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i

Abstract

Optical resonators – two mirrors facing each other, separated by a

distance – are a very well studied technology. However, even such a well

understood technology can sometimes present surprises. The first part

of this thesis investigates the surprising properties of some canonical

optical resonators. The basic properties of resonators are introduced.

The imaging properties of stable and unstable resonators are examined.

The second part of this thesis examines the potential use of grating-

coupled cavities in gravitational wave detectors and describes an exper-

iment carried out on a 10 m prototype of such a cavity.
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CHAPTER 1
Introduction

1.1 Resonators and interferometers - a very

brief introduction

Near the end of the 19th century, Alfred Perot and Charles Fabry, both from

the University of Marseilles, published a paper [1] in which they described

a new device: an interferometer, where the interference was between waves

successively reflected from two parallel, silvered glass plates (see figure 1.1).

This device became known as a Fabry-Perot interferometer, and is an example

of an optical resonator.

A few years earlier, Albert Michelson had invented the interferometer which

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: An interferometer of the same design as in [1], and built by M
Jobin for Fabry and Perot in 1901.

a b

Figure 1.2: A photo (a) of a Michelson interferometer – in this case the
Morley-Miller apparatus which repeated the original measurements be-
tween 1902 and 1906 (courtesy of AIP). A diagram (b) of a Michelson
interferometer, taken from Michelson’s 1887 paper [2].

bears his name (see figure 1.2). In this interferometer, coherent light from the

source, s, falls onto a beamsplitter, a. Each of the beams is then reflected back

to the beamsplitter (from the mirrors b and c), and the resulting superposition

of these beams can be observed at d.
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In order to improve their sensitivity, modern interferometric gravitational-

wave detectors often combine the two devices. Instead of the basic Michelson

interferometer layout shown in figure 1.2, the mirrors b and c are replaced with

resonant Fabry-Perot interferometers [3].

This thesis details the research I have undertaken into novel optical resonators,

and also into the novel properties of well known resonators.

1.2 Structure of this thesis

This thesis divides neatly into two main strands: simulations of the fundamen-

tal properties of novel and not-so-novel optical resonators; and experimental

work towards the realisation of a diffractively-coupled suspended optical res-

onator.

Chapter 2 introduces the concept of an optical resonator and describes their

division into two main classes – stable and unstable.

The concept of ray-tracing is introduced in chapter 3, and is used to illustrate

the imaging properties of optical resonators (and also, briefly, optical billiards).

Its usefulness in simulating novel optical systems is also explored.

Chapter 4 describes resonators from a new perspective – that of the Fox-Li



CHAPTER 1. INTRODUCTION 4

method for determining the eigenmode of an arbitrary resonator. It then de-

scribes the application of these techniques to canonical optical resonators, and

to a novel type of grossly spherically aberrated resonator which may be useful

in high power applications. It concludes with a description of the surprising

fractal properties of some unstable canonical resonators.

Chapter 5 gives a very brief introduction to some of the concepts of General

Relativity and describes the solutions which lead to the proposed existence

of gravitational waves. It then describes the astrophysical sources and antic-

ipated strengths of gravitational waves. Finally it discusses the technological

challenges of detecting these waves.

Chapter 6 introduces some of the theory necessary to describe diffraction grat-

ings. It takes a new perspective on conventional optical resonators and then

develops the theory of grating coupled resonators. It also discusses the chal-

lenges of controlling suspended optical cavities.

Chapter 7 describes experimental work performed using a 10 m prototype

grating-coupled cavity, where – for purposes of vibrational isolation – all of

the optical elements of the cavity are suspended on multi-stage pendulum sys-

tems.

Chapter 8 concludes with a discussion of the implications of results and sug-

gestions for further investigation.



CHAPTER 2
Transverse Eigenmodes of

Optical Resonators

2.1 Introduction

In this chapter we will give a brief introduction to the theory of optical res-

onators, with a more in-depth examination of a particular subset of general

optical resonators, namely the stable two-mirror Gaussian optical resonators.

Then we will explore methods for calculating the eigenmodes of optical res-

onators, concentrating on the Fox-Li method [4]. We have used this method

to find the eigenmodes of a variety of novel optical resonators; results will be

presented in the following chapter. We begin, however, by considering two

5
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z

r

D

R
1

R
2

a
M

1 M
2

Figure 2.1: A two mirror optical resonator known, in this form, as a
canonical optical resonator. Two circular mirrors M1 and M2 (with radii
of curvature R1 and R2, respectively) are separated by a distance D. The
diameter of the mirrors (or, equivalently, the aperture onto the mirrors)
is a.

very basic questions: what do we mean by an “optical resonator”? And what

do we mean by its “eigenmode”?

Optical resonators and their eigenmodes

The phrase “optical resonator” usually conjures up an image somewhat like

that displayed in figure 2.1: two spherical mirrors, aligned on the same axis,

separated by a distance, D. This family of resonators (the so called canonical

optical resonators [5]) has achieved this pre-eminent recognition due to the

fact that these are the resonators which can most easily be analysed purely
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a b

Figure 2.2: Two examples of optical resonators. In (a) we see a Fabry-
Perot etalon [www.npl.co.uk/]. In (b) a Vertical-Cavity Surface-Emitting
Laser [www.asu.edu/].

analytically, either by the application of the optics Gaussian beams [6] or by

their imaging properties [7].

The canonical optical resonators represents one subset of an endless variety of

possible resonators [8, 9, 10]. Indeed, any system where an electromagnetic

field undergoes a “round-trip” periodic influence can be considered an optical

resonator. That is, the light undergoes some periodic focussing. We can go

further and state that whenever light undergoes a periodic influence — even

when that influence is only an aperture — we have an optical resonator [6].

Figure 2.2 shows some optical resonator systems.

An interesting property of this type of system is the existence of transverse

eigenmodes. These are fields which, when propagated around a resonator for

one round trip, retain the same shape. More precisely we can say that although

the overall intensity may — and in all real situations will — decrease, the

relative intensities of the field will stay the same. This is also true of the



CHAPTER 2. OPTICAL RESONATORS 8

relative phase, although the entire field may undergo some phase shift.

It is when we attempt to predict ab initio what form these eigenvalues might

take that problems arise. While it is simple to write down the equations de-

scribing an optical resonator, an analytical solution to these equations is possi-

ble in only a few cases — for instance with the Gaussian eigenmodes of cavities

with spherical mirrors. Because of this, numerical methods using computers

have become very important in discovering the form of these eigenmodes. The

Fox-Li method (see chapter 4) is one of the most important and widely used

of these numerical procedures.

2.2 Optical Resonators

In this section we introduce some of the basics properties of optical resonators.

We begin by examining in detail the properties of Gaussian resonators – in

particular, the criteria for a Gaussian resonator to be stable. Although the

majority of this thesis does not concern itself with Gaussian resonators, the

ease with which these resonators can be analyzed will give us an intuitive

insight into — and a reference for — the properties of more exotic resonators.
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Gaussian Resonators

We begin by considering canonical optical resonators. This type of optical

resonator consists of two curved (or flat) mirrors facing each other, separated

by a distance. Resonators of this kind have many analogies to periodic lens

waveguides, and we will exploit these similarities in our initial, ray optical

description of optical resonators.

Consider a typical optical resonator consisting of two mirrors M1 and M2,

separated by a distance D. Mirror M1 has a radius of curvature R1 and a

focal length f1 = R1

2
, and similarly for mirror M2. We could represent one

trip of a light ray around this resonator (for instance from M1 to M2 and then

back to M1) as the passage of a light ray through two lenses of a periodic lens

waveguide, where the lenses have focal lengths f1 = R1/2 and f2 = R2/2 and

are separated by the same distance (D) as the mirror of the optical resonator

(see figure 2.3). Finally, before we begin to analyze the system it will be

useful to subsume the curvature of each mirror (or the focal length) and their

separation into a single, dimensionless parameter. Conventionally called g-

parameters, these are defined as

g1 ≡ 1− D

R1

= 1− D

2f1

, (2.1)

g2 ≡ 1− D

R2

= 1− D

2f2

. (2.2)

For much of the following discussion we will assume that the mirrors of the

optical resonator are of unlimited extent. When we come to consider realis-
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D D

2f1 f2 2f1

Figure 2.3: One section of a periodic lens waveguide equivalent for a two
mirror optical resonator.

tic cavities where the mirrors are of finite size it is useful to define another

dimensionless parameter, the Fresnel number, N :

N =
a2

Dλ
, (2.3)

where 2a is the diameter of the mirror.

Stability Criteria

The first question we might ask is whether or not a particular optical resonator

is stable: that is, after a large number of round trips will a light ray escape from

the resonator. Representing this round trip as a periodic lens waveguide (figure

2.3) — starting midplane in the first lens — we consider the ray matrices of

the total system: r1

θ1

 =

 1 0

− 1
2f1

1


 1 D

0 1


 1 0

− 1
f2

1


 1 D

0 1


 1 0

− 1
2f1

1


 r0

θ0


(2.4)
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So the ray transfer matrix for one round trip is,

 A B

C D

 =

 1− D
f2

d
(

2− D
f2

)
− 1
f1
− 1

f2

(
1− D

f1

)
1− 2D

f1
− D

f2
+ D2

f1f2

 . (2.5)

So, in general rn+1 = Arn + Bθn and θn+1 = Crn +Dθn. Therefore we arrive

at,

θn =
1

B
(rn+1 − Arn), (2.6)

and

θn+1 =
1

B
(rn+2 − Arn+1), (2.7)

which leads to,

Crn +Dθn =
1

B
(rn+2 − Arn+1). (2.8)

If we substitute the θn terms we get,
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rn+1 − (A+D)rn+1 + (AD −BC)rs = 0. (2.9)

It can be shown that (AD−BC) = 1. The simplest method being to note that

the 4 original ray transfer matrices each had a determinant of 1, therefore the

product matrix in equation 2.4 also has a determinant of 1. With the further

substitution that

b = (A+D)/2 =

(
1− d

f2

− d

f1

+
d2

2f1f2

)
(2.10)

we get,

rn+2 − 2brn+1 + rn = 0, (2.11)

which is equivalent to a second order differential equation. Thus, we are led

to try a solution of the form rn = r0 exp (inq), so that

e2iq − 2beiq + 1 = 0, (2.12)

and
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eiq = b± i
√

1− b2 = e±iθ, (2.13)

where cos θ = b.

The general solution is then given by a linear superposition of exp(inθ) and

exp(−inθ) terms. Equivalently,

rn = rmax sin (nθ + α), (2.14)

where rmax = r0/ sinα. If we then ask, what is the displacement of the ini-

tial ray after traversing n periods of the waveguide (n round-trips of the res-

onator)? After an arbitrary number of round trips the ray will remain inside

the waveguide only if |b| ≤ 1, i.e.,

− 1 ≤
(

1− d

2f1

)(
1− d

2f2

)
≤ 1. (2.15)

If we express this in terms of the previously introduced g-parameters, we have,

0 ≤ g1g2 ≤ 1, (2.16)
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Figure 2.4: Mode properties of a stable optical resonator.

and it is under these conditions that a canonical optical resonator is stable.

Properties of Stable Optical Resonators

Restricting ourselves to the stable optical resonators (0 ≤ g1g2 ≤ 1, see figure

2.5), we now ask what properties we might expect the lowest order modes of

these systems to have. The lowest order modes of these systems are Gaussian

beams, and the properties we are interested in are the spot sizes at the mirrors,

w1, w2 and the waist size w0 (figure 2.4).

In general, the easiest way to solve this problem is to start with the Gaussian

beam in free space and then ask what mirrors match the curvature of the

wavefronts at the required distances from the beam waist.

With any two mirrors, separated by a distance D, and with arbitrary radii of

curvature R1 and R2 — as long as these radii comply with the requirement
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0 ≤ g1g2 ≤ 1 — we can reverse this solution process and discover what waist

and spot sizes a particular resonator gives rise too.

Knowing the expression for the Rayleigh range [11], zR =
πw2

0

λ
, we can then

use the gaussian beam formula,

R(z) = z +
z2
R

z
(2.17)

to find the wavefront curvature. Requiring this to match the mirror curvature

leads us to the expressions:

z1 = −D g2(1− g1)

g1 + g2 − 2g1g2

, (2.18)

z2 = D
g1(1− g2)

g1 + g2 − 2g1g2

, (2.19)

zR = D2 g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2
. (2.20)

It follows that the expressions for waist and spot sizes for any resonator are,

w2
1 =

Dλ

π

√
g2

g1(1− g1g2)
, (2.21)

w2
2 =

Dλ

π

√
g1

g1(1− g1g2)
, (2.22)

w2
0 =

Dλ

π

√
g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2
. (2.23)
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We can considerably simplify these expressions if we restrict ourselves to a

discussion of symmetric optical resonators, i.e. those where the focal lengths

of both mirrors are equal, leading to g1 = g2 = g. Making this substitution,

we find

w0 =

√
Dλ

2π

(
1 + g

1− g

) 1
4

, (2.24)

w1 = w2 =

√
Dλ

π

(
1

1− g2

) 1
4

. (2.25)

These symmetric optical cavities lie on the line g1 = g2 on the stability diagram,

between g = −1 (concentric resonator) and g = 1 (plane-plane resonator). It

will be a useful reference point in later sections if we think about what happens

to w0, w1 and w2 as we travel along this line of symmetric resonators in the

stable region (see figure 2.5).

One last point should be made. In this analysis we have assumed mirrors of

infinite extent and thus that the edge of the mirror has no effect on the mode.

In reality the transition between low and high loss modes is more gradual than

the stability diagram might suggest. In fact the sharpness of the transition [12]

increases with increasing Fresnel number, i.e. for a2 � Dλ it approximates

the case of mirrors of infinite extent.

These solutions to equation 2.17, form the lowest order set of transverse eigen-

modes for the Gaussian resonators. We will discuss the transverse eigenmodes

of optical resonators in greater depth in chapter 4.
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Figure 2.5: Stability criteria for canonical optical resonators. In this graph
of g1 vs. g2, stable resonators are contained within the blue region. After
an original by F. Dominec (Creative Commons license).

Non-Gaussian Resonators

Canonical optical resonators have transverse eigenmodes which are well rep-

resented by Hermite-Gaussian functions [13]. Can we then assume that we

will be able to find functions to represent the eigenmodes of all resonators?

The answer is no — some resonators are impossible to describe analytically.

And how should we describe imperfect Gaussian resonators, with imperfectly

spherical mirrors, and imperfect mirror alignment? We can approximate the

solutions of certain resonators by finding a Gaussian resonator that resembles

them. For instance, we can approach an analytical solution to the plane-plane

cavity with finite mirrors by considering a symmetrical Gaussian resonator
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with mirror radius of curvature much greater than the mirror separation. But

in order to solve more general resonators we must consider numerical methods

using computers, and this is the subject of chapter 4.



CHAPTER 3
Photorealistic visualization of

imaging in canonical optical

resonators

This chapter looks again at optical resonators, but from the point of view of

their imaging properties and is based upon work which was published as [14]

and [15].

19
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3.1 Introduction

Ray-tracing programs can create photo-realistic images of scenes described in

the computer. One popular scene for such visualization comprises reflecting

spheres; many examples can be found on the internet (e.g. [16]). Scientifically,

such scenes contain many surprises; an arrangement of four mirrored spheres

in a hexagonal close-packed structure, for example, exhibits chaotic scattering

that can result in complex fractal images [17].

A canonical optical resonator (or cavity) [6] (see figure 3.1) consists of a pair of

spherical mirrors facing each other. As spherical mirrors are simply segments

of reflecting spheres, canonical optical resonators are closely related to the

popular reflecting-spheres scene. To the best of our knowledge – and rather

surprisingly – the inside of a resonator has never been visualized using ray

tracing.

Here we use the freely available software POV-Ray [18] to investigate some of

the ray-optical properties of resonators (see figure 3.1), specifically the different

imaging characteristics of geometrically stable [7] and unstable [19] resonators,

and the emergence of fractal eigenmodes in the latter [20]. Such investigations

could form part of physics undergraduate computing labs with the beneficial

side-effect of learning something about the imaging properties of resonators.
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Figure 3.1: Example of a canonical optical resonator, in diagrammatic
form (a) and rendered using the ray-tracing software POV-Ray [18] (b).
Each mirror is a segment of a sphere; the respective radii of the spheres
are R1 and R2, giving the mirrors focal lengths f1 = R1/2 and f2 = R2/2.

3.2 Peeking inside symmetric resonators

Resonators consist of segments of spheres of radii R1 and R2 (see figure 3.1).

These radii of curvature can be positive or negative, respectively corresponding

to concave / convex mirrors with the mirror surface being on the sphere’s inside

/ outside. The two mirrors respectively have focal lengths f1,2 = R1,2/2. For a

mathematical analysis it is customary, even useful, to define the g parameters

of a resonator as [6]

g1,2 = 1− D

R1,2

, (3.1)
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Figure 3.2: Views in symmetric resonators with g values between −2 and
+2. This sequence of images was calculated for a fixed resonator length,
D = 5, but different radii of curvature as calculated from equation (3.1).
The mirror diameter is d = 2, as it is throughout the figures in this
chapter. The camera was positioned on the resonator axis at z = 1.8. (As
g is increased the mirror appears to get smaller. This is due to the edge
of the mirror moving further away from the camera as its shape becomes
more convex.)
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where L is the separation between the mirror centres (see figure 3.1(a)).

Throughout this and the following section, we restrict ourselves to symmetric

resonators, that is resonators with g1 = g2 = g.

The top left frame of figure 3.2 shows the view from within a symmetric res-

onator with g = −2. It is essentially the simulation of a photograph taken

with an invisible camera inside the resonator, pointing towards the first mir-

ror. (Real cameras are, of course, not invisible, but in a real experiment a

similar view could, in principle, be seen through the second mirror, provided

it was partially transparent, in the limit of the transparency approaching zero,

which would make the view very dim). In the centre, the first mirror can be

seen, surrounded by the chequered plane it stands on and the sky. In the cen-

tre of this first mirror is a reflection of the second mirror, again surrounded by

the chequered plane and the sky. The reflection is inverted, so the chequered

plane appears to be above the second mirror and the sky. Each subsequent

reflection inverts once more.

Subsequent frames of figure 3.2 show views in the same resonator, but with

the radii of curvature changed such that g is increased. Between g = −1

and g = +1, a yellow spot can be seen in the centre. Throughout this paper

we have chosen to give our mirrors a slightly golden surface (using POV-

Ray’s pigment and finish keywords), so that light coming from a specific

direction that has experienced more mirror reflections has a more yellow tinge.

The yellow spot corresponds to light rays that bounce endlessly between the
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Figure 3.3: Details of the transition from instability to stability. In this
sequence of images, g is increased from 0.99 to 1.02. Other parameters are
the same as in Fig. 3.2. The left column shows the view inside a resonator
with slightly golden mirrors, while the right column shows the view inside
a resonator with perfectly reflecting, and therefore colourless, mirrors.
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mirrors1. The existence of such “trapped” light rays is the definition of a

resonator’s geometrical stability [22]. A mathematical analysis [23] reveals

that resonators are geometrically stable provided that

0 ≤ g1g2 ≤ 1. (3.2)

In symmetric resonators this happens for −1 ≤ g ≤ +1, precisely the range of

g parameters over which the yellow spot can be seen in our simulations. The

emergence of the spot as g is increased from just below −1 to just above −1

is shown in figure 3.3. At g = −1, it begins to grow in size from zero.

Trapping of light rays does not happen in geometrically unstable resonators,

that is resonators that do not satisfy the stability criterion, equation (3.2).

In the family of symmetric resonators, this is the case for |g| > 1. In such

resonators, every light ray will sooner or later miss a mirror and hit another

object or the “sky sphere” [21] – as in some early models of the universe,

POV-Ray represents the sky as the internal surface of a very large sphere.

For our ray-tracing images this means that in the views calculated in unstable

resonators in all directions we can see either the chequered floor or the sky.

In the following we use POV-ray to investigate a few striking imaging proper-

ties of geometrically stable and unstable resonators in more detail.

1To be more precise, the yellow spot corresponds to light rays that have bounced a finite,
but large, number of times. So large, in fact, that the slight colour change upon each reflec-
tion (it gets slightly more golden) makes the light ray completely yellow. This uses POV-
Ray’s Adaptive Depth Control and requires the POV-Ray parameter max trace level,
which specifies the maximum number of intersections with surfaces after which the pro-
gramme stops tracing a ray any further [21], to have values ≥ 50.
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3.3 Imaging in geometrically stable

resonators

Stable canonical resonators have very specific geometric imaging characteristics

[7, 24]. We demonstrate a few of these characteristics here by visualizing the

images of a semi-transparent object placed inside a resonator (see figure 3.4(a)).

One familiar example of resonator imaging is displayed by an optical res-

onator composed of two plane mirrors, shown in figure 3.4(b). This is the

familiar“hall-of-mirrors” effect, which creates an infinite series of equidistant

images of any object between the mirrors, here a semi-transparent letter “P”.

Such a resonator is actually at the edge of stability (g = 1).

Figure 3.4(c) shows the more complex imaging that can occur in stable res-

onators. Images of the letter “P” now appear in various sizes, orientations,

and, as can be seen from figure 3.5, z positions. The positions appear complex,

but are well-understood mathematically [7]. The z position of an image after

n round trips, zn, can be uniquely mapped onto a corresponding angle, Ωn,

with the property that each additional round trip advances the angle through

a constant step angle δ, so [7]

Ωn+1 = Ωn + δ. (3.3)

Two cases can then be distinguished: periodic and aperiodic imaging. Periodic

imaging occurs if δ is a rational multiple of 2π, that is if it can be expressed
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a

c

b

Figure 3.4: Imaging of an object placed inside geometrically stable res-
onators. Here the object is a semi-transparent letter “P” in the transverse
plane in the centre of the resonator, shown in (a). A plane-plane resonator
(g = 1, b) shows the familiar hall-of-mirrors effect, creating an infinite se-
ries of equidistant images. Other stable resonators, like the symmetric
resonator with g = 0.2 shown in (c), create a more complex series of im-
ages. In both cases, the resonator length is L = 4, the semi-transparent
letter “P” is positioned at z = 1.5, and the camera is positioned at z = 0.1.
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Figure 3.5: Location of the images of the letter “P” in Fig. 3.4(c). The
diagram at the top indicates the z positions and relative magnification of
the images due to the first 40 round trips in the resonator (some images
are lying outside the shown z range and are not marked). Each image
is marked by an arrow, whose horizontal position indicates the image’s
z position and whose length indicates the image’s relative magnification.
Numbers above or below the dot indicate the number of round trips after
which the image is formed (always starting with light travelling to the
right; image positions due to light travelling to the left are not shown, and
no such images are visible anyway). The object is in the plane marked
“P”. The frames below show the view from the camera position (z =
0.1, marked by an eye; the camera is looking towards the right mirror).
Whereas in Fig. 3.4 the depth of field is infinite, it is reduced here so that
individual planes come into focus. In POV-Ray, this is done by setting
aperture to values above 0 (we use here 0.7). The different frames focus
on the object plane (z = 1.5) and the planes that contain the first (z =∞),
second (z = 7.7), and third (z = 4.3) images. Note that the size at which
the image is seen depends not only on its relative magnification, but also
on its distance from the camera.
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as

δ =
p

q
2π, (3.4)

where p and q are integers. After q round trips, each plane is imaged back

onto itself, via (q − 1) intermediate planes. The magnification is ±1, so any

images of the same object that lie in the same plane are the same size (but they

may be rotated through 180◦, if the magnification is −1). Aperiodic imaging

happens in all other cases, namely when δ is an irrational multiple of 2π. No

plane is then ever imaged back onto itself; instead, it is imaged into every other

plane. All intensity cross-sections through any eigenmode of such a resonator

therefore have to be similar – in other words, the eigenmode is structurally

stable.

Figures 3.4(c) and 3.5 are examples of aperiodic imaging in a geometrically

stable resonator. They do not demonstrate all of the imaging properties de-

scribed above, but restrict themselves to demonstrating different images in

different positions. Directly visualizing some of the more intricate properties

is considerably more challenging and computer-intensive, as large numbers of

round trips through the resonator have to be visualized.
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ray-tracing

wave-optical simulation

Figure 3.6: Creation of fractal eigenmodes inside a geometrically unsta-
ble resonator. (a) View of the confocal resonator with a semi-transparent
grating in the confocal plane with magnification M = −2. The grating
simulates the intensity pattern of the diffraction pattern from a slit aper-
ture inside the resonator. For clarity, the number of grating lines is greatly
decreased. (b) View from inside a confocal resonator similar to the one
shown in (a), but with more (approximately 200) and thinner grating lines
and – in the interest of symmetry - the light source moved to a position
directly above the resonator axis and the floor removed. A brightness
cross-section through the resulting pattern (c, top) shares the basic frac-
tal character and many details with the intensity cross-section through the
fractal eigenmode of a resonator with the same magnification and a slit
aperture, calculated using a full wave-optical simulation (Fig. 7(b) in ref.
[20]).
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3.4 Imaging in geometrically unstable

resonators

While geometrically stable resonators eventually image every plane into it-

self (or an arbitrarily close plane) with magnification M = ±1, geometrically

unstable resonators possess special planes, called self-conjugate planes, that

are imaged into themselves after each round trip, with magnification |M | 6= 1

[20]. In confocal resonators, i.e. those resonators where D = f1 + f2, there

are two self-conjugate planes with round-trip magnifications M = −f1/f2

and M = −f2/f1, respectively [25]. (Confocal resonators with f1 = f2 have

round-trip magnifications M = −1 and are on the edge of stability; all other

confocal resonators are unstable.) We restrict ourselves here to confocal res-

onators with f1 > f2, and we study the self-conjugate plane with magnification

M = −f1/f2. As this magnification is negative, the images are rotated through

180◦ with respect to the original; as |M | > 1, they are bigger than the original.

If a wave is circulating in an unstable resonator, the diffraction pattern due to

any apertures in the resonator provides an intensity pattern that is magnified

during subsequent round trips. At the same time – because the beam passes

through the aperture again during each round trip – the aperture-diffraction

pattern is re-created. This process leads to an eigenmode intensity cross-

section in the transverse plane that is fractal [20, 25] (the eigenmode’s intensity

in the longitudinal direction can also be fractal – see chapter 4).

As ray-tracing does not include diffraction effects, this cannot be directly
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demonstrated here. However, the important functions of the diffraction pat-

tern of the aperture (we use here a slit aperture) can be crudely counterfeited

by placing a semi-transparent grating into the self-conjugate plane (see figure

3.6(a)). Like an aperture diffraction pattern, the grating provides a pattern

that is magnified and re-created during subsequent round trips.

Figure 3.6(b) shows the view inside such a resonator. The pattern clearly has

the expected fractal characteristics. In fact, a horizontal brightness cross-

section through the centre (figure 3.6(c)) reveals close similarity with the

results of a full wave-optical simulation of the intensity cross-section in the

self-conjugate plane through the eigenmode of a confocal resonator with a slit

aperture [20].

3.5 Other interesting cases: optical billiard

and ray-rotation sheets

In this section, we describe briefly some other optical systems which we exam-

ined through ray-tracing. These included work on optical billiards with chaotic

orbits and ray-optical metamaterial analogues; this later work led to the pub-

lication of [15], and was continued by other members of the optics group (see,

for example, [26]).

Our work on optical billiards came from the idea of using ray-tracing to render
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a two-dimensional billiard as a three-dimensional mirror cabinet, with a finite

height. A billiard is a dynamical system where a point particle is contained

within a boundary (the boundary being piecewise smooth [27]); the particle

moves at constant velocity except where it encounters the boundary, when it

undergoes specular reflection. This makes them ideal systems to investigate

using ray-tracing.

Billiards can be divided into two categories according to properties that are

defined by the shape of the boundary. Those where the particle propagates

along periodic or quasiperiodic orbits (such as square or equilateral triangle

billiards) are called regular billiards. Those where the particle can follow

either a periodic or a chaotic orbit (well known examples being the stadium

or sinai billiard) are called chaotic billiards. We decided to investigate chaotic

billiards, since stable resonators can, in some ways, be viewed as a kind of

regular billiard, albeit only for particles on paths almost parallel to the optical

axis.

Figure 3.7(a) shows the geometry of a chaotic billiard, known as the Buni-

movitch stadium [29] after it’s discoverer. It can be considered to be an un-

stable symmetrical strip-resonator (with g = −3) but with closed, reflective

sidewalls. Figure 3.7(b) is from [28], created using the principle of a mirror

cabinet map, outlined in that paper. One can think of it as being the virtual

images of the cabinet walls as seen by an observer situated at the centre of the

stadium (with the circles being virtual images of the observer – apart from the

central one); the first 7 virtual walls are shown.
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Figure 3.7: (a) shows the geometry of the Bunimovitch stadium optical
billiard. (b) and (c) show to equivalent ways of looking at the virtual
images of the walls of a mirror cabinet shaped like a Bunimovitch stadium.
In both, the observer is at the centre of the stadium. (b) is a mirror cabinet
map from [28] while (c) is a ray-traced rendering of the view inside a 3D
mirror cabinet.
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4th virtual image

5th virtual image

6th virtual image

7th virtual image

Figure 3.8: A detailed view of the inside of a Bunimovitch stadium optical
billiard. The limit to the fractality of the boundary images is the resolution
of the rendered image.

By creating a virtual scene of a closed strip-resonator (with a finite height),

we can see exactly what the observer inside such a mirror cabinet would see, if

only he were invisible. The virtual mirror cabinet was created with a narrow,

black band at the bottom of the mirror. This makes it easier to see where each

successive virtual image of the cabinet’s walls appears (see figure 3.7(c)). What

can also be seen (and seen more clearly in figure 3.8) is that each successive

virtual image of the cabinet boundary becomes increasingly fractal. We can

also see that the view in some directions is more fractal than in others. For

instance, if the observer was oriented at 90◦ to that shown in figure, the image

would be of the interior of a plane-plane resonator.
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Our other use of ray-tracing visualization was to view scenes containing ray-

optical metamaterial analogues. A sheet consisting of an array of small, aligned

Dove prisms can locally (on the scale of the width of the prisms) invert one

component of the ray direction. A sandwich of two such Dove-prism sheets

that inverts both transverse components of the ray direction is a ray-optical

approximation to the interface between two media with refractive indices +n

and −n.

Negative refraction has already been realized ray-optically in the form of lenslet

arrays: pairs of lenslet arrays with a common focal plane bend light rays like the

interface between optical materials with refractive indices +n and −n. These

have been realized in the form of standard and GRIN lenslet arrays , and their

three-dimensional imaging properties, including pseudoscopic imaging, have

been examined.

Another way of achieving ray-optical negative refraction uses combinations

of miniaturized Dove prisms. Our combinations of Dove prisms consist of

two periodic Dove-prism arrays we call Dove-prism sheets, where one sheet is

rotated with respect to the other by 90◦. These Dove-prism-sheet sandwiches

work differently from the lenslet arrays described above: the lenslet arrays work

by forming an intermediate image; the Dove-prism-sheet sandwiches work by

successively inverting the ray vector’s x and y components.

The basic building block of a Dove-prism sheet is a Dove prism. With the

coordinate system chosen as in figure 3.9, a Dove prism inverts the y direction

of any transmitted light ray. It also offsets the rays, whereby the offset is on the
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Figure 3.9: Ray optics of Dove prisms. A Dove prism orientated as shown
in (a) inverts the y component of the direction of individual light rays
in a light beam passing through it. This happens during total internal
reflection (TIR) from the prism’s bottom surface. This corresponds to an
inversion of the angle the light ray has with respect to the prism’s bottom
surface: α = −α′, where α and α′ respectively are the angles before and
after passage through the prism, as shown in (a). The prism also offsets
the y position of each ray; in (b), the prism swaps the positions of the red
and black rays.

scale of the prism diameter. We are considering here the limit of small Dove

prisms, so small in fact that we can ignore this offset. Clearly, wave-optically

this limit breaks down as the prism diameter reaches the wavelength of the

light. Acceptable compromises for visual purposes could be prism diameters

of between 10µm and 1mm.

Dove prisms that are stretched in the x direction (again with the choice of

coordinate system shown in figure 3.9) and stacked on top of each other form

a Dove-prism sheet (figure 3.10). Note that the prisms need to be separated

by a few wavelengths to ensure that total internal reflection at the long side

(see figure 3.9(a)) is not frustrated.

The ray optics of such a sheet are simple: in the limit of small Dove prisms the

sheet flips the y direction of individual light rays in a beam passing through

it. This implies that for light rays incident in a plane parallel to the (y, z)
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Figure 3.10: Structure and ray-optics of a Dove-prism sheet. The inver-
sion of the angle with respect to the prism’s bottom surface (Fig. 3.9) now
becomes an inversion of the angle with respect to the Dove-prism sheet
normal. In the limit of small prism apertures, the sheet does not signifi-
cantly offset light rays (red). A point light source, P , placed a distance d
in front of the sheet, creates light rays that intersect again in a point P ′

the same distance d behind the sheet.

plane, the angles of incidence, α1, and refraction, α2, are related through the

equation

α1 = −α2. (3.5)

It is particularly interesting to combine a Dove-prism sheet with another, par-

allel, Dove-prism sheet that is rotated around the z direction through 90◦, and

which therefore flips the x direction of light rays passing through it. Such

Dove-prism-sheet sandwiches then flip both transverse ray directions (x and

y), and invert the angle of incidence for any plane of incidence. When the two

crossed Dove-prism sheets are close together, they lead to no additional ray

offset. They therefore act like the interface between two optical media with

equal and opposite refractive indices, +n and −n: Snell’s law, written for this

situation, states that

n sin(α1) = −n sin(α2), (3.6)
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z = 43

z = 77

z = 177

z = 260

Figure 3.11: Relationship between object and image distance for crossed
Dove-prism sheets. A chess piece – the object – is positioned a distance
z behind the sheets; the crossed Dove-prism sheets image it to a position
a distance z in front of the sheets. The different frames show the image
of the chess piece for various object distances; the sheets and the camera
are stationary. In the first (z = 43) and second (z = 77) frames the image
becomes larger and larger as it moves towards the camera, positioned a
distance 120 units in front of the sheets. The image then moves through
the camera plane and behind it, where it re-appears upside-down and
getting smaller. In the first two frames, z = 43 and z = 77, the camera
is focussed onto the image of the chess piece; its image can be gleaned by
inspection of the position of the focus on the chequered floor, which has
a square length of 20 units. In the second two frames simple focussing
is not possible as the chess piece is behind the camera, which is roughly
focussed onto the sheets. The frames are from a movie (MPEG-4, 256
KB, available in the supporting online material) calculated by performing
ray tracing through the detailed prism-sheet structure, using the freely-
available software POV-Ray [18].
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Figure 3.12: Image of a chess piece created by crossed Dove-prism sheets as
seen from different distances. The sheets are in the z = 0 plane; the image
is at z = −40 (that is 40 units in front of the sheet); zc is the position
of the camera. From left to right, the frames show the simulated view
as seen with a camera moving closer to the Dove-prism sheets; both the
sheets and the chess piece are stationary. Because the distance between
camera and image is less than that between camera and sheets, a decrease
in both distances by the same absolute amount, that is moving the camera
in the direction of image and sheets, decreases the distance to the image
by a larger factor than that to the sheets. This means that the angle under
which the image of the chess piece is seen grows more than the angle under
which the sheets are seen. The frames are from a POV-Ray [18] movie
(MPEG-4, 204 KB, available in the supporting online material).

which (provided that −90◦ ≤ α1, α2 ≤ +90◦) is equivalent to equation (3.5).

Pseudoscopic imaging

Images produced by single lenses are orthoscopic: if two objects at longitudinal

positions z1 and z2 are imaged into positions z′1 and z′2, and if the first object

is in front of the second, i.e. if z1 < z2, then the image of the first object will

be in front of the image of the second, so z′1 < z′2. The opposite is true in

pseudoscopic imaging, where the image of the second object is in front of that

of the first, so z′1 > z′2.
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The effect of the inversion of the angle of incidence by crossed Dove-prism

sheets is to image any object a distance d behind the sheets to the same dis-

tance in front of the sheets (figure 3.10). In other words, if the longitudinal

coordinate z is chosen such that the sheets are at z = 0, then an object distance

z corresponds to an image distance −z. For the two longitudinal object posi-

tions with z1 < z2 discussed above this results in image positions z′1,2 = −z1,2,

and therefore the inverted relationship between the longitudinal image po-

sitions z′1 > z′2. Crossed Dove-prism sheets therefore produce pseudoscopic

images.

Figures 3.11 and 3.12 demonstrate this pseudoscopic imaging with ray-tracing

simulations performed using the software POV-Ray [18]. Both figures visualize

imaging of a chess piece through crossed Dove-prism sheets, each comprising

200 Dove prisms. In figure 3.11 the distance of the chess piece behind this Dove-

prism-sheet sandwich is varied; in figure 3.12 the distance of the (simulated)

camera from the sheet sandwich is varied.

The inversion of the z coordinate during imaging implies that crossed Dove-

prism sheets produce pseudoscopic images. Figure 3.13 demonstrates various

properties of these pseudoscopic images. Specifically, it shows that pseudo-

scopic images appear to be “inside out”; the pseudoscopic image of a convex

chess piece, for example, is concave. When looking at this image from different

directions, the image appears to have rotated, just like the hollow face mask

in the famous hollow-face (or “Bust of the Tyrant”) illusion [30]. In the case

of the chess piece shown in figure 3.13, looking at the pseudoscopic image of

one of the chess pieces placed behind the Dove-prism sheets from the left lets
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Figure 3.13: Orthoscopic objects and pseudoscopic images. The frames
show two chess pieces in front of crossed Dove-prism sheets, and the images
of two chess pieces behind the sheets, as seen from three different viewing
positions. The pieces are arranged such that one image is at the same
distance as one of the chess pieces in front of the sheet, the other image
is at the same distance as the other piece in front of the sheet. This can
be seen by one chess piece always being below one image, independent of
viewing angle, which means they are always undergoing the same parallax,
which in turn implies that they are the same distance from the camera.
However, while the left side of the front piece is visible from the left-most
viewing point (a) and the right side from the right-most viewing point (c),
the opposite is true for the pseudoscopic images. Also, while the piece in
front (which, of course, appears bigger) obscures the piece behind it, the
image in front (again the bigger image) is obscured by the image behind it.
(d) shows a schematic overhead view of the scene. Frames (a)-(c) are from
a movie (MPEG-4, 848 KB, available in the supporting online material of
reference [15]) calculated by performing ray tracing through the detailed
prism-sheet structure, using the freely-available software POV-Ray [18].
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us see the right side of the chess piece, not the left side, as is the case with the

chess piece placed in the same longitudinal position for comparison. Figure 4

in [30] shows the same effects in the hollow-face illusion.

Figure 3.13 also demonstrates another striking property of pseudoscopic im-

ages. If two objects are placed behind one another, the object in front obscures

the object behind. In the pseudoscopic images of two objects placed behind

one another, the image behind obscures the image in front.

3.6 Conclusions

Ray-tracing can directly visualize important properties of optical resonators

and other interesting ray optical systems. Running such simulations requires

only a computer with modest power and ray-tracing software, which can be

obtained for free.

We have demonstrated here only very few imaging properties of optical res-

onators. We hope that many more, like for example the intricate imaging

properties in stable resonators mentioned above, will be directly visualized.

Hopefully that this will help students to understand optical resonators better,

and perhaps even researchers to gain completely new understanding.

We have also investigated the effect of miniaturizing and repeating an opti-
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cal component with interesting ray-optical properties, the Dove prism. Using

ray-tracing simulations, we have demonstrated that the resulting Dove-prism

sheets can ray-optically act like the interface between optical media with re-

fractive indices of the same magnitude but opposite sign. We have also demon-

strated some of the unusual properties of their pseudoscopic imaging.



CHAPTER 4
Resonator eigenmodes: the

Fox-Li method

In this chapter we deal with the problem of finding the eigenmode of an arbi-

trary resonator using computer simulations. Fortunately there is a well-known

and widely used method for solving this problem: the method developed by

Gardner Fox and Tingye Li and first reported in their paper of 1961[31].

Using this method (often referred to as the Fox-Li method), we examine the

mode properties of spherically aberrated cavities, with a view to their use as

an alternative to Mexican Hat mirrors [32] within interferometric gravitational

wave detectors. We also use the Fox-Li method to investigate the fractal

geometry of the eigenmodes of unstable confocal resonators.

45
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M1 M2

u(x0,y0)

u'(x,y)

Figure 4.1: Half of a round trip in an optical resonator.

4.1 The Fox-Li method

In the early 1960s A. G. Fox and Tingye Li developed a numerical method for

finding the lowest loss eigenmodes of optical resonators. Their initial paper [31]

concerned itself with plane-plane Fabry-Perot cavities as this was a special case

of the canonical resonators, the solution of which could only be approximated

by Gaussian analysis [23].

Figure 4.1 shows half a round-trip of an optical resonator. With an initial

wave amplitude of u(x0, y0) at the first mirror, M1, we have

u′′(x, y) =

∫∫
L̃(x, y : x0, y0)u(x0, y0)dx0dy0 (4.1)

where L̃(x, y : x0, y0) is the round-trip propagator and u′′(x, y) is the wave

amplitude after one round trip (and u′(x, y) would be the wave amplitude

after half of a round-trip, i.e. at the other mirror, M2).
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As we know, an eigenmode of the resonator should have the property that this

wave amplitude should not change shape, although the absolute amplitude can

– and, in an empty resonator, will – decrease.

These integral equations are, save in a few special cases, not amenable to

analytical solution. However, beginning in 1961, A. G. Fox and T. H. Lee [31]

published an influential series of papers in which they discussed an iterative

computer solution to equations of this nature. The procedure is simple: an

initial wave amplitude u0(x, y) is chosen. The wave amplitude is sent for one

round trip around the simulated resonator. This procedure is repeated until

eventually we have a wave amplitude where u(n+1)(x, y) = γun(x, y), i.e. the

system has reached an eigenmode. The success of the process does not depend

on what form this initial amplitude takes, with some caveats: for instance,

using a uniform plane wave as the initial amplitude can never give rise to an

eigenmode with an odd symmetry [33]. Our standard initial amplitude was a

uniform intensity with a pseudorandom phase.

The Fox-Li method filters out higher loss modes and converges to the lowest

loss mode. The rate of the convergence depends on the resonator’s loss per

round trip and on its mode discrimination. If one or more modes have loss

almost as low as the lowest loss mode it can take many thousands of iterations

for them to die away.

At its most basic level, the Fox-Li method [31, 4] can be understood as a

method for finding the eigenmode of an optical resonator by simulating the

effects of sending some arbitrary initial beam through a finite number of peri-
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ods of an infinite periodic lens waveguide (see section 2.2) which is equivalent

to the resonator. After a certain number of periods (or the same number of

round-trips of the equivalent resonator) the shape of the beam (in amplitude)

ceases to change: this is the fundamental mode of the resonator.

How does this differ from what happens in a real resonator? The most obvious

difference is the insensitivity of the Fox-Li method to length tuning. For an

optical resonator to be on-resonance we have the requirement that D = mλ/2;

looking at the output transverse mode of the resonator while the mirror sepa-

ration is slowly changed by ±λ/2 reveals this. However a Fox-Li simulation of

a resonator where D = D0 = mλ/2 will converge to (almost) the same mode

as a simulation where D = D0 ± x (and x ∈ (0, λ/2)). The sneaky ‘almost’

in the previous sentence covers the fact that the tiny length change x will

have an effect on the g-parameters of the resonator. The reason for this is

obvious, when we consider what the basic Fox-Li method actually simulates:

it really is a simulation of a lens waveguide, not an optical resonator (though

by summing the field at the mirrors over successive round trips the output

field of a resonator from a given input field can be obtained). D enters the

simulation only as the propagation distance between the lens l1 and l2. The

phase difference between the propagating wavefront at, say, l1 during the nth

round trip and the n+ 1th round trip has no cumulative effect upon the mode

– indeed it is completely irrelevant. In an optical resonator on-resonance, the

phase difference would be 0, causing the output mode to build up.

The reason for this becomes apparent when we consider that, at no point is

the electromagnetic field inside the resonator as a whole simulated. Instead we
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simulate what Siegman calls ‘a recirculating pancake of light’ [34] – that is, we

consider the electromagnetic field only in a single plane and then propagate it

by means of plane wave decomposition and FFT propagation (see Appendix

A).

As we know, an eigenmode of the resonator should have the property that this

wave amplitude should not change shape (though the absolute amplitude can

— and, in the absence of a gain medium, will — decrease).

One difference between our simulations and the original simulations of Fox and

Li is that ours are 3D, where theirs were 2D; that is, in their simulation the

electric field was represented as a 1D array, while in ours it is represented as a

2D array.

Some practical considerations

The best way to describe the Fox-Li method is to relate it to the reality of the

transient response of an optical resonator. If we consider a wave pulse at one

end of the resonator (we need not worry about the problem of injection). The

form of the electromagnetic field in this pulse is unimportant. As this field is

(numerically) propagated around the resonator, or through the equivalent lens

waveguide, some of the light will be guided by the periodic influence — be it

mirror or lens — to remain close to the axis, and some will fall outside the

aperture and be diffractively lost. Under this influence the beam will naturally
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shape itself to have the lowest diffractive loss possible. As we have seen, these

transverse mode shapes in canonical resonators tend to be Gaussian.

One way of understanding what is happening as the Fox-Li method is carried

out is to look at the loss per round trip. When an eigenmode of a resonator is

propagated around that cavity the loss should be the same on each round trip

and equal to γ as calculated above. This, in fact, gives us a way of deciding

when our Fox-Li method has reached an eigenmode: if the loss per round trip

becomes constant, the system is in an eigenmode. Figure 4.2 shows the be-

haviour of loss per round trip for two resonators. The simple behaviour shown

in figure 4.2 (upper graph), which comes from a stable symmetric Gaussian

resonator, can be explained as follows: what we are seeing is the effect of the

slow dying away of the next-lowest-loss mode. As the lowest-loss mode and

the next-lowest loss mode are propagated around the resonator they acquire a

phase shift relative to each other — this is the origin of the beating behaviour.

As parts of the field which are not in either of these modes are lost the overall

loss per round trip decreases leaving only the beating between these two modes

which eventually dies away as the next-lowest loss mode eventually fades. Fig-

ure 4.3 shows the time-evolution of the intensity at one of the mirror surfaces

typical of such a graph. The much more complex trace shown in the lower

graph is the result of a non-canonical resonator with very poor mode discrim-

ination. Many modes with almost equal loss are being propagated around the

resonator.

The gaussian beam analysis of the previous section allowed us to gain an

insight into the properties of optical resonators with spherical mirrors, as long



CHAPTER 4. THE FOX-LI METHOD 51

Figure 4.2: The upper graph shows the typical behaviour of a Fox Li sim-
ulation of a spherically aberrated cavity. Several modes exist in the cavity
(shown by the oscillation of the uniformity (green trace) and loss (blue
trace). The higher loss modes decay quickly, leaving only the fundamental
mode of the cavity. The lower graph shows a similar simulation, but of a
cavity with very poor mode discrimination. Several modes with very sim-
ilar losses exist in the cavity and the higher order modes can take many
thousands of iterations to decay.
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Figure 4.3: Intensity cross-sections after 1,2,1000 and 1001 round trips.
Note the clear diffraction ripples in the mode shape of the 1st round trip
and that by the 1000th round trip the resonator has settled into it’s eigen-
mode, shown by the mode shape of the next round trip being identical.

as 0 ≤ g1g2 ≤ 1. Now we ask how we can find the eigenmode of an optical

resonator with mirrors of any shape, and of finite extent[35].

Indeed the Fox-Li method has found uses far beyond that originally envisaged

for it. Most use of the Fox-Li method has been concerned with the final

solution at which the simulation arrives, but some researchers have also been

interested in the transient response of the system. An instance of this is given in

reference [36] where the Fox-Li method is used to examine the mode evolution

in a spherical microdroplet of liquid when illuminated by laser light, and to

discover how long it took to reach a steady state.
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Figure 4.4: Cross section through a beam showing apparent reflection
from the edge of the simulation area as the field is propagated in the +z
direction in 512 discrete FFT steps, which is an artefact caused by the
FFT propagation method. Simulation is on a 512× 512 grid.

Our Fox-Li simulations were carried out using WaveTrace, a software suite de-

veloped by the Optics Group. For a more in depth description of this software

refer to appendix A.

The simulation takes place on a discrete grid of points representing some

2D height and width. We can propagate (non-paraxially) some initial field,

u0(x, y), a distance, d, using fast Fourier transforms (FFTs), and find the re-

sulting field u(x, y). We work with the resonator unfolded into a (potentially

infinite) periodic lens waveguide, where the lenses are represented as phase

holograms [37].
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(a) (b) (c)

Figure 4.5: Example of FFT propagation for 1
2

of one round trip. Propa-
gation is to the right. (a) shows the effect of having neither apertures at
the mirror, nor along the length of the cavity. (b) shows how diffraction
from apertures at the mirrors alone can lead to spuriously low loss. (c)
shows a simulated cavity that will give physically correct results at the
expense of increased computing time; the 1

2
round-trip is broken up into

6 FFT steps.

An input wave is created at one lens and then sent through the lens waveguide

using a FFT propagation method. Due to the nature of the FFT propagation,

our simulation area has periodic boundary conditions, i.e. any light that we

might expect to lose, since it has gone outside the simulation area, will reap-

pear from the opposite edge of the area (see figure 4.4). If this effect is not

corrected for by including absorbing boundaries (see figure 4.5), the results of

the simulation will be spurious (figure 4.6).

Now we must deal with some of the weaknesses of the Fox-Li method. The
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Figure 4.6: The effect of the periodic boundary conditions on beam in-
tensity, if not corrected for by the inclusion of baffles. The front plane
is propagated into the rear plane by the FFT propagation method with
unphysical results.

Figure 4.7: This plot shows the number of iterations taken to reach a
solution for symmetric stable Gaussian resonators.
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first and most obvious of these is an unavoidable consequence of the nature of

the Fox-Li method: its dependence upon loss. Figure 4.7 shows the number

of round trips taken to converge to a solution for a stable symmetric Gaussian

resonator. The loss in question is not usually that of the lowest loss mode, but

that of the next lowest loss mode or lowest loss modes. It is the time taken

for these to die away that is the chiefly behind the long convergence times

of certain modes. A further problem is that this poor mode discrimination

happens mainly in resonators that are already low loss.

However, looking at the confocal case in the same figure illuminates another

problem with the method — and a general weakness of all iterative methods

— which can be stated as follows: how do you know when you’ve reached the

solution? Our simulation method used a measure of certain qualities of the

beam at the mirror (diffractive loss, uniformity) and when these quantities

ceased to vary by a required amount, the simulation had reached a solution.

The problem with the confocal case — and as we discovered, certain other cases

(see next chapter) — is that the final solution is approached asymptotically.

Long before the simulation has reached a solution, the qualities of the beam

that we measure have ceased to vary appreciably, leading the simulation to

halt far too quickly.

Another problem we must address, and with which we are particularly con-

cerned, is the competition between the robustness of our method and the

amount of computation time taken to find an eigenmode. This manifests itself

in two ways:
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1. The rigour with which we set the termination conditions.

2. How many baffles, and therefore how many FFT steps, will our resonator

contain.

The trouble with point (1) can be seen particularly well in confocal resonators.

Instead of the normal beating behaviour of the loss per round trip, instead the

loss asymptotically approaches the final value. Long before the correct value

has been reached the loss is changing so slowly that the simulation terminates.

We could make more demanding requirements of the loss, but this would ad-

versely affect the number of iterations required to converge to a solution in

other cases.

In relation to point (2): as we have already seen (figure 4.6) failure to include

baffles can result in unphysical results, but the inclusion of a single baffle

doubles the number of calculations required for a round trip. Since our aim is

to map the eigenmodes of a family of resonators (see next chapter), including

the minimum number of baffles which still gave the correct result was crucial.

We found we could reduce the number of baffles even further if we made

all apertures in the resonator, including the baffles, “soft-edged”. That is,

having a perfectly absorbing boundary, and a perfectly transmitting centre to

the aperture; but instead of a discontinuity between them having a smooth

graduation from one to the other. This is achieved by using a function of the

form,



CHAPTER 4. THE FOX-LI METHOD 58

a(x) =


1 : x < ri

cos2
√

π
2
x−ri
ro−ri : ri ≤ x ≤ ro

0 : x > ro

(4.2)

where ro is the radius of the perfectly absorbing aperture and ri is the radius

of the perfectly transmitting aperture.

Despite this, choosing the correct number of baffles remains more art than

science. As can be seen in figure 4.8, it is necessary to have two aperture

profiles: one for the mirrors and one for the propagation baffles. The ro of the

mirror aperture must be smaller than the ri of the baffle aperture otherwise

resonators with a g-parameter close to −1 would show a spuriously higher loss

than their counterparts at +1.

Symmetric canonical resonators

A nice way to check the validity of any simulation is to compare it with ana-

lytic solutions, where such solutions exist. By simulating symmetric canonical

resonators we can compare our simulation results with the predicted gaussian

mode properties outlined in Chapter 2. Specifically, knowing (from equation

2.25) the expected size of the gaussian beam on the mirrors of the resonator;

and knowing (from our simulation parameters) the size of the mirror; we can

compare the loss per round trip of the evolved Fox-Li eigenmode with the loss

per round trip of the predicted gaussian mode.
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Figure 4.8: Cross-section of the soft-edged aperture that was found to be
useful in reducing the required number of baffles. The green dashed line
is the profile of the mirror apertures while the blue line is the profile of
the propagation baffle.

Section 4.2 shows that our simulation result agreed very well with the predic-

tions in most cases, and discusses some situations where our simulations fail

to give the correct results.

Fox-Li method: when do you stop?

So far we have not discussed a fundamental issue of Fox-Li simulations. When

do we stop? The case of resonator outputs (discussed above) is simple: the

number of lens-waveguide periods to propagate through is defined by the res-

onator’s finesse. But when looking for the fundamental mode, how far down

the (in effect) infinite lens-waveguide do we propagate before the ‘pancake’ is
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ready?

One of the defining characteristics of a mode of a stable resonator is its struc-

tural stability [7], i.e. if we examine the transverse mode-shape at any plane

within the cavity and compare the intensity profile with the intensity profile

of any other plane in the resonator, the two should (aside from scaling) be the

same. Thus some figure of merit based upon the transverse mode-shape, or

upon the variation of the transverse mode-shape from one round trip to the

next, is ideal. Our original simulations used the diffractive loss per round trip

as a figure of merit, but as is shown in the next section the intensity uniformity

(defined in equation 4.3) proved to be a more sensitive figure of merit. When

the figure of merit remains the same (within preset limits) from one round

trip to the next, the simulation has reached a solution, which should be the

eigenmode of the equivalent resonator.

4.2 Effects of spherically aberrated mirrors

on cavity mode shapes

We decided to explore the effect on mode shape of modifying the mirror profiles

with primary and secondary spherical abberation terms. The motivation for

this was to find resonator eigenmodes with the same power at the mirror and

the same diffractive loss as a reference gaussian eigenmode, but with a lower

peak intensity (similar to mesa beam resonators [38]). This would decrease the
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thermal loading of the mirror in such high-power applications as 2nd generation

gravitational wave detectors (outlined in greater detail in chapter 5). The

intensity distribution of the eigennmode would have greater uniformity, where

uniformity is defined as,

U =
1

N2

(
∑
i)2∑

(i2)
, (4.3)

summed over the pixels of the simulation, where N2 is the total number of

pixels, and the individual pixel intensities are i. This definition of uniformity is

a modified participation function, where having a flatter intensity profile and a

more spread-out beam spot gives a greater uniformity. Obviously, the presence

of an aperture at the point where we measure the intensity (i.e. the size of the

mirror) means that some pixels will always be dark – and more subtly, due

to the cosine edge, some will be artificially darker than they should be – but

for the purposes of our simulation, simply maximizing the uniformity while

maintaining the same diffractive loss is sufficient. It should be noted that

the uniformity function can be combined with the mirror aperture function

so that a normalized, uniform intensity across the mirror (modulated by the

cosine edge) produces U = 1. This gives the absolute value of U some physical

meaning, but is computationally more costly (important, since U is calculated

once per resonator round-trip) and was unnecessary for our purposes.

The Zernike polynomials form a complete set on the unit circle and are often

used in the analysis and correction of optical abberations [39]. Our code repre-
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sents the mirror surface as a superposition the first four cylindrically symmetric

Zernike polynomials.

The first of these is conventionally known as piston,

z0
0 = 1. (4.4)

This simply moves the surface forward or backward without changing the

shape. In our simulation, it could be thought of a length tuning of the res-

onator by ±π.

Defocus,

z2
0 = 2x2 + 2y2 − 1, (4.5)

is the equivalent of focal length. In essence, it defines the spherical mirror

which the next two terms deform.

Primary spherical aberration,

z4
0 = 6x4 + 6y4 + 12x2y2 − 6x2 − 6y2 + 1, (4.6)

and secondary spherical aberration,

z6
0 = 20x6+20y6+60x4y2+60x2y4−30x4−30y4−60x2y2+12x2+12y2−1, (4.7)
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are then used to reshape the spherical mirror defined by equation 4.6. The

mirror shape is defined by the superposition of these four terms, i.e.

S = α0z
0
0 + α1z

2
0 + α2z

4
0 + α3z

6
0 (4.8)

and the resulting shape is used as the basis for a phase hologram for a mirror.

For simplicity, the cavity was set to consist of two identical aberrated mirrors

a distance L apart, or a single aberrated mirror a distance L/2 from a plane

mirror. A parameter space of 21 × 21 × 21 resonators was mapped out from

g = −0.8 to g = 0.8 corresponding to the z-axis, primary spherical aberration

(applied both positively and negatively) to the x-axis, and secondary spherical

aberration (again applied both positively and negatively) corresponding to the

y-axis. This procedure took of the order of 4 weeks of computing time. A

representative plane of the resulting data is shown in figure 4.9. This plane

might be called the ‘g = 0.3 plane’ although the g-parameter has a meaning

only for the central (unaberrated) resonator. Indeed there are resonators in

this plane (top left and bottom right) which are effectively unstable. The

features of each plane are similar and consist of a low loss ‘valley’ running

from bottom left to top right, caused be primary and secondary spherical

abberation effectively correcting for each other.

One would intuitively expect that smoothly varying some resonator parameter

would result in a smooth variation in the mode properties of the resonator –

unless, of course, some fundamental limit were crossed, such as the transition
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Figure 4.9: A contour map of loss and uniformity variations (with log(loss)
displayed to highlight the variations) as primary and spherical aberration
are applied to a g = 0.3 cavity. The z-axis (not shown here) varies the
initial (unaberrated) g-parameter of the cavity. This is one plane of 21×21
values from a series of 21 planes, which can be imagined as stacked above
and below this one.
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Figure 4.10: The top row shows the effect of increasing primary spherical
aberration upon the shape of a g = 0.6 cavity mirror. The bottom row
shows the associated intensity pattern of the fundamental mode of the
cavity.

from stability to instability. Although figure 4.9 shows hints of this, we also

see certain resonators behaving quite differently from their neighbours. We

believe these to be due to problems with the Fox-Li simulation itself, rather

than properties of the resonators (see section 4.2). Disregarding these isolated

points, we disappointingly see a monotonic relationship: increasing the unifor-

mity of an eigenmode by aberrating one or both cavity mirrors results in an

increase in the diffractive loss per round trip.

Many of what might be termed re-entrant mirrors (i.e. mirror with a central

bulge of opposite curvature to the main body of the mirror, as with the right

hand-most mirror profile of figure 4.10) had, perhaps unsurprisingly Laguerre-

Guassian fundamental modes. These mirrors essentially have a g-parameter

that is greater than unity close to the optical axis, decreasing to less than unity

as we approach the mirror’s edge - they form a resonator that is unstable on the
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optical axis, but stable at the edges. This is perhaps equivalent to occluding

the central portion of one or both mirrors of a stable resonator with some

non-reflective material; or to an axicon resonator [40, 41].

One question might be asked: what are the benefits of performing these sim-

ulations with 2D mirrors, with the greatly increased time and computational

costs? Why not examine the behaviour of strip resonators? The answer is

that, if a promising mode was found, its sensitivity to tilt and misalignment of

the cavity could be investigated. Since none were found, and there remained

unanswered questions as to the reliability of the simulations, this was never

systematically undertaken.

Pathological cases

During these many cavity simulations, we observed two particular cases of our

Fox-Li simulations producing unexpected, and perhaps incorrect, results.

The first of these cases occurs when simulating stable canonical resonators.

Examining figure 4.11 we see that, for resonators with certain values of g,

the simulated loss does not match the theoretically predicted value. That is,

for g = 0 and g = ±0.5 (and, although not shown g = ±
√

2/2, · · · ), the

simulated loss is lower than predicted. Various attempts were made to remedy

this behaviour: for instance, allowing these particular resonators an order of

magnitude more round trips to settle into a mode, changing the Fresnel number
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of the resonator, etc. All were unsuccessful.

One possible explanation for the disagreement, however, can be outlined by

considering the imaging properties of stable canonical resonators. In general,

every transverse plane within a stable resonator is imaged into every other

plane within the resonator – this is the key to the ray-optical explanation of

stable resonator eigenmodes [7]. But there exist a subset of stable canonical

resonators in which every plane is imaged into only a finite number of planes

before being imaged back into itself; and it is exactly these resonators which

display the lower than predicted loss. In the perfectly aligned resonator, repre-

sented in the simulation, it takes a longer time, by several orders of magnitude,

for the field within the cavity to reach an eigenmode.

The second and perhaps more worrying case occurred during the simulation

of cavities with spherically aberrated mirrors: an example is shown in figure

4.12, and similar results were observed when simulating many other similar res-

onators. All share a typical initial evolution, of appearing to converge stably

to an eignenmode. If one examines only the loss per round trip one could be

forgiven for thinking that this was the case. The modes uniformity, however,

tends to show an oscillatory behaviour which increases until the mode starts to

‘flip’ into another, lower loss, mode. On occasions this mode, too, will appear

stable but then flip to a lower loss mode. The final mode appears to be physi-

cally reasonable (for instance, the mode never flips into a higher loss state), but

this behaviour raises the question of the reliability of our Fox-Li simulations.

As was mentioned above (section 4.1), it is usual to stop the simulation when

the loss per round trip (or equivalently the normalization factor) is the same
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Figure 4.11: Loss per round trip vs. g-parameter for stable symmetrical
canonical resonators. The theoretical prediction is for the assumed gaus-
sian mode of such a resonator while the simulated results are from Fox-Li
simulations, carried out on a 1024 × 1024 grid. There is disagreement at
g = ±0.5 (shown in greater detail below the main graph) and at g = 0.
One possible explanation is that these are ‘magic number’ resonators.

(to within some tolerance) from one iteration to the the next. If this procedure

were followed for the example in figure 4.12, the simulation would terminate

somewhere around the 200th iteration. We have seen (from figure 4.2) that the

uniformity can be a better indicator of convergence to an eigenmode than loss

per round trip – particularly in resonators with poor mode discrimination.
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Figure 4.12: Untypical behaviour during a Fox Li simulation of a spheri-
cally aberrated cavity. The simulation appears to converge to a solution
after only one hundred iterations. The uniformity then begins to oscillate
and the simulation then converges on a lower loss mode than the first.

4.3 Fractal Eigenmodes of Unstable

Resonators

That the transverse eigenmodes of unstable canonical resonators could possess

fractal structure was an intriguing discovery [42, 43, 44]. Further simulation

showed that manipulation of the parameters of unstable resonators (mirror

curvature, resonator length, aperture and transverse offset of the aperture)

could give rise to classic fractal patterns in the resonator’s eigenmodes [25].

One question that remained to be answered was whether careful choice of

parameters might reveal a resonator with a 3D classic fractal pattern as it’s

eigenmode. As a first step towards answering this, we examined the on-axis
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intensity of Fox-Li simulated unstable resonators and compared them with the

results of a simple algorithm based on the Monitor-Outside-a-Monitor effect

[45], described in the next section.

Mathematical fractals are structures which display self-similarity at all scales

[46]; fractals in the real world always fail to be self-similar at some scale level.

Our fractals provide an elegant demonstration of this since, in the reverse of

the usual method, they are built up from successively magnified portions of

the original pattern. Thus, the minimum scale is already set at the beginning

of the fractals construction.

During each round trip through a canonical optical resonator, light is imaged

geometrically by the resonator’s two curved mirrors. Geometrical imaging

of planes in canonical optical resonators is important both in unstable and in

stable resonators: in unstable resonators it can explain the formation of fractal

intensity structure in transverse cross-sections through the eigenmodes [20]; in

stable resonators it explains the eigenmodes’ structural stability [7].

The Monitor-Outside-a-Monitor (MOM) effect

Directing a video camera at the monitor which displays a live picture of what

the camera sees results in video feedback [47]. The monitor-inside-a-monitor

effect is the better known example of this; it occurs when the magnitude of

the overall magnification of the camera and monitor, M , is less than 1 (see the
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Monitor-outside-a monitor effect Monitor-inside-a monitor effect

n=1

n=2

n=3

n=4

Figure 4.13: The first 4 iterations of the monitor-inside-a-monitor effect
are shown in column (a), and the first 4 iterations of the monitor-outside-
a-monitor effect are shown in column (b).
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right hand column of figure 4.13. Less well known is the monitor-outside-a-

monitor effect. This occurs when |M | > 1 and with the further proviso that

the camera must be capable of resolving the individual pixels of the monitor.

Then the pixel pattern of the monitor is repeatedly imprinted on the initial

pattern at greater magnification, and from this smallest scale the system forms

structures M , M2, M3, etc. times larger [48]. The left hand column of figure

4.13 shows that this quickly results in a fractal pattern, albeit one which

possesses a smallest-possible scale, w. In 1D we can say that the pattern after

n iterations arising from an initial periodic function, p(x), is given by,

fn(x) =
n−1∑
i=0

p(
x

M i
). (4.9)

Unstable canonical resonators can also exhibit an analogue of the monitor-

outside-a-monitor effect. The resonator itself acts as the magnifier, and the

periodic function, p(x), is provided by the diffraction pattern from one of

mirror apertures. We can ensure that the pattern comes from only one of the

mirror apertures by making one of the mirrors much larger than the other.

The role of the ’monitor’ is taken by the self-conjugate plane – this is the

plane within the resonator that is imaged back onto itself after every round-

trip. The fractal nature of the transverse mode shape in the self-conjugate

plane has already been investigated [25]. We suspected that there might also

exist resonators which possess a fractal on-axis intensity. We also suspected

that it might be possible to engineer an unstable resonator which had, as it’s

eigenmode, an intensity pattern related to one the classic 3D fractals, such

as a Sierpinski gasket [46]. As a first step towards this, and in order the



CHAPTER 4. THE FOX-LI METHOD 73

R

R

S A
Figure 4.14: In an unstable confocal resonator, the volume around the
self-conjugate plane, S, is imaged back onto itself with a transverse mag-
nification, MT , and a longitudinal magnification, ML = M2

T . In this illus-
tration MT = −2 and the upright “R” is imaged back onto itself inverted
and stretched. The aperture, A, of one mirror is much smaller than the
other mirror; as a result, only the diffraction pattern from this mirror
contributes to the fractal pattern.

gain an understanding of the fractalicity displayed by some unstable resonator

eigenmodes, we decided to investigate unstable resonators which have fractal

patterns in their eigenmode’s intensity, both in the self-conjugate plane and

along the optical axis of the resonator.

We restricted ourselves to unstable confocal resonators, i.e. those resonators

where L = F + f and F > f . Our reasons where that the transverse and

longitudinal magnifications of the volume around the self-conjugate plane are

well understood in these resonators, being given by,

mT = −F
f
, (4.10)
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and

mL = m2
T =

F 2

f 2
, (4.11)

respectively (see figure 4.14). Thus, for example, to achieve a longitudinal

magnification of 2 requires that mT =
√

2, leading to resonators of the form,

L = F +
F√

2
. (4.12)

Our other requirement for the resonator is that there should be a sufficiently

regular intensity pattern on-axis in the region of the self conjugate plane (and

also a sufficiently regular transverse intensity patten in the self-conjugate plane,

but this is a much more easily fulfilled requirement). Ideally we would like a

perfectly regular variation in intensity (for example, an intensity that varied

like a sine wave). Some (numerical) experimentation revealed the patterns

shown in figure 4.15: (a) shows a cross-sectional view of the first half-round-

trip of an unstable confocal resonator, with the light propagating from left to

right, and from 0 to L. The incoming plane wave encounters a circular aperture

at 0. In (b), the intensity on the optical axis of the resonator is shown to the

same scale; the region around the self conjugate plane (for a confocal resonator

with mL =
√

2) is outlined in red, and shown with greater magnification in

(c). By appropriate choice of aperture radius, a, and resonator length D, we

can make the on-axis diffraction pattern arbitrarily regular. We are, in effect,
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looking at geometrically the same resonator with different equivalent Fresnel

numbers [34],

Neq =
a2

λD

√
g1(g1g2 − 1)

g2

, (4.13)

and, indeed, the same effect could be achieved by keeping a and D constant

while varying λ.

In order to gain this information about the on axis intensity (and also to make

sure the problems outline in figure 4.6 do not occur) it is necessary to propagate

the light field around the resonator in many steps. For comparison, a stable

symmetrical resonator might be simulated with 4 to 16 propagation steps per

half-round-trip. The information in figure 4.15 comes from propagation with

2048 steps per half round trip. The resolution of the simulation grid in the

transverse plane is also large (typically 1024×1024) in order to see the details of

the fractal intensity pattern in the self conjugate plane. As might be imagined,

simulating such a resonator in this way is computationally very expensive –

fortunately, due to the high loss nature of unstable resonators, the simulation

typically converges to an eigenmode within a few tens of round trips.

Figure 4.16 shows the on-axis intensity pattern in an unstable confocal res-

onator where mL = 2 as the simulation proceeds. The 0th round trip is simply

the initial aperture diffraction pattern, which will act as the periodic function

which will be magnified and superposed on subsequent round trips.
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a

b

c

Figure 4.15: A plane wave, propagating from left to right, encounters
a circular aperture resulting in the diffraction pattern shown in (a). The
intensity in the optical axis is shown in (b), and a close up of the diffraction
pattern in the region of the self-conjugate plane is shown in (c).
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(a) (b)

(c) (d)

Figure 4.16: The on axis intensity after (a) 0, (b), 1, (c) 2, and (d) 10
round trips of the resonator. The 0th round trip is essentially the aperture
diffraction pattern.

Figure 4.17 shows the comparison of a monitor-outside-a-monitor effect per-

formed upon an initial sine wave, with a Fox-Li simulation of the on-axis

intensity of an unstable resonator in the region of the self-conjugate plane.

The agreement of such a simple model with a complex wave-optical simulation

of a complex resonator leads us to believe that a clever choice of parameters

might yield an unstable resonator with a classic 3D fractal eigenmode.

4.4 Conclusion

In this chapter we have shown that our version of the Fox-Li method can

recreate the expected transverse eigenmode of canonical optical resonators,
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Figure 4.17: Comparison of MOM effect calculations and Fox-Li simula-
tions.

with the exception of ’magic number’ resonators. This caveat has not been re-

ported before and therefore may be due to our beam-propagation method. We

attempted to discover whether spherically aberrated resonators would support

an eigenmode of greater uniformity (i.e. a flatter intensity profile) and similar

diffractive loss, but due to difficulties with the simulation we were unable to

answer this question.



CHAPTER 5
Gravitational Waves: Sources

and Detection

In this chapter we briefly discuss the underlying physics of gravitational wave

generation and propagation. We also catalogue some of the astrophysical ob-

jects which are likely to generate detectable (by 2nd generation detectors – see

section 5.3) gravitational radiation. Finally, we look at some of the proposed

methods for detecting gravitational waves, and discuss the sensitivity limits of

interferometric gravitational-wave detectors.

All equations in this chapter assume the Einstein summation convention.

79
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a

b

Figure 5.1: Time evolution of a number of proof masses, under the influ-
ence of a gravitational wave propagating into the page with (a) h22 (or +)
polarization, and (b) h23 (or ×) polarization.

5.1 Gravitational Waves

Gravitational waves can be thought of as ripples in the curvature of space-time.

If we imagine two spatial dimensions of a locally flat spacetime (see figure 5.1)

then a suitably polarized gravitational wave has the effect of stretching one axis

while contracting the other. The magnitude of this stretching effect is governed

by the amplitude of the gravitational wave, h. This is physically observable

by measuring the change in separation in two freely moving proof-masses, i.e.
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h =
2∆L

L
, (5.1)

where L is the separation of the proof-masses and ∆L is the change in that

separation.

Detecting this length change arising from the gravitational-wave induced strain

in space has proven to be a somewhat tricky proposition: the predicted ampli-

tudes at the Earth’s surface from even the most violent astrophysical events

are of the order of 10−21. So if L = 1 km we are attempting do detect a length

change of 10−18 m — less than the radius of an atomic nucleus.

The equations of gravitational waves are the equations of General Relativity:

the Einstein Field Equations (EFE)[49]. This set of equations, which describe

how objects curve spacetime and the resulting gravitational interaction, can

be succinctly written in tensor form as,

Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (5.2)

where Rµν is the Ricci tensor, R is the scalar curvature, gµν is the metric

tensor, G is the gravitational constant, c is the speed of light in a vacuum, and

Tµν is the stress energy tensor.

Represented in this form – as Thorne [50] notes – gravity is nonlinear and it is
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therefore not possible to precisely separate the contributions of gravitational

waves to the curvature of spacetime from the background curvature caused by

massive objects. In practice this is not a problem. An analogy can be instruc-

tive: imagine the surface of a stormy sea, with large waves – this represents

the geometry of space-time. The waves and troughs represent the curvature

created by local massive objects. Now imagine dropping a large stone into

the sea: the outward propagating ripples are the gravitational waves, and are

different from the larger waves only in scale. But this difference of scale in

the various phenomena does give us a clue to how to attack the otherwise

intractable mathematical problem – the shortwave approximation, which is

closely related to semiclassical WKB approximation [51]. It works because in

typical astrophysical situations the length scale of the gravitational waves is

significantly smaller than the length scales over which the other curvatures

vary. Thus we can separate the Ricci tensor into the background component

(which is the average curvature over many wavelengths of the gravitational

wave) and the gravitational wave component,

Rµν ≡ gµν + hµν . (5.3)

A further simplification can be obtained by setting the background term to be

the term for flat space. Analytic solutions to equation 5.2 remain difficult; but

with the further assumption that the magnitude of hµν is small we can make

a linear approximation to a solution of the form,
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(52 − 1

c2

∂2

∂t2
)hµν = 0, (5.4)

i.e. a wave equation, where the wave propagates with velocity c. In the

transverse traceless gauge [52] a gravitational wave propagating in the z−

direction can be represented as the superposition of two polarisations,

ĥ+ =



0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0


, (5.5)

and

ĥ× =



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


. (5.6)

The invariant spacetime interval between two points is given by

ds2 = gµνdx
µdxν . (5.7)
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As the name suggests, this is an invariant quantity, but it’s projection along

certain axes can be changed.

The Earth is sufficiently far away from astrophysical gravitational-wave sources

for us to consider the gravitational waves reaching us to be planar. Consider a

Cartesian coordinate system located on the (locally flat) surface of the Earth

with the z-axis normal to the surface (i.e. in the opposite direction to ~g),

with the (plane) gravitational wave propagating in the −z direction. Here on

Earth, the gravitational waves reaching us from distant astrophysical sources

should (hopefully [53]) always be weak, and hence we can consider them as

perturbations of an otherwise flat spacetime. If the the gravitational wave is of

the h+ polarisation, we will see the x− and y− axes change length differentially

(see figure 5.1(a)). If the wave is of the h× polarisation then, although the

space around our axes will be distorted by their passage (see figure 5.1(b)),

we will see no length change of our x− and y−axes. The question remains as

to how to measure these possible length changes. As we shall see, a long-arm-

length Michelson interferometer provides an excellent method of measuring

differential length changes.

Very few analytic solutions of the Einstein Field Equations for the generation

and propagation of gravitational waves exist. The mathematical difficulties

of the generation problem and the propagation problem are very different,

and thus require different approximations of the underlying theory in order to

deal with them. This is typically accomplished by dividing the space being

modeled into three zones (see figure 5.2). (This can be thought of as similar to

the problem of solving Maxwell’s equations for the near field of some optical
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element and propagating an optical wave using, say, scalar diffraction theory,

but without the comfort of a rigourous mathematical link between the two.)

One set of mathematical tools is used in the wave-generation zone (where

r ≤ rI), and the local wave zone (where rI ≤ r ≤ rO); another set of tools

entirely is used in the distant wave zone (r ≥ rO), but with the requirement

that both techniques give matching results in the local wave zone. In the

absence of a rigourous link between the two formalisms, some confidence can

be gained by applying this technique to problems for which exact, analytic

solutions are known, e.g. [54].

5.2 Sources of Gravitational Waves

After this brief description of the generation and propagation of gravitational

waves, let us consider the real astrophysical objects which are the source of the

waves. It is customary to divide these sources into three classes, grouped by

there behaviour over a certain time-scale (for instance, that of a gravitational

wave detector’s observing run). Burst sources last only for a few cycles. Pe-

riodic sources consist of superpositions of sinusoidal waves, whose frequencies

are more or less constant during the course of an observing run. Stochastic

sources give rise to waves which fluctuate stochastically and last for a long

time compared with an observing run.

Type II supernovae occur when the core of a massive star collapses to become

a neutron star, while type I supernovae are believed result from nuclear explo-
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Figure 5.2: Different mathematical formalisms are used in describing the
generation of gravitational waves (wave generation zone) and the prop-
agation of the resulting waves (distant wave zone). The techniques are
matched together in the local wave zone.

sions caused by the accretion of matter from a nearby large companion star by

white dwarf stars. Observation leads us to expect around 2 type I supernovae

and 2 type II supernovae per century, in the Milky Way (i.e. within a distance

of ∼ 0.02 Mpc). Extending the observational distance to 10 Mpc (including

the centre of the Virgo Cluster) raises the event rate to a few per year for

both type I and II – a rate that gives the putative gravitational wave observer

something to work with. The asphericity of the event has a large effect on
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how strong the emitted gravitational waves will be – a completely spherically

symmetric stellar collapse will produce no gravitational waves, while a highly

aspherical collapse will produce strong waves. In the case of type II super-

novae, the resulting neutron star may itself be highly asymmetric and may

continue to emit gravitational waves until it reaches a ground state of perfect

sphericity.

The strain observable on Earth from a this type of source, a distance rMpc

away, is estimated to be,

h ' 5× 10−22

(
E

10−3M⊙c2

)(
15Mpc

r

)(
1kHz

f

)(
1ms

t

)
, (5.8)

where E is the amount of gravitational energy emitted at the frequency f

during an observation time t.

The coalescence of compact binary systems is another source of bursts of gravi-

tational waves. These black hole or neutron star binaries will spend a long time

spiralling towards each other with a decreasing orbital period before coalescing

. An example of this type of system is the well-known PSR B 1913 + 16 (see

figure 5.3) which will coalesce in approximately 300, 000, 000 years from now.

Numerical relativity simulations are required to understand the final stages of

binary inspirals, but it is clear that the emitted gravitational waves become

stronger as the system comes closer to coalescence. Again, taking the system

to be a distance rMpc from Earth, the estimated strain is,
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Figure 5.3: The orbital decay of the binary pulsar system PSRB1913+16
over a 30 year period. The solid line shows what would be expected if the
system were losing energy by emitting gravitational waves, while the data
points come from observations gathered at the Arecibo 305m antenna.

h ' 1× 10−23

(
100Mpc

r

)(
Mb

1.2M⊙
) 5

3
(

f

200Hz

) 2
3

(5.9)

where Mb = (M1M2)
3
5/(M1 +M2)

1
5 is a mass parameter describing the binary

system.
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Periodic sources emit gravitational radiation at a specific frequency (for a time

length longer than an observing run). A binary system far from coalescence

(for example the famous Hulse-Taylor binary [55], see figure 5.3) will radiate

gravitational waves, in the plane of rotation, at twice the rotation frequency.

Indeed, any rotating system that is not spherically symmetric, will radiate

gravitational waves in this way.

The stochastic background of gravitational waves, which is expected to be

isotropic, stationary and unpolarised, is to gravitational wave astronomy what

the cosmic microwave background is to radio astronomy, i.e. of great cosmo-

logical significance [56] and hard to detect.

5.3 Gravitational Wave Detection

As has already been discussed in section 5.1, detection of gravitational waves

is (or, rather, will be [57]) a matter of detecting a length change ∆L in a

length L. Several methods have been proposed to accomplish this challenging

task. Cryogenic resonant bar detectors [58] display excellent sensitivity to

gravitational waves (∼ 10−21m/
√
Hz[59]), but only at their particular resonant

frequency. Precise Doppler tracking of distant spacecraft [60, 61] could provide

a means of detecting low frequency gravitational waves, where the spacecraft

is one test mass and the Earth (a distance L ∼ 1.5 × 1012m away) is the

other. A third strand of research into gravitational wave detection – and in

recent years, perhaps the main strand – is that of ground-based interferometric
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detectors. These provide a high sensitivity to a broad band of gravitational-

wave frequencies [62].

Michelson interferometers [2, 63] provide a method of detecting a length change

particularly suited to the detection of gravitational waves. The quadropole

nature of a + polarised gravitational wave propagating in the −z direction

will cause a maximum change in the distance, L, between the origin and a

test mass on the the y-axis of ±∆L. At the same time, a test mass on the

x−axis will change by ∓∆L – and vice versa. If we consider a Michelson

interferometer, positioned with its beam splitter at the origin and one of its

arms (often referred to as the North arm) aligned with the y−axis, and its

other arm aligned with the x−axis (the East arm), then the end mirrors of the

arms will behave exactly as the test masses, resulting in a 4∆L path difference.

(Unfortunately the Michelson interferometer is completely insensitive to waves

which are × polarized with respect to the interferometer axes).

A Michelson interferometer (see figure 5.4(a)) is a device which allows very

precise measurement of the change in path length of one arm with respect to

the other. In a small-scale lab device, one observes the resulting interference

fringes at point d. In an full-scale interferometric gravitational-wave detectors,

the mirrors and beam-splitter are mounted on multi-stage pendulums to iso-

late them from seismic noise, and are enclose in vacuum systems. Electronic

feedback allows the optical elements to be held relative to each other such

that the interferometer is held on a dark fringe, i.e. no light is output at d

(in the absence of a gravitational-wave disturbance) and all the light which

enters the system is returned to the source, s. For much more detail than this
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Figure 5.4: (a) A simple Michelson interferometer. (b) A Fabry-Perot
Michelson interferometer

brief introduction can possibly convey about interferometer configurations and

electronic locking procedures see [64].

The first generation of interferometric gravitational wave detectors are already

in existence and have achieved peak sensitivities of∼ 10−21/
√

Hz: no candidate

gravitation wave signals have yet been detected [57]. Preparations for the

construction of a second generation of detectors (for the most part, upgrades to

existing instruments [65]) are well advanced, and a proposed third generation

of instruments are being extensively investigated, both theoretically [66] and

experimentally [67].

A simple Michelson configuration, even with arm lengths > 1km, is not sen-

sitive enough to detect gravitational waves. Most existing interferometric de-

tectors use a Michelson layout enhanced by the inclusion of either or both of

signal recycling and power recycling [68], and Fabry-Perot cavities in the arms
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[3]. For future interferometers, the high laser power (∼ 100 W) coupled with

the extremely high finesse of the Fabry-Perot arm cavities (see figure 5.4(b))

means that the coating thermal noise of the Fabry-Perot mirrors will be the

limiting factor for the sensitivity of the devices [32] in the region of a few

hundred Hz. Our experiment investigates the possibility of replacing the con-

ventional Fabry-Perot arm-cavities with instead a pair of diffractively-coupled

cavities. To this end, we commissioned a single 10 m long diffractively-coupled

cavity, in order to characterise its properties, and assess if fitness for use in a

full-scale interferometric gravitational wave detector. The next two chapters

will describe this process and its results, while the next section briefly consid-

ers the fundamental limits of sensitivity of interferometric gravitational wave

detection.

5.4 Limits to the sensitivity of an

interferometric gravitational wave

detectors

Many different sources of noise combine to create the complicated noise floor

of an interferometric gravitational wave detector. Some are environmental,

some are fundamental to the physics of the detection process, and some are

determined by the design of the detector. A study of some existing detectors

can be instructive here, and we consider an early proposal for a LIGO detector

[69].
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One obvious sensitivity limit set by the individual detector design is the arm

length, L. Since, for a simple Michelson,

∆L ' hL, (5.10)

then, in general, a longer arm length means greater signal for the same strength

of wave and thus a greater sensitivity. This also holds for a Fabry-Perot Michel-

son interferometer.

Seismic noise represents an unavoidable (for ground based interferometers)

source of noise, and is often the limiting factor at low frequency. Isolation,

using multistage suspensions, for the interferometer optics has become the

standard technique for reducing this. Several different suspension designs have

been tested, for instance, GEO600’s monolithic silica triple suspension system

or the VIRGO superattenuator [70]. Active cancelling of seismic noise (via

hydraulic actuators) has also been carried out [71]. Figure 5.5 shows the

seismic noise after reduction by suspension isolation; it also shows the noise

due to thermal excitation of the suspension (dotted line – the spike just below

1 Hz is a pendulum mode of the suspension).

The high frequency limit is due to photon shot noise. This can be reduced

by increasing the laser power and/or increasing the stored light power in the

arm cavities. However, increasing the number of photons also increases the

radiation pressure noise, which stems from the motion of the suspended mirrors
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caused by the back-reaction of reflected photons. Since these two factors so

closely influence each other, the sum of the two is often referred to simply as

quantum noise.

Increasing the laser power can also have implications for noise due to thermal

effects in the reflective coatings of the suspended mirrors (by two methods:

“coating brownian” noise, i.e. direct thermal excitation of the coating; and

“coating thermo-optic” noise, which is due to the changes in refractive index

with temperature) and the substrate, particularly highly transmissive optics

such as the beam splitter and inner test mass of the arm cavities. Cryogenic

cooling of the test masses has been suggested as a possible method to amelio-

rate this; another possibility is to circumvent the need for transmissive optics

altogether, and move to all-reflective interferometry [72], or, as with our ex-

periment, to use diffractively coupled-cavities.

Finally gravity gradient noise, represents the fundamental low frequency limit

for ground based detectors [73]. Gravity gradient noise arises from the motion

of nearby (i.e. earthbound) masses. The most ubiquitous of these are den-

sity fluctuations in the Earth’s lithosphere and asthenosphere due to ambient

seismic waves.
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Figure 5.5: The dominant contributions to the strain spectral density of
an Enhanced LIGO detector, from [69].



CHAPTER 6
Grating-coupled cavities for

Gravitational Wave detectors

This section discuses grating coupled cavities and their possible advantages

over conventional Fabry-Perot cavities (at least for use in Gravitational Wave

detection), and also introduces the theoretical framework necessary to analyse

their behaviour. It also details the specific problems of controlling and lock-

ing on-resonance cavities, the mirrors of which are suspended on pendulum

mounts.

It should be noted that in this chapter, the term cavity means exclusively, a

stable (g1g2 ≤ 1) optical resonator.

96
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laser
laser

a b

Figure 6.1: A comparison of two Michelson interferometers: (a) is the
conventional geometry with a central beam-splitter, while (b) uses a four-
port diffraction grating, but is topologically identical.

6.1 Why use grating coupled cavities?

With current designs, quantum shot noise is a strong limiting factor at high

frequency [66]. Planned future detectors will have increased laser power, and

one possible method of mitigating the increased coating noise [74, 75] is to

move from transmissive optics to diffractive optics – for instance, to replace

beam-splitters and inboard arm-cavity mirrors with diffractive couplers. The

beam-splitter can be replaced by a four-port grating (see figure 6.1) and the

inboard mirrors can be replaced by three-port gratings (see section 6.2).
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6.2 Scattering Matrix formalism for

grating-coupled cavities

An optical element [76] can be characterized by the number of ports which it

has; that is, by the number of input/output directions. Thus a simple mirror

(see figure 6.2(a)) is a two-port element which has a reflectivity, ρ, and a

transmissivity, τ . We can relate the outputs of this mirror (b̃1 and b̃2) to the

inputs (ã1 and ã2) using the scattering matrix formalism:

 b1

b2

 =

 ρ τ

τ −ρ


 a1

a2

 . (6.1)

The elements of the scattering matrix are the aforementioned reflectivity and

transmissivity.

Without specifying a physical mechanism, we can imagine a general three-

port element (see figure 6.2(b)). As with the simple mirror we can represent

its input/output relations as follows:


b1

b2

b3

 =


ρ11 τ12 τ13

τ21 ρ22 τ23

τ31 τ32 ρ33



a1

a2

a3

 . (6.2)
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a b

a1 a2

b2b1

a1

b1

a
3

b
3

a 2

b 2

Figure 6.2: Reflection and transmission of optical waves from (a) a simple
mirror, and (b) a general three-port optical element.

Again, the vectors a and b represent the inputs and outputs of the element.

The elements on the diagonal of the matrix are labeled ρnn because they rep-

resent the coupling of the input of a port with the output of the same port, i.e.

a reflectivity. The off-diagonal elements are the couplings between the inputs

and outputs of different ports and are thus labeled τnm.

Now let us consider a diffraction grating [77] where the grating period is d and

all the transmitted orders are suppressed. From the grating equation,

sinα + sin βm =
mλ

d
, (6.3)

we require simply that there be only two diffracted orders with βm < 90◦. With
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the further conditions that the light must be incident along a diffraction order –

this requirement leads to the grating being in a so-called Littrow configuration

[78] – we can represent a diffraction grating by just such an equation as 6.2. If

we assume that the grating is symmetrical with respect to the grating normal

[79], we can write the scattering matrix as

S3p =


η2e

iθ2 η1e
iθ1 η0e

iθ0

η1e
iθ1 ρ0e

iθ0 η1e
iθ1

η0e
iθ0 η1e

iθ1 η2e
iθ2

 , (6.4)

where the eiθn terms denote the phase shift associated with the nth diffraction

order.

In our experiment light is incident on the grating at the second-order Littrow

angle(see figure 6.3), giving rise to reflected light (η0), back-diffracted light

(η2), and the first-order diffracted light, η1, which is coupled into the cavity

(see figure 6.3(b)). Once inside the cavity, after being reflected from the End

Test Mass (ETM) the light again encounters the grating, this time at normal

incidence (see figure 6.3(c)). Most of the light is reflected back into the cavity,

(ρ0), but some is diffracted out of the cavity, η1.

Assuming no loss at the grating surface, we have:

η2
0 + η2

1 + η2
2 = 1, (6.5)
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and

ρ2
0 + 2η2

1 = 1, (6.6)

where equation 6.5 refers to the situation in figure 6.3(b) and equation 6.6

refers to the situation in figure 6.3(c). So, the light coupled into the cavity

depends entirely on the first order diffraction efficiency, η0, while the light

coupled out of the cavity depends only (if we consider for the moment the

end mirror being perfectly reflective) on the same diffraction efficiency, but

this time multiplied by a factor of 2 as there are two output diffracted orders.

Clearly, if we want our cavity to have a high finesse, we should design our

grating to maximise ρ0 and minimise η0 and η1. Put simply, it should be more

like a plane mirror than a diffraction grating.

Now we consider the entirety of the cavity. We start with the simplest case, two

partially reflective mirrors aligned on the same axis and separated by a length,

L. The mirror on the left, mirror 1, has a reflectivity ρ1 and a transmissivity

τ1. We know from chapter 2 that, for the cavity to be resonant, we must have

L = mλ
2

. Assuming this to be the case, we start at t = 0 with light incident

only from the left (see figure 6.4(a),) with field Ei (the red arrow),

Ei = E0e
iωt. (6.7)
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a b c

a 1

b 1
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b2

a
3

b
3

η 0

η1

input
η
2

η 1

input

ρ0

η
1

Figure 6.3: A three-port reflection grating. In (a) all the possible input
and output ports are shown and labeled. In (b), the grating is arranged for
cavity input with the port labeled η1 coupling into the cavity. (c) shows
the grating arranged for cavity output with both ports labeled η1 coupling
out of the cavity.

Since the incident field is constant, a mode quickly builds up in the cavity.

This mode is represented by the two circulating fields, Ec1 and Ec2, which can

be many times stronger that the incident field, and are given by

Ec1 = iτ1Ei − ρ1Ec2, (6.8)

and
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Ec2 = −ρ2Ec1e
−i2δ, (6.9)

where δ = 2πL/λ and ρn,τn are the amplitude reflection and transmission

coefficients of the mirrors respectively. The term, δ is the phase delay due to

the cavity length.

With these equations, we can now work out what the two outputs of the cavity

are. Et is simply the portion of the field Ec1 which is transmitted through

mirror 2, i.e.

Et = τ2Ec1

=
τ1τ2e

−iδ

1− ρ1ρ2e−i2δ
Ei. (6.10)

Similarly, Er is simply the portion of Ec2 which is transmitted through mirror

1, plus the portion of Ei which is reflected from mirror 1,

Er = τ1Ec2 + ρ1Ei

= ρ1Ei −
ρ2τ

2
1 Ei(e

−i2δ − ρ1ρ2)

1 + ρ2
1ρ

2
2 − 2ρ1ρ2 cos(2δ)

. (6.11)

Now that we know all outputs of the cavity in terms of the incident field let us

consider a simple example: a cavity with two identical mirrors (ρ1 = ρ2 = ρ
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and τ1 = τ2 = τ) separated by a distance L = 1m. Further, we specify that

the mirrors are lossless (ρ+ τ = 1).

Firstly, from the resonance condition the factor δ = 2πL/λ becomes δ = 2πm

(where m is an integer) since, on resonance, L/λ must be an integer. So, in

equations 6.10 and 6.11 the the exponential and cosine terms are equal to 1,

giving

Et =
τ 2

1− ρ2
Ei, (6.12)

and

Er = ρEi −
ρτ 2(1− ρ2)

(1− ρ2)2
Ei. (6.13)

Thus, after a period of time during which the power in the cavity builds up,

the transmitted and reflected fields are simply equal to the incident field.

For this to be the case, what must be the circulating fields within the cavity?

Looking at mirror 2 in isolation, we see that the field Ec1 is incident upon it

and that the field Et is transmitted. And since we know that Et = Ei it is

clear that,
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Et = τEc1. (6.14)

In contrast to this, the grating coupled cavity (figure 6.4(b)) has three output

fields: Eη0, Eη2 and Et. The incident field is aligned with the η2 diffraction

port, i.e. the grating is in a second order Littrow mount. We can derive the

input-output relations for this more complex cavity by using equation 6.4 -

full details of the derivation can be found in [79]. Here we simply state that

we find,

Eη0 = Eiη0 + Eiη
2
1e

[2i(φ1+φ)], (6.15)

Ec1 = Eiη1e
(iφ1)d, (6.16)

Eη2 = Eiη2e
iφ2 + Eiη

2
1e

[2i(φ1+φ)], (6.17)

Et = Ec1(1− ρ1)ieiφ, (6.18)

where d is the resonance factor (d = 1/[1−ρ0ρ1 exp(2iφ)]), and φn is the phase

shift associated with the nth diffraction order.
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Figure 6.4: A two-port, conventional Fabry-Perot cavity (a) and a three-
port, grating coupled cavity (b), both of length L. Red arrows represent
incident field, grey arrows are fields circulating within the cavity and black
arrows are fields which leave the cavity.

6.3 Length sensing and control for suspended

cavities

So far we have talked about the expected properties of our diffractively-coupled

cavity, but not about one of the major challenges of realising this experimen-

tally. As we discussed in the previous chapter, for gravitational wave detection,

the optical elements of the interferometer, including the arm cavities, must be

suspended. This obviously removes our ability the rigidly define the length L

of the arm cavities as we would be able to if our optical elements were, say,

bolted to an optical bench.
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One method of doing this for conventional Fabry-Perot cavities is the Pound-

Drever-Hall [80] method. For this method, the light input into the cavity

(which we call the carrier) is modulated to produce a set sidebands by either

amplitude or phase modulating the carrier. Since our experiment involves only

phase-modulation sidebands, we will discuss these.

In our experiments, phase sidebands are imposed on the carrier by passing it

through an electro-optic modulator (EOM) [81], which is a birefringent LiNbO3

crystal sandwiched between two copper plates - effectively a capacitor (approx-

imately 30 pF) with the birefringent crystal as the dielectric. The sinusoidal

signal at RF frequencies (usually of the order of 10MHz) is applied to the cop-

per plates and creates a pair of phase-modulated sidebands. We can represent

the modulated field as

Emod = E0e
i(ωt+m cos(ωnt)), (6.19)

were E0 in the unmodulated carrier field, ω is the angular frequency of the

laser, t is the time, m is the modulation index and ωm is the angular frequency

of the modulation. We can expand this as,

Emod = E0e
iωt[J0(m) + J1(m)eiωnt − J1(m)eiωmt + · · · ], (6.20)

where Ji(m) are Bessel functions of the first kind, and the higher order terms
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have been left out. The modulation index is, then, an indication of how much

of the carrier power is diverted into the sidebands.

Only light within the linewidth of cavity is resonant; the sideband fields are ef-

fectively reflected from the front of the cavity, when the cavity is resonant with

the carrier (as long as a modulation frequency outside of the cavity linewidth

is chosen). Therefore the light emerging from the cavity will interfere with the

static phase reference of the sideband field resulting in a beat at the sideband

modulation frequency. The beat The superposed carrier (after circulating in

the cavity) and sideband field is detected and can be demodulated by mixing

it with a local oscillator of the same frequency as the modulation (and also of

the correct phase), resulting in a signal as shown in figure 6.5.

The error signal for a diffractive-coupled cavity is slightly more complicated

since the light leaving the cavity has a different phase shift depending upon

which port it exits from. These complications will be discussed in the next

chapter.



CHAPTER 6. GRATING-COUPLED CAVITIES 109

Figure 6.5: A typical (modelled) error signal for a Fabry-Perot cavity,
which can be thought of as the derivative of the cavity transfer function
(dashed line).



CHAPTER 7
The JIF interferometer:

experimental demonstration of a

grating-coupled suspended

cavity

This chapter describes – more or less, chronologically – the commissioning of a

diffractively-coupled cavity in the Glasgow 10m prototype. It then goes on to

describe the experiments carried out to characterize this cavity – work which

laid the foundation for the publication of [67] (and also [82]). This work was

carried out in conjunction with B. Barr, M. Plissi, M. Edgar and S. Huttner.

As the requirements for circulating light power in gravitational wave detectors

110
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increase, thermal noise due to the test mass reflective coatings and substrate

also increase. Numerous methods have been suggested to mitigate this, includ-

ing the use of mesa beams [32], or coating-free corner-cube cavities [83]. The

method which we choose to investigate here are diffractive reflection gratings.

The worst thermal effects will occur at the beam-splitter and at the input

couplers of the arm cavities; if these transmissive optics can be replaced by

appropriate diffraction gratings then, perhaps, these thermal effects can be

reduced to an acceptable level.

7.1 The Glasgow 10m prototype

The Glasgow 10m prototype is housed in the JIF facility – a class 100 clean

laboratory, with class 10 areas [84] around the tanks housing the optics (see

figure 7.1). The suspended optics are housed in 9 vacuum tanks connected

by several tens of metres of beam tube. It is intended to be a test-bed for

technologies intended to increase the sensitivity of interferometric gravitational

wave detectors.

The optics are suspended on either 2 stage or 3 stage pendulums. In general

the 2 stage optics are the beam alignment mirrors and the 3 stage optics are

the cavity optics or beam splitters. From figure 7.2 we see that the beam

comes from the optical bench (where the control sidebands are imposed upon

it); through tank 4 (not shown) which houses the thermal noise experiment

[85]; through tank 5 which usually houses the power-recycling mirror and into
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Diffractively coupled arm 

Tan
k 2

Tan
k 4
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k 7

Figure 7.1: A photograph of the the JIF lab facility showing the 10m beam
tubes and the ITM tanks.
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Tank 1 Tank 2 Tank 3

Tank 5 Tank 6

Tank 8 Tank 9Tank 7

10m

10m

Conventional arm cavity

Diffractively-coupled arm cavity

From optical bench

Figure 7.2: A plan view of the JIF lab facility. Tank 4 containing the
thermal noise experiment [85] and the optical bench are not shown.
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tank 6 were it encounters a 50 − 50 beam-splitter. Half of the light power

is diverted to our experiment in tanks 1,2 and 3, while the rest continues to

the conventional Fabry-Perot cavity housed in tanks 7 and 8 (note that silica

masses are shown in blue, while aluminium masses with 1” optics are shown

in white).

Figure 7.3 shows the layout on the optical bench. Light from a 2 W Nd:YAG

laser [86] passes through a Faraday isolator, and then the Electro-Optic Mod-

ulators (EOMs) which impose phase sidebands of 10 MHz and 15.24 MHz for

control of the cavity (see section 7.4).

A more detailed plan of tanks 1 and 2 is shown in figure 7.4. Light from the

beam splitter falls onto the first alignment mirror MA1 and is directed onto

the second alignment mirror MAD. This, incidentally, was one of the trickiest

procedures of the rough alignment: since the position of MAD is more or less

fixed, due to lack of space in the tank, and the clearance between the reaction

mass, M1Dr, and the supporting leg (not shown) is quite tight, the correct

positioning of MA1 was critical. MAD reflects the light onto the diffractive

optic, M1D, from where it is diffracted into the cavity formed between the

almost-flat diffractive optic and the 15m focal-length silica mass, M1E.

Rough alignment of the beam bath was carried out by moving the mounting

points of the steering-mirror suspensions and rotating the suspensions on their

mounts. MA1, as the only suspension in tank 3, could be freely moved; MAD

had a very small range of possible movement and rotation, since the interior

of tank 2 was rather crowded.
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Figure 7.3: The optical bench: light from a 2 W Nd:YAG laser passes
through a single-mode fibre and then through 2 EOMs which impose con-
trol sidebands upon it. Figure adapted from an original by S. H. Huttner.
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Figure 7.4: The interior of tank 2.
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Figure 7.5: On the left is a diagram a triple pendulum – or rather, of two
triple pendulums: a main optic pendulum and a reaction mass pendulum.
Six shadow sensors on the upper stage of the pendulum give information
about the orientation of the upper stage and hence (like a marionette
puppet) the orientation of the optic in the lower stage. The photo on the
right shows the rather more complicated reality: Bosch support frame,
ribbon cables, and the various catchers in case of suspension breakage.

The triple suspensions of M1D and M1E were also roughly aligned using a

variety of means. The attachment of the triple suspensions makes it more

difficult to alter the rotation of the optic: instead of being directly attached

to the Bosch framework (as the double pendulums are) they are suspended

from a pair of cantilever blades (see figure 7.5), though this is not a procedure

to be recommended . It is possible to gain a few degrees of rotation control

by altering the alignment of the cantilever blades. Rough tilt control on both

double- and triple-pendulums is controlled by adjustable masses on the upper

stage of the suspension.
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In order for the diffractive optic to function as a second order Littrow mount,

the input light must encounter the diffractive at an angle of 47.2◦. Furthermore

(see figure 7.6), it is necessary that the light be propagating in the xz-plane,

and that the grating itself be aligned parallel to the z-axis. The 3D grating

equation tells us,

~q × ~N − ~p× ~N =
mλ

d
~G, (7.1)

where ~p is the unit vector of the incoming beam, ~q is the unit vector of the

outgoing beam, ~N is the normal vector of the grating, ~G is the unit vector of

the grating and d is the grating spacing. Thus proper alignment, in the terms

of figure 7.6, has ~N parallel to the z-axis and ~G parallel (or antiparallel) to

the y-axis.

Local control of suspended optics

Local control refers to the electronic alignment control – and damping – of the

suspended optics. It involves a complex system of sensors, analog electronics

and digital control software. Figure 7.7 shows a block diagram of the control

and damping system for one pendulum, be it a double or a triple suspension.

The sensor and actuator for the pendulum is an integrated unit. The sensor

is a shadow sensor (see figure 7.8) composed of and IR LED and photodiode



CHAPTER 7. EXPERIMENTAL GRATING-COUPLED CAVITY 119

∆y

y

x

z

Figure 7.6: The effect of the grating roll degree-of-freedom on cavity align-
ment. The left figure shows the grating perfectly aligned, i.e. −→g parallel
to the z-axis and the grating face is in the xy-plane: if the input light is in
the xz plane at an angle of 47.2◦ to the z-axis, then the 1st order diffracted
beam propagates along the z-axis.

housed in a PTFE structure which also holds a copper coil. The magnet

mounted on the top stage of the pendulum and the coil are the actuator. Each

double suspension has four of these senor-actuator combinations and each triple

suspension has six. These provide fine control of the rotation, tilt and roll of

the end stage optic.

The MCP (a computer programme in LabVIEW designed to monitor and

adjust the digital control boards for each suspension, see figure 7.7) keeps track
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Figure 7.7: A block diagram showing the feedback path for damping move-
ment of the pendulums, as well as the alignment .
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a b

Figure 7.8: A diagram (a) of shadow sensor and magnet-coil actuator used
for damping and steering of suspended optics. A photograph (b) of one of
the six shadow sensor and magnet-coil actuator used on the top stage of
the three-stage pendulums.

of, and archives, the setting for each of the 7 pendulums in the diffractive

cavity experiment (and, also, the pendulums for the three-mirror coupled-

cavity experiment – but we are not concerned with these here). Figure 7.9

shows an example of the look-up table for one double-stage pendulum. The

module number is set here in software and must be matched correctly to the

hardware module by correctly setting two hexadecimal digital potentiometers

(i.e. 256 possible settings).

One of the author’s tasks during the commissioning of the diffractively coupled

cavity was to rewrite the local control software to allow for the control of more

than the 14 suspensions it had initially been designed for.
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Figure 7.9: An example of the look-up table for a 4-channel pendulum.
Each of the 7 pendulums in the diffractive-cavity chain have a similar
look-up table.

7.2 Systematic alignment technique

After the first, rather haphazard, alignment of the diffractively-coupled cavity,

a systematic technique was developed to align the cavity; this was important

since the cavity needed to be realigned after almost every change made in

tank2 (the following section will show that there were a considerable number

of these).

To a very high degree, the diffractive optic can be considered to be simply a

plane mirror (> 99%) – this gives a clue as to the best method of alignment.

Recall that the cavity-throughput beam exits tank 1 through a window and

is detected on the throughput photodiode. With tanks 1 and 2 open to allow

visual inspection of the cavity optics, we replace the throughput photodiode

with a HeNe laser (see figure 7.10). Laser light (helpfully, visible) is shone into

the cavity from the conventional-mirror end. First we confirm that the HeNe
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is positioned correctly by making sure that the visible spot on both M1E and

M1D is central; then, using the coarse and fine alignment techniques outlined

previously, we move M1D until the return spot from M1D (visible on the face

of M1E) coincides with the input spot. Then, looking at the return spot from

M1E on the face of M1D (i.e. 30m downstream from the input spot), we move

M1E until the return spot coincides with the input spot. This may need to be

repeated with spots further and further downstream from the input spot.

The triple pendulums are damped by the local controls (at the digitally preset

gain) but are receiving no global cavity control: therefore the optics of both

M1E and M1D are moving very small distances (< 1 mm if not disturbed) at

the pendulum frequency. When the cavity is well enough aligned the optics

will swing through a resonance condition (i.e. D = mλ/2) and out again – the

visual effect of this is that the laser spot on the cavity optics will flash brightly

(as the cavity field builds up and dies down). At this point the cavity is aligned

(although not locked), but only as a conventional Fabry-Perot cavity.

The next stage of the procedure is to align the grating’s roll degree-of-freedom,

and the input pointing defined by the two steering mirrors, MA1 and MAD.

For this stage we use the beam from the Nd:YAG laser. By changing the

rotation and tilt of MA1 and MAD we align the input spot onto the centre

of M1D: fine control is usually sufficient to accomplish this. We then look for

the 1st order diffracted spot from M1D, on the face of M1E. Since the cavity is

aligned, if the diffracted spot is not central it is due either to incorrect input

pointing of the beam from MAD (i.e. it is not in the xz-plane, but at an angle

to it) or to the grating not being aligned with the z axis. We can correct the
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input pointing by adjusting MA1 and MAD so that the 0th order (reflected)

beam spot on the pick of mirror is at the same height (measured from the lower

Bosch frame with a meter stick) as the beam spot on MAD, while maintaining

the input spot central on M1D. Then a combination of fine roll and tilt control

of M1D should bring the 1st order diffracted spot to the centre of M1E. We

then examine the return spot from M1E on the face of M1D. An fluorescent

IR viewing card, improved by the subtraction of a small hole (slightly bigger

than the beam) is the ideal tool for such a task: the diffracted beam is allowed

to pass though the hole, and the reflected is observed on the face of the card.

Very fine rotation and tilt of M1E will bring the reflected spot to the centre

of M1D.

In the final stage of the alignment procedure, a CCD camera connected to a

monitor is positioned at the window of tank 1. As the two pendulums swing at

their natural frequency, a quick succession of TEM modes (and superpositions

of TEM modes) can be seen on the monitor. If the cavity is poorly aligned,

modes with a central dark spot – such as TEM11 and 33 – will predominate;

or if the cavity is well aligned in one axis, but not the other higher order modes

such as TEM16,26 will appear. With a great deal of patience, tiny changes

can be made to the alignment of all four mirrors, so that modes with a central

bright spot (TEM00, 22, etc.) predominate. At this point the cavity is ready

for global controls to be applied.
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HeNe

Tank 1 Tank 2

M1E M1D

Figure 7.10: Alignment procedure for a grating coupled cavity. With both
tanks open to allow visual inspection of the cavity optics, light from a
HeNe laser is shone into the cavity from the conventional-mirror end.

7.3 The laser bench: mode matching and

control signals

With the rough alignment complete, it was necessary to make some changes on

the setup of the laser bench. During the preliminary stages of our experiment

it had been left unchanged from the previous experiment (characterizing a 3-

mirror coupled cavity [87]). In this experiment, the three cavity mirrors were

– traveling from the laser bench to the end of the cavity – as follows: the PRM

(power recycling mirror), with a focal length of 15m; the ITM (inner test mass),

a plane mirror; and the ETM (end test mass), with a focal length of 15m. Thus

the mode matching requirement from the laser bench into the cavity was that

the beam should have a wavefront curvature of −15m, approximately 7m from

the optical bench (i.e. where it encounters the PRM).
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Our requirements were slightly more complex: the cavity input-optic is flat

(neglecting it’s diffractive properties for the moment), so we require the beam

to have a flat wavefront where it meets this optic, some 11.5m from the optical

bench, i.e. we must arrange that the beam has a waist at this point. Fur-

thermore, because the beam meets the diffractive optic at an angle of 47.2◦,

we require that the beam be elliptical (when measured perpendicular to the

beam) in order that the projection of the beam into the cavity be circular. In

fact we require that the x−waist be 0.68 times smaller than the y−waist.

This requires the use of either one or two cylindrical lenses to create an ap-

propriately sized waist at the correct position from the laser bench. We can

theoretically work out where to place the cylindrical lenses (using, for instance,

JamMt [88] or by hand, using the ABCD-matrices) if we know where the waist

of the current beam is. We measure the beam profile using a Melles-Griot Su-

per BeamAlyzer – a 7-blade knife-edge beam profiler. We decided that it was

impractical to measure the beam inside the vacuum tanks. Instead, by divert-

ing the beam from the optical table before it entered the vacuum system (see

figure 7.11), we could reflect the beam back onto the optical bench from a

mirror mounted on a camera tripod, 8m distance away, and measure the beam

profile at various points on the bench.
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Figure 7.11: Measuring beam profiles.

7.4 Cavity control

In order for the diffractively-coupled cavity to act as an optical resonator,

the two components of the cavity – the suspended diffractive coupler and end

mirror – must be held at a distance of D = mλ/2. The same actuators used

to control the alignment can be used to control the length of the cavity.

Pre-existing servo electronics from a previous experiment [89, 87] were used,

with very minor modifications, to lock the diffractively-coupled cavity, using

feedback to both the end test mass of the diffractively-coupled cavity, M1E,

and to the laser frequency. The laser frequency feedback was through two

paths: fast (give some idea of speed) frequency changes were made using the

laser’s built in piezoelectric actuator; slower frequency changes were made by

changing the temperature (and therefore the length) of the laser crystal.
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Figure 7.12: The cavity control scheme for our suspended, diffractively-
coupled cavity. EOMs impose 10 MHz and 15.24 MHz phase sidebands on
the 1064 nm carrier. Three photodiodes read out the demodulated signals
and send them to the control electronics.

Phase sidebands of 10 MHz and 15.24 MHz were imposed upon the carrier (see

figure 7.12). The value of 10 MHz was chosen for historical reasons, but the

value of 15.24 MHz was chosen to be close to the free spectral range (FSR) of

the diffractively-coupled cavity. The FSR was 15.27 MHz which ensure that the

higher frequency sidebands would be partially resonant and thus large enough

to result in a demodulated signal in transmission, measured at the photodiode

PD c2t. The 10 MHz sidebands could resulted in a demodulated signal at PD

c1 and PD c3, i.e., the back-reflected and forward-reflected fields.

Using the coupling relations for a three-port grating developed in the previous

chapter, and the parameters for the grating measured by the Albert-Einstein-

Institute in Hannover (plus the known reflectivity of the end mirror), we could

compare our measure power output of the cavity with what we would theo-

retically expect – this agreed to within 12%. The measured cavity finesse of
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Figure 7.13: Normalized error signals from the transmitted, back-reflected
and forward-reflected ports of the diffractive cavity compared with mod-
elled error signals. The in-phase demodulation measurements are shown
as dashed lines and the quadrature phase demodulation as solid lines.
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Figure 7.14: A simulated reconstruction of a traditional PDH error sig-
nal by combining back- and forward-reflected error signals for a lossless
grating.

1107± 51 was also in close agreement with the calculated value of 1177± 27.

After my work on the experiment ceased, Barr and Edgar continued to char-

acterise the cavity. Their aim was to compare the demodulated error signals

obtained from all three photodiodes with those predicted by modelling the

cavity. In order to do this, the cavity length was swept through one FSR.

The maximum and minimum signals, obtained by mixing the local oscillator

’in-phase’ and in ’quadrature-phase’ (i.e. 90◦ away from the minimum, are

shown in figure 7.13 compared with the modelled signals. The discrepancies

and asymmetries in the measured values can be explained by the finite rate of

sweep of the cavity length, when compared with the quasistatic model.

Previous work on a table-top grating-coupled cavity (by Hallam et al. [90])

had shown an asymmetry in the behaviour of the reflected carrier power levels,
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Figure 7.15: The suspended mass containing the diffractive optic, inside
tank 2.

determined by η0 and η2. Barr and Edgar discovered that a careful choice of

demodulation phase would allow the reconstruction of a traditional PDH error

signal by combining the two reflected signals (see figure 7.14).

7.5 Side-motion coupling

As the previous chapter explained, the motion of the grating-coupler from side-

to-side results in a frequency shift to the ±1 coupled orders. To investigate

this effect, we implemented a modification to the control of M1D that allowed

the grating to be displaced in the x-axis. Visible in figure 7.15 is the magnet

and coil structure which drives the end-stage mass of M1D laterally. The coil

was mounted on a 2-stage micrometer - this allowed the coil to be moved so

that the force on the magnet pushes normal to the side of the end stage mass.

The magnet was clamped, and then glued, onto the break-off of the end-stage



CHAPTER 7. EXPERIMENTAL GRATING-COUPLED CAVITY 132

mass.

In order to examine the movement of the end-stage mass (and thus of the

diffraction grating) we decided to use a laser Doppler vibrometer (Polytec

OFV-505 sensor head and OFV-5000 controller [91]). The vibrometer is a

heterodyne interferometer, which compares the backscattered light from the

target with a reference beam [92, 93]. The vibrometer was mounted in tank 2

and a mirror (or some cases two mirrors) positioned to direct the vibrometer

beam onto the end-stage mass at one of four measurement points (see figure

7.16). Since only one point on the end-stage mass could be measured at a time

the procedure was as quite laborious. The mirror, or mirrors, were arranged

to direct the vibrometer’s laser spot to the chosen measurement point on the

end-stage mass and the vibrometer calibrated for that path-length. Often, at

this point the setup was tested by applying a swept-sine signal to the side-coil

(while the cavity was locked) and checking the resulting transfer function using

a FFT-based dynamic signal analyser. Although the diffractive arm could not

be evacuated (the cable between the vibrometer sensor head and controller

compromised the vacuum seal of tank 2), we found that closing tank 2 gave

more consistent results from the swept-sine measurements. It seems reasonable

to believe that closing the tank gave M1D and MAD some protection from air-

currents arising from the air conditioning system.

The first thing we looked for was the the signals from measuring at points 1

and 2 were balanced. This was achieved by taking successive measurements

and then adjusting the micrometer stages on which the coil was mounted to

improve the balance between the transfer functions measured at these points.
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Figure 7.16: Taking vibrometer measurements inside tank 2. In (a) the
four measurement and various mirror arrangements needed are shown. (b)
shows a photograph of the vibrometer mounted inside the tank, measuring
position 1

After a few iterations, the transfer function shown in figure 7.17 was measured.

This shows that, although the end-stage mass might not be moving parallel

to the x-axis (i.e. it might have some z component), points 1 and 2 remained

parallel to the z-axis throughout the movement.

Results from points 3 and 4 were initially less successful. Examination of the

transfer functions gained from these points seemed to show that significant

back-action from the side-coil being transmitted through the Bosch frame to

the mirror used to steer the vibrometer spot onto the front face of M1D. This

could be improved by mounting the mirror in an inverted position from the

upper Bosch frame (as can be seen in figure 7.15(b)), but not sufficiently for

us to have confidence in the measurements.

Despite extensive optimisation of the experimental set-up, these problems per-
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Figure 7.17: Transfer function of points 1 and 2 in response to a signal
driven through the side coil. This shows that the end-stage mass of the
M1D suspension moves in the x direction without twisting, but gives no
information on whether it moves in the z direction as well.

sisted. Only after abandoning this approach, and rebuilding the coil mount

(using an alternating rubber/lead stack) as well as a modified strategy for driv-

ing M1D, did Barr and Edgar succeed in measuring a total transfer function.

This confirmed the expected 1/f response of the demodulated signal to the

sideways motion [90].



CHAPTER 8
Conclusions

8.1 Simulations of novel optical resonators

Although there was little in the way of novel physics in the ray-traced simula-

tions of resonator interiors, these studies did give an excellent insight into the

imaging properties of resonators. Further work on the properties of ray-optical

metamaterials has been carried out by members of the Optics group [26].

Our Fox-Li simulations of unstable resonators revealed some surprising never-

before-seen properties of a very well studied system. It was unfortunate that

simulations of spherically aberrated resonators could not be fully trusted due

to an, as yet, unexplained pathology in the simulation technique.

135
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8.2 Experimental realisation of a suspended

diffractively-coupled cavity

This experiment successfully demonstrated that it was possible to use a con-

ventional PDH scheme to control a suspended, diffractively coupled cavity.

Further, it demonstrated that the traditional PDH error signal could be re-

constructed by combining both reflected error signals. And finally, it gained a

valuable insight into how translational, rotational and vibrational movement

of the diffractive element couples into the obtained error signals [82]. Though

the analysis is not yet complete, it suggests that the phase noise generated be

the motion of a suspended grating-coupler would be greater than the expected

decrease in coating brownian noise, making this an unsuitable technique for

full-scale interferometric gravitational wave detectors.



APPENDIX A
WaveTrace - Numerical beam

propagation

A.1 WaveTrace

This appendix describes WaveTrace: a library of LabVIEW VIs (see figure A.1)

first developed by Johannes Courtial [94], and since built upon by Courtial and

others.

WaveTrace is a based around a 2D Fast Fourier Transform beam propagation

algorithm (described in the next section). It allows for an arbitrary beam to

be propagated from one plane to another, and for that beam to interact with

137
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Figure A.1: WaveTrace v2.0 – a library of LabVIEW VIs for simulating
and propagating arbitrary beams. Shown here are a few of the available
VIs for creating various types of beams and lenses, measuring their prop-
erties and various means of propagating them.

phase holograms represent lenses, prisms or indeed any imaginable diffractive

optical elements.

A.2 Beam Propagation Algorithm

If we take an initial electric field Ez0(x, y) in the plane z = z0, then to propagate

this to a plane a distance ∆z away, we proceed as follows. First the 2D Fourier

transform of the initial field is calculated,
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ez0(kx, ky) = FT [Ez0(x,y)(kx, ky)], (A.1)

which corresponds to a plane wave decomposition of the form

ez0(kx, ky) exp(−i(kxx+ kyy)). (A.2)

That is, the superposition of the 3D plane waves of which equation A.2 gives

the 2D coss sections) creates the field E(x, y, z). The kx and ky components of

each plane wave are the same in every z-plane, and the kz component is given

by

k =
√
k2
x + k2

y + k2
z =

2π

λ
(A.3)

By propagating to a plane a distance ∆z from the initial plane, the cross

section through each plane wave changes phase by −kz∆z, thus in the plane

z = z0 + ∆z we have,

ez0+∆z(kx, ky) = ez0(kx, ky) exp(−i
√
k2 + k2

x + k2
y∆z). (A.4)

The cross-sectional electric field in this plane, Ez0+∆z(x, y), is then given by
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the inverse Fourier transform of equation A.4.



APPENDIX B
POV-Ray code listing:

visualization of a canonical

optical resonator

A sample of the POV-Ray code used to produce the figures in chapter 3 is

included for reference.

1

2 // Simple symmetric resonator g=0.2

3 // 1 7 . 5 . 0 6

4

5

6 g l o b a l s e t t i n g s { assumed gamma 2 .2 m a x t r a c e l e v e l 50 }

7

8 #include ”shapes . inc ”

141
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9 #include ” colors . inc ”

10 #include ” textures . inc ”

11 #include ” sk ies . inc ”

12 #include ”metals . inc ”

13 #include ”woods . inc ”

14 #include ”golds . inc ”

15 #include ” glass . inc ”

16

17

18 // Choose quality of foca l blur − a f f e c t s rendering time

19

20 #declare FB Quality Off = 0 ;

21 #declare FB Quality Fast = 1 ;

22 #declare FB Quality Default = 2 ;

23 #declare FB Quality High = 3 ;

24

25 #declare FB Quality= FB Quality Fast ;

26

27

28

29 // Macros

30 //==============================================================

31

32 // g parameter macro :

33 // Takes input g−parameter , G

34 // Returns corresponding foca l length , F

35 // Mirror separation , L

36 #macro gParameter (G,L)

37

38 #switch (G)

39
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40 // deal with i n f i n i t e foca l length , which occurs for g=1

41 #case (1 )

42 #local part1 = 1000 ;

43 #local part2 = L ;

44 #break

45 #else

46 #local part1 = 0.5∗L ;

47 #local part2 = 1/(1−G) ;

48 #end

49 part1∗part2

50 #end

51

52

53

54 // Spherical mirror macro

55 // parameters :

56 // F = foca l length of mirror

57 // A = radius of aper ture of mirror

58 // returns a spher ical mirror

59

60

61

62 #declare MirrorSurface = texture {

63 pigment { BrightGold }

64 f i n i s h {

65 ambient . 1

66 d i f f u s e . 1

67 spe cu l a r 1

68 roughness .001

69 m e t a l l i c

70 r e f l e c t i o n {
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71 1

72 m e t a l l i c

73 }

74 }

75 }

76

77

78

79 #macro SphericalMirror (F , A)

80 #local R = 2∗F ; // radius of curvature of mirror

81 #local Z = sqrt (R∗R − A∗A) ;

82 #i f (R>0)

83 d i f f e r e n c e {

84 c y l i n d e r {

85 <0 ,0 ,0.001 > , <0 ,0 ,−(R−Z)> , A

86 pigment {Black}

87 }

88 sphere {

89 <0, 0 , −R>, R

90 tex ture {MirrorSurface}

91 }

92 }

93 #else

94 i n t e r s e c t i o n {

95 c y l i n d e r {

96 <0 ,0 ,−0.001> , <0,0,−R−Z+0.05∗A>, A

97 pigment {Black}

98 }

99 sphere {

100 <0, 0 , −R>, R

101 tex ture {MirrorSurface}
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102 }

103 }

104 #end

105 #end

106

107 // End of macros

108 //==============================================================

109

110

111

112 //Resonator parameters

113

114 #local G=0.2; // resonator g−parameter

115 #local A=1; // radius of mirrors

116 #local L=4; // length of resonator

117 #local M=L/2 ;

118

119

120 #local F=gParameter (G,L ) ; // foca l length of mirrors

121

122

123

124 // Camera posit ion 1 − ins ide the resonator

125

126 camera {

127 l o c a t i o n <0, 1 , 0.1>

128 d i r e c t i o n 2∗z

129 r i g h t x∗ image width/ image height

130 l o o k a t <0, 1 , L>

131

132 // Camera posit ion 2 − s ide view
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133

134 //camera {

135 // l o c a t i o n <7, 1 , −L/2>

136 // d i r e c t i o n 1 .5∗ z

137 // r i g h t x∗ image width/ image height

138 // l o o k a t <0, 1 , L/2>

139

140 // Focal blur

141

142 #i f ( FB Quality != FB Quality Off )

143 aper ture 0 .7 // Set depth of f i e l d

144 f o c a l p o i n t <0, 1 , 7.7> // Set foca l point

145 #end

146

147 #switch ( FB Quality ) #case ( FB Quality Off )

148 aper ture 0

149 #debug ”\nNo foca l blur used . . . \ n”

150 #break

151 #case ( FB Quality Fast )

152 b lur sample s 7

153 con f idence 0 .5 // default i s 0 .9

154 var iance 1/64 // default i s 1/128 (0 .0078125)

155 #debug ”\nFast foca l blur used . . . \ n”

156 #break

157 #case ( FB Quality Default )

158 b lur sample s 19

159 con f idence 0 .90 // default i s 0 .9

160 var iance 1/128 // default i s 1/128 (0 .0078125)

161 #debug ”\nDefault foca l blur used . . . \ n”

162 #break

163 #case ( FB Quality High )
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164 b lur sample s 37

165 con f idence 0 .975 // default i s 0 .9

166 var iance 1/255 // default i s 1/128 (0 .0078125)

167 #debug ”\nHigh Quality foca l blur used . . . \ n”

168 #break

169 #else

170 #debug ”\nNo foca l blur used . . . \ n”

171 #end }

172

173

174 // Make the sky and ground

175

176 background { c o l o r rgb <0.2 , 0 . 4 , 0.8> } l i g h t s o u r c e { <30, 30 ,

177 −30> c o l o r rgb 1 } plane {

178 y , 0

179 pigment { checker c o l o r Brown , c o l o r Yellow s c a l e 1 }

180 }

181

182 sky sphere {

183 pigment {

184 grad i ent y

185 color map {

186 [ 0 . 0 rgb <0.6 ,0 .7 ,1 .0 > ]

187 [ 0 . 7 rgb <0.0 ,0 .1 ,0 .8 > ]

188 }

189 }

190 }

191

192

193

194 //Declare objects
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195

196 #declare mirror 1=SphericalMirror (F ,A) #declare

197 mirror 2=SphericalMirror (F ,A) #declare P object= text {

198 t t f ”timrom . t t f ” ”P” , 0 . 01 , 0

199 pigment { Col Glass Green }

200 f i n i s h { r e f l e c t i o n 0 spe cu l a r 0 }

201 s c a l e 2

202 }

203

204

205 //Place objects in scene

206

207 object {mirror 1

208 t r a n s l a t e 1∗y

209 t r a n s l a t e L∗z

210 }

211

212 object {mirror 2

213 r o t a t e 180∗y

214 t r a n s l a t e 1∗y

215 }

216

217 object {P object

218 t r a n s l a t e 0 .1∗y

219 t r a n s l a t e −0.6∗x

220 t r a n s l a t e 1 .5∗ z

221 }

222

223 //==============================================================
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[74] W. Winkler, K. Danzmann, A. Rüdiger, and R. Schilling. Heating by op-

tical absorption and the performance of interferometric gravitation-wave

detectors. Phys. Rev. A, 44:7022, 1991.
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