
 

Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
Martin, Craig Robert Leslie (2012) Crystal engineering approaches to 
controlling the formation of molecular complexes and their polymorphs. 
PhD thesis. 
 
 
 
 
 
http://theses.gla.ac.uk/3154/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 



Crystal Engineering Approaches to 

Controlling the Formation of Molecular 

Complexes and their Polymorphs 

 

 

Craig Robert Leslie Martin 

 

Doctor of Philosophy Degree in Chemistry 

 

 

School of Chemistry 

 

University of Glasgow 

 

September 2011 

 

Supervisor: Prof Chick Wilson 

 

 

 

 
  



 2 

 

 

 

Declaration 

 

 

 

The thesis has been written in accordance with the University regulations and all work 

presented is original and performed by the author unless otherwise stated and referenced in 

the text. 

 

 

©Craig Robert Leslie Martin, August 2011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Craig Robert Leslie Martin 

August 2011 

 

 



 3 

Abstract 

This work aimed to investigate and exploit the hydrogen bonds generated between 

heterocyclic aromatic compounds, namely benzimidazole and imidazole, and the carboxylic 

acid group. The flexible but robust hydrogen bonds generated have been used to create 

molecular complexes, using practical and relevant co-molecules.  A systematic approach has 

been used in the selection of co-molecules on the basis of crystal engineering principles. A 

library of robust hydrogen bonds and primary structural motifs has been generated, which has 

been used to explain the solid-state assembly of the collection of molecular complexes 

produced in this work and in related published structures. The similarities in hydrogen bond 

strength, bonding motifs and proton transfer behaviour between very dissimilar molecular 

complexes have been remarkable. The opposite is also true in other examples, with very 

similar molecular complexes showing remarkable differences, but overall, a picture is built up 

of predictable use of crystal engineering principles in designing molecular complexes with 

anticipated structural and packing features. 

 

The phenomenon of polymorphism, widely known but poorly understood, is essential to many 

industrial processes.  A primary aim of this work was to promote and control the formation of 

molecular complex polymorphs through varying crystallisation conditions. Co-crystallisations 

involving benzimidazole with the whole series of halo-benzoic acid molecules were 

scrutinised and polymorphism found to be prominent throughout. Selective growth for 

individual forms has been achieved, offering the potential for polymorph selection, but not 

fully understood. 

 

The behaviour of the protons was investigated in the molecular complexes generated; proton 

transfer was prevalent. This was achieved through three methods; firstly with the use of 

variable temperature X-ray and neutron diffraction experiments on the product, by altering the 

levels of pH during the crystallisation process and lastly by introducing competing acceptor 

sites through co-molecule selection.   

 

A feasibility study into the use of the relatively new solvent-free crystallisation processes was 

undertaken. It was shown to be a successful technique in screening for polymorphs and 

molecular complexes. 
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between a benzimidazole and hydroxyl group. 

Fig. 4.13 – The derivatives of hydrogen bond patterns E, F and G that occur when there has been proton 

transfer. 

Fig. 4.14 –The benzimidazolium and 2-hydroxybenzoate ions which are generated in the molecular 

complex/salt, with atom labelling.  

Fig. 4.15 – The main motif of the benzimidazolium 2-hydroxybenzoate molecular complex; a four 

molecule hydrogen bonded ring consisting of alternating co-molecules held together by partially charge 

assisted N
δ+

-H····O
δ-

 hydrogen bonds. The inset shows the view along the bc-diagonal axis that 

highlights the geometric positions of the hydrogen bonded ring system.  

Fig. 4.16 – LHS, the weak hydrogen bonds (-) that extend the hydrogen bonded rings, RHS displays how 

the rings arrange themselves into a stacking configuration due to the C1-H····O1
δ- 

hydrogen bond. 

Fig. 4.17 – The hydrogen bonded ring system; the main motif of the benzimidazolium 2-hydroxybenzate 

molecular complex, is extended by weak hydrogen bonds (circled in red).  

Fig. 4.18 – View highlighting the C-H····π interactions that extends the structure along the ac-diagonal. 

Fig. 4.19 – View of the interactions that exist between the molecules in main motif.  

Fig. 4.20 – The benzimidazolium and 3-hydroxybenzoate ions which are generated in the molecular 

complex, with atom labelling.  

Fig. 4.21 – The 3-hydroxybenzoate molecules create chains with the mean planes of alternate molecules 

tilted at 104.4º from each other.   
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Fig. 4.22 – The 3-hydroxybenzoate molecules chains which are held together through a hydroxyl -

carboxylate hydrogen bond are bridged together by hydrogen bonding through a  benzimidazolium 

molecule.  The inset shows the view along the c-axis, indicating that the benzimidazolium molecules sit 

on two distinct positions due to the twisting nature of the 3 -hydroxybenzoate chains. 

Fig. 4.23 – LHS - The alternating layers that exist on the a-face of the benzidazoline 3-hydroxybenzoate 

molecular complex are connected through a weak hydrogen bond on each alternate layer (red). RHS , the 

alternate layer is held together by a weak hydrogen bond (yellow circle) and C -H····π interactions (red 

circle). 

Fig. 4.24 – LHS, view along the c-axis highlighting how the benzimidazolium molecules form into 

channels. RHS, view along the b-axis that shows the 3-hydroxybenzoate chains. 

Fig. 4.25 – The different benzimidazolium molecules. From, left to r ight, molecules 1 and 2 hydrogen 

bond to one another over a glide plane, molecule 3 hydrogen bonds to itself through a inversion centre 

along the N6····N6 contact, molecule 4 also hydrogen bonds to itself due to an inversion centre along the 

N7····N7 contact. In every case a proton is split over two sites.  

Fig. 4.26 – MCE
33

 Fourier difference maps of the residual electron density. LHS, when the hydrogen 

split between nitrogen N2 and N3 is removed, RHS, when the hydrogen is removed from the N6 nitrogen 

(the same 50:50 split proton image is seen when the proton bonded to N7 is removed).
 

Fig. 4.27 – The two 4-hydroxybenzoate molecules found in the molecular complex, with associated atom 

labelling. 

Fig. 4.28 – The 4-hydroxybenzoate molecules create chains with the molecules alternately sit on two 

positions.   

Fig. 4.29 – LHS, view along the a-axis highlighting how each 4-HBA
- 

chain is involved in hydrogen 

bond in four different directions. RHS, view along the b-axis indicating the connections between each 

chain. bottom –view along the c-axis of the BZNH
+ 

4HBA
-
 molecular complex with the backbone of the 

structure, the 4HBA
_ 

chains, being held together by the BZNH
+ 

dimers that criss-cross between them. 

Fig. 4.30 – The different benzimidazolium molecules: from, left to right, molecules 1 and 2 that 

hydrogen bond to one another with the relevant atoms labelled, and the 4 -hydroxybenzoate molecule 

with associated atom labelling. 

Fig. 4.31 – MCE
33

 Fourier difference maps of the residual electron density when the hydrogen split over 

nitrogen N2 and N4 is removed.  

Fig. 4.32 – The 3-hydroxybenzoate molecules create close-to-planar chains through a hydroxyl 

carboxylate hydrogen bond.  

Fig. 4.33 – LHS, the 3-hydroxybenzoate molecules chains which are held together through a hydroxyl-

carboxylate hydrogen are bridged together by hydrogen bonding through a benzimidazolium dimer. RHS, 

the view along the a-axis indicating the planar nature of the chains and highlighting the role of the 

BZNH
+ 

dimer.   

Fig. 4.34 – The 3-hydroxybenzoate molecules hydrogen bond along the bc-face which creates a sheet 

along the a-axis view along the a-axis indicating the planar nature of the chains and highlighting the role 

of the BZNH
+ 

dimer.   
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Fig. 4.35 – The weak interactions that are used to extend the structure along the c-axis, C-H····O3 (red), 

C4-H···· O2
δ-

(yellow) and C4-H···· O2
δ- 

(green).  

Fig. 4.36 – LHS, the BZN and BZNH
+
 molecules form dimers, through a single hydrogen bond.  There 

are two of these dimers in the reduced unit cell. RHS , the 3-HBA
-
 molecules also form single hydrogen 

bonded dimers.  

Fig. 4.37 – The 3-hydroxybenzoate molecules create chains through a hydroxyl carboxylate hydrogen 

bond.  

Fig. 4.38 – The 3-hydroxybenzoate molecules chains which are held together through a hydroxyl-

carboxylate hydrogen bond are bridged together by four distinct hydrogen bonds of two types, a and  b.   

Fig. 4.39 – LHS, Form II, The ladder structure consists of stiles of 3-hydroxybenzoate molecules and 

rungs of hydrogen bonded dimers of BZNH
+
. RHS, Form I, The ladder structure consists of stiles of 3 -

hydroxybenzoate molecules and alternate rungs of hydrogen bonded dimers of BZNH
+
.   

Fig. 4.40 – The ladder structure consists of stiles of 3-hydroxybenzoate molecules and the double rungs 

of hydrogen bonded dimers of BZNH
+
.   

Fig. 4.41 – The 3-hydroxybenzoate molecules are involved in two ladders by hydrogen bonding in two 

directions adopting a Z and inverse Z shape (indicated by the red lines).    

Fig. 4.42 –LHS, view along the b-axis highlighting the creation of sheets of 3-HBA
-
 molecules through 

weak C-H∙∙∙O
δ- 

(red) and C-H∙∙∙O (green) hydrogen bonds along the a-axis. The blue interactions 

represent the moderate hydrogen bonds that make up the chains of 3 -HBA
-
 molecules. RHS, the weak 

hydrogen bonds in which the BZNH
+ 

 ions are involved – one C-H∙∙∙O
δ- 

(yellow) and one C-H∙∙∙O 

(yellow and circled). 

Fig. 4.43 – view along the a-axis of the extended benzimidazolium 3-hydroxybenzate 2:1 polymorph 

Form I molecular complex. 

Fig 4.44 – Schematic diagram highlighting the possible hydrogen bonds that could be generated between 

the water molecule and the other starting materials and their charged species.  

Fig. 4.45 – The BZNH
+
, BZN, 4-HBA

- 
and water molecule that are involved in the BZN BZNH

+ 
4-HBA

- 

hydrate, with atom labelling.  

Fig.  4.46 – LHS, highlighting the hydrogen bonds in which the water molecule is involved.  RHS, view 

along the c-axis highlighting the zigzag nature of the rungs (BZN BZNH
+
).  

Fig. 4.47 – LHS, Fourier difference map in 2D and, RHS, Fourier difference map in 3D showing the 

possible elongation of the hydrogen atom involved in the hydrogen bond.  

Fig. 4.48 – LHS –the staggered chains of 4-HBA
- 
that are held together by the stiles of BZN and BZNH

+
 

in the 2:1 hydrate.  Note that another BZN and BZNH
+ 

group is present, oriented diagonally between the 

two that are shown. RHS, view along the b-axis of the BZN BZNH
+ 

4-HBA
- 
molecular complex showing 

the main motifs for comparison.  

Fig. 4.49 – The short contacts that exist between the molecules in the BZN BZNH
+ 

4-HBA
-
 hydrate 

molecular complex. Highlighted are the areas that show the C-H---π interactions. 

Fig. 4.50 – view along the a-axis of the BZN BZNH
+ 

4-HBA
- 

hydrate. The chains of 4-HBA
-
 molecules 

expand the structure along the b-axis (red line). The BZN BZNH
+ 

group holds two chains together via 
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hydrogen bonding to a water molecule in one side and through
 
hydrogen bond pattern F in the other 

direction (blue line).   

Fig. 4.51 – The BZNH
+
 2-HBA

-
 and 2-HBA molecules which are generated in the molecular complex 

with atom labelling.  

Fig. 4.52 – View along the a-axis of the main motif of the BZNH
+
 2-HBA

-
 and 2-HBA molecular 

complex; linear chains of 2-HBA
-
 2-HBA pairs are held together by BZNH

+ 
molecules that run along the 

b-axis.  

Fig. 4.53 – LHS, the C1-H····O5
δ-

 weak hydrogen bonds (-) that stack the hydrogen bonded chains upon 

one another with the assist of two C-H∙∙∙π interactions (-)(-).  RHS, view of the a-axis displays how the 

chains stack upon one another (-). 

Fig. 4.54 – Two chains of the main motif are held by weak C-H∙∙∙O hydrogen bonds which are located 

inside the black box. Inset, A blow-up of the black box highlighting the weak C-H∙∙∙O hydrogen bonds. 

Fig. 4.55 – The benzimidazolium and 3,5-dihydroxybenzoate molecules which are generated in the 

molecular complex with atom labelling.  

Fig. 4.56 – The extended structure of the BZNH
+ 

3,5-DHBA
- 
molecular complex which consist of chains 

of  3,5-DHBA
- 
molecules which are held together by BZNH

+ 
molecules.  

Fig. 4.57 – The hydrogen bonded rings that are made up of four 3,5 DHBA
- 
molecules. 

Fig. 4.58 – Two views of the 3,5 DHBA
- 
hydrogen bonded rings that expand along the bc diagonal and c 

dimensions. 

Fig. 4.59 – The hydrogen bonds that the BZNH
+ 

 molecule is involved with in the BZNH
+ 

3,5-DHBA
- 

molecular complex, a is a  partially charged assisted N
δ+

-H····O
δ- 

hydrogen bond while b is a birfuricated 

hydrogen bond of  two N
δ+

-H····O interactions. 

Fig. 4.60 – View along the c-axis of an extended image of the BZNH
+ 

3,5-DHBA
- 
molecular complex. 

Fig. 4.61 – DSC thermograms from the product of the co-crystallisation of benzimidazole with 4-

chlorobenzoic acid crystallised from propanol (-) acetone (-), ethanol (-), methanol (-) and by the solvent 

free method (-). The results indicate that the solvent free method replicates the more traditional 

evaporation technique. 

Fig. 4.62 – DSC thermogram from the product of the solvent free co-crystallisation of benzimidazole 

with 3-chlorobenzoic acid with grinding times of 30 seconds (-), 2 minutes (-) and 5 minutes (-). The 

results indicate that the thermodynamic product is favoured with increasing grinding time.  

Fig. 4.63 – DSC traces of the product of the solvent free co-crystallisation of benzimidazole with 3-

chlorobenzoic acid grinding for 2 minutes and stored for no time (-), 24 hours (-) and 2 weeks (-). The 

results indicate that the thermodynamic product is favoured with increasing storage time.  

Fig. 4.64 – DSC patterns of starting materials benzimidazole (-), 5-chlorosalicylic acid (-) and the co-

crystallisation product of the two (-) formed by the solvent-free method. 

Fig. 4.65 – DSC thermogram of the product from co-crystallisation of benzimidazole and 5-

chlorosalicylic acid at 30ºC in propanol (-), acetone (-), ethanol (-) and methanol (-). Inset,  selective 

polymorph growth has been achieved for two of the co-crystal polymorphs by recrystallisation from 

methanol (-) Form I and ethanol (-) Form III. 
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Fig. 4.66 – above - Powder patterns of the products of crystallisation from three different environmental 

conditions to promote growth of single component of; form I (blue) using methanol at 10ºC, form I and 

II mix phase (red) using ethanol at 10ºC and form III (yellow) using ethanol at 30ºC. Two different 

products can clearly be identified from these powder patterns, while form II is mixed with form I.  

Fig. 4.66 – below – Powder x-ray diffraction pattern of benzimidazole and 5-chloro-2-hydroxybenzoic 

acid cocrystallised from methanol at 10ºC (blue) overlaid wi th the simulated powder pattern from solved 

structure solution of form I.  

Fig. 4.67 – The benzimidazolium and 5-chloro-2-hydroxybenzoate molecules which are generated in the 

molecular complex with atom labelling.  

Fig. 4.68 – The main motif of the benzimidazolium 5-chloro-2-hydroxybenzoate molecular complex; a 

four molecule hydrogen bonded ring consisting of alternating co-molecules with partially charge assisted 

N
δ+

-H····O
δ-

 hydrogen bonds.  

Fig. 4.69 – The main motif of the benzimidazolium 5-chloro-2-hydroxybenzoate molecular complex; the 

four molecule hydrogen bonded ring consisting of alternating co -molecules, are expanding along the b-

axis by a weak hydrogen bond and π∙∙∙π stacking interactions. Inset black box– An expanded image of 

the π∙∙∙π stacking interactions that connect the hydrogen bonded rings together. Inset red box – An 

expanded image of the π∙∙∙π stacking interactions that connect the hydrogen bonded rings together.  

Fig. 4.70 – The two weak hydrogen bonds, C-H∙∙∙C and C-H∙∙∙O, which expand the structure along the a-

axis.  

Fig. 4.71 – The main motif of the benzimidazolium 5-chloro-2-hydroxybenzoate molecular complex;  

four molecule hydrogen bonded ring consisting of alternating co -molecules, are expanding along the a-

axis by two weak hydrogen bonds, C-H∙∙∙C and C-H∙∙∙O, that are circled in red. 

Fig. 4.72 – Halogen bonds, Cl∙∙∙H-C, connect the main motif of the benzimidazolium 5-chloro-2-

hydroxybenzoate molecular complex along the c-axis (green circle). 

Fig. 4.73 – The benzimidazolium and aspartate molecules which are generated in the molecular complex 

with atom labelling.  

Fig. 4.74 – The main hydrogen bonds within the BZNH
+ 

aspartate molecular complex create a linear 

chain of alternating co-molecules. 

Fig. 4.75 – The amine group of the aspartate molecule is involved in three hydrogen bonds, N3-H∙∙∙O1
δ- 

(green), N3-H∙∙∙O4
δ- 

(red) and N3-H∙∙∙O1
δ-

(blue).  

Fig. 4.76 – The weak hydrogen bonds within the BZNH
+
 aspartate molecular complex: bifurcated 

hydrogen bonds (a) and C5-H∙∙∙O3
δ-

 hydrogen bonds (b). 

Fig. 4.77 – View along the b-axis of the expanded benzimidazolium aspartate molecular complex. The 

red line (-) indicates the chain of alternating co-molecule (Figure 4.74), the yellow box (-) indicates 

hydrogen bonds involving the amine group of the aspartate (Figure 4.75) and the black box is where the 

lesser interactions  between the BZNH
+
 molecules operate(Figure 4.76). 

Fig. 4.78  – The C-H∙∙∙π edge to face interactions between the BZNH
+ 

molecules. 

Fig. 4.79 – The four unique hydrogen bonds that were the only hydrogen bonds in all the crystal 

structures in Chapter 4, in order or occurrence 1, N
δ+

-H∙∙∙O
δ-

, 2, O-H∙∙∙O
δ-

, 3, N
δ+

-H∙∙∙ N
δ+

, 4, O-H∙∙∙O. 
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Fig. 4.80 – The motifs of the molecular complexes from Section 4.5 excluding benzimidazolium 4 -

hydroxybenzoate hydrate and benzimidazolium 3,5-dihydroxybenzoate. The three unique hydrogen bond 

motifs are shown, the hydrogen bonded rings (BENZH
+ 

2HBA
- 
1:1), chains hydroxybenzoic acid dimers 

and the ladder motif. 

Fig. 5.1 – 2-fluorobenzoic acid. 

Fig. 5.2 – Basic building block of the 2-fluorobenzoic acid: 4-(1H-pyrazol-1-ylmethyl)benzamide molecular 

complex structure found in the CSD with a fluorine atom on one of the fluorobenzoic acid groups is disordered 

over two sites 

Fig. 5.3 – LHS, 3-fluorobenzoic acid; RHS, 3-fluorobenzoic acid : 4-acetylpyridine molecular complex with the 

fluorine atom disorded over two positions (common with fluorine atoms) explaining the overlap of the hydrogen 

and fluorine atoms.  

Fig. 5.4 – Basic building block of the 4-fluorobenzoic acid crystal structure, RHS,  4-fluorobenzoic acid. 

Fig. 5.5 – Basic building block of the 4-fluorobenzoic acid : isonicotinamide molecular complex.  

Fig. 5.6 - The carboxylic acid dimer that is the main supramolecular synthon in the 2-chlorobenzoic acid 

crystal structure; RHS, 2-chlorobenzoic acid. 

Fig. 5.7 – The main building block of the 2-chlorobenzoic acid : 2-methylbenzoic acid molecular complex. Both 

independent molecules have the chloro and methyl substituents disordered over two sites of equal occupancy 

Fig. 5.8 – Crystal structure of the 3-chlorobenzoic acid molecule; RHS, 3-chlorobenzoic acid. 

Fig. 5.9 – Building block of the 3-chlorobenzoic acid 2-picoline N-oxide molecular complex.  

Fig. 5.10 – Structure of 4-chlorobenzoic acid highlighting the carboxylic acid dimer being held together 

by a chlorine-chlorine halogen bond, RHS, 4-chlorobenzoic acid. 

Fig. 5.11 – LHS, structure of the 4-chlorobenzoic acid : N,N-dimethylformamide molecular complex,  

RHS, 4-chlorobenzoic acid : sulfadimidine molecular complex. 

Fig. 5.12 – 2-bromobenzoic acid molecule. 

Fig. 5.13 – 3-bromobenzoic acid molecule. 

Fig. 5.14 – The 4-bromobenzoic acid structure highlighting the carboxylic acid dimers being held 

together by weak C-H∙∙∙O hydrogen bonds; RHS, 4-bromobenzoic acid. 

Fig. 5.15 – Structure of 2-iodobenzoic acid (CSD reference - OIBZAC01); the carboxylic acid dimer is 

held together by iodine-iodine halogen bonds. RHS, 2-iodobenzoic acid. 

Fig. 5.16 – LHS- 3-iodobenzoic acid; RHS, structure of 3-iodobenzoic acid and N-carboxymethyl-N,N'-

dimethylpiperazine molecular complex. 

Fig. 5.17 – The structure of 4-iodobenzoic acid; carboxylic acid dimers are held together by iodine 

iodine interactions. RHS, 4-iodobenzoic acid. 

Fig. 5.18 – Top left, basic building block of the 3-(AMP-P)  toluene 4-iodobenzoic acid solvate with CSD 

reference – COWHOM, top right, the 3-(AMP-P) 2,3,5,6-tetrafluoro 4-iodobenzoic acid molecular complex 

main hydrogen bond motif with CSD reference – COWHUS, bottom left, the molecular complex of 4-(AMP-P) 

4-iodobenzoic acid which has CSD – reference COWJAA and lastly bottom right, 1-(AMP-P) 4-iodobenzoic 

acid with CSD reference – COWJOO. 
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Fig. 5.19 – LHS, a typical benzimidazolium molecule where both nitrogens are protonated; RHS, the 

Fourier difference map generated where the H atoms located on a nitrogen atom have been omitted from 

the model, clearly shows that both nitrogen atoms are protonated.   

Fig. 5.20 – The potential homo-hydrogen bonds (A, B and C) and hetero-hydrogen bonds (D, E and F) 

that can be exhibited between a benzimidazole and carboxylic acid group.  

Fig. 5.21 – The most prominent hydrogen bonds within the benzimidazole : halobenzoic acid molecular 

complexes: N-H∙∙∙N hydrogen bond (A), N-H∙∙∙O hydrogen bond (B) and O-H∙∙∙O hydrogen bond (C).  

Fig. 5.22 – DSC data from the products of crystallisation of benzimidazole and 3 -chlorobenzoic acid 

from four common solvents. Two different polymorphs can be clearly identified by two distinct melting  

points, but a third polymorph can also be identified in the samples crystallised from 1 -propanol (1proh) 

and acetone. The shoulder on the principal peaks in these traces, representing the third polymorph, can 

be seen in the enlarged inset, taken from the acetone trace. 

Fig. 5.23 – Powder patterns of the products of crystallisation from four common solvents propanol ( -), 

acetone (-), methanol (-) and ethanol (-). Two different products can clearly be identified from these 

quick powder patterns (collected on the Rigaku R-axis/RAPID single crystal diffractometer) with 

crystallisation from propanol and acetone forming one product and methanol and ethanol the other.  

Fig. 5.24 – Powder patterns of the products of crystallisation from three different environmenta l 

conditions to promote growth of single component of; form I (blue) using propanol at 10ºC, form II 

(yellow) using acetone at ~2-4ºC and form III (red) using acetone at 10ºC. Three different products can 

clearly be identified from these powder patterns.  

Fig. 5.25 – Powder pattern of benzimidazole and 3-chlorobenzoic acid Form III collected over a 33 hour 

period.   

Fig. 5.26 – LHS, Fourier difference map of the residual electron density in BZN : 3 -ClBA molecular 

complex with the proton associated with the carboxylic acid group removed, RHS, the BZN and 3-ClBA 

molecules involved in the molecular complex with associated atom labelling.  

Fig. 5.27 – LHS, the main motif of the BZN : 3-ClBA Form I molecular complex; an equimolar 

hydrogen bonded ring system held together by N-H···O and O-H∙∙∙N hydrogen bonds;  RHS, view along 

the b- axis that highlights the spatial arrangement of the equimolar hydrogen bonded ring system.  

Fig. 5.28 – View along the a-axis of the BZN : 3-ClBA Form I molecular complex highlighting how the 

chlorine chlorine interaction connects the rings together (green circles).  

Fig. 5.29 – LHS, view along the b-axis of the BZN 3-ClBA Form I molecular complex highlighting how 

the hydrogen bonded rings stack upon one another. RHS, the weak hydrogen bond, C1-H∙∙O2, which 

stacks the rings upon one another. 

Fig. 5.30 – View along the a-axis of the BZN 3-ClBA Form I molecular complex. The hydrogen bonded 

rings, the main motif of the structure, are expanded along the b-axis by weak C-H∙∙∙O hydrogen bonds. 

Fig. 5.31 – An extended view along the a-axis of the BZN 3-ClBA Form I molecular complex. The 

hydrogen bonded ring motif (blue circle), is expanded along the b-axis by weak C-H∙∙∙O hydrogen bonds 

(red circle) and the ab-diagonal by chlorine-chlorine interactions. 

Fig. 5.32 – The co-molecules involved in the BZNH
0.5+

 : 3-ClBA
0.5- 

molecular complex (BZN : 3-ClBA 

Form II) with atom labelling. 
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Fig. 5.33 – LHS, a MCE Fourier difference map generated where the H atoms located on the N atom 

have been omitted from the model, clearly showing that the proton is split over two sites; RHS, a MCE 

Fourier difference map generated where the H atoms located on the carboxylic acid group have been 

omitted from the model, again clearly showing that this proton is split over two sites.  

Fig. 5.34 – LHS, the supramolecular synthon of the BZN : 3-ClBA Form II molecular complex, co-

molecule dimers, linked together through N
δ+

-H∙∙∙O
δ- 

 hydrogen bonds, RHS, the main motif of the BZN : 

3-ClBA Form I molecular complex, an equimolar hydrogen bonded ring system held together by N -

H···O and O-H∙∙∙N hydrogen bonds. 

Fig. 5.35 – The secondary supramolecular synthon of the BZN : 3-ClBA Form II molecular complex that 

links the motifs together along the a-axis. 

Fig. 5.36 – The lesser interactions c, halogen bond and d, C-H∙∙∙π interaction, that expand the structure 

along the c-axis. 

Fig. 5.37 – LHS, an extended view along the a-axis of the BZN : 3-ClBA Form II molecular complex. 

The motif, a chain of alternating co-molecule dimers (blue) is expanded along the c-axis via halogen 

bonds (green), RHS, an extended view along the a-axis of the BZN : 3-ClBA Form I molecular complex. 

The hydrogen bonded ring motif (red circle) is expanded along the b-axis by weak C-H∙∙∙O hydrogen 

bonds (red box) and along the ab-diagonal by chlorine-chlorine interactions (green circle). 

Fig. 5.38 – DSC thermogram of the products from benzimidazole and 4-chlorobenzoic acid co-

crystallisations in acetone (-) ethanol (-), methanol (-) and propanol (-). It can clearly be seen that there 

are two distinct endothermic changes that relate to phase changes around 123ºC and 132ºC. 

Fig. 5.39 – Powder patterns of the products of crystallisation from two different environmental 

conditions to promote growth of single component of Form I (blue) using ethanol at room temperature 

and a mixed phase of Forms I and II (red) using acetone also at room temperature.   

Fig. 5.40 – The molecular ions, two of each co-molecule BZNH
+ 

and 4-ClBA
-
 that make up this 

molecular complex, with atom labelling.  The numbers, 1 to 4, designate their molecule number.  

Fig. 5.41 – The supramolecular synthon, the hydrogen bonded rings, involves one of each co-molecule. 

Fig. 5.42 – The motif  of the BZNH
+ 

and 4-ClBA
- 

molecular complex with molecules coloured that are 

symmetry related, i.e. molecule 1 yellow, molecule 2 red, molecule 3 green and molec ule 4 blue. 

Highlighted by a red circle is the BZNH
+ 

molecules that further expand the structure. 

Fig. 5.43 – The halogen bond and halogen–π interactions that exist between the two 4-ClBA
- 
molecules. 

Fig. 5.44 –  LHS, view along the b-axis of the BZNH
+ 

: 4-ClBA
- 

molecular complex; RHS, view along 

the c-axis. Both images show the hydrogen bonded network that is held together by halogen interactions 

(green box and line). 

Fig. 5.45 – DSC thermogram of the products of benzimidazole and 4-bromobenzoic acid co-

crystallisations in acetone (-) and methanol (-). It can clearly be seen that there are two distinct 

endothermic changes that relate to phase changes around 123ºC and 142ºC.  

Fig. 5.46 – Powder patterns of the products of crystallisation from four different environmental 

conditions to promote growth of single component of Form I (blue) using propanol and ethanol and Form 

II (red)  using acetone and methanol all at room temperature.    
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Fig. 5.47 –  LHS, View along the b-axis of the BZNH
+ 

: 4-BrBA
- 

molecular complex; RHS, view along 

the c-axis. Both images show the hydrogen bonded network that is held together by halogen interactions 

(green box and line). 

Fig. 5.48 – Powder patterns of the products of crystallisation from three different environmental 

conditions to promote the growth the benzimidazole : 3-bromobenzoic acid molecular complex using 

methanol at 10ºC (red) ethanol at 10ºC (blue) and acetone at 10ºC (yellow).    

Fig. 5.49 – LHS, the supramolecular synthon of the BZNH
+
 : 3-BrBA

- 
molecular complex, dimers of 

each co-molecule are connected through a N
δ+

-H∙∙∙O
δ- 

moderate hydrogen bond, RHS, the secondary 

supramolecular synthon of  that links the motifs together along the a-axis. 

Fig. 5.50 – View along the a-axis of the extended structure of the BZNH
+
 : 3-BrBA

- 
molecular complex, 

the motifs (blue box) are held together through weak halogen and C-H∙∙∙π interactions (brown box).  

Fig. 5.51 – The BZNH
+
, 2-FBA and 2-FBA

-
 molecules, from left to right, that make up the BZNH

+
 : 2-

FBA
-
 : 2-FBA molecular complex, with atom labelling. 

Fig. 5.52 – The primary hydrogen bonds within the BZNH
+
 : 2-FBA : 2-FBA

-
 molecular complex.  

Fig. 5.53 – The motif of the BZNH
+
 : 2-FBA : 2-FBA

-
 molecular complex, zigzag chains between the 

BZNH
+
 and 2-FBA

- 
co-molecules using the N-H∙∙∙O form B hydrogen bond. LHS, view along the a-axis; 

RHS, view of the b-axis. 

Fig. 5.54 – LHS, two motifs of the BZNH
+
 : 2-FBA : 2-FBA

-
 molecular complex held together along the 

ac-diagonal axis by halogen bonds (yellow circle); RHS , view of the halogen bonds, C-H∙∙∙F.   

Fig. 5.55 – The C-H∙∙∙O hydrogen bond that expands the structure along the bc-diagonal axis. 

Fig 5.56 – top, X-ray powder diffraction patterns of benzimidazole : 3-fluorobenzoic acid (red), 3-

fluorobenzoic acid (blue) and benzimidazole (green) clearly indicating a new product has been produced, 

bottom, DSC thermogram of the same materials; benzimidazole : 3 -fluorobenzoic acid (purple), 3-

fluorobenzoic acid (red) and benzimidazole (green)  again indicating a new product is formed, insert, 

patterns of other co-crystallisations experiments.  

Fig. 5.57 – LHS, the BZNH
+ 

and BZN dimers with atom labelling; RHS, the 4-FBA
 

and 4-FBA dimers 

with associated labelling . 

Fig. 5.58 – View along the a-axis of the BZN : 4-FBA molecular complex, showing the main motif, a 

zigzag chain of dimers held together by N
δ+

-H∙∙∙O
δ- 

 hydrogen bonds that expand the structure along the 

ab-diagonal axis. 

Fig. 5.59 – The a-axis of the BZN : 4-FBA molecular complex, showing the main motifs (blue line) held 

together along the c-axis by C-H∙∙∙F halogen bonds (a and b). 

Fig. 5.60 – The a-axis is expanded by two interactions; a C-H∙∙∙O weak hydrogen bond (blue circle) and 

a C-H∙∙∙π interaction (red circle).   

Fig. 5.61 – Top, view along the c-axis of the BZN: 4-FBA molecular complex which highlights the two 

types interactions that exist between the layers: a π∙∙∙π stacking interaction between the BZN dimers 

(yellow circle) and the weak C-H∙∙∙O hydrogen bonds (green circle) between the 4-FBA molecules, 

bottom LHS, π∙∙∙π stacking interactions, bottom RHS,  C-H∙∙∙O weak hydrogen bonds. 
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Fig. 6.1 – The structure of picolinic acid showing the main hydrogen bonds between the molecules.  

Proton disorder can be seen between the carboxylic acid hydrogen bond and the weaker N -H∙∙∙H-N 

hydrogen bond. 

Fig. 6.2 –LHS, protonated picolinic acid : L-tartrate acid molecular complex; RHS, the molecular complex of 

picolinate and 2-amino-5-methylpyridinium, where the picolinic acid  has been deprotonated.  

Fig. 6.3 – Basic building block of the acetoguanaminium 3-hydroxypicolinate monohydrate molecular 

complex. 

Fig. 6.4 – LHS, the structure of 6-hydroxypicolinic acid (2-oxo-1,2-dihydropyridine-6-carboxylic acid) 

and, RHS, a hydrate form.  

Fig. 6.5 – The molecules involved in the 6-hydroxypicolinic acid 2-amino-5-chloropyridinium molecular 

complex. 

Fig. 6.6 – The nicotinic acid supramolecular synthon showing the dominating O-H∙∙∙N hydrogen bond. 

Fig. 6.7 – LHS, 3-carboxypyridinium hydrogen (2R,3R)-tartrate molecular complex where the nitrogen 

has been protonated; RHS, the molecular complex 2-amino-5-methylpyridinium nicotinate, where the 

carboxylic group on the nicotinic acid has been deprotonated.  

Fig. 6.8 – LHS, the O-H····N hydrogen bond.in the crystal structure of isonicotinic acid; RHS, the 

molecular complex of isonicotinic acid protocatechuic acid monohydrate, with the zwitterionic form of 

isonicotinic acid. 

Fig. 6.9 – LHS, the hydrogen bonded dimer of 2-nitrobenzoic acid with the two molecules related by an 

inversion centre in the middle of the hydrogen bonded ring and the nitro - groups twisted out of the plane; 

RHS, the molecular complex of benzimidazolium 2-nitrobenzoate bis(2-nitrobenzoic acid) showing some 

of the hydrogen bonds between the molecules. 

Fig. 6.10 – The hydrogen bonded carboxylic acid dimer of benzimidazolium and 2 -nitrobenzoic acid.  

Fig. 6.11 – LHS, the supramolecular synthon of benzimidazolium and 3-nitrobenzoic acid; RHS, the 

supramolecular synthon of imidazolium and 3-nitrobenzoic acid. 

Fig. 6.12 – The hydrogen bonded dimer of 4-nitrobenzoic acid. 

Fig. 6.13 – LHS, benzimidazolium 4-nitrobenzoate molecular complex that contains the synthon 

N
δ+
H∙∙∙O

δ-
, which forms into zig-zag chains; RHS, the imidazolium 4-nitrobenzoate molecular complex 

also forms N
δ+
H∙∙∙O

δ- 
hydrogen bonds, which in this case assemble to form hydrogen bonded rings.  

Fig. 6.14 – LHS, a typical benzimidazolium molecule where both nitrogens are protonated; RHS, the 

Fourier difference map generated where the H atoms located on a nitrogen atom have been omitted from 

the model, clearly showing that both nitrogen atoms are protonated .   

Fig. 6.15 – A diffraction pattern frame from the single crystal X-ray diffraction experiment on a crystal 

of the benzimidazole : picolinic acid molecular complex showing the strong diffuse scattering.  

Fig. 6.16 – LHS, the disordered model for the benzimidazolium picolinate hydrate molecular complex; 

RHS, the likely hydrogen bonded unit when considering the local ordering, i.e. with the disorder 

removed.  

Fig. 6.17 – The water molecule connects the layers of alternately hydrogen bonded co -molecules 

together. 
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Fig. 6.18 – The main motif of the BZNH
+ 

PA
 

molecular complex is a flat chain of alternating hydrogen 

bonded co-molecules. 

Fig. 6.19 – The water molecule, with two 0.5 occupied hydrogens (yellow) and one fully occupied 

hydrogen (white) connects the layers of alternately hydrogen bonded co-molecules 

Fig. 6.20 – LHS, the hydrogen bonded ring (hydrogen bonds shown in blue) involving two water 

molecules and two picolinate molecules that connect two flat chains of hydrogen bonded BZNH
+ 

PA

 

molecules; RHS, view along the c-axis emphasising that the water molecule sits just out of the plane of 

the flat sheets of  hydrogen bonded BZNH
+ 

PA

 molecules. 

Fig. 6.21 – LHS, the view along the c-axis of the BZNH
+ 

PA

 molecular complex showing the 

herringbone layers connected by water molecules; RHS, the view along the b-axis of the BZNH
+ 

PA

 

molecular complex showing the channels of water. 

Fig. 6.22 – LHS, weak CH∙∙∙O
- 

hydrogen bonds that lie along the a-axis; RHS, view showing that the 

BZNH
+ 

molecules lie directly parallel thus improving the chances of  π∙∙∙π stacking interactions.  

Fig. 6.23 – The atom labelling for the molecular complex of benzimidazolium (LHS) and 3 -

hydroxypicolinate. (RHS).  

Fig. 6.24 – LHS, the supramolecular synthon for the BZNH
+
 3-HPA


 molecular complex; a hydrogen 

bonded ring system held together by partially charge assisted N
δ+
H····O

δ-
 and N

δ+
H····N hydrogen 

bonds; RHS, the Fourier difference map (generated using MCE), where the hydrogen adjoining N2 has 

been removed from the model, showing the hydrogen atom to be clearly located on the N atom of the 

benzimidazolium molecule ion. The elongation of the electron density along the hydrogen bond 

illustrates the influence of the neighbouring oxygen molecule.  

Fig. 6.25 – the stacking of the hydrogen bonded rings held together by π-π interactions. 

Fig. 6.26 – The supramolecular synthons of the BZNH
+ 

3-HPA

 molecular complex, are connected by 

weak bifurcated hydrogen bonds (circled in red) along the c-axis. Inset shows the bifurcated weak 

hydrogen bond circled in red in the main figure. 

Fig. 6.27 – LHS, view of the c-axis of the BZNH
+ 

3-HPA

 molecular complex, which indicates the 

interactions between the layers (circled in yellow); RHS an expanded view of the interactions that hold 

the layers together, with C-H∙∙∙π interactions circled in yellow.  

Fig. 6.28 – The intermolecular interactions in the BZNH
+ 

3-HPA

 molecular complex, with the 

supramolecular synthon circled in blue, the weak bifurcated hydrogen bonds in red and the C -H····π 

contacts in yellow. The π-π stacking goes into the plane of the page.  

Fig. 6.29 – The atomic labelling for the two independent molecules of each type in the imidazolium 3 -

hydroxypicolinate molecular complex.  

Fig. 6.30 – Top,  view along the b-axis of the main motif of the IMDH
+
 3-HPA


 molecular complex, a  

zigzag chain of alternate co-molecules held together by partially charge assisted hydrogen bonds;  

bottom,  view along the a-axis of the main motif of the IMDH
+
 3-HPA


 molecular complex.  

Fig. 6.31 – LHS, the CH∙∙∙O
δ-

 hydrogen bonds (-) along the ac-diagonal, RHS, view along the c-axis of 

the staggered face-to-face π∙∙∙π stacking interactions that extend the structure along the b-axis. 
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Fig. 6.32 – View along the b-axis of the extended IMDH
+ 

3HPA
- 
molecular complex. The main motif, the 

zigzag chains of alternate hydrogen bonded co-molecules, is shown by the green line (-) and the weak 

hydrogen bonds are located within the transparent blue box ( -). Inset shows the C-H∙∙∙π interactions that 

extend the structure along the b-axis. 

Fig. 6.33 – LHS, the benzimidazolium and 6-hydroxypicolinate molecule ions which are generated in the 

molecular complex, with atom labelling.  

Fig. 6.34 – schematic diagram of the lactam - lactim tautomerism (imidic acid) that the 6-

hydroxypicolinic acid molecule undergoes, forming 2-oxo-1,2-dihydropyridine-6-carboxylic acid.
 

Fig. 6.35 – The main motif of the BZNH
+
 6-HPA


 molecular complex; a hydrogen bonded ring system 

held together by 6-HPA

 dimers (e) and partially charge assisted N

δ+
H····O

δ- 
(f) and N

δ+
H····O (g) 

hydrogen bonds. 

Fig. 6.36 – the chain of BZNH
+
 6-HPA


 rings along the b-axis, viewed along a. 

Fig. 6.37 – LHS, the weak hydrogen bonds C1H∙∙∙ O1
δ-

 and π∙∙∙π interactions between two chains. 

These are two interactions that stack the chains along the a-axis. Middle, view along the b-axis showing 

the stacking of the chains. Highlighted in red are the interactions viewed in Figure 6.33, LHS. Cir cled in 

blue are those interactions from Figure 6.33, RHS. The interactions within the green circle are the 

moderate hydrogen bonds involved in the hydrogen bond ring motif. RHS, the CH∙∙∙π interactions are 

the blue dotted lines in the centre of the image. 

Fig. 6.38 – The CH∙∙∙O
δ- 

weak hydrogen bonds connect three different chains within the BZNH
+
 6-

HPA

 molecular complex. 

Fig. 6.39 – The benzimidazolium, 6-hydroxypicolinate and acetic acid molecules which are generated in 

the molecular complex, with atom labelling.  

Fig. 6.40 – The hydrogen bonded chains of the BZNH
+
 : 6-HPA


 acetic acid solvate molecular complex 

is a flat linear chain of alternating hydrogen bonded co-molecules. 

Fig. 6.41 – The hydrogen bonding scheme in tha BZNH
+
 6-HPA


 acetic acid solvate molecular complex, 

highlighting the role of the acetic acid molecules in creating the linear chain.  

Fig. 6.42 – Two motifs of the BZNH
+
 6-HPA

 
diacetic acid molecular complex showing how the two 

adjacent linear chains are connected along the c-axis through weak CH∙∙∙O hydrogen bonds (circled in 

red) between the acetic acid molecules; inset – expanded image of these hydrogen bonds. 

Fig. 6.43 – LHS, view along the c-axis showing the layered nature with the weaker interactions along the 

ab-diagonal, weak hydrogen bonds (light blue) and π∙∙∙π interactions (dark blue);  middle, the π∙∙∙π 

interaction (blue); RHS, the weak C-H∙∙∙O hydrogen bonds between the acetic acid molecules. 

Fig. 6.44 – The structure of the nitro group. 

Fig. 6.45 – The structures of 1, benzimidazolium 4-nitrobenzoate 2, benzimidazolium 3-nitrobenzoate 3, 

imidazolium 3-nitrobenzoate 4, imidazolium 3-nitrobenzoate. 

Fig. 6.46 – The benzimidazolium 3-nitrobenzoate molecular complex structure viewed along the c-axis. 

The spiral hydrogen bond motif runs along the b-axis with the weak CH∙∙∙O
δ- 

hydrogen bonds (circled 

in red) connecting adjacent spirals.  
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Fig. 6.47 – The benzimidazolium 4-nitrobenzoate molecular complex structure viewed along the c -axis. 

The spiral hydrogen bond motif runs along the b-axis with the weak CH∙∙∙O
δ- 

hydrogen bonds (circled 

in red) connecting adjacent spirals.  

Fig. 6.48 – The imidazolium 3-nitrobenzoate molecular complex structure viewed along the a-axis. The 

hydrogen bonded rings (green boxes) are connected by weak carbon oxygen hydrogen bonds (circled in 

red) and π∙∙∙π interactions (blue).   

Fig. 6.49 – The imidazolium 3-nitrobenzoate molecular complex structure viewed along the a-axis. The 

hydrogen bonded rings (green boxes) are connected by weak carbon oxygen hydrogen bonds (circled in 

red).   

Fig. 6.50 – The bifurcated hydrogen bond of the BZNH
+ 

: 3-HPA
-
 molecular complex, with the major 

component the N-H∙∙∙N hydrogen bond and minor component being N-H∙∙∙O. 

Fig. 7.1 – Structure of phthalic acid, which is seen to exploit the carboxylic acid dimer motif.  

Fig. 7.2 – LHS, crystal structure of the molecular complex of phthalic acid and benzene-1,2-dicarboxylic 

acid; RHS, the phthalate ion in the ionic complex formed with 2,6 -dimethylpyridinium. 

Fig. 7.3 – The crystal structure of isophthalic acid, which exhibits the common carboxylic acid dimer 

motif. 

Fig. 7.4 – LHS, structure of the benzimidazole : isophthalic acid molecular complex; RHS, the structure 

of the imidazole : isophthalic acid molecular complex. 

Fig. 7.5 – The carboxylic acid dimer that exists in all the terephthalic acid structures.  

Fig. 7.6 – The imidazole : terephthalic acid molecular complex.  

Fig. 7.7 – The carboxylic acid dimer motif adopted in the fumaric acid structure.  

Fig. 7.8 – The ladder motif of the imidazolium hydrogen fumarate structure, with the uprights consisting 

of fumaric acid chains and the steps of imidazolium molecules.  

Fig. 7.9 – top, the carboxylic acid dimer that is the main hydrogen bonding pattern for both polymorphs 

of succinic acid, with the packing shown below, LHS, triclinic form, RHS, monoclinic form.  

Fig. 7.10 – Basic building block of the imidazolium succinate ionic molecular complex.  

Fig. 7.11 – The structure of maleic acid Form I, showing the main hydrogen bonding pattern.  

Fig. 7.12 – The hydrogen bonded ring motif of the imidazolium maleate molecular complex.  

Fig. 7.13 – The basic dimeric hydrogen bonded building block of all the polymorphic forms of malonic 

acid. 

Fig. 7.14 – The imidazolium malonate hydrate structure consists of chains of alternate co -molecules 

connected through the disordered water molecules.  

Fig. 7.15 – The carboxylic acid dimer that is the building block of the benzoic acid structure.  

Fig 7.16 – The linear chain of alternating hydrogen bonded co-molecules that exists in the imidazolium 

benzoate molecular complex. 

Fig. 7.17 – LHS, the imidazolium molecule with 4-bromobenzoate, in which both nitrogens are 

protonated. RHS, the MCE Fourier difference map generated where the H atoms located on a nitrogen 

atom have been omitted from the model, clearly showing that both nitrogen atoms are prot onated.   

Fig. 7.18 – The library of hydrogen bond patterns that the molecular complexes are highly likely to 

adopt. E, F, G, H, I and J are all seen in other molecular complexes. The motifs are defined as the 
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general descriptor of these interactions; K is the ladder motif, L is the hydrogen bonded ring motif, M is 

the co-molecule dimer motif while N is an example of a linear chain of alternate co -molecules.   

Fig. 7.19 – The imidazolium and 2-hydroxybenzoate ions which are generated in the molecular 

complex/salt, with atom labelling.  

Fig. 7.20 – The two main hydrogen bonds within the molecular complex, a, N-H∙∙∙O forming pattern E 

and b, N-H∙∙∙O forming pattern F; RHS, the resulting arrow head chain of alternate co-molecules. 

Fig. 7.21 – LHS, the weak C-H∙∙∙O hydrogen bond, c, involving the hydroxyl oxygen, RHS, the C -H∙∙∙π 

interaction, d, that expands the structure along the bc diagonal. 

Fig. 7.22 –  LHS, the C-H∙∙∙O weak hydrogen bond, e, that connects two of the chains together, RHS, 

another C-H∙∙∙O hydrogen bond, f, this time expanding the structure along the c-axis. 

Fig. 7.23 – An expanded image of the IMDH
+
 2-HBA

-
 molecular complex showing the hydrogen bonded 

chains (blue line) being connected by two C-H∙∙∙O hydrogen bonds (red box).  

Fig. 7.24 – The imidazolium and 3-hydroxybenzoate ions which are generated in the molecular 

complex/salt, with atom labelling.  

Fig. 7.25 – LHS, an expanded view of the IMDH
+ 

3-HBA
- 
molecular complex along the a-axis, it can be 

seen that the structure is made up of hydrogen bonded boxes (red box) stacked upon each other, RHS, a 

expanded view of the yellow circle highlighting the corners of each box with the three hydrogen bonds 

that originate from this point.  

Fig. 7.26 – LHS, bifurcated hydrogen bond and RHS, C-H∙∙∙O weak hydrogen bond that expands the 

stacks of boxes along the b-axis. 

Fig. 7.27 – The imidazolium and 3-hydroxybenzoate ions which are generated in the molecular 

complex/salt, with atom labelling.  

Fig. 7.28 – LHS, the view along the c-axis of the motif of the IMDH
+ 

4-HBA
- 

molecular complex, 

hydrogen bonded squares (red box) stack upon one another, RHS, extract from the yellow circle which 

shows the corners of the boxes with hydrogen bonds E, F and G highlighted.  

Fig. 7.29 – View along the a-axis showing two stacks of boxes held together along the c-axis by C-H∙∙∙π 

interactions (circled in red). 

Fig. 7.30 – The double weak hydrogen bonds that expand the stacks of hydrogen bonded boxes along the 

ac-diagonal. 

Fig. 7.31 – (top) The imidazolium and 4-fluorobenzoate ions which are generated in the molecular complex/salt, 

with atom labelling. 

Fig. 7.31 – (bottom) LHS, the main motif of the IMDH
+ 

4-FBA
- 
molecular complex, a spiral chain of alternate 

co-molecules held together through N-H∙∙∙O hydrogen bonds, E and F, RHS, view along the b-axis of an 

extended spiral chain showing its cyclical nature. 

Fig. 7.32 – LHS, the C-H∙∙∙O weak hydrogen bond that binds two spiral chains to one another, RHS, the 

effect the binding of the two spirals (red circle) has on the structure.  

Fig. 7.33 – View along the b-axis of the extended structure of the IMDH
+ 

4-FBA
- 

molecular complex 

showing the spiral chains (highlighted in red) held together by weak hydrogen bonds (yellow lines) that 

connect the chains along the a- and c-axes. 
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Fig. 7.34 – The imidazolium and 3-bromobenzoate ions which are generated in the molecular 

complex/salt, with atom labelling.  

Fig. 7.35 – The main motif of the IMDH
+ 

4-BrBA
- 

molecular complex, a zigzag chain of alternate co-

molecules connected through moderate hydrogen bonds. 

Fig. 7.36 – The motifs, zigzag chains of alternative co-molecules, are stacked upon one another along the 

c-axis held by weak C-H∙∙∙O hydrogen bonds; RHS, the weak hydrogen bonds that exists between the 

layers. 

Fig. 7.37 – The halogen bonds, C-H∙∙∙Br, that exist between the zigzag chains along the b-axis. 

Fig. 7.38 – An extended image of the IMDH
+ 

4-BrBA
- 

molecular complex viewed along the a-axis, 

showing the main motif (blue line), the weaker C-H∙∙∙O hydrogen bonds (red box) and the bromine 

halogen bonds (brown box).   

Fig. 7.39 – The motif of the BZNH
+
 : BA

-
: BA molecular complex, an )24(4

4R  hydrogen bond ring 

system containing two of each molecule held together by N-H∙∙∙O (a‘, b‘, c‘, d‘, f‘ and g‘) and O-H∙∙∙O 

(e‘ and h‘) hydrogen bonds. The BA and BA
-
 molecules are labelled 1 to 4. 

Fig. 7.40 – View along the c-axis highlighting the stacking behaviour of the motifs with the π∙∙∙π 

interactions (red and blue ovals, and expanded in the blue and red boxes) that hold it them together.  

Fig. 7.41 – The C-H∙∙∙O weak hydrogen bond that expands the structure along the b-axis. 

Fig. 7.42 – LHS, the blue shaded circles show where the C-H∙∙∙O weak hydrogen bonds (Figure 7.41) 

hold the motifs together; RHS, view along the b-axis highlighting the zigzag pattern formed by the 

motifs. 

Fig. 7.43 – LHS, the a-axis, RHS, the c-axis of the extended structure showing how the main motif (blue 

areas) is expanded by weak C-H∙∙∙O hydrogen bonds (yellow areas).  

Fig. 7.44 – LHS, the linear chain of hydrogen bonded alternating co-molecules is the main motif in the 

imidazolium benzoate structure
33

; RHS, shows the cylcial nature of the motif. 

Fig. 7.45 – The molecules involved in the benzimidazolium phthlate molecular complex, with atom 

labelling. 

Fig. 7.46 – LHS, view of the main motif, linear chain of alternating hydrogen bonded co-molecules; 

RHS, view along the a-axis that highlights the spiral nature of the chain.  

Fig. 7.47 – View along the a-axis of three motifs, spiral chains of alternating hydrogen bonded co -

molecules, that are held together by C-H∙∙∙O weak hydrogen bonds (blue circles). 

Fig. 7.48 – The weak hydrogen bond, C-H∙∙∙O (green line) and C-H∙∙∙π interaction (purple line), that 

expand the structure along the c-axis. 

Fig. 7.49 – The extended structure viewed along the a-axis, showing how the motif (red) is expanded 

along the b-axis by weak C-H∙∙∙O hydrogen bonds (blue) and finally along the c-axis by C-H∙∙∙O(green) 

and C-H∙∙∙C hydrogen bonds (purple).  

Fig. 7.50 – LHS, the molecules involved in the imidazolium isophthlate molecular complex; RHS, those 

involved in the benzimidazole isophthalic acid molecular complex, with the carboxylic acid protons in 

undetermined positions. 

Fig. 7.51 – The main motif of the structure, a double linear chain of alternate co -molecules held together 

through N-H∙∙∙O and O-H∙∙∙O hydrogen bonds. 
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Fig. 7.52 – An extended structure showing the motifs (blue box) being expanded along the c-axis by 

carbon  carbon hydrogen bonds (yellow box). 

Fig. 7.53 – top, the view along the a-axis of the chains of isophthalic acid hydrogen bonding to the 

imidazolium molecule, bottom, view of the b-axis highlighting how the imidazolium molecule hydrogen 

bonds to two different chains on different layers. 

Fig. 7.54 – LHS, the benzimidazolium and terephthalate molecules involved in the molecular complex 

with atom labelling; RHS, the three main hydrogen bonds involved in the molecular complex, a‘ N -

H∙∙∙O, b‘ N-H∙∙∙O and c‘ O-H∙∙∙∙O. 

Fig. 7.55 – The main motif of the benzimidazolium terephthalate molecular complex, a ladder with 

uprights of terephthalate molecules and rungs of benzimidazolium molecules.  

Fig. 7.56 – The main motif, a ladder of terephthalic acid uprights and benzimidazole rungs, stack upon 

one another through C-H∙∙∙O hydrogen bonds (red circle); insert, blown-up image of the C-H∙∙∙O 

hydrogen bond. 

Fig. 7.57 – The extended structure of the benzimidazolium terephthalate molecular complex viewed 

along the c-axis (LHS) and a-axis (RHS). 

Fig. 7.58 – LHS, the linear chain of alternating co-molecules that is the motif of the molecular complex; 

RHS, view along the b-axis highlighting the spiral nature of the chain.  

Fig. 7.59 – LHS, the motif, spiral chains (blue box), expands along the b-axis and ac-diagonal forming 

sheets; RHS, the C-H∙∙∙O weak hydrogen bond (red box) connects these sheets together along the a-axis.  

Fig. 7.60 – The benzimidazolium and fumarate ions (two protons are shown, but both have 0.5 

occupancy levels) which are generated in the molecular complex/salt, with atom labelling  

Fig. 7.61 – LHS, The carboxylic acid dimer of the fumaric acid structure; RHS, the hydrogen bond 

between the fumarate molecules of the benzimidazolium complex, with the shared proton split over the 

two sites. 

Fig. 7.62 – The box comb chain of fumarate molecules held together by oxygen – oxygen hydrogen 

bonds, a‘ and b‘. The hydrogens on the carboxylic acid groups have been removed.  

Fig. 7.63 – The co-molecules arrange themselves into hydrogen bonded alternating co -molecules which 

expand along the b-axis. 

Fig. 7.64 – LHS, the benzimidazolium molecules connect the fumarate chains along the a-axis, resulting 

in the layers of fumarate and alternating co-molecules interconnecting to form columns of layers, RHS. 

Fig. 7.65 – the columns consisting of interconnected chains of fumarate molecules and alternating co-

molecules are expanded along the c-axis by lesser interactions (yellow box), inset, expanded view of the 

lesser interactions.  

Fig. 7.66 – The main motif of the imidazolium fumarate molecular complex, an amalgamation of the 

ladder and linear chain motifs. 

Fig. 7.67 – The benzimidazolium and succinate ions which are generated in the molecular complex/salt, 

with atom labelling. 

Fig. 7.68 – The main motif of the benzimidazolium succinate molecular complex, the  ladder style with 

uprights of succinate ions and rungs of benzimidazolium ions.  
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Fig. 7.69 – the extended structure of benzimidazolium succinate molecular complex viewed along the b-

axis, highlighting how the main motif (blue line) extends along the c-axis through C-H···π interactions 

(red box); inset, the C-H···π interaction. 

Fig. 7.70 – the chain that is created through the N-H∙∙∙O hydrogen bonds between the co-molecules in the 

imidazolium succinate molecular complex. 

Fig. 7.71 – The main motif of the imidazolium succinate structure, layers consisting of linear chains of 

alternating co-molecules that expand along the ac-diagonal (chains) and a-axis. 

Fig. 7.72 – LHS, the benzimidazolium and maleate molecules which are generated in the molecular 

complex, with atom labelling. RHS, the Fourier difference map generated with the H atoms located on 

the N atoms omitted from the model; this clearly shows that both N atoms are protonated.   

Fig. 7.73 – The maleic acid molecule (top) and the maleate ion (bottom) showing the differences in the 

bond characteristics. 

Fig. 7.74 – LHS, 2D Fourier difference map, RHS, 3D Fourier difference map (MCE); both images show 

a slightly asymmetric location of the hydrogen atom in the intramolecular hydrogen bond of the maleate 

molecule. 

Fig. 7.75 – The main motif of the benzimidazolium maleate molecular complex; a chain of alternating 

co-molecules held together by alternating charge assisted N
δ+

-H····O
δ-

 hydrogen bonds 

Fig. 7.76 – The zigzag chains that are the main synthon in the benzimidazolium maleate molecular 

complex are held together by weak hydrogen bonds connecting the maleate ions (insert).  

Fig. 7.77 – View along the b-axis showing the main motif (-) of the benzimidazolium maleate molecular 

complex connected by the C-H---O
δ- 

hydrogen bond from the benzimidazolium molecule (-) (insert) to 

make a two layer block. 

Fig. 7.78 – The weak hydrogen bond between the maleate and benzimidazolium ions.  

Fig. 7.79 – View along the b-axis of the expanded benzimidazolium maleate molecular complex. The 

blue line (-) indicates the planes of the main motif (Figure 7.75), the red line ( -) indicates the weak 

hydrogen bond that holds the planes together in alternate layers (Figure 7.75) with the green line ( -) 

indicating the other weak hydrogen bond (Figure 7.76).  

Fig. 7.80 – View along the c-axis of the motif of the imidazolium maleate structure, showing the 

hydrogen bonded ring. 

Fig 7.81 – LHS, the main motif, hydrogen bonded ring, are expanded by C-H···O hydrogen bonds along 

the ab-diagonal (blue circle) and ac-diagonal (red circle); RHS, the view along the a-axis of an extended 

imidazolium maleate structure. 

Fig. 7.82 – The malonate ion found in molecular complexes with (from left to right) benzimidazolium, 

imidazolium, imidazolium hydrate, and in its native form, with atom labelling. 

Fig. 7.83 – The benzimidazolium and malonate molecules which are generated in the molecular complex, 

with atom labelling.  

Fig. 7.84 – the main motif of the benzimidazolium malonate structure, linear chain of alte rnate hydrogen 

bonded co-molecules. Two of the motifs are connected together through carbon – oxygen hydrogen 

bonds (blue circle). 
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Fig 7.85 – RHS, the chains of motifs are held together along the b-axis by two alternating layers of 

interactions, a relatively stronger carbon – oxygen hydrogen bond (blue box), and a relatively weaker 

carbon – oxygen hydrogen bond (red circles); LHS, view of the b-axis with the interactions coloured in 

blocks to show the alternating layered nature. 

Fig. 7.86 – the a-axis is expanded by two lesser interactions that stack the layers of motifs upon one-

another. The shortest is a C-H···O hydrogen bond (yellow circle) while the other is a π∙∙∙π stacking 

interaction between the benzimidazolium molecules (green circle). Insert LHS, the C-H···O hydrogen 

bond; insert RHS, the π∙∙∙π stacking interactions.  

Fig. 7.87 – The imidazolium and malonate ions which are generated in the molecular complex/salt, with 

atom labelling. 

Fig. 7.88 – The main motif of the imidazolium malonate molecular complex, the ladder style with 

uprights of malonate ions and rungs of imidazolium, viewed along, LHS, the c-axis, middle, the b-axis, 

and RHS, the a-axis. 

Fig. 7.89 – The motif of the structure (blue interactions) is expanded along the b-axis by C-H···O 

hydrogen bonds (green interaction) and an oxygen – oxygen interaction (red line). 

Fig. 7.90 – LHS, view along the c-axis of the extended structure; RHS, view along the b-axis of the 

extended structure, with the main motif (blue shading) being expanded along the b-axis by carbon – 

oxygen weak hydrogen bonds (red shading). 

Fig. 7.91 – LHS, extract from Fig. 7.33, view along the b-axis of the extended structure of imidazole 4-

fluorobenzoate showing the spiral chains held together by halogen bonds (yellow lines) that connect the 

chains along the a- and c-axis; RHS, extract from Fig. 7.68 – the carbon - carbon weak hydrogen bond 

that expands the benzimidazolium succinate structure along the b-axis. 

Fig. 8.1 – The library of hydrogen bond patterns that the molecular complexes discussed in this work are highly 

likely to adopt: E (N
δ+
H∙∙∙O

δ-
), F (OH∙∙∙O

δ-
), G (N

δ+
H∙∙∙ N

δ+
) and H (OH∙∙∙O). The recurrent motifs found 

are defined as the general descriptor of these interactions: K is the ladder motif, L is the hydrogen bonded ring 

motif, M is the co-molecule dimer motif, while N is an example of a linear chain of alternate co-molecules.   

Fig. 8.2 – The molecular complexes that formed the ladder motif, with uprights of the carboxylic acid containing 

molecule and rungs of benzimidazole. From top to bottom, left to right, benzimidazolium : 3-hydroxybenzate, 

benzimidazolium : 4-hydroxybenzoate 2:1,  benzimidazolium: 3-hydroxybenzoate 2:1 Form I, 

benzimidazolium : 3-hydroxybenzoate 2:1 Form II, imidazolium : malonate, benzimidazole : terephthalate, 

benzimidazole : succinate and imidazolium : succinate.   
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1 Introduction 

 

This work has concentrated on designing and creating new crystalline structures using crystal 

engineering principles.  To achieve the new crystalline materials, be they in the form of 

molecular complexes, co-crystals, salts or solvates, required the use of co-crystallisation 

techniques while the realisation of the structures were achieved mainly though X-ray 

diffraction. This introduction shall discuss the basis of the project; examine the naming of the 

crystalline structures, introduce hydrogen bonding and other weaker intermolecular 

interactions, explain the use of crystal engineering and summarise some previous research 

into polymorphism. 

 

1.1.1 Molecular Complexes, Salts, Co-Crystals? 

 

Firstly, what is a co-crystal, how is it different from a molecular complex and where should 

the term co-crystal be used properly describe a material? These questions have come to light 

in recent years with its ever increasing use and its widening meaning. Authors Desiraju
1
 and 

Dunitz
2 

gave their respective opinions, Desiraju taking the view that a co-crystal must denote 

a crystal stuck together with another crystal. This implies that the term co-crystal should refer 

to some ―multiple crystal‖ in which each component retains some of its individual crystal 

identity. In this view, two (or more) molecules co-crystallised together to form a new complex 

with completely new crystal identity should more correctly be called a molecular complex. 

Dunitz
 2
 on the other hand argued that the popularity of the term co-crystal has its reasons, ―as 

it provides an inelegant definition of what it is intended to describe, a crystal containing two 

or more components together‖. Therefore this definition would encompass a range of terms 

including molecular complexes, solvates and multi-component crystals. Dunitz ends by 

suggesting that is it so popular that it will be hard to displace, so the pragmatic approach is to 

stick with it. In spite of these differing views, the two authors agree on one thing, that there 

should always be a hyphen! There have been others who have included a definition explicitly 

when using the term co-crystal, for example Aakeroy
3 

in 2005 used the condition, ―made from 

reactants that are solids at ambient conditions‖, which was seized upon and used to define a 

pharmaceutical co-crystal in a review paper in 2006 by Zaworotko
4
, ―formed between a 

molecular or ionic API and a co-crystal former that is solid under ambient conditions‖.  Later 
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Bond
5
 argues that the solid state condition should be dropped and that the term co-crystal 

should be seen as a synonym for multi-component molecular crystal. This would include all 

the materials suggested by Desiraju, Dunitz, Aakeroy and and Zaworotko; molecular 

complexes, solvates, clathrates, inclusion compounds and solid solutions, however still 

leaving one grey area – cases where there is not full understanding of the nature of the 

chemical bonding in the material. In this work, the term molecular complexes will be used to 

describe the vast majority of the new materials formed, including cases where there are 

charged species that would normally be termed a salt. 

 

Co-crystallisation is the combination of two or more molecular components to form a new 

heteromeric crystalline structure where intermolecular forces, particularly hydrogen bonds, 

hold the constituents together. Achieving this goal depends on an understanding of the 

relationships between the structures of the materials involved. However the understanding of 

the relationships involved is still in its infancy, with the provocative quote from Maddox
6
 in 

1988 still of some relevance today: ―One of the continuing scandals in the physical sciences is 

that it remains in general impossible to predict the structures of even the simplest crystalline 

solids from a knowledge of their chemical composition‖.  

 

1.1.2 Co-crystallisation 

 

Synthesis of molecular complexes using co-crystallisation experiments usually involves the 

evaporation of solvent from a solution containing the co-crystal components in a chosen 

stoichiometric ratio. However the method of synthesis can vary greatly depending on a range 

of factors from the physical form of the starting materials to the desired product outcome. The 

methods used during this work are discussed in Section 3.1.1, which concentrates on the 

solvent evaporation technique, however there are many different approaches including 

sublimation
7
, growth from the melt

8
, slurries

9
 and supercritical fluids

10
.  

 

1.2 Pharmaceutical Co-Crystals and Other Applications 

 

Co-crystals as a valuable material type have also become an area of emerging importance 

within the pharmaceutical sector, with a diverse and relevant research field in the formation of 
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co-crystals with an active pharmaceutical ingredient
11

 (API). So-called pharmaceutical co-

crystals, ―co-crystals that are formed between a molecular or ionic API and a co-crystal 

former that are solid under ambient conditions‖
4
, represent a subset of multiple component 

crystals that includes salts solvates, clathrates, inclusion crystals and hydrates. Crystalline 

APIs are preferred due to their relative ease of isolation, the rejection of impurities during the 

crystallisation process and the inherent stability of crystalline solids; however they also have 

poorer solubility and often form polymorphs, solvates and hydrates. It is thought that the use 

of co-crystallisation experiments will offer the ability to modify the chemical and physical 

properties of the API, such as solubility, stability, dissolution rate and bioavailability, without 

the need to make or break covalent bonds, which helps to retain their biological activity
12

. 

This method has great potential due to the tendency of APIs to have external hydrogen 

bonding sites, at times numerous, available to form intermolecular interactions. These 

external hydrogen bonding sites can be exploited to produce new forms. Using crystal 

engineering principles, there is now the ability to rationally design and construct new 

structures and pharmaceutical co-crystals that have improved medicinal, chemical and 

physical properties
13

. For example, Tan
14

 successfully co-crystallised ethenzamide 

(nonsteroidal anti-inflammatory drug) and gentisic acid (nonsteroidal anti-inflammatory and 

anti ageing properties) together to create pharmaceutical co-crystals containing two APIs. 

Zaworotko
15

 has also generated a pharmaceutical co-crystal containing two APIs, piracetam 

(nootropic drug) and gentisic acid (Figure 1.1 LHS), which are both polymorphic in their 

natural states but found to be non-polymorphic as a co-crystal. There have been numerous 

examples of co-crystallisations of single APIs with co-molecules utilising robust and 

predictable hydrogen bonds, for example the robust pyridine-carboxylic acid heterosynthon 

was exploited to generate pharmaceutical co-crystals of 4,4‘-bipyridine and 4,4‘-

dipyridylethene with aspirin, ibuprofen and flurbiprofen
16

 (Figure 1.1 RHS) and 

isonicotinamide with nicotinamide (Vitamin B), clofibric acid (antihyperlipidemic drug) and 

diclofenac (nonsteroidal anti-inflammatory)
17

. 

 



 38 

   

Fig. 1.1 – LHS, a pharmaceutical co-crystal containing two APIs, piracetam and gentisic acid, RHS, the 

pharmaceutical co-crystals of 4,4‘-bipyridine and 4,4‘-dipyridylethene with flurbiprofen. 

 

Co-crystallisation also provides the opportunity to isolate or purify single component APIs 

during processing, with the added benefit that the co-molecule may be able to be discarded 

before formulation. Wales
18 

used multi-component crystallisation routes to form the single 

component of the elusive paracetamol form II, using a range of carboxylic acids and solvents. 

It was found to have an improved yield (100%) to those obtained with other preparation 

routes, with greater stability of the pure single component project. 

 

Co-crystallisation reactions have also been used in the synthesis of organic compounds using 

solvent free conditions
19

 (see Section 1.5), which has been the subject of much recent research 

activity. Molecular complexes have been used in the photographic industry to create non-

covalently bonded derivatives of hydroquinone which are used as the chemical that makes the 

latent image on the film or print visible. This method of synthesis is seen as much more 

environmentally friendly than traditional techniques
20, 21

. Using organic small molecules 

capable of binding and activating substrates through non-covalent interactions has emerged as 

an important approach in organo-catalysis. This is seen as a less rigid approach than using 

traditional covalently bonded catalysis mechanisms and has many advantages, but also 

challenges
22

. The thiourea organo-catalyst is used to accelerate and stereochemically alter 

organic transformations through double hydrogen bonding interactions, for example in 

Stecker
23

 reactions (Figure 1.2)
24

. Co-crystals have also been used to generate compounds that 

have second harmonic generation properties, these non-linear optical (NLO) materials are 

able to combine photons effectively to generate new photons with double the energy. A 

number of phenol–pyridine co-crystals have been found to exhibit such properties by Byrn 

and co-workers
25

. 
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Fig. 1.2 – Crystal structure of the thiourea catalyst used in Stecker reactions. 

 

All the applications of co-crystallisation exploit non-covalent interactions, mainly hydrogen 

bonds that can form between molecules. It is this exploitation of intermolecular interactions 

that has been very widely researched and comes under the term crystal engineering. Even 

though it was first coined in 1971 by Schmidt
26

, it was Desiraju
27 

in 1989 that defined the 

term in a structural chemistry context and made popular; ―the understanding of 

intermolecular interactions in the context of crystal packing and the utilization of such 

understanding in the design of new solids with desired physical and chemical properties‖.  

 

1.3 Hydrogen Bonding and other Intermolecular Interactions 

 

The hydrogen bond has such a ubiquitous influence in gaseous, liquid and solid-state 

chemistry that its consequences were discovered well before the interaction was identified and 

given a name; late 19
th

 and 20
th

 century literature shows many references to many 

observations which are now known as the effects of hydrogen bonding. In 1931 Pauling wrote 

a general paper on the nature of the chemical bond where he discussed the [H:F:H]
 

ion, using 

the term hydrogen bond possibly for the first time. Later in 1935 he followed up these 

remarks with a paper on hydrogen bonds in water and ice before releasing his famous book 

Nature of the Chemical Bond
28

 where these two statements originate; ―Under certain 

conditions an atom of hydrogen is attracted by rather strong forces to two atoms instead of 

only one, so that it may be considered to be acting as a bond between them. This is called a 

“hydrogen bond” ‖ and ―A hydrogen atom with only one stable orbital cannot form more 

than one pure covalent bond and the attraction of the two atoms observed in hydrogen bond 

formation must be due largely to ionic forces‖. 
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Hydrogen bonds in the gas phase can be regarded as relatively simple interactions; however, 

this is not the case in the solid state. There is extensive literature, summarized by Jeffrey 

(1997)
 29

, using a wide range of diffraction and spectroscopic methods, indicating that the 

hydrogen bond in crystalline systems is a highly varied and complex interaction. It is clear 

that the architecture of hydrogen bonding in the solid state can be controlled by the choice of 

systems and substituents forming the basis, for example, of the rapidly growing field of 

crystal engineering and supramolecular assembly. 

 

A hydrogen bond can be described by a donor atom, D, covalently bonded to a hydrogen 

atom, and an acceptor atom, A.  Hydrogen bonds are formed when the electronegativity of D 

relative to H in a DH covalent bond is such as to withdraw electrons and leave the proton 

partially unshielded. To interact with this donor DH bond, the acceptor A must have a lone-

pair or polarisable π electrons. In 2011 the IUPAC (International Union of Pure and Applied 

Chemistry) commissioned a task group to come up with a modern definition for the hydrogen 

bond. The task group was chaired by Aruan and proposed an initial recommendation for the 

definition of the hydrogen bond as ―The hydrogen bond is an attractive interaction between a 

hydrogen atom from a molecule or a molecular fragment X–H in which X is more 

electronegative than H, and an atom or a group of atoms in the same or a different molecule, 

in which there is evidence of bond formation”
30

. The review, seeking comments on the new 

definition, closed on the 31
st
 March 2011 with the final recommendation anticipated shortly.  

 

This simple definition does not tell the whole story, as strong hydrogen bonds are similar to 

covalent bonds and weak hydrogen bonds are closer to van der Waals forces in strength, with 

the majority of hydrogen bonds being somewhere in the middle of this range. Jeffery 

categorises hydrogen bonds into strong, moderate and weak in strength by use of the bond 

lengths, bond angles and energy associated with the hydrogen bond (Table 1.1)
29

. These 

categories, are however not rigid and there may be some overlap and exceptions present. 
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 Strong Moderate Weak 

DH---A interaction mostly covalent mostly electrostatic electrostatic 

Bond lengths    

H---A (Å) ~1.2-1.5 ~1.5-2.2 2.2-3.2 

D---A (Å) 2.2-2.5 2.5-3.2 3.2-4.0 

Bond angles (º) 175-180 130-180 90-150 

Bond energy (kcal mol
1

) 14-40 4-15 <4 

Table 1.1 – Extract from Jeffrey ―An Introduction to Hydrogen Bonding‖ Table 2.1, Properties of strong, 

moderate and weak hydrogen bonds.  Relabeled in terms of the DH…A nomenclature for donor-acceptor H 

bonds used in the present work. 

 

Even though it can be seen that hydrogen bonds are weaker than the traditional chemical 

bonds of metallic, ionic and covalent types, the hydrogen bond is extremely important in a 

wide range of materials. The presence of hydrogen bonds in materials can have a dramatic 

effect on their chemical and physical properties. Higher boiling and melting points in 

materials like water and ammonia compared to analogues such as hydrochloric acid, and the 

high water solubility of ammonia, are effects that are due to the hydrogen bond. Other 

properties affected by hydrogen bonding can be the crystal structure, viscosity, molar volume, 

reactivity and colour, among many others. 

 

Hydrogen bonds play a key role in biological systems, the three-dimensional structures in 

proteins and nucleic acids are formed through hydrogen bonds. In these macromolecules, 

bonding between parts of the same macromolecule cause it to fold into a specific shape, 

which helps determine the molecule's physiological or biochemical role. An example is the 

double helical structure of DNA, which is largely held together by hydrogen bonds between 

base pairs that link one complementary strand to the other and enables replication. 

 

1.3.1 Strong Hydrogen Bonds 

 

The strong hydrogen bond can have an associated energy in excess of 40 kcal mol
1

 which 

can be of the same order as some covalent bonds and are sometimes referred to as ionic 

hydrogen bonds, positive- or negative-ion hydrogen bonds and low-barrier hydrogen bonds. 

They are formed when the proton is shared by two strong bases such as in the [F—H—F]

 ion 

(Figure 1.3)
31

 or in molecules where there is a deficiency of electron density on the donor 



 42 

group or an excess of electron density on the acceptor group.  This is to be expected by 

considering the definition, as a deficiency of electrons on the donor group will further de-

shield the proton, while an excess of electrons on the acceptor group increases its negative 

charge and thus its interaction with the proton. The proton in such strong hydrogen bonds will 

often sit close to the mid-point of the hydrogen bond and have a low energy barrier double 

well potential or a single minimum flat potential, which results in the hydrogen atom position 

being sensitive to external conditions such as variation of temperature and pressure or the 

local crystal environment
32

. Strong hydrogen bonds can also occur when the acceptor and 

donor atoms are forced by molecular configurations into much closer contact than the sum of 

their van der Waals radii, for example in the formation of a short intramolecular hydrogen 

bond in the potassium hydrogen maleate structure
33

 (Figure 1.3). 

 

    

Fig. 1.3 – LHS, the 1-ethyl-3-methylimidazolium hydrogen difluoride structure with the strong hydrogen bond 

between the fluoride ions, RHS the catena-(hydrogen maleate)-potassium) structure with a strong intramolecular 

hydrogen bond. 

 

1.3.2 Moderate Hydrogen Bonds 

 

The moderate hydrogen bond, more commonly known as the normal hydrogen bond due to its 

extensive occurrence in nature, is formed between a neutral donor, D, and neutral atoms 

containing at least one lone-pair of electrons.  Moderate hydrogen bonds also occur in some 

charged molecules. Nature extensively uses hydrogen bonds involving nitrogen and oxygen in 

small molecules to determine the packing and in macromolecules to influence conformation.  

 

The hydrogen bond is very flexible and in the moderate hydrogen bond the D-H∙∙∙A angle can 

range from 130º to 180º and the D∙∙∙A length from 2.5Å to 3.2Å. This results in a wider 

variety of hydrogen bonds compared to the more rigid strong hydrogen bond, with a much 

wider variety of hydrogen bond donors and acceptors that can be involved.   There are many 
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examples of intermolecular moderate hydrogen bonds between the different classes of small 

molecule, including carboxylic acids, amino acids, carbohydrates, purines and pyrimidines 

(Figure 1.4). As with strong hydrogen bonds, moderate intramolecular hydrogen bonds can 

also form. This was recognised by Sidgwick
34

 (1924) as being the reason for the differences 

in ortho-, meta- and para- hydroxy and amino benzene derivatives. Moderate hydrogen bonds 

can also form with transition metals, these can be terminal or bridging.  

 

    

Fig. 1.4 – LHS, an example of carboxylic acid and piridyl containing molecules, 1,8-naphthalenedicarboxylic 

acid trans-1,2-bis(4-pyridyl)ethylene, RHS, an example of a amino acid containing complex; L-leucine : D-

valine. 

 

1.3.3 Weak Hydrogen Bonds 

 

There are many different varieties of interactions that come under the weak hydrogen bond 

classification. The most relevant to the solid state and the most controversial are hydrogen 

bonds involving the CH group. These occur when the CH group is involved in multiple 

bonds or attached to electron withdrawing groups. They are controversial since it is still 

unclear how significant they are in determining molecular configuration or packing in 

molecular complexes.  

 

1.3.4 Bifurcated Hydrogen Bonds 

 

The flexibility found in moderate and weak hydrogen bonds can support the generation of 

hydrogen bonds involving two acceptor sites (Figure 1.5 LHS). These are referred to as three-

centred hydrogen bonds as the hydrogen is bonded to three atoms
35

. They are more commonly 

known as bifurcated hydrogen bonds and are quite common with around a quarter of normal 

hydrogen bonds from carbohydrate and nucleic acid structures being three-centered
29

. 

Bifurcated hydrogen bonds can arise when there is a proton deficiency, i.e. greater acceptor 

functionality than the number of hydrogen bonds available. They can range from symmetrical, 
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R1 ≈ R2, α1 ≈ α2 to asymmetrical,  R1 > R2, α1 > α2 (Figure 1.5 RHS) with the latter much more 

common. As in single hydrogen bonds, the bifurcated hydrogen bond has geometric 

constraints. The three individual bonds/interactions that make up the bifurcated hydrogen 

bond are all attractive forces and cause the hydrogen involved to lie close to the plane made 

up of the donor and two acceptor atoms. An indication of this is that the closer the sum of the 

angles α1, α2 and α3 is to 360°, the more planar the bifurcated hydrogen bond
36

. 

 

CH3

N H

CH3

O

O

CH3

   

Fig. 1.5 – LHS, example of a hydrogen bond containing two acceptors, RHS, extract from Jeffrey ―An 

Introduction to Hydrogen Bonding‖ , a three-centered hydrogen bond with labeling of the scalar quantities; 

hydrogen - acceptor distance (R1 and R2), hydrogen bond angle (α1 and α2) and angle between the hydrogen 

bonds (α3). 

 

With asymmetrical bifurcated hydrogen bonds there will be a major and minor component, 

with the major component being the stronger hydrogen bond. This can have properties 

comparable to moderate hydrogen bonds while the minor component is often more 

comparable to a weak hydrogen bond. In symmetrical bifurcated hydrogen bonds the two 

components are relatively even, with similar hydrogen bond lengths and angles. There are 

even examples of four-centred hydrogen bonds, with three acceptor groups, these are however 

extremely rare due to geometric constraints as by definition all hydrogen bonds must have a 

D-H∙∙∙A angle of greater than 90º. 

 

1.3.5 Hydrogen Bond Disorder  

 

Disorder in hydrogen bonds occurs when the donor and acceptor groups wholly or partially 

switch their functions.  This can be a static effect (configurational), with split occupancy of 

the hydrogen atom position, or a more dynamic effect (conformational), with the proton 

moving position, occurring as a result of varying the temperature or pressure. Conformational 

disorder can occur in two situations; in strong single minimum hydrogen bonds, the hydrogen 

can migrate across the hydrogen bond from the donor to acceptor as the temperature is varied 

(e.g. in urea phosphoric acid
37

); or when there is orientational freedom of the DH bond and 

D H

A

A

R1 

R2 

α1 

α2 
 α3 
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the protons can switch bonds by means of rotation about a single covalent bond (Figure 1.6) 

(e.g. in cyclodextrin hydrate
38

). 

 

 

Fig. 1.6 – An example of conformational disorder in a hydrogen bonded system.  

 

Where there are two crystallographically distinct positions in which the hydrogen can sit 

resulting from a double minimum potential well characteristic of moderate hydrogen bonds, 

and where the occupancies are not related by symmetry (e.g. 50:50 disorder across an 

inversion centre), the occupation of the secondary site can often be found to increase as the 

temperature is increased. Common examples would be enol – keto and amino – imino 

transformations (Figure 1.7) which do not occur in crystals but when still in solution. 

 

 

Fig. 1.7 – A reaction diagram showing amino - imino transformation (tautomerism). 

 

1.3.6 Proton Transfer 

 

Proton transfer is the basis of acid-base chemistry. When a hydrogen ion moves from one 

chemical to another, an acid-base reaction has taken place. Hydrogen bonding can promote 

proton transfer and in some cases restrict it; this phenomenon is considered by many as the 

most important property of the hydrogen bond. The ability to transmit protons and OH
–
 ions 

in water provides a catalytic mechanism for many water based reactions
39 

and is becoming 

increasingly recognised as important in enzyme catalysis reactions and for transmitting ions 

through membranes. Proton transfer can result in hydrogen bonds between the charged 

species that are much stronger than the non-charged species. Charge assisted hydrogen bonds 

can be as much as 0.4Å shorter than the corresponding neutral hydrogen bond and are 

O

CH3

H O

CH3

H O

CH3

H O

CH3

H

C

H3C N

N
H H

C

H3C N

N
H

H



 46 

commonly used by crystal engineers to generate new structures of small molecules
40 

and 

organometallics
41

.  

 

When conducting co-crystallisation experiments, understanding if and when a proton will 

transfer is critical to understanding if a salt or co-crystal will form. It is generally accepted 

that a reaction of an acid with a base will be expected to form a salt if the ∆pKa (∆pKa = pKa- 

(base) - pKa(acid)) is greater than ~2-3
42

. A smaller ∆pKa (less than 0) will result in co-crystal 

formation, therefore when the ∆pKa is between 0 and 3 accurately predicting salt or complex 

formation is inconclusive and is a keen area of research
43

. It is also not always possible to 

determine if a solid is a salt or co-crystal because either the proton is shared or the structure 

contains disordered ionized and non-ionized states. There are further limitations to the ∆pKa 

rule apart from the grey area between ∆pKa values of 0 to 3, where salt, cocrystal, shared 

protons or mixed ionisation states can form. The ∆pKa
50%

 point, where there is an equal 

amount of the conjugate acid to conjugate base in solution, is temperature dependent
44 

which 

along with using non dimeric stoichiometric ratios
45

 (not 1:1) has been found to produce 

results not in keeping with the empirical ∆pKa rule.  Table 1.2 shows the pKa values of 

selected molecules that have been used during this research, values are taken from CRC 

handbook of Chemistry and Physics
46

. 

 

It has been found by Aakeroy
47 

that proton transfer between molecules vastly decreases the 

probability of generating a targeted supramolecular synthon. 45% of molecular complexes 

generated between carboxylic acids and n-heterocycles when proton transfer has occurred 

resulted in unpredictable chemical or stoichiometric compositions, this drops to 5% when no 

proton transfer has occurred.  
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Acid pKa Conjugate Base 

Benzimidazolium 5.53 Benzimidazole 

Imidazolium 6.99 imidazole 

Benzoic acid 4.20 benzoate 

2-hydroxybenzoic acid 2.98 2-hydroxybenzoate 

3-hydroxybenzoic acid 4.08 3-hydroxybenzoate 

4-hydroxybenzoic acid 4.57 4-hydroxybenzoate 

2-fluorobenzoic acid 3.27 2-fluorobenzoate 

3-fluorobenzoic acid 3.86 3-fluorobenzoate 

4-fluorobenzoic acid 4.15 4-fluorobenzoate 

2-bromobenzoic acid 2.85 2-bromobenzoate 

3-bromobenzoic acid 3.81 3-bromobenzoate 

4-bromobenzoic acid 3.96 4-bromobenzoate 

2-chlorobenzoic acid 2.90 2-chlorobenzoate 

3-chlorobenzoic acid 3.84 3-chlorobenzoate 

4-chlorobenzoic acid 4.00 4-chlorobenzoate 

Picolinic Acid 0.99/ 5.39* Picolinate 

3-hydroxypicolinic acid 1.14 3-hydroxypicolinate 
Table 1.2 – pKa values of selected acids that are used during this research, with the name of the conjugate base. 

*Picolinic acid has two values as there are two parts of the molecule that can be deprontated, the carboxylic acid 

and pyridine 

 

1.3.7 Halogen Bonds 

 

The halogen bond is an attractive interaction where the halogen atom acts as the electron 

density acceptor. It was introduced to name any D∙∙∙X-Y interaction in which X is the halogen 

(Lewis acid), D is any donor of electrons (Lewis base) and Y can be a carbon, nitrogen, 

halogen, etc
48

. Halogen bonding is similar to hydrogen bonding in that in both types of 

bonding, an electron donor/electron acceptor relationship exists. The difference between the 

two is in what species can act as the electron donor/electron acceptor. In hydrogen bonding, a 

hydrogen atom acts as the electron acceptor and forms a non-covalent interaction by accepting 

electron density from an electron rich site (electron donor). In halogen bonding, a halogen 

atom is the electron acceptor. The utilisation of these bonding interactions stems from their 

directional preference of their positions relative to each other, of which there are two types: 

Type I, both Y-X∙∙∙X angles (θ1, θ2) are the same and around 160 ±10° or Type II, C-X∙∙∙X 

angles are roughly perpendicular to each other (θ1 ≈ 175°, θ2 ≈ 80°). 21 The significance of 

this is that the Type I arrangement lends itself to the formation crystal structures that contain 

inversion centres, two-fold rotation axes and mirror planes, while Type II arrangements are 

characteristic of two-fold screw axes or glide planes and both monoclinic and orthorhombic 
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space groups
49

. Due to this, halogen bonding has become increasingly important in the design 

and engineering of molecular complexes. Nguyen
50 

was the first to use the halogen bond to 

create targeted liquid crystals by using alkoxystilbazoles and pentafluoroiodobenzene. 

Meyer
48

 gives a review of halogen bonds in which he describes it as a strong, specific and 

directional interaction and gives examples where the halogen bond prevails over other 

interactions including hydrogen bonding
51

 and π∙∙∙π stacking
52

. Halogen bonding has also 

been used to separate enantiomers
53

 and is able to bind selectively small molecules to 

synthetic
54

 and natural receptors
55

.  

 

1.3.8 π – Interactions  

 

There are various classifications of interactions that involve, in at least one part, the π-

electrons. These all tend to be very weak interactions, however are often fundamental in the 

packing of the dominant structural motif in the structure. One of the common interactions is 

π∙∙∙π stacking, where aromatic rings effectively stack upon one another in either a; centred, 

off-centred or T-shape assembly (Figure 1.8). Π-stacking is instrumental within biological 

systems, for example in DNA -stacking where it helps stabilise the double helix 

conformation and in proteins where it can help fold macromolecules
56

. Cation–π interactions, 

also known as the Dougherty effect, is a non-covalent molecular interaction between the face 

of an electron-rich π system (e.g. aromatic ring) with an adjacent cation (e.g. Li
+
, Na

+
) (Figure 

1.8). The opposite interactions are lone pair-π interactions (also known as anion-π 

interactions) which involve bonding between a neutral electron-rich molecule and an electron-

poor π ring. It is effectively the opposite to cation-π interactions where the charge distribution 

of the π system has to be reversed
57

.  

 

        

Fig. 1.8 – Schematic of the most prevalent π∙∙∙π stacking forms, LHS, off-centred, middle, T-shape, RHS, an 

example of an cation- π interaction, between benzene and sodium.  

 

Na+
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1.4 Crystal Engineering 

 

Crystal engineering is seen as the bottom-up construction of functional materials from 

molecular or ionic building blocks
58

. These building blocks (motifs) are influenced, primarily, 

by relatively strong interactions which often display considerable consistency and are 

commonly known as supramolecular synthons. Defined as ―structural units within 

supermolecules which can be formed and/or assembled by known or conceivable synthetic 

operations involving intermolecular interactions‖
59

. This area of research has accelerated in 

recent times after the term crystal engineering was first used by Pepinksy
60 

in 1955. It is seen 

as a highly interdisciplinary area and attracts interest from many traditional fields including 

organic, inorganic, and organometallic chemistry, theoretical chemistry, crystallography and 

crystal growth. The area of crystal engineering is growing as it is seen as an intelligent way 

to: develop sophisticated devices, understand self-assembly / molecular recognition and 

understand the fundamental issues of nucleation and crystal growth
61

. Crystal engineering 

uses many strategies in forming supramolecular synthons; most common is using the 

understanding of hydrogen and coordination bonds, however more recently increasing 

attention has been applied to the weaker and less predictable halogen bonds
62

 and π-π 

interactions
63

. These weaker and less well-defined interactions can have strong effects on the 

packing of the dominating structural motif, which is one area of real challenge in crystal 

engineering. There is a real need to improve the understanding of how the balance between 

the relatively strong and weak interactions influences the outcome of the crystallisation. For 

example, Polito
64

 investigated the experimental and theoretical structures of molecules with 

similarly sized substituents, namely 2-methylbenzoic acid, 2-chlorobenzoic acid and a 1:1 co-

crystal of these two components. All three structures contained the same primary hydrogen 

bond interactions creating a ribbon arrangement. However the structures were not 

isostructural (see Section 1.5.3) as the ribbons are arranged differently within each lattice. 

This simple example highlights the difficulties extrapolating from the primary hydrogen bond 

motif to the crystal structure. Predicting and exploiting the primary hydrogen bond, the goal 

of crystal engineering, was made simpler by a set of rules formalised (not exclusively 

devised) by Etter in 1990
65

. The general rules, applying to all system, are; all good proton 

donors and acceptors are used in hydrogen bonding, six-membered-ring intramolecular 

hydrogen bonds form in preference to intermolecular hydrogen bonds and lastly the best 

proton donors and acceptors remaining after intramolecular hydrogen bond formation form 
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intermolecular hydrogen bonds to one another. There are additional rules for specific classes 

of functional groups. However the use of these rules explain why some of the stronger, more 

robust supramolecular synthons often contain the functional groups carboxylic acid
66

 

hydroxyl
67

, amide
68 

and pyridine
69

 and are often found together or in mixtures creating 

hydrogen bond patterns that are seen in a vast array of structures. The rules also explain why a 

survey of the CSD revealed that hydrogen bonded molecular complexes prepared with 

suitable functional groups preferred to interact heteromerically rather than homomerically, i.e 

best hydrogen bond donor: acceptor rule
3
. The common examples are N-containing 

heterocycle molecules with carboxylic acids, where in every case a N-H····O hydrogen bond 

is formed in preference to the starting materials reforming. It is possible to define the main 

hydrogen bond patterns in terms of 0-D, 1-D, 2-D and 3-D motifs depending on the type of 

intermolecular interactions that are present within and between the co-molecules. 0-D 

assemblies can be thought of as discrete aggregates and include: dimers, for example 

carboxylic acid : carboxylic acid, pyrrole-2-carboxylate : pyrrole-2-carboxylate, pyridine : 

carboxylic acid (Figure 1.9); trimers, for example bipyridine : carboxylic acid (1:2)
70

; and 

tetramers, for example isonicotinamide : carboxylic acid (2:2)
71

. 

  

 

Fig. 1.9 – a, the carboxylic acid dimer, b, a pyrrole-2-carboxylate dimer, and c, a carboxylate hydrogen bonded 

to part of a pyridine molecule. 

 

Co-crystals that are regarded as 1-D include those that have 1-dimensional motifs, i.e. chains 

and ribbons. Bipyridine : dihydroxybenzoic acid
72

 is a co-crystal with a 1-D array (Figure 

1.10). 2-D assemblies are when the hydrogen bond motif is expanded in two directions, for 

example in the diaminotriazine : uracil
73 

and piperazine : carboxylic acid
74 

(Figure 1.10) co-

crystals. Finally, the case of 3-D assemblies is when the motif expands the structure in all 

dimensions, examples include the iodoform : hexamethylenetetramine co-crystal
75

.  
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Fig. 1.10 – LHS, the bipyridine dihydroxybenzoic acid co-crystal is an example of a 1-D assembly, RHS, the 2-

D assembly from the piperazine : carboxylic acid co-crystal. 

 

Another important way to define structural motifs and patterns uses the idea that some 

interactions are more important than others. Etter
76 

developed a system based on so-called 

graph-set notation that allowed structural motifs to be described in a consistent way while 

recognising the multiply significant interactions. The graph-set approach uses four principal 

motifs: chains (C), dimers (D), rings (R) and intramolecular hydrogen bonds (S) with 

numbers to describe: the number of atoms involved, the number of hydrogen bond donors and 

the number of hydrogen bond acceptors. Thus the robust carboxylic acid dimer has the graph-

set notation )8(2

2R , for the eight atoms that make up the ring, with two each of hydrogen bond 

donors and acceptors. Arguably the greatest expansion of crystal engineering has come 

recently in the area of metal-organic frameworks (MOF)
77

. MOFs, extended metal-ligand 

networks with bridging organic ligands, have become an increasingly important area in 

chemistry with the potential to develop storage devices for hydrogen
78

 and carbon dioxide 

storage
79

, gas purification
80

, gas separation
80

 and catalysis
80

. While it is the potential 

applications that drive the research in MOFs, the ability to predict or design the structures is 

far from fully understood
81

. Crystal engineering principles are being used to design MOFs 

synthetically, utilising not only the robust coordination interactions (metal to ligand) but also 

solvent selection
82

 and π-stacking interactions
83

. Since there are many research groups from 

numerous specialties using crystal engineering principles to design and develop new 

materials, not all have been discussed here. There are however some common basic 

challenges that face crystal engineers, the most fundamental is the crystallisation process 

where there is no way of knowing if a particular recipe will form a powder, single crystal or 

amorphous material. There is also lack of knowledge on the role that solvent plays during the 
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crystallisation process, how is facilitates the nucleation process and drives the final product. 

The main consequence is the serendipitous nature of polymorph formation (Section 1.5) and 

the alternative materials obtained from the grinding technique (Section 1.6). On top of this, 

when crystals do form, we are unable to foretell their size, shape or space group, if they will 

be metastable, polymorphic or contain solvent. 

 

1.5 Polymorphism  

 

The area of the study of the occurrence and formation of polymorphs has been of emerging 

importance and debate. Polymorphism, the existence of more than one crystalline form of a 

compound, is an intensely studied phenomenon, yet it remains poorly understood and 

controlled
84

.  It is of critical importance to many industries, where the existence of various 

polymorphic forms of a material with different crystal lattices can result in different physical 

and chemical properties. Nowhere is this more relevant than in the pharmaceutical sector 

since APIs contain multiple-functional groups (therefore containing multiple sites for possible 

intermolecular interactions) and where polymorphism can result in changed bioactivity and 

bioavailability. Full characterisation of solid materials is thus critical in the determination of 

their ultimate use. As expected, the literature describing studies of polymorphism has grown 

in magnitude and detail, however, observations of polymorphism in multi-component crystals 

have been comparatively uncommon until recently, possibly due at least in part to the factors 

suggested by McCrone, that ―the number of forms known for a compound is proportional to 

the time and money spent in research on the compound‖
85

. With the increasing time and 

money being spent on co-crystallisations to generate new materials, especially in the 

pharmaceutical sector, polymorphism has relatively recently become increasingly observed in 

these materials.    

 

1.5.1 Controlling Polymorphism 

 

There are many thousands of examples of polymorphism; with statistically 85% of all active 

pharmaceutical ingredients known to exhibit multiple forms
84

. This has led to the 

development of techniques not only to screen for polymorphs but also predict if multiple 

forms will occur. Florence
87, 88 

has been one of the pioneers in developing an automated 
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parallel crystallisation approach, which can systematically set-up crystallisations using over 

sixty solvents, with control over solution temperature, filtration, agitation, cooling-rate and 

solution concentration all achievable. This technique allows for over six hundred different 

crystallisations to be set-up methodically. There is much emphasis on polymorph prediction 

as a way to reduce cost and time over the screening approach that not matter how substantial 

can be insufficient in exploring fully the possible crystallisation parameter space. Initial 

studies used a best hydrogen bond donor/acceptor approach which has now evolved into a 

knowledge based approach that assesses crystal stability using hydrogen bond predictions
89

. 

The approach quantifies the likelihood of hydrogen bond formation for a specified target 

compound by way of probability modelling of hydrogen bonding data from known, related 

structures, called the logit hydrogen-bonding propensity (LHP) method. Thus, it can be used 

to calculate the potential for polymorphism to occur and the relative stabilities of the 

predicted forms. This technique has been used in biological systems, e.g. protein-ligand 

docking
90 

and to study the Ritonavir case. In the latter ―Ritonavir‖ story, the large scale 

production of an anti HIV drug, Ritonavir, was abruptly halted when new batches of the drug 

produced had a crystal form different to that previously observed and believed to be the most 

stable form – crucially more stable than the original form.  This new form of the drug 

problematically had a decrease in solubility which entailed a loss in bioavailability.  

Numerous efforts were made to return to the production of the original crystal form by 

changing reaction conditions, removing all traces of the second form and drastically 

rebuilding the manufacturing facility.  All this however, was to no avail.  In essence, the 

original crystal form had ―disappeared‖ with the new, more stable form seeding its own 

growth and preventing the production of the original form.  The product was removed from 

the market and the simple tablet formulation was eventually replaced by a less convenient 

pre-dissolved liquid-gel capsule with a loss of over five hundred million dollars in sales and 

expenditure for the company
91

.  

 

1.5.1.1 Disappearing Polymorphs 

 

The Ritonavir story is not the only case of ―disappearing‖ polymorphs. 1,2,3,5-Tetra-O-

acetly-D-riboruranose was first prepared in Cambridge in 1946 by Howard and had a melting 

point of 58ºC (Form A). A more rigorous study was conducted in a US laboratory by 

Hoepfner who found Form A and another form of higher melting point, 85ºC (Form B). After 
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some time, Form A transformed to Form B with Form A impossible to re-produce. Crystals of 

Form A made in Cambridge were sent to the US, when upon opening, immediately became 

opaque and transformed into Form B. During this time the initial crystals of Form A in 

Cambridge also transformed form B. Studies in Manchester and Los Angeles by different 

groups went the same way, initially Form A was produced, before transforming into Form B 

with Form A never to be produced again. The form was deemed to be an unstable, metastable 

form
92

. This phenomenon of ‗disappearing‘ polymorphs is not uncommon.  For example, 

studies on a trimorphic dimethyl derivative, initially studied by Bürgi
93

 reported cell constants 

for the compound (Form I). Bernstein re-examined the compound and after an interim of 

about eight months, these crystals were found no longer to diffract well. Over a three-year 

period, subsequent recrystallisation experiments, often preceded by a fresh synthesis of the 

material, resulted in the discovery of two previously unknown polymorphs, but failed to yield 

form I
94

. After opening a new laboratory (over a kilometre away) recrystallisation using new 

reagents, new glassware, and a 'new' student proved successful. These examples add weight to 

the claims by McCrone and Woodard
95

 regarding the difficulties in crystallising metastable 

polymorphic forms in an environment in which a more stable form has been obtained. 

 

1.5.2 Polymorphism in Co-Crystals 

 

The growing field of pharmaceutical co-crystals (see Section 1.1.3) (which allows the 

combination of an API with a co-molecule that can improve physio-chemical properties while 

retaining the bioactivity of the API, for example improved bioavailability
96 

and shelf life
97

) 

has inevitably led to the detection of multiple phases of these molecules. This can be seen in 

the increasing number of papers published in this area. Polymorphism, the existence of more 

than one crystalline form of multi-component crystals, has been recorded in co-crystals of 4-

hydroxybenzoic acid with tetramethlypyrazine
98

, chlorzoxazone with 2,4-dihydroxybenzoic 

acid
97 

and three forms of the urea-barbituric acid co-crystal
100

. Multiple phases have also been 

found in pharmaceutical co-crystals as in the case of carbamazepine (anticonvulsant and 

mood-stabilizing) isonicotinamide
101 

(Figure 1.11) and ethenzamide (analgesic) with 3,5-

dinitrobenzoic acid
102

.   
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Fig. 1.11 – The co-crystal polymorphs formed by carbamazepine and isonicotinamide
99

.
 

 

1.5.3 Isostructures 

 

Two crystals are said to be isostructural if they have the same structure, but not necessarily 

the same unit cell dimensions nor the same chemical composition, and with a comparable 

variability in the atomic coordinates to that of the cell dimensions and chemical composition. 

This has been found between many structures. For example triiodoresorcinol (TIR) and 

triiodophloroglucinol (TIG) crystallized as orthorhombic (P212121) and monoclinic (P21/n) 

polymorphs mediated via inter-halogen I I interactions, where the orthorhombic and 

monoclinic polymorphs are isostructural
103

. Recently there have even been cases of co-

crystals that are isostructural; work by Jones
104 

found this to be the case in the tetrafluoro-1,4-

diiodobenzene (tifb) : 1,4-thixane and tifb : 1,4-thiomorpholine co-crystals
104

 (Figure 1.12). 
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Fig. 1.12 – Two co-crystals; LHS, tetrafluoro-1,4-diiodobenzene : 1,4-thixane and, RHS, tetrafluoro-1,4-

diiodobenzene: 1,4-thiomorpholine, that are isostructural.    

 

1.6 Solvent Free Co-Crystallisation 

 

As stated, there are various routes to generate crystalline molecular complexes, the most 

common being the solvent evaporation method. Over recent years, however, another area has 

seen an exponential increase in the interest and pace of research – the synthesis of compounds 

through solvent-free methods. With the emerging importance of crystal engineering in 

research laboratories and in industry alike, it is a natural progression in modern day science 

that leads us to look into greener, more environmentally-friendly ways of generating new 

materials. Through the green chemistry practices now being more widely adopted
105

, 

crystallisation experiments can be significantly improved if the amount of waste generated 

and the number of auxiliary substances that are used can be reduced. This has led to 

developments of techniques such as solvent free co-crystallisation. Once again there are 

various terms used to describe the method, mostly altered based on the field the paper is 

directed towards. Mechanochemistry
106

, (co-)grinding
107

, solvent free synthesis
108

, solid-state 

grinding
109

 and solid-state synthesis
110

 are some of the terms used to describe what will be 

called here solvent-free co-crystallisation (see Section 3.1.2). Further to this, there are various 

techniques that come under the umbrella of solvent-free co-crystallisation where the method 

has been altered to improve or target the compounds grown, including solvent-drop 

grinding
111

 and kneading
112

, which uses a micro quantity of solvent; vapour digestion
112

, wet 

compression
112

 and solid-vapour reactions
112

 where there is a mixture of the solid reactant(s) 

in an atmosphere of solvent(s). Solvent-free reactions can provide fast and quantitative routes 

to the preparation of common organic
113

 and inorganic compounds
114

.
 
These methods have 

been predominantly used in conjunction with traditional methods to show the viability and the 

success of the processes with known molecules
112

, however
 
more importantly, these processes 

have been shown to be able to prepare new molecular complexes
115

 and polymorphs
116

 

unobtainable from traditional methods. Solvent-free co-crystallisations have also been 

exploited to generate co-crystals that have subsequently undergone reactions also in the solid-

state, for example concomitant [2+2] cycloaddition reactions from hydrogen bonded co-

crystals of trans-1,2-bis(2-pyridyl)ethylene (2,2‘-bpe) : fumaric acid and (2,2‘-bpe) : 

mesaconic acid were reported in 2009
117

.  
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1.6.1 Co-Grinding/ Mechanical Mixing 

 

The simplest techniques that come under the solvent-free umbrella are co-grinding and 

mechanical mixing, where the co-molecules are ground together in a pestle and mortar or a 

ball mill. These techniques were the focus of a review in 2007
118 

by Braga that highlighted 

several successful experiments. One particular example is between dicarboxylic acids of 

variable chain lengths with a solid base, 1,4-diazabicyclooctane. Polymorphic crystalline 

forms of the salt are obtained depending on preparation technique, with Form I from grinding 

and Form II from traditional solvent evaporation methods. James in 2006
119 

described the first 

solvent-free synthesis of a microporous metal-organic framework, of copper and isonicotinic 

acid. Previously structures of discrete coordination polymers
120 

and 1-dimensional 

polymers
121

 had been formed using this technique, but this was the first example of a 

microporous structure.  In spite of this grinding (co-grinding) and ball milling (mechanical 

mixing) reactions are not popular in academic laboratories (mainly due to the lack of 

understanding of the mechanisms and non-controllable parameters) but are widely used in 

industry.  

 

1.6.2 Solvent-drop Grinding / Solvent Catalyst Method 

 

Solvent-drop grinding is the use of a small amount of solvent to speed up solid-state reactions 

and to provide a lubricant for molecular diffusion, it has been described as solvent catalysis 

and is commonly used at industrial level. This method is generally more popular than just 

grinding, as the kinetics of the co-crystallisation are increased
122 

and control over the product 

is much more achievable, offering a wider range of applications. For example, Trask
123

 

showed how use of small amounts of an appropriate solvent can achieve control of the 

polymorph outcome in single component crystallisations involving anthranilic acid and 

succinic acid. This can also be achieved in multi-component systems, for example co-crystals 

of benzoic acid with diazabicyclo[2.2.2]octane and benzoic acid with 2-aminopyrimidine 

form different polymorphs using the solvent-drop grinding and solution based techniques, 

with the product of the grinding having a higher crystal density and packing coefficient
124

.  

Pharmaceutical co-crystals have also been generated using the solvent-drop grinding method, 
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with polymorphic forms of the co-crystal caffeine : glutaric acid being achieved; using micro 

amounts of n-hexane produces Form a, while chloroform produces Form b
107 

(Figure 1.13).   

 

   

Fig. 1.13 – Extract from Trask et al
107 

showing the two different packing arrangements for the co-crystal 

polymorphs of caffeine and glutaric acid. 

  

1.6.3 Understanding the Mechanisms Involved  

 

There is a lack of clear understanding on the mechanism of the grinding process, an issue that 

is limiting its commercial use. This can be seen from the many different postulates there have 

been used to explain the outcomes: for example, Kuroda
125

 produced co-crystals of racemic-

bis-b-naphthol : benzoquinone by solid state grinding and postulated that the shearing and 

molecular diffusion processes occurring during grinding generated a different adduct structure 

to that recovered from solution. In the work of Rastogi
126

 with picric acid complexes, on the 

other hand, vapor diffusion was suggested as a mass transfer mechanism during solid state 

grinding. Shan
122

 explained solvent-drop grinding on the basis of additional degrees of 

freedom, enhancement of molecular collisions and formation of tiny co-crystal seeds. 

Rothenberg
127

 has presented evidence suggesting the formation of a liquid phase in the binary 

phase diagram as essential to facilitate intermolecular contacts, mass transfer and chemical 

reaction for solid-state reactions. Recently Kaupp
128

 proposed a three step solid-state 

mechanism, derived from atomic force microscopy studies, which involves long-range 

anisotropic molecular migration. Another postulate comes from Chadwick & Davey
129 

in 

work on benzophenone and diphenylamine that was formed from co-grinding with a mortar 

and pestle at ambient temperature. They suggest that a melt is formed between the solid 

phases with ―The shear induced by the grinding and the contact between the liquid and the 

residual solid surfaces then induces the nucleation and growth of the co-crystal from the 

liquid phase, much in the same way as a synthetic chemist might scratch the wall of a reaction 

vessel to induce crystallization of a reaction product.” They also go on to suggest that “The 
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closer the eutectic temperature and co-crystal melting point are, the slower will be the 

production rate of co-crystal and for those systems in which this temperature is above room 

temperature co-crystallisation will possibly require the addition of small amounts of solvent”.
 

 

1.7 Benzimidazole  

 

Benzimidazole (BZN) is a heterocyclic aromatic organic compound made up of a fused 

benzene ring and imidazole molecule (Figure 1.14 LHS). BZN derivatives have been used as 

low use-rate, broad-spectrum fungicides that have been used commercially for the control of 

plant diseases since the late 1960‘s
130

. At the time of their introduction, they represented a 

ground-breaking class of fungicides with unique properties including systemic and curative 

activity that allowed extended spray intervals
130

. World-wide, BZN fungicides are registered 

in many countries for use on more than 70 crops including cereals, grapes, fruits and 

vegetables. Thiabendazole (TBZ) was the first BZN to be marketed (Figure 1.13 middle), 

while BZN derivatives currently commercially available include the following active 

ingredients: benomyl, carbendazim (MBC), thiabendazole, thiophanate, thiophanate-methyl 

and fuberidazole (Figure 1.14 RHS). 

 

                         

Fig. 1.14 – Schematic of BZN and derivatives, left to right, BZN, thiabendazole and fuberidazole. 

 

There are two structurally determined polymorphs of BZN, alpha and beta, which are both 

orthorhombic, found within the Cambridge structural database
131

 (CSD – version 5.32 update 

May 2011). The latest version of the alpha form, which was discovered first, was published as 

a private communication in 2001
132

 (Figure 1.15, LHS) while the beta form was published in 

2005
133 

(Figure 1.15, RHS). The structures are similar in that the main hydrogen bond, N-

H∙∙∙N, is the same and that these create chains of BZN molecules. However they differ in two 

critical ways, firstly the alternate BZN molecules in the alpha chain are tilted at an angle of 

77.49º to one another, while in the beta form the BZN molecules are head to tail. Next, the 

secondary interactions differ, in the alpha form, the chains connect via C-H∙∙∙π interactions 

N

H
N

N

H
N

N

S

N
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N
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involving the carbon located between the two nitrogen atoms, while in the beta form the same 

carbon is involved in an interaction of 3.3Å in length with a symmetry-related copy of itself. 

 

      

Fig. 1.15 – LHS, the alpha form of BZN, RHS, the beta form of BZN, middle top, secondary interaction of the 

alpha form, middle bottom, secondary interaction of the beta form. 

 

Within the CSD, BZN is found in a wide range of organometallic complexes, for example 

with osmium
134

, lanthanium
135 

and cobalt
136 

amongst many more. There are however no 

structures within the CSD of BZN in its native form in a complex with another small organic 

molecule. There may be several reasons for this. Firstly when in a basic solution with another 

co-molecule, BZN has a great affinity for itself, which would tend to favour its crystallising 

out in one of its polymorphic forms. Secondly BZN is a very good proton acceptor and in the 

presence of a carboxylic acid it will always deprotonat that group. The latter explains why 

there is a range of molecular complexes of the protonated form of BZN, benzimidazolium 

(BZNH
+
), for example benzimidazolium 3-carboxyphenoxyacetate

137 
(Figure 1.16, LHS), 

benzimidazolium hydrogen phenylmalonate
138

 (Figure 1.16, RHS), benzimidazolium 

hydrogen nitroterephthalate
138

 and benzimidazolium 2-chloro-4-nitrobenzoate
140

 among a few 

others. All of the structures containing BZNH
+ 

contain partially charged assisted N-H∙∙O 

hydrogen bonds. 
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Fig. 1.16 – The basic building blocks from the structures of, LHS, benzimidazolium 3-carboxyphenoxyacetate, 

RHS, benzimidazolium hydrogen phenylmalonate.  

 

1.8 Imidazole 

 

Imidazole (IMD) is an aromatic heterocyclic and is one of the two diazoles. The term 

imidazole is also commonly used to refer to an IMD molecule with a substituent, which can 

be variable. Synthetic imidazoles are present in many fungicides and antifungal
141

, 

antiprotozoal, and antihypertensive medications. IMD is part of the theophylline molecule, 

found in tea leaves and coffee beans, which stimulates the central nervous system
142

. It is 

present in the anticancer medication mercaptopurine, which combats leukaemia by interfering 

with DNA activities. The crystal structure of IMD has been determined by both X-ray and 

neutron diffraction, the latest structure deposited within the CSD was in 2008, in a private 

communication
143

. The structure is made up of chains of IMD molecules held together by N-

H∙∙∙N hydrogen bonds (Figure 1.17, LHS). These chains are then expanded by carbon – 

nitrogen weak hydrogen bonds utilising the carbon located between the nitrogens, and the 

unprotonated nitrogen (Figure 1.17 – black circle).  

 

     

Fig. 1.17 – LHS, building block of the imidazolium structure with the carbon-nitrogen weak hydrogen bond 

circled in black, RHS, view along the b-axis of the extended structure of the imidazole crystal structure. 

 

There are a wide range of molecular complexes and organometallic compounds containing 

either IMD and/or its protonated form imidazolium, IMDH
+
, deposited within the CSD. Those 

that are key to this research are discussed thoroughly at the appropriate stage, for example 

Chapter 7 discusses and compares the molecular complexes obtained from the co-

crystallisation of BZN and IMD with dicarboxylic acids. As in the BZN case, there are a vast 
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array of organometallic complexes containing IMD, for example, with copper
144

, nickel
145

 and 

silver
146

. There are a wide range of motivations for this research, from creating 3-dimensional 

supramolecular structures
147

 to investigating its binding capabilities for use in medicines
148

.  

There are currently 253 structures deposited within the CSD containing the imidazolium 

cation, of which 97 are defined as organic. These range from inclusion complexes with 18-

crown-6
149

 (Figure 1.18 LHS) to complexes / salts with small simple organic molecules such 

as oxamate
150 

(Figure 1.18 RHS). 

 

     

Fig. 1.18 – LHS, crystal structure of the dibenzo-18-crown-6-imidazolium complex, RHS, the structure of the 

imidazolium oxamate molecular complex. 

 

1.9 Aims  and Objectives 

 

This work aimed to investigate and exploit the hydrogen bonds generated between 

heterocyclic aromatic compounds, namely benzimidazole and imidazole, and the carboxylic 

acid group. Using crystal engineering principles the projects primary objectives were to: 

 

 generate  and determine (mainly by single crystal X-ray diffraction) previously 

undiscovered molecular complexes 

 create a library of robust hydrogen bonds to selectively generate molecular complexes 

 promote and control the formation of molecular complex polymorphs through varying 

crystallisation conditions 

 investigate unusual proton behaviour through single crystal X-ray and neutron 

diffraction 

 explore the relatively new solvent-free crystallisation process 
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 use a range of analytical techniques to investigate products and reactants including X-

ray powder diffraction and DSC  
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2 Theory 

 

2.1  Crystallography 

 

Crystallography
1,2

 is the analysis of crystalline solids using a beam of either electromagnetic 

radiation or particles to determine the structure of the material via diffraction - a form of 

elastic scattering. Crystallography is the only technique that allows the determination of the 

relative positions of atoms from the data, which is fundamentally different to other forms of 

spectroscopy (NMR, UV) that require the analyst to propose a structure and check if it 

matches the experimental data. This skill is still required in crystallography, but to a much 

lesser degree. The determination of the relative position of the atoms or ions in the structure 

leads to quantifying of the scalar quantities between atoms, (bond lengths, bond angles and 

torsion angles etc) and the relationships between the atoms (interaction distance and thus 

interaction type). The understanding of the structure, may it be previously undiscovered, or 

known but structurally undetermined (existence is known but structure is not), can lead to 

further studies that can utilise properties to manufacture superior materials.  

 

2.1.1 The Crystal 

 

A perfect crystalline solid material is made up of a large number of identical molecules or 

ions, which are arranged in a precisely regular way forming units which are repeated in all 

directions to give a highly ordered structure
1
. It is only necessary to know the simplest 

repeating unit (unit cell) to be able to describe the crystal structure. This unit cell can be a 

single molecule or a more complicated building block. 

 

2.1.2 The Lattice 

 

Each unit cell can be mapped onto another by symmetry operations with the three basis 

vectors, a, b, c, describing the translation of the unit in space
3
. If each unit cell was described 

using a single point, by applying the symmetry operations, a regular repeating pattern in all 3 
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directions would be produced; this is called the lattice. The lattice is an abstract mathematical 

concept and the origin of the lattice can be any point in the crystal structure, for example on 

an atom or in space. It is the regular translational symmetry of crystalline materials that gives 

rise to discrete spots in an X-ray diffraction pattern. 

 

2.1.3 The Unit Cell 

 

As mentioned, the unit cell is the smallest repeating volume of the lattice and is described by 

the basis vectors a, b, c and three angles, , β and γ, also called unit cell parameters (Figure 

2.1). The three basis vectors enclose a shape called a parallelepiped. By convention the angle 

 is between vectors b and c, β between vectors a and c and γ between a and b, with the 

length of the basis vectors (unit cell dimensions) typically ranging from around 3Å to 40Å for 

small molecules.  

 

 

Fig. 2.1 – 3-dimensional unit cell, defined in terms of the unit cell dimensions a, b, c, , , . 

 

2.1.4 The Seven Crystal Systems 

 

A molecule can undergo transformations called symmetry operations, which include inversion 

through a point, rotation about a line, or reflection in a plane, that leave the molecule 

afterwards with an identical appearance
4
. Any rotation or reflection symmetry in the solid 

state imposes restrictions on the values of the unit cell parameters.  For example, if there is a 

mirror plane in the crystal normal to the b-axis, the a- and c- axes must lie in this plane and 

hence be themselves perpendicular to the b-axis. If a 3-fold rotation axis lies parallel to the c-
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axis, the angle between a and b (γ) must be 120º. Full consideration of the possible symmetry 

implications on the lattice results in only seven different allowed geometries, called crystal 

systems (Table 2.1).  

 

Triclinic a ≠ b ≠ c α ≠ β ≠ γ ≠ 90º P 

Monoclinic a ≠ b ≠ c α = γ = 90º β ≠ 90º P + C 

Orthorhombic a ≠ b ≠ c α = β = γ = 90º P + C + F + I 

Tetragonal a = b ≠ c α = β = γ = 90º P + I 

Trigonal a = b ≠ c α = β = 90º γ = 120º R 

Hexagonal a = b ≠ c α = β = 90º γ = 120º P 

Cubic a = b = c α = β = γ = 90º P + I + F 

Table 2.1 – The seven crystal systems with the restrictions on unit cell parameters and corresponding Bravais 

lattice type, P primitive, C centred, I body centred, F face centred and R rhombohedral. 

 

2.1.5 The Fourteen Bravais Lattices 

 

A unit cell that contains one lattice point is called a primitive cell. There are times when it is 

beneficial to describe the unit cell with larger parameters to simplify defining the symmetry 

elements, in some cases 2, 3 or even 4 times the volume of the primitive cell.  Such cells are 

called centred and contain more than one lattice point. There are eight centred lattices; C 

corresponds to a centred lattice where the second lattice point sits on either of the faces, A-

face (between the b- and c- axis), B- face (between a- and c- axis) or C-face (between a- and 

b- axis).  If the additional lattice points sit on all the faces it is labelled F,  face centred, and 

has four times the volume of primitive cell, and lastly I represents body centred where the 

additional lattice point is at the centre of the cell and has double the volume of primitive
3
 

(Table 2.1). 

 

2.1.6 Space Groups 

 

Within three-dimensional crystals, the presence of translation makes other kinds of symmetry 

possible. For example a mirror plane can be combined with a translation equal to half a cell 

unit repeat one of the axes instead of just a reflection; this is called a glide plane. Similarly, 



 71 

combining a rotation with a translation gives a screw axis, described by the symbol 21 for a 

two fold rotation with translation half cell length. The translation is always along the axis of 

the rotation
4
. In a single molecule the symmetry elements pass through one point, and the 

combinations of symmetry elements are known as point groups. In the crystal, the symmetry 

elements do not necessarily pass through one point, and thus the symmetry groups are called 

space groups.  There are exactly 230 possible arrangements of symmetry elements in the solid 

state and thus 230 space groups. They are all fully described in the International Tables for 

Crystallography Volume A
5
. 

 

2.1.7 Theory of Diffraction 

 

The diffraction phenomenon occurs when a wave encounters an obstacle. It is described as the 

apparent bending of waves around small obstacles and the spreading out of waves past small 

openings. The effects of diffraction of light were first observed and characterised by Franceso 

Maria Grimaldi
6 

in the 1600s. He coined the term diffraction, from the Latin word 

diffreignere that means ―to break into pieces‖.  

 

Diffraction occurs in all waves, including water, sound, and radio and importantly here in 

electromagnetic waves such as X-rays. Also due to the wave-particle duality concept by 

which all matter exhibits both wave-like and particle-like properties, diffraction experiments 

can also be carried out using particles such as electrons and neutrons.  

 

The key benefit of X-ray diffraction is that the typical wavelength of X-rays is of a similar 

value to the spacing between the lattices in a structure. The most widely used laboratory X-

ray sources are based on molybdenum or copper targets, which yield X-rays with principal 

characteristic wavelengths of 0.71073Å and 1.54184Å respectively. Copper radiation is 

beneficial for a small or weakly diffracting crystals since from a typical laboratory X-ray 

generator, a higher flux of photons is generated in this case. It also has benefits when using 

crystals with larger unit cell dimensions since the longer wavelength spreads out the 

diffraction pattern further.  However, use of a molybdenum source allows collection of data to 

a higher resolution and absorption effects are less serious.  
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2.1.8 The Laue and Bragg Equations 

 

Every atom within a crystal structure scatters the incident X-ray beam in all directions and 

these scattered X-rays can undergo constructive and destructive interference. For X-rays to 

interfere completely constructively, the path difference must be equal to an integral number of 

wavelengths;  

 

Path difference = a cos α – a cos α0 = hλ 

 

where α0 and α are the angles of incident and diffracted beams, a is the 1-dimensional lattice 

spacing and h is an integer. 

 

For a crystal, the diffracted intensity is effectively zero in all directions apart from where 

constructive interference has occurred.  In a three dimensional array, as in crystals, there are 

three equations that must be met simultaneously for diffraction to occur, these are called the 

Laue equations; 

 

a ( cos α – a cos α0) = hλ 

b ( cos β – b cos β0) = kλ 

c ( cos γ – c cos γ0) = lλ 

 

Where h, k and l are integers and a, b and c are interatomic spacings. These equations provide 

a mathematical interpretation of diffraction geometry. However W.H. and W.L. Bragg 

provided a simpler, more physically meaningful interpretation, the Bragg Equation
7
; 

 

nλ = 2 dhkl sinθ 

 

This equation showed that the crystal could be thought of as a series of parallel planes from 

which the incoming beam are scattered (Figure 2.2), and the Bragg equation results from the 

requirement for the path difference between two parallel beams to equal an integral number of 

wavelengths. 
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Fig. 2.2 – The Bragg construction for diffraction by a three-dimensional crystal structure. 

 

2.1.9 Reciprocal Lattice 

 

Each set of lattice planes is indexed using the so-called Miller indices, which define the 

geometry of this plane within the unit cell using three integers, h, k and l. A vector can be 

defined for each set of places, with direction perpendicular to the planes, and magnitude dhkl. 

Each Bragg reflection is thus associated with a vector, whose direction is directly linked to the 

unit cell. For example the (100) planes lie parallel to the bc face of the unit cell (Figure 2.3). 

The result is a set of vectors whose end points define a lattice with dimensions inversely 

related to the dimensions of the crystal lattice, the reciprocal lattice.  

 

Fig. 2.3 – The cubic crystal system with the directions [hkl] defining a vector normal to the surface of a face. 

 

[001] 

[010] 

[100] 
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2.1.10 The Ewald Construction 

 

The reciprocal lattice is very useful in describing the practical implementation of a diffraction 

experiment. This is seen from using the Ewald construction
8
 (Figure 2.4). Firstly consider a 

crystal, K, it will have a set of planes in the direct lattice shown on the LHS of the diagram. If 

an appropriate orientation for diffraction required by Braggs law is achieved, d, corresponding 

reciprocal vectors are produced shown on the RHS of the diagram with length 1/dhkl. A circle 

of 1/λ is then drawn around the crystal, K, where λ is the wavelength of the radiation used 

(hence can be changed / tuned). Bragg‘s law is satisfied when the scattered vector, d
#
, ends on 

the circle; this circle is called the Ewald circle, and in 3-dimensions is called the Ewald 

sphere. If the scattered vector (or a reciprocal lattice point) does not lie on the sphere, Bragg‘s 

law is not satisfied and a reflection will not be observed. The orientation of the reciprocal 

lattice can be moved by rotating the crystal around the incident beam, or vice versa.  

 

 

Fig. 2.4 – The Ewald Construction. 

 

2.1.11 Collecting X-ray Diffraction Data 

 

The first step is to determine a unit cell; this is achieved by indexing the diffraction pattern, 

which entails the assigning of hkl indices to each measured reflection. The space group can 
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then be determined by measurements of the distribution of reflection intensities, assigning a 

Laue group and crystal system. To narrow down the choice of possible space groups from 

this, systematic absences are used. Systematic absences occur in the presence of a centred 

lattice, glide planes or screw axes. This allows destructive interference to occur in a 

systematic way, therefore producing zero intensity for sets of Bragg reflections. For a centred 

lattice, the absences occur throughout the lattice, with a glide plane they occur in the zero 

layer parallel to the glide plane and for screw axis they occur on the central reciprocal lattice 

row parallel to the axis
3
. Once the unit cell and crystal system is defined, a strategy for the 

data collection can then be determined using the diffractometer software. The actual data 

collection measures anywhere between 10000 to 50000 reflections, achieved by rotating the 

crystal relative to the X-ray beam. A diffraction pattern always has inversion symmetry so 

only a hemisphere of data ever has to be measured to ensure all unique reflections are 

accessed. Cells with more symmetry need even less; a monoclinic cell needs less data than a 

triclinic one, with orthorhombic and higher symmetries requiring even less.  

 

Over the past 40 years advancements in diffractometers have meant that a data collection can 

be done in a morning rather than a week, mainly down to the use of area detector systems. 

There are a range of these detectors; charged coupled devices (CCD), which use CCD-chips 

to record the X-rays as they hit the surface and image plates which undergo a reaction when 

struck with an X-ray that can be read by laser scanning. Both types of detectors have 

advantages and disadvantages. Recent advances in diffractometer technology have 

increasingly looked at further mechanisation of diffraction experiments, with machines that 

are able to take a mounted crystal from bench to structure solution.  

 

2.2  Structure Solution 

 

Once the reflections have been measured, the structure can be solved, i.e. the location of the 

atoms in the unit cell determined. Some concepts need to be accounted for before describing 

the method for solving the structure. Firstly, X-rays are scattered by electrons, so the electron 

density distribution is measured. The electrons are never stationary, with the diffraction 

experiments only taking a picture of the electrons at a certain time; this means the electron 

density is averaged out over time and over the vibrations of the atom. The structure can then 

be described in terms of positions and displacements of the atoms with each atom having its 
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own electron density distribution about its centre. Atoms are usually calculated as spherical 

objects, with their contributions to the X-ray scattering (atomic scattering factors) derived 

from quantum mechanics. Each element has a unique atomic scattering factor that decreases 

with increasing Bragg angle (Figure 2.5).  

 

 

Fig. 2.5 – X-ray atomic form factors of oxygen (blue), chlorine (green), Cl
-
 (magenta), and K

+
 (red); smaller 

charge distributions have a wider form factor. 

 

Since atoms are also constantly moving, known as atomic displacement, the electron density 

is further spread out over a larger area and usually in an unequal way (due to bonding). This 

effect can be described by a set of anisotropic displacement parameters, which uses six 

parameters and results in an ellipsoid shape for the atom. In total, the parameters that are used 

to describe an atom are: atomic scattering factor, x, y, z coordinates, site occupancy factors 

(this helps if an atom does not fully occupy a given position within the unit cell) and 

anisotropic displacement parameters.  

 

The scattering amplitude, Fc, for a unit cell can be calculated from the known atomic 

parameters.  Due to the phase shift of scattering from the different atoms in the unit cell, the 

scattered wave can be described by a complex quantity which is linked to the scattering 



 77 

amplitudes and relative phases. All of the atoms, j, in the unit cell will have their own 

amplitudes and their individual phase shifts and the resultant scattered wave for the entire 

structure – called the structure factor – is obtained for each reflection hkl by equation 1. 

 

  
j

jjjjjjj

c

hkl lzkyhxilzkyhxfF )(2sin)(2cos    (1) 

 

The square of the amplitude of the structure factor gives the intensity that is generated in a 

diffraction experiment. The phase angle can be calculated, but is not directly measureable 

experimentally (see 2.3.2).  

 

2.2.1 Fourier Transform 

 

The crystal structure that is to be determined is related to the X-ray diffraction pattern by a 

mathematical process called the Fourier transform, i.e. if all the individual X-ray waves are 

known (that is their structure factor Fo with their phases), a Fourier transform will give the 

electron density, therefore the structure:  

 

ρ(xyz) = 
hklV

1
Fhkl exp[-2πi(hx + ky + lz)]   (2) 

 

From this the electron density, ρ, can be determined for every point x,y,z in the unit cell. V is 

the volume of the unit cell, F is the structure factor for the reflection with indices h, k and l. 

Unfortunately the experimental measurements only give the intensities of the structure factor, 

i.e. only the amplitudes are known and the phase information has been lost.  This loss of 

phase information is called the phase problem.  

 

2.2.2 Phase Problem 

 

The phase problem arises because the diffraction experiments only collect the intensities of 

the reflections, with the phase information of the structure factor being lost. If the phase 

information can be calculated and combined with the observed structure factor values, Fo, the 
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resulting Fourier synthesis calculations will give the full structure (or a model which 

refinement methods can improve).  Various methods have been devised for solving the phase 

problem, which for most small molecule structures is now fairly routine. 

 

2.2.3 Patterson Method 

 

One of the two main ways to solve the phase problem is to use the Patterson method, which 

basically replaces the vector from equation (2), Fhkl, with its square, removing the phases from 

the calculation (3).  

 

  
hkl

lwkvhuhklF
V

uvmP )(2cos)(
1

)(
2

    (3) 

 

The result is that the electron density is not calculated; the peaks on a Patterson map do not 

correspond to individual atoms, but to vectors between pairs of atoms. The height of Patterson 

peaks are related to the scattering powers of the two atoms involved in the vector, which 

means that this method is suited to crystals that contain heavy atoms, for example 

organometallics. With the heavy atoms found, approximate phases can be calculated and the 

remaining atoms located using difference Fourier syntheses and then refined to completion. 

 

2.2.4 Direct Methods 

 

Direct methods is the more common of the two techniques and makes use of the relationship 

between the intensities of the various reflections which lead directly to a solution of the phase 

problem. It is essentially a trial and error method, based on the knowledge that structure 

factors are linked to phases through the electron density. Characteristics of the correct 

electron density can be expressed as mathematical constraints on ρ(density), for example the 

scattering density is positive throughout and that atoms are in discrete positions.  Since the ρ 

is linked to the structure factor by Fourier transform, constraining ρ also puts constraints on 

the structure factor. Since the amplitudes of the structure factor are known, the constraints are 

on the phases and in some cases determine the values of these directly. One of these 

constraints is called the triplet relationship, where when the Miller indices of three strong 
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reflections have well-defined relationships with one another, the values of the three phases of 

the reflections involved in the triplet are also related, with the probability of this relationship 

being proportional to the intensities of the contributing reflections. Multiple iterations of 

possible deduced phase sets are tried (often several hundred) and from this the best solution is 

picked and a density map generated. This results in a list of peaks from which fragments of 

the structure can often be seen, either by the user or with additional refinements by the 

structure solution program. There are several variables that can be changed for direct methods 

to improve the possibility of getting a better solution. The two main variables are the number 

of triplet reflections relations used or the number of variations of phase relationships 

attempted, both increasing the chances of finding a solution although the time required for the 

calculation gets progressively longer. Direct methods are very successful in solving small 

molecule structures and are by far the most common method used. 

 

2.2.5 Superflip 

 

Superflip
8
 is a relatively new method for solving the phase problem which uses the concept of 

charge flipping
9
, which is a mathematical algorithm that gives approximate electron densities 

from structure factor amplitudes. Whilst direct and Patterson methods need relatively large 

amounts of prior information about the material to solve the structure, charge flipping needs 

much less, not even chemical composition. The method uses an algorithm (4) which goes 

through a cycle of operations with the 0
th

 cycle assigning random starting phases (φrand(H)) to 

all experimental amplitudes and making all unobserved amplitudes equal to zero.  

 

))(exp()({)()0( HiHFHF rand

obs      (4) 

 

Where )(HF obs  is the experimental structure factor. Within the algorithm all operations are 

performed in the whole unit cell with symmetry space group P1, therefore the origin of the 

structure is not fixed and the structure can emerge anywhere in the unit cell. An inverse 

Fourier transform is performed that calculates the electron density; from this if there is any 

negative electron density, the sign at this point is flipped (thus charge flipping). The next step 

is calculating temporary structure factors by Fourier transform and from this the calculated 

phases can be added to the experimental amplitudes to generate the new structure factors. 
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These new structure factors are then inserted in the beginning of the next cycle. The success 

of the operations can be monitored observing the R-value of amplitudes with respect to 

)(HF obs  . It is large in the initial cycles however once there is a sharp decrease of the R-

value and this becomes steady, the process is said to have converged. The final R-values are 

not a measure of the quality of the structure, but merely as an indicator of convergence. Since 

the calculation is carried out in the P1 space group, the actual space group still needs to be 

determined. This is carried out directly from the electron density after the unit cell is modelled 

and a list of symmetry operations that are compatible with the lattice can be drawn up and 

evaluated by how well they match with the electron density. From the symmetry elements that 

are a good match, a space group is assigned that fits best.  

 

2.2.6 Fourier Refinement 

 

From a partially known structure (model), a set of calculated phases can be obtained.  

Combining these with the observed structure factor magnitudes leads to the observed structure 

factors, Fo. By subtracting from each point an identical summation based on the calculated 

structure factor, Fc, a ―difference Fourier‖ map can be calculated. The peaks that remain 

represent the missing atoms in the structure, since effectively the model calculated density has 

been removed from the experimental calculated electron density. With each new model, a new 

difference Fourier map can be calculated, this improves the phases that are used in the 

calculations, creating a cycle that if repeated determines the complete structure. The structure 

that has been achieved will describe the structure reasonably well; however there are still 

errors in the parameters, due to the approximations in the calculations used and in the quality 

of data collected; for example the experiment is not carried out at 0K so thermal parameters 

must be included. Therefore the calculated structure factor, Fo, does not agree with the 

observed values. The next step is better to match the calculated and observed structure factor 

values, which is done through least squares refinement. This can be used in structure 

refinement as the parameters are said to be over determined i.e. there are significantly more 

observations than parameters (for a good data set, the data/parameter ratio is typically more 

than 10). In addition, during the least squares refinement process, other factors affecting the 

agreement of model with data are optimised, including absorption corrections, which are 

required to account for the weakening of the X-ray beams by elastic and inelastic scattering as 
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they pass through the crystal; this absorption is affected by the atom types in the structure and 

the size and shape of the crystal, 

 

2.2.7 Location of Hydrogen atoms 

 

Hydrogen atoms have very little scattering power, but depending on the number of them in 

the structure can contribute significantly to the electron density. After the main features of the 

structure have been optimised by refinement, difference Fourier maps can be calculated. 

Using these maps it is possible to find the hydrogen atoms and to spot if an atom has been 

mis-assigned.  

 

2.2.8 R-Values 

 

In order to determine how well the model actually fits to the experimental data, residuals, 

normally named R-factors (5), are used. The R-factor gives the average relative deviation 

between the observed, Fo, and calculated, Fc, structure factors:  

 

R = 
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     (5) 

 

The higher the value of the R-factor the worse the model and data match, so the lower the 

better, with typical published data having R-factors around 0.02-0.07. The weighted R-factor 

(6) works in the same way but with weighting factors for the reflections based on the σ(F
2
) 

values and is directly related to the statistical quantity that is minimized in the least squares 

refinement. Good weighted R-factors tend to be around 0.12-0.15 (12- 15%).  
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A further quantity is used to measure the quality of the refinement, S (7), the goodness of fit. 

 

S= 
nm

FF
hkl

co



 222 )(

     (7) 

 

where m is the number of reflections and n the number of parameters; the difference in these 

numbers gives the over determination of the structure.  A good refined data set will have a S 

value of close to 1. 

 

2.3  Powder Diffraction 

 

In contrast to single crystal X-ray diffraction, powder X-ray diffraction can test the properties 

of a bulk sample. A powder diffraction experiment can be undertaken on a whole 

crystallisation experiment and be achieved to a high resolution in less than 30 minutes. 

Testing of bulk properties using single crystal experiments would require the diffraction of 

10s of samples which would take time and may well be impossible if suitable crystals were 

not generated of all crystalline forms present in the sample. The benefit of analysing the bulk 

sample over selected single crystals is two-fold: to obtain the composition of the bulk material 

and to determine the degree of crystallinity of the sample. It is also possible to determine unit 

cell information and powder data can also sometimes lead to full structural determination. 

Information of the composition is vital as it can quickly find if the sample has new products, 

for example a molecular complex, or just starting material. Powder diffraction can also 

determine if the sample is pure or a mixture which is vital in identifying polymorphism in a 

material. The type of sample used (powders) lends a greater degree of flexibility in 

experimental conditions over the single crystal experiments. Using non-ambient conditions, 

such as high pressure, temperature or magnetic field is much easier to undertake on a 

powdered sample than a crystal, as single crystals are much more vulnerable to these 

conditions. Powder diffraction studies using non-ambient conditions can provide real time 

information on the kinetics of the reactions involved, phase change information and the 

changes of the unit cell parameters. 
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2.3.1 Powder Diffraction Experiments 

 

A powder is a collection of randomly oriented crystallites; the sample is called 

polycrystalline. In a diffraction experiment each of these crystallites can be thought of giving 

rise to its own diffraction pattern, and the random orientation of the many crystallites in the 

experiment leads to the spots becoming spread out into rings of diffracted intensity (Figure 

2.6). This generates a plot of total diffraction intensity against diffraction angle, 2θ. 

 

 

Fig. 2.6 – (a) Shows diffraction from a single crystal, (b) from a collection of four crystals, (c) from a 

polycrystalline sample. (d) is the resulting powder pattern from the polycrystalline sample
10

. 

 

The inherent problem with powder diffraction is that the 3D intensity distribution of single 

crystal experiments is compressed into a 1D distribution in 2θ space. The result is a loss of 

information and peak overlap, with the latter being the only problem that can be resolved, to a 

certain extent. This peak overlap is more severe for larger and lower symmetry unit cells, and 

making molecular materials with chosen symmetry is still beyond crystal engineers. Therefore 

to reduce peak overlap, optimising experimental parameters (such as diffractometer 

resolution, sample quality) that will sharpen the widths of the reflections as much as possible 

are required.   

 

2.3.2 Powder Diffractometers 

 

There are a wide range of X-ray powder diffractometers available, with each instrument set-

up producing advantages and disadvantages. A traditional flat plate set-up for a powder 
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diffractometer is shown in Figure 2.7. In this set-up the sample is scanned through an angle θ 

as the detector is moved through 2θ to accumulate the diffraction pattern. There are different 

sources and detectors with different associated properties, with the most common set-up being 

a sealed copper tube and a point detector with reflection geometry. As can be seen from 

Figure 2.7, between the source and the sample there is a divergence slit, this controls the 

amount of sample that is illuminated by the X-rays. It is crucial that the slit size is smaller 

than the sample size to ensure that diffraction intensities are useful. A similar slit is placed 

between the sample and the detector, the anti-scatter slit, which is used to reduce the axial 

divergence of the scattered X-rays. The smaller the slits, the higher the resolution, but that is 

at the cost of a decrease in intensity (for example, a 0.05mm detector slit will only result in ¼ 

of the count rate of a 0.2mm slit). The flat plate method – in which the powder sample is 

deposited on a flat sample holder, is prone to an effect called preferred orientation; this is 

when the crystallites arrange themselves into a non-random arrangement, due to their 

morphology.  This can severely affect the diffraction intensities and skew results. The 

simplest way of reducing preferred orientation is to use a capillary set-up where a constantly 

rotating capillary tube is used to contain the sample instead of a flat plate.  

 

 

Fig. 2.7 – Schematic of a traditional flat plate X-ray powder diffractometer. 

 

2.3.3 Powder Pattern 
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Information about the material is found in three distinct features of the powder pattern. The 

peak positions give information on the size, shape and symmetry of the unit cell. Peak 

intensities relate to the arrangement of scattering density within the unit cell, which relate to 

the unit cell contents, point group symmetry and in multi-sample experiments, the relative 

quantities of each phase (quantitative analysis). Lastly from the peak shape and width, 

information on the crystallite size and the extent of defects or strains in the sample can be 

determined.  As discussed in Section 2.4.2, experimental factors (sources, optics, detectors) 

can also affect the width of the peaks.  

 

2.3.4 Structure Solution from Powder X-ray Diffraction Data 

 

For structure determination from powder data (SDPD), the data needs to be of the best 

possible quality. Recommendations to ensure this include the use of a rotating capillary set-

up, small step size, varying the data collection time with angle (see Table 2.3 below for 

example of a variable count time strategy), and carrying out many short scans rather than one 

long run. Primarily the goal of these is to reduce background and at high angles of 2, reduce 

overlap of peaks and strengthen the weak signals produced.  

Starting (2θ) End(2θ) Step size Time (secs) 

3 28 0.017 2 

28 45 0.017 6 

45 55 0.017 16 

55 70 0.017 32 

Table 2.3 – Typical variable count time scan set-up for SDPD. 

There are normally several steps in the structure solution process; firstly the highest quality 

data possible is obtained. Unit cell parameters are then obtained from the observed peak 

positions. This indexing stage is performed similarly to single crystal experiments and 

requires careful peak fitting. The space group can be determined from systematic absences; 

however, where overlap between peaks at high 2 is significant this causes difficulties with 

peak picking.  

Next, a Pawley refinement
11

 is performed; this method is basically a peak fitting exercise (not 

based upon a structural model) where only the allowed peaks that correspond to the unit cell 
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and the symmetry are included. If the calculated peaks are not fitting well with the observed 

peaks, this indicates that either the unit cell or space group is wrong or impurities are present. 

The Pawley refinement gives a numerical indication of the best fit that will be achieved in the 

Rietveld (structure) refinement stage. 

There are many options for the next stage; processes similar to direct methods and Patterson 

synthesis can be used to solve the structure. Charge-flipping algorithms have recently been 

used. The SDPD method which is used in the DASH software is a direct-space structure 

solution method that uses information about the molecular fragments and their geometry. 

The latter method works by generating a trial structure model from the molecular cell contents 

and compares the calculated diffraction pattern from the model to the experimental diffraction 

pattern. Using a simulated annealing approach, adjustments are made to the structure in a 

random way and for each move the agreement between the observed and calculated patterns is 

examined. The move is then accepted or rejected and the process is repeated until the best 

agreement is obtained. 

Lastly, a Rietveld refinement is performed; this is a whole pattern fitting least-squares method 

that allows the adjustment of structural parameters such as unit cell size, fractional atomic 

coordinates and thermal parameters to minimise the difference between the observed (yobs) 

and calculated (ycalc) patterns point by point. The quality of the model can be assessed by 

considering the goodness of fit (χ
2
) (8) which compares the agreement factor Rwp against the 

Rexp which is the statistically expected value. The goodness of fit should be as close to the 

result of the Pawley refinement as possible. 

exp

2

R

Rwp
   (8) 

It is often best to use a visual inspection of the difference profile (diffraction pattern 

subtracted by calculated pattern) as high background can artificially lower the Rwp values 

(Figure 2.8). 
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Fig. 2.8 – The powder pattern of benzimidazole 5-chlorosalicylic acid obtained from structure solution with 

DASH (blue) and the experimental data (red). The purple line indicates the differences between the two sets of 

data; this is an indication of the good fit between the two.  

 

2.4  DSC 

 

Differential scanning calorimetry (DSC) is a technique that investigates the thermal 

transitions of a material and works according to the heat flow principle. Thermal transitions 

are those in which there is an energy exchange with the sample environment as it is heated. 

This includes things like glass transitions, phase transitions, melting, and recrystallisation 

(Figure 2.9). DSC is a useful technique when dealing with multi-component materials as it is 

able to determine quickly if the sample is pure, the different phases a material adopts as a 

function of temperature, degree of crystallinity and, importantly, to screen for polymorphs.  
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Fig. 2.9 – Thermogram showing the three main types of event that be detected by DSC, glass transition, 

crystallisation and melting. For a multiple phase sample, each component will follow its own thermal profile. 

 

2.4.1 DSC Experiments 

 

A small amount of the sample is placed in the sample pan and in parallel with an empty 

reference pan, they are then heated at a set rate. The difference in energy required to heat the 

sample pan compared to the reference pan is measured and plotted as the temperature is 

increased. This thermogram (normally heat flow vs. temperature) provides information on any 

endothermic or exothermic transitions that the sample has undergone. For example when 

there has been an endothermic transition (e.g. melting), the sample absorbs heat and requires 

an increased amount of energy to retain the same heating rate. This is represented as a 

negative peak in the DSC thermogram. The opposite is seen for an exothermic transition (e.g. 

crystallisation) where heat released by the material therefore less energy is required to keep 

the same heating rate so a positive peak is seen on the thermogram. The DSC scan can also be 

undertaken when the sample is being cooled which tends to indicate when materials 

recrystallise, however this is very rarely seen clearly in multi-component materials.  
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3 Techniques and Instruments 

 

The techniques deployed were primarily intended to prepare and characterise single crystals 

of previously undiscovered multi-component materials. The techniques used to grow single 

crystals were predominately the solvent evaporation technique with slight derivatives of this. 

There were a wide range of analytical techniques used to determine what materials were 

generated and in some cases their properties. 

 

3.1  Single Crystal Formation 

 

The formation of a crystal depends on the relative rates of nucleation and growth. If rate of 

nucleation is larger than rate of growth, the result will be generation of polycrystalline 

material, i.e. powder. On the other hand, if the rate of growth is too large, the crystal will 

undoubtedly develop defects, strains and stresses
1
.  Therefore the growth of the crystals is an 

essential stage to be optimised in sample preparation with certainly no ―one size fits all‖ 

approach available. Also to be taken into consideration is the size of crystal required for the 

analytical technique to be used. Single crystal X-ray diffraction requires crystals of dimension 

typically between 0.1 – 0.4mm on a side, while neutron diffraction requires much larger 

crystal sizes, of volume around 1mm
3
.  

 

3.1.1 Solvent Evaporation Method 

 

The main methods for obtaining a single crystals of a material are from solution, melt or by 

sublimation. In this body of work, the only method used was crystallisation from solution 

however there are benefits to using both the melt and sublimation methods with all these 

methods reviewed in a paper by Hulliger
2
.  The solution method basically consisted of the 

dissolving of the target materials in appropriate solvent and leaving the solution to evaporate 

over time to produce formation of the desired materials – including the assembly of molecular 

complexes from multi-component solutions – and generate the required size of crystal.  
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Although apparently simple, there are a large variety of different variables in this method 

including container vessel, ratio of starting materials, selection of solvent, temperature and 

rate of evaporation control. There were a range of different types of glassware used including 

round bottom, volumetric and conical flasks, however the majority of crystallisations were 

conducted using a 7mm
3
 volume glass vial. There were also attempts made using 

crystallisation-specific glassware, including U- and H- tubes (Figure 3.1). There were also 

target materials in which different stoichiometric ratios of starting materials were required. A 

wide range of solvents were used to dissolve the starting materials including methanol, 

ethanol, propanol and acetone, with solvent selection tailored to suit the solubility of the 

starting materials and to try and influence the outcome of the crystallisations.  Multi-

component crystallisation experiments were set-up to produce complexes in which it was 

intended to control the proton transfer that occurs between benzimidazole and a carboxylic 

acid containing group, with the pH of the solvent tailored to encourage proton transfer, for 

example acetic acid, and to discourage transfer, for example ammonia. In some cases when 

starting materials dictated, a mixture of solvents was used. When trying to control the 

formation of polymorphs, a relatively small change in crystallisation conditions can influence 

the product, for example using methanol instead of ethanol, can be the difference in 

determining which polymorph is formed. The same can be true for temperature – there are 

examples in this work where a temperature difference of 10ºC can be the deciding factor in 

selecting formation of a particular polymorph. Often the control of a constant temperature for 

a crystallisation, or use of a carefully controlled temperature ramp is a vital component. A 

wide range of temperatures were used including: 2~4ºC in a cold room; 10 and 20ºC using a  

ReactArray Microvate
3
 (able to programme a temperature from -30 to 160ºC with ramps or 

constant temperature control); 30, 40 and 50ºC using Asynt magnetic hotplates
4 

and the less 

controlled wide range of ambient temperatures achievable during the year in Glasgow (Figure 

3.1). 
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Fig. 3.1 – From left to right, ReactArray Microvate, Asynt hotplate and H-tubes, the latter containing 

crystallisations of chloranilic acid and 3,5-dimethyl pyrazole at different stages. 

 

While temperature is one way to control the rate of evaporation, another is using blockers to 

reduce the rate of solvent loss. For the 7mm
3 

vials this is best achieved using the associated 

plastic lids, however with other glassware parafilm was used to cover. If a powdered material 

was the object of the crystallisation then use of a vial with no lid, with a high evaporation 

temperature, would produce the quickest results. 

 

3.1.2 Solubility Phase Diagrams 

 

It is essential that the solubilities of the starting 

materials are taken into account; if the solubility 

of the molecular complex is lower than that of 

the individual components, there exists a driving 

force for the cocrystallisation to occur
5
. Phase 

diagrams show when thermodynamically distinct 

phases occur at equilibrium with the lines 

indicating the conditions at which multiple 

phases can coexist. The phase diagram in Figure 

3.2 shows that the cinnamic acid nicotinamide 

Fig. 3.2 - The two-component phase diagram 

for the trans-cinnamic acid nicotinamide 

system
6
. 
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co-crystal Form I will occur when there is a 1:1 molar ratio of the components. When there 

are a stoichiometric excess of one component ( below 0.4 and above 0.7), then the starting 

materials are obtained. Ternary phase diagrams are required to evaluate the influence of 

solvents during the crystallisation and these can vary significantly on changing the solvent of 

crystallisation. Figure 3.3 uses the cinnamic acid nicotinamide system to highlight this; region 

1 indicates an undersaturated solution, 2 is solid cinnamic acid, 4 is where solid nicotinamide 

is formed, 3 indicates where the molecular complex forms and 5 and 6 are mixtures of 

molecular complex and starting material. When both co-molecules have equal solubility in the 

solvent, for example in methanol for this system (Figure 3.3 LHS), the molecular complex (in 

a 1:1 ratio) is formed when the solubility curve of the molecular complex (b to c) crosses the 

molecular complex component stoichiometric line (e to f). In the case of water (Fig 3.3 RHS) 

where there is a wide difference in the solubilities of the two components, the region where 

the molecular complex is stable, is skewed giving an asymmetric phase diagram and shows 

that the region for co-crystal formation never crosses the 1:1 stoichiometric line (e to f) 

indicating that the molecular complex will not form.   This indicates that a successful co-

crystallisation is more likely to happen when the two components have similar solubilities
6
.  

 

 

Fig. 3.3 – LHS, the three component phase diagram for the trans-cinnamic acid nicotinamide system in methanol 

at 20ºC, RHS, in water at 20º
6
.  Regions 5 and 6 are areas of molecular complex/ starting material mixture, 1 a 

undersaturated solution, 2 and 4 is regions of solid starting material and 3 where the molecular complex is form. 

The letters indicate starting points of solubility curves. 

 

3.1.3 Solvent-Free Co-crystallisation  
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Solvent-free co-crystallisation involves the grinding together of the component molecules. 

There are various techniques and methodologies that come under the umbrella term of 

solvent-free co-crystallisation (see Section 1.5), two of which were used during this research: 

solvent-free grinding and solvent drop grinding. Both these methods involve the grinding of 

the co-molecules with a mortar and pestle (Figure 3.4) for roughly three minutes, with the 

solvent drop grinding method including adding trace amounts of solvent. In all cases, the 

product was then stored at room temperature.  

 

 

Fig. 3.4 – Mortar and Pestle for use in the solvent free grinding experiments. 

 

3.2 Single Crystal Diffractometers 

 

Once the crystals have been grown, it is necessary to determine if they are suitable for single 

crystal X-ray diffraction. The quickest way is to visually examine the crystals under a 

polarised microscope, with three aims. Firstly, to inspect the size and shape of the crystals; 

those that are curved, deformed, have significant secondary crystallites (small crystals 

attached) or have a re-entrant angle (an interior angle of a polygon that is greater than 180 

degrees) should be rejected. Next, with a polarised lens in place, crystals will transmit 

polarised light (with exceptions including cubic crystals); those that do not can be rejected. 

Lastly for those crystals that do transmit polarised light, when the polariser is turned 90º the 

crystal will turn dark, then when turned another 90º will turn light again. This is a sign of a 

good quality single crystal. If during this process only half the crystal changes colour, then the 

crystal is likely to be twinned. When carrying out the evaluation it is essential not to damage 

the crystals, for example if the crystal is taken from a non-fully evaporated vial (always 

advised if using the solvent evaporation technique) there is a chance if solvent is within the 
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crystal then it may escape. If the crystal passes these tests, the next stage is to determine how 

it behaves on a diffractometer. Reflections need to be of strong intensity and well shaped, not 

split and preferably not broadened. If the diffractometer software provides a sensible unit cell 

which is not already published in the CSD
7
 then it is likely that an unknown structure is under 

investigation and a full data collection scan can be initiated. 

 

They were three different diffractometers used in this project with two distinct types of 

detectors. A Nonius / Bruker Kappa with a CCD area detector
8
, a Bruker APEX-II

9
 also with 

a CCD area detector, and a Rigaku R-Axis RAPID
10

 equipped with an image plate area 

detector (Figure 3.5).  

 

   

Fig. 3.5 –left to right, the Nonius / Bruker Kappa CCD, Bruker APEX-II and Rigaku R-Axis RAPID. 

 

All the diffractometers used a Mo/K source with wavelength 0.71074Å and were all capable 

of providing data collection temperatures down to 100K using sample cooling devices. Both 

the Nonius / Bruker Kappa and Rigaku R-Axis RAPID contained Oxford Cryosystems 

cryostream devices attached to a liquid nitrogen cylinder while the Bruker APEX-II used the 

Oxford Cryosystems Helix which normally operates using a gaseous nitrogen supply but can 

also allow access to temperatures as low as 20K using a helium source.  

 

3.2.1 Nonius / Bruker Kappa CCD and Bruker APEX-II 

 

There were slight differences between all the diffractometers in their set-up.  The RAPID uses 

a 3-axis Eulerian goniometer while the Kappa and APEX II are both equipped with the kappa 

geometry, but the main difference is in the type of area detector used. The Charge Coupled 

Device (CCD) system is used in the Nonius / Bruker Kappa CCD and Bruker APEX-II 

(Figure 3.6) diffractometers. These use CCD-chips to record data and are based on a layer of 

fluorescent material, usually a gadolinium oxide sulphide which is sensitive to X-rays, with 
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the X-ray intensities collected very quickly. The downside to CCD detectors is that they can 

collect high levels of background, which can be reduced by cooling the chip to -50ºC but this 

feature can make it unsuitable for long exposures which are needed for weakly scattering 

materials. These chips are large at 1024 x 1024 mm and have a resolution of 4096 x 4096 

pixels.  In order to collect all the reflection data the crystal must be rotated hence the detector 

is mounted on a 3- or 4- circle diffractometer. 

 

 

Fig. 3.6 – The working area of the Bruker APEX-II with labelling of the CCD detector, crysostream. X-ray 

direction and sample location. 

 

3.2.2 Rigaku R-Axis RAPID 

 

The Rigaku R-axis RAPID diffractometer uses a 3-axis Eulerian goniometer and has an image 

plate detector (Figure 3.7). The image plate has a detection size of 465mm by 258mm and 

works by having a layer of BaBrF doped with Eu
2+

; when incident X-ray quanta strike the 

image plate, they are converted to colour centres (free electrons in interstitial lattice sites) 

with the Eu
2+ 

being oxidised to Eu
3+

. The resulting image on the plate is read by a laser 

scanner in a similar manner to how a CD is read. The laser causes the free electrons to reduce 

back to Eu
2+,

, this produces an emission of photons in blue-green region of the visible 

spectrum, these photons can be measured using a photocell with a photomultiplier (extremely 

CCD 

Detector X-rays 

Sample 

Cryostream 
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sensitive detectors of light in the UV, Vis, near IR and electromagnetic regions which 

multiple the current produced by the incident light by as much as 100 million times). Once the 

plate has been read it is exposed to intense white light to remove any remaining colour centres 

and is ready for re-use. This reading process takes longer than the read-out on CCD systems, 

however the image plate detectors collect very low backgrounds and are almost exclusively 

sensitive to scattered X-ray radiation. The large detector size makes it possible to measure an 

entire data collection by limited rotations of the crystal, and the image plates are cheaper to 

manufacture than CCD systems. 

 

 

Fig. 3.7 –The Rigaku R-Axis RAPID diffractometer with labelling of the image plate, cryostream. X-ray 

direction and sample location. 

 

3.2.3 Data Collection and Structure Solution  
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All the diffractometers have specific software that guide the user through the process of 

indexing to data collection, to producing the .hkl file that can then be used to solve the 

structure. In all the diffractometers the unit cell is determined by collecting a small set of 

frames. These frames are indexed as set out in section 2.2.4 to produce the primitive unit cell, 

crystal system and Bravais lattice. It is always advisable at this stage to choose the lowest 

possible symmetry lattice to ensure sufficient data is collected during the full data collection. 

A data collection strategy is then calculated, with collections typically lasting between a few 

hours to a day depending on the unit cell size, symmetry and atom form factors of the crystal, 

however in all cases a completeness level of 100% with high redundancy is always aspired to. 

Once the full data collection strategy has finished, the data needs to be integrated. At this 

stage it can be wise to re-determine the unit cell and symmetry of the crystal to ensure that 

weaker reflections, that may be lost in the initial quick scans, are accounted for. During the 

integration process the software scans a rectangular or elliptical area around the predicted 

position for each reflection with all the pixels summed to give the raw intensity, with the 

edges of the area used to estimate the background. The background is subtracted from the raw 

intensity to give the net reflection intensity. This net intensity is subjected to several 

correction methods in the data reduction program, including Lp correction, Lorentz factor, 

standard extinction and absorption corrections.  Once these are complete a .hkl file is 

produced. The .hkl file is then input into a structure solution and refinement program such as 

CRYSTALS
11

 or WINGX
12 

to solve the structure (see section 2.3 for details of this process). 

Analysing the solved structure is normally achieved using a structure visualisation program 

such as MERCURY
13

.  

 

3.3 Powder Diffraction 

 

The powder diffractometer used during this research was a Bruker D8 Advance
14 

(Figure 3.8) 

equipped with a Mo/K source and capillary holder. The layout is identical to that shown in 

Figure 3.6, using the reflection geometry but with the capillary holder instead of the flat plate. 

Most experiments used a capillary of diameter 0.7mm, however smaller ones were used when 

more accurate data was required. The typical scan range covered a 2 range of 3 to 50º with a 

scan rate of roughly 1º per minute. Analysing and comparing the collected powder patterns 

were achieved using initially the Eva
15

 program supported by Bruker then latterly with 
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HighScore Plus
16

 from PANalytical. The majority of powder patterns displayed throughout 

the chapters are visualised from the HighScore Plus software.   

 

    

Fig. 3.8 – LHS, the Bruker D8 Advance used for powder X-ray diffraction; RHS, the Q200 DSC. 

 

3.4 Differential Scanning Calorimetry (DSC) 

 

The DSC used was a Q200 differential scanning calorimeter from TA Instruments (Figure 

3.7, right)
17

. Analysis of the thermograms was carried out through the Universal Analysis 

2000
18

 software produced by TA instruments. 
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4 Towards Selective Molecular Complex Formation: Challenging 

Crystal Engineering  

 

This chapter will focus on co-crystallisation experiments with the aim of using a systematic 

series of related complexes to generate a library of interactions which could be used to 

engineer new molecular complexes. 

 

Crystal engineering (refer to Section 1.3) is seen as the bottom-up construction of functional 

materials from molecular or ionic building blocks
1
. These building blocks are commonly 

known as supramolecular synthons defined by Desiraju as “structural units within 

supermolecules which can be formed and or assembled by known or conceivable synthetic 

operations involving intermolecular interactions”
2
 

 

Crystal engineering uses many strategies in forming supramolecular synthons; most common 

is using the understanding of hydrogen and coordination bonds, while more recently 

increasing attention has been applied to the weaker and less predictable halogen bonds
3
 and π-

π interactions
4
.  

 

This chapter will focus on the synthons and hydrogen bond motifs created between 

benzimidazole, carboxylic- and hydroxyl- functional groups. Application of a library of 

complexes containing identical functional groups can allow simple motifs to be engineered to 

form predictable structures.  This chapter will also investigate the differences between the 

structures by studying the role of weaker interactions, the ratios of molecules in the 

complexes, the effects of solvates and the effects on physical properties such as densities and 

melting points of the complexes generated. 

 

Lastly the chapter will investigate the use of solvent-free method of co-crystallisation. 

Solvent-free co-crystallisation has increasingly been of importance for crystal engineers as 

these processes have been found to provide a simple route to the preparation of new materials 

and new polymorphic and solvate forms.  
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Fig. 4.1 – The main hydrogen bonds in the salicylic 

acid structure 

4.1  Introduction – Hydroxybenzoic Acids 

 

Hydroxybenzoic acids are very important chemicals in many areas of industry, for example, 

2-hydroxybenzoic acid is the main starting material for the preparation of aspirin (2-

acetoxybenzoic acid; acetylsalicylic acid).  However, they are also widely used in crystal 

engineering studies due their ability to form predictable synthons and presence of multiple 

hydrogen bonding sites, reflected in the large number of hydroxybenzoic acid molecular 

complexes found in the CSD.  

 

4.1.1 2-Hydroxybenzoic Acid 

 

2-hydroxybenzoic acid, commonly known as salicylic acid, is a naturally occurring organic 

acid named after the Latin for willow tree, salix. Salicylic acid has many uses, most of which 

are medicinal in nature. For example it is well known for reducing aches, pains and fevers. It 

is also a raw material in the production of various drugs including, rubefacent (ache relief), 

keratolytic
5
 (treatment to remove warts) and non-steroidal anti-inflammatory drugs. 

 

The most recent study of its structure (Figure 4.1) was carried out in 2006 by P. Munshi
6
 

(CSD ref SALIAC16). 

The main motif is, as might be expected, 

a carboxylic acid dimer reinforced by a 

hydroxyl – carbonyl intramolecular 

hydrogen bond. There are a host of 

molecular complexes involving salicylic 

acid and its de-protonated form with co-

molecules in the CSD, within which there is roughly a 4:3 ratio in favour of the protonated 

form. Salicylic acid has also been used to form coordination complexes with a range of 

metals, including a series of lanthanide metals, such as cerium, praseodymium, gadolinium 

and terbium. Of particular interest amongst the molecular complexes that are not deprotonated 

are those with co-molecules 3,5-dimethyl-1H-pyrazole
7
 (CSD ref‘ ODOHEV)  and 9H-purin-

6-amine
8
 (CSD reference MUBRUD) which both contain an available basic nitrogen that 

might be expected to encourage de-protonation of the salicylic acid.(Figure 4.2). 
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Fig. 4.2 – LHS – The main supramolecular synthons in the bis(2-hydroxybenzoic acid) 3,5-dimethyl-1H-

pyrazole molecular complex, RHS, the tris(2-hydroxybenzoic acid) 9H-purin-6-amine molecular complex which 

contains two moderate hydrogen bonds between the co-molecules.  

 

Of the deprotonated molecular complexes of salicylic acid (2-hydroxybenzoate) with another 

small organic molecule, the atom that is protonated on the second component is always a 

basic nitrogen. For example the 2-hydrobenzoate 2-amino-pyridine
9
 molecular complex (CSD 

reference SLCADB) and adeninium 2-hydroxybenzoate methanol
10

 (CSD reference 

LOLDIA) shown in Figure 4.3, both show a dimer of hydrogen bonds with proton transfer 

occurring.   

  

   

Fig. 4.3 – LHS - the main supramolecular synthon between salicylic acid and 2-amino-pyridine, RHS, the 

adeninium 2-hydroxybenzoate methanol molecular complex. 

 

4.1.2 3-Hydroxybenzoic Acid 

 

3-hydroxybenzoic is mostly used in the agrochemical sector, for example it is an ingredient in 

the production of the synthetic soy bean herbicide metsulfuron, broad-leaved herbicides 

lactofen and acifluorofen and in the creation of fungicides
11

. It has also been used as an 

intermediate in the production of high-grade paints and preservatives
12

. 
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3-hydroxybenzoic acid has two polymorphs; a monoclinic form (Figure 4.4 LHS) (CSD 

reference BIDLOP) and an orthorhombic form (Figure 4.4 RHS) (CSD reference 

BIDLOP01). These structures have two distinct hydrogen bonding motifs: the monoclinic 

form has the predictable carboxylic acid dimer with weaker hydrogen bonds between the 

hydroxyl group holding these dimers together. The orthorhombic form, on the other hand, is 

constructed of linear chains with the carboxylic acid groups hydrogen bonding to hydroxyl 

groups from two different molecules. 

 

    

Fig. 4.4 – LHS, the monoclinic form of 3-hydroxybenzoic acid exhibiting the carboxylic acid dimer motif; RHS, 

the linear chains of the orthorhombic form of 3-hydroxybenzoic acid, the full compliment of protons was not 

published with the structure. 

 

3-hydroxybenzoic acid has been successfully cocrystallised with a range of small organic 

molecules including nicotinamide (Figure 5.5) (CSD reference XAQQIQ), 

isonicotinamide(CSD reference LUNMEM), quinoxaline (CSD reference HONMEM),  and 

4,4‘bipyridine
13 

(CSD reference HONVAI). There are currently only six structures in the CSD 

involving the deprotonated form of 3-hydroxybenzoic acid
14,15

. The molecular complex with 

4-aminopyridinium
15

 (CSD reference MOYRAU) (Figure 4.5 RHS) has a hydrogen bonded 

ring system, 4

4R (18), as the main motif. 
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Fig. 4.5 – LHS, the 4-hydroxybenzoic acid nicotinamide supramolecular synthon.  These hydrogen bond dimers 

are connected through a hydrogen bond between the hydroxyl and the heteroatom in the ring of the nicotinamide; 

RHS, the four molecule hydrogen bonded ring between 3-hydroxybenzoic acid and 4-aminopyridinium. 

 

4.1.3 4-Hydroxybenzoic Acid 

 

4-hydroxybenzoic acid is used in the production of parabens which are a class of chemicals 

that are used as preservatives in cosmetics and drugs. These compounds, and their salts, are 

used primarily for their bactericidal and fungicidal properties. They can be found in 

shampoos, commercial moisturisers, shaving gels, personal lubricants, pharmaceuticals, spray 

tanning solution and toothpaste. 

 

The structure of 4-hydroxybenzoic acid was first determined in 1992 (CSD reference 

JOZZIH
17

) and has the predictable carboxylic acid dimer as the main motif with the hydroxyl 

groups hydrogen bonding together to generate the expanded structure (Figure 4.6). 

 

 

Fig. 4.6 – The carboxylic acid dimer motif and hydroxyl hydrogen bonds found in the structure of 4-

hydroxybenzoic acid. 
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There are a host of molecular complexes where the 4-hydroxybenzoic acid exists in its natural 

and deprotonated form, highlighting its use in crystal engineering and MOF studies. The 

natural form has been cocrystallised with many other small organic molecules, namely 

nitrogen containing heterocyclic compounds, with the deprotonated form being found with a 

range of co-molecules including metals and organic molecules.  

 

4.1.4 2,4-Dihydroxybenzoic Acid 

 

2,4-dihydroxybenzoic acid, also known as β-resorcylic acid is a starting material for the 

production of dyestuffs, pharmaceuticals, reprographic chemicals, cosmetic preparations, and 

fine organic chemicals
18

. The crystal structure was intensely studied within the group in 

2007
19

 to investigate the proton behaviour within the hydrogen bonds (CSD reference 

ZZZEEU01-04). The structure exhibits a 6-membered hydrogen bonded ring system, R 6

6  (36), 

utilising all of the potential hydrogen bonding sites (Figure 4.7).  

 

 

Fig. 4.7 – The ring system of the 2,4-dihydroxybenzoic acid structure. 

 

There are a few molecular complexes with 2,4-dihydroxybenzoic acids reported; of most 

interest here is the protonated form with imidazole
20

 (CSD reference HEFTUI). This complex 

structure basically consists of a criss-cross pattern, with each 3-dimensional box consisting of 

two of each of the co-molecules (Figure 4.8) 
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Fig. 4.8 – The criss-cross pattern of the imidazolium 2,4-dihydroxybenzoate molecular complex. 

4.1.5 2,6-Dihydroxybenzoic Acid 

 

2,6-dihydroxybenzoic acid, also know as γ-resorcylic acid is used as an antioxidant excipient 

in some pharmaceutical preparations. There are two known polymorphs, a monoclinic form
21

 

(Figure 4.9 LHS) (CSD reference LEZJAB01) and an orthorhombic form
22

 (Figure 4.9 RHS) 

(CSD reference LEZJAB). The monoclinic form exhibits the carboxylic acid dimer motif with 

the intramolecular hydrogen bonds contributing to this to the distinct dimer. In the 

orthorhombic form, a greater variety of hydrogen bonds is present, creating an interlinked 

structure. There are no molecular complexes of any form containing 2,6-dihydroxybenzoic 

acid in the CSD. 

 

Fig. 4.9 – LHS monoclinic form of 2,6-dihydroxybenzoic acid showing its carboxylic acid dimer motif, RHS 

orthorhombic forms of 2,6-dihydroxybenzoic acid showing a more linear pattern with single hydrogen bonds 

between molecules. 
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4.1.6 3,4-Dihydroxybenzoic Acid 

 

3,4-dihydroxybenzoic acid, also known as protocatechuic acid, is used as a anticancer agent. 

It has mixed effects on normal and cancer cells in in vitro and in vivo studies
23

. 3,4-

dihydroxybenzoic acid has been reported to induce apoptosis of human leukemia cells, as well 

as malignant HSG1 cells taken from human oral cavities, but found to have mixed effects on 

TPA-induced mouse skin tumours
24,25

. Depending on the amount of 3,4-dihydroxybenzoic 

acid and the time before application, it can have the effect of reducing or enhancing tumour 

growth
26

. Only the structure of the hydrate form is reported (CSD reference BIJDON03)
27

 and 

3,4-dihydroxybenzoic acid is also reported within a cadmium complex
28

 (CSD reference 

RUMDAE).  

 

4.1.7 3,5-Dihydroxybenzoic Acid 

 

3,5-dihydroxybenzoic acid, also known as α-resorcylic acid, is used as an intermediate for the 

synthesis of many pharmaceuticals and in synthetic resins. The crystal structure of 3,5-

dihydroxybenzoic acid has yet to be reported, however it is known to form molecular 

complexes with other small organic molecules including BZN
29

 (CSD reference XAZMIV). 

This molecular complex forms in a 1:1 ratio; the reported structure determination is at room 

temperature. The main motif in this structure is a hydrogen bonded ring system R 4

4 (22) 

(Figure 4.10). Proton transfer has occurred with the carboxylic acid group losing a hydrogen 

to the initially non-protonated nitrogen on the benzimidazole.  

 

 

Fig. 4.10 – The structure of benzimidazole and 3,5-dihydroxybenzoic acid with its hydrogen bonded ring 

system. 
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4.2  Summary of Molecular Complexes Produced 

 

Co-crystallisation experiments have produced an array of molecular complexes of BZN with 

mono-hydroxybenzoic acids, polymorphic forms of starting materials, and one di-

hydroxybenzoic acid molecular complex.  

 

The BZN and mono-substituted benzoic acids crystal structures have been analysed primarily 

using single crystal X-ray diffraction due to the facile precipitation of single crystals. Single 

crystal neutron diffraction data collected on the VIVALDI instrument at the ILL facility in 

Grenoble, France were also obtained for a range of these complexes.  The aim of the neutron 

experiments was to allow accurate location of the hydrogen atoms and investigation of the 

extended hydrogen bonded networks and proton transfer effects present in these systems. 

 

The hydroxybenzoic acid : benzimidazole molecular complexes exhibited an increased level 

of complexity, with the potential to adopt different ratios of co-molecules to BZN. The BZN 

molecule is an efficient hydrogen atom abstractor from carboxylic acid groups, however the 

presence of an additional hydrogen bond donor in the form of a hydroxyl group, introduces 

competition for hydrogen bonding with the carboxylate group. The complexes found are 

summarised in Table 4.1, illustrating the diverse range of molecular complexes obtained. 

 

Benzimidazole 1:1 - ratio 1:2 - ratio 2:1 - ratio 

2-hydroxybenzoic Acid    

3-hydroxybenzoic Acid   Two Polymorphs 

4-hydroxybenzoic Acid    

Table 4.1 – Summary of the molecular complexes successfully generated (blue) between benzimidazole and 

mono-substituted hydroxybenzoic acids.  Grey indicates where no molecular complex has been identified from 

single crystal X-ray diffraction. 

 

The main aim of this work was to engineer molecular complexes with predictable hydrogen 

bonded units using knowledge of previously obtained motifs.  The mono-substituted 

hydroxybenzoic acids co-crystallisation experiments gave a diverse library of such motifs and 

attempts were made to make molecular complexes with a range of di- substituted benzoic 

acids, in attempts to explore the robustness of the motifs found. However, in these 
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experiments only 3, 5-dihydroxybenzoic acid successfully generated crystals of a molecular 

complex (Table 4.2). 

 

 2,4-diOH-BA 2,6-diOH-BA 3,4-diOH-BA 3,5-diOH-BA 

Benzimidazole     

Table 4.2 – Summary of the results from the co-crystallisation experiments between benzimidazole and a 

selection of dihydroxybenzoic acids. Blue indicates where a new molecular complex has been found from single 

crystal X-ray diffraction data, grey indicates where there has been none. 

 

As a further level of complexity, it is clear that even using the most apparently predictable 

motifs, structural diversity is frequently found; also reported here are the formation of 

polymorphs of the molecular complex of benzimidazole and 3-hydroxybenzoic acid, induced 

by solvent effects.  

 

Experiments involving solvent free co-crystallisations were successful in verifying the ability 

of this relatively new technique to produce known forms, and in addition highlighted potential 

new molecular complexes. This method led to two new structurally determined molecular 

complexes: benzimidazolium 5-chloro-2-hydroxybenzoate and benzimidazolium aspartate.  

 

4.2.1 Benzimidazolium – Proton Transfer 

 

In cases where the crystallisation product is in a 1:1 stoichiometric ratio of benzimidazole and 

a carboxylic acid containing molecule, the benzimidazole is protonated through hydrogen 

transfer from the carboxylic acid group onto the normally unprotonated nitrogen atom in the 

five-membered ring, creating a benzimidazolium molecule (BZNH
+
) (Figure 4.11). The result 

of the proton transfer on the benzimidazolium molecule is a delocalisation of the charge 

across the five-membered ring, reflected in the equalisation of the internal bond lengths N
δ+

-C 

and bond angles C-N
δ+

-C. The delocalisation of the charge has the effect of creating a partial 

positive charge on both nitrogens. This effect has been reported in many structures involving 

BZN and IMD.  
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Fig. 4.11 – LHS, a typical benzimidazolium molecule in which both nitrogens are protonated. RHS, the Fourier 

difference map generated where both the H atoms located on a nitrogen atom has been omitted from the model, 

clearly showing that both nitrogen atoms are protonated.   

 

The consequence for the co-molecule that has been deprotonated is the creation of a negative 

charge, which is delocalised over the carboxylic acid group resulting in equalisation of the C-

O and C=O bond lengths in the carboxylate group. 

 

4.2.2 Potential Hydrogen Bonds and Supramolecular Synthons 

 

Consideration of the co-molecules involved in these sets of results would point to a series of 

possible hydrogen bond patterns and supramolecular synthons that could be generated (Figure 

4.12). All of these hydrogen bond patterns have many examples in the CSD and have been of 

interest in their own right.  
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Fig. 4.12 – Hydrogen bonding patterns that could lead to the formation of supramolecular synthons in the 

generation of crystal structures of the molecular complexes studied in this chapter.  The potential homo-

hydrogen bonds (A, B and C) and hetero-hydrogen bonds (D, E and F) that can be exhibited between a 

benzimidazole and carboxylic acid group. Hydrogen bonds G, H and I are those that could be generated between 

a benzimidazole and hydroxyl group. 

 

The formation of the molecular ion species in many of the molecular complexes reduces the 

potential hydrogen bonds from those depicted in Figure 4.12, for example the homo-hydrogen 

bonds A, B and C. Consequentially it also promotes the charged derivatives of certain 

hydrogen bonds, namely E, F and G (Figure 4.13). These hydrogen bond patterns utilise the 

charged species in the creation of the hydrogen bonds, which are inherently stronger. There 

are examples of hydrogen bond patterns E, F and G through-out the molecular complexes 

generated in this chapter and Table 4.3 bonds summarises the full hydrogen bond data. 

 

     

Fig. 4.13 – The derivatives of hydrogen bond patterns E, F and G that occur when there has been proton transfer. 

E F G 
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Molecular Complexes BZNH
+   

2-HBA
-
 

BZNH
+  

3-HBA
-
 

BZNH
+ 

 

4-HBA
-
 

BZN BZNH
+ 

3-HBA
-
 II 

BZN BZNH
+ 

3-HBA
-
 I 

BZN BZNH
+  

4-HBA
-
 hydrate 

BZNH
+  

2-

HBA
-  

2-HBA 

BZNH
+   

3,5-HBA
-
 

Hydrogen Bonds 

N
δ+

-

H····O
δ- 

 E and F 

D∙∙∙A(Å) 2.646(1) 

2.621(1) 

2.700(1) 

2.697(1) 

2.689(3) 

2.717(2) 

2.751(2) 

2.748(2) 

2.644(2) 

2.814(2) 

2.641(2) 2.709(2) 

2.672(1) 

2.700(1) 

D-H(Å) 0.99(2) 

0.99(2) 

0.88(1) 

0.90(1) 

0.91(3) 

0.93(3) 

0.84(3) 

0.94(3) 

0.92(2) 

0.98(2) 

0.96(3) 0.91(3) 

0.91(2) 

0.92(2) 

H∙∙∙A(Å) 1.67(2) 

1.64(2) 

1.82(1) 

1.80(1) 

1.78(3) 

1.79(3) 

1.93(3) 

1.81(3) 

1.68(2) 

1.89(2) 

1.72(3) 1.81(3) 

1.80(2) 

1.79(2) 

D-H∙∙∙A 

angle(º) 

169(2) 

171(2) 

178(1) 

173(1) 

173(3) 

170(3) 

165(3) 

177(2) 

165(2) 

177(2) 

161(2) 173(2) 

161(2) 

167(2) 

O-

H····O
δ- 

G 

D∙∙∙A(Å) - 2.654(1) 

 

2.602(2) 

2.605(2) 

2.660(2) 2.540(1) 

2.565(1) 

2.634(2) 2.605(1) 2.625(1) 

2.640(1) 

D-H(Å) - 0.87(1) 1.02(3) 

0.94(3) 

0.92(3) 0.97(2) 

1.02(2) 

0.91(3) 0.99(2) 0.92(2) 

0.95(2) 

H∙∙∙A(Å) - 1.79(1) 1.60(3) 

1.69(3) 

1.74(3) 1.57(2) 

1.55(2) 

1.72(3) 1.62(2) 1.70(2) 

1.69(2) 

D-H∙∙∙A 

angle(º) 

- 172(1) 166(3) 

166(3) 

178(3) 173(2) 

179(2) 

174(3) 174(2) 17792) 

178(2) 

Table. 4.3 – The three scalar quantities and bond angle of the hydrogen bonds of N
δ+

-H····O
δ- 

and  O-H····O
δ-

 found in the molecular complexes presented in Section 4.5.
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4.3  Crystallographic Data 

Compound BZNH
+  

2-HBA
-
 BZNH

+ 
3-HBA

-
 BZNH

+ 
4-HBA

-
 

Formula C7 N2 H7, C7 O3 H5 C7 N2 H7, C7 O3 H5 C42 N36 H8  O36 

ΔpKa (1:1) 4.01 2.91 2.42 

Crystallisation 

Conditions 

Methanol, room 

temperature 

Acetone, 40ºC Methanol, ~2-4ºC 

Molecular weight / 

gmol
-1

 

256.26 256.26 748.80 

Temperature (K) 100 100 100 

Space Group P 21/c P b c n P 21/c 

a (Å) 7.2866(1) 19.7452(3) 15.2728(3) 

b (Å) 6.6937(1) 8.6372(1) 12.0727(2) 

c (Å) 25.0118(4) 14.6758(2) 20.6951(3) 

α (
o
) 90 90 90 

β (
o
) 95.428(1) 90 107.3180(10) 

γ (
o
) 90 90 90 

Volume (Å
3
) 1214.46(3) 2502.86(6) 3642.86(11) 

Z 4 8 4 

θ range (˚) 1.636-27.740 2.063-27.496 1-27.507 

Completeness (%) 98.5 99.5 99.5 

Refln Collected 42532 63734 53918 

Independent 2801 2852 8314 

Refln 

(obs.I>2sigma(I)) 

2334 2844 6261 

Rint 0.0624 0.0247 0.0607 

Parameters 220 220 657 

GooF on F
2
 0.981 1.0031 1.0800 

R1 (Observed) 0.0384 0.0329 0.0607 

R1 (all) 0.0482 0.0358 0.0886 

wR2 (all) 0.1015 0.0847 0.1241 
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Compound BZN BZNH
+      

3-

HBA
- 
 II 

BZN BZNH
+  

3-

HBA
- 
 I 

BZN BZNH
+  

4-

HBA
- 
 hydrate 

Formula C21 H18 N4 O3 C21 H18 N4 O3 C21 H20 N4 O4 

ΔpKa (1:1) 2.91 2.91 2.42 

Crystallisation Conditions Methanol, 2~4ºC Ethanol, 2~4ºC Ethanol, 2~4ºC 

Molecular weight / gmol
-1

 374.39 747.79 392.41 

Temperature (K) 100 100 110 

Space Group P 21/c P 21/c P 21 

a (Å) 8.0799(7) 13.90550(10) 5.81540(10) 

b (Å) 17.5606(15) 18.7934(2) 15.2726(3) 

c (Å) 13.3960(11) 15.4338(2) 11.0557(2) 

α (
o
) 90 90 90 

β (
o
) 103.432(4) 114.3120(6) 102.9910(10) 

γ (
o
) 90 90 90 

Volume (Å
3
) 1848.7(3) 3675.65(7) 956.79(3) 

Z 4 4 2 

θ range (˚) 1.946-28.805  1.448-27.486  1.890-27.211  

Completeness (%) 98.5 99.9 99.6 

Refn Collected 53224 81887 23409 

Independent 4753 8386 2304 

Refln (obs.I>2sigma(I)) 4737 4720 2222 

Rint 0.0607 0.089 - 

Parameters 329 645 342 

GooF on F
2
 1.1017 0.8340 1.0103 

R1 (Observed) 0.0589 0.0397 0.0259 

R1 (all) 0.0705 0.0979 0.0272 

wR2 (all) 0.1285 0.0941 0.0657  
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BZNH
+  

2-HBA  2-

HBA
- 
 

BZNH
+  

3,5-HBA
- 
 BZNH

+  

 
5-CL-2-HBA

-
 

benzimidazolium 

aspartate 

C7 N2 H7, C7 O3 H5, 

C7 O3 H6 

C7 N2 H7, C7 O5 H7 C7 N2 H7, C7 O3 Cl H4 C7 N2 H7, C4 O4   H6 

N1  

2.55 1.49  3.54 

Acetone, ~2-4ºC Methanol/water, 

room temperature 

Methanol, 40ºC Methanol/water, 

room temperature 

394.38 272.26 290.70 251.24 

100 100 100 100 

P -1 P b c n P 21/c P 21 

8.1123(5) 16.2063(14) 11.1639(14) 8.871(5) 

8.6367(5) 10.5665(11) 3.8182(4) 5.076(3) 

14.0347(8) 14.6614(11) 29.310(3) 12.324(7) 

98.618(3) 90 90 90 

104.238(3) 90 97.238(4) 103.221(7) 

99.515(3) 90 90 90 

921.15(10) 2510.7(4) 1239.4(2) 540.2(5) 

2 8 4 2 

1.528- 32.381 3.050-27.479 3.152-27.483 3.206- 27.479 

99.0 99.9 99.6 99.8 

32185 5260 16061 7174 

6529 2885 10142 1380 

5984 2880 7229 1299 

0.054 0.0247 0.0624 0.021 

334 229 225 215 

1.2168 1.0006 1.1056 1.0267 

0.0573 0.0350 0.0391 0.0257 

0.0641 0.0379 0.0599 0.0270 

0.1718 0.0930 0.1237 0.0655 

Table. 4.4 – Crystallographic data for all the molecular complexes within chapter 4 excluding benzimidazolium 

and aspartate. 
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4.4  Structural Descriptions of the Molecular Complexes 

 

4.4.1 Molecular Complex of Benzimidazolium and 2-Hydroxybenzoic Acid 1:1 

 

Previous results indicate that benzimidazole will abstract a proton from the carboxylic acid 

group of the 2-hydroxybenzoic acid. There is a potential for the proton to come from the 

hydroxyl group however, this would be highly unlikely due to the inability of the negative 

charge, which would be generated, to be delocalised over connecting atoms thus forming an 

unstable phenoxide anion. Therefore the formation of a benzimidazolium 2-hydroxybenzoate 

salt can be predicted. In terms of the predicted hydrogen bond scheme, if the molecular ratio 

is 1:1 then this rules out the possible hydrogen bonds of types A, B, C, D and H.  

 

With the formation of the benzimidazolium ion, there would then be competition for the 

primary hydrogen bond from this molecule between hydrogen bond types E, F and I (Figure 

12). There are examples of all of these in the literature, however hydrogen bond E is much 

more prolific. There is also likely to be competition from the homo-hydrogen bonds, mainly 

A and B, as the carboxylic acid dimer is a very robust and dependable motif.  

 

With the hydroxyl group in the 2-position, it is most likely, as in its natural structure, to 

hydrogen bond to the double bonded oxygen on the carboxylic acid group. There will be 

potential for it to be involved in weak hydrogen bonds with a motif similar to that seen in 

hydrogen bond I. 

 

There are many competing factors, however it would be reasonable to predict the formation of 

the charged species with the main hydrogen bonds being of forms E, F, G or I. 

 

Structure Description 

 

The molecular ions, BZNH
+
 and 2-hydroxybenzoate (2-HBA

-
) form a 1:1 molecular complex, 

or salt.  The molecular complex was obtained using the solvent evaporation method, with a 

1:1 stoichiometric mixture of BZN (12mg) and 2-hydroxybenzoic acid (2-HBA) (14mg) 

dissolved in the minimum amount of methanol followed by evaporation at room temperature. 
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Fig. 4.14 – The BZNH
+
 and 2-HBA

-
) ions which 

are generated in the molecular complex/salt, with 

atom labelling.  

The crystals generated were cubic shaped and colourless. Single crystal X-ray diffraction data 

were obtained using a Bruker-Nonius Kappa CCD diffractometer at 100K, equipped with 

graphite monochromated Mo K α radiation (λ = 0.71073 Å). The structure was solved using 

SIR92
30

 within the CRYSTALS
31

 program.  The crystallographic data are summarised in 

Table 4.4 with the interactions involved in the molecular complexed outlined in Table 4.5. 

 

In the molecular complex, the BZN molecule is 

protonated through hydrogen transfer from the 

carboxylic acid group on the 2-HBA, as 

described in section 4.2.1 (Figure 4.14). The 

result is that the internal bond lengths are now 

normalised, to N1
δ+

-C1 1.325(3)Å and N2
δ+

-C1 

1.326(3) Å, and bond angles to C1-N1
δ+

-C2 

108.05(19)º and C1-N2
δ+

-C7 108.31(18)º.   

 

 

The 2-HBA molecule in its native crystal structure (Section 4.1.1) is configured such that 

there is an intramolecular hydrogen bond between the hydroxyl and carboxylic acid groups. 

Within the molecular complex with BZNH
+
 this intramolecular hydrogen bond persists 

despite the proton transfer of a hydrogen atom to the benzimidazole.  The intramolecular 

hydrogen bond is shorter than found in the native crystal structure with an O···O distance of 

2.551(3)Å (c.f. O···O distance of 2.6191(3)Å). This is due to the intramolecular hydrogen 

bond being charged assisted, a result of the deprotonation of the 2-HBA and is similar to that 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

O3···O2 2.551(3) 0.93(2) 1.69(2) 153(―) 

N1···O2 2.622(1) 0.99(2) 1.64(2) 171(2) 

N2···O2 2.646(1) 0.99(2) 1.67(2) 169(2) 

C1····O1 3.092(1) 0.97(1) 2.15(1) 164(1) 

C13····O3 3.296(1) 0.97(2) 2.62(1) 125(1) 

C5····π 3.676 - - - 

Table 4.5 – The inter- and intramolecular interactions with distances found in the BZNH
+
and 2-HBA

-
 

molecular complex 
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found in other 2-HBA
- 

molecular complexes reported in the CSD. The negative charge is 

found to be delocalised over the carboxylic acid group indicated by the normalisation of the 

bond lengths in the carboxyl group, C8- O1
δ-

 1.264(1)Å and C8- O2
δ-

 1.273(1)Å.  

 

The supramolecular synthon in the benzimidazolium 2-hydroxybenzoate molecular complex 

is constructed through partially charge assisted N
δ+

-H····O
δ-

 hydrogen bonds between both the 

nitrogens of the BZNH
+
 and oxygens of the carboxylic acid group, a derivative of hydrogen 

bond motif E (Figure 12). These are of moderate strength, the distances being 2.622(1)Å (a) 

and 2.649(1)Å (b) (see Table 4.3 for full details), and arrange themselves into a four molecule 

hydrogen bonded ring consisting of alternating co-molecules that can be described by the 

graph set notation symbol 4

4R (16). This hydrogen bonded ring system is the main motif of 

the system and contains two of each co-molecule (Figure 4.15).  

 

 

Fig. 4.15 – The main motif of the benzimidazolium 2-hydroxybenzoate molecular complex; a four molecule 

hydrogen bonded ring consisting of alternating co-molecules held together by partially charge assisted N
δ+

-

H····O
δ-

 hydrogen bonds. The inset shows the view along the bc-diagonal axis that highlights the geometric 

positions of the hydrogen bonded ring system. 

 

There are three interactions that connect the hydrogen bonded rings together. The most 

influential is a weak hydrogen bond from a carboxylate oxygen to the carbon sandwiched 

between the nitrogens on the benzimidazole. The C1-H····O1
δ-

 hydrogen bond is 3.092(1)Å in 

length and connects the hydrogen bonded rings as seen in Figure 4.16.   

a 

a 
b 

b 
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Fig. 4.16 – LHS, the weak hydrogen bonds (-) that extend the hydrogen bonded rings, RHS displays how the 

rings arrange themselves into a stacking configuration due to the C1-H····O1
δ- 

hydrogen bond. 

 

The hydroxyl oxygen is only involved in one intermolecular interaction, which is with a 

methine group on another 2-HBA
- 
molecule. This weak hydrogen bond of length 3.296(1)Å 

expands the hydrogen bonded ring along the –ac diagonal (Figure 4.17).  

 

 

Fig. 4.17 – The hydrogen bonded ring system; the main motif of the benzimidazolium 2-hydroxybenzate 

molecular complex, is extended by weak hydrogen bonds (circled in red).  

 

The last interaction that extends the hydrogen bonded ring system is a set of C-H····π contacts 

that extends the structure along the ac-diagonal. These contacts have a length of 3.676 Å 

from C5 to a centroid between C13 and C14 (Figure 4.18). 
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Fig. 4.18 – View highlighting the C-H····π interactions that extends the structure along the ac-diagonal. 

 

These three interactions, the C1-H····O1
δ- 

and C13-H····O3 

hydrogen bonds and C-H····π contacts, expand the main motif of 

the structure, the hydrogen bonded ring 4

4R (16), into the extended 

structure. There are other interactions in the molecular complex, 

however these complement the interactions that have already been 

mentioned. For example there are π····π stacking contacts between 

BZNH
+ 

molecules which are in the same hydrogen bonded ring 

system. These contacts have a relatively short distance for π····π 

stacking (3.179 Å) and in all probability are a consequence of the 

hydrogen bonded ring system (Figure 4.19).  

 

 

Fig. 4.19 – View of the 

interactions that exist 

between the molecules 

in main motif.  
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4.4.2 Molecular Complex of Benzimidazole and 3-Hydroxybenzoic Acid 1:1 

 

From the benzimidazolium 2-hydroxybenozate structure it can be seen that the hydrogen bond 

E is the most prominent in the molecular complex. Initial consideration of the benzimidazole 

and 3-hydroxybenzoic acid structure would suggest this could also be the same.  Firstly it can 

safely be assumed there will be proton transfer creating the charge species of the co-

molecules. 

 

When the hydroxyl group is in the meta position, there is a greater potential for this group to 

be involved in a primary hydrogen bond that influences the structure. This increases the 

potential for hydrogen bond patterns G, H and I to be the more prominent in comparison to 

the benzimidazole and 2-hydroxybenzoic acid structure (Extract from Fig 4.11). Of these, 

hydrogen bond H would not be feasible due to the proton transfer and hydrogen bond G 

would be inherently stronger than I due to the strength of the hydrogen bond acceptor. 

 

 

Extract from Fig 4.11 – Potential hydrogen bond patterns involving the hydroxyl group on the 3-

hydroxybenzoic acid. G shows the potential hydrogen bond between the hydroxyl and carboxyl groups, H shows 

the potential hydrogen bond between the nitrogen lone pair and the hydrogen on the hydroxyl group and I shows 

the potential hydrogen bond between the oxygen lone pair and the hydrogen on the hydroxyl group. 

 

For this potential molecular complex, there are two competing hydrogen bonds that may 

prevail. Hydrogen bond E, as seen in the BZNH
+ 

2-HBA
-
 molecular complex, could again 

create hydrogen bonded rings, whereas if hydrogen bond G is the primary bond, this could 

potentially create chains of 3-hydroxybenzoic acid molecules.  

 

Structure Description 

A 1:1 molecular complex containing the molecular ions, BZNH
+
 and 3-hydroxybenzoate (3-

HBA
-
) was obtained using the solvent evaporation method, with a 1:1 stoichiometric mixture 

of BZN (12mg) and 3-hydroxybenzoic acid (3-HBA) (14mg) dissolved in the minimum 

amount of acetone followed by evaporation at 10ºC using an Asynt hotplate . The crystals 
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generated were block shaped and colourless.  Single crystal X-ray diffraction data were 

obtained using a Bruker-Nonius Kappa CCD diffractometer at 100K, equipped with graphite 

monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved using SIR92
30

 

within the CRYSTALS
31

 program.  The crystallographic data are summarised in Table 4.4 

with the interactions involved in the molecular complexed outlined in Table 4.6 

 

As described in Section 4.2.1, the BZN molecule is protonated through hydrogen transfer 

from the carboxylic acid group on the 3-HBA molecule (Figure 4.20). This is reflected in the 

equalisation of the internal bond 

lengths, N1
δ+

-C1 1.3298(14)(3)Å 

and N2
 δ+

-C1 1.3255(14)Å, and bond 

angles, C1-N1
δ+

-C2 108.55(9)º and 

C1-N2
δ+

-C7 108.50(9)º. The 

negative charge on the deprotonated 

3-HBA molecule is found to be 

delocalised over the carboxylic acid 

group, indicated by the normalisation 

of the bond lengths in the carboxyl 

group, C8-O1
δ-

 1.2702(12)Å and 

C8- O2
δ-

 1.2603(12)Å.  

 

 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

O3···O1 2.645(1) 0.87(1) 1.79(1) 172(1) 

N1···O1 2.697(1) 0.90(1) 1.80(1) 173(1) 

N2···O2 2.700(1) 0.88(1) 1.82(1) 173(1) 

C1····O2 3.091(1) 0.93(1) 2.21(1) 157(1) 

C5····O3 3.298(1) 0.95(1) 2.60(1) 131(1) 

C3····π 3.501 - - - 

Table 4.6 – The inter- and intramolecular interactions with distances found in the BZNH
+
and 2-HBA

-
 

molecular complex 

Fig. 4.20 – The benzimidazolium and 3-hydroxybenzoate ions 

which are generated in the molecular complex, with atom 

labelling.  
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There are two primary hydrogen bonds in the benzimidazolium 3-hydroxy-benzoate 

molecular complex. Both are similar in length and both play a pivotal role in the structure. 

They are slight modifications of hydrogen bond patterns F and G (from Figure 12) due to the 

introduction of the charged species. Hydrogen bond G, which corresponds to the O3-

H····O1
δ-

 hydrogen bond, is 2.6544(15)Å in length (see Table 4.3 for full details) and creates 

long chains of 3-HBA
-
 molecules along the c-axis. The mean planes of alternate 3-HBA

- 

molecules lie at angles of 104.4º to each other and always hydrogen bond through the O1 

atom of the carboxylic acid group (Figure 4.21). 

 

 

 

Fig. 4.21 – The 3-hydroxybenzoate molecules create chains with the mean planes of alternate molecules tilted at 

104.4º from each other.   

 

The derivative of hydrogen bond pattern F comprises two distinct N1
δ+

-H····O1
δ- 

and N2
δ+

-

H····O2
δ- 

hydrogen bonds with lengths 2.6996(15)Å and 2.6972(15)Å, respectively (refer to 

Table 4.3 for full details). These moderate hydrogen bonds have the role of holding the chains 

of 3-HBA
- 
to one another which extends the structure along the b-axis (Figure 4.22).  

 

 

Fig. 4.22 – The 3-hydroxybenzoate molecules chains which are held together through a hydroxyl-carboxylate 

hydrogen bond are bridged together by hydrogen bonding through a benzimidazolium molecule.  The inset 
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shows the view along the c-axis, indicating that the benzimidazolium molecules sit on two distinct positions due 

to the twisting nature of the 3-hydroxybenzoate chains. 

 

While the two main hydrogen bonds, G which creates the chains of 3-HBA
-
 molecules and F 

which uses the BZNH
+ 

as a bridge between the chains, create a sheet along the bc face, it is 

the role of weaker interactions that extend the structure along the a-axis. The a-axis is 

configured in a layered type network, with the weaker interactions filling the gaps in an 

alternating arrangement.   

 

One of the layers uses a weak hydrogen bond that links the carbon sandwich between the two 

nitrogens of the BZNH
+
 and an oxygen of the carboxylate group, C1-H···· O2

δ-
,  that is 

3.0913(15)Å in length (Figure 4.23 LHS). The other layer uses a weak hydrogen bond 

between the hydroxyl oxygen and a carbon from BZNH
+
, C5-H····O3

δ-
 with length 

3.2985(15)Å and a C-H····π interaction of around 3.501Å (Figure 4.23 RHS). 

 

 

Fig. 4.23 – LHS, The alternating layers that exist on the a-face of the benzidazoline 3-hydroxybenzoate 

molecular complex are connected through a weak hydrogen bond on each alternate layer (red). RHS, the 

alternate layer is held together by a weak hydrogen bond (yellow circle) and C-H····π interactions (red circle). 

 

The extended structure of the BZNH
+ 

3-HBA
- 
molecular complex can be seen in Figure 4.24. 

The supramolecular synthon, comprising 3-HBA
- 
chains, is easily indentified in both images 

with the chains arranging into a zigzag formation (note there are no interactions between the 

chains, all interactions are through BZNH
+ 

molecules). All the BZNH
+ 

molecules lie in the 

channels of the chains like a ladder with around 3.598Å separating each molecule (seen in 

Figure 4.24 RHS). They sit in four different geometric positions, all ―facing‖ outwards into a 

box shape, with the benzene part overlapping in the middle (seen in Figure 4.24 LHS).   
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Fig. 4.24 – LHS, view along the c-axis highlighting how the benzimidazolium molecules form into channels. 

RHS, view along the b-axis that shows the 3-hydroxybenzoate chains. 

 

4.4.3 Molecular Complex of Benzimidazole and 4-Hydroxybenzoic Acid 2:1 

 

After the discovery of the BZNH
+ 

3-HBA
- 
molecular complex, it was predicted that the co-

crystallisation of BZN and 4-HBA would be as successful. As ever proton transfer would be 

inevitable and with the hydroxyl group moving to the 4-position, hydrogen bonding through 

this group would be readily available. A structure very similar to the BZNH
+ 

3-HBA
- 

molecular complex would be predicted with an extension between the BZNH
+ 

molecules most 

likely due to the increase in distance between 4-hydroxybenzoate molecules a result of the 

positioning of the hydroxyl group.  

 

Structure description 

 

The molecular ions, BZNH
+
 and 4-hydroxybenzoate (4-HBA

-
) form a 2:1 molecular complex. 

The molecular complex was obtained using the solvent evaporation method, with a 1:1 

stoichiometric mixture of BZN (6.8mg) and 4-hydroxybenzoic acid (4-HBA) (8.8mg) 

dissolved in the minimum amount of methanol followed by evaporation at ~2-4ºC in the 

walk-in cold room. The crystals generated were block shaped and colourless.  Single crystal 

X-ray diffraction data were obtained using a Rigaku R-axis/RAPID image plate 

diffractometer at 100K, equipped with graphite monochromated Mo Kα radiation (λ = 

0.71073 Å). The structure was solved using SUPERFLIP
32

 within the CRYSTALS
31

 program.  

The crystallographic data are summarised in Table 4.4.  
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As in Section 4.2.1, BZNH
+
 molecules are generated through proton transfer from the 

carboxylic acid group on the 4-HBA molecule onto the normally unprotonated nitrogen atom 

on the BZN molecules. However the stoichiometric ratio in this case is two BZNH
+
 molecules 

to every one 4-HBA
-
, therefore it would be chemically impossible for all nitrogen atoms to be 

fully protonated if only the carboxylic group is de-protonated, which is the case. The result is 

that four of the nitrogens are bonded to partially occupied hydrogens, i.e. a proton is shared 

between BZN molecules (Figure 4.25). In one case the two half protons are bonded to 

nitrogens N6 and N7 that are hydrogen bonded to themselves (N6…H (50%)…N6‘; N7…H 

(50%)…N7‘) through an inversion centre, this accounts for one proton. The other proton is 

split in the hydrogen bond between the nitrogens N2 and N3. This proton is best resolved to a 

occupancy level of 0.4:0.6 in favour of nitrogen N2 (Figure 4.26). The result of the proton 

transfer on the BZNH
+ 

molecules, even though they are only partially protonated, is a 

delocalisation of the charge across the five-membered ring, reflected in the equalisation of the 

internal bond lengths and angle (Table 4.7). It was first thought that the nitrogens bonded to 

the partially occupied protons would be those that have been protonated, however this is 

unjustifiable for two reasons; firstly all the internal bond lengths and angles are normalised 

and secondly the partially protonated nitrogens are all hydrogen bonded to other partially 

protonated nitrogens therefore initially one of these nitrogens would have been unprotonated 

but which one cannot be identified.   

 

 

Fig. 4.25 – The different benzimidazolium molecules. From, left to right, molecules 1 and 2 hydrogen bond to 

one another over a glide plane, molecule 3 hydrogen bonds to itself through a inversion centre along the 

N6····N6 contact, molecule 4 also hydrogen bonds to itself due to an inversion centre along the N7····N7 

contact. In every case a proton is split over two sites. 
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Fig. 4.26 – MCE
33

 Fourier difference maps of the residual electron density. LHS, when the hydrogen split 

between nitrogen N2 and N3 is removed, RHS, when the hydrogen is removed from the N6 nitrogen (the same 

50:50 split proton image is seen when the proton bonded to N7 is removed).
 

 

 Molecule 1 Molecule 2 Molecule 3 Molecule 4 

N-C (Å) N1-C1 1.346(3) N3-C2 1.327(3) N5-C3 1.339(3) N7-C4 1.323(3) 

C-N (Å)  C1-N2 1.323(3) C2-N4 1.341(3) C3-N6 1.322(3) C4-N8 1.344(3) 

C-N-C (º) N1 107.17(19) N3 106.6(2) N5 107.23(19) N7 106.8(2) 

C-N-C (º) N2 106.0(2) N4 107.83(19) N6 106.45(19) N8 107.8(2) 

Table 4.7 – Bond length and bond angle data for the four different benzimidazolium molecules from the 

benzimidazolium 4-hydroxybenzate molecular complex. 

 

The 4-HBA
- 
molecules have a simpler role in this molecular complex. There are two distinct 

4-HBA
- 
molecules in the structure, with the extent of the twisting of the carboxylate group 

their distinguishing feature. As explained the carboxylic acid group has been deprotonated 

which creates a negative charge that is delocalised over the carboxylate group, as seen by the 

normalisation of the bond lengths in the carboxyl group (Figure 4.28, Table 4.6). 
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Fig. 4.27 – The two 4-hydroxybenzoate molecules 

found in the molecular complex, with associated 

atom labelling. 

Table 4.8 – Bond lengths and degree of twisting of 

the carboxylate group from the plane of the phenyl 

ring, for the 4-hydroxybenzoate molecules in the 

benzimidazolium 4-hydroxybenzate molecular 

complex. 

 

The main motif of the BZNH
+ 

4HBA
 

molecular complex is, as expected, very similar to that 

in BZNH
+ 

3HBA.  These are two main differences which have a profound effect on the 

extended structure. The primary hydrogen bond is a derivative of pattern G (Figure 4.12) 

which corresponds to the hydroxyl carboxylate hydrogen bond.  There are two of these 

hydrogen bonds, the main hydrogen bonds in the molecular complex with lengths 

O3H····O2
δ- 

2.605(3)Å and O6H····O4
δ- 

2.602(3)Å (refer to Table 4.3 for full details).   

Molecule 1 2 

C-O(Å) C5-O1 

1.253 (3) 

C12-O4 

1.271(3) 

C-O(Å) C5-O1 

1.271(3) 

C12-O5 

1.258(2) 

Twisting (º) 3.13 23.06 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

O3···O2 2.605(3) 1.02(3) 1.60(3) 166(3) 

O6···O4 2.602(3) 0.94(3) 1.69(3) 166(3) 

N2···N3 2.675(3) 1.01(6) 1.67(6) 173(6) 

N6···N6 2.682(3) 0.82(4) 1.86(4) 178(5) 

N8···O4 2.717(2) 0.93(3) 1.79(3) 170(3) 

N4···O1 2.695(2) 0.95(3) 1.78(3) 163(3) 

N1···O5 2.689(3) 0.91(3) 1.78(3) 173(3) 

Table 4.9 – The inter- and intramolecular interactions with distances found in the BZNH
+
and 4-HBA

-
 

molecular complex 
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They link to create chains of 4-HBA
-
 molecules along the a-axis and the mean planes of 

alternating molecules lie at an angle of 29.96º to one another (Figure 4.28). By comparison 

the chains created in the BZNH
+ 

3HBA
- 

molecular complex have longer lengths 

(2.6544(15)Å) and lie to a greater degree of interplanar angle to one another (104.4 º) (Figure 

4.21). 

 

 

Fig. 4.28 – The 4-hydroxybenzoate molecules create chains with the molecules alternately sitting on two 

positions.   

 

The derivative of pattern F, which is the N
δ+

-H····O
δ- 

and N
δ+

-H····O
δ- 

hydrogen bonds have 

lengths ranging from 2.689Å to 2.717Å (refer to Table 4.9 for details). These three moderate 

strength hydrogen bonds have the role of holding the chains of 4-HBA
- 
to one another, exactly 

the same as in the BZNH
+ 

3HBA
-
 molecular complex. However, there are two differences, of 

which one might be expected whereas the other adds complexities to the structure. The 

expected difference is in with the introduction of the extra BZNH
+
, which has led to the 

molecular complex adopting hydrogen bond C (Figure 4.12), N
δ+

-H ····H- N
δ+

.  These 

BZNH
+ 

dimers have lengths of N2
δ+

-H ····H- N3
δ+

 2.675(3) Å, N6
δ+

-H ····H- N6
δ+ 

2.682(3) 

Å and N7
δ+

-H ····H- N7
δ+ 

2.737(3) Å which compares favourably to the N-H···N distance of 

2.884Å found in the BZN structure (CSD ref – BZDMAZ04)
34

. Secondary, it is not simply 

the case that two chains of 4HBA
- 

are held together by the BZNH
+ 

dimers creating sheets. 

Instead, in this structure each chain is connected to four other chains through the dimers 

(Figure 4.29 LHS). Moving through the chain, each alternate 4-HBA
- 

molecule hydrogen 

bonds in opposite directions thus every other 4HBA
- 

molecule is involved in one ladder 

structure (Figure 29 RHS).  This creates a criss-cross pattern for the extended structure 

(Figure 29 bottom). There are a host of weaker interactions in this molecular complex, 

however none are thought to be significant enough to influence the structure.  
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Fig. 4.29 – LHS, view along the a-axis highlighting how each 4-HBA
 

chain is involved in hydrogen bond in 

four different directions. RHS, view along the b-axis indicating the connections between each chain. bottom –

view along the c-axis of the BZNH
+ 

4HBA

 molecular complex with the backbone of the structure, the 4HBA

 

chains, being held together by the BZNH
+ 

dimers that criss-cross between them. 

 

 

Effect of Stoichiometric ratio 

 

The BZNH
+ 

4HBA
-
 molecular complex always adopts a 2:1 stoichiometric ratio no matter the 

ratio of the initial starting materials used: 1:1, 2:1 or 1:2. The use of excess 4-hydroxybenzoic 

acid results in a hydrate of the 4-HBA starting material, the BZNH
+ 

4HBA
-
 2:1 complex and 
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in some cases the BZNH
+ 

4HBA
-
 hydrate molecular complex being formed. Experiments 

using these ratios were also set-up for both 2-HBA and 3-HBA. As can be seen from Table 

1.1, successful molecular complexes were generated for both 2-HBA and 3-HBA. The 

experiments between BZN and 3-HBA in a 2:1 ratio generated two polymorphs which differ 

in many aspects including the bonding motifs. 

 

4.4.4 Molecular complex of Benzimidazole 3-Hydroxybenzoic acid 2:1 Form II 

 

The trends in the other related structures indicates that this structure will adopt a structure 

similar to BZNH
+ 

4HBA
- 
molecular complex which has supramolecular synthons of chains of 

4HBA
- 
using the hydrogen bond pattern G. These chains are connected to BZNH

+ 
by partially 

charge assisted hydrogen bonds of form F. Further, homo-hydrogen bond C might be 

expected to connect the two BZNH
+ 

molecules into dimers.  

 

Structure Description 

 

The molecular ions, BZNH
+
 and 3-hydroxybenzoate (3-HBA

-
) form a 2:1 molecular complex 

with one another.  The molecular complex was obtained using the solvent evaporation 

method, with a 2:1 stoichiometric mixture of BZN (24 mg) and 3-hydroxybenzoic acid (3-

HBA) (16 mg) dissolved in the minimum amount of methanol followed by evaporation at ~2-

4ºC using the walk in cold room. The crystals generated were block shaped and colourless.  

Single crystal X-ray diffraction data were obtained using a Bruker ApexII diffractometer at 

100K, equipped with graphite monochromated Mo Kα radiation (λ = 0.71073 Å). The 

structure was solved using SUPERFLIP
32

 within the CRYSTALS
30

 program.  The 

crystallographic data are summarised in Table 4.4.  

 

In this molecular complex, the BZN molecules are protonated forming BZNH
+
 molecules as 

described in section 4.2.1. However the stoichiometric ratio is two BZNH
+
 molecules to one 

3-HBA
-
, the result is two of the nitrogens are bonded to partially occupied hydrogens, i.e. a 

proton is shared between BZN molecules (Figure 4.30). The proton is split in the hydrogen 

bond between the nitrogens N2 and N4 with the best model (lowest concluding R-factor) 

having occupancy levels of 0.55:0.45 in favour of  nitrogen N2 (Figure 4.31). The result of 

the proton transfer on the BZNH
+ 

molecules, even though they are only partially protonated, 
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is a delocalisation of the charge across the five-membered ring, reflected in the equalisation of 

the internal bond lengths and angle (Table 4.10). As in the previous molecular complex it was 

first thought that the nitrogens bonded to the partially occupied protons would be those that 

have been protonated, however this is unjustifiable for two reasons; firstly all the internal 

bond lengths and angles are normalised and secondly the partially protonated nitrogens are all 

hydrogen bonded to other partially protonated nitrogens therefore initially one of these 

nitrogens would have been unprotonated but which one cannot be identified.  

 

  

Fig. 4.30 – The different benzimidazolium molecules: from, left to right, molecules 1 and 2 that hydrogen bond 

to one another with the relevant atoms labelled, and the 4-hydroxybenzoate molecule with associated atom 

labelling. 

 

             

Fig. 4.31 – MCE
33

 Fourier difference maps of the residual electron density when the hydrogen split over 

nitrogen N2 and N4 is removed.  

 

 Molecule 1  Molecule 2  

Bond Lengths (Å) N3-C4 

N4-C4 

1.342(2) 

1.322(2) 

N2-C1 

N1-C1 

1.320(2) 

1.341(3) 

Bond Angle (º) C5-N3-C4 

C6-N3-C4 

107.63(16) 

106.79(16) 

C2-N1-C1 

C3-N2-C1 

107.55(16) 

106.00(16) 
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Table 4.10 – Bond length and bond angle data for the two different benzimidazolium molecules from the 

benzimidazolium 3-hydroxybenzoate molecular complex. 

 

The 3HBA
 

molecule has been deprotonated with a proton from the carboxylic acid group 

transferring to the BZN, leading to a negative charge that is delocalised over the carboxylate 

group, C7-O1 1.269(2)Å  and C7-O2 1.256(2)Å.  

 

 The main motif of the BZNH
+ 

3HBA
 

2:1 molecular complex is, as expected, a hybrid of the 

BZNH
+ 

3HBA
 

1:1 and BZNH
+ 

4HBA
 

2:1 molecular complexes. It is expected because it 

might be predicted that the extra BZN molecule would behave as in the BZNH
+ 

4HBA
 

2:1 

structure, forming a BZNH
+ 

dimer. The supramolecular synthons will thus be identical to the 

BZNH
+ 

3HBA
 

1:1 structure and a ladder type molecular complex would be formed.  

 

The main hydrogen bond is a derivative of synthon G (Figure 4.12) which corresponds to the 

hydroxyl carboxylate hydrogen bond.  This hydrogen bond, O3-H····O2, is 2.660(3)Å in 

length and forms chains along the c-axis (refer to Table 4.3 for full details) as seen in Figure 

4.32. The molecules all lie on the same plane with the carboxylate group slightly twisting out 

of the plane by ~16º. The close planarity of the molecules in the chain in this case is in 

contrast to the chains created in the BZNH
+ 

3HBA
- 

1:1 molecular complex, which lie at a 

greater angle to one another (104.4 º) (Figure 4.21). 

 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

N2···N4 2.676(3) 0.88(5)/0.94(5) 1.75(5)/1.80(5) 175(5)/171(5) 

O3···O2 2.660(3) 0.92(3) 1.74(3) 178(3) 

N1···O1 2.751(3) 0.84(3) 1.93(3) 165(3) 

N3···O1 2.748(3) 0.94(3) 1.81(3) 177(2) 

O3···C 3.446(3) 0.95(2) 2.50(2) 174(2) 

O2···C4 3.420(3) 0.97(2) 2.51(2) 156(2) 

O2···C1 3.338(3) 0.95(2) 2.42(2) 161(2) 

Table 4.11 – The inter- and intramolecular interactions with distances found in the BZNH
+ 

3HBA
 

2:1 

molecular complex. 
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Fig. 4.32 – The 3-hydroxybenzoate molecules create close-to-planar chains through a hydroxyl carboxylate 

hydrogen bond.  

 

The derivative of hydrogen bond pattern F corresponds to the hydrogen bonds N1
δ+

-H····O1
δ- 

and N3
δ+

-H····O1
δ-

, which have lengths 2.751(3)Å and 2.748(3)Å respectively (refer to Table 

3.11 for all the interactions within the molecular complex). These moderate hydrogen bonds 

have the role of holding the chains of 3-HBA
- 

to one another, exactly the same as in the 

BZNH
+ 

3HBA
-
 1:1 molecular complex, but are longer in length by ~0.05Å. As expected, the 

introduction of the extra BZNH
+
 has led to the molecular complex adopting hydrogen bond 

pattern C (Figure 4.12), N
δ+

-H····H- N
δ+

.  This BZNH
+ 

dimer has hydrogen bond length N2
δ+

-

H····H- N4
δ+

 2.676Å which is identical to the dimers found in the BZNH
+ 

4HBA
-
 molecular 

complex ( 2.675(3) Å and
 
2.682(3) Å) (Figure 4.33 RHS). 

 

 

Fig. 4.33 – LHS, the 3-hydroxybenzoate molecules chains which are held together through a hydroxyl-

carboxylate hydrogen are bridged together by hydrogen bonding through a benzimidazolium dimer. RHS, the 

view along the a-axis indicating the planar nature of the chains and highlighting the role of the BZNH
+ 

dimer.   

.   
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The 3-HBA
 

chains run along the a-axis, the dimers joins this motif to the next one creating 

ladders. These ladders are further extended along bc-face as every 3-HBA

 molecule 

hydrogen bonds to two different BZN
+ 

dimers (Figure 4.34).  

 

 

Fig. 4.34 – The 3-hydroxybenzoate molecules hydrogen bond along the bc-face which creates a  sheet along the 

a-axis view along the a-axis indicating the planar nature of the chains and highlighting the role of the BZNH
+ 

dimer.   

 

This structure contains three weak hydrogen bonds that cooperate together to extend the 

packing along the c-axis (Figure 4.35). One is a hydrogen bond involving the oxygen of the 

hydroxyl group and a carbon from a 3HBA
 

molecule, C-H····O3, that has length 3.446(3)Å 

and has been circled in red in Figure 4.35. The other two are C-H····O
δ- 

weak hydrogen bonds 

involving the carbons sandwiched between the nitrogens on the BZNH
+ 

and the oxygen of the 

carboxylate that is involved in the chain motif, O2. They have lengths C4-H···· O2
δ- 

3.420(3)Å and C1-H···· O2
δ- 

 3.338(3)Å and are circled in yellow and green. 
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Fig. 4.35 – The weak interactions that are used to extend the structure along the c-axis, C-H····O3 (red), C4-

H···· O2
δ-

(yellow) and C4-H···· O2
δ- 

(green).  

 

4.4.5 Molecular Complex of Benzimidazole 3-Hydroxybenzoic Acid 2:1  Form I 

 

The serendipitous discovery of a polymorph of benzimidazolium 3-hydroxybenzate was due 

to poor data collected from samples of the initial molecular complex. This meant that further 

unit cells scans were carried out, resulting in three different unit cells being discovered in 

crystals of benzimidazole and 3-hydroxybenzoic acid in a 2:1 mixture. However only the two 

discussed were reproducible as single crystals, with polymorph II forming greater quality 

crystals than Form I. Form II was discussed in Section 4.5.4 above, Form I is discussed here. 

 

Structure description 

 

The molecular ions, BZNH
+
 and 3-hydroxybenzoate (3-HBA

-
) form a 2:1 molecular complex, 

shown by unit cell screening to be a different polymorph from that discussed above (Form II).  

The molecular complex was obtained using the solvent evaporation method, with a 2:1 

stoichiometric mixture of BZN (6.8mg) and 3-hydroxybenzoic acid (3-HBA) (8.8mg) 

dissolved in the minimum amount of ethanol followed by evaporation at ~2-4ºC using a walk 

in cold room. The crystals generated were block shaped and colourless.  Single crystal X-ray 

diffraction data were obtained using a Bruker ApexII diffractometer at 100K, equipped with 

graphite monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved using 
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SUPERFLIP
32

 within the CRYSTALS
31

 program.  The crystallographic data are summarised 

in Table 4.4.  

 

In this molecular complex, half of the BZN molecules are protonated as described in section 

4.2.1, forming BZNH
+ 

molecules. Since there are four BZN molecules in the reduced unit 

cell, the result is that two of the BZNs have been protonated while two remain unprotonated. 

The result of the proton transfer on the BZNH
+ 

molecules, is a delocalisation of the charge 

across the five-membered ring, reflected in the equalisation of the internal bond lengths, 

1.332(2)Å and 1.326(2)Å and angles 108.0(1)º and 108.0(1)º (Figure 4.36 LHS). The BZN 

molecules where no protonation has occurred retains distinct single and double bond 

characteristics with bond lengths 1.312(2)Å and 1.334(2)Å and bond angles 104.7(1)º and 

106.8(1)º. The other BZN and BZNH
+
 molecules in the unit cell have bond angles and lengths 

within the error range of the measurements given above. 

  

Fig. 4.36 – LHS, the BZN and BZNH
+
 molecules form dimers, through a single hydrogen bond.  There are two 

of these dimers in the reduced unit cell. RHS, the 3-HBA

 molecules also form single hydrogen bonded dimers.  

 

The two distinct 3HBA
 
molecules within the unit cell have both been deprotonated with a 

proton from each carboxylic acid group transferring to two of the BZN molecules. The 

consequence is the normalisation of the bond lengths in the carboxyl group, 1.265(2)Å  and 

1.246(2)Å (Figure 4.36 RHS). The bond lengths of the other 3-HBA
 

molecules within the 

unit cell are within the errors of measurements and are consistent with the geometry found in 

the Form II polymorph. 

  

The main motif of the BZNH
+ 

3HBA
 

2:1 Form I molecular complex is the same as the 

BZNH
+ 

3HBA
 

2:1 Form II molecular complex. The primary hydrogen bond is a derivative of 

synthon G (Figure 4.12) which corresponds to the hydroxyl carboxylate hydrogen bond.  This 
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hydrogen bond, O-H····O, is 2.540(1)Å in length and forms chains along the ac-diagonal 

axis(see Table 4.3 for full details). The planes of the benzene rings of the molecules in the 

chain tilt with respect to one another by 19.1º (Figure 4.37). However the twist of the 

carboxylate group plane and the benzene ring is 15.7º for both molecules in Form I. For 

comparison, the chains created in the BZNH
+ 

3HBA
 

2:1 Form II molecular complex have 

hydrogen bond lengths of 2.660(3)Å and lie on the same plane, with the carboxylate group 

slightly twisting out of the ring plane by ~15.9º (Figure 4.32).  

 

 

Fig. 4.37 – The 3-hydroxybenzoate molecules create chains through a hydroxyl carboxylate hydrogen bond.  

These chains are then held together, as in the other polymorph, by BZN dimers using the 

derivative of hydrogen bond F. Contrary to the Form II polymorph however, the chains are 

also linked using hydrogen bond pattern I. The hydrogen bonds involved correspond to 

N
δ+
H····O

δ-
(carboxylate oxygen; a)

 
and N

δ+
H····O(hydroxyl oxygen; b) (Figure 4.38). 

These hydrogen bonds have lengths of 2.632(2)Å (a), and 2.913(2)Å (b) and can clearly 

distinguish the charged assisted hydrogen bonds which are shorter than those involving the 

hydroxyl group (refer to Table 4.3 for full details). It is also worth noting the hydrogen bond 

lengths of the Form II polymorph, which are two N
δ+
H····O

δ-
(carboxylate oxygen) hydrogen 

bonds of length 2.751(3)Å and 2.748(3)Å respectively, sitting close to the middle of the range 

of the hydrogen bonds in Form I.  

 

The BZN - BZNH
+
 dimers adopt a derivative of hydrogen bond C (Figure 4.12), N

δ+
H ····N.  

These have lengths of 2.710(2)Å and 2.709(2)Å which is slightly longer than found in 

polymorph Form II with length 2.676(3)Å.  
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Fig. 4.38 – The 3-hydroxybenzoate molecules chains which are held together through a hydroxyl-carboxylate 

hydrogen bond are bridged together by four distinct hydrogen bonds of two types, a and  b.   

 

There are marked differences between the ladder motifs of Forms I & II, with Form II having 

stiles of 3-hydroxybenzoate molecules and consecutive rungs of hydrogen bonded dimers of 

BZNH
+
. While Form I, on the other hand, has alternate rungs of hydrogen bonded dimers 

(Figure 4.39). 

  

Fig. 4.39 – LHS, Form II, The ladder structure consists of stiles of 3-hydroxybenzoate molecules and rungs of 

hydrogen bonded dimers of BZNH
+
. RHS, Form I, The ladder structure consists of stiles of 3-hydroxybenzoate 

molecules and alternate rungs of hydrogen bonded dimers of BZNH
+
.   

 

a 

b 

a 

b 
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The ladder description can be extended, to reveal a ―double‖ step, due to the hydroxyl along 

with the carboxylate group assisting in the hydrogen bonding (Figure 4.40). This double step 

occurs as one chain of 3-HBA
- 
molecules is involved in two ladders, as in the BZNH

+ 
4-HBA

- 

structure. This expands the structure indefinitely along the ac-diagonal. Advancing through 

the chains, each alternate 4-HBA
- 

has hydrogen bonding connections in the shape of a Z, 

while the other has the inverse shape (Figure 4.41).  

 

 

Fig. 4.40 – The ladder structure consists of uprightsa of 3-hydroxybenzoate molecules and the double rungs of 

hydrogen bonded dimers of BZNH
+
.   

 

 

Fig. 4.41 – The 3-hydroxybenzoate molecules are involved in two ladders by hydrogen bonding in two 

directions adopting a Z and inverse Z shape (indicated by the red lines).    

 

The structure also contains various weaker interactions, three of which assist in forming 

sheets of 3-HBA
- 
molecules along the a-axis. Firstly the 3-HBA

- 
molecules hydrogen bond to 

one another via C-H∙∙∙O
δ- 

and C-H∙∙∙O
 
hydrogen bonds of lengths 3.240(2)Å and 3.433(2)Å, 

respectively (Figure 4.42 LHS). These are linear in geometry and arrange themselves into a 

hydrogen bonded ring. The BZNH
+ 

(not the unprotonated form) also assist in the creation of 
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the sheets by bonding to two different 3-HBA
- 

molecules that are adjacent to one another 

(Figure 4.42 LHS). This involves hydrogen bonds to one 3-HBA
-
 through the predictable N

δ+
-

H····O
δ-

 synthon, then a further hydrogen bond to an adjacent 3-HBA
- 
molecule.  These are 

already hydrogen bonding via the weak hydrogen bonds mentioned above, with a C-H∙∙∙O
δ- 

interaction involving the carbon sandwiched between the two nitrogens and deprotonated 

oxygen (Figure 4.42 RHS). This weak hydrogen bond has a length of 3.186(2)Å. Another 

hydrogen bond, also involving the BZNH
+
, is made from a carbon to the hydroxyl oxygen on 

the 3-HBA
-
 (Figure 4.42 RHS). This C-H∙∙∙O hydrogen bond has length 3.429(2)Å and again 

assists in creating the sheets of 3-HBA
- 
molecules 

 

 

Fig. 4.42 –LHS, view along the b-axis highlighting the creation of sheets of 3-HBA

 molecules through weak C-

H∙∙∙O
δ- 

(red) and C-H∙∙∙O (green) hydrogen bonds along the a-axis. The blue interactions represent the moderate 

hydrogen bonds that make up the chains of 3-HBA

 molecules. RHS, the weak hydrogen bonds in which the 

BZNH
+ 

 ions are involved – one C-H∙∙∙O
δ- 

(yellow) and one C-H∙∙∙O (yellow and circled). 

 

There are other interactions in the structure of the benzimidazolium 3-hydroxybenzate 2:1 

polymorph Form I, however they only assist the major interactions that have already been 

mentioned. The extended structure can be seen in Figure 4.43, with the  3-HBA
 

molecules 

creating chains, these chains connected together along the b-axis via the BZN-BZNH
+ 

molecules with the weaker interactions extending the structure along the a-axis.   
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Fig. 4.43 – view along the a-axis of the extended benzimidazolium 3-hydroxybenzate 2:1 polymorph Form I 

molecular complex. 

 

4.4.6 Molecular Complex of Benzimidazole and 4-Hydroxybenzoic Acid 2:1 

Hydrate  

 

The crystallisation attempts on benzimidazole and 4-hydroxybenzoic acid also resulted in a 

hydrate of the 2:1 molecular complex being formed. The crystal was obtained from ethanol at 

~2-4ºC and were flat plates in shape and colourless. Single crystal X-ray diffraction data were 

obtained using a Bruker-Nonius Kappa CCD diffractometer at 110K, equipped with graphite 

monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved using SIR92
30

 

within the CRYSTALS
31

 program. The crystallographic data are summarised in Table 4.4. 

 

The introduction of a water molecule brings a large number of possible supramolecular 

synthons which are shown in Figure 4.44. However there are only a couple of designs that 

would use every possible interaction site.   
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Fig. 4.44  Schematic diagram highlighting the possible hydrogen bonds that could be generated between the 

water molecule and the other starting materials and their charged species.  

 

In this molecular complex BZNH
+
 molecules are formed through proton transfer from the 

carboxylic acid group on the 4-HBA molecule onto the normally unprotonated nitrogen atom. 

However with the stoichiometric ratio being two BZN molecules to every one 4-HBA, it 

would be chemically impossible for all nitrogen atoms to be fully protonated if only the 

carboxylic group is deprotonated, which is the case. Thus one BZN molecule is left 

unprotonated. The result of the proton transfer on the BZNH
+ 

molecule, is a delocalisation of 

the charge across the five-membered ring, reflected in the equalisation of the internal bond 

lengths and angles (Table 4.12). The BZN molecule where no protonation has occurred 

retains distinct single and double bond character (Figure 4.45). The intra- and intermolecular 

interactions are listed in Table 4.13. 

 

Fig. 4.45  The BZNH
+
, BZN, 4-HBA

 
and water molecule that are involved in the BZN BZNH

+ 
4-HBA

 

hydrate, with atom labelling.  
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Table. 4.12 – Bond length and bond angle data for the BZNH
+
 and BZN molecules involved in the BZN BZNH

+ 

4-HBA
- 
hydrate molecular complex. 

 

 

Table 4.13 – The inter- and intramolecular interactions with distances found in the BZNH
+ 

3HBA
 

2:1 molecular 

complex. 

 

The 4HBA
- 

molecule has been deprotonated with a proton from the carboxylic acid group 

transferring to the BZN. This deprotonation leads to a negative charge that is delocalised over 

the carboxylate group, as seen by the normalisation of the bond lengths in the carboxyl group, 

C16-01 1.262(2)Å and C16-O2 1.258(2)Å.  

 

 

Figure 4.46 shows how the water molecule positions itself between two linear chains of 4-

HBA

 and the BZN. It results in every possible hydrogen bond interaction site of the water 

molecule being utilised. All these hydrogen bonds are of moderate strength: O4H∙∙∙O1
δ-

 

2.765(2)Å, O4H∙∙∙O2
δ-

  2.805(2)Å and N4
δ+
H∙∙∙O4 2.719(2)Å (Figure 4.46 LHS). The 

water molecule does not significantly disturb the main motifs compared with those found in to 

 BZNH
+ 

 BZN  

Bond Lengths (Å) N1-C1 

N2-C2 

1.331(2) 

1.328(2) 

N3-C8 

N4-C8 

1.321(2) 

1.347(3) 

Bond Angle (º) C2-N1-C1 

C7-N2-C1 

108.0(0) 

106.7(1) 

C14-N3-C8 

C9-N4-C8 

104.7(1) 

107.0(2) 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

O4···O1 2.765(2) 0.92(3) 1.86(3) 168(3) 

O4···O2 2.805(2) 0.86(2) 1.96(3) 168(3) 

N4···O4 2.719(2) 0.88(3) 1.84(2) 172(2) 

N1···O2 2.641(2) 0.96(3) 1.72(3) 161(2) 

N2···N3 2.702(2) 0.99(3) 1.71(3) 176(3) 

O3···O2 2.635(2) 0.91(3) 1.72(3) 174(3) 

C1···π 3.350 - - - 

O8···π 3.323 - - - 
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the non-hydrated form; there are still linear chains of 4-HBA

 held together by dimers of 

BZN. There is also minimal difference between the calculated densities with 1.362 g.cm
3

 for 

the hydrate and 1.365 g.cm
3

 for the non-hydrate. However the introduction of the water 

molecule has resulted in two key differences: one is that the rungs of the ladder now have a 

zig-zag formation (Figure 4.46 RHS) and it expands the structure in two directions, while the 

packing in the third direction is through the chains of 4-HBA

.  

 

   

Fig. 4.46 – LHS, highlighting the hydrogen bonds in which the water molecule is involved.  RHS, view along 

the c-axis highlighting the zigzag nature of the rungs (BZN BZNH
+
).  

 

The hydrogen bond connecting the BZN and BZNH
+
 molecules has a distance of 

N2
δ+
H∙∙∙N3, 2.702(2)Å which is similar to that found in the non-hydrated form.  As seen in 

the other structures the hydrogen involved in the hydrogen bond shows signs of elongation 

(Figure 4.47). 
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Fig. 4.47 – LHS, Fourier difference map in 2D and, RHS, Fourier difference map in 3D showing the possible 

elongation of the hydrogen atom involved in the hydrogen bond. 

 

The 4-HBA
 

chains form via hydroxyl – carboxylate O3H∙∙∙O2
δ-

 hydrogen bonds of length 

2.635(2)Å (refer to Table 4.3 for full details). They are slightly longer than the same hydrogen 

bond in the non-hydrated structure (2.603(3)Å) and form with a greater degree of staggered 

geometry (Figure 4.48).  

  

Fig. 4.48 – LHS, the staggered chains of 4-HBA
- 
that are held together by the stiles of BZN and BZNH

+
 in the 

2:1 hydrate.  Note that another BZN and BZNH
+ 

group is present, oriented diagonally between the two that are 
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shown, RHS, view along the b-axis of the BZN BZNH
+ 

4-HBA
- 
molecular complex showing the main motifs for 

comparison.  

 

This structure contains various weaker interactions however none are significant and only 

assist the stronger hydrogen bonds. For example there are C-H∙∙∙π interactions between a 

carbon of the benzimidazole and the benzene ring of the benzoic acids (Figure 4.49) with 

distances ranging from approximately 3.323 Å (purple boxes) to 3.560Å and 3.771Å (yellow 

boxes).  However as can be seen, these molecules are also connected through hydrogen bonds 

via the water molecule.  

 

 

Fig. 4.49  The short contacts that exist between the molecules in the BZN BZNH
+ 

4-HBA

 hydrate molecular 

complex. Highlighted are the areas that show the CH---π interactions. 

 

As expressed, the water molecule expands the structure in two directions, one with the aid of 

the BZN BZN
+ 

group to connect two chains of 4-HBA
- 
molecules and in the other direction 

by hydrogen bonding to two 4-HBA
- 
molecules from two separate chains.  The chains expand 

the structure in the third dimension. Figure 4.50 is an extended image of the structure which 

highlights the main interactions. 
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Fig. 4.50  view along the a-axis of the BZN BZNH
+ 

4-HBA
- 
hydrate. The chains of 4-HBA

-
 molecules expand 

the structure along the b-axis (red line). The BZN BZNH
+ 

group holds two chains together via hydrogen bonding 

to a water molecule in one side and through
 
hydrogen bond pattern F in the other direction (blue line).   

 

4.4.7 Molecular Complex of Benzimidazole 2-Hydroxybenzoate 1:2 

 

Molecular ions, BZNH
+
 and 2-hydroxybenzoate(2-HBA

-
) and molecule 2-hydroxybenzoic 

acid (2-HBA) form a 1:1:1 molecular complex with one another.  The molecular complex was 

obtained using the solvent evaporation method, with a 1:2 stoichiometric mixture of BZN 

(12mg) and 2-hydroxybenzoic acid (2-HBA) (28mg) dissolved in the minimum amount of 

acetone followed by evaporation at 2~4ºC. The crystals generated were plate shaped and 

colourless.  Single crystal X-ray diffraction data were obtained using a Bruker ApexII CCD 

diffractometer at 100K, equipped with graphite monochromated Mo Kα radiation (λ = 

0.71073 Å). The structure was solved using SIR92
30

 within the CRYSTALS
31

 program.  The 

crystallographic data are summarised in Table 4.4. A BZNH
+ 

molecule is created through 

proton transfer as discussed in Section 4.2.1 (Figure 4.51). The charge on the BZNH
+ 
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molecule is delocalised across the five-membered ring, reflected in the equalisation of the 

internal bond lengths, N1
 δ+

-C1 1.325(2)Å and N2
 δ+

-C1 1.325(2) Å, and bond angles, C1-

N1
δ+

-C2 108.5(1)º and C1-N2
δ+

-C7 108.2(1)º.   

 

Fig. 4.51 – The BZNH
+
 2-HBA

-
 and 2-HBA molecules which are generated in the molecular complex with atom 

labelling.  

Table. 4.14 – The inter- and intramolecular interactions found within the BZNH
+
 2-HBA

-
 2-HBA molecular 

complex 

 

The 2-HBA molecule in its native crystal structure (refer to Section 4.1.1) is configured such 

that there is an intramolecular hydrogen bond between the hydroxyl and carboxylic acid 

groups. Within the molecular complex with BZNH
+
 this intramolecular hydrogen bond 

persists in both 2-HBA
- 

and 2-HBA despite the proton transfer of a hydrogen atom to the 

benzimidazole.  The intramolecular hydrogen bond is shorter in the 2-HBA
- 
than the 2-HBA, 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

O6···O5 2.624(2) 0.88(2) 1.83(3) 150(3) 

O3···O2 2.555(2) 0.92(3) 1.69(3) 155(3) 

O4···O1 2.605(1) 0.99(2) 1.62(2) 1.74(2) 

N2···O1 2.709(2) 0.91(3) 1.81(3) 173(2) 

N1···O2 2.672(1) 0.91(2) 1.80(2) 161(2) 

C1···O5 3.091(1) 0.94(2) 2.21(2) 157(2) 

C10···π 3.780(2) - - - 

C13···π 3.541(2) - - - 

C13···O6 3.642(2) 0.98(3) 2.66(3) 175(2) 

C20···O3 3.562(2) 1.00(3) 2.57(3) 171(2) 



 151 

as would be expected due to the carboxylate group containing a negative charge creating a 

charged assisted hydrogen bond. Table 4.15 highlights the differences in these internal 

hydrogen bonds and bond lengths and compares then with the native 2-HBA molecule and 

that 2-HBA
- 

found in the BENZH
+ 

2-HBA
- 

1:1 molecular complex. It can be seen that the 

negative charge is found to be delocalised over the carboxylate group and the resulting effect 

on the intramolecular hydrogen bond is profound in comparison to the protonated form. 

 

 2-HBA 2-HBA (native) 2-HBA
- 

2-HBA
- 
(1:1) 

Internal H-bond (Å) 2.624(2) 2.622Å 2.555(2) 2.551(3) 

Bond Lengths (Å) 1.234(2) 

1.325(2) 

1.2450(3) 

1.3113(3) 

1.274(2) 

1.262(2) 

1.273(1) 

1.264(1) 

Table 4.15 – Internal hydrogen bond and C-O bond lengths for the 2-HBA (BZNH
+
 2-HBA

-
 and 2-HBA 

molecular complex), 2-HBA(native crystal structure, 2-HBA(BZNH
+
 2-HBA

-
 and 2-HBA molecular complex) 

and 2-HBA
- 
(BZNH

+
 2-HBA

- 
molecular complex). 

 

The structure of the BZNH
+
 2-HBA

-
 2-HBA molecular complex is more similar to the 

structures of 3-HBA and 4-HBA than to that of the BZNH
+
 2-HBA

-
 molecular complex. The 

motif is a chain that runs along the b-axis (Figure 4.52). This chain is made up of pairs of 2-

HBA
-
 and 2-HBA using hydrogen bonds G (Figure 4.12) being held together by BZNH

+ 

molecules using bonds of pattern E. For comparison the BZNH
+
 2-HBA

-
 molecular complex 

motif is a four molecule hydrogen bonded ring consisting of alternating co-molecules, while 

the 3-HBA and 4-HBA molecular complexes have ladder style structures. The 2-HBA
-
 and 2-

HBA pairs are connected through a moderate hydrogen bond between the carboxylic acid and 

carboxylate groups, O4-H∙∙∙O1
- 
with length 2.605(1)Å. They are two distinct type E hydrogen 

bonds, both are N
δ+

-H····O
δ-

 interactions however the oxygens involved differ. The N2
δ+

-

H····O1
δ-

 hydrogen bond has length 2.709(2)Å and the N1
δ+

-H····O2
δ-

 hydrogen bond has 

length 2.672(1)Å (refer to Table 4.14 for full interactions list).   

 



 152 

 

Fig. 4.52 – View along the a-axis of the main motif of the BZNH
+
 2-HBA

-
 and 2-HBA molecular complex; 

linear chains of 2-HBA
-
 2-HBA pairs are held together by BZNH

+ 
molecules that run along the b-axis.  

 

There are a few weaker interactions that connect the chains together. The most influential is a 

weak hydrogen bond from a carboxylic oxygen to the carbon sandwiched between the 

nitrogens on the benzimidazole. The C1-H····O5
δ-

 hydrogen bond is 3.091(1)Å in length and 

connects the chains as seen in Figure 4.53. Two C-H∙∙∙π interactions assist these weak 

hydrogen bonds in stacking the chains (Figure 4.53 RHS), these are of length C10-H∙∙∙π 

3.780(2)Å and C13-H∙∙∙π 3.541(2)Å. 
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Fig. 4.53 – LHS, the C1-H····O5
δ-

 weak hydrogen bonds (-) that stack the hydrogen bonded chains upon one 

another with the assist of two C-H∙∙∙π interactions (-)(-).  RHS, view of the a-axis displays how the chains stack 

upon one another (-). 

 

Expanding the chain along the c-axis are C-H∙∙∙O hydrogen bonds involving the hydroxyl 

group from one of the 2-HBA 2-HBA
- 
molecules and a C-H group of the other (Figure 4.54). 

These are very weak hydrogen bonds with lengths C13-H∙∙∙O6, 3.642(2)Å (a), C20-H∙∙∙O3, 

3.562(2)Å (b) (Figure 4.54 inset). 

 

  

 

 

 

 

 

 

 

Fig. 4.54 – Two chains of the main motif are held by weak C-H∙∙∙O hydrogen bonds which are located inside the 

black box. Inset, a blow-up of the black box highlighting the weak C-H∙∙∙O hydrogen bonds. 

 

4.4.8 Molecular Complex of Benzimidazole 3,5-Dihydroxybenzoic Acid 1:1 

 

The crystal structure of the molecular complex benzimidazolium 3,5-dihydroxybenzoate has 

already been published in Acta Crystallographica Section E
29

, however the experiment 

reported in that work was undertaken at room temperature. As mentioned previously, 

experiments with the other di-hydroxybenzoic acids, 2,4-, 2,6- and 3,4- did not produce single 

crystal molecular complexes with benzimidazole or its derivatives. The aim of using the di-

hydroxybenzoic acids was to use the library of motifs and supramolecular synthons that have 

been created in the study of the other complexes presented, to understand the hydrogen 

bonding patterns that could be found when there are a greater number of potential donor and 

acceptor sites. Unfortunately only the structure of a single example, benzimidazolium 3,5-

dihydroxybenzoate molecular complex, has been obtained.  The structure is discussed here. 

a 

b 
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Fig. 4.55 – The benzimidazolium and 3,5-dihydroxybenzoate molecules which are generated in the 

molecular complex with atom labelling.  

 

 

 

 

 

 

 

Table 4.16 – The inter- and intramolecular interactions seen in the BZNH
+
 (3,5-DIHB

-
 molecular complex 

 

The molecular ions, BZNH
+
 and 3,5-dihydroxybenzoate(3,5-DIHB

-
) form a 1:1 molecular 

complex.  This was produced using the solvent evaporation method, with a 1:1 stoichiometric 

mixture of BZN (12mg) and 3,5-dihydroxybenzoic acid (3-HBA) (16mg) dissolved in the 

minimum amount of a methanol/water mixture followed by evaporation at room temperature. 

The crystals generated were cubic shaped and colourless.  Single crystal X-ray diffraction 

data were obtained using a a Rigaku R-axis/RAPID image plate diffractometer at 100K, 

equipped with graphite monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was 

solved using SIR92
30

 within the CRYSTALS
31

 program.  The crystallographic data are 

summarised in Table 4.4. The BZNH
+
 molecule is created as discussed in Section 4.2.1 

(Figure 4.55). The result of the proton transfer on the BZNH
+ 

molecule is a delocalisation of 

the charge across the five-membered ring, N1
 δ+

-C1 1.328(1)Å and N2
 δ+

-C1 1.328(1)Å, and 

bond angles, C1-N1
δ+

-C2 108.89(9)º and C1-N2
δ+

-C7 108.80(9)º.  The negative charge on the 

3,5-DIHB
- 
molecule is delocalised over the carboxylic acid group, C8- O1

δ-
 1.250(1) Å and 

C8- O2
δ-

 1.276(1) Å. 

 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

O1···O4 2.640(1) 0.95(2) 1.69(2) 177(2) 

O2···O3 2.625(1) 0.92(2) 1.70(2) 178(2) 

N2···O2 2.700(1) 0.92(2) 1.79(2) 167(2) 

N1···O3 2.893(1) 0.89(2) 2.31(2) 123(1) 

N1···O4 2.813(1) 0.89(2) 1.99(2) 153(1) 
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The increase in the amount of potential hydrogen bonding sites has led to an increase in 

complexity of the structure obtained. The extended structure can be described very much like 

the other hydrobenzoic acid molecular complexes, a ladder style structure with uprights of 

3,5-DHBA
 

and rungs of BZNH
+ 

 molecules (Figure 4.56). 

 

 

Fig. 4.56 – The extended structure of the BZNH
+ 

3,5-DHBA
 

molecular complex which consist of chains of  3,5-

DHBA
- 
molecules which are held together by BZNH

+ 
molecules.  

 

The uprights of the ladder are created by hydrogen bonded rings of 3,5-DHBA
 

molecules, 

described by graph set notation as 4

4R (24) (Figure 4.57). There are two moderate hydrogen 

bonds that hold the rings together, O-H∙∙∙O
δ- 

2.640(1)Å (a) and O-H∙∙∙O
δ- 

2.625(1)Å (b). Every 

3,5-DHBA
- 

molecule is the top, bottom, left or right part of each ring (Figure 4.58) and 

expands the structure along the ba diagonal and c dimensions (refer to Table 4.16 for full 

details).  
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Fig. 4.57 – The hydrogen bonded rings that are made up of four 3,5 DHBA
- 
molecules. 

 

Fig. 4.58 – Two views of the 3,5 DHBA
- 

hydrogen bonded rings that expand along the bc diagonal and c 

dimensions. 

 

The BZNH
+ 

molecules hold the 3,5 DHBA
 

chains together through hydrogen bonding to the 

carboxylate group in one direction (Figure 4.59 a) and a bifurcated hydrogen bond to two 

hydroxyl groups in the other direction (Figure 4.59 b). The single hydrogen bond is of 

moderate strength and has a greater degree of charged assistance than the bifurcated hydrogen 

bond, which is also of moderate strength. The single hydrogen bond is of length 

N2
δ+
H····O2

δ- 
2.700(1)Å and the bifurcated hydrogen bonds are N1

δ+
H····O3 2.893(1)Å 

and N1
δ+
H····O4 2.813(1)Å. These hydrogen bonds expand the structure along the a-axis. 

a 

a 

b 

b 
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Fig. 4.59 – The hydrogen bonds that the BZNH
+ 

 molecule is involved with in the BZNH
+ 

3,5-DHBA
 

molecular 

complex, a is a  partially charged assisted N
δ+
H····O

δ- 
hydrogen bond while b is a bifurcated hydrogen bond of 

two N
δ+
H····O interactions. 

 

None of the weaker interactions within the BZNH
+ 

3,5-DHBA
- 

molecular complex are 

significant in defining the packing, they all assist the hydrogen bonds that have already been 

mentioned. Figure 4.60 is another extended image of the structure, it clearly shows the zig zag 

chains of 3,5-DHBA
 

molecules that extend the structure along the b and c axis, while the 

BZNH
+ 

molecules hold these zigzag chains together along the a-axis. 

 

a 

b 
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Fig. 4.60 – View along the c-axis of an extended image of the BZNH
+ 

3,5-DHBA
 

molecular complex. 

 

4.5  Solvent-Free Co-Crystallisations  

As discussed in the introduction (Section 1.5) solvent-free co-crystallisation involves the 

mechanical grinding together of the components. There are various techniques and 

methodologies that come under the umbrella term of solvent free co-crystallisation, two of 

which were used during this research: solvent-free grinding and solvent drop grinding. Both 

these methods involve the grinding of the co-molecules with a mortar and pestle for roughly 

three minutes, with the solvent drop grinding method including adding micro-amounts of 

solvent. The product was then stored at room temperature. 

 

As this technique was relatively new with only a limited number of papers published when 

this research was started, the initial aim was to investigate the effectiveness and limits of the 

technique. Initial studies concentrated on already discovered and researched molecular 

complexes, particularly between benzimidazole and halo-benzoic acids.  
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4.5.1 Feasibility Study 

 

The initial experiments using solvent free co-crystallisations were carried out to test its 

feasibility. This was assessed on a range of halo-benzoic acids co-crystallised with 

benzimidazole. These had already been studied using the traditional evaporation 

crystallisation techniques (see Chapter 5) in some detail. A range of experimental conditions 

were studied in the solvent-free attempts, including variations in time of grinding, amount of 

sample used and after storage temperature.   

 

Solvent free grinding experiments were carried out on BZN with co-molecules 3- and 4- 

chlorobenzoic acid, 3- and 4- bromobenzoic acid and 3- and 4- fluorobenzoic acid. Grinding 

was carried out for three minutes then the product stored for at least 24 hours at room 

temperature. The analysis of these experiments was by DSC and it was found that the solvent 

free experiments replicated well the solvent evaporation technique (Figure 4.61; see Appendix 

4.A for more evidence). 

 

 

 

Fig. 4.61  DSC thermograms from the product of the co-crystallisation of benzimidazole with 4-chlorobenzoic 

acid crystallised from propanol (-) acetone (-), ethanol (-), methanol (-) and by the solvent free method (-). The 

results indicate that the solvent free method replicates the more traditional evaporation technique. 
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Further studies to test the technique involved varying the grinding time and storage time after 

sample preparation. These experiments were carried out on the benzimidazole and 3-

chlorobenzoic acid molecular complexes as these were found to have at least two polymorphs 

and a possibly third observed in powder diffraction and DSC data; a multi-phase product such 

as this is obviously more of a challenge and potentially of more interest. Figure 4.62 shows 

the full DSC trace of the products from grinding benzimidazole and 3-chlorobenzoic acid 

together for 30 seconds, 2 minutes and 5 minutes. It can clearly be seem that when longer 

grinding times are used the outcome favours the thermodynamic product (e.g the most stable 

polymorph) and the resulting product is more uniform. It has been found that the molecular 

complexes prepared using solvent free grinding tend to be less crystalline and thus show 

broader peaks in both DSC and X-ray powder diffraction data. 

 

 

 

Fig. 4.62  DSC thermogram from the product of the solvent free co-crystallisation of benzimidazole with 3-

chlorobenzoic acid with grinding times of 30 seconds (-), 2 minutes (-) and 5 minutes (-). The results indicate 

that the thermodynamic product is favoured with increasing grinding time.  

 

The stability of the product of solvent free crystallisations was tested by analysing the product 

regularly over a 6 month period. Figure 4.63 displays the DSC traces of the solvent free 

grinding experiments of benzimidazole and 3-chlorobenzoic acid, for a grinding time of 2 

minutes. It was found that the longer the product was stored the greater chance the 

thermodynamic product would prevail, thus highlighting product stability issues. 
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Fig. 4.63  DSC traces of the product of the solvent free co-crystallisation of benzimidazole with 3-

chlorobenzoic acid grinding for 2 minutes and stored for no time (-), 24 hours (-) and 2 weeks (-). The results 

indicate that the thermodynamic product is favoured with increasing storage time.  

 

These experiments testing the solvent free co-crystallisation technique underline that this 

technique is capable of producing molecular complexes that the traditional solvent 

evaporation method can produce. It also highlights that this method has the potential to reveal 

rapidly the different phases / polymorphs that the system can produce.  

 

A wider study was then undertaken on a much greater range of co-molecules (Table 4.17). 

From the solvent-free co-crystallisation results it can be seen that there was a potential for 

three new molecular complexes of benzimidazole having been produced, with aspartic acid, 

5-chlorosalicylic acid and glycine. The tradition solvent evaporation method mirrored the 

solvent-free results, by producing two new molecular complexes, benzimidazolium aspartate 

and benzimidazole and 5-chlorosalicylic acid, that also produced different polymorphs 

(Figure 4.64). It also concurred with the solvent-free in the negative results and the 

unsuccessful co-crystallisations of benzimidazole and glycine produced an oil (see appendix 

4.B).  
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Co-Molecule Solvent Free Method Solvent Evaporation Technique 

  DSC DSC Single Crystal 

ascorbic acid SM SM - 

aspartic acid NP NP NP 

Cysteine SM SM - 

glutamic acid SM SM - 

Glycine NP Oil produced - 

Histidine SM SM - 

Guanosine SM SM - 

Thymine SM SM SM 

Creatine SM SM SM 

5-chlorosaliclyic acid NP NP NP 

D-Valine SM SM - 

Isobartituric acid SM insoluble - 

D-alanine SM SM SM 

Cytidine SM SM SM 

Alenine SM SM SM 

Thymidine SM SM - 

Uracil SM SM SM 

Guanine SM insoluble - 

acetlysalicylic acid SM SM - 

 

Table 4.17  Results from solvent-free and solvent evaporation co-crystallisations involving benzimidazole with 

a range of co-molecules. SM represents starting materials while NP represents new product.  Only co-

crystallisation experiments with aspartic acid and 5-chlorosalicylic acid produced new molecular complexes. 

 

 
 

Fig. 4.64  DSC patterns of starting materials benzimidazole (-), 5-chlorosalicylic acid (-) and the co-

crystallisation product of the two (-) formed by the solvent-free method. 
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4.5.2 Molecular Complex of Benzimidazole and 5-Chlorosalicylic Acid 1:1 

 

Guided by the successful solvent free experiments, solvent evaporation experiments were set-

up on the target systems using four common solvents, methanol, ethanol, propanol and 

acetone. From these initial experiments it could be seen from the DSC thermogram of the 

products that there were at least three polymorphs present and that selective growth could be 

achieved for two of them (Figure 4.65) 

 

 

Fig. 4.65  DSC thermogram of the product from co-crystallisation of benzimidazole and 5-chlorosalicylic acid 

at 30ºC in propanol (-), acetone (-), ethanol (-) and methanol (-). Inset,  selective polymorph growth has been 

achieved for two of the co-crystal polymorphs by recrystallisation from methanol (-) Form I and ethanol (-) Form 

III. 

 

Further experiments were then set up to attempt to control the formation of the third possible 

polymorph and to promote the growth of diffraction quality crystals of all forms. Table 4.18 

summarises the results of co-crystallisation experiments at various temperatures and solvents, 

Form I is the most obtainable form followed by Form III, however Form II is only produced 

in conjunction with Form I.  The powder diffraction data, Figure 4.66a, highlights two clear 

Forms (I and III). Single crystal X-ray diffraction quality crystals were only obtained for 

Form I (Figure 4.66b) 
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  Methanol Ethanol Propanol Acetone 

10ºC       

20ºC      

30ºC     

35ºC     

Table. 4.18 – Visual Summary of the products obtained from varying the crystallisation conditions, Form I 

(blue), Form II (red), Form III (yellow) 
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Fig. 4.66a  Powder patterns of the products of crystallisation from three different environmental conditions to promote growth of single component of; form I (blue) 

using methanol at 10ºC, form I and II mix phase (red) using ethanol at 10ºC and form III (yellow) using ethanol at 30ºC. Two different products can clearly be identified 

from these powder patterns, while form II is mixed with form I. 
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Overlay of Form 1 and Simulated Pattern from Solved Structure ALMART0706

Operations: Y Scale Mul  0.625 | Y Scale Mul  0.208 | Import

Simulated Powder Pattern From Solved Structure ALMART0706  - File: ALMART0706 Simulated Powder Pattern From Solved Structureb.raw - Type: 2Th/Th locked - Start: 5.000 ° - End: 50.000 ° - Step: 0.020 ° - Step time: 1. s - Te

Operations: Import

ALMART0701 Benzimidazole + 5-Chlorosalicylic Acid MeOH 10° - File: ALMART0701 Benzimidazole + 5-Chlorosalicylic Acid MeOH 10°.raw - Type: 2Th/Th locked - Start: 5.000 ° - End: 60.002 ° - Step: 0.017 ° - Step time: 240.5 s 

L
in

 (
C

o
u

n
ts

)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

2-Theta - Scale

5 10 20 30 40

Fig. 4.66b  Powder x-ray diffraction pattern of benzimidazole and 5-chloro-2-hydroxybenzoic acid cocrystallised from methanol at 10ºC (blue) 

overlaid with the simulated powder pattern from solved structure solution of form I.  
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Structure Description 

 

The molecular ions, BZNH
+
 and 5-chloro-2-hydroxybenzoate (5-Cl-2HBA

-
) form a 1:1 

molecular complex.  The molecular complex was obtained using the solvent evaporation 

method, with a 1:1 stoichiometric mixture of  benzimidazole (13mg) and 5-chlorosalicylic 

acid (17.5mg) dissolved in the minimum amount of methanol followed by evaporation at a 

constant temperature of 10ºC using an Asynt hotplate. The crystals generated were block 

shaped and colourless.  Single crystal X-ray diffraction data were obtained using a Rigaku R-

axis/RAPID diffractometer at 100K, equipped with graphite monochromated Mo Kα radiation 

(λ = 0.71073 Å). The structure was solved using SIR92
30

 within the CRYSTALS
31

 program.  

The crystallographic data are summarised in Table 4.4. Figure 4.67 shows the BZNH
+ 

molecule created as described in Section 4.2.1 As in other examples discussed above, the 

equalisation of the internal bond lengths, N1
 δ+

-C1 1.328(1)Å and N2
 δ+

-C1 1.321(2) Å, and 

bond angles, C1-N1
δ+

-C2 107.99(9)º and C1-N2
δ+

-C7 108.23(9)º is due to the protonation.  

The intramolecular hydrogen bond in the 5-Cl-2HBA
- 

molecules is relatively short with an 

O···O distance of 2.559(1)Å which is significantly shorter than the O···O distance of 2.577Å 

that is found in 5-chlorosalicylic acid caffeine molecular complex
35

 (CSD reference 

CAFSAL). This is due to the intramolecular hydrogen bond being charged assisted, a result of 

the deprotonation of the 5-chlorosalicylic acid in the present case.  

 

 

 

Fig. 4.67 – The benzimidazolium and 5-chloro-2-hydroxybenzoate molecules which are generated in the 

molecular complex with atom labelling.  
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Table 4.19 – All the interactions that are present in the BZNH
+
 5-Cl-2-HBA

-
 molecular complex 

 

The main motif in the BZNH
+
 5-Cl-2-HBA

-
 molecular complex is a four molecule hydrogen 

bonded ring consisting of alternating co-molecules with partially charge assisted N
δ+

-H····O
δ-

 

hydrogen bonds, which can be described by the graph set notation symbol 4

4R (16) (Figure 

4.68). These moderate strength hydrogen bonds are of length N1
δ+

-H····O2
δ-

 2.660(1)Å and 

N2
δ+

-H····O1
δ-

 2.663(1)Å(Table 4.19). This hydrogen bonded ring motif is identical to that 

seen in the BZNH
+ 

2-HBA
-
, it uses the same hydrogen bond pattern E, it has similar lengths 

(2.622(1) Å and 2.649(1) Å) and is described by the same graph set notation. The difference 

between the structures is the results of the effect of the weaker interactions on the packing. 

 

 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

O3···O1 2.559(1) 0.89(1) 1.75(2) 150(1) 

N1···O2 2.660(1) 0.89(2) 1.79(2) 165(1) 

N2···O1 2.663(1) 0.92(1) 1.78(1) 162(1) 

C1···O2 3.118(1) 0.92(1) 2.27(1) 153(1) 

C6···O3 3.561(1) 0.92(1) 2.70(1) 156(1) 

C6··C11 3.592(2) 0.92(1) 2.88(1) 135(1) 

Cl1···C5 3.541(1) - - - 

π···π stacking 3.341 - - - 
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Fig. 4.68 – The main motif of the benzimidazolium 5-chloro-2-hydroxybenzoate molecular complex; a four 

molecule hydrogen bonded ring consisting of alternating co-molecules with partially charge assisted N
δ+

-

H····O
δ-

 hydrogen bonds.  

 

There are two interactions that have the effect of stacking the rings upon one another creating 

a column of hydrogen bonded rings. This column runs along the b-axis and is held together by 

a weak hydrogen bond and π∙∙∙π stacking interactions (Figure 4.69).  The π∙∙∙π stacking 

interactions are between the BZNH
+ 

molecules and of length 3.341(2)Å (between carbons C2 

and C3) (Figure 4.66 black box). The weak hydrogen bond is one that is often seen in the 

molecular complexes involving BZNH
+ 

molecules, that is a hydrogen bond from the carbon 

sandwiched between the two nitrogens (C1) and a oxygen from the carboxylate group (O2) 

(Figure 66 red box).  This hydrogen bond, C1-H∙∙∙O2
δ-

, has length of 3.118(1)Å and is the 

shortest of the weaker interactions that influence the packing in the molecular complex.  

 

  

Fig. 4.69 – The main motif of the benzimidazolium 5-chloro-2-hydroxybenzoate molecular complex; the four 

molecule hydrogen bonded ring consisting of alternating co-molecules, are expanding along the b-axis by a weak 

hydrogen bond and π∙∙∙π stacking interactions. Inset black box– An expanded image of the π∙∙∙π stacking 

interactions that connect the hydrogen bonded rings together. Inset red box– An expanded image of the π∙∙∙π 

stacking interactions that connect the hydrogen bonded rings together. 
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Expanding the structure along the a-axis, connecting the hydrogen bonded rings edge to edge, 

are two weak hydrogen bonds that form a bifurcated 

hydrogen bond (Figure 4.70). These weak hydrogen 

bonds are formed between a carbon of the BZNH
+ 

and the hydroxyl oxygen, C6-H∙∙∙O3, and carbon 

(C11) of the 5-Cl-2HBA
-
, C6-H∙∙∙C11. The 

asymmetrical bifurcated hydrogen bond has the major 

component as the C6-H∙∙∙O3 bond which has length 

3.561(1)Å and minor component C6-H∙∙∙C11 of 

length 3.595(2)Å. These weak hydrogen bonds 

expand the structure along the a-axis and are the only 

interactions that do so (Figure 4.71). 

 

 

Fig. 4.71 – The main motif of the benzimidazolium 5-chloro-2-hydroxybenzoate molecular complex;  four 

molecule hydrogen bonded ring consisting of alternating co-molecules, are expanding along the a-axis by two 

weak hydrogen bonds, C-H∙∙∙C and C-H∙∙∙O, that are circled in red. 

 

The hydrogen bonded rings stack upon each other along the b-axis through π∙∙∙π stacking 

interactions and a weak hydrogen bond (Figure 4.69). The a-axis is expanded by bifurcated 

weak hydrogen bonds (Figure 4.70) which leaves the c-axis that is expanded through halogen 

bonds (Figure 4.72). These halogen bonds, Cl1∙∙∙H-C5, are of length 3.541(1)Å and are the 

only interactions that expand the structure along the c-axis. 

 

Fig. 4.70 – The two weak hydrogen 

bonds, C-H∙∙∙C and C-H∙∙∙O, which 

expand the structure along the a-axis.  
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Fig. 4.72 – Halogen bonds, Cl∙∙∙HC, connect the main motif of the benzimidazolium 5-chloro-2-

hydroxybenzoate molecular complex along the c-axis (green circle). 

 

4.5.3 Molecular Complex of Benzimidazole and L-Aspartic Acid 1:1 

 

The molecular ions BZNH
+
 and aspartate form a 1:1 molecular complex with one another.  

The molecular complex was obtained using the solvent evaporation method, with a 1:1 

stoichiometric mixture of BZN (12mg) and aspartic acid (14mg) dissolved in the minimum 

amount of methanol/water mixture followed by evaporation at room temperature. The crystals 

generated were needle shaped and colourless. Single crystal X-ray diffraction data were 

obtained using a Bruker-Nonius Kappa CCD diffractometer at 100K, equipped with graphite 

monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved using SIR92
30

 

within the CRYSTALS
31

 program. The crystallographic data are summarised in Table 4.3 and 

the inter- and intramolecular interactions are listed in Table 4.20.  
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Table. 4.20 – The interactions that are found within the benzimidazolium aspartate molecular complex 

 

In the molecular complex, the BZN molecule is protonated as discussed in section 4.3.1 

forming a BZNH
+
 molecule (Figure 4.73). The BZNH

+ 
bond legnths are delocalised reflected 

in the equalisation of the internal bond lengths, N1
 δ+

-C1 1.313(3)Å and N2
 δ+

-C1 1.318(3)Å, 

and bond angles, C1-N1
δ+

-C2 107.2(2)º and C1-N2
δ+

-C7 107.5(2)º.   

 

The L-aspartic acid molecule has not only undergone deprotonation but also transferred the 

other carboxylic acid proton to the amine group.  In its native crystal structure
36

 (CSD 

reference LASPRT04) the L-aspartic acid already exists as the zwitterion (protonation of the 

amine from one of the carboxylic acid groups), however still contains one carboxylic acid 

group. The deprotonation of both carboxylic acid groups results in a negative charge that is 

found to be delocalised over both the carboxylate groups. This can be seen by the degree of 

normalisation of the bond lengths with comparison to the protonated form (Table 4.21). 

 

 Aspartate (Å) Aspartic Acid (Å) 

C8-O1 1.259(2) 1.257(1) 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

N1···O1 2.615(2) 0.97(3) 1.65(3) 170(2) 

N2···O3 2.596(2) 0.87(3) 1.73(3) 177(3) 

N3···O1 2.776(2) 0.87(2) 1.84(3) 166(2) 

N3···O4 2.796(2) 0.95(3) 1.87(3) 172(2) 

N3···O2 2.759(2) 0.95(3) 1.87(3) 137(2) 

C1··O2 3.430(3) 0.94(2) 2.67(2) 138(2) 

C1···O4 3.459(3) 0.94(2) 2.66(2) 144(2) 

C5···O3  3.370(3) 0.94(3) 2.46(3) 161(2) 

C5···π 3.672(3) - - - 

Fig. 4.73 – The benzimidazolium and aspartate molecules which are generated in the molecular complex 

with atom labelling.  

. 
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C8-O2 1.238(2) 1.254(2) 

C11-O3 1.250(2) 1.214(2) 

C11-O4 1.2228(3) 1.315(1) 

Table 4.21 – A comparison of the bond lengths found in the aspartate molecule in its molecular complex with 

benzimidazolium and those of the parent aspartic acid.  

 

There are host of hydrogen bonds within the BZNH
+ 

aspartate molecular complex with 

lengths ranging from relatively strong distances of 2.596Å to relatively weak distances of 

3.377Å. The BZNH
+ 

molecules are involved in the strongest hydrogen bonds which are two 

partially charge assisted N
δ+

-H····O
δ-

 hydrogen bonds of lengths N1
δ+

-H····O1
δ-

, 2.615(2) and 

N2
δ+

-H····O3
δ- 

2.596(2)Å. These hydrogen bonds combine to create a linear chain of 

alternating aspartate and BZNH
+ 

molecules that lie above and below the chain (Figure 4.74). 

 

 

Fig. 4.74 – The main hydrogen bonds within the BZNH
+ 

aspartate molecular complex create a linear chain of 

alternating co-molecules. 

 

The amine group on the aspartate molecule is involved in three hydrogen bonds that are all of 

similar strengths (Figure 4.75). These hydrogen bonds are the next most influential after those 

involving the BZNH
+ 

molecule. They are of lengths N3-H∙∙∙O1
δ-

, 2.776(2)Å (green), N3-

H∙∙∙O4
δ-

, 2.796(2)Å (red) and N3-H∙∙∙O2
δ-

, 2.759(2)Å (blue).  
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Fig. 4.75 – The amine group of the aspartate molecule is involved in three hydrogen bonds, N3-H∙∙∙O1
δ- 

(green), 

N3-H∙∙∙O4
δ- 

(red) and N3-H∙∙∙O1
δ-

(blue).  

 

There are two weak hydrogen bonds that are influential within the structure. One is a three 

centred hydrogen bond (bifurcated) involving the carbon sandwiched between the nitrogens 

and an oxygen from each carboxylate group (Figure 4.76; a). These are of length C1-H∙∙∙O2
δ- 

3.430(3)Å and C1-H∙∙∙O4
δ- 

3.459(3)Å. The other weak hydrogen bond is also intermolecular 

and also involves an carboxylate oxygen (Figure 4.76; b). This hydrogen bond, C5-H∙∙∙O3
δ-

, is 

of length 3.370(3)Å and makes up the contingent of hydrogen bonds within this molecular 

complex 

 

 

Fig. 4.76 – The weak hydrogen bonds within the BZNH
+
 aspartate molecular complex: bifurcated hydrogen 

bonds (a) and C5-H∙∙∙O3
δ-

 hydrogen bonds (b). 

 

There are sets of lesser interactions that are influential within this structure, whose 

significance can be seen by looking at the extending structure. Figure 4.77 highlights how the 

linear chains of alternating co-molecules are connected through the hydrogen bonds involving 

the amine group. This has the effect of creating layers along the b-axis, with the first layer 

a 

b 
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being the linear chain (A), next the amine hydrogen bonds (B), back to linear chains (A), then 

the lesser interactions (C) before returning to A, then repeating this sequence B,A,C,A,B…. 

 

 

Fig. 4.77 – View along the b-axis of the expanded benzimidazolium aspartate molecular complex. The red line  

(-) indicates the chain of alternating co-molecule (Figure 4.74), the yellow box (-) indicates hydrogen bonds 

involving the amine group of the aspartate (Figure 4.75) and the black box is where the lesser interactions  

between the BZNH
+
 molecules operate(Figure 4.76). 

 

The lesser interactions are CH∙∙∙π edge to face interactions involving the BZNH
+ 

molecules. 

They are of length 3.622(3)Å (c) and 3.716(3)Å (d) (Figure 4.78) . 



 176 

 

Fig. 4.78  – The CH∙∙∙π edge to face interactions between the BZNH
+ 

molecules. 

 

4.6  Conclusions 

 

Of all the possible hydrogen bonding patterns of the uncharged species (Figure 4.12) and 

charged species (Figure 4.13) and the many possibilities of potential hydrogen bond motifs 

and supramolecular synthons, there were only four unique hydrogen bonding patterns (Figure 

4.79) and three hydrogen bond motifs (Figure 4.80) (excluding the hydrate for the hydrogen 

bonds) are observed. 

 

From Figure 4.79, hydrogen bond 1 incorporates all NH∙∙∙O hydrogen bonds which 

corresponds to hydrogen bond pattern E and F in Figures 4.12 and 4.13 and E and F in Table 

4.3. This, as would be predicted, is the most influential intermolecular hydrogen bond 

between the co-molecules and can vary, quite considerably, in strength. This hydrogen bond, 

as will be displayed throughout the rest of the results sections, is robust, dependable and 

flexible. The OH∙∙∙O hydrogen bond (Figure 4.79-2, Figure 4.12 and 4.13–G and Table 4.3-

G) between a hydroxyl and carboxylate oxygen, is a very common hydrogen bond for crystal 

engineers for its dependability and flexibility. In this body of work it promotes the ladder 

motif and is the most influential hydrogen bond listed in Figure 4.79, as when there is 

potential for this type of hydrogen bond (not available in the 2-HBA molecular complexes) it 

forms and determines the rest of the structure.  There is no better example than in the 

benzimidazole and 3,5-dihydroxybenzoic acid molecular complex, where the benzimidazole 

molecules seem to fit in where they are allowed. The other OH∙∙∙O hydrogen bond, Figure 

4.79-4, a carboxylic acid dimer (carboxylic acid and a carboxylate group) is only seen in the 

c 
c 

d 

d 
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BENZ
+ 

2-HBA
 

1:2 molecular complex, even though the carboxylic acid dimer is renowned 

in forming and is seen in many of the starting materials of the hydroxybenzoic acids and in 

other molecular complexes of which they are involved. The BZN
 
dimer (Figure 4.79-3, Figure 

4.12-C) only formed when there was an excess of BZN to the other co-molecule however 

examples in Chapters 5 and 7 will show that this is not always the case. For this hydrogen 

bond to form there needs to be a non protonated nitrogen atom. 

 

 

    

 

       

Fig. 4.79 – The four unique hydrogen bonds that were the only hydrogen bonds in all the crystal structures in 

Chapter 4, in order of occurrence 1, N
δ+
H∙∙∙O

δ-
, 2, OH∙∙∙O

δ-
, 3, N

δ+
H∙∙∙ N

δ+
, 4, OH∙∙∙O. 

 

Figure 4.80 shows the three motifs, hydrogen bond ring, chains of hydroxyl-benzoic acid 

dimers with connected BZN, and the ladder, with slight variations between the 

supramolecular synthons within the ladder structures. Firstly, the hydrogen bonded rings 

formed in the BENZH
+ 

2HBA
- 
1:1 molecular complex, using solely hydrogen bond pattern 1, 

is regularly seen in other molecular complexes in chapters 5, 6 and 7. with some derivatives. 

On the other hand, the ladder motif is only seen in the hydroxybenzoic acid molecular 

complexes, which is due to the availability of the hydroxyl group to form hydrogen bond 

pattern G (2 in Figure 4.79). Within the ladder motifs, there are two slight derivatives, ladders 

with rungs of BZN molecules and ladders with alternative rungs of BZN molecules. These 

derivatives are neatly shown in the BZNH
+ 

3HBA
- 

polymorphs where they both adopt the 

different styles. It would not be surprising if more polymorphs of the BZN and 3- / 4-HBA  

molecular complexes adopting the ladder motifs not discovered during this work were found, 

for example BZNH
+ 

3-HBA
- 
1:1 forming the alternative step ladder motif and the BZNH

+ 
4-

HBA
- 
2:1 forming the ladder with every step motif.  

1 

2 

3 
4 
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Fig. 4.80 – The motifs of the molecular complexes from Section 4.5 excluding benzimidazolium 4-

hydroxybenzoate hydrate and benzimidazolium 3,5-dihydroxybenzoate. The three unique hydrogen bond motifs 

are shown, the hydrogen bonded rings (BENZH
+ 

2HBA
- 
1:1), chains hydroxybenzoic acid dimers and the ladder 

motif. 

 

Even with six new structures being determined with these set of molecules, I believe there are 

still a real possibility to obtain more, for example BZN and 3-HBA/4-HBA in a 1:2 ratio 

could adopt a dimer structure similar to the Benz:2H-BA 1:2 complex or the ladder motif. 

However due to the likely motifs that the structures would adopt, it would be highly unlikely 

for some structures to be obtained, for example BZN and 2-HBA in a 2:1 ratio is unlikely to 

occur as the 2-HBA would need to adopt the ladder motif. Also I do not think the BZN 4-

HBA 1:1 molecular complex would occur as the geometry of the potential 4-HBA chains 

would be straight which would not allow the BZN to fit into the structure.  

 

A weak hydrogen bond has been found in nearly all the structures, indicating a high degree of 

reliability. The carbon – oxygen hydrogen bond involving the carbon sandwiched between the 

protonated nitrogens can be shorter than normal carbon oxygen hydrogen bonds due to the 

Benz:3H-BA 1:1 

Benz:3H-BA 2:1 I Benz:3H-BA 2:1 II 

Benz:4H-BA 2:1 Benz:2H-BA 1:1 

Benz:2H-BA 1:2 

Hydrogen bonded rings of 

synthons (D) and (E) 

Ladder with stiles of HBA 

(G) and rungs of BZN ( D) 
Ladder with stiles of HBA (G) and 

alternate rungs of BZN dimers ( D and 

C) 

HBA dimers (G) held by 

BZN (D) and (E) 

Ladder with stiles of HBA (G) and 

alternate rungs of BZN dimers ( D and C) 
Ladder with stiles of HBA 

(G) and rungs of BZN dimers 

( D and C) 
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electronegative nature of the carbon with lengths as short as 3.091Å (normally around 

3.2~3.5Å
##

) However there are structures when this hydrogen bond lies within the normal 

range. These carbon-oxygen hydrogen bond always uses the carbon labelled C1 (or C8 when 

more than one BZN in the asymmetric unit) in structures and is found to be reliable in 

structures found throughout this project.  

 

When scrutinising the ΔpKa difference values (Table 4.4) for the molecular complexes 

obtained, it can be seen that the rule governing if a salt or co-crystal will form has been 

accurate. There was no ΔpKa value under 0, therefore no co-crystals would be expected, 

which has occurred. The majority of the ΔpKa values do lie within the 0~3 range that 

normally means prediction is impossible, however in these cases the salt form always 

prevails.  

 

The solvent free grinding method, validated to an extent in the experiments described, is a 

very old method giving a new lease of life. There is debate over whether the term solvent free 

is correct (refer to Section 1.5) but there can be no debate that this technique works and is 

able to generate new materials and even materials unobtainable from normal solvent methods.   
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4.8  Appendix  

4.8.1 Appendix 4.A - DSC Thermograms of Solvent Free Co-crystallisations of 

BZN with Halo-BA 
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4.8.2 Appendix 4.B - DSC Thermograms of Solvent Free Co-crystallisations of 

BZN with a Range of Co-molecules 
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5 Solvent Mediated Molecular Complex Polymorphism and 

Isomorphic Formation 

 

This chapter will focus on the co-crystallisation of benzimidazole with various halo-

substituted benzoic acids. The primary aim of this work was to promote and control the 

formation of molecular complex polymorphs through varying crystallisation conditions 

including choice of solvent and crystallisation temperature. Powder X-ray diffraction (PXRD) 

and differential scanning calorimetry (DSC) were primarily used for characterisation of the 

resulting products due to difficulties in the growth and isolation of single crystals of all forms. 

 

The theme of controlling the formation of polymorphs, as previously discussed at section 

1.4.1, is of utmost importance to many different areas of industry. The quote by McCrone
1
, 

―the number of forms known for a compound is proportional to the time and money spent in 

research on the compound‖ highlights the poor understanding of polymorph formation and 

the often serendipitous nature of discovery.  

 

In addition to the molecular complex polymorphs obtained, isostructural series of compounds 

have been produced (refer to Section 1.4.3) where the sole chemical difference is the identity 

of the halogen atom; isostructures were however not obtained in a predictable manner. 

 

This chapter will also look at the influence of halogen atoms involved in intermolecular 

interactions, including halogen bonding and halogen – π interactions. These weaker 

interactions are becoming increasingly important in molecular complex design, however they 

have historically been hard to use in crystal structure design due to their less directional and 

predictable nature (refer to Section 1.2.7). 

 

5.1  Introduction 

 

The complete series of mono-substituted iodo-, bromo-, chloro- and fluoro-benzoic acids have 

been used as co-molecules in the attempted synthesis of molecular complexes of 

benzimidazole. Halobenzoic acids themselves have many uses in the chemical industry, for 
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example 4-chlorobenzoic acid is used as an intermediate in the manufacturing of dyes, 

fungicides and pharmaceuticals
2
. However it was not for these reasons alone that they were 

selected as co-molecules. 

 

The carboxylic acid functional group found on halobenzoic acids is universally popular for 

crystal engineers as in many cases it forms predictable hydrogen bonds
3
. Benzoic acids are 

often found to produce hydrogen bonded dimers between the carboxylic acid groups, and this 

is always observed in the pure halobenzoic acid crystal structures.  This dimer motif has also 

been found to persist in some molecular complexes.  

 

The presence of halogens in molecules is also known to influence the crystal packing and so 

this aspect has also been investigated. As discussed (Section 1.2.7) halogen interactions have 

increasingly become an area of interest with much research concentrating on the manipulation 

of these interactions and their use in design of extended architectures.  

 

5.1.1 2-Fluorobenzoic Acid 

 

2-Fluorobenzoic acid (Figure 5.1) is of interest in metabolism studies
4
, however only one 

molecular complex of this material has been deposited in the 

Cambridge Structural Database (CSD). 4-(1H-pyrazol-1-

ylmethyl)benzamide 4-fluorobenzoic acid (CSD reference OCIQEX) 

(Figure 5.2) was discovered by Aakeroy
5
 in 2006. The main 

supramolecular synthon is a double hydrogen bond between the 

carboxylic acid and carboxamide groups. It can also be noted that the 

fluorine atom on one of the fluorobenzoic acid groups is disordered 

over two sites; this also occurs in the 2-fluorobenzoic acid molecular 

complex generated during this project. There is no structure of 2-

fluorobenzoic acid starting material in the CSD. 

 

Fig. 5.1 – 2-

fluorobenzoic acid. 

OHO

F
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Fig. 5.2 – Basic building block of the 2-fluorobenzoic acid: 4-(1H-pyrazol-1-ylmethyl)benzamide molecular 

complex structure found in the CSD with a fluorine atom on one of the fluorobenzoic acid groups is disordered 

over two sites 

 

5.1.2 3-Fluorobenzoic Acid 

 

3-Fluorobenzoic acid (Figure 5.3), like 2-fluorobenzoic acid, has no known structural data 

and only one molecular complex structure in the CSD. 3-fluorobenzoic acid has been 

cocrystallised with 4-acetylpyridine (CSD reference HOLJAU) within the Wilson group in 

2009
6
 (Figure 5.3). The only hydrogen bond within this structure is an O-H∙∙∙N bond.  

 

   

Fig. 5.3 – LHS, 3-fluorobenzoic acid; RHS, 3-fluorobenzoic acid : 4-acetylpyridine molecular complex with the 

fluorine atom disorded over two positions (common with fluorine atoms) explaining the overlap of the hydrogen 

and fluorine atoms.  

 

5.1.3 4-Fluorobenzoic Acid 

 

4-Fluorobenzoic acid is used as an intermediate for the production of pesticides and 

pharmaceuticals
2
.  The structure of the starting material was reported in 1992 (CSD reference 

OHO

F
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PFBZAD01)
7
 with a carboxylic acid dimer as the main supramolecular synthon (Figure 5.4). 

This structure also contains a halogen bond, F∙∙∙O-H, of 3.246Å which connects the linear 

carboxylic acid dimers. 

 

   

Fig. 5.4 – Basic building block of the 4-fluorobenzoic acid crystal structure, RHS, 4-fluorobenzoic acid. 

 

4-fluorobenzoic acid has also been successfully cocrystallised with isonicotinamide in a one 

to one ratio (CSD reference ASAXUN)
8
 and as bis(N,N'-bis(2-

fluorobenzylidene)ethylenediamine-N,N')-silver(i) 4-fluorobenzoate 4-fluorobenzoic acid 

solvate (CSD reference UCIWIN)
9
. The 4-fluorobenzoic acid: isonicotinamide molecular 

complex (Figure 5.5) contains heterodimers connected through an O-H∙∙∙N hydrogen bond. Of 

particular interest is that a 4-fluorobenzoic acid dimer is held together by a relatively strong 

halogen bond, F∙∙∙F, of distance 2.618 Å. 

 

 

Fig. 5.5 – Basic building block of the 4-fluorobenzoic acid : isonicotinamide molecular complex. 

 

5.1.4 2-Chlorobenzoic Acid 

 

2-Chlorobenzoic acid is used as an intermediate in manufacture of drugs especially 

mefenamic acid and also in the manufacture of dyes and pigments. Its crystal structure was 

solved by Braga and co-workers in 2008
10

 (Figure 5.6). 

 

OHO

F
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Fig. 5.6  The carboxylic acid dimer that is the main supramolecular synthon in the 2-chlorobenzoic acid crystal 

structure; RHS, 2-chlorobenzoic acid. 

 

During the same research, 2-chlorobenzoic acid was also successfully cocrystallised with 2-

methlybenzoic acid (Figure 5.7). The carboxylic acid dimer is once again the main hydrogen 

bond motif with weaker hydrogen bonds building up the structure. Both independent 

molecules have the chloro and methyl substituents disordered over two sites of equal 

occupancy. 

 

 

Fig. 5.7 – The main building block of the 2-chlorobenzoic acid : 2-methylbenzoic acid molecular complex. Both 

independent molecules have the chloro and methyl substituents disordered over two sites of equal occupancy 

 

5.1.5 3-Chlorobenzoic Acid 

 

3-Chlorobenzoic acid is used as a raw material in the production of the drugs loratadine
11

 

(antihistamine) and amfebutamone
12

 (antidepressant). The structure of this molecule (Figure 

5.8) was solved in 2003 (CSD reference MCBZAC01)
13

 at room temperature and to an R-

factor of 6.29%. The carboxylic dimer has surprisingly been distorted from the normal planar 

geometry with the carboxylic groups lying at 87.3º to one another while still maintaining 

medium strength hydrogen bonds (2.558 Å). This must be a consequence of the Cl∙∙∙O-C 

halogen bond with the chlorine having a steric effect on the carboxylic dimer.  

OHO

Cl
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Fig. 5.8- Crystal structure of the 3-chlorobenzoic acid molecule; RHS, 3-chlorobenzoic acid. 

 

3-Chlorobenzoic acid has successfully been cocrystallised with a range of co-molecules 

including 2,5-dibromo-1-(di-isopropylamido)-3,4-diphenyl-2,5-dihydrophosphole 1-oxide 

(CSD reference – EDUWOP)
14

, triphenylphosphine oxide (CSD reference – MACJEG)
15

, 2-

picoline (CSD reference- ROKQEN)
16 

and hemikis((1RS,2RS,3RS)-3-N,N-

dibenzylaminocyclohexane-1,2-diol N-oxide) (CSD reference – POYXOR)
17

 among others. 

Of particular interest is the 3-chlorobenzoic acid : 2-picoline N-oxide molecular complex 

(Figure 5.9), containing a simple O-H∙∙∙O hydrogen bond as the main synthon and the halogen 

interaction assisting in expanding the structure.  

 

 

Fig. 5.9 – Building block of the 3-chlorobenzoic acid 2-picoline N-oxide molecular complex.  

 

5.1.6 4-Chlorobenzoic Acid 

 

4-Chlorobenzoic acid is probably the most industrially useful halobenzoic acid as it is used as 

an intermediate for manufacturing dyes, fungicides, pharmaceuticals and other organic 

chemicals and is also a preservative in adhesives and paints
2
. The structure shows the 

carboxylic acid dimer, with dimers linked through halogen bonds of Cl∙∙∙Cl 3.366(2)Å 

OHO

Cl
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distance in length (Figure 5.10).  It has been studied with neutron diffraction by Wilson
18

 

where it was found that the acidic proton is disordered over two sites with the occupancies 

changing with differing temperature.   

 

   

Fig. 5.10 – Structure of 4-chlorobenzoic acid highlighting the carboxylic acid dimer being held together by a 

chlorine-chlorine halogen bond, RHS, 4-chlorobenzoic acid. 

 

This molecule has three molecular complexes reported in the CSD, N,N-dimethylformamide 

(CSD reference – ACERAC)
19

, (P)-tryptamine (CSD reference – FINZIM)
20

 and 4-amino-N-

(4,6-dimethyl-2-pyrimidinyl)benzenesulfonamide 4 (CSD reference – YIZQAA)
20

 (Figure 

5.11).  

 

 

Fig. 5.11 – LHS, structure of the 4-chlorobenzoic acid : N,N-dimethylformamide molecular complex,  RHS, 4-

chlorobenzoic acid : sulfadimidine molecular complex. 

 

5.1.7 2-Bromobenzoic Acid   

 

There are no structures of any sort involving 2-bromobenzoic acid 

(Figure 5.12) in the CSD and information in the literature is 

limited to basic chemical properties. 

 

O

HO

Cl

OH O

Br

Fig. 5.12 – 2-bromobenzoic 

acid molecule. 
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5.1.8 3-Bromobenzoic Acid 

 

There are limited uses and information on 3-bromobenzoic 

(Figure 5.13) acid in the literature, however it is involved in one 

structure reported in the CSD. Bis(bis(m2-3-bromobenzoato-

O,O')-(2,2'-bipyridyl)-(3-bromobenzoato-O,O')-terbium(iii)) 

bis(3-bromobenzoic acid) dihydrate (CSD reference - 

TIDXAG)
21

 is a metal organic framework with six 3-

bromobenzoic acid molecules coordinating to the terbium metal 

centre and one hydrogen bonding to a water molecule.  

 

5.1.9 4-Bromobenzoic Acid 

 

4-Bromobenzoic acid is a known intermediate in the preparation of drugs, dyes and 

pigments
22

. Its structure was solved in 2004 with CSD reference - BRBZAP02
23

 (Figure 5.14) 

showing that the carboxylic acid dimers are being held together by O∙∙∙H-C hydrogen bonds 

(with C∙∙∙O distances of 3.415(5)Å) to form layers. The layers are connected vertically by - 

stacking interactions with these columns of layers interacting with one-another through long-

distance bromine – bromine interactions of 3.835 Å. 

 

   

Fig. 5.14 – The 4-bromobenzoic acid structure highlighting the carboxylic acid dimers being held together by 

weak C-H∙∙∙O hydrogen bonds; RHS, 4-bromobenzoic acid. 

 

5.1.10 2-Iodobenzoic Acid 

 

OHO

Br

Fig. 5.13 – 3-bromobenzoic 

acid molecule. 

OHO

Br
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2-Iodobenzoic acid is a starting material for the preparation of iodosobenzoate (an oxidant 

which performs the synthesis of carbonyl compounds from primary/secondary alcohols) and 

flufenamic acid (with anti-inflammatory properties). Its structure was solved (Figure 5.15) in 

2002
24

, which showed how the carboxylic acid dimers are held together by I∙∙∙I halogen bonds 

of 3.916Å in length. There are no other structures containing 2-iodobenzoic acid in the CSD. 

 

   

Fig. 5.15 – Structure of 2-iodobenzoic acid (CSD reference - OIBZAC01); the carboxylic acid dimer is held 

together by iodine-iodine halogen bonds. RHS, 2-iodobenzoic acid. 

 

5.1.11 3-Iodobenzoic Acid 

 

3-Iodobenzoic acid (Figure 5.16) is used in the organic synthesis of iodine-containing small 

molecules. There is no structural data for this molecule however it has been cocrystallised 

with N-carboxymethyl-N,N'-dimethylpiperazine (CSD reference SIXBAD)
25

 (Figure 5.16), in 

which the 3-iodobenzoic acid does not form carboxylic acid dimers.  

 

   

Fig. 5.16 – LHS- 3-iodobenzoic acid; RHS, structure of 3-iodobenzoic acid and N-carboxymethyl-N,N'-

dimethylpiperazine molecular complex. 

 

5.1.12 4-Iodobenzoic Acid 

 

OHO

I

OHO

I
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The structure of 4-iodobenzoic acid has been extensively studied by single crystal X-ray 

diffraction at various times (CSD references BENMOW, BENMOW01
26

 and the 

BENMOW02
26

 series) and over various temperatures (CSD references – BENMOW02 to 

BENMOW09)
27

. There is a difference in the space group reported between the older 

structures (BENMOW and 01) and the newer structures (BENMOW02 series), however the 

difference is a P21/n to P21/a change between symmetrically equivalent structures.  

 

The structure shown in Figure 5.17 shows that the carboxylic acid dimer is again the main 

hydrogen bond motif  with I∙∙∙I halogen bonds (distances ranging from 3.932(9)Å to 

3.957(1)Å) connecting them together. 

 

    

Fig. 5.17 – The structure of 4-iodobenzoic acid; carboxylic acid dimers are held together by iodine iodine 

interactions. RHS, 4-iodobenzoic acid. 

 

4-Iodobenzoic acid is involved in four molecular complexes all from the same body of work 

by Aakeroy (2009)
28

. These complexes are with 3-(2-amino-4-methylpyrimidin-6-yl)pyridine 

(AMP-P) toluene solvate (Figure 5.18, top left), 3-(AMP-P) 2,3,5,6-tetrafluoro (Figure 5.18, 

top right), 4-(AMP-P) (Figure 5.18, bottom left) and 1-(AMP-P) (Figure 18, bottom right). 

There are no carboxylic acid dimers formed in these structures, instead Figure 5.18 visually 

highlights the robustness of the carboxylate / amino-pyrimidine hydrogen bond motif 

throughout these systems. 

 

OHO

I
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Fig. 5.18 – Top left, basic building block of the 3-(AMP-P)  toluene 4-iodobenzoic acid solvate with CSD 

reference – COWHOM, top right, the 3-(AMP-P) 2,3,5,6-tetrafluoro 4-iodobenzoic acid molecular complex 

main hydrogen bond motif with CSD reference – COWHUS, bottom left, the molecular complex of 4-(AMP-P) 

4-iodobenzoic acid which has CSD – reference COWJAA and lastly bottom right, 1-(AMP-P) 4-iodobenzoic 

acid with CSD reference – COWJOO. 

 

5.2  Summary of Results 

Benzimidazole has successfully been cocrystallised with a range of halo-benzoic acids (Table 

5.1) generating a range of molecular complexes. These molecular complexes have been 

analysed, where possible, by single crystal X-ray diffraction and subsequently powder X-ray 

diffraction and DSC. Neutron diffraction data collected at the ILL Grenoble were also 

collected on several of these molecular complexes. 

 

Benzimidazole Ortho Meta Para 

Fluorobenzoic Acid    

Chlorobenzoic Acid    

Bromobenzoic Acid    

Iodobenzoic Acid    

Table 5.1 – Summary of the successful (blue) and unsuccessful (grey) co-crystallisation experiments between 

benzimidazole and the various halobenzoic acids.  
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To date no solid material has been generated through the co-crystallisation of benzimidazole 

and 2-chloro/bromobenzoic acid, regardless of the solvent or temperature regime used. 

However, it is worthwhile to note that the co-crystallisation of these materials produces an 

oil-like substance suggesting that a low melting point complex may have been formed. All the 

benzimidazole and iodobenzoic acid co-crystallisation experiments produced only single 

components, regardless of the wide range of physical conditions used.  

 

The main aim was to identify if these systems could generate molecular complex polymorphs 

and then selectively control the growth of each polymorph. Table 5.2 highlights the systems 

where molecular complex polymorphism occurred and could be selectively controlled through 

solvent and / or temperature changes. It can be seen that polymorphism has been confirmed in 

the systems that involve benzimidazole with 3-chlorobenzoic acid, 4-chlorobenzoic acid and 

4-bromobenzoic acid. 

  

Benzimidazole Ortho Meta Para 

Fluorobenzoic Acid    

Chlorobenzoic Acid    

Bromobenzoic Acid    

Iodobenzoic Acid    

Table 5.2 – Summary of the systems where molecular complex polymorphism was confirmed by single crystal 

data (blue), polymorphism identified using powder data (green), no polymorphism occurred (yellow) and no 

molecular complex generated (grey). 

 

During analysis of the results, it was noted that there were many similarities between the 

different molecular complexes generated. The primary hydrogen bond in nearly all molecular 

complexes is a  partially charge assisted N
δ+

-H∙∙∙O
δ-

 hydrogen bond with a proton transferring 

from the carboxylic acid group to the unprotonated nitrogen of the benzimidazole (Section 

5.2.1). The consequence of the occurrence of the same supramolecular synthons generating 

the same motif, with the co-molecules only changing in the attached halogen atom, resulted in 

the identification of isostructures. Table 5.3 summarises where these isostructures have 

occurred. 

 

 

Benzimidazole Ortho Meta Para 
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Fluorobenzoic Acid    

Chlorobenzoic Acid    

Bromobenzoic Acid    

Iodobenzoic Acid    

Table 5.3 –A summary of the molecular complexes that have generated isomorphic structures (blue and yellow), 

with grey indicating no isomorphism. 

 

5.2.1 Benzimidazolium Ion 

 

Where the crystallisation product is in a 1:1 stoichiometric ratio of benzimidazole and a 

carboxylic acid containing molecule, the benzimidazole is protonated through hydrogen 

transfer from the carboxylic acid group onto the normally unprotonated nitrogen atom in the 

five-membered ring, creating a benzimidazolium molecule (BZNH
+
) (Figure 5.19). The effect 

of the proton transfer on the benzimidazolium molecule is a delocalisation of the charge 

across the five-membered ring, reflected in the equalisation of the internal bond lengths N
δ+

-

C-N
δ+

 and bond angles C-N
δ+

-C (Table 5.4). The delocalisation of the charge has the effect of 

creating a partial positive charge on both the nitrogens. This effect has been reported in many 

structures involving benzimidazole and imidazole.  

 

     

Fig. 5.19 – LHS, a typical benzimidazolium molecule where both nitrogens are protonated; RHS, the Fourier 

difference map generated where the H atoms located on a nitrogen atom have been omitted from the model, 

clearly shows that both nitrogen atoms are protonated.   

 

The consequence for the co-molecule that has been deprotonated is the creation of a negative 

charge. The negative charge is found to be delocalised over the carboxylic acid group by 

consideration of the normalisation of the bond lengths in the carboxylate group. 
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Molecular 

Complexes 

BZN   

3-ClBA I 

BZNH+   

3-ClBA- 

II 

BZNH+  

4-ClBA- 

BZNH+   

4-BrBA-  

BZN  

3-BrBA
*
  

BZNH+ 2-

FBA- 2-

FBA 

BZN 

BZNH+ 

4-FBA 

 4-FBA-   

N-C(Å) 

2
nd

 molecule 

1.328(8) 1.329(2) 1.335(3) 

1.334(2) 

1.335(2) 

1.327(3) 

1.319(3) 1.3305(1) 1.359(3) 

1.329(2) 

N-C(Å) 

2
nd

 molecule 

1.358(9) 1.342(2) 1.340(2) 

1.339(2) 

1.328(3) 

1.329(2) 

1.335(3) 1.3252(1) 1.323(2) 

1.331(3) 

C-N-C(º) 

2
nd

 molecule 

107.5(4) 106.3(1) 107.8(1) 

108.0(0) 

107.2(2) 

108.3(2) 

106.6(2) 108.16 108.0(2) 

107.9(2) 

C-N-C(º) 

2
nd

 molecule 

105.2(5) 107.8(1) 108.6(1) 

108.5(2) 

108.3(2) 

108.0(2) 

108.0(2) 108.17 108.1(2) 

104.4(2) 
Table 5.4 – The N

δ+
-C-N

δ+
 bond lengths and C-N

δ+
-C bond angles for the molecular complexes discussed in 

Chapter 5. *Note that BZN 3-BrBa has, on average, partial iomic species of the co-molecules 

 

5.2.2 Primary Hydrogen Bonds 

 

Consideration of the co-molecules involved in the successful generation of molecular 

complexes of benzimidazole would point to a series of possible hydrogen bonds that could be 

generated (Figure 5.20). All these hydrogen bonds have many examples in the Cambridge 

Structural Database and have been of interest in their own right.  

 

Fig. 5.20  The potential homo-hydrogen bonds (A, B and C) and hetero-hydrogen bonds (D, E and F) that can 

be exhibited between a benzimidazole and carboxylic acid group.  
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As indicated, certain hydrogen bonding motifs appear in various different molecular complex 

structures. For ease of defining, the most prominent hydrogen bonds that appear in at least 

two of the structures will be outlined and labelled for future reference (Figure 5.21) and their 

scalar quantities given (Table 5.5). Note that this does not include secondary interactions that 

may play as influential a part in the structure as these primary hydrogen bonds. 

 

 

Fig. 5.21 - The most prominent hydrogen bonds within the benzimidazole : halobenzoic acid molecular 

complexes: N-H∙∙∙N hydrogen bond (A), N-H∙∙∙O hydrogen bond (B) and O-H∙∙∙O hydrogen bond (C).  

 

A 

B 

C 
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Molecular 

Complexes 
BZN   

3-ClBA I 

BZNH+   

3-ClBA- 

II 

BZNH+  

4-ClBA- 

BZNH+   

4-BrBA-  

BZN  

3-BrBA
*
  

BZNH+ 

2-FBA- 2-

FBA 

BZN 

BZNH+ 

4-FBA 

 4-FBA-   

Hydrogen 

Bonds 

A
,  N

δ
+-H

····N
δ

- 

D∙∙∙A(Å) - 2.677(2) - - 2.693(3) - 2.750(2) 

D-H(Å) - 1.338(1) - - 0.76(5) - 0.94(2) 

H∙∙∙A(Å) - 1.338(1) - - 1.94(5) - 1.81(2) 

D-H∙∙∙A 

angle(º) 

- 180.00(9) - - 171(6) - 179(2) 

B
,  N

δ
+-H

····O
δ

- 

D∙∙∙A(Å) 2.575(7) 

2.760(5) 

2.830(2) 2.606(2) 

2.682(2) 

2.642(2) 

2.900(2) 

2.832(2) 

2.597(2) 

2.667(2) 

2.638(2) 

2.850(2) 

2.848(2) 

2.843(3) 2.719(3) 

2.691(3) 

 

 

2.800(2) 

2.687(2) 

D-H(Å) 0.95195) 

0.950(5) 

0.84(2) 0.93(2) 

1.05(3) 

0.97(2) 

0.87(2) 

0.87(2) 

0.94(3) 

0.78(2) 

0.92(3) 

0.77(2) 

0.77(2) 

0.80(4) 0.91(5) 

0.90(4) 

0.85(2) 

0.93(2) 

H∙∙∙A(Å) 1.640(5) 

1.874(4) 

2.00(2) 1.56(3) 

1.80(2) 

1.67(2) 

2.15(2) 

2.27(3) 

1.65(3) 

1.91(2) 

1.72(3) 

2.17(2) 

2.36(3) 

2.06(4) 1.85(4) 

1.79(5) 

2.13(3) 

1.77(3) 

D-H∙∙∙A 

angle(º) 

166.5(3) 

154.1(3) 

172(3) 

 

176(2) 

169(3) 

157(2) 

144(2) 

122(2) 

178(3) 

163(3) 

147(2) 

141.6(2) 

123(2) 

170(3) 162(4) 

171(5) 

135(2) 

179(2) 

C
, O

H
····O

δ
- 

D∙∙∙A(Å) - 2.492(2) - - 2.493(3) 2.5764(1) 2.528(2) 

D-H(Å) - 1.246(1) - - 0.68(4) 0.856(5) 1.03(3) 

H∙∙∙A(Å) - 1.246(1) - - 1.82(4) 1.767(5) 1.50(3) 

D-H∙∙∙A 

angle(º) 

- 180.00(8) - - 169(5) 156.7(4) 177(3) 

Table. 5.5 – The hydrogen bond scalar quantities, donor – acceptor (D∙∙∙A), donor – hydrogen (D-H) and 

hydrogen – acceptor (H∙∙∙A) distances, and hydrogen bond angle (D-H∙∙∙A) for the molecular complexes 

discusses in Chapter 5. *Note that BZN 3-BrBa has, on average, partial iomic species of the co-molecules 
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5.3  Crystallographic Data 

Compound BZN  3-ClBA I BZNH+  3-ClBA- II BZNH+ 4-ClBA- 

Formula C7 N2 H6, C7 O2 Cl H4 C7 N2 H6.5, C7 O2 Cl, H4.5 C7 N2 H6, C7 O2 Cl H4 

ΔpKa (1:1) 1.69 1.69 1.53 

Crystallisation 

Conditions 

acetone, ~2-4ºC methanol, ~2-4ºC methanol, ~2-4ºC 

Molecular weight / 

gmol
-1

 

274.70 274.45 274.71 

Temperature (K) 100 100 100 

Space Group P -1 P 21/c  P -1 

a (Å) 3.802(6) 4.0009(6) 9.334(4) 

b (Å) 12.358(13) 11.7056(17) 11.207(4) 

c (Å) 14.706(14) 26.480(4) 12.230(5) 

α (
o
) 109.37(2) 90 84.173(10) 

β (
o
) 99.18(4) 94.074(8) 77.990(12) 

γ (
o
) 101.46(3) 90 86.837(10) 

Volume (Å
3
) 619.5(13) 1237.0(3) 1243.8(9) 

Z 2 4 4 

θ range (˚) 3.028-27.484 1.542-33.011 3.077-27.483 

Completeness (%) 97.1 99.8 99.8 

Refln Collected 2745 41466 28693 

Independent 2745 4637 5698 

Refln 

(obs.I>2sigma(I)) 

2745 3982 3982 

Rint 0.096 0.071 0.046 

Parameters 172 205 431 

GooF on F
2
 0.9044 1.0505 0.8945 

R1 (Observed) 0.1372 0.0694 0.0344 

R1 (all) 0.1372 0.0694 0.0520 

wR2 (all) 0.1219 0.1553 0.0852 
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BZNH+  4-BrBA-  BZN 3-BrBA
*
  BZNH+ 2-FBA- 2-FBA BZN BZNH+ 4-FBA 4-FBA-   

C7 N2 H6, C7 O2 

Br H4 

C7 N2 H6.5, C7 O2 

Br H4.5 

C7 N2 H6, C7 O2 F 

H4, C7 O2 F H5 

C7 N2 H6, C7 O2 F H5 

1.57 1.72 2.26 1.38 

Ethanol, room 

temperature 

Ethanol, ~2-4ºC Methanol, RT then 

~2-4ºC 

Methanol, RT then ~2-

4ºC 

319.16 638.32 398.36 516.50 

100 200 100 100 

P -1 P 21/c  P 21/c P -1 

9.4515(5) 4.15350(10) 12.8630(8) 8.0327(4) 

11.2228(5) 11.6939(2) 11.3722(8) 12.1791(7) 

12.1857(5) 26.3600(5) 12.8196(8) 13.2117(8) 

84.102(2) 90 90 89.525(4) 

78.200(2) 93.8799(10) 103.134(3) 75.621(3) 

86.568(2) 90 90 74.452(3) 

1257.55(10) 1277.39(5) 1826.2(2) 1203.86(12) 

4 2 4 2 

3.051-27.481 1.549-27.442 1.626-28.088 1.594-30.665 

99.5 99.7 99.5 97.7 

29425 20237 46454 25201 

5749 2925 4425 7294 

5388 2378 3893 4496 

0.031 0.086 0.53 0.052 

431 220 1 431 

0.9433 0.9669 1.0791 1.1595 

0.0232 0.0336 0.0551 0.0491 

0.0248 0.0446 0.0635 0.0889 

0.0607 0.0990 0.1525 0.1575 

Table. 5.6 – Crystallographic data for the molecular complexes discussed in Chapter 5. *Note that BZN 3-BrBa 

has, on average, partial iomic species of the co-molecules 
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5.4   Results and Discussion 

 

5.4.1 Molecular Complex Polymorphism 

 

The most interesting set of molecular complexes with regard to polymorphism are those 

containing benzimidazole and 3-chlorobenzoic acid. Three molecular complex polymorphs 

have been discovered using powder diffraction with two of those producing single crystal 

structures. There are possibly two benzimidazole : 4-chlorobenzoic acid molecular 

complexes, one producing single crystal data with the other having been identified through 

powder XRD and DSC. The same is true for the benzimidazole : 4-bromobenzoic acid 

molecular complexes, where two possible polymorphs have been identified.  

 

5.4.1.1 Benzimidazole and 3-Chlorobenzoic Acid 1:1 

 

Benzimidazole and 3-chlorobenzoic acid has been the most intensively studied system during 

this project. Co-crystallisation experiments have ranged from using a wide range of solvents, 

various different temperatures, evaporation occurring in different types of glassware, the use 

of solvent-free and solvent-drop grinding experiments. An array of analytical techniques were 

deployed in characterising the resulting products.  

 

Initial experiments were set-up using just four different types of solvent, methanol, ethanol, 

propanol and acetone with evaporation occurring at room temperature. From these initial 

experiments three different products could already be observed to form, from the DSC (Figure 

5.22) and X-ray powder diffraction data (Figure 5.23). 
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Fig. 5.22  DSC data from the products of crystallisation of benzimidazole and 3-chlorobenzoic acid from four 

common solvents. Two different polymorphs can be clearly identified by two distinct melting points, but a third 

polymorph can also be identified in the samples crystallised from 1-propanol (1proh) and acetone. The shoulder 

on the principal peaks in these traces, representing the third polymorph, can be seen in the enlarged inset, taken 

from the acetone trace. 

 

 

Fig. 5.23  Powder patterns of the products of crystallisation from four common solvents propanol (-), acetone  

(-), methanol (-) and ethanol (-). Two different products can clearly be identified from these quick powder 

patterns (collected on the Rigaku R-axis/RAPID single crystal diffractometer) with crystallisation from propanol 

and acetone forming one product and methanol and ethanol the other.  
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Evidence of the third possible polymorph has been established using powder diffraction 

(Figure 5.24). These were identified after intensive studies into finding the optimal conditions 

to promote the growth of Form III. Acetone at 10ºC using the Microvate and acetone at ~2-

4ºC using the walk in fridge, gave for a period of time the Form III polymorph (which then 

transformed to Form I over a period of weeks).   

 

Fig. 5.24  Powder patterns of the products of crystallisation from three different environmental conditions to 

promote growth of single component of; form I (blue) using propanol at 10ºC, form II (yellow) using acetone at 

~2-4ºC and form III (red) using acetone at 10ºC. Three different products can clearly be identified from these 

powder patterns.  

 

The aim was to promote selective growth of a particular molecular complex polymorph 

through controlling the conditions. This obviously required an extensive range of conditions 

to be explored initially to find the conditions that promoted selective growth. This then 

allowed the growth of crystals suitable for X-ray diffraction by exploiting these conditions. 

Table 5.7 gives a visual display showing the products observed by varying the experimental 

environmental conditions. 
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 Methanol Ethanol Propanol Acetone 

2~4ºC      

10ºC        

20ºC         

30ºC       

Table 5.7 – The results of co-crystallisation experiments on the benzimidazole and 3-chlorobenzoic acid system 

in creating  Form I (blue), Form II (yellow), Form III (red). 

  

Unfortunately due to the limited conditions that promoted the growth of benzimidazole 3-

chlorobenzoic acid molecular complex Form III, single crystals were never obtained. Thus, 

high quality powder X-ray diffraction data were acquired (Figure 5.25), collected over two 

days on the Bruker D8 diffractometer with varying exposure time with the aim of solving the 

structure from this data. Although the technique of solving crystal structures from powder 

data is still relatively new, it has proven very successful by using programs such as DASH 

(refer to Section 2.2.4). However, due to the many unknowns regarding the possible structure 

of Form III – including molecular stoichiometric ratio, proton transfer, solvent inclusion – a 

solution was never found. 
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Fig. 5.25  Powder pattern of benzimidazole and 3-chlorobenzoic acid Form III collected over a 33 hour period.   
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Two molecular complex polymorphs of benzimidazole and 3-chlorobenzoic acid have been 

analysed successfully by single crystal X-ray diffraction, Forms I and II. They display two 

very different hydrogen bonding motifs, although these motifs are not unexpected.  

 

5.4.1.1.1 Benzimidazole : 3-Chlorobenzoic Acid Molecular Complex 1:1 Form I  

 

The benzimidazole (BZN) : 3-chlorobenzoic acid (3-ClBA) Form 1 molecular complex is a 

equimolar material obtained using the solvent evaporation method. Using a 1:1 stoichiometric 

mixture of  benzimidazole (12mg) and 3-chlorobenzoic acid (16mg) dissolved in the 

minimum amount of acetone followed by evaporation at a constant temperature of between 2 

and 4ºC using a walk in fridge gave crystals that were needle shaped and colourless.  Single 

crystal X-ray diffraction data were obtained using a Rigaku R-axis/RAPID diffractometer at 

100K, equipped with graphite monochromated Mo Kα radiation (λ = 0.71073 Å). The 

structure was solved using SIR92 within the CRYSTALS program. The crystallographic data 

are summarised in Table 5.6. This is one of only two molecular complexes which contain 

BZN and a carboxylic acid containing molecule in a 1:1 ratio where proton transfer has not 

occurred (Table 5.4). The data quality is relatively poor and thus accurate hydrogen positions 

are not fully reliable. However there is no residual electron density observed around the 

unprotonated nitrogen atom of the BZN and is instead clearly associated with the carboxylic 

acid group (Figure 5.26).  

 

  

Fig. 5.26 – LHS, Fourier difference map of the residual electron density in BZN : 3-ClBA molecular complex 

with the proton associated with the carboxylic acid group removed, RHS, the BZN and 3-ClBA molecules 

involved in the molecular complex with associated atom labelling. 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

N2···O2 2.575(7) 0.951(5) 1.640(5) 166(3) 
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Table. 5.8 – The intermolecular interactions involved in the BZN : 3-ClBA Form I molecular complex 

 

The result of the absence of proton transfer is that the BZN and 3-ClBA remain in their 

neutral state with no charge delocalised over the atoms and therefore no normalisation of 

bond lengths or angles.  

 

There are two primary hydrogen bonds within this structure; both are slight derivatives of 

hydrogen bond B (Figure 5.21) with only the positioning of the hydrogen the difference. The 

shorter of the two has the hydrogen on the oxygen, O2-H∙∙∙N2, which has length 2.575(7)Å 

while the other of length 2.760(6)Å has the hydrogen on the nitrogen, N1-H∙∙∙O1 (see Table 

5.5 for hydrogen bond data). The supramolecular synthons arrange themselves into an 

equimolar hydrogen bonded ring system that can be described by the graph set notation 

symbol 4

4R (16). This hydrogen bonded ring system is the motif of the molecular complex 

and contains two occurrences of each co-molecule (Figure 5.27).  

  

   

Fig. 5.27 – LHS, the main motif of the BZN : 3-ClBA Form I molecular complex; an equimolar hydrogen 

bonded ring system held together by N-H···O and O-H∙∙∙N hydrogen bonds; RHS, view along the b- axis that 

highlights the spatial arrangement of the equimolar hydrogen bonded ring system. 

 

N1···O1 2.760(6) 0.950(5) 1.874(4) 154(3) 

Cl1···Cl1 3.325(3) - - - 

C1···O2 3.272(8) 0.950(6) 2.518(5) 136(4) 

C10···O2 3.355(6) 0.951(4) 2.631(4) 132(3) 
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The hydrogen bonded rings are expanded by weaker interactions in all directions. The most 

influential are chlorine–chlorine interactions that expand the structure along the ab-diagonal 

axis (Figure 5.28). These interactions are of length 3.325(3)Å and are highly directional. 

 

Fig. 5.28 – View along the a-axis of the BZN : 3-ClBA Form I molecular complex highlighting how the 

chlorine chlorine interaction connects the rings together (green circles). 

 

The carbon located between the two nitrogens in the BZN molecule, a common hydrogen 

bond donor, is hydrogen bonded to an oxygen belonging to a different ring motif. Each of 

these carbons hydrogen bonds to an oxygen in opposite directions which results in stacks of 

hydrogen bonded rings which lie along the a-axis (Figure 5.29 LHS). This weak hydrogen 

bond, C1-H∙∙∙O2, is of length 3.272(8)Å (Figure 5.29 RHS). 

 

        

Fig. 5.29 – LHS, view along the b-axis of the BZN 3-ClBA Form I molecular complex highlighting how the 

hydrogen bonded rings stack upon one another. RHS, the weak hydrogen bond, C1-H∙∙O2, which stacks the rings 

upon one another. 
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The weakest interaction present in the BZN : 3-ClBA Form I molecular complex expands the 

structure along the b-axis. This weak hydrogen bond exists between two 3-ClBA molecules of 

different rings and involves a carbon of the benzene ring and carbonyl oxygen, C10-H∙∙∙O2, 

that has length 3.355(6)Å (Figure 5.30). 

 

 

Fig. 5.30  View along the a-axis of the BZN 3-ClBA Form I molecular complex. The hydrogen bonded rings, 

the main motif of the structure, are expanded along the b-axis by weak C-H∙∙∙O hydrogen bonds. 

 

Figure 5.31 is a view of the extended structure of the BZN : 3-ClBA Form I molecular 

complex. The main motif, hydrogen bonded rings, (blue circle) are stacked upon one another 

through carbon oxygen hydrogen bonds as seen in Figure 5.27. These stacks of hydrogen 

bonded rings are expanded along the b-axis by another weak carbon oxygen hydrogen bond 

(Figure 5.30) (red circle) to create blocks. Lastly these blocks are connected through chlorine–

chlorine interactions as describe in Figure 5.28 which completes the structure (green circle).  
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Fig. 5.31 – An extended view along the a-axis of the BZN 3-ClBA Form I molecular complex. The hydrogen 

bonded ring motif (blue circle), is expanded along the b-axis by weak C-H∙∙∙O hydrogen bonds (red circle) and 

the ab-diagonal by chlorine-chlorine interactions. 

 

5.4.1.1.2 Benzimidazole : 3-Chlorobenzoic Acid Molecular Complex 1:1 Form II  

 

Form II of the benzimidazole (BZN) : 3-chlorobenzoic acid (3-ClBA) molecular complex 

contains the ionic species in a 1:1 ratio, where each benzimidazole has an average 0.5+ charge 

and each 3-chlorobenzoic acid an average 0.5– charge.  The molecular complex was obtained 

using the solvent evaporation method, with a 1:1 stoichiometric mixture of  benzimidazole 

(12mg) and 3-chlorobenzoic acid (16mg) dissolved in the minimum amount of methanol 

followed by evaporation at a constant temperature of between 2 and 4ºC using a walk in 

fridge. This generated crystals that were blocky and colourless. Single crystal X-ray 

diffraction data were obtained using a Bruker ApexII diffractometer at 100K, equipped with 

graphite monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved using 

SUPERFLIP within the CRYSTALS program. The crystallographic data are summarised in 

Table 5.6.  

 

Form II of the BZN : 3-ClBA molecular complex contains the ionic species of the co-

molecules, rather than their neutral states found in Form I. The BZN molecule is partially 
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protonated through hydrogen transfer from the carboxylic acid group on the 3-ClBA molecule 

onto the normally unprotonated nitrogen atom in the five-membered ring forming a BZNH
0.5+

 

molecule (Figure 5.32). Therefore the 3-ClBA molecule retains a share of the proton forming 

a 3-ClBA
0.5- 

species. A centre of symmetry midway between two BZNH
0.5+

 molecules means 

that the hydrogen atom in this group is disordered over two positions, and overall the two 

hydrogen-bonded benzimidazole molecules exhibit a total 1+ charge. Equally, the two 3-

ClBA
0.5- 

molecules also have a proton positioned on a centre of symmetry and therefore the 

hydrogen atom in this hydrogen bond is disordered over two positions (Figure 5.33). The 

result of the proton transfer on the BZNH
0.5+

 molecule is delocalisation of the partial charge 

across the five-membered ring which has the effect of creating a partial positive charge on 

both nitrogens (Table 5.4). The 3-ClBA
0.5- 

molecules also exhibit partial normalisation of the 

carbon oxygen bond lengths due to the partial deprotonation.  

 

 

Fig. 5.32 – The co-molecules involved in the BZNH
0.5+

 : 3-ClBA
0.5- 

molecular complex (BZN : 3-ClBA Form II) 

with atom labelling. 

 

Table. 5.9 – The interactions that are present within the BZN : 3-ClBA Form I molecular complex 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

O1···O1 2.494(1) 1.246(1) 1.246(1) 180(1) 

N1···N1 2.676(1) 1.338(1) 1.338(1) 180(1) 

N2···O1 2.830(1) 0.84(2) 2.00(2) 172(3) 

C1···O2 3.074(1) 0.97(2) 2.17(2) 155(2) 

C13···Cl1 3.354(1) - - - 

C12···π 3.724(1) - - - 
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Fig. 5.33 – LHS, a MCE Fourier difference map generated where the H atoms located on the N atom have been 

omitted from the model, clearly showing that the proton is split over two sites; RHS, a MCE Fourier difference 

map generated where the H atoms located on the carboxylic acid group have been omitted from the model, again 

clearly showing that this proton is split over two sites. 

 

The major difference between the polymorphs is the motifs they adopt. Form I adopts the 1:1 

equimolar hydrogen bonded ring motif containing N-H∙∙∙O and O-H∙∙∙N hydrogen bonds, 

whereas the dominant Form II motif is a chain of alternate co-molecule dimers, linked 

together through N
δ+

-H∙∙∙O
δ- 

hydrogen bonds (Figure 5.34).  

 

   

Fig. 5.34 – LHS, the supramolecular synthon of the BZN : 3-ClBA Form II molecular complex, co-molecule 

dimers, linked together through N
δ+

-H∙∙∙O
δ- 

 hydrogen bonds, RHS, the main motif of the BZN : 3-ClBA Form I 

molecular complex, an equimolar hydrogen bonded ring system held together by N-H···O and O-H∙∙∙N hydrogen 

bonds. 

 

The 3-ClBA
0.5- 

dimer contains the strongest hydrogen bond within the structure, which has 

length O1
δ-

∙∙∙O1
δ-

, 2.4944(3)Å. This is shorter than the distance found within the carboxylic 



 216 

acid dimer of the 3-ClBA starting material (2.558(4)Å). The native BZN
 
structure has N-

H∙∙∙N hydrogen bonds of length 2.8845(3)Å, in this case it is also shortened to 2.6757(3)Å. In 

both the BZNH
0.5+ 

and 3-ClBA
0.5-

 the reason for the shortened hydrogen bond lengths is the 

presence of partially charged co-molecules, which creates a partially charge assisted hydrogen 

bond. The hydrogen bond that exists between the dimers, a N2
δ+

-H∙∙∙O1
δ-

 hydrogen bond, is 

on the long side at 2.8300(4)Å in comparison to other N
δ+

-H∙∙∙O
δ-

 interactions. Table 5.5 

contains the full hydrogen bond details. 

 

The molecular complex also contains a secondary supramolecular synthon that is an 

equimolar hydrogen bonded ring connecting two of the motifs together, that can be described 

by the graph set notation 4

4R (14) (Figure 5.35). This supramolecular synthon uses two weak 

hetero-hydrogen bonds; one is the hydrogen bond that holds the dimers together, N2
δ+

-

H∙∙∙O1
δ-

(a), while the other uses the carbon most susceptible to hydrogen bonding and the 

other oxygen of the carboxylic acid group, C1-H∙∙∙O2
δ-

 (b). This hydrogen bond has length 

3.0740(3)Å and is the only interaction that oxygen O2 is involved in. The hydrogen bonded 

ring expands the structure along the a-axis, which can be seen in Figure 5.34 LHS, this has 

the effect of stacking the layers of the motif upon one another.  

 

Fig. 5.35 – The secondary supramolecular synthon of the BZN : 3-ClBA Form II molecular complex that links 

the motifs together along the a-axis. 

 

The c-axis is expanded through two weaker interactions that can be seen Figure 5.36. The 

most influential is a halogen bond between the chlorine and a carbon of another 3-ClBA
0.5- 

molecule (c). The C13-H∙∙∙Cl halogen bond is of length 3.3536(3)Å which is of similar in 

a 

a 
b 

b 
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length to the chlorinechlorine interaction found in Form I. The other lesser interaction is a C-

H∙∙∙π bond between C12 of the 3-ClBA
0.5- 

molecule and the π-electrons of BZNH
0.5+

. The 

length of this interaction is rather long at 3.7241(5)Å. 

 

 

Fig. 5.36 – The lesser interactions c, halogen bond and d, C-H∙∙∙π interaction, that expand the structure along the 

c-axis. 

 

The BZN : 3-ClBA Form II molecular complex has a motif that is a chain of alternate co-

molecule dimers, linked together through N
δ+

-H∙∙∙O
δ- 

hydrogen bond that expands the 

structure along the b-axis. The secondary supramolecular synthon, an equimolar hydrogen 

bonded ring of weak hydrogen bonds, expands the structure along the a-axis while the c-axis 

is expanded by a halogen bond and C-H∙∙∙π interaction (Figure 5.37). For comparison the 

main motif of the BZN 3-ClBA Form I molecular complex is hydrogen bonded rings which 

are stacked upon one another through weak carbon oxygen hydrogen bonds. These stacks of 

hydrogen bonded rings are expanded along the b-axis by another weak carbon oxygen 

hydrogen bond to create blocks which are expanding through chlorine–chlorine interactions 

(Figure 5.31).   

 

c 

d 
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Fig. 5.37 – LHS, an extended view along the a-axis of the BZN : 3-ClBA Form II molecular complex. The 

motif, a chain of alternating co-molecule dimers (blue) is expanded along the c-axis via halogen bonds (green), 

RHS, an extended view along the a-axis of the BZN : 3-ClBA Form I molecular complex. The hydrogen bonded 

ring motif (red circle) is expanded along the b-axis by weak C-H∙∙∙O hydrogen bonds (red box) and along the ab-

diagonal by chlorine-chlorine interactions (green circle). 

 

5.4.1.2 Molecular Complex of Benzimidazole and 4-Chlorobenzoic Acid 1:1. 

 

The study into the benzimidazole and 4-chlorobenzoic acid system yielded two possible 

molecular complex polymorphs. The successful co-crystallisation experiments began by using 

the evaporation technique with just four different solvents at room temperature (Figure 5.38) 

  

 

Fig. 5.38 – DSC thermogram of the products from benzimidazole and 4-chlorobenzoic acid co-crystallisations in 

acetone (-) ethanol (-), methanol (-) and propanol (-). It can clearly be seen that there are two distinct 

endothermic changes that relate to phase changes around 123ºC and 132ºC. 
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A more extensive study similar to that carried out for the benzimidazole and 3-chlorobenzoic 

acid system was undertaken with the aim to grow selectively each of the molecular 

complexes. A visual summary can be seen in Table 5.10. 

 

 Methanol Ethanol Propanol Acetone 

Room T      

10ºC       

20ºC        

30ºC      

Table 5.10 – The results from the co-crystallisation experiments between benzimidazole and 4-chlorobenzoic 

acid with Form I (high temperature phase) shaded in blue and Form II (low temperature phase) in red. 

 

Powder X-ray diffraction studies of pure Form II resulted in an amorphous pattern, however 

experiments on what is thought to be a mixed phase, crystallised using acetone at room 

temperature, produced evidence for at least two forms (Figure 5.39). 

 

 

Fig. 5.39 - Powder patterns of the products of crystallisation from two different environmental conditions to 

promote growth of single component of Form I (blue) using ethanol at room temperature and a mixed phase of 

Forms I and II (red) using acetone also at room temperature.   
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From these findings, it should be possible to produce stable samples of Form II under the 

correct conditions.  This is tentatively termed a polymorph here as there are many similarities 

with this molecular complex system and that of benzimidazole and 4-bromobenzoic acid 

where two polymorphic forms can be clearly identified. 

 

The molecular ions, BZNH
+ 

and 4-ClBA
- 

form a 1:1 molecular complex with one another.  

The material was obtained using the solvent evaporation method, with a 1:1 stoichiometric 

mixture of benzimidazole (14mg) and 4-chlorobenzoic acid (16mg) in the minimum amount 

of acetone followed by evaporation at a constant temperature of ~2-4ºC using a walk in 

fridge. The crystals generated were block shaped and colourless. Single crystal X-ray 

diffraction data were obtained using a Rigaku R-axis/RAPID diffractometer at 100K, 

equipped with graphite monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was 

solved using SIR92 within the CRYSTALS program.  The crystallographic data are 

summarised in Table 5.6.  

 

As described in Section in 5.2.1, a BZNH
+ 

molecule is generated through hydrogen transfer 

from the 4-ClBA (Figure 5.40). This has the effect of normalising the internal BZNH
+ 

carbon 

– nitrogen bond lengths (Table 5.4) and the carbon – oxygen bond lengths on the 4-ClBA
- 
 

 (Table 5.11).  There are two of each co-molecule within the asymmetric unit.  

 

Fig. 5.40 - The molecular ions, two of each co-molecule BZNH
+ 

and 4-ClBA
-
 

that make up this molecular complex, with atom labelling.  The numbers, 1 to 

4, designate their molecule number. 

Table. 5.11 - The carbon – 

oxygen bond lengths within 

the two 4-ClBA
-
 molecules.  

 

 

 

 

Molecule 3 

C3-O1
δ- 

(Å) 1.288(2) 

C3-O1
δ-

(Å) 1.250(2) 

Molecule 4 

C3-O1
δ-

(Å) 1.261(2) 

C3-O1
δ-

(Å) 1.271(2) 1 2 3 4 
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Table. 5.12 – The inter- and intramolecular interactions found within the BZNH
+
 4-ClBA

- 
molecular complex 

 

The two 4-ClBA
-
 molecules have separate roles within the structure; one is involved in a 

hydrogen bonded ring, while the other acts to connect rings together. The same is seen with 

the BZNH
+ 

molecules. The hydrogen bonded ring uses molecules 1 and 3, described by the 

graph set notation 4

2R (8), that is made up of hydrogen bonds in the style of form B, through 

N2
δ+

-H∙∙∙O1
δ- 

and N2
δ+

-H∙∙∙O2
δ- 

hydrogen bonds.  The nitrogen of the BZNH
+ 

is involved in a 

double hydrogen bond of distance 2.900(2)Å and 2.832(2)Å (Table 5.12 for full interaction 

details) (Figure 5.41). This ring is one of the supramolecular synthons that make up the 

structure. 

 

Fig. 5.41 – The supramolecular synthon, the hydrogen bonded rings, involves one of each co-molecule. 

 

The hydrogen bonded rings are connected together by the other co-molecules, molecules 2 

and 4. They achieve this by forming a greater ring network which is the main motif for this 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

N2···O1 2.900(2) 0.87(2) 2.15(2) 144(2) 

N2···O2 2.832(2) 0.87(2) 2.27(3) 122(2) 

N1···O3 2.642(2) 0.97(2) 1.67(2) 157(2) 

N3···O4 2.682(2) 1.05(3) 1.80(2) 169(3) 

N4···O2 2.606(2) 0.93(2) 1.56(3) 176(2) 

Cl1···π 3.311 - - - 

C···Cl2 3.412(1) - - - 
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molecular complex and described by the graph set notation symbol 8

8R (32). Figure 5.42 

shows the motif coloured in a way that the symmetry equivalent molecules are the same 

colour, thus the supramolecular synthon (small hydrogen bonded ring) is yellow and green 

while molecules 2 and 4 are red and blue respectively. Three moderate hydrogen bonds hold 

the two smaller rings together; a, N
δ+

-H∙∙∙O
δ-

 2.642(2)Å, and b, 
 
N

δ+
-H∙∙∙O

δ-
 2.682(2)Å and c 

N
δ+

-H∙∙∙O
δ-

, 2.606(2)Å (Table 5.5). It can be seen that the ring is not closed off to other 

hydrogen bonds, the BZNH
+ 

molecules involved in the supramolecular synthon (molecule 1) 

can further expand the structure to create the next motif (Figure 5.42 red circle). 

 

 

 

Fig. 5.42  The motif  of the BZNH
+ 

and 4-ClBA
- 

molecular complex with molecules coloured that are 

symmetry related, i.e. molecule 1 yellow, molecule 2 red, molecule 3 green and molecule 4 blue. Highlighted by 

a red circle is the BZNH
+ 

molecules that further expand the structure. 

 

The only other significant interactions within the structure involve the chlorine atoms, the 

chlorine on molecule 4 is involved in a halogen–π interaction of length 3.311Å (measuring to 

a centroid position) with the other 4-ClBA
- 

molecule (Figure 5.43), while the chlorine on 

molecule 3 acts as the acceptor in a halogen bond with a C-H group on molecule 4 with length 

3.415(2)Å.  

a 
b 

c 
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Fig. 5.43 – The halogen bond and halogen–π interactions that exist between the two 4-ClBA
- 
molecules. 

The images in Figure 5.44 show the extended structure looking along the b and c axis. They 

both demonstrate that the motif, the extended ring network, expands the structure along the b 

and c directions while the halogen interactions connect the motifs together which therein 

expand the structure along the c-axis (green shaded area).  

  

Fig. 5.44 –  LHS, view along the b-axis of the BZNH
+ 

: 4-ClBA
- 
molecular complex; RHS, view along the c-

axis. Both images show the hydrogen bonded network that is held together by halogen interactions (green box 

and line). 

 

5.4.1.3 Molecular Complex of Benzimidazole and 4-Bromobenzoic Acid 1:1 

 

The benzimidazole : 4-bromobenzoic acid molecular complex does not just show similarities 

with the benzimidazole and 4-chlorobenzoic acid in terms of forming polymorphs, but their 

structures are also isomorphic.  
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Table 5.13 shows part of the range of crystallisation conditions used in trying to selectively 

grow each molecular complex polymorph. As can be seen from the DSC (Figure 5.45) and 

powder X-ray diffraction data (Figure 5.46), control of the different forms was relatively 

simple. 

 

 Methanol Ethanol Propanol Acetone 

Room T     

20ºC      

30ºC       

Table 5.13 – The results from the co-crystallisation experiments between benzimidazole and 4-bromobenzoic 

acid with Form I (high temperature phase) shaded in blue and Form II (low temperature phase) in red. 

 

 

Fig. 5.45 – DSC thermogram of the products of benzimidazole and 4-bromobenzoic acid co-crystallisations in 

acetone (-) and methanol (-). It can clearly be seen that there are two distinct endothermic changes that relate to 

phase changes around 123ºC and 142ºC. 
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Fig. 5.46 - Powder patterns of the products of crystallisation from four different environmental conditions to 

promote growth of single component of Form I (blue) using propanol and ethanol and Form II (red)  using 

acetone and methanol all at room temperature. The product pattern from the benzimidazole and 4-chlorobenzoic 

acid cocrystallisations 

 

As stated, the molecular complex BZNH
+
 : 4-ClBA

-
 is an isostructure of the BZNH

+
 : 4-

BrBA
- 
molecular complex. Therefore the report on this structure will give a brief description – 

refer to BZNH
+
 : 4-ClBA for full details. BZNH

+ 
and 4-BrBA

- 
form a 1:1 molecular complex 

with one another.  The material was obtained using the solvent evaporation method, with a 

1:1 stoichiometric mixture of benzimidazole (12mg) and 4-bromobenzoic acid (18mg) in the 

minimum amount of ethanol followed by evaporation at room temperature. The crystals 

generated were block shaped and colourless. Single crystal X-ray diffraction data were 

obtained using a Bruker Nonius Kappa diffractometer at 100K, equipped with graphite 

monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved using SIR92 

within the CRYSTALS program.  The crystallographic data are summarised in Table 5.6.  
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As described in Section 5.2.1 a BZNH
+
 molecule is generated through hydrogen transfer from 

the 4-BrBA. This has the effect of normalising the internal BZNH
+ 

carbon – nitrogen bond 

lengths (Table 5.4) and the carbon – oxygen bond lengths.  

 

As in the BZNH
+
 : 4-ClBA

-
 molecular complex the motif is a extended hydrogen bonded ring 

described by the graph set notation symbol 8

8R (32). The motif is made up of two smaller 

equimolar hydrogen bonded rings ( 4

2R (8)) involving one pair of co-molecules. The other co-

molecules join these rings together. All the interactions between the co-molecules are through 

moderate N
δ+

-H∙∙∙O
δ- 

hydrogen bond.  There are five unique N
δ+

-H∙∙∙O
δ- 

hydrogen bonds in the 

molecular complex and their scalar quantities are in Table 5.5.  The motifs hydrogen bond run 

along the b- and c-axis while halogen bonds extend the structure along the a-axis (Figure 

5.47). 

 

  

Fig. 5.47 –  LHS, View along the b-axis of the BZNH
+ 

: 4-BrBA
- 
molecular complex; RHS, view along the c-

axis. Both images show the hydrogen bonded network that is held together by halogen interactions (green box 

and line). 

 

5.4.2 Isomorphism 

 

“Two crystals are said to be isomorphic if they have the same structure, but not necessarily 

the same cell dimensions nor the same chemical composition, and with a 'comparable' 

variability in the atomic coordinates to that of the cell dimensions and chemical 
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composition”
29

. Analysis of the molecular complexes generated between benzimidazole the 

halobenzoic acid series resulted in the serendipitous discovery of two series of isostructures as 

discussed in Section 5.2 (Table 5.3) 

 

Benzimidazole Ortho Meta Para 

Fluorobenzoic Acid    

Chlorobenzoic Acid    

Bromobenzoic Acid    

Iodobenzoic Acid    

Table 5.3 –A summary of the molecular complexes – those that have generated isomorphic structures are 

coloured (blue and yellow) with grey indicating no isomorphism. 

 

The benzimidazolium : 4-chlorobenzoate and benzimidazolium : 4 bromobenzoate molecular 

complexes also produced polymorphism and thus were discussed in Sections 5.4.2 and 5.4.3, 

respectively. The benzimidazole : 3-chlorobenzoic acid Form II (section 5.4.1.3) is the 

isomorphic partner of the benzimidazole : 3-bromobenzoic acid molecular complex. 

  

5.4.2.1 Molecular Complex of Benzimidazole and 3-Bromobenzoic Acid 1:1 

 

Co-crystallisation experiments between benzimidazole and 3-bromobenzoic acid produced a 

new molecular complex which has been identified by powder X-ray diffraction (Figure 5.48) 

and its structure determined by single crystal X-ray diffraction. DSC analysis was less 

conclusive in this case as it produced a thermogram similar to that from the product of the 

benzimidazole 3-chlorobenzoic acid co-crystallisation experiments (Appendix A) which 

produced three polymorphs. Although molecular complex polymorphism was found in the 

isostructural polymorphs of benzimidazolium : 4-chlorobenzoate and benzimidazolium : 4-

bromobenzoate, the range of crystallisation conditions used have to date only produced a 

single form of benzimidazole : 3-bromobenzoic acid. 
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Fig. 5.48  Powder patterns of the products of crystallisation from three different environmental conditions to 

promote the growth the benzimidazole : 3-bromobenzoic acid molecular complex using methanol at 10ºC (red) 

ethanol at 10ºC (blue) and acetone at 10ºC (yellow).  The powder pattern of Form II benzimidazole 3-

chlorobenzoic acid, the corresponding isomorphic structure 

 

The molecular complex contains, on average, the partial ionic species of benzimidazole 

(BZN) and 3-chlorobenzoic acid (3-ClBA) in a 1:1 ratio, where each benzimidazole has an 

average 0.5+ charge and each 3-chlorobenzoic acid an average 0.5– charge. This is a 

consequence of the presence of two of each type of molecule in the asymmetric unit where the 

H atom is disordered over two positions. The result of the proton transfer on the BZNH
+
 

molecule is delocalisation of the partial charge across the five-membered ring which has the 

effect of creating a partial positive charge on both the nitrogens (table 5.4). The 3-BrBA
- 

molecules also observe partial normalisation of the carbon oxygen bond lengths due to the 

partial deprotonation. 

 

Block shaped colourless crystals were obtained using the solvent evaporation method, with a 

1:1 stoichiometric mixture of benzimidazole (12mg) and 3-bromobenzoic acid (18mg) in the 

minimum amount of ethanol followed by evaporation at ~2-4ºC. Single crystal X-ray 

diffraction data were obtained using a Bruker Kappa diffractometer at 200K, equipped with 

graphite monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved using 
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SIR92 within the CRYSTALS program. The crystallographic data are summarised in Table 

5.6.  

 

    

Fig. 5.49 – LHS, the supramolecular synthon of the BZNH
+
 : 3-BrBA

- 
molecular complex, dimers of each co-

molecule are connected through a N
δ+

-H∙∙∙O
δ- 

moderate hydrogen bond, RHS, the secondary supramolecular 

synthon of  that links the motifs together along the a-axis. 

 

The primary supramolecular synthons, dimers of the co-molecules held together through a 

N
δ+

-H∙∙∙O
δ- 

moderate hydrogen bond (see Table 5.5 for hydrogen bond details) (Figure 49 

LHS), connect along the b-axis to create a chain; this is the motif of the structure. These 

chains are held together through the secondary supramolecular synthon which is an equimolar 

hydrogen bonded ring made up of a weak C-H∙∙∙O and moderate N
δ+

-H∙∙∙O
δ- 

hydrogen bond 

which expands the structure along the a-axis (Figure 5.49 RHS). The c-axis is expanded 

through lesser halogen and C-H∙∙∙π bonds (Figure 5.50). 
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Fig. 5.50 – View along the a-axis of the extended structure of the BZNH
+
 : 3-BrBA

- 
molecular complex, the 

motifs (blue box) are held together through weak halogen and C-H∙∙∙π interactions (brown box).  

 

5.4.3 Benzimidazole and Fluorobenzoic Acid Structures  

  

The co-crystallisations between benzimidazole and halobenzoic acids also produced two new 

molecular complexes involving fluorobenzoic acid. 

 

5.4.3.1 Molecular Complex of Benzimidazole and 2-Fluorobenzoic Acid 1:2 

 

A 1:1 stoichiometric mixture of BZN (12mg) and 2-fluorobenzoic acid (2-FBA) (14mg) 

dissolved in the minimum amount of methanol followed by evaporation at room temperature 

to generate an oil, which then was transferred to a walk in fridge, ~2-4ºC, to form a new 

molecular complex. The molecular complex consists of the molecular ions BZNH
+
 and 2-

fluorobenzoate (2-FBA
-
) and the neutral molecule 2-fluorobenzoic acid that forms a 1:1:1 

molecular complex with crystals that are block shaped and colourless (Figure 5.51). Single 

crystal X-ray diffraction data were obtained using a Bruker Apex II diffractometer at 100K, 

equipped with graphite monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was 
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solved using SIR92 within the WINGX program.  The crystallographic data are summarised 

in Table 5.6. In this molecular complex as in others, hydrogen transfer from the carboxylic 

acid group on the 2-FBA
 
molecule onto the normally unprotonated nitrogen atom in the five-

membered ring forms BZNH
+
 molecules (see Section 5.2.1). The result is a delocalisation of 

the charge across the five-membered ring as reflected in the internal bond lengths and angle 

(Table 5.4).  

 

 

Fig. 5.51 – The BZNH
+
, 2-FBA and 2-FBA

-
 molecules, from left to right, that make up the BZNH

+
 : 2-FBA

-
 : 2-

FBA molecular complex, with atom labelling. 

  

Interacti

on 

Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds  2-FBA 2-FBA
- 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) C-O(Å) 1.317(1) 1.255(1) 

N1···O3 2.696(1) 0.90(4) 1.79(5) 171(5) 

N2···O3 2.723(1) 0.91(4) 1.85(5) 162(5) C-O(Å) 1.209(1) 1.264(1) 

O2···O4 2.576(1) 0.85(5) 1.76(5) 156(4) 

C13···F1 3.347(1) - - - Twisting 

(º)  

0.64 36.63 

C1···O4 3.019(1) 0.93(3) 2.44(4) 120(3) 

Table 5.14 – LHS, The interactions that are involved in the molecular complex of BZN and 2-FBA, RHS, bond 

lengths and degree of twisting of the carboxylate group data for the 2-FBA and 2-FBA
-
 molecules. 

 

The 2-FBA
 
molecule retains the proton on the carboxylic acid group and thus there is no 

normalisation of bond lengths (Table 5.14). On the other hand the ionic species, 2-FBA
-
, has 

been deprotonated and the consequential bond normalisation has occurred. The 2-FBA
-
 ion is 

also disordered over two sites with the best model having occupancy levels of F2a:F2b, 

0.75:0.25.   
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There are three primary hydrogen bonds within the BZNH
+
 : 2-FBA : 2-FBA

-
 molecular 

complex, two of form B and one of form A (Figure 5.52). The form B hydrogen bonds, N1
δ+

-

H∙∙∙O3
δ-

 and N2
δ+

-H∙∙∙O3
δ-

, are moderate in strength with lengths 2.6955(2)Å and 2.7226(1)Å 

respectively (Table 5.5). The form A hydrogen bond between the 2-FBA and 2-FBA
-
 

molecules is slightly shorter at 2.5764(1)Å.    

 

 

Fig. 5.52 – The primary hydrogen bonds within the BZNH
+
 : 2-FBA : 2-FBA

-
 molecular complex.  

 

The form B hydrogen bonds between the molecular ions arrange their molecules into a zigzag 

chain along the b-axis, this is the motif of the structure (Figure 5.53).   

  

Fig. 5.53 – The motif of the BZNH
+
 : 2-FBA : 2-FBA

-
 molecular complex, zigzag chains between the BZNH

+
 

and 2-FBA
- 
co-molecules using the N-H∙∙∙O form B hydrogen bond. LHS, view along the a-axis; RHS, view of 

the b-axis. 

 

Connecting motifs together is achieved through weaker interactions, one of which is a C-H∙∙∙F 

halogen bond that expands the structure along the ac-diagonal axis (Figure 5.54). This 

halogen bond is between two 2-FBA molecules, C13-H∙∙∙F1, and is 3.3466(2)Å long. 
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Fig. 5.54 – LHS, two motifs of the BZNH
+
 : 2-FBA : 2-FBA

-
 molecular complex held together along the ac-

diagonal axis by halogen bonds (yellow circle); RHS, view of the halogen bonds, C-H∙∙∙F.   

 

Expanding the structure along the bc-diagonal axis is a C-H∙∙∙O weak hydrogen bond (Figure 

5.55). The C1-H∙∙∙O4 interaction has length 3.0189(2)Å. There are other lesser interactions 

within the structure, however those are not significant and only assist in the interactions that 

have already been mentioned. 

 

  

Fig. 5.55 – The C-H∙∙∙O hydrogen bond that expands the structure along the bc-diagonal axis. 

 

5.4.3.2 Benzimidazole and 3-Fluorobenzoic Acid  

 

The co-crystallisation experiments between benzimidazole and 3-fluorobenzoic acid produced 

a powder which has been analysed using both DSC and powder X-ray diffraction (Figure 

5.56). These patterns indicate that a new material has been formed with a melting point of 

71ºC, much lower than that for both 3-fluorobenzoic acid (121-125ºC) and benzimidazole 

(170-172ºC). A wide range of crystallisation environments were tried to promote crystal 

growth, unfortunately no crystals suitable for single crystal X-ray diffraction studies were 

generated. The X-ray powder pattern and main DSC thermogram of the molecular complex 

was generated using the solvent drop method with methanol as the solvent.  
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Fig 5.56 – top, X-ray powder diffraction patterns of benzimidazole : 3-fluorobenzoic acid (red), 3-fluorobenzoic 

acid (blue) and benzimidazole (green) clearly indicating a new product has been produced, bottom, DSC 

thermogram of the same materials; benzimidazole : 3-fluorobenzoic acid (purple), 3-fluorobenzoic acid (red) and 

benzimidazole (green)  again indicating a new product is formed, insert, patterns of other co-crystallisations 

experiments.  
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5.4.3.3 Molecular Complex of Benzimidazole and 4-Fluorobenzoic Acid 1:1 

   

The molecular complex between BZN and 4-fluorobenzoic acid (4-FBA) contains one of each 

co-molecule and one of each of their ionic forms in a 1:1:1:1 ratio. The molecular complex 

was obtained using the solvent evaporation method, with a 1:1 stoichiometric mixture of  

BZN (12mg) and 4-BA (12mg) dissolved in the minimum amount of acetone followed by 

evaporation at a constant temperature of between 2 and 4ºC using a walk in fridge. The 

crystals generated were plate shaped and colourless. Single crystal X-ray diffraction data were 

obtained using a Bruker Apex II diffractometer at 100K, equipped with graphite 

monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved using SIR92 

within the CRYSTALS program. The crystallographic data are summarised in Table 5.6 with 

the interactions involved in the molecular complex listed in Table 5.15.  

 

This is the other example of a molecular complex which contains a BZN and a carboxylic 

acid containing molecule in a 1:1 ratio where proton transfer has not occurred. In this 

structure proton transfer occurs between one set of co-molecules but not the other (Figure 

5.57). The result is that one BZN molecule has been protonated forming a BZNH
+
 molecule 

and one of the 4-FBA molecule-has been deprotonated forming a 4-FBA
-
 molecule. The 

consequence of the proton transfer on the molecular ions is discussed in Section 5.2.1, while 

one pair of BZN and 4-FBA molecules remain in their neutral state. 

 

 

Fig. 5.57 – LHS, the BZNH
+ 

and BZN dimers with atom labelling; RHS, the 4-FBA
 

and 4-FBA dimers with 

associated labelling. 
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Table 5.15 – The interactions found in the BZN and  4-FBA molecular complex. 

 

As can be seen in Figure 5.54, each neutral molecule and its ionic counterpart interact with 

one another using hydrogen bond forms A and B. These hydrogen bonds are two of the four 

primary hydrogen bonds in the molecular complex with length, N-H∙∙∙N, 2.750(3)Å and ,O-

H∙∙∙O, 2.528(3)Å (see Table 5.15 for full hydrogen bond details). These hydrogen bonds have 

the effect of creating dimers of each co-molecule, which in turn are held together by the other 

primary hydrogen bond, form C, creating the supramolecular synthon. The two N-H∙∙∙O 

hydrogen bonds differ slightly in their acceptor atom strengths, with one involving 

deprotonated carboxylate oxygen while the other involves the neutral carboxylic acid oxygen. 

This explains the differences in strengths, 2.687(2)Å and 2.800(2)Å. The supramolecular 

synthons combine to form a zigzag chain of co-molecules, the motif of this molecular 

complex (Figure 5.58). 

 

 

Fig. 5.58 – View along the a-axis of the BZN : 4-FBA molecular complex, showing the main motif, a zigzag 

chain of dimers held together by N
δ+

-H∙∙∙O
δ- 

 hydrogen bonds that expand the structure along the ab-diagonal 

axis. 

 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

N2···N3 2.750(3) 0.750(2) 1.81(2) 179(2) 

O3···O2 2.528(3) 1.03(3) 1.50(3) 1.77(3) 

F2···C4 3.191(3) - - - 

F1···C11 3.297(3) - - - 

C1···O1 3.287(2) 0.95(2) 2.55(2) 135(2) 

C12···π 3.499 - - - 
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Connecting the chains along the c-axis are two halogen bonds of length a, 3.191(3)Å and b, 

3.297(3)Å (Figure 5.59). These C-H∙∙∙F halogen bonds are the only interactions that expand 

the structure along this direction. 

 

 

Fig. 5.59 – The a-axis of the BZN : 4-FBA molecular complex, showing the main motifs (blue line) held 

together along the c-axis by C-H∙∙∙F halogen bonds (a and b). 

 

The carbon located between the two protonated nitrogens of the BZNH
+
, C1, is involved in a 

weak hydrogen bond with the 4-FBA
- 
molecule (Figure 5.60). The C1-H∙∙∙O1 hydrogen bond 

has length 3.287(2)Å and is helped to expand the structure along the a-axis by a C-H∙∙∙π 

interaction of length 3.439Å (measured to a centroid between carbons, C19 and C20). 

a b 
a 

b 
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Fig. 5.60 – The a-axis is expanded by two interactions; a C-H∙∙∙O weak hydrogen bond (blue circle) and a C-

H∙∙∙π interaction (red circle).   

 

The structure is layered with the 4-FBA
- 
molecule the only molecule that does not lie along 

the c-axis and which promotes interactions between the layers. Figure 5.61 is an extended 

view along the c-axis which highlights two of the interactions between the layers, π∙∙∙π 

interactions (yellow circle) and C-H∙∙∙O weak hydrogen bonds (green circle). The C-H∙∙∙O 

weak hydrogen bonds, C-H∙∙∙O2 and C-H∙∙∙O3, have lengths 3.396(2)Å and 3.264(2)Å 

respectively, while the π∙∙∙π interactions are 3.360(4)Å in length. 
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Fig. 5.61 –Top, view along the c-axis of the BZN: 4-FBA molecular complex which highlights the two types 

interactions that exist between the layers: a π∙∙∙π stacking interaction between the BZN dimers (yellow circle) 

and the weak C-H∙∙∙O hydrogen bonds (green circle) between the 4-FBA molecules, bottom LHS, π∙∙∙π stacking 

interactions, bottom RHS,  C-H∙∙∙O weak hydrogen bonds. 

 

5.5  Conclusions  

 

The co-crystallisation experiments between benzimidazole and the halo-benzoic acid series 

resulted in the formation of seven previously undiscovered molecular complexes, 

benzimidazole with the following co-molecules: 2-fluorobenzoic acid, 4-fluorobenzoic acid, 

3-chlorobenzoic acid, 4-chlorobenzoic acid, 3-bromobenzoic acid and 4-bromobenzoic acid. 

Co-crystallisation experiments between benzimidazole and 3-fluorobenzoic acid produced a 

new material identified through DSC and powder analysis, however structure determination 

was unfeasible. Two experiments produced oils, those between benzimidazole with 2-

chlorobenzoic and 2-bromobenzoic acid while co-crystallisation experiments with the iodo 

range of halo-benzoic acids produced only starting materials.  

 

The aim of the work was to investigate the occurrence of molecular complex polymorphism 

and to control selectively the form produced. The results show that polymorphism is common 

within molecular complexes, with three of the seven newly discovered systems showing 

evidence of this. Fortunately, controlled growth of a selective polymorph can be achieved 

through changes in crystallisation conditions, as shown for the three materials that showed 

polymorphism.  Unfortunately, it only takes small changes in these conditions to promote 

other forms, for example co-crystallisations between benzimidazole and 3-bromobenzoic acid 

using acetone Form polymorph I at 30ºC, but Form II at 20ºC. 

 

Whilst polymorphism can be unpredictable, the types of hydrogen bonds formed between the 

co-molecules are much less so.  The three primary hydrogen bonds described in Section 5.3 
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are the only hydrogen bonds within these structures, which is also the case for those structures 

described in Chapter 4: ―Towards selective molecular complex formation: challenging crystal 

engineering‖. These dependable hydrogen bonds, N-H∙∙∙O, N-H∙∙∙N and O-H∙∙∙O, scalar 

quantities for which are given in Table 5.5, have slight ranges in length but always form the 

primary hydrogen bonds in the structures. In the case of benzimidazole with 3-chlorobenzoic 

acid, of the two forms that were structurally determined, Form I adopts the motif of chains of 

dimers while Form II adopts the motif of hydrogen bonded rings. All the other structures in 

the chapter falls into one of these two motifs, in an even split. No firm conclusions can be 

made to why a molecular complex forms a certain motif; further work would be needed. 

 

When evaluating the ΔpKa difference values (Table 5.6) for the molecular complexes 

obtained, it can be seen that the rule governing if a salt or co-crystal will form has been 

accurate. All of the cocrystallisations had ΔpKa values within the 0~3 range that normally 

means prediction is impossible, which is the case as in the example of polymorprhism within 

the BZN 3CL molecular complex, one form formed the co-crystal while the other formed the 

salt. The cases where the ratio of co-molecule was not 1:1, they tended to form a mixture of 

salt and co-crystal.   

 

In all seven of the structurally determined molecular complexes the halogen atom is involved 

in either a halogen bond or other significant halogen interaction.  These interactions tend to be 

individual in the role they adopt, they are often the only interaction that expands the structure 

in a particular direction. For example in the benzimidazole : 4-fluorobenzoic acid molecular 

complex the halogen bond is the only interaction that expands the structure along the c-axis. 

This body of work shows that the halogen bond is significant and is key in determining the 

overall packing in these structures. 
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5.7  Appendix  

5.7.1 Appendix A – DSC Thermograms of the Co-crystallisation Experiments of 

BZN and 3-BrBA.  

 

Key – The thermograms relate to co-crystallisations of BZN : 3-BrBA in different solvent; propanol (green), 

acetone (blue), acetone (brown), ethanol (pink) and methanol (dark blue)  
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6 Increasing the Competition – The Introduction of Competing 

Hydrogen Bonding Sites 

 

This chapter will investigate the effect of introducing nitrogen containing functional groups 

into the co-molecule on the supramolecular synthons obtained on co-crystallisation with 

benzimidazole and imidazole. The effect on proton transfer, hydrogen bonding motifs, 

crystallisation ratios, weaker interactions and the formation of solvates will be discussed. 

 

The first focus will be on challenging the synthons and hydrogen bond motifs created by co-

crystallisation of benzimidazole with co-molecules containing carboxylic- and hydroxyl- 

functional groups such as those found in Chapters 4 and 5, by introducing another basic 

nitrogen into the co-molecule. This additional basic nitrogen will take the form of carboxyl 

and hydroxyl substituted pyridines and should compete on two fronts: firstly with the other 

basic nitrogen on the benzimidazole for proton transfer; secondly for involvement in the 

potential hydrogen bonds. If left unprotonated, this will compete with the carboxylic acid 

group to be the primary hydrogen bond acceptor and if protonated, it will compete with the 

other protonated nitrogen on the benzimidazole for the primary hydrogen bond donor role.  

 

The second section will look at electronic effects introduced in the previously reported 

molecular complexes of nitro-substituted benzoic acid molecular complexes with 

benzimidazole and imidazole This particularly looks at effects such as the normalisation of 

the internal bond lengths, a consequence of the proton transfer, the strength of the hydrogen 

bonds with the variation in the position of the nitro group and the role of the weaker 

interactions that affect the packing of the structures. 
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Fig. 6.1 – The structure of picolinic acid 

showing the main hydrogen bonds between the 

molecules. Proton disorder can be seen between 

the carboxylic acid hydrogen bond and the 

weaker N-H∙∙∙H-N hydrogen bond. 

6.1  Introduction 

 

The co-molecules to be used in this chapter are picolinic acid, nicotinic acid, isonicotinic acid, 

hydroxypicolinic acids and nitrobenzoic acids. Of this range of compounds, the most widely 

recognizable is nicotinic acid, which is also known as vitamin B3. Two of the nitro substituted 

benzoic acids are commercially important while of the hydroxy substituted picolinic acids 3-

hydroxypicolinic acid is used as a matrix for nucleotides in mass spectrometry. 

 

6.1.1 Picolinic Acid 

 

Picolinic acid is used as an intermediate to produce pharmaceuticals (especially local 

anesthetics) and metal salts for the application of nutritional supplements. Picolinic acid is 

also a chelating agent in the body. The acid is believed to form a complex with zinc that 

facilitates the passage of zinc through the 

gastrointestinal wall and into the circulatory 

system
1
. Picolinic acid has been studied by X-

ray diffraction on three occasions, with the 

latest structure determination being in 1998 

(CSD reference PICOLA02)
2
. A hydrogen atom 

was found to be 50:50 disordered between the 

heteroatom in the ring and the carboxylic acid 

group (Figure 6.1). There are dimers of 

picolinic acid molecules linked through a single 

O–H····O hydrogen bond which are connected 

to one another by N–H∙∙∙N hydrogen bonds 

(Figure 6.1) and weaker C-H∙∙∙O hydrogen 

bonds. Picolinic acid has been complexed with a range of organometallic molecules including 

thalium
3
 and uranium

4
 among others, however of particular interest are the complexes it 

forms with other small organic molecules. One of the most recent complexes reported was 

with L-tartaric acid
5 

(CSD reference DULGIB) (Figure 6.2 LHS).  The deprotonated form, 

picolinate, has been found in a range of structures coordinated to metals including; samarium, 

europium, holmium, erbium, yttrium
6
 and in hydrogen bonded complexes with other small 
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organic molecules including 2-amino-5-methylpyridinium
7
 (CSD reference TUPVAC) 

(Figure 6.2 RHS). 

     

Fig. 6.2 – LHS, protonated picolinic acid : L-tartrate acid molecular complex; RHS, the molecular complex of 

picolinate and 2-amino-5-methylpyridinium, where the picolinic acid  has been deprotonated.  

 

6.1.2 3-Hydroxypicolinic Acid 

 

3-Hydroxypicolinic acid is used as a matrix for nucleotides in MALDI mass spectrometry 

analyses. There is no reported crystal structure of 3-hydroxypicolinic acid or any molecular 

complexes with other organic molecules within the CSD. There are examples of the 

deprotonated form, 3-hydroxypicolinate, with metals and organic molecules including; 

thallium
3
, 2,4-diamino-(p-chlorophenyl)-6-ethylpyrimidinium

8 
and acetoguanaminium

9 
(CSD 

reference QUWXIQ) (Figure 6.3). 

 

Fig. 6.3 – Basic building block of the acetoguanaminium 3-hydroxypicolinate monohydrate molecular complex. 

 

6.1.3 6-Hydroxypicolinic Acid 
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6-Hydroxypicolinic acid has recently been used as a raw material in the pharmaceutical 

sector. Its structure was determined in 1998
10

 and is more properly referred to as 2-oxo-1,2-

dihydropyridine-6-carboxylic acid (CSD reference POVFIP) (Figure 6.4 LHS). A hydrated 

structure (CSD reference NIGZEJ01)
11 

(Figure 6.4 RHS) contains the same double hydrogen 

bond unit, but with the hydrate molecules hydrogen bonding carbonyl and carboxylic groups. 

 

       

Fig. 6.4 – LHS, the structure of 6-hydroxypicolinic acid (2-oxo-1,2-dihydropyridine-6-carboxylic acid) and, 

RHS, a hydrate form.  

 

There are examples of complexes involving the deprotonated form with small organic 

molecules including chloro- and bromo- substituted 2-amino-pyridinium
7 

(CSD references 

SUZNEH and SUYXIU) (Figure 6.5). There are also a large number of examples of 6-

hydroxypicolinic acid complexes with metals for example; copper (CSD reference 

BOPXOU)
12

, manganese (CSD reference EXOYIZ)
13 

and lanthanum
 

(CSD reference 

PACSUI)
14

 to name but a few. 

 

 

Fig. 6.5 – The molecules involved in the 6-hydroxypicolinic acid 2-amino-5-chloropyridinium molecular 

complex. 
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6.1.4 Nicotinic Acid 

 

Nictotinic acid, also known as vitamin B3, is one of the forty to eighty essential human 

nutrients. A lack of vitamin B3 can lead to pellagra whose symptoms include high sensitivity 

to light, aggression, dermatitis and insomnia among 

a host of others but is classically referred to as the 

four D's: diarrhea, dermatitis, dementia and death. 

The first of the three published structures of 

nicotinic acid dates from 1953
15

. The most recent 

structure was published in 1983 by Scheringer et 

al
16

 (CSD reference NICOAC02) with the main 

hydrogen bond being between the nitrogen and the 

hydroxyl oxygen (Figure 6.6). There are only two 

structures of the neutral molecule contained in the CSD in complex with other small organic 

molecules. These are with 4-aminobenzoic acid (CSD reference SESLIM)
17

 and 3,5-

dinitrobenzoic acid (CSD reference AWUDEB)
18

. Other molecular complexes in the CSD 

show examples of both cations, where the nitrogen is protonated
5
 (CSD reference DULGEX) 

(Figure 6.7 LHS), and anions, where the carboxylic acid group is deprotonated
7
 (CSD 

reference PUKDEF) (Figure 6.7 RHS).  There are no examples of co-crystallisation products 

containing the zwitterionic form. 

 

.   

Fig. 6.7 – LHS, 3-carboxypyridinium hydrogen (2R,3R)-tartrate molecular complex where the nitrogen has been 

protonated; RHS, the molecular complex 2-amino-5-methylpyridinium nicotinate, where the carboxylic group on 

the nicotinic acid has been deprotonated.  

 

6.1.5 Isonicotinic Acid 

 

Fig. 6.6 – The nicotinic acid 

supramolecular synthon showing the 

dominating O-H∙∙∙N hydrogen bond. 
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The structure of isonicotinic acid was determinded in 1976 by Shimade et al
19

 (CSD reference 

ISNICA) and is found to have an O-H····N hydrogen bond (Figure 6.8 LHS). There are a host 

of structures where isonicotinic acid coordinates to metals, both through the basic nitrogen, 

for example with platinum
20

 (CSD reference BOXJEE), and through the carboxylic group, for 

example with gadolinium
21

 (CSD reference RUBLIK). There are no structures of neutral 

isonicotinic acid with other small organic molecules reported in the CSD, however there are 

complexes of both the protonated cationic and deprotonated anionic forms.  There are also 

examples where the zwitterion has been created by intramolecular proton transfer from the 

carboxylic acid group to the nitrogen. This has been found in a body of work by Zaworotko et 

al
22

 with co-molecules citric acid (CSD reference RUWGAS), gallic acid (CSD reference 

RUWGUM), quercetin (CSD reference RUWHUN) and 3,4-dihydroxybenzoic (Figure 6.8 

RHS) acid (CSD reference RUWHOH). 

 

 

Fig. 6.8 – LHS, the O-H····N hydrogen bond.in the crystal structure of isonicotinic acid; RHS, the molecular 

complex of isonicotinic acid protocatechuic acid monohydrate, with the zwitterionic form of isonicotinic acid. 

 

6.1.6 2-Nitrobenzoic Acid 

 

2-Nitrobenzoic acid is used as an intermediate in the manufacturing of pharmaceuticals, dyes 

and pigments.  The most recent crystal structure of 2-nitrobenzoic acid was published by 

Portalone
23 

in 2009 (Figure 6.9). The structure consists of a conventional hydrogen bonded 

carboxylic acid dimer (R2
2
(8)) with an inversion centre in the middle of the hydrogen bonded 

ring and the nitro groups twisted out of the plane. The crystal structure of 2-nitrobenzoic acid 

with benzimidazole in a 3:1 ratio has already been reported, creating the benzimidazolium 2-

nitrobenzoate bis(2-nitrobenzoic acid)
24

 molecular complex (Figure 6.9) (CSD reference 
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Fig. 6.10  The hydrogen bonded carboxylic acid 

dimer of benzimidazolium and 2-nitrobenzoic acid.  

 

XIBWAH). In this structure one of the 2-nitrobenzoic molecules is disordered over two sites.  

In common with all structures involving benzimidazole and a carboxylic acid containing 

molecule, there has been proton transfer with the basic nitrogen of the benzimidazole 

absorbing a proton.  The ratio of 3:1 among the constituent molecules is however unusual. 

   

Fig. 6.9 –  LHS, the hydrogen bonded dimer of 2-nitrobenzoic acid with the two molecules related by an 

inversion centre in the middle of the hydrogen bonded ring and the nitro- groups twisted out of the plane; RHS, 

the molecular complex of benzimidazolium 2-nitrobenzoate bis(2-nitrobenzoic acid) showing some of the 

hydrogen bonds between the molecules. 

 

6.1.7 3-Nitrobenzoic Acid 

 

3-Nitrobenzoic acid is a precursor to 3-aminobenzoic acid, which in turn is used to prepare 

some dyes. It is prepared by nitration of benzoic acid and is a factor of 10 times more acidic 

than benzoic acid itself. Its crystal structure was 

solved in 1990 by Domenicano
25

 (CSD 

reference MNBZAC04) (Figure 6.10) and 

exhibits the common carboxylic acid dimer 

motif. The structure was solved at room 

temperature and this explains why the 

carboxylic acid hydrogen is found to be disordered over two positions. The molecular 

complex of 3-nitrobenzoic acid in a 1:1 ratio with both benzimidazole, creating the 

benzimidazolium 3-nitrobenzoate
2
 molecular complex (CSD reference SUZZES) (Figure 6.11 

LHS), and imidazole, producing the imidazolium 3-nitrobenzoate
2
 molecular complex (CSD 

reference SUZZUI) have previously been reported (Figure 6.11 RHS).  
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Fig. 6.11 – LHS, the supramolecular synthon of benzimidazolium and 3-nitrobenzoic acid; RHS, the 

supramolecular synthon of imidazolium and 3-nitrobenzoic acid. 

 

Both of these molecular complexes show proton transfer from the carboxylic acid group to the 

unprotonated nitrogen of the co-molecule. They produce the common N
δ+
H∙∙∙O

δ- 
hydrogen 

bond, but this creates two very different motifs. The benzimidazolium molecular complex 

forms zigzag chains, while the imidazolium molecular complex forms into a hydrogen bonded 

ring system. 

 

6.1.8 4-Nitrobenzoic Acid 

 

4-Nitrobenzoic acid is a precursor in the synthesis of the anaesthetic Procaine. Its crystal 

structure has been solved by single crystal X-ray and neutron diffraction (CSD references 

NBZOACO4 and NBZOAZ05
26

, 

respectively). The crystal structure 

displays the common carboxylic acid 

dimer motif (Figure 6.12) with the 

protons in the hydrogen bond showing 

disorder at 302K.  

 

4-Nitrobenzoic acid has been co-crystallised with both benzimidazole and imidazole by 

Hashizume
27

 in 2001. The benzimidazolium 4-nitrobenzoate molecular complex (CSD 

reference SUZZIW) exhibits the common N
δ+
H∙∙∙O

δ- 
supramolecular synthon which creates 

a zigzag chains motif (Figure 6.13 LHS). The imidazolium 4-nitrobenzoate
28

 molecular 

complex (CSD reference SABPEQ) also forms the N
δ+
H∙∙∙O

δ- 
suparmolecular synthon, 

however on this occasion the motif is the hydrogen bonded ring system that has been seen 

many times before (Figure 6.13 LHS). This is the same pattern as that observed for the 3-

nitrobenzoic acid molecular complexes. 

Fig. 6.12 - The hydrogen bonded dimer of 4-

nitrobenzoic acid. 
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Fig. 6.13 –LHS, benzimidazolium 4-nitrobenzoate molecular complex that contains the synthon N
δ+
H∙∙∙O

δ-
, 

which forms into zig-zag chains; RHS, the imidazolium 4-nitrobenzoate molecular complex also forms 

N
δ+
H∙∙∙O

δ- 
hydrogen bonds, which in this case assemble to form hydrogen bonded rings. 

 

6.2  Summary of Results 

 

Molecular complexes of benzimidazole with a series of picolinic acids have been 

characterised in this work.  This includes the first reported molecular complexes of 3-

hydroxy- and 6-hydroxypicolinic acid with another small organic molecule. These new 

molecular complexes have formed in a variety of manners, with some forming as 

hemihydrates and solvates (Table 6.1). The increase in the competition has, as expected, 

increased the difficulty in predicting the main supramolecular synthons in the structure, to 

such an extent that it made structure solution difficult in the benzimidazolium picolinate 

hydrate molecular complex.  This structure contains inherent disorder throughout the structure 

and the diffraction patterns showed strong diffuse scattering. 

 

 Picolinic Acid 3-hydroxypicolinic acid 6-hydroxypicolinic acid 

Benzimidazole 1:1 hydrate 1:1 1:1 & 1:1:2 acetic acid 

Imidazole  1:1  

Table 6.1 – Summary of the molecular complexes successfully generated (blue) between benzimidazole and 

imidazole with picolinic acid and its mono-substituted hydroxyl derivatives.  A diverse range of products was 

generated including a hemihydrate and solvate. 

 

The attempted co-crystallisation of benzimidazole with nicotinic and isonicotinic acids only 

produced an unknown hydrated form of nicotinic acid in single crystal form (Table 6.2) and a 

series of powders. Powder diffraction measurements of the products were not completed; 

therefore it is still possible that molecular complexes with benzimidazole were produced but 

just did not produce single crystals.  
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 Picolinic Acid Nicotinic Acid Isonicotinic Acid 

Benzimidazole 1:1 hydrate Nicotinic acid hydrate  

Table 6.2 – Summary of the molecular complexes successfully generated (blue) between benzimidazole and 

picolinic, nicotinic and isonicotinic acids. Apart from the new molecular complex (benzimidazole : picolinic acid 

hydrate) only single crystals of a new hydrate of nicotinic acid was formed. 

 

The aim of investigating the molecular complexes generated between benzimidazole and 

imidazole with mono-substituted nitrobenzoic acids was to understand the effect, if any, that 

the charged nitro-group has on the supramolecular synthons generated. The structures that 

have already been determined and deposited in the CSD are summarised in Table 6.3.  

 

 2-Nitrobenzoic Acid 3-Nitrobenzoic Acid 4-Nitrobenzoic Acid 

Benzimidazole    

Imidazole    

Table 6.3 – Summary of the molecular complexes found in the CSD. Blue shading corresponds to molecular 

complex found while grey represents no molecular complexes found. 

  

6.2.1 Benzimidazolium 

 

Where the crystallisation product is in a 1:1 stoichiometric ratio of benzimidazole and a 

carboxylic acid containing molecule, the benzimidazole is protonated through hydrogen 

transfer from the carboxylic acid group onto the normally unprotonated nitrogen atom in the 

five-membered ring creating a benzimidazolium molecule (BZNH
+
) (Figure 6.14). The result 

of the proton transfer on the benzimidazolium molecule is a delocalisation of the charge 

across the five-membered ring, reflected in the equalisation of the internal bond lengths N
δ+

-

C-N
δ+

 and bond angles C-N
δ+

-C (Table 6.4). The delocalisation of the charge has the effect of 

creating a partial positive charge on both the nitrogens. This effect is seen in all the molecular 

complexes that have been structurally determined and discussed in this chapter.  
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Fig. 6.14 – LHS, a typical benzimidazolium molecule where both nitrogens are protonated; RHS, the Fourier 

difference map generated where the H atoms located on a nitrogen atom have been omitted from the model, 

clearly showing that both nitrogen atoms are protonated.   

 

The consequence for the co-molecule that has been deprotonated is the creation of a negative 

charge. The negative charge is found to be delocalised over the carboxylic acid group by 

consideration of the normalisation of the bond lengths in the carboxylate group. 

 

Molecular 

Complexes 

BZNH
+
 PA

- 

hemihydrate 

BZNH
+
  

3-HPA
-
   

IMIDH
+
  

3-HPA
- 

BZNH
+
   

6-HPA
-
  

BZNH
+
   

6-HPA
- 
diacetic 

N-C(Å) 1st 

2
nd

 molecule 

1.329(2) 1.331(3) 1.337(5) 

1.333(5) 

1.343(2) 1.341(3) 

N-C(Å) 1st 

2
nd

 molecule 

1.334(2) 1.332(3) 1.337(5) 

1.329(5) 

1.330(2) 1.328(5) 

C-N-C(º) 1st 

2
nd

 molecule 

107.0(3) 108.0(2) 108.0(3) 

108.2(3) 

107.7(1) 108.2(2) 

C-N-C(º) 1st 

2
nd

 molecule 

106.1(3) 107.9(2) 108.2(3) 

108.9(3) 

108.2(1) 108.6(2) 

Table 6.4 – The N
δ+

-C-N
δ+

 bond lengths and C-N
δ+

-C bond angles for the molecular complexes discussed in 

Section 6.5. 

 

6.2.2 Hydrogen Bonding Motifs and Supramolecular Synthons 

 

In contrast to the molecular complexes generated with the hydroxy- and halo-substituted 

benzoic acids (see Chapters 4 and 5) the introduction of another basic nitrogen into the system 

has led to the established hetero hydrogen bond, N
δ+
H∙∙∙O

δ-
, and homo hydrogen bonds, 
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OH∙∙∙O
δ-

 and NH∙∙∙N
δ+

, 
 
being challenged (Figure 5.21). This, along with the presence of 

the hydroxyl groups found in the hydroxypicolinic acid molecule leads to an increase in the 

number of hydrogen bonding patterns available for the molecules to adopt and thus an 

increased difficulty in predicting the supramolecular synthons which will form from this. 

 

Fig. 5.21  The most prominent hydrogen bonds within the benzimidazole : halobenzoic acid molecular 

complexes: an N-H∙∙∙N hydrogen bond (A), an N-H∙∙∙O hydrogen bond (B) and an O-H∙∙∙O hydrogen bond (C).  

 

A 

B 

C 
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6.3  Crystallographic Data 

Compound BZNH
+
 PA

- 
hydrate BZNH

+
 3-HPA

- 
IMIDH

+
 3-HPA 

Formula C7N2H7,C6O2NH4, OH2 C7N2H7, C6O3NH4 C3N2H5, C6O3NH4 

ΔpKa (1:1) 4.54 / 0.15 4.39 5.85 

Crystallisation 

Conditions 

Methanol, ~2-4ºC Methanol, room 

temperature 

ethanol, ~2-4ºC 

Mol. weight / gmol
-1

 259.26 257.25 207.19 

Temperature (K) 100 100 100 

Space Group F d d 2 P 21/n C c 

a (Å) 34.511(7) 14.7485(11) 26.514(3) 

b (Å) 9.2559(19) 5.0177(4) 3.7403(3) 

c (Å) 15.824(3) 15.9323(11) 18.7022(15) 

α (
o
) 90 90 90 

β (
o
) 90 98.131(3) 94.043(3) 

γ (
o
) 90 90 90 

Volume (Å
3
) 5054.81 1214.46(3) 1850.1(3) 

Z 4 4 8 

θ range (˚) 3.104-27.502 3.525-27.482 3.081-27.478 

Completeness (%) 99.6 99.7 99.4 

Refln Collected 8135 16346 10876 

Independent 1496 2677 2102 

Refln 

(obs.I>2sigma(I)) 

1333  1798 1702 

Rint 0.046 0.052 0.0624 

Parameters 244 216 327 

GooF on F
2
 1.3180 0.9693 0.9845 

R1 (Observed) 0.0574 0.0503 0.065 

R1 (all) 0.0657 0.0741 0.0597 

wR2 (all) 0.2167 0.1418 0.0751 
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Compound BZNH
+
 6-HPA

-
 BZNH

+ 
6-HPA

- 
diacetic acid 

Formula C7N2H7, C6O3NH4 C7N2H7, C6O3NH4, 2(CH4O2) 

Crystallisation Conditions DMSO, room 

temperature 

Acetic acid, ~2-4ºC 

Molecular weight / gmol
-1

 257.25 377.35 

Temperature (K) 100 100 

Space Group C 2/c P -1 

a (Å) 14.8393(13) 7.8162(6) 

b (Å) 12.4978(10) 10.7954(8) 

c (Å) 13.7739(12) 11.8566(8) 

α (
o
) 90 61.624(2) 

β (
o
) 113.328(4) 83.249(2) 

γ (
o
) 90 78.779(2) 

Volume (Å
3
) 2345.7(4) 863.05(11) 

Z 8 2 

θ range (˚) 2.211- 30.569 3.086-27.484 

Completeness (%) 97.2 99.6 

Refn Collected 42210 17383 

Independent 3502 3938 

Refln (obs.I>2sigma(I)) 2859 3244 

Rint 0.0624 0.0359 

Parameters 216 320 

GooF on F
2
 1.2511 1.2582 

R1 (Observed) 0.0537 0.0622 

R1 (all) 0.0654 0.0776 

wR2 (all) 0.1905 0.1673 

Table. 6.5 - Crystallographic data for the molecular complexes discussed in Chapter 6. 
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6.4  Structural Descriptions of the Molecular Complexes 

 

6.4.1 Molecular Complex of Benzimidazole and Picolinic Acid 

 

The molecular ions, BZNH
+
 and picolinate (PA

-
) form a 1:1 hydrate molecular complex. The 

molecular complex was obtained using the solvent evaporation method, with a 1:1 

stoichiometric mixture of BZN (12mg) and picolinic acid (3-HPA) (12mg) dissolved in the 

minimum amount of methanol followed by evaporation at ~2-4ºC. The crystals generated 

were very large, block shaped and colourless.  Single crystal X-ray diffraction data were 

obtained using a Rigaku R-axis/RAPID diffractometer at 100K, equipped with graphite 

monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved using SHELXS-

97
28

 within the WINGX
29

 program. The crystallographic data are summarised in Table 6.5.  

 

The crystals generated from the co-crystallisation experiments were large in all three 

dimensions, however, solving the structure proved difficult due to the large amount of 

disorder indicated by the strong diffuse scattering observed in the diffraction patterns (Figure 

6.15). 

 

 

Fig. 6.15 – A diffraction pattern frame from the single crystal X-ray diffraction experiment on a crystal of the 

benzimidazole : picolinic acid molecular complex showing the strong diffuse scattering. 
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The model that best fits the experimental diffraction data is shown in Figure 6.16 LHS. The 

BZNH
+ 

and PA
 

molecules adopt 50:50 disordered positions within layers. In practice, on a 

local level, this corresponds to having a plane with the BZNH
+
 and PA


 molecules alternating 

with one another and forms chains of N-H···O hydrogen bonds. Within these planes, it is 

statistically possible for two of the benzimidazole molecules to lie adjacent to each other 

introducing a discontinuity in the hydrogen bonded chains. Alternatively, a vacancy could be 

present.  It is not, however, possible for two picolinic acid molecules to lie adjacent to one 

another as two oxygen atoms would then come into very close contact (~1.7907(2)Å).   

  

Fig. 6.16 – LHS, the disordered model for the benzimidazolium picolinate hydrate molecular complex; RHS, the 

likely hydrogen bonded unit when considering the local ordering, i.e. with the disorder removed.  

 

The disordered water molecule also plays a role in the construction of these chains.  There is 

one 50:50 disordered H atom on the water which lies approximately within the same plane.  

The location of this hydrogen bond is directly 

correlated to the location of the carboxylate 

group as it forms a hydrogen bond to whichever 

oxygen atom is not involved in the NH···O 

hydrogen bond to the neighbouring 

benzimidazole molecule.  The water molecule 

then acts as a hydrogen bond donor to a 

molecule in the plane below (Figure 6.17). 

 

Another potential source of disorder could 

take the form of proton disorder in a similar manner to that found within the picolinic acid 

starting material and this could also be a driving force behind the observed diffuse scattering. 

In the pure picolinic acid crystal structure (Section 6.1.1), hydrogen disorder is found between 

the carboxylic acid group and the nitrogen heteroatom of the ring. Evidence of the occurrence 

of this effect in the present structure is inconclusive but it is most likely that there is no proton 

disorder.  If the nitrogen was protonated, there would be a strong likelihood of hydrogen 

Fig. 6.17 – The water molecule connects the layers 

of alternately hydrogen bonded co-molecules 

together. 



 259 

bonding from this site, but there are no oxygen atoms within a hydrogen bonding distance. 

However, the disordered nature of this system would make it difficult to identify any electron 

density corresponding to a hydrogen on the heteroatom of the pyridine ring. 

  

It is therefore most likely that the BZN molecule is protonated through hydrogen transfer 

from the carboxylic acid group on the PA molecule onto the normally unprotonated nitrogen 

atom in the five-membered ring forming a BZNH
+
 molecule (Section 6.2.1).  This form of 

proton transfer is common and would normally result in a delocalisation of the charge across 

the five-membered ring and the equalisation of the internal bond lengths. Although it is 

difficult to separate the positions of some of the atoms of the benzimidazole molecule from 

those of the picolinic acid molecule in this disordered situation, and some of the atoms have 

only been refined with isotropic thermal parameters, there is a clear equalisation of the bonds 

lengths with  N
 δ+
C 1.336(2) Å and N

 δ+
C 1.320(2) Å, and bond angles, CN

δ+
C 107.5º 

and CN
δ+
C 107.1º (see Table 6.4 for comparisons). This delocalisation of charge can also 

be found in the carboxylate group of the picolinate molecules where the carbon oxygen bond 

lengths are comparable to those found in other deprotonated carboxylate groups within similar 

systems, with CO bond lengths of 1.256(2)Å and 1.268(2)Å.  

 

The main hydrogen bonds in the BZNH
+ 

PA
 

molecular complex are charge assisted 

N
δ+
H····O

δ-
 hydrogen bonds that combine to create a flat chain of alternating co-molecules 

on a local length scale (Figure 6.18). The N
δ+
H····O

δ-
 hydrogen bonds are moderate in 

strength with N
δ+
H····O

δ-
 hydrogen bond lengths

 
of

 
2.692(4)Å and 2.675(5)Å.  The latter 

bond length can, however, only be taken as a guide value as the absolute position of one of 

the N atoms in the benzimidazole molecule is difficult to determine due to the close proximity 

of the disordered carboxylate carbon atom and thus it was only refined isotropically. It is 

likely that the N atom of the picolinic acid is involved in a asymmetric bifurcated hydrogen 

bond with the major N
δ+
H····O

δ-
 hydrogen bond length

 
of

 
2.692(4)Å, and a corresponding 

minor hydrogen bond length of 3.061(4)Å. The atoms involved in this bifurcated hydrogen 

bond have both been refined with anisotropic displacement parameters.  
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Fig. 6.18 – The main motif of the BZNH
+ 

PA
 

molecular complex is a flat chain of alternating hydrogen bonded 

co-molecules. 

 

The water molecule has two 50:50 disordered positions for one of the H atoms and one 

ordered H position. Figure 6.19 shows that the 

disordered hydrogens on the water molecule point 

towards the oxygen atoms of the picolinate 

molecule approximately within the same plane. 

The fully occupied hydrogen points towards the 

picolinate on in a different plane. On a local 

length scale, the hydrogen will take the position 

closest to that of the picolinate molecule. One 

possible short-range order model is shown in 

Figure 6.20 where the water molecules form 

hydrogen bonded rings with the picolinate 

molecules in parallel chains. These moderate OH····O
δ-

 hydrogen bonds are of O····O 

length of 2.697(4)Å and 2.891(6)Å (both O atoms refined anisotropically). 

Fig. 6.19 – The water molecule, with two 0.5 

occupied hydrogens (yellow) and one fully 

occupied hydrogen (white) connects the 

layers of alternately hydrogen bonded co-

molecules together. 
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Fig. 6.20 – LHS, the hydrogen bonded ring (hydrogen bonds shown in blue) involving two water molecules and 

two picolinate molecules that connect two flat chains of hydrogen bonded BZNH
+ 

PA

 molecules; RHS, view 

along the c-axis emphasising that the water molecule sits just out of the plane of the flat sheets of  hydrogen 

bonded BZNH
+ 

PA

 molecules. 

 

The high level of disorder makes it harder to identify the weaker interactions within this 

system. However consideration of the extended structure (Figure 6.21) makes it possible to 

explain the main interactions in the structure and provide possibilities for the others. The main 

interactions between BZNH
+ 

and PA
 

are the N
δ+
H····O

δ-
 hydrogen bonds that create flat 

chains along the c-axis, these sheets are then held together through water molecules 

effectively generating columns along the b-axis.  

 

    

Fig. 6.21 – LHS, the view along the c-axis of the BZNH
+ 

PA

 molecular complex showing the herringbone 

layers connected by water molecules; RHS, the view along the b-axis of the BZNH
+ 

PA

 molecular complex 

showing the channels of water. 

 

In the space between these columns there is only one clear interaction, a weak CH∙∙∙O
- 

hydrogen bond with C∙∙∙O lengths of 3.381(2)Å and 3.383(2)Å, depending on which position 

for the picolinic acid molecule is occupied, along the a-axis (Figure 6.22 LHS). There is also 

a strong possibility of some π∙∙∙π stacking interactions as the distances between the rings are 
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~3.3083(5)Å (between two N atoms) and the 5-membered ring section of the BZNH
+ 

molecules lie directly parallel to one another (Figure 6.22 RHS).   

 

      

Fig. 6.22 – LHS, weak CH∙∙∙O
- 
hydrogen bonds that lie along the a-axis; RHS, view showing that the BZNH

+ 

molecules lie directly parallel thus improving the chances of  π∙∙∙π stacking interactions. 

 

6.4.2 Molecular Complex of Benzimidazole and 3-Hydroxypicolinic Acid 1:1 

 

The molecular ions, BZNH
+
 and 3-hydroxypicolinate (3-HPA


), form a 1:1 molecular 

complex with one another (Figure 6.23).  Single crystals were obtained using the solvent 

evaporation method, with a 1:1 stoichiometric mixture of BZN (12mg) and 3-

hydroxypicolinic acid (3-HPA) (14mg) dissolved in the minimum amount of methanol 

followed by evaporation at room temperature. The crystals generated were cube shaped and 

colourless.  Single crystal X-ray diffraction data were obtained using a Rigaku R-axis/RAPID 

diffractometer at 100K, equipped with graphite monochromated Mo Kα radiation (λ = 

0.71073 Å). The structure was solved using SIR92
30

 within the CRYSTALS
31

 program.  The 

crystallographic data are summarised in Table 6.5. In the molecular complex, the BZN 

molecule is protonated as discussed in Section 6.2.1. The resulting normalisation of the 

internal bond and angles is seen in Table 6.4. Within the molecular complex the 3-HPA

 

molecules form an intramolecular hydrogen bond between the hydroxyl and carboxylate 

groups. This intramolecular hydrogen bond, O1H∙∙∙O2
δ-

, is of moderate strength with an 

O∙∙∙O distance of 2.537(3)Å and is consistent with that found within the 2-hydroxybenzoic 

acid molecular complex (2.551(3)Å, Section 4.5.1) and is shorter and stronger than found in 

its native crystal structure (2.622Å), reflecting the charge assisted nature. In common with the 

other carboxylate groups that have been deprotonated, the resulting negative charge is found 



 263 

Fig. 6.23 – The atom labelling for the molecular complex 

of benzimidazolium (LHS) and 3-hydroxypicolinate. 

(RHS).  

to be delocalised over the group. This can 

be seen by consideration of the bond 

lengths in the carboxylate group, C8O2
δ-

 

1.290(2)Å and C8O3
δ- 

1.240(2)Å. The 

consequence of the proton transfer is that 

there are now three possible hydrogen 

bond acceptor sites on the picolinate 

molecule: the two oxygens on the 

carboxylate group that have a partial 

negative charge and the pyridyl nitrogen 

which is naturally basic.  

Table. 6.6 – The interactions involved in the BZNH
+ 

3-HPA

 molecular complex with full data for the hydrogen 

bonds. 

 

The primary hydrogen bonds in the BZNH
+ 

3-HPA

 molecular complex are; a partially charge 

assisted N
δ+
H····O

δ-
 hydrogen bond between the nitrogen of the BZNH

+
 and oxygen of the 

carboxylic acid group and a bifurcated N2
δ+
H∙∙∙N3/O3

δ-
 hydrogen bond between the N2 of 

the BZNH
+ 

and N3 and O3 of 3-HPA
- 

(Figure 6.24). The strongest hydrogen bond is the 

NH∙∙∙O hydrogen bond and this is of moderate strength, with an N∙∙∙O distance of 2.732(3)Å, 

NH 1.06(3)Å, O∙∙∙H 1.71(3)Å and angle of 163.0(3)º (labelled a in Figure 6.24).  The 

bifurcated bond has N∙∙∙N and N∙∙∙O distances of 2.909(3)Å and 2.889(2)Å, respectively 

Interaction Label Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

N1···O3 a 2.732(3) 1.06(3) 1.71(3) 163.0(3) 

N2···N3 b 2.909(3) 1.04(3) 1.88(3) 168.1(3) 

N2···O3 b 2.889(2) 1.04(3) 2.33(3) 112.4(2) 

O3···C4 3.337(3) 1.00(2) 2.65(2) 125(2) 

O3···C5 3.313(3) 0.99(2) 2.64(3) 125(2) 

π···π 3.260 - - - 

C···π 3.582(3) - - - 

C···π 3.609(3) - - - 

C···π 3.629(3) - - - 
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(labelled b in Figure 6.24) with hydrogen bond data shown in Table 6.6. This bifurcated 

hydrogen bond would be termed symmetrical with regard to the equal strengths of the 

interactions, however the position of the hydrogen promotes an asymmetrical nomenclature as 

the hydrogen bond angles are 168.1(3)º and 112.4(2)º respectively. Therefore this bifurcated 

hydrogen bond, and the others of a similar nature, will be termed asymmetrical.  

 

The primary hydrogen bonds assemble the structure into an equimolar hydrogen bonded ring 

with alternating molecules which can be described by the graph set notation symbol 4

4R (18) 

(Figure 6.23).  This hydrogen bonded ring is the motif of the structure and is not dissimilar to 

the hydrogen bonded rings seen in Chapter 4. The difference is that the basic nitrogen on the 

3-hydroxypicolinic acid is a more appealing acceptor than the oxygen.   

 

    

Fig. 6.24 – LHS, the supramolecular synthon for the BZNH
+
 3-HPA

 molecular complex; a hydrogen bonded 

ring system held together by partially charge assisted N
δ+
H····O

δ-
 and N

δ+
H····N hydrogen bonds; RHS, the 

Fourier difference map (generated using MCE), where the hydrogen adjoining N2 has been removed from the 

model, showing the hydrogen atom to be clearly located on the N atom of the benzimidazolium molecule ion. 

The elongation of the electron density along the hydrogen bond illustrates the influence of the neighbouring 

oxygen molecule. 

 

The motifs, equimolar hydrogen bonded rings, are connected by weaker interactions in all 

three dimensions. Along the ac-diagonal, the hydrogen bonded rings are stacked on top of 

one-another through staggered face-to-face π-π interactions of spacings between the closest 

molecules of 3.096Å and 3.260Å (Figure 6.25).  

 

a 

b 

b 

a 
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Fig. 6.25 – the stacking of the hydrogen bonded rings held together by π-π interactions. 

 

The hydroxyl group of the 3-HPA

 molecule is involved in a DDHHA weak bifurcated 

hydrogen bond directed along the c-axis (Figure 6.25). The bifurcated hydrogen bond is 

symmetric with C∙∙∙O distances of 3.313(3)Å and 3.337(3)Å (Figure 6.26, inset). 

 

Fig. 6.26 – The supramolecular synthons of the BZNH
+ 

3-HPA

 molecular complex, are connected by weak 

bifurcated hydrogen bonds (circled in red) along the c-axis. Inset shows the bifurcated weak hydrogen bond 

circled in red in the main figure. 

 

In addition, along the ac-diagonal there are weak CH∙∙∙π bonds with C∙∙∙C distances of 

3.582(3)Å, 3.609(3)Å and 3.629(3)Å (Figure 6.27). These are the only interactions that exist 

between the layers that expand the structure in this direction.  
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Fig. 6.27 – LHS, view of the c-axis of the BZNH
+ 

3-HPA

 molecular complex, which indicates the interactions 

between the layers (circled in yellow); RHS an expanded view of the interactions that hold the layers together, 

with C-H∙∙∙π interactions circled in yellow. 

 

These three interactions, the π-π stacking interactions, the weak bifurcated hydrogen bonds, 

and the C-H····π bonds, connect the motifs together to create the extended structure. Figure 

6.28 illustrates the different roles that the intermolecular interactions play in the structure. 

 

 

Fig. 6.28 – The intermolecular interactions in the BZNH
+ 

3-HPA

 molecular complex, with the supramolecular 

synthon circled in blue, the weak bifurcated hydrogen bonds in red and the C-H····π contacts in yellow. The π-π 

stacking goes into the plane of the page. 
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6.4.3 Molecular Complex of Imidazole and 3-Hydroxypicolinic Acid 1:1 

 

The molecular ions, IMDZH
+
 and 3-hydroxypicolinate (3-HPA


), form a 1:1 molecular 

complex with one another.  Single crystals were obtained using the solvent evaporation 

method, with a 1:1 stoichiometric mixture of IMD (8mg) and 3-hydroxypicolinic acid (3-

HPA) (14mg) dissolved in the minimum amount of methanol followed by evaporation at ~2-

4ºC. The crystals generated were needle shaped and colourless.  Single crystal X-ray 

diffraction data were obtained using a Rigaku R-axis/RAPID diffractometer at 100K, 

equipped with graphite monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was 

solved using SIR92
30

 within the CRYSTALS
31

 program. The crystallographic data are 

summarised in Table 6.5. In the molecular complex, the IMD molecule is protonated through 

hydrogen transfer from the carboxylic acid group in the fashion seen in Section 6.2.1. The 

result of the proton transfer on the IMDH
+ 

molecule is a delocalisation of the charge across 

the five-membered ring, reflected in the equalisation of the internal bond lengths and bond 

angles (Table 6.4).  There are two independent IMDH
+
 and 3-HPA


 molecules in the 

asymmetric unit (Figure 6.29).  Within the molecular complex the two independent 3-HPA
 

molecules both form intramolecular hydrogen bonds between the hydroxyl and carboxylate 

groups with O···O distances of 2.517(4) and 2.525(4) Å, respectively. These intramolecular 

hydrogen bonds are of moderate strength and are consistent with that found within the 

BZNH
+ 

3HPA
 

molecular complex that had an O···O distance of 2.537(3)Å (Table 6.7).  

 

   

 

Fig. 6.29 – The atomic labelling for the two independent molecules of each type in the imidazolium 3-

hydroxypicolinate molecular complex.  
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Table 6.7 – The three scalar quantities and bond angles of the hydrogen bonds and information of the 

interactions found in the IMDH
+ 

3-HPA

 molecular complex  

 

The two primary hydrogen bonds in the IMDH
+ 

3-HPA
 

molecular complex are a partially 

charge assisted N
δ+
H····O

δ-
 hydrogen bond between the nitrogen of the IMD

+
 and oxygen of 

the carboxylic acid group (a and a‘ in Figure 6.30)) and a bifurcated N
δ+
H∙∙∙N/O

δ-
 hydrogen 

bond between the other nitrogen of the IMDH
+
 and the unprotonated nitrogen and oxygen of 

3-HPA
 

(b and b‘ in Figure 6.30). Whilst the hydrogen bonds are the same in this molecular 

complex as found in the BZNH
+ 

3HPA

 molecular complex, the motif is quite different. In the 

BZNH
+ 

3HPA
 

structure the motif was a hydrogen bonded ring system (Figure 6.24). 

However, in the imidazole equivalent, the motif is a zigzag hydrogen bonded chain (Figure 

6.30). 

 

The N
δ+
H····O

δ-
 hydrogen bonds are of moderate strength with N····O distances of 2.651(4) 

and 2.649(5) Å (Table 6.8); these are slightly shorter than the N
δ+
H····O

δ-
 hydrogen bond 

found in the BZNH
+ 

3HPA

 structure which has an N····O distance of 2.732(3)Å. The 

bifurcated hydrogen bonds, b and b‘, are again similar to those seen in the BZNH
+ 

3HPA

 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

N1···O4  a 2.651(4) 1.05(3) 1.60(3) 173(3) 

N4···N1  a’ 2.649(5) 0.95(3) 1.70(3) 179(2) 

N2···N3  b 2.859(4) 1.00(3) 1.91(3) 157(2) 

N3···O1 b 2.866(4) 1.00(3) 2.22(3) 121(2) 

N5···N6  b’ 2.786(5) 0.94(3) 1.88(3) 160(2) 

N5···O4  b’ 3.011(4) 0.94(3) 2.41(3) 121(2) 

C2···O5 3.184(5) 0.98(4) 2.21(4) 171(3) 

C11···O2 3.414(5) 0.98(4) 2.46(4) 165(3) 

C17···π 3.707 - - - 

C17···π 3.703 - - - 

π···π 3.274 / 3.403 - - 

π···π 3.334 / 3.378 - - 
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structure, with similar bond strengths (b‘ slightly less so) but vastly different hydrogen bond 

angles. Therefore these can be classified as asymmetrical bifurcated hydrogen bonds.  

 

 

 

         

 

Fig. 6.30 – Top,  view along the b-axis of the main motif of the IMDH
+
 3-HPA

 molecular complex, a zigzag 

chain of alternate co-molecules held together by partially charge assisted hydrogen bonds; bottom,  view along 

the a-axis of the main motif of the IMDH
+
 3-HPA

 molecular complex.  

 

The hydrogen bonded zigzag chains are connected along the ac-diagonal by weak CH∙∙∙O
δ-

 

hydrogen bonds to create layers (Figure 6.31 LHS) that have C····O distances of 3.184(5)Å 

and 3.414(5)Å. The zigzag chains stack through staggered face-to-face π∙∙∙π stacking 

interactions between like molecules (Figure 6.31 RHS). The distances between the layers 

have been calculated by creating a plane through the atoms in the ring and measuring the 

distance between these planes. The stacking distances are relatively short with IMDH
+ 

distances of 3.274Å and 3.403Å, and 3-HPA
- 
distances of 3.334Å and 3.378Å. 

 

a 

b 

a’ 

b’ 
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Fig. 6.31 – LHS, the CH∙∙∙O
δ-

 hydrogen bonds (-) along the ac-diagonal, RHS, view along the c-axis of the 

staggered face-to-face π∙∙∙π stacking interactions that extend the structure along the b-axis. 

 

Figure 6.32 shows the extended structure of the IMDH
+ 

3HPA
 

molecular complex. The green 

zigzag line indicates the main hydrogen bonded zigzag motif while the transparent blue box 

shows the weak hydrogen bonds that exist between the layers and with the assistance of the 

π∙∙∙π stacking interactions into the plane of the paper along the b-axis. Parallel to the b-axis, 

there are also weak C-H∙∙∙π interactions (Figure 6.30 yellow box) with distances of 3.707Å 

and 3.703Å, respectively (Figure 6.30 insert).  

 

 

Fig. 6.32 – View along the b-axis of the extended IMDH
+ 

3HPA
- 
molecular complex. The main motif, the zigzag 

chains of alternate hydrogen bonded co-molecules, is shown by the green line (-) and the weak hydrogen bonds 

are located within the transparent blue box (-). Inset shows the C-H∙∙∙π interactions that extend the structure 

along the b-axis. 
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6.4.4 Molecular Complex of Benzimidazole and 6-Hydroxypicolinic Acid 1:1 

 

The molecular ions, BZNH
+
 and 6-hydroxypicolinate, which is more accurately described as 

2-oxo-1,2-dihydropyridine-6-carboxylic acid but will be referred to as the previous name (6-

HPA

) for consistency, form a 1:1 molecular complex with one another.  Single crystals were 

obtained using the solvent evaporation method, with a 1:1 stoichiometric mixture of BZN 

(12mg) and 6-hydroxypicolinic acid (3-HPA) (14mg) dissolved in the minimum amount of 

DMSO followed by evaporation at room temperature. The crystals generated were block 

shaped and colourless.  Single crystal X-ray diffraction data were obtained using a Bruker 

Apex II diffractometer at 100K, equipped with graphite monochromated Mo Kα radiation (λ = 

0.71073 Å). The structure was solved using SIR92
30

 within the CRYSTALS
31

 program. The 

crystallographic data are summarised in Table 6.5.  

 

The BZN molecule is protonated through hydrogen transfer from the carboxylic acid group on 

the 6-HPA molecule (Figure 6.33) resulting in a delocalisation of the charge across the five-

membered ring (see Section 6.2.1). The effect of deprotonation on the 6-HPA
 

molecule is not 

in this case limited to changes in the carboxylate group; it also undergoes lactam - lactim 

tautomerism, where the hydrogen from the hydroxyl group (O3) transfers to the previously 

unprotonated nitrogen in the benzene ring (N3) (Figure 6.34). This form of tautomerism is 

also referred to as amide – imidic acid tautomerism and is found in heterocyclic rings, most 

commonly nucleobases such as guanine, thymine and cytosine
31

.  

 

    

Fig. 6.33 – the benzimidazolium and 6-hydroxypicolinate molecule ions which are generated in the molecular 

complex, with atom labelling.  

Fig. 6.34 – schematic diagram of the lactam - lactim tautomerism (imidic acid) that the 6-hydroxypicolinic acid 

molecule undergoes, forming 2-oxo-1,2-dihydropyridine-6-carboxylic acid. 
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Table. 6.8 – The three scalar quantities and bond angles of the hydrogen bonds with lables and information of 

the interactions found in the BZNH
+ 

6-HPA

 molecular complex 

 

There is one other example in the CSD where a 6-hydroxypicolinic acid has lost a proton (at 

the carboxylic acid) and undergone tautomerism (lactam-lactim), the metal organic 

framework with titanium as the metal centre (CSD reference RIYDEJ)
33

. Within the 6-

hydroxypicolinate molecule the carbon-oxygen distances differ quite substantially from other 

related molecules that are co-crystallised with benzimidazolium (Table 6.9). The most 

obvious difference is in regard to the hydroxyl carbon-oxygen length (C-O3); the oxygen here 

is deprotonated and forms a double bonded carbonyl bond to the ring. By comparing 

structures found within the CSD, in general,  complexes involving hydroxypicolinic acids 

show that the carboxylic acid bond lengths tend not to be normalised as much as those that 

involve the hydroxybenzoic acid molecules. For the 6-hydroxypicolinate molecules this may 

be down to the loss of the conjugated benzene ring, however the 3-hydroxypicolinate still 

retains this conjugation. 

 

Bond BZNH
+           

6-HPA
 

BZNH
+           

6-HPA
  

di-acetic acid 

BZNH
+  

3- HPA
 

IMIDH
+  

3-HPA
 

BZNH
+  

2-HBA

 

BZNH
+  

3-HBA
 

C-O1 1.2700(1) 1.273(2) 1.289(3) 1.284(2) 1.273(1) 1.270(1) 

C-O2 1.2382(1) 1.251(4) 1.240(3) 1.244(2) 1.264(1) 1.260(1) 

C-O3 1.2553(1) 1.280(3) 1.350(3) 1.367(2) 1.3552(2) 1.360(1) 

Interaction Label Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

N1···O4  f 2.644(2) 1.09(3)  1.56(3) 172.2(2) 

N4···N1  g 2.640(2) 0.94(3)  1.74(3) 160.2(3) 

N2···N3  e 2.915(2) 0.88(2)  2.05(2) 166.4(2) 

C5···O2 h 3.302(2) 0.98(3) 2.34(3) 168(2) 

C3···O1  i 3.183(2) 1.01(2) 2.42(2) 132(2) 

C9···π  3.578 - - - 

C10···π 3.588 - - - 

π···π 3.306 - - - 
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Table 6.9 – The carbon-oxygen bond distances for six different molecular complexes. The numbering of the 

oxygen refers to Figure 6.31, with oxygens 2 and 3 always being on the same of the molecule.  

 

Figure 6.33 shows that the basic nitrogens on the BZNH
+
 and 6-HPA


 are all protonated. The 

consequence is that there are now three equal strength hydrogen bond donors shared between 

the two co-molecules. The BZNH
+
 molecules contain two of these donor sites and no 

hydrogen bond acceptors, whereas there are three hydrogen bond acceptors and one hydrogen 

bond donor on the 6-HPA

 molecules.  Therefore BZNH

+
 can only form hydrogen bonds to 

molecules of a different type, and 6-HPA

 can only act as hydrogen bond donor to molecules 

of the same type. 

 

A hydrogen bonded ring motif is formed which can be described by the graph set notation 

symbol 6

6R (32) (Figure 6.35).  The 6-membered hydrogen bonded ring is made up of two 

partially charge assisted 6-HPA
 

dimers (e in Figure 6.35) with the BZNH
+ 

molecules linking 

these together through two partially charge assisted N
δ+
H····O

δ-
 (f in Figure 6.35) and 

N
δ+
H····O (g in Figure 6.35) hydrogen bonds. These collectively form the main 

supramolecular synthon in the molecular complex with the partially charged assisted 

N
δ+
H····O

δ-
 and N

δ+
H····O hydrogen bonds having relatively short N····O distances with 

respective bond angles of 2.644(2)Å and 2.640(2)Å(see Table 6.8 for full hydrogen bond data 

and list of interactions). This is relatively short in comparison to other N
δ+
H····O

δ-
 hydrogen 

bonds that tend to be of length 2.7Å and above. The 6-HPA
 

dimers, which equally could also 

be referred to as pseudo base pairs, are made up of partially charge assisted NH····O
δ- 

hydrogen bonds of length 2.915(2)Å (0.88(2)Å, 2.05(2)Å, 166.4(2)) with an inversion centre 

located in the centre of the hydrogen bonded ring.  
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Fig. 6.35 – The main motif of the BZNH
+
 6-HPA


 molecular complex; a hydrogen bonded ring system held 

together by 6-HPA

 dimers (e) and partially charge assisted N

δ+
H····O

δ- 
(f) and N

δ+
H····O (g) hydrogen 

bonds. 

 

The 6-membered hydrogen bonded rings are connected by equivalent hydrogen bonds f and g, 

creating a chain along the b-axis (Figure 6.36). The 6-HPA

 molecules are coplanar and the 

BZNH
+ 

molecules lie at ~77º to this plane. 

 

 

Fig. 6.36 – the chains of BZNH
+
 6-HPA


 rings along the b-axis, viewed along a. 

 

These chains of hydrogen bonded rings are connected in all three-dimensions by an array of 

weaker interactions. Three of these interactions are shown in Figure 6.37, two of them 

promote a stacking of the motifs, while the other connects the stack motifs together. Firstly, 

the shortest of these interactions are weak hydrogen bonds involving the carbon located 

between the two nitrogens of the BZNH
+ 

molecule and one of the carboxylate oxygens, 

C1H∙∙∙ O1
δ- which is of C····O distance of 3.131(2)Å (Figure 6.37 LHS). These connect a 

BZNH
+ 

of one chain and a 6-HPA
 

of another. There are also π∙∙∙π stacking interactions of 

approximate length 3.306Å (measured between two planes created using the adjacent 6-HPA

 

e 

g 

f 

e 

f 

g 
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molecules, LHS Figure 6.37) between 6-HPA
 

molecules stacking the chains along the c-axis. 

These are the two interactions that are highlighted within the red circle in Figure 6.37, middle. 

Also between the chains, there are two C-H∙∙∙π interactions, C9H∙∙∙π and C10H∙∙∙π, with the 

aromatic hydrogens of 6HPA

 acting as hydrogen bond donors and the aromatic ring of the 

BZNH
+
 acting as the π acceptor. The C∙∙∙C distances are 3.578(3) and 3.588(3) Å. (Figure 

6.37 RHS). 

  

 

 

  

 

 

 

 

Fig. 6.37 – LHS, the weak hydrogen bonds C1H∙∙∙ O1
δ-

 and π∙∙∙π interactions between two chains. These are 

two interactions that stack the chains along the a-axis. Middle, view along the b-axis showing the stacking of the 

chains. Highlighted in red are the interactions viewed in Figure 6.33, LHS. Circled in blue are those interactions 

from Figure 6.33, RHS. The interactions within the green circle are the moderate hydrogen bonds involved in the 

hydrogen bond ring motif. RHS, the CH∙∙∙π interactions are the blue dotted lines in the centre of the image. 

 

The final significant interactions within the molecular complex are two weak hydrogen bonds. 

These are CH∙∙∙O
δ- 

hydrogen bonds between the oxygens of the carboxylate group and 

carbons from the BZNH
+ 

molecule and propagate along the ac-diagonal (Figure 6.38). These 

have C∙∙∙O distances of 3.302(2)Å (h in Figure 6.38) and 3.183(2)Å (i in Figure 6.38). The 

three molecules shown in Figure 6.38 are from three different chains. 

 

 

h 

i 
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Fig. 6.39  The benzimidazolium, 6-

hydroxypicolinate and acetic acid 

molecules which are generated in the 

molecular complex, with atom 

labelling.  

Fig. 6.38 – The CH∙∙∙O
δ- 

weak hydrogen bonds connect three different chains within the BZNH
+
 6-HPA


 

molecular complex. 

 

6.4.5 Molecular Complex of Benzimidazole and 6-Hydroxypicolinic Acid 

Diacetic Acid Solvate 1:1:2 

 

The molecular ions, BZNH
+
 and 6-hydroxypicolinate (IUPAC name, 2-oxo-1,2-

dihydropyridine-6-carboxylic acid), (6-HPA

) form a 1:1:2 acetic acid molecular complex. 

Single crystals were obtained using the solvent evaporation method, with a 1:1 stoichiometric 

mixture of BZN (12mg) and 6-hydroxypicolinic acid (6-HPA) (14mg) dissolved in the 

minimum amount of acetic acid followed by evaporation at room temperature. The crystals 

generated were block shaped and brown.  Single crystal X-ray diffraction data were obtained 

using a Rigaku R-axis/RAPID diffractometer at 100K, equipped with graphite 

monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved using 

SUPERFLIP
34

 within the CRYSTALS
31

 program.  The crystallographic data are summarised 

in Table 6.6. The BZN molecule is protonated through hydrogen transfer from the carboxylic 

acid group on the 6-HPA molecule as discussed in Section 6.2.1. Table 6.4 gives the resulting 

normalised bonds lengths and angles of the BZNH
+
 molecule (Figure 6.39). The 6-HPA

 

molecule has also undergone lactam - lactim tautomerism, where the hydrogen from the 

hydroxyl group (O3) transfers to the previously 

unprotonated nitrogen in the pyridine ring (N3). The 

negative charge is delocalised over the carboxylate 

group; evidence for this is seen in the normalisation of 

the carbon oxygen bond lengths, C8O1
δ- 1.273(2) Å 

and C8O2
δ-

 1.251(4)Å. The carbonyl group has a bond 

length of C12O3 1.280(3)Å. There are also two 

distinct acetic acid molecules within the molecular 

complex; both retain their neutral properties. 

 

BZNH
+
 again only has hydrogen bond donor groups 

and the 6HPA

 has one donor and three acceptors.  In 

addition, the acetic acid molecule has one traditional 
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donor and one acceptor sites; however protonated oxygens can act as both acceptors and 

donors.  The presence of acetic acid disrupts the pseudo base-pairing of the 6-HPA

 which 

was present in the unsolvated complex, which instead forms heterodimers with the acetic acid 

molecules.  The motif of the molecular complex is a linear chain of alternating co-molecules 

BZNH
+ 

and 6-HPA
 

with acetic acid molecules satisfying the remaining hydrogen bonding 

sites (Figure 6.40). 

 

 

Fig. 6.40 – The hydrogen bonded chains of the BZNH
+
 : 6-HPA


 acetic acid solvate molecular complex is a flat 

linear chain of alternating hydrogen bonded co-molecules. 

 

The linear chain of alternate BZNH
+
 and 6-HPA

 
molecules are held together by two different 

partially charge assisted NH∙∙∙O hydrogen bonds of approximately equal strength along the 

ac-diagonal. The first is between the BZNH
+
 and the carboxylate group, a, N1

δ+
H∙∙∙O4

δ-
,
 
of 

N∙∙∙O distance 2.762(4)Å, and the other between the BZNH
+
 and carbonyl group, b, 

N1
δ+
H∙∙∙O2

 
of N∙∙∙O distance 2.736(4)Å. The acetic acid molecules have two important roles 

in this structure. Firstly they are a key part of the main motif, the flat linear chain (Figure 

6.41). One of the acetic acids creates a hydrogen bonded ring with graph set notation 2

2R (8) 

by hydrogen bonding with the tautomeric nitrogen and carbonyl group of the 6-HPA
 

(Figure 

6.41, labelled c). These are of D∙∙∙A lengths of N3H∙∙∙O6 2.915(4)Å and O7H∙∙∙O3 

2.606(4)Å. The other acetic acid hydrogen bonds to the carboxylate group, O4H∙∙∙ O1
δ-

, and 

is the strongest hydrogen bond in the structure with length of 2.498(4)Å (Figure 6.41 d)(Table 

6.10). 
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Fig. 6.41 – The hydrogen bonding scheme in the BZNH
+
 6-HPA


 acetic acid solvate molecular complex, 

highlighting the role of the acetic acid molecules in creating the linear chain. 

Table 6.10 – The three scalar quantities and bond angles of the hydrogen bonds a, b, c, d and list of the 

interactions between the molecules in the benzimidazole and 6-hydroxypicolinic acid diacetic acid solvate.  

 

The other important role of the acetic acid molecules is connecting the structure along the c-

axis. Figure 6.42 shows two of the motifs where the only interactions between them are 

CH∙∙∙O weak hydrogen bonds between acetic acid molecules (Figure 6.42 inset). These weak 

hydrogen bonds have lengths C∙∙∙O7 3.575(3)Å and C∙∙∙O5 3.601(3)Å respectively. 

 

Interaction Label Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

N1···O4  a 2.762(4) 0.95(3) 1.79(3) 176.2(3) 

N2···O3  b 2.736(4)) 0.97(4) 1.82(4) 163.1(3) 

N3···O6  c 2.915(4) 0.88(4) 2.06(4) 164.7(3) 

O7···O2 c 2.606(4) 0.97(6) 1.66(7) 166.0(5) 

N2···O3  d 2.498(4) 1.04(4) 1.46(4) 174.8(4) 

O7···C  3.537(3) 0.98(5) 2.85(4) 131(3) 

O5···C 3.601(3) 0.96(3) 2.73(3) 150(3) 

π···π 3.339 - - - 

O4···C  3.366(4) 0.95(4) 2.46(4) 120(3) 

O5···C 3.290(4) 0.96(3) 2.70(4) 161(4) 

 

 

c d 

a 
b 
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Fig. 6.42 – Two motifs of the BZNH
+
 6-HPA

 
diacetic acid molecular complex showing how the two adjacent 

linear chains are connected along the c-axis through weak CH∙∙∙O hydrogen bonds (circled in red) between the 

acetic acid molecules; inset – expanded image of these hydrogen bonds. 

 

With the linear chains extending the structure along the ab-diagonal and the weak hydrogen 

bonds connecting these chains along the c-axis, this creates a plane of molecules (Figure 6.43 

LHS). These planes of molecules are connected along the ab-diagonal by π∙∙∙π interactions 

and two hydrogen bonds. The hydrogen bonds are between the two independent acetic acid 

molecules (Figure 6.43 RHS). The C-H∙∙∙O hydrogen bonds are weak with C∙∙∙O lengths of 

3.366(4)Å and 3.290(4)Å.  The π∙∙∙π interactions is relatively short in length with the distance 

measured between two carbons at 3.339(4)Å (red) and 3.886(3) (blue) in length (Figure 6.43 

middle). 

 

 

Fig. 6.43 – LHS, view along the c-axis showing the layered nature with the weaker interactions along the ab-

diagonal, weak hydrogen bonds (light blue) and π∙∙∙π interactions (dark blue); middle, the π∙∙∙π interaction (blue); 

RHS, the weak C-H∙∙∙O hydrogen bonds between the acetic acid molecules. 
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6.5  Systematic Structural Study of Nitrobenzoic acid : Benzimidazole / 

Imidazole Molecular Complexes  

 

Molecular complexes of mono-substituted 2-, 3-, 4-nitrobenzoic acid have been generated 

with both benzimidazole and imidazole. Apart from the benzimidazolium 2-nitrobenozate 

molecular complex, the rest of this family of structures was published in 2001 in a paper 

entitled Two-component molecular crystals from N-heteroaromatics and nitrobenzoic acids 

by Hashizume
27

 (Table 6.11). The focus of this paper was on generating chiral crystals from 

achiral molecules. The method of co-crystallising two-component molecular crystals from 

organic acids and bases is one of the most promising methods in developing chiral crystals
28

. 

 

 2-Nitrobenzoic Acid 3-Nitrobenzoic Acid 4-Nitrobenzoic Acid 

Benzimidazole 2:1   

Imidazole    

Table 6.11 – Summary of the molecular complexes found on the CSD. Blue shading corresponds to molecular 

complexes being present, while grey represents no molecular complexes found. 

 

In this section, the electronic effects of the nitro group on the 

supramolecular synthons obtained will be investigated (Figure 6.44). As 

a result of the chemical bonding in the nitro group, the nitrogen atom is 

positively charged and each oxygen atom has a partial negative charge. 

For this reason the nitro group has a powerful attraction for electrons.  

This is in contrast to all the other molecular complexes reported in this 

work. Effects such as proton transfer, the normalisations on the internal 

bond lengths, the strength of the hydrogen bonds with the varying position of the nitro group 

and the influence of the nitro group in the packing arrangements of the structure will be 

discussed.   

 

6.5.1 Proton Transfer 

 

Fig. 6.44  The 

structure of the 

nitro group. 
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The one common thread that runs through all the molecular complexes in this work is that 

where there is an equimolar ratio of carboxylic acid groups to BZN or IMD molecules in the 

molecular complex, then there will be proton transfer. The proton transfers from the 

carboxylic acid group to the unprotonated nitrogen on the BZN or IMD molecule and 

typically results in the normalisation of the internal bond lengths. In the four structures 

published by Hashizume
27 

the molecular complexes all formed in a 1:1 ratio and so there was 

also 100% proton transfer (Figure 6.45).  

 

   

    

Fig. 6.45 – The structures of 1, benzimidazolium 4-nitrobenzoate 2, benzimidazolium 3-nitrobenzoate 3, 

imidazolium 3-nitrobenzoate 4, imidazolium 3-nitrobenzoate. 

 

6.5.2 Normalisation of the Internal Bond Lengths and the Effect on Hydrogen 

Bond Length 

 

The effect of proton transfer on the co-molecules involved are the normalisation of the bond 

lengths (carbon-oxygen and carbon-nitrogen for the carboxylate or imidazolium groups, 

respectively) and a delocalisation of the resulting charge across the functional group. Table 

6.12 lists a range of similar molecular complexes, where the nitro group has been replaced 

with either a hydroxyl or halo group, with the resulting outcome on the internal and hydrogen 

bond lengths.  

 

If the molecular complexes involving the nitrobenzoic acids are excluded, the CO bond 

lengths are all similar with the minimum value being 1.230Å and the maximum 1.297Å. The 

mean value is 1.264Å. The carboxylic acid bond distances are normally ~1.36Å for a CO 

single bond and ~1.23Å for a double bond, therefore the mean value found in the molecular 

1 

2 

3 

4 



 282 

complexes corresponds to greater than double the single bond character and utilising the 

hydrogen bonds that were seen. This might be expected since the carboxylate oxygens are 

acting as the hydrogen bond acceptor within the structures. The nitrobenzoic acid molecular 

complexes (shaded yellow in Table 6.12) do not all follow this trend; the BZN-2NBA and 

BZN-3NBA fall within the range of the other molecular complexes by adopting more double 

bond characteristics, however, the other three structures exhibit much stronger single bond 

characteristics. Their carbon-oxygen bond lengths range from 1.314-1.329Å which is a little 

shorter than the normal 1.36Å length expected of a carbon oxygen single bond in a carboxylic 

acid. Similarly, the nitrogen-carbon bond lengths within the BZN and IMD molecules in most 

of the molecular complexes (i.e. not including the nitrobenzoic acid complexes) take a 

maximum value of 1.347Å, a minimum of 1.304Å and a mean of 1.330Å. This mean value 

has greater single bond characteristics when compared to the pure crystal structures of BZN 

and IMD which have C-N bond lengths of 1.315Å and 1.316Å for the double bond and 

1.348Å and 1.336Å for single bonds, respectively. This again might be expected as both 

nitrogens have been protonated and act as the donors within the hydrogen bonds found in the 

crystal structures. However, once again, in the nitrobenzoic acid molecular complexes, the 

BZN and IMD molecules have carbon-nitrogen bond distances with different characteristics 

to those of the other molecular complexes. With carbon-nitrogen distances of between 1.250Å 

and 1.263Å, this is much more similar to that of a double bond and is even shorter than the 

double bond seen in the crystal structures of single component BZN and IMD. In these 

examples, as the bond lengths are short it might be expected that the nitrogens would be 

unprotonated; all complexes do, however, show proton transfer. 

 

The N-H∙∙∙O hydrogen bond distances of the nitrobenzoic acid molecular complexes are 

similar to those found in the other molecular complexes therefore there is no obvious effect 

on the hydrogen bond distances induced by the nitro group.  

 

 C-O1(Å) C-O2(Å) N1-C(Å) N2-C(Å) HB1(Å) HB2(Å) 

BZN-2NBA
24 

1.214 1.273 1.319 1.308 2.728 2.887 

BZN-3NBA
2
 1.269 1.234 1.316 1.325 2.550 2.718 

IMD-3NBA
2
 1.328 1.314 1.252 1.258 2.644 2.745 

BZN-4NBA
2
 1.323 1.326 1.250 1.263 2.647 2.660 

IMD-4NBA
2
 1.320 1.329 1.256 1.256 2.644 2.742 
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BZN-6HPA 1.270 1.238 1.330 1.342 2.644 2.640 

BZN-6HPA 1.273 1.251 1.341 1.328 2.763 n/a 

BZN-3HPA 1.289 1.240 1.332 1.331 2.733 2.889 

IMD-3HPS 1.284 1.244 1.337 1.337 2.649 3.011 

BZN-2HBA 1.264 1.273 1.331 1.333 2.646 2.621 

BZN-3HBA 1.260 1.270 1.330 1.325 2.697 2.700 

BZN-4HBA 1.258 1.271 1.322 1.347 2.695 2.717 

IMD-2HBA 1.247 1.279 1.304 1.317 2.699 2.729 

IMD-3HBA 1.284 1.244 1.330 1.324 2.654 2.667 

IMD-4HBA 1.25 1.28 1.33 1.33 2.66 2.74 

BZN-3BrBA 1.230 1.292 1.332 1.335 2.843 n/a 

BZN-4BrBA 1.239 1.283 1.329 1.328 2.597 2.848 

BZN-3ClBA 1.297 1.237 1.341 1.326 2.282 n/a 

BZN-4ClBA 1.251 1.288 1.334 1.339 2.642 2.688 

Table 6.12. – List of molecular complexes where BZN = benzimidazole, IMD = imidazole, NBA = nitrobenzoic 

acid, HPA = hydroxypicolinic acid, HBA = hydroxybenzoic acid BrBA= bromobenzoic acid and ClBA = 

chlorobenzoic acid. The bond lengths CO1, CO2 represent the lengths in the carboxylate group and  N1C, 

N2C the bond lengths between the nitrogen and central carbon in BZN and IMD. HB1 and HB2 represent the 

NH···O hydrogen bond lengths between the nitrogens on the BZN or IMD and the carboxylate group. 

 

6.5.3 Packing Effects 

 

The nitro groups within the molecular complexes do not form the predominant interactions. 

They do however; form weaker hydrogen bonds with aromatic hydrogen atoms.  

 

6.5.3.1  Benzimidazolium 3-Nitrobenzoate 

These co-molecules generate a spiral structure of alternating benzimidazolium and 3-

nitrobenzoate molecules connected through partially charged assisted N
δ+
H····O

δ-
 hydrogen 

bonds. Neighbouring spirals are connected via weak CH∙∙∙O
δ- 

hydrogen bonds involving an 

oxygen of the nitro group and an aromatic hydrogen of the benzimidazolium of C···O 

distance of 3.553(6)Å (Figure 6.46).  
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Fig. 6.46 – The benzimidazolium 3-nitrobenzoate molecular complex structure viewed along the c-axis. The 

spiral hydrogen bond motif runs along the b-axis with the weak CH∙∙∙O
δ- 

hydrogen bonds (circled in red) 

connecting adjacent spirals.  

 

6.5.3.2 Benzimidazolium 4-Nitrobenzoate 

 

The benzimidazolium 4-nitrobenzoate structure adopts the same supramolecular synthons and 

motif as the benzimidazolium 3-nitrobenzoate molecular complex. Spirals of alternating co-

molecules are held together by N
δ+
H····O

δ-
 hydrogen bonds and are then connected to one 

another through weak CH∙∙∙O
δ- 

hydrogen bonds.  Again the acceptor atom is an oxygen of 

the nitro group, but in this case, the donor is an aromatic hydrogen atom from another 4-

nitrobenzoate molecule (Figure 6.47).  
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Fig. 6.47 – The benzimidazolium 4-nitrobenzoate molecular complex structure viewed along the c-axis. The 

spiral hydrogen bond motif runs along the b-axis with the weak CH∙∙∙O
δ- 

hydrogen bonds (circled in red) 

connecting adjacent spirals.  

 

6.5.3.3 Imidazolium 3-Nitrobenzoate 

 

The main hydrogen bonds in the imidazolium 3-nitrobenzoate structure are two N
δ+
H····O

δ-
 

interactions between the carboxylate group and protonated nitrogens of the imidazolium. 

They arrange themselves into a four membered hydrogen bonded ring system containing two 

of each co-molecule. These hydrogen bonded rings are then connected through several 

CH∙∙∙O
δ- 

weak hydrogen bonds involving the oxygens of the nitro group and π∙∙∙π stacking 

interactions between the IMDH
+ 

molecules (blue circle) (Figure 6.48). 

 

 

Fig. 6.48 – The imidazolium 3-nitrobenzoate molecular complex structure viewed along the a-axis. The 

hydrogen bonded rings (green boxes) are connected by weak carbon oxygen hydrogen bonds (circled in red) and 

π∙∙∙π interactions (blue).   
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6.5.3.4 Imidazolium 4-Nitrobenzoate 

 

The benzimidazole nitrobenzoic acid structures all share the same motif. The same can be said 

about the imidazolium structures. The imidazolium 4-nitrobenzoate molecular complex forms 

four membered hydrogen bonded rings held together by N
δ+
H····O

δ-
 hydrogen bonds. These 

rings are connected through CH∙∙∙O
δ- 

weak hydrogen bonds involving the nitro group (Figure 

6.49). 

 

 

Fig. 6.49 – The imidazolium 3-nitrobenzoate molecular complex structure viewed along the a-axis. The 

hydrogen bonded rings (green boxes) are connected by weak carbon oxygen hydrogen bonds (circled in red).   

 

6.6  Conclusions 

 

The introduction of another basic atom into the system, in this case a nitrogen in the form of 

carboxyl and hydroxyl substituted pyridines, was intended to compete on two fronts; firstly 

with the other basic nitrogen on the benzimidazole for proton transfer, secondly for 

involvement in the potential hydrogen bonds. In regard to the proton transfer, in all the cases 

the proton from the carboxylic acid group has transferred to the benzimidazole molecule, as 

has been seen in all but two examples in this work (BZN : 3ClBA and BZN : 4FBA). 

However, this does not tell the whole story, as picolinic acid and 6-hydroxypicolinic acid 

have a history of undergoing tautomerisation with the proton transferring between the 

hydroxyl and the basic nitrogen. In both cases, within the molecular complex with 

benzimidazole, the co-molecule has undergone deprotonation with the proton transferring to 

the basic nitrogen of the benzimidazole. The result for the picolinic acid complex is that there 

is no proton available for tautomerisation to occur therefore it forms the zwitterion. The 6-
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hydroxypicolinic acid molecule does have an available proton for tautomerisation and has 

occurred. Therefore proton transfer from the carboxylic acid group to the basic nitrogen of the 

same molecule would not be preferred over proton transfer from the hydroxyl group to the 

nitrogen within these two molecules.    

 

When the basic nitrogen is unprotonated, the established NH∙∙∙O hydrogen bond is not 

favoured over a NH∙∙∙N hydrogen bond, with the NH∙∙∙O interaction forming the weaker 

part of a bifurcated hydrogen bond (Figure 6.50).  Therefore it has competed with the 

carboxylic acid group to be the primary hydrogen bond acceptor and this designed 

intervention was successful. 

 

 

Fig. 6.50 – The bifurcated hydrogen bond of the BZNH
+ 

: 3-HPA
-
 molecular complex, with the major 

component the N-H∙∙∙N hydrogen bond and minor component being N-H∙∙∙O. 

 

The other possible outcome was that if the nitrogen was protonated, it would compete with 

the other protonated nitrogen on the benzimidazole for the primary hydrogen bond donor role. 

As the benzimidazole is found still to be protonated, the hydrogen bond donors from this 

molecule would be charged assisted and therefore still a more attractive prospect for hydrogen 

bond acceptors. With this being the case it was not surprising to see that in the benzimidazole 

and 6-hydroxypicolinic acid molecular complex the N atom of the pyridine was acting as a 

the donor in a hydrogen bond, however it was the weakest of the three primary hydrogen 

bonds within the structure at 2.915(2)Å. The solvate structure also had the named N atom 

within hydrogen bonds, it also produced one of the weaker hydrogen bonds in the structure 

and also had a length of 2.915(3)Å.  

 

Scrutiny of the ΔpKa difference values (Table 6.5) was not possible for molecular complexes 

containing the 6-hydroxypicolinic acid molecule as this value could not be obtained. For the 

molecular complexes where the values could be obtained the rule governing if a salt or co-
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crystal will form has been accurate. All the ΔpKa values lie above the 3 value that normally 

means a salt will be formed, which was the case.   

 

The second part of the chapter focused on the benzimidazole and nitro-substituted benzoic 

acid series of molecular complexes. The object was to investigate if electronic properties 

affected structural features seen in other benzimidazole containing molecular complexes, for 

example proton transfer, the strength of the hydrogen bonds and the packing of the structures. 

As ever, proton transfer from the carboxylic acid group to the unprotonated N atom on the 

benzimidazole occurred, however the effect of this on the internal bond bonds of both the 

benzimidazole and carboxylate group was very different to previously seen. Whereas 

normally proton transfer promoted the normalisation of the NC and CO bond lengths, with 

distances around N∙∙∙C 1.33Å and C∙∙∙O 1.25Å representing NC bond lengths a little shorter 

than characteristic single bonds and CO lengths longer than characteristic double bond. In 

three out of the four molecular complexes containing 3- and 4-nitrobenzoic acid, the opposite 

effect was seen, with the NC lengths adopting more double bond characteristics, N∙∙∙C 

1.25Å, and CO greater single bond characteristics, 1.32Å.  These are the only molecular 

structures in all of the results generated in this work to behave in this way. 

 

The nitro-groups always formed weaker interactions that connected the main supramolecular 

synthons or motifs together in a way similar to those seen in the halo substituted benzoic acid 

structures. 
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7 A Comparison Study of Benzimidazole and Imidazole 

Containing Molecular Complexes with a Range of Related Co-

Molecules 

 

This chapter aims to compare the molecular complexes generated between BZN and IMD and 

a range of co-molecules.  The method adopted will consist of the direct comparison of a BZN 

molecular complex with the identical IMD molecular complex, and comparisons between 

BZN and IMD molecular complexes within a systematic series of co-molecules. There will be 

many different aspects to the comparisons, including hydrogen bond strength, physical 

properties and crystallographic information; however there will be one main theme 

throughout them all – crystal engineering. The comparisons will focus on the hydrogen 

bonding patterns and motifs taking into account the library of interactions that have been 

generated in the complexes discussed in previous chapters with the aim of explaining the 

structures generated.  

 

The co-molecules can be split into four categories, with each category having different areas 

of interest and associated aims: 

 the mono-hydroxy-benzoic acid series which have successfully been cocrystallised 

with BZN producing a library of hydrogen bonds with predictable motifs were used 

with IMD to further investigate the robustness and predictability of these motifs; 

 a related set of compounds, aromatic dicarboxylic acids, were cocrystallised with BZN 

and IMD to test further the robustness of the hydrogen bonds and motifs generated 

with the hydroxy-benzoic acid materials; 

 halo-substituted benzoic acids were cocrystallised with BZN to investigate the 

occurrence of polymorphism with an aim to control selectively the growth of 

individual forms. Cocrystallisations with IMD had a primary aim of investigating the 

influence of the halo- atom on the structure generated; 

 experiments with a series of dicarboxylic acids with varying chain length and 

conjugation, for example fumaric and succinic acid, with both BZN and IMD were 

initially targeted at engineering network structures with differing pore sizes.  
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7.1  Introduction – Co-molecules 

 

7.1.1 2-/ 3-/ 4-Hydroxybenzoic Acid 

 

Refer to Sections 4.1.1 to 4.1.3, where these components are discussed. 

 

7.1.2 4-Fluoro- / 4-Bromo- Benzoic Acid 

 

Refer to Sections 5.1.3 and 5.1.9, where these components are discussed. 

 

7.1.3 Phthalic Acid 

 

Phthalic acid is an organic compound derived from benzene and used in the manufacture of 

dyes, perfumes, pharmaceuticals, and synthetic fibres. It was first discovered in 1836 by 

Auguste Laurent, who initially believed it was naphthalenic acid, before its nature was 

correctly determined years later. There are four entries of the same structure for phthalic acid 

in the CSD with differing R-factor and associated temperatures. Figure 7.1 displays the 

structure published by Ermer
1 

(CSD ref PHTHAC02). The structure is made up of chains 

consisting of carboxylic acid dimers, which are held together through weaker interactions. 

 

Fig. 7.1 – Structure of phthalic acid, which is seen to exploit the carboxylic acid dimer motif. 
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Phthalic acid is well studied and is found as a component in a large number of crystal 

structures, for example in organometallics with cobalt and chromium
2
, and cocrystallised in 

its native structure with cinnamamide
3
 (CSD ref EBOSIX) and benzene-1,2-dicarboxylic 

acid
4
 (CSD ref EBOSIX02) (Figure 7.2).

 
 There are also molecular complexes with phthalic 

acid in its deprotonated state, phthalate, with other small organic molecules including 4,4'-

iminodipyridinium
5 

(CSD ref BOGTAT) and 2,6-dimethylpyridinium
6
 (Figure 7.2) (CSD ref 

GUHREG). There are also many examples of complexes with the doubly deprotonated 

phthalate molecule.  

 

    

Fig. 7.2 – LHS, crystal structure of the molecular complex of phthalic acid and benzene-1,2-dicarboxylic acid; 

RHS, the phthalate ion in the ionic complex formed with 2,6-dimethylpyridinium. 

 

7.1.4 Isophthalic Acid 

 

The main use of isophthalic acid is in the production of the synthetic fibre, polybenzimidazole 

(PBI), which has an extremely high melting point and does not readily ignite, because of its 

thermal and chemical stability
7
. Therefore PBI is used to make protective clothing, for 

examples fire-fighter turnout coats and suits, astronaut space suits, high temperature 

protective gloves, welders' apparel, race driver suits, braided packing, and aircraft wall 

fabrics
8
. The crystal structure, solved by Derissen in 1974

9 
(CSD ref BENZDC01), is similar 

to that of phthalic acid, where the carboxylic acid groups form dimers that create chains, with 

the chains held together through lesser interactions (Figure 7.3).   
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Fig. 7.3 – The crystal structure of isophthalic acid, which exhibits the common carboxylic acid dimer motif. 

 

Many crystal structures of isophthalic acid in organometallic complexes have been deposited 

in the CSD, for example with lithium, sodium caesium and rubidium
10

. Importantly, 

molecular complex structures with both BZN
11

 and IMD
12

 have already been solved and 

deposited in the CSD. The BZN : isophthalic acid structure (CSD ref VARJAA) shown in 

Figure 7.4 exhibits hydrogen bonding ring motifs that combine to form a sheet. There are 

issues with the published structure: firstly it was undertaken at room temperature, the 

hydrogens have not all been accounted for and there is disorder on both co-molecules. The 

IMD : isophthalic acid complex (CSD ref MEQQOO), also shown in Figure 7.4, is a 

relatively well determined structure, however has it been solved at room temperature. The 

structure is made up of chains of alternate hydrogen bonded co-molecules. These chains also 

link through hydrogen bonds to chains above and below resulting in the stacking of these 

chains. These stacks are then linked through weaker interactions in the third direction.  

 

 

Fig. 7.4 – LHS, structure of the benzimidazole : isophthalic acid molecular complex; RHS, the structure of the 

imidazole : isophthalic acid molecular complex. 
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7.1.5 Terephthalic Acid 

 

Nearly all the world‘s supply of terephthalic acid is used to make polyethylene terephthalate 

(PET), which has two main uses, in synthetic fibres (around 60% of market) and in liquid 

bottle holders (around 30%)
13

.  This polymer is the sole material in the bottle industry with 

the major advantage of being recyclable back to its starting materials; it has resin 

identification code 1 (a set of symbols placed on plastics to identify the polymer type). 

Terephthalic acid has two other uses, of much lesser extent: in the production of polybutylene 

terephthalate (PBT) which is a thermoplastic engineering polymer used as an insulator in the 

electrical and electronics industries; and in research laboratories in engineering materials 

linked through hydrogen and coordination bonds. With terephthalic acid‘s major importance 

in industry, it is not surprising to see there are thirteen separate entries in the CSD. There are 

three known polymorphs, two different triclinic structures (CSD ref TEPHTH
14 

and 

TEPHTH12
15

) and a monoclinic structure (CSD ref TEPHTH13
16

) (Figure 7.5). All the 

structures have the same hydrogen bond pattern, a chain of terephthalic acid molecules 

connected through carboxylic acid dimers. The polymorphs differ in their packing 

arrangements. 

 

 

Fig. 7.5 – The carboxylic acid dimer that exists in all the terephthalic acid structures.  

 

There are many compounds and complexes of terephthalic acid in the CSD: with metals 

including cadmium
17

 and with small organic molecules, most significantly imidazole
18 

(CSD 

ref HILSAX) (Figure 7.6). The structure of this imidazole : terephthalic acid complex consists 

of an interlinked hydrogen bonded network that expands in all three dimensions. 
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Fig. 7.6 – The imidazole : terephthalic acid molecular complex.  

 

7.1.6 Fumaric acid 

 

Fumaric acid is an unsaturated dicarboxylic acid with a four carbon chain, with the acid 

groups in trans position about the central C=C bond. They are in the cis conformation in the 

isomeric maleic acid. Fumaric acid has a fruit like taste and is a well known food additive. It 

is also used in the manufacturing of polyester resins and dyes. There are two polymorphs of 

the native structure, the latest was solved in 1966 by Brown
18

 (CSD ref FUMACC) (Figure 

7.7), which adopts the carboxylic acid dimer motif that expands to form chains. 

 

 

Fig. 7.7 – The carboxylic acid dimer motif adopted in the fumaric acid structure. 

 

There are a few structures with fumaric acid as a component deposited in the CSD, of greatest 

importance is that with imidazole, imidazolium hydrogen fumarate. The structure was first 

solved in 2001
 
with CSD reference MEQPED

12
 and adopts the ladder motif, with chains of 

fumaric acid and steps of imidazole (Figure 7.8).  
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Fig. 7.8 – The ladder motif of the imidazolium hydrogen fumarate structure, with the uprights consisting of 

fumaric acid chains and the steps of imidazolium molecules.  

 

7.1.7 Succinic acid 

 

Historically succinic acid was known as spirit of amber and was used to ease rheumatic aches 

and pain. Nowadays it is used as a sweetener in the food industry
19

. It is the saturated form of 

fumaric acid. There are two polymorphs of succinic acid, a triclinic
20

 (Figure 7.9 LHS) and a 

monoclinic form
21

 (Figure 7.9 RHS). They both are constructed by chains of succinic acid 

molecules using the carboxylic acid dimer (Figure 7.9 top), but differ in their packing 

arrangements. 
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_____________________________________________________ 

     

Fig. 7.9 – top, the carboxylic acid dimer that is the main hydrogen bonding pattern for both polymorphs of 

succinic acid, with the packing shown below, LHS, triclinic form, RHS, monoclinic form. 

 

There are numerous examples of the occurrence of native succinic acid, and both its singly 

and doubly deprotonated forms in molecular complexes, of particular interest here is the 

imidazolium hydrogen succinate structure (Figure 7.10). This structure came from the body of 

work by MacDonald
12

 that also reported the structures of imidazole with fumaric acid, 

isophthalic acid, malonic acid and a range of other carboxylic acids. This work found that 

proton transfer occurred and resulted in N-H∙∙∙O hydrogen bonds being formed, and 

MacDonald summarised the structures as follows: ―These strong hydrogen bonds generate 

two types of chains that intersect at the anions and form polar hydrogen-bonded layers with 

four different motifs. These layers serve as scaffolds with which to control molecular packing 

in two dimensions for engineering the structures of crystals. All imidazolium cations function 

as multidentate proton donors by forming two or three C−H···O hydrogen bonds in addition 

to two N−H···O hydrogen bonds. Strong O−H···O and N−H···O hydrogen bonds define 

structure and connectivity within layers, while weaker C−H···O hydrogen bonds dominate 

interactions between layers in these salts”
12

.  
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Fig. 7.10 – Basic building block of the imidazolium succinate ionic molecular complex. 

 

7.1.8 Maleic acid 

 

As stated, maleic acid is the cis- form of butenedioic acid and is primarily used in industry to 

form fumaric acid, the trans- form.  There are two polymorphic forms of maleic acid which 

are both discussed by. Jones
22

. Form I (CSD ref MALIAC12), shown in Figure 7.11, consists 

of sheets of hydrogen bonded maleic acid molecules with weaker interactions operating 

between the sheets. Form II has the same hydrogen bonding pattern, however the packing of 

the structure differs. 

 

 

Fig. 7.11  The structure of maleic acid Form I, showing the main hydrogen bonding pattern.  

 

There are numerous molecular complexes containing maleic acid and its protonated form. Of 

most interest here is the molecular complex with imidazolium (Figure 7.12). This structure, 

first solved in 1972, was re-determined by both X-ray and neutron diffraction in 1980
23

 (CSD 

ref IMZMAL12 & IMZMAL13). The structure adopts the 1:1 hydrogen bonded ring motif, 

using the charge assisted N-H∙∙∙O hydrogen bonds that result from the proton transfer. 
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Between the hydrogen-bonded rings are two interactions including C-H∙∙∙O weak hydrogen 

bonds.   

 

 

Fig. 7.12 – The hydrogen bonded ring motif of the imidazolium maleate molecular complex.  

 

7.1.9 Malonic acid 

 

Malonic acid is systematically known as propanedioic acid. Malonic acid is an important 

molecule within the body as it acts as a competitive inhibitor of succinate dehydrogenase in 

the respiratory electron transport chain. It has no real industrial applications in its native form. 

There are two polymorphic forms of malonic acid and two deuterium isotope induced 

polymorphs. The non-deuterated forms are triclinic
24

 (CSD ref MALNAC02) and triclinic 

beta
25

 (MALNIA04) and the deuterated forms are an orthorhombic alpha
26

 (CSD ref 

MALNAC03) and triclinic gamma
27

 (CSD ref MALNA08). All the different forms have the 

same basic building block, a carboxylic acid dimer (Figure 7.13), with the structures adopting 

different packing arrangements. 

 

 

Fig. 7.13 – The basic dimeric hydrogen bonded building block of all the polymorphic forms of malonic acid. 
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The molecular complexes deposited within the CSD containing the deprotonated form of 

malonic acid, malonate, utilise a wide range of co-molecules, including metals and small 

organic molecules, such as neptunium
28

, nickel
28 

(CSD ref QARVAH), DL-histidine
29 

(CSD 

ref CAMWOD) and most importantly for the work presented here, imidazole
11

 (CSD ref. 

VARHOM). The malonate imidazolium hydrate complex (Figure 7.14) contains a disordered 

water molecule and disordered carboxylic acid groups. The structure adopts hydrogen bonded 

chains of alternate co-molecules which are held through hydrogen bonds to the water 

molecule in one direction to create a ladder style motif, while weaker hydrogen bonds form 

between the chains to create layers. A molecular complex containing malonic acid with 

benzimidazole has also been solved and published
30

 (CSD ref MIZMUE). In this structure the 

main motif is a linear chain of hydrogen bonded alternate co-molecules (Figure 7.14). There 

are a few problems with the structure which are likely to stem from the fact that the 

diffraction experiment was undertaken at room temperature (20ºC) and that the hydrogens 

were fixed geometrically and allowed to ride on the parent carbon atoms. There is thus no 

proton transfer presented in the published structure, which is unlikely as benzimidazole 

readily accepts protons from carboxylic acid groups when in a 1:1 molecular ratio, as is the 

case here. Also the carbon oxygen bond lengths are inconsistent, with double bonds 

apparently having longer distances than single bonds. The authors of this paper were focused 

on computational methods and used the diffraction experiment to support their measurements; 

unfortunately it was never considered that proton transfer might occur. 

 

   

Fig. 7.14 – The imidazolium malonate hydrate structure consists of chains of alternate co-molecules connected 

through the disordered water molecules.  
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7.1.10  Benzoic Acid 

 

Benzoic acid is a very important molecule, not necessarily in its native form but either in the 

salt form, where is it used as a food preservative as it inhibits the growth of mold/yeast
31

 or as 

a precursor to many important organic chemicals. Its structure was first solved in 1955, 

however the most accurate structure, determined by neutron diffraction, was published in 

1996 by Wilson et al
32 

(Figure 7.15).  The molecules adopt the carboxylic acid dimer motif, 

with the protons involved in the hydrogen bond disordered over two sites. The neutron 

experiment found that the occupancy levels on these two sites differed with varying 

temperature. 

 

Fig. 7.15 – The carboxylic acid dimer that is the building block of the benzoic acid structure. 

 

There are a host of materials that contain benzoic acid and / or its deprotonated form 

(benzoate), including salts, molecular complexes, organometallics and solvates. A molecular 

complex with imidazolium was published in 2006
 
(CSD ref HEPXUW) by Baruah et al

33
. The 

structure adopts the linear chain motif with alternating hydrogen bonded co-molecules (Figure 

7.16). 

 

 

Fig 7.16 – The linear chain of alternating hydrogen bonded co-molecules that exists in the imidazolium benzoate 

molecular complex. 
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7.2  Summary of Results 

 

Cocrystallisation reactions with IMD and BZN and a range of co-molecules have produced a 

series of molecular complexes. All of these have been analysed, primarily with single crystal 

X-ray diffraction. 

 

As discussed in Chapter 4, BZN has successfully been cocrystallised with the mono-hydroxy 

substituted benzoic acids series producing a range of molecular complexes with predictable 

hydrogen bonding patterns. The successful cocrystallisation of IMD with the same mono-

hydroxy substituted benzoic acids series is also reported here to produce new molecular 

complexes (Table 7.1). These new structures are all in a 1:1 molecular ratio, with proton 

transfer occurring (see Section 7.2.1) and utilising the hydrogen bond patterns that were seen 

within the other BZN structures studied.  

 

  Imidazole Source Benzimidazole Source 

2-hydroxyBA 1:1 New 1:1 + 1:2 New 

3-hydroxyBA 1:1 New 1:1 + 2:1  New 

4-hydroxyBA 1:1 New 2:1  New 

Table 7.1. – Summary of the molecular complexes generated between cocrystallisation experiments between 

BZN and IMD and the mono-substituted benzoic acid series. In the Source column of the table, ―New‖ 

represents complexes previously undiscovered until this research and ―CSD‖ means the complex already been 

structurally determined and deposited in the CSD. 

 

Cocrystallisations with the aromatic dicarboxylic acids series produced previously 

undiscovered molecular complexes with BZN in a 1:1 molecular ratio (Table 7.2). The X-ray 

diffraction experiment of the BZN complex with terephthalic acid produced a suitable data set 

which resulted in a good quality structure, but problems with crystal quality, namely 

twinning, has resulted in poor data quality for the molecular complexes of BZN with 

isophthalic and phthalic acid. The structures of complexes of imidazole with terepthalic and 

isophthalic acid were previously known, but not with phthalic acid. Unfortunately at the time 

of writing no suitable crystals of IMD with phthalic acid have been produced. 
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  Imidazole Source Benzimidazole Source 

Terephthalic acid 1:1 CSD 1:1 New 

Isophthalic acid 1:1 CSD 1:1 CSD (RD) 

Phthalic acid  n/a n/a 1:1 New 

Table 7.2 – Summary of the molecular complexes that exist between IMD and BZN with aromatic dicarboxylic 

acids. In the Source column of the table, ―New‖ represents molecular complexes generated for the first time 

during this research, ―CSD‖ accounts for those that have already been solved while ―RD‖ stands for re-

determined, i.e. cases where a new X-ray diffraction experiment was attempted to get a improved data set than 

that available in the literature. 

 

In Chapter 5, a wide range of new molecular complexes containing BZN and mono-

substituted halo-benzoic acids were reported and the results discussed. Cocrystallisation 

experiments were also set-up using the mono-substituted halo-benzoic acid series with 

imidazole; the successful generation of molecular complexes with 4-fluoro- and 4-bromo- 

benzoic acids can be reported (Table 7.3). Unfortunately the other cocrystallisations did not 

produce suitable crystals for X-ray diffraction; however it is believed that with the correct 

crystallisation conditions that can be rectified. This section will also cover the 

cocrystallisation of IMD and BZN with benzoic acid and the resulting molecular complexes 

generated.  

 

  Imidazole Source Benzimidazole Source 

4-fluoroBA 1:1 New 1:1  New 

4-bromoBA 1:1 New 1:1  New 

Benzoic acid 1:1 CSD 1:2 New 

Table 7.3 – Summary of the successful cocrystallisations between IMD and mono-substituted halo-benzoic acid 

series with the corresponding BZN molecular complex. 

 

Cocrystallisations with a range of dicarboxylic acids produced four new molecular complexes 

(Table 7.4); BZN with fumaric acid, succinic acid, maleic acid and IMD with malonic acid all 

in a 1:1 molecular ratio and all with associated proton transfer. A model that better represents 

the benzimidazole and malonic acid complex has also been produced. Structures containing 

IMD with fumaric, succinic, maelic acid and a malonic acid hydrate have already been solved 

and deposited in the CSD.  
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  Imidazole Source Benzimidazole Source 

Fumaric acid 1:1 CSD 1:1 New 

Succinic acid 1:1 CSD 1:1  New 

Maelic acid 1:1 CSD 1:1 New 

Malonic acid 1:1 (1:1 hydrate) New (CSD) 1:1 CSD (RD) 

Table 7.4 – Summary of the successful cocrystallisation experiments between IMD and BZN with dicarboxylic 

acids. In the Source column of the table, ―New‖ represents molecular complexes generated for the first time 

during this research, ―CSD‖ accounts for those that have already been solved. ―RD‖ represents the 

benzimidazole : malonic acid molecular complex structure which has been greatly improved in this work from 

that reported in the CSD. 

 

7.2.1 Benzimidazolium, Imidazolium – Proton Transfer 

 

As discussed in previous chapters, in cases where the crystallisation product is in a 1:1 

stoichiometric ratio of BZN and a carboxylic acid containing molecule, the BZN is protonated 

through hydrogen transfer from the carboxylic acid group onto the normally unprotonated 

nitrogen atom in the five-membered ring, creating a benzimidazolium molecule (BZNH
+
). 

The same process occurs with IMD in the presence of a carboxylic acid containing molecule 

in a 1:1 stoichiometric ratio; an imidazolium molecule is created (IMDH
+
) (Figure 7.17). The 

result of the proton transfer on the IMDH
+ 

molecule is a delocalisation of the charge across 

the five-membered ring, reflected in the equalisation of the internal bond lengths N
δ+

-C and 

bond angles C-N
δ+

-C. The delocalisation of the charge has the effect of creating a partial 

positive charge on both nitrogens. This effect has been reported in many structures involving 

BZN and IMD.  
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Fig. 7.17 – LHS, the imidazolium molecule with 4-bromobenzoate, in which both nitrogens are protonated. 

RHS, the MCE Fourier difference map generated where the H atoms located on a nitrogen atom have been 

omitted from the model, clearly showing that both nitrogen atoms are protonated.   

 

The consequence for the co-molecule that has been deprotonated is the creation of a negative 

charge, which is delocalised over the carboxylic acid group resulting in equalisation of the C-

O and C=O bond lengths in the carboxylate group. 

 

7.2.2 Potential Hydrogen Patterns and Hydrogen Bond Motifs 

 

The co-molecules involved in these studies have the same functional groups as those used in 

Chapters 4 and 5, pointing to a series of possible hydrogen bond patterns and supramolecular 

synthons identical to those seen in those chapters. Considering the formation of the molecular 

ion species and the hydrogen bonding patterns seen in structures discussed in previous 

chapters, a library of hydrogen bonding patterns and motifs can now be formed (Figure 7.18).  

It would be highly likely that the structures produced would adopt one of these hydrogen 

bonding patterns and likely to adopt one of the motifs. The motifs outlined are just the general 

trend, for example K represents the ladder motif which can also have a BZN dimer as the step 

and be a cross linked ladder, L represents the hydrogen bonded ring motif, which also has 

variances etc. 
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Fig. 7.18 – The library of hydrogen bond patterns that the molecular complexes are highly likely to adopt. E, F, 

G, H, I and J are all seen in other molecular complexes. The motifs are defined as the general descriptor of these 

interactions; K is the ladder motif, L is the hydrogen bonded ring motif, M is the co-molecule dimer motif while 

N is an example of a linear chain of alternate co-molecules.   

 

7.3  Crystallographic Data 

E 
F G 

H I 

K 
L 

M N 

J 
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Compound IMD 2-HBA IMD 3-HBA IMD 4-HBA IMD 4-FBA IMD 4-BrBA IMD Malonate 

Formula C10 H10 N2 O3 C10 H10 N2 O3 C10 H10 N2 O3 C10 H9 F N2 O2 C10 H9 Br N2 O2 C6 H8 N2 O4 

ΔpKa (1:1) 4.01 2.91 2.42 2.84 3.03 4.16 

Cryst’ Conditions Methanol, ~2-4ºC Ethanol, RT Methanol, ~2-4ºC Acetone, ~2-4ºC Methanol ~2-4ºC Acetone, ~2-4ºC  

M. weight / gmol-1 206.20 206.20 206.20 208.19 269.10 172.14 

Temperature (K) 100 100 100 100 100 100 

Space Group P bca P  21/n  P 21/n P 21/c P n a 21 P 21/c 

a (Å) 11.0916(12) 8.1947(15) 9.1930(4) 12.7412(18) 9.18790(10) 9.3531(2) 

b (Å) 10.9340(13) 12.604(2) 10.7841(4) 7.3249(11) 27.8801(3) 7.7079(2) 

c (Å) 16.674(2) 9.889(2) 10.4544(4) 10.5181(16) 3.9500(5) 11.5136(7) 

α (o) 90 90 90 90 90 90 

β (o) 90 105.85(1) 112.790(2) 96.099(9) 90 113.9650(10) 

γ (o) 90 90 90 90 90 90 

Volume (Å3) 2022.1(4) 982.6(3) 955.52(7) 976.193) 1011.83(13) 758.49(5) 

Z 8 4 4 4 4 4 

θ range (˚) 2.443-24.815 2.683- 27.868 2.511-27.478 1.607-26.759 1.461-27.492 3.276-27.417 

Completeness (%) 0.994 0.994 0.995 0.997 0.998 0.973 

Reflections Collected 72325 10317 14100 15115 20365 7177 

Independent 1733 2326 2183 2075 4335 1676 

Refln (obs.I>2sigma(I)) 1709 2319 1205 2067 4323 1673 

Rint 0.057 0.61 0.093 0.115 0.052 0.028 

Parameters 176 176 176 172 174 141 

GooF on F2 1.2876 1.0885 1.1913 0.9195 1.0232 1.0478 

R1 (Observed) 0.0427 0.0398  0.0573 0.0380 0.0320 0.309 

R1 (all) 0.0551 0.0732 0.0448 0.0693 0.0340 0.0324 

wR2 (all) 0.1012 0.1162 0.0471 0.0924 0.0874 0.0775 

Table. 7.5 – Crystallographic data for the molecular complexes containing imidazolium. 
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Compound BZN BA BZN TerePHth BZN PHth BZN Fumarate BZN succinate BZN maelate BZN malonate 

Formula C21 H18 N2 O4 C15 H12 N2 O4 C15 H12 N2 O4 C11 H12 N2 O4 C11 H12 N2 O4 C11 N2 H11 O4 C10 H10 N2 O4 

ΔpKa (1:1) 1.34 2.02 2.64 2.50 1.37 3.70 2.7 

Cryst’ Conditions Ethanol ~2-4ºC Methanol~2-4ºC Methanol, RT Ethanol RT Ethanol ~2-4ºC Methanol, 40ºC Acetone ~2-4ºC 

M. weight / gmol-1 362.38 284.27 284.27 234.01 235.87 234.21 222.20 

Temperature (K) 100 100 100 100 100 100 100 

Space Group P 21/n P 21/c P 212121 P -1 P 21/n P 21/n P -1 

a (Å) 10.0661(3) 9.7610(2) 4.623(4) 3.7362(1) 9.6333(2) 12.8558(17) 3.7614(2) 

b (Å) 16.8452(6) 7.96610(10) 11.254(10) 11.7687(3) 5.08570(10) 5.4500(6) 12.9268(5) 

c (Å) 20.8572(5) 17.0597(3) 25.85(2) 11.7550(3) 21.8908(4) 15.4641(18) 21.1808(9) 

α (o) 90 90 90 90.0212(11) 90 90 104.863(2) 

β (o) 102.152(2) 98.2206(9) 90 90.5568(14) 97.2514(11) 91.516(4) 92.966(2) 

γ (o) 90 90 90 91.9597(14) 90 90 94.865(3) 

Volume (Å3) 3457.41(8) 1312.88(4) 1344.9(20) 516.54(2) 1063.90(4) 1083.1(2) 988.94(8) 

Z 8 4 4 2 4 4 4 

θ range (˚) 2.207-29.944 2.108-25.930 1.576-22.360 3.464-27.464 1.876-27.515 6-55 1.638-24.775 

Completeness (%) 100 0.998 0.968 0.995 0.998 0.994 0.994 

Reflections Collected 776600 25610 20069 10658 28914 12047 14831 

Independent 7889 2545 1018 2343 2452 2459 3394 

Refln (obs.I>2sigma(I)) 4442 2545 1009 1711 2447 1796 3392 

Rint 0.172 0.056 0.105 0.083 0.043 0.0624 0.0726 

Parameters 487 238 190 192 200 194 349 

GooF on F2 0.9155 0.9457 1.0131 0.9532 0.9745 0.981 1.0090 

R1 (Observed) 0.0484 0.0335 0.0356 0.0373 0.0347 0.0499 0.0433 

R1 (all) 0.0959 0.0541 0.0547 0.0593 0.0471 0.0713 0.0726 

wR2 (all) 0.0968 0.0853 0.0927 0.0957 0.0867 0.1211 0.0946 

Table. 7.6 – Crystallographic data for the molecular complexes containing benzimidazolium. PHth represents phthalic acid i.e. TerePHth is terephthalic acid. 
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7.4  Imidazole with Mono Hydroxy Substituted Benzoic Acids 

 

The three new molecular complexes generated, imidazolium 2-hydroxybenzoate (IMDH
+ 

2-

HBA
-
), imidazolium 3-hydroxybenzoate (IMDH

+ 
3-HBA

-
) and imidazolium 4-

hydroxybenzoate (IMDH
+ 

4-HBA
-
), are all formed in a 1:1 molecular ratio, with the common 

proton transfer transformation occurring (Section 7.2.1). All these molecular complexes 

exhibit only three different hydrogen bonding patterns, G, E and F (Figure 7.18 extract). They 

also form a motif common between the structures, which is a hybrid of the ladder and linear 

chain motifs seen previously (M and N). 

 

     

Fig. 7.18 extract – Extract from Figure 7.18 showing the hydrogen bonding patterns within the molecular 

complexes. 

 

Since the structures of IMD and BZN with the mono-substituted HBA exhibit the same 

hydrogen bond patterns a comparison of their strengths can be undertaken (Table 7.7). This 

table highlights the similarity between the molecular complexes generated in terms of 

hydrogen bond strength, with no vast difference in lengths or angles.  

 

 

E F G 
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Molecular Complexes BZNH
+   

2-HBA
-
 

BZNH
+  

3-HBA
-
 

BZNH
+ 

 

4-HBA
-
 

IMDH
+   

2-HBA
-
 

IMDH
+  

3-HBA
-
 

IMDH
+ 

 

4-HBA
-
 

Hydrogen Bonds 

N
δ+

-

H····O
δ- 

 E and F 

D∙∙∙A(Å) 2.646(1) 

2.621(1) 

2.700(1) 

2.697(1) 

2.689(3) 

2.717(2) 

2.729(2) 

2.699(3) 

2.654(2) 

2.667(2) 

2.739(3) 

2.664(3) 

D-H(Å) 0.99(2) 

0.99(2) 

0.88(1) 

0.90(1) 

0.91(3) 

0.93(3) 

0.96(3) 

0.96(3) 

0.97(3) 

0.91(2) 

0.94(3) 

0.93(3) 

H∙∙∙A(Å) 1.67(2) 

1.64(2) 

1.82(1) 

1.80(1) 

1.78(3) 

1.79(3) 

1.78(3) 

1.75(3) 

1.70(3) 

1.78(3) 

1.85(3) 

1.74(3) 

D-H∙∙∙A 

angle(º) 

169(2) 

171(2) 

178(1) 

173(1) 

173(3) 

170(3) 

172(3) 

171(3) 

169(2) 

164(3) 

157(3) 

17493) 

O-H····O
δ- 

G 

D∙∙∙A(Å) - 2.654(1) 

 

2.602(2) 

2.605(2) 

- 2.675(2) 2.614(3) 

D-H(Å) - 0.87(1) 1.02(3) 

0.94(3) 

- 0.93(3) 0.98(4) 

H∙∙∙A(Å) - 1.79(1) 1.60(3) 

1.69(3) 

- 1.76(3) 1.65(4) 

D-H∙∙∙A 

angle(º) 

- 172(1) 166(3) 

166(3) 

- 171(2) 170(4) 

Table. 7.7  The three scalar quantities and bond angles of the hydrogen bonds of N
δ+

-H····O
δ- 

and  O-H····O
δ-

 found in the molecular complexes presented in Chapter 7.
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7.4.1 Molecular Complex of Imidazolium and 2-Hydroxybenzoic Acid 1:1 

 

As the 2-hydroxybenzoic acid molecule contains an intramolecular hydrogen bond, which 

would be very difficult to break, of the three possible hydrogen bonding patterns, E, F and G, 

the latter would be very unlikely to occur for this complex. With only hydrogen bond patterns 

E and F remaining as possibilities, the question is how these will influence the overall 

structure. 

 

Structure Description 

 

The molecular ions, IMDH
+
 and 2-hydroxybenzoate (2-HBA

-
) form a 1:1 molecular complex.  

The molecular complex was obtained using the solvent evaporation method, with a 1:1 

stoichiometric mixture of IMD (8mg) and 2-hydroxybenzoic acid (2-HBA) (14mg) dissolved 

in the minimum amount of methanol followed by evaporation at 2-4ºC. The crystals generated 

were block shaped and colourless. Single crystal X-ray diffraction data were obtained using a 

Bruker-Apex II diffractometer at 100K, equipped with graphite monochromated Mo Kα 

radiation (λ = 0.71073 Å). The structure was solved using SIR92 within the CRYSTALS 

program. The crystallographic data are summarised in 

Table 7.5. In the molecular complex, the IMD 

molecule is protonated through hydrogen transfer 

from the carboxylic acid group on the 2-HBA, as 

described in Section 7.2.1 (Figure 7.19). The result is 

that the internal bond lengths are normalised to N1
δ+

-

C1 1.304(3)Å and N2
δ+

-C1 1.317(3) Å, and bond 

angles to C1-N1
δ+

-C2 108.1(2)º and C1-N2
δ+

-C7 

107.7(2)º.   

Interaction Label Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

N2···O2  a 2.729(2) 

 

0.96(3) 1.78(3) 

 

172(3) 

 

N1···O1  b 2.699(3) 0.96(3) 1.75(3) 171(3) 

O3···O2  2.524 1.01(3) 1.56(3) 156(3) 

Fig. 7.19 – The imidazolium and 2-

hydroxybenzoate ions which are generated 

in the molecular complex/salt, with atom 

labelling.  
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Table 7.8 – The three scalar quantities and bond angles of the hydrogen bonds and list of the interactions 

between the molecules in the IMDH
+
 2-HBA

-
 molecular complex..  

 

The 2-HBA molecule retains the intramolecular hydrogen bond (O3-H∙∙∙O2) found within its 

native structure. The intramolecular hydrogen bond is relatively short,  O···O distance of 

2.524(2)Å, compared to that found in the native crystal structure, O···O distance of 

2.6191(3)Å. This is due to the intramolecular hydrogen bond being charged assisted, a result 

of the deprotonation of the 2-HBA and is similar to that found in other 2-HBA
- 

molecular 

complexes reported in the CSD. The negative charge is found to be delocalised over the 

carboxylic acid group indicated by the normalisation of the bond lengths in the carboxyl 

group, C8- O1
δ-

 1.248(3)Å and C8- O2
δ-

 1.278(2)Å.  

 

The two hydrogen bonds within the structure (hydrogen bond patterns E and F) are both 

partially charged assisted N
+
-H∙∙∙O

-
 interactions of length (a) 2.729(2)Å and (b) 2.699(3)Å 

(Figure 7.20). These are the predominant interactions within the structure and combine to 

create an alternating chain of co-molecules forming arrow shapes (Figure 7.20 RHS). 

 

 

Fig. 7.20 – The two main hydrogen bonds within the molecular complex, a, N-H∙∙∙O forming pattern E and b, N-

H∙∙∙O forming pattern F; RHS, the resulting arrow head chain of alternate co-molecules. 

 

There are four weaker interactions that influence the expanded structure. The strongest is a C-

H∙∙∙O weak hydrogen bond, C3-H∙∙∙O3, of length 3.301(4)Å that expands the structure along 

the bc-diagonal (Figure 7.21). Further supporting the packing along this diagonal is a C-H∙∙∙π 

O3···C3 c 3.301(4) 0.98(3) 2.48(3) 140(2) 

C2···π  d 3.374 - - - 

C1···O2  e 3.337(3) 0.89(2) 2.70(2) 130(2) 

C8···O2 f 3.497(3) 0.97(2) 2.65(3) 145(2) 

a 
b 
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interaction of 3.574Å (measured from C2 to a centroid between C7 and C8) (Figure 7.21 

RHS). 

 .  

Fig. 7.21  LHS, the weak C-H∙∙∙O hydrogen bond, c, involving the hydroxyl oxygen, RHS, the C-H∙∙∙π 

interaction, d, that expands the structure along the bc diagonal. 

 

There is another weak hydrogen bond, from the carbon located between the nitrogens on the 

IMDH
+ 

and a carboxylate oxygen, C1-H∙∙∙O2, which is of length 3.337(3)Å (Figure 7.22). 

This interaction exists between the chains and interlinks them along the a-axis. The last of the 

weaker interactions that influence the structure is a C-H∙∙∙O weak hydrogen bond involving 

the carboxylate oxygen (Figure 7.22 RHS). This hydrogen bond is weak at 3.497(3)Å but is 

the only interaction that connects the chains along the c-axis. 

 

   

Fig. 7.22 – LHS, the C-H∙∙∙O weak hydrogen bond, e, that connects two of the chains together, RHS, another C-

H∙∙∙O hydrogen bond, f, this time expanding the structure along the c-axis. 

 

Figure 7.23 is a view of the expanded structure along the b-axis. In this figure the main 

hydrogen bonds, a and b, expand the chains in a zigzag fashion (blue line). Connecting the 

chains along the face of the figure are the weaker interactions e, C-H∙∙∙O hydrogen bond, and 

f, C-H∙∙∙O hydrogen bond (coloured in red). That leaves the weaker interactions c, C-H∙∙∙O 

hydrogen bond and d, the C-H∙∙∙π interaction that connect the chains perpendicular to Figure 

7.23. 

c 

d 

e 

f 
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Fig. 7.23 – An expanded image of the IMDH
+
 2-HBA

-
 molecular complex showing the hydrogen bonded chains 

(blue line) being connected by two C-H∙∙∙O hydrogen bonds (red box).  

 

7.4.2 Molecular Complex of Imidazolium and 3-Hydroxybenzoic Acid 1:1 

 

Having the hydroxyl group in the 3-position on the benzoic acid molecule, removing the 

possibility of intramolecular hydrogen bond formation, will result in the hydroxyl group being 

available for medium strength intermolecular hydrogen bonds. In the BZN molecular 

complexes (see Chapter 4) the predominant hydrogen bond for this group was pattern G, a 

hydroxyl – carboxylate hydrogen bond.  It is likely that this will be the case for the IMD 

structures and coupled with the hydrogen bond patterns seen in the IMDH∙
+
 2-HBA

-
 

molecular complex (and in every other structure containing BZN or IMD), E and F, there is a 

possibility for the ladder motif to form. 
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Structure Description 

The molecular ions, IMDH
+
 and 3-hydroxybenzoate (2-HBA

-
) form a 1:1 molecular complex 

or salt.  The molecular complex was obtained using the solvent evaporation method, with a 

1:1 stoichiometric mixture of IMD (6mg) and 3-hydroxybenzoic acid (3-HBA) (14mg) 

dissolved in the minimum amount of ethanol and left to evaporate at room temperature. The 

crystals generated were block shaped and colourless. Single crystal X-ray diffraction data 

were obtained using a Bruker Apex II diffractometer at 100K, equipped with graphite 

monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved using SIR92 

within the CRYSTALS program. The 

crystallographic data are summarised in Table 7.5.  

  

Proton transfer has occurred (see Section 7.2.1 for 

details) resulting in the IMDH
+ 

anion having the N-C 

bonds and C-N-C angles normalised. This also 

creates an 3-HBA
- 
cation with the carboxylate group 

undergoing normalisation of the carbon –oxygen 

bond lengths (Figure 7.24). The intra-/intermolecular 

interactions with relavent data are listed in Table 7.9. 

Table 7.9 – The three scalar quantities and bond angles of the hydrogen bonds and list of the interactions 

between the molecules in the IMDH
+
 3-HBA

-
 molecular complex..  

 

The main motif of the structure is a hydrogen bonded box consisting of two equivalents of 

each molecule acting as the sides with carboxylate groups as the corners (Figure 7.25). It can 

be seen that this shape is repeated along the b- and c-axis forming stacks of boxes. There are 

three unique hydrogen bonds within the structure that all occur at the corners of the boxes and 

Interaction Label Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

O3···O1  2.675(2) 0.93(3) 1.76(3) 171(2) 

N2···O2  2.654(2) 0.97(3) 1.70(3) 169(2) 

N2···O2  2.667(2) 0.91(2) 1.78(3) 164(3) 

C1···O1 a’ 3.345(2) 0.92(2) 2.69(2) 129(2) 

C1···O2  b’ 3.416(3) 0.92(2) 2.64(3) 142(2) 

C7···O3  3.273(2) 1.02(2) 2.48(2) 133(1) 

Fig. 7.24 – The imidazolium and 3-

hydroxybenzoate ions which are generated 

in the molecular complex/salt, with atom 

labelling.  
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shape the structure (Figure 7.25 RHS). These three moderate hydrogen bonds are very similar 

in strength, O3-H∙∙∙O1 2.675(2)Å, O1-H∙∙∙N1 2.654(2)Å and O2-H∙∙∙N2 2.667(2)Å, and 

correspond to the common hydrogen bonding patterns G, E and F.  There are no weaker 

interactions that help form these boxes. Interestingly, the hydrogen bond that is most 

directional is that between the carboxylate and the imidazole groups, which is the opposite 

situation to that found in the BZN structures where the hydroxyl - carboxylate hydrogen bond 

is the main hydrogen bond thus creating the chains seen in those structures. 

  

 

Fig. 7.25  LHS, an expanded view of the IMDH
+ 

3-HBA
- 
molecular complex along the a-axis, it can be seen 

that the structure is made up of hydrogen bonded boxes (red box) stacked upon each other, RHS, a expanded 

view of the yellow circle highlighting the corners of each box with the three hydrogen bonds that originate from 

this point.  

 

Connecting the motifs, 2D boxes stack upon one another, held together only by two weaker 

interactions. Firstly, a bifurcated hydrogen bond involving the carbon located between the two 

nitrogens of the IMDH
+ 

molecule and the oxygens involved in the hydroxyl – carboxylate 

hydrogen bond (Figure 7.26). The two interactions in this asymmetrical bifurcated hydrogen 

bond have similar lengths, with the hydrogen bond involving the partially negative oxygen 

slightly smaller: a‘- 3.345(2)Å and b‘- 3.416(3)Å. It is worth noting that the proton is directed 

towards the hydroxyl oxygen, which has the slightly longer hydrogen bond length. The 

bifurcated hydrogen bond expands the structure along the b-axis. Another weak hydrogen 

bond, C7-H∙∙∙O3, assists the bifurcated hydrogen bond in connecting the stacks along the b-

axis (Figure 7.26 RHS). This weak hydrogen bond has a length of 3.273(2)Å. 
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Fig. 7.26  LHS, bifurcated hydrogen bond and RHS, C-H∙∙∙O weak hydrogen bond that expands the stacks of 

boxes along the b-axis. 

 

7.4.3 Molecular Complex of Imidazolium and 4-Hydroxybenzoic Acid 1:1 

 

In this complex, the hydroxyl group is now in the 4-position on the benzoic acid molecule. 

This does not affect the motifs in the BZN structures so it is possible a similar motif to the 

IMDH
+ 

3-HBA
- 
structure will prevail. It will also be very likely that the same hydrogen bond 

patterns, E, F and G form with very little reason for this not to be the case.   

 

Structure Description 

 

The molecular ions, IMDH
+
 and 4-hydroxybenzoate (4-HBA

-
) form a 1:1 molecular complex 

or salt (Figure 7.27).  The molecular complex was obtained using the solvent evaporation 

method, with a 1:1 stoichiometric mixture of IMD (6mg) and 4-hydroxybenzoic acid (4-

HBA) (14mg) dissolved in the minimum amount of 

methanol followed by evaporation at 2-4ºC in a cold 

room. The crystals generated were plate shaped and 

colourless. Single crystal X-ray diffraction data were 

obtained using a Bruker-Nonius Kappa 

diffractometer at 100K, equipped with graphite 

monochromated Mo Kα radiation (λ = 0.71073 Å). 

The structure was solved using SUPERFLIP within 

the CRYSTALS program. The crystallographic data 

are summarised in Table 7.5. Proton transfer has 

a‘ b‘ 

Fig. 7.27 – The imidazolium and 4-

hydroxybenzoate ions which are generated 

in the molecular complex/salt, with atom 

labelling.  
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occurred (see Section 7.2.1 for details) resulting in the IMDH
+ 

anion having the N-C bonds 

and C-N-C angles normalised, N1-C1 1.332(4)Å, N2-C1 1.328(3)Å and C2-N1C1 108.7(2)º, 

C3-N2-C1 108.2(2)º.  A similar effect is seen in the 4-HBA
- 

cation after the deprotonation 

leaving the negative charge delocalised across the carboxylate group resulting in the 

normalisation of the C-O bond lengths, C4-O1 1.259(4)Å and C4-02 1.275(3)Å. 

Table 7.10 – The three scalar quantities and bond angles of the hydrogen bonds and list of the interactions 

between the molecules in the IMDH
+ 

4-HBA
- 
molecular complex.  

 

The IMDH
+ 

4-HBA
- 

structure adopts the same motif as the IMDH
+ 

3-HBA
-
, a hydrogen 

bonded box consisting of two equivalents of each molecule acting as the sides with 

carboxylate groups as the corners (Figure 7.28). The main difference is in the angles of the 

box. Within this structure they are close to 90º creating a very square box whereas in the 3-

HBA
- 
structure the box is more of a parallelogram shape. The hydrogen bonds are the same as 

found in the 3-HBA
- 
structure following the patterns E, F and G (see Table 7.10 for details). 

They are of moderate strength and two of them are slightly shorter than the corresponding 

interactions in the 3-HBA
- 
structure at E, N-H∙∙∙O 2.664(3)Å, F, N-H∙∙∙O 2.739(3)Å and G, O-

H∙∙∙O 2.614(3)Å.  

 

Interaction Label Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

N1···O1  E 2.664(3) 0.93(3) 1.74(3) 174(3) 

O2···O3  F 2.614(3) 0.98(4) 1.65(4) 170(4) 

N2···O2  G 2.739(4) 0.94(3) 1.85(3) 157(3) 

C1···π 3.838 - - - 

C1···O1  3.073(3) 0.96(3) 2.45(2) 118(2) 

N1···O1  3.537(3) 0.94(3) 2.62(3) 110(2) 
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.  

Fig. 7.28 – LHS, the view along the c-axis of the motif of the IMDH
+ 

4-HBA
- 

molecular complex, hydrogen 

bonded squares (red box) stack upon one another, RHS, extract from the yellow circle which shows the corners 

of the boxes with hydrogen bonds E, F and G highlighted.  

 

The stacks of boxes expand the structure along the a- and b-axes which leaves the expansion 

along the c-axis to be achieved by two weaker interactions. Figure 7.29 is the view along the 

a-axis when two stacks of boxes are expanded out. From this image the weaker interaction 

that expands the structure along the c-axis can be seen to be a C-H∙∙∙π interaction of length 

3.838Å (measured from a centroid between carbons C6 and C7 to C1). 

 

 

Fig. 7.29 – View along the a-axis showing two stacks of boxes held together along the c-axis by C-H∙∙∙π 

interactions (circled in red). 

 

Connecting the boxes along the ac-diagonal is a double hydrogen bond utilising the carbon 

located between the two nitrogens on the IMDH
+ 

and a nitrogen with the oxygen O1, C1-

E 

F G 
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H∙∙∙O1 and N1-H∙∙∙O1 (Figure 7.30). These hydrogen bonds are weak at 3.021(3)Å and 

3.073(3)Å respectively and have the effect of packing the stacks of hydrogen bonded boxes 

along the ac-diagonal. 

 

 

Fig. 7.30 – The double weak hydrogen bonds that expand the stacks of hydrogen bonded boxes along the ac-

diagonal. 

 

7.5  A Comparison of the Molecular Complexes of Imidazole and 

Benzimidazole with Halo Substituted Benzoic Acids 

 

As discussed in Chapter 5, a whole range of new molecular complexes containing BZN and a 

mono-substituted halo-benzoic acid have been produced. Cocrystallisation experiments were 

also set-up using the mono-substituted halo-benzoic acid series with imidazole. This resulted 

in the successful generation of molecular complexes of imidazole with 4-fluoro- and 4-

bromo- benzoic acids (Table 7.3). This section will look at the different hydrogen bond 

patterns produced but will focus on the roles of the halogen atom. The benzoic acid structures 

should help to highlight the roles that the halogen atoms play in the formation of a new 

molecular complex of different stoichiometry, a 1:2 benzimidazole : benzoic acid, which has 

been structurally determined. 

 

  Imidazole Source Benzimidazole Source 

4-fluoroBA 1:1 New 1:1  New 

4-bromoBA 1:1 New 1:1  New 

Benzoic acid 1:1 CSD 1:2 New 

Table 7.3 repeated - Summary of the successful cocrystallisations between IMD and mono-substituted halo-

benzoic acid series with the corresponding BZN molecular complex. 
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The two newly characterised halo-substituted benzoic acid molecular complexes contain only 

the N-H∙∙∙O hydrogen patterns E and F. Table 7.11 compares the distances of these hydrogen 

bonds with those in the benzimidazole counterparts. It can be seen that there is no real 

difference to the strength of the hydrogen bonds whether IMD or BZN is the co-molecule.  

This is also the case between the different IMD structures studied, where the hydrogen bond 

distances are a little shorter in the fluoro- complex compared to the bromo-substituted, but not 

by any significant margin. 
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Molecular Complexes IMDH
+   

4-FBA
-
 

BZNH
+  

4-FBA
 -
 

IMDH
+ 

 

4-BrBA
-
 

BZNH
+  

4-BrBA
-
 

IMDH
+  

BA
-
 

BZNH
+ 

BA
-
 

Hydrogen Bonds 

N
δ+

-

H····O
δ- 

 E and F 

D∙∙∙A(Å) 2.670(2) 

2.626(2) 

2.800(2) 

2.687(2) 

2.680(2) 

2.710(2) 

2.597(2)  2.667(2) 

2.638(2) 2.850(2) 

2.848(2) 

2.613(3) 

2.666(3) 

2.776(4) 2.645(3) 

2.766(4) 2.680(3) 

D-H(Å) 0.92(2) 

0.99(2) 

0.85(2) 

0.93(2) 

0.83(3) 

0.93(3) 

0.94(3) 0.78(2) 

0.92(3) 0.77(2) 

0.77(2) 

1.02(6) 

0.90(5) 

0.88(3) 0.97(2) 

1.06(3) 0.82(3) 

H∙∙∙A(Å) 1.75(2) 

1.64(2) 

2.13(3) 

1.77(3) 

1.87(3) 

1.78(3) 

1.65(3) 1.91(2) 

1.72(3) 2.17(2) 

2.36(3) 

1.63(5) 

1.77(5) 

1.99(2) 1.69(2) 

1.85(2) 1.90(2) 

D-H∙∙∙A 

angle(º) 

173(2) 

176(2) 

135(2) 

179(2) 

165(3) 

177(2) 

178(3) 163(3) 

147(2) 141.6(2) 

123(2) 

160(5) 

173(5) 

148(2) 168(2) 

141(2) 157(2) 

Table 7.11  The three scalar quantities and bond angle of the hydrogen bonds of N
δ+

-H····O
δ- 

found in the molecular complexes presented in section 7.5.
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7.5.1 Molecular Complex of Imidazolium and 4-Fluorobenzoic Acid 1:1 

 

The corresponding BZNH
+ 

structure with 4-FBA
- 
has dimers of each co-molecule connected 

to form zig-zag chains (as seen in Figure 5.58, repeated below). This sort of motif was seen in 

many of the BZNH
+ 

with halo-benzoic acid molecular complexes. It would be possible for 

this motif to prevail in the IMDH
+ 

structure, however this would require partial or no 

protonation to occur, which is unlikely.  

 

 

Fig. 5.58 repeated – View along the a-axis of the BZN 4-FBA molecular complex, showing the main motif, a  

zigzag chain of dimers held together by N
δ+

-H∙∙∙O
δ- 

 hydrogen bonds that expand the structure along the ab-

diagonal axis. 

 

Structure Description 

 

The molecular complex between IMD and 4-fluorobenzoic acid (4-FBA) contains one of each 

of their ionic forms in a 1:1 ratio, IMDH
+
 : 4-FBA

-
. The molecular complex was obtained 

using the solvent evaporation method, with a 1:1 stoichiometric mixture of  IMD (6mg) and 

4-fluorobenzoic acid (12mg) dissolved in the minimum amount of acetone followed by 

evaporation at a constant temperature of between 2 and 4ºC using a walk in fridge. The 

crystals generated were block shaped and colourless. Single crystal X-ray diffraction data 

were obtained using a Bruker Apex II diffractometer at 100K, equipped with graphite 

monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved using SIR92 

within the CRYSTALS program.  The crystallographic data are summarised in Table 7.5. As 

described in Section in 7.2.1, a IMDH
+ 

molecule is generated through hydrogen transfer from 

the 4-FBA molecule (Figure 7.31 top). This has the effect of normalising the internal IMDH
+ 
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carbon – nitrogen bond lengths, N1-C1 1.325(2)Å and N2-C1 1.320(2)Å, and the carbon – 

oxygen bond lengths on the 4-FBA
-
, C4-O1 1.256(2)Å and C4-O2 1.261(2)Å

 
.   

 

There are two main hydrogen bonds within the structure, both partially charged assisted N-

H∙∙∙O interactions that correspond to hydrogen bond patterns E and F (Figure 7.31). These 

two moderate hydrogen bonds (E, N1-H∙∙∙O2, 2.687(2)Å F, N2-H∙∙∙O1, 2.800(2)Å) combine 

to form spiral chains of alternating co-molecules along the b-axis that is the main motif of the 

structure (Figure 7.31 bottom LHS). Figure 7.31 RHS looks through one of the spiral chains 

highlighting the cyclical nature of the structure with Table 7.12 giving the hydrogen bond 

data. 

 

 

Fig. 7.31 – (top) The imidazolium and 4-fluorobenzoate ions which are generated in the molecular complex/salt, 

with atom labelling. 

Table. 7.12 - The three scalar quantities and bond angles of the hydrogen bonds and list of the interactions 

between the molecules in the IMDH
+ 

4-FBA
- 
molecular complex.  

 

Interaction Label Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

N1···O4  E 2.670(2) 

 

0.92(2) 

 

1.75(2) 

 

173(2) 

 

N2···O3  F 2.626(2) 0.99(2) 1.64(2) 176(2) 

C1···O2 3.065(2) 1.02(2) 1.26(2) 147(1) 

C9···F M 3.490(2) - - - 

C2···F  N 3.547(2) - - - 
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Fig. 7.31 – (bottom) LHS, the main motif of the IMDH
+ 

4-FBA
- 
molecular complex, a spiral chain of alternate 

co-molecules held together through N-H∙∙∙O hydrogen bonds, E and F, RHS, view along the b-axis of an 

extended spiral chain showing its cyclical nature. 

 

The third most common hydrogen bond donor of the IMD/BZN molecule, the carbon located 

between the nitrogens, is once again involved in a significant hydrogen bond in this structure. 

The C-H∙∙∙O weak hydrogen bond is of a relatively short length for this type of hydrogen 

bond at 3.065(2)Å. It has the role of binding two spiral chains alongside one another (Figure 

7.32).  

 

 

Fig. 7.32 – LHS, the C-H∙∙∙O hydrogen bond that binds two spiral chains to one another, RHS, the effect the 

binding of the two spirals (red circle) has on the structure. 

 

The main motif, the spiral chains, expands the structure along the b-axis, the C-H∙∙∙O weak 

hydrogen bond then binds together two of the motifs. The structure is further expanded along 

the a- and c-axis through two weak hydrogen bonds of equal strength (Figure 7.33). Hydrogen 

E 

F 
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bond M, C9-H∙∙∙F, has length of 3.490(2)Å while N, C2-H∙∙∙F, has length 3.547(2)Å. These 

are the only interactions that expand the structure along the a- and c- axes. 

 

 

Fig. 7.33  View along the b-axis of the extended structure of the IMDH
+ 

4-FBA
- 
molecular complex showing 

the spiral chains (highlighted in red) held together by weak hydrogen bonds (yellow lines) that connect the 

chains along the a- and c-axes. 

 

7.5.2 Molecular Complex of Imidazolium and 4-Bromobenzoic Acid 1:1 

 

The corresponding BZNH
+ 

structure with 4-BrBA
- 

adopts a hydrogen bonded ring motif 

containing equal numbers of each co-molecule (as shown in Figure 5.56, repeated below). 

This sort of motif was seen in other BZNH
+ 

with halo-benzoic acid molecular complexes and 

is considered likely to occur in the IMDH
+ 

structures. The spiral chain motif, seen in the 

IMDH
+ 

4-FBA
-
 complex, utilises the most prominent hydrogen bonds available, E and F, N-

H∙∙∙O, to a better effect than in the BZNH
+ 

4-BrBA
- 
structure. In all the molecular complexes 

studied containing a halobenzoic acid, the halogen group is a significant factor in the 

extended structure and is highly likely to be so again. 

 

M 

N 
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Fig. 5.56 repeated – The b-axis of the BZN 4-BrBA molecular complex, showing the main motif, a hydrogen 

bonded ring using N
δ+

-H∙∙∙O
δ- 

hydrogen bonds. 

 

Structure Description 

 

The molecular complex between IMD and 4-bromobenzoic acid (4-BrBA) contains one 

equivalent of each of their ionic forms in a 1:1 ratio, IMDH
+
 : 4-BrBA

-
. The molecular 

complex was obtained using the solvent evaporation method, with a 1:1 stoichiometric 

mixture of  IMD (6mg) and 4-bromobenzoic acid (18mg) dissolved in the minimum amount 

of methanol followed by evaporation at a constant temperature of between 2 and 4ºC using a 

walk in fridge. The crystals generated were plate shaped and colourless. Single crystal X-ray 

diffraction data were obtained using a Bruker Nonius Kappa diffractometer at 100K, equipped 

with graphite monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved 

using SUPERFLIP within the CRYSTALS program. The crystallographic data are 

summarised in Table 7.5. As described in Section in 7.2.1 a IMDNH
+ 

molecule is generated 

through hydrogen transfer from the 4-BrBA molecule (Figure 7.34). This has the effect of 

normalising the internal IMDH
+ 

carbon – nitrogen bond lengths, N1-C1 1.331(3)Å and N2-C1 

1.323(2)Å, and the carbon – oxygen bond lengths on the 4-FBA
-
, C4-O1 1.287(2)Å and C4-

O2 1.243(2)Å
 
.   
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Fig. 7.34 – The imidazolium and 3-bromobenzoate ions which are generated in the molecular complex/salt, with 

atom labelling.  

Table. 7.13 - The three scalar quantities and bond angles of the hydrogen bonds and list of the interactions 

between the molecules in the IMDH
+ 

4-BrBA
- 
molecular complex.  

 

The main motif in the IMDH
+ 

4-BrBA
- 
molecular complex is a zigzag chain of alternative co-

molecules connected through moderate hydrogen bonds (Figure 7.35). These hydrogen bonds 

are partially charged assisted N
δ+

-H····O
δ-

 interactions that correspond to hydrogen bond 

patterns E and F. They are of moderate strength with length N1-H∙∙∙O2 2.680(2)Å and N2-

H∙∙∙O2 2.710(2)Å and runs along the bc diagonal (Table 7.13). 

 
 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

N1···O2 2.680(2) 0.83(3) 1.87(3) 165(3) 

N2···O2  2.710(2) 0.93(3) 1.78(3) 177(2) 

C1···O1 3.129(2) 0.97(2) 2.63(2) 110(1) 

C3···O1 3.183(2) 0.91(3) 2.34(3) 153(2) 

C9···Br  3.831(2) - - - 

C7···Br 3.759(2) - - - 
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Fig. 7.35 – The main motif of the IMDH
+ 

4-BrBA
- 
molecular complex, a zigzag chain of alternate co-molecules 

connected through moderate hydrogen bonds. 

 

The motifs stack on top of one-another along the c-axis using weak C-H∙∙∙O hydrogen bonds 

(Figure 7.36). These hydrogen bonds originate from the oxygen not involved in the moderate 

hydrogen bonds (O1) and connect to two separate carbons in the IMDH
+ 

molecule, C1 

3.129(2)Å and C3 3.183(2)Å (Figure 7.36 RHS). The distances between both copies of the 

IMDH
+ 

and 4-BrBA
-
 molecules are too long for any π stacking interactions. 

 

  

Fig. 7.36 – The motifs, zigzag chains of alternative co-molecules, are stacked upon one another along the c-axis 

held by weak C-H∙∙∙O hydrogen bonds; RHS, the weak hydrogen bonds that exists between the layers. 

 

The b-axis is expanded by interactions involving the bromine molecule which covers all the 

significant interactions within the structure (Figure 7.37). The bromine halogen bonds (brown 

circle) are of length C9-H∙∙∙Br 3.831(2)Å and C7-H∙∙∙Br 3.759(2)Å and are the only 

interactions that expand the structure along the b-axis. 
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Fig. 7.37 – The halogen bonds, C-H∙∙∙Br, that exist between the zigzag chains along the b-axis. 

 

A view along the a-axis of the extended IMDH
+ 

4-BrBA
- 

molecular complex is shown in 

Figure 7.38. From this the main motif can be seen, zigzag chains held together through 

moderate N-H∙∙∙O hydrogen bonds (blue line, Fig 7.35), and connected to another motif 

through C-H∙∙∙O hydrogen bonds (red box, Fig 7.36) while they are further extended along the 

b-axis through halogen bonds (brown box, Fig. 7.37). 

 

 

Fig. 7.38 – An extended image of the IMDH
+ 

4-BrBA
- 
molecular complex viewed along the a-axis, showing the 

main motif (blue line), the weaker C-H∙∙∙O hydrogen bonds (red box) and the bromine halogen bonds (brown 

box).   
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7.5.3 Molecular Complex of Benzimidazole and Benzoic Acid 1:2 

 

BZN has successfully been cocrystallised with benzoic acid (BA) forming a complex with a 

1:1:1 molecular ratio of BZNH
+
 :BA

-
: BA. There are two unique molecules of each co-

molecule, BZNH
+ 

, BA
- 

and BA within the unit cell. The molecular complex was obtained 

using the solvent evaporation method, with a 1:1 stoichiometric mixture of  BZN (12mg) and 

benzoic acid (12mg) dissolved in the minimum amount of ethanol followed by evaporation at 

a constant temperature of between 2 and 4ºC using a walk in fridge. The crystals generated 

were needle shaped and colourless. Single crystal X-ray diffraction data were obtained using a 

Bruker Nonius Kappa diffractometer at 100K, equipped with graphite monochromated Mo Kα 

radiation (λ = 0.71073 Å). The structure was solved using SUPERFLIP within the 

CRYSTALS program.  The crystallographic data are summarised in Table 7.6. As described 

in Section in 7.2.1 a BZNH
+ 

molecule is generated through hydrogen transfer from the BA 

molecule. This has the effect of normalising the internal carbon – nitrogen bond lengths and 

bond angles as seen in the nearly all the molecular complexes in this work. There is, however 

a 2:1 ratio in favour of BA over BZN molecules in this structure, with the effect that there are 

two BAs which are not deprotonated and two BAs which are deprotonated within the 

asymmetric unit. This results in six different molecules within the asymmetric unit. The 

effects on the carbon – oxygen bond distances are, as expected, quite profound (Table 7.14) 

with the deprotonated BA molecules having normalised bond lengths while the non-

deprotonated retain the bond length variations characteristic of the native form. 

 

 BA
32 

Molecule 1 Molecule 2 Molecule 3  Molecule 4 

C-O (Å) 1.288(3) 1.262(4) 1.316(4) 1.324(4) 1.262(4) 

C=O (Å) 1.245(3) 1.263(3) 1.220(4) 1.225(4) 1.271(4) 

Table 7.14 – The carbon –oxygen bond lengths of benzoic acid (BA)
32 

and the four benzoic acid molecules from 

the BZNH
+
 :BA

-
: BA molecular complex. 

 

The molecules involved in the proton transfer, BZNH
+ 

and BA
-
, create partially charge 

assisted N
δ+

-H····O
δ-

 hydrogen bonds between the nitrogen of the BZNH
+
 and oxygen of the 

carboxylate group. These are of moderate strength, a‘  2.978(3)Å, b‘  2.680(3)Å, c‘  

2.924(3)Å, d‘  2.645(3)Å and arrange themselves into a 1:1 hydrogen bonded ring system 

that can be described by the graph set notation symbol 4

4R (16). Attaching onto this inner ring 
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are the BA molecules that position themselves so that the hydroxyl oxygen hydrogen bonds to 

a deprotonated oxygen, O-H∙∙∙ O
δ-

, and the carbonyl oxygen to a protonated nitrogen, N
δ+

-

H····O (Figure 7.39). These hydrogen bonds are also moderate in strength with those 

involving the two oxygens slightly shorter, e‘ 2.570(3)Å, f‘ 2.776(4), g‘ 2.766(4)Å and h‘ 

2.562(2)Å (Table 7.10). This creates a hydrogen bonded ring system, consisting of two 

occurrences of each molecule, BZNH
+
,
 
BA

- 
and BA that can be described by graph set 

notation as 6

6R (24). This hydrogen bonded ring, the motif of the molecular complex, is 

relatively flat apart from the benzene ring of molecules 1 and 3 that are ~24.70º tilted with 

respect to each other. There are two bifurcated hydrogen bonds (g‘ : c‘ and a‘ : f‘) within this 

structure that are borderline between being termed symmetrical or asymmetrical as the 

position of the hydrogen is relatively centred and the strengths of the interactions relatively 

equal (Table 7.15). Figure 7.39 has been produced by fixing the hydrogen atoms (found 

isotropically, placed on calculated positions and the thermal parameters fixed to 1.2 times to 

the atom to which they are bonded and no parameters refined during refinement) that are not 

involved in the main hydrogen bonds. 

 

 

 

Fig. 7.39 – The motif of the BZNH
+
 : BA

-
: BA molecular complex, an )24(4

4R  hydrogen bond ring system 

containing two of each molecule held together by N-H∙∙∙O (a‘, b‘, c‘, d‘, f‘ and g‘) and O-H∙∙∙O (e‘ and h‘) 

hydrogen bonds. The BA and BA
-
 molecules are labelled 1 to 4. 

a‘ 

b‘ 

c‘ 

d‘ 

e‘ 

f‘ 

g‘ 

h‘ 

Molecule 1 

Molecule 3 

Molecule 2 

Molecule 4 
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Hydrogen Bonds a’ b’ c’ d’ e’ f’ g’ h’ 

D∙∙∙A (Å) 2.978(3) 2.680(3) 2.924(3) 2.645(3) 2.570(3) 2.776(4)  2.766(4) 2.562(2) 

D-H (Å) 0.88(3) 0.82(3) 1.06(3) 0.97(2) 0.98(2) 0.88(3)  1.06(3) 0.97(2) 

H∙∙∙A (Å) 2.39(2) 1.90(2) 2.92(3) 1.68(2) 1.60(2) 1.99(2)  1.85(2) 1.59(2) 

D-H∙∙∙A angle (º) 124(2) 158(2) 123(2) 169(2) 173(1) 148(2)  142(2) 168(1) 

Table 7.15 – The hydrogen bond data for all the moderate hydrogen bonds in the BZNH
+
 :BA

-
: BA molecular 

complex. 

 

The hydrogen bonded rings stack upon one another along the a-axis (Figure 7.40) held in 

place by two different interactions. The most significant are π∙∙∙π interactions between the 

hydroxyl oxygens and the carbon located between the two nitrogens  in the BZN (blue circle) 

and an oxygen from the deprotonated BAs with the same carbon (blue circle). These are 

relatively strong interactions at 3.009(4)Å (deprotonated oxygen) and 3.219(4)Å (protonated) 

respectively. There are also intermolecular π∙∙∙π interactions, involving aromatic carbons from 

the co-molecules that have a length of 3.299(4)Å (red circle).  

 

 

Fig. 7.40 – View along the c-axis highlighting the stacking behaviour of the motifs with the π∙∙∙π interactions 

(red and blue ovals, and expanded in the blue and red boxes) that hold it them together. 

 

The structure is expanded along the b-axis through C-H∙∙∙O weak hydrogen bonds of 

3.497(4)Å in length (Figure 7.41). 

 

 

Fig. 7.41 – The C-H∙∙∙O weak hydrogen bond that expands the structure along the b-axis. 
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Figure 7.42 highlights how the motifs, 6-membered hydrogen bonded rings, form a zigzag 

chain along the b-axis.  

 

  

Fig. 7.42  LHS, the blue shaded circles show where the C-H∙∙∙O weak hydrogen bonds (Figure 7.41) hold the 

motifs together; RHS, view along the b-axis highlighting the zigzag pattern formed by the motifs. 

 

The two images shown in Figure 7.43 are viewed along the a-axis (LHS) and the c-axis 

(RHS) of the extended BZNH
+
 :BA

-
: BA molecular complex. These highlight how the main 

motif, 6-membered hydrogen bonded rings, stack upon one another and that the weak C-H∙∙∙O 

hydrogen bonds extend the structure. 

  

 

Fig. 7.43  LHS, the a-axis, RHS, the c-axis of the extended structure showing how the main motif (blue areas) 

is expanded by weak C-H∙∙∙O hydrogen bonds (yellow areas).  
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7.5.3.1 Imidazolium Benzoate 1:1 

 

The molecular ions, imidazolium and benzoate, form a 1:1 molecular complex that was 

published in 2006
33

. The structure adopts the linear chain motif which, like other imidazolium 

molecular complexes, has a spiral nature (Figure 7.44). The chain is created through moderate 

N-H···O hydrogen bonds that utilise the hydrogen bond patterns E and F. The hydrogen bond 

distances are comparable to the benzimidazolium complex at E, N∙∙∙O 2.613(3)Å and F, 

2.666(3)Å compared to 2.645(3)Å and 2.776(4)Å in the imidazolium complex. 

 

   

Fig. 7.44 – LHS, the linear chain of hydrogen bonded alternating co-molecules is the main motif in the 

imidazolium benzoate structure
33

; RHS, shows the cylcial nature of the motif. 

 

The motif is expanded throughout the structure by two interactions, the strongest is a weak 

hydrogen bond involving the carbon located between the nitrogens on the imidazolium 

molecule and an oxygen. The other is a weak carbon – carbon hydrogen bond of around 

3.664(6)Å. 

 

7.6  Molecular Complexes Containing Aromatic Dicarboxylic Acids and 

Benzimidazole 

 

Cocrystallisations with the aromatic dicarboxylic acids series produced two previously 

undiscovered molecular complexes, benzimidazole : terephthalic acid and benzimidazole : 

phthalic acid (Table 7.2).  

 



 336 

  Imidazole Source Benzimidazole Source 

Terephthalic acid 1:1 CSD 1:1 New 

Isophthalic acid 1:1 CSD 1:1 CSD (RD) 

Phthalic acid  n/a n/a 1:1 New 

Table 7.2 repeated – Summary of the molecular complexes that exist between IMD and BZN with aromatic 

dicarboxylic acids. ―New‖ represents molecular complexes generated for the first time during this research, 

―CSD‖ accounts for those that have already been solved while ―RD‖ stands for re-determined, i.e. cases where a 

new X-ray diffraction experiment was attempted to get a improved data set than that available in the literature. 

 

The existence of two carboxylic acid groups on the benzoic acid brings potential similarities 

to the hydroxy-substituted benzoic acids molecular complexes with the real possibility of 

producing ladder style motifs. However there will also be a carboxylic acid group that is not 

deprotonated, increasing the number of potential hydrogen bond patterns. From Figure 7.18, it 

is essentially guaranteed that either hydrogen bond pattern E or F will be found in the 

structures. Within the iso- and terephthalic acid structures hydrogen bond patterns I, J and a 

full carboxylic acid dimer are the only options available for the carboxylic acid groups. When 

the second carboxylic acid is in the ortho position, as in phthalic acid, there is the likely 

option that the hydroxyl section will create an intramolecular hydrogen bond, as seen in the 

other molecular complexes involving phthalic acid that have been generated, therefore motif 

N, a linear chain of alternating co-molecules, is very possible. However the hydroxyl group 

may not form an intramolecular hydrogen bond, therefore will seek to adopt hydrogen bond 

patterns as found in the iso- and terephthalic acid complexes. For these structures the potential 

motifs are thus, in order of possibility, K, the ladder style (seen in the 3- and 4-

hydroxybenzoic acid structures, L, the hydrogen bonded ring (as in benzimidazole and 2-

hydroxybenzoic acid) then N the linear chain.  

 

7.6.1 Molecular Complex of Benzimidazole and Phthalic Acid 1:1 

 

The molecular ions, benzimidazolium and phthlate, form a 1:1 molecular complex with one 

another (Figure 7.45).  Single crystals were obtained using the solvent evaporation method, 

with a 1:1 stoichiometric mixture of benzimidazole (12mg) and phthalic acid (16mg) 

dissolved in the minimum amount of methanol followed by evaporation at room temperature. 

The crystals generated were needle shaped and colourless.  Single crystal X-ray diffraction 
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data were obtained using a Bruker Apex II diffractometer at 100K, equipped with graphite 

monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved using 

SUPERFLIP within the CRYSTALS program. The crystallographic data are summarised in 

Table 7.6. It can be seen that the data are only 96.8% complete with a theta range of 1.58-

22.36º, therefore the hydrogens atoms have been fixed to reduce the number of parameters 

(found isotropically, placed on calculated positions and the thermal parameters fixed to 1.2 

times to the atom to which they are bonded and no parameters refined during refinement. 

 

In the molecular complex, the BZN molecule is protonated as discussed in section 7.2.1. The 

result is the normalisation of the internal bond lengths (N1-C1 1.321(6)Å, N2-C1 1.326(5)Å) 

and angles (C2-N1-C1 107.8(3)º, C7-N2-C1 107.9(3)º) and the creation of a positive charge 

that is delocalised over the 5-membered ring.  

 

 

Fig. 7.45 – The molecules involved in the benzimidazolium phthlate molecular complex, with atom labelling. 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

O2···O3 2.378(4) 1.179(3) 1.207(3) 170.6(2) 

N1···O4  2.691(5) 1.001(3) 1.710(3) 165.7(2) 

N2···O1 2.759(6) 1.000(3) 1.778(3) 165.0(2) 

N2···O2 3.038(5) 1.000(3) 2.403(3) 120.7(2) 

C4···O4  3.344(6) 0.909(5) 2.533(4) 148.9(3) 

C10···O1 3.329(6) 0.943(4) 2.681(4) 126.5(3) 

C5···π 3.847 - - - 
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Table. 7.16 - The three scalar quantities and bond angles of the hydrogen bonds and list of the interactions 

between the molecules in the benzimidazolium phthlate molecular complex.  

 

Within the molecular complex the phthalic acid molecule is deprotonated, creating the 

phthlate species. Within this molecule an intramolecular hydrogen bond between the hydroxyl 

and carboxylate groups is formed, as in the other phthlate molecular complexes. This 

intramolecular hydrogen bond, O2∙∙∙H∙∙∙O3, is strong with an O∙∙∙O distance of 2.378(4)Å 

which is consistent with the hydrogen bond found within the 2,6-dimethylpyridinium 

hydrogen phthalate molecular complex
6
, (2.398(2)Å). The intramolecular hydrogen bond 

results in the proton being shared over the two oxygens, this can be seen in the carbon  

oxygen bond distances which have been slightly normalised, C1-O1 1.233(6)Å, C1-O2 

1.275(5)Å, C8-O3 1.280(5)Å and C8-O4 1.243(6)Å. The structure adopts the linear chain of 

alternating co-molecules arranged in a spiral fashion (Figure 7.46). This motif, which is an 

example of the linear chain of alternate co-molecules of motif N, utilises the robust hydrogen 

bond pattern E, N-H∙∙∙O, only. The N-H∙∙∙O hydrogen bonds are moderate in strength, 

N1∙∙∙O4, 2.691(5)Å, with an asymmetrical bifurcated hydrogen bond having distances of 

N2∙∙∙O1, 2.756(5)Å and N2∙∙∙O2, 3.038(5)Å(Table 7.16). The motif expands the structure 

along the a-axis.    

 

 

Fig. 7.46 – LHS, view of the main motif, linear chain of alternating hydrogen bonded co-molecules; RHS, view 

along the a-axis that highlights the spiral nature of the chain. 

 

Expanding the structure along the b-axis is a C-H∙∙∙O hydrogen bond that connects the spiral 

chains together (Figure 7.47). This weak hydrogen bond, C4∙∙∙O4, has length 3.344(6)Å and is 

the only interaction between the chains that expands the structure along the b-axis. 
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Fig. 7.47  View along the a-axis of three motifs, spiral chains of alternating hydrogen bonded co-molecules, 

that are held together by C-H∙∙∙O weak hydrogen bonds (blue circles). 

 

Expanding the structure along the c-axis are two interactions involving three molecules. 

Again these interactions have the role of connecting two of the spiral chains together. The 

more significant of these is a C-H∙∙∙O weak hydrogen bond, with C10∙∙∙O1 distance of 

3.329(6)Å (green line in Figure 7.48). The other interaction is a C-H∙∙∙π interaction which is 

extremely weak at 3.847(7)Å in length (purple line in Figure 7.48). 

 

 

Fig. 7.48 – The weak hydrogen bond, C-H∙∙∙O (green line) and C-H∙∙∙π interaction (purple line), that expand the 

structure along the c-axis. 

 

Figure 7.49 is the extended structure viewed along the a-axis. From this it can be seen that the 

motif (coloured in red) which extends along the a-axis, is expanded along the b-axis using the 

C-H∙∙∙O weak hydrogen bonds (coloured in blue) and along the c-axis by the C-H∙∙∙O (green) 

and C-H∙∙∙C (purple) hydrogen bonds. 
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Fig. 7.49  The extended structure viewed along the a-axis, showing how the motif (red) is expanded along the 

b-axis by weak C-H∙∙∙O hydrogen bonds (blue) and finally along the c-axis by C-H∙∙∙O(green) and C-H∙∙∙C 

hydrogen bonds (purple).  

 

7.6.2 Molecular Complex of Benzimidazole / Imidazole and Isophthalic Acid 

 

Both the structures of the molecular complexes of benzimidazole
11 

(CSD reference VARJAA) 

and imidazole
12

 (CSD reference MEQQOO) with isophthalic acid are known (Table 7.17). 

Within the BZNH
+ 

structure, both the co-molecules are disordered therefore accurate 

hydrogen positions are impossible to determine. Single crystal X-ray diffraction experiments 

performed during this project on crystals of the benzimidazole : isophthalic acid complex also 

proved difficult due to the poor quality crystals produced (twinning). Therefore, the data 

deposited in the CSD are used for the comparison work. 
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Complex Space Gp Cell Lengths (Å) Cell Angles (º) Volume / Z 

BZN : 

isophthalic 

acid 

P 21/c 

10.157(4) 

5.130(7) 

26.067(6) 

90 

90.98(4) 

90 

1358.03 

 

4 

IMDH
+
 

isophthalate 
P 21 21 21 

3.883(2) 

14.015(2) 

19.302(2) 

90 

90 

90 

1050.42 

 

4 

Table 7.17 – Basic crystal data for the benzimidazole : isophthalic acid molecular complex and the imidazolium 

isophthlate molecular complex. 

 

The structures produced were in a 1:1 molecular ratio with proton transfer occurring in the 

imidazole complex but it is undetermined if it also occurred in the benzimidazole complex 

(Figure 7.50). 

 

Fig. 7.50 – LHS, the molecules involved in the imidazolium isophthlate molecular complex; RHS, those 

involved in the benzimidazole isophthalic acid molecular complex, with the carboxylic acid protons in 

undetermined positions. 

 

Structure Description 

 

The benzimidazole : isophthalic acid molecular complex contains four unique hydrogen 

bonds utilising the hydrogen bond patterns E, N-H∙∙∙O and J, O-H∙∙∙O (Figure 7.51). These 

hydrogen bonds are moderate in strength, A‘, 2.637(5)Å, B‘, 2.482(4)Å, C‘, 2.492(4)Å and 

D‘, 2.601(5)Å, and arrange the structure into linear chains of alternate co-molecules using 

hydrogen bond E, that link together through hydrogen bond J. This chain, containing a double 

line of alternate co-molecules, expands the structure along the a-axis. 
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Fig. 7.51 – The main motif of the structure, a double linear chain of alternate co-molecules held together through 

N-H∙∙∙O and O-H∙∙∙O hydrogen bonds. 

 

The structure is expanded by lesser interactions including C-H∙∙∙C hydrogen bonds of 

3.766(7)Å (Figure 7.52) that expand the structure along the c-axis and C-H∙∙∙O interactions 

that stack the motifs upon one another.  

 

 

Fig. 7.52 – An extended structure showing the motifs (blue box) being expanded along the c-axis by carbon  

carbon hydrogen bonds (yellow box). 

 

The imidazolium isophthlate structure uses the same hydrogen bond patterns, E, N-H∙∙∙O and 

J, O-H∙∙∙O, however with one less moderate hydrogen bond. Whereas the benzimidazole 

structure has two of each of these hydrogen bonds, the imidazole structure has only one O-

H∙∙∙O hydrogen bond. The effect is that rather than having flat linear chains that can stack 

upon one another, the imidazole complex structure has linear chains of isophthlate molecules 

with imidazole molecules connecting these chains together (Figure 7.53).  

 

A‘ 

B‘ C‘ 

D‘ 



 343 

 

 

Fig. 7.53 – top, the view along the a-axis of the chains of isophthalic acid hydrogen bonding to the imidazolium 

molecule, bottom, view of the b-axis highlighting how the imidazolium molecule hydrogen bonds to two 

different chains on different layers. 

 

The hydrogen bonds are moderate in strength, O∙∙∙O, 2.543(2)Å, N∙∙∙N, 2.858(3)Å and 

2651(2)Å and expand the structure along the b- and c-axes. 

 

7.6.3 Molecular Complex of Benzimidazole / Imidazole and Terephthalic Acid 

 

The molecular ions, benzimidazolium and terephthalate, form a 1:1 molecular complex with 

one another.  Single crystals were obtained using the solvent evaporation method, with a 1:1 

stoichiometric mixture of benzimidazole (12mg) and terephthalic acid (17mg) dissolved in the 

minimum amount of methanol followed by evaporation at ~2-4ºC in a cold room. The crystals 

generated were needle shaped and colourless.  Single crystal X-ray diffraction data were 

obtained using a Bruker Nonius Kappa diffractometer at 100K, equipped with graphite 

monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved using SIR92 

within the CRYSTALS program.  The crystallographic data are summarised in Table 7.6.  
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The BZN molecule is protonated through hydrogen transfer from the carboxylic acid group on 

the terephthalic acid molecule (Figure 7.54) resulting in a delocalisation of the charge across 

the five-membered ring, N1-C1 1.332(2)Å, N2-C1 1.323(2)Å (section 7.2.1). The 

deprotonation of a carboxylic acid group, creating the terephthalate molecule, results in a 

negative charge on the carboxylate group that is normalised over the group, as seen in the 

carbon oxygen bond lengths, C8-O1 1.235(2)Å and C8-O2 1.277(1). The neutral carboxylic 

acid group retains its bond lengths, C14-O3 1.325(2)Å and C14-O4 1.217(2)Å. 

  

Fig. 7.54 – LHS, the benzimidazolium and terephthalate molecules involved in the molecular complex with atom 

labelling; RHS, the three main hydrogen bonds involved in the molecular complex, a‘ N-H∙∙∙O, b‘ N-H∙∙∙O and 

c‘ O-H∙∙∙∙O. 

 

The benzimidazolium terephthalate molecular complex contains three distinct hydrogen 

bonds that adopt the hydrogen bonding patterns E, F and J (Figure 7.54 RHS). The strongest 

is the oxygen – oxygen hydrogen bond, c‘ O3-H∙∙∙O2, that has length of O∙∙∙O 2.580(1)Å. The 

two N-H∙∙∙O hydrogen bonds are similar in strength at a‘ N1-H∙∙∙O2, 2.635(2)Å and  b‘ N2-

H∙∙∙O1 2.699(1)Å (Table 7.18). 

Table 7.18 – The hydrogen bond data for the hydrogen bonds in the benzimidazolium terephthalate molecular 

complex. 

 

Interaction Label Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

O2···N2 a’ 2.635(2) 0.96(2) 1.71(2) 158.9(2) 

N2···O2  b’ 2.699(1) 0.97(2) 1.74(2) 168.4(2) 

C1···O1 c’ 2.580(1) 1.04(2) 1.55(2) 172.8(2) 

C1···O4 3.112(2) 1.00(1) 2.11(1) 174(1) 

a‘ 

b‘ 

c‘ 
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These three moderate hydrogen bonds arrange the structure into the ladder motif K, with 

uprights of terephthalic acid molecules that are bonded through the O-H∙∙∙O hydrogen bonds 

and rungs of benzimidazolium molecules that utilise the N-H∙∙∙O hydrogen bonds 

(Figure7.55).  This motif runs along the a- and c-axis and is common with the hydroxyl-

benzoic acid molecular complexes. 

 

 

Fig. 7.55 – The main motif of the benzimidazolium terephthalate molecular complex, a ladder with uprights of 

terephthalate molecules and rungs of benzimidazolium molecules.  

 

There is only one other significant interaction with this structure which expands the structure 

along the b-axis (Figure 7.56). A carbon – oxygen hydrogen bond, involving the carbon 

located between the two nitrogens and oxygen O4 (Figure 7.56 extract), is  3.112(2)Å in 

length. 

 

Fig. 7.56 – The main motif, a ladder of terephthalic acid uprights and benzimidazole rungs, stack upon one 

another through C-H∙∙∙O hydrogen bonds (red circle); insert, blown-up image of the C-H∙∙∙O hydrogen bond. 

 

Figure 7.57 shows two images of the extended structure viewed along the c-axis (LHS) and a-

axis (RHS). They both show how the motif expands the structure along the a- and c-axis 

while the weak C-H∙∙∙O hydrogen bond stacks these chains on top of one another along the b-

axis.  
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Fig. 7.57  The extended structure of the benzimidazolium terephthalate molecular complex viewed along the c-

axis (LHS) and a-axis (RHS). 

 

Imidazole Structure 

 

The structure of the imidazole : terephthalic acid molecular complex was published in 2007
18 

(Table 7.19). The structure adopts the spiral linear chain motif, with alternating co-molecules 

hydrogen bonded together, that expands the structure along the b-axis (Fig. 7.58). With the 

other carboxylic acid group still available for hydrogen bonding the chain also expands along 

the ac diagonal (Figure 7.59 LHS). A C-H∙∙∙O weak hydrogen bond, the last significant 

interaction within the structure, connects the motif along the a-axis (Figure 7.59 RHS). 

 

 Space Gp Cell Lengths (Å) Cell Angles (º) Volume / Z 

Imidazolium 

terephthalate
 

P 21/n  

9.6288(6) 

8.3351(6) 

9.8244(6) 

90 

113.8540(10) 

90 

721.124 

 

2 

Table 7.19 – Basic crystallographic data of the imidazolium terephthalate molecular complex.  
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Fig. 7.58 – LHS, the linear chain of alternating co-molecules that is the motif of the molecular complex; RHS, 

view along the b-axis highlighting the spiral nature of the chain.  

 

      

Fig. 7.59 – LHS, the motif, spiral chains (blue box), expands along the b-axis and ac-diagonal forming sheets; 

RHS, the C-H∙∙∙O weak hydrogen bond (red box) connects these sheets together along the a-axis.  

 

 

7.7  Benzimidazole and Imidazole Molecular Complexes with Non-Aromatic 

Dicarboxylic Acids 

 

Cocrystallisations with a range of non-aromatic dicarboxylic acids produced four new 

molecular complexes (Table 7.4); BZN with fumaric, succinic, maleic acids and IMD with 

malonic acid, all in a 1:1 molecular ratio and all with associated proton transfer (Section 

7.2.1). An improved model for the benzimidazole and malonic acid structure has been 

proposed over that which has been published. Structures containing IMD with fumaric, 

succinic and maleic acid and a malonic acid hydrate have already been solved and deposited 

in the CSD, and are discussed here for comparison purposes.  

 

  Imidazole Source Benzimidazole Source 

Fumaric acid 1:1 CSD 1:1 New 

Succinic acid 1:1 CSD 1:1  New 

Maelic acid 1:1 CSD 1:1 New 

Malonic acid 1:1 (1:1 hydrate) New (CSD) 1:1 RD 



 348 

Table 7.4 repeated – Summary of the successful cocrystallisation experiments between IMD and BZN with 

dicarboxylic acids. ―New‖ represents molecular complexes generated for the first time during this research, 

―CSD‖ accounts for those that have already been solved, while ―RD‖ stands for re-determined, i.e. cases where a 

new X-ray diffraction experiment was attempted to get a improved data set than that available in the literature. 

 

The main hydrogen bonds in these molecular complexes will undoubtedly come from the 

nitrogens of the benzimidazole and imidazole molecules and the carboxylic acid group of the 

dicarboxylic acids series. Consideration of the many potential hydrogen bonds that could 

form between them can be reduced by using the library of hydrogen bond patterns that have 

constantly appeared in previous structures containing these characteristic hydrogen bond 

donor and acceptor groups.  The hydrogen bond patterns that have been identified in previous 

chapters, E through to J (Figure 7.18 pattern extract, repeated below), have once again been 

utilised in the structures studied in this chapter, including the aromatic dicarboxylic acids 

which are very similar in terms of functional groups to the dicarboxylic acid series presented 

in this section. It is therefore highly likely that hydrogen bond patterns E, F and J will prevail 

in these structures. There will also be potential for carboxylic acid dimers, as seen in 

hydrogen bond pattern I, to be used in the hydrogen bonds. 

 

Fig. 7.18 pattern extract – the library of hydrogen bond patterns that the molecular complexes are highly likely 

to adopt – E, F, G, H, I and J – are all seen in other molecular complexes.  

 

With regard to the potential motifs (Figure 7.18 motif extract, repeated below) that may be 

formed between the co-molecules, that will undoubtedly use hydrogen bond patterns E, F and 

I, there is a very high possibility that motif N, linear chain of alternate co-molecules, will be 

influential. There is also a possibility that the ladder motif may also appear, however this 

would only be an option where the chain is rigid and the carboxylic acid groups are in the 
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trans disposition, i.e. fumaric acid. A specific comment can be made with regard to the 

imidazole molecules, in which there has been a high tendency for these structure to adopt the 

linear chain motif, N, with a spiral nature. It would be no surprise if these structures once 

more adopted this nature of chain. 

 

Fig. 7.18 motif extract – the motifs are the general modes of assembly of the molecules; K is the ladder motif, L 

is the hydrogen bonded ring motif, M is the co-molecule dimer motif while N is an example of a linear chain of 

alternate co-molecules.   

 

7.7.1 Molecular Complexes of Benzimidazole and Imidazole with Fumaric Acid  

 

Successful cocrystallisation experiments have produced the previously undetermined structure 

of benzimidazole with fumaric acid. The structure of the molecular complex salt imidazolium 

fumarate has previously been solved and published
12

.   

 

In this case, following the logic being applied throughout this work, there is a real possibility 

of formation of an influential N-H···O hydrogen bond between the molecules, with it either 

adopting hydrogen bond pattern E or F. With one of the carboxylic acid groups undergoing 

deprotonation, there will be only one hydroxyl group in the structure. From the length of the 

carbon chain and the double bond on the chain, this hydroxyl group will be available for 

intermolecular hydrogen bonding. This would promote the possibility of hydrogen bond 

pattern I or J forming.  

 

Benzimidazolium Fumarate 
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The molecular ions benzimidazolium and fumarate form a 1:1 molecular complex.  The 

molecular complex was obtained using the solvent evaporation method, with a 1:1 

stoichiometric mixture of benzimidazole (12mg) and fumaric acid (12mg) dissolved in the 

minimum amount of ethanol and left to evaporate at room temperate. The crystals generated 

were needle shaped and colourless. Single crystal X-ray diffraction data were obtained using a 

Bruker Nonius Kappa diffractometer at 100K, equipped with graphite monochromated Mo Kα 

radiation (λ = 0.71073 Å). The structure was solved using SUPERFLIP within the 

CRYSTALS program. The crystallographic data are summarised in Table 7.5.  

 

In the molecular complex, the benzimidazole molecule is protonated through hydrogen 

transfer from one of the carboxylic acid groups on the fumaric acid molecule, as described in 

Section 7.2.1 (Figure 7.60). The result is that the internal bond lengths are now normalised, 

with N1-C1 1.323(2)Å and N2-C1 1.330(2) Å, and bond angles to C1-N1
δ+

-C2 108.2(1)º and 

C1-N2
δ+

-C7 108.2(1)º.   

 

 

 

 

Fig. 7.60 – The benzimidazolium and fumarate ions (two 

protons are shown, but both have 0.5 occupancy levels) 

which are generated in the molecular complex/salt, with 

atom labelling.  

 

 

 

 

 

 

 

Table. 7.20 – The carbon oxygen bond 

lengths in the benzimidazolium fumarate 

and imidazolium fumarate molecular 

complex.

Fumarate 

with 

BZNH
+
 

(Å) 

IMDH
+
 

(Å) 

C8-C1 1.286(2) 1.309(1) 

 C8-O2 1.238(2) 1.212(1) 

C11-O3 1.292(2) 1.238(1) 

C11-O4 1.240(2) 1.269(1) 
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In its native form, the fumaric acid molecule adopts the carboxylic acid dimer with the 

hydroxyl groups in the molecule directed parallel to the molecule (Figure 7.61 LHS).  

 

 

 

 

  

Fig. 7.61 – LHS, The carboxylic acid dimer of the fumaric acid structure; RHS, the hydrogen bond between the 

fumarate molecules of the benzimidazolium complex, with the shared proton split over the two sites. 

Table 7.21 – A list of the hydrogen bonds and interactions in the benzimidazolium fumarate molecular complex. 

 

Within the molecular complex with benzimidazolium, one of the carboxylic acid groups of 

the fumaric acid has been deprotonated. The result is that the remaining proton becomes 

shared over the two carboxylic acid groups (Figure 7.61 RHS). This can be seen in the partial 

normalisation of the carbon – oxygen bond lengths of the carboxylic acid groups (Table 7.20). 

In the imidazolium fumarate molecular complex proton transfer has also occurred however 

the remaining proton is only associated with one carboxylic acid which can be seen in the 

carbon – oxygen bond lengths. The shared protons, associated with the benzimidazolium 

complex, lie on an inversion centre between two of the same oxygen atoms, therefore each 

hydrogen within the asymmetric unit has a 0.5 occupancy levels, resulting in 1.0 occupancy 

levels over the hydrogen bond. The hydrogen bond involving the shared protons, a‘ 

O1∙∙H∙∙O1 and b‘ O3∙∙H∙∙O3, are of strong strength, a‘ 2.464(1) and b‘ 2.442(1), and creates a 

box comb chain of fumarate molecules along the b-axis (Figure 7.62)(Table 7.20). The box 

comb chain shape comes about because the one of the hydrogen bonds is ―face to face‖, a‘, 

while the other is ―edge to edge‖, b‘. 

 

Interaction Label Length (Å) 

(D∙∙∙A(Å)) 

O1···O1 a’ 2.464(1) 

O2···O2  b’ 2.442(1) 

N1···O2 2.676(1) 

N2···O4 2.670(1) 

C4···C9  3.094(1) 

π···π 3.473(1) 
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Fig. 7.62 – The box comb chain of fumarate molecules held together by oxygen – oxygen hydrogen bonds, a‘ 

and b‘. The hydrogens on the carboxylic acid groups have been removed.  

 

There are two other hydrogen bonds within the molecular complex, these follow the hydrogen 

bond pattern E, N-H∙∙∙O. These moderate hydrogen bonds of lengths N1∙∙O2 2.6767(1)Å and 

N2∙∙∙O4 2.6702(1) create chains of alternating co-molecules along the b-axis (Figure 7.63).  

 

 

Fig. 7.63 – The co-molecules arrange themselves into hydrogen bonded alternating co-molecules which expand 

along the b-axis. 

 

The two chains, fumarate chain (Figure 7.62) and the alternating co-molecule chain (Figure 

7.63), combine to form interconnected layers, with the benzimidazole molecule connecting 

two of the fumarate chains together, this expands the structure along the a-axis (Figure 7.64 

LHS). This has the effect of creating a column of layers interconnected by moderate hydrogen 

bonds that expands along the a- and b-axis (Figure 7.64 RHS). 

 

   

Fig. 7.64 – LHS, the benzimidazolium molecules connect the fumarate chains along the a-axis, resulting in the 

layers of fumarate and alternating co-molecules interconnecting to form columns of layers, RHS. 

b‘ 

a‘ 
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Between the columns are two very weak interactions which are shown in the inset to Figure 

7.64. These interactions connect the columns together along the c-axis (Figure 7.65). The 

carbon  carbon hydrogen bond (red line) has length C4-H∙∙∙C9 3.594(1)Å while the π∙∙∙π 

interaction between the benzimidazolium molecules is around 3.473(1)Å in length (green 

line). 

 

 

Fig. 7.65 – the columns consisting of interconnected chains of fumarate molecules and alternating co-molecules 

are expanded along the c-axis by lesser interactions (yellow box), inset, expanded view of the lesser interactions.  

 

Imidazolium Fumarate 

 

The imidazolium fumarate structure was first structurally determined in 2001
12

. The structure 

contains a stoichiometric ratio of 1:1 of the ionic species of the co-molecules as proton 

transfer has occurred in the normal way (refer to Section 7.2.1).
 

The result of the 

deprotonation on the fumarate molecule is different to that found in the molecule in the 

benzimidazole complex structure where the remaining proton was disordered over the 

carboxylic acid groups. In the imidazolium structure, the remaining proton is associated with 

only one oxygen therefore normalisation of the carbon – oxygen bond lengths has resulted in 

one of the carboxylic acids (Table 7.20). The imidazolium molecule undergoes the 

rearrangement mentioned in Section 7.2.1. 
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The motif of the imidazolium fumarate structure is an amalgamation of the ladder style and 

alternating linear chain style (Figure 7.66). With the fumarate molecules hydrogen bonding to 

one-another through the hydrogen bond pattern J, O-H∙∙∙O, this creates chains of fumarate 

molecules with imidazolium molecules holding these chains together, i.e. the ladder motif. 

However, the fumarate molecules are not lined up to form long chains with one-another, but 

are ―facing‖ the imidazolium molecules and are using the hydrogen bond pattern E to form 

alternating co-molecule linear chains. This amalgamated motif expands the structure along the 

a- and c-axis while the b-axis is expanded by π∙∙∙π stacking interactions of distance 

3.385(3)Å. 

 

 

Fig. 7.66 – The main motif of the imidazolium fumarate molecular complex, an amalgamation of the ladder and 

linear chain motifs. 

 

7.7.2 Molecular Complexes of Benzimidazolium and Imidazolium with Succinic 

Acid  

 

The molecular ions benzimidazolium and succinate form a 1:1 molecular complex.  The 

molecular complex was obtained using the solvent evaporation method, with a 1:1 

stoichiometric mixture of benzimidazole (12mg) and succinic acid (12mg) dissolved in the 

minimum amount of ethanol and left to evaporate at a constant temperature of 2-4ºC. The 

crystals generated were block shaped and colourless. Single crystal X-ray diffraction data 

were obtained using a Bruker Nonius Kappa diffractometer at 100K, equipped with graphite 
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monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved using 

SUPERFLIP within the CRYSTALS program.  The crystallographic data are summarised in 

Table 7.6.  

 

In the molecular complex, the benzimidazole molecule is protonated through hydrogen 

transfer from one of the carboxylic acid groups on the succinic acid molecule, as described in 

Section 7.2.1 (Figure 7.67). The result is that the internal bond lengths are now normalised, to 

N1
δ+

-C1 1.332(2)Å and N2
δ+

-C1 1.328(2) Å, and bond angles to C1-N1
δ+

-C2 108.3(1)º and 

C1-N2
δ+

-C7 108.3(1)º.   

 

 

Fig. 7.67 –The benzimidazolium and succinate ions which are generated in the molecular complex/salt, with 

atom labelling. 

Table. 7.22 – The carbon oxygen bond bonds in the benzimidazolium succinate and imidazolium succinate 

molecular complexes. 

 

Table 7.23 – The hydrogen bond data for the hydrogen bonds in the benzimidazolium succinate molecular 

complex. 

 

The succinate has two carboxylic acid groups, therefore only one has been deprotonated in 

order to fully protonate the benzimidazolium ion. The result is not full deprotonation of one 

Suc’ate  BZNH
+
 (Å) IMDH

+
 (Å) 

C8-C1 1.240(1) 1.220(2) 

 C8-O2 1.292(1) 1.288(2) 

C11-O3 1.248(1) 1.219(2) 

C11-O4 1.285(1) 1.307(2) 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

O2···O2 2.513(1) 1.256(1) 1.256(1) 180 

O4···O4  2.443(1) 1.221(1) 1.221(1) 180 

N1···O1 2.651(1) 0.97(2) 1.69(2) 172.7(2) 

N2···O3 2.634(1) 0.95(2) 1.73(2) 158.1(2) 

C5···π  3.550(2) - - - 
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carboxylic acid group while the other retains its proton, but rather that the proton that is left is 

split over the two hydroxyl sites. The hydroxyl oxygen then hydrogen bonds to a symmetry-

related oxygen through an inversion centre, therefore each hydrogen is 0.5 occupied within 

the asymmetric unit, but fully occupied over the hydrogen bond. The result on the carbon  

oxygen bond lengths is still a degree of normalisation due to the deprotonation, which is 

similar to that found in the succinate ion in the imidazolium complex that has been fully 

deprotonated (Table 7.22).  

 

The succinate molecule, as described, hydrogen bonds through an inversion centre using the 

hydrogen bond pattern J. There are two of these moderate hydrogen bonds, with length 

O2∙∙∙O2 2.513(1)Å and O4∙∙∙O4 2.443(1)Å. The proton is centred, with the hydrogen bond 

angle at 180º. These form chains of succinate molecules that run along the a-axis (Figure 

7.68). The benzimidazolium ions have the role of connecting two of the chains together along 

the b-axis. This interaction uses N-H ∙∙∙O moderate hydrogen bonds that can be described as 

types E and F, of length 2.651(1)Å and 2.634(1)Å(see Table 7.23 for full details). The motif 

is therefore the common ladder motif with uprights of succinate ions and rungs of 

benzimidazolium ions. 

 

Fig. 7.68 – The main motif of the benzimidazolium succinate molecular complex, the ladder style with uprights 

of succinate ions and rungs of benzimidazolium ions. 

 

Figure 7.69 is a view along the b-axis of the extended structure. From this it can be seen that 

the main motifs run perpendicular to the page, the ladder style motif (blue box) being 

expanded along the c-axis through C-H···π interactions of 3.550(2)Å in length (red box). This 
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is the only other significant interaction with the structure – there are weak C-H···O hydrogen 

bonds that exist between the adjoining chains, however these just support the moderate 

N-H···O hydrogen bonds. 

 

 

Fig. 7.69 – the extended structure of benzimidazolium succinate molecular complex viewed along the b-axis, 

highlighting how the main motif (blue line) extends along the c-axis through C-H···π interactions (red box); 

inset, the C-H···π interaction. 

 

Imidazolium Succinate 

 

The structure of the imidazolium succinate molecular complex
12 

contains a 1:1 molecular 

ratio of co-molecules with proton transfer occurring (see Section 7.2.1). The hydrogen bonds 

between the co-molecules are partially charge assisted N-H∙∙∙O interactions (HB pattern E) of 

length 2.715(2)Å and 2.871(2)Å. They align the co-molecules into chains that run along the 

ac-diagonal (Figure 7.70). 
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Fig. 7.70 – the chain that is created through the N-H∙∙∙O hydrogen bonds between the co-molecules in the 

imidazolium succinate molecular complex. 

 

The hydroxyl oxygen that remains on the non-protonated carboxylic acid group hydrogen 

bonds to an oxygen in an adjacent chain below (Figure 7.71). This hydrogen bond is the 

strongest in the molecular complex at O∙∙∙O, 2.478(2)Å and expands the structure along the a-

axis. Supporting this interaction are weaker carbon – oxygen hydrogen bonds involving the 

carbon located between the nitrogens and the currently non-hydrogen bonded oxygen (blue 

circle). This hydrogen bond has length C∙∙∙O 3.082(2)Å and with the O-H∙∙∙O interactions 

creates layers of co-molecules. These layers are then stacked upon another using very weak 

carbon – oxygen hydrogen bonds of length 3.358(3)Å. 

 

 

Fig. 7.71 – The main motif of the imidazolium succinate structure, layers consisting of linear chains of 

alternating co-molecules that expand along the ac-diagonal (chains) and a-axis. 

 

7.7.3 Molecular Complexes of Benzimidazolium and Imidazolium with Maleic 

Acid  

 

The molecular ions, benzimidazolium and maleate form a 1:1 molecular complex with one 

another.  The molecular complex was obtained using the solvent evaporation method, with a 

1:1 stoichiometric mixture of  benzimidazole (14mg) and maleic acid (12.5mg) dissolved in 
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the minimum amount of methanol followed by evaporation at a constant temperature of 40ºC 

using an Asynt hotplate. The crystals generated were block shaped and colourless.   

 

Single crystal X-ray diffraction data were obtained using a Rigaku R-axis/RAPID 

diffractometer at 100K, equipped with graphite monochromated Mo Kα radiation (λ = 

0.71073 Å). The structure was solved using SIR92 within the CRYSTALS program.  The 

crystallographic data are summarised in Table 7.6 with the hydrogen bond data and 

interaction listed in Table 7.24. 

 

In the molecular complex, the benzimidazole molecule is protonated through hydrogen 

transfer from one of the carboxylic acid groups on the maleic acid molecule onto the normally 

unprotonated nitrogen atom in the five-membered ring forming a benzimidazolium molecule 

(Figure 7.72). This form of proton transfer is common in all molecular complexes involving 

benzimidazole and a carboxylic acid group containing molecule where the crystallisation 

product is in a 1:1 stoichiometric ratio. The result of the proton transfer on the 

benzimidazolium molecule is a delocalisation of the charge across the five-membered ring, 

reflected in the equalisation of the internal bond lengths, N1
 δ+

-C1 1.325(3)Å and N2
 δ+

-C1 

1.326(3) Å, and bond angles, C2-N1
δ+

-C1 108.05(19)º and C7-N2
δ+

-C1 108.31(18)º.  The 

delocalisation of the charge has the effect of creating a partial positive charge on both the 

nitrogens. This effect has been reported in many structures involving benzimidazole and 

imidazole (see Section 7.2.1).  

 

  

Fig. 7.72 – LHS, the benzimidazolium and maleate molecules which are generated in the molecular complex, 

with atom labelling. RHS, the Fourier difference map generated with the H atoms located on the N atoms 

omitted from the model; this clearly shows that both N atoms are protonated.   

 

 



 360 

Table 7.24 – The hydrogen bond data for the hydrogen bonds in the benzimidazolium succinate molecular 

complex. 

 

The maleic acid molecule in its native crystal structure (refer to Figure 7.11) is configured 

such that there is an intramolecular hydrogen bond between the two carboxylic acid groups. 

Within the molecular complex with benzimidazolium this intramolecular hydrogen bond 

persists despite the proton transfer of a hydrogen atom to the benzimidazole.  The 

intramolecular hydrogen bond is relatively short with an O···O distance of 2.405(3)Å which 

is significantly shorter than the O···O distance of 2.503Å that is found in maleic acid 

(polymorph MALIAC12)
22

 (used for comparisons hereafter). This is due to the intramolecular 

hydrogen bond being charged assisted, a result of the deprotonation of the maleic acid. The 

negative charge is found to be delocalised over the carboxylic acid groups, by consideration 

of the normalisation of the bond lengths in the carboxyl groups of the maleate molecule 

(Table 7.25). The delocalisation also results in the presence of partially charge assisted 

intermolecular hydrogen bonds involving O3 and O7. 

 

 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

O2···O3 2.405(3) 1.19(3) 1.2293) 178(3) 

N1···O1  2.751(3) 0.98(3) 1.77(3) 175(2) 

N2···O4 2.691(3) 0.99(3) 1.71(3) 172(3) 

C9···O2 3.275(3) 0.91(2) 2.65(2) 126(2) 

C10···O3  3.501(3) 0.98(3) 2.64(3) 147(2) 

C1···O4 3.175(3) 0.95(2) 2.23(2) 164(2) 

C4···O1  3.517(3) 0.94(3) 2.60(3) 165(2) 
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Fig. 7.73 – The maleic acid molecule (top) and the 

maleate ion (bottom) showing the differences in the 

bond characteristics. 

Table 7.25 – A comparison of the bond lengths 

found in the maleate ion in its molecular complex 

with benzimidazolium and those of the neutral 

maleic acid molecule. 

 

 

From Table 7.16, it can be seen the C6-O7 and C6-O8 bonds have undergone a complete 

character reversal. The single bond involved in the intramolecular hydrogen bond in the 

maleic acid (C8-O2) has now more double bond characteristics while the double bond in 

maleic acid (C8-O1) has more single bond characteristics (Figure 7.73).  The proton that sits 

in the intramolecular hydrogen bond has an O
δ-

-H distance of 1.18(3)Å and a H···O
δ-

 distance 

of 1.22(3)Å.  This indicates the hydrogen atom has an affinity for both oxygens and thus 

adopts an approximately central position within the hydrogen bond. However Fourier 

difference maps (Figure 7.74), directly imaging the electron density of the hydrogen atom in 

this intramolecular hydrogen bond, suggests that the hydrogen atom is positioned slightly 

closer to O2 in an asymmetric position; this is similar to the behaviour observed in the native 

structure of maleic acid.  

 

 

Fig. 7.74 – LHS, 2D Fourier difference map, RHS, 3D Fourier difference map (MCE); both images show a 

slightly asymmetric location of the hydrogen atom in the intramolecular hydrogen bond of the maleate molecule. 

OO

O HO

O

O

HO

O

H

 Maleate (Å) Maleic Acid (Å) 

C8-C9 1.437(3) 1.482(2) 

C8-O1 1.244(2) 1.308(2) 

C8-O2 1.289(2) 1.225(2) 

C11-O3 1.291(3) 1.308(2) 

C11-O4 1.237(3) 1.224(2) 

C11-C10 1.492(3) 1.487(2) 

C9-C10 1.334(3) 1.335(3) 
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The main motif in the benzimidazolium maleate molecular complex is a zigzag chain of 

alternate co-molecules in the ac direction, motif N. This is constructed of alternating charge 

assisted N
δ+

-H····O
δ-

 hydrogen bonds of lengths 2.751(3)Å and 2.691(3)Å. These hydrogen 

bonds are moderate in strength and utilise the hydrogen bond pattern E (Figure 7.75). 

 

 

Fig. 7.75 – The main motif of the benzimidazolium maleate molecular complex; a chain of alternating co-

molecules held together by alternating charge assisted N
δ+

-H····O
δ-

 hydrogen bonds. 

 

The zigzag chains are held together along the b-direction by weaker C-H····O
δ-

 hydrogen 

bonds creating layers of these chains (Figure 7.76). These two weak hydrogen bonds have 

C····O
δ-

 distances of 3.275(3)Å and 3.501(3)Å and C-H····O
δ- 

angles of 126.3(2)º and 

146.6(2)º, resulting in a staircase arrangement of the zigzag chains (Figure 7.76 insert).   

 

  

Fig. 7.76  The zigzag chains that are the main synthon in the benzimidazolium maleate molecular complex are 

held together by weak hydrogen bonds connecting the maleate ions (insert). 
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Another C-H····O
δ- 

hydrogen bond, is formed between the carbon located between the two 

nitrogens (C1) of the benzimidazole molecule and an oxygen (O4) on a maleate ion. With a 

C-H····O
δ-

 length of 3.157(3) Å it can be classified as a weak hydrogen bond. These hydrogen 

bonds hold two layers together creating blocks of two layers of the main motif (Figure 7.77).  

 

 

Fig. 7.77 – View along the b-axis showing the main motif (-) of the benzimidazolium maleate molecular 

complex connected by the C-H---O
δ- 

hydrogen bond from the benzimidazolium molecule (-) (insert) to make a 

two layer block. 

 

The blocks, consisting of the two layers of the main motif 

(Figure 7.77), are connected to one another through another 

weak hydrogen bond. This interaction is between an aromatic 

hydrogen on the benzene ring of the benzimidazolium (C4) and 

an oxygen involved in the intramolecular hydrogen bond (O1) 

of the maleate ion with a C····O
δ- 

distance of 3.517(3)Å and a 

C-H...O angle of 164.6(2)º (Figure 7.78). Figure 7.79 shows 

how the layers are held by these two weak hydrogen bonds in 

alternate fashion. The blue lines represent the chains of 

alternate co-molecules, red lines indicating the weak hydrogen 
Fig. 7.78 - The weak hydrogen bond 

between the maleate and 

benzimidazolium ions. 
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bond seen in Figure 7.75 and the green lines indicate where the weak hydrogen bond in 

Figure 7.76 lies. 

 

 

Fig. 7.79 – View along the b-axis of the expanded benzimidazolium maleate molecular complex. The blue line  

(-) indicates the planes of the main motif (Figure 7.75), the red line (-) indicates the weak hydrogen bond that 

holds the planes together in alternate layers (Figure 7.75) with the green line (-) indicating the other weak 

hydrogen bond (Figure 7.76).  

 

Imidazolium Maleate 

 

There are a few structures of the imidazolium maleate molecular complex within the CSD, the 

one that will be discussed was published in 1980 by Schlemper et al
23 

(Table 7.26).  
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Maleate Space Gp Cell Lengths (Å) Cell Angles (Å) Volume (Å
3
) / Z 

BZNH
+ P 21/n 

12.858(2) 

5.450(2) 

15.454(2) 

90 

91.516(4) 

90 

1083.1(2) 

 

4 

IMDH
+ P 21/c 

10.855(2) 

5.518(1) 

14.616(4) 

90 

102.87(2) 

90 

853.47(2) 

 

4 

Table 7.26 – Some basic crystal data for the benzimidazolium maleate molecular complex and the imidazolium 

maleate molecular complex. 

 

As in the benzimidazolium structure, there is proton transfer from the maleate to the 

imidazolium, which results in the maleate ion forming with the associated bond 

rearrangement taking place (Figure 7.72, Table 7.27).  This results in two very strong 

hydrogen bond acceptor groups at each end of the maleate molecule, which when coupled 

with the two strong hydrogen bond donors within the imidazolium ion (N-H) it is almost 

certain that a hydrogen bond pattern of type E or F will prevail. The benzimidazolium maleate 

structure adopted the linear chain motif as did the imidazolium succinate structure, therefore 

there is a very strong chance that a linear hydrogen bonded chain with alternating co-

molecules would be likely. The presence of two hydrogen bond acceptors on the end of the 

molecule rules out the ladder motif, but not the hydrogen bonded ring motif. 

 

Figure 7.78 shows that the main motif of the imidazolium maleate is the hydrogen bonded 

ring motif (L) that is held together by partially charged assisted N-H∙∙∙O interactions. These 

hydrogen bonds as moderate in strength with lengths of 2.783(3)Å (0.96(1)Å, 1.83(3)Å, 

170.7(1)º) and 2.786(4)Å (0.98(1)Å, 1.81(2)Å 173.4(2)º), respectively.  
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Fig. 7.80 – View along the c-axis of the motif of the imidazolium maleate structure, showing the hydrogen 

bonded ring. 

 

There are only two lesser interactions that complete the significant interactions within the 

structure, both C-H···O hydrogen bonds. The slightly weaker hydrogen bond expands the 

structure along the ab-diagonal which has length C∙∙∙O 3.2340(4)Å (Figure 7.81 blue circle). 

The other with length C∙∙∙O 3.1468(6)Å (red circle) expands the structure along the ac-

diagonal, but more importantly, with an angle between the two adjoining hydrogen bonded 

rings of ~68.7º.  This allows for the hydrogen bonded rings to stack upon one-another (Figure 

7.81 – RHS). 

 

 

Fig 7.81 – LHS, the main motif, hydrogen bonded ring, are expanded by C-H···O hydrogen bonds along the ab-

diagonal (blue circle) and ac-diagonal (red circle); RHS, the view along the a-axis of an extended imidazolium 

maleate structure. 
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7.7.4 Molecular Complexes of Benzimidazole and Imidazole with Malonic Acid  

 

Successful cocrystallisation experiments have produced the previously undetermined structure 

of imidazole with malonic acid and provided an enhanced model for the benzimidazole and 

malonic acid structure. In both structures there was proton transfer as described in Section 

7.2.1 and each complex is in a 1:1 molecular ratio.  

 

On the basis of previous findings, there will definitely be a NH···O hydrogen bond between 

the molecules, with it adopting hydrogen bond pattern E or F. With one of the carboxylic acid 

groups undergoing deprotonation, there will be only one hydroxyl group in the structure, 

within the native structure of malonic acid there is no intramolecular hydrogen bond, and if 

this configuration is maintained, this hydroxyl group will be available for intermolecular 

hydrogen bonding. This would promote the possibility of hydrogen bond pattern I or J 

forming. The probable motifs would be K, the ladder style, or N the linear chain. 

 

Malonate 

 

The malonic acid molecule in its native crystal structure (refer to Section 7.1.9) is configured 

such that there is no intramolecular hydrogen bond between the two carboxylic acid groups. 

However within the molecular complex with benzimidazolium an intramolecular hydrogen 

bond is formed. The resulting intramolecular hydrogen bonds are relatively short with O···O 

distances of O2∙∙∙O3 2.440(2)Å and O4∙∙∙O5 2.449(2)Å which will be due to the delocalised 

negative charge.  The intramolecular hydrogen bond was initially not proposed in the 

published structure
30

; this new model explains the discrepancies in the carbon – oxygen bond 

lengths and positions the hydrogens more accurately. In contrast, the imidazolium malonate 

structure does not contain the intramolecular hydrogen bond but retains the native form with 

the hydrogen open for intermolecular hydrogen bonds (Figure 7.82). This is in line with the 

situation in imidazolium malonate hydrate, in which even though the hydrogen positions are 

unknown, the carbon  oxygen bond distances and overall bond geometry are similar (Table 

7.27). There is no obvious reason for the differences in the malonate ion geometry between 

the different structures. 
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Fig. 7.82 – The malonate ion found in molecular complexes with (from left to right) benzimidazolium, 

imidazolium, imidazolium hydrate, and in its native form, with atom labelling. 

 

 Malonate 

BZNH
+
 (Å) 

Malonate IMDH
+
 

(Å) 

Malonate IMDH
+
 

Hydrate (Å) 

Native Malonic 

Acid (Å) 

C4-O1 1.234(2) 1.249(1) 1.240(6) 1.285(3) 

C4-O2 1.292(3) 1.268(1) 1.250(5) 1.221(3) 

C6-O3 1.270(3) 1.214(1) 1.208(7) 1.231(2) 

C6-O4 1.251(3) 1.319(1) 1.285(6) 1.290(3) 

Table 7.27 – A comparison of the bond lengths found in the malonate ions in their molecular complexes with 

benzimidazolium, imidazolium, imidazolium hydrate and in its native form.  

 

Hydrogen Bond Data 

Benzimidazolium Malonate 

Interaction Label Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

N2···O1 a’ 2.701(3) 0.95(3) 1.75(3) 173(2) 

N3···O4  b’ 2.676(3) 0.93(3) 1.75(3) 172(3) 

C1···O4 3.242(3) 0.95(2) 2.31(2) 165(2) 

C7···O6 3.229(3) 0.97(2) 2.26(2) 170(2) 

C···O1  3.443(3) 0.96(2) 2.52(2) 162(2) 

C···O3 3.369(3) 0.97(2) 2.42(2) 166(2) 

π···π  3.400(2) - - - 

Imidazolium Malonate 

Interaction Length (Å) 

(D∙∙∙A(Å)) 

For Hydrogen Bonds 

D-H(Å) H∙∙∙A(Å) D-H∙∙∙A angle(º) 

O4···O2 2.563(1) 0.94(2) 1.63(2) 174(2) 

N1···O2  2.742(1) 0.90(2) 1.84(2) 165(2) 
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Table 7.28 – The hydrogen bond geometry data and interaction details for the benzimidazolium malonate and 

imidazolium malonate molecular complexes. 

 

Benzimidazolium Malonate 

 

The molecular ions, benzimidazolium and malonate form a 1:1 molecular complex with one 

another.  The molecular complex was obtained using the solvent evaporation method, with a 

1:1 stoichiometric mixture of  benzimidazole (12mg) and malonic acid (10mg) dissolved in 

the minimum amount of acetone followed by evaporation at a constant temperature of 2-4ºC 

in a walk-in fridge. The crystals generated were plate shaped and colourless.   

 

Single crystal X-ray diffraction data were obtained using a Bruker Nonius Kappa 

diffractometer at 100K, equipped with graphite monochromated Mo Kα radiation (λ = 

0.71073 Å). The structure was solved using SIR92 within the CRYSTALS program.  The 

crystallographic data are summarised in Table 7.6. 

 

In the molecular complex, the benzimidazole molecule is protonated through hydrogen 

transfer from one of the carboxylic acid groups on the malonic acid forming a 

benzimidazolium molecule (Figure 7.83). The result of the proton transfer on the 

benzimidazolium molecule is a delocalisation of the charge across the five-membered ring, 

reflected in the equalisation of the internal bond lengths; N1-C1 1.333(3)Å, N2
 

-C1 

1.326(3)Å, N3-C7 1.328(3)Å, N4
 
–C7 1.329(3)Å and bond angles; C2-N1-C1 108.3(2)º and 

C3-N2-C1 108.6(2)º, C8-N3-C7 108.3(2)º and C9-N4-C7 108.4(2)º.  There are two of each 

co-molecule in the asymmetric unit. The deprotonation of the malonic acid molecule has 

resulted in an intramolecular hydrogen bond being formed (refer to Malonate, section 7.1.9) 

and the normalisation of the carbon – oxygen bond lengths.  

N2···O1 2.765(1) 0.92(2) 1.85(2) 173(2) 

C1···O2 3.001(1) 0.95(2) 2.39(1) 150(1) 
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Fig. 7.83 – The benzimidazolium and malonate molecules which are generated in the molecular complex, with 

atom labelling.  

 

There are two moderate hydrogen bonds within the structure, both are nitrogen – oxygen 

interactions and follow hydrogen bond pattern E. The hydrogen bonds have length N2∙∙∙O1, 

a‘, 2.701(3)Å and N3∙∙∙O4, b‘, 2.676(3)Å and align the co-molecules into a linear chain 

(Figure 7.84). This linear chain of alternating hydrogen bonded co-molecules is the motif of 

the structure, which follows motif N. Two of these motifs are connected along the b-axis by 

lesser C-H···O hydrogen bonds. This hydrogen bond involves the carbons located between 

the nitrogens on the two BZNH
+
 molecules (C1 and C7) and oxygens O4 and O6, with 

lengths C∙∙∙O 3.242(3) and 3.229(3)Å. 

 

  

Fig. 7.84 – the main motif of the benzimidazolium malonate structure, linear chain of alternate hydrogen bonded 

co-molecules. Two of the motifs are connected together through carbon – oxygen hydrogen bonds (blue circle). 

 

While the C-H···O hydrogen bonds shown in Figure 7.84 connect two chains together, this is 

just one part of the two different types of interactions that expand the structure along the b-

axis, that work in an alternative fashion. The other interactions are also C-H···O hydrogen 

a‘ 

a‘ 

b‘ 

a‘ 
b‘ 

b‘ 
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bonds with lengths of 3.498(3) and 3.502(2)Å (Figure 7.85 red circle). This alternate 

interaction between the motifs runs along the b-axis creating a layer. 

 

   

Fig 7.85 – RHS, the chains of motifs are held together along the b-axis by two alternating layers of interactions, 

a relatively stronger carbon – oxygen hydrogen bond (blue box), and a relatively weaker carbon – oxygen 

hydrogen bond (red circles); LHS, view of the b-axis with the interactions coloured in blocks to show the 

alternating layered nature. 

 

Between these layers of motifs are two interactions that expand the structure along the a-axis. 

There is a C-H···O hydrogen bond between two malonate molecules which have lengths 

C∙∙∙O 3.443(3)Å and 3.369(3)Å (Figure 7.86 yellow circle). The other interaction is π∙∙∙π 

stacking interactions between the benzimidazolium molecules which have a length of around 

3.400(2)Å (measured between the two closest benzimidazolium molecules). These are all the 

significant interactions within the benzimidazole malonate molecular complex. 

 

 

Fig. 7.86 – the a-axis is expanded by two lesser interactions that stack the layers of motifs upon one-another. The 

shortest is a C-H···O hydrogen bond (yellow circle) while the other is a π∙∙∙π stacking interaction between the 
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Fig. 7.87  The imidazolium and malonate 

ions which are generated in the molecular 

complex/salt, with atom labelling. 

benzimidazolium molecules (green circle). Insert LHS, the C-H···O hydrogen bond; insert RHS, the π∙∙∙π 

stacking interactions. 

 

Imidazolium Malonate 

 

The molecular ions, imidazolium and malonate form a 1:1 molecular complex with one 

another.  The molecular complex was obtained using the solvent evaporation method, with a 

1:1 stoichiometric mixture of imidazole (8mg) and malonic acid (10mg) dissolved in the 

minimum amount of acetone followed by evaporation at 2-4ºC. The crystals generated were 

block shaped and colourless.   

 

Single crystal X-ray diffraction data were obtained using a Bruker Nonius Kappa 

diffractometer at 100K, equipped with graphite 

monochromated Mo Kα radiation (λ = 0.71073Å). The 

structure was solved using SUPERFLIP within the 

CRYSTALS program.  The crystallographic data are 

summarised in Table 7.6.  

 

As reported, the imidazole molecule is protonated 

through hydrogen transfer as shown in Section 7.2.1. The result is the creation of an 

imidazolium ion, with the positive charge being delocalised over the ion (Figure 7.87). This is 

reflected in the equalisation of the internal bond lengths, N1-C1 1.324(2)Å and N2-C1 

1.326(1)Å, and bond angles, C2-N1-C1 108.4(1)º and C3-N2-C1 108.8(1)º. The effect on the 

malonic acid molecule is that the carboxylic acid group that has been deprotonated, has a 

negative charge that is shared across the group. This can be seen in the normalisation of the 

carbon – oxygen bond lengths (refer to Malonate, section 7.1.9). 

 

There are three moderate hydrogen bonds within the structure, two of which follow hydrogen 

bond pattern F, N-H∙∙∙O, while the other adopts pattern I, O-H∙∙∙O. The hydroxyl  

carboxylate hydrogen bond, O4-H∙∙∙O2  2.563(1)Å, connects the malonate molecules together 

into chains. Connecting these chains together are the partially charge assisted N-H∙∙∙O 

hydrogen bonds of length, N1∙∙∙O2  2.742(1)Å and N2-O1 2.765(1)Å (see Hydrogen Bond 

Data, Table 7.28), As Figure 7.88 demonstrates, the motif of the structure is the ladder style 

with uprights of malonate molecules and rungs of imidazole. This ladder is not flat, but more 
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of a staircase shape due to the geometry of the malonate ion. The result is that the imidazole 

molecules lie on two levels. 

 

 

Fig. 7.88 – The main motif of the imidazolium malonate molecular complex, the ladder style with uprights of 

malonate ions and rungs of imidazolium, viewed along, LHS, the c-axis, middle, the b-axis, and RHS, the a-axis. 

 

The motif expands along the a- and c-axis while the b-axis is expanded through C-H···O 

hydrogen bonds involving the carbon located between the nitrogens, and an oxygen – oxygen 

interaction. The hydrogen bond has a distance of C1∙∙∙O2 3.001(1)Å (Figure 7.72 - green line) 

while the oxygen – oxygen interaction is on the limit of its sum of van der Waals radii 

(3.04Å) at 3.001(1)Å (Figure 7.89 - red line). 

 

 

Fig. 7.89 – The motif of the structure (blue interactions) is expanded along the b-axis by C-H···O hydrogen 

bonds (green interaction) and an oxygen – oxygen interaction (red line). 

 



 374 

Figure 7.90 shows the extended structure viewed along the c-axis (LHS) and b-axis (RHS). 

From these images the main motif, ladder style with uprights of malonate and rungs of 

imidazolium molecules (blue shading) can be seen to be expanded along the b-axis by the 

carbon – oxygen weak hydrogen bond (red shading). 

 

 

Fig. 7.90 – LHS, view along the c-axis of the extended structure; RHS, view along the b-axis of the extended 

structure, with the main motif (blue shading) being expanded along the b-axis by carbon – oxygen weak 

hydrogen bonds (red shading). 

 

7.8  Conclusions 

 

The library of hydrogen bond patterns shown in Figure 7.18 has featured in all the molecular 

complexes discussed in Chapter 7 with three of the four occurring more than once. This 

shows that the library of hydrogen bonding patterns is robust, dependable and in some cases 

very much predictable. There were also some slight derivatives of the motifs, for example the 

benzimidazolium : fumarate structure amalgamated the ladder and linear chain style. A 

majority of the imidazolium molecular complexes adopted the linear chain of hydrogen 

bonded alternating co-molecule motif with the addition of the chain having a spiral nature, for 

example in the imidazolium : 4-fluorobenzoic acid molecular complex (shown in Figure 7.31, 

repeated below). 
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Fig. 7.31 repeated – LHS, the main motif of the IMDH

+ 
4-FBA

- 
molecular complex, a spiral chain of alternate 

co-molecules held together through N-H∙∙∙O hydrogen bonds, E and F; RHS, view along the b-axis of an 

extended spiral chain showing its circular nature. 

 

The halo-benzoic acid structures shown in this chapter, but also in Chapter 5, have shown the 

important nature of the halogen atoms in forming interactions. From these findings, the 

halogen interactions, including halogen bonds, have had little influence on formation of the 

main motif of the structure. However, they have contributed to the construction of a more 

stable structure by creating more robust interactions than corresponding non halogen-

containing molecules. For example in the imidazolium 4-fluorobenzoate structure, the main 

motifs are expanded by halogen bonds of F∙∙∙C distance of 3.490(2)Å (Figure 7.91) while in 

the benzimidazolium succinate molecular complex, the interaction that has a similar role is a 

carbon  carbon hydrogen bond of C∙∙∙C 3.552(1)Å in length.  

 

 

Fig. 7.91 – LHS, extract from Fig. 7.33, view along the b-axis of the extended structure of imidazole 4-

fluorobenzoate showing the spiral chains held together by halogen bonds (yellow lines) that connect the chains 

along the a- and c-axis; RHS, extract from Fig. 7.68 – the carbon - carbon weak hydrogen bond that expands the 

benzimidazolium succinate structure along the b-axis. 

 

The aromatic dicarboxylic acids produced structures with benzimidazole and imidazole that 

utilised the library of hydrogen bonds and in one case, benzimidazolium : terephthalic acid, 
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produced the same motif as the corresponding mono-substituted hydroxy-benzoic acid 

structure. 

 

The differences between the structures from BZN and IMD are evident, in no case did the 

main motif of equivalent complex structures stay the same. In every case between a BZN and 

IMD structure, there was both a different motif and a different packing arrangement. In one 

example, the malonate complexes, the co-molecule was rearranged (Figure 7.80, repeated 

below) between the different molecular complexes. 

 

  

Fig. 7.82 repeated – the malonate ion found in molecular complexes with (from left to right) benzimidazolium, 

imidazolium, imidazolium hydrate, and in its native form, with atom labelling. 
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8 Conclusions and Future Work 

8.1  Hydrogen Bond Patterns/ Motifs 

Of all the possible hydrogen bonding patterns, the many possibilities of potential hydrogen 

bond motifs that could be generated between the BZN and IMD and all the co-molecules 

used, surprisingly only four unique hydrogen bonding patterns and four hydrogen bond motifs 

can be used to describe every structure generated (Figure 8.1). This shows that the library of 

hydrogen bonding patterns is robust, dependable and in some cases very much predictable. 

    

        

 

        

   

 

Fig. 8.1 – The library of hydrogen bond patterns that the molecular complexes discussed in this work are highly 

likely to adopt: E (N
δ+
H∙∙∙O

δ-
), F (OH∙∙∙O

δ-
), G (N

δ+
H∙∙∙ N

δ+
) and H (OH∙∙∙O). The recurrent motifs found 

are defined as the general descriptor of these interactions: K is the ladder motif, L is the hydrogen bonded ring 

motif, M is the co-molecule dimer motif, while N is an example of a linear chain of alternate co-molecules.   

E 

F 

G 
H 

K 
L 

M N 
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Within this overall consistent picture of the outcomes of the attempts at ―crystal engineering‖ 

in these families of structures, there are some variations that need to be accounted for. For 

example, the BZN : 3-/6-hydroxypicolinic acid molecular complex structures (Section 6.4) 

are found to adopt a nitrogen  nitrogen hydrogen bond involving the pyridine nitrogen that is 

partially, but not fully, described by hydrogen bond pattern H. There are also some slight 

deviations found within the motifs, for example the benzimidazolium fumarate structure 

amalgamates the ladder and linear chain style (Section 7.7.1). However even accounting for 

these, the re-occurrence of the hydrogen bond patterns / motifs shown in Figure 8.1 is 

remarkable. By using this library, the major hydrogen bonds and likely motifs in the 

molecular complexes of benzimidazole with any carboxylic acid containing co-molecule of 

similar size to those studies could be predicted, with some confidence. Given further time and 

more extensive investigation, more molecular complexes of BZN/IMD with carboxylic acid 

containing molecules could be produced and characterised. Further research could be carried 

out with a range of co-molecules that the findings in this work would predict to produce a 

molecular complex with benzimidazole; these could include alpha-hydroxy acids (glycolic 

acid, lactic acid and mandelic acid), tricarboxylic acids (citric acid, isocitric acid and aconitic 

acid), and keto acids (pyruvic acid, oxaloacetic acid and levulnic acids). There is also 

potential for BZN/IMD to be used with pharmaceuticals in producing molecular 

complexes/co-crystals. For example in this work BZN/IMD : salicylic acid (2-

hydroxybenzoic acid) molecular complexes were produced. There are a vast amount of 

pharmaceutically active ingredients that contain carboxylic acid groups that could be utilised 

in such further investigations. 

 

One rule that was followed during this research, and which was found to be useful, is that co-

crystallisation experiments tended to be more successful between molecules of similar 

sizes/weights. While examples of complexes have been produced where this is not the case 

(imidazole : 3-hydroxypicolinic acid), there are many more examples where it was. 

 

From Figure 8.1 it can be seen that hydrogen bond E incorporates all NH∙∙∙O hydrogen 

bonds. This, as would be predicted, is the most influential intermolecular hydrogen bond 

between the co-molecules and can vary, quite considerably, in strength. However this 

hydrogen bond, as has been seen throughout this work, is robust, dependable and flexible. The 
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OH∙∙∙O hydrogen bond between a hydroxyl and a carboxylate oxygen (F), is a very common 

hydrogen bond used by crystal engineers for its dependability and flexibility. In this body of 

work it promotes the ladder motif as it tends to be the shortest hydrogen bond of those listed 

in Figure 8.1 and therefore the most influential. This can be demonstrated, as when there is 

potential for this type of hydrogen bond (not available in the 2-HBA molecular complexes) to 

form, it does so, and thus determines the rest of the structure. There is no better example than 

in the benzimidazole and 3,5-dihydroxybenzoic acid molecular complex (Section 4.5.8), 

where the 3,5-dihydroxybenzoic acid molecules create a network of chains with the BZN 

molecules fitting in where possible. The other OH∙∙∙O hydrogen bond shown in Figure 8.1 – 

H, a carboxylic acid dimer (carboxylic acid and a carboxylate group) is seen in a few 

molecular complexes including BZNH
+ 

: 2-HBA
 

1:2 and BZN : terephthalic acid and 

represents the hydrogen bonds found between carboxylic acid groups in the series‘ 

investigated. The BZN
 
dimer / nitrogen – nitrogen hydrogen bond (G), is the least predictable 

of all the hydrogen bonds, however it does always occur when there is a stoichiometric excess 

of BZN to the other co-molecules, in which case a non-protonated nitrogen is present.  These 

recurrent and predictable hydrogen bonds have ranges in length, however one of these always 

forms the primary hydrogen bond in the structure.  

 

A majority of the imidazolium molecular complexes produced during this work adopt the 

linear chain of hydrogen bonded alternating co-molecule motif (Figure 8.1 – N) with the 

chain adopting a spiral nature.  This can be seen, for example, in the imidazolium : 4-

fluorobenzoic acid molecular complex (Figure 7.31; repeated below). The spiral structure, 

most famously known from DNA, can be exploited at the molecular level to generate new 

materials, and in more recent investigations as a potential means of generating chilarity in 

solid-state systems. The spirals tended to be held together by weak interactions, in this case 

halogen bonds, which can be altered (using different halogen atom) or replaced (by using 

methyl groups) to modify the structure selectively. This is one area where further research is 

required. 
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Fig. 7.31 repeated – LHS, the main motif of the IMDH
+ 

4-FBA
- 
molecular complex, a spiral chain of alternate 

co-molecules held together through NH∙∙∙O hydrogen bonds, types E and F, RHS, view along the b-axis of an 

extended spiral chain showing its circular nature. 

 

8.2  Ladder Motif 

 

The ladder motif, consisting of uprights of the carboxylic acid containing molecule and rungs 

of BZN, has a strong tendency to occur when there is potential for the carboxylic acid 

molecules to create a chain. For example, 4-hydroxybenzoic acid molecules can hydrogen 

bond to one-another through the hydroxyl-carboxylate hydrogen bond (Figure 8.1 – F), unlike 

the 2-hydroxybenzoic acid molecules where this is impossible. When generation of these 

chains was possible, the ladder motif prevailed. There is only one set of structures where the 

ladder motif was possible but did not occur, those comprising BZN/IMD with isophthalic 

acid. The resulting structures of these molecular complexes are found to maximise the 

hydrogen bond acceptor - donor pairing. If the chains had prevailed in these structures then 

there would have been a hydrogen bond acceptor site (oxygen) not involved in a hydrogen 

bond.  

 

Figure 8.2 highlights all the molecular complexes that produced the ladder motif (apart from 

the benzimidazolium 3,5-dihydroxybenzoate molecular complex and associated hydrates), 

which as can be seen, is very flexible. There are variations of the motif, ranging from a 

―traditional‖ straight ladder, as in the IMD : malonate structure, a wavy ladder as in BZN : 3-

HBA 1:1 and even a flat ladder, IMD : succinate. Also the differing ratios of co-molecules 

have resulted in different rung sizes, for example when there is an excess of BZN molecules 
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present, they pair together which results in the poles being further apart, therefore offering the 

potential to generate a more porous materials. The study using the series of BZN/IMD with 

dicarboxylic acid chains attempted to create materials with differing pore sizes with differing 

co-molecules. Unfortunately insufficient ladder structures were created to allow any 

conclusions to be formed. However it can be seen when comparing the structures shown in 

Figure 8.2 that there is potential to form materials with differing pore sizes. It is this 

flexibility in the motif that increases its potential uses; the ability to create networks with 

differing pore sizes is a strong area of interest for a range of industries. Therefore further work 

is required to develop further the ladder motif. 

 

Within hydroxybenzoic acid complexes there are two slightly different variants: ladder with 

rungs of BZN molecules and ladder with alternate rungs of BZN molecules. These derivatives 

are neatly shown in the BZNH
+ 

3HBA
 

polymorphs where the two forms adopt the different 

styles. It would not be surprising if more polymorphs of the BZN : 3- / 4-HBA molecular 

complexes not discovered during this work were produced and found to adopt the ladder 

motifs, for example a BZNH
+ 

3-HBA
 

1:1 polymorph forming the alternate step ladder motif 

and the BZNH
+ 

4-HBA
 

2:1 polymorph forming the ladder with every step motif.  

 

 

BZN : 3H-BA 1:1 BZN : 3H-BA 2:1 I BZN : 3H-BA 2:1 II 

IMD : Malonate 

BZN : 4H-BA 2:1 

IMD : Succinate BZN: Terephthalate BZN : Succinate 
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Fig. 8.2 – The molecular complexes that formed the ladder motif, with uprights of the carboxylic acid containing 

molecule and rungs of benzimidazole. From top to bottom, left to right, benzimidazolium : 3-hydroxybenzate, 

benzimidazolium : 4-hydroxybenzoate 2:1,  benzimidazolium: 3-hydroxybenzoate 2:1 Form I, 

benzimidazolium : 3-hydroxybenzoate 2:1 Form II, imidazolium : malonate, benzimidazole : terephthalate, 

benzimidazole : succinate and imidazolium : succinate.   

 

8.3  Proton Transfer 

 

Of the properties present in the molecular complexes produced, one aspect was found to be 

essentially certain to occur – proton transfer. Of all the molecular complexes produced and 

discussed, there were only two molecular complexes that showed no proton transfer, 

benzimidazole : 3-chlorobenzoic acid Form I and benzimidazole : 4-fluorobenzoic acid (in 

each of these structures there were two equivalents of each molecule, one pair formed the 

charged species while the other remained in their neutral states). In addition in these systems 

both diffraction experiments have questionable data quality (completeness value of around 

97%) and no neutron diffraction experiments were undertaken, therefore there are still 

uncertainties over proton position. 

 

However accepting the indicated proton transfer patterns, rationalising these is difficult. The 

empirical pKa rule, based on the ∆pKa value, (∆pKa = pKa(base)  pKa(acid)), does not fully 

explain the outcome, since with pKa values for 3-chloroBA being 3.84 and that for 4-

fluoroBA at 4.15, it would be predicted that other molecules within this range would also 

form the covalent molecular complex co-crystal rather than the salt when using the same 

solvent and temperature.  For example, the pKa values for 4-bromobenzoic acid (3.96), 4-

chlorobenzoic acid (4.00) and 3-hydroxybenzoic acid (4.08)) are similar, but it is not the case 

that covalent complex co-crystals are formed. Attempts were made to use varying pH levels 

of the crystallisation solution to promote/discourage proton transfer, with the conclusion 

being that in basic conditions co-crystallisation experiments tended to be unsuccessful; 

however this is not universal. There is no question that further work is required on this aspect, 

with a wider range of pH levels, better controlled experimental conditions and a wider range 

of co-molecules utilised. However these limited results add another set of examples that call 

into question the robustness of the pKa rule. 
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In the systems studied, proton transfer has in general promoted hydrogen bonding between the 

BZN/IMD and carboxylic acid group due, primarily, to the proton transferring from the acid 

to the basic nitrogen. While a proton transferring from one group to another does not require a 

hydrogen bond or infer that a hydrogen bond will be created, in this work they went hand-in-

hand. The proton transferring to the BZN/IMD resulted, in many cases, in there being only 

one hydrogen bond acceptor site for the donor sites to bond to, therefore only one possible 

hydrogen bond could occur. This charge assisted nitrogen-oxygen hydrogen bond (hydrogen 

bond pattern E in Figure 8.1) was very flexible but robust.  

 

8.4  Solvent-Free Crystallisation/Co-crystallisation 

 

The solvent free grinding method, validated to an extent in the experiments described during 

this work, is a very old method giving a new lease of life. There is debate over whether the 

term solvent-free is correct but there can be no debate that this technique works and is able to 

generate new materials and even materials unobtainable from normal solvent crystallisation 

methods.  The acceptance of this technique has grown extraordinarily over a very short period 

of time recently, with it becoming common place in crystallisation groups (and a wide range 

of others) to perform solvent-free experiments when dealing with new molecules or trying to 

form previously unreachable forms. The drivers of this technique are the increase in speed and 

decrease in cost of reactions, however problems arise in forming uniform and stable products. 

With further work and a greater understanding of the mechanisms involved, these problems 

will be resolved and the utility of the technique increased still further.  

 

8.5  Solvent Mediated Molecular Complex Polymorphism Formation 

 

The co-crystallisation experiments between BZN and the halo-benzoic acid series resulting in 

the formation of seven previously undiscovered molecular complexes, however the primary 

aim of the work was to investigate the occurrence of molecular complex polymorphism and to 

selectively control the form produce. The results show that polymorphism is common within 

molecular complexes, with three of the seven newly discovered systems showing evidence of 

this. Controlled growth of a selective polymorph has also been achieved through changes in 
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crystallisation conditions, as shown for the three materials that showed polymorphism.  

However, it only takes small changes in these conditions to promote other forms, for example 

co-crystallisations between benzimidazole and 3-chlorobenzoic acid using acetone produced 

polymorph Form III at 30ºC, but Form I and III were produced at 20ºC (Table 5.7; repeated 

below). 

 

 Methanol Ethanol Propanol Acetone 

2~4ºC      

10ºC        

20ºC         

30ºC       

Table. 5.7 repeated – The results of cocrystallisation experiments on the benzimidazole and 3-chlorobenzoic 

acid system in creating Form I (blue), Form II (yellow), Form III (red). 

 

There are two examples where the structures have been fully determined for at least two of 

the possibly molecular complex polymorphs: BZN : 3ClBA (Figure 5.34, repeated below) and 

BZN : 3HBA 2:1 (Figure 4.39, repeated below). It can be seen that the structural differences 

are substantial, with two forms of the 3-chlorobenzoic acid complex in particular adopting a 

whole different motif.  
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Fig. 5.34 repeated – LHS, the supramolecular synthon of the BZN : 3-ClBA Form II molecular complex, co-

molecule dimers, linked together through N
δ+
H∙∙∙O

δ- 
 hydrogen bonds, RHS, the main motif of the BZN : 3-

ClBA Form I molecular complex, an equimolar hydrogen bonded ring system held together by NH···O and 

OH∙∙∙N hydrogen bonds. 

  

Fig. 4.39 repeated – LHS, Form II, the ladder structure consists of uprights of 3-hydroxybenzoate molecules and 

rungs of hydrogen boned dimers of BZNH
+
, RHS, Form I, the ladder structure consists of stiles of 3-

hydroxybenzoate molecules and alternate rungs of hydrogen bonded dimers of BZNH
+
.   

 

8.6  Increasing the Competition – The Introduction of Competing Hydrogen 

Bonding Sites 

 

The work presented in Chapter 6, which saw an introduction of another basic atom into the 

system, was to add competition within the system on two fronts; firstly with the other basic 

nitrogen on the BZN for proton transfer and for involvement in the potential hydrogen bonds. 

With regard to the proton transfer, in all cases studied the proton from the carboxylic acid 

group has transferred to the benzimidazole molecule, as has been seen in all but two examples 

in this whole work. There are some variations which are discussed in Chapter 6. When the 

basic nitrogen is unprotonated, the established NH∙∙∙O hydrogen bond is not favoured over a 

NH∙∙∙N hydrogen bond, with the NH∙∙∙O interaction forming the weaker part of a bifurcated 

hydrogen bond (Figure 6.50, repeated below). Therefore it has competed with the carboxylic 
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acid group to be the primary hydrogen bond acceptor and this designed intervention was 

successful. 

 

 

Fig. 6.50 repeated – The bifurcated hydrogen bond of the BZNH
+ 

: 3-HPA
-
 molecular complex, with the major 

component the NH∙∙∙N hydrogen bond and minor component being NH∙∙∙O. 

 

The other possible outcome was that if the nitrogen was protonated, it would compete with 

the other protonated nitrogen on the benzimidazole for the primary hydrogen bond donor role. 

As the benzimidazole is found still to be protonated, the hydrogen bond donors from this 

molecule would be charged assisted and therefore still a more attractive prospect for hydrogen 

bond acceptors. With this being the case it was not surprising to see that in the benzimidazole 

and 6-hydroxypicolinic acid molecular complex the N atom of the pyridine was acting as a 

the donor in a hydrogen bond, however it was the weakest of the three primary hydrogen 

bonds within the structure at 2.915(2)Å. The solvate structure also had the named N atom 

within hydrogen bonds, which also produced one of the weaker hydrogen bonds in the 

structure and again had a length of 2.915(3)Å.  

 

8.7  A Comparison Study of Benzimidazole and Imidazole Containing 

Molecular Complexes with a Range of Related Co-Molecules 

 

The differences between the structures from BZN and IMD are evident; in no case did the 

main motif of equivalent structures stay the same. In every case between a BZN and IMD 

structure, there was different motif and different packing arrangement. In one example, the 

malonate complexes, the co-molecule was rearranged (Figure 7.80, repeated below) between 

the different molecular complexes. The only common features were in the hydrogen bond 

patterns that the structures adopted. 
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Fig. 7.80 repeated – the malonate ion found in the molecular complexes with (from left to right) 

benzimidazolium, imidazolium, imidazolium hydrate and its native form with atom labelling. 

 

8.8  Halogen Bonding 

 

The halogen containing structures shown in this work have shown the important nature of the 

halogen atoms in forming interactions. It does not appear that the halogen interactions, be 

they halogen bonds or other halogen-containing interactions, had much influence on the main 

motif of the structure. However they have contributed to the construction of a more stable 

structure by creating more robust interactions than those found in corresponding non-halogen 

containing molecules. For example in the imidazolium 4-fluorobenzoate structure, the main 

motifs are expanded by halogen bonds of F∙∙∙C distance of 3.490(2)Å (Figure 7.89, repeated 

below) while in the benzimidazolium succinate molecular complex, the interaction that has a 

similar role is a carbon-π interaction of C∙∙∙C 3.552(1)Å in length. From all the structures in 

Chapter 5 the halogen atom is involved in either a halogen bond or halogen interaction.  

These interactions tend to be individual in the role they adopt, they are the only interaction 

that expands the structure in a particular direction, for example in the benzimidazole 4-

fluorobenzoic acid molecular complex the halogen bond is the only interaction that expands 

the structure in the c-direction. This body of work shows that the halogen bond is significant 

and is key in determining the overall packing. 
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Fig. 7.89 repeated – LHS, extract from Fig. 7.33 View along the b-axis of the extended structure showing the 

spiral chains are held together by halogen bonds (yellow lines) that connect the chains along the a- and c-axis, 

RHS, extract from Fig. 7.69 – insert, the C-H···π interaction 

 

8.9  Concluding Remarks 

 

The robustness of both hydrogen bond patterns and the more extended motifs adopted by the 

molecular complexes that contain these patterns gives real promise that a rational, more 

predictive, approach to crystal engineering can be generated in families of compounds such as 

those presented here.  Subtle variations in choice of co-molecules and in crystallisation 

conditions has been shown to affect the crystal form adopted, both in terms of motifs and in 

some cases in polymorphic form adopted, including examples where polymorph control has 

been obtained.  In particular, it has been found possible during this work actually to make 

predictions about likely molecular association and packing of molecular complex structures 

that have been borne out by subsequent experiments. 

 

 


