(R)-Lactate C3H6O3 89.02428 - 6.67 1.2 0.53 110 15 127 37 

(S)-Malate C4H6O5 133.0141 - 8.43 1.2 0.67 232 112 277 129 

2-Oxoglutarate C5H6O5 145.0142 - 8.57 1.4 0.61 624 447 885 664 

citrate C6H8O7 191.0197 - 9.4 1.0 0.69 54 3 53 5 

D-glucose-6-phosphate C6H13O9P 283.0183 + 17.54 1.1 0.48 28 7 31 1 

D-Ribose C5H10O5 149.0455 - 9.99 1.2 0.56 113 18 132 48 

D-Xylulose 5-phosphate C5H11O8P 229.0121 - 15.68 0.6 0.56 32 30 20 9 

Fumarate C4H4O4 115.0037 - 8.36 1.1 0.79 56 30 63 31 

Glycerol C3H8O3 93.05456 + 9.67 1.1 0.59 1347 182 1478 329 

L-Arabinono-1-5-lactone C5H8O5 149.0446 + 7.4 0.9 0.83 53 15 50 16 

L-Gulonate C6H12O7 195.0508 - 9.99 1.2 0.64 43 4 51 23 

Succinate C4H6O4 117.0193 - 6.67 1.4 0.35 1376 776 1935 399 

sucrose C12H22O11 341.1085 - 13.69 0.9 0.30 87 10 78 10 

NAD+ C21H27N7O14P2 686.0977 + 16.48 1.1 0.64 10 2 11 3 

(R)-3-Hydroxybutanoate C4H8O3 103.0401 - 7.35 0.8 0.39 97 34 75 16 

Acetoacetate C4H6O3 101.0244 - 8.57 1.4 0.62 391 273 545 411 
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sn-glycero-3-Phosphocholine C8H20NO6P 280.0924 + 17.4 1.2 0.31 8225 1659 10195 2371 

sn-glycero-3-Phosphoethanolamine C5H14NO6P 238.0453 + 15.69 3.0 0.26 184 24 559 420 

sn-Glycerol 3-phosphate C3H9O6P 171.0063 - 15.3 1.1 0.39 16855 2616 18707 2078 

Choline C5H13NO 104.1069 + 14.33 1.5 0.44 21503 9814 31658 17553 

D-glucose C6H12O6 203.0524 + 12.98 1.2 0.61 434 209 517 148 

Folate C19H19N7O6 442.1476 + 9.05 1.1 0.77 218 28 229 53 

Hypoxanthine C5H4N4O 137.0463 + 9.05 1.2 0.38 56986 5515 65670 13145 

Nicotinamide C6H6N2O 123.0556 + 8.03 1.1 0.61 1418 191 1575 426 

Orthophosphate H3O4P 98.9845 + 15.25 1.3 0.71 81 33 101 80 

Pantothenate C9H17NO5 220.118 + 6.64 1.3 0.35 854 70 1146 423 

Phenol Red C19H14O5S 355.0635 + 5.72 1.0 0.88 3344 749 3490 1407 

Pyridoxal C8H9NO3 168.0651 + 11.72 1.2 0.58 551 95 647 244 

Pyruvate C3H4O3 87.0087 - 7.56 1.0 0.90 7542 979 7795 3000 

riboflavin C17H20N4O6 377.1453 + 7.55 1.0 0.99 69 22 70 27 

Thiamine C12H16N4OS 265.1117 + 23.08 1.4 0.63 1859 992 2539 1950 

Thymidine C10H14N2O5 241.0829 - 7.09 0.9 0.82 149 111 127 111 

Glycine C2H5NO2 76.03952 + 15.32 1.2 0.70 1438 1010 1697 180 

L-Alanine C3H7NO2 90.05495 + 14.23 1.2 0.64 70091 8050 85201 48225 

L-Arginine C6H14N4O2 175.119 + 21.27 1.1 0.66 15235 1185 16992 5865 

L-Asparagine C4H8N2O3 133.0612 + 15.62 1.3 0.79 655 783 824 682 

L-Aspartate C4H7NO4 134.0454 + 14.54 1.5 0.35 400 82 586 268 

L-Cysteine C3H7NO2S 122.0273 + 13.77 1.0 0.90 70 14 73 32 

L-Cystine C6H12N2O4S2 241.0309 + 18.83 1.3 0.67 204 41 259 186 

L-Glutamate C5H9NO4 148.0604 + 14.07 1.6 0.47 12005 4459 19255 14178 

L-Glutamine C5H10N2O3 147.0769 + 15.13 1.2 0.32 45949 9107 54379 8961 

L-Histidine C6H9N3O2 156.0769 + 20.4 1.1 0.62 6667 939 7592 2696 

L-isoleucine C6H13NO2 132.1023 + 10.63 1.1 0.16 61077 5032 67409 3399 
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L-Leucine C6H13NO2 132.1023 + 11.01 1.1 0.13 62113 3927 69326 5241 

L-Lysine C6H14N2O2 147.1132 + 21.54 1.2 0.41 15797 871 18169 3981 

L-Methionine C5H11NO2S 150.0577 + 11.51 1.1 0.16 16088 927 17713 1297 

L-Phenylalanine C9H11NO2 166.0855 + 10.12 1.3 0.41 23713 10449 30500 6702 

L-Proline C5H9NO2 116.0707 + 13.77 0.9 0.71 20439 1913 18966 5750 

L-Serine C3H7NO3 106.0503 + 15.13 1.3 0.58 1978 944 2574 1399 

L-Threonine C4H9NO3 120.0655 + 14.44 1.2 0.53 21012 1797 24219 7361 

L-Tryptophan C11H12N2O2 205.0969 + 10.56 1.2 0.22 6121 147 7119 994 

L-Tyrosine C9H11NO3 182.0812 + 12.21 1.0 0.30 26322 918 25564 556 

L-Valine C5H11NO2 118.0865 + 12.4 1.1 0.13 49695 1108 56337 4685 

Nicotinate C6H5NO2 124.0398 + 7.38 1.2 0.74 284 150 338 211 

N-Ribosylnicotinamide C11H14N2O5 255.0971 + 14.44 0.6 0.44 22 9 12 18 

ubiquinone-8 C49H74O4 727.5696 + 7.68 0.9 0.69 13 4 12 1 

3',5'-Cyclic AMP C10H12N5O6P 330.0601 + 15.94 0.8 0.26 28 7 22 5 

Adenosine C10H13N5O4 268.1035 + 10.32 0.7 0.39 84 41 56 26 

AMP C10H14N5O7P 348.0712 + 15.3 1.7 0.62 174 97 301 377 

dTMP C10H15N2O8P 321.0492 - 12.15 1.0 0.96 23 14 24 18 

Guanine C5H5N5O 152.0565 + 11.9 0.7 0.01 494 34 345 36 

IMP C10H13N4O8P 347.0394 - 14.99 1.1 0.76 29 5 34 20 

UMP C9H13N2O9P 323.0279 - 14.61 1.0 0.92 74 26 71 35 

Uracil C4H4N2O2 113.0347 + 7.62 1.2 0.64 389 96 474 262 

Uridine C9H12N2O6 243.0621 - 10.6 1.0 0.86 65 15 63 17 

Xanthine C5H4N4O2 153.0407 + 8.54 1.2 0.64 1741 95 1998 825 
Appendix 8-1. Putative metabolite identification based on accurate mass match in KEGG (tbr) and/or trypanocyc databases. Common fragments, adducts and false 

identifications have been removed from putative identification list based on retention time and reproducibility. Results were obtained using a boiling ethanol extraction 

method. Data analysed by Dr. Darren Creek. 
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8.2  ODC sequences 
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Appendix 8-2. Wildtype and DFMOR1 ornithine decarboxylase gene sequences. Alignments were performed in CLC workbench 
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173.068
743 

11.0
09 

C7H11NO4 6 
N-Acetyl-L-glutamate 5-
semialdehyde 

6 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C01250 

1.
00 

1.
00 

1.
11 

0.9
0 

0.6
6 

1 
0.988
681 

0.486
682 

0.350
343 

0.157
045 

174.052
4488 

7.60
97 

C7H10O5 6 
(2S)-2-Isopropyl-3-
oxosuccinate 

6 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C04236 

1.
00 

0.
32 

0.
58 

1.3
3 

0.4
3 

1 
0.040
502 

0.128
011 

0.415
464 

0.070
865 

174.052
6751 

10.6
08 

C7H10O5 6 Shikimate 8 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00493 

1.
00 

0.
53 

0.
49 

0.8
2 

0.4
0 

1 
0.331
466 

0.178
213 

0.573
091 

0.130
723 

174.100
3737 

16.1
56 

C7H14N2O3 5 N-Acetylornithine 10 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00437 

1.
00 

2.
19 

3.
03 

4.8
4 

2.2
7 

1 
0.050
287 

0.036
044 

0.000
599 

0.353
974 

174.111
7071 

21.0
93 

C6H14N4O2 2 L-Arginine 10 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00062 

1.
00 

1.
00 

0.
93 

0.8
1 

0.4
2 

1 
0.978
096 

0.629
636 

0.139
127 

0.014
21 

175.095
6056 

18.0
68 

C6H13N3O3 3 L-Citrulline 6 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00327 

1.
00 

1.
05 

1.
12 

0.9
2 

0.3
9 

1 
0.611
893 

0.525
29 

0.555
833 

0.318
392 

176.068
0727 

7.51
59 

C7H12O5 7 (2S)-2-Isopropylmalate 8 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C02504 

1.
00 

2.
07 

2.
75 

4.3
6 

9.6
7 

1 
0.389
894 

0.325
621 

0.025
701 

0.007
046 

179.057
9641 

5.95
17 

C9H9NO3 6 Hippurate 8 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C01586 

1.
00 

1.
05 

0.
91 

0.9
1 

0.9
6 

1 
0.846
502 

0.712
376 

0.711
14 

0.958
745 

180.041
9742 

6.06
32 

C9H8O4 11 
trans-2,3-
Dihydroxycinnamate 

6 

Amino 
Acid 
Metabolis
m 

KEGG C12623 

1.
00 

0.
71 

1.
20 

0.8
2 

0.6
8 

1 
0.362
642 

0.677
076 

0.536
76 

0.535
507 
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180.042
3144 

10.6
43 

C9H8O4 11 
2-Hydroxy-3-(4-
hydroxyphenyl)propenoa
te 

8 

Amino 
Acid 
Metabolis
m 

KEGG_HMDB  C05350 

1.
00 

0.
62 

0.
55 

0.5
5 

1.5
4 

1 
0.668
55 

0.610
232 

0.593
708 

0.555
856 

181.073
9738 

12.7
49 

C9H11NO3 11 L-Tyrosine 10 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00082 

1.
00 

1.
07 

1.
07 

1.0
5 

0.4
9 

1 
0.394
449 

0.683
319 

0.668
347 

0.138
856 

187.084
4247 

10.7
08 

C8H13NO4 6 
6-Acetamido-2-
oxohexanoate 

8 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C05548 

1.
00 

0.
93 

1.
10 

2.2
1 

3.3
9 

1 
0.874
843 

0.834
677 

0.157
029 

0.112
062 

188.116
1357 

14.7
79 

C8H16N2O3 7 N6-Acetyl-L-lysine 8 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C02727 

1.
00 

1.
17 

2.
11 

1.9
1 

19.
78 

1 
0.554
791 

0.118
024 

0.042
217 

0.336
475 

188.127
4009 

20.6
3 

C7H16N4O2 5 Homoarginine 5 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C01924 

1.
00 

1.
19 

1.
14 

0.8
4 

0.6
1 

1 
0.323
985 

0.673
497 

0.499
883 

0.075
273 

188.152
4946 

22.2
75 

C9H20N2O2 2 
N6,N6,N6-Trimethyl-L-
lysine 

10 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C03793 

1.
00 

1.
08 

1.
43 

1.2
1 

8.3
4 

1 
0.808
23 

0.265
05 

0.609
872 

0.360
921 

189.082
353 

7.86
88 

C8H15NO2S 1 Prenyl-L-cysteine 7 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C06751 

1.
00 

0.
78 

0.
78 

0.7
7 

0.1
5 

1 
0.491
333 

0.485
315 

0.452
297 

0.062
444 

190.047
5227 

8.12
75 

C7H10O6 4 
[FA hydroxy(7:1/2:0)] 
2,4-dihydroxy-2-
heptenedioc acid 

8 

Amino 
Acid 
Metabolis
m 

KEGG_Lipidmaps  C06201 

1.
00 

1.
27 

0.
87 

1.1
8 

0.4
8 

1 
0.366
933 

0.535
371 

0.456
501 

0.075
715 

192.063
06 

12.7
47 

C7H12O6 6 Quinate 6 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00296 

1.
00 

0.
88 

0.
94 

0.8
2 

0.4
2 

1 
0.780
997 

0.873
083 

0.639
04 

0.218
927 
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193.073
6536 

5.87
15 

C10H11NO3 10 Phenylacetylglycine 10 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C05598 

1.
00 

1.
27 

0.
98 

0.8
4 

1.3
8 

1 
0.320
475 

0.932
9 

0.547
261 

0.563
921 

195.089
4833 

8.51
01 

C10H13NO3 6 L-Tyrosine methyl ester 7 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc  C03404 

1.
00 

0.
96 

1.
38 

1.1
2 

0.8
5 

1 
0.620
961 

0.060
782 

0.424
846 

0.440
221 

197.018
1051 

14.1
93 

C5H11NO3S
2 

1 
CysteineMercaptoethano
l disulfide 

7 

Amino 
Acid 
Metabolis
m 

Medium  0 

1.
00 

1.
07 

1.
13 

1.1
3 

0.6
8 

1 
0.700
256 

0.675
796 

0.566
739 

0.152
318 

200.976
1462 

24.3
78 

C3H7NO5S2 1 S-Sulfo-L-cysteine 8 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C05824 

1.
00 

0.
91 

0.
83 

0.7
1 

0.4
3 

1 
0.827
853 

0.681
248 

0.487
495 

0.231
808 

203.058
1144 

7.61
21 

C11H9NO3 2 Indolepyruvate 6 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc  C00331 

1.
00 

0.
62 

0.
91 

1.0
5 

0.3
0 

1 
0.447
513 

0.854
227 

0.928
806 

0.225
847 

203.079
4057 

12.4
56 

C8H13NO5 2 
N2-Acetyl-L-
aminoadipate 

6 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc  C12986 

1.
00 

1.
12 

1.
57 

0.9
0 

0.5
5 

1 
0.673
39 

0.238
647 

0.710
8 

0.168
527 

204.089
9275 

10.4
1 

C11H12N2O
2 

6 D-Tryptophan 7 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00525 

1.
00 

0.
98 

1.
06 

1.0
2 

0.4
2 

1 
0.864
306 

0.768
238 

0.905
333 

0.052
053 

206.042
3822 

7.69
52 

C7H10O7 5 
2-Hydroxybutane-1,2,4-
tricarboxylate 

6 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C01251 

1.
00 

1.
20 

1.
85 

2.0
9 

0.1
6 

1 
0.866
643 

0.629
404 

0.558
543 

  

216.110
9603 

13.2
8 

C9H16N2O4 3 
gamma-Glutamyl-
gamma-
aminobutyraldehyde 

8 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc  C15700 

1.
00 

1.
61 

1.
33 

1.0
4 

1.1
8 

1 
0.038
96 

0.157
765 

0.860
753 

0.625
814 

http://www.chemspider.com/Search.aspx?q=Phenylacetylglycine
http://www.chemspider.com/Search.aspx?q=Phenylacetylglycine
http://www.chemspider.com/Search.aspx?q=Phenylacetylglycine
http://www.chemspider.com/Search.aspx?q=Phenylacetylglycine
http://www.genome.jp/dbget-bin/www_bget?C05598
http://www.genome.jp/dbget-bin/www_bget?C05598
http://www.genome.jp/dbget-bin/www_bget?C05598
http://www.chemspider.com/Search.aspx?q=L-Tyrosine%20methyl%20ester
http://www.chemspider.com/Search.aspx?q=L-Tyrosine%20methyl%20ester
http://www.chemspider.com/Search.aspx?q=L-Tyrosine%20methyl%20ester
http://www.chemspider.com/Search.aspx?q=L-Tyrosine%20methyl%20ester
http://www.genome.jp/dbget-bin/www_bget?C03404
http://www.genome.jp/dbget-bin/www_bget?C03404
http://www.chemspider.com/Search.aspx?q=CysteineMercaptoethanol%20disulfide
http://www.chemspider.com/Search.aspx?q=CysteineMercaptoethanol%20disulfide
http://www.chemspider.com/Search.aspx?q=CysteineMercaptoethanol%20disulfide
http://www.chemspider.com/Search.aspx?q=CysteineMercaptoethanol%20disulfide
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=S-Sulfo-L-cysteine
http://www.chemspider.com/Search.aspx?q=S-Sulfo-L-cysteine
http://www.chemspider.com/Search.aspx?q=S-Sulfo-L-cysteine
http://www.chemspider.com/Search.aspx?q=S-Sulfo-L-cysteine
http://www.genome.jp/dbget-bin/www_bget?C05824
http://www.genome.jp/dbget-bin/www_bget?C05824
http://www.genome.jp/dbget-bin/www_bget?C05824
http://www.chemspider.com/Search.aspx?q=Indolepyruvate
http://www.chemspider.com/Search.aspx?q=Indolepyruvate
http://www.chemspider.com/Search.aspx?q=Indolepyruvate
http://www.chemspider.com/Search.aspx?q=Indolepyruvate
http://www.genome.jp/dbget-bin/www_bget?C00331
http://www.genome.jp/dbget-bin/www_bget?C00331
http://www.chemspider.com/Search.aspx?q=N2-Acetyl-L-aminoadipate
http://www.chemspider.com/Search.aspx?q=N2-Acetyl-L-aminoadipate
http://www.chemspider.com/Search.aspx?q=N2-Acetyl-L-aminoadipate
http://www.chemspider.com/Search.aspx?q=N2-Acetyl-L-aminoadipate
http://www.genome.jp/dbget-bin/www_bget?C12986
http://www.genome.jp/dbget-bin/www_bget?C12986
http://www.chemspider.com/Search.aspx?q=D-Tryptophan
http://www.chemspider.com/Search.aspx?q=D-Tryptophan
http://www.chemspider.com/Search.aspx?q=D-Tryptophan
http://www.chemspider.com/Search.aspx?q=D-Tryptophan
http://www.genome.jp/dbget-bin/www_bget?C00525
http://www.genome.jp/dbget-bin/www_bget?C00525
http://www.genome.jp/dbget-bin/www_bget?C00525
http://www.chemspider.com/Search.aspx?q=2-Hydroxybutane-1,2,4-tricarboxylate
http://www.chemspider.com/Search.aspx?q=2-Hydroxybutane-1,2,4-tricarboxylate
http://www.chemspider.com/Search.aspx?q=2-Hydroxybutane-1,2,4-tricarboxylate
http://www.chemspider.com/Search.aspx?q=2-Hydroxybutane-1,2,4-tricarboxylate
http://www.genome.jp/dbget-bin/www_bget?C01251
http://www.genome.jp/dbget-bin/www_bget?C01251
http://www.genome.jp/dbget-bin/www_bget?C01251
http://www.chemspider.com/Search.aspx?q=gamma-Glutamyl-gamma-aminobutyraldehyde
http://www.chemspider.com/Search.aspx?q=gamma-Glutamyl-gamma-aminobutyraldehyde
http://www.chemspider.com/Search.aspx?q=gamma-Glutamyl-gamma-aminobutyraldehyde
http://www.chemspider.com/Search.aspx?q=gamma-Glutamyl-gamma-aminobutyraldehyde
http://www.genome.jp/dbget-bin/www_bget?C15700
http://www.genome.jp/dbget-bin/www_bget?C15700


268 

 

218.105
458 

7.95
77 

C12H14N2O
2 

7 N-Acetylserotonin 6 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00978 

1.
00 

1.
06 

1.
57 

1.2
3 

0.4
9 

1 
0.904
648 

0.671
344 

0.601
624 

0.280
945 

219.110
7345 

7.45
68 

C9H17NO5 1 Pantothenate 8 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00864 

1.
00 

1.
00 

0.
75 

2.1
1 

0.3
0 

1 
0.994
799 

0.518
881 

0.134
886 

0.138
208 

222.067
408 

21.2
08 

C7H14N2O4
S 

4 L-Cystathionine 10 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C02291 

1.
00 

1.
27 

2.
75 

1.3
5 

6.7
2 

1 
0.487
528 

0.011
421 

0.364 
0.407
904 

226.106
3409 

21.1
42 

C9H14N4O3 3 Carnosine 6 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00386 

1.
00 

0.
99 

1.
38 

1.0
1 

0.5
0 

1 
0.971
237 

0.191
404 

0.970
322 

0.168
008 

240.023
8094 

21.6
64 

C6H12N2O4
S2 

2 L-Cystine 10 

Amino 
Acid 
Metabolis
m 

medium_KEGG_M
etacyc_HMDB  

C00491 

1.
00 

1.
08 

1.
02 

1.3
3 

0.6
2 

1 
0.800
953 

0.955
404 

0.359
051 

0.439
05 

243.085
432 

14.9
65 

C9H13N3O5 4 
gamma-Glutamyl-beta-
cyanoalanine 

6 

Amino 
Acid 
Metabolis
m 

KEGG C05711 

1.
00 

0.
91 

1.
05 

0.9
5 

0.6
3 

1 
0.612
643 

0.891
162 

0.785
25 

0.114
165 

254.077
895 

22.8
39 

C6H15N4O5
P 

1 L-Arginine phosphate 8 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc  C05945 

1.
00 

0.
94 

0.
63 

0.5
0 

1.1
6 

1 
0.913
484 

0.479
458 

0.343
202 

0.894
794 

259.045
5123 

23.2
53 

C6H14NO8P 8 
D-Glucosamine 6-
phosphate 

10 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00352 

1.
00 

0.
83 

0.
82 

0.7
2 

0.2
5 

1 
0.113
599 

0.130
355 

0.043
784 

0.025
682 

283.045
6131 

23.5
27 

C8H14NO8P 2 
N2-Acetyl-L-aminoadipyl-
delta-phosphate 

8 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc  C12987 

1.
00 

0.
82 

1.
01 

0.8
5 

0.5
7 

1 
0.454
564 

0.969
616 

0.475
604 

0.279
756 

http://www.chemspider.com/Search.aspx?q=N-Acetylserotonin
http://www.chemspider.com/Search.aspx?q=N-Acetylserotonin
http://www.chemspider.com/Search.aspx?q=N-Acetylserotonin
http://www.chemspider.com/Search.aspx?q=N-Acetylserotonin
http://www.genome.jp/dbget-bin/www_bget?C00978
http://www.genome.jp/dbget-bin/www_bget?C00978
http://www.genome.jp/dbget-bin/www_bget?C00978
http://www.chemspider.com/Search.aspx?q=Pantothenate
http://www.chemspider.com/Search.aspx?q=Pantothenate
http://www.chemspider.com/Search.aspx?q=Pantothenate
http://www.chemspider.com/Search.aspx?q=Pantothenate
http://www.genome.jp/dbget-bin/www_bget?C00864
http://www.genome.jp/dbget-bin/www_bget?C00864
http://www.genome.jp/dbget-bin/www_bget?C00864
http://www.chemspider.com/Search.aspx?q=L-Cystathionine
http://www.chemspider.com/Search.aspx?q=L-Cystathionine
http://www.chemspider.com/Search.aspx?q=L-Cystathionine
http://www.chemspider.com/Search.aspx?q=L-Cystathionine
http://www.genome.jp/dbget-bin/www_bget?C02291
http://www.genome.jp/dbget-bin/www_bget?C02291
http://www.genome.jp/dbget-bin/www_bget?C02291
http://www.chemspider.com/Search.aspx?q=Carnosine
http://www.chemspider.com/Search.aspx?q=Carnosine
http://www.chemspider.com/Search.aspx?q=Carnosine
http://www.chemspider.com/Search.aspx?q=Carnosine
http://www.genome.jp/dbget-bin/www_bget?C00386
http://www.genome.jp/dbget-bin/www_bget?C00386
http://www.genome.jp/dbget-bin/www_bget?C00386
http://www.chemspider.com/Search.aspx?q=L-Cystine
http://www.chemspider.com/Search.aspx?q=L-Cystine
http://www.chemspider.com/Search.aspx?q=L-Cystine
http://www.chemspider.com/Search.aspx?q=L-Cystine
http://www.genome.jp/dbget-bin/www_bget?C00491
http://www.genome.jp/dbget-bin/www_bget?C00491
http://www.genome.jp/dbget-bin/www_bget?C00491
http://www.chemspider.com/Search.aspx?q=gamma-Glutamyl-beta-cyanoalanine
http://www.chemspider.com/Search.aspx?q=gamma-Glutamyl-beta-cyanoalanine
http://www.chemspider.com/Search.aspx?q=gamma-Glutamyl-beta-cyanoalanine
http://www.chemspider.com/Search.aspx?q=gamma-Glutamyl-beta-cyanoalanine
http://www.genome.jp/dbget-bin/www_bget?C05711
http://www.genome.jp/dbget-bin/www_bget?C05711
http://www.chemspider.com/Search.aspx?q=L-Arginine%20phosphate
http://www.chemspider.com/Search.aspx?q=L-Arginine%20phosphate
http://www.chemspider.com/Search.aspx?q=L-Arginine%20phosphate
http://www.chemspider.com/Search.aspx?q=L-Arginine%20phosphate
http://www.genome.jp/dbget-bin/www_bget?C05945
http://www.genome.jp/dbget-bin/www_bget?C05945
http://www.chemspider.com/Search.aspx?q=D-Glucosamine%206-phosphate
http://www.chemspider.com/Search.aspx?q=D-Glucosamine%206-phosphate
http://www.chemspider.com/Search.aspx?q=D-Glucosamine%206-phosphate
http://www.chemspider.com/Search.aspx?q=D-Glucosamine%206-phosphate
http://www.genome.jp/dbget-bin/www_bget?C00352
http://www.genome.jp/dbget-bin/www_bget?C00352
http://www.genome.jp/dbget-bin/www_bget?C00352
http://www.chemspider.com/Search.aspx?q=N2-Acetyl-L-aminoadipyl-delta-phosphate
http://www.chemspider.com/Search.aspx?q=N2-Acetyl-L-aminoadipyl-delta-phosphate
http://www.chemspider.com/Search.aspx?q=N2-Acetyl-L-aminoadipyl-delta-phosphate
http://www.chemspider.com/Search.aspx?q=N2-Acetyl-L-aminoadipyl-delta-phosphate
http://www.genome.jp/dbget-bin/www_bget?C12987
http://www.genome.jp/dbget-bin/www_bget?C12987


269 

 

297.089
6303 

7.82
81 

C11H15N5O
3S 

2 5'-Methylthioadenosine 10 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00170 

1.
00 

1.
04 

2.
23 

1.5
8 

1.9
0 

1 
0.904
05 

0.013
431 

0.119
082 

0.259
158 

301.055
9498 

23.5
29 

C8H16NO9P 9 
N-Acetyl-D-glucosamine 
6-phosphate 

6 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00357 

1.
00 

0.
82 

1.
14 

0.9
2 

0.6
2 

1 
0.465
479 

0.593
864 

0.714
984 

0.387
613 

307.083
6059 

15.3
35 

C10H17N3O
6S 

3 Glutathione 8 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00051 

1.
00 

0.
31 

0.
81 

0.3
4 

6.5
2 

1 
0.387
548 

0.769
227 

0.401
926 

0.529
393 

360.644
2388 

22.7
25 

C27H47N9O
10S2 

1 Trypanothione disulfide 10 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc  C03170 

1.
00 

1.
04 

1.
12 

0.7
7 

1.0
5 

1 
0.894
586 

0.693
922 

0.301
565 

0.953
291 

398.137
0824 

22.7
31 

C15H23N6O
5S 

1 S-Adenosyl-L-methionine 8 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00019 

1.
00 

1.
87 

2.
99 

1.4
6 

5.0
7 

1 
0.331
569 

0.223
152 

0.385
124 

0.421
883 

426.087
9557 

20.7
08 

C13H22N4O
8S2 

2 S-glutathionyl-L-cysteine 7 

Amino 
Acid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C05526 

1.
00 

1.
29 

1.
32 

1.1
8 

0.2
9 

1 
0.497
399 

0.590
517 

0.621
429 

0.050
185 

430.066
111 

17.9
6 

C11H20N4O
10P2 

1 
CMP-2-
aminoethylphosphonate 

6 

Amino 
Acid 
Metabolis
m 

KEGG C05673 

1.
00 

0.
97 

1.
09 

0.6
2 

0.3
1 

1 
0.943
886 

0.835
436 

0.311
651 

  

529.086
3367 

15.9
56 

C16H25N3O
13P2 

1 
dTDP-3-amino-2,3,6-
trideoxy-D-threo-
hexopyranos-4-ulose 

5 

Biosynthe
sis of 
Polyketid
es and 
Nonribos
omal 
Peptides  

KEGG C12318 

1.
00 

0.
74 

0.
65 

0.5
0 

0.2
9 

1 
0.243
204 

0.214
394 

0.062
201 

  

564.039
9605 

14.9
2 

C15H22N2O
17P2 

1 UDP-3-ketoglucose 5 
Biosynthe
sis of 
Polyketid

KEGG_Metacyc  C12210 

1.
00 

1.
08 

1.
04 

1.0
5 

0.5
3 

1 
0.416
67 

0.743
61 

0.705
659 

0.290
59 

http://www.chemspider.com/Search.aspx?q=5'-Methylthioadenosine
http://www.chemspider.com/Search.aspx?q=5'-Methylthioadenosine
http://www.chemspider.com/Search.aspx?q=5'-Methylthioadenosine
http://www.chemspider.com/Search.aspx?q=5'-Methylthioadenosine
http://www.genome.jp/dbget-bin/www_bget?C00170
http://www.genome.jp/dbget-bin/www_bget?C00170
http://www.genome.jp/dbget-bin/www_bget?C00170
http://www.chemspider.com/Search.aspx?q=N-Acetyl-D-glucosamine%206-phosphate
http://www.chemspider.com/Search.aspx?q=N-Acetyl-D-glucosamine%206-phosphate
http://www.chemspider.com/Search.aspx?q=N-Acetyl-D-glucosamine%206-phosphate
http://www.chemspider.com/Search.aspx?q=N-Acetyl-D-glucosamine%206-phosphate
http://www.genome.jp/dbget-bin/www_bget?C00357
http://www.genome.jp/dbget-bin/www_bget?C00357
http://www.genome.jp/dbget-bin/www_bget?C00357
http://www.chemspider.com/Search.aspx?q=Glutathione
http://www.chemspider.com/Search.aspx?q=Glutathione
http://www.chemspider.com/Search.aspx?q=Glutathione
http://www.chemspider.com/Search.aspx?q=Glutathione
http://www.genome.jp/dbget-bin/www_bget?C00051
http://www.genome.jp/dbget-bin/www_bget?C00051
http://www.genome.jp/dbget-bin/www_bget?C00051
http://www.chemspider.com/Search.aspx?q=Trypanothione%20disulfide
http://www.chemspider.com/Search.aspx?q=Trypanothione%20disulfide
http://www.chemspider.com/Search.aspx?q=Trypanothione%20disulfide
http://www.chemspider.com/Search.aspx?q=Trypanothione%20disulfide
http://www.genome.jp/dbget-bin/www_bget?C03170
http://www.genome.jp/dbget-bin/www_bget?C03170
http://www.chemspider.com/Search.aspx?q=S-Adenosyl-L-methionine
http://www.chemspider.com/Search.aspx?q=S-Adenosyl-L-methionine
http://www.chemspider.com/Search.aspx?q=S-Adenosyl-L-methionine
http://www.chemspider.com/Search.aspx?q=S-Adenosyl-L-methionine
http://www.genome.jp/dbget-bin/www_bget?C00019
http://www.genome.jp/dbget-bin/www_bget?C00019
http://www.genome.jp/dbget-bin/www_bget?C00019
http://www.chemspider.com/Search.aspx?q=S-glutathionyl-L-cysteine
http://www.chemspider.com/Search.aspx?q=S-glutathionyl-L-cysteine
http://www.chemspider.com/Search.aspx?q=S-glutathionyl-L-cysteine
http://www.chemspider.com/Search.aspx?q=S-glutathionyl-L-cysteine
http://www.genome.jp/dbget-bin/www_bget?C05526
http://www.genome.jp/dbget-bin/www_bget?C05526
http://www.genome.jp/dbget-bin/www_bget?C05526
http://www.chemspider.com/Search.aspx?q=CMP-2-aminoethylphosphonate
http://www.chemspider.com/Search.aspx?q=CMP-2-aminoethylphosphonate
http://www.chemspider.com/Search.aspx?q=CMP-2-aminoethylphosphonate
http://www.chemspider.com/Search.aspx?q=CMP-2-aminoethylphosphonate
http://www.genome.jp/dbget-bin/www_bget?C05673
http://www.genome.jp/dbget-bin/www_bget?C05673
http://www.chemspider.com/Search.aspx?q=dTDP-3-amino-2,3,6-trideoxy-D-threo-hexopyranos-4-ulose
http://www.chemspider.com/Search.aspx?q=dTDP-3-amino-2,3,6-trideoxy-D-threo-hexopyranos-4-ulose
http://www.chemspider.com/Search.aspx?q=dTDP-3-amino-2,3,6-trideoxy-D-threo-hexopyranos-4-ulose
http://www.chemspider.com/Search.aspx?q=dTDP-3-amino-2,3,6-trideoxy-D-threo-hexopyranos-4-ulose
http://www.chemspider.com/Search.aspx?q=dTDP-3-amino-2,3,6-trideoxy-D-threo-hexopyranos-4-ulose
http://www.chemspider.com/Search.aspx?q=dTDP-3-amino-2,3,6-trideoxy-D-threo-hexopyranos-4-ulose
http://www.chemspider.com/Search.aspx?q=dTDP-3-amino-2,3,6-trideoxy-D-threo-hexopyranos-4-ulose
http://www.genome.jp/dbget-bin/www_bget?C12318
http://www.genome.jp/dbget-bin/www_bget?C12318
http://www.chemspider.com/Search.aspx?q=UDP-3-ketoglucose
http://www.chemspider.com/Search.aspx?q=UDP-3-ketoglucose
http://www.chemspider.com/Search.aspx?q=UDP-3-ketoglucose
http://www.genome.jp/dbget-bin/www_bget?C12210
http://www.genome.jp/dbget-bin/www_bget?C12210


270 

 
es and 
Nonribos
omal 
Peptides  

564.040
2487 

15.4
08 

C15H22N2O
17P2 

1 UDP-3-ketoglucose 5 

Biosynthe
sis of 
Polyketid
es and 
Nonribos
omal 
Peptides  

KEGG_Metacyc  C12210 

1.
00 

0.
97 

1.
03 

1.0
9 

0.6
2 

1 
0.875
516 

0.957
549 

0.522
122 

0.327
214 

139.099
6766 

10.8
43 

C8H13NO 2 Tropinone 6 

Biosynthe
sis of 
Secondar
y 
Metabolit
es  

KEGG_Metacyc  C00783 

1.
00 

1.
34 

1.
25 

1.2
0 

0.9
7 

1 
0.047
208 

0.203
686 

0.279
248 

0.670
853 

180.042
0271 

9.12
34 

C9H8O4 11 
3,4-Dihydroxy-trans-
cinnamate 

6 

Biosynthe
sis of 
Secondar
y 
Metabolit
es  

KEGG_Metacyc_H
MDB  

C01197 

1.
00 

0.
96 

0.
95 

0.9
7 

0.4
6 

1 
0.908
333 

0.888
079 

0.940
345 

0.202
371 

240.147
2942 

11.1
46 

C12H20N2O
3 

2 Slaframine 7 

Biosynthe
sis of 
Secondar
y 
Metabolit
es  

KEGG C06185 

1.
00 

1.
10 

1.
25 

0.7
9 

0.6
0 

1 
0.696
642 

0.273
718 

0.238
733 

0.283
451 

575.057
6022 

20.7
81 

C15H24N5O
13P3 

1 
Isopentenyladenosine-5'-
triphosphate 

6 

Biosynthe
sis of 
Secondar
y 
Metabolit
es  

KEGG_Metacyc  C16424 

1.
00 

0.
47 

0.
86 

0.9
5 

0.9
4 

1 
0.152
864 

0.359
58 

0.209
909 

0.745
236 

74.0364
8069 

7.06
82 

C3H6O2 7 Propanoate 8 
Carbohyd
rate 
Metabolis

KEGG_Metacyc_Li
pidmaps_HMDB  

C00163 

1.
00 

1.
18 

0.
91 

1.1
7 

0.6
8 

1 
0.574
293 

0.802
096 

0.838
495 

0.096
531 

http://www.chemspider.com/Search.aspx?q=UDP-3-ketoglucose
http://www.chemspider.com/Search.aspx?q=UDP-3-ketoglucose
http://www.chemspider.com/Search.aspx?q=UDP-3-ketoglucose
http://www.chemspider.com/Search.aspx?q=UDP-3-ketoglucose
http://www.chemspider.com/Search.aspx?q=UDP-3-ketoglucose
http://www.chemspider.com/Search.aspx?q=UDP-3-ketoglucose
http://www.chemspider.com/Search.aspx?q=UDP-3-ketoglucose
http://www.genome.jp/dbget-bin/www_bget?C12210
http://www.genome.jp/dbget-bin/www_bget?C12210
http://www.chemspider.com/Search.aspx?q=Tropinone
http://www.chemspider.com/Search.aspx?q=Tropinone
http://www.chemspider.com/Search.aspx?q=Tropinone
http://www.chemspider.com/Search.aspx?q=Tropinone
http://www.chemspider.com/Search.aspx?q=Tropinone
http://www.chemspider.com/Search.aspx?q=Tropinone
http://www.genome.jp/dbget-bin/www_bget?C00783
http://www.genome.jp/dbget-bin/www_bget?C00783
http://www.chemspider.com/Search.aspx?q=3,4-Dihydroxy-trans-cinnamate
http://www.chemspider.com/Search.aspx?q=3,4-Dihydroxy-trans-cinnamate
http://www.chemspider.com/Search.aspx?q=3,4-Dihydroxy-trans-cinnamate
http://www.chemspider.com/Search.aspx?q=3,4-Dihydroxy-trans-cinnamate
http://www.chemspider.com/Search.aspx?q=3,4-Dihydroxy-trans-cinnamate
http://www.chemspider.com/Search.aspx?q=3,4-Dihydroxy-trans-cinnamate
http://www.genome.jp/dbget-bin/www_bget?C01197
http://www.genome.jp/dbget-bin/www_bget?C01197
http://www.genome.jp/dbget-bin/www_bget?C01197
http://www.chemspider.com/Search.aspx?q=Slaframine
http://www.chemspider.com/Search.aspx?q=Slaframine
http://www.chemspider.com/Search.aspx?q=Slaframine
http://www.chemspider.com/Search.aspx?q=Slaframine
http://www.chemspider.com/Search.aspx?q=Slaframine
http://www.chemspider.com/Search.aspx?q=Slaframine
http://www.genome.jp/dbget-bin/www_bget?C06185
http://www.genome.jp/dbget-bin/www_bget?C06185
http://www.chemspider.com/Search.aspx?q=Isopentenyladenosine-5'-triphosphate
http://www.chemspider.com/Search.aspx?q=Isopentenyladenosine-5'-triphosphate
http://www.chemspider.com/Search.aspx?q=Isopentenyladenosine-5'-triphosphate
http://www.chemspider.com/Search.aspx?q=Isopentenyladenosine-5'-triphosphate
http://www.chemspider.com/Search.aspx?q=Isopentenyladenosine-5'-triphosphate
http://www.chemspider.com/Search.aspx?q=Isopentenyladenosine-5'-triphosphate
http://www.genome.jp/dbget-bin/www_bget?C16424
http://www.genome.jp/dbget-bin/www_bget?C16424
http://www.chemspider.com/Search.aspx?q=Propanoate
http://www.chemspider.com/Search.aspx?q=Propanoate
http://www.chemspider.com/Search.aspx?q=Propanoate
http://www.genome.jp/dbget-bin/www_bget?C00163
http://www.genome.jp/dbget-bin/www_bget?C00163
http://www.genome.jp/dbget-bin/www_bget?C00163


271 

 
m 

88.0161
65 

10.3
13 

C3H4O3 3 3-Oxopropanoate 8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00222 

1.
00 

0.
99 

1.
08 

1.0
6 

1.0
3 

1 
0.965
495 

0.803
114 

0.833
497 

0.935
977 

88.0523
716 

7.95
48 

C4H8O2 7 Butanoic acid 6 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_Li
pidmaps_HMDB  

C00246 

1.
00 

1.
21 

1.
02 

0.7
2 

0.5
2 

1 
0.497
407 

0.933
254 

0.366
743 

0.213
932 

92.0472
785 

10.4
14 

C3H8O3 1 Glycerol 10 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00116 

1.
00 

0.
75 

0.
88 

0.7
3 

0.7
4 

1 
0.680
472 

0.863
503 

0.646
627 

0.719
116 

104.010
9036 

9.37
72 

C3H4O4 3 
2-Hydroxy-3-
oxopropanoate 

6 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C01146 

1.
00 

1.
11 

0.
62 

0.9
1 

0.3
9 

1 
0.870
5 

0.189
446 

0.838
831 

0.087
102 

106.026
6802 

10.3
82 

C3H6O4 2 D-Glycerate 8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00258 

1.
00 

1.
18 

1.
33 

1.2
4 

0.8
9 

1 
0.587
828 

0.450
149 

0.282
779 

0.830
782 

116.010
8466 

10.9
33 

C4H4O4 3 Maleic acid 8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C01384 

1.
00 

0.
63 

0.
81 

0.8
2 

0.1
5 

1 
0.714
458 

0.867
897 

0.861
676 

0.421
888 

118.026
5153 

7.48
39 

C4H6O4 7 Succinate 10 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_Li
pidmaps_HMDB  

C00042 

1.
00 

1.
03 

0.
77 

1.9
7 

0.3
6 

1 
0.959
651 

0.665
279 

0.087
222 

0.197
364 

120.042
0987 

13.8
09 

C4H8O4 9 L-Erythrulose 7 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C02045 

1.
00 

1.
07 

0.
90 

1.0
4 

0.4
8 

1 
0.612
066 

0.556
272 

0.832
325 

0.104
175 

120.042
1255 

9.43
49 

C4H8O4 9 D-Erythrose 9 
Carbohyd
rate 
Metabolis

KEGG_Metacyc_H
MDB  

C01796 

1.
00 

1.
00 

0.
75 

1.4
2 

1.1
0 

1 
0.997
714 

0.476
617 

0.332
107 

0.891
675 

http://www.chemspider.com/Search.aspx?q=3-Oxopropanoate
http://www.chemspider.com/Search.aspx?q=3-Oxopropanoate
http://www.chemspider.com/Search.aspx?q=3-Oxopropanoate
http://www.chemspider.com/Search.aspx?q=3-Oxopropanoate
http://www.genome.jp/dbget-bin/www_bget?C00222
http://www.genome.jp/dbget-bin/www_bget?C00222
http://www.genome.jp/dbget-bin/www_bget?C00222
http://www.chemspider.com/Search.aspx?q=Butanoic%20acid
http://www.chemspider.com/Search.aspx?q=Butanoic%20acid
http://www.chemspider.com/Search.aspx?q=Butanoic%20acid
http://www.chemspider.com/Search.aspx?q=Butanoic%20acid
http://www.genome.jp/dbget-bin/www_bget?C00246
http://www.genome.jp/dbget-bin/www_bget?C00246
http://www.genome.jp/dbget-bin/www_bget?C00246
http://www.chemspider.com/Search.aspx?q=Glycerol
http://www.chemspider.com/Search.aspx?q=Glycerol
http://www.chemspider.com/Search.aspx?q=Glycerol
http://www.chemspider.com/Search.aspx?q=Glycerol
http://www.genome.jp/dbget-bin/www_bget?C00116
http://www.genome.jp/dbget-bin/www_bget?C00116
http://www.genome.jp/dbget-bin/www_bget?C00116
http://www.chemspider.com/Search.aspx?q=2-Hydroxy-3-oxopropanoate
http://www.chemspider.com/Search.aspx?q=2-Hydroxy-3-oxopropanoate
http://www.chemspider.com/Search.aspx?q=2-Hydroxy-3-oxopropanoate
http://www.chemspider.com/Search.aspx?q=2-Hydroxy-3-oxopropanoate
http://www.genome.jp/dbget-bin/www_bget?C01146
http://www.genome.jp/dbget-bin/www_bget?C01146
http://www.genome.jp/dbget-bin/www_bget?C01146
http://www.chemspider.com/Search.aspx?q=D-Glycerate
http://www.chemspider.com/Search.aspx?q=D-Glycerate
http://www.chemspider.com/Search.aspx?q=D-Glycerate
http://www.chemspider.com/Search.aspx?q=D-Glycerate
http://www.genome.jp/dbget-bin/www_bget?C00258
http://www.genome.jp/dbget-bin/www_bget?C00258
http://www.genome.jp/dbget-bin/www_bget?C00258
http://www.chemspider.com/Search.aspx?q=Maleic%20acid
http://www.chemspider.com/Search.aspx?q=Maleic%20acid
http://www.chemspider.com/Search.aspx?q=Maleic%20acid
http://www.chemspider.com/Search.aspx?q=Maleic%20acid
http://www.genome.jp/dbget-bin/www_bget?C01384
http://www.genome.jp/dbget-bin/www_bget?C01384
http://www.genome.jp/dbget-bin/www_bget?C01384
http://www.chemspider.com/Search.aspx?q=Succinate
http://www.chemspider.com/Search.aspx?q=Succinate
http://www.chemspider.com/Search.aspx?q=Succinate
http://www.chemspider.com/Search.aspx?q=Succinate
http://www.genome.jp/dbget-bin/www_bget?C00042
http://www.genome.jp/dbget-bin/www_bget?C00042
http://www.genome.jp/dbget-bin/www_bget?C00042
http://www.chemspider.com/Search.aspx?q=L-Erythrulose
http://www.chemspider.com/Search.aspx?q=L-Erythrulose
http://www.chemspider.com/Search.aspx?q=L-Erythrulose
http://www.chemspider.com/Search.aspx?q=L-Erythrulose
http://www.genome.jp/dbget-bin/www_bget?C02045
http://www.genome.jp/dbget-bin/www_bget?C02045
http://www.genome.jp/dbget-bin/www_bget?C02045
http://www.chemspider.com/Search.aspx?q=D-Erythrose
http://www.chemspider.com/Search.aspx?q=D-Erythrose
http://www.chemspider.com/Search.aspx?q=D-Erythrose
http://www.genome.jp/dbget-bin/www_bget?C01796
http://www.genome.jp/dbget-bin/www_bget?C01796
http://www.genome.jp/dbget-bin/www_bget?C01796


272 

 
m 

120.042
1298 

8.86
75 

C4H8O4 9 D-Threose 5 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc  C06463 

1.
00 

1.
07 

0.
83 

1.2
8 

0.9
4 

1 
0.798
028 

0.589
664 

0.538
208 

0.834
814 

130.026
5697 

9.51
23 

C5H6O4 7 Mesaconate 8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C01732 

1.
00 

0.
76 

0.
58 

0.8
5 

0.6
3 

1 
0.424
308 

0.107
07 

0.535
247 

0.240
829 

132.042
0728 

11.3
53 

C5H8O4 16 2-Acetolactate 8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00900 

1.
00 

1.
08 

1.
15 

0.7
7 

0.6
0 

1 
0.796
353 

0.484
058 

0.127
733 

0.277
135 

134.021
3676 

12.3
88 

C4H6O5 4 (R)-Malate 8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc  C00497 

1.
00 

1.
97 

1.
47 

2.4
9 

0.3
3 

1 
0.498
521 

0.679
002 

0.380
15 

0.371
731 

134.021
4013 

9.90
32 

C4H6O5 4 (S)-Malate 10 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00149 

1.
00 

1.
60 

1.
62 

1.8
8 

0.5
1 

1 
0.419
621 

0.595
632 

0.244
588 

0.461
454 

136.037
0266 

13.6
39 

C4H8O5 3 
[FA trihydroxy(4:0)] 
2,3,4-trihydroxy-butanoic 
acid 

8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_Li
pidmaps_HMDB  

C01620 

1.
00 

1.
05 

0.
90 

1.0
6 

0.3
2 

1 
0.790
082 

0.601
415 

0.805
403 

0.036
713 

146.021
2658 

13.1
15 

C5H6O5 7 Methyloxaloacetate 7 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc  C06030 

1.
00 

0.
98 

0.
82 

0.5
0 

0.1
6 

1 
0.939
88 

0.704
203 

0.178
823 

0.064
036 

148.036
9113 

9.77
92 

C5H8O5 18 
2-Dehydro-3-deoxy-L-
arabinonate 

8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc  C00684 

1.
00 

0.
38 

0.
52 

0.4
9 

2.4
1 

1 
0.096
491 

0.171
806 

0.139
775 

0.551
199 

148.036
9496 

8.09
77 

C5H8O5 18 D-Xylonolactone 8 
Carbohyd
rate 
Metabolis

KEGG_Metacyc_H
MDB  

C02266 

1.
00 

0.
54 

0.
61 

0.7
6 

0.9
1 

1 
0.061
374 

0.140
676 

0.262
961 

0.866
824 

http://www.chemspider.com/Search.aspx?q=D-Threose
http://www.chemspider.com/Search.aspx?q=D-Threose
http://www.chemspider.com/Search.aspx?q=D-Threose
http://www.chemspider.com/Search.aspx?q=D-Threose
http://www.genome.jp/dbget-bin/www_bget?C06463
http://www.genome.jp/dbget-bin/www_bget?C06463
http://www.chemspider.com/Search.aspx?q=Mesaconate
http://www.chemspider.com/Search.aspx?q=Mesaconate
http://www.chemspider.com/Search.aspx?q=Mesaconate
http://www.chemspider.com/Search.aspx?q=Mesaconate
http://www.genome.jp/dbget-bin/www_bget?C01732
http://www.genome.jp/dbget-bin/www_bget?C01732
http://www.genome.jp/dbget-bin/www_bget?C01732
http://www.chemspider.com/Search.aspx?q=2-Acetolactate
http://www.chemspider.com/Search.aspx?q=2-Acetolactate
http://www.chemspider.com/Search.aspx?q=2-Acetolactate
http://www.chemspider.com/Search.aspx?q=2-Acetolactate
http://www.genome.jp/dbget-bin/www_bget?C00900
http://www.genome.jp/dbget-bin/www_bget?C00900
http://www.genome.jp/dbget-bin/www_bget?C00900
http://www.chemspider.com/Search.aspx?q=(R)-Malate
http://www.chemspider.com/Search.aspx?q=(R)-Malate
http://www.chemspider.com/Search.aspx?q=(R)-Malate
http://www.chemspider.com/Search.aspx?q=(R)-Malate
http://www.genome.jp/dbget-bin/www_bget?C00497
http://www.genome.jp/dbget-bin/www_bget?C00497
http://www.chemspider.com/Search.aspx?q=(S)-Malate
http://www.chemspider.com/Search.aspx?q=(S)-Malate
http://www.chemspider.com/Search.aspx?q=(S)-Malate
http://www.chemspider.com/Search.aspx?q=(S)-Malate
http://www.genome.jp/dbget-bin/www_bget?C00149
http://www.genome.jp/dbget-bin/www_bget?C00149
http://www.genome.jp/dbget-bin/www_bget?C00149
http://www.chemspider.com/Search.aspx?q=%202,3,4-trihydroxy-butanoic%20acid
http://www.chemspider.com/Search.aspx?q=%202,3,4-trihydroxy-butanoic%20acid
http://www.chemspider.com/Search.aspx?q=%202,3,4-trihydroxy-butanoic%20acid
http://www.chemspider.com/Search.aspx?q=%202,3,4-trihydroxy-butanoic%20acid
http://www.genome.jp/dbget-bin/www_bget?C01620
http://www.genome.jp/dbget-bin/www_bget?C01620
http://www.genome.jp/dbget-bin/www_bget?C01620
http://www.chemspider.com/Search.aspx?q=Methyloxaloacetate
http://www.chemspider.com/Search.aspx?q=Methyloxaloacetate
http://www.chemspider.com/Search.aspx?q=Methyloxaloacetate
http://www.chemspider.com/Search.aspx?q=Methyloxaloacetate
http://www.genome.jp/dbget-bin/www_bget?C06030
http://www.genome.jp/dbget-bin/www_bget?C06030
http://www.chemspider.com/Search.aspx?q=2-Dehydro-3-deoxy-L-arabinonate
http://www.chemspider.com/Search.aspx?q=2-Dehydro-3-deoxy-L-arabinonate
http://www.chemspider.com/Search.aspx?q=2-Dehydro-3-deoxy-L-arabinonate
http://www.chemspider.com/Search.aspx?q=2-Dehydro-3-deoxy-L-arabinonate
http://www.genome.jp/dbget-bin/www_bget?C00684
http://www.genome.jp/dbget-bin/www_bget?C00684
http://www.chemspider.com/Search.aspx?q=D-Xylonolactone
http://www.chemspider.com/Search.aspx?q=D-Xylonolactone
http://www.chemspider.com/Search.aspx?q=D-Xylonolactone
http://www.genome.jp/dbget-bin/www_bget?C02266
http://www.genome.jp/dbget-bin/www_bget?C02266
http://www.genome.jp/dbget-bin/www_bget?C02266


273 

 
m 

150.052
442 

13.2
05 

C5H10O5 37 L-Xylulose 8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00312 

1.
00 

1.
13 

0.
92 

1.0
9 

0.7
6 

1 
0.470
123 

0.715
802 

0.646
082 

0.400
656 

150.052
5174 

15.6
67 

C5H10O5 37 L-Arabinose 8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00259 

1.
00 

0.
83 

0.
80 

1.2
2 

0.7
0 

1 
0.656
69 

0.522
875 

0.676
399 

0.360
859 

150.052
5998 

15.4
2 

C5H10O5 37 D-Xylulose 6 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00310 

1.
00 

1.
09 

0.
96 

1.0
7 

0.6
3 

1 
0.322
362 

0.465
6 

0.324
536 

0.024
474 

152.068
1534 

13.4
13 

C5H12O5 4 Xylitol 8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00379 

1.
00 

1.
01 

0.
93 

1.0
5 

0.4
7 

1 
0.930
375 

0.625
606 

0.730
117 

0.104
144 

167.981
9679 

29.3
99 

C3H5O6P 3 Phosphoenolpyruvate 8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00074 

1.
00 

1.
18 

1.
11 

1.0
9 

2.7
4 

1 
0.625
719 

0.719
187 

0.732
78 

0.479
932 

169.997
7043 

24.6
77 

C3H7O6P 7 Glycerone phosphate 8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00111 

1.
00 

0.
83 

1.
04 

0.8
2 

0.3
6 

1 
0.612
688 

0.911
873 

0.569
776 

0.117
206 

178.047
5097 

10.0
53 

C6H10O6 26 
2-Dehydro-3-deoxy-D-
gluconate 

6 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00204 

1.
00 

0.
95 

1.
00 

1.0
4 

2.4
4 

1 
0.949
319 

0.997
503 

0.961
234 

0.338
665 

178.047
6917 

10.3
25 

C6H10O6 26 D-Glucono-1,5-lactone 6 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00198 

1.
00 

0.
89 

1.
04 

1.2
1 

2.3
2 

1 
0.872
413 

0.948
015 

0.710
531 

0.369
213 

179.079
2696 

19.0
69 

C6H13NO5 10 D-Glucosamine 8 
Carbohyd
rate 
Metabolis

KEGG_Metacyc_H
MDB  

C00329 

1.
00 

0.
99 

1.
01 

0.9
0 

1.4
2 

1 
0.950
768 

0.980
767 

0.603
699 

0.699
567 

http://www.chemspider.com/Search.aspx?q=L-Xylulose
http://www.chemspider.com/Search.aspx?q=L-Xylulose
http://www.chemspider.com/Search.aspx?q=L-Xylulose
http://www.chemspider.com/Search.aspx?q=L-Xylulose
http://www.genome.jp/dbget-bin/www_bget?C00312
http://www.genome.jp/dbget-bin/www_bget?C00312
http://www.genome.jp/dbget-bin/www_bget?C00312
http://www.chemspider.com/Search.aspx?q=L-Arabinose
http://www.chemspider.com/Search.aspx?q=L-Arabinose
http://www.chemspider.com/Search.aspx?q=L-Arabinose
http://www.chemspider.com/Search.aspx?q=L-Arabinose
http://www.genome.jp/dbget-bin/www_bget?C00259
http://www.genome.jp/dbget-bin/www_bget?C00259
http://www.genome.jp/dbget-bin/www_bget?C00259
http://www.chemspider.com/Search.aspx?q=D-Xylulose
http://www.chemspider.com/Search.aspx?q=D-Xylulose
http://www.chemspider.com/Search.aspx?q=D-Xylulose
http://www.chemspider.com/Search.aspx?q=D-Xylulose
http://www.genome.jp/dbget-bin/www_bget?C00310
http://www.genome.jp/dbget-bin/www_bget?C00310
http://www.genome.jp/dbget-bin/www_bget?C00310
http://www.chemspider.com/Search.aspx?q=Xylitol
http://www.chemspider.com/Search.aspx?q=Xylitol
http://www.chemspider.com/Search.aspx?q=Xylitol
http://www.chemspider.com/Search.aspx?q=Xylitol
http://www.genome.jp/dbget-bin/www_bget?C00379
http://www.genome.jp/dbget-bin/www_bget?C00379
http://www.genome.jp/dbget-bin/www_bget?C00379
http://www.chemspider.com/Search.aspx?q=Phosphoenolpyruvate
http://www.chemspider.com/Search.aspx?q=Phosphoenolpyruvate
http://www.chemspider.com/Search.aspx?q=Phosphoenolpyruvate
http://www.chemspider.com/Search.aspx?q=Phosphoenolpyruvate
http://www.genome.jp/dbget-bin/www_bget?C00074
http://www.genome.jp/dbget-bin/www_bget?C00074
http://www.genome.jp/dbget-bin/www_bget?C00074
http://www.chemspider.com/Search.aspx?q=Glycerone%20phosphate
http://www.chemspider.com/Search.aspx?q=Glycerone%20phosphate
http://www.chemspider.com/Search.aspx?q=Glycerone%20phosphate
http://www.chemspider.com/Search.aspx?q=Glycerone%20phosphate
http://www.genome.jp/dbget-bin/www_bget?C00111
http://www.genome.jp/dbget-bin/www_bget?C00111
http://www.genome.jp/dbget-bin/www_bget?C00111
http://www.chemspider.com/Search.aspx?q=2-Dehydro-3-deoxy-D-gluconate
http://www.chemspider.com/Search.aspx?q=2-Dehydro-3-deoxy-D-gluconate
http://www.chemspider.com/Search.aspx?q=2-Dehydro-3-deoxy-D-gluconate
http://www.chemspider.com/Search.aspx?q=2-Dehydro-3-deoxy-D-gluconate
http://www.genome.jp/dbget-bin/www_bget?C00204
http://www.genome.jp/dbget-bin/www_bget?C00204
http://www.genome.jp/dbget-bin/www_bget?C00204
http://www.chemspider.com/Search.aspx?q=D-Glucono-1,5-lactone
http://www.chemspider.com/Search.aspx?q=D-Glucono-1,5-lactone
http://www.chemspider.com/Search.aspx?q=D-Glucono-1,5-lactone
http://www.chemspider.com/Search.aspx?q=D-Glucono-1,5-lactone
http://www.genome.jp/dbget-bin/www_bget?C00198
http://www.genome.jp/dbget-bin/www_bget?C00198
http://www.genome.jp/dbget-bin/www_bget?C00198
http://www.chemspider.com/Search.aspx?q=D-Glucosamine
http://www.chemspider.com/Search.aspx?q=D-Glucosamine
http://www.chemspider.com/Search.aspx?q=D-Glucosamine
http://www.genome.jp/dbget-bin/www_bget?C00329
http://www.genome.jp/dbget-bin/www_bget?C00329
http://www.genome.jp/dbget-bin/www_bget?C00329


274 

 
m 

180.063
1853 

15.4
66 

C6H12O6 57 D-Glucose 10 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00221 

1.
00 

1.
00 

0.
97 

1.0
5 

0.6
1 

1 
0.942
574 

0.612
766 

0.542
489 

0.024
934 

182.078
7896 

14.5
91 

C6H14O6 6 D-Sorbitol 8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00794 

1.
00 

1.
04 

0.
98 

1.0
3 

0.4
6 

1 
0.772
558 

0.908
746 

0.852
507 

0.119
168 

185.992
6006 

29.5
26 

C3H7O7P 3 3-Phospho-D-glycerate 8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00197 

1.
00 

1.
00 

1.
14 

0.9
2 

1.7
9 

1 
0.993
341 

0.651
246 

0.740
094 

0.577
487 

192.026
8113 

20.2
65 

C6H8O7 12 
5-Dehydro-4-deoxy-D-
glucarate 

8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc  C00679 

1.
00 

0.
97 

1.
16 

1.2
3 

0.5
2 

1 
0.932
152 

0.707
587 

0.662
417 

0.301
227 

194.042
9735 

10.3
33 

C6H10O7 16 3-Dehydro-L-gulonate 6 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00618 

1.
00 

0.
86 

1.
06 

0.9
3 

1.2
5 

1 
0.787
566 

0.920
771 

0.873
887 

0.657
679 

196.057
9592 

19.2
94 

C6H12O7 11 D-Mannonate 6 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc  C00514 

1.
00 

1.
56 

1.
53 

1.4
5 

1.5
9 

1 
0.576
385 

0.530
027 

0.652
202 

0.698
064 

196.057
9617 

21.5
26 

C6H12O7 11 L-Gulonate 8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00800 

1.
00 

1.
57 

1.
38 

1.4
1 

0.4
7 

1 
0.590
794 

0.618
699 

0.669
073 

0.463
276 

196.058
024 

16.0
28 

C6H12O7 11 D-Gluconic acid 10 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00257 

1.
00 

1.
77 

2.
07 

0.9
2 

0.4
6 

1 
0.432
663 

0.050
011 

0.891
259 

0.169
167 

196.058
0602 

11.4
94 

C6H12O7 11 D-Galactonate 6 
Carbohyd
rate 
Metabolis

KEGG_Metacyc  C00880 

1.
00 

0.
98 

1.
03 

0.8
7 

0.3
8 

1 
0.922
061 

0.870
138 

0.261
785 

0.056
091 

http://www.chemspider.com/Search.aspx?q=D-Glucose
http://www.chemspider.com/Search.aspx?q=D-Glucose
http://www.chemspider.com/Search.aspx?q=D-Glucose
http://www.chemspider.com/Search.aspx?q=D-Glucose
http://www.genome.jp/dbget-bin/www_bget?C00221
http://www.genome.jp/dbget-bin/www_bget?C00221
http://www.genome.jp/dbget-bin/www_bget?C00221
http://www.chemspider.com/Search.aspx?q=D-Sorbitol
http://www.chemspider.com/Search.aspx?q=D-Sorbitol
http://www.chemspider.com/Search.aspx?q=D-Sorbitol
http://www.chemspider.com/Search.aspx?q=D-Sorbitol
http://www.genome.jp/dbget-bin/www_bget?C00794
http://www.genome.jp/dbget-bin/www_bget?C00794
http://www.genome.jp/dbget-bin/www_bget?C00794
http://www.chemspider.com/Search.aspx?q=3-Phospho-D-glycerate
http://www.chemspider.com/Search.aspx?q=3-Phospho-D-glycerate
http://www.chemspider.com/Search.aspx?q=3-Phospho-D-glycerate
http://www.chemspider.com/Search.aspx?q=3-Phospho-D-glycerate
http://www.genome.jp/dbget-bin/www_bget?C00197
http://www.genome.jp/dbget-bin/www_bget?C00197
http://www.genome.jp/dbget-bin/www_bget?C00197
http://www.chemspider.com/Search.aspx?q=5-Dehydro-4-deoxy-D-glucarate
http://www.chemspider.com/Search.aspx?q=5-Dehydro-4-deoxy-D-glucarate
http://www.chemspider.com/Search.aspx?q=5-Dehydro-4-deoxy-D-glucarate
http://www.chemspider.com/Search.aspx?q=5-Dehydro-4-deoxy-D-glucarate
http://www.genome.jp/dbget-bin/www_bget?C00679
http://www.genome.jp/dbget-bin/www_bget?C00679
http://www.chemspider.com/Search.aspx?q=3-Dehydro-L-gulonate
http://www.chemspider.com/Search.aspx?q=3-Dehydro-L-gulonate
http://www.chemspider.com/Search.aspx?q=3-Dehydro-L-gulonate
http://www.chemspider.com/Search.aspx?q=3-Dehydro-L-gulonate
http://www.genome.jp/dbget-bin/www_bget?C00618
http://www.genome.jp/dbget-bin/www_bget?C00618
http://www.genome.jp/dbget-bin/www_bget?C00618
http://www.chemspider.com/Search.aspx?q=D-Mannonate
http://www.chemspider.com/Search.aspx?q=D-Mannonate
http://www.chemspider.com/Search.aspx?q=D-Mannonate
http://www.chemspider.com/Search.aspx?q=D-Mannonate
http://www.genome.jp/dbget-bin/www_bget?C00514
http://www.genome.jp/dbget-bin/www_bget?C00514
http://www.chemspider.com/Search.aspx?q=L-Gulonate
http://www.chemspider.com/Search.aspx?q=L-Gulonate
http://www.chemspider.com/Search.aspx?q=L-Gulonate
http://www.chemspider.com/Search.aspx?q=L-Gulonate
http://www.genome.jp/dbget-bin/www_bget?C00800
http://www.genome.jp/dbget-bin/www_bget?C00800
http://www.genome.jp/dbget-bin/www_bget?C00800
http://www.chemspider.com/Search.aspx?q=D-Gluconic%20acid
http://www.chemspider.com/Search.aspx?q=D-Gluconic%20acid
http://www.chemspider.com/Search.aspx?q=D-Gluconic%20acid
http://www.chemspider.com/Search.aspx?q=D-Gluconic%20acid
http://www.genome.jp/dbget-bin/www_bget?C00257
http://www.genome.jp/dbget-bin/www_bget?C00257
http://www.genome.jp/dbget-bin/www_bget?C00257
http://www.chemspider.com/Search.aspx?q=D-Galactonate
http://www.chemspider.com/Search.aspx?q=D-Galactonate
http://www.chemspider.com/Search.aspx?q=D-Galactonate
http://www.genome.jp/dbget-bin/www_bget?C00880
http://www.genome.jp/dbget-bin/www_bget?C00880


275 

 
m 

196.058
1737 

11.0
44 

C6H12O7 11 D-Altronate 6 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc  C00817 

1.
00 

1.
02 

1.
08 

0.9
5 

0.6
8 

1 
0.877
826 

0.677
95 

0.695
991 

0.193
462 

200.008
2395 

26.6
09 

C4H9O7P 4 Erythrulose 1-phosphate 5 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc  C03394 

1.
00 

0.
89 

1.
34 

1.1
7 

0.6
1 

1 
0.663
347 

0.431
433 

0.553
328 

0.306
144 

221.089
9117 

12.4
58 

C8H15NO6 7 
N-Acetyl-D-
mannosamine 

6 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00645 

1.
00 

1.
18 

1.
21 

1.1
8 

0.5
7 

1 
0.363
694 

0.571
467 

0.455
676 

0.135
775 

230.018
7896 

24.9 C5H11O8P 16 D-Ribose 5-phosphate 10 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00117 

1.
00 

1.
30 

0.
98 

0.8
5 

0.1
5 

1 
0.625
922 

0.966
402 

0.665
774 

0.103
503 

230.019
1227 

24.6
63 

C5H11O8P 16 D-Ribose 5-phosphate 10 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00117 

1.
00 

1.
22 

0.
95 

0.7
0 

0.1
5 

1 
0.752
766 

0.925
627 

0.483
998 

0.134
018 

260.029
4049 

25.2
55 

C6H13O9P 46 D-Fructose 6-phosphate 10 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00085 

1.
00 

0.
85 

1.
23 

1.0
4 

0.5
2 

1 
0.535
691 

0.510
014 

0.848
026 

0.190
325 

260.029
4061 

25.7
23 

C6H13O9P 46 D-Glucose 6-phosphate 10 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00092 

1.
00 

0.
86 

1.
25 

1.1
8 

0.5
5 

1 
0.618
308 

0.523
993 

0.553
05 

0.233
539 

260.029
4387 

26.5
77 

C6H13O9P 46 D-Mannose 1-phosphate 6 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00636 

1.
00 

0.
87 

1.
17 

1.1
3 

0.5
6 

1 
0.625
255 

0.623
085 

0.655
989 

0.224
182 

290.040
0955 

25.3
77 

C7H15O10P 6 
D-Sedoheptulose 7-
phosphate 

8 
Carbohyd
rate 
Metabolis

KEGG_Metacyc  C05382 

1.
00 

1.
36 

2.
14 

5.0
4 

6.0
1 

1 
0.240
439 

0.306
621 

0.064
381 

0.135
491 

http://www.chemspider.com/Search.aspx?q=D-Altronate
http://www.chemspider.com/Search.aspx?q=D-Altronate
http://www.chemspider.com/Search.aspx?q=D-Altronate
http://www.chemspider.com/Search.aspx?q=D-Altronate
http://www.genome.jp/dbget-bin/www_bget?C00817
http://www.genome.jp/dbget-bin/www_bget?C00817
http://www.chemspider.com/Search.aspx?q=Erythrulose%201-phosphate
http://www.chemspider.com/Search.aspx?q=Erythrulose%201-phosphate
http://www.chemspider.com/Search.aspx?q=Erythrulose%201-phosphate
http://www.chemspider.com/Search.aspx?q=Erythrulose%201-phosphate
http://www.genome.jp/dbget-bin/www_bget?C03394
http://www.genome.jp/dbget-bin/www_bget?C03394
http://www.chemspider.com/Search.aspx?q=N-Acetyl-D-mannosamine
http://www.chemspider.com/Search.aspx?q=N-Acetyl-D-mannosamine
http://www.chemspider.com/Search.aspx?q=N-Acetyl-D-mannosamine
http://www.chemspider.com/Search.aspx?q=N-Acetyl-D-mannosamine
http://www.genome.jp/dbget-bin/www_bget?C00645
http://www.genome.jp/dbget-bin/www_bget?C00645
http://www.genome.jp/dbget-bin/www_bget?C00645
http://www.chemspider.com/Search.aspx?q=D-Ribose%205-phosphate
http://www.chemspider.com/Search.aspx?q=D-Ribose%205-phosphate
http://www.chemspider.com/Search.aspx?q=D-Ribose%205-phosphate
http://www.chemspider.com/Search.aspx?q=D-Ribose%205-phosphate
http://www.genome.jp/dbget-bin/www_bget?C00117
http://www.genome.jp/dbget-bin/www_bget?C00117
http://www.genome.jp/dbget-bin/www_bget?C00117
http://www.chemspider.com/Search.aspx?q=D-Ribose%205-phosphate
http://www.chemspider.com/Search.aspx?q=D-Ribose%205-phosphate
http://www.chemspider.com/Search.aspx?q=D-Ribose%205-phosphate
http://www.chemspider.com/Search.aspx?q=D-Ribose%205-phosphate
http://www.genome.jp/dbget-bin/www_bget?C00117
http://www.genome.jp/dbget-bin/www_bget?C00117
http://www.genome.jp/dbget-bin/www_bget?C00117
http://www.chemspider.com/Search.aspx?q=D-Fructose%206-phosphate
http://www.chemspider.com/Search.aspx?q=D-Fructose%206-phosphate
http://www.chemspider.com/Search.aspx?q=D-Fructose%206-phosphate
http://www.chemspider.com/Search.aspx?q=D-Fructose%206-phosphate
http://www.genome.jp/dbget-bin/www_bget?C00085
http://www.genome.jp/dbget-bin/www_bget?C00085
http://www.genome.jp/dbget-bin/www_bget?C00085
http://www.chemspider.com/Search.aspx?q=D-Glucose%206-phosphate
http://www.chemspider.com/Search.aspx?q=D-Glucose%206-phosphate
http://www.chemspider.com/Search.aspx?q=D-Glucose%206-phosphate
http://www.chemspider.com/Search.aspx?q=D-Glucose%206-phosphate
http://www.genome.jp/dbget-bin/www_bget?C00092
http://www.genome.jp/dbget-bin/www_bget?C00092
http://www.genome.jp/dbget-bin/www_bget?C00092
http://www.chemspider.com/Search.aspx?q=D-Mannose%201-phosphate
http://www.chemspider.com/Search.aspx?q=D-Mannose%201-phosphate
http://www.chemspider.com/Search.aspx?q=D-Mannose%201-phosphate
http://www.chemspider.com/Search.aspx?q=D-Mannose%201-phosphate
http://www.genome.jp/dbget-bin/www_bget?C00636
http://www.genome.jp/dbget-bin/www_bget?C00636
http://www.genome.jp/dbget-bin/www_bget?C00636
http://www.chemspider.com/Search.aspx?q=D-Sedoheptulose%207-phosphate
http://www.chemspider.com/Search.aspx?q=D-Sedoheptulose%207-phosphate
http://www.chemspider.com/Search.aspx?q=D-Sedoheptulose%207-phosphate
http://www.genome.jp/dbget-bin/www_bget?C05382
http://www.genome.jp/dbget-bin/www_bget?C05382


276 

 
m 

566.053
8362 

1.66
92 

C15H24N2O
17P2 

3 UDP-glucose 8 

Carbohyd
rate 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00029 

1.
00 

1.
51 

0.
86 

0.4
3 

1.4
2 

1 
0.509
128 

0.575
176 

0.390
809 

0.168
314 

75.0684
0155 

10.7
06 

C3H9NO 6 Trimethylamine N-oxide 7 
Energy 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C01104 

1.
00 

1.
20 

1.
18 

1.0
2 

0.5
2 

1 
0.552
274 

0.657
178 

0.948
813 

0.250
581 

97.9767
3489 

23.0
63 

H3O4P 1 Orthophosphate 10 
Energy 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00009 

1.
00 

0.
95 

0.
96 

0.9
3 

1.4
2 

1 
0.652
783 

0.730
895 

0.542
838 

0.644
291 

97.9769
2148 

23.9
74 

H3O4P 1 Orthophosphate 8 
Energy 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00009 

1.
00 

0.
75 

0.
98 

0.9
7 

0.6
0 

1 
0.155
198 

0.918
629 

0.671
1 

0.139
972 

210.073
8113 

14.8
83 

C7H14O7 4 Sedoheptulose 7 
Energy 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C02076 

1.
00 

1.
14 

1.
49 

2.4
3 

2.1
5 

1 
0.368
03 

0.242
563 

0.135
181 

0.334
786 

331.554
5142 

22.1
16 

C21H28N7O
14P2 

1 NAD+ 10 
Energy 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00003 

1.
00 

1.
03 

1.
12 

1.1
2 

1.2
6 

1 
0.701
147 

0.140
105 

0.407
09 

0.622
005 

371.537
434 

35.0
09 

C21H29N7O
17P3 

1 NADP+ 8 
Energy 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00006 

1.
00 

1.
60 

1.
48 

0.9
5 

0.8
8 

1 
0.230
438 

0.362
686 

0.805
544 

0.464
516 

238.068
8926 

10.9
91 

C8H14O8 1 
3-Deoxy-D-manno-
octulosonate 

8 

Glycan 
Biosynthe
sis and 
Metabolis
m 

KEGG_Metacyc  C01187 

1.
00 

0.
90 

1.
01 

0.8
1 

0.8
6 

1 
0.763
222 

0.988
527 

0.557
47 

0.687
47 

104.047
2933 

6.61
01 

C4H8O3 13 (R)-3-Hydroxybutanoate 6 
Lipid 
Metabolis
m 

KEGG_Metacyc_Li
pidmaps_HMDB  

C01089 

1.
00 

0.
95 

0.
90 

1.0
5 

0.8
0 

1 
0.822
558 

0.438
856 

0.841
109 

0.157
643 

125.014
4842 

17.1
01 

C2H7NO3S 1 Taurine 8 
Lipid 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00245 

1.
00 

1.
07 

1.
11 

0.8
2 

3.4
9 

1 
0.674
996 

0.501
873 

0.318
364 

0.497
409 

http://www.chemspider.com/Search.aspx?q=UDP-glucose
http://www.chemspider.com/Search.aspx?q=UDP-glucose
http://www.chemspider.com/Search.aspx?q=UDP-glucose
http://www.chemspider.com/Search.aspx?q=UDP-glucose
http://www.genome.jp/dbget-bin/www_bget?C00029
http://www.genome.jp/dbget-bin/www_bget?C00029
http://www.genome.jp/dbget-bin/www_bget?C00029
http://www.chemspider.com/Search.aspx?q=Trimethylamine%20N-oxide
http://www.chemspider.com/Search.aspx?q=Trimethylamine%20N-oxide
http://www.chemspider.com/Search.aspx?q=Trimethylamine%20N-oxide
http://www.genome.jp/dbget-bin/www_bget?C01104
http://www.genome.jp/dbget-bin/www_bget?C01104
http://www.genome.jp/dbget-bin/www_bget?C01104
http://www.chemspider.com/Search.aspx?q=Orthophosphate
http://www.chemspider.com/Search.aspx?q=Orthophosphate
http://www.chemspider.com/Search.aspx?q=Orthophosphate
http://www.genome.jp/dbget-bin/www_bget?C00009
http://www.genome.jp/dbget-bin/www_bget?C00009
http://www.genome.jp/dbget-bin/www_bget?C00009
http://www.chemspider.com/Search.aspx?q=Orthophosphate
http://www.chemspider.com/Search.aspx?q=Orthophosphate
http://www.chemspider.com/Search.aspx?q=Orthophosphate
http://www.genome.jp/dbget-bin/www_bget?C00009
http://www.genome.jp/dbget-bin/www_bget?C00009
http://www.genome.jp/dbget-bin/www_bget?C00009
http://www.chemspider.com/Search.aspx?q=Sedoheptulose
http://www.chemspider.com/Search.aspx?q=Sedoheptulose
http://www.chemspider.com/Search.aspx?q=Sedoheptulose
http://www.genome.jp/dbget-bin/www_bget?C02076
http://www.genome.jp/dbget-bin/www_bget?C02076
http://www.genome.jp/dbget-bin/www_bget?C02076
http://www.chemspider.com/Search.aspx?q=NAD+
http://www.chemspider.com/Search.aspx?q=NAD+
http://www.chemspider.com/Search.aspx?q=NAD+
http://www.genome.jp/dbget-bin/www_bget?C00003
http://www.genome.jp/dbget-bin/www_bget?C00003
http://www.genome.jp/dbget-bin/www_bget?C00003
http://www.chemspider.com/Search.aspx?q=NADP+
http://www.chemspider.com/Search.aspx?q=NADP+
http://www.chemspider.com/Search.aspx?q=NADP+
http://www.genome.jp/dbget-bin/www_bget?C00006
http://www.genome.jp/dbget-bin/www_bget?C00006
http://www.genome.jp/dbget-bin/www_bget?C00006
http://www.chemspider.com/Search.aspx?q=3-Deoxy-D-manno-octulosonate
http://www.chemspider.com/Search.aspx?q=3-Deoxy-D-manno-octulosonate
http://www.chemspider.com/Search.aspx?q=3-Deoxy-D-manno-octulosonate
http://www.chemspider.com/Search.aspx?q=3-Deoxy-D-manno-octulosonate
http://www.chemspider.com/Search.aspx?q=3-Deoxy-D-manno-octulosonate
http://www.genome.jp/dbget-bin/www_bget?C01187
http://www.genome.jp/dbget-bin/www_bget?C01187
http://www.chemspider.com/Search.aspx?q=(R)-3-Hydroxybutanoate
http://www.chemspider.com/Search.aspx?q=(R)-3-Hydroxybutanoate
http://www.chemspider.com/Search.aspx?q=(R)-3-Hydroxybutanoate
http://www.genome.jp/dbget-bin/www_bget?C01089
http://www.genome.jp/dbget-bin/www_bget?C01089
http://www.genome.jp/dbget-bin/www_bget?C01089
http://www.chemspider.com/Search.aspx?q=Taurine
http://www.chemspider.com/Search.aspx?q=Taurine
http://www.chemspider.com/Search.aspx?q=Taurine
http://www.genome.jp/dbget-bin/www_bget?C00245
http://www.genome.jp/dbget-bin/www_bget?C00245
http://www.genome.jp/dbget-bin/www_bget?C00245


277 

 

145.110
1564 

10.8
16 

C7H15NO2 6 Acetylcholine 8 
Lipid 
Metabolis
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KEGG_Metacyc_H
MDB  
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C3H10NO4P 3 
N-Methylethanolamine 
phosphate 
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C10H20O7P
2 

6 
[PR] Geranyl 
pyrophosphate 

8 
Lipid 
Metabolis
m 

KEGG_Metacyc_Li
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C00341 

1.
00 

1.
02 

1.
08 

0.9
8 

0.4
6 

1 
0.761
551 

0.561
866 

0.847
465 

0.013
938 

169.050
2829 

20.5
32 

C4H12NO4P 1 
Phosphodimethylethanol
amine 

6 
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C3H9O6P 3 sn-Glycerol 3-phosphate 10 
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C5H14NO4P 1 Choline phosphate 10 
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C5H14NO6P 1 
sn-glycero-3-
Phosphoethanolamine 
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C16H30O2 19 (9Z)-Hexadecenoic acid 8 
Lipid 
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m 
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HMDB  
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C27H44O2 35 
7alpha-Hydroxycholest-
4-en-3-one 

8 
Lipid 
Metabolis
m 

KEGG_Metacyc_Li
pidmaps_HMDB  
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C14H27N4O
10P2 

1 
CMP-N-trimethyl-2-
aminoethylphosphonate 

5 
Lipid 
Metabolis
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C5H10O2 5 Pentanoate 5 
Lipids: 
Fatty 
Acyls  

KEGG_Metacyc_Li
pidmaps_HMDB  
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C5H10O2 5 3-Methylbutanoic acid 5 
Lipids: 
Fatty 
Acyls  

KEGG_Metacyc_Li
pidmaps_HMDB  
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C6H12O2 16 Hexanoic acid 5 
Lipids: 
Fatty 
Acyls  

KEGG_Metacyc_Li
pidmaps_HMDB  
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C5H10O3 12 5-Hydroxypentanoate 7 
Lipids: 
Fatty 
Acyls  
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C5H8O4 16 Glutarate 6 
Lipids: 
Fatty 
Acyls  
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C6H10O4 16 Adipate 8 
Lipids: 
Fatty 
Acyls  
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C6H12O4 14 
[FA methyl,hydroxy(5:0)] 
3R-methyl-3,5-dihydroxy-
pentanoic acid 

8 
Lipids: 
Fatty 
Acyls  

KEGG_Metacyc_Li
pidmaps_HMDB  
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C7H12O4 4 
[FA (7:0/2:0)] 
Heptanedioic acid 

8 
Lipids: 
Fatty 
Acyls  

KEGG_Metacyc_Li
pidmaps_HMDB  
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C8H14O4 3 Suberic acid 7 
Lipids: 
Fatty 
Acyls  
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C10H18O4 2 
[FA (10:0/2:0)] 
Decanedioic acid 

7 
Lipids: 
Fatty 
Acyls  

KEGG_Metacyc_Li
pidmaps_HMDB  
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C12H24O3 11 
12-Hydroxydodecanoic 
acid 

5 
Lipids: 
Fatty 
Acyls  

KEGG_Metacyc_Li
pidmaps_HMDB  
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C10H19NO4 1 O-Propanoylcarnitine 7 
Lipids: 
Fatty 
Acyls  

KEGG_Lipidmaps_
HMDB  

C03017 

1.
00 

0.
89 

0.
99 

1.0
7 

0.6
5 

1 
0.642
312 

0.974
457 

0.813
81 

0.209
235 

222.089
0082 

5.33
93 

C12H14O4 8 
[FA (12:4/2:0)] 
2E,4E,8E,10E-
Dodecatetraenedioic acid 
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C11H21NO4 3 O-Butanoylcarnitine 7 
Lipids: 
Fatty 
Acyls  
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C18H35NO 1 
[FA (18:1)] 9Z-
octadecenamide 
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C18H26O3 6 
[FA hydroxy(18:1/2:0)] 8-
hydroxy-13Z-octadecene-
9,11-diynoic acid 

7 
Lipids: 
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http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
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http://www.chemspider.com/Search.aspx?q=%201-hexadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoethanolamine
http://www.chemspider.com/Search.aspx?q=%201-hexadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoethanolamine
http://www.chemspider.com/Search.aspx?q=%201-hexadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoethanolamine
http://www.genome.jp/dbget-bin/www_bget?C00350
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http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphoethanolamine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphoethanolamine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphoethanolamine
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http://www.genome.jp/dbget-bin/www_bget?C00350
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http://www.chemspider.com/Search.aspx?q=%201-hexadecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine
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http://www.chemspider.com/Search.aspx?q=%201-(9Z-octadecenoyl)-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z-octadecenoyl)-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z-octadecenoyl)-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z-octadecenoyl)-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%201-(9Z-octadecenoyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z-octadecenoyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z-octadecenoyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z-octadecenoyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=PE(18:2(9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
http://www.chemspider.com/Search.aspx?q=PE(18:2(9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
http://www.chemspider.com/Search.aspx?q=PE(18:2(9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
http://www.chemspider.com/Search.aspx?q=PE(18:2(9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.chemspider.com/Search.aspx?q=%201,2-di-(9E-octadecenoyl)-sn-glycero-3-phosphoserine
http://www.chemspider.com/Search.aspx?q=%201,2-di-(9E-octadecenoyl)-sn-glycero-3-phosphoserine
http://www.chemspider.com/Search.aspx?q=%201,2-di-(9E-octadecenoyl)-sn-glycero-3-phosphoserine
http://www.chemspider.com/Search.aspx?q=%201,2-di-(9E-octadecenoyl)-sn-glycero-3-phosphoserine
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=PE(18:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
http://www.chemspider.com/Search.aspx?q=PE(18:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
http://www.chemspider.com/Search.aspx?q=PE(18:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
http://www.chemspider.com/Search.aspx?q=PE(18:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoethanolamine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoethanolamine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoethanolamine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoethanolamine
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
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http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoethanolamine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoethanolamine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoethanolamine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoethanolamine
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.chemspider.com/Search.aspx?q=PC(15:0/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PC(15:0/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PC(15:0/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PC(15:0/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=PC(15:0/22:5(7Z,10Z,13Z,16Z,19Z))
http://www.chemspider.com/Search.aspx?q=PC(15:0/22:5(7Z,10Z,13Z,16Z,19Z))
http://www.chemspider.com/Search.aspx?q=PC(15:0/22:5(7Z,10Z,13Z,16Z,19Z))
http://www.chemspider.com/Search.aspx?q=PC(15:0/22:5(7Z,10Z,13Z,16Z,19Z))
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=PE(18:1(11Z)/22:2(13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PE(18:1(11Z)/22:2(13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PE(18:1(11Z)/22:2(13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PE(18:1(11Z)/22:2(13Z,16Z))
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.chemspider.com/Search.aspx?q=PC(20:1(11Z)/P-18:1(11Z))
http://www.chemspider.com/Search.aspx?q=PC(20:1(11Z)/P-18:1(11Z))
http://www.chemspider.com/Search.aspx?q=PC(20:1(11Z)/P-18:1(11Z))
http://www.chemspider.com/Search.aspx?q=PC(20:1(11Z)/P-18:1(11Z))
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%201-eicosanoyl-2-(11Z,14Z-eicosadienoyl)-sn-glycero-3-phosphoethanolamine
http://www.chemspider.com/Search.aspx?q=%201-eicosanoyl-2-(11Z,14Z-eicosadienoyl)-sn-glycero-3-phosphoethanolamine
http://www.chemspider.com/Search.aspx?q=%201-eicosanoyl-2-(11Z,14Z-eicosadienoyl)-sn-glycero-3-phosphoethanolamine
http://www.chemspider.com/Search.aspx?q=%201-eicosanoyl-2-(11Z,14Z-eicosadienoyl)-sn-glycero-3-phosphoethanolamine
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.chemspider.com/Search.aspx?q=%201-heptadecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phospho-(1'-rac-glycerol)%20(ammonium%20salt)
http://www.chemspider.com/Search.aspx?q=%201-heptadecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phospho-(1'-rac-glycerol)%20(ammonium%20salt)
http://www.chemspider.com/Search.aspx?q=%201-heptadecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phospho-(1'-rac-glycerol)%20(ammonium%20salt)
http://www.chemspider.com/Search.aspx?q=%201-heptadecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phospho-(1'-rac-glycerol)%20(ammonium%20salt)
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(13Z-docosenoyl)-sn-glycero-3-phosphoethanolamine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(13Z-docosenoyl)-sn-glycero-3-phosphoethanolamine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(13Z-docosenoyl)-sn-glycero-3-phosphoethanolamine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(13Z-docosenoyl)-sn-glycero-3-phosphoethanolamine
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
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http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphothreonine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphothreonine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphothreonine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphothreonine
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphothreonine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphothreonine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphothreonine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphothreonine
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=%201-hexadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-hexadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-hexadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-hexadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%201-(11Z-octadecenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(11Z-octadecenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(11Z-octadecenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(11Z-octadecenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%201-(9Z-octadecenoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z-octadecenoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z-octadecenoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z-octadecenoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%201-(9Z-octadecenoyl)-2-(5Z,8Z,11Z-eicosatrienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z-octadecenoyl)-2-(5Z,8Z,11Z-eicosatrienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z-octadecenoyl)-2-(5Z,8Z,11Z-eicosatrienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z-octadecenoyl)-2-(5Z,8Z,11Z-eicosatrienoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=PC(16:1(9Z)/22:2(13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PC(16:1(9Z)/22:2(13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PC(16:1(9Z)/22:2(13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PC(16:1(9Z)/22:2(13Z,16Z))
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
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http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(5Z,8Z,11Z-eicosatrienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(5Z,8Z,11Z-eicosatrienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(5Z,8Z,11Z-eicosatrienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(5Z,8Z,11Z-eicosatrienoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%201-eicosanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-eicosanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-eicosanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-eicosanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(11Z,14Z-eicosadienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(11Z,14Z-eicosadienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(11Z,14Z-eicosadienoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(11Z,14Z-eicosadienoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=PE(20:2(11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PE(20:2(11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PE(20:2(11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PE(20:2(11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.chemspider.com/Search.aspx?q=PE(20:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
http://www.chemspider.com/Search.aspx?q=PE(20:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
http://www.chemspider.com/Search.aspx?q=PE(20:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
http://www.chemspider.com/Search.aspx?q=PE(20:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.chemspider.com/Search.aspx?q=PE(20:1(11Z)/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PE(20:1(11Z)/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PE(20:1(11Z)/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PE(20:1(11Z)/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.chemspider.com/Search.aspx?q=PE(20:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
http://www.chemspider.com/Search.aspx?q=PE(20:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
http://www.chemspider.com/Search.aspx?q=PE(20:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
http://www.chemspider.com/Search.aspx?q=PE(20:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.chemspider.com/Search.aspx?q=PE(20:0/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PE(20:0/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PE(20:0/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PE(20:0/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
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http://www.chemspider.com/Search.aspx?q=PE(18:4(6Z,9Z,12Z,15Z)/24:1(15Z))
http://www.chemspider.com/Search.aspx?q=PE(18:4(6Z,9Z,12Z,15Z)/24:1(15Z))
http://www.chemspider.com/Search.aspx?q=PE(18:4(6Z,9Z,12Z,15Z)/24:1(15Z))
http://www.chemspider.com/Search.aspx?q=PE(18:4(6Z,9Z,12Z,15Z)/24:1(15Z))
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.chemspider.com/Search.aspx?q=PE(18:3(9Z,12Z,15Z)/24:1(15Z))
http://www.chemspider.com/Search.aspx?q=PE(18:3(9Z,12Z,15Z)/24:1(15Z))
http://www.chemspider.com/Search.aspx?q=PE(18:3(9Z,12Z,15Z)/24:1(15Z))
http://www.chemspider.com/Search.aspx?q=PE(18:3(9Z,12Z,15Z)/24:1(15Z))
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.chemspider.com/Search.aspx?q=PE(18:3(6Z,9Z,12Z)/24:1(15Z))
http://www.chemspider.com/Search.aspx?q=PE(18:3(6Z,9Z,12Z)/24:1(15Z))
http://www.chemspider.com/Search.aspx?q=PE(18:3(6Z,9Z,12Z)/24:1(15Z))
http://www.chemspider.com/Search.aspx?q=PE(18:3(6Z,9Z,12Z)/24:1(15Z))
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.chemspider.com/Search.aspx?q=PG(18:0/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PG(18:0/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PG(18:0/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PG(18:0/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=PE(18:2(9Z,12Z)/24:1(15Z))
http://www.chemspider.com/Search.aspx?q=PE(18:2(9Z,12Z)/24:1(15Z))
http://www.chemspider.com/Search.aspx?q=PE(18:2(9Z,12Z)/24:1(15Z))
http://www.chemspider.com/Search.aspx?q=PE(18:2(9Z,12Z)/24:1(15Z))
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.genome.jp/dbget-bin/www_bget?C00350
http://www.chemspider.com/Search.aspx?q=PG(18:0/22:4(7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PG(18:0/22:4(7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PG(18:0/22:4(7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PG(18:0/22:4(7Z,10Z,13Z,16Z))
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=%201,2-di-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201,2-di-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201,2-di-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201,2-di-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%201-(9Z,12Z-octadecadienoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z,12Z-octadecadienoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z,12Z-octadecadienoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z,12Z-octadecadienoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
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7 

Lipids: 
Glyceroph
ospholipi
ds  

KEGG_Lipidmaps_
HMDB  

C00157 

1.
00 

1.
07 

1.
12 

0.7
9 

0.6
5 

1 
0.853
945 

0.749
5 

0.535
889 

0.345
962 

835.535
331 

7.84
58 

C46H78NO1
0P 

3 

[PS (18:0/22:6)] 1-
octadecanoyl-2-
(4Z,7Z,10Z,13Z,16Z,19Z-
docosahexaenoyl)-sn-
glycero-3-phosphoserine 

5 

Lipids: 
Glyceroph
ospholipi
ds  

KEGG_Lipidmaps_
HMDB  

C02737 

1.
00 

1.
15 

1.
28 

0.7
0 

0.7
9 

1 
0.492
597 

0.158
616 

0.087
624 

0.260
598 

835.608
0038 

6.13
01 

C48H86NO8
P 

25 

[PC (18:0/22:5)] 1-
octadecanoyl-2-
(7Z,10Z,13Z,16Z,19Z-
docosapentaenoyl)-sn-
glycero-3-
phosphocholine 

5 

Lipids: 
Glyceroph
ospholipi
ds  

KEGG_Lipidmaps_
HMDB  

C00157 

1.
00 

1.
09 

1.
13 

0.4
3 

1.0
2 

1 
0.896
14 

0.855
093 

0.312
739 

0.973
234 

http://www.chemspider.com/Search.aspx?q=%201-(9Z,12Z-octadecadienoyl)-2-(4Z,7Z,10Z,13Z,16Z-docosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z,12Z-octadecadienoyl)-2-(4Z,7Z,10Z,13Z,16Z-docosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z,12Z-octadecadienoyl)-2-(4Z,7Z,10Z,13Z,16Z-docosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(9Z,12Z-octadecadienoyl)-2-(4Z,7Z,10Z,13Z,16Z-docosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%201-(11Z-octadecenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(11Z-octadecenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(11Z-octadecenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(11Z-octadecenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%201-(11Z-octadecenoyl)-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(11Z-octadecenoyl)-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(11Z-octadecenoyl)-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-(11Z-octadecenoyl)-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoserine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoserine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoserine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoserine
http://www.genome.jp/dbget-bin/www_bget?C02737
http://www.genome.jp/dbget-bin/www_bget?C02737
http://www.genome.jp/dbget-bin/www_bget?C02737
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
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835.608
2683 

7.63
45 

C48H86NO8
P 

25 

[PC (18:0/22:5)] 1-
octadecanoyl-2-
(4Z,7Z,10Z,13Z,16Z-
docosapentaenoyl)-sn-
glycero-3-
phosphocholine 

5 

Lipids: 
Glyceroph
ospholipi
ds  

KEGG_Lipidmaps_
HMDB  

C00157 

1.
00 

1.
04 

1.
07 

0.7
6 

0.9
4 

1 
0.930
741 

0.888
946 

0.543
644 

0.880
558 

837.623
9962 

6.17
06 

C48H88NO8
P 

21 

[PC (20:0/20:4)] 1-
eicosanoyl-2-
(5Z,8Z,11Z,14Z-
eicosatetraenoyl)-sn-
glycero-3-
phosphocholine 

5 

Lipids: 
Glyceroph
ospholipi
ds  

KEGG_Lipidmaps_
HMDB  

C00157 

1.
00 

1.
14 

1.
25 

0.3
0 

1.0
7 

1 
0.858
029 

0.767
441 

0.302
187 

0.907
407 

837.624
0239 

7.64
91 

C48H88NO8
P 

21 

[PC (18:0/22:4)] 1-
octadecanoyl-2-
(7Z,10Z,13Z,16Z-
docosatetraenoyl)-sn-
glycero-3-
phosphocholine 

5 

Lipids: 
Glyceroph
ospholipi
ds  

KEGG_Lipidmaps_
HMDB  

C00157 

1.
00 

1.
10 

1.
13 

0.6
8 

0.6
0 

1 
0.838
631 

0.829
396 

0.476
108 

0.424
405 

877.562
1317 

6.09
49 

C52H80NO8
P 

3 

[PC (22:6/22:6)] 1,2-di-
(4Z,7Z,10Z,13Z,16Z,19Z-
docosahexaenoyl)-sn-
glycero-3-
phosphocholine 

5 

Lipids: 
Glyceroph
ospholipi
ds  

KEGG_Lipidmaps_
HMDB  

C00157 

1.
00 

1.
20 

1.
27 

0.7
0 

2.7
7 

1 
0.732
186 

0.620
688 

0.516
455 

0.535
142 

881.613
2153 

6.18
85 

C49H88NO1
0P 

1 

[PG (21:0/22:6)] 1-
heneicosanoyl-2-
(4Z,7Z,10Z,13Z,16Z,19Z-
docosahexenoyl)-sn-
glycero-3-phospho-(1'-
rac-glycerol) (ammonium 
salt) 

5 

Lipids: 
Glyceroph
ospholipi
ds  

Lipidmaps  0 

1.
00 

1.
04 

1.
16 

0.7
2 

1.5
2 

1 
0.931
054 

0.675
44 

0.502
549 

0.149
317 

883.608
7013 

6.12
18 

C52H86NO8
P 

4 
PC(22:4(7Z,10Z,13Z,16Z)/
22:5(4Z,7Z,10Z,13Z,16Z)) 

5 

Lipids: 
Glyceroph
ospholipi
ds  

KEGG_HMDB  C00157 

1.
00 

1.
14 

1.
36 

0.5
9 

1.3
2 

1 
0.829
798 

0.629
346 

0.396
243 

0.760
524 

108.094
0069 

5.20
49 

C16H24 1 
[PR] (+)-3-longipinen-5-
one 

7 
Lipids: 
Prenols  

Lipidmaps  0 

1.
00 

1.
23 

1.
06 

0.9
3 

1.2
1 

1 
0.566
798 

0.873
482 

0.841
704 

0.511
761 

http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z-docosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z-docosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z-docosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z-docosapentaenoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%201-eicosanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-eicosanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-eicosanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-eicosanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201-octadecanoyl-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%201,2-di-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201,2-di-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201,2-di-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.chemspider.com/Search.aspx?q=%201,2-di-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%201-heneicosanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexenoyl)-sn-glycero-3-phospho-(1'-rac-glycerol)%20(ammonium%20salt)
http://www.chemspider.com/Search.aspx?q=%201-heneicosanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexenoyl)-sn-glycero-3-phospho-(1'-rac-glycerol)%20(ammonium%20salt)
http://www.chemspider.com/Search.aspx?q=%201-heneicosanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexenoyl)-sn-glycero-3-phospho-(1'-rac-glycerol)%20(ammonium%20salt)
http://www.chemspider.com/Search.aspx?q=%201-heneicosanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexenoyl)-sn-glycero-3-phospho-(1'-rac-glycerol)%20(ammonium%20salt)
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=PC(22:4(7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PC(22:4(7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PC(22:4(7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.chemspider.com/Search.aspx?q=PC(22:4(7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z))
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.genome.jp/dbget-bin/www_bget?C00157
http://www.chemspider.com/Search.aspx?q=%20(+)-3-longipinen-5-one
http://www.chemspider.com/Search.aspx?q=%20(+)-3-longipinen-5-one
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
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196.146
3336 

5.23
9 

C12H20O2 29 
(1S,2R,4S)-(-)-Bornyl 
acetate 

7 
Lipids: 
Prenols  

KEGG_Lipidmaps  C09837 

1.
00 

0.
87 

0.
67 

0.6
0 

0.5
8 

1 
0.630
136 

0.269
884 

0.211
474 

0.194
959 

273.266
7452 

6.13
37 

C16H35NO2 1 Hexadecasphinganine 5 
Lipids: 
Sphingoli
pids  

KEGG_Lipidmaps  C13915 

1.
00 

1.
04 

1.
07 

1.0
1 

1.4
2 

1 
0.849
402 

0.720
756 

0.958
164 

0.602
833 

285.303
1582 

6.09
15 

C18H39NO 1 [SP] 1-deoxy-sphinganine 5 
Lipids: 
Sphingoli
pids  

Lipidmaps  0 

1.
00 

0.
98 

1.
74 

1.4
8 

2.9
4 

1 
0.964
108 

0.208
829 

0.319
99 

0.041
406 

327.313
7025 

5.21
69 

C20H41NO2 1 
N,N-Dimethylsphing-4-
enine 

5 
Lipids: 
Sphingoli
pids  

KEGG_Lipidmaps_
HMDB  

C13914 

1.
00 

0.
97 

1.
27 

0.9
3 

0.5
5 

1 
0.939
246 

0.480
712 

0.860
795 

0.276
907 

466.353
3642 

8.69
46 

C23H51N2O
5P 

1 LysoSM(d18:0) 5 
Lipids: 
Sphingoli
pids  

HMDB  0 

1.
00 

0.
70 

0.
45 

0.4
6 

0.3
9 

1 
0.374
959 

0.116
284 

0.146
18 

0.091
024 

565.542
922 

5.11
17 

C36H71NO3 6 
[SP (18:0)] N-
(octadecanoyl)-sphing-4-
enine 

7 
Lipids: 
Sphingoli
pids  

KEGG_Lipidmaps_
HMDB  

C00195 

1.
00 

1.
21 

1.
61 

0.2
6 

1.8
6 

1 
0.813
06 

0.558
692 

0.306
779 

0.454
401 

646.505
1085 

9.27
29 

C35H71N2O
6P 

1 SM(d18:1/12:0) 5 
Lipids: 
Sphingoli
pids  

KEGG_Lipidmaps_
HMDB  

C00550 

1.
00 

0.
88 

1.
15 

0.9
6 

0.7
1 

1 
0.638
027 

0.737
973 

0.912
734 

0.411
66 

674.535
8709 

6.13
44 

C37H75N2O
6P 

1 SM(d18:1/14:0) 5 
Lipids: 
Sphingoli
pids  

Lipidmaps_HMDB  0 

1.
00 

0.
88 

1.
15 

1.3
1 

1.8
8 

1 
0.737
828 

0.638
836 

0.471
483 

0.393
834 

674.536
2864 

9.08
64 

C37H75N2O
6P 

1 SM(d18:1/14:0) 5 
Lipids: 
Sphingoli
pids  

Lipidmaps_HMDB  0 

1.
00 

1.
28 

1.
80 

1.1
3 

1.1
0 

1 
0.604
264 

0.306
289 

0.766
62 

0.798
047 

688.551
637 

6.17
17 

C38H77N2O
6P 

1 

[SP (18:0/14:0)] N-
(octadecanoyl)-
tetradecasphing-4-enine-
1-phosphoethanolamine 

5 
Lipids: 
Sphingoli
pids  

Lipidmaps  0 

1.
00 

0.
62 

1.
16 

1.2
6 

0.5
2 

1 
0.137
811 

0.300
635 

0.500
178 

0.202
401 

688.551
9419 

9.00
55 

C38H77N2O
6P 

1 

[SP (18:0/14:0)] N-
(octadecanoyl)-
tetradecasphing-4-enine-
1-phosphoethanolamine 

5 
Lipids: 
Sphingoli
pids  

Lipidmaps  0 

1.
00 

1.
04 

1.
58 

1.1
1 

0.8
1 

1 
0.896
115 

0.193
826 

0.769
063 

0.682
416 

702.567
3227 

6.22
29 

C39H79N2O
6P 

1 
[SP (16:0)] N-
(hexadecanoyl)-sphing-4-
enine-1-phosphocholine 

7 
Lipids: 
Sphingoli
pids  

Lipidmaps_HMDB  0 

1.
00 

0.
64 

1.
15 

1.1
0 

0.7
4 

1 
0.141
846 

0.195
523 

0.788
57 

0.569
393 

http://www.chemspider.com/Search.aspx?q=(1S,2R,4S)-(-)-Bornyl%20acetate
http://www.chemspider.com/Search.aspx?q=(1S,2R,4S)-(-)-Bornyl%20acetate
http://www.genome.jp/dbget-bin/www_bget?C09837
http://www.genome.jp/dbget-bin/www_bget?C09837
http://www.chemspider.com/Search.aspx?q=Hexadecasphinganine
http://www.chemspider.com/Search.aspx?q=Hexadecasphinganine
http://www.chemspider.com/Search.aspx?q=Hexadecasphinganine
http://www.genome.jp/dbget-bin/www_bget?C13915
http://www.genome.jp/dbget-bin/www_bget?C13915
http://www.chemspider.com/Search.aspx?q=%201-deoxy-sphinganine
http://www.chemspider.com/Search.aspx?q=%201-deoxy-sphinganine
http://www.chemspider.com/Search.aspx?q=%201-deoxy-sphinganine
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=N,N-Dimethylsphing-4-enine
http://www.chemspider.com/Search.aspx?q=N,N-Dimethylsphing-4-enine
http://www.chemspider.com/Search.aspx?q=N,N-Dimethylsphing-4-enine
http://www.genome.jp/dbget-bin/www_bget?C13914
http://www.genome.jp/dbget-bin/www_bget?C13914
http://www.genome.jp/dbget-bin/www_bget?C13914
http://www.chemspider.com/Search.aspx?q=LysoSM(d18:0)
http://www.chemspider.com/Search.aspx?q=LysoSM(d18:0)
http://www.chemspider.com/Search.aspx?q=LysoSM(d18:0)
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=%20N-(octadecanoyl)-sphing-4-enine
http://www.chemspider.com/Search.aspx?q=%20N-(octadecanoyl)-sphing-4-enine
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http://www.chemspider.com/Search.aspx?q=%20N-(octadecanoyl)-tetradecasphing-4-enine-1-phosphoethanolamine
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http://www.genome.jp/dbget-bin/www_bget?
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http://www.chemspider.com/Search.aspx?q=%20N-(hexadecanoyl)-sphing-4-enine-1-phosphocholine
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
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702.567
3348 

8.90
39 

C39H79N2O
6P 

1 
[SP (16:0)] N-
(hexadecanoyl)-sphing-4-
enine-1-phosphocholine 

7 
Lipids: 
Sphingoli
pids  

Lipidmaps_HMDB  0 

1.
00 

1.
01 

1.
40 

0.9
8 

0.7
6 

1 
0.977
947 

0.263
724 

0.949
142 

0.593
028 

728.582
4781 

8.76
9 

C41H81N2O
6P 

2 SM(d18:1/18:1(9Z)) 7 
Lipids: 
Sphingoli
pids  

KEGG_Lipidmaps_
HMDB  

C00550 

1.
00 

1.
06 

1.
57 

1.0
3 

0.9
3 

1 
0.725
195 

0.075
851 

0.876
028 

0.867
658 

730.597
9114 

8.72
55 

C41H83N2O
6P 

3 SM(d18:0/18:1(9Z)) 5 
Lipids: 
Sphingoli
pids  

KEGG_Lipidmaps_
HMDB  

C00550 

1.
00 

1.
15 

1.
36 

0.7
8 

0.8
3 

1 
0.720
658 

0.284
709 

0.467
348 

0.648
411 

732.613
3871 

8.57
28 

C41H85N2O
6P 

1 SM(d18:0/18:0) 7 
Lipids: 
Sphingoli
pids  

KEGG_Lipidmaps_
HMDB  

C00550 

1.
00 

0.
81 

0.
49 

0.3
9 

1.1
1 

1 
0.776
135 

0.452
434 

0.384
256 

0.922
986 

758.630
1035 

8.61
52 

C43H87N2O
6P 

1 SM(d18:1/20:0) 5 
Lipids: 
Sphingoli
pids  

KEGG_Lipidmaps_
HMDB  

C00550 

1.
00 

1.
22 

1.
14 

0.7
9 

0.9
8 

1 
0.782
705 

0.849
421 

0.731
327 

0.975
048 

784.645
5725 

8.50
52 

C45H89N2O
6P 

2 SM(d18:1/22:1(13Z)) 5 
Lipids: 
Sphingoli
pids  

KEGG_HMDB  C00550 

1.
00 

1.
11 

1.
07 

0.8
4 

0.9
5 

1 
0.864
394 

0.919
622 

0.778
093 

0.942
433 

786.661
6711 

8.50
48 

C45H91N2O
6P 

2 SM(d18:1/22:0) 5 
Lipids: 
Sphingoli
pids  

KEGG_Lipidmaps_
HMDB  

C00550 

1.
00 

1.
08 

1.
03 

0.5
7 

0.8
3 

1 
0.923
486 

0.964
724 

0.529
099 

0.817
757 

798.661
1029 

8.46
29 

C46H92N2O
6P 

1 SM(d17:1/24:1(15Z)) 5 
Lipids: 
Sphingoli
pids  

HMDB  0 

1.
00 

1.
17 

1.
13 

0.7
9 

0.8
9 

1 
0.823
555 

0.854
677 

0.723
083 

0.869
017 

812.676
9741 

8.42
74 

C47H93N2O
6P 

1 SM(d18:1/24:1(15Z)) 7 
Lipids: 
Sphingoli
pids  

KEGG_Lipidmaps_
HMDB  

C00550 

1.
00 

1.
15 

1.
09 

0.6
7 

0.8
0 

1 
0.849
782 

0.911
941 

0.620
412 

0.776
907 

368.344
3024 

5.15
89 

C27H44 1 
[ST] (5Z,7E)-9,10-seco-
5,7,10(19)-cholestatriene 

7 
Lipids: 
Sterol 
lipids  

Lipidmaps  0 

1.
00 

1.
30 

1.
29 

0.8
6 

1.3
3 

1 
0.692
935 

0.741
141 

0.840
797 

0.673
698 

384.339
2208 

5.18
79 

C27H44O 28 
[ST (2:0)] 5alpha-
cholesta-8,24-dien-
3beta-ol 

6 
Lipids: 
Sterol 
lipids  

KEGG_Metacyc_Li
pidmaps_HMDB  

C05437 

1.
00 

0.
94 

0.
92 

1.2
9 

0.8
2 

1 
0.916
389 

0.885
031 

0.662
696 

0.736
544 

390.276
8445 

5.05
25 

C24H38O4 58 

[ST hydrox] 
3alpha,12alpha-
Dihydroxy-5beta-chol-6-
en-24-oic Acid 

7 
Lipids: 
Sterol 
lipids  

KEGG_Lipidmaps  C11637 

1.
00 

1.
09 

1.
45 

1.0
3 

0.6
5 

1 
0.826
918 

0.334
062 

0.917
248 

0.485
35 

http://www.chemspider.com/Search.aspx?q=%20N-(hexadecanoyl)-sphing-4-enine-1-phosphocholine
http://www.chemspider.com/Search.aspx?q=%20N-(hexadecanoyl)-sphing-4-enine-1-phosphocholine
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http://www.chemspider.com/Search.aspx?q=SM(d18:0/18:1(9Z))
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http://www.genome.jp/dbget-bin/www_bget?C00550
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http://www.genome.jp/dbget-bin/www_bget?C00550
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http://www.chemspider.com/Search.aspx?q=SM(d18:1/24:1(15Z))
http://www.chemspider.com/Search.aspx?q=SM(d18:1/24:1(15Z))
http://www.chemspider.com/Search.aspx?q=SM(d18:1/24:1(15Z))
http://www.genome.jp/dbget-bin/www_bget?C00550
http://www.genome.jp/dbget-bin/www_bget?C00550
http://www.genome.jp/dbget-bin/www_bget?C00550
http://www.chemspider.com/Search.aspx?q=%20(5Z,7E)-9,10-seco-5,7,10(19)-cholestatriene
http://www.chemspider.com/Search.aspx?q=%20(5Z,7E)-9,10-seco-5,7,10(19)-cholestatriene
http://www.chemspider.com/Search.aspx?q=%20(5Z,7E)-9,10-seco-5,7,10(19)-cholestatriene
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=%205alpha-cholesta-8,24-dien-3beta-ol
http://www.chemspider.com/Search.aspx?q=%205alpha-cholesta-8,24-dien-3beta-ol
http://www.chemspider.com/Search.aspx?q=%205alpha-cholesta-8,24-dien-3beta-ol
http://www.genome.jp/dbget-bin/www_bget?C05437
http://www.genome.jp/dbget-bin/www_bget?C05437
http://www.genome.jp/dbget-bin/www_bget?C05437
http://www.chemspider.com/Search.aspx?q=%203alpha,12alpha-Dihydroxy-5beta-chol-6-en-24-oic%20Acid
http://www.chemspider.com/Search.aspx?q=%203alpha,12alpha-Dihydroxy-5beta-chol-6-en-24-oic%20Acid
http://www.chemspider.com/Search.aspx?q=%203alpha,12alpha-Dihydroxy-5beta-chol-6-en-24-oic%20Acid
http://www.genome.jp/dbget-bin/www_bget?C11637
http://www.genome.jp/dbget-bin/www_bget?C11637
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404.292
3391 

5.04
79 

C25H40O4 7 

[ST (3:0)] (5Z,7E)-(1S,3R)-
21-nor-20-oxa-9,10-seco-
5,7,10(19)-
cholestatriene-1,3,25-
triol 

5 
Lipids: 
Sterol 
lipids  

Lipidmaps  0 

1.
00 

1.
40 

1.
11 

1.8
3 

2.4
4 

1 
0.696
477 

0.785
949 

0.571
527 

0.326
636 

414.312
8727 

5.21
14 

C27H42O3 28 

[ST hydroxy(3:0)] (5Z,7E)-
(1S,3R)-1,3-dihydroxy-
9,10-seco-5,7,10(19)-
cholestatrien-22-one 

5 
Lipids: 
Sterol 
lipids  

Lipidmaps  0 

1.
00 

1.
48 

1.
17 

1.7
9 

0.9
9 

1 
0.403
153 

0.670
183 

0.523
081 

0.967
955 

416.328
5414 

5.20
17 

C27H44O3 46 

[ST (3:0)] (5Z,7E)-(1S,3R)-
9,10-seco-5,7,10(19)-
cholestatriene-1,3,25-
triol 

8 
Lipids: 
Sterol 
lipids  

KEGG_Metacyc_Li
pidmaps_HMDB  

C01673 

1.
00 

1.
32 

1.
04 

1.8
6 

0.8
8 

1 
0.420
647 

0.915
635 

0.468
743 

0.775
665 

418.307
9675 

5.03
76 

C26H42O4 10 

[ST (3:0)] (5Z,7E)-
(1S,3R,24R)-22-oxa-9,10-
seco-5,7,10(19)-
cholestatriene-1,3,24-
triol 

7 
Lipids: 
Sterol 
lipids  

Lipidmaps  0 

1.
00 

1.
18 

0.
89 

1.6
2 

2.1
2 

1 
0.838
353 

0.719
171 

0.608
504 

0.373
909 

432.323
5594 

5.18
41 

C27H44O4 34 

[ST (2:0)] (7E)-(1S,3R,6R)-
6,19-epidioxy-9,10-seco-
5(10),7-cholestadiene-
1,3-diol 

5 
Lipids: 
Sterol 
lipids  

Lipidmaps  0 

1.
00 

1.
41 

0.
75 

0.5
4 

1.8
1 

1 
0.694
04 

0.363
143 

0.143
875 

0.417
335 

448.318
4682 

5.61
06 

C27H44O5 16 
[ST (3:0)] 25R-spirostan-
2beta,3beta,6beta-triol 

5 
Lipids: 
Sterol 
lipids  

Lipidmaps  0 

1.
00 

1.
15 

1.
48 

1.0
3 

0.8
3 

1 
0.689
673 

0.515
652 

0.927
604 

0.525
328 

455.339
3228 

5.42
83 

C29H45NO3 1 

[ST oxo(3:0/3:0)] (5Z,7E)-
(1S,3R)-24-oxo-25-aza-
26,27-propano-9,10-
seco-5,7,10(19)-
cholestatriene-1,3,25-
triol 

5 
Lipids: 
Sterol 
lipids  

Lipidmaps  0 

1.
00 

0.
91 

1.
19 

1.0
4 

0.7
2 

1 
0.788
775 

0.612
158 

0.897
366 

0.485
314 

238.098
8237 

20.2
88 

C8H18N2O4
S 

1 HEPES 10 
Medium 
Compone
nt  

Medium  0 

1.
00 

1.
01 

0.
99 

1.0
2 

0.8
7 

1 
0.902
829 

0.784
221 

0.785
915 

0.062
12 

520.076
1276 

15.0
3 

C26H20N2O
6S2  

1 
Bathocuproine disulfonic 
acid 

8 
Medium 
Compone
nt  

Medium  0 

1.
00 

1.
11 

1.
37 

1.0
7 

0.7
5 

1 
0.201
233 

0.370
336 

0.629
608 

0.557
408 

http://www.chemspider.com/Search.aspx?q=%20(5Z,7E)-(1S,3R)-21-nor-20-oxa-9,10-seco-5,7,10(19)-cholestatriene-1,3,25-triol
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http://www.chemspider.com/Search.aspx?q=%20(5Z,7E)-(1S,3R)-1,3-dihydroxy-9,10-seco-5,7,10(19)-cholestatrien-22-one
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http://www.chemspider.com/Search.aspx?q=%20(5Z,7E)-(1S,3R)-9,10-seco-5,7,10(19)-cholestatriene-1,3,25-triol
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http://www.chemspider.com/Search.aspx?q=%20(7E)-(1S,3R,6R)-6,19-epidioxy-9,10-seco-5(10),7-cholestadiene-1,3-diol
http://www.chemspider.com/Search.aspx?q=%20(7E)-(1S,3R,6R)-6,19-epidioxy-9,10-seco-5(10),7-cholestadiene-1,3-diol
http://www.chemspider.com/Search.aspx?q=%20(7E)-(1S,3R,6R)-6,19-epidioxy-9,10-seco-5(10),7-cholestadiene-1,3-diol
http://www.genome.jp/dbget-bin/www_bget?
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http://www.chemspider.com/Search.aspx?q=%20(5Z,7E)-(1S,3R)-24-oxo-25-aza-26,27-propano-9,10-seco-5,7,10(19)-cholestatriene-1,3,25-triol
http://www.chemspider.com/Search.aspx?q=%20(5Z,7E)-(1S,3R)-24-oxo-25-aza-26,27-propano-9,10-seco-5,7,10(19)-cholestatriene-1,3,25-triol
http://www.chemspider.com/Search.aspx?q=%20(5Z,7E)-(1S,3R)-24-oxo-25-aza-26,27-propano-9,10-seco-5,7,10(19)-cholestatriene-1,3,25-triol
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http://www.chemspider.com/Search.aspx?q=Bathocuproine%20disulfonic%20acid
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191.025
1479 

18.6
57 

C6H9NO4S 1 a Cysteine adduct 7 
Medium 
Contamin
ant 

Medium  0 

1.
00 

0.
93 

1.
06 

0.9
0 

0.5
6 

1 
0.409
385 

0.642
42 

0.343
734 

0.254
755 

191.025
1625 

17.2
15 

C6H9NO4S 1 a Cysteine adduct 7 
Medium 
Contamin
ant 

Medium  0 

1.
00 

1.
03 

1.
09 

0.9
8 

0.4
5 

1 
0.815
559 

0.681
75 

0.894
28 

0.218
385 

191.025
2322 

8.22
98 

C6H9NO4S 1 a Cysteine adduct 5 
Medium 
Contamin
ant 

Medium  0 

1.
00 

0.
99 

1.
05 

0.9
7 

0.5
5 

1 
0.978
991 

0.907
612 

0.914
612 

0.226
976 

122.048
1067 

7.91
46 

C6H6N2O 4 Nicotinamide 8 

Metabolis
m of 
Cofactors 
and 
Vitamins  

KEGG_Metacyc_H
MDB  

C00153 

1.
00 

1.
02 

1.
05 

1.2
2 

0.4
4 

1 
0.928
648 

0.774
75 

0.454
056 

0.101
924 

128.047
4045 

5.11
81 

C6H8O3 9 
Dihydro-4,4-dimethyl-
2,3-Furandione 

5 

Metabolis
m of 
Cofactors 
and 
Vitamins  

KEGG_Metacyc  C01125 

1.
00 

1.
12 

1.
29 

1.6
7 

0.7
4 

1 
0.764
765 

0.395
916 

0.281
939 

0.438
285 

141.975
7141 

17.5
03 

C2H6O3S2 1 
2-
Mercaptoethanesulfonat
e 

6 

Metabolis
m of 
Cofactors 
and 
Vitamins  

KEGG_Metacyc_H
MDB  

C03576 

1.
00 

1.
03 

0.
90 

0.8
9 

0.2
6 

1 
0.918
274 

0.770
687 

0.728
327 

  

155.034
6523 

19.8
67 

C3H10NO4P 3 
D-1-Aminopropan-2-ol O-
phosphate 

8 

Metabolis
m of 
Cofactors 
and 
Vitamins  

KEGG_Metacyc  C04122 

1.
00 

0.
94 

1.
22 

0.7
4 

0.3
1 

1 
0.796
825 

0.537
879 

0.063
328 

0.005
312 

167.058
0877 

10.0
85 

C8H9NO3 9 Isopyridoxal 6 

Metabolis
m of 
Cofactors 
and 
Vitamins  

KEGG_Metacyc_H
MDB  

C06051 

1.
00 

1.
03 

1.
23 

1.1
9 

0.6
5 

1 
0.904
062 

0.502
629 

0.448
113 

0.408
786 

168.089
7983 

19.3
06 

C8H12N2O2 3 Pyridoxamine 8 

Metabolis
m of 
Cofactors 
and 

KEGG_Metacyc_H
MDB  

C00534 

1.
00 

1.
22 

1.
12 

1.5
8 

0.5
8 

1 
0.546
171 

0.779
018 

0.199
03 

0.086
558 
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Vitamins  

183.052
9467 

8.23
83 

C8H9NO4 6 4-Pyridoxate 6 

Metabolis
m of 
Cofactors 
and 
Vitamins  

KEGG_Metacyc_H
MDB  

C00847 

1.
00 

0.
91 

0.
91 

0.9
7 

0.7
4 

1 
0.821
682 

0.833
544 

0.945
528 

0.505
886 

195.075
6327 

8.85
78 

C7H9N5O2 1 
2-Amino-4-hydroxy-6-
hydroxymethyl-7,8-
dihydropteridine 

6 

Metabolis
m of 
Cofactors 
and 
Vitamins  

KEGG_Metacyc  C01300 

1.
00 

0.
83 

1.
45 

1.5
5 

0.4
3 

1 
0.543
407 

0.135
992 

0.255
557 

0.117
631 

223.006
7154 

17.5
43 

C6H10NO4P
S 

1 
4-Methyl-5-(2-
phosphoethyl)-thiazole 

6 

Metabolis
m of 
Cofactors 
and 
Vitamins  

KEGG_Metacyc  C04327 

1.
00 

1.
19 

1.
08 

1.1
5 

2.4
8 

1 
0.095
276 

0.331
29 

0.239
635 

0.499
061 

254.090
0681 

13.9
48 

C11H14N2O
5 

4 N-Ribosylnicotinamide 8 

Metabolis
m of 
Cofactors 
and 
Vitamins  

KEGG_Metacyc_H
MDB 

C03150 

1.
00 

0.
83 

1.
40 

1.4
8 

0.7
6 

1 
0.566
69 

0.216
125 

0.376
407 

0.629
551 

264.104
2247 

19.8
72 

C12H17N4O
S 

1 Thiamin 10 

Metabolis
m of 
Cofactors 
and 
Vitamins  

medium_KEGG_M
etacyc_HMDB  

C00378 

1.
00 

1.
02 

0.
77 

0.6
9 

0.3
3 

1 
0.939
972 

0.355
604 

0.225
473 

0.052
958 

264.104
5454 

19.7
41 

C12H17N4O
S 

1 Thiamin 8 

Metabolis
m of 
Cofactors 
and 
Vitamins  

medium_KEGG_M
etacyc_HMDB  

C00378 

1.
00 

1.
05 

1.
04 

1.1
7 

0.4
9 

1 
0.671
857 

0.752
099 

0.437
424 

0.154
013 

376.138
1031 

7.96
81 

C17H20N4O
6 

2 Riboflavin 10 

Metabolis
m of 
Cofactors 
and 
Vitamins  

KEGG_Metacyc_H
MDB  

C00255 

1.
00 

0.
97 

0.
89 

1.0
7 

0.4
4 

1 
0.787
119 

0.334
485 

0.722
221 

0.081
276 
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441.140
4546 

10.3
03 

C19H19N7O
6 

1 Folate 8 

Metabolis
m of 
Cofactors 
and 
Vitamins  

KEGG_HMDB  C00504 

1.
00 

1.
06 

1.
02 

1.1
9 

0.4
0 

1 
0.756
492 

0.917
456 

0.455
498 

0.070
667 

471.150
1292 

10.3
98 

C20H21N7O
7 

1 10-Formyldihydrofolate 7 

Metabolis
m of 
Cofactors 
and 
Vitamins  

KEGG_Metacyc_H
MDB  

C03204 

1.
00 

1.
17 

1.
59 

1.2
1 

0.8
2 

1 
0.331
709 

0.421
11 

0.108
646 

0.542
921 

74.0001
3966 

10.1
09 

C2H2O3 1 Glyoxylate 8 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00048 

1.
00 

1.
23 

1.
14 

1.4
3 

0.6
5 

1 
0.597
592 

0.761
252 

0.301
234 

0.221
135 

84.0322
4442 

14.8
14 

C3H4N2O 1 Imidazolone 6 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C06195 

1.
00 

0.
98 

0.
89 

0.9
5 

0.7
7 

1 
0.909
689 

0.365
445 

0.707
191 

0.089
864 

84.0322
4778 

15.4
88 

C3H4N2O 1 Imidazolone 6 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C06195 

1.
00 

1.
01 

0.
95 

0.9
6 

0.9
7 

1 
0.929
718 

0.582
367 

0.673
313 

0.762
087 

84.0325
2349 

10.3
64 

C3H4N2O 1 Imidazolone 6 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C06195 

1.
00 

0.
89 

0.
91 

0.8
3 

0.7
7 

1 
0.009
737 

0.425
973 

0.187
615 

0.175
467 

89.0476
3509 

15.5
61 

C3H7NO2 9 beta-Alanine 8 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00099 

1.
00 

0.
99 

1.
15 

0.8
0 

0.5
3 

1 
0.946
506 

0.422
342 

0.130
722 

0.012
696 

89.0476
3627 

13.2
78 

C3H7NO2 9 beta-Alanine 6 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00099 

1.
00 

1.
00 

0.
94 

1.0
0 

0.4
6 

1 
0.990
476 

0.567
288 

0.994
248 

0.115
733 

112.027
3028 

9.51
26 

C4H4N2O2 1 Uracil 8 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00106 

1.
00 

0.
99 

1.
08 

1.0
4 

0.4
9 

1 
0.959
799 

0.758
996 

0.877
773 

0.052
427 
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126.043
0264 

7.59
68 

C5H6N2O2 2 Thymine 10 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00178 

1.
00 

0.
94 

0.
89 

1.2
3 

0.4
9 

1 
0.913
696 

0.739
752 

0.540
945 

0.202
06 

133.048
4678 

16.3
47 

C3H7N3O3 2 Ureidoglycine 6 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc  C02091 

1.
00 

1.
08 

0.
95 

0.8
6 

0.5
6 

1 
0.748
898 

0.830
887 

0.560
623 

0.143
243 

135.054
4148 

10.9
21 

C5H5N5 1 Adenine 8 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00603 

1.
00 

1.
15 

1.
26 

1.3
2 

0.7
5 

1 
0.201
988 

0.055
837 

0.028
125 

0.443
164 

151.049
3461 

12.4
67 

C5H5N5O 3 Guanine 10 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00242 

1.
00 

3.
65 

3.
63 

1.6
7 

0.7
2 

1 
0.156
519 

0.233
42 

0.258
49 

0.244
605 

152.033
4286 

9.15
94 

C5H4N4O2 3 Xanthine 10 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00385 

1.
00 

1.
18 

1.
05 

1.0
6 

0.4
1 

1 
0.723
683 

0.920
256 

0.906
06 

0.253
857 

158.043
7032 

13.7
01 

C4H6N4O3 3 Allantoin 8 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C01551 

1.
00 

1.
01 

0.
94 

1.0
7 

0.4
3 

1 
0.947
249 

0.641
236 

0.674
335 

0.077
91 

168.028
0669 

12.4
76 

C5H4N4O3 1 Urate 8 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00366 

1.
00 

1.
00 

0.
93 

1.0
1 

0.7
3 

1 
0.981
907 

0.633
505 

0.908
092 

0.115
301 

176.054
2085 

16.3
4 

C4H8N4O4 1 Allantoate 8 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00499 

1.
00 

1.
06 

0.
88 

0.8
9 

0.5
2 

1 
0.858
066 

0.725
38 

0.751
456 

0.240
152 

228.074
4783 

8.02
75 

C9H12N2O5 3 Deoxyuridine 10 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00526 

1.
00 

1.
93 

1.
15 

1.4
9 

0.8
6 

1 
0.059
71 

0.444
596 

0.011
423 

0.386
807 
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http://www.genome.jp/dbget-bin/www_bget?C00366
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242.090
3659 

7.60
84 

C10H14N2O
5 

1 Thymidine 8 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00214 

1.
00 

0.
97 

0.
79 

1.1
1 

0.7
5 

1 
0.960
158 

0.480
61 

0.798
81 

0.420
142 

244.069
2849 

9.53
56 

C9H12N2O6 2 Uridine 10 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00299 

1.
00 

0.
94 

0.
77 

0.9
4 

0.4
5 

1 
0.838
292 

0.369
17 

0.795
959 

0.106
599 

244.069
3086 

11.9
53 

C9H12N2O6 2 Pseudouridine 6 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C02067 

1.
00 

1.
04 

0.
98 

0.9
1 

0.3
7 

1 
0.800
699 

0.944
425 

0.591
022 

0.037
046 

267.096
8371 

10.2
76 

C10H13N5O
4 

3 Adenosine 10 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00212 

1.
00 

0.
96 

1.
35 

1.4
0 

0.7
9 

1 
0.838
499 

0.740
477 

0.152
291 

0.626
877 

283.091
6259 

12.7
24 

C10H13N5O
5 

5 Guanosine 8 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00387 

1.
00 

1.
00 

1.
97 

1.4
5 

1.2
2 

1 
0.993
849 

0.116
211 

0.195
186 

0.758
137 

284.075
5655 

9.68
82 

C10H12N4O
6 

1 Xanthosine 6 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C01762 

1.
00 

0.
97 

0.
84 

0.7
2 

0.2
4 

1 
0.931
883 

0.572
347 

0.340
523 

0.079
248 

323.051
5791 

20.8
27 

C9H14N3O8
P 

3 CMP 10 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00055 

1.
00 

1.
38 

1.
69 

1.7
2 

0.8
2 

1 
0.271
32 

0.221
64 

0.094
714 

0.677
653 

324.035
5752 

23.2
34 

C9H13N2O9
P 

4 
Pseudouridine 5'-
phosphate 

8 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C01168 

1.
00 

0.
88 

0.
60 

0.7
0 

0.1
6 

1 
0.753
767 

0.180
125 

0.354
885 

0.042
953 

347.063
0043 

20.2
88 

C10H14N5O
7P 

7 3'-AMP 8 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C01367 

1.
00 

0.
82 

0.
82 

0.7
3 

0.3
5 

1 
0.407
726 

0.416
337 

0.187
281 

0.017
907 
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http://www.genome.jp/dbget-bin/www_bget?C00387
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http://www.chemspider.com/Search.aspx?q=Xanthosine
http://www.chemspider.com/Search.aspx?q=Xanthosine
http://www.chemspider.com/Search.aspx?q=Xanthosine
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363.057
8831 

25.0
12 

C10H14N5O
8P 

5 GMP 10 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00144 

1.
00 

1.
10 

1.
24 

0.8
8 

0.3
1 

1 
0.679
213 

0.370
148 

0.618
016 

0.060
402 

402.022
7375 

19.7
06 

C10H16N2O
11P2 

1 dTDP 6 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00363 

1.
00 

1.
14 

1.
30 

1.1
3 

1.0
0 

1 
0.120
858 

0.029
557 

0.563
848 

0.991
509 

404.003
1602 

17.8
49 

C9H14N2O1
2P2 

1 UDP 6 

Nucleotid
e 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00015 

1.
00 

1.
02 

1.
03 

0.8
7 

0.4
2 

1 
0.912
439 

0.861
15 

0.319
899 

0.056
278 

276.095
6701 

16.3
15 

C10H16N2O
7 

2 
GammaGlutamylglutamic
acid 

7 Peptide  

KEGG_Metacyc_H
MDB  

C05282 

1.
00 

1.
04 

1.
20 

0.6
6 

0.9
8 

1 
0.894
52 

0.572
819 

0.213
971 

0.981
992 

186.100
346 

11.2
25 

C8H14N2O3 1 Ala-Pro 5 
Peptide(di
-)  

Peptides  0 

1.
00 

1.
51 

1.
41 

0.8
7 

0.5
5 

1 
0.195
806 

0.226
72 

0.582
916 

0.179
423 

202.131
6852 

11.3
47 

C9H18N2O3 3 Ile-Ala 5 
Peptide(di
-)  

Peptides  0 

1.
00 

0.
99 

1.
03 

1.0
1 

0.6
7 

1 
0.971
22 

0.942
436 

0.982
884 

0.314
791 

202.131
7357 

8.30
9 

C9H18N2O3 3 Leu-Ala 7 
Peptide(di
-)  

Peptides  0 

1.
00 

1.
07 

1.
40 

1.2
9 

0.9
3 

1 
0.739
399 

0.041
519 

0.289
409 

0.758
664 

208.051
709 

21.8
35 

C6H12N2O4
S 

2 Cys-Ser 7 
Peptide(di
-)  

Peptides  0 

1.
00 

0.
88 

1.
39 

1.1
3 

2.9
3 

1 
0.664
835 

0.295
673 

0.637
626 

0.395
558 

212.116
0167 

11.2
35 

C10H16N2O
3 

2 Pro-Pro 7 
Peptide(di
-)  

Peptides_HMDB  0 

1.
00 

1.
86 

1.
38 

1.0
6 

0.7
9 

1 
0.200
238 

0.296
376 

0.819
623 

0.596
443 

214.131
6781 

10.9
41 

C10H18N2O
3 

2 Val-Pro 7 
Peptide(di
-)  

Peptides  0 

1.
00 

0.
81 

0.
79 

1.3
1 

0.7
2 

1 
0.622
226 

0.541
553 

0.418
31 

0.499
951 

218.126
6012 

12.9
72 

C9H18N2O4 5 Leu-Ser 7 
Peptide(di
-)  

Peptides  0 

1.
00 

0.
88 

1.
13 

0.9
0 

0.4
9 

1 
0.150
255 

0.634
427 

0.598
11 

0.140
056 

228.147
309 

10.7
37 

C11H20N2O
3 

3 Leu-Pro 5 
Peptide(di
-)  

Peptides_HMDB  0 

1.
00 

1.
13 

0.
93 

1.1
9 

0.4
6 

1 
0.658
527 

0.764
848 

0.578
327 

0.069
948 
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228.147
5003 

8.92
37 

C11H20N2O
3 

3 Ile-Pro 7 
Peptide(di
-)  

Peptides  0 

1.
00 

1.
35 

1.
46 

1.0
9 

0.8
9 

1 
0.206
021 

0.177
638 

0.681
509 

0.747
674 

230.090
1547 

14.1
05 

C9H14N2O5 1 Aspartyl-L-proline 7 
Peptide(di
-)  

Peptides_HMDB  0 

1.
00 

2.
04 

1.
34 

1.1
6 

0.8
1 

1 
0.135
636 

0.475
13 

0.611
86 

0.606
077 

230.163
0213 

8.05
2 

C11H22N2O
3 

2 Leu-Val 7 
Peptide(di
-)  

Peptides  0 

1.
00 

0.
94 

1.
28 

1.6
5 

0.5
9 

1 
0.861
937 

0.550
159 

0.184
328 

0.202
293 

244.178
7291 

6.33
14 

C12H24N2O
3 

4 Leucyl-leucine 5 
Peptide(di
-)  

KEGG_Metacyc_Pe
ptides  

C11332 

1.
00 

0.
80 

1.
17 

1.1
6 

1.5
6 

1 
0.512
275 

0.511
263 

0.706
544 

0.110
43 

246.121
5074 

11.9
49 

C10H18N2O
5 

6 Glu-Val 5 
Peptide(di
-)  

Peptides  0 

1.
00 

1.
10 

1.
12 

0.9
6 

0.6
2 

1 
0.325
16 

0.511
44 

0.653
679 

0.038
891 

260.137
1167 

10.5
27 

C11H20N2O
5 

4 Glu-Leu 5 
Peptide(di
-)  

Peptides  0 

1.
00 

1.
16 

1.
07 

0.9
2 

0.5
9 

1 
0.232
26 

0.817
528 

0.660
23 

0.032
559 

270.095
0724 

17.6
16 

C10H14N4O
5 

2 Asp-His 7 
Peptide(di
-)  

Peptides  0 

1.
00 

1.
04 

1.
38 

1.6
2 

0.8
8 

1 
0.895
747 

0.206
214 

0.055
693 

0.873
669 

214.092
6562 

21.4
77 

C17H28N6O
5S 

4 Ala-Met-Ala-His 7 
Peptide(t
etra-)  

Peptides  0 

1.
00 

0.
06 

1.
32 

1.4
2 

2.3
6 

1 
0.411
675 

0.844
701 

0.758
745 

0.404
109 

229.071
2954 

23.1
52 

C17H26N6O
5S2 

1 Cys-Cys-Pro-His 7 
Peptide(t
etra-)  

Peptides  0 

1.
00 

0.
65 

1.
25 

0.9
9 

0.9
5 

1 
0.349
158 

0.599
034 

0.978
835 

0.871
682 

250.070
1552 

8.11
96 

C20H28N4O
7S2 

1 Glu-Phe-Cys-Cys 7 
Peptide(t
etra-)  

Peptides  0 

1.
00 

1.
13 

0.
82 

0.9
0 

0.2
5 

1 
0.740
95 

0.375
116 

0.575
893 

0.028
123 

250.090
3648 

15.8
36 

C18H28N8O
7S 

1 Asn-Cys-Gln-His 7 
Peptide(t
etra-)  

Peptides  0 

1.
00 

1.
03 

1.
16 

0.8
8 

0.1
7 

1 
0.767
617 

0.415
247 

0.286
677 

0.011
6 

260.126
9204 

19.8
84 

C18H36N10
O6S 

1 Arg-Cys-Ser-Arg 7 
Peptide(t
etra-)  

Peptides  0 

1.
00 

0.
98 

0.
94 

0.7
7 

0.6
5 

1 
0.945
294 

0.846
993 

0.495
764 

0.330
074 

412.172
2046 

20.7
18 

C16H24N6O
7 

3 Ala-Ala-Asp-His 5 
Peptide(t
etra-)  

Peptides  0 

1.
00 

0.
98 

1.
26 

0.9
1 

0.3
4 

1 
0.958
184 

0.556
834 

0.858
185 

0.205
614 

http://www.chemspider.com/Search.aspx?q=Ile-Pro
http://www.chemspider.com/Search.aspx?q=Ile-Pro
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Aspartyl-L-proline
http://www.chemspider.com/Search.aspx?q=Aspartyl-L-proline
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Leu-Val
http://www.chemspider.com/Search.aspx?q=Leu-Val
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Leucyl-leucine
http://www.chemspider.com/Search.aspx?q=Leucyl-leucine
http://www.genome.jp/dbget-bin/www_bget?C11332
http://www.genome.jp/dbget-bin/www_bget?C11332
http://www.genome.jp/dbget-bin/www_bget?C11332
http://www.chemspider.com/Search.aspx?q=Glu-Val
http://www.chemspider.com/Search.aspx?q=Glu-Val
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Glu-Leu
http://www.chemspider.com/Search.aspx?q=Glu-Leu
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Asp-His
http://www.chemspider.com/Search.aspx?q=Asp-His
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Ala-Met-Ala-His
http://www.chemspider.com/Search.aspx?q=Ala-Met-Ala-His
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Cys-Cys-Pro-His
http://www.chemspider.com/Search.aspx?q=Cys-Cys-Pro-His
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Glu-Phe-Cys-Cys
http://www.chemspider.com/Search.aspx?q=Glu-Phe-Cys-Cys
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Asn-Cys-Gln-His
http://www.chemspider.com/Search.aspx?q=Asn-Cys-Gln-His
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Arg-Cys-Ser-Arg
http://www.chemspider.com/Search.aspx?q=Arg-Cys-Ser-Arg
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Ala-Ala-Asp-His
http://www.chemspider.com/Search.aspx?q=Ala-Ala-Asp-His
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
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416.164
5637 

17.5
76 

C15H24N6O
8 

1 His-Ser-Ser-Ser 5 
Peptide(t
etra-)  

Peptides  0 

1.
00 

1.
29 

1.
21 

1.9
5 

1.1
0 

1 
0.397
24 

0.569
481 

0.102
599 

  

431.214
0681 

20.9
34 

C16H29N7O
7 

4 Ala-Ala-Asp-Arg 7 
Peptide(t
etra-)  

Peptides  0 

1.
00 

0.
37 

0.
71 

0.6
5 

0.3
1 

1 
0.322
501 

0.615
613 

0.583
266 

0.291
003 

433.194
0868 

20.6
82 

C15H27N7O
8 

1 Arg-Asp-Gly-Ser 5 
Peptide(t
etra-)  

Peptides  0 

1.
00 

0.
53 

0.
91 

0.7
9 

0.7
3 

1 
0.024
581 

0.698
834 

0.300
406 

  

450.194
0981 

9.88
97 

C21H30N4O
5S 

2 Met-Phe-Gly-Pro 7 
Peptide(t
etra-)  

Peptides  0 

1.
00 

0.
98 

1.
01 

0.8
7 

1.0
7 

1 
0.871
353 

0.927
917 

0.439
903 

0.886
045 

482.171
155 

17.5
28 

C18H26N8O
6S 

1 Cys-Ser-His-His 5 
Peptide(t
etra-)  

Peptides  0 

1.
00 

1.
23 

1.
00 

0.9
2 

0.3
2 

1 
0.481
325 

0.997
519 

0.773
922 

0.005
338 

532.197
9363 

8.24
97 

C25H32N4O
7S 

2 Cys-Phe-Thr-Tyr 5 
Peptide(t
etra-)  

Peptides  0 

1.
00 

0.
83 

0.
93 

1.5
4 

0.5
6 

1 
0.844
049 

0.927
774 

0.469
488 

0.583
155 

568.242
6471 

19.6
96 

C23H36N8O
7S 

1 Arg-Cys-Gln-Tyr 5 
Peptide(t
etra-)  

Peptides  0 

1.
00 

1.
83 

4.
31 

4.0
3 

1.1
1 

1 
0.190
531 

0.017
326 

0.107
975 

0.890
422 

579.199
4675 

8.42
44 

C25H33N5O
9S 

1 Glu-Met-Trp-Asp 7 
Peptide(t
etra-)  

Peptides  0 

1.
00 

1.
31 

0.
92 

1.0
9 

0.3
2 

1 
0.490
708 

0.406
286 

0.678
569 

0.134
74 

301.163
6552 

11.8
22 

C13H23N3O
5 

2 Val-Pro-Ser 7 
Peptide(tr
i-)  

Peptides  0 

1.
00 

1.
14 

1.
13 

0.4
4 

0.7
8 

1 
0.670
645 

0.730
175 

0.135
728 

0.793
149 

309.168
6631 

10.9
47 

C15H23N3O
4 

2 Pro-Pro-Pro 5 
Peptide(tr
i-)  

Peptides  0 

1.
00 

1.
55 

1.
54 

0.9
8 

0.4
4 

1 
0.166
334 

0.217
411 

0.916
058 

0.006
307 

331.210
55 

8.14
28 

C15H29N3O
5 

5 Leu-Leu-Ser 7 
Peptide(tr
i-)  

Peptides  0 

1.
00 

0.
95 

1.
43 

2.2
7 

1.2
4 

1 
0.947
634 

0.441
204 

0.012
118 

0.827
874 

341.135
1734 

20.7
1 

C13H19N5O
6 

2 Ala-Asp-His 5 
Peptide(tr
i-)  

Peptides  0 

1.
00 

0.
82 

0.
96 

0.9
1 

0.4
0 

1 
0.506
913 

0.890
469 

0.772
964 

0.101
887 

350.125
9654 

20.3
03 

C12H22N4O
6S 

5 Met-Asn-Ser 5 
Peptide(tr
i-)  

Peptides  0 

1.
00 

0.
89 

0.
91 

0.7
6 

0.7
9 

1 
0.201
67 

0.275
06 

0.078
293 

0.062
278 

http://www.chemspider.com/Search.aspx?q=His-Ser-Ser-Ser
http://www.chemspider.com/Search.aspx?q=His-Ser-Ser-Ser
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Ala-Ala-Asp-Arg
http://www.chemspider.com/Search.aspx?q=Ala-Ala-Asp-Arg
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Arg-Asp-Gly-Ser
http://www.chemspider.com/Search.aspx?q=Arg-Asp-Gly-Ser
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Met-Phe-Gly-Pro
http://www.chemspider.com/Search.aspx?q=Met-Phe-Gly-Pro
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Cys-Ser-His-His
http://www.chemspider.com/Search.aspx?q=Cys-Ser-His-His
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Cys-Phe-Thr-Tyr
http://www.chemspider.com/Search.aspx?q=Cys-Phe-Thr-Tyr
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Arg-Cys-Gln-Tyr
http://www.chemspider.com/Search.aspx?q=Arg-Cys-Gln-Tyr
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Glu-Met-Trp-Asp
http://www.chemspider.com/Search.aspx?q=Glu-Met-Trp-Asp
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Val-Pro-Ser
http://www.chemspider.com/Search.aspx?q=Val-Pro-Ser
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Pro-Pro-Pro
http://www.chemspider.com/Search.aspx?q=Pro-Pro-Pro
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Leu-Leu-Ser
http://www.chemspider.com/Search.aspx?q=Leu-Leu-Ser
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Ala-Asp-His
http://www.chemspider.com/Search.aspx?q=Ala-Asp-His
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Met-Asn-Ser
http://www.chemspider.com/Search.aspx?q=Met-Asn-Ser
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
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405.138
0914 

16.1
4 

C15H23N3O
10 

1 Glu-Glu-Glu 5 
Peptide(tr
i-)  

Peptides  0 

1.
00 

1.
00 

1.
11 

0.8
6 

0.3
5 

1 
0.997
19 

0.508
482 

0.413
357 

0.023
866 

446.190
8701 

19.7
48 

C20H26N6O
6 

6 Gln-Tyr-His 5 
Peptide(tr
i-)  

Peptides  0 

1.
00 

1.
19 

1.
17 

1.4
2 

0.8
6 

1 
0.508
57 

0.577
956 

0.234
049 

0.730
676 

450.157
0597 

8.71
05 

C20H26N4O
6S 

1 Met-Trp-Asp 7 
Peptide(tr
i-)  

Peptides  0 

1.
00 

1.
05 

1.
09 

1.0
7 

1.0
8 

1 
0.882
027 

0.727
76 

0.814
741 

0.887
55 

464.173
2053 

9.87
3 

C21H28N4O
6S 

1 Glu-Met-Trp 7 
Peptide(tr
i-)  

Peptides  0 

1.
00 

0.
80 

0.
97 

0.6
0 

0.7
3 

1 
0.512
993 

0.926
736 

0.215
366 

0.434
902 

96.0211
1235 

14.8
18 

C5H4O2 3 Protoanemonin 1 

Xenobioti
cs 
Biodegrad
ation and 
Metabolis
m 

KEGG_Metacyc  C07090 

1.
00 

1.
02 

1.
28 

0.8
5 

0.6
3 

1 
0.937
177 

0.491
071 

0.585
869 

0.230
959 

131.094
7143 

10.5
36 

C6H13NO2 11 6-Aminohexanoate 5.5 

Xenobioti
cs 
Biodegrad
ation and 
Metabolis
m 

KEGG_Metacyc_Li
pidmaps_HMDB  

C02378 

1.
00 

1.
05 

1.
24 

1.0
3 

0.6
1 

1 
0.568
875 

0.470
451 

0.799
172 

0.282
599 

137.047
6939 

5.88
26 

C7H7NO2 13 Anthranilate 5.5 

Xenobioti
cs 
Biodegrad
ation and 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C00108 

1.
00 

0.
98 

1.
04 

0.8
0 

2.6
1 

1 
0.971
538 

0.946
001 

0.655
87 

0.038
904 

166.026
316 

7.42
58 

C8H6O4 7 Phthalate 5.5 

Xenobioti
cs 
Biodegrad
ation and 
Metabolis
m 

KEGG_Metacyc_H
MDB  

C01606 

1.
00 

1.
97 

0.
83 

3.2
8 

0.3
2 

1 
0.490
442 

0.811
112 

0.389
394 

0.323
253 

166.026
4344 

10.5
99 

C8H6O4 7 Terephthalate 4.5 
Xenobioti
cs 
Biodegrad

KEGG_Metacyc_H
MDB  

C06337 

1.
00 

1.
33 

1.
07 

2.8
6 

1.8
5 

1 
0.111
079 

0.599
994 

0.441
845 

0.389
476 

http://www.chemspider.com/Search.aspx?q=Glu-Glu-Glu
http://www.chemspider.com/Search.aspx?q=Glu-Glu-Glu
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Gln-Tyr-His
http://www.chemspider.com/Search.aspx?q=Gln-Tyr-His
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Met-Trp-Asp
http://www.chemspider.com/Search.aspx?q=Met-Trp-Asp
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Glu-Met-Trp
http://www.chemspider.com/Search.aspx?q=Glu-Met-Trp
http://www.genome.jp/dbget-bin/www_bget?
http://www.genome.jp/dbget-bin/www_bget?
http://www.chemspider.com/Search.aspx?q=Protoanemonin
http://www.chemspider.com/Search.aspx?q=Protoanemonin
http://www.chemspider.com/Search.aspx?q=Protoanemonin
http://www.chemspider.com/Search.aspx?q=Protoanemonin
http://www.chemspider.com/Search.aspx?q=Protoanemonin
http://www.chemspider.com/Search.aspx?q=Protoanemonin
http://www.genome.jp/dbget-bin/www_bget?C07090
http://www.genome.jp/dbget-bin/www_bget?C07090
http://www.chemspider.com/Search.aspx?q=6-Aminohexanoate
http://www.chemspider.com/Search.aspx?q=6-Aminohexanoate
http://www.chemspider.com/Search.aspx?q=6-Aminohexanoate
http://www.chemspider.com/Search.aspx?q=6-Aminohexanoate
http://www.chemspider.com/Search.aspx?q=6-Aminohexanoate
http://www.chemspider.com/Search.aspx?q=6-Aminohexanoate
http://www.genome.jp/dbget-bin/www_bget?C02378
http://www.genome.jp/dbget-bin/www_bget?C02378
http://www.genome.jp/dbget-bin/www_bget?C02378
http://www.chemspider.com/Search.aspx?q=Anthranilate
http://www.chemspider.com/Search.aspx?q=Anthranilate
http://www.chemspider.com/Search.aspx?q=Anthranilate
http://www.chemspider.com/Search.aspx?q=Anthranilate
http://www.chemspider.com/Search.aspx?q=Anthranilate
http://www.chemspider.com/Search.aspx?q=Anthranilate
http://www.genome.jp/dbget-bin/www_bget?C00108
http://www.genome.jp/dbget-bin/www_bget?C00108
http://www.genome.jp/dbget-bin/www_bget?C00108
http://www.chemspider.com/Search.aspx?q=Phthalate
http://www.chemspider.com/Search.aspx?q=Phthalate
http://www.chemspider.com/Search.aspx?q=Phthalate
http://www.chemspider.com/Search.aspx?q=Phthalate
http://www.chemspider.com/Search.aspx?q=Phthalate
http://www.chemspider.com/Search.aspx?q=Phthalate
http://www.genome.jp/dbget-bin/www_bget?C01606
http://www.genome.jp/dbget-bin/www_bget?C01606
http://www.genome.jp/dbget-bin/www_bget?C01606
http://www.chemspider.com/Search.aspx?q=Terephthalate
http://www.chemspider.com/Search.aspx?q=Terephthalate
http://www.chemspider.com/Search.aspx?q=Terephthalate
http://www.genome.jp/dbget-bin/www_bget?C06337
http://www.genome.jp/dbget-bin/www_bget?C06337
http://www.genome.jp/dbget-bin/www_bget?C06337
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ation and 
Metabolis
m 

182.086
7405 

19.7
08 

C6H12F2N2
O2 

1 Eflornithine 9 
Xenobioti
cs Drugs 
etc 

KEGG_Metacyc  C07997 

1.
00 

1.
26 

1.
98 

2.0
5 

1.0
4 

1 
0.284
484 

0.033
984 

0.038
533 

0.883
377 

Appendix 8-3. The eflornithine toxicity metabolome.  

http://www.chemspider.com/Search.aspx?q=Eflornithine
http://www.chemspider.com/Search.aspx?q=Eflornithine
http://www.chemspider.com/Search.aspx?q=Eflornithine
http://www.genome.jp/dbget-bin/www_bget?C07997
http://www.genome.jp/dbget-bin/www_bget?C07997
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 8.4  Arginase sequence alignment 
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Appendix 8-4. Arginase sequence alignment. 


