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Abstract 

The African Salivarian trypanosomes are the causative agents of both Human African 

Trypanosomiasis, or sleeping sickness, and Animal African Trypanosomiasis, more widely known 

as Nagana. Primarily spread through the tsetse fly vector both diseases are distributed across the 

sub-Saharan tsetse belt, afflicting some of the poorest communities in the world. Three species of 

trypanosomes are predominantly responsible for these two diseases. T. brucei, which is comprised 

of the three morphologically identical sub-species T. b. brucei, T. b. gambiense (further separated 

into two subgroups) and T. b. rhodesiense, with the latter two sub-species exclusively responsible 

for infections in humans. The animal infective species T. congolense, comprised of the Forest, 

Kilifi and Savannah subtypes, and T. vivax meanwhile are responsible for millions of livestock and 

wild animal infections across the continent, with severe downstream economic consequences. 

 

A crucial component in understanding the diseases caused by these parasites is through 

understanding the diversity present in the field, as it is ultimately the combination of host, vector 

and parasite diversity that gives rises to the disease phenotypes observed during clinical diagnosis 

and treatment. In order to truly understand the role of such diversity in the field it is necessary to 

know how individuals within a population interact with one another, if they do at all. Mating 

between individuals allows for the direct interaction of genomes, allowing for the generation of 

new chromosomal sequences through meiotic recombination and new chromosomal pairings 

through bi-parental inheritance of genetic material. Identified as a non-obligatory process in T. 

brucei the importance of mating in natural trypanosome populations is both a controversial and 

understudied topic despite the significant role of the process in shaping the evolutionary 

development of these clinically important parasites. 

 

In order to further investigate the genetic diversity and role of mating in the trypanosomes 

populations from The Gambia, Uganda and Malawi have been examined through the use of 

microsatellite markers specific to the genomes of T. brucei, T. congolense and T. vivax. The results 

presented here demonstrate drastically different levels of diversity in the respective populations and 

evidence for a spectrum of genetic exchange, with both highly clonal and frequently mating 

populations identified in this manner.  

 

T. vivax, sampled from horses, donkeys and cattle in The Gambia would appear to most closely fit 

with the traditional views of clonality in trypanosomes, extensive clonal reproduction of a single 

genotype, significant disagreement with Hardy-Weinberg principles and the presence of significant 

linkage between the loci examined. These results, which closely resemble those observed for T. b. 

gambiense Group 1, suggest that genetic exchange may be absent or rare in T. vivax, which may 
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lead to the eventual divergence of independent populations as they slowly accumulate unique 

mutations. The apparent dominant clonality of T. vivax is a sharp contrast to the situation observed 

for T. congolense in The Gambia, with strong evidence for frequent mating and a high rate of 

inbreeding. That this evidence originated from the same sample sets used in the T. vivax studies 

presented here highlights the differences between these two species and the requirement for further 

work independent of the studies into T. brucei. 

 

The final half of this thesis has focused upon the population genetics and genomics of T. brucei, the 

species responsible for sleeping sickness in humans. Examination of five of T. b. rhodesiense 

populations, four from Uganda and one from Malawi has demonstrated the potential for variation 

in the population structure within a single species. The Ugandan populations are dominated by 

clonality; with repeated bottlenecks reducing the genetic diversity present as the parasites has 

spread northwards. The Malawi population, genetically distinct from the populations of Uganda, 

instead appears to favour genetic exchange over clonality, with a genetically diverse population and 

only a limited number of repeated genotypes. This provides the first evidence of mating playing a 

significant role in a field population of human infective trypanosomes, introducing a significant 

role for meiotic recombination and chromosomal reassortment which may drastically alter the way 

in which these parasites respond to selective pressures and evolutionary forces. Finally, this thesis 

has aimed to bridge the gap between traditional low resolution studies and the developing field of 

genomics by examining the SNP variation present between three laboratory strains of T. brucei, 

providing the building blocks in understanding genome wide variation in trypanosomes. Utilising 

these data, and through sequencing of progeny generated in the process of constructing the TREU 

927 genetic map, it has been possible to partially reassemble the haplotypes for the megabase 

chromosomes of this strain, previously selected as the T. brucei genome reference strain. Collected 

together these data provide an important resource of genomic variation for both laboratory studies 

and as a baseline for future investigations into the genomic diversity of field populations. 

 

In summary this thesis has demonstrated the variable nature and versatile role of genetic exchange 

in the trypanosomes, bringing together data not only from the human infective sub-species of T. 

brucei but from the animal infective species T. congolense and T. vivax. Finally in looking to the 

future this work has begun the process of transitioning from the relatively low density 

microsatellite markers by examining high density SNP variation in common laboratory strains, the 

first step towards future adoption of these markers for the purpose of population genomics. 
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1.1 General Introduction 

 

The Salivarian trypanosomes, single cellular protozoan parasites, are members of the order 

Kinetoplastida, genus Trypanosoma. The genus encompasses almost 500 different named species, 

globally dispersed and with an extensive host range in both vertebrates and invertebrates. The 

majority of these species are able to infect, replicate and survive in their hosts without adverse 

effects, and thus rarely come to our attention (Hoare, 1972; Cox, 1993). Infection by a select few 

does however result in noticeable disease states in the host species. African sleeping sickness and 

Chagas disease, because of their status as human diseases, are the most widely known of these. 

These two diseases are the result of infections by Trypanosoma Trypanozoon brucei (T. (T.) 

brucei) and Trypanosoma Schizotrypanum cruzi (T. (S.) cruzi), respectively. The species of the 

genus Trypanosoma that are infective to mammalian hosts have been classified into two groups 

based upon their method of transmission between hosts (Hoare, 1972). Those of the Stercoraria 

group, which includes T. cruzi, are transmitted to the mammalian host by contamination of bites or 

wounds with faeces from the insect vector. In contrast to the Stercoraria group, members of the 

Salivarian group, the focus of this work, are almost exclusively transmitted through the saliva of 

the insect vector following biting of, and feeding upon mammalian host species.  

 

The primary insect vectors of the Salivarian trypanosomes are the species of the genus Glossina, 

collectively known as tsetse flies (Krafsur, 2009). These large biting flies survive on blood meals 

from vertebrate animals and are found throughout the majority of sub-Saharan Africa within a 

region commonly referred to as the tsetse belt. This region spans 37 countries and an area of 

approximately 8.5 million km
2
, approximately 28% of the African continent (Allsopp, 2001). 

During transmission by tsetse the Salivarian trypanosomes undergo a series of specific 

developmental changes capable of establishing lasting infections within the flies, a process referred 

to as cyclical transmission. A secondary method of transmission, lacking these developmental 

changes, is possible and involves uptake of bloodstream form trypanosomes during one meal and 

their transfer into new hosts during subsequent feedings. This mechanical transmission does not 

require establishment of an infection within the insect vector and can therefore use biting flies other 

than the tsetse (Wells, 1972). While less frequent, mechanical transmission has allowed the 

expansion of some Salivarian trypanosomes beyond the ranges of the tsetse belt. Amongst the 

Salivarian trypanosomes only Trypanosoma equiperdum does not use an insect vector, instead 

being transmitted between equines through venereal contact (Brun et al., 1998). 

 

Traditionally the members of the Trypanosoma genus have been grouped and defined by the 

techniques available at their time of discovery. At the turn of the twentieth century, a period of 

mass discovery, the primary methods were morphology, pathogenicity, host range and geographical 

distribution. With these diverse criteria it is perhaps unsurprising that many of these species were 
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later re-evaluated, most notably by Hoare (1972) who amalgamated many of the species and 

subgenera into those still used today. The Salivarian trypanosomes are separated into four 

subgenera, Duttonella, Nannomonas, Pycnomonas and Trypanozoon (Table 1.1). This work is 

focused specifically upon three species, T. brucei, the only Salivarian trypanosome to possess 

human infective variants; Trypanosoma Duttonella vivax, a pathogen of livestock and the most 

widespread of the Salivarian trypanosomes and Trypanosoma Nannomonas congolense, which 

alongside T. vivax is one of the primary causative agents of animal African trypanosomiasis. 

 

 

 

 

Subgenus Species 

Duttonella Trypanosoma vivax 

Trypanosoma uniforme 

Nannomonas Trypanosoma congolense
1
 

Trypanosoma simiae 

Trypanosoma godfreyi
2
 

Pycnomonas Trypanosoma suis 

Trypanozoon Trypanosoma brucei
3
 

Trypanosoma evansi 

Trypanosoma equiperdum 

 

Table 1.1 The recognised species of the Salivarian trypanosomes. 

The currently recognised subgenera and species of the Salivarian trypanosomes based primarily 

upon the definitions of Hoare (1972). 
1
 Presently recognised to be comprised of the three sub-types 

Forest, Kilifi and Savannah. 
2
 Characterised by McNamara (1994). 

3
 Species complex comprised of 

the three sub-species T. b. brucei, T. b. gambiense and T. b. rhodesiense with T. b. gambiense 

further subdivided into Group 1 and 2. 
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1.1.1 The phylogeny of trypanosomes 

 

While the question of species appeared to have been resolved by work of Hoare (1972), 

determination of the phylogenetic relationships between the various species of trypanosome 

required the development of molecular sequencing. The results of early rRNA sequencing 

suggested the genus Trypanosoma to be paraphyletic, with multiple branches of origin from the 

Trypanosomatids, typically separating the African and American trypanosomes from one another 

(Maslov et al., 1996; Stevens et al., 1999; Hughes and Piontkivska, 2003a, 2003b; Piontkivska and 

Hughes, 2005). Interestingly in these studies T. vivax varies in its positioning, occasionally 

appearing to have an independent origin from the remainder of the African Salivarian 

trypanosomes. In contrast, later studies, utilising data from rRNA, multiple protein families and 

whole genome sequencing have suggested a monophyletic origin of the Trypanosoma genus 

(Hamilton et al., 2004; Simpson et al., 2006; Leonard et al., 2011). These results, upon which the 

weight of evidence now falls, date the divergence of T. brucei and T. cruzi, and therefore their 

respective clades, to an estimated 100 million years before present (Stevens and Gibson, 1999; 

Stevens et al., 1999). Within the Salivaria the reconstructed monophylogenies support an early 

separation of the lineage giving rise to T. vivax with a closer relationship between the T. brucei and 

T. congolense lineages. 

 

The same technologies that have been used to assess the relationships between species have 

reopened the question of species definition as, with the examination of further field samples 

increasing diversity has been observed within the African trypanosomes (Malele et al., 2003; 

Adams et al., 2008). Classically only T. brucei has been represented by multiple sub-species, T. b. 

gambiense (of which there are two recognised subgroups), T. b. rhodesiense and T. b. brucei, with 

T. b. gambiense and T. b. rhodesiense originally defined by their ability to survive within human 

hosts and distinct geographic origins. T. congolense is now recognised to be comprised of at least 

three sub groups (Forest, Savannah and Kilifi) (Garside et al., 1994) based upon isoenzyme and 

genetic analysis while there is evidence for similar sub-groups of T. vivax within a single country 

(Adams et al., 2009). Only a single new species, Trypanosoma Nannomonas godfreyi has been 

recognised following isolation and characterisation of this trypanosome (McNamara et al., 1994). 

While originally identified from tsetse in The Gambia, the species is now recognised to have a 

wide distribution across Africa (Masiga et al., 1996). The development of species-independent 

primer sets has indicated that a substantial number of trypanosome species, or subtypes of known 

species, have yet to be fully described or identified (Malele et al., 2003; Adams et al., 2006, 2008, 

2009; Adams and Hamilton, 2008; Hamilton et al., 2008) and it has been suggested that it may be 

necessary to re-evaluate the recognised species, sub-species, clades and groups to take account of 

these new data and clearly define the boundaries between them (Gibson, 2003, 2007).  
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1.2 The life cycles of T. brucei, T. congolense and T. vivax 

 

The life cycles of T. brucei, T. congolense and T. vivax comprise two distinct segments, 

development within a mammalian host and transmission between hosts by an insect vector. For 

each of these species the primary vector is the tsetse fly, inside which the trypanosomes undergo 

specific developmental stages prior to their return to a new mammalian host. During the life cycle 

the parasites alternate between adaptive stages, prior to a change in host or vector environments 

and proliferative stages, which maintain the number of parasites at any given life cycle stage 

(Hoare, 1972; Vickerman, 1985; Vickerman et al., 1988; Gardiner, 1989; Matthews, 2005; Fenn 

and Matthews, 2007). 

 

1.2.1 The T. brucei life cycle 

 

The classical T. brucei life cycle, summarised in Figure 1.1 (Adapted from Vickerman, 1985) was 

originally established through analysis of morphology and progression of infections in the host and 

vector. Infection of the mammalian host is established by initiation of a blood meal by an infected 

tsetse fly, during which metacyclic form trypanosomes, mixed into the saliva of the tsetse are 

injected into the skin of the host. This may give rise to an inflammatory reaction known as a 

chancre at the site of the tsetse bite. The metacyclic trypanosomes, a non-proliferative form, are 

pre-adapted for survival within the mammalian host and maintain a dense surface coat comprised 

of a single variable surface glycoprotein (VSG) which protects against initial responses from the 

immune system (Turner et al., 1988). On reaching the bloodstream metacyclics transform into the 

proliferative long slender trypomastigote form, which multiplies within the bloodstream. The 

metacyclic VSG coat is replaced at this stage by bloodstream specific VSGs, with the trypanosome 

once again expressing only a single variant at a given time. It is by varying this coat, a process 

known as antigenic variation, that the intra-host trypanosome population is capable of evading the 

responses of the adaptive immune system (Vickerman, 1969; Vickerman and Luckins, 1969; Barry 

and McCulloch, 2001; Morrison et al., 2009a). As the infection progresses and trypanosome 

numbers increase within the host, a proportion of the parasite population transforms again, from the 

long slender forms into a non-dividing short stumpy form (Reviewed in Macgregor and Matthews, 

2010). The short stumpy form of T. brucei functions as the link between host and vector infections. 

It is in the tsetse developmental stages where the majority of differences are observed between the 

life cycles of T. brucei, T. congolense and T. vivax (Hoare, 1972). 
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Figure 1.1 The classical T. brucei life cycle 

Schematic diagram of the T. brucei developmental cycle grouped by the three major developmental 

locations; mammalian host, tsetse midgut and tsetse salivary glands. Developmental stages on the 

right half of the figure possess the VSG coat required for evasion of the mammalian immune 

response. * Cell proliferation occurs during these life cycle stages. Reproduced from Vickerman 

(1985), with more recent studies into the life cycle reviewed by Sharma et al. (2009).  
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For T. brucei tsetse development begins with differentiation of the trypanosomes in the gut into the 

procyclic form, shedding the VSG coat and replacing it with one composed of procyclins, which 

protects against the immune responses of the tsetse (Urwyler et al., 2005). Forming an infection in 

the ectoperitrophic space, between the gut and the peritrophic membrane, the trypanosomes once 

again enter a proliferative stage before a proportion transform into the proventricular form, 

migrating to the salivary glands where the next form, that of the dividing epimastigotes attach to 

the epithelium of the salivary gland. Extensive proliferation and differentiation through a number 

of forms finally gives rise to the mammalian infective metacyclic form, detaching from the salivary 

gland in the process. These cells are then injected back into the mammalian host during future 

blood meals, with approximately 20 days required to reach this point after initial infection of the 

tsetse (Hoare, 1972; Vickerman et al., 1988). Transmission through the tsetse fly involves a 

substantial bottleneck as trypanosomes migrate from the midgut to the salivary gland (Oberle et al., 

2010). In the presence of mixed infections this bottleneck can lead to significant changes in the 

frequency of the strains present, which may facilitate the survival of low frequency genotypes. 

 

1.2.2 The mechanism of genetic exchange in T. brucei 

 

While cyclical development represents the classically described T. brucei life cycle the role of 

mating in the life cycle should not be excluded. Early evidence of a mating cycle was presented in 

1980 following isoenzyme analysis of 19 enzymes in a population of 17 isolates of T. b. brucei 

collected from Lugala, Uganda in 1969-1970 (Tait, 1980). Examination of these isolates, which 

contained a high proportion of all the possible allele combinations, suggested frequent and random 

mating of trypanosomes in the field. The small sample size of this study has however attracted 

criticism due to the possibility of a Type 2 error, under which agreement with Hardy-Weinberg 

predictions could have arisen by chance alone (Cibulskis, 1988). The existence of a mating system 

in trypanosomes was later confirmed by Jenni et al.(1986) with the first genetic cross between two 

strains with distinct isoenzyme and restriction fragment length polymorphism profiles. Since this 

first cross numerous additional crosses have been performed utilising a diverse selection of strains 

of T. brucei (Table 1.2). To date there have been no successful crosses utilising T. b. gambiense 

Group 1 reported, supporting the conclusions of field studies that suggest genetic exchange may be 

absent (Morrison et al., 2008b; Koffi et al., 2009). 

 

While the exact events surrounding genetic exchange have yet to be elucidated the site of 

reproduction has been narrowed down to the salivary glands of the tsetse fly (Gibson and 

Whittington, 1993; Gibson and Bailey, 1994; Bingle et al., 2001; Tait et al., 2007). Early 

investigations used recombinant lines into which differing drug resistances had been conferred 

(Gibson and Whittington, 1993; Gibson and Bailey, 1994). Progeny which had inherited resistance 
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to both drugs could therefore be selected for, following isolation of trypanosomes from the 

differing developmental locations within the tsetse fly. These experiments indicated that the earliest 

stage at which double drug resistance, and therefore progeny trypanosomes, could be detected was 

the salivary glands with progeny generated prior to development of the metacyclic stage. Genetic 

exchange was therefore occurring within the salivary glands or during the migration of 

trypanosomes to it.  

 

Subsequent work has expanded upon this technique, first by introduction of an inducible Green 

Fluorescent Protein (GFP) marker expressed only in hybrid progeny and secondly by the 

introduction of GFP / Red Fluorescent Protein (RFP) parental lines, with hybrid cells carrying both 

markers fluorescing yellow (Bingle et al., 2001; Peacock et al., 2007; Gibson et al., 2008). In 

examining dissected tsetse flies infected with the fluorescent trypanosomes these studies have 

confirmed the salivary glands to be the site of genetic exchange, with progeny cells only detected at 

this site within the fly. However while a mix of the parental infections was observed in the majority 

of midgut infections salivary glands were observed to be highly variable, with disparity observed 

even between the two glands of a single fly, suggesting individual colonization of each gland by 

only a small number of trypanosomes. Only 37% of flies were observed to have a mixed parental 

infection in at least one salivary gland, limiting the potential for outcrossing and generation of 

progeny (Gibson et al., 2008). A variation of the fluorescence technique, utilising differentially 

tagged populations of the same trypanosome strain has indicated that intra-strain mating of a single 

line is possible and does not require the presence of a second strain to trigger the mating cycle 

(Peacock et al., 2009), in contrast to previous reports of a requirement for out crossing in order for 

selfing to occur (Tait et al., 1996; Gibson et al., 1997). Despite this Peacock et al.(2009) noted that, 

in comparison to crosses between different strains intra-strain mating appeared to produce a higher 

proportion of inviable progeny which could not be isolated and cloned following identification in 

the salivary glands. The potential therefore remains for a system allowing a strain to differentiate 

self from non self, capable of acting as a self limiter on the frequency of inbreeding in field 

populations.  
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Parent 1 Parent 2 Comments Reference 

STIB 247 STIB 386 First reported laboratory cross. Jenni et al.(1986) 

STIB 247 STIB 386 Suggested nuclear fusion to give raised 

DNA levels with subsequent loss to return 

to diploidy. 

Paindavoine et 
al.(1986) 

STIB 247 STIB 386 Detected increased DNA contents in 

hybrids compared to the parental lines. 

Wells et al.(1987) 

STIB 247 STIB 386 Suggested uniparental inheritance of the 

kinetoplast 

Sternberg et 
al.(1988) 

STIB 247 STIB 386 Observed biparental inheritance of 

intermediate chromosomes 

Sternberg et 

al.(1989) 

058 196 Suggested biparental inheritance of kDNA Gibson (1989) 

STIB 247 STIB 386 Demonstrated segregation and inheritance 

of alleles consistent with Mendelian 

inheritance. 

Turner et al.(1990) 

STIB 247 TREU 927/4 

STIB 386 TREU 927/4 

196 J10 Demonstrated variable chromosomal 

locations, and therefore inheritance of, 

housekeeping genes in different strains 

Gibson and Garside 

(1991) 

058 196 Analysis of trisomic and triploid progeny Gibson et al.(1992) 

058H KP2N Used drug resistant lines in order to select 

for double drug resistant progeny 

Gibson and 

Whittington (1993) 

STIB 247-LF STIB 777-A Mendelian inheritance of megabase 

chromosomes but not intermediate 

chromosomes 

Schweizer et 

al.(1994) 

058H KP2N Independent segregation of markers in 

drug selected progeny and high frequency 

of triploidy 

Gibson and Bailey 

(1994) 

STIB 831-K 

cl 1 

STIB-831-K cl 2 Cross utilising isolates originating the 

same natural population in Uganda 

Degen et al.(1995) 

058H P20 (hybrid of 058 

x KP2) 

First reported backcross Gibson et al.(1995) 

STIB 247 STIB 386 Self fertilisation of STIB 247 in presence 

of STIB 386 

Tait et al.(1996) 

STIB 247  

TH2N 058H Self fertilisation of TH2N in presence of 

058H 

Gibson et al.(1997) 

TH2N  

K11 (derived 

from TH2) 

KP2N Used a repressed GFP reporter system 

with expression only in hybrids 

Bingle et al.(2001) 

STIB 247 STIB 386 Demonstrated Mendelian patterns of 

inheritance 

MacLeod et 

al.(2005) STIB 247 TREU 927 

1738 J10 Used GFP / RFP tagged parental strains to 

measure dynamics of infection 

Peacock et al.(2007) 

427 variant 3 1738 Used GFP / RFP tagged parental strains, 

producing yellow hybrids 

Peacock et al.(2008) 

J10 1738 Used GFP / RFP tagged parental strains, 

producing yellow hybrids 

Gibson (2008) 

1738 

 

Used GFP and RFP to detect selfing in the 

absence of mixed infections 

Peacock et al.(2009) 

J10 

SG3 (hybrid of 1738 x J10 cross) Identified possible selfing of a hybrid line 

J10 1738 Identification of early meiotic cells 

through use of fluorescently tagged 

meiotic genes 

Peacock et al.(2011) 

 

Table 1.2 Summary of published T. brucei genetic crosses. 

Summary of the published T. brucei crosses to date. 
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A number of genetic crosses have observed the presence of increased ploidy amongst the megabase 

chromosomes of the hybrid progeny (Jenni et al., 1986; Paindavoine et al., 1986b; Wells et al., 

1987; Gibson et al., 1992, 1995, 1997, 2008; Gibson and Bailey, 1994; Hope et al., 1999; Peacock 

et al., 2008, 2009). This led to the suggestion that genetic exchange employed a fusion with 

chromosome loss model, which was first proposed by Paindavoine et al.(1986). This model, 

envisaged as a fusion event between two diploid cells followed by random chromosome loss, is 

similar to that proposed for T. cruzi based on both field and laboratory studies. In T. cruzi genetic 

exchange is proposed to be a rare fusion event, with genetic exchange between otherwise distinct 

clonal lineages giving rise to new ones (Gaunt et al., 2003). 

 

Two additional models invoking Mendelian inheritance have also been proposed for genetic 

exchange in T. brucei. The first requires the fusion of two diploid cells (Gibson et al., 1995). In 

place of random chromosome loss this model proposed that following fusion of two cells the nuclei 

of each underwent a form of meiosis giving rise to multiple haploid nuclei within a single cell. 

Controlled nuclear fusion between haploid nuclei originating from each parent would then give rise 

to the observation of Mendelian patterns of inheritance with the remaining haploid nuclei being 

destroyed in the process, resulting in a single diploid cell. Under this model the observed triploid 

cells would arise due to additional fusion events or failure of one parent to undergo meiosis, 

resulting in fusion between diploid and haploid nuclei. The second Mendelian model that has been 

proposed for genetic exchange in trypanosomes uses a classical meiotic cycle, with generation of 

independent haploid cells and fusion to restore ploidy (Sternberg and Tait, 1990). Under this model 

the parental cells would undergo DNA duplication and homologous recombination independently 

of one another prior to segregation of the homologues during meiosis I, producing two daughter 

cells. Within each daughter cell the two sister chromatids for each chromosome are essentially 

identical to one another, differing only at sites which have undergone homologous recombination. 

A second round of cell division (meiosis II) then occurs to generate a total of four haploid gametes, 

two from each daughter cell. Subsequent fusion of two gametes completes the sexual cycle by 

restoring the 2n state and combining genetic material from either a single parent (selfing) or from 

two independent parents (out crossing). To date however haploid gametes have yet to be observed 

in the analyses of trypanosome crosses. 

 

For both of these proposed models Mendelian inheritance is a central concept, requiring that the 

models follow Mendel‟s laws of segregation and independent assortment. The law of segregation 

requires that during the production of gametes (be they haploid cells or haploid nuclei) each gamete 

receives only a single copy of a given chromosome, thus fusion of two gametes generates a 2n 

progeny cell with a DNA content equal to that of the two parents and each parent contributing only 

half of the total genetic material. The second law, that of independent assortment, states that during 

the segregation of chromosomes during meiosis I the homologues of each chromosome are mixed 
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in a random nature, with no association between physically unlinked chromosomes. Each daughter 

cell therefore possesses a random assortment of chromosomal homologues, ensuring parental 

material is mixed during each subsequent round of sexual reproduction. 

 

For T. brucei the random chromosome loss model has largely been discarded as, with an expansion 

in the number of progeny available for analysis it has become clear that Mendelian patterns of 

inheritance are observed in progeny which maintain a ploidy of 2n, inconsistent with random 

chromosome loss (MacLeod et al., 2005a) and allowing for the generation of genetic maps for T. b. 

brucei and T. b. gambiense Group 2 (MacLeod et al., 2005b; Cooper et al., 2008). The recent work 

of Peacock et al.(2011) has provided the greatest insight into the mechanism of genetic exchange in 

T. brucei by identifying early meiotic cells, through fluorescent tagging of meiosis associated genes 

(Ramesh et al., 2005; Schurko and Logsdon, 2008). This work demonstrated that these prophase I 

genes were expressed in the same order as observed in other eukaryotes and during the life cycle 

stage previously associated with genetic exchange in T. brucei. While the products of meiosis II 

(haploid cells or multiple haploid nuclei within a single cell) were not detected in this study it is 

likely that this powerful tagging technique will provide the means to observe the latter stages of 

genetic exchange in T. brucei and finally elucidate the details of this process. 

 

For the Mendelian models employing a meiotic cycle, the observation of raised DNA contents in 

some hybrid lines may indicate a failure to segregate genetic material correctly, potentially due to 

divergence between homologous chromosomes, disrupting correct pairing at the beginning of 

meiosis and subsequent segregation (Gibson et al., 2008). The level of divergence between 

homologues of a given strain may therefore explain the differing rates of aneuploidy observed in 

the crosses to date due to the use of different strains by different laboratories. It is also possible that 

incorrect segregation is merely a normal meiotic occurrence, as has been observed in humans 

where ~5% of pregnancies are monosomic or trisomic for at least one chromosome (Hassold et al., 

2007; Yanowitz, 2010). In trypanosomes the viability of many of these progeny lines would 

suggest that partial or full aneuploidy may be tolerated to a greater degree than in mammals, 

although as the products of laboratory crosses it is unclear as to whether these progeny would 

endure in field populations. 

 

1.2.3 The T. congolense life cycle 

 

T. congolense shares a similar developmental cycle to T. brucei until the migration of the 

proventricular form which proceeds only as far as migration to the proboscis of the insect. It is in 

this location that the parasite transforms into the epimastigotes, attaching to the chitinous wall and 

undergoing a number of rounds of proliferation. The pre-metacyclics that result from this infection 

then complete the life cycle by migrating to the hypopharynx where they mature into the host 
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infective, free swimming metacyclics (Hoare, 1972; Vickerman et al., 1988). Culture conditions 

have now been described for the entire T. congolense life cycle, facilitating investigations into the 

species (Coustou et al., 2010). Recent evidence for mating in field populations in this species and 

the lack of development in the tsetse salivary glands has provided the first indication that the 

environment present in the salivary glands is not an inherent requirement for mating in the 

Salivarian trypanosomes (Morrison et al., 2009b). At present there have been no crosses, successful 

or otherwise reported for T. congolense. 

 

1.2.4 The T. vivax life cycle 

 

The tsetse transmitted life cycle of T. vivax, last extensively reviewed by Gardiner (1989) is the 

simplest of the trypanosomes described here. Initial mammalian infection begins as with its 

relatives with proliferation of bloodstream forms and build-up of the tsetse adapted „late form‟ and, 

while typically reported as being confined to the vasculature of the mammalian host, cells have 

been identified within the lymph nodes, heart tissue and central nervous system, in rare cases 

giving rise to acute haemorrhagic infections (Magona et al., 2008). Unlike T. brucei, where the 

tsetse adapted stage is represented by non-proliferating stumpy cells, these „late‟ forms take on a 

more slender elongated morphology with a tendency to adhere to cellular material by their flagellar 

tips (Gardiner, 1989). This adherent nature may facilitate attachment to the inner wall of the 

proboscis, thereby preventing the parasite from being washed into the gut following ingestion by 

the tsetse. 

 

Following ingestion by the tsetse fly the parasites differentiate into the epimastigote form, shedding 

their VSG coat and begin to proliferate, forming bundles of cells still attached to the wall of the 

proboscis. After a round of proliferation the cells detach and migrate from the inner wall of the 

proboscis to the hypopharynx region where they transform to the trypomastigote form and finally 

the metacyclic form (Hoare, 1972). The metacyclic form of T. vivax, covered with a metacyclic 

VSG coat, shares morphological similarities to the early bloodstream cells but with a reduction in 

the average length of the cell. At any given time a small proportion of the metacyclics will detach 

and become free-swimming cells, ready to be injected into a new mammalian host (Hoare, 1972; 

Gardiner and Wilson, 1987; Gardiner, 1989). 

 

1.2.5 The mechanical transmission cycle 

 

While cyclical transmission through the tsetse fly represents the predominant route of transmission 

for the African trypanosomes, a secondary method, mechanical transmission, is possible (Reviewed 

by Wells, 1972). This route, which has been demonstrated for T. brucei, T. congolense and T. 

vivax, forgoes the entirety of the insect developmental cycle, allowing for transmission of 
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trypanosomes by other biting flies (Roberts et al., 1989; Mihok et al., 1995; Sumba et al., 1998; 

Desquesnes and Dia, 2003, 2004). Mechanical transmission is possible due to two factors, the first 

is that during the acquisition of a blood meal a proportion of the trypanosomes taken up have 

retained the proliferating bloodstream forms. Secondly, while the majority are washed into the gut 

and digested, a small proportion are retained within the proboscis of the fly. During subsequent 

blood meals these trypanosomes may be injected back into a new mammalian host, in which their 

existing life cycle stage allows them to establish a new infection. 

 

Direct mechanical transmission has been demonstrated for T. vivax and T. brucei (Mihok et al., 

1995) and T. congolense (Sumba et al., 1998) through use of an interrupted feeding technique, by 

which flies are allowed a partial feed on an infected host (typically a mouse) and then moved to an 

uninfected host for completion of the feed, with successful transmission establishing an infection in 

the second host. While the survival rate of T. congolense within the mouthparts of Stable flies 

appears to be relatively short at less than 10 minutes (Sumba et al., 1998), mechanical transmission 

of T. b. rhodesiense by tsetse flies can be achieved for up to 160 minutes after feeding on infected 

hosts (Roberts et al., 1989). Mechanical transmission has also been demonstrated through the use 

of fly proof enclosures to isolate herds. Through the controlled introduction of trypanosome 

positive animals and bloodsucking flies it is possible to detect mechanical transmission as 

infections are passed to uninfected animals. Experiments utilising this technique have demonstrated 

the ability of tabanids to mechanically transmit both T. congolense and T. vivax, with T. vivax 

successfully transmitted at a high rate (Desquesnes and Dia, 2003, 2004). 

 

While mechanical transmission has been experimentally described for T. brucei, T. congolense and 

T. vivax the extent and significance of this transmission route is unknown for all but T. vivax. The 

geographic ranges of T. brucei and T. congolense fall exclusively within the tsetse belt of sub-

Saharan Africa, strong evidence that mechanical transmission alone is insufficient to maintain 

populations in the absence of cyclical tsetse transmission. Epidemiological surveys of tsetse free 

regions within the tsetse belt typically report T. vivax to be responsible for >90% of observed 

infections when tsetse are absent, with observed incidence rates correlating with the density of 

biting flies in the region (Cherenet et al., 2004, 2006; Sinshaw et al., 2006). These results are 

however dependent upon the certainty of the region being tsetse free, despite being located within 

the tsetse belt, which is difficult to definitively prove. While mechanical transmission of T. brucei 

appears rare the species has demonstrated the ability to adapt to non-tsetse transmission, as 

evidenced by the existence of T. evansi and T. equiperdum. These two species, which are 

transmitted mechanically and venereally, are respectively believed to have originated from T. 

brucei through the partial or complete loss of the kinetoplast (Gibson, 2007; Lai et al., 2008). 
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T. vivax appears to be well adapted to use of the mechanical transmission cycle. This is perhaps due 

to the nature of its cyclical life cycle, however, it is unknown whether the species possesses 

specific adaptations facilitating mechanical transmission. Most notable has been the accidental 

transfer of T. vivax to South and Central America, likely by the import of infected livestock 

originating from the west of Africa at the start of the twentieth century (Dirie et al., 1993a, 1993b; 

Jones and Dávila, 2001; Cortez et al., 2006; Rodrigues et al., 2008). T. vivax has become 

entrenched within the ecosystem of South America, with transmission strongly linked to the 

prevalence of biting flies and with acute, often fatal, infections common in herds which have not 

previously encountered this parasite (Otte and Abuabara, 1991; Seidl et al., 1999; Batista et al., 

2007, 2009; Osório et al., 2008; Cuglovici et al., 2010; Da Silva et al., 2011). The success of T. 

vivax in South America emphasises the potential role mechanical transmission may already be 

playing within Africa, a role about which too little is currently known.  
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1.3 Genetics of the Salivarian trypanosomes 

 

1.3.1 Organisation and Structure of the Genome 

 

Direct examination of the ploidy and karyotype of the Salivarian trypanosomes has not been 

possible due to the fact that these parasites do not appear to condense their chromosomes during 

mitosis (Vickerman and Preston, 1970). Early understanding of the genomes of the trypanosomes 

therefore came from a wide range of indirect techniques and in many cases is severely limited in 

species other than T. brucei. The diploid nature of Salivarian trypanosomes was recognised based 

on the results of isoenzyme analysis (Tait, 1980), DNA content measurements (Borst et al., 1982) 

and analysis of restriction site polymorphisms in housekeeping genes (Gibson et al., 1985).  

 

The development of pulsed field gel electrophoresis (PFGE) further expanded our understanding of 

the genomes of trypanosomes by allowing the separation of chromosomes based upon their size 

and migration properties within an electric field. This technique has allowed the separation of 

trypanosome DNA into distinct classes (Reviewed in El-Sayed et al., 2000). The mini-

chromosomes, which are ~50-150 kilobases (kb) in size and are composed of a combination of 

simple repeat motifs and non-transcribed VSG genes (Sloof et al., 1983a, 1983b; Wickstead et al., 

2004); the intermediate chromosomes which are ~200-900 kb long and contain VSG expression 

sites; the 11 diploid megabase chromosomes, which carry the housekeeping genes of the cell and 

range in size from ~1 - 6 megabases (Mb) and the highly interlinked maxicircle DNA of the 

kinetoplast (Melville et al., 1998).Approximately 100 mini-chromosomes are present in T. brucei, 

although the number appears to vary between strains (Van der Ploeg et al., 1984; Wickstead et al., 

2004). These chromosomes, although transcriptionally inactive, provide an important repertoire of 

material for the construction of new VSG genes, allowing for continual immune evasion. While 

present in high numbers in T. brucei, it has been reported that T. vivax possesses only one or two 

copies of these chromosomes, potentially limiting antigenic variation in this species (Dickin and 

Gibson, 1989). These mini-chromosomes are important, as the central sequence motifs specific to 

each species have been used as the basis for the development of highly sensitive, species 

specificpolymerase chain reaction (PCR) assays (Masiga et al., 1992), which have been used for 

diagnosis and epidemiological studies. 

 

Eleven diploid megabase chromosomes, ranging in size from 1-6 Mb have been identified in T. 

brucei through PFGE separation with the TREU 927 genome reference strain possessing a haploid 

genome of approximately 35 Mb based on analysis of the megabase chromosomes (Melville et al., 

1998; Berriman et al., 2005). The role of the megabase chromosomes is the maintenance of the 

housekeeping genes of the parasite, which are predominately organised into mono-directional 
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arrays of genes expressed as a single polycistronic unit. With the housekeeping genes located 

primarily within the central portion of each chromosome, the telomeric regions posses the VSG 

expression sites and associated genes required for continual immune evasion through antigenic 

variation. The telomeres of each chromosome also maintain multiple copies of the unexpressed 

VSG repertoire which are amongst the first to be sampled during the VSG switching. 

 

Considerable size variation of up to four fold difference between homologous chromosomes has 

been observed within and between strains of T. brucei (Gibson and Borst, 1986; Gottesdiener et al., 

1990; Melville, 1997; Melville et al., 1998, 1999, 2000). The majority of this size variation is 

believed to be the result of duplication of chromosomal segments. While many of these duplication 

events are located within the telomeric VSG encoding regions, increasing potential coat variation, 

many involve duplication of gene coding regions which has given rise to the numerous gene 

families observed within trypanosomes (Melville et al., 1999; Tait et al., 2002; Callejas et al., 

2006). Due to the small number of investigations into T. congolense and T. vivax, there is little 

information concerning chromosome variation, however analysis of sequencing data from the 

respective genome projects suggests a high level of synteny between the chromosomes of these 

species and that of T. brucei (A Jackson, personal communication). 

 

1.3.2 Genome sequencing of the Trypanosomes 

 

The advent of the genomic era has provided for substantial leaps in our understanding of the 

genetics of many organisms, including those of the African trypanosomes with the first publishing 

of the T. brucei reference genome in 2005, consisting of sequence for each of the 11 megabase 

chromosomes (Berriman et al., 2005). Other projects have led to the publication of sequences for 

the related kinetoplastids Leishmania major (Ivens et al., 2005) and T. cruzi (El-Sayed et al., 2005), 

and most recently T. b. gambiense Group 1 (Jackson et al., 2010). Sequencing of T. congolense and 

T. vivax is ongoing at the Wellcome Trust Sanger Institute (WTSI) with initial sequence assemblies 

available via the WTSI and the Tri-Trypanosome database (TriTrypDB, http://www.tritrypdb.org ) 

(Aslett et al., 2010). 

 

The initial reference sequence used the TREU 927 T. b. brucei strain, which was chosen for a 

number of factors. The strain has been adapted for growth in laboratory culture and is readily 

amenable to genetic manipulation, allowing for the insertion and knockout of gene constructs. 

While laboratory adapted the strain has maintained the ability to differentiate through each of the 

life cycle stages, including transmission through the tsetse fly as it would in natural populations 

(Turner et al., 1990).  

 

http://www.tritrypdb.org/
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Sequencing of the reference strain used two distinct approaches. The WTSI was responsible for 

sequencing of chromosomes 1, 9, 10 and 11 utilising a whole chromosome shotgun approach, 

while The Institute for Genome Research (TIGR) sequenced chromosomes 2 – 8 through the use of 

bacterial artificial chromosome (BAC) with the project initially focusing on chromosomes I (Hall 

et al., 2003) and II (El-Sayed et al., 2003). The whole chromosome shotgun approach of the WTSI 

separated the chromosomes initially through PFGE prior to the generation of small insert libraries 

and subsequent sequencing. The chromosomes were then reassembled through the joining of 

overlapping sequence segments to generate increasingly large contigs. Where contigs could not be 

joined to one another, a chromosomal walking technique was used to expand contigs until the 

sequences overlapped. As the two homologues of each chromosome could not be fully separated 

through PFGE, the sequence obtained consists of a haploid mosaic, with single nucleotide 

polymorphism (SNP) information discarded from the final assemblies. The second approach, used 

by TIGR, generated numerous BACs from the entire genome which were mapped to the individual 

chromosomes. The individual BACs were then sequenced and assembled prior to chromosome 

level assembly of the BAC contigs. As with the whole chromosome sequencing, gaps in the 

sequence and between contigs were filled by directed PCR and sequence walking. The BAC 

generated sequences again represent a mosaic haplotype of the two homologues with sequence 

from each BAC originating from a single one of the homologues. Due to the potential for sequence 

variation between homologues of any given chromosome and the mosaic assembly these 

techniques have yielded, it is likely that regions of unique or duplicated sequence have been lost 

from the final reference sequence. 

 

The first release of this reference sequence covered 26 Mb of the megabase chromosomes 

containing 9068 predicted genes, of which approximately 1700 are specific to T. brucei (Berriman 

et al., 2005). The majority of these species specific genes are located within the sub-telomeres and 

are related to antigenic variation. Further extension, finishing and analysis of the sequence has 

extended the total number of predicted genes to 11,425 (TriTryDB, data retrieved April 2011). 

 

The second published genome of an African trypanosome was that of the T. b. gambiense Group 1 

strain DAL 972, generated through whole genome shotgun sequencing of plasmid and BAC clones 

(Jackson et al., 2010). Assembly of the sequence was aided through the use of the T. b. brucei 

reference sequence as a scaffold with which to identify contig order and orientation. Analysis of the 

DAL 972 and TREU 927 genomes indicated a high level of similarity in terms of gene content, 

order and the level of sequence identity. No coding sequences specific to T. b. gambiense Group 1 

could be identified within either the assembly or the unassembled contigs, while 86% of the 

identified coding sequences were 99% identical to the T. b. brucei orthologues. Despite this high 

level of conservation, 92,794 SNPs were identified within coding regions of which 49% were non-

synonymous compared to the T. b. brucei reference sequence. Further sub-species specific 
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variation was found to be located within tandem gene arrays following comparison of the T. b. 

gambiense Group 1 and T. b. brucei homologues. 

 

Publication of this second genome sequence has furthered our understanding of the genomics of the 

African trypanosomes however much work still remains to be done. The genomes of the related T. 

congolense and T. vivax species have yet to be completed to the same depth as those of T. brucei 

(Berriman et al., 2005; Jackson et al., 2010) and remain unpublished, while genome wide SNP data 

are not available for even the published strains. In order to fully understand the diversity and 

variation of natural populations additional sequencing of isolates from across Africa will be 

required allowing for truly comparative genomic studies. 

 

1.3.3 Molecular variation within trypanosomes 

 

Beyond gross differences in the size and numbers of (non megabase) chromosomes present, 

trypanosomes possess extensive variation at the sequence level which can be assayed through a 

multitude of techniques, even if the actual sequence variation underlying the differences is not 

known. These markers differ in terms of their application, the polymorphisms being measured and 

the information that can be obtained from their use. Amongst the most widely used techniques in 

trypanosome studies are isoenzymes, minisatellites and microsatellites, while SNPs and whole 

genome sequencing are likely to become the dominant approaches in the near future. 

 

1.3.3.1 Isoenzymes 

 

Isoenzyme analysis relies upon the presence of amino acid variation in assayable enzymes. 

Sequence variation is observed through alteration of the electrophoretic properties of the proteins 

on starch or polyacrylamide gels and visualisation of the resulting banding patterns by staining for 

specific enzymatic activity. Isoenzyme analysis is limited by a number of factors. The technique 

requires a relatively large amount of starting material; is reliant upon sequence variation unlikely to 

be selectively neutral and is often difficult to interpret due to many isoenzymes representing 

multiple genes. Isoenzyme analysis has been widely applied to trypanosome studies in the analysis 

of field populations, supplying early understanding of the variation present and the first evidence 

for genetic exchange in trypanosomes (Kilgour et al., 1975; Kilgour and Godfrey, 1977; Gibson et 

al., 1978; Tait, 1980; Young and Godfrey, 1983). The technique was also commonly used in the 

characterisation of laboratory isolates and analysis of early genetic crosses (Jenni et al., 1986; 

Sternberg et al., 1988, 1989).  

 

1.3.3.2 Micro- and minisatellites 
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Micro- and minisatellites are amongst the widest used markers of genetic variation, being highly 

abundant throughout eukaryote genomes while the PCR is both highly sensitive and specific to 

individual sequences. As the majority of micro- and minisatellites are located within non-coding 

regions of the genome, they are expected to be subject to a low level of selection in field 

populations, as opposed to isoenzymes where variation may be selected against if it disrupts protein 

function sufficiently. Micro- and minisatellite markers have been widely employed in the analysis 

of trypanosomes due to their abundance, ease of use, single copy nature, specificity and sensitivity 

(Oliveira et al., 1998; Hope et al., 1999; MacLeod et al., 1999, 2000; Jamonneau et al., 2002; 

Balmer et al., 2006; Koffi et al., 2007; Morrison et al., 2009b). Their presence throughout the 

genome has allowed the development of genetic maps of T. brucei, identifying hotspots of 

recombination across the 11 megabase chromosomes (MacLeod et al., 2005b; Cooper et al., 2008).  

 

1.3.3.3 Single Nucleotide Polymorphisms 

 

Single nucleotide polymorphisms (SNPs) represent the most abundant form of variation within the 

genome and may be present between individuals or between homologous chromosomes within an 

individual. As SNPs primarily arise through point mutations they are distributed throughout the 

entirety of the genome with no initial bias towards coding or non coding regions. Codon alteration 

as a result of SNPs within a coding sequence can lead to selection against their presence as many of 

these mutations will result in a detrimental effect upon the protein. As SNPs are by definition 

constrained to variation of a single base, only, four different allelic states are possible, one for each 

nucleotide, in contrast to markers such as microsatellites where there is no theoretical limit to the 

number of alleles that may be observed at a single locus. In reality the majority of identified SNP 

positions are bi-allelic as pyrimidines (C / T) are most likely to mutate into the other pyrimidine, 

likewise for the purine (A / G) bases. This low informational content is, however, compensated for 

by the sheer number of SNPs typically present in genomes. 

 

Advances in genotyping technologies (reviewed in Ragoussis, 2009) have allowed for the rapid 

expansion in the pool of available SNPs with high throughput approaches currently focused upon 

high density microarray and next generation sequencing platforms. At large scales, hybridisation 

platforms are readily available off the shelf for many organisms or can be designed at a price if not 

already in production. When only a small number of SNPs need to be analysed, primer specific 

hybridisation assays, direct sequencing and variable restriction site cleavage techniques are all 

possible with prior SNP data. While genome wide SNP data have yet to be widely deployed in the 

study of African trypanosomes, high density SNP mapping has already been used in genome wide 

studies of Plasmodium (Neafsey et al., 2008; Milet et al., 2010; Mu et al., 2010; Orjuela-Sánchez 

et al., 2010) providing insight into how these studies might proceed in trypanosomes. 
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1.3.3.4 Whole genome sequencing 

 

While the last decade has seen substantial leaps in sequencing technologies, it is only recently that 

the costs and time required have reached the point where individual groups can afford to sequence 

isolates for specific purposes. This has largely been achieved through the development of so called 

second generation sequencing platforms, capable of multiple parallel sequencing events on a single 

chip (Reviewed in Zhou et al., 2010). The most widespread of these is the Illumina Solexa 

platform, which uses fluorescently labelled terminator nucleotides to extend reads one base at a 

time over multiple cycles. At present this platform is capable of generating paired end reads in the 

100 – 150 bp length generating upwards of 25 gigabases of data per full run. Barcoding during 

preparation allows for multiple samples to be combined into a single run, reducing the monetary 

cost which is offset by lower fold coverage per sample (Kozarewa and Turner, 2011). 

 

The power of whole genome sequencing arises from the ability to examine the genome with a 

resolution of a single base. While SNPs form the most widely examined form of genomic variation, 

genome sequencing also allows for the examination of a far wider range of sequence and structural 

variation. Insertion / deletion (indel) events, sequence rearrangements and duplication of sequence 

may all be detected through genome sequencing, allowing for identification of variation both 

between the homologues of a single diploid individual and between individuals. At present, 

however, both the sequencing platforms and analysis methodologies have yet to reach their full 

potential. The relatively short reads employed by second generation platforms mean that unless 

high read depths are employed sequence assembly typically requires an existing reference to act as 

a scaffold, limiting the potential to detect larger rearrangements, indels and regions of unique 

sequence. Read length further constrains the ability to assemble repetitive or duplicated regions 

with accuracy, limiting the analysis possible of closely related gene families or the mini- and 

microsatellites previously used in genetic studies. It is hoped that future platforms will overcome 

these problems by providing sufficiently long reads to bridge the length of repetitive or non-unique 

sequences, allowing for more complete assemblies. Further to this the software for assembling and 

analysing the datasets generated remains under constant development with many of the approaches 

currently inaccessible to those without a bioinformatics background (Reviewed in Miller et al., 

2010; Paszkiewicz and Studholme, 2010). Due to the recent and rapid development of whole 

genome sequencing platforms trypanosome genomic data are currently sparse with the available 

sequences limited to a handful available on TriTrypDB (Aslett et al., 2010), however heterozygote 

SNP data are presently unavailable and data from multiple strains of a single species are only 

available for one of the African trypanosomes, T. brucei.  
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1.4 The variable surface glycoprotein coat and antigenic variation 

 

Central to the ability of T. brucei, and the other Salivarian trypanosomes, in maintaining infections 

within mammalian hosts is the process of antigenic variation, mediated by the VSG coat that covers 

the surface of metacyclic and blood stream form trypanosomes (Vickerman, 1969; Vickerman and 

Luckins, 1969; Barry and McCulloch, 2001; Donelson, 2003). With the mammalian stages of 

infection occurring primarily within the bloodstream of the host the parasite is directly exposed to 

both the innate and adaptive immune systems. The VSG coat, which is tightly packed over almost 

the entire surface of the trypanosome, protects against complement mediated lysis by the innate 

immune system, while antigenic variation, whereby the VSG protein is continually varied, protects 

against antibody mediated lysis by the adaptive immune system and correlates with new peaks of 

parasitaemia (Balber, 1972). The continued replacement of the coat may also aid the clearance of 

antibodies that successfully bind the parasite (Engstler et al., 2007). 

 

The VSG repertoire of T. brucei accounts for a large proportion of the genome and is therefore a 

major source of genetic diversity (Reviewed in Donelson, 2003; Taylor and Rudenko, 2006). VSGs 

have been observed in gene families found across the megabase chromosomes and within the mini-

chromosomes, however they are expressed only from metacyclic or bloodstream expression sites, 

dependent upon the life cycle stage, with only a single VSG expressed at any one time. T. brucei 

maintains a vast repertoire of VSGs, estimated at over 1000 genes (Van der Ploeg et al., 1982), 

however, in TREU 927, the genome reference sequence, only 7% of all VSGs are believed to 

encode complete and functional genes (Berriman et al., 2005) with the remainder serving as a 

reservoir of variation, copied into expression sites in order to generate new variants. By possessing 

such a large number of VSGs, with only one required to be functional at any given time, 

trypanosomes facilitate the accumulation of mutations in the repertoire, providing novel sources of 

variation that may then be incorporated into functional VSG sequences. Due to this process 

individual strains possess vastly different repertories of VSGs (Hutchinson et al., 2007), which 

may then be shuffled through genetic exchange, generating previously unseen combinations.  
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1.5 Human African Trypanosomiasis 

 

Human African Trypanosomiasis (HAT), commonly known as sleeping sickness, is the disease 

state resulting from infection by T. b. gambiense or T. b. rhodesiense, acquired through the bite of 

an infected tsetse fly. While the risk zone encompasses the entirety of the tsetse belt, with an 

estimated 60 million human inhabitants, the World Health Organisation (WHO) recorded ~17000 

new cases across Africa in 2004 (WHO, 2006), dropping to less than 10,000 in 2009 (Simarro et 

al., 2011). Due to the use of active screening in detecting the majority of cases this, however, is 

likely to be an underestimate of the true number of infections per year (Mumba et al., 2011), which 

has been estimated to be in the range of 50 – 70,000 individuals (WHO, 2006). Although this 

number is greatly reduced upon the 1995 estimate of 300,000 cases per year (WHO, 1998) the 

disease remains a substantial risk to public health with the potential for new outbreaks outside of 

established foci. Social upheaval and civil instability have historically limited access to many of the 

endemic countries, limiting the potential for surveillance and treatment. Regional improvements 

across much of Africa, coupled with the renewed support of governmental, non-governmental and 

pharmaceutical organisations have in recent years allowed for the substantial increase in 

monitoring and treatment responsible for observed reductions (Welburn et al., 2009). 

 

Although identified as a single disease, HAT comprises two forms, one chronic and traditionally 

restricted to Western Africa, the other acute and typified as East African, caused by T. b. 

gambiense and T. b. rhodesiense respectively (Figure 1.2). The picture for T. b. gambiense is 

further complicated by the existence of two subgroups, Group 1 and 2, both of which are human 

infective. T. b. gambiense infections, almost exclusively of the Group 1 subgroup are responsible 

for the vast majority of reported cases in humans, with 17036 (97%) of the new cases in 2004 

attributed to this sub-species (WHO, 2006). These two sub-species are unique in their ability to 

successfully infect humans, displaying the ability to resist lysis by human serum as opposed to T. b. 

brucei which is sensitive to lysis by human serum. The innate immunity of humans to infection by 

T. b. brucei functions through the cytotoxic activity of a subset of human serum high density 

lipoprotein (Rifkin, 1978), trypanosome lytic factors 1 and 2 (TLF-1 and TLF-2) (Hajduk et al., 

1989; Tomlinson et al., 1997; Raper et al., 1999). Both particles function through two protein 

components, apolipoprotein L-1 (apoL-1) and haptoglobin (Hp) related protein (Hpr), with 

haemoglobin (Hb) increasing the trypanolytic activity by acting as a cofactor (Widener et al., 

2007). Uptake of TLF-1 by trypanosomes utilises the high affinity haptoglobin / haemoglobin 

receptor (HpHbR) (Vanhollebeke et al., 2008), located within the flagellar pocket. Binding the 

Hpr/Hb complex within TLF-1 triggers trafficking of TLF-1 to the trypanosomes lysosome, where 

the low pH triggers activation of apoL-1, formation of pores across the membrane of the lysosome 

and killing of the cell. Uptake of TLF-2 in contrast may involve the use of antibodies, found on the 

surface of the particle, to bind to VSGs on the surface of the trypanosome with uptake occurring as 
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VSGs are internalised for recycling by the parasite (Vanhollebeke and Pays, 2010). As TLF-2 

possesses ApoL1 it is likely that the same lytic mechanism observed for TLF-1 is likely to be used 

by TLF-2. 

 

 

 

 

 

 

 

 

Figure 1.2 Distribution of human trypanosomiasis across Africa 

Distribution and prevalence across Africa for the countries considered endemic for HAT due to 

their inclusion within the tsetse belt and indicating the approximate lower and upper boundaries of 

T. b. gambiense and T. b. rhodesiense respectively. Incidence is based upon WHO reported case 

number with the figure reproduced from Simarro et al.(2008).  
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1.5.1 T. b. gambiense Group 1 

 

The dominant agent of HAT, T. b. gambiense Group 1 is the most distinct of the three T. brucei 

sub-species and clinically the most important (Fèvre et al., 2008). Traditionally the sub-species has 

been defined by a number of distinct foci distributed across West and Central Africa; constitutive 

ability to infect the human host and a subsequent slow, chronic infection with progression to the 

symptomatic disease state typically requiring in excess of a year (Checchi et al., 2008a, 2008b). 

Infections in the early stage are characterised by low parasitaemia, to the extent that they are 

sometimes undetectable by microscopic examination, instead being detectable by only the CATT 

or PCR based techniques (Kanmogne et al., 1996a; Kaboré et al., 2011; Wastling et al., 2011). T. 

b. gambiense Group 1 is currently localised to a relatively small number of foci scattered over its 

wide geographic range. Angola, the Democratic Republic of the Congo and Sudan presently 

possess the greatest number of cases, with >1500 recorded in 2004. The Central African Republic, 

Chad, Congo, Côte d‟Ivoire, Guinea and Uganda currently present intermediate levels of 50 – 1500 

cases per year while Burkina Faso, Cameroon, Equatorial Guinea, Gabon and Nigeria all recorded 

less than 50 cases (WHO, 2006). 

 

While morphologically indistinguishable from the other sub-species of T. brucei, T. b. gambiense 

Group 1 can be separated at the molecular level as a genetically distinct and relatively homogenous 

group (Mathieu-Daudé and Tibayrenc, 1994; Mathieu-Daudé et al., 1995; Kanmogne et al., 1996b; 

Morrison et al., 2008b; Balmer et al., 2011). Genetic variation within the group is limited as 

isolates from a given focus are highly related with the majority of variation observed between the 

different foci (Morrison et al., 2008b). To date only a single unique sub-species specific gene, T. b. 

gambiense specific glycoprotein (TgsGP) has been identified in T. b. gambiense Group 1, encoding 

a truncated VSG (Berberof et al., 2001). The 47 kilodalton protein localises to the flagellar pocket 

where it is believed to function as a sub-species specific receptor. Expression of TgsGP in T. b. 

brucei fails to confer resistance to human serum, suggesting either the presence of a multifactor 

resistance system in T. b. gambiense Group 1 or that TgsGP has a function not directly linked to 

human serum resistance, although it may be involved in further adaptation to human hosts. 

Resistance to human serum in T. b. gambiense Group 1 has yet to be fully elucidated, in part due to 

the difficulty in transfecting the sub-species. However, recent work has suggested mutations in the 

T. b. gambiense Hp/Hb receptor (TbgHpHbR) play an important role in conferring resistance by 

reducing the expression and function of this receptor. As a result T. b. gambiense Group 1 takes up 

less TLF-1, preventing exposure to the lytic factors contained within (Kieft et al., 2010) while the 

constitutive reduction in TbgHpHbR expression and activity provides the fixed resistance to TLF-1 

observed in the subgroup. At present the mechanism by which T. b. gambiense Group 1 resists lysis 

by TLF-2 remains unknown as this particle is not taken up by the same receptor as TLF-1. 
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1.5.2 T. b. gambiense Group 2 

 

T. b. gambiense Group 2 represents a separate genetic grouping of West African trypanosomes 

capable of infecting humans, primarily isolated from the Côte d‟Ivoire region and presenting a 

more acute disease progression than Group 1 isolates with a variable resistance to human serum 

(Gibson et al., 1980, 1986; Borst et al., 1981; Mehlitz et al., 1982; Tait et al., 1984; Paindavoine et 

al., 1989; Richner et al., 1989; Agbo et al., 2001). Genetically the group is more closely related to 

T. b. brucei than T. b. gambiense Group 1 (Mathieu-Daudé and Tibayrenc, 1994; Stevens and 

Tibayrenc, 1996; Balmer et al., 2011; Capewell, 2011), with a higher level of genetic diversity, 

ability to undergo genetic exchange and evidence for mating in field populations (Capewell, 2011). 

In contrast to Group 1, isolates from Group 2 display a variable resistance to lysis by human serum, 

with no consistent patterns of survival in the blood incubation infectivity test (BIIT), which 

measures the ability of isolates to infect laboratory animals following incubation in human blood 

(Rickman and Robson, 1970a, 1970b). The variable resistance of T. b. gambiense Group 2 implies 

that the subgroup possesses a different method of resisting lysis by human serum than T. b. 

gambiense Group 1. While the resistance phenotype of T. b. gambiense Group 2 is variable the 

subgroup does not possess the serum resistance associated (SRA) gene that has been shown to be 

responsible for resistance to lysis by human serum in T. b. rhodesiense, suggesting T. b. gambiense 

Group 2 may represent a third independent development of the human serum resistant phenotype. 

 

1.5.3 T. b. rhodesiense 

 

T. b. rhodesiense, restricted to the eastern regions of Africa is responsible for the acute form of 

HAT, with progression from initial infection to death typically requiring only a matter of months 

and with infections presenting a level of parasitaemia consistently higher than that observed for T. 

b. gambiense Group 1. As a sub-species T. b. rhodesiense forms a relatively homogeneous group, 

however strains from geographically distinct foci are typically distinguishable from one another 

(Gashumba et al., 1994; Hide et al., 1994; Komba et al., 1997; MacLeod et al., 2000) and 

genotypes may persist within an individual foci for long periods of time (Hide et al., 1998). While 

genetically distinct from sympatric T. b. brucei populations T. b. rhodesiense has been shown to be 

more closely related to local T. b. brucei populations than other foci of T. b. rhodesiense indicating 

gene flow is occurring between the sub-species (MacLeod et al., 2000, 2001c; Balmer et al., 2011). 

 

The number of reported cases of T. b. rhodesiense is significantly lower than that of T. b. 

gambiense and in 2004 the primary foci were located in Malawi, Uganda and the United Republic 

of Tanzania, each reporting 50 – 1500 cases (WHO, 2006). Sporadic cases, classed as fewer than 

50 per year, are occasionally reported for Kenya, Mozambique, Rwanda, Zambia and Zimbabwe. 

Uganda is the only country where foci of both human infective sub-species can be found at present. 
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While presently distinct the potential for overlap poses significant concern for the diagnosis and 

treatment of HAT in this region (Picozzi et al., 2005), due to the two sub-species being 

morphologically identical but being proscribed different courses of drug treatment. Overlapping 

foci of T. b. gambiense Group 1 and T. b. rhodesiense would therefore require more sophisticated 

screening techniques, likely employing PCR amplification of the TgsGP and SRA genes in order to 

distinguish the two, measures which are costly and time consuming compared to microscopic 

diagnosis. 

 

While defined as a separate sub-species, T. b. rhodesiense may perhaps be more accurately 

described as a host variant of T. b. brucei that possesses the capability to survive in human serum. 

The ability to resist lysis by human serum in T. b. rhodesiense is a variable phenotype and not 

constitutively active as in T. b. gambiense Group 1. The resistance phenotype of T. b. rhodesiense 

is reliant upon the active expression of the SRA gene, an expression site associated gene encoding a 

truncated VSG (De Greef and Hamers, 1994; Xong et al., 1998). SRA functions through the ability 

to bind apoL-1, the pore forming component of TLF-1 and TLF-2, preventing its activity following 

trafficking to the lysosome and therefore ensuring survival of the trypanosome in human blood. 

Experimental insertion of the SRA gene into human serum sensitive T. b. brucei lines is sufficient 

to confer resistance to human serum (Xong et al., 1998; Oli et al., 2006). The variable phenotype of 

T. b. rhodesiense can be explained by the phenomenon of VSG switching between the bloodstream 

expression sites, with resistance to lysis by human serum only conferred when the correct site is 

transcriptionally active and expressing the SRA gene. Due to this variable expression it is possible 

that samples identified as T. b. brucei based upon the BIIT instead represent isolates of T. b. 

rhodesiense that were not expressing SRA at the time of testing. 

 

1.5.4 Symptoms and disease progression 

 

The progression of HAT features two distinct disease stages, a haematolymphatic early stage 

followed by a meningo-encephalitic late stage with the stages defined by the respective localisation 

patterns of the trypanosomes. Early stage symptoms including nausea, headache, fever and lethargy 

are confined to the period of initial infection as trypanosomes migrate from the chancre and 

establish themselves within the host. Subsequent to the initial point of infection the early stage is 

largely asymptomatic with trypanosomes primarily confined to the blood and lymph of the host. 

Being transient and non specific the initial symptoms are easily missed or ascribed to other causes, 

in particular malaria which is typically of higher concern to individuals than HAT.  

 

Parasitaemia and length of the early stage differentiates the infections of T. b. gambiense Group 1 

and T. b. rhodesiense. T. b. gambiense Group 1 infections consist of low parasitaemia infections 

with occasional peaks in parasite numbers and a long early stage, typically requiring at least a year 



 

 Page | 27 
P

ag
e | 2

7
 

to progress to late stage (Checchi et al., 2008a, 2008b). T. b. rhodesiense in comparison presents 

consistently higher parasitaemia from the onset of infection and as such the early stage of East 

African HAT typically lasts no more than 6 – 12 months with rapid progression to the late stage. 

Virulence and thus the rate of progression in both forms of HAT are however variable with 

considerable differences reported between individuals and distinct foci which have been attributed 

to genetic factors of both the host and parasite (MacLean et al., 2004, 2007; Sternberg and 

Maclean, 2010; Kuepfer et al., 2011; Morrison, 2011). 

 

Late stage HAT is defined by the migration of trypanosomes from the bloodstream into the brain 

and cerebral spinal fluid by traversal of the blood brain barrier (Kennedy, 2006a; Rodgers, 2010). 

As the trypanosomes reproduce within the central nervous system the resulting damage from both 

the trypanosome themselves and the host immune response gives rise to the neurological symptoms 

of the late stage, affecting cognitive and motor functions in addition to alteration of circadian 

rhythms. Early symptoms may include loss of concentration, anxiety, irritability and personality 

shifts, progressing to violent mood swings, manic episodes and hallucinations. Motor functions 

slowly degrade, making speech, fine manipulation and walking increasingly difficult. The 

disturbance of circadian rhythms from which the term „sleeping sickness‟ arises are characterised 

by a reduction in alertness, daytime drowsiness and night time restlessness, leading to eventual 

coma and finally death.(Kennedy, 2006b, 2008) 

 

While late stage symptoms increase the ease of diagnosis, traversal of trypanosomes across the 

blood brain barrier necessitates the use of different treatment regimes from infections identified 

during the early stage (Wilkinson and Kelly, 2009; Burri, 2010). The side effects of the drugs 

required during late stage, and existing damage from the infection itself, makes early stage 

diagnosis preferable. The largely asymptomatic nature of the early stage however requires the use 

of active screening programmes, which are costly, time consuming and difficult to implement in 

many regions. It is perhaps unsurprising then that the majority of cases are believed to go 

unreported. 

 

1.5.5 Diagnosis of infection 

 

Despite the many recent advances in medicine, microscopic examination of blood smears or buffy 

coat preparations remains the gold standard for field diagnosis, due to its 100% specificity in 

identifying infection. While highly specific, microscopic examination is hindered by a lack of 

sensitivity and the level of parasitaemia in the blood, especially in T. b. gambiense Group 1 where 

infections are typified by an initial asymptomatic, low parasitaemia stage. Diagnosis of late stage 

infections, where trypanosomes access the cerebral spinal fluid and migrate across the blood brain 

barrier, requires lumbar puncture and collection of cerebral spinal fluid samples. Late stage 
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diagnosis is based upon either visual identification of trypanosomes or an elevated white blood cell 

count (Reviewed in Chappuis et al., 2005).  

 

Although microscopy remains the gold standard, advances have led to the development of a 

number of kits and procedures in order to improve upon the sensitivity of microscopic techniques 

with a minimal loss in specificity (Reviewed in Adams and Hamilton, 2008; Wastling and 

Welburn, 2011). These can be loosely grouped into two categories, concentration and molecular. 

Concentration techniques, such as the buffy coat technique, mini-anion exchange column and 

microhaematocrit centrifugation function by concentrating trypanosomes into a smaller volume 

than the initial blood sample (Murray et al., 1977; Lumsden et al., 1979; Büscher et al., 2009; 

Camara et al., 2010). It is therefore possible to identify infection in low parasitaemia individuals 

where examination of the required volume of blood would not be feasible by traditional 

microscopy. A recent advance in the process of concentration is the development of a lateral 

displacement technique (Holm et al., 2011), which aims to separate blood cells and parasites based 

on cell size and morphology. While still in development, it is hoped that this technique will provide 

a new simple to use and cheap technique for diagnosis in the future. 

 

Molecular techniques rely upon indirect methods of diagnosis by the identification of trypanosome 

specific molecules (Reviewed in Wastling and Welburn, 2011). The most prominent of these in 

diagnosis has been the card agglutination test for trypanosomiasis (CATT) which detects the 

presence of antibodies raised against the VSG LiTat 1.3, which appears to be widespread amongst 

T. b. gambiense Group 1 (Magnus et al., 1978). While sensitivities of between 87 and 98% and 

specificity of 95% have been reported (Lejon et al., 2010) the test has a number of limitations. 

Incidences of seropositive, parasitologically negative individuals are common, this can arise 

through prior infections that have been treated (Truc et al., 1994), exposure that did not lead to 

infection or low parasitaemia below the sensitivity of microscopy (Kanmogne et al., 1996a; Kaboré 

et al., 2011). Incidences of seronegative yet parasitologically positive individuals have also been 

reported, both prior to and following treatment for trypanosomiasis, potentially from trypanosome 

strains lacking LiTat 1.3 (Dukes et al., 1992; Enyaru et al., 1998; Lejon et al., 2010).  

 

Alternative molecular techniques for diagnosis are predominantly focused upon the amplification 

and detection of specific DNA fragments. The 177 bp repeat found in multiple copies of the T. 

brucei mini-chromosomes has allowed for the development of a highly sensitive, T. brucei specific 

marker (Masiga et al., 1992) while additional primers are available for the amplification of TgsGP 

and SRA, specific to T. b. gambiense and T. b. rhodesiense respectively (De Greef and Hamers, 

1994; Xong et al., 1998; Berberof et al., 2001; Radwanska et al., 2002). While amplification based 

techniques possess extremely high sensitivity this is offset by the higher costs of these tests and 

requirement for laboratory analysis, making them impractical for screening of patients in the field 



 

 Page | 29 
P

ag
e | 2

9
 

(Deborggraeve and Büscher, 2010). Loop-mediated isothermal amplification (LAMP), an 

amplification technique which functions at a lower temperature than traditional PCR (~60°
C
 as 

opposed to a 65-95°
C
 cycle) requires only a single fixed temperature water bath and allows for 

direct visual inspection of amplification products (Reviewed in Adams and Hamilton, 2008; Mori 

and Notomi, 2009). Species specific LAMP protocols have already been developed for T. brucei 

and its sub-species (Kuboki et al., 2003; Thekisoe et al., 2007b; Njiru et al., 2008a, 2008b, 2011b) 

with the development of this technique having gone some way to bringing molecular techniques to 

the field by providing a quick, sensitive test utilising reagents which are stable in the higher 

temperatures encountered in the field (Thekisoe et al., 2009; Njiru, 2011). Further development is, 

however, required in order to make the technique viable and cost effective. 

 

1.5.6 Treatment 

 

Treatment following diagnosis of HAT is currently reliant upon the chemotherapeutic action of 

four drugs, each of which is complicated by the disadvantages of toxicity, limited efficacy, 

restriction to specific sub-species or disease stage and spreading parasite resistance leading to 

treatment failure and relapse (Docampo and Moreno, 2003; Barrett et al., 2007; Kennedy, 2008; 

Burri, 2010). The potential for a vaccine against HAT is negligible due to the constantly changing 

nature of the VSG coat on the surface of trypanosomes and ability of the parasite to disrupt vaccine 

induced memory B cell responses (Radwanska et al., 2008; Reviewed in Magez et al., 2010). 

 

If diagnosed during the early stage, prior to invasion of the central nervous system, HAT may be 

treated with either suramin or pentamidine, both of which are effective against T. b. gambiense and 

T. b. rhodesiense. While the mechanisms by which these two drugs act are not known the 

specificity of each is due to selective uptake of the drugs by trypanosomes, likely by endocytosis 

for suramin and by carrier mediated transporters for pentamidine (Reviewed in Barrett and Gilbert, 

2006). Late stage treatments for HAT differ due to the requirement for drugs capable of crossing 

the blood brain barrier. Two drugs, melarsoprol and eflornithine are currently available for 

treatment of this stage (Kennedy, 2004). Melarsoprol remains the primary drug for treatment of late 

stage infection by both T. b. gambiense and T. b. rhodesiense despite the highly toxic side effects 

that result in the death of 5% of all patients. Uptake of melarsoprol is mediated by the same 

transporter families responsible for uptake of pentamidine and once again the mechanism by which 

the drug acts remains unknown. Resistance to pentamidine and melarsoprol, acquired through 

down regulation of the active transporters involved in uptake (de Koning, 2001; Reviewed in 

Mäser et al., 2003), has been observed in both laboratory and field settings with treatment failures 

as high as 30% reported in the field (Burri and Keiser, 2001; Pépin and Mpia, 2005; Robays et al., 

2008; Kazibwe et al., 2009).  
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Eflornithine is the newest drug to market for the treatment of HAT (Van Nieuwenhove et al., 1985; 

Van Bogaert and Haemers, 1989). It is also the only HAT drug for which a definitive mode of 

action is known (Reviewed in Fairlamb, 2003), functioning through inhibition of the polyamine 

biosynthetic enzyme ornithine decarboxylase. The drug is only active against T. b. gambiense 

Group 1 due to the slow turnover of ornithine decarboxylase in this sub-species, allowing for 

effective disruption of enzymatic activity. Eflornithine may be deployed in combination with 

nifurtimox, a drug typically used in the treatment of T. cruzi, in order to shorten the treatment 

program, lowering the associated costs without an increase in adverse reactions (Checchi et al., 

2007; Priotto et al., 2007; Yun et al., 2010). While eflornithine resistance has yet to be reported in 

the field it has been generated in vitro, linked to the loss of the amino acid transporter TbAAT6 

(Vincent et al., 2010; Baker et al., 2011). 

 

1.5.7 Animal reservoirs 

 

While a human disease, the agents of HAT are not restricted solely to utilising humans as a host, 

with T. brucei being able to infect a wide range of domestic and wild fauna, potentially providing 

reservoirs of genetic material. T. b. rhodesiense, essentially a host variant of T. b. brucei retains the 

capability to infect the same wide host range of its human serum sensitive relative (Hutchinson et 

al., 2003). The ability of T. b. rhodesiense and T. b. brucei to interbreed with one another further 

increases the potential size of the genetic reservoir, allowing for the incorporation of material from 

human serum sensitive individuals into human serum resistant populations. Investigations which 

have demonstrated sympatric T. b. brucei and T. b. rhodesiense populations to be genetically 

distinct from one another suggests interbreeding between the sub-species may not be a frequent 

occurrence (Hide et al., 1994; MacLeod et al., 2001c). The role of an animal reservoir in T. b. 

rhodesiense has been clearly demonstrated in Uganda where the outbreak of East African HAT has 

been linked to the movement of infected livestock between regions (Fèvre et al., 2001; Welburn et 

al., 2001; Hutchinson et al., 2003; Waiswa et al., 2003; Njiru et al., 2004b; Enyaru et al., 2006). 

 

The role of animal reservoirs in T. b. gambiense Group 1 is less clear and traditionally the disease 

has been described as being restricted to humans where the long asymptomatic early stage allows 

for the formation of an effective human reservoir. It has become apparent however that this sub-

species can be maintained within sheep, pigs and goats, raising the potential for an animal reservoir 

(Paindavoine et al., 1986a; Cordon-Obras et al., 2009). These reservoirs may play a role in 

maintaining, or re-establishing, foci even after the treatment of all the human infections in the 

region. 

  



 

 Page | 31 
P

ag
e | 3

1
 

1.5.8 Focal nature of outbreaks 

 

Despite the potential for a wide geographical distribution across much of Africa, HAT is a highly 

localised and focal disease, with a tendency for long lasting, established foci despite frequent 

fluctuations in the number of reported cases. New foci may arise through the splintering of larger 

established foci during periods of contraction or through displacement of the host reservoir, as has 

been observed in Uganda with the establishment of the Soroti focus following import of T. b. 

rhodesiense infected livestock from the nearby Tororo region (Fèvre et al., 2001). Further to host 

mobility is the role of vector availability and mobility (Bouyer et al., 2009; Solano et al., 2010). 

While a diverse range of tsetse species are capable of acting as trypanosome vectors the exact 

species present has an important role and the efficiency of transmission is likely to be dependent 

upon the combination of parasite strain and tsetse species. In addition species specific blood meal 

preferences may control the frequency with which a fly will bite a human host (Njiokou et al., 

2004b; Simo et al., 2008). The distinct foci of human disease may therefore be controlled by the 

presence of a localised tsetse population with a preference towards human blood meals and the 

ability to efficiently transmit human infective trypanosome strains. Expansion of a focus would, 

under these conditions require outward geographical expansion of the tsetse population while 

establishment of new foci would require transfer of infected hosts or vectors to a region already 

meeting the requirements for a successful transmission cycle. 

 

1.5.9 Human trypanotolerance 

 

Trypanotolerance, the ability to naturally control the parasitaemia and symptoms of trypanosome 

infection has been widely reported in animal trypanosomiasis while in humans death has 

traditionally been reported as the inevitable outcome of infection in the absence of clinical 

intervention and treatment, a position that is now being questioned (Reviewed in Checchi et al., 

2008a; Bucheton et al., 2011).  

 

The strongest evidence for control without clearance in humans has come from Jamonneau et 

al.(2004) in a study of six asymptomatic patients from the Côte d‟Ivoire who consistently refused 

treatment despite being found to be microscopically positive for trypanosomes during initial 

evaluation in 1995. Over the course of seven years the patients were assessed for trypanosomiasis 

by a range of measures including microscopy, CATT, inoculation of blood into the Kit for In Vitro 

Inoculation and immunosuppressed mice and PCR based assays. While all the individuals were 

positive in 1995 by serology and microscopy all but one had converted to be seronegative by 2002. 

None of the patients had manifested symptoms associated with progression to late stage, however, 

the transient and non-specific symptoms of the early stage were recorded in multiple individuals 

during the study. Microscopy and inoculation tests were likewise variable but dropped to being 
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negative in all patients by the end of the study with only the PCR based assays returning positive 

results through the entirety of the study, suggesting continued infection despite the negative result 

for the other diagnostic methods. The results of this study clearly show the potential for humans to 

control the parasitaemia and symptoms. 
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1.6 Animal African Trypanosomiasis 

 

Animal African Trypanosomiasis (AAT), more commonly known as Nagana is found throughout 

the entirety of the tsetse belt of Africa and has three causative agents, T. congolense, T. vivax and to 

a lesser extent T. brucei. The disease has been reported in a wide range of host animals including, 

but not limited to, cattle, horses, donkeys, and sheep with the most pathogenic infections typically 

observed in the infection of domestic animals. 

 

1.6.1 Symptoms 

 

Due to the wide range of factors controlling the disease state in Nagana the symptoms of infection 

are generally non-specific and can be caused by a wide range of other infections. Fever, weight 

loss, anaemia and lethargy are the most commonly reported symptoms attributed to animal 

trypanosomiasis. However, due to the wide range of controlling factors, including multiple 

infectious agents, strain variability and host control the observed severity of these symptoms can 

vary considerably. Infections are typically observed to be severest within domesticated animals 

with many wild animals showing little or no disease symptoms. Of the three species responsible for 

the disease, T. congolense is typically reported as the most important due to its association with 

significantly higher levels of anaemia compared to T. brucei and T. vivax (Pinchbeck et al., 2008; 

Dayo et al., 2010), although variations in virulence have been observed when comparing different 

subtypes and strains of T. congolense (Bengaly et al., 2002; Masumu et al., 2006, 2009; Van den 

Bossche et al., 2011).In cattle T. brucei is often reported as being responsible for the mildest of 

disease states, while T. vivax varies considerably between East and West Africa with a severer 

acute disease profile found reported in the west of the continent (Fasogbon et al., 1990).Invasion of 

the central nervous system has been reported in some of the most severe infections of T. brucei, T. 

congolense and T. vivax leading to lesions of the central nervous system and typically death even 

following treatment (Masake et al., 1984; Wellde et al., 1989; Batista et al., 2007, 2011; Galiza et 

al., 2011). Further to this, rare but deadly cases of acute haemorrhagic syndrome as a result of T. 

vivax infections have been periodically reported in East Africa (Catley et al., 2002; Magona et al., 

2008), in contrast to the typically low pathogenicity of T. vivax in the east of the continent. 

 

1.6.2 Diagnosis 

 

Definitive diagnosis of Nagana in the field is, like HAT, predominately through microscopic 

examination of blood films or buffy coat preparations, due to the ease and low cost of this 

technique. As anaemia is a frequent symptom of Nagana the reduced packed cell volume (PCV), a 

crude measurement of anaemia, may be used alongside microscopic examination as a further 
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method of diagnosis. While a number of possible infections may give rise to anaemia, there is a 

strong correlation between microscopic diagnosis of trypanosomiasis and reduced PCV values, 

allowing for diagnosis of low parasitaemia infections that can be easily missed by the limited 

sensitivity of microscopic examination (Pinchbeck et al., 2008). Due to the simplicity of this 

diagnosis it can be quickly applied in the field even in the absence of electrical power through the 

employment of small human powered centrifuges (Figure 1.3). Coupled with veterinary evaluation 

of animals via body condition scores, these techniques can be easily deployed in the field to 

supplement microscopic diagnosis.  

 

Molecular markers for the diagnosis of T. brucei, T. congolense and T. vivax are available, 

normally falling into the categories of antigen-based enzyme-linked immunosorbent assays 

(ELISA) or PCR based methods. The available ELISA based tests are typically indirect in nature, 

detecting the presence of host antibodies raised against infection as opposed to the trypanosomes 

themselves (Eisler et al., 1998; Magona et al., 2002). These tests are therefore unable to 

differentiate current infections from those that have already been cleared or treated. While some 

antigen specific tests have been developed the majority use crude antigen prepared from cell 

lysates, bypassing the need to identify specific antigens and increasing sensitivity by allowing for 

capture of antibodies raised against multiple targets (Magona et al., 2002; Madruga et al., 2006). 

ELISAs, while more costly than microscopy diagnosis offer a significantly increased sensitivity yet 

are simpler and easier to employ than the PCR based techniques, facilitating widespread use in 

serological surveys in both Africa and South America (Eisler et al., 1998; Mahama et al., 2005; 

Delafosse et al., 2006; Cabrera et al., 2009; Bossard et al., 2010). 

 

Alongside ELISA based diagnosis a number of PCR based techniques have been developed to 

allow for the amplification of species specific motifs (Desquesnes and Dávila, 2002), with the most 

sensitive of these directed against the multicopy repeats primarily found in the mini-chromosomes 

(Masiga et al., 1992; Wickstead et al., 2004). The number of copies present varies between each of 

the species, with T. vivax suggested to only have one or two mini-chromosomes compared to the 

hundreds of copies in T. brucei (Dickin and Gibson, 1989). While both highly sensitive and species 

specific the cost and requirement for laboratory analysis has limited their use to epidemiological 

surveys as opposed to diagnosis for the purpose of treatment. Alongside the T. brucei specific 

LAMP protocols employed in diagnosis of HAT additional protocols have been described for the 

identification of both T. congolense (Kuboki et al., 2003; Thekisoe et al., 2007a, 2007b) and T. 

vivax (Njiru et al., 2011a). 
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Figure 1.3 Hand spinning of blood samples to assess blood PCV 

Capillary tubes filled with blood from animals are manually spun to determine the PCV as a 

measure of anaemia. The application of relatively simple technologies such as this is of great 

benefit to diagnosis in the field. Personal photograph taken in The Gambia, 2009.  
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1.6.4 Prevalence 

 

As the disease is endemic over much of Africa and present in a wide range of hosts prevalence 

varies considerably from region to region and from host to host as well as being dependent upon 

the sampling and identification employed. In bovines, reported total trypanosome prevalence in the 

range of 5 – 40% is common, with the dominant species varying from region to region (Rowlands 

et al., 1993; Waiswa and Katunguka-Rwakishaya, 2004; Simukoko et al., 2007b; Miruk et al., 

2008; Enwezor et al., 2009; Cox et al., 2010; Dayo et al., 2010). Prevalence in other domestic host 

species likewise varies considerably from close to zero to upwards of 40% (Snow et al., 1996; Kalu 

et al., 2001; Simukoko et al., 2007a; Nimpaye et al., 2011).  While fewer studies have focused 

upon trypanosome infections in wild animals, prevalences of up to 25% have been reported, again 

dependent upon the species (host and parasite) being examined (Njiokou et al., 2004c; Anderson et 

al., 2011) 

 

Outside of the tsetse belt the reported incidences of T. brucei, T. congolense and T. vivax is 

severely reduced with T. vivax typically the dominant species, facilitated by the ease with which it 

is mechanically transmitted (Cherenet et al., 2006; Sinshaw et al., 2006). As with tsetse 

transmission mechanical transmission is highly dependent upon the density of biting flies 

(Cherenet et al., 2004). In comparison to HAT which is typified as a focal disease, Nagana presents 

as a disperse and widespread endemic disease.  

 

1.6.5 Treatment 

 

Treatment and control of Nagana is primarily achieved through the use of three drugs, ethidium 

bromide (homidium), diminazene aceturate (berenil) and isometamidium chloride (samorin) 

(Kinabo, 1993), with all three active against T. brucei, T. congolense and T. vivax. Due to extensive 

use of homidium during the 1960s and 1970s widespread resistance has been reported, which can 

potentially provide cross resistance to samorin due to their related structures (Kinabo, 1993). The 

exact mechanism of these drugs is not fully understood, however it is believed that they may 

function through their interaction with nucleic acids although a wide range of other possible modes 

of action have also been proposed (Reviewed in Wainwright, 2010). It has been recently reported 

(Roy Chowdhury et al., 2010) that homidium may act through both inhibition of minicircle 

replication with subsequent loss of kinetoplast DNA and by secondary inhibition of nuclear DNA 

replication. Due to an extremely long half life, with continual circulation of up to three months, 

samorin is widely applied a prophylactic agent which has potentially facilitated the emergence of 

drug resistance if applied at insufficient doses (Matovu et al., 2001).  
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Berenil is an aromatic diamidine that is related to pentamidine, used in the treatment of HAT and 

possesses a similar structure, biochemical properties and probably mode of action (Reviewed in 

Peregrine and Mamman, 1993; de Koning, 2001). The drug is active against each of the species 

involved in Nagana and like pentamidine the drug is slow to diffuse over biological membranes, 

requiring instead active uptake, primarily via the P2 aminopurine permease transporter in T. brucei 

(de Koning and Jarvis, 1999; Teka et al., 2011). Due to the similarity to pentamidine the frequent 

use of berenil in treating animals may facilitate the onset of diamidine resistance in human 

infective trypanosomes, with a downstream impact on the treatment of HAT cases. 

 

1.6.6 Trypanotolerance 

 

In humans, death from trypanosome infections has, until recently, been considered an inevitable 

outcome of the disease if it is not identified and treated. Trypanotolerance or the ability to control 

the symptoms of infection is, however, not a new concept with regard animal trypanosomiasis 

(Murray et al., 1982; reviewed in Courtin et al., 2008). The phenomenon has been most extensively 

studied in bovines utilising breeds which are able (trypanotolerant) and unable (trypanosusceptible) 

to control the symptoms and damage caused by infection. Experiments in bovines have suggested 

that trypanotolerance is comprised primarily of two independent traits, the ability to control 

parasitaemia and the ability of the animal to control anaemia (Naessens et al., 2002, 2003; 

Naessens, 2006). Trypanotolerance, however, is not a simple phenotype, being instead under the 

control of multiple loci, with the end phenotypes of parasitaemia and anaemia being complex 

multivariable phenomenon (Hanotte et al., 2003; Hill et al., 2005; de Koning et al., 2005; Kemp et 

al., 2008; Rennie et al., 2008; Noyes et al., 2011). Amongst the genes and pathways identified in 

these studies are differential expression of the antimicrobial peptides and acute phase proteins of 

the innate immune system (Meade et al., 2009); a more rapid and greater immune response in the 

trypanotolerant N‟Dama breed compared to the trypanosusceptible Boran breed (O‟Gorman et al., 

2009); an increased type 1 T helper cell response and proinflamatory cytokine response during the 

initial stages of infection in trypanotolerant N‟Dama (O‟Gorman et al., 2006) and the presence of 

particular major histocompatatibility complex alleles (Gautier et al., 2009; Karimuribo et al., 

2011). 

 

Due to the costs and difficulties associated with bovine studies a number of studies have instead 

chosen to focus on the genes regulating infections in mice. These studies have identified and 

mapped three major trypanosome resistance loci linked to survival time following infection (Iraqi 

et al., 2000; Goodhead et al., 2010; Nganga et al., 2010); identified the innate response to be a 

major contributor in controlling the inflammation associated with anaemia (Noyes et al., 2009) and 

demonstrated higher expression of select chemokines, interferon receptors and complement 

components to be associated with susceptibility (Kierstein et al., 2006) amongst others. 
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1.7 Genetic exchange and clonality 

 

In order to fully understand the population genetics of the Salivarian trypanosomes upon which this 

work focuses it is essential to understand the role of genetic exchange in a wider context. This is of 

particular importance given the non-obligatory nature of genetic exchange in T. brucei and the 

differences between strict clonality, where genetic exchange is completely absent from the life 

cycle of an organism and effectively clonal populations, where genetic exchange may be possible 

but lacks a significant role in influencing a population over short time scales (Balloux et al., 2003). 

However even infrequent genetic exchange can have substantial effects on the evolution of a 

species over long time frames and organisms may inhabit a spectrum with regards the frequency 

and role of genetic exchange, at one end strictly clonal species that employ purely mitotic 

reproduction, at the other species with obligatory sexual cycles.  

 

Prior to discussing this spectrum it is first necessary to clearly define some of the terms which shall 

be utilised in this discussion as there is no strict consensus within the literature and many terms are 

therefore used differently depending upon the author or species being studied. For the purpose of 

this discussion the following terms shall be described as follows: 

 

Genetic exchange. Fusion of two (parental) cells to give rise to a new (progeny) cell with 

inheritance of nuclear DNA from each, though not necessarily equally. While this will often 

involve sexual recombination as defined by the meiotic cycle this is not obligatory. The definition 

used here deliberately excludes horizontal gene transfer between cells. 

 

Strictly clonal. Organisms in which genetic exchange, as defined above, is biologically impossible. 

All reproduction is through mitotic growth. 

 

Clonal reproduction / expansion. Mitotic growth giving rise to genetically identical daughter cells. 

 

Effectively clonal; clonal populations. Species and populations in which genetic exchange is 

possible but occurs rarely enough that it has no significant effect on the population structure in the 

short term. When genetic exchange does occur it gives rise to new effectively clonal lineages which 

then propagate through clonal expansion and may therefore have significant impact in the long 

term. 

 

Epidemic population. A population in which genetic exchange is occurring at a significant rate with 

the effects masked by the clonal expansion of individuals in the population, as defined by Maynard 

Smith (1993). 
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Panmixia. A population in which random genetic exchange between individuals is the dominant 

mode of reproduction. Deviation from panmixia may occur in obligatory sexual organisms if there 

are barriers to random mating. 

 

Inbreeding. Genetic exchange between two individuals that are genetically identical or closely 

related to one another. 

 

Selfing. Genetic exchange between two gametes originating from either a single individual or two 

genetically identical individuals. 

 

In examining a range of parasitic protozoa Tibayrenc et al.(1990a) outlined a number of criteria by 

which an effectively clonal population could be identified (Table 1.3). The techniques used in 

assessing these criteria was further expanded by Maynard Smith et al.(1993) in defining the 

epidemic population structure (see above) and the proposal that population structure should be 

assessed twice, once in the presence of all individuals and a second time with the removal of 

repeated genotypes that have arisen through clonal expansion. In this manner it is possible to 

observe the underlying shape of the population in organisms where genetic exchange and clonal 

reproduction coexist and discern whether evidence for genetic exchange is being masked by clonal 

expansion. 

 

 

Criteria for 

segregation at 

individual loci 

Fixed heterozygosity  

Absence of segregation genotypes 

Deviation from Hardy-Weinberg equilibrium 

Criteria for 

recombination 
between loci 

Multiple isolates with identical genotypes 

Absence of recombinant genotypes 

Significant linkage disequilibrium 

Correlation of results from multiple independent molecular markers 

 

Table 1.3 Criteria for clonality 

Criteria for clonality in parasitic protozoa as defined by Tibayrenc et al.(1990a). 
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1.7.1 A spectrum of genetic exchange 

 

With a wide range of potential reproductive strategies available it is of no surprise that examples 

can be found from across the entire spectrum, with a range of consequences on the evolution of the 

species involved. At one extreme of the spectrum strict clonality represents the simplest form of 

reproduction, with progeny genetically identical to the parent and with change in the lineages 

arising through mutation. For diploid organisms strict clonality eventually leads to a divergence in 

sequence between individuals of different lineages and between the homologues of each 

chromosome within an individual. Known as the Meselson effect (Judson and Normark, 1996; 

Mark Welch and Meselson, 2000), this divergence occurs as each homologue accumulates unique 

mutations, eventually leading to genome wide heterozygosity. As selective pressures generally 

require only the retention of function for a single allele of each gene the Meselson effect may lead 

to loss of function, through the accumulation of deleterious mutations. This is an example of 

Muller‟s ratchet (Muller, 1964), which states that it is easier to acquire deleterious mutations than 

to lose them as the absence of meiotic recombination prevents the generation of new haplotypes 

combining sequence free from these deleterious effects. While the vast majority of mutations are 

deleterious, on occasion the Meselson effect will give rise to a new function in the second allele of 

a gene, effectively providing a new gene to the organism and once again placing the allele under 

selective pressures. Over time the divergence between the homologous chromosomes may lead to 

an effectively haploid state, as the vast majority of, or even all genes are represented by only a 

single functional allele within the genome.  

 

From a population standpoint strictly clonal organisms exist as numerous genetic lineages, which, 

due to the lack of genetic exchange, cannot interact and therefore evolve independently of one 

another. This can have significant consequences on the spread of traits throughout a population as 

traits in two lineages will also never interact, therefore placing the traits in permanent competition 

with one another. Within a population, strict clonality leads to high levels of heterozygosity at each 

locus, significant linkage between pairs of loci and significant deviation from Hardy-Weinberg 

predictions. With the absence of genetic exchange strictly clonal populations may also come to be 

dominated by a single lineage, which can occur following bottlenecks in the population or when 

one lineage possesses a strong competitive advantage. In both cases this leads to an initial loss of 

diversity within the population, which slowly increases as the members of the dominate lineage 

acquire new mutations, generating multiple new lineages that once again enter into competition 

with one another. 

 

Perhaps the most widely recognised ancient asexual, strictly clonal eukaryote are the Bdelloid 

rotifer, microscopic freshwater invertebrate which are believed to have been asexual for millions of 

years (Reviewed in Rice and Friberg, 2007). This has led to a gradual reduction in the identity 
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between homologous chromosomes and generation of divergent gene copies (Judson and Normark, 

1996; Mark Welch and Meselson, 2000; Mark Welch et al., 2004a, 2004b; Pouchkina-Stantcheva 

et al., 2007). While sexual reproduction is absent in bdelloid rotifers they have retained the ability 

to acquire new genetic material through a form of horizontal gene transfer. In order to survive 

periods of drought, rotifers are capable of entering a period of suspended activity, reviving only 

when there is sufficient water available in the environment to rehydrate the cells (Lapinski and 

Tunnacliffe, 2003; Ricci et al., 2003). While allowing for survival the process does result in 

damage to cell membranes, allowing for foreign material including DNA fragments to enter from 

the surrounding environment. As the cells revive they are able to incorporate this genetic material 

into their own (Gladyshev et al., 2008; Boschetti et al., 2011), facilitated by the presence of 

effective genome repair mechanisms (Gladyshev and Meselson, 2008). This process does not 

appear to be limited to material originating from other rotifers and therefore may represent a 

powerful driver of bdelloid evolution. 

 

Sexual reproduction has been proposed to provide a number of evolutionary advantages over 

asexual reproduction despite the associated costs. In sexual species the primary cost of sexual 

reproduction is the requirement for two individuals in order for mating to occur (Maynard Smith, 

1978). This was illustrated by Maynard Smith (1978) by comparing sexual and asexual populations 

where the only difference was the presence or absence of sexual reproduction and where each 

mating event produced a single progeny. In a mating population with each individual reproducing 

twice (Figure 1.4A) the second generation will be comprised of the same number of individuals as 

the first. The asexual population, however, requires only a single reproductive event in order to 

maintain the size of the population in the second generation and when each individual reproduces 

twice doubles the size of the next generation (Figure 1.4B). 

 

The costs associated with sexual reproduction are further increased by the requirement to find a 

mate and the presence of two distinct sexes in many sexual organisms, halving the size of the 

population with which an individual may mate (assuming the two sexes are balanced in number). 

Parasites such as trypanosomes, however, overcome a portion of this cost by lacking a two sex 

mating system (Turner et al., 1990). By lacking distinct sexes each individual is therefore capable 

of mating with every other member of the population, as opposed to only those of the opposite sex, 

increasing the probability of mating occurring. It is unclear how T. brucei limits the occurrence of 

selfing, although it is likely a self incompatibility system is present preventing genetic exchange 

between closely related individuals. 
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Figure 1.4 The two fold cost of sex 

The two fold cost of sex as defined by Maynard Smith (1978). A) Two sexually reproducing 

individuals, each reproducing twice, produce two progeny in the next generation, maintaining the 

size of the population. B) An asexual organism, reproducing twice, produces two progeny in the 

next generation. The population therefore doubles in size with each generation. 

 

 

 

Another disadvantage of mating is associated with the inheritance of genetic material. Asexual 

organisms pass their entire genome on to their progeny however in sexual reproduction each parent 

contributes only half of their genome to the progeny. Sexual organisms must therefore reproduce 

multiple times before there is a high probability of passing on their entire genome to the next 

generation.  

 

Two of the primary advantages put forward for the evolution and maintenance of sexual 

reproduction are the introduction of variation and the promotion of DNA repair, which is itself 

associated with the introduction of further variation through meiotic recombination (Reviewed in 

Barton and Charlesworth, 1998; Birdsell and Wills, 2003; Hadany and Comeron, 2008; Hörandl, 

2009; Neiman et al., 2009; Otto, 2009).Genetic exchange may promote variation through the 

reassortment of chromosomes generating new combinations in progeny which may facilitate 

selection by occasionally generating individuals of very high or very low fitness. Such individuals 
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will be strongly selected for or against, leading to the maintenance of the fittest alleles and loss of 

the most deleterious. The majority of individuals, however, will fall within the centre of the fitness 

bell curve, with mildly deleterious alleles being masked by the presence of fitter alleles elsewhere, 

especially in diploid organisms where two alleles of each feature are typically present. By 

maintaining mildly deleterious alleles genetic exchange promotes diversity within populations and 

subsequent adaptation to shifting circumstances, as alleles that are deleterious in one situation may 

be beneficial in another. 

 

DNA repair has been proposed as a further advantage of genetic exchange as the process of 

chromosome pairing during meiosis facilitates homologous recombination, increasing the ability of 

organisms to repair lesions or double stranded breaks. The mechanisms of DNA repair are also 

used in meiotic recombination, generating new variation by swapping material between 

chromosomal homologues. Without this recombination physically linked alleles will always be 

inherited together and therefore selection will act upon the entire chromosome, with fitter alleles 

forever influenced by the presence of deleterious alleles at other positions on the homologue. 

Meiotic recombination, in breaking these associations, allows for deleterious alleles to be selected 

against without affecting the fitter segments of the homologue. However, both chromosomal 

reassortment and meiotic recombination may break up advantageous combinations, potentially 

reducing the fitness of the progeny, a sharp contrast to clonal organisms where the most 

advantageous allele combinations are never broken up. In a truly panmictic population genetic 

exchange leads to agreement with Hardy-Weinberg predictions, with all allele combinations at a 

particular locus observed at frequencies dependent upon the allele frequency; a complete lack of 

linkage between loci on different chromosomes and the absence of repeated genotypes within the 

population. There are however many sources of deviation from this ideal, generating a spectrum of 

population structures. 

 

Where genetic exchange occurs extremely rarely a species may be effectively clonal, existing as 

essentially independent lineages that occasionally recombine to generate a new hybrid lineage. T. 

cruzi is a prime example of an effectively clonal species, with six primary lineages currently 

recognised (Zingales et al., 2009). A wide range of molecular markers have provided substantial 

evidence for clonality in the species, with a frequent observation of significant linkage 

disequilibrium between loci within individual populations and genetic differences more common 

between than within populations (Tibayrenc et al., 1986, 1991; Tibayrenc and Ayala, 1987; Zhang 

et al., 1988; Brenière et al., 1991; de Luca D‟oro et al., 1993; Sanchez et al., 1993; Oliveira et al., 

1998; Llewellyn et al., 2009). Early evidence for genetic exchange in T. cruzi came from the 

detection of isoenzyme profiles of single genes that demonstrated the existence of homozygotes 

and heterozygotes within a single population, allowing the possibility that these profiles had arisen 

through mating of the two homozygous isotypes (Bogliolo et al., 1996; Carrasco et al., 1996). 
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Souto et al.(1996) further supported the existence of hybrids through the use of a dimorphism in 

the T. cruzi mini exon gene repeat that correlated with previously identified rRNA gene variation 

(Souto and Zingales, 1993). Of the six T. cruzi lineages four, TcIII – TcVI are now recognised as 

hybrid lineages (Reviewed in Sturm and Campbell, 2010), with TcIII and TcIV believed to have 

originated from fusion of the ancestral TcI and TcII lineages while TcV and TcVI arose from a 

backcross between isolates of the hybrid TcIII lineage with the „parental‟ TcII isolate, giving rise to 

two widely heterozygous hybrids. 

 

The possibility for genetic exchange in T. cruzi was experimentally confirmed in 2003 through the 

use of drug resistant isolates, allowing for the selection of double drug resistant progeny following 

infection of mammalian cell cultures (Gaunt et al., 2003).  In contrast to mating in T. brucei and L. 

major genetic exchange in T. cruzi does not appear to be Mendelian in nature and does not appear 

to occur during transmission through the vector. Genetic exchange in T. cruzi likely involves fusion 

between the parental lines, as evidenced by the presence of aneuoploidy in the progeny clones 

resulting in 1.65-1.72 times more DNA than the parental cells and the inheritance of multiple 

parental alleles at the loci which were examined (Gaunt et al., 2003; Lewis et al., 2009). It has been 

suggested that diploidy in progeny hybrids may be subsequently restored through recombination 

and chromosome loss until stability is restored. It is unclear at present how long this process takes. 

Alongside the apparent fusion model of genetic exchange in T. cruzi the apparent localisation of 

genetic exchange, occurring within the host as opposed to the vector suggests further differences 

from genetic exchange in T. brucei and L. major. 

 

Leishmania sp., like T. cruzi, has long been assumed to be effectively clonal based upon early 

isoenzyme studies which detected significant linkage disequilibrium; deviation from Hardy 

Weinberg equilibrium and the existence of stable zymodemes (Evans et al., 1987; Desjeux and 

Dedet, 1989; Tibayrenc et al., 1990; Ayala, 1993; Cupolillo et al., 1997; Bañuls et al., 1999a). 

Coupled to geographic restrictions and differences in clinical progression these genetic differences 

led to the creation of numerous species although more recently it has been proposed that the current 

L. donovani complex should be condensed to only two distinct species, L. infantum and L. 

donovani (Bañuls et al., 1999a; Lukes et al., 2007). 

 

While the use of microsatellite markers has supported the conclusions of effective clonality based 

upon excesses of heterozygotes, homogeneous populations and linkage disequilibrium 

(Schwenkenbecher et al., 2006; Kuhls et al., 2007; Al-Jawabreh et al., 2008; Alam et al., 2009) a 

number of studies have now identified the presence of putative hybrid populations where the 

individuals share ancestry from two neighbouring populations (Kuhls et al., 2008; Seridi et al., 

2008; Chargui et al., 2009; Rougeron et al., 2009; Gelanew et al., 2010). While these studies 

suggest a role for genetic exchange in Leishmania sp. they supported the dominance of clonality, 
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with genetic exchange being relatively rare. The  identification of potential interspecies hybrids 

between L. braziliensis and L. guyanensis (Bañuls et al., 1997, 1999b; Delgado et al., 1997); L. 

braziliensis and L. panamensis (Belli et al., 1994; Bañuls et al., 1997); L. braziliensis and L. 

peruviana (Dujardin et al., 1995; Nolder et al., 2007); L. infantum and L. major (Ravel et al., 2006) 

supports both the occurrence of genetic exchange and requirement for a streamlined taxonomy 

(Bañuls et al., 1999a; Lukes et al., 2007). 

 

While the majority of studies support rare genetic exchange, leading to effectively clonal 

populations some have suggested sexual reproduction may occur more frequently based upon the 

detection of populations more in line with Hardy-Weinberg expectations and the presence of 

epidemic population structures (Bastien et al., 1992; Blaineau et al., 1992; Nolder et al., 2007). 

Rougeron et al. (2009), Gelanew et al. (2010) and Rougeron et al. (2011), in analysing isolates of 

L. braziliensis, L. major and L. guyanensis identified the presence of significant homozygote 

excesses and high FIS values, concluding that extensive and frequent inbreeding had to be occurring 

within the populations. Rougeron et al. (2009) proposed that the high levels of inbreeding may 

have been facilitated by the relatively low incidence of Leishmania sp.in the vector (Martín-

Sánchez et al., 2006; Rogers and Bates, 2007) and that due to the relatively limited dispersal range 

of the sandfly over its lifetime (Morrison et al., 1993) Leishmania sp. may exist in micro-

populations which facilitate inbreeding while being too small to separate during sample collection, 

giving rise to apparent clonality due to the Wahlund effect (Wahlund, 1928).  

 

Experimental demonstration of genetic exchange in Leishmania sp. was only recently demonstrated 

through the use of two drug resistant clones of Leishmania major, allowing for the selection of 

double drug resistant progeny cells following transmission through the insect vector Phlebotomus 

duboscqi (Akopyants et al., 2009). SNP genotyping of progeny indicated each to have inherited a 

full set of chromosomes from the two parental lines. Through comparison with lines of known 

ploidy (Cruz et al., 1993) it was determined that 7 of the 18 progeny clones possessed raised DNA 

contents equivalent to a ploidy of 3n, while 4 of the 2n lines were also indicated to have raised 

ploidy for chromosome 31, consistent with the potential for aneuploidy that has been observed in 

Leishmania sp.(Cruz et al., 1993; Ubeda et al., 2008; Sterkers et al., 2011). Genetic exchange in 

Leishmania major as reported by Akopyants appears to resemble that of T. brucei; occurring within 

the insect vector; biparental inheritance of chromosomes; observations of raised DNA contents for 

some but not all of the progeny and apparent non obligatory nature of the process. 

 

The five human infective species of Plasmodium provide contrasting examples on the role of 

genetic exchange in parasite populations, as while the parasite uses obligatory sexual cycle both 

near panmictic and effectively clonal population structures have been observed. During the vast 

majority of the life cycle the Plasmodium parasites exist as haploid cells, with the development 
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cycle in the host culminating in the differentiation of the merozoite stage into the distinct male and 

female gametocytes (Reviewed in Talman et al., 2004; Dixon et al., 2008). Fertilisation in the 

vector generates the only diploid stages of the life cycle in the form of the zygote and ookinete. 

Following formation of the oocyst (Reviewed in Baton and Ranford-Cartwright, 2005) the progeny 

returns to a haploid state and undergoes multiple rounds of mitotic reproduction. While genetic 

exchange is an obligatory stage of the Plasmodium life cycle the parasite highlights that more than 

just the frequency of genetic exchange may determine the population structure. With both 

effectively clonal and panmictic populations reported in the literature the consensus for 

Plasmodium is that it is the intensity of transmission that primarily controls the population structure 

by determining the rate of mixed host infections and therefore the frequency of outcrossing 

(Tibayrenc et al., 1990, 1991; Walliker, 1991; Read and Day, 1992; Paul et al., 1995; Tibayrenc, 

1995; Babiker and Walliker, 1997; Hastings and Wedgwood-Oppenheim, 1997; Ayala, 1998; Paul 

and Day, 1998; Rich et al., 1998; Conway et al., 1999; Anderson et al., 2000a, 2000b; Urdaneta et 

al., 2001; West et al., 2001; Hartl et al., 2002; Mu et al., 2005; Razakandrainibe et al., 2005). 

 

In high transmission regions such as Africa and Papua New Guinea the prevalence of host 

infections maintains a sufficient level of mixed vector infections for out crossing to play a 

significant role on the population structure, shifting it towards panmixia (Conway et al., 1999; 

Anderson et al., 2000a; Anthony et al., 2005; Schultz et al., 2010). High transmission rates need 

not necessarily lead to panmixia however, in Papa New Guinea it has been proposed that an 

intermediate population structure was present in the early 1990s with neither selfing nor out 

crossing dominating (Paul et al., 1995) while in Cameroon and Kenya significant levels of linkage 

disequilibrium and selfing has been detected even in the presence of high rates of transmission 

(Durand et al., 2003; Razakandrainibe et al., 2005; Annan et al., 2007; Schultz et al., 2010). When 

transmission intensity drops the population structure often shifts towards an effectively clonal 

population due to the increased rate of inbreeding (Babiker and Walliker, 1997; Anderson et al., 

2000a; Anthony et al., 2005). With a lower frequency of transmission mixed infections in the host 

and therefore the mosquito vector will be rarer with a corresponding drop in the frequency of out 

crossing. As with selfing in high transmission regions low transmission regions do not 

automatically exclude significant levels of out crossing (Pumpaibool et al., 2009).  

 

1.7.2 Genetic exchange in T. b. gambiense Group 1 

 

The role of genetic exchange is clearest for T. b. gambiense Group 1, the only T. brucei subtype for 

which genetic exchange has not been experimentally demonstrated (although the possibility of rare 

mating cannot be fully excluded). Early analysis of Group 1 isolates identified the presence of a 

highly homogeneous group (Gibson, 1986; Paindavoine et al., 1986a; Richner et al., 1989)  with 

Tibayrenc describing the sub-species as “just an instance of a successful, ubiquitous human-host 
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clone” (Tibayrenc et al., 1990). Later work comparing Group 1 populations with the use of more 

sensitive markers indicated that while small levels of genetic variability were present at the local 

level there was a higher degree of variability between geographically distant populations, 

consistent with a lack of gene flow between them and independent evolution of the loci (Mathieu-

Daudé et al., 1995; Kanmogne et al., 1996b; Biteau et al., 2000; Jamonneau et al., 2000; Koffi et 

al., 2007; Morrison et al., 2008b). However in many of these studies the extent of homozygosity 

within individual populations has prevented empirical testing for clonality.  

 

If T. b. gambiense Group 1 is a strictly clonal organism, lacking the ability to undergo any type of 

genetic exchange, then this is likely to be only a recent development in the evolution of the sub-

species. The lack of an observable Meselson effect (Judson and Normark, 1996; Mark Welch and 

Meselson, 2000) within natural populations (Morrison et al., 2008b) and the T. b. gambiense Group 

1 reference sequence (Jackson et al., 2010) suggest the sub-species has not had sufficient time to 

accumulate extensive heterozygosity. The low level of divergence between the T. b. gambiense 

Group 1 and T. b. brucei, as determined by comparison of kDNA haplotypes (Balmer et al., 2011) 

and genome sequences (Jackson et al., 2010) provides further evidence that the evolution of 

clonality in T. b. gambiense Group 1 is a recent event. 

 

1.7.3 Genetic exchange in T. b. brucei, T. b. gambiense Group 2 and T. b. rhodesiense 

 

The role of genetic exchange in T. brucei has caused considerable controversy over the years as 

while mating has been empirically demonstrated to occur under laboratory conditions (Jenni et al., 

1986) its frequency and significance in the field remains disputed. The issue is complicated by 

existence of multiple sub-species and subgroups, namely T. b. gambiense Group 1 (discussed 

above), T. b. gambiense Group 2, T. b. brucei and T. b. rhodesiense. Whether the respective sub-

species are genetically isolated or can interbreed freely could have profound effects upon the 

observed population structures if incorrectly grouped or separated. 

 

While the possibility for genetic exchange in trypanosomes was first proposed based on the 

observation of potential T. b. brucei recombinant genotypes in a field population (Tait, 1980; 

Gibson et al., 1980), a number of other isoenzyme studies found evidence for significant linkage 

between loci; deviation from Hardy-Weinberg equilibrium and the presence of many repeated 

genotypes within populations, leading to the conclusion of effective clonality in T. brucei (Tait et 

al., 1985; Paindavoine et al., 1989; Tibayrenc et al., 1990, 1991; Mathieu-Daudé and Tibayrenc, 

1994; Stevens and Tibayrenc, 1995). With the identification of T. b. rhodesiense to be more 

genetically homogenous than and genetically distinct from sympatric T. b. brucei populations, it 

has became apparent that this may have an impact upon the population structures of the respective 

sub-species and separate investigations into the two sub-species have suggested the presence of 
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epidemic and effectively clonal population structures for T. b. brucei and T. b. rhodesiense 

populations respectively (Hide et al., 1994; Stevens and Tibayrenc, 1996; MacLeod et al., 2000, 

2001c; Njiokou et al., 2004a; Hide and Tait, 2009).  

 

These results of differing population structures in T. b. brucei and T. b. rhodesiense are of 

particular interest given the role of a single gene, SRA in conferring resistance to human serum, 

effectively defining T. b. rhodesiense (De Greef et al., 1989; De Greef and Hamers, 1994; Xong et 

al., 1998) and observations that while local T. b. rhodesiense and T. b. brucei populations may be 

genetically distinct from one another they are more closely related to one another than 

geographically separated populations of T. b. rhodesiense (MacLeod et al., 2001c), suggesting at 

least some level of interaction between the sub-species. The observed genetic separation however 

indicates barriers to complete gene flow remain despite the frequent detection of T. b. rhodesiense 

in non human hosts where T. b. brucei can also be found (Hide et al., 1998; Welburn et al., 2001; 

Waiswa et al., 2003; Njiru et al., 2004b; Enyaru et al., 2006). In addition to any barriers to mating 

between the sub-species further ones must be present in T. b. rhodesiense populations in order to 

account for the effective clonality that has been observed. The relatively homogeneous nature of T. 

b. rhodesiense within a given population may limit the rate of genetic exchange if there are 

mechanisms in place to minimise the frequency of inbreeding. Alternatively outbreaks of T. b. 

rhodesiense may occur due to the presence of exactly the right combination of genetic material 

beyond merely the presence of SRA, with the genetic disruption caused by mating sufficient enough 

to eliminate the ability to successfully infect humans. 

 

Studies into T. b. gambiense group 2, identified as distinct from T. b. gambiense Group 1 due to 

their more heterogeneous population and closer relationship to T. b. brucei than T. b. gambiense 

Group 1 (Gibson, 1986; Hide et al., 1994; Balmer et al., 2011; Capewell, 2011) have suggested 

that the subgroup undergoes frequent mating and appears like T. b. rhodesiense to be a human host 

variant of T. b. brucei. It has been proposed that the ability of this subgroup to infect humans may 

have arisen through a rare mating event with T. b. gambiense Group 1 (Radwanska et al., 2002), 

with the Group 1 signature diluted through subsequent mating with T. b. brucei. Alternatively 

Group 2 may represent a novel genesis of human serum resistance opening the potential for new 

human infective sub-species to arise in the future. 

 

1.7.4 Genetic exchange in T. congolense 

 

Like T. vivax there has been relatively little study into the population genetics of T. congolense and 

it has long been considered to be effectively clonal based upon the Tibayrenc‟s criteria and analysis 

(Tibayrenc et al., 1990, 1991). This analysis was based upon the isoenzyme typing of 114 stocks of 

T. congolense from across Africa with 6 isoenzymes (Gashumba et al., 1988). The initial analysis 
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of this study identified 71 unique zymodemes which fell into 5 distinct groups, defined by a 

combination of geographic and ecological origins. The use of this sample set in assessing the 

frequency of genetic exchange in T. congolense is however limited. The samples were collected 

from across not only a wide geographic region but had been collected over a 23 year period (1960 – 

1983), both of which are likely to have introduced a Wahlund effect (Wahlund, 1928), disrupting 

the ability to detect the recombination events associated with mating. The conclusion of clonality 

based upon this sample set is therefore of limited value. 

 

Since that initial declaration of effective clonality there has been little further research. The only 

publication since Tibayrenc‟s analyses has been a microsatellite study into T. congolense in The 

Gambia (Morrison et al., 2009b). Utilising a panel of 7 polymorphic microsatellites Morrison et al. 

genotyped 89 members of a T. congolense population isolated from horses, donkeys and cattle in 

The Gambia and detected a high frequency of unique multilocus genotypes (MLGs); an excess of 

homozygotes at all loci; a lack of observable linkage between pairs of loci and significant deviation 

from Hardy-Weinberg equilibrium, consistent with the occurrence of frequent genetic exchange 

and a high level of inbreeding. If the conclusions from both the isoenzyme and microsatellite data 

are considered valid then it would appear that genetic exchange is not only possible in T. 

congolense but may vary in frequency in different populations and subgroups, as has been observed 

for T. brucei. 

 

1.7.5 Genetic exchange in T. vivax 

 

T. vivax has received exceedingly little attention with regards its population genetics due to the low 

parasitaemia associated with many of its natural hosts and the difficulty in isolating and culturing 

the species (Gardiner, 1989). There have therefore been only a handful of studies into the 

population genetics of the species studies (Kilgour et al., 1975; Kilgour and Godfrey, 1977; 

Allsopp and Newton, 1985), later analysed by Tibayrenc (1991). The studies of Kilgour (1975) and 

Kilgour and Godfrey (1977) were the first to investigate the diversity of T. vivax in populations, 

identifying dominant zymodemes which were maintained during the three year period between the 

studies. This was later expanded upon by Allsopp and Newton (1985) which identified a further 9 

unique zymodemes. 

 

These studies provided the first evidence for clonality in the species due to the over representation 

of a small number of genotypes and significant levels of linkage disequilibrium between markers 

(Tibayrenc et al., 1990, 1991). It should be noted however that the power of these studies were 

extremely limited, namely by the number of markers or number of samples used.  The conclusion 

of clonality in T. vivax based upon these studies should therefore be treated with caution. Despite 

the advances in molecular and analytical techniques in the time since this conclusion was reached 
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there have been no attempts to further the investigation of genetic exchange in T. vivax prior to the 

results presented in this volume.  
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1.8 Aims of this study 

 

The primary aim of the work presented here was to assess the population diversity, population 

structures and frequency of genetic exchange in the African Salivarian trypanosomes T. b. 

rhodesiense, T. congolense and T. vivax populations from Uganda, Malawi and The Gambia. 

Through the use of populations separated by both time (T. b. rhodesiense and T. congolense) and 

geography (T. b. rhodesiense) this work has examined the dynamics of genetic flux within these 

populations. These studies shed new light on the frequency and role of genetic exchange within 

these three species, which together are responsible for the clinically and economically important 

diseases of HAT and AAT. 

 

The microsatellite markers used in these population studies are, however, relatively low density 

markers, limiting the studies which may be undertaken. With the rapidly declining cost of whole 

genome sequencing the use of SNP based markers is becoming increasingly viable. The final 

portion of this project is therefore focused upon the identification and comparative analysis of SNP 

based genomic diversity in three laboratory strains, providing the foundation for a future resource 

of trypanosome genomic variation. This SNP variation was then employed in the construction of a 

high density SNP map, which with the aid of the microsatellite genetic map (MacLeod et al., 

2005b), has allowed for an initial reconstruction of the haplotypes of the T. brucei reference strain. 
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Chapter 2 

Materials and Methods 
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2.1 Chemicals, enzymes and reagents 

 

Company Reagent 

BD BD 4.0 ml vacutainers 

Cambrex Bioscience SeaKem LE agarose, NuSieve GTG agarose 

GE Healthcare GenomiPhi DNA Amplification Kit 

MWG-Biotech Custom oligonucleotides 

New England Biolabs 100bp ladder 

Qiagen QIAamp DNA blood midikits 

Strataclone Pfu DNA polymerase, StrataClone PCR cloning kit 

Thermo Scientific Custom PCR mastermix, Taq DNA polymerase 

Whatman FTA Purification Reagent 

 

2.2 Buffers and solutions 

 

LB agar – 10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl, 15 g/L agar (autoclaved) 

 

LB medium – 10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl (autoclaved) 

 

6 x electrophoresis loading buffer – 0.25% (w/v) bromophenol blue, 0.25% (w/v) orange-G, 30 

(v/v) glycerol. Stored at 4°C. 

 

TE buffer – 10mM Tris-HCl ph 8, 1 mM EDTA pH 8 (autoclaved). 

 

5 x Tris-Borate-EDTA buffer (TBE) – 450mM Tris, 450mM Boric acid, 10mM EDTA, pH 8. 

Diluted 1/10 in dH2O prior to use as gel electrophoresis buffer. 

 

X-Gal solution – 2% (w/v) stock solution dissolved in dimethylformamide. Stored at -20°C, 

protected from light. 
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2.3 Strains, F1 progeny and field samples 

 

2.3.1 Trypanosome strains 

 

Five cloned trypanosome strains were used in this investigation as PCR positive controls or 

material for genome sequencing. DNA was extracted using DNA extraction kit (Qiagen) following 

manufacturers‟ protocols. The five stocks were TREU 927 (T. b. brucei), STIB 247 (T. b. brucei), 

STIB 386 (T. b. gambiense Group 2), ILRAD V34 (T. vivax) and IL3000 (T. congolense). 

 

2.3.2 F1 Progeny strains 

 

Two progeny clones, hybrid 77 and hybrid 86, derived from a genetic cross between STIB 247 / 

TREU 927 were used as samples in the whole genome sequencing project (Chapter 6). The 

generation and derivation of these progeny clones has been previously described (Turner et al., 

1990; MacLeod et al., 2005a) while the purified DNA for high throughput genome sequencing was 

generated by A. Cooper as previously described (Cooper, 2009). 

 

2.3.3 Field Samples 

 

The origins and trypanosome species present of the field sample populations used in this 

investigation are described in Table 2.1. 
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Population Country of 

origin 

Sampling 

period 

Number of 

samples 

Sample type Host Trypanosome species 

present 

Gambia 2007 The Gambia 2006-2007 323 equine 

208 bovine 

Blood spot on FTA card Equines 

Bovines 

T. brucei 

T. congolense 

T. vivax 

Gambia 2009 The Gambia 2009 198 Blood from host Equines T. brucei 

T. congolense 

T. vivax 

Tororo pre-1991* Uganda / 

Kenya 

1961-1990 52 DNA from cloned stabilates Humans 

Bovines 

T. b. rhodesiense 

Tororo 2003 Uganda 2002-2003 30 Blood samples and blood spots 

on FTA cards 

Humans T. b. rhodesiense 

Soroti 2003 Uganda 2002-2003 84 Blood spots on FTA cards Humans T. b. rhodesiense 

Kaberamaido 2009 Uganda 2008-2010 86 Blood spots on FTA cards Humans T. b. rhodesiense 

Malawi 2003 Malawi 2002-2003 28 Blood spots on FTA cards Humans T. b. rhodesiense 

 

Table 2.1 Origin of field samples used in this study 

* This population includes samples from the wider Tororo focus including regions in western Kenya. All except four isolates originate from the 1988-1990 period.
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2.4 Molecular biology techniques 

 

The methods used during this investigation predominantly followed standard molecular biological 

techniques or manufacturers‟ protocols unless otherwise described. The methods described here 

therefore give only brief descriptions of the protocols used, with additional details listed for 

modified or non-standard protocols. 

 

2.4.1 Preparation of FTA card bloodspots for use as template in Whole Genome 

Amplification or PCRs 

 

Blood spots on FTA filter cards were prepared for use as previously described (Morrison et al., 

2007). Briefly, discs were punched from blood spots using a clean 2 mm diameter Harris 

micropunch (Whatman), washed 3 times with 200 µl FTA purification reagent and twice with  200 

µl 1 mM TE buffer, with incubation during each wash for 5 minutes as per manufacturer‟s 

protocol. Discs from the same blood spot were washed in a single tube, with a maximum of 6 discs 

per tube. Washed discs were air-dried for 1 hour prior to whole genome amplification or use in 

PCRs. 

 

2.4.2 Whole genome amplification from FTA card bloodspots 

 

Washed PCR filter card discs were used as direct substrate for whole genome amplification, in a 

final volume of 20 µl as described by the manufacturer protocol for the GenomiPhi DNA 

amplification kit, with 2 washed discs per reaction. Following amplification 3 independent 

reactions were pooled together into a single 60 µl aliquot in order to account for the possibility of 

allele dropout. 1 µl of the pooled reactions was used as template for subsequent PCRs. 

 

2.4.2 Collection of whole blood samples from equines 

 

For collection of the 2009 Gambian equine samples jugular whole blood samples were collected 

into 4 ml ethylene diamine tetra-acetic acid (EDTA) coated vacutainer tubes with collection 

performed by trained staff members of the Gambia Horse and Donkey Trust (GHDT; 

http://www.gambiahorseanddonkey.org.uk ). The collected blood samples were used for blood 

measurements of packed cell volume (PCV), total protein (TP) and microscopic examination of 

whole blood films immediately following collection as previously described (Pinchbeck et al., 

2008). PCV was assessed using a 'Spindoctor™' manual centrifuge (Figure 1.3) while a solar-

powered, portable microscope (Diamedica Limited, UK) was used for visual screening. Each 

sample was screened for a minimum of 20 fields of view or 5 minutes screening time. Total blood 

http://www.gambiahorseanddonkey.org.uk/
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cholesterol was measured utilising the BeneCheck Plus total cholesterol test following the 

manufacturer‟s instructions. The remaining blood was stored in a chilled cool bag and processed 

immediately upon return to the GHDT headquarters at Sambel Kunda as described in 2.4.3. 

 

2.4.3 Extraction of DNA from blood samples 

 

DNA extraction from whole blood samples was performed using Qiagen mini-, midi- and maxi- 

blood kits, following manufacturer‟s protocols. The Gambian 2009 equine blood samples were part 

processed at the GHDT headquarters prior to shipping to the UK. Briefly, 2 ml of blood, collected 

in EDTA vacutainers was transferred to fresh tubes prior to the addition of QIAGEN protease and 

lysis buffer (Kit buffer AL) as dictated by the QIAamp DNA blood midikit protocol. Samples were 

incubated at 70°C for 10 minutes and stored at 4°C (protocol steps 1-4) until being frozen at -20°C 

on return to the UK. DNA extraction in the UK, continued from protocol step 5 following thawing 

of the samples. 

 

2.4.4 General PCR procedure 

 

The high sensitivity of the PCR technique required precautions to be taken in order to prevent 

contamination of the equipment and reagents by genomic DNA and PCR products. Aliquots of 

dedicated PCR reagents and pipette tips were used and kept separate from PCR products where 

possible. Negative controls were included in all PCRs in order to identify the presence of 

contamination, when this occurred reagents and tips were replaced with fresh materials and PCRs 

repeated. 

 

The standard PCR reaction mixes, unless otherwise stated were composed of: 45 mM Tris-HCl pH 

8.8, 11 mM (NH4)2SO4, 4.5 mM MgCl2, 6.7 nM 2-mercaptoethanol, 4.4 µM EDTA, 113 µg ml-1 

BSA, 1 mM dATP, 1 mM dGTP, 1 mM dTTP and 1mM dCTP (Custom PCR mastermix), 1 µM 

each oligonuclotide primer, 0.5 units Taq DNA polymerase and 1 µl DNA template. PCR grade 

H2O was used during the preparation of reaction mixes as required. For nested PCR first round 

products were diluted 1/100 prior to use as template in the second round. PCRs were performed in 

a volume of 10 µl unless otherwise stated. 

 

Cycling conditions for the speciation primer sets TBR, TCS and TVW were 30 cycles of: 

 

 Denature 94°C for 50 seconds 

 Anneal  60°C for 50 seconds 

 Extend  72°C for 60 seconds 
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Cycling conditions for the T. brucei and T. vivax microsatellite markers were 28 cycles of: 

 

 Denature 95°C for 50 seconds 

 Anneal  55°C for 50 seconds 

 Extend  65°C for 60 seconds 

 

for both first and second round reactions. 

 

Cycling conditions for the T. congolense microsatellite markers were 28 cycles of: 

 

 Denature 95°C for 50 seconds 

 Anneal  52°C for 50 seconds 

 Extend  65°C for 60 seconds 

 

for both first and second round reactions. 

 

2.4.5 Modifications to the general PCR protocol for use of washed FTA discs 

 

For PCRs utilising amplification directly from FTA discs the volume of each reaction was 

increased to 20 µl with 2 µl of PCR grade H2O replacing the 1 µl DNA template used in the 

standard 10 µl reactions. 

 

2.4.6 Modifications to the general PCR protocol for cloning and DNA sequencing 

 

Where amplified DNA products were required for downstream cloning and sequencing the 

standard PCR protocol was adapted through the addition of the proofreading polymerase pfu DNA 

polymerase, with inclusion of pfu in the PCR mix at a ratio of 1:9 with Taq polymerase. 

 

For cloning an additional step was required in order to add the 3‟ adenine residue required for 

ligation to the Strataclone PCR cloning vector pSD-A-amp/kan. While the Taq polymerase 

catalyses the addition of this 3‟ overhang during PCR amplification the proofreading polymerase 

pfu does not. In order to correct this following completion of the initial PCR cycle 0.1 µl Taq was 

added to PCR reactions and subsequently incubated for 10 minutes on a robocycler preheated to 

72°C. Reactions were then placed on ice prior to proceeding to the ligation step as described in 

section 2.4.9. 
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2.4.7 Gel electrophoresis and product size determination 

 

PCR product from speciation reactions utilising the TBR, TCS and TVW primer sets were 

separated by gel electrophoresis on 1% (w/v) Seakem LE agarose gels, loaded alongside 100 bp 

DNA ladder to facilitate estimation of product size and visualised by UV using a transilluminator. 

 

Microsatellite PCR products were separated by gel electrophoresis on 3% (w/v) Nusieve GTG 

agarose gels, loaded alongside 100 bp DNA ladder to facilitate estimation of product size. For 

accurate size determination one internal primer of each nested microsatellite primer set was 

labelled with a 5‟ FAM or HEX modification. Following dilution based upon the intensity of 

visible band on agarose gels products were size-separated on a capillary-based sequencer (ABI 

3100 Genetic analyser; Applied Biosystems; Dundee sequencing service http://www.dnaseq.co.uk) 

alongside a set of ROX labelled size standards (GS400HD markers, Applied Biosystems). This 

allowed for the determination of DNA fragment length using the Peak Scanner v1.0 software 

(Applied Biosystems) with microsatellite alleles defined as individual peaks on the trace. 

 

2.4.8 Olignonuclotides 

 

All oligonucleotide primers used in this investigation were synthesised by MWG-Biotech based 

upon previously described material (Masiga et al., 1992; MacLeod et al., 2005b; Duffy et al., 2009; 

Morrison et al., 2009b). The sequences of all primers used are listed in Appendices 1 - 4. 

 

2.4.9 Cloning and sequencing 

 

2.4.9.1 Ligation of PCR product to the cloning vector 

 

Cloning of PCR products followed the standard manufacturers protocol for the Strataclone PCR 

cloning kit. Products were ligated into the cloning vector pSC-A-amp/kan by mixing of 3 µl 

Strataclone cloning buffer, 2 µl undiluted PCR product and 1 µl Strataclone pSC-A-amp/kan 

cloning vector which was incubated at room temperature for five minutes before being placed on 

ice. 

 

2.4.9.2 Transformation of E. coli competent cells 

 

PCR product, ligated into the cloning vector was used for the transformation of E. coli Strataclone 

Competent cells following the manufacturers protocol. Cells were thawed on ice before 1 µl of the 

ligation mix was added and incubated on ice for 20 minutes. Following incubation the mixture was 

http://www.dnaseq.co.uk/
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heat shocked at 42
o
C for 45 seconds before being returned to ice for a further two minutes. During 

this time 250 µl of LB media was warmed to 37
 o
C before being added to the cells which were 

allowed to recover by incubation at 37
 o
C with shaking at 200 rpm for a total time of 1 hour. LB 

plates containing 100 µg/ml ampilcillin and prepared in advance were warmed to room temperature 

and 40 µl of 2% (w/v) X-Gal was spread on each to allow for blue / white colour screening of the 

transformed cells. At the end of the 1 hour incubation the transformed cells were spread onto the 

agar plates at a range of dilutions and incubated overnight at 37
 o
C to allow for colony growth. 

 

2.4.9.3 Analysis of transformed cells 

 

After overnight growth transformed cells were identified by the presence of white colonies which 

were picked and incubated in 5 ml LB media containing 100 µg/ml ampicillin and cultured 

overnight at 37
 o
C in a shaker set to 200 rpm. Aliquots of the overnight culture were pelleted by 

centrifugation at 5000 G for 5 minutes and the supernatant discarded. The QIAprep spin miniprep 

kit was utilised to extract the amplified plasmids from the cell pellets as described in the 

manufacturers protocol with purified plasmid DNA eluted into with 50 µl PCR grade H2O which 

was stored at -20
 o
C until required. Plasmid preparations were checked for the successful 

integration of the desired PCR product by PCR amplification from the purified DNA and 

visualisation following gel electrophoresis. Sequencing of purified DNA was carried out by the 

Dundee sequencing service (University of Dundee) with samples prepared as according to the 

instructions provided by the service. 

 

2.4.10 DNA quantification 

 

Where required DNA concentration was determined utilising 1 µl of a sample, using the nucleic 

acid measurement program of a nanodrop ND-1000 spectrophotometer following calibration with 

appropriate solutions. Following dilution of samples the DNA concentration was re-measured and 

dilutions repeated if necessary.  

 

2.4.11 High-throughput whole genome sequencing 

 

2.4.11.1 Sample preparation 

 

Genomic DNA from the parental strains TREU 927, STIB 247 and STIB 386, alongside genomic 

DNA from the two F1 progeny (hybrids 77 and 86) was prepared by A. Cooper from procyclic 

form cell cultures of the respective lines and sent to the Pathogen Sequencing Unit, WTSI for 

whole genome sequencing. 
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2.4.11.2 Genome Sequencing 

 

Genomic DNA sample processing, library construction and Illumina Solexa sequencing was 

performed at the WTSI using the Illumina Genome Analyser System, following manufacturers and 

internal WTSI protocols. Each sample was run on a single lane of one Illumina Genome Analyser 

run generating paired end, 76 bp reads. Reads were filtered for initial quality control following 

Sanger protocols and made available via FTP for genome assembly and analysis. 

 

2.5 Data Analysis 

 

The figures produced for this investigation were produced as graphs in Microsoft Excel or exported 

directly from analysis software. Image manipulation (cropping, colour alteration, addition of text) 

was achieved using the GNU Image Manipulation Program (GIMP; http://www.gimp.org). 

 

2.5.1 Statistical analysis of population genotyping data 

 

MLGs were generated from the specific allele combinations across the markers utilised to study 

each field population, with each unique MLG assigned an ID number. Dendrograms of similarity 

were generated from MLG data utilising clustering calculator 

(http://www2.biology.ualberta.ca/jbrzusto/cluster.php). Genetic distances for the dendrograms were 

determined using Jaccard‟s similarity co-efficient with the unweighted pair group method with 

arithmetic mean (UPGMA) algorithm utilised in tree construction and visualised with Treedyn 

(Chevenet et al., 2006). Hardy-Weinberg equilibrium, linkage disequilibrium between pairs of loci 

and FIS were calculated using the Genetic Distance Analysis program 

(http://hydrodictyon.eeb.uconn.edu/people/plewis/software.php). GenAlEx (Peakall and Smouse, 

2006) was used for analysis of allele frequencies; pairwise FST; unbiased genetic distance (D) 

determination; and principal co-ordinate analysis (PCoA). The program MLGism (Stenberg et al., 

2003) was used to determine the probability of replicated genotypes occurring due to sexual 

recombination. Psex values were calculated for each replicated MLG and compared with values 

generated by 10
6
 simulated populations. Multiple variable linear regression models were 

constructed in Minitab 15 while population sub-structuring was assessed with STRUCTURE 

(Pritchard et al., 2000) and InStruct (Gao et al., 2007). 

 

 

  

http://www.gimp.org/
http://www2.biology.ualberta.ca/jbrzusto/cluster.php
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2.5.2 Analysis of whole genome sequencing data 

 

2.5.2.1 Assembly of genome sequences 

 

High-throughput whole genome sequence data were provided by the WTSI as paired read 

sequences collected in the FASTQ format following internal quality checking. Reads were trimmed 

from the 3‟ end until the average base quality for the read was of 20 or higher. Reads were then 

aligned to the TREU 927 T. brucei reference genome (version 5) (Berriman et al., 2005) using 

BWA v0.5.9-r16 (Li and Durbin, 2009) utilising the following commands: 

 

bwa index 927-v5.fa 

bwa aln -t 8 -q 20 927-v5.fa in_1.fq > out_1.sai 

bwa aln -t 8 -q 20 927-v5.fa in_2.fq > out_2.sai 

bwa sampe -a 1000 927-v5.fa in_1.sai in_2.sai in_1.fq in_2.fq > out.sam 

 

2.5.2.2 SNP calling 

 

Putative SNPs within the assembled genomes were called using the SAMtools software (Li et al., 

2009) by evaluation of the relative frequency of alleles at each position following quality and 

positional filtering. At each position bases are filtered for individual base quality and mapping 

quality, average base and mapping quality of surrounding bases on the read and proximity to other 

SNPs or indels. Reads which fail to meet the quality threshold for any of these conditions are 

excluded from SNP calling. Following quality assessment the consensus is called based upon the 

observed frequencies of the remaining bases and further filtered to exclude positions with an 

insufficient read depth and where the confidence of the SNP is too low. Homozygous SNPs 

indicate a single base, in disagreement with the reference sequence at the position in question while 

heterozygous SNPs are called when two bases are present, each at a sufficient frequency. Complex 

SNPs where 3 or more alleles are indicated to be present are filtered out due to the diploid nature of 

trypanosomes. For the TREU 927 sequence a minimum read depth of 20 aligned, high quality 

bases were required during SNP filtering while the lower average fold coverage for STIB 247, 

STIB 386, hybrid 77 and hybrid 86 necessitated the use of a minimum coverage of 10 aligned, high 

quality bases. A cap of 3 x the average chromosomal coverage was employed during SNP calling 

for all assemblies. 
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2.5.2.3 Development of custom scripts for analysis 

 

Custom scripts for the extraction and analysis of genome sequence and SNP data were manually 

designed and written for use with Perl 5.10. The functionality of scripts was tested utilising subsets 

of the available data with results manually verified. The haplotype reconstruction scripts are 

described in Chapter 6.2.3. 
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Chapter 3 

The population genetics of 

Trypanosoma vivax in The 

Gambia, 2006 – 2007 
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3.1 Introduction 

 

Nagana, as described in Chapter 1, imposes a considerable burden to both animal welfare and the 

economies of developing countries reliant on susceptible livestock. The Gambia, a small sub-

Saharan country in the west of Africa is located within the northern confines of the tsetse belt and 

is one of the many countries affected by animal trypanosomiasis. Running along the downstream 

portion of the Gambia River the seasons alternate between a long dry October to June period 

interspaced with a short, intense rainy season during July, August and September. Tsetse flies 

capable of transmitting the Salivarian trypanosomes are prevalent throughout the country during 

the rainy season while being constrained to river and water habitats during the dry season. The 

country has a population estimated at 1.6 million, of whom ~80% are involved in the agricultural 

sector and ~60% live at or below the national poverty line (WHO, 2009). Trypanosomiasis 

therefore has the potential to have a significant impact upon the livelihood of the majority of the 

population. 

 

Animal usage within The Gambia is primarily split between herd animals such as cattle, goats and 

sheep and draft animals, typically oxen, horses and donkeys which are used for transportation and 

farm labour. While herd animals may be kept for meat they are valued as an investment in and of 

themselves, with manure and milk production of herds highly important (Jaitner et al., 2003). The 

1993 livestock census (DLS-ITC, 1993) recorded 278,538 cattle spread over 5,030 herds, almost 

exclusively of the Bos taurus N‟Dama breed. This breed of cattle is widely reported to be 

trypanotolerant, able to control both parasitaemia and the symptoms of trypanosomiasis during 

infection (Naessens, 2006). Alongside cattle the census recorded 68,721 draught animals in the 

country. Equines, predominantly donkeys, accounted for 75% of these while work oxen / cows 

comprised the remainder of the animals. While the cattle of the country may be trypanotolerant, 

equines are reported to be highly susceptible to the effects of trypanosomiasis (Snow et al., 1996). 

By the agricultural census of 2001 / 2002 the number of cattle had increased to 323167 animals 

(DOP-DOSA, 2002). Equine numbers were not recorded in this survey. 

 

Within The Gambia there have been a number of studies investigating the prevalence of animal 

trypanosomiasis utilising traditional microscopy techniques. Prevalence in cattle and small 

ruminants has been shown to vary considerably by breed and site; Leperre and Claxton (1994) 

observed significant differences between zebu and N‟Dama (6.2% and 1.9% respectively) while 

Snow et al (1996) reported prevalences in small ruminants, horses, donkeys and cattle ranging from 

0% to ~10% when comparing seven sites within the country. These results are mirrored in a 

number of equine studies, reporting prevalence ranges typically in the 0-10% range (Mattioli et al., 

1994; Snow et al., 1996) although prevalences as high as 45% have been reported (Faye et al., 

2001). The two most recent studies (Dhollander et al., 2006; Pinchbeck et al., 2008), while 
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observing higher incidences of animal trypanosomiasis have relied upon samples collected at 

veterinary clinics and cannot therefore be regarded as true estimates of prevalence. While the 

majority of studies have relied upon microscopy, with or without the use of a buffy coat to 

concentrate the parasites, only a few Gambian studies have used PCR based techniques (Pereira de 

Almeida et al., 1998; Faye et al., 2001; Pinchbeck et al., 2008). Faye et al., using species specific 

primer sets for T. brucei, T. congolense and T. vivax reported seven times more cases detected by 

PCR compared to traditional buffy coat microscopy. In addition to the increased sensitivity, PCR 

based diagnosis facilitates easy identification of the individual species present, as opposed to 

microscopic diagnosis which is reliant upon the ability to distinguish the three species by 

morphological differences. 

 

The work by Pinchbeck et al.(2008), in collaboration with the GHDT reported a total trypanosome 

prevalence of 91% in horses and donkeys based on species specific PCR, as opposed to 18% by 

microscopy. The GHDT, based in Sambel Kunda in the Central River District of The Gambia 

(Figure 3.1), is a small non-governmental organisation with a focus on animal welfare training of 

local residents and the provision of treatment clinics at local markets. This focus on clinics may 

explain the unusually high prevalence as samples were obtained from animals brought to the clinics 

by owners, introducing a bias towards infected animals. These two PCR based studies indicated T. 

congolense and T. vivax to be the most prevalent species with only a small proportion of cases 

attributed to T. brucei. While Faye et al. reported T. congolense to be the most prevalent species 

the study of Pinchbeck et al. identified T. vivax present in 210 of the 241 samples examined. Due to 

the non-random sampling employed in the latter study it is not possible to determine whether this is 

due to regional variation in the prevalence of the respective species or an increased likelihood of 

visible illness in animals infected with T. vivax leading to an increased representation at treatment 

clinics. 

 

While a number of studies have examined the prevalence of T. vivax in The Gambia and the wider 

contexts of Africa and South America (as described in Chapter 1) the potential for genetic 

exchange in the species has not been extensively analysed as in T. brucei. This is in part due to the 

low parasitaemia observed in natural infections and the difficulty in adapting the species to growth 

in culture. Genetic exchange in T. brucei, while experimentally demonstrated has proven to be a 

controversial subject with regards its role in field populations despite the potential for mating to 

have a major role on the dynamics of populations and evolution of the parasite. For T. vivax only a 

handful of studies have attempted to examine the subject of genetic exchange, however these 

studies were limited by the number of available isoenzyme markers or small sample sizes (Kilgour 

et al., 1975; Kilgour and Godfrey, 1977; Allsopp and Newton, 1985; Tibayrenc et al., 1991). 

Analysis of these data provided evidence for clonality in T. vivax however there has been no further 
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study of genetic exchange, despite the availability of new types markers or our increased 

understanding of genetic exchange in T. brucei. 

 

 

 

 

 

 

 

 

 

Figure 3.1 Geography of The Gambia 

Country profile for The Gambia showing major population centres. 

Approximate location of Sambel Kunda, base of the GHDT and focal point for local clinics at 

which samples were collected. Public domain map sourced from Wikimedia commons 

(http://commons.wikimedia.org/), October 2010. 

  

http://commons.wikimedia.org/
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The sample set employed by Pinchbeck et al.(2008), with a high prevalence of T. vivax and 

bolstered by a further 290 sympatric samples therefore provided an ideal opportunity to once again 

investigate the role of mating in this neglected species. Further to this, a parallel study of T. 

congolense, utilising the same sample set employed here, demonstrated evidence for sub-

structuring and frequent genetic exchange, the first to do so for this species (Morrison et al., 

2009b). Mating appears therefore to be a feature of at least two of the species comprising the 

Salivarian trypanosomes. Examining the potential for genetic exchange in T. vivax will be essential 

in determining the role and extent of mating not only within the species but the genus as a whole. 

While previous population studies in T. vivax used isoenzyme markers the work of the WTSI in 

making available the draft genome sequence of the species made the design, evaluation and 

application of T. vivax specific microsatellite markers viable. Microsatellites, as discussed in 

Chapter 1 provide a number of benefits over isoenzymes. The amplification step of PCR allows for 

a far higher sensitivity, the markers exhibit a far higher level of polymorphism and are typically 

neutral with regards selective pressure as they most often located within non-coding regions of the 

genome. Microsatellite markers have also been widely employed in the study of genetic exchange 

in T. brucei and more recently in T. congolense, examining the genetic diversity of the species and 

frequency of mating (Biteau et al., 2000; MacLeod et al., 2001a; Jamonneau et al., 2002; Morrison 

et al., 2008b, 2009b) 

 

The results of this chapter describe an analysis of the prevalence and population genetics of T. 

vivax in The Gambia with the aim of examining the genetic diversity present and detecting 

evidence suggesting the potential for mating in this species. The microsatellite markers described 

here were developed as part of a sample study submitted as part of an MRes qualification in 2007. 

Primer sets were designed around microsatellites present within the Y486 T. vivax genome 

reference sequence and screen for polymorphisms using the Kenyan ILRAD v34 isolate and a 

subset of the Gambian 2007 samples identified as T. vivax positive. Identification of species present 

in the samples was performed by A. Hamilton and Dr L. Morrison via species specific PCR prior to 

the analysis described here.  
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3.2 Results 

 

3.2.1 Identification of meiosis-associated genes 

 

In order for genetic exchange to occur in T. vivax the species must possess the required machinery, 

an absence of which would imply total clonality. In contrast the presence of these genes would 

imply the potential for mating but would not in and of themselves be sufficient to demonstrate that 

mating occurs. As the exact nature of trypanosome mating is not understood a group of eight 

meiotic genes that have been shown to be conserved amongst across many eukaryote lineages 

(Schurko and Logsdon, 2008) were selected for analysis. The eight genes chosen for this analysis 

are spo11, dmc1, mnd1, msh4, msh5, hop1, hop2 and rec8 have all been demonstrated to have 

meiotic specific functions, of which only spo11 appears to be completely essential across all 

eukaryotes. 

 

With the aid of this meiotic toolkit Morrison et al.(2009b) detected the presence of all eight genes 

within the genomes of T. brucei and T. congolense (Table 3.1). While the expression, function and 

meiotic role of these genes have yet to be fully characterised in T. brucei, the presence of mating in 

this species implies that, if essential in trypanosomes they are functional. The evidence for mating 

in T. congolense would likewise suggest retention of function in this species despite the high levels 

of divergence between T. brucei and T. congolense (Table 3.2). Utilising these orthologous 

sequences from T. brucei and T. congolense it has been possible to identify these eight genes within 

the draft genome of T. vivax generated by the WTSI (Table 3.1) and generate amino acid 

alignments for each (Table 3.2 and Appendix 5). For mnd1 and msh5 in T. vivax the annotated 

genes lack start codons, although it is possible that these genes use start codons 400 and 232 bp 

upstream, respectively. For the purpose of the alignment only the annotated sequences of both 

genes were included.  

 

Alignment of the genes for each species (Appendix 5) indicates that while the sequences have 

diverged there are regions where a high proportion of the codons have been conserved. Insertion / 

deletion events can be observed throughout the alignments, with the largest typically clustering 

towards the start and end of sequences. The level of identity ranges from 40% to 88% (T. 

congolense / T. vivax pairwise identity for Hop2 and T. brucei / T. vivax pairwise identity for dmc1 

respectively), with the majority falling within a window of 45 – 60% (Table 3.2). Despite this 

divergence recognisable superfamily motifs are conserved within the sequences of all three species 

supporting a common ancestry. While the high level of divergence of T. vivax from T. brucei and 

T. congolense could suggest a loss of function similar values of divergence are observed between 

T. brucei and T. congolense, two species in which genetic exchange is either known or believed to 
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occur. It is possible therefore that the potential for genetic exchange has likewise been retained in 

T. vivax. As for T. brucei and T. congolense further study will be required in order to determine the 

function of each of these genes and whether they possess a meiotic role in trypanosomes. Recent 

work by Peacock et al. (2011) has demonstrated the expression of dmc1, hop1 and mnd1 by a 

subset of trypanosomes in the salivary glands of a tsetse following infection with T. brucei. The 

genes were expressed in an order consistent with the meiotic cycle of other eukaryotes, indicating a 

continued meiotic role for these genes in T. brucei.  

 

Gene T. brucei accession 
number 

T. vivax accession 
number 

T. congolense 
accession number 

spo11 Tb927.5.3760 TvY486_0503200 TcIL3000.0.05590 

dmc1 Tb09.211.1210 TvY486_0904120 TcIL3000.11.8740 

mnd1 Tb11.02.3380 TvY486_1105890 TcIL3000.0.24610 

TcIL3000.11.6040 

msh4 Tb927.10.1270 TvY486_1001250 TcIL3000.10.1060 

msh5 Tb927.3.4280 TvY486_0303550 congo822g05.q1k_1 

hop1 Tb927.10.5490 TvY486_1005520 TcIL3000.10.4620 

congo1147c06.q1k_0 

hop2 Tb927.2.5190 TvY486_0007970 TcIL3000.2.1290 

rec8 Tb927.7.6900 TvY486_0706620 TcIL3000.7.5560 

 

Table 3.1 Meiotic gene accession numbers 

Accession numbers for the eight conserved meiotic genes putatively identified in T. brucei, T. 

congolense and T. vivax. For mnd1 two T. congolense sequences, TcIL3000.0.24610 and 

TcIL3000.11.6040, with sequence identity of 98% to one another are present within the genome 

sequence. Hop1 in T. congolense has been only partially assembled within the genome assembly, 

with the identifiers for each half listed here. 

 

 

 

Table 3.2 Pairwise species identity of meiotic genes 

Pairwise sequence identity (%) for the eight core meiotic genes identified by Schurko and Logsdon 

(2008) following alignment of T. brucei, T. vivax and T. congolense amino acid sequences. 
a
 Two 

sequences, TcIL3000.0.24610 and TcIL3000.11.6040, with identity of 98% to one another were 

identified within the T. congolense genome assembly, pairwise identities are therefore to each of 

the respective sequences. 
b
 Identity to the combined sequences of TcIL3000.10.4620 and 

congo1147c06.q1k_0. 

 spo11 dmc1 mnd1 msh4 msh5 hop1 hop2 rec8 

T. brucei – T. vivax 46 88 44 48 51 54 50 44 

T. brucei – T. congolense 51 49 51 / 51
a 

55 63 56
b 

52 47 

T. vivax – T. congolense 47 49 44 / 43
a 

46 52 51
b 

40 48 
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3.2.2 Prevalence of T. vivax, T. congolense and T. brucei in The Gambia 

 

In order to assess the prevalence of T. vivax in The Gambia a total of 531 equine and bovine 

samples were collected between March 2006 and January 2007. Equine samples from horses and 

donkeys brought to clinics run by the GHDT were collected as blood samples on FTA cards. 

Clinics were operated within the local region surrounding the base of the GHDT in Sambel Kunda 

in the Central River District (Figure 3.1) although animals brought to clinic often came from 

further afield. A total of 323 equine samples were collected at three time points, March 2006, 

August 2006 and January 2007 with prevalence based on species specific PCR (Masiga et al., 

1992) (Table 3.3). The total trypanosome prevalence and species prevalence values of the March 

and August samples, determined by microscopy and species specific PCR respectively have been 

previously described by Pinchbeck et al.(2008), with the slightly different values reported here 

representing corrections to the published data. Of the T. congolense subgroups only T. congolense 

Savannah was identified within the population; therefore for the remainder of this chapter T. 

congolense refers to T. congolense Savannah. T. vivax prevalence in equines was 85% in March 

2006, 91% in August 2006 and 73% in January 2007. Mixed species infections of T. vivax with T. 

brucei, T. congolense or both were common, and occurred in 46% of T. vivax-infected animals.  

 

In addition to the equine samples, sympatric bovine blood samples were collected on FTA cards 

through a random sampling of herds maintained by the International Trypanotolerance Centre 

(ITC), with the data summarised in Table 3.4. Of the 193 randomly sampled cattle, 21 (11%) were 

identified as positive for T. vivax of which only 5 were also found to be infected with T. brucei or 

T. brucei and T. congolense. No mixed infections of T. vivax and T. congolense were observed 

amongst these animals. The difference in bovine prevalence compared with that observed in the 

equine sample set is likely due to the random sampling employed and thus may be more indicative 

of the true prevalence of T. vivax in the region. However other factors such as local variation or 

differing host susceptibilities cannot be ruled out. An additional set of 15 cattle samples collected 

in 2006, which were identified as being positive by microscopy prior to collection of the FTA 

blood spots were also included in the later genetic analysis of T. vivax.
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n, number of samples; N, number of trypanosome positive samples; P%, percentage of positive samples 

 

Table 3.3 T. vivax prevalence in equines 

Prevalence in equines of Trypanosoma vivax infections as determined by species specific PCR. All samples were collection from animals brought to clinics run by the 

Gambian Horse and Donkey Trust, The Gambia. 

 

 

 

Species present 

March 2006 

(n = 154) 

August 2006 

(n = 87) 

January 2007  

(n = 82) 

Horse 

(n = 251) 

Donkey 

(n = 72) 

Overall prevalence 

(n = 323) 

 N P% N P% N P% N P% N P% N P% 

T. vivax only 71 46 40 46 34 41 125 50 20 28 145 45 

T. vivax + T. congolense mixed infection 30 19 19 22 21 26 52 20 18 25 70 22 

T. vivax + T. brucei mixed infection 23 15 10 11 3 4 25 10 11 15 36 11 

T. vivax + T. congolense + T. brucei mixed infection 7 5 10 11 2 2 14 6 5 7 19 6 

Total T. vivax 131 85 79 91 60 73 216 86 54 75 270 84 
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n, number of samples; N, number of trypanosome-positive samples; P%, percentage of positive 

samples; Na, not applicable, as only microscopically positive samples were examined. 

 

Table 3.4 T. vivax prevalence in bovines 

Prevalence in bovines of Trypanosoma vivax infections as determined by species specific PCR. 

Samples were collected by random sampling of herds owned by the ITC, The Gambia.

 

Species present 

August 2006 

(n = 15) 

January 2007  

(n = 193) 

 N P% N P% 

T. vivax only 7 Na 16 8 

T. vivax + T. congolense mixed infection 1 Na 0 0 

T. vivax + T. brucei mixed infection 5 Na 4 2 

T. vivax + T. congolense + T. brucei mixed infection 0 Na 1 7 

Total T. vivax 13 Na 21 11 



 

 
Page | 74 

P
ag

e | 7
4
 

3.2.4 Genetic analysis of T. vivax in The Gambia 

 

The primary topic of this thesis is the investigation of genetic diversity in the African trypanosomes 

focusing here upon T. vivax and addressing that of T. congolense and T. brucei in subsequent 

chapters. In order to achieve this genotyping of each of the 304 T. vivax positive samples was 

attempted using a panel of eight single-locus microsatellite markers developed as part of an earlier 

study. These eight markers, TV3, TV4, TV6, TV14, TV17, TV24, TV31 and TV49 were designed 

around di- and trinucleotide motif microsatellites (Appendix 2) with each microsatellite located on 

a separate contig from the WTSI sequencing project. While genotyping was attempted for each of 

the T. vivax positive samples the majority of samples failed to amplify for any single-locus markers 

(Figure 3.2), thus full MLGs (positive allele identification for all eight markers) were successfully 

obtained for only 31 samples (Appendix 6), 10% of the total T. vivax infections identified. This low 

amplification rate with the single copy microsatellite markers is suggestive of a population where 

the majority of infections are present at parasitaemias below the threshold for detection by single-

locus PCR but within that of the more sensitive multicopy species specific marker.  

 

While two alleles were identified for both TV3 and TV4 virtually all of the 31 fully genotyped 

samples were homozygous for the same allele, which was present at a frequency above 0.8, 

rendering them uninformative in the genetic analysis. These markers were therefore discarded from 

the analysis. The remaining six markers had between two and four alleles per locus (Figure 3.3). Of 

the 31 samples for which full MLGs were obtained no mixed T. vivax genotype infections were 

identified, as defined by the presence of three or more alleles for any single marker. The lower 

sensitivity of the single locus markers and small number of fully genotyped samples however 

makes the identification of mixed infections unlikely if they are present. The large differences in 

allele sizes, up to 63 bp, and lack of intermediate alleles in the population suggest the 

microsatellites may be following a non-stepwise mutation model; that the sample size is too small 

to detect a full range of allele sizes; or that intermediate alleles have been lost from the population. 

 

From the 31 fully genotyped samples nine unique MLGs were identified, four of which were 

present in multiple samples (Figure 3.4 and Appendix 6). MLG 8 was detected 15 times, 

constituting almost half of the genotyped samples. The control sample, T. vivax ILRAD V34 (MLG 

1), originating from Kenya, had unique alleles at three of the six loci (Appendix 6). In order to 

visualise the relationships between the MLGs a UPGMA dendrogram of similarity was constructed 

utilising Jaccard‟s coefficient of similarity to group the isolates based upon their identity to one 

another (Figure 3.4). While high bootstrap support was identified for node A the separation of these 

samples did not correlate with available sampling data. 
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Figure 3.2 Genotyping success rate 

Number of loci amplified from each T. vivax positive sample. Despite the use of nested PCR 

protocols the majority of samples identified as T. vivax positive failed to amplify for any of the 

eight microsatellite markers used in the study, which may be suggestive of a low parasitaemia 

population below the sensitivity of single copy markers. 
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Figure 3.3 Allele frequency distribution 

Distribution of allele frequencies for the 31 fully genotyped samples collected from horses, donkeys and cattle in The Gambia using six Trypanosoma vivax specific 

microsatellite markers. Alleles are group by locus and listed as their bp size.
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To further our understanding of the T. vivax population structure, allele frequencies were examined 

for deviation from Hardy–Weinberg equilibrium and for the presence of linkage disequilibrium 

between the six loci. These tests indicate whether the observed allele combinations between loci or 

the genotype frequencies resemble those expected in a randomly mating population. Significant 

disagreements (P < 0.05) with Hardy–Weinberg equilibrium predictions are present for five of the 

six loci (TV6, TV24, TV17, TV31 and TV49) (Table 3.5). This disagreement with Hardy–

Weinberg predictions is due to the global heterozygote excess observed, with TV24 and TV17 at, 

or close to, heterozygote fixation. No homozygotes were identified for marker TV24 despite the 

presence of four alleles at this locus. The population wide heterozygote excess is reflected in the FIS 

values, ranging from -0.38 to -0.94 across the six markers (Table 3.5). Negative FIS values such as 

those observed here are therefore the result of higher than expected heterozygosities across each of 

the loci. While a randomly mating population would be expected to have values close to zero, these 

large negative values are indicative of partial or total clonality within the population. 

 

To test for evidence of genome re-assortment and recombination, linkage disequilibrium between 

alleles at all pairwise combinations of loci were examined. After accounting for significant 

deviation from Hardy-Weinberg equilibrium significant levels of linkage disequilibrium (P < 0.02 

and below) (Table 3.6) were observed between all pairwise combinations, in line with expectations 

for a population resulting from clonal expansion. Correction for deviation from Hardy-Weinberg 

equilibrium, achieved by preserving the correlation between alleles at different loci is required to 

prevent the artificial introduction of significant linkage. As a final test to examine the role of 

mating in the population, samples were analysed with MLGsim, which simulates randomly mating 

populations from known allele frequencies in order to predict MLG frequencies. It is then possible 

to determine whether observed MLG frequencies are higher than expected, indicating a lack of 

random mating. MLGsim identified three of the four repeated MLGs (MLGs 4, 8 and 9) as having 

frequencies significantly (P < 0.01) higher than expected in a randomly mating population. MLG 

10, present twice in the sample set, did not differ significantly (P > 0.05) in frequency from that 

expected in a randomly mating population.  
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Figure 3.4 UPGMA dendrogram of similarity for the genotyped T. vivax samples 

UPGMA dendrogram of similarity for Trypanosoma vivax multilocus genotypes (MLGs) for the 31 

fully genotyped samples collected from horses, donkeys and cattle in The Gambia. The 

dendrogram was generated by Treeview from Clustering Calculator. Bootstrap values generated 

from 100 reiterations are displayed for the major nodes. Scale bar represents dissimilarity. 
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Locus Na Ho He FIS P 

TV6 3 0.68 0.49 -0.38 0.04 

TV14 2 0.55 0.40 -0.39 0.07 

TV17 2 0.97 0.50 -0.94 <0.001 

TV24 4 1.00 0.68 -0.48 <0.001 

TV31 2 0.77 0.49 -0.59 <0.001 

TV49 2 0.81 0.48 -0.68 <0.001 

Na, number of alleles; Ho, observed heterozygosity; He, expected heterozygosity; FIS, inbreeding 

coefficient; P, probability of agreement with Hardy-Weinberg equilibrium (P > 0.05 = agreement 

with Hardy-Weinberg equilibrium). 

 

Table 3.5 T. vivax population statistics 

Polymorphism, heterozygosity and agreement with Hardy–Weinberg equilibrium based on allele 

frequencies observed in 31 Trypanosoma vivax positive samples collected from horses, donkeys 

and cattle in The Gambia following genotyping at six T. vivax specific microsatellite markers. 

 

 

 

 

Locus 1 Locus 2 P 

TV6 TV14 0.02 

TV6 TV17 <0.001 

TV6 TV24 0.02 

TV6 TV31 0.01 

TV6 TV49 0.01 

TV14 TV17 <0.001 

TV14 TV24 <0.001 

TV14 TV31 <0.001 

TV14 TV49 <0.001 

TV17 TV24 <0.001 

TV17 TV31 <0.001 

TV17 TV49 <0.001 

TV24 TV31 <0.001 

TV24 TV49 <0.001 

TV31 TV49 <0.001 

P, probability of linkage equilibrium between loci (P> 0.05 = no significant linkage between loci). 

 

Table 3.6 Pairwise linkage disequilibrium 

Linkage disequilibrium between all pairwise combinations of six Trypanosoma vivax specific 

microsatellite markers in 31 T. vivax positive samples collected from horses, donkeys and cattle in 

The Gambia. Significant linkage was observed in all pairwise combinations following correction 

for deviation from Hardy-Weinberg equilibrium.
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3.3 Discussion 

 

The primary aim of this study was to examine the prevalence and potential for genetic exchange in 

the African trypanosome T. vivax through analysis of genomic and field data. As discussed in 

Chapter 1, despite the extensive distribution and considerable impact of Nagana caused in part by 

T. vivax the study of this species remains neglected, partially due to the difficulties in adapting 

isolates for laboratory use (Gardiner, 1989). These data, collected originally by Pinchbeck et 

al.(2008), and expanded upon here indicates a high prevalence of T. vivax in equines that have been 

brought to clinic for treatment. That diagnosis of trypanosomiasis required PCR amplification 

techniques for the majority of animals suggests that while low parasitaemia infections are frequent 

they continue to place a burden upon animal welfare. Due to the sampling of equines brought to 

clinics it is impossible to determine the incidence rates and true prevalence of trypanosomiasis 

amongst equines in The Gambia from these data. The random sampling of 193 cattle from herds 

maintained by the ITC however indicated a far lower prevalence of trypanosomiasis, particularly of 

T. vivax. The different sampling methods employed in collecting these samples prevent a direct 

comparison of prevalence between equine and bovine hosts. It is therefore not possible to assess the 

relative susceptibility of equines and bovines to infection, which will require further studies 

employing random sampling. 

 

Following examination of prevalence, evidence for genetic exchange in T. vivax was examined by 

identifying the core genes required for meiosis and examining the T. vivax population for signs of 

mating. T. brucei is the only member of the Salivarian trypanosomes for which mating has been 

unequivocally demonstrated and displays a classical Mendelian pattern of inheritance (Jenni et al., 

1986; MacLeod et al., 2005a). More recently evidence for mating has emerged from a field study 

of T. congolense, employing the same sample set and techniques used here (Morrison et al., 

2009b), however mating has yet to be experimentally demonstrated in this species. 

 

The first step in our analysis, identification of eight meiosis associated genes (El-Sayed et al., 

2005; Ramesh et al., 2005; Schurko and Logsdon, 2008) indicated their presence within the T. 

vivax genome, with conservation of protein features. While the sequences were highly divergent 

between T. brucei and T. vivax similar levels of divergence were observed between the respective 

T. brucei/T. congolense alignments. If these eight genes have retained their function within T. 

brucei and T. congolense a similar retention of function, and therefore potential for genetic 

exchange, cannot be ruled out in T. vivax. The presence of these genes within the three lineages and 

the early divergence of the T. vivax line (Stevens et al., 1999) indicates an ancestral nature to the 

meiotic machinery present and an early role for genetic exchange within the Salivarian 

trypanosomes. However, even in T. brucei our understanding of the expression, functionality and in 

particular the meiotic roles of these genes is limited, with only the recent work of Peacock et 
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al.(2011) providing insight into the matter. While the exact mechanism and requirements remain 

elusive, mating in T. brucei is known to occur within the salivary glands of the tsetse fly vector 

(Gibson and Whittington, 1993; Gibson and Bailey, 1994; Bingle et al., 2001; Tait et al., 2007; 

Gibson et al., 2008). However in T. vivax cyclical development in the tsetse is simpler in nature, 

being restricted to the proboscis of the fly, possibly accounting for the ease with which this species 

can be mechanically transmitted. It could therefore be argued that T. vivax is incapable of meiosis 

due to the lack of development within the salivary glands. The evidence for genetic exchange in T. 

congolense which, like T. vivax, does not colonise the salivary glands, coupled to the ancestral 

origin of the meiotic genes instead suggests that salivary gland meiosis may be a T. brucei specific 

adaptation of a pre-existing life cycle stage. 

 

Evidence for genetic exchange in T. vivax is severely limited due to a lack of previous field data. 

The studies of Kilgour et al.(1975) and Kilgour and Godfrey (1977) addressed the diversity of T. 

vivax using samples collected from a single geographic location and time point, which were later 

analysed by Tibayrenc et al.(1991). Sampling directly from Zebu cattle in Nigeria these studies 

identified 61 and 31 T. vivax positive animals and with the use of two isoenzyme markers 

demonstrated the presence of three main T. vivax isotypes, which were still present as the dominant 

isotypes within the population during the second study three years later. While these studies were 

limited by the use of only two isoenzymes to assay diversity, together with the nine isolates from 

Allsopp and Newton (1985) they provided the first evidence for clonality in the species based on 

the criteria outlined by Tibayrenc et al.(1991), namely an over-representation of a small number of 

genotypes, an absence of recombinant genotypes and significant levels of linkage disequilibrium 

between markers. In order to further explore the genetic diversity and potential for genetic 

exchange in T. vivax this study has likewise used samples collected from a localised geographic 

area and collected over the time period of one year.  The analysis suggests a high prevalence of T. 

vivax in The Gambia, characterised by low parasitaemic infections and the clonal expansion of 

particular genotypes. 

 

The key features of clonality (Tibayrenc et al., 1990; Maynard Smith et al., 1993; Halkett et al., 

2005; de Meeûs et al., 2006) namely excess heterozygosity at all loci, significant disagreement 

with Hardy–Weinberg predictions, significant levels of linkage disequilibrium between all loci 

combinations, an absence of recombinant genotypes and a limited number of unique genotypes, are 

all present within the population examined. These results show clear similarities with the analysis 

by Tibayrenc et al.(1991), supporting the idea of clonality in T. vivax and suggesting that it may be 

the primary, if not only, mode of reproduction.  

 

The main restriction on analysing the current population set has been the non-amplification of the 

single-locus microsatellite markers for most T. vivax positive samples. This is suggestive of a 
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population where the majority of infections are characterised by a low parasitaemia, with 

occasional increase to levels examinable by the PCR techniques employed here. Parasitaemia 

levels are known to vary considerably depending on parasite strain, species, breed of host, 

geographic origin and presence of other infections (Fasogbon et al., 1990; Batista et al., 2007; 

Magona et al., 2008; Pinchbeck et al., 2008) while identification of infections has conventionally 

been by microscopy following preparation of a buffy coat, estimated by Faye et al.(2001) to be 

seven times less sensitive than the PCR technique employed here. These results, of a high 

prevalence of low parasitaemia infections, reinforce these observations and suggest that T. vivax 

may be more endemic than previously believed. There remains the possibility that low parasitaemia 

infections might act as a reservoir of genetic diversity with observed outbreaks of disease arising 

from a limited number of virulent clones best adapted to the local environment. It may be, 

therefore, necessary to examine the parasites from animals with subpatent levels of T. vivax 

parasitaemia in order to uncover the true dynamics of the population structure. Given the already 

high sensitivity of the WGA and PCR techniques employed in the current study, methods to 

concentrate trypanosome DNA by extraction from larger volumes of infected blood will be 

required in order to characterise these currently elusive populations.  

 

Although there are suggestions from our data that mating may be possible, the predominance of 

clonal expansion is a feature that T. vivax shares, among the Salivarian trypanosomes, with the 

agents of Human African Trypanosomiasis, T. b. rhodesiense (MacLeod et al., 2000) and T. b. 

gambiense Group 1 (Koffi et al., 2007, 2009; Morrison et al., 2008a). While all of the available 

evidence supports clonality in T. b. gambiense Group 1, it is possible that mating does occur in T. 

b. rhodesiense, as previous studies into this sub-species have centred around foci of human 

infection, where virulent strains may dominate. Other examples of trypanosomes that are likely to 

propagate clonally include T. evansi and T. equiperdum, although in these cases the predicted 

clonality is due to their modes of transmission, mechanical and venereal, respectively. These 

trypanosome species are essentially variants of T. brucei (Gibson, 2007; Lai et al., 2008), that have 

lost the ability to undergo cyclical transmission. They are therefore likely to expand solely by 

asexual replication with the eventual loss of the potential for mating. As described previously, 

endemic field populations of those trypanosomes not under similar constraints (T. b. brucei and T. 

congolense) have been shown to undergo frequent mating. The T. vivax population in the present 

study is sampled from „typical‟ host species (i.e. there are no known specific genetic mutations in 

T. vivax that confer survival in cattle and equines), and are sampled from a region where the 

predominant vector is that in which cyclical development occurs. The strong evidence for linkage 

disequilibrium in the T. vivax samples is interpreted as reflecting a clonal population and contrasts 

sharply with the evidence for mating in sympatric T. congolense subpopulations, where there is far 

less deviation from linkage equilibrium (Morrison et al., 2009b). The discovery of evidence for 

mating in T. congolense but not in T. vivax, from the same host samples suggests that if meiotic 
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reproduction is possible in T. vivax the conditions required differ significantly from those of T. 

congolense. 

 

Despite the evidence from this study that genetic exchange may be absent in T. vivax the possibility 

remains that this is a feature of this localised population as mating in T. brucei is known to be a 

non-obligatory stage of the life cycle. Detailed analysis of further distinct foci in addition to 

laboratory studies will therefore be required in order to fully address the potential for mating in this 

species. 
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Chapter 4                             

Return to The Gambia: 

Trypanosomiasis in equines, 2009 
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4.1 Introduction 

 

Chapter 3 introduced the issue of trypanosomiasis in the West African country of The Gambia and 

investigated the population genetics of T. vivax in the equines and bovines in the country. The 

study suggested that mating was absent, or occurring at undetectable levels, in the local T. vivax 

population, with a single MLG accounting for approximately half of the genotyped population. The 

investigation however was hampered by the inability to genotype ~90% of the 304 T. vivax positive 

samples with the majority of the samples failing for each of the eight microsatellite markers 

employed in the study. This may have arisen due to the low parasitaemia associated with T. vivax 

infections, an issue which has been noted previously, alongside difficulties in generating laboratory 

isolates by growth in rodents or adaptation to culture (Gardiner, 1989). 

 

Concurrent to the investigation of T. vivax a second study, utilising the same sample set, 

investigated the role and extent of mating in the T. congolense, the other major cause of animal 

trypanosomiasis (Morrison et al., 2009b). This study identified 133 samples that were positive for 

the Savannah clade of this species and was able to successfully genotype 84 isolates with seven 

microsatellite markers developed specifically for the study. Genetic analysis of the population 

indicated a high level of genetic diversity with 80 unique MLGs present, an overall excess of 

homozygotes across the seven loci and evidence for sub-structuring within the population. While 

analysis of the population as a whole did not support a panmictic population with frequent, random 

out crossing between individuals these data are inconsistent with that of a clonal population 

structure. These data, with an excess of homozygotes across all seven loci and high number of 

unique MLGs, were most consistent with a mating population with a high frequency of inbreeding 

and selfing. 

 

While these two studies shed new light on the role of genetic exchange in T. congolense and T. 

vivax they were limited by the use of FTA cards, the sampling of animals across three time points 

and use of animals brought to clinics. FTA cards, while providing a simple and effective method 

for the collection of blood samples in the field are limited by the volume of blood collected. Each 

sample spot collects only 200 µl of blood, limiting the number of trypanosomes collected from 

each host while the ability to detect and genotype infections is then further limited as only a small 

proportion of each spot is utilised for PCR amplification of DNA. It was hypothesised that this 

sampling limitation, coupled to the low parasitaemia associated with T. vivax infections may have 

contributed to the inability to genotype the majority of T. vivax positive samples. The second 

limitation of the original two studies was the use of samples collected over three time points, with 

the first (March 2006) and last (January 2007) separated by the rainy season during which the tsetse 

prevalence is highest. While genetic analysis did not detect significant differences in the isolates 

from each time point it remains possible that the grouping of these three time points distorted the 
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analysis of T. congolense and T. vivax. The final limitation of the initial studies, sampling of 

equines brought to clinics run by the GHDT, may have introduced bias by limiting the sampling of 

animals to those identified as „ill‟ by the owners. The genotypes identified in the equine samples 

may therefore be associated with only pathogenic isolates and may not be representative of the 

population as a whole. 

 

At the start of 2009 a second follow up study was therefore designed in collaboration with 

researchers from the University of Liverpool and the GHDT in order to address the FTA card 

sampling and sampling period limitations. This study consisted of two months of fieldwork 

assisting the staff of the GHDT in the diagnosis of trypanosomiasis at field clinics run by the 

GHDT in the area surrounding their base at Sambel Kunda (Figure 3.1). During this time a new 

population of 198 samples was acquired from the equines brought to the clinics for treatment. 

Where the first study had employed FTA cards for the collection of blood samples, this second 

study collected 2 ml of whole blood from each animal. Whole blood was collected in the hope that 

the collection of a greater volume and concentration of trypanosome material during DNA 

purification would allow for the genotyping of even low parasitaemia T. vivax infections. Further, 

the collection of a large number of samples over a much smaller time period limits the potential for 

the introduction of Wahlund effects which may have unintentionally distorted the results of the first 

study.  

 

The 2009 study had three primary aims. To conduct a survey of AAT in The Gambia in 2009, to 

reassess the high frequency of T. vivax infections observed in 2009 using techniques capable of 

sampling from a greater volume of blood and to examine the population structures of T. congolense 

and T. vivax at a new time point, allowing for comparison with the studies of these species in 2007 

(Morrison et al., 2009b, and Chapter 3). 
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4.2 Results 

 

4.2.1 Analysis of field diagnosis data 

 

During the two month period of fieldwork blood samples were collected from a total of 198 

animals (78 horses, 39 donkeys, one mule and 80 for whom species data were not recorded) during 

examination at clinics run by the GHDT (Appendix 7).Field diagnosis of AAT by the GHDT 

consists of two components, microscopic examination of wet blood smears and determination of 

packed cell volume as a measure of anaemia. Anaemia, resulting in a reduced PCV, is one of the 

primary symptoms of trypanosome infections and as such is utilised by the GHDT as a diagnostic 

tool for trypanosomiasis infection with animals found to have a PCV of 20% or lower considered 

to be infected with trypanosomes. As dehydration can have a significant effect upon the PCV total 

blood protein (TP) levels was recorded in order to detect dehydrated animals where the PCV may 

have been artificially elevated above 20%. 

 

Of the 198 animals from which blood was collected 28 were identified as trypanosome positive by 

microscopy during screening at the clinics, a prevalence of 14%. There was a significant 

association between microscopic infection status and packed cell volume (PCV) (2 tailed unpaired 

t-test, p = <0.001), supporting the use of PCV as a diagnostic tool. As lipid autotrophs 

trypanosomes rely upon the lipoproteins present within the host bloodstream (Green et al., 2003) 

and it has previously been demonstrated that infection in bovines may induce a drop in blood 

cholesterol levels (Traoré-Leroux et al., 1987), however no association was observed between 

microscopic infection status and total cholesterol level in the equines examined here (p = 0.48). In 

addition no significant association was observed between microscopic infection status and total 

serum protein (TP) (p = 0.90), a measure of hydration recorded in order to assess the reliability of 

PCV measurements. 

 

4.2.2 PCR identification of infection 

 

In order to determine the prevalence of T. brucei, T. congolense and T. vivax in the animals 

presented to the GHDT clinics 2ml of whole blood was collected in order to allow for DNA 

extraction, in comparison to the 2006 – 2007 studies where blood was collected on FTA cards. The 

use of a larger volume and concentration of trypanosome material during DNA purification was 

employed in order to increase the ability to identify and genotype even low parasitaemia infection. 

DNA was extracted from each blood sample and examined for infection through the use of species 

specific primer sets (Masiga et al., 1992) to test for the presence of respective species. Of the 198 

animals from which samples were collected 183 (92%) were found to be positive for at least one of 
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the three species. This exceedingly high prevalence is predominantly due to infections with T. vivax 

which were observed in 173 (87%) of the animals. T. brucei was observed in 84 (42%) of samples 

while T. congolense Savannah was found to be present in 70 (35%) of samples. The T. congolense 

Forest subgroup was not detected within the sample population; therefore, for the remainder of this 

chapter T. congolense refers to T. congolense Savannah subgroup. 

 

Of the 28 samples identified as trypanosome positive by microscopy all bar two were also 

identified as positive for at least one species by PCR. The two isolates negative for all three species 

(X010 and ECG004) were sampled from horses, at Brikamabah and Kerrtamim respectively. T. 

congolense and T. vivax were observed at high frequency (23/28 and 25/28 animals respectively) 

while T. brucei was observed in 12 of the 28 microscopically positive animals. While the 

prevalence of T. brucei and T. vivax in the microscopically positive samples is close to that 

observed when examining all samples (Table 4.1) the prevalence of T. congolense is over double 

that observed in the full sample set (82% for microscopically positive; 35% for all samples). This 

may indicate that T. congolense infections are associated with high parasitaemia infections, 

increasing the likelihood of diagnosis by microscopy. 

 

Mixed species infections, with at least two of the three species present were frequent and observed 

in 121 samples, of which 23 were positive for all three species investigated (Table 4.1 and Figure 

4.1). In order to examine if there were interactions between the three trypanosome species the 

frequency of observed and expected mixed infections were compared based on the total observed 

prevalence of each individual species. Pairwise χ
2
 analysis between the three species indicated no 

significant deviation from the expected frequencies of single / mixed infections by chance alone (T. 

brucei – T. congolense, p = 0.42; T. brucei – T. vivax, p = 0.12; T. congolense – T. vivax, p = 

0.41).However log-linear analysis of the three species together indicated significant deviation from 

the expected values (p = 0.05) due to the higher than expected frequency of samples negative for 

all three species (15 observed, 9.3 expected). These 15 samples were collected over the duration of 

the study from eight different sampling locations, making temporal or geographical factors an 

unlikely cause for this phenomenon. 
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Species present Donkeys  

(n = 39) 

Horses  

(n = 78) 

Species unknown 

(n = 80) 

Total prevalence 

(n = 198)* 

N P % N P % N P % N P % 

T. brucei only 1 3 1 1 1 1 3 2 

T. congolense only 1 3 0 0 2 3 3 2 

T. vivax only 9 23 23 29 24 30 56 28 

T. brucei and T. 

congolense mixed 

infections 

1 3 2 3 1 1 4 2 

T. brucei and T. vivax 

mixed infections 

15 38 25 32 14 18 54 27 

T. congolense and T. 

vivax mixed infections 

6 15 12 15 22 28 40 20 

T. brucei + T. 

congolense + T. vivax 

mixed infections 

5 13 9 12 8 10 23* 12 

Total T. brucei 22 56 37 47 24 30 84* 42 

Total T. congolense 13 33 23 29 33 41 70* 35 

Total T. vivax 35 90 69 88 68 85 173* 87 

Total (all species) 38 97 72 92 72 90 183* 92 

 

Table 4.1 Trypanosome prevalence as determined by species specific PCR 

n, number of samples; N, number of trypanosome positive samples; P %, percentage of positive 

samples; *, includes the single mule sample, which was positive for all three species. There were 

no significant differences in the number of mixed species infections when compared to the 

expected number based on the observed prevalence of each individual species. 
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Figure 4.1 Infection status of The Gambia 2009 sample set as determined by species specific 

PCR 

Infection status of the 198 samples following species specific PCR, highlighting the low frequency 

of uninfected samples (15 animals, 8%) and high frequency of T. vivax (173 animals, 87%).

Uninfected 
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T. vivax only 
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only 
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Infection status of the Gambia 2009 sample set  
as determined by species specific PCR 
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While infection as determined by microscopy was associated with a reduced PCV the increased 

sensitivity of the PCR technique identified a substantially higher prevalence of AAT (microscopy 

14%; PCR 92%) and therefore the associations between infection status with PCV, TP and blood 

cholesterol were re-examined using the higher PCR determined prevalences. There remained a 

significant association between PCV and PCR infection status (positive / negative for any species) 

(p = <0.001) indicating a reduced PCV was associated with infection in general and not just high 

parasitaemia infections detectable by microscopy. As with microscopic infection status there was 

no significant association between PCR infection status and TP (p = 0.28) or blood cholesterol (p = 

0.70). Due to the relatively small number of control samples negative for all three species (n = 15) 

these results must be treated with caution. 

 

Tests to assess whether PCV, TP or cholesterol were significantly influenced by the presence of the 

individual species indicated a significant reduction in PCV associated with infection by T. 

congolense or T. vivax (Table 4.2) and a significant reduction in cholesterol associated with the 

presence of T. congolense. These tests however do not account for the effect of mixed infections. In 

their earlier study Pinchbeck et al.(2008) found T. congolense to have the greatest individual effect 

on PCV, however, for the sample collection presented here 63 of the 70 samples infected with T. 

congolense were observed to also be infected with T. vivax. It may be therefore that the reduction 

in PCV observed for T. vivax is due to, or at least enhanced by the overlap with T. congolense. The 

small number of samples positive for only T. brucei or T. congolense (n = 3 in both cases) prevents 

independent tests free of the influence of mixed infections. The higher frequency of T. vivax only 

infections (n = 56) allowed for testing of the association between infection with this species and 

PCV. However, once again the relatively small number of completely uninfected samples means 

the results must be treated with caution. With the exclusion of mixed infections, there was no 

significant change in PCV, TP or cholesterol level associated with the presence of T. vivax. 

 

Anaemia, measured as a reduced PCV, is a major symptom of AAT and its control is one of the 

primary components of trypanotolerance in bovines (Reviewed in Naessens, 2006; Stijlemans et 

al., 2010). In order to assess the contribution of individual factors affecting PCV a multiple 

variable linear regression model was constructed. The first model assessed only three variables, 

whether the animals was infected by T. brucei, T. congolense, or T. vivax. Only infection by T. 

congolense was found to have a significant influence upon the variance of PCV (Table 4.3A). The 

adjusted R
2
 value of the linear regression model (6.4%) indicates however that only a small 

proportion of the observed variation in PCV could be explained by infection with these three 

trypanosomes and that other factors control the majority of the variation observed.
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Infection status 
Association with 

PCV (%) TP Cholesterol 

Microscopically positive 0.00 0.90 0.48 

PCR positive 0.00 0.28 0.70 

T. brucei positive 0.52 0.37 0.56 

T. congolense positive 0.00 0.31 0.02 

T. vivax positive 0.02 0.71 0.72 

T. vivax positive (no mixed infections) 0.29 0.38 0.78 

 

Table 4.2 Probability of association between infection parameters 

Probability of association between infection status and PCV, TP or blood cholesterol levels. The 

association between infection status and PCV, TP or cholesterol level was assessed through 2 tailed 

unpaired t-tests. The number of samples positive for only T. brucei or T. congolense prevented 

investigation of these species independent of the effect of mixed infections. Significant associations 

(p < 0.05) are highlighted in bold.  

 

A 

Variable Coefficient +/- S.E. P 

Constant 34.98 1.76  

T. brucei -0.73 1.21 0.55 

T. congolense -4.05 1.26 <0.001 

T. vivax -3.49 1.85 0.06 

B 

Variable Coefficient +/- S.E. P 

Constant 40.95 6.21  

T. brucei -0.34 1.25 0.79 

T. congolense -1.99 1.46 0.17 

T. vivax -4.87 1.99 0.02 

Infection status 

(microscopy) 

-5.66 1.81 <0.001 

TP -1.17 0.66 0.08 

Cholesterol 1.06 0.67 0.11 

 

Table 4.3A-B Multiple variable linear regression of infection variables 

Multiple variable linear regression analysis to determine the significant variables affecting PCV. A, 

utilising the results of PCR based infection status only; B, a full model comprised of PCR infection 

status and any other factor found to have a p < 0.25 during initial univariable linear regression 

screening. 
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In order to further assess the contributors to PCV a second multiple variable linear regression 

model was constructed following the parameters employed by Pinchbeck et al. (2008). The 

individual impact of all variables on PCV was screened through an initial univariable regression 

analysis and those loosely associated with a change in PCV (p < 0.25 in initial screen) were 

included in the multiple variable model. PCR infection status was included in the final model 

without initial screening. 

 

The results of the second multiple variable analysis (Table 4.3B) indicated only two variables to 

have a significant effect upon PCV, a positive microscopic infection status and infection with T. 

vivax, with microscopic infection status having the biggest effect upon PCV. The adjusted R
2
 value 

of this second model (15.1%) indicates that while the inclusion of additional data have increased 

the fit of the model the majority of the observed variation in PCV remains unexplained. The results 

of these two models are in sharp contrast to those reported by Pinchbeck et al.(2008) in their 

analysis of samples from The Gambia in 2006 which were collected from equines under similar 

conditions. The study of Pinchbeck et al.(2008) found a wide range of variables to have a 

significant effect upon the PCV of animals, including species and gender of the host. However in 

the present study neither host species nor gender were included due to no association with PCV (p 

= 0.90 and 0.47 respectively) during initial univariable screening. The most striking differences in 

the results from the respective studies are for T. brucei and T. congolense, which were both found 

to have a significant effect on PCV by Pinchbeck et al.(2008) but do not in the present study when 

all variables are included.  

 

4.2.3 Confirmation of the observed T. vivax prevalence 

 

During the original analysis of trypanosome prevalence in The Gambia by Pinchbeck et al.(2008) 

T. vivax was observed in 87% of the equines, far higher than the 18% and 31% reported for T. 

brucei and T. congolense respectively, with the T. vivax prevalence declining slightly to 84% with 

the inclusion of the January 2007 samples as described in Chapter 3. Further to this the attempt to 

genotype the T. vivax samples utilising a panel of microsatellite markers (Duffy et al., 2009) as 

described in Chapter 3 failed to amplify any of the markers for 90% of the samples. In order to 

confirm that the T. vivax positives in the 2009 sample set were truly T. vivax the band amplified by 

the T. vivax species specific primers was extracted and sequenced. BLASTing the 142 bp sequence 

(Appendix 8) against the WTSI T. vivax contigs identified numerous high identity (>90% match) 

sequences, as expected given the repetitive nature of the sequence that the TVW primers target 

(Masiga et al., 1992). A subsequent BLAST search of the equine reference genome (NCBI TaxID 

9796) did not identify any significant hits to the amplified sequence, indicating that the high 

prevalence of T. vivax identified by species specific PCR is not due to cross reaction with host 

DNA. 
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4.2.4 Genetic Analysis of T. vivax 

 

One of the primary aims of the work in Chapter 3 was to examine the genetic diversity and 

frequency of mating in T. vivax through the use of microsatellite markers. The 2007 population was 

observed to be highly clonal in nature, with a single genotype dominating the population and no 

evidence for genetic exchange, in line with the results of earlier isoenzyme based studies (Kilgour 

et al., 1975; Kilgour and Godfrey, 1977; Tibayrenc et al., 1991). However, as described in Chapter 

3 the majority of samples failed to amplify with any of the markers. This second survey therefore 

provided an opportunity to revisit this problem using DNA prepared from 2 ml of whole blood, 

which may be expected to overcome any sensitivity issues associated with blood spots on FTA 

cards.  

 

Of the 173 T. vivax positive samples in the 2009 sample set only 11 were successfully genotyped 

for four or more of the microsatellite markers, a success rate of only 6% (Appendix 9). This low 

number of genotyped samples precludes statistical analysis of the population as the tests would lack 

the power to give reliable results. Grouping of the samples with those from the 2007 population 

described in Chapter 3 allowed for the construction of a combined dendrogram of similarity (Figure 

4.2), however, this was unable to separate the 2007 and 2009 populations. While the ILRAD V34 

isolate was included as an out-group, the dendrogram generated by Clustering Calculator rooted 

itself to X054, an isolate from the 2009 population, indicating that ILRAD V34 was more closely 

related to the population than expected, despite its Kenyan origins. Although the 2007 and 2009 

populations could not be separated from one another, no genotypes were shared between them. 

While this may in part be due to the smaller number of isolates genotyped from 2009, the 2007 

population was dominated by a single genotype, representing 15 of the 31 isolates. The complete 

absence of this genotype in 2009 suggests there may have been substantial shifts in the population 

in the two years between sampling, however this is impossible to confirm given the size of the 

populations available at this time. 

 

The inability to genotype the majority of the T. vivax samples has now been observed following 

sampling with both FTA cards and DNA purified from 2 ml of whole blood. Following the analysis 

of the 2007 sample population it was considered possible that the lack of microsatellite 

amplification was due to low parasitaemia, a phenomenon that has been previously observed in T. 

vivax infections. If this is the case then the results here would suggest that even use of purified 

DNA from a larger volume of blood is insufficient to counteract this issue. It is also possible that 

the PCR diagnostic results are false positives, detecting DNA due to past exposure to T. vivax as 

opposed to current infection with T. vivax. 
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Figure 4.2 UPGMA dendrogram of similarity combining the 2007 and 2009 T. vivax 

populations 

UPGMA dendrogram of similarity combining the genotyped T. vivax samples from 2007 and 2009. 

While the isolate ILRAD V34 (black) was included as an out-group the dendrogram rooted to the 

2009 Gambian X054 isolate. The two (2007 and 2009) populations could not be resolved from one 

another based on bootstrap support (provided for the main nodes only). Blue = 2007, Red = 2009.  
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4.2.5 Genetic Analysis of T. congolense 

 

In addition to T. vivax, the 2009 sample set provided the opportunity to revisit the T. congolense 

population of The Gambia as a follow-up study to that of Morrison et al.(2009b). That study had 

found a population with a high level of genetic diversity, an excess of homozygosity across seven 

microsatellite markers, evidence for frequent mating and existence of cryptic sub-populations. 

These conclusions however were based upon analysis of T. congolense in The Gambia collected 

over the period of a single year and therefore may not be representative of the species in general. 

The 2009 study therefore aimed to reassess the role of genetic exchange in T. congolense and 

determine whether the population structure and genetic diversity observed in 2007 was stable or 

fluctuated over time. 

 

A total of 70 of the 198 samples tested positive for T. congolense during the initial species specific 

screening and of these 52 were genotyped with a minimum of four of the seven previously 

described microsatellite markers TCM1-7 (markers described in Morrison et al., 2009b) (Appendix 

10). Eleven of the samples were classified as mixed infections based upon the presence of three 

alleles at one or more loci. Four of these 11 samples were identified as mixed infections at two or 

more loci. This mixed infection prevalence of 15.7% is comparable to the 20.2% rate observed in 

the 2007 sample set (Morrison et al., 2009b). While these samples have been classified as mixed 

infections it is theoretically possible that these observations instead indicate the presence of 

triploidy, previously observed in some T. brucei hybrid progeny following genetic exchange 

(Paindavoine et al., 1986b; Wells et al., 1987; Gibson et al., 1992, 1995; Gibson and Bailey, 1994; 

Hope et al., 1999; Peacock et al., 2009). Samples with more than two alleles at any locus have been 

excluded from the remainder of the analysis. Twenty six of the remaining 41 samples were 

genotyped at all seven loci with each isolate possessing a unique MLG. 

 

Between four and eight alleles were observed for the seven loci with an excess of homozygotes 

observed at all loci compared to that expected in a randomly mating population (Table 4.4), 

resulting in a population average inbreeding coefficient (FIS) of 0.45. Given the high frequency of 

homozygotes within the population it is possible that a number of the mixed infections may 

represent infections with more than two distinct strains present within the host. 

The number of alleles observed within the population is reduced compared to that of 2007, with 

many of the alleles that were observed at low frequency (< 0.1) in 2007 absent in 2009. While this 

could indicate an alteration in allele frequency in the two years between sampling the smaller size 

of the 2009 population will have also reduced the chance of these low frequency alleles being 

observed. Only a single new allele was observed in 2009 compared to 2007, present as a 

homozygous pair in only a single sample (X070). 
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In order to assess the genetic diversity and frequency of genetic exchange in the T. congolense 

2009 population the genotyping data for each sample were collected together to generate MLGs for 

every sample. All of the 26 fully genotyped isolates possessed unique MLGs, emphasising the 

diversity within the population. From these 26 samples a UPGMA dendrogram of similarity was 

constructed (Figure 4.3), rooted to the East African T. congolense reference strain IL3000. The 

dendrogram grouped all of the isolates into a single group, with no support for the presence of 

genetically differentiation within the population. With multiple alleles at each locus, positive 

inbreeding coefficients and lack of repeated genotypes the 2009 population closely mirrors that 

observed by Morrison et al.(2009b) in the 2007 population, consistent once again with the 

occurrence of frequent genetic exchange in T. congolense. In order to assess this further, deviation 

from Hardy-Weinberg equilibrium and the presence of significant linkage disequilibrium was 

assessed within first the population as a whole and for the fully genotyped MLGs only. 

 

For the entire population, including samples with missing data, loci TCM 1-6 were all observed to 

differ significantly from Hardy-Weinberg equilibrium, with observed probabilities of p < 0.001 for 

all six loci (Table 4.4). The seventh locus, TCM 7 was in agreement with Hardy-Weinberg 

expectations. Pairwise loci combinations were assessed for the presence of linkage disequilibrium 

after accounting for the deviation from Hardy-Weinberg predictions by the preservation of allele 

pairs at loci with significant deviation. Significant linkage was observed between only three allele 

pairs, TCM 1 – TCM 7, TCM 3 – TCM 7, TCM 5 – TCM 7 and TCM 6 – TCM7 (Table 4.5). In 

order to account for the potential effect of clonality upon a population it was proposed by Maynard  

Smith (Maynard Smith et al., 1993) that estimations of Hardy-Weinberg equilibrium and linkage 

should be assessed twice, once with the whole population and again with the removal of repeated 

or partial genotypes. Analysis of only unique T. congolense MLGs resulted in a second locus, TCM 

6 being in agreement with Hardy-Weinberg expectations in addition to TCM 7, which was in 

agreement with expectations when assessing all isolates and unique MLGs only (Table 4.4). 

Significant linkage disequilibrium was observed between only two of the twenty one loci pairs, 

TCM 1 – TCM 3 and TCM 6 – TCM 7 (Table 4.5) following removal of the repeated genotypes. 
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 Locus n* A He Ho FIS P 

TCM 1 38 / 26 7 / 7 0.74 / 0.72 0.44 / 0.54 0.40 / 0.27 0.00 / 0.02 

TCM 2 35 / 26 7 / 7 0.73 / 0.73 0.11 / 0.15 0.85 / 0.79 0.00 / 0.00 

TCM 3 38 / 26 8 / 7 0.82 / 0.81 0.53 / 0.50 0.36 / 0.39 0.00 / 0.00 

TCM 4 36 / 26 4 / 4 0.52 / 0.55 0.11 / 0.12 0.79 / 0.80 0.00 / 0.00 

TCM 5 39 / 26 8 / 6 0.75 / 0.72 0.38 / 0.31 0.49 / 0.58 0.00 / 0.00 

TCM 6 38 / 26 7 / 7 0.76 / 0.68 0.58 / 0.62 0.24 / 0.10 0.00 / 0.10 

TCM 7 40 / 26 7 / 7 0.76 / 0.76 0.63 / 0.69 0.17 / 0.09 0.43 / 0.85 

 

Table 4.4 T. congolense 2009 descriptive statistics and agreement with Hardy-Weinberg 

expectations 

Descriptive statistics of the 2009 T. congolense population.  n*, sample numbers; A, observed 

number of alleles; He and Ho, observed and expected heterozygosities; FIS, inbreeding coefficient; 

P, probability of agreement with Hardy-Weinberg equilibrium. Values are for all samples / unique 

MLGs only. Results in bold indicate the presence of significant deviation from Hardy-Weinberg 

expectations. 

 

Locus 1 Locus 2 P 

TCM 1 TCM 2 0.55 / 0.72 

TCM 1 TCM 3 0.09 / 0.02 

TCM 1 TCM 4 0.13 / 0.23 

TCM 1 TCM 5 0.84 / 0.87 

TCM 1 TCM 6 0.19 / 0.15 

TCM 1 TCM 7 0.00 / 0.18 

TCM 2 TCM 3 0.17 / 0.49 

TCM 2 TCM 4 0.79 / 0.26 

TCM 2 TCM 5 0.54 / 0.28 

TCM 2 TCM 6 0.42 / 0.17 

TCM 2 TCM 7 0.26 / 0.57 

TCM 3 TCM 4 0.29 / 0.70 

TCM 3 TCM 5 0.15 / 0.49 

TCM 3 TCM 6 0.37 / 0.34 

TCM 3 TCM 7 0.00 / 0.08 

TCM 4 TCM 5 0.18 / 0.08 

TCM 4 TCM 6 0.98 / 0.61 

TCM 4 TCM 7 0.08 / 0.21 

TCM 5 TCM 6 0.71 / 0.39 

TCM 5 TCM 7 0.01 / 0.12 

TCM 6 TCM 7 0.01 / 0.05 

 

Table 4.5 Probability of pairwise linkage disequilibrium between T. congolense loci 

Linkage disequilibrium between all pairwise combinations for the seven microsatellite markers 

TCM 1 – 7 for the entire population / unique MLGs only (after preserving genotypes of those 

markers that were not in Hardy-Weinberg equilibrium). Results in bold indicate the presence of 

significant linkage disequilibrium.  
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Figure 4.3 UPGMA dendrogram of similarity for the 2009 T. congolense population 

UPGMA dendrogram of similarity constructed from the 26 fully genotyped T. congolense samples 

from 2009, rooted against the T. congolense isolate IL3000. The dendrogram indicated the 

population to form a single large group based upon bootstrap support at the major nodes (Bootstrap 

values for the main nodes only).  
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The observation of significant deviation from Hardy-Weinberg equilibrium, lack of repeated MLGs 

and lack of linkage disequilibrium between the majority of pairwise loci combinations does not 

easily fit with the idea of clonality. While this may represent the true population structure there are 

a number of factors which could explain the observed lack of panmixia, notably null alleles, selfing 

and introduction of the Wahlund effect through the grouping of independent populations (Wahlund, 

1928). The observed excess of homozygotes observed across all loci could have arisen from the 

presence of null alleles that cannot be amplified due to polymorphisms in the primer binding sites. 

In order to assess this, the predicted frequency of null alleles and number of predicted homozygote 

nulls was calculated for each locus (Table 4.6) (Hedrick, 2005). The calculation of null allele 

frequency assumes that the deviation from Hardy-Weinberg expectations is due entirely to the 

presence of null alleles, giving rise to an excess of homozygotes and therefore calculates the 

frequency of null alleles required for agreement with Hardy-Weinberg principles. From the 

predicted null allele frequency the number of expected homozygote nulls was determined and for 

loci TCM 2 and TCM 5 the number of predicted homozygote nulls was very close to the observed 

number of homozygote nulls. It is therefore possible that null alleles are present within the 

population, resulting in the observed heterozygote deficit at these two loci. These calculations 

however preclude the possibility that other factors have contributed to the observed deviation from 

Hardy-Weinberg principles. 

 

Selfing is one of the possible other explanations for the presence of the homozygote excess across 

all loci. While selfing in trypanosomes was initially only observed in the presence of cross 

fertilisation (Tait et al., 1996; Gibson et al., 1997; Hope et al., 1999),selfing during single strain 

transmission has now been demonstrated to occur in a laboratory cross of T. brucei (Peacock et al., 

2009). In order to assess the role of selfing the predicted selfing rate (de Meeûs et al., 2007) was 

calculated for each of the seven loci, with the assumption of no null alleles being present. Selfing 

rates ranged from 0.29 – 0.92 (Table 4.6), indicating that high levels of selfing would be required 

in order to explain the observed frequency of homozygotes. This could indicate that genetic 

exchange is a frequent occurrence in T. congolense with frequent single strain tsetse transmission 

leading to a high level of selfing. The high predicted frequency of selfing and lack of repeated 

genotypes in this population does not necessarily exclude genetic exchange being non-obligatory in 

T. congolense, but it would suggest that the conditions in The Gambia facilitate a high enough 

mating frequency to prevent a single clone from dominating the population. 
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Locus p Ne No s 

TCM 1 0.17 1.22 3 0.57 

TCM 2 0.36 5.27 6 0.92 

TCM 3 0.6 1.04 3 0.53 

TCM 4 0.27 2.98 5 0.88 

TCM 5 0.21 1.83 2 0.66 

TCM 6 0.10 0.43 3 0.39 

TCM 7 0.07 0.22 1 0.29 

 

Table 4.6 Predicted null allele frequencies, homozygote nulls and predicted selfing rates for 

the T. congolense 2009 population. 

p, predicted frequency of null alleles; Ne, predicted number of homozygote nulls; No, observed 

number of homozygote nulls; s, predicted selfing rate. Due to the required inclusion of „nulls‟ these 

data are presented for all samples, inclusive of those partially genotyped. 
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The final factor investigated here is the possibility that the 2009 T. congolense population is 

comprised of a number of separate populations, inadvertently grouped together during the initial 

analysis. Grouping populations in this manner can lead to deviation from Hardy-Weinberg 

equilibrium if the alleles present in each sub-population differ sufficiently in frequency. This 

distortion, known as the Wahlund effect (Wahlund, 1928), was identified by Morrison et al.(2009b) 

in their first analysis of T. congolense identifying four putative sub-populations in The Gambia and 

a similar analysis has therefore been undertaken for the 2009 population, utilising the 

STRUCTURE program (Pritchard et al., 2000).Utilising an admixture model to allow for the 

possibility of gene flow between sub-populations, the optimal number of sub-populations for the 

dataset was determined using the delta K method of Evanno et al.(2005). The population structure 

was simulated in the presence of a known number of sub-populations (K values) of 1 – 10, with the 

delta K value calculated for each K value. The optimal number of sub-populations may then be 

identified by plotting delta K versus K and identifying the peak point of the plot (Figure 4.4). 

Analysis of the T. congolense 2009 population inferred the presence of 4 sub-populations, the same 

number as identified by Morrison et al.(2009b) for the 2007 population. Of these four putative sub-

populations the largest contained only 15 samples (Figure 4.5) and due to this small sample size it 

was not appropriate to statistically analyse the sub-populations for agreement with Hardy-

Weinberg equilibrium or the presence of linkage disequilibrium between pairs of loci. 

 

The STRUCTURE program functions by searching for the optimal number of sub-populations that 

minimises the deviation from Hardy-Weinberg in each sub-population. In the presence of clonality 

the program is likely to separate genetically distinct populations which must then be individually 

assessed for agreement with Hardy-Weinberg expectations (Balmer et al., 2011). The non-

obligatory mating cycle observed in T. brucei, which may be shared with T. congolense therefore 

raises the possibility that the putative sub-populations were identified due to being genetically 

distinct from one another as opposed to the presence of agreement with Hardy-Weinberg 

expectations due to frequent genetic exchange. However, the small sizes of the putative sub-

populations prevent assessment of this possibility.  

 

During comparison of the population structuring in 2007 and 2009 it became apparent that the 

original conclusion of four sub-populations in the 2007 dataset was incorrect. This was due to an 

incorrect calculation of the delta K values due to the failure to use modal values as directed by 

Evanno et al.(2005), resulting in an inverted graph (Supplementary Figure 1 of Morrison et 

al.(2009b)). Correction of the delta K values indicated the true optimal K value to be 1 or 2 (as the 

delta K technique cannot distinguish between the two). While this affects the subsequent 

identification of a sub-population in agreement with Hardy-Weinberg principles the earlier 

conclusions of frequent genetic exchange and inbreeding is not affected and is supported by the 

results presented here. 
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Figure 4.4 STRUCTURE inference of the number of T. congolense sub-populations. 

The modal value of delta K indicates the most likely number of sub-populations within the sample 

population, indicated to be 4. Delta K was calculated as described by Evanno et al.(2005).  

 

 

 

Figure 4.5 Example predicted population structure for T. congolense in 2009 

Population structure was inferred following calculation of K = 4 as the optimal number of sub-

populations. 
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A second limitation of the STRUCTURE program is that in its determination of population 

structure it does not allow for the possibility of selfing, as previously demonstrated to occur in T. 

brucei (Tait et al., 1996; Gibson et al., 1997; Hope et al., 1999; Peacock et al., 2009). Analysis of 

the T. congolense 2009 population as a whole indicated an excess of homozygotes, with positive 

inbreeding coefficients across all seven loci, indicating that selfing may be a frequent occurrence. 

A variant of the STRUCTURE program, InStruct (Gao et al., 2007) allows for the possibility of 

selfing when searching for the optimal number of sub-populations and unlike STRUCTURE does 

not assume sub-populations to be in Hardy-Weinberg equilibrium. Population structures were 

simulated for K values of 1 – 10 with an admixture model that allowed for selfing to be occurring 

in the population. Delta K values (Evanno et al., 2005) were calculated as for the STRUCTURE 

analysis and plotted versus K (Figure 4.6). The plot suggests the presence of either no sub-

structuring or 2 – 3 sub-populations, as the delta K method is unable to assess the likelihood of a 

population lacking sub-structuring, with example predicted population structures presented in 

Figure 4.7. Inbreeding coefficients for K = 1 – 3 range from 0.36 – 0.52 (K = 3, sub-populations 1 

and 3 respectively, Table 4.7) indicating that selfing is predicted to occur frequently in the putative 

sub-populations. The support for sub-structuring as detected by STRUCTURE and InStruct is 

indicated by the delta K values of the optimal population structures. The respective delta K values 

of both analyses are below 20, suggesting only low support for the presence of sub-structuring 

within the population. 
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Figure 4.6 InStruct inference of the number of T. congolense sub-populations 

InStruct inference of the number of T. congolense sub-populations if selfing is allowed. The 

greatest value of delta K indicates the most likely number of sub-populations (K) within the sample 

population, which is indicated to be 2 or 3. The method cannot however assess the likelihood of no 

sub-structuring and therefore K = 1 remains a possibility. Delta K was calculated as described by 

Evanno et al.(2005). 
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A

 

B

 

Figure 4.7A-B Example predicted population structures for T. congolense in 2009 

The population structure was calculated utilising InStruct, which calculated an optimal K value of 2 

or 3. A: K = 2, B: K = 3. 

 

 

 

 K = 1 K = 2 K = 3 

Sub-population 1 0.46 0.41 0.36 

Sub-population 2 - 0.45 0.39 

Sub-population 3 - - 0.52 

 

Table 4.7 T. congolense sub-population inbreeding coefficients 

Average posterior distribution of inbreeding coefficients (FIS) for the 2009 T. congolense 

population as calculated by InStruct for K values of 1 – 3, averaged from 20 independent runs.  
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4.2.6 Genetic relationship between the 2007 and 2009 T. congolense populations 

 

Populations are by their very nature dynamic, with the continual introduction of new genotypes 

through genetic exchange, immigration of individuals from neighbouring populations and 

mutational drift giving rise to novel alleles. Selective pressures may further shape the population by 

favouring the fittest combinations and alleles that are present, contributing to changes in the 

frequencies of individual alleles. Even in clonal populations different genotypes can come to 

dominate a population over time and individual lineages can slowly drift apart, as has been 

observed for T. b. gambiense Group 1 when comparing distinct foci of this parasite (Morrison et 

al., 2008b). With the availability of two T. congolense populations, sampled from the same 

geographical region of The Gambia two years apart it was possible to assess the relationship 

between them and thus gain insight into how quickly the population is changing over time. A 

dendrogram of similarity including both the 2007 and 2009 populations (Figure 4.8) was unable to 

resolve the two populations from one another or detect the presence of subgroups within the 

combined population. The dendrogram identified only two isolates from 2009 (X003 and X005) 

possessing MLGs which were present in the 2007 population (* on dendrogram), supporting the 

earlier analysis of genetic exchange frequently disrupting existing genotypes. 

 

A total of 15 alleles were observed to be private to the 2007 population compared to only a single 

private allele unique to the 2009 population. All private alleles, regardless of the population were 

observed at only low frequencies of 0.05 or below and the smaller size of the 2009 population, 

comprising 52 isolates compared to the 84 genotyped from 2007, may have prevented observation 

of low frequency alleles from 2007 in isolates from 2009. This low frequency of private alleles and 

similar frequency of shared alleles results in virtually no observable differentiation between the 

populations (Nei‟s unbiased genetic distance = 0.01, FST = 0.01). Principal co-ordinate analysis, a 

second method of examining the relationships between individuals in the two populations (Figure 

4.9) was unable to resolve the two from one another, as expected given their close genetic 

relationship. The low level of differentiation between the two populations suggests that while 

genetic exchange may be frequent, the diversity present within the population is being maintained, 

with mutation and immigration of individuals from neighbouring populations having an 

insignificant effect over the two year period. Further sampling over greater time periods will be 

required to assess the role of genetic drift, mutation and immigrationon T. congolense populations 

in The Gambia and the neighbouring regions. 
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Figure 4.8 UPGMA dendrogram of similarity employing the 2007 and 2009 T. congolense 

populations 

UPGMA dendrogram of similarity including both the 2007 and 2009 T. congolense populations. 

No bootstrap support was detected for the separation of the two populations. Blue = 2007, Red = 

2009, * = MLGs present in both 2007 and 2009. Bootstrap values are given for the major nodes 

only.  
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Figure 4.9 PCoA of the Gambian T. congolense populations from 2007 and 2009. 

The analysis was unable to resolve the two populations from one another due to their close relationship. Principal co-ordinate 1 accounts for 31% of the observed 

variation while principal co-ordinate 2 accounts for 19% of the observed variation.  
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4.3 Discussion 

 

The work described in this chapter is a direct follow up of the studies of Pinchbeck et al.(2008), 

Morrison et al.(2009b) and the initial T. vivax study described in Chapter 3. To achieve this 

however required the collection of new samples and I was lucky enough to be offered the 

opportunity to spend two months working directly with the GHDT at their base in Sambel Kunda, 

The Gambia, and at the clinics they run at nearby villages and markets. Up until the fieldwork my 

understanding of the diseases caused by trypanosomes was purely academic, gleaned from the 

literature alone, which cannot substitute for firsthand experience. This is especially true given the 

focus of this thesis primarily upon the genetics of trypanosome field populations. Working with the 

GHDT therefore provided the opportunity to experience firsthand the impact of animal African 

trypanosomiasis, the value of which cannot be conveyed in the results section of this Chapter. Most 

striking of the lessons learned from the fieldwork is the requirement for simple and effective 

diagnosis technologies that are cheap, quick and portable. Diagnosis of infection at the clinics was 

reliant on such methods, primarily a hand spinner for determination of PCV (Figure 1.3) and a solar 

powered microscope, which was typically operated from the backseat of the GHDTs pickup truck 

(Figure 4.10). While the highly sensitive PCR based methods employed throughout this body of 

work are effective for laboratory based work, much remains to be done if they are to be employed 

in the field. 

 

The aims of this chapter in revisiting The Gambia were threefold, reassess the high frequency of 

observed T. vivax infections in 2007, conduct a survey of AAT in The Gambia and examine the 

population structures of T. congolense and T. vivax over time. There was little difference in the 

observed 2007 and 2009 equine prevalences for both microscopy and PCR, with the majority of the 

PCR positive results attributed once again to T. vivax. As with the original study however the use 

of animals brought to clinics prevents the estimation of the true prevalence of equine 

trypanosomiasis in The Gambia. Once again the most striking result from the species specific PCRs 

is the extremely high prevalence of T. vivax, observed in all but 15 of the samples, with the PCR 

results confirmed through sequencing of the amplified band. This high prevalence could possibly 

be explained by a number of factors. The first is simply that the equine prevalence of T. vivax in 

The Gambia is considerably higher than that of T. congolense and T. brucei, however this in sharp 

contrast to the results of Faye et al.(2001) which found T. congolense to be the most prevalent 

species infecting equines in The Gambia. Alternatively the use of equines brought to treatment 

clinics may have selected for animals more likely to be infected by T. vivax as opposed to T. brucei 

or T. congolense. It is not clear however as to whether infection with T. vivax results in the 

increased likelihood of an animal being brought to clinic or if existing ill health in an animal 

facilitates infection with T. vivax.  
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Figure 4.10 Field diagnosis setup 

Diagnostic setup at the GHDT clinics, operating from the backseat of the pickup truck highlights 

the requirement for simple and mobile technologies when in the field. 

 

 

 

The linear regression analysis, in indicating an association between microscopically positive 

infections and anaemia is in agreement with previously observed results, however the multivariable 

analysis found a number of differences when compared to the results of Pinchbeck et al.(2008), 

most notably that neither T. brucei nor T. congolense were significantly associated with a reduced 

PCV when all variables were considered. It is possible however that the low frequency of T. brucei 

or T. congolense only infections, coupled to the low frequency of uninfected samples has skewed 

the results and a considerably higher number of uninfected samples should be included in future 

analyses if possible. 

 

The second half of the results in this chapter focused upon the population genetics of the T. vivax 

and T. congolense species. As observed in Chapter 3 the attempted genotyping of T. vivax yielded 

results for only a small proportion of the population as identified by the TVW primer set. It had 

been hoped that the increased material available from the collection of whole blood samples, as 

opposed to FTA blood spots would increase the proportion of samples which could be genotyped, 
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however this is clearly not the case. Sequencing of material from samples which could not be 

genotyped with the microsatellite markers confirmed the presence of DNA originating from T. 

vivax. There are a number of possible explanations for the failure to genotype these samples. The 

first is that these samples were collected from animals with low parasitaemia T. vivax infections, 

below that required for amplification with the single copy microsatellite markers. In contrast the T. 

vivax species specific TVW primer set targets a multicopy sequence which may have provided a 

sufficient increase in sensitivity for identification of these low parasitaemia infections. If this is the 

case then a method of concentrating sufficient parasites from the blood will be required in future to 

further examine the population diversity and structure of T. vivax. 

 

An alternative possibility is that these samples are indicative of the presence of genetic variation 

between the West African samples examined here and Y486, the T. vivax genome reference strain 

from Nigeria, which was utilised in the design of the microsatellite markers. Geographic variation 

separating East and West African isolates of T. vivax has been previously demonstrated (Fasogbon 

et al., 1990, Cortez et al., 2006, Rodrigues et al., 2008) and the failure to amplify many of the 

samples may indicate the presence of primer site variation giving rise to null alleles. That some of 

the samples did amplify may alternatively indicate the presence of multiple T. vivax subgroups, as 

has been observed in T. congolense, with each subgroup possessing a distinct complement of 

microsatellites. Subgroup associated microsatellite diversity has been previously observed in T. 

congolense (Morrison et al., 2009b) while the use of fluorescent fragment length barcoding 

(Hamilton et al., 2008) and sequencing of glycosomal glyceraldehyde phosphate dehydrogenase 

identified two T. vivax groups distinct in Tanzania distinct from West African isolates (Adams et 

al., 2009). 

 

Finally it is possible that these PCR positive results arise not from established infections with T. 

vivax but from the presence of DNA following exposure to the parasite. In cattle and goats it has 

been demonstrated that DNA remains in circulation for ~48 hours after the death of the parasite (de 

Almeida et al., 1997; Desquesnes, 1997) while in humans cerebral spinal fluid has been observed 

to remain PCR positive for T. b. gambiense Group 1 for up to 2 years in approximately 20% of 

patients following successful treatment (Deborggraeve et al., 2011), pointing to the possible 

persistence of a small number of parasites within the host. The multi-copy nature of the species 

specific sequences may extend the timeframe in which this material can be detected in the host 

compared to the single copy microsatellites used here for genotyping. If DNA clearance is as rapid 

in equines as in goats and cattle then it would suggest that equines in The Gambia are frequently 

exposed to T. vivax, with the majority of challenges failing to establish ongoing infections in the 

host. If PCR based techniques are to become more widely implemented in the diagnosis of 

infection then it may be necessary to determine ways to distinguish previous challenge from current 

infection, potentially through the use of less sensitive markers such as single copy microsatellites 



 

 
Page | 113 

P
ag

e | 1
1
3
 

that require parasite DNA concentrations unlikely to be observed in the absence of established 

infections. 

 

The genotyping of T. congolense, in contrast to T. vivax, yielded a highly diverse population with a 

high proportion of mixed genotype infections in line with the results first observed by Morrison et 

al.(2009b). The population, with an excess of homozygotes, high allele diversity and lack of 

repeated MLGs does not readily fit with the idea of clonality that has been previously suggested for 

trypanosomes. The results from studies of T. b. gambiense Group 1, which is believed to propagate 

exclusively by clonal expansion all indicate the dominance of a small number of alleles, an excess 

of heterozygotes (with little variation in the heterozygote pairs present) and the presence of 

multiple individuals with the same MLG (Tibayrenc et al., 1990; Mathieu-Daudé et al., 1995; 

Morrison et al., 2008b; Koffi et al., 2009). This same pattern has now been observed for T. vivax, 

as discussed in Chapter 3 and therefore the possibility of strict or effective clonality in T. 

congolense appears highly unlikely due to the lack of the defining features of clonality. 

 

The results presented here are most consistent with a population in which genetic exchange is a 

frequent occurrence, with a high frequency of inbreeding and selfing giving rise to the observed 

excess of homozygotes at all loci, matching the observations of Morrison et al.(2009b) in the 

analysis of the 2007 population. The high frequency of unique MLGs in 2007 (80 / 84 isolates) and 

2009 (26 / 26 isolates) however would suggest that in addition to inbreeding, out crossing is 

occurring at a sufficient frequency to generate the observed MLG variation, contributing to the low 

level of linkage disequilibrium observed in the 2009 population. Outcrossing is initially dependent 

upon the frequency of mixed strain infections in the tsetse, which is in turn influenced by the 

frequency of mixed strain infections in the host. The 2007 and 2009 studies identified mixed strain 

infections in 20.2% and 15.7% of the host samples. In contrast no mixed infections were observed 

during the genotyping of T. vivax from 2007 or 2009 while previous studies into T. brucei have 

detected mixed infections 8.8% when examining isolates from across Africa (Balmer and Caccone, 

2008) and 18% following examination of cattle from the Busoga focus (MacLeod et al., 2000). In 

tsetse however mixed genotype T. brucei infections have been observed at higher frequencies of 

36% - 47% (MacLeod et al., 1999; Simo et al., 2011), raising the possibility for significant rates of 

out crossing. Analysis of the 2009 T. congolense population with the STRUCTURE and InStruct 

programs indicated that sub-structuring may be present, however, the proposed sub-populations 

could not be associated to host, date of sampling or location of sampling. As the putative sub-

populations could not be associated with any of the available sampling data, it is possible that they 

could reflect an association between parasite and vector as at least two species of tsetse are known 

to be present in The Gambia (Faye et al., 2001). Other possibilities such as local environmental 

variation or barriers to interaction between strains remain possible.  The InStruct program, which 

allows for the presence of selfing and deviation from Hardy-Weinberg expectations, supported the 
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whole population analysis in requiring a high frequency of selfing in order to explain the observed 

excess of homozygotes.  

 

While selfing during single strain transmission through the tsetse fly has been demonstrated in T. 

brucei (Peacock et al., 2009) genetic exchange is known to be a non-obligatory event and the 

frequency with which it occurs must therefore be under the control of genetic and / or 

environmental factors. It is plausible that for T. congolense in The Gambia the combination of 

genetics and environment are conducive to a high mating frequency with little or no clonal 

propagation. It is even possible that T. congolense is switched permanently into the „on‟ position 

with mating a requirement for progression through the tsetse stages of the life cycle. In such a 

situation where genetic exchange is occurring at a high frequency single strain transmission 

through the tsetse would generate the observed excess of homozygotes through selfing, as is 

observed in many foci of Plasmodium falciparum where transmission intensity and population 

diversity control the rate of out crossing (Conway et al., 1999, 2007; Anderson et al., 2000a; 

Machado et al., 2004; Anthony et al., 2005; Razakandrainibe et al., 2005; Annan et al., 2007; 

Mzilahowa et al., 2007). Outcrossing in T. congolense, facilitated by the observed mixed host 

infection rate of ~15-20% would subsequentially give rise to the high level of unique MLGs 

observed. 

 

The frequency of mixed infections in tsetse may in part be controlled by their dispersal range and 

habitat size, which shrinks considerably during the dry season. Such fragmentation may give rise to 

micro-populations, with diversity limited due by the relatively small number of hosts and vectors. 

Immigration of parasites from neighbouring populations, by host movement or expansion of tsetse 

habitat during the rainy season, would allow gene flow and occasional out crossing. Such micro-

geographic sub-structuring has been proposed to occur in Leishmania braziliensis (Rougeron et al., 

2009) in order to explain the observation of substantial genetic diversity and heterozygote deficits 

observed in populations from Peru and Bolivia. Further sampling will be required in order to assess 

this possibility, with hosts sampled in the villages at which they normally reside and with 

sympatric sampling from the local vector populations. As equines are frequently used as a mode of 

transport, the locations frequently visited by these animals may shed further light on the dispersal 

of trypanosomes in The Gambia. 

 

Much work remains however in order to gain a true understanding of the genetics of T. congolense, 

the most important being confirmation that genetic exchange is occurring in this species through 

laboratory crosses under controlled conditions. The development of in vitro culture conditions for 

all life cycle stages of the species (Coustou et al., 2010) may facilitate such an investigation, 

bypassing the requirement to infect and screen large numbers of tsetse under laboratory conditions 

while the adoption of the fluorescent tagging techniques developed for T. brucei (Bingle et al., 
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2001; Gibson et al., 2008; Peacock et al., 2011) and T. cruzi (Pires et al., 2008) will further aid the 

investigation of genetic exchange in T. congolense. From a perspective of genetic exchange in the 

wild further studies will be required as the evidence for genetic exchange at present originates from 

only a single country while the parasite is spread over much of sub-Saharan Africa. It will therefore 

be necessary to expand this analysis further afield in order to truly assess the role of mating in the 

species.  
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The Population Genetics of T. b. 

rhodesiense in Uganda and 

Malawi, 1961 - 2010 
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5.1 Introduction 

 

While T. b. gambiense Group 1 accounts for the vast majority of the reported HAT cases, East 

African trypanosomiasis resulting from T. b. rhodesiense infections present a second front on 

which the disease must be combated. With an acute disease profile and distinct response to 

chemotherapy the sub-species generates a different set of challenges to T. b. gambiense, which is 

further complicated by the role of animal reservoirs in the spread and maintenance of disease foci. 

As discussed in Chapter 1, while T. b. rhodesiense has classically been afforded sub-species status, 

within the T. brucei species complex, field isolates of T. b. rhodesiense are more closely related to 

the local T. b. brucei populations than T. b. rhodesiense isolates from different regions of the 

continent (MacLeod et al., 2001c). Traditionally the ability of isolates from animal reservoirs to 

survive in human serum has been utilised as a proxy for human infectivity, distinguishing T. b. 

gambiense and T. b. rhodesiense from T. b. brucei. The discovery that expression of a single gene, 

SRA, confers resistance to lysis by human serum in T. b. rhodesiense (De Greef and Hamers, 1994; 

Xong et al., 1998) has provided a new technique with which to accurately distinguish T. b. 

rhodesiense from sympatric T. b. brucei (Welburn et al., 2001). Due to being defined by the 

presence of a single gene T. b. rhodesiense may be more accurately described as a host variant of T. 

b. brucei as opposed to a genetically distinct sub-species. 

 

Of the current foci of T. b. rhodesiense those spread across the districts of Uganda are amongst the 

most extensively studied. This is in part due to Uganda being the only country presently afflicted 

by both T. b. gambiense Group 1 and T. b. rhodesiense, with only a relatively short distance 

between foci of the two sub-species (Picozzi et al., 2005). Sleeping sickness was first recorded in 

the country at the start of the twentieth century and was one of the earliest reported outbreaks of 

HAT. The epidemic was focused along the shores of Lake Victoria and connected rivers and is 

estimated to have killed more than 200,000 people between 1900 and 1920 (Berrang-Ford et al., 

2006). While this outbreak has historically been attributed to T. b. gambiense Group 1, more recent 

re-analysis of case records has suggested that T. b. rhodesiense was at least partly, if not wholly 

responsible based upon the rapid progression recorded in many cases (Fèvre et al., 2004).  

 

Smaller outbreaks were recorded through the 1930s and 1940s followed by only a small number of 

cases until the 1970s. During this time the majority of reported cases were centred on the Busoga 

focus, bordering Kenya in the south east of the country. A new epidemic began towards the end of 

the 1970s, with increased social upheaval and the resulting reduction in screening and tsetse control 

measures, spreading in a northward direction as the land vacated by humans was left uncultivated, 

encouraging the re-colonisation by tsetse flies, primarily of the G. f. fuscipes species. The outbreak 

reached a peak in the late 1980s before the number of cases began to fall, partially in response to 

the return of tsetse control measures. While the number of cases in the epidemic had already 
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peaked by the end of the 1980s the focus continued to spread, enveloping the Tororo district. Cases 

were first recorded in Soroti district in 1998 (Fèvre et al., 2001) and most recently in Kumi, 

Kaberamaido and Lira districts between 2004 and 2005 (Fèvre et al., 2005; Enyaru et al., 2006). 

Isolated reports of HAT in Masini district, bordering Lake Albert in the mid-west of Uganda 

investigated by Enyaru et al (1999) suggested the potential presence of both T. b. rhodesiense and 

T. b. gambiense Group 1 in this region based on isoenzyme characterisation of isolates and the 

identification of CATT positive individuals. There have, however, been no further reports from this 

region and it is therefore unclear as to whether T. b. rhodesiense is still present within the vector 

and host populations of this region. At present 14 of the districts in Uganda are reported to be 

afflicted by T. b. rhodesiense despite the present use of control measures in much of the country 

(Kotlyar, 2010). 

 

The spread of the disease into the Soroti district, with the first cases being reported in December 

1998, is of particular interest as it has been possible to track this outbreak from the outset through a 

combination of molecular and epidemiological surveys. During the political and social upheaval of 

the 1980s migration of human populations out of the district resulted in the return of natural habitat 

conditions to large areas of land previously used for agriculture, with a resurgence in tsetse 

numbers (Hutchinson et al., 2003). The return of stability, and therefore people, to the region in the 

1990s provided ideal conditions for the spread of HAT into the district. Firstly the return of wild 

habitat into agricultural land increased the level of contact between humans and tsetse, facilitating 

the transmission of T. b. rhodesiense to human hosts. The second major factor in the outbreak of 

HAT in the Soroti district was the importation of livestock to establish or enlarge herds in the 

district. Fèvre et al.(Fèvre et al., 2001) identified Brookes Corner market in Soroti district as the 

centre of the outbreak based on early case records, and determined that in the lead up to the 

outbreak (1995 – 1998) 54% of the cattle traded at the market had been imported from T. b. 

rhodesiense endemic regions. Despite screening and a requirement for treatment of cattle before 

they are brought to market, trypanosomiasis in domestic animals has not been effectively brought 

under control (Waiswa et al., 2003) and the movement of livestock continues to play a significant 

role in the spread of HAT in Uganda (Batchelor et al., 2009; Wardrop et al., 2010). 

 

Animal reservoirs have long been recognised to play an important role in East African HAT. Prior 

to the identification of the SRA gene the only definitive way to classify animal isolates was through 

human serum resistance assays. These tests measure the ability of isolates to survive following 

exposure to human serum, with survival measured through the ability to successfully infect 

laboratory animals or through direct in vitro observation of cell death via the BIIT (Rickman and 

Robson, 1970a, 1970b; Targett and Wilson, 1973). More modern tests utilise fluorescent dyes to 

track the disruption of cellular membranes by human serum, allowing for estimation of rate of cell 

death following exposure (Turner et al., 2004). Waiswa et al.(2003) examined a range of domestic 
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animals in three districts of Uganda; Kamuli, Mukono and Tororo. Across these three districts 41-

46% of cattle were found to be infected with T. brucei, while 83-85% of pigs in Kamuli and 

Mukono districts were infected. No pigs were found to be infected with T. brucei in Tororo. Of the 

185 samples investigated for human serum resistance 30% in both cattle and pigs were classified as 

T. b. rhodesiense based on this test, placing total T. b. rhodesiense prevalence at 13% and 25% 

respectively. The Busia district of Kenya, which neighbours the Tororo district and forms part of 

the Tororo focus also continues to maintain an animal reservoir of human infective trypanosomes, 

although at a lower prevalence of only 1% (von Wissmann et al., 2011). 

 

The discovery of SRA, located within a VSG expression site, suggests that the reported prevalence 

of T. b. rhodesiense from studies relying upon human serum resistance may be an underestimation 

of the true levels, as isolates carrying but not expressing the gene will have been classified as T. b. 

brucei as opposed to T. b. rhodesiense. Studies utilising the presence of SRA as a means to classify 

isolates have suggested the prevalence of T. b. rhodesiense to be 11-18% in randomly sampled 

cattle (Welburn et al., 2001; Enyaru et al., 2006). Enyaru et al.(2006), however, when analysing 

human serum resistant samples predominantly isolated from humans showed that SRA failed to 

amplify in 20% of the samples despite the use of two independent primer sets. While this may 

indicate the existence of SRA negative, T. b. rhodesiense like human infective isolates, the SRA 

gene has been shown to be widespread amongst isolates of T. b. rhodesiense from across Africa 

(Gibson et al., 2002; Njiru et al., 2004a). Enyaru et al.(2006) suggested that amplification failure 

may have occurred due to low parasitaemia in these samples or the presence of divergent SRA 

sequences. To date only two variants of SRA have been reported, differing from one another at 

three bases, with geographical partition of the types (Gibson et al., 2002; MacLean et al., 2004; 

Balmer et al., 2011). At present Tanzania is the only country where the two types have been 

observed to coexist (Balmer et al., 2011). Failure with the two independent primer sets used by 

Enyaru et al.(2006) would therefore require a higher level of diversity than has been previously 

observed in the gene, reducing the likelihood of this explanation being correct. 

 

Due to the timing of the most recent epidemic in Uganda, arising at the same time that the 

techniques for isolation and characterisation of trypanosomes became widely implemented a large 

number of collections have originated from within the Ugandan foci, collected primarily from 

humans and cattle. Isoenzymes, RFLP, mini- and microsatellites have all been used in combination 

with human serum resistance tests in order to determine the relationships between isolates. Isolates 

of T. b. rhodesiense have been shown to be genetically distinct from those found in other parts of 

East Africa, supporting geographical sub-structuring and limited gene flow across large regions 

(MacLeod et al., 2000, 2001b; Balmer et al., 2011). A study utilising isolates of T. brucei from 

Kiboko in Kenya found a small proportion to be genetically similar to T. b. rhodesiense from 

Tororo, 500km away. Most striking was that at the time of sampling no cases of HAT had ever 
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been reported in Kiboko (Hide et al., 2000).Within focus studies have produced a range of results 

with regards the level of differentiation between isolates from different districts. Hide et al.(1998), 

utilising RFLP found that isolates of T. b. rhodesiense from the neighbouring Busia (Kenya) and 

Tororo (Uganda) districts were genetically similar despite the districts being endemic and epidemic 

respectively and with observable differences in disease progression. In contrast studies by Enyaru 

et al.(1993),using isoenzyme markers, and MacLean et al.(2007), using microsatellite markers, 

comparing Busoga / Tororo and Tororo / Soroti respectively found isolates from the districts to be 

genetically distinct from one another. This would suggest that there is only limited gene flow 

between these foci, despite the relatively small distance between them and high likelihood that the 

Soroti focus is an offshoot of that in Tororo (Fèvre et al., 2001; Welburn et al., 2001). 

 

As many samples from Uganda have been isolated from animals in addition to human patients it 

has been possible to examine the relationship between T. b. brucei and T. b. rhodesiense isolated 

from the same region. Intriguingly, and despite the known difference of only a single gene between 

the two sub-species many of these studies have found T. b. rhodesiense to be both genetically 

distinct from, and less genetically diverse than sympatric isolates of T. b. brucei (Hide et al., 1994, 

1998; MacLeod et al., 2000, 2001b; Agbo et al., 2003). These results would appear to suggest that 

T. b. rhodesiense may be genetically isolated from T. b. brucei even when found within non-human 

hosts that may be infected by either of the sub-species. Balmer et al.(2011) however, in studying 

isolates from all T. brucei subgroups, demonstrated that T. b. rhodesiense were often more related 

to T. b. brucei isolates than other isolates of T. b. rhodesiense. Together these studies may indicate 

that while differences can exist between sympatric populations of T. b. brucei and T. b. rhodesiense 

the differences are negligible when considering the continent as a whole. 

 

While the genetic diversity and epidemiology of HAT has been extensively studied in Uganda the 

role of genetic exchange in natural populations of T. brucei remains controversial, as discussed in 

Chapter 1. This is in part due to the presence of the multiple sub-species which can distort the 

analysis of populations if grouped or separated incorrectly, as well as the non-obligatory nature of 

genetic exchange in T. brucei. The analysis of samples from Uganda has in part contributed to this 

controversy. Stevens and Welburn (1993), utilising 10 isoenzyme markers examined 44 isolates of 

T. brucei from Tororo district and concluded that there was a lack of regular genetic exchange 

occurring after grouping human serum sensitive and resistant isolates together. Agbo et al.(2003) in 

contrast, concluded that there was sufficient heterogeneity to exclude clonality, again grouping 

isolates that were sensitive and resistant to lysis by human serum. Based upon the genetic 

differentiation seen between human serum sensitive and resistant isolates a number of studies have 

analysed these grouped separately in order to avoid the potential bias introduced by mixing the 

distinct populations (Hide et al., 1994; MacLeod et al., 2000). These studies examined the role of 

population structure in the different sub-species and the potential role of clonal expansion of 
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individual genotypes in masking underlying genetic exchange within a population, giving rise to 

the epidemic population structure as defined by Maynard-Smith (1993). The results of these studies 

suggests that while genetic exchange may be a frequent occurrence amongst T. b. brucei the 

populations of T. b. rhodesiense appear to be either clonal (Hide et al., 1994; MacLeod et al., 2000) 

or epidemic and dominated by the clonal expansion of a small number of genotypes (Stevens and 

Tibayrenc, 1996). 

 

In contrast to Uganda the HAT foci of Malawi, approximately 1700 km to the south, has been the 

subject of relatively little study. HAT in Malawi is associated with a milder and more chronic 

disease profile than that of Uganda (MacLean et al., 2004, 2010) with distinct cytokine profiles in 

the two countries (MacLean et al., 2004, 2007, 2010) and the observation of anaemia in a high 

proportion of patients in Malawi (Chisi et al., 2004). The majority of cases within Malawi are 

associated with close proximity to game reserves and it is likely that a high proportion of cases go 

unreported in the country (Gondwe et al., 2009; Madanitsa et al., 2009). 

 

In order to further explore the epidemiology, diversity and population structure of T. b. rhodesiense 

seven microsatellite markers were employed in order to analyse parasite samples from four 

different foci of disease, three in Uganda and one from Malawi. The samples from Uganda were 

collected from Tororo, Soroti and Kaberamaido districts and have been analysed as four separate 

populations, Tororo pre-1991, Tororo 2003, Soroti 2003 and Kaberamaido 2009 based upon their 

geography and date of origin. The population from Malawi was collected from Nkhotakota General 

Hospital between 2002 and 2003. These samples have therefore allowed for the comparative 

geographical analysis of the three populations collected in 2003 in addition to allowing us to track 

the genetic changes occurring in Uganda as the epidemic spread from Tororo district into Soroti 

and then Kaberamaido districts. 
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5.2 Results 

 

Whereas Chapters 3 and 4 focused upon the population genetics of trypanosomes responsible for 

AAT this chapter aims to examine the population diversity and genetics of the human infective T. 

b. rhodesiense sub-species through the use of five populations. Four of these populations are from 

Uganda and originate from three geographically distinct foci, Tororo, Soroti and Kaberamaido. The 

Tororo pre-1991 population, comprising 52 samples, was collected from humans and cattle in the 

wider Tororo focus, including regions of western Kenya, between 1961 and 1990. All except four 

of the samples in this population were collected between 1988 and 1990.  The samples collected 

from cattle had been previously identified as T. b. rhodesiense based upon their ability to resist 

lysis by human serum. During the 1990s a resurgence of HAT in Uganda led to Tororo seeding an 

offshoot focus in the Soroti district, linked to the movement of infected cattle. Thirty and 84 

samples were collected in 2003 from human patients in Tororo and Soroti respectively. The final 

Ugandan population is composed of 86 samples, collected from human patients in 2009 and 2010, 

from the Kaberamaido district. Kaberamaido, alongside Kumi and Lira districts are amongst the 

most recent to have become afflicted by HAT. The shared history of these four Ugandan 

populations thus comprise a unique case study, allowing for examination of the progress of HAT as 

it spread across the country from Tororo into first Soroti and then Kaberamaido. The final 

population from Malawi consists of 28 samples from the Nkhotakota district focus, collected from 

human patients in 2003. This focus is endemic, ongoing, and in contrast to the relatively severe and 

acute disease observed in Uganda, is characterised by slower progression to the late stage 

(MacLean et al., 2004, 2007, 2010).  

 

Comparative analysis of these five populations allows for the examination of the role of both space 

and time in shaping the population genetics of T. b. rhodesiense, achieved here through the use of 

polymorphic, single locus microsatellite markers. These seven markers have been previously 

described and map to six of the megabase chromosomes of the TREU 927 T. brucei genome 

reference strain. Genotyping of the 280 samples generated complete MLGs for 214 isolates with 78 

unique MLGs across the five populations. Only three samples, K237, UgE90 and liri017, were 

identified as possessing mixed parasite genotypes based upon the presence of three microsatellite 

alleles for at least one of the seven investigated loci. These samples were excluded from subsequent 

analysis. Partial genotypes, consisting of a minimum of four successfully genotyped loci were 

determined for 63 of the isolates (Appendix 11). Data from partially genotyped isolates were 

retained for use in single locus analysis (tests for agreement with Hardy-Weinberg expectations, 

per locus statistics) and pairwise locus analysis (tests for linkage disequilibrium). These samples 

were excluded in tests of unique MLGs or where the complete MLG was required (FST and genetic 

distance; dendrograms of similarity; PCoA). For genotype data see Appendix 11. 
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5.2.1 Geographic sub-structuring of T. b. rhodesiense 

 

In order to determine if the populations were sub-structured due to geographical isolation the three 

populations collected during the 2002-03 time period were compared. The Tororo pre-1991 and 

Kaberamaido 2009 populations were excluded from the analysis in order to avoid potential sub-

structuring arising from temporal variation between populations. Private alleles were determined by 

comparing the populations and identifying alleles unique to either a single population (Tororo / 

Soroti / Malawi) or country (Uganda / Malawi). There was a higher number of private alleles in the 

Malawi population (nine) compared to five in Tororo and three in Soroti. Of the private alleles in 

Malawi five were present at frequencies above 0.1 within the population, whereas only 1 private 

allele was above this frequency in Tororo and none were observed above this level in Soroti. 

Grouping Tororo and Soroti together indicated a total of 16 alleles that were unique to Uganda as a 

whole. Nei's unbiased genetic distance (D) and pairwise population FST assess the differences 

between populations based upon differences in the allele frequencies of the respective populations. 

Values for both range from 0 to 1, with lower values indicating increasing similarity between the 

two populations. By these two measures the Ugandan populations (Tororo 2003 and Soroti 2003) 

are closely related (Table 5.1). The Malawi population shows substantial genetic differentiation 

from both Ugandan populations by both of these measures (Table 5.1).  

 

 

 

 Tororo 2003 Soroti 2003 Malawi 2003 

Tororo 2003 - 0.109 0.226 

Soroti 2003 0.129 - 0.266 

Malawi 2003 0.669 0.680 - 

 

Table 5.1 FST and Nei’s genetic distance between Uganda and Malawi populations 

Pairwise values of Wright‟s fixation index (FST; above diagonal) and Nei‟s genetic distance (D; 

below diagonal) between subpopulations of T. b. rhodesiense from Uganda and Malawi sampled in 

2002-2003. 
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In order to examine the relationship between each isolate from 2003 a UPGMA dendrogram of 

similarity (Figure 5.1) was constructed using Jaccard‟s similarity and rooted against MALa1, an 

isolate of T. b. gambiense Group 1 from a focus in the Democratic Republic of the Congo 

(Morrison et al., 2008b). The tree further supports the significant separation of the Malawi 

population from those in Uganda (94% bootstrap support),however the Ugandan populations could 

not be significantly resolved from one another (Fig. 5.2), as expected given the close genetic and 

historical relationships. The dendrogram highlights the different levels of clonal expansion in each 

population, with Malawi characterised by only two repeated MLGs representing only four isolates 

while in Soroti only 16 unique MLGs were observed, one of which was represented 50 times. 

Plotting of Principal Co-ordinates 1 and 2 following PCoA of the MLG dataset (Figure. 5.2) further 

highlights the separation of the Malawi population. Principal coordinate 1, accounting for 73% of 

the variation observed, appears to primarily separate the populations based on country of origin, 

while coordinate 2, which accounts for 11% of the variation, partially separates the two Ugandan 

populations in addition to highlighting the diversity within the Malawi focus. This method of 

analysis indicates that while the Tororo and Soroti foci were, by the measures tested here, closely 

related in 2003 the two populations could be genetically distinguished from one another. The close 

relationship however results in genetic overlap between the two populations, with a number of 

Ugandan samples that could not be allocated to their population of origin based upon genotype 

alone. All of these data combine to demonstrate that there is significant genetic differentiation 

between the Malawian and Ugandan T. b. rhodesiense isolates, indicating the presence of sub-

structuring between spatially separated populations. 
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Figure 5.1 UPGMA dendrogram of similarity T. b. rhodesiense isolates from 2003 

UPGMA dendrogram of similarity of isolates from 2003 constructed using Jaccard‟s similarity and 

rooted against MALa1, an isolate of T. b. gambiense Group 1 from a focus in the Democratic 

Republic of the Congo (Black in figure). Bootstrap values are given for the main nodes only. The 

Malawi population could be separated with high bootstrap support (94%) from those in Uganda 

while within Uganda the two populations could not be resolved.  

Populations: Malawi = blue, Soroti = green, Tororo = red, MALa1 = black. 

100 
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Figure 5.2 PCoA of T. b. rhodesiense isolates from 2003 

PCoA of isolates collected in 2003. Principal co-ordinate 1 explains 73% of the variation observed and separates the Malawi population from those in Uganda. 

Principal co-ordinate 2 accounts for 11% of the total variation, partially separating the two Ugandan populations, in addition to highlighting the diversity within 

Malawi.
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5.2.2 Genetic exchange in T. b. rhodesiense 

 

5.2.2.1 The Tororo focus between 1961 and 1990 shows no evidence of mating 

 

The Tororo focus lies at the heart of the T. b. rhodesiense outbreaks that have occurred in South 

East Uganda, and is an ongoing cause of HAT in the region. The sample collection from this 

population, comprising 52 genotyped samples from cattle and humans were collected during 

passive sampling of HAT and Nagana cases between 1961 and 1990. All except four samples were 

collected between 1988 and 1990. Two samples were identified as containing multiple infections 

and removed from the analysis, while 43 of the remaining 50 samples were fully genotyped with 

the seven loci utilised in this study. The seven partially genotyped samples were successfully 

genotyped at a minimum of four of the seven loci. While no single MLG dominates the population 

the products of clonal expansion are clearly visible, with 32 isolates, 74% of those fully genotyped, 

represented by just eight different MLGs. Of the four samples isolated prior to 1988 only one, 

UTAR 3, possessed a unique MLG which was not observed during the 1988 – 1990 period. 

 

Multiple alleles were observed for six of the seven loci, however marker Ch4/M12C12, while 

polyallelic in other populations, was observed to be monoallelic in this population, rendering it 

uninformative and it was therefore excluded from subsequent analysis in this population. Of the 

remaining six loci two were observed to possess fewer heterozygotes than expected, two more than 

expected and two close to expectations (Table 5.2A), resulting in a slight heterozygote deficit on 

average. In order to examine the extent of genetic exchange in the Tororo focus, genotype 

frequency was examined for each locus and compared to that expected in a randomly mating 

population in agreement with Hardy-Weinberg expectations. Of the six polyallelic loci examined 

all except one was observed to display significant disagreement with Hardy-Weinberg predictions 

(Table 5.3). Ch3/5L5, the one locus in agreement with Hardy-Weinberg predictions, had low 

polymorphism, with only two alleles present at frequencies of 0.9 and 0.1 respectively. For this 

marker the low level of polymorphism, extremes of allele frequencies and population size limits the 

meaningful use of Hardy-Weinberg equilibrium as a measure of genetic exchange in the population 

as significant deviation is difficult to detect under these circumstances, an issue that was 

encountered repeatedly in the analysis of these populations. To investigate if there was evidence for 

recombination between loci, the alleles at the different loci were examined for agreement with 

linkage equilibrium in all pairwise combinations. At loci where significant deviation from Hardy-

Weinberg equilibrium was observed, allele combinations were preserved, effectively treating the 

two alleles present in an individual as a single allele and allowing for tests of linkage 

disequilibrium that are not affected by deviation from Hardy-Weinberg expectations. Significant 

linkage disequilibrium was observed at 12 of the 15 combinations (Table 5.4A). These results agree 
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with the deviation from Hardy-Weinberg equilibrium in indicating a significant departure from 

panmixia. 

 

While initial analysis of the population would suggest a lack of mating, the non-obligatory nature 

of mating in T. brucei allows for the possibility of an epidemic population structure, with the 

underlying mating masked by clonal expansion of one or more clones that then dominate the 

population (Maynard Smith et al., 1993). The analysis was therefore repeated by removing 

replicate genotypes from the population, leaving 19 unique MLGs. Removal of the repeated 

genotypes reduced the observed heterozygote deficits and excesses with subsequent shift towards 

zero for the population average FIS (Table 5.2A). After removal of the repeated genotypes four of 

the six polymorphic loci were in agreement with Hardy-Weinberg expectations (Table 5.3). 

However of these four loci two, Ch3/5L5 and Ch1/18, were dominated by a single allele at 

frequencies of 0.84 and 0.92 respectively while significant linkage disequilibrium was observed for 

8 of the 15 loci combinations. Due to the presence of only 19 unique MLGs, and the dominance of 

single alleles at two of the six loci, care must be taken when interpreting these results due to the 

increased risk of a Type 2 error, which would mask deviation from Hardy-Weinberg expectations 

or the presence of significant linkage disequilibrium due to insufficient power during the analysis. 

 

Taken together the evidence from both the entire population and unique genotype both suggest a 

lack of genetic exchange within the Tororo foci at this point in time, which is consistent with 

previous studies of the population utilising different types of genetic markers. 
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Table 5.2A-E Per population allele statistics 

A, Tororo pre-1991 

Locus n* A He Ho FIS 

Ch3/5L5 50 / 19 2 / 2 0.18 / 0.31 0.16 / 0.37 0.12 / -0.20 

Ch4/M12C12 49 / 19 1 / 1 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 

Ch2/PLC 48 / 19 5 / 5 0.42 / 0.58 0.35 / 0.47 0.15 / 0.18 

Ch5/JS2 46 / 19 4 / 3 0.54 / 0.52 0.28 / 0.32 0.47 / 0.40 

Ch1/18 50 / 19 5 / 3 0.13 / 0.20 0.12 / 0.21 0.11 / -0.07 

Ch9/4 47 / 19 4 / 4 0.58 / 0.62 0.96 / 0.95 -0.66 / -0.54 

Ch3/IJ15/1 50 / 19 7 / 7 0.60 / 0.68 0.94 / 0.95 -0.57 / -0.40 

Population Average 49 / 19 4.00 / 3.57 0.35 / 0.42 0.40 / 0.47 -0.15 / -0.12 

B, Tororo 2003 

Locus n* A He Ho FIS 

Ch3/5L5 29 / 17 2 / 2 0.49 / 0.47 0.83 / 0.71 -0.70 / -0.52 

Ch4/M12C12 29 / 17 4 / 3 0.55 / 0.53 0.93 / 0.88 -0.71 / -0.69 

Ch2/PLC 29 / 17 3 / 3 0.16 / 0.27 0.17 / 0.29 -0.06 / -0.11 

Ch5/JS2 29 / 17 3 / 3 0.43 / 0.41 0.59 / 0.53 -0.37 / -0.29 

Ch1/18 29 / 17 2 / 2 0.46 / 0.45 0.69 / 0.65 -0.51 / -0.45 

Ch9/4 28 / 17 5 / 4 0.59 / 0.61 1.00 / 1.00 -0.72 / -0.66 

Ch3/IJ15/1 26 / 17 4 / 4 0.54 / 0.57 0.77 / 0.65 -0.42 / -0.15 

Population Average 28 / 17 3.29 / 3.00 0.46 / 0.47 0.71 / 0.67 -0.56 / -0.44 

C, Soroti 2003 

Locus n* A He Ho FIS 

Ch3/5L5 84 / 16 2 / 2 0.50 / 0.52 1.00 / 1.00 -1.00 / -1.00 

Ch4/M12C12 84 / 16 3 / 3 0.14 / 0.23 0.15 / 0.25 -0.07 / -0.08 

Ch2/PLC 83 / 16 4 / 4  0.52 / 0.58 0.90 / 0.88 -0.75 / -0.54 

Ch5/JS2 83 / 16 4 / 4 0.06 / 0.24 0.06 / 0.25 -0.02 / -0.06 

Ch1/18 82 / 16 2 / 2  0.50 / 0.51 0.98 / 0.88 -0.95 / -0.76 

Ch9/4 84 / 16 5 / 5 0.52 / 0.59 0.98 / 0.88 -0.89 / -0.50 

Ch3/IJ15/1 84 / 16 2 / 2 0.01 / 0.06 0.01 / 0.06 0.00 / 0.00 

Population Average 83 / 16 3.14 / 3.14 0.32 / 0.39 0.58 / 0.60 -0.81 / -0.56 
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D
†
, Kaberamaido 2009 

Locus n* A He Ho FIS 

Ch3/5L5 58 2 0.03 0.03 -0.01 

Ch4/M12C12 83 1 0.00 0.00 0.00 

Ch2/PLC 85 2 0.23 0.00 1.00 

Ch5/JS2 85 1 0.00 0.00 0.00 

Ch1/18 86 2 0.50 1.00 -1.00 

Ch9/4 54 2 0.50 1.00 -1.00 

Ch3/IJ15/1 86 2 0.08 0.08 -0.04 

Population Average 77 1.71 0.16 0.30 -0.86 

E, Malawi 2003 

Locus n* A He Ho FIS 

Ch3/5L5 28 / 21 2 / 2 0.36 / 0.37 0.46 / 0.48 -0.29 / -0.29 

Ch4/M12C12 28 / 21 2 / 2 0.47 / 0.46 0.71 / 0.67 -0.54 / -0.48 

Ch2/PLC 28 / 21 4 / 4 0.20 / 0.22 0.21 / 0.24 -0.06 / -0.06 

Ch5/JS2 28 / 21 3 / 3 0.49 / 0.45 0.18 / 0.14 0.64 / 0.69 

Ch1/18 28 / 21 3 / 3 0.20 / 0.22 0.21 / 0.24 -0.08 / -0.09 

Ch9/4 24 / 21 3 / 3 0.53 / 0.53 0.42 / 0.43 0.22 / 0.19 

Ch3/IJ15/1 26 / 21 4 / 4 0.70 / 0.68 0.58 / 0.57 0.17 / 0.17 

Population Average 27 / 21 3.00 / 3.00 0.42 / 0.42 0.40 / 0.39 0.06 / 0.06 

 

Table 5.2A-E Per population allele statistics 

Samples numbers, observed allele numbers, observed and expected heterozygosities and inbreeding 

coefficient for „all samples/unique MLGs‟ respectively at each locus and population average per 

population. Populations: A = Tororo pre-1991, B = Tororo 2003, C = Soroti 2003, D = 

Kaberamaido 2009, E = Malawi 2003. 

† 
Only four fully genotyped and unique MLGs were observed within the Kaberamaido 2009 

population, data are therefore shown for „all samples‟ only.  

*n = Mean sample number across all loci after accounting for missing data, A = mean allele 

number per locus, He = Expected heterozygosity, Ho = Observed heterozygosity, FIS = Inbreeding 

coefficient. 
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Table 5.3 Probability of agreement with Hardy-Weinberg expectations 

Probability of agreement with Hardy Weinberg predictions (Data are shown for „all samples/unique 

MLGs, respectively). P<0.05 = Significant disagreement, shown in bold. * Only four fully 

genotyped and unique MLGs were observed within the Kaberamaido 2009 population, data are 

therefore shown for „all samples‟ only.

 Tororo pre-1991 Tororo 2003 Soroti 2003 Kaberamaido 2003* Malawi 2003 

Ch3/5L5 0.40 / 1.00 0.00 / 0.06 0.00 / 0.00 1.00 0.29 / 0.29 

Ch4/M12C12 1.00 / 1.00 0.00 / 0.00 1.00 / 1.00 1.00 0.00 / 0.05 

Ch2/PLC 0.00 / 0.07 1.00 / 1.00 0.00 / 0.03 0.00 1.00 / 1.00 

Ch5/JS2 0.00/ 0.10 0.08 / 0.64 1.00 / 1.00 1.00 0.00 / 0.00 

Ch1/18 0.03 / 1.00 0.01 / 0.11 0.00 / 0.01 0.00 1.00 / 1.00 

Ch9/4 0.00 / 0.01 0.00 / 0.00 0.00 / 0.04 0.00 0.02 / 0.04 

Ch3/IJ15/1 0.00 / 0.01 0.00 / 0.04 1.00 / 1.00 1.00 0.06 / 0.15 
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5.2.2.2 The Tororo focus in 2003 shows no evidence for mating 

 

The Tororo 2003 population, collected 13 years after the initial sampling period of the focus 

provided a unique opportunity to revisit the outbreak and assess whether genetic exchange between 

trypanosomes had become a frequent occurrence or whether clonality still dominated the 

population structure. The Tororo 2003 population consists of 30 samples collected from the region 

between 2002 and 2003, 27 of which were genotyped at all 7 loci. One mixed infection (isolate 

liri017) was identified in the population and removed from the analysis. An excess of 

heterozygosity was observed at six of the seven loci (FIS = -0.56, Table 5.2B) and four of the seven 

loci were represented with fewer alleles than in the pre-1991 population (Table 5.2B). Eleven 

alleles present in the pre-1991 population were absent in 2003, although only one of these had been 

present at a frequency of above 0.1 while six new alleles, absent in the pre-1991 population, were 

present in 2003 with two at frequencies of above 0.1. As with the Tororo pre-1991 population 

clonal expansion of genotypes is visible, with four MLGs representing 13 of the 27 fully genotyped 

isolates. 

 

Significant deviation from Hardy-Weinberg equilibrium was detected at five of the loci (Table 5.3). 

Ch2/PLC and Ch5/JS2 were found to be in agreement with Hardy-Weinberg expectations. 

However, both of these loci were observed to be dominated by a high frequency of a single allele. 

While three alleles were observed at Ch2/PLC one was observed at a frequency of 0.9, dominating 

the population by its presence in each sample and preventing meaningful analysis of Hardy-

Weinberg equilibrium as previously discussed. Ch5/JS2 was also found to possess three alleles 

with the dominant allele present at a frequency of 0.71 and the second allele at a frequency of 0.28. 

While in agreement with Hardy-Weinberg predictions the dominant allele was observed to be 

present in each individual and was the only allele found in homozygotes. The absence of 

homozygotes for the remaining alleles may arise from the low frequency with which they are 

expected to occur in a population of this size. To examine the evidence for recombination, linkage 

disequilibrium between alleles at all pairwise combinations was examined, revealing that only 1 of 

the 21 loci combinations were in linkage disequilibrium (Table 5.4B) after preserving allele 

combinations at loci with significant disagreement from Hardy-Weinberg predictions. While this 

would superficially appear to be evidence for recombination within the population, these results 

arise from the relatively low level of variation across each of the loci, with the majority dominated 

by a single homo- or heterozygote genotype. This limited genetic variation hindered statistical 

analysis. There remained an excess of heterozygotes following removal of duplicate genotypes (FIS 

= -0.44) while two additional loci, Ch1/18 and Ch3/5L5 show agreement with Hardy-Weinberg 

predictions (Table 5.3). This may, however, be a Type 2 error as after removal of the repeated 

MLGs only 17 individuals remain in the population. No change is observed on the number of loci 
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combinations in linkage disequilibrium upon removal of the replicate MLGs (Table 5.4B). These 

data are consistent with little or no sexual recombination in this population. 

 

5.2.2.3 The population of the Soroti focus in 2003 is homogeneous, with extensive clonal 

expansion of a single genotype 

 

The Soroti focus is a relatively new focus of HAT, in contrast to foci in Tororo and Malawi. 

Human cases of trypanosomiasis in the Soroti district were first reported in December of 1998 and 

the focus is likely to be an offshoot of the Tororo epidemic (Fèvre et al., 2001). While 84 samples 

were genotyped for the population the majority of these samples represent replicate MLGs with 

only 16 unique MLGs identified in the population. A single genotype (MLG 49), dominates the 

population, sampled 50 times in total with the extent of this clonal expansion clearly visible in the 

dendrogram plots (Figures 5.1 and 5.3). 

 

This population is dominated by high levels of both homozygosity and heterozygosity. Four of the 

loci (Ch3/5L5, Ch2/PLC, Ch1/18 and Ch9/4) are represented almost exclusively by a single 

heterozygote pair of alleles, resulting in highly negative inbreeding coefficients (Table 5.2C) and 

significant disagreement with Hardy-Weinberg predictions (Table 5.3). While multiple alleles were 

observed at the remaining three loci (Ch4/M12C12, Ch5/JS2 and Ch3/IJ15/1) (Table 5.2C) all 

possess one allele present at a frequency of over 0.9 and are observed to be in Hardy-Weinberg 

equilibrium. The low level of variation observed within this population, with each locus 

predominantly represented by a single homozygote or heterozygote genotype hampered meaningful 

analysis of linkage equilibrium (Table 5.4C). Removal of repeated genotypes had little effect on the 

deviation from Hardy-Weinberg predictions, in addition to substantially reducing the power of this 

analysis to only 16 MLGs. Overall the Soroti population, with little variation between individuals 

and a high number of repeated genotypes indicates no, or an undetectable level, of mating 

occurring. 

 

5.2.2.4 The Kaberamaido focus in 2009 is homogeneous and dominated by a single genotype 

 

The Kaberamaido population, like Soroti in 2003, represents a recent expansion of the HAT foci in 

Uganda. The sample collection consists of 86 samples, of which only 42 were fully genotyped. 

Missing data at two loci, Ch3/5L5 and Ch9/4 are responsible for the majority of the partially 

genotyped samples. The allele frequencies observed in Kaberamaido closely resemble the patterns 

observed in Soroti in 2003, with excesses of both homozygosity and heterozygosity. Ch4/M12C12 

and Ch5/JS2 are completely monoallelic within this population while Ch3/5L5, Ch2/PLC and 

Ch3/IJ15/1 are all dominated by a single allele at a frequency above 0.9, resulting in inbreeding 

coefficients of close to zero (Table 5.2D). While these loci display agreement with Hardy-
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Weinberg predictions, the high frequency of a single allele in each again renders this test 

susceptible to a Type 2 error (Table 5.3). The remaining two loci, Ch1/18 and Ch9/4 are both 

entirely represented by a single heterozygote pair giving rise to inbreeding coefficients of -1.00 

(Table 5.2D) and significant disagreement with Hardy-Weinberg predictions (Table 5.3). As with 

the Soroti population the allele frequencies observed prevent meaningful analysis of linkage 

equilibrium between the loci (Table 5.4D). Removal of repeated and partially genotyped samples 

leaves only four unique MLGs, preventing further analysis. Of these MLG 78 dominates the 

population, representing 38 of the 42 fully genotyped samples (Figure 5.3). 

 

While 86 samples were genotyped within this population there was a high frequency of missing 

data at two loci, with 28 samples missing data at Ch3/5L5 and 32 missing data at Ch9/4. In contrast 

only five samples are missing data from any of the other loci. These missing data could be 

explained by either failure to amplify known alleles at these loci or by the presence of null alleles 

within the population. The standard statistical methods for the estimation of null allele frequency, 

such as those of Dempster et al.(1977), Chakraborty et al.(1992) and Brookfield (1996) rely upon 

the assumption of panmixia within the population and that deviation from Hardy-Weinberg 

equilibrium at individual loci is only due to the presence of the undetected null alleles. The data 

from the five unaffected loci suggests however that this population is highly clonal with little or no 

mating occurring, preventing estimation of null allele frequency by these methods. 

 

5.2.2.5 The population structure of the Malawi focus in 2003 indicates the presence of 

frequent mating 

 

The Malawi sample collection, genetically distinct from those in Uganda (Table 5.1), comprises 28 

individual samples, with 23 fully genotyped for all seven markers. Twenty-one of the 23 MLGs 

observed are unique within the population and none of the MLGs are shared with any of the 

Ugandan populations. Between two and four alleles were observed at each locus, with a close to 

expected number of heterozygotes when examining the population as a whole (Table 5.2E). Two 

loci, Ch4/M12C12 and Ch5/JS2, deviate considerably with a large heterozygote excess and deficit 

respectively. Examination of the markers for deviation from Hardy-Weinberg expectations 

revealed three loci (Ch4/M12C12, Ch5/JS2 and Ch9/4) that deviate significantly from predictions 

(Table 5.3). Disagreement at Ch4/M12C12 and Ch5/JS2 results from heterozygote and homozygote 

excesses, respectively. For marker Ch9/4 the disagreement arises from the presence of a single 

individual (sample NKK/T/026) homozygous for a rare allele, which was observed only in this 

sample. Loci Ch2/PLC and Ch1/18 are dominated by single alleles within the population, thus 

accounting for the complete agreement at these loci as previously described. After accounting for 

deviation from Hardy-Weinberg equilibrium by preserving genotypes at these loci only 2 out of 21 

loci combinations were observed to show significant evidence of linkage disequilibrium (Table 
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5.4E). While there was a total of only two repeated genotypes within the Malawi population their 

removal resulted in Ch4/M12/C12 moving to agreement with Hardy-Weinberg predictions, while 

significant linkage disequilibrium was observed between only a single pair of loci, Ch3/IJ15/1 – 

Ch9/4. 

 

Despite being the smallest of the five populations, the Malawi 2003 population is represented by 

the greatest number of unique MLGs with clonal expansion of two of these MLGs representing a 

total of only four isolates. The population is therefore clearly different from those in Uganda where 

clonal expansion has come to dominate the populations examined in this Chapter. The population is 

further differentiated by its agreement with Hardy-Weinberg expectations (Table 5.3) and low level 

of linkage disequilibrium (Table 5.4E). Coupled to the unique number of genotypes this evidence is 

consistent with the presence of frequent mating within the T. b. rhodesiense population in Malawi. 

Due to the relatively low sample size of 23 it is not possible to robustly conclude the presence of 

panmixia within the population and further studies will be required in order to confirm these results 

and determine why the T. b. rhodesiense populations of Uganda and Malawi differ so much.
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Table 5.4A-E Per population linkage disequilibrium between pairwise loci 

A†, Tororo pre-1991 

 Ch3/5L5 Ch4/M12C12 Ch2/PLC Ch5/JS2 Ch1/18 Ch9/4 Ch3/IJ15/1 

Ch3/5L5 - 0.41 / 1.00 0.00 / 0.06 0.26 / 0.10 0.00 / 0.08 0.00 / 0.12 0.00 / 0.29 

Ch4/M12C12 - - 1.00 / 0.07 1.00 / 0.09 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 

Ch2/PLC - - - 0.03 / 0.03 0.01 / 0.02 0.03 / 0.03 0.09 / 0.08 

Ch5/JS2 - - - - 0.19 / 0.13 0.00 / 0.02 0.00 / 0.02 

Ch1/18 - - - - - 0.00 / 0.00 0.00 / 0.00 

Ch9/4 - - - - - - 0.00 / 0.01 

Ch3/IJ15/1 - - - - - - - 

 

B, Tororo 2003 

 Ch3/5L5 Ch4/M12C12 Ch2/PLC Ch5/JS2 Ch1/18 Ch9/4 Ch3/IJ15/1 

Ch3/5L5 - 1.00 / 0.24 0.40 / 0.49 0.13 / 0.52 0.63 / 0.31 0.20 / 0.16 1.00 / 0.65 

Ch4/M12C12 - - 1.00 / 1.00 0.50 / 0.91 0.10 / 0.22 0.22 / 1.00 0.48 / 0.55 

Ch2/PLC - - - 0.53 / 0.92 0.28 / 0.33 1.00 / 0.81 0.58 / 0.85 

Ch5/JS2 - - - - 0.24 / 0.65 0.10 / 0.25 0.48 / 0.82 

Ch1/18 - - - - - 0.61 / 0.37 0.87 / 0.67 

Ch9/4 - - - - - - 0.01 / 0.04 

Ch3/IJ15/1 - - - - - - - 

 

C, Soroti 2003 

 Ch3/5L5 Ch4/M12C12 Ch2/PLC Ch5/JS2 Ch1/18 Ch9/4 Ch3/IJ15/1 

Ch3/5L5 - 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 

Ch4/M12C12 - - 0.37 / 0.60 0.77 / 1.00 1.00 / 1.00 0.51 / 0.75 1.00 / 1.00 

Ch2/PLC - - - 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 

Ch5/JS2 - - - - 0.11 / 0.39 0.04 / 0.41 1.00 / 1.00 

Ch1/18 - - - - - 0.07 / 0.35 1.00 / 1.00 

Ch9/4 - - - - - - 1.00 / 1.00 

Ch3/IJ15/1 - - - - - - - 

 

  



 

 
Page | 137 

P
ag

e | 1
3
7
 

D*, Kaberamaido 2009 

 Ch3/5L5 Ch4/M12C12 Ch2/PLC Ch5/JS2 Ch1/18 Ch9/4 Ch3/IJ15/1 

Ch3/5L5 - 1.00 1.00 1.00 1.00 1.00 1.00 

Ch4/M12C12 - - 1.00 1.00 1.00 1.00 1.00 

Ch2/PLC - - - 1.00 1.00 1.00 1.00 

Ch5/JS2 - - - - 1.00 1.00 1.00 

Ch1/18 - - - - - 1.00 1.00 

Ch9/4 - - - - - - 1.00 

Ch3/IJ15/1 - - - - - - - 

 

E, Malawi 2003 

 Ch3/5L5 Ch4/M12C12 Ch2/PLC Ch5/JS2 Ch1/18 Ch9/4 Ch3/IJ15/1 

Ch3/5L5 - 0.11 / 0.81 0.61 / 0.43 0.64 / 0.52 0.55 / 0.69 0.87 / 0.57 0.25 / 0.42 

Ch4/M12C12 - - 0.17 / 0.59 0.15 / 0.87 0.06 / 0.43 0.10 / 0.17 0.50 / 0.57 

Ch2/PLC - - - 0.79 / 0.89 0.70 / 0.70 0.29 / 0.50 0.18 / 0.24 

Ch5/JS2 - - - - 0.46 / 0.75 0.28 / 0.57 0.02 / 0.06 

Ch1/18 - - - - - 0.39 / 0.61 0.48 / 0.71 

Ch9/4 - - - - - - 0.01 / 0.01 

Ch3/IJ15/1 - - - - - - - 

 

Table 5.4A-E Per population linkage disequilibrium between pairwise loci 

Linkage disequilibrium between loci pairs for the five populations for „all samples/unique MLGs‟, 

respectively. Allele combinations were preserved for loci showing significant disagreement with 

Hardy-Weinberg predictions. P < 0.05 = Significant linkage disequilibrium, indicated in bold. A = 

Tororo pre-1991, B = Tororo 2003, C = Soroti 2003, D = Kaberamaido 2009, E = Malawi 2003. 

†Note that in this population locus Ch4/M12C12 is fixed for a single allele, accounting for the LD 

of 1.00. * Only four unique MLGs were observed within the Kaberamaido 2009 population, data 

are therefore shown for „all samples‟ only.  In addition loci Ch4/M12C12 and Ch5/JS2 were fixed 

for a single allele in this population accounting for the LD of 1.00. 
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5.2.3 Genetic variation of T. b. rhodesiense isolates between 1961 and 2010 

 

Analysis of the 2003 populations indicated that whilst the Ugandan and Malawi populations were 

genetically and geographically distinct a low level of differentiation separated the historically 

related populations of Tororo and Soroti. As discussed in the introduction for this chapter, HAT in 

Uganda has spread since the 1970s from its historical roots in the Busoga focus outwards to 

envelop Tororo, Soroti and most recently Kaberamaido districts. Addition of two further study 

populations, Tororo pre-1991 and Kaberamaido 2009 provides respectively, an early endemic 

population and late, epidemic population at what is now one edge of the geographic range of T. b. 

rhodesiense in Uganda. With these populations it has been possible to examine the changing 

dynamics of T. b. rhodesiense in the country as it has spread out from Tororo district over the 

course of 22 years. Clonal expansion of genotypes is a common feature of the four Ugandan 

populations. Eight repeated MLGs were present in Tororo between 1961 - 1990 and four in Tororo 

in 2003, however, no single MLG was observed to dominate the respective populations. In the 

Tororo pre-1991 population the most frequently observed MLG represented seven isolates while in 

the Tororo 2003 population the most frequently observed MLG represented only four isolates. This 

is in sharp contrast to the Soroti 2003 and Kaberamaido 2009 populations which were both 

dominated by a single, high frequency MLG (MLGs 49 and 78 respectively). Only two MLGs, 29 

and 31, were observed in multiple populations, representing isolates of both Tororo 2003 and 

Soroti 2003. 

 

Nei‟s unbiased genetic distance (D) and pairwise population FST were used to comparatively assess 

the genetic relationship between the four populations (Table 5.5). The Tororo pre-1991 focus is 

likely to represent the ancestral population of the other three based upon the known spread of HAT 

through Uganda. The Tororo 2003 population presents a direct continuation of the foci, separated 

only by time. Nei‟s unbiased genetic distance and pairwise FST between these two populations 

indicated a moderate level of differentiation (Tororo pre-1991 – Tororo 2003 D = 0.411, FST = 

0.201). Soroti, which is likely to have originated as an offshoot of the Tororo focus, shares a 

similar level of differentiation to the Tororo pre-1991 population (Tororo pre-1991 – Soroti 2003 D 

= 0.345, FST = 0.203) as the Tororo 2003. The similar relationships to the ancestral population is 

consistent with the close relationship of the Tororo and Soroti populations in 2003 (Tororo 2003 – 

Soroti 2003, D = 0.129, FST = 0.109).  
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 Tororo pre-1991 Tororo 2003 Soroti 2003 Kaberamaido 2009 

Tororo pre-1991 - 0.201 0.203 0.381 

Tororo 2003 0.411 - 0.109 0.159 

Soroti 2003 0.345 0.129 - 0.090 

Kaberamaido 2009 0.570 0.159 0.077 - 

 

Table 5.5 FST and Nei’s genetic distance between Ugandan populations 

Pairwise values of Wright‟s fixation index (FST; above diagonal) and Nei‟s genetic distance (D; 

below diagonal) between subpopulations of Ugandan T. b. rhodesiense isolates as defined by focus 

and date of sample collection. 

 

 

 

 

 

 

 

 

Tororo pre-1991 and Kaberamaido 2009 are the most distinct of the Ugandan populations based 

upon their origins and this is reflected in the high level of genetic differentiation between them 

(Tororo pre-1991 – Kaberamaido 2009 D = 0.570, FST = 0.381). The genetic distance between 

these two populations are comparable to that observed between the 2003 populations from Uganda 

with that of Malawi (Table 5.1), highlighting the extent to which a population within a single 

country may drift over time. The Kaberamaido 2009 population is much more closely related to the 

two populations from 2003, especially Soroti 2003, which is separated from Kaberamaido by both 

the shortest time period and smallest geographical distance. This would support the Kaberamaido 

outbreak being the most recent front of the epidemic that began back in Tororo. However, as 

contemporary samples are unavailable from Soroti it is not possible to formally prove that 

Kaberamaido represents a continuation of the existing Soroti focus or a new and separate focus 

with limited gene flow to and from Soroti. Further sampling will be required in order to elucidate 

the nature and development of the Kaberamaido outbreak. 

 

In order to further examine the relationships between the four populations a UPGMA dendrogram 

of similarity was constructed using the MLGs and PCoA was undertaken. The dendrogram, rooted 

to the T. b. gambiense Group 1 isolate MALa1 (Figure 5.3) separated the isolates into two groups 

with 100% bootstrap support. The first (Group A) encompasses the Kaberamaido 2009 population, 
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all bar one isolate from the Soroti 2003 population, 22 isolates from Tororo 2003 and five isolates 

from Tororo pre-1991. The second (Group B) consists of 42 individuals, 38 from the Tororo pre-

1991 population, three from the Tororo 2003 population and one from the Soroti 2003 population. 

Plotting of Principal Coordinates 1 and 2 indicated that 74% of the observed variation could be 

explained by the principal co-ordinate 1 (Figure 5.4). Tororo pre-1991 accounted for the majority 

of the diversity observed along by this principal co-ordinate and was the most visibly diverse and 

separate population. The differentiation identified in the dendrogram was closely correlated with 

separation along principal co-ordinate 1 with all bar one member of Group B falling to the right 

hand side of the plot. Principal co-ordinate 2 accounted for 10% of the observed variation, this time 

with the two Tororo populations responsible for the majority. Soroti 2003 formed a visible cluster 

close, but predominantly separate from Tororo 2003 while the Group A isolates from Tororo pre-

1991 fall into the intersection between the Tororo 2003 and Soroti 2003 populations. Three of the 

four Kaberamaido 2009 MLGs are also positioned close to this intersection. The identification of 

these two groups, which are predominantly defined by temporal origin, suggests that there was a 

substantial shift in the T. b. rhodesiense populations of Uganda between the pre-1991 period and 

2003. The PCoA analysis indicates that this is predominantly due to the loss of diversity that was 

present in the pre-1991 population. 
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Figure 5.3 UPGMA dendrogram of similarity for the four Ugandan populations 

UPGMA dendrogram of similarity for the four Ugandan populations, rooted against the T. b. 

gambiense Group 1 isolate MALa1 isolated from a focus in the Democratic Republic of Congo 

(black in figure). Significant bootstrap support (100%) was detected for two groups (A and B). 

Populations: Tororo pre-1991 = orange, Tororo 2003 = red, Soroti 2003 = green, Kaberamaido 

2009 = light blue.  

100 

100 
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Group B 
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Figure 5.4 PCoA of the four Ugandan populations 

PCoA of the four Ugandan populations assessing the relationships between them as the outbreak has developed over time and geography. Principal co-ordinate 1 

explains 74% of the observed variation, primarily present within the Tororo pre-1991 population. Principal co-ordinate 2 accounts for 10% of the total observed 

variation, with the majority coming from the two Tororo populations. The separation of the two groups identified by the dendrogram is indicated, with only Liri016 

(highlighted in black) not grouping as in the dendrogram.

Group B 

Group A 
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5.3 Discussion 

 

The focus of this chapter, like that of chapters 3 and 4 has been to examine the role and extent of 

mating in one of the African Salivarian trypanosomes, T. b. rhodesiense in addition to examining 

the spatial and temporal relationships that exist between populations of this sub-species. The results 

presented here support the existence of both genetic exchange and extensive clonality within 

independent populations of this sub-species, emphasising the role the non-obligatory mating cycle 

can play in determining population structure in T. brucei. This is in contrast to previous studies that 

have described T. b. rhodesiense as being a genetically homogenous member of the T. brucei 

species, much like the more extensively studied T. b. gambiense Group 1. This evidence for genetic 

exchange occurring in the field therefore represents a fundamental advance in our knowledge of the 

role that mating plays in shaping the evolutionary potential of this organism. 

 

The definition of species in organisms such as trypanosomes is a complex issue, defined 

historically by morphological similarities while being divided by geographic localisation, host 

range and variations in disease profile. Molecular biology and genetics has only added to the 

complexity by further highlighting the similarities and differences within species. In the case of T. 

brucei species complex this has given rise to the classical description of three sub-species. The 

homogenous T. b. gambiense Group 1 is the most genetically distinct of the sub-species, with 

suggestions that it should be returned to its previous position as T. gambiense (Gibson, 2003, 

2007).T. b. brucei, with high levels of genetic diversity appears in many respects as the archetype 

of the species, lacking only the ability to infect humans, while over the last decade or so the 

emerging hypothesis with regard to T. b. rhodesiense has positioned the sub-species as a host range 

variant of T. b. brucei (MacLeod et al., 2001c; Gibson, 2002; Gibson et al., 2002), defined only by 

the presence and role of the SRA gene (Xong et al., 1998). This position as a simple variant of T. b. 

brucei however neglects that previous studies have observed that T. b. rhodesiense can exist as 

essentially stable clones over time, albeit with differences between geographically distinct 

populations (Hide et al., 1994; MacLeod et al., 2000) and T. b. rhodesiense populations appear 

distinct and separate from the sympatric, heterogeneous and frequently mating populations of T. b. 

brucei (MacLeod et al., 2001a). While these differences between the sub-species have been 

identified, isolates of T. b. rhodesiense are more closely related to local T. b. brucei than T. b. 

rhodesiense, suggesting genetic exchange between the sub-species still occurs (MacLeod et al., 

2001c; Balmer et al., 2011). 

 

While the Ugandan results support this highly homogenous concept, those from Malawi 

demonstrate that the frequency of mating may vary, with these contrasting results highlighting the 

role that mating plays in shaping outbreaks and over longer periods the influence that mating may 

have on the evolution of the species. This means, significantly, that T. b. rhodesiense cannot be 
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classified as a genetically homogeneous human-infective variant of T. b. brucei, but that there are 

genetically and biologically distinct populations. Within this context, one obvious question that 

arises from the results is whether the observed frequent genetic exchange in Malawian samples is 

due to mating between T. b. rhodesiense and T. b. brucei, or between T. b. rhodesiense samples in a 

separate endemic cycle. This is a question that cannot be answered using the current sample set, 

and requires population analysis to be carried out between sympatric T. b. rhodesiense and T. b. 

brucei populations in that focus. 

 

The Ugandan foci fit with the previously established idea of a T. b. rhodesiense existing as a 

relatively stable lineage. While variation was observed between the foci the process was gradual, 

with populations closely linked by time and geography sharing the closest genetic relationships. 

The Ugandan populations were sampled over a 22 year period, it is highly likely therefore that both 

mutation and population drift over time played a role in the gradual differentiation observed within 

the country, while the establishment of new foci likely involved severe bottleneck effects, reducing 

population diversity and increasing the level of genetic differentiation between the sampled 

populations. While these processes explain the relationships between the foci they are unable to 

explain the clonality observed within each. T. b. brucei is known to undergo frequent mating with 

an epidemic population structure (MacLeod et al., 2000) and apart from humans shares many 

common hosts with T. b. rhodesiense, in particular livestock (Welburn et al., 2001), which imply 

the presence of selective pressures or genetic barriers that prevent interbreeding of the sub-species. 

As the majority of the samples were isolated from humans the selective pressure of passage 

through humans may be sufficiently high that the offspring of mating events between the two sub-

species are either outcompeted by the T. b. rhodesiense genotypes that were observed or are unable 

to infect humans due to the loss of the particular allele combinations required for successful human 

infections. Each of these scenarios would require, however, the presence of multiple genetic factors 

required for successful human infections. In Malawi the existence of multiple loci contributing to 

human infectivity could potentially be reconciled with extensive genetic exchange if the 

„susceptible‟ alleles which reduce fitness in human hosts are present at only a low frequency within 

the population. If this were the case then the majority of progeny genotypes would retain sufficient 

fitness and survive within human hosts. 

 

These hypotheses do not however prevent the occurrence of selfing, which does not appear to be 

occurring at observable levels in these populations based on the observed excesses of 

heterozygosity. Selfing has been observed to occur under laboratory conditions (Peacock et al., 

2009), however the authors noted that it resulted in an increased level of inviable progeny 

compared to a cross between two unrelated strains. The lack of observed selfing in Uganda may 

therefore suggest a level of self incompatibility, producing a sufficient level of inviable progeny 

that the parental strain remains dominant. Alternatively it is possible that the lack of mating 
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indicates an inability to mate. Loss of the ability to undergo genetic exchange has almost certainly 

occurred before in the evolutionary history of T. brucei, giving rise to T. b. gambiense Group 1 

(Morrison et al., 2008b; Koffi et al., 2009). T. evansi and T. equiperdum, which are likely to have 

originated from T. brucei following partial or complete loss of the kinetoplast (Lai et al., 2008), are 

also unlikely to be able to undergo genetic exchange as they have lost the ability to be transmitted 

by the tsetse fly. While genetic exchange has been demonstrated to be possible for isolates of T. 

brucei originating from Uganda (Degen et al., 1995) this study used isolates derived from tsetse 

flies in the country and did not determine the sub-species present. It is therefore possible that 

mating is present within the local T. b. brucei population but not the T. b. rhodesiense population. 

The possibility that T. b. rhodesiense in Uganda lacks the ability to undergo sexual recombination 

would also provide an explanation over and above geographic separation for the genetic differences 

observed between the T. b. rhodesiense populations of Malawi and Uganda, as one would predict 

relatively rapid genetic differentiation through the Southern T. b. rhodesiense population 

incorporating diversity from sympatric T. b. brucei parasites, whereas the Ugandan T. b. 

rhodesiense populations would only accumulate diversity through background mutation. 

 

These findings add to the emerging picture from studies of T. vivax and T. congolense discussed in 

the previous chapters, and previous studies of T. brucei, in emphasising that genetic exchange plays 

differing roles in the many trypanosome species, with a complex mating cycle where both genetic 

exchange and clonality can drive the evolution of populations. Much however remains to be 

understood, mating has yet to be directly observed although the early meiotic cells have now been 

identified (Peacock et al., 2011) and the triggers controlling whether genetic exchange occurs or 

not remain to be elucidated. 
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Chapter 6 

Genomics 
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6.1 Introduction 

 

Throughout the history of genetics there has been a constant progression in the development of the 

markers used, from phenotype to indirect genetic markers such as isoenzymes and more recently 

direct genetic markers such as microsatellites and SNPs. While each of these markers have their 

own unique strengths and weaknesses one of the common limitations is in their association with 

only a small proportion of the total genomic variation. The rapid development of genome 

sequencing through the 1990s and start of this century (Reviewed in Metzker, 2005, 2010; 

Ansorge, 2009) has therefore revolutionised the field of genetics by allowing for the majority of 

base variants to be directly examined and analysed with respect to the whole genome.  

 

The genome of trypanosomes is comprised of four main sections (El-Sayed et al., 2000) of varying 

ploidy: the 11 megabase chromosomes on which the housekeeping genes are located (Melville et 

al., 1998); the kinetoplast; the intermediate chromosomes and the mini chromosomes, with the 

latter two acting as a reservoir of VSG sequences. The megabase chromosomes, which are the 

focus of this chapter and the only chromosomes represented by the T. brucei genome reference 

sequence (Berriman et al., 2005), are diploid in the majority of strains although instances of 

aneuploidy have been observed following laboratory crosses (Jenni et al., 1986; Paindavoine et al., 

1986a; Wells et al., 1987; Gibson et al., 1992, 1995, 1997, 2008; Gibson and Bailey, 1994; Hope et 

al., 1999; Peacock et al., 2008, 2009). The most common forms of variation are SNPs and insertion 

/ deletion (indel) of sequence (which may result in copy number variation) and sequence 

rearrangements. 

 

With the increasing availability of whole genome sequencing it is now viable to survey multiple 

genomes and uncover the extent of SNP variation. However knowledge of SNP positions and 

alleles is of limited value without understanding their relationship to other SNPs in the region, 

which collected together form the haplotype. This is increasingly important as with an increase in 

SNP number in any given gene there are an increasing number of possible alleles (Table 6.1). The 

combination of variation in this way may have substantial effects upon how the two alleles of a 

sequence act if they have functional roles and variation within the coding sequences of genes 

provides the most visible examples of this. The presence of SNPs within a coding sequence may 

result in alterations to the amino acids encoded and therefore alter the structure of any protein 

encoded. Such a change may vastly affect the function of one allele if it changes important residues 

or may have more subtle effects as even some synonymous SNPs, which do not alter the amino 

acid sequence, can have functional roles (Komar, 2007; Hunt et al., 2009). An indel event within a 

coding sequence will typically have a much larger effect, with the insertion or loss of bases 

potentially giving rise to frame shifts in downstream codons, with the two alleles subsequently 

encoding for vastly different proteins. While it is often feasible to determine the exact sequences of 
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both alleles for individual genes, through amplification, isolation and Sanger sequencing, this 

approach is infeasible when considering entire genomes due to the cost and time required. 

 

Neither heterozygosity, nor its effects are confined solely to the coding regions of the genome. Cis 

acting variation within transcriptional and translational regulatory regions can have significant 

effects on gene expression and in humans such variation has been associated with a range of 

diseases (Reviewed in Epstein, 2009). As the majority of gene regulation in trypanosomes occurs 

post transcriptionally (Reviewed in Clayton and Shapira, 2007; Haile and Papadopoulou, 2007) due 

to the organisation of most genes into polycistronic expression units (Imboden et al., 1987; 

Johnson et al., 1987; Berriman et al., 2005; Reviewed in Martínez-Calvillo et al., 2010) cis acting 

variation will primarily function through 5‟ and 3‟ untranslated regions, with variation fine tuning 

the expression of specific alleles, as has been observed in humans (Kalus et al., 2009; Sun et al., 

2011) by affecting mRNA stability (Liang et al., 2003; Clayton and Shapira, 2007; Haile and 

Papadopoulou, 2007). Variation located within the promoter regions of the polycistronic units may, 

however, still play a significant role by disrupting or enhancing transcription, affecting each of the 

gene alleles located within the unit. 

 

 

 

 

 

 

Number of variants Number of possible alleles pairs 

1 2 

2 4 

5 32 

10 1024 

 

Table 6.1 Allele pairs with increasing SNPs 

The number of possible allele pairs for a sequence with an increasing number of heterozygous 

SNPs. 

 

 

  



 

 
Page | 149 

P
ag

e | 1
4
9
 

Haplotype variation plays a further role in the inheritance of material during reproduction 

following Mendel‟s laws of inheritance, as each parent will only contribute a single haplotype of 

each chromosome to any progeny. Selective pressures therefore act on combinations of haplotypes, 

favouring individuals with beneficial combinations and selecting against those where the particular 

combinations are ill suited. Ultimately selection functions on individual haplotypes, as particularly 

beneficial haplotypes may raise the overall fitness of the whole organism by compensating for the 

effects of deleterious mutations on the second homologue. The effect of selective pressures, while 

acting on the combination of haplotypes present in an individual, are further fine tuned through the 

actions of meiotic recombination. Meiotic recombination is the primary force giving rise to new 

haplotypes by swapping segments of homologous chromosomes during genetic exchange, 

generating the homologues which are subsequently inherited. The strongest linkage between genes 

on each homologue is therefore confined to blocks, broken up by hotspots of meiotic 

recombination (Rana et al., 2004; Nishant and Rao, 2006). 

 

In generating new haplotypes meiotic recombination serves two primary roles, bringing together 

variation and separating variation on existing haplotypes (Barton and Charlesworth, 1998; Hadany 

and Comeron, 2008; Hörandl, 2009). Bringing variation together onto a single homologue allows 

for new cis acting effects, such as the formation of new alleles, utilising sequence from two 

different lineages that would otherwise only interact through transacting effects. Further to this, by 

physically linking variation, meiotic recombination increases the chances that the specific 

combination of variants will be inherited together. This is of particular importance when the new 

combination raises the fitness of the haplotype as selective pressures will act to maintain the 

presence of this combination within the population. The second role of meiotic recombination, 

separating variation, facilitates the continuation of beneficial mutations by sundering the physical 

linkage to deleterious mutations that lower the overall fitness of the haplotype. These processes of 

mixing through Mendelian inheritance and meiotic recombination may be exploited for the 

purposes of phylogenomics (Siepel, 2009; Reviewed in Boussau and Daubin, 2010); genome wide 

association studies, allowing for association of genomic variation with phenotypes of interest (Iles, 

2008) and identification of selective sweeps, whereby regions of the genome under selection are 

identified through a reduction in overall allele diversity (Wootton et al., 2002; Nair et al., 2003, 

2007). 

 

Through the availability of whole genome sequencing it is now possible to uncover this genetic 

variation, however the differing sequencing platforms each function in different ways and therefore 

require differing approaches to the assembly of genome sequences and any attempts to resolve the 

haplotypes. The first genome reference sequence for the Salivarian trypanosomes used the TREU 

927 T. b. brucei strain (Berriman et al., 2005), which was chosen for a number of reasons. The 

strain has been adapted for growth in laboratory culture and is readily amenable to genetic 
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manipulation, allowing for the insertion and knockout of gene constructs. However, despite being 

laboratory adapted the strain has maintained the ability to differentiate through each of the life 

cycle stages, including transmission through the tsetse fly and completion of the non obligatory 

sexual cycle (Turner et al., 1990). Other projects have led to the publication of sequences for the 

related kinetoplastids Leishmania major (Ivens et al., 2005) and T. cruzi (El-Sayed et al., 2005), 

and most recently T. b. gambiense Group 1 (Jackson et al., 2010). Sequencing of T. congolense and 

T. vivax is ongoing at the WTSI with initial sequence assemblies available via the WTSI and the 

TriTrypDB (Aslett et al., 2010). 

 

The TREU 927 reference sequence (Berriman et al., 2005) was constructed as a collaboration 

between the WTSI and TIGR with the WTSI sequencing chromosomes 1, 9, 10 and 11 through a 

whole chromosome shotgun approach (Hall et al., 2003) and TIGR employing a BAC approach 

(El-Sayed et al., 2003) for the sequencing of chromosomes 2 – 8. Both approaches used traditional 

Sanger sequencing following generation of the respective libraries. The whole genome shotgun 

approach of the WTSI utilised PFGE to isolate the megabase chromosomes, which were 

subsequently then digested and cloned into vectors for sequencing. These sequences were then 

reassembled through the identification of overlapping sequences, generating contigs of increasing 

sizes. For chromosomes 10 and 11 these assemblies represent a mosaic of both homologues while 

for chromosomes 1 and 9 the differing sizes of the homologous pairs allowed for enrichment for a 

particular homologue, thus reducing the number of heterozygous sites observed. However, as the 

second homologue could not be fully purified the sequences of these chromosomes remain partial 

mosaics of both. The approach of TIGR employed in the sequencing of chromosomes 2 – 8 used 

the construction of 85 – 170 kb BAC clones which were individually sequenced using a BAC 

walking approach and mapped to their chromosomes of origin with contigs formed through overlap 

between BACs. As with the WTSI approach this approach generated a mosaic sequence 

constructed from both homologues. The released TREU 927 genome reference sequence collected 

together the 11 megabase chromosomes and stripped away any information regarding heterozygous 

positions, generating a mosaic, pseudo haploid sequence. 

 

With the rapid development of sequencing technologies it is now far simpler, cheaper and faster to 

generate genomic sequence data through massively multi-parallel, short read technologies such as 

the Illumina Solexa platform. The Solexa platform functions through the use of a sequencing by 

synthesis, reversible dye terminator method (Reviewed in Shendure and Ji, 2008; Ansorge, 2009; 

Pettersson et al., 2009; Metzker, 2010), allowing for the extension and visualisation of sequence a 

single base at a time, with throughput achieved by the ability to generate millions of distinct read 

clusters upon a single chip. Sequence may be assembled in two manners, de novo or through 

alignment of reads to an existing reference sequence (Reviewed in Flicek and Birney, 2009; Li and 

Homer, 2010). While alignment to a reference sequence prevents the assembly of novel sequences 
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the use of de novo assembly, which is capable of assembling previously undetected sequences, is 

hampered by the requirement for a far higher average read depth, increased computational power 

and relatively short read length of the second generation platforms. Reference based assembly is 

preferred for most eukaryotic organisms as the size of the genomes makes deep sequencing 

uneconomical in the majority of cases. Second generation platforms provide a relatively quick 

method of identifying variation within the genome and as such have been widely employed in the 

identification of genomic variation. However, despite the advances in technology and reduction in 

cost, whole genome sequencing has yet to be widely deployed in the analysis of the Salivarian 

trypanosomes and no genome wide SNP data are available at present. 

 

One of the limitations of the second generation sequencing platforms is the relatively short read 

length, which prevents effective resolution of the haplotypes present. In order to resolve two 

haplotypes from one another it is necessary to physically link the variation together with individual 

reads. Theoretically this is possible through the use of paired read technology, as the reads of each 

pair are sequenced from the same piece of DNA, which has originated from a single chromosomal 

homologue. Where haplotype specific variation repeatedly aligns to both reads of a pair it is 

possible to „walk‟ along the haplotype, linking the variation together (Figure 6.1A). This is 

however only possible when both reads of a pair align to haplotype specific variation, which occurs 

only rarely due to the average distance between these sites (Figure 6.1B). While it is possible to 

overcome this through additional sequencing using multiple insert length, increasing the chance of 

observing reads aligned to the required positions, the depth of coverage required makes it 

prohibitively expensive. Due to these limitations it is therefore necessary to employ an alternative 

method in order to resolve the haplotypes from second generation sequencing data. 

 

With the inability to reconstruct haplotypes through direct sequencing, alternative methods have 

been developed, primarily focused on the use of population data in order to assign phases to alleles. 

At the core of these techniques is the role of physical linkage, which asserts that alleles on the same 

chromosomal homologue will be associated together at a higher frequency than those on different 

homologues and that this association is distance dependent, dropping off due to the increased 

likelihood of meiotic recombination as the distance between two sites increases. Algorithms for the 

determination of phase data are typically broken into two categories, population based and lineage 

based (Reviewed in Niu, 2004). Perhaps the most ambitious project of this kind is Human HapMap 

project (International HapMap Consortium, 2003, 2005), which aims to determine the common 

haplotypes present in four initial sample populations from Nigeria, Japan, China and the USA. 

Through determination of these haplotypes the project aims to be able to calculate putative 

haplotype blocks, regions of exceptionally low recombination, and identify potential „tag‟ SNPs 

that are representative of informative variation and can therefore be used to describe wider 

haplotype blocks and be utilised in association studies (Stram, 2004; Xu et al., 2007; Peiffer and 
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Gunderson, 2009). The HapMap has provided data for a diverse range of projects, including but not 

limited to the identification of genetic variants associated with a range of diseases (Manolio et al., 

2008; Reviewed in Musunuru and Kathiresan, 2008; Manolio and Collins, 2009). 

 

 

 

 

 

 

 

 

Figure 6.1 Haplotype resolution through read walking 

Paired reads aligned to a reference sequence identify positions of haplotype specific variants (1 – 

4), coloured red and blue for alleles from the two true haplotypes as indicated at the top of the 

figure. A) Where both reads in a pair align to heterozygous positions it is possible to link the alleles 

together and walk between sites of variation in order to reconstruct the haplotypes. B) In the 

majority of cases however gaps emerge when only one read of a pair aligns to a heterozygous 

position. The heterozygous position at position 2 may therefore not be used to link the alleles at 

positions 1 and 3, preventing reconstruction of the full haplotype. Haplotype inference is therefore 

limited to smaller blocks, such as between sites 3 and 4 in the figure. 
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At the level of a single individual, haplotype determination may be achieved through the generation 

of a genetic map following a genetic cross with another individual. With sufficient numbers of 

progeny it is possible to determine linkage between the haplotype specific alleles, detect the effect 

of recombination and work back to the original parental haplotypes. This approach has been 

previously used with trypanosomes in the generation of linkage maps of T. b. brucei TREU 927 

(MacLeod et al., 2005b) and T. b. gambiense Group 2 STIB 386 (Cooper et al., 2008). The TREU 

927 genetic map employed 39 progeny clones generated from a cross between TREU 927 and 

STIB 247, with each progeny genotyped with 182 micro- and minisatellite markers, spaced 

relatively evenly across the 11 megabase chromosomes. STIB 247 was selected for use as the 

second parent strain as the line was identified to be highly homogeneous, simplifying the process of 

determining which allele TREU 927 had contributed to each progeny. This homozygosity however 

prevents generation of a comparable STIB 247 map. Generation of the map identified 11 major and 

5 minor linkage groups, which correspond to the 11 megabase chromosomes. Through comparison 

with the genome reference sequence an average map distance of 15.6 kb per centiMorgan was 

calculated, however the occurrence of recombination hot and cold spots introduces considerable 

variation with mapping distances of as low as 1.58 kb per centiMorgan and as high as 95.64 kb per 

centiMorgan present.  

 

The later genetic map of STIB 386, once again utilising progeny from a cross with STIB 247, 

employed 119 markers in the analysis of 38 hybrid progeny lines. This map identified 12 linkage 

groups, with only chromosome 10 separated into two unique groups and an average mapping 

distance of 24.4 kb per centiMorgan. Comparison of the two maps by means of 47 shared markers 

indicated a conservation of marker order, further supported by consistency in synteny between 

STIB 386 and the TREU 927 reference sequence. These maps, in utilising approximately 40 

progeny each have allowed for determination of the micro- / minisatellite haplotypes for TREU 927 

and STIB 386 respectively. While a similar approach could be employed in generating a SNP 

haplotype map for these two lines the cost of sequencing approximately 40 samples for each map 

prevents such a project at present. However the existence of these maps, which have identified the 

location of recombination events, allows for an alternative approach that requires sequencing of a 

far smaller group of samples. This approach forms the basis of the second half of this chapter. 

 

The results of this chapter are focused on two distinct aspects. The first half of the results concerns 

the assembly of three strains of T. brucei following Illumina Solexa sequencing. These strains are 

the genome reference strain T. b. brucei TREU 927 (Berriman et al., 2005), T. b. brucei STIB 247 

and T. b. gambiense Group 2 STIB 386. Each of the three strains is capable of completing the 

entire trypanosome life cycle, including transmission through tsetse flies and the sexual cycle. 

Further they have been extensively used in earlier genetic studies, including generation of genetic 

linkage maps (MacLeod et al., 2005b; Cooper et al., 2008). Presented here are the results of SNP 
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discovery in the three strains and comparative analysis, providing insight into the variation present 

within trypanosomes and an initial resource for future studies. The second half of the results detail 

an attempt to resolve the haplotypes of the T. b. brucei genome reference strain TREU 927 by 

mapping the inheritance patterns of SNPs in progeny from a genetic cross between TREU 927 and 

STIB 247 (MacLeod et al., 2005b).  
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6.2 Results 

 

6.2.1 Assembly of short read sequence from the parental strains TREU 927, STIB 247 and 

STIB 386 

 

In order to assess genomic variation within T. brucei the three strains, TREU 927, STIB 247 and 

STIB 386 were chosen for sequencing at the WTSI utilising the Illumina Solexa sequencing 

platform. These strains were chosen for sequencing as each is capable of completing the entirety of 

the T. brucei life cycle, including undergoing genetic exchange and were used in construction of 

the TREU 927 and STIB 386 genetic maps (MacLeod et al., 2005b; Cooper et al., 2008). Seventy 

six base pair long, paired end reads were generated for each strain, providing 40,424,405, 

11,824,123 and 13,038,342 read pairs for TREU 927, STIB 247 and STIB 386 respectively, 

equating to a pre-assembly average fold genome coverage of approximately 235, 67 and 76 reads.  

 

Reads were assembled to the TREU 927 megabase chromosome reference sequence utilising BWA 

(Li and Durbin, 2009) with reads trimmed and filtered for read quality prior to alignment in order 

to maximise the alignment accuracy. Following alignment, reads were further filtered by alignment 

quality, removing reads that aligned with low quality. This second filtering step also serves to 

exclude reads that align to multiple positions within the reference sequence, a requirement for 

accurate SNP detection. Following filtering and assembly and the second round of filtering the 

average fold coverage of the assemblies were 101 (TREU 927), 27 (STIB 247) and 32 (STIB 386) 

reads, with reads of the respective assemblies covering 95%, 84% and 85% of the total reference 

sequence. There was substantial variation in read depths within each chromosome with regions of 

low coverage clustered towards the start and end of chromosomes (Figure 6.2). This was 

particularly notable in the STIB 247 and STIB 386 alignments, suggesting the presence of regions 

unique to TREU 927, such as at the end of chromosome 9 which contains an extended VSG array 

of unique genes and pseudogenes (Berriman et al., 2005). 
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Figure 6.2 Per chromosome average read depths 

Average read depths for TREU 927, STIB 247 and STIB 386 plotted for the entire genome with the 

average read depth calculated per 50 kb. Chromosome labels mark the start of the respective 

chromosomes. 
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6.2.2 SNP Analysis 

 

SNPs were called from the three parental assemblies through the use of the SAMtools software 

package utilising the pileup SNP calling algorithm (Li et al., 2009). Potential SNPs were filtered 

for read mapping quality (minimum required Phred quality of 30); presence of potential indels; 

presence of nearby SNPs and read depth at the base in question. For STIB 247 and STIB 386 a 

minimum read depth of 10 bases was used for SNP calling in order to compensate for the lower 

average read depth in these lines. The higher average read depth of the TREU 927 assembly 

allowed for the use of a minimum read depth of 20. For all assemblies the maximum read depth 

was constrained to three times the chromosomal average in order to prevent calling at positions of 

unusually high read depth. These regions, which are concentrated towards the telomeres, often 

represent repetitive regions of which only a single copy is present within the reference sequence. 

 

Each SNP was classified into one of three types; homozygous, heterozygous type 1 or 

heterozygous type 2 (Table 6.2). Homozygous SNPs represent a homozygous position within the 

assembly that is in disagreement with the reference sequence and account for 85% and 76% of the 

SNPs observed in STIB 247 and STIB 386 respectively. A total of 134 homozygous SNPs were 

identified in the TREU 927 assembly. As this assembly used the same strain as a reference 

sequence the presence of these SNPs have a number of possible explanations. The first is 

sequencing error during generation of either the original reference sequence or the Illumina Solexa 

sequencing presented here. Alternatively this base may be heterozygous with identification of only 

a single allele that happens to be the one not represented in the reference. Finally it is possible that 

these bases represent real differences between the TREU 927 samples used in the two sequencing 

projects, reflecting mutations that have arisen during growth following the generation of the two 

isolates used for the respective sequencing projects. 
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Table 6.2 Distribution of SNPs across the megabase chromosomes 

SNPs were called against the TREU 927 reference sequence (Berriman et al., 2005) and filtered for 

quality. Hom = Homozygous positions that differ from the reference sequence; Het 1 = 

heterozygous positions where one of the alleles matches that present in the reference sequence; Het 

2 = heterozygous positions where both SNP alleles are absent from the reference sequence. * 

Chromosomes 11_01, 11_02 and 11_03 respectively represent the major and two minor contigs of 

chromosome 11, which have yet to be fully assembled into a single sequence. 

  

Chromosome 
TREU 927 STIB 247 STIB 386 

Hom Het 1 Het 2 Hom Het 1 Het 2 Hom Het 1 Het 2 

1 21 1599 0 3783 1236 6 4528 1851 10 

2 2 1480 0 3722 1598 11 4088 3067 12 

3 0 2750 0 6804 1675 13 7859 2964 23 

4 0 2352 0 6593 676 8 6989 3005 19 

5 3 2641 0 7525 1626 14 7958 3841 26 

6 2 2859 0 6410 818 8 7022 2892 16 

7 1 2870 0 10001 1496 8 12386 1485 7 

8 2 3469 1 10956 776 7 13251 2915 16 

9 32 5959 0 12294 3005 28 12925 6726 41 

10 27 5571 0 20049 1778 23 23668 3025 22 

11_01* 38 5859 1 22937 4781 27 27299 6978 36 

11_02* 2 755 0 754 552 14 659 1198 19 

11_03* 4 264 0 631 310 7 672 569 8 

Total 134 38428 2 112459 20327 174 129304 40516 255 
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A total of 38,428, 20,327 and 40,516 heterozygous SNPs were identified in the respective TREU 

927, STIB 247 and STIB 386 assemblies and were subdivided into two groups, type 1 and type 2. 

Heterozygous type 1 SNPs were defined as possessing a single allele in common with the reference 

sequence while both alleles of heterozygous type 2 SNPs differed from the reference sequence. In 

all strains >99% of the heterozygous positions shared a single allele with the reference sequence. 

Heterozygous SNPs in TREU 927 and STIB 386 were typically spread over the length of each 

chromosome, with increased SNP densities common towards either end of each chromosome. The 

plots for chromosome 10 are presented in Figure 6.3 A and C and for all other chromosomes in 

Appendix 12. In contrast to this, the heterozygous SNPs of STIB 247 are typically clustered into a 

smaller number of discrete regions, surrounded by regions of homozygosity. The plot for STIB 247 

chromosome 10 is presented in Figure 6.3 B and for all other chromosomes in Appendix 12. The 

lower number of heterozygous positions in STIB 247 line correlates with the observations of 

extensive homozygosity based on micro- and minisatellite data (MacLeod et al., 2005b). Pairwise 

comparisons of the heterozygous SNPs identified only a small proportion to be shared between 

strains (TREU 927 / STIB 247, 1296 shared; TREU 927 / STIB 386, 1939; STIB 247, STIB 386, 

2763). 

 

Homozygous SNPs in both STIB 247 and STIB 386 were distributed across the entirety of the 

megabase chromosomes (Figure 6.4 and Appendix 13). Regions of low homozygous SNP densities 

were typically shared between the two strains and correspond with regions of low read depth in the 

assemblies. The most notable difference in this pattern occurs on a region of chromosome 8, 580-

720 kb from the start of the chromosome with a visible reduction in homozygous SNP density in 

STIB 247 that is not replicated in STIB 386. While homozygous SNPs in STIB 247 and STIB 386 

are represented by base variants not found in the reference sequence, it is possible that the position 

corresponds to a heterozygous position in TREU 927, with the non reference sequence allele 

matching that observed in STIB 247 or STIB 386. In total 12% of the STIB 247 and 10% of the 

STIB 386 homozygous SNPs were found to correspond to the non reference alleles of heterozygous 

type 1 SNPs in TREU 927. 
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Figure 6.3 Heterozygous SNP density plots for chromosome 10 

SNP density was calculated as the number of heterozygous SNPs per 10 kb region. Each division 

along the X axis covers 10 such regions and therefore represents a distance of 100 kb. The Y axis 

of each has been limited to a maximum SNP density of 100 in order to facilitate comparison 

between the strains, the unrestricted plots can be found in Appendix 12. A) TREU 927, B) STIB 

247, C) STIB 386.
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Figure 6.4A-C Homozygous SNP density plots for chromosome 10 

SNP density was calculated as the number of homozygous SNPs per 10 kb region. Each division 

along the X axis covers 10 such regions and therefore represents a distance of 100 kb. A) TREU 

927, B) STIB 247, C) STIB 386. 
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One of the primary ways in which SNPs can directly affect an organism is by being located within 

the coding region of a gene, altering the codon sequence and potentially the amino acids the gene 

encodes for. Homozygous SNPs between individuals may lead to the production of unique, strain 

specific changes in amino acid sequences while heterozygous SNPs in diploid species allow for the 

introduction of protein variance within a single individual. In order to determine the extent of 

protein variation within these three strains the positions of homozygous and heterozygous SNPs 

were examined in order to identify those lying within coding regions and determine the impact 

upon the coding sequence. 

 

For TREU 927 16797 heterozygous SNPs (44% of the total heterozygous SNPs) were located 

within coding regions, 49% of which gave rise to amino acid changes (Table 6.3). These non-

synonymous codon changes gave rise to 78 new stop codons prior to the end of the annotated 

coding regions, which may drastically alter the function or length of the protein coded for by the 

gene. In total 3350 of the TREU 927 genes were determined to give rise to two unique coding 

alleles. As expected from the previously identified number of heterozygous SNPs STIB 386 

possesses a comparable number of heterozygous genes (3479) while STIB 247 possesses less than 

half this number (1389). Analysis of homozygous SNPs from STIB 247 and STIB 386 indicated 

that 49% fell within known coding regions (Table 6.4). Of those within coding regions 43% (STIB 

247) and 42% (STIB 386) led to codon changes, affecting 57% (STIB 247) and 58% (STIB 386) of 

the 11425 annotated genes present in the genome reference sequence.  
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A (TREU 927) 

Chromosome Number of heterozygous 

SNPs within coding 

sequences  

(% of total heterozygous 

SNPs) 

Number of heterozygous 

SNPs giving rise to non 

synonymous codon changes 

(% of heterozygous SNPs in 

genes)
 1
 

Number of 

new stop 

codons 

Number of 

genes 

encoding 

heterozygous 

proteins
2
 

1 708 (44) 391 (55) 9 175 

2 640 (43) 317 (50) 7 127 

3 1143 (42) 532 (47) 3 213 

4 994 (42) 479 (48) 3 190 

5 1123 (43) 549 (49) 4 183 

6 1184 (41) 573 (48) 8 233 

7 1296 (45) 630 (49) 2 259 

8 1546 (45) 737 (48) 9 294 

9 2646 (44) 1463 (55) 21 504 

10 2518 (45) 1182 (47) 4 539 

11_01 2566 (44) 1187 (46) 4 573 

11_02 295 (39) 196 (66) 7 40 

11_03 138 (52) 96 (70) 2 20 

Total 16797 (44) 8332 (50) 78 3350 

 

 

B (STIB 247) 

Chromosome Number of heterozygous 

SNPs within coding 

sequences  

(% of total heterozygous 

SNPs) 

Number of heterozygous 

SNPs giving rise to non 

synonymous codon changes 

(% of heterozygous SNPs 

in genes)
 1
 

Number of 

new stop 

codons 

Number of 

genes 

encoding 

heterozygous 

proteins
2
 

1 479 (39) 278 (58) 10 68 

2 562 (35) 347 (62) 12 64 

3 668 (40) 334 (50) 3 112 

4 241 (35) 149 (62) 7 37 

5 643 (39) 344 (53) 3 113 

6 323 (39) 203 (63) 14 46 

7 624 (41) 322 (52) 1 125 

8 336 (43) 194 (58) 4 51 

9 1307 (43) 748 (57) 29 236 

10 761 (42) 381 (50) 5 152 

11_01 2142 (45) 975 (46) 12 323 

11_02 224 (40) 136 (61) 9 40 

11_03 113 (36) 86 (76) 2 22 

Total 8423 (41) 4497 (53) 111 1389 

 

Table 6.3A-C Effect of heterozygous alleles upon coding sequences 

TREU 927 (A), STIB 247 (B) and STIB 386 (C) with respect to the annotated coding sequences 

from the original TREU 927 pseudo haploid reference sequence.
 1
 Excluding those that give rise to 

new stop codons. 
2
 Total number affected irrespective of the number of codon changes within a 

gene. 
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C (STIB 386) 

Chromosome Number of heterozygous 

SNPs within coding 

sequences  

(% of total heterozygous 

SNPs) 

Number of heterozygous 

SNPs giving rise to non 

synonymous codon changes 

(% of heterozygous SNPs 

in genes)
 1
 

Number of 

new stop 

codons 

Number of 

genes 

encoding 

heterozygous 

proteins
2
 

1 731 (39) 429 (59) 7 135 

2 1175 (38) 648 (55) 10 179 

3 1249 (42) 618 (49) 12 227 

4 1340 (44) 676 (50) 9 265 

5 1804 (47) 1003 (56) 20 300 

6 1208 (42) 644 (53) 18 219 

7 651 (44) 354 (54) 4 167 

8 1409 (48) 691 (49) 9 300 

9 2903 (43) 1664 (57) 53 543 

10 1372 (45) 750 (55) 9 357 

11_01 3197 (46) 1698 (53) 25 697 

11_02 525 (43) 364 (69) 20 57 

11_03 236 (41) 155 (66) 4 33 

Total 17800 (43) 9694 (54) 200 3479 

 

Table 6.3A-C Effect of heterozygous alleles upon coding sequences 

TREU 927 (A), STIB 247 (B) and STIB 386 (C) with respect to the annotated coding sequences 

from the original TREU 927 pseudo haploid reference sequence.
1
 Excluding those that give rise to 

new stop codons. 
2
 Total number affected irrespective of the number of codon changes within a 

gene. 
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A (STIB 247) 

 

B (STIB 386) 

Chromosome Number of homozygous 

SNPs within coding 

sequences  

(% of total homozygouss 

SNPs) 

Number of homozygous 

SNPs giving rise to non 

synonymous codon changes 

(% of homozygous SNPs in 

genes)
1
 

Number of 

new stop 

codons 

Number of 

affected 

genes
2
 

1 2449 (54) 1149 (47) 21 331 

2 1922 (47) 803 (42) 6 212 

3 3972 (51) 1669 (42) 7 388 

4 3106 (44) 1193 (38) 3 367 

5 3594 (45) 1559 (43) 7 368 

6 3432 (49) 1383 (40) 10 353 

7 5957 (48) 2521 (42) 7 544 

8 6313 (48) 2607 (41) 11 571 

9 6768 (52) 3111 (46) 36 885 

10 12027 (51) 4950 (41) 17 1174 

11_01 13441 (49) 5220 (39) 19 1290 

11_02 285 (43) 203 (71) 5 55 

11_03 336 (50) 239 (71) 6 45 

Total 63602 (49) 26607 (42) 155 6583 

 

Table 6.4A-B Effect of homozygous alleles upon coding sequences 

STIB 247 (A) and STIB 386 (B) with respect to the annotated coding sequences from the original 

TREU 927 pseudo haploid reference sequence. 
1
 Excluding those that give rise to new stop codons. 

2
 Total number affected irrespective of the number of codon changes within a gene. 

  

Chromosome Number of homozygous 

SNPs within coding 

sequences  

(% of total homozygous 

SNPs) 

Number of homozygous 

SNPs giving rise to non 

synonymous codon changes 

(% of homozygous SNPs in 

genes)
1
 

Number of 

new stop 

codons 

Number of 

affected 

genes
2
 

1 2037 (54) 980 (48) 10 318 

2 1720 (46) 749 (44) 6 196 

3 3392 (50) 1449 (43) 5 370 

4 3036 (46) 1210 (40) 6 363 

5 3424 (46) 1555 (45) 4 358 

6 3082 (48) 1279 (41) 7 363 

7 4788 (48) 2038 (43) 9 632 

8 5093 (46) 2151 (42) 8 681 

9 6275 (51) 2895 (46) 30 856 

10 10086 (50) 4172 (41) 13 1097 

11_01 11159 (49) 4461 (40) 12 1215 

11_02 338 (49) 235 (70) 9 48 

11_03 262 (42) 163 (62) 3 37 

Total 54692 (49) 23337 (43) 122 6534 
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6.2.3 Reconstruction of the TREU 927 haplotypes 

 

While Illumina Solexa sequencing has allowed us to detect the presence of heterozygous variation 

within the TREU 927, STIB 247 and STIB 386 lines, the available data do not directly allow for 

the determination of the haplotypes. As discussed in the introduction to this chapter the haplotypes 

could have been detected through read walking, however due to the quantity of sequencing which 

would have been required this was not attempted. The genetic map of TREU 927 however provides 

a framework for haplotype reconstruction by providing progeny lines generated following a cross 

between TREU 927 and STIB 247 and by identifying the regions where meiotic recombination has 

occurred in these progeny lines (MacLeod et al., 2005b). By sequencing two of these progeny 

lines, hybrids 77 and 86, it is possible to reconstruct the TREU 927 haplotypes through the 

principals of Mendelian inheritance, utilising the genetic map to then correct for known sites of 

recombination. 

 

This process is possible as the progeny lines have inherited only a single homologue of each 

megabase chromosome from TREU 927, in addition to one homologue of each chromosome from 

STIB 247. By comparing the alleles present at any given base in the three lines (TREU 927, STIB 

247 and one of the progeny lines) it is possible to determine, in the majority of cases, which allele 

has been inherited from TREU 927 (Table 6.5). For example, a heterozygous SNP in TREU 927 

possesses the two alleles G and T on the respective homologues. In the progeny line this position 

has been called as being homozygous for a G and therefore must have inherited the G homologue 

from TREU 927. By the same regard if the progeny line had been called as being heterozygous for 

C / G then it must be the G allele that has been inherited from TREU 927, with the C inherited from 

STIB 247. We know this as the TREU 927 position does not possess the C allele and therefore 

could not have contributed this allele to the progeny. By repeating this process for each TREU 927 

heterozygous allele it is possible to obtain, for each chromosome, two haplotypes for TREU 927. 

However this reconstruction does not take into account possible meiotic recombination events 

between homologues. The original genetic map of TREU 927, generated through the use of 

microsatellite markers, calculated the location of the major meiotic recombination events for each 

megabase chromosome of each progeny line. It is therefore possible to correct for these events in 

the SNP haplotypes derived here, providing the original TREU 927 haplotypes. 
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TREU 927 SNP STIB 247 

base call 

Progeny 

base call 

TREU 927 

Haplotype 1 

TREU 927 

Haplotype 2 

G/T * G T G 

G/T * T G T 

A/C * A C A 

A/C * C A C 

A/G * A G A 

A/G * G A G 

C/T * C T C 

C/T * T C T 

C/G * C G C 

C/G * G C G 

A/T * A T A 

A/T * T A T 

A/C * A/T or A/G C A 

A/C * C/G or C/T A C 

A/G * A/C or A/T G A 

A/G * C/G or G/T A G 

A/T * A/C or A/G T A 

A/T * G/T or C/T A T 

C/G * A/C or C/T G C 

C/G * G/T or A/G C G 

C/T * A/C or C/G T C 

C/T * G/T or A/T C T 

G/T * C/G or A/G T G 

G/T * A/T or C/T G T 

G/T T or A/T or C/T G/T T G 

G/T G or A/G or C/G G/T G T 

A/C A or A/G or A/T A/C A C 

A/C C or C/G or C/T A/C C A 

A/G A or A/C or A/T A/G A G 

A/G G or C/G or G/T A/G G A 

A/T A or A/C or A/G A/T A T 

A/T T or C/T or G/T A/T T A 

C/G C or A/C or C/T C/G C G 

C/G G or A/G or G/T C/G G C 

C/T C or A/C or C/G C/T C T 

C/T T or A/T or G/T C/T T C 

 

Table 6.5 Allele inheritance patterns 

The table summarises the resolution mechanic used to determine which allele had been inherited by 

the progeny line from TREU 927 and therefore reconstruct the haplotypes of TREU 927. 

 * = The base call here in STIB 247 is not required in order to determine inheritance.  

TREU 927 haplotype 1 = The TREU 927 haplotype that has not been inherited by the progeny. 

TREU 927 haplotype 2 = The TREU 927 haplotype which has been inherited by the progeny line. 

These haplotypes are presented prior to correcting for meiotic recombination. 
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Resolution of the haplotypes required the development of two custom perl scripts. The first, 

haplo5-get was designed to take the TREU 927 heterozygous SNPs and determine the base call and 

read coverage at this position for the respective STIB 247 and hybrid progeny lines, outputting the 

data into a single collated file. This file served as the input for the second script, haplo5-rebuild, 

which then attempted to determine the inherited haplotypes by comparing the data as described in 

Table 6.5. 

 

During reconstruction, positions were filtered based on minimum coverage, with a minimum 

coverage of 20 bases required in the progeny line and STIB 247 sequence assemblies, with the 

STIB 247 coverage only checked if the data from this parent were required for resolution. Where 

coverage was below this threshold, the positions were filtered out and left unresolved in the TREU 

927 assembly. This filtering was necessary due to the way in which SNPs are called by the 

SAMtools software (Li et al., 2009). SNP calling employs a range of filtering techniques including 

quality of bases aligned to the position; the read depth of high quality bases aligned to the position; 

average surrounding read quality and the proximity to other nearby SNPs. If a position fails one of 

these quality tests then it is excluded from SNP calling and the position is assumed to be identical 

to the reference call even if it is actually different. However positions which are excluded from 

SNP calling are not marked on the output file, therefore when a position is in agreement with the 

reference it is not possible to tell whether this is because it actually agrees with the reference or 

because it has been excluded from SNP calling. While it will be possible to identify these positions 

by filtering for the same criteria employed by the SAMtools software, this has not, at present, been 

implemented. For the time being a simpler filtering system, requiring a minimum coverage of 20 

bases at progeny and STIB 247 non SNP positions, has been employed in the scripts developed 

here.  

 

6.2.3.1 Script Validation 

 

In order to validate the haplotype resolution script, three test pseudogenome sequences were 

constructed to represent the respective parental and progeny lines. The pseudogenomes were 

designed to include homozygous, heterozygous and unknown bases positioned such that all 

possible combinations were present. Low coverage calls and positions where the observed progeny 

base was not possible based on principles of Mendelian inheritance were included to test whether 

the resolution script identified these positions and marked the base as unresolved. Examination of 

the resolved haplotypes indicated that each position from the test sequences had been correctly 

resolved, demonstrating that the scripts functioned as required. 
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6.2.3.2 Initial resolution of the TREU 927 haplotypes 

 

Assembly of the two progeny lines provided average genome wide read depths of 41 bases and 42 

bases for hybrid 77 and hybrid 86 respectively. SNPs were called as previously described with a 

minimum read depth of 10 bases required for inclusion. Of the 38428 heterozygous SNPs in TREU 

927 haplotype data could be inferred for 77% using the hybrid 77 data and 79% for the hybrid 86 

data (Table 6.6). In both cases the majority of unresolved SNPs arose due to low coverage in the 

progeny or STIB 247 assemblies, with these positions therefore excluded from resolution during 

filtering. 

 

These initial resolutions however represent the haplotypes inherited by the progeny lines and are 

therefore affected by meiotic recombination, which must be accounted for in order to generate the 

true TREU 927 haplotypes.  By analysing the large number of progeny generated during creation of 

the genetic map (MacLeod et al., 2005a, 2005b) it was possible to assign microsatellite alleles to 

the individual haplotypes of TREU 927 and therefore identify the presence of recombination events 

on each of the megabase chromosomes which will allow for correction of the SNP haplotypes 

generated here.  

 

 

Table 6.6 Initial per chromosome haplotype resolution  

Chromosome Total number of 

TREU 927 

heterozygous 

SNPs 

Number of TREU 927 

heterozygous SNPs resolved 

utilising hybrid 77 (% of total 

TREU 927 heterozygous 

SNPs) 

Number of TREU 927 

heterozygous SNPs resolved 

utilising hybrid 86 (% of total 

TREU 927 heterozygous 

SNPs) 

1 1599 1255 (78) 1129 (71) 

2 1480 1081 (73) 991 (67) 

3 2750 2035 (74) 2358 (86) 

4 2352 1885 (80) 1710 (73) 

5 2641 2154 (82) 2079 (79) 

6 2859 2294 (80) 2158 (75) 

7 2870 2330 (81) 2393 (83) 

8 3470 2619 (75) 2688 (77) 

9 5959 4295 (75) 5015 (84) 

10 5571 4588 (82) 4731 (85) 

11_01 5860 4821 (82) 4940 (84) 

11_02 755 234 (31) 136 (18) 

11_03 264 55 (21) 46 (17) 

Total 38430 29646 (77) 30374 (79) 
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6.2.3.3 Validation of SNP haplotypes 

 

The haplotypes resolved by the scripts assume the use of perfect input data, however, as discussed 

previously when SNPs cannot be called the reference base call for that position is assumed to be 

correct. While the haplotype scripts attempt to filter this by identification of positions with a read 

coverage of lower than 20 not all positions will be identified in this manner. In addition the use of a 

relatively low coverage of 10 bases for SNP calling of the STIB 247 and progeny assemblies 

increases the probability of errors, introducing both false positives and false negatives. These two 

sources of error will naturally impact upon the haplotype resolution, leading to incorrect 

resolutions. 

 

In order to detect these errors, and determine the frequency with which they occur, it is necessary to 

compare the resolved haplotypes from two progeny strains, hence the use of both hybrid 77 and 

hybrid 86 in this analysis. In order to prevent meiotic recombination from complicating this 

analysis only three chromosomes, 2, 3 and 8 were examined. These three chromosomes were 

selected as the TREU 927 genetic map (MacLeod et al., 2005b) had identified an absence of 

recombination events in both hybrids 77 and 86. For the purpose of this analysis the two TREU 927 

haplotypes shall be identified as H1 and H2, with the pattern of inheritance identified by the 

genetic map listed as chromosome – haplotype in each case, for hybrid 77 being 2-H1, 3-H2, 8-H1 

and for hybrid 86 being 2-H2, 3-H1, 8-H1, indicating that the two hybrids had inherited different 

homologues of chromosomes 2 and 3 but the same homologue for chromosome 8. In order to 

assess the level of agreement between the two hybrids the reconstructed haplotypes for each 

chromosome were compared, with H1 and H2 from hybrid 77 compared with H1 and H2 from 

hybrid 86. Comparing only positions resolved in both hybrids indicated the reconstructions agreed 

with one another at 70%, 80% and 97% of positions for chromosomes 2, 3 and 8 respectively. 

Positions where the reconstructions differed from one another were spread over the length of the 

three chromosomes with no clustering that would indicate the presence of previously undetected 

recombination events. 

 

It is possible that the visible disagreements have arisen due to mutation in the progeny lines, or 

from micro-recombination during meiosis, converting a small region of H1 to the H2 equivalent. 

However, the most likely source of this disagreement falls to the method by which SNPs calling 

was handled during this analysis. This explanation is the most likely as it readily explains the 

increased level of agreement seen between the resolved haplotypes of chromosome 8 compared to 

that observed for chromosomes 2 and 3. As previously discussed the SNP calling algorithms of 

SAMtools (Li et al., 2009) do not indicate which positions have failed any of the SNP calling 

criteria and therefore where this occurs the original reference base call is assumed to be correct. It 

is the failure to filter these bases that can subsequently give rise to the disagreements observed in 
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chromosomes 2 and 3 but not in chromosome 8. For chromosome 8 both hybrids have inherited the 

8-H1 homologue from TREU 927 and therefore where both progeny lines are marked as being 

identical to the reference the parental homologues resolve in the same manner (Figure 6.5A). For 

chromosomes 2 and 3 however the two progeny lines have inherited different homologues from 

TREU 927 (Figure 6.5B). At positions where both progeny lines agree with the reference sequence 

the H1 and H2 homologues of chromosomes 2 and 3 therefore resolve differently and generate 

visible disagreements. 

 

 

Figure 6.5 Resolution giving rise to incorrect haplotype resolution 

Homologues are indicated by colour: red, H1 from TREU 927; blue, H2 from TREU 927; black, 

homologue inherited from STIB 247. A) Both progeny lines inherited the same homologue, as 

observed for chromosome 8. B) The progeny lines inherit different homologues, as occurred for 

chromosomes 2 and 3, giving rise to visible disagreements. 
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6.3 Discussion 

 

The focus of the majority of this thesis has been the population genetics of the Salivarian 

trypanosomes, employing microsatellites in the investigation of field populations. The work 

presented in this chapter, of whole genome sequencing assembly and analysis, lays the groundwork 

for future trypanosome population genomics studies by providing a collection of SNP variation for 

three laboratory strains, including both the T. brucei genome reference strain TREU 927 (Berriman 

et al., 2005) and a T. b. gambiense Group 2 isolate. These three strains have each been used in 

earlier genetic studies, including generation of two genetic maps (MacLeod et al., 2005b; Cooper et 

al., 2008). While SNP variation within laboratory strains will not reflect that present in field 

populations being aware of the genetic differences presents insight into the variation between these 

three strains, which will be of use in future laboratory studies.  

 

Through assembly of the TREU 927, STIB 247 and STIB 386 lines it is apparent that the vast 

majority of inter strain variation is represented not by heterozygosity but homozygous positions 

comprised of alleles unique to that single line. Given the diverse origins of the three lines the 

number of differences observed between them is to be expected and the independent origins of 

these three lines is further emphasised by the low number of heterozygous positions which are 

shared between strains. These differences clearly demonstrate the need for local sampling during 

the design of future population studies if technologies such as SNP chips, which are dependent 

upon datasets of known variation, are to be employed in genotyping. In order to generate a database 

of truly representative variation it will be necessary to sequence isolates from across Africa, 

including a diverse range of hosts and ecologies in addition to further laboratory isolates. The 

inclusion of data from both field and laboratory sources will form an important step in future 

population studies, by allowing important variation from one to be linked or compared to variation 

in the other. 

 

While the results of this study has focused upon SNP discovery and analysis this is just a starting 

step as numerous other forms of variation within and between individuals exists. Genomic 

rearrangements, indels, loss of heterozygosity, repetitive regions and copy number variation each 

present additional sources of variation that may have significant impact on the phenotypes of 

individuals. It will be important to further the analysis presented here by examining each of these in 

order to further determine the differences between the three strains.  

 

The second half of this chapter has focused upon the reconstruction of the TREU 927 haplotypes 

through the use of sequencing data and the previously developed TREU 927 genetic map 

(MacLeod et al., 2005b). With the availability of two sequenced progeny, in addition to the parental 
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lines it was necessary to employ an inference by inheritance method in order to calculate the TREU 

927 haplotypes as inherited by the progeny lines. Subsequent use of the genetic map, which had 

identified the position of crossover events in each of the progeny lines, allowed for reconstruction 

of the original TREU 927 haplotypes.  

 

Utilising the data from the two progeny lines it was possible to determine the haplotype 

associations for 77% (hybrid 77) and 79% (hybrid 86) of heterozygous positions identified in 

TREU 927. However comparison of chromosomes 2, 3 and 8 indicated that up to 30% of the 

resolved positions disagreed between the two reconstructions, likely due to the inclusion of low 

quality positions, which had been filtered during SNP calling but had not been filtered by the 

haplotype resolution scripts. With further development of the haplotype resolution script it should 

be possible to identify these positions and filter them properly, thereby increasing the accuracy of 

the resolved haplotypes. However this increased accuracy will be achieved by filtering out 

positions and therefore will reduce the total number of positions resolved by the scripts. In order to 

increase the proportion of the TREU 927 heterozygous positions which can be resolved it will be 

necessary to undertake further sequencing, primarily of the progeny lines but also of the parental 

STIB 247 line. 

 

Additional sequencing will have two benefits. The first is that with additional sequencing an 

increased number of positions will meet the criteria for SNP calling and haplotype resolution, 

thereby increasing the total number of heterozygous positions resolved. In order to make full use of 

this increased read depth it will be necessary to further develop the haplotype resolution scripts to 

utilise the same filtering techniques employed by the SAMtools SNP calling algorithms (Li et al., 

2009). The second benefit to additional sequencing arises from the increased accuracy available 

during SNP calling. While there is no set read depth required for SNP calling a depth of 20 reads is 

typically considered a minimum for accurate calling. Due to the relatively low coverage of both the 

progeny lines and STIB 247, SNP calling of these assemblies used a minimum read depth of 10 

bases and therefore the accuracy of SNP calling is lower than ideally desired. Additional 

sequencing will therefore increase the accuracy of SNP calling and subsequently increase the 

accuracy of haplotype resolution. 

 

Beyond additional sequencing of the strains already described here an alternative method by which 

the SNP haplotype map could be improved is the sequencing of further progeny lines. Sequencing 

of further progeny lines has the advantage of resolving positions that could not be resolved with the 

existing data while increasing the accuracy of the resolution by allowing for generation of a 

consensus haplotype sequence. This approach has also the benefit of allowing for the identification 

of additional recombination events that lie between the microsatellite markers employed in the 

original map. 



 

 
Page | 174 

P
ag

e | 1
7
4
 

 

The results presented in this chapter represent an initial but important step in shifting from a low 

density approach employing a small number of microsatellite markers. While not the only source of 

genomic diversity, SNPs are perhaps the one which is most widely utilised outside of genomics 

studies simply due to their role in altering the expression and function of genes. Provision of 

genome wide SNP coverage allows for easy and quick access to this diversity, as opposed to having 

to sequence every gene of interest in order to uncover variation. As additional laboratory strains are 

sequenced, collections of genomic variation will allow for a greater understanding into the 

differences that give rise to the distinct and often different phenotypes observed for the most widely 

used laboratory strains. The future sequencing of field samples will further extend our 

understanding of diversity in the trypanosomes, and the variation identified here will play an 

important role in linking field and laboratory studies, a necessary step in truly understanding these 

parasites. 
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Chapter 7 

Final Discussion 
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The population genetics of trypanosomes has historically been a controversial issue in the 

literature, originating primarily with the conclusion that effective clonality was the dominant state 

for the populations of a wide range of parasitic protozoa and eukaryotic microorganisms 

(Tibayrenc et al., 1990, 1991), despite the earlier experimental demonstration of genetic exchange 

occurring during tsetse transmission of T. b. brucei (Jenni et al., 1986). The study of population 

genetics of T. brucei (the best studied of the Salivarian trypanosomes) has been complicated further 

by a range of factors: the existence of multiple sub-species and subgroups for T. brucei with the 

potential for genetic isolation or interaction (Hide et al., 1994; MacLeod et al., 2001c); the 

differing roles of human and animal host reservoirs (Paindavoine et al., 1986a; Welburn et al., 

2001; Njiru et al., 2004b; Enyaru et al., 2006; Cordon-Obras et al., 2009) and the observed non 

obligatory nature of genetic exchange in T. brucei.  

 

The role of genetic exchange in the non human trypanosomes T. congolense and T. vivax has until 

recently been uncontested simply due to the relative lack of interest in these pathogens and until 

recently the conclusions of clonality were based upon the analysis of data originating from the 

1970s and 1980s (Kilgour et al., 1975; Kilgour and Godfrey, 1977; Allsopp and Newton, 1985; 

Gashumba et al., 1988) based on either a small number of available isoenzyme markers or the use 

of samples collected from a wide geographic range and over long periods of time. This can lead to 

misleading conclusions as to the role of genetic exchange within the populations, primarily due to a 

loss of power in statistical tests and the introduction of the Wahlund effect due to the mixing of 

subpopulations. The lack of investigations into the animal infective trypanosomes is surprising 

given the economic impact of AAT; their distribution across the entirety of the tsetse belt and 

spread of T. vivax to South America, with millions of livestock infected over the two continents. 

The diminished economic return from infected livestock has a significant downstream impact on 

the individuals reliant upon these animals, many of whom are resident amongst the poorest 

communities on the planet. A greater understanding of animal trypanosomiasis will therefore 

benefit not only the infected animals but aid in raising the prospects of the owners and wider 

communities. 

 

The primary aim of this thesis has been to investigate the role of genetic exchange in the Salivarian 

trypanosomes with the specific inclusion of the animal infective T. congolense and T. vivax species 

which remain sorely understudied. In order to achieve this, populations from The Gambia, Uganda 

and Malawi were examined through the use of single copy, microsatellite markers specific to each 

species. Through these markers the diversity of the respective populations, the relationships of 

individuals within and between them has been assessed, allowing for inferences on the role of 

genetic exchange within them. The animal infective species of T. vivax (Chapters 3 and 4) and T. 

congolense (Chapter 4) in The Gambia were investigated utilising samples from horses, donkeys 

and cattle collected in 2007 and 2009, allowing for assessment of the relationships between the 
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species and role of genetic exchange within each. Meanwhile five populations of T. b. rhodesiense 

(Chapter 5) from Uganda and Malawi have been examined, allowing for a unique comparison of 

populations separated by geography (Uganda – Malawi) and also within a single country as the 

disease has spread over time (Uganda 1961 – 2010). The role of technological advancement 

however means that new techniques are constantly becoming available; as such the final portion of 

this work (Chapter 6) focuses on the assembly and analysis of whole genome sequence data of 

three laboratory strains and reconstruction of the megabase chromosome haplotypes for TREU 927, 

the T. brucei genome reference strain. This discussion will draw together the results presented 

across these four results chapters in order to discuss the broader picture of mating in the Salivarian 

trypanosomes and the future direction of population studies into these parasites. 

 

At the core of genetic exchange is the mating system, which had remained until recently a black 

box. While genetic exchange has yet to be directly observed, details of the process are being filled 

in using a number of different approaches. Fluorescent tagging techniques (Bingle et al., 2001; 

Gibson et al., 2006, 2008; Peacock et al., 2007) have allowed for the direct observation of hybrids 

in the salivary glands of tsetse flies, providing greater detail into the timings, clustering and 

frequency of mating as well providing evidence for selfing during single strain transmissions 

(Peacock et al., 2009). Through bioinformatics it has also been demonstrated that the potential for 

meiosis is an ancestral trait amongst the kinetoplastids, with conserved meiotic genes having been 

previously identified in T. brucei, L. major and T. cruzi (El-Sayed et al., 2005), T. congolense 

(Morrison et al., 2009b) and now T. vivax (Chapter 3).  

 

The expression of three of these meiosis associated genes, mnd1, dmc1 and hop1 has been recently 

demonstrated through fluorescent tagging in T. brucei (Peacock et al., 2011), providing the greatest 

insight to date into the molecular events surrounding meiosis in trypanosomes. This work 

demonstrated that meiosis is initiated prior to the fusion of cells, with expression of the three 

tagged genes observed to occur in the same order as other eukaryotes. The majority of cells did not 

fuse with another during expression of these genes, however, a small proportion appeared to have 

fused during, or prior to, the expression of hop1. It is possible that these early fusion events give 

rise to the aneuploidy observed in some trypanosome hybrids. However, it is also possible that 

these cells are inviable and subsequentially removed from the population of the salivary glands. 

While this work demonstrated the initiation of the meiotic cycle, attempts to identify haploid cells 

were unsuccessful, which could indicate that haploid cells are not produced as part of the 

trypanosome meiotic cycle or that these cells are highly transient in nature. It therefore remains 

possible that fusion occurs between two haploid cells or two cells each possessing two haploid 

nuclei. 

 

The work of Peacock et al.(2011) was undertaken using strains of T. b. brucei and T. b. gambiense 

Group 2 and therefore further work will be required in order to determine whether these genes are 
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also functionally expressed in T. b. gambiense Group 1, T. congolense and T. vivax and the other 

kinetoplastids. Genetic exchange in Leishmania sp. bears strong similarities to that of T. brucei, 

occurring during development in the vector with biparental inheritance of chromosomes and the 

observation of raised DNA contents in some but not all progeny lines (Akopyants et al., 2009), 

suggesting Leishmania sp. may also make use of its ancestral complement of meiotic genes. T. 

cruzi in contrast appears to use a very different, non Mendelian system with fusion of diploid cells 

and random chromosome loss (Gaunt et al., 2003). Given the ability of evolution to adapt existing 

systems to new purposes, it remains to be seen whether the classical meiotic genes have been co-

opted for use by this alternative system of mating. 

 

The development and widespread use of microsatellite markers has provided the clearest evidence 

as to the role and frequency of mating in the populations of kinetoplastids by providing 

hypervariable, selectively neutral markers that are sensitive enough to identify and type infections 

without the requirement for laboratory adaptation and growth. From these markers the picture that 

is emerging is one of complexity and variation, with population structures ranging from near 

panmixia (T. b. rhodesiense) and frequent inbreeding (T. congolense, Leishmania sp.); epidemic (T. 

b. brucei) and finally strict or effective clonality (T. b. gambiense Group 1, T. b. rhodesiense, T. 

cruzi, Leishmania sp., T. vivax). For T. b. rhodesiense, it is now clear that the non obligatory nature 

of genetic exchange in T. brucei, and the unknown factors controlling the frequency of genetic 

exchange, can have significant effects on the dynamics of T. b. rhodesiense populations, giving rise 

to both effective clonality and frequent genetic exchange (Chapter 5). With this observation of a 

variable population structure for T. brucei further laboratory and population based investigations 

into the other species, most notably T. congolense and T. vivax, are required in order to determine 

whether the existing results are representative of the African trypanosomes as a whole. 

 

From the studies presented here it is apparent that further research is sorely needed in each species, 

albeit for very different reasons. Chapters 3 and 4 demonstrated the difficulty in working with T. 

vivax, a fact that has long been noted in the literature (Gardiner, 1989) and is a strong contributor to 

the lack of knowledge about this species. While the prevalence of this species was over 80% in 

both the 2007 and 2009 equine populations the single locus microsatellite genotyping was 

successful in less than 10% of the animals identified as T. vivax positive, despite the use of nested 

PCR protocols and collection of 2 ml of whole blood during sampling in 2009. These failures could 

have arisen due to a number of factors, the simplest being that the parasitaemia in infected animals 

is low enough to prevent amplification with single copy markers. If this is the case then it would 

suggest that T. vivax in The Gambia is characterised by either very low parasitaemia infections or 

that the hosts in the region are subject to much higher levels of exposure to T. vivax than T. brucei 

or T. congolense. It is also possible that the high prevalence of T. vivax but low genotyping success 

resulted from false positives. These could potentially arise through cross reactivity with host DNA, 
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although sequencing of the amplified material suggests this is not the case, or due to the presence 

of residual trypanosome DNA in the host originating from challenge that did not lead to infection. 

Alternatively the use of a Kenyan T. vivax isolate in the design of the microsatellite markers may 

have led to the introduction of null alleles which could not be amplified with the primers utilised 

here. Molecular techniques such as those employed here are commonly utilised in the examination 

of field samples and it is therefore important that these issues are resolved in order to obtain 

accurate estimations of the prevalence of T. vivax. Further assessment of infections in equines not 

brought to clinic, cattle, tsetse and biting flies from the region will shed further light on the 

epidemiology of T. vivax in addition to the existence and potential role of these low parasitaemia 

infections. 

 

The need for further investigations into T. congolense arise for a very different reason from that of 

T. vivax, namely that genetic exchange may be a frequent occurrence in the species with 

populations defined by a high level of inbreeding. If genetic exchange is truly occurring on a 

regular basis it should be possible to confirm its existence in the species, and through use of the 

tools already developed in the analysis of T. brucei, gain insight into the processes shared with, and 

different from, mating in T. brucei. Adaptation of the fluorescent tagging techniques already 

employed in T. brucei should be capable of not only confirming the occurrence of genetic exchange 

but will allow for the rapid identification of the developmental stage in which it occurs. For T. 

congolense these studies may be aided by the development of culture techniques for each of the life 

cycle stages (Coustou et al., 2010) which may eliminate the requirement for transmission through 

tsetse flies. 

 

 The extensive homozygote excess in T. congolense and low number of repeated MLGs, as 

observed here and in the earlier 2007 population (Morrison et al., 2009b) suggest that genetic 

exchange is a frequent occurrence in this species, with the frequency of mixed infections in the 

tsetse controlling the relative rates of selfing and outcrossing. While our knowledge of the 

processes controlling genetic exchange are limited, at present, modelling approaches may be able 

to shed light on the frequency of genetic exchange, outcrossing, selfing and mixed tsetse 

transmissions required in order to observe the population structures described in this thesis. Such 

approaches would allow for the generation of testable hypotheses regarding the population 

dynamics of trypanosomes which could be compared to field populations of interest. 

 

From the studies of Uganda and Malawi the most pressing questions are those of the frequency of 

genetic exchange in other foci of T. b. rhodesiense and the mechanisms controlling its frequency. 

Of the T. b. rhodesiense populations investigated to date that of Malawi is the first to show 

evidence of frequent genetic exchange and shows stark differences to those of Uganda, most 

notably of a high level of intra-population diversity and only two repeated MLGs within the 
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population. The Ugandan populations, in contrast to Malawi are much more closely related to one 

another, with clonal expansion of select genotypes common. This raises the possibility once again 

that T. b. rhodesiense may possess mechanisms of self incompatibility or of distinguishing self 

from non self during tsetse transmission (Gibson et al., 1997), limiting the potential for successful 

inbreeding and requiring a sufficient level of diversity and mixed genotype tsetse infections in 

order for detectable levels of genetic exchange to occur. Repeated clonal expansion of genotypes, 

while potentially favouring the fittest genotypes within the population could repeatedly select for a 

small number of mating types, limiting the potential for genetic exchange until further diversity is 

introduced or evolves. The founder effects observed in Soroti and Kaberamiado could further 

enhance this selective force through the establishment of new foci essentially composed of a single 

self incompatible genotype, effectively preventing mating in the long term. That selfing has been 

observed during single strain transmission (Peacock et al., 2009) may instead indicate that the 

dynamics of the mating process in T. brucei may act to limit but not completely block selfing in T. 

brucei. 

 

T. congolense, in contrast appears to allow for high levels of inbreeding, which suggests the two 

species may have taken different approaches to the role of genetic exchange. Elucidating the 

factors that control the frequency of genetic exchange however is likely to be a difficult process, if 

only due to the potential for multiple interacting variables and our current lack of knowledge 

concerning the mechanism of genetic exchange itself. The observation of effective or strict 

clonality in T. cruzi, T. b. gambiense Group 1 and T. vivax would appear to represent one extreme 

of the spectrum and could have arisen through simple chance mutations which were sufficient to 

disrupt genetic exchange. In order to be maintained within the environment it is likely that such a 

mutation would have needed to occur upon a high fitness genotype, capable of outcompeting 

mating strains long enough to become established as a new species or sub-species. Alternatively it 

is possible that a situation similar to that which may be present in Uganda, of low population 

diversity and self incompatibility has favoured such a mutation by removing the selective pressure 

to maintain a functional meiotic system.  

 

As the factors controlling meiosis remain unclear at present it is also possible that environmental 

variables, such as the vector or host species, have played a role in the evolution of clonality. The 

Salivarian trypanosomes are capable of infecting a wide range of tsetse species, however, it is 

possible that only some are conducive to mating. Long term association of a species, such as T. 

vivax, with a vector incapable of supporting genetic exchange could have led to loss of mating in 

the species by removing the selective pressure to maintain functional copies of the genes required 

for meiosis. Over shorter time frames vector imposed constraints could lead to temporary clonality 

within individual foci. This may explain the differences observed between the population structures 

identified in Uganda and Malawi if the vectors of the two foci differ enough to respectively prevent 
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and facilitate genetic exchange. In Uganda however the related sub-species T. b. brucei has been 

observed to possess an epidemic population structure, with genetic exchange masked by clonal 

expansion (MacLeod et al., 2000). If the tsetse species present within a focus are responsible for 

determining whether genetic exchange is occurring, this would suggest that either the two sub-

species respond differently to the same vector or that they may be spread by different vectors with 

that transmitting T. b. rhodesiense not conducive to genetic exchange. 

 

The kinetoplastids, with their diverse range of reproduction strategies appear to inhabit the middle 

ground between clonality and sexuality, with the many species positioned at different positions 

along the spectrum. T. brucei, the archetype with its non-obligatory mating system appears to be 

playing the system, by attempting to get the best of both worlds. By possessing the potential for 

sexual reproduction trypanosomes retain the ability to shuffle their genetic material into new 

combinations by first meiotic recombination and subsequently by combining material from two 

parental cells, allowing for the mixing of lineages which can bring together traits that would be 

forever isolated in strictly clonal organisms. The shift towards clonality through the presence of the 

non-obligatory mating system, while reducing the frequency with which the genome is mixed with 

that of the local population may fulfil the important function of ensuring the continuation of the 

fittest genotypes. Under such a system it could be envisaged that within a population individual 

genotypes could be maintained over long periods of time, with occasional mating events giving rise 

to new combinations which could be selected against; maintained at low frequency; or selected for, 

becoming the new dominant genotype through clonal expansion. With the correct balance of 

conditions multiple short term lineages could thus be maintained within a population, with a level 

of self recognition or self incompatibility limiting the potential for inbreeding. That T. cruzi retains 

the ability to undergo even rare genetic exchange attests to the advantages offered by even 

occasional mixing of the gene pool and further investigation will be required in order to determine 

whether T. b. gambiense Group 1 and T. vivax also possess the capability for rare mating events.  

 

The final section of this thesis has focused upon the genomic analysis of three T. brucei laboratory 

lines and genome wide reconstruction of the chromosomal haplotypes of TREU 927, the T. brucei 

reference strain (Chapter 6). Genome sequence data are increasingly taking on a central role in 

molecular biology be it merely for simple gene sequence retrieval, identification of mutations 

following the application of selective pressures or for genome wide association studies. At present 

however there are no publically available resources collecting together the genomic variation of the 

Salivarian trypanosomes and even the sequence describing the genome of the reference strain, 

TREU 927 is devoid of internal SNP variation. The work here, in examining three common 

laboratory strains, including TREU 927, provides an initial insight into genome wide variation, 

both between the three strains and within each strain. The data generated form a valuable resource 

into trypanosome sequence variation and its distribution within the genome of these strains. 
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However with the widespread use of numerous laboratory strains, each with their own distinct 

origin, genetic background, complement of SNPs and unique laboratory phenotypes it will be 

necessary to add further sequencing to this resource in order to understand the effect of strain 

specific SNP combinations. 

 

The second half of the genomics studies focused upon the reconstruction of the chromosomal 

haplotypes of TREU 927, the T. brucei genome reference strain. Combined with the SNP data and 

analysis this provides a high density SNP map for TREU 927, allowing for the identification of the 

sequence of individual alleles of features of interest and in doing so makes it possible to easily 

identify cis acting variation that may give rise to allele specific effects across the entire genome. 

Combined with the earlier microsatellite map (MacLeod et al., 2005b) this SNP map allows for 

fine tuning of quantitative trait loci mapping through the genotyping of individual SNPs in regions 

identified as contributing to phenotypes of interest. The genomics work, however, has focused 

solely upon SNP variation and as such is only the first step in analysing the trypanosome genomes 

as other sources of variation also play significant roles in controlling the biology and observable 

phenotypes of organisms. Future work will therefore need to investigate these, in particular the role 

of indels, genomic rearrangements and copy number variation. In focusing upon the megabase 

chromosomes this work has also excluded analysis of the kinetoplast, intermediate and mini- 

chromosomes which will need to be included in future work before we can fully understand 

genomic variation within the Salivarian trypanosomes.  

 

While this application of whole genome sequencing was not employed in the analysis of field 

samples the future of population studies is undoubtedly that of population genomics, utilising high 

throughput techniques in order to type populations with thousands of markers across the entire 

genome. In order for such genomics studies to be undertaken with trypanosomes a number of 

barriers will first need to be overcome, predominantly focused on the sampling of trypanosomes 

from natural populations. The primary issues currently faced are separation of parasite and host 

DNA; collection of sufficient parasite DNA for sequencing and the presence of mixed trypanosome 

infections when sampling from animals. While infections of laboratory animals can reach 

extremely high parasitaemias naturally occurring infections are typically at far lower parasitaemias, 

dependent upon both host and parasite species. Further in natural infections the number of 

trypanosomes per ml of blood is typically far lower than the number of host white blood cells per 

ml of blood which coupled to the differing genome sizes of host and parasite the total concentration 

of trypanosome DNA is likely to be many orders of magnitude smaller than that of the host.  

 

The second barrier to population genomics, collection of sufficient material is directly related to the 

first issue as even if pure trypanosome DNA can be separated it is unclear how much blood would 

need to be sampled to provide the material required for whole genome sequencing. This is of 
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particular concern with species associated with the lowest of parasitaemias, namely T. b. gambiense 

Group 1 and T. vivax. The failure to genotype the majority of the T. vivax positive samples with the 

single copy microsatellite markers (Chapters 3 and 4) emphasises the difficulty that genome 

sequencing would face. In face of these low parasitaemias parasite concentration methods will be 

required in order to isolate all the trypanosomes present in large volumes of blood. The most 

promising technique currently available is mini anion exchange centrifugation technique (Lumsden 

et al., 1979; Büscher et al., 2009), which should filter out the majority of host DNA from samples, 

however this brings with it its own issues, notably difficulties in use under field conditions, and 

total DNA yield. Additional studies will therefore be required in order to determine the size of the 

columns required in order to obtain sufficient quantities of trypanosome DNA from field infections 

and whether host DNA is sufficiently excluded. 

 

The issue of mixed infections presents a further barrier that may hinder future population genomic 

studies. Mixed genotype infections of a single species are particularly difficult to identify in SNP 

studies as the majority of SNPs are represented by only two alleles present as either their respective 

homozygous forms or the combined heterozygous SNP. This is in contrast to microsatellite alleles 

where multiple alleles are common; facilitating the identification of mixed genotype infections and 

panels of these markers may be required in order to screen samples for mixed infections prior to 

sequencing. A further issue is the role of mixed species infections when sampling from non-human 

hosts, which may further complicate matters if reads align to multiple reference sequences.  

 

If these difficulties, and those more widely associated with the collection of samples from the field, 

can be overcome then trypanosome genomic studies will be well placed to substantially increase 

our knowledge of these parasites. Population genomic studies will vastly increase the power 

available to determine the frequency of mating and the relationships between trypanosomes within 

a population by sampling the majority of genomic variation, allowing for even highly related 

individuals to be distinguished from one another. By sampling diversity across the entire genome it 

will be possible to examine linkage disequilibrium along the length of any given chromosome, 

hampered at present by the employment of only low number of genetic markers which are typically 

spread over different chromosomes. The ability to test for linkage along chromosomes allows for 

the detection of recombination events, a key marker of meiosis and thus genetic exchange and with 

sufficient sampling there will come the ability to calculate population level haplotype blocks and 

identify the location of recombination hotspots within the genome. 

 

Beyond the investigation of genetic exchange genomics studies will play a significant role in many 

laboratory and field studies. As the cost drops it will be feasible to sequence all lines of interest in 

order to identify novel variations, such as following selection for particular phenotypes. Field 

studies will also benefit greatly from the increasing availability of genome sequencing. Genome 
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wide association studies will allow for the identification of important variation in not only the 

parasites but in hosts and vectors in order to determine the gene variants responsible for clearance 

of, control of, or susceptibility to infection. The field of phylogenetics will likewise benefit, by 

increasing the power of the techniques used, allowing for identification of more subtle evolutionary 

relationships between individuals. This will in turn allow for comparative studies of chromosomes 

and regions within them, making it possible to investigate their individual evolutionary histories. 

Finally by comparing the nucleotide diversity of regions of interest to the genome as a whole it will 

also be possible to identify regions under selective pressure, through the presence of highly 

conserved sequences between species and geographically separated isolates or through alterations 

to population level heterozygosity due to purifying or diversifying selection. 

 

The work in this thesis, in focusing upon the population genetics of the African Salivarian 

trypanosomes has demonstrated the variability of the mating strategies of employed by T. b. 

rhodesiense, T. congolense and T. vivax and shown that even within a single sub-species there is a 

range in the frequency of genetic exchange. Such a variable mating system is likely to have had a 

considerable impact on the evolutionary history of these species, further complicated by the 

founder effects associated with spread of the disease and potential for highly structured populations 

controlled by the interactions of vector, host, parasite and environment. That the role of genetic 

exchange in determining the epidemiology of HAT and Nagana warrants further study due to the 

clinical implications of such a system goes without question. The positioning of the trypanosomes 

in the boundary between clonality and sexuality however means that the species may be ideally 

suited to furthering our knowledge of the evolutionary role and selective pressures associated with 

genetic exchange and recombination, a role which in and of itself is worthy of additional study. The 

future role of genome sequencing in such studies is unquestionable and as these technologies 

become available it will be necessary to ensure the knowledge derived from prior studies continues 

to be employed as population genetics continues to transform into population genomics. 
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Species / clade Primer ID 5‟ – 3‟ Primer Sequence 

T. brucei TBR-1 

TBR-2 

GAATATTAAACAATGCGCAG 

CCATTTATTAGCTTTGTTGC 

T. congolense Forest TCF-1 

TCF-2 

GGACACGCCAGAAGGTACTT 

GTTCTCGCACCAAATCCAAC 

T. congolense Savannah TCS-1 

TCS-2 

CGAGAACGGGCACTTTGCGA 

GGACAAACAAATCCCGCACA 

T. vivax TVW-1 

TVW-2 

CTGAGTGCTCCATGTGCCAC 

CCACCAGAACACCAACCTGA 

 

Appendix 1 

Primer sequences for the species specific primers used in identifying the presence of trypanosome 

infections in field samples, originally published by Masiga et al.(1992). 
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Microsatellite ID Genome contig (size) Primer ID 5‟ – 3‟  Sequence 

TV3 Tviv1699d03.p1k 

TVIV.0.298087 

(2,222 bp) 

TVN3A 

TVN3B 

MTV3A 

TV3B 

ATGTTTATACGCCGCTTGA 

GTTATGCTCGTCACTTGTT 

GAACATACCATTATATTCACTGC 

TTGGTGGTGTGCTGTCATT 

TV4 Tviv1189b11.p1k 

TVIV.0.311716 

(2,340 bp) 

TVN4A 

TVN4B 

MTV4A 

TV4B 

CTTCTCCATCTGTGCATGAG 

TAGCATCAGATAGGCGTATTAT 

TGTTGTTGTTGTAGTGAAGGT 

TATACGTGGCAGACAGATAA 

TV6 Tviv1381c08.q1k 

TVIV.0.2778 

(2,548 bp) 

TVN6A 

TVN6B 

MTV6A 

TV6B 

TGTTCTACATGCTTGGAGGT 

TATGCGTTCACAACACTCTG 

CGTTCTGGGTGAAGTGACA 

ACAGTACGGACAAGGACAC 

TV14 Tviv1738g11.q1k 

TVIV.0.24886 

(3,017 bp) 

TVN14A 

TVN14B 

MTV14A 

TV14B 

GACGCAATCACATGAACATA 

CCTCCAGCTACGATCAAGT 

GGTGTGCCATAATATACAGCA 

CTGGATTGAAGCACACTAAC 

TV17 Tviv1224g12.q1kw 

TVIV.0.49233 

(3,211 bp) 

TVN17A 

TVN17B 

MTV17A 

TV17B 

CCAGATGTATAAACAGAGACTT 

CTACCTGTTCCTTCGCATT 

CACCTAACAGAGTACACCAA 

ATCTCAGTTCATTACATACATCT 

TV24 Tviv1975d12.q1k 

TVIV.0.43146 

(4,037 bp) 

TV24A 

TV24B 

MTVN24A 

TVN24B 

AGTGTCGTCAAGGTACTGA 

TCTGTTAATGAGGTCCACACT 

TTCTCGTACCCACTCTGAA 

TTGGTGAACAGATTGAAGC 

TV31 Tviv1905b03.p1k 

TVIV.0.253449 

(35,758 bp) 

TVN31A 

TVN31B 

MTV31A 

TV31B 

GTCATATCAGAAGAGTGGTGT 

ACGAGATACGTCGGTGGAT 

CGACGGTAAGTTAGTGACA 

TGAATGAGGAACATGGAGTTG 

TV49 Tviv827e12.q1k 

TVIV.0.221992 

(23,506 bp) 

TV49A 

TV49B 

MTVN49A 

TVN49B 

CAGTCAAGCCTAATGATCCTC 

GTGAGGTTACGAGGACAGA 

TTCTTTGCTGCCTTGTACTG 

GGCAAGTAACTGTCGTAGA 

 

Appendix 2 

Primer details for the genotyping of T. vivax microsatellites, originally published in Duffy et 

al.(2009). Sequences denoted in italics represent the second round primers for use in nested PCR. 

Presence of M at the start of primer ID indicate these primers bore a 5' FAM or HEX modification. 
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Microsatellite ID Primer ID 5‟ – 3‟  Sequence 

TCM-1 TCM1A 

TCM1B 

TCM1C 

TCM1D 

TACAAATGACTGTAGAGCGGC 

CTGTGTGTATAATGATTCATTCG 

CTAGAAGCGAGTAACAGCC 

AAGGGTTCGTACCACAGCCC 
TCM-2 TCM2A 

TCM2B 

TCM2C 

TCM2D 

GGTAAGACAAAGTTGTGGGTG 

ATGTGACCGATGCTCCGAAC 

CAGTCATGTATATGTTTGTG 

CCTGAAATGGGTCTACTGAG 
TCM-3 TCM3A 

TCM3B 

TCM3C 

TCM3D 

TCTATTGTTCACGTCTCGTG 

ACTCATTGCATAAAGGCTAG 

CATGCTCTTAGGTTCCATCGG 

AGCATCCGACATTGAAACGAC 
TCM-4 TCM4A 

TCM4B 

TCM4C 

TCM4D 

CTTAACGCTGCTTCAGTAGC 

AGTACACACGACTTCACCTCC 

GTCTCTTTCCGCACAGTGAC 

GGGGGAAGATATTAAAGACAC 
TCM5 TCM5A 

TCM5B 

TCM5C 

TCM5D 

CAATGGTTCAATAAGCGCACC 

AAGGCAAGTAAGTTACGC 

CTTCCACGAGTCCCTAATCGAC 

TTGCTCACTGTCAAGGCGTGC 
TCM-6 TCM6A 

TCM6B 

TCM6C 

TCM6D 

GAATGCGAGACCTGCTTCTTGG 

CATTTAGACTCTCACTTTCCG 

AACCACCACTTCCGTGCACCGG 

CCATGAGCTTTATGCGACCTCTAC 
TCM-7 TCM7A 

TCM7B 

TCM7C 

TCM7D 

GTGTAGTTTGTTATACTTCG 

GTTAAATACTTGTGAGAGCCAGC 

TCATAGAGGCAAGTGCGTAGC 

CCAGAATAAGAATACTTACTGC 

 

Appendix 3 

Primer details for the genotyping of T. congolense microsatellites, originally published by 

Morrison et al.(2009b). 
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Microsatellite 

ID 

Chromosome Primer ID 5‟ – 3‟  Sequence 

Ch1/18 1 CH1/18-C 

Ch1/18-D 

CH1/18-A 

CH1/18-B 

TATAATGCGTTTGTGAGAAT 

GAAGGGAGGGAACAGAAGCAGGG 

TGTGAGAATGGTACTCACGCGCTG 

ACAACGTTAGCACACAATTCCTGTG 

Ch2/PLC 2 CH2/PLC-G2 

CH2/PLC-H4 

CH2/PLC-G 

CH2/PLC-H3 

TTAAGTGGACGACGAAATAACAACA 

TTCAAACACCGTCCCCCTCAATAAT 

CAACGACGTTGGAAGAGTGTGAAC 

CCACTGACCTTTCATTTGATCGCTTTC 

Ch3/5L5 3 CH3/5L5-AA 

CH3/5L5-B 

CH3/5L5-A 

CH3/5L5-BB 

GAGCGTACATTGCAGGTAGTGCGTAGCG 

GGAAACTGCTTAAACTTGCGTGAG 

GTACGTGGTTAACCACAACCTACT 

GTATTTTTCATGGCACACAACATAT 

Ch3/IJ15/1 3 Ch3/IJ15/1-C 

Ch3/IJ15/1-D 

Ch3/IJ15/1-A 

Ch3/IJ15/1-B 

AGGCTTAGACGAGTGTCAGG 

GTAAATAGACACAGTGAAACCG 

GTTAGGTTACGCAAGTCAGT 

GAAACACTCAGTTCCACACC 

Ch4/M12C12 4 CH4/M12C12-B 

CH4/M12C12-C 

CH4/M12C12-A 

CH4/M12C12-D 

TACCCTCATCAAGTGGTCG 

AAAACCTCATCCAGTCGCACTGG 

TGGACACACAGAAGCCTACCG 

AGTGTGGTGGTGCGTGCAAACTTGG 

Ch5/JS2 5 CH5/JS2-C 

CH5/JS2-D 

CH5/JS2-A 

CH5/JS2-B 

AGTAATGGGAATGAGCGTCACCAG 

GATCTTCGCTTACACAAGCGGTAC 

GATTGGCGCAACAACTTTCACATACG 

CCCTTTCTTCCTTGGCCATTGTTTTACTAT 

Ch9/4 9 Ch9/4-C 

Ch9/4-D 

Ch9/4-A 

Ch9/4-B 

CATCGATGAGAAGTACACTG 

AACAGACTAGGAAAGTATAC 

GTGGAGGAGTGCTGATGA 

ATGTAAGATATTAGAGCAGTAAA 

 

Appendix 4 

Primer details for the genotyping of T. brucei microsatellites, originally published in (MacLeod et 

al., 2005b). 
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Appendix 5 

Amino acid sequence alignments for the eight core meiotic genes in T. brucei, T. vivax and T. congolense. Sequence alignments for T. brucei, T. vivax and T. 

congolense respectively for the eight core meiotic genes identified by Schurko and Logsdon (2008) are shown for spo11 (a), dmc1 (b), mnd1 (c), msh4 (d), msh5 (e), 

hop1 (f), hop2 (g) and rec8 (h). T. congolense sequences were identified by Morrison et al. (2009b). Amino acids are colour coded based upon side chain properties 

with similar amino acids grouped together. Conservation indicates direct identity between the respective sequences with 100% representing presence of the same amino 

acid at a position in every sequence in the alignment and minimal conservation (25% for mnd1, 33% for each other alignment) indicating at unique amino acid in each 

sequence at the indicated position. For mnd1 two T. congolense sequences, TcIL3000.0.24610 and TcIL3000.11.6040, with sequence identity of 98% to one another 

are present within the genome sequence. Alignment of T. congolense hop1 was performed utilising a sequence combined sequences of TcIL3000.10.4620 and 

congo1147c06.q1k_0. 
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Appendix 6 

Sample Date Species
a
 Locus and allele sizes

b 
MLG

c 

   TV6 TV14 TV17 TV24 TV31 TV49  

59 Mar 06 D 279 293 211 229 143 206 122 140 476 506 103 138 8 

72 Mar 06 D 279 301 211 211 143 206 140 157 476 476 103 103 9 

102 Mar 06 H 279 279 211 211 143 206 140 152 476 506 103 138 4 

103 Mar 06 H 279 279 211 229 143 206 122 140 476 506 103 138 7 

148 Mar 06 H 279 302 211 211 143 206 140 157 476 476 103 103 9 

1067 Aug 06 H 279 302 211 229 143 143 140 152 476 506 103 138 2 

1068 Aug 06 D 279 279 211 211 143 206 140 152 476 506 103 138 4 

1081 Aug 06 H 279 293 211 229 143 206 122 140 476 506 103 138 8 

1096 Aug 06 H 279 279 211 211 143 206 140 152 476 506 103 138 4 

1100 Aug 06 D 279 279 211 211 143 206 140 152 476 506 103 138 4 

c2 Aug 06 C 279 293 211 229 143 206 122 140 476 506 103 138 8 

2002 Jan 07 D 279 293 211 229 143 206 122 140 476 506 103 138 8 

2005 Jan 07 H 279 293 211 229 143 206 122 140 476 506 103 138 8 

2029 Jan 07 H 279 293 211 229 143 206 122 140 476 506 103 138 8 

2037 Jan 07 H 279 302 211 211 143 206 140 157 476 476 103 103 9 

2047 Jan 07 H 279 293 211 211 143 206 152 157 476 506 103 138 5 

2058 Jan 07 H 279 279 211 211 143 206 140 157 476 476 103 103 10 

2062 Jan 07 H 279 279 211 211 143 206 140 152 476 506 103 138 4 

2069 Jan 07 H 279 293 211 229 143 206 122 140 476 506 103 138 8 

2078 Jan 07 H 279 279 211 211 143 206 140 152 506 506 103 138 3 

2081 Jan 07 D 279 293 211 229 143 206 122 140 476 506 103 138 8 

3003 Jan 07 C 279 293 211 229 143 206 122 140 476 506 103 138 8 

3035 Jan 07 C 279 279 211 211 143 206 152 157 476 506 103 138 6 

3036 Jan 07 C 279 293 211 229 143 206 122 140 476 506 103 138 8 

3037 Jan 07 C 279 293 211 229 143 206 122 140 476 506 103 138 8 

3038 Jan 07 C 279 302 211 211 143 206 140 157 476 476 103 103 9 

3039 Jan 07 C 279 293 211 229 143 206 122 140 476 506 103 138 8 

3040 Jan 07 C 279 293 211 229 143 206 122 140 476 506 103 138 8 

3041 Jan 07 C 279 279 211 211 143 206 140 157 476 476 103 103 10 
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3042 Jan 07 C 279 293 211 229 143 206 122 140 476 506 103 138 8 

3043 Jan 07 C 279 293 211 229 143 206 122 140 476 506 1003 138 8 

ILRAD 

V34 

- - 279 293 211 211 160 185 140 136 476 476 138 117 1 

 

 

Appendix 6 

Collection details (sampling date and host species) and genotype of the 31 fully genotyped Trypanosoma vivax samples plus the control sample, ILRAD V34. Samples 

were genotyped at six microsatellite loci specific to T. vivax and allele sizes determined by comparison to labelled size standards following size-separation on a 

capillary-based sequencer. 

a
 Species: D, donkey; H, horse; C, cattle. 

b
 Allele size given in bp. 

c
 MLG, multilocus genotype, where each multilocus genotype represents a unique combination of microsatellite alleles across the six loci examined for this study. 
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Appendix 7 

ID Date of collection 

Sampling 

Location PCV TP 

Microscopic 

infection 

status Cholesterol Species 

Trypanosome species present based the 

presence of 177bp PCR repeat 

T. brucei T. congolense T. vivax 

GAM047 27/03/09 Banni 22 8.4 Negative 4.8 Horse Positive Negative Positive 

GAM048 27/03/09 Banni 29 6.7 Negative 6.9 Horse Positive Negative Positive 

GAM049 27/03/09 Banni 30 8.0 Negative 5.6 Horse Positive Negative Positive 

GAM050 27/03/09 Banni 39 7.6 Negative 5.9 Horse Negative Negative Positive 

GAM051 27/03/09 Banni 35 8.0 Negative 4.1 Donkey Negative Negative Positive 

GAM052 27/03/09 Banni 34 8.4 Negative 5.0 Donkey Positive Negative Positive 

GAM053 27/03/09 Banni 34 8.2 Negative 4.3 Donkey Positive Negative Positive 

GAM054 27/03/09 Banni 39 7.2 Negative 3.1 Donkey Negative Negative Positive 

GAM055 27/03/09 Banni 32 7.4 Negative 3.3 Donkey Positive Negative Positive 

GAM0.56 27/03/09 Banni 32 8.4 Negative 4.6 Donkey Negative Negative Positive 

GAM057 27/03/09 Banni 33 7.2 Negative 2.9 Donkey Positive Negative Positive 

GAM058 27/03/09 Banni 30 8.7 Negative 3.6 Donkey Positive Negative Positive 

GAM059 27/03/09 Banni 35 6.7 Negative 2.9 Donkey Positive Negative Positive 

GAM060 27/03/09 Banni 36 6.8 Negative 4.2 Donkey Negative Negative Positive 

GAM061 27/03/09 Banni 39 9.0 Negative 2.9 Donkey Positive Positive Positive 

GAM062 27/03/09 Banni 42 7.2 Negative 3.1 Donkey Positive Positive Negative 

GAM072 28/03/09 Missera 38 8.6 Negative 2.8 Donkey Positive Negative Positive 

GAM073 28/03/09 Missera 30 7.2 Negative 2.9 Horse Positive Negative Positive 

GAM074 28/03/09 Missera 33 8.4 Negative 6.0 Donkey Negative Negative Positive 

GAM075 28/03/09 Missera 39 8.0 Negative 4.8 Horse Positive Negative Positive 

GAM076 28/03/09 Missera 28 8.7 Negative 4.1 Donkey Negative Positive Positive 

GAM077 28/03/09 Missera 30 9.2 Negative 4.7 Donkey Positive Negative Positive 

GAM078 28/03/09 Missera 40 8.6 Negative 4.4 Donkey Negative Negative Positive 

GAM079 28/03/09 Missera 34 8.4 Negative 4.9 Donkey Negative Negative Positive 

GAM080 28/03/09 Missera 36 8.7 Negative 5.9 Donkey Negative Negative Negative 

GAM081 28/03/09 Missera 34 8.7 Negative 4.7 Donkey Positive Positive Positive 

GAM082 28/03/09 Missera 34 6.8 Negative 7.2 Horse Positive Negative Positive 
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GAM083 28/03/09 Missera 32 9.4 Negative 3.6 Donkey Positive Negative Positive 

GAM084 28/03/09 Brikamabah 36 8.0 Negative 3.9 - Positive Negative Positive 

GAM085 28/03/09 Brikamabah 42 8.2 Negative 4.8 - Negative Negative Positive 

GAM086 28/03/09 Brikamabah 30 8.6 Negative 3.9 Horse Positive Negative Positive 

GAM087 28/03/09 Brikamabah 39 6.8 Negative 4.5 Horse Positive Negative Positive 

GAM088 28/03/09 Brikamabah 46 8.0 Negative 6.7 Horse Positive Negative Positive 

GAM089 28/03/09 Brikamabah 30 7.4 Negative 3.2 Horse Negative Negative Positive 

GAM090 28/03/09 Brikamabah 33 9.0 Negative 4.3 Horse Positive Negative Positive 

GAM091 28/03/09 Brikamabah 31 >12 Negative 2.9 Horse Negative Negative Positive 

GAM095 29/03/09 

Missera 

Torben 25 9.4 Negative 2.7 Horse Positive Positive Positive 

GAM096 29/03/09 M'Fana 26 7.9 Negative Lo Horse Positive Positive Negative 

GAM098 29/03/09 M'Fana 26 9.2 Negative 5.1 Horse Positive Negative Negative 

GAM099 29/03/09 M'Fana 23 9.2 Negative 3.6 Donkey Positive Negative Positive 

GAM100 29/03/09 M'Fana 25 8.6 Positive 4.2 Donkey Positive Positive Positive 

GAM101 29/03/09 M'Fana 39 8.6 Negative 5.6 - Positive Negative Positive 

GAM102 30/03/09 Wasu 15 6.6 Positive 3.2 Horse Negative Positive Positive 

GAM103 30/03/09 Wasu 30 8.4 Negative 2.6 Horse Negative Negative Positive 

GAM104 30/03/09 Wasu 39 7.8 Negative 4.4 Horse Positive Negative Positive 

GAM105 30/03/09 Wasu 11 8.4 Negative 2.9 Horse Positive Positive Positive 

GAM106 30/03/09 Wasu 20 7.2 Positive 2.9 Horse Negative Positive Positive 

GAM107 30/03/09 Wasu 32 7.2 Negative 2.9 Horse Positive Positive Positive 

GAM108 30/03/09 Wasu 29 7.0 Positive 3.9 Horse Negative Positive Positive 

GAM109 30/03/09 Wasu 20 9.2 Positive 3.1 Horse Positive Negative Positive 

GAM110 30/03/09 Wasu 36 8.2 Positive 4.3 Horse Positive Positive Negative 

GAM111 30/03/09 Wasu 33 7.8 Negative 4.6 - Negative Positive Positive 

GAM112 30/03/09 Wasu 30 8.6 Positive 4.0 Horse Positive Positive Positive 

GAM113 30/03/09 Wasu 28 7.6 Negative 3.3 Horse Positive Negative Positive 

GAM114 30/03/09 Wasu 31 6.2 Negative 4.4 - Positive Negative Positive 

ECG001 03/04/09 Sambel Kunda 22 8.6 Negative 4.2 Horse Negative Negative Positive 

X001 04/04/09 Brikamabah 32 8.8 Negative 4.6 Horse Positive Negative Positive 

X002 04/04/09 Brikamabah 32 7.6 Negative 4.3 Horse Negative Negative Positive 

X003 04/04/09 Brikamabah 30 8.0 Negative 4.2 Horse Negative Positive Positive 
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X004 04/04/09 Brikamabah 36 8.4 Negative 4 Horse Negative Negative Negative 

X005 04/04/09 Brikamabah 19 8.2 Positive 4.8 Horse Negative Positive Positive 

X006 04/04/09 Brikamabah 28 8.7 Negative 4.9 Horse Negative Negative Positive 

X007 04/04/09 Brikamabah 24 8.0 Positive 3.6 Horse Negative Positive Positive 

X008 04/04/09 Brikamabah 29 7.2 Negative 4 - Negative Negative Positive 

X009 04/04/09 Brikamabah 10 8.2 Negative 4.1 Horse Negative Negative Positive 

X010 04/04/09 Brikamabah 25 6.2 Positive 3.5 Horse Negative Negative Negative 

X011 04/04/09 Brikamabah 39 7.7 Negative 4.9 - Negative Positive Positive 

X012 04/04/09 Brikamabah 33 7.8 Negative 4.7 Horse Negative Negative Positive 

X013 04/04/09 Brikamabah 27 10.2 Negative 4.6 Horse Negative Negative Positive 

X014 04/04/09 Brikamabah 15 7.4 Negative 4.2 Horse Negative Negative Positive 

X015 04/04/09 Brikamabah 18 8.6 Negative 3.4 - Positive Negative Positive 

X016 04/04/09 Brikamabah 48 9.6 Negative 5.4 - Negative Positive Negative 

X017 04/04/09 Brikamabah 48 7.4 Negative 4.2 - Negative Negative Positive 

X018 05/04/09 M'fana 29 9.2 Negative 4.2 Horse Negative Positive Positive 

X019 05/04/09 M'fana 32 6.2 Negative 4.3 - Negative Negative Positive 

X020 05/04/09 M'fana 30 6.8 Negative 2.9 - Negative Negative Negative 

X021 05/04/09 M'fana 42 8.6 Negative 4.8 - Positive Negative Positive 

X022 05/04/09 M'fana 31 6.8 Negative 3.7 - Negative Negative Positive 

X023 05/04/09 M'fana 37 8.2 Negative 3.5 - Negative Positive Positive 

X024 05/04/09 M'fana 31 7.0 Negative 3.1 - Negative Positive Positive 

X025 05/04/09 M'fana 32 8.5 Negative 4.1 - Positive Positive Positive 

X026 05/04/09 M'fana 19 8.0 Negative 3.8 - Negative Positive Positive 

X027 05/04/09 M'fana 20 8.2 Negative 5.3 - Positive Negative Positive 

GAM154 07/04/09 Touba 38 7.0 Negative 4.5 Horse Positive Negative Positive 

GAM163 07/04/09 Touba 32 7.2 Positive 5 Horse Negative Positive Positive 

GAM167 07/04/09 Kununku 18 8.6 Negative 3.4 Horse Positive Negative Positive 

GAM115 08/04/09 Jahally 18 9.6 Negative 3.9 Horse Negative Negative Positive 

GAM116 08/04/09 Jahally 20 9.8 Negative 4.2 Horse Negative Negative Positive 

GAM117 08/04/09 Jahally 22 10.0 Negative 4.8 Horse Negative Positive Positive 

GAM118 08/04/09 Jahally 24 7.8 Negative 6.9 Horse Negative Negative Positive 

GAM119 08/04/09 Jahally 42 7.8 Negative 4.4 Horse Negative Negative Positive 

GAM120 08/04/09 Jahally 18 10 Positive 4.3 Donkey Negative Positive Positive 



 

 

P
ag

e | 2
0

6
 

GAM121 08/04/09 Jahally 30 7.4 Negative 6.3 Donkey Negative Negative Positive 

GAM122 08/04/09 Jahally 24 8.6 Negative 4.5 - Negative Negative Positive 

GAM123 08/04/09 Jahally 34 7.0 Negative 4.2 Horse Negative Negative Positive 

GAM124 08/04/09 Jahally 16 9.8 - 3.6 Donkey Positive Negative Positive 

GAM125 08/04/09 Jahally 20 7.6 - 4.5 Horse Negative Positive Positive 

GAM126 08/04/09 Madina 30 7.0 Negative 5.4 Horse Positive Negative Positive 

GAM127 08/04/09 Madina 41 7.6 Negative 4 Horse Negative Negative Negative 

GAM128 08/04/09 Madina 33 7.8 Negative 5.1 Horse Negative Negative Positive 

GAM129 08/04/09 Madina 21 7.6 Negative 3.6 Donkey Negative Positive Positive 

GAM130 08/04/09 Madina 22 9.4 Positive 4.2 Horse Positive Positive Positive 

GAM131 08/04/09 Madina 31 6.2 Negative 4.4 - Negative Positive Positive 

GAM132 08/04/09 Madina 28 7.6 Positive 6.4 - Positive Negative Positive 

GAM133 09/04/09 Kerewan 30 8.8 Negative 5.4 Donkey Positive Negative Positive 

GAM134 09/04/09 Kerewan 28 6.6 Negative 6.4 Donkey Positive Negative Positive 

GAM135 09/04/09 Kerewan 25 9.0 Negative 7.1 Donkey Positive Negative Positive 

GAM136 09/04/09 Kerewan 24 7.8 Negative 4.3 Donkey Negative Negative Positive 

GAM137 09/04/09 Kerewan 31 8.8 Negative 5.9 Donkey Positive Negative Positive 

GAM138 09/04/09 Kerewan 19 9.2 Positive 5.1 Donkey Negative Positive Positive 

GAM139 09/04/09 Kerewan 25 7.2 Negative Lo Horse Negative Negative Positive 

GAM140 09/04/09 Kerewan 27 7.4 Negative 4.1 Donkey Negative Positive Positive 

GAM141 09/04/09 Kerewan 26 10.2 Negative 5.2 Donkey Negative Positive Negative 

GAM142 09/04/09 Kerewan 28 6.6 Negative 3.9 Horse Negative Negative Negative 

GAM143 09/04/09 Kerewan 36 7.6 Negative 4.7 Horse Positive Positive Positive 

GAM144 09/04/09 Kerewan 37 7.8 Negative 4.8 Horse Negative Negative Negative 

GAM145 09/04/09 Kerewan 8 8.2 Positive 4.9 Donkey Positive Positive Positive 

GAM146 09/04/09 Kerewan 20 8.0 Positive 4.3 Donkey Positive Positive Positive 

X028 15/04/09 Kerrtamim 27 8.2 Negative 5 Horse Negative Negative Positive 

ECG004 15/04/09 Kerrtamim 39 7.0 Positive 4.4 Horse Negative Negative Negative 

X029 15/04/09 Kerrtamim 32 7.2 Negative 5 Horse Positive Negative Positive 

X030 15/04/09 Kerrtamim 25 8.6 Negative 4.3 Horse Negative Negative Positive 

ECG005 15/04/09 Kerrtamim 27 6.8 Positive 5.1 Horse Positive Positive Positive 

X031 15/04/09 Kerrtamim 31 6.8 Negative 5.7 Horse Positive Negative Positive 

X032 15/04/09 Kerrtamim 38 7.4 Negative 5.4 Horse Negative Negative Positive 
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X033 15/04/09 Kerrtamim 38 7.8 Negative 5.3 Horse Positive Negative Positive 

X034 15/04/09 Thirty Mile 21 8.4 Negative 3.6 Horse Positive Negative Positive 

X035 15/04/09 Thirty Mile - - - 3.7 - Positive Positive Negative 

X036 15/04/09 Thirty Mile 27 9.6 Negative 3.5 Donkey Negative Positive Positive 

X037 15/04/09 Thirty Mile 31 8.4 Positive 4.3 Horse Negative Positive Positive 

X038 15/04/09 Thirty Mile 21 7.7 Negative 3.6 Horse Negative Negative Positive 

X039 15/04/09 Thirty Mile 20 8.6 Positive 3.2 Horse Positive Negative Positive 

X040 15/04/09 Thirty Mile 19 7.2 Negative 3.6 - Negative Negative Positive 

X041 15/04/09 Thirty Mile 27 - Negative 3.2 - Positive Positive Positive 

ECG006 17/04/09 Sambel Kunda 15 9.2 Negative 2.7 Mule Positive Positive Positive 

X042 22/04/09 Sintu Alhagie 20 7.4 - 3.4 - Positive Negative Positive 

ECG007 22/04/09 Sintu Alhagie 30 9.2 - 5 Horse Positive Negative Positive 

X043 22/04/09 Sintu Alhagie 32 7.4 - 4.7 Horse Negative Negative Positive 

X044 22/04/09 Sintu Alhagie 30 7.4 - 4.2 Horse Positive Negative Positive 

X045 22/04/09 Sintu Alhagie 40 7.8 - 4 Horse Negative Positive Positive 

X046 22/04/09 Sintu Alhagie 38 8.0 - 4.3 Horse Positive Negative Positive 

X047 22/04/09 Sintu Alhagie 36 10.2 - 4.7 - Negative Negative Negative 

X048 22/04/09 Sintu Alhagie 38 9.8 - 3.8 Horse Positive Positive Positive 

X049 22/04/09 Sintu Alhagie 41 7.2 - 4.3 - Negative Negative Positive 

X050 22/04/09 Sintu Alhagie 46 6.8 - 4.2 Horse Positive Positive Positive 

X051 22/04/09 Sintu Alhagie 38 8.8 - 4.7 - Negative Negative Positive 

X052 22/04/09 Sintu Alhagie 26 9.6 - 4.2 Donkey Positive Negative Negative 

X053 22/04/09 Sintu Alhagie 30 7.4 - 4 - Negative Negative Negative 

X054 25/04/09 Brikamabah 29 7.6 Negative 5.9 - Positive Positive Positive 

X055 25/04/09 Brikamabah 29 9.4 Negative 4.1 - Negative Positive Positive 

X056 25/04/09 Brikamabah 23 6.7 Positive 4.1 - Negative Positive Positive 

X057 25/04/09 Brikamabah 33 8.4 Negative 4.2 - Negative Positive Positive 

X058 25/04/09 Brikamabah 37 6.0 Negative 3.9 - Positive Negative Positive 

X059 25/04/09 Brikamabah 34 6.6 Negative 4.2 - Negative Negative Positive 

X060 25/04/09 Brikamabah 35 8.4 Negative 4.5 - Positive Negative Positive 

X061 25/04/09 Brikamabah 40 7.4 Negative 4.2 - Positive Negative Positive 

X062 25/04/09 Brikamabah 74 9.0 Negative 4.2 - Negative Negative Positive 

X063 25/04/09 Brikamabah 30 8.6 Negative 4 - Negative Negative Positive 
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X064 25/04/09 Brikamabah 10 6.4 Negative 4.3 - Positive Positive Positive 

X065 25/04/09 Brikamabah 30 7.8 Negative 4.3 - Positive Positive Positive 

X066 25/04/09 Brikamabah 25 7.0 Positive 5 - Negative Positive Positive 

X067 25/04/09 Brikamabah 13 8.6 Positive 5.2 - Negative Positive Positive 

X068 25/04/09 Brikamabah 40 7.6 Negative 4.2 - Negative Positive Positive 

X069 26/04/09 M'fana 42 7.2 Negative 6.3 - Negative Negative Negative 

X070 26/04/09 M'fana 25 8.2 Negative 4.3 - Positive Positive Positive 

X071 26/04/09 M'fana 31 8.0 Negative 4.4 - Positive Negative Negative 

X072 26/04/09 M'fana 39 6.7 Negative 5.1 - Negative Positive Positive 

X073 26/04/09 M'fana 33 7.4 Positive 3.8 - Negative Positive Positive 

X074 26/04/09 M'fana 31 7.5 Positive 4.4 - Negative Positive Positive 

X075 26/04/09 M'fana 34 8.2 Negative 5 - Negative Positive Positive 

X076 26/04/09 M'fana 36 8.8 Negative 5.2 - Negative Negative Negative 

X077 26/04/09 M'fana 20 9.4 Negative 5.2 - Negative Positive Positive 

X078 27/04/09 Wasu 40 7.2 Negative 4.4 - Negative Negative Positive 

X079 27/04/09 Wasu 32 7.8 Negative 3.7 - Negative Negative Negative 

X080 27/04/09 Wasu 34 7.4 Negative 4.8 - Negative Negative Positive 

X081 27/04/09 Wasu 36 7.4 Negative 3.9 - Negative Negative Positive 

X082 27/04/09 Wasu 38 7.4 Negative 4.2 - Negative Negative Negative 

X083 27/04/09 Wasu 20 7.4 Negative 4.2 - Negative Positive Positive 

X084 27/04/09 Wasu 28 6.4 Negative 3.6 - Negative Negative Positive 

X085 27/04/09 Wasu 29 7.0 Negative 4.9 - Positive Negative Positive 

X086 27/04/09 Wasu 29 7.8 Negative 4.5 - Positive Negative Positive 

X087 28/04/09 Jareng - - - 4 - Negative Positive Positive 

X088 28/04/09 Jareng - - - 2.9 - Negative Positive Positive 

X089 28/04/09 Jareng - - - 3 - Negative Negative Positive 

X090 30/04/09 Sambel Kunda 30 8.0 Positive 3.9 - Positive Positive Positive 

X091 30/04/09 Kerewan 22 6.6 Negative 3.3 - Negative Positive Positive 

X092 30/04/09 Kerewan 40 7.4 Negative 4 - Positive Negative Positive 

X093 30/04/09 Kerewan 19 10.2 Positive 3.8 - Positive Positive Positive 

X094 30/04/09 Kerewan 38 9.4 Negative 3.8 - Negative Negative Positive 

X095 30/04/09 Kerewan 20 - Negative 3.9 - Negative Negative Positive 

X096 30/04/09 Kerewan 33 - Negative 4.5 - Negative Negative Negative 
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X097 30/04/09 Kerewan 19 - - 3.8 - Negative Positive Positive 

X098 30/04/09 Missera 43 7.8 - 3.6 - Negative Negative Positive 

X099 30/04/09 Missera 22 9.6 - 3.8 - Negative Negative Positive 

X100 30/04/09 Missera 42 9.8 - 3.8 - Negative Negative Positive 

X101 03/05/09 M'fana - - - 3.6 - Negative Positive Negative 

X102 03/05/09 M'fana - - - 5.1 - Negative Negative Positive 

X103 03/05/09 M'fana - - - 3.4 - Negative Negative Positive 

 

Appendix 7 

Sample collection details, field results and PCR based speciation results for the 2009 Gambian samples, collected from equines brought to clinics run by the GHDT, 

The Gambia. - = Data not available. Missing sample data arose as a result of record keeping errors during clinics and typically only became apparent during collation of 

all the data following conclusion of each day‟s clinic.
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5‟ CTGAGTGCTCCATGTGCCACGTTGGCACGCTCCACTGTCTAGCGTGACGC 

GATGGCCCGTGCACTGTCCCGCACCCCTTCCCCACTCCCTTTCGCACCTC 

TCGCTCCGGCCGTGCGCCTTCTTCAGGTTGGTGTTCTGGTGG 3‟ 

 

Appendix 8 

The amplified T. vivax specific sequence with the sequences of TVW 1 and TVW 2 (Masiga et al., 

1992) highlighted in bold at the start and end of the sequence respectively
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Locus and allele sizes
a
 

Sample TV6 TV14 TV24 TV17 TV31 TV49 

Gam102 0 0 211 211 152 152 206 206 506 506 0 0 

Gam132 279 279 211 211 152 157 143 206 476 476 103 138 

X066 279 279 211 229 122 122 143 206 476 476 103 138 

X054 302 302 229 229 140 140 185 185 476 476 103 103 

ECG007 279 279 211 211 140 152 206 206 506 506 103 138 

X049 293 293 211 211 0 0 143 143 476 476 103 103 

X102 0 0 211 211 157 157 143 143 476 476 4 44 

X098 279 279 211 229 152 152 143 143 506 506 103 103 

Gam093 279 279 211 211 152 152 143 206 476 476 103 138 

X067 279 279 211 229 157 157 143 185 476 476 103 138 

X088 293 302 211 229 152 157 143 143 476 476 103 138 

 

Appendix 9 

Genotyping results of the eleven genotyped T. vivax samples from the Gambia 2009 population following genotyping at six microsatellite markers. 
a
 Allele size given 

in bp. 0 indicates missing data at this locus for a given sample. 
b
 MLG, multilocus genotype, where each multilocus genotype represents a unique combination of 

microsatellite alleles across the six loci examined for this study, with numbers a continuation of those identified in the Gambia 2006 population. 
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Appendix 10 

 

Locus and allele sizes
a
  

Sample TCM 1 TCM 2 TCM 3 TCM 4 TCM 5 TCM 6 TCM 7 MLG
b
 

ECG005 176 10 181 181 185 185 156 156 156 156 169 180 179 195 1 

ECG006 170 10 181 181 182 185 153 153 161 161 175 185 176 185 2 

GAM076 173 176 183 183 182 182 153 153 156 156 185 185 176 179 3 

GAM095 176 180 185 185 175 185 156 156 161 153 175 185 176 176 4 

GAM106 176 176 185 185 185 185 160 163 161 161 180 185 179 182 5 

GAM107 176 180 177 179 171 175 156 156 153 153 180 185 179 179 6 

GAM108 176 176 191 191 171 175 153 153 156 156 169 175 176 182 7 

GAM120 173 173 181 181 175 182 156 156 161 161 185 185 157 185 8 

GAM130 178 10 183 183 185 191 156 156 161 165 185 185 176 192 9 

GAM146 176 176 181 181 163 191 156 156 161 161 180 185 179 179 10 

X003 180 180 177 177 175 175 156 156 153 153 180 180 176 176 11 

X005 173 180 191 191 171 171 153 153 156 156 175 188 176 179 12 

X023 170 10 181 181 182 185 153 153 156 156 180 185 176 185 13 

X026 176 180 181 181 171 171 156 156 161 161 169 180 179 182 14 

X037 176 180 181 181 171 175 156 156 170 170 169 188 185 185 15 

X048 170 176 177 181 171 171 156 156 161 165 169 185 176 185 16 

X056 170 170 181 181 185 185 153 153 156 161 185 185 157 176 17 

X057 170 170 181 181 185 185 153 153 156 156 185 185 157 176 18 

X065 176 200 177 177 171 171 153 153 156 156 180 185 176 179 19 

X067 176 176 177 191 148 148 156 156 156 156 185 185 185 185 20 

X070 178 180 194 194 148 185 153 153 156 153 169 185 176 185 21 

X073 176 176 181 181 171 175 156 156 148 148 185 195 176 176 22 

X083 176 180 177 181 163 163 156 160 156 165 180 185 179 179 23 
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X088 176 176 183 183 185 185 156 156 156 156 173 173 176 179 24 

X091 176 176 181 181 148 171 156 156 153 156 185 185 179 185 25 

X101 176 176 177 177 148 171 156 160 156 165 185 185 179 185 26 

GAM061 176 176 0 0 171 171 0 0 153 153 0 0 182 182  

GAM096 176 176 177 177 163 163 156 156 156 175 0 0 179 179  

GAM100 180 180 0 0 163 200 156 156 156 165 173 173 176 182  

GAM105 176 180 0 0 171 175 0 0 156 165 180 185 179 179  

GAM131 0 0 177 177 148 171 156 160 156 165 185 185 179 185  

GAM141 176 176 177 177 163 175 156 156 165 165 0 0 179 179  

X024 180 180 191 191 171 175 0 0 156 156 173 175 176 182  

X025 173 173 177 177 0 0 0 0 161 161 180 180 185 185  

X055 170 170 0 0 0 0 0 0 156 156 169 180 179 179  

X064 173 176 181 181 171 175 156 156 156 165 188 188 0 0  

X066 0 0 191 191 171 171 153 153 0 0 175 188 176 179  

X074 170 170 0 0 175 175 156 156 0 0 185 188 179 185  

X077 180 180 0 0 175 175 156 156 153 153 175 175 176 176  

X087 0 0 181 181 171 191 156 156 153 167 169 185 179 192  

X093 170 10 181 181 0 0 153 153 161 153 180 180 176 185  

 

Appendix 10 

Genotyping results of the 41 genotyped T. congolense samples from The Gambia, 2009 population following genotyping at 7 microsatellite markers. 
a
 Allele size given 

in bp. 0 indicates missing data at this locus for a given sample. 
b
 MLG, multilocus genotype, where each multilocus genotype represents a unique combination of 

microsatellite alleles across the six loci examined for this study. 
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Appendix 11 

Sample Population 

Focus of 

origin 

Collection 

period 

Locus and allele sizes
a
 

MLG
b
 Ch1/18 Ch2/PLC Ch3/IJ15/I Ch3/5L5 Ch4/M12C12 Ch5/JS2 Ch9/4 

NKK/T/022 

Malawi 

2003 Malawi 2002-2003 153 162 136 136 132 145 111 111 98 107 98 98 140 140 1 

NKK/T/025 

 

Malawi 2002-2003 153 162 136 136 132 145 111 111 98 107 98 98 140 140 1 

NKK/T/042 

 

Malawi 2002-2003 162 162 136 136 145 145 111 111 98 107 98 98 148 148 2 

NKK/T/037 

 

Malawi 2002-2003 162 162 136 136 120 120 111 111 98 107 169 169 140 148 4 

NKK/T/030 

 

Malawi 2002-2003 162 162 136 136 120 145 111 111 98 107 169 169 140 148 5 

NKK/T/058 

 

Malawi 2002-2003 162 162 136 136 120 145 111 111 98 107 169 169 140 148 5 

NKK/T/054 

 

Malawi 2002-2003 162 162 136 143 115 145 111 111 98 107 98 98 148 148 6 

NKK/T/053 

 

Malawi 2002-2003 162 162 136 148 145 145 111 111 98 107 98 98 140 148 7 

NKK/T/006 

 

Malawi 2002-2003 162 162 136 148 132 132 111 111 98 107 98 98 148 148 8 

NKK/T/021 

 

Malawi 2002-2003 153 162 136 124 132 132 111 111 107 107 98 98 140 140 9 

NKK/T/010 

 

Malawi 2002-2003 153 162 136 136 132 145 111 111 107 107 98 98 140 140 10 

NKK/T/005 

 

Malawi 2002-2003 162 162 136 136 132 145 111 111 107 107 169 169 140 140 11 

NKK/T/044 

 

Malawi 2002-2003 162 162 136 143 145 145 111 111 107 107 98 98 140 148 12 

NKK/T/027 

 

Malawi 2002-2003 162 162 136 136 132 145 111 120 98 107 90 98 140 148 14 

NKK/T/039 

 

Malawi 2002-2003 153 162 136 136 115 145 111 120 98 107 98 98 140 148 15 

NKK/T/012 

 

Malawi 2002-2003 162 162 136 136 132 132 111 120 98 107 98 98 140 140 16 

NKK/T/035 

 

Malawi 2002-2003 162 162 136 136 132 145 111 120 98 107 98 98 140 140 17 

NKK/T/009 

 

Malawi 2002-2003 162 162 136 136 132 145 111 120 98 107 98 169 140 140 18 

NKK/T/038 

 

Malawi 2002-2003 162 162 136 136 115 132 111 120 98 107 98 169 140 148 19 

NKK/T/028 

 

Malawi 2002-2003 162 162 136 136 115 115 111 120 98 107 169 169 140 148 20 

NKK/T/007 

 

Malawi 2002-2003 145 162 136 136 132 145 111 120 107 107 98 98 140 140 32 

NKK/T/026 

 

Malawi 2002-2003 162 162 136 136 132 132 111 120 107 107 98 98 144 144 33 

NKK/T/056 

 

Malawi 2002-2003 162 162 136 136 115 145 111 120 107 107 169 169 140 148 34 

NKK/T/002 

 

Malawi 2002-2003 162 162 136 136 132 132 111 111 98 107 98 169 0 0 

 NKK/T/057 

 

Malawi 2002-2003 162 162 136 136 0 0 111 120 107 107 98 98 0 0 

 NKK/T/003 

 

Malawi 2002-2003 162 162 136 136 115 115 111 111 98 107 169 169 0 0 

 NKK/T/049 

 

Malawi 2002-2003 162 162 136 143 0 0 111 120 98 107 98 169 148 148 
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NKK/T/040 

 

Malawi 2002-2003 162 162 136 136 115 145 111 120 98 107 169 169 0 0 

 SER020 Soroti 2003 Soroti 2002-2003 162 176 136 151 141 141 111 120 98 107 98 98 144 161 21 

SER041 

 

Soroti 2002-2003 162 176 136 151 141 141 111 120 98 107 98 98 144 161 21 

SER062 

 

Soroti 2002-2003 162 176 151 151 141 141 111 120 98 107 98 98 144 161 28 

SER077 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 98 107 90 98 144 161 29* 

SER003 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 98 107 98 98 133 161 30 

SER006 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 98 107 98 98 144 161 31* 

SER007 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 98 107 98 98 144 161 31* 

SER034 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 98 107 98 98 144 161 31* 

SER064 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 98 107 98 98 144 161 31* 

SER066 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 98 107 98 98 144 161 31* 

SER067 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 98 107 98 98 144 161 31* 

SER079 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 98 107 98 98 144 161 31* 

SER057 

 

Soroti 2002-2003 162 176 136 151 141 141 111 120 107 107 98 98 144 161 35 

SER016 

 

Soroti 2002-2003 162 176 143 151 141 141 111 120 107 107 98 98 144 161 36 

SER001 

 

Soroti 2002-2003 162 176 151 151 141 141 111 120 107 107 98 98 144 161 42 

SER027 

 

Soroti 2002-2003 162 176 151 151 141 141 111 120 107 107 98 98 144 161 42 

SER047 

 

Soroti 2002-2003 162 176 151 151 141 141 111 120 107 107 98 98 144 161 42 

SER093 

 

Soroti 2002-2003 162 176 151 151 141 141 111 120 107 107 98 98 144 161 42 

SER098 

 

Soroti 2002-2003 162 176 151 151 141 141 111 120 107 107 98 98 144 161 42 

SER105 

 

Soroti 2002-2003 162 176 151 151 141 141 111 120 107 107 98 98 144 161 42 

SER111 

 

Soroti 2002-2003 162 176 151 151 141 141 111 120 107 107 98 98 144 161 42 

SER058 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 90 98 144 144 43 

SER042 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 90 98 144 161 44 

SER024 

 

Soroti 2002-2003 162 162 151 166 141 141 111 120 107 107 98 98 144 161 45 

SER044 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 144 46 

SER060 

 

Soroti 2002-2003 162 176 151 166 115 141 111 120 107 107 98 98 144 161 47 

SER002 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER008 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER009 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER010 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER011 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 
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SER012 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER013 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER014 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER017 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER018 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER022 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER023 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER025 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER026 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER028 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER029 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER030 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER031 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER032 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER033 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER036 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER037 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER039 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER040 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER045 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER048 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER049 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER051 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER053 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER055 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER056 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER061 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER063 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER065 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER068 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER069 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER071 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER072 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 
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SER073 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER074 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER075 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER076 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER078 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER080 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER082 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER083 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER084 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER085 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER086 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER087 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 161 49 

SER004 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 98 144 164 50 

LIRI003 

 

Soroti 2002-2003 162 162 151 166 141 141 111 120 107 107 98 108 144 155 51 

SER108 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 98 124 144 161 52 

SER059 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 134 98 98 144 161 56 

SER054 

 

Soroti 2002-2003 0 0 151 166 141 141 111 120 107 107 98 98 144 161 

 SER070 

 

Soroti 2002-2003 0 0 151 166 141 141 111 120 107 107 98 98 144 161 

 SER050 

 

Soroti 2002-2003 162 176 0 0 141 141 111 120 107 107 98 98 144 161 

 SER081 

 

Soroti 2002-2003 162 176 151 166 141 141 111 120 107 107 0 0 144 161 

 LIRI001 Tororo 2003 Tororo 2002-2003 162 162 124 151 122 141 111 120 98 107 98 98 144 161 13 

LIRI033 

 

Tororo 2002-2003 162 176 151 151 115 138 111 120 98 107 90 98 144 150 22 

LIRI029 

 

Tororo 2002-2003 162 176 151 151 122 122 111 120 98 107 90 98 144 161 23 

LIRI005 

 

Tororo 2002-2003 162 176 151 151 122 141 111 120 98 107 90 98 144 161 24 

LIRI018 

 

Tororo 2002-2003 162 176 151 151 122 141 111 120 98 107 90 98 144 161 24 

LIRI030 

 

Tororo 2002-2003 162 176 151 151 122 141 111 120 98 107 90 98 144 161 24 

LIRI031 

 

Tororo 2002-2003 162 176 151 151 122 141 111 120 98 107 90 98 144 161 24 

LIRI032 

 

Tororo 2002-2003 162 176 151 151 122 141 111 120 98 107 90 98 144 161 24 

LIRI008 

 

Tororo 2002-2003 162 162 151 151 122 141 111 120 98 107 98 98 144 161 25 

LIRI022 

 

Tororo 2002-2003 162 162 151 151 122 141 111 120 98 107 98 98 144 161 25 

LIRI016 

 

Tororo 2002-2003 162 176 151 151 141 141 111 120 98 107 98 98 144 155 26 

LIRI002 

 

Tororo 2002-2003 162 176 151 151 122 141 111 120 98 107 98 98 144 161 27 
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LIRI004 

 

Tororo 2002-2003 162 176 151 151 122 141 111 120 98 107 98 98 144 161 27 

LIRI012 

 

Tororo 2002-2003 162 176 151 151 122 141 111 120 98 107 98 98 144 161 27 

LIRI028 

 

Tororo 2002-2003 162 176 151 151 122 141 111 120 98 107 98 98 144 161 27 

LIRI025 

 

Tororo 2002-2003 162 176 151 166 141 141 111 120 98 107 90 98 144 161 29* 

LIRI015 

 

Tororo 2002-2003 162 176 151 166 141 141 111 120 98 107 98 98 144 161 31* 

LIRI011 

 

Tororo 2002-2003 162 162 151 151 122 141 111 120 107 107 90 98 144 161 39 

LIRI024 

 

Tororo 2002-2003 162 176 151 151 122 122 111 120 107 107 98 98 144 161 41 

LIRI010 

 

Tororo 2002-2003 162 162 151 151 122 141 111 120 107 152 90 98 144 161 57 

LIRI023 

 

Tororo 2002-2003 162 162 151 151 122 141 111 120 107 152 90 98 144 161 57 

LIRI007 

 

Tororo 2002-2003 162 176 151 151 122 141 120 120 98 107 90 98 144 161 58 

LIRI014 

 

Tororo 2002-2003 162 162 151 151 122 141 120 120 98 107 98 98 144 155 59 

LIRI019 

 

Tororo 2002-2003 162 162 151 151 141 141 120 120 98 107 98 108 144 155 60 

LIRI009 

 

Tororo 2002-2003 162 176 151 166 122 141 120 120 98 107 90 98 144 161 61 

LIRI013 

 

Tororo 2002-2003 162 176 151 166 122 141 120 120 98 107 98 98 144 161 62 

LIRI027 

 

Tororo 2002-2003 162 162 151 151 0 0 111 120 98 107 90 98 0 0 

 LIRI026 

 

Tororo 2002-2003 162 176 151 151 0 0 111 120 98 107 90 98 144 161 

 LIRI021 

 

Tororo 2002-2003 162 176 151 151 0 0 111 120 107 122 90 98 144 164 

 

K3192 

Tororo  

pre 1990 Tororo focus 1988-1990 162 162 143 157 138 141 111 120 107 107 108 108 144 155 37 

Mela80 

 

Tororo focus 1988-1990 162 219 148 151 122 141 111 120 107 107 98 98 150 155 38 

K3442 

 

Tororo focus 1988-1990 162 176 151 151 120 141 111 120 107 107 98 98 144 161 40 

K3438 

 

Tororo focus 1988-1990 162 176 151 166 122 141 111 120 107 107 98 98 144 161 48 

K3198 

 

Tororo focus 1988-1990 162 162 157 157 138 141 111 120 107 107 98 98 144 155 53 

K3440 

 

Tororo focus 1988-1990 162 176 157 157 120 141 111 120 107 107 98 98 144 161 54 

K3448 

 

Tororo focus 1988-1990 162 176 157 157 120 141 111 120 107 107 98 98 144 161 54 

K2340 

 

Tororo focus 1988-1990 162 162 157 157 138 141 111 120 107 107 108 108 144 155 55 

EA2498
c 

 

Tororo focus 1977 162 162 143 151 138 141 120 120 107 107 98 108 144 155 63 

K3183 

 

Tororo focus 1988-1990 162 162 148 157 138 141 120 120 107 107 98 98 144 155 64 

K2976 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 98 98 144 155 65 

K3176 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 98 98 144 155 65 

K3180 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 98 98 144 155 65 

K3196 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 98 98 144 155 65 

UgA90 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 98 98 144 155 65 
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UgL 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 98 98 144 155 65 

K3199 

 

Tororo focus 1988-1990 162 162 157 157 120 154 120 120 107 107 98 108 144 155 66 

K3203 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 98 108 144 155 67 

K3205 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 98 108 144 155 67 

K3206 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 98 108 144 155 67 

UgM 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 98 108 144 155 67 

K3188 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 108 108 144 144 68 

K3189 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 108 108 144 144 68 

K2344 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 108 108 144 155 69 

K2427 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 108 108 144 155 69 

K2428 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 108 108 144 155 69 

K2556 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 108 108 144 155 69 

K3185 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 108 108 144 155 69 

K3190 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 108 108 144 155 69 

K3186 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 108 108 144 155 69 

K2381 

 

Tororo focus 1988-1990 162 162 157 157 141 141 120 120 107 107 108 108 144 155 70 

K2382 

 

Tororo focus 1988-1990 162 162 157 157 141 141 120 120 107 107 108 108 144 155 70 

UgC90 

 

Tororo focus 1988-1990 162 162 157 166 115 138 120 120 107 107 98 10 155 161 71 

K3200 

 

Tororo focus 1988-1990 162 162 157 166 138 141 120 120 107 107 98 98 144 155 72 

U89/8 

 

Tororo focus 1988-1990 162 162 157 166 138 141 120 120 107 107 98 98 144 155 72 

UgI 

 

Tororo focus 1988-1990 162 162 157 166 138 141 120 120 107 107 98 98 144 155 72 

UgJ 

 

Tororo focus 1988-1990 162 162 157 166 138 141 120 120 107 107 98 98 144 155 72 

UTAR 3
c 

 

Tororo focus 1981 162 162 157 166 136 141 120 120 107 107 98 108 144 155 73 

1042
c 

 

Tororo focus 1961 162 162 157 166 138 141 120 120 107 107 98 108 144 155 74 

1301 

 

Tororo focus 1988-1990 162 162 157 166 138 141 120 120 107 107 98 108 144 155 74 

K3194 

 

Tororo focus 1988-1990 162 162 157 166 138 141 120 120 107 107 98 108 144 155 74 

K3206 

 

Tororo focus 1988-1990 162 162 157 166 138 141 120 120 107 107 98 108 144 155 74 

EATRO 795
c 

 

Tororo focus 1964 162 162 157 166 138 141 120 120 107 107 98 108 144 155 74 

K3445 

 

Tororo focus 1988-1990 224 237 148 157 136 138 111 111 107 107 0 0 150 161 

 K2380 

 

Tororo focus 1988-1990 162 162 0 0 141 141 120 120 0 0 108 108 0 0 

 MA66 

 

Tororo focus 1988-1990 162 162 0 0 138 141 120 120 107 107 0 0 144 155 

 K3110 

 

Tororo focus 1988-1990 162 162 157 157 122 141 120 120 107 107 86 86 0 0 

 K2350 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 108 108 0 0 
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MAWERA66 

 

Tororo focus 1988-1990 162 162 151 151 138 141 120 120 107 107 0 0 144 155 

 K116 

 

Tororo focus 1988-1990 162 162 157 157 138 141 120 120 107 107 0 0 144 155 

 
LIL037 

Kaberamaido 

2009 Kaberamaido 2009-2010 162 176 151 151 141 141 111 142 107 107 98 98 144 161 75 

LIL050 

 

Kaberamaido 2009-2010 162 176 166 166 141 141 111 111 107 107 98 98 144 161 76 

LIL076 

 

Kaberamaido 2009-2010 162 176 151 151 138 141 111 111 107 107 98 98 144 161 77 

LIL080 

 

Kaberamaido 2009-2010 162 176 151 151 138 141 111 111 107 107 98 98 144 161 77 

LIL001 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL002 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL004 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL006 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL007 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL009 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL013 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL014 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL019 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL020 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL022 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL023 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL024 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL039 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL040 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL041 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL042 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL045 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL048 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL062 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL064 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL066 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 
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LIL067 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL068 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL070 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL071 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL074 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL075 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL078A2 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL081 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL088 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL090 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL091 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL092 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL093 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL094 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL096 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL138 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 144 161 78 

LIL031 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 142 107 107 98 98 0 0 

 LIL015 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 0 0 

 LIL021 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 0 0 

 LIL025 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 0 0 

 LIL027 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 0 0 

 LIL034 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 0 0 

 LIL036 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 0 0 

 LIL060 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 0 0 

 LIL061 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 0 0 

 LIL072 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 0 0 

 LIL073 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 0 0 

 LIL082 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 0 0 
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LIL087 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 107 107 98 98 0 0 

 LIL026 

 

Kaberamaido 2009-2010 162 176 151 151 138 141 111 111 107 107 98 98 0 0 

 LIL084 

 

Kaberamaido 2009-2010 162 176 0 0 141 141 111 111 107 107 98 98 144 161 

 LIL078A1 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 111 111 0 0 98 98 144 161 

 LIL003 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 144 161 

 LIL008 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 144 161 

 LIL038 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 144 161 

 LIL047 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 144 161 

 LIL049 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 144 161 

 LIL058 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 144 161 

 LIL059 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 144 161 

 LIL079 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 144 161 

 LIL005 

 

Kaberamaido 2009-2010 162 176 151 151 138 141 0 0 107 107 98 98 144 161 

 LIL011 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 0 0 

 LIL017 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 0 0 

 LIL028 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 0 0 

 LIL029 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 0 0 

 LIL030 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 0 0 

 LIL033 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 0 0 

 LIL035 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 0 0 

 LIL043 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 0 0 

 LIL044 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 0 0 

 LIL046 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 0 0 

 LIL063 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 0 0 

 LIL065 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 0 0 

 LIL085 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 0 0 

 LIL086 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 107 107 98 98 0 0 

 LIL083 

 

Kaberamaido 2009-2010 162 176 151 151 138 141 0 0 107 107 98 98 0 0 
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LIL095 

 

Kaberamaido 2009-2010 162 176 151 151 138 141 0 0 107 107 98 98 0 0 

 LIL069 

 

Kaberamaido 2009-2010 162 176 151 151 138 141 0 0 107 107 0 0 144 161 

 LIL016 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 0 0 98 98 0 0 

 LIL057 

 

Kaberamaido 2009-2010 162 176 151 151 141 141 0 0 0 0 98 98 0 0 

  

Appendix 11 

Genotypes of the 277 T. b. rhodesiense samples used in the analysis of this sub-species in Uganda and Malawi, as presented in Chapter 5. Samples are grouped by 

origin population with identical genotypes within a population grouped together. The Tororo pre-1991 population encompasses samples from the wider Tororo focus, 

which includes districts of western Kenya in addition to a small number of isolates originating from earlier than 1988. 

a
 Allele size given in bp. 0 indicates missing data at this locus for a given sample. 

b
 MLG, multilocus genotype, where each multilocus genotype represents a unique 

combination of microsatellite alleles across the seven loci examined for this study. 
c
 Isolates of the Tororo pre-1991 focus isolated prior to the 1988-1990 period.  

* These MLGs were identified within both the Tororo 2003 and Soroti 2003 populations.
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Appendix 12 

 

Appendix 12 

Per chromosome heterozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP 

density was calculated as the number of heterozygous SNPs per 10 kb region. Each division along 

the X axis covers 10 such regions and therefore represents a distance of 100 kb. 
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Appendix 12 

Per chromosome heterozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP 

density was calculated as the number of heterozygous SNPs per 10 kb region. Each division along 

the X axis covers 10 such regions and therefore represents a distance of 100 kb. 
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Appendix 12 

Per chromosome heterozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP 

density was calculated as the number of heterozygous SNPs per 10 kb region. Each division along 

the X axis covers 10 such regions and therefore represents a distance of 100 kb. 
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Appendix 12 

Per chromosome heterozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP 

density was calculated as the number of heterozygous SNPs per 10 kb region. Each division along 

the X axis covers 10 such regions and therefore represents a distance of 100 kb. 
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Appendix 12 

Per chromosome heterozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP 

density was calculated as the number of heterozygous SNPs per 10 kb region. Each division along 

the X axis covers 10 such regions and therefore represents a distance of 100 kb. 
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Appendix 12 

Per chromosome heterozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP 

density was calculated as the number of heterozygous SNPs per 10 kb region. Each division along 

the X axis covers 10 such regions and therefore represents a distance of 100 kb. 
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Appendix 12 

Per chromosome heterozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP 

density was calculated as the number of heterozygous SNPs per 10 kb region. Each division along 

the X axis covers 10 such regions and therefore represents a distance of 100 kb. 
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Appendix 12 

Per chromosome heterozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP 

density was calculated as the number of heterozygous SNPs per 10 kb region. Each division along 

the X axis covers 10 such regions and therefore represents a distance of 100 kb. 
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Appendix 12 

Per chromosome heterozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP 

density was calculated as the number of heterozygous SNPs per 10 kb region. Each division along 

the X axis covers 10 such regions and therefore represents a distance of 100 kb. 
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Appendix 12 

Per chromosome heterozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP 

density was calculated as the number of heterozygous SNPs per 10 kb region. Each division along 

the X axis covers 10 such regions and therefore represents a distance of 100 kb. 
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Appendix 12 

Per chromosome heterozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP 

density was calculated as the number of heterozygous SNPs per 10 kb region. Each division along 

the X axis covers 10 such regions and therefore represents a distance of 100 kb. 
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Appendix 12 

Per chromosome heterozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP 

density was calculated as the number of heterozygous SNPs per 10 kb region. Each division along 

the X axis covers 10 such regions and therefore represents a distance of 100 kb. 
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Appendix 12 

Per chromosome heterozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP 

density was calculated as the number of heterozygous SNPs per 10 kb region. Each division along 

the X axis covers 10 such regions and therefore represents a distance of 100 kb. 
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Appendix 13 

 

Appendix 13 

Per chromosome homozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP density 

was calculated as the number of homozygous SNPs compared to the TREU 927 reference sequence 

within a 10 kb region. Each division along the X axis covers 10 such regions and therefore 

represents a distance of 100 kb. 
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Appendix 13 

Per chromosome homozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP density 

was calculated as the number of homozygous SNPs compared to the TREU 927 reference sequence 

within a 10 kb region. Each division along the X axis covers 10 such regions and therefore 

represents a distance of 100 kb. 
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Appendix 13 

Per chromosome homozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP density 

was calculated as the number of homozygous SNPs compared to the TREU 927 reference sequence 

within a 10 kb region. Each division along the X axis covers 10 such regions and therefore 

represents a distance of 100 kb. 
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Appendix 13 

Per chromosome homozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP density 

was calculated as the number of homozygous SNPs compared to the TREU 927 reference sequence 

within a 10 kb region. Each division along the X axis covers 10 such regions and therefore 

represents a distance of 100 kb. 
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Appendix 13 

Per chromosome homozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP density 

was calculated as the number of homozygous SNPs compared to the TREU 927 reference sequence 

within a 10 kb region. Each division along the X axis covers 10 such regions and therefore 

represents a distance of 100 kb. 
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Appendix 13 

Per chromosome homozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP density 

was calculated as the number of homozygous SNPs compared to the TREU 927 reference sequence 

within a 10 kb region. Each division along the X axis covers 10 such regions and therefore 

represents a distance of 100 kb. 
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Appendix 13 

Per chromosome homozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP density 

was calculated as the number of homozygous SNPs compared to the TREU 927 reference sequence 

within a 10 kb region. Each division along the X axis covers 10 such regions and therefore 

represents a distance of 100 kb. 
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Appendix 13 

Per chromosome homozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP density 

was calculated as the number of homozygous SNPs compared to the TREU 927 reference sequence 

within a 10 kb region. Each division along the X axis covers 10 such regions and therefore 

represents a distance of 100 kb. 
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Appendix 13 

Per chromosome homozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP density 

was calculated as the number of homozygous SNPs compared to the TREU 927 reference sequence 

within a 10 kb region. Each division along the X axis covers 10 such regions and therefore 

represents a distance of 100 kb. 
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Appendix 13 

Per chromosome homozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP density 

was calculated as the number of homozygous SNPs compared to the TREU 927 reference sequence 

within a 10 kb region. Each division along the X axis covers 10 such regions and therefore 

represents a distance of 100 kb. 
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Appendix 13 

Per chromosome homozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP density 

was calculated as the number of homozygous SNPs compared to the TREU 927 reference sequence 

within a 10 kb region. Each division along the X axis covers 10 such regions and therefore 

represents a distance of 100 kb. 
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Appendix 13 

Per chromosome homozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP density 

was calculated as the number of homozygous SNPs compared to the TREU 927 reference sequence 

within a 10 kb region. Each division along the X axis covers 10 such regions and therefore 

represents a distance of 100 kb. 
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Appendix 13 

Per chromosome homozygous SNP densities for TREU 927, STIB 247 and STIB 386. SNP density 

was calculated as the number of homozygous SNPs compared to the TREU 927 reference sequence 

within a 10 kb region. Each division along the X axis covers 10 such regions and therefore 

represents a distance of 100 kb. 
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