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Abstract 

The aim of this research was to investigate the blood supply to the lower 

abdomen.  This is a commonly used donor site for autologous reconstruction 

following breast cancer and the flap of tissue used is based on the deep inferior 

epigastric circulation (DIEP flap) or the superficial inferior epigastric circulation 

(SIEA flap).  

A pilot study investigated the feasibility of assessing the vascular territory of 

multiple blood vessels in the lower abdomen, and also observed the timing of 

changes in skin blood supply after free flap transfer.  Further studies included 

sampling using microdialysis catheters, from different areas of the flap, around 

the theoretical time of opening of choke vessels between angiosomes.  

Manipulation of skin blood flow was initially investigated using capillary 

malformations as a model, observing current clinical use of EMLA and AMETOP 

topical anaesthetic pre-laser treatment. 
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Definitions  

  

CM Capillary malformation 
CLSM Confocal Laser Scanning Microscopy 
CT Computed tomography 
CTA Computed tomography angiography 
d.f. Degrees of freedom 
DIEA Deep Inferior Epigastric Artery 
DIEP Deep Inferior Epigastric Artery perforator, occasionally 

referred to as DIEAP 
EMLA Topical anaesthetic - Eutectic Mixture of Local 

Anaesthetics 
FGFβ Basic Fibroblast Growth Factor also known as bFGF, 

FGF2. 
Fluence Energy per unit area e.g. Joules per centimetre 

squared (J/cm2)  Used to describe laser outputs. 
flux In relation to laser Doppler output this is proportional 

to blood flow. 
IL-6 Interleukin-6.  Cytokine. 
LD Latissimus Dorsi (muscle).  Usually used to describe the 

flap. 
MDCTA Multidetector-row computed tomographic angiography 
PDL Pulsed dye laser 
s.e. Standard error 
SIEA Superficial Inferior Epigastric Artery.  SIEA flap. 
TNFα Tumour Necrosis Factor alpha.  Cytokine. 
TRAM Transverse Rectus Abdominis Muscle.  Describes the 

flap using this muscle. 
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1 Investigation of factors controlling cutaneous 
flap circulation 

1.1 Introduction 
Reconstructive surgery aims to restore the form and function of deformed, 

damaged or lost body parts.  Defects may have resulted from a wide variety of 

pathologies including congenital structural loss, traumatic injury, following 

surgical debridement and tumour resections. When undertaking a 

reconstruction, the primary goal is safety, with preservation of life and limb.  

Restoration of function and form improves the patient’s quality of life, and may 

require increasingly complex reconstructions.  In planning a reconstruction 

various factors must be taken into consideration, including the patient’s medical 

status and their lifestyle expectations, and a balanced decision made on the 

level of reconstruction that would best benefit the patient.    

Blood supply is the most important factor governing the movement of tissues in 

the body.  The two main methods by which tissue is transferred are grafts and 

flaps.  Grafts and flaps differ fundamentally in the way that their blood supply is 

obtained.  A graft is a piece of tissue that is moved without its blood supply.  In 

order to survive it has to become reattached and obtain a fresh blood supply 

from its new habitat.  This process, referred to as ‘take’ of the graft, occurs 

over a period of days with an outgrowth of capillaries from the recipient site 

uniting with those on the deep surface of the graft.  In contrast a flap is a piece 

of tissue that is moved maintaining its blood supply and is not reliant on the 

recipient site for its vascularity.  A flap contains a network of blood vessels, 

arterial, venous and capillary.  It is this set of blood vessels that ultimately 

determine the flaps total or partial survival during and after its transfer from 

donor to recipient site. 

Flaps are classified in a number of ways, and may be local, regional or distant 

flaps.  Local flaps were initially limited to random pattern flaps, in the first half 

of the century.  These are based on ‘safe’ length to breadth ratios for example 

2:1.  This rectangular skin flap can be elevated and rotated to close an adjacent 

wound.  Restrictions of this kind of flap other than the set dimensions include 

the arc of rotation, and the proximity to the wound and the associated zone of  
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injury.  The clinical relevance of the anatomy of the cutaneous vasculature led 

to the description of axial pattern flaps1.  Axial flaps contain a named artery 

running along the axis of the flap in the subcutaneous tissue.  This anatomical 

understanding changed the course of flap surgery. 

For larger defects flaps can be regional and pedicled from known adjacent 

vasculature.  The tissue is moved to close the defect with the vessels left intact.  

An example would be a Latissimus dorsi muscle breast cancer reconstruction, 

where muscle and skin from the back are pedicled through the axilla to cover 

the chest defect.  The tissue is supplied by the thoracodorsal artery and vein.  In 

contrast, a free flap involves disconnecting the main artery and vein supplying 

the tissue of the flap, and then reconnecting the artery and vein to vessels near 

the recipient site, which may be any distance from the donor site.  The ability to 

perform this anastomosis of vessels with external lumen diameters of 0.5mm to 

2mm became increasingly possible and reliable in the 1970s with the 

development of high-quality operating microscopes, microsurgical instruments 

and swaged microsutures.  Free flap transfer has allowed greater flexibility in 

reconstructing defects with the design of customised flaps and without the 

restraints of loco-regional flap transfers.  Free flaps can be composite, including 

bone and nerve in addition to muscle, fat, fascia and skin.  Often these flaps are 

named according to composition for example fasciocutaneous or 

musculocutaneous, in addition to the vascular basis of their classification. 

Difficulties with these flaps include total and partial flap failure.  Total flap 

failure is less than 5% for most free tissue transfers.  If a flap appears to be 

failing upon regular post-operative monitoring, the patient is rapidly returned to 

theatre and the microvascular anastomosis inspected.  The flap can often be 

salvaged.  Partial flap failure occurs due to problems within the vasculature of 

the flap itself.  Part of the flap may have inadequate blood supply and become 

necrotic over a period of days.  This cannot be salvaged by further surgery.  In 

flaps undergoing partial failure, it is often the area of the flap furthest from the 

main artery and vein, the ‘pedicle’, supplying the flap that fails.  The risk of 

partial failure can limit the amount of tissue that is safely taken as part of the 

free flap, and this is unhelpful when large volumes of tissue are required to 

reconstruct a defect.  In many cases it is the tissue furthest from the pedicle 

that is the most valuable for the reconstruction, for example in lower limb 
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trauma.  The anastomosis of the pedicle to recipient vessels should be as far 

from the zone of injury as possible, and it is therefore the most distal area of 

tissue that will cover the defect.  The vascular territory that can reliably be 

taken as part of a flap can be understood by anatomical concept of 

‘angiosomes’. 

An angiosome is a composite block of tissue supplied by a source artery and its 

accompanying vein.  These three dimensional territories are linked to their 

neighbouring angiosomes by anastomotic vessels2.  Implications for free flap 

transfer are that an angiosome can safely be taken as a block of tissue, and that 

the flap design can also safely incorporate the adjacent angiosome.  The 

angiosomes are linked by simple anastomotic vessels and also by reduced-calibre 

‘choke’ vessels.  These choke vessels may play an important role in skin flap 

survival. 

To examine the changes in cutaneous circulation which occur during and 

following flap transfer, this research will use blood supply to the lower abdomen 

as a model.  This is a commonly used donor site for autologous reconstruction 

following breast cancer.  The flap of tissue used is based on the deep inferior 

epigastric circulation (DIEP, deep inferior epigastric perforator) or the 

superficial inferior epigastric circulation (SIEA, superficial inferior epigastric 

artery).  These flaps span four adjacent angiosomes.  The angiosome with the 

vascular pedicle entering it is the most vascularly robust, followed by the two 

adjacent angiosomes.  A fourth angiosome is prone to partial failure and for this 

reason is not included in the flap by some surgeons.  For the patient, this can led 

to a less symmetrical breast reconstruction as less tissue is available.  If this 

fourth angiosome or ‘zone’ is included, and succumbs to partial failure, the 

result is similarly a poorer cosmetic outcome, a longer stay in hospital and a 

predilection to infection.  By observing the timing of blood flow changes to this 

fourth zone, the intra-operative predictability of blood supply to this zone, the 

biochemical changes in the flap in the immediate period after transfer, and the 

possibility of manipulating and improving the blood supply in this last angiosome, 

it is hoped that this research can further detail the anatomy and physiology of 

cutaneous flap circulation.  This research may aid future investigation looking at 

ways of manipulating and improving flap circulation, improving the success of 
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flaps and ultimately improving the safety and cosmetic result of free flap 

transfer for patients.          

1.2 Free Tissue Transfer 
Free tissue transfer has evolved dramatically in the last 30 years with the 

anatomical revolution, the realisation that arterial anatomy was more important 

than simple length-breadth ratios3.  Axial pattern flaps4;5, muscle and 

musculocutanous flaps6 and fasciocutaneous flaps7 were described.  Alongside 

further mapping of the cutaneous circulation2;8 and improved knowledge of the 

anatomy, the last few decades have seen increasing refinements of the original 

microvascular transfers performed.  The most recent phylum of transfers, 

perforator flaps9, have continued to supply large robust flaps with long pedicles, 

although have improved donor site morbidity. 

 In 1975 the deltopectoral flap10, based on the intercostal vessels, and the groin 

flap5, based on the superficial circumflex iliac vessels, were the only known free 

flap donor sites11;12. The development of free microvascular tissue transfer 

allowed an increasing number of known axial flaps to be utilised as free flaps.  

Today, the free deltopectoral flap has fallen from favour due to its donor site 

morbidity and short pedicle, although the groin flap is still in occasional first-

line use as a cutaneous free flap13.   

Free flaps became popular in the 1970s and 1980s with multiple new reports of 

musculocutaneous and fasciocutaneous flaps.  The versatility and high success 

rate of free tissue transfer led to widespread adoption.  The terminology 

‘perforator flap’ was used for the first time in a clinical setting by Koshima and 

Soeda in 198914.  The concept of a perforator flap is a flap consisting of skin and 

subcutaneous fat, supplied by a vessel that perforates the muscle without 

significantly contributing to the muscle’s vascularity, and therefore not requiring 

the muscle carrier to be harvested as part of the flap as had previously been the 

case.  Perforator flaps are a significant improvement of musculocutaneous flaps.  

In situations where only skin is required for a specific reconstruction, perforator 

flaps reduce the donor site morbidity by leaving the muscle intact.  As about 

eighty percent of free flaps are required for resurfacing purposes, a more ‘ideal’ 

reconstruction is achieved with a perforator flap, replacing like with like. 
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The classification of perforator flaps has caused confusion in the literature9;15-18.  

They have been categorized according to their location, arterial supply or 

muscle of origin.  The Gent consensus reached at the Fifth International Course 

on Perforator Flaps in 2001 attempted to represent the opinions of pioneers in 

the field of perforator flap surgery15.  Perforator flaps were to be named 

according to the pedicle of the underlying muscle as a foundation for further 

refinements in the future.  The range of donor sites is currently extensive.  One 

of the most versatile flaps over time and currently in use, has been the 

latissimus dorsi flap, having all the attributes of size, reliability, long and large 

diameter pedicles, and therefore a range of applications19;20.  For 

reconstructions requiring skin, a perforator flap however can provide significant 

advantages over even a latissimus dorsi musculocutaneous flap.  For example, in 

breast reconstruction, a DIEP perforator flap provides more skin and has less 

donor site morbidity than a latissimus dorsi flap as no muscle is taken.  A DIEP 

flap itself is an evolution of the musculocutaneous TRAM flap (transverse rectus 

abdominis muscle) for breast reconstruction again decreasing donor site 

morbidity and the risk of abdominal hernias21. 

Perforator flaps, whilst sharing the benefits of a reliable blood supply with their 

predecessors, musculocutaneous flaps, represent a significant improvement over 

musculocutaneous flaps by permitting muscle to be spared for reasons of donor 

site functional morbidity22, or recipient site contour.  They are also an 

improvement over ‘axial’ pattern flaps in three ways.  Firstly, skin match can be 

enhanced and donor sites concealed as perforator flaps have an increased 

number of donor sites.  Cosmesis at times has taken a second place to safety, 

but with the advent of perforator flaps this is no longer the case.  Secondly, the 

direct route which the perforator takes to the subdermal plexus permits radical 

thinning23.  This cannot be matched in axial flaps with deep course vessels and 

multiple dermal feeders.  Thirdly, perforator flaps have longer large calibre 

pedicles in comparison to their muscular counterparts due to release of 

additional intramuscular pedicle length in their dissection.   

1.3 Breast reconstruction 
Breast reconstruction following mastectomy for breast cancer is becoming more 

common.  Women are now routinely offered the opportunity for reconstruction, 

which can be carried out either using their own tissue, which is called 
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autologous reconstruction, or using implants.  There are advantages to using the 

patients’ own tissue in terms of the ability to tolerate radiotherapy, which is 

important with the great increase in immediate reconstruction, and also the 

reduction of long term problems including reoperation particularly for a type of 

scarring called capsule formation around implants. There are also psychological 

advantages to some women of not having a reconstruction with foreign material 

particularly given past media scares about silicone implants. A large amount of 

skin can be transferred with autologous reconstructions which gives a better 

reconstruction cosmetically.  

Autologous reconstruction is performed by moving some of the patients own 

tissue with its blood supply which is called a flap. The two common flaps used to 

reconstruct a breast are the latissimus dorsi flap from the back and flaps based 

on the blood supply of the rectus abdominis muscle from the lower abdomen. 

These flaps contain the named muscle and the overlying skin, a 

musculocutaneous flap. The blood supply to the skin passes through the muscle 

in perforating arteries and veins. 

Flaps from the lower abdomen have evolved over the years to minimise 

morbidity from the donor site. Originally the flaps were pedicled on one entire 

rectus abdominis muscle and its contained arteries and veins which was called a 

pedicled Transverse Rectus Abdominis Musculocutaneous (TRAM) flap. Then the 

TRAM flap was moved as a free flap or free tissue transfer from the abdomen 

when the tissue was completely detached with only a small segment of rectus 

abdominis muscle and the supplying artery and the draining vein (the deep 

inferior epigastric artery and vein). These vessels were joined up to a recipient 

artery and vein either in the axilla or to the internal mammary vessels behind 

the ribs beside the sternum using microvascular techniques. Now all of the 

rectus abdominis muscle is usually left behind to minimise donor site morbidity 

and the skin and fat are transferred as a free flap on the perforating vessels 

which pass through the muscle. This called a Deep Inferior Epigastric artery 

Perforator (DIEP) flap. 

The blood supply to the lower abdominal skin also comes from a Superficial 

Inferior Epigastric Artery (SIEA) as well as the Deep Inferior Epigastric artery 

Perforators(DIEP) on each side2.  The tissue (free flap) from the abdomen can be 
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based on any of these vessels and a flap based on the superficial inferior 

epigastric artery  has an even lower risk of causing abdominal weakness or 

herniation than the more commonly used Deep Inferior Epigastric Artery flap 

(DIEP) since it does not require the tough rectus sheath to be divided24. Many 

surgeons dissect and expose the deep inferior and superficial inferior epigastric 

arteries on both sides of the abdomen before choosing the most suitable artery 

and vein(s) on which to base the microvascular free flap anastomoses. This is 

decided by assessment of vessels size compared with the proposed recipient 

vessel and the skin perfusion clinically.  The chosen artery and vein will provide 

the blood supply to this area of skin and fat, the ‘free flap’, when it is 

transferred to its new site as a reconstructed breast. 

From cadaveric studies the blood supply of the skin is divided into angiosomes. 

An Angiosome is the area perfused by an individual artery and its draining veins. 

Angiosomes are separated by choke vessels. It is generally agreed that a flap 

based on a specific artery and its draining vein can safely include an 

immediately adjacent angiosome but the blood supply into any further 

angiosomes is less reliable and may result in partial loss of the flap. Animal 

studies have suggested that choke vessels may open up 2-3 days after a flap is 

raised. Flaps may also fail because of blockage of the main supplying artery or 

draining vein either due to twisting or external pressure or clotting at the site of 

the microvascular anastomosis, this may result in total loss of the flap. 

Typical failure rates for free flap transfers are 3-4%. Partial loss of the DIEP flap 

is not uncommon with tissue loss in the angiosomes furthest from the supplying 

vessels often called zone IV of a DIEP flap.  The SIEA system appears to be less 

consistent in terms of its arterial size and frequency than the deep system25;26. 

The area supplied by a SIEA flap is harder to predict and the overall failure rate 

appears higher than with DIEP flaps (Canniesburn Free Flap Audit). It is hoped 

that this and subsequent studies can better map the blood supply to the lower 

abdominal skin in vivo.  The benefit of this would be improved safety of the 

operation particularly in terms of partial flap loss by better patient selection for 

DIEP and SIEA flaps. A better understanding of the in vivo perfusion of flaps 

would also allow study  of the mechanisms which cause choke vessels to open 

and potentially allow for their pharmacological manipulation. 
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1.4 Blood supply of the skin 
Detailed studies of the anatomy of cutaneous vasculature has been performed by 

many anatomists including Manchot (1889), Esser (1927) and Salmon (1936).  

Advances in the 20th century began to give clinical significance to this work.  

Tansini described the latissimus dorsi flap supplied by the thoracodorsal artery in 

1906, Shaw and Payne describe direct flaps for hand reconstruction, and 

Bakamjian described perforators of the internal thoracic system published in 

1969.  The anatomical revolution in the 1970s, with the development of 

dependable microvascular anastomoses, led the way for pioneers like Daniel and 

Taylor27, Harii10, Cobbett28 and Acland12 to perform and rapidly advance free 

tissue transfer.  The ability to perform these transfers has encouraged surgeons 

and anatomists to return to dissection, dissecting and researching for 

increasingly precise vascular anatomy.  This knowledge of the anatomy of the 

Cutaneous arteries and veins is fundamental to the design of flaps and the skin 

incisions chosen. 

In 1987 Taylor and Palmer2 performed a study using dye injections and 

radiographic investigations in over 50 cadavers showing the blood supply to be a 

three dimensional network of vessels in all tissue layers, giving rise to the 

‘angiosome’ concept.  An angiosome is the composite block of tissue, comprised 

of the skin and underlying structures, supplied by a named source artery being 

one part of the three dimensional jigsaw making up the body29.  The angiosomes 

are connected by true anastomoses or reduced calibre ‘choke’ vessels.  These 

choke vessels are like resistors in an electrical circuit.  When a flap is raised 

they provide initial resistance to the flow of blood from the tip of the flap to the 

base.  These choke vessels later open, and this is shown experimentally in 

rabbits to be between 48 and 72 hours30.  It is thought that the opening of these 

choke vessels is a permanent and irreversible event, and is an active process 

associated with hyperplasia and hypertrophy of cells in all layers of the choke 

artery wall31. 

Increases is choke vessel calibre have been observed mainly during the ‘delay 

phenomenon’.  Delay is any pre-operative manoeuvre that results in increased 

flap survival.  These have been used since Taliacozzi in the 16th century and 

involve procedures such as elevating the flap maintaining its blood supply in the 

donor site, before transferring it to the recipient site after a time period, 
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typically about 1 week.  The mechanism of delay is incompletely understood and 

there are a number of theories based around ‘training’ the flap to rely on the 

vessel(s) that will supply the flap when moved to the recipient site.  The 

improvement in blood supply is likely to be related to the opening of choke 

vessels32-34. 

The mechanisms surrounding the opening and increase in calibre in choke vessels 

are yet to be elucidated.  Better understanding of the timing of this mechanism 

in humans, and the factors controlling the opening of choke vessels may allow 

future pharmacological manipulation of their opening, decreasing partial flap 

failure and increasing the amount of tissue that can safely be transferred in a 

range of reconstructions. 
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2 Materials 

Each individual chapter has details of the Method used. 

2.1 Materials for Chapter 3 

2.1.1 Videomicroscope 

Videomicroscopy describes a technique of visualising the dermis through the use 

of a microscope coupled to a video camera system.  The technique was originally 

used by Fagrell35;36 to investigate normal skin circulation and later by Motley et 

al37 and Eubanks38 to investigate capillary malformation skin.  Sivarajan and 

Mackay studied the use of the videomicroscope for examining the capillary 

structure of capillary malformations before and after laser treatment39;40.  They 

also validated the technique by measuring the pressure applied to the skin 

surface when using the videomicroscope and demonstrated that this was less 

than was required to blanch the capillaries within the malformation41.  The 

videomicroscope is calibrated on the skin surface and then by altering the focus 

the capillaries become clear, and the degree of focusing gives a value for the 

depth. 

The videomicroscope used in this thesis is the Cyscope Compact 

Videomicroscope (PW Allen, Tewkesbury, UK) fitted with a 200x lens and 

coupled to a colour photo printer (Mitsubishi Colour Video Copy Processor).  This 

allowed the capture of images which were later analysed using the image of a 

1mm graticule to measure capillary diameters. 



CJ Tollan  Chapter 2, 24 

2.1.2 Confocal Microscope 

In Chapter 3 the technique of Confocal Laser Scanning Microscopy (CLSM) is used 

for imaging vascular malformations.  Confocal microscopy describes a technique 

used to increase the optical resolution of an image to be obtained by focussing 

individually on small points within the object and eliminating the out-of focus 

incident light.  This prevents the blurring of images that would occur with wide 

field microscopy.  Confocal Laser Scanning Microscopy uses a laser to illuminate 

the target object, and this use of coherent laser light further reduces noise from 

the object in comparison to incoherent light found in normal microscopes.  The 

scanning process produces a raster or grid pattern of the object which can 

gradually focus deeper within the object to produce a three dimensional image.  

 

Figure 2-1 - Vivascope 1500, MAVIG. 

 
The confocal microscope used in the thesis is the Vivascope 1500 (Mavig GmbH, 

Munich, Germany, Figure 2-1).  This is a portable confocal microscope connected 

to a computer and takes real time images, 500µm by 500µm, of the skin.  The 

Vivascope 1500 uses a laser beam in the near infrared range (830nm), directed 

through a series of lenses and a beam splitter.     
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The skin is imaged by firstly applying a steel ring with adhesive to the area of 

skin to be viewed, and a small amount of clear gel is applied.  The laser tube is 

then positioned over the ring and a magnet attaches them to keep the area to 

be viewed in place.   

 

Figure 2-2 - Vivascope 1500 attaching to skin surface to be examined. 
Steel ring attaches to skin with adhesive. 

 
The scanning controls operate from the computer which allows stacked imaged 

from the skin surface increasing in depth to be rapidly acquired.  Images are in 

black and white unlike the videomicroscope, and this can make vessels more 

challenging to identify without the video function.  The digital storage of a vast 

number of images makes this a valuable research tool. 

The confocal microscope has been used clinically for many dermatological 

applications including the imaging of pigmented skin lesions42;43, non-malignant 

skin lesions and their response to treatment44, malignant skin lesions45;46 and 

melanoma47. 
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2.2 Materials for Chapters 3, 4, 5, 6. 

2.2.1 Laser Doppler imaging 

Laser Doppler flowmetry is a non-invasive technique used to measure skin blood 

flow using a probe attached to the skin.  The device uses a laser beam directed 

at the skin surface, which then reflected back to a photo-diode within the 

device.  Laser light incident upon moving cells, for example red blood cells 

within dermal capillaries, undergoes a Doppler shift.  Backscattered light is 

detected by a photodetector and recorded by the processor within the unit as 

'flux' which is linearly proportional to the velocity of blood flow within the 

vessel48 and the concentration of red blood cells.  Laser Doppler imaging works 

using the same principle but it can detect flux across a region, rather than at a 

single point, by scanning the laser beam over this area.  It also has the 

advantage of being non-contact49.    

The laser Doppler device used in this thesis is the Moor LDI2 laser Doppler imager  

(Moor Industries, Axminster, UK) coupled to Moor Research software.  There are 

two laser light sources within the scanner, a 660nm visible red laser diode 

aiming beam and a 780nm near infra-red laser diode used for the laser Doppler 

measurements.  A coaxial beam is produced and the laser is a Class 3R laser 

device. 
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Figure 2-3 - Moor LDI2 laser Doppler scanner 

 
The use of laser Doppler to evaluate the skin microcirculation was first published 

by Stern in the journal Nature in 197548.  

Since then laser Doppler imaging and flowmetry have been used in  numerous 

studies examining the skin microcirculation50-53, examining changes after the 

administration of vasoactive substances54;55 and for free flap monitoring56-59.    

Clinically one of the most frequent uses of laser Doppler imaging is in burn depth 

assessment60-62.  The provide an estimate of healing time base on whether the 

burn is likely to take less than 14 days to heal (high blood flow), between 14 and 

21 days to heal (medium blood flow), or more than 21 days to heal and thus 

benefit from early excision and grafting. 
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2.3 Materials for chapter 7 

2.3.1 Microdialysis Catheters 

Microdialysis is a technique for measuring the concentrations of substances in 

the extracellular fluid in a tissue. The technique involves using a semipermeable 

membrane through which a physiological salt solution is constantly pumped, and 

the solution equilibrates with the surrounding tissue fluid.  

 

Figure 2-4 - Microdialysis catheter with semi-permeable membrane at tip. 
(Pictures courtesy of CMA Stockholm / Dipylon Medical AB) 

 
Perfusion fluid enters through an inner tube and exits this tube at the distal end 

(Figure 2-4).  It then flows in the space between the inner tube and the outer 

dialysis membrane.  The dialysis takes place at this point as molecules from the 

surrounding tissue can diffuse into the perfusion fluid.  The microdialysis 

membrane used for monitoring for flap ischaemia has a 'cut-off' of molecule size 

20 kiloDaltons.  This will allow small molecules such as glucose, pyruvate and 

lactate to diffuse.  The concentration should be relative to the concentration in 

the extracellular fluid.  In our study in Chapter 7 we have used the specialized 

CMA 71  high cut-off microdialysis catheter which allows molecules as large as 

100 kiloDaltons to pass though the pores in the outer dialysis membrane. In 

addition to the pore or cut-off size of the membrane, the length of the dialysing 

membrane in the catheter is different with different products, and the speed at 

which the perfusion fluid is pumped can also be varied.  All of these factors will 

alter the rate of collection of extracellular molecules. 
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The microdialysate returning from the microdialysis catheter is collected in a 

microdialysis vial, which in flap monitoring can be removed at set times to be 

analysed by a bedside analyser.  Our samples were stored immediately at minus 

eighty degrees Celsius for later analysis at Glasgow University once the 

collection part of our study protocol in Chapter 7 was complete. 

The use of microdialysis allows the concentrations of substances, be they 

cytokines, hormones, drugs or sugars to be measured in near-real time within 

the tissue. The microdialysis equipment used in this thesis was produced by CMA 

Microdialysis, Stockholm, Sweden.  

The technique of microdialysis has a number of features63;64; 

• Its specifically measures concentrations within the extracellular matrix 

• It can be placed within a wide range of tissues including fat, brain and 

cardiac muscle 

• It can be used for continuous monitoring for days 

• The dialysate is held distinct from the tissue so as not to contaminate the 

tissue 

By varying the permeability of the semi permeable membrane, the speed of the 

dialysate flow and length of the catheter different volumes and sizes of 

molecules can be measured.  

2.3.2 Microdialysis and Flap Monitoring 

The microdialysis technique was first used clinically in neurointensive monitoring 

following studies in the 1980s using it as a tool in brain research65-67.  Rojdmark 

and Ungerstedt et al first used microdialysis as a technique for studying 

myocutaneous flaps in 199868. They examined 10 women having breast 

reconstruction using either a TRAM or Latissimus dorsi flap reconstruction.  They 

looked at three specific compounds and compared the concentration of these 

derived from a microdialysis catheter within the flap and compared this to 

values obtained from a control located in the tissue overlying the hip area.  The 

compounds studied were glucose, glycerol and lactate levels.  In flaps which had 
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no problems it was found that the glucose level initially showed a transient 

increase, before returning to its baseline. Glycerol again showed an increase for 

approximately 12 hours before returning to baseline and lactate showed a slight 

prolonged increase.  When there was vascular compromise to the flap the 

glucose levels fell rapidly, followed by an increase in lactate and glycerol levels.  

Setala et al further evaluated the use of microdialysis in monitoring flaps post 

operatively69-72. They used pyruvate as well as glucose and lactate levels to show 

the onset of ischaemia and demonstrated the chemical profiles occurring in 

arterial and venous related flap compromise72. They demonstrated both in an 

animal study and in humans that ischaemia led to a decrease in glucose and an 

increase in lactate levels, as found with Ungerstedt’s study but also that the 

lactate to pyruvate ratio remained normal during arterial occlusion, but 

increased in venous occlusion70;72.  A 77% successful take back rate was 

demonstrated, with a 95% overall success rate.  No flap was lost to due to delay 

in diagnosis secondary ischaemia in microdialysis monitored free flaps69.  

Microdialysis has been increasingly used in monitoring flaps69-78 as well as a 

research tool63;64;68;79-82. 
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3 Microcirculatory changes following application 
of topical anaesthetics 

3.1 Background 
This study was used to illustrate and evaluate changes in skin vascularity 

following a pharmacological agent.  The model of capillary malformations and 

topical anaesthetics was chosen as a common example of a pharmacological 

agent applied to skin in clinical practice.   

3.2 Introduction 
Capillary malformations (CMs) or 'port-wine stains' are a type of vascular lesion 

consisting of ectatic dermal capillaries present at birth.  The pathogenesis is 

though to be related to a deficiency or absence of regulating neurons 

surrounding the ectatic blood vessels83-85.  There are two main subtypes of 

vascular lesions, as defined by Mulliken and Glowacki in 198286; haemangiomas 

and vascular malformations (including capillary vascular malformations, CMs).  

Haemangiomas are absent at birth, appear in the first few weeks of life, and 

grow at a much faster rate than the rest of the body within the first year.  There 

is marked hypercellularity of their endothelial cells during the proliferative 

phase.  After this period they undergo a slow involution and fibrosis.  

Haemangiomas are more common in females.  Vascular malformations in 

contrast to haemangiomas are present at birth, grow proportionately with the 

rest of the body, and do not resolve, persisting through out life and often 

developing nodularity in adulthood.  Vascular malformations can be subdivided 

into arterial, arteriovenous, venous, capillary (CMs or port-wine stains) or 

lymphatic malformations.  Capillary malformations are equally predominant in 

males and females, occurring in 1 - 3 per thousand live births87.  Vascular 

malformations may also occur as part of a syndromal illness such as Sturge-

Weber syndrome where there is involvement of the meningeal vessels which can 

lead to seizures and mental retardation88. 

Laser treatment is currently the most successful treatment for capillary 

malformations.  Laser ('light amplification by stimulated emission of radiation')  

light is monochromatic, coherent, and nondivergent, delivering a high power 

density89.  Following the publication of the theoretical foundation for laser in 
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Einstein's paper on the quantum theory of radiation in 1917, it was not until 1960 

that the first practical results of laser technology were published.  Maiman 

introduced a ruby rod laser emitting a wavelength of 694 nm90, and the effects 

of a ruby laser on skin was reported in a preliminary paper by Goldman91.  Other 

lasers were developed during this period including the Nd:Yag (1961), the argon 

laser (1962), and the carbon dioxide laser (1964).  Unfortunately laser treatment 

of capillary malformations lead to scarring and pigment change in many cases92.   

In 1983 Anderson and Parish published the theory of selective photothermolysis 

which lead to a new understanding of laser-tissue interactions93.  They realised 

that to improve the effects of laser light on a target, the laser wavelength 

should be matched to the absorption spectrum of the target or 'chromophore', 

thus imparting selective damage.  Additionally the pulse duration of the laser 

should be equal to or shorter than the thermal relaxation time of the target to 

minimise damage to surrounding tissues.  This allowed treatment parameters to 

be optimised allowing more precise targeting of the intended structure with 

minimal collateral damage.  The target chromophore in the treatment of 

vascular lesions is oxyhaemoglobin and therefore the laser light should meet a 

peak in the absorption spectrum of oxyhaemoglobin (Figure 3-1). 

 

Figure 3-1 - Absorption spectrum for oxyhaemoglobin and melanin chromophores. 

 
The thermal relaxation time of the vessels in capillary malformations is related 

to the vessel diameter (e.g. 30 - 150 µm) and is between 1 - 10 milliseconds94, 

and the pulse duration should not be longer than this.  To cause thermal damage 
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to a CM vessel it must be heated to 70°celsius via the heating of oxyhaemoglobin 

by laser light95.  

Despite knowledge of the theory of Selective photothermolysis and the advances 

in laser technology, only a minority of patients will achieve full clearance of 

their capillary malformations96-98.  The majority of capillary malformations 

lighten with pulsed dye laser treatments with an average of 50% lightening at 2.5 

treatments99, and most improvement occurs within the first five treatments.  

Further treatments may lead to a smaller percentage improvement in some 

patients96;100.  After ten treatments complete disappearance of CMs occurs in 

only 10% of patients101.  Prognostic factors include site of the capillary 

malformation with those on the lower limb and midface performing poorly in 

comparison with laser treatment for CMs on the lateral face and trunk98.  

Eubanks et al attributed this to different vessel structures, as observed by 

videomicroscopy, at these sites38;97.  A biopsy study by Fiskerstrand et al in 1996 

demonstrated that the vessels responding better to pulsed dye laser treatment 

had larger diameters and were more superficially located in the dermis than the 

vessels poorly responding CMs102.  Similarly a study by Sivarajan and MacKay in 

2004 found that vessels with a diameter greater than 50 micrometers were 

adequately treated (PDL 585nm, 0.45msec pulse duration), whereas those less 

than 50 micrometers appeared resistant to treatment40.   

Smaller vessels may be inadequately treated due to the thermal relaxation time 

being significantly shorter than the pulse durations, as initially proposed by 

Anderson and Parrish93, and demonstrated through Monte Carlo modelling103.  

Reducing laser pulse durations as low as 0.02 msec (20 µseconds) may lead to 

photomechanical damage with microvessel rupture104 which can cause pigment 

change and scarring, rather than the desired selective photothermal damage 

that results in the vessel wall denaturation.  Suggestions to improve the outcome 

of laser treatment of capillary malformations other than reducing the pulse 

duration, include altering the wavelength, spot size and fluence (energy, 

Joules/cm2).  Deeper vessels require a longer wavelength to ensure adequate 

tissue penetration105.  Larger spot sizes also increase the depth of penetration as 

shown histologically106 and this is explained by the scattering of light in 

modelling studies107.  Increasing the fluence (J/cm2) can lead to further 

improvement of capillary malformations up to a maximum limited by 
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complications such as scarring and pigment change100.  Smaller vessels require 

higher fluences because the energy required to heat the vessel wall is a greater 

fraction of the absorbed energy108.  The use of epidermal cooling can improve 

the results of pulsed dye laser treatment by protecting the epidermis, allowing 

higher fluences to be used109;110.  Epidermal cooling devices commonly used 

include contact methods (e.g. Sapphire Chill Tip, Lumenis, Santa Clara, USA), 

cool air jets (Cryo 5, Zimmer Medical Systems, Irvine USA), and cryogen sprays 

(Dynamic Cooling Device, Candela Corp, Wayland, USA). 

Alternatively altering vessel diameters rather than laser parameters has been 

investigated.  A study by Svaasand et al demonstrated that an occlusive blood 

pressure cuff inflated to 100mmHg on the upper arm reduced the incident laser 

light require to produce purpura by 40%111.  This is relevant when treating small 

CM vessels of less than 20µmetres.  Suggestions when employed for CMs on the 

body include employing the Trendelenberg position.  A further study by this 

group reported the use of suction cups attached to the laser hand pieces to 

produce hypobaric pressure for 5 - 15 seconds at laser treatment108.  Hypobaric 

pressure of 17kPa to 51kPa resulted in more intense purpura in response to laser 

treatment, and 35% less fluence was required to produce the same level of 

purpura.  Clinically there was a statistically significant difference in blanching 

for the CMs with local hypobaric pressure than those without, seven months post 

laser treatment.  It has also been reported that hypobaric pressures allow higher 

temperatures to be achieved in small diameter vessels112.  Temperature has also 

been demonstrated, by McGill and Mackay in 2006, as a factor causing capillary 

dilatation in both untreated and laser treated skin113.  Although the effects of 

temperature on laser treatment outcome have not been demonstrated, 

increased temperature has been shown to cause vasodilatation in both head and 

neck CMs and limb CMs, but increased capillary blood flow only in the head and 

neck CMs.  It has been postulated that this difference in blood flow between 

head and neck CMs and limb CMs, may explain the poorer response of limb CMs 

to laser treatment114. 

3.2.1 Topical anaesthetic 

The use of topical anaesthetic is commonplace in non-ablative laser treatments.  

Although not painful, laser treatment causes discomfort often likened to an 

elastic rubber band hitting the skin. Younger children undergoing treatment for 
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capillary malformations are given general anaesthetics, and older children and 

adults are offered topical anaesthetic.  This can reduce anxiety before 

treatment, which is important given that multiple laser treatments will be 

required.  Topical anaesthetics are applied directly to the skin and left for the 

recommended period of time (minutes to hours depending upon the 

preparation). The stratum corneum is the main barrier to penetration in skin 

with an intact epidermis.  Covering the topical anaesthetic with an occlusive 

plastic dressing (e.g. tegaderm) enhances penetration to the dermis.  Once the 

anaesthetic is through the epidermis, it acts locally on nerve endings inhibiting 

sodium channels and blocking impulse conduction. 

Commonly used topical anaesthetics include EMLA and Ametop.  EMLA, the most 

widely used anaesthetic115, is a 5% eutectic mixture of lidocaine and prilocaine, 

which are both from the amide group of anaesthetics.  EMLA is an abbreviation 

for Eutectic Mixture of Local Anaesthetics.  Eutectic mixtures result in liquids 

that melt at lower temperatures than their single components116.  This allows 

higher concentrations of the anaesthetics which results in better dermal 

anaesthesia.  The efficacy of EMLA has been shown in several clinical trials 

including venepuncture, split skin grafting and in laser treatment117-128.  Ametop, 

which has a faster onset of action than EMLA, contains 4% tetracaine (maximum 

safe dose is 5 grams) and is an ester anaesthetic which have comparatively short 

half-lives in the body.  It has proven efficacy129;130, and similar reported adverse 

events as EMLA131.  Side effects can include pruritis and oedema.  

Application of EMLA can lead to a noticeable pallor of the skin in patients and 

this has been noted by many authors124;125;132.  Conversely tetracaine (ametop) 

can be associated with local erythema132.  As laser treatment for capillary 

malformations targets haemoglobin as the chromophore in selective 

photothermolysis, changes in the colour of the skin could effect the efficacy of 

laser treatment.  This study was designed to investigate the vessel diameter in 

capillary malformations before and after application of EMLA or ametop local 

anaesthetic, which may have implications for laser treatment of vascular lesions.  

Additionally, following free flap reconstructive surgery where topical agents 

such as nitrate patches (GTN) are anecdotally applied to the skin to open choke 

vessels, it provides a model for the potential assessment of vessels in response 

to vasoactive agents using videomicroscopy or confocal microscopy. 
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3.3 Methods 

3.3.1 Subjects & protocol 

Eleven patients with capillary vascular malformations were recruited for 

investigation of vessel size before and after elective application of a topical 

anaesthetic prior to laser treatment.  Patients were allocated to having either 

EMLA or ametop topical anaesthetic applied to the skin requiring pulsed dye 

laser treatment.   

EMLA (AstraZeneca) contains 2.5% lidocaine and 2.5% prilocaine and was applied 

for a minimum of 90 minutes with a duration of anaesthesia of 2 hours.  Ametop 

(S&N Health) gel contains 4% tetracaine and is applied for 30 minutes with 

anaesthesia lasting for 4 - 6 hours.  The topical anaesthetics were applied and 

covered with an occlusive dressing, being removed after their respective 

duration of action prior to laser treatment (90 minutes for EMLA, 30 minutes for 

ametop).  Patients were advised not to consume caffeine or smoke 24 hours 

before their appointment, and they were acclimatised in a temperature 

controlled room before measurements of vessel size were taken.  Details of the 

number of previous laser treatments to their capillary malformation were also 

noted.  Munsell colour chart were used to note the colour of the capillary 

malformation before and after application of topical anaesthetic. 

All eleven patients' capillary malformations were assessed using confocal laser 

scanning microscopy (CLSM) before application of topical anaesthetic and after 

the removal of topical anaesthetic.  The confocal microscope used in this study 

was the Vivascope 1500 Mavig GmbH, Munich (Materials 2.1.2, page 24).  This 

uses an 830nm infra-red laser to image the skin.  Digital images and videos are 

produced by the attached imaging computer.  A total of 421 diameters were 

measured.   

A videomicroscope (PW Allen, Tewksbury, UK, connected to a 200x magnification 

Cy-Scope lens with image capture via a Mitsubishi Colour Video Copy Processor) 

was used in eight patients in addition to the confocal microscope to confirm 

findings.  The videomicroscope measures capillary diameter and depth in a 

technique developed39 and used in many studies performed in Canniesburn 

Plastic Surgery Unit40;41;114;133;134.  The diameter of capillaries from the video-
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captured images were measured using a 1mm hand held graticule.  There were 

nine pre- and nine post-local anaesthetic videocaptured images, and three 

measurements were taken from each of these, totalling 27 pre- and 27 post-

anaesthetic diameters.  Statistical calculations were made using Gen Stat and 

Minitab 16 statistical software, and the data were modelled by Dr William 

MacLaren, Statistician (Acknowledgments). 

A laser Doppler scanner was additionally used to image the capillary 

malformations pre- and post-application of topical anaesthetics.   

3.4 Results 
Of the 11 patients recruited, 6 patients had EMLA topical anaesthetic and 5 

patients had ametop.  Previous laser treatments undergone by each patient are 

displayed below (Table 3-1 & Figure 3-2) to exclude this as a confounding factor 

or explanation for initial differences in diameter.   

        
       Patient no.            no.  Patient no.          no. 
        (ametop)       treatments     (emla)     treatments 
             4                  0        5               27 
             9                 37        7               17 
            10                 21       11               20 
             1                 14        2                2 
             8                 13        3                4 
                                         6                0 

 

Table 3-1 - Patient number and number of laser treatments received. 

 

 

Figure 3-2 - Number of previous laser treatments received. 

 
The ametop group of patients had an average of 17 (median 14) laser 

treatments, whereas the EMLA group had an average of 11.67 (median 10.5) 

laser treatments.  The Mann Whitney test was applied to the null hypothesis that 

the two distributions have the same median and this was not rejected, 
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P=0.7144.  There is no significant difference between the number of laser 

treatments in the EMLA and ametop groups. 

Patients had Fitzpatrick skin types 1 and 2.  Munsell colour chart readings were 

taken before and after topical anaesthetic although little colour change was 

observed.     

A laser Doppler scanner (LDI2, Moor, as per Materials 2.2.1) was used to image 

the initial 3 patients, although unfortunately due to a technical error no further 

patients could be analysed using laser Doppler.  The data from the laser Doppler 

are therefore not included in the results. 

All 11 patients' vessel diameter measurements were made using the confocal 

microscope pre- and post application of topical anaesthetic.   

The videomicroscope was additionally used in 8 patients (in place of the laser 

Doppler), 4 of whom had EMLA and 4 had ametop.   

A total of 565 vessel diameter measurements were made.  Examples of the 

videomicroscope images are shown in Figure 3-3, Figure 3-4, Figure 3-5 & Figure 

3-6 below. 

 

Figure 3-3 - Patient 6 videomicroscope image pre-application of EMLA. 

 
There are large vessels centrally in this micrograph (two hairs can also be seen 

in this picture), Figure 3-3. 
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Figure 3-4 - Patient 6 videomicroscope image post-application of EMLA. 

 
This, Figure 3-4, is the same patient as Figure 3-3 following application of EMLA.  

No two images can represent exactly the same area of skin.   

 

Figure 3-5 - Patient 8 videomicroscope image pre-application of ametop. 
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Figure 3-6 - Patient 8 videomicroscope image post-application of ametop. 

 
The images shown below are from the confocal microscope and, as they are 

imaged using a laser, they are in black and white (Figure 3-7, Figure 3-9, Figure 

3-11, Figure 3-12, Figure 3-13 & Figure 3-14).  This makes vessels more difficult 

to identify from still images in comparison with videomicroscopy.  Figure 3-7 & 

Figure 3-8, and Figure 3-9 & Figure 3-10 below show a particularly clear vessel, 

pre- and post-application of EMLA. 
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Figure 3-7 - Patient 6 confocal microscope image pre-application of EMLA. 

 

 
Figure 3-8 - Patient 6 confocal microscope image pre-application of EMLA with red line to 
illustrate vessel position. 
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Figure 3-9 - Patient 6 confocal microscope image post-application of EMLA. 
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Figure 3-10 - Patient 6 confocal microscope image post-application of EMLA with red line to 
illustrate vessel position. 

 
The confocal microscope pictures below have vessels which are more easily 

identifiable using the real-time 'movie' function (Figure 3-11, Figure 3-12, Figure 

3-13 & Figure 3-14).  The vessels, which are difficult to see, are highlighted in 

subsequent figures (Figure 3-12 & Figure 3-14). 
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Figure 3-11 - Patient 1 confocal microscope image pre-application of ametop. 

 

 
Figure 3-12 - Patient 1 confocal microscope image as above (Figure 3-11) illustrating vessel. 
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Figure 3-13 - Patient 1, additional example of confocal microscope image pre-application of 
ametop. 

 

 
Figure 3-14 - Patient 1 additional image as above (Figure 3-14), illustrating vessel. 
 

3.4.1 Data description 

The number for measurements for each patient and the anaesthetic used are 

shown in Table 3-2 and the summary statistics for diameter are shown in Table 

3-3. 
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 Timepoint Pre Post 
 Micro 
Anaesthetic Patient 

Confocal Vidmic Confocal 
  

Vidmic 

Ametop 1 21 0 12 0 
EMLA 2 33 0 18 0 
EMLA 3 12 0 9 0 
Ametop 4 15 9 18 9 
EMLA 5 30 9 12 9 
EMLA 6 34 9 24 9 
EMLA 7 18 9 8 9 
Ametop 8 19 9 25 9 
Ametop 9 26 9 22 9 
Ametop 10 15 9 15 9 
EMLA 11 18 9 17 9 

Table 3-2 - Number of vessels with diameter measurements. 

 
Number Mean SD Min Q1 Median Q3 Max 

565 50.87 30.96 10 35.75 43.7 54 325.2 

Table 3-3 - Summary statistics of vessel diameter in micrometers (micron). 

 
The distribution of the diameters for vessels for each topical anaesthetic before 

and after application, and for each microscope type are shown in Figure 3-15 

below, and each individual's results in Table 3-4 below.   
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Figure 3-15 - Diameter by topical anaesthetic, microscope and time point. Mean diameters in 
blue. 
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Microscope 
Confocal  Video microscope 
Time‐point  Time‐point 

Anaesthetic  Patient 

Pre‐  Post‐  Pre‐ 
  

Post‐ 

Ametop  1  35.1 (6.0) 21 36.2 (7.3) 12 0  0
EMLA  2  52.4 (12.8) 33 42.4 (11.7) 18 0  0
EMLA  3  48.6 (10.3) 12 43.0 (10.9) 9 0  0
Ametop  4  45.0 (10.3) 15 42.3 (10.6) 18 44.4 (8.8) 9  41.1 (10.5) 9
EMLA  5  47.1 (25.6) 30 37.1 (10.2) 12 57.8 (25.4) 9  37.8 (9.7) 9
EMLA  6  73.5 (39.2) 34 57.7 (31.3) 24 74.4 (28.8) 9  47.8 (23.9) 9
EMLA  7  31.4 (8.9) 18 32.5 (7.8) 8 50.0 (24.0) 9  33.3 (18.0) 9
Ametop  8  39.9 (12.3) 19 51.5 (30.6) 25 52.2 (21.1) 9  72.2 (26.4) 9
Ametop  9  46.6 (8.2) 26 50.3 (12.4) 22 27.8 (14.8) 9  41.1 (10.5) 9
Ametop  10  34.0 (8.0) 15 48.7 (11.4) 15 48.9 (16.9) 9  41.1 (29.3) 9
EMLA  11  122.0 (89.6) 18 61.9 (39.3) 17 80.0 (31.6) 9  55.6 (35.7) 9

Table 3-4 - Mean diameter measurements, (SD in brackets), & number of measurements.  
Grouped by patient, anaesthetic, microscope and time-point. 

 
The distribution of diameters is skewed to the right, especially for the confocal 

microscope.  The diameters plotted show the variability of diameters in 

individual patients as well as between patients. 

The effects of factors on mean diameter can be seen in Table 3-5.  Post-

treatment with ametop there was a small increase in the overall diameter of the 

vessels measured (6.4 microns and 5.6 microns difference using the confocal and 

videomicroscopes respectively)(Figure 3-16).  Post-treatment with EMLA there 

was a decrease in diameter (13.3 microns and 22 microns difference using the 

confocal and videomicroscopes respectively)(Figure 3-17).  Additionally, 

comparison of  the confocal microscope and videomicroscope suggests little 

difference in observed mean diameters, although the numbers of patients are 

small. 

Confocal  Video 
Group  Pre  Post  Group  Pre  Post 

Ametop (n=5)  40.6 (10.3) 96  47.0 (18.9) 92  Ametop (n=4)  43.3 (18.0) 36  48.9 (24.4) 36 
EMLA (n=6)  62.0 (46.5) 145  48.7 (26.6) 88  EMLA (n=4)  65.6 (29.1) 36  43.6 (24.4) 36 

Table 3-5 - Mean diameter measurements, by treatment group, time-point, and microscope 
type. 
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Figure 3-16 - Ametop group pre- and post- application of topical anaesthetic. 
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Figure 3-17 - EMLA group pre- and post- application of topical anaesthetic. 

 

3.4.2 Statistical modelling 

The method of Residual Maximum Likelihood (REML) was used as there were two 

sources of random variation (patients and vessels), different numbers of vessels 

measured per patient, and also no videomicroscope measurements for three 

patients.  REML is a technique for estimating variance components in unbalanced 

data135;136.  It provides unbiased estimates of variance components. 
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As the observations of diameter are skewed to the right (Figure 3-15 & Figure 

3-18), the REML analysis was carried out on the log transformation (base 10) of 

the diameters.  The skew has been lessened to some degree, Figure 3-19. 
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Figure 3-18 - Diameter by microscope, anaesthetic and timepoint 
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Figure 3-19 - Log diameter (base 10) by microscope, anaesthetic and timepoint 
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In the REML model analysis (fitter to log diameter), the following factors were 

'fixed effects'; treatment at three levels (EMLA, ametop and none) and 

Microscope type at two levels (confocal microscope and videomicroscope).  Four 

random effects were included; the main effect of patient, a two-factor 

interaction between patient and microscope, a two-factor interaction between 

patient and treatment, and one three-factor interaction between patient, 

microscope type and treatment.  Within-patient variation is estimated by the 

residual error variance.  The REML method provides unbiased estimates of fixed 

effects, and of variance components corresponding to random effects.  The 

statistical significance of fixed effects was assessed using approximate F-tests, 

Figure 3-19. 

  Test statistic 
(Approximate F)

Numerator 
df 

Denominator 
df 

P‐value 

Microscope type (M)  0.05 1 7.6  0.835
M|Treatment (T)*  0.02 1 7.6  0.892
T  11.20 2 8.6  0.004
T|M  11.19 2 8.6  0.004
M.T|M+T**  0.92 2 13.2  0.424

Table 3-6 - Approximate F-tests of main effects and interactions. 

*M�T indicates the effect of microscope type adjusted for the effect of treatment. 
**M.T indicates the interaction between M and T. 

 
The main effect of microscope type was tested alone and allowing for the effect 

of treatment.  Similarly the main effect of treatment was tested alone and 

allowing for the effect of microscope type.  The two-factor interaction between 

microscope type and treatment was tested allowing for both main effects. 

Microscope type has no significant effect whether treatment is included or not 

(p=0.835, p=0.892 including treatment).  The interaction between microscope 

type and treatment is also not statistically significant (p=0.424). 

The main effect of treatment is statistically significant, regardless of whether 

microscope is included in the model, p=0.004.  Treatment is the only factor to 

have an effect upon mean diameter.  The predicted mean log-diameters for 

treatment are shown in Table 3-7 below. 
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Pre-treatment Post Ametop Post EMLA 
1.671 1.702 1.536 

Table 3-7 - Predicted mean log-diameters 

 
To assess changes in vessel diameter following application of topical 

anaesthetic, t-tests were performed.  The difference in the predicted means 

(log) post-treatment for ametop is -0.031.  The standard error is 0.029 and on 

8.6 degrees of freedom the P-values is 0.361.  There is therefore no evidence 

that Ametop affects the mean diameter. 

Similarly, the difference in pre- and post-application of EMLA is 0.135.  This 

gives a P-value of 0.002 (standard error 0.029, 8.6 degrees of freedom).  It is 

concluded that EMLA reduces the mean diameter of vessels. 

Anti-logging these values of predicted means gives the diameters in Table 3-8 

below, which may be interpreted as geometric mean diameters. 

Pre-treatment Post Ametop Post EMLA 
46.9 50.4 34.4 

Table 3-8 - Anti-logged predicted mean log-diameters 

 
There is a 27% reduction in post-EMLA diameter, and the 95 % confidence 

interval for the reduction in geometric mean diameter is between 15% and 37% 

reduction (lower and upper points of logged 95% confidence interval are 0.068 

and 0.202).  

3.4.3 Random effects 

Most of the random variation in the data are between measurement of different 

vessels for a given patient, rather than between patients (details in Appendix). 

3.4.4 Homogeneity of variance 

The residual variation is greater for the videomicroscope than for the confocal 

microscope (0.0360 v 0.02124).  The within-patient variability is greater for the 

videomicroscope although there are more outlying values. 

To check whether this apparent difference between residual variables had any 

effect on the results, the REML analysis was repeated including a weighting 

variable.  Observations were inversely weighted by their residual variance, with 
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measurements from the videomicroscope given weight 1, and with the confocal 

microscope weight 1.7. The results of this analysis, Table 3-9, were very similar 

to the unweighted analysis Table 3-6, and the predicted means and standard 

errors only varied from the unweighted analysis by 0.001. 

 Test statistic 
(Approximate 
F) 

Numerator 
df 

Denominator 
df 

P-value 

Microscope type (M) 0.05 1 7.7 0.837 
M|Treatment (T)* 0.02 1 7.7 0.890 
T 10.69 2 8.8 0.004 
T|M 10.68 2 8.8 0.004 
M.T|M+T** 0.81 2 16.4 0.462 

Table 3-9 - Approximate F-tests of main effects and interactions (weighted analysis). 

 
The greater variability of the of the videomicroscope has minimal effect on the 

results of the REML analysis and the same conclusions are drawn. 

3.4.5 Checking model assumptions: Normality 

There is evidence of non-Normality of the residual errors as the Anderson-Darling 

test gives a p value of <0.05.  There is no evidence of non-Normality for random 

effects (p=0.144, Anderson-Darling test), nor any evidence of patient-treatment 

interactions (p=0.551), nor patient microscope interactions (p=0.989), nor 

patient-microscope-treatment interactions (p=0.096).   

Due to the evidence of non-Normality of residual errors, the effects of 

anaesthetic and the difference between types of microscope were tested using 

non-parametric tests.  Interaction between treatment and microscope type was 

tested, and the null hypothesis that interaction can be described by a single 

parameter was not rejected (p=0.471) nor was the null hypothesis that the 

interaction parameter is zero (p=0.363).  Assuming no interaction, the mean 

effect of microscope was tested and this was not statistically significant 

(p=0.834).  The null hypothesis that the effects of the two anaesthetics are 

identical was tested and this was statistically significant, p=0.0304. 

The non-parametric tests and the REML analysis therefore give the same findings 

as regards the statistical significance of experimental factors. 
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3.4.6 Comparison with additional observer 

Although the anaesthetic timepoint were divided into three groups, none, post-

EMLA and post-ametop, it is apparent from Table 3-2 & Figure 3-19 that there is 

a difference between the pre-EMLA group and the pre-ametop group. 

Time 1(Pre)  2(Post)  
Micro Confocal Vidmic Confocal Vidmic 
top_anaesthetic    
Ametop Xbar 40.55 43.33 46.97 48.89 
 SD 10.27 18.05 18.94 24.35 
 Freq 96 36 92 36 
EMLA Xbar 61.97 65.56 48.74 43.61 
 SD 46.55 29.12 26.62 24.40 
 Freq 145 36 88 36 

Table 3-10 - Joint effect of topical anaesthetic, microscope type, and timepoint. 
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Table 3-11 - Mean diameter by timepoint, microscope type and anaesthetic type.  Primary 
observer. 

 
The mean diameters pre-application of topical anaesthetic were 40.55 and 43.33 

(confocal microscope and videomicroscope respectively) for the ametop group, 

and 61.97 and 65.56 for the EMLA group.  The predicted mean diameters (log 

base 10 scale) are shown in Table 3-12 below (degrees of  freedom 8.2, standard 

error of difference 0.029 for pre- and post- application with the same 

anaesthetic (i.e. rows), and standard error of 0.059 for comparison of 

anaesthetics at the same time point (i.e. columns)). 
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Timepoint Anaesthetic 
Pre Post 

Ametop 1.588 1.635 
EMLA 1.745 1.596 

Table 3-12 - Predicted mean diameters (log scale, base 10) by anaesthetic and timepoint. 

 
Comparing  the pre-application of EMLA group with the pre-application of 

ametop group (s.e. 0.059), the p-value is 0.029 which is significant.  Between 

anaesthetic groups post application there is no significant difference (p=0.528).  

Between ametop pre- and post- application there is no significant difference in 

vessel diameter (p=0.144).  The application of EMLA however reduced the 

diameter of vessels post application (p=0.001), as in the initial statistical 

analysis. 

The results following division of the 'pre-' group into pre-EMLA and pre-ametop 

result in the same conclusions as the original statistical analysis, that EMLA 

reduces vessel diameter and ametop has no significant effect.  In view of the 

difference between pre-treatment groups, a further blinded observer re-

measured pictures from the videomicroscope pictures to ensure the accuracy of 

the findings. 

Nine vessels were chosen for each timepoint for each patient (to keep data 

balanced) as shown in below; 

Replicate 1 2 3 4 5 6 7 8 9 
Patient_numberTime point   
(Ametop) 4 Pre 30 30 50 20 40 30 20 10 10 
 Post 20 20 20 20 20 40 20 20 10 
(EMLA) 5  Pre 50 40 20 10 50 100 60 40 10 
 Post 10 10 30 10 20 20 40 40 20 
(EMLA) 6 Pre 120 70 20 170 60 30 50 20 40 
 Post 110 30 40 80 40 20 10 60 40 
(EMLA) 7 Pre 10 20 60 60 20 50 20 20 10 
 Post 10 10 20 10 10 20 10 20 10 
(Ametop) 8 Pre 130 90 30 60 50 80 50 10 20 
 Post 140 30 90 60 90 30 70 140 60 
(Ametop) 9 Pre 10 30 20 10 10 20 10 10 20 
 Post 40 30 20 20 30 20 30 20 20 
(Ametop) 10 Pre 70 60 10 110 30 30 80 40 30 
 Post 110 30 80 30 20 10 60 40 10 
(EMLA) 11 Pre 140 40 50 60 40 80 100 60 90 
 Post 60 70 60 80 40 60 40 60 20 

Table 3-13 - Second observer re-analysis of videomicroscope pictures patients 4 - 11. 
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Table 3-14 - Second observer mean vessel measurements pre- and post-application of 
topical anaesthetic, per patient. 

 
 
Time_pt Pre Post Margin 
Topical_Anaesthetic    
Ametop Mean 37.78 42.22 40.00 
 StDev 30.15 34.65 32.33 
 Freq 36 36 72 
EMLA Mean 52.50 34.44 43.47 
 StDev 37.52 25.24 33.02 
 Freq 36 36 72 
Margin Mean 45.14 38.33 41.74 
 StDev 34.60 30.35 32.61 
 Freq 72 72 144 
*The 36 measurements are of nine vessels on each of four patients 

Table 3-15 - Summary data for second observer; mean, standard deviation and number of 
measurements for vessel diameter. 

 
The mean pre-treatment value for the EMLA group is higher again than that for 

the pre-treatment value of the ametop group, 52.2 microns v 27.8 microns.  

The diameters were logged (base 10). Normality tests (Anderson-Darling) were 

not significant for the untransformed or transformed data.  The transformed 

data are shown in Table 3-16 below. 

 Time_pt Pre Post Margin 
Topical_Anaesthetic    
Ametop Mean 1.4511 1.5107 1.4809 
 StDev 0.3389 0.3094 0.3236 
 Freq 36 36 72 
EMLA Mean 1.6088 1.4211 1.5150 
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 StDev 0.3312 0.3291 0.3412 
 Freq 36 36 72 
Margin Mean 1.5300 1.4659 1.4979 
 StDev 0.3421 0.3203 0.3318 
 Freq 72 72 144 
*The 36 measurements are of nine vessels on each of four patients 

Table 3-16 - Mean, standard deviation and number of measurements* for log vessel diameter 
(base 10). 

 
Firstly F-test of equal variances was carried out and showed no difference 

between the pre-ametop and pre-EMLA groups (p=0.77).  Equal variance was 

then assumed when carrying out two-sample t-tests.  There was no statistical 

difference between mean vessels diameter of the pre-ametop and pre-EMLA 

groups (p=0.344, s.e.0.154, d.f. 6), despite the mean EMLA vessel diameter 

being larger (52.5 v 37.8).   

There was no statistically significant effect of ametop (p=0.424, s.e.0.069, d.f. 

6) on vessel diameter.  EMLA however had a significant effect, p=0.035, reducing 

vessel diameter by an average of 35.1%. 

3.5 Conclusion 
In conclusion, the topical anaesthetic EMLA reduces the vessel diameter within 

capillary malformations (p<0.05).  Ametop has no statistically significant effect 

(p=0.361).  These results were confirmed by a second observer's measurements 

of the videomicroscope vessel diameter.  In addition, no significant differences 

were found between the videomicroscope and newer clinical confocal 

microscope. 

3.6 Discussion 
The use of topical anaesthesia continues to grow in both surgical and laser 

practice, with increasing numbers of formulations available including EMLA (5% 

eutectic mixture of lidocaine and prilocaine)137, Ametop (4% tetracaine)138, 

Rapydan (lidocaine plasters), and ELA-Max (4% liposomal lidocaine)138 and S-

caine peels (7% eutectic mixture of lidocaine and tetracaine)139-142 out with the 

United Kingdom.  Improving the time to onset139;141, the quality of the 

anaesthesia137;140;142, the duration of the anaesthesia and absorption through the 

skin, have been studied, in addition to comparisons of the quality of 

analgesia138;142;143.  The rate of onset of anaesthesia is determined by many 

factors including the concentration and potency, the amount of binding to 
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plasma proteins and local tissues, the rate of metabolism and the degree of 

vascularity at the site of application.  EMLA has provided anaesthesia for minor 

surgical procedures such as the shaving of skin lesions, skin grafting124-126, and 

non-ablative laser treatments, as well as its more commonly known use in 

venepuncture119;120;129;137;144.  EMLA has a low risk of side effects145.  Reported 

and known side effects of topical anaesthetics include local erythema, pruritus 

and oedema131, the risk of systemic toxicity when maximum doses are not 

observed146, and individual case reports including methaemoglobinaemia in a 3 

month old who had EMLA applied for 5 hours115, and an EMLA chemical injury to 

the eye during erbium laser resurfacing147.  All have effective reports of their 

use in laser surgery. 

The effects of topical anaesthetics on the microcirculation however, are less 

well understood, with many conflicting studies.  For example, there is 

disagreement as to whether EMLA causes an increase or decrease or no change in 

blood flow148-150.  Similarly Ametop is though to have vasodilatory properties150 

although this has not been confirmed by our own study.  The mechanism of 

action of changes in blood flow is also unclear.  Once the topical anaesthetic has 

been absorbed the skin, it acts on nerves by preventing the influx of sodium and 

thus the propagation of action potentials.  B-fibres, (myelinated preganglionic 

fibres) and C-fibres (pain, temperature and mechanoreceptors) have the 

smallest diameter and are the first blocked by anaesthetic, followed by delta 

(pain and cold), gamma (motor to muscle spindles), beta (touch and pressure), 

and finally the alpha fibres (proprioception and somatic motor) of the 

myelinated A fibre group151.  Despite knowledge of the nerve fibres blocked 

factors confounding effects on vascularity may include the concentration 

(lidocaine has vasodilatory and vasoconstrictive effects depending upon 

concentration) and duration of application of anaesthetic (EMLA has a biphasic 

response), myogenic effects on pre-capillary sphincters, oedema and alterations 

in skin thickness, the presence of diabetes mellitus or hypertension and other 

unknown interactions. 

In 1989 Bjerring et al published a paper, shortly after the introduction of EMLA, 

studying the vascular response of skin following EMLA149.  This paper was the 

first to outline the biphasic response vascular reaction to EMLA, explaining some 

of the disagreements of earlier authors.  Both lidocaine and prilocaine have 
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concentration dependent vasodilator and vasoconstrictor properties152;153.  Nine 

healthy volunteers' forearms had EMLA, an EMLA placebo, and a moisturising 

cream applied followed by an occlusive dressing.  The three creams were in 

contact with the skin at different sites for 0.5, 1, 1.5, 2, 3, 4, 5 and 6 hours.  

Measurements were made using reflectance spectroscopy which was then used 

to calculate an 'erythema index' from the absorbance of light by haemoglobin in 

the upper dermal vascular plexus.  Skin blood flow was also measured by laser 

Doppler flowmetry.  Bjerring et al discovered a biphasic response to EMLA with a 

reduction in the erythema index (i.e. blanching) p<0.02, and a reduction in flow 

(62.3% of pre-treatment value) maximal at 1.5 hours of application.  After more 

than 3 hours of application of EMLA, erythema appeared in the few hours after 

removal of EMLA, and was present immediately after EMLA removal in all 

applications longer than 4 hours.  At 6 hours the blood flow was 148% of the pre-

treatment value.  There were similar reductions in the erythema index of the 

EMLA placebo and moisturising cream but no biphasic increase in blood flow with 

longer periods of application.  The reduction in the erythema index and blood 

flow at 1.5 hours is in agreement with our findings regarding EMLA, with 

reduction in vessel diameter within capillary malformations during this time 

period. 

Larkin et al in 1993, investigating the reactive hyperaemia response, found a 

decrease in the reactive hyperaemia response in 8 volunteers following the 

application of EMLA to their forearms.  Reactive hyperaemia is an increase in 

blood flow when circulation is re-established after a period of occlusion151.  

There was no alteration in the basal skin blood flow-flux rate following 60 

minutes of EMLA application as measured by laser Doppler flowmetry.  Following 

basal flow measurements, the hyperaemic response after 90, 180 and 360 second 

intervals of forearm blood occlusion was recorded and was found to be reduced 

in the EMLA treated sites.  Capsacin was then applied topically to selectively 

activate the peripheral endings of sensory C fibres (pain), and vasodilation by 

this mechanism was not altered in the EMLA sites.  Similarly, the effect of 

injecting Calcitonin Gene-Related Peptide (CGRP), a potent vasodilator, did not 

appear to be altered by EMLA.  Larkin et al concluded that EMLA has little effect 

on resting blood vessel tone and did not alter postsynaptic mechanisms of 

vasodilation, although does reduce the magnitude and duration of reactive 

hyperaemia.  They also thought that the mechanism of reactive hyperaemia was 
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likely to be mediated by a local reflex involving sensory nerves and a 

cyclooxygenase product.   

Arildsson et al investigated the response of capillaries to heat following EMLA 

application of different durations148.  The 12 healthy volunteers had EMLA 

applied for 20 minutes, 40 minutes, 1 hour, 2 hours and 3 hours, and after the 

appropriate application time a 45 degrees Celsius probe was applied and the 

response measured using laser Doppler perfusion imaging.  The capillary density 

was also measured using capillary microscopy.  They found a persisting perfusion 

increase after heat provocation associated with an increasing application time of 

EMLA from 40 minutes.  In normal skin the blood flow is expected to return to 

normal baseline values within 30 seconds154.  Following the 3 hour application of 

EMLA, this time had increased to at least 14 minutes.  There was a lower number 

of active capillaries after a longer application time, although there was no 

significant relationship between the capillary density and the changes in skin 

perfusion.  The decrease in capillary density was less after the application of a 

placebo cream and was therefore not though to be due to oedema.  The 

perfusion increase in response to heat as measured by laser Doppler was 

postulated to originate in a deeper vessel plexus due to the decreased capillary 

density despite the heat stimulus.  

Haggblad et al155 further investigated the response of analgesized skin (EMLA) to 

heat, questioning whether increased perfusion originated in the superficial 

capillaries or in the deeper lying vessels as previously suggested by Arildsson148, 

one of the co-authors.  Reflection spectroscopy was used to assess the changes 

in the chromophores oxyhaemoglobin and deoxyhaemoglobin, and comparing the 

to changes in perfusion as measured by laser Doppler flowmetry.  They were in 

80% agreement in the EMLA and heat provocation model.  The increase in 

perfusion in response to heat appeared to be mainly due to oxyhaemoglobin, 

with the deoxyhaemoglobin being sixfold less, rather than a mixture of both.  

The authors concluded that this was due to an increase in perfusion in a deeper 

lying plexus, as without a significant increase in the deoxyhaemoglobin, the 

increase in flow cannot be in capillaries due to an increased metabolic rate.  

This would not conflict with our study results as the capillary diameters 

measured were the most superficial capillaries in each of the CMs, which may 
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not relate to the same plexus both due to the abnormal anatomy and the 

number of laser treatments.   

Hafner et al in 2003 looked at the effects of EMLA on the microcirculation using 

laser Doppler flowmetry (red 780nm and green 543nm), videocapillaroscopy and 

temperature, in the nailfold of the fourth finger in 12 volunteers156, stating that 

the red laser (780nm) measures blood in the thermoregulatory plexus, and the 

green laser (543nm) measures blood in the nutrititive plexus.  EMLA was applied 

for 60 minutes (under an occlusive dressing) and following this there was a 

minimal change in red blood cell velocity, no significant change in arterial 

capillary diameter, a drop in temperature (-10.1%, p<0.02), and a rise in laser 

Doppler flux with the green 543nm laser(13%, p=0.9) and a drop in flux with the 

red laser, 780nm (-13.9%, p=0.79).  Of note using a placebo cream there was a 

significant decrease in mean capillary red blood cell velocity (p<0.01), a drop in 

temperature (-16.7%, p<0.001) and a drop in laser Doppler flux with the green 

543nm laser(-41.9%, p<0.03) and red 780nm laser (-51.8%, p<0.04).  The authors 

concluded that there was a relative increase in capillary red blood cell velocity 

with EMLA due to the fact that there was a decrease in velocity with placebo 

and no change with EMLA.   

By using two wavelengths of laser Hafner et al have investigated the laser 

Doppler flux or flow at two different depths, although fail to suggest the likely 

depth measurement.  The flux dropped for both the red and green lasers in the 

placebo, and both were significant.  The flux only dropped using the red laser 

(780nm), -13.9%, and increased with the green laser (543nm), +13%, in the EMLA 

sample, although neither were significant.  The authors stated that the green 

laser at 543nm measures at the depth of the 'nutritive plexus', and that EMLA 

causes an increase in skin perfusion in the nutritive plexus.  The 'nutritive plexus' 

as described by the authors, presumably refers to the more superficial papillary 

dermis as the green laser will have the more superficial penetration.  There was 

no note of how the papillary dermis was  identified, no reference for the depth 

of the papillary dermis the nailfold, and no explanation as to whether the 

deeper reticular dermis may have been included in this measurement.  The 

referenced paper on the laser type pilots the use of this green 543nm laser in 

brain tissue where it penetrates to a depth of 0.25mm (250µm), but penetration 

in skin is likely to be more superficial with increased scattering and reflectance.  
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Similarly the red laser (780nm) light measuring the 'thermoregulatory plexus', 

(presumably meaning reticular dermis) would penetrated more deeply, up to 

1mm.  As both the EMLA and placebo flux values decrease using the red laser, 

and have decreases in temperature, no effects on the thermoregulatory plexus 

were attributed to EMLA.  The authors conclusion may not be entirely accurate 

as the thermoregulatory plexus should describe the more superficial plexus 

(papillary), and the nutritive plexus describes the deeper reticular plexus.  

Despite this it is clear that they have shown different vascular reactions at 

different depths which is worthy of explanation. 

EMLA has been used in physiological studies as an adjunct to investigate vascular 

and neural mechanisms in the cutaneous microcirculation, which can also serve 

to provide information about abnormal behaviour in disease states.  In 2002, 

Berghoff et al in a complex study investigated the vascular and neural 

mechanisms of acetylcholine (ACh) mediated vasodilation in the forearm 

cutaneous microcirculation157.  EMLA, applied for 2 hours, was used as part of 

the protocol to block cutaneous nerve function, before iontophoresing ACh or 

sodium chloride to this site and to a control site.  EMLA was found not to alter 

the basal cutaneous blood flow as measured by laser Doppler flowmetry.  EMLA 

significantly reduced the response to ACh-mediated vasodilation (p<0.001), with 

a smaller percentage increase in flow in comparison to the control site, 

suggesting that EMLA causes an incomplete neural blockade.  Other similar 

studies have found that local anaesthesia significantly reduces axon reflex-

related vasodilation while has no effect on the total ACh-related vasodilation158.  

No change in basal flow in response to EMLA in Berghoff's study does not directly 

relate to the capillary vasoconstriction and blanching that we observed, 

although as suggested by Hafner156 and Haggblad155 there may be different 

responses in the vascular beds observed.  Caselli et al in a similar study with the 

iontophoresis of sodium nitroprusside (SNP, vasodilatory), and heating, observed 

that EMLA (1-2 hour application time) resulted in a reduction in the direct 

response of vasodilation to SNP (p<0.05), although no significant change in the 

axon mediated indirect reflex-related response159.  The heat-related 

vasodilatory response was also reduced following dermal anaesthesia, between 

40 and 42 degrees Celsius (p<0.01).  The reduction in response to SNP was 

hypothesised to be a direct action of lidocaine (constituent of EMLA) on the 

vascular smooth muscle cells.   
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The idea that EMLA can act directly on the vascular smooth muscle cells would 

appear to be in contrast to a paper by Hseih et al in 2006 demonstrating that 

EMLA caused vasodilation and no skin wrinkling in replanted fingers.  This implies 

that intact sympathetic nerve function is required for the vasoconstrictive effect 

of EMLA160. A laser Doppler imager was used to detect perfusion changes in 14 

replanted finger pulps approximately 16 months after replantation, following 30 

minutes of 40 degrees Celsius water immersion or 30 minutes of EMLA 

application.  Control fingers demonstrated wrinkling and a decrease in perfusion 

after both water immersion and EMLA application (p<0.001).  Vasoconstriction is 

though to be the mechanism of wrinkling.  In the replanted finger tips there was 

a statistically significant vasodilatory response after both water immersion and 

EMLA application (p<0.001), and no wrinkling.  There was no statistical 

difference between the effects of water immersion and EMLA in the control or 

replant groups.  EMLA in summary has been suggested to have neuronal blocking 

effects on sensory and motor neurons through voltage-gated sodium and 

potassium channels, and may also cause vasoconstriction though effects on post-

ganglionic neurons and smooth muscle cells157, and additionally may have an 

effect on autonomic nerve function160. 

Ametop is a newer topical anaesthetic and other than studies on its efficacy, 

studies of Ametop's effect on the microcirculation are limited in comparison with 

EMLA.  Ametop (tetracaine 4%) is though to be more likely than the amide 

anaesthetic EMLA to cause allergic reactions, as it is from the ester rather than 

amide group of anaesthetics.  The recommended application time is 30 minutes 

which is shorter than that for EMLA.  In a study by Friedman et al in 1999 

comparing four topical anaesthetics, EMLA, Tetracaine, ELA-Max and Betacaine, 

using a 1064nm laser as the pain stimulus, EMLA provided better analgesia at 

both 30 minutes and 60 minutes than tetracaine (p<0.01)138.  This was the first 

published trial of the efficacy of tetracaine in 12 volunteers, and there were no 

comments made regarding erythema or changes in vascularity.   

In 2008 Wiles et al performed a comparative study using EMLA and Ametop, to 

assess the vascular reactivity of the skin following topical anaesthesia150.  The 

hypothesis was that Ametop but not EMLA would increase forearm skin blood 

flow-flux and reduce the hyperaemic response to transient ischaemia by an 

alteration in vascular tone.  Twenty healthy volunteers were recruited and a 
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control cream, and EMLA or Ametop applied to each forearm for 60 minutes 

under an occlusive dressing.  Blood flow (flux), and hyperaemic response 

following 20 seconds of brachial artery occlusion, were recorded using laser 

Doppler flowmetry.  Measurements were made 30, 60, 90, and 120 minutes after 

application of topical anaesthetic.  Ametop significantly increased the blood 

flow-flux over the control than EMLA (95 units of flux versus 2, p<0.001).  EMLA 

had no significant effect on blood flow. Both Ametop and EMLA caused a 

reduction in the Transient Hyperaemic Response Ratio (THRR) which is 

calculated as the increase in flow-flux after occlusion release (hyperaemia), 

divided by the decrease in flow-flux on occlusion.  This represents a reduction in 

vascular reactivity.  THRR significantly decreased with Ametop at 60 minutes, 

whereas was only significant for EMLA at 120 minutes.  The authors concluded 

that the differences between Ametop and EMLA were not likely to be a local 

anaesthetic class effect and that EMLA possessed vasoconstrictive properties 

that counteracted the vasodilatory effect of the local anaesthetic.  Similarly 

Ametop's vasodilatory effects may relate to properties of Ametop itself rather 

than those of local anaesthetics.  Additionally the data do not support earlier 

authors'161 suggestion that hyperaemia is mediated by a local sensory reflex, as 

EMLA does not inhibit the THRR as much as the control.  Wiles et al performed a 

further similar study, again with 20 healthy volunteers, comparing EMLA, 

Ametop and Rapydan, a medicated heated plaster containing the anaesthetics 

lidocaine and tetracaine162.  Ametop and Rapydan application lead to an 

increase in skin blood flow that was not seen with EMLA.  The respective 

vasoconstriction and no change in diameter with EMLA and Ametop 

demonstrated in our study, in comparison to no change in flow and increase in 

flow observed by Wiles et al162, may be agreeable and represent different 

vascular beds (CMs versus normal skin) rather than a difference in anaesthetic 

effect. 

Our study is in support of EMLA having vasoconstrictive properties as suggested 

by Wiles162 et al, as we have demonstrated a reduction in vessel diameter 

(p<0.05).  We did not observe a significant vasodilatory response with Ametop as 

there was no significant change in vessel diameter.  A consideration less noted 

that may affect the use of local anaesthetics especially in laser treatment is the 

reported increase in skin thickness (0.1mm after 2 hours application of EMLA) by 

Tahir et al163, as this may alter the relative depths of the target chromophores. 
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3.6.1 Capillary malformations and laser treatment 

As discussed in the introduction (3.2), laser treatment of lesions involves, as 

described by the theory of Selective Photothermolysis, matching the wavelength 

of the laser with the absorption spectrum of the target chromophore, matching 

the pulse duration with the thermal relaxation time of the target, and providing 

enough energy to heat the target and cause destruction without unduly 

damaging surrounding tissues and causing scarring.  Altering vessel diameters in 

capillary malformations therefore alters the laser-tissue interaction which may 

affect the efficacy of treatment. 

Following laser treatment, remaining viable capillary malformation blood vessels 

were found to be small with a median diameter of 14µm in a biopsy study by 

Fiskerstrand et al102, and less than 50µm using in vivo measurements by Sivarajan 

et al40.   

For effective treatment of CM vessels it is necessary to match the thermal 

relaxation of the vessel to the pulse duration of the laser. In a cylindrical vessel 

model the thermal relaxation time can be calculated from the following 

equation, based on a Gaussian temperature distribution93; 

Tr=D2/16k 

Where  Tr = Thermal Relaxation time 

  D = Diameter of the vessel 

  k = Thermal diffusivity of blood (1.3x10-3 cm2 sec-1) 

This equation predicts that the thermal relaxation time for the remaining vessels 

in a non-responsive CM to be too short to be adequately treated using the pulse 

durations of commonly available lasers94.  Reducing vessel diameter, for 

example by the use of EMLA, may therefore be detrimental by reducing the 

thermal relaxation time further from the pulse duration of the laser.    

In addition to vessel diameter, flow may be another confounding factor in the 

successful laser ablation of vessels114.  Arildsson et al noted that 3 hour EMLA 

treatment did not change basal skin perfusion154, and in their later study noted a 



CJ Tollan  Chapter 3, 65 

decrease in capillary density with EMLA148.  A heat stimulus increased the flow as 

measured by laser Doppler, but with no changes in capillary density, the laser 

Doppler was postulated to be recording changes in a deeper plexus.  In our study 

we examined the most superficial of the capillaries in the capillary 

malformations, as these are the capillaries most susceptible to laser treatment 

(mean depth 124.6μm, range 25 - 210µm).  Unfortunately we were not able to 

have simultaneous laser Doppler images due to a technical error with our laser 

Doppler, as it would be interesting to have assessed whether the decreased 

capillary diameter with EMLA, that we recorded using videomicroscopy and 

confocal microscopy, equated to a hypothesised decreased flow rate or an 

increased flow rate as per Arildsson in normal skin.  Additionally flow rates 

subjectively determined using the videomicroscope and confocal microscope 

may have helped determine if the laser Doppler readings were primarily 

generated by the superficial capillaries or deeper vessels in the first couple of 

millimeters of skin.  Jernberk et al increased the flow, as measured by laser 

Doppler, by infusing calcitonin gene-related peptide in 10 patients with CMs84.  

There was an improvement in the cosmetic result of laser treatment although it 

was not known whether this was due to presumed vessel dilatation or regulation 

blood flow by means of connected arterioles.  There was no measurements of 

diameter.  Flow is a further parameter that has relevance in the treatment of 

capillary malformations as  high flow rates dissipate the heat absorbed by the 

target chromophore haemoglobin before there is sufficient heating and damage 

to the vessel wall. 

The use of EMLA and Ametop in this setting could influence the response of CM 

vessels to laser treatment by directly affecting the vessel sizes within the 

malformation. We have shown that EMLA causes a statistically significant 

reduction in the sizes of these vessels and may therefore affect the response. 

Ametop has been referenced in other studies as more likely to increase vessel 

size and if this or another treatment were found to increase vessel diameter 

without excessive flow, it may be advantageous in treating these patients. 

3.6.2 Use of confocal microscope in assessment of capillary 

malformations 

Confocal microscopy is a tool that has been developed used to study 

microcirculation and skin over the last 20 years.  One of the first in vivo studies 
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examined the microcirculation of the rat brain164.  Clinically, the nerve density 

in capillary malformations has been investigated using confocal microscopy and 

histological specimens by Selim et al in 2004, and it was found that nerve 

density is decreased in capillary malformations perhaps as part of the 

pathogenesis165.   A further study in 2010 of benign vascular lesions examined 

criteria for diagnosis using the confocal microscope in 7 patients, one of whom 

had a capillary malformation.  The CM using confocal microscopy was described 

as a collection of large dilated vessels in the mid- to superficial dermis, with 

vessel diameters of 75 - 100 µm, with fibrous septae around the ectatic 

vasculature166.  Melanocytic lesions have been imaged with confocal microscopy 

and compared with dermatoscopy and  histopathological diagnosis of 

lesions167;168.  In a study by Pellacani et al, 2005, thirty six out of thirty seven 

malignant melanomas were correctly identified and forty seven out of sixty five 

benign lesions (difficulties in the diagnosis of spitz naevi)167.  Confocal 

microscope was found to be a useful tool in the diagnosis of melanocytic lesions, 

limited only by a depth of 200µm to 300µm. Langley et al in 2007 compared 125 

melanocytic lesions preoperatively with both confocal microscopy and 

dermatoscopy, finding that the sensitivity of the confocal microscope was 

greater than with dermatoscopy (97.3% versus 89.2%), although the specificities 

were similar (83.0% versus 84.1%)168. 

The confocal microscope (see Chapter 2, materials) as a tool for assessing 

capillary malformations has been compared in this study with the 

videomicroscope.  There was no statistical difference in the diameters measured 

(p=0.835 pre-anaesthetic, p=0.892 post anaesthetic).  Advantages of the 

confocal microscope include the ability to digitally store both images and video 

footage, and record the depths at which these were recorded.  As the images 

are created using a near infrared laser beam, 830nm, they are displayed in black 

and white, which makes the video application a necessity for identifying vessels.  

Once the confocal microscope magnetically attaches to a metal ring which 

adheres to the skin, the focussing depth and movements in two dimensions are 

controlled via the attached computer.  This is in contrast to the 

videomicroscope, which as a hand held device may be more prone to inadvertent 

pressure from the operator, and may therefore have operator variability in the 

measurement of depth.  The residual variation for the videomicroscope was 

slightly greater than the confocal microscope (0.0360 v 0.02124).  The 
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videomicroscope however displays the skin in colour and vessels containing red 

blood cells are clearly visible and quickly identified.  Laser Doppler imaging gives 

an impression of flow within a capillary malformation, but cannot determine 

vessel depth and diameter, and therefore cannot provide enough information to 

predict response to treatment. 

It has been suggested in modelling studies by Lakmaker et al that capillaries 

deeper than 0.8 - 0.9mm in the skin do not affect the colour of the skin due to 

the optical properties of light169.  Studies have also shown that pulsed dye lasers 

with a wavelength of 585nm are unlikely to penetrate the skin more than 

0.65nm170 and that the depth of the vessels predicts the response to laser 

treatment37.  Longer wavelengths will penetrate slightly more deeply and 595nm 

pulsed dye lasers are often used in previously treated capillary malformations, 

and occasionally 1064nm Nd:YAG lasers171.  Newer technologies being 

investigated to address the problem of depth in resistant capillary malformations 

include the use of the Cynergy laser which combines an initial pulse of a 585nm 

wavelength to change the oxyhaemoglobin to methaemoglobin, and then a 

second more deeply penetrating laser pulse of 1064nm targeting the 

methaemoglobin.   

It was thought that the colour of an untreated capillary malformation could 

predict the response to laser treatment, some authors reporting the best 

response in pink lesions172, and others in red lesions173.  Pink lesions are thought 

to contain superficial, small diameter vessels, red lesions relatively superficial 

vessels and purple lesions the deepest vessels102.   Unfortunately in a study of 

261 CM patients over a 5 year period the colour was found not to be of 

prognostic value97, and in a study of 55 CMs, the colour did not relate to 

capillary diameter or depth133.  Imaging of the depth and diameter of vessels is 

therefore necessary to make any attempt at treatment predictions, perhaps in 

combination with flow174, and to help determine alterations in laser parameters 

and manipulations of resistant capillary malformations that can improve the 

response to laser treatment.      
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4 Pilot study to assess skin blood flow in the 
lower abdomen 

4.1 Introduction  
This study was designed to examine the feasibility of predicting blood supply to 

adjacent angiosomes of the lower abdomen in vivo.  A moor laser Doppler 

scanner was used intraoperatively to assess the validity of scanning the territory 

of a vessel within operative clinical time constraints.  This study functioned as a 

pilot study with the aim of designing a further study to scan multiple vessels’ 

territories intraoperatively, during DIEP flap transfer.  Validating this 

methodology would allow laser Doppler scanning to be undertaken in other free 

flap transfers. 

 To assess differences in perfusion between individual vessels supplying a flap 

intraoperatively it is necessary to temporarily clamp and unclamp the vessels 

being investigated.  To perform free tissue transfer (or pedicled tissue transfer) 

the flap is raised on the blood vessel that will be supplying the flap, and all 

other tissue (skin, fat, fascia, muscle etc) divided.  At this point in the operation 

the flap is only being supplied by a particular vessel or vessels, receiving no 

other blood supply.  It is at this time that an impression can be gained of how 

well a particular vessel supplies a flap.  The further most angiosomes may 

appear ‘dusky’ or ‘pale’ with less sufficient venous or arterial blood supplies 

respectively.  We wished to assess whether an investigative method could be 

used once the flap is raised to compare multiple vessels without being biased by; 

the sequence in which the vessels are assessed, reactive hyperaemia following 

microvascular clamping, and the microvascular clamp time, and in addition 

whether there was a significant difference between areas of ‘good’ and ‘bad’ 

flow within a flap.  For example if the blood supply of the Superficial Inferior 

Epigastric Artery (SIEA) were to be compared with a Deep Inferior Epigastric 

Perforator artery (DIEP), it would be necessary to apply a microvascular clamp 

to the  DIEP vessel(s) whilst the SIEA vessel(s) are investigated, and then apply a 

clamp to the SIEA vessel(s) and unclamp the DIEP vessels(s).  Before investigating 

the DIEP vessels a sufficient period would have to elapse to allow the blood 

supply to become stable following reactive hyperaemia. 
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Further studies to examine the blood supply of the lower abdomen would ideally 

involve clamping each of the four supplying arteries (left and right DIEP and SIEA 

vessels) and their accompanying veins and sequentially releasing the clamps to 

see the area of skin supplied by each of these vascular pedicles.  So as not to 

unduly prolong the operation a study to look at the area perfused by each of the 

four arterial pedicles supplying the lower abdomen would involve clamping all 

the pedicles and then sequentially releasing each one and performing a laser 

Doppler scan five minutes after clamp release. This would give varying clamp 

times of 5 to 25 minutes during an approximate 30 – 35 minute intraoperative 

window, before the tissue flap is transferred to the recipient site. Although the 

order of clamp release could be randomised, the effect of clamping duration as 

well as the timing of blood flow measurements with laser Doppler scans after 

clamp release may affect any results.  This pilot study was designed to evaluate 

any effects of differing clamp and scanning times. 

The aim of this pilot study was to evaluate effect on laser Doppler scan results 

of differing ischaemic times due to clamping, and clarify scanning times that 

would avoid the period of reactive hyperaemia.  A secondary aim was to assess 

whether it was possible to visually differentiate areas that had statistically 

significant differences in flux.  Knowledge of these parameters would allow the 

design of further intraoperative studies and maximise the information gathered 

within operative time constraints.  

4.2 Methods 
Between May 2007 and October 2007 eight female patients were recruited for an 

intraoperative laser Doppler study whilst undergoing delayed breast 

reconstruction following mastectomy, with DIEP free flaps, in Canniesburn 

Plastic Surgery Unit, Glasgow Royal Infirmary. This pilot study included eight 

patients undergoing delayed breast reconstruction with DIEP (Deep Inferior 

Epigastric Perforator) free flaps.  Patients undergoing delayed rather than 

immediate reconstruction were chosen as they require a  skin paddle on the flap 

amenable to laser Doppler scanning postoperatively (as per Chapter 5).  Patients 

undergoing immediate reconstruction and skin sparing mastectomies have the 

DIEP flap almost entirely buried and therefore impossible to observe using laser 

Doppler scanning.   Ethical approval was granted by Glasgow Royal Infirmary 

Ethics Committee, and no changes were made to the reconstructive procedure.  
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The patients had an average age of 49yrs (40 – 52 years old) and average BMI of 

27 (21 to 30).  All patients were non-smokers or ex-smokers at the time of 

surgery.  A Laser Doppler Scanner was used to non-invasively measure blood 

supply to the skin of the DIEP flap intra- and postoperatively.   

The Laser Doppler Scanner is a device designed and routinely used to assess 

blood supply to the skin as described in Chapter 2, for example in burns 

patients, and does not require direct patient contact (see Figure 4-1).  The Laser 

Doppler scanner LDI2-IR (Moor Instruments, Axminster, Devon, UK) incorporates 

a class IIIB laser.  There are two laser light sources with a single coaxial laser 

output; the visible red laser diode aiming beam (wavelength 660nm, 0.25mW), 

and the near infra-red laser diode (wavelength 780nm, 2.25mW, Class IIIR) used 

for the laser Doppler measurements.  Research software, Moor V5.3, was used to 

carry out the patient scans; Large scan setting, 4 msec/pixel, 70cm from 

patient, and scanner at a  15 degree angle.  The Laser Doppler records an image 

of the area scanned on the ‘scan’ setting.  Each pixel recorded represents a 

number which is a unit of flux.  The unit of flux recorded by the Doppler 

principal is proportional to blood flow.  As the flux data are positively skewed, 

the median value of flux rather than mean was used following a review of the 

literature (see statistics section below, 4.2.1).  In the ‘line scan’ setting the LDI 

repeatedly scans the same line and graphically displays the flux as a function of 

position and time (see Results Figure 4-11). 
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Figure 4-1 - Moor Laser Doppler Scanner LD12-IR & its use intraoperatively. 

 
Intraoperatively the DIEP flap was raised on perforating vessels chosen by the 

surgeon (see Figure 4-2).  There was no deviation from standard operative 

procedure.  The intraoperative sequence of scans took a maximum of 35 

minutes, and were performed once the flap was raised, prior to being 

transferred, when the surgical team commonly have a short lunch break.  It was 

therefore felt that these scans would not prolong the operation.  In addition, 

ischaemic preconditioning has been shown to be beneficial for flap 

survival31;175;176, so clamping should not have an adverse effect on flap outcome. 
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Figure 4-2 - DIEP lower abdominal flap raised on perforating vessels.   
Pictures show both surface (zones and likely position of perforators marked) and under 
surface, prior to application of microvascular clamp and scanning (Patient 8). 

 
Once the flap was raised a vascular clamp was placed on the deep inferior 

epigastric pedicle.  During this period the flap was not perfused.  The patients 

were split into two groups; four patients had a clamp time of five minutes, and 

the other four patients had a clamp time of twenty minutes.  These clamp times 

were chosen as they were the extremes of clamp time that could be used in the 

allotted time without unduly prolonging the operation.  Also, as scans can take 

up to 5 minutes depending upon the area to be scanned, a clamp time of less 

then 5 minutes would not be of practical use when waiting for the initial scan 

taking 5 minutes to be completed in future studies.  Following clamp release 

after five minutes or twenty minutes, the flap was reperfused for five minutes to 

allow for reactive hyperaemia (during which period a simple laser Doppler line 



CJ Tollan  Chapter 4, 73 

scan was taken to chart the reactive hyperaemia), and laser Doppler image scans 

were then performed every 5 minutes.  Each scan took less than five minutes, 

the exact time depending upon the size of the flap.  The four patients who had a 

clamp time of 5 minutes then had scans 5 minutes, 10 minutes, 15 minutes and 

20 minutes after clamp release and reperfusion of the DIEP flap.  Patients with a 

clamp time of 20 minutes similarly had laser Doppler scans 5 minutes and 10 

minutes after clamp release (see Table 4-1).   

 Clamp time Scan times    
Patient 1 20 minutes 5 minutes 10 minutes   
Patient 2 20 minutes 5 minutes 10 minutes   
Patient 3 20 minutes 5 minutes 10 minutes   
Patient 4 20 minutes 5 minutes 10 minutes   
Patient 5 5 minutes 5 minutes 10 minutes 15 minutes 20 minutes 
Patient 6 5 minutes 5 minutes 10 minutes 15 minutes 20 minutes 
Patient 7 5 minutes 5 minutes 10 minutes 15 minutes 20 minutes 
Patient 8 5 minutes 5 minutes 10 minutes 15 minutes 20 minutes 

Table 4-1 - Intraoperative clamp and scan times. 

 
Following laser Doppler scanning, the DIEP vessels were divided and 

anastomosed to the recipient internal mammary vessels in the chest.  The flap 

was then inset and the abdominal donor site closed.  Post operative laser 

Doppler scans were taken as part of a separate study in recovery, and at 4 hours, 

16 hours, 24 hours, 48 hours and 72 hours after vessel anastomosis.  This 

postoperative study is described in Chapter 5. 

4.2.1 Use of descriptive statistics in studies using laser Doppler 

(Chapters 4, 5 & 6) 

The scans were analysed using the Moor Laser Doppler Imager research software, 

Version 5.3.  Areas within the scan can be identified by drawing polygons to 

trace the  outline of the abdominal flap or zones of the flap.  Shapes can be 

duplicated within scans or across sequential scans.  Descriptive statistics 

including the mean and median flux are then requested for the outlined area 

from the Moor software.  All subsequent statistical analysis of laser Doppler 

images in chapters 4, 5 and 6 has been performed using the medians calculated 

Moor Research software descriptive statistics.  

There is little in the literature regarding the choice of medians versus means 

when analysing laser Doppler image scans and many papers are unclear as to 

which was used. Baker et al 2009177 reviewed laser Doppler imaging data from 
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five burns centres, and commented that flux and mean flux data were the best 

statistical predictor of healing time, rather than clinical judgement.  There was 

no reference to the possibility of using median flux.  Jeng et al  Previous study 

using median flux when using LDI to determine need for excision and grafting 

Jeng at al 200360.  Newton et al 2001178 used median flux in a study looking at 

microvascular endothelial function in human skin.  Doses of acetylcholine, 

methacholine, bradykinin and substance P were iontophoretically administered 

to the skin of healthy volunteers.  The Moor laser Doppler was used, and 

dedicated imaging software.  No explanation was given for using median.   

Advice for this study was taken from both Professor William Ferrell, Glasgow 

University, who has performed iontophoretic and rheumatological studies179 

using the Moor Laser Doppler imaging equipment, and Dr William MacLaren, 

Statistician at Glasgow Caledonian University.  Both advised the use of medians 

rather than means as the distribution of flux is clearly positively skewed (see 

Figure 4-3).  We compared the results of this study using both means and 

medians and the same conclusions were drawn with the same confidence 

intervals. 

 
Figure 4-3 -Patient No 5.  Plot of pixel colours within polygon outline of DIEP flap.   
Positive skew of flux demonstrated. 

 
Within an individual Laser Doppler scan, areas of ‘good’ and ‘poor’ blood supply 

can be subjectively identified.  Intraoperatively, being able to differentiate 

between well perfused and poorly perfused areas, may have clinical relevance.  

It suggests the physiological territories of the DIEP vessel scanned, which may 

help select a vessel in situations where there is a choice of vessel (Chapter 6 

comparative study SIEA v DIEP).  The territory of the flap intraoperatively may 

be related to areas which later undergo partial necrosis, and have relevance in 
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safer flap dimensions and design (see chapter 5, LDI scanning for 3 days post-

operatively).  For these reasons we assessed whether there was a statistical 

difference in flux between areas subjectively chosen to be areas of 

comparatively good and poor flow within a flap. 

Two identical rectangles were placed within each 5 minute scan, chosen to 

represent areas of good and poor blood supply.  The median flux for these areas 

was used to calculate whether there was a statistical difference.  Absolute 

values for flux for areas of flap are less relevant than the difference between 

areas of flux as the perfusion of a flap is always relative to the patients overall 

perfusion and the perforating vessel(s) supplying the flap. 

4.3 Results  
Eight patients had delayed DIEP breast reconstruction following mastectomies 

for breast cancer.  The mean operative time was 7 hours 40 minutes (5 hours 25 

minutes to 8 hours 30 minutes) and there were no flap failures.  The 

intraoperative scanning period took less than 35 minutes, followed by a mean 

flap ischaemia time of 113 minutes (65 minutes to 155 minutes) during free flap 

transfer and anastomosis.  Post operative scans were performed in recovery, and 

at 4 hours, 16 hours, 24 hours, 48 hours and 72 hours after vessel anastomosis 

(discussed in chapter 5). 

4.3.1 Intra operative scans – Clamp time versus scan time 

The objective of these scans was to try and establish reproducible scanning 

times, beyond a period of reactive hyperaemia, with variation in clamp times 

within a limited intraoperative time period.   

24 scans were performed in eight patients, with clamp times of 5 minutes or 20 

minutes, and scanning times of 5 and 10 minutes (all eight patients), and 15 and 

20 minutes for the four patients with the shorter (5 minute) clamp times, as 

described in the methods.  The scans are represented pictorially as shown for 

patient 8 in Figure 4-4, Figure 4-5, Figure 4-6, & Figure 4-7.  Flux is represented 

by the colour of the pixel, and is an arbitrary value calculated by the Moor Laser 

Doppler Scanner which is proportional to flow (see Figure 4-8).  All Laser Doppler 

scans are in the Appendix. 
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Figure 4-4 - Patient 8; 5 minute clamp time, 5 minute scan. 

 

 
Figure 4-5 - Patient 8; 5 minute clamp time, 10 minute scan. 

 

 
Figure 4-6 - Patient 8; 5 minute clamp time, 15 minute scan. 
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Figure 4-7 - Patient 8; 5 minute clamp, 20 minute scan. 

 

 
Figure 4-8 - Colour representation of 'flux' and numerical flux value.   
Flux is proportional to blood flow. 

 
The median flux rather than mean flux was used in the statistical analysis as the 

units of flux were positively skewed (see section 4.2.1).  The median flux was 

calculated using the moor laser Doppler software, and the raw data are shown in 

Table 4-2, and graphically in Figure 4-9 & Figure 4-10. 

           Clamp  Scan 
  Patient   time  Time  Median 
        1     20     5      59 
        1     20    10      63 
        2     20     5      91 
        2     20    10      91 
        3     20     5     138 
        3     20    10     131  
        4     20     5     125 
        4     20    10     125 
        5      5     5     123 
        5      5    10     124 
        5      5    15     123 
        5      5    20     124 
        6      5     5      77 
        6      5    10      79 
        6      5    15      81 
        6      5    20      82 
        7      5     5     100 
        7      5    10     100 
        7      5    15      98 
        7      5    20     100 
        8      5     5      88 
        8      5    10      88 
        8      5    15      88 
        8      5    20      88 

Table 4-2 - Median flux for each Laser Doppler scan. 

 



CJ Tollan  Chapter 4, 78 

 

Figure 4-9 - Patients 1 - 4. 
20 minute clamp time.  5 & 10 minute scan times. 

 

 

Figure 4-10 - Patients 5 - 8. 
5 minute clamp time.  5, 10, 15 and 20 minute scan times. 

 
It can be noted that for each patient the median flux does not appear to change 

significantly with time (Table 4-2, Figure 4-9 & Figure 4-10), in keeping with the 

hypothesis that the reactive hyperaemia is complete by the first scan at five 

minutes after clamp release.  In addition, descriptive information on the period 

of reactive hyperaemia was provided by a line scan during the first five minutes 

after clamp release, before scanning of the DIEP commenced (illustration 4.2).  

A line scan is a one-dimensional scan where the scanner continuously scans  

backwards and forwards along the horizontal axis of the flap to produce a graph 
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with the y-axis being time, and the x-axis representing points along the 

horizontal axis of the flap (see Figure 4-11). 

 
Figure 4-11 - Line scan patient 8 with scanning line across DIEP flap marked.  5 minute 
clamp time, scan between 0 and 5 minutes. 

 

 
Figure 4-12 - Line scan patient 3, 20 minute clamp time, between 0 and 5 minutes following 
clamp release. 

 
As preliminary illustrations, these would suggest that reactive hyperaemia is 

complete before the 5 minute scan time. 

All subsequent patient scans were image scans, 4 patients having two 

intraoperative scans (clamp time 20 minutes, scans at 5 minutes and 10 

minutes), and 4 patients having four intraoperative scans (clamp time 5 minutes, 

scans at 5 minutes, 10 minutes, 15 minutes and 20 minutes), totalling 24 scans 
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(see Table 4-1 & Table 4-2).  The mean flux for these scans was 99.42 units, s.d. 

22.17. 

4.3.1.1 Data Description and test of interaction between Scan Time 
and Clamp Time  

The summary statistics for flux, by clamp time and by scan time are shown in 

Table 4-3 below.  

Rows: Clamp time   Columns: Scan Time 
 
            5      10     15     20     All 
 
5       97.00   97.75  97.50  98.50   97.69 
        19.71   19.50  18.38  18.57   17.05 
            4       4      4      4      16 
 
20     103.25  102.50      *      *  102.88 
        35.54   31.68      *      *   31.17 
            4       4      4      4      16 
 
All    100.13  100.13  97.50  98.50   99.42 
        26.81   24.49  18.38  18.57   22.17 
            8       8      8      8      32 

Table 4-3 - Summary statistics for flux by clamp time and scan time.   
Rows - clamp time, columns - scan time (mean, SD, n). 

 
Due to the design of the study there are no scan times of 15 minutes and 20 

minutes from the four patients with clamp time 20 minutes.  Analysis of the data 

are therefore performed in two overlapping groups.  Firstly, data for scan times 

5 minutes and 10 minutes from all 8 patients were analysed, and secondly data 

from the 4 patients with scan times 5, 10, 15 and 20 minutes were analysed. 

To examine the effect of clamp time (5 minutes versus 20 minutes), the scan 

times of 5 minutes and 10 minutes were analysed, as these were measured for 

all 8 patients.  Table 4-4 shows these data. 

           5     10    All 
 
5       97.0   97.8   97.4 
       19.71  19.50  18.16 
           4      4      8 
 
20     103.3  102.5  102.9 
       35.54  31.68  31.17 
           4      4      8 
 
All    100.1  100.1  100.1 
       26.81  24.49  24.81 
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           8      8     16 

Table 4-4 - Clamp time 5 minutes v 20 minutes.   
Rows - clamp time, columns - scan time. 

 
For the four patients with a clamp time 5 minutes, flow at scan time 5 minutes 

is slightly less than at scan time 10 minutes (97.0 versus 97.8).  For four patients 

with clamp time 20 minutes the effect of clamp time is in the opposite direction 

(103.3 versus 102.5) and again small.  When averaged over clamp times the 

difference in flow between scan times 5 minutes and 10 minutes is zero (100.1 = 

means), and the effect of scan times shall be analysed further in the following 

section.  When averaged over scan times, flow at clamp time 20 minutes is 

slightly greater than at clamp time 5 minutes (102.9 versus 97.4). 

To assess whether this difference in flow was significant, the difference in flow 

between individual patients was calculated, see Table 4-5.   

         Mean    StDev  Count 

5       -0.75    0.957      4 
20       0.75    4.573      4 
All      0.00    3.162      8 
Table 4-5 - Differences in flow (5 min scan time minus 10 min scan time) by clamp time.  
Rows - clamp time. 

 
The mean differences were compared between the two clamp groups using a 

two-independent-samples-t-test.  As the sample standard deviations are 

different Levene’s test of equality of variances180 was performed and was not 

statistically significant (p=0.289).  The two-independent –samples t-test was 

performed on presumption that the population variances were equal giving a p-

value of 0.545.  There is therefore insufficient evidence that the effect of scan 

time (5 minutes versus 10 minutes) depends on clamp time. 

4.3.1.2  The effect of Scan Time  

The effect of scan time was assumed not to vary with clamp time on the basis of 

the test results in the section above (p=0.545). 

As above (Table 4-5), the mean of eight differences in flow (scan time 5 minutes 

minus scan time 10 minutes, 100.1 – 100.1) is exactly zero, and hence the main 

effect of scan time is not statistically significant (p= 1.000). 
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Looking at the four patients with clamp time of 5 minutes (Table 4-3,), it can be 

seen that there is little change in mean flow (97.00, 97.75, 97.50 & 98.50). 

 

Figure 4-13 - 5 minute clamp time. 
Scans at 5, 10, 15 and 20 minutes, 1 s.d. error bar. 

 
A repeated measures analysis of variance was carried out, with patients as 

“subjects factor” and scan times (5,10,15 and 20) as the “timepoint factor” as 

shown below (Table 4-6); 

Source  DF       SS       MS       F      P 
Patient  3  4340.69  1446.90  926.01   
ScanTime 3     4.69     1.56    1.00  0.436 
Error    9    14.06     1.56 
Total   15  4359.44 

Table 4-6 - Two-way ANOVA: Median flow versus Patient, Scan Time. 

 
The F-statistic to test differences in mean flow between the four scan times is 

not statistically significant (F=1.00 on 3 and 9 d.f., P=0.436).  This test assumes 

compound symmetry when the variances of flow at the different scan times are 

equal and the six covariances between the scan times are also equal.  If 

compound symmetry is not assumed, the Greenhouse-Geisser correction factor 

reduces the degrees of freedom.  The F-statistic of 1.00 is unchanged, and the p 

value is 0.399 rather than 0.436.  This does not change the conclusion of no 

significant difference in flow between the four scan times. 
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4.3.1.3 The effect of clamp time 

Again assuming that there is no interaction between clamp time and scan time 

(see 4.3.1.1), the two clamp times were compared with respect to the mean 

perfusion averaged over scan time (Table 4-7). 

            Mean      StDev  Count 
 
5           97.4      19.60      4 
20         102.9      33.59      4 
All        100.1      25.63      8 

Table 4-7 - Mean flow (averaged over scan time), by clamp time. 

 
A two-sample t-test was carried out comparing the two Clamp Time groups with 

respect to mean flow.  There was insufficient evidence of a difference in mean 

flow between the two clamp groups (P= 0.787).  The 95% confidence interval for 

the main effect (clamp time 5 minutes minus clamp time 20 minutes) was (-53.1, 

42.1). 

4.3.2 Comparison of areas of ‘good’ blood supply with areas of 

‘poor’ blood supply 

Areas of 'good' blood supply and 'poor' blood supply were chosen visually by 

placing a rectangle over each area within the Moor research software v5.3 for 

each of the 5 minute scans (Figure 4-14).   
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Figure 4-14 - Patient 7 DIEP flap with rectangle 1 representing are of 'good' flow, and 
rectangle 2 representing area of 'poor' flow.   
Histogram of flux v number of pixels shown below. 

 
The raw data for each of these areas is shown below, Table 4-8. 

                  Perfusion 
  Patient  Clamp  Good  Poor 
           Time 
    1        20    98    47 
    2        20   125    41 
    3        20   148    99 
    4        20   154    76 
    5         5   188    82 
    6         5   115    43 
    7         5   158    53 
    8         5   125    44 

Table 4-8 - Raw data: median perfusion, by Patient, Clamp time (minutes), and quality of 
perfusion. 

 
The summary statistics for eight patients, each with a rectangle of ‘good’ 

perfusion and ‘poor’ perfusion, were then compared (Table 4-9, Figure 4-15).  

Averaged over clamp time, flow is lower in areas of poor perfusion.  Averaged 

over perfusion (good and poor), flow varies little with clamp time. 

Rows: Clamp Time   Columns: Perfusion 
 
         Good   Poor     All 
 
5      146.50  55.50  101.00 
        33.21  18.23   54.60 
            4      4       8 
 
20     131.25  65.75   98.50 
        25.45  26.92   42.59 
            4      4       8 
 
All    138.88  60.62   99.75 
        28.58  21.98   47.32 
            8      8      16 

Table 4-9 - Flux by clamp time and 'good' or 'poor' perfusion.   
Key: mean, SD, number of observations. 
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Figure 4-15 - Areas of Good versus Poor flux. 
5 minute scan time, n = 8 patients and two sites per patient. 

 
The differences in flow (good flow minus poor flow) were compared between the 

two clamp time groups to see if clamp time had an effect.  This was done using 

a two-independent-samples t-test, yielding a t-statistic of 2.05 (P=0.087), Table 

4-10. 

Clamp  N  Mean  StDev  SE Mean 
 5     4  91.0   17.1      8.6 
20     4  65.5   18.1      9.0 
 
 
Difference = mu ( 5) - mu (20) 
Estimate for difference:  25.5 
95% CI for difference:  (-5.0, 56.0) 
T-Test of difference = 0 (vs not =): T-Value = 2.05  P-Value = 0.087  DF = 6 
Both use Pooled StDev = 17.6210 

Table 4-10 - Two-independent samples t-test, 'good' v 'poor'. 

 
There is therefore insufficient evidence that the difference in flow between 

well- and poorly perfused areas differs according to clamp time. 

To assess whether there is a difference in perfusion between well perfused and 

poorly perfused areas, a paired t-test was carried out.  The mean difference in 

flow between well perfused and poorly perfused areas over all eight patients is 

78.25.  The standard deviation of the differences, 17.621 on 6 d.f., was used as 

calculated above.  The standard error of the mean is 6.23 giving a t-statistic of 

12.56 (P<0.001).   
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The conclusion is that the mean flow in well-perfused areas is higher than in 

poorly-perfused areas. 

4.4 Conclusion 
In summary, laser Doppler imaging, with clearly defined clamp and scan times to 

allow repetition of scanning within one surgical procedure, allows an impression 

physiological territory of individual vessels to be ascertained.  Knowledge of this 

physiological territory aids where there is a choice of vessel, a decision that 

would otherwise be made by clinical inspection of the calibre vessel, and aids by 

highlighting the area of skin that is least well perfused when the flap requires to 

be reduced in size to fit the recipient site.  For example it is hoped that this will 

allow better selection of patients for DIEP and SIEA flaps for breast 

reconstruction as well as better planning of individual flaps by improved ability 

to predict partial flap loss.  

The protocol and methodology of clamp and scan times also allows maximal 

information to be gained in the intraoperative period when planning further 

research studies.   

4.5 Discussion 
Since its introduction in the 1970s, the use of laser Doppler for post-operative 

monitoring of the blood flow in free flaps has become well established181-190.  

Post-operative monitoring with laser Doppler includes implantable laser Doppler 

probes, laser Doppler flowmetry and laser Doppler scanning.  Intraoperative 

methods of assessing free flaps are less well established and have been 

performed experimentally using laser Doppler191;192 and other methods such as 

indocyanine green videoangiography (ICGA)193;194, O2C spectroscopy192 & near-

infrared reflection spectroscopy195, investigating factors such as anastomotic 

patency193, the overall flow within the flap, the area of skin perfused by a vessel 

and differences between zones195;196, intrinsic transit times197, and the predictive 

value of intraoperative findings postoperatively193. These studies have not 

influenced the intra-operative choice of vessel which has been chosen clinically. 

This study was designed to establish reproducible scanning times following vessel 

occlusion.  Establishing a time after reperfusion at which the blood flow 

stabilises would allow design of future studies, using laser Doppler or other 
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methods of analysis, to intraoperatively compare vessels in as short a time 

window as possible.  The increase in blood flow following a period of occlusion 

of blood flow to a tissue is known as ‘reactive hyperaemia’.  Reactive 

hyperaemia is a metabolic mechanism for local blood flow control, and usually 

increases the blood flow to the tissue by four to seven times normal198 following 

reperfusion.  When blood supply to tissue is occluded, the arterioles dilate 

beyond the occlusion in response to hypoxia so that when blood flow is re-

established increased blood flow occurs (reactive hyperaemia).  This increased 

flow repays the oxygen deficit151 and washes out vasoactive metabolites.  The 

longer the period of occlusion, the greater the metabolic stimulus, and the 

greater the total cumulative blood flow afterwards199;200.  

Studies that have used laser Doppler during tissue transfer have waited varying 

lengths of time, between 3 and 20 minutes, following any interventions, before 

scanning188;191;201;202.  It would seem to be presumed that this is a reasonable 

amount of time to wait for the blood supply to stabilise.  In an experimental 

animal study, Hallock 1992, divided three to six day old pedicled epigastric flaps 

in rats, allowing ten minutes after pedicle division for ‘equilibration’ before 

taking flow recordings with a laser Doppler probe201.  Yoshino et al, 1997, 

monitored thirty seven intraoral free flaps using a laser Doppler flowmeter.  

Measurements were taken before and after flap elevation, after reconstruction, 

and at one two and three post operative days.  Intraoperatively it was noted 

that the ‘value of the blood flow stabilised within 3 minutes’188.  In a case 

report, Khan 2004, laser Doppler was used to assess neovascularisation of a cross 

leg flap before division202.  The flap was inset for 3 weeks and clamped daily in 

the 10 days prior to pedicle division.  Laser Doppler readings were taken during 

clamping to assess neovascularisation, and 20 minutes post clamping.  As this 

study involves assessment of a pedicled flap in the 3 week time period before 

division rather than an intraoperative assessment, there is less pressure to scan 

in the shortest interval perhaps explaining why a 20 minute scan time post 

clamping was chosen.   

In an intraoperative study with similarities to this pilot study, Ulusal et al191 

(Taiwan 2006) examined the abdominal vessels of 43 patients undergoing breast 

reconstruction with abdominal flaps, with six patients having vessels compared 

by laser Doppler.  Abdominal free tissue transfer was performed using SIEA 
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vessels (Superficial Inferior Epigastric Artery) in preference to the DIEP (Deep 

Inferior Epigastric Artery Perforator) vessels where possible, according to the 

study protocol.  Suitable SIEA vessels were ‘pulsatile’ with a ‘diameter greater 

than or equal to 1mm’, and these were then compared with the ipsilateral DIEP 

vessel using four laser Doppler probes in each of the four zones.   Readings were 

obtained preclamping, for 10 minutes for the DIEP vessels (SIEA vessels 

clamped), and for 10 minutes for the SIEA vessels (DIEP vessels clamped) 

consecutively, and the data were ‘gathered after a stabilisation period of 10 

minutes’ for each vessel.  The times chosen are not referenced and there is 

little in the literature regarding the choice of timings. The contralateral SIEA 

and DIEP vessels were not included in scanning.  The method of using laser 

Doppler in this study is likely to have taken a minimum of 50 minutes (3 ten 

minute scans with 2 ten minute stabilisation periods in between) to observe two 

vessels (SIEA & DIEP), with the SIEA being the only vessel clamped and having a 

clamp time of 20 minutes.  This total time of 50 minutes for the use of the laser 

Doppler is not specifically discussed.  In our study scan time, and clamp time, in 

a short intraoperative window (around 30 minutes) have been investigated.  We 

have proposed a period of 5 minutes rather than 10 minutes, between scans to 

allow for reactive hyperaemia or ‘stabilisation’, maximising the number of 

vessels that could be scanned in future comparative studies. 

Following ischaemia, as caused by applying a microvascular clamp to a vessel 

supplying a flap, reactive hyperaemia occurs and the blood flow will stabilise 

after reactive hyperaemia.  The duration and magnitude of the reactive 

hyperaemia are related to, amongst other factors, the duration of the 

ischaemia.  A small animal study, Kinnunen et al 2000, effectively looking at 

reactive hyperaemia in the context of microvascular / flap surgery was 

performed on 6 rats, with the aim of looking at vascular responsiveness before, 

immediately after and 90 minutes after performing a microvascular anastomosis 

of an epigastric flap203.  The study compared the immediate response to five 

clamp times, 15, 30, 60,120 and 180 seconds, before, after and 90 minutes after 

anastomosis using a laser Doppler probe.  The duration of the ‘overshoot’ 

increased with clamp time in the pre-anastomosis group and the 90 minutes 

after anastomosis group in response to clamp time, from between 20 to 30 

seconds at 15 seconds clamp time to around 70 seconds at 180 seconds clamp 

time.  The increased overshoot in blood flow was less pronounced in the directly 
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after anastomosis group, thought to be due to a temporary decrease in 

autoregulatory capacity.  In this study the magnitude of the overshoot did not 

show a clear difference.  Further rat studies by Kinnunen conclude that the 

duration and amplitude of post-occlusive reactive hyperaemia are reduced in 

hypothermia204, are increased following ischaemic pre-conditioning205 and during 

hypovolaemia206.  Although the clamp times are short in these studies, all being 

within 3 minutes, the over shoot or reactive hyperaemia lasts no longer than 160 

seconds in the control groups203;204 in keeping with the results of our study, 

albeit with longer clamp times, with stabilisation of blood flow in under 5 

minutes.   Our study compares clamp times and demonstrates no significant 

difference between clamp times of 5 minutes and 20 minutes (p=0.787) in flow 

scanned at 5 and 10 minutes post-occlusion, suggesting that the over-shoot of 

reactive hyperaemia has occurred by 5 minutes.     

Studies investigating reactive hyperaemia, out with the realm of microvascular 

and flap surgery as discussed, confirm a recovery frequently within 5 minutes.  

Post occlusive reactive hyperaemia is used as a provocation test to investigate 

vascular reactivity, the ability of the endothelium to release factors causing 

smooth muscle relaxation and therefore vessel dilatation, in different scenarios.  

This assessment of endothelial function using post-occlusive reactive hyperaemia 

is not standardised, and can be assessed with venous plethysmography207;208 or 

less invasively using laser Doppler209. As in Kinnunen’s rat studies where external 

factors such as hypothermia, hypovolaemia and ischaemic pre-conditioning 

affect the duration and amplitude of reactive hyperaemia, factors such as 

anatomical site210;211, age212, fitness level212-214, the menstrual cycle, 

smoking215;216, drugs including anti-hypertensives217 and local anaesthesia159 and 

diseases such as cardiovascular disease210, HIV218;219 and scleroderma219 also 

affect reactive hyperaemia.  Most studies using post-occlusive reactive 

hyperaemia to investigate endothelial function choose occlusive pressure in the 

forearm or finger, although the thigh is also used.  Laser Doppler measurements 

are made in the arm and thigh, or more distally in the fingers or foot, with some 

authors choosing sites to avoid thermoregulatory arteriovenous (AV) shunts.  

Outcome measures include time to resting flux210 (immediately following 

occlusion before peak flux is reached), time to peak flux210;213;218;220-223, peak flux 

amplitude200;210;215;218-223, time to half recovery210;221, and time to recovery 

following reactive hyperaemia213;215;218;220-222.  The studies using time to recovery 
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following post-occlusive reactive hyperaemia have particular relevance to our 

proposed method of intraoperative clamping and scanning although they use a 

variety of anatomical sites and occlusion times as will be discussed.   

Monsuez et al in 2000218 investigated the reduced hyperaemic response in HIV-

infected individuals by inflating a suprasystolic cuff on the upper arm for 210 

seconds and measuring the response using a laser Doppler probe on a finger.  

Forty eight individuals were enrolled in the study; nineteen symptomatic HIV-1 

patients, nineteen asymptomatic HIV-1 patients and nineteen healthy 

volunteers.  The duration of the hyperaemic response in the control group was 

80 seconds which is consistent with the time for reactive hyperaemia in our 

study although having a different anatomical site and a shorter ischaemic time.  

The amplitude and duration of the hyperaemic response were significantly 

reduced in HIV-infected patients lasting only 23 seconds and 33 seconds in 

symptomatic and asymptomatic patients respectively.   

Tur et al215 investigated post-occlusive reactive hyperaemia in twenty smokers 

and eighteen non-smokers using laser Doppler flowmetry.  A pneumatic cuff on 

the upper arm was inflated to 300mmHg for four minutes and laser Doppler 

flowmetry recordings were taken from the volar forearms.  The recovery time in 

the non-smoking group was 7.0±2.1 minutes and 10.0±3.9 in the smoking group, 

with a lower peak flow in the smokers.  This impaired capillary recruitment in 

smoking was also found in a study by Ijzerman et al216.  Tur concluded that the 

abnormal response in smokers was worrying given that reactive hyperaemia is 

protective for tissue damage following a period of ischaemia.  The recovery 

period of the control group in this study is significantly longer than previous 

studies quoted relating to reactive hyperaemia, and is in conflict with the 

recovery period of less than 5 minutes found in our intra-operative study.  This 

increased recovery time is likely to be due to a number of factors including a 

different anatomical site with muscle being more metabolically active than the 

mainly adipose tissue that we were assessing224, and also a longer ischaemia (4 

minutes) than many studies in the literature.   

A similarly designed study of thirty-nine individuals by Hansell et al220 measured 

microcirculatory changes related reactive hyperaemia and iontophoretically 

administered acetylcholine.  A pneumatic cuff on the wrist at 200mmHg 
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occluded flow for four minutes after which a laser Doppler probe measured flux 

in the dorsal skin of the left hand.  Hansell’s group of subjects aged between 17 

and 56 (median 27) includes two smokers (smoking reduces the duration of 

reactive hyperaemia215), and seven taking oral contraceptives or oestrogen 

replacement or low dose steroids which may all have a degree of influence on 

the duration and magnitude of reactive hyperaemia.  Tur’s215 subjects did not 

take any medication in the month prior to testing, were also normotensive and 

were aged between 20 and 40 years with an average age of 28.8 in the non-

smokers. The time to peak hyperaemia in Hansell’s study was 9.7 seconds and 

the hyperaemia duration 95 seconds (8.5 – 222 seconds) after which perfusion 

returned to pre-occlusive values.  This study by Hansell has an ischaemia time of 

four minutes as in Tur’s study, although correlates with the findings of our study 

with a hyperaemia duration of less than 5 minutes. 

Lenasi et al213 investigated the effect of regular physical training on cutaneous 

microvascular activity using laser Doppler flowmetry in 39 patients; 19 trained 

competitive cyclists and 20 age-matched controls.  Reactive hyperaemia was one 

of the comparisons between the groups, and was measured with a laser Doppler 

probe attached to the third finger following 8 minutes of occlusion with a 

suprasystolic cuff on the finger.  The recovery time in the control group was 

154.6±4.6 seconds and 241.5±21.6 seconds in the athlete group.  This finding 

among others led the authors to conclude that physical conditioning leads to 

increased endothelium-dependent vasodilation.  This increased vasodilator 

capacity of endothelium in trained individuals in other studies with greater areas 

under the reactive hyperaemia curve212;214.  Wollersheim et al221 compared post-

occlusive reactive hyperaemia in 29 patients with primary Raynaud’s 

phenomenon, 30 patients with secondary Raynaud’s phenomenon (additionally 

suffering from either connective tissue diseases, rheumatoid arthritis, sjogren 

syndrome, scleroderma or severe arterial obstructive disease) and 24 healthy 

volunteers without cardiovascular disease.  Measurements were made with a 

laser Doppler probe attached to a finger, and a pneumatic finger cuff inflated to 

200mmHg for 5 minutes.  The duration of reactive hyperaemia was 143.4±74.1 

seconds in the normal controls, 105.2±79.6 seconds in those with primary 

Raynaud’s and, 92.2±61.1 seconds, 67.7±57.4seconds and 216.8±57.1 seconds in 

those with secondary Raynaud’s in the connective tissue disease, scleroderma 

and arterial occlusive disease subsets respectively.  A final study using recovery 
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time as an outcome measure was performed by Bungum et al222 in 1996 

comparing reactive hyperaemia in forearm skin in fifteen healthy women during 

the menstrual cycle.  Laser Doppler was used to monitor the blood flow changes 

following 3 minutes of arterial occlusion with a pneumatic cuff at 300mmHg.  

The time to recovery after 3 minutes of ischaemia was 77 seconds in the 

follicular phase and 51.3 seconds in the luteal phase.  Interestingly a similar 

method using finger pulp was performed in which the recovery time was around 

18 – 22 seconds but this did not reach statistical significance between the two 

groups.  The postulated reason for differences between the two sites was the 

presence of AV shunts in the finger pulp and thought to therefore give values 

that were more related to ‘central body heat excess’ than reflecting hyperaemic 

response.  All three studies have reactive hyperaemia times in all subset groups 

of under five minutes. 

Other studies, not using ‘time to recovery’ following reactive hyperaemia as an 

outcome measure, often prefer ‘time to maximum flux’ or ‘time to half 

recovery’, and frequently graphically represent the results giving an indication 

of the time to recovery.  Morales et al210 in 2004 attempted to standardise laser 

Doppler perfusion monitoring and a reproducible analysis method for post-

occlusive reactive hyperaemia in 24 patients with peripheral arterial obstructive 

disease and 30 healthy controls.  They proposed a protocol including laser 

Doppler calibration and subject preparation and manoeuvres.  A pneumatic cuff 

was used on the thigh for 3 minutes occlusion, 30mmHg above systolic pressure, 

and the probe was on the dorsum of the foot to reduce the thermoregulatory 

blood flow and number of AV anastomoses.  Statistical analysis of results 

confirmed that the time paramaters measured (time to resting flux, time to 

maximum flux and time to half recovery) were superior to flux values (resting 

flux and maximum flux) in discriminating between groups.  Although time to  

recovery was not measured, a graphical control example within the paper 

suggests a time of around 200 seconds (occlusion time 210 seconds), with 

statistical values for time to resting flux, time to maximum flux and time to half 

recovery as 2 seconds, 19 seconds and 68 seconds respectively in control 

patients.  Also, a paper by Maggi et al219 investigating microcirculation in HIV-

positive patients found that patients had increased perfusion in capillaries, 

perhaps due to neuropathy.  The time for recovery from reactive hyperaemia 

following 200mmHg occlusion for 10 minutes in the arm (laser Doppler probe 
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placed on finger) appears to be less than 5 minutes in the 23 patient control 

group.  Finally a study of 10 healthy patients by Agarwal et al223 graphically 

represent recovery of one patient from 5 minutes are pressure cuff occlusion 

within 2 – 3 minutes.  Albeit lower levels of evidence, in different sites and in 

different patient populations, these studies’ control patients further support our 

finding that reactive hyperaemia in our study is complete within 5 minutes. 

Of relevance to our protocol, and its use in future studies involving a period of 

vessel occlusion intraoperatively, is the reproducibility of post-occlusive reactive 

hyperaemia.  Thijssen et al211 investigated reproducibility in different 

anatomical sites; the forearm, calf and thigh.  Measurements were made in eight 

healthy males using venous occlusion plethysmography, a technique of 

measuring the volume of the limb or part of a limb by occluding to give a 

measure of perfusion or blood flow and other physiological parameters207;208.  

Thijssen concluded that measurements had ‘acceptable-to-good’ short (3 hours) 

and medium term (6 – 10 days) reproducibility in measuring post-occlusive 

reactive hyperaemia with a suprasystolic cuff pressure of 220mmHg for 13 

minutes.  Tee et al200 investigated the influence of occlusion time on 

postocclusive forearm skin reactive hyperaemia using laser Doppler flowmetry in 

20 healthy volunteers.  Occlusion of the upper arm with suprasystolic pressure 

was randomised to one, two or three minutes.  Increase in flux was the outcome 

measure and they concluded that although there were significant differences in 

flux between each of the three occlusion times, occlusions of less than 3 minutes 

produced submaximal reactive hyperaemia.  Three minutes occlusion time was 

suggested as a good compromise in future studies to produce sufficient changes 

in flux without being too uncomfortable in awake patients.  In our study, clamp 

times are a minimum of 5 minutes and are therefore not within the less than 3 

minute time frame of ‘submaximal’ reactive hyperaemia as suggested by Tee, 

although for the purposes of our study a reduced hyperaemia period is not 

problematic.  The reproducibility that Thijssen refers to, both short-term (hours) 

and long-term (days), does not affect our intraoperative protocol complete in 

less than one hour.  There are no repeat measurements planned on the vessels 

following free flap transfer, and the purpose of the protocol is to identify times 

for clamping and scanning that provide reproducible and reliable results within a 

short intraoperative time window, with the aim being to compare vessels within 

one patient rather than between patients, again minimising possible variables.   
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Patient factors as described above that may have an influence on the time taken 

for reactive hyperaemia were not exclusion criteria for our pilot study.  The 

ladies recruited were undergoing delayed breast reconstruction with a DIEP free 

flap and were therefore deemed to be relatively healthy, and in addition we 

wished that this protocol could be used in any patient undergoing free flap 

transfer which would have no specific exclusion criteria other than perhaps 

smoking.  There were no outliers in our data.  All ladies claimed to be non-

smokers or ex-smokers immediately pre-operatively, none had significant 

cardiovascular disease, scleroderma or HIV or other known systemic disease, 

there were no extremes of age (40-52 years old) or fitness, and one patient was 

taking anti-hypertensive medication (possibly reducing reactive hyperaemia217).  

Intra-operatively comparisons were between laser Doppler scans during a thirty 

minute time window during which the patients were haemodynamically stable.  

Factors altering vascular reactivity and therefore the reactive hyperaemia time 

should be contemplated, but would not preclude the use of laser Doppler or 

other methods to assess flap perfusion providing an adequate period for 

resolution reactive hyperaemia has been left.  Although in this pilot study we 

have successfully allowed five minutes for the completion of reactive 

hyperaemia, if there were suspicion that reactive hyperaemia may last longer 

due to external factors, or factors requiring a bigger oxygen deficit to be repaid 

for example a dramatically increased clamp time or a more metabolically active 

flap (e.g. perhaps musculocutaneous), laser Doppler line scanning would allow 

temporal resolution to confirm stability of flow prior to image scanning.  Laser 

Doppler image scanning gives a two dimensional pictorial image, as would other 

techniques like indocyanine green videoangiography, whereas a laser Doppler 

probe or laser Doppler line scanning will  give one dimensional flux information 

only, continuous in time.  These continuous one-dimensional flux values could be 

used, where necessary, to confirm stability before a method of image scanning is 

commenced. 

In future studies based on this scanning and clamping methodology, it would be 

necessary to be able to visually distinguish differences in perfusion across the 

area of a flap, to gain information about both the vascular territory of individual 

vessels and in comparison of vessels when there is a choice of vessel.  For this 

reason two small rectangles were subjectively visually placed on each flap using 

the Moor laser Doppler research software, one representing an area of ‘good’ 
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flux and the other representing an area of ‘poor’ flux.  Statistical analysis 

confirmed that flux was higher in areas visually chosen as well-perfused than in 

areas chosen as poorly-perfused (p<0.01).  Studies to compare perfusion across 

flaps, using both laser Doppler flowmetry191;225;226 and laser Doppler imaging and 

also other techniques such as laser fluorescence angiography (indocyanine 

green)196;227;228 or near-infrared reflection spectroscopy195, statistically analyse 

the results post-operatively to quantify the differences between zones once the 

perforating vessel(s) have been chosen.  Our studies can be used in a similar way 

in multiple vessels per patient with the use of appropriate clamping and 

scanning times, and additionally may also be used in the intraoperative decision 

of which vessel to base the flap on and which sections of the flap are best kept 

when a reduction in flap size is required for the recipient site.  The difference in 

flux, between zone 1 as a baseline and any other area, is more important than 

the absolute flux value.  To provide information that is valuable in making these 

choices, differences in flow must be visually rather than just statistically 

apparent. 

Baker et al177 assessed the performance of laser Doppler predictions of burn 

healing time, an accepted method of increasing the accuracy of predictions60-62.  

It was noted that it was not yet practical to use a ‘mean flux-based 

methodology’ for wound predictions as there is a ‘distribution of flux values’ and 

the spatial distribution of these is important.  Burns software gives the tissue 

that has a distribution of flux additional colours to represent overlap areas, 

areas that do not fall into a clear predictive burn healing time groups.  This wide 

distribution of flux values can also be seen in flap images, especially as the 

standard or research software used displays a coloured pixel per flux value 

without grouping areas like burns software.  Interpretation of areas with wide 

ranging values of flux, which may not be outlined within zones, and their 

relation to the well-perfused and poorly-perfused areas of a flap, may firstly 

help in deciding which areas of a flap should preferentially be discarded before 

transfer to the recipient site.  Possible relations of perfusion and flux to 

postoperative partial necrosis have been investigated and discussed in Chapter 

5.  Laser Doppler images may secondly be of benefit when deciding between 

vessels intraoperatively in an individual patient by providing an impression of the 

area of the flap that has good perfusion and also whether there seems to be any 

obvious difference in the baseline flow or flux in zone 1 between vessels.   
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In summary, laser Doppler imaging, with clearly defined clamp and scan times to 

allow repetition of scanning within one surgical procedure, allows an impression 

physiological territory of individual vessels to be ascertained.  Knowledge of this 

physiological territory aids where there is a choice of vessel, a decision that 

would otherwise by made by clinical inspection of the calibre vessel, and the 

area of skin least well perfused when the flap requires to be reduced in size to 

fit the recipient site.  The protocol and methodology of clamp and scan times 

also allows maximal information to be gained in the intraoperative period when 

planning further research studies.  Chapter 5 investigates the postoperative 

perfusion of the DIEP flaps studied in this chapter, and chapter 6 

intraoperatively compares SIEA and DIEP vessels using the methodology 

delineated by this pilot study. 
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5 Laser Doppler assessment of post-operative 
perfusion 

5.1 Introduction 
In addition to investigating the intraoperative effects of clamping and scanning 

times on laser Doppler scan results in Chapter 4, laser Doppler scans were 

performed postoperatively for up to 72 hours after free flap transfer on these 

patients.  This was to observe changes in perfusion in the first 72 hours post-

operatively when choke vessels are thought to dilate between angiosomes.  The 

angiosomes of the lower abdomen with regards to deep inferior epigastric 

perforator (DIEP) flaps and transverse rectus abdominis are commonly referred 

to as 'zones'.  The most commonly used terminology are Hartrampf's zones, 

Figure 5-1 below, with zone 1 representing the midline zone where the pedicle 

enters the flap, zone 2 is the contralateral midline zone, zone 3 is the ipsilateral 

lateral zone, and zone 4 the contralateral lateral zone.  The significance and 

debate over these zones is explained in more detail in Chapter 6. 

Pedicle

12 34

 

Figure 5-1 - Hartrampf's zones of lower abdomen. 

 
Laser Doppler imaging has been used as both a research tool and for flap 

monitoring in the post-operative period (mainly in the form of laser Doppler 

flowmetry with attachable probes).  In designing a further study using 

microdialysis catheters to assess tissue chemistry over a 72 hour period (Chapter 
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7), we wished to observe whether haemodynamic changes within a DIEP flap 

could be detected non-invasively using laser Doppler imaging, and if so, to 

observe changes in perfusion between angiosomes during this period of choke 

vessel dilation.  

5.2 Method 
The eight patients recruited for the intra-operative pilot study described in 

Chapter 4, were included in this 72 hour laser Doppler post-operative study. 

As described previously (Chapter 4), eight female patients undergoing delayed 

breast reconstruction with DIEP flaps following mastectomy were recruited for 

the intra-operative and post-operative pilot studies.  Only delayed flaps were 

included as the flaps needed a skin paddle that could be scanned post-

operatively.  The DIEP (Deep Inferior Epigastric Artery Perforator) flap is a lower 

abdominal perforator flap consisting of skin and fat, that is commonly used in 

autologous breast reconstructions.  The DIEP vessels in this study were 

anastomosed to the internal mammary vessels, adjacent to the sternum, and the 

skin and fat inset to form an aesthetically acceptable breast reconstruction.   

Laser Doppler image scans were performed post-operatively once the patient 

had returned to the recovery ward, and at 4 hours, 16 hours, 24 hours, 48 hours 

and 72 hours post-operatively.  As before the laser Doppler scanner used was the 

LDI2-IR from Moor Instruments, Axminster, Devon, UK.  There are two laser light 

sources with a single coaxial laser output; the visible red laser diode aiming 

beam (wavelength 660nm, 0.25mW), and the near infra-red laser diode 

(wavelength 780nm, 2.25mW, Class IIIR) used for the laser Doppler 

measurements.  Research software, Moor V5.3, was used to carry out the patient 

scans; Large scan setting, 4 msec/pixel, 70cm from patient, and scanner at a 15 

degree angle.  Each pixel recorded represents a number which is a unit of flux.  

The unit of flux recorded by the Doppler principle is proportional to blood flow.  

Scans were performed from above the patient and from the side of the patient 

to account for the curvature of the reconstructed breast and the angle of 

incidence of the laser light.  Patients were always scanned in the same supine 

position when warm and haemodynamically stable.  As it was not possible to 

control for medications, temperature and fluid balance, a baseline measurement 
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of normal skin was taken as a reference point for the effect of any confounding 

factors. 

Ethical approval was granted by Glasgow Royal Infirmary Ethics Committee.  No 

changes were made to the operative procedure or to the post-operative care and 

routine clinical flap monitoring.  

5.2.1 Analysis of data and descriptive statistics 

Details of the data analysis from the laser Doppler scans for chapters 4, 5 and 6 

are given in Section 4.2.1, page 73. 

The scans were analysed using the Moor Laser Doppler Imager research software, 

Version 5.3.  The area of perfusion in each zone to be analysed was marked by a 

circle using the Moor research software (Figure 5-2 & Figure 5-3).  As there were 

dressings over the wounds and curvature of the skin surface, the central areas of 

each zone were chosen to try and minimise any artefactual error.   

 

Figure 5-2 - Laser Doppler image of patient 4 from above. 
Laser Doppler flux image on left, video image on right.  Placement of circles over zones 3, 1 
and 2 from left to right.  Baseline measurement on patients abdomen.  Statistical output 
form Moor research software version 5.3 displayed.  (NB.  Alignment of flux image and video 
image do not match due to convergence error of the detector and camera within the Moor 
LDI2 laser Doppler.  This has no practical significance for the flux image and results are not 
affected). 
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Figure 5-3 - Laser Doppler imaging of patient 4 from the side. 
Placement of circles over zones (see flux image on left only), and baseline from patients 
abdomen. 

 
The medians calculated for each of these areas were used in the subsequent 

statistical analysis of the data.  Statistical packages used were GenStat and 

Minitab version 16. 

5.3 Results 
The patients had an average age of 49yrs (40 – 52 years old) and average BMI of 

27 (21 to 30).  The average operative time was 7 hours and 40 minutes and the 

average ischaemic time was 113 minutes (range 68 minutes - 155 minutes).  

Three patients had zone 4 of the DIEP flap remaining in the tissue for 

reconstruction at flap transfer.  Patient 8 suffered from distal flap necrosis in 

zone 4 which was later debrided (Figure 5-4).  There were no flap failures. 
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Figure 5-4 - Patient 8, bruising laterally. 
Scan at 72 hours post-operative.   

  

5.3.1 Data description 

The number of measurements for each patient for each timepoint and angle of 

scanner (from above or from the side) are shown in the frequency distribution in 

Table 5-1.  The number of measurements include a baseline measurement from 

the patients own skin plus up to four additional measurements for zones 1 - 4 of 

the inset DIEP flap. 

  
                                                    Patient        1         2         3        4         5        6        7         8 
Timepoint Angle   
Post-op Above 4 4 4 4 4 0 4 3 
 Side 0 0 0 4 5 3 0 0 
Four hours Above 4 4 4 3 4 3 4 4 
 Side 0 0 4 3 4 3 0 4 
Sixteen hours Above 4 4 3 3 4 3 4 4 
 Side 4 0 3 4 5 3 0 4 
Twenty-four hoursAbove 4 4 3 3 4 3 4 3 
 Side 3 0 0 3 4 3 0 3 
Forty-eight hoursAbove 4 4 3 4 5 3 4 3 
 Side 3 0 0 4 4 3 0 4 
Seventy-two hoursAbove 4 4 3 4 4 3 4 3 
 Side 3 0 4 4 5 3 0 4 
 

Table 5-1 - Frequency distribution of number of zone and base line measurements  
by patient, time-point and angle. 
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5.3.1.1 Perfusion by time point 

The perfusion by time point is shown in Figure 5-5 and the summary statistics in 

Table 5-2. 
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Figure 5-5 - Boxplots of perfusion by time point. 

 
 
Variable  Time-point          N  N*    Mean  SE Mean  StDev  Minimum      Q1 
Median    Post-op            39   0   169.3     10.1   62.8     84.0   128.0 
          Four hours         48   0  164.88     8.55  59.21    56.00  124.50 
          Sixteen hours      52   0  140.58     6.96  50.16    49.00  106.00 
          Twenty-four hours  44   0  142.55     6.93  45.96    61.00  105.50 
          Forty-eight hours  48   0  136.98     7.53  52.15    45.00   98.50 
          Seventy-two hours  52   0  144.98     7.54  54.36    27.00  105.50 
 
Variable  Time-point         Median      Q3  Maximum 
Median    Post-op             143.0   208.0    364.0 
          Four hours         158.50  202.75   360.00 
          Sixteen hours      142.00  163.50   275.00 
          Twenty-four hours  136.00  175.00   274.00 
          Forty-eight hours  133.50  165.75   274.00 
          Seventy-two hours  139.50  177.25   284.00 

Table 5-2 - Summary statistics of perfusion (flux) by time point. 

 
The mean perfusion decreases slightly from post operative values (169.3 units of 

flux) until 4 hours (164.9).  At 16 hours the mean perfusion is lower (140.6), and 

remains at approximately this level at further time points.  The mean exceeds 

the median at all time points which is consistent with the right skew of the 

distribution. 
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5.3.1.2 Perfusion by zone 
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Figure 5-6 - Boxplots of perfusion by zone. 

 
 
Variable  Zone     N  N*    Mean  SE Mean  StDev  Minimum      Q1  Median 
Median    base    77   0  169.29     6.39  56.05    46.00  132.00  151.00 
          zone 1  73   0  156.47     4.97  42.45    79.00  127.50  154.00 
          zone 2  73   0  124.56     4.61  39.39    61.00   89.50  126.00 
          zone 3  44   0  168.52     9.87  65.50    58.00  121.25  151.50 
          zone 4  16   0   78.06     7.21  28.85    27.00   55.25   75.50 
 
Variable  Zone        Q3  Maximum 
Median    base    206.50   360.00 
          zone 1  178.00   261.00 
          zone 2  147.00   239.00 
          zone 3  213.00   364.00 
          zone 4  103.25   125.00 

Table 5-3 - Summary statistics of perfusion by zone. 

 
It can been seen from Figure 5-6 that zone 4 is the least well perfused.  Zones 1 

& 3 have the highest perfusion values and appear similarly well perfused. 
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5.3.1.3 Perfusion by angle 
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Figure 5-7 - Boxplots of perfusion by angle. 

 
 
Variable  Angle    N  N*    Mean  SE Mean  StDev  Minimum      Q1  Median 
Median    Above  169   0  157.42     4.45  57.79    46.00  116.50  147.00 
          Side   114   0  136.93     4.53  48.35    27.00  101.75  135.50 
 
Variable  Angle      Q3  Maximum 
Median    Above  190.50   364.00 
          Side   165.25   284.00 

Table 5-4 - Summary statistics of perfusion by angle. 

 
Figure 5-7 & Table 5-4 show the boxplots of perfusion by angle.  'Above' 

representing the laser Doppler scanner being placed above the patient, and 'Side' 

representing the laser Doppler positioned at 90 degrees from the above angle.  

Side measurements were included to incorporate the curvature of the breast 

reconstruction as not all of the flap skin could be imaged from above. 

The perfusion observed from Above is higher, which is in keeping with zone 1 of 

the DIEP generally being the most medial area of the flap as the vessels are 

anastomosed to the internal mammary vessels. 

It is also of note as per Table 5-1, there are not equal numbers of measurements 

for the side and above, nor at the different time points. 
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5.3.2 Statistical modelling of the data 

To test the statistical significance of the effects of the factors timepoint, zone 

and angle, a linear model was fitted to the data.  The method of residual 

maximum likelihood (REML) was used to fit the model229.  The REML analysis was 

carried out on the log transformation (base 10) of the perfusion measure as 

examination of residual plots from a fit of the model to the perfusion measure 

showed that residual variability tended to increase with mean perfusion.  

Statistical significance of effects was assessed using approximate Wald tests 

provided by GenStat. 

The model contains the following fixed effects; the main effects of timepoint 

(T), zone (Z), and angle (A); the two-factor interactions T.Z, T.A and Z.A; the 

three-factor interaction T.Z.A.  A random factor 'patient' (P) was also included in 

the model to allow for correlations made on the same patient.   
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  Wald Test statistic 

(Approximate Chi‐squared) 
d.f.  P‐value 

Angle (A)  190.28  1  <0.001
A|Time‐point (T)  193.96  1  <0.001
A|Zone (Z)  107.74  1  <0.001
A|Z+T  112.23  1  <0.001
A|Z+T+Z.T  70.78  1  <0.001
     
Z  115.63  4  <0.001
Z|A  33.09  4  <0.001
Z|T  113.18  4  <0.001
Z|A+T  31.44  4  <0.001
Z|A+T+A.T  31.15  4  <0.001
     
T  12.33  5  0.030
T|A  16.02  5  0.007
T|Z  9.88  5  0.079
T|A+Z  14.37  5  0.013
T|A+Z+A.Z  14.38  5  0.013
       
T.A|T+A  7.81  5  0.167
T.A|Z+A+T  7.52  5  0.185
T.A|Z+A+T+A.Z  7.30  5  0.199
T.A|Z+A+T+T.Z  7.33  5  0.197
T.A|Z+A+T+Z.T+Z.A  7.19  5  0.207
     
A.Z|A+Z  3.30  4  0.509
A.Z |A+Z+T  3.31  4  0.508
A.Z |A+Z+T+A.T  3.09  4  0.542
A.Z |A+Z+T+Z.T  2.87  4  0.580
A.Z |A+Z+T+A.T+Z.T  2.73  4  0.604
     
T.Z|T+Z  62.23  20  <0.001
T.Z|T+A+Z  20.77  20  0.410
T.Z|T+A+Z+Z.A  20.34  20  0.437
T.Z|T+A+Z+A.T  20.59  20  0.422
T.Z|T+A+Z+Z.A+A.T  20.23  20  0.444
     
T.A.Z|T+A+Z+Z.A+Z.T+A.T  27.54  17  0.051

Table 5-5 - Wald tests of main effects and interactions. 

 
The main effect of angle (A) is statistically significant (p<0.001) regardless of 

which other terms are present.  The main effect of zone (Z) is also statistically 

significant (p<0.001) regardless of which other terms are used. 

The main effect of timepoint (T) is statistically significant except when 

allowance is made for the effect of zone only (p=0.079).  However, when angle 

is also allowed for, the main effect of timepoint regains its significance. 
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Neither of the two-factor interactions T.A, A.Z were statistically significant. 

The interaction T.Z was statistically significant (p<0.001) allowing for the sum of 

the main effects only (T+Z).  If the allowance is additionally made for the angle, 

the interaction loses its significance. 

The thee-factor interaction T.A.Z just fails to reach statistical significance 

(p=0.051). 

5.3.2.1 Model of data 

Wald and F-tests for the model are shown in Table 5-6. 

The first set of p-values is for sequential tests i.e. zone without adjustment for 

angle or timepoint, timepoint allowing for zone, & angle allowing for zone and 

timepoint. 

The second set of p-values are for tests of individual terms, adjusted for both of 

the other two terms.  The difference between zones in mean perfusion (log scale 

base 10) are statistically significant (p<0.001), adjusted for the effects of 

timepoint and angle.  Similarly the difference between time points is significant 

(p=0.032) and the difference between angle is significant (p=0.045). 

 
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f.* F statistic d.d.f.* F pr 
Zone 40.69 4 10.17 21.8  <0.001 
Time_point 13.14 5 2.63 34.1  0.041 
Angle 12.01 1 12.01 2.8  0.045 
  
Dropping individual terms from full fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Zone 31.97 4 7.99 21.8  <0.001 
Time_point 13.96 5 2.79 34.1  0.032 
Angle 12.01 1 12.01 2.8  0.045 
 

Table 5-6 - Wald tests and approximate F-tests for model with no interactions between fixed-
effect factors. 
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5.3.2.2  Predicted means for timepoint 

A table for the predicted mean perfusion log scale (base 10) by timepoint is 

shown in Table 5-7.  The standard errors of differences between pairs are shown 

in the lower triangular matrix. 

 
Time_point   
Post-op  2.129 
Four hours  2.139 
Sixteen hours  2.077 
Twenty-four hours  2.070 
Forty-eight hours  2.050 
Seventy-two hours  2.082 
  
  
Standard errors of differences between pairs 
  
             
Time_point Post-op           1   *         
Time_point Four hours        2 0.030   *       
Time_point Sixteen hours     3 0.030  0.029   *     
Time_point Twenty-four hours 4 0.030  0.030  0.029   *   
Time_point Forty-eight hours 5 0.030  0.029  0.029  0.029   * 
Time_point Seventy-two hours 6 0.029  0.029  0.029  0.029  0.029 
    1  2  3  4  5 
  
     
Time_point Seventy-two hours 6   * 
    6 
 

Table 5-7 - Predicted mean perfusion (log scale base 10) by timepoint. 

 
Comparing each of the time differences gives a significant drop in perfusion 

between 4 hours and 16 hours post-operatively (p=0.046).  None of the other 

sequential time differences are significant (post-op to 4 hours, p=0.74, 16 hours 

to 24 hours p=0.82, 24 hours to 48 hours p=0.50, 48 hours to 72 hours p=0.28).  

There is no significance between the post-operative perfusion and the perfusion 

at 72 hours (p=0.11). 

The anti-logged predicted mean perfusion by timepoint is shown below, Table 

5-8. 

Post-op 4 hours 16 hours 24 hours 48 hours 72 hours 
134.586 137.721 119.399 117.490 112.202 120.781 

Table 5-8 - Anti-logged predicted mean perfusion by timepoint. 
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5.3.2.3 Predicted means for zone 
 
Table 5-9 below shows the predicted mean perfusion on the log scale (base 10) 

by zone.  These predictions are adjusted for the effects of timepoint and angle.  

The standard errors of differences between pairs are in the lower triangular 

matrix. 

Zonebasezone 1 zone 2 zone 3 zone 4 
2.197 2.158 2.077 2.127 1.896 
  
  
Standard errors of differences between pairs 
  
             
Zone base   1   *         
Zone zone 1 2 0.038   *       
Zone zone 2 3 0.038  0.038   *     
Zone zone 3 4 0.043  0.044  0.043   *   
Zone zone 4 5 0.057  0.057  0.057  0.061   * 
    1  2  3  4  5 

Table 5-9 - Predicted mean perfusion (log scale base 10) by zone 

 
There is a significant difference in perfusion between zone 1 and zone 2 

(p=0.045), and between zones 1 and 4 (p<0.001), 2 and 4 (p=0.004), and 3 and 4 

(p=0.001). 

The anti-logged predicted mean perfusion by zone is shown in Table 5-10 below. 

Base 1 2 3 4 
157.398 143.880 119.399 133.968 78.7046 

Table 5-10 - Anti-logged predicted mean perfusion by zone. 

 

5.3.2.4 Predicted means for angle 
 
AngleAbove Side 
 2.112 2.070 
  
  
Standard errors of differences between pairs 
  
       
Angle Above 1   *   
Angle Side  2 0.012   * 
    1  2 

Table 5-11 - Predicted mean perfusion (log scale base 10) by angle. 
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The difference between above and side angles is significant (p=0.046) as 

expected from the approximate F-test in Table 5-6.  The anti-logged predicted 

mean perfusion by angle is shown in Table 5-12 below. 

Above Side 
129.419 117.489 

Table 5-12 - Anti-logged predicted means by angle. 

 

5.3.3 Data separated by Angle, above or side  

As the Angle was significant, the data were separated into data obtained from 

above and from the side.  Two separate analyses were carried out, one for each 

angle, and the effects of time point and zone investigated.  

The effects of angle are significant as shown by the F-test in Table 5-6 and the t-

test (p=0.046), and cannot be further examined by carrying out separate 

analyses.  Further analyses are to compare the interaction between time point 

and zone from the different angles.   

Additionally the perfusion was normalised against the 'base' perfusion, with each 

of the perfusions for zones 1 to 4 being expressed as a percentage of the base 

perfusion at the same time point.  This was to determine whether the perfusion 

of the DIEP flap was varying from the patients' own perfusion (base 

measurements taken from patients' in situ skin rather than flap skin, as 

described previously), as an attempt to control for factors such as the effects of 

anaesthetic agents wearing off, hydration, temperature and analgesia of the 

patient at a particular time point. 

5.3.3.1 Data description from above, including normalised data 

The boxplots in Figure 5-8 and Figure 5-9 (normalized data) display the data by 

time point and zone.  Perfusion for the base appears on average to be greater 

than that in zone 1, and zone 1 perfusion appears greater than zone 2.  The 

perfusion in zone 3 appears to be similar to the base, but the variability is 

greater.  There were fewer measurements for zone 4 and these appeared to be 

lower than the other zones and the baseline skin perfusion.  In the normalised 

boxplot similarly, the perfusion in zones 1 & 3 are higher than zone 2, which in 

turn is higher than zone 4. 
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Figure 5-8 - Perfusion by time point and zone, from above. 
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Figure 5-9 - Perfusion as a percentage of 'base', by time point and by zone, from above. 
(Single outlier, zone 2, 48 hours, 387% not shown.) 

 
The median perfusions, Figure 5-10 & Table 5-13, shown below show that for the 

base measurement (i.e. the patients' own skin and state of perfusion) the 
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perfusion declines between post-operatively and 16 hours post-operatively, and 

then remains flat until 48 hours, returning at 72 hours to a value between the 16 

hour value and the four hour value.  Zones 1 & 2 show a flatter time profile than 

the base measurement, apart from a dip at 48 hours in the zone 2 perfusion.  

Zone 3 perfusion does not differ greatly from the base and there is a peak at 

four hours.  

 
                    Four  Sixteen  Twenty-four  Forty-eight  Seventy-two 
          Post-op  hours    hours        hours        hours        hours    All 
 
base        208.0  187.0    151.5        151.5        149.0        176.5  172.5 
                7      7        8            8            8            8     46 
 
zone 1      158.0  166.0    163.0        159.5        155.0        163.0  163.0 
                7      7        8            8            8            8     46 
 
zone 2      119.0  135.0    128.0        135.0         96.0        123.5  119.0 
                7      6        7            7            8            8     43 
 
zone 3      186.0  213.0    144.0        137.0        131.0        192.0  144.0 
                6      5        5            5            5            5     31 
 
zone 4          *   66.0     58.0            *        125.0            *   66.0 
                0      1        1            0            1            0      3 
 
All         141.0  168.0    151.0        138.5        132.5        150.0  147.0 
               27     26       29           28           30           29    169 
 

 

Table 5-13 - Median perfusion by zone and time point, from above. 
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Figure 5-10 - Median perfusion by time point and zone, image from above. 
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Table 5-14 and Figure 5-11 below display the data relative to the patients 

baseline as before.  In comparison with Figure 5-10 above it can be noted that 

zone 1 has a relative increase in perfusion at 16 hours, and zone 3 has a dip at 

this time.  Zone 2 appears to peak at 24 hours.  Overall the perfusion at 72 hours  

is greater than immediately post-operatively. 

 
                    Four  Sixteen  Twenty-four  Forty-eight  Seventy-two 
          Post-op  hours    hours        hours        hours        hours     All 
 
zone 1      79.15  84.65    94.60        85.08       106.31       103.33   96.54 
                7      7        8            8            8            8      46 
 
zone 2      60.00  63.72    66.45        78.49        70.55        73.46   68.06 
                7      6        7            7            8            8      43 
 
zone 3     100.36  85.21    76.00       102.29       110.08       120.94  100.52 
                6      5        5            5            5            5      31 
 
Zone 4          *  36.07    40.85            *        51.23            *   40.85 
                0      1        1            0            1            0       3   
 
All         84.17  79.68    76.00        85.08        90.40       100.52   85.21 
               20     19       21           20           22           21     123 
 

Table 5-14 - Median perfusion (number of measurements) by zone and time point, from 
above.  Normalized against baseline. 
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Figure 5-11 - Median perfusion by time point and zone, image from above.  Normalized 
against baseline. 
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5.3.3.2 Statistical modelling, image data from above 

A REML model was fitted to log base 10, and the fixed effects were zone, time 

point, and their interaction.  The results of fixed effects are shown in Table 5-15 

below. 

 F-test 
statistic 

Numerator 
d.f. 

Denominator 
d.f. 

P-value 

Zone (Z) 5.10 4 22.3 0.005 
Z|Timepoint (T) 4.99 4 22.3 0.005 
     
T 2.91 5 31.4 0.028 
T|Z 2.82 5 31.4 0.032 
     
T.Z|T+Z 0.95 17 89.9 0.520 

Table 5-15 - Approximate F-tests to two main effects and their interaction.  Imaging from 
above. 

 
The interaction between zone and time point (T.Z) is not statistically significant 

(p=0.520).  This implies that the differences  between the zones and the base 

are not statistically significant, and that the time profiles run in parallel.  

A model is including the only two main effects is shown in Table 5-16 below.  

The p-value for the effect of time point adjusted for zone (p=0.038) and the 

effect of zone adjusted for time point (p=0.004), are both significant.  

Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Timepoint 13.96 5 2.79 32.4  0.033 
Zone 20.95 4 5.23 23.4  0.004 
  
Dropping individual terms from full fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Timepoint 13.54 5 2.71 32.4  0.038 
Zone 20.95 4 5.23 23.4  0.004 
Table 5-16 - Approximate F-tests for model with no interaction between zone and timepoint. 

 
The predicted mean perfusions (log base 10 scale) by zone and by time point, 

when imaged from above has been used to calculate significance levels between 

zones and between time points. 

The using predicted mean perfusions on 32.4 d.f. there is no significant 

difference between sequential post-operative time points, but there is a 

significant decrease from the immediate post-operative period to 24 hours 
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(p=0.03), which further decreases to 48 hours (p=0.006, from post-op value).  

This increases again to 72 hours when there is no difference between this time 

point and the perfusion immediately post-operatively, as previously with the 

entire data set. 

The anti-logged predicted mean perfusion by time point (from above) are in 

Table 5-17 below. 

Post-op 4 16 24 48 72 
143.5 142.2 128.8 120.8 114.8 126.6 

Table 5-17 - Anti-logged predicted mean perfusion by time point, from above. 

 
The predicted mean perfusions for the zones (log base 10 scale, d.f.=23.4) show 

that perfusion is greatest in the base, followed by zone 1, zone 3, zone 2 and 

zone 4 sequentially.  There is no significant difference between the base and 

zone 1, nor between zone 1 and 3, nor between zones 2 & 3, nor between zones 

2 and 4.  The difference in perfusion between zones 1 & 2 is significant 

(p=0.014) and between zones 3 & 4 (p=0.010).  The anti-logged predicted mean 

perfusions per zone are shown below. 

Base Zone 1 Zone 2 Zone 3 Zone 4 
165.6 158.1 118.6 147.9 77.8 

Table 5-18 - Anti-logged predicted mean perfusion by zone, from above. 

 

5.3.3.3  Data description from the side, including normalized data 

The boxplots in Figure 5-12 and Figure 5-13 (normalized data) display the data 

by time point and zone.  Perfusion for the base appears to be not very dissimilar 

from that in zone 1.  Perfusion in zone 1 and base appears greater than the 

perfusion in zone 2.  Zone 3 has some large fluctuations.  There are few 

measurements for zone 4.  In the normalized data the perfusion in zone 1 looks 

greater than in zone 2, zone 3 is again very variable and zone 4 has the lowest 

perfusion but few measurements. 
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Figure 5-12 - Perfusion by time point and zone, from side. 
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Figure 5-13 - Perfusion as a percentage of 'base', by time point and by zone, from side. 

 
Table 5-19 and Figure 5-14 display the median perfusion by zone and time point 

(from the side).  The baseline measurement increases between post-operatively 

and 4 hours, then decreases at 16 hours to a point slightly less than the 

immediate post-operative value, and then remains relatively constant until it is 

at a value slightly above the post-operative value at 72 hours.  The perfusion in 
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zone 1 follows that of the base, and in zone 2 the perfusion is slightly lower with 

a peak at 4 hours and a dip at 24 hours.  Zone 3 is very variable between time 

points, and zone 4 appears lower than the other zones. 

 
                    Four  Sixteen  Twenty-four  Forty-eight  Seventy-two 
          Post-op  hours    hours        hours        hours        hours    All 
 
base        143.0  163.0    135.0        136.0        138.0        148.5  139.0 
                3      6        6            5            5            6     31 
 
zone 1      161.0  149.5    134.0        133.0        146.5        151.0  140.0 
                3      6        6            3            4            5     27 
 
zone 2      128.0  146.0    122.5        100.0        124.0        126.5  126.5 
                3      6        6            4            5            6     30 
 
zone 3      197.0  122.0    135.0        189.0        138.0        116.0  166.0 
                2      3        2            2            1            3     13 
 
zone 4      101.0   56.0     55.0         79.5         96.0         85.0   85.0 
                1      1        3            2            3            3     13 
 
All         152.0  147.5    125.0        134.0        135.5        126.0  135.5 
               12     22       23           16           18           23    114 

 

Table 5-19 - Median perfusion by zone and time point from side. 
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Figure 5-14 - Median perfusion by time point and zone, image from side. 

 
Table 5-20 and Figure 5-15 below display the data relative to the patients 

baseline.  In comparison with Figure 5-14 zones 1, 2 and 4 follow a relatively 
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similar time course with an initial, a plateau, an increase to 24 hours and then a 

further decrease.  The perfusion in zone 2 is comparatively flat. 

                    Four  Sixteen  Twenty-four  Forty-eight  Seventy-two 
          Post-op  hours    hours        hours        hours        hours    All 
 
Zone 1     112.59  78.69    81.13        92.79        92.26        83.90  89.66 
                3      6        6            3            4            5     27 
 
Zone 2      79.51  82.65    76.79        75.51        70.05        77.86  75.51 
                3      6        6            4            5            6     30 
 
Zone 3     122.37  74.36    73.73       111.99        99.28        50.88  82.63 
                2      3        2            2            1            3     13 
 
Zone 4      73.72  40.88    44.00        58.64        51.15        29.93  48.89 
                1      1        3            2            3            3     13 
 
All         91.97  75.28    72.60        76.92        70.05        73.26  75.78 
                9     16       17           11           13           17     83 

Table 5-20 - Median perfusion by zone and time point from side.  Normalized against 
baseline. 
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Figure 5-15 - Median perfusion by time point and zone, image from side.  Normalized against 
baseline. 

 

5.3.3.4  Statistical modelling, image data from the side 

As for the data imaged from above, two separate REML models were fitted to 

the log base 10 model.  The fixed effects were zone, time point and their 

interaction.  The results of the fixed effects are in Table 5-21 below. 
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 F-test 
statistic 

Numerator 
d.f. 

Denominator 
d.f. 

P-value 

Zone (Z) 6.30 4 15.5 0.003 
Z|Timepoint (T) 6.13 4 15.5 0.004 
     
T 2.04 5 18.3 0.120 
T|Z 1.91 5 18.3 0.141 
     
T.Z|T+Z 0.78 20 49.8 0.720 

Table 5-21 - Approximate F-tests of main effects and interactions 

 
The interaction between zone and time point is not statistically significant 

(p=0.720).  This implies that differences in the shape of the time profiles of log 

(base 10) perfusion between zones, and importantly between zones and the 

base, are not statistically significant. 

Differences between mean log-perfusion at the various time points are not 

statistically significant. 

Differences between mean log-perfusion at the various zones are statistically 

significant regardless of whether time points are allowed for (p=0.003, p=0.004). 

A model is obtained therefore including only the main effects of zone.  Table 

5-22 shows the results of an approximate F-test for this model. 

Tests for fixed effects 
  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Zone 25.40 4 6.35 16.6  0.003 
  
Dropping individual terms from full fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Zone 25.40 4 6.35 16.6  0.003 
 

Table 5-22 - Approximate F-test for model with only the main effect of zone. 

 
Using predicted mean perfusions and 16.6 d.f., there is no difference between 

the base and zone 1, zone 1 and zone 2, zone 1 and 3,and zone 2 and zone 3.  

There is a significant difference decrease between zone 3 and 4 (p=0.01).  The 

anti-logged predicted mean perfusions per zone (from the side) are shown in 

Table 5-23 below. 
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Base Zone 1 Zone 2 Zone 3 Zone 4 
149.6 129.4 121.9 118.9 74.1 

Table 5-23 - Anti-logged predicted mean perfusion by zone (side). 

 

5.4 Conclusion 
The original analysis using the whole data set shows that angle, time and zone 

are all independently significant. 

The interaction between time and zone was statistically significant (p<0.001) 

allowing for the sum of main effects only (T+Z).  This loses significance if an 

allowance is made for the angle. 

The three-factor interaction T.A.Z. just fails to reach statistical significance 

(p=0.051). 

There is therefore no evidence that there is a difference between the zones with 

time - it would appear that the zones and baseline move in parallel. 

When the data are divided by whether the laser Doppler images were recorded 

from above the patient or from the side of the patient, the interaction between 

zone and time point is again not statistically significant from above (p=0.52) or 

from the side (p=0.72), although the power has been reduced.  Normalizing the 

data against the baseline however reveals in the image recordings from above, a 

departure from a parallel course in zone 3 (see Figure 5-11 & below).  Zones 1, 2 

and 4 have increasing trend in perfusion post-operatively, where as zone 3 

decreases to 16 hours followed by an increase.  This contradicts the non-

significant results in the original analysis (p=0.051), and it should therefore be 

noted that the results approach significance. 

As a pilot study for designing the microdialysis study in DIEP flaps (see Chapter 

7), this study has revealed changes in perfusion across the zones over a 72 hour 

time period, but has not identified a specific time period where changes take 

place nor statistical significance of these changes. 
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Figure 5-16 - Median perfusion by time point and zone, normalized against baseline and 
image from above. 
As before, Figure 5-11. 

 

5.5 Discussion 
Laser Doppler flowmetry has been used in the study of the microcirculation since 

its first application in 197550;230.  Laser Doppler flowmetry and laser Doppler 

imaging both work by the Doppler effect with a frequency shift in the 

backscattered light, following illumination of the tissue by laser light.  The flux 

value calculated is a linear function of the average velocity of moving cells.  

Flowmetry, where a probe is attached to the skin, has been widely used in flap 

monitoring181;183;185;186;192;231-239, with the technique being to observe the trends 

in flux rather than the absolute flux .  It continuously records the state of 

perfusion.  Laser Doppler imaging or scanning provides a two-dimensional image 

which is built by the laser beam scanning a set area.  This is more useful in 

comparing areas at a point in time, for example the zones of a flap, and this 

application of laser Doppler is a valuable adjunct in the early assessment of 

burns240-242. 

This study was designed to look at the pattern in perfusion across the flap in the 

first 72 hours post-operatively, during the period when choke vessels between 
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angiosomes are believed to dilate2;31.  There was a trend towards significance 

with the interaction between zone, time point and angle just failing to reach 

significance (p=0.051).  The pattern in zone 3 appears to decrease to a point 16 

hours post-operatively before beginning to increase in perfusion.  Zones 1, 2 and 

4 show a more gradual increase in perfusion.  Due to the uncontrollable 

confounding factors such as the post-operative effects of anaesthetic, fluid 

balance, medication, nutrition, anxiety and pain, and the patient's position and 

activity, the values for each zone were normalized against a baseline of the 

patient's abdominal skin away from the wound sites, to take into account the 

patient's overall state of perfusion at the time of measurement.   

A study in 2006 by Figus et al monitored the laser Doppler flowmetry readings 

and light reflectance spectrophotometry (LRS) readings for a post-operative 

period of 48 hours189.  Laser Doppler readings showed an increase in flow post-

operatively, with variable readings.  An overall difference in trend was noticed, 

with an increased flux in the group with no complications (n=10) compared with 

patients who later suffered from fat necrosis or required surgical re-exploration 

(n=6).  Light reflectance spectrophotometry transmits a light into the skin and 

the backscattered light spectrum depends upon the haemoglobin absorption.  

There was an initial fall in oxygenation for the first hour post-operatively 

followed by a steady rise, reaching pre-operative values at around 12 to 16 hours 

post-operatively.  The pattern of light reflectance spectrophotometry follows 

the laser Doppler perfusion pattern seen in zone 3 in our study, with an initial 

decrease in perfusion before a steady increase after 16 hours(Figure 5-11, zones 

Figure 5-1).  It is not clear why zone 2 in our study followed the increasing 

perfusion pattern of zone 1, yet zone 3 had an initial decline, especially as many 

authors believe zone 3 to have better perfusion than zone 2227;243-246, as 

discussed in Chapter 6. 

A study of 16 DIEP flaps and 4 SIEA (superficial Inferior Epigastric Artery) flaps by 

de Weerd et al in 2008 used dynamic infrared thermography (DIRT)247.  DIRT is a 

non-invasive technique based on infra-red imaging that the authors report has a 

good correlation with laser Doppler.  Measurements were taken on the first, 

third and sixth post-operative days, revealing a hyperaemia on day 1, especially 

in zone 1.  This hyperaemia subsided between days 3 and 6.  The authors also 

noted that Hartrampf zone 3 was better perfused than zone 2, and this is 
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discussed further in Chapter 6.  The pattern of perfusion described by these 

authors with an initial hyperaemia is that seen in our post operative study in 

zones 1, 2 and 4, and is also the overall pattern of zone 3, despite the initial 

decrease, in the first day.  The authors discuss Dhar's study of delay 

phenomenon31, and the most dramatic time of opening of choke vessels as being 

between 48 hours and 72 hours, but they do not offer thoughts on the timing of 

this in relation to their own findings, other than illustrating choke vessel opening 

and concluding that there is a stepwise progression of perfusion during the first 

post-operative week. 

Studies have also shown a long term increase in perfusion from the immediate 

post-operative period.  A study in 2008 by Figus et al compared three time 

points of perfusion in 26 DIEP patients, pre-operatively (6 hours of monitoring), 

the first 48 hours post-operatively, and at 3 months (3 hours)248.  There was a 

statistically significant increase in perfusion between each of the three time 

points, although the value for each time point was an average over the time 

monitored and therefore is not comparable with our study.  Similarly Heitland et 

al found that DIEP flap perfusion had increased by 13%, using Doppler 

ultrasound, at 18 months post-operatively249. 

Our study has shown increasing perfusion in the first 72 hours post-operatively.  

Between 16 and 48 hours there are multiple changes in the gradient of the 

perfusion in each of the zones.  This may or may not be related to dilatation of 

vessels and opening of choke vessels.  As a pilot study prior to the use of 

research microdialysis catheters this study has clarified that there are changes in 

perfusion during the first 3 days, and changes between individual zones.  

Chapter 7 uses the method of high cut-off microdialysis catheters in DIEP flaps 

over the same period to investigate possible changes in tissue cytokines. 
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6 A comparison of the perfusion territory of the 
Deep versus Superficial Inferior Epigastric 
system  

6.1 Introduction 

6.1.1 Background 

Flaps taken from the lower abdomen for reconstruction have evolved over the 

years to minimise morbidity from the donor site.  Flaps using the rectus 

abdominis muscle, supplied by the superior and inferior epigastric arteries 

(dominant pedicles) have been described increasingly since the 1970s250-255.   

Early anatomical studies of the blood supply to skin (Manchot 1889, Salmon 

1936) contributed to the knowledge of areas of skin supplied by single vessels, 

and the clinical significance of this work only began to be realised decades later.  

During the second world war Shaw and Payne developed tubed abdominal flaps 

based on the inferior epigastric and circumflex iliac arteries256.  Tai in 1974 

described and successfully made use of a transverse rectus abdominis (TRAM) 

flap based on the superior epigastric vessels to cover chest wall defects in five 

patients who required radical resections for breast cancer250.  Similarly, Mathes 

and Bostwick in 1977 presented a case report reconstructing the abdominal wall 

following a gunshot wound by rotating a myocutaneous flap based on the 

superior epigastric artery252.  In 1979 Drever described the intramuscular course 

of the superior epigastric artery and described the operative technique of a 

myocutaneous flap based on this vessel, with a vertical skin island (VRAM), to 

release a  burns scar contracture in a 12 year old, stating that 'the possible uses 

of this flap warrant future investigation'254.     

With the simultaneous advent of microsurgery in the early 1970s and the ability 

to perform microvascular anastomoses, and increasing number of flaps were 

transferred as free flaps. Holmstrom in 1979 used the 'abdominoplasty flap' 

based on the inferior epigastric vessels as a free flap to reconstruct  a breast 

after radical mastectomy253.  Pennington et al (1980) used free a rectus 

abdominis myocutaneous flap based on the inferior epigastric vessels to 

reconstruct an infraclavicular shotgun wound, and in his paper stressed the 
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advantage of this flap as having large vessels, a long vascular pedicle and 

aesthetic and functional acceptibility251.  Perhaps more importantly the 

disadvantages of the TRAM flap noted included the need to reconstruct the 

anterior rectus sheath to prevent hernia formation and potential problems with 

abdominal wall support.  Hartrampf, Scheflan & Black in 1982 clarified multiple 

surgical techniques of using the rectus abdominis muscle including the 'vertical 

rectus abdominis musculocutaneous flap' (VRAM),  the 'horizontal upper rectus 

abdominis flap', and the 'horizontal lower rectus abdominis flap' (TRAM) with an 

'easy-to-conceal suprapubic linear donor site'257;258.  This TRAM flap description is 

still the commonly used donor site in free TRAM flap breast reconstruction cases.  

In 1983 and 1984 Taylor, Boyd & Corlett published a clinical and anatomical 

study, further delineating the anatomy of the deep inferior epigastric artery 

stating that it is the dominant blood supply to the skin of the anterior abdomen, 

the average diameter of the deep inferior epigastric perforator vessels were 3.4 

millimeters, and that the largest perforating vessels were in the paraumbilical 

area and therefore some part of a skin island should be over this area259;260. 

A major modification of the TRAM flap was published by Koshima and Soeda in 

1989 in their paper entitled 'Inferior epigastric artery skin flaps without rectus 

abdominis muscle'14.  They describe raising the lower abdominal skin, finding a 

perforating vessel and dissecting it through the muscle, firstly as an island flap 

for a patient with malignant lymphoma in his groin, and secondly as a free flap 

for a patient with a squamous cell carcinoma on the lateral aspect of his tongue.  

The flap described based on a Deep Inferior Epigastric artery Perforator, is 

known as the DIEP flap.  They noted that this flap may almost have the same 

skin territory of the TRAM flap, that they thought the risk of abdominal 

herniation to be eliminated, and that a disadvantage was the variable size and 

location of the perforator and the technical difficulty of dissecting the 

perforator within the muscle.   

An early series of 15 DIEP flaps was published by Allen in 1994, who commented 

that the ideal material for breast reconstruction is fat and skin, and that the 

DIEP flap allowed large volumes of tissue transfer, with the example a 1443 gram 

flap in the series21.  Several large series of DIEP flap reconstructions have been 

published subsequently with favourable results and a general agreement that in 

suitable patients the DIEP flap leaves less donor site morbidity than the TRAM 
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flap for breast reconstruction.  Blondeel published his experience of 100 DIEP 

flap reconstructions in 1999 with a 2% flap failure rate and 1% with a unilateral 

abdominal bulge261.  Similarly Hamdi et al in a series of 50 DIEPs had a 2% failure 

rate and 5% of patients with an abdominal bulge but no hernia262.  Nahabedian et 

al compared 118 TRAM flaps with 20 DIEP flaps and concluded that the incidence 

of abdominal bulge was significantly less in DIEP flaps although the ability to 

perform a sit-up post operatively was not related to the type of flap263.  The 

muscle-sparing TRAM flap is a technique modification of the TRAM to damage 

the least amount of muscle and fascia attempting to give more comparable 

donor site results to the DIEP flap, and one series which separately classifies this 

type of TRAM flap reports an incidence of 5% abdominal bulge versus 2% in the 

DIEPs, and an ability to perform sit-ups of 97% versus 100% in the DIEPs, although 

these numbers were not of statistical significance264.  A systematic review by 

Salion in 2009 of eight papers comparing 329 TRAM flaps and 161 DIEP flaps, with 

comparison of the flaps being an inclusion criteria, concluded that whilst the 

total necrosis or flap failure rate in DIEPs was higher (4.15% v 1.59%), as was the 

fat necrosis rate (25.5% v 11.3%), there was no significant difference in the 

partial necrosis rate 3.54% v 1.60%) or abdominal bulge (8.07% v 11.25%)265. 

Although the donor site morbidity in the DIEP flap is arguably an improvement on 

the TRAM flap, a lower abdominal flap which does not cut rectus sheath is the 

Superficial Inferior Epigastric Artery (SIEA) flap which also utilises the lower 

abdominal skin and fat and can have a hidden suprapubic linear scar.  The SIEA 

flap was first reported as a free flap in 1971 by Antia and Buch who used a de-

epithelialised SIEA flap to correct a contour defect, secondary to a hemi-

maxillectomy, in a 35 year old lady.  The SIEA artery had a diameter of only one 

millimetre and to overcome this difficulty the vessels were harvested at their 

origin with a cuff of femoral artery and saphenous vein, before being 

anastomosed to the external carotid artery and internal jugular veins 

respectively266.  Boeckx et al presented a series of 10 lower abdominal free 

flaps, 3 being SIEA flaps, and used a technique of exposing the origin of the 

superficial inferior epigastric artery and taking this vessel and the superficial 

circumflex iliac artery (SCIA) from the common femoral artery, if they shared 

the same trunk, to increase the size of the anastomosis267.  Taylor and Daniel's 

anatomical study in 1975, 'The anatomy of several free flap donor sites', reports 

the mean calibre of the SIEA was 1.4mm in 100 cadaver dissections26.  They also 
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noted that the SIEA had a common origin with the SCIA in 48% of cases, and was 

completely absent in 35% of cases.  In 1992, Stern and Nahai published their 

retrospective series of  31 patients, again noting the unsuitability or absence of 

the SIEA in 4 patients (13%)268.  They commented that the patients made a rapid 

recovery from 'a procedure which only invades the body's cutaneous envelope'.  

Although the vascular anatomy may not be as reliable as other flaps, the SIEA 

flap has a very favourable donor site. 

The SIEA flap has been used for various kinds of reconstruction, from the 

abdominal wall269, vaginal270 and penile271 reconstructions to upper limb268;272, 

hand268;272,facial266;268 and breast reconstructions273.  Arnez et al emphasised the 

benefits of the use of the SIEA flap in breast reconstruction in particular, where 

the lower abdominal skin and fat are a good match for breast tissue274.  The SIEA 

in his view is the logical next step, ahead of the TRAM and DIEP flaps, when the 

lower abdomen is being considered as the donor site for breast reconstruction, 

and many authors share a similar view273;275. 

6.1.2 Angiosomes and zones of the lower abdomen 

As discussed in the Introduction Chapter 1, the blood supply to the skin is made 

up of 'angiosomes'.  Angiosomes were defines by Taylor and Palmer as composite 

blocks of tissue supplied by named source vessels2.  The body is though to be 

made up of a jigsaw of angiosomes interlinked by reduced calibre 'choke vessels' 

(Chapters 1, 5 & 7).  When a flap is based on an angiosome it is thought that the 

adjacent angiosomes to this angiosome can be included in the flap with a safe 

blood supply2.  Partial necrosis and fat necrosis result from insufficient blood 

supply within a flap and are not uncommon with tissue loss in the angiosomes 

furthest from the supplying vessels.  Flaps may also fail because of  blockage of 

the main supplying artery or draining vein either due to twisting or external 

pressure or clotting at the site of the microvascular anastomosis, and this may 

result in total loss of the flap. 

Angiosomes in the lower abdomen with regards to the TRAM and DIEP flaps are 

commonly referred to as 'zones' following the works of Scheflan244;257;276;277, 

Dinner244;276-278 and Hartrampf257.  Scheflan276;277 divided the ellipse  into four 

equal parts numbering them in descending order of his clinical impression of 

perfusion in the first sixteen patients279 undergoing pedicled TRAM flap breast 
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reconstruction, based on the superior epigastric artery.  Zone 1 is the zone over 

the perforating vessel, zone two is the zone immediately across the midline, 

zone 3 is the ipsilateral lateral zone, and zone 4 the contralateral lateral zone.  

This order was changed by Dinner following further observation of the 

vascularity of the flap, with zones 2 and 3 being swapped so that zone 2 was now 

on the side ipsilateral to the perforator.  Dinner divided these zones over the 

edges of the rectus sheath226;244.  The nomenclature that has remained in the 

literature when discussing zones is Scheflan's original description and numbering, 

although is known as 'Hartrampf's zones'. 

Pedicle

12 34

 

Figure 6-1 - Hartrampf's zones. 
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Pedicle

13 24

 

Figure 6-2 - Dinner's zones. 

 
Breast reconstruction from the lower abdomen now largely relies on the deep 

inferior epigastric artery perforators (DIEP flaps and inferiorly based free TRAM 

flaps) as the dominant blood supply, rather than the superior epigastric artery 

with a move away from superiorly based pedicled TRAM flaps.  The 

nomenclature for the zones has remained as Hartrampf's zones for both the DIEP 

and TRAM free flap reconstructions, although the order of zones for the SIEA 

(Superficial Inferior Epigastric Artery) flap is less clear.  There is increasing 

evidence in the literature to suggest that zone 3 and zone 2 should exchange 

numbers reverting to Dinner's original description (Figure 6-2)227.  Clinically zone 

4 (i.e. the contralateral lateral zone in either nomenclature) has undoubtedly 

the poorest blood supply and highest incidence of venous congestion280, and is 

usually excised and discarded before transfer to the breast for this reason, 

reducing the incidence of fat necrosis and partial necrosis.  If the flap needs to 

be further reduced in size to produce a better aesthetic match, it is relevant 

whether zone 2 or zone 3 is the better perfused.  The need to understand the 

area of perfusion equally applies to SIEA flaps, as the anatomy and diameter of 

the vessel is not constant24-26;268;281.  
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6.1.3 Objective 

The objective of this study is to delineate the blood supply to abdominal skin 

flaps commonly used for breast reconstruction by; 

1) comparing blood supply of flaps based on the Deep Inferior Epigastric 

Perforator arteries (DIEP flap) with those based on the Superficial Inferior 

Epigastric Artery (SIEA flap) in terms of their area of perfusion and dominance.   

2) comparing the zones of the DIEP and SIEA vessels, with reference to the 

Hartrampf perfusion zones. 

Intra-operative non-invasive laser Doppler scanning will be used to image the 

skin perfusion for each vessel in turn, having established reliable scanning and 

clamp times in the pilot study.   

Scanning intra-operatively may provide adequate information to guide the 

choice of vessel, the choice of vessel being determined firstly by perfusion to 

the flap and flap volume required, and secondly to minimise donor site 

morbidity.  Clinically, perfusion of a vessel is not assessed until the vessel is 

chosen, and the choice of vessel depends to a large extent on vessel diameters 

observed during the dissection and  the difficulty of the dissection if a DIEP 

vessel is thought to have a tortuous course through the muscle.  The additional 

intraoperative information supplied by the laser Doppler scanner may also help 

in the choice of vessel for other free flap donor sites in the body. 

Flap design may also be made more reliable by intraoperative scanning as the 

choice of areas to discard be based on a more objective assessment of skin 

perfusion, rather surgeon's clinical impression of skin perfusion, thus allowing 

one to more accurately predict perfusion after free flap transfer when choosing 

vessels and designing flaps.  

It is hoped that this and subsequent studies can better map the blood supply to 

the lower abdominal skin in vivo.  The benefit of this would be improved safety 

of the operation, reduce partial necrosis due to poor perfusion, and allow the 

surgeon to more reliably decide intra-operatively between SIEA and DIEP flaps. 
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6.2 Methods 
This study was performed on ten patients undergoing immediate or delayed 

Deep Inferior Epigastric Perforator flap breast reconstruction following 

mastectomy for breast cancer.  The study was performed between October 2007 

and October 2008 in Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary.   

Ethical approval was granted by Glasgow Royal Infirmary Ethics Committee, and 

no changes were made to the reconstructive procedure.  A laser Doppler scanner 

was used intraoperatively to assess the blood supply to the skin of the lower 

abdomen from each of the four supplying vessels (right and left DIEP vessels and 

right and left SIEA vessels).   

The Laser Doppler scanner LDI2-IR (Moor Instruments, Axminster, Devon, UK) 

(Figure 2-3) was used non-invasively to assess the patients intraoperatively with 

the timing of scanning and clamping based on the pilot study results in Chapter 

4.  The laser Doppler scanner is discussed in  more detail in Chapter 2, Materials.  

As in Chapter 4, research software Moor V5.3, was used to carry out the patient 

scans with the large scan setting, 4 msec/pixel speed, and the scanner head 

70cm from patient and at a 15 degree angle. 

This study follows the pilot study used to evaluate clamping and scanning times 

intraoperatively in Chapter 4 (Results, page 75).  Clearly defined scan and clamp 

times allow repetition of scanning within one surgical procedure.  To avoid 

scanning during the period of reactive hyperaemia of a vessel following clamp 

release it was concluded that scanning 5 minutes after clamp release provided a 

stable value for the flux, which is proportional to blood flow.  Based upon the 

results of the pilot study for lower abdominal blood flow in Chapter 4 the 

method for this study was designed allowing the assessment of 4 vessels during a 

35 minute intraoperative window. 

Intraoperatively the lower abdominal flap was raised on four source vessels; 

perforators from the right DIEP vessels, perforators from the left DIEP vessels, 

the right SIEA vessels and the left SIEA vessels.  Laser Doppler scanning was 

carried out immediately prior to division of the vessels and transfer of the flap 

to the recipient site for breast reconstruction.  All vessels were clamped for an 

ischaemic time of five minutes, and then each vessel, in turn, was unclamped 

and allowed to supply the flap for five minutes before the flap was scanned by 
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the laser Doppler.  Only one of the four vessels was supplying the flap at a time 

so that the laser Doppler scan could record the area that this vessel supplies.  

Each scan took 2 - 3 minutes and the overall intraoperative scanning period was 

around 35 minutes.  The order in which the vessels were scanned for each 

patient was allocated randomly using random number tables and the orders are 

shown in Table 6-1 below. 

 1st LDI scan 2nd LDI scan 3rd LDI scan 4th LDI scan 
Patient 1 Left SIEA Right DIEP Right SIEA Left DIEP 
Patient 2 Left SIEA Right SIEA Right DIEP Left DIEP 
Patient 3 Right DIEP Right SIEA Left SIEA Left DIEP 
Patient 4 Right SIEA Right DIEP Left SIEA Left DIEP 
Patient 5 Left DIEP Right DIEP Right SIEA Left SIEA 
Patient 6 Right SIEA Left DIEP Right DIEP Left SIEA 
Patient 7 Left DIEP Right DIEP Right SIEA Left SIEA 
Patient 8 Right SIEA Right DIEP Left SIEA Left DIEP 
Patient 9 Left SIEA Right SIEA Right DIEP Left DIEP 
Patient 10 Right DIEP Left DIEP Left SIEA Right SIEA 

Table 6-1 - Intraoperative LDI scanning order for vessels supplying lower abdominal skin. 
The vessels were all clamped for a 5 minute period, followed by unclamping of the first 
vessel for 5 minutes before scanning, then reclamping of the first vessel unclamping of the 
second vessel for 5 minutes before scanning, then reclamping of the second vessels and 
unclamping of the third vessel for 5 minutes before scanning, and finally reclamping of the 
third vessel and unclamping of the fourth vessel before scanning. 

Clamping prior to free flap transfer should not be detrimental as this sort of 

‘ischaemic preconditioning’ has been shown to be beneficial31;175;176.  The 

surgeon was blinded to the results of the laser Doppler in this SIEA v DIEP study, 

as in the pilot study described in Chapter 4.  The operation then proceeded 

normally with the flap being transferred from the abdomen and the surgeon's 

choice of right or left DIEP vessels anastomosed to the internal mammary vessels 

in the chest, and the DIEP flap inset to complete the breast reconstruction.  

6.2.1 Data processing and statistical analysis 

The scans were analysed using the Moor Laser Doppler Imager research software, 

Version 5.3.  Areas within the scan can be identified by drawing polygons to 

trace the outline of the abdominal flap and the zones of the flap (Figure 6-3). 

Shapes can be duplicated within scans or across sequential scans.  Divisions 

between zones were at the lateral border of the rectus sheath, as in Dinner's 

original description244.  These divisions have also used by Hallock et al in a laser 

Doppler study226.  Other authors (Scheflan258,Holm227) have divided the 

abdominal flap into equal widths although this is dependent on the width of the 
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flap rather than any anatomical landmarks, and we have therefore used Dinner's 

original description.  Descriptive statistics including the mean and median flux 

are then requested for the outlined area from the Moor software.  All statistical 

analysis of laser Doppler images in chapters 4, 5 and 6 has been performed using 

the medians calculated by Moor Research software descriptive statistics.  The 

choice of medians rather than means is discussed in Chapter 4, page 73. 

 

Figure 6-3 - Division of flux image into zones.   
(NB numbers relate to Moor software & not zones.) 

 
Ten patients were recruited for this study following review of the literature and 

comparison with similar cadaver26;246;282-287, animal288-290 and clinical 

studies22;191;195;225-228;261;263;268;284;291-303.  A sample size calculation was performed 

using data from the pilot study, confirming 10 patients (with 4 scans per patient) 

to be a reasonable number.  The results of the pilot study were analysed using 

parametric methods following Normal plots.  The results of this study will be 

assessed with Normal plots and an Anderson-Darling test of normality before 

proceeding with parametric testing. 

6.3 Results 
Ten patients had DIEP flap breast reconstructions following mastectomies for 

breast cancer.  Three were delayed procedures (mastectomy in a previous 

operation) and seven were immediate (mastectomy during the same surgical 

procedure as the reconstruction).  Two reconstructions were bilateral.  The 

patients had an average age of 54 (range 47 to 66) and an average BMI of 27.7 

(range 24 to 34).  All patients were non-smokers or ex-smokers at the time of 

the study.  The mean operative time was 8 hours 36 minutes (6 hours 5 minutes 

to 15 hours), with one operative team.  There was a bilateral flap failure in 

patient 8.   
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Right and left DIEP vessels and right and left SIEA vessels were found and 

dissected in nine of the ten patients.  The DIEP perforators can be defined as 

'medial row' or 'lateral row' in relation to their position emerging from the rectus 

abdominis muscle.  60% of the DIEP scans performed were medial row only 

(12/20), 25% were lateral row only (5/20) and 15% were a mixture of medial and 

lateral row (3/20) - see Table 6-2 for scans and patient details.  In one patient 

(Patient No 7) no right SIEA was present and scans were performed on the other 

three vessels (left SIEA and bilateral DIEP vessels).  All scans are in the 

Appendix. 

6.3.1 Descriptive Statistics 

The results for each scan are in Table 6-2 below.  The flux value used for each 

individual vessel is the median value for flux over the whole flap.  When the 

DIEP vessels were each supplying the lower abdominal flap (20 scans, 2 vessels 

per patient) the mean flux was 82.1 (s.d. 24.84, n=20 scans).  This can be 

subgrouped  into left and right DIEPS, the left DIEP vessels having a mean flux of 

80.62 (s.d. 23.11, n=10 scans), and the right DIEP vessels having a mean flux of 

83.58 (s.d. 26.67, n=10 scans).  Two vessels per patient were also scanned for 

the SIEA vessels, other than patient 7 who had no SIEA vessel on the right side.  

The mean flux for the SIEA vessels supplying the lower abdominal flap is 69.0 

(s.d. 26.37, n=19 scans), and for the left SIEAs 69.47 (s.d. 27.25, n=10 scans) and 

for the right SIEAs 68.47 (s.d. 68.47, n=9 scans).  

The zones of the lower abdominal flap are referred to, for the descriptive 

purpose of this study for both SIEAs and DIEPs, in the traditional Hartrampf 

order, thought to be related to perfusion as illustrated below (Figure 6-4).   
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Figure 6-4 - Hartrampf's zones 

 
The laser Doppler flux scans for patient 1 are shown below in Figure 6-5, Figure 

6-6, Figure 6-7 & Figure 6-8.  The flux images for all 10 patients grouped by 

vessel are in the Appendix. 

 

Figure 6-5 - Patient 1, scan 1.  Left SIEA vessel supplying flap. 
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Figure 6-6 - Patient 1, scan 2.  Right DIEP vessel supplying flap. 

 

 

Figure 6-7 - Patient 1, scan 3.  Right SIEA vessel supplying flap. 

 

 

Figure 6-8 - Patient 1, scan 4.  Left DIEP vessel supplying flap. 

 
The zones were outlines using the Moor Laser Doppler software v5.3 and the flux 

for each scan was recorded, Table 6-2, the results are plotted in Figure 6-9.  
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Patient 
No Vessel 

Lateral 
perforators 

Medial 
perforators Zone 1 Zone 2 Zone 3 Zone 4  

Whole 
flap 

1 R DIEP† 2 0 106 112 120 76 104 
 L DIEP† 2 0 109 88 97 59 89 
 R SIEA * * 83 105 54 75 79 
 L SIEA * * 109 83 99 55 87 
2 R DIEP† 0 2 92 92 88 67 84 
 L DIEP 0 2 101 98 82 67 86 
 R SIEA * * 94 104 100 68 90 
 L SIEA * * 112 124 97 68 97 
3 R DIEP† 1 1 120 94 133 59 99 
 L DIEP 0 2 100 53 70 38 63 
 R SIEA * * 82 74 137 53 82 
 L SIEA * * 55 43 47 35 45 
4 R DIEP 0 1 81 100 88 94 91 
 L DIEP† 0 2 99 88 110 71 91 
 R SIEA * * 97 95 76 86 88 
 L SIEA * * 99 88 110 71 91 
5 R DIEP 1 0 66 46 112 31 59 
 L DIEP† 0 1 128 108 77 51 86 
 R SIEA * * 86 59 98 35 86 
 L SIEA * * 74 52 111 34 74 
6 R DIEP† 0 2 108 100 119 98 107 
 L DIEP 1 0 103 87 93 61 85 
 R SIEA * * 73 77 50 70 73 
 L SIEA * * 98 92 91 63 98 
7 R DIEP 0 3 97 99 100 66 85 
 L DIEP† 0 2 108 99 72 96 89 
 R SIEA * * NA NA NA NA NA 
 L SIEA * * 87 98 70 87 82 
8 R DIEP† 0 1 65 42 67 35 51 
 L DIEP† 1 0 82 70 77 59 72 
 R SIEA * * 59 42 64 36 59 
 L SIEA * * 43 45 39 49 43 
9 R DIEP † 1 1 67 52 60 31 51 
 L DIEP 1 1 58 42 92 27 49 
 R SIEA * * 36 35 28 28 36 
 L SIEA * * 41 41 33 30 41 
10 R DIEP † 0 1 101 103 101 55 90 
 L DIEP 0 3 small 98 60 97 49 75 
 R SIEA * * 55 55 54 42 55 
 L SIEA * * 55 55 42 54 55 

Table 6-2 - Flux results per vessel.  For whole flap per vessel, and also divided by zone.  
Number of perforators and position in medial or lateral row marked for DIEP vessels. † 
denotes vessel chosen clinically by surgeon for reconstruction. 
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Figure 6-9 - Plot of individual values of median flow per laser Doppler scan. 
Means are marked in blue.  The Values are grouped by side (left or right), vessel (SIEA or 
DIEP) and zone (1, 2, 3 or 4 as in figure 6.4 above). 

 
Observing the pattern of flux values, there appears to be little difference 

between right and left side flow.  DIEPs tend to have a higher flow than SIEA 

vessels, and zone 4 would appear to have reduced flow in both DIEPs and SIEAs 

with little difference between other zones.  The flux values are displayed below, 

grouped by vessel, side and zone (Table 6-3). 
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Zone 1 2 3 4 All 
Vessel Side    
DIEP L Mean 98.70 79.30 86.70 57.80 80.62 
  SD 18.05 21.89 13.03 18.84 23.11 
  N 10 10 10 10 40 
 R Mean 90.30 84.00 98.80 61.20 83.58 
  SD 19.62 26.41 23.47 24.17 26.67 
  N 10 10 10 10 40 
 L & R Mean 94.50 81.65 92.75 59.50 82.10 
  SD 18.85 23.73 19.49 21.17 24.84 
  N 20 20 20 20 80 
SIEA L Mean 77.30 72.10 73.90 54.60 69.47 
  SD 27.29 28.63 31.24 18.30 27.25 
  N 10 10 10 10 40 
 R Mean 73.89 71.78 73.44 54.78 68.47 
  SD 20.15 25.97 33.19 20.67 25.72 
  N 9 9 9 9 36 
 L & R Mean 75.68 71.95 73.68 54.68 69.00 
  SD 23.58 26.64 31.27 18.90 26.37 
  N 19 19 19 19 76 
DIEP & SIEA L Mean 88.00 75.70 80.30 56.20 75.05 
  SD 25.05 25.08 24.20 18.15 25.73 
  N 20 20 20 20 80 
 R Mean 82.53 78.21 86.79 58.16 76.42 
  SD 21.07 26.23 30.57 22.20 27.13 
  N 19 19 19 19 76 
 L & R Mean 85.33 76.92 83.46 57.15 75.72 
  SD 23.06 25.34 27.32 19.98 26.34 
  N 39 39 39 39 156 
 

Table 6-3 - Mean flow, standard deviation and number of observations, by vessel type, side 
and zone. 

 
Considering the main effects of the data, the effects of each factor averaged 

over the levels of the other two, the mean flow for each side are very similar 

(75.05 left and 76.42 right), the mean flow associated with the DIEP flap is 

higher than the SIEA (82.10 DIEP and 69.00 SIEA), and there is variation in the 

zones 1,2 and 3 (85.33, 76.92 and 83.46 respectively) with a more substantial 

drop in flow in zone four (57.15).  It is possible that the vessel and the zone are 

independently significant factors, although unlikely that the side is significant. 

To look for interactions between the factors of vessel, side and zone they can be 

observed in pairs and in a group of three.  Between vessel and side the 

differences in mean flow are small.  For the DIEP vessels the mean flow on the 

left and right is 80.62 and 83.58 respectively, and for the SIEA vessels, mean 

flow on the left and right is 69.47 and 68.47.  It would seem unlikely that there 

is a statistically significant interaction between vessel and side.  Between zone 

and side, it also seems unlikely that there would be a statistically significant 

interaction.  For zone 1 the mean flow between the left and right is 88.00 and 
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82.53 respectively.  Corresponding left-right pairs for zones 2, 3 and 4 are 75.70 

and 78.21, 80.30 and 86.79, 56.20 and 58.16.  Finally, between vessel and zone, 

the DIEP means for zones 1 - 4 respectively are 94.50, 81.65, 92.75 and 59.50, 

and the SIEA means are 75.68, 71.95, 73.68 and 54.68.  The differences (DIEP 

minus SIEA) are 18.82, 9.7, 19.07 and 4.82, and it would therefore appear that 

the differences in mean flow between vessel types depend on zone.  There may 

be a two-factor interaction between vessel and zone of statistical significance. 

To consider the effects of all three factors jointly, an interaction would be 

present if the difference between the type of vessel (DIEP minus SIEA) in the 

left-right difference (left minus right), does not depend on zone.  The left-right 

differences for the two vessel types and zones, followed by the differences (DIEP 

minus SIEA) between these differences are (Table 6-4); 

Zone 1 2 3 4 
DIEP (L - R) 8.4 -4.7 -12.1 -3.4 
SIEA (L - R) 3.41 0.32 0.46 -0.18 
DIEP (L - R)- SIEA (L - R) 4.99 -5.02 -12.56 -3.22 

Table 6-4 - Three factor interaction. 

 
The differences (4.99, -5.02, -12.56, -3.22) are relatively small although the 

difference for zone 3 is larger and it is possible although unlikely that there is a 

three factor interaction between side, vessel and zone. 

6.3.2 Analysis of variance 

To check whether Normality is a reasonable assumption before interpreting the 

analysis of variance, the following four plots (Figure 6-10) provide a check on 

the assumptions of Normality of errors and homogeneity of variance of errors. 



CJ Tollan  Chapter 6, 143 

Histogram of residuals

Half-Normal plot

Fitted-value plot

Normal plot

-2 0 2

15

-15

10

-5

5

5

0

15

-5

-10

-15

0.0 1.0 2.0 3.0

140

0.0

120

5.0

100

10.0

80

15.0

604020

-1

-10

10

-15

0.5

-10

2.5

-5 0 5

2.5

10

12.5

15 20

1

17.5

0

0

1.5

10

7.5

20

30

40

R
es

id
ua

ls

Fitted values

R
es

id
ua

ls

Expected Normal quantiles

A
bs

ol
ut

e 
va

lu
es

 o
f r

es
id

ua
ls

Expected Normal quantiles

Median

 

Figure 6-10 - Residual plots from ANOVA; Histogram of residuals, Fitted-value plot, Normal 
plot and Half-Normal plot. 

 
The Normal plot and Half-Normal plot show four residuals appearing as outliers, 

and they correspond to Patient 5 zone 3.  The outliers are also shown in the 

histogram and the fitted-value plot where they do not appear as especially 

prominent.  The standardised residuals are all approximately equal to ±3.37.  

The Normal plots suggest that Normality would be a dubious assumption, even if 

the four large residuals are ignored.  An Anderson-Darling test of Normality of 

residuals does indicate non-Normality (p<0.005). Repetition of the ANOVA, 

excluding these four observations, does not greatly affect the ANOVA table, the 

tables of means and the tables of standard errors.  The conclusions would be 

unchanged.  The largest standardised residuals are now ±2.92.  However, the 

Anderson-Darling Normality test is still failed (P=0.008), although the P-value 

shows the departure from Normality is less.  
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The fitted-value plot shown no indication of non-homogeneity of variance. 

In view of the non-Normality of errors, Armitage and Berry suggest that "it is 

often useful to be able to confirm the results of a normal theory significance 

test by also performing an appropriate distribution-free test"304.  The seven 

hypotheses featuring in the ANOVA table (were therefore also tested using non-

parametric methods (Table 6-6).  The ANOVA and non-parametric  test results 

agree apart from the Vessel and Zone interaction and therefore this interaction 

is regarded as suggestive only. 

ANOVA of the full data set (Table 6-5) is however is reasonable to regard as 

having a valid result as; 

i. homogeneity of variance is satisfactory, 

ii. exclusions of the observations associated with the largest outliers only 

affects the ANOVA results in a minor way and does not alter the 

conclusions 

iii. the non-parametric tests agree in terms of conclusions with those of the 

ANOVA (with one exception, the interaction between Vessel and Zone). 
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Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
  
Patient_No stratum 9    38921.7  4324.6     
  
Patient_No.Vessel stratum 
Vessel 1    6325.8  6325.8  12.36  0.007 
Residual 9    4605.9  511.8     
  
Patient_No.Side stratum 
Side 1    93.0  93.0  0.11  0.743 
Residual 9    7326.0  814.0     
  
Patient_No.Zone stratum 
Zone 3    20097.0  6699.0  21.42 <.001 
Residual 27    8444.6  312.8     
  
Patient_No.Vessel.Side stratum 
Vessel.Side 1    81.3  81.3  0.17  0.687 
Residual 8 (1)  3726.0  465.8  2.65   
  
Patient_No.Vessel.Zone stratum 
Vessel.Zone 3    1451.8  483.9  3.23  0.038 
Residual 27    4039.7  149.6  0.85   
  
Patient_No.Side.Zone stratum 
Side.Zone 3    775.5  258.5  0.86  0.474 
Residual 27    8118.8  300.7  1.71   
  
Patient_No.Vessel.Side.Zone stratum 
Vessel.Side.Zone 3    362.1  120.7  0.69  0.569 
Residual 24 (3)  4219.3  175.8     
  
Total 155 (4)  107569.6       
 

Table 6-5 - ANOVA.  Analysis of variance of median flow. 

 
The main effects of vessel (P<0.007) and zone (P<0.001) are statistically 

significant, and the main effect of side is not (P=0.743).  The only significant 

two-factor interaction looking at the ANOVA results is between vessel and zone 

(P=0.038).  As before, this cut-off value is close to 5% and the P-value for the 

non-parametric test (Friedman test) is 0.072 (see Table 6-6 below), and 

therefore the interaction between vessel and zone is regarded as suggestive 

only.  The three-factor interaction is not statistically significant. 
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Model 
term 

ANOVA 
P-
value 

Non-
parametric 
test P-
value 

Type of non-parametric test 

Vessel (V) 0.007 0.024 Wilcoxon signed rank test on Vessel 
differences in flow,  averaged over zone and 
side 

Side (S) 0.743 0.906 Wilcoxon signed rank test on side 
differences in flow, averaged over zone and 
vessel type 

Zone (Z) <0.001 <0.001 Friedman test on Zone differences in flow, 
averaged over side and vessel type 

V.S 0.687 0.636 Wilcoxon signed rank test on interaction 
term: DIEP(L)-DIEP(R)-SIEA(L)+SIEA(R), 
where each of these 4 terms is an average 
over Zone 

V.Z 0.038 0.072 Friedman test on vessel difference 
(averaged over side), by Zone 

S.Z 0.474 0.352 Friedman test on side difference (averaged 
over vessel), by Zone 

V.S.Z 0.569 0.694 Friedman test on interaction term: DIEP(L)-
DIEP(R)-SIEA(L)+SIEA(R)  by Zone 

Table 6-6 - Comparison of ANOVA test results with non-parametric test results. 

 

6.3.3 Analysis by Vessel, by Zone, and by Vessel and Zone 

As above (Table 6-6), there is a significant difference between the Vessels, and 

between the Zones and the suggestion of an interaction between Vessel and 

Zone.  To investigate this further, predicted means (from the fitted parameters 

of the ANOVA model) are used as there is an amount of missing data.  The 

predicted means only differ slightly from the observed means in Table 6-4.  For 

example, the observed marginal means for zone are 85.33, 76.92, 83.46 and 

57.15, whereas the predicted means are 85.3, 77.4, 83.5 and 57.1. 

The predicted means by vessel are 82.1 for the DIEP and 69.5 for the SIEA, with 

a standard error of difference of 3.58 on 9 degrees of freedom.  The t-test 

statistic is 3.52, P=0.0065 and is therefore significant at the 1% level for a 

difference between the vessels, as before.   

The predicted means by zone are (Table 6-7); 

Zone 1 2 3 4 
Predicted mean 85.2 77.4 83.5 57.1 
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Table 6-7 - Predicted means by zone (both SIEA and DIEP).  Standard error of a difference 
between two of these means is 3.95 on 27 degrees of freedom. 

 
Carrying out t-tests between zones 1 & 2 P=0.058 and is approaching 

significance, between zones 2 & 3 P=0.135 and is not significant, and between 

zones 3 & 4 P<0.001 and represents a very highly significant difference.  If the 

zones were reordered by decreasing flux (1,3,2,4) the P-values of the 

differences between zones 1 & 3, and zones 2 & 4 would also be relevant.  

Between 1&3 the p-value is 0.671 which is not significant, although the p-value 

between zones 2&4 is very highly significant as P<0.001.  These differences are 

more relevant clinically when the predicted means are calculated for each 

vessel. 

Therefore, the predicted means by vessel and zone are (Table 6-8); 

Zone 1 2 3 4 
Predicted mean by vessel - DIEP 94.5 81.6 92.8 59.5 
Predicted mean by vessel - SIEA 76.0 73.1 74.3 54.6 

Table 6-8 - Predicted means by vessel and zone.  Standard error of a difference between two 
means for the same vessel is 4.81 on 48.02 degrees of freedom.   The standard error of a 
difference for two means in the same column is4.90, on 25.24 degrees of freedom. 

 
These means by Vessel and by Zone are illustrated graphically in Figure 6-11. 
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Figure 6-11 - Predicted means by Vessel and Zone. 
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There is a significant difference between DIEP zone 1 and SIEA zone 1, and 

between DIEP zone 3 and SIEA zone 3, P<0.001.  There is no significant 

difference between the DIEP and SIEA zone 2 (P=0.095), and no significant 

difference between DIEP and SIEA zone 4 (P=0.327). 

Considering the significance between DIEP zones (Table 6-8, Figure 6-11), 

between zone 1 and 2 the difference is 12.9 giving a t-test statistic of 2.68 and a 

P-value of 0.010, similarly between zone 2 and zone 3 P=0.025, and between 

zone 3 and zone 4 P<0.001.  If the zones were reordered by descending flux i.e. 

1,3, 2, 4, it would be relevant to also compare zones 1 & 3 P = 0.728, and zones 

2 & 4 P<0.001.  The clinical significance in this study for DIEPs is that zone 1 is 

the best perfused and is not statistically significantly different from zone 3 (the 

ispilateral zone, Figure 6-4).  Zone 3 (and zone 1) are statistically significantly 

better perfused than zone 2 (contralateral midline, Figure 6-4), and zone 2 (and 

3) are very highly significantly better perfused than zone 4  i.e. 1=3>2>4. 

Similarly between SIEA zones (Table 6-8, Figure 6-11), the t-test statistic 

between zones 1 and 2 is 0.603 and the P value is 0.549, between zones 2 and 3 

P=0.804, and between zones 3 and 4 P<0.001. Reordering the zones by 

descending flux (1, 3, 2, 4) would suggest comparison of zones 1 and 3, P=0.726, 

and between zones 2 and 4, P<0.001.  Therefore zones 1, 2 and 3 are not 

statistically significant, but both zones 2 and 3 are very highly significantly 

better perfused than zone 4 i.e. 1=2=3>4. 

In summary Table 6-9 displays the significance levels of the differences in flux 

between zones for both DIEP and SIEA vessels; 

Difference between 
DIEP zones; 

P-value Difference between 
SIEA zones; 

P-value 

1 - 2 0.010 1 - 2 0.549 
2 - 3 0.025 2 - 3 0.804 
3 - 4 P < 0.001 3 - 4 P < 0.001 
1 - 3 0.728 1 - 3 0.726 
2 - 4 P < 0.001 2 - 4 P < 0.001 

Table 6-9- Significance of difference between zones 1 - 4 for DIEP and SIEA vessels. 
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6.4 Conclusion 
The overall perfusion of the lower abdominal skin by DIEP vessels is significantly 

higher than that of SIEA vessels (P<0.05).  Side (left or right) has no significant 

effect on perfusion.  The effect of zone however averaged over vessel side and 

type is very highly significant (P<0.001).  When zones were examined, averaged 

over vessel and side, zone 4 was the only zone with significantly lower perfusion, 

and this reached a very high level of significance (P<0.001).  The interaction 

between vessel and zone approached significance but can only be considered as 

suggestive. 

Separating the data between vessel types, DIEP and SIEA vessels, provides more 

clinically relevant information regarding the perfusion of each of the zones.  For 

DIEP vessels, the descending order of perfusion was zone 1, zone 3, zone2 and 

finally zone 4.  The significance between these differences reveal that zone 1 is 

not significantly better than zone 3 (although better than zone 2, P=0.01), zone 

3 is significantly better perfused than zone 2 (P=0.025), and zone 2 is 

significantly better perfused than zone 4 (P<0.001).  60% of the DIEPs were 

based only on medial perforators, 25% on lateral perforators, and 15% on both 

medial and lateral perforators.  

For the SIEA vessels, the descending order of perfusion was zone 1, zone 3, zone 

2 and finally zone 4, although there was no significant difference between 

perfusion of the first three zones.  Zones 1 - 3 all have very highly significantly 

better perfusion than zone 4 (P<0.001).  Subjectively, the SIEA flaps appear to 

have greater variability in perfusion than DIEP, and the standard deviations are 

very slightly though not significantly higher (Table 6-3).  

Laser Doppler imaging is a safe, available method of non-invasive intraoperative 

imaging that can assist in physiologically assessing the vascular territory of 

vessels.  This is of benefit in individual patients when there is a choice of vessel, 

and also when assessing the area of the flap to be discarded. 

6.5 Discussion 
The rapid progression of reconstructive surgery in the last 30 years has arisen 

following the pioneering free flap transfers in the 1970s and the corresponding 

re-evaluation of vascular anatomy to facilitate this development.  The 
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'angiosome' concept has provided a theoretical framework for the design of 

flaps.  Refinements such as perforator flaps have reduced donor site morbidity 

as can be seen with the use of the DIEP lower abdominal free flap for breast 

reconstruction21, leaving behind the rectus abdominis muscle unlike its 

predecessor the TRAM flap.  The quest to reduce donor site morbidity has also 

driven renewed interest in flaps such as the SIEA flap, often disregarded due to 

its small vessels and variable success rates24;25;273;281;305. The success of free flap 

transfer depends not only on minimising donor site morbidity, but on the flap 

failure rate, the risk of partial flap failure and fat necrosis.  Large published 

series of each of these flaps with refinements to the operative procedure295, 

algorithms suggested for their use, pre-operative scanning where necessary with 

CT and MRA, and increased knowledge of the variations in anatomy and 

perfusion, have all improved the results of free flap transfer in breast 

reconstruction.  

6.5.1 Donor site 

The differences in donor site between TRAM, DIEP and SIEA flaps is well 

documented.  The DIEP flap has been presumed to reduce the possibility of 

hernias and muscle weakness, in comparison with the TRAM flap, given that 

there is less disruption to the abdominal wall musculature.  A study by Lejour in 

1991 of 57 patients undergoing TRAM flaps and with a minimum of 6 months 

follow-up were found to have no problems of clinical significance with return to 

normal function and sporting activities300.  Physiotherapist assessment of these 

patients was more sceptical with 'no complete function of the rectus and 

obliques muscles' in any patient.  Blondeel et al assessed 20 TRAM flap patients 

at an average of 32 months post-operatively and found that 44% of patients 

complained of decreased abdominal power, 28% of reduced ability to lift heavy 

objects, 42% of abdominal protrusion, 47% of pain in the lower abdominal wall 

with raised intra-abdominal pressure and 38% with difficulties getting up from a 

supine position306.  Objectively patients had reduced abdominal flexion, 

extension and rotation.  Similarly Blondeel later directly compared the donor 

site morbidity of 18 DIEPs, 20 TRAMs and 20 controls finding that TRAM flap 

patients had a statistically significant reduced ability to flex and rotate their 

trunk in comparison with the DIEP and control groups294.  These findings of 

reduced abdominal wall function and bulge or hernia with TRAM versus DIEP 

flaps22;261;263, are echoed by many other studies.  Also, in the short term, a study 



CJ Tollan  Chapter 6, 151 

of DIEP flap patients showed that they had lower postoperative analgesia 

requirements than TRAM flap patients and are presumably in less pain307.  Muscle 

sparing TRAM flaps, where a small section of muscle is removed with the 

perforating vessel, would appear to have a morbidity comparable to the DIEP 

flap264;292.   

Despite the seemingly logical operative progression from TRAM flaps to DIEP 

flaps in reducing donor site morbidity by maintaining anatomy, a systematic 

review by Sailon265 in 2009 of eight studies22;263;292;294;299;308-310 directly comparing 

DIEP and TRAM (including muscle-sparing TRAM) flaps did not find any statistical 

significance in reduced abdominal bulge with DIEP flaps although there was a 

trend towards this.  The study did not include abdominal strength because of the 

differing methods of assessment, and did not include studies of DIEP or TRAM 

flaps alone to attempt to exclude bias.  A meta-analysis published by Man et al 

the same year311, included five of these eight studies264;292;294;299;310 and one 

further comparative study312, combined the abdominal donor site effects and 

found that DIEP patients had one-half the risk of abdominal bulge or hernia.   

They also pooled the data from 16 DIEP studies (1920 DIEP flaps) and 23 TRAM 

studies (3185 free TRAM flaps) and again found that DIEPs had less than one half 

the rate of abdominal hernia or bulge than TRAMs.  It would seem apparent from 

the literature that there is a difference in donor site morbidity between DIEP 

and TRAM flaps.  As the effects of this difference are debated313, the 

significance of donor site morbidity as a factor in clinical decision of choice of 

flap will also depend upon the patients lifestyle, occupation and sporting 

activities. 

The SIEA flap, in relation to donor site morbidity, is superior to the TRAM and 

DIEP flaps as outlined in the introduction, as it does not injure the rectus 

abdominis muscle or fascia.  The superficial inferior epigastric vessels originate 

from the femoral artery and vein four to five centimetres below the inguinal 

ligament314, coursing vertically upward towards the abdomen.  The vessels are 

found in the subcutaneous fat roughly midway between the anterior superior 

iliac spine and the pubic symphysis, 75% within 1cm of the midpoint of the 

inguinal ligament25 when incising the flap, and the donor site has the same lower 

abdominal or abdominoplasty scar as for the DIEP and free TRAM flaps.  Several 

studies including SIEA flaps report no incidence of abdominal wall complications 
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such as hernia or bulge, for example; 14 SIEAs reported by Chevray in 200424, 94 

SIEAs reported by Spiegel in 2007281, and 69 SIEAs reported by Selber in 2008303.  

A prospective comparative study of 82 patients undergoing bilateral 

reconstructions with SIEAs, DIEPs and TRAMs showed a reduction in lower 

abdominal strength of bilateral TRAMs compared with SIEAs (p=0.04)315.   Being 

the least invasive it has the lowest incidence of abdominal wall complications of 

the lower abdominal wall flaps, results in less post-operative pain24;316and 

requirement for analgesia, and a decreased post-operative hospital stay24 than 

DIEP flaps.  Despite the obvious benefits in reducing donor site morbidity, the 

variability of the presence of the SIEA vessels has been one of the perceived 

drawbacks when a SIEA flap is considered. 

6.5.2 Blood supply to the lower abdomen 

Taylor and Daniel in 1975 in their large anatomical study of 100 cadavers, 'The 

Anatomy of Several Free Flap Donor Sites', stated that the superficial inferior 

epigastric artery (SIEA) was absent in 35% of cadavers, replaced with a large 

superficial circumflex iliac artery26.  The mean diameter of the SIEA was 1.1mm 

(0.8mm - 1.8mm range), and the vein described as 'constant', having a diameter 

of 2mm or greater.  A further anatomical study of 16 cadavers by Hester et al in 

1984 found the SIEA vessels inadequate for free flap transfer in 1 in 16 cases317.  

Stern & Nahai reported a clinical series in 1992 of 31 patients and only in 4 

patients (13%) was the SIEA absent or unsuitable268.  In 2004 an anatomical study 

of 22 cadaver dissections by Reardon et al found the SIEA present in 20 out of 22 

(91%)25.  They commented that the SIEA was therefore more consistently present 

than previously reported and consequently may be of greater clinical use.  Of 

note a study by Gusenoff et al in 2008 found that maximum body mass index was 

related to the overall presence of a SIEA (p=0.009), a usable artery greater than 

1.5mm (p=0.04), and to superficial inferior epigastric vein size (p<0.001)298.  A 

small CT study of 17 patients by Fukaya in 2011318 identified the SIEA vessel in 

only 64.7%, a number very similar to Taylor's 1975 cadaver study.  The authors 

do comment however that it maybe a current technical limitation in visualising 

vessels of this calibre.  It would appear from the literature that the SIEA is 

present more frequently than thought after Taylor's study in 1975, but it must be 

noted that Taylor's study has significantly more dissections than subsequent 

studies.  
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Further considerations when planning a SIEA flap include the pedicle length, 

being around 5.2cm from its origin to the inguinal ligament (range 3 - 7cm)25, 

and therefore shorter than the DIEP (11.8cm mean, range 9.7 - 14.5cm)21(10.3cm 

mean, range 9 - 13cm)286 and muscle-sparing TRAM pedicles.  The SIEA pedicle 

can be too short to allow anastomosis to the thoracodorsal vessels in the axilla.  

As described in the introduction Antia and Buch's original description of the free 

SIEA flap took a cuff of femoral artery and saphenous vein to increase the 

pedicle length266 and Volpe in 1994 required saphenous vein interposition grafts 

in two of four patients to reach the thoracodorsal vessels275.  The TRAM flap with 

its longer pedicle had allowed the use of the thoracodorsal vessels as the 

recipient vessels for breast reconstruction.  The internal mammary vessels, 

which have been reported as recipient vessels, were largely disregarded as they 

were thought to be of 'unpredictable quality'319, especially the vein.  Dupin and 

Allen et al published 110 consecutive cases of use of the internal mammary 

artery and vein as a recipient vessels for breast reconstruction describing them 

as very reliable and recommending that 'the internal mammary system should be 

brought back into the armamentarium for free-flap breast reconstruction'320.  

They described the artery size at the 3rd and 4th rib as 3.2mm and 2.9mm 

respectively, and 3.4mm and 2.7mm for the vein.  The series had 74 DIEP flaps 

and 32 superior gluteal artery flaps with only one flap failure which was 

unrelated to the recipient vessels.  Although no SIEAs were included in this 

series, the use of internal mammary vessels as recipient vessels in breast 

reconstruction is crucial for the popularity and acceptance of the SIEA as it 

allows for a shorter pedicle length. 

The artery diameter for the SIEA flap is smaller than that of the TRAM or DIEP 

flap24;274;314, which combined with the shorter pedicle, and 'an absence or 

inadequacy of an arterial pedicle in most patients' as described by Chevray in 

200424, has, as discussed, traditionally made the SIEA a less attractive option for 

many surgeons.  Spiegel and Khan in 1997 reported performing 99 SIEAs out of 

199 breast reconstructions, where SIEAs were the first choice dependent upon 

meeting suitability criteria281.  The protocol of a pulsatile vessel of diameter 

1.3mm at the point of entry to the flap was later modified to 1.5mm, as the 

difference between thrombotic and non thrombotic vessel sizes of 1.4mm versus 

1.8mm was significant (p=0.002).  Spiegel et al also felt that the diameter of the 

vessel at the point of entry to the flap mattered more than the SIEA diameter at 
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its origin.  In an anatomical study in 2004, Reardon et al found a mean SIEA 

calibre of 1.9mm, ranging from 1.2mm to 2.5mm in 22 cadaver dissections25.  

Clinically, Chevray et al proposed selection criteria for performing a SIEA flap for 

breast reconstruction, including an arterial diameter of 1.2 - 1.5mm at the 

femoral origin (1mm at groin incision), visible and palpable pulsation of the SIEA, 

and the flap vessels based on the contralateral side to the breast 

reconstruction24. Allen in his discussion of Chevray's paper disagreed with 

Chevray's selection criteria for SIEA flaps as they only allowed 30% of patients to 

have SIEA flaps performed as a first choice in a series of 47 patients, with 17% of 

patients having DIEPs and 53% muscle-sparing free TRAMs.  Allen similarly 

performed 40% SIEAs and 60% DIEPs with no TRAM flaps in 215 consecutive 

patients over the same time period, and states of the SIEA 'this may be the flap 

of the future'.  Other authors have adopted protocols of exploring the SIEA 

vessels and considering their use if greater than or equal to 1.5mm at the vessel 

origin303;321, converting to a DIEP flap (or muscle-sparing TRAM) if the SIEA 

vessels are not suitable. 

The DIEP vessels have a longer pedicle length and therefore have more options 

for the flap orientation when inset in breast reconstruction, and also gives the 

option of using the thoracodorsal vessels.  Heitmann et al in 1999 performed 40 

cadaver dissections and found that the DIEP vessels were present in all 

dissections and that the average pedicle length was 10.3cm (9 - 13cm)286.  The 

average vessel diameter was 3.6mm (range 2.8mm - 5mm) and the major 

perforators were located within a radius of 8cm below the umbilicus.  The vessel 

size, constant presence and longer pedicle make the DIEP an easier choice than 

the SIEA for pre-operative planning, vessel anastomosis and flap inset. 

6.5.3  Perforator topography 

Blondeel in 1994, when describing the operative procedure of a patient 

undergoing bilateral DIEP flap breast reconstruction, stated that the main 

disadvantage of the DIEP in comparison with the TRAM flap is 'a more difficult 

pedicle dissection especially in the intramuscular portion of the pedicle'295.  In 

2001 Vandervoort et al documented this intramuscular perforator course in 100 

consecutive patients, and similarly commented that 'it is the topography of the 

perforators within the flap and their relation to the rectus abdominis muscle and 

fascia that determines the degree of difficulty in dissecting these perforators 
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through the muscle down to their origin on the deep inferior epigastric artery'322.  

They identified five groups of perforators; short intramuscular course when the 

length in the muscle was less than 4 cm (65%), long intramuscular course when 

greater than 4cm in the muscle fibres (9%), subfascial perforators running under 

the fascia before entering the muscle (5%),  paramedian perforators when 

located at the medial border of the rectus abdominis muscle (5%) and, and those 

perforators arising at the tendinous intersection (16%).  The average time for 

dissection of the short intramuscular perforator was 110 minutes (138 minutes 

for two perforators), for the long intramuscular course 120 minutes (185 minutes 

for two perforators), 160 minutes for a subfascial perforator, 122 minutes for a 

paramedian perforator, and 103 minutes for a perforator at the tendinous 

intersection (150 minutes for two perforators).  This study demonstrated that 

the course of the perforator chosen plays a large part in determining the 

patient's overall operative time.  The location of the perforator is only one 

factor in the decision of which perforator to use, as the calibre of the 

perforators is a fundamentally important observation for flap perfusion.  A 

medial perforator was thought to provide better perfusion to zone 4 than a 

lateral perforator, which is important if designing a large flap.  It is also of note 

in this study, as in may other studies21;294;296;299;323, that the authors felt that one 

large perforator (used in 74% of flaps) was sufficient for perfusion of the whole 

flap. 

Munhoz et al in 2004 looked at medial and lateral row perforators in DIEP flaps, 

harvesting 30 cadaver DIEP flaps and 35 DIEP flaps in patients undergoing breast 

reconstruction324.  An average of 6.1 perforators were dissected per flap with 

66% being in the medial row (medial third of muscle) and 34% in the lateral row 

(lateral third of muscle), with the lateral row perforators following a rectilinear 

course and the medial row perforators a more oblique course.  When harvesting 

the DIEP this means that a lateral row perforator is likely to be easier to dissect 

than a medial row perforator, as it has a perpendicular course through the 

muscle.  Again, the authors do comment that although this is useful information 

it should not be used as a major selection criteria for the vessel used ahead of 

vessel calibre. 

Carramenha e Costa et al in 1986 performed an anatomical study of 12 cadavers 

to investigate the venous drainage of the Transverse Rectus Abdominis flap and 
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found that drainage occurs from the cutaneous part of the flap to the deep 

inferior epigastric vessels through vertical perforators that are mainly 

periumbilical287.  When designing a flap they emphasised the importance of 

including periumbilical perforators.  Imanishi et al, 2003, performed arterial and 

venous injection studies on eight cadavers to investigate the relationship 

between the superficial inferior epigastric vein and the paraumbilical arterial 

and venous perforators285.  They found that in the paraumbilical region there 

were relatively large paraumbilical arterial perforators, with a large skin 

territory, and accompanied by a vein.  The superficial inferior epigastric vein 

(SIEV) did not accompany an artery, and formed a venous network.  It was not 

clear which of these two pathways of venous drainage was dominant 

physiologically, but the authors suggested that the superficial inferior epigastric 

vein could lead to safe extension of the flap, analogous to using the cephalic 

vein in the free radial forearm flap. 

The venous anatomy of the lower abdomen has been less extensively studied 

that the arterial anatomy, although venous congestion of flaps is not 

infrequently seen and can lead to partial or complete flap loss.  In an anatomical 

study of 18 specimens by Blondeel et al in 1998 it was noted that branches 

always connected the superficial venous system to the deep system, and that in 

18% there were large side branches crossing the midline, in 45% there were 

indirect connections through smaller veins, and in 36% there were no medial 

crosslinking branches.  The potential clinical implications are discussed in 6.5.5 

below.  Rozen et al in 2009 studied 8 cadavers and 100 pre-operative lower 

abdominal CT scans in DIEP patients284.  They found no SIEV branches crossing 

the midline in one out of 16 cadaver hemiabdomens and in 14% pre-operative CT 

scans.  The SIEV had deep branches penetrating the anterior rectus sheath and 

draining into the venae comitantes of the deep inferior epigastric vein 

perforators, although this was only seen in 90% and for one to three perforators 

in these patients.  The authors recommend the use of CT scanning 

preoperatively to identify the SIEV and its communication with the deep system, 

to look for midline crossover, and to help determine the dominance of the 

superficial or deep system for each individual patient. 
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6.5.4 Pre-operative imaging 

Surgeons frequently use hand held Doppler devices preoperatively to identify the 

position of vessels and perforators, and then mark this position on the patient's 

skin.  Unidirectional Doppler ultrasound is an quick and easy method of roughly 

identifying where vessels are, but it is not sensitive and does not give any 

indication of a perforators course through muscle296;325.  Identification of the 

arterial and venous topography and location of the largest calibre vessels takes 

time and experience, and intraoperative decision making.  Pre-operative 

imaging, by CT or MRI scanning, providing the location and evaluation of 

perforators and superficial inferior epigastric vessels, can aid in this decision 

making potentially reducing the operative time and improving the reconstructive 

outcome.  Mihara et al in 2008 described multidetector computed tomography as 

'illuminating reconstructive surgery in a manner analogous to Edison's 

development of the light bulb in 1879'326. 

Multidetector row CT angiography has in the last 5 years become the accepted 

standard for pre-operative imaging of lower abdominal flaps327-330.  It has been 

shown to decrease the operative time327-329;331;332, decrease the incidence of 

hernia327 and abdominal wall bulge332, increase the number of medial perforators 

used327 and reduce the overall number of perforators used327;332, and minimises 

surgical errors in the identification of the vascular anatomy331.  The concordance 

of CT with intraoperative findings has been found to be very satisfactory by 

surgeons using this technique329;332;333.  A cadaver study in 2008 of 10 cadavers 

and 154 perforators found CT angiography to have a sensitivity of 96% and a 

positive predictive value of 95% overall334.  For mapping perforators greater than 

1mm in diameter the sensitivity and positive predictive value both increased to 

an impressive 100%.  Similarly Masia et al in 2008 in their first 36 clinical cases of 

using multidetector row CT found an 'absolute correlation' between  the 

radiological information and the intraoperative findings329.  

The Navarra meeting in 2008 aimed to discuss the imaging modalities available 

and improve and standardise current techniques330.  The 'ideal' vascular pedicle 

to maximise the speed and ease of the operation was described as; a large-

calibre deep inferior epigastric perforating artery and veins, a central location 

within the flap, a short intramuscular course, perforating veins communicating 

with the superficial venous network, broad subcutaneous branching, and a 
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longer subfascial course and avoiding tendinous intersections.  It was 

recommended that the surgeon and radiologist interpret the three-dimensional 

images together, and the two-dimensional images should be produced as the 

perforators emerge from the rectus sheath, and to show the DIEA and its main 

branching pattern, with the umbilicus as a point of reference.  As well as being 

able to select out perforators preoperatively and hopefully maximise the 

vascularity of the flap, preoperative CT angiography can give the surgeon 

warning of any unfavourable and unusual variations in the anatomy335;336. 

CT scanning, although able to identify the vessels, has no clear way of 

differentiating between perforating arteries and veins, which can also be an 

issue with the SIEV and SIEA.  An 'arterial-phase' scan where the contrast has 

reached only the arteries can improve accuracy for the arteries although this 

does not aid visualisation of the veins.  Disadvantages of CT include the radiation 

dose, reported in one study as 5.6mSv, which is lower than a conventional 

abdominal CT scan329.  Contraindications to the use of CT would include a 

sensitivity to IV contrast or renal impairment, and claustrophobia, although the 

number of CT detector rows influence how fast a scan can be preformed325. 

Other possible modalities of investigation include two-dimensional ultrasound 

and magnetic resonance angiography MRA.  Two-dimensional ultrasound used 

pre-operatively in a comparative study by Rozen et al in 2008 was found to be 

inferior to CT scanning in 'all outcome measures', including identification of the 

major branches of the deep inferior epigastric artery, identifying the SIEA, and 

the intraoperative correlation with pre-operative findings331.  MRA has the 

advantage over CT of avoiding ionizing radiation to the patient, although 

currently the images are not as detailed325 (vessels are visible down to 1mm with 

MRA and down to 0.3mm with CTA337;338) and the scanning time is longer.  It is 

the only other imaging modality to provide the three dimensional information 

required to have similar benefits to CT and may rival CT as technology 

progresses. 

6.5.5 Flap perfusion  

The number of perforators required for a DIEP flap and the position of these 

perforators either in the medial row or lateral row is one of the uncertainties 

among surgeons, and is often a compromise between donor site morbidity 
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related to the extent of the intramuscular dissection, operation time, and the 

size of the flap required.  Venous anatomy and venous congestion are a 

confounding factor in flap perfusion, and reducing this perfusion can lead to fat 

necrosis or partial necrosis of the flap postoperatively.  The pathophysiology of 

necrosis in flaps in relation to arterial and venous flow is not completely 

elucidated.   

6.5.5.1  Number of perforators and row of perforators 

Intraoperatively, the vessel chosen to perfuse a DIEP flap is the largest 

perforator, and similarly a SIEA flap is only undertaken if the vessel is above a 

certain size, for example many authors state greater than 1.5mm as discussed 

previously.  With the DIEP flap, unlike the SIEA or TRAM flap, there is an option 

to include more than one perforator, dissecting the chosen vessels back to their 

common origin.  A simple mathematical study, by Patel & Keller, comparing the 

resistance and flow circuits with one perforator or multiple perforators 

concludes that including the largest perforator and adding additional perforators 

will decrease the resistance and increase the flow, but the magnitude of the 

benefit may be small in comparison to donor site trauma339.  For example 

choosing the largest perforator and adding a perforator with a diameter 0.9 

times the largest diameter will decrease the resistance to 0.6 times the 

resistance of the largest perforator alone, whereas adding an additional 

perforator with 0.5 times the diameter of the single large perforator will only 

decrease the resistance to 0.9 times the largest perforator alone.  Alternatively, 

not including the largest perforator but opting for two perforators with 0.84 

times the radius of the largest perforator would give the same flow as the 

largest perforator alone.  If three perforators are chosen, their radius would 

need to be 0.76 times the diameter of the largest perforator to give the same 

flow.  The calculations also apply to the venous drainage of the flap, and as the 

venous system is of lower pressure than the arterial system, the authors 

comment that resistance in the venous system is even more significant.  

Practically, the logic of this study would support the use of the SIEV for 

additional drainage, although the use of one versus multiple perforators would 

depend very individually on perforators size and the impact on the muscle, 

fascia and operative time. 
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A study by Rubino et al in 2008 correlated the postoperative flow rate with the 

weight of the flap in 25 patients, 6 undergoing anterolateral thigh flaps and 19 

undergoing DIEP flaps302.  The flow in the flaps, measured one month 

postoperatively by Doppler ultrasound, was positively correlated with the weight 

of the flap (p<0.001).  As the arterial inflow to a flap should equal the venous 

outflow, these data were then used to calculate the minimum diameter of veins 

to drain different sizes of flap, for example 1.3mm for a 300 gram flap, 1.5mm 

for a 500 gram flap, and 1.75mm for a 900 gram flap.  If the venous diameter is 

not adequate, a higher pressure is required to drain the flap and the flap would 

then be at risk of venous congestion.  The effect of the recipient vessels on flow 

rate has also been investigated, and in a study of 25 patients undergoing TRAM 

flaps by Lorenzetti et al in 2005, there was no difference found in TRAM flap 

flow whether anastomosed to the lower flow thoracodorsal vessels or the higher 

flow internal mammary vessels340.  Lorenzetti concluded from this study and a 

prior study301 that the 'intake of blood in a free flap is not dependent on the 

recipient artery but on the tissue components of the flap'. 

More recently, a rat study by Miyamoto et al in 2008, aimed to investigate the 

effect of recipient arterial blood flow on free flap survival area290.  Sixty-four 

rats were split into 3 groups and a 3 territory skin paddle (2 x 8 cm from scapula 

to hip) was designed on their abdomen. Group 1 had the flap raised on the 

axillary vessels, and the pedicle was then clamped to give an ischaemic time of 

60 minutes after flap elevation.  In group 2, the flap was raised in the same way 

as group 1, before being divided and anastomosed to the common carotid artery 

and external jugular vein.  In group 3, the flap was raised and the axillary 

vessels were anastomosed to the femoral vessels.  The flaps were examined at 5 

days and whole-body angiography performed.  Group 1, the pedicled flap control 

group, had an 81.2% survival rate.  The authors thought that angiography showed 

that the first choke zone but not the second dilated to some extent, and thus 

the distal portion of the flap underwent necrosis.  In group 2, the survival rate 

was 94.3%, and this was significantly better than group 1 (p<0.01).  Multiple 

choke vessels of both zones dilated.  In group 3 the survival rate was 82.3% and 

this was not significantly different from group 1 (p=0.97), but significantly 

different to group 2 (p<0.01).  The structural changes on arteriography were 

similar to group 1.  The mean arterial blood flow in the pedicle artery in group 2 

(0.86 ml/min) was significantly greater than group 3 (0.64 ml/min), p=0.04.  The 
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authors conclusion was that the choice of recipient artery affects the survival 

area of a free flap.  They also comment that the literature suggests that free 

flap survival depends only upon its vascular anatomy, contrary to this study 

suggesting that blood inflow from a recipient artery is important in determining 

free flap survival area, especially in an extended flap.  Of note, this study is a 

rat study examining an extreme, with an extended flap model, whereas patient 

studies by Rubino302 and Lorenzetti340, were of DIEP, TRAM and anterolateral 

thigh flaps.  Rubino's study measured flap inflow one month postoperatively and 

found no difference in flow irrespective of recipient artery, whereas the rat 

study examines flow at five days, a period after choke vessel opening although 

perhaps prior to the vascular remodelling at one month.  Lorenzetti conversely 

looks at flow immediately after TRAM transfer and anastomosis, and found that 

blood flow increased in the thoracodorsal artery and similarly decreased in the 

internal mammary artery to match the donor artery, within 30 minutes of 

anastomosis.  It would seem likely from these apparently conflicting studies that 

the flap constituents and vascular anatomy is the main determinant of flow, 

provided that sufficient flow to the flap can be provided unlike the Miyamoto's 

extended flap model.   

6.5.5.2  Venous congestion 

Blondeel et al in 1998 performed a two centre retrospective study of 240 DIEP 

flaps and 271 TRAM flaps to look at the incidence of venous congestion of the 

entire flap and the incidence of venous congestion in zone 4, and strategies to 

deal with this280.  Fifteen cadaver and 3 abdominoplasty specimens were also 

examined following injection to further investigate zone 4.  The overall failure 

rate in DIEP flaps was 1.6%, and 1.5% in the TRAM group.  Five DIEP flaps had 

severe diffuse venous congestion that required a microvascular anastomosis to 

the superficial inferior epigastric vein to save the flap.  In these cases the 

superficial inferior epigastric vein was noted to be particularly large, and it is 

suggested by the authors that if a large SIEV is observed clinically the vein 

should be preserved for a secondary anastomosis if flap salvage is required.  

Alternatively the SIEV can be additionally primarily anastomosed.  In the 

anatomical studies it was noted that branches always connected the superficial 

venous system to the deep system, and that in 18% there were large side 

branches crossing the midline, in 45% there were indirect connections through 

smaller veins, and in 36% there were no medial crosslinking branches.  As 
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discussed above(6.5.3 Perforator topography), a later study by Rozen et al284 in 

2009 found in cadaveric and clinical studies that the SIEV failed to cross the 

midline in 13% of cases overall.  Blondeel associated his findings with the poor 

venous drainage of zone 4 which is furthest from the midline, and with the 

variability and unpredictability of blood flow in zone 4.  Blondeel and Kroll note 

that this problem in zone 4  appears to be more apparent in DIEP rather than 

free TRAM flaps, perhaps because there are only one or two perforating veins in 

the DIEP.  Despite the variability in zone 4 the authors comment that the DIEP is 

their preferred option for breast reconstruction due to the donor site benefits. 

The dominance of the superficial or deep venous systems in DIEP flaps suggested 

by Rozen et al on account of the current literature is a SIEV greater than 1.5mm 

for superficial system dominance, and a perforating DIEV greater than 1mm for 

deep system dominance284.  Ayhan et al291 investigated the correlation between 

the diameters of the superficial and deep inferior epigastric systems, following 

Kroll299 and Blondeel's280 impression that the size of the superficial inferior 

epigastric vein is inversely proportional to the perforators from the deep inferior 

epigastric system.  Fifty patients undergoing breast reconstruction were 

preoperatively examined using colour Doppler ultrasound.  They found a slight 

inverse correlation between the size of the superficial and deep systems, but 

this was not significant.  There was a strong correlation between SIEVs on both 

sides, and a strong correlation between the deep inferior epigastric artery and 

vein on the same side and on the contralateral side.   

Schaverien et al performed a retrospective study published in 2010 to further 

investigate the venous anatomy of the lower abdomen and its relationship to 

venous congestion341.  Fifty-four DIEP flaps that had undergone contrast-

enhanced magnetic resonance angiography (MRA) pre-operatively were 

reviewed.  Seven of these flaps suffered from venous congestion and all of these 

were found to have had no direct connection between the venae comitantes of 

the deep system and the main arborisation of the SIEV.  Only one of the 

remaining 46 flaps had a similar anatomy with no direct connection between the 

perforator venae comitantes and the SIEV.  The occurrence of venous congestion 

and the lack of a direct connection between the superficial and deep systems 

was found to be extremely significant (p<0.0001).  Additionally the number of 

perforators did not make a difference to the incidence of venous congestion 
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(p=0.33).  Anatomically, only 68% of perforators had a direct connection with the 

main arborisation of the SIEV.  The authors later suggested that in scenarios 

where one dominant perforator was not present, multiple perforators may 

increase the chance of including in the flap a perforator that directly drains the 

flap through a direct connection to the superficial system, and cited this as a 

possible partial explanation for the reduction in fat necrosis with multiple 

perforators seen in Baumann's paper293;323.   

The size of the perforating veins that had a direct connection was also 

investigated by Schaverian et al341.  The veins had a mean diameter of 2.6mm 

which was significantly bigger than those without a direct connection of 

diameter 2.3mm (p=0.02).  Also, those veins with a direct connection between 

superficial and deep systems were more likely to be in the medial row of 

perforators (p<0.01). These findings would suggest that in DIEP flaps where there 

is no direct connection between superficial and deep systems, there is a high 

risk of venous congestion leading to salvage procedures, for example performing 

a further anastomosis using the SIEV, and potentially flap failure.  The findings 

are in support of other authors' technique of additionally performing and 

anastomosis using the SIEV during the original flap transfer or preserving it for a 

salvage procedure280;285;299;322;342-347, although unlike Blondeel's study280 no 

relationship was found between the size of the SIEV and the incidence of venous 

congestion. 

6.5.5.3  Venous congestion versus arterial inflow 

A rat study designed by Yamamoto et al in 1997 was designed to look at the 

relative importance of arterial inflow versus venous outflow in flap survival289.  

Thirty rats had abdominal perforator flaps and the femoral artery and vein, 

proximal to the superficial inferior epigastric system, were in various 

combinations clamped and unclamped to mimic increases in arterial and venous 

flow.  The rats were then divided into three groups; a control group with both 

the SIEA and SIEV ligated, an enhanced arterial inflow group ('supercharged') 

with the SIEA retained and the SIEV ligated, and a supplemental venous outflow 

group ('superdrainage') with the SIEV retained and the SIEA ligated.  The area of 

flap necrosis was recorded at 7 days.  The surviving area was 77 ± 11.3% in the 

control group, 86.9 ± 8.8% in the supplemental venous outflow groups, and 93.3 

± 10.6% in the enhanced arterial inflow group.  The enhanced arterial inflow 
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group was the only group to have a statistically significant improvement in 

survival area.  The authors concluded that the major factor contributing to  

partial necrosis in the rat perforator flap model was arterial inflow rather than 

venous outflow.  A similar study prior to this study by Hallock et al investigated 

only enhancing venous outflow again with the SIEV as a supplemental vein348.  

They found that enhancing venous outflow resulted in a significant (p<0.027) 

increase in flap survival at 48 hours.  Of note in Yamamoto's study, of the 

enhanced arterial inflow group the flaps that entirely survived were those with 

the lower initial venous pressure.  It would seem reasonable to presume that 

whilst arterial inflow may be the more important factor in flap survival, 

increased venous drainage is likely to be beneficial especially if indicated 

clinically.  

6.5.6 Fat necrosis and partial necrosis 

Partial necrosis is necrosis of any part of the visible skin paddle, and includes 

the underlying fat, and is often obvious within the first week.  Fat necrosis is 

similar although does not involve the skin and is therefore detected as any 

palpable firmness which is not thought to be from any other cause, weeks to 

months post-operatively.  On physical examination, necrotic, hard tissue apart 

from reducing the quality of the reconstruction, can mimic breast cancer causing 

the patient further anxiety and distress.  Surgical excision if required, may 

reduce the aesthetic result of the breast reconstruction.  If an area of partial 

necrosis is large, additional skin coverage maybe necessary depending upon the 

extent of the necrosis, and this may require a further flap and reconstructive 

procedure to bring healthy tissue into the area. Both can cause significant 

wound healing problems and can lead to infection deep in the reconstructed 

breast tissue.  If the patient is having an immediate reconstruction at the time 

of mastectomy, problems healing can delay adjuvant radiotherapy and 

chemotherapy, and therefore also negatively affect cancer treatment.  Surgeons 

attempt to minimise fat necrosis by intraoperatively excising areas of the flap, 

before transfer to the recipient site, that they from both experience and 

intraoperative observation suspect to have inadequate perfusion.  This 

frequently involves zone 4305, and then depending upon the positions of the 

perforators, and the size of the flap, parts of zones 2 and 3.  Factors that have 

been associated with increased fat necrosis in autologous breast reconstructions 
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include smoking293;297;310;349;350, chest wall irradiation349-351, obesity263;310;349;350;352, 

and flap size299;350. 

The rates quoted in the literature for partial necrosis of DIEP flaps range 

between 1.8% and 8.7%299;350;353, and the rates of fat necrosis between 6% and 

36%262;264;299;310;311;350;353-356.  For TRAM flaps the rate of partial necrosis is around 

2%299, and the rate of fat necrosis between 4% and 12.9%264;299;310-312;349.  A meta-

analysis by Man et al including 1920 DIEPs and 3185 free TRAM flaps quotes the 

partial necrosis rate as 2.5% and 1.8% for DIEPs and TRAMs respectively, and 

similarly 10.1% and 4.9% for fat necrosis.  There are fewer large series of SIEA 

flaps documented and a rate of partial loss quoted is 5.1%281, and between 1%281 

and 14% for fat necrosis14%24;293. 

Fat necrosis can be difficult to document as it is difficult to quantify and does 

not appear in photographic records293.  Peeters et al demonstrated this in 202 

DIEPs with a 14% rate of clinically detected fat necrosis, and a 35% rate of 

ultrasound detected fat necrosis355.  Seven percent of the total DIEPs performed 

required a further surgical procedure due to fat necrosis.  Additionally Peeters 

et al found no association between fat necrosis and smoking or radiotherapy, 

two of the most implicated factors by other studies, and did not recommend 

delayed breast reconstruction in patients who possibly needed radiotherapy 

regarding fat necrosis.  The published literature shows no definite association 

between fat necrosis and flap type, and although some authors have shown a 

trend of higher incidence of fat necrosis in DIEP flaps than TRAM flaps280;299;311, 

this depends upon flap selection criteria and whether the TRAM flap group 

includes both muscle-sparing and non-muscle sparing TRAM flaps. 

An early study by Kroll et al in 2000 compared the difference in fat necrosis 

between the free TRAM flap and the DIEP flap299.    A retrospective review of 279 

TRAM flaps revealed a partial flap loss or partial necrosis rate of 2.2% and a fat 

necrosis rate of 12.9%.  The first eight DIEP flaps were selected in the same way 

as the TRAM flaps and the partial necrosis rate was found to be 37.5% and the 

fat necrosis rate 62.5%.  These differences were statistically significant 

(p=0.002).  Due to these high rates of necrosis more rigid selection criteria were 

introduced and DIEPs were performed only if no more than 70% of the TRAM flap 

skin paddle would be required to reconstruct the breast, and if the perforators 
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supplying the flap had a vein at least 1mm.  In this selected group of 23 DIEP 

flap patients, the rate of partial necrosis was 8.7% and the rate of fat necrosis 

was 17.4%, which was not significantly different from the TRAM group (partial 

necrosis p=0.117, fat necrosis p=0.509).  Multiple logistical regression was then 

used to analyse all flaps and control for confounding factors such as smoking and 

the use of bilateral reconstructions, and in this scenario the DIEP flap was 

predictive for partial necrosis (p=0.004) but not for fat necrosis (p=0.101).  On 

account of these findings Kroll recommends judgement when using DIEP flaps 

including  avoidance in smokers unless they have particularly large perforators 

and where more than 70% of the lower abdominal flap is likely to be required for 

the reconstruction.  Preserving the SIEV is also suggested, as recommended by 

Blondeel280 for additional flap drainage.  The authors comment that the although 

blood supply of the DIEP flap is less robust than that of the TRAM, the DIEP flap 

is a very useful tool, with significantly reduced patient morbidity. 

A meta-analysis published by Man et al311 as discussed previously( 6.5.1), 

included six studies that compared complications of both DIEPs and 

TRAMs264;292;294;299;310;312, allowing relative risks to be calculated.  There was 

found to be a two-fold increase in the risk for fat necrosis in patients receiving 

DIEP flaps compared to those with TRAM flaps.  When the data were limited to 

the muscle-sparing TRAM flaps there was no difference in the rate of fat necrosis 

between DIEP and TRAM flaps.  Man et al also pooled the data from 16 DIEP 

studies (1920 DIEP flaps) and 23 TRAM studies (3185 free TRAM flaps) and again 

found that DIEPs had twice the risk of fat necrosis (4.9% versus 10%) of all TRAM 

flaps.  This study shows that the trade-off for improving the rate of fat necrosis 

for a DIEP would be instead to perform a full muscle free TRAM flap, which has 

understandably lost popularity due to donor site morbidity.    

Baumann et al in 2010 investigated 228 consecutive abdominal free flap breast 

reconstructions, muscle-sparing TRAMs, DIEPs and SIEAs, to  look for an 

association between perforator number and fat necrosis293.  Fat necrosis was 

defined as any palpable firmness, nodule or mass greater than one centimetre in 

diameter that was present beyond 6 weeks after surgery.  Flaps were 

categorised into four groups; group one was all 37 SIEAs, group two included all 

flaps with 1 - 2 musculocutaneous perforators (52 DIEPs, 12 TRAMs), group three 

included all flaps with 3 - 5 musculocutaneous perforators (19 DIEPs, 82 TRAMs), 
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and group four included all flaps with greater than 5 perforators ( 26 TRAMs).  

The incidence of fat necrosis for the SIEAs was 14%, 25% for one to two 

perforators, 5% for 3 - 5 perforators, and 19% for more than five perforators.  

The overall incidence of fat necrosis was 14%.  Baumann found that the 

incidence of fat necrosis was significantly related to the number of perforators 

(p=0.007).  Flaps with 1 - 2 perforators (25%) had a five-fold higher incidence of 

fats necrosis than those with the optimal number of 3 - 5 perforators (5%), and 

SIEAs had an intermediate rate of fat necrosis of 14%.  Flaps with more than 5 

perforators were inherently those flaps that lacked a dominant perforators and 

as many small perforators as practical were included.  These flaps were often 

distressed and had a 19% incidence of fat necrosis.  There was an increased risk 

of fat necrosis with smoking (p=0.018), and with inclusion of the midline zone 

contralateral to the pedicle of the flap (termed zone 3 in this study, Hartrampf 

zone 2) (p=0.049), and both were independent of the number of perforators.  

There were no data as to whether the perforating vessels were medial row or 

lateral row perforators. 

Baumann et al found that flap type, laterality of reconstruction, recipient 

vessels, radiation therapy, timing of reconstruction, year of surgery, perforator 

score, ischaemia time, patient age, body mass index, bra size, and follow-up 

time did not have a significant independent effect on the incidence of fat 

necrosis.  A study of 71 patients undergoing 80 DIEP flaps in normal (BMI < 25), 

overweight (BMI 25 - 29.9) and obese groups (BMI > 35), by Garvey et al similarly 

found no difference in the rate of fat necrosis with increasing weight, although 

there was a trend towards wound healing complications357.  The perforator score 

used by Baumann et al was a score given for perforator size ('3' for <0.5mm, '5' 

for 0.5-1mm, '7' for >1mm) to account for blood flow to the flap rather than only 

perforator number293.  This was not found to be significant and again it was 

thought to be the inadequate distribution of perforators rather than the blood 

flow though the perforators that was associated with fat necrosis. Interestingly 

there was no association between necrosis and flap type as in Kroll's study of 

DIEPs and TRAMs299 and Man's analysis of studies comparing only muscle-sparing 

TRAM flaps and DIEPs264;292;294;299;310-312.  Baumann notes that the flaps were 

evaluated intraoperatively for adequate perfusion, and in patients who were 

smokers or those who required inclusion of the flap across the midline, the 

threshold for performing a muscle-sparing TRAM was lower rather than insisting 
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on a DIEP flap.  If areas of the flap were deemed inadequate intraoperatively 

they were excised.  They concluded that DIEP flaps by design had fewer 

perforators than muscle-sparing TRAM flaps and that this was the reason for the 

higher rate of fat necrosis (20% versus 11%), rather than it being inherently 

associated with flap type.  

Gill et al's 10 year retrospective review of 758 DIEP flaps found that the 

incidence of any complication and of fat necrosis was significantly lower with 

one perforator than with two or more perforators (p=0.0418), and this is in 

conflict with Baumann's study regarding the number of perforators.  Baumann 

does not make reference to Gill's findings.  In a response to Baunmann's study, 

Rozen et al question the use of external vessel diameter as a reflection of 

internal flow as the internal radius of the vessel determines this rather than the 

external radius which cannot account for different vessel wall thicknesses.  The 

difficulty in both Gill and Baumann's studies is the unknown factor of blood flow 

into the flap, as this would help to clarify the confounding effects of the number 

of perforators.  Other authors speculate that the calibre and flow through 

vessels are more important in the pathogenesis of fat necrosis then the number 

of perforators355.  It would seem likely that the anatomy of individual perforator 

arteries and veins, know to be variable, and their interconnections, as suggested 

by Schaverien et al323;341 fundamentally affect the perfusion of a flap.  Increased 

knowledge related to perforator number, position in the medial or lateral row, 

order of zones of perfusion and pre-operative vessel imaging demonstrating size 

and branching patterns may all assist in optimising the perfusion of a flap.  

Physiological assessment of the flap intraoperatively is a further stage in 

assessing each individual combination of arteries and veins, and the resulting 

perfusion.  Although the exact pathophysiology of necrosis within flaps has yet to 

be elucidated, optimisation of both patient factors, such as cessation of 

smoking, and surgical decision making, should be used to minimise the patients' 

morbidity due to fat necrosis. 

6.5.7 Zones & experimental studies 

The blood supply to the skin has been experimentally investigated and 

documented for over 100 years and reconstructive surgery has provided a very 

valuable application for this knowledge with the progression from random 

pattern flaps, to axial and pedicled flaps, and finally free tissue transfer with 
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the increasing refinement of perforator flaps.  The angiosome concept has 

provided the theoretical background upon which investigation and observation of 

the blood supply to flaps has been based2.  The choices available to the 

reconstructive surgeon are a balance of form and function, and donor site 

morbidity.  The lower abdomen is a common donor site and provides tissue that 

is a very good match for breast tissue, hence its popularity for use in breast 

reconstruction.  Free TRAM flaps have been almost entirely replaced by muscle-

sparing TRAM flaps and DIEP flaps reducing the anatomical damage and donor 

site morbidity.  Donor site morbidity has to be balanced with the recipient site 

reconstructive quality, and the risk of inadequate perfusion, venous congestion 

and ultimately fat necrosis, partial necrosis and flap failure299.  Perforator flaps 

like the DIEP flap have added a subtle level of choice to the surgeon with each 

individual patient having a unique pattern of perforating vessels.  The choice of 

perforating vessel, its diameter and flow, the position of the vessel in the medial 

or lateral row of perforators, its path through the muscle, and the requirement 

for additional perforators, the venous drainage and the size match of vessels to 

the recipient vessels must all be considered both pre-operatively and intra-

operatively.  The SIEA, whilst not a perforator flap, has a very favourable donor 

site although the variation in its presence, size and area of perfusion again make 

this choice of vessel individual to each patient.   

Generic protocols have been devised by many surgeons based on the current 

knowledge, for example it is relatively common practice to excise zone 4 in a 

DIEP flap as it is poorly perfused and at risk of necrosis305.  Despite this, there 

are case series of patients who have zone 4 maintained in their breast 

reconstruction with no significant increase in morbidity.  The position of the 

vessel in the medial row rather than the lateral row has been postulated to 

increase the vascularity across the midline and increase the perfusion of zone 4.  

The medial row perforators may result in less donor site morbidity358.  When 

more of the flap requires to be excised there is debate over Hartrampf original 

labelling of zones for DIEPs and TRAMs with zone 2 increasingly thought to be the 

ipsilateral lateral zone, rather than the contralateral midline zone.  Again, 

perhaps the reallocation of zones is also dependent on whether the perforator is 

medial or lateral row, and may be more explicable by the concept of 

'perforasomes', increasing the accuracy and detail of the angiosome concept. 

The overall perfusion of the flap and risk of fat necrosis and its relationship to 
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the number of perforators chosen is debated.  The size and flow within each 

vessel is a confounding factor in the choice of perforators, although with the 

SIEA flap there is obviously one vessel therefore more specific recommendations 

regarding the size of vessel have been published. 

6.5.7.1  Experimental DIEP studies 

Flap perfusion has been subjectively described as more robust in the TRAM flap 

and muscle-sparing TRAM flap than the DIEP flap.  A rat study by Hallock in 2005 

compared the survival of TRAM flaps, multiple perforator DIEP flaps and single 

perforator DIEP flaps in three groups of five rats at 48 hours after flap 

elevation348.  The TRAM flap had the greatest flap survival at 96.1%, followed by 

the muscle-sparing TRAM with 79.8% flap survival, and the DIEP flap with 77.1% 

survival.  The differences were not statistically significant. 

Perfusion zones of the DIEP flap are accepted terminology, and mostly referred 

to as originally described by Hartrampf with zone 2 being the contralateral 

midline zone, and zone 3 the ipsilateral lateral zone (Figure 6-1).  A simplistic 

view is that both zones 2 and 3 should be re-numbered 2, and that zone 4 should 

become zone 3359.  Henry et al360 suggested calling the zones ipsilateral medial 

(IM), ipsilateral lateral (IL), contralateral medial (CM) and contralateral lateral 

(CL), although this may be cumbersome and doesn't reflect blood supply in any 

way.  The placement of zones 2 and 3 has relevance when the size of the flap is 

being reduced with the higher the number of zone, the poorer the perfusion.  By 

definition zone 3 would be preferentially excised over zone 2.   

Holm et al in 2006 published a series  entitled 'Perfusion Zones of the DIEP flap 

Revisited: A clinical study' aiming to quantitatively assess the perfusion of the 

lower abdomen and the validity of the Hartrampf perfusion zones227.  Fifteen 

DIEP patients were intraoperatively assessed using the method of laser-induced 

fluorescence of indocyanine green with laser illumination of 780 nanometres.  

Indocyanine green is a dye injected that absorbs light in the near-infrared range, 

maximal at 805 nanometres. The indocyanine green dye emits fluorescence at 

835 nanometers.  The absorption and emission light is said to penetrate to a 

depth of '3mm and more' in the skin, allowing fluorescence from the deep 

dermal plexus and subcutaneous fat to be recorded by a near-infrared sensitive 

videocamera193.  Perfusion of zones 1, 2, 3 and 4 was seen 25, 41, 32 and 67 
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seconds respectively after injection.  The perfusion index was 76, 25, 47 and 33 

percent of normal tissue in zones 1, 2, 3 and 4.  Zone four perfusion was 

completely absent in 5 patients (33%).  Zone 3 was perfused more quickly than 

zone 2 and the perfusion index was of greater intensity.  The authors therefore 

suggest re-numbering zones 2 & 3, with zone 2 being ipsilateral to the pedicle.  

They suggest that choke vessel anastomoses between vascular territories on the 

ipsilateral side of the flap are stronger than those across the midline, that the 

ipsilateral half of the flap has an axial blood supply and the contralateral side a 

variable random-pattern perfusion, and that the poor perfusion of zone 4 is due 

to distance from the perforator and the need to pass two choke vessel 

watersheds.   

The finding of better perfusion in zone 3 than zone 2 in Holm et al's study227 is in 

agreement with the findings of our study, and would suggest that the order of 

zones should be changed with zone 2 becoming the ipsilateral lateral zone, as in 

Dinner's original description244.  Similarly zone 4 had the worst perfusion.  The 

anatomical basis for these findings stated by Holm et al of a random pattern of 

blood flow in the midline contralateral zone yet an axial blood supply in the 

ipsilateral lateral zone, is no more than supposition with the data available.  

This re-ordering of the zones has been questioned by other authors as being 

related to the position of perforators in the lateral or medial row243;245;246, with 

the lateral row being seen as more likely to have an order of zones as per Holm's 

or Dinner's original description.  Holm's study lists the position of the perforators 

for each of the 15 flaps and it can be calculated that 53.3% are supplied only by 

lateral row perforators, 33.3% by both medial and lateral row perforators, and 

only 13.3% by medial row perforators.  Our study has a higher number of flaps 

supplied by medial row perforators, 60%, with 35% being supplied by both medial 

and lateral perforators, and 15% being supplied by lateral row perforators.  

Despite the higher number of medial perforators our data still supports zone 3 

(ipsilateral lateral zone) having significantly higher perfusion than zone 2 

(contralateral medial zone)(p= 0.025).   Twelve of our flaps were supplied only 

by medial perforators.  In 4 of these 12 flaps (33%) perfusion appears to be 

better in Hartrampf zone 3 (ipsilateral lateral zone) than zone 2 (contralateral 

medial zone), as shown in examples Figure 6-12, Figure 6-13 & Figure 6-14 

below. 
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Figure 6-12 - Patient 4 left DIEP laser Doppler scan.  Supplied by two medial perforators.  
Hartrampf zone 3 appears to be better perfused than zone 2. 

 

 

Figure 6-13 - Patient 10, right DIEP laser Doppler scan.  Supplied by one medial perforator.  
Hartrampf zone 3 appears to be better perfused than zone 2. 
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Figure 6-14 - Patient 10, left DIEP laser Doppler scan.  Supplied by 3 small medial 
perforators.  Hartrampf zone 3 appears to be better perfused than zone 2. 

 
Schaverien et al, from the Dallas group, investigated the arterial and venous 

anatomy of the lower abdomen in 12 specimens (10 cadavers and 2 

abdominoplasties) using three- and four-dimensional computed tomographic 

angiography and venography282.  The injection CT studies compared the medial 

and lateral perforator rows of the DIEP flap.  The medial row perfused a central 

ellipse with declining perfusion at the edges.  Large-diameter vessels connected 

the medial row perforators across the midline at the level of the subdermal 

plexus, and the lateral row perforators were perfused bilaterally and this 

extended to zone four.  Injection of a lateral row perforator perfused the 

ipsilateral lateral flap and lateral row, and perfused the ipsilateral medial row 

by means of recurrent flow through the subdermal plexus.  Perfusion reached 

the contralateral medial row perforators in some cases, but did not reach the 

contralateral lateral row perforators.  Dye studies of the fresh abdominoplasty 

specimens confirmed these findings.  Schaverien et al postulated that the limit 

of perfusion is when flow has to pass through the subdermal plexus more than 

twice.  The superficial and deep venous systems were also investigated, with 

injection of either venous system resulting in filling of all the adjacent venae 

commitantes.  Filling of the adjacent superficial inferior epigastric vein across 

the midline occurred through vessels crossing the midline at the level of the 

subdermal plexus.  There were no venous branches crossing the midline in one 

specimen, and this according to the authors may explain why some flaps 

clinically have diffuse venous congestion.  The authors additionally compared 

the results of cadaveric injections with fresh abdominoplasty specimen dye 
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injections concluding that cadaveric studies are an underestimate of in vivo 

perfusion.  Schaverien et al's study further clarifies the influence of the medial 

and lateral perforator rows when defining the DIEP zones of the lower abdomen, 

and the position of perforators is an important observation in studies of the 

zones of perfusion. 

Two further studies from the Dallas group used CT angiography to investigate the 

differences in vascular territory based on flap type, and also the differences in 

vascular territory of the single most dominant DIEP perforator243;246.  Wong et al 

used 11 lower abdominal flaps (9 cadaver and 2 abdominoplasty specimens), and 

simulated the perfusion of 43 flaps; 7 pedicled TRAMs, 8 full TRAMs, 8 muscle-

sparing TRAMs, 14 DIEPs and 6 SIEAs246.  Intravenous omnipaque contrast was 

used and washed out with saline between simulated perfusions, which according 

to the authors does not affect the vessel diameter or vascular territory.  The 

pedicled TRAM had the lowest estimated percentage of skin paddle perfused 

with 32.6% perfused, followed by a lateral perforator DIEP with 32.9%, the SIEA 

flap with 33.3%, a lateral row muscle-sparing TRAM with 43.2%,  a medial 

perforator DIEP with 44.6%, a medial row muscle-sparing TRAM with 45.7%, and 

finally the full-width TRAM flap with 48.4% perfused.  The results that reached 

statistical significance included the lateral DIEP versus the full TRAM (p<0.007) 

and the lateral DIEP versus medial DIEP (32.9% v 44.6%)(p<0.02).  The territory 

of the lateral DIEP appeared similar to the SIEA.  The authors therefore 

recommend the use of a medial row perforator, rather than lateral row 

perforator, when a large abdominal flap is required.  Also noted by four-

dimensional computed tomographic angiography in the TRAM models was that if 

the medial perforator was dominant, Hartrampf zone 2 was perfused earlier and 

more intensely than zone 3.  Conversely, if the lateral row perforator were 

dominant, then zone 3 was perfused earlier and more intensely than zone 2.  

This therefore notes Hartrampf's zones of perfusion with zone 2 being the 

contralateral midline zone, to be correct for medial row perforators, and Holm's 

proposed change to Dinner's original description with zone 2 being the ipsilateral 

lateral zone to be correct for lateral row perforators.  Holm's study, as 

mentioned previously had only 2 of 15 flaps that were supplied only by medial 

perforators, and therefore Wong's assertion of the ordering of the zones being 

dependent on whether the perforator is medial or lateral could still hold true.  

Although our study found better perfusion in Hartrampf zone 3 (lateral 
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ipsilateral zone) for the overall group of DIEPs (60% medial perforators, 35% 

medial and lateral, 15% lateral), we have examples of medial and lateral row 

perforators that would support Wong's version of the dominance of Hartrampf 

zone 2 in the medial perforators (and Hartrampf zone 3 in the lateral 

perforators), Figure 6-15 & Figure 6-16; 

 

Figure 6-15 - Patient 5, laser Doppler scan of left DIEP with one medial perforator.  
Hartrampf zone 2 appears to be better perfused than zone 3, and the perfusion area of the 
flap is centralised. 

 

 

Figure 6-16 - Patient 5, laser Doppler scan of right DIEP with one lateral perforator.  
Hartrampt zone 3 is better perfused than zone 2, and the perfusion of the flap appears to be 
hemiabdominal. 

 
Wong's study illustrates this order of perfusion between medial and lateral row 

with two videos from two individual flaps.  It is not clear whether there would 

be interflap variability in this finding.  Additionally as before, it is not a 

physiological study and involves repeated injections of cadaver specimens which 

although the authors ascertain the diameter of vessels remains the same, it does 
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not account for the in vivo vascular reactivity and action of pre-capillary 

sphincters.   

A second study from the Dallas group by Bailey et al investigated the single 

dominant medial row perforator in the DIEP in 11 abdominal cadaver flaps and 

16 patients undergoing DIEP flaps243.  In the cadaver study they found that 

injection of the single dominant medial row perforator resulted in 

vascularisation across the midline in all flaps, predominantly by indirect linking 

vessels by means of the subdermal plexus.  Perfusion was consistently found in 

all flap dissections in the entire portions of zones 1 and 2, and in the 

midportions of zones 3 and 4.  In the 16 clinical patients, fat necrosis  of less 

than 5 % occurred in 3 patients (16.7% of flaps), and in all cases occurred in the 

lateral portion of zone 3, concurring with the anatomical results.  The authors 

concluded that the DIEP medial row perforators are the largest perforators in 

the lower abdomen, and when used, the lateral half of zone 3 and all of zone 4 

should be discarded to avoid fat necrosis. 

Tregaskiss et al in 2008 used CT scanning in a 10 cadaver injection study of the 

lower abdomen, with the aim of investigating the arterial anatomy361.  Their 

main finding was that the perforators of the deep inferior epigastric artery 

varied markedly in their orientation and course.  There were an average of 7 

large (≥0.5mm) DIEA perforators per hemiabdomen (range 5 - 12), with 

significant differences in the size of their anatomical territories, and no single 

morphology predominating.  Tregaskiss et al found no consistent pattern of deep 

inferior epigastric perforators, and suggested that a considerable proportion of 

abdominal flaps rely on a truly random network for their survival.  They compare 

their findings with an in vivo angiographic study by Ohijimi et al of 11 TRAM free 

flaps362.  Three of these flaps suffered partial necrosis and 2 of the 3 had no 

axial artery, the third having an axial artery running alongside the skin paddle.  

Of the 8 flaps with no necrosis, all had axial arteries.  Ohijimi et al also 

comment that the arterial density is lower in Hartrampf zones 2 and 4, and that 

there were poor connections across the midline. 

Wong et al in a further study in 2010 specifically compared the medial and 

lateral row DIEP perforators in 22 cadaver flaps, again using CT angiography363.  

They found that zone 2 perfusion was greater in a medial perforator (65.8% of 
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zone 2 perfused) compared with a lateral perforator (4.8% of zone 2 perfused), 

and that zone 3 perfusion was greater in a lateral perforator (85.2% of zone 3 

perfused) compared with a medial perforator (43.9% of zone 3 perfused) 

(p<0.01).  The mean vascular territory for a medial perforator was 296.4cm2 

compared to 195.6cm2 in the lateral row perforators (p<0.008).  Their study 

demonstrates that the lateral row and medial row have different perfusion 

characteristics which is relevant in flap design when choosing a single 

perforator.  This individual territory for a perforator has been termed a 

'perforasome' by Saint-Cyr et al in 2009283.   

Saint-Cyr et al performed an injection and CT angiography study of 217 

perforator flaps in 40 cadavers283.  They set out five principles describing the 

vascular anatomy of perforasomes, the arterial territory of a perforator.  Firstly, 

perforasomes are linked directly and indirectly, and these two patters of flow 

are protective mechanisms in the event of a vascular injury.  Secondly, flap 

design and skin paddle orientation should be based on the direction of the 

linking vessels, which is axial in the extremities and perpendicular in the midline 

trunk.  Thirdly, preferential filling of perforasomes occurs within perforators of 

the same source artery first, followed by perforators of other adjacent source 

arteries.  Fourthly, mass vascularity near a joint is directed away from that 

articulation, and where the perforator is at a midpoint between two 

articulations the flow is multidirectional.  Rozen et al similarly described the 

'perforator angiosome' in 2010 in a clinical and cadaveric study of 155 abdominal 

walls364.  They concluded that there were fundamental differences between the 

medial and lateral rows, and that the perforator angiosome depends upon 

location.  This would mean that zone 1 represents two different perforasomes, 

and the next zone is immediately adjacent in all directions.  For example a 

medial row perforator would capture Hartrampf zone 2 and the lateral row of 

zone 1 as the immediately adjacent perforators.  These differences in 

understanding of the perforator angiosome or perforasome, and additionally 

Keller's observation of decreased oxygen perfusion in the inferior sections of 

zone 1245, led Hallock to note that 'any devised system of schematics or theories 

must represent no more than a rough guideline' for the designing and planning of 

a DIEP flap365.  Hallock recommended an individualised approach and 

intraoperative mapping, and in view of the many factors including the venous 

drainage, we would support this view. 
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6.5.7.2  Experimental SIEA studies 

The zones of the SIEA, often referred to in the literature as the same four lower 

abdominal zones of the DIEP or TRAM flap, are less clearly understood and 

thought by many to represent hemiabdominal perfusion, with zones 1 and two 

being ipsilateral to the SIEA vessel24;274;366.  Holmes et al in 2006 looked at the 

vascular territory in vivo using indocyanine green injections, in 10 patients 

undergoing SIEAs and in 5 patients who had SIEA flaps raised before having 

abdominoplasties performed.  The mean body mass index was 30kg/m2.  The 

perfusion of Hartrampf zone 3 occurred first, 25 seconds after dye injection with 

a perfusion index of 89% of normal tissue, and zone 1 was perfused 30 seconds 

after injection with a perfusion index of 80%.  Zone 2, the contralateral midline 

zone only had a perfusion index of 8% and was completely missing in four 

patients.  There was no perfusion in zone 4 in any of the patients.  This does not 

correlate with our findings that there is no statistical evidence of a difference 

between Hartrampf zones 1, 2 and 3 in the SIEA flap.  It maybe that the 

physiological nature of laser Doppler imaging of reveals a larger area of 

perfusion than indocyanine green injections.  In clinical series of 14 patients, 

Chevray et al describe using a hemiabdominal SIEA flap based on uncertainty of 

perfusion across the midline as the SIEA vessels enter lateral to the lateral row 

of DIEP perforators24. 

In contrast to the findings of Holm et al, a study in 2006 by Ulusal et al aimed to 

estimate the adequacy of perfusion from the superficial system across the 

midline191.  Forty four breast reconstructions were recruited and of these, six 

cases were chosen for SIEA flaps, with pulsatile arteries greater than 1mm 

diameter.  A laser Doppler probe was used to quantify the perfusion from each 

zone from each of the superficial and deep systems with clamping of each 

system in turn.  With the deep system supplying the flap, zone 1 was 

significantly better perfused than zone 4 (p=0.04).  When the superficial system 

was supplying the flap there was no significant difference between any of the 

zones, and there was also no statistically significant difference between the 

superficial and deep systems.  Our study compared 19 potential SIEAs and 20 

potential DIEPs and therefore has more power than this study in reaching 

significance, especially in the order of DIEP zones.  Regarding the SIEA flap, 

Ulusal et al state that their study is the 'first documenting the reliability of 

cutaneous perfusion in all zones (1 - 4) of the abdominal flap by using laser 
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Doppler flowmetry'.  Also the postoperative follow-up in Ulusal's study, shows a 

92.3% area survival of the six SIEA flaps, especially impressive as zone 4 was not 

routinely discarded.  This, contrary to the general hemiabdominal perception of 

SIEA flaps, is in support of our studies findings of no significant difference found 

in intraoperative perfusion between zones 1, 2 and 3 of the SIEA flap.  Examples 

of our laser Doppler scan are shown in the figures below; Figure 6-17, Figure 

6-18, Figure 6-19, Figure 6-20 & Figure 6-21.  Although not in vivo studies, two 

previous cadaveric studies that add support to our findings were; a fluorescein 

study by Hester et al in 1984317 who found that in all 20 specimens the only area 

with questionable or no fluorescence in the equivalent of zone 4, and an ink 

injection study by Volpe et al in 1994275 who found that a large area of the 

medial aspect of the contralateral hemiabdomen was supplied by the SIEA. 

 

Figure 6-17 - Patient 2, laser Doppler scan of right SIEA. 

 

Figure 6-18 - Patient 2.  Laser Doppler scan of left SIEA. 
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Figure 6-19 - Patient 4.  Laser Doppler scan of right SIEA. 

 

 

Figure 6-20 - Patient 4.  Laser Doppler scan of left SIEA. 
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Figure 6-21 - Patient 6.  Laser Doppler scan of left SIEA. 

 
Schaverien et al's three- and four-dimensional computed tomographic cadaveric 

study of the lower abdomen, as discussed previously, also looked at perfusion of 

the superficial system by cannulating and injecting the SIEA282.  Branches 

coursed to the subdermal plexus followed by filling of the ipsilateral lateral and 

medial row perforators by recurrent flow through the subdermal plexus.  

Perfusion was not seen contralateral to the midline in any of the specimens.  

This is in contrast to our findings( examples Figure 6-17 - Figure 6-21), where 

although a minority of SIEAs appeared hemiabdominal (Figure 6-22 & Figure 

6-23), there was no statistical significance between zones 1, 2 &3.  The 

perfusion of the SIEA only appears to have been studied in the cadaveric 

specimens despite the acknowledgement in the paper that cadaveric studies are 

an underestimate of in vivo perfusion as shown by the injection of dye into fresh 

abdominoplasty specimens.  Dye does not appear to have been injected into the 

abdominoplasty SIEA vessel to confirm the territory as hemiabdominal. 
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Figure 6-22 - Patient 5.  Laser Doppler scan of right SIEA. 

 

 

Figure 6-23 - Patient 5.  Laser Dopper scan of left SIEA. 

 
Whilst our study found no statistical difference between hartrampf zones 1, 2 & 

3 of the SIEA flap, it would appear that there is variability in the territory of the 

SIEA, with some having more lateral territories and others centralised over zone 

1 and crossing the midline (see Appendix for further laser Doppler scans).  Holm 

et al looked at the interindividual variability of the SIEA in 25 SIEA flaps by using 

laser-induced fluorescence of indocyanine green196.  The study compared the 

contributions of the superficial and then deep systems to the lower abdominal 

flap by sequentially clamping the pedicles.  There is no reference in the method 

to a stabilisation period for completion of reactive hyperaemia before measuring 

the deep system.  Of the 25 patients selected for SIEA flaps, 19 patients had SIEA 

flaps, the remaining 6 patients underwent DIEP flaps on the basis of 

intraoperative perfusion measurements.  The SIEA territory did not cross the 

midline in 64% of patients (16 patients), with a dramatic range from zero 
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percent territory (2 patients) to the entire abdominal ellipse.  Four patients 

(16%) SIEAs stained zones 1 - 4, and four patients (16%) SIEAs stained zone 1 - 3.  

The remaining 14 SIEAs (56%) stained zone 1 or zones 1 & 2.  They felt that the 

ability to harvest only half the SIEA flap was the main concern with choosing to 

use a SIEA flap, and recommend bilateral dissection of the superficial system 

when the whole flap is required.  Holm's et al explain the findings by a variably 

developed anastomotic network at the dermal vessels.  Due to this variability, 

Holm's et al also stress the importance of intraoperative imaging as they found 

the algorithms of other authors too undifferentiated, and note that 

intraoperative imaging changed their plan in 44% of patients.  Whilst a positive 

perfusion test is reassuring, it is not clear however whether a negative 

indocyanine green perfusion test results in  inadequate postoperative blood 

flow.  Like Tregaskiss, Holm et al also noted that when the superficial system is 

well developed, the deep system is smaller in size and vice versa361.   

In conclusion, based on the variability of the superficial system, and the choice 

of perforators in the deep system, we would suggest laser Doppler scanning as a 

non-invasive physiological method of intraoperative assessment that can aid in  

determining the vascular territories.  This is especially relevant when there is a 

choice of vessels, as although poor perfusion may be difficult to correlate with 

post-operative outcome, preoperative imaging has yet to be correlated with 

intraoperative perfusion.  Intraoperative imaging can therefore provide valuable 

additional information, aiding surgical judgement and modification of plans 

based on intraoperative findings.  Sequentially clamping the possible vessels, 

leaving  an adequate time for reactive hyperaemia (Chapter 4) between scans, 

allows the system with optimal flow to be chosen.  It also aids in the clinical 

decision of the areas of the flap to discard.  The laser Doppler can additionally 

be used to check the patency of the anastomosis after flap transfer.  The laser 

Doppler is readily available in many plastic surgery units as it is commonly used 

for burns assessment.  It is non-invasive intraoperative method, unlike laser-

induced fluorescence of indocyanine green which requires the indocyanine green 

dye to be injected.  Laser Doppler imaging has a similar wavelength to the laser 

used in indocyanine green fluorescence, and therefore penetrates the flap to a 

similar depth in the range of a few millimeters.  
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Our findings do not support a hemiabdominal SIEA flap, as there was no 

significance difference between Hartrampf zones 1, 2, and 3.  The DIEP flap 

ordering of zones appears to be Hartrampf zone 1, zone 3, zone 2 and then zone 

4 in our study, although this included medial and lateral row perforators, and a 

mixture of medial and lateral row perforators.  A further study would required 

with a significant number of only medial row perforators to assess whether 

Hartrampf's zone 2, the midline contralateral zone, is the second zone perfused 

for a medial perforator.  As Rozen et al have suggested, the traditional four 

lower abdominal zones may not apply to the perforator angiosome or 

perforasome, further subdividing the zones around the perforator.  There are 

many vascular combinations of arterial perforators, veins and flap dimensions, 

and whilst the prescribed ordering of zones along with operative protocols is 

attractive, it is unlikely that this can ever be completely reliable.  Individual 

variability and the combinations of perforators available require intraoperative 

physiological imaging. 
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7 Microdialysis analysis of DIEP flaps 

7.1 Introduction 
The objective of this study is to investigate factors mediating circulatory change 

within free flaps after free flap transfer.     

As discussed in the Introduction (Chapter 1) and Chapter 5, Laser Doppler post-

operative perfusion pilot study, angiosomes are three dimensional blocks of 

tissue supplied by a source artery and vein.  These territories are linked to 

adjacent territories by reduced calibre anastomotic vessels theoretically known 

as 'choke vessels'2;367;368.  Choke vessels are thought to dilate in the first 72 hours 

when blood flow to an area is disrupted, either following surgical delay where 

the flap is raised in stages, or following immediate flap transfer30;31.  This 

dilation continues for 7 days at which point the choke vessels are thought to 

become irreversibly larger diameter vessels31.   

Delay procedures improve flap survival and have been carried out for hundreds 

of years.  Tagliacozzi in the 16th century was aware that the division of vessels 

along a flap's length would improve the viable dimensions of the flap.  The 

technique of tubed pedicled flaps was recorded by Filatov, a Russian 

ophthalmologist using it on the lower eyelid in 1916369.  Other surgeons followed 

and the technique of tubed pedicles was popularised by Sir Harold Gilles 

following his first procedure in 1917 on a burns patient in the First World War369.  

Delay procedures can be carried out surgically, pharmacologically370 and using 

laser371-373.  The physiological mechanism of choke vessel opening has yet to be 

elucidated and this study was designed to trial the microdialysis technique in 

investigation of mediators that may be influential in the increase in perfusion in 

the first 72 hours after flap transfer. 

Microdialysis catheters have been used in patient monitoring and research for 

over 10 years63;64;69;72-75;374-382.  A small dialysis catheter, which is no bigger than 

a small surgical drain, is inserted into the area to be monitored.  Microdialysis 

catheters function by using a semipermeable membrane (usually allowing 

molecules of up to 20 kDaltons to pass) and a dialysis fluid, collecting the 

dialysate to be analysed in a microvial.  They monitor the chemistry of the tissue 

and do not consume any blood.  Lactate, pyruvate, glucose and glycerol are the 
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routinely used markers of tissue ischaemia when microdialysis is used for flap 

monitoring.  Although originally designed for patients in neurointensive care, 

many medical specialties have made use of the benefits of early warning of 

tissue ischaemia.  In plastic surgery several of the Scandinavian units use 

microdialysis routinely for free flap monitoring, and others including 

Canniesburn Plastic Surgery unit have more recently used microdialysis for 

‘buried’ flaps that cannot be monitored by direct vision, without any significant 

adverse effects to the patient.  Microdialysis catheters to be used in this study 

have a modification of the semipermeable membrane allowing molecules of up 

to 100kDaltons to be measured. 

 
Sites of insertion of the microdialysis catheters will be in Hartrampf zones 1, 2 

and 4, shown below (Figure 7-1).  As discussed in previous chapters the lower 

abdomen is though to have four zones representing different angiosomes and 

quality of blood supply when raised as a flap.  The DIEP is thought to have four 

zones, corresponding to angiosomes, two on either side of the midline (Figure 

7-1).  Zone 1 is the zone in which the anastomosed perforator vessels enter, 

zone 2 is usually considered to be adjacent to this across the midline (i.e. 

corresponding contralateral zone), and zone 4 is the next zone adjacent to zone 

2.  Zone 4 has the poorest blood supply as it is two angiosomes away from the 

perforating vessels supplying the DIEP flap.  Zones 1, 2 and 4 were chosen for 

insertion of microdialysis catheters to represent contrasting quality of perfusion 

across the flap. 

 

Figure 7-1 - Zones of lower abdomen.   
Pedicle marks the vessels that supply the flap. 
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The samples will be analysed for factors that may be implicated in changes in 

circulation.  This will include markers from an inflammatory response Tumour 

Necrosis Factor alpha (TNFα, 26 kDaltons)383 and Interleukin 6 (IL-6, 22-27 

kDaltons)384;385, and Fibroblast Growth Factor basic (FGFβ, 18 kDaltons)386 

involved in angiogenesis.  It has been recommended that initial samples are 

tested for the factors highlighted above to ensure adequate yield before running 

all samples (54 per patient & 11 patients, 594 samples in total).  This has been 

common practice in similar work they have performed on dialysate samples from 

muscle, and allows the investigative phase to gain as much information as 

possible from the small sample volumes. 

7.2 Method 
Eleven patients undergoing DIEP flap breast reconstruction following mastectomy 

for breast cancer, were recruited for this study between October 2008 and 

August 2009.  A sample size calculation was performed based on a 20% change in 

measurement being of physiological significance with probability of type 1 error 

0.05, and probability of type 2 error 0.90.  There are no previous studies using 

high-cut off catheters in free flap plastic surgery and therefore this study was a 

pilot study.    

Microdialysis catheters (CMA Stockholm) were used to measure changes in tissue 

fluid in the DIEP flaps.  The catheters chosen were CMA71 'High Cut-Off' Brain 

Microdialysis catheters (Figure 7-2).  This dialysing membrane allows molecules 

as large as 100 kiloDaltons to pass.  The membrane length was 10mm. 



CJ Tollan  Chapter 7, 188 

 

Figure 7-2 - CMA 71 High Cut-Off catheter and accessories. 
(Pictures courtesy of CMA Stockholm / Dipylon Medical AB) 

 
Intraoperatively, each patient had three high cut-off microdialysis catheters 

inserted into DIEP flap zones 1, 2 and 4.  The catheters in zones 1, 2 and 4 were 

labelled a, b and c respectively.  Three microdialysis pumps, CMA106 and CMA 

107, set at a flow rate of 0.3µl/min perfused 'Perfusion Fluid T1' through the 

catheters and the microvials collecting dialysate were changed every 4 hours 

(Figure 7-3).  Perfusion Fluid T1 is an isotonic perfusion fluid containing Na+ 

147mmol, K+ 4mmol, Ca2+ 2.3mmol and Cl- 156mmol.  The catheters, inserted 

much like intravenous lines although with a splitable introducer, were secured 

with an occlusive dressing. 
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Figure 7-3 - Microdialysis catheter tip showing molecule collection through dialysing 
membrane. 
(Pictures courtesy of CMA Stockholm / Dipylon Medical AB) 

 
Microdialysis continued for 76 hours, and with vials collected every 4 hours from 

all three catheters, a maximum of 627 vials would be collected (19 time points x 

3 catheters x 11 patients).  The microvials containing the microdialysis samples 

when removed from the catheter were immediately stored in a minus 80 degrees 

Celsius freezer on the patients' ward.  The vials were later transferred for 

storage at Glasgow University. 

Analysis was performed initially, as planned, on six of the eleven patients as part 

of an investigative phase to gain information and ensure adequate yield before 

progressing with further analysis, as recommended by Dr Niall MacFarlane.   

ELISA kits (Quantikine High Sensitivity, R&D Systems) were used to detect human 

Interleukin-6 (IL-6), Fibroblast Growth Factor basic (FGFβ) and Tumour Necrosis 

Factor alpha (TNFα) and this was carried out by / under direction of Dr Niall 

MacFarlane, College of Medical, Veterinary and Life Sciences, University of 

Glasgow.     

7.3 Results 
Six patients samples were analysed for each of three molecules; interleukin-6 

(IL-6), Fibroblast Growth Factor basic (FGFβ) and Tumour Necrosis Factor alpha 

(TNFα).  Patient 4 did not have zone 4 transferred with the flap and therefore 

only had two catheters, a and b in zones 1 and 2.  Patient 5 had no collection 

beyond 56 hours due to the catheters dislodging inadvertently with dressing 

removal by the patient.  Patient 4 was not analysed for FGFβ due to a technical 
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error.  324 samples were analysed by high sensitivity ELISA for each IL-6 and 

TNFα, and  267 for FGFβ, totalling 915 analyses from 324 vials. 

7.3.1 Interleukin-6 (IL-6) 

7.3.1.1 Data description of IL-6 

Six patient's concentrations of interleukin-6, collected by three microdialysis 

catheters (a, b and c) over 4 hourly periods, are displayed in the graphs below 

(Figure 7-4, Figure 7-5, Figure 7-6, Figure 7-7, Figure 7-8 & Figure 7-9).  The unit 

of concentration is µg/ml 

Between catheters a, b and c there does not appear to be any difference. 

There appears to be an increasing trend in patients 1, 4 and 5 in the first 20 

hours.  There is a more gradual increase in patients 2 and 6. 
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Figure 7-4 - Patient 1.  Concentration versus time by catheter. 
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Figure 7-5 - Patient 2.  Concentration versus time by catheter. 
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Figure 7-6 - Patient 3.  Concentration versus time by catheter. 
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Figure 7-7 - Patient 4.  Concentration versus time by catheter. 
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Figure 7-8 - Patient 5.  Concentration versus time by catheter. 
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Figure 7-9 - Patient 6.  Concentration versus time by catheter. 

 
Figure 7-10 shows the mean concentration averaged over all 6 patients (patient 

4 has no data for catheter c and the readings for patient 5 stop after 52 hours).  

There is an initial increase to 16 hours, followed by fairly constant 

concentrations until about 52 hours, then a decline.  Concentrations in catheter 

c (zone 4) tend to be the greatest although there is no clear separation and this 

is not the same at all time points. 
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Figure 7-10 - Mean concentration averaged over 6 patients versus time, by catheter. 

 

7.3.1.2  Statistical modelling, IL-6 

A linear model was initially fitted to the data.  The method of residual maximum 

likelihood (REML) was used to fit the model229.  The fixed effects were; the main 

effects of time (T) and catheter (C), the two-factor interaction T.C. A random 

factor 'patient' was included in the model to allow for correlation between 

measurements made on the same patient.  Statistical significance was assessed 

using approximate F-tests, Table 7-1. 

Variable  Approximate F‐Test statistic  Numerator d.f.  Denominator d.f.  P‐value 
Time (T)  2.73 18 81.6 0.001
T|Catheter(C)  2.73 18 81.6 0.001
 
C  0.56 2 7.9 0.592
C|T  0.58 2 7.9 0.580
 
C.T|T+C  1.08 36 149.8 0.360

Table 7-1- Approximate F-tests of main effects and interactions, IL-6. 

 
Differences between time points in mean concentration, averaged over 

catheter, are statistically significant, whether allowance is made for the effect 

of catheter or not (p=0.001). 
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The effect of catheter upon concentration is not statistically significant whether 

allowance is made for the effect of time point or not (p=0.580 and p=0.592). 

The interaction between time point and catheter is not statistically significant 

(p=0.360), and therefore the differences in mean concentration between time 

points do not depend upon catheter. 

7.3.1.2.1 Predicted means of IL-6 concentrations 
The predicted means by time point are shown below.  It would appear that there 

is an increase in concentration until about 36 hours, after which it remains 

roughly constant.  The effect of time point has been shown to be significant 

(p=0.001).  T-tests can be carried out between specific time points using the 

matrix of standard errors given in the appendix, on 81.6 d.f..   

 
Time4 8 12 16 20 24 28 32 
3.138 3.246 3.737 4.074 3.917 3.857 3.705 4.217 
  
  
Time36 40 44 48 52 56 60 64 
4.289 4.231 4.261 4.427 4.221 4.218 4.154 4.095 
  
  
Time68 72 76 
4.147 4.062 4.250 
 

Table 7-2 - Predicted mean concentrations by time point. 
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Figure 7-11 - Predicted concentrations by time, IL-6. 
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The increase after 4 hours is significant by 12 hours (p=0.046).  There appears to 

be a further rise between 28 hours and 32 hours (p=0.08) (28 hours to 48 hours, 

p=0.02).  The difference in concentration between first collection at 4 hours and 

the final collection at 76 hours is also significant, p=0.001. 

7.3.1.3 Test of linear trend with hours post-operatively, IL-6 

The F-tests of time point were significant, p=0.01, meaning that the 

concentration for IL-6 was not the same at all time points.  To further test any 

trend in concentration, rather than differences between individual time points 

or groups of time points, the original test of the factor 'time' was split into two 

subsets.  One subset was a linear trend of time, and the other of the effect of 

time not captured by a linear trend (Table 7-3). 

Similarly, the test of interaction between time and catheter is split into two 

subtests; one of the extent to which the linear trend varies with catheter, and 

the other of the extent to which those effects of time not captured by a linear 

trend vary with catheter (Table 7-4). 

Variable   Approximate F‐Test 
statistic 

Numerator d.f.  Denominator d.f.  P‐value 

Time (T) 
Linear   
Non‐linear  

2.73 
23.19 
1.53 

18 
1 
17 

81.6 
81.6 
81.6 

0.001 
<0.001 
0.106 

Catheter (C)|T  0.58  2  7.9  0.580 
C. T|T+C 

Linear  
Non‐linear  

1.08 
0.05 
1.14 

36 
2 
34 

149.8 
154.9 
149.5 

0.360 
0.95 
0.287 

Table 7-3- Approximate F-tests of main effects and interactions (time fitted first). 

 
Variable   Approximate F‐Test 

statistic 
Numerator d.f.  Denominator d.f.  P‐value 

C  0.56  2  7.9  0.592 
T|C 

Linear   
Non‐linear  

2.73 
23.22 
1.53 

18 
1 
17 

81.6 
81.6 
81.6 

0.001 
<0.001 
0.106 

C. T|T+C 
Linear  
Non‐linear  

1.08 
0.05 
1.14 

36 
2 
34 

149.8 
154.9 
149.5 

0.360 
0.95 
0.287 

Table 7-4 - Approximate F-tests of main effects and interactions (catheter fitted first). 

 
Considering the effect of time, the linear trend is significant (p<0.001), whether 

or not an allowance is made for catheter.  The remaining non-linear effects of 
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time are not statistically significant (p=0.106) whether or not allowance is made 

for the effect of catheter. IL-6 therefore tends to increase in a linear fashion 

with time although appears to begin to level off at 32 hours post-operatively. 

7.3.2 Fibroblast Growth Factor basic ( FGFβ) 

The five patients' samples in microdialysis vials were analysed for FGFβ (patients 

1, 2, 3, 5 & 6).  Due to a technical error there were no results for patient 4.  The 

vials as before were collected every 4 hours from catheters a, b and c.  The 

concentrations for each patient are displayed in the graphs below (Figure 7-12, 

Figure 7-13, Figure 7-14, Figure 7-15,  & Figure 7-16). 

There does not appear to be any differences  between catheters in any of the 

patients, nor does there appear to be any difference in concentration with time. 
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Figure 7-12 - Patient 1.  Concentration versus time by catheter.  FGFβ. 
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Figure 7-13 - Patient 2.  Concentration versus time by catheter.  FGFβ. 
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Figure 7-14 - Patient 3.  Concentration versus time by catheter.  FGFβ. 
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Figure 7-15 - Patient 5.  Concentration versus time by catheter.  FGFβ. 
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Figure 7-16 - Patient 6.  Concentration versus time by catheter.  FGFβ. 

 
Figure 7-17 below shows mean concentration averaged over all patients.  There 

does not appear to be any uniform differences between catheters and no obvious 

time trend.  There does appear to be a pattern of cyclical variation. 
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Figure 7-17 - Mean concentration averaged over 5 patients versus time, by catheter. 

 

7.3.2.1 Statistical modelling & tests of linear trend, FGFβ 

As before the time factor was split into two subsets to test for the linear trend 

of time and the effect of time not captured by a linear trend. 

REML modelling of the log concentration produced a residual plot in which the 

residuals tended to decrease in absolute magnitude with increasing mean 

concentration.  The square root transformation was found to be the most 

appropriate in terms of homogeneity of variance and was used in this analysis. 

The results of the fixed effects where time was fitted before catheter are shown 

in Table 7-5.  Table 7-6 shows the results of fixed effects where catheter was 

fitted first. 

Variable   Approximate F‐Test 
statistic 

Numerator d.f.  Denominator d.f.  P‐value 

Time (T) 
Linear   
Non‐linear  

1.70 
0.40 
1.78 

18 
1 
17 

65.1 
69.0 
65.0 

0.061 
0.530 
0.050 

Catheter (C)|T  0.38  2  7.5  0.698 
C. T|T+C 

Linear  
Non‐linear  

0.90 
1.32 
0.87 

36 
2 
34 

126 
133.7 
125.7 

0.640 
0.270 
0.673 
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Table 7-5 - Approximate F-tests of main effects and interactions, FGFβ.  Time fitted first. 

 
Variable   Approximate F‐Test 

statistic 
Numerator d.f.  Denominator d.f.  P‐value 

C  0.35  2  7.5  0.718 
T|C 

Linear   
Non‐linear  

1.71 
0.39 
1.79 

18 
1 
17 

65.1 
69.0 
65.0 

0.060 
0.535 
0.049 

C. T|T+C 
Linear  
Non‐linear  

0.90 
1.32 
0.87 

36 
2 
34 

126 
133.7 
125.7 

0.640 
0.270 
0.673 

Table 7-6 - Approximate F-tests of main effects and interactions, FGFβ.  Catheter fitted first. 

 
The test of interaction (C.T) shows that there is no evidence that the linear 

trend in concentration differs between catheters (p=0.270), or that the 

remaining non-linear effects of time point on concentration differs between 

catheters (p=0.673). 

The differences between catheters are not statistically significant, whether 

allowance is made for the effect of time is allowed for (0.698) or not (p=0.719). 

Considering the effect of time, the linear trend is not statistically significant, 

whether allowance is made for the effect of catheter (p=0.535), or not 

(p=0.530).  The non-linear effects of time are on the borderline of statistical 

significance (p=0.050 not allowing for catheter, p=0.049 allowing for catheter). 

7.3.2.1.1 Predicted means of FGFβ concentrations 
The predicted mean concentrations (square root scale) by time point are shown 

in Table 7-7 below.  Figure 7-18 shows the predictions of Table 7-7 back-

transformed) i.e. squared.  There is no apparent time trend, however there is 

possibly a pattern of cyclical variation which may explain the border line F-

statistic (non-linear effects of time p=0.050 and p=0.049 allowing for catheter).  

Differences between some of the peaks and troughs of the cycle are significant 

individually (e.g. 8 hours to 16 hour p<0.001, 24 hours to 28 hours p=0.088). 

Table of predicted means for Time 
  
  
Time4 8 12 16 20 24 28 32 
12.45 16.54 14.23 11.27 13.24 15.12 12.45 13.65 
  
  
Time36 40 44 48 52 56 60 64 
16.19 11.77 12.64 13.46 14.97 15.17 12.74 11.95 
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Time68 72 76 
12.03 14.66 13.06 
 
Standard errors of differences 
  
Average:  1.614 
Maximum:  1.780 
Minimum:  1.506 
  
Average variance of differences: 2.609  
 

Table 7-7 - Predicted means by time point (square root scale).  FGFβ 
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Figure 7-18 - Predicted back-transformed concentrations by time.  FGFβ. 

 

7.3.3 Tumour Necrosis Factor alpha (TNFα) 

The same six patients' samples were analysed (as for IL-6 and FGFβ).  The 

concentrations for each patient are displayed in the graphs below (Figure 7-19, 

Figure 7-20, Figure 7-21, Figure 7-22, Figure 7-23 & Figure 7-24).  Patient 4 did 

not have a catheter c as there was no zone 4 in the flap. 

There is no clear evidence of uniform differences between catheters in any of 

the six graphs.  Concentrations for patients 1, 4, and 5 show a slight decrease 

with time. 



CJ Tollan  Chapter 7, 203 

767268646056524844403632282420161284

12.0

11.5

11.0

10.5

10.0

9.5

9.0

Time (hours)

Co
nc

en
tr

at
io

n

a
b
c

Catheter

 

Figure 7-19 - Patient 1.  Concentration versus time by catheter.  TNFα. 
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Figure 7-20 - Patient 2.  Concentration versus time by catheter.  TNFα. 
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Figure 7-21 - Patient 3.  Concentration versus time by catheter.  TNFα. 
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Figure 7-22 - Patient 4.  Concentration versus time by catheter.  TNFα. 
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Figure 7-23 - Patient 5.  Concentration versus time by catheter. TNFα. 
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Figure 7-24 - Patient 6.  Concentration versus time by catheter.  TNFα. 
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Figure 7-25 below shows the mean concentration of TNFα averaged over all 

patients.  There do not appear to be any uniform differences between catheters 

and there is no obvious time trend. 
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Figure 7-25 - Mean concentration averaged over 6 patients versus time, by catheter.  TNFα. 

 

7.3.3.1 Statistical modelling & tests of linear trend, TNFα 

As before the time factor was split into two subsets to test for the linear trend 

of time and the effect of time not captured by a linear trend. 

The results of tests of fixed effects where time was fitted before catheter are 

shown in Table 7-8.  Table 7-9 shows the results of fixed effects where catheter 

was fitted first. 

Variable   Approximate F‐Test 
statistic 

Numerator d.f.  Denominator d.f.  P‐value 

Time (T) 
Linear   
Non‐linear  

1.78 
4.95 
1.60 

18 
1 
17 

83.3 
82.8 
83.3 

0.041 
0.029 
0.083 

Catheter (C)|T  3.38  2  8.4  0.084 
C. T|T+C 

Linear  
Non‐linear  

0.83 
0.69 
0.84 

36 
2 
34 

152.8 
155.8 
152.7 

0.735 
0.502 
0.717 

Table 7-8 - Approximate F-tests of main effects and interactions, TNFα.  Time fitted first. 
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Variable   Approximate F‐Test 

statistic 
Numerator d.f.  Denominator d.f.  P‐value 

C  3.29  2  8.4  0.088 
T|C 

Linear   
Non‐linear  

1.79 
5.02 
1.60 

18 
1 
17 

83.3 
82.5 
83.4 

0.040 
0.028 
0.082 

C. T|T+C 
Linear  
Non‐linear  

0.83 
0.69 
0.84 

36 
2 
34 

152.8 
155.8 
152.7 

0.735 
0.502 
0.717 

Table 7-9 - Approximate F-tests of main effects and interactions.  TNFα.  Catheter fitted first. 

 
The test of interaction (C.T) shows that there is no evidence that the linear 

trend in concentration differs between catheters (p=0.503), or that the 

remaining non-linear effects of time point on concentration differ between 

catheters (p=0.717). 

The differences between catheters are suggestive, whether the effect of time is 

allowed for (p=0.084) or not (p=0.088). 

Considering the effect of time, the linear trend is statistically significant 

whether allowance is made for catheter (p=0.028) or not (p=0.029).  Remaining 

non-linear effects of time are approaching significance (p=0.083 not allowing for 

catheter, p=0.082 allowing for catheter). 

7.3.3.1.1 Predicted means of TNFα concentrations 
The predicted mean concentrations by time point are shown in Table 7-10 & 

Figure 7-26 below.  Further details including matrices of standard errors are in 

the appendix. 

There is a significant initial increase between 12 hours and 16 hours p=0.002.  

(Between 12 hours and 20 hours p=0.126.) 

Overall all slight decreasing time trend is apparent, which is statistically 

significant (Table 7-8 & Table 7-9, p=0.029 and p=0.028 allowing for the effect 

of catheter).  The value of the estimated trend was equal to -0.004 µg/ml per 

hour.  

Table of predicted means for Time 
  
  
Time4 8 12 16 20 24 28 32 
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5.391 5.366 5.382 6.129 5.740 5.741 5.565 5.600 
  
  
Time36 40 44 48 52 56 60 64 
5.559 5.400 5.620 5.809 5.329 5.333 5.379 5.310 
  
  
Time68 72 76 
5.257 5.305 5.485 
  
  
Standard errors of differences 
  
Average:  0.2386 
Maximum:  0.2546 
Minimum:  0.2288 
  
Average variance of differences: 0.05699  
 

Table 7-10 - Predicted mean concentrations by time point.  TNFα. 
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Figure 7-26 - Predicted concentrations by time point.  TNFα. 

 

7.4 Conclusion 
Interleukin-6 shows an increasing trend until about 36 hours before remaining 

relatively constant.  The effect of catheter is not significant.  The effects of 

time, in a linear trend are significant (p<0.001).  Effects of time in a non-linear 

trend are not significant (p=0.106).  The concentration of IL-6 therefore tends to 
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increase (p<0.001) over the period form 4 hours to 72 hours and this can best be 

explained by a linear trend. 

Fibroblast Growth Factor basic does not display a time trend between 4 and 76 

hours on the square root scale (p=0.061 when time is fitted first, and p=0.060 

when time is fitted after catheter).  There is no sign of a linear trend (p=0.530 

and p=0.535).  The test of remaining differences in concentration is just 

significant (p=0.050 and p=0.049) which would mean if real, that the oscillations 

about the trend line (essentially horizontal, Figure 7-18) are of biological 

significance. 

Tumour Necrosis Factor alpha has a significant linear trend between 4 and 76 

hours (p=0.029, and p=0.028 with catheter fitted first).  This trend is a slightly 

decreasing trend over the time period,  -0.004 units of concentration μg/ml  per 

hour.  The remaining non-linear effects of time are not significant, although p-

values approach significance (p=0.083, and p=0.082 when time is fitted after 

catheter).  Observing Figure 7-26, there does appear to be a peak around 20 - 24 

hours before a gradual decrease. 

7.5 Discussion 

7.5.1 Mechanism of delay 

Delay has been known for centuries to improve flap survival although the 

mechanism has yet to be elucidated.  Delay, involving a staged division of 

vessels along the length of a flap, has been known clinically to have effect 

within one week although flap transfer does often not happen until at least two 

weeks387-390.  It is generally agreed that the delay phenomenon occurs primarily 

due to ischaemia and that this the induces changes in the vascularity of the 

flap30;391.  Similarly, the transfer of a pedicled or free flap induces changes in 

the flap vascularity in the first few days post-operatively and increased flow in 

the pedicle.  Delay and the improved vascularity within flaps after transfer have 

both been described as theoretically being related to the opening of anastomotic 

choke vessels between angiosomes32;34;392. 

Callegari et al in 1992 designed an experimental study in dogs looking at the 

anatomical changes in flaps with and without surgical delay32.  Laser Doppler 
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probes were used followed by lead oxide injection anatomical studies 5 days 

after flaps were raised, with or without prior surgical delay 5 to 10 days earlier.  

They noted that; the necrosis line in flaps usually appeared in the zone of choke 

vessels connecting adjacent territories and that neovascularization did not 

appear to occur, surgical delay resulted in dilatation of existing vessels with 

maximal effect in the zone of choke arteries, that tissue expansion was a form 

of surgical delay, and that similar changes occurred when muscle was delayed.  

An earlier pig study using radioactive microspheres, by Pang et al in 1986, 

compared time periods of delay finding that between 2 and 14 days of delay, 

capillary blood flow reached a plateau after 3 days393.  Pang noted in accordance 

with Callegari's findings, that angiogenesis did not account for the increase in 

blood flow as the time period of 4 days was too short and there was no increase 

in the density of vessels.  The improvement in blood flow theoretically occurs in 

too short a time period, days, to be attributable to angiogenesis and this has 

been supported by these and many other studies30;32;372;393;394.  Dilatation of 

vessels has become the focus of research in delay phenomenon. 

Morris and Taylor designed a study to elucidate the chronological sequence of 

the events that occur in choke vessel opening, by using surgical delay in a rabbit 

model30.  Thirty rabbits were used and total body arteriograms were performed 

in pairs of rabbits at 1, 2, 3, 4, 6, 8, 12, 24, 48 and 72 hours after delay.  A final 

two rabbits were examined at 7 days.  Flap viability at 24, 48 and 72 hours 

closely matched the viability assessment at 7 days.  Angiographic studies at 48 

and 72 hours showed a marked increase in the diameter of vessels in the flap, 

particularly in the zone of the choke vessels.  Again this is in agreement with 

Pang et al's findings on the timing of delay, showing a maximal increase in 

nutrient blood flow in the first 3 days following a delay procedure before 

reaching a plateau at 4 days.  Morris et al summarised their impression of 

surgical delay as involving an initial vasoconstriction between 1 and 4 hours due 

to the systemic release of vasoconstrictive substances, followed by a diminished 

effect of these substances between 4 and 12 hours with vessel dilation, then 

between 24 and 72 hours an active process of dilation and dramatic enlargement 

of choke vessels.   

In 1999 a detailed study was carried out by Dhar and Taylor involving 200 rabbits 

and 17 dog models to investigate anatomical changes occurring in the delayed 
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choke arterioles in both the early and late post delay period, the microscopic 

changes in the cellular elements of the vessel wall, and to provide further 

information on the mechanism of delay31.  Using fluorescein, angiographic, light 

microscopic, immunohistochemical and electron microscopic techniques in 7 

experiments, Dhar summarised the events of the delay procedure in 4 phases.  

Phase 1, between 0 and 24 hours there was an initial vasoconstriction up to 3 

hours and then gradual vasodilation to 24 hours.  There was minimal change in 

the cellular elements during this period.  Phase 2 occurred between 24 and 72 

hours, especially between 48 and 72 hours, with an accelerated increase in 

vessel diameter especially at the choke vessel level.  A dramatic increase in cell 

division in the vessel wall was noted.  Phase 3 occurred between 72 hours and 7 

days with continued more gradual dilation of the vessel lumen and a thickening 

of the media of the vessel wall.  Phase 4 occurred from 7 days to one year, the 

end of the study period, and showed permanent dilation of the choke vessels.  

The post-operative study of 72 hours of flap perfusion measured by laser Doppler 

in Chapter 5 displays a zone 3 fall in perfusion between 0 and 16 hours, which 

then appears to peak at 48 hours before decreasing to 72 hours. The other zones 

have a less dramatic course although have peak perfusions at 48 hours.  This is in 

agreement with Dhar's outline of the stages in a delay phenomenon, which 

shares an ischaemic stimulus and alteration in vascular flow in common with free 

flap transfer.  
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Figure 7-27 - Anti-logged predicted natural log perfusion by zone and time point, Chapter 5. 
72 hour post-operative laser Doppler study of flow in DIEP flaps. 

 
Dhar also proposed two possible mechanisms of active dilation of the choke 

vessels31.  The first is the physical effect of the blood flow with a new pulsatile 

flow following anastomosis and a fall in pressure across the choke vessels with 

other blood supplies (e.g. deep circumflex iliac vessels) disconnected when 

raising the flap.  The second mechanism is hypoxia and this is regarded as an 

undisputed stimulus for neovascularization although it is unknown how this 

effects the choke vessels.  Mechanisms investigated by other authors include 

free radicals, nitric oxide and other vascular endothelium derived relaxing 

factors. 

7.5.2 Molecular mechanisms  

Delay has been used as a mechanism of improving flap survival and 

experimentally to improve understanding of the chemical signalling that may be 

involved in the dilation of choke vessels and intraflap vessels.  Inadequate blood 

perfusion and perhaps ischaemia-reperfusion injury during flap transfer lead to 

partial flap necrosis.  Knowledge of the changes that occur, the pathophysiology 

and the molecular signalling, may allow flap viability to be improved through 

pharmacological manipulation.   
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Pharmacological agents that have experimentally increased flap survival in 

animals include guanethidine395, topical nitroglycerine395;396, prostaglandin E1 

and E2395;397;398(angiogenesis improved399), basic fibroblast growth factor 

(FGFβ)400, platelet derived growth factor (PDGF)158 and thromboxane A2 synthase 

inhibition401.  Decreases in survival have been shown with thromboxane, 

prostaglandin F1α401 and epinephrine402. 

A study by Hendel et al in 1982 attempted to determine the pharmacological 

control of delayed flaps by directly comparing acute and delayed flaps in a series 

of experiments in rats403.  They concluded that there were two components to 

the delay phenomenon, one being passive vasodilation in acute flaps due to loss 

of sympathetic nerve terminals, and the second was an active vasodilation that 

did not involve loss of a vasoconstrictor mechanism or sensitization of beta 

receptors.  Hendel et al concluded that this second mechanism was related to an 

effect on smooth muscle rather than nerves and a vasodilator such as a 

prostaglandin could perhaps explain this.  Murphy et al in 1985 measured the 

levels of prostaglandin E2 and vasoconstrictive prostaglandin F2α and 

thromboxane in acute and delayed flaps398.  The delayed flaps showed a reduced 

thromboxane production with increased prostaglandin E2, whereas the acute 

flaps had elevated prostaglandin E2 and thromboxane, and decreased flap 

survival. 

Endothelial dysfunction is a known consequence of ischaemia-reperfusion injury, 

when tissue has been ischaemic for a period before being reperfused404.  In a 

study of 16 rat cremaster muscles, Wang et al 1997, sodium nitroprusside 

infusion, a direct donor of nitric oxide and thus an endothelium-independent 

vasodilator, prevented ischaemia-reperfusion vasoconstriction405.  Acetylcholine 

however, which stimulates endothelium release of endogenous nitric oxide, does 

not prevent the vasoconstriction.  This indicates that vasospasm and 

vasoconstriction after ischaemia-reperfusion may be related to temporary 

endothelial dysfunction, and reduced nitric oxide bioavailability.  Free flaps 

have had a period of ischaemia during transfer and microvascular anastomosis at 

the recipient site (mean 93 minutes range 56 - 135 minutes in this study, and in 

Chapter 5 post-operative laser Doppler study 113 minutes mean, range 95 - 155 

minutes) and there may be effects caused by temporary endothelial dysfunction.  

In our laser Doppler post-operative study of perfusion, a decrease in perfusion 
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was only clearly apparent in zone 3 between 0 - 4 hours postoperatively, 

although zones 1 and 2 did not show any significant change (Figure 7-27). 

7.5.2.1  IL-6, FGFβ and TNFα 

Cytokines are cell-signalling protein molecules secreted by a variety of cell types 

that can modulate immune response.  They are transiently produced and act on 

specific cell-surface receptors.  IL-6 and TNF alpha are cytokines produced by T-

cells, macrophages and endothelial cells.  IL-6 and TNF alpha are both involved 

in signalling the acute phase response and fever, and are inflammatory 

cytokines151.  Fibroblast Growth Factor basic (FGFβ or FGF2) is part of a family 

of growth factors involved in angiogenesis, wound healing and embryonic 

development.  It is one of the most powerful angiogenic factors identified406-408.  

Vascular endothelial Growth Factor (VEGF) is a heparin-binding glycoprotein that 

increases vascular permeability.  It is also a stimulator of angiogenesis. 

In 1995 Most et al carried out a study of dermal cytokine expression in dorsal 

flaps in rats409.  Flap biopsies were taken at 0, 8, 16, 24 and 48 hours after the 

flaps were raised (n=3 for each time point).  They were taken 0.5cm, 2.5cm, 

5cm and 10cm distances from the distal edge of the flap. Cytokine mRNA profiles 

were then examined, using in-situ hybridisation, for interleukin-1 alpha (IL-1α), 

interleukin-2 (IL-2), interleukin-6 (IL-6), basic fibroblast growth factor (FGFβ), 

interferon gamma IFNγ), transforming growth factor beta (TGFβ) and platelet 

derived growth factor (PDGF).  The highest cytokine expression was detected 8 

hours post-operatively for PDGF, TGFβ and FGFβ, with each of these cytokines 

having a 20-fold increase in signal in comparison with controls(p<0.002).  FGFβ 

expression was highest 10cm from the flap tip.  IL-6 expression was highest at 8 

hours with a 14-fold increase, and it was highest 2.5cm and 5cm from the flap 

tip.  90% of this signal was localised to fibroblasts, keratinocytes and dermal 

dendritic cells, with the remainder in intravascular and infiltrating lymphocytes 

and macrophages.  IFNγ, IL-1α and IL-2 expression levels were highest at 16 

hours with 19-fold elevations with peak expression at the base of the flaps.  

Clinical oedema, erythema and cyanosis of the flaps appeared at a mean time of 

15.7 hours, and by 48 hours the distal tip region appeared partially necrotic.  

The authors concluded that detecting these cytokines using immunoassays could 

be useful in a hospital setting for early detection of ischaemia and also as a way 

of monitoring the  effects of pharmacological agents in the prevention or 
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reversal of flap ischaemia.  We would question the feasibility and cost of this, as 

for detection of impending flap problems 8 hour sampling windows would seem 

insufficient despite the early warning provided.  In addition clinical correlation 

in patients developing necrosis in comparison with those patients who do not 

develop necrosis is vital, as cytokines may rise in response to the operative 

trauma and changes in perfusion within the flap without necessarily signifying 

impending necrosis.  The authors also noted that there was dramatic cytokine 

elevation at the flap bases in comparison with the ischaemic tips, and that this 

would be the optimal site for sampling.  Our study similarly did not find 

increased cytokines in zone 4 furthest from the pedicle although there was no 

significant difference in cytokine concentration in any of the zones. 

In a delayed TRAM flap model in rats published by Wong et al in 2002410, FGFβ 

was measured by biopsy and enzyme-linked immunosorbent assays.  A surgical 

delay was performed 7 days (n=12), 14 days (n=10) or 21 days (n=7) before the 

flap was raised.  FGFβ was found to be significantly higher in all delayed flaps 

than the control flaps with no delay (n=6) at day 3 post-operatively.  There was 

no difference in FGFβ across zones 1 - 4.  The delayed flaps had higher 

superficial survival although there was no difference in the deep survival 

between delay and control groups.  The authors concluded that the increase in 

FGFβ at day 3 in delayed flaps may be a factor in improved flap viability, and 

that further investigation was required. Lineaweaver et al demonstrated a 

significant increase in cytokine expression of FGFβ and VEGF in delayed rat 

TRAM flaps postoperatively, with no significant differences between zones411.  In 

Most's study above, the increase in FGFβ increased maximally at 8 hours post 

operatively, and along with the rise in other cytokines most notable at the flap 

bases, was thought to represent early ischaemia and that the rise could be used 

as an early indicator of impending necrosis409.  The flaps were not delayed.  

Wong's study however notes an increase in FGFβ at in the delayed flaps 3 days 

post-operatively (the only time point for measurement of FGFβ), but no similar 

rise in non-delayed flaps410.  They presumed FGFβ to therefore be protective.  It 

is likely from these two studies that FGFβ increases in response to ischaemia, 

and perhaps this is why the level is greater in the delayed flaps at 3 days.  It 

may be protective but does not obviously correlate with impending ischaemia as 

suggested by Most et al.   
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Cytokine expression is also increased following ischaemia-reperfusion.  A rat 

study by Zhang et al in 2005 subjected rat gracilis muscle to two episodes of 

ischaemia, a primary episode for one hour and then a 24 hours later a secondary 

ischemia of 4 hours412.  Gene expression of TNFα, interleukin 1 beta (IL1β) and 

platelet derived growth factor (PDGF) mRNA was determined by PCR at 4 and 18 

hours after the primary ischaemia and at 0, 4 and 18 hours after the secondary 

ischaemia.  IL-1 was upregulated 4hours after the primary ischaemia and PDGF 

was upregulated immediately after the secondary ischaemia.  TNFα was 

significantly upregulated 18 hours after secondary ischaemia.  Our highest 

concentration was at 16 hours which was significantly higher than the 

concentration at 12 hours post-operatively (p=0.002).  Following this there was a 

slowly decreasing significant trend.  Our average ischaemia time for the DIEP 

flap during microvascular anastomosis was 93 minutes.  This is shorter than the 

secondary ischaemia time in the rat model, and the rat model is a muscle flap 

rather than a perforator flap like the DIEP.  It is therefore difficult to make 

comparisons regarding the timing of the rise in TNFα, although there does 

appear to be a post operative rise in this cytokine. 

The levels of cytokines expressed may vary in relation to the type of operative 

reconstruction as a reflection of differing levels of trauma.  In a clinical study, 

Schmidt et al compared the level of proinflammatory cytokines in blood samples 

of thirty patients undergoing delayed breast reconstruction with either lateral 

thoracodorsal flaps, latissimus dorsi flaps or pedicled transverse rectus 

abdominis flaps (pedicled TRAM flaps)413.  Blood samples were taken pre-

operatively, at 24 hours and 2 weeks post-operatively, and tested using 

immunoassay kits for TNF, IL-6 and IL-8.  IL-6 levels were significantly elevated 

in all groups 24 hours after surgery, and the levels were significantly higher in 

the TRAM group.  IL-8 was significantly increased in all groups after surgery 

although the TRAM patients had the lowest rise.  TNF remained at normal levels.  

The authors concluded that IL-6 levels were highest in the patients undergoing 

TRAM flaps as this was the most extensive operation.  We found that IL-6 had an 

increasing trend from zero to around 30 hours post-operatively before levelling 

off. 

In the design of future studies, a study by Erdmann et al highlighted differences 

between the levels of the cytokine vascular endothelial growth factor between 
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the skin of a flap and the muscle of a flap414.  In an ischaemia-reperfusion study 

of latissimus dorsi muscles flaps in pigs, looking at both skin and muscle within 

the flap, Erdmann showed an increase in expression of vascular endothelial 

growth factor (VEGF) in both the ischaemic flaps and the control latissimus dorsi 

flaps.  The VEGF was detected using immunoassays in biopsies, at a fixed time 

point of 2 hours reperfusion following 4 hours of ischaemia.  VEGF expression in 

the muscle of the flaps was significantly higher than VEGF expression in flap skin 

(~30-85pg/mg versus ~5-15pg/mg).  Ischaemia-reperfusion latissimus dorsi 

muscle in comparison with the control flap showed higher levels of VEGF than 

the control flap in zones 1 and 2, and the levels of VEGF decreased from zone 1 

to 3.  The same pattern was repeated in the skin zones, albeit at lower levels.  

Due to cost implications we were unable to have a control catheter in adjacent 

skin which displays significantly lower levels of VEGF than the flaps in this study.  

Erdmann's study unlike our study showed a trend towards decreasing levels of 

cytokine further from the pedicle.  This could be related to the method of 

sampling using biopsies rather than microdialysis catheters before similarly using 

immunoassays.  A suggested explanation was that the ischaemia, especially in 

muscle, resulted in the most ischaemic area (zone 3) being unable to produce as 

much VEGF.  We have no example of this level of ischaemia, although patient 5 

developed a haematoma requiring evacuation in theatre around 52 hours post-

operatively (Figure 7-8).  There was an increase in IL-6 towards this time point in 

all zones, but no obvious change for FGFβ or TNFα.  This patient may have 

suffered from mild ischaemia within the flap due to pressure effects and 

congestion, but if so this has resulted in an increase rather than decrease of 

cytokines.   

Clinically, varying scenarios would need to be encountered to appreciate 

patterns of cytokine release in relation to outcome.  There may be differences 

across zones and with time, and also between different flap compositions.  The 

use of microdialysis catheters is a more acceptable method of analysis of 

cytokine levels than biopsies as used in animal studies.  Our patients had no 

complications related to use of the catheters.  Microdialysis fluid can be 

collected continuously and high cut-off catheters would appear to collect 

cytokines IL-6, FGFβ and TNFα all less than 100 kilo Daltons.  It would be useful 

to directly compare the levels of cytokines in biopsy specimen immunoassays and 

though MRNA expression with microdialysis catheters, to compare time lines 
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between techniques and also assess the percentage pick-up of the catheters.  

The use of high cut-off catheters as a research tool in plastic surgery is not 

reported in the literature, and without further study it is difficult to ascertain 

whether there could be confounding factors in the measurement of molecules 

observed in the biological setting.  For example when there are other unknown 

molecules in circulation perhaps close to the membrane pore size, it is not 

unfeasible that these could cause temporary occlusions or alter the amount of 

researched molecule reaching the microvial in other ways.  The levels of FGFβ 

appeared to oscillate around a constant concentration over the time period in a 

way that did not appear to be physiological.  Whether this was artefact perhaps 

at the point of analysis from the stored microvials, or whether this occurred 

during collection is not clear.  We chose to have a low flow rate through the 

microdialysis pumps to try and maximise the concentration of molecule 

collected.  This conversely reduces the rate of fluid collection in the microvials 

necessitating a 4 hour rather than 15 minutes or less use in flap monitoring with 

20k Dalton catheters.  We do not feel that 4 hour collection periods would be 

detrimental when using microdialysis catheters as a research tool as many 

studies use 12 hours, or greater, biopsy intervals. 

7.5.2.2  Manipulation of flap survival & factors improving flap 
survival 

Some cytokines have been shown in animal studies to improve the survival of 

flaps.  Transforming growth factor beta, fibroblast growth factor, endothelial 

growth factor and vascular endothelial growth factor shown some of the more 

impressive results400;415-419. 

Carroll et al designed a study to investigate the benefit of exogenous FGFβ in a 

muscle flap400.  Exogenous FGFβ is thought to act in an autocrine fashion and 

enhance the release of endogenous FGFβ.  Intra-arterial administration of 100μg 

of  basic fibroblast growth factor immediately following a delay procedure on a 

latissimus dorsi in nine canines resulted in increased expression of native FGFβ 

on completion of the flap 10 days later.  There was a 20% increase in perfusion 

compared with the control, and 300% improvement in fatigue resistance of the 

muscle.  This would be of benefit in functional muscle transfers and 

cardiomyoplasty.  Carroll et al note that other authors have not found survival 

advantage of FGFβ420, but suggest that the key to benefit is injection into 
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ischaemic rather than well-perfused tissue as described in the case of cardiac 

infarction by Yanagisawa-Miwa et al in 1992421.  Ishiguro et al investigated the 

effect of exogenous FGFβ at the time of operation on the viability of random 

skin flaps in rats and also found a survival advantage at day 7417.  FGFβ has also 

been shown to upregulate the expression of VEGF, another angiogenic factor, in 

smooth muscle cells synergistic with hypoxia422.  A further study by Carroll et al 

in mice demonstrated the flap survival advantage of Platelet Derived Growth 

Factor (PDGF), another angiogenic factor, directly into the injected directly into 

the latissimus dorsi muscle 10 days before flap elevation423.  These studies 

present further possibilities of increasing flap survival, although as the growth 

factor manipulation is 10 days prior to flap elevation, these would presumably 

be an unsuccessful adjunct in acute flap failure.  The timings are comparable 

with angiogenesis and this is the authors' suggested mechanism.  More work is 

required to assess the potential of more immediate benefits from these growth 

factors such as the dilation of choke vessels, and whether improvement in flap 

survival is as significant in all flap types as in muscle flaps. 

Tumour necrosis factor alpha (TNFα) and interleukin-1 (IL-1) were found to be 

decreased by the exogenous Vascular Endothelial Growth Factor (VEGF) in a rat 

study by Pang et al in 2002424.  Rats (n=24) were placed into two groups and 3cm 

by 10cm dorsal flaps raised.  Half of the control groups had injection of 1ml of 

saline and the other half of the control group had no injection.  The treatment 

group had 1ml (1μg/ml) of exogenous VEGF injected into several points in the 

flap.  Biopsies were taken from both groups at 12 hours and 24 hours post-

operatively and cytokine mRNA expression was determined by PCR.  There was 

no detection of insulin-like growth factor-1, transforming growth factor beta, 

FGFβ, and platelet derived growth factor mRNA.  Interleukin-1 expression was 

decreased in both the saline and VEGF injection groups at both time points.  

TNFα was also significantly reduced at 12 hours and 24 hours in the distal parts 

of the flap, and in the middle of the flap at 12 hours, in comparison with 

controls.  Inducible nitric oxide synthase expression was decreased in the middle 

of the VEGF treated flaps at 12 hours, and decreased in the middle and distal 

sections at 24 hours.  TNFα and IL-1 are pro-inflammatory cytokines contributing 

to local inflammation, and may therefore lead to tissue damage.  Their role in 

flap survival is not clear.  Inducible nitric oxide synthase mediates the cytotoxic 

action of macrophages and leads to the formation of tissue damaging free 
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radical.  The authors conclude that VEGF's advantage in ischaemic flap survival 

may be related to its inhibition of TNFα and attenuation of inducible nitric oxide 

synthase.  Endogenous VEGF has been shown to rise 3 days after delay in animal 

models, with an increase in perfusion observed after 7 days425. 

The pathophysiology of ischaemia-reperfusion injury, the delay phenomenon and 

the changes occurring following flap surgery requires further investigation, as a 

better understanding may allow a treatment to improve flap survival, for 

example a monoclonal antibody to proinflammatory cytokines412 or the 

exogenous administration of cytokines preoperatively.   
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8 Summary 

The aim of this thesis was to investigate factors controlling cutaneous 

microcirculation, and patterns of perfusion within the microcirculation in 

relation to lower abdominal flaps. 

The application of the topical anaesthetic creams EMLA and ametop prior to 

laser treatment of capillary malformations provided an accessible example of a 

pharmacological agent affecting the microcirculation.  In capillary 

malformations we found that topical EMLA reduced vessel diameter during a 90 

minute application time.  Ametop subjectively increased vessels' diameter 

although this was not significant.  Vasoconstriction could potentially be 

deterimental to the outcome of laser treatment.  The technique of 

videomicroscopy was compared to a confocal laser scanning microscope. Similar 

results were found with no significant differences between the diameters 

measured. 

To compare the physiological territories of SIEA and DIEP vessels supplying the 

lower abdomen, a pilot study was devised to ensure that reactive hyperaemia 

did not account for differences in area perfused.  Within operative time 

constraints, the assessment of a vessel by any technique involves clamping those 

vessels not being assessed, and then allowing a period for blood flow to stabilise 

when clamps are switched, before assessment of sequential vessels.  We 

validated a methodology that would allow multiple vessels to be assessed in free 

flap transfers by illustrating with laser Doppler that there was no significant 

differences between the clamp times, or between scanning times over 5 

minutes.  This protocol allows maximal information to be gained in the intra-

operative period in further research studies.  We also confirmed that the 

subjective choice of good and poor areas of perfusion within the flap are 

statistically significant and this may be of benefit clinically should uncertainty 

arise in the choice of vessel or design of flap. 

The methodology of this pilot study described in Chapter 4 was used to compare 

SIEA and DIEP lower abdominal flaps intraoperatively (Chapter 6).  The overall 

perfusion of the DIEP vessels was significantly higher than that of the SIEA.  The 

DIEP vessels perfused the traditional Hartrampf perfusion zones in the order 1, 
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3, 2 and then 4.  There was no significant difference in the perfusion of zones 1 

and 3, but both were significantly better perfused than zone 2, and this in turn 

was better perfused than zone 4.  60% of the DIEPs were based only on medial 

perforators, 25% on medial and lateral perforators, and 15% on both medial and 

lateral perforators.  The SIEA vessels' descending order of perfusion was zone 1, 

3, 2 and then 4.  Unlike the DIEP vessels there was no significant difference in 

perfusion between zones 1, 2 and 3, and all were significantly better perfused 

than zone 4.  This is not in support of SIEAs being described as hemiabdominal. 

A 72 hour post-operative laser Doppler study of DIEP flap perfusion was 

performed to observe any changes in perfusion around the theoretical time of 

opening of choke vessels between angiosomes.  Although no statistical 

differences were found, the differences between zones with time approached 

significance (p=0.051).  The most dramatic changes in perfusion occurred 

between 16 and 48 hours.  This study did not elucidate a definite pattern of 

perfusion between angiosomes during the immediate post-operative period, and 

did not change the design for a further study using microdialysis catheters to 

investigate possible changes in tissue cytokines over the same period. 

Our final study involved the use of high cut-off microdialysis catheters in DIEP 

flaps, a use that has not previously been reported in the literature.  Microdialysis 

has been used increasingly in flap monitoring and in other surgical fields to 

provide early detection of ischaemia, however the use of  high-cut off catheters 

for the collection of larger molecules in tissue other than brain is not well 

documented.  The investigation of three cytokines resulted in linear trends of IL-

6 and TNFα, with IL-6 increasing to around 28 hours before stabilizing, and TNFα 

showing an initial peak around 16 to 20 hours before decreasing gradually.  FGFβ 

had the most unusual pattern with oscillations around a constant trend.  Further 

work would be required to establish if this had physiological significance. 

In conclusion, the study of the microcirculation in flaps is in an attempt to 

reduce the risk of partial necrosis and morbidity for the patient.  Intraoperative 

studies have potential to be of benefit in the planning and design of flaps, 

although there are no absolute correlations with flap outcome.  Similarly as 

there is a large variability in perfusion patterns within the same nominal vessels, 

newer concepts such as the perforasome allow for consideration of this 
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individuality.  Ultimately, knowledge of the process of choke and anastomotic 

vessel dilation in the immediate post-operative period and the ability to control 

this period would be a fundamental step for plastic surgery. 
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Appendix 

Chapter 3  

Estimates of variance components 

The estimates of components of variance associated with each random term are 

shown in  below. 

Random term Estimated variance component 
Patient 0.00961 
Patient.Treatment -0.00058 
Patient.Microscope 0.00251 
Patient.Treatment.Microscope 0.00282 
Residual  0.0262 

Estimates of variance components 

The variance between patients is 0.01444 which is the sum of the first four 

components.  This represents the variability between patients of the true mean 

diameter of a patient's vessels.  It is approximately half the within-patient 

variance (0.0262) which measures the variability between the measurements of 

individual vessels for a given patient.   

Most of the random variation in the data are between measurements of different 

vessels for a given patient. 

Checking model assumptions: homogeneity of variance 

The residual variation is greater for the videomicroscope than the confocal 

microscope. 

The figure below shows boxplots of residuals ('observed' minus 'predicted' where 

'predicted' includes random effects) by treatment and microscope.  Looking at 

the inter-quartile range, within-patient variability for the videomicroscope 

appears greater than for the confocal microscope. 
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Residuals (log scale base 10) by treatment and by microscope (fitted values include random 

effects) 

The table below compares the summary statistics of the residuals (observed 

minus predicted, where predicted includes random effects) among the six groups 

defined by treatment and microscope type.  Within each treatment category, 

the tendency for the variability of measurements made with the 

videomicroscope to be greater can be seen by comparing the s.d. and 

interquartile ranges. 

 
 

Results for Treatment = Ametop  
 
Variable  Micro      N  N*     Mean  SE Mean   StDev  Minimum       Q1   Median 
Resi      Confocal  92   0  -0.0000   0.0137  0.1317  -0.3303  -0.0728  -0.0039 
          Vidmic    36   0   0.0000   0.0320  0.1919  -0.5698  -0.1036   0.0214 
 
Variable  Micro         Q3  Maximum 
Resi      Confocal  0.0592   0.5065 
          Vidmic    0.1183   0.3844 
 
  

Results for Treatment = EMLA  
 
Variable  Micro      N  N*    Mean  SE Mean   StDev  Minimum       Q1   Median 
Resi      Confocal  88   0  0.0000   0.0168  0.1575  -0.2676  -0.1169  -0.0078 
          Vidmic    36   0  0.0000   0.0377  0.2264  -0.4467  -0.0794   0.0305 
 
Variable  Micro         Q3  Maximum 
Resi      Confocal  0.0766   0.4371 
          Vidmic    0.1490   0.3978 
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Results for Treatment = None  
 
Variable  Micro       N  N*     Mean  SE Mean    StDev   Minimum        Q1 
Resi      Confocal  241   0  0.00000  0.00947  0.14695  -0.30340  -0.08905 
          Vidmic     72   0   0.0000   0.0201   0.1705   -0.4797   -0.1427 
 
Variable  Micro       Median       Q3  Maximum 
Resi      Confocal  -0.00990  0.06695  0.57230 
          Vidmic     -0.0222   0.1396   0.3525 

 
Summary statistics of residuals ('Resi').  Residuals are calculated as 'observed' minus 'predicted' 

includes random effects. 

 
The homogeneity of variance by predicted diameter is shown in the figure 

below.  The residuals (observed minus predicted where predicted includes 

random effects) are plotted against predicted (fitted values). There does not 

appear to be any evidence that variability increases or decreases markedly with 

fitted value. 
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Residuals (observed minus predicted where predicted includes random effects) plotted against 

predicted (fitted values). 
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Normality of residuals 

The figures below show normality of the residuals.  The residuals are 'observed' 

minus 'predicted' where 'predicted' includes random effects. 
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Normal plot of residuals   

The Anderson-Darling test statistic is significant (p<0.005). 
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Histogram of residuals with added normal curve. 
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Normal plot for patient effects. 
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Normal plot for patient-treatment interaction effects.   

The estimated variance component is negative (-0.00058).  If this value is 

interpreted as zero, all 'patient.treatment' effects should be zero. 

The Anderson-Darling test statistic is not significant (p=0.551). 
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Normal plot for patient-microscope interaction effects. 
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The Anderson-Darling test statistic is not significant (p=0.989). 
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Normal plot for patient-microscope interaction effects. 

The Anderson-Darling test statistic is not significant (p=0.096). 

 
Non-parametric tests 

Due to evidence of non-normality of the residual errors, the effects of 

anaesthetic and the difference between types of microscope were tested using 

non-parametric tests. The log (base 10) diameters for each patient were 

averaged (patients 4 - 11 used as these had measurements from both 

microscopes). 

                                                           Video 
Row  Anaesthetic1  Patient1  Con Pre  Con Post  Video Pre   Post 
  1  Ametop               4    1.642     1.610      1.640  1.602 
  2  Ametop               8    1.585     1.665      1.682  1.827 
  3  Ametop               9    1.662     1.689      1.393  1.602 
  4  Ametop              10    1.521     1.678      1.668  1.519 
  5  EMLA                 5    1.638     1.552      1.728  1.562 
  6  EMLA                 6    1.817     1.719      1.841  1.631 
  7  EMLA                 7    1.481     1.498      1.663  1.448 
  8  EMLA                11    1.984     1.730      1.869  1.669 
Mean log diameters for patients 4 to 11. 
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Interaction between treatment and microscope type was tested in two stages.  

First the difference between microscope types, of pre-post differences.  These 

differences of differences were compared between the two groups, ametop and 

EMLA, using a Mann Whitney test.  The null hypothesis was that the interaction 

could be described by a single parameter.  This hypothesis was not rejected 

(p=0.471).  Secondly, the complete set of differences of differences was tested 

against zero using a Wilcoxon signed rank test. The null hypothesis is that the 

interaction parameter is zero, and this was not rejected (p=0.363). 

Row  Anaesthetic1  Patient1  Interaction 
  1  Ametop               4       -0.006 
  2  Ametop               8        0.065 
  3  Ametop               9        0.182 
  4  Ametop              10       -0.306 
  5  EMLA                 5       -0.080 
  6  EMLA                 6       -0.112 
  7  EMLA                 7       -0.232 
  8  EMLA                11        0.054 
Linear combination of log mean diameters for testing equality of interaction parameters. 

Mann-Whitney Test and CI: Interaction_Ametop, 
Interaction_EMLA  
 
                    N   Median 
Interaction_Ametop  4   0.0295 
Interaction_EMLA    4  -0.0960 
 
 
Point estimate for ETA1-ETA2 is 0.1170 
97.0 Percent CI for ETA1-ETA2 is (-0.3600,0.4139) 
W = 21.0 
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.4705 
Test of equality of interaction parameters. 

Wilcoxon Signed Rank Test: Interaction  
 
Test of median = 0.000000 versus median not = 0.000000 
 
                N for   Wilcoxon         Estimated 
             N   Test  Statistic      P     Median 
Interaction  8      8       11.0  0.363   -0.05100 
Test of zero interaction. 

Assuming no interaction, the mean effect of microscope was tested.  The 

differences in log diameter between microscope types were computed (i) for 

pre-treatment and (ii) for post-treatment, and these differences added.  These 

sums of differences were tested against zero using a Wilcoxon signed ranks test 

(see tables below). The test statistic was not statistically significant, p=0.834. 

Row  Anaesthetic1  Patient1   Micro 
  1  Ametop               4   0.010 
  2  Ametop               8  -0.259 
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  3  Ametop               9   0.356 
  4  Ametop              10   0.012 
  5  EMLA                 5  -0.100 
  6  EMLA                 6   0.064 
  7  EMLA                 7  -0.132 
  8  EMLA                11   0.176 
Linear combination of log diameters for testing difference between microscope types, in the 

absence of interaction. 

Wilcoxon Signed Rank Test: Micro  
 
Test of median = 0.000000 versus median not = 0.000000 
 
          N for   Wilcoxon         Estimated 
       N   Test  Statistic      P     Median 
Micro  8      8       20.0  0.834    0.01150 
Test of no difference between microscope types. 

The null hypothesis that the effects of the two anaesthetics are identical was 

tested.  For each patient, the pre-post differences obtained with the two 

microscopes were added.  The two groups, Ametop and EMLA, were compared 

with respect to these sums of differenced using a Mann Whitney test, which was 

statistically significant, p=0.0304. 

Row  Anaesthetic1  Patient1  Treatment 
  1  Ametop               4      0.070 
  2  Ametop               8     -0.225 
  3  Ametop               9     -0.236 
  4  Ametop              10     -0.008 
  5  EMLA                 5      0.252 
  6  EMLA                 6      0.308 
  7  EMLA                 7      0.198 
  8  EMLA                11      0.454 
Linear combination of log diameters for testing equality of effects of anaesthetic. 

Mann-Whitney Test and CI: Treatment_Ametop, 
Treatment_EMLA  
 
                  N   Median 
Treatment_Ametop  4  -0.1165 
Treatment_EMLA    4   0.2800 
 
 
Point estimate for ETA1-ETA2 is -0.4285 
97.0 Percent CI for ETA1-ETA2 is (-0.6900,-0.1281) 
W = 10.0 
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.0304 
Test of equality of effects for anaesthetic. 

 
The non-parametric tests and REML analysis give the same findings as regards 

the statistical significance of experimental factors. 
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Chapter 4 

 
Patient 1 - 20 minute clamp time 5 minute scan time 
 

 
Patient 1 - 20 minute clamp time, 10 minute scan time. 
 

 
Patient 2 - 20 minute clamp time, 5 minute scan time. 
 

 
Patient 2 - 20 minute clamp time, 10 minute scan time. 
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Patient 3 - 20 minute clamp time, 5 minute scan time. 
 

 
Patient 3 - 20 minute clamp time, 10 minute scan time. 
 

 
Patient 4 - 20 minute clamp time, 5 minute scan time. 

 
Patient 4 - 20 minute clamp time, 10 minute scan time. 
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Patient 5 - 5 minute clamp time, 5 minute scan time. 
 

 
Patient 5 - 5 minute clamp time, 10 minute scan time. 
 

 
Patient 5 - 5 minute clamp time, 15 minute scan time. 
 

 
Patient 5 - 5 minute clamp time, 20 minute scan time. 
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Patient 6 - 5 minute clamp time, 5 minute scan time. 
 

 
Patient 6 - 5 minute clamp time, 10 minute scan time. 
 

 
Patient 6 - 5 minute clamp time, 15 minute scan time. 
 

 
Patient 6 - 5 minute clamp time, 20 minute scan time. 
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Patient 7 - 5 minute clamp time, 5 minute scan time. 
 

 
Patient 7 - 5 minute clamp time, 10 minute scan time. 
 

 
Patient 7 - 5 minute clamp time, 15 minute scan time. 
 

 
Patient 7 - 5 minute clamp time, 20 minute scan time. 
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Patient 8 - 5 minute clamp time, 5 minute scan time. 
 

 
Patient 8 - 5 minute clamp time, 10 minute scan time. 
 

 
Patient 8 - 5 minutes clamp time, 15 minutes scan time. 
 

 
Patient 8 - 5 minutes clamp time, 20 minutes scan time. 
 
 
Confidence intervals 

 95% confidence intervals for mean differences in flow, between scan times (at 

clamp time 5 minutes). 
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Contrast 
between scan 
times 
(minutes)  

Difference between 
mean flow 
(higher scan time 
minus lower) 

Difference  95% c.i. for difference 

 10 minus 5  97.75‐97.00  0.75 (‐1.96, 3.46)
15 minus 5  97.50‐97.00  0.50 (‐2.21, 3.21)
20 minus 5  98.50‐97.00  1.50 (‐1.21, 4.21)
15 minus 10  97.50‐97.75  ‐0.25 (‐2.96, 2.46)
20 minus 10  98.50‐97.75  0.75 (‐1.96, 3.46)
20 minus 15  98.50‐97.50  1.00 (‐1.71, 3.71)
 
Diagnostic plots for ANOVA 

The following graph shows residuals plotted against fitted values. Although 

random variability tends to decrease with increasing fitted value over the full 

range of fitted values, the trend is not consistent. There does not appear to be a 

compelling reason to re-analyse on a transformed scale. 
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The next graph shows a Normal plot of residuals. Points follow a straight line 

reasonably well, suggesting that Normality is a reasonable assumption. 
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Raw data: median perfusion, by Patient, Clamp time (minutes), and quality of perfusion. 
 
                  Perfusion 
  Patient  Clamp  Good  Poor 
           Time 
    1        20    98    47 
    2        20   125    41 
    3        20   148    99 
    4        20   154    76 
    5         5   188    82 
    6         5   115    43 
    7         5   158    53 
    8         5   125    44 
 
Raw data: median perfusion, by Patient, Clamp time (minutes), and Scan Time (minutes).  
 
           Clamp  Scan 
  Patient   time  Time  Median 
        1     20     5      59 
        1     20    10      63 
        2     20     5      91 
        2     20    10      91 
        3     20     5     138 
        3     20    10     131 
        4     20     5     125 
        4     20    10     125 
        5      5     5     123 
        5      5    10     124 
        5      5    15     123 
        5      5    20     124 
        6      5     5      77 
        6      5    10      79 
        6      5    15      81 
        6      5    20      82 
        7      5     5     100 
        7      5    10     100 
        7      5    15      98 
        7      5    20     100 
        8      5     5      88 
        8      5    10      88 
        8      5    15      88 
        8      5    20      88 
 
 

Analysis of variance 

A repeated measures analysis of variance was carried out, with patients as 

“subjects factor” and scan times (5, 10, 15 and 20) as the “time point factor” 

(see following box).  

 
 
Two-way ANOVA: Median flow versus Patient, Scan Time 
 
Source  DF       SS       MS       F      P 
Patient  3  4340.69  1446.90  926.01   
ScanTime 3     4.69     1.56    1.00  0.436 
Error    9    14.06     1.56 
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Total   15  4359.44 
 
 
The F-statistic to test differences in mean flow between the four scan times is 

not statistically significant (F = 1.00 on 3 and 9 d.f., P=0.436).  
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Chapter 5 

The plots show the residuals and fitted values for the model in Results. 

Half-Normal plot

Histogram of residuals Fitted-value plot

Normal plot
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The histogram of residuals is roughly bell-shaped, with three outlying negative 

residuals. 

The fitted plot shows no evidence of non-homogeneity of variance, or of trend.  

The three outlying negative residuals can be identified, and do not appear to be 

particularly extreme. 

Setting aside the three lowest negative residuals, the Normal plots appear 

satisfactory. 
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Chapter 6  

Right DIEP laser Doppler images 

 
Patient 1 - Right DIEP  Patient 2 - Right DIEP 

 
Patient 3 - Right DIEP  Patient 4 - Right DIEP 

 
Patient 5 - Right DIEP  Patient 6 - Right DIEP 

 
Patient 7 - Right DIEP  Patient 8 - Right DIEP 
 

 
Patient 9 - Right DIEP  Patient 10 - Right DIEP 
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Left DIEP laser Doppler images 
 

 
Patient 1 - Left DIEP  Patient 2 - Left DIEP 

 
Patient 3 - Left DIEP  Patient 4 - Left DIEP 

 
Patient 5 - Left DIEP  Patient 6 - Left DIEP 

 
Patient 7 - Left DIEP  Patient 8 - Left DIEP 

 
Patient 9 - Left DIEP  Patient 10 - Left DIEP 
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Right SIEA laser Doppler images 
 

 
Patient 1 - Right SIEA  Patient 2 - Right SIEA 

 
Patient 3 - Right SIEA  Patient 4 - Right SIEA 

 
Patient 5 - Right SIEA  Patient 6 - Right SIEA 

      
Patient 7 did not have right SIEA  Patient 8 - Right SIEA 

 
Patient 9 - Right SIEA  Patient 10 - Right SIEA 
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Left SIEA laser Doppler images 
 

 
Patient 1 - Left SIEA  Patient 2 - Left SIEA  

 
Patient 3 - Left SIEA  Patient 4 - Left SIEA 

 
Patient 5 - Left SIEA  Patient 6 - Left SIEA 

 
Patient 7 - Left SIEA  Patient 8 - Left SIEA 

 
Patient 9 - Left SIEA  Patient 10 - Left SIEA 
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Chapter 7  

Interleukin IL-6  

 Estimates of variance components, REML analysis 

Estimated variance components 
  
Random term component s.e. 
Patient  3.0034  1.9120 
Patient.Time  0.1721  0.0427 
Patient.Catheter  0.0099  0.0123 
  
  
Residual variance model 
  
Term Factor Model(order) Parameter Estimate
Patient.Time.Catheter                                 Identity Sigma2 0.253
  
 

 Checks on model with main effects of time point, catheter and their 

interaction, IL-6. 
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Half-Normal plot

Histogram of residuals Fitted-value plot

Normal plot
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There are two large residuals, but the other residuals do not depart from 

Normality, as shown by the Normal plot.  The fitted value plot shows no 

indication of non-homogeneity of variance. 
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Standard errors of differences between predicted concentrations of IL-6, by time 

point 

   
 
Standard errors of differences between pairs 
                   
 Time 4   1   *             
 Time 8   2  0.296   *           
 Time 12  3  0.296  0.296   *         
 Time 16  4  0.300  0.300  0.300   *       
 Time 20  5  0.296  0.296  0.296  0.300   *     
 Time 24  6  0.296  0.296  0.296  0.300  0.296   *   
 Time 28  7  0.296  0.296  0.296  0.300  0.296  0.296   * 
 Time 32  8  0.296  0.296  0.296  0.300  0.296  0.296  0.296 
 Time 36  9  0.296  0.296  0.296  0.300  0.296  0.296  0.296 
 Time 40  10  0.296  0.296  0.296  0.300  0.296  0.296  0.296 
 Time 44  11  0.298  0.298  0.298  0.301  0.298  0.298  0.298 
 Time 48  12  0.296  0.296  0.296  0.300  0.296  0.296  0.296 
 Time 52  13  0.296  0.296  0.296  0.300  0.296  0.296  0.296 
 Time 56  14  0.315  0.315  0.315  0.318  0.315  0.315  0.315 
 Time 60  15  0.313  0.313  0.313  0.316  0.313  0.313  0.313 
 Time 64  16  0.313  0.313  0.313  0.316  0.313  0.313  0.313 
 Time 68  17  0.313  0.313  0.313  0.316  0.313  0.313  0.313 
 Time 72  18  0.313  0.313  0.313  0.316  0.313  0.313  0.313 
 Time 76  19  0.313  0.313  0.313  0.316  0.313  0.313  0.313 
     1  2  3  4  5  6  7 
  
                  
 Time 32  8   *             
 Time 36  9  0.296   *           
 Time 40  10  0.296  0.296   *         
 Time 44  11  0.298  0.298  0.298   *       
 Time 48  12  0.296  0.296  0.296  0.298   *     
 Time 52  13  0.296  0.296  0.296  0.298  0.296   *   
 Time 56  14  0.315  0.315  0.315  0.317  0.315  0.315   * 
 Time 60  15  0.313  0.313  0.313  0.314  0.313  0.313  0.328 
 Time 64  16  0.313  0.313  0.313  0.314  0.313  0.313  0.328 
 Time 68  17  0.313  0.313  0.313  0.314  0.313  0.313  0.328 
 Time 72  18  0.313  0.313  0.313  0.314  0.313  0.313  0.328 
 Time 76  19  0.313  0.313  0.313  0.314  0.313  0.313  0.328 
     8  9  10  11  12  13  14 
  
              
 Time 60  15   *         
 Time 64  16  0.326   *       
 Time 68  17  0.326  0.326   *     
 Time 72  18  0.326  0.326  0.326   *   
 Time 76  19  0.326  0.326  0.326  0.326   * 
     15  16  17  18  19 
  
Standard errors of differences 
  
Average:  0.3071 
Maximum:  0.3282 
Minimum:  0.2964 
  
Average variance of differences: 0.09442  
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Fibroblast Growth Factor beta 

Estimates of variance components, FGFβ 

Estimated variance components 
  
Random term component s.e. 
Patient  0.37  0.47 
Patient.Time  -0.51  1.32 
Patient.Catheter  -0.24  0.45 
  
  
Residual variance model 
  
TermFactor Model(order) Parameter Estimate s.e. 
Patient.Time.Catheter  Identity Sigma2 18.55  2.39 
 

 
The variance component values are small, especially in comparison with the 

standard error.  This suggests that the effect of these interaction terms in the 

population is small. 

Checks on REML model which includes main effects of Time, Catheter and their 

interaction-  FGFβ 
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Half-Normal plot

Histogram of residuals Fitted-value plot

Normal plot
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The histogram and Normal plot confirm that normality is a reasonable 

assumption.  There is no evidence of lack of homogeneity of variance on the 

square-root scale. 
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Tumour Necrosis Factor alpha 

Estimated variance components 
  
Random term component s.e. 
Patient  8.1188  5.1418 
Patient.Time  0.0749  0.0262 
Patient.Catheter  0.0059  0.0094 
  
  
Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e.
Patient.Time.Catheter                                 Identity Sigma2 0.228  0.0267
 

 
Compared to the estimated error variance (0.228), the variance component for 

patients (8.1188) is large.  The variance components corresponding to random 

terms Patient.Time and Patient.Catheter are considerably smaller than the error 

variance. 

The values of the estimated variance components show that the estimated 

correlation between repeat measurements of concentration made on the same 

patient is high. 

Checks on REML model which includes main effects of Time, Catheter and their 

interaction - TNFα 

The histogram and Normal plot confirm that normality is a reasonable 

assumption.  There is no evidence of lack of homogeneity of variance. 
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Half-Normal plot

Histogram of residuals Fitted-value plot

Normal plot
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