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Summary 

In the present study, recombinant proteins representing the transmembrane 

domain of M. haemolytica outer membrane protein A (OmpA) from a bovine 

serotype A1 isolate (rOmpA1) and an ovine serotype A2 isolate (rOmpA2) were 

over-expressed, purified and used to generate anti-rOmpA1 and anti-rOmpA2 

antibodies, respectively. An examination of the binding specificities of these 

antibodies to M. haemolytica isolates representing different OmpA subclasses 

revealed that cross-absorbed anti-rOmpA1 antibodies recognised OmpA1-type 

proteins but not OmpA2-type proteins; conversely, cross-absorbed anti-rOmpA2 

antibodies recognised OmpA2-type proteins but not OmpA1 type proteins. This 

demonstrated that OmpA1 and OmpA2 are surface-exposed and could potentially 

bind to different receptors in cattle and sheep. The outer membrane 

subproteomes of seven M. haemolytica isolates and one M. glucosida isolate 

were also characterised and compared after growth in complex growth medium 

in order to identify OMPs with putative roles in host-specificity and virulence. 

First, a simple bioinformatic workflow (E-Komon et al., 2011b) was used to 

confidently predict 93 unique OMPs encoded among the genomes of a bovine 

serotype A1 M. haemolytica isolate and two serotype A2 isolates (one bovine and 

one ovine). Secondly, a combination of gel-based and gel-free proteomic 

approaches employing MALDI-TOF-TOF and LC-ESI-QqTOF mass spectrometry 

identified 55 unique OMPs among the outer membrane fractions of seven M. 

haemolytica isolates and one M. glucosida isolate (of which 50 were predicted by 

the bioinformatic approach). A role in host-specific adaptation could not be 

established for any of the identified OMPs, however, the study represents the 

most comprehensive analysis of M. haemolytica and M. glucosida outer 

membrane subproteomes to date. In order to identify putative virulence-

associated OMPs, the outer membrane subproteomes of the same representative 

isolates were also characterised after in vitro growth under conditions that were 

designed to mimic the in vivo host respiratory tract microenvironment. These 

conditions included growth in iron-restricted medium, serum-supplemented 

tissue culture media and growth on solid-surface agar (in the absence or 

presence of Congo red). This approach allowed the identification of 13 

additional OMPs that were not identified after growth in complex medium alone. 
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1.  INTRODUCTION 

1.1 The organisms 

1.1.1 History and taxonomy of M. haemolytica and M. glucosida 

The causative agent of a disease which caused pneumonic pasteurellosis in 

calves was originally described as Bacterium bipolare multocidum in 1885 (Kitt, 

1885). It was later renamed Bacillus boviseptica in 1896, and then further 

subdivided into separate groups that cause either bovine fibrinous pneumonia 

(Pasteurella boviseptica) or haemorrhagic septicaemia (now Pasteurella 

multocida) (Jones, 1921). Newsom & Cross studied this group in detail and 

suggested the name Pasteurella haemolytica for the bacterium that causes 

pneumonia in calves (Newsome and Cross, 1932). This species was subdivided 

into biotypes A and T, according to their ability to ferment L-arabinose and 

trehalose, respectively (Smith, 1961, Smith, 1959). Capsular serotyping of P. 

haemolytica has established seventeen different serotypes to date (Biberstein et 

al., 1960, Biberstein and Gills, 1962, Angen et al., 1999a). P. haemolytica was 

later removed from the genus Pasteurella based on DNA-DNA hybridization 

(Mutters et al., 1985). The trehalose fermenters were also later reclassified as a 

separate species, Pasteurella trehalosi (now Bibersteinia trehalosi), based on 

evidence from numerical taxonomic analyses and DNA-DNA hybridization (Sneath 

and Stevens, 1990, Biberstein and Francis, 1968). Twelve of the biotype A 

organisms (serotypes 1, 2, 5-9, 12-14, 16 and 17) have been reclassified as 

Mannheimia haemolytica and the A11 serotype has been renamed as a separate 

species, Mannheimia glucosida (Angen et al., 1999a).  

M. haemolytica is no longer a Pasteurella sensu stricto, but now occupies a 

place in the Mannheimia genus on a branch of a phylogenetic tree within the 

gamma subdivision of the Proteobacteria, whose closest relatives are B. 

trehalosi, Actinobacillus capsulatus, and Haemophilus parainfluenzae 

(Highlander, 2001) (Fig. 1.1). 
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Figure 1.1. Phylogenetic tree of members of the Pasteurellaceae produced 

from 16S rRNA sequences. GenBank Accession numbers for the 

sequences used are shown in parentheses.  

Phylogenetic tree adapted from Highlander et al. (2001). 
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1.1.2 Morphological and biochemical characteristics  of M. haemolytica and 

M. glucosida 

1.1.2.1 Cell morphology  

M. haemolytica and M. glucosida are small, non-motile, encapsulated Gram-

negative coccobacillus exhibiting slight pleomorphism and occasional bipolar 

staining (Adlam, 1989). Fimbriae have been described on the surface of serotype 

A1 M. haemolytica isolates grown in culture (Potter et al., 1988, Morck et al., 

1987) and isolated from infected cattle (Morck et al., 1989), but have not been 

identified on other M. haemolytica serotypes or on M. glucosida. 

1.1.2.2 Cultural morphology  

Colonies of M. haemolytica and M. glucosida are smooth and greyish in colour 

and are 1-2 mm in diameter after 24 h growth on blood agar (Angen et al., 

1999a). Most strains of M. haemolytica and all strains of M. glucosida are 

haemolytic on bovine blood agar (Angen et al., 1999a). 

1.1.2.3 Biochemical characteristics 

The biochemical characteristics of M. haemolytica and M. glucosida have been 

previously described (Angen et al., 1999a, Mutters et al., 1989) and are 

summarised in Table 1.1. The two species have common characteristics for 

haemolysis and the fermentation of trehalose, D-sorbitol, D-xylose, maltose, 

dextrin, indole and D-melibiose, but can be differentiated by the NPG test. 

1.2 The diseases 

1.2.1 Pneumonic pasteurellosis in cattle (shipping fever) 

M. haemolytica is the principal etiological agent of bovine pneumonic 

pasteurellosis, a disease which is often referred to as shipping fever (also transit 

fever, bovine respiratory disease, dust pneumonia, bronchial pneumonia, 

fibrinous pleuropneumonia and bovine epizootic pneumonia). Various 

combinations of environmental stresses can contribute to the pathogenesis of 

the disease, including shipment, weaning, overcrowding and inclement weather 

(Singh et al., 2011). Several viruses that are ubiquitous in the cattle population 

are also associated with the disease, including bovine parainfluenzae virus 3, 
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Table 1.1. Biochemical characteristics of M. haemolytica and M. glucosida. 

 

Property M. haemolyticaa  M. glucosidaa 

Haemolysis + + 

Orthinine decarboxylase − +/− 

Trehalose − − 

L-Arabinose − +/− 

D-Sorbitol + + 

D-Xylose + + 

Maltose + + 

Dextrin + + 

Glucosides − +/− 

Gentiobiose − +/− 

NPG (β-glucosidase) − + 

Meso-Inositol +/− + 

ONPF (α-fucosidase) + +/− 

ONPX (β-xylosidase) +/− +/− 

ONPG (β-galactosidase) +/− + 

Indole − − 

D-Melibiose − − 
aSee references Angen et al. (1999a) and Mutters et al., 1989. 
‘+’ = positive; ‘−’ = negative; ‘+/−’ = positive or negative 
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bovine respiratory syncytial virus, bovine herpesvirus 1, bovine viral diarrhoeae 

virus, Mycoplasma species, and other bacteria (Singh et al., 2011). The 

processes by which environmental stresses or viral infections, either alone or in 

combination with each other, predispose cattle to shipping fever are not fully 

understood. In healthy cattle, M. haemolytica are carried in the nasopharynx 

and tonsils in low number and are not readily detected by nasal swab cultures 

(Frank, 1989). Under the context of immune suppression, caused by 

environmental stress or viral infection, specific serotypes of M. haemolytica 

rapidly multiply in the upper respiratory tract. Serotype A1 isolates are most 

commonly associated with cases of bovine disease (although serotype A6 isolates 

are responsible for an increasing proportion of disease cases), whereas serotype 

A2 isolates are frequently recovered from asymptomatic animals. The larger 

bacterial numbers result in aerosolised droplets containing bacteria accessing 

the trachea and lungs and causing pneumonia. Death can occur in as little as 2 to 

3 days, or the infection can proliferate and cause chronic lung damage. The 

early clinical symptoms of the disease are fever, cough, depression, anorexia, 

dyspnoea, and nasal and eye discharge (Frank, 1989). 

1.2.2 Pneumonic pasteurellosis in sheep 

Pasteurellosis is one of the most common infectious bacterial diseases of sheep 

(Gilmour and Gilmour, 1989). M. haemolytica is responsible for causing 

pneumonia in all ages of sheep and septicaemia in young lambs (Gilmour and 

Gilmour, 1989). All M. haemolytica serotypes are recovered from sheep. In ovine 

pneumonic pasteurellosis disease cases, serotype A2 is most frequently 

recovered, followed by serotypes A7 and A9, whereas serotype A1 isolates are 

frequently recovered from asymptomatic animals. Similar to bovine disease 

cases, predisposing factors to ovine pneumonic pasteurellosis include 

environmental stresses and viral infection. M. glucosida is an opportunistic 

pathogen of sheep that is not normally associated with disease conditions and 

probably represents part of the resident microflora in the upper respiratory tract 

(Biberstein and Gills, 1962, Angen et al., 1999a). 
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1.3 The Gram-negative cell envelope 

The cell envelope of Gram-negative bacteria is comprised of two membranes, 

the inner membrane and the outer membrane, separated by the periplasm. The 

inner membrane is at the boundary between the cytoplasm and the periplasm, 

whereas the outer membrane is at the boundary between the periplasm from the 

external environment. Although these two membranes are both lipid bilayers 

which contain proteins, their structure and composition are dramatically 

different as a result of their different functions and the dissimilar environments 

that they contact (Ruiz et al., 2006) (Fig 1.2). 

1.3.1 Inner membrane 

The inner membrane is composed of a symmetrical phospholipid bilayer 

interspersed with proteins. Although inner membrane phospholipid content 

varies between different species of bacteria, in E. coli 70-80% is 

phosphatidylethanolamine, 15-20% is phosphatidylglycerol and 5% or less is 

cardiolipin (Kanemasa et al., 1967, Yamagami et al., 1970). These proteins can 

be of two types, integral proteins and lipoproteins. Integral inner membrane 

proteins span the inner membrane with α-helical transmembrane domains, 

whereas inner membrane lipoproteins are anchored to the periplasmic side of 

the membrane by lipid modifications at the N-terminus of the prolipoprotein. 

Inner membrane proteins are involved in important cellular processes including 

energy production and conservation in the respiratory chain, signal transduction, 

cell division and transport across the membrane. 

1.3.2 Periplasm 

The periplasm is a highly viscous compartment that contains soluble proteins and 

a thin peptidoglycan layer. Proteins in this compartment are involved in 

processes such as protein folding, transport and degradation, outer membrane 

biogenesis, and sensing and responding to environmental stimuli. It is an 

oxidising environment and contains enzymes which catalyse disulphide bond 

formation, a crucial process for the folding and stability of proteins secreted 

through the cell envelope (Nakamoto and Bardwell, 2004). The peptidoglycan 

layer serves as an extracytoplasmic cytoskeleton that contributes to the rigidity 

of the cell envelope, maintains cell shape and prevents cell lysis.  
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Figure 1.2. Schematic diagram of the Gram-negative cell envelope. 

The cell envelope of Gram-negative bacteria is comprised of an 

inner membrane (IM), the periplasm and the outer membrane (OM). 

The inner membrane is a symmetrical phospholipid bilayer 

containing integral membrane proteins that have α-helical 

transmembrane domains. The peptidoglycan separates the inner 

and outer membrane and contains a thin layer of peptidoglycan. 

The outer membrane is an asymmetrical lipid bilayer containing 

phospholipids on the inner leaflet and LPS on the outer leaflet. The 

outer membrane also contains integral proteins that mainly adopt 

β-barrel conformations. Both membranes contain lipoproteins that 

anchored to the periplasmic side. The outer membrane also 

contains lipoproteins which are exposed on the outer leaflet. Figure 

adapted from Ruiz et al. (2006). 
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1.3.3 Outer membrane 

In contrast to the inner membrane, the outer membrane is asymmetric, with the 

inner leaflet composed of phospholipids and the outer leaflet composed mainly 

of LPS. The phospholipid composition is slightly different to that of the inner 

membrane, as the outer membrane is enriched with saturated fatty acids and 

phosphatidylethanolamine (Lugtenberg and Peters, 1976, White et al., 1972). 

The LPS functions as an effective permeability barrier due to its low fluidity and 

strong lateral interactions between molecules (Nikaido, 2003). Like the inner 

membrane, the outer membrane also contains both integral OMPs and 

lipoproteins; however, in contrast to the α-helical integral proteins of the inner 

membrane, integral OMPs span the outer membrane predominantly with 

amphipathic antiparallel β-strands which adopt a β-barrel conformation that 

allows many OMPs to serve as channels (Koebnik et al., 2000, Schulz, 2002). 

Similar β-barrel proteins are also found in the membranes of chloroplasts 

(Schleiff et al., 2003) and mitochondria (Casadio et al., 2002). Outer membrane 

lipoproteins can be anchored to either the periplasmic or extracellular face of 

the outer membrane (Tokuda and Matsuyama, 2004). About 50% of the outer 

membrane mass consists of integral OMPs and lipoproteins (Koebnik et al., 

2000). 

1.3.3.1 Getting things in: OMPs involved in nutrient uptake 

The outer membrane of Gram-negative bacteria is a very effective permeability 

barrier that also poses a challenge with respect to nutrient uptake. For this 

reason, Gram-negative bacteria possess a range of OMPs for either passive or 

active uptake of essential nutrients from the extracellular milieu. 

1.3.3.1.1 General porins 

The general porins form aqueous channels that allow diffusion of small 

hydrophilic molecules (< 600 Da) into the cell and show no particular substrate 

specificity (with the exception of preferences for cations or anions) (Nikaido, 

2003). They are generally between 30 and 50 kDa in size (Nikaido, 2003). The 

first porin crystal structures were of the Rhodobacter capsulatus porin (Weiss et 

al., 1991) and the E. coli general porins PhoE and OmpF (Cowan et al., 1992) 

(Fig. 1.3). These revealed that the porins were present as homotrimers in the  
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Figure 1.3. The crystal structure of the E. coli OmpF porin homotrimer.  

Extracellular loops 2 (L2) and 3 (L3) are indicated for each subunit 

monomer. OmpF structure was adapted from Cowan et al. (1992); 

PDB reference 10PF. 
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outer membrane and that each monomer was a β-barrel containing 16 

antiparallel β-strands. The size of the eyelet region of OmpF was measured at 

0.7 by 1.1 nm (Cowan et al., 1992). In porins, the third extracellular loop (L3) 

folds back into the barrel, forming a constriction zone and contributing 

significantly to the permeability properties of the pore (i.e. exclusion limit and 

ion selectivity). The second extreacellular loop (L2) bends over the wall of the 

neighbouring barrel subunit, playing a significant role in trimer stabilisation 

(Nikaido, 2003). Porins are able to transition between open or closed states 

depending on the transmembrane potential across the outer membrane (Koebnik 

et al., 2000). 

1.3.3.1.2 Substrate-specific porins 

Besides the general diffusion porins described above, the outer membrane also 

contains porins that are substrate-specific. The best-studied example is the E. 

coli maltoporin LamB, a specific transporter of maltooligosaccharides of various 

sizes. Like the general porins, LamB is present as a homotrimer in the outer 

membrane and each monomer is a 47 kDa β-barrel containing 18 antiparallel β-

strands (Schirmer et al., 1995). The L1, L3 and L6 loops fold back inside the 

barrel, forming a channel (0.5 to 0.6 nm in diameter) that is more constricted 

than the general porins (Schirmer et al., 1995). The length of the channel 

interior contains a row of aromatic amino acid residues (greasy slide) that are 

lined up by polar residues (polar track), creating a maltooligosaccharide-specific 

translocation pathway that facilitates passage through the channel (Dutzler et 

al., 1996). Similar structural characteristics are also seen in the Salmonella 

typhimurium sucrose-specific porin ScrY (Forst et al., 1998). 

1.3.3.1.3 TonB-dependent receptors 

TonB-dependent receptors bind and actively transport specific substrates across 

the outer membrane which are either poorly permeable through porins (> 600 

Da) or are present at very low concentrations and require energised transport for 

their translocation. These substrates include host iron-binding proteins, 

siderophores, haemophores, vitamin B12, nickel chelates and carbohydrates 

(Schauer et al., 2008). TonB-dependent receptors contain a C-terminal integral 

membrane β-barrel comprised of 22 antiparallel β-strands (Ferguson et al., 

1998, Locher et al., 1998, Buchanan et al., 1999) (Fig. 1.4) that form a pore 
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Figure 1.4. Schematic diagram of TonB-dependent rec eptor transport.  

A substrate binds to the TonB-dependent receptor with high-affinity 

and is transported across the outer membrane. In the periplasm, 

the substrate binds to a periplasmic-binding protein (PBP) that 

transports it across the periplasm to the inner membrane. The 

substrate is then transported across the inner membrane into the 

cytoplasm by an ATP-binding cassette (ABC) transporter. TonB-

dependent receptor structure was adapted from Ferguson et al. 

(1998); PDB reference 2FCP. 
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which is larger (3.5 by 4.7 nm) than that of the porins. The N-terminus forms a 

plug domain which occludes the pore and prohibits the passage of substrates. 

Substrate binding occurs at sites on the extracellular side of the plug domain and 

on the walls and extracellular loops of the β-barrel. Transport of the bound 

substrate through the β-barrel is an energy-dependent process; however, the 

outer membrane is not capable of producing energy due to the absence of either 

ATP-hydrolysing enzymes or a proton gradient. The required energy is obtained 

from the proton motive force of the inner membrane and transduced to the 

outer membrane via three inner membrane proteins: TonB, ExbB and ExbD. TonB 

is anchored to the inner membrane by the ExbB-ExbD transmembrane complex 

and interacts with an eight amino acid sequence in the receptor plug domain 

called the ‘TonB box’. The exact mechanism of energy transduction is not 

understood. However, it is thought that upon substrate binding and subsequent 

energy transduction conformational changes in TonB result in a conformational 

change in the plug domain that allows transport of the substrate through the 

receptor. Once in the periplasm, the substrate is transported to the inner 

membrane by a periplasmic binding protein. At the inner membrane, the 

substrate is transported into the cytoplasm by an ATP-binding cassette (ABC) 

protein. 

1.3.3.2 Getting things out: OMPs involved in secretion 

Gram-negative bacteria possess a wide array of secretion systems for exporting 

proteins and other substances out through the cell envelope. A range of 

different OMPs are utilised in these systems which act in conjunction with other 

proteins in the inner membrane and periplasm.  

1.3.3.2.1 Type I secretion (TolC export channel) 

Type I secretion systems consist of three proteins: a pore-forming OMP (TolC) 

and two inner membrane proteins, a membrane fusion protein (MFP) and an ABC 

transporter protein (Fig. 1.5). The ABC transporter recognises a specific 

secretion signal motif at the C-terminal end of the protein which is to be 

secreted. Subsequent binding of the MFP protein to TolC allows secretion of the 

protein into the extracellular milieu. Hence, secretion occurs across the inner 

and outer membrane in one continuous step, without the formation of 

periplasmic intermediates. TolC is an outer membrane channel comprised of  
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Figure 1.5. Schematic diagram of the type 1 secreti on pathway, including 

the crystal structure of the TolC protein.  

TolC structure adapted from Koronakis et al. (2000); PDB reference 

1EK9. 
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three TolC monomers that each contribute four β-strands to the formation of a 

β-barrel containing 12 antiparallel β-strands (Koronakis et al., 2000). The 

channel also possesses an α-helical barrel that extends from the integral outer 

membrane β-barrel into the periplasm (Koronakis et al., 2000). Efflux of 

antibacterial drugs and other small inhibitory molecules may also occur via an 

interaction between TolC, an MFP, and an inner membrane translocase which 

can be either an ABC protein, or a proton antiporter of either the resistance 

nodulation division or major facilitator superfamily classes (Koronakis et al., 

2004). 

The E. coli alpha-haemolysin (HlyA) was the first RTX toxin described to be 

secreted via a type I secretion system (Gentschev et al., 2002); however, 

another well characterised example is the secretion pathway of M. haemolytica 

LktA (described in 1.4.1.1).  

1.3.3.2.2 Type II and type III secretion (secretin channels) 

Outer membrane proteins of the secretin family are present in type II (Brok et 

al., 1999, Chami et al., 2005) and type III (Marlovits et al., 2004, Burghout et 

al., 2004, Hodgkinson et al., 2009) secretion systems. They are also present in 

type IV pilus biogenesis systems (Martin et al., 1993, Collins et al., 2001) and 

filamentous phage secretion systems (Opalka et al., 2003). Secretins typically 

form highly stable oligomers of 12-14 subunits in the outer membrane.  

In type II secretion, secreted proteins are first translocated across the inner 

membrane by either the Sec (Pugsley et al., 1991) or Tat (Voulhoux et al., 2001) 

translocons. They are subsequently transported out of the cell by a complex of 

12-15 proteins which span the cell envelope (Pugsley, 1993, Sandkvist, 2001). 

The prototypical type II outer membrane secretin is the PulD protein of 

Klebsiella oxytoca which is required for the secretion of pullulanase (Chami et 

al., 2005).  

Type III secretion systems are used by many pathogenic bacteria to directly 

inject effector proteins into eukaryotic cells and are hence often referred to as 

‘injectisomes’. At least 20 different proteins are utilised in this system (Worrall 

et al., 2011) of which several are genetically and structurally related to the 

bacterial flagellum (Blocker et al., 2003). Proteins enter the injectisome directly  
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from the cytoplasm in a process that is Sec- and Tat- independent. The 

prototypical type III outer membrane secretin is the YscC protein of pathogenic 

Yersinia species (Burghout et al., 2004). A putative type III secretion system has 

been identified in the sequenced bovine and ovine serotype A2 M. haemolytica 

genomes, but not the bovine serotype A1 M. haemolytica genome, that shows 

low to moderate homology to type III secretion components of E. coli O157 

(Lawrence et al., 2010b). Unlike typical type III secretion systems, the M. 

haemolytica genes encoding this putative system are not arranged in an operon 

or separate plasmid. The presence of this system may represent a new method 

of bacterial effector protein delivery into host cells for M. haemolytica. 

1.3.3.2.3 Type IV secretion (double membrane spanning channel) 

The type IV secretion system is used by a variety of Gram-negative bacteria (and 

Gram-positive bacteria) to mediate the transfer of effector proteins into host 

cells or for the conjugation of plasmid DNA and transposons into other cells 

(Christie et al., 2005). In Agrobacterium tumefaciens, the core complex of the 

type IV secretion system is composed of three proteins, VirB7, VirB9 and VirB10, 

that are each present in 14 copies and form a 1.1-megadalton two chambered 

structure that spans both the inner and outer membrane (Chandran et al., 2009, 

Fronzes et al., 2009). The outer membrane chamber is the largest secretion 

channel to be found associated with the outer membrane to date (Chandran et 

al., 2009). It also contains a hydrophobic double α-helical transmembrane 

domain that is the only other example, alongside Wza, of α-helical insertions in 

the outer membrane (Chandran et al., 2009). 

1.3.3.2.4 Type V secretion (autotransporter pathway) 

Gram-negative bacteria possess a range of OMPs that contain the apparatus for 

the transport of their secreted domains across the outer membrane and are 

hence names autotransporters. These proteins are members of the type V 

secretion pathway and can be grouped into three distinct groups (Fig. 1.6) which 

reflect similarities in their primary structures and modes of biogenesis: classical 

autotransporters (type Va secretion), two-partner secretion systems (type Vb  
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Figure 1.6. Schematic diagram of the different grou ps of type V 

(autotransporter) secretion systems. 

Figure was adapted from Henderson et al. (2004). 
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secretion), and trimeric autotransporters (type Vc secretion) (Henderson et al., 

2004). 

Classical autotransporters (type Va). The primary structure of classical 

autotransporters contains three distinct domains: the N-terminal signal 

sequence, the passenger domain and the C-terminal translocation unit 

(Henderson et al., 2004). The signal sequence targets the protein to the inner 

membrane for Sec-dependent translocation into the periplasm. The passenger 

domain contains the effector function of the protein. The translocation unit 

consists of a short α-helical linker region and a β-core that forms a β-barrel with 

12 antiparallel β-strands after insertion into the outer membrane (Oomen et al., 

2004, Barnard et al., 2007, van den Berg, 2010, Zhai et al., 2011), which 

facilitates translocation of the passenger domain from the periplasm to the 

bacterial surface. Once exposed on the bacterial surface, the passenger domain 

can either remain intact as a large protein extending into the extracellular 

milieu or it can be proteolytically cleaved. Cleavage results in the passenger 

domain being either released into the extracellular milieu or remaining non-

covalently associated with the β-barrel domain. Proteolytic cleavage can occur 

by either autoproteolysis or by another membrane-bound protease. Examples of 

M. haemolytica proteins with homology to classical autotransporters are Ssa, 

NanH and Iga1-like proteases (described in 1.4.3.4, 1.4.3.5 and 1.4.3.6, 

respectively) 

Two-partner secretion (type Vb). Whereas in the autotransporter pathway the 

secreted protein is translated as a single polypeptide, in the two-partner 

secretion (TPS) pathway the passenger domain and the pore-forming β-barrel of 

the secreted protein are translated as two separate proteins, termed TpsA and 

TpsB proteins, respectively (Henderson et al., 2004). The genes encoding these 

proteins are generally arranged in a tpsA-tpsB operon. The TpsA protein contains 

an N-terminal signal sequence which targets the protein for Sec-dependent 

transport into the periplasm. It also contains an N-proximal TPS domain which 

interacts specifically with the TpsB protein prior to translocation across the 

outer membrane. The crystal structure of one TpsB protein, FhaC of Bordetella 

pertussis, has been solved and contain 16 β-strands (Clantin et al., 2007). They 

may also be involved in the processing of the TpsA protein into its active form.  
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The prototypical TPS system is that of the B. pertussis filamentous 

haemagglutinin protein, FhaB, which is secreted through the pore forming β-

barrel FhaC (Locht et al., 1992, Willems et al., 1994). It has been reported that 

another B. pertussis autotransporter, SphB1, is involved in the surface 

maturation of FhaB (Coutte et al., 2001). Genes encoding proteins that are 

orthologous to the FhaB and FhaC proteins of B. pertussis are present in M. 

haemolytica genomes (Gioia et al., 2006, Lawrence et al., 2010a) (described in 

1.4.1.3). 

Trimeric autotransporters (type Vc). Trimeric autotransporters contains six 

distinct domains: (i) an N-terminal signal sequence, (ii) head, (iii) neck, (iv) 

stalk, (v) linker region, and (vi) a C-terminal region consisting of four β-strands 

(Hoiczyk et al., 2000, Henderson et al., 2004). The head, neck and stalk 

comprise the passenger domain and the linker and C-terminal region comprise 

the translocator domain. Trimerisation of C-terminal subunits creates a β-barrel 

with 12 β-strands that confers an overall lollipop-like structure to the protein 

displayed on the cell surface (Hoiczyk et al., 2000). The prototypical trimeric 

autotransporter is the YadA protein of Yersinia pestis (Nummelin et al., 2004). 

Several trimeric autotransporters have been described in M. haemolytica 

(described in 1.4.3.7).  

1.3.3.3 OMPs involved in outer membrane biogenesis and maintenance 

In addition to controlling the passage of substances into and out of the cell, 

several OMPs are also involved in the biogenesis and maintenance of the outer 

membrane. 

1.3.3.3.1 The BAM complex (integral OMP assembly) 

Nascent integral OMPs are synthesised in the cytoplasm and possess an N-

terminal extension, the signal peptide, which is required to deliver the 

preproteins to the Sec translocon located in the inner membrane. Translocation 

of the nascent OMP across the Sec apparatus is dependent on the proton motive 

force (Driessen and Nouwen, 2008). Upon entering the periplasm, the signal 

peptide is removed by a signal peptidase enzyme and the nascent OMP 

associates with one or more periplasmic chaperones (Ruiz et al., 2006). In E. 

coli, the periplasmic chaperones DegP, SurA and Skp mainly facilitate delivery to 
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the outer membrane (Knowles et al., 2009). It has been proposed that SurA is 

primarily responsible for the assembly of most nascent OMPs, whereas Skp And 

DegP rescue those that have missed the normal assembly route (Sklar et al., 

2007). Unlike the actively driven Sec translocon, the outer membrane contains 

the passive β-barrel assembly machinery (BAM) complex (Fig. 1.7). The BAM 

complex is required for the correct folding and insertion into the outer 

membrane of nearly all integral OMPs identified to date. In E. coli, the BAM 

complex is comprised of five proteins: BamA (formerly known as YaeT, or 

Omp85/D15 in N. meningitidis), an integral OMP, and four accessory 

lipoproteins, BamB (YfgL), BamC (NlpB), BamD (YfiO) and BamE (SmpA), which 

are localised to the inner leaflet of the outer membrane. BamA is universally 

present in all Gram-negative bacteria and contains two major domains: a set of 

five POTRA (polypeptide transport-associated) domains which extend into the 

periplasm and an integral β-barrel inserted into the outer membrane (Sanchez-

Pulido et al., 2003). It is thought that the POTRA domains have a role in binding 

unfolded OMPs (Sanchez-Pulido et al., 2003, Robert et al., 2006). The BamA 

protein recognises a specific C-terminal motif in unfolded OMPs that is required 

for efficient assembly into the outer membrane in vivo (Robert et al., 2006, 

Struyve et al., 1991). The exact functions of the accessory outer membrane 

lipoproteins are unknown, but they have been demonstrated to have roles in 

OMP biogenesis as their depletion results in OMP assembly defects (Werner and 

Misra, 2005, Wu et al., 2005, Doerrler and Raetz, 2005, Malinverni et al., 2006). 

1.3.3.3.2 The LolABCDE complex (lipoprotein assembly) 

Prelipoproteins are synthesised in the cytoplasm and possess an N-terminal 

signal peptide containing a consensus lipobox sequence close to the signal 

peptide cleavage site (Hayashi and Wu, 1990, Inouye et al., 1977). The 

prelipoprotein is then translocated to the periplasmic face of the inner 

membrane by the Sec translocon and processed into its mature form. This is 

achieved by the attachment of a diacylglycerol moiety to the sidechain of a 

conserved cysteine residue in the lipobox (Sankaran and Wu, 1994). Mature 

lipoproteins are localised to the periplasmic face of the inner or outer 

membrane by the lipoprotein localisation (Lol) machinery, which consists of an 

inner membrane transmembrane protein complex (LolCDE), a periplasmic 

chaperone (LolA) and an outer membrane lipoprotein receptor (LolB) (Fig 1.8) 
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Figure 1.7. Schematic diagram of integral OMP bioge nesis by the BAM 

complex in E. coli. 

Nascent unfolded OMPs are translocated across the inner membrane 

by the Sec translocon and delivered to outer membrane BAM 

complex by either SurA or Skp/DegP chaperones. The BAM complex 

inserts the protein into the outer membrane and folds it into its β-

barrel conformation. Figure was adapted from Knowles et al. 

(2009).  
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Figure 1.8. Schematic diagram of outer membrane lip oprotein biogenesis 

by the Lol machinery in E. coli. 

A lipoprotein destined for the outer membrane binds to LolE and is 

then subsequently transferred to LolC. The lipoprotein is accepted 

by LolA in an ATP-dependent manner. The LolA-lipoprotein complex 

traverses the periplasm and reaches the outer membrane. The 

lipoprotein is transferred from LolA to LolB and is subsequently 

inserted into the outer membrane. Figure adapted from Okuda and 

Tokuda (2009). 

 



 22

(Tokuda, 2009, Okuda and Tokuda, 2009). Lipoproteins which are targeted to the 

outer membrane are received by the LolCDE complex and subsequently released 

to LolA. The LolA-lipoprotein complex traverses the periplasm, whereby the 

lipoprotein is accepted by LolB and incorporated into the outer membrane. The 

determining factor which is responsible for a lipoprotein being directed to the 

outer membrane by the Lol apparatus or retained at the inner membrane was 

initially believed to be the identity of the amino acid adjacent to the conserved 

N-terminal cysteine residue, known as the +2 rule (Yamaguchi et al., 1988). An 

aspartate residue at this position acts as a LolCDE avoidance signal, leading to 

retention of the lipoprotein at the inner membrane. Substitution of this 

aspartate residue with a different amino acid results in Lol-mediated 

translocation to the outer membrane. The +2 rule is not universal (Seydel et al., 

1999), and amino acid residues at positions +3 and +4 have been demonstrated 

to be involved in targeting lipoproteins to the outer membrane in other Gram-

negative species (Narita and Tokuda, 2007, Silva-Herzog et al., 2008). 

Lipoproteins are also present on the outer leaflet of the outer membrane in 

several Gram-negative bacteria, although the mechanism by which they are 

translocated through the membrane remains unknown (Kovacs-Simon et al., 

2011). 

1.3.3.3.3 Wza (CPS transport) 

The E. coli, repeat polysaccharide polymer units are assembled in the cytoplasm 

by a reaction initiated by WbaP, and are subsequently flipped across the inner 

membrane by Wzx (Collins and Derrick, 2007). Polymerisation occurs at the 

periplasm and is dependent on the integral membrane protein Wzy, a putative 

polymerase (Collins and Derrick, 2007). Polymerisation by Wzy requires the 

activity of the tetrameric Wzc protein. Wzb is a protein tyrosine phosphate 

enzyme that enables the cycling phosphorylation of Wzc, a process that is 

crucial for export (Collins and Derrick, 2007). Wzc interacts with Wza to form a 

complex that spans the periplasm. Wza is an the outer membrane lipoprotein 

that forms ring-shaped multimeric complexes (Drummelsmith and Whitfield, 

2000). The crystal structure of Wza revealed an octomer containing a unique α-

helical transmembrane barrel structure (Dong et al., 2006) (Fig. 1.9), 

representing a new structural paradigm for OMPs (Collins and Derrick, 2007). 



 23

Figure 1.9. Synthesis and export of CPS export in E. coli, showing the 

crystal structure of Wza octomer.  

Figure adapted from Dong et al. (2006). See text for  details. Wza 

structure adapted from Dong et al. (2006). PDB ref. 2J58.  
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The capsule biosynthetic locus of serotype A1 M. haemolytica has been 

characterised and comprises twelve genes that are grouped into three regions 

based on their functions: capsule transport, capsule biosynthesis and 

phospholipid substitution (Lo et al., 2001). 

1.3.3.3.4 LptD and LptE (LPS transport) 

Biosynthesis of core-lipid A occurs at the inner leaflet of the inner membrane 

(Osborn et al., 1972) and is flipped across the inner membrane by the ABC 

transporter MsbA (Doerrler et al., 2001, Doerrler and Raetz, 2002). O-antigen 

repeat units are synthesised in the cytoplasm, flipped across to the periplasm, 

and ligated to core-lipid A to form mature LPS. Transport of mature LPS to the 

outer membrane requires the LPS transport (Lpt) machinery, a protein complex 

comprised of seven different proteins which spans the entire cell envelope 

(Sperandeo et al., 2009) (Fig. 1.10). The integral inner membrane proteins LptG 

and LptF, along with the cytoplasmic ABC protein LptB, most likely provide 

energy to the complex through ATP hydrolysis (Sperandeo et al., 2009). The 

integral protein LptD and the outer lipoprotein LptE form a complex in the outer 

membrane (Wu et al., 2006). It has recently been shown in E. coli that LptE is 

required at the outer membrane for the correct insertion of LptD (Chimalakonda 

et al., 2011). LptA, a periplasmic protein with a fibrillar structure (Suits et al., 

2008), is expected to connect the inner membrane to and the LptD/LptE outer 

membrane components, and to chaperone LPS across the periplasm (Sperandeo 

et al., 2009). The function of LptC is currently unknown, although it is thought 

to be a docking site to the inner membrane for LptA (Sperandeo et al., 2009). 

1.4 Virulence factors of M. haemolytica 

1.4.1 Secreted proteins 

1.4.1.1 Leukotoxin (LktA) 

The M. haemolytica LktA protein is a member of the RTX (repeats-in-toxin) pore-

forming cytotoxins (Linhartova et al., 2010) that includes the Escherichia coli 

alpha-haemolysin (Strathdee and Lo, 1987) and toxins of other Pasteurellaceae 

(Kraig et al., 1990, Frey et al., 1993).   
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Figure 1.10 Transport of LPS from the inner membran e to the outer 

membrane via MsbA and the Lpt transport system 

Figure adapted from Sperandeo et al. (2009). See text for details. 
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LktA is produced by all M. haemolytica serotypes and in nearly all isolates 

examined to date (Burrows et al., 1993, Saadati et al., 1997). LktA is species-

specific and has leukotoxic activity only against ruminant lymphocytes (Shewen 

and Wilkie, 1982, Kaehler et al., 1980, Clinkenbeard and Upton, 1991). It also 

has haemolytic activity (Murphy et al., 1995). Cytolysis is dependent on the 

interaction of LktA with the lymphocyte-function associated antigen 1 (LFA-1) 

molecule of target cells (Li et al., 1999, Jeyaseelan et al., 2000). At high 

concentrations, LktA creates pores in the cell membrane of target cells that 

results in swelling and lysis (Clinkenbeard et al., 1989). At sub-lytic 

concentrations, LktA activates neutrophils (Czuprynski et al., 1991), induces 

release of proinflammatory cytokines (Yoo et al., 1995b) and respiratory burst 

products (Maheswaran et al., 1992), and causes cytoskeletal changes resulting in 

apoptosis (Stevens and Czuprynski, 1996, Sun et al., 1999). LktA has also 

recently been demonstrated to target leukocyte mitochondria (Kisiela et al., 

2010). LktA is a significant M. haemolytica virulence factor and is considered to 

be largely responsible for widespread tissue damage caused during infection 

(Highlander, 2001). 

LktA is encoded in the lktCABD operon, where lktA encodes the inactive 

prototoxin, lktC is required for posttranslational activation of the prototoxin 

prior to secretion, lktB encodes an inner membrane ABC transporter, and lktD 

encodes a membrane fusion protein. Like other RTX proteins, LktA is secreted 

via a type I secretion mechanism directly from the cytoplasm into the 

extracellular space through a continuous channel created by LktB, LktD and TolC 

(Linhartova et al., 2010). The lktCABD operon has a highly complex mosaic 

structure resulting from extensive inter- and intra-species horizontal DNA 

transfer and assortative recombination (Davies et al., 2002, Davies et al., 2001). 

1.4.1.2 Glycoprotease (Gcp) 

The glycoprotease protein, Gcp, is a zinc metalloglycoprotease that cleaves O-

sialoglycoproteins from host cells (Abdullah et al., 1992, Sutherland et al., 1992, 

Otulakowski et al., 1983). All serotypes of M. haemolytica possess the gcp gene 

and have glycoprotease activity whereas M. glucosida possesses the gcp gene but 

does not display glycoprotease activity (Abdullah et al., 1990, Lee et al., 1994). 

The protease is thought to enhance adhesion of M. haemolytica to host cells and 
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is also capable of inducing platelet activation, adhesion, and aggregation, 

leading to their deposition in the lung alveoli (Nyarko et al., 1998). 

1.4.1.3 Filamentous haemagglutinin (FhaB) 

M. haemolytica encodes a putative filamentous haemagglutinin protein (FhaB) 

which shares significant amino acid similarity to the FhaB protein produced by 

the human respiratory pathogen Bordetella pertussis and other organisms (Gioia 

et al., 2006). The B. pertussis FhaB protein is a 220 kDa protein found both on 

the bacterial cell surface and in the extracellular milieu. It is transported across 

the outer membrane via FhaC, a pore-forming OMP encoded by a gene which lies 

immediately downstream of FhaB (Locht et al., 1992, Willems et al., 1994). An 

fhaC orthologue is also present adjacent to fhaB in M. haemolytica, suggesting 

that M. haemolytica FhaB is secreted via a similar mechanism (Gioia et al., 

2006). In B. pertussis FhaB is a well characterised adhesin (Smith et al., 2001), 

but the function of FhaB in M. haemolytica is currently unknown. In Bordetella 

bronchiseptica, a respiratory pathogen of pigs, FhaB is required for the efficient 

establishment of colonisation in the lower respiratory tract (Cotter et al., 1998) 

and fhaB mutants are unable to cause disease (Nicholson et al., 2009). An FhaB 

homologue in the bovine respiratory pathogen Histophilus somni was also 

suggested to have an important role in biofilm formation (Sandal et al., 2009). In 

Actinobacillus pleuropneumoniae, the gene encoding an FhaB homologue was 

transcribed at much higher numbers in isolates recovered from diseased pig 

lungs compared to an isolate grown in complex growth medium (Deslandes et 

al., 2010). If the M. haemolytica FhaB protein does function as an adhesin then 

it must have a different binding physiology to B. pertussis FhaB, as it lacks an 

integrin-binding RGD motif (Gioia et al., 2006).  It does, however, contain a 

bacterial intein-like (BIL) domain (Amitai et al., 2003) at the carboxyl terminus 

which does not feature in B. pertussis FhaB (Gioia et al., 2006). These domains 

are involved in post-translational autoproteolysis, hence the possibility of 

allowing variability in receptor recognition and receptor release. Since 

autoproteolysis would change the structure of FhaB, it may also interfere with 

host immune recognition and help evade the host immune response. To date, no 

expressed FhaB protein been identified in M. haemolytica. 
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1.4.2 Cell wall carbohydrates and pili 

1.4.2.1 Capsular polysaccharide (CPS) 

To date, twelve different capsular serotypes have been identified in M. 

haemolytica (A1, A2, A5-A9, A12-A14, A16 and A17) and one in M. glucosida 

(A11) (Angen et al., 1999b). The serotype A1 capsule has been implicated in 

diverse functions including adherence to alveolar surfaces (Brogden et al., 

1989), resistance to complement-mediated serum killing (Chae et al., 1990), 

resistance to phagocytosis by bovine neutrophils and alveolar macrophages (Chae 

et al., 1990, Czuprynski et al., 1989), and facilitating microcolony formation in 

the bovine pneumonic lung (Morck et al., 1989, Morck et al., 1988). 

1.4.2.2 Lipopolysaccharide (LPS) 

Lipopolysaccharide (LPS) is the major glycolipid molecule present in the cell 

envelope of Gram-negative bacteria and makes up between 12 and 25% of the 

dried cell weight of M. haemolytica (Keiss et al., 1964). The basic structure of 

LPS is composed of three well-defined regions: (i) lipid A, composed of sugars 

and fatty acids and anchors LPS to the outer membrane, (ii) the oligosaccharide 

core, composed of approximately 10 monosaccharides and connects the lipid A 

and O-antigen regions and, (iii) the O-specific antigen, consisting of repeating 

units containing between one to seven monosaccharides (Hitchcock et al., 1986). 

It is common for Gram-negative bacteria to possess LPS that does not contain O-

antigen side chains. The two different LPS types, with and without O-antigen 

side chains, are commonly described as ‘smooth-type’ and ‘rough-type’ LPS, 

respectively, according to bacterial colony morphology (Hitchcock et al., 1986). 

Enteric bacteria generally possess smooth-type LPS whereas, in contrast, 

bacteria that reside on respiratory and genital mucosa have evolved a unique set 

of surface glycolipids called lipooligosaccharides (LOSs) (Preston et al., 1996). 

The LOS molecules are analogous to LPS but their O-antigen side chains are 

limited to around ten saccharide units. M. haemolytica LPS is unusual in that 

both smooth- and rough-types occur independently in different isolates (Ali et 

al., 1992, Davies and Donachie, 1996, Lacroix et al., 1993, Davies et al., 1991). 

Interestingly, only a single O-antigen type is present in isolates possessing 

smooth-type LPS, suggesting that the gene encoding this part of the LPS 

molecule may have been recently obtained by horizontal transfer (Davies and 
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Donachie, 1996). It is possible that the structure of M. haemolytica LPS is 

actually closer to that of LOS, but this has not yet been demonstrated. 

LPS is an important M. haemolytica virulence factor in serotype A1 isolates, 

causing damage to pulmonary endothelial cells (Paulsen et al., 1989) and 

inducing alveolar macrophages to release proinflammatory cytokines (Yoo et al., 

1995a, Lafleur et al., 1998) and reactive intermediates (Yoo et al., 1996). It also 

forms aggregates with and enhances the effects of the leukotoxin LktA (Lafleur 

et al., 2001, Li and Clinkenbeard, 1999).  

1.4.2.3 Pili 

The genomes of M. haemolytica contain genes that encode the type IV pili locus 

pilABCD (Gioia et al., 2006, Lawrence et al., 2010a). Type IV pili are known to 

be involved in several bacterial processes including adhesion, DNA uptake and 

twitching motility (Proft and Baker, 2009). The amino acid sequence of PilC is 

identical in the bovine serotype A1 and serotype A2 genomes, whereas in the 

ovine serotype A2 isolate there is a 29 amino acid deletion at the amino 

terminus (Lawrence et al., 2010b). In Neisseria gonorrhoeae, PilC is localised to 

pili tips and acts as an adhesin which binds to human epithelial cells (Rudel et 

al., 1995). It has been suggested that the amino-terminal deletion in the ovine 

serotype A2 PilC may serve as a modification for host species-specific binding to 

ovine epithelial cells (Lawrence et al., 2010b). 

1.4.3 Outer membrane proteins (OMPs) 

1.4.3.1 Outer membrane protein A (OmpA) 

The OmpA protein is a highly conserved, integral OMP that is universally present 

in Gram-negative bacteria and has been implicated in a diverse range of 

functions in different species (Smith et al., 2007). It comprises an N-terminal 

transmembrane β-barrel domain embedded in the outer membrane and a C-

terminal globular domain which extends into the periplasm and interacts with 

the underlying peptidoglycan (Demot and Vanderleyden, 1994). The N-terminal 

domain consists of eight membrane-spanning anti-parallel β-sheets and four 

relatively long, mobile, hydrophilic external loops (Pautsch and Schulz, 1998).  
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Molecular mass heterogeneity of OmpA has been observed among bovine and 

ovine M. haemolytica isolates that correlates with the host of origin (Davies and 

Donachie, 1996). Subsequent comparative nucleotide sequence analysis of the 

ompA gene from 31 M. haemolytica isolates revealed the presence of 

hypervariable domains within the four surface-exposed loops (Davies and Lee, 

2004). The amino acid sequences of these domains are very different in bovine 

and ovine isolates but are highly conserved among isolates recovered from the 

same host species. The ompA gene can be categorised into four distinct alleles, I 

to IV. The class I (ompA1) alleles are associated exclusively with bovine M. 

haemolytica isolates, whereas the class II to IV (ompA2 to ompA4) alleles occur 

only in ovine isolates of M. haemolytica (Davies and Lee, 2004). Significantly, 

the ompA1- and ompA2-type alleles are associated with the major pathogenic 

lineages of bovine [electrophoretic type 1 (ET 1)] and ovine (ETs 21 and 22) 

isolates, respectively (Davies et al., 1997). Based on the distribution of the 

OmpA1 and OmpA2 proteins among bovine and ovine isolates, respectively, and 

the localisation of the amino acid variation to the tips of the four loops, it was 

hypothesised that OmpA plays an important role in adherence and is involved in 

host specificity. The exact role of M. haemolytica OmpA is unknown, although 

studies from bovine serotype A1 M. haemolytica isolates have demonstrated 

binding of OmpA to bovine bronchial epithelial cells (Kisiela and Czuprynski, 

2009) and fibronectin (Lo and Sorensen, 2007), indicating a role in host 

adhesion. It has been demonstrated in several other Gram-negative bacteria, 

including H. infuenzae, P. multocida, and E. coli, that OmpA plays an important 

role in adherence and invasion of host cells (Bookwalter et al., 2008, Dabo et 

al., 2003, Hill et al., 2001, Prasadarao et al., 1996, Reddy et al., 1996).  

1.4.3.2 Iron-acquisition OMPs 

An essential prerequisite for successful colonisation of mammalian hosts by 

bacteria is the ability to adapt to a microenvironment containing virtually no 

free iron. In host tissues, nearly all iron is sequestered by high-affinity iron-

binding proteins such as transferrin, lactoferrin, ferritin and haemoglobin. High-

affinity host haem-binding proteins such as haemopexin and haptoglobin also 

contribute to the sequestering of free haem. Bacteria which colonise mucosal 

surfaces have therefore evolved a number of iron acquisition systems including 

the secretion of siderophores (small molecules with high affinity for iron) and 



 31

outer membrane receptors specific for iron-containing host proteins 

(Wandersman and Delepelaire, 2004, Wooldridge and Williams, 1993). In many 

bacteria, expression of iron acquisition proteins is under the control of a 

transcriptional repressor called the ferric uptake regulator (Fur) (Andrews et al., 

2003). M. haemolytica also possesses a fur gene, although its function may be 

atypical as its transcription is not repressed by iron (Gioia and Highlander, 

2007). 

1.4.3.2.1 Transferrin binding receptor (TbpA and TbpB) 

The M. haemolytica transferrin receptor, comprised of TbpA and TbpB, is 

responsible for acquiring iron that has been sequestered by host transferrin 

(Ogunnariwo et al., 1997). TbpA is a TonB-dependent integral OMP that forms a 

pore through which iron passes after its release from transferrin. TbpB is a 

putatively surface-exposed outer membrane lipoprotein that is thought to 

increase the efficiency of iron uptake from transferrin (Moraes et al., 2009). 

TbpA and TbpB have molecular masses of approximately 107 and 63 kDa, 

respectively, and together form a receptor that is highly specific for ruminant 

transferrin (Ogunnariwo and Schryvers, 1990, Yu et al., 1992). The genes 

encoding the two proteins are arranged in an operon arrangement of tbpB-tbpA. 

In a recent study, comparative nucleotide sequence analysis revealed that the 

tbpBA operon has a complex mosaic structure and a common gene pool exists for 

tbpBA in M. haemolytica and the closely related species M. glucosida and B. 

trehalosi  (Lee and Davies, 2011).  

1.4.3.2.2 Haem/haemoglobin receptors 

Transcription of genes encoding two putative haemoglobin receptors was 

strongly upregulated in a bovine serotype A1 M. haemolytica isolate under iron-

restricted conditions and in infected lung tissue (Roehrig et al., 2007). 

Furthermore, transcription of genes encoding a putative haemin [ferric (Fe3+) 

haem] receptor complex was also upregulated under iron-restriction (Roehrig et 

al., 2007). It has been suggested that LktA could play an important role in the 

liberation of haemin and haemoglobin from host erythrocytes, thereby providing 

substrates for these receptors (Roehrig et al., 2007). 
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1.4.3.2.3 Haem-haemopexin acquisition system (HxuCBA) 

The bovine and ovine serotype A2 M. haemolytica genomes encode the haem-

haemopexin acquisition operon hxuCBA (Lawrence et al., 2010a). In the bovine 

serotype A1 genome only the hxuA gene has been described (Gioia et al., 2006). 

The HxuCBA system was first discovered in Haemophilus influenzae (Hanson et 

al., 1992) and is an important virulence determinant in this organism (Morton et 

al., 2007) and in Haemophilus parasuis (Melnikow et al., 2005) (Fig. 1.11). The 

HxuC protein is an outer membrane TonB-dependent receptor (Cope et al., 

2001, Cope et al., 1995). The HxuB and HxuA proteins comprise a two-partner 

secretion (TPS) system, whereby HxuA is transported across the outer membrane 

by HxuB, a specific pore-forming OMP. HxuA binds to the host haem-haemopexin 

complex, and facilitates haem delivery to the cell surface via HxuC and an inner 

membrane ABC transporter (Cope et al., 1998, Cope et al., 1994). Recent 

evidence suggests that HxuA might not actually function as a haemophore in H. 

influenzae, but instead releases haem upon interaction with the haem-

haemopexin complex (Fournier et al., 2011). Furthermore, the primary activity 

of HxuA may actually be to sequester haemopexin in its inactive form, thereby 

decreasing the high-affinity binding of haem by the serum (Fournier et al., 

2011). None of the HxuCBA components have been identified at the 

transcriptomic or protein level in M. haemolytica. 

1.4.3.2.4 Siderophore uptake systems 

M. haemolytica does not produce siderophores, although genes encoding several 

proteins that are similar to siderophore uptake receptors of other Gram-negative 

bacteria have been identified. One of these proteins has significant homology to 

the N. gonorrhoeae FrpB protein that has been associated with ferric uptake 

from transferrin (Beucher and Sparling, 1995, Dyer et al., 1988) and, more 

recently, as a receptor for the ferric siderophore enterobactin (Carson et al., 

1999). N. gonorrhoeae does not synthesise siderophores but can utilise those 

produced by other bacteria (xenosiderophores) such as E. coli aerobactin (West 

and Sparling, 1987) and enterobactin (Carson et al., 1999, Rutz et al., 1991). 

This suggests the possibility that the FrpB orthologue of M. haemolytica may also 

utilise xenosiderophores in a similar manner to N. gonorrhoeae. Indeed, some 

bacterial isolates of the bovine nasopharyngeal flora have been reported to  



 33

Figure 1.11. Schematic diagram of the H. influenzae HxuCBA haem-

haemopexin uptake system.  

  HxuA is synthesised in the cytoplasm and translocated to the 

periplasm by the Sec translocon. HxuA is exported across the outer 

membrane into the host environment by HxuB. HxuA binds to the 

haem-haemopexin complex, releasing haem and allowing it to be 

imported back through the outer membrane via the TonB-

dependent receptor HxuC, and then subsequently transported 

across the inner membrane by an ABC transporter. 
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stimulate growth of M. haemolytica and other closely-related Gram-negative 

bacteria (Corbeil et al., 1985), possibly as a result of this mechanism.  

Transcription of the frpB gene was upregulated in a bovine serotype A1 M. 

haemolytica isolate (Roehrig et al., 2007) and in A. pleuropneumoniae (Klitgaard 

et al., 2010) under iron-restricted conditions. In A. pleuropneumoniae, FrpB has 

been demonstrated to be both immunoreactive (Liao et al., 2009) and an 

essential virulence determinant, as frpB deletion mutants are unable to colonise 

the host or cause clinical disease symptoms upon experimental infection 

(Buettner et al., 2009).  

Transcription of genes encoding proteins with homology to some of the proteins 

in the A. pleuropneumoniae ferrichrome uptake system FhuABCD (Mikael et al., 

2002) were upregulated in a bovine serotype A1 isolate under iron restricted 

conditions (Roehrig et al., 2007). Although fhuBCD genes were all upregulated, 

the putative outer membrane receptor gene fhuA was not. In contrast to FrpB, 

the FhuA protein is not an essential virulence determinant in A. 

pleuropneumoniae (Baltes et al., 2003). 

1.4.3.3 Lipoproteins (PlpABC, PlpD and PlpE) 

Several outer membrane-associated lipoproteins have been identified in M. 

haemolytica. Three contiguous genes arranged in an operon, plpABC, are 

present in all M. haemolytica and M. glucosida isolates that encode three 28-30 

kDa lipoproteins (Cooney and Lo, 1993, Murphy and Whitworth, 1993). These 

proteins are highly immunogenic (Dabo et al., 1994), and a M. haemolytica 

mutant lacking this operon was demonstrated to have increased susceptibility to 

complement-mediated killing and reduced survival in vivo (Murphy et al., 1998). 

PlpA has been demonstrated to be surface-exposed and capable of binding to 

bovine bronchial epithelial cells in vitro (Kisiela and Czuprynski, 2009). It has 

also been identified in an immunoproteomic study of the OMPs of a bovine 

serotype A1 isolate (Ayalew et al., 2010). 

Another gene, plpD, is located on a different part of the chromosome to plpABC 

and encodes a 31 kDa lipoprotein (Nardini et al., 1998). Amino acid sequence 

analysis indicates that PlpD is lipid modified at the N-terminus, but contains a C-

terminal region that is similar to that of OmpA (Nardini et al., 1998). This 
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protein is recognised by sera from calves immunised with a culture supernatant 

vaccine (Nardini et al., 1998) but its exact function is yet to be determined.  

The gene plpE is also located on a different part of the chromosome to plpABC 

and plpD and encodes a 45 kDa outer membrane lipoprotein that is present in all 

serotypes of M. haemolytica but not in M. glucosida (Pandher et al., 1998). It 

has been demonstrated that anti-PlpE antibodies promote complement-mediated 

killing of bovine serotype A1 isolates (Nardini et al., 1998, Ayalew et al., 2004). 

The addition of recombinant PlpE to a commercial vaccine also conferred 

enhanced resistance against experimental challenge in cattle compared to the 

commercial vaccine alone (Confer et al., 2003). The exact function of PlpE is 

also yet to be determined. 

1.4.3.4 Serotype-specific antigen (Ssa) 

The Ssa protein was originally designated as Ssa1 (serotype-specific antigen-1) as 

it was identified in a bovine serotype A1 M. haemolytica isolate (Gonzalezrayos 

et al., 1986, Lo et al., 1991). The ssa gene has since been discovered in all 

serotypes examined, with the exception of A8, but is absent from M. glucosida 

(Gonzalez et al., 1991). Normally only M. haemolytica isolates of serotype A2 

are identified in the upper respiratory tract of healthy cattle, and it was 

hypothesised that the Ssa protein might function as a specific adhesin in 

serotype A1 isolates which facilitates the selective colonisation of these isolates 

in the diseased bovine lung (Gonzalez et al., 1995). Ssa was later categorised as 

a classical autotransporter and a subtilisin-like serine protease (Siezen and 

Leunissen, 1997) which shares significant homology to similar proteins in other 

species including AasP of A. pleuropneumoniae (Ali et al., 2008), NalP of 

Neisseria meningitidis (Turner et al., 2002) and SphB1 of B. pertussis (Coutte et 

al., 2001), all of which act as surface maturation proteases of other 

autotransporters. A similar function has not yet been described in M. 

haemolytica. 

1.4.3.5 Neuraminidase (NanH) 

A neuraminidase protein (NanH) was detected and active in all capsular 

serotypes of M. haemolytica, but not M. glucosida (Straus et al., 1993). In M. 

haemolytica, NanH has been suggested to facilitate the colonisation of mucosal 
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surfaces (Straus et al., 1998), most likely through the modification of sialic acid 

molecules on host cells. Its primary amino acid sequence is similar to that of a 

classical autotransporter. 

1.4.3.6 Immunglobulin proteases 

Three genes encoding proteins that are orthologous to the Iga1 proteases of 

Gram-negative species including H. influenzae, N. meningitidis and N. 

gonorrhoeae, have been identified in M. haemolytica genomes (Gioia et al., 

2006, Lawrence et al., 2010a). The M. haemolytica Iga1 orthologues contain Iga1 

domains and conserved active serine protease sites that are similar to the active 

sites of H. influenzae Iga1 protease (Poulsen et al., 1992). These serine protease 

sites cleave the hinge region of host IgA antibodies, thereby eliminating their 

agglutinating ability and facilitating host colonisation (St Geme, 2000). While IgA 

protease activity has not been detected in the supernatants of M. haemolytica 

(Abdullah et al., 1992), IgG-specific protease activity was detected in partially 

purified culture supernatants (Lee and Shewen, 1996). IgG is also the primary 

secretory antibody found in the lower respiratory tract of cattle (Duncan et al., 

1972), whereas IgA is the predominant antibody in the upper respiratory tract 

(Wilkie and Markham, 1981). It is therefore possible that at least one of the Iga1 

orthologues identified in M. haemolytica actually cleaves IgG instead of IgA. The 

Iga1 protease of N. gonorrhoeae was the first classical autotransporter protein to 

be studied in detail (Pohlner et al., 1987). In neisserial species, the C-terminal 

β-barrel domain of Iga1 integrates into the outer membrane and forms a specific 

pore for the translocation of the passenger domain (containing the serine 

protease site) from the periplasm to the extracellular space (Klauser et al., 

1993, Pohlner et al., 1987). Once exposed on the bacterial surface the protein is 

able to undergo autoproteolysis (Vitovski and Sayers, 2007), thereby facilitating 

IgA cleavage at both the cell surface and in the extracellular milieu. The 

autotransporter protein NalP has also been reported to have a role in the 

modulation and processing of Iga1 in N. meningitidis at the cell surface (van 

Ulsen et al., 2003). To date, no Iga1-like proteases have been identified at the 

protein level in any M. haemolytica isolates. 
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1.4.3.7 Trimeric autotransporter adhesins 

Two putative trimeric autotransporter proteins have been identified in M. 

haemolytica genomes (Gioia et al., 2006, Lawrence et al., 2010a). One has 

similarity to the Hsf proteins of A. pleuropneumoniae and P. multocida, and the 

other has similarity to the Hia protein of H. influenzae and Hia orthologues of A. 

pleuropneumoniae and P. multocida. Roles in adherence are common to most of 

the trimeric autotransporters identified to date (Cotter et al., 2005). Indeed, 

roles in adherence to epithelial cells have been associated with Hsf in A. 

pleuropneumoniae (Auger et al., 2009) and H. influenzae (Hallstrom et al., 

2006), and also Hia in H. influenzae (Barenkamp and StGeme, 1996). Another 

gene locus, designated ahs, was also identified in a serotype A1 isolate and 

encodes a collagen-binding trimeric autotransporter purported to be involved in 

host adhesion (results obtained using recombinant Ahs) (Lo et al., 2006, 

Daigneault and Lo, 2009). Despite the presence of genes encoding these proteins 

in M. haemolytica they have not yet been identified at the protein level in any 

isolate. 

1.5 Phenotypic and genetic variation of M. haemolytica 

and M. glucosida 

1.5.1 Classification based on phenotypic relationsh ips 

1.5.1.1 Capsular serotyping 

The serotypes of M. haemolytica isolates are determined by performing the 

indirect haemagglutination assay (IHA) using sera raised against reference 

capsular polysaccharide types (Fraser et al., 1983). To date, twelve different 

capsular serotypes have been identified in M. haemolytica (A1, A2, A5-A9, A12-

A14, A16 and A17) and one in M. glucosida (A11) (Angen et al., 1999b); however, 

untypeable isolates of both organisms are frequently isolated (Donachie et al., 

1984, Gilmour and Gilmour, 1989). Capsular serotyping of other M. haemolytica-

like isolates that are phenotypically and genetically distinct from M. 

haemolytica have been shown to possess A6, A9 and A16 capsular serotypes, 

indicating that serotyping is of limited use in the differentiation of M. 

haemolytica isolates (Angen et al., 1999b).  
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The various capsule structures of M. haemolytica have been previously 

characterised and are summarised in Table 1.2. The structure of the serotype A1 

polysaccharide is highly similar to the widely distributed ‘enterobacterial 

common antigen’ (Adlam et al., 1984). The polymer of serotype A2 

polysaccharide is colaminic acid and is identical to the capsular polysaccharides 

of N. meningitidis B and E. coli K1 (Adlam et al., 1987). Serotype A7 

polysaccharide is similar to the phosphate-containing polysaccharides of N. 

meningitidis serogroup L and H. influenzae type F (Adlam et al., 1986). It has 

been suggested that the production of similar or identical capsular structures 

among pathogenic bacteria from different genera represents a common defence 

mechanism developed through convergent evolution (Adlam, 1989). 

1.5.1.2 LPS profiles 

The LPS profiles of M. haemolytica and M. glucosida were analysed by SDS-PAGE 

(Davies and Donachie, 1996, Ali et al., 1992, Lacroix et al., 1993). Eight LPS 

types were recognised in M. haemolytica and one in M. glucosida (Davies and 

Donachie, 1996). In M. haemolytica isolates there were four different types of 

core-oligosaccharide (1-4), each either associated or not associated (A or B) with 

a single O-antigen type. There was a clear association between LPS profiles and 

capsular serotypes: serotypes A1, A5, A6, A9 and A12 with LPS type 1A, 

serotypes A2, A8, A14 and A16 with LPS types 1B and 3B, and serotypes A7 and 

A13 with LPS type 4A (Davies and Donachie, 1996). M. glucosida isolates were 

represented by a single LPS type, designated type 4C, which possessed a core 

oligosaccharide region similar to LPS type 4 but with a distinct O-antigen type 

different from that in M. haemolytica isolates (Davies and Donachie, 1996). 

1.5.1.3 OMP profiles 

The OMP profiles of M. haemolytica and M. glucosida isolates were analysed by 

SDS-PAGE (Davies and Donachie, 1996). Twenty different OMP profiles were 

recognised in M. haemolytica isolates and two in M. glucosida isolates. There 

was a clear association between the OMP profile types and capsular serotypes. 

Based on the variation in OMP profiles, the capsular serotypes of M. haemolytica 

could be sub-divided into three main groups: serotypes A1, A5, A6, A8, A9 and 

A12 with OMP type 1, serotypes A2, A14 and A16 with OMP type 2, and serotypes 

A7 and A13 with OMP type 3. The OMP profiles of M. glucosida were similar to  
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Table 1.2. Capsule structure of serotypes A1, A2, a nd A7 of M. 

haemolytica. 

Serotype  Capsule structure Similar capsule structure in 
other pathogens 

A1 

→3)-O-(2-acetamido-2-deoxy-4-
O-acetyl-β-D-
mannopyranosyluronic acid)-
(1→4)-O-(2-acetamido-2-deoxy-β-
D-mannopyranose)-(1→ 

Enterobacterial common antigen 

A2 
→2)-α-D-N-acetylneuraminic acid-
(8→ (and a dextran polymer) 

N. meningitidis serogroup B E. 
coli K1 

A7 

→3)-β-2-acetamido-2-
deoxygalactopyranose-(1→3)-α-2-
acetamido-2-deoxy-6-O-
acetylglucopyranose-(1-
phosphate→ 

N. meningitidis serogroup L H. 
influenzae type F 
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those of A7 and A13 and were also considered to be of OMP type 3. Furthermore, 

there were associations between specific OMP profiles and host of origin (i.e. 

cattle or sheep). For example, serotype A1 and A6 isolates were divided into two 

distinct subgroups, OMP types, 1.1 and 1.2, which were associated with cattle 

and sheep, respectively. A similar distinction could also be made for serotype A2 

isolates (OMP types 2.1 and 2.2). The finding that bovine and ovine isolates of 

these three serotypes could be clearly differentiated based on their OMP profiles 

suggest that OMPs may contribute towards host-specificity. 

1.5.2 Classification based on genetic relationships  

1.5.2.1 Nucleotide sequence analysis of the 16S rRNA gene 

Comparative nucleotide sequence analysis of the 16S rRNA gene demonstrated 

that M. haemolytica and M. glucosida isolates represent distinct phylogenetic 

lineages (Davies et al., 1996, Angen et al., 1999a). However, due to the highly 

conserved nature of the 16S rRNA only two different alleles were identified in all 

serotypes of M. haemolytica, demonstrating the limited use of this approach for 

differentiating isolates within a species (Davies et al., 1996, Angen et al., 

1999a). Isolates of serotypes A1, A5 to A9, A12 to A14, and A16 had identical 16S 

rRNA nucleotide sequences and differed from the serotype A2 16S rRNA gene at 

only two nucleotide positions.  

1.5.2.2 Multilocus enzyme electrophoresis (MLEE) 

Multilocus enzyme electrophoresis (MLEE) is a technique which can be used to 

examine genetic diversity and structure in natural populations of bacteria, 

providing a genetic framework for the analysis of variation in phenotypic 

characteristics (Selander et al., 1986). Bacterial isolates are characterised by 

measuring variations in the electrophoretic mobility of several housekeeping 

proteins which can be directly equated to allelic variation at the corresponding 

gene loci (Selander et al., 1986). MLEE was used to analyse the genetic diversity 

and population structure of M. haemolytica and M. glucosida isolates and 

subsequently correlate variation in capsular serotypes, LPS types and OMP types 

with the underlying genetic framework (Davies et al., 1997). M. haemolytica 

isolates were classified into 22 electrophoretic types (ETs) based on allelic 

variation at 18 housekeeping gene loci. The serotype A1 and A6 isolates of ET1 
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were responsible for 75% of bovine disease cases, marking two virulent, cattle-

specific clonal groups. Similarly, the serotype A2 isolates of ET 21 and 22 were 

responsible for 40% of ovine disease cases, marking a virulent, cattle-specific 

clonal group. Bovine serotype A1 and A6 isolates and bovine serotype A2 isolates 

were phylogenetically distinct from ovine isolates of the same serotypes, 

suggesting that different subpopulations of these serotypes are associated with 

disease in the two animals. Furthermore, the MLEE data also confirmed previous 

observations (Davies and Donachie, 1996) that bovine and ovine isolates of the 

A1, A2 and A6 capsular serotypes could be consistently differentiated based on 

their OMP profiles, indicating a role in host-specificity.  

The MLEE data was consistent with previous findings of 16S rRNA sequence 

comparison (Davies et al., 1996) that M. glucosida represents a heterogeneous 

group of bacteria that are phylogenetically distinct from M. haemolytica (Davies 

et al., 1997). 

1.5.3 Evolution and host-switching in M. haemolytica 

Comparative nucleotide sequence analysis has shown that horizontal DNA 

transfer and assortative (entire gene) recombination have contributed 

significantly to the evolution of the leukotoxin operon (Davies et al., 2001, 

Davies et al., 2002), the ompA gene (Davies and Lee, 2004) and the tbpBA 

operon (Lee and Davies, 2011).  In these studies, the association of identical or 

nearly identical alleles and gene segments with divergent phylogenetic lineages 

of M. haemolytica collectively provide evidence to support the hypothesis that 

host switching of strains from cattle to sheep and vice versa have contributed to 

the emergence of new strains. In this hypothesis (Fig. 1.12) the serotype A1 and 

A6 strains, which evolved independently in sheep, were transmitted to cattle 

around the time of domestication of these animals (around 10,000 years ago). 

Similarly, the A2 strains, which evolved independently in cattle, were 

transmitted to sheep. Exchange of genetic material from the native, non-

pathogenic strains to the newly-transmitted strains allowed for their adaptation 

to their new host environment, giving rise to the pathogenic serotype A1 and A6 

strains in cattle and the pathogenic serotype A2 strains in sheep. 
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Figure 1.12. The hypothesised route of M. haemolytica host switching. 

Transmission of serotype A2 strains from cattle to sheep occurred 

around the time of animal domestication. Subsequent horizontal 

gene transfer (HGT) of genetic material from the native ovine 

strains gave rise to the pathogenic ovine serotype A2 strains (red). 

Similarly, transmission of serotype A1 and A6 strains from sheep to 

cattle and subsequent genetic exchange gave rise to the pathogenic 

bovine serotype A1 and A6 strains (red). 
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1.6 Bioinformatic tools for discriminating proteins  

located in different subcellular compartments 

Once a bacterial protein has been synthesised in the cytoplasm it can either 

remain there or be targeted to a different subcellular location. Several of the 

sorting signals that are responsible for targeting a nascent polypeptide to a 

particular location have been well characterised, including the N-terminal signal 

peptide for targeting proteins outside of the cytoplasm. Many proteins also have 

secondary structural signatures which indicate their most probable location, 

such as the transmembrane α-helical secondary structures that are found in 

Gram-negative integral inner membrane proteins and the β-barrel secondary 

structures present in Gram-negative integral OMPs. These signals and structural 

signatures are generally encoded in the amino acid sequence of the protein itself 

and can therefore be identified computationally using bioinformatics 

approaches. The availability of publicly available sequence information has 

expanded rapidly over recent years and bioinformatic prediction of such 

sequence features has become an important part of microbiological research. 

Proteins which are surface-exposed and potential vaccine targets can be rapidly 

identified bioinformatically from sequence data rather than experimental data, 

a process referred to as reverse vaccinology (Rappuoli, 2000, Vivona et al., 

2008). It is also useful to know the subcellular compartment that a protein is 

likely to be located in when designing protein isolation experiments and also for 

identifying contaminants in proteomic analyses.   

1.6.1 Prediction tools for discrimination of OMPs 

Outer membrane proteins have several unique sorting signals and structural 

signatures that allow them to be differentiated from proteins located in other 

subcellular compartments by bioinformatic predictors. These predictors can be 

categorised into three groups: β-barrel predictors, outer membrane lipoprotein 

predictors and subcellular localisation predictors. 

1.6.1.1 β-barrel predictors 

In general, two main types of structural signatures are present in Gram-negative 

integral membrane proteins, namely α-helices and β-barrels, which are 

associated with the inner and outer membranes, respectively. The prediction of 
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integral inner membrane proteins is relatively easy, as the membrane-spanning 

regions consist of easily identifiable α-helical stretches consisting of 15 to 25 

mostly non-polar amino acids (Santoni et al., 2000). In contrast, predicting 

integral OMPs is more difficult, mainly due to the membrane-spanning β-strands 

being much shorter and having highly variable properties (Koebnik et al., 2000). 

In general, the amino acids of transmembrane β-strands alternate between polar 

and non-polar, with polar residues facing the lipid bilayer and protein interfaces 

and non-polar residues facing the inside of the β-barrel. However, some non-

polar residues may also point inside the barrel, interrupting the regular 

alternation between polar and non-polar residues and making transmembrane β-

strands more difficult to identify (Schulz, 2000). Transmembrane β-strands are 

also often flanked by a layer of aromatic amino acid residues (the ‘aromatic 

girdle’) which are believed to contribute towards providing stability in the outer 

membrane (Yau et al., 1998). The majority of integral β-barrel OMPs also 

contain a C-terminal signature sequence, in which there is a phenylalanine (or 

tryptophan) residue at the C-terminal position, and hydrophilic residues at 

positions 3, 5, 7 and 9 from the C-terminus (Struyve et al., 1991). This sequence 

is required for translocation across the periplasm and correct insertion into the 

outer membrane by the BAM complex (Robert et al., 2006). 

Several bioinformatic methods have been developed for the prediction of 

integral β-barrels from protein amino acid sequences. In these methods, the 

amino acid sequence is first encoded into a feature vector and then secondly 

entered into a classification model to produce the prediction. Several web-based 

resources are available for the prediction of β-barrels, including TMB-Hunt 

(Garrow et al., 2005), TMBETADISC-RBF (Ou et al., 2008), MCMBB (Bagos et al., 

2004) and BOMP (Berven et al., 2004). 

1.6.1.2 Lipoprotein predictors 

Proteins that are targeted for secretion via the Sec translocon contain an N-

terminal signal sequence that is required for translocation across the inner 

membrane. Once in the periplasm, lipoprotein signal sequences are cleaved by 

an enzyme called signal peptidase II (SPaseII), whereas signal sequences of other 

proteins are cleaved by signal peptidase I (SPaseI). The key to bioinformatically 

predicting lipoproteins from a set of membrane proteins lies in the ability to 
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differentiate between these two signal sequences. In both lipoproteins and non-

lipoproteins, signal sequences can be divided into three regions: an n-region, an 

h-region, and a c-region (Juncker et al., 2003). Both protein types have a similar 

n-region, which is characterised by the presence of positive amino acids lysine 

and/or arginine. The h-region consists of hydrophobic amino acids and is shorter 

in lipoproteins than in non-lipoproteins. The c-region contains the signal 

peptidase recognition site and is necessary for cleavage. In lipoproteins, the c-

region contains an apolar consensus sequence of four amino acids around the 

cleavage site known as the lipobox. The most conserved amino acids in the 

lipobox are a leucine at position -3 from the cleavage site, alanine at position -2 

and glycine or alanine at position -1, although other substitutions have been 

demonstrated. A cysteine residue at position +1 is essential: LA(G,A)↓C 

(Vonheijne, 1989). In non-lipoproteins, the same region is polar and has small, 

uncharged residues at positions -3 and -1 (Vonheijne, 1989). Outer membrane 

lipoproteins can be further differentiated from inner membrane lipoproteins by 

examining the amino acid at position +2 from the cleavage site. In general, 

lipoproteins containing an aspartate residue at this position are retained at the 

inner membrane whereas those containing any other residue are translocated to 

the outer membrane (Yamaguchi et al., 1988). 

Web-based resources are available for the prediction of lipoproteins including 

DOLOP (Babu and Sankaran, 2002), LIPO (Berven et al., 2006) and LipoP (Juncker 

et al., 2003). 

1.6.1.3 Subcellular localisation predictors 

Subcellular localisation predictors are able to predict the localisation site of a 

protein from several different options. For Gram-negative bacterial proteins, 

these sites are the cytoplasm, inner membrane, periplasm, outer membrane and 

extracellular. Subcellular localisation predictors utilise many of the criteria 

described above for the differentiation of OMPs. The main advantage of using 

these predictors in conjunction with β-barrel and lipoprotein predictors is that 

they can predict if a protein is likely to have more than one localisation site. 

Several web-based Gram-negative subcellular localisation predictors are 

available including PSORTb (Gardy et al., 2003, Gardy et al., 2005), Proteome 
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Analyst (Szafron et al., 2004), CELLO (Yu et al., 2006) and SOSUI-GramN (Imai et 

al., 2008). 

1.7 Mass spectrometry (MS)-based outer membrane 

proteomics 

Mass spectrometry (MS) is the method of choice for the identification of proteins 

in simple or complex samples. Proteomics in general deals with the 

determination of complete protein sets belonging to either a whole cell (a 

proteome) or a particular subcellular compartment (a subproteome). MS-based 

proteomics has only been made possible by the availability of gene and genome 

sequence databases, modern computing and large advances in MS technology. 

Outer membrane proteomics deals specifically with the identification of all 

integral OMPs and outer membrane lipoproteins (the outer membrane 

subproteome) within the outer membrane of a given Gram-negative bacterium. 

In order to undertake comprehensive studies of the outer membrane 

subproteome, the outer membrane must first be isolated from other cellular 

components and purified in order to minimise contamination with non-OMPs. 

This can be achieved through subcellular fractionation based on the specific 

properties of cellular components from different compartments. Complementary 

MS-based proteomic approaches can then be utilised to allow comprehensive 

identification of OMPs within a purified outer membrane sample. 

1.7.1 Outer membrane isolation 

This section will summarise three of the most popular techniques for the 

isolation of Gram-negative outer membranes: selective detergent solubilisation, 

spheroplasting and sucrose density gradient centrifugation.  

1.7.1.1 Selective detergent solubilisation 

This technique involves using an appropriate detergent to selectively solubilise 

the inner membrane, leaving the outer membrane largely intact so it can be 

pelleted and isolated. Before this can occur the cell envelope must first be 

separated from the components of the cytoplasm. Cells are broken in order to 

release their cytoplasmic contents, usually through sonication or French press. 

The cell lysate is centrifuged to pellet any unbroken cells which are 
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subsequently removed. The remaining supernatant is then subjected to 

ultracentrifugation to pellet the cell envelopes. One of the earliest detergents 

used for selective inner membrane solubilisation was the non-ionic detergent 

Triton X-100, which selectively solubilised the inner membrane of E. coli in the 

presence of Mg2+ ions (Schnaitman, 1971). The mild ionic detergent N-

laurolysarcosine (Sarkosyl) was subsequently shown to selectively solubilise the 

inner membrane of E. coli in the absence of Mg2+ (Filip et al., 1973), indicating 

that the selective solubilisation ability of Triton X-100 could be explained, at 

least in part, on the basis that Mg2+ cations stabilise the outer membrane. It is 

thought that divalent cations stabilise the outer membrane by interacting with 

the hydrophobic moiety of LPS (Schindler and Osborn, 1979). Sarkosyl has been 

demonstrated to selectively solubilise M. haemolytica inner membrane proteins 

more completely than Triton X-100 (Squire et al., 1984) and yield more OMPs 

(Morton et al., 1996). Furthermore, a recent study using Campylobacter jejuni 

compared a total of nine different OMP purification protocols and found that 

selective inner membrane solubilisation using Sarkosyl produced the purest and 

most complete outer membrane preparations and was the most reproducible in 

terms of consistent identification of OMPs (Hobb et al., 2009). Sarkosyl is 

therefore a very popular choice for the isolation of OMPs in M. haemolytica 

(Davies and Donachie, 1996, McCluskey et al., 1994, Davies et al., 1994a, Davies 

et al., 1992, Kisiela and Czuprynski, 2009, Gatewood et al., 1994, Ayalew et al., 

2010) and several other Gram-negative organisms including P. multocida (Davies 

et al., 2003b, Davies et al., 2003a, Davies et al., 2004), A. pleuropneumoniae 

(Chung et al., 2007), H. influenzae (Kaur et al., 2003), C. jejuni (Hobb et al., 

2009), Shewanella oneidensis (Brown et al., 2010), Flavobacterium columnare 

(Liu et al., 2008), Coxiella burnetii (Papadioti et al., 2011), Helicobacter pylori 

(Baik et al., 2004) and Tannerella forsythia (Veith et al., 2009).  

The mechanism of action of Sarkosyl is not fully understood, but it has been 

shown to be ineffective at dispersing LPS from the both E. coli and Brucella 

abortus cell envelopes which may also be the basis for its inability to solubilise 

the outer membrane (Moriyon and Berman, 1982). The length of its alkyl chain 

also appears to be a critical factor. Sarkosyl (which has an alkyl chain of 11 

carbons) and Zwittergents 308 and 310 (alkyl chains of 8 and 10 carbons, 

respectively) are not effective in dispersing LPS in either B. abortus or E. coli, 
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whereas Zwittergents 312 and 316 (alkyl chains of 12 and 16 carbons, 

respectively) were very efficient at dispersing LPS in both bacteria (Moriyon and 

Berman, 1982). This suggests that a minimal alkyl chain length of 12 carbons is 

necessary for dispersing LPS and, therefore, that only detergents with 11 or 

fewer carbons are appropriate for the selective solubilisation of the inner 

membrane. 

1.7.1.2 Spheroplasting 

Spheroplasting involves breaking the outer membrane using lysozyme and EDTA, 

which peels away from the cell while the cytoplasmic membrane remains intact 

(i.e. the spheroplast) and is pelleted by centrifugation (Birdsell and Cota-Robles, 

1967, Hill and Sillence, 1997, Osborn and Munson, 1974, Witholt et al., 1976, 

Costerto.Jw et al., 1967). One of the limitations of this technique is that the 

outer membrane may not become completely separated from the inner 

membrane, allowing the possibility that some OMPs will not be present in the 

outer membrane fraction (Hobb et al., 2009). 

1.7.1.3 Sucrose density gradient centrifugation 

For sucrose density gradient centrifugation, a sucrose gradient is firstly created 

in a centrifuge tube whereby lower concentrations of sucrose are gently 

overlayed onto higher concentrations. Cell envelope samples are then loaded 

onto the top of the gradient and centrifuged. The membrane components move 

through the gradient until they reach the point at which their density matches 

that of the surrounding sucrose. The outer and inner membrane fractions are 

observed as separate bands within the gradient due to their different densities 

and can be subsequently isolated (Osborn et al., 1972). Additional wash steps 

using chaotropic agents such as sodium bromide and sodium carbonate can be 

further used to remove contaminants (Schluesener et al., 2005, Molloy et al., 

2000). Sucrose density gradient centrifugation is more laborious than detergent-

based techniques and is generally not an appropriate technique for preparing 

several samples at once. 

1.7.2 MS principles and instrumentation 

Before the different strategies of MS-based OMP identification are discussed, it is 

first necessary to give an overview of the principles and instrumentation of MS. A 
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mass spectrometer consisting of three main components: an ion source that 

transfers peptides (from enzyme-digested proteins) into the gaseous phase, a 

mass analyser that measures the mass-to-charge (m/z) ratio of the ionised 

peptides, and a detector that records the number of ions at each m/z value. 

Protein identifications from MS data are made by peptide mass fingerprinting. By 

coupling two or more mass analysers together with a collision cell, peptides can 

be further fragmented to generate MS/MS spectra and produce protein 

identifications with greater sensitivity. 

1.7.2.1 Ionisation techniques 

In order for peptides to be analysed by MS it must first be vaporised and ionised. 

The success of MS in the life sciences is largely due to the introduction of 

electrospray ionisation (ESI) (Yamashita and Fenn, 1984a, Yamashita and Fenn, 

1984b, Fenn et al., 1989, Lane, 2005) (Fig. 1.13A) and matrix-assisted laser 

desorption ionisation (MALDI) (Karas and Hillenkamp, 1988) techniques, which 

allow large, polar, thermally labile proteins to enter into the gaseous phase 

(Lane, 2005) (Fig. 1.13B).  

Peptides to be ionised by ESI are first dissolved in a solvent. This solution flows 

through a small capillary tube to which a high voltage is applied, resulting in the 

release of a fine mist of charged droplets. As the droplets migrate to the counter 

electrode they pass through a heating element, allowing the solvent to 

evaporate leaving behind multiply-charged gas-phase ions.  

MALDI sublimates and ionises samples out of a dry, crystalline matrix using laser 

pulses. Samples are co-crystallised with an excess of a matrix material that 

strongly absorbs light from a laser. The matrix expands into the gas phase as it 

absorbs light from the laser, taking with it intact peptides. 

1.7.2.2 Mass analysers 

The mass analyser measures the m/z of ionised peptides to generate 

information-rich ion mass spectra from these peptides. There are four main 

types of mass analyser used in proteomics research: time-of-flight (TOF), 

quadrupole, ion trap and Fourier transform ion cyclotron (FT-MS) analysers. 

These can be either stand alone or, in some cases, put together in tandem to 

take advantage of the different strengths of each.  
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Figure 1.13. Ionisation and peptide sample introduc tion processes: (A) 

matrix-assisted laser desorption/ionisation (MALDI)  and (B) 

electrospray ionisation (ESI). 

Figure was adapted from Lane et al. (2005). 
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MALDI is usually combined with TOF analysers (MALDI-TOF) (Aebersold and Mann, 

2003), which determine m/z ratios by measuring the time that peptide ions take 

to move through a tube of specified length that is under vacuum (Fig. 1.14A). 

MS/MS analysis can be achieved by placing a collision cell either between two 

TOF analysers (MALDI-TOF-TOF) (Medzihradszky et al., 2000) (Fig 1.14B) or 

between a quadrupole mass filter (described below) and a TOF analyser (MALDI-

Q-TOF) (Loboda et al., 2000). Ions of a particular m/z are selected in the first 

analyser, fragmented in the collision cell by collision-induced dissociation (CID) 

and the fragments read by the second analyser. MALDI-MS has traditionally been 

used to analyse relatively simple peptide mixtures, although MALDI-MS/MS can 

now facilitate the analysis of more complex samples. 

ESI is most commonly coupled to triple quadrupoles for the generation of MS/MS 

spectra (Aebersold and Mann, 2003). A quadrupole consists of four parallel rods 

equally spaced around a central axis. One set of opposing rods have a direct 

current, the other an alternating current, producing opposing positive and 

negative fields. Peptide ions are introduced in a continuous beam along the 

central axis between the poles, and are filtered according to their m/z ratios. 

The two positive rods create a high-pass mass filter that allows ions above a 

critical m/z ratio to pass through the centre of the quadrupole. The two 

negative rods create a low-pass mass filter that allows ions below a critical m/z 

ratio to pass through the centre of the quadrupole. The two overlapping mass 

filter regions create a ‘band pass’ area of mutual stability which allows ions of a 

certain m/z ratio to pass through. Ions outside of this area of mutual stability 

are not able to pass through the quadrupole and run into the rods. The m/z ratio 

of ions that are allowed to pass through the quadrupole is proportional to the 

voltage applied to the rods. For MS/MS analysis, three quadrupoles are combined 

whereby ions of a particular m/z are selected in the first, fragmented in the 

second by CID and the fragments read by third (Fig. 1.14C). The third 

quadrupole can also be substituted with a TOF analyser (ESI–QqTOF) to perform 

MS/MS analysis (Fig. 1.14D). ESI-MS systems are normally integrated with liquid 

chromatography (LC) technology for efficient separation of peptides prior to 

analysis. 
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Figure 1.14. Examples of mass spectrometers used in  proteome research: 

(A) reflector time-of-flight (TOF), (B) time-of fli ght/time-of-flight 

(TOF-TOF), (C) triple quadrupole, (D) quadrupole ti me-of-flight 

(QqTOF). 

Figure was adapted from Aebersold and Mann (2003). 
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1.7.2.3 Peptide mass fingerprinting 

Prior to analysis by MS, a protein must be digested into peptides using an 

enzyme of high specificity (such as trypsin). A highly specific enzyme ensures 

that the peptides are not too short (as almost any three or four residue peptide 

will be found in several database entries) and, if being analysed by MALDI-MS, 

that they do not fall into the low mass region (below ~500 Da) that is obscured 

by the presence of matrix peaks. After analysis by MS, a list of experimental 

peptide masses is generated that represents the peptide mass fingerprint of that 

particular protein. The protein is then identified by matching the experimental 

peptide masses to the calculated enzyme-digested peptide masses of protein 

entries on a database. Several parameters can be set prior to this database 

comparison to improve search performance. The digestion enzyme may not 

cleave the protein at all of the expected amino acid sites, therefore the number 

of missed cleavage sites can be set (usually only one or two) to allow for this. 

The range of experimental peptide mass values that are compared to the 

database can be set so that they are large enough to offer good discrimination, 

but not so large that they are likely to be peptides with missed cleavage sites. A 

peptide mass tolerance value can also be set to allow for small differences 

between experimental and theoretical peptide masses.  

Confidence in protein identification may come from having independent 

supporting evidence. For example, if the protein originated from a protein band 

at approximately 60 kDa on a one-dimension (1-D) SDS-PAGE separation of 

bacterial proteins, then the anticipated result of a peptide mass fingerprint is a 

60 kDa bacterial protein. If the protein with the closest peptide matches meets 

this expectation then the search can be deemed successful. If it is a 150 kDa 

protein from a different species then the search is likely to have failed. In 

addition to this approach, many MS search programmes provide a score for each 

protein match which reflects the significance of that match. The popular Mascot 

search engine (Perkins et al., 1999) incorporates a probability based 

implementation of the molecular weight search (MOWSE) scoring algorithm 

(Pappin et al., 1993). In Mascot, the significance level is normally set at 5%, so 

that if the score for a particular match exceeds this level there is less than a 1 in 

20 chance that the observed match is a random event.  
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One of the main drawbacks to peptide mass fingerprinting is caused by 

uncertainty in the mass of intact proteins. A protein will often undergo post-

translational modification and processing after expression, resulting in 

experimental masses that are unlikely to be the same as that of the entry in the 

protein database. A peptide mass fingerprint can therefore only provide the 

statistically most probable identification, although this is still a much more 

advanced method than simply counting peptide mass matches. Peptide mass 

fingerprinting is also mostly suited to the identification of individual proteins, 

since mixtures of proteins create multiple peptide mass fingerprints and make 

protein identification more difficult. 

1.7.2.4 MS/MS ion search  

An MS/MS ions search has a higher level of specificity compared to that achieved 

by peptide mass fingerprinting because, in addition to peptide mass, MS/MS 

provides information about peptide sequence. However, this information only 

provides detail of amino acid composition and is not easily translatable into full 

and unambiguous peptide sequences. The Mascot search engine again can be 

used to perform probability-based scoring using MS/MS data. Alternative 

software such as Sequest (Eng et al., 1994) and MS-TAG (Mann and Wilm, 1994) 

are also available for MS/MS data analyses that use cross-correlation and peptide 

sequence tag approaches, respectively. Data from MS/MS is particularly useful 

when multiple proteins are present within a sample. Furthermore, relative 

abundance of different proteins can be estimated by the Exponentially Modified 

Protein Abundance Index (emPAI), which offers relative quantification of 

proteins in a mixture based on protein coverage by the peptide matches in a 

database search result. 

1.7.3 Membrane protein identification 

There are two main approaches to the identification of membrane proteins using 

MS. The first is a combination of protein separation by 1-D SDS-PAGE or 2-DE and 

either MS or MS/MS (the gel-based approach). The second approach combines 

limited protein purification followed by MS/MS (the gel-free approach). 
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1.7.3.1 Gel-based approach 

The gel-based approach to identifying proteins by MS involves the separation of a 

complex mixture of proteins by either 1-D SDS-PAGE or 2-DE followed by 

subsequent in-gel trypsin digestion and peptide mass fingerprinting by MALDI-

TOF. MALDI-TOF-TOF can also be used to perform MS/MS, which is more 

appropriate for analysis where more than one protein is expected to be present 

in a gel slice/spot. 

One-dimensional SDS-PAGE is particularly useful for the separation of membrane 

proteins as they are readily solubilised upon heating in SDS sample buffer. The 

technique is also relatively quick and simple to perform, making it suitable for 

comparative analysis of several samples at the same time. The main 

disadvantage of 1-D SDS-PAGE is that proteins are separated only by molecular 

mass, which can result in inadequate quantification and resolution if proteins of 

similar molecular masses are present in the sample. However, relative 

quantification of different proteins within a protein band can be estimated using 

emPAI.  

Two-dimensional electrophoresis couples isoelectric focusing in the first 

dimension followed by SDS-PAGE in the second dimension to allow the separation 

of complex mixtures of proteins by isoelectric point, molecular mass, solubility 

and relative abundance. However, there are limitations to the use of this 

technique for the separation of membrane proteins. Many membrane proteins 

are not solubilised in the non-detergent isoelectric focusing sample buffer due 

their hydrophobic nature, and those that are solubilised often precipitate at 

their isoelectric point (Wu and Yates, 2003). Isoelectric focusing with 

immobilised pH gradients also results in severe protein losses on 2-D gels as 

these membrane proteins do not enter the second dimension of separation 

(Pasquali et al., 1997, Adessi et al., 1997). More general disadvantages of 2-DE 

include the large amount of sample handling that is involved, poor 

reproducibility, and the extra time and labour that is required to perform the 

technique. Due to these limitations, 1-D SDS-PAGE is considered by some to be a 

more favourable strategy than 2-DE for the separation, resolution and 

identification of membrane proteins (Gorg et al., 2004). 
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1.7.3.2 Gel-free approach 

The gel-free proteomic approaches provides a powerful alternative to gel-based 

approaches. It involves using LC-ESI-MS/MS to identify proteins in complex 

mixtures (Hunt et al., 1992). Proteins are trypsin-digested (without prior gel-

based separation) and the peptide fragments separated by one or more steps of 

LC. The peptides are then ionised by ESI and subsequently enter the mass 

spectrometer, where a mass spectrum of the peptides eluting at this time point 

is taken. A prioritised list of peptides is generated by a computer and these are 

subsequently fragmented by energetic collision with gas. The resulting MS/MS 

spectrum is recorded and used to make protein identifications. 

As with gel-based proteomic approaches the solubility of membrane proteins is 

also an issue for gel-free approaches. However, a number of methods have been 

developed to overcome this issue including the use of detergents (Han et al., 

2001), organic solvents (Blonder et al., 2002, Goshe et al., 2003) and organic 

acids (Washburn et al., 2001). The main advantage of the gel-free approach is 

that it provides comprehensive coverage of all proteins within a complex protein 

sample without the need for prior gel-based separation. It also allows for the 

identification of low abundance proteins which may not be adequately resolved 

and identified by gel-based approaches. 

1.8 Objectives of research 

The objectives of this thesis were threefold. The first objective was to 

investigate the surface-exposure and immune specificity of OmpA among bovine 

and ovine M. haemolytica isolates. This work builds upon a previous study 

(Davies and Lee, 2004) which demonstrated that the amino acid sequences 

within hypervariable loop domains of M. haemolytica OmpA were very different 

in bovine and ovine isolates but were highly conserved among isolates recovered 

from the same host species. As a result of this it was hypothesised that the 

OmpA1 and OmpA2 proteins of bovine and ovine isolates, respectively, play an 

important role in adherence and are involved in host-specificity. To achieve this 

objective, recombinant OmpA1 (rOmpA1) and OmpA2 (rOmpA2) proteins were 

over-expressed, purified and used to generate anti-OmpA1 and anti-OmpA2 

antibodies, respectively. These antibodies were then used to explore OmpA 
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surface-exposure and epitope specificity using electron microscopy and 

immunofluorescence techniques. Attempts were also made to crystallise 

rOmpA1. 

The second objective was to characterise and compare the outer membrane 

subproteomes of seven M. haemolytica isolates and one M. glucosida isolate 

(that were carefully selected to represent different host origins, disease 

statuses, capsular serotypes, OMP-types and phylogenetic lineages) after growth 

in complex medium in order to identify OMPs with putative roles in host-

specificity and virulence under standard growth conditions. Previous work has 

demonstrated that bovine serotype A1 and A6 isolates and bovine serotype A2 M. 

haemolytica isolates are genetically distinct from ovine M. haemolytica isolates 

of the same serotypes, suggesting that different subpopulations of these 

serotypes are associated with disease in the two animals (Davies et al., 1997). 

Bovine and ovine isolates of these three serotypes can also be differentiated 

based on their OMP profiles (Davies and Donachie, 1996), suggesting that certain 

OMPs are likely to be involved in host specificity and virulence. Firstly, the 

entire repertoire of encoded OMPs in the genomes of three publicly available M. 

haemolytica genomes was predicted using a simple bioinformatic framework. 

Qualitative comparisons and amino acid sequence comparisons were performed 

on the OMPs predicted among the genomes to identify those with potential roles 

in host adaptation. Secondly, complementary proteomics approaches were used 

to identify these predicted OMPs in the outer membranes of the representative 

isolates after they had been grown in complex growth medium. This comparative 

approach provided a comprehensive overview of M. haemolytica and M. 

glucosida subproteomes and insights into the roles of OMPs in host-specificity, 

virulence and mechanisms of pathogenesis. 

The third objective was to identify OMPs that were differentially expressed in 

the representative isolates after growth under in vitro conditions which were 

designed to mimic the in vivo host environment. These conditions included iron-

restriction, serum-supplementation and solid-surface growth (in the absence or 

presence of Congo red dye). This approach allowed the identification of several 

potential virulence-associated proteins, many of which were not previously 

identified after growth in complex medium alone. Furthermore, an examination 
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of the extracellular subproteome of the representative isolates was undertaken 

after growth in iron-restricted and iron-replete media. 
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2. OUTER MEMBRANE PROTEIN A (OMPA) OF 

BOVINE AND OVINE ISOLATES OF M. 

HAEMOLYTICA IS SURFACE-EXPOSED AND 

CONTAINS HOST-SPECIES SPECIFIC 

EPITOPES 

2.1 Introduction 

The Gram-negative bacterium M. haemolytica is a commensal of cattle, sheep, 

and other ruminants, but also causes bovine and ovine pneumonic pasteurellosis; 

these infections are responsible for considerable economic losses to the livestock 

industries (Frank, 1989, Gilmour and Gilmour, 1989). Twelve different capsular 

serotypes of M. haemolytica have been identified to date, but A1 and A2 are the 

most prevalent (Highlander, 2001) and strains of these serotypes are responsible 

for the majority of pneumonia cases worldwide in cattle and sheep, 

respectively. M. haemolytica consists of genetically distinct subpopulations that 

are differentially adapted to, and elicit disease in, either cattle or sheep (Davies 

et al., 1997, Davies and Donachie, 1996). The molecular basis of host-adaptation 

and host-specificity in M. haemolytica is not understood, but it is likely that 

OMPs play important roles in these processes. The publication of the genome 

sequence of a bovine serotype A1 M. haemolytica isolate (Gioia et al., 2006) 

and, more recently, of the genome sequences of bovine and ovine serotype A2 

isolates (Lawrence et al., 2010a), have revealed the presence of genes that 

encode various OMPs. Many of these proteins serve as adhesins that are involved 

in host receptor-specific binding (Daigneault and Lo, 2009) or as iron transport 

proteins (Roehrig et al., 2007). 

There is growing evidence to suggest that the OmpA protein of M. haemolytica 

functions as an adhesin (Lo and Sorensen, 2007, Kisiela and Czuprynski, 2009). 

OmpA is a highly conserved, integral, OMP of Gram-negative bacteria that has 

been implicated in a diverse range of functions in different species [reviewed in 

(Smith et al., 2007)]. It comprises an N-terminal transmembrane β-barrel 

domain embedded in the outer membrane and a C-terminal globular domain 

which extends into the periplasm to interact with the underlying peptidoglycan 
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(Demot and Vanderleyden, 1994). The N-terminal domain consists of eight 

membrane-traversing anti-parallel β-sheets and four relatively long, mobile, 

hydrophilic external loops (Pautsch and Schulz, 1998). In previous studies, 

molecular mass heterogeneity of OmpA was observed among bovine and ovine M. 

haemolytica isolates that correlated with the host of origin (Davies and 

Donachie, 1996). Subsequently, comparative nucleotide sequence analysis of the 

ompA gene from 31 M. haemolytica isolates revealed the presence of 

hypervariable domains within the four surface-exposed loops (Davies and Lee, 

2004). The amino acid sequences of these domains are very different in bovine 

and ovine isolates but are highly conserved among isolates recovered from the 

same host species (Davies and Lee, 2004). The ompA gene can be categorised 

into four distinct allelic classes, I to IV. The class I (ompA1) alleles are 

associated almost exclusively with bovine M. haemolytica isolates, whereas the 

class II to IV (ompA2 to ompA4) alleles occur only in ovine M. haemolytica 

isolates (Davies and Lee, 2004). Significantly, the ompA1- and ompA2-type 

alleles are associated with the major pathogenic lineages of bovine (ET 1) and 

ovine (ETs 21 and 22) isolates, respectively (16). Based on the distribution of the 

OmpA1 and OmpA2 proteins among bovine and ovine isolates, respectively, and 

the localisation of the amino acid variation to the tips of the four loops, it was 

hypothesised that OmpA acts as a ligand, plays an important role in adherence 

and is involved in host-specificity (Davies and Lee, 2004). Subsequently, it was 

demonstrated that OmpA is involved in the binding of serotype A1 M. 

haemolytica to bovine bronchial epithelial cells (Kisiela and Czuprynski, 2009) 

and that fibronectin is a potential host receptor molecule in cattle (Lo and 

Sorensen, 2007). 

The cell envelope of M. haemolytica is surrounded by a layer of capsular 

polysaccharide (CPS) (Adlam et al., 1984, Lo et al., 2001) which has been 

implicated in a number of functions including the adherence of the bacterium to 

alveolar surfaces (Brogden et al., 1989, Whiteley et al., 1990), inhibition of 

complement-mediated serum killing (Chae et al., 1990), and inhibition of the 

phagocytic and bactericidal activities of neutrophils (Czuprynski et al., 1989, 

Walker et al., 1985). Visibly thicker capsules have been observed in M. 

haemolytica during in vitro early log phase growth compared to stationary phase 

growth in both capsular serotype A1 (Corstvet et al., 1982) and A2 (Sutherland 
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et al., 1990) isolates. Crucially, polysaccharide capsules have been shown to 

inhibit outer membrane adhesin function in a range of capsular types in different 

bacterial species (Schembri et al., 2004, Virji et al., 1995, Shifrin et al., 2008, 

Favre-Bonte et al., 1999). Indeed, an acapsular serotype A1 M. haemolytica 

mutant was shown to have greater fibronectin-binding activity than the capsular 

parental strain, suggesting a shielding role of the capsule. In other species, CPS 

may be downregulated upon contact with host cells (Deghmane et al., 2002, 

Corcionivoschi et al., 2009, Auger et al., 2009) or as a consequence of phase 

variable expression (Krinos et al., 2001, deVries et al., 1996, Bacon et al., 

2001), thus allowing transient exposure of outer membrane adhesins. The 

shielding of OMPs, including OmpA, by CPS is likely to have important 

implications for the function of surface proteins but has yet to be investigated in 

M. haemolytica. 

The objectives of this study were twofold. First, we wished to determine if the 

M. haemolytica OmpA protein is surface-exposed or whether it is masked by the 

polysaccharide capsule under various growth conditions. Second, we wanted to 

demonstrate whether the bovine OmpA1 and ovine OmpA2 proteins are 

antigenically distinct, i.e. whether antibodies raised against each of these 

proteins interact in a strain-specific manner. This would provide clues as to 

whether these proteins are likely to interact with host-cell receptors in a host-

specific manner. To achieve these aims, recombinant OmpA1 (rOmpA1) and 

OmpA2 (rOmpA2) proteins were over-expressed, purified and used to generate 

anti-OmpA1 and anti-OmpA2 antibodies, respectively. These antibodies were 

used to explore OmpA surface-exposure and epitope specificity using electron 

microscopy and immunofluorescence techniques. In addition, attempts were 

made to determine the crystal structure of purified rOmpA1 using crystallisation 

screening methods and X-ray diffraction. 

2.2 Materials and methods 

2.2.1 Bacterial strains and growth conditions  

The M. haemolytica isolates used in this study are shown in Table 2.1. E. coli 

strains DH5α and Rosetta 2 (DE3) pLysS were obtained from Invitrogen and 

Novagen, respectively. The M. haemolytica isolates were stored at -80°C in 50%  
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Table 2.1. Properties of bovine and ovine M. haemolytica isolates. 

  

 
 Immunogold-labelling Immunofluorescence 
Isolate ETa Serotype Host Clinical Site of ompA allele     
  Species Status Origin 
  anti- anti- anti- anti- 
  rOmpA1 rOmpA2 rOmpA1 rOmpA2 
  
 
PH2 1 A1 Bovine Pneumonia Lung ompA1.1 + − + − 
PH30 1 A1 Bovine Healthy Nasopharynx ompA1.1 + − + +/− 
PH376 1 A6 Bovine Pneumonia Lung ompA1.1 + − + − 
PH540 2 A1 Bovine - Nasopharynx ompA1.2 + − + − 
PH202 21 A2 Bovine Healthy Nasopharynx ompA1.3 + − + +/− 
PH470 21 A2 Bovine Pneumonia Lung ompA1.3 + − + − 
PH494 16 A2 Ovine Pneumonia Lung ompA1.4 + − + − 
PH550 17 A2 Bovine Healthy Nasopharynx ompA1.5 + − + +/− 
PH8 6 A1 Ovine Pneumonia Lung ompA2.1 − + +/− + 
PH284 8 A6 Ovine Pneumonia Lung ompA2.1 − + +/− + 
PH66 10 A14 Ovine - Lung ompA2.1 − + +/− + 
PH56 5 A8 Ovine Pneumonia Lung ompA2.2 − + +/− + 
PH278 21 A2 Ovine Pneumonia Lung ompA2.3 − + − + 
PH292 22 A2 Ovine Pneumonia Lung ompA2.3 − + − + 
PH196 18 A2 Bovine Healthy Nasopharynx ompA3.1 − +/− − +/− 
PH296 12 A7 Ovine Pneumonia Lung ompA4.1 − +/− − +/− 
PH484 14 A7 Ovine Pneumonia Lung ompA4.1 − +/− − +/− 
PH588 15 A13 Ovine Pneumonia Lung ompA4.2 − +/− − +/− 
  

       aET = electrophoretic type (Davies et al., 1997)
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(v/v) glycerol in brain heart infusion (BHI) broth and were subcultured on BHI 

agar containing 5% (v/v) defibrinated sheep’s blood (blood agar) overnight at 

37°C. Liquid starter cultures were prepared by inoculating a few colonies into 10 

ml volumes of BHI broth and incubating overnight at 37°C with shaking at 120 

rpm. E. coli strain DH5α was grown in Luria-Bertani (LB) broth containing 54 

µg/ml carbenicillin. E. coli Rosetta 2 (DE3) pLysS was grown in LB broth 

containing 54 µg/ml carbenicillin and 34 µg/ml chloramphenicol. Both E. coli 

strains were grown at 37°C with shaking at 120 rpm. 

2.2.2 Capsule staining  

The polysaccharide capsule of M. haemolytica was demonstrated using the 

Maneval method (Corstvet et al., 1982). 

2.2.3 Preparation of chromosomal DNAs 

Bacterial cells from 1 ml of overnight culture were harvested by centrifugation 

for 1 min at 13,000 × g and washed once with 1 ml of sterile distilled H2O 

(dH2O). DNAs were prepared using an InstaGene Matrix kit (Bio-Rad) according to 

the manufacturer’s instructions and were stored at -20°C. 

2.2.4 PCR amplification and plasmid construction 

The M. haemolytica ompA gene fragments corresponding to the transmembrane 

domain of OmpA1 (amino acid positions 19 to 217) and OmpA2 (amino acid 

positions 19 to 211) were amplified by PCR from total genomic DNA from M. 

haemolytica isolates PH2 and PH278, respectively, using the following forward 

and reverse primers: 5’-AAGTTCTGTTTCAGGGCCCGCAAGCTAACACTTTCTACGCAG 

G-3’ and 5’-ATGGTCTAGAAAGCTTTAACCTTGACCGAAACGGTATG-3’. PCR products 

containing the ompA1 or ompA2 gene fragments were amplified from 

chromosomal DNA in 50 µl reaction mixes using Platinum Pfx DNA Polymerase 

(Invitrogen) with 2 mM MgSO4 and 50 pmol of each forward and reverse primer. 

PCRs were carried out in a GeneAmp PCR System 9700 (Applied Biosystems) 

thermal cycler using the following amplification parameters: initial denaturation 

at 94°C for 2 min, followed by 30 cycles of denaturation at 94°C for 15 s, 

annealing at 65°C for 30 s, and extension at 68°C for 1 min 30 s. The production 

of PCR amplicons of the expected size was confirmed by electrophoresis in a 1% 

(w/v) agarose gel and visualisation with SybrSafe (Invitrogen). The PCR 
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amplicons were purified with a QIAquick PCR Purification Kit (Qiagen) and eluted 

in 30 µl of sterile dH2O. Yields were assessed by agarose gel electrophoresis and 

the DNA stored at -20°C. The PCR products were cloned into separate pOPINF 

vectors (Oxford Protein Production Facility) (Berrow et al., 2007) according to 

the manufacturer’s instructions. The resulting plasmids, designated ompA1/His-

pOPINF and ompA2/His-pOPINF, were verified by DNA sequencing. Five 

microlitres of ompA1/His-pOPINF or ompA2/His-pOPINF were added to a tube 

containing 50 µl E. coli DH5α cells (as supplied by the manufacturer) and 

incubated on ice for 30 min. The mixtures were heated in a water bath at 42°C 

for 30 s and returned to ice for 2 min. Four hundred and fifty microlitres of GS96 

broth (QbioGene) were added to each tube, the contents mixed thoroughly and 

incubated at 37°C for 1 h. Transformant colonies were selected after plating 

onto LB agar containing 54 µg/ml carbenicillin and incubating overnight at 37°C. 

An individual colony was used to inoculate 50 ml of LB containing 54 µg/ml 

carbenicillin and grown overnight at 37°C with shaking at 170 rpm. Five 

millilitres of the overnight culture were centrifuged at 5,000 × g for 15 min at 

4°C to pellet the cells. Plasmids were recovered using a QIAprep Spin Miniprep 

Kit (Qiagen) according to the manufacturer’s instructions and eluted in 50 µl of 

sterile dH2O. Plasmid size was confirmed by electrophoresis on a 1% (w/v) 

agarose gel and visualisation with SybrSafe (Invitrogen). The DNA was stored at -

20°C.  

2.2.5 Expression of rOmpA.  

Two microlitres of ompA1/His-pOPINF or ompA2/His-pOPINF plasmids recovered 

from E. coli DH5α transformant cultures were added to a tube containing 100 µl 

E. coli Rosetta 2 (DE3) pLysS cells (Novagen) as supplied by the manufacturer 

and incubated on ice for 30 min. The bacterial cells were heated in a water bath 

at 42°C for 30 s and returned to ice for 2 min. Four hundred and fifty microlitres 

of GS96 broth were added to each tube, the contents mixed thoroughly and 

incubated at 37°C for 1 h. Transformant colonies were selected after plating 

onto LB agar containing 54 µg/ml carbenicillin and 34 µg/ml chloramphenicol 

and incubating overnight at 37°C. An individual colony was used to inoculate 15 

ml LB and grown overnight at 37°C with shaking at 120 rpm. One hundred and 

fifty microlitres of overnight culture were inoculated into 30 ml LB broth 

containing 54 µg/ml carbenicillin and 34 µg/ml chloramphenicol and incubated 



 65

at 37°C with shaking at 170 rpm until an OD600nm of 0.7-1.0 was achieved. Thirty 

microlitres of 1M isopropyl-β-D-thiogalactopyranoside (IPTG) was added and the 

culture incubated at 25°C with shaking at 170 rpm for a further 18 h. One and a 

half millilitres of overnight culture were centrifuged for 1 min at 13,000 × g and 

the pellet resuspended in 100 µl of sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) sample buffer. The sample was heated at 100°C for 5 

min and analysed by SDS-PAGE to check for the presence of recombinant 

protein. A second colony from the E. coli Rosetta 2 (DE3) pLysS transformant 

plate was used to inoculate 15 ml LB broth and grown overnight at 37°C with 

shaking at 120 rpm. Two millilitres of overnight culture were used to inoculate 

each of eight 2-litre Ehrlenmeyer flasks containing 1 litre of LB broth 

supplemented with 54 µg/ml carbenicillin and 34 µg/ml chloramphenicol and 

incubated at 37°C with shaking at 170 rpm until an OD600nm of 0.7-1.0 was 

achieved. One millilitre of 1M IPTG was added and the culture incubated at 25°C 

with shaking at 170 rpm for a further 18 h. 

2.2.6 Purification of recombinant OmpA proteins (rO mpA1 and rOmpA2) 

The protein purification protocol of Zhu et al. (Zhu et al., 2007) was followed, 

with modifications. Bacterial cells from each 1 litre of culture were harvested by 

centrifugation at 10,000 × g for 20 min at 4°C, resuspended in 25 ml of buffer A 

(25 mM Tris, 200 mM NaCl [pH 8.0]) and stored at -20°C. The cells from 2 litres 

of culture medium were disrupted by sonication (six cycles of 30 s on, 30 s off) 

and the lysates were centrifuged at 4,700 × g for 30 min at 4°C to pellet the 

inclusion bodies. These were resuspended in 1% Triton X-100 in buffer A and 

centrifuged at 4,700 × g for 30 min at 4°C. The inclusion bodies were solubilised 

overnight at 4°C in 50 ml of 6 M urea. The solubilised protein was added drop-

wise to 500 ml of 50 mM HEPES, 300 mM NaCl, 3% N,N-dimethyldodecylamine-N-

oxide (LDAO), 5 mM dithiothreitol (DTT) (pH 8.0) at 4°C and stirred slowly at 4°C 

for 72 h and dialysed against buffer B (50 mM Tris, 300 mM NaCl, 0.1% LDAO [pH 

7.6]). The protein solution was loaded onto a 5 ml HiTrap (GE Healthcare) 

column equilibrated with buffer B. Bound recombinant protein was eluted from 

the column using an imidazole gradient (0 - 300 mM imidazole in buffer B) and 

collected in 5 ml fractions. Protein concentrations were quantified using a 

Perkin Elmer Lambda 40 UV/VIS Spectrophotometer. Ten milligrams of eluted 

protein were loaded onto a Superdex G-200 gel filtration column (Pharmacia 
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Biotech) equilibrated with buffer B and collected in 5 ml fractions after running 

at 0.25 ml/min overnight. Concentrations of rOmpA in the collected fractions 

were determined by the modified Lowry procedure (Markwell et al., 1978). 

2.2.7 Circular dichroism spectroscopy 

Circular dichroism spectroscopy (Kelly et al., 2005) was performed to examine 

the secondary structure of refolded PH2 rOmpA1 and PH278 rOmpA2. Mean 

residue ellipticity was measured between 190 and 240 nm on a Jasco J-810 

Spectropolarimeter (Jasco, UK). Percentage estimates of secondary structure 

content (α-helix, β-strand, turn, unordered) were calculated using the modified 

CONTINLL algorithm (Provencher and Glockner, 1981, Vanstokkum et al., 1990) 

provided by the online server DICHROWEB (Lobley et al., 2002, Whitmore and 

Wallace, 2008). 

2.2.8 Anti-OmpA antibody preparation 

Purified rOmpA1 and rOmpA2 were sent to Eurogentec (Belgium; 

http://www.eurogentec.com/eu-home.html) and used to raise antibodies in 

rabbits using their 87-day Classic polyclonal antibody protocol. This protocol 

involves the injection of 0.2 mg of protein into each of two rabbits at days 0, 14, 

28 and 56. Serum bleeds were obtained before the first injection (pre-immune) 

and 38, 66, and 87 (final bleed) days after the initial injection 

2.2.9 Serum cross-absorption  

Two hundred and fifty millilitres of overnight cultures of PH2 and PH278 were 

centrifuged at 10,000 × g for 20 min at 4°C and the cells washed three times in 

50 ml phosphate buffered saline (PBS). The bacterial cells were resuspended in 5 

ml PBS and 1 ml aliquoted into each of five microfuge tubes. Each microfuge 

tube was centrifuged (13,000 × g, 3 min) to pellet the cells and the supernatants 

removed. Cells from one tube were resuspended in 1 ml of heterologous final 

bleed serum and incubated at 37°C for 30 min on an orbital shaker. The cells 

were pelleted by centrifugation and the supernatant used to resuspend the cells 

in a second microfuge tube. These were incubated at 37°C for 30 min on an 

orbital shaker. This process was repeated for the remaining three tubes. The 

cross-absorbed sera were diluted 1:5 with dH2O, filter sterilised and stored at -

80°C. 
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2.2.10 Isolation of OMPs 

Briefly, OMPs of M. haemolytica isolates PH2 and PH278 were prepared as 

described by Davies et al. (1992). Bacterial growth was stopped by chilling the 

culture medium in ice-cold water for 5 min. Bacterial cells were harvested by 

centrifuging the culture medium at 13,000 × g for 20 min at 4°C. The pellet was 

washed in 50 ml of 20 mM Tris/HCl (pH 7.2) and centrifuged at 12,000 × g for 20 

min at 4°C. The pellet was resuspended in 7 ml of 20 mM Tris/HCl (pH 7.2) and 

sonicated, on ice, for 5 min using a Soniprep sonicator (12 microns amplitude). 

The sonicated samples were brought to a total volume of 10 ml with additional 

20 mM Tris/HCl (pH 7.2) and centrifuged at 11,000 × g for 30 min at 4° C to 

remove unbroken cells. The supernatants were centrifuged at 84,000 × g at 1 h 

for 4°C in a Sorvall ultracentrifuge to pellet the cell envelopes. The gelatinous 

pellets were vigourously resuspended in 0.5 % sodium N-lauroylsarcosine 

(Sarkosyl; Sigma) for 20 min at room temperature to solubilise the cytoplasmic 

membranes and then centrifuged at 84,000 × g for 1 h at 4°C to pellet the OMs. 

The gelatinous OMs were resuspended in 20 mM Tris/HCl (pH 7.2) and 

centrifuged at 84,000 × g for 1 h at 4°C. The final pellets were resuspended in 

approximately 1 ml of 20 mM-Tris/HCl (pH 7.2). Fifty microlitre aliquots of these 

suspensions were transferred to separate tubes and their protein concentrations 

determined by the modified Lowry procedure. One hundred microlitre aliquots 

of the OM suspensions were adjusted to 2 mg/ml with 20 mM Tris/HCl (pH 7.2) 

and stored at -80°C. 

2.2.11 SDS-PAGE 

OMPs were separated by 1-D SDS-PAGE in a 12% polyacrylamide gel using the SDS 

continuous system (Laemmli, 1970) and the Hoefer SE600 electrophoresis 

equipment as previously described (Davies et al., 1992). 

2.2.12 Western blotting 

Briefly, Western-blotting was performed essentially as described by (Davies et 

al., 1994b). SDS-PAGE gels were equilibrated in transfer buffer (25mM Tris, 

192mM glycine [pH 8.3]) for 30 min and the proteins were transferred to 

nitrocellulose membranes overnight at 30 V. The nitrocellulose membranes were 

washed twice in TBS (20 mM Tris, 50 mM NaCl [pH 7.5]) for 5 min, blocked with 
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3% gelatin in TBS for 1 h and washed twice in TTBS (0.05% Tween 20 in TBS) for 5 

min each. The membranes were incubated with final bleed anti-rOmpA antibody 

diluted 1:100 in antibody buffer (1% gelatin in TTBS) for 1 h at room 

temperature and washed twice in TTBS for 5 min each. This was followed by 

incubation with secondary horse radish peroxidase-conjugated anti-rabbit 

antibody diluted 1:1000 in antibody buffer for 1 h at room temperature, two 5 

min washes in TTBS and one 5 min wash in TBS. The membranes were developed 

in a substrate solution containing 0.05% (w/v) 4-chloro-napthol (dissolved in 20 

ml of ice-cold methanol) and 0.05% (v/v) hydrogen peroxide in 100 ml of TBS. 

Development was stopped by washing the membranes in dH2O. 

2.2.13 Immunogold electron microscopy 

Bacterial cells from 25 ml volumes of 6 or 8 h BHI broth cultures, or 6 h BHI 

broth cultures containing 100 µM 2,2’-dipyridyl, were harvested by 

centrifugation at 3,500 × g for 5 min and washed once with PBS. Alternatively, 

overnight cultures of bacteria were scraped off blood agar plates and washed 

once in PBS. The washed cells were resuspended in PBS to an OD600nm of 0.4 

(equivalent to 1.0 × 108 cfu/ml). One milliliter of this suspension was 

centrifuged at 13,000 × g for 1 min and the pellet resuspended in 1 ml 4% 

paraformaldehyde in PBS (pH 7.2) for 30 min at room temperature. The cells 

were washed twice in 50 mM glycine in PBS and resuspended in 0.5 ml 0.2% 

bovine serum albumin (BSA) in PBS for 30 min. The cells were centrifuged and 

resuspended in 100 µl primary anti-rOmpA antibody (1:10 dilution) in 0.2% BSA in 

PBS, incubated for 1 h, washed three times in 0.2% BSA in PBS and finally 

resuspended in 200 µl of 0.2% BSA in PBS. Twenty microlitres of this suspension 

were dropped onto a freshly prepared Poly L-Lysine-coated Formvar carbon-

coated nickel grid, allowed to stand for 15 min and the excess fluid removed. 

The grids were floated face-down on 50 µl of secondary goat anti-rabbit IgG 

antibody conjugated to 10 nm gold particles (1:20 dilution) in 0.2% BSA in PBS 

and incubated for 1 h at room temperature. The grids were washed once in 0.2% 

BSA in PBS, three times in PBS (1 min each), and once in 1% glutaraldehyde in 

PBS (pH 7.4) for 5 min. The grids were finally washed three times with filtered 

de-ionized water (1 min each), allowed to air dry, and the bacteria visualised 

using a Zeiss 912 AB energy filtering transmission electron microscope operating 

under standard conditions at 80 kV. 
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2.2.14 Immunofluorescence staining 

Bacteria were grown overnight on blood agar, resuspended in 5 ml PBS and 

adjusted to an OD600nm of 0.5. The bacterial cells were mixed 1:1 with 8% 

paraformaldehyde in PBS (2×) for ten min. Five microlitres of bacterial 

suspension were added to each well of a multiwell microscope slide (Hendley-

Essex, UK), allowed to air dry, and incubated with 20 µl of primary anti-rOmpA 

antibody (1:100 dilution) in 0.1% BSA in PBS for 60 min at room temperature. The 

slides were washed three times in 0.1% BSA in PBS and incubated with 20 µl of 

Alexa Fluor 488 (Invitrogen) goat anti-rabbit IgG antibody (15 µg/ml in 0.1% BSA 

in PBS) for 30 min. The slides were washed three times in 0.1% BSA in PBS and 

allowed to air dry. One or two drops of fluorescence mounting medium (Dako, 

Sweden) were added to each slide, covered with a cover slip, and sealed with 

clear nail varnish. Bacteria were visualised with a Zeiss Axioskop fluorescence 

microscope. 

2.2.15 Crystallisation and X-ray analysis of rOmpA1  

Buffer B containing purified and refolded rOmpA1 was replaced with 0.6% 

tetraethylene glycol monooctyl ether (C8E4) in dH2O using a PD-10 buffer 

exchange column (GE Healthcare) and the eluted rOmpA1 protein concentrated 

to 40 mg/ml.  Crystallisation screens of rOmpA1 in 0.6% C8E4 were set up by 

mixing 1 µl protein solution and 1 µl reservoir solution in MemGold and MemSys 

crystallisation screening trays (Molecular Dimensions) using the sitting-drop 

vapour diffusion method. Full details of screening conditions are shown in 

Appendices 7.3 and 7.4. Crystals were transferred to reservoir solution 

containing a cryoprotectant, mounted on a LithoLoop (Molecular Dimensions, 

UK), and placed directly in a cold nitrogen-gas stream at 100 K. X-ray diffraction 

images were collected using the MAR345dtb image plate detector system (MAR 

Research, Germany). 
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2.3 Results 

2.3.1 Recombinant OmpA proteins are comprised predo minantly of β-

sheets and exhibit heat-modifiability after heat tr eatment in the 

presence of SDS.   

Heat-modifiability is a characteristic property of the OmpA family of proteins 

(Reithmeier and Bragg, 1974, Nakamura and Mizushima, 1976, Beher et al., 

1980). The native form of the complete OmpA protein unfolds in the presence of 

SDS only after heat treatment at 100°C which exposes additional SDS-binding 

sites (Ohnishi et al., 1998, Dornmair et al., 1990). When analysed by SDS-PAGE, 

OmpA migrates through the gel according to its structural compactness with the 

native protein migrating faster than the fully denatured polypeptide (Dornmair 

et al., 1990, Kleinschmidt et al., 1999).  Recombinant OmpA proteins from the 

M. haemolytica bovine isolate PH2 (rOmpA1) and ovine isolate PH278 (rOmpA2) 

were successfully expressed, purified and refolded. Mass spectrometric analysis 

of gel-extracted protein bands confirmed that native and heat-modified proteins 

(described below) represented M. haemolytica OmpA (Supplementary Table 

S2.1). The rOmpA1 and rOmpA2 proteins were heated at a range of temperatures 

between 50 and 100°C for 5 min prior to SDS-PAGE and both proteins exhibited 

heat-modifiability when analysed by SDS-PAGE, although this occurred at 

different temperatures (Fig. 2.1A).  The native and heat-modified proteins 

migrated at approximately 24 and 22.5 kDa, respectively; however, PH2 rOmpA1 

unfolded at 70°C whereas PH278 rOmpA2 unfolded at 100°C (Fig. 2.1A, arrows).  

In contrast, the native and heat-modified forms of the complete OmpA protein 

recovered from the outer membrane of M. haemolytica isolates PH2 and PH278 

migrated at approximately 32 and 38 kDa, respectively, on SDS-polyacrylamide 

gels (Fig. 2.1B). In this case, the full-length OmpA protein of both isolates 

underwent heat modification at 100°C (Fig. 2.1B, arrows). The finding that 

rOmpA1 unfolds more readily at a lower temperature than rOmpA2 indicates a 

less stable structure for rOmpA1. Circular dichroism spectroscopy analysis 

predicted that the secondary structures of both recombinant proteins comprised 

predominantly β-sheets and turns, indicating that they have folded into a β-

barrel conformation similar to native M. haemolytica OmpA (Fig. 2.2). However, 

PH2 rOmpA1 has a lower β-sheet composition than PH278 rOmpA2 (33.6% and
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Figure 2.1. Heat-modifiability of recombinant and f ull-length OmpA proteins of M. haemolytica isolates PH2 and PH278. 

 Panels A and B represent purified recombinant proteins rOmpA1 (PH2) and rOmpA2 (PH278) and Sarkosyl-extracted OMPs of 

bovine isolate PH2 (OmpA1) and ovine isolate PH278 (OmpA2), respectively. Samples were heated for 5 min at 50, 60, 70, 

80, 90 and 100°C prior to separation by SDS-PAGE. Unmodified low-molecular-mass and heat-modified high-molecular-mass 

forms of rOmpA (A) and full-length OmpA (B) of isolates PH2 and PH278 are indicated by thick and thin arrows, 

respectively.  

B A 



 72

Figure 2.2. Circular dichroism spectroscopy analysis of purified rOmpA 

proteins. 

Mean residue ellipticity was measured between 190 and 240 nm for 

PH2 rOmpA1 (▲) and PH278 rOmpA2 (■). Percentage estimates of 

secondary structure content (α-helix, β-strand, turn, unordered) for 

each recombinant protein were calculated using the modified 

CONTINLL algorithm (Provencher and Glockner, 1981, Vanstokkum 

et al., 1990) provided by the online server DICHROWEB (Lobley et 

al., 2002, Whitmore and Wallace, 2008). 
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40.6%, respectively), which is consistent with the heat-modifiability results 

indicating a less stable structure for PH2 rOmpA1.  

2.3.2 Anti-rOmpA1 and anti-rOmpA2 antibodies exhibi t immune-specificity 

for the homologous proteins. 

The binding specificities of the anti-rOmpA1 and anti-rOmpA2 antibodies to 

Sarkosyl-extracted OMPs and rOmpA from the bovine isolate PH2 and the ovine 

isolate PH278 were assessed by Western blotting (Fig. 2.3). Unabsorbed anti-

rOmpA1 antibodies bound to the full-length OmpA and rOmpA proteins of both 

PH2 [Fig. 2.3A(ii)] and PH278 [Fig. 2.3B(ii)]. Similarly, unabsorbed anti-rOmpA2 

antibodies bound to the full-length OmpA and rOmpA proteins of both PH2 [Fig. 

2.3A(iii)] and PH278 [Fig. 2.3B(iii)]. Significantly, no other M. haemolytica 

proteins were recognised by either antibody in the complete Sarkosyl-extracted 

OMP samples. After cross-absorption with the heterologous isolate PH278, anti-

rOmpA1 antibodies bound to PH2 OmpA and rOmpA1 [Fig. 2.3A(iv)] but not 

PH278 OmpA and rOmpA2 [Fig. 2.3B(iv)]. Similarly, anti-rOmpA2 antibodies 

cross-absorbed with the heterologous isolate PH2 bound to PH278 OmpA and 

rOmpA2 [Fig. 2.3B(v)] but not PH2 OmpA and rOmpA1 [Fig. 2.3A(v)]. However, 

the intensity of staining with the cross-absorbed antisera was noticeably weaker 

than for the unabsorbed antisera. These results indicate that the cross-absorbed 

anti-rOmpA1 and -rOmpA2 antibodies bind specifically to OmpA1 and OmpA2, 

respectively. 

2.3.3 M. haemolytica OmpA is surface-exposed and recognised by anti-

rOmpA antibodies in vitro in a strain-specific manner .  

The ability of anti-rOmpA antibodies to recognise OmpA on the surface of M. 

haemolytica was assessed by immunogold labelling (Fig. 2.4) and 

immunofluorescent staining (Fig. 2.5). Immunogold labelling demonstrated that 

the OmpA proteins of M. haemolytica isolates PH2 and PH278 are both 

recognised by unabsorbed anti-rOmpA1 [Fig. 2.4A and B(i)] and anti-rOmpA2 

[Fig. 2.4A and B(ii)] antibodies. However, cross-absorbed anti-rOmpA1 antibodies 

recognised OmpA of isolate PH2 [Fig. 2.4A(iii)] but not of isolate PH278 [Fig. 

2.4B(iii)]; conversely, cross-absorbed anti-rOmpA2 antibodies recognised OmpA 

of isolate PH278 [Fig. 2.4B(iv)] but not of isolate PH2 [Fig. 2.4A(iv)]. Antibody 

binding was evenly distributed over the surface of the bacterial cells and was  
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Figure 2.3. Western-blot analysis of anti-rOmpA ant ibody binding to full-

length OmpA and rOmpA of M. haemolytica isolates PH2 and 

PH278. 

Panels A and B represent protein samples from bovine isolate PH2 

and ovine isolate PH278, respectively. Lanes 1 and 2 represent 

Sarkosyl-extracted OMPs and purified rOmpA, respectively. The 

protein samples were separated by SDS-PAGE and either stained 

with Coomassie blue (i) or transferred to nitrocellulose (ii to v). 

The blotted proteins were probed with anti-rOmpA1 antibodies (ii), 

anti-rOmpA2 antibodies (iii), anti-rOmpA1 antibodies after cross-

absorption with isolate PH278 (iv) and anti-rOmpA2 antibodies after 

cross-absorption with isolate PH2 (v). This was followed by 

incubation with secondary goat horse radish peroxidase-conjugated 

anti-rabbit antibody. Molecular mass markers (in kDa) are shown on 

the right.  
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Figure 2.4. Immunogold labelling of the OmpA protei n of M. haemolytica 

isolates PH2 and PH278 using anti-rOmpA antibodies.  

Panels A and B represent bovine isolate PH2 and ovine isolate 

PH278, respectively. Isolates were incubated with anti-rOmpA1 

antibodies (i), anti-rOmpA2 antibodies (ii), anti-rOmpA1 antibodies 

after cross-absorption with isolate PH278 (iii), and anti-rOmpA2 

antibodies after cross-absorption with isolate PH2 (iv). This was 

followed by incubation with secondary goat anti-rabbit IgG antibody 

conjugated with 10 nm gold particles. Isolates were visualised by 

electron microscopy. Magnification was × 10,000. 

Immunogold labelling images were produced by Dr. Mojtaba 

Noofeli. 
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Figure 2.5. Immunofluorescent staining of M. haemolytica isolates PH2 and 

PH278 using cross-absorbed anti-rOmpA1 and anti-rOm pA2 

antibodies. 

Panels A and B represent bovine isolate PH2 and ovine isolate 

PH278, respectively. Isolates were incubated with anti-rOmpA1 

antibodies after cross-absorption with isolate PH278 (i) or anti-

rOmpA2 antibodies after cross-absorption with isolate PH2 (ii). 

These were then incubated with Alexa Fluor 488 (Invitrogen) goat 

anti-rabbit IgG antibody. Bound antibodies were visualised by 

immunofluorescence microscopy. 

Immunofluorescent staining images were produced by Miss Susan 

Baillie. 
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not concentrated in any particular area. In addition, the density of labelling of 

isolate PH278 by the cross-absorbed anti-rOmpA2 antibody [Fig. 2.4B (iv)] was 

greater than that of PH2 by the cross-absorbed anti-rOmpA1 antibody [Fig. 2.4A 

(iii)] suggesting greater exposure of the OmpA2 protein in isolate PH278. 

Immunofluorescent staining confirmed that cross-absorbed anti-rOmpA1 

antibodies recognised OmpA in isolate PH2 [Fig. 2.5A(i)] but not in isolate PH278 

[Fig. 2.5B(i)], and that cross-absorbed anti-rOmpA2 antibodies recognised OmpA 

in isolate PH278 [Fig. 2.5B(ii)] but not in isolate PH2 [Fig. 2.5A(ii)]. 

* Immungold labelling and immunofluorescent staining work was carried out by 

Dr. Mojtaba Noofeli and Miss Susan Baillie, respectively, in this section and also 

in sections 2.3.4 and 2.3.5. 

2.3.4 OmpA is surface-exposed at different stages o f the growth cycle and 

after growth in different media.   

Isolates PH2 and PH278 were grown for 6 h (logarithmic phase) and 18 h 

(stationary phase) in BHI broth and cells incubated with cross-absorbed anti-

rOmpA1 or anti-rOmpA2 antibodies. No differences were observed in the degree 

of antibody binding between bacteria grown for 6 and 18 h (results not shown). 

These results demonstrated that there was no appreciable difference in OmpA 

surface-exposure between logarithmic and stationary-phase cells. Isolates PH2 

and PH278 were also grown for 18 h on blood agar or in iron-restricted (100 µM 

2,2’-dipyridyl) BHI broth and cells incubated with cross-absorbed anti-rOmpA1 or 

anti-rOmpA2 antibodies. Again, no differences were observed in antibody binding 

between bacteria grown in iron-restricted BHI broth or on blood agar plates 

compared to bacteria grown in BHI broth (results not shown). Capsulation of 

bacteria grown under these various conditions was also examined by Maneval 

staining (results not shown); there were no major differences between isolates 

grown under different conditions with the exception that 18 hour stationary 

phase cultures contained cells that were less consistent in overall size and 

shape. Taken together, these results demonstrated that OmpA is not masked by 

the polysaccharide capsule and that the degree of surface-exposure remains 

relatively unchanged when bacteria are grown under different growth 

conditions. For subsequent experiments bacterial cells were grown in BHI broth 

for 6 h. *Maneval staining work was carried out by Dr. Mojtaba Noofeli. 
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2.3.5 Binding specificities of cross-absorbed anti- rOmpA1 and anti-rOmpA2 

antibodies to M. haemolytica isolates representing different OmpA 

subclasses.  

Eleven distinct ompA alleles have previously been identified among 31 M. 

haemolytica isolates; these alleles were assigned to four subclasses, ompA1 to 

ompA4 (Davies and Lee, 2004). Individual alleles within each subclass were 

designated ompA1.1, ompA1.2, etc. The binding specificities of cross-absorbed 

anti-rOmpA1 and anti-rOmpA2 antibodies to 18 M. haemolytica isolates 

representing all eleven ompA alleles were determined by immunogold labelling 

and immunofluorescent staining (Table 2.1). Five ompA1-type alleles, 

representing the class I lineage, have been identified in M. haemolytica and 

these are associated almost exclusively with bovine isolates (Davies and Lee, 

2004). The single exception, ovine isolate PH494, possesses a bovine-like LktA2-

type leukotoxin (Davies et al., 2001) in addition to a bovine-like OmpA1-type 

protein, and most likely represents a strain of bovine origin that has recently 

transferred to sheep. Anti-rOmpA1 antibodies were raised against bovine isolate 

PH2 OmpA, which possesses the ompA1.1 allele. At the amino acid level, 

OmpA1.1 is identical to OmpA1.2 and OmpA1.3; OmpA1.4 differs from OmpA1.1 

at two amino acid positions in HV1 and OmpA1.5 differs from OmpA1.1 in having 

four amino acid deletions in HV1 (Figure 2.6). Cross-absorbed anti-rOmpA1 

antibodies bound to all eight OmpA1-type M. haemolytica isolates when 

examined by both immunogold labelling and immunofluorescent staining (Table 

2.1). Cross-absorbed anti-rOmpA2 antibodies showed a negative binding response 

to all OmpA1-type isolates when examined by immunogold labelling, although 

weak fluorescence was detected in three isolates when examined by 

immunofluorescent staining (Table 2.1). 

Three ompA2-type alleles, representing the class II lineage, have been identified 

in M. haemolytica and these are associated exclusively with ovine isolates 

(Davies and Lee, 2004). Anti-rOmpA2 antibodies were raised against ovine isolate 

PH278 OmpA, which possesses the ompA2.3 allele. OmpA2.1 and OmpA2.2 are 

identical and differ from OmpA2.3 at one amino acid position in HV1 and one in 

HV3 (Figure 2.6). Cross-absorbed anti-rOmpA2 antibodies showed positive 

binding to all six OmpA2-type M. haemolytica isolates when examined by both 

immunogold labelling and immunofluorescent staining (Table 2.1). There was a  
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Figure 2.6 Distribution of variable amino acids in the transmembrane 

domains of the 11 OmpA proteins of M. haemolytica. 

The major allele classes are represented by Roman numerals I to 

IV. Amino acid positions are designated above the sequences. 

Amino acids that match those of the first sequence are represented 

by dots. Gaps are indicated by dashes. The hypervariable regions 

within surface-exposed loops 1 to 4 are designated by HV1 to HV4. 

Membrane-spanning β-strands are shaded. 
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negative binding response to all OmpA2-type isolates with cross-absorbed anti-

rOmpA1 antibodies when examined by immunogold labelling, although weak 

fluorescence was detected in four isolates by immunofluorescent staining (Table 

2.1).  

The ompA3.1 allele, also belonging to the class II lineage, is associated with the 

bovine isolate PH196. The OmpA3.1 protein was recognised by cross-absorbed 

anti-rOmpA2 (weakly) but not by anti-rOmpA1 antibodies when examined by 

immunogold labelling and immunofluorescent staining. Two ompA4-type alleles, 

representing the class III lineage, have been identified in M. haemolytica and 

these are associated with ovine serotype A7 and A13 isolates. The OmpA4-type 

proteins (OmpA4.1 and OmpA4.2) were recognised by cross-absorbed anti-

rOmpA2 (weakly) but not by anti-rOmpA1 antibodies when examined by 

immunogold labelling and immunofluorescent staining. 

2.3.6 Crystallisation of rOmpA1 

Crystals of rOmpA1 in 0.6% C8E4 detergent were obtained within 3 months of 

incubation in a MemSys crystallisation screening tray (Fig. 2.7). No crystals were 

obtained using the MemGold crystallisation screening tray. X-ray diffraction 

experiments were performed on rOmpA1 crystals from each screening condition 

shown in Fig. 2.7. None of the rOmpA1 crystals produced X-ray diffraction data, 

indicating that further optimisation of screening conditions will be necessary to 

improve crystal quality. 

2.4 Discussion 

In the present study, it has been clearly demonstrated that the OmpA protein of 

M. haemolytica is surface-exposed and able to bind anti-rOmpA antibodies in 

vitro. This was initially demonstrated in the bovine and ovine isolates PH2 and 

PH278 (Figs. 2.4 and 2.5), but was subsequently confirmed in a wide range of M. 

haemolytica isolates (Table 2.1). The degree of surface-exposure of OmpA in 

PH2 and PH278 was not affected by the stage of growth (i.e., logarithmic versus 

stationary phase) or the growth medium (i.e., blood agar and iron-replete or 

iron-restricted broth). Since a well-developed capsule was observed by Maneval 

staining in these isolates under different growth conditions, these findings 

strongly suggest that the capsule does not mask the OmpA protein since antibody  
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Figure 2.7. Crystallisation of rOmpA1 using a MemSy s screening tray. 

Panels A to D represent crystals that were obtained within three 

months of incubation in (A) 0.1 M MOPS, pH 7.0, 30% v/v PEG 400; 

(B) 0.1 M MOPS, pH 7.0, 12% PEG w/v 4000; (C) 0.1 M Na HEPES, pH 

7.5, 12% w/v PEG 4000 and (D) 0.1 M sodium chloride, 0.1 M Na 

HEPES, pH 7.5, 12% w/v PEG 4000. 
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binding seemed unaffected. However, in a previous study the OmpA protein of 

an acapsular mutant was shown to have higher fibronectin-binding activity than 

the capsular parental strain (Lo and Sorensen, 2007), suggesting that the capsule 

may partially mask the protein.  

The loops of the M. haemolytica OmpA protein range from 25 to 31 amino acids 

in length (Davies and Lee, 2004) and are estimated to extend less than 10 nm 

from the bacterial surface. However, the capsule of the parental strain of the 

acapsular mutant described above has been observed by electron microscopy to 

extend almost 200 nm from the bacterial surface (McKerral and Lo, 2002). It is 

therefore puzzling as to how the loops of OmpA are recognised by antibodies 

and, presumably, by host cell molecules through a capsule of this thickness. The 

M. haemolytica capsule is structurally fragile and it is possible that in vitro 

manipulation of bacterial cells causes sloughing of the capsule in some areas 

which exposes the tips of the loops and allows antibody binding. However, 

uniform immunogold labelling clearly demonstrated that OmpA is evenly 

distributed over the bacterial cell surface. The loops of the OmpA protein of M. 

haemolytica are longer than those of the OmpA protein of E. coli (Pautsch and 

Schulz, 1998), but not as long as the loops of other OMPs such as neisserial 

opacity (Opa) proteins which can extend to over fifty amino acids in length (de 

Jonge et al., 2003). There are a number of reasons why OMPs might evolve loops 

of different lengths. The neisserial Opa proteins are involved in binding to host 

receptors and longer loops could be seen as advantageous for increasing the 

distance range to which they can bind host molecules. It is also reasonable to 

hypothesise that OMPs involved in host molecule binding might evolve loops 

which are long enough to traverse the capsule. However, this is contradicted by 

findings that long loops are still present in unencapsulated species such as N. 

gonorrhoeae and H. influenzae. Longer loops have also been correlated with 

virulence in neisserial species, where commensal organisms have shorter 

hypervariable domains (and thus shorter loops) than pathogenic species (Malorny 

et al., 1998). There is evidence to suggest that in a number of bacterial species 

the capsule can be downregulated upon contact with host cells (Deghmane et 

al., 2002, Corcionivoschi et al., 2009, Auger et al., 2009) and as a consequence 

of phase variable expression (Krinos et al., 2001, deVries et al., 1996, Bacon et 

al., 2001), thus allowing transient exposure of OMP adhesins. Also, blebbing of 
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outer membrane vesicles has been observed in several Gram-negative bacteria 

[reviewed in (Kulp and Kuehn, 2010)], allowing OMPs to traverse the capsule and 

reach the extracellular environment. These phenomena have not been 

demonstrated in M. haemolytica, although they would provide appropriate 

mechanisms for the transient exposure of OmpA and other adhesin molecules for 

host-molecule binding. 

A wider examination of the binding specificities of the cross-absorbed antibodies 

to M. haemolytica isolates representing different ompA subclasses demonstrated 

that anti-rOmpA1 antibodies recognise OmpA1-type (class I) proteins present in 

bovine isolates, but not OmpA2-type (class II) proteins that occur in ovine 

isolates. Conversely, cross-absorbed anti-rOmpA2 antibodies recognise OmpA2- 

but not OmpA1-type proteins. The ability of cross-absorbed anti-rOmpA 

antibodies to discriminate between OmpA proteins of the OmpA1 and OmpA2 

subclasses is due to the greater degree of amino acid sequence variation (within 

the hypervariable domains) between each of the two subclasses compared to the 

variation within each subclass (Davies and Lee, 2004). There are only two 

variable amino acid sites within the OmpA1-type proteins; similarly, there are 

only two variable amino acid sites within the OmpA2-type proteins. However, 

there are 18 variable amino acid sites within the transmembrane domains of 

OmpA1 and OmpA2, all of which occur within the hypervariable regions (i.e., 

HV1 to HV4) located at the distal ends of the four external loops. The greater 

degree of variation between the two OmpA subclasses, compared to within each 

subclass, is sufficient to allow the cross-absorbed antibodies to discriminate 

between the bovine OmpA1- and ovine OmpA2-type subclasses. Overall, these 

results clearly demonstrate that the OmpA1 and OmpA2 proteins are sufficiently 

different in structure and epitope specificity that they are potentially capable of 

recognising host receptor molecules of differing specificities in cattle and sheep.  

Previous studies have demonstrated that OmpA functions as a ligand, is involved 

in binding to specific host cell receptor molecules, and plays an important role 

in adherence and colonisation in a number of Gram-negative bacteria 

(Prasadarao et al., 1996, Bookwalter et al., 2008, Dabo et al., 2003, Hill et al., 

2001, Reddy et al., 1996, Millman et al., 2001, Prasadarao, 2002, Torres and 

Kaper, 2003). In particular, it has been shown that the OmpA protein of bovine 

serotype A1 isolates of M. haemolytica binds to fibronectin (Lo and Sorensen, 



 84

2007) and to bovine bronchial epithelial cells (Kisiela and Czuprynski, 2009). 

However, a potential role of OmpA as an adhesin has yet to be investigated in 

ovine isolates of M. haemolytica. It has been previously shown that the OmpA1 

and OmpA2 proteins are associated exclusively with bovine and ovine isolates, 

respectively, which led to the hypothesis that they are involved in binding to 

host-specific receptors in the upper respiratory tracts of these animals (Davies 

and Lee, 2004). This, in turn, might partially account for the different host-

specificities of strains carrying the OmpA1 and OmpA2 protein types. 

Importantly, the present work has extended this previous study (Davies and Lee, 

2004) by demonstrating that the binding specificities of the OmpA1 and OmpA2 

proteins are very different from each other but are conserved within bovine and 

ovine M. haemolytica isolates representing different capsular serotypes and 

evolutionary lineages; there is no association between allele/protein type and 

clinical status (Table 2.1). From the findings of the present study, it is 

reasonable to conclude that OmpA1 and OmpA2 are capable of binding to 

different receptors within cattle and sheep, respectively. Although bovine 

fibronectin has been demonstrated to be a potential receptor for the OmpA 

protein of a bovine serotype A1 strain (Lo and Sorensen, 2007), it is interesting 

that the OmpA (P5) protein of the related species H. influenzae targets a 

different molecule, namely the carcinoembryonic antigen (CEA) family of cell 

adhesion molecules. Thus, it is reasonable to speculate that different molecular 

variants or regions of fibronectin, or even different molecules, are targeted in 

cattle and sheep. The production of antibodies against OmpA1 and OmpA2, and 

the demonstration that they are highly strain and protein specific, will allow 

further studies to be performed designed to investigate the role of OmpA in the 

adherence and colonisation of M. haemolytica in cattle and sheep. 

Commercial vaccines have been produced and are important for the prevention 

of respiratory disease in both cattle and sheep (Bowland and Shewen, 2000, 

Hjerpe, 1990). Several studies have demonstrated the importance of M. 

haemolytica OMPs as surface antigens and their potential as vaccine components 

(Morton et al., 1995, Confer et al., 1995, Mosier et al., 1989, Pandher et al., 

1999, Ayalew et al., 2010). Antibodies against the immunogenic and surface-

exposed lipoprotein PlpE contribute towards host defence (Pandher et al., 1998) 

and the addition of recombinant PlpE to commercial vaccines significantly 
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enhances protection against experimental challenge (Confer et al., 2003, Confer 

et al., 2006). The incorporation of iron-regulated proteins into a vaccine was 

shown to enhance protection against experimental pasteurellosis in lambs 

(Gilmour et al., 1991). An edible vaccine that expresses a fragment of the outer 

membrane antigen GS60 has also been developed (Lee et al., 2008). Immune 

sera from cattle vaccinated with live or killed M. haemolytica cells (Mahasreshti 

et al., 1997), and immune sera from naturally infected cattle (Zeng et al., 

1999), contain antibodies that recognise OmpA. In addition, in the closely 

related species P. multocida, OmpA is the major protein that cattle produce 

antibodies to after experimental challenge (Prado et al., 2005). Clearly, OmpA is 

an important immunogen that should be considered for inclusion in M. 

haemolytica subunit vaccines. However, a critical property of any vaccine 

candidate is a high degree of amino acid conservation throughout bacterial 

populations. Hypervariability of surface-exposed loop regions is a common 

occurrence within OMPs of many bacterial species and poses a serious problem 

for vaccine design (Webb and Cripps, 1998, Duim et al., 1997, Bolduc et al., 

2000, Martin et al., 2000). It was previously demonstrated that four distinct 

OmpA classes occur within bovine and ovine M. haemolytica strains; OmpA1 and 

OmpA2 are associated with those strains that are responsible for the majority of 

disease in cattle and sheep, respectively, and have very different hypervariable 

domains within their surface-exposed loops (Davies and Lee, 2004).  In the 

present study, it has been shown that antibodies specific for the surface-exposed 

loops of OmpA1 will not recognise the same regions of OmpA2 and vice versa. 

Therefore, an animal exposed to OmpA1 will generate anti-OmpA antibodies that 

are unlikely to confer protection against M. haemolytica isolates possessing 

OmpA2 and vice versa (although some cross-reacting antibodies may be present). 

These findings clearly have important implications with regard to vaccine 

development and, in particular, to the inclusion of OmpA in subunit vaccines 

that are designed to provide universal protection against heterologous M. 

haemolytica isolates. Essentially, an OmpA-based M. haemolytica subunit 

vaccine would need to include OmpA from more than one class to provide 

universal protection against heterologous strains.  
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3. COMPARATIVE OUTER MEMBRANE 

PROTEOMIC ANALYSES OF BOVINE AND 

OVINE ISOLATES OF M. HAEMOLYTICA AND 

M. GLUCOSIDA GROWN IN COMPLEX MEDIUM 

3.1 Introduction 

The Gram-negative bacterium M. haemolytica is the etiological agent of bovine 

and ovine pneumonic pasteurellosis, infections that are responsible for 

considerable economic losses to the livestock industries (Highlander, 2001). 

Twelve different capsular serotypes of M. haemolytica have been identified to 

date. Serotype A1 isolates are most commonly associated with cases of bovine 

pneumonic pasteurellosis, although serotype A6 isolates are responsible for an 

increasing proportion of disease cases. Serotype A2 isolates are often recovered 

from the nasopharynxes of healthy cattle but seldom cause disease. In contrast, 

serotype A2 isolates are responsible for the majority of disease cases of ovine 

pneumonic pasteurellosis. A wide range of other serotypes are also associated 

with sheep, including serotypes A1 and A6, although these are recovered much 

less frequently than serotype A2 isolates. M. glucosida was previously classified 

as the A11 serotype of M. haemolytica and comprises a heterogeneous group of 

organisms with low virulence that are mainly opportunistic pathogens of sheep 

(Angen et al., 1999a, Davies et al., 1997). Bovine serotype A1 and A6 isolates 

and bovine serotype A2 M. haemolytica isolates are genetically distinct from 

ovine M. haemolytica isolates of the same serotypes, suggesting that different 

subpopulations of these serotypes are associated with disease in the two animals 

(Davies et al., 1997). Bovine and ovine isolates of these three serotypes can also 

be differentiated based on their OMP profiles (Davies and Donachie, 1996) and 

nucleotide sequence variation of the ompA gene (Davies and Lee, 2004). These 

observations suggest that certain OMPs are likely to be involved in host 

specificity and virulence. However, the mechanisms by which OMPs facilitate 

host-specific infection and disease in M. haemolytica are poorly understood. 

The outer membrane is an asymmetrical lipid bilayer comprising an inner leaflet 

of phospholipid and an outer leaflet of mainly LPS. It serves as a selective 
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barrier for the passage of nutrients and other materials into and out of the cell 

and is at the interface between bacterium and host. Two types of proteins are 

also present in the outer membrane: integral OMPs and lipoproteins. Integral 

OMPs span the outer membrane with amphipathic antiparallel β-strands that 

adopt a barrel-like conformation. Outer membrane lipoproteins are anchored to 

the outer membrane by N-terminal lipid modifications made at the inner 

membrane. The majority of proteins that are destined to be located in the outer 

membrane contain specific protein modifications, sorting signals and structural 

signatures that can be differentiated using bioinformatic prediction tools 

(Gromiha, 2005, Gromiha and Suwa, 2006, Jackups et al., 2006, Juncker et al., 

2003). These predictors have been used to identify and quantify OMPs of several 

Gram-negative bacteria (Diaz-Mejia et al., 2009, Berven et al., 2006, Boyce et 

al., 2006, Huntley et al., 2007, Viratyosin et al., 2008). A simple bioinformatic 

prediction framework encompassing three categories of bioinformatic predictors 

(and 10 prediction programmes) was recently developed to predict the total 

number of OMPs encoded in two P. multocida genomes (E-Komon et al., 2011b). 

Complementary proteomic analyses can also be implemented to identify these 

putative OMPs in outer membrane fractions isolated from the bacterial cell 

envelope. Different proteomic methods have been used to characterise the 

outer membrane subproteome of several Gram-negative bacteria (Liu et al., 

2008, Molloy et al., 2000, Cordwell et al., 2008, Veith et al., 2009). including 

the related species P. multocida (Boyce et al., 2006, E-Komon et al., 2011a) and 

A. pleuropneumoniae (Chung et al., 2007). 

In M. haemolytica, much effort has been given to comparing OMP expression 

between different isolates (Davies and Donachie, 1996, Davies et al., 1992, 

McCluskey et al., 1994, Morton et al., 1996), characterising individual OMPs 

(Davies and Lee, 2004, Nardini et al., 1998, Pandher and Murphy, 1996, Cooney 

and Lo, 1993, Lo et al., 1991), and identifying those of immunological 

importance (Pandher et al., 1999, McVicker and Tabatabai, 2002). In a recent 

study an immunoproteomic approach was used to identify potential vaccine 

candidate antigens in a bovine serotype A1 isolate (Ayalew et al., 2010). A 

number of studies have also investigated the roles of specific OMPs in M. 

haemolytica adherence to host tissue and cells (Kisiela and Czuprynski, 2009, 

Daigneault and Lo, 2009, Lo and Sorensen, 2007, De la Mora et al., 2006). 
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However, a comprehensive analysis of the M. haemolytica outer membrane 

subproteome has yet to be performed.  

The objectives of this study were twofold. First, the entire repertoire of OMPs 

encoded in the genomes of a bovine serotype A1 M. haemolytica isolate (Gioia et 

al., 2006) and two serotype A2 isolates (one bovine and one ovine) (Lawrence et 

al., 2010a) were predicted using the same bioinformatic prediction approach 

developed for P. multocida (E-Komon et al., 2011b). Comparative amino acid 

sequence analyses were also performed to identify predicted OMPs that could be 

involved in host-specific adaptation. Second, the OMPs present in the outer 

membrane fractions of seven M. haemolytica isolates which were carefully 

selected to represent different host species, disease statuses, capsular 

serotypes, OMP-types and phylogenetic lineages (Davies et al., 1997, Davies and 

Donachie, 1996) were identified and compared using a combination of gel-based 

and gel-free proteomic approaches. The outer membrane fraction of a single M. 

glucosida isolate was also investigated for comparison. This is the first study to 

provide a comparative analysis of the outer membrane subproteomes of multiple 

isolates of M. haemolytica. This comparative approach will provide insights into 

the roles of OMPs in host-specificity in bovine and ovine hosts and identity 

putative virulence determinants and mechanisms of pathogenesis.  

3.2 Materials and methods 

3.2.1 Bioinformatic prediction of genome-encoded OM Ps 

The publicly available genomes of a bovine serotype A1 M. haemolytica isolate 

(GenBank ID: AASA00000000), an ovine serotype A2 isolate (GenBank ID: 

ACZX00000000) and a bovine serotype A2 isolate (GenBank ID: ACZY00000000) 

were used for all bioinformatic analyses. All M. haemolytica protein sequences 

(2695, 2682 and 2552 open reading frames from the bovine serotype A1, ovine 

serotype A2 and bovine serotype A2 genomes, respectively) were retrieved from 

NCBI. Each genome was scrutinised by bioinformatic approaches according to the 

workflow described by E-Komon et al. (2011b) to predict proteins which localise 

to the outer membrane. Each genome was analysed by three categories of 

bioinformatic prediction software, using a total of ten prediction tools. 

Subcellular localisation predictors included Proteome Analyst (Szafron et al., 
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2004), PSORTb (Gardy et al., 2005), CELLO (Yu et al., 2006) and SOSUI-GramN 

(Imai et al., 2008); β-barrel predictors included TMB-Hunt (Garrow et al., 2005), 

TMBETADISC-RBF (Ou et al., 2008), MCMBB (Bagos et al., 2004) and BOMP 

(Berven et al., 2004); and outer membrane lipoprotein predictors included LipoP 

(Juncker et al., 2003) and LIPO (Berven et al., 2006). A consensus prediction 

framework was followed whereby proteins that were predicted to (a) be 

localised to the outer membrane by at least two subcellular localisation 

predictors, (b) have a β-barrel conformation by at least three β-barrel predictors 

or (c) be outer membrane lipoproteins by at least one lipoprotein predictor, 

were considered to be putative OMPs. In several instances, two predicted 

proteins within a genome were determined to constitute a single functional 

protein and were therefore grouped as such. A list of putative OMPs within each 

genome was produced by integrating the results from each of the predictor 

categories. A final integrated list of putative OMPs from all three genomes was 

produced by performing BLAST searches to determine whether each putative 

OMP was present in one, two or all three genomes. When a putative OMP was 

present in only one or two genomes, a protein BLAST search was performed 

against all annotated proteins to determine whether it was actually present or 

not in these other genome(s). Similarly, nucleotide BLAST searches were 

performed against whole genome shotgun contigs (ctgs) in these other genomes 

to determine whether a gene encoding an OMP was present but had not been 

annotated. Proteins with close homology at the amino acid level in more than 

one genome were assumed to have similar functions and were assigned the same 

protein name. The putative OMPs were further scrutinised using additional 

domain, homology and literature searches to assign likely functions and to 

predict their subcellular localisations with greater confidence. Based on this 

further information, each putative OMP was assigned to one of three localisation 

categories: (1) confidently predicted OMPs, (2) putative OMPs without 

confidently predicted subcellular location, and (3) false positives. 

Physiochemical properties including molecular mass, theoretical pI, aliphatic 

index, grand average of hydropathicity (GRAVY) score, number of β-strands and 

helices, of putative OMPs were predicted by ProtParam (Gasteiger et al., 2005), 

TMHMM (Krogh et al., 2001), and TMBETA-NET (Jackups et al., 2006). 



 90

3.2.2 Bacterial isolates and growth conditions 

The eight bacterial isolates used in the present study are shown in Table 3.1. 

These included seven representative M. haemolytica isolates recovered from 

cattle (two) and sheep (five) and one M. glucosida isolate. These isolates were 

selected to represent the major clonal groups and electrophoretic types (ETs) 

that were previously identified by multilocus enzyme electrophoresis (MLEE) 

(Davies et al., 1997) (Fig. 3.1) and comparative analyses of capsular serotypes, 

OMP profile types and disease statuses (McCluskey et al., 1994, Davies and 

Donachie, 1996) (Table 3.1). Isolates were stored at -80°C in 50% (v/v) glycerol 

in brain heart infusion (BHI) broth and were subcultured on BHI agar containing 

5% (v/v) defibrinated sheep’s blood overnight at 37°C. For preparation of outer 

membrane fractions, liquid starter cultures were prepared by inoculating a few 

colonies into 15 ml volumes of BHI broth and incubating overnight at 37°C with 

shaking at 120 rpm. Eight hundred microlitres of overnight culture were used to 

inoculate a 2-litre Ehrlenmeyer flask containing 400 ml of BHI broth and 

incubated at 37°C with shaking at 120 rpm until an OD600nm of 0.8-0.9 was 

achieved. 

3.2.3 Preparation of OMPs. 

Outer membrane proteins were prepared by Sarkosyl extraction as previously 

described in section 2.2.10. 

3.2.4 Gel-based proteomic analysis 

Twenty micrograms of each OMP preparation were separated by 1-D SDS-PAGE in 

a 12% linear polyacrylamide gel using the SDS discontinuous system (Laemmli, 

1970) and the Hoefer SE600 electrophoresis equipment as previously described 

(Davies et al., 1992, McCluskey et al., 1994, Davies and Donachie, 1996, Davies 

et al., 1994a). Proteins were visualised by staining with Coomassie brilliant blue. 

A total of 444 gel pieces, including both gel bands and gel fractions without 

protein bands from all isolates were manually excised and each gel piece placed 

into separate wells of 96-well plates. Automated in-gel trypsin digests were 

completed using an Ettan Spot Handling Workstation (Amersham Biosciences) 

according to the procedure described by Bridges et al. (Bridges et al., 2008). 

Briefly, gel pieces were washed three times in 100 µl of 50 mM ammonium  
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Table 3.1. Properties of seven representative M. haemolytica isolates and 

one M. glucosida (PH344) isolate. 

Isolate Animal 
host 

Electrophoretic 
type a 

Capsular 
serotype 

OMP 
type 

Disease 
status 

M. haemolytica      

PH2 Bovine  1 A1 1.1.1 Pneumonia 

PH8 Ovine 6 A1 1.2.1 Pneumonia 

PH202 Bovine  21 A2 2.1.2 Healthy 

PH278 Ovine 21 A2 2.2.2 Pneumonia 

PH292 Ovine 22 A2 2.2.1 Pneumonia 

PH296 Ovine 12 A7 3.1.1 Pneumonia 

PH588 Ovine 15 A13 3.3.2 Pneumonia 

M. glucosida      

PH344 Ovine N/A A11 3.2.2 Septicaemia 

 

Figure 3.1. Evolutionary relationships of seven rep resentative M. 

haemolytica isolates and one M. glucosida (PH344) isolate, 

based on MLEE analysis.  

Figure adapted from Davies et al. (1997). 
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bicarbonate, 50% v/v methanol and then twice in 100 µl of 75% v/v acetonitrile 

(ACN) before drying. Gel pieces were rehydrated with trypsin solution [20 µg 

trypsin/ml (Promega) in 20 mM ammonium bicarbonate] and incubated at 37°C 

for 4 h. Peptides were extracted by washing the gel pieces twice in 100 µl of 50% 

v/v ACN, 0.1% v/v trifluoroacetic acid (TFA), before being transferred in solution 

to a new 96-well plate and dried. Dried peptide samples were stored at -20°C 

until analysed by MALDI-TOF-TOF MS and/or LC-ESI-QqTOF MS. 

3.2.5 Gel-free proteomic analysis 

Outer membrane fractions were directly digested with trypsin without prior 

separation by 1-D SDS-PAGE using the methanol-aided trypsin digestion protocol 

as previously described by Bridges et al. (Bridges et al., 2008). Briefly, twenty 

microlitres of 4 mg/ml protein was resuspended in 44 µl of 50 mM ammonium 

bicarbonate and placed in a sonicator bath for 20 min (with regular vortexing), 

before being incubated at 60°C for 20 min. Samples were placed on ice for 3 min 

before adding 60 µl of methanol and incubating for a further 5 min in the 

sonicator bath with regular vortexing. Sixteen microlitres of 200 µg/ml trypsin 

(Promega) in 25mM ammonium bicarbonate was added followed by 60 µl of 

methanol. After vortexing briefly samples were incubated at 37 °C for 12-16 h. 

The digested samples were dried down in an Eppendorf SpeedVac and stored at -

20°C until analysis by mass spectrometry. 

 3.2.6 MALDI-TOF-TOF MS and data analysis 

One microlitre of peptide solution was mixed with an equivalent volume of 

matrix solution (10 mg cyano-4-hydroxycinnamic acid in 500 µl 50% ACN, 0.1% 

TFA) on a MALDI-TOF target plate. Peptides were analysed using an Applied 

Biosystems 4700 Proteomics Analyzer. MS/MS was performed on the ten most 

intense precursor ions in each peptide sample. GPS Explorer Software (Applied 

Biosciences) was used to automate submission of collected data to MASCOT for 

searching the NCBI Eubacteria protein database with methionine oxidation 

selected as a variable modification, peptide and MS/MS tolerances of 1.2 and 0.5 

Da, respectively, with one missed cleavage allowed. Only proteins identified 

with a significant MOWSE score (p<0.05) were accepted. Each peptide sample 

was analysed three times. Any unidentified peptide samples were further 

analysed by LC-ESI-QqTOF MS. 
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3.2.7 LC-ESI-QqTOF MS and data analysis 

The peptide samples obtained by gel-free trypsin-digestion were analysed by ESI-

MS on a QSTAR XL Hybrid LC/MS/MS System according to the parameters 

described in Bridges et al. (Bridges et al., 2008). Briefly, MASCOT Daemon 

Software (Matrix Science) was used to automate submission of collected data to 

MASCOT for searching the NCBI Eubacteria protein database with methionine 

oxidation selected as a variable modification, peptide and MS/MS tolerances of 

1.2 and 0.4 Da, respectively, with one missed cleavage allowed. Only proteins 

identified with a significant MOWSE score (p<0.05) were accepted. 

3.3 Results 

3.3.1 Bioinformatic prediction of OMPs in three M. haemolytica genomes. 

Ten different bioinformatic tools were used to predict putative OMPs encoded in 

the fully-sequenced genomes of three M. haemolytica isolates (bovine serotype 

A1, ovine serotype A2 and bovine serotype A2) following the bioinformatic 

workflow of E-Komon et al. (2011b). These tools were categorised into three 

groups: subcellular localisation predictors (PA, PSORTb, CELLO, SOSUI-GramN), 

β-barrel protein predictors (TMB-Hunt, TMBETADISC-RBF, BOMP, MCMBB), and 

outer membrane lipoprotein predictors (LIPO and LipoP). One hundred and sixty-

four, 174 and 163 unique protein annotations (Supplementary Tables S3.1, S3.2 

and S3.3) were predicted to be putative OMPs in the bovine serotype A1, ovine 

serotype A2 and bovine serotype A2 genomes, respectively, after following a 

consensus prediction framework and subsequently integrating the results within 

each genome. In some instances, two predicted annotations within a genome 

were deemed to comprise a single protein and were subsequently paired 

together to represent one protein. This reduced the number of putative OMPs to 

164, 168 and 154 in the bovine serotype A1, ovine serotype A2 and bovine 

serotype A2 genomes, respectively. BLAST searches were performed on putative 

OMP amino acid sequences to determine if each was present in one, two or all 

three genomes. In some instances a protein was predicted to be a putative OMP 

in one or two genomes, but was not predicted in the other genome(s) despite its 

presence in that genome(s). This most often occurred when a protein annotation 

in one proteome had been annotated so that an important signal motif, such as 
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an N-terminal signal sequence, had been excluded from the annotation and 

hence not recognised by the bioinformatic predictors. Similarly, nucleotide 

BLAST searches were also performed against whole-genome shotgun contigs in 

each genome to determine if OMP-encoding genes were present that had not 

been annotated. Proteins which fell into these categories were included in the 

predicted proteins in their respective genomes. This amended the numbers of 

putative OMPs to 196, 202 and 188 in the bovine serotype A1, ovine serotype A2 

and bovine serotype A2 genomes, respectively. A total of 217 unique putative 

OMPs were predicted across the three genomes. Of these proteins, 102 (47%), 67 

(31%) and 114 (53%) were predicted by subcellular localisation, β-barrel and 

outer membrane lipoprotein predictor categories, respectively. The 217 putative 

OMPs were further scrutinised using additional domain, homology and literature 

searches to predict the subcellular location of each protein with greater 

confidence and to remove false positives (Fig. 3.2). In this way, 93 (42.9%) 

proteins were confidently predicted to localise at the outer membrane (Table 

3.2). Seventy proteins could not be predicted with great confidence to be 

localised to a particular subcellular compartment and were likely to include 

false positives as well as some true OMPs (Supplementary Table S3.4). 

Furthermore, 54 proteins were predicted to be localised to the cytoplasm, inner 

membrane, periplasm, or extracellular compartment and were therefore 

determined to be false-positives (Supplementary Table S3.5). Of the 93 

confidently predicted OMPs, 63 (68%) were predicted by subcellular localisation 

predictors, 44 (47%) by β-barrel predictors, and 39 (42%) by outer membrane 

lipoprotein predictors (Fig. 3.3A). Eighty-nine proteins were present in the 

bovine serotype A1 genome, 92 in the ovine serotype A2 genomes and 92 in the 

bovine serotype A2 genome (Fig. 3.3B), with 88 being present among all three 

genomes. Five OMPs were present in either one or two genomes (Table 3.3). 

Ninety-two OMPs were present among both bovine and ovine genomes, of which 

four were exclusively present in both the bovine and ovine serotype A2 genomes 

One OMP (PulD), was exclusively present in only the bovine serotype A1 genome. 

There were no OMPs present exclusively in either of the serotype A2 genomes. 

The finding that there were more OMPs present in both the bovine and ovine 

serotype A2 genomes (four) than between the bovine serotype A1 genome and 

either the bovine serotype A2 genome (zero) or the ovine serotype A2 genome 

(zero) is consistent with the hypothesis of serotype A2 host switching from cattle  
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Figure 3.2. Subcellular locations of 217 putative O MPs predicted by 10 

bioinformatic prediction tools across three M. haemolytica 

genomes after further domain, homology and literatu re 

searches had been carried out on each protein. 
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Table 3.2. Functional classifications of 93 confide ntly predicted OMPs encoded by three M. haemolytica genomes. 

  Name Bovine A1 a Ovine A2 a Bovine A2 a Protein function                                                                    Sub b TMb Lipo b Isol c 

1. Outer membrane biogenesis and integrity  
       

 OmpA MHA_1054 COI_1980 COK_0402 Outer membrane integrity + +/− − 8 

 
Omp85 MHA_0691 COI_1174 COK_1967 Correct OMP folding and assembly + + − 8 

 Imp/LptD MHA_0291 COI_2627 COK_0922 LPS assembly + + − 8 

 
Pal MHA_0263 COI_2595 COK_1835 Cell envelope integrity/peptidoglycan anchor + − + 8 

 VacJ MHA_2837 COI_1320 COK_1388 Phospholipid homeostasis − − + 7 

 
LppB/NlpD MHA_1804 COI_0885 COK_0647 Cell wall formation and maintenance + + + 4 

 RlpB/LptE MHA_0669 COI_1194 COK_1987 LPS assembly − − + 3 

 
MltC MHA_0242 COI_0470 COK_0285 Peptidoglycan maintenance and processing + − + 3 

 ComL MHA_1560 COI_0129 COK_2068 Outer membrane biogenesis/DNA transport + − + 3 

 
MltA MHA_1133 COI_1670 COK_0590 Peptidoglycan maintenance and processing + + + 2 

 LolB MHA_2544 COI_0062 COK_2183 Chaperone & lipoprotein transport activity + − +  

 
NlpE MHA_1616 COI_0339 COK_2132 Cell envelope stress response/copper homeostasis 

regulator 
− − + 

 

 SmpA MHA_1340 COI_0370 COK_0445 Cell envelope integrity and β-barrel protein assembly − − +  

 
WzzB MHA_0727 COI_1084 COK_0353 Lipopolysaccharide biosynthesis + − − 

 
  MltB ctg173_107 COI_2519 COK_0949 Peptidoglycan maintenance and processing − − +   

a Proteins annotations are shaded in grey if they were not predicted by bioinformatic software but have a homologue that was predicted in another genome. 

Proteins annotations which were predicted by bioinformatic software are not shaded. Absence of protein homologue is shown by '−'     
b Subcellular localisation, transmembrane β-barrel and lipoprotein prediction result; '+' = predicted in all genomes; '−' = not predicted in any genome;   
+/−' = predicted in one/two genomes (see Supplementary tables 1-3 for specific result)     
c The number of representative isolates that each protein has been identified in (see Table 3 and Figure 4)     
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Table 3.2. (continued) 

  Name Bovine A1 Ovine A2 Bovine A2 Protein functio n Sub TM Lipo Isol 

2. Transport and receptor 
        

 TolC MHA_1410 COI_0732 COK_0022 Protein secretion/transporter activity + + + 8 

 
OmpP1/FadL MHA_0639 COI_1221 COK_2014 Hydrophobic compound transport + + − 8 

 Wza MHA_0527 COI_1313 COK_0141 Capsular polysaccharide transport + + + 8 

 
OmpP2-like MHA_1793 COI_0051 COK_2166 Porin/ion transport activity + + − 8 

 FrpB MHA_2109 COI_0085 COK_0218 Receptor and transporter activities + + − 8 

 
TbpA MHA_0196 COI_2333 COK_1753 Transferrin receptor & transport + + − 7 

 OmpP4 MHA_2158 COI_0840 COK_2233 Heme acquisition/factor V utilisation + − + 6 

 
OmpP2 MHA_0735 ctg112 COK_1380 Porin/ion transport activity + + − 4 

 FhaC MHA_0867 COI_0226 COK_0335 Secretion of filamentous haemagglutinin (FhaB) + + − 3 

 
OmpW MHA_2399 COI_1652/3 COK_1583/4 Small hydrophobic molecule transport + − − 2 

 TonB-dependent receptor MHA_0860 COI_1565 COK_2304 Receptor and transporter activities + + − 2 

 
HmbR1 MHA_2261 COI_2258 COK_1624 Haemoglobin receptor  + + − 2 

 HxuB MHA_1005 COI_1367 COK_1209 Heme-hemopexin acquisition + + − 2 

 
TbpB MHA_0197 COI_2332 COK_1752 Transferrin receptor & transport + +/− + 1 

 HxuC ctg59 COI_1368 COK_1207/8 Heme-hemopexin acquisition + + − 1 

 
TonB-dependent receptor MHA_1346 COI_1921 ctg265 Receptor and transporter activities + + − 1 

 LamB MHA_0232 COI_2297 COK_1718 Maltoporin transport + + −  

 
ComE MHA_0164 COI_2362 COK_1782 DNA transport + − − 

 

 PulD MHA_2514 − − Secretin + − −  

 
HxuA MHA_1004 COI_1366 COK_1210 Heme-haemopexin acquisition (Subcellular location: OM/E) − − + 

 
  FhuA ctg68 COI_1905 COK_2465 Ferric hydroxamate receptor + + −   
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 Table 3.2.  (continued) 

  Name Bovine A1 Ovine A2 Bovine A2 Protein functio n Sub TM Lipo Isol 

 
FhuE MHA_1541 COI_0658 COK_1513 Ferric hydroxamate receptor + + − 

 

 HmbR2 ctg86 COI_1762/3 COK_2539/40 Haemoglobin receptor  + + −  

 
Haemin receptor ctg61 COI_2252/3 COK_1629/30 Haemin receptor + + − 

 

 Haemin-uptake lipoprotein MHA_2255 COI_2251 COK_1631 Haemin-uptake lipoprotein − − +  

 
TonB-dependent receptor ctg58 COI_0092 COK_0224 Receptor and transporter activities + − − 

 

 TonB-dependent receptor ctg85 COI_0006 COK_0109 Receptor and transporter activities + − −  

 
TonB-dependent receptor ctg58 COI_0090 COK_0222 Receptor and transporter activities − + − 

 
3. Adherence 

        

 
YadA-like MHA_0302  COI_2651 COK_0897/8 Adherence + + − 2 

 Hsf MHA_2701 COI_2393 COK_1437 Adherence + +/− −  

 
Hia MHA_1367 COI_1943/5 COK_2433/5  Adherence + − − 

 

 Ahs ctg73_110_124_88 COI_1315 COK_1394 Adherence  + − −  

 
FhaB_1 MHA_0866 ctg15 COK_0334 Adherence (Subcellular location: OM/E) + + − 

 

 FhaB_2 ctg89_27_137 COI_1569 COK_2300 Adherence (Subcellular location: OM/E) − + −  
4. Enzymatic activity 

        

 Ssa MHA_2492 COI_0850 COK_2411 Serine protease + + − 8 

 
Iga1_2 MHA_0563 COI_2430 COK_0634 Cleavage of host mucosal antibody − + − 6 

 Iga1_3 MHA_1965 COI_1820 COK_2480 Cleavage of host mucosal antibody +/− + − 3 

 
NanH MHA_1532 COI_0667 COK_1504 Terminal sialic acid hydrolysis from glycoconjugates + + − 4 

 Iga1_1 MHA_2800 COI_2438 COK_1350 Cleavage of host mucosal antibody + + −  

 
IgA1_4 − COI_0585/6 COK_1280/81 Cleavage of host mucosal antibody + + − 

 
  GlpQ MHA_2244 COI_1297 COK_0157 Glycerophosphodiester hydrolysis  + − −   
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 Table 3.2. (continued) 

  Name Bovine A1 Ovine A2 Bovine A2 Protein functio n Sub TM Lipo Isol 

 NlpC/P60 MHA_1650 COI_0987 COK_0966 Cell wall hydrolysis during cell growth and division + − +  

 NlpD-like_1 MHA_1467 COI_0383 COK_1077 Metalloendopeptidase activity  + − −  

 NlpD-like_2 MHA_0321 COI_0246 COK_0129 Metalloendopeptidase activity  + − −  

 AmiC MHA_0064 COI_1886 COK_0789 Cell envelope degradation + − −  

5. Others         

 Bor/Iss_2 MHA_0387 COI_1469 COK_1002 Survival in animal host − − + 7 

 Bor/Iss_1 MHA_0386 COI_1470 COK_1001 Survival in animal host − − + 1 

 fHbp_1 MHA_0965 COI_1330  COK_2564/5 Binding to complement factor H − − + 4 

 fHbp_2 MHA_1406 COI_0728 COK_0018  Binding to complement factor H − − +  

 N1pI MHA_0837 COI_2516 COK_0946 Cell division − − +  

 PilF MHA_2059 COI_1784 COK_2516 Pilus assembly/stability − − +  

 EcnA − COI_0131 COK_2070 Toxin/antidote protein (cell apoptosis) − − +  

6. Unknown         

 PlpA MHA_1433 COI_0758 COK_0049 Unknown − − + 8 

 Possible OMP MHA_0486 COI_0902 COK_2254 Unknown + + − 8 

 Rickettsia-like surface ant. − COI_1456 COK_1118  Unknown − − + 8 

 Lpp38 MHA_2152 COI_0845 COK_2238 Unknown − − + 7 

 OMP18/16 MHA_2237 COI_2485 COK_1303 Unknown + − − 7 

 YajG − COI_0336 COK_2129 Unknown − − + 6 

 YtfM MHA_0323 COI_0250 COK_0133 Unknown + + − 6 

 Lpp/PCP/SlyB MHA_0760 COI_1053 COK_0435 Unknown − − + 6 

  HlpB MHA_2282 COI_2279 COK_1699 Unknown − − + 5 
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Table 3.2. (continued) 

  Name Bovine A1 Ovine A2 Bovine A2 Protein functio n Sub TM Lipo Isol 

 PlpE MHA_1514 COI_1139 COK_0733 Unknown − − + 5 

 Possible OMP MHA_0718 COI_2021 COK_0360 Unknown + − − 5 

 
PlpD MHA_1464 COI_0386 COK_1074 Unknown + − +/− 3 

 PlpC MHA_1435 COI_0760 COK_0051 Unknown − − + 3 

 
LppC MHA_2734 COI_0540 COK_2366/7 Unknown + + + 2 

 Possible OMP MHA_0964 COI_1329 COK_2563 Unknown + + − 1 

 
Possible OMP MHA_2054 COI_1788 COK_2512 Unknown − + − 1 

 Possible OMP MHA_2761 COI_0565 COK_2341  Unknown + + −  

 
Possible OMP MHA_1407 COI_0729 COK_0019 Unknown + + − 

 

 Possible OMP MHA_0862 COI_1567 COK_2302 Unknown + − −  

 
Skp/Omp26 MHA_0690 COI_1175 COK_1968 Unknown + − − 

 

 OapB MHA_2703 COI_1631 COK_1107 Unknown − − +  

 
PlpB MHA_1434 COI_0759 COK_0050 Unknown − − + 

 

 Autotransporter ctg108 COI_1968/9 COK_0413/4 Unknown + + −  

 
Autotransporter MHA_0080 COI_1870 COK_0773 Unknown + + − 

 

 Lipoprotein MHA_1803 COI_0886 COK_0646 Unknown − − +  
  Lipoprotein MHA_1802 COI_0887 COK_0645 Unknown − − +   
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Figure 3.3. Distribution of 93 confidently predicte d OMPs based on (A) the 

three categories of bioinformatic predictors (subce llular 

localisation, β-barrel and OM lipoprotein predictors) and (B) the 

three M. haemolytica genomes that were analysed (bovine A1, 

bovine A2, ovine A2). 

 

Table 3.3. Distribution of five confidently predict ed OMPs present in only 

one or two M. haemolytica genomes. 

Confidently predicted OMP Bovine A1 Bovine A2 Ovine  A2 

Iga1_4 − + + 
EcnA − + + 
Rickettsia-like surface antigen − + + 
YajG − + + 
PulD + − − 

A B 
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to sheep. The two serotype A2 genomes are expected to have similar gene 

content because of their common ancestral origin. 

3.3.2 Functional classifications of confidently pre dicted OMPs. 

The 93 confidently predicted OMPs could be assigned to six broad functional 

categories based on information gathered from the additional searches (Fig. 3.4; 

Table 3.2). Fifteen confidently predicted OMPs were involved in outer membrane 

biogenesis and integrity, all of which were present in the three genomes (OmpA, 

Omp85, Imp/LptD, Pal, VacJ, LppB/NlpD, RlpB/LptE, MltC, ComL, MltA, LolB, 

NlpE, SmpA, WzzB and MltB). Twenty-eight confidently predicted OMPs were 

involved in transport and receptor activities, of which 27 were present in all 

three genomes (TolC, OmpP1/FadL, Wza, OmpP2-like, FrpB, TbpA, OmpP4,  

OmpP2, FhaC, OmpW, TonB-dependent receptor MHA_0860/COI_1565/ 

COK_2304, HmbR1, HxuB, TbpB, HxuC, TonB-dependent receptor 

MHA_1346/COI_1921, LamB, ComE, HxuA, FhuE, HmbR2, haemin receptor, 

haemin-uptake lipoprotein, TonB-dependent receptor COI_0092/COK_0224, 

TonB-dependent receptor COI_0006/COK_0109 and TonB-dependent receptor 

COI_0090/COK_0222). The PulD protein was present only in the bovine serotype 

A1 genome. Notably, this was the only protein out of the 93 confidently 

predicted OMPs to be present (exclusively) in only one of the three genomes 

(Fig. 3.3B). Six confidently predicted OMPs were involved in adherence (YadA-

like, Hsf, Hia, Ahs, FhaB_1 and FhaB_2), all of which were present in the three 

genomes. Eleven confidently predicted OMPs had enzymatic activity, of which 10 

were present in all three genomes (Ssa, Iga1_2, Iga1_3, NanH, Iga1_1, GlpQ, 

NlpC/P60, two NlpD-like proteins, and AmiC). A fourth Iga1-like protein (Iga1_4) 

was predicted in both the bovine and ovine serotype A2 genomes but was 

notably absent from the bovine serotype A1 genome. Seven confidently 

predicted OMPs had functions which did not fall into any of the categories 

above. These included two proteins, Bor/Iss_1 and Bor/Iss_2, which promote 

bacterial resistance to serum complement killing and virulence (Barondess and 

Beckwith, 1995), two homologues of the neisserial factor H-binding protein 

(fHbp_1 and fHbp_2) (Welsch and Ram, 2008) and a pilus assembly protein (PilF). 

The remaining twenty-six confidently predicted OMPs were of unknown function; 

24 of these were present in all three genomes. 
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Figure 3.4. Functional classifications of 93 confid ently predicted OMPs 

present across three M. haemolytica genomes after domain, 

homology and literature searches were carried out o n each 

protein. 
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3.3.3 Amino acid sequence variation in confidently predicted OMPs 

 between different M. haemolytica genomes. 

In order to identify OMPs that might be involved in host-specific adaptation, 

amino acid sequence comparisons were performed on the 93 confidently 

predicted OMPs in the three different M. haemolytica genomes. The OMPs 

present among the bovine and ovine serotype A2 genomes (Fig 3.5A) showed a 

higher degree of amino acid identity to each other than to the OMPs present 

among either of these two genomes and the bovine serotype A1 genome (Fig. 

3.5B). Ninety-two confidently predicted OMPs were present in both the bovine 

and ovine serotype A2 genomes, of which 83 (92%) had an amino acid identity of 

98% and above (Fig. 3.5A). The remaining nine OMPs (PlpE, Ssa, TbpB, OmpA, 

LppC, fHbp_2, Pal, Ahs and Hia) had amino acid identities ranging from 60 to 

97% (below 98%), suggesting possible diversification that might be related to host 

adaptation (Fig. 3.5A; Table 3.4). However, only three of these proteins, OmpA, 

PlpE, and Ahs, had a higher amino acid identity when the bovine serotype A1 and 

A2 genomes were compared (Fig. 3.5B; Table 3.4). OmpA was 100% identical in 

the bovine serotype A1 and bovine serotype A2 genomes but was 95% identical 

when the genomes were compared to the ovine serotype A2 genome. PlpE was 

91% identical in the bovine serotype A1 and A2 genomes but only 60% identical 

when these genomes were compared to the ovine serotype A2 genome, 

suggesting possible horizontal gene transfer. Ahs was 100% identical in the 

bovine serotype A1 and bovine serotype A2 genomes but was 97% identical when 

these genomes were compared to the ovine serotype A2 genome. Of the 88 

confidently predicted OMPs that were present in both the bovine serotype A1 

and A2 genomes, 67 (76%) had an amino acid identity of 98% and above (Fig. 

3.5B) .  The  remain ing  21 OMPs  (TbpB,  TonB-dependent  receptor 

COI_0090/COK_0222, fHbp_2, Hsf, OmpW, Ssa, FrpB, YadA-like, PlpE, OmpP2-

like, TbpA, Pal, autotransporter COI_1968-9/COK_0413-4, possible OMP 

MHA_0862/COI_1567/COK_2302, LppC, fHbp_1, Hia, Wza, FhuA, FhaC and LolB) 

had amino acid identities ranging from 57 to 97% (below 98%) (Fig. 3.5B; Table 

3.4). With the exception of PlpE, it is possible that these proteins have little or 

no role in host adaptation, and may be able to function in cattle and sheep 

equally well. The fact that there was a higher degree of amino acid conservation 

in OMPs present between the bovine and ovine serotype A2 genomes than 

between the bovine serotype A1 genome and bovine serotype A2 genome is  
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Figure 3.5. Amino acid sequence identity of 93 conf idently predicted OMPs among (A) bovine and ovine s erotype A2 genomes 

and (B) bovine serotype A1 and bovine serotype A2 g enomes.  

Bars are coloured based on the functional classifications of each OMP: OM biogenesis and maintenance (pink), transport and 

receptor (red), adherence (green), enzymatic activity (orange), other (yellow), unknown (blue). 
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Figure 3.5 (continued)
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Table 3.4. Confidently predicted OMPs with amino ac id sequence identity 

below 98% between the bovine serotype A2 and ovine serotype 

A2 genomes and/or between the bovine serotype A1 an d A2 

genomes. 

Confidently predicted OMP Bov. A2  vs. 
Ov. A2 a 

Bov. A1 vs. 
Bov. A2 a 

PlpE 60 91 
Ssa 83 83 
TbpB 92 57 
OmpA 95 100 
LppC 96 96 
fHbp_2 96 75 
Pal 96 94 
Ahs 97 100 
Hia 97 96 
OmpP2-like 98 92 
FhuA 98 97 
TonB-dependent receptor ctg58/COI_0090/COK_0222 99 70 
FrpB 99 84 
TbpA 99 94 
Possible OMP MHA_0862/COI_1567/COK_2302 99 96 
FhaC 99 97 
LolB 99 97 
Wza 100 96 
Autotransporter ctg108/COI_1968-9/COK_0413-4 100 95 
Hsf 100 78 
OmpW 100 82 
YadA-like 100 85 
fHbp_1 100 96 

Proteins with higher percentage amino acid sequence identity between the bovine serotype A1 and 
A2 genomes than between the bovine serotype A2 and ovine serotype A2 genomes are shaded in 
grey. 
aPercentage amino acid sequence identity. 
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further evidence to support the hypothesis of serotype A2 host switching from 

cattle to sheep.  

3.3.4 Identification of M. haemolytica OMPs by gel-based and gel-free 

approaches. 

The outer membrane fractions of seven M. haemolytica isolates and one M. 

glucosida isolate were extracted using the Sarkosyl extraction technique and 

analysed using gel-based and gel-free approaches. A 1-D SDS-polyacrylamide gel 

showing the OMP profiles of the representative isolates is shown in Fig. 3.6. 

A total of 98 different proteins were identified using a combination of gel-based 

and gel-free approaches, of which 55 were classified as OMPs (Table 3.5). Fifty 

of these OMPs were confidently predicted to be OMPs using the bioinformatic 

prediction approach (Table 3.2). However, five proteins, LemA, HbpA, OapA, 

RlpA and CsgG were not predicted by the bioinformatic approach but were 

indicated by literature searches to be OMPs. Henceforth, the 50 confidently 

predicted OMPs and the five proteins described above will collectively be 

referred to together as OMPs.  

Fifty-seven different proteins were identified using the gel-based approach. 

Forty-four of these were OMPs (Table 3.5; Figure 3.6), of which 21 were 

predicted to be β-barrel proteins, 11 were predicted to be outer membrane 

lipoproteins, 6 were predicted to be both β-barrel proteins and outer membrane 

lipoproteins and six were not predicted to be either (Fig. 3.7). Eighty-seven 

different proteins were identified using the gel-free approach. Forty-seven of 

these were OMPs (Table 3.5), of which 18 were predicted to be β-barrel 

proteins, 18 were predicted to be outer membrane lipoproteins, five were 

predicted to be both β-barrel proteins and outer membrane lipoproteins and six 

were not predicted to be either (Fig 3.7). A total of thirty-six OMPs were 

identified by both gel-based and gel-free methods. The gel-based approach 

exclusively identified eight OMPs that were not identified by the gel-free 

approach: Iga1_2, possible OMP MHA_0718/COI_2021/COK_0360, LppB/NlpD, 

HmbR1, HxuB, TonB-dependent receptor MHA_1346/COI_1921, possible OMP 

MHA_2054/COI_1788/COK_2512 and CsgG. Of these proteins, five were predicted 

to be β-barrel proteins, one was predicted to be both a β-barrel protein and an 

outer membrane lipoprotein and two were not predicted to be either (Fig. 3.7).  
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Figure 3.6. One-dimensional SDS-PAGE separation of outer membrane 

fractions from seven M. haemolytica isolates and one M. 

glucosida isolate.  

Numbered proteins were identified by proteomic analysis (Table 

3.5). Twenty micrograms of protein were loaded into each lane. 

Protein bands were stained with Coomassie brilliant blue.  

 



 

 110

Table 3.5. Proteins identified in the outer membran e fractions of seven representative isolates of M. haemolytica and one 

isolate of M. glucosida (PH344) using a combination of gel-based and gel-f ree proteomic approaches. 

                   Protein identifications in different isolates d 

No.a 
Subcellular 

Localisation b TMc Lipo c Bovine A1 Ovine A2 Bovine A2 Name 

 P
H

2 

 P
H

8 

 P
H

20
2  

 P
H

27
8 

 P
H

29
2 

 P
H

29
6 

 P
H

34
4 

 P
H

58
8 

 T
ot

al
  

1. Confidently predicted OMPs                  

1 OM +/− − MHA_1054 COI_1980 COK_0402 OmpA + + + + + + + + 8   

2 OM + − MHA_0691 COI_1174 COK_1967 Omp85  + + + + + + + + 8   

3 OM + − MHA_0291 COI_2627 COK_0922 Imp/LptD + + + + + + + + 8   

4 OM + + MHA_1410 COI_0732 COK_0022 TolC + + + + + + + + 8   

5 OM − + MHA_0263 COI_2595 COK_1835 Pal + + + + + + + + 8   

6 OM + − MHA_2492 COI_0850 COK_2411 Ssa + + + +1 + + + + 8   

7 OM + − MHA_0639 COI_1221 COK_2014 OmpP1/FadL + + + + + + +1 + 8   

8 OM − + MHA_1433 COI_0758 COK_0049 PlpA + + + +2 +2 + +2 + 8   

9 OM + + MHA_0527 COI_1313 COK_0141 Wza +2 + +2 + + + + +2 8   

10 OM + − MHA_0486 COI_0902 COK_2254 Possible OMP +2 +2 +2 +2 +2 +2 +1 +2 8   

11 OM + − MHA_1793 COI_0051 COK_2166 OmpP2-like + +1 +1 + + + +1 +1 8   

12 OM + − MHA_2109 COI_0085 COK_0218 FrpB + +1 + + + + + + 8   

13 OM − + − COI_1456 COK_1118 Rickettsia-like surface antigen +2 +2 +2 +2 +2 +2 +2 +2 8   

 
Proteins that were predicted to be putative OMPs by the ten bioinformatic predictors are grey-shaded. 
aNumbers correspond to the location of the protein on Figure 3.6 if identified by gel-based proteomics. 
bConfidently predicted subcellular locations; 'OM' = outer membrane; 'P' = periplasm; 'IM' = inner membrane; 'C' = cytoplasm; 'E' = extracellular; 'U' = unknown. 
cTransmembrane β-barrel and lipoprotein prediction result; '+' = predicted in all genomes; '−' = not predicted in any genome; '+/−' = predicted in one/two genomes 
(see Supplementary Tables S3.1, S3.2 and S3.3 for specific result). 
dTwo proteomics methods were compared; '+1' = proteins identified by gel-based method; '+2' = proteins identified by gel-free method; '+' = proteins identified by 
both methods; '−' = no identification. 
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Table 3.5. (continued) 

                    Protein identifications in different isolates 

No. 
Subcellular 

location TM Lipo Bovine A1 Ovine A2 Bovine A2 Name 

 P
H

2 

 P
H

8 

 P
H

20
2 

 P
H

27
8 

 P
H

29
2 

 P
H

29
6 

 P
H

34
4 

 P
H

58
8 

 T
ot

al
  

14 OM     MHA_0704 COI_1162 COK_1955 LemA +1 +1 +1 + + +1 +1 +1 8 

15 OM − + MHA_0387 COI_1469 COK_1002 Bor/Iss_2 + + +2 − +2 + +2 + 7 

16 OM − + MHA_2152 COI_0845 COK_2238 Lpp38 +2 +2 +2 +2 +2 +2 − + 7 

17 OM + − MHA_0196 COI_2333 COK_1753 TbpA + + + +1 + + − + 7 

18 OM − + MHA_2837 COI_1320 COK_1388 VacJ +2 + − +2 +2 + +2 +2 7 

19 OM − − MHA_2237 COI_2485 COK_1303 OMP18/16 +1 +1 +1 +1 + − +1 +1 7 

20 OM − + MHA_2158 COI_0840 COK_2233 OmpP4 +2 +2 +2 − − +2 +2 + 6 

21 OM − + − COI_0336 COK_2129 YajG +2 +2 +2 +2 +2 +2 − − 6 

22 OM + − MHA_0323 COI_0250 COK_0133 YtfM +1 + +1 + − +1 − +1 6 

23 OM − + MHA_0760 COI_1053 COK_0435 Lpp/PCP/SlyB +1 − +1 +1 +2 +1 − +1 6 

24 OM + − MHA_0563 COI_2430 COK_0634 Iga1_2 +1 +1 +1 − +1 +1 − +1 6 

25 OM − + MHA_2282 COI_2279 COK_1699 HlpB + + − − +1 + +1 − 5 

26 OM − + MHA_1514 COI_1139 COK_0733 PlpE + +2 − − +2 +2 − +2 5 

27 OM − − MHA_0718 COI_2021 COK_0360 Possible OMP +1 − +1 +1 +1 − +1 − 5 

28 OM/P/IM   MHA_1007 COI_1369 COK_1206 HbpA − + + +2 − +2 − +2 5 

29 OM + − MHA_0735 ctg112 COK_1380  OmpP2  + + − − − + − + 4 

30 OM + − MHA_1532 COI_0667 COK_1504 NanH +1 + − + +1 − − − 4 

31 OM − + MHA_0965 COI_1330 COK_2564/5  fHbp_1 +1 + +1 − +1 − − − 4 

32 OM + + MHA_1804 COI_0885 COK_0647 LppB/NlpD − − +1 +1 +1 +1 − − 4 

33 OM − + MHA_0669 COI_1194 COK_1987 RlpB/LptE +2 +2 +2 − − − − − 3 
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Table 3.5. (continued) 

                      Protein identifications in different isolates  

No. 
Subcellular 

location TM Lipo Bovine A1 Ovine A2 Bovine A2 Name 

 P
H

2 

 P
H

8 

 P
H

20
2 

 P
H

27
8 

 P
H

29
2 

 P
H

29
6 

 P
H

34
4 

 P
H

58
8 

 T
ot

al
  

34 OM − +/− MHA_1464 COI_0386 COK_1074 PlpD +2 +2 − − − +2 − − 3 

35 OM − + MHA_0242 COI_0470 COK_0285 MltC − +2 − − +2 − − +2 3 

36 OM − + MHA_1560 COI_0129 COK_2068 ComL − +2 +1 − − + − − 3 

37 OM + − MHA_0867 COI_0226 COK_0335 FhaC − + − +1 +1 − − − 3 

38 OM − + MHA_1435 COI_0760 COK_0051 PlpC − − +2 − − +2 − +2 3 

39 OM + − MHA_1965 COI_1820 COK_2480 Iga1_3 − − + + − + − − 3 

40 OM + + MHA_1133 COI_1670 COK_0590 MltA +2 − − + − − − − 2 

41 OM − − MHA_2399 COI_1652/3 COK_1583/4 OmpW − + − − − − + − 2 

42 OM + + MHA_2734 COI_0540 COK_2366/7 LppC − + − − − +1 − − 2 

43 OM + − MHA_0302  COI_2651 COK_0898 YadA-like protein − − + − + − − − 2 

44 OM + − MHA_0860 COI_1565 COK_2304 TonB-dependent receptor − − − − + + − − 2 

45 OM + − MHA_2261 COI_2258 COK_1624 HmbR1 − − +1 − − +1 − − 2 

46 OM + − MHA_1005 COI_1367 COK_1209 HxuB − − +1 − +1 − − − 2 

47 OM   MHA_2702 COI_1630 COK_1108 OapA − − − +2 − +2 − − 2 

48 OM +/− + MHA_0197 COI_2332 COK_1752 TbpB − + − − − − − − 1 

49 OM + − MHA_0964 COI_1329 COK_2563 Possible OMP − +2 − − − − − − 1 

50 OM − + MHA_0386 COI_1470 COK_1001 Bor/Iss_1 − +2 − − − − − − 1 

51 OM + − ctg59 COI_1368 COK_1207/8 HxuC − − − − − − − +2 1 

52 OM + − MHA_1346 COI_1921 ctg265 TonB-dependent receptor − − − − − +1 − − 1 

53 OM + − MHA_2054 COI_1788 COK_2512 Possible OMP − − − − − − +1 − 1 
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Table 3.5. (continued) 

                      Protein identifications in different isolates  

No. 
Subcellular 

location TM Lipo Bovine A1 Ovine A2 Bovine A2 Name 

 P
H

2 

 P
H

8 

 P
H

20
2 

 P
H

27
8 

 P
H

29
2 

 P
H

29
6 

 P
H

34
4 

 P
H

58
8 

 T
ot

al
  

54 OM   MHA_0470 COI_0918 COK_2270 RlpA − − − − − − +2 − 1 

55 OM   − − − CsgG − − − − − − +1 − 1 

2. Proteins without confident localisation predicti on            

56 U + + MHA_2025 COI_1815 COK_2485 Hypothetical protein + + + + + +2 + + 8   

57 U   MHA_2087 COI_1609 COK_1902 Hypothetical protein + +2 + +1 +1 − − − 5   

58 U   MHA_1782 COI_0313 COK_0888 Hypothetical protein − +2 +2 +2 − +2 − +2 5   

59 U − + MHA_0761/2 COI_1052 COK_0436 Hypothetical protein − − +1 +1 − +1 − +1 4   

60 U   MHA_2789 COI_2198 COK_1686 PqiB − − +2 − − +2 − − 2   

61 U − + MHA_0804 COI_2411 COK_1455 Patatin − − − − − +2 − − 1   

62 U − + MHA_0452 ctg39 ctg44 Hypothetical protein − +1 − − − − − − 1   

63 U   MHA_1898 COI_0630 COK_1217 LysM domain protein − − +2 − − − − − 1   

64 U   MHA_1828 COI_2056 COK_0536 Hypothetical protein − − − +2 − − − − 1   

65 U   − COI_2639 COK_0910 Hypothetical protein − − − − +2 − − − 1   

66 U   MHA_0324 COI_0251 COK_0134 Hypothetical protein − − − − − +2 − − 1   

3. Non-outer membrane localised proteins             

67 P + − MHA_0371 COI_1485 COK_0985 AcrA_1 +1 +1 + + +1 + − + 7   

68 IM   MHA_1448 COI_0774 COK_0064 YajC +2 +2 + + + +2 − +2 7   

69 IM   MHA_1228 COI_1149 COK_1941 PntA − +2 +2 +2 +2 +2 +1 +2 7   

70 C   MHA_2176 COI_1521 COK_1096 EF1A +1 + +1 +2 + + − + 7   

71 C     MHA_1682 COI_0958 COK_1425 RplB +2 − +2 +2 − +2 +2 +2 6   
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Table 3.5. (continued) 

                      Protein identifications in different isolates  

No. 
Subcellular 

location TM Lipo Bovine A1 Ovine A2 Bovine A2 Name 

 P
H

2 

 P
H

8 

 P
H

20
2 

 P
H

27
8 

 P
H

29
2 

 P
H

29
6 

 P
H

34
4 

 P
H

58
8 

 T
ot

al
  

72 IM +/− + MHA_0528 COI_1312 COK_0142 Wzf − + +2 − +1 + − − 4 

73 IM   MHA_0370 COI_1486 COK_0984 AcrB − − − +1 − + +2 +2 4 

74 C   MHA_1040 COI_1994 COK_0388 RplA − +2 +2 − − +2 − +2 4 

75 C   MHA_1552 COI_0122 COK_2061 RplT − +2 +2 − − +2 +2 − 4 

76 IM − + MHA_1287 COI_1274 COK_0180 AtpF − +2 − +1 − − − +2 3 

77 IM   MHA_1625 COI_0002 COK_0113 LctP +2 +2 − +2 − − − − 3 

78 C   MHA_0315 COI_0240 COK_0123 RpsB +2 − − − − − +2 +1 3 

79 C   MHA_1041 COI_1993 COK_0389 RplK − − − − − +2 +2 +2 3 

80 IM   ctg147 COI_1296 COK_0158 GlpT − +2 − − − − − +2 2 

81 C   MHA_2378 COI_1451 COK_1123 RplE − +2 − − − − +2 − 2 

82 C   MHA_1678 COI_0962 COK_1421 RplP − +2 − − − − − +2 2 

83 C   MHA_2371 COI_1444 COK_1130 RplO − +2 − − − − +2 − 2 

84 C   MHA_2364 COI_1437 COK_1137 RplQ − − − − − − +2 +2 2 

85 P − + MHA_0980 COI_1345 COK_2582 YgiW − − − +2 − − − − 1 

86 P − + MHA_2224 COI_2497 COK_1291 NikA/DppA/OppA − − − − − +2 − − 1 

87 E + − MHA_0254 COI_0481 COK_0274 LktA − − − − − − +2 − 1 

88 IM − + − COI_2478 COK_1310 NhaC +2 − − − − − − − 1 

89 IM   MHA_1656 COI_1498 COK_0973 GltP − +2 − − − − − − 1 

90 IM   MHA_1795 COI_2038 COK_1899 PtnC − +2 − − − − − − 1 

91 IM     MHA_2180 COI_2587 COK_1843 CydA − − − +2 − − − − 1 
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Table 3.5. (continued) 

                      Protein identifications in different isolates  

No. 
Subcellular 

location TM Lipo Bovine A1 Ovine A2 Bovine A2 Name 

 P
H

2 

 P
H

8 

 P
H

20
2 

 P
H

27
8 

 P
H

29
2 

 P
H

29
6 

 P
H

34
4 

 P
H

58
8 

 T
ot
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92 IM   MHA_1822 COI_1555 COK_1560 TatA − − − − − − − +2 1 

93 IM   MHA_2518 COI_1395 COK_1180 FtsN − − − − − − − +1 1 

94 IM   MHA_1229 COI_1148 COK_1940 PntB − +2 − − − − − − 1 

95 C   MHA_0822 COI_0990 COK_0963 RpsA − +2 − − − − − − 1 

96 C   MHA_2178 COI_1637 COK_1101 RpsG − +2 − − − − − − 1 

97 C   MHA_0991 COI_1354 COK_2591 RpmB − +2 − − − − − − 1 

98 C     MHA_1029 COI_2005 COK_0376 RplL − − − − − − − +2 1 

       Total number of proteins identified 42 62 48 44 41 54 35 48  

        Total number of OMPs identified  33 39 34 29 33 37 24 29  
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Figure 3.7. Distribution of 55 OMPs identified by p roteomic analyses based 

on gel-based and/or gel-free approaches and bioinfo rmatic 

prediction of a β-barrel and/or outer membrane (OM) lipoprotein. 
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The gel-free approach exclusively identified 11 OMPs that were not identified by 

the gel-based approach (Rickettsia-like surface antigen, YajG, RlpB/LptE, PlpD, 

MltC, PlpC, OapA, possible OMP MHA_0964/COI_1329/COK_2563, Bor/Iss_1, HxuC 

and RlpA). Of these, two were predicted to be β-barrel proteins, seven were 

predicted to be outer membrane lipoproteins and two were not predicted to be 

either. 

The subcellular localisations of eleven identified proteins could not be 

confidently predicted, and therefore remain unknown (Table 3.2; Supplementary 

Table S3.4). Four of these proteins (hypothetical protein MHA_2025/COI_1815/ 

COK_2485, hypothetical protein MHA_0761/COI_1052/COK_0436, patatin, and 

hypothetical protein MHA_0452) were putative OMPs predicted by the three 

categories of bioinformatic predictors but could not be confirmed as OMPs or 

false-positives after additional searches. The remaining seven proteins were not 

predicted by the bioinformatic approach, and additional searches could not 

confidently predict their subcellular locations. 

Thirty-two identified proteins were confidently predicted to be localised to 

cellular compartments other than the outer membrane and were therefore 

classified as false-positives (Table 3.5; Supplementary Table S3.5). Seven of 

these proteins were putative OMPs predicted by the three categories of 

bioinformatic predictors, but were confirmed as false positives after additional 

searches. These included three periplasmic proteins (AcrA_1, YgiW and 

NikA/DppA/OppA), three inner membrane proteins (Wzf, AtpF and NhaC) and the 

secreted leukotoxin protein LktA. The remaining twenty-five proteins were not 

predicted by the bioinformatic approach, but additional searches confirmed 

their localisation in compartments other than the outer membrane. Thirteen of 

these were ribosomal proteins located in the cytoplasm (RplB, RplA, RplT, RpsB, 

RplK, RplE, RplP, RplO, RplQ, RpsA, RpsG, RpmB and RplL). The other twelve 

were inner membrane proteins (YajC, PntA, AcrB, LctP, GlpT, GltP, PtnC, CydA, 

TatA, FtsN and PntB) and the cytoplasmic EF1A protein. 

In addition to the identification of OMPs in the outer membrane described 

above, whole cell envelope fractions of the eight representative isolates were 

also analysed by the gel free approach to determine whether any OMPs were lost 

as a result of the inner membrane solubilisation. One hundred and thirty two 
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unique proteins were identified among whole cell envelope fractions 

(Supplementary Table 3.6), of which 56 were identified among outer membrane 

fractions. The remaining 76 proteins were mainly comprised of inner membrane 

and periplasmic proteins and did not contain any confidently predicted OMPs 

that were not already identified among outer membrane fractions. This indicates 

that OMPs are not lost as a result of inner membrane solubilisation. 

3.3.5 Comparison of OMPs identified by proteomic ap proaches that are 

associated with different host species and phylogen ies. 

The total number of OMPs identified in each of the seven M. haemolytica 

isolates varied from 29 (isolates PH278 and PH588) to 39 (PH8) (Table 3.5); 

twenty-four OMPs were identified in the M. glucosida isolate (PH344). Forty-one 

OMPs were identified in both bovine and ovine M. haemolytica isolates (Fig. 

3.8). Of these, 20 were also identified in the M. glucosida isolate. Ten OMPs 

(MltC, FhaC, LppC, TonB-dependent receptor MHA_0860/COI_1565/COK_2304, 

OapA, TbpB, possible OMP MHA_0964/COI_1329/COK_2563, Bor/Iss_1, HxuC, 

TonB-dependent receptor MHA_1346/COI_1921) were identified exclusively in 

ovine M. haemolytica isolates. Three OMPs (possible OMP MHA_2054/COI_1788/ 

COK_2512, RlpA and CsgG) were identified exclusively in the M. glucosida ovine 

isolate and one OMP (OmpW) was identified exclusively in both an ovine M. 

haemolytica isolate and the M. glucosida isolate. No OMPs were identified 

exclusively in the M. haemolytica bovine isolates and there were no proteins 

identified exclusively in both the bovine M. haemolytica isolates and the M. 

glucosida isolate. With the exception of CsgG, which was an A. 

pleuropneumoniae orthologue, all of the OMPs identified in ovine M. 

haemolytica isolates and the M. glucosida isolate were present in either the 

bovine serotype A1 or bovine serotype A2 genomes. Therefore, these proteins 

may be present in bovine isolates but were not detected by proteomics approach 

used in this study. Alternatively, they may be expressed under different growth 

conditions. The putative bovine host-specific protein PulD that was predicted in 

the bovine serotype A1 genome was not identified in any representative isolates. 

These findings show that it has not been possible to establish any clear link 

between any of the identified OMPs and host-specificity. 
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Figure 3.8. Distribution of 55 OMPs identified by p roteomic analyses based 

on identification in bovine M. haemolytica isolates, ovine M. 

haemolytica isolates and/or an M. glucosida isolate.  
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Fourteen OMPs were identified in all eight representative isolates (OmpA, 

Omp85, Imp/LptD, TolC, Pal, Ssa, OmpP1/FadL, PlpA, Wza, possible OMP 

MHA_0486/COI_0902/COK_2254, OmpP2-like, FrpB, Rickettsia-like surface 

antigen and LemA), indicating core functions in both M. haemolytica and M. 

glucosida. Hypothetical protein MHA_2025/COI_1815/COK_2485 was also 

identified in all eight isolates but did not have a confidently predicted location. 

Furthermore, two OMPs were identified in all seven M. haemolytica isolates 

(Lpp38 and TbpA) but not in the M. glucosida isolate, indicating core functions in 

M. haemolytica but, not necessarily, in M. glucosida. 

There appeared to be a clear association between OmpP2 and isolates of 

serotypes A1, A7 and A13, but not of A2. The OmpP2 porin was identified by 

both gel-based and gel-free proteomic approaches in the serotype A1 isolates 

PH2 and PH8, the serotype A7 isolate PH296 and the serotype A13 isolate PH588. 

However, OmpP2 was not identified in any of the serotype A2 isolates or the M. 

glucosida isolate. In contrast, the OmpP2-like porin was identified in all eight 

representative isolates and exhibited considerable molecular mass variation.  

The four putative trimeric autotransporters, YadA-like, Hsf, Hia and Ahs, were 

confidently predicted OMPs in all three genomes. However, the Hsf, Hia and Ahs 

proteins were not detected in any of the isolates. The YadA-like protein was 

identified in only two serotype A2 isolates, PH202 and PH292, by both gel-based 

and gel-free proteomic approaches. The protein was identified in the uppermost 

section of the polyacrylamide gel at the interface between the stacking and 

resolving gel, indicating that the trimeric β-barrel domain does not undergo 

dissociation into its monomeric subunits during boiling in SDS sample buffer and 

cannot pass into the resolving gel. This is consistent with similar findings for Ahs 

(Daigneault and Lo, 2009) and other trimeric autotransporters (Sheets et al., 

2008). 

The three M. haemolytica genomes each encoded three confidently predicted 

OMPs (Iga1_1, Iga1_2 and Iga1_3) that are homologous to the H. influenzae and 

N. meningitidis autotransporter Iga1, an IgA protease. A fourth Iga1-like protein, 

Iga1_4, was present only in the serotype A2 genomes. Iga1_1 and Iga1_4 were 

not detected in any of the eight representative isolates. Iga1_2 was detected by 

gel-based methods only in six isolates (PH2, PH8, PH202, PH292, PH296 and 
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PH588). The expected molecular mass of the Iga1_2 protein after removal of the 

N-terminal signal sequence is 152.9 kDa (data not shown), but all identified 

Iga1_2 proteins had an apparent molecular mass of approximately 35 kDa when 

resolved by 1-D SDS-PAGE. Examination of the mass spectrometry data for Iga1_2 

showed better coverage and a greater degree of confidence for identified 

peptides in the C-terminal β-barrel domain (data not shown), suggesting that the 

N-terminal passenger domain might have been proteolytically cleaved. Iga1_3 

was identified by both gel-based and gel-free methods in isolates PH202, PH278 

and PH296 at an apparent molecular mass of 156 kDa, which is consistent with 

the expected molecular mass after removal of the N-terminal signal peptide. 

Iga1_3 of a lower molecular mass was not identified, suggesting that Iga1_3 does 

not undergo cleavage and remains intact on the cell surface. Similarly, the Ssa 

protein was identified at 97 kDa in all isolates, but was also identified at 66.4 

and 64.0 kDa in isolate PH2. This suggests that Ssa may also undergo a similar 

cleavage process in this isolate. 

Three OMPs (possible OMP MHA_2054/COI_1788/COK_2152, RlpA and CsgG) were 

identified exclusively in the M. glucosida isolate PH344. Rare lipoprotein A 

(RlpA) was present in the three M. haemolytica genomes analysed by 

bioinformatics. Therefore, it is possible that RlpA is expressed in M. haemolytica 

but was simply not detected by proteomics. CsgG is an outer membrane 

lipoprotein (Loferer et al., 1997) required for the secretion and stabilisation of 

two other proteins, CsgA and CsgB (yet to be identified in M. glucosida), which 

form curli amyloid fibres on the extracellular surface. These fibres have been 

implicated in a number of processes including biofilm formation, attachment and 

invasion of host cells, interaction with host proteins and activation of the 

immune system (Barnhart and Chapman, 2006). Given that CsgG was identified 

by proteomics only in the M. glucosida isolate and that it was absent in the three 

M. haemolytica genomes analysed by bioinformatics, it is reasonable to suggest 

that this protein is expressed solely in M. glucosida and not in M. haemolytica.  

Although 55 OMPs were identified by proteomic approaches, there remained 43 

confidently predicted OMPs that were not identified; 15 were predicted to be β-

barrel proteins, 15 were predicted to be outer membrane lipoproteins and 13 

were not predicted to be either. Of these 43 unidentified proteins, five are 

involved in outer membrane biogenesis and integrity (LolB, NlpE, SmpA, WzzB 
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and MltB), twelve have transport and receptor activities (LamB, ComE, PulD, 

HxuA, FhuA, FhuE, HmbR2, haemin receptor, haemin-uptake lipoprotein, and 

three TonB-dependent receptors), five are involved in adherence (Hsf, Hia, Ahs, 

FhaB_1 and FhaB_2) and seven have enzymatic activity (Iga1_1, Iga1_4, GlpQ, 

NlpC, NlpD-like_1, NlpD-like_2 and AmiC protein). Fourteen confidently 

predicted OMPs with other or unknown functions were also not identified 

(fHbp_2, N1pI, PilF, EcnA, three possible OMPs, Omp26, OapB, PlpB, two 

autotransporter proteins and two lipoproteins). 

3.4 Discussion 

A bioinformatic workflow developed for P. multocida (E-Komon et al., 2011b) 

was used to identify outer membrane-localised proteins in the genomes of three 

M. haemolytica isolates (a bovine serotype A1 isolate and bovine and ovine 

serotype A2 isolates). Using this approach, 93 confidently predicted OMPs were 

identified across the three genomes, representing 3.3%, 3.4% and 3.6% of the 

bovine serotype A1, ovine serotype A2 and bovine serotype A2 genomes, 

respectively. These figures are lower than those obtained for the P. multocida 

avian genome (4.8% of the proteome) (E-Komon et al., 2011b) and that of the 

closely related A. pleuropneumoniae genome (4.3% of the proteome) (Chung et 

al., 2007); however, the genomes of these organisms contain fewer open reading 

frames (2015 and 2241, respectively) than any of the three M. haemolytica 

genomes analysed in this study (between 2552 and 2695 open reading frames). 

Likely functions were assigned to 67 (72%) of the 93 confidently predicted OMPs. 

Further information is required to characterise the functions of the remaining 26 

proteins.  

A greater number of confidently predicted OMPs were present exclusively in 

both the bovine and ovine serotype A2 genomes than between either of these 

two genomes and the serotype A1 genome. Furthermore, amino acid sequence 

comparisons demonstrated that OMPs present in the bovine and ovine serotype 

A2 genomes show a higher degree of identity in relation to each other than to 

proteins in the bovine serotype A1 genome. The greater similarities between the 

two serotype A2 outer membrane subproteomes are consistent with a previous 

study of genetic diversity within the M. haemolytica population (Davies et al., 

1997) and a previous comparative genomic study (Lawrence et al., 2010b). 
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These findings provide further evidence to suggest that bovine and ovine 

serotype A2 isolates of M. haemolytica have a common ancestral origin and have 

recently switched from one host to another. Three OMPs, OmpA, PlpE and Ahs, 

shared amino acid identity that was significantly greater between the bovine 

serotype A1 and A2 genomes than between either of these two genomes and the 

ovine serotype A2 genome. In a previous study, comparative nucleotide 

sequence analysis of the ompA gene revealed hypervariable regions in the distal 

tips of the surface-exposed loops (Davies and Lee, 2004). These regions vary 

considerably between bovine and ovine isolates but are highly conserved among 

isolates from each host species and it was suggested that OmpA is involved in 

binding to host-specific cell receptor (Davies and Lee, 2004). The exact function 

of PlpE is currently unknown; however, anti-PlpE antibodies have been 

demonstrated to promote complement-mediated killing of bovine serotype A1 

isolates (Ayalew et al., 2004, Nardini et al., 1998) and the addition of 

recombinant PlpE to a commercial vaccine also confers enhanced resistance 

against experimental challenge in cattle compared to the commercial vaccine 

alone (Confer et al., 2003). Ahs has the predicted structural architecture of a 

trimeric autotransporters and has been demonstrated to bind collagen in vitro 

(Daigneault and Lo, 2009). A higher percentage similarity in PlpE and Ahs 

between bovine serotype A1 and bovine serotype A2 genomes, compared to 

either of these and the ovine serotype A2 genome, suggests that these two 

proteins may have a role in host adaptation. 

Using a combination of MALDI-TOF-TOF and LC-ESI-QqTOF mass spectrometry, a 

total of 55 OMPs were identified among the eight representative isolates of M. 

haemolytica and M. glucosida. Fifty of these proteins were confidently predicted 

by the bioinformatic prediction approach. The other five identified proteins, 

LemA, HbpA, OapA, RlpA and CsgG were not predicted by the bioinformatic 

approach but were indicated to be OMPs after subsequent literature searches. 

The LemA protein was identified in all eight representative isolates and is a 

homologue of the LemA protein originally identified in the Gram positive 

bacterium Listeria monocytogenes, a facultative intracellular pathogen (Lenz et 

al., 1996). The function of this protein is currently unknown, although the N-

terminus is thought to be surface-exposed on the outside of the bacterium. The 

HbpA protein has been identified in association with the outer membrane of 
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other Pasteurellaceae species (Hanson and Hansen, 1991, Hanson et al., 1992, 

Garrido et al., 2003) and has been implicated in the importation of both haem 

and glutathione (Vergauwen et al., 2010, Hanson and Hansen, 1991, Hanson et 

al., 1992). In H. influenzae, opacity-associated protein A (OapA) has been 

demonstrated to be a cell envelope protein that is required for efficient 

colonisation of the nasopharynx in an infant rat model (Weiser et al., 1995) and 

contributes to epithelial cell binding (Prasadarao et al., 1999). This protein was 

identified in only two ovine serotype A2 isolates (PH278 and PH296). In E.coli, 

rare lipoprotein A (RlpA) is thought to link the outer membrane to peptidoglycan 

during cell division (Arends et al., 2010). The CsgG protein, which was not 

present in any of the three M. haemolytica genomes analysed by bioinformatic 

analysis, was identified by searching against a genome of the closely related 

species A. pleuropneumoniae. The CsgG protein is involved in the secretion of 

amyloid fibres and may have a role in biofilm formation (Robinson et al., 2006). 

Thirty-six OMPs were identified by both gel-based and gel-free methods, 

whereas eight were identified exclusively by the gel-based method and 11 by the 

gel-free method. The gel-based method identified a higher proportion of β-

barrel proteins than outer membrane lipoproteins. Conversely, the gel-free 

method identified a higher proportion of outer membrane lipoproteins than β-

barrel proteins. These findings are consistent with the results of E-Komon et al. 

(E-Komon et al., 2011a) and further reinforce the importance of using 

complementary approaches to maximise total proteomic coverage of OMPs. 

Furthermore, no additional OMPs were identified after gel-free analysis of whole 

cell envelope fractions. This indicated that no OMPs were lost as a result of 

inner membrane solubilisation and further demonstrated the reliability of 

Sarkosyl as an appropriate selective solubilisation detergent. 

No OMPs were identified exclusively in bovine M. haemolytica isolates. This is 

not surprising given that only one of the 93 confidently predicted OMPs, PulD, 

was present exclusively in a bovine M. haemolytica genome. Fourteen OMPs 

were identified in the ovine M. haemolytica and M. glucosida isolates that were 

not identified in the bovine M. haemolytica isolates. Even though these proteins 

represent potential ovine-specific proteins, all but one (CsgG, an A. 

pleuropneumoniae orthologue detected exclusively in the M. glucosida isolate) 

were present in either the bovine serotype A1 or A2 genomes. Therefore, either 
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the proteomics approaches failed to identify these proteins or they may be 

expressed under different growth conditions.  

A recent study using immunoproteomic analyses identified 132 immunoreactive 

proteins in the outer membrane fraction of a serotype A1 M. haemolytica isolate 

from a bovine host (Ayalew et al., 2010). Of these, 35 proteins were identified 

in the outer membrane fractions of eight representative isolates in the present 

study (Supplementary Table S3.7). However, according to the bioinformatic 

analyses performed in this study, 25 of the 35 proteins were OMPs, one was a 

hypothetical protein of unknown function, and nine were false-positives. The 

immunoproteomic analyses failed to identify the remaining 30 OMPs identified in 

the present study or any of the 43 confidently predicted OMPs that were not 

identified in the present study. However, seven proteins (HbpA, MltC, ComL, 

OmpW, LppC, TonB-dependent receptor MHA_0860/COI_1565/ COK_2304 and 

TbpB) were identified that were not identified in the bovine serotype A1 M. 

haemolytica isolate (PH2) used in the present study, although these proteins 

were identified in one or more of the other representative isolates. The 

approaches used in the present study and in the study of Ayalew et al. (Ayalew 

et al., 2010) can potentially discriminate between those OMPs which are 

surface-exposed and immunogenic and those which are not. 

Fourteen OMPs (Table 3.5) were identified in all eight representative isolates, 

suggesting core functions in the biology of M. haemolytica and M. glucosida. One 

of these proteins, the Ssa autotransporter protein, is a subtilisin-like serine 

protease which shares significant identity with similar autotransporters in other 

species including AasP of A. pleuropneumoniae (Ali et al., 2008), NalP of N. 

meningitidis (van Ulsen et al., 2003, Turner et al., 2002) and SphB1 of B. 

pertussis (Coutte et al., 2001), all of which act as surface maturation proteases. 

This function has not yet been determined for Ssa, or indeed any other M. 

haemolytica OMP, but may be appropriate given that some surface-exposed 

proteins have not been identified in as many isolates as expected. For example, 

the transferrin-binding proteins A and B (TbpA and TbpB) are OMPs involved in 

the uptake of iron from host transferrin. TbpA is an integral TonB-dependent 

transporter and was identified in all seven representative M. haemolytica 

isolates (but not in M. glucosida isolate PH344). However, TbpB is a surface-

exposed lipoprotein and was identified in only one isolate. Both OMPs are 
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encoded in the same operon and are expected to be expressed in similar 

quantities, but it would appear that TbpB is largely absent from the outer 

membrane of most isolates. One explanation is that TbpB is lost from the outer 

membrane during the extraction process. However, the NalP protein of N. 

meningitidis has recently been found to cleave lactoferrin-binding protein B 

(LbpB), a close homologue of TbpB, from the bacterial cell surface (Roussel-

Jazede et al., 2010). Therefore, an alternative explanation for the apparent 

absence of TbpB is that Ssa is cleaving this protein from the bacterial cell 

surface, as has been shown for NalP. Interestingly, in isolate PH2, Ssa was 

identified at 66.4 and 64.0 kDa in addition to its expected molecular mass of 97 

kDa. Autocatalytic processing of passenger domains is a characteristic of NalP 

(van Ulsen et al., 2003) and SphB1 (Coutte et al., 2001), but not of AasP (Ali et 

al., 2008), therefore it is possible that Ssa in isolate PH2 possesses similar 

autocatalytic ability. Differences in Ssa amino acid sequences among the 

representative isolates might explain why this was only observed in one isolate. 

Furthermore, the ssa gene was previously considered to be absent from M. 

glucosida isolates (Gonzalez et al., 1991), yet its expression at the outer 

membrane has been clearly demonstrated in the present study. 

Two other serine protease autotransporters were also identified. These were 

Iga1_2 (in two bovine and four ovine isolates) and Iga1_3 (in one bovine and two 

ovine isolates), which are orthologous to Iga1 in the human pathogens N. 

meningitidis and H. influenzae. In these pathogens, Iga1 cleaves host mucosal 

IgA1 antibody, destroying its agglutinating activity and facilitating bacterial 

colonisation by immunoevasion. While IgA protease activity has not been 

detected in the supernatants of M. haemolytica (Abdullah et al., 1992), IgG-

specific protease activity was detected in partially purified culture supernatants 

(Lee and Shewen, 1996). IgG is also the predominant secretory antibody found in 

the lower respiratory tract of cattle (Duncan et al., 1972), whereas IgA is the 

predominant antibody in the upper respiratory tract (Wilkie and Markham, 

1981). It is therefore possible that at least one of the Iga1 orthologues identified 

in M. haemolytica actually cleaves IgG instead of IgA. In N. meningitidis and H. 

influenzae, the Iga1 protease passenger domain is released from the outer 

membrane-embedded β-barrel domain by autoproteolysis. Interestingly, the 

findings of the present study suggest that proteolysis occurs in Iga1_2, but not in 
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Iga1_3, even though both contain an active serine protease site. One explanation 

is that Iga1_3 does not contain a self-recognition sequence for autoproteolytic 

cleavage and therefore remains as a full length protease anchored to the cell 

surface by the β-barrel domain. Alternatively, proteolysis may be mediated by 

another surface-exposed protein. In  N. meningitidis, Iga1 can be proteolytically 

cleaved by NalP (van Ulsen et al., 2003), therefore it is possible that M. 

haemolytica Ssa has a role in the proteolytic cleavage of M. haemolytica Iga1-

like proteins. 

Four trimeric autotransporters were predicted in the bioinformatic analyses 

(YadA-like, Hsf, Hia and Ahs), all of which have putative roles in adhesion to host 

molecules. However, only expression of the YadA-like protein was confirmed in 

one bovine and one ovine serotype A2 isolates (by both gel-based and gel-free 

approaches). This is the first case of a trimeric autotransporter being detected 

at the proteomic level in M. haemolytica. The Hsf and Hia proteins have been 

discussed previously in M. haemolytica (Gioia et al., 2006), although their exact 

functions have not yet been characterised. The Ahs protein has previously been 

reported to be involved in collagen binding (Daigneault and Lo, 2009) and to be 

transcribed in vivo (Lo et al., 2006) in a serotype A1 isolate from a bovine host, 

although this protein was not identified in any of the representative isolates of 

the present study.  

In the present study, 32 proteins were identified that were predicted to be 

localised to cellular compartments other than the outer membrane (Table 3.5). 

The possibility cannot be ruled out that some of these proteins may have 

secondary functions at the outer membrane, or indeed be true OMPs, even 

though they were predicted to be located elsewhere. For example, the haem-

binding protein HbpA was identified in the outer membrane fractions of five M. 

haemolytica isolates (Table 3.5) but has a C-terminal motif which indicates that 

it is a lipoprotein anchored to the inner membrane. However, in the closely-

related species H. influenzae, HbpA has been identified in both inner membrane 

and outer membrane fractions (Hanson and Hansen, 1991, Hanson et al., 1992), 

and has been suggested to be involved in the shuttling of material between the 

two membranes. The identification of HbpA in this study also suggests a likely 

function at the outer membrane of M. haemolytica, hence its inclusion as an 

OMP. Another protein, Lpp38, was identified in all seven M. haemolytica isolates 
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and has an amino acid sequence that is 55% identical (70% when conservative 

amino acid substitutions are included) to the periplasmic E. coli protein PotD 

which is involved in polyamine transport. Lpp38 would have been considered to 

be a periplasmic protein had it not been for experimental evidence that 

demonstrated partial exposure of Lpp38 on the surface of M. haemolytica 

(Pandher and Murphy, 1996). This illustrates that even though an identified 

protein is very similar to another protein in a different species it does not 

necessarily have the same function and/or subcellular location as that protein.  

Forty-three of the 93 confidently predicted OMPs across the three genomes were 

not identified by proteomic analyses. It is possible that some of these proteins 

are actually present in the outer membrane but only at low levels which are 

insufficient to permit detection by the methods used in this study. The 

expression of OMPs also differs when isolates are grown under conditions that 

mimic the in vivo host environment. A previous study examined gene expression 

changes in a M. haemolytica serotype A1 isolate when grown in iron-restricted 

conditions to mimic the paucity of iron in the host lung (Roehrig et al., 2007). 

Several genes encoding OMPs were upregulated, including four confidently 

predicted OMPs that were not identified in the present study: haemin receptor, 

HmbR2, fHbp-like_2 and possible OMP MHA_2761/COI_0565/COK_2341 (Roehrig 

et al., 2007). Expression of several M. haemolytica OMPs was also affected by 

the addition of different antibiotics to the growth medium (Nardini et al., 1998). 

It is therefore important to consider the effect that different growth conditions 

have on OMP expression when attempting to characterise outer membrane 

subproteomes. 

In summary, a comprehensive bioinformatic workflow was implemented to 

predict the outer membrane subproteomes of three M. haemolytica genomes 

from isolates with different capsular serotypes and host origins. Subsequently, a 

total of 55 OMPs were identified from the outer membrane fractions of seven M. 

haemolytica isolates, together with a single M. glucosida isolate, which are 

representative of different phylogenetic lineages (ETs), capsular serotypes and 

host origins. Many of these OMPs are associated with particular isolates and/or 

capsular serotypes and have been identified at the protein level for the first 

time. Despite not being able to establish involvement in host-specific adaptation 

for the OMPs identified in this study, it will serve as a springboard for further 
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research into the roles of these diverse proteins in the pathobiology of M. 

haemolytica. 
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4.  COMPARATIVE OUTER MEMBRANE 

PROTEOMIC ANALYSES OF BOVINE AND 

OVINE ISOLATES OF M. HAEMOLYTICA AND 

M. GLUCOSIDA GROWN UNDER VARIOUS IN 

VITRO CONDITIONS DESIGNED TO MIMIC THE 

IN VIVO HOST ENVIRONMENT 

4.1 Introduction 

M. haemolytica colonises the nasopharynx and tonsils of healthy cattle and 

sheep, but under the context of immune suppression (induced by stress or 

concurrent viral infection) bacteria rapidly increase in number and gain access 

to the lungs and trachea via aerosolised droplets and cause pneumonia (Gilmour 

and Gilmour, 1989, Frank, 1989). In most opportunistic pathogens, certain 

proteins associated with virulence are only expressed during infection in target 

tissues (Mekalanos, 1992). Therefore, it is likely that M. haemolytica only 

expresses certain virulence-associated proteins when growing in the upper 

respiratory tract of healthy animals and the lungs of pneumonic hosts, or under 

conditions which closely mimic this microenvironment. 

An essential prerequisite of successful respiratory tract colonisation by M. 

haemolytica is being able to adapt to an environment containing very low levels 

of free iron. With the exception of some lactobacilli (Weinberg, 1997, Bruyneel 

et al., 1989, Duhutrel et al., 2010) iron is an essential micronutrient to all 

bacteria. It is a cofactor in the catalytic core of enzymes involved in a diverse 

range of cellular processes such as respiration and nucleic acid synthesis and 

repair. However, iron concentration is tightly regulated in host tissues as it can 

cause oxidative damage if present in excess amounts. Thus, in host tissues nearly 

all iron is sequestered by high-affinity iron-binding proteins such as transferrin, 

lactoferrin, ferritin, haemoglobin and other compounds. To overcome these low 

iron levels, bacteria which reside on respiratory tract mucosa have evolved a 

number of iron acquisition systems. These include the secretion of siderophores 

(small molecules with high affinity for iron) and the expression of outer 
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membrane receptors specific for iron-containing host proteins (Wandersman and 

Delepelaire, 2004). In M. haemolytica, iron can be obtained from host 

transferrin via the outer membrane-located transferrin binding proteins A and B 

(TbpA and TbpB) (Ogunnariwo et al., 1997, Lee and Davies, 2011). Additional 

OMPs present in the published M. haemolytica genomes are also predicted to 

have roles in iron acquisition, including components of a putative haem-

haemopexin acquisition system (Gioia et al., 2006, Lawrence et al., 2010a). 

Microarray analysis of gene regulation under iron-restricted conditions has been 

completed in a single bovine serotype A1 M. haemolytica isolate which 

demonstrated the upregulation of transcripts encoding other receptors for the 

transport of haem, haemoglobin and, possibly, siderophores (Roehrig et al., 

2007). However, a comparative proteomic analysis of OMP expression in several 

M. haemolytica isolates under iron-restricted conditions is still lacking. 

M. haemolytica is also likely to encounter host serum factors contained in the 

fibrinous exudate which leaks into the lungs as a result of lung tissue damage 

caused by virulence factors including leukotoxin (Czuprynski et al., 1991, Yoo et 

al., 1995b, Stevens and Czuprynski, 1996, Sun et al., 1999) and 

lipopolysaccharide (Keiss et al., 1964, Li and Clinkenbeard, 1999). These serum 

factors include complement, antibodies, hormones and other host proteins which 

may interact with the bacterial cell surface. In other Gram-negative organisms 

serum components have been demonstrated to interact with and modulate the 

expression of OMPs (Hellman et al., 2000, Johansson et al., 2003). 

It is believed that biofilm formation is a mechanism by which several Gram-

negative mucosal pathogens establish long-term colonisation in the host (Luke et 

al., 2007, Hall-Stoodley et al., 2006, Kaplan et al., 2004, Lam et al., 1980, 

Greiner et al., 2005, Yi et al., 2004). However, at present there is only limited 

evidence of biofilm formation in M. haemolytica (Olson et al., 2002, Haig, 2011). 

M. haemolytica resides in the respiratory tract via surface-associated growth on 

host tissues. Previous studies have demonstrated in vitro binding of M. 

haemolytica to epithelial cells (Kisiela and Czuprynski, 2009, Clarke and Morton, 

2000, Galdiero et al., 2002, Vilela et al., 2004) and implicated several OMPs as 

host adhesion molecules, including outer membrane protein A (OmpA) (Kisiela 

and Czuprynski, 2009, Lo and Sorensen, 2007, Davies et al., 2001) and Ahs 

(Daigneault and Lo, 2009). Some genes that are potentially involved in 
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adherence and biofilm synthesis have been demonstrated to be upregulated 

during adhesion to epithelial cells in the closely-related bacteria A. 

pleuropneumoniae (Auger et al., 2009). Surface-associated growth, as opposed 

to planktonic growth, may result in the differential expression of OMPs involved 

in biofilm formation and adherence to host tissues.  

A comprehensive comparative proteomic analysis of OMPs expressed by several 

representative M. haemolytica isolates and one M. glucosida isolate after in 

vitro growth in complex growth medium was completed in the previous chapter. 

In the present chapter, using a similar comparative proteomic approach, the 

outer membrane subproteomes of the same representative isolates were 

characterised after in vitro growth under conditions that were designed to 

mimic the in vivo pneumonic lung microenvironment. These conditions included 

growth in iron-restricted complex growth medium, serum-supplemented tissue 

culture media and growth on solid-surface agar (in the absence or presence of 

the dye Congo red). This approach has allowed the identification of several 

virulence-associated proteins, many of which have not previously been identified 

in these organisms. Furthermore, an examination of the extracellular 

subproteome of the representative isolates was undertaken after growth in iron-

restricted and iron-replete complex growth media to identify secreted proteins 

and OMPs fragments that could have been proteolytically cleaved from the 

bacterial cell surface. 

4.2 Materials and methods 

4.2.1 Bacterial isolates and growth conditions 

The eight bacterial isolates used in this study have been described previously in 

section 3.2.2. Isolates were stored at -80°C in 50% (v/v) glycerol in brain heart 

infusion broth (BHIB) and were subcultured on BHI agar (BHIA) containing 5% 

(v/v) defibrinated sheep blood overnight at 37°C. For growth under iron-

restricted conditions, optimum concentrations of the iron chelator 2,2’-dipyridyl 

were determined (to the nearest 10 µM)  for each isolate from growth rate 

experiments where growth, in the presence of increasing concentrations of 2,2’-

dipyridyl, was followed spectrophotometrically at 660 nm. The optimum 

concentration of 2,2’-dipyridyl for each isolate was deemed to be the maximum 
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concentration at which a cell density of 0.8 OD660nm was achieved within a 12 h 

period. For outer membrane preparations after growth in iron-restricted 

conditions, liquid starter cultures were prepared by inoculating a few colonies 

into 15 ml volumes of BHIB and incubating overnight at 37°C with shaking at 120 

rpm. Eight hundred microlitres of overnight culture were used to inoculate a 2-

litre Ehrlenmeyer flask containing 400 ml of BHIB and the optimum final 

concentration of 2,2’-dipyridyl and incubated at 37°C with shaking at 120 rpm 

until an OD600nm of 0.8-0.9 was achieved (mid-log phase) or for 18 h (stationary 

phase). For outer membrane preparations under serum-supplemented 

conditions, liquid starter cultures were prepared by inoculating a few colonies 

into 15 ml volumes of BHIB and incubating overnight at 37°C with shaking at 120 

rpm. Six hundred microlitres of overnight culture were used to inoculate 1-litre 

Ehrlenmeyer flasks containing 300 ml of either (a) Dulbecco’s Modified Eagle 

Medium (DMEM) containing 4.5 g glucose/L, 110 mg sodium pyruvate/L and L-

glutamine (Sigma), (b) RPMI-1640 containing L-glutamine and NaHCO3 (Sigma) or 

(c) Medium 199 (M199) containing Earle’s salts and L-glutamine (Gibco), (d) 270 

ml of the three aforementioned media supplemented with 30 ml of either 

decomplemented (56 °C for 30 min) foetal calf serum (FCS) (Sigma) or sheep 

serum (SS) (Sigma), and (e) 300 ml of either complete decomplemented FCS, SS 

or newborn calf serum (NCS). The flasks were incubated at 37 °C with shaking at 

120 rpm until an OD600nm of 0.8-0.9 was achieved. For outer membrane 

preparations of bacteria after growth on solid surface agar, bacterial suspensions 

were prepared by resuspending 6-12 colonies in 3 ml of sterile PBS in a bijou. 

One hundred microlitres of this suspension was spread over each of 24 BHIA 

plates, or 24 BHIA plates supplemented with Congo red dye at 0.8 g/L (BHIACR) 

and incubated for 24 h at 37°C. Cells were scraped off with a sterile plastic 

inoculating loop and resuspended in 50 ml of 20 mM Tris, pH 7.2. For outer 

membrane preparations after growth in BHIB containing Congo red (BHIBCR), 

liquid starter cultures were prepared by inoculating a few colonies into 15 ml 

volumes of BHIB and incubating overnight at 37°C with shaking at 120 rpm. Eight 

hundred microlitres of overnight culture were used to inoculate a 2-litre 

Ehrlenmeyer flask containing 400 ml of BHIB supplemented with Congo red dye 

at 0.8 g/L (BHIBCR) and incubated at 37°C with shaking at 120 rpm until an 

OD600nm of 0.8-0.9 was achieved. For extracellular protein preparations, liquid 

starter cultures were prepared by inoculating a few colonies into 15 ml volumes 
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of BHIB and incubating overnight at 37°C with shaking at 120 rpm. Four hundred 

microlitres of overnight culture were used to inoculate a 1-litre Ehrlenmeyer 

flask containing 200 ml of BHIB in the absence or presence of the optimum final 

concentration of 2,2’-dipyridyl and incubated at 37°C with shaking at 120 rpm 

until stationary phase growth had been achieved (12 h and 18 h for iron-replete 

and iron-restricted growth, respectively). 

4.2.2 Preparation of OMPs. 

Outer membrane proteins were prepared by Sarkosyl extraction as previously 

described in section 2.2.10 

4.2.3 Preparation of extracellular proteins 

The extracellular proteins were prepared as described previously (Xia et al., 

2008, Nandakumar et al., 2006) with some modifications. Cells were removed by 

centrifugation at 10,000 × g for 20 min at 4°C. Forty millilitres of the clear 

supernatant were collected, passed through a 0.2 µm filter, mixed with an equal 

volume of ice cold 20% (w/v) TCA in acetone for 3 h at -20°C. The precipitate 

was collected by centrifugation at 5,500 × g for 20 min at 4°C. The precipitated 

protein pellet was washed twice with ice cold acetone to remove TCA and air-

dried. The final pellets were resuspended in approximately 500 µl of 20 mM 

Tris/HCl (pH 7.2). Fifty microlitre aliquots of these suspensions were transferred 

to separate tubes and their protein concentrations determined by the modified 

Lowry procedure. One hundred microlitre aliquots of the extracellular protein 

suspensions were adjusted to 4 mg/ml with 20 mM Tris/HCl (pH 7.2) and stored 

at -80°C. Eighty micrograms of each extracellular protein preparation were 

separated by 1-D SDS-PAGE 

4.2.4 Gel-based proteomic analysis of OMPs 

Twenty micrograms of each OMP preparation were separated by 1-D SDS-PAGE as 

previously described in section 3.2.4. Gel pieces were manually excised and 

digested with trypsin as previously described in 3.2.4. Peptides were analysed by 

LC-ESI MS/MS as previously described in section 3.2.7 using either the QSTAR XL 

Hybrid LC/MS/MS system or the Bruker amaZon ETD system (coupled to the 

Dionex UltiMate 3000 nano LC).  
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4.2.5 Gel-free proteomic analysis of OMPs 

Outer membrane fractions were directly digested with trypsin without prior 

separation by 1-D SDS-PAGE as previously described in 3.2.5. Peptides were 

analysed by LC-ESI MS/MS using the QSTAR XL Hybrid LC/MS/MS as previously 

described in section 3.2.5. 

4.2.6 Gel-based analysis of extracellular proteins 

Eighty micrograms of each extracellular protein preparation were separated by 

1-D SDS-PAGE as previously described in section 3.2.4. 

4.2.7 Gel band quantification 

Gel images were scanned using the GeneScan (Syngene) gel documentation 

system. Band quantification was performed using GeneTools (Syngene). 

4.3 Results 

4.3.1 Identification of M. haemolytica and M. glucosida OMPs which 

undergo changes in expression after growth in iron- restricted 

conditions. 

To understand how OMPs are involved in the adaptation of M. haemolytica and 

M. glucosida to the low levels of free iron in the host respiratory tract, 

representative isolates were grown in the presence of 2,2’-dipyridyl, an iron-

chelating agent that has been used in several previous studies to create iron-

restricted conditions (Paustian et al., 2001, Merrell et al., 2003, McHugh et al., 

2003, Klitgaard et al., 2010, Roehrig et al., 2007). In order to obtain sufficient 

cells for outer membrane extraction, a concentration of 2,2’-dipyridyl was 

chosen for each representative isolate that gave significant growth-rate 

reduction (indicating iron-restriction), but which still allowed the growth of 

relatively high cell numbers. These were determined by following the growth of 

each representative isolate spectrophotometrically at 660 nm in BHIB in the 

presence of increasing concentrations of 2,2’-dipyridyl until a concentration had 

been reached that still allowed mid-log phase growth (OD660nm 0.8-0.9) to be 

achieved within 12 h. As has been noted previously in M. haemolytica (Davies et 

al., 1992), growth of each representative isolate was inhibited within a very 
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narrow range of concentrations. Interestingly, the different isolates displayed a 

broad range of tolerances towards growth in the presence of 2,2’-dipryridyl (Fig. 

4.1). The seven M. haemolytica isolates grew to mid-log phase within 12 h at 

2,2’-dipryridyl concentrations ranging between 120 and 245 µM; the M. glucosida 

isolate grew to mid-log phase within 12 h at a 2,2’-dipryridyl concentration of 

310 µM (Table 4.1). OMP profiles of these isolates grown to mid-log phase in iron 

replete BHIB (Fig. 4.2A) were compared with those of the same isolates grown in 

presence of the optimum concentrations of 2,2’-dipryridyl (Fig. 4.2B). 

In comparison to growth in iron-replete BHIB (Fig. 4.2A), the OMP expression 

profiles of all isolates were dramatically altered after growth in iron-restricted 

BHIB (Fig. 4.2B). In particular, upregulation of several high molecular mass 

proteins was observed. A total of 72 unique proteins were identified among the 

outer membrane fractions of the representative isolates after growth in iron-

restricted BHIB using a combination of gel-based and gel-free approaches (Table 

4.2). Fifty-nine of these proteins were previously identified in the previous 

chapter after growth in iron-replete BHIB, and included 38 OMPs, 5 proteins of 

unknown location, and 16 proteins predicted to be localised to cellular 

compartments other than the outer membrane. The other 13 proteins were not 

previously identified under growth in iron-replete BHIB and are possible 

virulence-associated proteins. Eight of these proteins were confidently predicted 

to be OMPs and included a putative haemin receptor, LamB (the substrate-

specific maltoporin), FhuA (a putative ferrichrome receptor), autotransporter 

MHA_0080/COI_1870/ COK_0773 (function unknown), EcnA (possibly involved in 

programmed cell apoptosis), HmbR2 (a putative haemoglobin receptor), HxuA (a 

putative haemophore involved in haem-haemopexin uptake) and Iga1_4 (an Iga1-

like protease). The subcellular localisations of two identified proteins with 

unknown functions (hypothetical protein MHA_1307/COI_1292/COK_0162 and 

lipoprotein MHA_2737/COI_0543/COK_2363) could not be confidently 

determined. The remaining three identified proteins (PenP, NqrC and RpsP) were 

predicted to be localised to cellular compartments other than the outer 

membrane. 

The expression of several OMPs was increased in all eight representative isolates 

after growth in iron-restricted BHIB compared to iron-replete BHIB. There was a 

1.1- to 5.1-fold increase in the expression of TbpA (number 17; Fig 4.2B) among  
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Figure 4.1 . Growth curves of seven M. haemolytica isolates and one M. 

glucosida isolate in BHIB in the absence or presence of vari ous 

concentrations of the iron chelator 2,2’-dipyridyl.  
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Table 4.1. Properties of seven representative M. haemolytica isolates and 

one M. glucosida (PH344) isolate, and the final 2,2’-dipyridyl 

concentrations used to create iron-restricted growt h conditions 

for each isolate. 

 

Isolate 
Animal 

host 

Electro-
phoretic 

type 

Capsular 
serotype 

OMP 
type 

Disease 
status 

2,2’-dipryridyl 
concentration 

(mM) 

M. haemolytica       

PH2 Bovine  1 A1 1.1.1 Pneumonia 160 

PH8 Ovine 6 A1 1.2.1 Pneumonia 200 

PH202 Bovine  21 A2 2.1.2 Healthy 170 

PH278 Ovine 21 A2 2.2.2 Pneumonia 120 

PH292 Ovine 22 A2 2.2.1 Pneumonia 175 

PH296 Ovine 12 A7 3.1.1 Pneumonia 245 

PH588 Ovine 15 A13 3.3.2 Pneumonia 190 

M. glucosida       

PH344 Ovine N/A A11 3.2.2 Septicaemia 310 
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Figure 4.2. One-dimensional SDS-PAGE separation of outer membrane fractions from seven M. haemolytica isolates and one M. 

glucosida isolate after growth to mid-log phase in (A) iron-r eplete and (B) iron-restricted BHIB.  

Numbered proteins were subsequently identified by proteomic analysis (Table 4.2).  

A B 
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Table 4.2. Proteins identified in the outer membran e fractions of seven representative isolates of M. haemolytica and one 

isolate of M. glucosida (PH344) after mid-log phase growth in iron-restric ted BHIB using a combination of gel-based 

and gel-free proteomic approaches. 

                                  Protein identifications d   

No.a Sub. Local. b TMc Lipo c Bovine A1 Ovine A2 Bovine A2 Name   P
H

2 

  P
H

8 

 P
H

20
2 

 P
H

27
8 

 P
H

29
2 

 P
H

29
6 

 P
H

34
4 

 P
H

58
8 

1. Proteins previously identified in iron-replete B HIB                   

1 OM +/− − MHA_1054 COI_1980 COK_0402 OmpA +2 +2 +2 +2 +2 +2 +2 +2   

2 OM + − MHA_0691 COI_1174 COK_1967 Omp85  + + + + + + +2 +   

3 OM + − MHA_0291 COI_2627 COK_0922 Imp/LptD + + + + + + + +   

4 OM + + MHA_1410 COI_0732 COK_0022 TolC + + + + + + +1 +   

5 OM − + MHA_0263 COI_2595 COK_1835 Pal +2 +2 +2 +2 +2 +2 +2 +2   

6 OM + − MHA_2492 COI_0850 COK_2411 Ssa + + + +1 + + + +   

7 OM + − MHA_0639 COI_1221 COK_2014 OmpP1/FadL + + + + + + +2 +   

8 OM − + MHA_1433 COI_0758 COK_0049 PlpA +2 +2 +2 +2 − − +2 +2   

9 OM + + MHA_0527 COI_1313 COK_0141 Wza +2 +2 +2 +2 − +2 − −   

10 OM + − MHA_0486 COI_0902 COK_2254 Possible OMP +1 +1 +1 +1 +1 +1 +1 +1   

11 OM + − MHA_1793 COI_0051 COK_2166 OmpP2-like − − +2 +2 +2 +2 − +2   

12 OM + − MHA_2109 COI_0085 COK_0218 FrpB + + + + + + + +   

Proteins that were bioinformatically predicted to be putative OMPs are grey-shaded. 
aNumbers correspond to the location of the protein in Figure 4.2B if identified by gel-based proteomics. 
bConfidently predicted subcellular locations; 'OM' = outer membrane; 'P' = periplasm; 'IM' = inner membrane; 'C' = cytoplasm; 'E' = extracellular; 'U' = unknown 
cTransmembrane β-barrel and lipoprotein prediction result; '+' = predicted in all genomes; '−' = not predicted in any genome; '+/−' = predicted in one/two 
genomes (see Supplementary Tables S3.1, S3.2 and S3.3 for specific result). 
dTwo proteomics methods were compared; '+1' = proteins identified by gel-based method; '+2' = proteins identified by gel-free method; '+' = proteins identified 
by both methods; '−' = no identification. 
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Table 4.2.  (continued) 

                                    Protein identifications   

No. Sub. Local.  TM Lipo Bovine A1 Ovine A2 Bovine A2 Name   P
H

2 

  P
H

8 

 P
H

20
2 

 P
H

27
8 

 P
H

29
2 

 P
H

29
6 

 P
H

34
4 

 P
H

58
8 

13 OM − + − COI_1456 COK_1118 Rickettsia-like antigen +2 +2 +2 +2 +2 +2 +2 +2 

14 OM   MHA_0704 COI_1162 COK_1955 LemA − − − − +2 − − − 

16 OM − + MHA_2152 COI_0845 COK_2238 Lpp38 +2 +2 +2 − +2 +2 − +2 

17 OM + − MHA_0196 COI_2333 COK_1753 TbpA + + + +1 + + + + 

18 OM − + MHA_2837 COI_1320 COK_1388 VacJ − − − +2 +2 − − − 

19 OM − − MHA_2237 COI_2485 COK_1303 OMP18/16 − − − +2 − +2 − − 

20 OM − + MHA_2158 COI_0840 COK_2233 OmpP4 +2 − − − − − +2 +2 

21 OM − + − COI_0336 COK_2129 YajG +2 +2 +2 − +2 − − +2 

22 OM + − MHA_0323 COI_0250 COK_0133 YtfM +1 − − − − − − − 

25 OM − + MHA_2282 COI_2279 COK_1699 HlpB +2 − − − +2 +2 − − 

26 OM − + MHA_1514 COI_1139 COK_0733 PlpE + +2 +2 − +2 − − +2 

28 IM/P/OM   MHA_1007 COI_1369 COK_1206 HbpA − + + +2 +2 +1 − +2 

29 OM + − MHA_0735 ctg112 COK_1380  OmpP2  + +1 − − − +2 − + 

30 OM + − MHA_1532 COI_0667 COK_1504 NanH + + +1 + +1 − − +1 

33 OM − + MHA_0669 COI_1194 COK_1987 RlpB/LptE +2 − − +2 − − − − 

34 OM − +/− MHA_1464 COI_0386 COK_1074 PlpD +2 +2 − − − − − +2 

35 OM − + MHA_0242 COI_0470 COK_0285 MltC − +2 − − − − − − 

38 OM − + MHA_1435 COI_0760 COK_0051 PlpC +2 +2 − − − − − − 

40 OM − + MHA_1133 COI_1670 COK_0590 MltA +2 +2 − − − − − − 

41 OM − − MHA_2399 COI_1652/3 COK_1583/4 OmpW − − − − − +1 +1 − 
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Table 4.2.  (continued) 

                                    Protein identifications   

No. Sub. Local. TM Lipo Bovine A1 Ovine A2 Bovine A 2 Name   P
H

2 

  P
H

8 

 P
H

20
2  

 P
H

27
8 

 P
H

29
2 

 P
H

29
6 

 P
H

34
4 

 P
H

58
8 

44 OM − − MHA_0860 COI_1565 COK_2304 TBDR − − − − − +1 − − 

45 OM − − MHA_2261 COI_2258 COK_1624 HmbR1 + + + +1 + + + + 

46 OM + − MHA_1005 COI_1367 COK_1209 HxuB − + + + + + − + 

47 OM   MHA_2702 COI_1630 COK_1108 OapA − +2 − − − − − +2 

48 OM +/− + MHA_0197 COI_2332 COK_1752 TbpB +2 + +2 − − +2 +2 +2 

51 OM + − ctg59 COI_1368 COK_1207/8 HxuC − + + + + + − + 

56 U + + MHA_2025 COI_1815 COK_2485 Hypothetical protein +2 +2 +2 +2 +2 +2 +2 +2 

57 U   MHA_2087 COI_1609 COK_1902 Hypothetical protein +2 +2 − − − − − − 

58 U   MHA_1782 COI_0313 COK_0888 Hypothetical protein − − − +2 − − − − 

59 U − + MHA_0761/2 COI_1052 COK_0436 Hypothetical protein − − − − − − +2 − 

63 U   MHA_1898 COI_0630 COK_1217 LysM domain protein − +2 − − − − − − 

67 P + − MHA_0371 COI_1485 COK_0985 AcrA_1 +2 − − − − − − + 

68 IM   MHA_1448 COI_0774 COK_0064 YajC +2 +2 +2 +2 − +2 − − 

69 IM   MHA_1228 COI_1149 COK_1941 PntA +2 +2 +2 − − − − − 

70 C   MHA_2176 COI_1521 COK_1096 EF1A +2 − − − − − − − 

71 C   MHA_1682 COI_0958 COK_1425 RplB +2 +2 − − − − − +2 

73 IM   MHA_0370 COI_1486 COK_0984 AcrB − − − +2 − − − − 

74 C   MHA_1040 COI_1994 COK_0388 RplA − +2 − − − − − − 

75 C   MHA_1552 COI_0122 COK_2061 RplT +2 − − − − − − − 

78 C     MHA_0315 COI_0240 COK_0123 RpsB − − − − − − − +2 
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Table 4.2.  (continued) 

                                    Protein identifications   

No. Sub. Local.  TM Lipo Bovine A1 Ovine A2 Bovine A2 Name   P
H

2 

  P
H
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 P
H

20
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 P
H

27
8 

 P
H

29
2 

 P
H

29
6 

 P
H

34
4 

 P
H
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8 

80 IM   ctg147 COI_1296 COK_0158 GlpT +2 − − − − − − − 

81 C   MHA_2378 COI_1451 COK_1123 RplE − +2 − − − − − − 

84 C   MHA_2364 COI_1437 COK_1137 RplQ − − +2 − − − − − 

87 E + − MHA_0254 COI_0481 COK_0274 LktA +2 − − − − − − − 

89 IM   MHA_1656 COI_1498 COK_0973 GltP +2 +2 − − − − − +2 

95 C   MHA_0822 COI_0990 COK_0963 RpsA +2 − − − − − − − 

97 C   MHA_0991 COI_1354 COK_2591 RpmB +2 − − − − − − − 

2. Proteins identified exclusively in iron-restrict ed BHIB           

99 OM + − ctg61 COI_2252/3 COK_1629/30 Haemin receptor − +1 + − − +1 +2 −   

100 OM + − MHA_0232 COI_2297 COK_1718 LamB − − − + + − − +1   

101 OM + − ctg68 COI_1905 COK_2465 FhuA − − − − + +1 +2 −   

102 OM  + − MHA_0080 COI_1870 COK_0773 Autotransporter − +1 − +1 +1 − − −   

103 OM − + − COI_0131 COK_2070 EcnA − − +2 − − − − −   

104 OM + − ctg86 COI_1762/3 COK_2539/40 HmbR2 − − − − − − +2 −   

105 OM/E − + MHA_1004 COI_1366 COK_1210 HxuA − +1 − − − − − −   

106 OM + − − COI_0585/6 COK_1280/81 Iga1_4 − − − − − − +1 −   

107 U − + MHA_2737 COI_0543 COK_2363 Lipoprotein − +2 − − − − − −   

108 U   MHA_1307 COI_1292 COK_0162 Hypothetical protein − +2 − − − − − −   

109 E   − − − PenP +2 − − − − − − −   

110 IM     MHA_2767 COI_0571 COK_2335 NqrC +2 − − − − − − −   
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Table 4.2. (continued) 

 

                                    Protein identifications   

No. Sub. Local.  TM Lipo Bovine A1 Ovine A2 Bovine A2 Name 
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111 C     MHA_2535 COI_1411 COK_1164 RpsP − +2 − − − − − − 

       Total number of proteins identified 42 43 29 28 27 28 22 32 

        Total number of OMPs identified  27 31 25 24 26 26 20 27 
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M. haemolytica isolates and a 23-fold increase in the M. glucosida isolate PH344. 

Expression changes in TbpB could not be quantified due to its close proximity to 

other proteins on the 1-D SDS PAGE gel; however, it was identified in six isolates 

after growth in iron-restricted BHIB whereas it was identified in only one isolate 

after growth in iron-replete BHIB. There was a 4.6 to 14.8-fold increase in the 

expression of the putative haemoglobin receptor HmbR1 (number 45, Fig. 4.2B) 

among M. haemolytica isolates and an 18.8-fold increase in the M. glucosida 

isolate. Another putative haemoglobin receptor, HmbR2, was also identified by 

the gel-free approach in the M. glucosida isolate PH344 that had not been 

previously identified after growth in iron-replete BHIB [although transcripts of 

the gene encoding this protein were previously shown to be upregulated in a 

bovine serotype A1 M. haemolytica isolate under iron-restriction (Roehrig et al., 

2007)]. In the previous chapter, the putative siderophore receptor FrpB was 

identified in a protein band of approximately 69 kDa in all eight representative 

isolates after growth in iron-replete BHIB (number 12; Fig 4.2A). After growth in 

iron-restricted BHIB, expression of FrpB (number 12; Fig 4.2B) increased 11.8- 

and 14.6-fold in isolates PH2 and PH344, respectively. FrpB was also identified in 

the other six isolates but other proteins were identified alongside it including 

HxuC, haemin receptor, FhuA and autotransporter MHA_0080/COI_1870/ 

COK_0773. Despite the presence of these other proteins, FrpB was consistently 

identified with the high protein scores and emPAI values, indicating that it is a 

predominantly expressed protein in these bands. 

HxuB and HxuC, the outer membrane components of a putative haem-

haemopexin uptake system, were identified by both gel-free and gel-based 

proteomic approaches in all isolates except for the bovine serotype A1 M. 

haemolytica isolate PH2 and the M. glucosida isolate PH344. Expression of a 

band containing HxuB (number 46; Fig. 4.2B) increased 3.5- to 17.4-fold among 

these isolates. The putative haem/glutathione transporter HbpA (number 28; 

Fig. 4.2B) was also identified in the same protein band as HxuB in isolates PH8, 

PH202 and PH296 but at much lower protein scores and emPAI values than HxuB, 

indicating that HxuB is the predominantly expressed protein in these bands. The 

expression change in HxuC (number 46; Fig. 4.2B) could not be quantified due to 

its close proximity to other proteins, including FrpB, on the 1-D SDS-PAGE gel. 
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HxuA (number 105; Fig. 4.2B) was identified only in isolate PH8 in a very faint 

protein band.  

Expression of a protein band that contained the putative fatty acid transporter 

FadL (number 7; Fig 4.2B) increased 1.8-, 1.4-, 2.6-, and 3.9-fold in serotype A2 

isolates PH202, PH278, PH292 and in serotype A7 isolate PH296, respectively, 

after mid-log phase growth in iron-restricted BHIB. Possible OMP 

MHA_0486/COI_0902/COK_2252 (number 10; Fig 4.2B) was also identified in the 

same protein band as FadL in the seven M. haemolytica isolates but at much 

lower protein scores and emPAI values than FadL, indicating that FadL is the 

predominantly expressed protein in these bands. Interestingly, after growth to 

stationary phase in iron-restricted BHIB this protein band was expressed at levels 

below that observed after mid-log phase growth in iron-replete BHIB in all 

isolates (Supplementary Fig. S4.1), indicating a more important role for FadL 

during mid-log phase iron-restricted growth than at stationary phase. 

There was a 2.4-, 2.2-, 1.4- and 1.8-fold increase in the expression of the porin 

OmpP2 (number 29; Fig. 4.2B) in isolates PH2, PH8, PH296 and PH588, 

respectively. This protein was found to be absent from the outer membranes of 

serotype A2 isolates PH202, PH278, PH292 and M. glucosida isolate PH344 after 

growth in iron-replete BHIB, and was still absent in the present study after 

growth in iron-restricted BHIB. This is consistent with the finding that the ompP2 

gene is either absent or truncated in serotype A2 isolates (Lawrence et al., 

2010a). Expression of the other major porin OmpP2-like (number 11; Fig. 4.2B) 

was relatively unchanged in all isolates. 

A 157 kDa protein band that was not previously identified under iron-replete 

conditions in any of the representative isolates was present exclusively in M. 

glucosida isolate PH344 under iron-restricted conditions. This protein was 

identified as Iga1_4 by gel-based proteomics (number 106; Fig 4.2B), and 

represents the first Iga1-like protease identified in M. glucosida.  



 

 147 

4.3.2 Identification of M. haemolytica OMPs which u ndergo changes in 

expression after growth in serum-supplemented tissu e culture media 

and complete serum. 

During an M. haemolytica infection, fibrinous exudate leaks into the lungs as a 

result of vascular and pulmonary damage to host tissue. In order to determine 

what influence this exudate may have on the expression of OMPs in the 

pneumonic lung, M. haemolytica outer membranes were extracted from four M. 

haemolytica isolates (PH2, PH8, PH202 and PH278) after growth in tissue culture 

media in the presence or absence of serum (which has a composition similar to 

that of lung exudate). Fig. 4.3 shows the OMP profiles of the bovine (PH2) and 

ovine (PH8) serotype A1 isolates (Fig. 4.3A) and the bovine (PH202) and ovine 

(PH278) serotype A2 isolates (Fig. 4.3B) after growth to mid-log phase in DMEM 

in the absence or presence of either 10% FCS or SS. Outer membranes were also 

extracted after growth in M199 and RPMI in the absence or presence of 10% FCS 

or SS, and also in complete FCS, SS and NCS (Supplementary Figures S4.2 and 

S4.3). A total of 103 unique proteins were identified among the four isolates 

under all growth conditions using a combination of gel-based and gel-free 

proteomic approaches (Table 4.3). Sixty of these proteins were previously 

identified after growth in iron-replete BHIB, and included 42 OMPs, 3 proteins of 

unknown location, and 15 proteins predicted to be localised to cellular 

compartments other than the outer membrane. The remaining 43 proteins that 

were not previously identified after growth in iron-replete BHIB included five 

OMPs, seven proteins of unknown location, and 31 proteins predicted to be 

localised to cellular compartments other than the outer membrane. The five 

OMPs were the haemin receptor, LamB, Hsf (a putative adhesin/serum-

resistance protein), PlpB (function unknown), and possible OMP 

MHA_0862/COI_1567/COK_2302 (function unknown). Both the haemin receptor 

and LamB had been previously identified after growth in iron-restricted BHIB. 

Possible OMP MHA_0862/COI_1567/COK_2302 was identified in isolates PH2, PH8 

and PH202 after growth in DMEM alone, and also in isolate PH202 after growth in 

RPMI alone. PlpB and Hsf were the only OMPs that were identified exclusively 

after growth in the presence of serum. PlpB was identified in the bovine isolates 

PH2 and PH202 only after growth in complete FCS.  
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Figure 4.3. One-dimensional SDS-PAGE separation of outer membrane 

fractions from (A) bovine (PH2) and ovine (PH8) ser otype A1 M. 

haemolytica isolates, and (B) bovine (PH202) and ovine (PH278) 

serotype A2 M. haemolytica isolates after growth in DMEM only, 

DMEM + 10% FCS and DMEM + 10% SS.  

OMP profiles after growth in iron-replete and iron-restricted BHIB 

are also shown for comparison. Numbered proteins were 

subsequently identified by proteomic analysis (Table 4.3). Twenty 

micrograms of protein were loaded into each lane. Protein bands 

were stained with Coomassie brilliant blue. 

 

B 

A 
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Table 4.3. Proteins identified in the outer membran e fractions of four M. haemolytica isolates (PH2, PH8, PH202 and PH278) 

after growth in DMEM, RPMI and M199 in the absence of presence of 10% FCS or SS, and in total FCS, SS and NCS. 

 
 

Proteins that were bioinformatically predicted to be putative OMPs are grey-shaded. 
aNumbers correspond to the location of the protein in Figure 4.3 if identified by gel-based proteomics. 
bConfidently predicted subcellular locations; 'OM' = outer membrane; 'P' = periplasm; 'IM' = inner membrane; 'C' = cytoplasm; 'E' = extracellular; 'U' = 
unknown. 
cTransmembrane β-barrel and lipoprotein prediction result; '+' = predicted in all genomes; '−' = not predicted in any genome; '+/−' = predicted in one/two 
genomes. 
dTwo proteomics methods were compared; '+1' = proteins identified by gel-based method; '+2' = proteins identified by gel-free method; '+' = proteins 
identified by both methods; '−' = no identification. 
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Table 4.3. (continued) 
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Table 4.3. (continued) 
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Table 4.3. (continued) 
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Table 4.3. (continued) 
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Table 4.3. (continued) 
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Hsf was identified only in ovine serotype A1 isolate PH8 after growth in RPMI + 

10% FCS, M199 + 10% FCS and complete NCS.  

Of the seven identified proteins that were of unknown location, lipoprotein 

MHA_2737/COI_0543/COK_2363 was the only one to be identified only under 

growth conditions containing serum. It was identified only in isolate PH8 after 

growth in M199 containing 10% FCS and also in complete FCS. The remaining six 

proteins were identified either in tissue culture media or both tissue culture 

media and serum-supplemented media. 

Three of the 31 identified proteins predicted to be localised to cellular 

compartments other than the outer membrane were identified only under 

growth conditions containing serum: PenP, MglC and UraA. PenP, a penicillinase, 

was identified in isolate PH2 after growth in complete FCS; this protein was also 

identified in the same isolate after growth under iron-restricted conditions. MglC 

and UraA, inner membrane proteins involved in galactose and uracil transport, 

respectively, were identified in isolates PH2, PH8 and PH202 only after growth in 

serum-supplemented conditions. 

In the four isolates examined, growth in DMEM resulted in OMP profiles that were 

similar to those observed after growth in iron-restricted BHIB. This is most likely 

due to the fact that iron in DMEM is available only in the form of ferric nitrate 

(Conrad, 2007) and is not a favourable iron source for M. haemolytica. In 

serotype A1 isolate PH8, growth in DMEM supplemented with FCS or SS resulted 

in an OMP profile which resembled that observed after growth in iron-replete 

BHIB (Fig 4.2A). This suggests that isolate PH8 is able to acquire iron from serum 

of both cattle and sheep. A similar observation was made for isolate PH2, 

although some iron-acquisition proteins including TbpA and FrpB are still 

expressed at higher levels after growth in the presence of serum from either 

animal compared to growth in iron-replete BHIB. In the serotype A2 isolates, it 

appears that there is a correlation between the host of origin and the ability to 

acquire iron more readily from serum of the same host. In the bovine serotype 

A2 isolate (PH202), the protein band containing the putative siderophore 

receptor FrpB (number 12; Fig. 4.3) is expressed at higher levels after growth in 

the presence of SS than that of FCS, indicating a greater ability to acquire iron 

from serum of cattle than sheep. Conversely, in the ovine serotype A2 isolate 
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(PH278), the protein band containing the FrpB protein is expressed at a higher 

level after growth in the presence of FCS than that of SS, indicating a greater 

ability to acquire iron from serum of sheep than cattle. This is particularly 

interesting considering that PH202 and PH278 belong to the same ET and are 

identical in terms of their housekeeping genes.  

In a previous study, a 98 kDa protein band was identified in the OMP profiles of 

two M. haemolytica isolates after growth in NCS (Davies et al., 1992), although 

the identity of this protein was not determined. Furthermore, expression of this 

protein was not repressed after the addition of FeCl3 to the NCS, indicating that 

its expression was not iron-regulated (Davies et al., 1992). In the present study, 

this protein was identified as the leukotoxin protein LktA (number 87; Fig. 4.3). 

It was identified in a 98 kDa protein band in isolates PH2, PH8 and PH202 after 

growth in tissue culture media containing 10% SS and in complete NCS by gel-

based proteomic analysis. It was also identified in isolates PH278 by gel-free 

proteomic analysis under the same growth conditions.  

4.3.3 Identification of M. haemolytica and M. glucosida OMPs which 

undergo changes in expression after growth on solid -surface BHIA in 

the absence or presence of Congo red dye. 

In order to identify OMPs that are potentially involved in mediating surface-

associated growth and possible biofilm formation, the OMP profiles of the eight 

representative isolates were examined after 24 h growth on BHIA (Fig. 4.4). The 

OMP profiles were not too dissimilar to that observed after growth in iron-

replete BHIB (Fig. 4.2A). Several iron-acquisition OMPs were identified including 

HmbR1, HxuB and HxuC, although they were expressed at lower levels than that 

observed after growth in iron-restricted BHIB. Expression of these OMPs is most 

likely due to locally available iron being depleted by high cell densities and also 

the slower diffusion of this nutrient through solid medium compared to liquid 

medium. Gel-based proteomic analysis revealed no new proteins identified in 

any of the isolates that had not been identified in iron-replete or iron-restricted 

BHIB.  
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Figure 4.4. One-dimensional SDS-PAGE separation of outer membrane 

fractions from seven M. haemolytica isolates and one M. 

glucosida isolate after growth on BHIA for 24 h.  

Numbered proteins were subsequently identified by proteomic 

analysis. Twenty micrograms of protein were loaded into each lane. 

Protein bands were stained with Coomassie brilliant blue. 
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Gel-free proteomic analysis resulted in poor coverage of identified proteins and 

was therefore not included. 

The seven M. haemolytica isolates and the M. glucosida isolate were grown on 

BHIA supplemented with 0.8 g/L Congo red (BHIACR). Within 24 h, in all isolates, 

the agar surrounding areas of growth had turned from red to black and there 

were black dots in the centres of individual colonies (Fig. 4.5). However, after 

incubation between 48 and 72 h the colonies turned a deep red colour, 

suggesting that it was only the underlying agar that turned black within 24 h and 

not the colonies themselves.  

To determine any physiological effect that Congo red might be having on OMP 

expression, outer membrane fractions were extracted after 24 h growth on 

BHIACR. Outer membrane protein profiles were virtually identical to those 

observed after growth on BHIB (Fig. 4.4), except for the presence of previously 

unseen protein bands in the upper molecular mass region of the gel (Fig. 4.6). 

Two protein bands were present at 131 and 135 kDa in all M. haemolytica 

isolates but not in the M. glucosida isolate. Iga1_1 (number 151; Fig. 4.6) and 

Iga1_2 (number 24; Fig. 4.6) were identified in these bands in one and six 

isolates, respectively, but given the close proximity of the bands it was not 

possible to determine which protein was contained in which protein band. 

Another OMP, the putative filamentous haemagglutinin FhaB_1 (number 150; Fig. 

4.6), was identified in a 159 kDa protein band in isolate PH8. Iga1_3 (number 39; 

Fig. 4.6) was also identified at 146 kDa in isolates PH292 and PH588. This protein 

had been identified in the previous chapter in isolates PH202, PH278 and PH296 

after growth in iron-replete BHIB. The Iga1_1, Iga1_2 and FhaB_1 proteins were 

also visible when isolates were grown in BHIB supplemented with Congo red dye 

(Fig. 4.6) indicating that expression of these OMPs is dependent on the presence 

of Congo red dye and not on solid-surface growth. 
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Figure 4.5. Colony phenotypes of seven M. haemolytica isolates and one M. 

glucosida isolate after growth on BHIA CR for 18, 24, 48 and 72 h. 
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Figure 4.6. One-dimensional SDS-PAGE separation of outer membrane 

fractions from seven M. haemolytica isolates and one M. 

glucosida isolate after growth on BHIA CR for 24 h. The OMP 

profiles of M. haemolytica isolate PH2, PH8, PH202 and PH278 

after growth to mid-log phase in BHIB CR are also shown.  

Twenty micrograms of protein were loaded into each lane. Protein 

bands were stained with Coomassie brilliant blue. 
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4.3.4 Comparison of OMPs identified among different  growth conditions. 

A total of 55 OMPs were identified in the previous chapter after growth in iron-

replete BHIB. In the present study, a further thirteen OMPs were identified using 

a range of different growth conditions (Fig 4.7; Table 4.4). Six OMPs (FhuA, 

autotransporter MHA_0080/COI_1870/COK_0773, EcnA, HmbR2, HxuA and 

Iga1_4) were identified exclusively after growth in iron-restricted BHIB. Possible 

OMP MHA_0862/COI_1567/COK_2302 was identified exclusively after growth in 

tissue culture media alone. Two OMPs (Hsf and PlpB), were identified exclusively 

after growth in media containing serum. The haemin receptor was identified 

after growth in both iron-restricted BHIB and tissue culture media alone. The 

maltoporin LamB was identified after growth in iron-restricted BHIB, tissue 

culture media only and in media containing serum. Iga1_1 and FhaB_1 were 

identified exclusively after growth in the presence of Congo red dye (not shown 

in Fig. 4.7).  

4.3.5 Extracellular protein expression after growth  in iron-replete and iron-

restricted BHIB. 

The present work has provided evidence to suggest that proteolytic cleavage 

occurs in the passenger domains of OMPs such as Iga1_2 and Ssa. Furthermore, 

the finding that HxuA is only present in the outer membrane of one isolate after 

growth in iron-restricted BHIB suggests that it is a secreted protein. To identify 

these proteins in the extracellular medium and gain an understanding of the 

overall extracellular subproteome of M. haemolytica, proteins from cell-free 

culture supernatants were precipitated and analysed by 1-D SDS-PAGE after 

growth to stationary phase in iron-replete (Fig. 4.8A) and iron-restricted (Fig. 

4.8B) BHIB. Supernatants from stationary phase growth were used because only 

limited protein was obtained from supernatants after growth to mid-log phase 

(results not shown). This finding is consistent with what has been observed for 

extracellular proteins of other bacteria in the stationary phase (Voigt et al., 

2006, Gohar et al., 2002, Xia et al., 2008, Kim et al., 2005). Similar to OMP 

expression profiles, the extracellular protein profiles of the representative 

isolates differ considerably after growth in iron-restricted BHIB compared to 

iron-replete BHIB. Proteins have not yet been identified by proteomic 

approaches, but will be in future experiments. 
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Figure 4.7. Distribution of 66 OMPs identified by p roteomic approaches 

after growth in iron-replete BHIB (grey shaded), ir on-restricted 

BHIB, tissue culture media only and/or media contai ning serum. 
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Table 4.4. Names and putative functions of OMPs tha t were identified under different growth conditions  that were not identified 

after growth in iron-replete BHIB. 

No.a Name Function 
Iron-restricted 

BHIB 
Tissue culture 

media only 
Media 

containing sera BHIA CR 

99 Haemin receptor Haemin receptor + + − − 

100 LamB Maltoporin transport + + + − 

101 FhuA Ferric hydroxamate receptor + − − − 

102 Autotransporter Unknown + − − − 

103 EcnA/B  Programmed cell apoptosis + − − − 

104 HmbR2 Haemoglobin receptor + − − − 

105 HxuA Haem-haemopexin acquisition + − − − 

106 Iga1_4 Cleavage of host mucosal antibody + − − − 

112 Possible OMP Unknown − + − − 

113 Hsf Adherence/serum resistance − − + − 

114 PlpB Unknown − − + − 

150 FhaB_1 Adherence  − − − + 

151 Iga1_1 Cleavage of host mucosal antibody − − − + 
aNumbers correspond to the location of the protein in Figures 4.2, 4.3, 4.4 and 4.6 if identified by gel-based proteomics. 
'+' = identified in at least one isolate; '−' = not identified in any isolates.
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Figure 4.8.  One-dimensional SDS-PAGE separation of extracellula r proteins from seven M. haemolytica isolates and one M. 

glucosida isolate after growth to stationary phase in (A) iro n-replete and (B) iron-restricted BHIB.  

Eighty micrograms of protein were loaded into each lane. Protein bands were stained with Coomassie brilliant blue. 

 B A 
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4.4 Discussion 

In the present study, the OMP expression profiles of seven representative M. 

haemolytica isolates and one M. glucosida isolate were examined after growth 

under several in vitro conditions designed to mimic the in vivo pneumonic lung 

microenvironment. Subsequently, a combination of proteomic approaches were 

used to identify new OMPs and determine which OMPs were differentially 

expressed under these conditions, indicating potential roles in virulence and 

host-specificity. 

Growth in iron-restricted conditions 

Firstly, the tolerances of the representative isolates to growth in increasing 

concentrations of the iron chelator 2,2’-dipyridyl were examined in order to 

determine the maximum concentration at which each isolate could grow to mid-

log phase. Interestingly, isolates PH2 and PH278, which represent groups of 

pathogenic isolates that cause the majority of disease cases in cattle and sheep, 

respectively, tolerated the lowest levels of 2,2’-dipyridyl (160 and 120 µM, 

respectively). One might expect that the most pathogenic isolates would be able 

to tolerate higher levels of 2,2’-dipyridyl than weakly pathogenic isolates. Also, 

notably, the weakly pathogenic M. glucosida isolate was able to grow at the 

highest concentration of 2,2’-dipyridyl (310 µM). These findings suggest that the 

ability to tolerate increasing concentrations of 2,2’-dipyridyl could be inversely 

correlated with virulence in these species.  

Under iron-restricted growth conditions, eight OMPs were identified that were 

not previously identified under growth in iron-replete BHIB. These were a 

haemin receptor, LamB, FhuA, autotransporter MHA_0800/COI_1870/COK_0773, 

EcnA, HmbR2, HxuA and Iga1_4. The haemin receptor and putative haemoglobin 

receptor HmbR2 have been described previously in a bovine M. haemolytica 

isolate after iron-restricted growth (Roehrig et al., 2007). LamB is a putative 

maltoporin involved in substrate-specific uptake of maltodextrins. The 

autotransporter contains a C-terminal translocator domain that is characteristic 

of other autotransporters but its function is currently unknown. EcnA, shares 45% 

amino acid identity with the EcnA protein of E. coli. In E. coli, the ecnA and 

ecnB genes comprise the two-gene entericidin locus, whereby EcnB ‘the toxin’ 
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and EcnA ‘the antitoxin’ contribute programmed cell apoptosis (Bishop et al., 

1998). During the course of balanced growth, EcnB is constantly neutralised by 

EcnA; however, metabolic changes brought about by nutrient stress disturbs this 

balance and EcnB ‘poisons’ the cell, allowing surviving cells to use the lysis 

products for nourishment. A counterpart EcnB protein was not predicted in M. 

haemolytica genomes by bioinformatics, therefore it can only be speculated as 

to whether M. haemolytica EcnA functions in a similar manner to E. coli EcnA. 

Iga1_4 was identified exclusively in M. glucosida and represents the first Iga1-

like protease to be identified in this species under iron-restricted conditions. 

Members of this protein family were identified in the previous chapter in all M. 

haemolytica isolates after growth in iron-replete BHIB, but not in M. glucosida. 

HxuA and FhuA are described in further detail below in the context of their 

respective expression systems. 

Under iron-restricted growth conditions, protein components of a putative 

HxuCBA haem-haemopexin utilization system were identified in several M. 

haemolytica isolates. This system was first discovered in H. influenzae (Hanson 

et al., 1992) and is an important virulence determinant in this organism (Morton 

et al., 2007) and in H. parasuis (Melnikow et al., 2005). HxuC is a TonB-

dependent receptor protein (Cope et al., 2001, Cope et al., 1995). HxuB and 

HxuA comprise a two-partner (TPS) system, whereby HxuA (the TpsA protein) is 

transported across the outer membrane by HxuB (the TpsB protein) (Cope et al., 

1995). HxuA binds the haem-haemopexin complex and facilitates haem delivery 

to the cell surface via HxuC (Cope et al., 1994, Cope et al., 1998). Recent 

evidence suggests that HxuA might not actually function as a haemophore in H. 

influenzae, but instead releases haem upon interaction with the haem-

haemopexin complex (Fournier et al., 2011). Furthermore, the primary activity 

of HxuA may actually be to sequester haemopexin in its inactive form, thereby 

decreasing the high-affinity binding of haem by the serum (Fournier et al., 

2011). In the present study, HxuB and HxuC were expressed in the outer 

membranes of all M. haemolytica isolates except for the bovine serotype A1 

isolate PH2, and the M. glucosida isolate PH344, after growth in iron-restricted 

BHIB. In the previous chapter, HxuB and HxuC were identified after growth in 

iron-replete BHIB in two (PH202 and PH292) and one (PH588) isolates, 

respectively, but at much lower expression levels than that observed after 
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growth in iron-restricted BHIB. HxuA was identified in only one M. haemolytica 

isolate (PH8) under the same conditions, although in a very faint protein band. 

In H. influenzae, HxuA has been identified as both surface-associated (Fournier 

et al., 2011) and released into the culture medium (Wong et al., 1995). The 

amino acid sequences of HxuA in the three M. haemolytica genomes contain two 

conserved cysteine residues at their C-terminus that have been demonstrated to 

be essential for the cell-surface anchoring of TpsA proteins in other 

microorganisms (Jacob-Dubuisson et al., 2004, Buscher et al., 2006, Fournier et 

al., 2011). It is therefore surprising that HxuA was absent (with the exception of 

one isolate) from M. haemolytica outer membrane fractions and suggests that 

HxuA is released from the cell surface. This is the first study to report HxuCBA 

expression in the outer membrane of M. haemolytica. The presence of HxuCBA 

has not previously been reported in M. haemolytica because outer membrane 

studies have almost exclusively examined the expression of OMPs in bovine 

serotype A1 isolates (Ayalew et al., 2010, Lo et al., 2006, Roehrig et al., 2007) 

which, according to the findings presented here, do not express a functional 

HxuCBA system. Results from the present study, and the failure to detect 

HxuCBA expression in other bovine serotype A1 isolate studies (Ayalew et al., 

2010, Lo et al., 2006, Roehrig et al., 2007), indicate that the HxuCBA system is 

not expressed in bovine serotype A1 M. haemolytica isolates, nor in M. glucosida 

isolates, but is expressed under iron-restricted conditions in all other isolates 

examined in this study. 

Expression of the putative siderophore receptor FrpB was significantly 

upregulated in two isolates (PH2 and PH344) and was predominantly expressed 

among other OMPs in an upregulated protein band in the remaining six isolates 

under iron-restricted growth conditions. Transcription of the frpB gene has 

previously been shown to be upregulated in a bovine serotype A1 M. haemolytica 

isolate (Roehrig et al., 2007) and in the closely related species A. 

pleuropneumoniae (Klitgaard et al., 2010) under iron-restriction conditions. In 

A. pleuropneumoniae FrpB has been demonstrated to be both immunoreactive 

(Liao et al., 2009) and an essential virulence determinant, as frpB deletion 

mutants are unable to colonise the host or cause clinical disease symptoms upon 

experimental infection (Buettner et al., 2009). The function of FrpB in M. 

haemolytica, M. glucosida and A. pleuropneumoniae is currently unknown. 
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However, in N. gonorrhoeae it has been associated with ferric iron uptake from 

transferrin (Dyer et al., 1988, Beucher and Sparling, 1995) and, more recently, 

as a receptor for the ferric siderophore enterobactin (Carson et al., 1999). N. 

gonorrhoeae does not synthesise siderophores but can utilise those produced by 

other bacteria (xenosiderophores), such as E. coli aerobactin (West and Sparling, 

1987) and enterobactin (Rutz et al., 1991, Carson et al., 1999). M. haemolytica 

and M. glucosida do not produce their own siderophores either, suggesting the 

possibility that these species may utilise xenosiderophores via FrpB in a similar 

manner to N. gonorrhoeae and other Gram-negative bacteria (Thulasiraman et 

al., 1998). Indeed, some bacterial isolates of the bovine nasopharyngeal flora 

have been reported to stimulate the growth of M. haemolytica and other closely 

related Gram-negative species, possibly as a result of this mechanism (Corbeil et 

al., 1985). Another putative siderophore receptor, FhuA, which shares 24% 

identity with the A. pleuropneumoniae FhuA protein, was also identified in three 

M. haemolytica isolates (PH292, PH296 and PH344) under iron-restricted 

conditions. In M. haemolytica serotype A2 genomes, the fhuA gene and fhuCDB 

genes that encode attendant proteins are arranged in an operon with the same 

structure as that in A. pleuropneumoniae (Mikael et al., 2002). In A. 

pleuropneumoniae, FhuA is involved in the uptake of the hydroxamate 

siderophore ferrichrome and, in contrast to FrpB, is not required for virulence 

(Baltes et al., 2003). Given that the annotations of the FrpB and FhuA proteins 

of M. haemolytica have been allocated solely based on sequence homologies, 

and the previous finding that M. haemolytica is unable to utilise either 

exogenous enterobactin or ferrichrome under iron-limited conditions (Reissbrodt 

et al., 1994, Graham and Lo, 2002), it is likely these proteins do not function as 

enterobactin and ferrichrome receptors, respectively, but are involved in the 

uptake of other as yet unknown molecules. Indeed, M. haemolytica FhuA 

actually shares greater identity (34%) with the E. coli FhuE protein than A. 

pleuropneumoniae FhuA. FhuE is a receptor for ferrioxamine B (Sauer et al., 

1990, Hantke, 1983), a siderophore which has been demonstrated to support M. 

haemolytica growth under iron-restricted conditions (Reissbrodt et al., 1994) 

and may be a more appropriate substrate for M. haemolytica FhuA binding. 

Expression of the FadL protein increased after growth to mid-log phase under 

iron-restricted conditions in several isolates; however, expression returned to 
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below baseline levels after growth to stationary phase under iron-restricted 

conditions. The function of FadL (also referred to as OmpP1) in M. haemolytica 

is not known. In E. coli, FadL is an OMP involved in the uptake of long-chain 

fatty acids (LCFAs) through the outer membrane (Black et al., 1987). LCFAs and 

their derivatives are important for a wide variety of cellular processes, including 

fatty acid and phospholipid synthesis, membrane permeability and enzyme 

activation (Black and DiRusso, 2003). Upregulation of genes encoding enzymes 

that metabolise LCFAs have been observed during the early stages of infection 

with Salmonella enterica (Mahan et al., 1995), indicating that transport of LCFAs 

is also important from a pathophysiological perspective. During bacterial 

infections, high concentrations of LCFAs (including arachidonic acid) are found in 

the extracellular inflammatory milieu that are released from host cells. It has 

been suggested that subsequent uptake of arachidonic acid by FadL might 

suppress the local inflammatory immune response and hence confer bacteria 

with an advantage during early colonisation of the host (Black and DiRusso, 

2003). If FadL were to have a similar role in M. haemolytica then this might 

explain why expression of FadL is increased during mid-log phase growth 

(representing early stage infection) in several isolates, but not at stationary 

phase growth (representing late stage infection). The M. haemolytica leukotoxin 

stimulates the release of arachidonic acid and its derivatives from host 

neutrophils (Wang et al., 1998, Clinkenbeard et al., 1994). Therefore, an 

increase in FadL expression may limit inflammatory immune responses and 

prevent lung tissue damage during early colonisation. The observation that FadL 

is present in the outer membrane at much lower levels after iron-restricted 

stationary phase growth compared to iron-restricted mid log phase growth also 

raises the question of how this OMP and others are removed from the outer 

membrane when they are no longer required. Several Gram-negative organisms 

release outer membrane through the production of outer membrane vesicles 

(OMVs) (Kulp and Kuehn, 2010), and FadL-like proteins have been identified in 

OMVs released by N. meningitidis (Uli et al., 2006, Vaughan et al., 2006, Vipond 

et al., 2006, Williams et al., 2007), Pseudomonas aeruginosa (Bauman and 

Kuehn, 2006), Moraxella catarrhalis (Schaar et al., 2011). OMV release has not 

yet been demonstrated in M. haemolytica but may provide an appropriate 

mechanism by which FadL and other OMPs are discarded from the outer 

membrane. 
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Growth in the presence of serum 

Four representative M. haemolytica isolates were grown in three different tissue 

culture media (DMEM, RPMI and M199) in the presence or absence of 10% FCS and 

10% SS, and also in complete FCS, SS and NCS.  Two OMPs, Hsf (in one ovine 

isolate) and PlpB (in the two bovine isolates), were identified only after growth 

in media supplemented with serum. Both of these proteins were not identified 

after growth in iron-replete and iron-restricted BHIB.  

In the human respiratory tract pathogen H. influenzae, Hsf is associated with 

attachment to epithelial cells (Barenkamp and StGeme, 1996) and is considered 

to be major nonpilus adhesin (StGeme et al., 1996). A gene whose product has 

high homology to the H. influenzae Hsf protein was also found to be upregulated 

in A. pleuropneumoniae after contact with porcine lung epithelial cells (Auger et 

al., 2009). Hsf also confers serum-resistance on H. influenzae isolates by binding 

the extracellular matrix molecule vitronectin, a regulator of the terminal 

pathway of complement activation (Hallstrom et al., 2006). Vibronectin-binding 

proteins have also been identified in other Gram-negative bacteria including 

DsrA of Haemophilus ducreyi (Elkins et al., 2000, Leduc et al., 2009) and Usp of 

M. catarrhalis (Attia et al., 2006). Bacteria are shielded from complement 

attack when coated with vitronectin and, furthermore, can use the molecule as 

a bridge to cross-link other bacterial cells and to bind integrin receptors on host 

cells (Singh et al., 2010). M. haemolytica encounters host serum factors, 

including complement, as a result of lung tissue inflammation caused by the 

onset of disease (Ackermann and Brogden, 2000). Therefore, the Hsf-like protein 

identified in the present study under serum-supplemented and complete serum 

growth conditions may contribute to the protection of M. haemolytica in the 

presence of host serum. 

PlpB is encoded in an operon containing the genes for two other similar 

lipoproteins, PlpA and PlpC (Cooney and Lo, 1993). Each of these proteins are 

immunogenic and recognised by serum from calves that have been naturally 

exposed or vaccinated with M. haemolytica cells (Dabo et al., 1994). A M. 

haemolytica mutant lacking the plpABC operon was also more susceptible to 

bovine complement-mediated killing (Murphy et al., 1998). Both PlpA and PlpC 

were identified in the previous chapter in the outer membranes of several M. 
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haemolytica isolates after growth in iron-replete BHIB. It is therefore surprising 

that PlpB has not identified alongside PlpA and PlpC given that the three 

proteins are expected to be expressed in equal quantities. The function of PlpB 

is currently unknown; however, PlpA has recently been demonstrated to be 

surface-exposed and capable of binding to bovine bronchial epithelial cells in 

vitro (Kisiela and Czuprynski, 2009).  

The leukotoxin protein, LktA, was identified in outer membrane fractions of 

isolates PH2, PH8, PH202 and PH278 when grown in the presence of 10% SS, and 

in complete SS and NCS. LktA is a member of the repeats-in-toxin (RTX) 

exoprotein family produced by a variety of Gram-negative bacteria (Linhartova 

et al., 2010) and is a key virulence factor in the pathogenesis of pneumonic 

pasteurellosis (Chang et al., 1987, Maheswaran et al., 1993, Petras et al., 1995, 

Sutherland, 1985, Sutherland and Donachie, 1986). Surface-association of LktA 

has not previously been demonstrated in M. haemolytica, but has been shown in 

RTX proteins of other Gram-negative bacteria. The adenylate cyclase toxin of B. 

pertussis remains surface-associated following secretion, due to interaction with 

the filamentous haemagglutinin (Zaretzky et al., 2002). A putative filamentous 

haemagglutinin (FhaB_1) was identified in the present study in the outer 

membrane fraction of one isolate (PH8) after growth on BHIACR, but LktA was not 

concurrently identified. The leukotoxin of the closely-related organism 

Actinobacillus actinomycetemcomitans (LtxA) is both secreted as soluble protein 

(Kachlany et al., 2000, Kachlany et al., 2002) and retained at the bacteria cell 

surface within membranous vesicles and by electrostatic association with nucleic 

acids on the bacterial cell surface (Lally et al., 1991, Berthold et al., 1992, Ohta 

et al., 1991, Tsai et al., 1984, Kato et al., 2002). Paradoxically, in contrast to 

the finding in the present study of M. haemolytica LktA surface-association in 

the presence of serum, the LtxA protein of A. actinomycetemcomitans is 

released from the cell surface in the presence of serum (Johansson et al., 2003), 

although the mechanism of release has not been established. Several possible 

mechanisms might explain why M. haemolytica LktA is surface-associated in the 

presence of serum. Firstly, serum components which bind to the surface of M. 

haemolytica may also bind LktA and retain it on the surface. Secondly, the 

presence of serum may somehow disrupt the secretion of LktA into the 

extracellular medium leading to accumulation of LktA at the cell surface. 
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Thirdly, the presence of serum may stimulate outer membrane blebbing, 

whereby vesicles containing LktA are both released from the cell and retained at 

the cell surface. Furthermore, it is possible that LktA is normally associated with 

the outer membrane in vivo (or under conditions which in vivo conditions) but 

does not associate with the membrane when grown in vitro in complex growth 

media alone. 

Growth on solid-surface agar 

Surface-associated growth on BHIA resulted in mild expression of OMPs that were 

previously strongly upregulated under iron-restricted growth conditions 

(including FrpB, HmbR1, HxuB and HxuC) as has been observed for other Gram-

negative bacteria grown on solid surfaces (Wang et al., 2004, Sampathkumar et 

al., 2006, Pysz et al., 2004). It has previously been suggested that immobilised 

growth, as opposed to growth in liquid culture, represents more physiologically 

appropriate baseline growth conditions and that iron-acquisition systems 

expressed during surface-associated growth may be more appropriately viewed 

as a repression of these systems during growth in liquid media (Sampathkumar et 

al., 2006). There were no new OMPs identified in any of the representative 

isolates after growth on BHIA that had not been identified in iron-replete or 

iron-restricted BHIB. Furthermore, no OMPs with roles in biofilm formation, such 

as those encoded in the Tad (tight adherence) locus of P. multocida (E-Komon et 

al., 2011a) and other organisms (Tomich et al., 2007) have been identified in the 

present study. Therefore, despite limited previous evidence of biofilm formation 

in M. haemolytica (Haig, 2011, Olson et al., 2002), this study has not been able 

to provide evidence of biofilm-producing ability in the representative isolates 

examined. 

Congo red dye is well known for its ability to bind highly aggregative and 

insoluble β-sheet-rich amyloid fibres found in several living organisms (Chapman 

et al., 2002, Fowler et al., 2007). It is also commonly used to differentiate 

between slime-producing and non-slime producing strains of Staphylococci, 

which result in black and pink colonies, respectively, when grown on agar that 

contains the dye  (Freeman et al., 1989, Jain and Agarwal, 2009, Arciola et al., 

2002, Arciola et al., 2006). It can also be used to differentiate between virulent 

and avirulent strains of several Gram-negative bacteria (Deneer and Potter, 
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1989, Daskaleros and Payne, 1987, Stugard et al., 1989, Ishiguro et al., 1985, 

Prpic et al., 1983). Notably, in Shigella flexneri, the presence of Congo red can 

stimulate the release of Ipa type III effector proteins (Parsot et al., 1995), 

regulate membrane protein expression (Sankaran et al., 1989) and is associated 

with increased infectivity in HeLa cells (Daskaleros and Payne, 1987). Despite 

these virulence-associated observations made across a broad range of organisms, 

the mechanism by which this dye achieves these effects is still unclear. A 

previously unknown effect of Congo red on the expression of high-molecular 

mass OMPs in M. haemolytica was demonstrated in the present study. Two high 

molecular mass OMPs, Iga1_1 and Iga1_2, were identified in all M. haemolytica 

isolates after growth in the presence of Congo red. Another high molecular mass 

protein, the filamentous haemagglutinin protein FhaB_1, was also identified in 

one isolate after growth in the presence of Congo red. These three proteins all 

contain domains which are expected to extend into the extracellular milieu and 

undergo subsequent proteolytic cleavage, yet each was identified at their intact 

molecular mass after growth in the presence of Congo red. Indeed, Iga1_2 was 

identified in the previous chapter at 37 kDa after growth in iron-replete BHIB in 

the absence of Congo red, indicating that the extracellular domain of this 

protein is normally cleaved from the cell surface. This suggests that, rather than 

regulating the expression of these OMPs at the genetic level, Congo red might be 

interfering with their post-translational processing at the bacterial cell surface. 

Consistent with this is the suggestion that the enhanced secretion of S. flexneri 

effector proteins in the presence of Congo red is most likely due to the 

interference of the dye with the Type III secretion needle tip complex which 

controls effector protein release (Bahrani et al., 1997). At present, it can only 

be speculated as to how Congo red interferes with the processing of M. 

haemolytica OMPs. One explanation is that the dye is binding directly to these 

OMPs, preventing autoproteolysis and allowing them to remain intact at the cell 

surface. Alternatively, Congo red may bind to and inhibit the function of another 

as yet undefined surface-associated protein which is involved in the processing 

of these proteins. In neisserial species, Iga1 proteases are capable of 

autoproteolysis (Pohlner et al., 1987, Vitovski and Sayers, 2007) and can also be 

processed by the autotransporter NalP (van Ulsen et al., 2003). Similarly, B. 

pertussis expresses a filamentous haemagglutinin protein which is released from 

the cell surface by the autotransporter SphB1 (Coutte et al., 2001, Coutte et al., 
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2003). Both NalP and SphB1 are members of the subtilisin-like protease family 

(Siezen and Leunissen, 1997) and share significant identity with serotype-specific 

antigen (Ssa), an autotransporter which has been identified in the outer 

membrane of all M. haemolytica and M. glucosida isolates examined to date. It 

is possible that Ssa could be responsible for releasing the surface-exposed 

domains of Iga1-like proteases and FhaB_1 from the cell surface. Further 

experimentation will be required to determine the actual mechanism by which 

Congo red allows these OMPs to remain surface-associated. 

Extracellular protein expression 

To complement the information obtained about OMP expression, putative 

proteolytic cleavage of OMPs and putative secretion of HxuA, an examination of 

the extracellular subproteomes of the eight representative isolates was 

performed. Extracellular proteins were precipitated from cell-free culture 

supernatant after growth to stationary phase in iron-replete and iron-restricted 

BHIB. The extracellular protein profiles of the eight isolates appear to be as 

complex as their OMP profiles, and differed considerably after growth in iron-

replete and iron-restricted medium. In E. coli, a proteomic analysis of the 

extracellular subproteomes of two isolates demonstrated that periplasmic and 

OMPs accounted for the majority of released proteins during stationary phase 

growth (Xia et al., 2008). Furthermore, the expression levels of porins OmpF and 

OmpC in the outer membrane did not change significantly between different cell 

growth densities, suggesting that these proteins are continuously secreted into 

the medium, possibly by OMV blebbing (Xia et al., 2008). Another possibility is 

that the extracellular proteins were the products of cell lysis, although this was 

proved not to be the case for E. coli (Xia et al., 2008). A proteomic analysis of 

the M. haemolytica extracellular subproteome is still to be completed. 
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5. FINAL DISCUSSION 

The first objective of this study was to examine the surface-exposure of OmpA 

and to demonstrate whether the OmpA proteins from bovine (OmpA1) and ovine 

(OmpA2) isolates are antigenically distinct. This was achieved by examining 

whether antibodies that were raised against recombinant OmpA1 (rOmpA1) and 

OmpA2 (rOmpA2) proteins could interact with OmpA in a strain-specific manner. 

Recombinant OmpA1 and rOmpA2 were successfully expressed, purified and used 

to generate anti-rOmpA1 and anti-rOmpA2 antibodies, respectively. 

Immunogold-electron microscopy and immunofluorescence techniques clearly 

demonstrated that OmpA1 and OmpA2 are surface exposed, and are not masked 

by the polysaccharide capsule, in a selection of M. haemolytica isolates of 

various serotypes and grown under different growth conditions. An examination 

of the binding specificities of anti-rOmpA antibodies to M. haemolytica isolates 

representing different OmpA subclasses revealed that cross-absorbed anti-

rOmpA1 antibodies recognised OmpA1-type proteins but not OmpA2-type 

proteins; conversely, cross-absorbed anti-rOmpA2 antibodies recognised OmpA2-

type proteins but not OmpA1-type proteins. The results of this study have 

therefore clearly demonstrated that OmpA1 and OmpA2 are surface-exposed and 

could potentially bind to different receptors in cattle and sheep. This work 

builds significantly upon what was previously known about M. haemolytica OmpA 

(Davies and Lee, 2004) but also raises some interesting questions to be 

addressed by future investigations. In particular, how are the loops of OmpA 

recognised by anti-rOmpA antibodies when the capsule is expected to mask 

them? This conundrum might be explored in future work by examining the 

possible roles of phase variable capsule expression and outer membrane vesicle 

blebbing on the exposure of OMPs to the host environment. Furthermore, the 

anti-rOmpA antibodies produced in this work could also be used in host epithelial 

cell binding assays to definitively demonstrate that M. haemolytica OmpA1 and 

OmpA2 are capable of selectively binding to different receptors within cattle 

and sheep, respectively. Preliminary crystallisation experiments determined a 

range of conditions under which protein crystals were produced; however, no X-

ray diffraction data could be obtained. Further optimisation of these conditions 

might yield higher quality crystals under which structural data can be obtained. 
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The second objective of this study was to provide a comparative analysis of the 

outer membrane subproteomes of several isolates of M. haemolytica and M. 

glucosida in order to identify those that are possibly involved in host-specific 

adaptation and virulence. This objective was achieved in two parts. First, the 

entire repertoire of OMPs encoded in three M. haemolytica genomes was 

predicted using a simple bioinformatic framework. This yielded a total of 93 

confidently predicted OMPs which were assigned to six broad functional 

categories: outer membrane biogenesis and integrity, transport and receptor, 

adherence, enzymatic activity, other and unknown. The majority of these 

proteins (88) were present among all three genomes. There were no proteins 

present exclusively in the ovine genome, and only one protein (PulD) was 

exclusively present in a bovine genome (serotype A1). Furthermore, amino acid 

sequence comparisons were performed to identify OMPs present among bovine 

and ovine genomes that may be adapted to either cattle or sheep. Only three 

OMPs, OmpA, PlpE, and Ahs, had greater amino acid sequence identity between 

bovine genomes than between one of the bovine genomes and the ovine 

genome. A possible role in host-specific adaptation has already been suggested 

for OmpA (Davies and Lee, 2004), but has not yet been demonstrated for PlpE or 

Ahs. Several other OMPs (Table 3.4) also had divergent amino acid sequences 

among the genomes that were apparently unrelated to host-specificity. The 

bovine and ovine serotype A2 genomes were more similar both in the number of 

OMPs present in the two genomes and amino acid conservation of OMPs than 

between either of these two genomes and the bovine serotype A1 genome. This 

reflects the common ancestral origin of the bovine and ovine serotype A2 

isolates and provides further evidence to support previous work which 

hypothesised the host-switching of this serotype from cattle to sheep (Davies et 

al., 1997, Davies et al., 2001, Davies and Lee, 2004, Davies et al., 2002).  

Second, complementary proteomic approaches were used to identify and 

compare the OMPs present in the outer membrane fractions of seven M. 

haemolytica isolates and one M. glucosida isolate. Complementary proteomic 

approaches identified a total of 55 unique OMPs. Fifty of these proteins were 

confidently predicted by the bioinformatic approach, representing 54% of the 

confidently predicted outer membrane subproteome. Five identified OMPs 

(LemA, HbpA, OapA, RlpA and CsgG) were not predicted by the bioinformatic 
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approach but were considered likely to be OMPs after literature searches on 

these proteins were carried out. Eleven OMPs (MltC, FhaC, LppC, TonB-

dependent receptor MHA_0860/COI_1565/COK_2304, OapA, TbpB, possible OMP 

MHA_0964/COI_1329/COK_2563, Bor/Iss_1, HxuC, TonB-dependent receptor 

MHA_1346/COI_1921 and OmpW) were identified among ovine M. haemolytica 

isolates that were not identified among bovine M. haemolytica isolates; 

however, the genes encoding these OMPs were identified in the genomes of 

bovine isolates, suggesting that they are possibly expressed under different 

growth conditions. There were no OMPs identified exclusively in bovine M. 

haemolytica isolates. The putative bovine-specific OMP, PulD, was not identified 

in any of the representative isolates. Despite the lack of evidence for roles in 

host-specific adaptation of identified OMPs, the results of this objective have 

produced a comprehensive overview of the outer membrane subproteomes of M. 

haemolytica and M. glucosida isolates that can be used to identify individual 

OMPs to be studied in further detail. Comparative nucleotide sequence analysis 

of genes encoding selected OMPs, such as PlpE and Ahs, should elucidate further 

evidence of host-specific adaptation, as has previously been determined for 

OmpA (Davies and Lee, 2004). Furthermore, the identified Ssa and Iga1_2 

autotransporter proteins showed evidence of proteolytic processing, a 

phenomenon that has not previously been described in M. haemolytica. A 

possible role in proteolytic processing of other OMPs at the bacterial cell surface 

was hypothesised for Ssa. This was based upon on its similarity to NalP of N. 

meningitidis (Turner et al., 2002, van Ulsen et al., 2003), AasP of A. 

pleuropneumoniae (Ali et al., 2008) and ShpB1 of B. pertussis (Coutte et al., 

2001), which are involved in proteolytic processing of other OMPs in these 

species. Studies using ssa gene knockout and partial deletion mutants of M. 

haemolytica should further elucidate the exact function of Ssa. 

The third and final objective of this study was to characterise the outer 

membrane subproteomes of the same representative isolates and identify 

differentially expressed OMPs after in vitro growth under conditions that were 

designed to mimic the in vivo host environment. A further 13 confidently 

predicted OMPs (Table 4.4) were identified under either iron-restricted, serum-

supplemented or Congo red-supplemented growth conditions (or a combination 

of the three), that were not identified under iron-replete growth conditions. 
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Expression of several OMPs that were previously identified after growth in iron-

replete media increased after growth in iron-restricted conditions. One of the 

most significant findings was that components of an HxuCBA haem-haemopexin 

acquisition system were upregulated in all representative M. haemolytica 

isolates, except for bovine serotype A1 isolate PH2, after growth under iron-

restricted conditions. It is interesting that isolate PH2, a virulent disease isolate, 

should be lacking this system as it is a known virulence determinant in H. 

influenzae (Morton et al., 2007) and H. parasuis (Melnikow et al., 2005). There 

was also no expression of HxuCBA in the M. glucosida isolate after growth under 

iron-restricted conditions. This study is the first to describe the expression of 

this system in M. haemolytica outer membranes and demonstrates the great 

advantage of comparative analyses over that of individual isolates. With the 

exception of studies by this author’s research group, the majority of previous M. 

haemolytica outer membrane studies have focused almost exclusively on bovine 

serotype A1 isolates. This is probably due to the fact that these isolates are 

responsible for most cases of bovine pneumonic pasteurellosis and are of greater 

interest to animal health practitioners and vaccine developers. The present 

study has demonstrated that comparative examination of several isolates, as 

opposed to individual isolates, provides a broader knowledge of the M. 

haemolytica species as a whole and is more conducive to identifying novel 

proteins. Further study is warranted for the HxuCBA system, and other putative 

virulence-associated OMPs which were upregulated after growth in iron-

restricted medium including FrpB (a putative siderophore receptor), HmbR1 (a 

putative haemoglobin receptor) and FadL (a putative LCFA transporter). 

Biological uptake assays which examine the specificities of different 

siderophores, haemophores and transferrins might also further elucidate roles in 

host-specificity for these OMPs. 

Association of the leukotoxin with the outer membrane was demonstrated in 

four M. haemolytica isolates (PH2, PH8, PH202 and PH278) grown in the 

presence of serum. This is a significant finding, as leukotoxin is considered to be 

the major virulence factor in M. haemolytica pathogenesis and has not 

previously been considered to associate with the outer membrane. The LtxA 

protein of A. actinomycetemcomitans can be retained at the surface of this 

organism in membrane vesicles and by electrostatic association with the 
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membrane (Lally et al., 1991, Berthold et al., 1992, Ohta et al., 1991, Tsai et 

al., 1984, Kato et al., 2002). Interestingly though, in the presence of serum, 

LtxA is released from the bacterial surface via an unknown mechanism 

(Johansson et al., 2003). It will be worthwhile to establish if M. haemolytica 

leukotoxin attaches to the outer membrane by a similar mechanism as A. 

actinomycetemcomitans and, alternatively, if normally present in the outer 

membrane in vivo, its mechanism of detachment from the outer membrane in 

vitro. 

One of the more serendipitous discoveries of this study was that OMPs with 

putative cleavable passenger domains appear to be stabilised in the presence of 

Congo red dye. Two OMPs, Iga1_1 and Fhab_1 were identified on 1-D SDS-PAGE 

gels at their intact molecular mass after growth in the presence of Congo red. 

However, these proteins were not identified under identical growth conditions in 

the absence of the dye. Another protein, Iga1_2, was also identified at its 

expected intact molecular mass after growth in the presence of Congo red. This 

protein that had been identified at a much lower-than-expected molecular mass 

after growth under identical growth conditions in the absence of the dye. These 

findings suggest that Congo red somehow interrupts extracellular passenger 

domain processing, allowing the proteins to remain intact at the cell surface. 

This finding is interesting not only from the point of view of this project, but 

also from a general microbiological perspective. It is feasible that bacterial 

growth in the presence of Congo red could be used as a general method of 

preventing proteolytic changes to OMPs at the cell surface, allowing examination 

of the outer membrane subproteome prior to these changes occurring. It would 

be interesting in future investigations to determine the mechanism by which the 

dye achieves these effects. 

An investigation of the extracellular subproteomes of the eight representative 

isolates under iron-replete and iron-restricted growth conditions was performed. 

This was prompted by findings that suggested some OMPs, including Iga1_2 and 

Ssa, undergo proteolytic cleavage of their passenger domains which are released 

from the bacterial surface. Also, the putative haemophore HxuA was only 

identified in the outer membrane fraction of one isolate (PH8) after growth 

under iron-restricted conditions, suggesting that it is secreted. One-dimensional 

SDS-PAGE separation of extracellular protein fractions demonstrated that the 
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extracellular subproteome is as complex as the outer membrane subproteome. 

Due to limitations of resources no MS data were obtained to identify these 

proteins. Future investigations will use MS to identify these proteins and 

elucidate whether they are proteolytically-cleaved fragments, secreted proteins, 

or cell envelope proteins that have blebbed away from the bacterial surface, as 

has been demonstrated for E. coli (Xia et al., 2008). 

The work presented in this thesis represents the most comprehensive coverage 

of M. haemolytica and M. glucosida outer membrane subproteomes to date. The 

only other previous study of an M. haemolytica outer membrane subproteome 

identified 25 of the confidently predicted OMPs described in the present work in 

a single bovine serotype A1 isolate (Ayalew et al., 2010). In this thesis, a total of 

68 OMPs were identified among several representative M. haemolytica isolates 

and an M. glucosida isolate under a range of different growth conditions. Of 

these 68 OMPs, 63 were confidently predicted by the bioinformatic approach, 

representing 67.8% of the confidently outer membrane subproteome. Despite the 

lack of evidence for roles in host-specificity of the identified OMPs, the work 

presented in this thesis will serve as a primer for further research into the roles 

of OMPs in the pathobiology of M. haemolytica, and has wide implications for 

the design of vaccines to treat pneumonic pasteurellosis. 
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7. APPENDICES 

7.1 Growth media composition 

Brain Heart Infusion broth (BHIB) 

1 litre 

Brain Heart Infusion, dehydrated (Oxoid)  37.0 g 

Distilled water      to 1 litre 

Autoclaved at 121°C for 15 min. 

Brain Heart Infusion agar (BHIA) 

1 litre 

Brain Heart Infusion Agar, dehydrated (Oxoid)  47.2 g 

Distilled water      to 1 litre 

Autoclaved at 121°C for 15 min.  

Luria-Bertani (LB) broth 

1 litre 

LB broth powder (Sigma-Aldrich)    20.0 g 

Distilled water       to 1 litre 

Autoclaved at 121°C for 15 min. 

Luria-Bertani (LB) agar 

1 litre 

LB agar powder (Sigma-Aldrich)    35.0 g 

Distilled water      to 1 litre 

Autoclaved at 121°C for 15 min. 
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7.2 Plasmid DNA 

pOPINF (Berrow et al., 2007) 
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7.3 MemSys screen (Molecular Dimensions, UK) 

Tube # Salt 1 Salt 2 Buffer pH Precipitant 

1 None None 0.1 M Na citrate 5.5 2.5 M ammonium sulphate 

2 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M Na citrate 3.5 30% v/v PEG 400 

3 0.1 M sodium chloride 0.1 M magnesium chloride 
0.1 M Na 
acetate 

4.5 30% v/v PEG 400 

4 0.1 M sodium chloride None 0.1 M Na citrate 5.5 30% v/v PEG 400 

5 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M Na citrate 5.5 30% v/v PEG 400 

6 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M Na citrate 5.5 30% v/v PEG 400 

7 None None 0.1 M MES 6.5 2.5 M ammonium sulphate 

8 None None 0.1 M MES 6.5 30% v/v PEG 400 

9 0.1 M sodium chloride None 0.1 M MES 6.5 30% v/v PEG 400 

10 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M MES 6.5 30% v/v PEG 400 

11 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M MES 6.5 30% v/v PEG 400 

12 None None 0.1 M MOPS 7.0 30% v/v PEG 400 

13 None None 0.1 M Na HEPES 7.5 2.5 M ammonium sulphate 

14 0.1 M sodium chloride None 0.1 M MOPS 7.0 30% v/v PEG 400 

15 None None 0.1 M Na HEPES 7.5 30% v/v PEG 400 

16 0.1 M sodium chloride None 0.1 M Na HEPES 7.5 30% v/v PEG 400 

17 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M Na HEPES 7.5 30% v/v PEG 400 

18 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M Na HEPES 7.5 30% v/v PEG 400 

19 None None 0.1 M Tris 8.5 1.5 M lithium sulphate 

20 0.1 M sodium chloride None 0.1 M Tris 8.5 30% v/v PEG 400 

21 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M Tris 8.5 30% v/v PEG 400 

22 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M Tris 8.5 30% v/v PEG 400 

23 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M CAPSO 9.5 30% v/v PEG 400 

24 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M CAPSO 9.5 30% v/v PEG 400 

25 None None 0.1 M Na citrate 5.5 1.5 M sodium phosphate 

26 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M Na citrate 3.5 12% w/v PEG 4000 

27 0.1 M sodium chloride 0.1 M lithium sulfate 
0.1 M Na 
acetate 

4.5 12% w/v PEG 4000 

28 0.1 M sodium chloride None 0.1 M Na citrate 5.5 12% w/v PEG 4000 

29 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M Na citrate 5.5 12% w/v PEG 4000 

30 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M Na citrate 5.5 12% w/v PEG 4000 

31 None None 0.1 M MES 6.5 1.5 M sodium phosphate 

32 None None 0.1 M MES 6.5 12% w/v PEG 4000 

33 0.1 M sodium chloride None 0.1 M MES 6.5 12% w/v PEG 4000 

34 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M MES 6.5 12% w/v PEG 4000 

35 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M MES 6.5 12% w/v PEG 4000 

36 None None 0.1 M MOPS 7.0 12% w/v PEG 4000 

37 None None 0.1 M Na HEPES 7.5 1.5 M potassium phosphate 

38 0.1 M sodium chloride None 0.1 M MOPS 7.0 12% w/v PEG 4000 

39 None None 0.1 M Na HEPES 7.5 12% w/v PEG 4000 

40 0.1 M sodium chloride None 0.1 M Na HEPES 7.5 12% w/v PEG 4000 

41 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M Na HEPES 7.5 12% w/v PEG 4000 

42 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M Na HEPES 7.5 12% w/v PEG 4000 

43 None None 0.1 M Tris 8.5 1.5 M potassium phosphate 

44 0.1 M sodium chloride None 0.1 M Tris 8.5 12% w/v PEG 4000 

45 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M Tris 8.5 12% w/v PEG 4000 

46 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M Tris 8.5 12% w/v PEG 4000 

47 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M CAPSO 9.5 12% w/v PEG 4000 

48 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M CAPSO 9.5 12% w/v PEG 4000 

 
Abbreviations: 
 
CAPSO; 3-(Cyclohexylamino)-2-hydroxyl-1-propanesulfonic Acid Sodium Salt, Na HEPES; N-(2-hydroxyethyl)-piperazine-
N’-2-ethanesulfonic acid sodium salt, MES; 2-(N-morpholino)ethanesulfonic acid, MOPS; 3-(N-Morpholino)-
propanesulfonic acid, PEG; Polyethylene glycol, Tris; 2-Amino-2-(hydroxymethyl)propane-1,3-diol. 
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7.4 MemGold screen (Molecular Dimensions, UK) 

 

Tube 
# 

Salt Buffer pH Precipitant 

1 None 0.08 M sodium citrate 5.2 2.2 M ammonium sulfate 

2 None 0.01 M Tris 8.0 1.2 M tri-sodium citrate 

3 None 0.015 M tricine  8.5 24% w/v PEG 4000 

4 
0.36 M sodium chloride/0.1% w/v 
sodium azide 

0.015 M sodium phosphate 7.0 9.9% w/v PEG 4000 

5 0.3 M sodium chloride 0.01 M Tris 8.0 27.5% w/v PEG 4000 

6 None 0.225 M MES/bis-tris 6.6 6.6% w/v PEG 6000 

7 0.1 M ammonium sulfate 0.1 M HEPES 7.5 
12.0% w/v PEG 4000/22% 
v/v glycerol 

8 
0.02 M calcium chloride/0.01 M 
magnesium sulfate/0.02 M 
sodium chloride 

0.02 M MES 6.5 7.7% w/v PEG 1500 

9 None 0.05 M HEPES 7.5 2.5 M ammonium sulfate 

10 None 0.0665 M HEPES 7.5 1.1 M tri-sodium citrate 

11 None 0.15 M potassium phosphate 6.5 3.3 M ammonium sulfate 

12 0.1 M magnesium acetate 0.1 M sodium citrate 5.8 14% w/v PEG 5000 MME 

13 0.1 M sodium chloride  0.02 M sodium citrate 5.6 11% w/v PEG 3350 

14 0.1 M sodium chloride  0.02 M sodium citrate 5.6 5.5% w/v PEG 3350 

15 
0.05 M calcium chloride/0.05 M 
barium chloride 

0.1 M Tris 8.2 32% v/v PEG 400 

16 0.05 M sodium chloride 0.1 M sodium phosphate 6.2 16% w/v PEG 4000 

17 0.1 M magnesium chloride 0.03 M Tris-hydrochloride 8.2 19% w/v PEG 4000 

18 0.2 M sodium chloride 0.025 M HEPES 7.5 13% w/v PEG 4000 

19 None 0.1 M HEPES 7.5 11% w/v PEG 3350 

20 0.1 M sodium chloride  0.02 M KMES 6.7 6.6% w/v PEG 4000 

21 0.1 M potassium chloride 0.02 M Tris 7.0 20% w/v PEG 4000 

22 
0.05 M magnesium chloride/0.1% 
w/v sodium azide 

0.1 M sodium cacodylate 6.7 6.6% w/v PEG 3350 

23 0.2 M potassium chloride 0.1 M sodium citrate 5.5 
37% v/v pentaerythritol 
propoxylate (5/4 PO/OH) 

24 None 0.1 M Tris 8.0 5.5% w/v PEG 4000 

25 0.1 M sodium chloride  0.02 M Tris 7.0 7.7% w/v PEG 4000 

26 0.1 M magnesium chloride 0.1 M Tris 7.5 22% v/v PEG 400 

27 0.04 M sodium chloride 0.04 M Tris 8.0 27% v/v PEG 350 MME 

28 
0.05 M sodium chloride/0.02 M 
magnesium chloride 

0.1 M sodium citrate 6.0 22% v/v PEG 400 

29 None 0.1 M sodium acetate 5.5 8.8% w/v PEG 2000 MME 

30 None 0.4 M ammonium acetate 8.0 13% w/v PEG 2000 MME 

31 None 0.02 M bis Tris 7.0 15% w/v PEG 2000 

32 
0.1 M sodium chloride/0.1 M 
magnesium chloride 

0.02 M Tris 7.5 11% w/v PEG 1500 

33 
0.1 M sodium chloride/0.1 M 
magnesium chloride 

0.1 M HEPES 8.0 11% w/v PEG 1500 

34 
0.2 M sodium acetate/0.2 M 
potassium chloride 

0.1 M HEPES 7.0 22% w/v PEG 3000 

35 0.02 M nickel sulfate 0.01 M HEPES 7.0 33% v/v Jeffamine-M600 

36 0.15 M sodium chloride 0.1 M Tris 8.0 13% w/v PEG 6000 

37 0.2 M calcium chloride 0.1 M HEPES 7.5 53% v/v PEG 400 

38 0.05 M magnesium acetate 0.05 M sodium acetate 5.0 28% v/v PEG 400 

39 None 0.05 M HEPES 7.5 22% v/v PEG 4000 

40 0.2 M calcium chloride 0.1 M Tris hydrochloride 8.0 44% v/v PEG 400 

41 0.05 M magnesium acetate 0.05 M sodium acetate 5.4 24% v/v PEG 400 

42 0.2 M calcium chloride 0.1 M MES 6.5 26% v/v PEG 350 MME 

43 0.1 M potassium chloride 0.1 M Tris 8.5 39% v/v PEG 400 

44 0.05 M magnesium chloride 0.1 M glycine 9.0 22% v/v PEG 400 

45 0.1 M ammonium sulfate 0.1 M glycine 3.8 28% w/v tri-ethylene glycol 

46 0.15 M sodium formate 0.1 M HEPES 7.2 18% w/v PEG 3350 

47 None 0.2 M sodium acetate 6.8 8.8% w/v PEG 6000 

48 0.2 M potassium chloride 0.1 M MES 6.5 18% w/v PEG 6000 

49 0.22 M sodium citrate 0.1 M Tris 8.0 35% v/v PEG 400 

50 None 0.1 M sodium acetate 4.5 17% v/v PEG 400 
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51 None 0.02 M Tris 8.5 
1.0 M lithium sulfate/1.8% 
w/v PEG 8000 

52 None 0.02 M Tris 7.5 22% v/v PEG 550 MME 

53 0.05 M sodium chloride 0.02 M glycine 10.0 33% w/v PEG 1000 

54 0.2 M magnesium chloride 0.1 M Tris 8.5 25% w/v PEG 4000 

55 0.2 M magnesium chloride 0.1 M sodium cacodylate 6.5 31% w/v PEG 2000 

56 None 0.64 M sodium acetate 4.6 18% w/v PEG 3350 

57 
0.1 M sodium chloride/0.1 M 
cadmium chloride 

0.1 M Tris hydrochloride 8.0 33% v/v PEG 400 

58 None 0.1 M Bicine 8.9 31% w/v PEG 2000 

59 
0.05 M sodium sulfate/0.05 M 
lithium sulfate 

0.05 M Tris 8.5 35% v/v PEG 400 

60 0.1 M sodium chloride 0.05 M glycine 9.5 33% v/v PEG 300 

61 0.3 M magnesium nitrate 0.1 M Tris 8.0 23% w/v PEG 2000 

62 0.12 M lithium sulfate 
0.02 M Tris/0.1 M sodium 
citrate 

7.5/5.0 20% v/v PEG 300 

63 0.1 M sodium chloride 0.12 M Tris 9.4 20% v/v PEG 400 

64 0.2 M sodium chloride 0.1 M HEPES 7.0 22% v/v PEG 550 MME 

65 
0.1 M sodium chloride/0.325 M 
sodium acetate 

0.1 M Tris 8.0 21% v/v PEG 400 

66 0.02 M sodium citrate 0.08 M sodium phosphate 6.2 18% w/v PEG 2000 

67 0.02 M potassium nitrate 0.03 M potassium citrate 6.5 7.7% w/v PEG 4000 

68 
0.1 M sodium chloride/0.005 M 
magnesium chloride 

0.1 M Tris 8.5 30% w/v PEG 2000 MME 

69 0.2 M calcium chloride 0.1 M HEPES 7.0 33% v/v PEG 400 

70 0.1 M calcium chloride 0.1 M Tris 6.5 13% w/v PEG 2000 MME 

71 
0.2 M ammonium sulfate/0.02 M 
sodium chloride 

0.02 M sodium acetate 4.0 33% v/v PEG 200 

72 0.07 M sodium chloride 0.05 M sodium citrate 4.5 22% v/v PEG 400 

73 0.2 M ammonium sulfate  0.1 M sodium acetate 4.6 28% v/v PEG 550 MME 

74 None 0.05 M glycine 9.0 55% v/v PEG 400 

75 
0.1 M magnesium chloride/0.1 M 
sodium chloride 

0.1 M Tris 8.5 33% v/v PEG 400 

76 
0.1 M lithium sulfate/0.05 M 
disodium hydrogen phosphate 

0.05 M citric acid None 19% w/v PEG 1000 

77 
0.2 M magnesium chloride/0.1 M 
potassium chloride 

0.025 M sodium citrate 4.0 33% v/v PEG 400 

78 0.05 M zinc acetate 0.05 M MES 6.1 11% w/v PEG 8000 

79 0.3 M magnesium nitrate 0.1 M Tris 8.0 22% w/v PEG 8000 

80 
0.1 M sodium chloride/4% v/v 
ethylene glycol 

0.1 M MES 6.5 33% v/v PEG 400 

81 0.05 M sodium chloride 0.1 M sodium citrate 5.5 26% v/v PEG 400 

82 0.1 M lithium sulfate   0.1 M glycine 9.3 30% v/v PEG 400 

83 
0.15 M potassium citrate/0.05 M 
lithium citrate 

0.1 M sodium phosphate − 22% w/v PEG 6000 

84 0.001 M zinc sulfate 0.05 HEPES 7.8 28% v/v PEG 600 

85 0.1 M sodium chloride 0.1 M sodium phosphate 7.0 33% v/v PEG 300 

86 0.1 M sodium chloride 0.05 M Bicine 9.0 33% v/v PEG 300 

87 
0.05 M zinc acetate/6% v/v 
ethylene glycol 

0.1 M sodium cacodylate 6.0 6.6% w/v PEG 8000 

88 0.2 M lithium sulfate 0.1 M sodium citrate 3.5 28% v/v PEG 400 

89 0.1 M sodium chloride 0.1 M Tris 7.5 11% w/v PEG 4000 

90 0.05 M lithium sulfate 0.1 M tricine 7.4 7% w/v PEG 3000 

91 0.2 M calcium chloride 0.1 M MES 6.5 33% v/v PEG 400 

92 1 M sodium chloride 0.1 M sodium citrate 6.0 28% w/v PEG 4000 

93 None 0.1 M HEPES 7.5 11% w/v PEG 4000 

94 0.002 M zinc sulfate 0.08 M HEPES 7.0 25% v/v Jeffamine ED2001 

95 
0.001 M cadmium chloride/0.03 
M magnesium chloride 

0.1 M MES 6.5 30% v/v PEG 400 

96 None 0.1 M bis-tris-propane 7.0 3.0 M sodium chloride 

 
Abbreviations: 
 
ADA; N-(2-Acetamido)iminodiacetic Acid, Bicine; N,N-Bis(2-hydroxyethyl)glycine, CHES; 2-(N-Cyclohexylamino)ethane 
sulfonic Acid, HEPES; N-(2-hydroxyethyl)-piperazine-N’-2-ethanesulfonic acid, KMES; 2-(N-morpholino)ethanesulfonic 
acid potassium salt, MES; 2-(N-morpholino)ethanesulfonic acid, MME; Monomethylether, PEG; Polyethylene glycol, 
Tricine; N-[Tris(hydroxymethyl)methyl]glycine, Tris; 2-Amino-2-(hydroxymethyl)propane-1,3-diol,Tris HCl; 2-Amino-2-
(hydroxymethyl)propane-1,3-diol, hydrochloride] 
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