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Abstract 
Iron deficiency is the most common delineated form of nutritional deficiency. Its 
prevalence is high in childhood, and in women of childbearing age (particularly 
during pregnancy). Infants and young children are at high risk of iron deficiency 
because their need for iron during the period of growth is high and also their diet 
is often low in iron and iron supplements. 
In almost all countries, measures to control iron-deficiency anaemia are 
implemented. These measures usually focus on women during pregnancy and 
young children and consist of distributing iron supplements and, to a lesser 
degree, iron fortification by an appropriate food method. 
This thesis reports the longitudinal changes in haemoglobin concentration of 
pregnant women and their children in the Southwest of England, using data 
collected as part of The Avon Longitudinal Study of Parents and Children 
(ALSPAQ. 
Longitudinal data are used in the study of growth, or improvement, and consist of 
the same measurements made on the same subjects repeatedly over time. This 
longitudinal study is used to examine changes in the haernoglobin level of 
children and of mothers during pregnancy and the effect on haemoglobin of some 
time stationary and time varying covariates. 
Longitudinal data requires special statistical methods because the observations on 
one subject tend to be correlated. (Although subjects can usually be assumed to be 
independent). When subjects are individually observed at varying sets of times 
with or without missing data, as is the case for ALSPAC data during pregnancy, 
then the resulting data is referred to as unbalanced data. This can cause further 
complications for the analysis. 
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The aim of this thesis is to contribute to longitudinal research of this topic by 
using mixed-effects models, which provide a powerful and flexible tool for the 
analysis of balanced and unbalanced data. 
Chapter one consists of an introduction to the thesis. Subsequently, Chapter 2 
details previous relevant research in the area of this thesis according to methods, 
and these methods are applied in Chapters 3,4 and 5. 
In Chapter 3 the inferential focus is on modelling the change in mean 
haemoglobin levels during pregnancy in three groups of mothers as defined by 
their use of iron supplements. Group 1 did not use iron supplements during 
pregnancy; Group 2 began to use supplements before Week 18 and Group 3 
between Weeks 18 and 32. 
This chapter fits a polynomial function to the data set. This function is fitted to 
the data using the method of General Linear Mixed Models. These Mixed Effect 
Models are fitted with and without interaction terms. Polynomial regressions are 
tested in order of complexity, when the highest order term is chosen then all lower 
order terms are included as well. 
Attention is focussed on curve fitting methods that are able to provide explicit 
functions for these data. In this chapter the cubic spline algorithm is used to find 
an adequate model. We can see that the cubic spline reconstruction generally 
performs better than the polynomial fitting procedure to obtain a meaningful 
model. Therefore, the spline approach is preferred for the haemoglobin levels 
during pregnancy. The spline model is calculated with knots at 12,18,24,32 and 
36 weeks of pregnancy for the three groups of mothers separately. The exception 
is that one parameter is not significant for the Group 2 model, but the full set of 
knots was retained even in this case. 
Test are carried out to investigate the association between the iron supplement 
status of mothers during pregnancy and each of following variables; mother's 
education level, age, and ethnicity, number of cigarettes smoked per day in 1" 3 
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months, number of cigarettes smoked in 2 last weeks of pregnancy, number of 
cigarettes smoked by 32 weeks of pregnancy, singleton/multiple pregnancy, 
mother's parity and vegetarianism of mothers The spline models are then 
extended in order to investigate the influence of these variables on haemoglobin 
levels during pregnancy in each group of mother separately. 
In brief, in-Group I there are significant effects of the following covariates on 
haernoglobin levels: vegetarianism of mothers (without interaction between this 
covariate and time); number of cigarettes smoked per day in first 3 months, 
number of cigarettes smoked per day in last 2 weeks of pregnancy and parity 
(with interactions between these covariates and time). 
In-Group 2, the model includes a significant effect of ethnicity of mother, multiple 
pregnancy and number of cigarettes smoked per day in first 3 months of 
pregnancy on haemoglobin levels. 
There was also a significant interaction between multiple pregnancy and time. In- 
Group 3, haemoglobin levels were significantly associated with mother's parity, 
education level of mothers and vegetarianism of mothers but there was just a 
significant interaction between mothers who were vegetarian in the past and time 
at knots (18,24). 
In Chapter 4, an identical statistical method to Chapter 3 is used to model 
haernoglobin levels in children up to 7 years of age. 
The age of each child (to the nearest week) is recorded on each occasion, along 
with the haemoglobin level. 
Explore the effect of several time stationary covariates, including maternal and 
children covariates, on haemoglobin levels, and to determine the effects of 
nutritional intake, which is represented by a set of time varying covariates. In 
chapter 4, covariates of interest in our investigation included: maternal age: 
vegetarianism of mother; education; number of cigarettes smoked per day in 1" 3 
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months, the last 2 weeks, by 32 weeks of pregnancy; parity; and singleton 
/multiple pregnancy; birth weight, sex and ethnicity of children. 
Furthermore, fitted values of the intercepts and slopes from the model, for 
maternal data, were included as time stationary covariates. 
Time-varying covariates included the weight of the children and nutritional intake 
such as: vitamin C, Haem iron, Fat, Saturated fat, Monounsaturated fat, Energy, 
Calcium, Iron and Non-Starch Polysaccharide (NSP). These measurements were 
only made at 18 and 43 months. 
The best fitting model is produced by a cubic spline with three knots at 69,228 
and 324 weeks. 
The mean haemoglobin level is significantly affected by education level of 
mother, sex of child, parity and birth weight (as time stationary covariates) and by 
Vitamin C, NSP, Calcium intake and weight of child, (as time varying covariates). 
There are no significant interactions between these covariates except in the case of 
education level of mothers. The effect of a mother's haemoglobin level during 
pregnancy on a child's subsequent haemoglobin levels is assessed. This had to be 
done separately for the three groups of mothers according to iron supplement use. 
The results show that random slopes are significantly associated with children's 
haemoglobin level just in Group I- 
The aim of Chapter 5 is to introduce a longitudinal reference curve for 
haemoglobin levels in children, from age 8 months to 7 years. 
This study describes the extension of the reference curves approach of Cole and 
Green to create conditional reference curves (Cole 1994). 
Firstly, cross-sectional reference curves were fitted to the data using the LMS 
method (Cole & Green 1992) and then a longitudinal approach to conditional 
reference curves is developed where haernoglobin levels at time t are predicted 
from haemoglobin levels one time previously (t -I). Subsequently, this work is 
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extended to give a new conditional reference curve by including haemoglobin 
levels at all previous times rather than just one time. 
In all cases, reference curves representing the 3rd, I Oth 25 th 

ý5 
01h 9 75 th, 90th and 97 th 

centiles are obtained for the age range 8 to 84 months. 
In the cross-sectional reference curves, the centiles are relatively far from the 
median in early childhood, but thereafter they come closer to the median. 
The conditional reference curves fitted using data from one previous time are 
roughly parallel up to 300 weeks (75 months) and then diverge for older children. 
All conditional reference curves are much closer to the conditional median than 
cross-sectional reference curves to their median. The conditional reference curves 
that are based on data from all previous time perform particularly well. 
Chapter 6 begins with an outline of the main findings of the thesis and a 
discussion of possible future work in this area. Although progress has been made 
in the study reported in this thesis, further extensions are required. As the 
longitudinal data typically need some structured covariance models, the overall 
findings indicate that when the number of occasions is large with some missing 
values, the use of polynomial functions is inadequate to describe the model. This 
study highlights an approach that applies cubic spline in longitudinal modelling, 
including an emphasis on the use of graphical representation for exploratory 
analysis and the assessment of model fit. 
Cubic splines provide a flexible tool for longitudinal data. The main objective of 
this study is to investigate a methodology to incorporate cubic spline with linear 
mixed models in modelling longitudinal data with number of time points and 
missing values. 
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CHAPTER 1: Background 

CHAPTER I 

Background 

1.1. Introduction: 
1.1.1. Iron Deficiency: 

The most common nutritional disorder in the world is Iron deficiency, the highest 
number of sufferers being found amongst children in early life and women, 
particularly during pregnancy. Due to Iron deficiency, 1.3 billion people, around 
30% of the world's population, are anaemic(Cook, Skikne, & Baynes 1994). 
Interestingly, Iron deficiency is not an exclusive health problem of the developing 
world, as it also affects the population of the industrialised world for example 
Europe (Hallberg 1995). 
According to a report by the World Health Organization (WHO) around 43% of 
the children in the world are anaernic (Hb: 5 II g/dl). 
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CHAPTER 1: Background 

Early detection of anaemia can help to prevent complications, related to 
pregnancy and delivery as well as child development problems. 
Information on the prevalence of anemia is useful for the development of health 
intervention programmes designed to prevent it, such as Iron fortification 
programmes. 
Iron levels in the body, are influenced by a range of factors which have been 
categorised into three main groups; dietary, host-related co-physiological and 
environmental factors. 
Iron levels in the newly born appear to be indirectly influenced by environmental 
factors such as socio-economical background and birth order, through the diet 
type and food eaten amount (Wharf et al. 1997). 
Haemoglobin levels are a widely used measure for assessing Iron deficiencies, 
many things can cause low haemoglobin levels and anaemia, and a common cause 
of anaemia is people's diet. Inadequate dietary intake and bioavailability are 
important factors contributing to poor Iron status, such as Iron deficiency anaernia 
(International Food Policy Research Institute 2000). 
The aim of this study is to use statistical methods for the analysis of longitudinal 
data. That is, data in the form of repeated measurements of the same experimental 
unit over time, to produce a model for Iron status during pregnancy and in the 
early years of childhood. 

Iron Deficiency in Pregnant Women: 

The risk of anaemia is increased by pregnancy. Of the 8684 pregnant women who 
delivered in Oxford between January 1987 and January 1989, thirty-nine percent 
had haemoglobin levels lower than II g/dI and ten percent of the mothers had 
haemoglobin levels lower than 1 Og/dl (Godfrey et al. 199 1). 
According to Tapiero's report, over 45% of women during pregnancy are anaemic 
in the world, whereas in developing countries around 60% of pregnant women are 
anaemic(Tapiero, Gate, & Tew 2001). 
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In order to evaluate anaemic women during pregnancy, it is essential to know 
their complete health history, also a physical and a blood smear examination must 
be carried through, plus a complete blood count with indices. More tests for 
measurement of red cell folate levels and ferritin may also be necessary according 
to the test findings. As the hernatocrit and some other variables change the normal 
physiology during pregnancy, diagnosing between true anaernia and anaemia 
etiology is challenging (Jong, Romano, & Gibson 2002). 
Since nutritional requirements increase during pregnancy, Iron deficiency 
anaernia is one of the most common forms of anaernia. 
Therefore, this kind of anaernia is prevalent in women who have inadequate diets 
and who are not receiving antenatal Iron and folic acid (folate) supplements 
(Williams & Wheby 1992). 
There are schemes to control Iron deficiency anaernia in almost countries. These 
schemes usually focus on women during pregnancy and their children. In the case 
of the former, consisting of distribution of oral Iron supplements and in the case 
of the latter, Iron fortification via a suitable food method. 
Despite the worldwide efforts by an array of public health organizations in trying 
to keep down anaernia and Iron deficiency anemia, it is still an endemic disease in 
many areas of the world, and its annihilation is a serious health problem. 
Moreover, prevalence of Iron deficiency anaernia is high in developing countries, 
being especially difficult to control and solve amongst pregnant women(Hercberg, 
Galan, & Preziosi 2000). 
In the world, about half of women during pregnancy are anaernic and in most 
cases this is due to Iron deficiency. 
So far, the introduction of Iron fortified formula coupled with cross-sectional 
haernoglobin measures, has clearly helped to reduce anaemia levels as reported by 
the Walravens study (Walravens 1989). 
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Worldwide, Iron deficiency is the most common nutrient deficiency, pregnant 
women being an especially high-risk group due to their low Iron reserves. 
The worldwide estimation is that 60 million women during pregnancy are 
anaemic, of which 4 million of them live in developed countries. 
The prevalence of Iron deficiency anaemia in pregnant woman varies amongst 
countries. Generally, it has been found that there is a tendency for levels of 
anaemia to be low in the first trimester while rising during the second trimester. 
Around half of Iron deficiency anaemia cases are found after the 25 th week of 
pregnancy (Hercberg, Galan, & Preziosi 2000; Milman, Agger, & Niesn 1994). The 
effects of Iron deficiency anaemia include a premature delivery and delivering a 
low-birth weight child. 

1.1.1.2. Iron Deficiency in children: 

Iron deficiency can be a serious problem in childhood. In children, the most likely 
causes are low levels of available Iron in the diet. This together with an increased 
Iron demand for growth exacerbates the problem. 
In newborns, Iron reserves are usually adequate up to the first 4 to 6 months of 
age. However there after as Iron is needed for producing energy, children become 
dependent on extra available Iron. Making the under two years age group, the 
most vulnerable one according to(Aggett, Barclay, & Whitley 1989), when this 
demand is not met. 
The development of Iron deficiency which can lead to the development of Iron 
deficiency anaemia can have serious consequences, as it has been observed to 
delay both mental and psychomotor development, as well as physical growth 
(Lozoff, Jimenez& Wolf 199 1). 
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1.1.1.3. Iron supplementation: 
Around 30% of the people in the world are affected by Iron deficiency. Iron 
deficiency is most common in the developing world due to vegetarian diets, which 
reduces the availability of Iron in the diet. 
Additionally, requirement for Iron is increased by rapid growth and blood losses, 
the former increasing the risk of anaernia in infants and the latter increasing the 
risk of anaernia in women who undergo menstruation (Ma et al. 2002). 
Moreover, several studies have shown that there appears to be a correlation 
between Iron supplementation and a lower frequency of problems during 
pregnancy as well as after birth (Allen 1997). For instance in a study performed 
on Finnish women during pregnancy, randomized into mothers with non-routine 
and mothers with routine Iron supplement, newborns had shorter mean length in 
mothers with non-routine Iron supplement than those born to mothers who 
routinely took Iron supplement. Also, in this latter group, significantly longer 
gestation took place(Hemminki & Rimpela 1991). 
For several reasons, infants are particularly sensitive to nutritional deficiencies, 
partly due to the fact that often their range of food as well as its amount is 
inadequately low, in relation to their growing nutritional requirements. 
Nestel 's 1993 study, suggested that this problem could be solved by providing the 
infants with a greater variety of highly nutritious food, these ones being absent in 
traditional diets(Nestel 1993). 
Haemoglobin level is one of the most important clinical measurements used to 
diagnose and treat anaernia, via public health interventions. 
In the main, a data analysis for cross-sectional study is of little help when wanting 
to evaluate the disease history, especially when interesting variables change over a 
period of time(Ware 1985). Thus, a better option is longitudinal haemoglobin 
measurements, which must be obtained from the same individual over a period of 
time at suitable intervals. This method is a reliable way of evaluating the risk 
factors in anaemia. 
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A repeated measures design, with suitable analysis, allows study of haemoglobin 
change in a time period within individuals and therefore provides a way of 
examining the effects of covariates at the individual subject level(Zeger & Liang 
1992). This is precisely the type of data that can be found in the ALSPAC study. 

1.2. The ELSPAC and ALSPAC studies: 

The Avon Longitudinal Study of Parents and Children (ALSPAC) which was 
previously known as The Avon Longitudinal Study of Pregnancy and Childhood, 
forms part of the European Longitudinal Study of Pregnancy and Childhood 
(ELSPAC) cohort study(Golding 1989; Sherriff et a]. 1999). The aims of the 
ELSPAC study are to identify ways in which to prevent illnesses happening and 
to maximise the health of the child. 
The study centres involved with ELSPAC include Yarsoslavl in Russia, Brno and 
Znojmo in the Czech Republic, Bratislava in Slovakia, five centres in the Ukraine, 
as well as the Isle of Man and Avon in the UK. 

All of the ELSPAC study centres share the following study pattern: 

The study covers all women during pregnancy resident in a determined 
geographical area with an expected date of delivery between specific 
dates. 

Self-completion questionnaires posted to the mother and her partner, this 
information can then be linked to information from health records. 

The questions should be the same in all study centres and asked in the 
same way to obtain a core data set. However, questions such as diet and 
educational level, which were culture-specific, were excluded. 
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* As much additional detail as desired locally could be added to that 
required by the overall study strategy, as long as none of the core data was 
dropped. 

The branch of ELSPAC known as ALSPAC, The Avon Longitudinal Study of 
Parents and Children is a population based study which investigates which factors 
appear to have an influence on the health and the development of children (North, 
Emmett, & The ALSPAC Study Team 2000). All women during pregnancy 
resident within a certain area of Avon, in Southwest England, with an expected 
date of delivery between I April 1991 and 31 December 1992 inclusive, were 
invited to take part in this study and eligible for inclusion(Emmett, North, & 
Noble 2000). 
In order to persuade women during pregnancy to enrol in this study, several plans 
were used. 
Displaying posters in many places including pharmacies, general practitioner 
waiting rooms, antenatal clinics and inviting mothers to ask for further details of 
the study. 
All mothers who were living within the area being studied were sent information. 
The total number of mothers enrolling in this study was over 14000, which was 
over 80% of eligible pregnancies in this area(Emmett, North, & Noble 2000). 
Their children were as known Children of the nineties and provided a sample that 
appears to be a reasonable representation of British children as a whole(Sherriff et 
al. 2001). 

1.2.1. The ALSPAC study area: 

The Avon area under observation was within the Southwest Regional Health 
Authority but excluded Bath and district. 
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This area is 120 miles west of London and situated on the Seven estuary, its 
population is one million, including Bristol whose population is 0.5 million. 
The data comprises a mixture of rural areas, inner city deprivation, leafy suburbs 
as well as moderate sized towns (Sidebotham & Golding 200 1) - 

1.2.2. Preparatory work: 
A pilot study was done on approximately one hundred subjects; one of its aims 
was to make the questionnaire reader friendly. With this in mind, parents were 
asked to make suggestions on the wording of the first questionnaire drafts. So that 
it could be adequately modified. 
Additionally, the ALSPAC Ethics and Law sub-committee also made suggestions 
on the phrasing of questions and other matters. 
1.2.3. The questionnaires (During pregnancy): 

Supposing that the mother wanted to take part in the study, the first questionnaire 
was posted to her, around one week after the brochure for joining in children of 
the nineties had been sent out. The gestation at enrolment of the woman 
determined, which questionnaire was sent to her. Table 1.1 shows the schedule for 
sending the questionnaires. Four questionnaires were sent to pregnant women, 
two of them were sent out at a fixed time, at Week IS of pregnancy (B =' Having 
a baby) and at Week 32 of pregnancy (C =' Your Pregnancy'). 
If the woman had enrolled before 14 th weeks of pregnancy, the questionnaire 
labelled 'Your Environment' (A) was posted to her forthwith. 
The designers of this questionnaire were interested in finding out to which extent 
early environment could have an influence on the fetus. 
The other questionnaire labelled about Yourself (D) was related to the mother's 
medical record, as well as her social and environment history and the time during 
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pregnancy. Then if these were necessary, after birth of baby the questionnaire was 
posted. 
The questionnaire called having a baby (B) was not useful or valid for the 
mothers, which enrolled at week 18 th of pregnancy or later, because of questions, 
which dealt with earlier stages of pregnancy. 
However, in the mother's late enrolment questionnaire, some relevant information 
could be found, in relation to their environment and lifestyle. 
Consequently, this useful information was joined together in a single 
questionnaire called your home & lifestyle (E). 
After 7 days, if a mother had not replied to the questionnaire, a remainder was 
sent to her and if necessary a second remained was also sent, this time after 
waiting for a reply for a period of time of anything in excess of 10 days. 
In the event that the mother had still not reply after one month, a member of staff 
would call her and pay her a home visit, offering her assistance in filling the 
questionnaire. 
A short questionnaire called Filling the Gaps was posted to mothers after the birth 
of their children. These mothers did not receive questionnaire C that dealt with 
the ethniticity of both mother and child, as well as her social, educational and 
occupational background. All of these questions were not related to pregnant 
women in their third trimester (Golding et al. 2001). 

1.2.4. Eligibility criteria of study: 

All women resident in the Avon Health Authority area with an expected date of 
delivery between I April 1991 and 31 December 1992 were eligible for this study. 
Resident women in this area, who had left Avon following a short time after 
enrolment, were dropped from follow-up. 
Nevertheless, the questionnaires that had been filled by all of the mothers during 
the third trimester of pregnancy were used in the study, irrespective of the fact 
whether the mother had left the area being studied before or after delivery. 
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1.2.5. Children in Focus: 

The total sample of children in the ALSPAC study was called Children of the 
nineties. 
A 10% sample of the children born in the last 6 months of the study were selected 
at random to take part in this study known as Children in Focus (CIF). Parents of 
these babies were invited to bring their children to a research clinic at 4,8 and 12 
months of age and at six monthly intervals thereafter, where a number of clinical, 
physiological, and developmental assessments were carried out(Sherriff, Emond, 
Hawkins, Golding, & the ALSPAC Children in Focus Study Team 1999). The 
aims of this study (Children in Focus) were to validate some phases of the self- 
completion questionnaire, as well as finding information that might not be 
determined by the questioners. 
Important questions investigated with the Children in Focus. Children were 
correlated with the effect that childhood diet, growth, anaernia, otitis media with 
effusion, visual defects, parenting skills and early cognition can have on the 
development of intellectual competence, speech, language and motor 
development(Golding, Pembrey, Jones, & The ALSPAC Study Team 200 1). 
Of the 1509 children's mothers who were invited to the 4-month clinic, 1023 of 
them attended. 
With an invitation at 8 months to all of the mothers who had or had not attended 
the 4 months clinic visit, 390 subjects were added to the total size of the cohort 
study. Then 1413 mothers attended the 8-month clinic, of the 1509 who were 
originally invited to attend. 

1.2.6. Ethics approval: 

Ethical approval for the study was obtained from the ALSPAC Ethics and Law 
Sub-Committee and from the three Medical Research Ethics Committees in The 
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Avon study area including the local ethics committee of United Bristol, 
Southmead and Frenchay Health Care Trusts(Sherriff, Emond, Hawkins, Golding, 
& the ALSPAC Children in Focus Study Team 1999). 

1.3. The Data Availability: 
1.3.1. Data Preparation: 

There are a number of self-coding in the questionnaire responses. Arrange for data 
from the completed questionnaires to be keyed by the ticked box available in the 
questionnaire as print number. In the questionnaire, some questions ask for 
response as text, some ask for response as tick and comments. 
A group of undergraduate students coded the complete questionnaires under the 
supervision of the staff, throughout the summer months. 
The questionnaires were checked very carefully to be sure that there were no more 
than one tick per answer for each question and that any comments do not 
materially affect the meaning of the response. 
Sometimes, converting dates, description of some problems included multiple 
ticking, or rounding of ages is necessary. In order to avoid error, a second group 
double-checked all coding. 
The major problem with textual responses is the great variety of possible 
questions and responses to each of them. 
Hence, keying all written responses, and then dividing each answer by each 
question type, solved this problem and one file was created to put all responses to 
one question. 
The data are ready for analysis when those are accomplished for an especial 
questionnaire and also are edited (Golding, Pembrey, Jones, & The ALSPAC 
Study Team 2001). 
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1.3.2. The built data riles: 
Editing was done so as to exclude all information, which might help to identify 
an individual person, on receipt of all the coded and keyed data from any one 
questionnaire and then a file name builtfile was made. 
The detail of questions asked, the coding outlines, the details of the derivation of 
scores and summary variables included in each built file were made into a 
document. 
The questions, the table of response frequencies and the labels used can be found 
in The ALSPAC study Team document. 

1.3.3. Data collection: 

A myriad of sources were used to collect information from the beginning of 
pregnancy these being: 

e Self-completion questionnaires, which were sent to mothers, their partners 
and their children (from age 5); 

* Medical and educational records; 

9 Environmental measurements of sub samples of home such as air 
pollutants levels and noise; 

The assessment of a 10% sample of the data which had been randomly 
selected from the study population, from age 4 months (Children in 
Focus sample); 

A thorough interview, including an examination of the especial sub- 
group and their controls; 
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* An assessment of the total study using a standardised environment, each 
year from seven years old of the children onwards. 

The mother, her partner and the child biological samples(Gol ding, 
Pembrey, & Jones 2001). 

Three sets of measurements are of particular interest in this thesis: 
I. The Mothers' haemoglobin levels were under observation during 
pregnancy. 
Demographic data for this study, obtained by postal questionnaire, included; the 
ethnic background, health, and lifestyle of the mother as well as the environment 
and the development of the child. 
Blood samples of the mother during pregnancy were taken in routine antenatal 
testing, as well as DNA umbilical cord blood samples (Mumford 1999). 
As any use of Iron supplements by the mother during pregnancy would have a 
very important impact on her haemoglobin level, the category of the mother in 
Iron supplement groups was determined from the questionnaires that were sent to 
the mother during pregnancy. 
At two fixed time points, 18-20 weeks gestation and 32 weeks gestation, the 
relevant questionnaires were sent out. These weeks reflect the second and third 
trimesters of the pregnancy (Sidebotharn & Golding 2001). 
This means that we only know whether or not a mother was taking iron 
supplements by the 18 th week of pregnancy and by the 32 nd week. 

2. The children's haemoglobin levels were deten-nined at each research clinic 
visit. 
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A sample capillary of the children's blood from a heel prick was taken in an 
EDAT capillary tube. The HEMOCUE B-Hb photometer was used to check on 
the haemoglobin levels (Sherriff, Emond, Bell, Golding, & Team 2001). 
Emond A in 1996 reported on the quality confidence strategy operating within the 
laboratory and the measures taken to test the stability of the samples once the 8 
months blood samples were analysed (Emond et al. 1996) It notes that there was 
no recording of the children's iron supplementation status. 

3. Dietary intake data were assessed in children for three days in a particular 
week; two day during the week and one day during the weekend. The data was 
collected using household measures (unweighed) and records at ages 18 and 43 
months old. 
One week before of the scheduled clinic visit, the mother was sent a three-day 
dietary diary, in which she could record all the eating and drinking done by her 
child using household measures. All nutrition intakes were accounted by these 
records (Cowin et al. 2001). 

1.4. Thesis outline: 

The question, which we are going to answer in this study, is how mean 
haernoglobin level changes over time and other issues concerning the relationship 
between response and time. 
It is necessary to represent the situation in terms of a statistical model that 
acknowledges the way in which the data were collected in order to address this 
question. Complementing the models, specialized methods of analysis are 
required. 
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The aims and objectives of this thesis are: 

To model haernoglobin concentration during pregnancy and investigate the 
effects of various covariates and Iron supplementation on haernoglobin 
levels in pregnant women. 

To model haemoglobin concentration during childhood from 8 months to 7 
years old ages in Children in Focus and investigate the effects of the 
covariates on Iron status in these children. 

To present and compare reference curves for haemoglobin concentration 
in children aged between 8 months old and 7 years old, for detecting 
abnormal haernoglobin levels. 

In this study, we will explore some recent approaches to analysing our data set, as 
methods for dealing with this type of longitudinal data have developed 
tremendously in recent years. 
Chapter 2 discusses and reviews statistical modelling for dealing with longitudinal 
data and introduces, General Linear Model for longitudinal data, cubic spline, the 
Generalized Estimating Equation approach, software for analysis of longitudinal 
data, dealing with missing data and reference curves. 
Chapter 3 presents results of modelling the mean haemoglobin concentration 
during pregnancy with particular emphasis on how Iron supplementation affects 
haemoglobin levels. Also in Chapter 3 the influences of a number of important 
covariates on the development of haemoglobin concentration during pregnancy 
are examined and discussed. 
Chapter 4 applies the same methods used in Chapter 3 in order to model 
haemoglobin levels in the children between 8 months and 7 years in Children in 
Focus. 
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The aim of this Chapter is to describe the Iron status, and the effects of the 
covariates and Iron intakes on Iron status, in children followed longitudinally 
from 8 months old to 7 years old. 
In Chapter 5, this study is looking for appropriate statistical methods for 
estimating reference curves. 
For childhood haemoglobin levels, Chapter 5 describes an extension of the 
reference curve of Cole and Green to generate a longitudinal reference curve for 
haemoglobin concentration in Children in Focus. 
The main aim of this part of work is to demonstrate some methods for producing 
and comparing reference curves for both cross-sectional and longitudinal data for 
children haemoglobin concentrations by covering ages between 8 months old and 
7 years old. 
Finally, Chapter 6 provides a discussion of the work done so far and prospects for 
the future of this study. 

Gestation at Administration of questionnaires (week) 
enrolment (week) A B c D E 

: 510 : 510 18 32 14 
11-14 11-14 18 32 23 
15-18 22 18 32 26 
19-21 24 19-21 32 28 
22-23 28 22-23 32 36 
24-30 - 29-33 33-36 24-30 
31-40 31-40 PD** 34-41 

Table. 1.1: Timing of antenatal questionnaires 
* This table is taken from Golding J, 2001. 

**Post delivery 
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C APTER 2 

Literature review 

2.1. Introduction: 

It is interesting to researchers to model data that arise from a longitudinal or 
repeated measures study where there exists a correlation between observations on 
a given subject. 
Normal Linear Models (NLMs) and Generalised Linear Models (GLMs) are 
standard regression models for independent data that are assumed to follow an 
exponential family distribution, but these must be generalised for correlated data 
structures(McCullagh & Nelder 1989). If the outcomes are approximately 
multivariate normal, then there are acceptable methods of analysis, namely 
General Linear Mixed-effects Models (GLMMs), which are generalisations of the 
NLM(Laird & Ware 1982). 
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The Generalised Estimating Equations (GEE) approach re-discovered by(Liang & 
Zeger 1986), which is based on multivariate quasi-likelihood theory, is an 
extension of the GLM approach to deal with longitudinal data. Both GLMMs and 
GEEs are described and discussed in this Chapter. 
Some data that can be analysed using the General Linear Mixed Model include 
longitudinal data, repeated measures data and correlated data. 
The General Linear Mixed Model can be represented as a two-stage model, where 
random effects are first sampled from a prior distribution and measurement data 
are then sampled from independent normal distributions with linear functions of 
these random effects and additional population parameters as fixed effects. 
It is important to mention that choice of a multivariate normal model for the 
outcome implies that the full likelihood can be written down and parameter 
estimation can proceed in the usual maximum likelihood manner. 
Several software tools for estimating this class of models are available, such as 
SAS Proc Mixed (SAS Institute 1992), BMDP5V (Dixon & Chief 1990), HLM 
(Bryk, Raudenbush, & Congdon 1994), and MLn(Woodhouse 1995). 
On the other hand, if the multivariate normal assumption breaks down, because 
the individual outcomes are binary or count data for example, general likelihood 
approaches are less easy to use, for the reason that it is difficult to specify a full 
multivariate distribution for such data. Some modelling approaches have been 
proposed for these kinds of data (Fitzmaurice, Laird, & Rotnitzky 1993). Possibly 
the most productive approach is Generalized Estimating Equations (GEEs), 
presented by (Liang & Zeger 1986; Zeger & Liang 1986) which takes account of 
the correlation between measurements in Generalized Linear regression Models 
without specifying the full multivariate distribution. The full distribution of the 
outcomes is not specified, but only the correlations among the outcomes from an 
individual or cluster. In this sense, Generalized Estimating Equations are 
generalisations of General Linear Models to the case of correlated data. 
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Additionally, Generalized Estimating Equations permit a range of different 
correlation patterns within clusters. Finally, Generalized Estimating Equation are 
estimable with a lot of currently available software packages(Zom 2001). 
In this chapter, we review the available methods for dealing with correlated data; 
in particular, the techniques of General Liner Mixed Models and Generalized 
Estimating Equations. 
In the following section, General Linear Mixed Models are introduced, the 
Generalized Estimating Equations approach is outlined and software for analysis 
of longitudinal data is discussed. 

2.2. Longitudinal Studies: 

The defining feature of a longitudinal study is that individuals are repeatedly 
measured during a period of time. Whereas in cross-sectional studies an outcome 
is measured at a single time point for each individual. 
In comparison between cross-sectional and longitudinal study, the major 
advantage of the longitudinal study is its capability to separate out what in the 
population studies are called cohort and age effects. 
The effect of age varies over a period of time within individuals; the cohort effect 
is the difference amongst population groups who are born at various times. As a 
single outcome is only available in cross-sectional data, therefore cross-sectional 
studies cannot distinguish between these two effects. 
Longitudinal studies can differentiate changes during a time period within 
individuals from differences amongst cases at the start of the study. 
Longitudinal studies are most suitable for the investigation of individual changes 
during a period of time and for the study of effects of some important factors to 
influence variation. The main aim is comparison of the effects of treatments on 
an outcome variable. 
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However, a comprehensive analysis of such longitudinal data requires an 
adjustment of between and within subject change, unbalanced and missing data. 
In the last two decades, much progress in the modelling and analysis of 
longitudinal data has been made methodologically and computationally (Cnaan, 
Laird, & Slasor 1997; Diggle, Liang, & Zeger 1994; Molenberghs & Verbeke 
2002). 
Consider a longitudinal clinical trial, where cases are first randomly allocated to 
one of a set of possible treatments, and then followed for a time period. This is 
the simplest type of longitudinal study. 
Effects of treatment are shown by differences in evolution during a period of time 
and by interactions of treatment with time. Randomisation ensures that the 
treatment groups are certainly comparable at baseline according to factors that 
potentially influence change later. Therefore, a statistical model for this data does 
not need a cross-sectional model component (Verbeke , Spiessens, & Lesaffer 
2001). 
In observational studies, some groups may not be very similar at the beginning, 
therefore longitudinal changes require to be studied after correction for some 
confounders such as age and gender. 
For future reference, it is important to mention here that ALSPAC is an 
observational longitudinal study. 
Suitable models for data from observational studies of this type cannot assume 
that all cases are measured on the same occasions nor that the same number of 
observations is available for all cases. This is very important since individuals 
may enter and drop out of the study at any time. 
Particular statistical methods are demanded by longitudinal data because the 
observations on one case tend to be correlated. This correlation must be taken into 
account in order to draw valid inferences. 
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2.2.1. The aim of longitudinal research: 

1. To characterise outcomes pattems (e. g. growth, haernoglobin level, blood 
pressure) over time. 

2. To investigate the effects of important covariates on outcome, the 
covariates in longitudinal studies are two groups on the following; 

Time-independent or time stationary (between-subjects) covariates 
(e. g. sex, ethnicity), 

Time-dependent or time varying (within-subjects) covariates (e. g. 
age, weight, income, nutrient intake). 

When each outcome is measured at the same times, then the resulting data is 
described as balanced data. Once measurements are made on different subjects at 
different times and/or there are missing data, and then the resulting data is 
described as unbalanced data. 

The main longitudinal studies characteristics are as follow: 

e Correlated outcomes, 
9 Unbalanced data set, 
e Missing observations. 

Therefore, the analysis of longitudinal data should deal with subject correlation, 
the observations that are at unequal time intervals and the missing observations. 
Repeated measures analysis is used to analyse longitudinal or repeated measures 
data for a balanced study, once all subjects are measured at equal time points and 
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there are no missing values in data set. It is infrequent to obtain balanced data in 
longitudinal studies therefore it has been found necessary to develop other 
techniques which can deal with unbalanced data. The main techniques in use are 
General Linear Mixed Model and General Estimating Equations. 

2.2.2. Linear model for longitudinal data: 

For a longitudinal study in which the outcome is a continuous measurement, we 
consider three general models: 
1- population average or Marginal Models, 
2- Transition models, 
3- Subject-specific models (random effect), 

2.2.2.1. Marginal Models: 

When a population is of interest, the most suitable model to fit is a Marginal 
Model. In Marginal Models, the population-averaged outcome is modelled as a 
function of the covariates. These are known as population-averaged models 
because the regression coefficients are interpreted for the population rather than 
for individuals. 
In the Marginal Models, the regression of the outcome on explanatory variables is 
modelled separately from within-subject correlation. 

2.2.2.2. Transitional Linear Models: 

Once the time varying is important, models for the conditional distribution of 

given may be more suitable. These are also called conditional models. kal 
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A linear model for the conditional mean of Yjj given the observed value Y, (j-, ) of 

the outcome instantly preceding Y, is commonly named a first-order 

autoregressive model. One can also have second-order, third order or higher order 
autoregressive models (Diggle, Liang, & Zeger 1994). 

2.2.2.3. Random effects Models: 

A simple model is the fixed effect model with independent errors. In a fixed- 
effects model the levels of any given factor are fixed. 
The model can be written as: 

Y, Xj+E �(i=1,2,3,... n) 

Yi = Outcome for subject i9 
Xi = Covariate value for subject i. 

The errors are assumed to be independent with constant variance, i. e. 
Var[ci ]=a2. It is also assumed that the p-dimensional vector of fixed effect 
parameters P is constant. Interest centres on estimating P and a2. 
Some times the effects are not fixed but random, in which case we would like to 
construct a random effects model. For example, if the observations are not 
obtained by simple random sampling, but come from a cluster or multi-level 
sampling design, then random effects models are often useful. 
A factor must be treated as a random effect if the factor levels present in an 
experiment are a random sample from some population of possible levels. In the 
case of a single random factor the model might be: 

Y, =p+a +v li i ii 
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Where 
i I, Z... 

Also model assumptions are: 

"u is an unknown constant representing an overall mean, 
2 " ai is the random effect of unit i and a N(O, a.. 

" The a, 's are random and independent of each other. 
" The tij's are random, independent of each other and 

iý No a2 V 

0a, andF,, are independent of each other. 
2 Var(Y, =or + or 

E(Yij )p 

In this model, it is important to estimate both 62, U2 and a I. A model for a data a 

set with both Fixed effects and Random effects is called a Mixed effect model. 
Random-effects and Mixed-effects models are also suitable for the study of 
variation in an individual, so these models are sometimes called subject-specific 
models. 

2.2.3. General Linear Mixed Model: 

General Linear Models with fixed and random effects are known as General 
Linear Mixed Models and these have been discussed widely in recent literature. 
Some useful references are (Breslow & Clayton 1993; Diggle, Liang, & Zeger 
1994; Searle, Casella, & McCulloch 1992). 
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Now Y Y,, Y are n variables each is dependent on the values for each of p 1-1 2n 
independent variables (X,, PX12 P ... I X/P ), (X 21 PX 22 X 2p 

-, (X 
nl 9X n2 9*9*2 X np 

)* 

The normal linear model with fixed effects is written as follows: 

Yi ý-- fllxii +-... + fl px lp +c I 
i=1,2,... 
61 is N(O, a2) 

The error term (ci) is error term in the model. The fixed effect Parameters are 

fl I, J6 2 -, fl p and the error variance is a2- 
The above normal linear model can be written again, in matrix form, as follows: 

Yi xii xi.? 
y2 x21 x22 

Lyn. J LXnl Xn2 

x1p fll cl 
X2p 182 C2 

xp I LflpJ Len I 

This formula, is written again as follow: 

xp+c 
No or2j ( 

.9m) 
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Where 
The outcome vector is Y (Y 

19Y 2 9***9y n) 

X is the matrix of Xj 's 
Further, the vector of fixed effect parameter is (P IýP2f... tPP) 
The vector of errors is E= (F'19r*29***9 EnY 

and where I,, is then xn identity matrix. 

Although the General Linear Model is useful, often the assumptions about the e 
distribution are too restrictive (Searle 197 1). 
Mixed-effect models are extensions of general linear models that include 
additional random-effect terms, and are suitable for longitudinal data, when 
measurements are correlated over time on the same individuals. 

2.2.3.1. The Linear Mixed Models: 

Mixed effect models are used to account for correlation between a response and 
covariates in data that are grouped according to one or more factors (Pinheiro, & 
Bates 2000). 
Mixed-effects Models supply a powerful and flexible tool for the analysis of 
balanced and unbalanced data. These data arise in different field of investigation 
and are characterized by the presence of correlation between measurements within 
the same group(Cnaan, Laird, & Slasor 1997). 
The term longitudinal data is to mean that each subject is measured repeatedly on 
the same response at several different times. The main aim is in characterising the 
way the response changes over time. 
An example of a longitudinal study is looking for the effects of starting to drink 
and giving up drinking on health. 

26 



CHAPTER 2: Literature review 

The advantage of this study over many studies in this area is that the modelling 
enabled the authors to account for both, the age at starting and giving up drinking, 
in addition to other important covariates, and thus give a more comprehensive 
picture than previous studies which approached only one aspect or the other of the 
problem. 
One more example is a study of stress and immune outcome in mothers with and 
without normal weight infants(Gennaro et al. 1997). 
Two groups of mothers were measured for stress and various immune function 
markers at delivery of the infants and then at one, two and four months after 
delivery. 
The data for each response were analysed separately, using the balanced and 
complete repeated measure data for four measurements. 
The mothers without normal birth weight infants had increased anxiety and 
decreased lymphocyte proliferation as well as decreased in percentage of some 
immunology cell subsets. 
Longitudinal models of these markers as both linear or a quadratic function of 
time showed that resolution of immune-suppression of pregnancy was 
substantially faster in mothers without normal birth weight infants than mothers 
with normal birth weight children, although neither group archived normal levels 
by four months. 

2.2.3.2. Theory of Mixed Models: 

An overview of a likelihood approach is provided to General Linear Mixed 
Models. Some statistical analyses, such as repeated measures and random effects, 
are unified by General Liner Mixed Model. A linear relation for unobserved 
multivariate normal random variables is a basic assumption in this model. Further 
information is in(Diggle, Liang, & Zeger 1994; Pinheiro & Bates 2000). 
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The General Linear Mixed Model can be written as follows: 

Yj = Xjp + Zibi + ci 
b- X(O, V/) 
Ci N(o, ar2j n 

= 1,2,... n 

The above formula is the same as the General Linear Model formula except for Z 
(the known design matrix) and b (unknown random effects parameters vector). 
The Mixed Model includes p, as a vector of fixed-effects parameters and b, as 
random-effects parameters, where: 

Y is the n. xI outcome vector for observations in the i th group. II 
Xi is the nixp model matrix for the fixed effects for observations in 
group i. 
P is the pxI vector of fixed-effect coefficients for the population. 
Z, is the nix q model matrix for the random effects for observations in 
group i. 

" b, is the qxI vector of random-effect coefficients for group i. 
" c, is the n, xI vector of errors for observations in group i. 
"V is the qxq covariance matrix for the random effects. 

a21. is the ni x n, covariance matrix for the errors in group i. 

For further information about the Mixed Model, see (Searle, Casella, & 
McCulloch 1992). 
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As one assumption is normal distribution for b, and E, with: 

bi 0 
- 
EI 

- -0- 

Va r bij = 
[K 0] [EI 
0R 

Hence, 

V(Y) = ZK V+R 

This is a general description of the mixed model. A random effects model is a 
particular case when Z consists of dummy variables, K are variance components 
in a diagonal structure and R is Or2 In, where In illustrates the identity matrix. 
WithZ=O and R is Or2In , on the other hand we recover the General linear 
model as a further particular case. 

2.2.4. Generalized Estimating Equation (GEE): 

The method of Generalised Estimating Equation (GEEs) was improved to extend 
the GLM to accommodate correlated data and has been used successfully by 
researchers in several fields. 
The GEE approach is a common method for fitting models to data involving 
repeated measurements on the same subject. The outcome may be discrete or 
continuous (Zeger & Liang 1986). 
This method permits the researchers to describe for within-subject correlations, 
among repeated measurements on the same subject. Different subjects can have 
different numbers of repeated measurements. 
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In GEE, the correlation between measurements on an individual subject is 
surnmarised in the Working Correlation Matrix Rcý. 
The matrix is determined by the vector of parameters q which can take various 
forms of structures. The method estimates parameters of model by repetitively 
solving a system of equations based on quasi-likelihood distributional 
assumptions. The user can choose from several model forms by describing a link 
function; therefore the model form can be logistic, log-linear, or linear. 
While modelling longitudinal data, the primary objective of regression analysis is 
to describe the relationship between the expected value E(Y) of the outcome 
variable Y and the covariates X,, X2,..,,, Xp. Modelling the correlation structure 
is of less importance, nevertheless it is necessary to take into account any within- 
subject outcome correlation when making statistical inferences about the 
regression coefficient(Nicholas & Stuart 1999; Zom 2001). 

Some of the most used within-subject correlation matrices are as follows: 

* Independence: repeated observations are independent, 

0 

01 

-0 0 

e Unstructured: All the measurements are correlated but the 
correlations are unknown; 

Corr(yki 9 Ykj)= ai, j 
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Cý, n 
... a2, n 

R(cc) 
Cý. n-4 Gý, l ... a, -,,, Cý, n Cý, n *** I 

o Exchangeable: correlation between any two observation of an 
individual is the same. 

Where 
Corr(yki 

9 Ykj) "' -ý a 
and 

a ... cc 
R(cc) =.... . 

_a a ... I- 

Auto regression of first order [AR (1)]: The measurements are taken in 
possibly unequal intervals and the assumption is that measurements near in time 
are more highly correlated. 

Where 

Corr(Yk, i, Ykj) = al'-jl 
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and 

a' a" 
al a n-2 

R(cc) 

an-I a n-2 
... 

2.3. Missing Data: 

Not long ago, methods that were available to analyse longitudinal data had a 
major drawback. If one of the repeated measurements was missing, then all other 
available data for that subject also were excluded from the analysis. 
To solve this problem imputation methods for missing data have been 
improved(Little & Rubin 2002). 
Now, with modem methods to analyse longitudinal data, such as Generalized 
Estimating Equation (GEE), subjects with incomplete data are not excluded from 
the analyses. If a subject is missing one or more repeated measurements, the 
remaining available data from the other measurement for that subject are used in 
the analyses. That means that, once more these type of methods for the analysis of 
longitudinal data are used, it is probably less necessary to estimate the missing 
data (Twisk & Vente 2002). 
Missing data is a common happening for longitudinal studies because not all 
outcomes are observed due to study dropout, lost measurements, subjects cannot 
come to the clinic to be measured, and so forth. 
As longitudinal studies are balanced and complete very rarely, then a subject 
usually can have a missing response at one point time and be measured at the next 
point time. Usually, missing observation data in the studies is non-ignorable 
because the reason for missingness depends on the missing values themselves. 
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As an example, medication side effects may make the patients worse and thereby 
affect patient participation. 
According to Diggle et al (1994), in Chapter 11, gives a good discussion of 
missing values in longitudinal data. 
You suppose that you want to take measurements Y,, 9,. 9 Yi', for the th subject. 
Whenever Yij is missing for all j ý: k, these missing values for Yij are called 
dropouts. In other way, missing values that happen intermixed with non-missing 
values are intermittent missing values. 

2.3.1. Types of Missing Data: 
2.3.1.1. Missing Completely at Random (MCAR): 

Missing Completely at Random concerns to data where there is no dependence 
between the type of missing data and the outcome, or other measurements 
variable in the data. Missing Completely at Random is both missing and observed 
at random. Thus, missing data is very rarely Missing Completely at Random. For 
example, income in a family would not be dealt as a Missing Completely at 
Random when the family with low incomes were less likely to report their income 
than a family with higher incomes. 

2.3.1.2. Missing at Random (MAR): 

Data are Missing at Random if the probability of missing data on outcome is 
unrelated to the outcome value, after controlling for other variables in the analysis 
such as education, geographic location. 
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2.3.1.3. Not Missing at Random (NMAR): 

Data not Missing at Random, or infon-natively missing arises if the probability of 
missing data on the outcome is related to the outcome value even if other 
variables are controlled in the analysis, this is the most difficult condition to 
model for adequately (Schafer 1997; Scheffer 2002). 

2.3.2. Dealing with Missing Data: 

As we are going to deal with missing data in a longitudinal study some of the 
available imputation methods to replace missing data will be discussed. 

2.3.2.1. Imputation methods: 

Imputation methods can be discussed in cross-sectional and longitudinal 
imputation methods(Twisk & de Vente 2002). 

The cross-sectional methods include; 

* Mean of series method, 
9 The hot-deck method, 

The cross-sectional linear regression method. 
Longitudinal imputation methods include; 

9 Last value carried forward method, 
Linear interpolation methods, 

* The longitudinal linear regression methods. 
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2.3.2.1.1. Cross-sectional imputation methods: 

The mean of the available data for a variable at a time point is calculated. This 
mean value is imputed for the missing values. 
The hot-deck imputation method is another approach. In this method, the average 
value or a random draw from similar cases is imputed. 
A linear regression of the complete subjects is used in cross-sectional regression 
methods with all available predictor variables at the time that the response 
variable Y was missing. This linear regression predicts a value for the response 
variable Y at that time point and the predicted value is used for the imputation of 
the missing results. 
It could be that this approach is suitable in situations where the response variable 
is missing but not the predictor variables. 

2.3.2.1.2. Longitudinal imputation methods: 

Last Value Carried Forwarded (LVCF) is the simplest longitudinal imputation 
methods. In this method the value of a variable at time t is imputed for a missing 
value at time t+I, our assumption being that the variable is almost constant over 
time. 
The linear interpolation imputation method is another longitudinal imputation 
method. 
In this method a missing value at time t is imputed by the average of the values at 
time t-l and t+l. 
The population longitudinal regression imputation method is based on a 
regression of Y on the previous measurement of outcome, on the all predictor 
variables and on time. 
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2.3.2.1.3. Multiple imputation method: 
Multiple imputations are a method to deal with data sets with missing values. 
Multiple imputation methods fill each missing value in several simulated values. 
Subsequently multiple imputations create several believable complete data sets. 
Afterward, the standard methods can analyse these complete data sets and the 
results of the whole analysis are combined to produce a single inference. The 
variance between the sets of imputations represents dubiety about the 'true' 
values of the missing data (Schafer 1997). 

2.3.2.2. Advantages of Imputation: 

Bias is minimised by imputation. Imputation permits for analysis using a complete 
data set, hence using usual software and techniques, therefore that standard 
analysis can then proceed. 

2.3.2.3. Disadvantages of Imputation: 

Imputed data is not real data; this uncertainty must be reflected in the variance 
estimates. Single imputation often gives reduced variance estimates; Hence 
imputation is not reflecting the true dubiety. 

2.4. Software for the analysis of longitudinal data: 

Longitudinal data analysis can be more complicated than for cross-sectional data, 
hence software design for the modelling of longitudinal data can be more 
complicated. In this section, some of the important software programs and 
packages that can be used for longitudinal analysis are reviewed but the detail is 
not discussed here. 
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2.4.1. TERRACE: 

James Hilden Minton wrote this software for his PhD thesis, which is multilevel 
research software. It can be found at this URL address: 

httT): /Zwww. stat. ucla. eduZtheses/ 

2.4.2. NLME: 

The S Language has been developing during several years for longitudinal data 
modelling with linear or non-linear Mixed Models. The NLME library is 
compatible with S-Plus version 3.4 and higher for the analysis of both linear and 
non-linear Mixed effect Models. 
It is available on the following webpage, written by (Pinheiro & Bates 2000). 

htti): //cm. bell-labs. com/cm/ms/deT)artments/sia/-NLME/`-` 

2.4.3. BUGS: 

BUGS is computer software which analyses complex statistical models using 
Markov Chain Monte Carlo methods with emphasis on the Monte Carlo methods, 
and ability to analyse a great variety of multilevel models. 
IE7- 
Fur further details can be seen: 

httID: //www. mrc-bsu. cam. ac. uk/buas/-`welcome. shtml 
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2.4.4. OSWALD: 

A statistics team in Lancaster University developed Oswald, which is a suitable 
function for S-Plus in analysing longitudinal data, the details are in follow URL 
address: 

httT): //www. maths. lancs. ac. uk/Software/Oswald/- 

Mixed effects Models, and many other possible options are included in 
OSWALD. 

2.4.5. The packages available for the GEES: 

2.4.5.1. SAS: 

SAS/STAT release 6.12 is the SAS version that used for the evaluation of GEEs. 
More information about SAS is available in the SAS URL address; 

htti: ): //www. sas. com 

2.4.5.2. STATA: 

Stata version 5.0 and higher evaluates GEEs. The xtgee command can fit GEE 
models in Stata, which is part of the xt cross-sectional time-series analysis. More 
information is available in the web page; 

htti): //www. stata. com 

2.4.5.3. SUDAAN: 

The SUDAAN version 7.5 and higher evaluates GEEs. More information is 
available on the following web page; 
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htti): //www. rti. orq/sudaan/home. cfm 

GEE models for binary and continue variables are fitted by PROC LOGISTIC, 
PROC MULTILOG, and PROC REGRESS in this package (Shah, Barnwell, & 
Bieler 1997). 

2.4.5.4. S-PLUS: 

S-Plus versions 3.4 and higher evaluate GEEs. More information is available on 
the following web page; 

htti: ): //www. mathsoft. com/sr)lus, 
and 

htti: ): //www. insiqhtful. com/downloads/libraries/default. a 
sp 

Also some packages such as YAGS or YET are available to implement GEEs and 
it can be added as a library to S-Plus. 
The library is available on the web: 

httiD: //www. biostat. harvard. edu/-care 

Those are also available on web page of Brian Ripley: 

httT): //www. stats. ox. ac. uk/T)ub/-`SWin/-- 

The Gaussian (normal), Bernoulli/binomial, Poisson, and Gamma families of 
distributions are supported by SAS, Stata and S-Plus. 
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The Gaussian and Bernoulli/ binomial distributions are supported by SUDAAN- 
Many of the packages are being extended to support more distributions in later 
releases (Nicholas & Stuart 1999). 

2.5. Software available for Missing Data: 
2.5.1. SOLAS (Version 3): 

Import Data from various file including SAS, SPSS, S-Plus and many others is 
possible. Some imputation methods such as the group means, last value carried 
forward and hot deck are available in this software. 
SOLAS is designed specifically for the analysis of datasets with missing 
observations and is available on following web page: 

www. statsol. ie/solas/solas. htm 

2.5.2. SPSS: 

In SPSS, List wise analysis, all value analysis; regression imputation and EM 
imputation are available. 

2.5.3. S-PLUS: 

New version (6.0) of S-Plus supports missing data models, using different 
imputation methods such as EM. 

2.5.4. SAS: 

SAS version 8.2, for multiple imputation procedure introduces the experimental 
MI and MIANALYZE and as these are bundled with SAS/STAT, we do not need 
to more installation (Scheffer 2002) - 
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2.5.5. Statistical Model: 

ALSPAC is an observational longitudinal study, which started in 1991. Although 
ALSPAC is still going on, this thesis deals with data collected over a period of 
seven years, covering children up to seven years of age and their mothers during 
pregnancy. 
In this longitudinal observational study several repeated measurements were 
carried out in a period of times on subjects. 
The purpose of this thesis is to model the changes in mean haemoglobin levels 
during pregnancy and childhood and find the effects of some important covariates 
on those haemoglobin levels. This relationship will be analysed using all available 
longitudinal'data. 
Previously, one of the limitations in methods was that all available longitudinal 
data are not used in the analysis. 
With the development of techniques in statistics, such as Generalised Estimating 
Equation (GEE) (Liang & Zeger 1986; Zeger & Liang 1986; Zeger & Liang 1992) 
and General Linear Mixed Models (GLMM), the analysis of longitudinal data 
using all available data is possible. 
In this study the following statistical model is used to analyse the data: 

iKm 

Y ""ýflo+l: filjtj+lfl2kZikt+l: fl3mGim +c it it k=l M=l 

Where: 

Y= Observations of Subject i at time t where 1: 5 t< number of measurement It 
fl, = Intercept 
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& =Regression coefficient of time 
Time 

J= Order of polynomial of time 
Zih = Time-dependent covariate k of subject i at time t 
, 
82k = Regression coefficient of time dependent covariate k 

K= Number of time dependent covariates 
Gi. = Time-independent covariate m of subject i 

, 83. = Regression coefficient of time-independent covariate m 

M= Number of time-independent covariates 
ei, = Measurement error of subject i at time t. 
In this model one of the interesting coefficients are fij because the regression 
coefficients illustrate the relationship between the longitudinal change of the 
haernoglobin level Yj, and the time. The covariates such as dietary intakes are 
included in the model as time-dependent-covariates, whereas gender and ethnic 
are time-independent covariates in the model. 

2.6. Interpolation method: 

In this section, methods for using polynomials for interpolation will be presented. 
An interpolation problem happens when a function's value is required at a point 
where data is not available. Finding the best function to fit to the data is needed. 
Interpolation is the method applied to the problem of finding this function when 
unavailable data is inside the range of the given data. 
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Interpolation methods are divided into two main categories (Press et al. 1992): 

* Global interpolation: 

A single equation to fit all the data points is constructed by these methods, 
which is usually a high degree polynomial. Although these methods result in 
smooth curves, as they suffer from oscillation and overshoot at intermediate 
points, they are not always suitable for applications. 

9 Piecewise interpolation: 

A lower degree polynomial between each pair of known data points is 
constructed by these methods. First-degree polynomial is called linear 
interpolation. Also second and third degree polynomials are called quadratic 
and cubic splines respectively. The curves become smoother the higher the 
degree of the spline. 

For obtaining a smoother curve, cubic splines are usually recommended. It is 
supposed to be well behaved and continuous up to the second order derivative at 
the data points. Cubic splines one less prone to oscillation or overshoot than 
polynomial equations. 

2.6.1. Linear spline interpolation: 

Firstly a linear spline is fitted to the data as follow; 

1 (Xo, Yo ), (Xi , Yi ) (x. -� Y. -1 ), (x., y. )1 
It is supposed that data is in ascending order and then the linear splines are given 
by yj =f (xi). 
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f (x) =f (xo) +f (x. ) f (x�) (X - x0), xo :5X: 5 xi xi -X0 
= (X, )+ f (X2) -f (X1) 

(X - x, ), XI :5X: 5 X2 
X2 _XI 

ý (xn-1) f (x�) f (x�-, ) (x - xn-1), X., -, :5X: 5 X� 
Xn - Xn-1 

The fonnula (2.1) is the slope between xi-I and x,; 

f (XI) -f (xj-, ) 
xi - xi-I 

Now using quadratic splines is an improvement. 

2.6.2. Quadratic Splines: 

The data between each consecutive pair of points is approximated by a quadratic 
polynomial. 
For fitting a quadratic spline through the data, the splines are given by; 

(x) = a, x 2 +b, x+c� XO 5 X: 5 X, 
= ag 2+b, x + c.. X, :5X: 5 x2 
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a, x 2 +bnX+ Cnt Xn-I :5X: 5 Xn 

Then we can find the coefficients of these quadratic splines. 

2.6.3. Cubic Splines: 

As linear splines are not smooth and cannot be fitted to highly curved functions 
well, it is more common for cubic splines to be used in practice. 
Generally, a function S is a spline with k degree on t, '< t2 <*** "*' tn if 

(1) s E=- [il t t, 1, 

(2) SIJI is a continuous function on It, I tn I where Pl is the j1h derivative and 
0,1,2,... k -I; 

(3) SJ is a polynomial of degree :5k on each interval [t, 9 t1+1 ]. 
If k=3, the spline is called a cubic spline. The function S is as follow: 

S, (x) ti 5 X: 9 t2 
s2 (x) t2: 5 X: 513 

S(x) 

Sn-1 (x) tn-i <x 9 tn 

Where Si is a cubic spline that tj E [t, o tj+1 ] and S(t, ) = yj 1: 5 i: 5 ni. 
Other conditions are as follow; 
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There are another n-2 equations for slopes at the interior points( t, 43 11 tn-I ). 

lim sI (t) = lim S, (ti k=0,1,2 X-+tT X-4ti, 

Once the second order derivatives of the splines at the end points are zero the 
spline is called a natural cubic spline (Cheney & Kincaid 1985). 

s 
#(t 

I) = S'(t,, )= 

2.7. Maximum like)ihood estimation (ML): 

The maximum likelihood principle is a very popular approach used to obtain 
practical estimators 
When the observations in a random sample, y, 9 Y2 y. are drawn independently 
from a distribution, influenced by an unknown parameter 0. then 
f (Y1 9 Y2 9`9 Yn 10) is proportional to the probability of obtaining the data given the 
value of 0. This expression is called the likelihood of the data . 
It can be viewed as the chance of obtaining the sample data, given 0. Since 0 is 
usually unknown, it must be estimated from the data. 
As an estimate of 0, the value 0 is selected such that when evaluated at 0. the 
expression for the likelihood of the sample reaches a maximum. The process of 
finding estimated values of unknown parameters is maximum likelihood 
estimation. Estimates obtained in this way are known as maximum likelihood 
estimates. 

2.8. Restricted maximum likelihood estimation (REML): 

One of the preferable methods for estimating variances and covariances is the 
Restricted Maximum Likelihood (REML) method. Using this method, the 
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variance-covariance components are estimated by Maximum Likelihood averaged 
over all possible values of the fixed effects. The REML estimated variance 
components are not affected by the fixed effects, this means variance estimates 
are invariant to the parameterisation of the fixed effects while ML estimates 
would be affected by the parameterisation. For example, for estimating or' from a 
normal distribution, where y, - N(u, a') for i=1,2,... n and Y and Yn 

n Cr2 =S SYY = Zi., (yj - Y)', then a2 =S YY 1(n - 1) by REML and YY /n by ML 
(Diggle, Liang, & Zeger 1994; McCulloch & Searle 2001). 

2.9. Reference Curves: 

A useful screening toot in medical problems is reference curves. Reference 
curves can identify unusual subjects, when the value of a particular 
measurements, lies in one tail of the reference distribution (Cole & Green 1992). 
A reference curve is a graph that illustrates how the distribution of some 
interesting variable changes with time. 
For constructing the reference curve, the data are assumed to be representative of 
the reference population, which are normal. Also observations are supposed to be 
abnormal or unusual if they lie outside the reference curves. 
A range of measurements symmetric around the median and bounded by the 
(100-a)12 and (100+a)12 centiles is a definition of an a% reference 
interval (0 <a< 100). 
Wright and Royston describe and compare several methods that are available to 
calculate age-specific curves using real data sets (Wright & Royston 1997). 
Reference curves are usually chosen from a symmetric subset of the 3 rd 95 thq I othl 
25th 5 oth 75 th '901h 95 th and 97 th centile. 
Once a reference curve is constructed using values from a normal or healthy 
population, it can be used to assess the health of future subjects. 
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An individual's result is classified as abnormal if it lies below a particular centile 
(e. g. 5 ths, I Oth) or above a particular centile (e. g. q0th, 95 th). 

It is very common for the distribution of a variable to be affected by some factors 
such as sex, age and ethnicity. For many medical studies, major influence on the 
variables is the age at which an observation is made. The best example of age 
related reference curves might be growth curves. 
According to the reviews, the LMS method that was proposed by (Cole 1988) is 
widely used to obtain reference curves, further details are as follows. 

2.9.1. The LMS method: 

The varying distribution of a variable with age is summarized by the LMS method 
according to three time dependent natural spline curves, for the median (M, the 
coefficient of variation (S) and the skewness expressed as a Box-Cox power (L). 
The data must be grouped by age and interpolation between age groups is 
required. 
The LMS method has been used with the maximum penalized likelihood (Cole & 
Green 1992). The use of the maximum penalized likelihood approach makes it 
possible to provide smooth estimates of the L, M and S curves directly. 
These three curves (L, M and S) are fitted as cubic splines by nonlinear 
regression, using the maximum penalized likelihood, and the extent of smoothing 
required is controlled by equivalent degrees of freedom parameters (Cole & Green 
1992). 
The fitting process ensures that the L, M and S values change smoothly with age, 
therefore they can be smooth curves plotted against age. The L, M and S values 
then provide the reference curve using the following formula: 

I 
C100a M (t)[I + MOS (t)Za ]L(t) 
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Where 

C100,,, (t) = the reference curve plotted against t (t is age), 

z the normal equivalent deviate for the centile (a=0.97, zm=1 . 88), 

M (t), and S (t) are the fitted smooth curves plotted against age. 

The data can be converted to standard deviation (SD) scores directly by the LMS 
method, using the following formula (Cole & Green 1992) ; 

z [Meastiremera(t) IM(t)]L(t)_, 
S(t)L(t) 

where measurement is the individual's value at age (t), and L (t), M (t), and S (t) 
are values of the smooth curves at the particular age. 
Reference curves are constructed for variable measurements and curves for the 3 rd 
I Oth 

925 
th 
9,5 

Oth 75 th , q0th and 97 th centiles are generated. 
Reference curves were obtained using Cole and Green's LMS computer program 
Copyright 1998, Institute of Child Health (Cole & Green 1992). 

2.9.2. Conditional Reference Curve: 

This study draws a clear distinction between reference curves used for cross- 
sectional data and longitudinal data. While a cross-sectional reference curve can 
show whether a measurement at a time point is normal compared to a comparable 
population at the same time, a longitudinal reference curve can report whether an 
individual's measurement at one time point is consistent with that other same 
person's results. 
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The typical example is that when a patient returns for a new measurement (blood 
pressure) at the hospital, according to the new measurement and the record of 
earlier measurements, the physician wishes to know that variation is normal. The 
cross-sectional reference curve may be very misleading when considering the 
consistency of an individual's data. 
Therefore, using other methods to consider this curve rather than the cross- 
sectional curve should be beneficial. 
Constructing a reference curve using the previous measurements to predict the 
current measurement is one of them (Scheike, Zhang, & Juul 1999). 
Cross sectional reference curves have been developed into conditional reference 
curves to use for monitoring longitudinal data. A conditional reference curve is 
constructed from outcomes at time t, which are predicted from outcomes one 
previous time (t -I); 

outcome, = a, + Aoutcome, + error 
Where 

a, = The intercept 
Pt =The slope coefficient 
Error term - N(O, at ) 

Furthermore, this conditional reference curve can be extended to give an other 
conditional reference curve to include all previous times point (Cole 1994) - 
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The above formula is extended, as follow; 

outcomet = a, + a,., olitconie, -, + a, -2outconiet-2+... + a, outconte, + ct 
Where 

a, -, .a n-2 ý ... a, =The slope coefficients 
a, = The intercept 

N(o, or 2 Error term -t 
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CHAPTER 3 

Factors associated with mother's iron status 
during pregnancy 

3.1. Background, 

As discussed in the previous chapter, The Avon Longitudinal Study of Parents 
and Children (ALSPAC) is a cohort study investigating a huge range of factors 
influencing the heath and development of infant and children. 
All women during pregnancy residing within the Avon area of Southwest England 
with an expected date of delivery between April 1991 and December 1992 
inclusive were eligible to take part in this study. 
The participation of approximately 85% of the eligible population, resulted in a 
cohort study of around 15000 pregnancies (Rogers, Emmett, & The ALSPAC 
Study Team 1998). 
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From this population, haemoglobin levels were obtained from a 10% random 
sample of mothers during pregnancy whose babies were bom during the last six 
months of the survey, Children in Focus (Sherriff, Emond, Hawkins, Golding, & 
the ALSPAC Children in Focus Study Team 1999). 
The data were obtained from the records that were prepared by sending a series of 
self-completion postal questionnaires to the mothers. Haemoglobin measurements 
were obtained from mothers at different times between first week and the fortieth 
week. A small number of haemoglobin measurements are available for each 
mother during pregnancy (Rogers, Emmett, & The ALSPAC Study Team 1998). 
As the preparation of iron supplements to mother during pregnancy is one of the 
most important measurements in public health approach, the history of iron 
supplement in mothers was observed from the questionnaires that were distributed 
to the mothers during pregnancy. 
Two of the questionnaires were sent to mothers at fixed time points, one between 
18 and 20 weeks of pregnancy and another at 32 weeks of pregnancy, relating to 
the second and third trimesters of the pregnancy (Sidebotham, Golding, & The 
ALSPAC Study Team 200 1). 
The aim of this part of study is to model the haemoglobin levels during pregnancy 
in the three groups of mothers (as defined by their use of iron supplements) and 
the effect of some important covariates on haernoglobin levels. 

3.2. Function Fit to the Data: 

As you can see in Figure 3.1, a scatter diagram is used to show changes in 
haemoglobin levels in mothers during pregnancy against time of measurement 
(week). The diagram shows that the data set suffered from the problem of data 
sparsity before 5 weeks, between 17 and 22 weeks,, and after 40 weeks of 
pregnancy. 
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If the data set is sparse in some weeks, consisting only of a few samples, then a 
judgment of how haernoglobin levels change during pregnancy in these weeks 
may become more difficult and inaccurate. 
The first step in this data analysis is to plot the data with a plot of the means at 
each time point superimposed, which gives a clearer picture of the data as appear 
in Figure 3.2. 
The next step in this chapter is to fit a function, which is represented by a 
polynomial function. Polynomials of increasing degree were fitted to the data 
using the method of General Linear Mixed Models and are illustrated in Table 
3.2. 
Describing such trends with a suitable polynomial is complicated because there 
are so many possible parameters. The polynomial degree, and the number of 
coefficients, can be as large as we need. In fact, we can find many such 
polynomials, of higher and higher degree. 
It is clear that the most important decision in polynomial regression is the choice 
of polynomial degree; this choice specifies the form of the curve fit. We have 
fitted a quadratic, cubic and higher degree, and then we attempted to see if we 
could reduce the model by a few terms. 
For the global polynomial fitting technique in this data set, the fitted models 
become more complicated with an increase in degree. 
Polynomial regressions were fitted successively starting with the quadratic degree 
in Group 1. These were tested in degree, when the highest degree term was 
determined then others lower degree terms were included. 
Then criteria such as log-likelihood and AIC can be used to decide which model is 
the best model. The model preference is in favour of small AIC and big log- 
likelihood. As you can see in Table 3.2, both these criteria show a strong 
preference for cubic polynomial over quadratic, 4 1h and 5'h order, whereas the 
significance of some or all of the terms in the models indicate that these should be 
a better fit. 
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In this case, the polynomial did not give any meaningful approximation of the 
relationship between haernoglobin levels and time. Also, it was difficult to 
determine whether a curvilinear relationship with an exact quadratic, cubic or 
higher order is a suitable model statistically. 
Therefore, a meaningful fit should be provided by a low order polynomial and 
hopefully no deficiency of fit will be found. 
We focus our attention on curve fitting methods, which were able to provide clear 
functions from the data. In this study to find an adequate model, we have used the 
cubic spline algorithm, which applies a piece-wise polynomial fitting technique. 
Polynomial regression undertakes to fit a single equation to the data set, while 
spline interpolation fits a sequence of curves to segments of the data. This 
technique is rather simple minded, but it does ease the problem generated by 
polynomial regression. 
Figure 3.3 shows a scatter plot of haemoglobin levels against time; the curves 
have been fit by cubic spline, cubic polynomial and 4 th order polynomial on 
mother's haemoglobin levels during pregnancy in Group 1, which are comparable 
with each other. 
One reason why the spline reconstruction generally performs better than the 
polynomial fitting procedure is that fitting the data to a more complex function 
with more parameters will almost certainly improve the fit. Therefore, the spline 
approach, which has more parameters than a polynomial with the same order, 
dose appear to give better description of the haemoglobin levels in mothers during 
pregnancy. 
The log-likelihood test can be used to test the difference between two or more 
fitted mixed effects models by using an ANOVA procedure. As in the Inle 
(function for fitting linear mixed-effects models), the default method of estimation 
is restricted maximum likelihood (REML). However, likelihood comparisons 
between REML fits with different fixed effects model structures are not 
meaningful, therefore using maximum likelihood (ML) to refit the objects before 
using ANOVA is necessary. 
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These models could have been fitted to the whole data set, but instead it was 
decided to fit separate models to the data for mothers separated according to their 
use of Iron supplements. 

3.3. Statistical Methods: 

The statistical model used to analyse these data incorporates a cubic spline to 
represent the complex mean function. The parameters of this model are estimated 
using General Linear Mixed Model (GLMM). 
A spline is a piecewise polynomial function, where different sections of 
polynomials are fitted together smoothly. The locations of the breaks are called 
knots. We need to choose the required number of knots and their positions. In this 
case all the pieces of curves between the knots are produced from polynomials of 
the same order. 
For choosing the number and position of knots there are a number of possible 
options. We would like to place knots at points in the data where we expect 
significant changes in the relationship between the predictor and to avoid position 
where data are sparse. 
As the log-likelihood and also AIC (Akaike's Information Criterion) can be used 
for a data-based selection of number of knots then the value of number of knots 
that gives the largest log-likelihood ratio and lowest AIC can then be selected. 
For finding a satisfactory fit, several knots in different positions in the period 
measurements of the study were tested. The following turned out to be the three 
best choices for fitting the model to the data. 
Firstly, a cubic spline model was built that included II (interior) knots within the 
period from 6 weeks to 36 weeks with the knots all equally spaced (each 3 
weeks). 
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Then the second model included 7 knots from 6 to 34 weeks, with the knots all 
equally spaced (each 4 weeks). 
Finally, knots were chosen at 12,18,24,32 and 36 weeks because these were the 
most important points in pregnancy for the purposes of this study. The second and 
fourth knots were weeks, at which mothers started taking iron supplement and the 
rest of them, are weeks in which blood samples were taken from mothers at first, 
second and thirds trimesters of pregnancy. These three models were compared in 
all cases using likelihood ratio tests. 
As Table 3.1 has shown, because the P-values for comparing these three models 
are more than 0.05, the models fitted with II and 7 knots are not significantly 
better than models with 5 knots therefore the number of knots of regression 
coefficients is fixed at five. 
Some covariates were added to the basic spline model. These included mothers 
who were/were not vegetarian during pregnancy, who were /were not white, 
highest educational level of mothers, number of cigarettes smoked per day in 1"' 3 
months of pregnancy, number of cigarettes smoked per day in last 2 weeks of 
pregnancy, number of cigarettes smoked per day in 32 weeks of pregnancy, 
mother's parity (number of births up to and including the children in the study that 
we moved to a binary variable for parity, either the mother had had children 
previously or she had not), singleton/ multiple pregnancy and matemal age. 
These mixed effect models were fitted with and without additive and interaction 
terms. These covariates were then included in the model and the statistical 
significance of the interaction term between the two variables (each covariate and 
time) was tested. 
Suppose that we now want to know one of the questions of interest for 
haemoglobin level data is whether categorical covariates have different changing 
patterns. 
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We illustrate the effect of the interaction term in the model in Tables 3.9,3.10, 
3.11,3.14,3.15 and Figures 3.6 to 3.10. 
As Figures 3.11,3.13 and 3.15 present, around 95% of the standardized residuals 
are between -2 and +2, therefore the normality assumption is valid. Normal plots 
of these residuals in Figures 3.12,3.14 and 3.16 confirm the normality as well. 

3.4. Results: 

The total number of mothers in this study was 1287. FiftY-seven percent of them 
never took iron supplement (Group 1), 19% had started to take iron supplements 
by 18 weeks (Group 2) and a further 24% started on iron supplements between 18 
and 32 weeks (Group 3). Table 3.3 shows the distribution of covariates for the 
three iron supplement groups. 
For a variety of reasons some mothers did not complete questionnaires, which 
included questions on ethnic origin, education, smoking and vegetarian situation, 
social and occupation levels. Therefore, as you can see in Table 3.3, there are 
some missing values for each covariate. 
Association between iron supplement status and each covariates (education level, 
materrial age, ethnicity of mother, number of cigarettes smoked per day in 1" 3 
months per day, number of cigarettes smoked per day in 2 last weeks of 
pregnancy, number of cigarettes smoked per day in 32 weeks of pregnancy, 
singleton/multiple pregnancy, mother's parity and vegetarianism of mothers) was 
assessed using a )? test. 
Of the 731 mothers in the first group 178 (25%) were in 'CSE' or 'VOC' level 
(low level of formal education) and 427 (59%) were in '0' or 'A' level (middle 
level) and 118 (16%) were in degree level. 
Of the women who took iron supplement by week 18, filly-five (23%) completed 
the study in 'CSE' or WOU level, a hundred fifly (64%) of them were in 'A' 
level or '0' level and thirty-three (13%) also were in degree level of education, 
There was no information for ten mothers in this group. 
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In-group 3, majority of mothers (66%) were in '0' and 'A' level of education, 
and mothers with 'CSE', 'VOC' and Degree level of education were 14%, 9% and 
11% respectively. 
Chi-square test showed that education level of mothers was significantly 
associated with iron supplement status of mothers. 
Mothers with higher education were marginally more likely than other to take iron 
supplements (P=0.036). 
Ninety eight percent, ninety six percent and ninety six percent of mothers' in- 
group one, two and three respectively were with white background, the remaining 
mothers were non-white in these groups. No significant association was found 
when tested by Chi-square. 
It can be seen that the percentage of mothers who were not vegetarian is highest in 
non-iron supplement group (89%) and lowest percentage of cases were in-group 
three (79%). 
Chi-square test showed that the vegetarian status of mother was associates with 
iron supplement group. 
It would seem that vegetarianism increases using iron supplement in mothers 
during pregnancy. 
There was no significant association between taking iron supplement and number 
of cigarette smoked per day in 1" 3 months of pregnancy. 
In relation to number cigarette smoked per day in last 2 weeks of pregnancy, non- 
smokers were more than 80% in all groups. 
Also there was no significant association between the use of supplement and the 
number of cigarette smoked in this group. 
Number of cigarettes smoked per day in 32 weeks of pregnancy was not 
significantly different in three groups of mothers. 
However, there was a strongly significant association between singleton/multiple 
pregnancy and taking iron supplement. Highest percentage of multiple pregnancy 
were in mothers who took iron supplements by 18 weeks. 
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Number and percentage of mothers in all three groups according to mother's 
parity also are shown in Table 3.3. There was no association between mother's 
parity and iron supplement groups. Percentage of mothers was lower in women 
with first-born children in all groups. 
As can seen in Figure 3.2, variation in means of haernoglobin concentration are 
observed during pregnancy and also Figure 3.5 shows different in hdemoglobin 
concentration in the three groups of mothers. 
The means have shown in Figure 3.2 that, as time increased to the middle of 
pregnancy, haernoglobin concentration decreased and after that there was gradual 
increase in haemoglobin concentration up to the 40'h week. 
Figure 3.5 illustrates that at the start of pregnancy, haernoglobin concentrations 
were generally highest in the non-iron group than the other groups but they were 
nearly the same in last weeks. 
At the beginning of pregnancy, the lowest mean haernoglobin concentrations were 
in mothers who chose to take iron supplements early (by week 18). 
The fitted mean haernoglobin concentration for group 2 begins to increase from 
about week 18. 
Similarly, the average haernoglobin concentration for mothers' in Group 3 
increased from around week 32 but decreased again around week 40. 
In the group that never took iron supplement, haernoglobin concentration 
decreased continuously from beginning of pregnancy and reached a minimum 
haernoglobin level after week 30, then increased up to end of pregnancy. 
This emphasises that, in this observational study, mothers with the poorest 
haemoglobin levels tended to start on iron supplements earliest, an understandable 
and sensible decision, which does however lead to difficulties of interpretation 
later. 
The group of mothers who chose to start taking supplements after week 18 are the 
group whose haernoglobin levels are most worrying, since their mean 
haernoglobin level dipped to a very low level for a sustained period in weeks 20- 

60 



CHAPTER 3: Factors associated with mother's iron status during pregnancy 

30. Perhaps it would be wise for women to start iron supplements earlier in 
pregnancy. 
The parameters of spline function calculated at knots 12,18,24,32 and 36 weeks 
of pregnancy for group I are shown in table 3.5. 
Tables 3.6 and 3.7 illustrate the cubic spline functions for mothers with iron 
supplementation. 
In all cases but one, the parameter is significant indicating that 5 interior knots are 
required in the model. Although one parameter is not significant for the Group 2 
model, the full set of knots was retained for comparability of results for the three 
groups of mothers. 
The model parameter estimates with their standard error for each selected model 
are summarised in tables 3.5,3.6 and 3.7 as well. 
Because our interest is in whether age, vegetarian diet, education level, number of 
cigarettes smoked per day in 03 months of pregnancy, number of cigarettes 
smoked per day in last 2 weeks of pregnancy, number of cigarettes smoked per 
day in 32 week of pregnancy, singleton/multiple pregnancy, mother's parity and 
ethnic background affect the mean response profiles or not, these covariates are 
added to the model one at a time and these results are shown in Table 3.4. 
As shown in Table 3.4, mean changes in haemoglobin concentration during 
pregnancy were not significantly associated with matemal age and number of 
cigarette'smoked per day in 32 weeks of pregnancy in three groups of mothers. 
Also in Group 1, there were no significant differences between haemoglobin 
concentrations in mothers who were/were not white, mother's parity, singleton or 
multiple pregnancy. 
In addition haemoglobin concentration were not significantly associated with 
education level but as you can see in Table 3.8 and 3.4, a significant negative 
effect was found for vegetarian mothers. 
That is, haemoglobin levels were generally lower in woman who had been 
vegetarian in the past. 
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There was no significant interaction between vegetarians and time in-group one. 
Table 3.9 illustrates the cubic spline functions when modelled separately by 
number of cigarette smoked per day in last 2 weeks of pregnancy in-group one 
and there was significant effect for this covariate (P=0.0206). 
However, according to Figure 3.6 and Table 3.9, the interaction between this 
covariate and time appeared significant at knots (12,18) positively and at knot 
(18,24) negatively (P-Value= 0.0134, P-Value=0.0096), indicating that mothers 
who smoked more than one in last 2 week of pregnancy had a more positive and 
then a negative profound effect on the haemoglobin levels at knots (12,18) and 
(18,24) respectively. 
The purpose of producing Figure 3.6 is to illustrate the significant interactions in 
the model. The plot shows an interaction between numbers of cigarettes smoked 
per day in last 2 weeks of pregnancy and time (week). This might be a real effect 
but it cannot be estimated reliably because of the sparsity of the data in the 
interaction area, which has already been explained. 
Figures 3.7 to 3.10 are produced to illustrate interaction between the covariates, 
such as number of cigarettes smoked per day in first 3 months of pregnancy, 
mother parity in Group 1, multiple pregnancy in Group 2 and vegetarianism of 
mother in Group 3 and time. The locations (weeks) and pattern of interaction are 
similar to Figure 3.6. According to Figure 3.6, the interaction may be due to the 
sparsity of the data around this area. 
To assess whether the number of cigarette smoke per day in first 3 months of 
pregnancy was a significant covariate on cubic relationship, this covariate added 
to model. The results indicated in Table 3.10 and Figure 3.7 that, it was a 
positively significant covariate in the model (P-Value = 0.0 196). 
Also the number of cigarette smoke per day in first 3 months of pregnancy as an 
interaction term was considered on the model. 
Figure 3.7 and Table 3.10 demonstrate that in this model tested, interaction 
between the number of cigarette smoke per day in first 3 months of pregnancy and 
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cubic spline contributed significantly to the model fit at knots (12,18), (18,24) and 
(32,36). 
However, it is clear from Figure 3.7 and Table 3.10 that, there was a significant 
positive interaction between the numbers of cigarette smoke per day in first 3 
months of pregnancy and time at knot (12,18) and a significant negative 
interaction between this covariate and time at knots (12,18) and (32,36). 
That means, as time increased, haernoglobin concentration became progressively 
smaller in mothers who were smoker in first 3 months of pregnancy at knots (18, 
24) and (32,36) and also haemoglobin levels in this group of mothers have 
increase over knot (12,18) significantly. 
As shown in Table 3.11 and Figure 3.8, the effect of the interaction between 
mother's parity and time reach statistical significance. 
Statistical interaction between mother's parity and time at knot (24,32) indicated 
that the effect of parity on the haemoglobin level is negative in-group one. 
In Group 2, No significant differences were observed in education level, 
vegetarian statues of mothers during pregnancy, mother's parity and number of 
cigarette smoked per day in last 2 week of pregnancy but ethnic status, number of 
cigarette smoked per day in I't 3 months of pregnancy and singleton /multiple 
pregnancy reported correlate significantly with haemoglobin levels. 
As you can see in Table 3.12, haernoglobin concentrations were significantly 
higher in mothers who were white than the non-white in-group 2. There was no 
significant interaction between this covariate and time. 
Table 3.13 shows haernoglobin concentration was significantly higher in mothers 
who did smoker per day in I't 3 months of pregnancy compared to the remaining 
mothers in-group 2 but the interactions between number smoked in 1` 3 months 
of pregnancy and time were no significant. 
In Table 3.14, the model demonstrated a significant negative relationship between 
multiple pregnancy and haemoglobin concentration in-group 2. 
Our findings in Table 3.14 and Figure 3.9 also showed an interaction between 
singleton/multiple pregnancy and time in-group 2, indicating that among women 
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who were multiple pregnancy, changing in time had a more positive effect on 
haernoglobin concentration at knots( 12) (24,32) and (32,36) otherwise a more 
negative effect on haemoglobin concentration at knots (12,18) and (18,24). 
As Table 3.14 and Figure 3.9 have shown, the interactions between multiple 
pregnancy and time may be due to having a small number of mothers with 
multiple pregnancies. 
It should be better to work in large sample of mothers to investigate effect of twin 
pregnancy on haernoglobin level in pregnant women as a further work. 
In mothers who started taking iron supplement by week 32, No correlation was 
found between haernoglobin concentration and ethnicity of mothers, mothers who 
were/were not vegetarian, number of cigarette smoked per day in 1"' 3 months of 
pregnancy and number of cigarette smoke per day in last 2 week of pregnancy. 
There was a significant interaction between mothers who were vegetarian in the 
past at the present and time at knots (18,24) in-group 3, which is given in Table 
3.15 and Figure 3.10. 
This interaction meant that women who were vegetarian in the past and at the 
present were negatively associated with time at knot (18,24). 
Dividing mothers according to their highest education level in group 3, 
Haemoglobin level in mothers with a Voc level and mothers with 0 level (middle 
education groups) were significantly higher then other groups of mothers is shown 
in Table 3.16. 
Table 3.17 shows haemoglobin levels were significantly associated with mother's 
parity. Mean haernoglobin level were significantly lower in mothers with a parity 
of more than one born children compared with mothers with first-born child. 
The analyses demonstrated that there are no enough data to find any association 
between singleton/multiple pregnancy and haernoglobin level in-group 3 of the 
study. 
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3.5. Final Model: 

Initially, a multivariate model was obtained by including the main effects of all 
the significant covariates. Then if a covariate in model was not significant, it was 
removed. Non-significant covariates were removed one at a time, starting with the 
highest P-values. 
The interaction between each of the significant covariates and time was then 
evaluated. 
One of the significant covariates was included in an interaction term with time in 
each fitted model to study whether covariates modify the effect of time. The 
effects of other covariates were examined with a similar approach. 
We fitted the combination of models, if models were with more than one 
significant interaction. 
Hemoglobin levels were significantly higher in mothers who were not vegetarian 
compared with mothers who were vegetarian in the past as results are shown in 
Table 3.18. 
In the study, the relationship between haemoglobin levels and parity is also 
depicted for group one in Table 3.18 and Figure 3.8. A statistically significant 
difference in mean haemoglobin was not found due to mother's parity alone, but 
the interactions between parity and time were significant for both knots at (24,32) 
and (36, ). As you can see in Figure 3.8 in knots (24,32), mother parity was 
negatively correlated with time, suggesting that the variation in time of pregnancy 
may be effective in lowering haernoglobin levels in mother with parity more than 
one. 
Whereas, there was positive significant interaction between mother parity and 
time at knot (36, ). It means that in this period of time the haernoglobin levels 
increase in mothers with a parity of more than one. 
In group 2, number of cigarettes smoke per day in first 3 months, matertial 
ethnicity and singleton or twin of children were associated with haernoglobin 
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levels in the main effect model, but in final model except of singleton or twin of 
children other covariates were not statistically significant. 
There was a significant negative association between haemoglobin levels and twin 
pregnancy in final model in-group 2; the haemoglobin levels were significantly 
higher in mothers with a singleton pregnancy. 
However, as Table 3.19 and Figure 3.9 show there are significantly positive 
interaction between singleton or multiple pregnancy and knots ( 12), (24,32), 
(32,36) suggesting that mothers with multiple pregnancy relatively high 
haemoglobin levels gain then the singleton pregnancy whereas there are 
significantly negative interaction between this covariate and knots (12,18) and 
(18,24). 
As you can see in Table 3.20, in Group 3, haemoglobin levels in mother with 
parity more than one is significantly lower than mother with parity one. 
No significant haemoglobin means differences were observed for education 
levels of mothers during pregnancy. However the interactions between matemal 
education in degree levels in knots (, 12), (18,24), (36, ) and Voc levels in knot (36, 
) just reach significance and are positive at ( 12) and (36, ) in degree levels and 
negative at knots (18,24), (36 ,) in degree and in Voc levels respectively. This 
implies that education level in high level (Degree level) in first and last knots with 
increase of time behavior interacts to produce higher haernoglobin levels in 
mothers. The negative interaction at knots (18,24) and (36, ) suggests that with 
increase of time behavior interacts to produce lower haernoglobin levels in 
mothers in these education levels. 
Hemoglobin levels and vegetarianism of mothers was not significantly correlated 
in Groups 3, although a significant interaction between vegetarian and time were 
demonstrated in Table 3.20 and Figure 3.10. Significant negative interactions 
were found between vegetarianism of mother (in the past) and time at knots 
( 18,24) and (3 6, ) and at the present at knot ( 18,24). 
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Whereby there was a decrease in haemoglobin levels when mothers were 
vegetarianism in the past at knots (18,24) and (36, ) and were vegetarianism at the 
present at knot (18,24). 
Table 3.20 and Figure 3.10 also indicated that there was a significant positive 
interaction between vegetarianism of mother (in the past and at the present) and 
time at knots (32,36) and (36, ) respectively. 
It means that haernoglobin level increase with time at knots (32,36), and (36, 
when mothers were vegetarian in the past and at the present respectively. 
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Figure. 3.1: Scatter plot of mothers' haemoglobin 
concentration during pregnancy vs. time. 

68 

Week 

Figure. 3.2: Variation in means haemoglobin concentration 
in mother during pregnancy. 
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haemoglobin concentration during pregnancy in Group 1. 

Qr%ljna 

69 

W*ek 

Figure. 3.4: Cubic spline curve to haemoglobin 
concentration during pregnancy. 
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Figure. 3.5: Cubic spline curves were fitted to haemoglobin 
concen tration in mothers with and without iron 
supplementation. 
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Figure. 3.6: Cubic spine curves were fitted to mothers' 
haernoglobin concentration during pregnancy depending to 
the number of cigarettes smoked per day in last 2 weeks in 
Group 1. 
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Figure. 3.7: Cubic spine curves were fitted to mothers' 
haemoglobin concentration during pregnancy depending to 
the number of cigarettes smoked per day in first 3 months of 
pregnancy in Group 1. 
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Figure. 3.8: Cubic spine curves were fitted to mothers' 
haemoglobin concentration during pregnancy depending to 
the mother's parity in Group 1. 
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Figure. 3.9: Cubic spine curves were fitted to mothers' 
haemoglobin concentration during pregnancy depending to 
the singleton/multiple pregnancy in Group 2. 
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Figure. 3.10: Cubic spine curves were fitted to mothers' 
haemoglobin concentration during pregnancy depending to 
the vegetarian statues of mother in Group 3. 
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Figure 3.12: Normal Q-Q Plot of Residuals, Model for 
Group 1. 
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Figure. 3.13: Plot of the Standardized Residuals against the 
fitted value of Haernoglobin level in Group 2. 

Figure 3.14: Normal Q-Q Plot of Residuals, Model for 
Group 2. 
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Figure. 3.15: Plot of the Standardized Residuals against the 
fitted value of Haernoglobin level in Group I 

Figure 3.16: Normal Q-Q Plot of Residuals, Model for 
Group 3. 
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Knots 7s . Loglik 
1-2430.497 

-2434.488 -2434.685 
AIC 1 4894.994 4894.977 4891.370 
P-value 1 0.0922 0.8216 

Table. 3.1: Log likelihood and AIC values for different 
number of knots of the baseline. 
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Linear mixed-effects model fit by REML Data: ni AIC BIC logLik 4523.391 4562.481 -2254.696 
Random effects: Formula: -time I sub Structure: General positive-definite Std Dev Corr (Intercept) 0.67783920 (Inter 

time 0.02531379 -0.588 Residual 0.54197123 
Fixed effects: HAEM - time + (timeA2) 

Value Std. Error DF t-value p-value (Intercept) 13.76847 0.07726957 1237 178.1875 <. 0001 
time -0.11763 0.00826173 1237 -14.2381 <. 0001 1(time^2) 0.00140 0.00018905 1237 7.4292 <. 000 I 

Linear mixed-effects model fit by REML Data: ni AIC BIC logLik 4524.678 4574.927 -2253.339 
Random effects: Formula: -time I sub Structure: General positive-definite Std Dev Corr (Intercept) 0.68708393 (Inter 

time 0.02585501 -0.588 Residual 0.52628565 

Fixed effects: HAEM - time + (time^2) + (timeA3) + (timeA4) 
Value Std. Error DF t-value P-value (Intercept) 13.52844 0.3518430 1235 38.45020 0001 

time -0.13694 0.0796964 1235 -1.71830 0.086 1(time2) 0.00958 0.0060898 1235 1.57286 0.116 
l(timeA3) -0.00043 0.0001907 1235 -2.26699 0.024 1(timeA4) 0.00001 0.0000021 1235 2.99288 0.003 

linear mixed-effects model fit by REML 
Data: ni AIC BIC logLik 
4507.245 4551.915 -2245.622 

Random effects: Formula: - time I sub Structure: General positive-dcrinite Std. Dev Corr 
(Intercept) 0.69401169 (Inter 

time 0.02583653 -0.594 Residual 0.52786401 
Fixed etTects: I IAEM - time + (time2) + (timeA3) Value Std. Error DF t-value P-value (Intercept) 12.65061 0.1956244 1236 64.66786 <. 0001 

time 0.08062 0.0328972 1236 2.45072 0.014 1(time2) -0.00807 0.0015323 1236 -5.26607 <. 0001 
I(timeA3) 0.00013 0.0000216 1236 6.23632 <. 000 I 

linear mixed-effects model fit by REML 
Data: ni AIC BIC logLik 
4549.454 4605.282 -2264.727 

Random effects: Formula: -time I sub Structure: General positive-derinite Std Dcv Corr 
(intercept) 0.6943596 (Inter 

time 0.0260986 -0.596 Residual 0.5236155 
Fixed effects: I REM - time + (timc^2) + (time^3) + (time^4) + (timc^5) 

Value Std. Error DF t-volue P-Valuc Intcrcept 15.04292 0.7136062 1234 21.08014 <. 000 I 
time -0.62927 0.2168475 1234 -2.90192 0.0038 

I(time2) 0.06586 0.0238343 1234 2.76340 0.0058 
I(timeA3) -0.00329 0.0011841 1234 -2.77666 0.0056 
I(time4) 0.00007 0.0000271 1234 2.66759 0.0077 
I(times) 0.00000 0.0000002 1234 -2.44396 0.0147 

Table. 3.2: Results of fitting Mixed Effects Models with different order to 
mother's haemoglobin concentration during pregnancy in Group 1. 
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Group I Group 2 Group3 )e Test 
No V-per* No V-per No V-per Total V-pre P-Value 

Education: 
ICSEI 105 15% 29 12% 43 14% 177 14% 
1VOC, 73 10% 26 11% 27 9% 126 10% 
0 level 246 34% 75 32% 133 43% 454 36% 
A level 181 25% 75 32% 70 23% 326 26% 
Degree 118 16% 33 13% 34 

1 
11% 185 

19 
14% 

16.49 Missing 
Total 

8 
731 

10 
248 308 1287 0.036 

Ethnicity of mother White 712 98% 229 96% 301 96% 1242 96% 
Non-white 13 2% 9 3% 7 4% 29 

16 
4% 

3.178 Missing 
Total 

6 
731 

10 
248 308 100 1287 0.204 

Vegetarian: 
Current 30 4% 12 5% 31 10% 73 6% 
In past 53 7% 26 

195 
11% 
84% 

34 
237 

111/6 
79% 

113 
1066 

9% 
85% Never 634 89% 5 34 21.21 Missing 

Total 
14 

731 
15 

248 100 308 1287 0.0003 

Age: 
Mean (SD) 29.02 (4.52) 29.0 (4.8) 29.2(4.5) 28.9(4.68) 

Total 731 248 308 1287 

No of cig smoked in 1" 3 
months of preg. None 594 82% 189 76% 252 82% 1035 81% 

1+ 131 18% 59 24% 56 18% 246 
6 

9% 
4.17 

Missing 6 248 308 1287 0.1242 
Total 731 

No cig smoked In last 
2. week of preg None 628 87% 200 81% 264 86% 1092 85% 

1+ 98 13% 48 19% 44 14% 190 
5 

15% 5.11 
Missing 5 248 308 1287 0.078 
Total 731 - 

No cig smoked In week 32 605 86% 177 82% 269 87% 1050 85% None 
1+ 102 14% 38 18% 40 13% 180 

57 
15% 2.28 

Missing 24 33 
248 308 1287 0.319 

Total 731 
Sing/twin 

1 730 99% 235 94% 305 98% 1270 99% 
2 1 1% 13 6% 3 2% 17 1% 37.4 

Missing 731 248 308 1287 0.000 
Total 
Parity 

1 349 49% 108 44% 126 41% 583 46% 
ý! 2 367 51% 137 56% 181 

11 
59% 685 

29 
54% 5.6 

Missing 15 
731 

3 
248 308 1287 0.062 

Total 

evrr%iin 'kit e-n v. nrint&q_ 
Table. 3.3: Numt)er anct perceHLUgU UL bUUJI-0-1- --- v- - -r -, - 

* lie percentages are based only on the cases who actually answered the question. 
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Covariate Group 1 Group 2 Group 3 
P. Value P-Value P. Value 

Education: 
dCSE' 0.36 0.45 0.65 
'VOCI 0.71 0.56 0.08 
0 level 0.13 0.18 0.046 
A level 0.83 0.62 0.96 

Likelihood ratio test 0.54 0.45 0.044 
Ethnic background: 

Non-white 0.2 0.04 0.93 

Age: 0.67 0.33 0.43 
Vegetarian: 

In Past 0.017 0.32 0.14 
At Present 0.98 0.55 0.87 

In past*ns(time, knots = c(I 8,24))3 0.67 0.12 0.038 
At Present*ns(time, knots = c(I 8,24))3 0.09 0.19 0.03 

Likelihood ratio test 0.042 0.57 0.044 
Singleton /Multiple: 0.29 0.01 

SM*ns(time, knots =c( 12))l 0.58 0.01 
SM*ns(time, knots = c(12,18))2 0.66 0.037 
SM*ns(time, knots = c(18,24))3 0.45 0.002 
SM*ns(time, knots = c(24,32))4 0.35 0.033 
SM*ns(time, knots = c(32,36))5 0.48 0.003 
SM*ns(time, knots = c(36, ))6 0.18 0.27 

Likelihood ratio test 0.003 
No smoked /day in Vt 3 mths of prog: 

ý! 1 0.02 0.041 0.30 
N3M *ns(time, knots = c(l 2,18))2 0.01 
N3M*ns(time, knots = c(I 8,24))3 0.019 
N3M*ns(time, knots = c(32,36))5 0.023 

Likelihood ratio test 0.026 
No smoked /day in last 2 wks of prog: 

2: 1 0.021 0.07 0.78 
N2W*ns(time, knots = c(l 2,18)2 0.013 0.83 0.59 
N2W*ns(time, knots = c(I 8,24)3 0.01 0.98 0.2 

Likelihood ratio test 0.001 0.07 0.78 
No smoked Iday at 32 weeks of prog: ý: 1 0.62 0.15 0.52 

Parity: 
2: 2 0.31 0.87 0.017 

Par*ns(time, knots = c(24,32)4 0.0002 0.46 0.35 
Likelihood ratio test <. 0001 0.20 0.017 

Table. 3.4: Coefficient values for covariates in Linear Mixed Models. 
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Linear mixed-effects model fit by REML 
Data: mum 

AIC BIC logLik 
4465.522 4526.926 -2221.761 

Random effects: Formula: - time I sub Structure: General positive-definite StdDev Corr 
(Intercept) 0.6959215 (Inter 

time 0.0262359 -0.599 Residual 0.5230956 
Fixed effects: HAEM - ns(time, knots - c(12,18,24,32,36)) Value Std. Error DF t-value p-value (Intercept) 13.32120 0.1427025 1233 93.34950 <. 0001 
ns(time, knots - c(12,18,24,32,36))l -0.66739 0.1461893 1233 -4.56527 <. 0001 
ns(time, knots = c(12,18,24,32,36))2 -1.62688 0.1847999 1233 -8.80350 <. 0001 
ns(time, knots - c(12,18,24,32,36))3 -1.95536 0.1563000 1233 -12.51029 <. 0001 
ns(time, knots - c(12,18,24,32,36))4 -1.76258 0.1152704 1233 -15.29084 <. 0001 
ns(time, knots - c(12,18,24,32,36))5 -2.33555 0.3496822 1233 -6.67907 <. 0001 
ns(time, knots - c(12,18,24,32,36))6 -0.93095 0.1779243 1233 -5.23230 <. 0001 

Table. 3.5: REML estimates for the model fitted to haemoglobin concentration 
during pregnancy in Group 1. 

Linear mixed-effects model fit by REML 
Data: mumlB 

AIC BIC logLik 
1743.084 1792.515 -860.542 

Random effects: Formula: - time I sub Structure: General positive-definite StdDev Corr (Intercept) 1.10591582 (Inter 
time 0.03853903 -0.767 Residual 0.57432760 

Fixed effects: HAEM - ns(time, knots - c(12,18,24,32,36)) 
Value Std. Error DF t-value p-value (Intercept) 12.00677 0.3002784 414 39.98545 <. 0001 

ns(time, knots c(12,18,24,32,36M -0.72967 0.3048507 414 -2.39352 0.0171 
ns(time, knots c(12,18,24,32,36))2 -1.29327 0.3668720 414 -3.52511 0.0005 
ns(time, knots c(12,18,24,32,36))3 -0.81834 0.3194060 414 -2.56207 0.0108 
ns(time, knots c(12,18,24,32,36))4 -0.70399 0.2288808 414 -3.07577 0.0022 
ns(time, knots c(12,18,24,32,36))5 -0.11416 0.7181552 414 -0.15897 0.8738 
ns(time, knots c(12,18,24,32,36))6 0.79470 0.3326700 414 2.38887 0.0173 

Table. 3.6: REML estimates for the model flitted to haernoglobin concentration 
during pregnancy in Group 2. 
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Linear mixed-effects model fit by REML 
Data: mum32 

AIC BIC logLik 
2080.879 2133.73 -1029.44 

Random effects: Formula: - time I sub Structure: General positive-definite StdDev Corr 
(Intercept) 0.70119289 (Inter 

time 0.02570154 -0.648 Residual 0.55069795 
Fixed effects: HAEM - ns(time, knots - c(12,18,24,32,36)) 

Value Std. Error DF t-value P-value (Intercept) 12.35924 0.1909684 595 64.71880 <0001 
ns(time, knots = c(12,18,24,32,36))l -0.77207 0.2067783 595 -3.73380 0.0002 
ns(time, knots - c(12,18,24,32,36))2 -1.96414 0.2529932 595 -7.76361 <. 0001 
ns(time, knots - c(12,18,24,32,36))3 -1.62359 0.2165094 595 -7.49897 <. 0001 
ns(time, knots - c(12,18,24,32,36))4 -0.94588 0.1597919 595 -5.91944 <. 0001 
ns(time, knots - c(12,18,24,32,36))5 -0.97104 0.4698162 595 -2.06685 0.0392 
ns(time, knots - c(12,18,24,32,36))6 -0.89471 0.2034032 595 -4.39870 <. 0001 

Table. 3.7: REML estimates for the model fitted to haemoglobin 
concentration during pregnancy in Group I 

Linear mixed-effects model fit by REML 
AIC BIC logLik 

4388.519 4460.834 -2181.26 
Random effects: Formula: - time I sub Structure: General positive-definite 

StdDev Corr (Intercept) 0.69931018 (Inter 
time 0.02657072 -0.611 Residual 0.52194146 

Fixed effects: HAEM - Vg + ns(time, knots - c(12,18,24,32,36)) 
Value Std. Error DF t-value p-value 

(Intercept) 13.25945 0.1524068 1211 87.00037 <. 0001 
In past -0.11623 0.0487660 714 -2.38337 0.0174 

At present -0.00129 0.0440799 714 -0.02929 0.9766 
ns(time, knots - c(12,18,24,32,36))l -0.63185 0.1481690 1211 -4.26438 <. 0001 
ns(time, knots - c(12,18,24,32,36))2 -1.69441 0.1864420 1211 -9.08816 <. 0001 
ns(time, knots - c(12,18,24,32,36))3 -1.97072 0.1578168 1211 -12.48741 <. 0001 
ns(time, knots - c(12,18,24,32,36))4 -1.79322 0.1163469 1211 -15.41272 <. 0001 
ns(time, knots - c(12,18,24,32,36))5 -2.42966 0.3530025 1211 -6.88284 <. 0001 
ns(time, knots - c(12,18,24,32,36))6 -0.92607 0.1782382 1211 -5.19570 <. 0001 

Table. 3.8: REML estimates for the model fitted, to haemoglobin concentration 
during pregnancy stratified by vegetarianism of mothers in Group 1. 
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Linear mixed-effects model fit by REML 
AIC BIC logLik 

4424.373 4524.594 -2194.186 Random effects: Formula: - time I sub Structure: General positive-definite StdDev Corr 
(Intercept) 0.68676725 (Inter 

time 0.02593954 -0.591 Residual 0.52107389 
Fixed effects: HAEM - N2W* ns(time, knots - c(12,18,24,32,36)) 

(Interc 
ns(time, knots - c(12,18,24,32,3 ns(time, knots - c(12,18,24,32,3 
ns(time, knots - c(12,18,24,32,31 ns(time, knots - c(12,18,24,32,31 
ns(time, knots = c(12,18,24,32,31 ns(time, knots - c(12,18,24,32,31 N2W*ns(time, knots -c (12,18,2 4,32,31 N2W*ns(time, knots - c(12,18,24,32,31 N2W*ns(time, knots - c(12,18,24,32,31 N2W*ns(time, knots = c(12,18,24,32,3( N2W*ns(time, knots - c(12,18,24,32,3( N2W*ns(time, knots = c(12,18,24,32,3( 

Value Std. Error DF t-value, 
ept) 13.68214 0.1980438 1211 69.08642 
>=1 0.45966 0.1980438 724 2.32100 

6))l -0.51392 0.2021564 1211 -2.54219 6))2 -2.15821 0.2670330 1211 -8.08219 6))3 -2.39222 0.2175481 1211 -10.99630 6))4 -1.94271 0.1813487 1211 -10.71259 6))S -3.09165 0.5036590 1211 -6.13838 6))6 -0.59706 0.3225539 1211 -1.85105 6))l 0.15239 0.2021564 1211 0.75382 6))2 -0.66150 0.2670330 1211 -2.47721 6))3 -0.56466 0.2175481 1211 -2.59556 5))4 -0.22594 0.1813487 1211 -1.24587 S))5 -0.94907 0.5036590 1211 -1.88435 5))6 0.39128 0.3225539 1211 1.21308 

p-value 
<. 0001 
0.0206 
0.0111 
<. 0001 
<. 0001 
<. 0001 
<. 0001 
0.0644 
0.4511 
0.0134 
0.0096 
0.2131 
0.0598 
0.2253 

Table. 3.9: REML estimates for the model fitted to hacmoglobin concentration 
during pregnancy stratified by number of cigarettes smoked per day in last 2 
weeks of pregnancy in Group I- 
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Linear mixed-effects model fit by REML 
AIC BIC logLik 

4432.018 4532.231 -2198.009 Random effects: Formula: - time I sub Structure: General positive-definite StdDev Corr (Intercept) 0.68621452 (Inter 
time 0.02581754 -0.589 Residual 0.5Z324284 

Fixed effects: HAEM - N3M* ns(time, knots - c(12,18,24,32,36)) 
Value Std. Error DF t-value p-value (Intercept) 13-58981 0.1740743 1211 78.06905 <. 0001 

>-l 0.40704 0.1740743 723 2.33831 0.0196 
ns(time, knots - c(12,18,24,32,36))l -0.60798 0.1785353 1211 -3.40537 0.0007 
ns(time, knots - c(12,18,24,32,36))2 -2.01139 0.2272888 1211 -8.84948 <. 0001 
ns(time, knots - c(12,18,24,32,36))3 -2.26235 0.1909988 1211 -11.84485 <. 0001 
ns(time, knots - c(12,18,24,32,36))4 -1.93690 0.1444880 1211 -13.40525 <. 0001 
ns(time, knots - c(12,18,24,32,36))5 -3.01317 0.4312545 1211 -6.98699 <. 0001 
ns(time, knots - c(12,18,24,32,36))6 -0.82509 0.2215716 1211 -3.72380 0.0002 N3M*ns(time, knots - c(12,18,24,32,36))l 0.04254 0.1785353 1211 0.23830 0.8117 N3M*ns(time, knots - c(12,18,24,32,36))2 -0.58653 0.2272888 1211 -2.58053 0.0100 N3M*ns(time, knots - c(12,18,24,32,36))3 -0.44708 0.1909988 1211 -2.34073 0.0194 N3M*ns(time, knots - c(12,18,24,32,36))4 -0.27946 0.1444880 1211 -1.93414 0.0533 N3m*ns(time, knots - c(12,18,24,32,36))5 -0.98044 0.4312545 1211 -2.27345 0.0232 N3M*ns(time, knots - c(12,18,24,32,36))6 0.19187 0.2215716 1211 0.86595 0.3867 

Table. 3.10: REML estimates for the model fitted to haemoglobin concentration 
during pregnancy stratifited by number of smoke per day in first 3 montlis in 
Group 1. 
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-effects model fit by REML 
AIC BIC logLik 

4342.73 4442.679 -2153.365 
Random effects: Formula: - time I sub Structure: General positive-definite StdDev Corr (Intercept) 0.68241740 (Inter 

time 0.02472366 -0.588 Residual 0.52595698 
Fixed effects: HAEM - Parity* ns(time, 

(Intercept) 
>-2 

ns(time, knots - c(12,18,24,32,36))l ns(time, knots - c(12,18,24,32,36))2 ns(time, knots - c(12,18,24,32,36))3 ns(time, knots - c(12,18,24,32,36))4 ns(time, knots - c(12,18,24,32,36))5 ns(time, knots - c(12,18,24,32,36))6 Par*ns(time, knots - c(12,18,24,32,36))l Par*ns(time, knots - c(12,18,24,32,36))2 Par*ns(time, knots - c(12,18,24,32,36))3 Par*ns(time, knots - c(12,18,24,32,36))4 Par*ns(time, knots - c(12,18,24,32,36))5 Par*ns(time, knots - c(12,18,24,32,36))6 

knots - c(12,18,24,32,36)) 
Value Std. Error DF t-value P-value 12.90697 0.448141 1192 28.80113 <. 0001 

0.29299 0.289187 714 1.01314 0.3113 
-0.63240 0.476303 1192 -1.32773 0.1845 
-0.83691 0.584417 1192 -1.43205 0.1524 
-1.31867 0.493789 1192 -2.67052 0.0077 
-0.50202 0.359118 1192 -1.39792 0.1624 
-1.08490 1.100717 1192 -0-98563 0.3245 
-1.45231 0.548638 1192 -2.64713 0.0082 
-0.00729 0.297303 1192 -0.02453 0.9804 
-0.55622 0.375035 1192 -1.48313 0.1383 
-0.43325 0.315906 1192 -1.37144 0.1705 
-0.86073 0.232205 1192 -3.70677 0.0002 
-0.89520 0.709266 1192 -1.26215 0.2071 
0.35144 0.361569 1192 0.97197 0.3313 

Table. 3.11: REML estimates for the model fitted to haemoglobin concentration 
during pregnancy stratifled by mother's parity in Group I- 
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Linear mixed-effects model fit by REML 
Data: mumba 

AIC BIC logLik 
1679.854 1733.373 -827.9269 

Random effects: 
Formula: - time I sub Structure: General positive-definite 

StdDev Corr 
(Intercept) 1.10117359 (Inter 

time 0.03789715 -0.765 Residual 0.56971540 
Fixed effects: HAEM - MumEthn + ns(time, knots c(12,18,24,32,36)) 

Value Std. Error DF t-value p-value 
Intercept) 12.64954 0.4186260 403 30.21680 <. 0001 
Non-white -0.57341 0.2782141 236 -2-06103 0.0404 

ns(time, knots - c(12,18,24,32,36))l -0.74524 0.3067974 403 -2.42908 0.0156 
ns(time, knots - c(12,18,24,32,36))2 -1.34804 0.3672751 403 -3.67038 0.0003 
ns(time, knots - c(12,18,24,32,36))3 -0.86999 0.3201270 403 -2.71764 0.0069 
ns(time, knots - c(12,18,24,32,36))4 -0.69225 0.2301984 403 -3.00718 0.0028 
ns(time, knots = c(12,18,24,32,36))5 -0.19744 0.7185399 403 -0.27477 0.7836 
ns(time, knots - 012,18,24,32,36))6 0.74798 0.3301518 403 2.26558 0.0240 

Table. 3.12: REML estimates for the model fitted to haemoglobin concentration 
during pregnancy stratified by ethnicity of mothers in Group 2. 
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Linear mixed-effects model fit by REML 
Data: mumb670 

AIC BIC logLik 
1744.689 1798.596 -860.3445 

Random effects: Formula: - time I sub Structure: General positive-definite StdDev Corr 
(Intercept) 1.08569709 (Inter 

time 0.03845807 -0.762 Residual 0.57427949 
Fixed effects: HAEM - N3M + ns(time, knots - c(12,18,24,32,36)) 

Value Std. Error DF t-value 
(Intercept) 12.05203 0.2982238 414 40.41271 

>=I 0.12626 0.0615027 246 2.05298 
na(time, knots - c(12,18,24,32,36))l -0.75294 0.3026674 414 -2.48769 ns(time, knots - c(12,18,24,32,36))2 -1.25449 0.3649461 414 -3.43745 
ns(time, knots - c(12,18,24,32,36))3 -0.80395 0.3171346 414 -2.53504 ns(time, knots - c(12,18,24,32,36))4 -0.69488 0.2280401 414 -3.04719 ns(time, knots - c(12,18,24,32,36))5 -0.04423 0.7130829 414 -0.06203 ns(time, knots - c(12,18,24,32,36))6 0.79476 0.3328918 414 2.38744 

p-value 
<. 0001 
0.0411 
0.0133 
0.0006 
0.0116 
0.0025 
0.9506 
0.0174 

Table. 3.13: REML estimates for the model fitted to haemoglobin concentration 
during pregnancy stratified by number smoke per day in first 3 months of 
pregnancy in Group 2. 
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Linear mixed-effects model fit by REML Data: mumS 
AIC BIC logLik 

1736.281 1816.977 -850.1404 
Random effects: Formula: - time I sub Structure: General positive-definite StdDev Corr (Intercept) 1.09546784 (Inter 

time 0.03704626 -0.754 Residual 0.56582344 
Fixed effects: HAEM - SM * ns(time, knots - c(12,19,24,32,36)) Value Std. Error DF t-value 

(Intercept) 9.727579 0.942448 408 10.32161 
Multiple -2.459348 0.942448 246 -2.60953 ns(time, knots c(12,18,24,32,36))l 1.235635 0.835646 408 1.47866 

ns(time, knots c(12,18,24,32,36))2 0.852563 1.045317 408 0.81560 
ns(time, knots c(12,18,24,32,36))3 1.774431 0.928684 408 1.91069 
ns(time, knots c(12,18,24,32,36))4 0.586949 0.630110 408 0.93150 
ns(time, knots c(12,18,24,32,36))5 5.605659 2.090149 408 2.68194 
ns(time, knots c(12,18,24,32,36))6 1.668844 0.849722 408 1.96399 SM*ns(time, knots - c(12,18,24,32,36))l 2.166383 0.835646 408 2.59246 

SM*ns(time, knots - c(12,18,24,32,36))2 2.190033 1.045317 408 2.09509 
SM*ns(time, knots - c(12,18,24,32,36))3 2.882094 0.928684 408 3.10342 
SM*ns(time, knots - c(12,18,24,32,36))4 1.351705 0.630110 408 2.14519 
SM*ns(time, knots - c(12,18,24,32,36))5 6.219119 2.090149 408 2.97544 
SM*ns(time, knots - c(12,18,24,32,36))6 0.966519 0.849722 408 1.13745 

p-value 
<. 0001 
0.0096 
0.1400 
0.4152 
0.0567 
0.3521 
0.0076 
0.0502 
0.0099 
0.0368 
0.0020 
0.0325 
0.0031 
0.2560 

Table. 3.14: REML estimate for the model fitted to haernoglobin concentration 
during pregnancy stratified by singleton /multiple in Group 2. 
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Linear mixed-effects model fit by REML 
AIC BIC logLik 

2077.77 2196.982 -1013.885 
Random effects: 
Formula: - time I sub Structure: General positive-definite 

StdDev Corr 
(Intercept) 0.71145696 (Inter 

time 0.02648804 -0.664 Residual 0.54937845 
Fixed effects: HAEM - Vg * ns(time, knots 

(Intercept) 
In past At present 

ns(time, knots - c(12,18,24,32,36))l 
ns(time, knots - c(12,18,24,32,36))2 
ns(time, knots - c(12,18,24,32,36))3 
ns(time, knots - c(12,18,24,32,36))4 
ns(time, knots - c(12,18,24,32,36))5 
ns(time, knots - c(12,18,24,32,36))6 vgl*ns(time, knots - c(12,18,24,32,36))l 

vg2*ns(time, knots - c(12,18,24,32,36))l vgl*ns(time, knots - c(12,18,24,32,36))2 vg2*ns(time, knots - c(12,18,24,32,36))2 
vgl*ns(time, knots - c(12,18,24,32,36))3 vg2*ns(time, knots - c(12,18,24,32,36))3 vgl*ns(time, knots - c(12,18,24,32,36))4 vg2*ns(time, knots - c(12,18,24,32,36))4 vgl*ns(time, knots - c(12,18,24,32,36))5 vg2*ns(time, knots - c(12,18,24,32,36))5 
vgl*ns(time, knots - c(12,18,24,32,36))6 vg2*ns(time, knots - c(12,18,24,32,36))6 

-c (12,18,24,32,36) ) 
Value Std. Error DF t-value p-value 12.31711 0.3642469 5713 3.81528 <. 0001 

0.34589 0.3330695 299 1.03848 0.2999 
-0.41102 0.3093499 299 -1.32865 0.1850 
-0.42216 0.3985421 571 -1.05926 0.2899 
-2.03444 0.4648937 571 -4.37613 <. 0001 
-1.69474 0.3892975 571 -4.35333 <. 0001 
-0.91140 0.2692930 571 -3.38441 0.0008 
-0.91976 0.8974197 571 -1.02490 0.3058 
-0.76284 0.3080375 571 -2.47646 0.0136 
-0.21835 0.3423934 571 -0.63771 0.5239 
0.66048 0.3460607 571 1.90856 0.0568 

-0.08384 0.4225348 571 -0.19842 0.8428 
-0.02139 0.3957452 571 -0.05404 0.9569 
-0.7B546 0.3772831 571 -2.08188 0.0378 
0.70143 0.3226531 571 2.17396 0.0301 
0.01407 0.2604322 571 0.05402 0.9569 
0.05017 0.2234064 571 0.22458 0.8224 

-1.19874 0.7992963 571 -1.49975 0.1342 
1.23356 0.7696778 571 1.60270 0.1096 

-0.29695 0.2835766 571 -1.04717 0.2955 
_0.38913 

0.2609251 571 1.49133 0.1364 

Table. 3.15: REML estimates for the model fitted to haemoglobin concentration 
during pregnancy stratified by vegetarianism of mothers in Group 3. 
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Linear mixed-effects model fit by REML Data: edu32 AIC BIC logLik 
2090.211 2162.163 -1030.105 

Random effects: 
Formula: - time I sub 
Structure: General positive-definite 

StdDev Corr 
(Intercept) 0.67581943 (Inter 

time 0.02544767 -0.637 Residual 0.55145226 

Fixed effects: HAEM - edu + ns(time, 
(Intercept) 

CSE 
VOC 

0 level 
A level 

ns(time, knots - c(12,18,24,32,36))l ns(time, knots - c(12,18,24,32,36))2 
ns(time, knots - c(12,18,24j'32,36))3 ns(time, knots - c(12,18,24,32,36))4 
ns(time, knots - c(12,18,24,32,36))5 
ns(time, knots - c(12,18,24,32,36))6 

knots - c(12,18,24,32,36)) Value Std. Error DF t-value P-Value 12.27624 0.1916140 593 64.06755 <. 0001 0.03545 0.0788332 302 0.44964 0.6533 0.08532 0.0321734 302 2.65195 0.0084 0.04767 0.0238031 302 2.00270 0.0461 
0.00136 0.0242648 302 0.05611 0.9553 

-0.76847 0.2053602 593 -3.74204 0.0002 
-1.92231 0.2516510 593 -7.63880 <. 0001 
-1.59594 0.2154475 593 -7.40757 <. 0001 
-0.93228 0.1591262 593 -5.85876 <. 0001 
-0.87912 0.4662108 593 -1.88567 0.0598 
-0.89757 0.2035224 593 -4.41020 <. 0001 

Table. 3.16: REML estimates for the model fitted to haemoglobin concentration 
during pregnancy stratified by education level of mothers in Group 3. 
Linear mixed-effects model fit by REML 

AIC BIC logLik 
2075.678 2133.28 -1025.839 

Random effects: Formula: - time I sub Structure: General positive-definite 
StdDev Corr 

(Intercept) 0.70566459 (Inter 
time 0.02596994 -0.66 Residual 0.55018628 

Fixed effects: HAEM - Parity+ ns(time, knots - c(12,18,24,32, 
Value Std. Error DF 

(Intercept) 12.64429 0.2253280 593 
>-2 -0.17977 0.0750917 305 

ns(time, knots - c(12,18,24,32,36))l -0.77723 0.2070770 593 
ns(time, knots - c(12,18,24,32,36))2 -1.96063 0.2534752 593 
ns(time, knots - c(12,18,24,32,36))3 -1.62501 0.2169630 593 
ns(time, knots - c(12,18,24,32,36))4 -0.94605 0.1600702 593 
ns(time, knots - c(12,18,24,32,36))5 -0.96609 0.4712310 593 
ns(time, knots - c(12,18,24,32,36))6 -0.88659 0.2035694 593 

36)) 
t-value P-Value 56.11502 <. 0001 
-2.39403 0.0173 
-3.75335 0.0002 
-7.73500 <. 0001 
-7.48982 <. 0001 
-5.91019 <. 0001 
-2.05015 0.0408 
-4.35521 <. 0001 

Table. 3.17: REML estimates for the model fitted to haemoglobin 
concentration during pregnancy stratified by mother's parity in Group 3. 
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Name of covariates Lower Est. Upper SE T-value P-value 
Parity: 

rý: 2 -0.19 0.06 0.32 0.13 0.49 0.63 
Par*ns(fime, knots c(l 2,18,24,32,36))4 -0.48 -0.29 -0.10 0.1 -2.94 0.003 
Par*ns(time, knots c(l 2,18,24,32,36))6 0.10 0.40 0.70 0.15 2.64 0.008 

Vegetarianism of mother: 
In the past -0.17 -0.09 -0.02 0.04 -2.45 0.014 

At the present _-0.09 -0.03 0.04 1 0.03 1 -0.76 1 0.45 

Table. 3.18: Coefficient values for the final model fitted to haemoglobin 
concentration during pregnancy in Group I- 

Name of covariates Lower Est. Upper SE T-value P-value 
Number of smoked in 1" 3 months of 

pregnancy: 
-0.01 0.11 0.24 0.0 6 1.76 0.08 

Ethnic of mothers: 
Non-White -0.53 -0.26 0.02 0.14 -1.82 0.07 

Singleton/Multiple: 
ý1 -8.65 -5.02 -1.39 1.85 -2.71 0.007 

SM*ns(time, knots c(12,18,24,32,36))l 1.15 4.37 7.59 1.64 2.66 0.008 
SM*ns(time, knots - c(12,18,24,32,36))2 0.44 4.47 8.51 2.06 2.17 0.031 
SM*ns(time, knots - c(12,18,24,32,36))3 2.27 5.85 9.44 1.83 3.2 0.001 
SM*ns(timc, knots - c(l 2,18,24,32,36))4 0.26 2.69 5.12 1.24 2.17 0.031 
SM*ns(time, knots - c(12,18,24,32,36))5 4.52 12.59 20.65 4.12 3.06 0.002 

Table. 3.19: Coefficient values for the final model fitted to haemoglobin 
concentration during pregnancy in Group 2. 
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Name of covariates Lower Est. Upper SE T-value P-value 

Parity: 
-0.18 -0.10 -0.83 0.04 -2.07 <000 I 

Vegetarianism of mother: 
In the past -0.27 0.42 1.07 0.33 1.25 0.21 

At the present -0.20 0.40 0.99 0.3 -1.31 0.19 
In the past*ns(time, knots = c(I 2,18,24,32,36))3 -1.70 -0.95 -0.19 0.39 -2.46 0.014 
At the present*ns(time, knots = c(12,18,24,32,36))3 0.05 0.71 1.34 0.32 2.23 0.026 
In the past*ns(time, knots = c(12,18,24,32,36))5 -3.41 -1.78 -0.16 0.83 -2.15 0.032 
In the past*ns(time, knots = c(12,18,24,32,36))6 -2.14 -1.16 -0.19 0.5 -2.33 0.020 
At the present*ns(time, knots = c(12,18,24,32,36))6 0.13 0.74 1.34 0.31 2.4 0.017 

Education of mother: Vocational -1-09 -0.21 0.66 0.45 -0.48 0.63 
* level -0.22 0.13 0.47 0.18 0.72 0.50 
* level -0.10 0.14 0.37 0.12 1.16 0.25 
Degree -0.82 -0.40 0.01 0.21 -1.92 0.06 

Deg*ns(time, knots = c(12,18,24,32,36))l 0.08 0.48 0.88 0.21 2.34 0.02 
Deg*ns(time, knots = c(I 2,18,24,32,36))3 0.06 0.48 0.89 0.21 2.23 0.03 
Voc*ns(time, knots - c(I 2,18,24,32,36))6 0.20 1.26 2.33 0.55 2.32 0.021 
Deg*ns(time, knots = c(l 2,18,24,32,3 6))6 0.02 0,29 0.57 0.14 2.08 0.038 

Table. 3.20: Coefficient values for the final model fitted to haemoglobin 
concentration during pregnancy in Group 3. 
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CHAPTER 4 

Haemoglobin. Concentration in Children followed 
Longitudinally from 8 months to 7 years, 

4.1. Introduction: 

Children and Infants require more Iron compared with adults, primarily due to 
their fast level of growth. They are completely dependent on dietary Iron after 
four to six months old, in order to meet their physiological requirements. An 
Insufficient Iron supply will result in the decrease of Iron stores in the body which 
leads to Iron deficiency anaemia(Wharf, Fox, Fairweather, & Cook 1997). 
Some nutritional problems in early life of children are highlighted by recent 
national data. In the United States, Iron deficiency anaemia is still relatively 
common in children aged I to 2 years old (Looker, Dallman, & Carroll 1997). 
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A recent World Health Organization document on infant nutritional 
requirements has described Iron, Zinc and Calcium as nutrients problem in both 
the developing world and the developed world (WHO 1998). 
When looking at childhood, Iron deficiency anaernia is even found amongst the 
economically well off. Low birth weight, early intake of cow's milk, rapid 
growth and inadequate dietary Iron intake, have been found to be the most 
important risk factors (Oski 1989) . However there are some effective 
preventive measures, such as Iron enriched infant formula milk as well as Iron 
fortified cereals. Preventing Iron deficiency is difficult throughout the 
developing countries, where Iron deficiency anaernia is epidemic and Iron 
enriched infant formula milk, and cereals are usually not available (Walter et al. 
1993). 
An appropriate Iron status have been found in infants who exclusively breast 
feed for long period of time (Pisacane et al. 1995). However this is not always 
possible a result Iron deficiency can occur, as Iron supplement may not be an 
option either for economical or cultural reasons. Iron status at birth present 
great variations amongst individuals, these differences can still be found in the 
Iron status of the same individuals at age 6,9, and 12 months old (Michaelsen, 
Milman, & Amuelson 1995). 
This might be an explanation why the Iron levels of some infants appears to be 
and remain sufficient, throughout their first year of life, even if they do not 
ingest enough daily Iron and Iron supplement. 
In the first year of life, it seems that dietary Iron, is only one of the factors that 
influence Iron levels. It may be that the Iron absorption from Iron enriched 
infant formula milk and cereals is moderate and is inhibited by a number of 
components in the diet, such as poly phenols present in fruit and vegetables 
(Duggan et al. 199 1). 
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4.2. Statistical method: 

The aims of this part of the study were: 

To investigate various haemoglobin levels during childhood from age 
8 months to 7 years old; 

To determine the effect of different time independent covariates, 
including maternal and child covariates, on haemoglobin levels; 

To determine the effect of some time-dependcnt covariates such as 
nutrient intakes on the haemoglobin levels of these children. 

As before, the data for this study was also obtained from the Avon Longitudinal 
Study of Pregnancy and Childhood (ALSPAC). 
The children from Children in Focus were invited to attend a research clinic at 
8,12,18,31,43,61 and 84 months old (the age was recorded in weeks). The 
children were measured and had a blood sample taken (Cowin, Emond 
Emmett, & The ALSPAC Study Team 2001). 
Special statistical methods are essential in order to accommodate individual 
correlations and illustrate repeated haernoglobin measures on each of the 
children. 
Ignoring this correlation may result in inappropriate estimates of regression 
coefficients and invalid inferences concerning the question (Gregoire et al. 
1997). The mixed model approach allows inclusion of fixed effects and random 
effects. Fixed effects model the influence of covariates on mean haernoglobin. 
while random effects model the haemoglobin correlation structure. 
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This model does not need equally spaced or equal numbers of haemoglobin 
observations per child (Manor & Kark 1996). 
Missing data is a problem for statistical analysis in many fields of research, and 
we need to decide how to deal with the missing data appropriately each time. 
Data is not often missing completely at random (MCAR), but the data in this 
study may be classifiable as missing at random (MAR), see Chapter 2. For this 
data, the missing value is likely to be unrelated to the value of outcome after 
controlling for another variable such as sex, ethnicity. 
One of the most popular methods for handling missing data is list-wise data 
deletion that is used for handling database. That means, if a record has missing 
data for any one variable, that record is dropped from the analysis. 
This approach is implemented as the default method for handling missing data 
by most statistical software packages (e. g., SAS, SPSS). This practice reduces 
the sample size, lowering the power of any tests, which have been used. 
However, S-plus (a statistical package) has a good facility to deal with missing 
values without deleting whole cases, so S-plus was used in the present study to 
deal with missing values. 
That means, to model the variables studied, between child haernoglobin levels 
and covariates for this cohort study, we used mixed effect models based on 
cubic spline estimated by the maximum likelihood method. 
The fitted model predicts the average haemoglobin for the population at a given 
age, while controlling for statistically relevant covariates. 
We used cubic spline to fit a curve to children's haemoglobin levels, this 
procedure produced a curve showing haemoglobin level changes, from base 
line to 7 years old (84 months) of follow up. We se1ccted this analytic approach 
for reasons that were explained in Chapter 3. 
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4.3. Results: 

A total of 1432 children were invited to the clinic at 8,12,18,31,43,61 and 84 
months. As you can see in Table 4.2, of them 75.1%(1074). 64.2%(920), 
56.9%(815), 40.8%(584), 50.1%(717), 44.7%(641) and 47.3%(677) percent 
attended respectively. 
Table 4.1 shows that age of each child (to the nearest week) was recorded on 
each occasion, as was the child's haemoglobin level. 
Covariates of interest in this phase of our investigation included maternal 
covariates and children covariates. Categorical variables were created for 
several matemal covariates that did not change during the study (time 
stationary covariates). 
These included matemal age, vegetarianism of mother, education, number of 
cigarettes smoked per day in 1" 3 months, last 2 weeks, 32 weeks of pregnancy, 
parity and singleton /multiple pregnancy. 
As a positive correlation between maternal haemoglobin and their children iron 
status has been found in a number of studies (Ziaei, Hateflan, & Togeh 2002), 
it was decided to assess the relation between haemoglobin levels in children in 
this cohort study and their mothers during pregnancy. 
Therefore the mother-specific random intercept and random slope terms from 
the cubic spline model, which was fitted to the matemal data during pregnancy 
(Chapter 3), were included as time stationary covariates to evaluate the role of 
mother's haemoglobin levels on iron status during childhood. 
Child covariates modelled as time stationary covariates include birth weight, 
sex and cthnicity of children. 
Also in this chapter, much statistical interest centers on covariates that, cliangc 
with time (time varying covariates), and contributes to the variation in 
haemoglobin levels. 
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Therefore time varying covariates were examined. These included weight of 
children and nutrient intake such as, vitamin C intake, Haem iron intake, Fat 
intake, Saturated fat intake, Monounsaturated fat intake, Energy intake, 
Calcium intake, Iron intake and Non-Starch PolYsaccharide intake (NSP) as 
time varying covariate. These measurements were not available in all times 
point; the nutrient intakes were only made at 18 and 43 months. 
In the data collection process, these data exist just at two time points across all 
ages for the observations. Unavailable data for these children at other ages can 
cause some restrictions in the analysis of data. The analyses were run, but it 
was anticipated that some results would not be statistically significant because 
of the small of amount of input data. 
A scatter plot of all haemoglobin measures contributed between 8 months (33 
weeks) and 7 years (426 weeks) is shown in Figure 4. LA smooth curve fitted 
to observed haemoglobin measurements for children using cubic spline method 
in this Figure. 
Haemoglobin levels in children slightly decreased from 33 to around 85 weeks 
then there was a substantial increase in children's haemoglobin levels until 
about age 7 years (426 weeks). 
In Figure 4.1 can be observed the existence of change in children's 
haemoglobin over time. 
Table 4.1 is used to convert weeks of attendance of children at clinic to month 
and year. For example, as the table shows, seven-year data is actually for 
children aged 357 weeks to 426 weeks. 
As you can see in Table 4.3, of the 1432 children in this study 773 (54%) were 
male and 659 (46%) were female. There were 1394 (97.3%) singleton births 
and 38 (2.7%) twins in the data set. Only 3.6% (48) of children were non-white 
and the rest of them, that means 96.4% (1296) were white. The mcan (SD) birth 
weight for these children was 3433g (529.6). 
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Of the total of mothers invited to the clinic, 196 (14.5%), 132 (9.8%)l 
481(35.7%), 343 (25.4%) and 196 (14.5%) were with CSE, Vocational, 0 
level, A level, Degree level of education respectively, There are no answer for 
65 of mothers for this covariate. 
Of all mothers in this study 53.9% (733) of them were with a parity of two or 
more than born children and 46.1% (628) of mothers were with first-born 
children. 
Majority of mothers (84.9%) were non-smoker in last 2 weeks of pregnancy 
and 15.1% were smoker with more than one cigarettes smoke per day, of the 
total mothers in this study, 80.3% did not smoked and 19.7% did smoked more 
than one cigarettes per day in Pt 3 months of pregnancy. 
Eighty five percent (1108) of mothers did not smoke per day in 32 weeks of 
pregnancy and the rest of them did smoke that were (15.0%) of mothers. As 
you can see in Table 4.3 mean and standard deviation of matemal age in this 
study were 28.9 and 4.7 respectively. 
Vegetarianism was not popular among the mothers, because eighty-five present 
of them are not vegetarian and 15% were vegetarian in the past or at the 
present. 
In order to find the best position and number of knots for fitting a cubic spline 
model to these data, as in the previous chapter, several different combinations 
were tested. 
First, a model including 6 knots at 46,69,108,162,228 and 324 weeks was 
tested. All cubic spline segments but 4 were significant. We continued by 
fitting models with different positions and numbers of knots but all models had 
at least one cubic spline segment which was not significant. 
The only model that was significant on each consecutive pair of knots was the 
model with three (interior) knots at 69,228 and 324 weeks. 
Hence the knots at 69,228 and 324 weeks are used in the cubic spline to 
capture the observed relationship between age and haemoglobin levels in this 
study population. 
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The use of the cubic spline, with three knots at 69,228 and 324 weeks, 
produced the best fitting model to children's haemoglobin levels over the this 
period of time from 8 months to 7 years old age (33 weeks to 426 weeks). 
Time independent covariates were first introduced individually to the 
fundamental model of haemoglobin levels over time, and then compared with 
the reduced model (model with time only). The log-likelihood statistic is used 
to find a significant effect of a covariate on haemoglobin levels. 
The Ime function in S-Plus provides two methods to estimate Mixed-effects 
Models: Maximum-Likelihood (ML) estimation of the model maximizes the 
likelihood with respect to all of the parameters of the model at the same time; 
include fixed effects and variance components. 
Restricted Maximum-Likelihood (REML) estimation incorporates the fixed 
effects out of the likelihood and estimates the variance components and then, 
given the estimates of the variance components, estimates of the fixed effects 
are recovered. 
Either ML or REML to construct this statistic model can be used that tests 
whether the full model is necessary or the reduced model. 
As REML is used to construct the models in this study and because REML 
estimates arc calculated incorporating out the fixed effects, one cannot legally 
do likelihood-ratio tests across models with different fixed effects when the 
models are estimated by REML. So for using ANOVA procedure, refitting the 
model to data by ML is necessary. 
Significant covariates were then included as interaction terms with time and 
again tested by comparing the log-likelihood statistic of the reduced model with 
full model to study whether covariates modify the effect of time. 
The model was then run again to find the effects of time-varying covariates of 
interest on haemoglobin levels in children. As the nutrient data are only 
available at two time points (18 and 43 months), it would be appropriate to 
delete the data for the rest of the times and fit an adjusted model for just these 
two times. 
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Differences by sex appeared in this children, as you can see in table 4.4 and 
also in Figure 4.2, boys had mean haemoglobin levels significantly below the 
girls means (P=0.007). 
As you can see in Table 4.4, the mean haemoglobin level was also negatively 
associated with birth weight of children. The haemoglobin levels were similar 
for the all groups education of mothers, but there were significant negative 
interaction between children haernoglobin levels born to mothers with 
Vocational level of education in knots ( 69) and children haemoglobin level 
born. to mothers with Degree level in (228,324) with time respectively. 
Figure 4.4 and Table 4.4 show children bom to mothers with Vocational and 
Degree level of education had a significant decrease in mean haernoglobin than 
children born to mothers with other levels of education in these knots (P- 
Value=0.030, P-Value =0.012). 
From the Figure 4.3 and Table 4.4, it is clear that parity of mother was 
associated with hemoglobin levels of children. Children born to mothers with 
first parity had a higher mean hemoglobin levels compared with children born 
to mothers with parity of two or more in this part of the study. 
No differences in haemoglobin levels of children over time were detected for 
ethnicity of children, vegetarianism of mothers, Singleton /Multiple pregnancy, 
matemal age, number of cigarettes smoked per day in 1" 3 months, number of 
cigarettes smoked per day in last 2 weeks and number of cigarettes smoked per 
day in 32 weeks during pregnancy. 
For assessment of time varying covariates, the data that were presented pertain 
to children at 18 and 43 months on whom data on nutrient intake were 
available. A cubic spline with a single knot at 135 weeks was used in these 
data, which this was the best fitting model to children's data. 
Table 4.5 presents the coefficient values for all time varying covariates in 
Linear Mixed Model (nutrient intakes and weight) and hemoglobin levels in 
children. 
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As you can see in this Table, vitamins C intakes were positively associated with 
hemoglobin levels. Both Non Starch Polysaccharide intake (NSP) and Calcium 
intake were significantly positively associated with haernoglobin levels. 
Weights of children also were positively associated with haemoglobin levels. 
That means, the lower weight groups of children may be at more risk of being 
anaemic. Neither iron intake nor haern. iron intake were significantly associated 
with haemoglobin levels. 
There was no association between Fat intake and haernoglobin levels. Saturated 
fat intake, Energy intake and Monounsaturated fat intake were not associated 
with haernoglobin levels. 
There were no significant interaction between all covariates such as time 
varying covariates and time stationary covariates but education level of mothers 
and time in these children. 
In this study, it is of interest to establish whether haemoglobin levels in mothers 
affect the iron status of their infants. 
Both cross-sectional and longitudinal studies in the U. S. and also Europe have 
illustrated that even moderate anaernia can be negatively associated with 
obstetrical outcomes, including preterm. delivery and low birth weight(Murphy 
et al. 1986). 
Also there is no doubt that iron supplement is effective in improving the iron 
levels of mothers during pregnancy (Dawson & McGanity 1987) whereas 
infants born to women with iron deficiency also have a high prevalence of 
anaernia in the first 6 months (Preziosi et al. 1997). 
Therefore, it is necessary to investigate the effect of haernoglobin levels of 
mothers during pregnancy on iron status of their children separately for mother 
in different iron supplement groups. 
Table 4.6 illustrates some results, which are about the association between 
mother's haernoglobin levels during pregnancy and children's haernoglobin 
levels. 

101 



CHAPTER 4: Haemoglobin Concentration in Children followcd Longitudinal from 8 months to 7 years 

These were done separately for the three groups of mothers according to iron 
supplements. 
This analysis took the coefficients (random intercept and random slope) from 
the model, which was fitted to the maternal data, and investigated whether 
these were related to the children's haemoglobin levels subsequently. 
The random coefficients for individual mothers were added as two separate 
covariates to the cubic spline for the children's haemoglobin levels. 
The results have shown that random slopes were significantly positively 
associated with children's haemoglobin level in Group I (Non iron supplement 
group) but random intercepts were not associated with children's haernoglobin 
level in this group. 
This suggests that, in Group 1, mothers who had a relatively slow decrease in 
haemoglobin during pregnancy tended to have children with relatively higher 
haemoglobin levels. 
We went on to look at the association between these coefficients in mothers in- 
group 2 and 3 (mothers who took iron supplement in week 18 and in 32 week) 
with children's haemoglobin level but neither of these coefficients was 
significantly associated with children's haernoglobin level. (This could indicate 
that iron supplementation during pregnancy, even if started quite late, is 
successful in bringing the mother's haemoglobin level back up to a point where 
it does not adversely affect the child's iron level). 
Another risk of anaernia and iron deficiency is that mothers with these 
conditions may give birth to children with anaernia or iron deficiency and this 
may result in abnormal child development. 
However, most research indicates that mothers who are iron deficient during 
pregnancy are more probable to give birth to iron deficient infants than mothers 
who have good iron status (Lao et al. 1991). 
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For making it clear whether haemoglobin levels in mothers during pregnancy 
are associated with iron status in children in early life, Table 4.7 shows the 
correlation between haemoglobin levels at 8 months and random intercepts and 
slopes of the models that were fitted to the matemal data during pregnancy. 
Random intercepts and random slopes were not associated with haemoglobin 
levels at 8 months in Group 1. 
In Group 2, random intercepts were positively associated with haemoglobin 
levels at 8 months although random slopes were not associated with 
haemoglobin levels. 
Random intercept was significantly positively associated with haemoglobin 
concentration at 8-month in-group three whereas random slopes were not 
associated with haemoglobin levels at. 8 months in same group. 

4.4. Final Model: 

The effect of all the different significant covariates including maternal 
education, parity, sex and birth weight, were tested as time stationary covariates 
in a final model. The relationship did not reach statistical significance for birth 
weight in the first model fitted. A model without birth weight was then fitted to 
test the rest of covariates. A statistically significant difference was observed 
depending on the maternal education, parity and sex, as you can see in Table 
4.8. 
New model fitted to data revealed a significant interaction between maternal 
education and time. A significant interaction was observed that indicated a 
negative effect of education at Voc level at knots ( 69) and Degree level at 
knots (228,324) respectively. 
As you can see in Table 4.8 and Figure 4.3, also there is a slightly positive 
significant interaction between parity and time in knots (228,324). That means 
that the difference in children's haemoglobin levels in mother with parity more 
than one tends to increase during this period of time. 
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No significant interaction existed between children's sex and time, so this term 
was dropped from the statistical analysis. Significance testing between different 
models to find the best final models was done using the likelihood ratio test. 
In addition, the vitamin C, Calcium, NSP intakes and weight were included as 
time varying covariates in linear mixed model in order to rind a final model. In 
the final model, there was statistically significant positive correlation between 
the mean haemoglobin level and Vitamin C intake, weight, while Calcium and 
NSP intakes did not change significantly. 
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Figure. 4.1: Cubic spline curve for children's haemoglobin 
levels against age (week). 
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Figure. 4.2: Cubic spline curve fits to tile children 's 
haernoglobin levels against age (week) according to sex. 
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Figure. 4.3: Cubic spline curve fits to the children's 
haemoglobin levels against age (week) according to parity 
of mothers. 
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Figure. 4.4: Cubic spline curve fits to the children 's 
haernoglobin levels against age (week) according to 
maternal education. 
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Week th Year 
33-42 8 
51-62 12 1 
76-85 18 1.5 
132-140 31 -2.5 184-196 43 -3.5 260-292 61 ~5 3S7-426 84 7 

TableAl: Week's conversion to month and year. 

11b level 
at 8 

months 
11b level 
at 12 

months 
11b level 
at 18 

months 
lIb level 
at 31 

months 
Ilb level 
at 43 

nionths 
Ilb level 
at 61 

months 
Ilb level 
at 84 

months 
Valid 1074 920 815 584 717 641 677 

Missing 358 512 617 848 715 791 755 
Mean 11.70 11.75 11.68 11.61 11.89 11.97 12.38 
S. D 1.13 1.04 0.95 0.82 1.03 0.91 0.80 

Table. 4.2: Frequency distribution, mean and standard deviation for Children 
in Focus in 7 measurements. 
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Covariates Frequency Valid Percent* 
Child Ethnicity; 

White 1296 96.4 
Non-White 48 3.6 

Missing 88 
ToW 14320* 100.0 

Birth Weight (g) 
Mean (SD) 3433 (529.6) 
Missing 13 
Sex; 
Male 773 54.0 

Female 659 46.0 
Total 1432 100.0 

Singleton/Twin: 
Singleton 1394 97.3 
Twin 38 2.7 
Total 1432 100.0 

Mothers Highest Education; 
CSE 196 14.5 

Vocational 132 9.8 
* level 481 35.7 
* level 343 25.4 
Degree 196 14.5 
Missing 65 
Total 1413*** 100.0 

Maternal age Mean (SD) 28.85 (4.69) 
Number of smoked / day in 32 

Weeks; 
None 1108 $5.0 

195 15.0 
Missing 110 

1413 100.0 Total 
Number of smoked / day in last 2 

Weeks; 
None 1166 84.9 
>1 208 15.1 

Missing 39 
1413 100.0 Total 

Number of smoked day in V3 
months; None 1103 80.3 

2! 1 271 19.7 
Missing 39 

1413 100.0 Total 
Parity; 

1 628 46.1 
2 733 53.9 

Missing 52 
1413 100.0 Total 

Vegetarianism of mother Never 1064 85 
In the past 111 9 
At present 71 6 
Missing 167 
Total 1413 100.0 

Table. 4-3: Frequency and percentage of time stationary covariates. 
* The pgrcentaacs ars based only 2n the cascs who actually answered the guest'on. 
**n-1432(childrcn) $O*n-1413(mothers) 
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Name of covariates Lower Est. Upper SE T-Value 111-value 
Ethnic of children: Non-White -0.16 -0.06 0.05 0.05 -1.02 0.31 
Birth weight (Kg): -0.15 -0.09 -0.03 0.03 -2.94 0.003 

Sex of children: 0.01 0.05 0.09 0.019 2.72 0.007 
Female 

Singleton/multiple: -0.08 0.02 0.13 0.05 0.43 0.67 
2t I 

Education of mother: 0.02 
Vocational -0.12 0.01 0.13 0.07 0.14 0.89 

0 level -0.04 0,02 0.07 0.03 0.54 0.59 
A level -0.01 0.03 0.07 0.02 1.50 0.13 
Degree -0.06 -0.02 0.02 0.02 -1.15 0.25 

Voc*ns (time, knots =c (69,228,324)) 1 0.04 0.39 0.74 0.18 2.17 0.03 
Deg*ns (time, knots =c (69,228,324)) 3 0.03 0.13 0.24 0.05 2.53 0.01 

Maternal age: -0.004 0.003 0.01 0.004 0.71 0.48 

No of Cig smoked in 32 wks: 
-ý! 1 -0.03 0.02 0.08 0.03 1 0.81 0.42 

No of cig smoked in 1'd 3 months: 
-0.02 0.03 0.07 0.02 1.08 0.28 

No of Cig smoked in last 2 wks: ý! 1 -0.04 0.02 0.07 0.03 0.56 0.58 
Parity: 

ý: 2 -0.24 -0.17 -0.10 0.04 -4.52 <. 000 I 

Vegetarianism of mother: 0.65 
In the past -0.05 0.02 0.09 0.03 0.5 0.62 

At the present -0.07 -0.008 0.05 0.03 -0.2 0.79 

Table. 4.4: Coefficient values for time stationary covariates in Linear Mixed 
Model. 
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Name of time varying 
covariates 

Lower Est. Upper SE T-Value P-value 

Vitamin c intake 0.0007 0.002 0.003 0.0006 3.14 0.002 
Haem iron intake -0.13 0.10 0.32 0.12 0.84 0.4 

Fatintake -0.003 0.001 0.005 0.002 0.56 0.57 
Saturated fat intake -0.005 0.003 0.012 0.004 0.71 0.48 
Monounsaturated fat 

intake -0.012 -0.0003 0.002 0.006 -0.05 0.96 

Energy intake -0.002 0.0002 0.002 0.0001 1.37 0.17 
Calcium intake 0 0.0002 0.0004 0.0001 1.98 0.049 
Iron Intake -0.009 0.018 0.05 0.01 1.25 0.21 
Non Starch 

PolYsaccharide intake 
(NSP) 

0.003 0.03 0.05 0.01 2.31 0.02 

Weight 0.016 0.05 0.08 0.02 2.89 0.004 

Table. 4.5: Coefficient values for time varying covariates in Linear 
Mixed Model. 
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Name of the Lower Est. Upper SE T-Value P-value 
covariates 

Group 1; 
Random intercept -0.02 0.002 0.02 0.01 0.15 0.88 
Random slope 0.79 3.75 6.72 1.51 2.48 0.014 

Group 2; 
Random intercept -0.05 -0.02 0.01 0.01 -1.30 0.19 

Random slope -3.79 -0.72 2.35 1.57 -0.46 0.65 

Group 3; 
Random intercept -0.01 0.02 0.04 0.02 1.03 0.31 
Random slope -2.34 2.63 7.59 2.54 1.04 0.30 

Table. 4.6: Coefficient values for random intercept and random slope of the 
model fitted to matemal. data, as covariates in Linear Mixed Model fitted to 
children's haernoglobin. 
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Random Intercept Random slope 

Haemoglobin levels at 8 0.074 0.073 
months in Group I P-value = 0.0795 P-value = 0.082 

Haemoglobin levels at 8 0.163 -0.143 
months in Group 2 P-value = 0.028 P-vahte = 0.054 

Haemoglobin levels at 8 0.130 0.048 
months in Group 3 P-value = 0.042 P-value = 0.453 

Table. 4.7: Pearson correlation between Haemoglobin level at 8 moths 
and the coefficients (random intercept and random slope) from the model, 
which was fitted to the matemal data. 
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Name of time stationary covariates In Lower Est. Upper SD T-Value ý P-valui 
final model 

Education of mother: Vocational -0.16 -0.03 0.10 0.07 -0.47 0.64 
* level -0.04 0.01 0.06 0.03 0.41 0.68 
* level -0.01 0.02 0.06 0.02 1.27 0.20 
Degree -0.06 -0.03 0.01 0.02 -1.39 0.16 

Voc*ns(time, knots = c(69,228,324))l 0.02 0.38 0.73 0.18 2.09 0.04 
Deg*ns(time, knots = c(69,228,324))3 0.04 0.14 0.24 0.05 2.62 0.01 

Parity: 
>1 -0.2 -0.14 -0.08 0.03 -4.57 <. 000 I >I *ns(time, knots = c(69,228,324))3 0.02 0.20 0.38 0.09 2.15 0.032 
Sex: 

Female 0.01 0.05 0.09 0.02 2.56 0.01 

Table. 4.8: Coefficient values of time stationary covariates in Final Model 

Name of time varying covariates Lower Est. Upper SD T-Value P-value 
In final model 

0.0007 0.002 0.003 0,0006 3.17 0.002 Vitan-tin C Intake 

-0.00006 0.00014 0.0003 0.0001 1.34 0.18 Calcium Intake 

[ 

-0.01 0.02 0.04 0.011 1.48 0.14 Non Starch Polysaccharide Intake 
(NSP) 

0.02 0.06 0.09 0.019 2.93 0.004 Weight 

Table. 4.9: Coefficient values of time varying covariates in Final Modcl. 
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CHAPTER 5 

Constructing Reference Curves for Haemoglobin 
Levels in Children 

5.1. Introduction: 

In this chapter we aim to introduce a longitudinal reference curve for haernoglobin 
levels in childhood, from age 8 months to 7 years. 
A reference curve is a graph illustrating how the distribution of some interesting 
observations changes with age. This may be achieved by displaying tile median 
and different percentiles over ages. An a% age-related curve is derined by tile 
range between two reference curves, which include a% of the data at each 
individual age. For example measurements between the I S'h and 85'h centile 
curves lie within a 70% age-related range (Wright & Royston 1997). 
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Until the decade of the 1970's the normal range was commonly used instead of a 
reference curve, each value outside the range between the 2. Sth and 97.51h centilcs 
was abnormal data. One mistake of this definition is that 5% of normal 
population values will be outside the normal range(Wright & Royston 1999). 
Wright and Royston in 1997 reviewed methods for constructing such reference 
curves. After an appropriate transformation of the measurements which are 
approximatelY normally distributed, the median and mean become equivalent and 
the percentiles are simple functions of the mean and standard deviation (Scheike, 
Zhang, & Juul 1999). 
Nevertheless, when such a reference curve is used to follow up individuals, a 
number of problems appear as a result of the how centiles have been estimated. 
In general cross-sectional reference curves ignore information on the prior 
observation of the individual and the individual measurement at each time is 
assessed separately. It seems that when longitudinal data are available, better 
results could be reached by conditional chart method. 
The approach used in this chapter combines data measured on an individual at 
previous time points to provide a means of evaluating a later observation. As an 
example of the type of problem that might arise, once the previous individual 
information is ignored, assume that a woman's haernoglobin levels during 
pregnancy have been continuing along at the 75 th percentile for number of weeks 
and then suddenly drops to the median at the next clinic visit. 
From a cross-sectional reference curve, this mother is still well within any 
reference curve and so there is no reason for alarm. However, given the history of 
longitudinal data of the mother up to that time, the sudden drop may be a warning 
sign. A conditional reference curve, which adjusted an individual's expected route 
according to previous measurement, would better be able to draw attention to this 
event. 
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Likewise, if haemoglobin gain of the woman went above the q0th percentile 
occasionally, it would not necessarily be construed as an abnormal haemoglobin 
gain (Fatti, Senaoana, & Thompson 1998). 
This Chapter describes the extension of the reference curves approach of Cole and 
Green(Cole & Green 1992) to generate conditional reference curves (Cole 1994) 
for haemoglobin levels between 8 months and 7 years old in Children in Focus. 
In this study, we construct cross-sectional and longitudinal reference curve for 
haemoglobin levels in children using LMS methods. 
Firstly, cross-sectional reference curves were fitted to the data using Cole's LMS 
method (Cole & Green 1992) and then cross-sectional approach have been 
developed to conditional reference curve where haemoglobin levels ( time t) was 
predicted from haemoglobin levels one previous time point (time t-1) and then 
it has been rearranged to give an other conditional reference curve by extending 
one previous time point to all previous times point , this method were derived 
using Cole's method (Cole 1994). 
After cross-sectional reference curve for haemoglobin levels were constructed and 
also conditional reference curves for haemoglobin levels calculated from 
observations obtained from Cole's method, then these reference curves were 
compared with each others. 

5.2. Methods: 

The references curves for haemoglobin levels were derived using the LMS 
method described by Cole and Green, 1992. 
A normal distribution for constructing reference curves at every age in sample 
values is unnecessary in the LMS method assumption (Cole & Green 1992) since 
the data can be transformed to an approximately normal distribution via tile Box- 
Cox power transformations. 
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The Box-Cox power transformation (Box & Cox 1964): 

g(Y) = (Y% - 1)/% %#0 

g(Y) = Ln(Y) %=O 

It is almost inevitably the popular transformations system to normality. Once the 
distribution of Y is negatively skewed, values of A>I are used, when Y is 
normal, A=I and when Y is positively skewed A<I is used. 
Using the LMS method in its original version(Cole 1988), firstly the Box-Cox 
distribution parameters for Y are estimated within each group of age .A useful 
parameterization in which the three parameters L, M and S are the skewness, 
median and coefficient of variation of Y respectively was proposed by Cole in 
1988. The parameters were estimated with in each group of age by maximum 
likelihood separately and then smoothed across age. Regression smoothing 
procedure such as polynomial regression may be applied. 

Under the LMS method, the Z score is as follow: 

Hb L 
Z=[ YMI -1 

LS 

These Z scores have approximately a standard normal distribution. As 
haemoglobin level is a positive value, there is no difficulty in flitting Box-Cox 
power transformations to these data. 
A nonparametric aspect was added by Cole and Green in 1992 to the original 
LMS method, using maximum penalized likelihood to estimate the agc-related 
curves for each of the parameters L, M and S by natural cubic splines. 
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The smoothness of curve fitting across age is controlled by the values of the 
parameters called equivalent degree of freedom (e. d. f) for three parameters. 
The following is formula which defined the points on each reference curve (Cole, 
Freeman, & Preece 1998): 

LSz,,, fL 
(5.2) 

Where L, M and S are values of the fitted curves at individual age, Z is score for 
the centile that was required (The normal equivalent deviate). 
It is a profit of the LMS methods that the haemoglobin levels can be converted to 
Z scores that is the distance SD score concerning to the haemoglobin from the 
values of L, M and S at each age, with the formula (S. 1) (Cole 1994). 
The disadvantage of this method is that the choice of e. d. f. 's is somewhat 
sub ective because statistical inference for use with penalized likelihood is not 
well understood, and determination of the best fitting curves may not be unique 
(Wright & Royston 1997). 
The conditional reference curve for one previous time point obtained using linear 
regression approach where haemoglobin levels at time t is predicted from 
haemoglobin measurement at time t-1, then: 

0 Haemoglobin t=a, +b, Haemoglobin + error (5.3) 

Where 
b, =The slope coefficient 

a, =The intercept 
Error term- N(O, t7t2 
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For using the SD score, the formula in (5.3) becomes: 

I Z, =at'+ b, ' Z,, +error (5.4) 
Z, =The SD scores at age t 

Z, -, =The SD score at age t- I 
b, ' = The slope coefficient 

a Intercept 
The means and standard division of Zs are zero and unit respectively, however b, ' 
is the correlation between Z, and Z, -,, and a, ' is the intercept that are equal to r, 
and zero respectively. 
Then (5.4) changes to 

rZ, -, +error (5.5) 
The meaning is E(Z, IZI-1) = rZ, -, - 
For data with a normal distribution the two approaches are the same, but in a 
distribution that is skewed, the SD score scale is more suitable (Cole 1994). 
We have discussed now haernoglobin levels might be predicted from haemoglobin 
levels at one previous time point. Now, we could extend equation (5.3) to include 
haernoglobin levels in all previous times as follows: 

Hbt =a, + a, -, Hb, -, + a, -2Hb -2+... + a, Ilb I+ error (5.6) 

Where 
a, -,, a, -2 I..., a, =The slope coefficients 

The intercept 

Error term~ N(O, a, ) 
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Significant slope coefficient at different times show that haemoglobin level in 
these times could be an important predictor for conditional reference curves. 
Multiple regression analyses were performed to examine the role of haemoglobin 
at various times. The variables, which were entered as independent variables are 
as follow: 
Haemoglobin levels at time t-1, t-2...... 1. Significant explanatory variables were 
selected using stepwise regression modelling. 
To obtain conditional reference curves by using regression base approach, tile 
intercept terms were ignored when these were not statistically significant or were 
indeed very weak as you can see in Table 5.2. 
The LMS method with smoothing by maximum penalised likelihood was carried 
out using the Windows 2000 supported LMS software (Cole, personal 
communication, 1999). 
The reference curves representing the Yd, 10", 25 th 9 50'h, 75 th, 901h 

, and 97 1h 

centiles between 8 and 84 months old are given. 
The convenience and flexibility of the recent method are hugely better than 
original method (Wright & Royston 1997). 
The e-d-f for each curve is comparable with the degree of freedom of a 
polynomial, and range from 2 upwards. The eAf equal 2 corresponds to a 
straight-line smoothed curve, the eAf 3 find a quadratic curve, as the eAf 
increase the curves become rougher spline curves. 
In our study we used 3,5 and 3 as eAf which gave a convenient amount of 
smoothing for the data. 
Figure 5.1 shows the L curves for baemoglobin levels in children from 8 month to 
7 years, over a range of fitted e. d. f between 2 and 4. 
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The L curve with 2 e. d. f in Figure 5.1(a) corresponds to a straight line and it is 
unlikely except for large data with wide age range. 
In comparison with Figure 5.1 (c), the Figure 5.1 (b) is reasonably good smoothed 
over the whole rang of age. 
Cole and Green 1992 believe that the e. d. f required for the M curve is greater than 
for the L and S curves. 
As you can see in Figure 5.2, the benefit of fitting the M curve with 5 e. d. f is that 
e. d. f with this value allows for the fitted seven suitable smooth reference curves to 
the data while with increase e. d. f reference curve become raggedness. 
Figures 5.3 present the fitted S curves obtained by the various e. d. fs included 2,3 
and 4 respectively. The smallest e. d. f is 2 for the S curve, corresponding to a 
straight line and it provides a low quality fitted to the data as shown in Figure 
5.3(a). 
The S curve in Figure 5.3(b) demonstrates a smooth curve and the variation of 
shape in the curve is clear, whereas in Figure 5.3(c) the curve is a ragged curve 
and became more complex compared with Figures 5.3(a) and 5.3(b). 

5.3. The Results: 

Table 5.1 shows the correlation matrix for haemoglobin SD score at each of the 
seven measurement age groups from 8 month (33 weeks) to 84 months (426 
weeks) based on Children in Focus. 
As you can see in this Table, in the most cases, the nearest SD scores in different 
time points were more correlated. 
Firstly, a linear regression model was fitted to find slope coefficients to produce a 
conditional reference curve. The results in this point illustrated that the coefficient 
of variation (S) for conditional reference curve using data at all previous times 
was bigger than the coefficient of variation in conditional reference curve using 
one previous time point. 
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Also conditional reference curves (one previous time) were narrower than the 
conditional reference curve with all previous time point. 
It was thought that this effect might have been due to patterns of missing data. For 
dealing with missing values, a single imputation method was used, but it was not a 
beneficial solution for this problem because the coefficient of variation (S) for the 
conditional reference curve using data at all previous times was still bigger than 
the coefficient of variation in the conditional reference curve using one previous 
time point. This explains why the conditional reference curves (all previous times) 
were wider than the conditional reference curves with one previous time. 
As an alternative explanation, it was considered whether there were any gross 
outliers that might affect the regression analysis underlying the construction of the 
longitudinal reference curves. On investigation, we discovered several outliers 
that were more than 4 standard deviations from the sample mean. We repeated the 
analysis excluding these cases. Again, the conditional reference curves were 
produced with and without the use of an imputation method to deal with the 
missing data. 
Figures 5.1.5.2 and 5.3 show the L, M and S curves for children from 8 month 
(33 weeks) to 84 months (426 Weeks), with some variation in the e. d. fs. 
Figures 5.5.5.6 and 5.7 demonstrate the conditional fitted L, M and S curves 
obtained by using one previous time for children and figures 5.9,5.10 and 5.11 
show the L, M and S (all previous times), setting the e. d. f 3,5 and 3 respectively. 
Figures 5.13,5.149 5.159,5.179,5.18 and 5.19 show the L, M and S obtained by 
using one previous time and all previous times after used an imputation method 
(mean of series method) respectively. 
As you can see in Figures 5.1 (b), 5.5,5.9,5.13 and 5.17 the amount of skewness 
were measured by sample L curves, which is different across the methods. The L 
values in cross-sectional method are consistently between 1.5 and 3 and this curve 
in Figure 5.1 (b) shows a peak during 250 to 300 weeks. 
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Figure 5.5 shows the conditional L curves fitted by one previous time. A increase 
the skewness to around 4 in this Figure indicate data that are skewed left up to 200 
week (50 months) and after that there is a sharply decrease in the L curve in the 
whole rest of age. 
Conditional Box-Cox power fitted by all previous times demonstrate in Figure 5.9 
is between around I and 2.5 and the highest value is in the early of childhood then 
the L curve decreased continuously up to 7 years old. 
Figure 5.13 and 5.17 illustrate refitted L curves obtained by using one previous 
time and all previous times after using the imputation method and these curves 
show clear trend in skewness with age. 
In Figure 5.13, There is a rise in the Box-Cox power from the beginning of 
childhood up to around 130 weeks old age and then levelled off at a value about 
3.8 until near 230 weeks after that the L curve decline steeply to minimum values 
in this Figure. 
Figure 5.17 represents same manner with conditional L curve fitted by all 
previous time before used the imputation method in Figure 5.9, except in extreme 
point of children age in this study that there is an increase in the L curve. 
Figures 5.2,5.6,5.10,5.14 and 5.18 present the M curves for haemoglobin levels 
whose are fitted by different methods in Children in Focus The all M curves 
demonstrate high haernoglobin levels in early of measurements, followed by a fall 
and then a rise continuing until end of measurements. The minimum of median 
haernoglobin was about 11.7 (g/dl) around 130 weeks of the age. 
Figure 5.6 demonstrates that the M curve from early of children life up to around 
130 weeks tends to fall, but after that, there is rising sharply to the rest of the ages. 
The velocity in median haemoglobin for conditional curve (one previous time) in 
Figure 5.6 was larger than the M for others, particularly at older children. 
The LMS method estimates the coefficient of variation (S curve) for haemoglobin 
levels during the centile fitting process, Figures 5.3,5.7,5.11, S. IS and S. 19 have 
shown the S curves for the different methods used in this study. 
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The coefficient of variation in the cross-sectional method is greater than in the 
others, as expected. 
The conditional S curve fitted with all previous time is smaller than other S 
curves. 
Whereas the conditional coefficient of variation fitted with all previous time after 
used the imputation method is greater than other conditional coefficient of 
variation. 
As you can see in Figure 5.3(b), The S curve demonstrates that the coefficient of 
variation is decreased during whole ages and the S curve varies between 0.06 and 
0.1. 
Otherwise in Figure 5.7 the S curve started to increase in the beginning of 
childhood until near 200 weeks (50 months) and it decline over rest of ages but 
not very variable. The varying of S curve is narrowly from above 0.02 to under 
0.03. 
The coefficient of variation, which is fitted by all previous times, shows in Figure 
5.11. The overall trend is as same as the coefficient of variation in Figure 5.7, in 
the beginning is to increase with age up to 200 week (50) then show decrease with 
age. 
The conditional S curve which is fitted by one previous time after used the 
imputation method seem to be lower than the other conditional coefficients of 
variation (S), as shown in Figure 5.15. 
Figures 5.4,5.8ý 5.12,5.16 and 5.20 demonstrate the reference curves were fittcd 
using Cole's LMS method, which adjusts haemoglobin levels distribution at 
different methods. 
In these Figures you can see seven ccntiles, from 3rd to the 97 th for hacmoglobin 
levels in Children in Focus, obtain from the LMS curves using equation (5.2). 
The reference curves are reasonably well smoothed over the whole age range. 
However the corresponding centiles for older children are convincingly smooth, 
showing that the extent of smoothing is greater for the old children than the young 
children. 
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The 3rd, I 01h , 25'h, 501h , 75 1h, 901h and 97'h centiles for haemoglobin levels are 
given in Figure 5.4. This is for children between 8 months to 7 years old in 
Children in Focus as a cross-sectional study. 
At early childhood in cross-sectional reference curve, the references curves are 
wider, but thereafter the centiles get closer to the median. 
Figure 5.8 shows seven conditional reference curves fitted by one previous time; 
each conditional centile represents the conditional median pattern of haemoglobin 
levels of children. 
In Figure 5.8 is evident that, these centiles cross all distance and most obviously 
during early age up to 150 weeks (37 months) are almost parallel and then 
became wider in the older children. 
The reference curves for haemoglobin levels in this Figure are similar to the 
reference curves in Figure 5.12,5.16 and 5.20, This means that all conditional 
reference curves are much closer to the conditional median than cross-sectional 
reference curves, particularly in the conditional reference curves which use data 
from all the previous times without use the imputation method. 
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(a) 

(b) 

(c) 

Figure. 5.1: Box-Cox power (L) fitted by spline curvc with 2,3 and 4 
equivalent degrees of freedom in Children in Focus respectively in 
figures (a), (b) and (c). 
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(a) 

(b) 

(c) 

Figure. 5.2: Median (M) fitted by a spline curve with 4,5 and 6 
equivalent degrees of freedom in Children in Focus respectively in 
Figures (a), (b) and (c). 
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(a) 

(b) 

(c) 

Figure. 5.3: Coefficient of variation (S) fitted by a spline curve with 
2,3 and 4 equivalent degrees of freedom in Children in Focus 
respectively in Figures (a), (b) and (c). 
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Figure. 5.4: Seven reference curves of haemoglobin concentration in 
Children in Focus from 8 to 84 months of age based on the LMS 
curves within Figures I-b, 2-b and 3-b. The P; I Oth ; 25 th; 5 01h ; 751h; 
90'h and 97'h . 

Figure. 5.5: Conditional (one previous time) Box-Cox power (L) 
fitted by a spline curve with 3 equivalent degrees offreedom in 
Children in Focus. 
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Figure. 5.6: Conditional (one previous time) Median (M) fitted by a 
spline curve with 5 equivalent degrees of freedom in Children in 
Focus. 

Figure. 5.7: Conditional (one previous time) Coefficient of variation 
(S) fitted by a spline curve with 3 equivalent degrees of freedom in 
Children in Focus. 
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Figure. 5.8: Seven Conditional (one previous time) reference curves 
of haemoglobin concentration from 8 to 84 weeks of age based on 
the LMS curves within Figures 5.5,5.6 and 5.7. The 3"d; I Oth ; 25 th 
5 Oth ; 75th ; 90th and 97th centiles. 

Figure. 5.9: Conditional (all previous time) Box-Cox power (L) 
fitted by a spline curve with 3 equivalent degrees of frcedom in 
Children in Focus. 
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Figure. 5.10: Conditional (all previous time) Median (M) fitted by a 
spline curve with 5 equivalent degrees of freedom in Children in 
Focus. 

Figure. 5.11: Conditional (all previous time) Coefficient of variation 
(S) fitted by a spline curve with 3 equivalent degrees of freedom in 
Children in Focus. 

132 



CHAPTER 5: Constructing Reference Curves for flaemoglobin Levels in Children 

14-- 

13-- 

0 12-- 'a 0 E 

10 
100 200 300 400 -50o Age(Week) 

Figure. 5.12: Seven conditional reference (all previous times) charts 
of haemoglobin concentration in Children in Focus from 8 to 84 
weeks of age based on the LMS curves within Figures 5.9,5.10 and 
5.11. The P; I Oth ; 25 th ; 50th ; 75 th ; q0th and 97h . 

Figure. 5.13: Conditional (one previous time) Box-Cox power (L) 
fitted by a spline curve with 3 equivalent degrees of frccdom after 
used the imputation method in Children in Focus. 
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Figure. 5.14: Conditional (one previous time) Median (M) fitted by 
a spline curve with 5 equivalent degrees of freedom after used the 
imputation method in Children in Focus. 

Figure. 5.15: Conditional (one previous time) Coefficient of 
variation (S) fitted with by a spline curve with 3 equivalent degrees 
of freedom after used the imputation method in Children in Focus. 
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Figure. 5.16: Conditional reference (one previous time) curve of 
haemoglobin concentration after used the imputation method in 
Children in Focus from 8 to 84 weeks of age based on the LMS 
curves within Figures 5.13,5.14 and 5.15. The 3 rd; I Oth ; 25th ; 5oth 

75 th; q0th and 97 Ih. 

Figure. 5.17: Conditional (all previous time) Box-Cox power (L) 
fitted by a spline curve with 3 equivalent degrees of frccdom after 
used the imputation method in Children in Focus. 
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Figure . 5.18: Conditional (all previous time) Median (M) fitted by a 
spline curve with 5 equivalent degrees of freedom after used the 
imputation method in Children in Focus. 

Figure-5.19: Conditional (all previous time) coefficient of variation 
(S) fitted with by a spline curve with 3 equivalent degrees of 
. C-- ILeedom after used the imputation method in Children in Focus. 
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Figure. 5.20: Seven conditional reference (all previous time) curves 
of haernoglobin concentration after used the imputation method in 
Children in Focus from 8 to 84 weeks of age based on the LMS 
curves within Figures 5.17,5.18 and 5.19. The 3 rd; I 01h ; 25 Ih ; 501h 

75 th; 9 Oth and 97 Ih . 
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Table. 5.1: Correlation matrix for haemoglobin levels SID score in Children in 
Focus at 7 age groups from 8 month to 84 months. 

Intercepts Est. SE T-Value 11-Value 

a, 2 0.106 0.033 3.263 0.001 
a43 0.088 0.041 2.133 0.034 
a, 4 -0.243 0.071 

I 
-3.436 

- 

0.001 
I 

Table. 5.2: The significant intercepts in multiple regressions. 

138 



CHAPTER 6: Discussion and Conclusion 

CHAPTER 6 

Discussion and Conclusion 

The conclusions of the analyses done in previous chapters are drawn together in 
this Chapter. This leads into a discussion of the methods used, to fit models to 
mothers' haernoglobin level during pregnancy, children's haemoglobin levels, 
and reference curves for haernoglobin levels in childhood. 

6.1. Haemoglobin Levels during pregnancy: 

Iron deficiency is one of the most important nutrient deficiencies in the world. 
Iron deficiency anaernia is prevalent in women during pregnancy in cvcry 
country though its prevalence changes amongst countries. 

139 



CHAPTER 6: Discussion and Conclusion 

Generally, Iron deficiency is low in the first trimester increasing in the second 
trimester. About half of Iron deficiency anaemia happens after the 25 th week of 
pregnancy (Guidozzi, Patel, & McPhail 1995; Milman, Agger, & Niesn 1994). 
In the developed countries, estimates indicate that more than 30% of women 
during pregnancy will have depleted Iron stores by delivery time, and in some 
populations such as adolescents depleted Iron stores might happen in over 80% 
of the population (Morbidity and Mortality Weekly Report 1998). 
These estimates are even higher in the developing world. For example, around 
half of pregnant women in Africa, 39% of pregnant women in Latin America, 
80% of pregnant women in Southeast Asia, over 60% of pregnant women in the 
eastern Mediterranean, and 40% of pregnant women in the West Pacific are 
anaemic (WHO 1997). 
The prevalence of anaemia data through out the world appears to indicate that 
Iron intake is inadequate in most diets. Thus, a significant proportion of pregnant 
women are unable to reach their required daily Iron levels (WHO 1992). 
In order to prevent the decline in haemoglobin concentration and tile reduction in 
Iron stores correlated with pregnancy, interventions are designed (Beard 2000). 
Once Iron deficiency anaernia is diagnosed, Iron supplements are recommended. 
Iron supplements might also be recommended for women at risk of Iron 
deficiency anaemia. To discover women at risk, screening for risk factors such as 
low total energy intake, or low dietary intake of meat or vitamin C are necessary. 
The specific reason for the low hemoglobin levels found in mothers during 
pregnancy is still unknown in the vast majority of studies (Scanlon et al. 2000). 
Our model is summarized by the present study in order to effectively address 
repeated haemoglobin measures data obtained during pregnancy. Tile models 
provide a useful approach to study the role of some factors in haemoglobin levels. 
Due to the important role of Iron supplement in variation of haemoglobin 
concentrations during pregnancy, we have calculated curves for haemoglobin 
during pregnancy in two Iron groups and a non-Iron group of mothers separately. 
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Milman (Milman et al. 1999; Milman , Byg, & Agger 2000) has calculated a 
curve for haernoglobin levels in pregnant women with and without Iron 
supplement. 
The Milman's haernoglobin curve with Iron supplement has a different shape 
compared with the curve obtained in our study. 
Compared with this study curve, Milman reported lower haemoglobin levels in 
early pregnancy and higher levels in late pregnancy in non-iron treated. Also 
there is a progressive decrease in the haemoglobin levels, with the lowest value 
found in the third trimester in this group similar to mothers who never took Iron 
supplement in our study, Group I (Milman , Bergholt, Byg, Eriksen, & Graudal 
1999). 
It is impossible to compare Iron supplement group result between these studies, 
as Iron supplementation in Milman's study took place quite early on in 
pregnancy. While in our study, Iron supplementation took place at later stages. 
It needs to be noted that in our study, genuine interpretation of results in relation 
to Groups 2 and 3., was hindered by the lack of more specific information about 
the exact week in which use of Iron supplements began. Notably, the mean 
haernoglobin levels on Milman's curves (Milman , Byg, & Agger 2000) are 
similar to our curve for the mothers who never took Iron supplements, and slightly 
higher than our curves for the Iron supplement groups. 
Koller analysed haernoglobin levels from the beginning of pregnancy for mothers 
who took 100-200 mg of Iron (Koller et al. 1979). 
The various haernoglobin levels were modelled by a polynomial of second degree 
in Koller's study. As we already mentioned, in our study the polynomial models 
with quadratic, cubic or higher order terms were poor fits to the data. 
The log-likelihood test is also used to test the difference between models that 
fitted by using an ANOVA procedure. But results illustrated that the biggest 
value was log-likelihood of cubic polynomial over quadratic polynomial and 
others. 
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However in the present study, the best model for the data was tile cubic spline 
model, as can be seen in Tables 3.5 to 3.7. 
Milman reports (Milman , Agger, & Nielsen 1991) that around 12% of the 
placebo treated mother during pregnancy had evidence of Iron deficiency 
anaernia (haemoglobin, II g/dl). 
Figure 3.5 reports haemoglobin levels for three distinct groups, firstly mothers 
who never took Iron supplement (Group 1), secondly mothers who took Iron 
supplement between early pregnancy and 18 week of pregnancy (Group 2) and 
thirdly, mothers who took Iron supplement between 18 weeks and 32 weeks 
(Group 3). 
As shown in Figure 3.5, the lowest level of haemoglobin can be found in the third 
trimester for mothers without Iron supplement and in the second trimester for 
mothers with Iron supplement, but haemoglobin levels were higher in mothers in- 
group 2 compared with mothers in-group 3, at the same point during the second 
trimester. Therefore, taking iron supplement from early during pregnancy is 
suggested. 
Consequently, pregnancy is a time in which the risk for developing Iron 
deficiency anaemia is high. 
However, a modest drop in haemoglobin levels in pregnancy seems to be a 
normal physiological event; haemoglobin concentration reaches a low point in 
last part of the second trimester of pregnancy and then rises again slightly in the 
last part of third trimester in groups 2 and 3. 
Worldwide, the reason for anaemia in at least half of the cases amongst pregnant 
women is due to nutritional Iron deficiency. It is unclear whether mothers during 
pregnancy can normally reach a normal Iron status without tile need for Iron 
supplement. Some scientists agree that it is impossible to keep Iron levels at an 
acceptable level during pregnancy, by merely following a normal diet and 
therefore Iron supplement essential (Guidozzi, Patel, & McPhail 1995). 

142 



CHAPTER 6: Discussion and Conclusion 

In ALSPAC study, women were asked about their use of Iron supplement in early 
pregnancy (started by 18 week into pregnancy) and in late pregnancy (18- 
32 weeks) but the exact time of starting to take supplements was not recorded. 
We found that the mean hemoglobin concentration was lower, in Iron-group 
mothers during the I" and 2 nd trimester compared with non-Iron group. 
Our data confirmed that Iron supplement should be administered from early in 
pregnancy, However we cannot give any suggestions in which week is the best 
time to start taking Iron supplement. 
For final model in this study, initially all significant covariates in main effect 
models were included in the analysis in final model separately in each iron 
supplement group. However the final model only included covariates that 
significantly contributed to the model and so other covariates were excluded from 
final model. 
The covariates that were most commonly found to affect haemoglobin levels 
during pregnancy in the final model were parity and vegetarianism of mothers. 
Matemal education, singleton or multiple pregnancy, were included in the final 
model for just in the remaining groups, no effect was found of these covariates 
perhaps due to inadequate statistical power, but in general because of the small 
sample size, making it difficult to detect an effect. 

6.2. Haemoglobin levels during childhood: 
This report summarizes our model in order to efficiently address repeated 
haernoglobin measures data obtained in early life. The model provides a useful 
approach for studying the role of nutrition, and other factors affecting 
haemoglobin levels. 
The main finding of this study, was that early haemoglobin levels could explain a 
major part of the variation in baemoglobin levels between children, by growth 
velocity, which had a positive influence and by different nutrition intake, which 
can have either a positive or a negative influence. 
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However, our finding shows that strong tracking, together with the significant 
influence of growth velocity and nutrition intakes on haernoglobin levels, 
supported the view that haemoglobin levels during early life are a useful indicator 
of Iron stores, and thereby of the risk of developing Iron deficiency later on in 
childhood. 
Risk of Iron deficiency is high in early childhood due to the fact that on the one 
hand there is a high demand for Iron. At time of fast growth and on the other hand 
there might be poor level of Iron in the diet (Male et al. 200 1). 
Haemoglobin level of 10.5g/dl was indicated as the criterion for anaemia (Fuchs 
et al. 1993; Siimes, Salmenpera, & Perheentupa 1984) . In a study of routine 
screening of one year old infants in Norway, 37% had haemoglobin levels below 
II g/dl (Klem 1993), and in a study in Sweden where healthy, breastfeeding 
infants took part, the mean haemoglobin in 6 months old children was 10.9 g/di 
(Lonnerdal & Hernell 1994). 
Our data indicates that in childhood, the mean haemoglobin levels have a value of 
more than II g/dl. 
In the analysis of Children in Focus data, the ethnicity of the children had no 
significant association with haemoglobin level. 
The non-white children in this study were not a large sample, making it difficult 
to interpret the data (Noble, Emmett, & The ALSPAC Study Team 2001). Thc 
objective of the current study was to examine the influence of dietary factors, 
growth and some other covariates such as maternal education and the children's 
sex, on haernoglobin levels in children. 
Educational status of the mother was used as an indicator in this study. We found 
a significant negative interaction between maternal education with vocational 
level at knot ( 69) and Degree level at knot (228,324) and age of childrcn. 
These negative interactions, reported a decrease in mothers' haemoglobin level in 
Vocational and Degree levels with time at these knots. 
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Birth weight was found to have a significant negative correlation with 
haernoglobin concentration in our study, which may reflect more rapid utilization 
of Iron status due to greater Iron needs for growth in children with higher weight, 
though birth weight was not a significant covariate in our final model. 
The other factor illustrating a significant negative effect on children's 
haernoglobin levels was parity. That suggests that children of mothers with a 
parity of one have higher haernoglobin concentration than children of mother 
with a parity of two or more. 
The most important nutrient intakes were Vitamin C, Calcium and NSP. These 
intakes were factors, which clearly had a positive influence on haernoglobin level 
of children. The results of the present study illustrate the importance of these 
nutrition intakes compared to other nutrition intakes. 
Other nutrient intakes such as haem Iron intake, fat intake, saturated fat, 
monounsaturated fat, energy intake and Iron intake did not explain any of the 
variations in haemoglobin levels, which is probably due to the relatively uniform 
and almost universal use of these intakes. 
Conversely, there was a positive correlation between weight and haernoglobin 
levels, consistent with previous report(Sherriff, Emond, Hawkins, Golding, & the 
ALSPAC Children in Focus Study Team 1999). 
The positive association between female gender and haernoglobin levels may 
partially be explained by the faster growth rate observed in boys. The increased 
risk of anaernia in boys however, cannot be explained by growth and may reflect 
physiological differences between genders. 
In brief, the significant time stationary covariates include maternal education, sex 
of the child, parity and birth weight and significant time dependent covariatcs 
include vitamin C, Calcium, NSP intake and children's weight. 
Although, in the analysis, all of these covariates were found statistically 
associated with haernoglobin levels as main effects, birth weight (time 
independent covariate) and Calcium and NSP intake (time dependent covariate) 
were not significant in the Final model. 
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For this study we obtained information on matemal haemoglobin level in Iron 
supplementation groups. 
According to this information, there is a positive association between random 
slope in the model, which was fitted to maternal data in Group I as a covariate 
and children's haemoglobin level. 
There was also a positive correlation between random intercept in the mothers in 
Groups 2 and 3 and children's haemoglobin level in 8-month-old. As a result, it 
was recommended that pregnant women should take Iron supplement. 
The small number of subjects in some covariates does not permit the necessary 
statistical power to detect a significant difference, nor can a conclusion from the 
studied groups, be applied to a larger population. 

6.3. Reference curves for haemoglobin during childhood: 

In this study, we have provided reference curves, which describe the changes in 
haernoglobin levels in children across the first seven years of life. Haernoglobin 
levels increase in a curvilinear relationship across this age range. 
The main purpose of this study is to apply existing methodology to construct 
longitudinal reference curves for haemoglobin levels in children. However a 
problem was found in that the reference curves obtained by usual procedures 
are basically cross-sectional and therefore, not automatically suitable to serve as 
reference charts for longitudinal curves. In this study, we paid particular 
attention to this problem by comparing the reference curves for a longitudinal 
data, with the cross-sectional references. 
The most important advantage of longitudinal data is that it may be used to 
construct growth or different standards for the reference curve in general and, 
possibly important for clinical practice, for the individual infant and child 
(conditional reference curves). The conditional reference curve has a clear role 
in the assessment of individual haemoglobin levels and is gencrally more 
appropriate than the unconditional reference curve. 
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The introduction of conditional reference curves, allow one to adjust the 
centiles at each measurement point of a case, according to the previous 
measurement. 
Producing both cross-sectional and conditional centile charts in the curves, 
allows one to monitor at the same time, both size and change in haemoglobin 
concentration from past measurements. The main question being whether cross- 
sectional reference curves were at all useful. The answer to this would be that 
the advantage of the cross-sectional reference curves appears to be that they are 
easier to tabulate and plot, than conditional reference curves. 
In the literature many sources have reported some kind of centiles as the basis for 
assessing age-specific reference curves development. The majority of these 
sources used cross-sectional data and others have used longitudinal data to 
produce reference curves. 
The reference curves in this study were constructed for the distributions of 
haemoglobin levels in children ages 8 months old to 7 years old in a large cohort 
study Children in Focus. 
Haemoglobin levels tend to increase as age increases. There are clear differences 
between cross-sectional and conditional reference curves in haemoglobin 
concentration. 
The cross-sectional reference curves become narrower with an increase in age. 
While the conditional reference curves for the haemoglobin concentration are 
narrower than the corresponding centiles in cross-sectional curves, regardless of 
age. 
The large range in haemoglobin levels observed in the cross-sectional reference 
curves between the Yd and 97th percentiles compares with conditional reference 
curves. This large range in haernoglobin levels could suggest that extreme values 
are due to a large S value. 
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The S curve for conditional curves are lower than the S curve in cross-sectional, 
but the amplitude of the difference depends on the kind of conditional methods 
which the S curves is being compared. 
As you can see in Figure 5.12, the usefulness of reference curves is demonstrated 
by considering all previous time, as the Figures 5.3b, 5.7 and 5.11 show, the S 
values for this reference curve are the lowest amongst other curves, before the use 
of an imputation method. 
For dealing with missing values, there are many imputation methods. In the 
present study, the conditional reference curves were reproduced by using the 
imputation method. 
The expectation is that the estimated coefficient of variation (S) after the imputed 
data usually underestimates the true variation. 
Hence the coefficient of variation, which was previously obtained by all previous 
times, should still be smaller than the coefficient of variation obtained by one 
previous time. 
Whereas, after using the single imputation method, the smaller S value between 
conditional reference curves is produced by using one previous time point. 
This might be related to some disadvantages in the single imputation method, 
such as depending on the observed values (Perez et al. 2002). 
According to the different S values found between the beginning and the end of 
measurements in the coefficient of variation Figures, it might reasonably be 
expected that haernoglobin in children in early of life, would show more of a 
variation than in older children. 
The shapes of the conditional reference curves are relatively similar to each other, 
throughout the whole age range. 
Although as expected, the coefficient of variation of haernoglobin levels in 
reference curves with one previous time, was greater than the reference curves 
with all previous time. 
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The LMS method with penalized likelihood is highly flexible and practical. It is 
often easy to produce credible reference curves even when the data appear to 
have a complicated shape. The complication of the shape of parameter curves is 
reflected in the number of e. d. f s. 
Regarding haemoglobin level during childhood, the aim of this study is to draw 
attention early on, to possible problems such as anaernia and specifically Iron 
deficiency anaernia, which are common in most parts of the world, especially so 
in the developing countries. The easy monitoring of variables such as the 
measurement of haernoglobin levels and ferritin levels in infants and children 
are useful screening tools, which allow us to promptly detect any problems. 
By producing appropriate reference curves for our population we were able to 
identify children at the extremes of haemoglobin concentration. 
It is therefore important, to have current haemoglobin reference curves to look 
at regional differences within the UK, being able to compare them with other 
countries. 
We suggest that these reference curves may be used to assess abnormal 
haemoglobin concentration in children in disease states. 
There are a number of areas where conditional reference curves may be useful, 
such as monitoring of ferritin levels and blood pressure during pregnancy. 

6.4. Methodology: 

In this study we have combined some modem techniques in order to produce a 
flexible model, for representing variations in haemoglobin levels in both mothers 
during pregnancy and in children. 
Longitudinal studies are one of the most commonly selected study designs, in 
research on human health. 
Approaches to the analysis of longitudinal data carry on being developed, and 
these contributions offer absorbing insights into some of the methods that are 
proving to be helpful. 
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Furthermore, they offer useful propositions as to how a data analyst can use these 
methods in their research. Some of the specific areas of longitudinal data analysis 
that are discussed here include the parametric methods of analysis such as 
Generalized Linear Mixed Models and Cubic Splines. 
We showed how a General Linear Mixed Model could recover information in the 
data, which cannot be found by a Fixed Effect Model, when incomplete, and/or 
unbalanced data is at hand. This is an important benefit of the Mixed Models. The 
General Mixed Model approach offers a flexible way of modelling correlation in 
the data. 
This is particularly relevant for longitudinal data or other kinds of repeated 
measures data. Therefore, the appropriate inference about fixed effects is obtained 
and the covariance structure itself provides further insight into the problems that 
are in front of us. Also in most cases, a Mixed Model is actually the only suitable 
model for the given data. 
According to the data in this study, fitting a polynomial does not provide a 
meaningful estimation for the relationship between haernoglobin levels and time. 
A best fit the model with an exact order was difficult to determine. 
Therefore, a meaningful fit should be provided by others methods, which solve 
the problems of polynomials. 
However, in this study we have combined some modem techniques to produce a 
flexible model for representing haemoglobin variation. The tools we combined 
were Mixed Effects Models for longitudinal data, Cubic Splines for flexible 
function fitting. 
When Cubic Splines are used, the polynomial will be better by forcing them 
through the data points and using a polynomial for a short segment to reduce 
untoward excursions. 
Cubic spline is one of great flexibility for data analysis. They are also particularly 
useful as graphical tools for communicating complicated finding in a normal way. 
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The mean position curve for a large population may have a shape that is 
sufficiently smooth to be fitted by a simple parametric function, but individual 
curves at subjects level show a huge variation in shape. 
Thus, successful modelling of particular curves is likely to need a model such as 
spline models. Splines have the advantage of fitting into the Mixed Model 
framework, allowing unbalanced data and environmental effects from a normal 
part of the model to be dealt with easily. 
A specific advantage of the spline approach is the additional flexibility regarding 
the shape of the fitted curves. Whereas, it is not possible to produce such a 
reasonable fit, even when using high degree polynomials. As an example, a cubic 
curve has two turning points and one point of inflection, but the inflection point is 
inevitably halfway between the turning points. When the knots' number has been 
determined, prior knowledge of the curves can be used to guide knots' location. 
Finally, an extremely potentially useful method is presented in this study, in 
which the method was used to link General Linear Mixed Model and cubic spline. 
Fitted a function to longitudinal data in Chapters 3 and 4 using the Linear Mixed 
Model is suitable. But any meaningful relation between haemoglobin levels and 
time were not given by either a quadratic, cubic or higher order polynomial 
according to log-likelihood and AIC criteria. 
It would be difficult to provide an explicit polynomial function because the data 
are sparse in some parts, differences in time lags, incomplete and unbalanced 
structure in mothershaemoglobin levels during prognancy and their children. 
Hence we focus in finding an appropriate model , concluding that the cubic 
spline model , which applies a piece-wise polynomial fitting technique is better 
than the polynomial fitting procedure, because it has more parameters than a 
polynomial with the same order. 
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This was confirmed by the values of log-likelihood and AIC. Measurements of 
haemoglobin concentrations in children are one of the information required when 
evaluating children's health. They are also useful, for identifying children who are 
at risk of developing some problem such as anaemia and Iron deficiency anaernia. 
As reference curves are used in medical practice to assess abnormality, this study 
provides reference curves for haernoglobin levels during childhood in this 
population. Most previous reference curves estimation have assumed that the data 
is independent even if it is apparently correlated, but this is not appropriate for 
most longitudinal data. 
The conditional curves' estimation is based on longitudinal data, which can have 
a correlation between measurements at different times. 
The present study is to consider two methodologies, for constructing cross- 
sectional and conditional reference curves for haernoglobin levels during 
childhood. 
In the conditional reference curve approach, we dcfine reference curves by using 
one previous and all previous time points as well as by specifying a correlation 
structure for haemoglobin levels in various agcs by using stepwise linear 
regressions. 
Therefore, the reference curves illustrated in this study allow longitudinal 
assessment of haernoglobin levels in children, and cautious monitoring of 
variation in haemoglobin levels, early on should draw attention to any possible 
problems. 
Amongst the methods that have been used for reference curves, the LIVIS method 
with based on spline (Cole & Green 1992) has good flexibility. Tile LIVIS 
statistical function is applied to the smoothed curves generated for easiness of 
interpolation between percentiles, a normal transformation of the curves is useful. 
A normal transformation makes it possible to estimate any percentile and allows 
the calculation of standard deviation and z-scorcs. 
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The LMS method (Cole & Green 1992) has proved to be a flexible way of 
modelling the distribution of children's haemoglobin at different ages and can 
present a valid index for haernoglobin level during childhood. 
For each set of percentile curves, the initial smoothing methods were applied to 
the seven percentiles (3d, I 01h 25 Ih, 50th 75 Ih, q0th and 97'h) for each age group. 
Reference curves for haemoglobin levels during childhood have not been 
previously shown in any great detail. 
We propose that the reference curves of haemoglobin illustrated in Chapter 5 are 
a useful way of expressing the possible problems during childhood such as 
anaernia, and that conditional reference curves are more appropriate than cross- 
sectional for longitudinal data in normal children. 
The methodology that has been developed for producing a conditional reference 
curve allows the use of both, one previous time in children's haemoglobin as well 
as measurements in all previous time in an individual. 
The present study is in addition, a comparison between cross-scctional and 
conditional reference curves. Providing some evidence of a coefficient of 
variation difference, in these reference curves. 
The results show that the conditional reference curves approach with one and all 
previous time is more efficient than the cross-sectional reference curves. 
For creating an appropriate conditional reference curve for children, we would 
need to compare conditional reference curves and their coefficient of variations. 
Our results show, that conditional reference curves produced by one previous 
time and all previous times, are very close together in almost every aspect and 
there is no clear reason to use one over another. Therefore, the use of more 
complex methods (all previous times) is not recommended. 
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6.5. Future work: 

The following list shows some possible ways in which the work of this thcsis 
may be extended: 

Further research with an adequate number of subjects is needed to 
illuminate the effect of maternal nutrition intake on the mothers during 
pregnancy and children's subsequent health to avoid the risk of them 
developing anaernia. 

9 Further studies examining ways to ensure adequate nutrition intake or 
vitamin supplement along with Iron should be carried out to try to 
improve the Iron status of pregnant women and children. 

9 Further studies with more focus to mothers' haemoglobin concentration 
and their children and on some covariates such as singleton and twin are 
needed to fully elucidate the effects of them on haemoglobin levels. 

Investigating further the association between haemoglobin levels and 
development cognitive, motor development and school achievement in 
children. 

A limitation of this study relates to the lack of information regarding the 
time of taking iron supplementation during pregnancy and regarding 
nutrition intake for children states. Collecting such data during a long- 
term follow-up is difficult, but additional studies are needed to confirin 
haernoglobin levels trends to associated with more and adequate 
information about these covariates. 
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9 Further research is needed to investigate whether varying Iron status in 
older children is due to aging or some other factors. 

9 Increased knowledge and increased information about factors may be 
important tools in the prevention of Iron deficiency in mother during 
pregnancy and in children. 

9A limited sample size is a problem in creating appropriate conditional 
reference curves. 

With reference curves it may be possible to identify patterns of childhood 
haemoglobin levels that lead to adult haernoglobin concentration and risk 
factors for some diseases related to anaernia. 

* Recommend that different reference curves are constructed for 
haemoglobin levels for boys and girls separately and for white and non- 
white children separately. 
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