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Abstract 

The UL33 gene of herpes simplex virus type 1 (HSV-1) encodes a 130 amino acid (aa) 

protein that is essential for the cleavage of concatemeric viral DNA into monomeric 

genomes and their packaging into preformed capsids. Several lines of evidence have 

suggested that UL33, along with the UL15 and UL28 gene products, forms part of a 

terminase enzyme responsible for catalysing this process. 

 

This thesis describes the creation and characterisation of a number of UL33 insertion 

mutants in an effort to examine structure-function relationships within this protein and 

gain further insights into its function. Sixteen distinct mutants, encoding polypeptides with 

5 aa insertions located at 14 separate positions throughout the protein, were generated. The 

abilities of these mutants to complement the DNA packaging and growth defects of 

viruses lacking functional copies of UL33 (the null mutant dlUL33 and the temperature 

sensitive mutant ts1233) were examined. Nine of the mutants were defective in both assays, 

and the capacity of all 16 mutants to support DNA packaging correlated precisely with 

their ability to complement virus growth. Regions of UL33 sensitive to insertion displayed 

a high degree of sequence conservation with UL33 homologues of other herpesviruses. 

 

In agreement with previous reports, a direct interaction between UL33 and UL28 was 

demonstrated in immunofluorescence and immunoprecipitation assays. Although all 

sixteen mutants appeared to interact with UL28 in co-immunoprecipitation experiments, 

four of the insertion mutants were defective in co-localisation with UL28 in 

immunofluorescence assays. Interestingly, of these four mutants, three supported DNA 

packaging to wt levels. Similar experiments confirmed that UL33 interacts directly with 

UL15, and immunofluorescence assays indicated that none of the mutants was impaired in 

this interaction. 
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Novel interactions were also demonstrated between UL33 and the HSV-1 DNA packaging 

proteins UL6 and UL25. UL6 forms a portal vertex through which DNA is inserted into 

capsids, whilst UL25 is thought to play a structural role in stabilising capsids upon addition 

of DNA and is required only during the latter stages of encapsidation. All sixteen UL33 

mutants were again able to interact with both partners in immunofluorescence assays. Of 

the remaining HSV-1 proteins necessary for genome encapsidation, neither UL17 nor 

UL32 interacted with UL33. 

 

Immunofluorescence studies of virally infected cells revealed that UL15 was necessary for 

the localisation of the remaining terminase components (UL28 and UL33) to nuclear sites 

of viral DNA replication, where packaging occurs. This is consistent with a model 

originally proposed by Yang et al. (J. Virol. 81:6419-6433, 2007), who suggested that a 

nuclear localisation signal within UL15 was necessary for the nuclear import of the 

terminase complex. Similar experiments revealed that, in the absence of UL6, none of the 

terminase components localised to replication compartments (RCs), suggesting that UL6 

might be required for retaining the terminase at sites of DNA packaging. 

 

Together, the data presented in this thesis are consistent with UL33 forming part of the 

HSV-1 terminase via its interactions with UL15 and UL28. It is also possible that UL33 

contributes to the transient interaction of terminase with the portal protein, UL6, during 

packaging. Although the interaction between UL33 and UL25 warrants further 

examination, it could be relevant to the mechanism by which UL25 is recruited to capsids 

and functions at the late stages of the head-filling process.  

 

Surprisingly, no clear evidence was obtained that any of the 16 mutants was defective in 
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interactions with UL6, UL15, UL25 or UL28. It is therefore not yet possible to conclude 

whether the observed interactions of UL33 with these four proteins are essential for viral 

DNA packaging. By the same token, the reason(s) why nine of the 16 mutants are defective 

in DNA packaging remains unclear, but does not appear to be associated with their ability 

to form known protein-protein interactions or to localise to sites of DNA packaging. The 

development of cell free systems and biochemical assays will be an important step in 

further characterising these proteins. 
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Definitions 

 
μCi   - microcurie 

μg   - microgram 

μl   - microlitre 

μM   - micromolar 

μm   - micrometer 

aa   - amino acid 

AcMNPV  - Autographa californica multicapsid nucleopolyhedrovirus 

ADP   - adenosine diphosphate 

ATP   - adenosine triphosphate 

ATPase  - adenosine triphosphatase 

bp   - base pair 

BHK (cells)  - baby hamster kidney (cells) 

CAV   - cell associated virus 

CIP   - calf intestinal phosphatase 

CLB   - cell lysis buffer 

CRV   - cell released virus 

Cy5   - cyanine-5 

dATP   - 2’ –deoxyadenosine-5’-triphosphate 

dCTP   - 2’ –deoxycytidine-5’-triphosphate 

dGTP   - 2’ –deoxyguanosine-5’-triphosphate 

DMEM  - Dulbecco’s modified Eagle’s medium 

DMSO   - dimethylsulphoxide 

DNA   - deoxyribonucleic acid 

DNase   - deoxyribonuclease 

ds    - double stranded 

dTTP   - 2’ –deoxythymidine-5’-triphosphate 

E. coli   - Escherichia coli 

EBV   - Epstein-Barr virus 

EDTA   - ethylenediaminetetra-acetic acid 

EtBr   - ethidium bromide 

FCS   - foetal calf serum 
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FITC   - fluorescein isothiocyanate 

GMEM  - Glasgow’s modified Eagle’s medium 

GPCMV  - guinea pig cytomegalovirus 

GST   - glutathione-S-transferase 

HCMV   - human cytomegalovirus 

HeBS   - hepes buffered saline 

hepes   - N-[2,-hydroxyethyl]piperazine-H’-[2-ethane sulphonic acid] 

HHV-6   - human herpesvirus 6 

HHV-7   - human herpesvirus 7 

HHV-8   - human herpesvirus 8 

HSV-1   - herpes simplex virus type 1 

HSV-2   - herpes simplex virus type 2 

h   - hours 

h.p.i.   - hours post infection 

h.p.t.   - hours post transfection 

HRP   - horseradish peroxidase 

IE   - immediate early 

IHF   - integration host factor 

kbp   - kilobase pairs 

kDa   - kilo daltons 

KSHV   - Kaposi’s sarcoma associated herpesvirus (HHV-8) 

LB   - L-broth 

M   - molar 

MBP   - maltose binding protein 

MCS   - multiple cloning site 

mg   - milligram 

MIEP   - major immediate early promoter 

min   - minutes 

ml   - millilitre 

mM   - millimolar 

mm   - millimetre 

NBCS   - newborn calf serum 

nm   - nanometre 

NPT   - non-permissive temperature 

NP40   - nonidet NP40 detergent 
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NTB   - nick-translation buffer 
OC   - degrees Celsius 

ORF   - open reading frame 

Pi   - inorganic phosphate 

p.f.u.   - plaque forming unit 

PBS   - phosphate buffered saline 

PMSF   - phenylmethylsulphonyl fluoride 

PRV   - pseudorabies virus 

PT   - permissive temperature 

PVDF   - polyvinylidene fluoride 

RCs   - replication compartments 

RNA   - ribonucleic acid 

RNase   - ribonuclease 

rpm   - revolutions per minute 

RSB   - reticulocyte standard buffer 

RSC   - rabbit skin cell 

SDS   - sodium dodecyl sulphate 

SDS-PAGE  - SDS- polyacrylamide gel electrophoresis 

sec   - second 

Sf21 (cells)  - Spodoptera frugiperda strain 21 (cells) 

ss   - single stranded 

SSC   - standard saline citrate 

TEMED  - N,N,N’,N’-tetra-methyl-ethylene diamine 

Tris   - 2-amino-2(hydroxymethyl)-1,3-propandiol 

Triton X-100  - octyl phenoxy polyethoxy ethanol 

ts   - temperature sensitive 

TBS   - Tris buffered saline 

U   - units 

UV   - ultra violet 

V   - volts 

v/v   - volume ÷ volume 

VZV   - varicella zoster virus 

w/v   - weight ÷ volume 

wt   - wild type 

X-Gal   - 5-bromo-4-chloro-3-indolyl-(-D-galacto pyranoside) 
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Amino acids 
 
 
Alanine  Ala A   Leucine Leu L 

Arginine Arg R    Lysine  Lys K 

Asparagine Asn N   Methionine Met M 

Aspartate Asp D    Phenylalanine Phe F 

Cysteine Cys C   Proline  Pro P 

Glutamate Glu E   Serine  Ser S 

Glutamine Gln Q   Threonine Thr T 

Glycine  Gly G   Tryptophan Trp W 

Histidine His H   Tyrosine Tyr Y 

Isoleucine Ile I   Valine  Val V 
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Chapter 1: Introduction 

The work presented in this thesis relates to the role that the herpes simplex virus type 1 

(HSV-1) UL33 protein plays in packaging viral DNA into the capsid. In the following 

introduction, the general properties of the herpesvirus family are discussed, followed by an 

outline of the HSV-1 life cycle. The well-characterised process of DNA packaging in 

bacteriophage is then examined in detail. Finally, the literature relating to HSV-1 DNA 

packaging is reviewed, especially with regard to UL33 and its role as a putative component 

of the viral terminase enzyme. 

Section 1.1 The Herpesviridae 

1.1.1 Definition of herpesviruses  

Herpesviruses are large double-stranded DNA viruses that have historically been defined 

by the architecture of their virions. A large linear dsDNA genome is contained within an 

icosahedral capsid shell, which is in turn surrounded by a proteinaceous tegument layer, 

and encased by a lipid bilayer containing several virally encoded proteins. Over 100 

members of the Herpesviridae have been identified in a wide range of vertebrate species 

(reptiles, mammals, birds, amphibians and fish), together with a single virus able to infect 

several related marine bivalve species (Arzul et al., 2001; Davison et al., 2005).  

 

Natural infection by herpesviruses generally causes only limited disease, and is usually 

restricted to a single host. Members of the family exhibit several common characteristics: 

1. All encode proteins involved in the synthesis of nucleic acid and metabolism of 

nucleotides, such as DNA polymerase and helicase-primase enzymes. Furthermore, all 

herpesviruses encode enzymes involved in protein processing (e.g. kinases and proteases). 

2. Many members of the family have been demonstrated to establish and maintain a 
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persistent infection in their natural hosts, termed latency. Latent genomes exist as circular 

episomes, with only a subset of viral genes undergoing transcription. Reactivation of latent 

virus leads to productive infection and associated disease. 

3. Productive infection leading to virion release invariably results in death of the host 

cell. 

4. The processes of viral DNA synthesis, capsid assembly and encapsidation of viral 

genomes occur within the nuclei of infected cells. Further particle maturation occurs within 

the cytoplasm. 

1.1.2 Classification of the herpesviruses 

On the basis of both phylogenetic and biological attributes, herpesviruses are currently 

divided into three groups within the family Herpesviridae. It is proposed that these groups 

are reclassified as the families Herpesviridae, Alloherpesviridae and Malacoherpesviridae within the 

new order Herpesvirales (Davison, 2002; Davison et al., 2005; McGeoch et al., 2006). 

 

The first group (proposed to become the Herpesviridae) comprises viruses infecting 

mammalian, reptilian and avian hosts, and is split into three subfamilies: 

(i) Alphaherpesvirinae: (including herpes simplex virus types 1 and 2, varicella zoster virus and 

pseudorabies virus). These viruses are neurotropic, and establish latency in neuronal ganglia 

proximal to the initial site of infection. They exhibit broad host species and cell type range, 

and replicate efficiently and rapidly in cell culture.  

(ii) Betaherpesvirinae: (including human cytomegalovirus, guinea pig cytomegalovirus, human 

herpesviruses -6 and -7 and murine cytomegalovirus). Replication of these viruses in tissue 

culture is somewhat slower than for alphaherpesvirinae, and they display a more restricted 

host cell range. Latent infection is established in monocytes and spleen cells. 

(iii) Gammaherpesvirinae: (including Kaposi’s sarcoma associated herpesvirus and Epstein 

Barr virus). Viruses in this subfamily exhibit lymphotropism, and life cycles vary in length. 
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The host cell range of these viruses is more limited than either of the other two sub-

families. Moreover, infections tend to be restricted to a single species, with latency 

established in cells of the lymphatic system. 

 

The existence of a subset of ‘core’ genes conserved amongst all three subfamilies of the 

herpesviridae has been interpreted as evidence for a common evolutionary origin. Study of 

amino acid alignments of the protein complement encoded by these viruses demonstrated 

that alpha-, beta- and gamma-herpesvirinae exhibit extensive evidence of co-evolution with their 

hosts. It is postulated that this co-evolution explains the limited host cell range of many 

members of the family (McGeoch et al., 2000; McGeoch, 2001; McGeoch & Gatherer, 

2005) 

 

The second group, forming the proposed family Alloherpesviridae, includes viruses able to 

infect bony fish and amphibians. Demonstration of a common ancestory between these 

viruses and those infecting mammalian/avian hosts has been problematic, mainly due to 

the extensive divergence of viral proteins (reviewed by Davison, 2002). Nevertheless, 

similarities between the two groups in terms of capsid structure and maturation suggest a 

common origin (Davison & Davison, 1995; Booy et al., 1996). 

 

The third proposed group, the Malacoherpesviridae, contains only one virus: ostreid 

herpesvirus (OsHV), which is able to infect several marine bivalve species (Arzul et al., 

2001; Davison et al., 2005). Analysis revealed that none of the proteins encoded by OsHV 

exhibited sequence similarity to any known herpesvirus structural protein. However, cryo-

electron microscopy studies showed that OsHV capsids exhibit characteristic herpesvirus 

T=16 symmetry, and are structurally very similar to the capsids of other herpesviruses 

(Davison et al., 2005). 
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1.1.3 Human herpesviruses and associated infection  

Eight human herpesviruses have been isolated and characterised thus far, with 

representatives within each of the three herpesviridae subfamilies outlined above. In general, 

infections are usually asymptomatic and not life threatening.  Although rare, interspecies 

transmission of herpesviruses can cause serious disease. For example, a non-human 

alphaherpesvirus, B virus (cercopithicine herpesvirus-1; genus Simplexvirus), has been 

attributed as the cause of several human fatalities. B virus is endemic in macaques but is 

able to infect humans in a highly pathogenic fashion, and if untreated can give rise to 

serious disease with a high mortality rate (reviewed by Benson et al., 1989). 

 

Humans are the natural hosts of three members of the alphaherpesvirinae. Herpes simplex 

virus type 1 (HSV-1; genus Simplexvirus) has been extensively studied and is the prototype 

virus for this subfamily. Initial infection can occur at a number of sites (mainly at or near 

the mouth), with latency established in trigeminal sensory neurons innervating the site of 

infection (reviewed by Hagglund & Roizman, 2004; Efstathiou & Preston, 2005). Re-

activation of the virus from latency leads to cold sore lesions at or near the primary site of 

infection. HSV-2 (genus Simplexvirus) is closely related to HSV-1 and causes disease 

clinically indistinguishable from HSV-1 infection, but is primarily associated with genital 

infections. Infection with varicella-zoster virus (VZV; genus Varicellovirus) is associated with 

chickenpox in children, causing the appearance of small vesicles that rupture and scab over 

and that are frequently associated with intense itching (varicella). Latent infection is 

established in neurons, and reactivation within adulthood leads to the condition known as 

shingles (zoster). 

 

Three members of the betaherpesvirinae are also able to infect humans. Human 

cytomegalovirus (HCMV; genus Cytomegalovirus) is the prototype species within this 
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subfamily, and has been comprehensively studied. Infection is usually asymptomatic. 

However, acute disease is noted in individuals unable to mount a successful immune 

response, such as the immunocompromised and those infected via transplacental 

transmission. Thus, HCMV is a major cause of neonatal disease resulting from congenital 

infection, mainly characterised by damage to the brain and nervous system. Infection of 

immunocompromised individuals is often associated with retinitis. Latent infection by 

HCMV occurs in peripheral blood monocytes (reviewed by Sinclair & Sissons, 2006). 

Human herpesviruses  -6 and -7 have been identified more recently, and are less well 

studied. Both are members of the Roseolovirus genus, and are closely related in terms of both 

genomes and gene products. Both HHV-6 and HHV-7 have been identified as causative 

agents of exanthema subitum, a febrile illness observed in infants and children associated 

with a rash. 

  

The gammaherpesvirus Epstein-Barr virus (EBV) is the causative agent of infectious 

mononucleosis in many infected adolescents, and is a member of the Lymphocryptovirus 

genus. It has also been implicated in nasopharyngeal carcinoma, Hodgkin’s disease and 

Burkitt lymphoma. However, other factors also contribute to these diseases. EBV 

establishes latent infections in B-lymphocytes. A second gammaherpesvirus, Kaposi’s-

Sarcoma associated herpesvirus (KSHV; genus Rhadinovirus), is the most recently identified 

human herpesvirus. It is the causative agent of Kaposi’s Sarcoma, an endothelial lesion that 

frequently occurs as a complication of HIV infection. 

1.1.4 Genomes  

Herpesvirus genomes are linear, dsDNA molecules, ranging in length between 120-250 kbp 

and encoding approximately 70-220 proteins. Herpesvirus genomes differ by the presence 

and arrangement of terminal and internal repeat sequences and can be divided into seven 

groups on the basis of their genome structure (Davison & Davison, 1995) (Figure 1.1). 
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Figure 1.1: Genome structures within the herpesviruses 
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The simplest genome arrangement observed in herpesviruses is typified by tupaia (tree 

shrew) herpesvirus (group 0; Koch et al., 1985). Such genomes contain no terminal or 

internal repeats, and consist of a single unique region. Group 1 genomes contain single 

directly repeated units at each terminus of a single unique region and are epitomized by 

HHV-6 and CCV (Davison, 1992; Gompels et al., 1995). Group 2 genomes, represented by 

Herpesvirus saimiri, contain multiple copies of a direct repeat at each terminus (Albrecht et 

al., 1992). Group 3 genomes are similar in structure to those of group 2, but in addition 

contain internal multiple copies of the repeats in the opposite orientation. This, as 

observed in the genome of Cottontail rabbit herpesvirus (Cebrain et al., 1989), leads to the 

generation of two unique regions, denoted UL and US (long and short unique regions 

respectively). Group 4 genomes also contain both internal and terminal repeated sequences. 

However, as observed in the case of EBV, the internal repeats of group 4 genomes are 

unrelated to the terminal repeats (Given & Kieff, 1979). The genome of VZV is 

representative of group 5 genomes, with inverted repeats surrounding UL distinct from 

those surrounding US (Davison & Scott, 1986). Moreover, the repeats flanking US are much 

longer than those adjacent to UL, giving rise to the ability of US to invert at high frequency 

relative to UL through recombination. The most complex genomes (group 6), typified by 

HSV-1 and HCMV, are essentially similar to group 5 except that the repeats flanking UL 

are longer (Roizman, 1979). The terminal and internal repeats flanking UL are referred to as 

TRL and IRL, whilst those flanking US are TRS and IRS. High frequency inversion of the L 

(TRL-UL-IRL) and S (IRS-US-TRS) segments generates four genomic isomers in equimolar 

amounts (see Figure 1.2). Group 6 genomes also contain a short direct repeat at the termini 

(the a sequence) that is additionally present in inverted orientation at the junction of the L 

and S segments.  

 

The role of these four isomeric forms in virus replication is unknown. Indeed, 
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immobilisation of UL and US respective to each other has no effect on HSV-1 replication 

(Jenkins & Roizman, 1986). Herpesvirus genomes contain sequences at their termini 

required for the packaging of DNA into preformed capsids (see section 1.3.2.2). 

1.1.5 Capsids 

Despite considerable variations in genome length, all herpesvirus genomes are packaged 

into morphologically similar capsid shells 125-130 nm in diameter (Schrag et al., 1989; Booy 

et al., 1991; Butcher et al., 1998). Herpesviruses with widely divergent capsid protein 

sequences exhibit remarkably similar capsid structures (Booy et al., 1996). Examination of 

HCMV capsids by cryo-electron microscopy demonstrated that encapsidation of the large 

(230 kbp) HCMV genome is achieved through a higher packaged DNA density than HSV-

1, together with a slightly larger capsid volume (Bhella et al., 2000). Herpesvirus capsids 

display T=16 icosahedral symmetry with the icosahedral capsid shell of 162 capsomers 

comprised of 150 hexamers and 12 pentamers. The capsomers are assembled around a 

proteinaceous scaffold that is cleaved and released during capsid maturation. Groups of 

three capsomers are separated by a heterotrimeric “triplex” complex, composed of two 

viral proteins.  

 

Several forms of capsid are observed in the nuclei of cells infected with herpesviruses, and 

can be distinguished by electron microscopy and sucrose gradient centrifugation.  Three 

angularised forms of capsids, A-, B- and C-, can be isolated from infected cells, and retain 

the same shell composition whilst differing as to their contents. C-capsids contain viral 

genomes and are able to mature into infectious virions. Both A- and B- capsids lack DNA 

but A-capsids are devoid of both DNA and protein, whilst B-capsids retain cleaved 

scaffold (reviewed by Homa & Brown, 1997). 

 

Procapsids contain the same capsid shell proteins surrounding a core of uncleaved scaffold. 
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They are more spherical than A-, B- or C-capsids, and the shell has a more porous 

structure. During infection the spherical procapsids give rise to A-, B- and C-capsids. Both 

A- and B-capsids are considered dead end products (the former resulting from abortive 

packaging events), and only C-capsids can mature into infectious virus particles. The 

processes of capsid assembly and maturation in HSV-1 are dealt with in more detail in 

section 1.3.2.1. 

1.1.6 Tegument 

Within mature herpes virions, capsids are surrounded by a proteinaceous layer known as 

the tegument, which consists of at least 15 viral proteins. The tegument has long been 

considered to be amorphous. However, more recent study suggests that, due to interaction 

with the capsid, a portion of the innermost tegument layer displays icosahedral symmetry 

(Zhou et al., 1999). Functions of tegument proteins vary, but include viral gene 

transactivation, DNA packaging, degradation of host mRNA and structural components of 

the virion (Spear & Roizman, 1972; Heine et al., 1974; McLauchlan et al., 1992; Salmon & 

Baines, 1998; Thurlow et al., 2005). 

1.1.7 Envelope 

In virions, the capsid and tegument are enveloped by a lipid bilayer studded with virally 

encoded glycoproteins. It is thought that this membrane originates from the trans-Golgi 

network (TGN), after a complex process of primary envelopment at the outer nuclear 

membrane, cytoplasmic de-envelopment and secondary envelopment at the TGN 

(reviewed by Mettenleiter, 2002). 

 

Several virally encoded glycoproteins protrude from the envelope, and are visible as spikes 

by electron microscopy. The precise number of glycoproteins encoded varies from virus to 

virus, but they are thought to have multiple roles including virus entry and virion 
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maturation. The glycoproteins encoded by HSV-1 are described in section 1.2.2. 

Section 1.2 HSV-1 lytic replication 

1.2.1 Genome structure 

The linear double-stranded HSV-1 genome is 152 kbp in length, and is classified as a group 

6 genome. Two covalently linked segments, L and S, comprise the genome, and each 

contains a unique coding region, known correspondingly as UL and US (Figure 1.2). The 

UL and US regions, 107.9 and 13 kbp in length respectively, together encode at least 71 

proteins. Inverted repeats flank the unique sequences, with UL flanked by TRL and IRL, and 

US flanked by TRS and IRS. These inverted repeats allow the inversion of UL and US with 

respect to each other, generating four distinct equimolar isomers of the genome (Figure 1.2 

panel B). Three ORFs are situated within these repeat regions, two within RL and one in RS 

(McGeoch et al., 1988; Dolan et al., 1998). 

 

At the genomic termini lie direct repeats of a 250-500 bp sequence known as the a 

sequence, with one or more copies at the L terminus and a single copy at the S terminus. 

One or more inverted copies of the a sequence also lie at the junction between the L and S 

segments. Those regions of RL and RS excluding the a sequence are respectively known as b 

and c sequences. The genome of HSV-1 can therefore be represented as  

amb-UL-b’a’nc’-US-ca, where inverted sequences are indicated by ’ and both n and m are 

variable (Figure 1.2). The a sequence contains the cis-acting sequences necessary for 

cleavage and packaging of the HSV-1 genome, and is discussed in more detail in section 

1.3.2.2. 

1.2.2 Attachment and entry 

HSV-1 encodes at least eleven glycoproteins (gB, gC, gD, gE, gG, gH, gI, gJ, gK, gL and 

gM), of which several (gC, gE, gG, gI, gJ and gK) are dispensable in cell culture.  
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Figure 1.2: HSV-1 genome structure and isomers 
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Glycoproteins play several roles in the HSV-1 life cycle: attachment to the cell surface and 

mediation of fusion, stimulation of cell-to-cell spread, and promotion of secondary 

envelopment (de Zarate et al., 2004; Farnsworth & Johnson, 2006; Farnsworth et al., 2007). 

 

Glycoproteins gB and gC have been implicated in binding incoming virus to the cell. 

However, binding has been demonstrated to be reversible, and bound virus eluted from the 

cell surface is still infectious, suggesting that binding and fusion are distinct events. (Bender 

et al., 2005) showed that both soluble gB and anti-HSV-1 gB antibodies blocked virus 

binding. Whilst gC is dispensable in cell culture, it has been demonstrated to increase HSV-

1 binding efficiency almost 10-fold. Many herpesviruses bind to cells via heparan sulphate, 

which is thought to promote entry by allowing viral glycoproteins close proximity to the 

appropriate entry receptors (reviewed by Spear & Longnecker, 2003).  

 

Three classes of cellular entry receptor for HSV-1 have been identified by expression of the 

respective genes on cells deficient in endogenous HSV-1 receptors (e.g. Chinese hamster 

ovary (CHO) cells). Herpesvirus entry mediator (HVEM) is a member of the TNF receptor 

family, and has been demonstrated to co-immunoprecipitate with gH and gD, and to 

trigger virus-liposome fusion at acidic pH (Perez et al., 2005; Whitbeck et al., 2006). Two 

related members of the immunoglobin family (nectin-1 and –2) have also been identified as 

HSV-1 receptors. In addition, expression of the human B5 membrane protein in porcine 

cells rendered them permissive for HSV-1 infection, suggesting that B5 comprised a third 

class of HSV-1 receptor (Perez et al., 2005). It was also demonstrated that HSV-1 could 

infect non-permissive CHO cells in the absence of endogenous HSV-1 receptors when 

grown on permissive BHK cells, suggesting that an acquired host-cell infectivity factor may 

also contribute to virus entry (Conner et al., 2005).  
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A subset of four HSV-1 glycoproteins (gB, gD, gH and gL) has been shown to participate 

in the fusion of virus and cell membranes. Together, these critical glycoproteins are 

thought to act in concert to promote fusion. Binding of gD to a cellular receptor likely acts 

as a trigger to fusion, although precise mechanisms have yet to be elucidated. It is thought 

that once gD binds its cellular receptor, a conformational change permits its interaction 

with gH/gL and gB thereby promoting fusion. 

 

Three entry pathways have been proposed for HSV-1. Initial studies suggested that the 

membrane of HSV-1 fused directly with the cellular membrane of Vero and Hep2 cells. 

However, in CHO and HeLa cells, HSV-1 entry has been observed to occur by endocytosis 

and subsequent acidification of virus-containing endosomes. A third pathway, proposed 

more recently, suggested that endocytic entry could occur in the absence of endosomal 

acidification, although a functional gD-receptor was still required (Milne et al., 2005).  

 

Entry releases the capsid and tegument into the cytoplasm. Capsids, complexed with a 

subset of the tegument proteins, are transported to the nucleus via microtubules (Sodeik et 

al., 1997; Mabit et al., 2002). This transport is mediated by the cellular motor protein dynein 

(Kristensson et al., 1986; Dohner et al., 2002), although the precise mechanism of 

interaction between virus and motor is not understood. Investigations using PRV 

concluded that the tegument proteins UL36, UL37 and US3 were likely candidates to 

interact with dynein (Granzow et al., 2005). Studies have also identified two cellular kinases, 

P-I-3 kinase and focal adhesion kinase, as being important for virus trafficking to the 

nucleus (Nicola & Straus, 2004; Cheshenko et al., 2005). 

 

After transport to the nucleus, capsids dock with the nuclear pore complex (NPC). 

Diffusion of the capsid through nuclear pores is precluded by the large capsid size: thus 
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genome entry into the nucleus is dependent upon release of DNA through the NPC. 

Uncoating of the viral genome at the NPC has been demonstrated to involve the host 

cellular import factors importin-β and Ran-GTP (Smith & Helenius, 2004). Studies using 

atomic force microscopy suggested that the genome is released into the nucleus as a 

condensed rod (Shahin et al., 2006). 

1.2.3 Genome circularisation 

It has traditionally been thought that, soon after entry to the nucleus, linear HSV-1 

genomes circularise in order to act as templates for DNA replication (Poffenberger & 

Roizman, 1985; Garber et al., 1993; Hwang & Bogner, 2002). However, Jackson & DeLuca 

(2003) provided data suggesting that linear, not circular, genomes act as the template for 

DNA synthesis. This demanded a re-appraisal of how and when the linear HSV-1 genomes 

circularises. Recent studies have confirmed that circularisation occurs rapidly upon 

infection, that circularised molecules acts as templates for DNA synthesis, and that the 

cellular protein RCC1 is involved in this process (Strang & Stow, 2005; Strang & Stow, 

2007). The host proteins DNA ligase IV and its cofactor XRCC4 have also been implicated 

in HSV-1 circularisation and replication, possibly through direct ligation of incoming 

genomic termini (Muylaert & Elias, 2007). 

1.2.4 Regulation of gene expression 

HSV-1 genes are transcribed in a tightly regulated temporal cascade, and are designated as 

immediate-early (IE; α), early (E; β) or late (L; γ) genes according to their transcription 

pattern and the structure of their promoter regions. The transcription of the five IE genes 

(ICP0, ICP4, ICP22, ICP27, and ICP47) is stimulated by the action of the tegument 

protein VP16. Together with two cellular proteins, Oct-1 and HCF, VP16 is able to recruit 

host transcription factors to the promoters of IE genes and initiate transcription (Kristie & 

Roizman, 1987; Gerster & Roeder, 1988; O'Hare et al., 1988). Indeed, VP16 acts as an 
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efficient transcriptional activator in both yeast and mammalian cells (Cousens et al., 1989). 

HCF is required for the nuclear import of VP16 after virus entry and tegument release 

(LaBoissiere & O'Hare, 2000). The majority of the IE gene products play regulatory roles 

in the transcription of β class genes. Expression of IE genes peaks at around 4 hours post-

infection, but the genes remain expressed throughout lytic infection.  

 

The HSV-1 ICP0 protein has been demonstrated to be a promiscuous transcriptional 

transactivator, able to initiate transcription from HSV and heterologous promoters 

(reviewed in Everett, 2000; Hagglund & Roizman, 2004). An accumulating body of 

evidence suggests that ICP0 functions to lift cellular repression of viral transcription, and 

that this repression is in part mediated by the cellular proteins PML and SP100 (Everett, 

2006; Everett et al., 2007). ICP0 has been demonstrated to initiate the degradation of PML 

by the ubiquitin-proteasome pathway, leading to disruption of nuclear substructures known 

as ND10 domains (Everett et al., 1998; Chelbi-Alix & de The, 1999; Everett, 2006). This is 

dependent upon the presence of a functional RING-finger motif present within the N-

terminus of ICP0. 

 

The HSV-1 ICP4 protein is able to both positively and negatively regulate viral gene 

transcription, and activates most of the early and late viral genes.  In the absence of ICP4, 

post-α gene expression is blocked. In line with its role as a transcriptional modulator, ICP4 

is able to interact with multiple transcription factors, and bind DNA. Although the precise 

mechanism by which ICP4 activates transcription of early and late genes is unclear, 

evidence suggests that ICP4 enhances the binding of transcription factors to sites on viral 

promoters (Grondin & DeLuca, 2000). ICP4 is also able to repress transcription of several 

viral genes including its own by binding directly to specific sites in the promoter region 

(Leopardi et al., 1995). 
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ICP47, whilst expressed with IE kinetics, has no role in regulating viral gene expression. 

Rather, ICP47 abrogates the presentation of viral antigens by major histocompatibility 

complex class-I molecules on the surface of infected cells, thus helping to minimize the 

acquired immune response (reviewed by Vossen et al., 2002). 

 

As well as being transcriptional transactivators of β gene expression, several IE genes can 

also act to regulate gene expression at the post-transcriptional level. For example, ICP27 

acts to suppress host cell protein synthesis during HSV-1 infection, whilst maintaining 

translation of viral mRNAs. ICP27 achieves this through the shuttling of unspliced viral 

mRNA from the nucleus to cytoplasm (Mears & Rice, 1996; Sandri-Goldin, 1998). 

Moreover, ICP27 sequesters proteins involved in spliced mRNA export, and recruitments 

these proteins to unspliced viral mRNAs, resulting in their export into the cytoplasm 

(Fontaine-Rodriguez et al., 2004; Sandri-Goldin, 2004; Brandon Chen et al., 2005). As only 

four lytic HSV-1 genes are spliced, this has a minimal effect on viral gene translation. Three 

of the four spliced HSV-1 genes are expressed from IE promoters before maximal splicing 

inhibition, and the fourth, UL15, is expressed as a late (γ2) transcript. It is postulated that 

UL15 may either be spliced by an alternative mechanism not affected by ICP27, or 

inhibition of splicing by ICP27 may be short-lived (Weir, 2001). 

 

Genes expressed with early (β) kinetics are primarily involved in DNA replication and 

nucleotide metabolism. Transcription of these genes occurs before DNA synthesis and is 

dependent on the expression of IE genes, notably functional ICP4 (reviewed by Weir, 

2001). 

 

Late, or γ, genes fall into two distinct classes dependent upon the kinetics of expression. 
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Leaky-late genes (γ1) are expressed prior to viral DNA synthesis, but require this process to 

reach maximal expression levels, whilst true-late (γ2) genes require the onset of DNA 

synthesis for transcription. Genes in these classes encode many virion components and 

proteins involved in capsid assembly, encapsidation and virion maturation. Functional 

ICP27 and ICP4 are required for late gene expression (reviewed by Weir, 2001). 

1.2.5 DNA replication 

HSV-1 DNA replication and the functions of the replication proteins have been reviewed 

by Boemher & Lehman (1997) and Lehman & Boemher (1999). 

 

Replication of HSV-1 DNA is dependent upon cis acting sequences, acting as origins of 

replication, and a number of virally-encoded trans-acting proteins. HSV-1 encodes two 

related origins utilised during lytic infection, termed oriL and oriS. These sites confer upon 

plasmids the ability to replicate in the presence of the essential proteins described below. 

Two copies of oriS and one of oriL are found within a viral genome, with oriL present near 

the centre of the UL region (Spaete & Frenkel, 1985), and two identical copies of oriS within 

the IRS and TRS regions. The reasons for possessing three origins of two types remain 

unclear, as deletion of either oriL or both copies of oriS does not significantly impair 

replication in tissue culture (Balliet et al., 2005).  

 

HSV-1 also encodes seven trans-acting proteins (UL9, UL29 (ICP8), UL42, UL30, UL5, 

UL8, UL52) whose functions are directly involved in DNA replication. It is now known 

that UL9 encodes the origin binding protein, UL29 (ICP8) is the ssDNA binding protein, 

UL30 and UL42 form the viral DNA polymerase, and UL5, UL8 and UL52 together 

comprise the helicase/primase complex. A brief description of each protein is given below. 

 

UL29 encodes a single-stranded DNA binding protein, ICP8, which acts as a helix 
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destabilising protein at the replication forks. UL9 encodes the HSV-1 origin binding 

protein, which exists as a homodimer, and is able to bind specifically to sequences within 

oriS and oriL in a cooperative manner. Furthermore, UL9 encodes an ATP-dependent 

helicase activity, which is stimulated by ICP8. UL30 and UL42 form the heterodimeric 

DNA polymerase complex. Polymerase activity is associated with the UL30 subunit, whilst 

UL42 acts as an accessory factor to enhance polymerase activity. The helicase/primase 

complex of HSV-1 is comprised of the gene products of UL5, UL8 and UL52. UL5 

specifies the helicase activity of the complex, but this activity is dependent upon the co-

expression of UL52. Similarly, UL52 exhibits a primase activity, but only in the presence of 

UL5. UL8 is not necessary for either function per se, but enhances both activities. Together 

with UL9, ICP8 appears to distort the DNA surrounding the origin. The helicase activity of 

UL9 then unwinds the origin, and the resulting ssDNA is coated with ICP8. This allows 

the viral DNA polymerase (UL30 and UL42) and helicase-primase complex (UL5, UL8 and 

UL52) to access the DNA, and establish a viral replication fork.  

 

DNA replication is thought to initially proceed by an origin-dependent theta mechanism, in 

which circular templates are amplified. Decatenation of these circular genomes is 

presumably mediated by host cell topoisomerases. Analysis using a mutant with a 

temperature-sensitive lesion in UL9 demonstrated that once DNA synthesis has begun 

UL9 is no longer required; this suggested that origin-dependent DNA initiation is a single 

event (Schildgen et al., 2005). However, the theta mode of DNA replication has never been 

reconstituted in vitro. DNA replication is then thought to switch to an origin-independent 

rolling-circle mechanism, although the mechanism by which replication switches from one 

mode to another is unknown. Neither an HSV-1 origin nor UL9 are required for rolling 

circle replication in vitro. Indeed it has been demonstrated that, in the presence of oriS, 

rolling circle replication is inhibited by the addition of UL9. Rolling circle replication 
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generates long DNA concatemers, consisting of genomes arranged in a head-to-tail 

fashion, that act as substrates for the encapsidation process. Importantly, concatemeric 

molecules may also be formed by recombination (reviewed by Wilkinson & Weller, 2003). 

 

Late in DNA replication viral genomes recombine at high frequency, giving rise to 

branched molecules that must be resolved before encapsidation. The nuclease encoded by 

the HSV-1 UL12 gene, described in further detail in section 1.4.5, is thought to play a key 

role in resolving these branched molecules prior to cleavage and packaging. 

1.2.6 Capsid assembly and encapsidation 

After DNA replication, concatemeric DNA is cleaved into genome lengths and packaged 

into procapsids in a tightly coupled process (see section 1.3.2). The products of DNA 

packaging are angularised nuclear C-capsids, which are the precursors of infectious viral 

particles. 

1.2.7 Replication compartments 

Very early in infection, incoming viral genomes are visualised in the nucleus by 

fluorescence in-situ hybridisation as discrete dots surrounded by nuclear substructures 

known as ND10 bodies, with new ND10s assembling around incoming viral genomes 

(Everett & Murray, 2005; Everett, 2006). However, as infection progresses, components of 

the ND10s are degraded by a mechanism dependent upon the viral protein ICP0 (Everett 

et al., 1998). This permits the recruitment of viral and cellular proteins required for the 

initial transcription of the genome.  

 

Following synthesis of the viral DNA replication proteins, DNA synthesis commences. 

Subsequent rounds of transcription and protein recruitment lead to the formation of 

replication compartments (RCs), which are the sites for DNA replication, encapsidation 
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and capsid assembly. Several viral factors required for DNA synthesis, transcription, capsid 

assembly and DNA packaging have been demonstrated to localise to RCs (Ward et al., 

1996; Phelan et al., 1997; de Bruyn Kops et al., 1998; Lamberti & Weller, 1998; Yu & 

Weller, 1998a; Geisen et al., 2000a). Amongst these factors is the HSV-1 ssDNA binding 

protein ICP8 (encoded by the UL29 gene), which, due to its interaction with replication 

forks during viral DNA replication, has seen widespread use as a marker for RCs (Quinlan 

et al., 1984). Manifold cellular proteins involved in DNA damage repair, recombination and 

chromatin remodelling have also been demonstrated to interact with ICP8 in RCs 

(Fontaine-Rodriguez et al., 2004). Several cellular chaperones have additionally been 

identified at sites proximal to RCs, including Hsc70, Hsp90 and Hsp40 (Burch & Weller, 

2004). Together, it is postulated that these cellular factors play crucial roles in the 

replication of HSV-1. As infection progresses, replication compartments enlarge to 

eventually fill most of the nucleus, and host chromatin is marginalised (Randall & 

Dinwoodie, 1986; Simpson-Holley et al., 2005). 

1.2.8 Maturation and egress 

After DNA encapsidation, C-capsids are targeted to the nuclear periphery, possibly utilising 

nuclear actin to facilitate transport (Forest et al., 2005). The release of C-capsids into the 

cytoplasm is precluded by degradation of the nuclear lamina. Through the actions of UL31, 

UL34 and US3, the nuclear lamina is disrupted, allowing capsids to access and bind to the 

inner nuclear membrane through an unknown mechanism (Mettenleiter, 2002; Liang & 

Baines, 2005; Simpson-Holley et al., 2005; Bjerke & Roller, 2006). Both UL31 and UL34 are 

thought to be critical for the envelopment of C-capsids at the inner nuclear membrane, and 

are incorporated into the virion during budding into the perinuclear space, suggesting a 

possible role in de-envelopment (Reynolds et al., 2002; Mettenleiter, 2004). 

 

Exit of capsids from the nucleus is generally accepted to occur via a complex pathway 
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involving envelopment of capsids as they bud through the inner nuclear membrane into 

the perinuclear space and subsequent de-envelopment as the capsid fuses with the outer 

nuclear membrane and is released into the cytoplasm. Several HSV-1 proteins have been 

implicated in this process. For example, UL51 is thought to play a role in exit of capsids 

from the perinuclear space (Nozawa et al., 2005).  

 

Subsequently, capsids gain both tegument and lipid envelope at the trans-Golgi network 

(TGN) or related post-endoplasmic reticulum compartments. Recruitment of tegument 

proteins to the immature virion is mediated by several crucial interactions. For example, it 

has been shown that incorporation of VP22 and VP16 into the tegument requires 

interaction between these partners, and is specifically dependent upon the C-terminal 

domain of VP22 (Hafezi et al., 2005; Mouzakitis et al., 2005). 

 

HSV-1 glycoproteins, as with their cellular counterparts, are synthesised at the endoplasmic 

reticulum, and travel via the Golgi apparatus to reach the final site of re-envelopment. 

Mutation of highly conserved motifs within the cytoplasmic domain of HSV-1 gB have 

been demonstrated to inhibit trafficking to the TGN, implicating these motifs in 

intracellular sorting (de Zarate et al., 2004). Evidence also suggests that successful re-

envelopment requires interaction between tegument proteins and the cytosolic tails of viral 

glycoproteins (reviewed in Mettenleiter, 2004). Trafficking of viral glycoproteins to the 

TGN is thought to occur independently of capsid egress (Turcotte et al., 2005).  

 

Recently, Leuzinger et al. (2005) suggested that, in stark contrast to the model described 

above, capsids might exit the nucleus via enlarged nuclear pores and never undergo primary 

envelopment at the nuclear membrane. Furthermore, they proposed that naked 

cytoplasmic capsids were capable of budding into any membrane, accounting for previous 



Martin R. Higgs, 2008  Chapter 1:  43

observations of virions in the perinuclear space. However, this appears irreconcilable with 

the phenotype of viruses lacking UL36 and UL37 (reviewed by Mettenleiter, 2004). These 

viruses exhibit an accumulation of naked cytoplasmic capsids, although virions are still 

observed in the perinuclear space. Together, this suggests that budding into these different 

compartments requires different factors, and is inconsistent with the proposals of 

Leuzinger and co-workers (Mettenleiter & Minson, 2006). 

  

Once tegumentation and secondary envelopment have occurred, virions contained in 

endosomal compartments are directed to the plasma membrane and infectious virus is 

released by exocytosis. Evidence suggests that direct cell-to-cell spread of HSV-1 is also 

important in viral dissemination (reviewed by Johnson & Huber, 2002). Together with the 

glycoproteins gB, gD and gH/gL, the heterodimeric gE/gI complex is involved in 

mediating cell-to-cell spread. It seems that gE/gI functions by targeting enveloped virions 

from the TGN to the lateral or basolateral surface of cells, permitting virus release into the 

space between cells (Farnsworth & Johnson, 2006). 

Section 1.3 Viral DNA packaging 

Compared to our understanding of the processes surrounding DNA replication, knowledge 

of viral genome packaging in herpesviruses is less well advanced. However, several parallels 

have been drawn with the analogous process in dsDNA bacterial viruses or bacteriophage, 

which have been extensively studied. Indeed, similarities between the encapsidation 

processes, amongst other parallels, have revealed a possible common ancestry between 

herpesviruses and bacteriophage (Booy et al., 1991; Davison, 1992; Przech et al., 2003; Trus 

et al., 2004; Baker et al., 2005). 

1.3.1 DNA packaging in dsDNA bacteriophage 

A considerable amount of information is available about the structure, life cycle and 
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biochemistry of bacteriophage. Based upon the organisation of the virus genome, phage 

with linear dsDNA genomes can be divided into three groups: 1) Linear genomes with 

unique terminal sequences e.g. λ and T3; 2) Linear circularly permuted genomes e.g. P22 

and T4; 3) Genomes with terminally attached proteins or with host sequences e.g. ϕ29 and 

Mu phage (reviewed in Fujisawa & Morita, 1997).  The packaging characteristics of several 

phage are discussed below, focusing on those linear dsDNA phage (such as T4 and λ) that 

most resemble herpesviruses in their packaging mechanisms. 

 

DNA replication of group 1 and 2 phage genomes generally results in the accumulation of 

concatemeric molecules. Monomeric genomes are cleaved from these concatemeric 

intermediates and packaged into preformed proheads. Several central features, crucial for 

DNA packaging, are conserved amongst most dsDNA phage. Linear genomes are 

packaged into a preformed protein prohead, which displays 5-fold rotational symmetry, 

through a unique vertex known as the portal vertex. At this portal vertex, DNA enters 

through a non-head protein known as the connector, which exhibits 12-fold rotational 

symmetry. Although the connector is required for DNA packaging, it is not thought to play 

a role in catalysing the cleavage or packaging of DNA per se. The structures of several 

connector proteins have been determined, including those from T7, T4, SPP1, P22, ε15 

and ϕ29 (Simpson et al., 2000; Orlova et al., 2003; Fokine et al., 2004; Tang et al., 2005; 

Agirrezabala et al., 2005a; Jiang et al., 2006; Lebedev et al., 2007). All connectors studied so 

far share a similar homo-dodecameric structure with the subunits surrounding a central 

channel, and exhibiting 12-fold rotational symmetry. This common structure is observed 

despite the lack of discernable amino acid sequence similarity. In the case of ϕ29, the 

connector is closely associated with an RNA transcript, pRNA, which is required for 

successful DNA packaging.  
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A packaging enzyme, known as terminase, is fundamental to the phage DNA encapsidation 

process. To date, all bacteriophage terminases identified have two subunits, designated 

large and small. Terminases exhibit a DNA-dependent ATPase activity that is thought to 

provide the energy necessary to drive the thermodynamically unfavourable packaging 

process. ATP has also been implicated as an allosteric effector of assembly of a functional 

packaging complex. The functions attributed to the terminase enzyme are separated 

between the two subunits. The large terminase subunit has been shown to bind the 

connector proteins of several phage, is responsible for cleaving and translocating DNA, 

and also contains ATP binding sites. ATP hydrolysis at these sites is thought to drive DNA 

translocation. Recognition of the phage DNA to be packaged is mediated by the small 

terminase subunit.  

 

Of note is the presence of several conserved motifs in the large terminase subunit of all 

phage examined thus far. Consensus sequences known as Walker A and B motifs are 

present in a large number of enzymes capable of nucleotide binding and hydrolysis (Walker 

et al., 1982). This includes the large subunits of viral terminases (McClelland et al., 2002; 

Mitchell & Rao, 2004). A conserved glutamate residue, thought to be involved in ATP 

hydrolysis, has also been identified. Mutational analysis in T4 has demonstrated the 

importance of these motifs for functional packaging (Kondabagil et al., 2006). An 

endonuclease-resolvase motif was also identified in the C-terminus of several phage 

terminase large subunits, and conserved residues were demonstrated to be crucial for 

nuclease activity in T5 phage (Ponchon et al., 2006).  

 

Interestingly, phage that produce concatemers differ in the mechanism by which they 

generate their genomic termini. For a number of bacteriophage, the initial step in packaging 

involves the recognition of a specific sequence on the concatemer e.g. pac or cos sites. This 
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is followed by an initial cleavage event, which is either site-specific (e.g. λ and T3) or 

sequence-independent (e.g. T1), to create a genomic terminus. DNA is then packaged 

unidirectionally from the newly generated end into the prohead, by a translocation 

mechanism thought to be common to all dsDNA phage. A second cleavage event liberates 

the packaged monomer from the rest of the concatemer. Again, this cleavage may be site-

specific as in λ and T3, or non-specific as in T1. 

 

T4 phage employs a slightly different mechanism (reviewed by Rao & Black, 2005). 

Although long-held that T4 DNA packaging is sequence-independent, more recent 

evidence suggests that packaging is initiated at or near specific pac sites located within the 

gp16 gene. However, the second cleavage event to terminate packaging occurs only when 

the head is full, and 102% of a genome length has been packaged. If the T4 packaging 

process is highly processive, then a single cleavage near a pac site followed by multiple 

rounds of packaging and genome excision would yield a panel of genomes with apparently 

randomised termini. 

 

Several paradigms have been proposed for the arrangement of packaged DNA in the 

mature head, although current thinking favours a coaxial spooling model first proposed by 

(Richards et al., 1973). This proposition can accommodate the liquid crystalline 

arrangement of packaged DNA observed in phage (Harrison, 1983). Cryo-electron 

microscopy studies of packaged T7 DNA, along with in silico modelling of a spooling 

mechanism, lend support to this model (Cerritelli et al., 1997; Agirrezabala et al., 2005b). 

Investigations of the packaged DNA of T4, ε15, ϕ29 and P22 phage further bear out the 

coaxial spooling hypothesis (Zhang et al., 2000; Fokine et al., 2004; Jiang et al., 2006; Lander 

et al., 2006; Xiang et al., 2006). An interesting feature of several of these studies was the 

presence of packaged DNA within the portal channel, suggesting that the DNA is primed 
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for release upon attachment to the host. 

1.3.1.1 DNA packaging in λ phage 

DNA packaging in bacteriophage λ has been extensively studied (Catalano, 2000; Feiss & 

Catalano, 2005). Since the genomic termini of λ, like HSV-1, are generated from 

concatemers by sequence-specific cleavage events, lambda packaging is described in detail 

below. 

 

The λ particle consists of an isometric head containing a linear genome, a tail surrounded 

by a contractile sheath and a fibre attached to the base of the tail. The genome is 48.5 kbp 

in length, with complementary single-stranded 12 base termini. Upon infection the genome 

is circularised by ligation of its cohesive ends. Replication of the linear genome via the theta 

mode of DNA replication, followed by rolling circle replication and recombination, gives 

rise to concatemers that are the substrates for DNA packaging. 

 

The packaging signal of lambda phage 

The minimum cis-acting sequence required to initiate and terminate DNA packaging in λ is 

known as cos. Found at the junction between viral genomes within concatemers, cos is a 200 

bp segment containing several subsites that have specific roles in the recognition, 

translocation and packaging of viral DNA (Figure 1.3). 

 

The cos subsite cosN contains the cleavage site, and is required for both initiation and 

termination of packaging. During packaging, the terminase enzyme introduces nicks into 

the DNA duplex at sites N1 and N2 within cosN to produce cohesive genome termini. Of 

the 22 bp in cosN, ten of these bases exhibit rotational symmetry. Together with the 

presence of a leucine zipper motif within the large subunit of the terminase, gpA, this  
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Figure 1.3 Structure of the λ bacteriophage cos site 
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symmetry has been seen as evidence that gpA binds as a dimer to induce duplex nicking. 

 

The cosB subsite is similarly involved in both the initiation and termination of packaging. 

cosB contains three 16 bp repeat elements: R1, R2 and R3, and two consensus binding sites 

for the protein IHF (integration host factor). IHF is a site-specific DNA binding protein 

encoded by E. coli that has been shown to induce a DNA bend between R2 and R3. It is 

thought that IHF-induced duplex bending allows the binding of gpNu1 to the R sites of 

cosB, and that these interactions are required to properly position gpA for cosN cleavage 

(Ortega & Catalano, 2006). Faithful nicking of cosN by terminase requires ATP and the I2 

sequence lying between R3 and cosN, in addition to the remainder of cosB. Processive 

packaging by terminase also requires cosB to be present. 

 

The third subsite, cosQ, is located upstream of cosN and is essential for the proper 

termination of packaging. Mutants of cosQ have been shown to correctly initiate packaging, 

but the termination cleavage event is impaired. In the absence of cosQ, packaging proceeds 

beyond cosN until the head is full. Thus, cosQ is thought to be involved in stalling the 

packaging machinery in order to allow cleavage at cosN. However, as cosN and I2 are also 

involved in termination of packaging, cosQ appears to be only one part of a larger 

termination signal. 

 

The λ terminase 

The lambda terminase consists of two virally encoded subunits, gpA and gpNu1. 

Terminase is responsible for a number of functions: recognition of the concatemeric λ 

DNA substrate; initiation of packaging including nicking of the duplex at cosN; 

translocation of DNA into the prohead and the concomitant hydrolysis of ATP; and 

termination of packaging by cleavage at cosN. At present, the stoichiometry of the in vivo 
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terminase complex is unknown, although recombinant terminase has been purified as a 

gpA1•gpNu12 holoenzyme (Gaussier et al., 2005). It is proposed that functional terminase is 

comprised of four heterotrimers, representing a complex of (gpA1•gpNu12 )4 (Maluf et al., 

2006). 

 

The viral Nu1 gene encodes the small terminase subunit, gpNu1, which is responsible for 

recognising concatemeric DNA and promoting the assembly of the terminase complex. 

Studies using chimeric constructs of λ and phage 21 gpNu1 have identified several domains 

within the 181aa gpNu1. The N-terminal half of gpNu1 contains the cosB binding domain, 

whilst the C-terminal 40 aa are necessary for interaction with gpA and holoenzyme 

formation. More recently, a high resolution nuclear mass resonance solution structure has 

been obtained for the gpNu1 DNA-binding domain (de Beer et al., 2002). This confirmed 

that the N-terminus of gpNu1 contained a helix-turn-helix motif which mediates gpNu1 

binding to cosB, and that the DNA-binding domain dimerises about cosB. In marked 

contrast to other small terminase subunits studied, gpNu1 contains ATP and ADP binding 

sites, and exhibits ATP hydrolysis in the context of the holoenzyme (Gaussier et al., 2005).  

 

gpA, the larger terminase subunit, is the product of viral gene A and is 641 amino acids in 

length. Several biochemical activities have been attributed to gpA: site-specific 

endonuclease, DNA-dependent ATPase and DNA helicase activities (Hwang et al., 1996). 

Moreover, domains have been identified that are crucial for interaction with the connector 

gpB, and for the interaction with gpNu1. Communication between the N-terminal ATPase 

and C-terminal nuclease domains of the large terminase subunit has been shown to be 

critical in T4 phage (Kanamaru et al., 2004). 

 

A conserved Walker motif lies within the C-terminus of gpA (Walker et al., 1982). 
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However, mutation of crucial amino acids within this motif failed to abolish ATPase 

activity, but rather simultaneously abrogated helicase and endonuclease activities. Cross-

linking studies using a non-hydrolysable ATP analogue instead identified a site within the 

N-terminus of gpA which bound ATP (Hang et al., 2000). Mutation of surrounding Tyr or 

Lys residues abrogated ATPase and packaging activities, but did not affect helicase or 

endonuclease properties. Further analysis revealed that several mutations in this region of 

gpA perturbed terminase assembly (Dhar & Feiss, 2004). Mutational analysis also 

confirmed that the translocase domain of gpA is separate from the helicase and nuclease 

domains. 

 

As previously mentioned, the E. coli protein IHF plays a role in DNA packaging, but is not 

a component of the terminase enzyme. In general, IHF is thought to mediate the 

recruitment of proteins to nucleoprotein complexes, possibly via its ability to induce 180O 

bends in DNA duplexes. Viral packaging is decreased in the absence of IHF, suggesting a 

direct role in encapsidation. Indeed, IHF and gpNu1 binding has shown to be co-operative 

and sequence-specific, with each protein contributing to the induction of a bend in the viral 

DNA, about which a functional terminase complex is assembled (Lynch et al., 2003; 

Gaussier et al., 2005; Ortega & Catalano, 2006).  

 

Packaging mechanism of λ 

Utilising information drawn from studies on cos and the terminase proteins, a 

comprehensive model of lambda phage packaging has been proposed (Feiss & Catalano, 

2005) (Figure 1.4). 

(a) Initiation of packaging: 

Packaging initiates with assembly of the terminase upon cosN. Binding of IHF to the I1 site 

of cosB stimulates duplex bending, and allows the recruitment of four gpA2•gpNu11  
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Figure 1.4: A mechanism for λ bacteriophage DNA packaging 
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heterotrimers (Maluf et al., 2006; Ortega & Catalano, 2006). Through an interaction 

between gpNu1 and the R3 and R2 elements of cosB, gpA is then recruited to cosN, yielding 

a pre-nicking complex. Binding of ATP to gpNu1 increases its affinity for cos DNA, and 

may play a role in the formation of the pre-nicking complex (Yang & Catalano., 2004).  

 

Subsequently, ATP hydrolysis by the C-terminal ATPase site of gpA allows a 

conformational rearrangement of the terminase, yielding a complex with nicking and 

helicase activities. This complex, in the presence of Mg2+, induces nicks within cosN at N1 

and N2. ATP-dependent strand separation mediated by the helicase activity of gpA leads to 

release of the right cohesive end (DR) of the genome, which is subject to degradation by 

host nucleases. The stable complex of terminase and left cohesive genome end (DL) is 

known as complex I, and can be reconstructed in vitro (Yang & Catalano, 2003). 

 

Interaction of the prohead with complex I, promoted via the viral gpF1 protein, stimulates 

a transition to complex II, in which the N-terminal translocating ATPase site of gpA is 

fully active. In the absence of gpF1, concatemers are not processed to genome length. It is 

surmised that gpF1 promotes the release of cos from the terminase by destabilising complex 

I. 

(b) Translocation of DNA 

Complex II is responsible for translocating DNA into the prohead, fuelled by ATP 

hydrolysis. Several models of translocation have been proposed (see Section 1.3.1.2), but 

the precise mechanisms involved have not been elucidated. 

 

Packaging of the 48.5 kbp λ genome takes 2-3 minutes in vivo, with an estimated two ATP 

molecules hydrolysed per base pair. Thus packaging of a single genome equates to the 

hydrolysis of 30,000 ATP molecules min-1 terminase-1. This is significantly greater than in 
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vitro rates of ATP hydrolysis demonstrated for purified recombinant λ and T4 terminases 

(Baumann & Black, 2003; Yang & Catalano, 2003). Therefore, formation of higher-order 

terminase complexes may be required to hydrolyse ATP at the required rate. 

 

(c) Termination of packaging 

Genome packaging is terminated when terminase reaches the next downstream cos site. 

Nicks must be introduced into cosN, the cohesive strands separated, and the terminase 

must dissociate from the full head. 

 

As mentioned previously, cosQ is required for the efficient termination of packaging, 

together with cosN and the I2 element. (Feiss & Catalano, 2005) propose that cosQ 

promotes a reorganisation of the terminase to allow cleavage of cosN and the correct 

termination of packaging. Following cleavage, cohesive strands must be separated, in a 

process thought to be analogous to the formation of complex I.  

 

In several phage, a headful mechanism is thought to mediate the termination of packaging, 

whereby signals from a “sensor” detects when the capsid is full of DNA and activates the 

endonuclease activity of terminase. Until recently, the identity of this putative sensor has 

been elusive. However, studies of T4 phage implicated spooling of DNA about the 

connector protein (Fokine et al., 2004). Examination of P22 phage revealed that packaging 

of DNA induces a conformational change within the portal protein, suggesting that this 

may be the “sensor” by which headful P22 packaging is terminated (Lander et al., 2006).  

 

A feature of many packaging motors acting on concatemeric DNA, including λ, is 

processivity: once packaging is terminated, a second packaging event is initiated from the 

terminus generated by the termination cleavage. Thus, terminase must remain associated 
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with the left cohesive end of the cleaved duplex, in a state thought to resemble complex I, 

and able to recruit a new prohead and initiate a new round of packaging. 

1.3.1.2 Models for DNA translocation in phage 

Several paradigms have been proposed to describe the mechanism of genome translocation 

in ds DNA phage, and are detailed below. 

 

Terminase-mediated translocation model 

This model, based on studies in T3 phage, proposes that the terminase is directly 

responsible for the translocation of DNA (Fujisawa & Morita, 1997). Six copies of the large 

T3 terminase subunit, gp19, are envisaged to bind to six subunits of the connector 

complex. It is proposed that each gp19 subunit is bound to the DNA backbone in the 

presence of ATP, and that this stimulates a DNA-dependent ATPase activity within gp19. 

Hydrolysis of ATP to ADP and Pi results in a conformational change within gp19, pushing 

the DNA into the head. Binding of a new ATP molecule stimulates the return of gp19 to 

its original extended conformation. Movement of the duplex allows the adjacent gp19 

molecule to bind, and the cycle is complete. Once this cycle has proceeded six times, 6 

ATP molecules will have been hydrolysed and one turn of duplex will have been packaged. 

This predicted ratio of one ATP molecule for every 1.7 bp packaged is remarkably close to 

the experimental value observed by Shibata et al. (1987). 

 

This model is similar to that proposed for the action of monomeric helicases (Lohman, 

1993). Indeed, resolution of the structure of the T4 ATPase gp17 revealed similarity with 

monomeric helicases, suggesting that T4 packaging proceeded via an inchworm mechanism 

(Sun et al., 2007). Lambda DNA packaging is also thought to proceed via this mechanism. 

 

Rotating connector model 



Martin R. Higgs, 2008  Chapter 1:  56

This model is founded upon a symmetry mismatch between the 12-fold symmetry of the 

connector and the 5-fold symmetry of the head. The earliest version of this model 

proposed that ATP hydrolysis stimulates the rotation of the portal with respect to the head, 

screwing the DNA into the capsid (Hendrix, 1978). This model implies that some part of 

the connector interacts directly with the DNA helix, analogous to the threading 

arrangement of a nut (connector) and bolt (DNA). The role of the terminase in this model 

is not identified, but is presumably to provide energy for the rotation of the portal.  

 

In 2000, Simpson and co-workers revised this model for the phage ϕ29. In their model, 

hydrolysis of ATP by a pentameric ATPase-pRNA complex causes conformational change 

of the portal. It is proposed that the terminase acts as a stationary stator around the spindle 

formed by the DNA helix. Rather than the connector rotating continuously around the 

DNA duplex, each ATP hydrolysis stimulates the portal to occupy a new position on the 

DNA helix, thus driving encapsidation. 

 

Two recent studies have, however, forced a re-evaluation of these models. Experiments in 

which the connector protein of T4 was fused to a protein on the outer surface of the 

capsid, thereby preventing potential connector rotation, elegantly demonstrated that 

connector rotation was not necessary for packaging in this phage (Baumann et al., 2006). 

More recently, single particle studies of the portal in ϕ29 have excluded portal rotation as 

the mechanism driving DNA packaging (Hugel et al., 2007). 

 

Osmotic pump model 

Originally suggested by Serwer (1988), and later refined (Serwer, 2003), the osmotic pump 

model proposes that, after initiation of packaging, binding and subsequent hydrolysis of 

ATP by the terminase releases the DNA from the terminase, allowing translocation to 
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begin. DNA enters the portal via an osmotic pressure gradient between the lower pressure 

inside the capsid and higher pressure outside. Packaging is assisted by the packaging motor 

and putative interactions of DNA with the connector. As DNA is packaged, the osmotic 

gradient decreases, and it is envisaged that this is sensed by an internal projection of the 

connector. This stimulates ATP binding by the terminase and subsequent capture of the 

DNA duplex, and ATP hydrolysis by the larger terminase subunit. Together, it is 

hypothesised that these events drive contraction of the capsid and the opening of holes in 

the outer shell, releasing small molecules from the capsid interior, and restoring the 

osmotic gradient. Packaging continues in this fashion, mediated in the latter stages by 

interaction of the DNA with the inner capsid surface, until termination. 

 

This model requires that capsids retain the ability to contract upon ATP hydrolysis. 

Moreover, the capsid must be variably porous and non-porous to small molecules, to allow 

restoration of the osmotic gradient. These constraints, compounded by indications that the 

irreversible expansion of T3 prohead is triggered when 25% of the genome is packaged 

(Shibata et al., 1987), render this model unlikely.  

1.3.2 HSV-1 DNA cleavage and packaging 

Compared to the wealth of knowledge on bacteriophage DNA packaging, less is known 

about the analogous process in herpesviruses. Nevertheless, several parallels between 

bacteriophage and herpesviruses are readily apparent.  

 

A model for herpesvirus DNA packaging, consistent with the current literature, is 

presented in Figure 1.5. Herpesvirus DNA replication results in the accumulation of 

concatemeric molecules (section 1.2.5) that are the substrate for the DNA packaging 

process. Concurrently, capsid assembly in the nucleus produces short-lived spherical 

procapsids that are proposed to be the precursors of mature capsid forms (see 1.3.2.1).  
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Figure 1.5: A model for HSV-1 DNA packaging 
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Packaging is thought to initiate when concatemeric DNA is recognised by a viral terminase 

and a functional packaging complex is assembled at specific sites upon the concatemer. 

The duplex is cleaved and DNA translocated through a unique portal vertex into 

preformed procapsids. A second cleavage event generates a unit length species, and 

packaging is terminated. As with λ, herpesvirus packaging is processive, with multiple 

packaging events initiated by a single packaging complex. The terminase acts to recognise 

the packaging site on concatemeric DNA, recruit the empty capsid, cleave the duplex and 

hydrolyse ATP to drive translocation of DNA into the capsid. Indeed, depletion of ATP 

has been shown to inhibit packaging and lead to the accumulation of B capsids containing 

cleaved scaffold (Dasgupta & Wilson, 1999). 

 

Originally, it was proposed that the DNA was packaged into capsids in a toroidal fashion 

around a protein core (Furlong et al., 1972). However, more recent studies suggested that 

packaged DNA is uniformly distributed within C-capsids, and adopts a liquid crystalline 

conformation closely resembling that observed in bacteriophage (Booy et al., 1991). Gibson 

& Roizman (1971) proposed that spermine present within capsids was involved in partially 

neutralising the negatively charged DNA. 

 

The following sections outline current knowledge on the fundamentals of DNA packaging 

in HSV-1, including the putative roles of several viral proteins in encapsidation. These roles 

have been surmised from studies on HSV-1 and the herpesviruses HCMV, PRV, GPCMV, 

KSHV and HHV-6, and also in large part by inference from studies of dsDNA phage. For 

comprehensive reviews on herpesvirus assembly and packaging, see Homa & Brown 

(1997), Brown et al. (2002) and Baines & Weller (2005). 

1.3.2.1 Capsid assembly and maturation 

The processes of DNA packaging and capsid maturation are thought to occur concurrently 
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in infected cells. Co-ordinated assembly of capsid components about a proteinaceous 

scaffold results in the formation of spherical procapsids that are the precursors of all 

angularised capsid forms and the substrates for DNA packaging (Figure 1.6) (reviewed by 

Homa & Brown, 1997).  

 

The primary components of the HSV-1 capsid are the major capsid protein VP5 and the 

triplex proteins VP19C and VP23. The pentons and hexons (collectively known as 

capsomers) of the capsid shell are composed of five or six copies of VP5 respectively, and 

together form the floor of the capsid. Two copies of VP23 and a single VP19C molecule 

make up triplexes that sit above this floor and connect groups of three capsomers. The 

proteinaceous scaffold about which procapsids are assembled is composed of pre-VP22a 

protein, encoded by the UL26.5 gene, and full length UL26 protein. These proteins make 

contact with the inner face of the capsid floor via their C-termini. The UL26 protein 

contains a protease domain that is responsible for auto-cleavage, generating VP24 (the 

maturational protease) and VP21 (scaffold domain). During packaging VP24 cleaves pre-

VP22a and VP21 near their C-termini, breaking their interaction with the capsid floor. 

Both cleaved proteins are subsequently released from the capsid as DNA is inserted. 

 

Experiments demonstrated that HSV-1 procapsids could be assembled in insect cells 

infected with baculoviruses expressing the HSV-1 capsid proteins. Studies using these 

procapsids indicated that capsid assembly is initiated around the portal protein and 

proceeds via the stepwise addition of VP5-preVP22a complexes to a growing shell 

(Newcomb et al., 1999). It was demonstrated that a region of the scaffold protein was 

crucial in mediating the incorporation of the portal to the capsid (Singer et al., 2005). 

Furthermore, if assembly was initiated in the absence of the portal protein, subsequent 

addition of the portal to the growing shell did not enable portal incorporation, suggesting  
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Figure 1.6: Pathways of HSV-1 capsid assembly 
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that assembly proceeded by addition of shell components to the portal (Newcomb et al., 

2005).  

 

The first evidence that procapsids were the progenitors of angularised B-capsids came 

from studies by Newcomb et al. (1996), who demonstrated that purified HSV-1 procapsids 

angularised into polyhedral shells upon in vitro incubation. Successful maturation of 

procapsids into C-capsids is tightly coupled to both cleavage of the internal scaffold and 

DNA packaging.  

 

Analysis of several HSV-1 KOS mutants first demonstrated that cleavage of the internal 

scaffold is necessary but not sufficient for DNA packaging, and provided insight into the 

formation of A-capsids containing neither scaffold nor DNA as abortive products of 

unsuccessful DNA encapsidation (Sherman & Bachenheimer, 1987; Sherman & 

Bachenheimer, 1988). Studies using ts1201, which contains a temperature-sensitive lesion in 

the UL26 protease, reinforced the importance of scaffold cleavage in DNA encapsidation. 

At the non-permissive temperature (NPT), large-cored B-capsids containing uncleaved 

scaffold accumulated in the nucleus of cells infected with ts1201 (Preston et al., 1983). 

Upon downshift to the permissive temperature and restoration of protease activity, scaffold 

protein was cleaved and DNA-containing C-capsids generated (reviewed by Rixon, 1993; 

Homa & Brown, 1997). B-capsids are envisaged to be angularised shells containing cleaved 

scaffold that have not undergone a DNA packaging event, and are dead-end products. 

Empty A-capsids are found in cells infected with viruses able to initiate DNA packaging 

(e.g. wt HSV-1 and mutants in the UL12 and UL25 genes), but not in cells infected with 

other DNA packaging mutants. C-capsids containing DNA but lacking an internal scaffold 

are products of a successful packaging event, and are the only capsids able to undergo 

nuclear egress and further maturation. 
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1.3.2.2 The a sequence and Uc-DR1-Ub 

The a sequence of HSV-1 contains the cis-acting sequences required for genome cleavage 

and packaging, and in strain 17syn+ encompasses a region approximately 400 bp in length.  

A number of direct repeats (DR1 and DR2, and in some strains DR4) and two quasi-

unique regions, Ub and Uc, together constitute the a sequence (Figure 1.7). Each complete 

a sequence is flanked by copies of DR1, with tandem a sequences separated by a single 

copy of DR1. Within the terminal a sequences, the Uc motif lies proximal to the L 

terminus of the genome, whilst Ub lies closest to the S terminus. The two quasi-unique 

regions are separated by multiple reiterations of DR2 and, if present, DR4.  

 

Within Ub and Uc lie the pac1 and pac2 motifs, which contain several elements conserved 

near the termini of avian and mammalian herpesvirus genomes, and which play crucial 

roles in DNA packaging (Deiss et al., 1986; Nasseri & Mocarski, 1988; Deng & Dewhurst, 

1998; Deng et al., 2004; Feederle et al., 2005). The first hint that packaging signals may be 

conserved between herpesviruses was provided by studies in which the HSV-1 a sequence 

was functionally replaced by the a sequence from HCMV (Spaete & Frenkel, 1985). The 

pac1 motifs of Ub are represented by a G+C-rich region, followed by a T-rich element and 

a second region of high G+C content. The Uc pac2 motifs comprise a consensus 

CGCCGCG motif and T-rich and G+C-rich elements (Figure 1.7).  

 

During encapsidation, cleavage occurs within DR1, creating genomic termini containing an 

incomplete DR1 with a 3’ overhang of a single base (Mocarski & Roizman, 1982). Upon 

fusion of termini during circularisation (section 1.2.3), a complete DR1 repeat is 

regenerated at the centre of a novel Uc-DR1-Ub fragment formed by joining the terminal a 

sequences (Figure 1.7). This Uc-DR1-Ub junction has been demonstrated to represent the 

minimal functional HSV-1 packaging signal (Nasseri & Mocarski, 1988; Hodge & Stow,  
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Figure 1.7: The HSV-1 strain 17 syn+ a sequence  
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2001). 

 

Traditionally, studies on herpesvirus cleavage packaging signals have employed two 

approaches. The first is the introduction of putative packaging signals at ectopic sites 

within viral genomes, and the examination of concatemeric DNA for cleavage at novel 

sites corresponding to the inserted sequences. However, in many instances, analysis can be 

complicated by repair of mutated sequences by recombination with wt a sequences. The 

second approach utilises amplicons: plasmids containing both a viral origin of replication 

(oriS) and a putative packaging signal. The amplicons are transfected into tissue culture cells 

and helper functions are supplied by wt virus, either via co-transfection of viral DNA or 

super-infection with virus particles. Amplicon DNA is replicated autonomously and, in the 

presence of functional packaging signals, is encapsidated. The first demonstration that sub-

genomic molecules could be packaged, provided they contain the correct signals, was 

provided by (Vlazny et al., 1982). Stow et al. (1983) demonstrated that encapsidation of 

amplicon DNA required sequences from either genomic terminus, and concluded that the 

a sequence must therefore contain all the sequences necessary for cleavage and packaging.  

 

Mutation of the pac1 and pac2 motifs utilising either of these approaches has allowed the 

functional importance of packaging elements to be examined. The insertion of mutated a 

sequences into an ectopic site within the strain KOS genome revealed the significance of 

pac1 in directing cleavage of the S terminus of HSV-1 (Smiley et al., 1990). Analysis of 

ectopic mutated copies of pac1 and pac2 in the context of the MCMV genome suggested 

that several elements in both motifs were crucial for successful MCMV DNA packaging 

(McVoy et al., 1998). Introduction of mutations into HSV-1 pac1 and pac2 sequences had 

profound effects on the propagation and packaging of amplicons containing the mutated 

sequences. These data led to a model in which signals for the initiation and termination of 
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packaging are contained within Uc and Ub respectively, and the directions of packaging of 

the viral genome is from the L terminus to the S terminus (Hodge & Stow, 2001).  

Section 1.4 HSV-1 packaging proteins  

Six trans-acting proteins encoded by HSV-1 (UL6, UL15, UL17, UL28, UL32 and UL33) 

are absolutely required for DNA cleavage and packaging, but are dispensable for capsid 

assembly or DNA replication. Viruses lacking functional versions of these proteins exhibit 

a common phenotype whereby DNase-sensitive concatemers accumulate in infected cells, 

but DNase-resistant (i.e. encapsidated) viral DNA and genomic termini are absent. 

Moreover, these viruses exhibit an absence of C-capsids, together with the accumulation of 

B-capsids containing cleaved scaffold. These data indicate that these proteins are absolutely 

required for successful DNA packaging to be initiated. A seventh protein, UL25, is not 

required for DNA cleavage or the initiation of packaging, but seems to be crucial at the 

later stages of the packaging process.  Similarly, the HSV-1 UL12 gene, encoding an 

alkaline nuclease, is also required for efficient packaging, although packaging can occur in 

the absence of functional UL12. 

1.4.1 UL6 

The 75 kDa UL6 protein has been identified as a component of all three types of mature 

angular capsids as well as procapsids (Patel & MacLean, 1995; Sheaffer et al., 2001). Initial 

studies on a virus containing a temperature-sensitive lesion in UL6 revealed its importance 

in the encapsidation process (Sherman & Bachenheimer, 1987; Sherman & Bachenheimer, 

1988). Analysis of UL6-null mutants isolated on complementing cell lines revealed that, in 

non-complementing cells, viral DNA exists as endless concatemers and B-capsids lacking 

UL6 accumulate (Patel et al., 1996; Lamberti & Weller, 1998). Recent experiments, in which 

knock down of the HCMV homologue of UL6 (UL104) using an RNA interference 

approach led to a decrease in both viral growth and C-capsid formation, confirmed the 
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importance of UL6 in the packaging process (Dittmer & Bogner, 2006). 

 

Several lines of evidence indicate that the 676 aa UL6 protein forms a dodecameric portal 

complex at one of the procapsid vertices, structurally and functionally analogous to the 

connector proteins of bacteriophage. Immunogold labelling of UL6 on B-capsids revealed 

the deposition of gold particles adjacent to a single capsid vertex. Furthermore, electron 

microscopy analysis of purified recombinant baculovirus-expressed UL6 complexes 

revealed heterogeneous ring-like structures, with an estimated mass corresponding to a 

dodecameric complex of UL6 (Newcomb et al., 2001). Further examination of UL6 

expressed from baculovirus-infected insect cells revealed that these rings are polymorphic, 

exhibiting 11-, 12-, 13- and 14-fold rotational symmetry. It was postulated that the 

dodecameric form of the complex is incorporated into procapsids, and that the portal 

projects outwards from the capsid shell (Trus et al., 2004). In agreement with these 

proposals, tomographic analysis of HSV-1 A-capsids suggested that the majority of the 

portal may lie outwith the capsid shell (Cardone et al., 2007). However, in stark contrast, 

evidence from cryotomographic reconstructions of HSV-1 capsids lacking pentons led 

Chang and colleagues to propose that UL6 formed a portal that lay partially within the 

capsid shell, in a manner reminiscent to that of ε15 and P22 (Chang et al., 2007). In 

agreement with this proposal, examination of the KSHV portal by cryotomography 

revealed that the complex was internally localised (Deng et al., 2007) , rather than the 

outward-protruding model suggested by Trus et al. and Cardone et al.. It remains to be 

determined which model is correct. 

 

Recent analysis of a series of UL6 mutants revealed a putative leucine zipper motif within 

UL6. Mutation of Leu residues within the zipper, or deletion of the entire zipper region, 

abrogated the ability of mutants to form ring-like structures and to support functional 



Martin R. Higgs, 2008  Chapter 1:  68

DNA packaging (Nellissery et al., 2007). Therefore, the zipper may be important for UL6-

UL6 interactions involved in ring formation. 

 

By analogy with dsDNA bacteriophage, the portal is also thought to mediate the 

interaction between terminase and capsid. Indeed, immunofluorescence and co-

immunoprecipitation studies revealed that UL6 and the UL15 and UL28 components of 

the putative HSV-1 terminase interacted (White et al., 2003). This was supported by 

evidence that in HCMV, the putative portal UL104 and terminase protein UL56 interact, 

and that this interaction is necessary for DNA packaging to occur (Dittmer et al., 2005). 

1.4.2 UL17 

The 703 aa UL17 protein has long been recognised as essential for viral replication (Baines 

& Roizman, 1991). Analysis of null mutants lacking UL17 revealed its involvement in the 

cleavage and packaging process, and demonstrated the accumulation of B-capsids in the 

absence of a functional copy of this gene (Salmon & Baines, 1998). Several studies have 

indicated that UL17 is present in A-, B- and C-capsids, and that more UL17 is present in 

virions than in capsids. Furthermore, UL17 is also present in L-particles lacking capsids 

(Salmon & Baines, 1998; Thurlow et al., 2005). Thus, UL17 is unique in being the only 

HSV-1 DNA packaging protein present in the virion tegument. In contrast, UL17 was 

reported to be absent from the tegument of PRV, although still crucial for the cleavage and 

packaging of PRV genomes (Granzow et al., 2005). 

 

Taus and colleagues (1998) demonstrated that, in wt-infected cells, the UL6 protein and 

major capsid proteins VP5 and pre-VP22a co-localized with ICP8 in replication 

compartments. However, in the absence of UL17, the major capsid components were not 

able to co-localize with IPC8, and formed distinct aggregates separate from replication 

compartments.  This suggested that UL17 had a role in targeting capsid components to 
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replication compartments during infection (Taus et al., 1998). 

 

More recently, it was established that association of UL25, another packaging protein, with 

angular capsids was dependent upon the presence of UL17. Furthermore, this relationship 

appeared to be reciprocal; in the absence of UL25, capsids contained two times less UL17 

than observed on wt capsids (Thurlow et al., 2006). Since both proteins were detected at 

multiple locations on the capsid it was hypothesised that they may play a role in stabilising 

capsids rather than acting directly in the packaging process.  

1.4.3 UL32 

A virus containing a temperature sensitive lesion in the UL32 gene was isolated in 1973, 

and later provided the first evidence that UL32 is essential for HSV-1 cleavage and 

packaging (Schaffer et al., 1973; Sherman & Bachenheimer, 1987). Characterisation of a 

UL32 insertional mutant, hr64, confirmed that UL32 was crucial for cleavage and packaging 

of viral DNA. In hr64-infected non-complementing cells, endless concatemeric DNA and 

B-capsids accumulated in the nucleus (Lamberti & Weller, 1998). 

 

The UL32 gene encodes a 67 kDa (596 aa) cysteine-rich protein which predominantly 

accumulates in the cytoplasm of infected cells, although a proportion co-localises with 

ICP8 in viral replication centres (Chang et al., 1996; Lamberti & Weller, 1998). Chang and 

co-workers (1996) demonstrated that, contrary to predictions based on the presence of 

conserved motifs, UL32 was neither a glycoprotein, nor did it encode an aspartyl protease 

activity. Moreover, they demonstrated that both native and histidine-tagged UL32 bound 

zinc. 

 

As with UL17, UL32 seems to be important in localising capsids to replication 

compartments during infection. Examination of infected cells by immunofluorescence 
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using an anti-hexon antibody revealed that, during wt infection, capsids co-localised with 

ICP8 in replication compartments. However, in the absence of UL32, capsids were no 

longer restricted to replication compartments and exhibited diffuse localisation throughout 

the cell (Lamberti & Weller, 1998). 

1.4.4 UL25 

Two viruses containing temperature-sensitive lesions in the UL25 gene, ts1204 and ts1208, 

have been isolated and characterised (Addison et al., 1984). At the NPT, electron 

microscopy studies revealed that neither virus was capable of assembling C-capsids; 

instead, an accumulation of B-capsids suggested a packaging defect. In addition, ts1204 

exhibited a very early defect when inoculated onto cells at the NPT, such that no viral gene 

expression occurred. Subsequent studies have shown that the UL25 lesion of ts1204 

prevents uncoating at the NPT (V. Preston, personal communication). 

 

Studies on the virus KUL25NS, a UL25-null mutant, revealed that in the absence of UL25, 

genomic DNA was cleaved but that genomes remained DNase-sensitive, confirming that 

UL25 is required for stable packaging of DNA. Moreover, a lack of functional UL25 led to 

the accumulation of abortive A-capsids, suggesting that packaging was successfully initiated 

but not completed (McNab et al., 1998). The authors proposed that UL25 acted as a ‘plug’ 

to retain DNA after the completion of packaging, and that this may be mediated by the 

binding of UL25 to the a sequence. 

 

These findings were extended by Stow (2001), who, in contrast, showed that KUL25NS 

could stably package both amplicon and genomic DNA, albeit inefficiently. Packaging of 

full-length genomes and amplicon-derived molecules longer than 100 kbp was impaired to 

a much greater degree than encapsidation of shorter amplicon-derived molecules. Crucially, 

the L-terminus of the genome was represented in packaged DNA at a significantly higher 
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level than the S terminus. This is consistent with packaging occurring from L to S, and 

suggests that UL25 may have an important role in the latter stages of encapsidation (Hodge 

& Stow, 2001). Stow proposed an alternate late function for UL25 in packaging; that 

incorporation of UL25 into the capsid during DNA packaging stabilised the capsid and/or 

the packaging machinery.  

 

Study of purified HSV-1 capsids determined that the 580 aa UL25 protein is predominantly 

found in C-capsids, with decreasing amounts in A- and B-capsids respectively.  In 

procapsids, very little UL25 was observed, suggesting that UL25 is added as packaging 

proceeds towards the generation of mature C-capsids (Sheaffer et al., 2001). Experiments 

with a GFP-tagged UL25 protein demonstrated that UL25 was able to interact with the 

capsid proteins VP19C and VP5, whilst immunoelectron microscopy studies revealed 

UL25 associated with both pentons and hexons (Ogasawara et al., 2001). This was 

confirmed by Newcomb et al. (2006), who demonstrated by immunoelectron microscopy 

that UL25 bound to the capsid vertices. In addition, and in agreement with the hypotheses 

of McNab and colleagues, Ogasawara et al. (2001) demonstrated that UL25 bound the a 

sequence, and thus may act as a ‘plug’ to anchor DNA inside the capsid. This interaction 

has however not been confirmed. 

 

Recently, the crystal structure of a truncated form of UL25, lacking the N-terminal 133 

amino acids, was resolved (Bowman et al., 2006). The structure reveals a helical core 

surrounded by flexible loops, consistent with proposals that UL25 binds diverse partners 

during encapsidation. Sequence comparisons of UL25 homologues identified four 

conserved clusters of surface residues that were proposed to be involved in protein-protein 

interactions. 
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As previously described, binding of UL25 to capsids is thought to be mediated by UL17 

(Thurlow et al., 2006). Cryo-electromicroscopy studies of HSV B- and C-capsids revealed a 

C-capsid specific component (CCSC) not apparent in B-capsids, or in B-capsids purified 

from a UL25-null virus. On the basis of biochemical data, and fitting of the crystal 

structure of UL25 into the CCSC mass, it was proposed that the CCSC comprised a UL17-

UL25 heterodimer (Cardone et al., 2007). It was speculated that, as DNA is packaged into 

the capsids, conformational changes expose several sites to which UL17 and UL25 bind. 

Moreover, it was suggested that the CCSC acts as an allosteric effector to promote nuclear 

egress of filled capsids. 

 

Recent studies on PRV and HSV-1 have suggested that UL25 may play a role in 

tegumentation. This conclusion is based on the ability of UL25 to interact with the C-

terminus of the large tegument protein, UL36, and that UL25 is required to recruit a 

fragment representing the C-terminus of UL36 to sites of capsid assembly in the nucleus, 

allowing its incorporation into capsids (Coller et al., 2007).  

1.4.5 UL12 

In contrast to the above proteins, the 626 aa alkaline nuclease encoded by UL12 is not 

essential for DNA packaging.  In the absence of a functional alkaline nuclease, however, 

packaging efficiency is impaired. In viruses lacking functional UL12, an increase in the 

complexity of branched structures within concatemers was noted and very few C-capsids 

were present. Together with an increase in the number of abortive A-capsids, these data 

suggested that capsids containing packaged DNA are unstable in the absence of UL12 

(Shao et al., 1993; Martinez et al., 1996). Analysis of the mutant ambUL12 revealed that the 

efficiency of both DNA replication and packaging was decreased in the absence of 

functional UL12 (Porter & Stow, 2004a). Furthermore, the virions produced in the absence 

of UL12 exhibited high particle: p.f.u. ratios, and contained genomes that were non-
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infectious and behaved abnormally in gels (Porter & Stow, 2004b).  

 

Interaction between UL12 and the ssDNA-binding protein ICP8 has been demonstrated, 

and this interaction promotes strand exchange during recombination and enhances the 

nuclease activity of UL12 (Reuven et al., 2003; Reuven & Weller, 2005). 

 

Together, these data led to the proposals that in the absence of functional UL12, aberrant 

branched genomes were packaged, that packaging was aborted at an increased rate, and 

that DNA-containing capsids matured inefficiently into the cytoplasm. Thus UL12 is 

thought to resolve the branched intermediates produced during recombination of HSV-1 

genomes prior to packaging. Similarly, endonucleases have been implicated in the 

replication of dsDNA bacteriophage (Vellani & Myers, 2003). 

1.4.6 UL15 

The first suggestion that the UL15 gene product was involved in cleavage and packaging 

came in 1992, when Davison observed that the conserved UL15 gene exhibited limited 

sequence similarity to the gp17 terminase large subunit of T4 bacteriophage. As previously 

mentioned, UL15 is one of only four spliced genes encoded by HSV-1. However, 

replacement of the first exon of UL15 with a cDNA copy of the entire gene revealed that 

separation of the two exons by an intron is not necessary for viral replication (Baines & 

Roizman, 1992). Subsequently, UL15-null viruses, in which the UL15 gene was either 

prematurely terminated or replaced with a lacZ gene, were generated and characterised. 

Both viruses were found to be unable to cleave and package DNA when grown on non-

complementing cells (Baines et al., 1997; Yu et al., 1997). 

 

Examination of a virus, ts66.4, with a temperature sensitive lesion in the UL15 gene 

similarly demonstrated UL15 to be crucial for DNA cleavage and packaging. At the NPT, 
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viral DNA was synthesised but not packaged (Poon & Roizman, 1993). Studies on ts66.4 

were extended by Baines and colleagues (1994), who demonstrated that, at the NPT, DNA 

accumulated as concatemers, thus indicating that functional UL15 was necessary for both 

cleavage and packaging of viral DNA. In addition, two protein species of 35 kDa and 75 

kDa, sharing the same C-terminus, were detected using an antibody raised against UL15 

sequences encoded by the second exon of UL15 (Baines et al., 1994). Two publications 

revealed that the smaller 35 kDa species was derived from distinct in-frame translation of 

the second exon of UL15, and that the larger species was required for DNA cleavage and 

packaging (Baines et al., 1997; Yu et al., 1997). In an extension of these studies, Yu and 

colleagues mapped the initiation codon of the 35 kDa species, termed UL15.5, to Met443 of 

UL15. They demonstrated that UL15.5 was not required for viral replication or DNA 

cleavage and packaging (Yu & Weller, 1998a).  

 

Two studies examined the ability of UL15 to associate with angular B and C capsids  

(Salmon & Baines, 1998; Yu & Weller, 1998b). The former revealed that an 83 kDa 

protein, postulated to be full-length UL15, was associated with B capsids and virions. The 

latter study extended these findings, demonstrating that full-length UL15 is present in 

greater amounts in B-capsids than C-capsids (Yu & Weller, 1998b). In the absence of UL6 

or UL28, however, UL15 was unable to associate with B-capsids. Further analysis of 

virally-infected cells revealed that proteolytic cleavage of UL15 gave rise to two further 

products of 80 and 79 kDa. Combined with data from a previous study, it was postulated 

that the 83 kDa UL15 protein associated with capsids via sequences encoded by its N-

terminal 509 amino acids, and that cleavage into the smaller forms was tightly associated 

with encapsidation having taken place (Salmon & Baines, 1998; Salmon et al., 1999). 

 

UL15 has been demonstrated to be present in procapsids in greater amounts than in DNA-
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containing C-capsids (Sheaffer et al., 2001). Quantification of the amount of UL15 in 

angularised capsids by Beard et al. (2004) demonstrated that UL15 was predominantly 

found in A-capsids, with 12 copies of UL15 per A-capsid. In B-capsids, only a single copy 

of UL15 was observed, and this remained the case even in absence of UL6.  It was 

speculated that a functional packaging complex contained 12 UL15 molecules, as found in 

abortive A-capsids, and that, as previously described, B-capsids formed by default in the 

absence of a functional packaging complex (Beard & Baines, 2004). Together, these 

findings suggest the terminase remains associated with A-capsids after abortion of 

packaging and DNA release from the terminase. Decreased amounts of UL28 and UL15 in 

C-capsids are consistent with packaging being processive. 

 

An accumulating body of evidence suggests that UL15 is a component of the viral 

terminase enzyme, analogous to the terminase of dsDNA bacteriophage (see 1.4.9.) 

1.4.7 UL28 

Data collected from studies of HSV-1 UL28, and its homologues in PRV and HCMV, have 

led to the hypothesis that it forms part of the viral terminase complex together with UL15 

and UL33 (see 1.4.9). 

 

The first indication that UL28 was involved in the cleavage and packaging process was 

provided by studies on a temperature-sensitive virus, ts1203, containing a lesion in the 

UL28 gene. At the NPT, neither cleavage nor packaging was observed, and B capsids 

accumulated in the nuclei of infected cells (Addison et al., 1990).  Similarly, cells infected 

with a temperature-sensitive virus containing a lesion in the C-terminus of UL28 (tsZ47) 

displayed a similar phenotype at the NPT (Cavalcoli et al., 1993). It was demonstrated that 

tsZ47 represented a distinct temperature-sensitive mutant that exhibits intragenic 

complementation with ts1203.  In support of these findings, studies on a virus lacking the 
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PRV homologue of UL28, ICP18.5, and two HSV-1 mutants with deletions in UL28, gCB 

and gCΔ7B, confirmed the necessity for UL28 in the packaging process (Mettenleiter et al., 

1993; Tengelsen et al., 1993). On non-complementing cells these viruses exhibited 

phenotypes similar to viruses lacking other crucial packaging proteins: the accumulation of 

uncleaved concatemeric DNA and B-capsids in infected cell nuclei.  

 

The first evidence that the 785 aa UL28 polypeptide may be present in viral capsids came 

from studies on the homologous protein in HCMV, UL56 (Bogner et al., 1993). Subsequent 

analysis of angular HSV-1 capsids revealed that UL28 is present in B-capsids, but absent 

from C-capsids (Yu & Weller, 1998b). Sheaffer and co-workers (2001) demonstrated that 

UL28 was present in procapsids, in greater amounts than observed in C-capsids. Expansion 

of these findings by Beard et al. (2004) established that UL28 is absent from A-capsids, 

leading to the speculation that, together with viral DNA, UL28 is lost when DNA 

packaging is aborted. 

1.4.8 UL33 

To date, three viruses containing mutations in the conserved UL33 gene have been 

isolated, providing insight into the role of UL33 as a DNA packaging protein. The 

temperature-sensitive mutant ts1233 was characterised by Al-Kobaisi et al. (1991). The ts 

phenotype of this mutant results from a single amino acid substitution (Ile → Asp at 

position 17) within the N-terminus of the 130 aa UL33 protein. At the NPT of 39.2 OC, no 

cleavage or packaging of concatemeric DNA was observed in cells infected with ts1233, 

and a defect in capsid maturation was observed.  

 

A second ts virus, ts8-22, was recently described and characterised by Yang et al. (2008). 

The temperature-sensitive phenotype of this virus stems from a single substitution (Thr → 

Pro) at position 61 of the UL33 protein. At the NPT of 39 OC, neither viral growth nor 
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encapsidation of viral DNA was observed. Furthermore, B-capsids produced at the NPT 

failed to exit the nucleus, in agreement with the findings of Al-Kobaisi et al. (1991).  

 

The mutant virus UL33–, isolated and characterised by Cunningham & Davison (1993) and 

hereafter referred to as dlUL33, also contains a mutation within the UL33 ORF. Removal 

of an XbaI site within UL33 by end filling and religation resulted in a frameshift after 

nucleotide 91 and the subsequent introduction of a novel downstream stop codon at 

nucleotide 127. The UL33 protein encoded by dlUL33 therefore contains 42 amino acids: 

the first thirty amino acids of wt UL33, followed by twelve novel amino acids 

(ARRALRLARRRA). This mutation rendered the virus unable to propagate unless grown 

on complementing 20A cells containing the UL33 gene. Further analyses confirmed that 

UL33 was not detectable in cells infected with this virus, and revealed that on non-

complementing cells, dlUL33 produced only B-capsids and concatemeric DNA (Patel et al., 

1996; Reynolds et al., 2000). 

 

In 2000, Reynolds and co-workers also showed that UL33 was expressed with late kinetics 

(γ2 class) and partially co-localised with ICP8 in replication compartments at late times 

during infection. Mutants lacking individual packaging proteins (UL6, UL15, UL17, UL28 

and UL32) were reported to exhibit similar localisation of UL33 (Reynolds et al., 2000). 

 

Examination of angularised HSV-1 capsids revealed that UL33 associates with all three 

types of capsids (Beard & Baines, 2004). An increased amount of UL33 was observed in A-

capsids compared to B-capsids, and association of UL33 was sensitive to increasing GuHCl 

concentrations. Furthermore, binding of UL33 to capsids was reported to be independent 

of the presence of UL6, UL15 or UL28. It is unknown whether UL33 is able to associate 

with procapsids. 
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UL33 has been demonstrated to interact with several viral proteins. An increasing body of 

evidence suggests that UL33, by virtue of interactions with UL15 and UL28, is a 

component of the viral terminase complex responsible for genome cleavage and packaging 

(1.4.9). 

 

Studies of the HSV-2 homologue of UL33 revealed that nuclear localisation of UL33, and 

the capsid protein VP26, was dependent upon the presence of the HSV-2 UL14 protein in 

co-transfection assays (Yamauchi et al., 2001). Furthermore, UL14 was demonstrated to 

share certain characteristics of heat shock proteins, including sharing sequences with 

several members of the Hsp70 family (Yamauchi et al., 2002). However, in HSV-1, UL14 is 

not absolutely essential for viral growth but is important for efficient egress of capsids 

from infected cells (Cunningham et al., 2000). This suggests that HSV-1 UL14 is 

dispensable for DNA packaging and is unlikely to play a crucial role in the transport of 

UL33 to the nucleus. Recent studies have demonstrated that HSV-1 UL14 is important for 

mediating the nuclear import of VP16, and thus may play a role in early viral transcription 

events (Yamauchi et al., 2008). 

 

Recent analysis of viral proteins in yeast-2-hybrid (Y2H) screens suggested that the KSHV 

and VZV homologues of UL33 interact with numerous viral partners (Uetz et al., 2006). 

Proposed partners include, but are not limited to, the homologues of HSV-1 DNA 

replication proteins UL5 and UL9, the capsid proteins VP23 and VP26, and several 

proteins involved in nucleotide metabolism. Interestingly, UL33 was also demonstrated to 

interact with homologues of the packaging proteins UL17 and UL32 in this system 

(summarised in Table 5.1). 
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However, several problems are apparent in the study by Uetz and colleagues. Firstly, many 

conserved and well-characterised interactions, such as those between the DNA helicase-

primase accessory factor and origin-binding protein (UL8 and UL9 respectively, McLean et 

al. (1994), were not detected using this experimental approach. Similarly, interactions 

between the terminase components (UL15-UL28 and UL28-UL33) were not identified. 

 Furthermore, strong correlation has been observed between protein hydrophobicity and 

number of protein partners in Y2H screens (Deeds et al., 2006). Thus, several (or all) of the 

UL33 interactions observed by Uetz and colleagues may be spurious, and mediated non-

specifically by hydrophobic residues within UL33. Lastly, recent experiments utilising Y2H 

screens to examine protein-protein interactions in EBV failed to detect any of the UL33 

interactions observed in KSHV or VZV (Calderwood et al., 2007). 

1.4.9 The HSV-1 terminase: UL15, UL28 and UL33 

A substantial body of evidence has led to the hypothesis that UL15, UL28 and UL33 form 

a viral terminase enzyme, analogous to that of several dsDNA bacteriophage, and crucial 

for the encapsidation of viral genomes. In contrast with phage terminases, HSV-1 

terminase therefore contains three subunits. At present, the biochemical activities necessary 

for DNA packaging (e.g. ATPase or nuclease activities) have not been demonstrated for 

either the complex or individual subunits of the HSV-1 terminase. No cell-free system for 

HSV-1 DNA packaging currently exists in which to demonstrate terminase function 

directly. 

 

Distant relatedness between UL15 and the large terminase subunit of T4 bacteriophage, 

especially conservation of a putative Walker A box ATP-binding motif, first suggested that 

the conserved UL15 gene was part of an HSV-1 terminase (Davison, 1992). This was 

further reinforced by mutation of a conserved Gly residue within the Walker A box of 

UL15, which abrogated DNA cleavage and packaging (Yu & Weller, 1998a). Further 
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evidence that UL15 encodes a terminase function was provided by mutagenesis studies in 

which residues conserved between UL15 and the large subunits of phage terminase were 

mutated (Przech et al., 2003). Generally, these alterations rendered UL15 unable to support 

cleavage and packaging, although the ability of the mutated proteins to bind to capsids or 

localise to replication compartments was unperturbed. 

  

Koslowski et al. (1997) provided evidence of a direct interaction between UL15 and UL28, 

by demonstrating that HSV-1 UL15 is capable of re-locating PRV UL28 to the nucleus of 

co-transfected cells. Deletion mutants revealed that the C-terminal 155 aa of PRV UL28 

were important for the interaction with UL15 (Koslowski et al., 1997). When expressed 

alone, HSV-1 UL28 was present in the cytoplasm. However, in the presence of UL15, both 

proteins co-localised in the nucleus, suggesting an interaction. This was confirmed by the 

purification of a UL15-UL28 heterodimer from HSV-1-infected cells (Koslowski et al., 

1999). Mutational analysis of UL28 revealed that at least two separate regions of UL28 are 

responsible for interactions with UL15 (Abbotts et al., 2000). Recently, analysis of a virus 

containing a lethal insertion in UL28 revealed a second-site mutation within UL15, capable 

of restoring functional DNA packaging and providing genetic evidence that interaction 

between the proteins in necessary for encapsidation (Jacobson et al., 2006). 

 

In 2001, Adelman et al. (2001) reported that HSV-1 UL28 encoded a DNA-binding activity, 

by demonstrating that UL28 bound to a novel ssDNA structure formed by the pac1 motif.  

The efficiency of UL28 binding to various pac1 mutants correlated with the ability of 

similar pac1 mutants to undergo cleavage in MCMV. These data were consistent with the 

hypothesis that UL28 was a crucial component of the putative HSV-1 terminase. However, 

this appears to conflict with the proposal that pac1 is involved in packaging termination, 

and the findings that mutants lacking UL28 exhibit defects in initiation of packaging 
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(Addison et al., 1990; Tengelsen et al., 1993; Hodge & Stow, 2001). It remains possible, 

however, that UL28 may also interact with sequences required for initiation. Although the 

binding of HSV-1 UL28 to packaging signals has not been confirmed, a body of evidence 

from Bogner and colleagues suggests that the homologous HCMV protein, UL56, is able 

to bind HCMV packaging signals (Bogner et al., 1998; Bogner, 1999). 

 

Experiments in HSV-1-infected mammalian cells and insect cells mixedly infected with 

recombinant baculoviruses demonstrated that an antibody directed against UL28 was able 

to co-immunoprecipitate UL15, UL28 and UL33 (Beard et al., 2002). It was additionally 

shown that UL33 was able to interact independently with UL15 and UL28. Thus it was 

suggested that a hetero-oligomeric complex of UL15, UL28 and UL33 comprised the 

HSV-1 terminase.  

 

In contrast to the studies by Beard and co-workers, Yang and Baines (2006) demonstrated 

that UL28 was necessary to mediate the interaction between UL15 and UL33. 

Furthermore, the presence of UL33 enhanced the UL15-UL28 interaction (Jacobson et al., 

2006). Linker-based mutagenesis of UL28 revealed that the C-terminus of UL28 was 

required for its interaction with UL33 (Jacobson et al., 2006). Furthermore, co-

immunoprecipitation analysis of cells infected with the UL28-null mutant gCB confirmed 

that UL15 and UL33 interact only indirectly. 

 

Immunofluorescence and immunoprecipitation assays demonstrated that both UL15 and 

UL28 could interact with the HSV-1 portal protein UL6, consistent with their role as a 

terminase (White et al., 2003). This result was confirmed in HSV-1-infected cells by Yang et 

al. (2007). It remains unknown whether UL33 can also interact with UL6. 
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Yang and colleagues (2007) additionally demonstrated that the UL15-UL28-UL33 complex 

was assembled in the cytoplasm of infected cells, and that an NLS within UL15 was 

responsible for import of the complex into the nucleus. UL6 was imported into the nucleus 

separately from UL15, suggesting that interaction between terminase and portal is a 

subsequent event (Yang et al., 2007). Characterisation of two viruses, ts8-22 and ts66.4, 

containing temperature-sensitive lesions in UL33 and UL15 respectively, demonstrated that 

at the NPT interaction of the thermolabile protein with the remaining members of the 

terminase complex was diminished (Yang et al., 2008). Furthermore, the lesion within UL33 

was sufficient to reduce interaction with UL28 in transient expression assays. 

 

Studies by Bogner and colleagues on the HCMV homologues of UL28 and UL15, UL56 

and UL89 respectively, have provided insight into the function of these proteins in the 

cleavage and packaging process. UL56 has been demonstrated to exhibit ATPase and 

nuclease activities in vitro, and is able to bind both pac1 and pac2 sequences (Bogner et al., 

1998). An ATPase activity has also been attributed to UL89 in vitro (Scheffczik et al., 2002). 

Further study has revealed that ATP hydrolysis by UL56 is enhanced by UL89 (Hwang & 

Bogner, 2002) and that mutation of several residues diminishes the ATPase activity of 

UL56 (Scholz et al., 2003). The structure of UL56 has been resolved by electron 

microscopy, which revealed a dimer consisting of two ring-like monomers stacked on top 

of one another (Savva et al., 2004). Interaction between these proteins has been 

demonstrated in GST pulldown experiments (Thoma et al., 2006). However, not all these 

findings are necessarily relevant to the HSV-1 proteins. For example, UL56 has been 

demonstrated to encode an NLS critical for DNA packaging, which is lacking in the 

homologous HSV-1 UL28 protein (Geisen et al., 2000b). Furthermore, sequence 

alignments showed that the ATP binding domains identified by Scholz et al. (2003) in 

HCMV UL56 are not retained in HSV-1 UL28. 
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1.4.10 DNA packaging as a drug target 

Due to its unique mechanism and crucial role in the viral life cycle, DNA cleavage and 

packaging is an attractive target for novel anti-herpesvirus therapeutics (reviewed by Visalli 

& van Zeijl, 2003). Indeed, several compounds have been described which target proteins 

known to be crucial for DNA packaging. The first report of therapeutics able to inhibit the 

cleavage packaging process came in 1998, when it was demonstrated that a benzimidazole 

ribonucleoside (BDCRB) inhibited cleavage of concatemeric HCMV DNA (Krosky et al., 

1998). In addition, resistance to BDCRB was conferred by two mutations within the 

second exon of the HCMV UL89 gene, which, on the basis of homology to the T4 

bacteriophage terminase large subunit, was postulated to encode the endonucleolytic 

subunit of the HCMV terminase. Furthermore, mutations within both the UL56 and UL89 

genes of HCMV (which are crucial for HCMV encapsidation) conferred resistance to a 

related packaging inhibitor, TCRB (Krosky et al., 1998).  

 

The first packaging inhibitors (WAY-150138 and CL-253824) to inhibit growth of HSV-1, 

and to a lesser extent HCMV, HSV-2 and VZV, were described by van Zeijl et al. (2000). 

Examination of viral DNA in infected cells treated with these compounds revealed a defect 

in the cleavage and subsequent encapsidation of DNA.  Three independent isolates 

revealed that resistance mapped to the putative portal protein UL6, and arose from single 

point mutations in the amino acid sequence. Moreover, when these mutations were 

individually introduced into wt virus, they were sufficient to mediate drug resistance. These 

findings were extended by Newcomb & Brown (2002), who demonstrated that WAY-

105138 was able to inhibit incorporation of the portal protein UL6 and the putative 

terminase subunit UL15 into capsids. 
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More recently, studies of BDCRB have been extended to determine how it inhibits 

cleavage and packaging. Studies on guinea pig cytomegalovirus (GPCMV) revealed that 

whilst packaging occurred in the presence of BDCRB, capsids were unable to protect DNA 

from degradation by DNase, and were unable to exit the nucleus (Nixon & McVoy, 2004). 

In addition, BDCRB induced the loss of 2.7-4.2 kbp of sequence from the left-hand end of 

genomes. This led to the proposal that BDCRB induced a premature cleavage event in 

GPCMV. The scope of these studies was extended to HCMV, where it was noted that 

BDRCB induced the formation of a 270 kbp species known as monomer+, containing two 

copies of the short genome segment (McVoy & Nixon, 2005). It was thus hypothesised 

that BDCRB induces the skipping of cleavage sites in HCMV. Together, these data suggest 

that BDCRB acts by altering the ability of terminase to recognise packaging signals. 

 

Section 1.5 Aims 

Although UL33 has been demonstrated to be part of the putative HSV-1 terminase 

complex and vital for DNA packaging, its role in the process has yet to be elucidated. The 

aims of the work set out in this thesis were to examine structural-functional relationships 

within UL33, and to shed new light on its role in encapsidation of the viral genome. 

 

Initially, a panel of UL33 mutants bearing 5 aa insertions within the UL33 ORF were 

created to identify regions important for its function. These were tested for their ability to 

support viral growth and DNA packaging in cells infected with the UL33 mutant viruses 

dlUL33 and ts1233 (Al-Kobaisi et al., 1991; Cunningham & Davison, 1993). These 

experiments revealed that mutations in several regions of UL33 abrogated growth and 

packaging. 

 

Subsequent studies aimed to determine why several mutants were unable to support DNA 
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packaging and viral growth. It was postulated that an inability of several mutants to package 

DNA might be explained by a failure to interact with the putative terminase proteins UL15 

and UL28. However, experiments were unable to demonstrate that any of the mutants 

were defective in their ability to bind either UL15 or UL28. As a result, ensuing 

experiments focused on the ability of wild type and mutated UL33 proteins to interact with 

the other DNA packaging proteins. Although novel interactions were detected between 

UL33 and UL6, and also between UL33 and the UL25 protein, none of the mutants were 

compromised in their ability to bind either of these proteins. 

 

Finally, in an effort to determine whether the mutated UL33 proteins retained the capacity 

to localise to sites of viral DNA packaging, their localisation in dlUL33-infected cells was 

examined. Further experiments aimed to ascertain whether a specific component of the 

packaging machinery was responsible for the localisation of the terminase complex to sites 

of viral replication and genome packaging.  
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Chapter 2: Materials and methods 

Section 2.1 Materials 

2.1.1 Chemicals and reagents 

All chemicals and reagents were purchased from Sigma-Aldrich Co. Ltd, except where 

stated below: 

BDH Laboratory Supplies:  -Dimethylsulphoxide (DMSO) 

     -Dimethylformamide (DMF) 

Bio-Rad Laboratories:   -Acrylamide 

-Acrylamide: N, N’-methylene-bis acrylamide 

19:1 

-Ammonium persulphate 

Melford Laboratories Ltd:  -Caesium chloride 

Pierce:     -Surfact-AmpsTM NP40 

2.1.2 Stock solutions 

Alkaline lysis solution I 15 mM Tris-HCl pH 8.0, 10 mM EDTA pH 

8.0, 100 μg/ml RNase A 

Alkaline lysis solution II 0.2 M NaOH, 1% (w/v) SDS 

Alkaline lysis solution III 5 M Potassium acetate, 11.5 ml glacial acetic 

acid, in a final volume of 100 ml distilled water

β-galactosidase Fix 2% (w/v) formaldehyde and 0.2% (w/v) 

gluteraldehyde in PBS 

β-galactosidase Stain 5 mM potassium ferricyanide, 5 mM 

potassium ferrocyanide, 2 mM MgCl2,  

0.5 mg/ml X-gal solution in PBS. 

Blocking Solution 5% (w/v) marvel, 10% (v/v) FCS, 10% (v/v) 

glycerol, 0.05% (v/v) Tween-20 in PBS 

Blot Presoak 6x SSC, 5x Denhardt’s solution, 0.1% (w/v) 
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SDS, 20 μg/ml denatured calf thymus DNA 

Blot Wash 2x SSC, 0.1% (w/v) SDS 

Boiling mix 6% (w/v) SDS, 30% (v/v) glycerol, 0.3% 

(w/v) bromophenol blue, 210 mM β-

mercaptoethanol 

Cell Lysis Buffer (2x) 20 mM Tris-HCl pH 7.5, 2 mM EDTA, 1.2% 

(w/v) SDS 

Chloroform:Isoamyl alcohol 24 parts chloroform:1 part isoamyl alcohol 

(v/v) 

Denhardt’s Solution 0.02% Ficoll 400, 0.02% polyvinyl 

pyrrolidone, 0.02% bovine serum albumin 

DNA Loading Buffer 0.25% (w/v) bromophenol blue, 40% (w/v) 

sucrose 

Denaturing Gel Soak 0.6 M NaCl, 0.2 M NaOH 

EZ Buffer 1% (v/v) NP40, 10% (v/v) glycerol, 100 mM 

Tris-HCl pH 8.0, 100 mM KCl, 0.5 mM 

PMSF, 1 μM Leupeptin, 1 μM Pepstatin 

Formaldehyde Fix  5% (v/v) formaldehyde, 2% (w/v) sucrose in 

PBS 

Fractionation Buffer A 50 mM Tris-HCl pH 8.0, 50 mM NaCl, 1% 

NP40, 1 mM dithiothreitol, 0.5 mM PMSF 

Fractionation Buffer B 50 mM Tris-HCl pH 8.0, 450 mM NaCl, 1% 

NP40, 1 mM dithiothreitol, 0.5 mM PMSF 

HEPES-buffered Saline (HeBS) 137 mM NaCl, 5 mM KCl, 0.7 mM NaH2PO4, 

5.5 mM D-glucose, 21 mM HEPES, adjusted 

to pH 7.05 with NaOH 

Hybridisation Mix 6x SSC, 10x Denhardt’s solution, 20 mM Tris-

HCl pH 7.5, 1 mM EDTA, 0.5% (w/v) SDS, 

50 μg/ml denatured calf thymus DNA 

LB Medium 170 mM NaCl, 1% (w/v) Bactopeptone, 0.5% 

(w/v) yeast extract 

LB-agar L-Broth plus 1.5% (w/v) agar 

Loening’s Buffer 40 mM NaH2PO4, 36 mM Tris, 1 mM EDTA 

Neutralising Gel Soak 0.6 M NaCl, 1 M Tris-HCl pH 8.0 
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Nick-translation Buffer (NTB) (10x) 0.5 M Tris-HCl pH 7.5, 0.1 M MgCl2, 10 mM 

DTT, 0.5 mg/ml BSA 

Permeabilisation Buffer 0.5% (v/v) NP40, 10% (w/v) sucrose in PBS 

Phosphate-buffered Saline (PBS) 137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4, 2 mM KH2PO4 

Protease 20 mg/ml grade XIV protease 

Resolving gel buffer (4x) 1.5 M Tris-HCl pH 8.8, 0.4% (w/v) SDS 

Reticulocyte Standard Buffer (RSB) 10 mM Tris-HCl pH 7.5, 10 mM KCl, 1.5 mM 

MgCl2 

RNase Mix (200x) 1 mg/ml RNase A, 100,000 U/ml RNase T1 in 

TE 

SDS-PAGE tank buffer 52 mM Tris, 53 mM glycine, 0.1% (w/v) SDS 

S.O.C. Media 2% (w/v) tryptone, 0.5% (w/v) yeast extract, 

10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 20 

mM glucose 

Stacking gel buffer (4x) 488 mM Tris-HCl pH 6.8, 0.4% (w/v) SDS 

Standard Saline Citrate (SSC) 150 mM NaCl, 15 mM sodium citrate 

Sucrose Reagent 0.25 M sucrose, 2 mM MgCl2, 50 mM Tris-

HCl pH 8.0 

TE 10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8 

Towbin Buffer 25 mM Tris, 192 mM glycine, 20% (v/v) 

methanol 

Tris-Borate-EDTA (TBE) 90 mM Tris base, 89 mM boric acid, 1 mM 

EDTA 

Tris-Buffered Saline (TBS) 137 mM NaCl, 5 mM KCl, 0.7 mM NaH2PO4, 

5.5 mM glucose, 25 mM Tris-HCl pH 7.4 

Triton Reagent 0.5% (v/v) Triton-X 100, 62.5 mM EDTA, 50 

mM Tris-HCl pH 8.0 

Tryptose Phosphate Broth (TP) 0.1 mg/ml tryptose phosphate in PBS 

Versene 0.6 mM EDTA, 0.002% phenol red in PBS 

X-gal Solution 20 mg/ml X-gal in DMF 

 



Martin R. Higgs, 2008  Chapter 2:   

 

89

2.1.3 Enzymes 

All restriction enzymes, and their appropriate buffers, were supplied by New England 

Biolabs or Roche Diagnostics Ltd. Other enzymes are listed below, together with their 

suppliers: 

Sigma-Aldrich Co. Ltd:   -Protease grade XIV 

     -Lysozyme 

     -RNase A 

     -RNase T1 

     -DNase I 

New England Biolabs:   -DNA polymerase I 

     -T4 DNA ligase 

     -Calf intestinal phosphatase 

2.1.4 Cells and culture media 

Baby hamster kidney 21 clone 13 (BHK-C13)  cells were used for much of the 

presented work, and were obtained from the Unit’s Cytology Department. BHK-C13-

derived 20A cells were acquired from Charles Cunningham (MRC Virology Unit; 

Cunningham & Davison, 1993). Rabbit skin cells (RSCs) were obtained from Dr 

Valerie Preston (MRC Virology Unit), and RSC-derived clone 17 cells were acquired 

from Dr Joel Baines (Cornell University, Ithaca, New York, U.S.A; Baines et al., 1997). 

African green monkey kidney (Vero) cells were acquired from Dr Valerie Preston. 

Vero-derived C1 cells were obtained from Dr Fred Homa (University of Pittsburgh, 

Pittsburgh, U.S.A.; Tengelsen et al., 1993). Spodoptera frugiperda (Sf 21) cells were 

obtained from the Unit’s Cytology Department.  

 

The following media was used in the cultivation of these cells: 
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Glasgow’s modified Eagle’s medium (GMEM)  - Invitrogen Ltd. 

    

Dulbecco’s modified Eagle’s medium (DMEM)  - Invitrogen Ltd. 

TC100     - Invitrogen Ltd. 

Foetal Calf Serum (FCS)    - Invitrogen Ltd. 

Newborn Calf Serum (NBCS)    - Invitrogen Ltd. 

Human Serum (HS)    - MP Biomedicals LLC 

Trypsin (10x)    - Invitrogen Ltd. 

 

EPS - GMEM supplemented with 100 U/ml 

penicillin and 100 μg/ml streptomycin 

EC5 - EPS plus 5% NBCS 

BHK/20A growth medium - EPS plus 10% NBCS and 7% Tryptose 

phosphate broth 

Vero/C1/RSC/clone 17  - DMEM supplemented with 100 U/ml 

medium penicillin and 100 μg/ml streptomycin plus 5% 

FCS   

Sf 21 growth media - TC100 plus 5% FCS, 100 U/ml penicillin and 

100 μg/ml streptomycin 

EC2HU3 - EPS plus 2% FCS and 3% HS 

Sf 21 overlay - 1:25 dilution of Neutral Red in Sf 21 growth 

media  

2.1.5 Antibiotics 

The antibiotics used in this study are listed below, together with their suppliers.  

Ampicillin (Penbritin)   - SmithKline Beecham Research 
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Chloramphenicol   - Sigma-Aldrich Co. Ltd 

Gentamycin    - Invitrogen Ltd 

Kanamycin    - Sigma-Aldrich Co. Ltd 

Tetracycline    - Sigma-Aldrich Co. Ltd 

Penicillin/Streptomycin  - Invitrogen Ltd  

2.1.6 Viruses 

Several herpesviruses were used in the course of the experimental work: 

HSV-1 strain 17 syn+     - McGeoch et al. (1988) 

UL33- (hereafter referred to as dlUL33) - Cunningham & Davison (1992) 

ts1233      - Al-Kobaisi et al. (1991) 

gCB      - Tengelsen et al. (1993) 

S648      - Baines et al. (1997) 

lacZ-UL6―     - Patel et al. (1996) 

2.1.7 Baculoviruses 

The following baculoviruses were used in co-immunoprecipitation studies, and express 

the indicated HSV-1 gene under the control of the AcMNPV polyhedrin promoter: 

AcUL6 Patel et al. (1996) 

AcUL15 Abbotts et al. (2000) 

AcUL17 Dr V. Preston (unpublished) 

AcUL25 Thurlow et al. (2005) 

AcUL28 Abbotts et al. (2000) 

AcUL32 Dr A. Patel (unpublished) 

AcUL33 Dr N. Stow (unpublished) 
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2.1.8 Bacterial strains 

Plasmids were manipulated and propagated in E. coli strain DH5 (XL1-Blue; 

Stratagene). High efficiency transformations were performed using electrocompetent 

E. coli DH10B (Genehogs; Invitrogen Ltd.). Recombinant baculoviruses were created 

using electrocompetent E. coli DH10Bac cells (Invitrogen Ltd.).  

2.1.9 Plasmids 

The following plasmids were used in this study and provided by Dr N. Stow, unless 

otherwise stated: 

pAT153 Vector derived from pBR322 containing amp/tet resistance loci 

(Twigg & Sherratt, 1980). 

pCMV10 Mammalian expression vector specifying amp resistance, and 

containing a MCS flanked by the HCMV major IE promoter and 

spicing/polyadenylation signals from SV40 (Stow et al., 1993) 

pAS30 The HSV-1 UL6 gene (nucleotides 15120 to 17323) inserted into the 

MCS of pCMV10 (Patel et al., 1996). 

pE9 The HSV-1 UL9 gene (nucleotides 23261 to 20809) cloned into the 

MCS of pCMV10 (Stow et al., 1993) 

pElacZ pCMV10 containing the E. coli lacZ gene 

pGX153 Plasmid pAT153 containing the BamHI P fragment from HSV-1 

(Porter & Stow, 2004b) 

pIM96 The HSV-1 UL25 gene cloned into the BamHI site of pCMV10 (Dr 

V. Preston, MRC Virology Unit) 

pJM9 A cDNA fragment equivalent to the spliced mRNA of UL15 in 

pCMV10 (Abbotts et al., 2000) 

pJM19 pJM9 with the pp65 epitope (ERKTPRVTGG) added to the C-

terminus of the UL15 ORF (Abbotts et al., 2000) 

pMH19 The HSV-1 UL17 gene under the control of the HCMV MIEP 

(Thurlow et al., 2005) 

pSA1 pAT153 with the HSV-1 oriS fragment cloned into the BamHI site, 
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and the HSV-1 minimum packaging signal Uc-DR1-Ub fragment 

cloned between the EcoRI and HindIII sites (Abbotts et al., 2000) 

pUL6in269 pAS30 containing a 4 amino acid linker (ARSR) between amino 

acids F269 and D270 of UL6 (White et al., 2003) 

pUL28 The HSV-1 UL28 gene (nucleotides 58182 to 55761) cloned into the 

SmaI site of pCMV10 (Abbotts et al., 2000) 

pUL28-cMyc pUL28 with a single copy of the c-Myc epitope (EQKLISEEDL) 

inserted into the SmaI-SmaI sites of UL28 and replacing amino acids 

466-476 of UL28 (White et al., 2003) 

pUL32 The HSV-1 UL32 gene (nucleotides 69159-67201) inserted into the 

MCS of pCMV10 (Dr A. Patel, MRC Virology Unit). 

pUL33 The HSV-1 UL33 gene (nucleotides 69110 to 69576) cloned into the 

BamHI site of pCMV10 (Dr G. Reid, MRC Virology Unit). 

pUL33-His6 pUL33 with a His6 tag inserted at the C-terminus of the UL33 ORF 

(Dr G. Reid, MRC Virology Unit). 

 

2.1.10 Radiochemicals 

α-32P dCTP and dGTP used were purchased from GE Healthcare, UK, at 10 μCi/μl 

(3000 Ci/mMole). 

2.1.11 Oligonucleotides 

A primer designed to sequence fragments inserted into the MCS of pCMV10 was 

purchased from Sigma-Genosys Ltd: 

CMV   CCATTGACGCAAATGGGC  

The following primers were purchased from Invitrogen and used to identify insertions 

in pFastBacTM1: 

M13 Fwd (-40)  GTTTTCCCAGTCACGAC 

M13 Rev  CAGGAAACAGCTATGAC 
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2.1.12 Antibodies 

The following immunological reagents were used in this study, and are listed together 

with the immunogen used to create the antibody, and the source or supplier: 

Antibody Immunogen Source/Reference 
 
Rabbit polyclonal antibodies 
 

 

R148 Bacterially-expressed UL33-His6 purified 

from inclusion bodies 

Dr V. Preston, MRC 

Virology Unit 

R123 Bacterially expressed amino acids 138-785 

of UL28 

Abbotts et al. (2000) 

R605 Bacterially expressed fusion protein,  

GST-UL15 (amino acids 551-917)  

Dr V. Preston, MRC 

Virology Unit 

R1218 Amino acids 154-703 of UL17-MBP 

fusion protein 

Thurlow et al. (2006) 

RC12 A peptide displaying amino acids 580-594 

of UL32 

Dr A. Patel, MRC 

Virology Unit 

R335 Amino acids 342-580 of UL25-GST fusion 

protein 

Thurlow et al. (2006) 

R992 Amino acids 379-676 of UL6-MBP fusion 

protein 

Thurlow et al. (2006) 

 
Mouse monoclonal antibodies 
 

 

M51(4) Bacterially expressed UL33-His Dr V. Preston, MRC 

Virology Unit 

M166 Bacterially expressed UL25-His Thurlow et al. (2005) 

M175 Bacterially expressed UL6-NusA Thurlow et al. (2005) 

M13924 HSV-1 UL9  Stow et al.(1998) 

M7381 HSV-1 ICP8 (UL29) Everett et al. (2004) 

M203 Bacterially expressed UL17-NusA Thurlow et al. (2005) 

DM165 Purified HSV-1 VP5 (UL19) protein McClelland et al. (2002) 

Anti-Histone H1 Histone H1 A & B Upstate Biotechnology 

 

The following epitope-specific mouse monoclonal antibodies were used: 
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 Epitope:  

Mouse Anti-c-Myc Amino acids 408-439 of human p62 c-Myc Sigma-Aldrich Co. Ltd. 

Mouse Anti-His6 His6 epitope Roche Diagnostics Ltd. 

Mouse Anti-pp65 HCMV pp65 epitope (HCMV late gene 

product) 

Capricorn Products 

Mouse Anti-Actin Synthetic actin C-terminal epitope 

(SGPSIVHRKCF) 

Sigma-Aldrich Co. Ltd. 

  

Secondary antibodies 
 

 

Protein A-horseradish peroxidase conjugate Sigma-Aldrich Co. Ltd. 

Goat Anti-mouse IgG-Cy5 conjugate GE Healthcare  

Goat Anti-rabbit IgG-FITC conjugate Sigma-Aldrich Co. Ltd. 

 

2.1.13 Miscellaneous reagents 

The suppliers of miscellaneous reagents were as follows: 

Citifluor:   AF1 Mounting Agent 

GE Healthcare:  Rainbow markers 

Hybond-XL Membrane 

    Hybond-P PVDF Membrane 

    G-50 Microspin Columns 

    ECL Reagent 

    Gammabind-G-Sepharose 

Invitrogen:   Lipofectamine Reagent 

    Plus Reagent 

Kodak Ltd:   X-omat Film 

Fujifilm:   Phosphorimager Screens 

Sigma-Aldrich Co. Ltd:  Propidium Iodide 

    Ethidium Bromide 
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    Protein-A-Sepharose 

    Phenol 

Finnzymes:   Insertional Mutagenesis Kit 

Qiagen:   QiaQuick Gel Extraction Kit 

2.1.14 Computer software 

LOOPP Protein-threading analysis  - http://cbsuapps.tc.cornell.edu/ 

Pattern PROFILE analysis   - http://myhits.isb-sib.ch/cgi-bin/index 

Expasy Translate tool (Gasteiger et al., 2003) - http://expasy.org/tools/dna.html 

PSIPred (Jones, 1999)    - http://bioinf.cs.ucl.ac.uk/psipred/ 

GlobPlot (Linding et al., 2003)   - http://globplot.embl.de/ 

Quantity One 1-D Analysis software  - Bio-Rad Laboratories 

 

Section 2.2 Methods 

2.2.1 DNA manipulation and analysis 

2.2.1.1 Restriction enzyme digests 

One microgram of plasmid DNA was digested with 2.5 U of appropriate restriction 

enzyme in a final volume of 10 μl in the presence of 100 μg/ml BSA and a 1 x 

concentration of buffer. Digests were incubated at 37 OC for two hours. If further 

modification of the digested plasmid was required, the reaction was extracted once 

with an equal volume of phenol, once with an equal volume of chloroform: isoamyl 

alcohol, and the DNA was precipitated with 2.5 volumes of ethanol. Following 

centrifugation the DNA was re-suspended in TE pH 7.5. 
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2.2.1.2 Dephosphorylation of vector 

To prevent recircularisation during subsequent ligations, vector DNA was 

dephosphorylated with calf intestinal phosphatase (CIP). One microgram of linearised 

vector was incubated with 1 U of CIP at 37 OC for two hours. The DNA was then 

extracted, precipitated, and re-suspended in TE pH 7.5 as described above (2.2.1.1). 

2.2.1.3 Agarose gel electrophoresis 

TBE buffer or Loening's buffer containing the appropriate percentage of agarose was 

boiled, and allowed to cool to approximately 60 OC. Ethidium bromide was added to 

0.5 μg/ml, and the agarose poured into a mould containing a well-forming comb. 

Upon setting, the gel was placed in an electrophoresis tank with the appropriate buffer, 

and DNA samples containing 1 x DNA loading buffer were added to individual wells. 

Samples were electrophoresed overnight at a constant voltage of 15 V, or for one hour 

at 100 V, and the DNA visualised using medium-wave UV. 

2.2.1.4 Purification of DNA fragments 

Plasmid DNA was digested with the appropriate restriction enzyme(s) to liberate the 

desired fragment, and the fragments separated on a 0.8% TBE gel containing ethidium 

bromide. DNA was visualised using long-wave UV, and the desired fragment excised. 

Purification of the DNA fragment from the gel slice was carried out using a Qiagen 

QIAquick Gel Extraction Kit according to the manufacturer’s instructions. Briefly, the 

volume of the gel slice containing the fragment of interest was calculated, and the slice 

incubated in three gel volumes of guanidine thiocyanate at 50 OC. After the agarose 

had dissolved completely, a single gel volume of isopropanol was added. DNA was 

adsorbed onto an immobilised silica membrane, washed, and bound DNA eluted with 

30-50 μl 10 mM Tris-HCl, pH 8.5. 
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2.2.1.5 Ligation 

One microgram each of vector and DNA fragment were incubated with 1 U of T4 

DNA ligase in a total volume of 20 μl of 1X ligation buffer. The reaction was 

incubated overnight at 4 OC, extracted sequentially with phenol and 

chloroform:isoamyl alcohol, and precipitated with 2.5 volumes of ethanol. DNA was 

re-suspended in TE pH 7.5. 

2.2.1.6 Insertional mutagenesis  

Transposition was carried out using a Finnzyme Mutation Generation System 

according to the manufacturer’s instructions. 170 ng of pUL33 was reacted with the 

MuA transposase and the M1-CamR Entranceposon at 30 OC for one hour. The 

transposase was heat-inactivated by incubation at 75 OC for ten minutes. Prior to 

transformation, 1 μl of the reaction was diluted with 9 μl H20 to reduce the salt 

concentration of the reaction and avoid arcing during electroporation. Ten aliquots of 

1 μl of the diluted mixture were transformed into electrocompetent DH10 E. coli as 

described below (section 2.2.2.1). Transformed bacteria were plated out on ten LB-agar 

plates containing chloramphenicol and ampicillin, and incubated overnight at 37 OC.  

 

Resultant colonies were picked, and plasmid DNA was prepared by alkaline lysis 

(section 2.2.3.1). Transformants harbouring the transposon were identified by 

restriction enzyme digestion. To release the transposon, DNA from positive clones 

was digested with NotI, and 5 ng of DNA was self-ligated. Plasmid DNA from the 

resulting transformants was isolated by alkaline lysis (section 2.2.3.1). The positions of 

the resulting 15 bp insertions were identified by restriction enzyme analysis and DNA 

sequencing (see Chapter 3). 
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2.2.2 Maintenance and manipulation of E. coli 

2.2.2.1 Transformation of competent E. coli  

Chemically competent DH5 cells (XL-1 Blue) were transformed according to the 

manufacturer’s instructions. Briefly, 50 μl of cells were thawed slowly on ice, and 

between 1 ng and 10 ng of diluted DNA from a ligation reaction was added. Cells were 

incubated on ice for 30 min, heat shocked at 42 OC for 45 sec, and placed on ice for 

two min. 450 μl of S.O.C. medium was added to the cells, which were then shaken at 

225 rpm, 37 OC for one hour. The cell suspension was diluted 1:10 with S.O.C. 

medium, and 100 μl was plated onto LB-agar plates containing the appropriate 

antibiotic. Plates were incubated overnight at 37 OC. 

 

Electro-competent DH10B and DH10Bac cells were transformed according to the 

manufacturer’s instructions. Essentially, 20 μl of cells were thawed slowly on ice, and 

DNA added as above. The reaction was electroporated using a Hybaid CellShock CS-

100 at 1.8 kV. Subsequently 250 μl of S.O.C. was added, and incubated at 37 OC, 225 

rpm for one hour. The transformation was then diluted 100-fold with S.O.C. and 

plated onto LB-agar plates containing the appropriate antibiotics. In the case of 

transformed DH10Bac cells, the transformation reaction was incubated at 37 OC for 

four hours at 225 rpm before being plated out on LB-agar and incubated for seventy-

two hours. 

2.2.2.2 Storage of E. coli 

Five millilitres of LB medium containing the appropriate antibiotic was inoculated with 

transformed DH5, DH10 or DH10Bac E. coli. Cultures were grown overnight at 37 OC 

225 rpm. 900 μl of the resultant culture was added to 100 μl of filtered DMSO, and 
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stored at –70OC. 

2.2.3 DNA preparation 

2.2.3.1 Small scale alkaline lysis preparations  

Individual colonies of transformed bacteria were picked, and used to inoculate 5 ml of 

LB containing the appropriate antibiotics. Cultures were incubated overnight at 37 OC, 

225 rpm. Plasmid DNA was extracted from transformed cells using an alkaline lysis 

procedure. Essentially, 1.5 ml of the culture was spun down in a sterile eppendorf at 

14,100 x g for 2 min, and the pellet resuspended in 100 μl of ice-cold solution I. 200 μl 

of solution II was added, and the contents of the eppendorf mixed gently by inversion. 

150 μl of solution III was added, the sample mixed gently, and centrifuged for 10 min 

at 14,100 x g. The supernatant was transferred to a sterile eppendorf, extracted 

sequentially with phenol and chloroform:isoamyl alcohol, and ethanol precipitated. 

The DNA was resuspended in 100μl TE containing 1 x RNase mix, and stored at  

–20 OC.  

2.2.3.2 Large scale plasmid preparation 

Starter cultures of 4 ml LB media and 10μl of bacterial stock containing the desired 

plasmid were incubated overnight at 225 rpm, 37 OC. The overnight cultures were then 

added to 350 ml LB, and incubated for sixteen hours at 37 OC, 225 rpm. Bacteria were 

pelleted at 10,400 x g for 10 min, and the pellet thoroughly resuspended in 8 ml TE 

pH 8.0. After centrifugation at 2,990 x g for 5 min at 4 OC, the resultant pellet was 

resuspended in 2 ml sucrose reagent. 400 μl of 20 mg/ml lysozyme was added, and the 

sample mixed by inversion and incubated at 4 OC for 30 min. 3.2 ml of triton reagent 

and 800 ml of 0.25M EDTA was added, and the sample incubated for a further 15 min 

at 4 OC.  
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The cell debris was removed by centrifugation at 124,520 x g for 30 min at 4 OC, and 

the supernatant decanted into a fresh tube. The sample volume was adjusted to 7.5 ml 

with 200 μl of 10 mg/ml ethidium bromide and distilled water. 7.5 g of caesium 

chloride was added to a final density of 1.55-1.60 g/ml. The sample was transferred 

into T1270 centrifuge tubes, topped with liquid paraffin, and centrifuged at 177,325 x g 

for 36 hours at 15 OC. 

 

The lower of the two bands in the gradient, corresponding to supercoiled plasmid 

DNA, was removed using an 18 gauge needle and 5 ml syringe. The ethidium bromide 

was removed by three sequential extractions with equal volumes of isoamyl alcohol. 

The resultant aqueous phase was dialysed twice for two hours against 3 litres TE, and 

stored at –20 OC. 

2.2.3.3 Determination of plasmid DNA concentration and identity 

The final concentration of large and small-scale plasmid stocks was determined by 

measuring the absorbance at 260 nm, based upon an A260 value of 1.0 corresponding to 

a dsDNA concentration of 50 μg/ml. The identity of the plasmid was confirmed by 

restriction enzyme digestion. 

2.2.4 DNA sequencing 

Plasmid DNA was prepared by the alkaline lysis method (2.2.3.1). 100 ng plasmid 

DNA and 1 μM primer in a final volume of 3 μl were provided for sequencing. DNA 

sequencing was carried out by Claire Addison and Aidan Dolan in the Institute, using 

an ABI prism 377 automated sequencer. Sequence traces and read-outs were analysed 

using Chromas software (v 1.45). 
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2.2.5 Cell culture and production of virus stocks 

2.2.5.1 Mammalian cell culture 

Cells were grown in 175 cm2 tissue culture flasks containing the appropriate growth 

media (section 2.1.4). Confluent monolayers were rinsed with versene, trypsinised with 

1x trypsin in versene, and re-suspended to a final volume of 10 ml fresh growth media. 

5 x106 cells were seeded into 175 cm2 flasks containing the appropriate growth media 

and incubated until confluent in a 5% CO2 environment at 37 OC. 

 

Every fifth passage after recovery, the complementing cell lines 20A, C1 and clone 17 

were grown in media supplemented with 300 μg/ml of G418. 

 

Cells were routinely screened for mycoplasma by the Unit’s Cytology Department. 

2.2.5.2 Production of herpesvirus stocks  

Six 175cm2 tissue culture flasks containing BHK or 20A cells at approximately 90% 

confluency were infected with HSV-1 or dlUL33 respectively at 0.01 p.f.u./cell. In the 

same way, six 175cm2 tissue culture flasks containing either C1 or clone 17 cells were 

infected with either gCB or S648 respectively. Three days post-infection, infected cells 

were released into the media by gentle agitation, pooled and centrifuged at 835 x g for 

10 min. BHK cells were similarly infected with 0.01 p.f.u./cell ts1233, and after 

incubation at 32 OC for four days the cells were harvested and centrifuged as above.  

 

The pellet was re-suspended in 5 ml of EC5, and extensively sonicated. Cellular debris 

was pelleted by centrifugation at 835 x g for 10 mins, and the resulting pellet was 

retained as cell-associated virus (CAV; aliquots stored at –70OC).  
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 The supernatant medium was centrifuged at 21,860 x g for 3 h, and the resulting pellet 

was re-suspended in 5 ml of EC5 to yield cell released virus (CRV). The suspension 

was sonicated extensively and aliquots stored at –70 OC.  

2.2.5.3 Determination of viral stock titres 

Ten-fold serial dilutions of virus stocks were made in EC5, and 100 μl samples used to 

infect near-confluent monolayers of the appropriate cell line in 35mm Petri dishes. 

Plates were incubated at 37 OC (32 OC in the case of ts1233) in an atmosphere of 5% 

CO2 for 45 minutes. Two millilitres of EC2Hu3 were then added and the monolayers 

incubated at 37 OC for three days (four days at 32 OC in the case of ts1233). The 

overlay was removed and 1 ml of Giemsa stain added for 30 min. The stain was 

washed off and the number of plaques from each dilution counted. Virus titre was 

determined by the following calculation: 

Titre= number of plaques on 10-n dilution x 10n x 10 p.f.u./ml 

e.g. 20 plaques on a –5 dilution plate corresponds to 20 x 105 x 10 = 2 x107 p.f.u./ml 

2.2.5.4 Insect cell culture  

Sf 21 cells were grown in 175 cm2 tissue culture flasks containing Sf 21 growth media. 

Confluent monolayers were rinsed with fresh media and removed by gentle agitation 

before being re-suspended to a final volume of 10 ml in fresh growth media. 

Approximately 2 x107 cells were seeded into 175 cm2 flasks containing fresh media and 

incubated at 28 OC until confluent. 

2.2.5.5 Production of baculovirus stocks 

Five 175 cm2 flasks of near-confluent Sf 21 cells were infected with 1 p.f.u./cell of the 

desired baculovirus, and incubated for four days at 28 OC. Cells were gently tapped 

into the media, and pelleted by centrifugation at 835 x g for 5 min. The supernatant 



Martin R. Higgs, 2008  Chapter 2:   

 

104

was centrifuged at 38,725 x g for 90 min, and re-suspended in 5 ml of Sf 21 growth 

media. Virus stocks were sonicated thoroughly and aliquots stored at –70 OC. 

2.2.5.6 Determination of baculovirus stock titres 

Ten-fold dilutions of baculovirus stocks were made in Sf 21 growth media, and near-

confluent monolayers of Sf 21 cells were inoculated with 100 μl of the diluted stocks. 

After incubation for one hour at 16 OC, the inoculum was removed and 1.5 ml of 

growth medium containing 1.5% molten agarose was added, and allowed to set. 1.5ml 

of Sf 21 medium was then added to each plate, and the monolayers incubated for four 

days at 28 OC. Monolayers were overlayed with 0.5 ml of Sf 21 overlay (containing 

Neutral Red) and incubated overnight at 28 OC. Plaques were counted and the titre 

determined as described (section 2.2.5.3). 

2.2.6 Creation of recombinant baculoviruses 

The creation of recombinant baculoviruses was carried out using the Invitrogen Bac-

to-Bac™ system (Invitrogen Ltd.), according to the manufacturer’s instructions: 

2.2.6.1 Generation of recombinant bacmids 

One nanogram pFastBac plasmid containing a wt or mutated UL33 gene was 

transformed into 100 μl of DH10Bac cells as described previously (2.2.2.1). The 

bacteria were plated on LB plates containing X-gal, kanamycin, gentamycin and 

tetracycline. After seventy-two hours, bacterial colonies unable to express functional 

β–galactosidase  were identified. These bacteria were re-plated and plates incubated 

overnight at 37 OC. Recombinant bacmid DNA was isolated using a modified alkaline 

lysis procedure. Essentially, 3 ml of LB was inoculated with a single colony, and 

incubated overnight at 37 OC, 225 rpm. 1.5 ml of the culture was centrifuged at 14,100 

x g for 1 min, and the pellet resuspended in 300 μl of ice-cold solution I. Three 
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hundred microlitres of solution II was added, and the sample incubated at 16 OC for 

five min. Three hundred microlitres of 3 M potassium acetate (pH 5.5) was slowly 

added, and the precipitate removed by centrifugation at 14,100 x g for 10 min. The 

supernatant was mixed with 800 μl of isopropanol, and incubated at 4 OC for 5 min. 

The DNA was precipitated by centrifugation at 14,100 x g for 15 min, and rinsed twice 

with 500 μl of 70% ethanol before being air-dried. The pellet was resuspended in 40 μl 

of TE pH 8.0, and stored at 4 OC. 

2.2.6.2 Production of recombinant baculovirus stocks  

Transfection of insect cells 

Approximately 9 x105 Sf 21 cells were seeded into 35 mm dishes two hours prior to 

transfection, and incubated at 28 OC. One microgram of recombinant bacmid was 

diluted in 200 μl of unsupplemented TC100 media, and combined with 6 μl of 

Lipofectamine. The resultant lipid-DNA complexes were incubated for 45 min at 16 

OC. The media was removed from the Sf 21 monolayers, and the cells were washed 

once with 2 ml of unsupplemented TC100. Eight hundred microlitres of TC100 was 

added to each lipid-DNA complex, and the sample was added to the washed 

monolayers and incubated at 28 OC for five hours. Two millilitres of Sf 21 growth 

media was then added, and the monolayers incubated at 28 OC for 72 hours. 

Harvesting viral progeny and generating high-titre stocks 

Once the transfected cells exhibited signs of cell lysis, the media from the monolayers 

were transferred into fresh tubes. Cells were removed by centrifugation at 500 x g for 5 

min at 4 OC, and the resultant supernatant baculovirus stock was stored at 4 OC. Viral 

titres were determined and high titre baculovirus stocks prepared as described 

previously (2.2.5.5). 
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2.2.7 Transfection of mammalian cells 

2.2.7.1 Calcium phosphate transfection 

35mm Petri dishes were seeded with 1 x 106 cells, and incubated overnight at 37 OC, 

5% CO2. For each monolayer, 12 μg of carrier calf thymus DNA (2 mg/ml) and 1 μg 

of plasmid DNA was added to 0.5 ml of HeBs and precipitated with 35 μl 2M CaCl2. 

The resulting fine suspension was added to the monolayers, and incubated at 37 OC, 

5% CO2 for 45 min. Two millilitres EC5 were then added, and the plates incubated for 

4 hours. The monolayers were then washed and exposed to 1 ml of 22.5% DMSO in 

HeBS for 4 min (Stow & Wilkie, 1976). After two washes, the cells were incubated in 2 

ml EC5 for eighteen hours at 37 OC, 5% CO2. 

2.2.7.2 Lipofection  

1 x 105 BHK, Vero or rabbit skin cells were seeded on 12 mm2 coverslips overnight at 

37 OC, 5% CO2. For each monolayer, 0.5 μg of plasmid DNA was diluted in 25 μl of 

either GMEM or DMEM containing 4 μl of Plus reagent. The sample was incubated 

for 15 min at RT. One microlitre of Lipofectamine was diluted in 25 μl of GMEM or 

DMEM, then added to the DNA-Plus complex, and incubated for 15 min at RT. 

Meanwhile, the medium was drained off the monolayers and replaced with 250 μl of 

GMEM or DMEM. The DNA-Plus-Lipofectamine complex was then added, and the 

cells incubated for three hours at 37 OC, 5% CO2. 250 μl of appropriate growth media 

containing 2x the normal serum concentration was then added, and the cells incubated 

for sixteen hours at 37 OC, 5% CO2. 

2.2.7.3 Staining for β-Gal expression  

Monolayers were transfected with pElacZ, either by lipofection or calcium phosphate 
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precipitation. Eighteen hours post transfection (h.p.t.) the medium was removed and 

the monolayer washed in PBS. Cells were fixed by the addition of 1 ml β-galactosidase 

fix for five min, then washed twice with 2 ml PBS. Monolayers were incubated with 1 

ml β-galactosidase stain for 6 hours at 37 OC, and the transfection efficiency calculated. 

Positive (blue) cells were counted in five fields of view, and the average efficiency 

calculated. Typically, 50% of lipofectamine-treated cells would be transfected, whilst 

calcium phosphate treated cells had a transfection rate of 5-10%. 

2.2.8 Transient packaging assay 

2.2.8.1 Transfection and superinfection 

Cells were transfected by the calcium phosphate method described above. Six h.p.t. 

monolayers were infected with helper virus at 5 p.f.u./cell, and incubated for 45 min at 

37 OC, 5% CO2. After virus adsorption, 2 ml of EC5 was added, and incubation 

continued for eighteen hours at 37 OC, 5% CO2. 

 

The medium was removed from monolayers, the cells were washed with TBS and 

scraped into 2 ml of fresh TBS. Harvested cells were divided into two 1ml aliquots in 

microfuge tubes, and total and packaged DNA was prepared as described below. 

2.2.8.2 Preparation of total cellular DNA 

One 1 ml aliquot of harvested cells was centrifuged at 14,100 x g for 1 min and the 

pellet was thoroughly resuspended in 184 μl RSB with 0.5% NP40. 184 μl of 2x CLB 

containing 0.5 mg/ml protease was then added, and the samples incubated for 1 hour 

at 37 OC. 32 μl of 4 M NaCl/0.5 M EDTA was then added, and the sample extracted 

sequentially with phenol and chloroform:isoamyl alcohol. The DNA was ethanol 

precipitated and resuspended in 100 μl TE containing 1 x RNase mix. 
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2.2.8.3 Preparation of DNase resistant DNA 

The second aliquot of harvested cells was centrifuged as above, and the cell pellet was 

resuspended in 184 μl RSB containing 0.5% NP40 and 200 μg/ml DNase I and 

incubated for 20 min at 37 OC. 184 μl of 2x CLB containing 0.5 mg/ml protease was 

added, and the samples processed as above. The DNA was resuspended in 50 μl of TE 

containing 1 x RNase mix. 

2.2.9 Southern Blotting and hybridisation 

2.2.9.1 Southern blot transfer 

DNA representing the yield from 4 x 105 cells was digested with EcoRI and DpnI in a 

40 μl reaction. Digestion was stopped by the addition of 4 μl 10x DNA loading buffer, 

the samples loaded onto a 0.8% Loening’s buffer agarose gel containing 0.5 μg/ml 

ethidium bromide, and electrophoresed overnight at 15-25 V. To confirm that efficient 

DNase digestion had occurred, and that all the lanes contained equivalent amounts of 

DNA, a photograph of the gel was taken under medium wave UV. 

 

The gel was soaked in denaturing gel soak for 45 min, followed by immersion in 

neutralising gel soak for a further 45 min. The DNA was blotted onto a nitrocellulose 

membrane by capillary transfer in 6 x SSC for 18 hours at room temperature. DNA 

was then crosslinked by exposure to 120 mJ/cm2 UV light, and the membrane blocked 

with blot pre-soak for one hour at 68 OC. Specific DNA fragments were detected by 

overnight incubation in 10 ml hybridisation buffer containing the labelled and 

denatured DNA probe DNA (see section 2.2.9.2 below). After two 45 min washes in 

blot wash at 68 OC, the membrane was exposed to a phosphorimager screen and 

analysed using a BioRad Personal Molecular Imager FX in conjunction with Quantity 
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One software. 

2.2.9.2 Preparation of radio-labelled nick-translated DNA 

250 ng of plasmid was combined with 20 μCi each of α-32P dCTP and α-32P dGTP, 2 

U of DNA polymerase I and 10-7 mg DNase I. The reaction was incubated at 16OC for 

90 min in a final volume of 35 μl of 1x NTB (containing 60 μM dATP and 60 μM 

dTTP). 

 

The reaction mix was fractionated on a Microspin Sephadex G-50 column to separate 

radio-labelled plasmid from unincorporated nucleotides. The volume of the radio-

labelled plasmid eluted from the column was made up to 1 ml with distilled H2O, and 

the DNA was denatured by adding 200 μl of 1 M NaOH. After five minutes, the 

solution was neutralised by the addition of 200 μl of 1 M HCl and the probe was 

added to 8.6 ml of hybridisation buffer (prewarmed to 68 OC) and used immediately. 

2.2.9.3 Stripping and re-probing membranes 

To remove radiolabelled DNA, nitrocellulose membranes were incubated in 0.1% SDS 

at 100 OC. After two washes in 2x SSC, the stripped membrane was blocked and 

hybridised to fresh probe as previously described. 

2.2.10 Complementation yield assay 

Near-confluent monolayers of BHK cells were transfected with 1 μg of plasmid by the 

calcium phosphate method (2.2.7.1). Six h.p.t. monolayers were superinfected with 5 

p.f.u./cell of helper virus, and incubated at 37 OC (39.2 OC in the case of ts1233). After 

one hour, inoculum was removed and the plates washed once in 0.14 M NaCl, exposed 

to 0.1 M glycine, 0.14 M NaCl pH 3.0 for 1 min, and washed in EC5 (Rosenthal et al., 

1984). Incubation was continued at 37 OC (39.2 OC for ts1233). Eighteen h.p.i. the cells 
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and media were harvested, sonicated at 4 OC, and stored at –70 OC. Virus progeny 

titres were determined under conditions permissive for helper virus replication. 

2.2.11 Immunoprecipitation 

Immunoprecipitation of baculovirus-expressed proteins from Sf 21 cells 

35 mm Petri dishes were seeded with 2.5 x 106 Sf 21 cells, and incubated overnight at 

28 OC. Monolayers were infected with 5 p.f.u./cell of the appropriate baculovirus(es), 

and incubated for 48 h at 28 OC. Infected cells were harvested into the media, and 

centrifuged at 835 x g for 5 min at 4 OC. The cell pellet was washed twice with ice-cold 

TBS, and resuspended in 350 μl ice cold EZ buffer. After incubation on ice for 30 

min, the sample was centrifuged at 44,000 x g for 10 min at 4 OC, and the supernatant 

(clarified lysate) was retained.  

 

100 μl of clarified lysate was incubated in a microfuge tube with 30 μl of 50% protein-

A-sepharose slurry (in PBS) and 5 μl of the appropriate pre-immune serum, and 

centrifuged for 1 min at 14,100 x g, 4 OC. 5 μl of the appropriate rabbit polyclonal 

antibody was then added to the precleared supernatant, and the sample incubated on 

an end-over-end incubator for 3 hours at 4 OC. 50 μl of 50% protein-A-sepharose 

slurry (in PBS) was added, and the sample incubated at 4 OC for 2 hours. Immune 

complexes were collected by centrifugation at 14,100 x g for 1 min at 4 OC, and 

washed four times with 200 μl of ice-cold EZ buffer. After removal of the final wash, 

50 μl of boiling mix was added, and the sample incubated at 100 OC for 5 min. Ten 

microlitres of sample was analysed by SDS-PAGE and western blotting (2.2.12). 

 

Immunoprecipitation of virus-expressed proteins from BHK cells 

1 x 107 BHK cells were seeded into 175 cm2 flasks and incubated overnight at 37 OC, 
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5% CO2. Cells were infected with 5 p.f.u./cell of the appropriate herpesvirus, and 

incubated for 18 hours at 37 OC, 5% CO2. Cells were harvested into the media, 

collected by centrifugation at 835 x g for 5 min at 4 OC, and washed twice with ice-cold 

TBS. The pellet was resuspended in 500 μl EZ buffer, and incubated for 30 min at 4 

OC. Lysates were centrifuged at 44,000 x g, 4 OC for 10 min, and the supernatants pre-

cleared with 50 μl of 50% Gammabind-G-sepharose slurry (in PBS) and 5 μl of 

appropriate pre-immune serum. The sample was then centrifuged for 1 min at 14100 x 

g, 4 OC, and 200 μl of precleared supernatant incubated with 5 μl of R148. After 

incubation for 3 hours at 4 OC on an end-over-end incubator, 80 μl of 50% 

Gammabind-G-sepharose slurry (in PBS) was added, and the sample incubated at 4 OC 

for 16 hours. Immune complexes were collected by centrifugation and washed as 

described above, 80 μl of boiling mix added, and the sample incubated for 5 min at 

100 OC. Ten microlitres of sample was analysed by SDS-PAGE and western blotting 

(2.2.12). 

2.2.12 Subcellular fractionation 

Near-confluent monolayers of BHK cells in 35mm Petri dishes were mock infected or 

infected with 1 p.f.u./cell of the appropriate virus. Six h.p.i. cells were harvested and 

washed with ice-cold PBS, and then resuspended in 150 μl of fractionation buffer A. 

Nuclei were pelleted by centrifugation at 7000 x g for one min at 4 OC, and the 

resultant supernatant was retained as the cytoplasmic fraction. Nuclei were 

resuspended in 150 μl of fractionation buffer B for 10 min at 4 OC, and then sonicated 

for 10 s to yield the nuclear fraction. 150 μl of boiling mix was added to each fraction, 

the samples boiled and analysed by SDS-PAGE and western blotting (section 2.2.13). 
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2.2.13 Western blotting 

Typically, 35mm Petri dishes of near-confluent BHK cells were transfected or infected 

as described previously. 20 h.p.t. or 18 h.p.i. monolayers were washed in ice-cold TBS 

and resuspended in 100 μl boiling mix. Samples were incubated at 100 OC for 5 min, 

and the proteins resolved by SDS-PAGE. 

 

10 μl of sample was analysed on an 8% or a 15% running gel as indicated (39:1 

acrylamide: bisacrylamide) with a 5% stacking gel (19:1 acrylamide: bisacrylamide) at 

150V in 1 x SDS-PAGE tank buffer using a BioRad MiniProtean III kit. Separated 

proteins were blotted onto Hybond-P PVDF membranes using a BioRad transfer kit at 

100V, 4 OC for two hours in Towbin buffer. Effective blotting was confirmed by the 

transfer of Rainbow markers onto the membrane. 

 

The membrane was blocked in blocking solution for two hours, and washed twice in 

PBS supplemented with 0.05% Tween-20 (PBST). Rabbit and mouse primary 

antibodies were diluted 1:200 and 1:1000 respectively in PBST with 5% Marvel. The 

membrane was incubated in diluted primary antibody at 4 OC for three hours, and then 

had three 15 min washes in PBST. The membrane was incubated in a 1:1000 dilution 

of protein-A-peroxidase in PBST with 5% Marvel. After a further three 15 min washes 

in PBST, specific bands were detected by the addition of 1 ml ECL mix, and the blot 

exposed to X-omat autoradiographic film. 

2.2.14 Immunofluorescence 

13 mm2 glass coverslips in tissue culture wells were seeded with 1 x 105 cells, and 

incubated at 37 OC, 5% CO2 overnight. Monolayers were transfected with 0.5 μg of 

plasmid by lipofection (section 2.2.7.2), and incubated for 16 hours. Alternatively, cells 
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were infected with 1 p.f.u./cell of the appropriate herpesvirus, and incubated for 6 

hours. The cells were then washed twice in PBS, and fixed with 0.5 ml of 

formaldehyde fix for ten min. After two further washes with PBS, cells were treated 

with 0.5 ml permeabilisation buffer for ten min. The monolayers were then washed 

twice with 1ml PBS supplemented with 1% FCS (PBSF). In the case of herpesvirus-

infected cells, monolayers were then incubated in PBS containing 10% HS for 30 min 

to block virus encoded Fc receptors. 

 

Rabbit and mouse primary antibodies were diluted 1:200 and 1:1000 respectively in 

PBSF. Permeabilised cells were incubated in diluted primary antibody for 1 hour, and 

then rinsed five timed with PBSF. The cells were incubated for 1 hour in the 

appropriate FITC- or Cy5-conjugated antibody, diluted 1:200 or 1:500 respectively in 

PBSF. After five further washes in PBSF, coverslips were rinsed once in distilled water, 

and air-dried. Where appropriate, cells were incubated in 1 μg/ml propidium iodide 

before being rinsed in distilled water and dried. Dry coverslips were mounted on glass 

slides using AF-1 mounting agent, and examined using a Zeiss LSM 510 confocal 

microscope in conjunction with Zeiss Axioplan 40x and 63x lenses. Laser lines with 

excitation wavelengths of 488 nm, 545 nm and 633 nm were used to detect the FITC, 

propidium iodide and Cy5 fluors respectively. The channels were scanned separately 

with the settings for each channel maintained throughout, and images were compiled 

in Adobe Photoshop. 
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Chapter 3: Using insertional mutagenesis to study UL33  

Section 3.1 Introduction 

Although the central requirement for UL33 in DNA packaging has been known for 

several years, its precise role is still unclear. Furthermore, it has not yet been subjected 

to a detailed mutational analysis. The aim of the work presented in this chapter was 

therefore to create a panel of mutants with which to define regions of UL33 necessary, 

or dispensable, for DNA packaging. The data describe the generation of a series of 

UL33 mutants using a random insertional mutagenesis approach, and their subsequent 

characterisation in terms of ability to support DNA packaging, and to complement 

growth of viruses lacking functional UL33. 

 

Two UL33 mutant viruses were used. The temperature sensitive mutant ts1233, 

isolated by Al-Kobaisi et al. (1991), contains a single amino acid substitution within the 

N-terminus of UL33 and is defective in DNA packaging and growth at the NPT of 

39.2 OC. The UL33-null virus dlUL33 contains a frameshift after nucleotide 91 within 

the UL33 gene, resulting in introduction of a novel downstream stop codon at 

nucleotide 127 (Cunningham & Davison, 1993). The UL33 protein of dlUL33 

therefore contains 42 amino acids: the first thirty residues of wt UL33, followed by 

twelve novel amino acids (ARRALRLARRRA). This renders the virus unable to 

propagate or package its genome unless grown on complementing cells expressing the 

wt UL33 gene.  

Section 3.2 Creation and characterisation of UL33 insertional 

mutants 

Plasmid pUL33 contains an HSV-1 fragment comprising nucleotides 69,110 to 69,576 
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which include the UL33 gene, amplified by PCR from HSV-1 strain 17 DNA and 

cloned as a BamHI fragment into the expression vector pCMV10. This plasmid was 

generated by Gordon Reid (MRC Virology Unit, Glasgow), who additionally 

demonstrated that it could complement both growth and DNA packaging of dlUL33. 

Within pUL33, the UL33 ORF is encoded by 390 nucleotides and is expressed under 

the control of the HCMV major immediate early promoter (MIEP).  

 

Sequence analysis (Figure 3.1) demonstrated that pUL33 deviates from the published 

UL33 gene sequence for HSV-1 strain 17 (McGeoch et al., 1988) by the inversion of 

nucleotides 325 and 326 within the UL33 ORF, resulting in an Ala109 → Arg109 change. 

Comparison of available sequences from other HSV-1 strains and HSV-2 (Dolan et al., 

1998; Ushijima et al., 2007) revealed that these nucleotides are invariably inverted with 

respect to the published HSV-1 strain 17 sequence, and that Arg is consistently present 

at position 109. Therefore, the sequence reported by McGeoch et al. may contain an 

error within UL33, or might perhaps be derived from sequencing of a mutated clone. 

 

The Mutagenesis Generation System (MGS™, Finnzyme) allows the random insertion 

of an artificial transposon encoding the cat gene, which confers chloramphenicol 

resistance (camR), into a target plasmid (Figure 3.2; panel A). Transposition is 

catalysed in a cell free system by the transposase enzyme of bacteriophage Mu. To 

facilitate selection of mutated plasmids, products of the transposition are transformed 

into electrocompetent bacteria and selected for camR and ampicillin resistance (ampR) 

genes on the transposon and target plasmid respectively. DNA from the resulting 

colonies is isolated and cleaved with NotI to remove the bulk of the transposon. After 

digestion, the plasmid DNA is re-circularised, transformed into bacteria and selected 

for ampR. The resulting plasmids contain 15 bp insertions: a 10 bp remnant of the  
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Figure 3.1: Nucleotide alignment of pUL33 with related herpes simplex virus sequences  
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Figure 3.2: Principles of the MGS transposition system 
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transposon containing a single, unique NotI site, and a 5 bp duplication of the target 

site (Figure 3.2; panel B). 

3.2.1 Insertional mutagenesis and identification of mutants 

Plasmid pUL33 is suitable for use with the MGS without modification since it contains 

no NotI sites. To introduce the transposon into pUL33, an in vitro transposition 

reaction was carried out as described (section 2.2.1.6), and the mixture diluted 1:10 to 

reduce arcing during electroporation. Following transformation into electrocompetent 

E. coli (strain DH10B) and selection for camR and ampR, individual colonies (x530) 

were picked and grown up. Small-scale plasmid DNA preparations were made using an 

alkaline lysis method (see section 2.2.3.1). 

 

Identification of colonies containing the transposon within the UL33 gene was 

achieved on the basis of a size change of the UL33-containing fragment, revealed by 

digesting plasmids with BamHI and separating the fragments by electrophoresis on 

0.8% agarose gels. A summary of the screening process and a representative agarose 

gel of screened plasmids are shown in Figure 3.3.  

 

All clones (23) yielding BamHI fragments of 1721 bp and 3834 bp, indicative of 

transposition within the UL33 fragment, were selected. To remove the bulk of the 

transposon sequence, aliquots of plasmid DNA were digested with NotI. Digested 

plasmids were re-ligated and transformed into chemically competent DH5 E. coli. After 

selection for ampR individual colonies were picked, and plasmid DNA was isolated 

using a small scale alkaline lysis procedure. Glycerol stocks of these colonies were also 

prepared.  
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Figure 3.3: Screening for insertions within the UL33 gene 
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Identification of the approximate site of insertion was achieved by digestion  

with EcoRI, which cuts near the 5’ end of the UL33 gene, and NotI, which cuts within 

the 15 bp inserted sequence. Figure 3.4 shows the resultant EtBr-stained agarose gel 

of plasmids digested with NotI and EcoRI. As expected, pUL33 is linearised. All other 

plasmids liberated fragments between 200-600 bp, consistent with transposition within 

the UL33 fragment. Increasing size of the smaller fragment indicates increasing 

distance of the transposition event from the EcoRI site in pUL33. 

3.2.2 Sequencing of UL33 insertional mutants 

To determine the precise position of insertion, aliquots of DNA from each of the 23 

clones were sequenced using the ‘CMV’ primer (section 2.1.11). Analysis of the 

resulting sequences confirmed that, other than the 15 bp inserted through 

transposition, all of the mutants were identical to the UL33 gene of pUL33. The 

positions and nucleotide sequences of the 15 bp insertions within the UL33 gene are 

noted in Figure 3.5. For clarity, the target site duplication is indicated at the 3’ end of 

the 15bp insert. Several clones were indistinguishable by DNA sequencing and 

contained insertions after nucleotide 138 (marked by an *). A single representative 

clone of these mutants, clone 8 (subsequently re-named in51), was used in subsequent 

experiments. Altogether, sixteen distinct mutants with 15 bp insertions in the UL33 

gene were chosen for analysis.  

 

To establish the amino acid sequence of each UL33 mutant, the nucleotide sequences 

were inputted into the Expasy Translate program (section 2.1.14). Resultant sequences 

were aligned with the wt UL33 amino acid sequence using the ClustalX multiple 

alignment program, and the precise sequence and position of insertions determined 

with respect to the wt UL33 protein (Figure 3.6).  
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Figure 3.4: Mapping positions of insertion within UL33 by restriction digest 
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Figure 3.5: Position and sequence of 15 bp insertions within the UL33 gene 
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Figure 3.6: Positions and sequence of 5 aa insertions in the UL33 protein 
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The clones were designated according to the last unaltered amino acid before the 

insertion, and will be referred to as such for the remainder of the work. Two pairs of 

mutants (in79A/B and in111A/B) contained insertions at different positions within 

the same codon, and differed only in the identity of the inserted amino acids. 

3.2.3 Expression and localisation of mutated UL33 proteins 

Although DNA sequencing indicated the mutated plasmids all encoded full-length 

UL33 polypeptides containing 5 aa inserts, it was unknown whether any of the 

insertions would have deleterious effects on the stability of UL33, or on recognition by 

antibody R148. Protein expression from the mutated plasmids was therefore examined. 

 

Plasmids encoding either mutated or wild type UL33 proteins, or an empty vector 

control, were transfected into BHK monolayers by the calcium phosphate method 

(section 2.2.7.1), and the cells DMSO boosted after 4 hours. At 20 h post-transfection, 

cell extracts were lysed by boiling in the presence of SDS, and resultant proteins were 

separated by SDS-PAGE on 15% polyacrylamide gels. Separated proteins were 

transferred onto a PVDF membrane and immunoblotted using the UL33-specific 

rabbit polyclonal antibody R148 (section 2.1.12). The membrane was exposed to HRP-

coupled protein-A and proteins detected using an ECL substrate system (Figure 3.7, 

panel A). To confirm that equal amounts of protein were loaded, duplicate membranes 

were probed with an anti-actin antibody (section 2.1.12), which was detected using 

protein-A-HRP together with the ECL system described above (panel B).  

 

The results indicate that wt UL33 migrated with an apparent molecular mass of 

approximately 19 kDa, higher than the predicted Mr of 14.4 kDa, but in agreement 

with earlier studies (Reynolds et al., 2000). No UL33 protein was observed in pCMV10- 
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Figure 3.7: Analysis of mutated polypeptide expression in transfected cells 
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transfected cells, confirming that R148 detects a UL33-specific product. All of the 

mutated UL33 plasmids expressed polypeptides which were recognised by R148, and 

which exhibited similar mobility to the wt protein. The actin controls (panel B) 

confirmed that similar amounts of protein were loaded in each instance. Thus, none of 

the insertions had a significant effect on the size or stability of UL33, or its recognition 

by R148. 

 

Indirect immunofluorescence assays were used to investigate the intracellular 

localisation of both wild type and mutated UL33 proteins. 0.5 μg of pUL33 or an 

empty vector control (pCMV10) were transfected into BHK cells by the Lipofectamine 

method (section 2.2.7.2). Sixteen hours after transfection, the cells were fixed and 

permeabilised with paraformaldehyde and NP40 as described (section 2.2.14). After 

incubation with the R148 antibody for one hour, the cells were washed with PBSF and 

bound antibody detected using a FITC-conjugated goat anti-rabbit IgG antibody. The 

coverslips were examined using a Zeiss LSM 510 confocal microscope in conjunction 

with a laser with excitation lines at 488 nm, corresponding to the excitation wavelength 

of the FITC fluorophore. Images were exported and compiled in Adobe Photoshop.  

The results are shown in Figure 3.8. 

 

No fluorescence was observed in cells transfected with pCMV10 (panel A). In 

contrast, cells transfected with pUL33 exhibited bright fluorescence in both the 

nucleus and cytoplasm (panel B), although UL33 was present predominantly in the 

nucleus. Furthermore, UL33 was excluded from the nucleolus of transfected cells. A 

population of cells (~10% of transfected cells) exhibited a distinctive localisation 

pattern with UL33 mainly present in the cytoplasm (panels C and D). These data 

confirmed the suitability of R148 for the study of UL33 localisation in transfected cells. 
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Figure 3.8: Localisation of the UL33 protein in transfected cells 
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A similar experiment was performed to examine the localisation of the mutated UL33 

proteins. Cells were transfected with plasmids expressing wt and mutated UL33 and 

processed as described above. The results are shown in Figure 3.9. As before, cells 

transfected with pCMV10 did not exhibit fluorescence above background levels (data 

not shown). As observed above, wt UL33 localised throughout the cell, but was mainly 

concentrated in the nucleus. In cells transfected with plasmids expressing UL33 

insertional mutants, no significant changes in cellular localisation were observed 

compared with wt UL33. Similar expression levels were observed for each of the 

mutants, although, as seen with wt UL33, a proportion of cells exhibited a distinct 

localisation pattern with UL33 being predominantly present in punctuate cytoplasmic 

foci (not shown). These data suggest that insertions in the UL33 ORF have little effect 

on localisation of the mutated polypeptides in the absence of other viral proteins. 

Section 3.3 Ability of UL33 insertional mutants to complement 

the growth of UL33 mutant viruses 

To analyse the ability of insertional mutants to complement growth of viruses lacking 

functional versions of UL33, a transient complementation assay was utilised. The assay 

assesses complementation of mutant virus growth by proteins supplied in trans, usually 

under the control of a constitively active promoter, under conditions non-permissive 

for input virus replication. Progeny virus yield is subsequently determined by titration 

under permissive conditions. Low pH treatment following initial infection (Rosenthal 

et al., 1984) was used to inactivate the infectivity of particles that had not penetrated 

the cells, thereby reducing the background titres due to residual inoculum. 

3.3.1 Complementation yield analysis using ts1233 

To analyse the ability of mutants to complement growth of ts1233, BHK cells were  
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Figure 3.9: The cellular localisation of mutated UL33 proteins in transfected cells 
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transfected with plasmids expressing mutated or wt UL33 proteins by the calcium 

phosphate procedure, and DMSO boosted after 4 hours. Six hours post-transfection, 

cells were infected with 5 p.f.u./cell of ts1233 and incubated at the NPT of 39.2 OC. 

One hour after virus addition residual virus was neutralised with an acid-glycine wash 

(section 2.2.10). Eighteen hours post-infection (h.p.i) progeny virus was harvested and 

titrated on BHK cells at the PT of 32 OC. After four days, the cells were stained, 

plaques counted, and viral titres calculated. Figure 3.10 shows progeny virus titres 

obtained for each mutant expressed as a percentage of the titre obtained with pUL33.  

 

pUL33 effectively complemented growth of ts1233, achieving titres between 1.8 x105 

and 4.5 x105 p.f.u./ml. The yield from untransfected cells or cells receiving the vector 

pCMV10 was between 5% and 14% of that obtained with pUL33. This may represent 

the presence of ts+ revertants in the stock, leak of the ts virus or residual inoculum. 

Five of the sixteen mutants, containing insertions at positions 34, 37, 44, 79 and 100, 

complemented ts1233 growth to titres reaching 50-80% of those achieved using 

pUL33. Furthermore, one mutant, in84, resulted in a significantly higher average titre 

(>130%). With the exception of in79B, the remaining mutants did not support growth 

of ts1233 above background levels. The yields from cells receiving in79B were 

approximately 20% of pUL33 levels, suggesting that this mutant may complement 

growth to a low extent. 

 

To confirm that similar amounts of UL33 were expressed in each instance, duplicate 

monolayers, transfected and infected as described, were analysed by western blotting 

using antibody R148 in conjunction with an actin loading control (Figure 3.11). Similar 

amounts of UL33 were detectable with transfection of each of the plasmids expressing 

wt or mutated UL33 proteins. UL33 was detected in lower amounts in cells infected  
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Figure 3.10: Ability of mutants to complement ts1233 growth 
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Figure 3.11: Western analysis of UL33 expression in the ts1233 complementation assay 
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with ts1233 alone, or those receiving ts1233 in conjunction with pCMV10. The actin 

control indicated that comparable amounts of protein were loaded in each case.  

 

The data indicate the importance of several regions of UL33 in supporting growth of 

ts1233 at the NPT, namely at position 14 and between amino acids 51-74 and 104-116. 

The nature of the inserted amino acids at position 79 (in79A and in79B) seemed to 

affect the functionality of the mutated proteins. 

3.3.2 Complementation yield analysis using dlUL33 

The ability of mutants to complement the growth of the null mutant dlUL33 was 

similarly analysed. In this case the infected BHK cells were incubated at 37 OC, 

progeny virus was harvested and titrated on the complementing 20A cell line.  

Figure 3.12 shows the yields achieved expressed as a percentage of the titre obtained 

after transfection of pUL33. Western blot analysis confirmed that wt and mutated 

UL33 proteins were expressed at similar levels, and that comparable amounts of 

protein were examined (Figure 3.13). In agreement with previous studies UL33 was 

not detectable in cells infected with dlUL33 alone (Reynolds et al., 2000), nor in 

superinfected cells that had been transfected with pCMV10. 

 

With pUL33, titres between 2.76 x106 and 4.5 x106 p.f.u./ml were obtained. The yields 

from untransfected cells or cells receiving pCMV10 were between 3% and 5% of those 

observed with pUL33. Seven of the sixteen mutants, containing insertions at amino 

acids 34, 37, 44, 79 (in79A and in79B), 84 and 100 complemented growth to between 

50% and 80% of the titres obtained with wild type UL33. In contrast to the results 

obtained using ts1233, in84 did not give higher yields than pUL33, and in79B was as 

effective as in79A at complementing mutant virus growth. The remaining nine mutants  
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Figure 3.12: Ability of mutants to complement dlUL33 growth
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Figure 3.13: Western analysis of UL33 expression in the dlUL33 complementation assay 
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were unable to complement virus replication. Overall, the pattern of complementation 

was very similar to that seen with ts1233, confirming that the regions surrounding 

position 14, and between amino acids 51-74 and 104-116, are important for viral 

growth. 

Section 3.4 Ability of UL33 insertion mutants to support 

amplicon packaging 

HSV-1 amplicons, bacterial plasmids containing a functional origin of replication and 

packaging signals, have provided convenient tools for analysing the replication and 

packaging of HSV-1 DNA (Stow et al., 1983; Spaete & Frenkel, 1985). Previous studies 

have demonstrated that amplicons bearing the minimal packaging sequence Uc-DR1-

Ub, together with the viral lytic origin of replication oriS, are replicated as concatemers 

and packaged in the presence of wt HSV-1 helper virus (Nasseri & Mocarski, 1988; 

Hodge & Stow, 2001).  

 

The amplicon assay (Figure 3.14) provides a sensitive assay for DNA packaging, since 

unreplicated input amplicon DNA can be separated by digestion with DpnI, enabling 

essentially zero background signals. In contrast, a proportion of infecting viral 

genomes invariably fail to be uncoated, and give rise to a background signal of 

DNaseI-resistant DNA even in the absence of de novo packaging. 

 

The following experiments investigate the ability of the sixteen UL33 mutants to 

complement the packaging defects exhibited by ts1233 and dlUL33 in the transient 

amplicon packaging assay. 



Martin R. Higgs, 2008  Chapter 3:    

 

139

 

Figure 3.14: The amplicon packaging assay 
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3.4.1 Amplicon packaging using ts1233 helper virus 

To assay the ability of mutants to support amplicon DNA packaging, monolayers of 

BHK cells were transfected with 1 μg of plasmids expressing wt or mutated UL33 

together with 1 μg of the amplicon pSA1 by the calcium phosphate method. Cells were 

DMSO boosted four hours post-transfection. To provide other functions necessary 

for viral DNA replication and packaging, cells were super-infected six hours post-

transfection with 5 p.f.u./cell of either HSV-1 or ts1233, and shifted to the NPT of 

39.2 OC. At 18 h.p.i. DNase-resistant and total DNA were prepared as described 

(sections 2.2.8.2 and 2.2.8.3), and samples were digested with EcoRI and DpnI. DNA 

fragments were separated by agarose gel electrophoresis and Southern blotted. The 

membrane was probed with 32P-labelled pAT153 to detect the amplicon and a 

representative phosphorimage is shown in Figure 3.15. Quantification of data from 

three independent experiments is presented in Table 3.1. 

 

Neither replication nor packaging of amplicons was observed in mock-infected cells 

(not shown). ts1233 is defective in DNA packaging but DNA replication occurs to wt 

levels (Al-Kobaisi et al., 1991). Unsurprisingly, therefore, similar levels of replicated 

pSA1 were detected following infection with either ts1233 or wt HSV-1 (lanes 1 and 2). 

DNA replication was not significantly affected in cells transfected with pCMV10 or 

any of the UL33-expressing plasmids (lanes 3-20). Replicated pSA1 was packaged in 

cells infected with wt HSV-1 (lane 21), but not with ts1233 (lane 22), consistent with 

the known phenotype of this mutant. In the presence of pUL33 (lane 24), but not 

pCMV10 (lane 23), packaged DNA was detected in ts1233-infected cells, 

demonstrating that wt UL33 expressed from pUL33 can support DNA packaging.  
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Figure 3.15: Ability of UL33 mutants to package amplicon DNA in the presence of ts1233 
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Plasmid Experiment 1 
% packaged 

relative to HSV-1

Experiment 2 
% packaged 

relative to HSV-1

Experiment 3 
% packaged 

relative to HSV-1 

Mean packaged 
DNA (relative to 

HSV-1) (%) 
- 13.61 2.01 0.49 5.37 

pCMV10 8.90 5.70 0.80 5.13 

pUL33 62.37 59.87 44.13 55.46 

pin14 15.51 12.55 13.66 13.91 

pin34 51.93 44.93 92.15 63.00 

pin37 41.41 63.11 64.22 56.25 

pin44 77.04 32.66 81.72 63.81 

pin51 4.61 6.21 1.58 4.13 

pin55 4.89 1.20 4.04 3.37 

pin69 11.04 6.26 16.65 11.32 

pin74 14.70 9.75 22.18 15.54 

pin79A 54.01 24.88 93.20 57.36 

pin79B 32.80 34.78 143.70 70.42 

pin84 69.61 56.76 182.32 102.90 

pin100 88.34 34.56 193.46 105.45 

pin104 4.61 1.50 36.04 17.05 

pin111A 10.72 4.21 28.85 14.49 

pin111B 13.46 10.48 37.01 20.32 

pin116 16.87 6.82 26.25 16.65 

Table 3.1: Quantification of amplicon packaging in the presence of ts1233 

Phosphorimages from three independent experiments were quantified using Quantity 

One software (section 2.1.14). Bands were quantified according to counts within each 

band, and expressed as total counts/mm2 (not shown). The percentage of packaged 

DNA in each instance was calculated by dividing the counts in the DNase-resistant 

band by those in the total DNA band, and expressed as a % of values achieved in cells 

transfected with pSA1 alone and superinfected with wt HSV-1. 
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Seven of the sixteen mutants examined supported DNA packaging. Insertions at 

amino acids 34, 37, 44, 79, 84 and 100 did not affect the ability of UL33 to support 

amplicon packaging (lanes 26-28 and 33-36). However, insertions at amino acids 14, 

51, 55, 69, 74, 104, 111 and 116 rendered UL33 unable to support amplicon DNA 

encapsidation (lanes 25, 29-32 and 37-40).  

 

Western blot analysis was performed on duplicate monolayers as previously described 

for the yield complementation assay, and confirmed that similar levels of UL33 were 

expressed in each case (data not shown). 

 

Comparison of these data with the results of the complementation yield assay for 

ts1233 (Figure 3.10) shows a complete correlation between the ability to package DNA 

and generate viable progeny. However, it should be noted that in79B, which 

complemented viral growth poorly, supported amplicon packaging as efficiently as 

pUL33. 

3.4.2 Packaging of ts1233 genomes in the presence of mutated UL33 

proteins 

One of the drawbacks of the amplicon assay is that a range of differently sized 

molecules containing between one (4.4 kbp) and approximately 34 (150 kbp) copies of 

the amplicon are packaged into capsids. This represents an obvious difference from 

the way in which the viral genome is itself packaged.  

 

To determine whether packaging of the helper virus genome was affected in the same 

way as the amplicon, the membrane from Figure 3.15B was stripped and re-probed 

with 32P-labelled pGX153, which contains the BamHI P fragment of HSV-1 inserted 
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into pAT153, to allow the simultaneous detection of viral and amplicon DNA. The 

resulting phosphorimage is shown in Figure 3.16. As DNA samples were cleaved with 

EcoRI and DpnI before Southern analysis, probing with pGX153 should detect three 

bands corresponding to the HSV-1 EcoRI N (2.4 kbp), G and F fragments (16.1 and 

16.2 kbp respectively; migrate as one band), and the amplicon (4.3 kbp) (Porter & 

Stow, 2004a). 

 

Figure 3.16 demonstrates that there is absolute correlation between the ability to 

support packaging of the amplicon and helper virus genomes. This confirms that the 

amplicon assay represents a valid approach to analyse the role of UL33 in packaging 

the viral genome. 

3.4.3 Amplicon packaging using dlUL33 

To scrutinise the ability of UL33 mutants to package DNA in the presence of the 

dlUL33 helper virus, further amplicon packaging assays were undertaken in which  

transfected monolayers were super-infected with 5 p.f.u./cell of dlUL33 or wt HSV-1 

and incubated at 37OC. Samples were analysed and a representative phosphorimage is 

shown in Figure 3.17. Quantification of data from three independent experiments is 

shown in Table 3.2. Western blot analysis performed on duplicate monolayers 

confirmed that similar levels of UL33 were expressed in each instance (data not 

shown). 

 

When grown on non-complementing cells, dlUL33 exhibits a defect in DNA packaging 

but not replication of viral DNA (Patel et al., 1996). Consistent with this phenotype, 

amplicon DNA was efficiently packaged by HSV-1 (lane 21), but not by dlUL33 (lane 

22), despite being replicated effectively by both viruses (lanes 1 and 2). Supply of UL33  
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Figure 3.16: Ability of UL33 mutants to package ts1233 genomes 
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Figure 3.17: Ability of UL33 mutants to package amplicon DNA in the presence of dlUL33
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Plasmid Experiment 1 
% packaged 

relative to HSV-1

Experiment 2 
% packaged 

relative to HSV-1

Experiment 3 
% packaged 

relative to HSV-1 

Mean packaged 
DNA (relative to 

HSV-1) (%) 
- 3.84 8.18 14.93 8.98 

pCMV10 4.88 8.74 16.00 9.87 

pUL33 63.12 62.55 61.62 62.43 

pin14 2.86 11.67 12.28 8.93 

pin34 11.84 84.60 74.88 57.10 

pin37 35.38 84.46 57.30 59.05 

pin44 13.92 94.71 45.82 51.48 

pin51 0.21 9.78 7.95 5.98 

pin55 2.31 1.10 15.18 6.20 

pin69 3.44 1.17 34.56 13.06 

pin74 3.62 0.28 18.47 7.46 

pin79A 14.23 53.72 67.03 44.99 

pin79B 13.49 70.40 55.70 46.53 

pin84 25.55 199.35 52.98 92.63 

pin100 10.48 189.00 96.77 98.75 

pin104 1.81 3.41 13.87 6.36 

pin111A 2.74 0.98 4.18 2.63 

pin111B 0.06 4.32 14.92 6.44 

pin116 1.72 6.56 15.08 7.78 

Table 3.2: Quantification of amplicon packaging in the presence of dlUL33 

Phosphorimages from three independent experiments were quantified according to the 

legend for Table 3.1, and packaged DNA is displayed as a % of that encapsidated by 

HSV-1. 
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in trans complemented the dlUL33 packaging defect (lane 24). Complete correlation 

was observed between the results shown in Figure 3.17 and the ability of mutants to 

support DNA packaging in ts1233 infected cells. Furthermore, absolute 

correspondence was apparent between the ability of the mutants to complement 

dlUL33 viral growth (Figure 3.12) and support DNA packaging. 

3.4.4 Packaging of dlUL33 genomes by UL33 mutants 

To examine the ability of the UL33 mutants to support packaging of dlUL33 

genomes, the membrane from Figure 3.17B was stripped and re-probed with 32P-

labelled pGX153. The resultant phosphorimage is shown in Figure 3.18. In agreement 

with the results obtained using ts1233, absolute correlation was observed between the 

ability of mutants to support packaging of pSA1 and helper virus genomes.  

3.4.5 Ability of mutants to inhibit wt HSV-1 packaging 

Previous results indicated that several UL33 mutants were unable to both package 

DNA and to complement growth of viruses lacking functional UL33. It is possible that 

one or more of these non-functional mutants might be dominant-negative inhibitors of 

the DNA packaging process. To examine this possibility, experiments were performed 

using a modified transient amplicon packaging assay in which helper functions were 

provided in all cases by wt HSV-1.  

 

BHK cells were transfected with 1 μg of plasmids encoding non-functional 

UL33 mutants together with 1 μg of pSA1, and DMSO boosted as previously 

described. Helper functions were provided by super-infection with 5 p.f.u./cell of 

HSV-1. At sixteen h.p.i., total and packaged DNA was prepared as described (section 

2.2.8). Aliquots of DNA were digested, separated by agarose gel electrophoresis and 

Southern blotted. Membranes were probed with 32P-labelled pAT153, and a  
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Figure 3.18: Ability of UL33 mutants to package dlUL33 genomes 
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representative phosphorimage is shown in Figure 3.19. Quantification of data 

representing three independent experiments is presented in Table 3.3. 

 

As expected, similar levels of pSA1 replication were observed in all instances, with the 

exception of in111A (lane 9). Examination of the EtBr-stained gel revealed that this 

anomaly was due to inefficient recovery of total DNA rather than decreased plasmid 

replication. In agreement with previous results, amplicon packaging was observed in 

cells infected with wt HSV-1 (lane 12). Moreover, in cells receiving both wt helper 

virus and pUL33, no decrease in packaging was observed, indicating that supply of 

additional UL33 in trans has no inhibitory affect on DNA packaging (lane 13). In three 

independent experiments, no reproducible inhibition of HSV-1 DNA packaging was 

observed by any of the mutants examined. This indicates that none of the mutants that 

are unable to support DNA packaging is a strong dominant inhibitor of DNA 

packaging. 
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Figure 3.19: Ability of mutants to act as dominant negative DNA packaging inhibitors 
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Plasmid Experiment 1 
% packaged 

DNA (relative to 
HSV-1) 

Experiment 2 
% packaged 

DNA (relative to 
HSV-1) 

Experiment 3 
% packaged 

DNA (relative to 
HSV-1) 

Mean packaged 
DNA (relative to 

HSV-1) (%) 

     

- 100 100 100 100 

pUL33 103.18 156.38 94.53 118.03 

pin14 134.87 217.43 120.91 157.74 

pin51 167.51 242.08 144.54 184.71 

pin55 255.69 244.65 99.16 199.83 

pin69 163.39 272.42 76.86 170.83 

pin74 116.51 209.22 35.92 120.55 

pin104 161.68 143.84 148.28 151.27 

pin111A 115.34 234.22 129.18 159.58 

pin111B 197.90 184.42 113.39 165.24 

pin116 150.57 233.78 130.34 171.56 

Table 3.3: Quantification of dominant-negative packaging assays  

Phosphorimages from three independent experiments were quantified according to the 

legend for Table 3.1, and packaged DNA expressed as a percentage of that packaged 

by HSV-1 in the absence of any UL33-expressing plasmid. 
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Section 3.5 Discussion 

3.5.1 Isolation and initial characterisation of mutants 

Sixteen insertion mutants of UL33 were isolated using the Mutation Generation 

System. Initial analysis confirmed that all mutated plasmids expressed stable 

polypeptides that exhibited similar nuclear and cytoplasmic localisation compared to 

wt UL33 in transient expression assays. It is well established that macromolecules (and 

complexes thereof) of <50 kDa can diffuse freely into and out of the nucleus via 

nuclear pores (reviewed by Talcott & Moore, 1999). Localisation of UL33 in both the 

nucleus and cytoplasm is consistent with the protein being able to diffuse freely 

through nuclear pores, and with the absence of nuclear localisation and export signals 

from its sequence (bioinformatics analysis; not shown). This in turn suggests that the 

protein is not assembled into oligomers with molecular weight greater than 

approximately 50 kDa when expressed alone. Interestingly, both wild type and mutated 

UL33 polypeptides were consistently restricted from the nucleoli of transfected cells.  

 

However, it was noted that in a small number of cells, both wt and mutated UL33 

localised in punctuate foci in the cytoplasm (Figure 3.8, panels C+D). It is well 

documented that misfolded proteins can form protein aggregates (reviewed in Stirling 

et al., 2003) and that it is possible that UL33 misfolding is responsible for the 

generation of cytoplasmic aggregates observed in these cells.  

3.5.2 Ability of mutants to support DNA packaging and complement virus 

growth 

Importantly, no correlation was apparent between the nature of the inserted amino 

acids and the ability of mutants to support DNA packaging or complement viral 
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growth. With the partial exception of in79B, absolute correlation was observed 

between the ability of mutants to support growth of viruses lacking functional UL33 

genes and their ability to direct packaging of both amplicon and viral DNA. This 

suggests that the only essential function of UL33 is in the initiation of the cleavage 

packaging process. Were UL33 required at a later stage of the viral life cycle (e.g. the 

latter stages of DNA packaging or post-packaging virion maturation) it might be 

expected that some of the mutants would support DNA packaging but fail to 

complement growth of ts1233 or dlUL33. Mutant in79B complemented growth of 

ts1233 less efficiently than growth of dlUL33, but supported DNA packaging in the 

presence of both viruses. The reason for the poor complementation of ts1233 growth 

is presently unclear, but could indicate that a combination of the in79B protein with 

the thermolabile UL33 polypeptide inhibits a late stage during viral replication. 

 

Although none of the mutant proteins unable to support DNA packaging exhibited 

dominant inhibitory activity, this property has been documented for mutated versions 

of HSV-1 DNA replication proteins (Stow et al., 1993; Chen & Knipe, 1996; Barnard et 

al., 1997). Recently, it was also demonstrated that deletion of a NLS from the 

packaging protein UL15 created a dominant mutant able to inhibit HSV-1 replication 

(Yang et al., 2007). 

 

Several regions of UL33 were identified which, when disrupted, prohibited 

complementation of both mutant growth and DNA packaging. Perturbation of regions 

surrounding amino acid 14, and between residues 51-74 and 104-116, abrogated UL33 

function. Alignment of 34 herpesvirus UL33 homologues from the Refseq database, 

representing the α, β, and γ herpesviridae subfamilies, revealed two regions displaying a 

high degree of sequence conservation (not shown). Error! Reference source not found. 
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shows the position of 
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the sixteen insertional mutants in relation to regions of high sequence conservation 

amongst the 17 alphaherpesvirinae UL33 sequences. A correlation between mutant 

functionality and sequence conservation surrounding the position of insertion was 

evident. Mutants unable to support DNA packaging and complement dlUL33 or 

ts1233 growth generally contained 5 aa inserts in regions of high sequence 

conservation. For example, insertion of 5 aa adjacent to Pro52, which is absolutely 

conserved amongst all herpesvirus homologues of UL33, renders in51 unable to direct 

DNA packaging. Similarly, the non-functional mutant in69 encodes an insertion of five 

residues between Leu69
 and Ser70, which are highly conserved among herpesvirus UL33 

homologues. In contrast, mutants retaining the ability to support DNA packaging 

generally contained 5 aa insertions in areas of low sequence conservation, e.g. in44 and 

in84. Nevertheless, insertion of 5 aa within the poorly conserved N-terminus of UL33 

abolished the ability of in14 to support DNA packaging. Interestingly, ts1233 contains 

a single amino acid substitution in this region (Ile-Asp at position 17) that prevents 

DNA packaging at the NPT. This indicates that there are sequences in the relatively 

poorly conserved N-terminus of UL33 that are vital for DNA packaging. 

 

When the positions of mutations were compared to the predicted UL33 secondary 

structure (Figure 3.20), it was evident that non-functional mutants all contained 

insertions within areas predicted to form helices. In contrast, the functional mutants 

were generally outside predicted helices, although two (in79A/B) were located near the 

end of a helix. The PSIPRED program (section 2.1.14) was chosen to predict 

secondary structure on the basis of its high CASP3 score, indicative of a high accuracy 

of prediction (Jones, 1999; McGuffin et al., 2000). However, the program Jpred also 

predicted a similar secondary structure for the wt UL33 protein (not shown). 
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Figure 3.20: The position of 5 aa inserts relative to the predicted secondary structure of UL33 
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Several explanations for the inability of a subset of mutants to direct DNA packaging 

can be envisaged: (i) the insertions in UL33 may render mutated proteins unable to 

interact with cellular or viral partners, through either global or local changes in protein 

folding; (ii) mutations may hinder interactions of UL33 or the terminase complex with 

HSV-1 DNA; (iii) whilst mutations may have no effect on protein-protein or protein-

DNA interactions, they may render UL33 unable to fulfil an enzymatic function critical 

for packaging; (iv) mutated UL33 polypeptides may be unable to correctly target to 

sites of DNA packaging. Experiments described in the following chapters were 

designed to investigate some of these possibilities. 
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Chapter 4: Interaction of wt and mutated UL33 proteins 

with the terminase components UL15 and UL28 

Section 4.1 Introduction 

UL33 was first identified as a probable component of the viral terminase complex in 

2002, alongside the UL15 and UL28 proteins (Beard et al., 2002). In co-

immunoprecipitation assays, all three proteins interacted with one another. However, 

recent studies of mutant viruses lacking the individual terminase subunits suggested 

that, whilst UL33 interacts directly with UL28, interaction between UL33 and UL15 is 

indirect and mediated through a common interaction with UL28 (Jacobson et al., 

2006).  

 

Previous experiments (described in chapter 3) demonstrated that several insertion 

mutants of UL33 were unable to support DNA packaging or mutant virus growth, 

although the expression and localisation of these proteins when expressed alone 

resembled that of wt UL33. One explanation is that the insertions rendered the 

mutated proteins unable to interact with viral protein partners. The experiments 

described in this chapter therefore examined the interaction of wt and mutated UL33 

proteins with UL15 and UL28. 

Section 4.2 Interaction of wt and mutated UL33 proteins with 

UL15 

Although UL33 has been identified as a component of the HSV-1 terminase complex, 

it remains controversial whether UL33 interacts with UL15 directly (Beard et al., 2002; 

Jacobson et al., 2006). Initial experiments were therefore undertaken to examine 

whether wt UL15 and UL33 proteins interacted in the absence of UL28. Subsequently, 
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the studies were extended to examine the ability of mutated UL33 proteins to interact 

with UL15. 

4.2.1 UL15 and UL33 interact in recombinant baculovirus-infected cells 

The interaction between UL15 and UL33 was first examined by co-

immunoprecipitation of proteins expressed in insect cells by recombinant AcMNPVs 

under the control of the polyhedrin promoter. Monolayers of Sf21 cells (approximately 

2 x 106 cells) were infected with 5 p.f.u./cell of baculoviruses expressing either UL15 

(AcUL15) or UL33 (AcUL33), or both viruses together. Forty-eight hours post-

infection cells were harvested and lysed, and insoluble proteins removed by 

centrifugation (section 2.2.11). Soluble extracts were pre-cleared with a non-specific 

antibody and protein-A-sepharose, and then incubated with rabbit antibodies specific 

to UL15 or UL33 (R605 and R148 respectively). Immune complexes were collected by 

overnight incubation with protein-A-sepharose, followed by centrifugation and 

extensive washing. The proteins were separated by SDS-PAGE on 8% or 15% gels, 

transferred to PVDF membranes, and probed with R605 or R148, respectively. Bound 

antibody was detected using protein-A-HRP and ECL as before, and the results are 

shown in Figure 4.1. 

 

UL15 was not detected in mock-infected cells, nor in cells infected with AcUL33 

alone, but was expressed at similar levels in cells receiving AcUL15 alone or in 

combination with AcUL33 (panel A; lanes 3 and 4). Similarly, UL33 was detected in 

cells receiving AcUL33 both in the presence and absence of UL15, but not in mock-

infected cells nor cells infected solely with AcUL15 (panel A; lanes 5 to 8). This 

confirmed the suitability of both R148 and R605 for detecting these proteins following 

expression in insect cells. 



Martin R. Higgs, 2008  Chapter 4:   

 

164

 

 



Martin R. Higgs, 2008  Chapter 4:   

 

165

Figure 4.1: Co-immunoprecipitation of UL15 and UL33 from recombinant baculovirus-infected cells 



Martin R. Higgs, 2008  Chapter 4:   

 

166

UL33 was efficiently precipitated from cells infected with AcUL33 by its cognate 

antibody (panel B; lanes 5-8). Furthermore, UL15 was co-immunoprecipitated from 

lysates of cells expressing both UL15 and UL33 by R148 (panel B; lane 4), and its 

precipitation was dependent on the presence of UL33 (panel B; lane 3). Reciprocal 

precipitations using R605 demonstrated that UL15 was precipitated specifically from 

AcUL15-infected cells (panel C; lanes 1-4), and that UL33 was specifically co-

precipitated from cells receiving AcUL15 and AcUL33 (panel C; lanes 6-8).  

 

Together, these data support the conclusion that UL15 and UL33 can interact 

specifically in the absence of other HSV-1 proteins, in agreement with the original 

findings of Beard and colleagues (2002), but in contrast to later reports (Jacobson et al., 

2006). 

4.2.2 UL15 and UL33 interact in HSV-1 infected cells 

The above experiment indicates that UL33 and UL15 interact when over-expressed 

under the control of the AcMNPV PH promoter. To extend these findings 

immunoprecipitation analysis was carried out on HSV-1-infected cells. Approximately 

2 x 107 BHK cells were mock-infected, or infected with 5 p.f.u./cell of either HSV-1 or 

dlUL33. Twenty hours post infection cells were harvested and soluble lysates were 

prepared and precleared, before being incubated with R148 (section 2.2.11). Immune 

complexes were collected after overnight incubation with protein-G-sepharose and 

extensive washing. Western blot analysis of lysates and immune complexes was 

performed as described for Figure 4.1. The resultant immunoblots are shown in 

Figure 4.2. 

 

In agreement with previous results (Section 3.3), UL33 was undetectable in mock- 
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Figure 4.2: Co-immunoprecipitation of UL15 and UL33 from HSV-1-infected cells  
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infected cells or in cells infected with the dlUL33 virus, but was detectable in HSV-1-

infected cells (panel A; lanes 4-6). UL15 was detected in both HSV-1- and dlUL33-

infected cells but not in mock-infected cells, indicating that a lack of UL33 did not 

affect UL15 expression (panel A; lanes 1-3). Equal amounts of lysate were loaded in all 

instances (panel A; lanes 7-9). As expected, UL33 was efficiently precipitated by R148 

from HSV-1-infected cells, but not from cells infected by dlUL33 (panel B; lanes 4-6). 

UL15 was co-precipitated with UL33 from HSV-1-infected cells, but not from dlUL33-

infected cells, indicating that precipitation of UL15 by R148 requires UL33 (panel B; 

lanes 1-3). 

 

These data lend further support to the proposal that UL33 and UL15 interact, 

although the possibility that other cellular or viral factors mediate this interaction 

cannot be excluded. 

4.2.3 Immunofluorescence assay for the interaction of wt UL33 with 

UL15pp65  

To further analyse the ability of UL33 to interact with UL15 in the absence of other 

HSV-1 proteins, an immunofluorescence assay was utilised. BHK cells were 

transfected with 1 μg of either pJM19 (expressing a pp65-tagged version of UL15 

under the control of the HCMV MIEP; Abbotts et al., 2000) or pUL33, or both 

plasmids together. The cells were fixed and permeabilised as before (section 3.2.3), and 

incubated with R148 and a mouse anti-pp65 antibody (section 2.1.12). Bound 

antibodies were detected using FITC-conjugated anti-rabbit and Cy5-conjugated anti-

mouse secondary antibodies. This allowed simultaneous detection of the two proteins 

within co-transfected cells. The coverslips were examined by confocal microscopy 

using lasers with excitation lines at 488 nm and 633 nm, corresponding to the 
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excitation wavelengths of the FITC and Cy5 fluors respectively. The same settings 

were maintained throughout, with the two channels scanned separately. Images were 

captured and processed as before, and representative results of two independent 

experiments are shown in Figure 4.3.  

 

In agreement with previous reports (Abbotts et al., 2000; White et al., 2003), pp65-

tagged UL15 was localised to the nucleus of transfected cells, but was excluded from 

nucleoli (panels A-C). In addition, in cells transfected with pJM19 alone, no FITC-

specific fluorescence was observed (panel B). As before, in cells receiving pUL33 only, 

UL33 alone was localised throughout the cell, but excluded from the nucleoli (panel 

E). No Cy5-specific fluorescence was observed in these cells (panel D). In 

approximately 20% of cells expressing UL33 alone, UL33 was restricted to the nucleus. 

In cells receiving pJM19 and pUL33, both proteins were restricted to the nucleus in 

about 80% of cases (panels G and H), and merging of the channels revealed extensive 

co-localisation (panel and I). In the remainder of cells expressing both proteins, a small 

proportion of UL33 was also present in the cytoplasm (data not shown). In agreement 

with the immunoprecipitation studies, these data further demonstrate that UL15 and 

UL33 interact in the absence of UL28.  

4.2.4 Ability of mutated UL33 proteins to interact with UL15-pp65 

To determine whether any of the mutants were compromised in their ability to interact 

with UL15, a similar experiment was performed. In this case, BHK cells were 

transfected with plasmids expressing wt or mutated UL33 proteins, together with 

pJM19. Resultant images of a subset of the mutants are shown in Figure 4.4. These 

are representative of the phenotype exhibited by all of the mutants in this assay. 
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Figure 4.3: Co-localisation of UL15-pp65 and UL33 in transfected cells. 
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Figure 4.4: Subcellular localisation of UL15-pp65 and mutated UL33 proteins in transfected cells 
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As before, UL15-pp65 alone was restricted to the nucleus of transfected cells (data not 

shown). Similarly, wt UL33 exhibited both cytoplasmic and nuclear localisation in the 

absence of UL15 (not shown), but co-localised with UL15-pp65 in the nucleus when 

the proteins were co-expressed (panels A-C). Each of the 16 mutants displayed a 

similar phenotype, with UL15 and UL33 co-localising within the nucleus of co-

transfected cells (represented by in14, in34, in69 and in79A in panels D-F, G-I, J-L and 

M-O respectively). As observed with wt UL33, the proportion of cells with mutated 

UL33 protein restricted to nuclei was increased by the co-expression of UL16-pp65 

(20% when expressed alone compared to 80% in the presence of UL15-pp65), 

although some UL33 was detected in the cytoplasm of a small proportion of cells 

(represented by in14 and in34 in panels D-F and G-I). 

  

These data suggest that none of the 16 insertions in the UL33 ORF perturb the 

interaction of the mutated proteins with UL15. A failure of these two proteins to 

interact therefore cannot account for the inability of any of the mutants to support 

DNA packaging. 

Section 4.3 Interaction of wt and mutated UL33 proteins with 

UL28 

An interaction between UL28 and UL33 was first demonstrated by Beard and co-

workers (2002). Recently, studies have suggested that amino acids 604-736 of UL28 are 

important in mediating this interaction, and that UL28 protects UL33 from 

proteasomal degradation (Jacobson et al., 2006). To analyse the ability of wt and 

mutated UL33 proteins to interact with UL28, similar approaches to those detailed in 

Section 4.2 were used. 
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4.3.1 UL28 and UL33 interact in recombinant baculovirus-infected cells 

The ability of UL28 and UL33 to interact independently of other HSV-1 proteins was 

examined using recombinant baculoviruses. Monolayers of Sf21 cells were infected 

with 5 p.f.u./cell of either AcUL33 or a recombinant baculovirus expressing UL28 

(AcUL28; Abbotts et al., 2000), or both viruses together. Infected cells were harvested 

forty-eight hours post-infection, and clarified lysates prepared. Duplicate aliquots were 

pre-cleared as before and incubated with either R148 or a rabbit anti-UL28 antibody, 

R123 (section 2.1.12; Abbotts et al., 2000). Immune complexes, isolated on protein-A-

sepharose, were analysed by western blotting. Membranes were probed with R148 or 

R123 and bound antibody detected as previously described. The results are shown in 

Figure 4.5. 

 

UL28 was detected in extracts of cells receiving AcUL28, but not from mock-infected 

cells or those receiving AcUL33 alone (lanes 1-4 of panel A). R123 specifically 

precipitated UL28 from lysates containing UL28 (panel B, lanes 1-4). Moreover, UL33 

was specifically co-precipitated by R123 from cells receiving both AcUL28 and 

AcUL33 (panel B; lanes 5-8). In reciprocal assays, UL33 was detected in cells infected 

with AcUL33 (panel A; lanes 5-8), and precipitated from extracts of these cells by 

R148 (panel C; lanes 5-8). UL28 was efficiently co-precipitated by R148, but only in 

the presence of UL33 (panel C; lanes 1-4). These data support the previous conclusion 

that UL28 and UL33 interact in the absence of other viral proteins (Beard et al., 2002).  

4.3.2 UL28 and UL33 interact in HSV-1-infected cells 

The interaction between UL28 and UL33 was also examined in HSV-1-infected cells. 

An aliquot of clarified lysate described in section 4.2.2 was incubated with R148, and 

the resulting immune complexes isolated and detected by western blotting using R148  
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Figure 4.5: Co-immunoprecipitation of UL28 and UL33 from recombinant baculovirus-infected cells  
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or R123. The results are shown in Figure 4.6. Lanes 4-9 of panel A and 4-6 of panel 

B, showing the UL33 and actin controls, were also presented in Figure 4.2 and 

discussed in section 4.2.2. Lanes 1-3 of panel A demonstrate that UL28 was absent 

from mock-infected cells, but detectable in both HSV-1- and dlUL33-infected cells. 

Moreover, UL28 was co-immunoprecipitated with UL33 from cells infected with 

HSV-1 by R148, but not from cells receiving dlUL33 (panel B; lanes 1-3). These data 

confirm previous reports that UL28 and UL33 interact in HSV-1-infected cells (Beard 

et al., 2002; Jacobson et al., 2006). 

4.3.3 Immunofluorescence assay for the interaction of wt UL33 with 

UL28-cMyc  

To examine whether UL28 was able to alter the subcellular localisation of UL33 (or 

vice versa), BHK cells were transfected with either pUL33 or pUL28-cMyc, or the two 

plasmids together. pUL28-cMyc encodes a cMyc epitope-tagged version of UL28 

under the control of the HCMV MIEP (section 2.1.9; White et al., 2003). The cells 

were transfected, fixed and permeabilised as before (section 4.2.3), and incubated with 

R148 and an anti-mouse cMyc-antibody. Bound antibodies were detected using the 

anti-rabbit FITC and anti-mouse Cy5 conjugates described previously, allowing the 

simultaneous detection of UL28-cMyc and UL33 in co-transfected cells. Images were 

captured as before, with the two channels scanned separately, and are shown in Figure 

4.7. 

 

In the absence of UL33, UL28-cMyc localised to the cytoplasm of transfected cells 

(panels A and C), in agreement with previous studies (White et al., 2003). No FITC-

specific fluorescence was observed in cells receiving pUL28-cMyc alone (panel B). 

Consistent with previous data, UL33 alone localised throughout cells transfected with  
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Figure 4.6: Co-immunoprecipitation of UL28 and UL33 from HSV-1-infected cells  
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Figure 4.7: Co-localisation of UL28-cMyc and UL33 in transfected cells 
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pUL33, but was predominantly present in the nuclei (panels E and F). No Cy5-specific 

signal was observed in this population of cells (panel D). In cells co-expressing UL33 

and UL28-cMyc, both proteins were confined to the cytoplasm, where they largely co-

localised. This indicates that UL28 alters the localisation of UL33 and suggests that the 

two proteins interact. 

 

However, an alternative explanation might be that UL28-cMyc non-specifically inhibits 

the nuclear uptake of proteins, thereby indirectly restricting UL33 to the cytoplasm. 

Therefore, the effect of UL28-cMyc on the localisation of the HSV-1 origin-binding 

protein, UL9, which is normally efficiently translocated to the nucleus when expressed 

alone (Malik et al., 1996), was examined. BHK cells were transfected with either 

pUL28-cMyc or pE9 (expressing UL9 under the control of the HCMV MIEP; Stow et 

al., 1993), or both plasmids together. The cells were fixed and permeabilised as 

previously described, and probed with a mouse anti-UL9 antibody (M13924; Stow et 

al., 1998) and a rabbit anti-UL28 antibody (R123). Bound antibody was detected with 

FITC-conjugated anti-rabbit and Cy5-conjugated anti-mouse secondary antibodies. 

Images were taken and processed as described above, and are shown in Figure 4.8.  

 

UL28-cMyc localised solely to the cytoplasm when expressed alone or with UL9 

(panels E and H). In contrast, UL9 was present solely in the nucleus both when 

expressed alone or in conjunction with UL28-cMyc (panels A and G). Therefore, 

UL28-cMyc does not non-specifically inhibit entry of proteins into the nucleus. The 

co-localisation observed between UL28-cMyc and UL33 in Figure 4.7 is therefore 

likely to represent a specific interaction between the two proteins. 
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Figure 4.8: Intracellular distribution of UL28-cMyc and UL9 in transfected cells 
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4.3.4 Ability of mutated UL33 proteins to interact with UL28-cMyc 

To examine the ability of UL33 insertion mutants to interact with UL28-cMyc, a 

similar experiment was performed. In this case, cells were transfected with plasmids 

expressing wild type or mutated UL33 proteins together with pUL28-cMyc. The cells 

were fixed, permeabilised and processed as before, and images captured as previously 

described. Confocal microscopy revealed that the mutants displayed two distinct 

phenotypes, summarised in Table 4.1. A subset of images representative of these 

phenotypes is shown in Figure 4.9. 

 

Controls with UL28-cMyc or wt UL33 alone were in agreement with previous 

experiments i.e. UL28-cMyc exhibited a cytoplasmic distribution, whereas UL33 was 

localised throughout the cells (data not shown). When co-expressed, the proteins again 

co-localised within the cytoplasm (panels A-C). The majority of the UL33 mutants 

exhibited a phenotype similar to wt UL33 (represented by in14 and in79A shown in 

panels D-F and M-O respectively). However, four of the mutants, in34, in37, in69 and 

in84, displayed a distinctive phenotype in which UL28-cMyc was localised in the 

cytoplasm, but UL33 was mainly within the nucleus of co-transfected cells 

(represented by in34 and in69 in panels G-I and J-L). Notably, UL28-cMyc was unable 

to restrict UL33 to the cytoplasm and relatively little colocalisation was apparent in the 

merged images, indicating that the interaction between these proteins had been 

perturbed. 

  

These data therefore suggested that insertions at amino acids 34, 36, 69 and 83 

disrupted the ability of UL33 to bind UL28. Surprisingly, three of the four mutants  
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Figure 4.9: Subcellular localisation of UL28-cMyc and mutated UL33 proteins in transfected cells 
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Mutant Ability to support DNA 

packaging and viral growth 

Ability to co-localise with 

UL28-cMyc 

UL33 + + 

in14 - + 

in34* + - 

in37* + - 

in44 + + 

in51 - + 

in55 - + 

in69 - - 

in74 - + 

in79A + + 

in79B + + 

in84* + - 

in100 + + 

in104 - + 

in111A - + 

in111B - + 

in116 - + 

 

Table 4.1: Ability of UL33 mutants to interact with UL28-cMyc in an 

immunofluorescence assay.  The ability of mutants to co-localise with UL28-cMyc is 

displayed, together with their ability to support DNA packaging and mutant virus 

growth. Mutants unable to co-localise with UL28-cMyc are indicated in bold, with 

those able to support DNA packaging denoted by an *.  
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unable to interact with UL28 in this assay were fully able to support DNA packaging 

and growth of mutant viruses lacking UL33, suggesting that interaction between UL28 

and UL33 may not be necessary for DNA packaging to occur (Table 4.1). 

Furthermore, several mutants retaining the ability to co-localise with UL28 were 

unable to support DNA packaging. 

4.3.5 Creation of recombinant baculoviruses expressing mutated UL33 

proteins 

To examine further the ability of UL33 insertion mutants to interact with UL28, 

recombinant baculoviruses were generated expressing individual mutated UL33 

proteins under the control of the AcMNPV polyhedrin promoter. The recombinant 

viruses were created using the Invitrogen Bac-to-Bac system (section 2.2.6) (Figure 

4.10). Briefly, this system allows insertion of the gene of interest into a mini-attTn7 site 

within a cloned AcMNPV genome (Bacmid), via Tn7-mediated transposition. After 

transposition has been confirmed, transfection of recombinant Bacmid DNA into 

insect cells generates recombinant baculovirus progeny bearing the foreign gene.  

 

To introduce the mutated UL33 genes into the transfer plasmid pFastBac1, UL33-

containing fragments were liberated from mutated plasmids by digestion with BamHI 

as previously described (section 3.2.1). Concurrently, pFastBac1 was digested with 

BamHI, linearised DNA was purified and dephosphorylated with CIP. Ligation of the 

UL33-containing BamHI fragment into pFastBac1 gave rise to colonies containing 

plasmids with the gene of interest under the control of the AcMNPV polyhedrin 

promoter, between the two arms of the Tn7 transposon. The presence and orientation 

of the UL33 fragment was confirmed by digestion of plasmid DNA with XbaI (results 

not shown).  
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Figure 4.10: Principles of the Bac-to-Bac Baculovirus expression system 
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To facilitate recombination of the mutated genes into Bacmids, the pFastbac 

derivatives were transformed into electrocompetent DH10Bac E. coli. The 

transformants were selected for kanR, genR and tetR to confirm the presence of the 

Bacmid, pFastBac1 and helper plasmids respectively. As transposition of the gene of 

interest into the mini-attTn7 site of the Bacmid disrupts expression of β-galactosidase 

from the lacZ gene, transformants were also screened for their inability to express 

functional β-galactosidase on media containing X-gal. To verify the phenotype of the 

recombinant Bacmids, two rounds of screening were used. The resultant Bacmid DNA 

was isolated using a modified alkaline lysis procedure (section 2.2.6.1). 

 

PCR analysis confirmed the presence of mutated UL33 genes within the recombinant 

Bacmids (not shown). PCR products of 2600 bp, indicating successful transposition of 

the UL33 gene into the mini-attTn7 site, were obtained for all of the recombinant 

Bacmids using the flanking M13 (-40) forward and reverse primers. To generate 

recombinant baculoviruses, Bacmid DNA was transfected into monolayers of Sf 21 

cells by lipofection (section 2.2.6.2). After the onset of cell lysis (approximately 72 

hours post-transfection) progeny virus was collected and subsequently amplified to 

generate high titre stocks. The recombinant baculoviruses were designated Acin13 to 

Acin117 in accordance with the mutated UL33 protein expressed. 

4.3.6 Ability of mutated UL33 proteins to interact with UL28 in insect cells 

To extend the findings of the previous fluorescence studies (section 4.3.4), the ability 

of mutated proteins to interact with UL28 was analysed in baculovirus-infected insect 

cells. Sf 21 monolayers were infected with 5 p.f.u./cell of baculoviruses expressing wild 

type or mutated UL33 proteins, together with 5 p.f.u./cell AcUL28. Forty-eight hours 
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post-infection, clarified lysates were prepared, precleared, and incubated with R148. 

Immune complexes were collected after overnight incubation with protein-A-

sepharose as before. The isolated proteins were analysed by western blotting (Figure 

4.11). Due to time constraints, only one experiment was performed. 

 

In all cases except mock-infected cells or those receiving AcUL28 alone, UL33 

proteins were precipitated effectively by R148 (lanes 3-20). Only a single protein 

species was precipitated by R148 from cells expressing mutated UL33 proteins (lanes 

5-20), in contrast to the doublet precipitated from cells expressing wt UL33 (lanes 3 

and 4). The single species co-migrated with the smaller of the two protein species 

expressed by AcUL33. It is possible that that wt UL33 may be subject to post-

translational modifications not undergone by the mutated proteins, although this 

seems unlikely. It is also conceivable that AcUL33 contains a mixture of two viruses, 

one containing an insertion in the UL33 gene, which gives rise to the larger UL33 

polypeptide observed. A third possibility is that the UL33 gene of AcUL33 might 

encode alternative transcriptional termination sites, preventing efficient termination of 

transcription. 

 

Furthermore, in every instance in which UL28 and wt or mutated UL33 were co-

expressed, both proteins were co-precipitated by R148 (lanes 4-20 & 24-40). These 

preliminary results suggest that none of the insertion mutants are impaired in their 

ability to interact with UL28, in contrast to the results obtained in 

immunofluorescence assays. 

Section 4.4 Characterisation of UL33 internal deletion mutants 

As previously described, immunofluorescence studies suggested that insertions at  



Martin R. Higgs, 2008  Chapter 4:   

 

188

 

Figure 4.11: Interaction of mutated UL33 proteins with UL28 in recombinant baculovirus-infected cells 
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positions 34, 36, 68 and 83 rendered UL33 unable to interact with UL28-cMyc. 

Although this conflicted with data from co-immunoprecipitation studies, two further 

mutants were created to further investigate the role of these regions in UL28 binding.  

 

In plasmid pΔ1 amino acids Val35, Ser36 and Arg37 of UL33 are replaced by the 

sequence CGRTR. This plasmid was constructed by ligating the N-terminal EcoRI plus 

NotI fragment of pin34 and the C-terminal HindIII plus NotI fragment of pin37 into 

EcoRI-HindIII cleaved pCMV10. 

 

Plasmid pΔ2 was similarly created by joining the N-terminal NotI/EcoRI fragment 

from pin84 to the C-terminal NotI/HindIII fragment of pin100. In this plasmid amino 

acids 85-100 of UL33 are replaced by the sequence MRPHA. The identities of the 

plasmids were confirmed by DNA sequencing and the resulting changes to the UL33 

protein are shown in Figure 4.12.  

4.4.1 Ability of Δ1 and Δ2 to support DNA packaging and mutant virus 

growth 

The ability of Δ1 and Δ2 to support DNA packaging was examined using an amplicon 

packaging assay (section 3.4.3). BHK cells were transfected with pSA1, together with 

either pCMV10 or plasmids expressing wt or mutated UL33 proteins. The cells were 

super-infected with 5 p.f.u./cell of either HSV-1 or dlUL33. After eighteen hours, total 

and packaged DNA was prepared as previously described and analysed by agarose gel 

electrophoresis and Southern blotting. Replicated and packaged pSA1 was detected by 

hybridisation to 32P-labelled pAT153, and the resultant phosphorimage is shown in 

panel A of Figure 4.13.  
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Figure 4.12: Sequences of proteins encoded by pΔ1 and pΔ2 
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Figure 4.13: Ability of UL33 internal deletion mutants to support DNA packaging and dlUL33 growth 



Martin R. Higgs, 2008  Chapter 4:   

 

192

pSA1 was replicated to a similar degree in all instances (lanes 1-6 of panel A), and was 

efficiently packaged by HSV-1 (lane 7). In agreement with previous data, dlUL33 was 

unable to package DNA (lane 8). This defect was not restored by the supply of empty 

vector in trans (lane 9). In contrast, pUL33, pΔ1 and pΔ2 supported amplicon 

packaging to similar extents (lanes 10-12). 

 

Simultaneously, the ability of Δ1 and Δ2 to support mutant virus growth was assessed 

using a complementation yield assay (section 3.3.2). The cells were transfected and 

super-infected as outlined above. One hour after super-infection, residual virus was 

neutralised as described previously, and cells incubated at 37 OC. After eighteen hours, 

progeny virus was harvested and titrated on 20A cells. Panel B of Figure 4.13 shows 

the yields obtained expressed as a percentage of the titre obtained with pUL33, and 

indicated that both Δ1 and Δ2 could also complement growth of dlUL33.  

 

UL33 expression in replicate plates was analysed by western blotting (Figure 4.14). As 

expected, UL33 was detected in cells infected with HSV-1, but not dlUL33 in the 

presence or absence of pCMV10 (lanes 1-3). Both pΔ1 and pΔ2 expressed 

polypeptides that were recognised by R148, although the mobility of the Δ2 protein 

was increased relative to wt UL33 (lanes 4-6). This change in mobility is consistent 

with the pΔ2 product being approximately 8% shorter than wt UL33. 

4.4.2 Immunofluorescence assay for the interaction of Δ1 and Δ 2 with 

UL15-pp65  

To examine the ability of the UL33 proteins to interact with UL15, BHK cells were 

transfected with pUL33, pΔ1 or pΔ2 in the presence or absence of pJM19. The cells  
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Figure 4.14: Expression of UL33 internal deletion mutants 



Martin R. Higgs, 2008  Chapter 4:   

 

194

were fixed, permeabilised and processed as described previously (section 4.2.3), and 

the resultant images are shown in Figure 4.15. 

 

UL33 expressed alone from pΔ1 and pΔ2 showed a similar localisation to wt UL33 

(panels A-C and D-F respectively). Similarly, UL15-pp65 alone was localised in the 

nucleus as observed before (not shown). UL33 and UL15-pp65 were again co-localised 

within the nuclei of co-transfected cells (panels G-I). Δ1 exhibited a similar phenotype 

to wt UL33, and co-localised with UL15-pp65 in the nucleus (panels J-L). However, 

Δ2 behaved differently, with both UL15-pp65 and UL33 being restricted to, and co-

localised within, the cytoplasm of co-transfected cells (panels M-O). These data 

suggested that deletion of a portion of UL33 did not affect interaction with UL15-

pp65, but inhibited nuclear import of the resulting complex. 

 

To exclude the possibility that the Δ2 protein non-specifically inhibited the nuclear 

import of proteins, the effects of Δ1 and Δ2 on UL9 localisation were examined. BHK 

cells were transfected with pΔ1 or pΔ2 and pE9, and fixed or permeabilised as before. 

The coverslips were incubated with R148 and M13924, and bound antibody detected 

using anti-rabbit FITC and anti-mouse Cy5 conjugates. Confocal microscopy was 

carried out as described in section 4.2.3, and the resultant images can be seen in 

Figure 4.16. 

 

In cells co-expressing UL9 and either Δ1 or Δ2, UL33 was localised throughout the 

transfected cells (panels B and E), and UL9 was confined the nucleus (panels A, C, D 

and F). These data therefore indicate that Δ2 does not inhibit nuclear import of UL9, 

and suggest that the observed cytoplasmic co-localisation of Δ2 and UL15-pp65 is due  
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Figure 4.15: Ability of UL33 internal deletion mutants to interact with UL15-pp65 
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Figure 4.16: Subcellular distribution of internal UL33 deletion mutants and UL9 in transfected cells 

 



Martin R. Higgs, 2008  Chapter 4:   

 

197

to a specific interaction.  

4.4.3 Immunofluorescence assay for the interaction of Δ1 and Δ2 with 

UL28-cMyc 

In similar experiments, Δ1 and Δ2 were screened for their ability to interact with 

UL28-cMyc. BHK cells were transfected with pUL28-cMyc, together with pUL33, pΔ1 

or pΔ2. The cells were fixed and permeabilised as before, and processed exactly as 

described in section 4.3.3. Settings were maintained throughout, and representative 

images are shown in Figure 4.17. 

 

As observed previously, UL28-cMyc and UL33 co-localised in the cytoplasm of co-

transfected cells, and UL33 was absent from the nucleus (panels A-C). A similar 

phenotype was observed in cells expressing Δ2 and UL28-cMyc, with the proteins co-

localising in the cytoplasm (panels G-I). In contrast, in cells co-expressing UL28-cMyc 

and Δ1, UL33 was present throughout the cell (panel E), whilst UL28-cMyc was found 

exclusively in the cytoplasm (panels D and F). This suggests that UL28-cMyc is unable 

to confine Δ1 to the cytoplasm, and that Δ1 is altered in its ability to interact with 

UL28-cMyc. 

 

Together with previous results (Figure 4.9), these data indicate that perturbation of the 

region surrounding residues 34-37 affects the ability of UL33 to interact with UL28. 

However, replacement of the region spanning residues 84-100 with five amino acids 

did not affect the ability of UL33 to interact with UL28, even though in84 was 

affected. 
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Figure 4.17:  Ability of UL33 internal deletion mutants to interact with UL28-cMyc 
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4.4.4 Localisation of the UL15-UL28-UL33 complex in transfected cells 

Although immunofluorescence data suggested that Δ1 was defective in its ability to 

interact with UL28-cMyc, whilst Δ2 was impaired in its ability to be transported to the 

nucleus in complex with UL15-pp65, both mutants supported DNA packaging. 

Therefore, the ability of Δ1 and Δ2 to localise to the nucleus in the presence of UL15 

and UL28 was analysed by immunofluorescence. BHK cells were transfected with 

pJM19 and pUL28-cMyc in combination with either pUL33, pΔ1 or pΔ2. The cells 

were fixed and permeabilised as before, and treated with R148 together with either 

anti-pp65 or anti-cMyc antibodies. Bound antibodies were detected with FITC and 

Cy5 conjugates, and images captured by confocal microscopy. The same settings were 

maintained for each antibody combination, and resultant images are shown in Figure 

4.18.  

 

When UL15-pp65, UL28-cMyc and UL33 were co-expressed, all localised to the 

nucleus, where they co-localised extensively (panels A-C, G-I and M-O show the 

localisation of UL15-pp65 and UL33; panels D-F, J-L and P-R show the localisation of 

UL28-cMyc and UL33). When Δ1 or Δ2 were expressed with UL15 and UL28, both 

exhibited a similar localisation to wt UL33 i.e. all three proteins co-localised in the 

nucleus (panels G-I and M-O show the localisation of Δ1 or Δ2 together with UL15-

pp65; panels J-L and P-R show that of Δ1 or Δ2 in conjunction with UL28-cMyc). 

Thus, both Δ1 and Δ2 formed a complex with both UL28-cMyc and UL15-pp65 in the 

nuclei of transfected cells. 
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Figure 4.18: Localisation of the UL15-UL28-UL33 complexes in transfected cells 
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Section 4.5 Discussion 

4.5.1 Interaction between UL15 and UL33 

Data from both immunofluorescence and immunoprecipitation studies supported the 

original report that UL15 and UL33 interact in the absence of UL28 (Beard et al., 

2002). However, this result conflicts with more recent studies suggesting that UL15 

interacts with UL33 only in the presence of UL28 (Yang and Baines, 2006; Jacobson et 

al., 2006). The observed nuclear localisation of the UL15-pp65-UL33 complex agrees 

with findings that UL15 contains a nuclear localisation signal required for transport of 

both UL28 and UL33 into the nucleus (Yu & Weller, 1998a; Koslowski et al., 1999; 

Abbotts et al., 2000; Yang et al., 2007).  

 

Yang and Baines (2006) suggested that the interaction between UL15 and UL33 

observed by Beard et al. (2002) was due to over-expression of the two proteins. My 

immunofluorescence and immunoprecipitation data cannot exclude this possibility, as 

both approaches involve proteins expressed under the control of strong promoters 

(the HCMV MIEP and the AcMNPV polyhedrin promoter respectively). The 

observed co-precipitation of UL15 and UL33 from HSV-1-infected cells (Figure 4.6) 

confirms the findings of Yang and Baines (2006) but could be mediated through 

another protein such as UL28. Later immunofluorescence experiments using an HSV-

1 UL28 null mutant (section 6.4.1) nevertheless provide evidence for the formation of 

a nuclear UL15-UL33 complex, and suggest that the observations made both by myself 

(this section) and Beard et al. (2002) may be indicative of a genuine interaction between 

these proteins. 

 

Immunofluorescence analysis of the UL33 insertion mutants suggested that, although a 
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subset of these mutants was unable to support DNA packaging, all sixteen mutated 

proteins could interact with UL15-pp65. Replacement of Val35, Ser36 and Arg37 with 

Cys-Gly-Arg-Thr-Arg, or substitution of residues 84-100 with Met-Arg-Pro-His-Ala (in 

Δ1 and Δ2 respectively), did not affect the ability of UL33 to support DNA packaging 

and dlUL33 growth. Furthermore, neither Δ1 nor Δ2 was impaired in its ability to co-

localise with UL15-pp65. The observed cytoplasmic co-localisation of Δ2 and UL15-

pp65 suggested that, whilst these two proteins interact, the lesion in Δ2 precludes 

import of the complex into the nucleus. However, in the absence of UL15-pp65, Δ2 

exhibited a similar localisation to wt UL33 (not shown), indicating that Δ2 does not 

form cytoplasmic aggregates when expressed alone. The cytoplasmic retention of 

UL15 by Δ2 is surprising given the ability of the Δ2 protein to complement dlUL33 

growth and DNA packaging. However in cells co-expressing UL15-pp65, UL28-cMyc 

and Δ2, all three proteins did co-localise within the nucleus. This suggests that 

retention of the UL15-pp65- Δ2 complex within the cytoplasm may be due to masking 

of the UL15 NLS, which can be overcome by the addition of UL28-cMyc.  

 

The results with the UL33 mutants indicate that none of the mutations alone is 

sufficient to abolish the UL15-UL33 interaction and suggest that (i) UL33 may interact 

with UL15 via more than one region or (ii) the region required for interaction is 

relatively short (10-15 aa). It will be important to confirm the results of the 

experiments with the UL33 mutants using other approaches, for example 

immunoprecipitation assays with the recombinant baculoviruses described in section 

4.3.5. Whether nucleic acid is involved in mediating the UL15-UL33 interaction also 

remains to be explored. 
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4.5.2 Interaction between UL28 and UL33 

My immunofluorescence and immunoprecipitation data provide evidence for an 

interaction between the wild type UL28 and UL33 proteins, in agreement with 

previous findings (Beard et al., 2002; Jacobson et al., 2006). The cytoplasmic co-

localisation of transiently expressed UL28-cMyc and UL33 is also consistent with the 

proposal that UL15 (specifically a nuclear localisation signal within UL15) is required 

for import of UL28 and UL33 into the nucleus (Yu & Weller, 1998a; Koslowski et al., 

1999; Abbotts et al., 2000; Yang et al., 2007). 

 

Immunofluorescence experiments suggested that four UL33 insertion mutants (in34, 

in37, in69 and in84) were impaired in their ability to interact with UL28, implicating 

these regions as being important for binding. This finding also lends further support to 

the proposal that UL15 and UL33 interact in the absence of UL28. Were UL33 

dependent upon UL28 to interact with UL15, it would be expected that mutants 

unable to interact with UL28-cMyc would not be able to be incorporated into a 

functional UL15-UL28-UL33 complex. However, three of the mutants (in34, in37 and 

in84) supported UL33 mutant virus growth and DNA packaging, suggesting that UL33 

may also be able to be recruited into a functional complex via an interaction with 

UL15. 

 

In contrast, immunoprecipitation analysis of mutated UL33 proteins expressed under 

the control of the AcMNPV polyhedrin promoter demonstrated that all 16 insertion 

mutants retained their ability to interact with UL28. This suggested that, in this assay, 

the mutations introduced were insufficient to perturb the UL28-UL33 interaction.  

 

Several explanations for the disparity between these assays can be envisaged.  Firstly, 
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the presence of a cMyc epitope may affect the ability of UL28 to interact with certain 

UL33 mutants. Secondly, it is also possible that baculovirus-expressed UL28 and UL33 

proteins may associate whilst being incubated for prolonged periods on ice, giving rise 

to false-positive interactions by immunoprecipitation. Thirdly, the temperature at 

which the mutated proteins were expressed may be important for their interaction with 

UL28. It is conceivable that an insertion in UL33 might preclude correct protein 

folding at 37 OC (the temperature at which transfected BHK cells were incubated), but 

that folding at 28 OC (the temperature at which baculovirus-infected Sf 21 cells were 

incubated) was unaffected. It will be important to confirm these results by carrying out 

immunofluorescence in Sf 21 cells, or by using mammalian expression systems to carry 

out immunoprecipitation experiments at 37 OC. 

 

Replacement of Val35, Ser36 and Arg37 of UL33 with CGRTR (Δ1) abrogated 

cytoplasmic retention of UL33 by UL28-cMyc, as previously observed with in34 and 

in37, further implicating this region in the UL28-UL33 interaction. This result is 

surprising given the ability of the Δ1 protein to complement dlUL33 growth and DNA 

packaging. However, Δ1 was able to co-localise with both UL15 and UL28 in triply 

transfected cells (Figure 4.18). Alignment of UL33 gene homologues revealed that the 

substituted regions in Δ1 exhibited poor sequence conservation, consistent with Δ1 

supporting viral growth and DNA packaging (Figure 4.19). The failure of Δ1 to 

interact with UL28-cMyc could be due to the net insertion of two amino acids, or to 

the specific loss of residues 35, 36 and 37. Nevertheless, perturbation of the UL28-

UL33 interaction with this mutant is apparently overcome in the context of HSV-1 

infection by virtue of its ability to interact with UL15. 
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Figure 4.19: The position of Δ1 and Δ2 relative to amino acids conserved amongst the alphaherpesvirinae  



Martin R. Higgs, 2008  Chapter 4:   

 

206

Substitution of amino acids Ile85 to Ala100 of UL33 with MRPHA (Δ2) did not affect 

the ability of Δ2 to support DNA packaging and dlUL33 growth. This is consistent 

with the poor sequence conservation exhibited by this dispensable region ( 

Figure 4.19). However, although in84 was unable to co-localise with UL28-cMyc, Δ2 

was unaffected in this regard. The reason for this discrepancy is unclear, but may 

reflect the nature of the inserted amino acids (MRPQP for in84; MRPHA for Δ2). 

 

In summary, analysis of the ability of the mutated UL33 proteins to interact with UL15 

and UL28 failed to explain why a subset of mutants could not package DNA. Eight of 

the nine mutants that were unable to package DNA (in14, in51, in55, in74, in 104, 

in111A, in111B and in116) appeared completely unaltered in their ability to interact 

with UL15 and UL28. The ninth mutant unable to package DNA, in69, was unable to 

co-localise with UL28-cMyc in immunofluorescence assays. This might explain the 

inability of in69 to support DNA packaging, but it should be noted that other mutants 

exhibiting this phenotype (in34, in37 and in84) complemented dlUL33 growth and 

packaging. Experiments described in chapter 5 were therefore designed to investigate 

whether UL33 might interact with other HSV-1 DNA packaging proteins, and if so, 

whether perturbation of such interactions could account for the behaviour of the 

UL33 mutants. 
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Chapter 5: Interaction of wt and mutated UL33 with other 

packaging proteins 

Section 5.1 Introduction 

The preceding immunoprecipitation and immunofluorescence experiments (Chapter 4:) 

demonstrated that the ability of mutated UL33 proteins to interact with the terminase 

proteins UL15 and UL28 did not correlate with their ability to support mutant virus 

growth or DNA packaging. It is conceivable, however, that interactions of wt UL33 with 

other viral or cellular partners may be vital for successful DNA packaging. Although 

several protein-protein interactions involving UL33 homologues have been reported in 

other herpesviruses (notably HSV-2, VZV and KSHV; Yamauchi et al., 2001; Yamauchi 

et al., 2002; Uetz et al., 2006), there have been no reports of interactions between 

homologues of HSV-1 UL33 and the HSV-1 DNA packaging proteins UL6, UL25 and 

UL32. Uetz et al. (2006) identified an interaction between the VZV homologues of HSV-

1 UL33 and UL17 by yeast-2-hybrid screening, although this interaction was not 

observed in similar studies on the homologous EBV proteins (Calderwood et al., 2007). 

 

The initial aims of the work presented in this chapter were therefore to determine 

whether wild-type UL33 was able to interact with UL6, UL17, UL25 and UL32. During 

the course of these experiments, novel interactions with UL6 and UL25 were observed. 

Subsequently, the ability of mutated UL33 proteins to interact with these proteins was 

examined. 

Section 5.2 Interactions of UL33 with UL6 and UL6in269 

Interactions have previously been demonstrated between the UL15 and UL28 terminase 

components, and the HSV-1 portal protein UL6 (White et al., 2003; Yang et al., 2007). 
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However, despite UL33 being a probable component of the putative terminase complex, 

it is unknown whether it interacts with UL6. Experiments were therefore carried out to 

determine whether UL6 and UL33 interacted.  

5.2.1 Co-immunoprecipitation of UL6 and UL33 from HSV-1 infected cells 

To examine whether UL33 and UL6 interacted in HSV-1-infected cells, 

immunoprecipitation analysis was carried out on the HSV-1 and dlUL33-infected cell 

lysates detailed in section 4.2.2. Lysates were immunoprecipitated with R148, the 

immune complexes collected and proteins resolved by western blotting with either R148 

or a rabbit anti-UL6 antibody R992 (2.1.12). The results are shown in Figure 5.1. Lanes 

4-9 of panel A and 4-6 of panel B, showing the UL33 and actin controls, were presented 

in Figure 4.2 and discussed in section 4.2.2. 

 

UL6 was detected in HSV-1 and dlUL33-infected cell lysates, but was absent from mock-

infected cells (panel A; lanes 1-3). Both UL6 and UL33 were co-precipitated by R148 

from HSV-1-infected cells, but not from dlUL33-infected cells (panel B; lanes 1-3 and 

lanes 4-6 respectively), indicating that the co-precipitation of UL6 by R148 required 

UL33. These data suggest that UL6 forms part of a complex that contains UL33. 

5.2.2 Co-immunoprecipitation of UL6 and UL33 from recombinant 

baculovirus-infected insect cells 

Although data suggested that UL6 and UL33 interacted, it was unclear whether this 

interaction was dependent upon the presence of UL15 and UL28. It was conceivable that 

R148 precipitated a complex of UL15-UL28-UL33-UL6 from HSV-1 infected cells, 

rather than just the UL33-UL6 moieties, and that UL6 and UL33 interacted via UL28 

and/or UL15.  
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Figure 5.1: Co-immunoprecipitation of UL6 and UL33 from HSV-1 infected cells 
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To examine whether UL6 and UL33 interacted in the absence of the other terminase 

proteins, immunoprecipitation analysis was carried out on UL6 and UL33 expressed by 

recombinant baculoviruses under the control of the AcMNPV polyhedrin promoter.  

Sf 21 monolayers were infected with 5 p.f.u./cell of recombinant baculoviruses 

expressing either UL33 (AcUL33) or UL6 (AcUL6), or both viruses together. Cell lysates 

were prepared, precleared and precipitated with either R148 or R992. Immune complexes 

were collected and analysed by western blotting, and the results are shown in Figure 5.2. 

 

UL33 was precipitated by the UL33 antibody R148 from cells infected with AcUL33 

alone or in conjunction with AcUL6, but not from mock-infected cells or those receiving 

AcUL6 alone (panel A; lanes 5-8). UL6 was precipitated by R148 from cells receiving 

AcUL33 and AcUL6, but not from cells receiving AcUL6 alone, indicating that co-

precipitation of UL6 and UL33 by R148 required UL33 (panel A; lanes 1-4). In reciprocal 

experiments, the anti-UL6 antibody R992 precipitated UL6 from cells receiving AcUL6 

in both the presence and absence of AcUL33 (panel B; lanes 1-4). Furthermore, R992 

co-precipitated UL33 from cells receiving both AcUL6 and AcUL33 (panel B; lanes 5-8). 

Together, these data confirmed the earlier result (Figure 5.1) suggesting that UL6 and 

UL33 interacted, and provided the first demonstration of an interaction in the absence of 

other HSV-1 proteins, notably UL15 and UL28.  

5.2.3 Co-localisation of wt UL6 and UL33-HIS6 in transfected cells 

To further analyse the ability of UL33 and UL6 to interact in the absence of other HSV-

1 proteins, the subcellular localisation of UL6 was examined in the presence of a His6-

tagged version of UL33. Previous studies revealed that this protein was able to support 

amplicon DNA packaging as efficiently as wild-type UL33 (G. Reid, unpublished results). 

BHK cells were transfected with pAS30 and pUL33-His6 (encoding UL33-His6), either  
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Figure 5.2: Co-immunoprecipitation of UL6 and UL33 from recombinant baculovirus-infected cells 
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alone or in combination. pAS30 expresses the HSV-1 UL6 gene under the control of the 

HCMV MIEP (Patel et al., 1996). Fixed and permeabilised monolayers were incubated 

with R992 and mouse anti-HIS6 antibodies (section 2.1.12), and processed for confocal 

microscopy. Representative images are shown in Figure 5.3. 

 

In contrast to the localisation of wild-type UL33, UL33-His6 localised solely to the 

cytoplasm of transfected cells (panels D and F). UL6 was present solely in the nuclei of 

cells transfected with pAS30 (panels A-C), consistent with previous studies (Patel et al., 

1996; White et al., 2003). No non-specific fluorescence was apparent with either antibody. 

In cells co-expressing both proteins, UL6 and UL33-His6 localised to the cytoplasm 

(panels G and H respectively), and merging of the channels revealed extensive co-

localisation (panel I). These data therefore agree with the previous conclusion that UL6 

and UL33 interact specifically and in the absence of other HSV-1 proteins. 

5.2.4 Immunofluorescence assay for the interaction of wt UL33 with UL6 

Similar experiments were carried out to analyse whether wild type UL33 and UL6 

colocalised in the absence of other HSV-1 proteins. BHK cells were transfected with 

either pAS30 or pUL33, or both plasmids together. Monolayers were reacted with R148 

and a mouse anti-UL6 antibody (M175; section 2.1.12), cells were processed for confocal 

microscopy, and representative images shown in Figure 5.4. 

 

UL6 again localised to the nuclei of transfected cells (panels A and C). No FITC-specific 

fluorescence was observed in cells transfected with pAS30 (panel B). As observed before, 

UL33 was localised throughout transfected cells (panels E-F). In cells co-expressing UL6 

and UL33, both proteins localised within the nucleus, and revealed extensive co-

localisation (panels G-L). In the majority of cells (approximately 95%) expressing both  
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Figure 5.3: Co-localisation of UL6 and UL33-HIS6 in transfected cells  
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Figure 5.4: Co-localisation of UL6 and UL33 in transfected cells 
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proteins, UL33 was restricted solely to the nucleus (panels H and I). This figure is 

significantly greater than the percentage of cells showing exclusive nuclear localisation 

when UL33 is expressed alone (section 3.2.3). However, in a small proportion of cells 

(5% of the population co-expressing both proteins), UL33 was present in both nucleus 

and cytoplasm, although predominantly in the nucleus, where it co-localised with UL6 

(represented by panels K-L). Both proteins were consistently absent from nucleoli. In 

combination, these data support the proposal that UL6 and UL33 interact in the absence 

of other HSV-1 proteins. 

5.2.5 Ability of mutated UL33 proteins to interact with wt UL6 

The ability of mutated UL33 proteins to interact with UL6 was analysed in similar 

experiments. In this instance, BHK cells were transfected with plasmids expressing wild 

type or mutated UL33 proteins, together with pAS30. Images of a subset of the mutants 

are shown in Figure 5.5, and are representative of the phenotype exhibited by all 16 

mutants in this assay. 

 

The localisation of UL33 and UL6 when expressed alone was identical to that observed 

previously (data not shown). When co-expressed, both proteins again co-localised within 

the nuclei of cells (panels A-C). All of the mutants examined exhibited a similar 

phenotype to wt UL33 in which the UL33 protein was predominantly nuclear, where it 

co-localised extensively with UL6 (represented by in14, in37, in69 and in100 in panels D-

O). It should be noted that, in a small proportion of the cells co-expressing mutated 

UL33 and UL6, that some UL33 was apparent in the cytoplasm (typified by in14 and 

in37 in panels E and H respectively). The proportion of cells in which UL33 was 

restricted to the nucleus was increased in all instances in the presence of UL6. 
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Figure 5.5: Co-localisation of UL6 and mutated UL33 proteins in transfected cells 
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Together, these data suggested that none of the mutated UL33 proteins was 

compromised in its ability to interact with UL6. Therefore, the inability of several 

mutants to support DNA packaging could not be explained in terms of their failure to 

interact with UL6. 

5.2.6 Immunofluorescence assay for the interaction of wt UL33 with 

UL6in269 

Previous studies revealed that insertion of four amino acids between the conserved 

residues Phe269 and Glu270 of UL6 rendered the resulting protein (UL6in269) unable to 

support DNA packaging (White et al., 2003). Furthermore, UL6in269 was restricted 

solely to the cytoplasm of transfected cells, in contrast to the nuclear localisation of wt 

UL6. To further examine the interaction between UL6 and UL33, the localisation of 

UL33 was examined in the presence of UL6in269. 

 

BHK cells were transfected with pUL33 or pUL6in269 (encoding UL6in269), or both 

plasmids together. Fixed and permeabilised cells were incubated with R148 and M175 

and processed for confocal microscopy. UL33 and UL6 were detected by excitation of 

FITC and Cy5 fluors respectively, and representative images are shown in Figure 5.6. 

 

UL6in269 was localised solely to the cytoplasm of transfected cells (panels A-C), 

consistent with the published phenotype (White et al., 2003). The localisation of UL33 

was as observed previously (panels D-F). In cells co-expressing both UL6in269 and 

UL33 both proteins were present exclusively in the cytoplasm (panels G and H) and 

exhibited extensive co-localisation (panel I). These data demonstrated that UL33 

interacted with UL6in269, in agreement with data from immunoprecipitation studies of 

wt UL6. However, it should be noted that UL6in269 is unable to support DNA  
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Figure 5.6: Co-localisation of UL6in269 and UL33 in transfected cells 
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packaging. 

 

One explanation for the cytoplasmic localisation of UL6in269 and UL33 was that 

UL6in269 non-specifically inhibits the nuclear uptake of proteins. To examine this 

possibility, the localisation of HSV-1 UL9 was examined in the presence of UL6in269. 

To this end, BHK cells were transfected with pUL6in269, pE9, or both plasmids 

together. Coverslips were incubated with R992 and the UL9 antibody M13924, and 

processed as described before (section 4.3.1). Figure 5.7 is representative of the images 

obtained. 

 

The subcellular localisations of UL6in269 and UL9 when expressed alone (panels A-C 

and D-F respectively) were identical to those observed previously. The localisation of 

UL6in269 and UL9 was unaltered when both proteins were co-expressed, with UL9 

localised to the nucleus and UL6in269 restricted solely to the cytoplasm (panels G-I). 

Thus, UL6in269 did not inhibit the nuclear uptake of UL9, and the cytoplasmic co-

localisation observed in cells expressing UL33 and UL6in269 was therefore considered to 

represent a specific interaction. 

5.2.7 Ability of mutated UL33 proteins to interact with UL6in269 

To analyse the ability of mutated UL33 proteins to co-localise with UL6in269, similar 

experiments were performed. In this case, cells were transfected with plasmids expressing 

wt or mutated UL33 proteins together with pUL6in269. A subset of the resulting images 

is shown in Figure 5.8, and is representative of all of the mutants analysed. 

 

As before, wt UL33 was excluded from the nucleus in the presence of UL6in269 and the 

two proteins extensively co-localised within the cytoplasm (panels A-C). A similar  
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Figure 5.7: Intracellular localisation of UL6in269 and UL9 in transfected cells 
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Figure 5.8: Co-localisation of UL6in269 and mutated UL33 proteins in transfected cells 
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phenotype was exhibited by all of the 16 mutants examined (represented by in51, in55, 

in74 and in116 in panels D-O). These data, together with the results from co-localisation 

studies with wt UL6, suggested that all the mutants retain the ability to interact with UL6.  

Section 5.3 Interaction of UL33 with UL17 

Similar approaches were employed to examine potential interactions between the HSV-1 

UL33 and UL17 proteins.  

5.3.1 Immunoprecipitation analysis of UL17 and UL33 from HSV-1 infected 

cells 

Firstly, immunoprecipitation analysis was performed on the HSV-1-infected cell lysates 

described in section 4.2.2. Isolated immune complexes precipitated by R148 were 

resolved by western blotting and membranes probed with R148 or a rabbit anti-UL17 

antibody, R1218 (section 2.1.12). The resultant immunoblots are shown in Figure 5.9. 

Lanes 4-9 of panel A and 4-6 of panel B, showing the UL33 and actin controls, were also 

presented in Figure 4.2 and discussed in section 4.2.2. Although UL17 was readily 

detectable by R1218 in virally infected cell lysates (panel A; lanes 1-3), it was absent from 

immune complexes precipitated by R148 (panel B; lanes 1-3). Thus UL17 is not co-

precipitated with UL33 by R148, suggesting that UL17 does not interact with UL33 in 

HSV-1-infected cells. 

5.3.2 Immunoprecipitation analysis of UL17 and UL33 from recombinant 

baculovirus-infected insect cells 

The ability of UL17 and UL33 to interact was next examined by immunoprecipitation of 

recombinant baculovirus-expressed proteins. Monolayers of Sf 21 cells were infected 

with 5 p.f.u./cell of AcUL33 or a recombinant baculovirus expressing UL17 (AcUL17), 

or both viruses together. Proteins were precipitated by R148 or R1218, and the resulting  
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Figure 5.9: Immunoprecipitation of UL17 and UL33 from HSV-1-infected cells 
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immune complexes analysed by western blotting (Figure 5.10). 

 

Both UL17 and UL33 were precipitated by their cognate antibodies (panels B; lanes 1-4 

and A; 5-8 respectively). However, no UL17 was detected in immune complexes 

precipitated with R148, despite the presence of UL17 in cell extracts (panel A; lanes 1-4). 

Consistent with these findings, no UL33 was detectable in complexes precipitated by 

R1218 (panel B; lanes 5-8). Together, these data further support the conclusion that 

UL17 and UL33 do not interact. 

5.3.3 Sub-cellular localisation of UL17 and UL33 in transfected cells 

Finally, the localisation of UL17 was examined in conjunction with UL33 in co-

transfected cells. BHK monolayers were transfected with pUL33, pMH19 (which 

encodes the HSV-1 UL17 gene under the control of the HCMV MIEP), or both 

plasmids together. Coverslips were incubated with R148 and a mouse anti-UL17 

antibody (M203; section 2.1.12), processed for confocal microscopy, and the resultant 

images are shown in Figure 5.11. 

 

The localisation of UL33 when expressed alone was as observed previously (panels A-C). 

UL17 was localised predominantly in the nuclei of cells, with a small amount of protein 

in the cytoplasm (panels D and F). No FITC-specific signal was observed in cells 

transfected with pMH19 alone (panel E). The co-expression of both proteins did not 

alter the sub-cellular localisation of either UL17 (panel G) or UL33 (panel H). This is 

consistent with data from the immunoprecipitation experiments suggesting that UL17 

and UL33 do not interact. 

Section 5.4 Interaction of UL33 with UL25 

Although an interaction has previously been reported between HSV-1 UL25 and the a  
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Figure 5.10: Immunoprecipitation of UL17 and UL33 from recombinant baculovirus-infected cells 
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Figure 5.11: Intracellular localisation of UL17 and UL33 in transfected cells 
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sequence (Ogasawara et al., 2001), it is not known whether UL25 interacts with the 

terminase components. The next series of experiments therefore examined whether 

UL25 and UL33 interacted. 

5.4.1 Co-immunoprecipitation of UL25 and UL33 from HSV-1 infected cells 

The virally-infected cell lysates described previously (4.2.2) were analysed by 

immunoprecipitation to ascertain whether UL25 was precipitated with UL33. Immune 

complexes precipitated by R148 were resolved by western blotting and the membranes 

probed with either R148 or a rabbit anti-UL25 antibody, R335. The resulting 

immunoblots are shown in Figure 5.12. Lanes 4-9 of panel A and 4-6 of panel B, 

showing the UL33 and actin controls, were discussed in section 4.2.2 and also presented 

in Figure 4.2. 

 

UL25 was efficiently detected by R335 in the lysates of cells infected with HSV-1 and 

dlUL33, but not from mock-infected cells (panel A; lanes 1-3). Moreover, R148 co-

precipitated UL33 and UL25 from HSV-1-infected cells (panel B; lanes 2 and 5). Neither 

UL33 nor UL25 was precipitated from dlUL33-infected or mock-infected cells (panel B; 

lanes 1, 3, 4 and 6). These data suggested that UL25 was present in complexes containing 

UL33 and precipitated by R148. 

5.4.2 Co-immunoprecipitation of UL25 and UL33 in recombinant 

baculovirus-infected insect cells 

To examine whether UL25 and UL33 interacted in the absence of other HSV-1 proteins, 

immunoprecipitation analysis was carried out on insect cells infected with AcUL33 and 

AcUL25 (expressing UL25 under the control of the AcMNPV polyhedrin promoter) 

alone, or in combination. Infected cell lysates were incubated with either R148 or R335, 

and immune complexes analysed by western blotting (Figure 5.13). R148 precipitated  
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Figure 5.12: Co-immunoprecipitation of UL25 and UL33 from HSV-1 infected cells 
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Figure 5.13: Co-immunoprecipitation of UL25 and UL33 from recombinant baculovirus-infected cells 
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both UL25 and UL33 from cells co-expressing the two proteins (panel A). In addition, 

R335 was able to co-precipitate UL25 and UL33 from cells receiving both AcUL25 and 

AcUL33 (panel B). Thus, these results extend the previous finding (Figure 5.12), and 

indicate that UL25 and UL33 interact in the absence of other viral proteins. 

5.4.3 Co-localisation of UL25 and UL33 in transfected cells 

To further investigate the ability of UL25 and UL33 to interact in the absence of other 

HSV-1 proteins, an immunofluorescence assay was used. In this instance BHK cells were 

transfected with pUL33 or a plasmid expressing UL25 (pIM96), or both plasmids 

together. Fixed, permeabilised monolayers were incubated with R148 and a mouse anti-

UL25 antibody (M166; section 2.1.12), and processed for confocal microscopy. 

Representative images are shown in Figure 5.14. 

 

Consistent with previous observations, UL33 localised throughout transfected cells, but 

was present predominantly within the nucleus (panels A-C). UL25 was localised solely to 

the cytoplasm of expressing cells (panels D and F), and no FITC-specific signal was 

observed from such cells (panel E). When co-expressed, both proteins were present in 

the cytoplasm (panels G and H), where they exhibited partial co-localisation (panel I). 

The restriction of UL33 to the cytoplasm of these cells, and the observed co-localisation, 

further supports the conclusion that UL25 and UL33 are able to interact. 

 

As with UL28-cMyc and UL6in269, it was conceivable that UL25 may inhibit the nuclear 

import of proteins when over-expressed. Therefore the localisation of HSV-1 UL9 was 

examined in the presence of UL25. BHK cells were transfected with pIM96, pE9, or 

both plasmids together. Proteins were detected using R335 and M13924 in conjunction 

with the FITC and Cy5 conjugates previously described. Resulting images are shown in  
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Figure 5.14: Co-localisation of UL25 and UL33 in transfected cells 
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Figure 5.15. 

 

When individually expressed, both UL25 and UL9 exhibited the same sub-cellular 

localisation as previously described, with UL9 localising to the nuclei and UL25 solely 

within the cytoplasm (panels D-F and A-C respectively). In cells co-expressing both 

proteins, no change was observed in the localisation of either protein (panels G-I). Thus, 

the nuclear uptake of proteins was not inhibited by UL25, and the cytoplasmic retention 

of UL33 by UL25 was therefore considered likely to represent a specific interaction. 

5.4.4 Co-localisation of UL25 and mutated UL33 proteins in transfected cells 

Similar experiments were preformed to analyse the ability of mutated UL33 proteins to 

interact with UL25. In this case, BHK cells were transfected with plasmids expressing wt 

or mutated UL33 proteins together with pIM96. Resultant images are shown in Figure 

5.16, and are representative of the phenotype exhibited by all of the mutants examined. 

When wt UL33 and UL25 were co-expressed, UL33 was restricted to the cytoplasm as 

observed previously (panel B), and partially co-localised with UL25 (panels A and C). All 

of the mutated versions of UL33 exhibited a similar phenotype whereby UL33 localised 

to the cytoplasm (represented by in14, in37, in100 and in116 in panels D, G, J and M) 

and co-localised with UL25 (panels F, I, L and O). This therefore suggested that none of 

the mutated UL33 polypeptides was affected in its ability to co-localise with UL25. 

Section 5.5 Interactions of UL33 with UL32 

Similar approaches were used to determine whether UL33 was able to interact with the 

HSV-1 UL32 protein. 

5.5.1 Immunoprecipitation of UL32 and UL33 from HSV-1-infected cells 

Initially, immunoprecipitation analysis was carried out on the virus-infected cell lysates  
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Figure 5.15: Intracellular localisation of UL25 and UL9 in transfected cells 
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Figure 5.16: Co-localisation of UL25 and mutated UL33 proteins in transfected cells 
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detailed in section 4.2.2. Protein complexes precipitated by R148 were isolated and 

analysed by western blotting. Membranes were probed with R148 or a rabbit anti-UL32 

antibody, RC12 (section 2.1.12), and the immunoblots are shown in Figure 5.17. Lanes 

4-9 of panel A and 4-6 of panel B, showing the UL33 and actin controls, were presented 

in Figure 4.2 and discussed in section 4.2.2. UL32 was detected by RC12 in both HSV-1- 

and dlUL33-infected cells (panel A; lanes 1-3). However, no UL32 was detected in 

immune complexes precipitated by R148 (panel B; lanes 1-3), suggesting that UL33 and 

UL32 do not interact in HSV-1 infected cells. 

5.5.2 Immunoprecipitation of UL32 and UL33 from baculovirus-infected 

insect cells 

Potential interactions between UL33 and UL32 were also examined by 

immunoprecipitation of baculovirus-expressed proteins. Sf 21 monolayers were infected 

with AcUL33 or AcUL32 (expressing UL32 under the control of the AcMNPV 

polyhedrin promoter), or both viruses together. Infected cell lysates were incubated with 

RC12 or R148 and the immune complexes collected and analysed by western blotting. 

The resulting immunoblots are shown in Error! Reference source not found.. 

 

Whilst both UL32 and UL33 were efficiently precipitated by their cognate antibodies 

(panel A; lanes 5-8 and panel B; lanes 1-4 respectively), no UL32 was apparent in 

complexes precipitated by R148 (panel A; lanes 1-4). Furthermore, no UL33 was 

detected in RC12-precipitated complexes (panel B; lanes 5-8). Together, these data 

support the conclusion that UL32 and UL33 do not interact. 

5.5.3 Sub-cellular localisation of UL32 and UL33 in transfected cells 

Immunofluorescence experiments were also carried out to examine the sub-cellular 

localisation of UL33 in conjunction with UL32. BHK cells were transfected as before  
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Figure 5.17: Immunoprecipitation of UL32 and UL33 from HSV-1-infected cells 
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Figure 5.18: Immunoprecipitation of UL32 and UL33 from recombinant baculovirus-infected cells 
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with pUL33 or pUL32 (encoding UL32 under the HCMV MIEP), either individually or 

together. Fixed and permeabilised cells were incubated with RC12 and a mouse anti-

UL33 antibody, M51(4) (section 2.1.12). The FITC and Cy5 conjugates described 

previously were used to simultaneously detect UL32 and UL33 respectively. Resultant 

images obtained by confocal microscopy are shown in Figure 5.19. 

 

As observed previously using R148, UL33 localised throughout transfected cells and no 

background signal was apparent in the FITC channel (panels D-F). UL32 was localised 

solely to the cytoplasm of transfected cells (panels A and C), consistent with the 

predominantly cytoplasmic localisation of UL32 described previously (Chang et al., 1996; 

Lamberti & Weller, 1998). In cells transfected with pUL32 and pUL33, the localisation of 

both proteins was unchanged (panels G-I) i.e. UL32 in the cytoplasm and UL33 

throughout the cell. Thus, unlike UL28-cMyc, UL25 and UL6in269, UL32 was unable to 

retain wt UL33 in the cytoplasm when over-expressed. These data therefore confirm that 

UL32 and UL33 are unable to interact.  

Section 5.6 Discussion 

5.6.1 UL33 interacts with UL6 

Immunoprecipitation and immunofluorescence experiments demonstrated a novel 

interaction between UL33 and the HSV-1 portal protein UL6. The anti-UL33 antibody 

R148 was able to co-precipitate UL6 and UL33 from HSV-1-infected cells, and from 

insect cells mixedly infected with baculoviruses expressing UL6 and UL33. It was evident 

that this interaction required neither UL15 nor UL28, suggesting that UL33 and UL6 

interact directly. Thus, including previous observations for UL15 and UL28 (White et al., 

2003), UL6 is able to interact separately with all three subunits of the putative terminase.  
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Figure 5.19: Intracellular localisation of UL32 and UL33 in transfected cells 
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Wild type UL6 and UL33 proteins co-localised in the nucleus of transfected cells. 

Although it is unclear whether the two proteins initially interact in the nucleus or the 

cytoplasm, it was evident that UL33 is retained in the nucleus when co-expressed with 

UL6. In a small proportion of cells, some UL33 was evident in the cytoplasm (e.g. panel 

L of Figure 5.4). This may represent a population of cells in which more UL33 was 

expressed relative to UL6. Thus, UL6 might become ‘saturated’ with UL33, and excess 

UL33 would be able to spread throughout the cell. 

 

Immunofluorescence studies demonstrated that the cytoplasmic mutant UL6in269 

retained UL33 within the cytoplasm of transfected cells, strengthening the conclusion 

that UL6 and UL33 interact. Similarly, UL33-His6, which is more cytoplasmic than wt 

UL33 when expressed alone, restricted UL6 to the cytoplasm, consistent with an 

interaction between the two proteins. The reason why UL33-His6 is more cytoplasmic 

than its wt counterpart is unknown, but may reflect a change in the size, charge or 

folding of the tagged protein that precludes nuclear import. Since UL33-His6 is capable 

of supporting DNA packaging, both itself and UL6 are presumably capable of nuclear 

uptake in the context of a viral infection. 

 

Immunofluorescence experiments demonstrated that all of the UL33 insertional mutants 

interacted with both wt UL6 and UL6in269. Further experiments demonstrated that 

both Δ1 and Δ2 were retained in the cytoplasm by UL6in269 (data not shown). No 

correlation was therefore observed between the ability of mutants to support DNA 

packaging and their ability to interact with UL6, and it remains unclear whether 

interaction between UL6 and UL33 is necessary for DNA packaging. The ability of all 

the mutants to bind to UL6 meant it was also not possible to identify any specific regions 
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of UL33 required for the interaction.  Immunoprecipitation experiments with the 

baculovirus-expressed mutated UL33 proteins detailed in section 4.3.3 could provide 

further information in support of this conclusion. The possible role of the UL6-UL33 

interaction is discussed in Chapter 7:. 

 

5.6.2 UL33 interacts with UL25 

Immunoprecipitation and immunofluorescence results demonstrated that UL33 was able 

to interact with the HSV-1 DNA packaging protein UL25, both in the presence and 

absence of the other HSV-1 packaging proteins. The UL33 antibody R148 co-

precipitated UL25 from HSV-1-infected BHK cells, and from Sf 21 cells infected with 

AcUL25 and AcUL33. UL25 also restricted UL33 to the cytoplasm of co-transfected 

BHK cells in a specific manner, although the proteins did not precisely co-localise 

(Figure 5.14). These data provide the first evidence of an interaction between UL33 and 

UL25. 

 

Immunofluorescence analysis of UL33 insertion mutants suggested that all 16 mutants 

interacted with UL25, as all were restricted to the cytoplasm when expressed with UL25. 

In similar experiments, both Δ1 and Δ2 were also able to interact with UL25 (data not 

shown). No correlation was therefore evident between the ability of mutants to interact 

with UL25, and their ability to support DNA packaging and mutant virus growth. As 

before, it would be useful to confirm these findings in co-immunoprecipitation 

experiments. 

 

Cryo-electron microscopy studies of HSV-1 A- and C-capsids led to the suggestion that 

UL17 and UL25 form a C-capsid specific heterodimer (CCSC) spanning two triplexes on 
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the outer capsid surface (Cardone et al., 2007). As shown in Figure 5.20, fitting of the N-

terminally-truncated UL25 crystal structure (Bowman et al., 2006) into the CCSC led to 

the suggestion that UL25 occupies a position within the CCSC distal to the nearest 

penton (Cardone et al., 2007). It can be envisaged that if UL25 also occupies a similar 

position near the portal vertex, then the proximity of UL6 and UL25 may permit UL33 

to interact with both proteins simultaneously. It is feasible that this could act to stabilise 

the interaction between the terminase and the capsid, or enhance the activity of 

terminase during the latter stages of encapsidation, as proposed by Stow (2001). Given 

that UL25 is present in greater amounts in C-capsids than B-capsids or procapsids 

(Sheaffer et al., 2001), and seems to function during the latter stages of packaging 

(McNab et al., 1998; Hodge & Stow, 2001), it is also possible that UL33 may play a role 

in its recruitment to capsids late during packaging. The observed interaction may also 

reflect the ability of free (i.e. non-terminase associated) UL33 to bind UL25. 

 

It should be noted that the over-expression of UL6, UL25 and UL33 may contribute to 

some of the results obtained. Data from the immunoprecipitation of baculovirus-

expressed proteins, and the examination of transfected cells by confocal microscopy, 

cannot exclude this possibility, as both involve proteins expressed under the control of 

strong promoters. The observed precipitation of UL6 and UL25 by R148 from HSV-1 

infected cells (Figure 5.1 and Figure 5.12) supports the proposal that the two proteins 

interact with UL33, although these could be indirect interactions mediated by other 

proteins. However, it is unlikely that whole capsids were precipitated by R148, as both 

the capsid-associated UL17 protein and the major capsid protein VP5 were absent from 

the immune complexes (Figure 5.9 and data not shown). At present, a possible role for 

nucleic acid in mediating these interactions has not been excluded, although neither UL6 

nor UL33 has been reported to exhibit any nucleic acid binding activity. Moreover, the 
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Figure 5.20: The location of the proposed UL17-UL25 heterodimer on C-capsids (from Trus et al., 2007) 
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reported UL25 DNA binding activity (Ogasawara et al., 2001) was not confirmed in gel 

shift assays (N. Stow, unpublished results). 

5.6.3 UL33 interacts with neither UL17 nor UL32 

Results from immunoprecipitation studies suggested that wt UL33 does not detectably 

interact with either UL17 or UL32 in either HSV-1 infected cells or insect cells infected 

with recombinant baculoviruses. Since reciprocal immunoprecipitations were performed, 

and polyclonal antibodies used, it is unlikely that masking of epitopes was responsible for 

the observed absence of co-precipitation. The unaltered immunofluorescence patterns in 

co-transfected cells expressing UL17 plus UL33, or UL32 plus UL33, are also consistent 

with UL33 not interacting with either UL17 or UL32. 

 

Global yeast-2-hybrid screens of the proteins encoded by three human herpesviruses 

(KHV, VZV and EBV) have identified several interactions involving proteins 

homologous to HSV-1 UL33 (summarised in Table 5.1).  The VZV homologue of UL33 

interacted with itself and 35 other viral proteins, whilst the homologous KSHV protein 

interacted with itself and 10 other viral polypeptides (Uetz et al., 2006). No interactions 

were detected involving the EBV UL33 homologue, BFRF1A (Calderwood et al., 2007).  

The absence of interaction between UL33 and UL17 in my studies (Figure 5.9-Figure 

5.11) conflicts with the findings of Uetz et al. (2006), who demonstrated that the VZV 

homologues of these proteins interacted in a yeast-2-hybrid screen. However, similar 

experiments did not reveal an interaction between the EBV homologues of these 

proteins, in agreement with my data (Calderwood et al., 2007). 

 

In summary, the results presented in this chapter demonstrate two novel interactions; 

between UL33 and UL6, and between UL33 and UL25. However, none of the UL33 
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mutants was defective in either interaction. It was therefore not possible to identify 

specific regions of UL33 that might be involved in these interactions, or to provide 

evidence that these interactions were essential for DNA packaging or virus growth. One 

possible explanation is that the region(s) of UL33 required for these interactions are quite 

small (<10 aa), and lie outside any of the insertions. It is also possible that more than one 

region of UL33 contacts each of these proteins, and that these regions are functionally 

redundant in the assays used (i.e. binding can still occur if one of these sites is 

interrupted). Finally, it is conceivable that some of the UL33 mutants might lose their 

ability to interact with either UL6 or UL25 in the presence of UL15 or UL28, or in the 

context of viral infection. 
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VZV Orf 25 (UL33) interacts 

with:  

(Uetz et al., 2006) 

KSHV Orf 67A  

(UL33) interacts with: 

(Uetz et al., 2006) 

EBV BFRF1A (UL33) 

interacts with: 

(Calderwood et al., 2007) 

Orf 1 ‡ Orf 39 (UL20) Orf 9 (UL30) No interactions identified 

Orf 2 ‡ Orf 41 (UL18) Orf 23 (UL21)  

Orf 3 (UL55) Orf 42 (UL15) Orf 29b (UL15)  

Orf 8 (UL50) Orf 43 (UL17) Orf 31 ‡  

Orf 9a (UL49a) Orf 44 (UL16) Orf 34 ‡  

Orf 12 (UL46) Orf 49 (UL11) Orf 59 (UL42)  

Orf 15 (UL43) Orf 50 (UL10) Orf 60 (UL40)  

Orf 18 (UL40) Orf 51 (UL9) Orf 63 (UL37)  

Orf 19 (UL39) Orf 52 (UL8) Orf 67.5 (UL33)  

Orf 24 (UL34) Orf 53 (UL5) Orf 69 (UL31)  

Orf 25 (UL33) Orf 56 (UL4) Orf 75 ‡  

Orf 27 (UL31) Orf 57 ‡   

Orf 30 (UL28) Orf 59 (UL2)   

Orf 32 ‡ Orf 64 (US10)   

Orf 33 (UL26) Orf 65 (US9)   

Orf 33.5 

(UL26.5) 

Orf 67 (US7)   

Orf 36 (UL23) Orf 68 (US8)   

Orf 38 (UL21) S/L  (UL56)   

Table 5.1: A summary of previously identified protein-protein interactions 

involving UL33 homologues from EBV, KSHV and VZV.  Interactions involving the 

UL33 homologues of KSHV and VZV (Uetz et al., 2006) and of VZV (Calderwood et 

al., 2007), identified by Y2H screening, are summarised above. The names of the 

homologous genes of HSV-1 are given in brackets where appropriate. ‡ indicates that the 

interacting partner has no known homologue in HSV-1.
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Chapter 6: The localisation of terminase proteins to viral 

replication compartments 

Section 6.1 Introduction 

During HSV-1 infection, viral genomes, together with viral and cellular proteins, form 

discrete nuclear complexes known as replication compartments (RCs) that are the sites 

of viral DNA synthesis (see section 1.2.7). Due to its close association with viral 

replication forks, the ssDNA-binding protein ICP8, involved in DNA replication, has 

seen widespread use as a marker for RCs (Quinlan et al., 1984). In addition, capsid 

assembly and DNA packaging is thought to occur in RCs, as both capsid components 

and DNA packaging proteins co-localise with ICP8 in infected cells (de Bruyn Kops et 

al., 1998; Lamberti & Weller, 1998; Taus et al., 1998; Yu & Weller, 1998a).  

  

Several studies have previously examined the localisation of the HSV-1 terminase 

proteins during infection. UL15 has been observed to co-localise with ICP8 at both 

early (6 h.p.i) and late (18 h.p.i.) times during infection (Ward et al., 1996; Yu & Weller, 

1998a). UL33 has similarly been shown to co-localise with ICP8 at late time points (18 

h.p.i.) during infection (Reynolds et al., 2000). Although UL28 has not been directly 

demonstrated to localise to RCs during HSV-1 infection, it does co-localise with UL15 

in the nuclei of both transfected cells and HSV-1 infected cells at late times (Abbotts et 

al., 2000; Yang et al., 2007) 

  

Section 6.2 Visualisation of the terminase proteins in infected 

cells 

Initial immunofluorescence experiments aimed to establish the location of the putative 
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terminase proteins, and, since DNA packaging is detectable as early as 6 h.p.i. 

(Lamberti & Weller, 1998), to extend previous observations to these early times after 

infection. 

6.2.1 Visualisation of UL15, UL28 and UL33 in infected cells 

To study the localisation of the terminase proteins early after infection, coverslips of 

BHK cells were mock-infected or infected with 1 p.f.u./cell of HSV-1, and incubated 

for six hours at 37 OC. After fixation and permeabilisation, cells were incubated in PBS 

containing 10% human serum for 30 min. To visualise RCs and terminase components 

simultaneously, cells were incubated with anti-UL15 (R605), anti-UL28 (R123) or anti-

UL33 (R148) antibody in conjunction with the mouse anti-ICP8 antibody M7381. 

Bound antibody was detected using FITC and Cy5 conjugates, and cellular DNA was 

detected using propidium iodide. Coverslips were examined by confocal microscopy 

using lasers with excitation lines at 488nm, 633nm and 543nm, corresponding to the 

excitation wavelength of the FITC, Cy5 and propidium iodide fluors respectively. 

Representative images are shown in Figure 6.1. 

 

As expected, no ICP8-specific signal was observed in mock-infected cells (panels A, G 

and M), and neither UL15 (panel B), nor UL28 (panel H) nor UL33 (panel N) were 

evident in these cells. In contrast, in cells receiving HSV-1 discrete nuclear foci of 

ICP8 were evident, suggesting replication compartments had formed (panels D, J and 

P). Foci of UL15 (panel E), UL28 (panel K) and UL33 (panel Q) were all detected in 

HSV-1 infected nuclei, and in each instance co-localised with ICP8 (panels F, L and R 

respectively). 

 

These results demonstrate that UL15, UL28 and UL33 are all able to localise to RCs  
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Figure 6.1: Visualisation of the terminase components in HSV-1-infected cells 
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early during infection. In addition, the data provide the first direct demonstration that 

UL28 co-localises with ICP8 during HSV-1 infection, and further support the 

hypothesis that DNA packaging occurs within RCs, close to sites of viral DNA 

synthesis. 

Section 6.3 Ability of wt and mutated UL33 proteins to localise 

to RCs 

Results presented in chapter 4 and 5 suggested that the inability of several UL33 

mutants (in14, in51, in55, in74, in104, in111A, in111B and in116) to support DNA 

packaging could not be explained by a failure to interact with the UL6, UL15, UL25 

and UL28 proteins: thus the basis for these impairments remained unclear. Another 

possible explanation for their failure to support DNA encapsidation might be a defect 

in localisation to RCs. Therefore the ability of transiently expressed wt and mutated 

UL33 polypeptides to localise to viral RCs in dlUL33 infected cells was examined. 

6.3.1 Localisation of transiently transfected UL33 in dlUL33-infected cells 

Initially, the ability of transiently expressed wt UL33 to localise to RCs was examined. 

Coverslips of BHK cells were either mock transfected or transfected with 0.5 μg of 

pUL33 by lipofection. Six h.p.t. cells were infected with 1 p.f.u./cell of either HSV-1 

or dlUL33 respectively, and incubated for a further 6 h at 37 OC. Fixed and 

permeabilised coverslips were incubated with R148 and M7381, and examined by 

confocal microscopy. Representative images are shown in Figure 6.2. 

 

In agreement with previous experiments, UL33 was detected in discrete foci in HSV-1-

infected nuclei (panel B) where it co-localised with ICP8 (panel C). As expected, UL33 

was not detectable in cells infected with dlUL33 (panel E), despite the formation of  
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Figure 6.2: Localisation of transiently expressed UL33 in dlUL33-infected cells 
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nuclear ICP8 foci (panels D and F). In cells transfected with pUL33 and infected with 

dlUL33, UL33 was detectable in discrete nuclear foci (panel H), which co-localised 

with ICP8 (panels G and I). These data confirm that the signal observed in HSV-1 

infected cells (Figure 6.1) was due to reactivity of R148 with UL33, and not due to 

overlap from the Cy5 (ICP8) channel. Furthermore, wt UL33 supplied in trans was able 

to localise to viral replication compartments formed in dlUL33-infected cells.  

 

6.3.2 Ability of mutated UL33 proteins to localise to RCs 

Similar experiments were performed to analyse the ability of mutated UL33 proteins to 

localise to replication compartments. In this case, BHK cells were transfected with 0.5 

μg of plasmids expressing either wt or mutated UL33 proteins, and subsequently 

infected with dlUL33. Resultant images of cells expressing a subset of the mutants are 

shown in Figure 6.3, and are representative of the phenotype exhibited by all of the 

mutants in this assay. 

 

Consistent with Figure 6.2, UL33 was undetectable in dlUL33-infected cells, despite 

the formation of RCs (data not shown). Wild-type UL33 expressed by pUL33 was 

again observed in nuclear foci, and co-localised extensively with ICP8 (panels A-C). A 

similar phenotype was observed in cells individually expressing the sixteen UL33 

insertion mutants (represented by in14, in44, in100 and in104 in panels D-F, G-I, J-L 

and M-O respectively). Together, these data indicate that none of the UL33 mutants is 

compromised in its ability to localise to sites of DNA packaging. Thus, the ability of 

mutants to localise to viral replication centres does not correlate with their capability to 

support DNA packaging. 
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Figure 6.3: Localisation of mutated UL33 proteins in dlUL33-infected cells 
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Section 6.4 The role of UL15, UL28 and UL33 in localising the 

terminase components to replication compartments  

Figure 6.1 demonstrated that the putative terminase components UL15, UL28 and 

UL33 were previously shown to localise to viral replication compartments in HSV-1 

infected cells. To determine whether a specific component of the terminase complex 

was responsible for this localisation, immunofluorescence studies were performed on 

cells infected with null mutant viruses with lesions in the UL15 (S648 virus; Baines et 

al., 1997), UL28 (gCB virus; Tengelsen et al., 1993) and UL33 genes (dlUL33 virus; 

Cunningham & Davison, 1993).  

 

The gCB mutant contains a 1,881 bp deletion that removes the region coding for 

amino acids 78-706 of UL28, and is defective in DNA packaging and viral growth 

unless grown on complementing C1 cells (Tengelsen et al., 1993). A similar phenotype 

is observed when the S648 virus, which contains a stop codon in exon I of the UL15 

gene, is grown on non-complementing cells. This defect can be reversed when S648 is 

grown on complementing clone 17 cells, which express the UL15 gene under the 

control of its own promoter (Baines et al., 1997). 

6.4.1 Localisation of putative terminase components in cells infected with 

viruses lacking functional copies of UL15, UL28 and UL33  

Coverslips of BHK cells were infected with 1 p.f.u./cell of either S648, gCB or 

dlUL33, and fixed and permeabilised at 6 h.p.i. Coverslips were incubated with 

antibodies specific to UL15 (R605), UL28 (R123) or UL33 (R148) together with the 

anti-ICP8 antibody M7381. Cells were analysed by confocal microscopy, and resultant 

images are shown in Figure 6.4. 
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In each instance, ICP8 foci were visible, suggesting replication compartment formation 

(panels A, D, G, J, M, P, S, V and Y). In cells infected with gCB, UL28 was not 

detected (panel N). Nevertheless, both UL15 (panel E) and UL33 (panel W) were 

detectable in gCB-infected nuclei, and co-localised with ICP8 in each case (panels F 

and X respectively). In dlUL33-infected cells, no UL33 was detected (panel Z), in 

agreement with previous observations (Section 3.3). However, both UL15 (panel H) 

and UL28 (panel Q) were localised to discrete nuclear foci in such cells, where they co-

localised with ICP8 (panels I and R respectively). 

 

In cells infected with the UL15 mutant, S648, and probed with the UL15 antibody, no 

nuclear fluorescence was observed but very weak staining was discernable at the edge 

of the nucleus (panel B). Similar staining in this region of the cell was also visible in wt 

HSV-1 infected cells (Figure 6.1, panel E). It is possible that this staining represents 

the shorter protein, UL15.5, encoded in the same frame as UL15 by the second exon 

of the UL15 gene, but lacking the nuclear localization signal of UL15 which resides in 

exon I (Baines et al., 1997; Yu & Weller, 1998a; Yang et al., 2007). The lesion in S648 

prevents expression of UL15 but not UL15.5 (Baines et al., 1997). Since antiserum 

R605 was raised against a C-terminal fragment of UL15, reactivity with UL15.5 would 

be expected. UL15.5 is non-essential for virus replication and it is unable to 

compensate functionally for a lack of UL15 (Yu & Weller, 1998a). 

 

In contrast to cells infected with gCB and dlUL33, neither UL28 nor UL33 were 

detectable in S648-infected cells (panels K and T respectively). Together, these data 

suggest that neither UL28 nor UL33 are important for localising the remaining  
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Figure 6.4: Localisation of the terminase components in cells infected with viruses lacking UL15, UL28 or UL33 
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terminase components to replication compartments. However, UL15 seems to be 

indispensable for targeting UL28 and UL33 to RCs. 

6.4.2 Western blot analysis of cells infected with S648, gCB and dlUL33  

In the above experiment, UL28 and UL33 were undetectable by immunofluorescence 

in cells infected with S648. To analyse the expression of the putative terminase 

components in mutant virus infected cells, monolayers of BHK cells were mock 

infected or infected with HSV-1, S648, gCB or dlUL33. Six h.p.i. cells were harvested, 

lysates prepared and proteins analysed by western blotting with R605, R123, R148 or 

an anti-actin antibody. The resultant immunoblots are shown in Figure 6.5. 

 

As expected, UL15, UL28 and UL33 were all absent from mock-infected cells (lanes 1, 

6, 11 and 16), but were detected in HSV-1-infected cells (lanes 2, 7 and 12 

respectively). UL15 was undetectable in S648-infected cells (lane 3), but both UL28 

(lane 8) and UL33 (lane 13) were present at similar levels to those observed in HSV-1. 

Similarly, in gCB-infected cells, no UL28 was detected (lane 9), although the 

expression of UL15 and UL33 was unaffected compared to HSV-1-infected cells (lanes 

4 and 14 respectively). In cells receiving dlUL33, both UL15 and UL28 were expressed 

at similar levels to in HSV-1-infected cells (lanes 5 and 10 respectively), but UL33 was 

undetectable (lane 15). Probing with anti-actin antibody demonstrated that equivalent 

amounts of lysate were loaded in each instance (lanes 16-20). These data are consistent 

with the known phenotypes of these viruses, and suggest that the failure to detect 

UL28 and UL33 by immunofluorescence in S648-infected cells is not due to their 

degradation in the absence of UL15. Rather, the results suggest that, in S648-infected 

cells, UL28 and UL33 are probably diffusely localised and thus undetectable by 

immunofluorescence. 
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Figure 6.5: Western blot analysis of cells infected with viruses lacking UL15, UL28 or UL33 
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6.4.3 Subcellular location of UL28 and UL33 in the absence of UL15 

The previous experiments suggested that, in the absence of UL15, UL28 and UL33 

were diffusely localised. However, it was unclear whether these two proteins were 

capable of nuclear import without UL15. To examine the location of UL28 and UL33, 

nuclear and cytoplasmic extracts were prepared from HSV-1 or S648 infected cells. 

Monolayers of BHK cells were mock infected or infected with 1 p.f.u./cell of HSV-1 

or S648. Six h.p.i. cells were harvested and cytoplasmic and nuclear fractions prepared 

by NP40 treatment (section 2.2.12). The fractions were analysed by western blotting 

and the results are shown in Figure 6.6. 

 

Probing with an anti-histone H1 antibody (section 2.1.12) demonstrated that, as 

expected, this exclusively nuclear protein was only detectable in nuclear fractions (lanes 

1-6), and that the extracts were thus suitable to examine the subcellular location of the 

terminase components. UL15 was detected in both nuclear and cytoplasmic fractions 

of HSV-1 infected cells, but not in mock-infected or S648-infected cells (lanes 7-12). 

Both UL28 and UL33 were absent from mock-infected cells (lanes 13-14 and 19-20 

respectively) but were present in both nuclear and cytoplasmic fractions of HSV-1 

infected cells (lanes 15-16 and 21-22 respectively). Furthermore, in S648-infected cells, 

the subcellular location of UL28 (lanes 17-18) and UL33 (lanes 23-24) was unaltered; 

i.e. both proteins were present in both cytoplasm and nucleus. Together, these data 

suggest that, in the absence of UL15, the remaining terminase components are capable 

of nuclear import, in agreement with the findings of Yang et al. (2007). 
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Figure 6.6: The subcellular location of UL28 and UL33 in the absence of UL15 
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6.4.4 UL15 supplied in trans is sufficient to restore the localisation of 

UL28 and UL33 to RCs in S648-infected cells 

To confirm that UL15 was solely responsible for the inability of UL28 and UL33 to 

localise to sites of DNA packaging in S648-infected cells, similar immunofluorescence 

experiments were performed in clone 17 cells. These cells, derived from rabbit skin 

cells, express UL15 under the control of its own promoter (Baines et al., 1997). 

Coverslips of rabbit skin cells or clone 17 cells were mock-infected or infected with  

1 p.f.u./cell of either HSV-1 or S648. After fixation and permeabilisation, cells were 

incubated with R605, R123 or R148 together with M7381. Cells were processed for 

confocal microscopy, and the resultant images are shown in Figure 6.7. 

 

Mock-infected RSC and clone 17 cells exhibited no cross-reactivity with either the 

terminase protein antibodies, or M7381 (data not shown). The absence of detectable 

UL15 protein in uninfected clone 17 cells is not surprising since activation of the 

promoter would only be expected to occur after infection with HSV-1. 

Consistent with previous observations in BHK cells, nuclear foci of UL15, UL28 and 

UL33 were observed in HSV-1-infected RSC cells (panels B, K and T respectively), 

and co-localised extensively with ICP8 (panels C, L and U respectively). In agreement 

with the previous observations in BHK cells (Figure 6.4), neither UL15 (panel E) nor 

UL28 (panel N) nor UL33 (panel W) was detectable in RSC cells receiving S648. 

However, clone 17 cells infected with S648 exhibited a phenotype indistinguishable 

from HSV-1 infected cells in which UL15 (panel H), UL28 (panel Q) and UL33 (panel 

Z) were visible in nuclear foci, which co-localised with ICP8 in each instance (panels I, 

R and AA respectively). 
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Figure 6.7: Supply of UL15 in trans restores the ability of UL28 and UL33 to localise to replication compartments 
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Together, these data indicate that UL15 supplied in trans restores the ability of the 

S648-encoded UL28 and UL33 proteins to co-localise with ICP8, and confirms the 

necessity of UL15 in targeting the terminase subunits UL28 and UL33 to viral 

replication compartments. 

Section 6.5 Localisation of UL6 in HSV-1-infected cells 

6.5.1 UL6 localises to RCs early during viral infection 

Previous studies demonstrated that the UL6 portal protein co-localised with ICP8 in 

infected cells, (16 h.p.i.) but was unable to do so in the absence of UL17 (Taus et al., 

1998). To extend these findings, the localisation of UL6 was examined at earlier time 

points during infection. Coverslips of BHK cell were mock infected or infected with 

either HSV-1 or the UL6-null virus lacZ-UL6―. This virus contains the E. coli lacZ gene 

inserted into codon 381 of UL6, and is unable to cleave or package DNA unless grown 

on complementing cells (Patel et al., 1996). Infected cells were fixed and permeabilised 

at 6 h.p.i., incubated with the anti-UL6 antibody R992 and the anti-ICP8 antibody 

M7381, and processed for confocal microscopy. Resultant images are shown in Figure 

6.8. 

 

Neither antibody gave significant background fluorescence (panels A-C) in mock 

infected cells, but both UL6 and ICP8 were visible as discrete foci in the nuclei of 

HSV-1-infected cells, where they co-localised extensively (panels D-F respectively). In 

addition, some cytoplasmic signal was apparent in HSV-1 infected cells incubated with 

R992 (panel E). This was absent from cells infected with the lacZ-UL6― virus, 

suggesting that the fluorescence was due to the specific reaction of R992 with UL6. 

This signal might represent either misfolded UL6 that has been ubiquitinated and is  
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Figure 6.8: UL6 co-localises with ICP8 in HSV-1 infected cells 
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therefore targeted for proteasomal degradation (Burch & Weller, 2004); a population 

of UL6 that has yet to be transported into the nucleus; or UL6 incorporated into 

mature capsids that have left the nucleus. In cells infected with lacZ-UL6―, ICP8 was 

present as discrete nuclear foci (panel G) but no UL6 was detected (panel H). These 

data confirm that the FITC signal observed in HSV-1-infected cells is specifically due 

to the recognition of UL6 by its cognate antibody, and demonstrate that UL6 localises 

to RCs early during viral infection. 

 

6.5.2 UL6 is necessary for the localisation of the putative terminase to RCs 

To examine whether UL6 is necessary for UL15, UL28 and UL33 to localise to RCs 

during infection, the localisation of each putative terminase subunit was examined in 

cells infected with HSV-1 or lacZ-UL6―. Infected BHK cells were fixed and 

permeabilised at 6 h.p.i. and treated with UL6, UL15, UL28, or UL33 antibodies 

together with M7381. Cells were processed for confocal microscopy, and resulting 

images are shown in Figure 6.9. 

 

UL6 and ICP8 were observed in the nuclei of HSV-1-infected cells and extensively 

colocalised, as observed before (data not shown). Replication compartments were 

apparent in lacZ-UL6― infected cells in each instance, indicated by the formation of 

ICP8 foci (panels A, D, G and J). As before, no UL6 was detected in these cells (panel 

B). Furthermore, neither UL15 (panel E) nor UL28 (panel H) nor UL33 (panel K) 

were detected in lacZ-UL6― infected cells. These preliminary results therefore suggest 

that UL6 is necessary for the localisation of the putative terminase to sites of DNA 

packaging. However, further experiments are required to confirm these findings, 

particularly western blot analysis for the expression of terminase components in the  
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Figure 6.9:  UL6 is required for the localisation of terminase components to RCs 
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absence of UL6, and immunofluorescence studies of lacZ-UL6― in complementing 

cells. Moreover, the pattern of some ICP8 foci (represented by panel J) seemed 

unusual, although the reason for this was unclear. 

6.5.3 UL6 localisation to RCs is unaffected by the absence of the putative 

terminase subunits 

Similar experiments were performed to analyse the localisation of UL6 in the absence 

of UL15, UL28 or UL33. BHK cells were infected with HSV-1, lacZ-UL6―, S648, gCB 

or dlUL33, and proteins detected using R992 and M7381 antibodies. Coverslips were 

processed for confocal microscopy, and the images are shown in Figure 6.10. 

 

As observed previously, UL6 co-localised with ICP8 in HSV-1-infected cells (panels A 

and C), but was absent from cells infected with lacZ-UL6― (panel F). Moreover, UL6 

was apparent in virus-infected cells in the absence of UL15 (S648; panel H), UL28 

(gCB; panel K) and UL33 (dlUL33; panel N), and co-localised with ICP8 in each case 

(panels I, L and O respectively). Therefore, these data suggest that the localisation of 

UL6 to RCs is independent of the presence of UL15, UL28 and UL33. As before, 

further experiments are required to confirm these preliminary results.  

Section 6.6 Discussion 

6.6.1 Localisation of wt UL6, UL15, UL28 and UL33 to RCs 

Immunofluorescence experiments demonstrated that the HSV-1 terminase 

components and portal protein localised to replication compartments at 6 h.p.i., at 

which time DNA packaging has commenced. These data confirmed previous reports 

that UL15 is able to localise to RCs (Ward et al., 1996; Yu & Weller, 1998a), and extend 

the information on the localisation of UL33, which had previously only been examined  
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Figure 6.10: Localisation of UL6 to RCs is independent of UL15, UL28 and UL33
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at 18 h.p.i. (Reynolds et al., 2000), to early times after infection. These experiments also 

provide the first demonstration that HSV-1 UL28 co-localises with ICP8 during viral 

infection. The homologous HCMV protein, UL56, has similarly been demonstrated to 

localise to RCs in the presence of replicating DNA (Geisen et al., 2000a). My data also 

provide evidence that UL6 localises to RCs, in agreement with the findings of previous 

studies (Taus et al., 1998; Burch & Weller, 2004). Together, the results described above 

completely support suggestions that DNA packaging occurs within viral RCs (de 

Bruyn Kops et al., 1998; Lamberti & Weller, 1998; Taus et al., 1998; Yu & Weller, 

1998a; Geisen et al., 2000a; Burch & Weller, 2004). 

 

6.6.2 The mechanism of terminase localisation to RCs 

In cells infected with gCB or dlUL33, the absence of either UL28 or UL33 did not 

affect the ability of the remaining terminase components to localise to RCs. The earlier 

report that UL33 could co-localise with ICP8 in cells infected with a UL15 null mutant 

(Reynolds et al., 2000) was not confirmed by either my own studies or by Yang et al. 

(2007). The apparent failure of UL28 and UL33 to localise to RCs in cells infected with 

the UL15-null mutant S648, despite both proteins being expressed in amounts 

comparable to HSV-1-infected cells, suggests that UL15 is responsible for mediating 

their localisation to RCs (Figure 6.4, Figure 6.5 & Figure 6.7). In the absence of UL15, 

it is probable that UL28 and UL33 exhibit a diffuse localisation in both the cytoplasm 

and nucleus, and are therefore undetectable by immunofluorescence. Cell fractionation 

studies (Figure 6.6) suggest that both UL28 and UL33 are capable of locating to the 

nucleus in the absence of UL15, in agreement with similar experiments performed by 

Yang et al. (2007). This result also provides a possible explanation for the presence of 

UL28 on capsids formed by a UL15-null mutant virus (Yu & Weller, 1998b). However 
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the nuclear location of UL28 and UL33 is in apparent conflict with previous 

transfection experiments demonstrating that UL15 is necessary for the nuclear import 

of UL28 in immunofluorescence assays (Koslowski et al., 1997; Koslowski et al., 1999; 

Abbotts et al., 2000), and with my data showing that when co-expressed, UL28 and 

UL33 are both retained in the cytoplasm (section 4.3.3). It is also possible that 

insoluble cytoplasmic UL28 and UL33 are co-precipitated with nuclei during the cell 

fractionation procedure used by Yang et al. (2007) and myself, and that this accounts 

for the UL28 and UL33 observed in nuclear fractions (Figure 6.6). 

 

It was recently proposed that UL15, UL28 and UL33 initially formed a complex in the 

cytoplasm, which is then transported into the nucleus (Yang et al., 2007). Transport of 

the complex was shown to be dependent upon a nuclear localisation signal within 

UL15. My data on the localisation of the terminase components are consistent with 

this model. Notwithstanding the data from fractionation studies, the role of UL15 in 

the nuclear uptake of the terminase complex is also consistent with previous studies 

demonstrating nuclear localisation of UL28 and UL15 when expressed together 

(Koslowski et al., 1997; Koslowski et al., 1999) and also of co-expressed UL15 and 

UL33 (Chapter 4). Thus UL15 can independently transport UL28 and UL33 into the 

nucleus and assembly of a complete terminase complex in the cytoplasm is not 

obligatory for nuclear uptake. 

 

There are several possible mechanisms by which the terminase might be recruited to 

and/or retained at the sites where the viral genome is replicated. These could involve 

interactions with other viral or cellular proteins or with viral DNA. Previously, 

interactions have been described between the VZV UL33 and UL5 homologues (Uetz 

et al., 2006), and also between the HCMV homologues of UL28 and UL42 (Geisen et 
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al., 2000a). However, no interaction has yet been reported between the HSV-1 

terminase components and any DNA replication protein. Another possibility is that 

interaction of the terminase with the packaging signal might be important. However, as 

only UL28 has been reported to interact with the packaging signal (Adelman et al., 

2001), such a mechanism fails to account for the localisation of UL15 and UL33 to 

RCs in the absence of UL28. Nevertheless, it remains possible that UL15 or UL33 may 

possess an as yet uncharacterised DNA binding activity capable of potentiating an 

interaction with replicated viral genomes. 

 

Previously an interaction of UL15 with the capsid portal protein, UL6, has been 

described (White et al., 2003; Yang et al., 2007), and it has also been reported that UL15 

is unable to associate with maturing capsids in the absence of UL6 (Salmon & Baines, 

1998; Sheaffer et al., 2001). An interaction between the terminase and the procapsid 

portal represents an attractive mechanism by which UL15 might mediate the 

localisation of the terminase to RCs. In preliminary experiments I demonstrated that a 

UL6-null mutant did not localise the terminase components to RCs, and that the co-

localisation of UL6 and ICP8 was unaffected by the absence of UL15, UL28 or UL33 

(Figure 6.9 & Figure 6.10 respectively). These results indicate that UL6 and the 

terminase employ different mechanisms to localise to RCs. They are also consistent 

with the observation that UL6 localises to the nucleus of infected cells even when the 

terminase is confined to the cytoplasm in cells infected with a virus in which the UL15 

NLS has been mutated (Yang et al., 2007). My findings thus support the model of Yang 

et al. in which association of the terminase and portal occurs in the nucleus. Future 

experiments are required to determine whether a stable terminase complex is 

assembled in cells infected with the UL6-null mutant, and if procapsids lacking UL6 

co-localise with RCs. If this is then case it will indicate that a direct interaction between 
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UL6 and the terminase is required for the accumulation of terminase in RCs, and that 

this is important in bringing together the capsid, terminase and replicated DNA into a 

complex to allow cleavage and packaging. 

 

6.6.3 Localisation of mutated UL33 proteins to RCs 

Experiments examining the ability of the mutant UL33 proteins to localise to RCs 

revealed that all sixteen insertion mutants co-localised with ICP8 when transiently 

expressed in dlUL33-infected cells (Figure 6.3). This is consistent with experiments 

that demonstrated that each of the mutants retained the ability to interact with UL15 

or UL28 when expressed in the absence of other viral proteins (Chapter 4). It therefore 

seems likely that in each case a trimeric UL15-UL28-UL33 complex can be assembled 

in the cytoplasm, imported into the nucleus and recruited to RCs. Data presented 

earlier also suggest that in each case the assembled complex should be capable of 

interacting with UL6 (Chapter 5). 

 

The reason for the inability of in14, in51, in55, in74, in104, in111A, in111B and in116 

to package DNA or support mutant virus growth cannot therefore be explained by 

their ability to interact with UL6, UL15, UL25 or UL28, or by their ability to traffic to 

sites of DNA packaging. Several possible explanations for their defectiveness remain: 

(i) that the terminase complex formed by these mutants is catalytically defective; (ii) 

that the UL15-UL28-UL33 complexes containing these mutants are unable to bind 

DNA and thus assemble into a functional pre-packaging complex; (iii) that the 

functions of UL15 and/or UL28 are defective because UL33 cannot carry out its 

proposed role of a chaperone to assist their folding; (iv) that these mutants are unable 

to interact with as yet unidentified cellular or viral proteins necessary for packaging. 
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Chapter 7: Conclusions 

During the course of my studies, sixteen UL33 insertion mutants were isolated and 

characterised in a variety of assays to determine their ability to support viral growth 

and DNA packaging, and to interact with other DNA packaging proteins. The results 

are summarised in Table 7.1. 

 

Results presented in chapter 3 revealed that the ability of the mutants to support DNA 

packaging correlated precisely with their capacity to complement the growth of viruses 

lacking functional UL33 genes. Combined with previous proposals (Al-Kobaisi et al., 

1991; Patel et al., 1996; Reynolds et al., 2000), these data suggest that UL33 functions 

solely during DNA packaging. Moreover, those mutants able to maintain the packaging 

of amplicon DNA also fully supported the encapsidation of mutant virus genomes. 

Thus UL33, unlike UL25 (McNab et al., 1998; Hodge & Stow, 2001), appears to be 

important for the initiation of DNA packaging, and not solely in the latter stages of 

encapsidation.  

 

Demonstrations of an interaction between UL33 and UL28 (Section 4.3) were in 

agreement with the findings of several previous studies (Beard et al., 2002; Jacobson et 

al., 2006; Yang et al., 2008). In similar experiments, UL33 was also demonstrated to 

bind UL15 in the absence of UL28 (Section 4.2 and 6.4.1), in accord with initial reports 

(Beard et al., 2002), but in contrast to the conclusions of more recent publications 

(Jacobson et al., 2006). Collectively, these data lend further support to a model in which 

UL33 forms part of the viral terminase complex via direct interactions with each of the  
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Table 7.1: Summary of the properties of the UL33 insertion and deletion mutants 
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other two terminase components. However, as the UL33-UL15 interaction appears 

more difficult to demonstrate than the binding of UL28 by UL33 (Jacobson et al.,2006; 

Yang et al., 2007), it is probably weaker.  

 

The results of immunofluorescence experiments for UL15, and of 

immunoprecipitation experiments for UL28, suggested that none of the UL33 mutants 

was defective for interaction with either of the other terminase components. Defects in 

interactions with these two proteins cannot explain why nine of the mutants did not 

support DNA packaging. Surprisingly, four mutants appeared perturbed in their 

interaction with UL28 in immunofluorescence assays, but only one of these, in69, was 

impaired in DNA packaging. Although the three mutants that support DNA packaging 

(in34, in37 and in84) may be altered in their interaction with UL28, they can still 

presumably assemble a functional terminase by interacting with UL15. It therefore 

seems likely that each mutant (with the possible exception of in69) is capable of 

forming a trimeric UL15-UL28-UL33 complex, although several mutants are 

apparently incapable of assembling a functional packaging machinery. Unfortunately 

the data do not therefore allow the conclusion that UL33 is an obligatory component 

of the terminase. The possibility remains that it is uncomplexed UL33 that performs 

an essential role in the packaging process. 

 

Despite the above, the presence of UL33 in the terminase complex is likely to be 

crucial and several possible roles have previously been proposed: (i) it may ensure that 

the terminase is correctly folded and assembled; (ii) it may regulate the enzymatic 

activites of the terminase; (iii) it may have an enzymatic role per se; (iv) it may be 

involved in localising the terminase to sites of DNA packaging (Beard et al., 2002).  

The data presented in this thesis is compatible with the first three roles proposed by 
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Beard and co-workers. However, immunofluorescence studies of dlUL33-infected cells 

(section 6.4.1) exclude the possibility that UL33 is important in localising terminase to 

RCs. Moreover, my data suggest a fifth possible role for UL33, in mediating 

interactions with other components of the HSV-1 packaging machinery, namely UL6 

and UL25. 

 

Bioinformatic analysis (data not shown) failed to reveal any sequence similarity 

between UL33 and the DNA packaging proteins of either bacteriophage or other 

DNA viruses excluding herpesviruses. Indeed, BLAST analysis of the UL33 protein 

sequence retrieved only herpesvirus UL33 gene homologues from the Refseq protein 

database. Similarly, PATTERN analysis of the UL33 motif F-x4-P-x7-P-x2-D-x3-N-x33-

C-x-H, which is conserved amongst all members of the alpha- and beta-herpesvirinae (see 

Figure 3.20 for an alignment of alphaherpesvirinae UL33 sequences), failed to retrieve any 

proteins with known DNA packaging functions outwith the herpesviruses, or proteins 

encoding ATPase, nuclease, DNA binding or ‘molecular motor’ activities (not shown). 

It is therefore unclear whether this motif represents a conserved catalytic site within 

UL33. Furthermore, LOOPP protein-threading analysis of the UL33 amino acid 

sequence failed to reveal any significant similarity with any proteins whose tertiary 

structures have been defined. These analyses therefore provided no further 

information on the possible role of UL33 in encapsidation. 

 

Two novel protein-protein interactions were identified in chapter 5: between UL33 

and UL6, and between UL33 and UL25. Given that both UL15 and UL28 interact 

with UL6 in similar experiments (White et al., 2003), these data indicate that UL6 

separately interacts with all three members of the terminase complex. Since DNA 

packaging is thought to be processive (Figure 1.5), it is likely that that interactions 
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between UL6 and the terminase are transient, perhaps mediated by conformational 

changes in the portal as packaging nears completion. Analogous changes have been 

observed in the portal protein of P22 phage (Lander et al., 2006). Data also suggested 

that UL33 and UL25 interact (Section 5.4). It is conceivable that, as proposed by Stow 

(2001), UL25 might enhance the activity of the terminase at later stages of packaging, 

or that UL25 is brought into close proximity to the terminase via interactions with the 

a sequence as the packaging of a genome approaches completion (Ogasawara et al., 

2001). Although a population of UL25 has been visualised at sites distal to capsid 

vertices (Cardone et al., 2007; Figure 5.20), it cannot be excluded that additional UL25 

may interact directly with the portal. It is also possible that a population of ‘free’ UL33, 

not associated with the terminase, could interact with UL25, implying that UL33 may 

function at multiple stages during the packaging process. No correlation was apparent 

between the capability of the insertion mutants to interact with UL6 or UL25 and their 

ability to support DNA packaging (Table 7.1). Thus, it remains uncertain whether 

either of these interactions is necessary for DNA encapsidation to occur. 

 

The identification of numerous proteins that interact with UL33 might be interpreted 

as an indication that it acts as a chaperone protein to ensure the correct folding of a 

subset of the DNA packaging proteins, as originally suggested by Beard et al. (2002). It 

has previously been demonstrated that a proportion of UL6 is misfolded in infected 

cells (Burch & Weller, 2004), and it is plausible that UL33 might act to assist the 

correct folding or assembly of the portal. Presently, no data on the temporal 

association of UL33 with the terminase, portal and UL25 is available. The data 

presented may thus be a clue that UL33 performs several distinct roles during 

encapsidation, by first interacting with the portal during initiation of packaging, and  

then possibly recruiting UL25 to maturing capsids. The addition of UL25 might then 
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stabilise capsids, precluding the loss of the DNA, or may assist in terminase function 

(McNab et al., 1998; Hodge & Stow, 2001; Sheaffer et al., 2001). This model probably 

requires that UL33 undergo several conformational changes during the packaging 

process.  

 

One mechanism through which proteins can exhibit such flexibility is by existing in a 

molten globule state (Romero et al., 2004). Such proteins are compact and contain 

significant secondary structure (α-helical or β-sheet folds) but with substantial 

‘disordered’ regions, allowing a flexible tertiary structure. This can become fixed 

through interactions with other protein partners. The HSV-1 capsid protein VP23 has 

been shown to exist as a molten globule when alone, and this is thought to be 

necessary for its interaction with VP19C, the other component of triplexes (Kirkitadze 

et al., 1998).  However, bioinformatic analysis of UL33 using the GlobPlot program 

(Linding et al., 2003) reveals only two small (<10 aa) regions of predicted disorded 

structure (data not shown), suggesting that its interactions with different partners are 

unlikely to be facilitated by existing as a molten globule. 

 

A model for the interaction of the terminase with the portal is shown in Figure 7.1 All 

six possible pairwise interactions between the 4 proteins have now been described 

(Abbotts et al., 2000; Beard et al., 2002; White et al., 2003; Jacobson et al., 2006; Yang et 

al., 2007; my data). This may be important since most models of DNA packaging have 

to allow for movement of the terminase relative to the portal. A prediction of the 

model is that terminase might be able to bind to the portal even though one or more 

of these interactions is abolished. This might therefore explain the 
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Figure 7.1: A model for terminase assembly on the capsid portal  
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ability of several mutants (in34, in37 and in84) mentioned previously to support DNA 

packaging, despite their apparent inability to interact with UL28 in 

immunofluorescence assays. 

 

The final results chapter examined the localisation of the terminase to sites of DNA 

packaging, and demonstrated that UL15 was required for the localisation of UL28 and 

UL33 to RCs. This extends findings demonstrating that a nuclear localisation signal in 

UL15 is responsible for terminase complex import (Yang et al., 2007). Together with 

immunofluorescence studies of co-expressed UL15 and UL28 (Koslowski et al., 1997; 

Koslowski et al., 1999) and my data demonstrating cytoplasmic localisation of UL28 

and UL33 in the absence of UL15 (section 4.3.3), a model can be drawn whereby 

UL15 is responsible for the nuclear uptake of the terminase complex, which is then 

recruited to RCs where it is retained via interaction with UL6. Further analysis revealed 

that all of the UL33 mutants localised to RCs, in accordance with earlier data 

suggesting that they all interacted with UL15 and UL6 (sections 4.2.4 and 5.2.5 

respectively). 

 

In summary, my data suggests that each mutant is capable of forming a trimeric UL15-

UL28-UL33 complex, which is imported into the nucleus and directed to sites of DNA 

packaging by virtue of the presence of UL15. All of the complexes apparently also 

retain the ability to interact with the portal protein of procapsids. However, the 

terminases formed by several mutants were unable to support DNA packaging, 

although the reason for this remains unknown. Several regions of UL33, coincident 

with predicted alpha-helical regions of the protein, seemed most susceptible to 

inactivating mutations.  
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Section 7.1 Future perspectives 

Many questions obviously remain to be answered concerning the precise role of the 

UL33 protein in viral DNA encapsidation, and the reasons why several of my mutants 

are defective in this activity. 

 

Bioinformatics analysis suggested that UL33 contains motifs modified by the cellular 

kinases protein kinase C and casein kinase II (not shown). It is presently unknown 

whether UL33 is phosphorylated during HSV-1 infection, although such modification 

might account for the discrepancy between the predicted Mr of UL33 and its observed 

mobility (Reynolds et al., 2000). Therefore, it would be interesting to determine 

whether UL33 is subjected to phosphorylation, or other post-translational 

modification, and, if so, what effects this has on UL33’s activities or ability to bind 

protein partners. It is conceivable that such post-translational modification might play 

a role in altering the conformation of UL33, perhaps acting to release the terminase 

from the portal once a genome length of DNA has been packaged or to allow UL33 to 

bind multiple partners.  

 

Adelman et al. (2001) suggested that a modified secondary structure of the a sequence 

was important for UL28 recognition. This structure could be formed from a single 

strand of the DNA. Although this result has not been confirmed, this suggests that 

exposing a single strand of the packaging signal might be important for its recognition 

by the terminase. This could possibly be achieved through the activities of several of 

the enzymes involved in viral DNA synthesis (e.g. UL9 helicase, UL5-UL8-UL52 

helicase-primase, ICP8 DNA unwinding activity, UL12 exonuclease activity). It would 

be interesting to investigate whether the terminase interacted with any of these 

replication proteins, and whether UL33 played a role. Interestingly, a UL12-null 
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mutant has previously been shown to package viral DNA with reduced efficiency 

(Porter & Stow, 2004b). 

 

Performing shotgun mutagenesis procedures and interpreting the results is invariably 

more complicated for a protein of unknown structure. Crystallographic analysis of the 

UL33 structure would almost certainly aid the interpretation of the data presented in 

this thesis, and also suggest mutagenesis strategies to allow specific questions to be 

posed (e.g. whether specific regions of the surface of UL33 are involved in any of the 

interactions). Such an analysis would also reveal whether certain regions of the protein 

are largely disordered, as previously discussed. At present, obtaining sufficient amounts 

of soluble purified UL33 protein for crystallography (or other biophysical studies) 

represents a major challenge. However, using a more amenable homologue from 

another herpesvirus might facilitate structural analysis. It is also noteworthy that UL33 

is a relatively small protein and that advances in computer software might eventually 

enable reliable predictions of tertiary structure. 

 

Ultimately, advancing our knowledge of the functions of UL33 is hampered by the 

shortage of useful assays. The terminase subunits are largely insoluble when expressed 

in heterologous systems, and even co-expression of the three subunits has not allowed 

sufficient amounts of the complex to be purified for biochemical study. If this could 

be achieved it would be interesting to examine predicted properties such as DNA 

binding, DNA cleavage and ATP hydrolysis, and to determine whether these are 

modulated by the presence of UL33. Such an analysis might also allow specific defects 

of the UL33 insertion mutants to be identified. 

 

A major step forward would be the development of a cell-free system for HSV-1 DNA 
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packaging similar to those reported for several dsDNA bacteriophage (Hwang et al., 

1996; Leffers & Rao, 2000; Smith et al., 2001). Such a system would include procapsids, 

concatemeric DNA, terminase and other essential viral (and host) proteins. It might be 

developed from extracts from HSV-1-infected cells, or from individual components, 

for example expressed by recombinant baculoviruses. The availability of an in vitro 

packaging system would allow rigorous demonstration that UL33 is an obligatory 

component of the terminase, and enable the packaging process to be broken down 

into component reactions e.g. recognition of DNA by the terminase; assembly of a 

prepackaging complex; cleavage of the DNA; DNA insertion into the capsid; cleavage 

to terminate packaging. This would facilitate a much more detailed analysis of the 

mutated UL33 proteins, and hopefully allow their defects to be pinpointed. 
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