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Abstract 

In the field crops are subject to a wide variety of biotic and abiotic stresses.  In order to 

manage crop protection effectively it is important that we understand not only the way 

plants respond to these stresses, but the way in which these responses interact.  High levels 

of fertilisers and pesticides are often applied to maintain soil nutritional status and prevent 

disease in modern intensive farming systems.  Potassium (K) is an essential element for 

plant growth and development, and is required for a wide variety of processes within the 

plant.  These processes can be broadly divided into biophysical processes such as stomatal 

opening and cell extension and biochemical processes such as protein synthesis and 

enzyme activation.  K starvation has been shown to lead to increased levels of the stress 

hormone jasmonate (JA) and related compounds in Arabidopsis thaliana plants  which in 

turn modulates the plant‘s defence against herbivorous insects and probably other pests or 

pathogens (Armengaud et al., 2004; Troufflard et al., 2010).  In order for these results to be 

applicable to agriculture it is important to assess whether crop plants respond to K in a 

similar manner as the model plant.  In this project the effect of K-deficiency on growth, 

metabolite concentrations, transcript levels and pathogen susceptibility of barley were 

investigated.    Plants were grown in full-nutrient (control) or K-free hydroponic culture.  

The physiological, biochemical and transcriptional effects of K-deprivation were accessed 

over a time course of 20 days.  Roots and shoots from plants grown in K-free nutrient 

solution had significantly lower K concentration than those grown in the control solution 

after 3 and 6 days respectively.  A significant reduction in growth was seen as early as 6 

days after K withdrawal.   K-starvation led to a slight decrease in nitrogen metabolism, 

while hexose sugars strongly accumulated.   By day 9 a significant increase in the 

expression of JA marker genes was seen in plants grown in K-free nutrient solution.  Thus, 

despite possible differences in downstream events an induction of JA biosynthesis in 

response to K-deficiency occurs in both Arabidopsis and barley. Detached leaf segments 

were used to assess the effect of K-deficiency on infection of barley by two fungal 

pathogens with different strategies for nutrient acquisition.  K-deficient barley plants were 

less susceptible to the biotroph Blumeria graminis f. f. sp. hordei (powdery mildew) and 

more susceptible to the hemi-biotroph Rhynchosporium secalis.  Treatment of detached 

leaves with methyl-jasmonate (Me-JA) also led to less B. graminis infection, but had no 

effect on the R. secalis infection, indicating that JA increase in response to K-deficiency 

influences B. graminis but not R. secalis infection.  The study therefore provides strong 

evidence that the effect of K-deficiency on pathogen susceptibility is determined by the JA-

sensitivity of the pathogen. 
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Chapter 1.  Introduction 

 

1.1. Importance of crops 

 

In recent decades increasing world population, reduced availability of agricultural land, 

and demand for cheaper food has led to the use of more intensive farming practices.  

Increased cropping intensity leads to more nutrients being removed from the soil each 

season and higher likelihood of spread of disease. To maintain soil nutritional status 

and prevent disease in these systems high levels of fertilisers and pesticides are often 

used.  Increasing prices and environmental concerns are putting pressure on farmers to 

reduce application of these chemicals.  To accomplish this, it is important to understand 

the effect of nutrient deficiency on plants and how this interacts with susceptibility to 

pathogens. 

 

The human population is expanding rapidly, the world population was predicted to rise 

from around 5,900 million between 1997 and 1999 to around 7,200 million by 2015, an 

increase of around 1.2 % each year, and is predicted to reach 10 billion by 2050 (FAO, 

2002). This increase in population will lead to increased demand for food and other 

agricultural products.  It is estimated that demand for agricultural products will raise by 

1.6 % per annum between 1999 and 2015 (FAO, 2002).  A number of other factors are 

putting pressures on food production.  Reduced availability of agricultural land due to 

loss of fertility and changes in environmental conditions and increased use of land for 

non-food crop production such as biofuels, as well as increased consumption of animal 

products are all contributing to increased pressure on the available land.   

 

The increased demand and reduced availability of land for food production is expected 

to lead to more intensive farming methods being employed to increase the yield for 

crop plants.  At present a number of factors impact yield; two key factors are mineral 

nutrient availability and disease. Nutrient status can have a direct negative effect on 

yield, but can also affect yield indirectly as it can alter other important factors such as 

water uptake, abiotic stress resistance, or susceptibility to disease.  To meet the 

increased demand for food production using available agricultural land it is important 

that we understand the factors affecting crop production and the ways in which these 

interact with each other. 
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1.1.1. Barley 

 

Barley (Hordeum vulgare L.) is a versatile crop able to adapt to a number of stress 

conditions and it is therefore suitable for cultivation in a wide variety of environments 

throughout the world (Newton et al., 2011).  Although up to two thirds of the world‘s 

barley crop is used for animal feed, it is also essential for the brewing and distillation 

industries.  In addition to production of alcoholic beverages, barley is used in non-

alcoholic drinks, bread, health foods and soups or stews. Barley is ranked fourth world 

wide for both quantity produced and area of cultivation amongst the cereals after 

wheat, rice and maize (FAO), and it is second to wheat in the UK. In 2009, over 150 

million tonnes of barley were produced worldwide, Russia being biggest producer with 

just under 18 million tonnes of grain while the UK was the ninth highest producer with 

just over 7 million tonnes (FAO).   

 

The barley genome is very large, twice the size of the human genome, at around 5,500 

MB, 80 % of which is repetitive DNA (Sreenivasulu et al., 2008).  Barley has seven 

chromosomes, which are representative of the other Poaceae, such as rye and wheat.  

The barley genome is diploid making it more amenable to genetic analysis and 

manipulation than the polyploid wheat; it is therefore a good genetic model for the 

family.  Although there are a variety of genetic tools available for barley, such as ESTs, 

TILLING populations and RFLP and SNP linkage maps (Sreenivasulu et al., 2008), the 

genome has not yet been fully sequenced, although, the International Barley 

Sequencing Consortium are currently working towards this goal (Mayer et al., 2011; 

Schulte et al., 2009). 

 

1.2. Nutrients in plants 

 

When land is heavily cultivated essential mineral nutrients are quickly depleted and this 

occurs particularly quickly where high density monoculture crops are grown.  In order 

for plants to complete successfully their life cycle they must obtain 14 essential 

elements from the soil in addition to carbon, hydrogen and oxygen from the atmosphere 

(Marschner, 1995; Taiz and Zeiger, 1998; White and Brown, 2010).  The three most 

commonly deficient elements in agricultural soil are potassium, nitrogen  and 

phosphorus (Amtmann et al., 2006). To correct these deficiencies heavy fertilization is 

used to maintain quality and yield of crops in the western world.  However, with 
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concerns about environmental impact of chemical fertilizers and increasing fertilizer 

costs, farmers are looking to reduce fertilizer input while maintaining productivity and 

quality.  In poorer countries the importance of K for crop production is often neglected 

and many soils have become seriously K-deficient due to years of fertilisation with 

nitrogen and phosphorus alone.  

 

1.2.1. Potassium in plants 

 

The macronutrient potassium (K) is required in high quantities in plants. It is the most 

abundant inorganic cation in plants, and can account for up to 10 % of the dry weight 

(Broadley et al., 2004; Leigh and Wyn Jones, 1984; White and Karley, 2010).  K is 

important in a variety of physiological processes involved in growth and development 

and it is therefore found in the highest concentrations in growing and reproductive 

tissues.  Unlike other macronutrients K is not metabolized or incorporated into other 

macromolecules, instead it acts as a co-factor, osmoticum or charge balancer in a 

number of biophysical and biochemical processes (Amtmann et al., 2006; Marschner, 

1995; White and Karley, 2010). 

1.2.2. Physiological use and deficiency symptoms 

 

1.2.2.1. Biophysical functions 

 

K plays an important role as an osmoticum in growth, stomatal movement, and light 

driven and seismonastic movements of organs and phloem transport (Mengel and 

Arneke, 1982; White and Karley, 2010).  During growth, accumulation of K in the 

vacuole, along with an anion, creates the osmotic potential required for water uptake 

leading to cell expansion (Dolan and Davies, 2004; Mengel et al., 2001), allowing leaf 

expansion, extension of the roots and root hairs (Høgh-Jensen and Pedersen, 2003; 

Mouline et al., 2002), elongation of pollen tubes (Fischer and Hsiao, 1968), and growth 

of fruits and tubers.   K movement also delivers a charge-balancing counter flux, which 

is critical for the movement of other ions across membranes. Transport of sugars, 

amino acids and nitrate all require counter K fluxes (Marschner, 1995).  Rapid 

movement of K across membranes is also required during stomatal opening for 

accumulation of K in the guard cells decreasing the water potential within the cell 

(Blatt, 2000; Schroeder et al., 2001). 
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A high level of mobility is required to carry out these roles, and although K may be 

replaced by some other inorganic cations, sodium (Na) is toxic in high concentrations 

in the cytoplasm and can compete with K for enzyme binding sites (Horie et al., 2007).  

Once expansion has taken place the osmotic potential can be maintained with sugars, 

organic acids and compatible solutes, and K can be partially recovered for use in other 

processes (Amtmann et al., 2004; White and Karley, 2010).  

 

1.2.2.2. Biochemical functions of K in plants 

 

A number of biochemical processes in plants rely on a high, stable K concentration in 

the metabolically active components of the cell such as the cytoplasm, nucleus, stroma 

of the chloroplasts and the mitochondrial matrix (Evans, 1963; White and Karley, 

2010).  The optimal concentration for the reactions is around 100 mM (Evans and 

Sorger, 1966), however when K supply is ample the K concentration in these cellular 

compartments can be as high as 200 mM (Leigh and Wyn Jones, 1984).   

 

One of the key biochemical roles of K is that of a co-factor for enzymes. More than 60 

enzymes require K to function (Evans and Sorger, 1966).  These enzymes have a wide 

variety of functions (Di Cera, 2006) and include pyruvate kinase (Peoples and Koch, 

1979),  ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCo) (Nitsos and 

Evans, 1969), and starch synthase (Leigh and Wyn Jones, 1984). 

1.2.3. Effect of K-deficiency in plants 

 

Plants are able to adapt well to a wide range of K conditions and grow well in external 

K concentrations between 10 µM to 100 mM (Marschner, 1995).  K concentrations of 

around 2 % of the dry weight are required for near maximal growth (Leigh and Wyn 

Jones, 1984), however the critical tissue K concentration required for optimal plant 

growth depends on the presence of other cations such as magnesium (Mg) and sodium 

(Na) (White and Karley, 2010). Plants have a number of coping mechanisms when K is 

scarce; these include, the redistribution of K during mild and early K-deficiency from 

mature tissue to developing tissue (Gierth et al., 2005; Schachtman and Shin, 2007; 

Wang et al., 1998) and increased activity of high affinity K influx systems (Høgh-

Jensen and Pedersen, 2003; White, 1993).  During early K starvation, the available K is 

relocated from the vacuole to the cytoplasm and metabolically active organelles 
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resulting in disruption of biophysical processes before the disruption of biochemical 

processes (Leigh and Wyn Jones, 1984).    

 

The wide variety of biochemical and physiological processes that rely on K are 

reflected in the deficiency symptoms resulting from insufficient K.   The processes in 

plants that are K-dependent are often interrelated, which makes determination of the 

critical process in development of the K-deficiency symptoms difficult (Amtmann et 

al., 2006).  For example the changes in transpiration, sugar metabolism, synthesis of 

photosynthetic enzymes and chlorophyll levels all interact with each other (Amtmann 

et al., 2006). 

1.2.4. Physiological effects of K-deficiency 

 

A reduction in growth is one of the best documented effects of K-deficiency in plants.  

A reduction in shoot growth (Ashraf et al., 2001; Høgh-Jensen and Pedersen, 2003; 

Jordan-Meille and Pellerin, 2008; Tewari et al., 2007; White, 1993) and a reduction in 

the size of cells from young leaves of plants grown in low K media has been reported 

(Mengel and Arneke, 1982).   A number of studies have shown that there is a reduction 

in root dry weight in K-starved plants (El Dessougi et al., 2002; Stamp and Geisler, 

1980).  The effect of K-deficiency on root elongation appears to be more complicated, 

with different studies reporting contradictory results.  Jordan-Meille & Pellerin (2008) 

found that root elongation was slightly increased in maize while other studies have 

shown a decrease in root elongation in barley, wheat and sugar beet  (El Dessougi et 

al., 2002; Shin and Schachtman, 2004; Walker et al., 1998).   

 

The physiological effects of K-deficiency on plants are not limited to changes in 

growth.  K-starved plants often develop necrotic and chlorotic lesions on the leaves.  

Due to relocation of K from older leaves to younger leaves in low K conditions, lesions 

first occur on the older leaves. It has been suggested these lesions may be due to 

production of reactive oxygen species (ROS), such as hydrogen peroxide, in K-

deficient tissue (Tewari et al., 2007).  K-deficiency also leads to changes in water 

relations within the plant, due to reduced availability of K as an osmoticum.  This has a 

knock-on effect on the stomatal aperture, transpiration rate, turgor and vascular 

transport (Blatt, 1988; Deeken et al., 2002; Mengel and Haeder, 1977; Zhao et al., 

2001). 
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1.2.5. Metabolic effects of K-deficiency 

 

In addition to the physiological changes brought about by K-deficiency a number of 

biochemical changes occur.  A reduction in photosynthesis has been widely reported in 

K-deficient plants including cotton (Bednarz et al., 1998; Zhao et al., 2001), Medicago 

sativa (Peoples and Koch, 1979) and young spruce trees (Kanai et al., 2007; Lütz et al., 

1992).  There are many possible contributing factors to this decline.  The inhibition of 

K-dependent allosteric enzymes, such as RuBisCo, is seen in plants with low K 

(Peoples and Koch, 1979).  It has also been suggested that a build-up of sugars in the 

leaves during K starvation, may lead to a reduction in photosynthesis through feedback 

inhibition (Hermans et al., 2006).  A further limiting factor to photosynthesis during K-

starvation is a reduction in carbon up-take due to reduced stomatal aperture and 

reduced carbon dioxide fixation (Kanai et al., 2007).  

 

K-starved plants have been shown to have reduced levels of chlorophyll (Cakmak, 

1994; Stamp and Geisler, 1980; Zhao et al., 2001). Stamp and Geisler (1980) 

demonstrated a 40-50% reduction in chlorophyll in K-starved cereals compared with 

those supplied with sufficient K.  Chlorophyll concentration returned to normal after K 

resupply.  Insufficient K can also affect the ultrastructure of chloroplasts, resulting in 

fewer, less well defined grana stacks, reduced lamellae, large starch granules and 

greater plastoglobuli (Zhao et al., 2001).  Despite the reduction in photosynthetic rate, 

sugar concentrations are often increased in the leaves during periods of K-starvation 

(Armengaud et al., 2009; Cakmak, 2005; Huber, 1984), possibly due to a reduction of 

long-distance transport of sugars in K-deficient plants (Cakmak, 2005; Marschner, 

1995; Mengel and Haeder, 1977; Richards and Coleman, 1952).  This increase in sugar 

concentration in the leaves may affect the photosynthetic rate through feedback 

inhibition (Hermans et al., 2006; Mengel and Haeder, 1977).   

 

Nitrogen metabolism is also affected by K-deficiency.  This may be due to inhibition of 

K dependent N-metabolising enzymes or disruption of amino acid and nitrate transport 

due to a requirement for K for it to function fully (Bednarz and Oosterhuis, 1999; Lütz 

et al., 1992; Peoples and Koch, 1979). In barley, low K availability can lead to low 

total nitrogen in roots and shoots and changes in amino acid content within the plant 

(Helal and Mengel, 1979; Høgh-Jensen and Pedersen, 2003; Richards and Berner, 

1954).  Putrescine, a product of the breakdown of amino acids, has also been shown to 

increase in K-deficient plants (Altman and Levin, 1993).  Polyamines such a putrescine 



7 

 

are known to be involved in regulation of growth and stress, by binding 

macromolecules with negative charges (Kang et al., 2004). 

 

Based on comprehensive analysis of metabolic, transcript and enzyme activities in K-

deficiency and K resupply in A. thaliana plants, Armengaud et al. (2009) proposed that 

changes in carbon and nitrogen compounds during K-deficiency are ultimately the 

result of decreased glycolytic flux in the roots due to decrease in pyruvate kinase 

activity at low cytoplasmic K (Figure 1-1). 

 

 

Figure 1-1 Effect of low K on primary metabolism in A thaliana (Armengaud et al., 2009) 

Biochemical and transport pathways are shown with solid and dashed arrows respectively. Metabolite 

concentrations and enzyme activities increased in response to K-deficiency are in blue and decreased in 

red. The red bar represents putative direct inhibition of PK by low K. Abbreviations: NRT2: nitrate 

transporter 2, NR: nitrate reductase, GS: glutamine synthase, GDH: glutamate dehydrogenase, GOGAT: 

glutamine-2-oxoglutarate aminotransferase, AA: amino acids, 2-OG: 2-oxoglutarate, TCA: tricarboxylic 

acid (Krebs) cycle, ME: malic enzyme. 

 

 

1.2.6. Influence of K-deficiency on response to stress 

 

K-deficiency generally decreases tolerance to abiotic stresses, such as frost (Grewal 

and Singh, 1980), drought (Egilla et al., 2005; Egilla et al., 2001) and salt (Cakmak, 

2005).  Plant susceptibility to biotic stresses is, therefore, affected by K-supply.  A 

common perception is that high K availability leads to a decrease in disease, and 

provision of sufficient K is recommended to reduce disease (Imas and Magen, 2000).  

The effect of K-supply on disease however does not seem to be that simple; studies 

looking at the effect of K-availability on disease show contrasting results (Perrenoud, 
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1990).  For example, specific host-pathogen interactions can vary in response to K 

supply, Perronould (1990) reported an decrease in powdery mildew on barley in 17 out 

of 21 studies, however, the remaining studies showed an increase in disease occurrence 

(9 studies) or no change (5 studies).  This may be due to differences in K availability 

between trials, but variety of barley and other growth conditions might also have 

influenced the outcome.    

 

1.2.7. Molecular responses to K-deficiency 

 

The physiological effects of K-deficiency on plants have been widely studied, however 

until recently little was known about the effects of K-deficiency at a molecular level.  

Kang et al. (2004) carried out a proteomics study comparing K-deficient (3 h and 7 d in 

10 µM K) and K-sufficient (2 mM K) A. thaliana seedlings.  They identified over 100 

proteins which showed a change in expression in response to K- deficiency and 

assigned putative functions to many of them, including 29 related to metabolism, 17 to 

signal transduction, 14 to transcription and translation, 6 to defence and 2 storage 

related proteins (Kang et al., 2004).  Several microarray studies have been carried out 

with the aim to identify responses to K-deficiency at the level of transcripts 

(Armengaud et al., 2004; Gierth et al., 2005; Hammond et al., 2003; Hampton et al., 

2004; Maathuis et al., 2003).  Maahuis et al. (2003) concentrated on effects of nutrient 

deficiency on root transporters, and Girth et al. (2005) investigated the effect of short 

term K-deprivation on A. thaliana.  Microarray studies were used to investigate the 

interactions between cesium (Cs) toxicity and K starvation in A. thaliana (Hampton et 

al., 2004), different sets of genes had altered expression in response to each stress, 

indicating that Cs toxicity is not perceived as K-deficiency.   

 
 

Armengaud et al. (2004) used microarray technology to investigate transcriptional 

changes of A. thaliana  plants during K-starvation (2 weeks in micro molar K) and K-

resupply (2-24 h) experiments.  They used iterative group analysis (Breitling et al., 

2004b) to assign differentially regulated genes to functional groups, allowing the 

identification of four main functional categories as being dependent on external K-

supply. These were 1) genes related to jasmonic acid (JA) biosynthesis and signalling 

pathway, 2) genes encoding cell wall proteins, 3) genes with a function in transport and 

4) genes encoding calcium binding proteins (Armengaud et al., 2004).  Based on 



9 

 

known and putative functions of the regulated genes the authors produced a schematic 

overview of processes that altered during K-deficiency (Figure 1-2).   

 

 

 
Figure 1-2 Plant adaptation to K-deficiency (adapted from Amtmann et al., 2006). 

Black arrows indicate stimulation, dashed lines inhibition. Known K-deficiency symptoms are shown in 

pink boxes, putative components of signalling events are indicated in dark blue, JA-dependent processes 

potentially leading to adaptive nutrient management  in green and defence responses in pale blue. 

 

1.2.8. Hormonal responses to K-deficiency  

 

The largest category of genes up-regulated during K-starvation contained genes 

involved in signalling, including JA-biosynthesis genes such as lipoxygenase 2 (LOX2), 

allene oxide synthase (AOS) and allene oxide cyclase (AOC) as well as well-known JA-

responsive genes such as vegetative storage protein 1 (VSP1) and JA inducible thionin 

(Thi2.1). An increase in JA concentration during K-deficiency in A. thaliana was 

confirmed by Cao et al. (2006) and Troufflard et al. (2010), who  also showed that 

induction of JA marker genes was specific for K, i.e. it did not occur in response to 

deficiencies in N, S or Ca.  K-deficient A. thaliana plants also show increased ethylene 

(ET) concentration and ET-related gene expression (Hampton et al., 2004; Shin and 

Schachtman, 2004).  ET and JA have been shown to act synergistically during defence 

responses (Figures 1-2 and 1-6) (Ellis and Turner, 2001).  Hampton et al. (2004) also 
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identified a number of genes related to auxin that were up-regulated during K-

starvation.   

  

1.3. Jasmonate  

 

Phytohormones play an important role in controlling a number of plant processes 

including growth, reproduction and defence (Taiz and Zeiger, 1998).  The 

phytohormone jasmonic acid (JA) is involved in processes related to growth, 

development and response to stress.  A number of comprehensive reviews on JA 

signalling have been published in recent years (Avanci et al., 2010; Browse, 2009; 

Chico et al., 2008; Kazan and Manners, 2008; Memelink, 2009; Reinbothe et al., 2009; 

Staswick, 2008; Wasternack, 2007).  JA forms part of a complex network of signals 

that respond to abiotic and biotic stresses (discussed further in Section 1.3.6.).  One of 

the best known abiotic stress that elicits a JA response is wounding (Li et al., 2005; 

Wasternack et al., 2006), but JA has also been shown to be increased in response to 

drought, cold, and nutrient deficiencies including K (Armengaud et al., 2004; Jung et 

al., 2007). 

 

1.3.1. Jasmonate biosynthesis 

 

JA is one of a group of compounds derived from oxygenated polyunsaturated fatty 

acids known as oxylipins (Howe and Schilmiller, 2002; Mosblech et al., 2009; 

Reinbothe et al., 2009).  Work by Vick and Zimmerman (1984) first described the 

biosynthesis of JA, one of the first oxylipins discovered in plants.  Since then JA-

biosynthesis has been extensively studied.  Most of this research has been carried out in 

dicots such as A. thaliana, tomato and tobacco, while monocots such as wheat and 

barley have been studied to a lesser extent (Kazan and Manners, 2008). 

 

The synthesis of oxylipins in plants starts in the chloroplast where linolenic acid (LA) 

is released from the chloroplast membrane by phospholipases (Figure 1-3).  

Phospholipase 1A (Defective in Anther Dehiscence - DAD) has been shown to be 

involved in this step of JA-biosynthesis during anther dehiscence, pollen maturation, 

filament elongation and flower opening, but not in response to wounding in A. thaliana 

(Ishiguro et al., 2001).  A homolog of DAD1, Dongal (DGL) has also been identified in 

leaf chloroplasts.  DGL has a weak phospholipase A activity and appears to play a role 
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in growth regulation and the rapid JA burst after wounding (Hyun et al., 2008). A 

phospholipase D (PLD) has been shown to be induced by wounding and this response 

was abolished in an A. thaliana  pld knockout mutant (Zien et al., 2001).  After release 

from the membrane, the next step is the oxygenation of LA by lipoxygenase 2 (LOX2 

also referred to as 13-LOX) to form 13-hydroperoxy linolenic acid (13-HPOT) (Bell et 

al., 1995); this is the first step of the LOX pathway by which JA is formed.   

 

 

Figure 1-3 The Jasmonate biosynthesis pathway (adapted from Browes et al., 2009).  

A flow diagram showing the formation of Jasmonic acid from linolenic acid, biosynthesis intermediates 

are in boxes and enzymes are in italics. Abbreviation:  LOX2: lipoxygenase 2, AOS: allene oxide 

synthase, AOC: allene oxide cyclase and  OPR: OPDA reductase. 

 

The first committed step in JA-biosynthesis is the dehydration of 13-HPOT by allene 

oxide synthase (Laudert et al., 2000; Laudert and Weiler, 1998; Song et al., 1993), 

forming the chemically unstable allene oxide intermediate 12,13 epoxy-

octadecatrienonic (12,13 EOT), which naturally decomposes to form α-ketones and β-
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ketones.  AOS is a cytochrome P450 which uses oxygenated fatty acid hydroperoxide 

substrates as oxygen donors and as source for reducing equivalents (Howe and 

Schilmiller, 2002).  A cyclopentone ring (9S,13S)-12-oxo-phytodienoic acid (OPDA) is 

formed from 12, 13 EOT, catalysed by allene oxide cyclase (Hamberg and Fahlstadius, 

1990; Ziegler et al., 2000).  Coupling of AOS and AOC is required for a successful 

formation of OPDA, however formation of a complex is not necessary (Zerbe et al., 

2007).  This is the last step to take place in the chloroplast. 

 

It is still unclear how OPDA is exported from the chloroplast; no transporters have 

been identified to date.  The ABC transporter COMATOSE peroxisomes (CTS) have 

been shown to be at least partially responsible for the uptake of OPDA into the 

protosome in an ATP dependent process (Delker et al., 2006; Theodoulou et al., 2005), 

however, residual JA implies that other modes of transport also exist.  An ion trapping 

mechanism, taking advantage of the pH difference between the peroxisomes and 

cytoplasm could possibly be a second mechanism for OPDA transport through 

peroxisome membranes (Theodoulou et al., 2005). 

 

OPDA is reduced by 12-oxo-phytodienoic acid reductase (OPR3), which has been 

shown to contain a peroxisome target sequence (Strassner et al., 2002), to form 3-oxo-

2(2‘-pentenyl)-cyclopentane-1-octanoic acid (OPC:8). A. thaliana opr3 mutants have 

been identified and have been shown to be deficient in JA signalling and to accumulate 

OPDA after wounding (Stintzi and Browse, 2000).  JA is formed from OPC:8 by a 

series of 3 β-oxidation steps, shortening the β-oxidative side chain (Wasternack, 2007).  

A number of enzymes have been identified as being involved in these reactions, 

including acyl-CoA oxidase (ACX) in tomato (Li et al., 2005) and multifunctional 

protein (MFP) and 3-ketoacyl-CoA thiolase (KAT) in A. thaliana.  In A. thaliana 

knocking out acx1 alone did not prevent JA synthesis, however, the acx1/5 double 

mutant did. Further experiments showed that ACX1/5 are essential for male 

reproductive development and defence against chewing insects such as Trichoplusia ni  

(Schilmiller et al., 2007).  The aim1 mutant, which is disrupted in one of the two MFP 

genes, has impaired JA response to wounding and expression of JA-related genes 

(Delker et al., 2007).  When KAT2 in A. thaliana is silenced JA accumulation in 

response to wounding and expression of JA marker gene JR2 were reduced (Cruz 

Castillo et al., 2004).   
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1.3.2. JA conjugates 

 

Once JA is produced it can be metabolised by a variety of enzymes to produce a 

number of compounds known collectively as jasmonates (Figure 1-4) (Wasternack, 

2007).  Few of the genes encoding enzymes involved in their production have been 

cloned so far.  Some JA precursors and  JA conjugates are signalling molecules in their 

own right and often induce a specific subset of JA-responsive genes (Kramell et al., 

2000). 

 

 

Figure 1-4  Metabolic fate of Jasmonic acid (adapted from Wasternack, 2007 and Wasternack & 

Kombrick 2010).  After biosynthesis JA can undergo a variety of modifications, JA conjugates are 

shown in grey boxes and enzymes are in italics. Abbreviations: Me-JA: Methyl jasmonate,  JA:Ile: 

jasmonoyl-l-isoleucine, 12-OH-JA: 12-hydroxyjasmonic acid, 12-HO-JA–Ile: 12-hydroxyjasmonoyl 

Isoleucine, 12-HOOC-JA–Ile: 12-carboxyjasmonoyl isoleucine, JA-ACC: jasmonoyl 1 

aminocyclopropane-1-carboxylic acid,  JMT: JA methyl transferase, MJE: methyl jasmonate esterase,  

JAR1/4: jasmonic acid resistance 1/4, St2A: 12-OHJA-sulphotransferase. 

 

1.3.3. JA signal recognition 

 

A number of JA-responsive promoter elements have been identified in plants, the most 

common of which are the GCC and G-box promoter sequences (Memelink, 2009).  A 

jasmonate- and elicitor- responsive element (JERE) containing a GCC-box-like 

sequence has been identified in the promoter of the terpenoid indole alkaloid 
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biosynthesis gene strictosideine synthesis (STR) from Catharanthus roseus (Menke et 

al., 1999).  When a JERE tetramer is fused to a minimal promoter, Me-JA-responsive 

gene expression is conferred, showing JERE is an autonomous Me-JA-responsive 

sequence.  Some GCC reporter elements have been shown to act as ethylene reporter 

elements (Fujimoto et al., 2000; Ohme-Takagi and Shinshi, 1995). The PDR1.2 gene is 

expressed in response to a combination of JA and ET it has been suggested that this 

may be due to the convergence of the two hormones on the GCC-box within the 

PDF1.2 promoter (Memelink, 2009).  G-box elements are highly represented in the 

promoters of JA-related genes in A. thaliana, and have been identified in promoters for 

a variety  of JA-responsive genes, including Protease inhibitor 2 in potato (Kim et al., 

1992), vegetative storage protein B (VSPB) in soybean (Mason et al., 1993) and VSP1 

in A. thaliana (Guerineau et al., 2003).  Other JA-responsive TGACG (as-1-type) 

sequences have been found in the promoters of the Agrobacterium tumefaciens T-DNA 

nopaline synthase (nos) gene in tobacco (Kim et al., 1993) and the barley LOX1 gene 

(Rouster et al., 1997).  Two jasmonate-responsive elements JASE1 and JASE2 have 

been identified in the promoter of OPR1 gene in A. thaliana (He and Gan, 2001). 

 

Despite this knowledge of the promoter elements required for JA responsiveness, until 

recently the mechanism of JA detection remained elusive.   However, the discovery of 

the Jasmonate ZIM domain (JAZ) repressor protein in 2007 (Chini et al., 2007; Thines 

et al., 2007)  led to the identification of the SCF
Coi1

 complex (Figure 1-5).   The coi1 

mutant was first identified in 1994 during screens of coronatine insensitive mutants and 

has been shown to be insensitive to Me-JA (Feys et al., 1994; Staswick, 2008).  The 

coi1 mutant has been shown to be insensitive to JAs, more susceptible to pathogens 

(Feys et al., 1994) and lacking JA-induced gene expression (Turner et al., 2002).  

Mutants of COI1 have also been identified in tomato (Li et al., 2004b), soybean (Wang 

et al., 2005) and Nicotiana attenuata (Paschold et al., 2007) and COI1 has been 

suppressed in tobacco (Shoji et al., 2008), and potatoes (Halim et al., 2009).  All of 

these mutants are impaired in JA signalling.  COI1 has been identified as an F-box 

protein (Xie et al., 1998) and has been shown to associate with Rbx1, a ring box 

protein, cullin and S-phase kinase-associated protein (SKP1) to form an E3 ubiquitin 

ligase known as a SCF complex (Devoto et al., 2002; Xu et al., 2002). SCF E3 

complexes are found in a variety of signalling pathways including auxin signalling 

(Memelink, 2009) and are involved ubiquitination of proteins in order to mark them for 

degradation by the 26S proteasome (Stone and Callis, 2007).  The F-box region is 
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responsible for the specification of SCF E3 to its targets and COI1 is specific to the JA 

pathway.  However, the other components maybe involved in several pathways, axr 

mutants are also deficient in auxin signalling.   

 

 
 

Figure 1-5 SCF
COI1

/ JAZ signalling complex (Browse, 2009; Staswick, 2008).  A: JAZ proteins 

suppress JA-related gene expression by the transcription factor MYC2.  B:  In the presence of 

jasmonoyl-l-isoleucine (Ile-JA, shown as a blue circle) the JAZ proteins interact with the SCF
coi1

 

complex. C: The interaction with the SCF
coi1

 complex leads to the ubiquitination of JAZ marking it for 

destruction by the 26S proteasome and the removal of suppression of MYC2. 

 

In the yeast-2-hybrid system and pull down assays, JAZ1 has been shown to interact 

with the SCF
COI1

 complex in the presence of JA-Ile and to a lesser extent JA-Leu but 

not in the presence of other JA or JA conjugates such as OPDA, Me-JA, JA-Trp and 
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JA-Phe (Thines et al., 2007), indicating that JA-Ile and JA-Leu facilitate the binding of 

the SCF
COI1

 complex to the JAZ1 protein.  The JAS region of the JAZ protein is 

necessary for this interaction to occur as it binds the JA-Ile (Melotto et al., 2008).  The 

SCF
COI1

/ JAZ interaction is believed to lead to the removal of suppression of the 

MYC2 by JAZ3 leading to the expression of the early JA-responsive genes (Chico et 

al., 2008; Staswick, 2008).   Once released from the complex the JAZ protein is 

ubiquitinated in order to mark it for degradation by the 26S proteasomes.                                                                                                                                                                                                                                                                                       

 

MYC2 has been shown to bind to G-box and other related sequences in the promoter 

regions of different JA-related genes (Boter et al., 2004; Chini et al., 2007; Dombrecht 

et al., 2007). MYC2 has been shown to induce genes related to wounding, JA 

biosynthesis, and drought (Abe et al., 1997; Chini et al., 2007; Kazan and Manners, 

2008; Lorenzo et al., 2004).  Under low JA conditions, JAZ3 represses MYC2 activity 

at a protein level (Memelink, 2009) preventing transcription of JA-related genes.  JAZ 

proteins were identified during genetic screens and microarray studies (Chini et al., 

2007; Thines et al., 2007; Yan et al., 2007) and form part of the Zim or TIFY family of 

proteins. JAZ proteins have been shown to contain a highly conserved Zim motif 

(Chini et al., 2007), a C-terminal JAS domain and a less conserved N-terminal region 

(Memelink, 2009).  The expression of the JAZ3 protein is controlled by MYC2, hence 

expression is increased in a positive feedback response to JA (Chini et al., 2007; Thines 

et al., 2007; Yan et al., 2007). 

 

1.3.4. JA target genes in barley 

 

A number of JA-responsive genes have been identified in A. thaliana and are often 

used as JA-marker genes, such as VSP and LOX2.  Few genes induced by JA in barley 

have been fully characterised although a number have been identified.  Weidhase et al. 

(1987) reported the expression of a number of proteins in response to JA and methyl 

jasmonate (JA-Me) in senescing barley leaf tissue, including peptides with molecular 

weights of 66, 37 and 23 kDa, in addition to a number of minor proteins.  In the 

absence of a known function, Jasmonate Induced Proteins (JIPs) were labelled with 

their molecular weight, for example a Mr 23,000 peptide is referred to as JIP23.  In 

1992, an attempt was made to characterise JIP23 and JIP15 (Andresen et al., 1992). 

JIP15 was only expressed in vitro, hence it had not been observed previously, but was 

strongly expressed when translated in a cell free protein-synthesising wheat germ 
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extract. JIP15 was shown to be homologous to a precursor of a leaf thionin, which 

contains a signal peptide, a thionin domain and an acid peptide domain. JIP6, a possible 

thionin, was identified in mature leaf tissue. No protein sequences similar to JIP23 were 

identified (Andresen et al., 1992). A JIP23 promoter and β-glucuronidase (GUS) fusion 

was used to demonstrate that JIP23 expression was regulated in response to JA at a 

transcriptional level. After introducing the construct by particle bombardment, a 3-fold 

increase in GUS expression was observed in response to JA (Müller-Uri et al., 2002). 

Over-expression of barley JIP23 in tobacco plants led to repression of several proteins, 

but no change in abundance of transcripts, indicating a role in translation (Görschen et 

al., 1997). 

 

 JIP60 was identified as a ribosome inactivating protein (RIP), able to cleave animal 

and plant polysomes into their ribosomal subunits (Chaudhry et al., 1994; Reinbothe et 

al., 1994). Therefore, it may have functions both in defence and in the regulation of 

protein synthesis in stressed plants (Chaudhry et al., 1994; Reinbothe et al., 1994). 

JIP60 has been shown to exhibit N-glycosidase activity in vivo resulting in 

accumulation of inactive polysomes (Dunaeva et al., 1999).  One further JIP has been 

shown to be induced by JA, ABA, osmotic stress and wounding but not salt stress; 

JIP37 was shown to be located on chromosome 3 and closely related to JIP23.  JIP37 is 

located in the nucleus, cytoplasm and vacuoles (Leopold et al., 1996) 

 

A 40 % increase in trypsin inhibitor activity was observed in barley in response to 

exogenous application of JA, suggesting that formation of proteinase inhibitors may 

also occur in response to JA, but no change in chymotrypsin inhibitor activity was seen 

(Casaretto et al., 2004). 

 

1.3.5. Role of JA in defence 

 

Plant defence against pathogens involves a number of signalling pathway, JA is a key 

hormone in plant defence responses.  It is well established that JA is important in plants 

responses to insect attack (Howe and Jander, 2008); tomato (Howe et al., 1996) and A. 

thaliana (Armengaud et al., 2010; McConn et al., 1997) plants with defective JA 

signalling have been shown to be more susceptible to herbivores.  A large number of 

JA responsive genes are induced by wounding (Reymond et al., 2000);  these include 

antifeedants and poisonous compounds such as proteinase inhibitors (PI) of tomato and 
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potato (Farmer et al., 1992; Farmer and Ryan, 1992; Peña-Cortés et al., 1992) and 

trypsin inhibitor in alfalfa (Brown and Ryan, 1984).     

 

JA is also involved in defence against microbial pathogens.  Plants responses to 

pathogens are dependent on the way in which they obtain nutrients. Biotrophs obtain 

nutrients from living cells and defence against these centres around the SA signalling 

pathway and hypersensitive response leading to programmed cell death preventing 

further spread of the pathogen throughout the plant.  However, for Necrotrophs, which 

obtain nutrients from dead tissue, this strategy would be counterproductive, therefore 

the JA and ET pathways are triggered, leading to the activation of defence responses. 

1.3.6. Hormone cross talk 

 

Jasmonic acid, salicylic acid (SA), ethylene (ET), and to a lesser extent, ABA, are the 

main hormones that make up a complex signalling network controlling the response of 

plants to biotic stresses (Figure 1-6).  A simplistic conceptualisation of this network is 

that JA and ET signalling act synergistically in defence against necrotrophs and 

herbivorous insects, while SA is involved in responses to biotrophic fungi and viruses 

(Bari and Jones, 2009; Berrocal-Lobo et al., 2002; Dewdney et al., 2000; Pieterse et al., 

2009).  However, the reality is more complex due to the fact that JA and SA interact 

both as synergists and as antagonists (Balbi and Devoto, 2008; Devoto and Turner, 

2005; Loake and Grant, 2007; Lorenzo and Solano, 2005; Rojo et al., 2003).  

 

Cross-talk is also seen between the JA and SA pathways, most of which is antagonistic, 

indicating that there is a trade-off between the two responses to pathogen attack.  There 

are examples of SA blocking the JA signalling pathway in tomato (Pena-Cortés et al., 

1993), flax (Harms et al., 1998), tobacco (Niki et al., 1998) and  A. thaliana (Cipollini 

et al., 2004).  The inhibition of JA synthesis by SA appears to be due to the inhibition 

of AOS synthesis (Harms et al., 1998; Norton et al., 2007), however, activation of AOS 

by SA has also been shown (Laudert and Weiler, 1998).  There is also evidence of the 

reverse antagonistic interaction, the inhibition of SA by JA.  JA has been shown to 

inhibit expression of PR genes (Niki et al., 1998) and JAI1 has been shown to suppress 

SA signalling during Pseudomonas syringae infection in A. thaliana (Laurie-Berry et 

al., 2006). 
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Figure 1-6. Stress-responsive network involving the JA, ET, SA and ABA signalling pathways. 
Different types of biotic or abiotic stress, such as pathogen infection or wounding, induce the synthesis 

and subsequent activation of several hormonal pathways (i.e. JA, ET, SA and ABA, shown in dark grey 

circles). (modified from Lorenzo and Solano, 2005).  These hormones interact with one another  via a 

variety of different signal molecules (shown as white squares) and transcription factors (shown in pale 

grey) in either a synergistic or antagonistic manner ultimately leading to the induction of genes involved 

in a variety of stress responses.  Abbreviations:  ET: ethylene, ABA: abscisic acid, JA: Jasmonate, SA: 

salicylic acid,  ERF1: ethylene responsive factor 1,   MPK4: MAP kinase 4, NPR1: Natriuretic peptide 

receptor 1, MYC2: bHLHzip transcription factor,  PDF1.2: plant defensin, Thi2.1: JA-related gene 

expression,  VSP: vegetative storage protein, LOX2: Lipoxygenase 2 and PR1: Pathogen related 1. 

 

Positive interactions between SA and JA have also been demonstrated, e.g. 

simultaneous activation of the SA and JA pathways were observed in response to 

Pseudomonas syringae (van Wees et al., 2000) and Xanthomonas campestris (Ton et 

al., 2002). Four A. thaliana cet mutants show constitutive activation of both pathways, 

implying that they act in a signal cascade prior to the JA and SA pathways (Nibbe et 

al., 2002).  Mur et al. (2006) demonstrated that at low concentration JA and SA work 

synergistically, to increase the expression of PR1 and other JA markers, but at higher 

concentrations an antagonistic interaction occurs and apoplastic ROS is produced.  Two 

possible points of convergence of these signals have been identified. The transcription 

factor WRKY70 and the MAP kinase 4 seem to play key roles in interactions between 

SA and JA (See Figure 1-6). WRKY70 is activated by SA and leads to the activation of 

SA-target genes (e.g. PR1), but is suppressed by JA and leads to inhibition of JA-

related gene expression (Thi2.1) (Li et al., 2004a). MAP-kinase 4 (MPK4) suppresses 

the SA pathway while activating the JA pathway (Petersen et al., 2000). 
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1.4. The plant immune system 

 

Plants are continuously attacked by an assortment of pathogens, including microbes 

such as fungi and bacteria as well as herbivores such as insects.  However, in the 

majority of cases the pathogen is prevented from colonising by the plant‘s complex 

defence mechanisms.  Although plant pathogens have diverse infection strategies they 

can be broadly categorized into two groups: biotrophs and necrotrophs (Glazebrook, 

2005).  Some pathogens utilize both strategies during their life cycle and are referred to 

as hemi-biotrophs.  Biotrophic pathogens obtain the nutrients they require from living 

tissue and therefore it is beneficial for them to keep the plant alive.  Necrotrophic 

pathogens obtain their nutrients from dead or dying tissue.  These different infection 

strategies have led to a number of different plant responses to pathogens including 

hormone signalling (Discussed in Section 1.3.), R-gene mediated resistance and 

induced resistance. 

1.4.1. R-gene mediated resistance 

 

R-gene mediated resistance is the recognition of a pathogen product of the avirulence 

(avr) genes by the corresponding resistance (R) gene product in plants to initiate plant 

defences (Dangl and Jones, 2001; De Wit et al., 1995; Glazebrook, 2005; Jones and 

Dangl, 2006).  R genes have been shown to mediate plant responses to a wide range of 

pathogens including bacteria, fungi, oomycetes, nematodes, viruses and insects (Dangl 

and Jones, 2001).  When a plant possesses the R-gene conferring resistance to the 

pathogen avr gene an incompatible interaction occurs and highly efficient defence 

mechanisms are triggered preventing pathogen growth.  In the absence of the 

compatible R-gene, defences are not triggered, leading to a compatible interaction 

between the plant and pathogen.  The triggering of R-gene mediated resistance often 

leads to the hyper-activation of basal defence responses and triggers the hypersensitive 

response (HR) leading to programmed cell death (Nimchuk et al., 2003).  The avr 

genes can be virulence factors and therefore are maintained within the pathogen 

population despite triggering R-gene mediated responses in some plants to allow full 

levels of pathogen growth when a susceptible host is found (Kjemtrup et al., 2000).   

This interplay of avr-genes and R-genes means that the plants and the pathogens are 

constantly evolving, plants to recognise invaders and the pathogens to avoid 

recognition and maintain virulence.  In the absence of the appropriate R-gene to allow 
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specific recognition of the pathogen other non-specific defence mechanisms will be 

triggered restricting growth and spread of the pathogen.  

1.4.2. Induced resistance 

 

A primary infection by a pathogen or environmental stress my lead to enhanced 

resistance to any secondary attack, this in known as induced resistance and was fist 

reported by Ross et al. (1961) who observed an induceable response to tomacco mosaic 

virus (TMV) in tabacco.  The best studied forms of induced resistance are systemic 

acquired resistance (SAR) and induced systemic resistance (ISR). 

1.4.2.1. Systemic acquired resistance 

 

Systemic aquired resistance (SAR) can be triggered by exposure to virulent, avirulent 

and nonpathogenic organisums or by chemical stimuli such as SA, 2,6-dichloro-

isonicotinic acis (INA) or benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester 

(BTH) and leads to heightened resistance both locally and distinct to stimulation 

(Vallad and Goodman, 2004) and can least a significant length of time.  The increased 

resistance is not limited to the stimulus that triggered the resposne, SAR is effective 

against a wide variety of plant pathogens including fungi, bacteria and viruses (Kuć, 

1982; Walters et al., 2005).  When the SAR is triggered an accumulation of SA occurs 

both locally and systemically leading to increased expression of a specific set of 

Pathogen Related (PR) genes (Van Loon, 1997) which required the ‗non-expressor of 

PR genes‘ NPR1 (Shah et al., 1997) .  This response can be mimiced by treating plants 

with SA or one of its functional analogs which leads to the expression of the same set 

of PR genes (Ryals et al., 1996; White, 1979).  The SA pathway is essential for SAR 

and the activation of PR genes;  plants unable to accumulate SA do not develop SAR or 

express the PR genes after infection (Delaney et al., 1994; Gaffney et al., 1993; Lawton 

et al., 1995).  In turn the SA signal transduction is dependant on the regulatory protein 

‗non-expressor of PR genes‘ NPR1 (Cao et al., 1997; Shah et al., 1997). 

1.4.2.2. Induced systemic resistance 

 

Non-pathogenic microbes are also able to elicit an increased disease resistance in 

plants.  During ISR, beneficial rhizobacteria and fungi can trigger priming of defence 

mechanisms in the above ground plant tissues (Pieterse et al., 2009; Van Loon, 1997; 

Walters and Heil, 2007).  ISR is independent of SA, but instead requires JA and ET 
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signalling (Léon-Kloosterziel et al., 2005; Shoresh et al., 2005), and has been shown to 

be effective against pathogens that are responsive to the JA- and ET-pathways (Ton et 

al., 2002; Van Oosten et al., 2008). 

1.5. Pathogens in crops 

1.5.1. Consequences of pathogen infection in crops 

 

Plant disease can have a large impact on crop yield with losses of between 10 and 16 % 

worldwide (Oerke, 2006; Strange and Scott, 2005) costing up to 200 billion US dollars 

(Chakraborty and Newton, 2011).  These losses are even more substantial when other 

biological stresses are included, such as weeds and herbivores and could reach up to 30 

% (Christou and Twyman, 2004).   Postharvest losses of between 6 and 12 % further 

increase the problem (Agrios, 2005).   Major out-breaks of disease can lead to major 

food shortages and starvation especially when one crop is relied upon heavily.  For 

example the Irish potato famine caused by Phytophthora infestans during the 1840s led 

the starvation of many and drove still more to emigrate (Fry, 2008; Large, 1940).  The 

Great Bengal famine of 1943 was caused by devastation of  the rice crop by the fungus 

Cochliobolus miyabeanus (Padmanabhan, 1973).  A wide range of organisms cause 

disease in all crops, the major groups consisting of viruses, oomycetes, bacteria, fungi, 

nematodes and parasitic plants using a wide variety of infection strategies. 

1.5.2. Barley pathogens 

 

Barley plants are subject to attack by a wide range of pathogens.  Oerke and Dehne 

(2004) estimated that without any treatment over 50 % of the world‘s attainable barley 

yield would be lost to pests.  They estimated that weeds would account for 23 % of this 

loss and fungal pathogens (mostly Pyrenophora teres, Rhynchosporium secalis, 

Puccinia hordei and Blumeria graminis f. sp. hordei and Cochliobolus sativus) for 15 

%, animal pests for 7 % and viruses for 3 %.  In reality, the losses due to weeds and 

pathogenic microorganisms were much lower at just 8 % and 9 % respectively (Oerke 

and Dehne, 2004).  Two major pathogens of barley are R. secalis and B. graminis. 

1.5.3. Rhynchosporium secalis 

 

Rhynchosporium or leaf blotch or scald is caused by the fungal pathogen 

Rhynchosporium secalis which is able to infect barley, wheat, rye, and triticale as well 

some wild grass species (HGCA, 2008; Zaffarano et al., 2006; Zhan et al., 2008).  The 
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fungus causes scald-like lesions on the leaves, leaf sheaths and ears, however, infection 

occurs most often  in leaf axils (HGCA, 2008).  The lesions appear initially as pale 

green areas on the leaf surface but as the infection progresses the margins become dark 

brown, while the centre of the lesion remains pale green or brown (HGCA, 2008). 

 

Infection with R. secalis leads to a large reduction of yield in barley crops, up to 40%, 

as well as poor grain quality leading to reduced value (Shipton et al., 1974). Resistant 

cultivars, cultural practice or fungicide usages have not proved to be sustainable ways 

to protect against R. secalis  (Zaffarano et al., 2006).  

1.5.3.1. Life cycle 

 

Rhynchosporium is a polycyclic disease, the fungus completes a number of generations 

during a barley growing season (Figure 1-7) (Zaffarano et al., 2006).  Primary infection 

can occur when conidia of R. secalis from infected crop debris or other plant species 

(weeds) land on barley leaves (Davis and Fitt, 1992) or to a lesser extent through 

infected seed (Habgood, 1971).  Secondary infection occurs when R. secalis conidia are 

dispersed within water droplets. The success of these infections often depends on the 

developmental stage of the plants and environmental conditions.  After landing on the 

surface of the leaf, if conditions are favourable, the R. secalis conidia germinate and 

form one or two germ tubes (Linsell et al., 2010; Zhan et al., 2008) as early as one hour 

post inoculation (Linsell et al., 2010).  It is unclear if these germ tubes penetrate the 

cuticle directly or if an apposorium is formed, both possibilities have been reported 

(Linsell et al., 2010; Thirugnanasambandam et al., 2011; Zhan et al., 2008). 

 

Once the cuticle has been penetrated, hyphae grow sub-cuticularly between the 

epidermal cells above adjacent anticlinal walls (Jones and Ayres, 1974; Linsell et al., 

2010; Lyngs Jørgensen et al., 1993) in the direction of the base of the leaf (Lehnackers 

and Knogge, 1989).   Degradation of the epidermal cells occurs between 3 and 10 days 

post inoculation (Jones and Ayres, 1974; Linsell et al., 2010; Lyngs Jørgensen et al., 

1993), leading to collapse of the cell which can be observed as pale green lesions on the 

leaf.   As the infection progresses the hyphae invade the mesophyll cells.  Ayesu-Offei 

and Clare (1970) suggested that hyphae might enter the mesophyll cells through 

stomata, however this was not observed by Linsell et al. (2010) although the hyphae 

circled the stomata.  Instead Linsell et al.(2010) suggested that penetration may occur 

between the guard cells and the neighbouring epidermal cells. Penetration leads to the 
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collapse of the mesophyll cells between 7 and 14 days post inoculation (Linsell et al., 

2010; Lyngs Jørgensen et al., 1993).  Directly after mesophyll collapse an increase in 

hyphal proliferation and branching is observed (Linsell et al., 2010), possibly due to 

increased nutrient availability.  Sporulation occurs 12 to 14 days post inoculation when 

conidia protrude through the cuticle layer onto the surface of the leaf (Linsell et al., 

2010; Lyngs Jørgensen et al., 1993). 

 

 

 

Figure 1-7  Rhynchosporium secalis life cycle  (adapted from Zhan et al., 2008) 

After conidia land on the surface of the leaf (i) germination occurs and the cuticle is penetrated (ii) by the 

germ tube. Once the cuticle is penetrated sub-cuticlar hyphae form along the anticlinal walls of the host 

cells (iii), leading to the collapse of the epidermal cells (iv) and the spread to the mesophyll layer (v).  

Sporulation occurs (vi).  Abbreviation: dpi: days post inoculation, C: conidia,  GT: germ tube and H: 

hyphae 

1.5.3.2. Defence against R. secalis  

 

One of the best studied ways in which defence mechanisms are triggered by R. secalis 

infection is gene-for-gene interaction, during which interactions between the resistance 

genes (R-genes) and corresponding R. secalis genes (avr-genes) determine the outcome 

of the infection.  A number of genes conveying resistance to R. secalis in barley have 

been identified and a single barley cultivar may contain several of these (Lehnackers 

and Knogge, 1989; Zhan et al., 2008).  Different races or pathotypes of R. secalis  
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exist, with different avirulent and virulent alleles (Xi et al., 2000).  The presence of the 

correct R-gene leads to the collapse of single epidermal cells after cuticle penetration 

preventing further spread of the pathogen (Steiner-Lange et al., 2003).  During a 

susceptible interaction this occurs later after the R. secalis  has spread to neighbouring 

cells (Jones and Ayres, 1974). 

 

A number of R-genes have been identified in barley that confer resistance to R. secalis.  

Many experiments looking at R. secalis resistance use the barley near isogenic cultivars 

Atlas and Atlas 46 which differ in the Rrs1 resistance locus (Rohe et al., 1995; Steiner-

Lange et al., 2003; Thirugnanasambandam et al., 2011; van't Slot et al., 2007).  The 

corresponding avr-gene AvrRrs1 is one of a small number of avr-genes to be 

characterised in plant pathogens.  The gene product of AvrRrs1 is referred to as 

necrosis-inducing protein 1 (NIP1) and initiates defence responses in barley plants 

carrying the Rrs1 gene (Hahn et al., 1993; Rohe et al., 1995; Steiner-Lange et al., 

2003).  As R. secalis behaves as a necrotrophic pathogen for at least part of its infection 

cycle, HR may not be the best defence mechanism to defend against it.  However, a 

build-up of reactive oxygen species has been observed in the epidermal layer of both 

resistant and susceptible barley plants after R. secalis infection (Able, 2003). 

 

Increased cuticle thickness, formation of papillae, cell wall appositions and halo 

formation can reduce R. secalis penetration (Carisse et al., 2000; Humphry et al., 2006; 

Lyngs Jørgensen et al., 1993).  

1.5.4. Powdery mildew 

 

Powdery mildews (Ascomycota, Erysiphales) are some of the most common fungal 

pathogens of plants, infecting the leaves, stems, flowers and fruits of almost 10000 

species of angiosperms (Glawe, 2008; Panstruga and Schulze-Lefert, 2002).  In 

moderately temperate humid climates, losses due to powdery mildew can have a big 

impact on the farming of a variety of crops including grapes, fruit trees, small grains 

and hops (Glawe, 2008).  Powdery mildews are easily identifiable due to the distinctive 

colonies of white conidia with a fluffy appearance that form on the surface of the plant 

(Glawe, 2008).  Under favourable conditions the pustules grow and can merge to cover 

a larger area of the leaf, resulting not only in loss of nutrients but also reduction of 

photosynthesis.  Powdery mildews are obligate biotrophs and therefore must acquire all 

their nutrients from intact host cells, using specialised feeding organs called haustoria. 
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High level of host-species specificity means that different formae species of the disease 

infect individual crop species and cross infection does not occur (Johnson et al., 1981; 

Tosa et al., 1989).  Blumeria graminis f. sp. hordei (Bgh) infects barley plants (HGCA, 

2008).  In susceptible barley varieties the reduction of yield caused by Bgh can be up to 

20% during a severe infection (HGCA, 2008).   

1.5.4.1. Life cycle 

 

Infection is initiated when an ascospore or a conidium lands on a susceptible host plant 

(Figure 1-8). These are then able to form germ tubes.  Germination of spores can 

happen as soon as 60 seconds after landing on a host plant (Carver et al., 1999) and 30-

60 minutes later a cuticular peg is formed which appears to have a role in attaching the 

spore to the host (Zhang et al., 2005) and the primary germ tube  penetrates the cuticle 

(Edwards, 2002).  The germ tube then elongates forming appressoria around 10 hours 

after infection which in turn produce penetration pegs to infect the host cells (Zhang et 

al., 2005).  The penetration pegs are able to penetrate the host cell walls using turgor 

pressure and enzyme activity. If penetration is successful, haustoria are then able to 

form within the host cell (Glawe, 2008).  The haustoria allow the uptake of nutrients 

and mediate molecular signalling events between the host and fungus. This structure is 

surrounded by an extrahaustorial matrix that may protect the haustoria from host 

defence mechanisms.  It has also been suggested that the fungus is able to bring about 

changes within the plant cell other than aiding the uptake of resources and preventing 

the senescence of infected tissue (Coghlan and Walters, 1990; Fotopoulos et al., 2003).  

After infection the hyphae expand and branch to form oval colonies.  Finally, the 

hyphae produce the reproductive structures, the conidiophores, several days after 

infection of the host plant.  Bgh is also able to reproduce sexually by producing 

ascospores. 
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Figure 1-8  The asexual life cycle of Bgh (adapted from Zhang et al., 2005) 

Conidia on the leaf surface (i) germinate after one hour and the primary germ tube (PGT) is formed (ii).  

The appressorial germ tube and appressium are formed between 8 and 10 hours after inoculation (iii) 

leading to the formation of the penetration peg and the haustoria 15-18 hours after inoculation  (iv).  

After 24 hours secondary hyphae are formed and further haustoria are produced (v).  Once the colony has 

matured the conidiophores form conidia (vi).  Abbreviations: dpi: days post inoculation, C: conidia, 

PGT: appressorial germ tube, App: appressorium, PP: penetration peg, H: haustoria and SH: secondary 

hyphae. 

 

1.5.4.2. Defence against Powdery mildew 

 

For a successful powdery mildew infection to take place the host plant must have the 

mildew resistance locus (MLO) protein (Büschges et al., 1997; Jørgensen, 1992), and 

this protein is likely to be involved in the regulation of cell wall repair (Mejlhede et al., 

2006).  Plants lacking a functional copy of this gene exhibit excessive papilla growth 

(Mejlhede et al., 2006; Wolter et al., 1993) and are not susceptible to powdery mildew 

as penetration of the host epidermal cells is prevented (Humphry et al., 2006). The Mlo 

resistance is broad-spectrum and prevents infection by all known isolates of Bgh 

(Jørgensen, 1977).  It was believed that Mlo-dependent resistance was unique, however, 

Humphry et al. (2006) suggested that Mlo resistance is a form of non-host resistance 



28 

 

(Humphry et al., 2006).  Thirty-two independent mutant alleles of Mlo have been 

identified in barley and have been assigned resistance gene symbols mlo1 to mlo32 

(Büschges et al., 1997; Molina-Cano et al., 2003; Piffanelli et al., 2002).   

 

R-gene-mediated resistance is seen in barley in response to powdery mildew infection, 

possibly the best studied example of this is the Mla genes (Jørgensen and Wolfe, 1994).  

The Mla loci contain multiple classes of genes involved in resistance.  The resistance 

phenotypes conferred by different Mla specificities are diverse, ranging from almost 

complete immunity to allowing some fungal mycelium development.  The most 

effective resistance alleles are associated with the HR response and early growth arrest. 

 

1.6. Open questions and aims of study 

 

The main aim of this thesis is to investigate the way in which K-deficiency affects 

barley and how this influences the plant‘s susceptibility to pathogens.  Although many 

studies have been carried out looking at the effect of K-deficiency in plants, and there 

is broad knowledge of the ways in which K-starvation affects barley plants, these 

studies were carried out by different groups using different growth conditions and 

varieties of barley.  During this thesis I aim to examine the effect of K-deficiency on 

growth, metabolism, hormone signalling and pathogen susceptibility in the same 

system allowing results to be compared and contrasted in a meaningful way.   

 

It has previously been demonstrated that A. thaliana has increased concentration of JA 

and related compounds during K-starvation (Armengaud et al., 2004; Troufflard et al., 

2010).  In order to make this knowledge applicable to agriculture I have investigated 

whether this increase in oxylipins also occurs in monocot crop plants, such as barley 

(Chapters 4 and 6).  After confirming the increase of JA-related compound in K-starved 

plants I address the hypothesis that the increase in this hormone involved in stress 

signalling will affect susceptibility to pathogen infection in the K-deficient plants 

(Chapters 5).  I investigate this by assessing the effect of K-deficiency and Me-JA 

treatment on the susceptibility of barley to two fungal pathogens; the biotroph Blumeria 

graminis f. sp. hordei and hemi-biotroph Rhynchosporium secalis.  
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Chapter 2:  Materials and Methods 

 

2.1. Plant growth and treatments 

 

Barley (Hordeum vulgare L. cv Optic) seeds were sown on water saturated paper 

towels and germinated in an environment-controlled growth chamber with 9 h light 

(270 µmol m
-2

 sec
-1

 at 22 °C  and 15 h dark at 18 °C and constant 70 % humidity).  

After 4 days, seedlings were transferred to a hydroponics system (10 l containers with 

60 plants each) containing either full nutrient (control) or K-free nutrient solution (see 

Table 2-1 for composition). 

 

Table 2-1 Composition of control and –K nutrient solutions  

Values are final concentrations. Taken from  (Armengaud et al., 2004)  

Stock solution control -K -Ca -N -P -S 

KNO3 1.25 mM  1.25 mM  1.25 mM 1.25 mM 

Ca(NO3)2 . 4H2O 0.5 mM 1 mM 0.1 mM  0.5 mM 0.5 mM 

MgSO4 . 7H2O 0.5 mM 0.5 mM 0.5 mM 0.5 mM 0.5 mM  

FeNa EDTA 42.5 µM 42.5 µM 42.5 µM 42.5 µM 42.5 µM 42.5 µM 

KH2PO4 625 µM  625 µM 625 µM  625 µM 

NaCl 2 mM 1.38 mM 2 mM 2 mM 2 mM 2 mM 

NaH2PO4  625 µM     

NaNO3   0.8 mM    

KCl    1.25 mM 0.63 mM  

MgCl2      0.5 mM 

CaCl2    0.5 mM   

Micronutrients       

CuSO4 • 5H2O 160 nM 160 nM 160 nM 160 nM 160 nM 160 nM 

ZnSO4 • 7H2O 380 nM 380 nM 380 nM 380 nM 380 nM 380 nM 

MnSO4 • H2O 1.8 µM 1.8 µM 1.8 µM 1.8 µM 1.8 µM 1.8 µM 

H3BO3 45 µM 45 µM 45 µM 45 µM 45 µM 45 µM 

(NH4)6Mo7O24• 

4H2O 
15 nM 15 nM 15 nM 15 nM 15 nM 15 nM 

CoCl2 • 6H2O 10 nM 10 nM 10 nM 10 nM 10 nM 10 nM 

 

 

The seedlings were wrapped in 15 mm lengths of 10 mm diameter rubber tubing and 

inserted in to holes in 5 mm thick corrugated plastic sheets, each holding 60 plants. The 
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assembly was floated on top of 10 l of nutrient solution in plastic troughs (Figure 2-1).  

The nutrient solution was replaced every 7 days. 

 

 

 

 

Figure 2-1 Hydroponics system for plant growth. 

The seeds of the barley seedlings were wrapped in rubber tubing and inserted into holes in corrugated 

plastic sheets.  The corrugated plastic sheets were floated on top of 10 l of nutrient solution in plastic 

troughs. 

2.1.1. Plant growth in solution deficient in other nutrients 

 

Barley seeds were germinated on paper towels as described above (Section 2.1).  Four 

days after germination 10 seedlings were transferred to ceramic pots containing 2 l of  

control, -K, low calcium (-Ca), nitrogen free (-N), phosphorus free (-P) or sulfur free (-

S) nutrient solution as described above (see Table 2-1 for composition).  The plants 

were grown for 10 days after which 8 plants were sampled. The shoot tissue and root 

tissue were excised using a scalpel and immediately frozen in liquid nitrogen.  The 

samples were stored at -80 °C. 

 

2.1.2. Time course sampling 

 

Barley seedlings were grown in control or –K hydroponics solution as previously 

described (Section 2.1).  Five plants were taken from each condition at 3 pm (after 6 h 

of light) every 3 days up to 18 days after transfer to hydroponics  The shoot tissue and 

root tissue were excised using a scalpel and immediately frozen in liquid nitrogen.  The 

samples were stored at -80 °C. 
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2.1.3. Preparation of detached leaf segments 

 

Barley seedlings were grown for 14 days in control or –K hydroponics solution as 

previously described (Section 2.1).  25 ml of 0.5 % Agar/120 mg/l benzimidazole was 

dispensed into 45 mm x 80 mm push top boxes and allowed to set (Newton et al., 

1998).  Plants were randomly selected and the 2
nd

 leaf removed. 40 mm long segments 

were cut from the tip, middle and base of the leaf as shown in Figure 2-2 and placed on 

the plates.  The specimens were placed in a lit incubator (LEEC) with continuous light 

(light intensity 200 µmol m
-2

s
-1

 at 17°C) and left for 24 h to recover. 

 

Figure 2-2 Barley leaf segments used in pathogen experiments  

Leaf segments were prepared from the second leaf of 14 day old barley plants,  40 mm sections of leaf 

were cut from the tip, middle and base segments as shown. 

2.1.4. Sampling of first and second leaves  

 

Barley seedlings were grown for 14 days in control or –K hydroponics solution as 

previously described (Section 2.1).  The first and second leaves were excised using a 

scalpel and immediately frozen in liquid nitrogen.  The samples were stored at -80 °C. 

2.1.5. Sampling of leaf regions 

 

Leaf segments were prepared as described in Section 2.1.3. After the 24 hour recovery 

period six leaf segments were sampled from each treatment and leaf region at 24 hour 

intervals (around 3pm) for 5 days and flash frozen in liquid nitrogen, and stored at -80 

°C. 

2.1.6. Determination of plant size and weight 

 

Every two days, five plants were randomly selected from each treatment.  The length of 

each leaf (from base of the plant to tip of leaf), the shoot and longest root was measured 

using a ruler.  The fresh weight was recorded for the whole plant, shoot and root for 

each plant. 
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2.1.7. Wounding of barley leaves 

 

In order to mimic the wounding caused by herbivores feeding on the barley plants, a 

wounding experiment was carried out.  The barley seedlings were grown for 14 days in 

control or K-free nutrient solution (section 2.1).  The second leaf was wounded, 

approximately 1 cm from its tip by squeezing with a pair of fine tipped forceps.  The 

first and second leaves were sampled at 0, 0.5, 1, 2, 3, 4, 6, 8, 10, 12 and 24 h after 

wounding. 

2.1.8. K resupply experiments 

 

After 10 days growth in hydroponics half of the plants grown in K-free solution were 

resupplied with K by replacing the -K nutrient solution with control solution.  All other 

plants were given fresh control or –K solution (same solution as before).  Five plants 

sampled from each treatment 0, 1, 2, 3, 4, 5, 6, and 7 days after solution change.  The 

shoot tissue and root tissue were excised using a scalpel and immediately frozen in 

liquid nitrogen.  The samples were stored at -80 °C. 

2.1.9. Water content determination 

 

Approximately 100 mg of frozen shoot, root, leaf or leaf region tissue was weighted out 

and freeze dried overnight (Prepared in sections 2.1.2, 2.1.4 and 2.1.5), the sample was 

reweighted and the weight of water removed during drying calculated.   The percentage 

of the original tissue weight accounted for by water was calculated. 

2.2. Measurement of tissue ion concentrations 

 

100 µl of 2 M HCl were added to 1 mg of freeze dried tissue and mixed well.  The 

samples were incubated at room temperature for 48 hours.  Following the incubation 

period the samples were diluted 1:500 in water.  Standards were prepared at 250, 125, 

62.5, 31.25 and 15.625 µM KCl and measured using the flame photometer (Sherwood 

flame photometer 410).  A standard curve was produced and used to calculate the 

concentration of K in each sample.  The % K was calculated as follows: 
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         [Equation 2.1] 

    

 

 

Conc.  =  Concentration (µmol/ml) from standard curve 

39  =  Molecular weight of K 

2.3. Determination of metabolite concentrations in barley tissues 

 

2.3.1. Preparation of Ethanolic extract for metabolite analysis 

 

Ethanol extractions were carried out as per Cross et al. (2006), 20 mg of frozen barley 

tissue (shoot, root, first and second leaf and tip, middle and base segments, prepared as 

per 2.1.2, 2.1.4 and 2.1.5) was mixed with 250 µl of 80 % ethanol, incubated for 20 

min at 30 °C and centrifuged at 13,000 rpm for 5 min at 4 °C (in the Eppendorf 

centrifuge 5415R).  The supernatant was transferred into a new tube.  150 μl of 80 % 

ethanol was added to the remaining pellet, mixed, incubated for a further 20 min at 80 

°C, centrifuged at 13,000 rpm for 5 min at 4 °C, the supernatant was added to the 

supernatant obtained in the previous centrifugation.  250 μl of 50 % ethanol was added 

to the remaining pellet, incubated for 20 min at 80 °C, centrifuged at 13,000 rpm for 5 

min at 4 °C, the supernatant was added to the supernatant from the previous steps.  The 

pellet was retained for protein level analysis. All samples were stored at -20 °C. 

 

2.3.2. Analysis of Chlorophyll levels 

 

The chlorophyll A and B levels were measured immediately after extraction.  50 μl of 

the extract was mixed with 120 μl of 98% ethanol.  The absorbance at 645 nm and 665 

nm was measured using the uv/vis spec (Arnon, 1949). 

 

The Chlorophyll levels were calculated as follows (Equation 2.2). 

 

Chlorophyll A (μg/mg) = (5.45 x A665 – 2.16 x A645)   [Equation 2.2] 

                  Sample weight   x 650     

 

Chlorophyll B (μg/mg) = (9.67 x A665 – 3.04x A645)  

           Sample weight   x 650 

 

% DW =  Conc.  x 39 

  200 
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2.3.3. Analysis of hexose sugar concentration 

 

The concentration of the three hexose sugars, glucose, sucrose and fructose was 

measured.  The absorbance at 340 nm was measured to follow the synthesis of NADPH 

in the samples during break-down of phosphorylated glucose by glucose-6-phosphate 

dehydrogenase (G6PDH, See Equations 2.3-2.5). 

 

 

Glucose        [Equation 2.3] 

Fructose       [Equation 2.4] 

 

 
Sucrose                                       [Equation 2.5] 

 
 

A master mix was prepared containing 15.5 ml 0.1 M HEPES/ 3 mM MgCl2 buffer (pH 

7), 480 µl 60 mg/ml ATP, 480 µl 36 mg/ml NADP and 80 µl G6PDH grade II (with 

(NH4)2SO4, removed).  50μl ethanolic extract and 160 µl of the master mix were 

dispensed into each well of a 96-well flat bottomed plate.  The plate was placed in a 

plate reading spectrophotometer (Biotek ELX808), the absorbance at 340 nm was 

measured to establish a base line.   

 

i) 
D- glucose + ATP 

ii) glucose-6-phosphate 

+NADP
+
  

G6PDH 

Hexokinase glucose-6-phosphate + 

ADP 

gluconate-6-phosphate  

+ NADPH + H 

iii) glucose-6-phosphate 

+NADP
+
  

Phosphoglucose 

isomerase 

i) D-fructose + ATP  
Hexokinase 

 

ii) glucose-6-phosphate 
fructose-6-phosphate 

 

ii) 

G6PDH 

 fructose-6-phosphate + 

ADP 

gluconate-6-phosphate + 

NADPH + H 

Sucrose + H2O i) 
Invertase 

Glucose + fructose 

  glucose + ATP 
glucose-6-phosphate + ADP Hexokinase 

iii) glucose-6-phosphate 

+NADP
+
  

G6PDH gluconate-6-phosphate + NADPH 

+ H 

ii) 

http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Sulfur
http://en.wikipedia.org/wiki/Sulfur
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The following enzyme solutions were added in succession, interrupted by periods of 

absorbance reading: 1) 1µl Hexokinase (120 µl of suspension, centrifuged for 2 min 

and supernatant removed, pellet resuspended in 200 µl 0.1M HEPES/3mM MgCl2 

buffer).  This enzyme transforms glucose into glucose-6-phopshate which is broken 

down by G6PDH to give Gluconate-6-phosphate + NADPH + H. The subsequent 

change in NADPH is a measure of the amount of glucose. 2) 1 µl of phosphoglucose 

isomerase (60 µL suspension centrifuged for 2 min and supernatant removed, pellet 

resuspended in 200 µL 0.1M HEPES/3mM MgCl2 buffer). This enzyme transforms 

fructose into glucose, which is phosphorylated and broken down as before. The 

subsequent change in NADPH is a measure of the amount of fructose.  3) 1 µl Invertase 

(saturated solution). This enzyme transforms sucrose into fructose and glucose, which 

are isomerised, phosphorylated and broken down as before. The subsequent change in 

NADPH is a measure of the amount of sucrose. All enzymes were purchased from 

Roche.   

 

A summary of the experiment is given below: 

 

Insert plate with master mix into spectrophotometer. 

- read every minute for 15 min 

 Add 1 µl Hexokinase to each well when prompted 

- read every min for 25 min 

 Add 1 µl Phosphoglucose isomerase to each well when prompted 

- read every minute for 30 min 

 Add 1 µL Invertase to each well  

- read every minute for 35 min. 

 

The concentration of each sugar was calculated using the following equation (Equation 

2.6).  

 µmol NADPH/mg FW = ΔOD/(2.85*6.22)  x V  [Equation 2.6] 

                  W 

When: 

ΔOD = A end point – A start point 

W = sample weight 

V  = total volume of ethanol extract prepared 

 

µmol NADPH/mg FW is equivalent to µmol sugar/mg FW. 
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2.3.4. Analysis of malate and fumarate concentration 

 

Malate and fumarate levels in barley tissue was measured as described by Nunes et al. 

(2007) based on absorbance of NADH produced in the following reactions (Equation 

2.7). 

Malate        [Equation 2.7] 

 
Fumarate 

 
Standards were prepared 0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 µg/mL malic acid and 

fumaric acid.  A master mix was prepared containing 50 µl 0.2M Tricine (pH 9.0), 10 

µl 10 mM MTT, 2 µl 20 mM Phenazine ethosulphate, 10 µl 30 mM NAD
+
, 5 µl 10% 

Triton X100, 3 µl water.  80 µl of the master mix was dispensed into each of the wells 

in a flat bottomed 96-well plate.  10 µl of the either ethanolic extract or standard was 

dispensed in to each well.  The plate was placed in the plate reading spectrophotometer 

and the absorbance read at 570 nm as described below 

- read every minute for 5 min 

 1 µL 1000 U/mL Malate dehydrogenase added to each well 

- read every min for 40 min 

 1 µL 100 U/mL Fumarase added to each well  

- read every minute for 50 min 

 

Standard curves were produced for malate and fumarate using the change in the 

absorbance at 570 between the start point and end point of the reaction (ΔOD). Malate 

and fumarate concentrations in the tissue samples were determined by comparison with 

the standard curve and transformed into µg/mg FW using the following equation 

(Equation 2.8). 

 

Conc. µg/mg FW =   C x V                                                    [Equation 2.8] 

            W 

With: 

C  = Concentration µg/well from standard curves 

W = sample weight 

V  = total volume of ethanol extract prepared 

Malate + NAD
+
 

Malate 

dehydrogenase 
Oxaloacetate + NADH + H

+ 

Fumarate + H2O 
  Fumarase 

Malate 
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2.3.5. Analysis of glutamate concentration  

 

Glutamate standard sets were prepared containing 0, 0.1, 0.25, 0.5 mM glutamate in 

70% ethanol.  A master mix was prepared containing 10 µl 2M Tricine buffer (pH 8.5), 

10 µl 10 mM MTT, 10 µl 30mM NAD, 5 µl 10% Triton X100, 2 µl 50mM ADP, 1 µl 

20U/ml Diaphorase and 147 µl water.  185 µl of the master mix was dispensed into 

each well of a 96 well flat bottomed plate.  15 µl of either the ethanolic extract or 

standard was dispensed into each well. 

[Equation 2.9] 

 

 

 

 

The plate was placed in the plate reading spectrophotometer and the absorbance at 570 

nm was measured every minute for 10 min, 1 µl of 500 U/ml Glutamate dehydrogenase 

was added to each well and reading continued every 1 min for a further 30 min.  

 

Standard curve was produced using the ΔOD of the standards. This was used to 

determine the concentration in each of the experimental samples, which was 

subsequently transformed to µmol/mg FW using Equation 2.8. 

 

2.3.6. Analysis of nitrate concentration 

 

The level of nitrate in the samples was determined according to Mori (2000). The 

ethanolic extracts described above (Section 2.3.1) were diluted 1:2.  Nitrate standards 

of 0, 0.2, 0.4, 0.6, 0.8 and 1.0 mM were prepared.  5 µl 1:2 ethanolic extract or 

standard, 10 µl 1 M potassium phosphate buffer (pH 7.5), 0.5 µl 50 mM NADPH in 5 

mM NaOH, 1 µl 5 U/ml Nitrate reductase in potassium phosphate buffer and 83.5 µl 

water was added to each well of a 96 well flat bottomed plate and mixed.  Plates were 

incubated in the dark at 25 °C for 30 min, 15 µl 0.25 mM PMS was added to each well 

and mixed. Plates were then incubated in the dark for a further 20 min.  60 µl of 1 % 

w/v sulphanilamide in 3 M phosphoric acid and 60 µl 0.02 % w/v NNEDA were added 

to each well, mixed and incubated in the dark, at 25 °C for 10 min.  The plate was then 

placed in the spectrophotometer and the absorbance measured at 540 nm. 

 

2-Oxoglutarate 

+ NADH  

Glutamate + 

NAD 

Glutamate 

dehydrogenase 
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A standard curve was used to determine the concentration in each well, which was 

subsequently transformed into µmol/mg FW using Equation 2.8. 

 

2.3.7. Analysis of protein concentration 

 

The pellet produced from 20 mg of frozen barley tissue during the extraction process 

described above (Section 2.3.1) was re-suspended in 400 µl of 0.1 M NaOH, and 

incubated for 30 min at 95 °C.  The samples were allowed to equilibrate to room 

temperature before mixing and centrifuging at 13,200 rpm for 5 min.  0, 80, 160, 240, 

320 and 400 µg/ml BSA standards were prepared in 0.1M NaOH.  3 µl of sample or 

standard and 180 µl of 1:5 Bio-Rad protein assay dye reagent were added to each well 

in a 96 well flat bottomed plate, mixed, and incubated at room temperature for 5 min.  

The plate was placed in the spectrophotometer and the absorbance measured at 595 nm. 

 

A standard curve was used to determine the concentration (in mM) in each well and 

Equation 2.8 was used to transform the concentration into µmol/mg FW. 

 

2.4. Measurement of transcript levels using quantitative PCRs 

 

2.4.1. RNA extraction 

 

RNA extraction from plant tissue was carried out using Trizol® Reagent (Invitrogen, 

Cat. 15596-026).  Tissue samples were ground in liquid nitrogen, using a pestle and 

mortar.  500 µl of Trizol was added to 50 mg of tissue, mixed well and incubated at 

room temperature for 5 min. The samples were centrifuged for 10 min at 10,000 rpm 

(12,000 x g) at 4 °C before the supernatant was transferred to a fresh tube and 100 µl 

chloroform (BDH, No 100776B) added and mixed.   The samples were incubated at 

room temperature for 10 min before further centrifugation for 10 min at 10,000 rpm 

(12,000 x g) at 4 °C.  The aqueous layer was transferred to a fresh tube and the 

chloroform extraction repeated.  The aqueous layer was transferred to a fresh tube and 

equal volume of isopropanol was added, mixed well, incubated at room temperature for 

10 min.   The samples were centrifuged for 10 min at full speed at 4 °C, the supernatant 

was removed and two 500 µl washes with 70 % ethanol were carried out.  The final 

pellet was resuspended in RNase free water. 
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2.4.2. RNA quantification 

 

The RNA was quantified using a NanoDrop ND-1000 UV-VIS spectrophotometer.  

The RNA was calculated based on the absorbance at 260 nm (A260).  Absorbance at 230 

nm (A230) and 280 nm (A280) was also measured and the A260/A230 and the A260/A280 

ratios used to assess the purity of the RNA.  If either of the ratios was less than 1.8, the 

RNA was subjected to further clean-up (see below Section 2.4.3). 

2.4.3. RNA clean up 

 

The RNA was made up to 100 µl with RNAse-free water and heated for 10 min at 55 

°C.  100 µl of phenol:chloroform (1:1 at pH 4.3) was added to each sample, mixed 

well, and incubated on ice before centrifuging for 5 min at 10,000 rpm (12,000 x g) at 4 

°C.  The aqueous phase was transferred to a fresh tube, 250 µl 100 % ethanol and 10 µl 

3 M Sodium Acetate (pH 5.5) added and mixed.  The samples were incubated at -20 °C 

for 1 h before being centrifuged at full speed (13,000 rpm) at 4° C for 30 min.  The 

pellets were washed twice with 500 µl of 70 % ethanol.  The final pellet was dried and 

resuspended in 30 µl RNAse free water. 

 

The samples were quantified with the spectrophotometer, and 1 ng RNA was run on a 1 

% agrose/TAE gel to check the integrity of the RNA. 

2.4.4. cDNA preparation 

 

Superscript III™ Reverse Transcriptase kit (Invitrogen, Cat. 18080-044) was used to 

prepare cDNA.  A reaction mix containing 1 µg template RNA, 1 µl 10 mM dNTPs, 

0.5 µl Oligo dT 20 primer (Invitrogen, Cat. 18418020) and made up to 13 µl with 

RNAse free water was prepared and incubated for 5 min at 65°C.   

 

The reaction was chilled on ice for 1 min before adding 4 µl 5 x First strand buffer, 1 µl 

0.1 M DTT, 1 µl RNaseOUT RNAse inhibitor (Invitrogen Cat. 100000840) and 1 µl 

Superscript III RT and mixed by pipetting. 

  

The samples were then incubated at 25° C for 5 min, 50 °C for 60 min and, 70 °C for 

15 min to stop the reaction. 
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2.4.5. Primers 

 

Genes encoding enzymes for JA biosynthesis were selected for gene expression 

analysis using quantitative PCR (qPCR).  Lipoxygenase 2 (LOX2) catalyses the first 

committed step in JA biosynthesis (Bachmann et al., 2002) and expression of the LOX2 

gene in Arabidopsis thaliana is further induced by JA in a positive feedback loop.  

Three possible LOX2 genes were selected for qPCRs LOX2Hv2 (LOX2.2), and 

LOX2Hv3 (LOX2.3) were identified as LOX2 genes by Bachmann et al. (2002), while 

LOX2.A was selected from the microarray results as having the largest increase in 

expression after K-deficiency of the LOX genes.  A Blast search showed its closest 

homolog to be a rice LOX2 gene and its closest homolog in Arabidopsis was also 

LOX2.  Allene oxide synthase (AOS) (Maucher et al., 2000) catalyses the 

transformation of 13-hydroperoxy linolenic acid (13-HOT) into 12,13 epoxy-

octadecatrienonic acid (12,13-EOT) and Allene oxide cyclase (AOC) (Maucher et al., 

2004) which catalyses the transformation of 12,13-EOT into (9S, 13S)-12-oxo-

phytodienoic acid (OPDA) expression in Arabidopsis thaliana is induced after stimuli 

triggering the JA pathway for both enzymes. 

 

Three genes reported to be induced by JA in barley (Jasmonate induced proteins, JIPs, 

(Leopold et al., 1996; Ozturk et al., 2002), were also selected for expression analysis.  

JIP23, JIP37 and JIP60 were chosen for initial experiments, however for later 

experiments only JIP60 was used.  

 

Based on experimental evidence from barley phenylalanine ammonia-lyase (Kervinen 

et al., 1997) expression was chosen as a pathogen-induced gene.  PAL is an enzyme 

that catalyses the first reaction in the general phenylpropanoid synthesis pathway, 

which provides the precursors for a variety of secondary metabolites including SA.  

Tobacco plants with PAL suppressed are unable to establish SAR, and increase 

susceptibility to fungal pathogens (Bate et al., 1994; Dixon and Paiva, 1995).  

Glyceraldehyde 3-phosphate dehydrogenase (Chojecki, 1986) and alpha tubulin 

(TUBA) were selected as reference genes based on analysis of raw data from qPCR 

experiments confirming constitutive expression in all samples (See Chapter 4, Section 

4.2 and Figure 4-1 for more detail). They were used to normalise the transcript levels of 

the other genes.  Primers for qPCR were designed using Primer 3 software (Rozen and 

Skaletsky, 2000).  Primer sequences are given in Table 2-2, See Appendix 1 for full 

gene sequences. 



41 

 

 

Table 2-2 Genes and primers used in qPCR  

Gene Accession Category Forward primer Reverse primer 
Frag. 

length 

α-TUB U40042 Constitutive AGTGTCCTGT

CCACCCACTC 

AGCATGAAGT

GGATCCTTGG 

248 bp 

GAPDH M36650 Constitutive GGAGGAGTCT

GAGGGAAACC 

GCTGTATCCCC

ACTCGTTGT 

175 bp 

LOX2.2 AJ507212  

 

JA 

biosynthesis 

CGACAAGCGT

ACCTTCTTCC 

GTTTGCCGAG

GTCGTTGTAT 

173 bp 

LOX2.3 AJ507213 JA 

biosynthesis 

GAAGGGAGAG

GGAGAGAGT 

GTGATGAGCT

TGATGTCCTT 

163 bp 

LOX2.A AK362687 JA 

biosynthesis 

AGTACCTGGG

AGGGATGGAG 

TGGTTTCATGA

GCTGGTACG 

179 bp 

AOS AJ250864 JA 

biosynthesis 

ACCGTCTTCA

ACAGCTACGG 

TCTTCTCCAGC

GCCTCTATC 

160 bp 

AOC AJ308488 

 

JA 

biosynthesis 

GCTACGAGGC

CATCTACAGC 

AAGGGGAAGA

CGATCTGGTT 

163 bp 

JIP23 BM816519 JA induced ATCACAGTGT

GTGTGCAAAG 

ACTTTTGCGCG

TTAACATCC 

151 bp 

JIP37 X82937 JA induced GATCCATCGA

CAAGAAGTCC 

ACTGTGGGTCT

TGAGCTTGT 

286 bp 

JIP60 BM815987 JA induced CAGCAGCGAC

TTCATTTACA 

ATGGTGTCGC

AGACTATCCT 

201 bp 

PAL Z49147 Pathogen 

induced 

CTGTTCCGAG

CTTCAGTTCC 

CGACCAAAAA

TGTCGAGGAC 

237 bp 

 

2.4.6. Standard preparation 

 

DNA of all genes listed in Table 2-2 was amplified from barley cDNA by PCR for use 

as template for standard curves during qPCR experiments.  A 25 µl  reaction was 

prepared for each primer set shown in Table 2-2 containing 1 µl barley cDNA template, 

1 µl 20 µM forward primer, 1 µl 20 µM reverse primer, 2.5 µl 10 x PCR reaction 

buffer, 0.5 µl 10 mM dNTPs, 0.1 µl Taq DNA polymerase (Roche cat. 11146165001) 

and 19.9 µl RNAse free water.  After a 5 minute activation step at 95 °C the DNA was 

amplified with 35 cycles of 95 °C for 30 sec, 52 °C for 30 sec and 72 °C for 30 sec, 

followed by a 5 minute elongation step. 

 

The obtained DNA samples were run on a 1 % agrose/TAE gel and the resulting band 

excised.  The DNA was extracted from the gel using the Qiagen Qiaquick gel 

extraction kit (Qiagen, cat. 28704). 

 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&val=167043
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The samples were sequenced by the Dundee University sequencing service to check the 

correct target had been amplified. 

2.4.7. qPCR 

 

A light cycler (Bio-Rad Chromo 4 with Opticon Monitor 3 software) was used to carry 

out qPCR.  10 pg/µl of 1:10 serial dilutions of standards were prepared for each of the 

genes.   

 

A reaction was prepared per sample using the QuantiTech
®
SYBR

®
 Green PCR Kit 

(Qiagen, cat 2041453) containing 5 µl cDNA template/standard, 0.25 µl 20 µM 

forward primer, 0.25 µl reverse primer, 6.25 µl 2 x Sybr Green, 0.75 µl RNAse free 

water.  After a 15 minute activation step at 95 ˚C the DNA was amplified with 40 

cycles of 95 °C for 15 sec, 58 °C for 30 sec and 72 °C for 30 sec.  The reaction was 

followed by a melting curve between 60 °C and 95 °C, fluorescence intensity was 

measured every 1 °C.   

 

The Ct values were determined from two technical replicates of the gene of interest and 

reference gene.  The Ct was transformed by comparison with the standard curve to give 

concentration (pg) of transcript for each gene in each technical replicate.  A cross wise 

comparison was carried out between the gene of interest and reference gene, resulting 

in four values per sample.  The mean of these values were used to calculate the 

standard error for replicate experiments and analyzed using an ANOVA (For ANOVA 

results see Appendix 2). 

 

2.5. Hormone quantification 

Tissue collected as per Section 2.1.2 was freeze dried overnight, and 10 mg samples 

were analyzed by LC-MS by the Metabolomics and Proteomics Mass Spectrometry 

Facility at Exeter University.   Samples were extracted using 400 µl of 10 % ethanol/1 

% acetic acid. 20 µl of sample was analyzed on 1200 series HPLC from Agilent 

technologies, using a 3.5 2.1 x 150 mm Elipse Plus C18 column from Agilent. 
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2.6. Pathogen infection 

2.6.1. Inoculation of detached leaves with Rhynchosporium secalis 

 

2.6.1.1. Preparation of Rhynchosporium spore solution 

 

Rhynchosporium secalis (13-13) was isolated from infected leaves.  Infected tissue was 

selected and excess tissue removed.   The tissue was washed with a bleach/tween 80 

solution for 10 min, dried on tissue and placed on CZV8CM plates (see Table 2-3 for 

ingredients).  The plates were incubated at 17 °C for 7 days or until colonies formed 

around the lesion margins. Colonies were then transferred to fresh CZV8CM plates 

using a sterile scalpel.  The plates were incubated at 17 °C for 2 weeks until a large 

colony had established.  Colonies were maintained by cutting areas of the colony from 

the plate and transferring to a fresh CZV8CM plate.  

 

Table 2-3 CZV8CM medium 

CZV8CM ingredients Quantity per liter 

Oxoid Czapek Dox 56.0 g 

Agar 10 g 

V8 juice 200 ml 

Calcium carbonate 4.0 g 

Complete supplement 50 ml 

 

Complete supplement Quantity per liter 

Casein Hydrolysate 20 g 

Myc peptone 20 g 

Yeast extract 20 g 

Adenine (in 1 M HCl) 3 g 

Biotin 0.02 g 

Pyridoxine 0.02 g 

Thiamine HCl 0.02 g 

Para amino benzoic  acid (PABA) 0.02 g 

Nicotinic acid 0.02 g 

 

So-called spread plates were prepared to produce spores for a spore solution.  

CZV8CM plates were prepared and 400 µl sterile water was dispensed on to each plate. 

A 1 cm
2
 piece of Rhynchosporium culture prepared as above was cut and placed upside 

down on the new plate, then moved around the plate to spread the spores.  The plates 

were placed in the 17 °C incubator for 2 weeks. 
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Once the spores had formed on the spread plates, the mycelia were scraped from the 

plate surface using a sterile spatula and transferred to a homogenizer containing sterile 

water and homogenized for approximately 30 sec.  The spore solution was centrifuged 

at 4000 rpm at 10 °C for 4 min, the pellet was washed in 1 ml sterile water and spun 

down at 4000 rpm at 10 °C for 4 min, and resuspended in 500 µl sterile water.  The 

concentration of the spore solution was determined using a haemocytometer and 

calculated using the following equation (Newton et al., 2001). 

 

Conc.(spores/ml) = (n/0.02) x 1000              [Equation 2.10] 

With  

n = mean number of spores per 200 µm x 200 µm haemocytometer square  

 

The spore solution was diluted with sterile water to give a 10
6 

spore/ml solution. 

2.6.1.2. Inoculation with R. secalis 

 

Leaf segments were prepared as described previously (Section 2.1.3).  The area to be 

inoculated was brushed gently with a trimmed-down paint brush to disrupt the cuticle 

allowing more efficient infection and preventing the spore solution from rolling off the 

leaf segment (Newton et al., 2001).  10 µl of 10
6 

spores/ml solution was dispensed on 

to each leaf segment.  The plates were returned to the 17°C lit incubator.  The severity 

of infection was assessed by measuring the length of the lesions from top to bottom. 

 

For qPCR and Microarray analysis samples were inoculated with three 10 µl drops of 

10
6 

spores/ml. After inoculation five leaf segments were sampled from each treatment 

and leaf region at 24 hour intervals (around 3pm) for 5 days and flash frozen in liquid 

nitrogen, and stored at -20 °C (for a more detailed description of samples preparation 

see Section 2.7.1). 

2.6.2. Inoculation of detached leaves with B. graminis 

 

B. graminis was isolated from infected barley leaves. The spores from individual 

colonies were used to inoculate detached leaf segments (prepared as per Section 2.1.3) 

with a paint brush and the fungus was allowed to grow for approximately 2 weeks.  To 

ensure a pure culture individual colonies where selected twice more.  The spores from a 

single colony were used to inoculate multiple segments to bulk up the powdery mildew 

spores.  
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Figure 2-3 Inoculation of detached leaf segments with Powdery mildew. 

To ensure even spore distribution across the leaf segments an inoculation column was used to disperse 

Bgh spores.  Plates containing the detached leaf segments were placed in the bottom of the inoculation 

column.  Spores were transferred to a paper cone, blown into the inoculation column and allowed to 

settle on the leaf segments. 

 

In order to allow qPCR analysis to be carried out after inoculation six leaf segments 

were sampled from each treatment and leaf region at 24 hour intervals (around 3pm) 

for 5 days and flash frozen in liquid nitrogen, and stored at -20 °C. 

To inoculate the leaf segments (prepared as per Section 2.1.3) in a plate uniformly 

plates were placed inside an inoculation column (Figure 2-3).  The plate containing the 

spores was inverted over a sheet of paper and tapped to dislodge the spores.  A cone 

was formed from the paper and was used to blow the spores into the inoculation 

column.  The spores were allowed to settle on the leaf segments for 5 min, before the 

lids were replaced on the boxes, and plates were returned to the lit incubator at 17 °C. 

 

The level of infection was assessed by counting the number of visible powdery mildew 

colonies on each leaf segment.  In order to allow for differences in leaf size between 

plants grown in control and K-free media the number of colonies were divided by the 

leaf area (measured using image J from photographs) to give colonies/cm
2
.  
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2.6.3. Treatment of detached leaves with Methyl Jasmonate 

 

Barley seedlings as were grown for 14 days in full nutrient control hydroponics.  The 

middle segments from the second leaf of each seedling were floated on 50 ml, 45 µM 

Methyl Jasmonate (Me-JA) (0.1 M solution prepared in ethanol) in water or 225 µl 

ethanol in 500 µl water, for 24 h in lit incubator (LEEC) at 17 °C. 

 

The detached leaf segments were dried on paper towel and transferred to 0.5% 

Agar/120mg/l benzimidazole 45 mm x 80 mm push top boxes.  The segments were 

inoculated with Rhynchosporium secalis or Blumeria graminis f. Sp. hordei.  Infection 

severity for each pathogen was determined as described in Sections 2.6.1.2 and 2.6.2.  

 

2.7. Microarray Analysis 

 

2.7.1. Sampling for Microarray analysis 

 

Leaf segments were prepared as previously described (Section 2.1.3).  10 boxes of 8 

leaf middle segments were prepared from detached leaves grown in Control and K-free 

nutrient solution.  Five boxes of each control and –K segments were inoculated with 

three 10 µl 10
6
 spores/ml Rhynchosporium and the remaining five were inoculated with 

water.  1 segment was sampled from each box at 0, 1, 2, 3, 4, 5 and 10 days after 

inoculation, segments from each treatment were pooled.  Four replicate experiments 

were carried out. Two time points (2 & 4 days after infection) were subjected to 

microarray analysis. 

 

 

Table 2-4 Design of sample hybridization to microarrays. 

Sample Treatment Infection Time Rep Slide Array Dye 

1 control mock 2 1 1 1 cy3 

2 -K mock 2 1 1 1 cy5 

3 control mock 4 1 1 2 cy3 

4 -K mock 4 1 1 2 cy5 

5 control Rhyncho 2 1 1 3 cy3 

6 -K Rhyncho 2 1 1 3 cy5 

7 control Rhyncho 4 1 1 4 cy3 

8 -K Rhyncho 4 1 1 4 cy5 

9 -K Rhyncho 4 2 2 1 cy3 

10 control Rhyncho 4 2 2 1 cy5 
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11 -K mock 2 2 2 2 cy3 

12 control mock 2 2 2 2 cy5 

13 -K mock 4 2 2 3 cy3 

14 control mock 4 2 2 3 cy5 

15 -K Rhyncho 2 2 2 4 cy3 

16 control Rhyncho 2 2 2 4 cy5 

17 control Rhyncho 2 3 3 1 cy3 

18 -K Rhyncho 2 3 3 1 cy5 

19 control Rhyncho 4 3 3 2 cy3 

20 -K Rhyncho 4 3 3 2 cy5 

21 control mock 2 3 3 3 cy3 

22 -K mock 2 3 3 3 cy5 

23 control mock 4 3 3 4 cy3 

24 -K mock 4 3 3 4 cy5 

25 -K mock 2 4 4 1 cy3 

26 control mock 2 4 4 1 cy5 

27 -K Rhyncho 4 4 4 2 cy3 

28 control Rhyncho 4 4 4 2 cy5 

29 -K Rhyncho 2 4 4 3 cy3 

30 control Rhyncho 2 4 4 3 cy5 

31 -K mock 4 4 4 4 cy3 

32 control mock 4 4 4 4 cy5 

 

RNA was extracted as described previously and its quality checked using the 

Bioanalyzer (Agilent, Model 2100).  The samples were labelled with Cy3 or Cy5 dye 

(2 replicates each) as described below and hybridized to Agilent barley microarrays 

(For further information on microarray design see Section 276) according to the design 

shown in Table 2-4. 

2.7.2. Preparation of labeling reaction 

 

The samples were labeled using the Agilent Quick AMP labeling kit (Agilent, p/n 

5190.0424) and RNA Spike-In Kit, Two-Color (Agilent p/n 5188-5279).   4.15 µl of 

250 ng/µl RNA was used per samples, 0.6 µl T7 promoter primer and 1 µl cyanine 3 

CTP or cyanine 5 CTP (as per Table 2-4) was mixed with each sample in an amber 

micro centrifuge tube to protect the samples from the light, incubated at 65 °C for 10 

min and chilled on ice for 5 min.  2 µl 5 x first strand buffer, 1 µl 0.1 M DTT, 0.5 µl 10 

mM dNTP mix, 0.5 µl MMLV-RT and 0.25 µl RNaseOUT were  added to each tube 

and mixed by pipetting.  The samples were inoculated at 40 °C for 2 h, 65 °C for 15 

min and chilled on ice for 5 min.  7.65 µl nuclease free water, 10 µl 4 x transcription 

buffer, 4 µl 0.1 M DTT, 4 µl NTP mix, 3.2 µl PEG, 0.25 µl RNaseOUT, 0.3 µl 

inorganic pyrophosphatase, 0.4 µl RNA polymerase and 1.2 µl of Cy-day 3 or Cy-dye 
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5T7 were added to each sample and mixed by pipetting.  The samples were incubated 

at 40 °C for 2h. 

2.7.3. Purification of labelled/amplified RNA 

 

The labelled and amplified RNA was purified using the RNeasy Plant mini kit (Qiagen, 

Cat no. 74904) as per protocol.  All the samples were made up to 100 µl by adding 40 

µl of water, 350 µl Buffer RLT and 250 µl 100% Ethanol were added and mixed by 

pipetting.  The samples was transferred to a RNeasy mini column and centrifuged for 

30 sec at 13, 000 rpm (in the Eppendorf centrifuge 5415R), then washed twice with 500 

µl RPE buffer.  The cRNA was eluted in 30 µl of RNAse free water.  

2.7.4. cRNA quantification  

 

The cDNA was quantified using a NanoDrop ND-1000 UV-VIS spectrophotometer.  

The yield and specific activity where calculated using the following equation (Equation 

2.10). 

 

 Yield  (µg cDNA) =  Conc. cRNA x elution volume  [Equation 2.11] 

              1000   

 

 Specific activity (pmol =       Conc. Cy 3/5    x 1000  

       cy3/5 per µg cRNA)                 Conc. cRNA (ng/ µl) 

 

All the samples had a yield less than 825 ng and specific activity < 8.0 pmol cy3/5 per 

µg cRNA. 

2.7.5. Hybridization of probes 

 

Hybridisation was carried out using Gene Expression Hybridization Kit (Agilent p/n 

5188-5242).  The samples labelled with the different dyes were combined as per table 

2-4.  A mix was prepared containing 900 ng Cyanine 3 – labelled cRNA, 900 ng 

Cyanine 5 – labelled cRNA, 11 µl 10 blocking agent, 2.2 µl fragmentation buffer and 

made up to 55 µl with nuclease free water for each array.  The samples were incubated 

in the dark at 60 °C for 30 min.  55 µl 2x GEx Hybridization Buffer HI-RPM was 

added to each tube and mixed by pipetting to stop the reaction.  100 µl of each sample 
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was loaded on the arrays. Arrays were inserted into hybridization chambers and placed 

in the hybridization oven at 65 °C rotating at 10 rpm for 17 h. 

2.7.6. The SCRI_Hv35_44K_v1 microarray chip 

 

The SCRI_Hv35_44K_v1 (Agilent design 020599) microarray was used for the 

microarray experiments.  The chip represents 42,302 barley sequences and was 

designed based on a total of 50,938 unigenes from the HarvEST assembly 35 

(http://www.harvest-web.org/) representing around 450,000 Expressed Sequence Tags 

(ESTs).  Selection criteria were based upon the ability to define orientation derived 

from:  

 

(i)  homology to members of the non-redundant protein database (NCBI nr); 

(ii)  homology to ESTs known to originate from directional cDNA libraries;  

(iii)  presence of a significant polyA tract. 

The microarray was designed with one 60mer probe per selected unigene (42,302 in 

total) in 4x 44k format using default parameters in the web-based Agilent Array 

software. 

2.7.7. Microarray wash 

 

The slides were removed from the chambers under Gene Expression Wash Buffer 1 

(Agilent p/n 5188-5325), washed for 1 min in Gene Expression Wash Buffer 1 and 1 

min in Gene Expression Wash Buffer 2 (Agilent p/n 5188-5326) at 37 °C.  The slides 

were then spun dry.  

2.7.8. Quantification of hybridization signal 

 

 

Quantification of the Hybridisation signal was carried out as per Stushnoff et al. 

(2010).  After hybridisation the slides were scanned with an Agilent G2505B scanner at 

resolution of 5 lm at 532 nm (Cy3) and 633 nm (Cy5) wavelengths with extended 

dynamic range (laser settings at 100% and 10%). The Microarray images were 

imported into Agilent Feature Extraction (v. 10.7.3.1) software and aligned with the 

array grid template file (020599_D_F_20080612). Intensity data and QC metrics were 

extracted using the FE protocol. The FE datasets the arrays were loaded into 

GeneSpring (v.7.3) software for further analysis. 

 

https://a90.scri.sari.ac.uk/exchweb/bin/,DanaInfo=exchange3+redir.asp?URL=http://www.harvest-web.org/
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The data was normalized using default settings for two-channel arrays, data was 

transformed to account for dye-swaps and normalized using the Lowess algorithm to 

minimize differences in dye incorporation efficiency. 

 

2.8. Experimental design and statistical analysis 

 

2.8.1. Growth experiment 

 

Time course experiments were carried out in order to establish how long after 

germination physiological changes occurred when K was withheld (Section 2.1.6).  The 

length of shoots, roots and individual leaves and weight of shoots, roots and whole 

plants were measured 2, 4, 6, 10, 12, 14, 16, 18 and 20 days after seedlings were 

transferred to nutrient solutions.  Samples were measured for three replicates, Table 2-6 

gives a summary of the experimental design for growth over time experiments, data 

obtained during this analysis is shown in Chapter 3, Figures 3-2, 3-3 and 3-4. 

Table 2-6  Summary of experimental design for growth over time 

Factor  Level 

Treatment Control and -K  2 

Time point 0, 2, 4, 6, 10, 12, 14, 16, 18 and 20 days after transfer 

to nutrient solution 

 10 

 

Replicate 1, 2 and 3   3 

                                                                                             n=60 

Parameters  Length: total, shoot, root, 1
st
, 2

nd
 and 3

rd
 leaf 

Weight: total, shoot, root 

9 

 

The data was analysed using ANOVA to compare the effect of K availability in 

nutrient solution and time on length and weight of the whole plant, shoots and roots, 

and the length of the individual leaves (from the intercalary meristem to the tip).  The 

effect of K was then compared at each time point using a T-test in order to determine at 

which time point any effects were seen (Appendix 2, Table S2-1).  The statistical 

package Genstat was used to carry out the analysis, a block structure was used to 

account for differences between replicate tub samples were taken. 
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2.8.2. Time course experiments 

 

Time course experiments were carried out in order to establish how long after 

germination biochemical and transcriptional changes occurred when K was withheld.  

The shoot and root tissue from five plants were pooled 3, 6, 9, 12, and 15 days after 

transfer to control and –K nutrient solution.  Samples were analysed from three or four 

replicates of this experiment depending on parameters being measured, Table 2-7 gives 

a summary of the experimental design for time course experiments.  The changes in 

metabolite levels in the root and shoot samples and JA related gene expression in the 

shoots only was measured (Data shown in Chapters 3 and 4). 

Table 2-7  Summary of experimental design for time course experiments 

Factor  Level 

Treatment Control and -K  2 

Time point 3, 6, 9, 12, and 15 days after transfer to nutrient solution  5 

Replicate 1, 2 and 3 (4)  3 

                                                                                             n=30 

Parameters K concentration, water content, chlorophyll A, chlorophyll B, 

sucrose, glucose, fructose, malate, glutamate, nitrate and 

protein content and LOX2.2, LOX2.3, LOX2.A, AOS, AOC, 

JIP23, JIP37 and JIP60 transcript levels 

19 

Tissue Shoots and roots (5 plants per treatment per time point) 2 

 

The data was analysed using ANOVA to compare the effect of K availability in 

nutrient solution and time on K concentration, water content and metabolites 

concentrations, in the shoot and root and JA related gene expression in the shoot tissue.  

The effect of K was then compared at each time point using a T-test in order to 

determine at which time point any effects were seen (Appendix 2, Tables S2-2, 2-3 and 

2-5).  The statistical package Genstat was used to carry out the analysis, a block 

structure was used to account for differences between replicate tub samples were taken 

from. 

A Pearson product-moment correlation coefficient was also used to investigate the 

relationship between the various parameters measured (Appendix 3, Table 3-1).  The 

analysis was carried out using Sigma Plot statistical package. 
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2.8.3. Leaf regions 

 

Experiments were carried out to establish how changes in metabolism and transcript 

levels in response to K deficiency differed across the second leaf of 14 day old plants.  

Six segments from each leaf region were sampled from plants grown in control and K 

free nutrient solution.  Samples were analysed from three or four replicates of this 

experiment depending on parameters being measured, Table 2-8 gives a summary of 

the experimental design this experiment.  The changes in metabolite levels and JA 

related gene expression were measured (Data shown in Chapters 3 and 4). 

Table 2-8  Summary of experimental design for leaf region experiments 

Factor  Level 

Treatment Control and -K  2 

Leaf region Tip, middle and base  3 

Replicate 1, 2 and 3 (4)  3 

                                                                                             n=18 

Parameters K concentration, water content, chlorophyll A, chlorophyll B, 

sucrose, glucose, fructose, malate and glutamate content and 

LOX2.2, LOX2.3, LOX2.A, AOS, AOC, JIP23, JIP37 and 

JIP60 transcript level 

17 

 

The data was analysed using ANOVA to compare the effect of K availability in 

nutrient solution and leaf region on K content, water content and metabolites 

concentrations and JA related gene expression in the shoot tissue.  The effect of K was 

then compared for each leaf region using T-test in order to determine in which region 

any effects were seen (Appendix 2, Tables S2-4 and 2-7).  The statistical package 

Genstat was used to carry out the analysis, a block structure was used to account for 

differences between replicate tub samples were taken from. 

2.8.4. Resupply of K experiment 

 

Experiments were carried out to establish how JA related transcript levels changed after 

resupply of K.  JA related transcript levels in plants grown in K free nutrient solution 

for 10 days before K resupply were compared to that plants grown in continuously in 

control or K free nutrient solution (Section 2.1.8).  Samples were analysed from three 
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replicate experiments (Section 4.5, Figure 4-10), Table 2-9 gives a summary of the 

experimental design.   

Table 2-9  Summary of experimental design for resupply experiment 

Factor  Level 

Treatment Control, -K and  K-resupply 3 

Time point 0, 1, 2 3 and 5 hours after resupply 5 

Replicate 1, 2 and 3   3 

                                                                                             n=30 

Parameters K-concentration, LOX2.3, LOX2.A, AOS, JIP23 and JIP60 

transcript level 

6 

 

The data was analysed using ANOVA to compare the effect of K availability in 

nutrient solution and time point on K content and JA related gene expression in the 

shoot tissue.  The effect of K was then compared for each time point using T-test in 

order to determine at which time effects were seen (Appendix 2, Table S2-8).  The 

statistical package Genstat was used to carry out the analysis, a block structure was 

used to account for differences between replicate tub samples were taken from. 

2.8.5. Pathogen susceptibility 

 

Experiments were carried out to establish how K deficiency affects plants susceptibility 

to fungal pathogens.  Forty segments from each region of the second leaf from plants 

grown for 14 days  in control and K free nutrient solution were inoculated with either 

R. secalis or Bgh  (Section 2.6) and the number of segments with visible lesions and 

extent of infection was assessed 3, 6, 9, 12 and 15 days after inoculation.  Three 

replicates were carried out for each experiment (Chapter 5, Figures 5-2 and 5-5), table 

2-10 gives a summary of the experimental design for this experiment.   

The data was analysed using ANOVA to compare the effect of K availability in 

nutrient solution and leaf region on susceptibility to pathogens.  The effect of K was 

then compared for each leaf region using T-test in order to determine in which region 

any effects were seen (Appendix 2, Tables 2-9 and 2-10).  The statistical package 

Genstat was used to carry out the analysis, a block structure was used to account for 

differences between replicate tub samples were taken from. 
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Table 2-10  Summary of experimental design for effect of K on pathogen susceptibility 

experiments 

Factor  Level 

Treatment Control and -K  2 

Leaf region Tip, middle and base  3 

Time point 3, 6, 9, 12 ,15 days post inoculation 5 

Replicate 1, 2 and 3   3 

                                                                                             n=90 

Parameters Segments with Bgh colonies, number of Bgh colonies per 

cm
2
, segments with R. secalis symptoms, length of R. secalis 

lesions 

4 

 

A Pearson product-moment correlation coefficient was also used to investigate the 

relationship between the susceptibility of the plants to the pathogens and the K content, 

water content, metabolite concentrations and JA related gene transcript levels 

(Appendix 3, Table 3-2).  The analysis was carried out using Sigma Plot statistical 

package. 

2.8.6. Me-JA and Pathogens 

Experiments were carried out to establish how Me-JA affects plants susceptibility to 

fungal pathogens.  Twenty-four segments from the middle of the second leaf from 

plants grown for 14 days  in control nutrient solution and treated with Me-JA for 24 

hours were inoculated with either R. secalis or Bgh  (Section 2.6), and extent of 

infection was assessed 3, 6, 9 and 12 days after inoculation.  Three replicates were 

carried out for each experiment (Chapter 5, Figures 5-3 and 5-6), table 2-11 gives a 

summary of the experimental design for this experiment.   

The data was analysed using ANOVA to compare the effect of K availability in 

nutrient solution and leaf region on susceptibility to pathogens.  The effect of K was 

then compared for each leaf region using T-test in order to determine in which region 

any effects were seen (Appendix 2, Table S2-10).  The statistical package Genstat was 

used to carry out the analysis, a block structure was used to account for differences 

between replicate. 
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Table 2-11  Summary of experimental design for effect of Me-JA on pathogen 

susceptibility experiments 

Factor  Level 

Treatment Control (water) and Me-JA treated  2 

Time point 3, 6, 9 and 12 days post inoculation 4 

Replicate 1, 2 and 3   3 

                                                                                             n=24 

Parameters Number of Bgh colonies per cm
2
 and length of R. secalis 

lesions 

2 

 

2.8.7. Expression levels in response to pathogens 

 

Experiments were carried out to establish the effect K deficiency and pathogen 

infection have on JA related gene expression.  Detached leaf segments from, the middle 

of the second leaf from plants grown for 14 days in the control or K free nutrient 

solution were inoculated with Bgh or R. secalis, and samples taken 0, 1, 2, 3 and 4 days 

post inoculation and the transcript levels of JA related genes determined (Sections 2.4 

and 2.6).  Three replicates were carried out for each experiment (Chapter 5, Figures 5-4 

and 5-7), table 2-12 gives a summary of the experimental design for this experiment.   

Table 2-12  Summary of experimental design for K and pathogen effect on JA related 

gene expression 

Factor  Level 

Treatment Control and -K  2 

Infection Mock and inoculated with pathogen  2 

Time point 0, 1, 2, 3 and 4 days post inoculation 5 

Replicate 1, 2 and 3   3 

                                                                                             n=60 

Parameters LOX2.A, AOS, JIP60 and PAL 4 

 

The data was analysed using ANOVA to compare the effect of K availability in 

nutrient solution and leaf region on susceptibility to pathogens.  The effect of K was 

then compared for each leaf region using T-test in order to determine in which region 

any effects were seen (Appendix 2, Tables S2-11 and S2-13).  The statistical package 



56 

 

Genstat was used to carry out the analysis, a block structure was used to account for 

differences between replicate. 

2.8.8.  Pearson product moment correlation analysis  

 

In addition to the ANOVAs, Pearson product-moment correlations were carried out on 

data obtained in order to investigate relationships between variables measured, using 

Minitab 15 statistical software.  The relationships between changes in K-levels, 

metabolites and JA-related gene expression in the time course experiment (Section 

2.8.2, See Appendix Table S3-1 for results).  The association between changes in K-

levels, metabolites, JA-related gene expression and pathogen infection in the time 

course experiment (Section 2.8.3 and 2.8.5, See Appendix Table S3-2 for results).    
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Chapter 3.  Physiological and biochemical effects of K-deficiency in 

Barley 

 

3.1. Introduction 

Extensive research has been carried out into the effect of K-deficiency on the 

physiology of plants, as discussed in the introduction.  This research spans a wide range 

of crop plants as well as the model plant A. thaliana (Bailey and Laidlaw, 1998; Evans, 

1963; Gregory and Sen, 1937; Leigh and Wyn Jones, 1984; Richards and Coleman, 

1952; Stamp and Geisler, 1980), however only a small proportion of this research has 

been carried out on barley (Epstein et al., 1963; Gregory and Sen, 1937; Richards and 

Coleman, 1952).  Much of the research into the physiological effects of K-deficiency 

was carried out between the 1930s and 1980s. In the 90s research shifted towards the 

molecular identification of K transport systems (Anderson et al., 1992; Sentenac et al., 

1992), including work on barley (Amtmann et al., 2006; Amtmann et al., 1999; Boscari 

et al., 2009; Karley and White, 2009). Over the last 10 years large scale analyses of 

molecular and metabolic responses to nutrient deficiencies using transcriptomics, 

proteomics and metabolomics have dramatically enhanced our knowledge of how 

plants adjust their metabolism to the nutrient supply (Amtmann and Armengaud, 2009).  

Most of this work was carried out with  A. thaliana (Armengaud et al., 2009), but the 

models generated from this work can now serve as a starting point for studies with crop 

species focussing on responses of individual transcripts, proteins and metabolites to a 

specific combination of stimuli. To maximize further knowledge gained from these 

studies the obtained data need to be integrated with precise information on plant 

development, physiology and growth.  

3.1.1. Potassium and growth 

Several studies have shown a reduction in shoot and root weight of barley during K-

starvation (Drew, 1975; Gregory and Sen, 1937; Helal and Mengel, 1979; Humphries, 

1951). Leigh and Wyn Jones (1984) combined assessment of growth with the 

determination of K concentration in the plant and concluded that the critical 

concentration of K in barley plants is 2 % dry weight, below this value plants were 

considered to be K-deficient (Leigh and Wyn Jones, 1984).  A number of studies have 

been carried out demonstrating impaired shoot growth in K-starved plants (El Dessougi 

et al., 2002; Stamp and Geisler, 1980), high salt levels lead to amplification of this 

effect (Degl'Innocenti et al., 2009; Hafsi et al., 2010).  More recent studies have also 
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measured root length. Walker et al. (1998) showed a reduction in root cell elongation 

rate in barley grown in low-K (2µM) solution compared with control (5mM) solution.  

However, Høgh-Jensen (2003) did not observe an effect of K-supply on root length of 

barley plants, but did observe an increase in root hair length leading to an overall 

increase in root surface area.  A K-deficiency induced reduction in the number of tillers 

and ears produced, and hence yield, has also been reported (Gregory and Sen, 1937).  

Furthermore K-status has been shown to affect water relations in barley, Gregory and 

Sen (1937) showed that water content as percent dry weight was increased and 

respiration was decreased in barley plants grown in low K concentrations. 

3.1.2. Potassium and plant biochemistry 

As described for other species, K-starvation leads to a decrease in chlorophyll 

concentrations in barley (Helal et al., 1975).  Leigh et al. (1986) showed a decrease in 

sucrose and reducing sugars and Gregory and Sen (1937) showed a decrease in 

reducing sugars (extrapolated from hexose concentrations) and sucrose in barley 

contradictory to results seen for other plant species.  K nutrition has also been shown to 

have a big impact on nitrogen metabolism, such that total nitrogen is lower in both 

roots and shoots of K-deficient plants (Helal and Mengel, 1979; Høgh-Jensen and 

Pedersen, 2003).  Incorporation of radioactively labelled N indicated that while protein 

N is decreased, amino N is increased (Gregory and Sen, 1937; Helal and Mengel, 1979; 

Helal et al., 1975).   K status also has an effect on the concentrations of specific amino 

acids (Richards and Berner, 1954).  Although all these studies looked at barley under 

high versus low-K conditions there is quite a lot of variation between results, which is 

likely to be due to differences in K-supply, other growth conditions (e.g. light and N 

supply), sampling times and barley variety. 

Most of the above mentioned research into the effect of K-deficiency on barley plants 

was done on relatively mature barley plants, despite the fact that K uptake is largest in 

young plants. Another weakness of the available body of information is that 

background conditions are often poorly specified and therefore determination of 

correlations and causalities is difficult.  In this chapter, I will describe the effects of K 

withdrawal on hydroponically grown barley (Hordeum vulgare L. cv Optic) plants on 

K concentration, plant growth and a variety of metabolites over a time course of 3 

weeks after germination. The results establish a well standardised and characterised 

system, which forms the basis for subsequent comparison of the effects of pathogens on 

K-sufficient and K-starved plants (Chapter 5). 
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3.2.  K-concentration in K-deprived barley seedlings 

Barley (H. vulgare, var. Optic) seeds were germinated on paper towel, seedlings 

transferred 4 days after germination to hydroponic solution containing a minimal 

medium with 2mM K (control) or without K (-K) and grown for another 3 weeks (for 

exact composition of growth media see Table 2-1 in Chapter 2). Five plants were 

harvested at each time point and K content of shoot and root tissue determined by 

photospectrometry after extraction with HCl (see materials and methods section 2.7).  

Figure 3-1 shows K concentrations in shoot and root tissue over a time course of 2 

weeks.  The data was analysed using ANOVA (Appendix 2, Tables S2-2 and S2-3), see 

chapter 2 section 2.8.2 for more detailed experimental design. 

No significant interaction was found between K-availability and time (p=0.134), but a 

significant reduction in K-concentration was measured in the shoots of plants grown in 

the K-free media compared with those grown in control (p=0.008). The shoot tissue 

(Figure 3-1A) grown in control solution had a low K concentration at the first time 

point (day 3), being 2.5 % K in dry weight (DW).  This may be due to the seed being 

germinated on paper towel with no nutrients supplied.  The K concentrations in the 

control shoot tissue increased rapidly over time and by 15 days after transfer to solution 

the K concentration had increased from 2.5 % DW to 4.5 % DW.  The shoot tissue 

grown in –K solution on day 3 was at 1.4 % DW, already lower than in control plants, 

and continued to fall over time reaching 0.3 % DW by day 15.  Although 3 days after 

transfer to solution the K concentration in –K grown shoots was 56.3 % of that of 

control shoots the difference was not significant (p=0.160).  However, by day 6 the K 

concentration in –K shoots were significantly lower than in control shoots (p=0.025), 

and by day 15 the K concentration in –K shoots was 7.2 % of that in the control plants. 

The root tissue (Figure 3-1B) showed a similar overall pattern to the shoot tissue, with 

the K-concentration in roots from plants grown in the K-free nutrient solution lower 

than the control, however unlike in the shoots a significant interaction was observed 

with time (p<0.001).  Three days after transfer of the seedlings to nutrient solution the 

root K concentration in control plants was 1.7 % DW and by day 9 it had more than 

doubled to 4.2 % DW.  The K concentration in the K starved root tissue was 0.9 % DW 

on day 3, already lower than in control plants and thereafter remained stable around 1 

% K in DW throughout the experiment.  On day 3 there was already a significant 
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difference between the samples (p=0.048), the K concentration in the -K root tissue 

being 54.7 % of that in the control sample. As the K concentration in the control tissue 

rose the difference between the samples increased, by day 12 the –K roots only 

contained 22.5 % of the K in control roots. 

Figure 3-1 K-content in barley tissue.  K concentration in A: shoots and B: roots from plants grown in 

control (●) and -K (○) media solution.  5 plants were pooled 3, 6, 9, 12 and 15 days after transfer to 

nutrient solution and the K concentration determined using a flame photometer, the mean (± SE) of 4 

replicate experiments is shown (Chapter 2, Sections 2.1and 2.8.2).  C: K concentration in 4 cm leaf 

regions.  Tip, middle and base segments were prepared from 2
nd

 leaves of plants grown for 14 days in 

nutrient solution (Chapter 2, 2.8.3). 6 leaf segments were pooled for each leaf region and the K 

concentration determined using a flame photometer, mean (± SE) of 3 replicates shown.  Note: in some 

cases error bars are smaller than the symbols. 

In order to investigate how the K is distributed within the leaf, the K concentration was 

determined for tip, middle and base segments from 2
nd

 leaves of plants grown in control 

or –K solution for 14 days (Figure 3-1C).  The data was analysed using ANOVA 

(Appendix 2, Table S2-4), see chapter 2 section 2.8.3 for more detailed experimental 

design.  K concentration in the control samples increased from tip to base of the leaf, 

with the K concentration in the tips segments containing only 54.2 % of that in the base 
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segments, the interaction between responses to K deficiency and leaf region was  not 

significant (p=0.562).  There was a significant reduction in K levels in the segments 

grown in K-free solution compared with control segments (p<0.001); the -K segments 

contained approximately 20 % of the K in the corresponding control segments (tip 20.3 

%, middle 17.9 % and base 21.8 % -K/control). 

3.3. Water content of K-starved barley tissue 

The effect of K status of barley on water content was determined from the change in 

weight when tissue was dried.  The plants were grown in control or –K solution and the 

shoot and root tissue was sampled every 3 days as described in Chapter 2 Section 2.1.  

The tissue was weighed before and after freeze drying and the % water content 

calculated.  The double log of the data was analysed using ANOVA (Appendix 2, 

Tables S2-2 and S2-3), see chapter 2 section 2.8.2 for more detailed experimental 

design.  There was no change in the water content of the control or –K plants over time 

(p=0.412) or and no difference between treatments (p=0.121, Table 3-1).  The water 

content of the first and second leaves was also determined separately (data not shown).  

This showed that the first leaves had lower water content than the second leaves 

irrespective of K-supply.  No difference was observed between first or second leaves 

grown in control or –K nutrient solution. 

Table 3-1 Water content (%) in barley tissue over time. 

The water content of plants grown in control and –K nutrient solution. for 3, 6, 9, 12 and 15 days after 

transfer to nutrient solution, 5 plants were pooled for each condition and tissue type at each time point, 

the mean (± SE) of 3 replicate experiments is shown (Chapter 2, Sections 2.1and 2.8.2). 

Days after transfer 

to nutrient solution 
  Shoot     Root 

 Control -K Control -K 

3 90.6 92.6 94.87 97.41 

6 91.5 89.5 94.31 95.42 

9 91.9 90.5 95.54 96.54 

12 92.7 92.0 74.47 96.63 

15 91.7 90.3 96.98 96.16 

 

The effect of K-deficiency on the water content of different leaf regions was 

determined, using the tip, middle and base of the second leaf.  Segments were cut from 

the second leaf of seedlings grown for 14 days in control or –K solution as described in 

material and methods section 2.1.  The data was analysed using ANOVA (Appendix 2, 
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Table S2-4), see chapter 2 section 2.8.3 for more detailed experimental design.  The 

water content in the segments prepared from –K plants was significantly lower and in 

control segments (p=0.004), a significant reduction in water content was observed from 

the base to the tip of the leaf (p<0.001).  The average water content of the control leaf 

regions increased from the tip to the base but the difference was not significant (Table 

3-2).  The reduction in water content from base to tip is also seen in the –K leaf 

regions, where the difference between the samples was significant (Table 3-2; 

p=0.004).  The middle and base segments were not significantly different from each 

other but both were significantly different from the tip region, with the comparison of 

the tip and middle segments resulting in a p-value of 0.028 and between tip and base 

segment water content giving a p-value of 0.012.  There was no significant difference 

between water content of middle and base segments from plants grown in control and –

K nutrient solution.  There was a significant difference between growth conditions in 

water content of the tip region of the leaf (p =0.043).   

Table 3-2 Water content (%) in regions of 14 day old 2
nd

 leaves  

Leaf region % water content  

 Control -K 

Tip 90.11 86.40 

Middle 91.42 90.72 

Base 92.12 91.54 

 

3.4. Effect of K withdrawal on growth in barley seedlings. 

The effect of K-starvation on the growth of barley (Optic variety) grown in hydroponic 

solution was investigated by growing plants in control or –K nutrient solution and 

sampling every 2 days, as described in the Chapter 2 Section 2.1.  In addition to 

allowing the assessment of the effect of K-deficiency on the early stages of growth, 

establishing reduced growth in plants grown in K-free solution was used to confirm K-

starvation.  The data was analysed using ANOVA (Appendix 2, Table S2-1), the data 

for root length and shoot, root and total weight were not normally distributed and were 

transformed by taking the log10 before analysis,  see chapter 2 section 2.8.2 for more 

detailed experimental design.  By day 12 the -K plants were showing slight visual K-

deficiency symptoms the leaves and stems appeared thinner and a slightly paler green 

than the control plants.  By day 18, as well as being visually much smaller than the 

control plants, the –K plants had started to form chlorotic lesions on the first and 
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second leaves and displayed a loss of turgidity throughout the shoot.  The effect of the 

K withdrawal on the growth of the barley plants was quantified by measuring the 

weight and length of barley shoots (Figure 3-2), leaves (Figure 3-3) and roots (Figure 

3-4) grown in control or –K nutrient solution every two days.  

3.4.1. Effect of K withdrawal on shoot growth in barley 

The shoots of plants grown in K-free nutrient solution were shorter and weighted less 

than those grown in control solution.  The shoot length (Figure 3-2A) of the control 

plants increased steadily over time, oscillating slightly with the appearance of new 

leaves, a significant interaction was observed between the two factors (p<0.001).  The 

length of the shoots of the K-starved plants also increased albeit at a slower rate than 

the control plants.  There was a significant difference between the shoot lengths of 

plants grown in the different nutrient solutions from as early as day 6 (p=0.015).  The 

difference became considerably larger after day 12.  The fresh weight (FW) of the 

control plant shoots increased rapidly over time, however the interaction between the 

factors was not significant (p=0.075), the rate of increase was smaller in shoots of –K 

plants (Figure 3-2B).  The shoots from –K plants had significantly reduced weight 

compared to the control plants (p<0.001).  From day 12 onwards there was a marked 

further divergence between the shoot weights of the control and –K plants.  By day 20 

the shoot weight of the -K plants was only half (50.7 %) that of the control plants.  

Figure 3-2 C shows photographs of representative 20 day old control and –K plants. 

The effect of K-deficiency on the growth of individual leaves from the intercalary 

meristem to the tip of the leaf was investigated as per material and methods section 2.4.  

Figure 3-3 shows the length of the first (A), second (B) and third (C) leaf from plants 

grown in control and –K nutrient solution over time. The first leaf was already initiated 

before the plants were transferred to nutrient solution, and continued to increase in 

length until day 6, at which point it stopped expanding.  No significant interaction 

between K-availability and time was observed (p=0.491), however significant 

differences were seen with both factors (p<0.001)  There was little difference in the 

growth rate of the first leaves of plants grown in control and –K solution indicating that 

there was sufficient K available from the seed to allow the first leaf to expand fully.  
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Figure 3-2.  Growth of barley shoots under K stress.  The A: length and B: fresh weight of shoots 

from 5 plants grown in control (●) and -K (○) media solution was determined  2, 4, 6, 8, 10, 12, 14, 16, 

18 and 20 days after transfer to nutrient solution, the mean (± SE) of 4 replicate experiments is shown 

(Chapter 2, Sections 2.1and 2.8.1).  C: shows representative samples of control and –K shoots 20 days 

after transfer to solution. 

 

The second leaves of both control and –K plants were not visible until 4 days into the 

experiment, at which point there was no significant difference in leaf lengths between 

plants grown in different K treatments.  Once the second leaf was apparent growth was 

rapid, however the K-starved plants had a slight reduction in growth rate compared 

with the control plants, and by day 8 there was a significant reduction in length of the 

second leaf  (p= 0.006).  By day 14 the second leaves of plants grown in both control 

and –K conditions were fully expanded. At this point a highly significant reduction in 

growth (P=0.002) was observed in –K plants.  The second leaves of the –K plants had 

expanded to 85 % that of the control plants. No significant interaction between K-
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availability and time was observed in the second leaf (p=0.146), however significant 

differences were seen with both factors individually (p<0.001)   

 

Figure 3-3 Growth of barley leaves under K stress.  The length of A: 1
st
 leaves, B: 2

nd
 leaves and C: 

3
rd

 leaves from 5 plants grown in control (●) and -K (○) media solution was determined  2, 4, 6, 8, 10, 

12, 14, 16, 18 and 20 days after transfer to nutrient solution, the mean (± SE) of 4 replicate experiments 

is shown (Chapter 2, Sections 2.1and 2.8.1).   

 

The third leaf was not visible until the tenth day of growth in nutrient solution, at this 

point there was no significant difference between the leaves under different growth 

conditions, however by day 12, the third leaves of the –K plants were significantly 

shorter (p=0.006) than those grown in control solution, with the –K third leaf length at 

around 60 % that of the control. The growth of the control plants‘ third leaf slowed 

before that of the K-starved plants and by day 20 the –K third leaves were 80 % of the 

length of that of the control plants.  A significant interaction between K-availability and 

time was observed in the tried leaf (p=0.004).  The first of the fourth leaves of the 

control plants became visible on day 18 (data not shown) however no fourth leaf 

developed on the –K plants until day 20. 

3.4.2. Effect of K withdrawal on root growth in barley 

The root systems of the plants grown in the –K and control solutions were also sampled 

every 2 days (Figure 3-4).  The roots of plants grown in K-free nutrient solution were 

longer and weighted less than those grown in control solution.  A significant interaction 

with time was observed for both variables (p<0.001).  The roots systems of the plants 

grown in –K solution were initially of a similar length to those grown in control 

solution, the –K plants however these plants had fewer, thinner and weaker roots.  Both 

the plants grown in control and the plants grown in –K solution increased in length 

gradually over time.  The longest root of the control and –K plants initially increased at 
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a similar rate, but by day 16 the –K roots had started to grow more rapidly and were 58 

% longer than the control plants. The weight of the root system of both the control and 

–K plants increased over time.  The root weight of the –K plants increased at a slower 

rate than those of the control plants.  By day 20 the root weight of the –K plants was 

only 64 % of that of the control plants. 

 

Figure 3-4 Growth of barley roots under K stress.   The A: length and B: fresh weight of roots from 5 

plants grown in control (●) and -K (○) media solution was determined  2, 4, 6, 8, 10, 12, 14, 16, 18 and 

20 days after transfer to nutrient solution, the mean (± SE) of 4 replicate experiments is shown (Chapter 

2, Sections 2.1 and 2.8.1).  C: shows representative samples of control and –K roots 20 days after 

transfer to solution. 
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3.5. Effect of K withdrawal on metabolites  

3.5.1. Chlorophyll concentration in barley tissue 

Chlorophyll a and b are vital components of photosynthesis, as they allow the 

utilisation of light energy.  The effect of K-deficiency on chlorophyll concentration in 

barley seedlings was investigated.   Barley plants were grown in control or K-free 

nutrient solution and the shoots from five plants were sampled every 3 days, the 

chlorophyll concentration (per fresh weight) was determined as per Chapter 2, Section 

2.3.2.  Figure 3-5A and B shows Chlorophyll a and b concentration in shoot tissue over 

a time course of 2 weeks.  The data was analysed using ANOVA (Appendix 2, Table 

S2-2), see chapter 2 section 2.8.2 for more detailed experimental design. 

 

Figure 3-5 K-content in barley tissue.  A: chlorophyll a and B: chlorophyll b concentration in shoot 

tissue from plants grown in control (●) and -K (○) media solution.  5 plants were pooled 3, 6, 9, 12, 15 

and 18 days after transfer to nutrient solution and the K concentration determined using uv/vis spec, the 

mean (± SE) of 3 replicate experiments is shown (Chapter 2, Sections 2.3.1 and 2.8.2).  C: Chlorophyll a 

and D: Chlorophyll b in 4 cm leaf regions.  Tip, middle and base segments were prepared from 2
nd

 leaves 

of plants grown for 14 days in nutrient solution (Chapter 2, 2.8.3). 6 leaf segments were pooled for each 

leaf region and the K concentration determined using uv/vis spec, mean (± SE) of 3 replicates shown.  
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No significant interaction between the effect of K-availability and time on Chlorophyll 

a (p=0.663) or b (p=0.458) was observed.  There was no significant change in either 

Chlorophyll a (p=0.346) or Chlorophyll b (p=0.950) in response to K-deficiency, 

despite an apparent reduction in Chlorophyll a in the –K shoots after day 15.  

The effect of K withdrawal on chlorophyll a and b concentration in first and second 

leaves of 14 day plants was also investigated separately (data not shown); no difference 

in chlorophyll concentration was observed between the leaves. 

The effect of K-deficiency on chlorophyll concentration in different leaf regions was 

also investigated.  The chlorophyll a and b concentration in tip, middle and base 

segments from 14 day old second leaves of barley seedling grown in control and –K 

solution was measured as described in chapter 2 section 2.3.2.  Figure 3-5C and D 

shows Chlorophyll a and b concentration across the leaf, no significant interaction was 

observed between K-availability and time for either chlorophyll a (p=0.328) or 

Chlorophyll b (p=674).  The data was analysed using ANOVA (Appendix 2, Table S2-

4), see chapter 2 section 2.8.3 for more detailed experimental design. 

K-starved leaves had reduced chlorophyll a concentration when compared with the 

control segments (p=0.013), but no significant change in Chlorophyll b was observed 

(p=0.054).  A significant reduction in both chlorophyll a (p=0.004) and b (p=0.016) 

was observed from the tip to the base of the leaf. The control plants showed a reduction 

in chlorophyll a and b concentration from the tip to the base of the leaf, the base 

segments contained 52 % and 64 % of the chlorophyll a and b concentration in the tips, 

respectively, this was not a significant reduction (p=0.075).  Variation in chlorophyll 

concentration within the leaf of -K plants was small but significant;  chlorophyll a 

(p=0.027) and b (p=0.035) were both higher in the tips than the base segments, with the 

–K base segments containing 65 % of the chlorophyll A and 69 % of the chlorophyll b 

in the tip segments.  The effect of K-deficiency on chlorophyll concentration was most 

prominent in the tip with the chlorophyll a concentration in the -K segments 67 % of 

the control and the chlorophyll b concentration 76 % of the control segments.  The base 

region was affected least, with –K base segments containing 85 % of the chlorophyll a 

and 83 % of the chlorophyll b of the control plants. 
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3.5.2. Sugar concentration in barley tissue 

The effect of K status on the concentration (per fresh weight) of hexose sugars in barley 

was investigated. Sugars not only provide a source of energy for the plant, but may also 

provide energy for pathogenic organisms attacking the plants and therefore increased 

sugar concentration may increase the attractiveness and create a more favourable 

environment for plant to pathogens.  A number of known effects of K-deficiency (e.g. 

on photosynthesis, long distance transport  and glycolytic enzyme) could alter sugar 

concentration in plants (Marschner, 1995). Plants grown in control or –K solution were 

sampled every 3 days and the sucrose, glucose and fructose concentrations in freeze 

dried shoot and root tissue were determined as described in chapter 2 section 2.3.3.  

Figure 3-6 shows glucose, fructose and sucrose levels concentration in shoot and root 

tissue over a time course of 2 weeks.  The data was analysed using ANOVA (Appendix 

2, Table S2-2 and S2-3), see chapter 2, section 2.8.2 for more detailed experimental 

design.  No significant interaction was seen between effect of K-supply and time for 

sugar concentration in either the shoots or roots. 

The glucose concentrations in the shoot tissue were initially high (Figure. 3-6 A), but 

decreased rapidly during growth (p<0.001), by day 9 the concentration had dropped in 

the control to 15 % and –K to 40 % the initial value (day 3).  Over the entire time 

course glucose concentration in the –K shoots were higher compared to the control 

plants, however this increase was only significant on days 3 (p=0.048) and 12 

(p=0.004).   

The glucose concentration measured in the root tissue was lower overall than that in the 

shoot tissue (Figure 3-6 B), and as in the shoot tissue, they dropped over time 

(p<0.001).  As in shoots the rate of decrease was lower in –K plants than in control 

plants, resulting in significantly reduced glucose levels in K-starved plants (p=0.030). 

By day 9 the concentration of glucose had dropped to 12.4 % of the day 3 value in the 

control roots and 36.0 % in the –K roots.   

 

The glucose concentration measured in the root tissue was lower overall than that in the 

shoot tissue (Figure 3-6 B), and as in the shoot tissue, they dropped over time 

(p<0.001).  As in shoots the rate of decrease was lower in –K plants than in control 

plants, resulting in significantly reduced glucose levels in K-starved plants (p=0.030). 

By day 9 the concentration of glucose had dropped to 12.4 % of the day 3 value in the 

control roots and 36.0 % in the –K roots.   
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Figure 3-6  Sugar concentration in barley tissue.  A, B, C: glucose, D, E, F: fructose and G, H, I: 

sucrose concentrations in A, D, G: shoots and B, E, H: roots from plants grown in control (●) and -K (○) 

media.  5 plants were pooled 3, 6, 9, 12 and 15 days after transfer to nutrient solution and the sugar 

concentration determined, the mean (± SE) of 3 replicate experiments is shown (Chapter 2, Sections 

2.3.3 and 2.8.2).  C, F, I: 4 cm leaf regions from plants grown in control (●) and -K (○) media.  Tip, 

middle and base segments were prepared from 2
nd

 leaves of plants grown for 14 days in nutrient solution 

(Chapter 2, 2.8.3). 6 leaf segments were pooled for each leaf region and the K concentration determined, 

mean (± SE) of 3 replicates shown. 

 

The fructose concentration in both the shoots and roots showed a similar pattern to the 

glucose concentration (Figure 3-6 C and D) although at much lower concentrations.  

The fructose concentration in the shoots were highest at the 3 day time point and then 

rapidly dropped (p<0.001).  By day 9 the fructose concentration in the control shoots 

was 22.6 % of those of the day 3 shoot samples, after this they remained constant.  The 

concentration in the –K shoot tissue decreased more slowly over time, reaching 26.7 % 
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of the day 3 concentration by day 12.  The fructose concentration in the –K shoots was 

higher than in control shoots as early as day 3, with the –K shoot tissue containing 26.4 

% more fructose than the control shoots, however this was not statistically significant 

until day 15 (p=0.012).   

The fructose concentration in the roots was generally higher than that in the shoots.  

Both the control and –K root samples contained high concentration of fructose until day 

6.   Subsequently fructose concentration decreased over time and reached the minimum 

concentration seen during this time course on day 12 in control plants (11 % of the day 

3). By contrast the Fructose concentration in the –K plants was still decreasing at the 

end of the experiment on day 15. The fructose concentration in the K-starved roots was 

significantly higher than in the control roots (p=0.007).  –K roots contained a 

significantly higher concentration of fructose than in the control already at day 6 and 

remained consistently higher throughout the experiment. 

Sucrose concentration in the shoot tissue of both control and –K plants showed a very 

different pattern to that of the glucose and fructose.  The sucrose concentration was 

initially low and increased over the course of the experiment (p=0.003), this increase 

was small with a 51 % increase in the control plants and a 88 % in the –K plants 

between days 3 and 15, however this change was only significant in –K plants 

(p=0.029).  There was no significant difference between the sucrose concentration in 

the control and –K shoots (p=0.114).  By day 9 the concentration in the –K plant were 

significantly higher than in the control plants at the same time point (p=0.012). 

The sucrose concentration in both the control and –K root tissue showed a similar 

pattern over time as that of glucose and fructose, although the drop was less severe.  

The sucrose level for both treatments were at their highest on day 3.   A sharp drop in 

sucrose concentration was seen between days 6 and 9 after this the concentration 

remained constant.  There was no significant difference between the sucrose 

concentration in the control and –K roots (p=0.078).   

The effect of K-deficiency on sugar content in different areas of the second leaf was 

also investigated.  Figure 3-6 shows glucose, fructose and sucrose levels concentration 

across the second leaf of 14 day old plants.  The data was analysed using ANOVA 

(Appendix 2, Table S2-4), see chapter 2, section 2.8.3 for more detailed experimental 

design. No significant change in glucose or fructose concentration was observed 

between the difference leaf regions. However, an increase in sucrose was measured 
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from the tip to the base of the 2
nd

 leaf from plant grown in –K nutrient solution 

(p<0.001), this was not the case in the leaves from control plants (p=0.317).  The 

fructose and sucrose concentration in the K-starved segments were significantly higher 

than in the control segments across the leaf (p=0.034 and p=0.015 respectively), but 

there was no change in glucose concentration between treatments (p=0.906). 

3.5.3. Malate concentration in shoot and root tissue 

Malate is an important intermediate of the tricarboxylic acid cycle (TCA cycle), also 

known as the citric acid cycle or Krebs cycle.  The TCA cycle is an important process 

in cellular respiration, and consists of a series of reactions allowing the breakdown of 

carbohydrates to carbon dioxide and water to generate ATP and reducing equivalents.  

Malate concentration was measured using enzyme assays (as described in the Chapter 

2, Section 2.3.4). Figure 3-7 shows malate levels concentration in shoot and root tissue 

over a time course of 2 weeks.  The data was analysed using ANOVA (Appendix 2, 

Table S2-2 and S2-3), see chapter 2, section 2.8.2 for more detailed experimental 

design.   

No significant interaction was seen between the effect of K-availability and time on 

malate in shoot tissue (p=0.392), and no significant change was observed in response to 

K-starvation (p=0.078).  The malate concentration in the control samples changed 

significantly over the time course (p=0.040).  A transient rise in malate concentration 

was seen in the control samples peaking at day 9, at which point the concentration had 

increased by 39 % over the day 3 samples.  After day 9 the malate concentration 

dropped again; by day 15 the malate concentration in the control shoots was 54 % of 

the day 3 concentration.  No significant change in malate concentration was seen in the 

–K samples, however a peak was still observed on day 9.  The shoots of K-deprived 

plants had a significantly lower concentration of malate than control shoots as early as 

day 3 (p = 0.039).  After the peak at day 9 the malate concentration in the –K shoots 

dropped more slowly than in the control, and by day 12 they was no significant 

difference between the two treatments (p=0.320). 

A significant interaction was seen between the effect of K-availability and time on 

malate in shoot tissue (p=0.036).  The malate concentration in control roots increased 

rapidly between day 3 and day 6 with a 151 % increase in concentration. 

Concentrations decreased again after day 6; by day 12 the malate concentration was 26 

% of that on day 6.  These changes in concentration were significant over the time 



73 

 

course sampled (p=0.005).  The transient accumulation of malate did not occur in the –

K roots, instead a slow but significant decrease was seen over time (p=0.039).  By day 

15 the malate concentration was 35 % of that on day 3. The only time there was a 

significant difference between the root malate concentration in control and –K plants 

was on day 6 (p=0.003) when the control samples reached the maximum concentration; 

at this point the malate concentration in the –K roots were 54 % of the control samples. 

 

 

Figure 3-7  Malate concentration in barley tissue.  Malate concentration in A: shoot and B: root tissue 

from plants grown in control (●) and -K (○) media.  5 plants were pooled 3, 6, 9, 12 and 15 days after 

transfer to nutrient solution and the K concentration determined, the mean (± SE) of 3 replicate 

experiments is shown (Chapter 2, Sections 2.3.1 and 2.8.2).   

 

3.5.4. Glutamate concentration in shoot and root tissue 

Glutamate is an amino acid which plays an important role in N assimilation and 

photorespiration where it incorporates N from ammonium to form glutamine. It is a 

major nitrogen source for pathogens and pests.  Glutamate concentration was measured 

using enzyme assays (as described in chapter 2, section 2.3.5).  Figure 3-8 shows 

glutamate concentration in shoot and root tissue over a time course of 2 weeks.  The 

data was analysed using ANOVA (Appendix 2, Table S2-2 and S2-3), see chapter 2, 

section 2.8.2 for more detailed experimental design.   
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Figure 3-8  Glutamate concentration in barley tissue.  Glutamate concentration in A: shoot and B: 

root tissue from plants grown in control (●) and -K (○) media.  5 plants were pooled 3, 6, 9, 12 and 15 

days after transfer to nutrient solution and the K concentration determined, the mean (± SE) of 3 replicate 

experiments is shown (Chapter 2, Sections 2.1and 2.8.2).  C: glutamate concentration in 4 cm leaf 

regions.  Tip, middle and base segments were prepared from 2
nd

 leaves of plants grown for 14 days in 

nutrient solution (Chapter 2, 2.8.3). 6 leaf segments were pooled for each leaf region and the K 

concentration determined, mean (± SE) of 3 replicates shown.  Note: in some cases error bars are smaller 

than the symbols. 

No significant interaction was seen between the effect of K-availability and time on 

glutamate in either shoot (p=0.418) or root tissue (p=0.348).  No significant change was 

observed in response to K-starvation (p=0.060), but the glutamate levels did increase 

significantly over time (p<0.001).  There was little difference in glutamate 

concentration between the control and root samples from –K plants (p=0.848). 

The effect of K-deficiency on different leaves and different areas of the second leaf was 

also investigated.  No difference in glutamate concentration between first and second 

leaves was detected in control or –K plants (data not shown).  Figure 3-8 shows 

glutamate concentration across the second leaf of 14 day old plants.  The data was 

analysed using ANOVA (Appendix 2, Table S2-4), see chapter 2, section 2.8.3 for 

more detailed experimental design. No significant interaction was seen between the 
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effect of K-availability and leaf region on glutamate concentration (p=0.369).   There 

was however a significant reduction in glutamate levels in the K-free segments 

(p=0.001) and glutamate concentration decreased from the tip to the base of the leaf.  

The glutamate concentration decreased slightly from the tip to the base of the 2
nd

 leaf 

from control plants (Figure 3-8 C).  There was no significant difference in glutamate 

concentration between the tip, middle and base segments of the 2
nd

 leaf from –K plants 

(p=0.128).   

3.5.5. Protein concentration in barley seedling tissue 

Total protein concentration in the plant tissue was determined using Bio-Rad protein 

assay dye reagent (materials and methods section 2.3.7).   Figure 3-9 shows glutamate 

levels concentration in shoot and root tissue over a time course of 2 weeks.  The data 

was analysed using ANOVA (Appendix 2, Table S2-2 and S2-3), see chapter 2, section 

2.8.2 for more detailed experimental design.   

Protein concentration in the control shoot tissue was stable throughout the experiment 

(p=0.516). There was a little more variation in the protein content of the leaves from 

the –K plants, with a large drop between day 3 and day 6 and almost complete recovery 

by day 9, however this was still not significant (p=0.275).  There was no significant 

difference in protein content between shoot tissue grown in control and –K solution 

(p=0.680).    

There was no significant change in protein concentration over the time course for root 

of either control (p=0.316) or –K (p=0.391) plants.  Although the protein concentration 

in the –K plants were constantly higher than in the control plants this was not 

significant at any point during the experiment. 

The protein concentration in 14 day old first and second leaves of barley seedlings were 

also measured (data not shown).  There was a slight increase in protein concentration in 

the K-starved first leaves compared with control first leaves, but no difference between 

treatments in the second leaves.   Figure 3-9 shows protein concentration across the 

second leaf of 14 day old plants.  The data was analysed using ANOVA (Appendix 2, 

Table S2-4), see chapter 2, section 2.8.3 for more detailed experimental design. No 

significant interaction was seen between the effect of K-availability and leaf region on 

protein concentration (p=0.260) and no significant effect of K-deficiency was observed 

(p=0.711). There was however a significant reduction in protein level from the tip to 

base of the leaf (p=0.015). The protein concentration in the control plants decreased 
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from the tip to the base of the second leaf (p=0.030), with the middle segments 

containing 77 % and the base segments containing 66 % of protein in the tip segments.  

The drop in protein concentration from tip to base was more pronounced in the –K 

plants, with the middle segments containing 59 % and base segments containing 29 % 

of the protein in the tip.  

 

Figure 3-9  Protein concentration in barley tissue.  Protein concentration in A: shoot and B: root tissue 

from plants grown in control (●) and -K (○) media.  5 plants were pooled 3, 6, 9, 12 and 15 days after 

transfer to nutrient solution and the protein determined, the mean (± SE) of 3 replicate experiments is 

shown (Chapter 2, Sections 2.1and 2.8.2).  C: protein concentration in 4 cm leaf regions.  Tip, middle 

and base segments were prepared from 2
nd

 leaves of plants grown for 14 days in nutrient solution 

(Chapter 2, 2.8.3). 6 leaf segments were pooled for each leaf region and the protein determined, mean (± 

SE) of 3 replicates shown.  Note: in some cases error bars are smaller than the symbols. 

 

3.5.6. Nitrate concentration in barley seedling tissue 

Nitrogen is needed for the production of amino acids to make proteins, nucleic acids 

and many secondary metabolites. Plants are not able to fix atmospheric nitrogen 

themselves.  The major form in which nitrogen is taken up by plants is nitrate. Nitrate 

like malate is mostly stored in the vacuoles and it is transported in the xylem from roots 

to shoots.  The nitrate concentration was measured using enzyme assays (as described 



77 

 

in chapter 2, section 2.3.5).  Figure 3-10 shows nitrate concentration in shoot and root 

tissue over a time course of 2 weeks.  The data was analysed using ANOVA (Appendix 

2, Table S2-2 and S2-3), the data for nitrate concentration in the root was not normally 

distributed and was transformed by taking the log10 before analysis, see chapter 2, 

section 2.8.2 for more detailed experimental design.   

No significant interaction was seen between the effect of K-availability and time on 

nitrate concentration in either shoot (p=0.784) or root tissue (p=0.183).  No significant 

change in nitrate concentration was observed in response to K-availability in either 

shoot (p=0.405) or root (p=0.958) tissue.    

 

Figure 3-10  Nitrate concentration in barley tissue.  Protein concentration in A: shoot and B: root 

tissue from plants grown in control (●) and -K (○) media.  5 plants were pooled 3, 6, 9, 12 and 15 days 

after transfer to nutrient solution and the nitrate concentration determined, the mean (± SE) of 3 replicate 

experiments is shown (Chapter 2, Sections 2.3.1 and 2.8.2).   

 

3.6. Discussion and conclusions 

In this chapter the effect of K-deficiency on growth, water content and metabolite 

concentration in a variety of different barley tissues was determined (see Figure 3-11 

for over view of results in heat map format).   Although the various parameters have 

been measured before in barley with respect to K-concentration, no one study has 

looked at all the parameters studied here and considered both shoot or root tissue, nor 

the more localised effect of K-deficiency on the leaves.  Much of the work previously 

carried out in barley and other plants has shown similar patterns to those obtained here,  

for example an increase in hexose sugars in K-starved plants. The only recent study to 
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comprehensively look at the effect of K-deficiency in plants was carried out on A. 

thaliana by Armengaud et al. (2009), during which the effects of K withdrawal and 

resupply on a wide variety of metabolite concentration in shoot and root tissue were 

investigated.   

The results obtained showed a clear change in physiological properties of plants 

deprived of K.  As described previously (Drew, 1975; Helal and Mengel, 1979; Leigh 

and Wyn Jones, 1984), K withdrawal led to reduced shoot growth and an increase in 

root length but reduced density and diameter. The lack of K had very little effect on the 

growth of the plants until day 12,  as no K was supplied to the –K plants at any point 

this implies that K available from the seed was sufficient for normal growth up until 

this point.  As early as day 3 the –K plants were already below the 2 % of DW critical 

K concentration suggested by Leigh and Wyn Jones (1984) indicating that the plants in 

this system were able to grow normally at least for a short time at K concentration 

below this.  No effect was seen on the growth rate of either shoot or root tissue until the 

shoot tissue reached below 0.8 % K in DW indicating that this could be the critical 

concentration for this system, however the K concentration in the root tissue was 

maintained at around 1% K in DW throughout the time course carried out.   It is 

unlikely that growth was a factor in the changes of metabolite concentration in response 

to K withdrawal as with the exception of the chlorophyll concentration all changes 

were seen before any effect on growth. 

A comparison of the results the 2009 study published by Armengaud at al. and the data 

in this chapter shows both similarities and differences in response to K-deficiency in 

the model plant Arabidopsis and barley.  Both species showed a rapid decrease in K 

concentration, little change in water content or chlorophyll concentration and a rapid 

increase in hexose sugars after K withdrawal.    

The Armengaud et al. (2009) study found that the malate concentration in the shoot 

tissue initially decreased slightly but then increased after day 14 in the –K plants.  My 

results for shoot tissue also showed an initial decrease in malate concentration, and a 

subsequent rise was observed during the final time point, 15 days after transfer to 

solution.  However in Arabidopsis root tissue, the malate concentration decreased in the 

–K tissue with the decrease becoming more pronounced over time.  In barley a slight 

increase in the malate concentration in the root tissue under K stress was observed, 

after a transient peak at day 6 in the control plants.  
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Figure 3-11 Effects of K-deficiency on barley.  Changes in metabolite concentration in barley tissue 

grown in -K solution. 5 plants were pooled for each sample and the mean of 3 replicate experiments are 

shown.  Blue indicates an increase and red indicates a decrease in –K plants compared with control 

plants as indicated in colour bar; white indicates no change. Numbers are the natural logarithm of fold-

changes.   

 

Armengaud et al (2004) showed a decrease in both glutamate and nitrate concentration 

in the Arabidopsis shoot and root tissue in the K-starved plants. A decrease in nitrogen 

metabolism has also been observed in barley plants (Helal et al., 1975), in this chapter I 

have confirmed this effect also occurs in the shoots grown in this system.  However, 

little change was seen in glutamate and a slight increase in nitrate concentration was 

seen in the root tissue.  There is no significant change in protein concentration in either 

the shoot or root tissue of barley, however the –K roots have constantly higher protein 

concentration throughout the experiment than seen in the control plants, in Arabidopsis 

plants the protein concentration in the shoot and root tissue decreased in response to K-

deficiency.   These changes imply different strategies in nitrogen metabolism in 

response to K-deficiency in the two species.   
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The biggest change in metabolite concentration was seen in hexose sugar concentration 

which in contrast to previous results published for barley (Gregory and Sen, 1937; 

Leigh et al., 1986) was increased in both shoots and roots. It has been suggested that 

the increases are due to impaired long distance transport mechanisms under low K 

conditions (Cakmak, 1994).  However, if this was the case a decrease in sugar 

concentration in the roots would be expected. Armengaud et al (2009) suggested that 

the increase may be due to impaired sugar usage in the roots leading to a build-up of 

sugar concentration.  If the increase in shoot sugar concentration inhibits 

photosynthesis through negative feedback this could explain the slight decrease in 

chlorophyll concentration observed towards the end of the time course in the –K shoots 

and in the tips of the leaves.  There are a variety of other processes that are effected by 

K-deficiency that could also influence the chlorophyll concentration in the K-starved 

plants, these include enzyme inhibition  such as RuBisCo (Peoples and Koch, 1979). 

The reduction in chlorophyll concentration seen here were small but studies on older 

barley plants have shown much larger decreases (Helal et al., 1975; Stamp and Geisler, 

1980), implying that the reductions found here were the early stages of chlorophyll 

concentration reduction. 

The transport of nitrate into and in the xylem utilises K
+
 as a counter ion (Blevins et al., 

1978; Rufty et al., 1981).  The inhibition of transport of nitrate to the above ground 

tissue could explain the increase in nitrate concentration in the root tissue and the 

decrease in the shoot tissue in the later time points.   
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Chapter 4.  Effect of K deficiency on Jasmonate levels in Barley plants 

4.1. Introduction 

Potassium (K) starvation has been shown to have a wide range of effects on plants 

including an increase in accumulation of jasmonate and its conjugates (Amtmann et al., 

2006; Amtmann et al., 2008; Armengaud et al., 2004; Armengaud et al., 2010; 

Armengaud et al., 2009; Troufflard et al., 2010).  Armengaud et al. (2004) carried out 

full genome microarray analysis to investigate the effect of long-term K-starvation and 

short-term K re-supply after starvation in Arabidopsis seedlings.  They identified a 

wide range of genes that showed changes in transcript levels in response to changes in 

K-availability, and using iterative group analysis (Breitling et al., 2004a) revealed a 

number of re-occurring and highly significant groups of functionally related genes that 

responded  to K.  The most prominent of the groups contained genes related to 

signalling and synthesis of jasmonic acid.  In addition, genes involved in stress 

adaptation, calcium-signalling, transport and cell wall biosynthesis also responded to K 

status.  In this chapter the regulation of JA-related gene expression in barley plants 

grown with different K-supply is investigated. 

In A. thaliana a number of JA-biosynthesis genes were up-regulated during K-

starvation and/or down-regulated after K re-supply (Armengaud et al., 2004).  These 

genes encoded type-2 lipoxygenase (LOX2, At3g45140), allene-oxide synthase (AOS, 

At5g42650), allene-oxide cyclase (AOC, At3g25760) and 12-oxo-Phytodienoic acid 

reductase (OPR3, At2g06050).  A number of JA-responsive genes also altered 

transcript abundance with change in K availability. These included vegetative storage 

proteins (VSP1, At5g24780 and VSP2, At5g24770), JA-induced thionin (THI2.1, 

At1g72260) and Chlorophyllase (CORI1/CHL1, At1g19670).  Changes in expression of 

genes involved in other JA-related processes were also seen including polyamine 

metabolism (AtADC2, At4g34710), glucosinolate synthesis and degradation 

(methythioalkylmalate synthase-like gene, At5g23020 and cytochrome-P450-

dependent mono-oxygenases, CYP79B2, At4g39950 and CYP79B3, At2g22330) and 

defence mechanisms (polygalacturonase inhibiting proteins, aspartic proteinases, 

protease-inhibitors and FAD-related oxidoreductases). 

Further evidence of an increase in JA in response to K-starvation was obtained when 

the transcript abundance of JA-biosynthesis genes for Arabidopsis plants grown in 

control and K-free media were measured using qPCR.  Transcript levels of JA-
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biosynthesis genes LOX2, AOS, AOC1  and OPR3 and JA reporter genes VSP, Thi2.1 

and PDF1.2 were increased in the K-deprived plants, while other lipoxygenases not 

involved in JA-biosynthesis, such as LOX1 (At1g55020) and LOX3 (At1g17420), 

showed no difference in transcript abundances between growth conditions (Cao et al., 

2006; Troufflard et al., 2010).  Troufflard et al. (2010) used liquid chromatography-

mass spectrometry to measure the oxylipin abundance in the 14 day old tissue, 

demonstrating an increase in JA, OPDA, 9-HOD and 13-HOD in the K-deprived plants.   

The effects of a mutation in the COI1, an important component of JA signal recognition 

(Devoto and Turner, 2005; Di Cera, 2006; Xie et al., 1998), on the JA increase in 

response to K deprivation were investigated using microarrays (Armengaud et al., 

2010).  Comparison of transcriptional responses to K-starvation and K re-supply 

between wild-type and Coi1-16 Arabidopsis plants allowed the authors to separate 

COI-independent from COI1-dependent responses to K-supply. Both known and novel 

targets for COI1-dependent JA signalling were identified (Armengaud et al., 2010).  In 

the same study wild-type plants were found to be less damaged by thrips when grown 

in –K conditions than when grown in K-sufficient conditions, while coi1 mutants had 

far more bites than the wild-type plant in any K condition. The authors proposed that 

increased JA enhanced the defence potential of the –K plants, and that this effect was at 

least partly dependent on JA signalling. 

The microarray experiment carried out by Armengaud et al. (2004) provided no 

evidence for the involvement in K responses of any other hormones except auxin, 

which may be a result of (JA-dependent) altered indole-glucosinolate biosynthesis 

competing with auxin biosynthesis (Armengaud et al., 2004).  However, an increase in 

ethylene (ET) has been measured in Arabidopsis plants 6 h after K withdrawal (Shin 

and Schachtman, 2004) and was shown to be required for inducing the expression of 

the K-dependent genes such as the high-affinity K transporter HAK5 (Jung et al., 

2009).  The effect of withdrawal of other nutrients on typical K-dependent genes such 

as LOX2 and VSP2 has also been investigated; no change was seen in Arabidopsis 

plants grown in media low in nitrogen-, phosphorus- or calcium for 14 days, indicating 

that the JA-response was specific for low K (Troufflard et al., 2010). 

The finding that low K-supply activates the JA pathway with potential downstream 

effects on plant defence against herbivores and pathogens could have major 

implications for nutrient-disease interactions in the field. It is therefore essential to find 

out whether the interaction between K and JA observed in Arabidopsis also occurs in 
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crop species, in particular in non-Brassica species. This chapter presents data on JA-

related gene expression in response to K-starvation of barley plants.  

4.2. Selection of reference gene for qPCR analysis of K-regulated genes 

In order to establish which gene to use as a reference gene for subsequent qPCRs, 

concentrations of three transcripts in RNA samples from plants grown in control and –

K conditions were compared.  Ubiquitin (UBQ, M60175), glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH, M36650) and α-tubulin (α-TUB, HvU40042) were selected as 

possible reference genes, and their transcript levels were measured in cDNA prepared 

from 1µg of RNA of tissue from barley plants grown in either control or –K nutrient 

solution and sampled at 3, 6, 9, 12 and 15 days after transfer to the nutrient solution.  

All data were normalised to the day 3 control sample, to allow for differences in 

expression levels for between genes. In Figure 4-1A a box plot shows the spread of the 

measured transcript levels of the three genes.  There were high levels of variability in 

the UBQ transcript levels compared to the GAPDH and α-TUB and therefore UBQ was 

discounted as a reference gene. 

 

Figure 4-1 Comparison of reference transcripts for qPCR.  To determine the most suitable candidate 

gene for use as a reference gene for subsequent qPCRs transcript levels of ubiquitin (UBQ), 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and α-tubulin (α-TUB) relative to day-3 control 

samples, for barley plants grown in full nutrient control and –K nutrient solution for 3, 6, 9, 12 and 15 

days were compared using a box plot (A).  Histograms are shown for B: GAPDH and C: α-TUB.  For 

GAPDH and α-TUB data from 3 replicates of the time course experiment (for experimental design see 

Chapter 2, Section 2.8.2). is shown,  for UBQ the data for just one replicate is shown. 



84 

 

The transcript levels of GAPDH and TUB were more consistent across the different 

samples compared with the UBQ.  To establish which of these genes should be used the 

frequency distribution for the same data was investigated.  The GAPDH frequency 

distribution (Figure 4-1B) showed less spread in the measured transcript levels than the 

TUB frequency distribution (Figure 4-1C), but the data were more skewed towards the 

lower values.  Although the data for α-TUB were also slightly skewed to values below 

one the bias was smaller than for the GAPDH and therefore it was decided to use α-

TUB as a reference gene for further qPCRs. 

4.3. Transcript levels of JA-related genes in K starved barley 

4.3.1. Transcript levels of JA-biosynthesis genes in K starved barley 

In order to establish if the increase in JA-biosynthesis gene expression observed in 

Arabidopsis plants under K stress also occurs in barley plants the transcript levels of 

JA-biosynthesis genes were measured by qPCR (Chapter 2, Section 2.4).  Barley 

seedlings were grown in control or K-free nutrient solution and the shoots and roots 

from 5 plants were pooled every 3 days. Transcript levels of LOX2 (three different 

genes, LOX2:Hv2 AJ507212, LOX2:Hv:3 AJ507213 and LOX2.A, AK362687.1),  AOS 

(AJ250864) and AOC (AJ308488)  in the shoot tissue were determined using qPCR.  

Figure 4-3 shows JA related gene transcript levels in shoot tissue over a time course of 

2 weeks, normalised to α-TUB.  The data was analysed using ANOVA (Appendix 2, 

Table S2-5), the data LOX2.2, LOX2.3, and AOC were not normally distributed and 

were transformed by taking the log10 before analysis, see chapter 2, section 2.8.2 for 

more detailed experimental design.  No JA-related gene expression was seen in the root 

tissue (data not shown).   

The transcript levels for three LOX2 genes were analysed.  All three sequences have 

higher similarity to the Arabidopsis LOX2 gene than to any other Arabidopsis genes 

encoding lipoxygenases.   LOX2.2 and LOX2.3 were identified by Bachmann et al. 

(2002) as LOX2 genes and shown to be responsive to JA treatment.  A third LOX2 gene 

was identified during the course of this project (see Chapter 6), and BLAST searches 

showed its closest homolog to be the rice LOX2 gene and its closest homolog in 

Arabidopsis to be LOX2.  A phylogenetic tree was produced using CLC main work 

bench software (CLC bio) to compare the similarity of the three barley LOX2 genes 

with LOX2 genes from other plants including Arabidopsis and rice (Figure 4-2). 
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Figure 4-2 Tree showing differences between LOX2 genes.  The relationship between LOX2.A, 

previously identifed barley LOX2 genes and LOX genes from other species is shown.  Locus identifiers 

are shown in barackets and bootstrap values in italics.  

 

The ANOVA showed a significant interaction between the effect of K-availability and 

time on LOX2.2 transcript level (p<0.001).  The LOX2.2 transcript level in the control 

plants decreased over time, such that by day 12 the LOX2.2 level was 13 % of that on 

day 3.  The LOX2.2 transcript level in the K-starved plants remained stable throughout 

the experiment.  Little difference was seen between the LOX2.2 transcript levels in 

control and –K plants before day 12. On days 12 and 15 LOX2.2 expression in –K 

plants was considerably (9 and 10-fold respectively) higher than that in control samples 

(Figure 4-3). 

 

No significant interaction between the effect of K-availability and time on LOX2.3 

transcript level (p=0.350) and no significant change was seen in response to K supply 

(p=0.467).  LOX2.3 expression increased slightly over time in both control and –K 

plants. Although there appeared to be a slightly higher level of LOX2.3 expression in 

the –K samples throughout the experiment, this was not statistically significant. 

 

No significant interaction between the effect of K-availability and time on LOX2.A 

transcript level (p=0.052) and no significant change was seen in response to K supply 

(p=0.070).  Control plants showed a slight drop in LOX2.A expression over time.  In the 

–K samples LOX2.A transcript levels increased significantly over time, doubling 

between day 3 and day 15.  No difference in LOX2.A expression was seen between the 

control and –K samples until day 9, when the LOX2.A transcript levels were two fold 

higher in the –K plants, a significant difference (p=0.027).  By day 15 the LOX2.A 

transcript levels were 4 fold higher in the –K plants compared to the control at the same 

time point, a highly significant difference (p=0.003). 
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Figure 4-3.  Transcript levels of JA-biosynthesis genes in barley shoot tissue.  Transcript levels of 

genes encoding lipoxygenase 2 genes (A: LOX2.2, B; LOX2.3, and C: LOX2.A), allene oxidase synthase 

(D: AOS) and allene oxidase cyclase (E: AOC) relative to α-tubulin in shoot tissue from plants grown in 

control (■) and -K (□) media.  Five plants were pooled 3, 6, 9, 12 and 15 days after transfer to nutrient 

solution, the mean (± SE) of data from four independently grown and treated batches of plants are shown 

(for experimental design and statistical analysis see Chapter 2, Sections 2.1.2 and 2.8.2).  Significant 

differences between control and –K samples at a 5 % (*) and 0.5 % (**) confidence interval are marked 

with asterisks. 
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No significant interaction between the effect of K-availability and time on AOS 

transcript level was seen (p=0.749).  The control plants showed a highly significant 

decrease in AOS expression over time (p=0.001); by day 15 the AOS expression in the 

control plants was 15 % of that on day 3.  No significant difference was seen in the 

AOS expression between time points in the –K samples (p=0.293), however, a peak in 

AOS expression was observed in two of the four replicates on day 6.   Although the 

AOS transcript level was higher in the –K samples compared with the control samples 

after day 3, there was no significant difference between the samples either throughout 

the experiment (p=0.430).  . 

 

No significant interaction between the effect of K-availability and time on AOC 

transcript level (p=0.157).  The AOC transcript levels were significantly higher in the K 

starved plants than in the control plants (p=0.007).  Higher levels of AOC transcript in 

–K plants compared to the control plants were apparent as early as day 6, when the –K 

plants AOC level was double that of the control plants.  The AOC transcript levels in 

the –K plants remained higher than in the control thoughtout experiment.  A significant 

change in AOC transcript levels over time was also demonstrated (p<0.001).  A 

significant decrease in AOC transcript level in control plants was observed, the majority 

of this increase was seen during the early time points, by day 6 the AOC transcript 

levels had dropped to 37 % of that observed on day 3.  No significant change was seen 

in AOC transcript levels in the –K plants. 

 

4.3.2. Transcript levels of ‘JA-induced’ genes in K starved barley 

In order to confirm the increase in JA-related gene expression in the K-deprived plants 

the transcript levels of three so-call ‗JA-induced proteins‘ (JIPs) were measured, JIP23 

(BM816519), JIP37 (X82937) and JIP60 (BM815987).  Both protein and transcript 

levels of JIPs have been shown to be increased in response to JA (Andresen et al., 

1992; Chaudhry et al., 1994; Weidhase et al., 1987). Many are of unknown function, 

and they are therefore named according to their size (e.g. JIP23 is a Mr 23,000 peptide).  

Barley seedlings were grown in control or K-free nutrient solution and the shoots from 

5 plants were sampled every 3 days. The transcript levels of JIP23, JIP37 and JIP60 

were measured using qPCR.  Figure 4-4 shows JA induced gene transcript levels in 

shoot tissue over a time course of 2 weeks, normalised to α-TUB.  The data was 

analysed using ANOVA (Appendix 2, Table S2-5), as the data was not normally 
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distributed it was transformed by taking the log10 before analysis, see chapter 2, 

section 2.8.2 for more detailed experimental design.   

 

Figure 4-4.  JA-induced gene transcript levels in barley shoot tissue.  Transcript levels of genes 

encoding Jasmonate Induced Proteins A: JIP23, B: JIP37 and C: JIP60, relative to α-tubulin in shoot 

tissue from plants grown in control (■) and -K (□) media.  Five plants were pooled 3, 6, 9, 12 and 15 

days after transfer to nutrient solution, the mean (± SE) of data from four independently grown and 

treated batches of plants are shown (for detail of experimental design and statistical analysis see Chapter 

2, Sections 2.1.2 and 2.8.2).  Significant differences between control and –K samples at a 5 % (*) and 0.5 

% (**) confidence interval are marked with asterisks. 

No significant interaction between the effect of K-availability and time on JIP23 

transcript level was seen (p=0.770) and there was no significant difference between the 

control and –K samples (p=0.784). There was little change in the JIP23 transcript 

levels in either the control or –K samples over time, except a peak that was seen in 

some but not all replicates at day 6 for both treatments.   

No significant interaction between the effect of K-availability and time on JIP37 

transcript level was seen (p=0.0.087) By day 9 the JIP37 transcript level was higher in 

the –K plants compared with the control plants, and remained higher at day 12 however 
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no significant difference in JIP37 transcript level were observed (p=0.509).  By day 15 

the JIP37 transcript levels had dropped to the level seen in the control plants.   A 

significant change in JIP37 transcript level was observed over time (p<0.001). 

A significant interaction between the effect of K-availability and time on JIP60 

transcript level was seen (p=0.0.004).  As early as day 6 the JIP60 transcript levels in –

K plants were higher than in the control plants.  By day 9 the JIP60 transcript levels in 

the –K plants were double those in the control plants at the same time point,   There 

was a drop in JIP60 expression in control plants over time; by day 15 the JIP60 

transcript level was 27 % of that at day 3. By contrast, there was little change in the 

JIP60 level over time in –K plants. 

4.3.3. Hormone levels in K starved barley 

To assess the effects of K deficiency on the concentration of JA and other plant stress 

hormones the levels of JA, ABA, SA and SA-glycoside were determined 

spectrophotometrically by the Metabolomics and Proteomics Mass Spectrometry 

Facility at Exeter University. Three replicates of freeze dried samples collected after 3, 

9 and 15 days growth in control or –K nutrient solution were analysed.  Figure 4-5 

shows Hormone concentration in shoot tissue over a time course of 2 weeks.  The data 

was analysed using ANOVA (Appendix 2, Table S2-5), see chapter 2, section 2.8.2 for 

more detailed experimental design.  However, no results were obtained for JA in some 

replicates, making statistical analysis of the data impossible, the results that were 

obtained are shown in Figure 4-5A.    

The JA levels in plants grown in both control and –K solutions decreased between days 

3 and 9, but then increased by day 15 (Figure 4-5A).  The samples collected 3 and 9 

days after transfer to nutrient solution showed similar JA levels in the control and –K 

plants.  However, by day 15 the JA levels in the –K plants were higher than that seen in 

the control plants, with the JA levels in the –K plants increasing by 44 % of the control 

plant concentration. 

No significant interaction between the effect of K-availability and time on ABA 

concentration was seen (p=0.0.198) and there was no significant difference between the 

control and –K samples (p=0.091).  Initially there was no difference in the ABA levels 

between the plants grown in the two treatments, but by day 9 the ABA levels in the –K 

plants were double those in the control plants, a significant difference  (p=0.033).  The 

higher levels in the –K plants seem to be due to the lack of the reduction in ABA levels 
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over time seen in the control plants rather than a real increase. The ABA concentration 

in the control plants declined significantly over time (p=0.007), with the levels in the 

day 15 shoot samples only 47 % of those in the day 3 samples (Figure 4-5B).  The –K 

samples showed no significant change in ABA levels over time (p= 0.802).   

 

Figure 4-5.  Hormone levels in barley shoot tissue.  Levels of A: JA, B: ABA, C:SA and D SA-

glycoside in shoot tissue from plants grown in control (■) and -K (□) media.  Five plants were pooled 3, 

9 and 15 days after transfer to nutrient solution and the K concentration determined, the mean (± SE) of 

data from three independently grown and treated plant batches is shown (for detail of experimental 

design and statistical analysis see Chapter 2, Sections 2.5 and 2.8.2), except for JA for which only one 

sample or the mean of two replicate samples are shown. 

No significant interaction between the effect of K-availability and time on SA 

concentration was seen (p=0.389) and there was no significant difference between the 

control and –K samples (p=0.412).  On days 3 and 9 the SA levels in the plants showed 

no difference between treatments (Figure 4-5C).  On day 15, however, the –K plants 

had higher SA levels than the control plants at the same time point, however, this 

difference was not significant (p=0.153).  There was no significant change in SA levels 
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over the course of the experiment in the plants grown in either control or –K solution 

(p=0.247 and p= 0.550 respectively).   

No significant interaction between the effect of K-availability and time on SA 

concentration was seen (p=0.116) and there was no significant difference between the 

control and –K samples (p=0.159).  Over early time points an increase in SA-glyco was 

observed for both the control and –K plants, however, between day 9 and 15 the SA-

glyco levels in the control plans decreased,  while the levels in the –K samples 

continued to increase (Figure 4-5D).  On days 3 and 9 there was little difference 

between control and –K plants (p=0.693 and p=0.402 respectively), but on day 15 the  

–K plants contained 3 times more SA-glyco than the control plants,  however, this 

difference was not significant (p=0.142). 

4.3.4. JA-related gene expression in different leaves of K starved barley plants 

To establish whether the increase in JA-related gene expression observed in K-starved 

plants occurs in both the first and second leaves, barley plants were grown in control or 

K-free nutrient solution and the first and second leaves were sampled after 14 days 

(Chapter 2, Section 2.1.4).  The expression levels of three LOX2 genes, AOS and AOC 

and JA-induced genes JIP23, JIP37 and JIP60 were measured using qPCR and 

compared to that of α-tubulin (Chapter 2, Section 2.4).  By day 14 the first leaf was 

fully expanded, and K withdrawal had little effect on the length of the leaf, while the 

second leaf was just reaching full length and there was significant reduction in growth 

in the K-deficient plants (Chapter 3).  It is also worth noting that at this time point both 

leaves had a large reduction in K concentration in the plants grown in K-free media, 

and that the K levels in the second leaves were slightly higher than in the first leaves 

for both growth conditions.  Only 2 replicates were carried out for this experiment, both 

replicates are shown for each condition (Figure 4-6).   Due to low number of replicates 

not statistical analysis was carried out. 

There was no difference in transcript level of LOX2.2 between leaves for the control 

plants in the first replicate, but the second replicate showed lower levels in the second 

leaf.  There seemed to be slightly less LOX2.2 transcript level in the second leaf 

compared with the first leaf in the –K plants in both replicates.  There was slightly 

more in LOX2.2 transcript levels in the first and second leaves from –K plants 

compared to the control leaves in both replicates.  This was prominent in the first 

leaves, where the percentage of K in dry weight was lower.   
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Figure 4-6.  Transcript levels of JA-related genes in first and second leaves of barley.  Transcript 

levels of JA-biosynthesis genes (A: LOX2.2, B: LOX2.3, C: LOX2.A, D: AOS and E: AOC) and JA-

induced genes (F: JIP23, G: JIP37 and H: JIP60) relative to α-tubulin in the first (1) and second (2) leaf 

from plants grown in control (■) and -K (□) media.  1
st
 and 2

nd
 leaf tissue from five plants grown in 

control or –K nutrient solution were pooled for each sample (Chapter 2, Section 2.1.4).  Data from two 

independently grown and treated plant batches of plants are shown. Error bars represent the mean (± SE) 

of technical replicates (Chapter 2, Section 2.4.7). 

The LOX2.3 transcript levels were equal in the first and second leaves in the first 

replicate for both control and –K plants.  But the second replicate showed higher 

LOX2.3 expression in the second leaf of control plants compared to the first leaf.  Little 

difference in LOX2.3 expression was seen between leaves in the –K samples.  In the 

second replicate, the plants suffering from K-starvation had more LOX2.3 transcript in 
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the first leaves than the control, however, this was not seen in the first replicate. There 

was no difference in LOX2.3 expression between treatments in the second leaf samples.  

The LOX2.A transcript levels were lower in the second leaves than in the first leaves for 

both growth conditions.  The expression of LOX2.A was greater in both the first and 

second leaves of the –K plants compared to the control plants.  The LOX2.A expression 

was highest in the second leaves where a 6-fold increase was seen in the mean value for 

–K plants over the control compared with a 3-fold increase in the first leaf samples. 

The mean AOS transcript level was five times higher in the second leaf than the first for 

the plants grown in control solution (Figure 4-6D).  The plants grown in K-free solution 

showed little difference in AOS expression between leaves.  AOS transcript level was 

21 fold greater in –K leaves compared to the control leaves.  There was also an increase 

in mean AOS transcript level in the –K second leaves compared to the control second 

leaves but with a 6-fold increase this was much smaller than in the first leaves   

In the control plants the AOC transcript level in the second leaf was slightly higher than 

that in the first leaf in the first replicate, but this was not repeated in the second 

replicate.  Interestingly, in the –K plants the first replicate showed a higher level of 

AOC expression in the second leaf than in the first, but this was reversed in the second 

replicate.  An increase in AOC transcript level was seen in both leaves under K stress 

compared to the control, with a mean increase of 4-fold in the first leaf and 3-fold in 

the second leaf in –K plants compared with the control plants. 

There was a lot of variation in JIP23 transcript levels for all the samples (Figure 4-6F), 

therefore no conclusions can be drawn from these data.  

The JIP37 transcript levels in the first leaves were slightly higher than in the second 

leaves for the control plants, however, in the –K plants the mean JIP37 transcript levels 

were 4-fold higher in the second leaves than in the first leaves (Figure 4-6G).  There 

was no change in the JIP37 transcript level between growth conditions in the first 

leaves, but in the second leaves the mean JIP37 levels were 9 times higher in the leaves 

of –K plants than in the leaves of control plants.  

The transcript level of JIP60 in the second leaves was considerably lower than that 

observed in the first leaf in both control and K-deficient plants (Figure 4-6H).  The 

JIP60 transcript levels were higher in leaves of plants grown in K-free media than in 

leaves of the control plants. This difference was more pronounced in the first leaf 
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where a 5- fold difference was observed in the mean abundance of JIP60 transcripts, 

while in the second leaves a 4-fold difference was observed. 

4.3.5. Expression of JA-related genes in different regions of leaves of K starved 

barley plants 

In order to establish if the K-dependent changes in JA-related gene expression were 

evenly distributed throughout the leaf, the abundance of transcripts of JA-related genes 

were quantified in samples from different areas of the second leaf (Figure 4-7).  Barley 

seedlings were grown for 14 days in control and K-free nutrient solutions and 4 cm 

sections were taken from the tip, middle and base of the second leaf.  The transcript 

levels of JA-biosynthesis genes LOX2.3, LOX2.A, AOS and AOC and JA-induced genes 

JIP23, JIP37 and JIP60 were quantified using qPCR.  Figure 4-7 shows JA related 

gene transcript levels tip, middle and base segments, normalised to α-TUB.  The data 

was analysed using ANOVA (Appendix 2, Table S2-5), the data for AOS, AOC, JIP23 

and JIP37 were not normally distributed and were transformed by taking the log10 

before analysis, see chapter 2, section 2.8.3 for more detailed experimental design.  No 

significant interaction between the effect of K-availability and leaf region on the 

transcript levels of any JA related gene measured was observed (p=0.142). 

There was no significant difference between the LOX2.3 transcript abundance in leaves 

from the control and –K plants (p=0.466).  There was however a significant reduction 

in LOX2.3 expression from tip to base (p=0.005). The expression of LOX2.3 in leaves 

of the control plants decreased from tip to base (Figure 4-7A, p=0.055); the middle 

segment had 51 % of the transcript abundance measured in the tip segment, and the 

base segment had 55 % of the transcript abundance seen in the middle segment.  There 

was little change in LOX2.3 transcript levels between the tip and middle segments in 

the –K plants, but the base segment had much lower LOX2.3 expression with a 

transcript level 35 % of the tip segment and 31 % of the middle segment (Figure 4-7B).   

In all segments there were higher levels of LOX2.A transcript in the –K plants 

compared to the control plants (Figure 4-7A), however, this was not significant 

(p=0.087). The difference increased from tip to base, in the tip 2 fold greater LOX2.A 

expression was observed, while the middle and base segments 4-fold and 7-fold greater 

LOX2.A expression was observed, respectively, than in control plants.  There was a 

significant reduction in LOX2.3 expression from tip to base to the leaf (p=0.002). No 

significant change in LOX2.A expression was observed in the control plants from base 
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to tip (p=0.073).  However,  a significant decrease was seen in the transcript abundance 

of LOX2.A from the tip to the base of the -K leaves (p=0.025), the LOX2.A transcript 

level in the middle segment was 53 % and base segment 38 % of the level in the tip 

segments.  

 

Figure 4-7 Transcript levels of JA-related genes in tip middle and base regions of barley second 

leaves.  Transcript levels of JA-biosynthesis genes (A: LOX2.3, B: LOX2.A,C: AOS and D: AOC) and 

JA-induced genes (E: JIP23, F: JIP37 and G: JIP60) relative to α-tubulin in tip, middle and base regions 

of second leaf tissue from plants grown in control (■) and -K (□) media.  Six leaf segments were pooled 

and the transcript levels of JA related genes determined using qPCR, the mean (± SE) of data from three 

independently grown and treated plants batches is shown (for detail of experimental design and statistical 

analysis see Chapter 2, Sections 2.1.5 and 2.8.3).   
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In all segments greater AOS transcript abundances were seen in the –K segments 

compared to the control plants (Figure 4-7C, p<0.001).   An increase in AOS expression 

in response to K-starvation was measured in the tip, middle and base segments where 

an 18-fold, 10-fold and 3-fold increases were observed respectively. A significant 

change in AOS transcript levels was also seen across the leaf (p=0.004).  The AOS 

transcript level in the control samples did not change across the leaf.  The AOS 

expression in the –K leaves were reduced from the tip to the base of the leaf. 

Expression of AOS in the middle segments were 48 % and in the base segments 12 % 

of that in the tip segments. 

Greater AOC transcript abundance was seen in the leaves from plants grown in K-free 

solution (p<0.001).  The increase in AOC transcript levels in the –K leaves over control 

leaves was 5-fold in the tip segments, 4-fold in the middle segments was and 3-fold in 

the base segments.  A significant reduction in AOC transcript level from the tip to the 

base of the leaf was observed (p=0.044). 

A large increase in JIP23 transcript abundance was seen in the leaves from the –K 

plants compared to the control plants (p<0.001), with the tips demonstrating an increase 

of 867-fold in the –K plants compared to the control plants.  A smaller but still 

substantial increase was seen the middle and base segments with 215-fold and 184-fold 

increases in JIP23 levels compared to the corresponding control samples. A decrease in 

JIP23 transcript levels was seen from tip to base of the leaves (p=0.035), the JIP23 

expression in the base segments prepared from control plants was only 55 % of that in 

the tip.  The –K segments showed larger decrease in JIP23 expression level from the 

tip to base of the leaves, with the middle segments containing 22 % and the base 12 % 

the JIP23 transcript levels in the tip segments.   

JIP37 showed a statistically significant increase in transcript levels in the –K plants 

compared with the control plants for all segments (p<0.001).  The JIP37 transcript 

levels were increased 211-fold in the tip, 61-fold in the middle and 98-fold in the base 

segments compared to the corresponding control segments.  A reduction in JIP37 level 

was observed from the tip to the base of the leaves (p=0.005).  This was most evident 

in the –K plants were the JIP37 transcript in the base segments was only 9 % of that in 

the tip segments (p=0.057).   

All the segments showed an increase in JIP60 transcript levels in the –K leaves 

compared with the control leaves (p=0.092).  The increase was smaller than observed 
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for the other JIPs, with the tips and base showing a 2-fold, the middle segments a 4-fold 

increase in expression compared to the control samples.  A significant change in JIP60 

transcript levels was observed across the leaf (p=0.005).  The JIP60 transcript levels 

did not change significantly over the length of the control leaf (p=0.193).  However, the 

leaf segments from the plants grown in K-free solution showed a significant reduction 

in JIP60 transcript levels from the tip to the base to the leaf segments (P=0.027), with 

the middle segment demonstrating 73 % and the base segment 33 % of the transcript 

levels in the tip segment. 

4.4. JA-related gene expression in barley under other nutrient stress 

To establish if the increase in some JA-related gene expression observed for K-

deficiency is also seen for deficiencies of other nutrients, barley plants were grown in 

nutrient solutions lacking other nutrients.  After germination plants were grown for 10 

days in the control, K-free, low-Ca, N-free, P-free and S-free nutrient solution before 

the shoot tissue was harvested (Chapter 2, Section 2.1.1).  qPCR was used to determine 

the transcript levels of JA-related genes in each sample (Figure 4-8).  Only two 

replicates were completed for this experiment and the results for both replicates are 

shown.  Due to low number of replicates no statistical analysis was carried out. 

The mean LOX2.3 transcript level in the –K plants was 52 % higher than that seen in 

the control plants.  A slight increase in the mean LOX2.3 transcript levels was also seen 

in the –Ca (14 %), -P (12 %) and –S (4 %) plants after 10 days compared to the control 

plants.  LOX2.3 expression in the plants grown in the –N nutrient solution was reduced 

to less than half that seen in the control plants in the first replicate,  however, no change 

in expression was seen in the second replicate compared with the control plants.   

In the first replicate there was very little change in LOX2.A expression with the 

different growth conditions.  In the second replicate, the LOX2.A expression level in the 

–K plants was 2-fold higher than that seen in the control plants, after 10 days growth in 

the nutrient solutions.  An increase in LOX2.A expression was also seen in plants grown 

in solutions lacking other nutrients.  The biggest increase was seen in the –N plants 

which had LOX2.A levels elevated by 4-fold compared to the control plants.  As with 

LOX2.3, the lowest increase was seen in the –S plants, where the LOX2.A transcript 

level increased by 12 % over that of the control samples. 
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Figure 4-8 Transcript levels of JA-related genes under deficiency for different mineral nutrients.  

Transcript levels of JA-biosynthesis genes (A: LOX2.3, B: LOX2.A and C: AOS) and JA-induced genes 

(D: JIP23 and E: JIP60) relative to α-tubulin in shoot tissue from plants grown in control, K-free (-K), 

low Ca (–Ca), N-Free (-N), P-free (-P) and S-free (-S) nutrient solution for 10 days (Chapter 2, Section 

2.1.1).  8 plants were pooled for each time point, the data from two independently grown and treated 

plants batches are shown. The data was normalised to the control values, error bars represent the mean (± 

SE) of technical replicates (Chapter 2. Section 2.4).   

The mean AOS transcript level in the plants grown in K-free solution was increased 2-

fold compared to the plants grown in control solution.  The mean levels of AOS 

transcript were also increased 2-fold in the –Ca and –S when compared to the control.  

The withdrawal of P lead to a 3 fold increase in AOS in the first replicate, but only a 
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slight increase (27 %) in the second replicate.  The plants grown in the N-free solution 

showed a reduced mean AOS transcript level, reaching only 73 % of that observed in 

the control plants. 

The transcript levels of JIP23 also showed an increase in the plants grown in the K-free 

solution when compared to the control, resulting in a mean JIP23 transcript level in the 

–K plants double that of the control plants.  An increase in JIP23 levels was also seen 

in the –Ca, -P and –S plants, however the level of this increase varied a lot between 

replicates.  As with the AOS expression levels the JIP23 level in P starved tissue was 

much higher in the first replicate than the second with 8-fold and 2-fold increases 

respectively.  Very little changes in JIP23 transcript levels were seen in the plants 

grown in the N-free solution compared to the control plants.   

The JIP60 transcript levels in the –K plants were double that observed in the control 

plants.  A similar increase in mean JIP60 expression was seen in the low Ca, -N and –S 

plants (approximately 2-fold) compared to the control plants.  The plants grown in 

solution lacking in P also showed an increase in JIP60 levels, but once again the 

magnitude of this increase varied between replicates, with a 2-fold and 4-fold increases 

in the first and second replicates respectively. 

4.5. JA-related gene expression in barley after re-supply of K 

To establish if the increase in JA-related gene expression in plants deprived of K was 

reversible, plants were grown for 10 days in K-free nutrient solution before being 

transferred to full nutrient control solution, alongside full nutrient and –K controls.  The 

shoot tissue was harvested at different time points (0, 1, 2 and 5 days) after re-supply of 

K (See chapter 2, Sections 2.1.8 and 2.8.4).  The K concentration (Figure 4-9) and the 

JA-related gene expression (Figure 4-10) were determined. All samples were taken at 

the same time of the day. Data from K-resupplied plants were compared to those from 

plants grown in full nutrient control throughout the entire experiment (control) and 

from plants remaining in K-free nutrient solution (-K).  The data obtained was analysed 

using ANOVA (Appendix 2, Table S2-5), as the results for the JA related gene 

transcript levels were not normally distributed and therefore was transformed by taking 

the log10 before analysis, see chapter 2, section 2.8.4 for more detailed experimental 

design.   

The ANOVA showed a significant interaction between the effect of K availability and 

time on the K concentration in shoots (p<0.001).  The control shoot samples contained 
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around 6.5 % K in dry weight on the day of re-supply and no significant change was 

seen in K levels at later time points (p=0.612).  Before re-supply the –K shoot samples 

contained around 1 % K in dry weight which was 14 % of that seen in the control 

samples, a highly significant difference (p<0.001).  There was no significant change in 

K levels in the -K plants over the period of this experiment (p=0.208).  The K levels in 

the control plants were significantly higher during the course of the experiment 

(p<0.001).  The shoot tissue from K-resupplied plants still contained low levels of K 24 

hours after re-supply and the concentration in dry weight was not significantly different 

to that seen in the –K plants (p=0.835) and still significantly lower than in the control 

plants (p=0.025).  By day 2 after K re-supply, shoot K levels in the resupplied plants 

had increased to 3 times that of the –K plants.  However, it was still only 63 % of that 

seen in the control plants (Figure 4-9A).  Although there was still no significant 

difference between the resupplied and –K plants (p=0.088), this was probably due to 

variation in K levels in the –K plants.  Between day 2 and day 5 a small additional 

increase in shoot K concentration was observed for the K-resupplied plants. At the end 

of the experiment, 5 days after K-resupply, shoot K-concentrations in K-resupplied 

plants were significantly higher than in the –K plants (p=0.002) but still significantly 

lower than in shoots of the control plants (p=0.004). 

 

Figure 4-9   K-levels in barley after K re-supply.  The K concentration was determined in A: shoot 

and B: root tissue from plants grown in control medium (●), -K medium (○) or –K medium for 10 days 

before transfer to control medium at time point 0 (●).  Five plants were pooled  0, 1, 2 and 5 days after K 

was resupplied and the K concentration determined (Chapter 2, Section 2.2), the mean (± SE) of data 

from three independently grown and treated batches of plants is shown (for experimental design and 

statistical analysis see Chapter 2, Sections 2.1.8 and 2.8.4).   
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A significant interaction between the effect of K availability and time on the K 

concentration in roots (p<0.001) was also seen.  Although the overall K concentration 

was lower in the root tissue than in the shoot tissue, similar kinetics of K accumulation 

after K re-supply were observed in both tissues.  There was no significant variation in 

root K levels during the experiment in control (p=0.367) or –K (p=0.340) plants.  The 

root K concentration of the K-resupplied plants increased significantly over the course 

of the experiment (p=0.006).  24 hours after K-re-supply the root K level in the 

resupplied plants was only slightly higher than in the –K plants, but by day 2 it had 

reached 8.6 times that of the –K plants.  The K concentration in the tissue resupplied 

with K was 27 % of the control K concentration on day 1, this had risen to 74 % by day 

2 but had not increased further by day 5; at all time points measured the K level in the 

control plants were significantly higher than in the resupplied plants.   

In both the shoot and root the K concentration of the K-resupplied plants did not 

increase further after day 2 implying that at this stage net K uptake and growth had 

reached a new balance.  

The LOX2.3 transcript showed a high variation making it difficult to draw conclusions 

from the data (Figure 4-10A).   The response of transcript abundance to K-resupply for 

LOX2.A, AOS and JIP60 were very similar (Figure 4-10B, C, E).  At all time points the 

–K plants had higher transcript levels than the control plants, although large variation 

between batches of –K grown plants reduced the significance of this difference, 

particularly on days 2, 3 and 5.  Transcript levels of K-resupplied plants were still 

similar to those of –K plants 24 hours after re-supply but considerably lower thereafter. 

Again the significance of this difference remains to be proven for some time points due 

to large variation between the values obtained for –K plants.   No significant changes in 

LOX2.3 or AOS expression were observed in response to either K-supply or over time. 

No significant interaction between the effect of K-availability and time on LOX2.A 

expression were observed (p=0.104), however, despite large variation in the LOX2.A 

transcript levels in the –K tissue, a significant change in response to K was seen 

(p=0.002). 
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Figure 4-10.  Transcript levels of JA-related genes in barley after K re-supply. Transcript levels of 

JA-biosynthesis genes (A: LOX2.3, B: LOX2.A and C: AOS) and JA-induced genes (D: JIP23 and E: 

JIP60) relative to α-tubulin in shoot tissue from plants grown in control (■),-K (□) nutrient solution and 

plants grown in –K solution for 10 days before transfer to full nutrient solution (■).  Five plants were 

pooled 0, 1, 2 and 5 days after K was resupplied and the level of JA related gene expression determined 

using qPCR (Chapter 2, Section 2.4), the mean (± SE) of data from three independently grown and 

treated batches of plants is shown (for experimental design and statistical analysis see Chapter 2, 

Sections 2.1.8 and 2.8.4).   
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JIP23 expression also varied considerably but transcript levels, however a significant 

interaction between the effect of K-availability and time was observed (0.042).  The 

JIP23 expression in the plants resupplied with K almost doubled between day 0 and 

day 1, but after this a rapid reduction in transcript abundance was seen by day 2 and 

JIP23 expression was only 5 % of that seen 24 hours after re-supply.  The JIP23 levels 

in the plants resupplied with K after 10 days were elevated 1 day after re-supply with a 

7.2 fold increase compared to the control plants.  However, 2 days after re-supplying K 

the abundance of JIP23 transcripts had dropped to 36 % of that seen in the control 

plants, remaining low for the rest of the experiment. 

A significant interaction between the effect of K-availability and time was also 

observed for JIP60 (p= 0.015).  The JIP60 transcript abundance in the –K plants was 

always higher than in the control plants but large variation between batches of –K 

plants meant that this difference in average levels was hard to evaluate.  As with the 

other genes looked at the JIP60 transcript levels had dropped to around those of the 

control plants by 2 days after re-supply and remained low for the remainder of the 

experiment, the JIP60 expression levels in the resupplied plants were around 43 % of 

those of the –K plants by day 2 and as low as 7 % by 5 days after re-supply.   

 

4.6.Conclusion and discussion 

In this chapter the response of several JA-biosynthesis and JA-induced genes to K-

deficiency was investigated. The main aim of this work was to translate knowledge 

gained from Arabidopsis to barley.  However, the work expanded on previous 

experiments with Arabidopsis by analysing individual leaves and leaf zones thereby 

allowing us to link the results on gene expression with the data obtained from K 

measurements in the previous tissues (Chapter 3).  

4.6.1. Election and performance of JA-related genes  

A number of JA-related genes were selected to be used use as marker genes for JA 

including genes encoding for important enzymes in the biosynthesis pathway leading to 

JA (3 LOX2 genes, AOS, and AOC) and genes previously reported to change transcript 

levels in response to JA treatment (JIP23, JIP37 and JIP60).   

 Initially two barley LOX2 genes (LOX2.2; AJ507212 and LOX2.3; AJ507212) were 

selected based on a high homology with the Arabidopsis LOX2 gene and published data 
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classifying them as barley LOX2 genes (Bachmann et al., 2002).  The Barley LOX2 

genes with close homology to the AtLOX2 gene (At3g45140) shown to be up-regulated 

in response to K-deficiency (Armengaud et al., 2004; Armengaud et al., 2010; 

Troufflard et al., 2010) were identified using a BLAST search (Altschul et al., 1990).  

However, when quantified using qPCR LOX2.2 and LOX2.3 displayed high level of 

variation between replicates making it difficult to draw conclusions (Figure 4-3A and 

B).  A further LOX2 gene was selected with more constancy between replicate 

experiments.  LOX2.A was identified as a candidate for an additional barley LOX2 gene 

during the microarray studies described in chapter 6.  The closest homolog of LOX2.A 

was the rice LOX2 gene (EU08542) and its closest match in Arabidopsis was LOX2 

(At3g45140).  The LOX2.A transcript was more constant and showed an increase in 

response to K-starvation (Figure 4.3C) and it therefore was selected for use as a marker 

for K-deficiency in the barley, and is also likely to represent the functional homologue 

of LOX2 in Arabidopsis. 

Barley homologs of the Arabidopsis AOS and AOC genes were identified using a 

BLAST search and were confirmed in the literature (Maucher et al., 2000; Maucher et 

al., 2004).  AOC also showed a consistent response to K-starvation while AOS was 

more variable (although still generally responsive to K; Figure 4.3D and E). 

Although a number of marker genes downstream of JA have been identified in 

Arabidopsis these genes have not yet been identified and sequenced in barley, however, 

a number of genes have been identified as JA-responsive.  The JIP genes were selected 

on the basis of having been reported to respond to JA treatment, although little is 

known about their function (Andresen et al., 1992; Chaudhry et al., 1994; Leopold et 

al., 1996; Müller-Uri et al., 2002; Reinbothe et al., 1994).  JIP23 has been shown to be 

involved in JA-related transcription and JIP37 is closely related to it, while JIP60 has 

been shown to be a ribosome inactivating protein (Chaudhry et al., 1994; Leopold et 

al., 1996; Müller-Uri et al., 2002).  JIP23 and JIP37 transcript levels were very 

variable both between replicates and when compared to the expression level of other 

genes in the same samples. They did not display a consistent response to K-starvation 

(Figure 4-4).  As little is known about their function it is possible that these genes form 

part of JA signal cascades that are independent of the response to low K.  The 

abundance of JIP60 transcripts, however, were consistently higher in K-starved plants 

and showed a lot less variation between replicates than the JIP23 and JIP37 genes.  

The expression levels for this gene were consistent with those seen for both LOX2.A 
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and AOC, and hence these three genes were used as marker genes in further 

experiments (Chapter 5). 

4.6.2. Response of JA-related transcripts to K-starvation and re-supply 

No difference between control and –K plants was observed in transcript level of any of 

the JA-related genes over the first six days of plant growth in low K, despite the K 

concentration in –K plants being lower than in control plants on day 6 (Chapter 3, 

Figure 3-1).  This finding indicates that there is a threshold of internal K-content below 

which transcriptional responses in the JA-pathway are induced.  By day 9 the transcript 

levels of all the genes measured were higher in the –K plants than in the control plants, 

although the extent of this increase varied between genes (Figure 4-3 and 4-4).  The 

difference between –K and control plants with respect to JA-related transcript levels 

persisted and in many cases further increased up to at least day 15 (the last day assessed 

here).  The important conclusion from this chapter is therefore that barley did appear to 

up-regulate JA-related genes in response to low K as previously reported for 

Arabidopsis. The barley genes LOX2.A, AOC and JIP60 can be used in the future as 

JA-related marker genes for K-starvation in barley. 

When barley seedlings were resupplied with K after 10 days of growth in –K solution 

the increase in JA-related gene expression was reversed further supporting a direct link 

between K-supply and gene expression (Figure 4-10).  However, the difference 

between K-resupplied and non-resupplied plants was not seen until 2 days after 

medium change, whereas in Arabidopsis a reduction in JA-related gene expression was 

seen within 2-6 hours after K-re-supply (Armengaud et al., 2004).  However, 

concentration in plants  resupplied with K increased more slowly in barley than in 

Arabidopsis; no change in K-concentration was seen in either the roots or shoots of 

barley after 24 hours of re-supply (compare Figure 4-9),  while contents in Arabidopsis 

roots and shoots had reached around 50 % control levels at this time point (compare 

Figure 2 in (Armengaud et al., 2004). The slow return of transcript levels of JA-related 

genes to control values in barley is therefore likely to be due to slow increase in K 

concentration after resupply of K compared to Arabidopsis. It should also be mentioned 

that this experiment was carried out before the full dataset for the starvation time 

course was available. The choice of day 10 as the time point for re-supply was based on 

a clear difference in K-concentrations between –K and control plants (see Figure 3-1 in 

chapter 3). However, as evident in Figures 4-2 and 4-3 of this chapter at this stage the 
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difference in JA-related transcript levels was not yet significant and in hindsight re-

supply should have been administered at a later time point.  

4.6.3. Effect of K-supply on hormone levels 

The increase of LOX2, AOS and AOC transcripts during K-starvation suggests (Figure 

4-3) an increase of JA-biosynthesis, and the increase of JIP60 transcript indicates 

elevated JA levels in –K plants (Figure 4-4).   However, JA measurements in the same 

tissue detected no increase in JA at day 9 and only a slight increase (1.4 fold) on day 15 

(Figure 4-5). In some of the samples (including various time points for both –K and 

control plants) no JA was detected and as a result the level of replication was 

insufficient for statistical analysis.  A possible explanation is that the tissue samples 

were stored for a long time at -80 °C before freeze drying, possibly allowing some 

breakdown of the JA. Unfortunately, due to machine failure at the Mass Spectrometry 

facility a full experimental set of 3 replicates per time point could not be achieved 

within the time frame of this PhD.  

It should be noted that the  increase in JA levels in K-starved Arabidopsis plants was 

also relatively small (1.8-fold) yet clearly significant (Troufflard et al., 2010).  

Furthermore, Troufflard et al. (2010) observed a much stronger K-response in the JA 

precursors 9-hydroxy-12-oxo-octade cadienoic acid (9-HOD), 13-HOD and OPDA. 

These oxylipins have been reported to act as signals in their own right (Böttcher and 

Pollmann, 2009; Stintzi et al., 2001; Taki et al., 2005; Vellosillo et al., 2007) and their 

concentrations should be determined in barley in the future. 

Several other plant hormones were also measured (Figure 4-5). K-starved plants 

displayed higher levels of ABA compared to the control plants as early as day 9.  ABA 

is an important signal in salt and drought-stress.  However, no significant difference in 

water content was observed between control and –K plants in chapter 3 (Table 3-1). It 

is interesting that shortage in K, which is the main solute required for osmotic 

adjustment during salt and water stress, also induces an ABA response in the absence 

of water stress.  An increase in SA and SA-glycoside levels in the –K plants than was 

also unexpected as no indication for an increase in SA-related genes was found in 

Arabidopsis (Armengaud et al., 2004). Furthermore, JA and SA have been reported to 

act antagonistically, therefore, if anything a reduction in SA levels was expected in the 

–K plants (Berrocal-Lobo et al., 2002; Harms et al., 1998; Niki et al., 1998; Norton et 

al., 2007).  However, synergistic effects of JA and SA have also been found (Mur et 
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al., 2006; Ton et al., 2002; Van Wees et al., 2008) and it is becoming increasingly clear 

that the two hormones interact with each other in a much more complex way than 

originally thought. Clearly, the observed increase in SA compounds needs to be taken 

into account when assessing the effect of K nutrition on defence responses in barley. 

4.6.4. Local responses to K within the shoot and within the leaf 

In addition to looking at the effects of K-starvation on the JA-related gene expression 

in whole shoot tissue, the levels in first and second leaves of 14 day old plants were 

also assessed (Figure 4-6).   The differences in JA-related gene expression between –K 

and control plants were in general larger in these samples than in the whole shoot 

samples, possibly due to the majority of the change occurring in the leaves.  The JA-

related transcript levels were higher in the –K plants in almost all samples, except for 

LOX2.3 and JIP23 for which a large level of variability made it difficult to interpret the 

data obtained.  The increase in JA-related gene expression was higher in the first leaf 

indicating that JA is accumulated to a higher level in the first leaf than in the second 

leaf.  This may be related to the lower concentration (47 %) of K in the first leaf than in 

the second leaf in plants grown in –K solution (Figure 3-1, chapter 3).  It is important to 

note that the second leaf showed more physical deficiency symptoms, such as paler 

colour and necrotic patches (data not shown). The results obtained here therefore 

suggest that transcript levels of JA-related genes are directly linked to K-content rather 

than downstream events. It was nevertheless decided to use the second leaf for further 

experiments as it grows longer thereby allowing better resolution of changes within the 

leaf. 

The JA-related gene expression in response to K-deficiency was measured in the tip, 

middle and base segments of 14 day old barley plants (Figure 4-7).  For all genes 

analysed except for LOX2.3, which again showed variation between replicates and little 

change with K status, transcript levels were generally higher in the –K samples 

compared to the control samples. Within the second leaf, transcript levels were highest 

in the tip samples, depleting towards the base of the leaf.  This gradient was seen in 

both control and –K plants but was much steeper in the latter.  The gene expression 

pattern correlated with the local concentration of K within the leaves, which decreased 

from base to tip in control and particularly –K plants (see Figure 3-1 in chapter 3 and 

Appendix 3, Table S3-2). However, at this stage other differences between and within 

the leaves of the plants (e.g. turgor, growth rates, apoplastic pH) cannot be excluded as 

the cause of the differences in JA-related transcript levels. In conclusion, transcript 
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levels of most of the selected JA-related genes in whole shoots, individual leaves and 

leaf segments generally followed the amount of K both in time and leaf region. The 

specific factors linking tissue K-concentration with gene expression are unknown at 

this stage and are further discussed in Chapter 7. 

4.6.5. Response of JA-related transcripts to other nutrients 

A high level of variation in the JA-related gene expression was seen in response to the 

withdrawal of other mineral nutrients, however most samples showed some increase 

(Figure 4-8).  This is in contrast to the results obtained with Arabidopsis plants grown 

in nutrient media lacking P, N S or Ca, which showed no change in transcript 

abundance of LOX2 and VSP2 (Troufflard et al., 2010). In barley, the withdrawal of 

phosphorus (P) resulted in some of the largest increases in JA-related gene expression, 

however, only in one of the two replicate experiments. Only a small increase in JA-

related gene expression was seen in plants deprived of sulphur.  One of the 

shortcomings of this experiment is that at the chosen time point (10 days) JA-related 

gene expression in the –K plants was only marginally increased over the control and 

hence all differences measured may reflect normal variation around the control value. 

Clearly, the issue of nutrient specificity requires much more detailed analysis in the 

future involving longer exposures to deficiency conditions, more replicates and a 

thorough analysis of tissue ion contents, growth rates and other physiological indicators 

of deficiency. 
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Chapter 5.  Potassium deficiency and Pathogen infection in Barley 

 

5.1.  Introduction 

Potassium availability is known to have an effect on the susceptibility of barley to a 

number of different pathogens including fungi, insects, and bacteria (Perrenoud, 1990).  

In the majority of cases higher K leads to reduced infection, but this is not always the 

case, and examples of higher or unchanged infection in response to higher K 

availability have also been reported (Imas and Magen, 2000).  In 2008, Amtmann et al.,  

suggested that the increased concentrations of JA seen in K starved plants might play a 

role in defence against pathogen attack and this group have since demonstrated reduced 

susceptibility to thrips in K starved A. thaliana plants (Armengaud et al., 2010).  In this 

chapter I investigate the effect of K-deficiency, and the resultant increase in JA 

concentration, on the infection of barley by two contrasting fungal pathogens. 

5.1.1. The effect of K nutrition on wounding  and herbivore attack 

Increased K supply in the field or greenhouse almost always leads to enhanced defence 

against insect pathogens, apparent as reduced insect feeding, damage or reproduction 

(Perrenoud, 1990).  In 1990, a study by the International Potash Institute compared 

results from 175 trials looking at the effect of increased K-fertilisation on aphids in a 

number of plant species (Perrenoud, 1990). Of these trials 115 showed reduced 

development of the insects or reduced damage, while 46 showed increased insect 

attack.  Higher K availability was found to lead to higher susceptibility to some insects, 

including thrips Frankliniella sp. and aphids Lipaphis erysimi, Schizaphis graminum 

and Toxoptera graminum (Perrenoud, 1990).  

5.1.2. JA, wounding and herbivore attack 

Although JA is involved in plant responses to a number of abiotic and biotic stresses, it 

is particularly well known as a signal for wounding and herbivore attack (Chen, 2008; 

Gatehouse, 2002; León et al., 2001; Wasternack et al., 2006). Induction of the JA 

signalling pathway in response to wounding by herbivores promotes the production of a 

number of defence proteins.  This has been well studied in tomato plants leading to 

identification of a number of JA-responsive proteins, including protease inhibitors, 

leucine aminopeptidases and threonine deaminases (Chen et al., 2004; Chen et al., 

2005; Walling, 2000).  JA-induced proteins that have been shown to be produced in 
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response to mechanical wounding include thionin in barley (Andresen et al., 1992) and 

trypsin inhibitors in tomato (Farmer et al., 1992).  While some of the responses of 

plants to herbivores are shared with the wounding response, other responses are related 

to herbivore-specific stimuli, such as the composition of insect saliva (Miles, 1999; 

Walling, 2000).  The JA-signalling response to herbivore attack includes both indirect 

(volatile emissions) and direct (formation of defence proteins and small compounds) 

defence mechanisms (Halitschke and Baldwin, 2004).  The release of volatiles has been 

demonstrated to lead to the induction of defence mechanisms in neighbouring plants 

(Farmer and Ryan, 1990). 

5.1.3. R. secalis and Plant K Status 

Although the resistance mechanisms to the hemi-biotrophic fungal pathogen 

Rhynchosporium secalis are well studied in barley (Zhan et al., 2008), little is known 

about the effect of nutrients on R. secalis infection.  A little work has been carried out 

looking at the effect of nitrogen on R. secalis infection.  Jenkyn and Griffiths (1976) 

found that increased nitrogen availability reduced the levels of R. secalis infection in 

both Cambrinus and Proctor barley cultivars.  The same group showed that 

susceptibility was negatively correlated with the total nitrogen content of barley leaves 

and positively correlated with water soluble carbohydrates (Jenkyn and Griffiths, 

1978).  In 1975, Ayres and Jones used 
86

Rb as a chemical analog of K in barley plants 

infected with R. secalis, and demonstrated increased 
86

Rb accumulation in infected 

regions, leading to stomatal opening and increased transpiration (Ayres and Jones, 

1975). 

5.1.4. Rhynchosporium secalis and JA 

A large proportion of the current knowledge of resistance strategies in barley to R. 

secalis is focused on the gene-for-gene interactions (Zhan et al., 2008) and some work 

has been carried out looking into the effect of plant hormones.  Allen and Lyon (1978) 

looked at the effect of R. secalis infection on accumulation of growth regulators such as 

auxin, gibberellin and cytokinin. They showed that after 10 days no change was seen in 

the auxin and cytokinin concentration, but substantially higher gibberellin 

concentrations were observed.  Weiskorn et al. (2002) investigated the effect of the SA 

analogs, bion (benzo-(1,2,3)-thiadiazole-7-carbothoic acid S-methyl ester, BTH) and 

dichloroisonicotinic acid (DCINA), and of JA on R. secalis infection.  High variation 

between replicates was seen but the overall results indicated a reduction of infection in 
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the plants treated with each of the three chemicals. However, R. secalis infection does 

not appear to induce JA-biosynthesis in barley leaves;  no change in expression of the 

JA biosynthesis gene LOX2Hv1 was observed in either the epidermal or the mesophyll 

cells of infected leaves (Steiner-Lange et al., 2003). 

5.1.5. Powdery mildew and K 

In 1990 the International Potash Institute released a review of the effects of K on plant 

health, drawing together the results from many field and glasshouse studies looking at 

the effect of K on plant diseases (Perrenoud, 1990).  For barley, one of the most studied 

fungal diseases is powdery mildew (Blumeria graminis f. Sp. hordei).  The manner in 

which K-supply affected Bgh infection varied between the different studies.  In most 

studies (17/31) higher K was found to lead to lower Bgh infection. However, in nine 

studies, an increase in Bgh with higher K was found and five studies found no effect of 

K supply on infection (Perrenoud, 1990).  More recently Brennan and Jayansena (2007) 

reported less Bgh on barley crops with K fertilizer applied compared with those grown 

in K-depleted soils, and an increased grain yield was obtained from the plants supplied 

K. By contrast, Wiese et al. (2003) observed that the application of K fertilizer to 

barley plants had little effect on powdery mildew colony numbers. 

5.1.6. Powdery mildew and JA 

Treatment of barley leaves with JA (Schweizer et al., 1993) and Me-JA (Walters et al., 

2002) reduces susceptibility to Bgh.  Schweizer et al. (1993) suggested that the higher 

resistance to Bgh of JA treated plants was due to antifungal properties of JA rather than 

induced resistance.  However, Walters et al. (2002) demonstrated that treatment of the 

first leaf with Me-JA led to higher phenylalanine ammonia lyase (PAL) and peroxidase 

activity and to lower Bgh infection on second leaves.  Treatment of barley leaves with 

other oxylipins such as colneleic acid, 9,12,13-trihydroxy-11(E)-octadecenoic acid and 

9,12,13-trihydroxy-10(E)-octadecenoic acid led to lower Bgh infection on the treated 

leaf (Cowley and Walters, 2005).  The treatment with oxylipins also acted systemically; 

when the first leaves were treated with etheroleic acid, colneleic acid or 9,12,13-

Trihydroxy-11(E)-octadecenoic acid a reduction in Bgh infection was seen on the 

second leaves (Cowley and Walters, 2005). 

5.1.7. Aim  

In this chapter, I report the effects of low-K supply on the infection of barley by two 

fungal pathogens, Bgh and R. secalis, and compare the effects observed with those 
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obtained by JA treatment to investigate whether they could be due to the higher JA in 

K-starved plants, as suggested by the work presented in Chapter 3.  In addition, the 

effect of both pathogens on JA related gene expression in control and –K plants is 

reported.  Before focussing on fungal pathogens I will describe a set of experiments in 

which wounding was applied to mimic the damage caused by herbivores during feeding 

and thus investigate whether the elevated JA concentration in –K plants modulates the 

response of JA-related transcripts to wounding.   

5.2. K-deficiency and JA response to wounding 

The second leaves of 14 day old barley plants were wounded approximately 1 cm from 

the leaf tip (see Chapter 2, Section 2.1.7).  The second leaves from 5 plants were 

pooled 0, 1, 2, 3, 4, 6 and 8 hours after wounding and qPCR was used to measure the 

transcript abundance of JA-related genes in the samples (Chapter 2, Section 2.4).  The 

experiments were carried out with two independently grown batches of plants and the 

results from both replicates are shown separately (Figure 5-1).  Due to low number of 

replicates no statistical analysis was carried out. 

A transient increase of LOX2.A transcript abundance was seen in both control and –K 

plants in response to wounding with the increase in –K plants being twice that in the 

control plants (Figure 5-1A).  The abundance of LOX2.A transcripts in the control 

plants increased directly after wounding, by 25 % and 40 % during the first hour.  The 

transcript abundance then quickly decreased to below that seen before wounding. By 2 

hours after wounding the LOX2.A abundance was 36 % and 41 % of control plants 

before wounding, and remained constant after this.  A similar fold increase was seen in 

LOX2.A expression in the –K plants one hour after wounding, with an increase of 49 % 

and 21 % over the initial levels.  The decline of LOX2.A expression was slower in –K 

plants and did not level out until 4 hours after wounding, when the transcript was 51% 

and 31% of -K plants before wounding.  The initial LOX2.A expression before 

wounding were 6-fold and 5-fold higher in the –K than in the control plants in 

replicates 1 and 2 respectively.  By 2 hours after wounding the LOX2.A expression 

were 13-fold and 10-fold higher in the –K plants than in the control plants. 
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Figure 5-1 JA related gene expression and wounding in –K plants.  Transcript abundance of JA 

related genes A: LOX2.A, B: AOC and C: JIP60 relative to α-tubulin in 2
nd

 leaf tissue from plants grown 

in control (●,) and -K (○,) media for 10 days before being wounded with a pair of forceps (Chapter 2, 

Section 2.1.7).  The transcript levels before wounding, 1, 2, 3, 4, 6 and 8 hours after wounding are 

shown.  Leaves from five plants were pooled for each time point, 2 replicates shown. 

 

A transient increase in the abundance of AOC transcripts was also seen in response to 

wounding in control and –K plants (Figure 5-1B).  The abundance of AOC transcripts 

peaked after 1 hour in the control plants, increasing by 3-fold and 2-fold in the two 

replicates.  The transcript abundance dropped after 1 hour but the decline was slower 

than for the LOX2.A transcript, the decline continued until 8 hours after wounding 

when the expression for the two replicates reached 21 % and 17 % of the initial values.  

The AOC expression in the –K samples also increased initially.  In the first replicate the 

AOC expression increased 2-fold after 2 hours, while a smaller increase was seen in the 

second replicate with an increase of just 1.4 % after 1 hour and no further increase after 

this.  The AOC transcript abundance in both samples gradually decreased reaching 79 

% and 73 % of the initial values 6 hours after wounding.  The abundance of AOC 

transcripts in the –K plants before wounding was approximately 2-fold that of the 

control plants for both replicates.  The AOC expression in control plants increased more 

rapidly than in the –K plants, resulting in a reduction in the difference between the two 

treatments, the –K samples were 1.5-fold that of the control plants an hour after 

wounding.  The slower decline in AOC expression in the –K plants resulted in a larger 

difference in AOC transcript abundance in later time points, with the –K samples 

reaching 8-fold and 7-fold higher transcript concentration than the control plants by 

after 8 hours. 

Little change in the abundance of JIP60 transcripts was seen during the course of the 

experiment in the control samples (Figure 5-1C).  In the –K samples, which displayed 

5-6 fold higher JIP60 transcript abundance at the beginning of the experiment, there 
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was a decrease in JIP60 expression 1 to 2 hours after wounding, after which the 

expression returned to around the 60 % of the initial values,  remaining at this level for 

the remainder of the experiment.   

 

5.3. R. secalis infection in K deficient barley plants 

5.3.1. K-deficiency and R. secalis infection 

 

Figure 5-2. R. secalis infection in barley leaves under K stress.  Detached leaf segments were 

prepared from the tip middle and base regions of the second lead of plants grown for 14 days in control 

(●) or –K (○)  nutrient solution.  A: R. secalis lesions on tip, middle and base segments from leaves 

grown in control and –K nutrient solution, 12 days after inoculation.  B: The percentage of control (●) 

and –K  (○) leaf segments inoculated with R. secalis with visible lesions 3, 6, 9, 12 and 15 days after 

inoculation (Chapter 2, Section 2.6.1).  The length of R. secalis lesions formed on C: tip, D: middle and 

E: base segments cut from second leaves of barley plants grown for 14 days in control (●) or –K (○) 

nutrient solution 3, 6, 9, 12 and 15 days after inoculation. The mean (± SE) of 3 replicate experiments is 

show.  Note: in some cases error bars are smaller than the symbols, for experimental design and 

statistical analysis see Chapter 2, Section 2.8.5).   

 

To establish the effect of K-deficiency on R. secalis infection, detached tip, middle and 

base leaf segments were prepared from the second leaf of barley plants grown in 
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control or –K nutrient solution for 14 days (for details see Chapter 2, section 2.1).  The 

segments were each inoculated with 10 µl of 10
6 

spores/ml spore solution and the 

length of any visible lesion was measured every 3 days (Section 2.6.1, Figure 5-2).  

Figure 5-2 shows R. secalis infection levels 3, 6, 9, 12 and 15 days post inoculation.   

The data was analysed using ANOVA (Appendix 2, Table S2-9), the data was not 

normally distributed and was transformed by taking the log10 before analysis, see 

chapter 2, section 2.8.5 for more detailed experimental design.   

K-starvation led to earlier formation of visible R. secalis lesions on the leaf segments.  

No lesions were visible on the control segments on day 3, and by day 9 only 12 % of 

control segments had visible lesions (Figure 5-1 B).  However, by day 15, 94 % of leaf 

segments had visible lesions.  Visible symptoms of R. secalis were seen on the –K 

segments as early as day 3, when 1 % of segments had visible lesions.   Nine days after 

inoculation 45 % of the -K segments had visible lesions, 4 times as many as the control 

segments.  By day 15 the number of segments with visible lesions on the control and –

K segments equalised, with around 94 % of segments displaying visible lesions. 

5.3.2. JA and R. secalis infection 

In order to investigate if JAs have any effect on R. secalis infection, segments from the 

middle of the second leaf of barley plants grown in full nutrient control solution were 

floated for 24 hours in a 45 μM solution of methyl-jasmonate (Me-JA) or water 

(control) as described in the Chapter 2, section 2.6.3.  The detached leaf segments were 

then inoculated with 10 µl of spore suspension (10
6
 spores/ml) and the lengths of the 

visible lesions were measured every 3 days.  Figure 5-3 shows the effect of Me-JA 

treatment on R. secalis infection levels 3, 6, 9, 12 and 15 days post inoculation.   The 

data was analysed using ANOVA (Appendix 2, Table S2-10), the data was not 

normally distributed and was transformed by taking the log10 before analysis, see 

chapter 2, section 2.8.6 for more detailed experimental design.   

There was a significant interaction between the effect of Me-JA treatment and days 

since inoculation (p=0.006) on Rhynchosporium lesion size.  Lesions were first visible 

on the segments treated with Me-JA 6 days after inoculation with R. secalis, when 4 

segments had visible lesions.  By day 12 the length of lesions on the Me-JA treated leaf 

segments was 15 % larger than those measured on the control plants. The lesion size in 

the segments treated with Me-JA remained marginally larger than in the control plants.  
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Figure 5-3.  Methyl Jasmonate and R. secalis infection.  Middle leaf segments from 14 day old second 

leaves, grown in control nutrient solution were floated on 45 µM Me-JA (●) or water (●) for 24 hour 

before inoculation with 10
6
 spores/ml solution of R. secalis spores (Chapter 2 Sections 2.6.1 and 2.6.3).  

The length of the lesions formed on 24 detached leave segments was measured 3, 6, 9, 12 and 15 days 

post inoculation.  The mean (± SE) of 3 replicate experiments is shown. for experimental design and 

statistical analysis see Chapter 2, Section 2.8.6).   

 

5.3.3. JA related gene expression and R. secalis infection 

To investigate the effect of R. secalis infection on the transcription of JA-related genes, 

detached leaves from control and –K plants were infected with R. secalis and the 

expression of JA-related genes measured using qPCR (see Chapter 2, sections 2.4 and 

2.6.1).  The middle segments were selected for these experiments because (a) the 

growth conditions had a greater effect on the amount of infection here than in the base 

segments, (b) they had a larger surface area than the tip segments, and (c) they 

remained flatter than the other segments when placed on agar, which prevented 

displacement of the spore solution.  Figure 5-4 shows the effect of K starvation and R. 

secalis infection on LOX2, AOS, JIP60 and PAL transcription 0, 1, 2, 3 and 4 days post 

inoculation.   The data was analysed using ANOVA (Appendix 2, Table S2-11), the 

data was not normally distributed and was transformed by taking the log10 before 

analysis, see chapter 2, section 2.8.7 for more detailed experimental design.   
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Figure 5-4 JA related gene expression after R. secalis infection. Transcript abundance of JA related 

genes A: LOX2A, B: AOS and C: JIP60 and pathogen related gene D: PAL relative to α-tubulin in middle 

segments of the second leaf from plants grown in control (●,) and -K (○,) media for 14 days, and 

either mock-inoculated (control; ●,○) or R. secalis inoculated (,).  Five detached leaf segments were 

pooled for each time point, 0, 1, 2, 3 and 4 days post inoculation and the transcript levels determined 

using qPCR. Data represent the mean (± SE) of 4 replicates (for experimental design and statistical 

analysis see Chapter 2, Section 2.8.7).   

No significant interaction of the effect of K-availability, pathogen infection and time on 

JA related gene expression was observed.  As shown previously (Chapter 4) the 

transcript abundance of LOX2.A (p=0.002), AOS (p<0.001) and JIP60 (p<0.001) were 

significantly higher in the –K plants than in the control plants. Interestingly the 

pathogen related gene PAL was also up regulated in response to K-starvation.  After 

treatment with R. secalis solution or water, transcript of LOX2.A and AOS dropped 

considerably in – K plants but still remained significantly higher than in control plants. 

Apparently the treatment itself had an effect on JA signalling, independent of the 

fungus. R. secalis infection had no significant effect on the abundance of LOX2.A 

(p=0.677), AOS (p=0.680), JIP60 (p=0.966) or PAL (p=0.107) transcripts in either 

control or –K segments.   
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5.4. Powdery mildew infection in K starved barley plants 

5.4.1. K-deficiency and Powdery mildew 

To investigate the effect of K-deficiency on the severity of Bgh infection in tip, middle 

and base segments of barley leaves, detached leaf segments were prepared from plants 

grown in control or –K nutrient solution and inoculated with powdery mildew spores 

(for details see as per Materials and Methods section 2.6.2).  The severity of infection 

was assessed by counting the number of mildew colonies on each segment every 3 

days.  The number of colonies per cm
2
 was calculated for each segment to account for 

differences in size between segments. Figure 5-5 shows Bgh infection levels 3, 6, 9, 12 

and 15 days post inoculation.  The data was analysed using ANOVA (Appendix 2, 

Table S2-9), the data was not normally distributed and was transformed by taking the 

log10 before analysis, see chapter 2, section 2.8.5 for more detailed experimental 

design.   

Visible Bgh colonies formed later on the K-deficient leaves than on the control leaves 

(Figure 5-5B).  Colonies were first visible on control segments on day 6, when 8 % of 

tip, 34 % of middle and 22 % of base segments had one or more visible colonies.  The 

number of segments with colonies increased over time, and by 15 days after inoculation 

80 % of the control segments had visible colonies (Figure 5-5 B).  The colonies on the 

–K segments were slower to appear; on day 6 there were no colonies on the tip 

segments and just 3 % of the middle and 5 % on the base segments had visible 

symptoms.  By 15 days after inoculation 50 % of –K segments had visible colonies.  

The number of –K segments with visible colonies was lower for the tip (20 %) than the 

base (81 %) of the leaf, although there were less visible colonies on the control tips (74 

%) than the base (92%) the effect was much smaller. 

A significant interaction was observed between the effects of K-availability, leaf region 

and length of time since inoculation on colonies per cm
2
 (p<0.001).  K-deficient barley 

plants were clearly less susceptible to Bgh infection than the K-sufficient plants (Figure 

5-5).  The K-deficient segments had significantly fewer colonies than the control 

segments throughout the experiment.  As early as day 6, there were fewer visible 

colonies on the -K tip, middle and base segments than the control segments. The 

difference in colony number between –K and control plants was considerably decreased 

from the tip to the base of the leaf.  Expressed as a percentage of the control, the 
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average colony number per cm
2 

on the –K segments on day 15 was 14 % for the tip, 

36% for the middle and 77% for the base.    

 

Figure 5-5. Powdery mildew infection in barley leaves under K stress.  Detached leaf segments were 

prepared from the tip middle and base regions of the second lead of plants grown for 14 days in control 

(●)  or –K (○)  nutrient solution.  The leaf segments were inoculated with Bgh spores using an 

inoculation column. A: Bgh colonies on tip, middle and base segments from leaves grown in control and 

–K nutrient solution, 12 days after inoculation.  B: Number of leaf segments that showed visible colonies 

with time after inoculation with Bgh (in % of total number of inoculated segments).  The number of Bgh 

colonies formed on C: tip, D: middle and E: base segments 0, 3, 6, 9, 12 and 15 days post inoculation. 

The mean (± SE) of 3 replicate experiments is show.  Note: in some cases error bars are smaller than the 

symbols, for experimental design and statistical analysis see Chapter 2, Sections 2.6.2 and 2.8.5).   

The severity of powdery mildew infection (measured as average number of colonies 

per cm
2
) increased from the tip to the base of the leaf in both control and –K plants 

(Figure 5-5 C-E).   In control leaves colony numbers differed little between tip and 

middle segments but the base segments had 44 % and 51 % more colonies per cm
2
 than 

the tip and middle segments respectively.  The average number of colonies per cm
2 

on –

K segments also increased from the tip to the base of the leaf.  By day 15 there were 

0.25 colonies/cm
2 

on the tip, 0.59 colonies/cm
2 

on the middle and 1.9 colonies/cm
2
 on 

the base segments from –K plants. 
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5.4.2. JA and powdery mildew infection 

It has previously been reported that treatment of barley with Me-JA leads to lower Bgh 

infection (Section 5.1.6). To establish a possible role for JA in linking K-deficiency 

with decreased susceptibility to Bgh it was important to repeat the experiment here with 

the same plants and growth conditions as used previously (Chapter 2, Sections 2.1). 

Segments from the middle of the second leaf of barley plants grown in control solution 

were floated for 24 hours on water or on a 45 μM solution of methyl-jasmonate (Me-

JA).  The detached leaf segments were then inoculated with powdery mildew spores 

(for details see Chapter 2, section 2.6.3).  To assess the severity of infection, the 

number of successful colonies on each leaf segment was counted every 3 days.  Figure 

5-6 shows the effect of Me-JA treatment on Bgh infection levels 3, 6, 9 and 12 days 

post inoculation.   The data was analysed using ANOVA (Appendix 2, Table S2-10), 

see chapter 2, section 2.8.6 for more detailed experimental design.   

 

Figure 5-6.  Methyl Jasmonate and powdery mildew infection.  Middle segments from second leaves 

of 14 day old barley plants grown in control solutions were floated on water (closed circles) or on 45 µM 

Me-JA (open circles) for 24 hours before inoculation with powdery mildew spores (Chapter 2, Section 

2.6.26 and 2.6.3).  The number of colonies on each of 24 segments were counted every 3 days.  The 

means (± SE) of 3 replicate experiments are shown, for experimental design and statistical analysis see 

Chapter 2, Section 2.8.6).   

There was a significant interaction between the effect of Me-JA treatment and days 

since inoculation on Rhynchosporium lesion size (p<0.001).  Treatment with Me-JA 

led to a reduction in Bgh infection compared with water treated controls (Figure 5-6). 

Colonies were first seen on day 6 on both the Me-JA treated and control segments, but 

there were fewer (76 %) colonies on the Me-JA treated segments compared to the 
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control segments.  By day 12, colony numbers on the Me-JA treated segments were 

slightly lower than on the control segments, with the Me-JA treated segments having 

82 % the number of visible colonies seen on the control segments. 

5.4.3. JA related gene expression and powdery mildew infection 

To investigate the effect of Bgh infection on the transcription of JA-related genes, 

detached leaves prepared from the second leaf from control and –K plants were 

infected with Bgh and the expression of JA-related genes measured using qPCR (see 

Chapter 2, sections 2.4 and 2.6.2).    Figure 5-4 shows the effect of K starvation and R. 

secalis infection on LOX2, AOS, JIP60 and PAL transcription 0, 1, 2, 3 and 4 days post 

inoculation.   The data was analysed using ANOVA (Appendix 2, Table S2-13), the 

data obtained for LOX2.A and AOS was not normally distributed and was transformed 

by taking the log10 before analysis, see chapter 2, section 2.8.7 for more detailed 

experimental design.   

 

Figure 5-7 JA related gene expression after Bgh infection.   

Transcript abundance of JA related genes A: LOX2A, B: AOS and C: JIP60 and pathogen related gene D: 

PAL relative to α-tubulin in middle segments of the second leaf from plants grown in control (●,) and -

K (○,) media for 14 days,  either mock-inoculated (control; ●,○) or Bgh inoculated (,).  Five 

detached leaf segments were pooled for each time point, 0, 1, 2, 3 and 4 days post inoculation and the 

transcript levels determined using qPCR. Data represent the mean (± SE) of 4 replicates (for 

experimental design and statistical analysis see Chapter 2, Section 2.8.7).   
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No significant interaction of the effect of K-availability, pathogen infection and time on 

JA related gene expression was observed.  The inoculation, independent of the presence 

of fungus in the applied solution, led again to a drop of expression of LOX2.A, AOS and 

JIP60 in the – K plants and largely abolished the difference in transcript abundance 

between –K and control plants that was evident at time point 0 (Figure 5-7). This 

finding, together with a large variation of transcript concentration between replicates 

and time points, made it difficult to extract any clear conclusions from the experiments. 

Keeping these problems in mind, the data indicated higher expression in Bgh-

inoculated plants than in non-infected plants, with clear interaction between the effect 

of Bgh infection and time on LOX2.A (p<0.001) and AOS (p<0.001) transcript 

abundance.  However only AOS transcript levels were significantly affected by 

interaction between K-availability and Bgh infection (p=0.011). 

 

5.5. Discussion and conclusion 

In this chapter the effect of K-starvation and Me-JA treatment on severity of infection 

of both Bgh and R secalis was described.  In addition, the response of JA-related genes 

to powdery mildew and R. secalis infection and wounding (to mimic herbivore attack) 

was investigated and compared between plants grown in control conditions and plants 

grown in low K conditions. 

5.5.1. Increase in JA after wounding extended in –K plants 

Armengaud et al (2010) demonstrated a reduction in thrips bites in K-starved A. 

thaliana plants when compared to K-replete controls.  Since JA treatment has been 

shown to reduce plant susceptibility to thrips (Abe et al., 2009) it is possible that the 

effect of low K was due to increased JA-concentration. Unfortunately, Arabidopsis JA-

signalling mutants (coi1.16) were damaged so quickly and so badly by the thrips that 

they could not be used to test the necessity of JA signalling for the low-K effect. The 

Amtmann group also investigated whether the effect of K nutrition on the susceptibility 

in A. thaliana to thrips was due to a difference in the production of glucosinolates. 

Indeed, low-K plants contained less glucosinolates (particularly of the indole type) and 

this difference was dependent on functional JA-signalling (i.e. it was less pronounced 

in coi1.16 mutants; (Troufflard et al., 2010). However, mutants in the production of 

indole glucosinolates (cyp79b2/b3) grown in low-K conditions showed the same 

decrease in susceptibility to thrips as wild type plants, suggesting that higher indole 
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glucosinolate concentration did not underlie the effect of low K on susceptibility to 

thrips. 

This thesis focussed on fungal pathogens rather than insect herbivores but the JA-

marker genes identified in Chapter 3 allowed the effect of wounding on these genes to 

be tested, and whether this was modulated by the K status of the plants. While 

wounding is only one component of herbivore attack (saliva components being 

important additional stimuli) these experiments provided a first hint of whether JA-

signalling is involved in K-herbivore interactions in barley.   

The results showed enhanced JA related gene expression response to wounding in the 

K-starved plants (Figure 5-1).  In both the control and –K plants an increase in JA-

related gene expression was seen 1 h after wounding.  Despite higher transcript 

concentrations in –K plants at the beginning of the experiment, the relative change in 

transcript concentrations and the overall shape of the response over time were similar in 

the –K and control plants indicating that the effect of the wounding on gene expression 

was additive to the effect of K-starvation.   Furthermore, transcript levels in the –K 

plants returned to initial levels more slowly after wounding than the control plants.  

This suggests a stronger and prolonged JA-signal in response to wounding in the K-

starved plants compared to the K-sufficient plants. Whether or not a higher constitutive 

JA concentration and a prolonged JA signal after wounding would enhance the plant‘s 

defence potential against herbivorous insects‘ remains to be proven. 

Further work should now be carried out looking at the response of barley JA marker 

genes to insect pathogens such as aphids.  The molecular experiments should be 

complemented by investigating preferences of insects to control and –K plants.  To 

understand the role of JA as a mobile defence signal it would also be interesting to look 

at the effect of K-starvation on systemic wound signalling by assessing effects of K-

nutrition on JA-marker gene expression in unwounded leaves from wounded plants. 

5.5.2. K-deficient plants are more susceptible to R. secalis  

The role of JA in plant defence responses differs depending on the pathogen. Early 

research on this topic suggested a fundamental difference between plant defence 

mechanisms against biotrophic and necrotrophic fungi characterising the former as SA 

-dependent and the latter as JA-dependent (McDowell and Dangl, 2000). More recent 

research shows that the distinction between the JA and the SA pathways, and between 

the defence mechanisms against biotrophs and necrotrophic fungi, is more complicated 
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than originally thought due to multiple roles of JA and cross-talk of the pathways 

(Lorenzo and Solano, 2005). A fundamental question guiding this thesis is whether an 

increase of JA caused by abiotic stress (here K-deficiency) has different effects on 

pathogen susceptibility depending on the specific role of JA for plant defence against 

the pathogen in question. This question was addressed by testing the effects of low-K 

nutrition and Me-JA application on two different fungal pathogens of barley 

representing different lifestyles, one being a hemi-biotroph (R. secalis) and one being a 

full biotroph (Bgh). Indeed previous reports indicated that the two fungi have different 

responses to JA treatment, however, perhaps surprisingly, the biotroph Bgh infection 

was reduced by the JA and Me-JA treatment (Schweizer et al., 1993; Walters et al., 

2002). 

K-starvation led to increased susceptibility of barley to R. secalis; R. secalis lesions 

were seen earlier and were significantly larger on the leaf segments from plants grown 

in –K nutrient solution (Figure 5-2).  Treatment of leaf segments with Me-JA had little 

effect on lesion size (if anything they were slightly increased, Figure 5-3). This result 

differs from a previous study (Weiskorn et al., 2002) which observed a decrease of R. 

secalis infection in JA-treated plants, albeit with a high level of variation. The 

difference between the results presented here and results of Weiskorn et al, (2002) 

stresses the importance of measuring the effect of JA on fungal infection in the same 

growth conditions, plant developmental stage and infection protocol as used for the 

other experiments in this project. The results obtained here indicate that the observed 

effect of K-deficiency on R. secalis infection is independent of JA.   

The lack of transcriptional response of JA-related genes to R. secalis infection (Figure 

5-4) further supports the notion that JA does not play a major role in the defence of 

barley against R. secalis, at least not at the infection stage assessed here.  R. secalis acts 

as a biotroph during the initial growth of hyphae, but later changes to a necrotrophic 

phase during which it leads to the collapse of host cells (For a more in depth discussion 

on the R. secalis life cycle see Chapter 1, Section 1.5.3.1).  The sampling period 

spanned the first 4 days after inoculation. Based on previous assessments of the R. 

secalis infection (Jones and Ayres, 1974; Linsell et al., 2010; Lyngs Jørgensen et al., 

1993) and observations that no pale green lesions had formed on the leaf segments at 

the time of sampling it is most likely that the R. secalis is still in the biotrophic phase of 

its life cycle.  The lack of response of JA marker genes indicates the increased 

susceptibility to R. secalis in –K plants is likely to be a result of other changes caused 
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by low K. Bearing in mind previous findings (Jenkyn and Griffiths, 1976), good 

candidates are K-dependent changes in N and C metabolites and K-dependent changes 

of stomatal opening (for further discussion see Chapter 7).  

The observation that R. secalis symptoms were less pronounced in the base than in the 

tip of the leaf (in both control and –K plants) is interesting as it is in accordance with 

the observed K gradient within the leaf (see Figure 3-1 in Chapter 3 and Appendix 3, 

Figure S3-2). Thus, a negative relationship between K content and R. secalis infection 

is apparent both at organ and at tissue level and spans a wide range of K-concentrations 

in the leaf.  

5.5.3. K-deficient plants are less susceptible to Bgh infection 

The effect of K-deficiency and Me-JA treatment on infection of barley by the 

biotrophic fungus Bgh was also investigated in this chapter. Low levels of K-

fertilization in the field often lead to a decrease in Bgh infection in barley plants 

(Perrenoud, 1990).  However, the effect of K varies a lot between published trials, 

indicating that timing and conditions of infection have a big impact on the outcome.  

Reduced Bgh infection in response to JA treatment has also been reported (Schweizer 

et al., 1993; Walters et al., 2002).   No study to date has measured the effects of K and 

JA on Bgh infection using identical growth conditions, plant material, inoculation 

protocols etc., and it is therefore impossible to assess the relationship between JA and 

K effects on plant susceptibility to Bgh based on published data.   

In the experiments reported in this chapter, both K-deficiency and Me-JA treatment led 

to reduced Bgh infection in barley plants (Figures 5-5 and 5-6). The number of 

segments with visible Bgh colonies and the number of colonies per cm
2
 were both 

reduced in –K plants compared to the control plants (Figure 5-5).  The reduction in the 

number of colonies indicated increased resistance to Bgh response in low-K plants.  

The effect of K on Bgh infection was largest in the tips and smallest in the base 

segments. Considering that the tissue K concentration is lower in the leaf tip than at the 

base of the leaf (Figure 3-1) a positive correlation between K concentration and Bgh 

infection can be concluded at tissue level (Appendix 3, Table S3-2).  Treatment of leaf 

segments with Me-JA led to reduced Bgh infection compared to mock treated controls, 

indicating that increased JA concentration enhances the resistance of barley to Bgh.  A 

reduction in bgh infection in response to JA and Me-JA treatment has previously been 

reported (Schweizer et al., 1993; Walters et al., 2002), and in A. thaliana the JA 
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constitutuive expressor of  JA responses (cer1) has been shown to be less suceptable to 

Arabidopsis powdery mildew (Erysiphe cichoracearum) infection compared with wild 

type plants (Ellis et al., 2002).  Hence, lower susceptibility to Bgh in K-starved barley 

plants may indeed be due to increased JA concentration in these plants. Increase in JA 

concentration stimulates the expression of a wide variety of defence related genes in A. 

thaliana including vegitiative storage proteins (VSP) and plant defensin (PDF1.2) 

which maybe responsible for the reduced suceptability to bgh in –K plant (Berger et al., 

1995; Penninckx et al., 1996).  However, Schweizer et al. (1993) suggested that JA 

maybe directly inhibiting appressoria differentiation of the fungus. It is important to 

note that transcript abundance of JA-related genes differed in the leaf regions 

(particularly of K-deficient plants) being highest in the tip and lowest at the base of the 

leaf (Figure 4-7 in Chapter 4), a positive correlation was observed between the JA 

related gene expression in the detached leaf segment before inoculation and the rate and 

severity of Bgh infection (Appendix 3 Table S3-2). 

Transcripts of JA-related genes showed a lot of variation in their abundance, and a fast 

response to the inoculation procedure (independent of fungus being present; Figures 5-

4 and 5-7). It is therefore not possible to make firm statements about the effects of Bgh 

on the expression of the selected JA-related genes or to assess whether K modulated 

these responses. Nevertheless the data suggest an increase in the expression of JA-

related genes during Bgh infection. 

In conclusion, the experiments carried out in this study suggested a negative 

relationship between barley leaf tissue K concentration and infection by R. secalis (a 

hemi-biotrophic fungus), and no effect of JA on R. secalis infection. Thus, in the case 

of R. secalis, K-deficiency has an adverse effect on plant health which is likely to be 

based on physiological or metabolic changes in the plant. By contrast, a positive 

relationship was indicated between barley leaf tissue K-concentration and infection by 

Bgh (a biotrophic fungus), and a significant reduction in Bgh infection was achieved by 

JA treatment. Thus, in the case of powdery mildew, K-deficiency has a beneficial effect 

on plant health which may be caused by an increase in JA in the leaf tissue. Additional 

experiments, indicated an additive and prolonged effect of low K on the expression of 

wound-induced (JA-related) genes after mechanical wounding. Whether this effect 

translates into lower susceptibility of K-deficient barley plants to herbivorous insects 

requires further experimentation. 
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Chapter 6: Transcriptional changes of Barley in response to 

K-starvation and exposure to R. secalis 

 

6.1. Introduction low-K 

 

6.1.1. Background and aim 

 

Microarray technology allows the simultaneous measurements of a large number of 

transcripts, enabling scientists to investigate in a fast and efficient manner how 

different conditions and treatments influence the transcriptome of an organism, tissue 

or cell type.  In this chapter I will describe data obtained from microarray experiments 

designed to investigate the effects of K-starvation and Rhynchosporium secalis 

infection on detached leaf segments prepared from barley plants grown in hydroponics 

for 14 days. 

 

The effects of K-deficiency on crop yield and health have been studied extensively, but 

much less research has been carried out to understand how changes at the level of 

physiology and biochemistry are underscored by gene expression in crops.  A small 

number of microarray studies have been carried out in the model plant A. thaliana.  For 

example Gierth et al. (2005) used microarrays to look at the effect of short term K 

deprivation on transcript levels in A. thaliana roots.  They found surprisingly few 

changes in samples taken up to 96 hours after K withdrawal, despite a 60% drop in K in 

the root tissue.  Amongst the genes that had altered expression in response to K-

starvation was the KUP/HAK/KT transporter AtHAK5, which was consistently 

upregulated after 48 hours of K deprivation.  Hampton et al. (2004) used microarrays to 

compare transcriptional changes in response to K-deficiency and cesium toxicity in 

roots and shoots.  Armengaud et al. (2004) carried out microarray experiments looking 

at the changes in the A. thaliana root and shoot transcriptomes in response to longer 

term (14 days) K deprivation and subsequent resupply (6-24 hours).  A large number of 

K-responsive genes were identified in this study, particularly those with functions in 

cell wall biochemistry, calcium signalling, plant defence, and JA signalling. To-date, 

no microarray studies looking at the effects of R. secalis infection on transcriptional 

profiles has been published. 
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6.1.2. Aims of chapter 

 

In this chapter I report the effects of K-deficiency and/or R. secalis infection on gene 

regulation in barley plants.  I also report genes that show a differential response to R. 

secalis infection in control and K-starved plants to identify possible mechanisms for the 

change in susceptibility to R. secalis in K-starved plants.  

 

6.1.3. Experimental setup 

 

The microarray experiment was set up in order to investigate changes in gene 

expression in response to K-deficiency and R. secalis and any interaction between the 

two responses.  Four replicate experiments were carried out by growing and treating 

separate batches of plants. In each replicate experiment, mock-infected and R. secalis-

infected leaf segments from control and K-starved plants were sampled 2 and 4 days 

after inoculation (Figure 6-1).  Barley plants were grown in full nutrient control or K-

free nutrient solution for 14 days.  Detached leaf segments were prepared from the 

middle of the second leaf of each plant and inoculated with R. secalis spore solution as 

described previously (Materials and Methods section 2.6.1).  Five segments were 

harvested and pooled 2 and 4 days after inoculation.  RNA was prepared and labelled 

as described previously (Materials and Methods section 2.4.1 and 2.7). 

 

Figure 6-1 Experimental set up.  Plants were grown in control or –K nutrient solution for 14 days, 

before the preparation of detached leaf segments from the middle of the second leaf.   The leaf segments 

were inoculated with three 10 µL drops of 10
6
 spores/ ml solution of R. secalis (+R) or mock inoculated 

with water.  Five leaf segments were pooled from each set of conditions 2 and 4 days after inoculcation. 

The experiment was carried out in four replicates. 
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The SCRI_Hv35_44K_v1 (Agilent design 020599) microarray used here was designed 

based on the HarvEST assembly 35 and represents 42,302 barley sequences (for more 

information see Materials and Methods section 2.7.6). Two differently labelled RNA 

samples were hybridized to each array according to a balanced design. 16 arrays were 

used each with 2 samples making 32 samples in total.  

 

6.2.  Statistical properties of the microarray dataset 

 

The Agilent Genespring software was used to carry out principal component analysis 

(PCA) on the raw data (dye signal intensity) obtained from the microarrays (Figure 6-

2).  A clear separation was observed between the control and K-starved samples, 

indicating that a large proportion of the variation in the data can be accounted for by K 

availability (Figure 6-2 A).  Very little separation was observed based on R. secalis 

infection (Figure 6-2B) or days after inoculation with R. secalis (Figure 6-2C), an 

indication that these factors had less effect on the transcriptome of the barley plants 

than K availability.  At the level of individual transcripts very few significant 

differences between the day 2 and day 4 samples were found; these samples were 

therefore treated as replicates during further analysis of the data (Sections 6.3. to 6.5.).    

 

Due to the high number of samples, the microarray hybridization was carried out on 

two consecutive days with slides 29 and 30 hybridised on the first day and 31 and 32 on 

the second day.  This could explain the observed separation between the data obtained 

from the two pairs of slides (Figure 2-6D). It is also worth noting that hybridization of 

the two pairs of slides was carried out by different people, which may also lead to 

variation due to different skill and experience.  Furthermore, slides 29 and 30 were the 

last two slides from one box and 31 and 32 were taken from a different box, although 

all slides were from the same production batch and had been stored together.  The 

technical variation between the two pairs of slides may obscure smaller changes 

induced by the treatments and future experiments should seek to avoid the possible 

sources of artefacts listed above.  Prior to further analysis the data were normalised to 

the medium signal across all arrays. 
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Figure 6-2 PCA analysis of microarray results.  Principal component analysis (PCA) was carried out 

using the Agilent Genespring software.  The grouping of the microarray results based on the effect of K 

treatment (A), R. secalis infection (B), time since inoculation (C) and microarray slide (D) are shown. 

 

6.3.  Changes in gene regulation in response to K-deficiency 

 

To investigate changes in gene regulation in response to K-deficiency in both the R. 

secalis infected and mock infected tissue the data were subjected to a two-way 

ANOVA and a correction for multiple testing (Benjamini and Hochberg, 1995; 

Bonferroni, 1936) to obtain lists of differentially expressed genes with a given 

significance with respect to K treatment.   The lists of differentially expressed genes 

contained 17002 genes with a p-value of less than 0.05, and 2736 genes with a p-value 

of less than 0.005. The latter was used for functional analysis. 
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The closest protein match in the A. thaliana TAIR9 database was identified for genes 

with altered expression levels and was used to categorise the data into biological 

processes based on GO terms using Amigo17 GO terms enrichment tool (Ashburner et 

al., 2000) with a p-value greater than 0.01 (Boyle et al., 2004).  A representation of the 

functional categories harbouring K-responsive genes is shown in Figure 6-3.  The GO 

term analysis identified three broad categories of K-responsive genes: response to 

stimuli (p=4.84e
-25

), cellular processes (p=1.47e
-17

) and metabolic processes (p=3.09e
-

25
, Figure 6-3).  The first category could be further split into a number to subcategories: 

response to abiotic stress, chemical stimulus and biotic stress.  By far the most 

significant of these categories was response to abiotic stress which accounted for 9 % 

of the K-responsive transcripts (p=4.35e
-11

).  48 % of the identified genes expressed 

differentially were involved in cellular processes, particularly in cellular component 

organisation or biogenesis.  47% of K-responsive genes were involved in metabolic 

processes such as photosynthesis and energy generation as well as the metabolic 

processing of nitrogen, organic acids, aldehydes, ketones and proteins.   

In order to investigate the effect of K-deficiency on gene regulation in barley further, 

the gene list was split into genes that were upregulated and those that were 

downregulated in response to K-starvation using the GO terms with the Agilent 

Genespring software (For full gene lists seen Appendix 4, Tables S4-1 and S4-2). The 

lists obtained both contained a similar number of differentially expressed genes in 

response to K-starvation, with the 1282 genes upregulated and 1454 genes 

downregulated. However some of these genes were replicated and others did not have 

close matches in the Tair9 data base.  The new lists were then entered into the Amigo 

GO terms enrichment program as described above.    

 

6.3.1. Genes upregulated in response to K-deficiency 

 

The genes that were upregulated in response to K-deficiency could be split into the 

same three categories identified earlier for all genes changed in response to K (Table 6-

1), however there was a high level of overlap between the genes involved in cellular 

and metabolic processes, so these groups were combined to reduce repetition.  The 

majority of the genes upregulated in response to low K were classified in this category 

of cellular and metabolic processes, which was largely made up of genes involved in 

cellular metabolic (35%) and primary metabolic processes (35%).   The genes 
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―upregulated in response to stimuli‖ formed a much smaller but highly significant 

group (p=1.94 x e
-9

) which made up just 22% of all genes upregulated in response to K-

deficiency.   This category could be further split into three smaller but still highly 

significant groups of genes involved in response to abiotic stress (p=6.95 x e
-9

), stress 

(p=3.50 x e
-8

) and chemical stimuli (p=6.36 x e
-8

).   

 

It is worth noting that a number of JA related genes were upregulated in response to K-

starvation in these experiments (marked in red in table 6-1).  These include the JA 

biosynthesis genes LOX2, AOS and AOC3 and JAZ, which suppresses JA related gene 

expression by MYC2 (Chini et al., 2007; Thines et al., 2007).   No barley JIP genes 

were identified as having altered regulation in response to K-starvation during this 

analysis, possibly due to differences in JA induced genes in A. thaliana and barley, 

although JIP60 was part of the list of genes upregulated in response to K-starvation 

produced identified by the ANOVA. 

 

K-starvation also lead to greater expression of a number of pathogen-related genes, 

including general pathogen-related genes encoding, for example, PR proteins and PAL.  

Two Mlo genes, Mlo1 and Mlo15, were also upregulated in response to K-starvation.  

 

Table 6-1 Gene categories upregulated upon K-deficiency.  Genes upregulated in response to K-

starvation with p values < 0.005 corrected for false discoveries using Bonferroni multiple testing 

correction.  The best match in A. thaliana was identified and entered into the AmiGO GO term 

enrichment programme.  JA-related genes are highlighted in red and selected pathogen related genes in 

blue. 

Primary 
group 

Secondary 
Group 

Genes upregulated after –K 

Response 
to stimuli 

Response to 
abiotic stimuli 

BPM2 GSTF10 AT1G70420 NPY2 AT5G66560 EB1C PAL1  GSTU19 ADH1 
CP1 ABCB4 FAR1 PBA1 PHB3 LIP1 ZIFL1 AT1G03230 AT2G43090 COX6B 
PR4 GDH2 NIA1 AS1 P5CS1 SLT1 GLR2.8 SCR DRIP2 GAMMA CA2 
RANGAP2 PP5.2 GLR3.3 AT5G23540 UGT74E2 SAT32 AT1G03220 AVP1 
RSR4 PAL2 AT1G73230 ZTL AT2G39980 ERD9 NQR LOX2 GT72B1 PIP2A 
SOT12 UGT73C1 NFXL1 UGT78D2 TIL OSM34 

Response to Temperature stimulus 
LOS1 CSDP1 HSP18.2 ZF3 ANNAT7 HSP17.4 RBOHD AOX1A MTHSC70-2 
RHL41 BOB1 HSP70 CCR1 LOS2 HSP60 CPN10 HPT1 FES1 SUMO1 FRO1 
HSP23.6-MITO DREB2A VTC2 MBF1C HVA22E HSP81-2 RPT2a AT5G51440 
ANNAT2 TIL 
 

Response to 
stress 

 AOS ASA1 AT4G11290 LOS1 GSTF10 WRKY11 LOX1 CSDP1 HSP18.2 ZF3 
PAL1 APX3 HSP17.4 PEPR1 AT3G09560 GSTU19 RBOHD AOX1A MLO15 
JAZ1 POP2 WIN1 MTHSC70 BOB1 NPR3 PBF1 HSP70 PUB24 WRKY70 
AT1G01170 TYRDC CCR1 AT5G55070 CRK19 HSP60 LCR68 RBP-DR1 
AT3G54470 ALDH6B2 ELI3-2 AT1G72300 OPCL1 DRIP2 CPN10 HPT1 UGE1 
PR1 ELI3-1 AT5G23540 RNS1 AlaAT1 MLO1 AT1G03220 
 AT2G15130 FES1 SUMO1 RAP2.2 HSP23.6-MITO PAL2 DREB2A PHB4 
VTC2 LOX2 MBF1C MDAR1 CERK1 AT3G03270 RPT2a PIP2A AT5G51440 
AT5G44380 SAR3 KIN10 AT5G05340. 

Response to osmotic/ salt stress 
BPM2 ZF3 ANNAT7 ADH1 CP1 FAR1 PBA1 PHB3 MTHSC70-2 RHL41 
AT1G03230 AT2G43090 COX6B PR4 GDH2 AS1 P5CS1 SLT1 LOS2 
GAMMA CA2 RANGAP2 AT5G23540 UGT74E2 SAT32 AT1G03220 AVP1 
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FRO1 RSR4 AT1G73230 NQR GT72B1 HVA22E HSP81-2 SOT12 NFXL1 
ANNAT2 TIL OSM34 
 

Response to 
chemical 
stimuli 

AT4G33540 BPM2 PAP1 AOS ARF19 ASA1 AT4G11290 WRKY11 LOX1 
HSP18.2 ZF3 ANNAT7 PAL1 APX3 PEPR1 PMZ GSH2 BRU6 ABCB4 JAZ1 
WRKY46 PHB3 RHL41 PR4 GDH2 PDR11 PUB24 RALF23 WRKY70 P5CS1 
AT5G55070 CRK19 AT3G53600 RBP-DR1 GRX480 RLK ALDH6B2 DRIP2 
PDR12 PR1 UGT74E2 TPS1 AVP1 RAP2.2 RHM1 RSR4 PAL2 DREB2A 
UGT75B1 ERD9 VTC2 LOX2 GT72B1 MBF1C HVA22E HSP81-2 CERK1 
PIP2A SOT12 AT5G44380 SAR3 NFXL1 UGT74F2 KIN10 ANNAT2 AMY1 
AT5G05340 

Response to metal ion 
GSTF10 ADK1 ROC2 AT1G56190 GSTU19 ADH1 AT2G41380 POP2 PBA1 
MTHSC70-2 AT4G13780 AT5G65750 ATARCA GSTL3 GDH2 PAC1 HSP70 
OASB AS1 LOS2 SYNC1 HSP60 AT3G54470 GSTU8 AT2G33590 
CCoAOMT1 AlaAT1 GSTU13 HSP23.6-MITO ATS9 emb2742 MDAR1 TUA5 
RPT2a AT1G07590 AT3G48990 GAD 
 
 

Cellular 
and 
metabolic 
processes  

Small 
molecule 
metabolic 
processes 

PRMT3 FIB1 AT1G56190 HMG1 AT3G22910 AT5G09550 AT4G29680  GDI2 
PRMT6 PFK3 AT3G54470 ALA2 PFK2 UGE1 AT5G08690 PLDALPHA2 TPK2 
RHM1 PYRD TRM11 LOX2 TSBtype2 URH1 AT1G19340 

Organic acid / cellular ketone metabolic process 
AOS THA2 ACX2 ASA1 AT1G75980 ATBCAT-5 LOX1 CER1 ACL CER4 PAL1 
mtACP2 GSH2 FAR1 POP2 OMR1 ATKRS-1 AT4G13780 TSB2 PEX12 
AT4G39280 OASB MTO1 TYRDC P5CS1 FAH1 OPCL1 AT2G20340 HPT1 
AT1G51720 AT4G16800 NADP-ME4 AlaAT1 AOC4 OVA9 AT3G13930 GAD4 
CHAT RSR4 UGT75B1 LACS4 AT4G31810 VTC2 LOX2 TSBtype2 AAE7 
AAO3 GPAT5 NFXL1 UGT74F2 
 

 Cellular 
metabolic 
processes 

RPT1A AT1G67000 AT3G60210 AT1G54380 AT5G09380 RPL18 AOS THA2 
AT4G31460 AT5G03030 ACX2 bZIP16 ASA1 PRMT3 FD3 AT5G09770 
GSTF10 BIM2 AT1G75980 WRKY11 AT1G09640 ATBCAT-5 FBW2 FIB1 
LOX1 CER1 CSDP1 AT4G25890 AT1G16040 ATS2 ROC2 AT1G56190 
AT5G60390 ACL CER4 PAL1 PEPKR2 RLK4 AT2G34480 AT1G12010 
PEPR1 ZYP1a UBP6 mtACP2 AT5G45775 GSH2 GSTU19 RBOHD ADH1 
AT4G31860 ARP HMG1 RFC2 AT4G16710 AT5G35400 AOX1A AT5G55140 
DFR AT2G37650 UBQ1 AT1G07070 ALDH2C4 NRPB2 WRKY46 FAR1 
AT3G29010 AT1G70600 POP2 AT3G22910 SUS5 KIWI AT4G11160 
AT5G60670 PBA1 AT2G34140 OMR1 ATKRS-1 AT1G16740 MTHSC70-2 
ACLA-3 CKS1 UBQ6 CIPK12 ERF1-1 AT4G13780 AT5G09550 BOB1 
WRKY57 AT1G74050 AT3G13580 TSB2 RSZ33 AT3G53740 AT2G32060 
AT3G57490 AT5G39850 AT4G34670 PEX12 AT2G40010 AT5G20170 DGK5 
emb2171 UGT73C6 PBF1 PAC1 AT4G29680 PAD2 RHL2 HSP70 AT4G39280 
PUB24 GDI2 NIA1 PRMT6 CSTF64 OASB WRKY55 WRKY70 MTO1 HAI2 
AT2G24360 TYRDC AS1 CCR1 ERO1 P5CS1 LAP3 CRK19 CHR1 
AT1G74270 PFK3 AT3G53600 AT3G06680 AT5G52650 AT3G54470 EIF3G1 
AT5G61170 UBP2 THY-2 FAH1 ERO2 UPL6 EMB1080 AT2G09990 
AT1G72300 ALA2 OPCL1 EIF2 AT3G60340 RPN1A SAMDC RTL1 GAMMA 
CA2 CPN10 AT2G20340 HPT1 XTH29 GSTU8 PFK2 UGE1 AT1G51720 
AT5G23540 RNS1 UGT74E2 AT5G06410 TPS1 AT4G16800 AT2G33590 
AT1G01660 AT3G01800 NADP-ME4 CCoAOMT1 AlaAT1 AOC4 AT5G08690 
CIP8 UFD1 PLDALPHA2 AT1G20370 AT2G04520 OVA9 AT3G13930 
emb2386 GAD4 LPP3 CHAT PKDM7D UBA 2 AT1G54290 GSTU13 DMR6 
CDT1A SUMO1 AT4G33865 TPK2 CKI1 RAP2.2 RHM1 ATS9 ACS2 RSR4 
PBB2 PAL2 DREB2A PYRD NAC103 AT1G52300 AT4G15000 ATGSTF13 
UGT75B1 ZTL TTN1 ERD9 AT3G56370 ARC6 LACS4 AT5G56940 
AT4G31810 VTC2 AT5G24510 BRL1 TRM11 LOX2 rps15ae GT72B1 MBF1C 
ASK2 TPPF AT5G23535 NFU4 CRK3 MDAR1 TSBtype2 AT2G01250 HSP81-
2 AAE7 RGLG1 AAO3 GPAT5 OTP80 emb1624 BB AT4G03230 RLK1 RPT2a 
URH1 PGY2 AT2G45730 AT5G62300 NFXL1 AT3G05560 AT4G27250 
GSTF3 SLD5 AT3G04920 UGT74F2 AT3G16780 GFA2 SC35 PGY1 CRK34 
DTX35 GSTU18 AT1G19340 
 

 Catabolic 
processes 

RPT1A THA2 ACX2 GSTF10 AT1G75980 FBW2 CER1 AT1G56190 PAL1 
GSTU19 POP2 PBA1 UBQ6 AT5G09550 PEX12 PBF1 PAC1 PAD2 GDI2 
LYM2 PFK3 UBP2 RPN1A GSTU8 PFK2 AT5G23540 AlaAT1 UFD1 
AT3G14075 UBA 2 GSTU13 ATS9 PBB2 ATGSTF13 ZTL ERD9 ASD1 
AT4G31810 GT72B1 ASK2 MDAR1 ftsh4 RPT2a URH1 GSTF3 ftsh3 GSTU18 
 

 Primary 
metabolic 
processes 

AT1G54380 AT5G09380 AOS THA2 AT5G56590 ACX2 bZIP16 ASA1 BGAL8 
BIM2 AT1G75980 WRKY11 ATBCAT-5 FIB1 LOX1 CER1 CSDP1 AT1G28580 
ATS2 AT1G56190 CER4 AT1G23460 ZYP1a mtACP2  AT3G09560 GSH2 
ARP HMG1 RFC2 AT4G16710 AT5G35400  AT3G11210 AT2G37650 NRPB2 
WRKY46 FAR1 POP2 AT3G22910 BGLU11 SUS5 KIWI AT2G34140 OMR1 
CKS1 AT5G09550 WRKY57 TSB2 RSZ33 AT2G32060 AT4G34670 PEX12 
AT5G20170 PAC1 AT4G29680 RHL2 GDI2  CSTF64 AT4G20430 OASB 
WRKY55 WRKY70 MTO1 TYRDC AS1 P5CS1 CHR1 AT5G45910 PFK3 
AT3G53600 AT3G54470 UBP2 FAH1 3BETAHSD/D2 AT5G24318 
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AT3G48950 AT1G09390 ALA2 OPCL1 RXF12 AT1G28600 RTL1 AT2G20340 
HPT1 XTH29 PFK2 UGE1 AT1G51720 AT3G23510 TPS1 AT4G16800 NADP-
ME4 AlaAT1 AOC4 AT5G08690 PLDALPHA2 AT1G20370 emb2386 GAD4 
AT3G14075 LPP3 CHAT PKDM7D CDT1A RAP2.2 RHM1 RSR4 DREB2A 
PYRD NAC103 UGT75B1 LACS4 AT4G31810 ORP4B LOX2 AT3G26430 
MBF1C TPPF TSBtype2 AAE7 AAO3 GPAT5 OTP80 AT3G55430 RPT2a 
URH1 SOT12 NFXL1 SLD5 UGT74F2 SC35 CWINV2 AT1G19340 

Protein metabolic process 
RPT1A AT1G67000 AT3G60210 RPL18 AT4G31460 AT5G03030 PRMT3 
AT5G09770 AT3G61540 AT1G09640 FBW2 AT4G25890 AT1G16040 ROC2 
AT5G60390 PEPKR2 RLK4 AT2G34480 PEPR1 UBP6 AT5G45775 
AT4G31860 NCLPP7 AT5G55140 UBQ1 AT1G07070 AT3G29010 
AT1G70600 AT4G11160 AT5G60670 PBA1 ATKRS-1 AT1G16740 MTHSC70-
2 UBQ6 CIPK12 ERF1-1 AT4G13780 MC9 BOB1 DegP9 AT1G74050 
AT3G13580 AT3G53740 AT2G32060 AT3G57490 AT5G39850 AT4G34670 
AT2G40010 emb2171 PBF1 PAC1 PAD2 HSP70 AT4G39280 PUB24 PRMT6 
AT4G20430 HAI2 AT2G24360 ERO1 CRK19 AT1G74270 AT3G06680 
AT5G52650 XCP1 EIF3G1 AT5G61170 scpl2 UBP2 ERO2 UPL6 EMB1080 
SCPL34 AT2G09990 AT1G72300 EIF2 AT3G60340 RPN1A CPN10 
AT5G23540 AT1G67420 AT5G06410 AT3G59080 AT1G01660 AT3G01800 
CIP8 UFD1 AT2G04520 OVA9 emb2386 UBA 2 AT1G54290 SUMO1 
AT3G14067 AT4G33865 ATS9 PBB2 AT1G52300 AT4G15000 ZTL TTN1 
AT3G56370 ARC6 SCPL51 AT5G56940 AT5G24510 BRL1 rps15ae ASK2 
AT5G23535 CRK3 AT2G01250 HSP81-2 emb1624 BB AT5G19740 
AT4G03230 RLK1 ftsh4 RPT2a scpl29 PGY2 AT2G45730 AT5G62300 
AT3G05560 AT3G04920 AT3G16780 GFA2 PGY1 CRK34 ftsh3 
 

 

 

6.3.2. Genes downregulated in response to K-deficiency 

 

Of the genes downregulated in response to K-deficiency 48 % were assigned a function 

in metabolic processes (p=6.42 x e
-16

) and 50 % were assigned a function in cellular 

processes (p=2.60 x e
-13

) (Table 6-2).  There was a considerable overlap between these 

two categories.  The most significant sub-group within the genes with both functions 

was a small group of genes related to photosynthesis (p=3.71 e
-20

) which makes up just 

5 % of genes downregulated in response to K-starvation.  Other functional assignments 

within the cellular/metabolic process group of downregulated genes were tetrapyrrole 

biosynthesis and glyceraldehyde-3-phosphate metabolism.  

There were two JA related genes in the list of genes downregulated in response to K-

deficiency (highlighted in red in table 6-2); COI1 and JAR1.  In A. thaliana, COI1 is 

involved in the removal of JAZ from MYC allowing transcription of JA related genes 

(Chini et al., 2007; Thines et al., 2007).  JAR1 is involved in the formation of JA 

conjugates, catalysing the addition of Ile and ACC to JA  (Staswick et al., 1992; 

Staswick and Tiryaki, 2004). 
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Table 6-2 Gene categories downregulated upon K-deficiency.  Genes downregulated in response to 

K-starvation with p values < 0.005 Corrected for false discoveries using Bonferroni multiple testing 

correction.  The best match in A. thaliana was identified and entered into AmiGO GO term enrichment 

programme.  JA-related genes are highlighted in red and selected pathogen related genes in blue. 

Primary 
group 

Secondary 
Group 

Genes downregulated after –K 

Metabolic 
process 

Primary 
metabolic 
process 

CAF1 WAK5 AT5G46390 SSI2 CRK24 SS4 RPL16 ISI1 SERAT1;1 BPEp 
ARF2 GSL12 AT5G14460 ENA AT5G39990 PLA2A ACC1 emb1067 
AT3G22450 SEX4 AT2G35840 AT3G62110 FMO GS-OX5 SWN HDS 
AT2G03200 CRS1 LUT1 AT4G27270 CKL2 EMB2247 GLYR2 DWF4 
AT1G01760 AT5G16810 PEPR1 AT1G29880 AT2G03500 LIP2 TLP18.3 
AT4G24810 CEV1 CSP41A AK-HSDH II cpHsc70-1 AT1G55140 HMG1 
AT5G50260 SIGA AT4G29100 AT5G16650 AT2G35390 PGL1 U1-70K 
RIF10 FTSH1 SD2-5 AT3G13040 AT3G27110 AT3G54210 ARA12 
AT3G57120 EDD1 MYB48 ISPF AT5G10290 PPCK1 SEC AT5G04710 
AT5G65240 AT1G76050 AT3G63490 AGL19 AT5G53340 LYC ftsh7 
ELF5A-3 AT2G27420 AT4G17740 AT5G01720 UEV1D-4 AT2G24590 
AT3G08980 AT1G20810 RAP2.9 TIM AT5G22080 AT1G36730 FTSH11 
AT5G13240 HSL1 AT3G59350 AT1G66430 FBA2 KCS2 AT2G41710 KAS 
I AT1G80030 VAR1 ERF1-3 AT5G64380 GSTL2 HRS1 CSTF64 SD1-13 
AT3G24530 AT2G34080 OTP51 SPL2 AT2G26800 AT3G12700 
AT2G40120 GCP1 MYB59 SPPL2 EMB2761 LUT2 AT1G35340 
AT5G18230 CHR1 AT4G29000 AT5G57610 AT3G48820 U2A' RXW8 
CRR22 PHR2 3BETAHSD/D2 COI1 AT5G20220 OTP84 AT3G20230 
AT5G21326 BAS1 AT2G39670 AT3G58140 GR CKB1 AT3G09830 
AT3G15520 EMB2730 AT3G06950 AT1G67280 emb2768 OASA1 FBP7 
AT2G42750 FPA ZFP7 NRPB5 WRKY20 BGAL13 AT5G59010 RNR1 
GAPA-2 AT3G23750 AT2G31010 CPN60A TLP7 AT3G61790 JAR1 ZML1 
WRKY3 LSF1 TPS1 UBC11 AT3G57190 MRL1 AT1G70820 AT5G18610 
AT5G17670 AT1G30680 AT5G37930 AT2G43560 AT5G35100 
AT2G01060 PDH-E1 ALPHA AT1G63770 PK1B SCPL19 UBC5 
AT1G71070 HCF109 AT5G59700 FC2 AT5G62620 MHK SPO11-2 OTP81 
AT2G13440 AT2G02570 CRK10 CPK1 AT2G19940 AT4G31390 
AT4G26555 HPL1 CDT1A AT4G39780 OVA4 AT3G17410 SMO1-1 
AT5G66530 DEG8 UBC32 AT2G44830 AT5G22850 TLP3 RAP2.12 AVA-
P2 AT4G25290 NADK3 AT1G71810 ARAD1 GS2 AT1G20650 ISA3 
AT2G03390 AT3G06180 GME ASD1 AT1G73170 NRPE5 AT4G36195 
RPS7.1 AT4G38960 CIPK4 NOA1 AT3G13120 SIG2 EMB1030 
AT5G52010 GATB AT1G60230 CYP97A3 AT5G58300 AT1G77020 
AT4G37510 HB-1 AUR3 TPPD AT5G35170 ORP1D RPL12-C CRSH 
EGY2 XPL1 AT3G27180 AT3G59890 EBS AT4G09350 AT4G19830 
CPHSC70-2EAT SHOCK PROTEIN 70-2 AT4G36390 KDSB RPL15 AK-
HSDH I AT2G28970 CRK26 AT3G10060 PHOT2 AT2G33550 AT3G05350 
OASC DET1 AT5G52660 emb2726 RAP2.4 AT1G12230 DEGP1 OTP86 
AT5G13510 AT2G33800 CRT3 
 

Metabolic 
process 

Primary 
metabolic 
process 

CAF1 WAK5 AT5G46390 SSI2 CRK24 SS4 RPL16 ISI1 SERAT1;1 BPEp 
ARF2 GSL12 AT5G14460 ENA AT5G39990 PLA2A ACC1 emb1067 
AT3G22450 SEX4 AT2G35840 AT3G62110 FMO GS-OX5 SWN HDS 
AT2G03200 CRS1 LUT1 AT4G27270 CKL2 EMB2247 GLYR2 DWF4 
AT1G01760 AT5G16810 PEPR1 AT1G29880 AT2G03500 LIP2 TLP18.3 
AT4G24810 CEV1 CSP41A AK-HSDH II cpHsc70-1 AT1G55140 HMG1 
AT5G50260 SIGA AT4G29100 AT5G16650 AT2G35390 PGL1 U1-70K 
RIF10 FTSH1 SD2-5 AT3G13040 AT3G27110 AT3G54210 ARA12 
AT3G57120 EDD1 MYB48 ISPF AT5G10290 PPCK1 SEC AT5G04710 
AT5G65240 AT1G76050 AT3G63490 AGL19 AT5G53340 LYC ftsh7 
ELF5A-3 AT2G27420 AT4G17740 AT5G01720 UEV1D-4 AT2G24590 
AT3G08980 AT1G20810 RAP2.9 TIM AT5G22080 AT1G36730 FTSH11 
AT5G13240 HSL1 AT3G59350 AT1G66430 FBA2 KCS2 AT2G41710 KAS 
I AT1G80030 VAR1 ERF1-3 AT5G64380 GSTL2 HRS1 CSTF64 SD1-13 
AT3G24530 AT2G34080 OTP51 SPL2 AT2G26800 AT3G12700 
AT2G40120 GCP1 MYB59 SPPL2 EMB2761 LUT2 AT1G35340 
AT5G18230 CHR1 AT4G29000 AT5G57610 AT3G48820 U2A' RXW8 
CRR22 PHR2 3BETAHSD/D2 COI1 AT5G20220 OTP84 AT3G20230 
AT5G21326 BAS1 AT2G39670 AT3G58140 GR CKB1 AT3G09830 
AT3G15520 EMB2730 AT3G06950 AT1G67280 emb2768 OASA1 FBP7 
AT2G42750 FPA ZFP7 NRPB5 WRKY20 BGAL13 AT5G59010 RNR1 
GAPA-2 AT3G23750 AT2G31010 CPN60A TLP7 AT3G61790 JAR1 ZML1 
WRKY3 LSF1 TPS1 UBC11 AT3G57190 MRL1 AT1G70820 AT5G18610 
AT5G17670 AT1G30680 AT5G37930 AT2G43560 AT5G35100 
AT2G01060 PDH-E1 ALPHA AT1G63770 PK1B SCPL19 UBC5 
AT1G71070 HCF109 AT5G59700 FC2 AT5G62620 MHK SPO11-2 OTP81 
AT2G13440 AT2G02570 CRK10 CPK1 AT2G19940 AT4G31390 
AT4G26555 HPL1 CDT1A AT4G39780 OVA4 AT3G17410 SMO1-1 
AT5G66530 DEG8 UBC32 AT2G44830 AT5G22850 TLP3 RAP2.12 AVA-
P2 AT4G25290 NADK3 AT1G71810 ARAD1 GS2 AT1G20650 ISA3 
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AT2G03390 AT3G06180 GME ASD1 AT1G73170 NRPE5 AT4G36195 
RPS7.1 AT4G38960 CIPK4 NOA1 AT3G13120 SIG2 EMB1030 
AT5G52010 GATB AT1G60230 CYP97A3 AT5G58300 AT1G77020 
AT4G37510 HB-1 AUR3 TPPD AT5G35170 ORP1D RPL12-C CRSH 
EGY2 XPL1 AT3G27180 AT3G59890 EBS AT4G09350 AT4G19830 
CPHSC70-2EAT SHOCK PROTEIN 70-2 AT4G36390 KDSB RPL15 AK-
HSDH I AT2G28970 CRK26 AT3G10060 PHOT2 AT2G33550 AT3G05350 
OASC DET1 AT5G52660 emb2726 RAP2.4 AT1G12230 DEGP1 OTP86 
AT5G13510 AT2G33800 CRT3 
 

 Pigment 
biosynthesis 
process 

LUT1 AT1G74470 CH1 GUN5 RIF10 ISPF LYC POR C LUT2 OMT1 PCB2 
HEMA1 CYP97A3 
 

 Cellular 
metabolic 
processes 

CAF1 WAK5 GCH THIC FdC1 SSI2 CRK24 SS4 RPL16 SERAT1;1 BPEp 
ARF2 GSL12 AT5G14460 ENA PLA2A ACC1 emb1067 AT3G22450 SEX4 
AT2G35840 FMO GS-OX5 SWN HDS CRS1 LUT1 EFE AT4G27270 CKL2 
AT1G74470 EMB2247 GLYR2 AT1G01760 AT5G16810 PEPR1 
AT1G29880 AT2G03500 LIP2 CH1 AT4G24810 CEV1 CSP41A  AK-HSDH 
II cpHsc70-1 DGK7 AT1G55140 HMG1 SIGA AT4G29100  GUN5 
AT5G16650 PDX2 AT2G35390 PGL1 U1-70K RIF10 SD2-5 CAT2 
AT3G13040 IMPL1 AT3G54210 ARA12 AT3G57120 EDD1 MYB48 ISPF 
AT5G10290 PPCK1 SEC AT5G65240 AT4G28830 AT1G76050 
AT3G63490 AGL19 AT1G29810 AT5G53340 TPK1 LYC ELF5A-3 SBP1 
AT5G01720 UEV1D-4 AT2G24590 FMN/FHY AT1G20810 HEMD RAP2.9 
AAE14 POR C CKX1 AT5G22080 AT1G36730 AT5G22020 FTSH11 
AT5G13240 HSL1  AT3G59350 AT1G66430 FBA2 KCS2 AT2G41710 KAS 
I AT1G80030 ERF1-3 AT4G25310 GSTL2 HRS1 CSTF64 SD1-13 NTRC 
SPL2 AT2G26800 CKX6 AT2G40120 MYB59 EMB2761 AT5G18230 NIA2 
CHR1 OMT1 AT4G29000 GLY2 AT5G57610 AT3G48820 U2A' CRR22 
PHR2 MPK6 COI1 AT5G20220 OTP84 AT3G20230 AT5G21326 
AT2G39670 AT3G58140 GR CKB1 AT3G09830 AT3G15520 EMB2730 
AT3G06950 emb2768 OASA1 FBP7 AT2G42750 FPA ZFP7 NRPB5 
WRKY20 AT5G59010 RNR1 PCB2 HEMA1 GAPA-2 AT3G23750 
AT2G31010 CPN60A TLP7 AT3G61790 JAR1 ZML1 WRKY3 LSF1 YUC8 
TPS1 UBC11 AT3G57190 MRL1 AT5G18610 AT5G17670 AT1G30680 
AT5G37930 AT2G43560 ALDH3F1 AT5G35100 AT2G01060 PDH-E1 
ALPHA PK1B RBOH F UBC5 HCF109 AT5G59700 ECHID FC2 
AT5G62620 MHK SPO11-2 OTP81 AT2G13440 AT2G02570 CRK10 CPK1 
AT2G19940 AT4G31390 AT4G26555 HPL1 CDT1A AT4G39780 OVA4 
AT3G17410 AT5G66530 UBC32 AT2G44830 TLP3 RAP2.12 AVA-P2 
AT4G25290 NADK3 AT1G71810 ARAD1 GS2 AT1G20650 ISA3 
AT2G03390 AT3G06180 GME NRPE5 RPS7.1 AT4G38960 CIPK4 NOA1 
AT3G13120 CAX3 SIG2 EMB1030 AT5G52010 GATB LIN2 AT1G60230 
CYP97A3 AT5G58300 AT1G77020 AT4G37510 HB-1 AUR3 TPPD 
AT5G35170 RPL12-C CRSH XPL1 AT3G27180 AT3G59890 EBS 
AT4G09350 AT4G19830 CPHSC70-2EAT SHOCK PROTEIN 70-2 
AT4G36390 KDSB AGO1 RPL15 AK-HSDH I REF4 AT2G28970 CRK26 
AT3G10060 PHOT2 AT2G33550 OASC DET1 AT5G52660 emb2726 
RAP2.4  OTP86 AT5G13510 AT2G33800 CRT3 
Photosynthesis 
NDF2 LHCB2.2 TLP18.3 PSAF AT1G77090 NDHF FTSH1 LHCA3 AGY1 
TIM LHB1B2 PGR5-LIKE A VAR1 TROL LHCB2.3 PSBP-1 OTP51 FNR1 
LUT2 LHCA2 LPA1 PSBC AT4G30720 AT5G11450 PSBD AT1G76450 
ABC4 DEG8 LHB1B1 LHCB4.1 STN8 YCF9 PPL2 LHCA1 PQL3 DEGP1 
AT3G56650 CPFTSY 
 

Cellular 
Process 

Cellular  
component 
organisation  

FAB1A PEX14 AT1G48900 SCC3 SWI3C PTAC4 CcdA CRR6 CCB4 
APG2 ELF5A-3 AGY1 TIM TIC110 TUA6 NDH-O CPSRP54 ERF1-3 
OTP51 JAC1 CHR1 SCY1 LPA1 CRL ABIL1 EMB2730 AT5G58260 
CPN60A AT3G57190 ARO1 HCF109 PFI HCF136 SPO11-2 CDT1A ATK5 
VAM3 AT2G30620 CRR7 NOA1 SCO1 AUR3 PHOT2 CPFTSY 
 

 Protein complex 
subunit 
organisation 

AT1G48900 CcdA CRR6 CCB4 ELF5A-3 NDH-O CPSRP54 ERF1-3 
OTP51 LPA1 ABIL1 AT5G58260 AT3G57190 HCF109 PFI HCF136 CRR7 
 

 

6.4. Changes in defence mechanisms during K-starvation 

 

In order to investigate the way in which K-deficiency affects defence signalling, 

changes in JA-related and selected other defence related genes in response to both K-

starvation and R. secalis were looked at in more detail.   



138 

 

JA biosynthesis genes (LOX2, AOC3, AOS and OPR3) and a Jasmonate-induced 

protein, JIP60, featured in the list of genes upregulated in response to K-starvation with 

a p-value of less than 0.05 (Figure 6-4). The microarray data confirmed the higher JA-

related gene expression in K-starved plants observed by qPCR (chapter 4).  The 

microarrays also indicated a lower expression of JIP23 in response to –K, which 

showed high levels of variation in response to K-starvation in the qPCR measurements. 

Four further JA-related genes were identified as differentially expressed in response to 

–K: coronatine-insensitive protein (COI1), Jasmonate ZIM domain (JAZ), Jasmonate 

resistant 1 (JAR1) and jasmonate O-methyltransferase (JMT).  The COI1 and JAZ 

proteins are both involved in the JA sensing by the SCF
COI1

 complex (Chini et al., 

2007; Thines et al., 2007)  JAZ is involved in the suppression of the transcription factor 

MYC2 in A. thaliana.  In barley the JAZ transcript was elevated in the K-starved 

samples compared to the control regardless of R. secalis infection.  COI1 in A. thaliana 

forms part of the protein complex which removes the suppression by JAZ in response 

JA-Ile allowing the transcription of JA responsive genes.  In barley, COI1 transcript 

was lower in the K-starved plants compared with the control plants in both infected and 

uninfected samples.   

Figure 6-4 Changes in JA related gene expression in response to –K and R. secalis.  Expression 

profiles of JA related genes from data obtained by microarray analysis of control mock infected (■), 

control R. secalis infected (■), -K mock infected (□) and –K R. secalis infected (■) samples at 2 (A) and 

4 (B) days after infection. The mean (± SE) of 4 replicate experiments are shown. 
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The remaining two JA-related genes are both involved with formation of JA 

conjugates.  JAR1 catalyses the addition of an isoleucine group to JA resulting in the 

formation of Jasmonate-isoleucine (JA-Ill) and is suppressed during K-starvation in 

barley.  JMT adds a methyl group to JA forming Methyl Jasmonate (Me-JA); slightly 

higher JMT transcript was observed in the K-starved samples. 

No change was seen in the expression of any JA-related gene in response to R. secalis 

in either the control or K-starved tissue on day 2.  By day 4 slightly higher AOC, OPR3 

and JAZ was observed in response to R. secalis infection in the K-starved plants only. 

 

Figure 6-5 Changes in defence related gene expression in response to –K and R. secalis.  Expression 

profiles of defence related genes from data obtained from the microarray analysis of control mock 

infected (■), control R. secalis infected (■), -K mock infected (□) and –K R. secalis infected (■) samples 

at 2 and 4 days after infection. The mean (± SE) of 4 replicate experiments are shown. 

The changes in the expression of four pathogen responsive genes in the four treatments 

were also examined (Figure 6-5), these included Pathogen related (PR) genes as well as 

Phenylalanine ammonia lyase (PAL).  The expression profiles of PR1a and PR4 were 

similar; both were upregulated in response to K-starvation in both infected and 

uninfected tissue.  There was little change in PR1 or PR4 expression in response to R. 

secalis in the control samples, however, by day 4 the expression in the R. secalis 

infected K-starved samples was higher than that of the mock inoculated K-starved 

samples.  Little change was seen in the abundance of PR10 transcript 2 days after 

javascript:if(window.name=='')%20%7b%7b%20window.location.href='./nil';%20%7d%7d%20else%20%7b%7b%20ml('27,28,29,30');%20%7d%7d
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inoculation, however by 4 days after inoculation the expression was higher in the K-

starved samples compared with the control, the largest change in the R. secalis infected 

tissue.   The PAL response to both K-starvation and R. secalis infection was small, 

however, higher expression was measured in the K-starved samples regardless of 

infection at both time points.  Higher expression was also seen in response to R. secalis 

infection in both control and K-starved samples. The changes were accumulative 

resulting in the infected K-starved samples having the highest PAL expression of all the 

samples. 

6.5. Changes in gene regulation in response to R. secalis infection 

 

The ANOVA also identified genes that demonstrated a change in expression in 

response to R. secalis infection with a p-value of less than 0.05.  28 transcripts were 

identified as being significantly changed in response to R. secalis infection (Figure 6-6 

and Appendix 4, Table S4-3).  

Three main functional categories of genes in this group were blue copper proteins 

(BCP), germin like proteins and a group of fungal proteins.  BPCs are copper-binding 

proteins with electron carrier activity (Jansen et al., 2005).  Germin-like proteins have 

been identified in defence mechanisms against a number of plant pathogens including 

Bgh, R. secalis and rice blast (Hurkman and Tanaka, 1996; Zhang et al., 1995) and they 

could be involved in the reactive oxygen species (ROS) response.  The final group of 

proteins with altered expression in R. secalis infected tissue compared to the mock 

infected tissue was a group of fungal proteins, which might have been included on the 

microarray because of extraction from contaminated barley tissue.  The hybridization 

signal is likely to derive from R. secalis present in the infected leaf segments.  

Other genes with altered expression in response to R. secalis include genes homologous 

to the rice vacuolar sorting receptor protein, PUP3 (a purine transporter), an electron 

transporter and a peroxidase 1 precursor. 
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Genes encoding four blue copper proteins were shown to have significantly altered 

transcript levels in response to R. secalis infection.  All four responded to both K status 

and R. secalis infection in a similar way (Figure 6-7), it is possible that they are 

replicates of the same gene, however the closest homolog in rice and A. thaliana are not 

the same for each (Figure 6-6).  The blue copper protein genes showed little change in 

expression in response to K-deficiency.   The expression of these genes was 

significantly higher in the R. secalis infected tissue compared to the mock infected 

samples for both K-free and control tissue (for p-values see Figure 6-6).  Despite there 

being no significant change in the expression of blue copper protein genes in response 

to K-deficiency, the K-free plants showed a stronger response to R. secalis at both time 

points for all the blue copper protein. 

 

Figure 6-7.  Response patterns of blue copper protein genes with altered expression in response R. 

secalis infection.  Expression profiles of genes with altered expression in response to both –K and R. 

secalis from data obtained from the microarray analysis of control mock infected (■), control R. secalis 

infected (■), -K mock infected (□) and –K R. secalis infected (■) samples at 2 and 4 days after infection. 

The mean (± SE) of 4 replicate experiments are shown.  

Seven transcripts encoding germin like proteins (GLPs) were identified by the 

microarray experiment as being upregulated in response to R. secalis infection (Figure 

6-8).  Six of these proteins can be classed as type 4 GLPs, which can be further split in 

to GLP 4d (DQ647623) and GLP 4c (DQ647622).  Sequence alignment using Clustal 

W (Chenna et al., 2003) showed that the 4c GLP sequences were very similar and are 

likely to be replicates of the same transcript.  All the GLP type 4 genes showed similar 
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expression patterns.  Lower expression was seen in K-free samples compared to the 

control samples for both time points.  R. secalis infection resulted in higher transcript in 

both K-free and control tissue, but this was much smaller in the K-deficient plants than 

in the control 4 days after inoculcation indicating that K-deficiency leads to a faster 

decline of a transient response of GLPs to R. secalis infection. 

 

Figure 6-8.  Response patterns of germin like protein genes with altered expression in response R. 

secalis infection.  Expression profiles of genes with altered expression in response to both –K and R. 

secalis from data obtained from the microarray analysis of control mock infected (■), control R. secalis 

infected (■), -K mock infected (□) and –K R. secalis infected (■) samples at 2 and 4 days after infection. 

The mean (± SE) of 4 replicate experiments are shown.  

The GLP3a gene showed a very different response pattern to the type 4 GLPs.  Higher 

GLP3a transcript was observed in response to K-deficiency on both day 2 (4-fold) and 

4 (8-fold) in the uninfected tissue.  R. secalis infection also led to higher GLP3a 

expression, with control plants showing 3-fold and 5-fold higher expression in response 

to R. secalis on days 2 and 4 respectively.  The two stresses combined resulted in 

higher GLP3a expression compared to the mock infected control samples on both day 2 

(13 fold) and day 4 (17 fold), indicating that the response is additive. 

There was little expression of the putative fungal genes in the mock infected tissue 

regardless of K status (Figure 6-6).  The expression of all putative fungal genes was 
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much higher in the R. secalis infected tissue.  Although the best matches for these 

genes from the NCBI database were not R. secalis genes, they were fungal genes and it 

is likely that R. secalis will contain close homologues.  The presence of putative fungal 

genes thus confirmed the fungal infection in the R. secalis inoculated tissue but not the 

mock inoculated samples.  It is worth noting that the expression of the fungal genes 

was higher in the infected K-deficient samples compared to the control samples on day 

2, but not on day 4. 

 

Figure 6-9.  Response patterns of other genes with altered expression in response R. secalis 

infection.  Expression profiles of genes with altered expression in response to both –K and R. secalis 

from data obtained from the microarray analysis of control mock infected (■), control R. secalis infected 

(■), -K mock infected (□) and –K R. secalis infected (■) samples at 2 and 4 days after infection. The 

mean (± SE) of 4 replicate experiments are shown.  

There was little difference in the expression patterns of the rest of the genes changed in 

response to R. secalis between the two time points (Figure 6-9).  The majority of the 

genes were upregulated in response to low-K although often only very slightly. By 

contrast genes encoding precursors of L-ascorbate oxidase (AO), uclacyanin-2 (UCC2 

precursor), peroxidase 1 (Perox1) and cucumisin (Cuc) were all downregulated in 

response to K-starvation in both the infected and uninfected tissue.  Transcripts of all 

these genes were more abundant in leaves challenged with R. secalis in both the control 

and K-free tissue. 
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6.6. Discussion and conclusions 

 

In this chapter the results of microarray experiments measuring the effect of K-

deficiency and R. secalis infection on the transcriptome of barley leaves are presented.  

The individual effects of each treatment were analysed as well as the modulation of R. 

secalis-induced changes by K-deficiency.   

6.6.1. Response to K-deficiency 

 

K-deficiency has a substantial effect on the barley transcriptome as demonstrated by 

the large number of genes that show changes in expression when K is withdrawn 

(Table 6-1 and 6-2).  The majority of K-responsive genes identified have likely 

functions in cellular and metabolic processes indicating a profound re-programming of 

plant metabolism at the level of transcriptional regulation.  Genes related to organic 

acid, ketone, and protein metabolic processes were all upregulated in response to K-

starvation (Table 6-1).   The group of genes most significantly downregulated in 

response to K-starvation were those related to photosynthesis but a number of genes 

involved in cellular component organisation and tetrapyrrole biosynthesis were also 

downregulated (Table 6-2). The results obtained here for barley are in agreement with 

studies on transcriptional changes caused by a deficiency of essential mineral nutrients 

in A. thaliana all of which found that the adjustment of primary metabolism and 

photosynthesis to nutrient deficiency involves the concerted transcriptional regulation 

of many enzymes (Amtmann and Armengaud, 2009; Hoefgen and Nikiforova, 2008; 

Morcuende et al., 2007; Tschoep et al., 2009). In particular, it was shown in a previous 

study on A. thaliana that long-term K-deficiency caused transcript changes that could 

be integrated with changes in enzyme activities and metabolite concentrations to 

establish a model of the direct effects of K-deficiency and the metabolic adjustments of 

the plants (Armengaud et al., 2009). While a strong effect of low-K on genes involved 

in primary metabolic processes is common to A. thaliana and barley the lists of 

regulated shoot genes are not identical. While the differences could reflect different 

metabolic and regulatory pathways in the two species they could also be due to the 

uncertainty of assigning the barley sequences to homologous sequences in A. thaliana 

that might not be the correct functional prologues. Another difficulty in interpreting 

transcript changes relies in the fact that it is not clear which of the changes are 

instrumental in regulating specific metabolic pathways and which are the consequence 

of changes in metabolite concentration achieved by other regulatory means (e.g. post-
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translational). The presented data on transcriptional responses of barley to low K will 

have to be complemented by a more detailed kinetic analysis of transcripts, metabolites 

and enzyme activities and a better understanding of gene functions to allow us to build 

a model of genes involved in metabolic ―re-programming‖ in response to K-deficiency.  

The other main group of genes with changed expression in response to K-starvation 

contained genes known to respond to environmental stimuli, including biotic and biotic 

stress as well as chemical stimuli (Figure 6-3 and Table 6-1).  This group is only 

present in the list of genes upregulated in response to K-starvation (Table 6-1).  It 

includes genes that are responsive to temperature stress, osmotic pressure, salt stress 

and metal ions and are therefore likely to have fundamental functions in adjusting plant 

physiology and metabolism to any stress that limits growth.  Many JA biosynthesis 

genes are featured in this group, confirming the results obtained by qPCR (Chapter 4) 

and supporting the notion that JA is an important component of plant responses to low-

K. 

6.6.2. Response to R. secalis infection and its modification by K 

 

A relatively small number of genes showed changes in regulation in response to R. 

secalis (Figure 6-6).  It is possible that the more subtle changes in response to R. secalis 

have been lost due to the technical variation between arrays (Section 6.2, Figure 6-2).  

Twenty-eight genes were identified having altered transcript levels, the majority of 

which fitted into three main categories: blue copper proteins, germin-like proteins and 

fungal genes (Figure 6-6).   

The blue copper proteins (BCPs) are a group of copper binding protein with electron 

carrier activity, and have been reported to be upregulated in response to pathogens such 

as powdery mildew in barley (Jansen et al., 2005) .  They make up 4 of the 28 genes 

upregulated in barley leaves in response to R. secalis infection, with uclacyanin-2 

precursor possibly being a fifth (Figures 6-6- and 6-7).  Although there was no change 

in expression of BCPs in response to K in the uninfected tissue, the increase in BCP 

transcript in response to R. secalis is larger in plants grown in K-free solution compared 

to the control plants (figure 6-7).  BCPs could therefore only be responsible for the 

higher susceptibility of plants to R. secalis if they had a negative effect on resistance, 

which is unlikely as they are upregulated in response to R. secalis. Instead it is possible 

that these genes are particularly sensitive to R. secalis infection and therefore respond 

more strongly in the more susceptible plants early on in the infection process. 
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Three genes encoding germin-like proteins (GLPs) were responsive to R. secalis 

infection (Figure 6-6 and Figure 6-8).  GLPs are a functionally and taxonomically 

diverse group of proteins that have previously been shown to be involved in defence 

against pathogens in plants (Himmelbach et al., 2010; Zimmermann et al., 2006).  

GLPs have oxalate oxidase activity and may be involved in reactive oxygen species 

production in response to pathogens (Dumas et al., 1995). Type 4 GLPs have 

previously been shown to be expressed in barley in response to R. secalis (Steiner-

Lange et al., 2003). Although expression of genes encoding  type 4 GLPs was lower in 

uninfected K-starved plants compared to the control plants, GLP  expression was not 

altered by K status in infected tissue on day 2 (Figure 6-8).  However, by day 4 the 

expression had dropped in the K-starved plants while remaining high in the controls.  It 

is possible that this decline indicates a shorter response of the GLP genes in the K-

starved plants, leading to higher infection, but it may also be due to the R. secalis in the 

plants moving into the necrotrophic phase more quickly, making programmed cell 

death ineffective as a defence mechanism.   

 

6.6.3. Problems and further work 

 

The microarray experiments identified a large number of genes that were upregulated 

in response to K-deficiency some of which were highly expressed and it is possible that 

some small changes in gene expression were overlooked by the choosing a very low p-

value as a cut-off.  Indeed the number of genes identified as K responsive at p<0.05 

was considerably larger than the list extracted for p<0.005.  Future analysis of the 

larger list containing nearly 15000 genes in combination with metabolomics and 

proteomics studies should provide a sound framework for understanding the effects of 

low-K in greater detail.  It is also worth noting that the data shown in this chapter was 

obtained from the analysis of the microarray results, and should be confirmed using 

qPCR, however this was not possible during the time allowed for this PhD. 

 

Due to the limited knowledge of gene functions in barley it is not yet possible to carry 

out GO term analysis on lists of barley sequences.  To obtain an idea of the processes 

affected by transcript changes in barley the functional annotation of the closest 

homolog in A. thaliana had to be used leading to potential misinterpretations as the A. 

thaliana homolog may not have the same function as the  barley gene. Furthermore, 

some of the barley genes did not have a close homolog in A. thaliana and therefore 
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were lost from the analysis.  However, current efforts by the barley sequencing 

consortium in sequencing and annotating the barley genome will lead to increased 

availability of  resourses in the future (Schulte et al., 2009). 

 

Very little correlation was seen between changes in gene expression in response to K-

supply and R. secalis infection and no significant interaction between the 2 factors was 

detected (Data not shown).  It should be noted the very little is known about the 

molecular processes underlying the different phases of R. secalis invasion and of the 

plant‘s defence against the fungus.  The differentially expressed genes identified in this 

first microarray study will be useful markers to carry out an extended analysis of 

transcriptional regulation in R. secalis infected barley plants over a longer period of 

time and in different parts of the plant.  

 

Considering that K-deficiency had a stronger effect on mildew than R. secalis it would 

in hindsight have been better to carry out the microarray analysis for this pathogen. 

While not possible within the time frame of this project a microarray experiment using 

a similar design as the one used here to assess K-pathogen interactions should be 

carried out for mildew. 
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Chapter 7:  Discussion 

 

In the field, crops are subject to a wide variety of biotic and abiotic stresses, often 

simultaneously.  In order to manage these stresses effectively it is important to understand 

not only the plants‘ responses to individual stresses but also the way in which these 

responses interact.  More intensive, modern farming methods can lead to depletion of 

minerals in the soil and increased pathogen density.  It has previously been demonstrated 

that the mineral nutrient status of a plant can have a significant effect on susceptibility to 

pathogen attack (Perrenoud, 1990).  Potassium is an important plant nutrient that is often 

deficient in highly cultivated soils, leading to large quantities of fertiliser being applied to 

soils to maintain plant production.  Much of the current knowledge of effects of K-supply 

on plant metabolism, gene expression and pest resistance has been obtained from the 

model plant Arabidopsis thaliana (Armengaud et al., 2004; Armengaud et al., 2009; 

Hammond et al., 2003; Hampton et al., 2004).  In order for this knowledge to be applicable 

to agriculture it is important to assess whether crop plants respond to K in the same manner 

as the model plant.  During this project I therefore investigated the effect of K-deficiency 

on growth, metabolite concentrations, gene expression and pathogen susceptibility in 

barley. More specifically, I was interested whether K-deficiency in barley induces a JA 

response, as observed for A. thaliana, and whether this response affects pathogen 

susceptibility. This question is particularly relevant because production of secondary 

compounds downstream of JA-signalling is likely to differ between the two species. For 

example, glucosinolate concentrations have been reported to increase in a JA-dependent 

manner in K-deficient A. thaliana plants (Troufflard et al., 2010), but this response is 

unlikely to play a major role for non-Brassica species. The results obtained in this thesis 

show that despite possible differences in downstream events, an induction of JA 

biosynthesis genes does occur in K-deficient barley plants (Chapter 4, Figures 4-3, 4-6 and 

4-7). Furthermore, the study provides strong evidence that the effect of K-deficiency on 

pathogen susceptibility is determined by the JA-sensitivity of the pathogen (Chapter 5).  

 

7.1.   Challenges of knowledge transfer from A. thaliana to barley 

 

Transfer of knowledge from the model plant A. thaliana to the cereal crop barley presents a 

number of problems. Many resources that are available in A. thaliana do not exist for 

barley, most importantly the barley genome has not yet been full sequenced.  Nevertheless, 



150 

 

in May 2011, 501,620 public barley ESTs were available, an increase of almost 23,000 

since 2009 when 478,734 ESTs provided partial sequence information for around 50,000 

tentative unigenes (Schulte et al., 2009; Sreenivasulu et al., 2008).  Due to the large size of 

the barley genome, at around 5,500 MB (Sreenivasulu et al., 2008), sequencing the full 

genome is a challenge, although advances in sequencing technology have made it a 

realistic goal and a consortium of scientists is set to achieve this (Mayer et al., 2011; 

Schulte et al., 2009; Wicker et al., 2006; Wicker et al., 2009).  The limited knowledge of 

genes involved in JA signalling in barley, and the limited sequence data available made the 

selection of marker genes for JA responses difficult.  Many of the well known JA marker 

genes in A. thaliana either don‘t exist in barley or have not yet been sequenced.   

 

Although sequence data were available for many of the genes involved in JA biosynthesis, 

they were often not well characterised at functional level.  In A. thaliana, several genes 

encode 13-lipoxygenases, which catalyse the first committed step in JA synthesis in A. 

thaliana, but the AtLOX2 gene is the only one that responds to K-deficiency (Armengaud 

et al., 2004; Troufflard et al., 2010).  The nomenclature of the LOX genes is generally 

confusing and the usage of both letters (van Mechelen et al., 1999) and numbers 

(Bachmann et al., 2002) for the barley genes makes it difficult to pinpoint the ‗correct‘ 

barley lipoxygenase gene (See Chapter 4, Section 4.3.1 and  Figure 4-2). Three genes were 

investigated during this study; LOX2Hv2 (LOX2.2) and LOX2Hv3 (LOX2.3) had 

previously been identified as being JA responsive (Bachmann et al., 2002), however they 

gave inconsistent results in response to K-starvation, and powdery mildew (Chapter 4, 

Figure 4-3 and data not shown).  The microarray studies described in Chapter 6 identified a 

close homolog to the rice OsLOX2 gene and the A. thaliana AtLOX2 gene (See Chapter 4, 

Figure 4-2), which was consistently up-regulated in response to K-deficiency, wounding 

and powdery mildew infection (Chapter 4, Figures 4-3 and 4-7 and Chapter 5, Figure 5-1 

and 5-7).  

 

Allene-oxide synthase (AOS) and allene oxide cyclase (AOC) catalyse subsequent steps of 

JA biosynthesis. In A. thaliana, the single genes encoding AOS, AtAOS, and  AtAOC1 are 

strongly up-regulated during K-deficiency (Armengaud et al., 2004; Troufflard et al., 

2010). One barley gene was identified for each enzyme and both genes showed 

consistently higher during K-deficiency (Chapter 4, Figures 4-3, 4-6 and 4-7).  
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None of the commonly used JA downstream or responsive genes in A. thaliana have been 

described in barley. However, a diverse group of genes that are responsive to JA treatment 

have been identified in barley, and are referred to as ‗JA induced proteins‘ (JIPs) 

(Andresen et al., 1992; Chaudhry et al., 1994; Weidhase et al., 1987).  Many of these 

proteins are not functionally characterised, and they are named based on the size of the 

gene product.  Due to the lack of information on the role of these proteins and the 

complexity of JA responses it is difficult to know in which JA responses these genes might 

be involved.  Three JIP proteins were selected to be tested during this study (JIP23, JIP37 

and JIP60) with varying results (Chapter 4).  JIP23 expression was inconsistent in its 

response to K-starvation and showed little response to wounding or powdery mildew 

infection (Chapters 4 and 5).  JIP60 transcript abundance was higher in response to K-

starvation and powdery mildew infection but not wounding (Chapters 4 and 5).   JIP37 

also showed higher transcript abundance in response to K-starvation but not as strongly as 

JIP60 (Chapter 4).   

 

In summary, LOX2.A, AOS and JIP60 genes from barley were identified here as suitable 

marker genes for JA-biosynthesis in response to low K, wounding and powdery mildew. 

These genes provide tools for further studies into the interaction between various stress 

response pathways in barley and the role of JA therein. 

7.2. K-deficiency and susceptibility to pathogens 

 

K-deficiency leads to a number of physiological, transcriptional and metabolic changes to 

plants, many of which could influence susceptibility and attractiveness to pathogens. 

Results of studies looking at the effect of K-deficiency on pathogen infection are variable 

not only between plant and pathogen species but also between different studies looking at 

the same host-pathogen interaction (Perrenoud, 1990), indicating a delicate balance 

between factors that determine the outcome of an interaction. This is, to my knowledge,  

the first study in which the effects of K-deficiency on tissue K-content, metabolite 

concentrations, hormone concentration, transcript abundance and pathogen susceptibility, 

as well as the effect of JA treatment on pathogen susceptibility, were determined in plants 

grown under identical controlled environmental conditions, using the same tissues, 

treatments and sampling time points. The data obtained were therefore directly comparable 

and can be used to discuss possible factors linking external K supply with pathogen 

susceptibility.  

 



152 

 

 

Figure 7-1. Semi-quantitative summary of the main results obtained in this thesis.   A. Levels of tissue 

K, transcripts of JA-biosynthesis genes and pathogens in whole shoots and leaf segments of plants grown in 

control and K-free (-K) conditions. B. Levels of tissue K, metabolites and pathogens in whole shoot  (left 

panels) and leaf segments (right panels) of plants grown in control and K-free (-K) conditions. Black 

triangles in the left panels indicate changes in levels over the period of observation.  In the right panels, 

values, measured in different leaf segments were classified into six categories ranging from high (+++) to 

low (---) and changes between these are shown as a sequence of trapeze bars. 

 

In Chapter 5 it was demonstrated that K-deficient plants appeared more susceptible to R. 

secalis infection but less susceptible to Bgh, indicating that K-deficiency affects the plants 

response to these pathogens differently.   To assist the discussion of which K-dependent 

parameters could explain the effects of K-deficiency on R. secalis and Bgh, Figure 7-1 

summarises in a semi-quantitative manner the most important results obtained in this thesis 

including whole-leaf data averaged over the assessed time period of growth in control and 

low-K conditions (left panels) and data from different leaf zones (right panels) as well as 

the effect of externally applied JA (centre panels). Figure 7-1A shows that out results 

indicated that Bgh infection was positively correlated with tissue K-content and negatively 

correlated with both JA-related gene expression (Also see Appendix 3) and Me-JA 

treatment.  By contrast R. secalis infection is negatively correlated to tissue K-content and 

positively correlated to with both JA-related gene expression and Me-JA treatment. No 

link was found between R. secalis infection levels externally applied JA.  Figure 7-1B 

indicates a positive relationship between Bgh infection and nitrogen metabolism, and a 

negative association between the concentration of hexose sugars in the shoot tissue, 

however this is not echoed on the different leaf regions and Pearson correlations showed 

no significant correlation (Appendix 3), where little change in sugar concentration was 

observed across the leaf, except for sucrose which had a positive relationship with Bgh 
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infection.  The opposite relationship was seen for R. secalis infection with a positive 

relationship to sugar concentration and a negative association with nitrate metabolism. 

7.2.1. How does K-deficiency lead to increased susceptibility to R. secalis? 

 

Hemi-biotrophic fungi like R. secalis acquire nutrients from the host plants, initially from 

living cells and during later stages from dead tissue.  During this study the severity of 

infection was assessed by measuring the length of the lesions formed when R. secalis 

causes the collapse of the host cells during the necrotrophic phase. However, the size and 

rate of development of these lesions are likely to be influenced by developmental rate 

during the biotrophic phase.   

 

Using Rb as a homologue for K, it has been shown that K accumulates around stomata 

during R. secalis infection (Ayres and Jones, 1975), the negative correlation between K 

concentration and R. secalis infection indicates that R. secalis is not directly dependant on 

high K concentration.   However, it is possible that the increased K accumulation plays a 

part in plant defences against the pathogen, K-deficiency may limit this response resulting 

in increased R. secalis infection. 

 

The concentrations of hexose sugars were higher in K-starved plants (Chapter 3, Figure 3-

5), therefore the availability of these sugars for uptake by the pathogen is higher.  Previous 

studies have demonstrated higher R. secalis mycelium growth and spore production at 

higher glucose concentrations (Jenkyn and Griffiths, 1976; Olutiola and Ayres, 1973).  It is 

possible that the higher concentration of hexose sugars in the –K plants led to higher 

uptake of these sugars and resulted in increased growth of R. secalis.  However, the 

smallest change in susceptibility between the –K and control samples was seen in the 

segments taken from the base of the leaf where the increase in sugar concentration in 

response to K-starvation was largest (Figure 7-1B).  Therefore, it is unlikely that the 

increase in sugar concentration in response to K-starvation is solely responsible for the 

increased susceptibility to R. secalis. 

 

Lower glutamate and nitrate concentration in the K-starved plants compared to the control 

samples indicate lower nitrogen concentration in the plant (Figure 7-1B).  Pathogens such 

as R. secalis acquire all the nitrogen they require from the host plant and it has previously 

been demonstrated that host plants with higher nitrogen concentrations are more 

susceptible to infection by R. secalis (Jenkyn and Griffiths, 1978).  Therefore, it is unlikely 
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that lower nitrogen concentration in the K-starved plants would be responsible for the 

higher susceptibility to infection of R. secalis. 

 

K-starvation also led to increased expression of JA-related genes in both A. thaliana 

(Armengaud et al., 2004; Armengaud et al., 2010; Troufflard et al., 2010) and barley 

plants (Chapter 4 and Figure 7-1A).  JA signalling plays an important role in the response 

of plants to both biotic and abiotic stress and is known to inhibit other responses to 

pathogens, such as SA signalling (Harms et al., 1998; Loake and Grant, 2007; Norton et 

al., 2007).  As discussed in Chapter 5 very little work has been carried out looking at the 

effect of JA on R. secalis in barley but Weiskorn et al. (2002) showed a reduction in R. 

secalis infection in response to JA treatment.  However, the experiments reported in this 

thesis showed treatment of leaf segments grown in full nutrient solution with Me-JA had 

no significant effect on R. secalis infection (Chapter 5, Figure 5-3).  If anything, a slightly 

higher R. secalis infection was observed in JA-treated leaves. No change in JA-related 

gene expression was seen in response to R. secalis infection (Steiner-Lange et al., 2003).  

This indicates that JA-signalling is not involved in plant response to R. secalis infection 

and it is therefore unlikely that increased JA concentration in response to K-starvation is 

either directly or indirectly responsible for the increased susceptibility to R secalis. 

 

It is also possible that physical factors altered by K-deficiency influence the susceptibility 

of barley plants to R. secalis.  Fourteen days after transfer to nutrient solution (when the 

leaf segments were prepared for infection) the second leaf of plants grown in K-free 

solution was significantly shorter than that of plants grown in full nutrient solution (see 

Chapter 3, Section 3.4.1) and comparison of areas of leaf segments from the two 

treatments showed that the tip, middle and base segments of leaves from –K plants were 

smaller than the corresponding segments of plants grown in full nutrient solution (data not 

shown).  In the field, it is possible the smaller surface area of the –K plants could lead to a 

change in levels of infection, but this is unlikely to have affected infection during the 

experiments reported in Chapter 5 as each leaf segment was inoculated with equal 

concentration and volume of spore solution and the lesions did not reach the leaf margins.  

It is possible that other physical attributes of the leaves could have been affected by K-

starvation such as cell wall structure or cuticle thickness, however, these factors were not 

investigated as part of this thesis.  Plants with thicker cuticles have been shown to be more 

resistant to R. secalis than those with thinner cuticles (Ayres and Owen, 1971). 
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Other possible reasons for increased susceptibility of K-deficient plants to R. secalis were 

identified in the microarray study described in Chapter 6. Two main groups of genes 

encoding germin like proteins (GLPs) and blue copper proteins (BCPs), were found to 

have significantly changed transcript abundance in response to R. secalis infection 

indicating they may be involved in the plant response to this pathogen.  Both these groups 

have previously been shown to be involved in responses to pathogens (Zimmermann et al., 

2006; Himmelbach et al., 2010; Jansen et al., 2005).   

 

In barley, GLPs can be split into six sub-families (Davidson et al., 2009), two of which 

were identified here as being responsive to R. secalis and also had altered gene expression 

in response to K-starvation (Chapter 6, Figures 6-6 and 6-8).   It has previously been 

shown that GLP3 and GLP4 transcript abundance are increased in response to R. secalis 

infection (Dumas et al., 1995; Steiner-Lange et al., 2003), and the microarray analysis 

confirmed this to be the case in our system, indicating a role for both genes in the plants‘ 

defence against R. secalis.  Zimmermann et al. (2006) showed that silencing of GLP3 and 

over expression of GLP4 lead to increased resistance to powdery mildew infection, 

indicating that low GLP3 expression and high GLP4 expression enhance resistance.  In 

uninfected leaves, K-starvation led to higher GLP3 expression and low GLP 4 expression, 

which may have contributed to the higher susceptibility to R. secalis infection (Chapter 6, 

Figure 6-8).  It is also worth noting that GLPs have been shown to be down regulated by 

JA, while being up-regulated in response to SA and the fungal pathogen  Alternaria 

brassicicola in A. thaliana (Schenk et al., 2000). 

 

The microarray study also identified a number of genes encoding BCPs that where up-

regulated in response to R. secalis infection (Chapter 6, Figure 6-6 and 6-7).  BCP 

transcripts have previously been shown to accumulate after powdery mildew (Jansen et al., 

2005) and stripe rust infection in cereals (Coram et al., 2010), but had not previously been 

linked to R. secalis.  BCPs have also been shown to be induced in response to JA, but not 

SA or ET (Schenk et al., 2000), but there was no change in BCP expression between the 

control and –K uninfected samples (Chapter 6, Figure 6-7).  The observed increase in BCP 

expression in response to R. secalis was larger in K-starved plants Chapter 6, Figure 6-7). 

As K-starved plants are more susceptible to R. secalis it is unlikely that BCPs play a role in 

defence. It is more likely that they are symptomatic and hence increased response reflects a 

higher rate of infection. 
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7.2.2. How does K-deficiency lead to decreased susceptibility to Bgh? 
 

Bgh is an obligate biotroph and therefore obtains all its nutrients from the living host cells.  

Plants infected with Bgh accumulate increased concentration of glucose, sucrose and 

fructose, with a larger increase being observed in susceptible plants (Hwang and Heitefuss, 

1986; Swarbrick et al., 2006).  The major carbon source for barley Bgh is glucose, 

meaning sucrose must be metabolised in the leaf before uptake by the fungus (Mendgen 

and Nass, 1988; Sutton et al., 1999).  Results obtained in chapter 3 indicated that glucose 

concentration in K-starved plants was higher than in the control plants (Figure 7-1B), and 

it is unlikely that the changes in sugar concentration are responsible for the reduced 

susceptibility to Bgh. 

 

It has previously been shown that low concentration of nitrogen in plants can lead to 

reduced susceptibility to Bgh infection (Jensen and Munk, 1997; Last, 1962; Wiese et al., 

2003).  In Chapter 3 it was demonstrated that K-starvation led to lower concentrations of 

nitrate and glutamate, indicating lower N metabolism in the tissue.  Therefore, it is possible 

that low N availability was a contributing factor to the low susceptibility to Bgh seen in K-

starved plants. However, the correlation between K-deficiency induced glutamate increase 

in different leaf regions and level of infection was poor (Figure 7-1B, Appendix 3, Table 

S3-2). 

 

K-starved plants had higher JA-related gene expression indicating an accumulation of JA 

in the K-starved plants (Figure 7-1A).  Treatment with JA or Me-JA leads to reduced 

susceptibility to Bgh in plants (Schweizer et al., 1993; Walters et al., 2002), implying that 

the accumulation of JA in the K-deficient plants may lead to enhanced resistance to Bgh.  

The increase in JA-related gene expression in response to K-deficiency increased from the 

base to the tip of the leaf and was indirectly proportional to Bgh infection observed (Figure 

7-1A, Appendix 3, Table S3-2), further indicating that JA accumulation in response to K 

may have an effect on the susceptibility of barley plants to powdery mildew. 

 

As with R. secalis, it is possible that physical factors could affect Bgh infection.  However, 

the reduced number of powdery mildew colonies on the –K plants observed in Chapter 5 

was not due to the smaller leaf area resulting in fewer spores landing on the leaf surface as 

the number of colonies per square centimetre was used to account for any variation in 

segment size.  However, in the field where the whole leaf is exposed to Bgh it may lead to 
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reduced colony numbers.  Water content is also unlikely to be responsible for the reduction 

in Bgh infection in the –K tissue as there was little change between the control and –K 

samples (Chapter 3, Table 3-1).  It is possible that other unmeasured physical attributes 

could be affected by K-starvation and impact upon susceptibility to Bgh. 

 

It is also worth noting that a number of genes that were up-regulated in response to K-

deficiency in the microarray experiment discussed in Chapter 6 are also involved in plant 

response to pathogens and may influence susceptibility to Bgh.  These genes include 

general pathogen related genes such as PAL and a number of PR proteins (Chapter 6 and 

Appendix 4, Table S4-1).  Inhibition of PAL has been shown to increase susceptibility of 

barley to powdery mildew (Carver et al., 1994).  In addition to this a number of specific 

powdery mildew resistant genes were significantly changed in response to K-starvation 

when p<0.05.  MLO3 was up regulated, while MLA1, MLA10, and homologs of the wheat 

powdery mildew resistance genes PM3b and PM3g were all down regulated in response to 

K-deficiency.   

 

Quantitative correlation analysis was carried out using a Pearson product-moment 

correlation for the data obtained for the shoot and leaf region data obtained during the 

study, the results are shown in the Appendix 3 Tables S3-1 and S3-2. 

7.3. Further work 

 

In this thesis it has been demonstrated that K-deficiency leads to a number of 

physiological, biochemical and transcriptional changes in barley plants.  It has also been 

established that K-deficiency has different effects on pathogens with different infection 

strategies. Results suggested that an increase in JA in response to K-starvation might play 

an important role in reduced susceptibly to Bgh infection.  In order to investigate the role 

of JA in defence against Bgh during K-starvation barley further, JA mutants could be used.  

At present there are no known JA mutants in barley, however TILLING populations could 

be used to identify mutants or JA genes could be knocked down.  In addition to studying 

defence responses, plants deficient in JA signalling could be used to investigate the effect 

of the K-dependent JA response on other biochemical and physiological changes during K-

starvation. 

 

During the work presented in this thesis, JA concentration in the K-starved samples was 

measured along with a number of other plants hormones (Chapter 4, Figure 4-5). In 2010 
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Troufflard et al. showed that although JA concentration was increased in K-deficient A. 

thaliana plants, other oxylipins such as 12-oxo-octadecadienoic acid (OPDA), 9-hydroxy-

12-oxo-octadecadienoic acid (9-HOD) and 13-hydroxy-12-oxo-octadecadienoic acid (13-

HOD) were increased to a much higher level.  These oxylipins are able to act as signal 

molecules in their own right and may be important in the plants response to K-deficiency 

independent of JA.  These other oxylipins should be measured in barley plants to establish 

if they are also up-regulated in barley and identify any differences to the response seen in 

A. thaliana. 

 

During this study the effects of K-deficiency and JA on two fungal pathogens of barley 

with different infection strategies were investigated and it was demonstrated that the effect 

was different on different pathogens.  In order to investigate this further it would be 

interesting to look at the effect on other pathogens, with similar life strategies or modes of 

attack as those used during this study.  In addition to this, the consequences of the increase 

in JA in response to K-starvation on the susceptibility of plants to other pathogen types, 

such as herbivorous insects, could be investigated.  As insects are often more mobile and 

more able to move from plant to plant, this would also allow preference tests to be carried 

out to establish if K-deficient plants are more or less attractive to herbivores.   
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Appendices 

Appendix 1. Sequences and primer locations 

 

The mRNA sequence obtained from NCBI the database for all genes studied are shown 

below.  The Forward (Red) and reverse (Green) primers used for qPCRs are highlighted.  

Gene:    Alpha-tubulin  

GenBank: U40042.1 

Locus:       HVU40042                

Length:   1629 bp     

Definition:   Hordeum vulgare alpha tubulin (tubA) mRNA, complete cds. 

 
   1 gaattcggca cgagcgtact cgcctctctc cgcgcacacg agctctcgcc cccttcctcc 

  61 aacccatctc gccagcggcg cagcccaacc acccgccaca atgagggagt gcatctcgat 

 121 ccacatcggc caggccggca tccaggtcgg aaacgcgtgc tgggagctct actgcctcga 

 181 gcatggcatt cagcctgatg gtcagatgcc cggtgacaag accgttgggg gaggtgatga 

 241 tgctttcaac accttcttca gcgagactgg tgctgggaag cacgtccccc gtgcagtctt 

 301 tgttgatctt gagcctactg tgattgatga ggtgaggact ggtgcttacc gccagctctt 

 361 ccaccctgag cagcttatca gtggcaagga ggatgcagcc aacaacttcg cccgtggtca 

 421 ttacaccatt ggcaaggaga ttgttgatct gtgccttgac cgtatcagga agctgtccga 

 481 caactgcact ggtctccagg gcttccttgt cttcaatgct gttggaggtg gaactggctc 

 541 tggccttggt tctcttctcc tagagcgtct ctctgttgac tatggaaaga agtccaagct 

 601 tggggttcac agtgtaccat ctccccaggt gtccacctct gttgttgagc catacaacag 

 661 tgtcctgtcc acccactccc tccttgagca caccgatgtc tctatcctgc ttgacaatga 

 721 ggccatctat gacatctgcc gccgctccct tgacattgag cgcccaacat acaccaacct 

 781 caacaggctt gtttctcagg tcatatcatc actgactgct tccctgaggt ttgacggtgc 

 841 tctgaatgtt gatgtgaatg agttccaaac caacctggtg ccctacccaa ggatccactt 

 901 catgctttcc tcctatgccc cagtgatatc agcagagaag gcttaccatg agcagctgtc 

 961 tgttgccgag atcaccaaca gtgcattcga gccttcctcc atgatggcca agtgtgaccc 

1021 ccgccatggc aagtacatgg cctgctgtct catgtaccgt ggggatgtcg tgcccaagga 

1081 cgtcaacgct gctgtggcca ccatcaagac caagcgcact atccagtttg ttgactggtg 

1141 ccccactggc ttcaagtgcg gtatcaacta ccagccacct ggtgtcgtcc cagggggcga 

1201 ccttgccaag gtccagaggg ctgtgtgcat gatctccaac tccaccagtg ttgttgaggt 

1261 cttctcccgc atcgaccaca agtttgacct gatgtacgcc aagcgtgcct ttgtccactg 

1321 gtatgtgggt gagggtatgg aggagggaga gttctctgag gcccgtgagg accttgctgc 

1381 cctggagaag gactatgaag aagttggtgc tgagttcgac gatggtgagg atggtgacga 

1441 gggtgatgag tactagagcc tgcctcctgg tgctttccca aggcgtacta ctgctatcct 

1501 atgatctgcc caagcggctt tatctgttat ctgtctgttt gaatgtttgc tttgtggtgt  

1561 ttgttttaca acctgttgtg ttgtaagaac atattggtct gtctgaacct aatgtctcgt 

1621 gccgaattc 

 

Gene:    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

GenBank: M36650.1 

Locus:    BLYGAPDH                    

Length:   1141 bp 

Definition:   Barley glyceraldehyde-3-phosphate dehydrogenase mRNA, 3' end. 

 

   1 gtcaacgacc cgttcatcac caccgactac atgacctaca tgttcaagta tgacactgtc 

  61 cacggacagt ggaagcacca tgaagttaag gtgaaggact ccaagaccct tctcttcggt 

 121 gagaaggagg ttgctgtgtt tggttgcaga aaccccgagg agattccatg ggccgctgct 

 181 ggtgctgagt acgttgtgga gtccaccggt gttttcactg acaaggacaa ggctgcagct 

 241 cacattaagg gtggtgccaa gaaggtcatc atttctgctc ccagcaagga cgctcccatg 

 301 tttgtctgtg gtgtcaacga gaaggaatac aagtcagaca tcgacattgt ctccaatgct 

 361 agctgcacca ccaactgtcc tgctcctctt gctaaggtta tcaatgacag gtttggcatt 

 421 gttgagggtt tgatgaccac tgtccatgcc atgactgcta cccagaagac tgttgatggt 
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 481 ccttcaagca aggactggag aggtggaagg gctgctagct tcaacatcat tccaagcagc 

 541 actggtgctg caaaggccgt tggcaaggtg ctcccagaac ttaacggaaa gttgactgga 

 601 atggccttcc gtgttcccac tgttgatgtt tctgttgttg atctgactgt tagacttgcc 

 661 aagccagcca cctatgagca gattaaggct gctatcaagg aggagtctga gggaaacctc 

 721 aagggcattt tgggttatgt cgatgaggac cttgtttcca ctgacttcca gggtgacagc 

 781 aggtccagca tctttgatgc caaggccggg attgctctga acgacaactt tgtcaagctt 

 841 gtctcatggt acgacaacga gtggggatac agcacccgtg tggtcgacct catccgccac 

 901 atgcacagca ccaagtaaat gagccaaagc atgaagatac agggagtgtg gtttgcccca 

 961 gagaagagaa gagtgtacaa cctcttccga gaataaattt ttgtatggaa ttatggcaac 

1021 taaaaaaaac cttttattgg atgatcctga tggttggttg agcttagcgg ctcacatttt 

1081 ggtggtatta tgtacttgct tgaactaaat catgagttat tttcactcat cgtcatgggt 

1141 t 

 

Gene:           18S ribosomal RNA 18S 

GenBank:    AY552749.1 

Locus:   AY552749 

Length:   1014 bp 

Definition:   Hordeum vulgare subsp. vulgare 18S ribosomal RNA gene, partial 

 
 

   1 cctgagaaac ggctaccaca tccaaggaag gcagcaggcg cgcaaattac ccaatcctga 

  61 cacggggagg tagtgacaat aaataacaat accgggcgca ttagtgtctg gtaattggaa 

 121 tgagtacaat ctaaatccct taacgaggat ccattggagg gcaagtctgg tgccagcagc 

 181 cgcggtaatt ccagctccaa tagcgtatat ttaagttgtt gcagttaaaa agctcgtagt 

 241 tggaccttgg gccgggtcgg ccggtccgcc tcacggcgag caccgaccta ctcgaccctt 

 301 cggccggcat cgcgctccta gccttaattg gccgggtcgt gttttcggca tcgttacttt 

 361 gaagaaatta gagtgctcaa agcaagccat cgctctggat acattagcat gggataacat 

 421 cataggattc cggtcctatt gtgttggcct tcgggatcgg agtaatgatt aatagggaca 

 481 gtcgggggca ttcgtatttc atagtcagag gtgaaattct tggatttatg aaagacgaac 

 541 aactgcgaaa gcatttgcca aggatgtttt cattaatcaa gaacgaaagt tgggggctcg 

 601 aagacgatca gataccgtcc tagtctcaac cataaacgat gccgaccagg gatcggcgga 

 661 tgttgcttat aggactccgc cggcacctta tgagaaatca aagtctttgg gttccggggg 

 721 gagtatggtc gcaaggctga aacttaaagg aattgacgga agggcaccac caggcgtgga 

 781 gcctgcggct taatttgact caacacgggg aaacttacca ggtccagaca tagcaaggat 

 841 tgacagactg agagctcttt cttgattcta tgggtggtgg tgcatggccg ttcttagttg 

 901 gtggagcgat ttgtctggtt aattccgtta acgaacgaga cctcagcctg ctaactagct 

 961 atgcggagcc atccctccgc agctagcttc ttagagggac tatggccgtt tagg 

 

Gene:          Lipoxygenase 2 (LOX2:Hv:2) 

GenBank: AJ507212.1 

Locus:            AJ507212       

Length:   3023 bp 

Definition:   Hordeum vulgare mRNA for lipoxygenase 2. 

  

   1 ggcacgagat caccctttcc tccccttgct tactaccaca acgtaccata gctacattcc 

  61 tcttagtaat agctagttag ctagccacgg ccacaatgca gacggcaacc aagcctctgg 

 121 taggcgcacg tgccgtcccg ttgagccgga gggcatcgtt cctcgtggca gaggctcgcc 

 181 ggaaaccgag cacgaacgcc cgccgcacca gggttggcag caccagcacc accacgacca 

 241 ccaccaccat cttaaccgac gtcaatgggc cagccctcac cacggtcgcc aagccgggcc 

 301 accagtacga cctcaagcag accgtcgaga tgaaggccac ggtgtcggtg cacatgaaga 

 361 gtttctggtg gtcggatgag aagaaggaaa gggcccgtga ttgggcgtac gatctcattc 

 421 tcggctcatg gctgaccctt gagctcgtca gctccgagtt ggatccaaaa acggggcagg 

 481 aacatgatgt aatctccggc aaactcaagc actcgcgtga aaccgaaaag gattacgact 

 541 tatatgaagc catctttacg tgccggcatc gtttggcccc atcgggcgcc gtgcgcctgg 

 601 tgaactacca ccacaccgag atgttgctag gagaagtcaa gatcttccct gccggcgaag 

 661 atccaacaaa gtcatccgcc gtcacgttat tccactgcca atcctggatc gacccctcac 

 721 attgcagccc cgacaagcgt accttcttcc ctgtcgagaa atcctacatc ccgtcgcaga 
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 781 caccaaaggg tgtggagaag ttgcgcaaga gtgaactgga ggccctccgc ggcaatggct 

 841 gcggcgagcg caagaaacat gaccgcatct acgattacga cgtatacaac gacctcggca 

 901 aacctgagtc caagcggccc gtgctcggcg gcaaggagca cccctaccca cggcgctgcc 

 961 gcacgggccg cccacgcagc aagacagatc cgtcctcgga ggaggagtcc cacaagaagg 

1021 gcgaaatgta cgtgccccgg gacgagacct tcaccgagcg caaggagcaa gcgttcctca 

1081 caaagcaatt gttgtcacag ctgcacggat tatgcactgg cttgaaggtg aacaaggaca 

1141 tcctccccag ctttcccacc ttggcctcca tcgacgcctt gtacgacgac gacttcagga 

1201 accagcccgt gcagcctgaa gggggcaagg tcaggctcat cctggatttg cttgccaagg 

1261 agctggttca tctggttaag ctcgaagggg cggagttcgt ggaggggata cgtcgagtct 

1321 tcaagttcga aacccccgag attcatgaca tggacaagct tgcttggttc agagacgagg 

1381 agtttgcgcg gcaaaccctt gcagggatga acccactcag catccaacta gtcacggagt 

1441 tgcctatcgt cagcaagctg gacgagctta agtacggccc ggcggactcc cttatcacta 

1501 aggagctgat tgaaaagcag atcaaccgta tcatgacggc cgaagaggcc gtggctcaga 

1561 aaaagctgtt catgctggac taccacgact tgctgctacc atacgtacac agggtgcgca 

1621 agctggacaa caagaccatg tacgggtcac gcactctctt cttcctcgcc gacgacggca 

1681 cgctccggcc gatcgccatc gagctgacgc ggcccaagtc tccacacaag cagcagtggc 

1741 gcaaggtctt cacgccggga tcgggataca gcggcagcgt cacggggtcc tgggagtggc 

1801 agctcgccaa gatccatgtc ctatcccacg acaccggcta ccaccagctt gtgagccact 

1861 ggctgaggac gcactgctgc gtcgagccgt acgtcattgc ggcgaaccgg cagctgagcc 

1921 agatgcatcc catctaccgc ctgctacacc cgcacttccg cttcaccatg gagatcaacg 

1981 cccaggcacg aggcatgctc atctgcgccg acggcatcat cgagaagacc ttctcgccgg 

2041 gggagttcag catggagatc agctccgcgg cgtacgacaa gcagtggcgg ttcgacatgg 

2101 aggcactgcc ggaggacctc atacggaggg gcatggcggt cagaggggag gatggcaagc 

2161 tggagctggc aatagaggac tacccgtacg ccaacgatgg cctgctggtc tgggatgcca 

2221 tcaagcagtg ggcgtcggac tatgtggcgc actactaccc gtgcgcggtg gacatcgtcg 

2281 acgatgagga gctccaggat tggtggacgg aggtgcgcac caaaggccac cctgacaagc 

2341 aggacgagcc atggtggccg gagctggact gccacgagag cctggtccag gtcctggcca 

2401 ccatcatgtg ggtcacctcg gcacatcatg ccgccgtcaa cttcgggcag taccccatgg 

2461 ctgggtacgt cccgaaccac ccgagcattg cccggaggaa catgccgtgt gagatgggac  

2521 cggaggagat gctcgcgttc aaggcggcgc cagagaaggt gtggttggac acgttgccgt 

2581 ctcaactcca gacagtcatg gtcatggcga cattggacct cctctcgtcg cacgcgtcgg 

2641 acgaggagta catgggcacg caccaggagc cggcttggca aagggatggg gaggtcgaca 

2701 aggcgtttca ggttttccag aagaagatga gagacatcgc ggagcaggtc gaagagtgga 

2761 acaaggacga cagccggaga aaccgccacg gtgccggcgt agtgccgtac gtgctgctca 

2821 ggccattgaa cggtaatccg atggacgcta aaacggtgat ggagatgggc attccgaaca 

2881 gcatttccat ttaatcagaa tgagatgcat acatgtttca tatagtgtca aatgtaacac 

2941 aattaataga acttattgaa ttcacatttg tcgcaataag aaaagacgac atttttttgt 

3001 tacatttata acatagtgaa act 

  

Gene:    Lipoxygenase 2 (LOX2:Hv:3) 

GenBank:  AJ507213.1 

Locus:             AJ507213   

Length:  2967 bp 

Definition:   Hordeum vulgare mRNA for lipoxygenase 2. 

 

  
 

   1 gagcagcgga agaacataac gtagatattg gaccagctcg atccatcggc agcagcggct 

  61 agctagccct tcccgggcca gccatgatcc atctgaagca gcctcttgtg ctctccgcgc 

 121 agagcagcaa tgttgcctcg ccgctcttcg tcgcgggcgg ccagcagagg cgggcgtccg 

 181 gcgcagggag gacctgctct gggcgccggc tcagcgcgcg aaggataagc tgcgcgtcga 

 241 ccgaggaggc cgtcggcgtc tcgacgtccg tgacgaccaa ggagagggcg ctgacggtga 

 301 cggccatcgt gaccgcgcag gtgcccacct ccgtgtacgt cgcccgcggc ctcgacgaca 

 361 tccaggacct cttcggcaag acgcttctgc tcgagctcgt cagctccgag cttgacccca 

 421 agacgggaag ggagagggag agagtgaagg ggtttgcgca catgacgctc aaggagggga 

 481 cgtacgaggc caagatgtcg gtgccggcgt cgttcgggcc ggtgggcgcg gtgctggtgg 

 541 agaacgagca ccacagggag atgttcatca aggacatcaa gctcatcacc ggcggcgacg 

 601 agagcaccgc catcaccttc gacgtcgcct cctgggtgca ctccaagttc gacgaccccg 

 661 agccgcgcgc cttcttcacc gtcaagtcat acctgccgtc gcagacgccg ccgggaatcg 

 721 aggcgctgag gaagaaggag ctggagacgc tgcgtggcga cgggcacagc gagcgcaagt 

 781 tccacgagcg cgtctacgac tacgacacct acaacgacct cggcgaccct gacaagaaca 
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 841 tcgaccacaa acgccccgtg ctgggcacca aggagcaccc ctaccctcgc cggtgccgca 

 901 ccggccggcc aaagaccctc tacgacccgg agacggagac gaggagctcg ccggtgtacg 

 961 tgccgcgcga cgagcagttc tcggacgtca aggggcggac gttcagcgcg acgacgctgc 

1021 ggtcggggct gcacgccatc ctgccggccg tggcgccgct gctcaacaac tcgcatggct 

1081 tctcgcactt cccggccatc gacgccctct acagcgacgg catcccgctc cccgtcgacg 

1141 ggcacggcgg caactccttc aacgtcatca acgacgtcat tcctcgtgtc gtccagatga 

1201 tcgaggacac caccgagcac gtcctccgct tcgaggtccc cgagatgctt gagagggacc 

1261 gattttcgtg gttcagagac gaggagttcg cgaggcagac gctcgcaggg ctcaacccta 

1321 tctgcatccg ccgcctcacg gaattcccca tcgtgagcaa gctcgacccg gcggtgtacg 

1381 ggccggcgga gtcggcgctg agcaaggaga tcctggagaa gatgatgaac gggcgcatga 

1441 cggtggagga ggcgatggag aagaagcggc tgttcctgct ggactaccac gacgtgttcc 

1501 tgccgtacgt gcacagggtg cgggagctgc cggacacgac gctgtacggg tcccgcaccg 

1561 tcttcttcct gagcgacgag ggcacgctga tgccgctggc catcgagctg acgcggccgc 

1621 agtcgccgac caagccgcag tggaagcgcg ccttcacgca cggctccgac gccaccgagt 

1681 cgtggctgtg gaagctggcc aaggctcacg tgctgaccca cgacaccggc taccaccagc 

1741 tcgtcagcca ctggctgcgc acgcacgcct gcgtcgagcc ctacatcatc gccaccaacc 

1801 ggcagctcag ccggatgcac ccggtgtacc gcctgctgca cccgcacttc cgctacacca 

1861 tggagatcaa cgcgctggcc cgggaggccc tcatcaacgc cgacggcatc atcgaggagg 

1921 ccttcctggc tggcaagtac tccatcgagc tcagctccgt agcctacggc gccgcctggc 

1981 agttcaacac ggaggcgctg ccggaggacc tcatcaaccg ggggctcgcc gtgcgcaggg 

2041 acgacggcga gctcgagctc gccatcaagg actacccgta cgccgacgac gggctcctca 

2101 tctggggctc catcaagcag tgggcgtccg actacgtgga cttctactac aagtcggacg 

2161 gggacgtcgc cggcgacgag gagctgcggg cgtggtggga ggaggtgcgc accaaggggc 

2221 acgcggacaa gaaggacgag ccgtggtggc ccgtgtgcga caccaaggag aacctcgtcc 

2281 agatcctgac catcatcatg tgggtcacgt ccggccacca cgccgccgtc aacttcggtc 

2341 agtaccatta cgccgggtac ttccccaacc gtccgacggt ggtgcggagg aacatcccgg 

2401 tggaggagaa ccgggacgac gagatgaaga agttcatggc caggccggag gaggtgctgc 

2461 tgcagagcct cccctcgcag atgcaggcca tcaaggtgat ggcgacgctg gacatcctct 

2521 cctcgcactc ccccgacgag gagtacatgg gagagtacgc tgagccggcg tggctggccg 

2581 agcccatggt gaaggcggca ttcgagaagt tcagcggcag gctcaaggag gcggagggca 

2641 ccatcgacat gcgaaacaac aacccggaga acaagaacag gtgtggcgcc ggcatcgtgc 

2701 cgtacgagct gctcaagccg ttctcagaac caggggtcac tgggagaggc atccccaaca 

2761 gcatctccat ttgattgttg ccccaggata agatatcatt gcacgtagga ttattaggaa 

2821 taagatgtac agtatgtacg cacccagcag cgattgctac cggacatgac acggcccggg 

2881 agaggcatct actagtgtgt ccctgctatt gtatgccgtg aattagtact aataaggtta 

2941 tttgaattgt gacctcaaaa aaaaaaa 

 

Gene:    Predicted protein (LOX2.A) 

GenBank:   AK362687.1 

Locus:          AK362687           

Length:   3017 bp 

Definition:   Hordeum vulgare subsp. vulgare mRNA for predicted protein, complete 

cds, clone: NIASHv2009G18. 

 

   1 gaaaccatcc agcctccaga gccaccacca caccatcggg agtcgtcgca tcgtcccctc 

  61 tttctcctcc tccacttgca gcaccggcag cggcctccgc tcgtcttcgc tttccgctgg 

 121 gctccgtggc ggtgcgcagc tgatcgtgcg gtgctcctcc gttggcccgt ccgaggtggt 

 181 gccgaccagt agtagtagcg gcggcggcgg cgacggtgtg cttcttccgc catggcagga 

 241 aagggcggtg cttcggtgcg cgtcagggcg gtggcgacgg ttaaggtcac cgttggtggg 

 301 ttcctcgatg ggctgaggcc gtcgaggacg ctggacgatg tgaaggacct catcggcagg 

 361 tccatggaga tcgagctcgt cagcgccgag cttgacgcca agacggggga ggagaagcag 

 421 acgatcaaga gctacgccca caaggtggcc gacaacgacg tccaagtcgt aacctacgaa 

 481 gccgacttca acgtgccggc ggggttcggc cccgtcggcg ccgtgctggt ctccaacgag 

 541 cacggcacgg agatgttcct ggaggacgtg aaggtggtca ccgccggcgg caactcgccg 

 601 cccgacgtca tccgctgcga ctcctggctg ccgcccaagt ccggcgacgc caaccgcgtc 

 661 ttcttcgcca acaagcctta cctgccgagc cagactcctc cgggtctcca ggcctaccgg 

 721 aagaaggacc tcgccaagaa gcgcggtgac ggcaccgggc agaggaaggc caccgaccgg 

 781 gtctacgact acgacgtgta caacgacctc gggtccggcg aggagctcgg tgcctccggc 

 841 tcccgccccg tcctcggcgg caacaagcag ttcccctacc cgcggcgctg ccgcaccggc 

 901 cgcccccgat ccaccaaagg tacgtacgta tacacgacaa agtcaagaga tactacgtac 
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 961 gtactcctac agtgcatgaa cgtgtgtggt acatgggtaa ctcgtgcaaa ttgcgtacgt 

1021 gcagacccgc agtcggagac gaggagcggc gacgtctacg tgccgaggga cgaggccttc 

1081 tcggaggtga agaacgtgca gttctcggtg aagacgctgc agtcggtgct ccacgcggcg 

1141 gtgccggcgg tgcagtcgac gctcatcgac cccaaccagg gcttcccctc cttcttcgtc 

1201 atcgacaagc tcttcgagga cggggttgag ctgccgcgcg ccgaggatct cggcttcctc 

1261 cgcgccgccg tgccgcgcct cctcgagttc ctccgcgacg gccccggcga caaactcctc 

1321 ctcttcgacg cccccgcaaa tgtccagaag gacaagttcg cgtggttgcg ggacgaggag 

1381 ttcgccaggg agacgctggc cgggatcaat ccgtacgcca tcgagcttgt caaggaattt 

1441 cctctcaaga gcaagctgga cccggcggtg tacgggccgg ccgagtcggc gatcaccgcc 

1501 gagctgctgg aggctcagat ggggcacgcc atgacggtgc ccgaggcggt gaagaacaag 

1561 aggctcttca tgctcgactt ccacgacctg ttcctgccct acgtgcacaa gatccgcgcc 

1621 ctgcagcaca ccaccatgta cggctcccgc accatcatgt tcctcaccga cgacggcacg 

1681 ctgcgcctcc tcgccatcga gctcacccgg ccggcctcac ccatgatgcc gcagtggagg 

1741 caggtcttca cttcctccac ggacaccacc aagtcgtggc tgtggcggat ggccaagtcc 

1801 cacgtccgcg cccacgacgc cggccaccac gagctcgtca cccactggct gcgcacgcac 

1861 tgcgccgtcg agccctacat cctcgcggcc aacaggcagc tcagcgagat gcaccccatc 

1921 ttccagctgc tgcgcccgca cttccgctac accatgcgga tcaacgcgct cgcacgctcc 

1981 gccctcatca acggcggcgg catcatcgag ctcaccttct ccccgcagag gtacgccatg 

2041 gagctcagct ccgtcgccta cgacaagctc tggcgcttcg acatggaggc cctccccgcc 

2101 gacctcgtcc gcaggggcat ggcggaggag gaccccacgg cggagcacgg actcaagctc 

2161 gccatcaaag actacccgtt cgccaacgac gggctcctca tctgggacgc catcaagggg 

2221 tgggttcagg cgtacgtttc cagctactac ccgaccgccg ccagcgtcac gggcgacgcg 

2281 gagctgcagg ctttctggac ggaggtgcgc acagagggac acgccgacaa gaaggacgcg 

2341 ccgtggtggc ccaagctcga cacgccggag agcctcgcgc acacgctcac caccatcatc 

2401 tgggtcgcgg cggcgcacca cgcggccgtc aacttcgggc agtacgactt cggcggctac 

2461 ttcccgaacc gcccctccat cgcacgcacc aacatgccgg tggaggagcc cgtggacgcc 

2521 gccgccttcg acaagttcct ggacaacccg gaccaggcgc tccgggaatg cttcccgtcg 

2581 caggtgcagg caacgctggt gatggcggtg ctggacgtgc tgtccagcca ctcccccgac 

2641 gaggagtacc tgggagggat ggagactgcc ccgtggggcg gcgacaccgc ggtgcgggcg 

2701 gcgtacgtga ggttcaacga gcagcttaag gcggtggaag ggatcatcga cggaaggaac 

2761 aagaacagga agctcaagaa ccggtgcggc gccggcatcg tgccgtacca gctcatgaaa 

2821 ccattctcgc agcccggcgt cacgggcaag ggcattccca acagcacctc catctaatca 

2881 aacatagctt ccgtgaatct agtagacttc gttgtccgtt gttaaatgta cgtatttatt 

2941 taagctccac acttcatatc tgtatgtgta tatccattct attaataagt tcagatttac 

3001 tacttatttc gcatccg 

 

 

Gene:    Allene oxide synthase (AOS) 

GenBank: AJ250864.1 

Locus:          AJ250864  

Length:   1819 bp 

Definition:   Hordeum vulgare mRNA for allene oxide synthase. 

 
 

   1 cctcctcgct ccaatcttgt ctgcatcgag agcgcgagat ccaaagttcc aaacccaacc 

  61 agcctagcta gcagcagagt tagatgaacc agagcggcat ggcgcgcagc gacgagggct 

 121 ccctggtgcc gcgggaggtg ccgggcagct acggcctgcc gtttgtctcg gccatccgcg 

 181 accgcctcga cttctactac ttccagggcc aggacaagta cttcgagtcc cgcgtcgaga 

 241 agtacggctc caccgtcgtc cgcatcaacg tgccgccggg ccccttcatg gcgcgcgatc 

 301 cccgcgtggt cgccgtgctc gacgccaaga gcttccccgt gctctttgac gtcaccaagg 

 361 tcgagaagaa gaacctcttc accggcacct acatgccctc cacctccctc accggcggct 

 421 tcccggtctg ctcctacctc gacccctccg agcccaccca caccaaggtc aagcagctgc 

 481 tcttctccct cctcgcctcg cgcaaggacg ccttcatccc ggccttccgc tcccacttct 

 541 cctcgctgct cgccaccgtc gagtcgcagc tccttctcag cggcaagtcc aacttcaaca 

 601 cgctcaacga cgccacctcc ttcgagttca tcggcgacgg ctacttcggc gtgctcccct 

 661 ccgcctcaga cctcggcacc accggcccgg ccaaggccgc caagtggctc atattccagc 

 721 tccacccgct cgtcacgctc ggcctcccca tgatcctcga ggagccgctc ctccacaccg 

 781 tgcacctccc gcccttcctc gtcagcggcg actacaaggc gctgtacaag tacttcttcg 

 841 ccgccgcgac caaggcgctc gacaccgccg agggcctcgg gctgaagcgg gacgaggcgt 

 901 gccacaacct gctgttcgcc accgtcttca acagctacgg cggcctcaag gtgctgctcc 

 961 cggggatcct cgcgcgcatc gccgactccg gagagaagtt ccacaagaag ctcgtcacgg 
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1021 agatacgcgc cgccgtggcg gaggccggcg gcaaggtgac gatagaggcg ctggagaaga 

1081 tggagctgac caagtcggcg gtgtgggagg cgctgcgtct ggacccggcc gtcaagttcc 

1141 agtacggccg cgccaaggcg gacatgaaca tcgagagcca cgacgcggtg ttcgccgtga 

1201 agaaggggga gatgctgttc gggtaccagc cgtgtgccac aaaggacccc cgggtgttcg 

1261 gccccacggc gagggagttc gtcggcgacc ggttcgtcgg gaaggagggg agcaagctgc 

1321 tgaagtacgt gtactggtcg aacgggcggg agaccgagag ccccagcgtg cacaacaagc 

1381 agtgcccagg caagaacctg gtcgtgctcg tcggccggct cctggtggtg gagctgttcc 

1441 tccggtacga caccttcacg gccaaagtcg gcctcgacct tctcggcacc aaggttgagt 

1501 tcaccggcgt caccaaggca acgtccggtg tggcagacgc tgtttaaatc cttcaccgga 

1561 cggccatcgg tgacaaaggg atcaacgcag ggcagcaacg atccttacac cgtcatcacg 

1621 tacgtacgta cgtgcctcgc tatatctacc ttagtagtgt acgtacgagt cagtcatgca 

1681 tgtgcatgca tcttgttcgg ttcttcgcag cattgtgccc tcgtgtatgt gtgcgtgtgt 

1741 tgtgtttact tttggcaatc ttgcccagtg taataagccg gacttttcta caataagatt 

1801 cccccttttg gcgtacggt 

 

 

Gene:   Allene oxide cyclase (AOC) 

GenBank:  AJ308488.1 

Locus:          AJ308488          

Length:   920 bp 

Definition:   Hordeum vulgare mRNA for allene oxide cyclase. 

 
 

   1 cggatccaag agtatcatcg tcggttagcc gtcgccacca ccaccaagag gcaacaccgc 

  61 catggcagtg cgcccttcct ccgtctccgt ccgggccggt gcgtccgtct cggcgaagct 

 121 gaccccttgg cgggccgcga gggctgggct cggtggcagg gtcagcgtca gctcgggcag 

 181 gaggtgcggc ggccccgtgc gggcgtcgct cttctcgccc aagcctgcgg tggccatgga 

 241 cgcgcggccg agcaaggtgc aggagctgca cgtgtacgag ctcaacgagc gcgaccgcga 

 301 gagccccgcc tacctccggc tgagcgccaa ccagagccag aacgcgctcg gcgacctcgt 

 361 ccccttcacc aacaaggtgt acaacgggag cctggacaag cggatcggga tcacggcggg 

 421 gatctgcatc ctgatccagc acgtgccgga gcgcaacggc gaccgctacg aggccatcta 

 481 cagcatgtac ttcggcgact acggccacat cagcctgcag gggccctacc tcacctacga 

 541 ggagtcctac ctcgccgtca caggaggctc cggcgtcttc gagggcgtct acgggcaggt 

 601 caagctcaac cagatcgtct tccccttcaa gatcttctac actttctacc tcaagggcat 

 661 cccggacctg ccaaaggagc tgctctgcac gcccgtcccg ccttccccca ccgtcgagcc 

 721 aacgcccgcc gccaaggcca ccgagccaca cgcatgcctc aacaacttca ctgactagct 

 781 gtacctgtga tctactctac ctagctatgt tatgtacacc aactgctcgt gcagtcgtgc 

 841 aagttgaatg aatctccgtg tgttgcaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 

 901 aaaaaaaaaa aaaaaaaaaa 

 

 

Gene:   23 KD Jasmonate induced protein (JIP23) 

GenBank:  BM816519.1 

Locus:                   BM816519 

Length:   921 bp 

Definition:   HB105D06_SK.ab1 HB Hordeum vulgare subsp. vulgare cDNA clone 

HB105D06_SK.ab1 similar to 23 KD JASMONATE-INDUCED 

PROTEIN gi|282989|pir|S22514 jasmonate-induced protein 1 - 

barleyJASMONATE-INDUCED PROTEIN HOMOLOG 

gi|576625|gb|AAA86977.1| (U15657), mRNA sequence. 

 
 

   1 cccgggctgc aggaattcgg cacgaggaag cgaactagct agtacaccta tatatcacag 

  61 tgtgtgtgca aagcaatggc ctctggagtg tttggtaccc ccatttcagc gcagacggtg 

 121 atagccactg gagagtataa ggaacccatt acccaaaaag atgttgcaga ctatgccatg                                                                

 181 aagatgatca acgccggtgg taaggatgtt aacgcgcaaa agttcgtcga caacctcaag 

 241 gagaggtacg gtaacggaat agctgtaaaa tgcctcctct acaatgccac tggtgccact 

 301 ttgaactttg ctaagtacaa cgattggcac ggccatatct atgatacacc ctacccatca 

 361 gatattcaga atgggcaatg gggtgcattc ctccacgtcc acccaagtgg agctgccgct 

 421 ggttcagctg gtgccgttgt gtatcgtagc aagatcccct ccagcagcag ctcctgcgat 
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 481 tggttgttct cttggaccgt cccctacatt ggtggcaacg gggtgtacac tgaaatccgc 

 541 gaggaagggc actacccaag tgtgggaagc tgggattata tctacaatgt gaagctgaaa 

 601 aattcaagtg tcacctctat tgatagcaac tatggatacg tttccaaggc tgacatcggt 

 661 gaaggcacta ccatgaacgc acgtggagtt ttcgagtttc cctactanat ctcgttgcaa 

 721 gcagcgagtt gttattggtg gtcttcaagt cttgtgtggc gtncatgtac gcctgngttg 

 781 gttttttctt tactgtcttt atggggcatt tttatagatc tgatgatcca cgaataagcg 

 841 aaggaagatg gggaccanag agatgtaccg nngtaatgga ttttattnta tatggcgntg 

 901 ggaatcagat ggccttctttt 

  

   

Gene:    37 KD Jasmonate-induced protein (JIP37) 

GenBank:  X82937.1 

Locus:                   X82937   

Length:    1334 bp  

Definition:   H.vulgare mRNA for jasmonate induced protein. 
                         

 
   1 cccttacctt gtgctcgtgg tgaagctgat ccttccattg cttggtgccc ccaagctacc 

  61 ccaaggctta catcatgtca ggtgacctag ttgatttaag tccagggcag ttgcataagc 

 121 tagccgatct gatccatcga caagaagtcc agaagcttca agagctcgag ttcaactcgt 

 181 atgcagagca acaaaagtat ctccgtgacg ccaatgatgc ccgcgataag gtgtatcaca 

 241 tccttgacag tgcacgggac atgatagcac aaaccgaggc tgagaaggat gccaccaagc 

 301 aagatattgg caaggatgtc tatgactact gcaccaaggc catcggaata tctctccaat 

 361 tcatccggag ttacaacacc cgtctcacct accttgacaa gctcaagacc cacagtgatg 

 421 atctcatcaa gcagctaaag ttcctcaatc tagccaccca acagaaggag gcccagcgcc 

 481 ttgcccttga ggctggcatg tataagaaag ccacgctgga gaatgccaaa aagtttcaac 

 541 actttgcacc aaatcaattc tcaaaatggc tcaaggaaaa caaaatcatg tttgaggatc 

 601 ttgtgcaaga aaatatgtca aagcttggtt ttaggggggc tttcaaaaac ttggatgata 

 661 tccaaaagct acaggtatat gacaatatta ttgcggaagc gggacaagga aaatctgtgg 

 721 tgacttactc atttgaagct ttgggaaaag tcggggtggc agttttagtt tttacagcag 

 781 ctgcaatggt gtgggacata tacacagcag aagataagct ggaggcagcg gttagggatt 

 841 cagtaaatgc gttaactgca gtagttaacc ttgaggtggg agaaatagtt actactgctg 

 901 tagaagctgg attcgtagca ctagacatcg aaattgcttc tgcggctgtc acggtaattg 

 961 gaggagtcgt cggttttgga attggtgcgc tcattgggat agctgcaggt gcgctgcttg 

1021 acttgatttt cagcagtgga actagcaagg tgaagataac agacgggctt acagtttgcc 

1081 gtgtggcgcc tatgcctcat ggtctcgaac tcgctcgtct agttaagcac aattaccctg 

1141 aactttaaac tgatcatgct actactatga tctttgctat gctatcttct gctcttagtg 

1201 ktagctacta ctgtcgtgag tatgtaagtg cctagtgtgc actcctaaaa taataccccc 

1261 cgcccctgtc gggaaactat tgtattcatg atgccatgat gaggaataaa agtcatgttg 

1321 attcaaaaaa aaaa 

 

Gene:    60 KD Jasmonate induced protein (JIP60)  

GenBank:  BM815987.1 

Locus:                   BM815987 

Length:   858 bp 

Definition:   HB106E12_SK.ab1 HB Hordeum vulgare subsp. vulgare cDNA clone 

HB106E12_SK.ab1 similar to hypothetical protein[Oryza sativa],60 KD 

JASMONATE-INDUCED PROTEIN [Hordeum vulgare],hypothetical 

protein[Oryza sativa],kda jasmonate-induced protein [Hordeum 

vulgare=barley, cv. Bonus, Peptide, 560 aa], mRNA sequence. 

 
   1 cccgggctgc aggaattcgg cacgaggggc cgaaagaaaa ttccccaagt tctattttgt 

  61 ctgggcaaga gcgacatggc ggccgccacc ggctacggtg acgccccgac cgacgagcag 

 121 ctgctcgcgt acgctgagct acccagacaa ggccgctaca tggcggaggt gttcgccgtg 

 181 cgcatccccg ccaccgccgg agcagacccg cccagcggca ccatctcttt ccacggcggc 

 241 cactgcagca gcgacttcat ttacagcccg gaagaagaac acgcctcgca gcaaaccagc 

 301 tgcgacagcc agggtaacat cgtgctcact gggccatcgg tggccacctc ggcatacagt 

 361 ccaattgtct tcagcctcga cctccatgag ggacaagccg acgaggagga ggaagagaac 

 421 accgcgagga tagtctgcga caccattggc ggcgacttct ctaactacaa cagggccata 
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 481 tcggagactg tacgcacagg ctatggcccc gcggaggtga tctacgccgt cctaagtaat 

 541 ggcatccaag gccgggtcga cgtgaagctt tctcgcctgc agtcccgaga cgaagaggtt 

 601 ctcgtcggca ggatcgttgc tcgcagcaag ctgttcgacg tcggttgcgt gctcttctac 

 661 aaggaggccg ctaacaagca gggagtgcac gtgcgaccgg nggagccggt tccgttggcg 

 721 aggcatgcac tcgccttgcc gctgcacatg ccgctgacga ttgagcttga ccttcgtcgc 

 781 ggtggatccc gagatgaaat tgttagaggc aagcttgagt tcaaactgcc atcgacggcc 

 841 tgcatacggg aacgtctg 

 

 

Gene:    Phenylalanine ammonia-lyase (PAL) 

GenBank: Z49147.1 

Locus:               Z49147  

Length:   1777 bp 

Definition:   H.vulgare partial PAL mRNA for phenylalanine ammonia-lyase (1777 

              bp). 

 
   1 ctcctcttca acacaagtct ttcttcaaga cacagatcaa tccagataca catacaccgg 

  61 cctactttca gaatccagac acatacacca gctagttcac ctgtttagaa ctacttctct 

 121 gcatatctcg atggagtgcg agaacgcaca cgttgccgcc aacggcgatg gcttgtgcgt 

 181 ggcgcagcca gcgcgggccg acccactcaa ctggggcaag gcggcggagg agctgtccgg 

 241 gagccatttg gatgccgtga agcggatggt ggaggagtac cgtaagccgg tggtgaccat 

 301 ggagggcgcc agcctgacca tcgccatggt cgccgcggtg gctgccggca acgacaccag 

 361 ggtggagctc gatgagtccg cccgcggccg cgtcaaggag agcagcgact gggtcatgaa 

 421 cagcatgatg aacggcaccg acagctatgg tgtcaccacc ggcttcggcg ccacctctca 

 481 ccggaggacc aaggagggcg gcgctctgca gagagagctc atccgattcc ttaacgccgg 

 541 agccttcggc accggcaccg atggccacgt tctgcctgcc gcgacgacga gggcggcgat 

 601 gctcgtccga gtaaatacct tgctgcaggg atattcaggc attcgctttg agatcctgga 

 661 gacgattgcc acacttctca atgccaacgt gacaccatgc ctgccgctcc ggggcacgat 

 721 caccgcgtct ggtgacctcg taccgctttc gtacatcgcg ggcctggtca ccggccgccc 

 781 aaactccgtg gcaaccgctc cagatggcac gaaggttaat gccgcggagg catttaagat 

 841 cgccggcatc cagcatggct tcttcgagct gcagccgaag gaaggccttg ccatggtgaa 

 901 tggcacggcg gtaggctctg ggcttgcatc catggtgctt ttcgaggcta acgtccttag 

 961 cctccttgcc gaggtcctgt cggccgtctt ctgcgaggtg atgaatggca agccggagta 

1021 caccgatcac ttgacccaca agctgaagca ccaccctgga cagatcgagg ctgccgccat 

1081 catggagcac attcttgaag gcagctccta catgatgcta gcaaagaagc tcggtgagct 

1141 tgacccattg atgaagccaa agcaagatag gtatgcactc cgcacatcgc ctcagtggct 

1201 tggccctcag attgaggtca tccgtgctgc caccaagtcg atcgagcggg agatcaactc 

1261 tgtcaatgac aacccactca tcgacgtttc tcgtggcaag gctatccacg gtggcaactt 

1321 ccagggcaca cctattggtg tgtccatgga caacaccagg cttgccattg ctgcgatcgg 

1381 taaactcatg tttgcccagt tctcagagct agtgaatgac ttctacaaca acggtctgcc 

1441 ttccaacctc tccggcgggc gcaacccaag tttggactat ggcttcaagg gtgctgagat 

1501 tgccatggcg tcatactgtt ccgagcttca gttcctgggc aaccctgtga ccaaccatgt 

1561 ccagagcgca gagcagcaca accaagatgt caactctctt ggccttatct cctcaaggaa 

1621 gactgccgag gccattgaca tactcaagct catgtcctcg acatttttgg tcgcattgtg 

1681 ccaggctatc gacctccgcc acctcgagga gaatgtcaag aatgctgtaa agagctgtgt 

1741 gaagacggtg gccaggaaga cactaagcac tgatagc
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Appendix 2. ANOVA results  

All values show are p-values.  The data obtained for some variables were not normally distributed and were there for transformed by taking the Log10 

(marked with * or double log **).   
 

Table S2-1 Growth of barley plants under K-stress 

    Time point (days) Whole exp 
    0 2 4 6 8 10 12 14 16 18 20 Control/-K Time Inter 

length total 0.462 0.224 0.519 0.042 0.042 0.797 0.493 0.059 0.142 0.950 0.094 0.815 <0.001 0.095 

shoot 0.200 0.268 0.309 0.015 0.001 0.050 0.013 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

leaf 1 0.200 0.238 0.309 0.014 0.077 0.423 0.444 0.155 0.057 0.509 0.658 <0.001 <0.001 0.491 

leaf 2     0.840 0.519 0.006 0.050 0.013 0.002 0.001 0.015 0.023 <0.001 <0.001 0.146 

leaf 3           0.113 0.006 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.004 

leaf 4                     <0.001       

root*                       <0.001 <0.001 <0.001 

weight total*                       <0.001 <0.001 <0.001 

shoot*                       <0.001 <0.001 0.075 

root*                       <0.001 <0.001 <0.001 

 

Table S2-2 Biochemical and physiological effects of K-stress on shoots  

  Time points Whole experiment Over time 
  3 6 9 12 15  +/- K Time  Inter Cont  -K 

% K in DW **            0.121 0.412   0.118     
% water 0.196 0.169 0.342 0.499 0.444 0.265 0.464 0.371 0.715 0.432 

Chl A 0.251 0.037 0.607 0.720 0.045 0.346 0.638 0.663 0.912 0.477 

Chl B  0.181 0.808 0.372 0.471 0.234 0.950 0.782 0.458 0.670 0.541 

Glucose 0.048 0.286 0.156 0.004 0.087 0.084 <0.001 0.377 <0.001 <0.001 

Fructose  0.145 0.357 1.330 0.126 0.012 0.111 <0.001 0.312 <0.001 0.002 

Sucrose  0.594 0.140 0.012 0.226 0.364 0.114 0.003 0.239 0.134 0.029 

Malate  0.039 0.402 0.006 0.320 0.220 0.078 <0.001 0.392 0.040 0.300 

Glutamate  0.132 0.154 0.006 0.166 0.112 0.060 <0.001 0.418 0.043 0.035 

Protein  0.856 0.636 0.621 0.886 0.983 0.680 0.103 0.822 0.516 0.275 

Nitrate  0.920 0.447 0.633 0.206 0.582 0.405 <0.001 0.784 0.015 0.001 
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Table S2-3 Biochemical and physiological effects of K-stress on roots  

  Time points Whole experiment Over time 
  3 6 9 12 15  +/- K Time  interact Control  -K 

% K in DW 0.048 0.048 0.014 0.010 0.002 <0.001 <0.001 <0.001 <0.001 0.057 

% water **                0.329 0.097 0.004       
Glucose  0.164 0.043 0.079 0.020 0.094 0.030 <0.001 0.375 <0.001 <0.001 

Fructose  0.100 0.017 0.048 0.043 0.053 0.007 <0.001 0.187 <0.001 0.002 

Sucrose  0.045 0.257 0.169 0.047 0.034 0.078 <0.001 0.891 <0.001 0.021 

Malate  0.420 0.003 0.700 0.313 0.276 0.813 <0.001 0.036 0.005 0.039 

Glutamate  0.524 0.160 0.549 0.481 0.894 0.848 0.429 0.384 0.387 0.495 

Protein  0.779 0.344 0.057 0.105 0.844 0.152 0.119 0.769 0.316 0.391 

Nitrate  0.823 0.588 0.451 0.496 0.265 0.350 0.296 0.577 0.005 0.470 

 

 

 

Table S2-4 Biochemical and physiological effects of K-stress across the leaf  

  Segments Whole exp Across leaf Control  -K 
 Tip Mid Base +/- K Seg Inter Control -K T/M T/B M/B T/M T/B M/B 

% K in DW  0.023 0.031 0.046 <0.001 0.060 0.562 0.044 0.313 0.084 0.012 0.137 0.458 0.340 0.254 

% water 0.043 0.334 0.225 0.004 <0.001 0.027 0.217 0.004 0.392 0.163 0.385 0.028 0.012 0.412 

Chl A 0.140 0.006 0.360 0.013 0.004 0.328 0.075 0.098 0.283 0.068 0.179 0.206 0.027 0.479 

Chl B 0.306 0.276 0.334 0.054 0.016 0.674 0.189 0.028 0.415 0.076 0.396 0.089 0.035 0.202 

Glucose 0.255 0.408 0.436 0.906 0.892 0.475 0.775 0.319 0.703 0.545 0.911 0.341 0.842 0.073 

Fructose 0.232 0.621 0.323 0.034 0.656 0.666 0.939 0.530 0.936 0.303 0.862 0.395 0.795 0.421 

Sucrose 0.974 0.367 0.099 0.015 0.011 0.071 0.317 <0.001 0.744 0.344 0.090 0.047 0.006 0.002 

Glutamate 0.063 0.131 0.105 0.001 0.017 0.369 0.175 0.128 0.612 0.059 0.213 0.340 0.308 0.099 

Protein 0.149 0.831 0.431 0.711 0.015 0.260 0.228 0.088 0.398 0.119 0.515 0.179 0.030 0.449 
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Table S2-5 JA-related gene expression in shoots under K-stress  

  Time points Whole exp Over time 
  3 6 9 12 15  +/- K Time  Interaction Control  -K 

LOX2.2 *           0.003 <0.001 <0.001     
LOX2.3*           0.467 <0.001 0.350     
LOX2.A 0.980 0.778 0.027 0.074 0.003 0.070 0.382 0.052 0.698 0.036 

AOS 0.746 0.486 0.558 0.246 0.212 0.430 0.033 0.749 0.001 0.293 

AOC *           0.007 <0.001 0.157     
JIP23*           0.784 <0.001 0.770     
JIP37 *           0.509 <0.001 0.087     
JIP60 *           0.002 0.014 0.004     

 

 

Table S2-6 Hormone levels in shoots during K-stress  

 Time points Whole experiment Overtime 
 3 9 15 Control/-K Time Inter Control  -K 

ABA 0.564 0.033 0.018 0.091 0.035 0.198 0.007 0.802 

SA 0.649 0.338 0.153 0.412 0.213 0.389 0.247 0.550 

SA-glyco 0.693 0.402 0.142 0.159 0.027 0.116 0.306 0.061 

 

 

Table S2-7 JA-related gene expression across the leaf during K-stress  

  Segments Whole exp Across leaf 
  Tip Middle Base  +/- K segment interaction Control  -K 

LOX2.3 0.121 0.115 0.608 0.466 0.005 0.142 0.055 0.052 

LOX2.A 0.168 0.001 0.150 0.087 0.002 0.688 0.073 0.025 

AOS *        <0.001  0.004 0.090     
AOC *        <0.001  0.044 0.792     
JIP23*        <0.001  0.035 0.287     
JIP37 *        <0.001 0.003  0.230     
JIP60 0.232 0.049 0.064 0.092 0.005 0.107 0.193 0.027 
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Table S2-8 JA-related gene expression in shoots after K-resupply  

  All Control/ -K Control/Resupply  -K/Resupply Overtime 

  Treatment Time Inter Treatment Time Inter Treatment Time Inter Treatment Time Inter Control  -K RS 

%K Shoots  <0.001 0.004 <0.001 <0.001 0.194 0.781 <0.001 <0.001 <0.001 <0.001 0.004 0.002 0.612 0.208 0.005 

%K Roots <0.001 0.005 <0.001 <0.001 0.778 0.121 <0.001 0.004 0.007 <0.001 0.003 0.001 0.367 0.340 0.006 

LOX2.3*  0.074 0.409 0.358                         
LOX2.A*  0.020 0.632   0.104                         
AOS *  0.103 0.118 0.057                         
JIP23*  0.051 0.063 0.042                         
JIP60*  0.047 0.682 0.015                         

 
 

Table S2-9 R. secalis lesion length and B. graminis colony numbers on K-stressed leaves 

 
  Lesion length * Colonies/cm

2
 * 

Control/-K <0.001 <0.001 
Segment  0.084 <0.001 
Time  <0.001 <0.001 
Control/-K v Segment  <0.001 <0.001 
Control/-K v Time  <0.001 <0.001 
Segment v Time  <0.001 <0.001 
Control/-K v Segment v Time  <0.001 <0.001 

 

 

 

Table S2-10. Infection levels of R. secalis and B. graminis after Me-JA treament 

 Time point Whole experiment 

 3 6 9 12 15 Treatment time Interaction 

R. secalis*            <0.001 <0.001 0.006 

Bgh * 0.003 0.003 0.001 n/a <0.001 <0.001 <0.001 
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Table S2-11 JA-related gene expression in response to R. secalis during K-stress  

 
  LOX2.A* AOS* JIP60* PAL* 

Control/-K 0.002 <0.001 <0.001 <0.001 
Infection 0.677 0.680 0.966 0.107 
Time 0.023 0.559 0.666 <0.001 
Control/-K v Infection  0.500 0.919 0.286 0.335 
Control/-K v Time 0.191 0.116 0.408 <0.001 
Infection v Time 0.779 0.942 0.788 0.679 
Control/-K v Infection v Time 0.533 0.793 0.967 0.722 

 

 

Table S2-13 JA-related gene expression in response to B. graminis during K-stress 

 
  LOX2.A* AOS* JIP60 PAL 

Control/-K <0.001 <0.001 <0.001 0.351 
Infection <0.001 <0.001 <0.001 0.006 
Time <0.001 <0.001 <0.001 0.002 
Control/-K v Infection 0.311 0.011 0.394 0.097 
Control/-K v Time <0.001 0.150 <0.001 0.851 
Infection v Time <0.001 <0.001 0.079 0.190 
Control/-K v Infection v Time 0.278 0.581 0.481 0.524 
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Appendix 3. Pearson product moment correlation analysis 

 

Table S3-1 Analysis of correlation of changes in biochemistry and gene expression in shoot tissue during K-stress. 

Significant (p<0.05) positive correlations are shown in green and negative correlations in red, darker colour indicate a more significant correlation 

 

% K 

% 

water Chl A Chl B 

Total 

Chl Glucose Fructose Sucrose Malate Glutamate Protein 

% K *                     

% water 0.193 *                   

Chl A 0.181 0.260 *                 

Chl B -0.049 0.153 0.251 *               

Total Chl 0.147 0.275 0.961 0.508 *             

Glucose -0.246 -0.060 -0.255 -0.109 -0.258 *           

Fructose -0.276 -0.120 -0.293 -0.088 -0.286 0.977 *         

Sucrose -0.279 -0.002 0.423 0.145 0.417 -0.588 -0.567 *       

Malate 0.130 0.004 0.259 0.215 0.291 0.063 -0.012 -0.132 *     

Glutamate 0.574 0.230 0.353 0.029 0.323 -0.600 -0.633 0.387 0.111 *   

Protein -0.021 0.283 0.158 0.093 0.167 0.075 0.090 -0.003 0.079 0.200 * 

Nitrate 0.267 0.047 0.226 -0.029 0.192 -0.708 -0.685 0.456 -0.234 0.621 0.160 

LOX2.2 -0.503 0.055 -0.037 -0.063 -0.051 0.541 0.481 -0.099 -0.071 -0.438 -0.168 

LOX2.3 -0.249 0.057 0.200 -0.184 0.125 -0.365 -0.401 0.542 -0.007 0.213 -0.004 

LOX2.A -0.603 -0.170 -0.398 -0.039 -0.365 0.273 0.226 0.129 -0.106 -0.363 -0.003 

AOS -0.319 0.198 -0.113 -0.050 -0.114 0.389 0.382 -0.034 0.104 -0.169 0.440 

AOC -0.260 -0.021 -0.262 -0.070 -0.253 0.698 0.620 -0.280 0.055 -0.408 0.094 

JIP23 -0.169 0.025 0.023 -0.065 0.002 0.213 0.136 -0.002 0.049 -0.202 -0.646 

JIP37 -0.024 0.099 -0.015 0.005 -0.012 0.098 0.055 -0.034 -0.152 -0.126 -0.523 

JIP60 -0.501 -0.058 -0.175 0.144 -0.115 0.382 0.374 0.077 -0.146 -0.387 0.037 

PAL -0.245 0.155 -0.191 0.124 -0.135 0.087 0.088 0.096 -0.112 -0.038 0.178 
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Table S3-1 Continued. 

 

LOX2.2 LOX2.3 LOX2.A AOS AOC JIP23 JIP37 JIP60 PAL 

% K                   

% water                   

Chl A                   

Chl B                   

Total Chl                   

Glucose                   

Fructose                   

Sucrose                   

Malate                   

Glutamate                   

Protein                   

Nitrate                   

LOX2.2 *                 

LOX2.3 0.101 *               

LOX2.A 0.347 0.198 *             

AOS 0.370 0.451 0.313 *           

AOC 0.477 -0.177 0.670 0.338 *         

JIP23 0.558 0.167 0.020 0.353 0.174 *       

JIP37 0.140 -0.012 0.037 0.096 -0.049 0.548 *     

JIP60 0.428 0.044 0.637 0.220 0.579 0.065 -0.121 *   

PAL -0.072 0.297 0.286 0.636 0.238 0.082 0.281 0.107 * 
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Table S3-2 Analysis of correlation of changes in biochemistry and gene expression in detached leaf segments during K-stress. 

Significant (p<0.05) positive correlations are shown in green and negative correlations in red, darker colour indicate a more significant correlation. 
  Metabolites JA related gene expression 

   %
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A
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A
O

C
 

J
IP

2
3
 

J
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3
7
 

J
IP

6
0
 

M
e
ta

b
o

li
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% K *                               

% water 0.507 *                             

Chl A 0.102 -0.256 *                           

Chl B 0.029 -0.292 0.914 *                         

Glucose -0.062 -0.120 -0.130 -0.185 *                       

Fructose -0.416 -0.211 -0.179 -0.373 0.197 *                     

Sucrose -0.258 0.217 -0.481 -0.477 -0.054 0.299 *                   

Glutamate 0.367 0.073 0.829 0.854 -0.188 -0.496 -0.484                   

Protein -0.257 -0.605 0.610 0.512 -0.106 0.215 -0.545 0.306                 

J
A

 r
e
la

te
d

 g
e
n

e
 

e
x

p
re

ss
io

n
 

LOX2.3 -0.057 -0.184 0.494 0.442 0.056 -0.112 -0.482 0.443 0.334 *             

LOX2.A -0.696 -0.737 0.163 0.210 0.006 0.354 -0.157 -0.134 0.435 0.364 *           

AOS -0.606 -0.778 -0.157 -0.073 0.021 0.252 -0.180 -0.306 0.447 0.209 0.752 *         

AOC -0.731 -0.594 -0.136 -0.073 0.001 0.514 -0.032 -0.405 0.414 0.184 0.717 0.707 *       

JIP23 -0.636 -0.821 -0.019 0.045 -0.009 0.348 -0.215 -0.278 0.601 0.034 0.739 0.914 0.678 *     

JIP37 -0.577 -0.794 -0.026 0.045 -0.017 0.252 -0.197 -0.222 0.551 0.038 0.696 0.912 0.545 0.977 *   

JIP60 -0.548 -0.590 -0.092 -0.043 -0.013 0.218 -0.121 -0.153 0.353 0.428 0.750 0.878 0.607 0.716 0.751 * 

L
e
si

o
n

 

L
e
n

g
th

 

Day 3 -0.485 -0.109 -0.059 0.066 -0.004 0.057 0.297 -0.098 -0.059 -0.017 0.323 0.062 0.177 0.076 0.103 0.169 

Day 6 -0.757 -0.304 0.048 0.069 0.232 0.524 0.111 -0.207 0.345 -0.151 0.536 0.315 0.525 0.459 0.372 0.247 

Day 9 -0.737 -0.455 0.009 0.031 0.295 0.538 0.008 -0.262 0.489 -0.065 0.452 0.491 0.713 0.591 0.468 0.317 

Day 12 -0.562 -0.690 0.233 0.370 0.190 0.231 0.033 0.129 0.427 0.147 0.518 0.567 0.538 0.545 0.525 0.455 

Day 15 -0.727 -0.689 -0.002 0.089 -0.008 0.349 0.255 -0.185 0.296 0.049 0.607 0.663 0.622 0.618 0.594 0.518 

 

S
e
g

m
e
n

ts
 

w
it

h
 

le
si

o
n

s 

Day 3 -0.513 -0.173 -0.069 0.068 0.003 0.048 0.300 -0.122 -0.065 -0.054 0.379 0.122 0.176 0.145 0.179 0.201 

Day 6 -0.734 -0.478 0.103 0.136 0.239 0.539 0.009 -0.215 0.461 -0.164 0.598 0.411 0.622 0.593 0.486 0.260 

Day 9 -0.716 -0.471 0.022 0.046 0.285 0.535 0.001 -0.257 0.498 -0.053 0.433 0.481 0.735 0.581 0.449 0.295 

Day 12 -0.444 -0.545 0.333 0.428 0.172 0.331 -0.059 0.243 0.457 0.162 0.422 0.443 0.472 0.465 0.421 0.330 

Day 15 -0.288 -0.393 0.438 0.462 -0.022 0.178 -0.049 0.345 0.279 0.233 0.355 0.246 0.162 0.245 0.243 0.149 

N
u

m
b

er
 

o
f 

co
lo

n
ie

s Day 3 * * * * * * * * * * * * * * * * 

Day 6 0.513 0.406 -0.042 -0.127 0.023 -0.183 0.351 0.059 -0.324 -0.619 -0.738 -0.646 -0.614 -0.549 -0.522 -0.752 

Day 9 0.390 0.185 0.113 0.174 -0.161 -0.373 0.235 0.198 -0.293 -0.493 -0.429 -0.488 -0.457 -0.421 -0.411 -0.658 

Day 12 0.338 0.130 0.125 0.159 -0.111 -0.334 0.268 0.140 -0.252 -0.475 -0.407 -0.491 -0.423 -0.413 -0.404 -0.646 

Day 15 0.315 0.147 0.100 0.123 -0.121 -0.301 0.309 0.106 -0.289 -0.473 -0.387 -0.504 -0.413 -0.432 -0.427 -0.648 

 

S
e
g

m
e
n

ts
 

w
it

h
 

c
o
lo

n
ie

s 

Day 3 * * * * * * * * * * * * * * * * 

Day 6 0.593 0.387 -0.002 0.051 -0.418 -0.299 0.138 0.232 -0.228 -0.518 -0.633 -0.495 -0.528 -0.426 -0.401 -0.632 

Day 9 0.667 0.400 0.048 0.023 -0.066 -0.278 0.242 0.206 -0.399 -0.503 -0.710 -0.692 -0.690 -0.624 -0.592 -0.791 

Day 12 0.625 0.512 0.007 -0.016 -0.022 -0.253 0.331 0.163 -0.493 -0.526 -0.699 -0.814 -0.683 -0.738 -0.715 -0.830 

Day 15 0.628 0.543 0.040 -0.010 -0.016 -0.259 0.316 0.170 -0.470 -0.530 -0.699 -0.841 -0.729 -0.746 -0.721 -0.849 
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Table S3-2 Continued. 
  Lesion Length Segments with lesions Number of colonies Segments with colonies 
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% K                     *                   

% water                     *                   

Chl A                     *                   

Chl B                     *                   

Glucose                     *                   

Fructose                     *                   

Sucrose                     *                   

Malate * * * * * * * * * * * * * * * * * * * * 

Glutamate                     *                   

Protein                     *                   

Nitrate * * * * * * * * * * * * * * * * * * * * 

J
a

sm
o

n
a

te
 

r
e
la

te
d

 g
e
n

e
 

e
x

p
re

ss
io

n
 

LOX2.3                     *                   

LOX2.A                     *                   

AOS                     *                   

AOC                     *                   

JIP23                     *                   

JIP37                     *                   

JIP60                     *                   

L
e
si

o
n

 

le
n

g
th

 

Day 3 *                   *                   

Day 6 0.479 *                 *                   

Day 9 0.085 0.823 *               *                   

Day 12 0.304 0.455 0.586 *             *                   

Day 15 0.299 0.455 0.562 0.858 *           *                   

S
e
g

m
e
n

ts
 

w
it

h
 

le
si

o
n

s 

Day 3 0.991 0.494 0.089 0.324 0.337 *         *                   

Day 6 0.397 0.954 0.855 0.526 0.476 0.423 *       *                   

Day 9 0.053 0.782 0.995 0.599 0.566 0.054 0.831 *     *                   

Day 12 0.131 0.482 0.624 0.928 0.725 0.142 0.557 0.637 *   *                   

Day 15 0.094 0.282 0.280 0.707 0.685 0.121 0.282 0.279 0.788 * *                   

N
u

m
b

er
 

o
f 

co
lo

n
ie

s Day 3 * * * * * * * * * * * * * * * * * * * * 

Day 6 -0.33 -0.35 -0.31 -0.28 -0.24 -0.34 -0.38 -0.29 -0.26 -0.07 * *                 

Day 9 -0.16 -0.28 -0.32 -0.04 0.005 -0.14 -0.28 -0.30 -0.05 0.24 * 0.813 *               

Day 12 -0.04 -0.24 -0.30 -0.02 0.034 -0.03 -0.24 -0.28 -0.07 0.23 * 0.801 0.969 *             

Day 15 -0.01 -0.23 -0.32 -0.05 0.043 0.002 -0.24 -0.23 -0.10 0.222 * 0.797 0.965 0.995 *           

se
g
m

e
n

ts
 

w
it

h
 

c
o
lo

n
ie

s 

Day 3 * * * * * * * * * * * * * * * * * * * * 

Day 6 -0.22 -0.36 -0.39 -0.19 -0.19 -0.23 -0.36 -0.37 -0.09 0.119 * 0.727 0.789 0.725 0.705           

Day 9 -0.26 -0.43 -0.48 -0.26 -0.28 -0.26 -0.45 -0.46 -0.19 0.080 * 0.896 0.871 0.849 0.842   0.863       

Day 12 -0.06 -0.35 -0.50 -0.34 -0.37 -0.08 -0.39 -0.49 -0.30 -0.06 * 0.859 0.814 0.821 0.826   0.774 0.951     

Day 15 -0.10 -0.32 -0.49 -0.42 -0.44 -0.11 -0.37 -0.49 -0.37 -0.13   0.867 0.795 0.791 0.799   0.736 0.926 0.984   
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Appendix 4.  Microarray results 

 

Table S4-1 Genes upregulated in response to K-starvation.   

Expression values relative to the medium for all data, of genes upregulated in K-starved (-K) plants with p-values < 0.005 corrected for false discoveries using Bonferroni multiple 

testing correction.  Results for control (C) and K-starved (-K) detached leaf segments mock inoculation with water (mock) or inoculated with R. secalis (+ RS), two and four days post 

inoculation are shown. 

SCRI_Hv35_44K_v1 probe 2 days 4 days Hit description Top TAIR9 

protein hit  mock + RS mock + RS 

 C  -K C  -K C -K C -K 

CUST_376_PI390587928 0.612 2.215 0.825 2.074 0.358 1.684 0.288 1.346 expressed protein  

CUST_392_PI390587928 0.651 2.528 0.766 2.525 0.515 2.366 0.578 2.453 acid phosphatase 1 precursor putative expressed AT4G25150.1 

CUST_6729_PI390587928 0.313 1.800 0.284 2.591 0.286 1.683 0.976 2.922 -  

CUST_18613_PI390587928 0.500 3.233 0.653 4.155 0.458 3.484 0.549 5.412 cytochrome P450 71D7 putative expressed AT5G32440.1 

CUST_35524_PI390587928 0.792 1.177 0.788 1.078 0.820 1.277 0.798 1.397 pyridoxin biosynthesis protein ER1 putative expressed AT5G01410.1 

CUST_25350_PI390587928 0.863 1.815 0.783 1.656 0.519 1.345 0.736 1.547 SET domain containing protein AT2G18850.1 

CUST_19651_PI390587928 0.773 1.491 0.774 1.386 0.769 1.288 0.740 1.346 plant-specific domain TIGR01568 family protein expressed AT1G06920.1 

CUST_21363_PI390587928 0.483 3.866 0.647 4.097 0.494 3.973 0.395 3.679 nodulin putative expressed AT5G25250.1 

CUST_27425_PI390587928 0.903 1.669 0.782 1.487 0.708 1.199 0.697 1.372 expressed protein AT2G31725.1 

CUST_11811_PI390587928 0.633 2.561 0.776 3.243 0.720 1.910 0.623 3.436 ZIM motif family protein expressed  

CUST_15021_PI390587928 0.516 3.203 0.563 2.133 0.602 2.667 0.573 3.363 charged multivesicular body protein 2a putative expressed AT5G44560.1 

CUST_36407_PI390587928 0.368 2.820 0.531 3.175 0.451 3.105 0.427 3.682 glutamate dehydrogenase 2 putative expressed AT5G07440.2 

CUST_21240_PI390587928 0.743 1.728 0.451 1.984 0.626 1.596 0.618 1.951 F-box domain containing protein expressed  

CUST_20607_PI390587928 0.755 3.001 0.938 2.577 0.594 2.487 0.488 1.879 BAP2 putative expressed  

CUST_12663_PI390587928 0.525 2.290 0.556 2.689 0.599 2.106 0.747 3.089 -  

CUST_9061_PI390587928 0.871 1.419 0.839 1.448 0.746 1.240 0.788 1.492 rho guanine nucleotide exchange factor putative expressed AT4G16510.1 

CUST_36690_PI390587928 0.730 1.522 0.753 1.625 0.677 1.593 0.695 1.645 peptidase family M28 containing protein expressed AT1G67420.1 

CUST_28761_PI390587928 0.767 1.561 0.912 1.609 0.873 1.525 0.842 1.789 -  

CUST_6143_PI390587928 0.899 1.395 0.939 1.444 0.813 1.264 0.842 1.327 tetratricopeptide-like helical putative expressed  

CUST_23566_PI390587928 0.689 1.203 0.787 1.578 0.760 1.317 0.891 1.590 -  

CUST_17867_PI390587928 0.815 1.464 0.812 1.333 0.697 1.152 0.659 1.209 RHL2 putative expressed AT5G02820.1 

CUST_4520_PI390587928 0.770 1.710 0.690 1.678 0.574 1.281 0.634 1.393 60S ribosomal protein L12 putative expressed AT5G60670.1 

CUST_14398_PI390587928 0.499 2.448 0.363 1.643 0.294 1.565 0.323 1.412 protein HVA22 putative expressed AT5G50720.1 



 Table S4-1 Genes upregulated in response to K-starvation (Continued). 
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CUST_19640_PI390587928 0.626 1.401 0.630 1.249 0.623 1.328 0.587 1.675 ubiquitin-protein ligase putative expressed  

CUST_17883_PI390587928 0.675 1.381 0.742 1.292 0.548 1.441 0.550 1.717 alpha-L-fucosidase 2 precursor putative expressed AT1G09390.1 

CUST_28606_PI390587928 0.651 1.949 0.674 1.742 0.688 1.481 0.665 1.840 SKP1-like protein 1B putative expressed AT5G42190.1 

CUST_16706_PI390587928 0.796 1.551 0.824 1.702 0.735 1.724 0.784 2.531 -  

CUST_15467_PI390587928 0.681 1.525 0.759 1.888 0.743 1.400 0.729 1.590 U5 small nuclear ribonucleoprotein 200 kDa helicase putative expressed AT2G42270.1 

CUST_3832_PI390587928 0.682 1.656 0.733 1.859 0.561 1.433 0.670 2.122 -  

CUST_21182_PI390587928 0.778 1.713 0.812 1.351 0.883 1.752 0.828 1.988 17.4 kDa class I heat shock protein 3 putative expressed AT3G46230.1 

CUST_6611_PI390587928 0.664 2.364 0.481 2.035 0.655 2.156 0.811 4.194 win2 precursor putative expressed AT3G04720.1 

CUST_41562_PI390587928 0.785 1.194 0.808 1.760 0.668 1.144 0.769 1.743 -  

CUST_26679_PI390587928 0.641 2.194 0.760 2.833 0.695 5.886 0.751 4.711 lipid binding protein putative expressed  

CUST_7633_PI390587928 0.897 1.920 0.792 1.753 0.660 1.294 0.684 1.340 60S ribosomal protein L6 putative expressed AT1G74050.1 

CUST_15514_PI390587928 0.803 2.427 0.758 2.182 0.582 1.574 0.604 2.041 60S ribosomal protein L33-B putative expressed AT1G74270.1 

CUST_37418_PI390587928 0.703 1.721 0.789 1.595 0.843 2.316 0.734 2.126 expressed protein AT4G13400.1 

CUST_576_PI390587928 0.759 2.965 0.646 1.960 0.481 3.246 0.581 3.085 caffeoyl-CoA O-methyltransferase 2 putative expressed AT4G34050.1 

CUST_20478_PI390587928 0.804 1.632 0.809 1.255 0.692 1.181 0.608 1.520 seed maturation protein putative expressed AT4G23630.1 

CUST_4668_PI390587928 0.010 1.320 0.029 1.784 0.051 1.104 0.051 3.471 ZIM motif family protein expressed  

CUST_25518_PI390587928 0.162 7.538 0.380 5.848 0.185 6.670 0.114 6.107 -  

CUST_25534_PI390587928 0.698 1.695 0.593 1.527 0.626 1.343 0.597 1.443 -  

CUST_38286_PI390587928 0.387 2.725 0.391 3.965 0.342 2.128 0.794 6.013 alpha-amylase/trypsin inhibitor putative expressed AT4G11650.1 

CUST_2284_PI390587928 0.821 1.541 0.657 1.513 0.969 1.672 0.870 1.665 sulfate transporter 3.3 putative expressed AT1G23090.1 

CUST_34299_PI390587928 0.809 1.626 0.839 1.482 0.731 1.527 0.837 1.757 nucleotide pyrophosphatase/phosphodiesterase putative expressed AT5G50400.1 

CUST_9554_PI390587928 0.477 1.922 0.696 1.796 0.425 1.582 0.512 1.683 RER1A protein putative expressed AT4G39220.1 

CUST_16227_PI390587928 0.661 1.565 0.857 1.581 0.506 1.167 0.570 1.341 chaperonin CPN60-1 mitochondrial precursor putative expressed AT3G23990.1 

CUST_42291_PI390587928 0.936 1.442 0.786 1.400 0.747 1.234 0.845 1.277 expressed protein AT5G39600.1 

CUST_24203_PI390587928 0.048 3.959 0.111 6.248 0.160 4.092 0.154 5.608 mitochondrial chaperone BCS1 putative expressed AT3G50930.1 

CUST_11825_PI390587928 0.797 1.161 0.865 1.396 0.824 1.243 0.912 1.602 phospholipid-transporting ATPase 2 putative expressed AT5G44240.1 

CUST_38163_PI390587928 0.661 3.003 0.491 2.423 0.558 2.875 0.862 4.399 catalytic/ hydrolase putative expressed AT5G02230.2 

CUST_11048_PI390587928 0.797 1.412 0.716 1.159 0.732 1.301 0.697 1.305 glyoxylate reductase putative expressed AT2G45630.2 

CUST_24810_PI390587928 0.767 1.472 0.846 1.374 0.802 1.388 0.846 1.727 calmodulin binding protein putative expressed  

CUST_26838_PI390587928 0.531 3.282 0.462 2.492 0.531 2.547 0.462 3.385 expressed protein  

CUST_13916_PI390587928 0.368 4.516 0.300 3.665 0.298 3.755 0.331 4.424 expressed protein  

CUST_17142_PI390587928 0.183 2.318 0.215 1.497 0.769 5.583 0.294 3.902 cytochrome P450 86A1 putative expressed AT4G39480.1 

CUST_11702_PI390587928 0.779 1.485 0.799 1.137 0.821 1.386 0.763 1.384 RALF precursor putative expressed AT3G16570.1 
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CUST_26668_PI390587928 0.520 1.486 0.780 2.375 0.664 1.357 0.815 2.043 CRK10 putative AT4G23270.1 

CUST_18739_PI390587928 0.788 1.233 0.850 1.162 0.865 1.211 0.800 1.310 UBP15 putative expressed  

CUST_3635_PI390587928 0.623 2.369 0.560 3.021 0.533 1.539 0.482 1.950 OsWRKY76 - Superfamily of rice TFs having WRKY and zinc finger domains 

expressed 

 

CUST_36097_PI390587928 0.913 1.411 0.920 1.431 0.916 1.349 0.877 1.478 ATP-binding cassette sub-family E member 1 putative expressed AT4G19210.1 

CUST_1421_PI390587928 0.705 1.131 0.695 1.401 0.804 1.309 0.729 1.517 -  

CUST_21489_PI390587928 0.436 2.448 0.653 3.264 0.418 2.312 0.500 3.689 peroxisomal-coenzyme A synthetase putative expressed AT3G48990.1 

CUST_22744_PI390587928 0.548 1.541 0.733 1.571 0.545 1.468 0.558 1.984 annexin-like protein RJ4 putative expressed AT5G65020.1 

CUST_41412_PI390587928 0.421 3.531 0.559 4.370 0.464 3.525 0.435 5.635 cytokinin-O-glucosyltransferase 1 putative expressed AT2G15480.1 

CUST_41885_PI390587928 0.628 1.675 0.848 1.919 0.632 1.359 0.658 2.288 lipid binding protein putative expressed AT1G62790.2 

CUST_37757_PI390587928 0.832 1.499 0.732 1.413 0.756 1.243 0.769 1.426 -  

CUST_35527_PI390587928 0.368 2.211 0.459 2.362 0.572 2.231 0.510 2.881 expressed protein AT3G57450.1 

CUST_2304_PI390587928 0.300 4.101 0.326 4.462 0.596 3.683 0.314 5.905 potassium transporter 13 putative expressed AT2G30070.1 

CUST_34319_PI390587928 0.769 3.769 0.910 4.184 0.628 2.360 0.622 3.286 multidrug resistance-associated protein 3 putative expressed AT3G13080.1 

CUST_12431_PI390587928 0.808 1.270 0.873 1.254 0.795 1.108 0.758 1.077 plasminogen activator inhibitor 1 RNA-binding protein putative expressed AT4G16830.3 

CUST_39864_PI390587928 0.722 1.383 0.814 1.621 0.790 1.534 0.771 1.761 kinesin motor domain containing protein expressed AT5G23910.1 

CUST_13500_PI390587928 0.805 1.671 0.881 1.787 0.825 1.349 0.677 1.453 far upstream element-binding protein 1 putative expressed AT4G10070.1 

CUST_20019_PI390587928 0.850 1.277 0.951 1.236 0.805 1.217 0.857 1.392 expressed protein AT1G35220.1 

CUST_15949_PI390587928 0.769 1.495 0.767 1.607 0.718 1.428 0.608 1.652 OsWRKY45 - Superfamily of rice TFs having WRKY and zinc finger domains 

expressed 

AT3G56400.1 

CUST_36303_PI390587928 0.741 1.871 0.718 1.876 0.679 1.515 0.672 2.035 ubiquitin-protein ligase putative expressed AT4G08980.5 

CUST_33898_PI390587928 0.684 2.525 0.657 2.798 0.444 1.584 0.472 3.640 anthocyanidin 53-O-glucosyltransferase putative expressed AT3G16520.2 

CUST_41858_PI390587928 0.858 1.187 0.875 1.131 0.844 1.232 0.845 1.395 proteasome subunit beta type 7-A precursor putative expressed AT5G40580.2 

CUST_7929_PI390587928 0.850 1.476 0.776 1.415 0.800 1.286 0.805 1.528 cardiolipin synthetase putative expressed  

CUST_297_PI390587928 0.686 1.595 0.656 1.456 0.638 1.691 0.606 1.801 metal ion binding protein putative expressed AT5G23760.1 

CUST_2936_PI390587928 0.615 1.836 0.699 2.075 0.725 2.232 0.671 2.691 -  

CUST_16257_PI390587928 0.553 2.078 0.685 2.723 0.623 2.136 0.642 3.062 ATPase coupled to transmembrane movement of substances putative expressed AT1G66950.1 

CUST_32737_PI390587928 0.849 1.930 0.746 1.655 0.623 1.267 0.632 1.346 40S ribosomal protein S29 putative expressed AT4G33865.1 

CUST_15842_PI390587928 0.932 1.679 0.698 1.355 0.682 1.227 0.815 1.408 NOL1/NOP2/sun family protein expressed AT2G22400.1 

CUST_3974_PI390587928 0.690 1.942 0.683 2.090 0.749 1.721 0.692 1.899 -  

CUST_41735_PI390587928 0.071 5.912 0.064 3.453 0.039 6.792 0.010 3.519 expressed protein AT2G31945.1 
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CUST_8237_PI390587928 0.769 1.136 0.772 1.092 0.865 1.204 0.826 1.262 pseudouridylate synthase/ tRNA-pseudouridine synthase putative expressed AT5G35400.1 

CUST_36010_PI390587928 0.530 2.518 0.630 2.400 0.530 2.272 0.462 2.571 acetylornithine aminotransferase mitochondrial precursor putative expressed AT1G80600.1 

CUST_23632_PI390587928 0.787 1.788 0.739 1.703 0.690 1.472 0.722 1.863 DNA binding protein putative expressed AT5G09380.1 

CUST_92_PI390587928 0.435 4.125 0.181 3.859 0.240 3.502 0.115 3.025 glucan endo-13-beta-glucosidase precursor putative expressed AT5G24318.1 

CUST_26698_PI390587928 0.731 1.155 0.853 1.206 0.791 1.095 0.735 1.236 lipin N-terminal conserved region family protein expressed AT3G09560.3 

CUST_40373_PI390587928 0.827 1.645 0.811 1.525 0.700 1.246 0.746 1.541 pentatricopeptide repeat putative expressed AT1G80150.1 

CUST_4904_PI390587928 0.391 3.824 0.592 3.486 0.474 3.309 0.318 2.864 OsWRKY62 - Superfamily of rice TFs having WRKY and zinc finger domains 
expressed 

 

CUST_4687_PI390587928 0.860 1.163 0.837 1.038 0.809 1.187 0.824 1.241 proteasome subunit beta type 1 putative expressed AT3G60820.1 

CUST_16571_PI390587928 0.425 2.736 0.509 2.620 0.459 4.708 0.396 4.609 boron transporter-like protein 2 putative expressed AT1G74810.1 

CUST_40420_PI390587928 0.497 2.096 0.803 2.807 0.712 2.691 0.592 2.893 expressed protein  

CUST_3712_PI390587928 0.795 2.519 0.845 2.611 0.650 1.561 0.666 1.987 glycosylphosphatidylinositol anchor biosynthesis protein 11 putative expressed AT1G16040.1 

CUST_7482_PI390587928 0.543 1.516 0.526 1.352 0.603 1.134 0.518 1.552 16.9 kDa class I heat shock protein 2 putative expressed AT5G59720.1 

CUST_27814_PI390587928 0.279 3.794 0.328 4.229 0.306 3.346 0.320 4.793 transparent testa 12 protein putative expressed AT5G52450.1 

CUST_41256_PI390587928 0.820 2.328 0.662 1.626 0.878 1.462 0.820 1.315 -  

CUST_3542_PI390587928 0.583 2.569 0.688 2.608 0.587 2.758 0.618 2.323 -  

CUST_30548_PI390587928 0.636 1.331 0.528 1.457 0.623 2.192 0.805 1.989 receptor-like protein kinase putative expressed AT4G00340.1 

CUST_2334_PI390587928 0.410 2.783 0.140 2.096 0.043 2.142 0.085 1.755 -  

CUST_34349_PI390587928 0.822 1.098 0.932 1.293 0.864 1.134 0.815 1.181 adhesion regulating molecule conserved region family protein expressed AT2G26590.3 

CUST_27644_PI390587928 0.839 1.773 0.876 1.670 0.627 1.150 0.648 1.410 expressed protein AT1G61870.1 

CUST_31586_PI390587928 0.758 2.477 0.755 2.577 0.569 1.873 0.550 2.075 60S acidic ribosomal protein P1 putative expressed AT5G24510.1 

CUST_6151_PI390587928 0.762 1.468 0.793 1.834 0.785 1.409 0.814 1.309 cell division cycle protein 20 putative expressed AT4G33270.1 

CUST_15038_PI390587928 0.843 1.668 0.825 1.601 0.752 1.195 0.748 1.474 pentatricopeptide repeat protein PPR1106-17 putative expressed AT2G25580.1 

CUST_33173_PI390587928 0.862 1.381 0.838 1.407 0.688 1.181 0.744 1.296 dihydroorotate dehydrogenase mitochondrial precursor putative expressed AT5G23300.1 

CUST_20235_PI390587928 0.878 1.182 0.875 1.090 0.854 1.221 0.844 1.318 OsGrx_S15.1 - glutaredoxin subgroup II expressed AT3G15660.2 

CUST_12866_PI390587928 0.870 1.972 0.654 1.809 0.684 1.528 0.777 1.831 tetratricopeptide-like helical putative expressed AT5G16860.1 

CUST_11067_PI390587928 0.830 1.883 0.740 2.003 0.743 1.661 0.739 1.659 cell division protein ftsZ putative expressed AT2G36250.2 

CUST_27490_PI390587928 0.568 2.065 0.623 2.037 0.667 1.881 0.592 2.541 -  

CUST_49_PI390587928 0.722 1.335 0.907 1.498 0.798 1.264 0.766 1.295 CDPK-related protein kinase putative expressed AT2G46700.1 
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CUST_25260_PI390587928 0.255 1.081 0.709 3.235 0.180 1.481 0.980 2.995 germin-like protein subfamily 1 member 7 precursor putative expressed  

CUST_42171_PI390587928 0.447 1.880 0.509 1.607 0.815 2.771 0.647 2.636 -  

CUST_8242_PI390587928 0.345 1.661 0.428 2.273 0.735 2.620 0.837 5.597 alanine aminotransferase 2 putative expressed AT1G17290.1 

CUST_11705_PI390587928 0.779 3.115 0.637 3.762 0.521 2.874 0.759 6.308 cytochrome P450 72A1 putative expressed AT3G14630.1 

CUST_18960_PI390587928 0.862 1.737 0.814 1.762 0.586 1.315 0.636 1.387 conserved hypothetical protein  

CUST_19966_PI390587928 0.021 1.262 0.023 1.948 0.034 2.564 0.121 2.540 ZFP16-2 putative expressed AT3G53600.1 

CUST_5293_PI390587928 0.688 1.281 0.915 2.226 0.710 1.219 0.817 2.553 transferrin receptor-like dimerisation domain containing protein expressed AT5G19740.1 

CUST_12743_PI390587928 0.420 3.528 0.686 4.238 0.495 2.337 0.421 4.287 -  

CUST_20703_PI390587928 0.774 1.959 0.742 1.605 0.628 1.524 0.667 1.841 expressed protein AT4G17540.1 

CUST_20533_PI390587928 0.789 1.379 0.855 1.349 0.589 1.082 0.650 1.354 -  

CUST_4723_PI390587928 0.634 1.863 0.670 1.847 0.648 2.190 0.685 3.544 anthocyanidin 3-O-glucosyltransferase putative expressed AT5G49690.1 

CUST_10847_PI390587928 0.803 1.698 0.778 1.642 0.576 1.100 0.590 1.340 60S ribosomal protein L7-2 putative expressed AT3G13580.1 

CUST_22810_PI390587928 0.473 2.380 0.385 2.971 0.563 2.037 0.537 2.702 alcohol dehydrogenase 2 putative expressed AT1G77120.1 

CUST_1758_PI390587928 0.814 1.365 0.805 1.314 0.805 1.206 0.824 1.440 mitochondrial import inner membrane translocase subunit TIM14 putative expressed AT5G03030.1 

CUST_24838_PI390587928 0.242 4.211 0.260 4.648 0.105 4.427 0.163 5.524 cysteine synthase putative expressed AT2G43750.1 

CUST_36008_PI390587928 0.686 1.353 0.648 1.295 0.988 1.350 0.766 1.434 senescence-associated protein DH putative expressed AT2G23810.1 

CUST_5015_PI390587928 0.738 1.574 0.711 1.270 0.675 2.074 0.627 1.761 pyrophosphate-energized vacuolar membrane proton pump putative expressed AT1G15690.1 

CUST_17963_PI390587928 0.809 1.660 0.872 1.532 0.767 1.387 0.727 1.684 26S proteasome non-ATPase regulatory subunit 11 putative expressed AT1G29150.1 

CUST_32628_PI390587928 0.811 1.271 0.879 1.451 0.826 1.243 0.791 1.381 DNA-directed RNA polymerase II 135 kDa polypeptide putative expressed AT4G21710.1 

CUST_3865_PI390587928 0.574 1.514 0.795 1.625 0.581 1.280 0.619 1.830 ferredoxin-3 chloroplast precursor putative expressed AT2G27510.1 

CUST_19550_PI390587928 0.784 2.329 0.683 2.071 0.535 1.492 0.571 1.793 40S ribosomal protein S3a putative expressed AT4G34670.1 

CUST_24498_PI390587928 0.595 1.894 0.679 2.262 0.732 2.444 0.725 2.851 lysine decarboxylase-like protein putative expressed AT5G11950.2 

CUST_8921_PI390587928 0.542 3.611 0.849 5.189 0.481 2.975 0.396 4.629 CYP710A1 putative expressed AT2G34500.1 

CUST_23523_PI390587928 0.814 1.484 0.852 1.553 0.900 1.459 0.824 1.694 jmjC domain containing protein expressed AT1G08620.1 

CUST_41472_PI390587928 0.694 1.761 0.543 1.928 0.539 1.763 0.654 1.901 pathogen-related protein putative expressed AT1G78780.2 

CUST_14185_PI390587928 0.277 2.362 0.359 2.039 0.555 2.338 0.427 2.593 rab GDP dissociation inhibitor alpha putative expressed AT3G59920.1 

CUST_10198_PI390587928 0.657 1.552 0.824 1.828 0.687 1.212 0.774 1.924 protein binding protein putative expressed AT1G74180.1 

CUST_39605_PI390587928 0.567 3.254 0.777 5.458 0.316 2.479 0.437 4.267 2-oxoglutarate dehydrogenase E1 component mitochondrial precursor putative 

expressed 

AT5G65750.1 

CUST_14232_PI390587928 0.854 1.792 0.761 1.746 0.682 1.462 0.729 1.733 expressed protein AT3G15420.1 
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CUST_19241_PI390587928 0.803 1.996 0.745 2.040 0.576 1.334 0.581 1.480 guanine nucleotide-binding protein beta subunit-like protein putative expressed  

CUST_26466_PI390587928 0.415 3.525 0.345 2.990 0.491 2.406 0.474 3.275 expressed protein  

CUST_42169_PI390587928 0.832 2.143 0.788 2.187 0.575 1.386 0.590 1.594 -  

CUST_33250_PI390587928 0.659 1.548 0.885 1.520 0.835 1.571 0.790 1.967 cp protein putative expressed AT5G37070.1 

CUST_21894_PI390587928 0.505 2.047 0.760 1.911 0.515 1.692 0.413 1.673 calmodulin-like protein 41 putative expressed AT1G76640.1 

CUST_4876_PI390587928 0.683 1.668 0.711 1.493 0.711 1.442 0.736 1.652 -  

CUST_13981_PI390587928 0.713 1.484 0.757 1.687 0.728 1.798 0.852 1.322 glucan endo-13-beta-glucosidase precursor putative AT1G79480.2 

CUST_2646_PI390587928 0.762 1.604 0.946 1.790 0.867 1.381 0.819 1.570 calmodulin binding protein putative expressed  

CUST_12757_PI390587928 0.613 1.592 0.830 1.909 0.580 1.246 0.690 1.813 MLO-like protein 1 putative expressed  

CUST_3901_PI390587928 0.874 1.433 0.830 1.420 0.847 1.343 0.816 1.521 NADP-dependent malic enzyme chloroplast precursor putative expressed AT1G79750.1 

CUST_10543_PI390587928 0.120 4.312 0.239 5.525 0.140 5.699 0.118 6.512 indole-3-acetate beta-glucosyltransferase putative expressed AT2G43820.1 

CUST_35746_PI390587928 0.499 1.677 0.435 1.901 0.439 1.523 0.525 1.923 secretory protein putative expressed AT2G15130.1 

CUST_16419_PI390587928 0.640 2.304 0.664 2.607 0.604 2.393 0.769 2.229 activating signal cointegrator 1 complex subunit 3 putative expressed AT5G61140.1 

CUST_25603_PI390587928 0.904 1.602 0.808 1.363 0.738 1.194 0.830 1.570 50S ribosomal protein L24 putative expressed AT5G23535.1 

CUST_20424_PI390587928 0.550 1.439 0.594 1.474 0.823 1.778 0.866 2.069 -  

CUST_19548_PI390587928 0.822 2.957 0.827 2.786 0.641 1.887 0.602 2.343 40S ribosomal protein S3a putative expressed AT4G34670.1 

CUST_9453_PI390587928 0.584 2.013 0.729 2.536 0.300 1.504 0.414 1.912 expressed protein  

CUST_7727_PI390587928 0.871 1.316 0.857 1.153 0.758 1.109 0.734 1.205 transcription factor BTF3 putative expressed AT1G73230.1 

CUST_25310_PI390587928 0.455 3.895 0.667 4.892 0.378 2.438 0.452 6.024 expressed protein AT4G05020.1 

CUST_27338_PI390587928 0.729 2.205 0.399 1.854 0.378 1.494 0.403 1.746 hydrolase putative expressed AT5G18860.1 

CUST_6519_PI390587928 0.226 7.144 0.371 7.715 0.422 32.771 0.168 19.514 polygalacturonase precursor putative expressed AT1G23460.1 

CUST_22191_PI390587928 0.365 1.332 0.305 1.838 0.362 3.137 0.753 3.274 regulatory protein putative expressed AT4G19970.1 

CUST_23197_PI390587928 0.516 1.253 0.478 1.384 0.624 1.707 0.639 1.758 -  

CUST_22782_PI390587928 0.768 1.832 0.810 1.636 0.642 1.187 0.605 1.437 -  

CUST_37251_PI390587928 0.640 1.787 0.596 1.491 0.546 1.276 0.530 1.455 glycine-rich protein 2b putative expressed AT4G36020.1 

CUST_29913_PI390587928 0.729 1.390 0.740 1.382 0.693 1.181 0.641 1.285 OsIAA6 - Auxin-responsive Aux/IAA gene family member expressed AT3G16500.1 

CUST_16960_PI390587928 0.797 1.415 0.926 1.781 0.891 1.520 0.804 1.785 ubiquitin interaction motif family protein expressed AT4G11860.1 

CUST_29136_PI390587928 0.715 1.460 0.660 1.616 0.829 1.373 0.827 1.472 heavy metal-associated domain containing protein expressed  

CUST_38087_PI390587928 0.641 1.920 0.793 2.239 0.692 1.789 0.569 1.785 10-deacetylbaccatin III 10-O-acetyltransferase putative expressed AT3G03480.1 

CUST_38709_PI390587928 0.654 1.258 0.692 1.437 0.707 1.268 0.779 1.606 metabolite transport protein csbC putative expressed AT1G79820.3 

CUST_7716_PI390587928 0.364 2.017 0.380 1.818 0.513 3.012 0.406 2.554 subtilisin-chymotrypsin inhibitor 2 putative expressed  

CUST_15613_PI390587928 0.812 1.282 0.860 1.283 0.693 1.147 0.739 1.280 SCO1 protein homolog mitochondrial precursor putative expressed AT4G39740.1 
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CUST_20624_PI390587928 0.513 2.264 0.542 1.930 0.463 3.217 0.431 4.855 mannitol dehydrogenase putative expressed AT4G37980.1 

CUST_30140_PI390587928 0.542 1.405 0.600 1.833 0.788 2.089 0.858 2.399 receptor-like protein kinase precursor putative expressed AT1G73080.1 

CUST_8631_PI390587928 0.506 2.614 0.416 1.691 0.472 2.424 0.527 2.818 -  

CUST_41352_PI390587928 0.797 1.464 0.831 1.493 0.876 1.428 0.827 1.571 -  

CUST_11286_PI390587928 0.757 1.186 0.860 1.421 0.815 1.286 0.760 1.237 expressed protein AT4G00800.1 

CUST_10311_PI390587928 0.874 1.516 0.781 1.351 0.785 1.341 0.772 1.578 conserved hypothetical protein AT2G43780.2 

CUST_37224_PI390587928 0.892 1.468 0.826 1.313 0.713 1.404 0.782 1.423 ribosome recycling factor putative expressed AT3G01800.1 

CUST_19121_PI390587928 0.747 2.957 0.757 2.950 0.781 1.904 0.761 2.875 pentatricopeptide repeat protein PPR986-12 putative expressed AT5G59200.1 

CUST_35514_PI390587928 0.562 3.121 0.814 5.032 0.515 2.179 0.488 3.815 transferase putative expressed AT5G42830.1 

CUST_12962_PI390587928 0.224 4.622 0.236 4.247 0.115 3.391 0.090 4.022 harpin-induced 1 putative expressed  

CUST_3313_PI390587928 0.819 1.921 0.874 1.949 0.778 1.996 0.851 2.661 leucoanthocyanidin reductase putative expressed AT4G27250.1 

CUST_33083_PI390587928 0.802 1.595 0.787 1.464 0.614 1.710 0.797 1.775 amidase putative AT4G34880.1 

CUST_38107_PI390587928 0.604 2.188 0.873 2.770 0.552 1.741 0.660 3.467 peroxisomal membrane protein PMP22 putative expressed AT4G14305.1 

CUST_2105_PI390587928 0.926 1.627 0.887 1.396 0.811 1.281 0.788 1.435 50S ribosomal protein L20 putative expressed AT1G16740.1 

CUST_5948_PI390587928 0.765 1.319 0.739 1.258 0.748 1.248 0.703 1.305 survival motor neuron containing protein expressed AT1G54380.1 

CUST_22796_PI390587928 0.768 1.608 0.689 1.554 0.836 1.578 0.871 1.870 -  

CUST_120_PI390587928 0.681 1.480 0.652 1.498 0.601 1.288 0.568 1.359 WD-repeat protein 74 putative expressed AT1G29320.1 

CUST_23849_PI390587928 0.486 2.243 0.558 2.285 0.638 2.461 0.499 2.413 -  

CUST_14914_PI390587928 0.848 1.806 0.729 1.903 0.651 1.556 0.776 1.955 DNA binding protein putative expressed AT5G09380.1 

CUST_24887_PI390587928 0.797 1.894 0.742 1.731 0.714 1.301 0.684 1.445 phosphate carrier protein mitochondrial precursor putative expressed AT5G14040.1 

CUST_27666_PI390587928 0.871 1.611 0.773 1.404 0.708 1.122 0.706 1.338 60S ribosomal protein L29 putative expressed AT3G06680.1 

CUST_27682_PI390587928 0.730 1.252 0.764 1.293 0.730 1.118 0.702 1.284 ubiquitin-like protein SMT3 putative expressed AT4G26840.1 

CUST_18529_PI390587928 0.457 1.793 0.648 2.083 0.739 1.743 0.859 2.837 receptor-like protein kinase putative AT5G60900.1 

CUST_2892_PI390587928 0.714 1.502 0.793 1.465 0.741 1.917 0.615 1.757 ABA-responsive protein putative expressed AT5G13200.1 

CUST_3898_PI390587928 0.212 3.162 0.288 6.734 0.482 5.927 0.566 13.575 expressed protein AT2G39050.1 

CUST_10114_PI390587928 0.608 1.504 0.372 1.589 0.584 1.964 0.486 1.973 mannitol dehydrogenase putative expressed AT4G37990.1 

CUST_10587_PI390587928 0.729 1.666 0.891 1.673 0.938 1.938 0.856 2.224 palmitoyl-protein thioesterase 1 precursor putative expressed AT3G60340.2 

CUST_41675_PI390587928 0.702 1.537 0.777 1.383 0.843 2.101 0.860 1.917 -  

CUST_3759_PI390587928 0.917 1.318 0.715 1.235 0.728 1.335 0.735 1.304 tetratricopeptide-like helical putative expressed AT2G37320.1 

CUST_1529_PI390587928 0.109 8.447 0.115 8.138 0.079 6.121 0.163 12.717 multidrug resistance protein 4 putative expressed AT2G47000.1 

CUST_5532_PI390587928 0.521 1.444 0.514 1.393 0.494 1.198 0.469 1.282 60S acidic ribosomal protein P1 putative expressed AT5G24510.1 

CUST_3775_PI390587928 0.666 1.498 0.677 1.726 0.709 1.380 0.646 1.568 CID11 putative expressed AT1G53650.2 

CUST_12190_PI390587928 0.729 2.390 0.591 2.213 0.468 1.741 0.483 1.848 SET domain containing protein expressed AT3G56570.1 
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CUST_41536_PI390587928 0.543 1.826 0.571 2.373 0.607 1.855 0.509 2.332 pathogenesis-related protein PRMS precursor putative expressed AT4G33720.1 

CUST_22411_PI390587928 0.233 3.756 0.271 4.587 0.553 12.542 0.306 5.730 -  

CUST_22209_PI390587928 0.570 1.375 0.544 1.568 0.698 1.579 0.905 1.672 expressed protein AT1G74170.1 

CUST_40344_PI390587928 0.733 1.416 0.798 1.518 0.737 1.265 0.753 1.549 eukaryotic translation initiation factor 4B putative expressed AT3G26400.1 

CUST_32415_PI390587928 0.682 1.571 0.910 2.677 0.701 1.312 0.776 2.146 4-coumarate--CoA ligase 1 putative expressed AT1G20510.1 

CUST_32431_PI390587928 0.272 3.292 0.439 4.542 0.203 1.765 0.348 5.058 esterase PIR7B putative expressed AT2G23600.1 

CUST_27048_PI390587928 0.544 2.312 0.677 2.668 0.633 1.947 0.596 3.285 cyanogenic beta-glucosidase precursor putative expressed AT1G02850.2 

CUST_34002_PI390587928 0.589 3.001 0.654 3.215 0.618 2.127 0.653 2.547 plant-specific domain TIGR01615 family protein expressed AT2G39650.1 

CUST_8491_PI390587928 0.490 4.952 0.526 4.191 0.531 4.707 0.506 3.526 lysyl-tRNA synthetase putative expressed AT3G11710.1 

CUST_27080_PI390587928 0.875 1.515 0.848 1.377 0.751 1.224 0.730 1.241 nucleolar protein involved in pre-mRNA processing putative expressed AT2G46230.1 

CUST_2274_PI390587928 0.442 3.811 0.438 3.720 0.666 5.171 0.598 7.573 Zn-dependent hydrolases including glyoxylases putative expressed AT4G33540.1 

CUST_34289_PI390587928 0.854 1.497 0.784 1.507 0.841 1.248 0.866 1.369 nuclear pore protein 84 / 107 containing protein expressed AT3G14120.2 

CUST_25354_PI390587928 0.732 1.300 0.823 1.422 0.684 1.659 0.774 1.715 pyrophosphate-energized vacuolar membrane proton pump putative expressed AT1G15690.1 

CUST_40019_PI390587928 0.374 2.041 0.363 1.897 0.375 2.290 0.287 2.724 -  

CUST_15180_PI390587928 0.746 1.278 0.782 1.536 0.801 1.318 0.803 1.451 interferon-related developmental regulator family protein expressed AT1G27760.3 

CUST_37084_PI390587928 0.587 1.320 0.772 1.617 0.653 1.182 0.705 1.645 DNA-binding protein MNB1B putative expressed AT1G20693.3 

CUST_41850_PI390587928 0.454 2.177 0.462 2.042 0.560 2.744 0.465 2.659 alpha-amylase isozyme C2 precursor putative expressed AT4G25000.1 

CUST_24162_PI390587928 0.304 2.182 0.905 8.516 0.325 1.106 0.414 6.054 aromatic-L-amino-acid decarboxylase putative expressed AT2G20340.1 

CUST_8943_PI390587928 0.601 2.377 0.596 2.454 0.693 3.618 0.646 3.651 expressed protein AT1G22260.1 

CUST_9981_PI390587928 0.759 1.920 0.704 1.734 0.613 1.303 0.611 1.341 protein gar2 putative expressed AT3G18610.1 

CUST_32527_PI390587928 0.414 4.260 0.474 5.594 0.556 5.546 0.503 5.737 flavonol 4-sulfotransferase putative expressed AT2G03760.1 

CUST_25652_PI390587928 0.482 1.707 0.555 1.925 0.389 1.553 0.335 2.194 -  

CUST_4833_PI390587928 0.748 1.546 0.676 1.279 0.739 1.558 0.729 1.631 TPR Domain containing protein expressed  

CUST_24444_PI390587928 0.806 1.830 0.875 1.878 0.736 1.389 0.699 1.553 F-box domain containing protein expressed  

CUST_13736_PI390587928 0.434 3.194 0.480 3.346 0.344 2.524 0.328 4.376 -  

CUST_40837_PI390587928 0.815 1.416 0.886 1.574 0.796 1.325 0.740 1.719 HIRA-interacting protein 5 putative expressed AT3G20970.1 

CUST_18559_PI390587928 0.812 2.298 0.707 1.797 0.684 1.338 0.620 1.433 BPM putative expressed AT2G29200.1 

CUST_41402_PI390587928 0.680 2.369 0.730 3.351 0.701 2.415 0.665 2.939 transcriptional repressor NF-X1 putative expressed AT1G10170.1 

CUST_31685_PI390587928 0.569 3.368 0.451 2.620 0.492 1.949 0.411 2.145 glutathione S-transferase 6 putative expressed AT2G30870.1 

CUST_17367_PI390587928 0.374 4.798 0.553 5.273 0.530 6.462 0.312 7.567 serine carboxypeptidase 1 precursor putative expressed AT1G73300.1 

CUST_28626_PI390587928 0.789 1.602 0.783 1.286 0.819 1.626 0.669 1.442 inositolphosphorylceramide-B C-26 hydroxylase putative expressed AT2G34770.1 

CUST_25157_PI390587928 0.881 1.728 0.743 1.534 0.769 1.381 0.785 1.468 -  
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CUST_22394_PI390587928 0.845 1.615 0.920 1.712 0.844 1.267 0.780 1.900 60S ribosomal protein L24 mitochondrial precursor putative expressed AT4G31460.1 

CUST_19505_PI390587928 0.805 1.605 0.785 1.459 0.681 1.346 0.699 1.512 cleavage and polyadenylation specificity factor 73 kDa subunit putative expressed  

CUST_28456_PI390587928 0.473 9.038 0.593 8.166 0.539 8.627 0.583 5.997 lysyl-tRNA synthetase putative expressed AT3G11710.1 

CUST_12842_PI390587928 0.130 7.522 0.164 5.609 0.117 6.411 0.136 6.934 endothelial differentiation-related factor 1 putative expressed AT3G24500.1 

CUST_18313_PI390587928 0.569 1.794 0.664 2.334 0.498 1.170 0.480 1.680 xylanase inhibitor putative expressed AT1G03230.1 

CUST_20041_PI390587928 0.709 2.348 0.616 2.243 0.520 1.492 0.549 1.708 GTP binding protein putative expressed AT5G58370.2 

CUST_6461_PI390587928 0.233 2.806 0.317 4.486 0.248 3.467 0.445 6.705 ripening-related protein 2 precursor putative expressed  

CUST_38476_PI390587928 0.794 1.988 0.832 1.955 0.796 1.733 0.724 1.988 expressed protein  

CUST_21063_PI390587928 0.736 1.614 0.757 1.761 0.698 1.465 0.672 1.780 -  

CUST_13134_PI390587928 0.634 1.793 0.678 1.674 0.642 1.498 0.575 1.820 eukaryotic translation initiation factor 1A putative expressed AT2G04520.1 

CUST_27094_PI390587928 0.631 2.045 0.780 2.763 0.609 1.535 0.745 2.756 sialin putative expressed AT2G38060.1 

CUST_37284_PI390587928 0.578 1.359 0.707 1.231 0.734 1.417 0.659 1.668 anthocyanidin 53-O-glucosyltransferase putative expressed AT3G16520.2 

CUST_2895_PI390587928 0.789 1.705 0.879 1.647 0.797 2.123 0.684 1.950 ABA-responsive protein putative expressed AT5G13200.1 

CUST_13555_PI390587928 0.627 1.496 0.819 1.609 0.710 1.641 0.632 1.597 -  

CUST_7749_PI390587928 0.778 1.225 0.764 1.106 0.778 1.223 0.739 1.224 legumin-like protein putative expressed AT1G07750.1 

CUST_4986_PI390587928 0.784 1.358 0.867 1.593 0.748 1.385 0.694 1.464 RNA-binding protein precursor putative expressed AT5G61030.1 

CUST_15662_PI390587928 0.843 1.695 0.670 1.403 0.777 1.965 0.752 1.833 glycosyltransferase 6 putative expressed AT2G22900.1 

CUST_30327_PI390587928 0.834 1.284 0.821 1.322 0.803 1.398 0.823 1.423 -  

CUST_6573_PI390587928 0.649 2.209 0.698 1.805 0.721 2.379 0.568 2.073 expressed protein  

CUST_26401_PI390587928 0.734 1.824 0.760 1.876 0.497 1.136 0.510 1.625 60S ribosomal protein L19-3 putative expressed AT3G16780.1 

CUST_14454_PI390587928 0.801 1.669 0.684 1.540 0.629 1.703 0.633 1.590 conserved hypothetical protein  

CUST_29653_PI390587928 0.868 1.482 0.806 1.330 0.821 1.238 0.754 1.337 protein arginine N-methyltransferase 6 putative expressed AT3G20020.2 

CUST_32604_PI390587928 0.688 1.481 0.781 1.554 0.663 1.148 0.760 1.265 NOL1/NOP2/sun family protein expressed AT2G22400.1 

CUST_15476_PI390587928 0.490 2.022 0.518 2.179 0.457 1.702 0.429 2.079 ABC-2 type transporter family protein  

CUST_20200_PI390587928 0.720 1.461 0.945 1.461 0.757 1.841 0.766 2.282 pyrimidine-specific ribonucleoside hydrolase rihA putative expressed AT1G05620.1 

CUST_7626_PI390587928 0.760 1.568 0.800 1.380 0.742 1.249 0.682 1.422 nuclear migration protein nudC putative expressed AT5G53400.1 

CUST_36878_PI390587928 0.750 1.795 0.833 1.967 0.664 1.757 0.600 1.796 26S proteasome regulatory subunit rpn1 putative expressed AT2G20580.1 

CUST_37273_PI390587928 0.915 2.322 0.816 2.140 0.648 1.839 0.672 1.851 60S ribosomal protein L18a putative expressed AT2G34480.1 

CUST_17630_PI390587928 0.838 1.467 0.651 1.279 0.676 1.307 0.717 1.449 expressed protein  

CUST_33286_PI390587928 0.821 1.601 0.808 1.742 0.819 1.545 0.803 1.676 ribosomal protein S11 containing protein expressed  

CUST_29174_PI390587928 0.783 1.579 0.899 1.597 0.740 1.198 0.739 1.401 nucleic acid binding protein putative expressed AT3G62240.1 

CUST_20178_PI390587928 0.634 2.567 0.702 2.798 0.568 1.659 0.565 2.922 TMV response-related gene product putative expressed  
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CUST_11243_PI390587928 0.853 1.596 0.925 1.601 0.789 1.217 0.733 1.321 ATP binding protein putative expressed AT4G11160.1 

CUST_41123_PI390587928 0.331 5.708 0.383 6.349 0.304 4.732 0.342 8.073 mitochondrial chaperone BCS1 putative expressed AT3G50930.1 

CUST_17290_PI390587928 0.875 2.010 0.781 1.761 0.770 1.492 0.789 1.528 ran GTPase activating protein putative expressed AT5G19320.1 

CUST_25064_PI390587928 0.936 2.153 0.836 1.932 0.637 1.413 0.647 1.594 membrane-associated salt-inducible protein like putative expressed  

CUST_14947_PI390587928 0.892 1.695 0.882 1.597 0.630 1.194 0.666 1.387 60S ribosomal protein L10a-1 putative expressed AT2G27530.2 

CUST_30852_PI390587928 0.900 1.460 0.868 1.417 0.776 1.255 0.797 1.640 cytochrome c oxidase polypeptide Vc putative expressed AT2G47380.1 

CUST_19179_PI390587928 0.886 1.710 0.778 1.510 0.748 1.216 0.799 1.512 bifunctional dihydrofolate reductase-thymidylate synthase putative expressed AT4G34570.1 

CUST_35084_PI390587928 0.772 1.441 0.783 1.115 0.826 1.402 0.765 1.385 RALF precursor putative expressed  

CUST_4666_PI390587928 0.594 2.215 0.648 2.181 0.696 1.931 0.748 2.584 ZIM motif family protein expressed  

CUST_19786_PI390587928 0.598 3.809 0.367 2.014 0.397 2.638 0.310 2.878 -  

CUST_40872_PI390587928 0.771 2.132 0.773 1.789 0.854 2.034 0.781 2.668 hypothetical protein  

CUST_23759_PI390587928 0.773 1.178 0.704 1.140 0.764 1.227 0.721 1.261 expressed protein  

CUST_41909_PI390587928 0.848 1.338 0.944 1.230 0.780 1.271 0.764 1.449 dihydroflavonol-4-reductase putative expressed  

CUST_23775_PI390587928 0.575 2.028 0.719 1.968 0.557 1.971 0.553 2.346 retinoid-inducible serine carboxypeptidase precursor putative expressed AT2G27920.1 

CUST_2956_PI390587928 0.597 1.792 0.696 1.932 0.778 1.760 0.734 2.123 -  

CUST_13616_PI390587928 0.637 2.878 0.670 3.234 0.593 2.325 0.584 2.907 expressed protein  

CUST_7981_PI390587928 0.381 3.639 0.483 4.302 0.372 5.196 0.275 2.927 calcium-transporting ATPase 13 plasma membrane-type putative expressed AT3G22910.1 

CUST_6757_PI390587928 0.331 2.042 0.288 2.919 0.291 1.687 1.090 3.142 -  

CUST_5549_PI390587928 0.847 2.451 0.781 2.376 0.589 1.742 0.568 1.873 retrotransposon protein putative Ty1-copia subclass AT5G61170.1 

CUST_2313_PI390587928 0.857 1.545 0.789 1.703 0.580 1.211 0.724 1.439 ATPase family AAA domain-containing protein 3 putative expressed AT5G16930.1 

CUST_955_PI390587928 0.789 1.280 0.942 1.351 0.827 1.436 0.811 1.325 proline-rich protein putative expressed AT5G14540.1 

CUST_33795_PI390587928 0.615 1.575 0.626 1.472 0.632 1.307 0.516 1.416 translation initiation factor putative expressed AT4G38710.1 

CUST_29683_PI390587928 0.123 41.579 0.180 28.698 0.111 21.218 0.086 22.543 -  

CUST_1641_PI390587928 0.810 1.453 0.786 1.418 0.730 1.176 0.746 1.240 eukaryotic translation initiation factor 2 gamma subunit putative expressed AT1G04170.1 

CUST_19354_PI390587928 0.649 1.433 0.773 1.416 0.671 1.420 0.682 1.451 DNA repair protein rhp16 putative expressed AT1G05120.1 

CUST_17124_PI390587928 0.820 1.221 0.736 1.084 0.796 1.112 0.701 1.116 cleavage stimulation factor 64 putative expressed AT1G71800.1 

CUST_4064_PI390587928 0.847 1.157 0.866 1.188 0.908 1.231 0.850 1.156 CUE domain containing protein expressed  

CUST_31910_PI390587928 0.549 1.973 0.595 1.588 0.507 1.726 0.462 2.512 heat shock 22 kDa protein mitochondrial precursor putative expressed AT5G51440.1 

CUST_31117_PI390587928 0.752 1.798 0.814 1.687 0.776 1.887 0.716 2.351 glucan endo-13-beta-glucosidase precursor putative expressed AT1G78520.1 

CUST_2354_PI390587928 0.379 5.306 0.379 7.122 0.138 5.683 0.093 6.339 remorin putative expressed AT5G23750.2 
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CUST_39378_PI390587928 0.894 1.660 0.723 1.419 0.794 1.506 0.819 1.468 replication factor C subunit 4 putative expressed AT1G63160.1 

CUST_25994_PI390587928 0.678 1.810 0.656 1.445 0.585 1.430 0.550 1.458 -  

CUST_16266_PI390587928 0.824 1.413 0.819 1.441 0.694 1.120 0.744 1.368 dynamin-related protein 3A putative expressed AT2G14120.3 

CUST_16282_PI390587928 0.387 4.095 0.659 8.331 0.294 2.515 0.291 5.611 tyrosine/DOPA decarboxylase 2 putative expressed AT2G20340.1 

CUST_23811_PI390587928 0.916 1.811 0.853 1.675 0.706 1.206 0.740 1.604 -  

CUST_7208_PI390587928 0.752 1.777 0.827 2.001 0.634 1.278 0.631 1.603 neutral/alkaline invertase putative expressed AT1G22650.1 

CUST_33768_PI390587928 0.442 4.107 0.517 4.469 0.619 4.545 0.399 4.753 protein phosphatase 2C putative expressed AT1G07430.1 

CUST_960_PI390587928 0.590 5.013 0.571 4.550 0.363 3.075 0.305 2.795 ocs element-binding factor 1 putative expressed  

CUST_13769_PI390587928 0.738 1.510 0.633 1.383 0.666 2.120 0.785 2.594 ATP binding protein putative expressed AT1G63640.1 

CUST_11539_PI390587928 0.527 1.697 0.609 1.854 0.721 1.749 0.713 1.884 POT family protein expressed AT1G22540.1 

CUST_18825_PI390587928 0.731 2.065 0.615 1.735 0.534 1.285 0.571 1.539 40S ribosomal protein S24 putative expressed AT3G04920.1 

CUST_16580_PI390587928 0.545 1.625 0.845 1.985 0.680 1.814 0.567 1.766 hydrolase acting on glycosyl bonds putative expressed AT5G05460.1 

CUST_15356_PI390587928 0.780 1.614 0.660 1.637 0.595 1.214 0.593 1.333 60S ribosomal protein L18 putative expressed AT3G05590.1 

CUST_11369_PI390587928 0.778 2.056 0.895 2.028 0.747 1.714 0.685 1.833 steroid nuclear receptor ligand-binding putative expressed AT4G12680.1 

CUST_15372_PI390587928 0.329 3.071 0.444 5.626 0.293 4.958 0.297 7.126 -  

CUST_38531_PI390587928 0.666 1.878 0.554 2.121 0.767 2.397 0.869 3.102 monooxygenase putative expressed AT4G38540.1 

CUST_41249_PI390587928 0.804 1.422 0.841 1.291 0.769 1.160 0.765 1.439 nucleic acid binding protein putative expressed AT1G76940.1 

CUST_2296_PI390587928 0.837 1.211 0.745 1.209 0.770 1.390 0.752 1.301 RAB member of RAS oncogene family-like 3 putative expressed AT5G64813.1 

CUST_21591_PI390587928 0.391 2.635 0.447 2.978 0.384 3.020 0.448 4.016 protein P21 putative expressed AT4G11650.1 

CUST_9566_PI390587928 0.750 1.166 0.695 1.177 0.725 1.111 0.810 1.283 -  

CUST_6330_PI390587928 0.867 1.312 0.742 1.586 0.774 1.355 0.817 1.479 rhomboid family protein expressed AT3G58460.1 

CUST_17447_PI390587928 0.782 1.244 0.769 1.126 0.892 1.373 0.793 1.513 gene X-like protein putative expressed AT3G12550.1 

CUST_29410_PI390587928 0.428 3.244 0.601 3.800 0.541 3.740 0.482 4.294 glutamate dehydrogenase 2 putative expressed AT5G07440.2 

CUST_20197_PI390587928 0.880 1.538 0.871 1.573 0.874 1.614 0.860 1.791 ubiquitin fusion degradation protein 1 putative expressed AT2G21270.3 

CUST_5642_PI390587928 0.671 1.103 0.911 1.343 0.638 1.175 0.698 1.270 sugar transport protein 1 putative expressed AT1G11260.1 

CUST_38222_PI390587928 0.634 1.768 0.653 1.712 0.701 1.870 0.760 2.182 NAC domain-containing protein 78 putative expressed  

CUST_19570_PI390587928 0.776 1.559 0.887 1.330 0.889 1.426 0.780 1.578 casein kinase I isoform delta-like putative expressed AT4G14340.1 

CUST_2220_PI390587928 0.843 1.242 0.912 1.131 0.814 1.099 0.793 1.244 26S protease regulatory subunit 7 putative expressed AT1G53750.1 

CUST_172_PI390587928 0.809 1.637 0.777 1.422 0.706 1.819 0.720 1.647 expressed protein  

CUST_25300_PI390587928 0.715 1.536 0.794 1.437 0.779 1.527 0.789 1.950 catalytic/ hydrolase putative expressed AT2G38740.1 

CUST_30839_PI390587928 0.703 1.812 0.737 1.703 0.556 1.354 0.601 1.698 heat shock 70 kDa protein mitochondrial precursor putative expressed AT5G09590.1 

CUST_2050_PI390587928 0.896 1.710 0.887 1.638 0.688 1.083 0.742 1.290 tankyrase 1 putative expressed AT3G09890.1 

CUST_19198_PI390587928 0.631 4.974 0.664 6.164 0.373 2.940 0.385 6.788 protein induced upon tuberization putative expressed  
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CUST_39105_PI390587928 0.750 1.617 0.591 1.478 0.535 2.301 0.313 1.903 oxidoreductase putative expressed AT4G09670.1 

CUST_21143_PI390587928 0.707 2.346 0.671 2.472 0.601 1.967 0.564 2.473 -  

CUST_10995_PI390587928 0.728 3.882 0.790 4.467 0.337 2.624 0.495 3.278 trehalose-phosphate phosphatase putative expressed  

CUST_31908_PI390587928 0.499 2.047 0.597 1.788 0.429 1.593 0.362 2.468 heat shock 22 kDa protein mitochondrial precursor putative expressed AT4G25200.1 

CUST_12006_PI390587928 0.812 1.161 0.871 1.637 0.774 1.216 0.787 1.371 electron transporter putative expressed  

CUST_24986_PI390587928 0.680 1.448 0.741 1.834 0.769 1.813 0.747 1.969 oxysterol-binding protein OBPa putative expressed AT4G25850.1 

CUST_5163_PI390587928 0.520 2.369 0.601 3.533 0.503 2.239 0.695 4.047 chitin-inducible gibberellin-responsive protein 2 putative expressed AT2G37650.1 

CUST_36172_PI390587928 0.551 1.257 0.612 1.447 0.707 1.234 0.735 1.815 dihydroflavonol-4-reductase putative expressed AT5G42800.1 

CUST_4732_PI390587928 0.551 2.350 0.488 2.448 0.802 2.355 0.685 2.129 zinc finger homeodomain protein 1 putative expressed AT3G28917.1 

CUST_5754_PI390587928 0.590 1.985 0.795 2.324 0.547 1.738 0.513 2.256 glutathione S-transferase GSTU6 putative expressed AT1G10370.1 

CUST_19106_PI390587928 0.441 3.848 0.688 6.462 0.188 3.065 0.512 7.539 potassium transporter 5 putative expressed AT4G13420.1 

CUST_1814_PI390587928 0.688 2.715 0.689 2.605 0.471 1.521 0.700 3.231 TMV response-related gene product putative expressed  

CUST_19713_PI390587928 0.594 2.616 0.562 2.382 0.455 2.064 0.447 2.097 elongation factor 2 putative expressed AT1G56070.1 

CUST_35889_PI390587928 0.556 2.206 0.693 2.575 0.669 2.087 0.597 4.186 -  

CUST_14550_PI390587928 0.513 1.443 0.536 1.265 0.710 1.973 0.778 1.550 male sterility protein 2 putative expressed AT4G33790.1 

CUST_25762_PI390587928 0.554 2.615 0.673 2.394 0.628 2.603 0.592 2.977 F-box domain containing protein expressed AT1G61340.1 

CUST_27317_PI390587928 0.311 2.329 0.283 2.532 0.297 2.028 0.404 2.153 -  

CUST_40443_PI390587928 0.896 1.303 0.971 1.334 0.891 1.192 0.860 1.279 potassium transporter 14 putative expressed AT5G09400.1 

CUST_2496_PI390587928 0.758 1.538 0.711 1.423 0.602 1.093 0.625 1.338 40S ribosomal protein S10 putative expressed AT5G52650.1 

CUST_34744_PI390587928 0.817 1.220 0.954 1.229 0.848 1.199 0.804 1.167 ATPase family AAA domain-containing protein 1 putative expressed AT4G27680.1 

CUST_28339_PI390587928 0.707 3.894 0.691 3.122 0.619 2.763 0.584 2.941 3-isopropylmalate dehydratase small subunit 2 putative expressed AT2G43090.1 

CUST_12150_PI390587928 0.644 1.501 0.838 2.019 0.724 1.485 0.806 2.293 expressed protein AT2G33570.1 

CUST_5306_PI390587928 0.870 1.418 0.915 1.426 0.763 1.201 0.741 1.261 hydrolase NUDIX family protein expressed AT4G11980.1 

CUST_5779_PI390587928 0.133 5.637 0.156 4.724 0.147 5.743 0.115 5.917 -  

CUST_25607_PI390587928 0.787 1.640 0.831 1.491 0.867 1.739 0.731 2.114 transparent testa 12 protein putative expressed AT4G25640.1 

CUST_39583_PI390587928 0.892 1.742 0.854 1.472 0.884 1.473 0.895 1.930 late embryogenesis abundant protein putative expressed  

CUST_2373_PI390587928 0.331 2.280 0.528 2.992 0.106 2.220 0.445 2.662 cytochrome P450 94A2 putative expressed AT3G56630.1 

CUST_32174_PI390587928 0.562 1.620 0.669 1.352 0.798 2.035 0.725 2.031 EH-domain-containing protein 1 putative expressed AT3G20290.2 

CUST_10845_PI390587928 0.729 2.599 0.660 2.061 0.487 1.415 0.495 1.788 peptidyl-prolyl cis-trans isomerase CYP19-3 putative expressed AT3G56070.2 

CUST_6190_PI390587928 0.524 3.875 0.493 3.704 0.457 2.865 0.419 3.540 -  

CUST_3442_PI390587928 0.867 1.380 0.958 1.367 0.860 1.167 0.871 1.458 ectonucleotide pyrophosphatase/phosphodiesterase 1 putative expressed AT4G29680.1 

CUST_42178_PI390587928 0.538 1.963 0.670 2.564 0.552 2.305 0.609 2.977 amino acid permease putative expressed AT2G01170.1 
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CUST_23053_PI390587928 0.885 2.988 0.624 2.588 0.558 2.016 0.578 1.659 Ser/Thr-rich protein T10 in DGCR region putative expressed AT4G38260.1 

CUST_37044_PI390587928 0.407 1.548 0.607 1.478 0.345 1.855 0.318 1.643 AN1-type zinc finger protein 2B putative expressed AT3G28210.1 

CUST_19398_PI390587928 0.193 2.621 0.155 1.734 0.414 4.082 0.462 6.036 hypothetical protein  

CUST_27358_PI390587928 0.191 3.976 0.311 6.336 0.201 3.777 0.317 6.444 gibberellin receptor GID1L2 putative expressed AT5G06570.2 

CUST_41017_PI390587928 0.656 2.622 0.711 2.046 0.780 2.100 0.865 3.083 -  

CUST_34872_PI390587928 0.641 1.104 0.782 1.327 0.827 1.201 0.828 1.265 pollen signalling protein with adenylyl cyclase activity putative expressed  

CUST_11558_PI390587928 0.572 1.918 0.638 2.003 0.609 1.871 0.743 2.978 anthranilate N-benzoyltransferase protein 1 putative expressed  

CUST_5954_PI390587928 0.566 1.841 0.778 1.955 0.781 1.978 0.707 2.367 ribosomal RNA apurinic site specific lyase putative  

CUST_11590_PI390587928 0.349 1.514 0.552 1.839 0.466 1.462 0.448 2.574 B12D protein expressed AT3G29970.1 

CUST_6976_PI390587928 0.685 1.662 0.787 1.709 0.544 1.220 0.779 1.290 NOL1/NOP2/sun family protein expressed AT4G40000.1 

CUST_19866_PI390587928 0.325 6.881 0.331 5.911 0.276 5.482 0.241 6.781 expressed protein  

CUST_34547_PI390587928 0.708 1.415 0.848 1.344 0.744 1.702 0.580 1.433 ABA-responsive protein putative expressed AT5G13200.1 

CUST_17466_PI390587928 0.881 1.589 0.825 1.552 0.765 1.335 0.752 1.360 cell division control protein 48 homolog B putative expressed AT2G03670.1 

CUST_32837_PI390587928 0.542 2.818 0.624 2.914 0.354 2.241 0.297 1.762 protein binding protein putative AT1G03670.1 

CUST_18721_PI390587928 0.460 2.474 0.558 2.893 0.339 2.341 0.316 2.319 -  

CUST_22663_PI390587928 0.888 1.480 0.781 1.266 0.801 1.404 0.837 1.525 expressed protein AT5G49410.2 

CUST_14734_PI390587928 0.714 1.595 0.807 1.589 0.637 1.345 0.616 1.692 hsc70-interacting protein putative expressed AT3G17880.1 

CUST_19604_PI390587928 0.717 1.570 0.816 1.635 0.739 1.422 0.640 1.690 phosphatidylinositol 3- and 4-kinase family protein expressed AT2G46500.2 

CUST_6497_PI390587928 0.923 1.379 0.874 1.250 0.779 1.093 0.840 1.263 uncharacterized ACR COG1565 family protein expressed AT1G04900.1 

CUST_26325_PI390587928 0.819 2.418 0.803 2.229 0.721 1.816 0.684 2.110 ubiquitin-activating enzyme E1 3 putative expressed AT5G06460.1 

CUST_206_PI390587928 0.647 1.943 0.671 2.015 0.668 1.714 0.597 2.424 mal d 1-associated protein putative expressed AT2G35900.1 

CUST_17173_PI390587928 0.746 1.579 0.666 1.274 0.609 1.347 0.570 1.406 -  

CUST_27363_PI390587928 0.754 1.636 0.879 1.825 0.766 1.403 0.732 2.156 harpin-induced protein putative expressed AT2G46150.1 

CUST_2557_PI390587928 0.672 1.990 0.734 2.006 0.685 1.937 0.632 2.101 chaperonin putative expressed  

CUST_6405_PI390587928 0.220 5.295 0.172 4.473 0.222 7.694 0.233 9.458 peroxidase 52 precursor putative expressed AT5G05340.1 

CUST_4160_PI390587928 0.049 4.877 0.070 10.011 0.014 4.101 0.156 11.801 -  

CUST_22822_PI390587928 0.819 1.951 0.763 1.721 0.739 1.418 0.763 1.603 -  

CUST_1786_PI390587928 0.605 1.329 0.736 1.596 0.709 1.911 0.566 2.348 expressed protein AT5G25590.1 

CUST_10922_PI390587928 0.743 1.697 0.757 1.641 0.509 1.048 0.519 1.345 60S ribosomal protein L11-1 putative expressed AT5G45775.2 

CUST_36052_PI390587928 0.768 1.274 0.779 1.343 0.724 1.437 0.696 1.570 nucleic acid binding protein putative expressed AT4G17720.1 

CUST_7118_PI390587928 0.726 1.111 0.889 1.328 0.774 1.176 0.904 1.452 phytosulfokine receptor precursor putative expressed AT1G17240.1 

CUST_1477_PI390587928 0.853 1.169 0.894 1.119 0.797 1.236 0.827 1.459 -  

CUST_16597_PI390587928 0.659 1.483 0.530 1.372 0.643 1.174 0.563 1.257 expressed protein  
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CUST_17852_PI390587928 0.707 1.747 0.592 1.881 0.537 2.334 0.534 2.752 anthocyanidin 3-O-glucosyltransferase putative expressed AT5G17050.1 

CUST_684_PI390587928 0.727 1.799 0.665 1.308 0.630 1.482 0.625 1.368 anther-specific proline-rich protein APG putative expressed  

CUST_24620_PI390587928 0.460 6.421 0.554 5.296 0.392 5.365 0.321 5.642 ZFP16-2 putative expressed AT5G59820.1 

CUST_13679_PI390587928 0.635 2.203 0.670 1.519 0.720 3.571 0.632 2.963 OsTIL-1 - Oryza sativa Temperature-induced lipocalin-1 expressed AT5G58070.1 

CUST_8624_PI390587928 0.736 1.222 0.727 1.330 0.856 1.300 0.757 1.510 -  

CUST_1401_PI390587928 0.718 1.295 0.800 1.283 0.737 1.281 0.635 1.330 - AT5G64920.1 

CUST_15282_PI390587928 0.750 1.580 0.849 1.609 0.822 1.573 0.823 1.691 methionyl-tRNA synthetase putative expressed AT4G13780.1 

CUST_24248_PI390587928 0.642 1.511 0.649 1.640 0.603 1.295 0.599 1.520 mitochondrial import inner membrane translocase subunit Tim17 putative expressed AT2G37410.2 

CUST_11295_PI390587928 0.778 1.756 0.842 1.725 0.690 1.217 0.657 1.408 -  

CUST_31016_PI390587928 0.662 1.423 0.750 1.553 0.620 1.303 0.621 1.613 dihydrolipoyllysine-residue acetyltransferase component of pyruvatedehydrogenase 

complex mitochondrial precursor putative expressed 

AT3G13930.1 

CUST_26541_PI390587928 0.337 1.096 0.530 2.795 0.298 1.665 0.880 2.626 germin-like protein subfamily 1 member 7 precursor putative expressed AT5G39110.1 

CUST_19634_PI390587928 0.681 1.395 0.855 2.159 0.522 1.306 0.627 1.563 glucan endo-13-beta-glucosidase 4 precursor putative expressed AT5G56590.1 

CUST_26371_PI390587928 0.761 1.122 0.896 1.069 0.823 1.212 0.883 1.459 phosphoglycerate kinase cytosolic putative expressed AT1G56190.2 

CUST_30888_PI390587928 0.730 1.260 0.967 1.372 0.664 1.036 0.810 1.509 receptor-like GPI-anchored protein 2 putative expressed AT2G17120.1 

CUST_33900_PI390587928 0.609 1.619 0.688 2.296 0.677 1.993 0.860 2.969 cytochrome P450 76C4 putative expressed AT2G45570.1 

CUST_22384_PI390587928 0.592 1.528 0.574 1.691 0.783 1.396 0.596 1.660 expressed protein  

CUST_16212_PI390587928 0.889 1.251 0.873 1.235 0.789 1.278 0.879 1.273 glutathione S-transferase GSTF1 putative expressed AT2G02930.1 

CUST_3152_PI390587928 0.450 3.638 0.663 4.569 0.322 3.309 0.275 2.582 lipid phosphate phosphatase 3 chloroplast precursor putative expressed AT3G02600.2 

CUST_4158_PI390587928 0.697 1.231 0.831 1.141 0.778 1.344 0.784 1.420 serine carboxypeptidase K10B2.2 precursor putative expressed AT4G30810.1 

CUST_29011_PI390587928 0.539 1.659 0.542 1.613 0.737 1.793 0.664 1.954 histone H2B.2 putative expressed AT5G22880.1 

CUST_30749_PI390587928 0.838 1.398 0.869 1.275 0.772 1.117 0.760 1.197 heat shock protein 81-3 putative expressed AT5G56030.1 

CUST_33000_PI390587928 0.808 1.238 0.764 1.261 0.842 1.149 0.796 1.333 40S ribosomal protein S26 putative expressed  

CUST_5818_PI390587928 0.553 1.382 0.753 1.447 0.753 1.194 0.694 1.625 calmodulin-like protein 1 putative expressed AT3G10190.1 

CUST_37274_PI390587928 0.973 2.187 0.931 2.200 0.757 1.585 0.778 1.843 60S ribosomal protein L18a putative expressed AT2G34480.1 

CUST_5057_PI390587928 0.890 1.999 0.655 1.759 0.525 1.426 0.545 1.578 expressed protein  

CUST_2869_PI390587928 0.844 1.536 0.777 1.896 0.632 1.364 0.699 1.374 PRE putative expressed AT1G80680.1 

CUST_22496_PI390587928 0.786 1.146 0.783 1.502 0.712 1.182 0.829 1.377 cylicin-1 putative expressed AT2G03150.1 

CUST_22543_PI390587928 0.376 2.083 0.449 1.829 0.266 1.207 0.355 2.449 monooxygenase putative expressed AT4G38540.1 

CUST_915_PI390587928 0.239 2.285 0.273 1.746 0.637 6.608 0.428 4.164 desiccation-related protein PCC13-62 precursor putative expressed AT1G47980.1 

CUST_4976_PI390587928 0.862 1.234 0.892 1.223 0.860 1.092 0.812 1.150 myrosinase precursor putative expressed AT1G16020.2 
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CUST_10627_PI390587928 0.248 4.062 0.279 4.507 0.502 12.207 0.298 5.887 germin-like protein subfamily 1 member 17 precursor putative expressed AT5G39150.1 

CUST_12400_PI390587928 0.549 1.964 0.564 2.151 0.709 1.685 0.616 2.711 -  

CUST_18415_PI390587928 0.582 6.043 0.393 4.567 0.283 3.181 0.248 3.124 expressed protein AT4G35730.1 

CUST_13422_PI390587928 0.463 1.758 0.455 2.698 0.533 2.522 0.554 1.791 sex determination protein tasselseed-2 putative expressed AT3G26760.1 

CUST_6610_PI390587928 0.537 1.681 0.471 2.326 0.436 1.756 0.464 2.288 win2 precursor putative expressed AT3G04720.1 

CUST_32377_PI390587928 0.751 1.518 0.706 1.578 0.664 1.249 0.783 1.883 -  

CUST_41391_PI390587928 0.407 2.326 0.416 1.375 0.576 2.258 0.358 3.060 -  

CUST_1229_PI390587928 0.453 2.602 0.395 3.311 0.599 2.897 0.442 2.236 CBL-interacting serine/threonine-protein kinase 15 putative expressed AT4G18700.1 

CUST_32238_PI390587928 0.389 1.575 0.518 2.488 0.664 1.557 0.612 1.728 seed specific protein Bn15D17A putative expressed  

CUST_6238_PI390587928 0.628 2.348 0.471 1.720 0.615 2.051 0.564 1.863 OsAPx3 - Peroxisomal Ascorbate Peroxidase encoding gene expressed AT4G35000.1 

CUST_1245_PI390587928 0.438 1.886 0.385 1.778 0.584 2.841 0.451 3.438 reticuline oxidase precursor putative expressed AT1G26390.1 

CUST_38285_PI390587928 0.299 2.166 0.312 2.584 0.365 2.067 0.519 3.093 alpha-amylase/trypsin inhibitor putative expressed AT4G11650.1 

CUST_4040_PI390587928 0.653 2.356 0.478 1.715 0.632 1.955 0.529 1.747 OsAPx3 - Peroxisomal Ascorbate Peroxidase encoding gene expressed AT4G35000.1 

CUST_15950_PI390587928 0.734 1.508 0.678 1.582 0.676 1.540 0.554 1.639 -  

CUST_24341_PI390587928 0.647 1.579 0.604 1.573 0.575 1.147 0.544 1.350 -  

CUST_10164_PI390587928 0.846 2.153 0.813 2.013 0.747 1.393 0.808 2.094 glucan endo-13-beta-glucosidase 4 precursor putative expressed AT5G56590.1 

CUST_7307_PI390587928 0.862 2.000 0.858 1.994 0.576 1.253 0.590 1.547 40S ribosomal protein S20 putative expressed AT5G62300.2 

CUST_15204_PI390587928 0.738 1.587 0.843 1.605 0.839 1.646 0.782 1.874 ankyrin-3 putative expressed AT5G61230.1 

CUST_16226_PI390587928 0.717 1.612 0.836 1.614 0.487 1.168 0.577 1.269 chaperonin CPN60-1 mitochondrial precursor putative expressed AT3G23990.1 

CUST_32131_PI390587928 0.632 2.941 0.760 3.121 0.597 2.824 0.670 5.704 -  

CUST_34952_PI390587928 0.535 2.863 0.613 3.518 0.553 3.209 0.546 5.268 -  

CUST_2751_PI390587928 0.837 1.097 0.790 1.034 0.957 1.213 0.910 1.248 - AT4G30580.1 

CUST_3773_PI390587928 0.776 1.360 0.857 1.252 0.815 1.199 0.704 1.383 zinc finger A20 and AN1 domains-containing protein putative expressed AT1G51200.2 

CUST_40512_PI390587928 0.766 1.865 0.710 1.678 0.572 1.241 0.672 1.297 glycosyltransferase putative expressed AT3G18170.1 

CUST_3043_PI390587928 0.633 1.427 0.586 1.533 0.766 1.810 0.938 1.899 expressed protein AT2G34140.1 

CUST_15959_PI390587928 0.707 1.477 0.770 1.273 0.758 1.833 0.853 1.794 transposon protein putative Mutator sub-class expressed AT5G66560.1 

CUST_41380_PI390587928 0.864 1.489 0.873 1.599 0.776 1.205 0.737 1.506 expressed protein AT1G14060.1 

CUST_30672_PI390587928 0.816 1.797 0.770 1.600 0.716 1.252 0.710 1.239 single-stranded DNA-binding protein putative expressed AT3G18580.1 

CUST_7939_PI390587928 0.614 1.814 0.632 1.946 0.573 1.405 0.580 1.881 expressed protein  

CUST_21551_PI390587928 0.628 1.591 0.737 2.110 0.660 1.537 0.705 2.312 endoplasmic oxidoreductin-1 precursor putative expressed AT2G38960.2 

CUST_33769_PI390587928 0.904 1.415 0.881 1.253 0.780 1.147 0.750 1.279 -  

CUST_37772_PI390587928 0.539 2.847 0.481 1.934 0.634 2.295 0.589 2.800 hypothetical protein  

CUST_12430_PI390587928 0.647 1.378 0.707 1.693 0.759 1.204 0.685 1.413 3-hydroxy-3-methylglutaryl-coenzyme A reductase 3 putative expressed AT1G76490.1 
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CUST_34334_PI390587928 0.740 1.824 0.834 2.327 0.762 1.462 0.739 2.414 cytochrome P450 74A1 chloroplast precursor putative expressed AT5G42650.1 

CUST_26405_PI390587928 0.598 2.717 0.705 2.709 0.530 2.311 0.633 3.161 ubiquitin carboxyl-terminal hydrolase 6 putative expressed AT1G51710.2 

CUST_34350_PI390587928 0.845 1.458 0.816 1.465 0.810 1.402 0.763 1.509 adhesion regulating molecule conserved region family protein expressed AT2G26590.3 

CUST_9356_PI390587928 0.718 2.425 0.620 2.201 0.746 2.042 0.601 2.381 peptidase/ subtilase putative expressed AT4G20430.1 

CUST_25182_PI390587928 0.660 2.450 0.631 2.277 0.611 2.770 0.580 2.956 protein kinase putative expressed AT1G01660.1 

CUST_19514_PI390587928 0.560 2.342 0.574 2.352 0.582 2.700 0.719 2.896 ubiquitin carboxyl-terminal hydrolase family protein expressed AT1G04860.1 

CUST_24021_PI390587928 0.691 2.096 0.799 2.231 0.691 2.089 0.556 2.648 mtN19-like protein putative expressed AT5G61820.1 

CUST_5199_PI390587928 0.868 3.508 0.820 2.839 0.605 2.325 0.636 2.483 elongation factor 1-alpha putative expressed AT5G60390.3 

CUST_36255_PI390587928 0.551 2.442 0.601 3.259 0.421 1.909 0.380 2.678 AER putative expressed AT2G39980.1 

CUST_36069_PI390587928 0.684 1.395 0.745 1.373 0.759 1.336 0.708 1.768 microsomal glutathione S-transferase 3 putative expressed AT1G65820.1 

CUST_22125_PI390587928 0.865 1.520 0.854 1.388 0.721 1.368 0.777 1.665 ATP synthase beta chain mitochondrial precursor putative expressed AT5G08690.1 

CUST_5076_PI390587928 0.654 1.363 0.590 1.389 0.576 1.341 0.626 1.533 glutathione S-transferase GSTF1 putative expressed AT3G62760.1 

CUST_6906_PI390587928 0.755 1.567 0.797 1.615 0.747 1.488 0.713 1.554 expressed protein AT1G73350.3 

CUST_39368_PI390587928 0.803 1.568 0.608 1.389 0.767 1.353 0.777 1.775 calcium-dependent protein kinase putative expressed AT1G12680.1 

CUST_5714_PI390587928 0.344 3.140 0.274 3.359 0.829 2.749 0.349 4.284 expressed protein AT1G22540.1 

CUST_23770_PI390587928 0.827 1.435 0.777 1.420 0.736 1.115 0.737 1.515 expressed protein AT2G35790.1 

CUST_21540_PI390587928 0.744 1.497 0.910 1.621 0.643 1.165 0.721 1.635 ethylene response element binding protein putative expressed AT3G14230.2 

CUST_15841_PI390587928 0.789 1.294 0.903 1.370 0.729 1.263 0.722 1.353 expressed protein AT1G15780.1 

CUST_13425_PI390587928 0.390 1.827 0.380 2.705 0.354 2.463 0.479 1.876 sex determination protein tasselseed-2 putative expressed AT3G26760.1 

CUST_33805_PI390587928 0.368 3.360 0.671 6.785 0.356 1.742 0.693 6.733 -  

CUST_39852_PI390587928 0.770 2.087 0.762 1.997 0.943 2.408 0.823 2.413 expressed protein  

CUST_38053_PI390587928 0.094 7.124 0.114 6.764 0.074 4.470 0.080 5.825 -  

CUST_6613_PI390587928 0.528 1.883 0.532 2.276 0.554 1.812 0.678 3.507 win2 precursor putative expressed AT3G04720.1 

CUST_10492_PI390587928 0.120 4.148 0.155 6.756 0.094 3.474 0.510 11.883 oxalate oxidase 2 precursor putative expressed AT1G18980.1 

CUST_26697_PI390587928 0.769 1.645 0.691 1.483 0.631 1.131 0.602 1.315 expressed protein  

CUST_25722_PI390587928 0.745 1.440 0.715 1.537 0.745 1.345 0.666 1.651 expressed protein AT5G58920.1 

CUST_35695_PI390587928 0.726 1.377 0.740 1.424 0.815 1.444 0.873 1.473 F-box domain containing protein expressed  

CUST_7481_PI390587928 0.686 1.421 0.890 1.627 0.684 1.517 0.833 1.849 -  

CUST_11982_PI390587928 0.782 1.298 0.879 1.303 0.760 1.581 0.738 1.519 glutamate receptor 2.9 precursor putative expressed AT2G29110.1 

CUST_26388_PI390587928 0.732 2.206 0.758 2.763 0.644 1.564 0.629 2.297 importin beta-3 putative expressed AT5G19820.1 

CUST_8348_PI390587928 0.885 2.000 0.869 1.750 0.650 1.342 0.687 1.565 ribonucleoprotein like protein putative expressed AT5G55550.2 

CUST_27643_PI390587928 0.855 1.477 0.858 1.327 0.824 1.350 0.864 1.517 ubiquinone biosynthesis methyltransferase COQ5 mitochondrial precursor putative 
expressed 

AT5G57300.2 
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CUST_7172_PI390587928 0.335 3.490 0.425 2.948 0.259 2.368 0.265 3.088 expressed protein  

CUST_25057_PI390587928 0.689 2.040 0.559 2.021 0.604 1.536 0.559 1.623 expressed protein  

CUST_22869_PI390587928 0.330 4.022 0.310 3.903 0.412 4.236 0.274 5.964 -  

CUST_42201_PI390587928 0.783 2.984 0.469 2.655 0.573 2.008 0.647 2.416 60S ribosomal protein L18a putative expressed AT2G34480.1 

CUST_26312_PI390587928 0.705 1.862 0.722 2.167 0.733 1.848 0.784 2.728 expressed protein  

CUST_21086_PI390587928 0.588 1.319 0.730 1.202 0.834 1.366 0.768 1.596 ribonuclease 1 precursor putative expressed AT2G02990.1 

CUST_4270_PI390587928 0.660 1.372 0.932 1.621 0.725 1.150 0.964 1.560 calmodulin binding protein putative expressed AT5G57580.1 

CUST_13950_PI390587928 0.834 1.350 0.600 1.684 0.503 1.191 0.682 1.538 CDT1a protein putative expressed AT2G31270.1 

CUST_39064_PI390587928 0.726 3.735 0.784 4.873 0.425 3.001 0.455 3.261 trehalose-phosphate phosphatase putative expressed AT4G12430.1 

CUST_4861_PI390587928 0.774 1.463 0.831 1.497 0.715 1.343 0.662 1.602 delta 1-pyrroline-5-carboxylate synthetase putative expressed AT2G39800.1 

CUST_10985_PI390587928 0.324 4.477 0.357 4.922 0.157 4.678 0.245 5.463 cysteine synthase putative expressed  

CUST_9093_PI390587928 0.736 2.641 0.691 2.318 0.607 1.983 0.609 2.258 cyclin-dependent kinases regulatory subunit putative expressed AT2G27960.1 

CUST_13764_PI390587928 0.680 1.802 0.766 2.214 0.589 1.599 0.597 2.228 beta-fructofuranosidase insoluble isoenzyme 1 precursor putative expressed AT3G52600.2 

CUST_19779_PI390587928 0.756 1.453 0.805 1.558 0.634 1.191 0.741 1.927 gibberellin receptor GID1L2 putative expressed AT3G48690.1 

CUST_5930_PI390587928 0.511 2.202 0.339 1.560 0.278 1.569 0.248 1.334 protein HVA22 putative expressed AT5G50720.1 

CUST_18820_PI390587928 0.803 1.819 0.759 1.733 0.575 1.128 0.580 1.480 60S ribosomal protein L33-B putative expressed AT1G74270.1 

CUST_27802_PI390587928 0.534 2.035 0.594 2.273 0.556 2.282 0.464 2.506 -  

CUST_38828_PI390587928 0.702 1.353 0.879 1.491 0.757 1.265 0.750 1.805 expressed protein AT1G75170.2 

CUST_21431_PI390587928 0.492 3.183 0.570 3.507 0.640 3.016 0.681 6.146 embryonic abundant protein-like putative expressed AT2G41380.1 

CUST_8857_PI390587928 0.814 1.113 0.879 1.141 0.888 1.121 0.871 1.196 HECT-domain family protein expressed AT3G17205.2 

CUST_39866_PI390587928 0.836 1.529 0.748 1.295 0.791 1.656 0.774 1.437 harpin-induced protein putative expressed  

CUST_31621_PI390587928 0.738 1.207 0.912 1.484 0.796 1.233 0.795 1.440 fas-associated factor 1-like protein putative expressed AT4G10790.1 

CUST_33681_PI390587928 0.305 2.254 0.363 2.849 0.603 3.557 0.307 2.023 agmatine coumaroyltransferase putative expressed  

CUST_8687_PI390587928 0.841 1.364 0.926 1.389 0.768 1.116 0.734 1.218 tubulin beta-3 chain putative expressed AT5G62700.1 

CUST_5249_PI390587928 0.714 1.602 0.714 1.616 0.512 1.209 0.587 2.025 boron transporter-like protein 2 putative expressed AT1G15460.1 

CUST_36258_PI390587928 0.621 1.736 0.563 1.458 0.520 1.476 0.620 2.284 glutathione S-transferase IV putative expressed AT3G62760.1 

CUST_25566_PI390587928 0.325 3.484 0.456 3.455 0.822 4.757 0.543 5.009 RNA-binding protein cabeza putative expressed AT3G15680.1 

CUST_42004_PI390587928 0.836 1.736 0.767 1.452 0.648 1.736 0.726 2.496 -  

CUST_39573_PI390587928 0.484 2.385 0.587 2.237 0.345 2.230 0.279 2.400 -  

CUST_31126_PI390587928 0.806 1.825 0.784 1.586 0.768 1.525 0.743 1.949 expressed protein AT5G16060.1 

CUST_10835_PI390587928 0.716 1.317 0.598 1.186 0.623 1.278 0.553 1.326 -  

CUST_15844_PI390587928 0.518 1.467 0.703 1.614 0.613 1.105 0.644 1.641 RGH1A putative  
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CUST_3992_PI390587928 0.861 1.471 0.872 1.332 0.847 1.360 0.818 1.290 -  

CUST_38226_PI390587928 0.486 2.736 0.296 1.944 0.504 4.005 0.506 3.813 expressed protein  

CUST_953_PI390587928 0.935 1.363 0.842 1.124 0.783 1.225 0.786 1.215 SLD5 putative expressed AT5G49010.1 

CUST_32802_PI390587928 0.123 8.105 0.206 11.029 0.386 12.766 0.294 24.427 IN2-1 protein putative expressed AT5G02790.1 

CUST_32009_PI390587928 0.858 1.535 0.569 1.146 0.724 1.353 0.714 1.639 expressed protein  

CUST_15721_PI390587928 0.080 9.800 0.105 8.221 0.080 13.117 0.081 13.995 UBiQuitin family member putative expressed AT3G52590.1 

CUST_17174_PI390587928 0.841 1.575 0.843 1.451 0.736 1.407 0.716 1.740 catalytic/ oxidoreductase acting on NADH or NADPH putative expressed AT5G61220.1 

CUST_41583_PI390587928 0.470 2.816 0.379 2.256 0.392 2.164 0.343 1.998 -  

CUST_34692_PI390587928 0.723 1.619 0.747 1.652 0.511 1.219 0.453 1.247 60S ribosomal protein L18 putative expressed AT3G05590.1 

CUST_35698_PI390587928 0.606 1.949 0.488 1.778 0.359 1.686 0.369 1.603 cell envelope integrity inner membrane protein TolA putative  

CUST_36953_PI390587928 0.870 1.299 0.983 1.294 0.810 1.102 0.858 1.330 electron transporter putative expressed AT4G08550.1 

CUST_4736_PI390587928 0.676 1.916 0.614 1.709 0.783 1.754 0.811 2.304 adagio protein 1 putative expressed AT5G57360.1 

CUST_1500_PI390587928 0.697 2.428 0.571 1.840 0.629 1.747 0.563 1.658 -  

CUST_22792_PI390587928 0.645 2.345 0.651 2.079 0.556 1.702 0.616 1.899 tetratricopeptide-like helical putative AT5G16860.1 

CUST_33515_PI390587928 0.885 1.753 0.858 1.517 0.673 1.211 0.705 1.242 60S ribosomal protein L23 putative expressed AT3G04400.1 

CUST_27599_PI390587928 0.501 2.315 0.556 2.265 0.630 2.803 0.598 2.942 DELLA protein GAI1 putative expressed AT3G54220.1 

CUST_15885_PI390587928 0.415 7.237 0.456 6.206 0.392 5.846 0.405 5.692 valyl-tRNA synthetase putative  

CUST_27646_PI390587928 0.760 1.336 0.715 1.275 0.705 1.203 0.706 1.388 expressed protein AT1G73940.1 

CUST_11239_PI390587928 0.348 2.026 0.313 3.046 0.513 1.485 0.219 1.623 amine oxidase precursor putative expressed AT4G14940.1 

CUST_28684_PI390587928 0.712 1.659 0.835 2.042 0.566 1.295 0.734 1.783 MLO-like protein 1 putative expressed AT2G44110.2 

CUST_26268_PI390587928 0.484 2.691 0.538 2.422 0.481 3.031 0.659 2.777 -  

CUST_39253_PI390587928 0.559 1.492 0.784 1.805 0.608 1.302 0.734 1.931 - AT2G35530.1 

CUST_24070_PI390587928 0.359 2.991 0.493 3.133 0.303 2.524 0.436 3.646 glutamate decarboxylase putative expressed AT2G02010.1 

CUST_13937_PI390587928 0.754 1.364 0.832 1.979 0.668 1.240 0.894 2.325 nucleotide binding protein putative expressed AT2G20330.1 

CUST_4273_PI390587928 0.511 3.639 0.547 3.357 0.456 3.575 0.588 6.444 L-allo-threonine aldolase putative expressed AT3G04520.1 

CUST_15997_PI390587928 0.741 1.679 0.761 1.856 0.635 1.378 0.591 1.604 flavonol synthase/flavanone 3-hydroxylase putative expressed AT5G24530.1 

CUST_5933_PI390587928 0.782 1.337 0.858 1.381 0.662 1.104 0.578 1.165 S-adenosylmethionine-dependent methyltransferase/ methyltransferase putative 

expressed 

AT1G19340.1 

CUST_22190_PI390587928 0.693 3.447 0.709 2.955 0.527 1.853 0.463 2.511 WD-repeat protein 50 putative expressed AT5G14050.1 

CUST_17024_PI390587928 0.771 1.747 0.773 1.792 0.757 1.346 0.805 1.708 keratin-associated protein 5-4 putative expressed  

CUST_5156_PI390587928 0.515 2.767 0.908 3.481 0.220 2.637 0.300 2.159 peroxidase 52 precursor putative expressed AT5G05340.1 

CUST_40915_PI390587928 0.726 1.325 0.821 1.361 0.780 1.133 0.740 1.450 cupin RmlC-type putative expressed AT3G58670.2 

CUST_1962_PI390587928 0.777 1.179 0.787 1.398 0.752 1.158 0.709 1.152 expressed protein  
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CUST_33977_PI390587928 0.861 2.710 0.739 2.277 0.498 1.451 0.536 1.509 fibrillarin-2 putative expressed AT5G52470.2 

CUST_14059_PI390587928 0.448 1.948 0.703 2.068 0.516 1.816 0.464 2.146 calmodulin-like protein 41 putative expressed AT1G76640.1 

CUST_29290_PI390587928 0.544 2.241 0.640 2.174 0.554 1.860 0.449 1.901 -  

CUST_31017_PI390587928 0.808 1.250 0.808 1.336 0.800 1.172 0.780 1.107 uridine 5-monophosphate synthase putative expressed AT3G54470.1 

CUST_23073_PI390587928 0.327 2.747 0.413 1.712 0.703 2.526 0.691 3.362 microtubule-associated protein RP/EB family member 3 putative expressed AT5G67270.1 

CUST_10695_PI390587928 0.824 1.511 0.863 1.509 0.798 1.336 0.897 1.501 CAB2 putative expressed AT1G16560.4 

CUST_20885_PI390587928 0.676 3.455 0.600 3.008 0.618 2.795 0.599 2.968 snRNP protein putative expressed AT3G06190.1 

CUST_15719_PI390587928 0.048 14.680 0.081 11.544 0.047 15.959 0.050 14.224 UBiQuitin family member putative expressed AT3G52590.1 

CUST_3867_PI390587928 0.591 1.495 0.750 1.539 0.603 1.323 0.594 1.673 ferredoxin-3 chloroplast precursor putative expressed AT2G27510.1 

CUST_13978_PI390587928 0.709 1.175 0.750 1.744 0.782 1.411 0.856 1.828 kinesin-4 putative expressed AT5G27550.1 

CUST_38086_PI390587928 0.577 1.625 0.643 1.520 0.729 1.775 0.829 2.207 rab GDP dissociation inhibitor alpha putative expressed AT5G09550.1 

CUST_29726_PI390587928 0.712 6.256 0.798 6.380 0.599 4.431 0.590 2.711 FIP1 putative  

CUST_38910_PI390587928 0.769 1.409 0.864 2.267 0.628 1.255 0.936 2.672 expressed protein AT1G73380.1 

CUST_33684_PI390587928 0.459 1.542 0.557 1.351 0.571 1.816 0.680 1.894 - AT3G14630.1 

CUST_3728_PI390587928 0.525 1.844 0.615 2.302 0.591 1.919 0.685 2.853 expressed protein AT5G06270.1 

CUST_30262_PI390587928 0.673 1.524 0.706 1.575 0.699 1.736 0.752 2.251 DNA-binding protein putative expressed AT4G00200.1 

CUST_25569_PI390587928 0.325 3.560 0.421 3.327 0.797 4.638 0.512 4.800 RNA-binding protein cabeza putative expressed AT3G15680.1 

CUST_31315_PI390587928 0.051 6.291 0.034 11.775 0.604 5.430 0.068 10.449 sulfate transporter 3.5 putative expressed AT5G19600.1 

CUST_1344_PI390587928 0.233 3.751 0.357 8.282 0.614 6.995 0.591 14.865 expressed protein  

CUST_34614_PI390587928 0.699 2.558 0.716 2.509 0.640 2.046 0.617 2.292 elongation factor 1-alpha putative expressed AT5G60390.3 

CUST_25446_PI390587928 0.931 1.692 0.773 1.288 0.874 1.320 0.795 1.183 zinc finger protein putative expressed AT3G15680.1 

CUST_40096_PI390587928 0.837 1.315 0.925 1.155 0.711 1.130 0.769 1.331 tubulin alpha-2 chain putative expressed AT5G19780.1 

CUST_3388_PI390587928 0.901 2.153 0.803 2.132 0.618 1.480 0.716 1.574 expressed protein  

CUST_8630_PI390587928 0.886 2.045 0.835 1.987 0.685 1.649 0.613 1.811 F-box domain containing protein expressed  

CUST_36658_PI390587928 0.449 2.383 0.683 3.415 0.438 1.880 0.565 4.181 transposon protein putative unclassified expressed AT3G22370.1 

CUST_10854_PI390587928 0.663 1.366 0.751 1.771 0.592 1.501 0.618 1.789 -  

CUST_23046_PI390587928 0.614 1.401 0.796 1.617 0.600 1.239 0.552 1.426 adenosine 3-phospho 5-phosphosulfate transporter 1 putative expressed AT3G46180.1 

CUST_31022_PI390587928 0.368 2.388 0.584 2.553 0.424 1.907 0.304 2.418 naringenin2-oxoglutarate 3-dioxygenase putative expressed AT5G24530.1 

CUST_25914_PI390587928 0.683 1.560 0.670 1.606 0.789 1.434 0.731 1.902 zinc finger C-x8-C-x5-C-x3-H type family protein expressed AT2G33835.1 

CUST_13967_PI390587928 0.482 2.662 0.491 2.689 0.407 2.439 0.292 1.597 hsp20/alpha crystallin family protein expressed  

CUST_18199_PI390587928 0.824 1.506 0.832 1.945 0.759 1.418 0.764 1.670 global transcription factor group E putative expressed AT3G27260.1 
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CUST_35157_PI390587928 0.651 1.446 0.686 1.322 0.781 1.386 0.844 1.515 histone H2B.1 putative expressed AT5G22880.1 

CUST_21587_PI390587928 0.813 1.936 0.775 1.731 0.740 1.534 0.639 1.407 ubiquitin-protein ligase/ zinc ion binding protein putative expressed AT4G37110.1 

CUST_10895_PI390587928 0.325 3.209 0.374 5.000 0.263 4.657 0.261 6.594 Bowman-Birk type wound-induced proteinase inhibitor WIP1 precursor putative  

CUST_13674_PI390587928 0.604 3.112 0.669 3.468 0.546 2.760 0.459 4.050 esterase precursor putative expressed AT3G26430.1 

CUST_2859_PI390587928 0.572 2.424 0.570 2.035 0.635 2.130 0.679 2.565 vegetatible incompatibility protein HET-E-1 putative expressed  

CUST_20442_PI390587928 0.722 1.484 0.825 1.677 0.687 1.458 0.721 1.791 anthocyanidin 3-O-glucosyltransferase putative expressed AT3G21760.1 

CUST_11274_PI390587928 0.834 1.141 0.775 1.088 0.867 1.131 0.805 1.275 - AT5G65000.1 

CUST_41844_PI390587928 0.735 1.408 0.773 1.335 0.701 1.338 0.664 1.671 OsGrx_C2.2 - glutaredoxin subgroup I expressed AT5G40370.1 

CUST_7915_PI390587928 0.808 2.463 0.496 1.358 0.959 1.977 0.785 1.816 -  

CUST_23741_PI390587928 0.505 3.827 0.610 4.991 0.448 2.612 0.349 6.257 flavonol-3-O-glycoside-7-O-glucosyltransferase 1 putative expressed AT2G36750.1 

CUST_19582_PI390587928 0.485 2.120 0.753 2.535 0.674 2.576 0.738 3.035 -  

CUST_26318_PI390587928 0.756 1.334 0.775 1.218 0.850 1.298 0.738 1.418 expressed protein AT4G22740.2 

CUST_36524_PI390587928 0.766 1.307 0.726 1.405 0.718 1.117 0.659 1.171 asparaginyl-tRNA synthetase cytoplasmic 3 putative expressed AT5G56680.1 

CUST_32537_PI390587928 0.683 1.367 0.685 1.492 0.632 1.390 0.595 1.556 -  

CUST_41535_PI390587928 0.482 2.251 0.462 2.917 0.430 2.447 0.467 3.126 pathogenesis-related protein PRMS precursor putative expressed AT4G25790.1 

CUST_7606_PI390587928 0.595 1.968 0.679 2.001 0.646 1.817 0.753 3.044 NADP-specific glutamate dehydrogenase putative expressed AT1G51720.1 

CUST_7622_PI390587928 0.652 2.925 0.729 3.491 0.650 2.353 0.579 2.897 elongation factor 2 putative expressed AT1G56070.1 

CUST_25476_PI390587928 0.826 1.621 0.839 1.588 0.717 1.111 0.722 1.302 nop14-like family protein expressed  

CUST_31191_PI390587928 0.705 2.499 0.660 2.077 0.476 1.377 0.481 1.707 peptidyl-prolyl cis-trans isomerase CYP19-3 putative expressed AT3G56070.2 

CUST_15924_PI390587928 0.961 1.818 0.730 1.218 0.725 1.305 0.801 1.520 expressed protein AT4G35850.1 

CUST_22101_PI390587928 0.788 1.778 0.740 1.789 0.567 1.196 0.570 1.391 60S ribosomal protein L36-2 putative expressed AT3G53740.4 

CUST_29915_PI390587928 0.714 1.409 0.774 1.762 0.643 1.380 0.750 1.395 OsIAA6 - Auxin-responsive Aux/IAA gene family member expressed  

CUST_32851_PI390587928 0.502 2.368 0.574 2.053 0.860 2.314 0.708 3.016 -  

CUST_15163_PI390587928 0.755 1.901 0.823 2.321 0.798 1.972 0.801 1.913 activating signal cointegrator 1 complex subunit 3 putative expressed AT5G61140.1 

CUST_2087_PI390587928 0.625 1.645 0.844 1.922 0.565 1.237 0.697 1.850 MLO-like protein 1 putative expressed AT4G02600.2 

CUST_9357_PI390587928 0.772 1.752 0.699 1.471 0.764 1.514 0.777 2.029 cytokinin-O-glucosyltransferase 2 putative expressed AT3G02100.1 

CUST_10559_PI390587928 0.621 1.981 0.639 2.311 0.784 2.311 0.765 2.787 ABC transporter family protein expressed AT3G60160.1 

CUST_41647_PI390587928 0.598 1.258 0.660 1.210 0.805 1.322 0.977 1.541 -  

CUST_33734_PI390587928 0.622 1.784 0.514 1.868 0.526 1.876 0.539 3.236 cyclin N-terminal domain containing protein AT4G31860.1 

CUST_26796_PI390587928 0.670 1.453 0.694 1.153 0.805 1.552 0.635 1.342 inositolphosphorylceramide-B C-26 hydroxylase putative expressed AT4G20870.1 

CUST_33750_PI390587928 0.864 1.344 0.903 1.322 0.897 1.261 0.920 1.533 sterol-4-alpha-carboxylate 3-dehydrogenase decarboxylating putative expressed AT2G26260.2 
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CUST_30769_PI390587928 0.505 2.510 0.546 1.847 0.543 2.128 0.396 1.466 aquaporin TIP2.2 putative expressed AT3G16240.1 

CUST_22856_PI390587928 0.397 3.191 0.710 4.359 0.469 2.473 0.510 3.711 mitogen-activated protein kinase kinase kinase 2 putative expressed  

CUST_740_PI390587928 0.816 1.701 0.791 1.726 0.793 1.690 0.775 1.875 threonine dehydratase biosynthetic chloroplast precursor putative expressed AT3G10050.1 

CUST_19782_PI390587928 0.684 1.235 0.869 1.108 0.780 1.160 0.852 1.532 pyrimidine-specific ribonucleoside hydrolase rihA putative expressed AT2G36310.1 

CUST_18574_PI390587928 0.662 1.948 0.686 2.177 0.588 1.606 0.619 2.564 glutathione S-transferase GSTU6 putative expressed AT1G10360.1 

CUST_22547_PI390587928 0.691 1.532 0.665 1.146 0.921 1.676 0.772 1.610 apurinic endonuclease-redox protein putative expressed AT2G41460.1 

CUST_25326_PI390587928 0.783 1.385 0.794 1.979 0.707 1.312 0.809 2.193 ACS-like protein putative expressed AT4G23850.1 

CUST_36740_PI390587928 0.646 1.690 0.911 1.666 0.684 2.033 0.526 1.942 -  

CUST_3268_PI390587928 0.791 1.245 0.897 1.341 0.767 1.205 0.781 1.515 expressed protein AT3G57890.1 

CUST_8510_PI390587928 0.617 1.621 0.772 1.726 0.492 1.711 0.472 2.187 cytochrome c oxidase copper chaperone putative expressed AT1G53030.1 

CUST_18621_PI390587928 0.627 1.229 0.525 1.463 0.748 1.934 0.753 1.780 expressed protein  

CUST_16158_PI390587928 0.653 1.880 0.726 2.038 0.698 2.460 0.758 2.458 glutathione S-transferase GSTF1 putative expressed AT3G62760.1 

CUST_41231_PI390587928 0.387 6.531 0.611 6.965 0.453 5.352 0.334 7.541 expressed protein  

CUST_28609_PI390587928 0.528 1.227 0.500 1.635 0.543 1.231 0.567 1.454 expressed protein  

CUST_5545_PI390587928 0.874 2.229 0.775 2.023 0.572 1.423 0.611 1.789 40S ribosomal protein S12 putative expressed AT2G32060.2 

CUST_18451_PI390587928 0.489 1.826 0.545 1.984 0.547 2.036 0.523 2.417 -  

CUST_6583_PI390587928 0.632 1.349 0.745 1.364 0.842 1.459 0.702 1.757 amino acid transporter putative expressed AT5G09220.1 

CUST_35176_PI390587928 0.805 1.267 0.810 1.349 0.803 1.116 0.887 1.473 histone H2A putative expressed AT5G02560.1 

CUST_18312_PI390587928 0.595 1.906 0.664 2.385 0.493 1.170 0.507 1.767 xylanase inhibitor putative expressed AT1G03220.1 

CUST_39210_PI390587928 0.836 1.225 0.840 1.160 0.811 1.067 0.854 1.247 expressed protein AT4G38150.2 

CUST_10898_PI390587928 0.369 3.629 0.406 5.491 0.282 5.216 0.269 6.918 Bowman-Birk type wound-induced proteinase inhibitor WIP1 precursor putative  

CUST_39497_PI390587928 0.427 2.526 0.560 2.835 0.456 2.159 0.524 3.038 calcium ion binding protein putative AT5G39670.1 

CUST_13693_PI390587928 0.770 2.918 0.609 2.457 0.567 2.061 0.580 4.220 OsGrx_I1 - glutaredoxin subgroup III expressed AT1G28480.1 

CUST_6274_PI390587928 0.840 1.560 0.769 1.463 0.732 1.232 0.745 1.505 CDT1a protein putative expressed  

CUST_31066_PI390587928 0.513 2.242 0.604 1.934 0.788 3.024 0.677 3.151 expressed protein AT1G07040.1 

CUST_40825_PI390587928 0.727 1.389 0.702 1.301 0.912 1.758 0.805 1.659 expressed protein AT5G58000.1 

CUST_1872_PI390587928 0.356 5.720 0.421 6.307 0.505 6.505 0.397 9.472 carbohydrate transporter/ sugar porter/ transporter putative expressed AT5G13750.1 

CUST_11983_PI390587928 0.295 1.893 0.337 1.986 0.307 3.610 0.151 3.246 boron transporter-like protein 2 putative expressed AT1G15460.1 

CUST_28567_PI390587928 0.874 1.399 0.883 1.208 0.826 1.261 0.763 1.139 expressed protein AT1G07970.1 

CUST_39981_PI390587928 0.868 1.602 0.848 1.760 0.609 1.251 0.672 1.210 transferase transferring glycosyl groups putative expressed AT5G06550.1 

CUST_40702_PI390587928 0.492 2.176 0.544 2.312 0.667 2.199 0.699 2.550 seven in absentia protein family protein  
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CUST_3777_PI390587928 0.740 1.628 0.731 1.862 0.760 1.486 0.707 1.703 CID11 putative expressed AT1G32790.1 

CUST_38804_PI390587928 0.218 3.738 0.208 3.484 0.144 2.858 0.090 2.565 flower-specific gamma-thionin precursor putative expressed AT2G02130.1 

CUST_22382_PI390587928 0.708 1.567 0.663 1.724 0.518 2.205 0.556 2.568 -  

CUST_27406_PI390587928 0.674 3.479 0.778 4.272 0.600 2.541 0.530 2.370 -  

CUST_41538_PI390587928 0.455 1.922 0.446 2.596 0.420 2.134 0.493 2.948 pathogenesis-related protein PRMS precursor putative expressed AT2G14610.1 

CUST_29652_PI390587928 0.288 2.513 0.397 2.552 0.338 2.441 0.311 2.560 leucoanthocyanidin reductase putative expressed  

CUST_10482_PI390587928 0.594 1.528 0.734 1.518 0.912 1.821 0.858 2.080 phytosulfokine receptor precursor putative expressed  

CUST_32417_PI390587928 0.482 2.188 0.671 2.652 0.549 1.376 0.487 2.952 pnFL-2 putative expressed AT1G19180.1 

CUST_3654_PI390587928 0.680 1.456 0.587 1.336 0.621 1.170 0.614 1.333 -  

CUST_6433_PI390587928 0.847 1.243 0.838 1.294 0.705 1.068 0.757 1.335 protein yrdA putative expressed AT1G47260.1 

CUST_398_PI390587928 0.783 1.273 0.878 1.130 0.869 1.243 0.815 1.332 protein-O-fucosyltransferase 1 putative expressed AT3G05320.1 

CUST_34477_PI390587928 0.828 1.423 0.845 1.152 0.819 1.350 0.708 1.432 transcriptional factor TINY putative expressed  

CUST_26548_PI390587928 0.856 1.190 0.852 1.191 0.794 1.151 0.902 1.299 amidase putative expressed AT4G34880.1 

CUST_8493_PI390587928 0.595 1.728 0.843 3.202 0.554 2.777 0.362 2.048 cytochrome P450 78A3 putative AT3G61880.1 

CUST_38511_PI390587928 0.741 1.309 0.766 1.376 0.763 1.135 0.839 1.608 histone H2B.2 putative expressed AT5G22880.1 

CUST_41229_PI390587928 0.752 1.249 0.860 1.180 0.890 1.183 0.848 1.424 nucleic acid binding protein putative expressed AT4G17720.1 

CUST_20347_PI390587928 0.769 1.297 0.770 1.049 0.745 1.071 0.739 1.178 50S ribosomal protein L12-2 chloroplast precursor putative expressed  

CUST_6124_PI390587928 0.718 2.100 0.739 2.491 0.644 1.775 0.651 2.260 expressed protein AT1G70420.1 

CUST_20177_PI390587928 0.820 1.206 0.871 1.212 0.865 1.268 0.841 1.208 transmembrane BAX inhibitor motif-containing protein 4 putative expressed AT1G03070.1 

CUST_20768_PI390587928 0.744 1.330 0.828 1.603 0.826 1.185 0.809 1.400 expressed protein AT3G21310.1 

CUST_11833_PI390587928 0.897 1.391 0.830 1.334 0.722 1.110 0.751 1.297 50S ribosomal protein L17 putative expressed AT5G09770.1 

CUST_41122_PI390587928 0.707 1.865 0.699 1.848 0.608 1.832 0.717 1.801 glutathione S-transferase GSTF1 putative expressed AT3G62760.1 

CUST_10050_PI390587928 0.557 1.870 0.605 1.745 0.634 2.086 0.662 1.997 expressed protein  

CUST_39193_PI390587928 0.880 1.129 0.837 1.203 0.848 1.176 0.910 1.331 calcium ion binding protein putative expressed AT5G08580.1 

CUST_25824_PI390587928 0.902 1.215 0.963 1.302 0.827 1.155 0.872 1.306 vesicle-fusing ATPase putative expressed AT4G04910.1 

CUST_38032_PI390587928 0.855 2.669 0.861 2.622 0.738 1.946 0.751 2.289 elongation factor 1-alpha putative expressed AT5G60390.3 

CUST_22891_PI390587928 0.564 1.446 0.661 1.559 0.533 1.094 0.604 1.595 expressed protein  

CUST_8061_PI390587928 0.466 4.370 0.460 3.576 0.535 5.448 0.507 5.251 hypothetical protein  

CUST_15984_PI390587928 0.525 12.255 0.516 8.252 0.302 8.946 0.299 7.844 MYND finger family protein expressed AT3G21820.1 

CUST_36089_PI390587928 0.870 1.163 0.910 1.098 0.889 1.240 0.891 1.270 proteasome subunit beta type 6 precursor putative expressed AT4G31300.1 

CUST_28953_PI390587928 0.889 1.715 0.949 2.093 0.841 1.546 0.896 2.060 expressed protein  

CUST_30665_PI390587928 0.870 2.882 0.700 2.113 0.525 1.659 0.558 1.633 fibrillarin-2 putative expressed AT5G52470.1 
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CUST_4665_PI390587928 0.309 2.376 0.514 2.844 0.588 2.169 0.503 3.323 ZIM motif family protein expressed  

CUST_20491_PI390587928 0.615 3.356 0.572 3.748 0.306 2.050 0.486 4.235 sex determination protein tasselseed-2 putative expressed AT3G51680.1 

CUST_30681_PI390587928 0.632 1.271 0.607 0.963 0.791 1.442 0.719 1.526 multiple stress-responsive zinc-finger protein ISAP1 putative expressed AT4G12040.2 

CUST_23774_PI390587928 0.612 1.849 0.693 1.783 0.589 1.798 0.641 2.255 retinoid-inducible serine carboxypeptidase precursor putative expressed AT2G27920.3 

CUST_29789_PI390587928 0.625 2.041 0.732 2.591 0.641 2.332 0.740 2.694 AMP-binding protein putative expressed AT3G16910.1 

CUST_21544_PI390587928 0.783 1.471 0.924 1.593 0.765 1.240 0.742 1.628 endoplasmic oxidoreductin-1 precursor putative expressed AT1G72280.1 

CUST_31548_PI390587928 0.539 2.062 0.552 1.959 0.598 2.767 0.493 3.301 -  

CUST_21374_PI390587928 0.805 1.649 0.705 1.405 0.709 2.036 0.697 1.626 xylem cysteine proteinase 2 precursor putative expressed  

CUST_15691_PI390587928 0.883 2.321 0.582 1.953 0.521 1.699 0.596 1.878 -  

CUST_38850_PI390587928 0.726 2.578 0.516 1.339 0.579 2.803 0.738 3.150 L-ascorbate oxidase precursor putative expressed AT5G21105.1 

CUST_6633_PI390587928 0.581 1.537 0.585 1.526 0.541 1.197 0.514 1.388 60S ribosomal protein L27a-3 putative expressed AT1G70600.1 

CUST_42133_PI390587928 0.778 1.669 0.827 1.739 0.792 1.573 0.770 1.837 mitochondrial folate transporter/carrier putative expressed AT5G66380.1 

CUST_26244_PI390587928 0.947 1.926 0.840 1.931 0.691 1.307 0.747 1.546 -  

CUST_15536_PI390587928 0.704 9.861 0.491 6.370 0.784 8.850 0.713 11.644 ATP8 putative expressed AT1G23550.1 

CUST_35195_PI390587928 0.810 1.657 0.812 1.677 0.614 1.278 0.610 1.368 expressed protein AT4G00231.1 

CUST_2003_PI390587928 0.806 1.466 0.806 1.616 0.777 1.296 0.753 1.508 expressed protein  

CUST_17123_PI390587928 0.435 3.139 0.615 3.106 0.579 4.445 0.424 2.847 strictosidine synthase 1 precursor putative expressed AT3G59530.2 

CUST_38509_PI390587928 0.369 3.840 0.335 3.149 0.341 2.845 0.423 4.034 expressed protein  

CUST_38525_PI390587928 0.529 2.112 0.355 2.949 0.307 1.399 0.920 2.516 -  

CUST_29357_PI390587928 0.940 2.748 0.651 1.924 0.507 1.442 0.592 1.744 chaperonin CPN60-1 mitochondrial precursor putative expressed AT3G23990.1 

CUST_42010_PI390587928 0.812 1.451 0.802 1.717 0.737 1.629 0.841 1.497 serine/arginine-rich protein putative expressed  

CUST_14205_PI390587928 0.721 1.419 0.833 1.444 0.821 1.360 0.737 1.573 xyloglucan endotransglucosylase/hydrolase protein 30 precursor putative expressed AT4G18990.1 

CUST_39377_PI390587928 0.638 4.005 0.800 4.588 0.663 6.440 0.506 9.275 -  

CUST_41136_PI390587928 0.788 1.247 0.753 1.244 0.815 1.093 0.858 1.287 UBP26 putative expressed AT3G49600.1 

CUST_33767_PI390587928 0.893 1.377 0.828 1.350 0.813 1.126 0.833 1.185 tRNA (guanine-N(1)-)-methyltransferase putative expressed AT2G45730.1 

CUST_943_PI390587928 0.962 1.434 0.873 1.375 0.791 1.073 0.813 1.313 expressed protein AT1G75980.1 

CUST_25838_PI390587928 0.868 1.379 0.774 1.217 0.770 1.107 0.749 1.221 expressed protein  

CUST_16686_PI390587928 0.323 4.864 0.408 5.501 0.302 3.395 0.425 7.118 -  

CUST_7037_PI390587928 0.914 2.109 0.682 1.486 0.668 1.306 0.729 1.464 40S ribosomal protein S29 putative expressed AT4G33865.1 

CUST_39068_PI390587928 0.876 1.601 0.683 1.318 0.653 1.441 0.657 1.073 expressed protein AT4G37445.1 

CUST_4912_PI390587928 0.566 2.359 0.646 2.391 0.522 3.581 0.513 2.689 reticuline oxidase precursor putative expressed AT5G44400.1 

CUST_34682_PI390587928 0.442 2.051 0.709 2.451 0.520 2.318 0.545 2.266 -  
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CUST_19799_PI390587928 0.884 1.242 0.812 1.158 0.682 1.246 0.909 1.332 expressed protein AT1G07590.1 

CUST_29989_PI390587928 0.612 1.810 0.900 1.676 0.720 2.149 0.807 2.374 branched-chain-amino-acid aminotransferase putative expressed AT5G65780.1 

CUST_18824_PI390587928 0.768 2.801 0.732 2.410 0.616 1.437 0.613 1.801 60S ribosomal protein L33-B putative expressed AT1G07070.1 

CUST_33474_PI390587928 0.796 1.525 0.904 1.504 0.741 1.158 0.720 1.473 -  

CUST_33490_PI390587928 0.584 1.511 0.789 1.817 0.826 1.642 0.714 1.832 expressed protein  

CUST_33505_PI390587928 0.737 1.186 0.842 1.167 0.862 1.063 0.848 1.215 expressed protein  

CUST_12623_PI390587928 0.724 1.621 0.822 1.643 0.716 1.387 0.768 1.601 triacylglycerol lipase putative expressed AT3G14075.1 

CUST_21101_PI390587928 0.685 1.824 0.653 1.840 0.576 1.381 0.536 1.579 60S acidic ribosomal protein P3 putative expressed AT4G25890.1 

CUST_28828_PI390587928 0.765 1.672 0.787 1.777 0.739 1.464 0.724 1.828 expressed protein AT1G80000.2 

CUST_18670_PI390587928 0.798 1.520 0.826 1.391 0.708 1.224 0.855 1.584 histone H4 putative expressed AT5G59970.1 

CUST_11431_PI390587928 0.688 1.529 0.704 1.479 0.678 1.372 0.682 1.648 - AT5G14530.1 

CUST_31578_PI390587928 0.834 1.610 0.719 1.247 0.665 1.156 0.688 1.258 expressed protein AT2G31410.1 

CUST_33351_PI390587928 0.795 1.365 0.792 1.334 0.899 1.213 0.757 1.383 -  

CUST_5594_PI390587928 0.785 1.269 0.790 1.395 0.849 1.345 0.851 1.676 myb-like DNA-binding domain containing protein expressed  

CUST_14008_PI390587928 0.415 7.032 0.619 10.034 0.387 5.334 0.238 13.056 cytochrome P450 72A1 putative expressed AT2G46950.1 

CUST_9395_PI390587928 0.807 1.748 0.730 1.734 0.655 1.477 0.660 1.672 structural constituent of ribosome putative expressed AT5G55140.1 

CUST_22000_PI390587928 0.834 1.821 0.797 1.767 0.627 1.312 0.787 1.578 elongation factor 1-gamma 2 putative expressed AT1G09640.1 

CUST_7212_PI390587928 0.569 1.720 0.615 1.903 0.753 2.848 0.653 3.648 dihydroflavonol-4-reductase putative expressed AT1G15950.1 

CUST_73_PI390587928 0.589 1.635 0.679 1.700 0.673 1.904 0.634 2.577 -  

CUST_6004_PI390587928 0.741 1.481 0.713 1.560 0.683 1.191 0.686 1.377 tRNA pseudouridine synthase family protein expressed AT1G20370.1 

CUST_3241_PI390587928 0.796 1.482 0.831 1.362 0.785 1.411 0.937 1.739 CRK6 putative expressed  

CUST_5316_PI390587928 0.476 2.015 0.574 2.619 0.412 1.349 0.494 2.540 glutathione S-transferase GSTU6 putative expressed AT1G10370.1 

CUST_37347_PI390587928 0.674 2.363 0.828 3.100 0.509 1.929 0.557 3.621 transposon protein putative unclassified expressed AT3G22370.1 

CUST_31907_PI390587928 0.753 1.817 0.844 1.945 0.721 1.666 0.694 1.660 glutaminyl-tRNA synthetase putative expressed AT1G25350.1 

CUST_30668_PI390587928 0.843 2.904 0.647 2.122 0.463 1.453 0.506 1.583 fibrillarin-2 putative expressed AT5G52470.1 

CUST_13804_PI390587928 0.926 1.770 0.783 1.566 0.684 1.136 0.702 1.361 60S ribosomal protein L37 putative expressed AT1G52300.1 

CUST_5146_PI390587928 0.215 4.789 0.354 9.130 0.206 4.941 0.350 10.820 enolase 1 putative expressed AT2G36530.1 

CUST_33967_PI390587928 0.574 1.547 0.535 1.461 0.525 1.275 0.522 1.377 60S acidic ribosomal protein P1 putative expressed AT5G24510.1 

CUST_28817_PI390587928 0.503 1.358 0.468 1.301 0.790 1.557 0.657 1.595 -  

CUST_28833_PI390587928 0.668 1.635 0.759 1.665 0.740 1.368 0.694 1.616 dehydration-responsive element-binding protein 2C putative expressed AT5G05410.2 

CUST_30545_PI390587928 0.649 1.716 0.687 1.507 0.682 1.615 0.699 2.163 transposon protein putative Pong sub-class  

CUST_22399_PI390587928 0.808 1.751 0.825 1.742 0.688 1.367 0.771 1.720 SURF1 putative expressed  

CUST_7844_PI390587928 0.661 2.837 0.873 3.121 0.686 2.191 0.639 3.597 diacylglycerol kinase putative expressed AT2G20900.2 
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CUST_31614_PI390587928 0.563 1.634 0.572 2.515 0.506 1.731 0.693 2.274 Ser/Thr protein kinase putative expressed AT1G67000.1 

CUST_14486_PI390587928 0.619 1.673 0.678 1.958 0.774 1.767 0.619 1.349 anthocyanidin 3-O-glucosyltransferase putative expressed AT2G22590.1 

CUST_41587_PI390587928 0.180 5.975 0.245 6.394 0.202 6.390 0.290 7.645 -  

CUST_18520_PI390587928 0.700 1.415 0.715 1.228 0.823 1.440 0.798 1.387 SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily 
A member 3-like 1 putative expressed 

AT5G05130.1 

CUST_39906_PI390587928 0.527 2.634 0.762 2.990 0.534 1.692 0.581 3.202 conserved hypothetical protein  

CUST_14347_PI390587928 0.779 1.485 0.851 1.658 0.888 1.409 0.812 1.737 ATP-binding cassette sub-family F member 2 putative expressed AT5G60790.1 

CUST_27316_PI390587928 0.338 2.475 0.304 2.740 0.334 2.230 0.452 2.351 phytosulfokine receptor precursor putative expressed AT3G56370.1 

CUST_21115_PI390587928 0.857 1.568 0.861 1.475 0.720 1.241 0.701 1.354 eukaryotic translation initiation factor 6 putative expressed AT3G55620.1 

CUST_33551_PI390587928 0.681 1.439 0.727 1.454 0.646 1.652 0.750 1.518 carbon catabolite derepressing protein kinase putative expressed AT3G01090.2 

CUST_1318_PI390587928 0.716 1.481 0.700 1.348 0.786 1.298 0.605 1.473 -  

CUST_5321_PI390587928 0.868 1.574 0.951 1.528 0.868 1.504 0.830 1.969 4-nitrophenylphosphatase putative expressed AT5G47760.1 

CUST_31088_PI390587928 0.656 1.652 0.610 1.443 0.856 1.710 0.768 1.988 1-aminocyclopropane-1-carboxylate oxidase putative expressed AT1G06645.1 

CUST_14193_PI390587928 0.863 1.235 0.815 1.140 0.869 1.161 0.787 1.165 pentatricopeptide repeat protein PPR986-12 putative expressed AT2G37320.1 

CUST_34100_PI390587928 0.254 9.669 0.401 8.382 0.146 9.001 0.348 8.893 dehydrin Rab16C putative expressed  

CUST_20396_PI390587928 0.556 1.959 0.610 2.193 0.410 1.539 0.432 2.140 mitochondrial import inner membrane translocase subunit TIM14 putative expressed AT5G03030.1 

CUST_41309_PI390587928 0.581 1.453 0.770 1.551 0.741 1.565 0.578 1.472 flavonoid 3-monooxygenase putative expressed AT5G57260.1 

CUST_29423_PI390587928 0.520 3.353 0.754 5.804 0.589 3.064 0.650 7.148 potassium transporter 5 putative expressed AT4G13420.1 

CUST_33381_PI390587928 0.805 1.851 0.742 1.502 0.584 1.147 0.485 1.278 -  

CUST_34978_PI390587928 0.609 2.279 0.776 3.207 0.684 2.163 0.755 3.644 phytosulfokine receptor precursor putative expressed AT1G72300.1 

CUST_3985_PI390587928 0.605 2.355 0.646 2.644 0.616 3.208 0.554 2.411 strictosidine synthase 1 precursor putative expressed AT3G59530.2 

CUST_2233_PI390587928 0.747 1.277 0.756 1.446 0.797 1.678 0.828 1.773 OsWRKY68 - Superfamily of rice TFs having WRKY and zinc finger domains 

expressed 

AT4G31550.1 

CUST_7242_PI390587928 0.688 1.815 0.764 2.004 0.804 1.860 0.750 2.256 AMP-binding protein putative expressed AT3G16910.1 

CUST_12919_PI390587928 0.624 1.569 0.679 1.458 0.874 1.831 0.840 1.559 cytochrome P450 86A2 putative expressed AT2G23180.1 

CUST_31012_PI390587928 0.686 2.549 0.699 2.586 0.587 1.824 0.591 2.123 mitochondrial glycoprotein expressed AT5G02050.1 

CUST_17944_PI390587928 0.879 3.092 0.721 3.454 0.518 1.920 0.575 2.261 BPM putative expressed AT2G29200.1 

CUST_3271_PI390587928 0.600 1.137 0.687 1.379 0.624 1.130 0.773 1.426 receptor-like protein kinase putative AT5G60900.1 

CUST_24121_PI390587928 0.552 1.361 0.635 1.615 0.782 1.397 0.807 1.945 dihydroflavonol-4-reductase putative expressed AT5G42800.1 

CUST_30868_PI390587928 0.878 1.504 0.908 1.368 0.748 1.209 0.716 1.520 lysosomal protective protein precursor putative expressed AT5G23210.1 

CUST_3069_PI390587928 0.542 4.123 0.534 2.850 0.753 5.752 0.604 4.553 calcium-binding protein CAST putative expressed AT4G20780.1 

CUST_28986_PI390587928 0.796 2.381 0.707 2.149 0.649 1.467 0.670 1.816 40S ribosomal protein S16 putative expressed AT2G09990.1 
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CUST_4931_PI390587928 0.420 2.548 0.465 2.921 0.468 2.968 0.268 3.079 carboxylic ester hydrolase putative expressed AT5G23870.1 

CUST_3707_PI390587928 0.335 3.022 0.495 3.722 0.363 1.967 0.292 3.067 hypothetical protein  

CUST_39725_PI390587928 0.753 1.242 0.840 1.328 0.710 1.045 0.772 1.280 serine-threonine kinase receptor-associated protein putative expressed AT3G15610.1 

CUST_41453_PI390587928 0.562 2.362 0.592 2.303 0.769 2.618 0.731 3.590 alanine--glyoxylate aminotransferase 2 homolog 2 mitochondrial precursor putative 
expressed 

AT3G08860.1 

CUST_19865_PI390587928 0.338 5.299 0.357 5.172 0.273 3.952 0.270 5.532 expressed protein  

CUST_2531_PI390587928 0.885 1.371 0.814 1.477 0.736 1.195 0.761 1.367 mitochondrial prohibitin complex protein 1 putative expressed AT5G40770.1 

CUST_18657_PI390587928 0.420 3.064 0.762 4.711 0.325 1.798 0.313 3.658 zinc-finger protein 1 putative expressed AT5G43170.1 

CUST_17465_PI390587928 0.704 1.238 0.714 1.176 0.790 1.272 0.765 1.270 signal recognition particle receptor beta subunit putative expressed AT5G05670.1 

CUST_28677_PI390587928 0.665 1.336 0.881 1.364 0.670 1.465 0.755 1.643 ribonucleoprotein putative expressed AT4G03110.1 

CUST_31628_PI390587928 0.446 1.345 0.553 1.606 0.741 1.769 0.652 2.162 esterase precursor putative expressed AT5G45910.1 

CUST_21454_PI390587928 0.838 1.122 0.874 1.162 0.848 1.153 0.967 1.499 electron transporter putative expressed AT5G11640.1 

CUST_39432_PI390587928 0.826 1.894 0.660 1.653 0.640 1.472 0.600 1.487 50S ribosomal protein L20 putative expressed AT1G16740.1 

CUST_1657_PI390587928 0.813 1.081 0.883 1.108 0.840 1.138 0.915 1.233 glutathione synthetase chloroplast precursor putative expressed AT5G27380.1 

CUST_13541_PI390587928 0.815 2.029 0.854 1.935 0.617 1.342 0.565 1.486 ATP binding protein putative expressed  

CUST_12317_PI390587928 0.617 1.805 0.893 2.400 0.763 2.079 0.796 2.451 -  

CUST_2679_PI390587928 0.607 1.468 0.914 2.205 0.603 1.146 0.751 2.119 phenylalanine ammonia-lyase putative expressed AT3G53260.1 

CUST_35461_PI390587928 0.550 1.434 0.730 1.659 0.764 1.440 0.767 1.942 lipoxygenase 4 putative expressed AT1G55020.1 

CUST_23359_PI390587928 0.527 1.937 0.677 1.997 0.673 1.416 0.781 2.226 RING-H2 finger protein ATL2L putative expressed  

CUST_23375_PI390587928 0.838 1.179 0.817 1.472 0.794 1.354 0.872 1.298 XI-I putative expressed AT4G33200.1 

CUST_29623_PI390587928 0.680 2.068 0.708 1.694 0.767 1.725 0.703 1.439 -  

CUST_22214_PI390587928 0.799 1.288 0.774 1.429 0.751 1.252 0.722 1.571 OsFtsH3 - Oryza sativa FtsH protease homologue of AtFtsH3/10 expressed AT2G29080.1 

CUST_40924_PI390587928 0.613 1.238 0.578 1.549 0.765 1.424 0.673 1.923 6-phosphofructokinase 2 putative expressed AT5G47810.1 

CUST_40940_PI390587928 0.764 1.392 0.779 1.440 0.605 1.144 0.678 1.190 prohibitin putative expressed AT3G27280.1 

CUST_23827_PI390587928 0.730 3.171 0.770 3.512 0.518 2.103 0.541 2.615 pumilio-family RNA binding repeat containing protein expressed AT3G10360.1 

CUST_27037_PI390587928 0.595 1.576 0.720 1.911 0.457 1.320 0.560 2.189 monodehydroascorbate reductase putative expressed AT3G52880.1 

CUST_40754_PI390587928 0.863 1.508 0.688 1.706 0.649 1.206 0.706 1.440 homogentisate geranylgeranyl transferase putative expressed AT2G18950.1 

CUST_15137_PI390587928 0.797 1.286 0.862 1.448 0.773 1.243 0.726 1.400 prefoldin putative expressed AT5G55860.1 

CUST_28713_PI390587928 0.716 1.562 0.718 1.390 0.663 1.297 0.640 1.358 mitochondrial import receptor subunit TOM7-1 putative expressed  

CUST_13530_PI390587928 0.838 1.452 0.774 1.475 0.751 1.274 0.705 1.205 protease Do-like 9 putative expressed AT5G40200.1 

CUST_23487_PI390587928 0.673 1.402 0.676 2.066 0.498 1.220 0.579 1.721 CSLA4 - cellulose synthase-like family A; mannan synthase expressed AT5G03760.1 

CUST_27978_PI390587928 0.416 2.488 0.559 3.226 0.376 2.383 0.306 3.001 transposon protein putative Mutator sub-class expressed AT2G14820.1 
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CUST_38142_PI390587928 0.836 2.035 0.791 1.646 0.646 1.186 0.647 1.568 60S ribosomal protein L22-2 putative expressed AT3G05560.3 

CUST_32469_PI390587928 0.652 2.412 0.694 2.841 0.718 2.725 0.774 4.450 reticuline oxidase precursor putative expressed AT4G20860.1 

CUST_37711_PI390587928 0.616 2.894 0.480 2.990 0.451 2.152 0.464 2.623 expressed protein  

CUST_8155_PI390587928 0.213 5.332 0.284 4.714 0.549 7.366 0.351 9.094 nuclear protein putative expressed  

CUST_2561_PI390587928 0.683 2.001 0.721 1.994 0.676 1.924 0.633 2.093 -  

CUST_13678_PI390587928 0.662 2.163 0.672 1.481 0.795 3.686 0.689 2.989 OsTIL-1 - Oryza sativa Temperature-induced lipocalin-1 expressed AT5G58070.1 

CUST_27871_PI390587928 0.570 2.062 0.643 2.490 0.570 1.974 0.634 2.555 gibberellin receptor GID1L2 putative expressed AT5G06570.2 

CUST_5828_PI390587928 0.775 2.136 0.693 1.910 0.888 1.653 0.703 1.586 -  

CUST_528_PI390587928 0.304 2.613 0.393 2.895 0.332 3.067 0.400 3.308 dihydroflavonol-4-reductase putative expressed AT4G27250.1 

CUST_15265_PI390587928 0.318 3.616 0.370 3.622 0.368 3.258 0.354 3.419 division protein putative expressed AT5G42480.1 

CUST_17542_PI390587928 0.734 1.534 0.710 1.275 0.785 1.425 0.781 1.471 copine-6 putative expressed AT3G01650.1 

CUST_39446_PI390587928 0.602 2.830 0.387 1.831 0.685 3.350 0.769 4.808 reticuline oxidase precursor putative expressed AT5G44380.1 

CUST_26493_PI390587928 0.838 1.250 0.968 1.337 0.780 1.080 0.741 1.227 OsFtsH5 - Oryza sativa FtsH protease homologue of AtFtsH4 expressed AT2G26140.1 

CUST_37689_PI390587928 0.856 1.289 0.787 1.323 0.817 1.205 0.792 1.377 expressed protein AT2G44820.1 

CUST_1230_PI390587928 0.849 1.742 0.659 1.314 0.693 1.987 0.695 1.636 xylem cysteine proteinase 2 precursor putative expressed AT4G35350.1 

CUST_26540_PI390587928 0.749 1.286 0.836 1.264 0.735 1.207 0.790 1.405 transposon protein putative unclassified expressed AT1G65730.1 

CUST_20867_PI390587928 0.501 2.652 0.778 3.529 0.524 1.782 0.621 3.585 -  

CUST_12938_PI390587928 0.892 1.659 0.784 1.472 0.746 1.243 0.756 1.379 CRS1 / YhbY domain containing protein expressed  

CUST_5535_PI390587928 0.607 1.828 0.568 1.767 0.638 1.826 0.610 2.001 glutathione S-transferase parA putative expressed AT1G78380.1 

CUST_2720_PI390587928 0.586 2.441 0.803 2.694 0.770 2.668 0.785 3.636 alcohol dehydrogenase 1 putative expressed AT1G77120.1 

CUST_17840_PI390587928 0.810 1.632 0.831 1.797 0.802 1.424 0.790 1.643 loricrin putative expressed AT5G58470.2 

CUST_31179_PI390587928 0.705 1.341 0.721 1.197 0.755 1.307 0.661 1.395 protein translation factor SUI1 putative expressed AT1G54290.1 

CUST_29010_PI390587928 0.817 1.313 0.849 1.202 0.762 1.208 0.724 1.211 sec12-like protein 2 putative expressed AT2G01470.1 

CUST_19868_PI390587928 0.307 5.381 0.339 5.455 0.267 3.776 0.239 5.665 expressed protein  

CUST_4764_PI390587928 0.654 2.127 0.569 1.637 0.541 1.437 0.430 1.535 cystatin putative expressed AT5G47550.1 

CUST_36235_PI390587928 0.911 1.392 0.917 1.293 0.824 1.358 0.847 1.599 expressed protein AT2G25310.1 

CUST_14906_PI390587928 0.860 1.450 0.899 1.314 0.849 1.363 0.843 1.409 mitochondrial uncoupling protein 4 putative expressed AT1G14140.1 

CUST_39014_PI390587928 0.653 1.573 0.971 4.079 0.704 1.449 0.695 3.548 indole-3-acetic acid-amido synthetase GH3.8 putative expressed AT4G37390.1 

CUST_25630_PI390587928 0.494 1.467 0.635 1.365 0.586 1.744 0.591 1.940 CER1 putative expressed AT1G02205.2 

CUST_30811_PI390587928 0.805 1.912 0.723 2.250 0.812 1.742 0.829 2.078 -  

CUST_23904_PI390587928 0.663 1.460 0.771 1.470 0.758 1.519 0.887 2.239 expressed protein AT3G22550.1 

CUST_30641_PI390587928 0.625 1.498 0.760 1.686 0.662 1.475 0.764 1.973 -  

CUST_35650_PI390587928 0.718 1.572 0.703 1.667 0.608 1.203 0.655 1.411 60S ribosomal protein L9 putative expressed AT1G33140.1 
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CUST_4455_PI390587928 0.388 2.337 0.469 2.419 0.607 2.374 0.537 3.015 -  

CUST_24756_PI390587928 0.805 1.185 0.919 1.164 0.792 1.122 0.788 1.252 membrane protein putative expressed AT5G07250.2 

CUST_6499_PI390587928 0.334 2.851 0.319 2.864 0.347 3.103 0.324 4.401 esterase PIR7A putative expressed AT2G23610.1 

CUST_9984_PI390587928 0.837 2.035 0.719 1.715 0.691 1.641 0.744 2.559 cytochrome c oxidase subunit putative expressed AT1G22450.1 

CUST_33754_PI390587928 0.768 1.384 0.790 1.203 0.817 1.609 0.852 1.404 eukaryotic translation initiation factor 2C 2 putative expressed AT1G31280.1 

CUST_9798_PI390587928 0.498 1.519 0.692 1.576 0.738 1.367 0.688 1.363 isoamyl acetate-hydrolyzing esterase putative expressed AT3G11210.1 

CUST_28620_PI390587928 0.704 1.301 0.764 1.300 0.659 1.016 0.608 1.196 3-hydroxyisobutyryl-CoA hydrolase/ catalytic putative expressed AT4G31810.1 

CUST_28387_PI390587928 0.847 1.460 0.958 1.311 0.741 1.160 0.750 1.590 cytochrome c oxidase polypeptide Vb mitochondrial precursor putative expressed AT3G15640.2 

CUST_5354_PI390587928 0.915 1.498 0.874 1.462 0.754 1.152 0.757 1.386 nucleolin putative expressed AT5G54580.1 

CUST_37369_PI390587928 0.829 1.276 0.911 1.344 0.787 1.069 0.765 1.336 co-chaperone protein HscB mitochondrial precursor putative expressed AT5G06410.1 

CUST_2606_PI390587928 0.744 1.299 0.801 1.256 0.705 1.171 0.665 1.233 -  

CUST_33615_PI390587928 0.601 1.555 0.969 2.500 0.582 1.438 0.747 2.321 -  

CUST_23255_PI390587928 0.302 6.620 0.302 6.180 0.320 6.527 0.297 6.365 -  

CUST_7445_PI390587928 0.759 1.635 0.891 1.929 0.705 1.245 0.674 1.895 abhydrolase domain-containing protein 5 putative expressed AT4G24160.1 

CUST_37262_PI390587928 0.879 1.525 0.680 1.129 0.756 1.328 0.825 1.566 - AT2G01620.1 

CUST_28141_PI390587928 0.557 1.383 0.842 2.298 0.502 1.511 0.804 2.137 phenylalanine ammonia-lyase putative expressed AT2G37040.1 

CUST_8328_PI390587928 0.639 1.529 0.893 1.771 0.722 1.650 0.931 1.874 nucleus protein putative expressed AT4G38495.1 

CUST_24729_PI390587928 0.778 1.749 0.811 1.700 0.679 1.222 0.680 1.452 membrane-associated salt-inducible protein like putative expressed AT3G13160.1 

CUST_38922_PI390587928 0.644 1.276 0.822 1.237 0.758 1.517 0.792 2.159 expressed protein  

CUST_24761_PI390587928 0.290 4.627 0.346 5.458 0.134 4.950 0.209 5.621 cysteine synthase putative expressed AT2G43750.1 

CUST_4964_PI390587928 0.790 2.355 0.684 2.011 0.400 1.373 0.454 1.554 40S ribosomal protein S11 putative expressed AT3G48930.1 

CUST_3756_PI390587928 0.785 1.666 0.740 1.652 0.734 1.585 0.801 1.956 set1 complex component swd2 putative expressed AT5G14530.1 

CUST_17093_PI390587928 0.766 1.747 0.846 1.944 0.866 2.087 0.832 2.205 oxysterol-binding protein OBPa putative expressed AT4G25850.1 

CUST_18099_PI390587928 0.653 1.714 0.867 2.103 0.727 1.507 0.776 1.993 preproMP73 putative expressed  

CUST_32551_PI390587928 0.637 2.502 0.784 3.239 0.703 1.863 0.612 3.389 -  

CUST_37000_PI390587928 0.346 2.200 0.375 2.520 0.289 2.907 0.235 3.798 protein ASYMMETRIC LEAVES1 putative expressed AT2G37630.1 

CUST_33604_PI390587928 0.840 1.811 0.840 1.725 0.782 1.331 0.786 1.836 -  

CUST_5847_PI390587928 0.805 1.638 0.824 1.922 0.973 1.784 0.764 2.085 nucleic acid binding protein putative expressed AT1G67210.1 

CUST_27921_PI390587928 0.087 6.391 0.146 6.294 0.101 4.321 0.102 8.470 multidrug resistance protein 4 putative expressed AT4G18050.1 

CUST_2425_PI390587928 0.562 2.377 0.691 2.548 0.696 3.128 0.498 2.634 acyl-coenzyme A oxidase 1 putative expressed AT5G65110.1 

CUST_6916_PI390587928 0.833 1.453 0.736 1.317 0.793 1.227 0.777 1.380 -  
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CUST_37925_PI390587928 0.788 1.288 0.771 1.274 0.788 1.402 0.817 1.527 dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate 
dehydrogenase complex mitochondrial precursor putative expressed 

AT5G55070.1 

CUST_22742_PI390587928 0.628 1.751 0.800 1.734 0.630 1.694 0.623 2.174 annexin-like protein RJ4 putative expressed AT5G10230.1 

CUST_25521_PI390587928 0.515 3.654 0.500 3.180 0.456 3.311 0.493 3.802 -  

CUST_26543_PI390587928 0.615 1.725 0.648 1.537 0.549 1.199 0.542 1.577 -  

CUST_5724_PI390587928 0.805 1.213 0.898 1.172 0.749 1.214 0.746 1.469 dihydroflavonol-4-reductase putative expressed AT2G33590.1 

CUST_14596_PI390587928 0.640 6.257 0.535 4.858 0.382 3.366 0.449 3.889 -  

CUST_35494_PI390587928 0.226 2.680 0.151 2.831 0.321 4.579 0.234 4.315 -  

CUST_22556_PI390587928 0.527 3.983 0.539 3.828 0.480 2.918 0.473 3.714 RNA-binding protein-like putative expressed  

CUST_18630_PI390587928 0.536 2.050 0.635 2.849 0.643 1.963 0.746 2.656 expressed protein  

CUST_30299_PI390587928 0.771 1.572 0.857 1.585 0.823 1.348 0.543 1.320 F-box domain containing protein expressed  

CUST_33125_PI390587928 0.892 1.393 0.876 1.349 0.813 1.168 0.825 1.205 -  

CUST_9402_PI390587928 0.821 1.321 0.815 1.352 0.783 1.369 0.741 1.461 expressed protein AT5G20170.1 

CUST_11035_PI390587928 0.727 1.562 0.868 1.442 0.698 1.387 0.703 1.732 -  

CUST_18290_PI390587928 0.431 3.223 0.457 3.089 0.316 2.506 0.248 2.015 glutathione S-transferase C-terminal domain containing protein expressed AT2G30870.1 

CUST_21241_PI390587928 0.537 8.285 0.495 7.156 0.291 6.891 0.382 7.039 phenylalanyl-tRNA synthetase alpha chain putative expressed AT4G39280.1 

CUST_36254_PI390587928 0.782 1.196 0.821 1.144 0.761 1.193 0.769 1.351 NADH-ubiquinone oxidoreductase 18 kDa subunit mitochondrial precursor putative 

expressed 

AT5G67590.1 

CUST_30814_PI390587928 0.750 1.208 0.789 1.144 0.765 1.084 0.792 1.305 esterase precursor putative expressed AT5G45910.1 

CUST_5261_PI390587928 0.823 1.443 0.923 1.488 0.765 1.193 0.741 1.375 chaperone protein dnaJ putative expressed AT5G48030.1 

CUST_37276_PI390587928 0.889 2.077 0.873 2.048 0.705 1.499 0.734 1.794 60S ribosomal protein L18a putative expressed AT2G34480.1 

CUST_4037_PI390587928 0.788 1.349 0.854 1.328 0.751 1.245 0.692 1.192 cyclopropane fatty acid synthase putative expressed AT3G23510.1 

CUST_19157_PI390587928 0.831 1.701 0.851 1.534 0.786 1.440 0.769 1.706 RNA polymerase II transcriptional coactivator KIWI putative expressed AT5G09250.1 

CUST_6283_PI390587928 0.669 1.433 0.819 1.817 0.644 1.296 0.741 1.799 transposon protein putative unclassified expressed AT1G65730.1 

CUST_29363_PI390587928 0.438 2.373 0.317 1.778 0.336 2.100 0.233 1.734 -  

CUST_5075_PI390587928 0.714 1.484 0.549 1.169 0.567 1.171 0.598 1.499 glutathione S-transferase GSTF1 putative expressed AT3G62760.1 

CUST_33896_PI390587928 0.558 1.571 0.537 1.273 0.733 2.053 0.834 1.641 male sterility protein 2 putative expressed AT5G22500.1 

CUST_23737_PI390587928 0.725 2.311 0.846 2.836 0.579 1.896 0.547 2.075 expressed protein AT3G16810.1 

CUST_8965_PI390587928 0.445 4.443 0.246 3.827 0.542 5.918 0.614 8.379 Zn-dependent hydrolases including glyoxylases putative expressed AT4G33540.1 

CUST_31496_PI390587928 0.731 2.015 0.672 1.814 0.553 1.288 0.584 1.591 -  

CUST_4521_PI390587928 0.626 3.885 0.325 2.559 0.335 2.019 0.432 2.693 60S ribosomal protein L27 putative expressed AT4G15000.1 

CUST_10645_PI390587928 0.836 1.273 0.883 1.131 0.772 1.137 0.750 1.203 calcium-binding mitochondrial protein Anon-60Da putative expressed AT1G65540.1 
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CUST_16676_PI390587928 0.366 1.870 0.451 1.633 0.684 1.859 0.668 2.308 -  

CUST_37014_PI390587928 0.407 2.673 0.345 2.052 0.369 2.113 0.282 1.802 expressed protein  

CUST_25860_PI390587928 0.359 2.333 0.335 1.856 0.444 3.043 0.340 2.535 -  

CUST_22391_PI390587928 0.671 1.439 0.730 1.603 0.796 1.622 0.826 2.218 gibberellin receptor GID1L2 putative expressed AT1G47480.1 

CUST_12232_PI390587928 0.566 1.759 0.518 1.752 0.661 2.626 0.846 2.445 cytochrome P450 72A1 putative expressed AT3G14630.1 

CUST_14292_PI390587928 0.930 1.274 0.871 1.324 0.858 1.158 0.883 1.153 signal recognition particle receptor alpha subunit putative expressed AT4G30600.1 

CUST_593_PI390587928 0.437 2.704 0.632 3.394 0.470 2.602 0.508 3.722 -  

CUST_608_PI390587928 0.823 1.774 0.802 1.587 0.673 1.202 0.663 1.133 guanine nucleotide-binding protein-like 3 putative expressed AT3G07050.1 

CUST_32442_PI390587928 0.528 2.315 0.637 2.417 0.377 1.677 0.612 2.377 harpin-induced 1 putative expressed  

CUST_27765_PI390587928 0.818 1.346 0.743 1.503 0.696 1.143 0.692 1.301 homogentisate geranylgeranyl transferase putative expressed AT2G18950.1 

CUST_36747_PI390587928 0.372 4.443 0.746 7.984 0.295 2.288 0.415 6.591 -  

CUST_2269_PI390587928 0.765 1.311 0.765 1.358 0.765 1.132 0.728 1.346 hypothetical protein  

CUST_7511_PI390587928 0.622 1.664 0.661 1.541 0.499 1.224 0.473 1.441 -  

CUST_7278_PI390587928 0.825 1.469 0.791 1.283 0.706 1.155 0.697 1.350 40S ribosomal protein S20 putative expressed AT5G62300.2 

CUST_38287_PI390587928 0.322 2.680 0.472 3.073 0.289 2.368 0.389 3.205 glutamate decarboxylase putative expressed AT5G17330.1 

CUST_31064_PI390587928 0.591 2.118 0.623 2.396 0.517 1.961 0.499 2.340 Ser/Thr protein phosphatase family putative expressed  

CUST_16197_PI390587928 0.690 2.445 0.691 2.739 0.491 1.859 0.588 2.687 ATG1 putative expressed  

CUST_15206_PI390587928 0.743 1.626 0.801 1.615 0.828 1.772 0.806 2.060 ankyrin-3 putative expressed AT5G61230.1 

CUST_15222_PI390587928 0.779 1.376 0.806 1.230 0.754 1.189 0.787 1.286 NOL1/NOP2/sun family protein expressed  

CUST_25412_PI390587928 0.775 1.260 0.678 1.322 0.810 1.382 0.821 1.336 14-3-3-like protein S94 putative expressed AT5G38480.1 

CUST_40062_PI390587928 0.835 1.141 0.912 1.225 0.817 1.079 0.906 1.335 -  

CUST_6133_PI390587928 0.686 2.213 0.725 2.541 0.494 1.822 0.578 2.373 expressed protein AT1G47500.1 

CUST_29213_PI390587928 0.858 1.102 0.946 1.233 0.850 1.048 0.794 1.121 ATP binding protein putative expressed AT4G12790.5 

CUST_3945_PI390587928 0.670 1.733 0.664 1.799 0.640 1.529 0.719 2.091 - AT3G19780.1 

CUST_12257_PI390587928 0.834 1.656 0.838 1.547 0.762 1.303 0.755 1.370 expressed protein AT5G62440.1 

CUST_34954_PI390587928 0.799 1.281 0.942 1.254 0.814 1.201 0.767 1.211 -  

CUST_39403_PI390587928 0.798 2.379 0.808 2.103 0.503 1.358 0.490 1.584 protein arginine N-methyltransferase 3-like protein putative expressed AT3G12270.1 

CUST_30967_PI390587928 0.781 1.212 0.874 1.193 0.912 1.182 0.796 1.201 interferon-related developmental regulator family protein expressed  

CUST_25242_PI390587928 0.392 1.638 0.477 2.331 0.589 1.877 0.636 2.623 multidrug resistance-associated protein 3 putative expressed AT3G60160.1 

CUST_16105_PI390587928 0.716 2.219 0.751 2.498 0.492 1.494 0.640 3.216 basic blue protein precursor putative expressed AT2G02850.1 

CUST_27286_PI390587928 0.416 1.989 0.422 1.734 0.529 2.250 0.463 2.815 indole-3-acetate beta-glucosyltransferase putative expressed AT4G15550.1 

CUST_26855_PI390587928 0.593 2.956 0.810 4.268 0.501 2.217 0.558 4.858 expressed protein AT1G57610.2 

CUST_13917_PI390587928 0.053 7.539 0.216 22.247 0.130 9.785 0.226 23.710 polyphenol oxidase II chloroplast precursor putative expressed  
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CUST_6010_PI390587928 0.741 1.462 0.876 1.246 0.944 1.754 0.869 1.546 methylglutaconyl-CoA hydratase mitochondrial precursor putative expressed AT4G16800.1 

CUST_18926_PI390587928 0.857 1.229 0.856 1.249 0.858 1.240 0.873 1.303 splicing factor arginine/serine-rich 2 putative expressed AT5G64200.2 

CUST_1879_PI390587928 0.616 1.694 0.738 1.705 0.658 1.563 0.669 2.928 retinal dehydrogenase 1 putative expressed AT3G24503.1 

CUST_16999_PI390587928 0.732 1.345 0.794 1.325 0.886 1.393 0.964 1.760 expressed protein AT4G35170.1 

CUST_41886_PI390587928 0.733 1.948 0.940 2.232 0.631 1.478 0.718 2.691 lipid binding protein putative expressed  

CUST_17580_PI390587928 0.669 2.792 0.612 2.856 0.486 1.854 0.392 2.151 expressed protein  

CUST_30488_PI390587928 0.803 1.331 0.739 1.054 0.737 1.203 0.689 1.288 30S ribosomal protein S16 putative expressed AT5G56940.1 

CUST_13593_PI390587928 0.658 1.893 0.876 2.937 0.610 1.736 0.454 2.125 ubiquitin-protein ligase putative expressed  

CUST_4519_PI390587928 0.713 1.981 0.619 1.797 0.604 1.383 0.589 1.642 60S ribosomal protein L12 putative expressed AT5G60670.1 

CUST_2305_PI390587928 0.627 2.235 0.516 1.587 0.678 1.815 0.651 2.104 -  

CUST_23830_PI390587928 0.239 4.763 0.278 4.187 0.201 2.535 0.160 4.153 -  

CUST_19702_PI390587928 0.617 1.647 0.651 1.446 0.551 1.555 0.546 1.527 ankyrin-like protein putative expressed AT3G04710.2 

CUST_40539_PI390587928 0.601 1.523 0.716 1.673 0.500 1.291 0.445 1.608 expressed protein  

CUST_30412_PI390587928 0.619 1.727 0.756 1.814 0.740 1.453 0.824 1.714 phosphatase DCR2 putative expressed AT5G63140.1 

CUST_39679_PI390587928 0.704 2.116 0.851 2.115 0.688 1.845 0.688 2.600 expressed protein AT5G23520.1 

CUST_17589_PI390587928 0.710 1.568 0.665 1.588 0.856 1.635 0.706 1.753 -  

CUST_36257_PI390587928 0.473 2.508 0.451 2.592 0.443 2.057 0.428 3.172 glutathione S-transferase IV putative expressed AT3G62760.1 

CUST_24543_PI390587928 0.633 1.943 0.724 1.785 0.560 1.319 0.590 2.102 transposon protein putative CACTA En/Spm sub-class  

CUST_36304_PI390587928 0.313 1.494 0.343 1.338 0.353 1.337 0.649 2.433 TMV response-related gene product putative expressed AT5G66580.1 

CUST_9569_PI390587928 0.068 3.123 0.248 3.837 0.111 5.028 0.272 10.216 -  

CUST_14214_PI390587928 0.724 1.589 0.768 1.962 0.769 1.465 0.736 1.734 CID11 putative expressed AT1G53650.2 

CUST_1915_PI390587928 0.535 2.138 0.685 2.120 0.729 2.517 0.796 2.962 disulfide oxidoreductase/ monooxygenase/ oxidoreductase putative AT1G21430.1 

CUST_14230_PI390587928 0.813 1.259 0.884 1.239 0.846 1.194 0.823 1.273 expressed protein AT3G58800.1 

CUST_1931_PI390587928 0.638 1.908 0.942 2.637 0.637 1.858 0.621 2.352 lipoxygenase 7 chloroplast precursor putative expressed AT3G45140.1 

CUST_15843_PI390587928 0.565 1.250 0.716 1.535 0.618 1.115 0.690 1.598 RGH1A putative  

CUST_41922_PI390587928 0.818 1.582 0.889 1.718 0.808 1.272 0.770 1.350 ATP-dependent RNA helicase DDX23 putative expressed  

CUST_34798_PI390587928 0.670 1.375 0.961 1.917 0.676 1.119 0.864 1.647 lysM receptor-like kinase putative expressed AT3G21630.1 

CUST_38055_PI390587928 0.702 1.442 0.638 1.305 0.609 1.152 0.592 1.288 nucleoside diphosphate kinase 1 putative expressed  

CUST_26916_PI390587928 0.613 1.198 0.760 1.556 0.837 1.547 0.820 1.487 OsWRKY3 - Superfamily of rice TFs having WRKY and zinc finger domains 

expressed 

AT1G69310.2 

CUST_38071_PI390587928 0.614 3.157 0.711 3.884 0.532 2.625 0.665 3.268 multidrug resistance-associated protein 3 putative expressed AT3G13080.1 

CUST_30874_PI390587928 0.854 1.344 0.875 1.477 0.816 1.335 0.824 1.620 ATOZI1 putative expressed AT1G01170.2 
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CUST_8675_PI390587928 0.519 3.193 0.401 2.610 0.151 2.134 0.176 2.533 endo-14-beta-xylanase putative expressed AT1G58370.1 

CUST_21737_PI390587928 0.764 1.694 0.801 1.719 0.809 1.528 0.763 1.765 serine/threonine-protein phosphatase 2A 72/130 kDa regulatory subunitB putative 

expressed 

AT5G44090.1 

CUST_13793_PI390587928 0.400 2.637 0.504 3.411 0.806 2.804 0.561 3.085 cytochrome P450 74A2 putative expressed AT5G42650.1 

CUST_13808_PI390587928 0.651 1.665 0.612 1.641 0.570 1.281 0.584 1.408 40S ribosomal protein S2 putative expressed AT3G57490.1 

CUST_17578_PI390587928 0.732 1.300 0.817 1.416 0.723 1.359 0.704 1.605 -  

CUST_27768_PI390587928 0.104 3.444 0.198 2.527 0.293 3.603 0.329 3.203 glycerol-3-phosphate acyltransferase 8 putative AT3G11430.1 

CUST_18833_PI390587928 0.784 1.639 0.882 2.155 0.516 1.151 0.708 1.820 ubiquitin-protein ligase putative expressed AT3G11840.1 

CUST_22775_PI390587928 0.724 1.792 0.662 1.819 0.665 1.329 0.518 1.760 -  

CUST_5757_PI390587928 0.656 1.806 0.522 1.580 0.488 1.593 0.531 1.557 - AT3G04710.2 

CUST_6779_PI390587928 0.414 2.131 0.545 2.448 0.537 1.676 0.787 3.508 ATP binding protein putative expressed AT4G03230.1 

CUST_25601_PI390587928 0.726 1.595 0.772 1.856 0.723 2.037 0.626 1.842 sulfated surface glycoprotein 185 precursor putative expressed  

CUST_27645_PI390587928 0.814 1.771 0.755 1.632 0.664 1.389 0.718 1.852 expressed protein AT1G73940.1 

CUST_7360_PI390587928 0.779 1.794 0.749 1.652 0.631 1.182 0.707 1.385 60S ribosomal protein L23 putative expressed AT3G04400.1 

CUST_5618_PI390587928 0.480 3.312 0.549 2.851 0.670 2.845 0.740 3.839 -  

CUST_25229_PI390587928 0.837 1.643 0.703 1.522 0.663 1.218 0.626 1.371 ubiquitin fusion protein putative expressed AT3G52590.1 

CUST_28497_PI390587928 0.616 1.652 0.611 1.607 0.499 1.467 0.434 1.586 mannitol dehydrogenase putative expressed AT4G37980.1 

CUST_26267_PI390587928 0.356 2.706 0.435 2.378 0.329 2.551 0.417 2.465 -  

CUST_82_PI390587928 0.270 2.005 0.296 3.054 0.356 1.574 0.287 1.864 amine oxidase precursor putative expressed AT1G31710.1 

CUST_4272_PI390587928 0.481 4.031 0.565 3.936 0.440 4.086 0.551 7.633 L-allo-threonine aldolase putative expressed AT3G04520.1 

CUST_30847_PI390587928 0.629 1.340 0.875 1.943 0.617 1.089 0.845 1.907 catalytic/ hydrolase putative expressed AT2G36290.1 

CUST_12153_PI390587928 0.600 1.141 0.703 1.483 0.757 1.123 0.971 1.724 receptor-like serine-threonine protein kinase putative expressed AT4G11530.1 

CUST_30863_PI390587928 0.552 2.661 0.551 1.765 0.674 2.320 0.668 3.157 solute carrier family 35 member B3 putative expressed AT4G23010.1 

CUST_28374_PI390587928 0.583 2.834 0.538 3.256 0.512 2.089 0.473 3.952 D-3-phosphoglycerate dehydrogenase chloroplast precursor putative expressed AT4G34200.1 

CUST_27943_PI390587928 0.835 1.906 0.854 2.130 0.713 1.205 0.726 1.751 -  

CUST_28965_PI390587928 0.659 1.852 0.661 1.625 0.722 1.709 0.676 1.777 cysteine-type peptidase putative expressed AT2G27350.2 

CUST_17800_PI390587928 0.920 1.206 0.943 1.326 0.759 1.172 0.735 1.454 CBS domain containing protein expressed AT2G14520.1 

CUST_23179_PI390587928 0.392 3.525 0.398 3.211 0.354 2.939 0.388 3.378 expressed protein AT5G61140.1 

CUST_5932_PI390587928 0.629 1.570 0.817 2.302 0.592 1.748 0.763 2.670 alphaalpha-trehalose-phosphate synthase putative expressed AT1G78580.1 

CUST_9142_PI390587928 0.788 1.377 0.779 1.214 0.663 1.003 0.679 1.225 RNA-binding post-transcriptional regulator csx1 putative expressed AT5G19350.2 

CUST_40914_PI390587928 0.311 2.139 0.413 2.339 0.434 1.616 0.662 2.632 nitrate reductase putative expressed AT1G77760.1 

CUST_10864_PI390587928 0.811 1.325 0.779 1.225 0.703 1.110 0.718 1.276 TPR Domain containing protein expressed AT1G33400.1 
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CUST_38239_PI390587928 0.596 3.448 0.675 4.022 0.634 3.616 0.552 3.914 ubiquitin-protein ligase/ zinc ion binding protein putative AT4G37420.1 

CUST_5016_PI390587928 0.819 1.350 0.819 1.247 0.815 1.637 0.853 1.658 pyrophosphate-energized vacuolar membrane proton pump putative expressed AT1G15690.1 

CUST_3882_PI390587928 0.726 2.574 0.825 3.427 0.740 2.016 0.794 3.593 1-aminocyclopropane-1-carboxylate synthase putative expressed AT1G01480.2 

CUST_23524_PI390587928 0.845 1.450 0.780 1.257 0.743 1.230 0.798 1.327 50S ribosomal protein L17 putative expressed AT5G09770.1 

CUST_26303_PI390587928 0.806 1.680 0.876 1.390 0.698 1.269 0.760 1.737 expressed protein AT3G63270.1 

CUST_32506_PI390587928 0.229 8.037 0.213 5.712 0.222 6.884 0.231 7.200 expressed protein  

CUST_25568_PI390587928 0.294 3.266 0.411 3.237 0.759 4.505 0.493 4.668 RNA-binding protein cabeza putative expressed AT3G15680.1 

CUST_4749_PI390587928 0.647 1.535 0.830 2.017 0.582 1.524 0.668 2.316 phosphatidylinositol transfer protein CSR1 putative expressed AT1G01630.1 

CUST_41473_PI390587928 0.637 2.117 0.556 2.401 0.492 1.945 0.555 2.798 pathogen-related protein putative expressed AT1G78780.2 

CUST_9790_PI390587928 0.520 3.266 0.730 3.752 0.394 2.319 0.406 2.836 expressed protein  

CUST_33358_PI390587928 0.686 1.902 0.651 1.745 0.750 2.014 0.792 2.308 NAC domain-containing protein 78 putative expressed  

CUST_37361_PI390587928 0.646 1.385 0.690 1.408 0.729 1.328 0.781 1.568 expressed protein AT2G32760.2 

CUST_39389_PI390587928 0.946 1.238 0.902 1.132 0.870 1.082 0.795 1.185 expressed protein AT3G52860.1 

CUST_11268_PI390587928 0.510 2.217 0.777 2.807 0.492 1.829 0.510 2.274 L-ascorbate oxidase precursor putative expressed AT4G39830.1 

CUST_16510_PI390587928 0.708 1.496 0.727 1.201 0.738 1.378 0.779 1.514 -  

CUST_11859_PI390587928 0.752 1.469 0.724 1.213 0.901 1.727 0.970 2.016 - AT5G66160.1 

CUST_31021_PI390587928 0.639 1.392 0.863 1.387 0.630 1.412 0.870 1.490 glycoside hydrolase family 28 putative expressed AT3G48950.1 

CUST_33826_PI390587928 0.830 1.482 0.771 1.547 0.885 1.424 0.857 1.853 serine/threonine protein kinase putative expressed AT2G24360.1 

CUST_1034_PI390587928 0.712 1.278 0.823 1.502 0.653 1.379 0.724 1.609 -  

CUST_42233_PI390587928 0.801 1.630 0.713 1.231 0.786 1.548 0.691 1.411 inositolphosphorylceramide-B C-26 hydroxylase putative expressed AT2G34770.1 

CUST_34880_PI390587928 0.511 2.689 0.415 2.117 0.280 1.902 0.264 1.720 -  

CUST_5169_PI390587928 0.241 3.774 0.268 3.254 0.162 2.994 0.117 2.300 harpin-induced protein putative expressed  

CUST_30738_PI390587928 0.767 1.287 0.858 1.339 0.782 1.267 0.807 1.364 phospholipase D alpha 2 putative expressed AT1G52570.1 

CUST_19688_PI390587928 0.687 1.759 0.691 1.778 0.618 1.484 0.603 1.597 protein SEY1 putative expressed  

CUST_13704_PI390587928 0.281 3.855 0.395 5.312 0.430 6.653 0.331 5.316 cis-zeatin O-glucosyltransferase putative expressed AT4G01070.1 

CUST_19735_PI390587928 0.635 1.455 0.577 1.399 0.649 1.406 0.600 1.312 glutamate receptor 3.3 precursor putative expressed AT1G42540.1 

CUST_35640_PI390587928 0.701 1.546 0.704 1.650 0.627 1.241 0.625 1.373 60S ribosomal protein L9 putative expressed AT1G33140.1 

CUST_33410_PI390587928 0.356 2.826 0.708 2.851 0.401 3.546 0.266 2.219 expressed protein  

CUST_24699_PI390587928 0.556 1.674 0.665 1.938 0.753 2.239 0.556 1.573 DNA binding protein putative expressed  

CUST_6706_PI390587928 0.395 2.931 0.482 2.676 0.365 2.864 0.448 2.659 -  

CUST_2231_PI390587928 0.798 1.319 0.846 1.342 0.769 1.058 0.783 1.399 retrotransposon protein putative LINE subclass expressed AT4G11060.1 

CUST_24576_PI390587928 0.024 2.731 0.019 6.391 0.134 4.838 0.018 5.728 expressed protein  
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CUST_29585_PI390587928 0.513 1.592 0.598 1.517 0.773 2.088 0.642 1.958 serine/threonine-protein kinase BRI1-like 1 precursor putative expressed AT1G55610.2 

CUST_6536_PI390587928 0.653 1.544 0.782 1.441 0.932 2.105 0.721 2.151 UDP-glucose 4-epimerase putative expressed AT1G12780.1 

CUST_5297_PI390587928 0.835 1.504 0.854 1.374 0.747 1.145 0.738 1.138 periodic tryptophan protein 1 putative expressed AT4G18905.1 

CUST_13411_PI390587928 0.821 1.493 0.762 1.016 0.954 1.582 0.552 1.765 beta-galactosidase precursor putative expressed AT2G28470.1 

CUST_33070_PI390587928 0.499 2.759 0.581 2.819 0.788 3.664 0.561 3.524 RNA-binding region-containing protein 1 putative expressed AT1G78260.2 

CUST_19426_PI390587928 0.718 1.903 0.758 1.636 0.654 1.383 0.726 1.831 40S ribosomal protein S27a putative expressed AT2G47110.1 

CUST_33574_PI390587928 0.776 1.644 0.812 1.890 0.703 1.464 0.628 2.014 - AT3G45970.1 

CUST_26163_PI390587928 0.512 2.783 0.666 3.955 0.825 4.516 0.697 5.959 glutathione S-transferase putative expressed AT3G09270.1 

CUST_3130_PI390587928 0.763 2.316 0.732 1.814 0.524 1.277 0.479 1.322 -  

CUST_12810_PI390587928 0.526 1.743 0.894 2.023 0.318 1.266 0.358 2.157 expressed protein AT3G57450.1 

CUST_2379_PI390587928 0.584 2.470 0.814 3.880 0.656 1.620 0.612 3.624 anthranilate synthase component I-1 chloroplast precursor putative expressed AT5G05730.1 

CUST_15269_PI390587928 0.777 1.152 0.878 1.209 0.713 1.021 0.756 1.177 expressed protein AT5G58100.1 

CUST_38444_PI390587928 0.811 1.324 0.866 1.303 0.776 1.362 0.763 1.406 proteasome subunit alpha type 4 putative AT3G22110.1 

CUST_37252_PI390587928 0.662 1.859 0.655 1.656 0.601 1.331 0.595 1.508 glycine-rich protein 2b putative expressed AT4G36020.1 

CUST_23075_PI390587928 0.845 1.261 0.808 1.148 0.882 1.282 0.843 1.348 expressed protein AT1G68680.1 

CUST_7872_PI390587928 0.653 1.365 0.771 1.672 0.700 1.436 0.678 1.703 aldehyde oxidase 1 putative expressed AT2G27150.2 

CUST_27700_PI390587928 0.811 1.371 0.883 1.304 0.717 1.464 0.768 1.560 26S protease regulatory subunit 4 putative expressed AT4G29040.1 

CUST_26949_PI390587928 0.809 1.651 0.834 1.609 0.581 1.292 0.722 2.195 adenylate kinase A putative expressed AT5G63400.1 

CUST_21972_PI390587928 0.881 1.597 0.875 1.401 0.663 1.330 0.879 1.505 chromatin complex subunit A101 putative expressed AT5G66750.1 

CUST_15007_PI390587928 0.731 1.534 0.778 1.385 0.829 1.477 0.778 1.936 OsWRKY46 - Superfamily of rice TFs having WRKY and zinc finger domains 
expressed 

AT2G40740.1 

CUST_35947_PI390587928 0.536 1.461 0.507 1.446 0.635 1.636 0.698 1.883 esterase precursor putative expressed AT1G28580.1 

CUST_38151_PI390587928 0.317 11.803 0.325 4.842 0.521 19.541 0.324 15.183 late embryogenesis abundant protein group 3 putative expressed AT1G52690.2 

CUST_7717_PI390587928 0.304 1.710 0.332 1.580 0.362 2.090 0.314 1.993 subtilisin-chymotrypsin inhibitor 2 putative expressed  

CUST_16589_PI390587928 0.667 1.779 0.865 2.533 0.604 1.424 0.656 2.377 glycerolphosphate mutase putative expressed AT3G05170.1 

CUST_11596_PI390587928 0.718 2.359 0.961 2.958 0.693 2.176 0.708 2.800 glucan endo-13-beta-glucosidase precursor putative expressed AT3G55430.1 

CUST_32525_PI390587928 0.714 1.810 0.777 1.858 0.767 1.319 0.704 2.110 glutathione S-transferase GSTU6 putative expressed AT1G27130.1 

CUST_7547_PI390587928 0.638 3.561 0.313 3.760 0.508 3.380 0.494 5.888 -  

CUST_15428_PI390587928 0.324 3.115 0.276 1.829 0.954 7.165 0.497 5.100 cytochrome P450 86A1 putative expressed AT4G39480.1 

CUST_4784_PI390587928 0.650 1.727 0.702 1.733 0.655 1.663 0.625 1.569 -  

CUST_2554_PI390587928 0.489 1.154 0.632 1.312 0.745 1.660 0.835 1.457 male sterility protein 2 putative expressed AT4G33790.1 

CUST_12681_PI390587928 0.589 2.742 0.786 2.630 0.306 3.320 0.194 2.909 alpha-N-arabinofuranosidase 1 precursor putative expressed AT3G10740.1 
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CUST_28886_PI390587928 0.744 1.562 0.755 1.559 0.643 1.312 0.632 1.428 SLT1 protein putative expressed AT2G37570.1 

CUST_5837_PI390587928 0.564 1.675 0.755 1.887 0.712 2.071 0.709 2.161 monoglyceride lipase putative expressed AT2G39420.1 

CUST_7610_PI390587928 0.573 1.718 0.738 1.763 0.705 2.118 0.650 2.005 methylmalonate-semialdehyde dehydrogenase putative expressed AT2G14170.1 

CUST_41337_PI390587928 0.863 1.295 0.811 1.084 0.788 1.069 0.797 1.240 6-phosphofructokinase putative expressed AT4G26270.1 

CUST_34632_PI390587928 0.347 1.636 0.345 1.461 0.648 3.339 0.571 3.219 caffeoyl-CoA O-methyltransferase 1 putative expressed AT4G26220.1 

CUST_7408_PI390587928 0.772 1.187 0.784 1.153 0.784 1.089 0.779 1.201 expressed protein AT4G16170.1 

CUST_28747_PI390587928 0.633 4.997 0.563 4.052 0.415 3.091 0.350 3.897 60S ribosomal protein L33-B putative expressed AT1G07070.1 

CUST_8276_PI390587928 0.788 4.097 0.565 3.056 0.288 1.918 0.282 2.296 peroxidase 39 precursor putative expressed AT4G11290.1 

CUST_16173_PI390587928 0.834 1.100 0.962 1.189 0.846 1.236 0.834 1.273 sucrose cleavage protein-like putative expressed AT4G26620.1 

CUST_20923_PI390587928 0.423 3.992 0.379 3.684 0.477 4.390 0.436 4.355 -  

CUST_35952_PI390587928 0.788 1.510 0.838 1.357 0.753 1.389 0.706 1.684 ER lumen protein retaining receptor C28H8.4 putative expressed AT1G75760.1 

CUST_34153_PI390587928 0.773 1.515 0.716 1.457 0.611 1.329 0.784 1.432 RNA-binding post-transcriptional regulator csx1 putative expressed AT5G19350.2 

CUST_12824_PI390587928 0.706 1.731 0.716 1.756 0.766 1.590 0.737 1.903 sodium/hydrogen exchanger 2 putative expressed AT3G05030.2 

CUST_26240_PI390587928 0.521 3.663 0.479 4.915 0.343 2.592 0.523 7.239 glutathione S-transferase GSTU6 putative expressed AT1G10370.1 

CUST_13676_PI390587928 0.659 3.026 0.797 4.339 0.638 2.775 0.658 5.161 esterase precursor putative expressed AT3G26430.1 

CUST_36819_PI390587928 0.777 1.490 0.705 1.381 0.667 1.373 0.594 1.467 expressed protein AT2G20825.1 

CUST_26070_PI390587928 0.025 3.080 0.064 6.445 0.073 5.647 0.050 7.395 eukaryotic peptide chain release factor subunit 1-1 putative expressed AT5G47880.2 

CUST_6_PI390587928 0.590 2.211 0.675 2.394 0.458 1.788 0.496 2.737 -  

CUST_24888_PI390587928 0.588 1.256 0.527 1.348 0.718 1.685 0.774 1.774 hypothetical protein  

CUST_35052_PI390587928 0.827 1.335 0.737 1.249 0.741 1.187 0.666 1.157 queuine tRNA-ribosyltransferase domain containing 1 putative expressed  

CUST_11966_PI390587928 0.525 2.903 0.652 3.785 0.385 1.630 0.500 3.289 -  

CUST_22705_PI390587928 0.488 4.428 0.763 6.062 0.551 5.160 0.403 12.008 non-cyanogenic beta-glucosidase precursor putative expressed AT1G02850.5 

CUST_36090_PI390587928 0.807 1.351 0.857 1.204 0.864 1.295 0.843 1.512 proteasome subunit beta type 6 precursor putative expressed AT4G31300.1 

CUST_41846_PI390587928 0.843 1.443 0.733 1.302 0.831 1.347 0.789 1.425 HMG1/2-like protein putative expressed  

CUST_10301_PI390587928 0.801 1.263 0.833 1.333 0.850 1.218 0.827 1.362 interferon-related developmental regulator family protein expressed  

CUST_19584_PI390587928 0.441 2.188 0.607 2.242 0.552 2.318 0.584 2.916 -  

CUST_4968_PI390587928 0.639 1.506 0.719 1.443 0.714 1.634 0.682 1.571 -  

CUST_28566_PI390587928 0.533 3.861 0.629 4.221 0.456 3.756 0.415 3.501 ATPase 3 putative expressed AT3G28510.1 

CUST_2770_PI390587928 0.794 1.230 0.776 1.350 0.620 1.216 0.719 1.279 mitochondrial prohibitin complex protein 2 putative expressed  

CUST_18896_PI390587928 0.612 1.457 0.668 1.890 0.391 0.939 0.663 1.527 reticuline oxidase precursor putative expressed AT4G20860.1 

CUST_5347_PI390587928 0.346 2.944 0.341 2.146 0.403 3.746 0.305 3.137 caspase putative expressed AT5G04200.1 

CUST_17719_PI390587928 0.562 9.796 0.500 4.867 0.979 10.031 0.610 8.072 subtilisin-like protease precursor putative expressed AT3G14067.1 

CUST_1376_PI390587928 0.563 2.443 0.604 2.823 0.653 2.287 0.790 3.033 -  
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CUST_13260_PI390587928 0.783 1.274 0.701 1.299 0.713 1.372 0.734 1.367 TPR Domain containing protein expressed AT1G76630.1 

CUST_13058_PI390587928 0.640 1.501 0.803 1.778 0.625 1.664 0.892 1.910 Leucine Rich Repeat family protein  

CUST_21018_PI390587928 0.763 1.229 0.939 1.299 0.805 1.142 0.741 1.184 MYB4 putative expressed  

CUST_9684_PI390587928 0.612 1.371 0.742 1.401 0.676 1.211 0.565 1.210 Zn-finger RanBP-type containing protein expressed  

CUST_37255_PI390587928 0.666 1.845 0.662 1.670 0.588 1.277 0.595 1.492 glycine-rich protein 2b putative expressed AT4G36020.1 

CUST_30016_PI390587928 0.763 1.145 0.743 1.117 0.753 1.237 0.718 1.182 VTC2 putative expressed AT4G26850.1 

CUST_7315_PI390587928 0.739 3.648 0.637 3.220 0.496 1.874 0.511 2.474 40S ribosomal protein S9 putative expressed AT5G39850.1 

CUST_5101_PI390587928 0.777 1.478 0.863 1.550 0.815 1.376 0.859 1.544 -  

CUST_6107_PI390587928 0.869 1.707 0.803 1.581 0.614 1.178 0.672 1.374 ATPase family AAA domain-containing protein 3 putative expressed AT3G03060.1 

CUST_37132_PI390587928 0.617 1.884 0.653 1.910 0.750 1.913 0.581 1.820 nodulin-like protein putative expressed AT2G34357.1 

CUST_15803_PI390587928 0.678 2.661 0.716 3.447 0.462 1.981 0.460 1.780 expressed protein AT4G35240.1 

CUST_3935_PI390587928 0.799 1.185 0.804 1.337 0.809 1.131 0.852 1.346 lipoate protein ligase-like protein putative expressed AT3G29010.1 

CUST_10608_PI390587928 0.852 1.793 0.828 1.813 0.691 1.368 0.679 1.579 serine/threonine-protein phosphatase 5 putative expressed AT2G42810.1 

CUST_36988_PI390587928 0.860 1.501 0.793 1.332 0.728 1.138 0.725 1.264 RNA methylase putative expressed AT3G26410.1 

CUST_5995_PI390587928 0.891 1.465 0.850 1.236 0.795 1.297 0.780 1.141 expressed protein AT5G27330.1 

CUST_32560_PI390587928 0.681 1.813 0.720 1.957 0.480 1.479 0.590 1.870 expressed protein AT2G37860.3 

CUST_16702_PI390587928 0.598 2.316 0.364 1.733 0.252 1.683 0.255 1.343 sucrose synthase 2 putative expressed AT5G37180.1 

CUST_19954_PI390587928 0.481 2.193 0.668 2.274 0.498 1.851 0.419 2.515 Q-rich domain protein putative expressed  

CUST_11476_PI390587928 0.619 1.394 0.846 2.044 0.674 1.422 0.688 1.978 aspartic proteinase nepenthesin-2 precursor putative expressed AT3G59080.2 

CUST_4850_PI390587928 0.674 1.325 0.842 1.346 0.815 1.297 0.901 1.620 mitochondrial 2-oxoglutarate/malate carrier protein putative expressed AT2G22500.1 

CUST_9066_PI390587928 0.636 2.134 0.645 2.077 0.747 1.884 0.720 2.183 -  

CUST_1869_PI390587928 0.737 1.152 0.891 1.174 0.823 1.212 0.857 1.535 expressed protein AT1G20970.1 

CUST_39660_PI390587928 0.396 1.460 0.626 1.670 0.722 1.887 0.517 1.687 calcium-transporting ATPase 9 plasma membrane-type putative expressed AT5G57110.2 

CUST_16532_PI390587928 0.631 1.622 0.869 2.098 0.678 1.490 0.684 2.105 -  

CUST_41403_PI390587928 0.540 2.707 0.650 3.073 0.579 2.582 0.531 3.156 transcriptional repressor NF-X1 putative expressed AT1G10170.1 

CUST_40870_PI390587928 0.672 1.326 0.718 1.391 0.650 1.136 0.574 1.210 protein binding protein putative expressed AT2G30580.1 

CUST_33273_PI390587928 0.810 1.459 0.810 1.576 0.821 1.502 0.800 1.467 mitochondrion protein putative expressed AT2G16460.1 

CUST_28596_PI390587928 0.867 1.303 0.890 1.202 0.922 1.164 0.893 1.302 protein phosphatase type 2A regulator/ signal transducer putative expressed AT5G53500.1 

CUST_27621_PI390587928 0.259 6.584 0.283 5.793 0.074 3.394 0.044 3.948 S-adenosylmethionine decarboxylase proenzyme putative expressed AT3G02470.4 

CUST_28627_PI390587928 0.737 1.497 0.647 1.647 0.714 1.329 0.883 1.821 expressed protein  

CUST_18453_PI390587928 0.436 1.482 0.501 2.088 0.442 1.997 0.584 2.286 GEX1 putative expressed AT5G55490.1 
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CUST_37625_PI390587928 0.683 1.552 0.738 1.760 0.695 1.200 0.677 1.345 F-box domain containing protein expressed  

CUST_5424_PI390587928 0.559 1.906 0.574 1.871 0.524 2.763 0.607 3.153 esterase precursor putative expressed AT1G28600.2 

CUST_8203_PI390587928 0.809 1.413 0.868 1.704 0.864 1.349 0.737 1.561 auxin response factor 19 putative expressed AT1G19220.1 

CUST_22256_PI390587928 0.763 1.128 0.815 1.138 0.757 1.215 0.787 1.341 alanine aminotransferase 2 putative expressed AT1G72330.1 

CUST_6462_PI390587928 0.634 1.624 0.773 1.714 0.666 1.332 0.605 1.796 RHM1 putative expressed AT1G78570.1 

CUST_34017_PI390587928 0.536 1.998 0.601 1.717 0.512 1.807 0.632 1.977 metal ion binding protein putative expressed AT1G01490.2 

CUST_39499_PI390587928 0.733 1.776 0.883 2.523 0.634 1.588 0.825 2.349 transposon protein putative unclassified expressed AT1G65730.1 

CUST_19182_PI390587928 0.718 1.949 0.699 1.556 0.900 1.542 0.732 1.328 expressed protein  

CUST_41849_PI390587928 0.863 1.236 0.938 1.180 0.853 1.125 0.835 1.210 26S proteasome non-ATPase regulatory subunit 14 putative expressed AT5G23540.1 

CUST_2896_PI390587928 0.620 1.738 0.646 1.706 0.690 1.536 0.581 1.335 CTP synthase putative expressed AT3G12670.1 

CUST_36140_PI390587928 0.831 1.964 0.762 1.839 0.568 1.073 0.810 2.444 expressed protein  

CUST_7206_PI390587928 0.614 1.665 0.813 2.118 0.656 1.316 0.613 1.805 respiratory burst oxidase protein D putative expressed AT5G47910.1 

CUST_7782_PI390587928 0.813 2.306 0.842 2.467 0.775 2.287 0.867 3.002 jasmonate-induced protein putative  

CUST_16902_PI390587928 0.406 2.814 0.591 3.105 0.601 3.333 0.406 3.506 expressed protein AT5G39530.1 

CUST_36001_PI390587928 0.744 1.565 0.745 1.417 0.596 1.065 0.668 1.344 60S ribosomal protein L7-2 putative expressed AT2G01250.2 

CUST_3795_PI390587928 0.683 1.445 0.775 2.270 0.635 1.560 0.689 1.684 CID11 putative expressed  

CUST_11676_PI390587928 0.459 3.891 0.322 2.644 0.324 3.527 0.324 3.955 harpin-induced protein putative expressed  

CUST_8835_PI390587928 0.701 1.487 0.690 1.214 0.587 1.146 0.562 1.333 40S ribosomal protein S15a putative expressed AT4G29430.1 

CUST_17940_PI390587928 0.335 1.416 0.431 1.443 0.518 2.527 0.424 2.160 lectin-like receptor kinase 7 putative expressed AT2G37710.1 

CUST_7036_PI390587928 0.729 1.192 0.759 1.192 0.824 1.473 0.780 1.583 expressed protein  

CUST_16716_PI390587928 0.369 2.980 0.414 2.513 0.389 2.825 0.291 2.487 OsWRKY47 - Superfamily of rice TFs having WRKY and zinc finger domains 
expressed 

AT2G46400.1 

CUST_35400_PI390587928 0.613 2.837 0.674 3.787 0.423 2.674 0.401 2.904 peptidyl-prolyl cis-trans isomerase FKBP-type family protein expressed  

CUST_803_PI390587928 0.696 1.680 0.785 1.908 0.795 1.667 0.805 1.531 cytokinin-N-glucosyltransferase 1 putative expressed AT3G11340.1 

CUST_36879_PI390587928 0.730 1.543 0.719 1.562 0.673 1.210 0.644 1.301 eukaryotic translation initiation factor 3 subunit 4 putative expressed AT3G11400.1 

CUST_34649_PI390587928 0.642 3.013 0.689 2.407 0.589 1.971 0.566 2.348 elongation factor 1-alpha putative expressed AT5G60390.3 

CUST_17754_PI390587928 0.724 1.402 0.776 1.147 0.734 1.298 0.621 1.312 hypersensitive-induced response protein putative expressed AT5G62740.1 

CUST_6435_PI390587928 0.785 1.484 0.824 1.356 0.715 1.117 0.666 1.279 vegetatible incompatibility protein HET-E-1 putative expressed AT1G71840.1 

CUST_4678_PI390587928 0.649 1.633 0.635 1.876 0.744 1.285 0.795 2.282 allene oxide cyclase 4 chloroplast precursor putative expressed AT1G13280.1 

CUST_9920_PI390587928 0.776 1.722 0.834 1.668 0.776 1.725 0.716 1.920 aminotransferase y4uB putative expressed AT3G22200.1 

CUST_10329_PI390587928 0.443 1.452 0.500 1.361 0.658 1.362 0.527 1.668 expressed protein  

CUST_18823_PI390587928 0.712 1.902 0.698 1.649 0.601 1.215 0.596 1.533 60S ribosomal protein L33-B putative expressed AT1G74270.1 

CUST_7473_PI390587928 0.807 1.477 0.825 1.420 0.768 1.178 0.816 1.414 UDP-3-O- glucosamine N-acyltransferase putative expressed AT4G21220.1 
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CUST_27301_PI390587928 0.736 1.637 0.632 1.451 0.577 1.401 0.577 1.519 acyl carrier protein mitochondrial precursor putative expressed AT1G65290.1 

CUST_8495_PI390587928 0.744 2.797 0.682 2.854 0.700 2.810 0.604 4.491 indole-3-acetate beta-glucosyltransferase putative expressed AT1G05560.1 

CUST_38513_PI390587928 0.810 2.771 0.658 2.504 0.567 1.656 0.724 2.719 mitochondrial 2-oxoglutarate/malate carrier protein putative expressed AT2G22500.1 

CUST_30539_PI390587928 0.864 1.952 0.724 1.800 0.714 1.555 0.728 1.602 -  

CUST_35548_PI390587928 0.800 1.513 0.754 1.435 0.839 1.535 0.932 1.996 transposon protein putative unclassified expressed AT1G65730.1 

CUST_19202_PI390587928 0.575 4.328 0.881 5.955 0.505 3.562 0.461 4.192 acyl-activating enzyme 11 putative expressed AT1G21540.1 

CUST_510_PI390587928 0.756 1.791 0.880 1.825 0.821 1.689 0.790 2.193 hypothetical protein  

CUST_37135_PI390587928 0.425 1.656 0.247 1.252 0.388 2.210 0.517 1.962 1-aminocyclopropane-1-carboxylate oxidase 1 putative expressed AT1G12010.1 

CUST_15029_PI390587928 0.341 4.822 0.469 5.786 0.539 5.476 0.554 8.623 thaumatin-like protein 1 precursor putative expressed AT1G75800.1 

CUST_41124_PI390587928 0.037 5.483 0.062 6.250 0.036 5.644 0.040 7.680 indole-3-acetate beta-glucosyltransferase putative expressed AT1G05680.1 

CUST_39242_PI390587928 0.713 1.839 0.754 1.959 0.701 1.712 0.671 2.171 expressed protein AT5G42570.1 

CUST_33802_PI390587928 0.241 3.555 0.507 5.039 0.310 2.109 0.303 5.110 aromatic-L-amino-acid decarboxylase putative expressed AT4G28680.2 

CUST_34824_PI390587928 0.317 2.552 0.362 2.076 0.133 2.113 0.112 1.574 cell envelope integrity inner membrane protein TolA putative  

CUST_25081_PI390587928 0.708 3.656 0.826 4.771 0.352 2.429 0.642 2.916 pumilio-family RNA binding repeat containing protein expressed AT2G29190.1 

CUST_7041_PI390587928 0.881 1.309 0.865 1.250 0.811 1.156 0.783 1.152 splicing factor arginine/serine-rich 4 putative expressed AT2G37340.1 

CUST_38050_PI390587928 0.541 2.026 0.850 2.621 0.751 2.234 0.839 3.228 expressed protein AT3G50190.1 

CUST_27917_PI390587928 0.820 1.601 0.627 1.105 0.810 1.470 0.759 1.431 expressed protein AT4G09060.1 

CUST_36915_PI390587928 0.793 1.264 0.782 1.335 0.676 1.125 0.671 1.210 cystathionine beta-lyase putative expressed AT3G01120.1 

CUST_37937_PI390587928 0.882 1.695 0.806 1.438 0.695 1.293 0.691 1.391 - AT2G18850.1 

CUST_22770_PI390587928 0.858 1.526 0.768 1.190 0.774 1.285 0.844 1.494 proteasome subunit alpha type 7 putative expressed AT5G66140.1 

CUST_2973_PI390587928 0.215 8.672 0.244 7.670 0.172 6.016 0.255 11.781 multidrug resistance protein 4 putative expressed AT4G18050.1 

CUST_4528_PI390587928 0.590 1.023 0.606 1.230 0.688 1.536 0.749 1.177 eukaryotic translation initiation factor 2C 2 putative expressed  

CUST_12409_PI390587928 0.796 1.790 0.853 1.586 0.715 1.735 0.723 2.181 subtilisin-like protease precursor putative expressed AT3G14067.1 

CUST_32774_PI390587928 0.449 2.180 0.442 2.596 0.710 3.049 0.716 2.715 plant-specific domain TIGR01568 family protein expressed  

CUST_956_PI390587928 0.942 1.799 0.820 1.625 0.631 1.228 0.702 1.233 transferase transferring glycosyl groups putative expressed AT5G06550.1 

CUST_10498_PI390587928 0.799 1.176 0.820 1.290 0.844 1.361 0.865 1.485 peroxisome assembly protein 12 putative expressed AT3G04460.1 

CUST_13510_PI390587928 0.492 3.129 0.518 4.188 0.407 2.894 0.450 4.923 glutathione S-transferase GSTU6 putative expressed AT1G10370.1 

CUST_38666_PI390587928 0.905 2.676 0.890 2.666 0.566 1.633 0.562 2.003 60S ribosomal protein L6 putative expressed AT1G74050.1 

CUST_15538_PI390587928 0.508 1.373 0.710 1.605 0.695 1.605 0.578 1.564 protein binding protein putative expressed  

CUST_9430_PI390587928 0.538 2.643 0.617 2.734 0.517 1.827 0.580 2.973 caltractin putative expressed AT5G49480.1 

CUST_22306_PI390587928 0.896 1.396 0.853 1.598 0.848 1.327 0.926 1.539 expressed protein AT3G17030.1 

CUST_32481_PI390587928 0.594 3.153 0.653 3.063 0.695 3.087 0.645 3.647 endoribonuclease Dicer putative expressed AT4G15417.1 

CUST_17598_PI390587928 0.354 7.451 0.166 4.261 0.551 7.405 0.107 5.040 globulin precursor putative expressed  
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CUST_23328_PI390587928 0.584 2.230 0.621 2.772 0.562 1.951 0.679 2.656 mitotic spindle checkpoint protein MAD2 putative expressed AT3G25980.1 

CUST_10966_PI390587928 0.807 1.680 0.790 1.848 0.631 1.230 0.450 1.856 cytochrome c putative expressed AT1G22840.1 

CUST_32326_PI390587928 0.620 1.716 0.735 1.673 0.659 1.548 0.681 2.954 - AT3G24503.1 

CUST_4081_PI390587928 0.782 1.443 0.887 1.345 0.837 1.231 0.885 1.915 phenazine biosynthesis protein putative expressed AT4G02860.1 

CUST_20379_PI390587928 0.750 1.342 0.923 1.554 0.835 1.581 0.776 1.421 transferase transferring glycosyl groups putative expressed AT4G15240.1 

CUST_19216_PI390587928 0.808 1.601 0.850 1.510 0.669 1.196 0.643 1.287 ribonucleoprotein like protein putative expressed AT1G58470.1 

CUST_32342_PI390587928 0.491 1.547 0.679 1.661 0.517 1.560 0.491 1.752 NAD(P)H-dependent oxidoreductase putative expressed AT1G59950.1 

CUST_3393_PI390587928 0.348 2.137 0.281 1.848 0.207 2.088 0.146 1.629 small heat shock-like protein putative expressed  

CUST_22013_PI390587928 0.848 1.416 0.791 1.124 0.896 1.553 0.840 1.654 protein yippee-like OJ1003C07.11 putative expressed AT3G60210.1 

CUST_34838_PI390587928 0.741 1.270 0.892 1.332 0.750 1.240 0.795 1.191 zinc finger C3HC4 type family protein expressed AT5G12310.1 

CUST_17943_PI390587928 0.750 2.614 0.698 2.353 0.578 1.533 0.527 1.720 nucleolar protein NOP5 putative expressed AT5G27120.1 

CUST_12748_PI390587928 0.636 3.386 0.463 2.769 0.522 1.580 0.457 1.980 -  

CUST_16751_PI390587928 0.607 1.817 0.740 2.300 0.604 1.553 0.799 2.339 glutathione S-transferase GSTF2 putative expressed AT3G62760.1 

CUST_42037_PI390587928 0.357 2.027 0.403 2.131 0.529 1.845 0.698 2.227 expressed protein AT1G09575.1 

CUST_34668_PI390587928 0.693 1.887 0.692 1.460 0.706 2.006 0.681 2.271 aquaporin PIP2.3 putative expressed AT3G53420.2 

CUST_28985_PI390587928 0.839 1.278 0.782 1.166 0.871 1.214 0.879 1.330 histone H2B.2 putative expressed AT5G22880.1 

CUST_20570_PI390587928 0.766 1.121 0.794 1.073 0.802 1.284 0.693 1.286 carbohydrate transporter/ sugar porter putative expressed AT2G16120.1 

CUST_10194_PI390587928 0.796 1.207 0.895 1.384 0.809 1.260 0.773 1.233 -  

CUST_8391_PI390587928 0.785 1.231 0.820 1.190 0.714 1.249 0.716 1.480 NADPH quinone oxidoreductase 1 putative expressed AT3G27890.1 

CUST_4419_PI390587928 0.876 2.572 0.674 2.390 0.482 1.526 0.737 1.587 60S ribosomal protein L19-3 putative expressed AT1G02780.1 

CUST_18533_PI390587928 0.426 2.368 0.510 2.265 0.645 1.610 0.544 2.333 RING-H2 finger protein ATL2L putative expressed  

CUST_15111_PI390587928 0.785 1.415 0.805 1.208 0.688 1.141 0.665 1.430 UDP-N-acetylglucosamine transferase subunit alg13 putative expressed AT4G16710.2 

CUST_7718_PI390587928 0.652 1.482 0.803 1.476 0.559 1.226 0.551 1.973 ATP-citrate synthase putative expressed AT1G09430.1 

CUST_5520_PI390587928 0.713 1.807 0.643 1.907 0.743 2.167 0.793 2.361 NAC domain-containing protein 78 putative expressed AT5G64060.1 

CUST_25115_PI390587928 0.784 1.600 0.712 1.738 0.688 1.293 0.685 1.373 60S acidic ribosomal protein P0 putative expressed AT2G40010.1 

CUST_30872_PI390587928 0.836 1.306 0.818 1.233 0.902 1.131 0.787 1.479 ATOZI1 putative expressed AT1G01170.2 

CUST_36343_PI390587928 0.805 1.411 0.787 1.351 0.783 1.233 0.719 1.306 ATP-dependent Clp protease proteolytic subunit mitochondrial precursor putative 

expressed 

AT5G23140.1 

CUST_31909_PI390587928 0.496 2.250 0.631 1.881 0.423 1.685 0.416 2.724 heat shock 22 kDa protein mitochondrial precursor putative expressed AT5G51440.1 

CUST_37179_PI390587928 0.804 2.018 0.882 1.907 0.598 1.262 0.693 1.732 eukaryotic translation initiation factor 3 subunit 5 putative expressed AT2G39990.1 

CUST_30733_PI390587928 0.360 1.924 0.299 2.274 0.448 2.109 0.483 2.291 -  

CUST_2976_PI390587928 0.572 3.180 0.628 3.219 0.498 2.552 0.555 3.167 -  

CUST_31771_PI390587928 0.382 2.213 0.392 2.448 0.345 1.866 0.395 2.915 transposon protein putative unclassified expressed AT1G64940.1 
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CUST_36811_PI390587928 0.296 2.422 0.453 2.883 0.562 2.438 0.656 4.001 F-box domain containing protein expressed  

CUST_29096_PI390587928 0.592 1.556 0.698 1.693 0.550 1.311 0.812 1.880 thaumatin-like protein precursor putative expressed AT4G11650.1 

CUST_10718_PI390587928 0.761 1.621 0.813 1.762 0.626 1.216 0.641 2.063 thiamin pyrophosphokinase 1 putative expressed AT2G44750.2 

CUST_7862_PI390587928 0.494 1.846 0.610 1.586 0.815 2.106 0.632 2.139 heat shock cognate 70 kDa protein putative expressed AT3G12580.1 

CUST_24709_PI390587928 0.630 1.445 0.903 2.657 0.438 0.991 0.744 2.840 cytokinin-O-glucosyltransferase 3 putative expressed AT2G36790.1 

CUST_6670_PI390587928 0.825 2.491 0.866 2.558 0.600 2.133 0.577 2.163 elongation factor 1-alpha putative expressed AT5G60390.3 

CUST_2683_PI390587928 0.633 1.484 0.894 2.004 0.517 1.507 0.782 2.089 phenylalanine ammonia-lyase putative expressed AT3G53260.1 

CUST_8931_PI390587928 0.187 1.616 0.578 1.795 0.587 2.010 0.361 1.848 -  

CUST_26832_PI390587928 0.529 1.981 0.485 1.369 0.789 2.083 0.763 2.675 USP family protein putative expressed AT3G03270.2 

CUST_2560_PI390587928 0.802 2.567 0.780 2.134 0.643 1.688 0.627 2.171 chaperonin putative expressed AT1G14980.1 

CUST_23177_PI390587928 0.735 2.289 0.569 1.327 0.551 2.238 0.495 2.048 OTU-like cysteine protease family protein expressed AT3G57810.3 

CUST_35597_PI390587928 0.705 1.487 0.752 1.971 0.739 1.550 0.811 1.704 regulatory protein NPR1 putative expressed AT5G45110.1 

CUST_39615_PI390587928 0.936 1.912 0.849 1.701 0.827 1.637 0.788 1.661 arsenical pump-driving ATPase putative expressed AT3G10350.1 

CUST_24432_PI390587928 0.720 1.617 0.682 1.583 0.594 1.218 0.615 1.433 protein binding protein putative expressed AT5G22480.1 

CUST_7414_PI390587928 0.797 1.299 0.919 1.893 0.720 1.232 0.910 2.183 nucleoside transporter putative expressed AT4G05120.1 

CUST_5014_PI390587928 0.776 1.289 0.739 1.134 0.740 1.519 0.759 1.504 pyrophosphate-energized vacuolar membrane proton pump putative expressed AT1G15690.1 

CUST_11138_PI390587928 0.825 1.202 0.832 1.317 0.766 1.222 0.912 1.372 leucine carboxyl methyltransferase 1 putative expressed AT1G02100.1 

CUST_16940_PI390587928 0.515 1.742 0.810 2.612 0.505 1.271 0.759 2.189 PDR5-like ABC transporter putative expressed AT1G15520.1 

CUST_17185_PI390587928 0.692 2.041 0.786 3.633 0.704 2.001 0.780 3.527 tryptophan synthase beta chain 2 putative expressed AT5G38530.1 

CUST_27966_PI390587928 0.682 1.471 0.596 1.220 0.698 1.230 0.690 1.394 -  

CUST_10553_PI390587928 0.930 1.443 0.929 1.181 0.820 1.189 0.816 1.368 cytochrome b5 putative expressed AT1G26340.1 

CUST_31955_PI390587928 0.736 1.870 0.618 1.681 0.512 1.377 0.587 1.913 expressed protein AT4G17540.1 

CUST_11591_PI390587928 0.403 1.511 0.623 1.782 0.531 1.364 0.480 2.343 B12D protein expressed AT3G29970.1 

CUST_5194_PI390587928 0.666 2.092 0.737 1.892 0.745 2.202 0.667 2.189 -  

CUST_14905_PI390587928 0.793 1.075 0.791 1.279 0.877 1.257 0.828 1.199 -  

CUST_30593_PI390587928 0.850 1.505 0.663 1.416 0.711 1.385 0.778 1.422 cleavage and polyadenylation specificity factor 5 putative expressed AT4G25550.1 

CUST_40783_PI390587928 0.523 2.286 0.719 2.435 0.828 3.384 0.740 3.510 -  

CUST_21456_PI390587928 0.778 1.413 0.874 1.371 0.806 1.447 0.789 1.622 proline iminopeptidase putative expressed AT3G61540.1 

CUST_40830_PI390587928 0.610 1.422 0.714 1.502 0.656 1.574 0.536 1.656 calcium ion binding protein putative expressed AT4G38810.2 

CUST_7892_PI390587928 0.761 2.410 0.712 2.124 0.735 2.092 0.747 3.077 protein binding protein putative expressed AT3G63530.2 

CUST_866_PI390587928 0.540 1.999 0.760 3.329 0.521 2.121 0.707 3.088 ATPase coupled to transmembrane movement of substances putative expressed AT1G66950.1 
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CUST_14581_PI390587928 0.905 1.577 0.880 1.605 0.846 1.303 0.776 1.337 RNA binding protein putative expressed  

CUST_37724_PI390587928 0.769 2.871 0.729 2.317 0.838 1.783 0.778 1.552 -  

CUST_39970_PI390587928 0.128 3.093 0.040 3.658 0.083 2.499 0.057 3.264 -  

CUST_20311_PI390587928 0.825 1.227 0.806 1.321 0.742 1.210 0.884 1.415 tubulin folding cofactor D putative expressed AT3G60740.1 

CUST_19388_PI390587928 0.677 2.004 0.706 1.397 0.803 3.332 0.684 2.728 OsTIL-1 - Oryza sativa Temperature-induced lipocalin-1 expressed AT5G58070.1 

CUST_22339_PI390587928 0.825 1.426 0.791 1.397 0.700 1.150 0.725 1.223 expressed protein AT5G11010.3 

CUST_32529_PI390587928 0.152 3.095 0.151 2.827 0.190 3.162 0.148 3.089 flavonol 4-sulfotransferase putative expressed AT2G03760.1 

CUST_41496_PI390587928 0.876 1.485 0.788 1.287 0.750 1.108 0.723 1.266 ATP-binding cassette sub-family F member 2 putative expressed AT5G60790.1 

CUST_17205_PI390587928 0.706 1.441 0.770 2.130 0.730 1.477 0.672 1.746 CSLA3 - cellulose synthase-like family A; mannan synthase expressed AT5G03760.1 

CUST_29471_PI390587928 0.246 2.126 0.527 2.968 0.390 1.902 0.423 3.074 cytochrome P450 94A1 putative expressed AT2G27690.1 

CUST_32982_PI390587928 0.798 2.896 0.694 2.844 0.545 1.908 0.620 2.577 -  

CUST_14086_PI390587928 0.743 1.596 0.879 1.880 0.591 1.124 0.710 1.959 transmembrane 9 superfamily protein member 2 precursor putative expressed AT4G12650.1 

CUST_8466_PI390587928 0.622 4.831 0.864 7.633 0.384 3.148 0.429 7.558 expressed protein  

CUST_23861_PI390587928 0.751 1.494 0.858 1.316 0.708 1.265 0.732 1.496 -  

CUST_8482_PI390587928 0.354 2.876 0.539 2.918 0.365 2.478 0.419 3.998 metal ion binding protein putative expressed AT1G01490.2 

CUST_1243_PI390587928 0.396 2.656 0.453 2.893 0.395 2.998 0.476 4.110 -  

CUST_33258_PI390587928 0.724 2.272 0.753 2.284 0.650 1.675 0.608 2.030 surfeit 6 putative expressed AT5G05210.2 

CUST_40772_PI390587928 0.571 1.630 0.836 2.388 0.624 1.217 0.656 1.909 anthocyanidin 53-O-glucosyltransferase putative expressed AT1G01390.1 

CUST_31060_PI390587928 0.853 1.648 0.928 1.484 0.898 1.685 0.804 1.775 coiled-coil domain-containing protein 25 putative expressed AT5G11500.1 

CUST_37075_PI390587928 0.789 2.096 0.728 2.061 0.548 1.338 0.576 1.572 guanine nucleotide-binding protein beta subunit-like protein putative expressed AT1G18080.1 

CUST_24153_PI390587928 0.797 1.275 0.864 1.484 0.869 1.198 0.795 1.340 transcription factor BIM2 putative expressed AT1G69010.1 

CUST_23722_PI390587928 0.609 2.309 0.519 2.592 0.458 1.885 0.352 1.814 INDETERMINATE-related protein 9 putative expressed  

CUST_34934_PI390587928 0.533 1.817 0.560 1.322 0.644 1.867 0.795 2.517 -  

CUST_7742_PI390587928 0.761 1.329 0.730 1.130 0.839 1.529 0.769 1.448 chloroplastic quinone-oxidoreductase putative expressed AT4G13010.1 

CUST_12860_PI390587928 0.827 1.319 0.877 1.254 0.781 1.156 0.775 1.167 expressed protein AT3G07660.1 

CUST_4777_PI390587928 0.578 2.099 0.554 2.712 0.633 1.705 0.481 2.629 tryptophan synthase beta chain 1 putative expressed AT4G27070.1 

CUST_29630_PI390587928 0.180 4.746 0.203 4.639 0.148 4.345 0.199 5.163 -  

CUST_12674_PI390587928 0.622 2.846 0.563 2.273 0.393 2.307 0.333 1.987 cell envelope integrity inner membrane protein TolA putative  

CUST_41532_PI390587928 0.546 1.872 0.567 2.396 0.588 1.846 0.545 2.503 pathogenesis-related protein PRMS precursor putative expressed AT4G33720.1 
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Table S4-2 Genes down regulated in response to K-starvation.   

Expression values relative to the medium for all data, of genes downregulated in K-starved (-K) plants with p-values < 0.005 corrected for false discoveries using Bonferroni multiple 

testing correction.  Results for control (C) and K-starved (-K) detached leaf segments mock inoculation with water (mock) or inoculated with R. secalis (+ RS), two and four days post 

inoculation are shown. 

SCRI_Hv35_44K_v1 probe 2 days 4 days Hit description Top TAIR9 

protein hit  mock  + RS mock  + RS 

 C -K C -K C -K C -K 

CUST_25457_PI390587928 1.377 0.867 1.266 0.738 1.151 0.709 1.127 0.649 aminopeptidase/ metalloexopeptidase putative expressed AT3G05350.1 

CUST_34641_PI390587928 1.195 0.659 1.235 0.630 1.672 0.720 1.250 0.592 expressed protein  

CUST_12519_PI390587928 3.576 0.660 2.278 0.283 3.252 0.383 1.707 0.173 early nodulin 93 putative expressed AT5G25940.1 

CUST_19790_PI390587928 1.749 0.707 1.613 0.718 1.536 0.684 1.424 0.630 TPR Domain containing protein expressed AT1G02910.1 

CUST_40170_PI390587928 1.233 0.703 1.088 0.679 1.342 0.785 1.258 0.815 - AT5G10460.1 

CUST_26526_PI390587928 1.454 0.364 1.529 0.325 1.437 0.440 1.660 0.231 chlorophyll a-b binding protein chloroplast precursor putative expressed AT3G61470.1 

CUST_14579_PI390587928 1.253 0.656 1.217 0.486 1.459 0.654 1.197 0.549 expressed protein AT5G20100.1 

CUST_35477_PI390587928 1.749 0.793 1.158 0.686 1.427 0.829 1.620 0.722 expressed protein  

CUST_30484_PI390587928 1.749 0.719 1.453 0.661 1.159 0.595 1.251 0.503 acid phosphatase putative expressed AT3G01310.1 

CUST_41207_PI390587928 1.173 0.703 1.136 0.734 1.097 0.661 1.166 0.666 coatomer subunit alpha putative expressed AT1G62020.1 

CUST_28586_PI390587928 1.220 0.821 1.275 0.829 1.327 0.756 1.163 0.743 clathrin binding protein putative expressed AT4G18060.1 

CUST_24126_PI390587928 1.554 0.478 1.549 0.375 2.106 0.494 1.714 0.467 -  

CUST_12412_PI390587928 1.639 0.620 1.317 0.469 1.410 0.571 1.499 0.481 - AT1G03475.1 

CUST_7310_PI390587928 1.161 0.909 1.291 0.833 1.230 0.843 1.168 0.820 expressed protein AT1G27510.1 

CUST_39325_PI390587928 1.268 0.615 1.136 0.601 1.358 0.622 1.324 0.542 OsGrx_S14 - glutaredoxin subgroup II expressed  

CUST_19449_PI390587928 1.435 0.783 1.283 0.684 1.257 0.797 1.194 0.737 bile acid sodium symporter putative expressed AT3G56160.1 

CUST_38133_PI390587928 1.418 0.698 1.266 0.605 1.520 0.746 1.379 0.733 eukaryotic translation initiation factor 5A-2 putative expressed AT1G69410.1 

CUST_25211_PI390587928 1.241 0.851 1.206 0.822 1.205 0.771 1.276 0.854 coatomer subunit alpha putative expressed AT2G21390.1 

CUST_16_PI390587928 1.476 0.532 1.293 0.451 1.647 0.837 1.492 0.539 -  

CUST_18304_PI390587928 1.225 0.888 1.137 0.692 1.131 0.710 1.134 0.759 OsMPK6 - putative MAPK based on amino acid sequence homology expressed AT2G43790.1 

CUST_27255_PI390587928 1.251 0.588 1.310 0.475 1.230 0.633 1.105 0.438 peptidyl-prolyl cis-trans isomerase cyclophilin-type family protein expressed AT5G35100.1 

CUST_40956_PI390587928 2.059 0.623 1.667 0.667 1.946 0.549 2.141 0.494 - ATCG01010.1 

CUST_33001_PI390587928 1.841 0.836 1.544 0.812 1.500 0.814 1.541 0.667 SET domain containing protein expressed AT5G14260.2 

CUST_29346_PI390587928 1.548 0.576 1.605 0.541 1.424 0.505 1.435 0.425 CBS domain containing protein expressed  

CUST_10953_PI390587928 1.283 0.786 1.177 0.719 1.310 0.696 1.301 0.786 -  

CUST_6857_PI390587928 1.581 0.438 1.848 0.414 1.839 0.554 1.474 0.463 phosphate transporter 1 putative expressed AT1G68740.1 

CUST_30627_PI390587928 2.304 0.458 2.504 0.289 3.969 0.595 2.906 0.427 MYB59 putative expressed AT3G46130.1 

CUST_10310_PI390587928 1.169 0.796 1.068 0.661 1.183 0.786 1.119 0.725 -  

CUST_2933_PI390587928 1.307 0.717 1.237 0.569 1.352 0.650 1.130 0.581 expressed protein AT1G11540.1 

CUST_14584_PI390587928 1.038 0.768 1.102 0.835 1.140 0.723 1.127 0.800 PX domain containing protein expressed AT3G48195.1 

CUST_41902_PI390587928 3.039 0.427 3.432 0.529 2.998 0.542 2.233 0.267 indole-3-acetate beta-glucosyltransferase putative expressed AT3G02100.1 

CUST_40663_PI390587928 1.221 0.635 1.199 0.512 1.215 0.748 1.142 0.648 GIF2 putative expressed AT4G00850.1 
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CUST_28015_PI390587928 1.588 0.432 1.249 0.336 1.815 0.496 1.503 0.253 -  

CUST_932_PI390587928 1.536 0.632 1.404 0.648 1.355 0.688 1.341 0.617 threonyl-tRNA synthetase putative expressed AT2G04842.1 

CUST_8794_PI390587928 1.748 0.491 1.758 0.643 1.937 0.751 1.698 0.512 -  

CUST_6580_PI390587928 1.411 0.825 1.317 0.805 1.198 0.836 1.207 0.636 expressed protein AT5G02250.1 

CUST_15700_PI390587928 1.156 0.640 1.222 0.740 1.274 0.771 1.214 0.689 hypothetical protein  

CUST_19470_PI390587928 1.412 0.741 1.361 0.652 1.475 0.695 1.355 0.624 protein kinase putative expressed AT4G24810.2 

CUST_35204_PI390587928 1.708 0.804 1.650 0.547 2.737 0.779 1.933 0.470 multidrug resistance protein 22 putative expressed AT3G28345.1 

CUST_17590_PI390587928 1.209 0.768 1.177 0.883 1.053 0.803 1.203 0.881 ATP binding protein putative expressed AT2G38840.1 

CUST_19145_PI390587928 1.183 0.916 1.166 0.701 1.321 0.783 1.182 0.724 expressed protein AT1G55340.2 

CUST_15158_PI390587928 1.285 0.642 1.239 0.480 1.248 0.517 1.162 0.429 ATNAP8 putative expressed AT4G25450.3 

CUST_40231_PI390587928 1.780 0.813 1.511 0.608 1.420 0.585 1.131 0.509 cysteine-type peptidase putative expressed AT3G57810.3 

CUST_24342_PI390587928 1.186 0.653 1.204 0.489 1.438 0.908 1.391 0.738 -  

CUST_5063_PI390587928 1.570 0.550 1.387 0.383 1.504 0.546 1.349 0.418 expressed protein AT3G59040.1 

CUST_33324_PI390587928 1.423 0.888 1.206 0.713 1.289 0.801 1.172 0.625 OCP3 putative expressed AT5G11270.1 

CUST_32085_PI390587928 1.351 0.794 1.325 0.724 1.346 0.711 1.417 0.744 preprotein translocase secA subunit chloroplast precursor putative expressed AT4G01800.1 

CUST_6085_PI390587928 1.357 0.791 1.403 0.756 1.282 0.701 1.489 0.863 quinone oxidoreductase putative expressed AT4G21580.1 

CUST_38333_PI390587928 1.517 0.835 1.377 0.663 1.401 0.703 1.267 0.641 anaphase-promoting complex subunit 11 putative expressed AT3G05870.1 

CUST_20962_PI390587928 1.224 0.750 1.270 0.720 1.294 0.820 1.243 0.731 3-5 exonuclease eri-1 putative expressed  

CUST_283_PI390587928 1.698 0.492 1.727 0.429 2.569 0.666 2.567 0.586 expressed protein AT2G25737.1 

CUST_39371_PI390587928 1.835 0.671 1.608 0.461 1.292 0.544 1.346 0.624 expressed protein AT4G16060.1 

CUST_11809_PI390587928 1.476 0.727 1.080 0.454 1.243 0.609 1.203 0.511 alanyl-tRNA synthetase putative expressed AT5G22800.1 

CUST_29026_PI390587928 1.329 0.662 1.254 0.534 1.358 0.647 1.218 0.578 MYB transcription factor putative expressed AT2G01060.1 

CUST_33761_PI390587928 1.765 0.715 1.248 0.393 1.449 0.573 1.216 0.445 ferredoxin-6 chloroplast precursor putative expressed AT1G32550.1 

CUST_27269_PI390587928 1.435 0.795 1.324 0.790 1.451 0.742 1.230 0.687 hypothetical protein AT5G38060.1 

CUST_35229_PI390587928 1.272 0.768 1.151 0.743 1.335 0.740 1.556 0.852 expressed protein AT1G02816.1 

CUST_9229_PI390587928 1.113 0.677 1.164 0.644 1.282 0.766 1.139 0.657 expressed protein  

CUST_21845_PI390587928 1.321 0.614 1.217 0.613 1.400 0.590 1.321 0.548 DNA gyrase subunit B putative expressed  

CUST_35245_PI390587928 1.765 0.578 1.604 0.437 1.580 0.324 1.369 0.302 -  

CUST_3805_PI390587928 1.229 0.671 1.621 0.765 1.309 0.435 1.450 0.506 peroxidase 2 precursor putative expressed AT5G05340.1 

CUST_26901_PI390587928 1.377 0.699 1.243 0.616 1.586 0.847 1.295 0.629 -  

CUST_12724_PI390587928 1.396 0.677 1.218 0.575 1.376 0.682 1.283 0.533 -  

CUST_33622_PI390587928 1.267 0.727 1.196 0.722 1.491 0.740 1.363 0.692 mTERF family protein expressed  

CUST_11532_PI390587928 1.380 0.610 1.298 0.601 1.389 0.588 1.238 0.528 expressed protein  

CUST_4704_PI390587928 1.281 0.728 1.326 0.746 1.475 0.678 1.352 0.771 homeodomain leucine zipper protein CPHB-5 putative expressed AT3G01470.1 

CUST_12570_PI390587928 1.548 0.549 1.321 0.437 1.436 0.566 1.396 0.375 expressed protein AT4G01050.1 

CUST_22760_PI390587928 1.763 0.702 1.673 0.535 1.625 0.833 1.634 0.516 photosystem I reaction center subunit III chloroplast precursor putative expressed AT1G31330.1 

CUST_13592_PI390587928 1.484 0.687 1.498 0.597 1.560 0.654 1.416 0.605 tubby-related protein 1 putative expressed AT1G53320.1 

CUST_26561_PI390587928 1.518 0.606 1.713 0.537 1.758 0.490 1.848 0.325 ribulose bisphosphate carboxylase large chain precursor putative expressed ATCG00490.1 

CUST_442_PI390587928 1.201 0.683 1.175 0.786 1.355 0.859 1.270 0.699 ras-related protein Rab-18 putative expressed AT1G43890.3 

CUST_10170_PI390587928 1.182 0.807 1.252 0.798 1.231 0.694 1.089 0.722 expressed protein AT3G11850.2 
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CUST_37820_PI390587928 1.353 0.529 1.168 0.405 1.461 0.557 1.318 0.471 mTERF family protein expressed  

CUST_1112_PI390587928 1.611 0.596 1.645 0.405 1.311 0.462 1.194 0.336 cytochrome P450 97B3 putative expressed AT1G31800.1 

CUST_11223_PI390587928 1.251 0.787 1.276 0.812 1.432 0.712 1.379 0.562 expressed protein  

CUST_8855_PI390587928 1.500 0.629 1.384 0.471 1.644 0.658 1.417 0.415 beta-propeller domains of methanol dehydrogenase type putative expressed AT1G54780.1 

CUST_17270_PI390587928 1.200 0.704 1.287 0.636 1.310 0.714 1.187 0.643 casein kinase II subunit beta-4 putative expressed AT5G47080.1 

CUST_15040_PI390587928 1.747 0.839 1.333 0.540 1.811 0.757 1.747 0.727 transcription regulator putative expressed AT2G13690.1 

CUST_1399_PI390587928 2.164 0.753 1.414 0.622 2.112 0.715 2.122 0.828 -  

CUST_30411_PI390587928 2.334 0.127 3.183 0.387 1.425 0.081 4.195 0.520 -  

CUST_4178_PI390587928 1.367 0.591 1.419 0.551 1.308 0.513 1.144 0.425 amino acid binding protein putative expressed AT2G39570.1 

CUST_17301_PI390587928 1.310 0.554 1.342 0.339 1.377 0.553 1.262 0.467 2-hydroxy-3-oxopropionate reductase putative expressed AT1G17650.1 

CUST_4194_PI390587928 1.708 0.433 1.615 0.460 1.653 0.477 1.556 0.432 expressed protein AT1G75100.1 

CUST_27290_PI390587928 1.523 0.714 1.370 0.742 1.308 0.631 1.198 0.544 CDK5RAP1-like protein putative expressed AT4G36390.1 

CUST_5247_PI390587928 1.570 0.614 1.537 0.380 1.291 0.470 1.204 0.439 peptidyl-prolyl cis-trans isomerase FKBP-type family protein expressed AT3G10060.1 

CUST_22079_PI390587928 1.167 0.649 1.423 0.626 1.202 0.854 1.122 0.731 catalase-1 putative expressed AT4G35090.1 

CUST_30039_PI390587928 1.414 0.744 1.491 0.693 1.451 0.782 1.301 0.732 expressed protein AT4G20740.1 

CUST_41267_PI390587928 1.231 0.908 1.287 0.762 1.396 0.709 1.300 0.807 fructokinase-2 putative expressed AT1G66430.1 

CUST_31108_PI390587928 1.346 0.539 1.372 0.550 1.479 0.623 1.539 0.551 expressed protein AT3G22450.1 

CUST_5124_PI390587928 2.203 0.402 2.197 0.337 1.742 0.489 1.529 0.340 peptide chain release factor 2 putative expressed AT3G57190.1 

CUST_37932_PI390587928 1.461 0.671 1.592 0.458 1.528 0.766 1.537 0.710 NADP-dependent glyceraldehyde-3-phosphate dehydrogenase putative expressed AT2G24270.1 

CUST_41688_PI390587928 1.208 0.591 1.327 0.542 1.887 0.595 1.843 0.661 -  

CUST_29242_PI390587928 1.689 0.480 1.844 0.289 3.536 0.568 2.873 0.463 osmotin-like protein precursor putative expressed AT2G28790.1 

CUST_40713_PI390587928 1.539 0.732 1.442 0.579 1.261 0.619 1.237 0.619 NHL repeat protein putative expressed AT1G56500.1 

CUST_24824_PI390587928 1.421 0.619 1.356 0.475 1.388 0.601 1.131 0.433 expressed protein AT3G27180.1 

CUST_16087_PI390587928 1.126 0.843 1.101 0.872 1.231 0.739 1.079 0.775 -  

CUST_8828_PI390587928 1.219 0.515 1.360 0.771 1.278 0.530 1.280 0.672 expressed protein AT3G02910.1 

CUST_11732_PI390587928 1.376 0.441 1.166 0.352 1.151 0.469 1.140 0.311 expressed protein AT5G44600.1 

CUST_12738_PI390587928 1.257 0.687 1.254 0.661 1.739 0.665 1.388 0.640 - AT3G51860.1 

CUST_19520_PI390587928 1.303 0.677 1.279 0.527 1.248 0.677 1.186 0.552 carboxyl-terminal-processing protease precursor putative expressed AT5G46390.2 

CUST_3649_PI390587928 2.429 0.345 1.998 0.194 2.416 0.295 2.114 0.227 ribulose bisphosphate carboxylase small chain C chloroplast precursor putative expressed AT1G67090.1 

CUST_34658_PI390587928 2.775 0.199 2.495 0.155 2.771 0.118 3.456 0.152 cytokinin dehydrogenase 1 precursor putative expressed AT2G41510.1 

CUST_27953_PI390587928 1.505 0.831 1.228 0.622 1.250 0.687 1.217 0.590 -  

CUST_5926_PI390587928 2.204 0.451 2.187 0.553 1.579 0.386 3.220 0.392 terpene synthase 7 putative expressed AT1G70080.1 

CUST_11562_PI390587928 1.398 0.887 1.185 0.778 1.186 0.657 1.215 0.654 syntaxin 23 putative expressed AT5G46860.1 

CUST_27767_PI390587928 1.826 0.777 1.437 0.552 1.335 0.726 1.291 0.518 - AT3G59890.1 

CUST_26559_PI390587928 1.229 0.752 1.093 0.736 1.194 0.833 1.265 0.697 -  

CUST_10215_PI390587928 1.450 0.697 1.419 0.619 1.436 0.643 1.153 0.449 cytochrome P450 97B2 putative expressed AT4G15110.1 

CUST_24175_PI390587928 1.242 0.866 1.274 0.899 1.413 0.849 1.257 0.776 signal transducer putative expressed AT3G15470.1 

CUST_13467_PI390587928 1.174 0.809 1.155 0.696 1.255 0.818 1.196 0.838 -  

CUST_8365_PI390587928 1.203 0.876 1.132 0.640 1.122 0.739 1.145 0.827 complex 1 protein containing protein expressed AT1G76065.1 

CUST_30985_PI390587928 1.443 0.606 1.453 0.491 1.467 0.558 1.339 0.523 expressed protein AT1G22850.1 
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CUST_65_PI390587928 1.524 0.802 1.269 0.605 1.284 0.733 1.240 0.585 expressed protein  

CUST_4239_PI390587928 1.637 0.482 1.384 0.354 1.468 0.493 1.228 0.336 expressed protein AT5G48790.1 

CUST_39251_PI390587928 1.412 0.791 1.324 0.648 1.558 0.821 1.378 0.669 -  

CUST_33050_PI390587928 1.757 0.585 1.608 0.389 1.904 0.679 1.405 0.406 -  

CUST_27926_PI390587928 1.218 0.862 1.163 0.786 1.212 0.838 1.144 0.846 expressed protein AT5G65120.1 

CUST_30862_PI390587928 1.245 0.900 1.272 0.794 1.336 0.838 1.190 0.819 NEDD8-conjugating enzyme Ubc12-like putative expressed AT4G36800.2 

CUST_37339_PI390587928 1.185 0.685 1.211 0.554 1.352 0.778 1.293 0.713 ubiquinone biosynthesis protein ubiB putative expressed AT4G31390.2 

CUST_8103_PI390587928 1.354 0.690 1.226 0.539 1.324 0.674 1.202 0.506 - AT3G45050.3 

CUST_6346_PI390587928 1.383 0.487 1.303 0.346 1.533 0.573 1.343 0.327 senescence-associated protein DIN1 putative expressed AT2G17850.1 

CUST_9125_PI390587928 1.263 0.671 1.302 0.670 1.326 0.772 1.238 0.605 -  

CUST_28187_PI390587928 1.430 0.554 1.428 0.411 1.279 0.517 1.340 0.491 ATA15 protein putative expressed AT1G66330.2 

CUST_1928_PI390587928 1.742 0.446 1.678 0.574 1.338 0.313 1.564 0.193 bifunctional aspartokinase/homoserine dehydrogenase 2 chloroplast precursor putative 

expressed 

AT4G19710.2 

CUST_13812_PI390587928 1.332 0.783 1.293 0.572 1.367 0.728 1.324 0.705 2-cys peroxiredoxin BAS1 chloroplast precursor putative expressed AT5G06290.1 

CUST_32953_PI390587928 1.359 0.922 1.163 0.763 1.485 0.819 1.257 0.697 -  

CUST_22640_PI390587928 1.727 0.592 1.302 0.439 1.800 0.704 1.916 0.548 -  

CUST_30600_PI390587928 1.510 0.697 1.326 0.495 1.515 0.790 1.512 0.588 nicotinate phosphoribosyltransferase-like protein putative expressed  

CUST_4600_PI390587928 1.204 0.418 1.300 0.461 1.418 0.397 1.697 0.442 carbonic anhydrase chloroplast precursor putative expressed AT5G14740.2 

CUST_31606_PI390587928 6.570 0.318 3.782 0.115 5.150 0.068 2.987 0.050 chymopapain precursor putative AT5G50260.1 

CUST_24901_PI390587928 1.555 0.706 1.380 0.404 1.410 0.491 1.162 0.453 expressed protein AT2G21960.1 

CUST_26441_PI390587928 1.244 0.705 1.179 0.795 1.177 0.686 1.170 0.628 aldehyde dehydrogenase 3B1 putative expressed AT4G36250.1 

CUST_31622_PI390587928 1.699 0.620 1.808 0.403 1.556 0.475 1.396 0.315 phospholipid hydroperoxide glutathione peroxidase 1 chloroplast precursor putative 

expressed 

AT2G25080.1 

CUST_22454_PI390587928 1.497 0.628 1.540 0.723 1.467 0.758 1.378 0.618 -  

CUST_24715_PI390587928 1.569 0.687 1.687 0.669 1.581 0.775 1.330 0.560 cytochrome P450 74A4 putative expressed AT4G15440.1 

CUST_27510_PI390587928 1.657 0.724 1.234 0.684 1.364 0.711 1.578 0.570 SFR2 putative expressed AT3G06510.2 

CUST_28516_PI390587928 1.263 0.854 1.259 0.824 1.363 0.868 1.342 0.841 DNA-directed RNA polymerases II 24 kDa polypeptide putative expressed AT3G22320.1 

CUST_19348_PI390587928 1.315 0.591 1.402 0.546 1.344 0.652 1.229 0.470 CAO putative expressed AT2G47450.1 

CUST_1465_PI390587928 2.108 0.697 1.648 0.481 1.866 0.487 1.601 0.447 -  

CUST_34719_PI390587928 1.288 0.698 1.213 0.648 1.374 0.701 1.240 0.606 signal recognition particle 54 kDa protein 2 putative expressed  

CUST_35253_PI390587928 1.683 0.715 1.304 0.769 1.417 0.755 1.473 0.549 permease 1 putative expressed  

CUST_19364_PI390587928 1.191 0.875 1.076 0.904 1.278 0.922 1.187 0.947 expressed protein  

CUST_22315_PI390587928 1.207 0.584 1.158 0.519 1.382 0.685 1.132 0.607 DCL protein chloroplast precursor putative expressed AT3G46630.1 

CUST_30074_PI390587928 1.765 0.549 1.357 0.353 1.538 0.518 1.559 0.429 oxygen-evolving enhancer protein 3 chloroplast precursor putative AT2G01918.1 

CUST_18203_PI390587928 1.660 0.711 1.460 0.501 1.499 0.498 1.227 0.432 xylogen protein 1 putative expressed AT2G13820.2 

CUST_16276_PI390587928 1.084 0.764 1.173 0.839 1.107 0.701 1.143 0.736 expressed protein AT5G66840.1 

CUST_14062_PI390587928 1.300 0.867 1.235 0.863 1.164 0.719 1.272 0.864 impaired sucrose induction 1-like protein putative expressed AT4G27750.1 

CUST_3993_PI390587928 1.165 0.687 1.291 0.715 1.324 0.731 1.318 0.755 PHD zinc finger protein putative expressed AT2G27980.1 

CUST_177_PI390587928 1.351 0.752 1.463 0.613 1.437 0.801 1.330 0.659 PCB2 putative expressed AT5G18660.1 

CUST_29075_PI390587928 1.242 0.580 1.295 0.568 1.545 0.706 1.364 0.593 serine/threonine-protein kinase MHK putative expressed AT4G13020.4 
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CUST_41770_PI390587928 1.450 0.690 1.563 0.604 1.523 0.606 1.273 0.508 amino acid binding protein putative expressed AT2G39570.1 

CUST_6042_PI390587928 1.139 0.783 1.308 0.866 1.162 0.763 1.085 0.714 transferase transferring glycosyl groups putative expressed AT1G80260.1 

CUST_16153_PI390587928 1.389 0.411 1.791 0.701 1.190 0.354 1.558 0.598 elicitor-responsive protein 1 putative expressed AT3G55470.2 

CUST_15722_PI390587928 1.315 0.757 1.219 0.797 1.257 0.873 1.285 0.771 resistance protein putative expressed  

CUST_3854_PI390587928 1.641 0.589 1.366 0.405 1.451 0.522 1.287 0.354 endonuclease putative expressed AT2G15820.1 

CUST_24704_PI390587928 1.583 0.695 1.367 0.399 1.392 0.554 1.200 0.379 rf1 protein mitochondrial precursor putative expressed AT3G53700.1 

CUST_26950_PI390587928 1.297 0.703 1.248 0.575 1.342 0.678 1.135 0.516 RING finger and CHY zinc finger domain-containing protein 1 putative expressed AT5G22920.1 

CUST_4099_PI390587928 1.650 0.649 1.548 0.497 1.487 0.630 1.287 0.562 glutamine amidotransferase subunit pdxT putative expressed AT5G60540.1 

CUST_24534_PI390587928 1.186 0.882 1.225 0.899 1.039 0.766 1.116 0.863 -  

CUST_34724_PI390587928 1.553 0.725 1.372 0.638 1.309 0.655 1.146 0.492 ATP-dependent RNA helicase rhlE putative expressed AT4G09730.1 

CUST_17036_PI390587928 1.169 0.664 1.121 0.748 1.155 0.618 1.069 0.664 -  

CUST_8740_PI390587928 1.867 0.535 1.686 0.363 1.437 0.403 1.882 0.366 expressed protein  

CUST_20563_PI390587928 1.239 0.761 1.169 0.690 1.298 0.599 1.194 0.560 -  

CUST_4753_PI390587928 1.118 0.853 1.172 0.795 1.310 0.805 1.161 0.797 F-box domain containing protein expressed  

CUST_12634_PI390587928 1.105 0.826 1.109 0.661 1.234 0.820 1.138 0.745 protein tyrosine phosphatase-like protein PTPLB putative expressed AT5G59770.1 

CUST_33532_PI390587928 1.305 0.668 1.340 0.532 1.469 0.548 1.286 0.520 -  

CUST_17457_PI390587928 1.456 0.676 1.262 0.561 1.353 0.592 1.159 0.588 receptor-like kinase putative expressed  

CUST_27647_PI390587928 1.179 0.805 1.233 0.734 1.388 0.735 1.261 0.694 S-adenosylmethionine-dependent methyltransferase putative expressed AT4G28830.1 

CUST_40773_PI390587928 1.376 0.516 1.192 0.442 1.526 0.667 1.535 0.509 serine/threonine protein kinase putative expressed AT4G23320.1 

CUST_18712_PI390587928 1.237 0.843 1.133 0.826 1.239 0.865 1.215 0.783 retrotransposon protein putative unclassified AT2G28970.1 

CUST_30630_PI390587928 1.296 0.646 1.344 0.518 1.397 0.622 1.189 0.543 signal peptide peptidase-like 2B putative expressed AT1G63690.1 

CUST_5636_PI390587928 1.354 0.736 1.313 0.618 1.453 0.823 1.201 0.540 expressed protein AT1G28760.1 

CUST_11272_PI390587928 1.243 0.804 1.355 0.656 1.332 0.828 1.293 0.805 OsFtsH9 - Oryza sativa FtsH protease homologue of AtFtsH11 expressed AT5G53170.1 

CUST_34415_PI390587928 1.168 0.685 1.344 0.689 1.412 0.812 1.383 0.719 disulfide oxidoreductase/ monooxygenase putative expressed AT1G12140.1 

CUST_10064_PI390587928 1.218 0.555 1.076 0.339 2.116 0.650 1.995 0.563 expressed protein AT5G47920.1 

CUST_37683_PI390587928 1.407 0.782 1.515 0.661 1.478 0.817 1.427 0.587 expressed protein AT1G44000.1 

CUST_19580_PI390587928 1.331 0.606 1.446 0.607 1.254 0.656 1.234 0.656 OsFtsH1 - Oryza sativa FtsH protease homologue of AtFtsH1/5 expressed AT1G50250.1 

CUST_11117_PI390587928 1.501 0.506 1.414 0.421 1.752 0.662 1.386 0.608 - AT5G65660.1 

CUST_32488_PI390587928 1.371 0.806 1.390 0.641 1.397 0.741 1.243 0.655 NADH dehydrogenase putative expressed AT5G08740.1 

CUST_8261_PI390587928 1.131 0.639 1.368 0.708 1.609 0.719 1.245 0.584 expressed protein  

CUST_18372_PI390587928 1.081 0.788 1.237 0.874 1.270 0.809 1.354 0.858 xylosyltransferase 1 putative expressed AT1G71070.1 

CUST_29568_PI390587928 1.349 0.892 1.152 0.745 1.297 0.896 1.271 0.832 expressed protein AT5G39530.1 

CUST_2044_PI390587928 1.601 0.563 1.508 0.455 1.552 0.613 1.630 0.516 transposon protein putative unclassified AT4G38180.1 

CUST_20115_PI390587928 1.385 0.833 1.173 0.790 1.407 0.879 1.247 0.713 expressed protein  

CUST_37560_PI390587928 1.567 0.380 1.194 0.299 2.298 0.420 1.721 0.287 expressed protein AT1G19910.1 

CUST_5343_PI390587928 1.722 0.399 1.923 0.384 2.009 0.276 1.970 0.276 calcium-dependent protein kinase 2 putative expressed AT1G08650.1 

CUST_31918_PI390587928 1.530 0.762 1.592 0.887 1.445 0.601 1.401 0.588 EMB1381 putative expressed AT2G31340.1 

CUST_9128_PI390587928 1.427 0.728 1.531 0.716 1.140 0.648 1.077 0.671 2-C-methyl-D-erythritol 24-cyclodiphosphate synthase chloroplast precursor putative 
expressed 

AT1G63970.1 

CUST_16003_PI390587928 1.511 0.664 1.387 0.614 1.467 0.629 1.366 0.526 NBS-LRR type disease resistance protein putative expressed AT3G07040.1 
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CUST_13815_PI390587928 1.244 0.462 1.428 0.314 1.314 0.564 1.322 0.413 glutamine synthetase chloroplast precursor putative expressed AT5G35630.3 

CUST_27215_PI390587928 1.222 0.648 1.239 0.650 1.332 0.722 1.265 0.564 BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 precursor putative 

expressed 

AT5G16000.1 

CUST_19085_PI390587928 1.183 0.835 1.344 0.827 1.203 0.783 1.255 0.836 palmitoyltransferase pfa3 putative expressed  

CUST_377_PI390587928 1.317 0.774 1.254 0.780 1.480 0.766 1.423 0.795 expressed protein AT3G48210.1 

CUST_13645_PI390587928 1.252 0.505 1.495 0.500 1.426 0.574 1.217 0.408 signal recognition particle 54 kDa protein 2 putative expressed AT1G48900.1 

CUST_40155_PI390587928 1.300 0.528 1.271 0.352 1.584 0.585 1.519 0.536 transposon protein putative unclassified expressed AT4G35250.1 

CUST_6817_PI390587928 1.230 0.745 1.446 0.842 1.275 0.793 1.153 0.709 protein kinase domain containing protein expressed AT5G59700.1 

CUST_25879_PI390587928 1.036 0.679 1.269 0.800 1.268 0.727 1.155 0.764 -  

CUST_39279_PI390587928 1.236 0.790 1.126 0.864 1.230 0.757 1.203 0.758 -  

CUST_6833_PI390587928 1.311 0.831 1.107 0.716 1.191 0.758 1.156 0.683 pentatricopeptide repeat protein PPR986-12 putative expressed AT4G37380.1 

CUST_24096_PI390587928 1.192 0.642 1.118 0.616 1.054 0.618 1.105 0.614 -  

CUST_7855_PI390587928 3.122 0.401 3.768 0.421 3.861 0.370 3.748 0.126 -  

CUST_2862_PI390587928 1.138 0.779 1.137 0.759 1.130 0.827 1.072 0.700 protein phosphatase 2C isoform beta putative expressed AT1G18030.1 

CUST_14528_PI390587928 1.409 0.915 1.376 0.735 1.276 0.751 1.125 0.672 expressed protein AT5G24314.1 

CUST_29152_PI390587928 1.401 0.757 1.451 0.791 1.617 0.724 1.498 0.718 DRE binding factor 1 putative expressed AT4G39780.1 

CUST_3884_PI390587928 2.549 0.597 1.908 0.434 2.500 0.534 2.168 0.434 S-adenosylmethionine-dependent methyltransferase/ methyltransferase/ thiopurine S-
methyltransferase putative expressed 

AT2G43940.1 

CUST_37112_PI390587928 3.396 0.391 2.848 0.240 2.293 0.126 1.878 0.068 1-aminocyclopropane-1-carboxylate oxidase 1 putative expressed AT1G05010.1 

CUST_21955_PI390587928 1.718 0.831 1.485 0.652 1.332 0.710 1.397 0.703 NHL repeat protein putative expressed AT1G56500.1 

CUST_29743_PI390587928 1.672 0.300 1.889 0.174 1.794 0.355 1.710 0.204 carbonic anhydrase chloroplast precursor putative expressed AT5G14740.2 

CUST_16588_PI390587928 1.257 0.721 1.330 0.578 1.351 0.655 1.408 0.766 DNA-binding protein SMUBP-2 putative expressed AT5G35970.1 

CUST_34738_PI390587928 1.301 0.722 1.246 0.583 1.374 0.708 1.102 0.609 MYB transcription factor putative expressed AT2G01060.1 

CUST_24564_PI390587928 1.372 0.850 1.374 0.753 1.729 0.618 1.514 0.571 -  

CUST_37533_PI390587928 1.423 0.665 1.100 0.504 1.358 0.811 1.332 0.627 cytokinin-N-glucosyltransferase 1 putative expressed AT3G11340.1 

CUST_722_PI390587928 1.199 0.681 1.175 0.649 1.322 0.724 1.205 0.708 methyl-CpG binding domain containing protein expressed  

CUST_24611_PI390587928 1.353 0.692 1.223 0.541 1.525 0.660 1.282 0.401 -  

CUST_39810_PI390587928 1.247 0.692 1.145 0.778 1.428 0.849 1.324 0.716 -  

CUST_16449_PI390587928 1.124 0.558 1.552 0.536 1.725 0.628 2.154 0.656 receptor-like protein kinase precursor putative expressed AT1G04970.2 

CUST_41289_PI390587928 1.368 0.501 1.358 0.428 1.415 0.530 1.365 0.427 shikimate kinase family protein expressed  

CUST_12680_PI390587928 1.500 0.731 1.328 0.642 1.419 0.704 1.487 0.789 CDT1a protein putative expressed AT2G31270.1 

CUST_39608_PI390587928 1.201 0.899 1.123 0.808 1.093 0.794 1.044 0.767 phosphoribosylformylglycinamidine synthase chloroplast precursor putative expressed AT1G74260.1 

CUST_23186_PI390587928 1.663 0.703 1.623 0.652 1.539 0.786 1.528 0.694 calcineurin B-like protein 10 putative expressed AT4G33000.2 

CUST_2383_PI390587928 1.680 0.633 1.326 0.754 1.485 0.527 1.213 0.434 lycopene epsilon cyclase chloroplast precursor putative expressed AT5G57030.1 

CUST_35637_PI390587928 1.853 0.770 1.836 0.558 1.655 0.775 1.263 0.738 -  

CUST_27693_PI390587928 1.338 0.933 1.246 0.663 1.294 0.831 1.294 0.882 ferredoxin-thioredoxin reductase catalytic chain chloroplast precursor putative expressed AT2G04700.1 

CUST_39454_PI390587928 1.239 0.642 1.364 0.588 1.396 0.621 1.261 0.626 - AT3G08690.1 

CUST_25510_PI390587928 1.475 0.825 1.355 0.663 1.363 0.831 1.103 0.561 small multi-drug export protein putative expressed AT2G02590.1 

CUST_34259_PI390587928 1.373 0.493 1.263 0.403 1.689 0.537 1.612 0.415 - AT1G73080.1 

CUST_3266_PI390587928 1.244 0.582 1.201 0.576 1.357 0.796 1.304 0.564 40S ribosomal protein S3a putative expressed  
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CUST_42235_PI390587928 1.067 0.763 1.103 0.596 1.298 0.817 1.310 0.776 sugar transporter type 2a putative expressed AT4G35300.3 

CUST_20906_PI390587928 1.184 0.741 1.109 0.638 1.258 0.859 1.153 0.627 DNA binding protein putative expressed  

CUST_4351_PI390587928 1.107 0.629 1.244 0.694 1.304 0.723 1.214 0.741 secondary cell wall-related glycosyltransferase family 47 putative expressed AT5G16890.1 

CUST_20752_PI390587928 1.250 0.902 1.143 0.818 1.209 0.806 1.233 0.697 expressed protein  

CUST_36973_PI390587928 1.517 0.555 2.138 0.650 2.218 0.591 2.290 0.649 peptide transporter PTR2 putative expressed AT4G21680.1 

CUST_9174_PI390587928 2.475 0.587 2.184 0.411 1.841 0.486 1.443 0.289 14-dihydroxy-2-naphthoate octaprenyltransferase putative expressed AT1G60600.2 

CUST_36196_PI390587928 1.250 0.576 1.154 0.520 1.318 0.570 1.213 0.460 SFR2 putative expressed AT3G06510.2 

CUST_14728_PI390587928 1.557 0.729 1.648 0.746 1.730 0.698 1.479 0.580 chaperone protein dnaJ putative expressed AT5G16650.1 

CUST_35642_PI390587928 1.152 0.767 1.345 0.843 1.366 0.854 1.276 0.742 expressed protein AT2G35800.1 

CUST_37095_PI390587928 0.996 0.776 1.198 0.825 1.227 0.714 1.216 0.743 nucleic acid binding protein putative expressed AT4G26480.1 

CUST_31655_PI390587928 1.425 0.633 1.430 0.596 1.297 0.674 1.311 0.538 -  

CUST_32677_PI390587928 1.226 0.814 1.211 0.811 1.318 0.789 1.233 0.744 CCR4-NOT transcription complex subunit 3 putative expressed AT5G18230.2 

CUST_21512_PI390587928 1.349 0.931 1.299 0.801 1.378 0.795 1.202 0.685 pyruvate dehydrogenase E1 component alpha subunit putative expressed AT1G01090.1 

CUST_41659_PI390587928 2.592 0.663 2.692 0.748 1.238 0.427 1.783 0.548 ATFP4 putative expressed AT4G05030.1 

CUST_34768_PI390587928 1.287 0.769 1.422 0.707 1.279 0.667 1.156 0.528 -  

CUST_14419_PI390587928 1.452 0.608 1.569 0.588 1.393 0.576 1.230 0.515 GTP-binding protein LepA containing protein expressed AT5G08650.1 

CUST_12174_PI390587928 1.185 0.570 1.188 0.746 1.352 0.818 1.293 0.644 -  

CUST_4340_PI390587928 1.176 0.729 1.125 0.713 1.319 0.799 1.174 0.704 receptor protein kinase TMK1 precursor putative expressed AT3G23750.1 

CUST_5346_PI390587928 1.179 0.890 1.230 0.783 1.235 0.780 1.103 0.785 expressed protein AT4G30200.3 

CUST_24641_PI390587928 1.129 0.745 1.159 0.706 1.156 0.722 1.085 0.735 casein kinase II subunit beta-4 putative expressed AT5G47080.1 

CUST_7607_PI390587928 1.220 0.450 1.164 0.448 1.250 0.520 1.216 0.395 GDP-mannose 35-epimerase 2 putative expressed AT5G28840.1 

CUST_15473_PI390587928 1.357 0.773 1.182 0.600 1.638 0.891 1.589 0.755 -  

CUST_25477_PI390587928 1.282 0.609 1.214 0.482 1.205 0.539 1.220 0.519 expressed protein  

CUST_19305_PI390587928 1.447 0.524 1.348 0.693 1.432 0.714 1.167 0.448 -  

CUST_23247_PI390587928 1.107 0.742 1.213 0.760 1.192 0.733 1.195 0.813 exostosin-like putative expressed AT2G35100.1 

CUST_28272_PI390587928 1.574 0.592 1.420 0.655 1.273 0.630 1.270 0.382 glycyl-tRNA synthetase 2 chloroplast/mitochondrial precursor putative expressed AT3G48110.1 

CUST_30031_PI390587928 1.219 0.861 1.149 0.745 1.163 0.844 1.191 0.726 stachyose synthase precursor putative expressed AT3G57520.1 

CUST_25338_PI390587928 1.162 0.618 1.293 0.642 1.397 0.764 1.210 0.604 ATP binding protein putative AT4G23180.1 

CUST_39531_PI390587928 1.460 0.588 1.821 0.424 1.593 0.641 1.522 0.497 -  

CUST_16963_PI390587928 1.451 0.681 1.392 0.596 1.577 0.519 1.413 0.628 hydroxymethylglutaryl-CoA lyase mitochondrial precursor putative expressed AT2G26800.2 

CUST_2088_PI390587928 1.190 0.691 1.321 0.739 1.950 0.635 1.702 0.462 bZIP protein putative expressed  

CUST_32106_PI390587928 1.248 0.683 1.168 0.672 1.299 0.711 1.251 0.668 cytochrome c oxidase assembly protein ctaG putative expressed AT1G02410.1 

CUST_37131_PI390587928 1.293 0.735 1.251 0.759 1.306 0.819 1.323 0.774 peroxin Pex14 putative expressed AT5G62810.1 

CUST_16808_PI390587928 1.135 0.845 1.257 0.827 1.131 0.746 1.132 0.852 expressed protein  

CUST_15009_PI390587928 1.196 0.776 1.165 0.702 1.198 0.791 1.142 0.754 expressed protein AT2G01110.1 

CUST_9374_PI390587928 1.291 0.812 1.219 0.706 1.418 0.900 1.356 0.890 serine/threonine-protein kinase 12 putative expressed AT2G45490.1 

CUST_2151_PI390587928 1.246 0.688 1.215 0.514 1.530 0.812 1.359 0.606 glutathione transferase putative expressed AT5G44000.1 

CUST_15041_PI390587928 1.369 0.692 1.491 0.653 1.602 0.703 1.400 0.646 transcription regulator putative expressed AT2G13690.1 

CUST_41680_PI390587928 1.897 0.433 1.454 0.426 1.353 0.312 1.455 0.270 geranylgeranyl hydrogenase putative expressed AT1G74470.1 

CUST_11629_PI390587928 1.206 0.818 1.256 0.739 1.372 0.866 1.224 0.867 ZAC putative expressed AT4G21160.4 
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CUST_34804_PI390587928 1.327 0.431 1.221 0.351 1.421 0.431 1.222 0.344 -  

CUST_14928_PI390587928 1.397 0.533 1.780 0.409 1.548 0.618 1.479 0.460 ribulose bisphosphate carboxylase/oxygenase activase chloroplast precursor putative 

expressed 

AT2G39730.3 

CUST_27089_PI390587928 1.616 0.633 1.589 0.504 1.357 0.597 1.190 0.461 MAR binding filament-like protein 1 putative expressed AT3G16000.1 

CUST_12714_PI390587928 1.265 0.625 1.257 0.616 1.374 0.783 1.383 0.696 -  

CUST_7612_PI390587928 1.632 0.624 1.582 0.369 1.457 0.630 1.543 0.521 4-nitrophenylphosphatase putative expressed AT5G36790.2 

CUST_12730_PI390587928 1.621 0.642 1.365 0.594 1.697 0.886 1.621 0.619 -  

CUST_12528_PI390587928 4.124 0.858 2.267 0.317 3.140 0.496 1.562 0.160 early nodulin 93 putative expressed  

CUST_33426_PI390587928 1.696 0.478 1.447 0.348 1.623 0.449 1.350 0.345 digalactosyldiacylglycerol synthase 2 putative expressed  

CUST_29957_PI390587928 1.263 0.677 1.211 0.662 1.481 0.877 1.360 0.755 ulp1 protease family C-terminal catalytic domain containing protein  

CUST_18575_PI390587928 1.463 0.634 1.285 0.422 1.352 0.832 1.388 0.557 serine/threonine-protein kinase SNT7 chloroplast precursor putative expressed AT5G01920.1 

CUST_8968_PI390587928 1.248 0.775 1.388 0.786 1.402 0.731 1.274 0.772 -  

CUST_38769_PI390587928 2.020 0.704 2.164 0.551 1.586 0.341 1.161 0.270 purple acid phosphatase precursor putative expressed AT2G27190.1 

CUST_11166_PI390587928 1.200 0.705 1.279 0.594 1.269 0.658 1.144 0.616 peptide chain release factor 2 putative expressed AT5G36170.2 

CUST_33303_PI390587928 1.328 0.835 1.193 0.682 1.644 0.712 1.355 0.628 -  

CUST_28595_PI390587928 1.257 0.797 1.124 0.755 1.248 0.774 1.170 0.713 F-box domain containing protein expressed  

CUST_34325_PI390587928 1.241 0.646 1.156 0.567 1.353 0.649 1.233 0.538 F-box domain containing protein expressed  

CUST_6568_PI390587928 1.900 0.668 1.654 0.747 2.009 0.747 1.952 0.574 methylase putative expressed  

CUST_14481_PI390587928 1.799 0.670 1.593 0.541 1.886 0.559 1.455 0.454 alphaalpha-trehalose-phosphate synthase putative expressed AT1G78580.1 

CUST_5407_PI390587928 1.657 0.997 1.233 0.664 1.387 0.876 1.227 0.685 metalloendopeptidase putative expressed AT5G05740.2 

CUST_13273_PI390587928 1.574 0.819 1.535 0.698 1.617 0.741 1.315 0.504 major facilitator superfamily antiporter putative expressed AT5G13740.1 

CUST_24012_PI390587928 1.325 0.772 1.147 0.712 1.136 0.623 1.166 0.579 pentatricopeptide repeat protein PPR868-14 putative expressed AT5G44230.1 

CUST_29509_PI390587928 1.756 0.620 1.394 0.662 1.623 0.797 1.623 0.522 expressed protein  

CUST_4215_PI390587928 1.368 0.732 1.245 0.557 1.370 0.726 1.399 0.617 peptidyl-prolyl cis-trans isomerase CYP37 chloroplast precursor putative expressed  

CUST_17121_PI390587928 1.244 0.788 1.356 0.866 1.248 0.809 1.107 0.726 cadmium-induced protein putative expressed AT4G19070.1 

CUST_27311_PI390587928 1.337 0.751 1.456 0.624 1.423 0.654 1.209 0.626 ethylene-responsive element binding protein 2 putative expressed AT1G53910.3 

CUST_18143_PI390587928 1.876 0.590 1.505 0.391 1.741 0.522 1.926 0.510 microtubule-associated protein MAP65-1a putative expressed AT2G01910.1 

CUST_1857_PI390587928 1.441 0.513 1.475 0.472 1.626 0.517 1.492 0.563 dehydrodolichyl diphosphate synthase 6 putative expressed AT2G17570.1 

CUST_5300_PI390587928 1.328 0.732 1.337 0.649 1.466 0.725 1.205 0.614 PPR2 putative expressed AT3G06430.1 

CUST_2926_PI390587928 1.258 0.783 1.283 0.782 1.332 0.812 1.227 0.790 casein kinase I isoform delta-like putative expressed AT1G72710.1 

CUST_1687_PI390587928 1.234 0.690 1.163 0.652 1.277 0.764 1.333 0.753 zinc finger protein putative expressed AT5G20220.2 

CUST_24767_PI390587928 1.358 0.670 1.276 0.506 1.416 0.753 1.337 0.535 hypothetical protein  

CUST_36730_PI390587928 1.178 0.781 1.167 0.579 1.099 0.655 1.073 0.672 formamidopyrimidine-DNA glycosylase putative expressed  

CUST_29792_PI390587928 1.585 0.657 1.528 0.615 1.079 0.643 1.234 0.543 cytochrome P450 97B3 putative expressed AT1G31800.1 

CUST_34973_PI390587928 1.372 0.930 1.338 0.848 1.308 0.891 1.255 0.855 acyl-desaturase chloroplast precursor putative expressed AT2G43710.1 

CUST_25852_PI390587928 1.235 0.702 1.297 0.662 1.360 0.615 1.320 0.752 ATP/GTP-binding protein putative expressed AT4G21210.1 

CUST_40517_PI390587928 1.334 0.829 1.550 0.828 1.348 0.770 1.136 0.672 expressed protein AT5G49710.3 

CUST_37022_PI390587928 1.223 0.812 1.193 0.787 1.151 0.741 1.137 0.804 DNA cytosine methyltransferase MET2a putative expressed  

CUST_3841_PI390587928 1.140 0.657 1.304 0.598 1.474 0.712 1.439 0.626 expressed protein AT2G33550.1 

CUST_1611_PI390587928 1.235 0.692 1.222 0.550 1.242 0.677 1.125 0.573 expressed protein AT1G71460.1 
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CUST_41571_PI390587928 1.120 0.762 1.114 0.695 1.237 0.756 1.218 0.692 -  

CUST_26688_PI390587928 1.380 0.495 1.507 0.416 1.443 0.527 1.400 0.417 -  

CUST_36894_PI390587928 1.325 0.726 1.137 0.448 1.223 0.693 1.239 0.682 heat shock protein binding protein putative expressed AT4G09350.1 

CUST_19308_PI390587928 1.496 0.566 1.234 0.491 1.425 0.456 1.294 0.419 zinc ribbon 1 putative  

CUST_3655_PI390587928 1.478 0.557 1.564 0.396 1.695 0.629 1.481 0.595 dihydrolipoyl dehydrogenase mitochondrial precursor putative expressed AT1G48030.2 

CUST_16545_PI390587928 1.326 0.863 1.312 0.732 1.455 0.858 1.367 0.789 lycopene beta cyclase chloroplast precursor putative expressed AT3G10230.2 

CUST_10328_PI390587928 1.410 0.840 1.577 0.647 1.576 0.721 1.517 0.642 -  

CUST_4220_PI390587928 1.609 0.869 1.178 0.675 1.311 0.799 1.424 0.685 uroporphyrinogen-III synthase putative expressed AT2G26540.1 

CUST_3702_PI390587928 1.140 0.581 1.219 0.511 1.391 0.638 1.184 0.501 cyclin-like F-box putative expressed AT2G26850.1 

CUST_4538_PI390587928 1.400 0.437 1.478 0.320 1.472 0.494 1.593 0.325 oxygen-evolving enhancer protein 3-1 chloroplast precursor putative expressed AT4G21280.1 

CUST_3299_PI390587928 1.123 0.727 1.121 0.726 1.098 0.669 1.133 0.679 expressed protein  

CUST_11196_PI390587928 1.116 0.757 1.178 0.827 1.170 0.702 1.109 0.705 F-box domain containing protein expressed  

CUST_37118_PI390587928 2.445 0.423 2.291 0.260 2.436 0.215 2.255 0.133 1-aminocyclopropane-1-carboxylate oxidase 1 putative expressed AT1G05010.1 

CUST_19015_PI390587928 1.469 0.539 1.227 0.610 1.458 0.813 1.356 0.507 -  

CUST_323_PI390587928 1.438 0.699 1.233 0.654 1.358 0.595 1.093 0.501 -  

CUST_39178_PI390587928 1.416 0.576 1.262 0.358 1.502 0.570 1.304 0.351 - AT3G49170.1 

CUST_2201_PI390587928 1.222 0.755 1.181 0.760 1.290 0.792 1.234 0.735 auxin response factor 2 putative expressed AT5G62000.3 

CUST_39225_PI390587928 1.431 0.653 1.378 0.365 1.495 0.497 1.347 0.472 protein phosphatase 2C homolog 7 putative expressed AT2G30170.1 

CUST_8232_PI390587928 1.355 0.631 1.577 0.757 1.359 0.499 1.409 0.603 expressed protein AT5G51920.1 

CUST_20662_PI390587928 1.583 0.663 1.515 0.673 1.747 0.765 1.613 0.721 expressed protein AT5G04460.1 

CUST_12733_PI390587928 1.908 0.691 1.899 0.513 1.594 0.539 1.263 0.394 -  

CUST_21731_PI390587928 1.194 0.704 1.352 0.735 1.286 0.712 1.231 0.648 O-sialoglycoprotein endopeptidase putative expressed AT2G45270.1 

CUST_31921_PI390587928 1.633 0.665 1.553 0.554 1.620 0.581 1.247 0.499 palmitoyl-protein thioesterase 1 precursor putative expressed  

CUST_37936_PI390587928 1.167 0.827 1.174 0.685 1.200 0.793 1.218 0.760 cyclin delta-2 putative expressed AT2G22490.1 

CUST_25989_PI390587928 1.492 0.513 1.332 0.367 1.433 0.498 1.200 0.326 -  

CUST_10333_PI390587928 1.331 0.752 1.271 0.772 1.360 0.780 1.344 0.732 -  

CUST_29199_PI390587928 1.236 0.942 1.150 0.837 1.192 0.809 1.324 0.896 expressed protein AT5G12470.1 

CUST_6943_PI390587928 1.505 0.855 1.312 0.595 1.333 0.722 1.404 0.649 - AT1G73100.1 

CUST_13585_PI390587928 1.149 0.295 1.432 0.182 2.324 0.230 2.642 0.208 abscisic stress ripening protein 2 putative expressed  

CUST_30496_PI390587928 1.251 0.870 1.202 0.807 1.226 0.798 1.168 0.720 expressed protein  

CUST_16884_PI390587928 1.853 0.259 2.353 0.302 1.775 0.299 1.627 0.177 -  

CUST_31581_PI390587928 5.821 0.363 3.167 0.076 4.138 0.159 2.852 0.017 cysteine proteinase EP-B 1 precursor putative expressed AT2G27420.1 

CUST_40547_PI390587928 1.399 0.470 1.439 0.457 1.477 0.485 1.314 0.393 expressed protein  

CUST_9413_PI390587928 1.830 0.435 1.531 0.317 1.672 0.366 1.590 0.200 expressed protein AT4G01150.1 

CUST_36419_PI390587928 1.532 0.658 1.465 0.500 1.331 0.561 1.169 0.488 expressed protein AT1G70200.1 

CUST_6650_PI390587928 1.091 0.588 1.161 0.653 1.271 0.744 1.068 0.546 -  

CUST_34190_PI390587928 1.922 0.674 1.175 0.603 1.593 0.499 1.395 0.456 -  

CUST_19338_PI390587928 1.547 0.591 1.747 0.549 1.529 0.438 1.484 0.446 TPR-containing protein kinase putative expressed AT5G59010.1 

CUST_40408_PI390587928 2.033 0.881 1.570 0.598 1.402 0.565 1.503 0.647 F-box domain containing protein expressed  

CUST_24519_PI390587928 2.069 0.823 1.610 0.447 1.625 0.663 1.470 0.457 50S ribosomal protein L17 putative expressed AT3G54210.1 
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CUST_17108_PI390587928 1.684 0.579 1.756 0.450 1.584 0.696 1.508 0.517 RNA binding S1 putative expressed AT3G23700.1 

CUST_13930_PI390587928 1.360 0.563 1.364 0.429 1.692 0.687 1.198 0.401 xyloglucan endotransglucosylase/hydrolase protein 30 precursor putative expressed  

CUST_37287_PI390587928 1.438 0.490 1.315 0.405 1.674 0.716 1.551 0.489 small nuclear ribonucleoprotein Sm D3 putative expressed AT1G20580.1 

CUST_28352_PI390587928 1.355 0.691 1.205 0.598 1.520 0.590 1.546 0.448 -  

CUST_27128_PI390587928 1.393 0.669 1.455 0.582 1.364 0.530 1.210 0.522 katanin p80 WD40-containing subunit B1 homolog 1 putative expressed AT5G08390.1 

CUST_9104_PI390587928 2.694 0.366 1.849 0.202 2.490 0.367 1.927 0.213 tubby protein putative expressed AT2G47900.2 

CUST_28166_PI390587928 2.477 0.467 1.713 0.266 1.761 0.500 1.690 0.367 -  

CUST_28182_PI390587928 1.673 0.226 1.757 0.343 2.634 0.118 2.285 0.127 phosphate transporter 1 putative expressed AT1G68740.1 

CUST_14813_PI390587928 1.226 0.796 1.269 0.749 1.223 0.849 1.225 0.780 protease Do-like 1 chloroplast precursor putative expressed AT3G27925.1 

CUST_15260_PI390587928 1.315 0.444 1.338 0.358 1.536 0.426 1.264 0.411 -  

CUST_1162_PI390587928 1.271 0.741 1.316 0.693 1.360 0.680 1.230 0.629 XAP-5 protein putative expressed AT2G21150.1 

CUST_928_PI390587928 1.324 0.496 1.349 0.495 1.522 0.606 1.442 0.485 toc64 putative expressed  

CUST_30989_PI390587928 1.459 0.704 1.664 0.648 1.682 0.758 1.795 0.695 MYB59 putative expressed AT5G59780.3 

CUST_16873_PI390587928 1.126 0.780 1.208 0.632 1.246 0.760 1.178 0.723 meiotic recombination protein SPO11 putative expressed AT1G63990.1 

CUST_17879_PI390587928 1.354 0.726 1.250 0.577 1.334 0.725 1.140 0.651 -  

CUST_37211_PI390587928 1.702 0.613 1.416 0.408 1.442 0.472 1.465 0.379 peroxiredoxin-5 mitochondrial precursor putative expressed AT3G52960.1 

CUST_38808_PI390587928 1.447 0.724 1.411 0.726 1.463 0.737 1.317 0.622 U1 snRNP 70K protein putative expressed AT3G50670.1 

CUST_25871_PI390587928 1.388 0.819 1.402 0.763 1.348 0.780 1.273 0.680 expressed protein  

CUST_13939_PI390587928 1.136 0.795 1.300 0.835 1.298 0.826 1.143 0.892 amino acid transporter-like protein putative expressed AT3G30390.2 

CUST_774_PI390587928 2.405 0.346 1.986 0.291 2.078 0.358 1.696 0.286 -  

CUST_22937_PI390587928 1.120 0.716 1.388 0.873 1.391 0.851 1.275 0.719 expressed protein  

CUST_41605_PI390587928 1.183 0.616 1.126 0.500 1.242 0.593 1.273 0.527 anthranilate synthase component II putative expressed  

CUST_9098_PI390587928 1.377 0.916 1.359 0.708 1.523 0.781 1.504 0.798 lipase putative expressed AT1G10740.1 

CUST_7661_PI390587928 1.348 0.739 1.321 0.688 1.842 0.689 1.487 0.666 vacuolar cation/proton exchanger 1a putative expressed AT3G51860.1 

CUST_11571_PI390587928 1.582 0.848 1.481 0.717 1.399 0.881 1.205 0.632 esterase/lipase/thioesterase family active site protein putative expressed AT5G17670.1 

CUST_10208_PI390587928 1.247 0.860 1.217 0.686 1.283 0.828 1.219 0.780 YDA putative expressed AT1G63700.1 

CUST_30573_PI390587928 1.826 0.614 1.573 0.404 1.353 0.473 1.247 0.361 GTP binding protein putative expressed AT1G56050.1 

CUST_24168_PI390587928 1.699 0.651 1.619 0.616 1.538 0.572 1.240 0.488 expressed protein  

CUST_18469_PI390587928 1.615 0.614 1.319 0.403 1.215 0.572 1.173 0.353 -  

CUST_1119_PI390587928 1.917 0.505 1.712 0.271 1.892 0.615 2.032 0.428 hydroxyacid oxidase 1 putative expressed AT3G14130.1 

CUST_10224_PI390587928 1.226 0.527 1.283 0.616 1.147 0.526 1.198 0.511 expressed protein  

CUST_35613_PI390587928 1.354 0.773 1.347 0.653 1.353 0.648 1.507 0.683 expressed protein AT4G23440.1 

CUST_37657_PI390587928 1.696 0.500 1.769 0.463 1.661 0.444 1.735 0.339 photosystem II D2 protein putative ATCG00280.1 

CUST_21266_PI390587928 1.465 0.722 1.453 0.636 1.547 0.633 1.367 0.562 ATP binding protein putative expressed AT5G58300.2 

CUST_18346_PI390587928 1.380 0.715 1.199 0.669 1.457 0.806 1.503 0.655 tRNA modification GTPase trmE putative expressed  

CUST_11900_PI390587928 1.248 0.756 1.250 0.826 1.324 0.708 1.123 0.569 inositol 145-trisphosphate 5-phosphatase putative expressed AT2G43900.1 

CUST_2018_PI390587928 1.216 0.740 1.391 0.708 1.349 0.745 1.215 0.662 DNA polymerase family B exonuclease domain containing protein expressed  

CUST_39260_PI390587928 1.470 0.469 1.524 0.383 1.390 0.385 1.376 0.300 serine/threonine kinase-like protein putative expressed AT5G48540.1 

CUST_6021_PI390587928 1.295 0.479 1.361 0.426 1.885 0.614 1.463 0.391 peroxidase 1 precursor putative expressed AT1G05260.1 

CUST_6494_PI390587928 1.319 0.714 1.363 0.687 1.384 0.739 1.209 0.689 light-mediated development protein DET1 putative expressed AT4G10180.1 
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CUST_27344_PI390587928 1.282 0.922 1.131 0.836 1.268 0.899 1.258 0.798 -  

CUST_30855_PI390587928 1.385 0.646 1.506 0.566 1.453 0.667 1.338 0.562 elongation factor Tu chloroplast precursor putative expressed AT4G20360.1 

CUST_8065_PI390587928 1.293 0.794 1.252 0.496 1.385 0.586 1.287 0.450 expressed protein AT1G79770.1 

CUST_13758_PI390587928 1.152 0.772 1.274 0.640 1.455 0.602 1.487 0.784 rapid alkalinization factor 1 precursor putative expressed AT3G16570.1 

CUST_5940_PI390587928 1.226 0.837 1.186 0.781 1.378 0.785 1.296 0.938 expressed protein AT3G27460.2 

CUST_33968_PI390587928 1.200 0.629 1.255 0.620 1.297 0.718 1.251 0.633 3-5 exonuclease eri-1 putative expressed AT1G04980.1 

CUST_2975_PI390587928 1.627 0.751 1.248 0.652 1.268 0.669 1.322 0.548 ATNAP8 putative expressed AT4G25450.1 

CUST_37209_PI390587928 1.387 0.645 1.355 0.795 1.503 0.673 1.385 0.647 expressed protein AT2G36835.1 

CUST_15912_PI390587928 1.243 0.524 1.327 0.436 1.594 0.674 1.438 0.496 expressed protein  

CUST_25869_PI390587928 1.651 0.694 1.381 0.747 1.296 0.734 1.467 0.635 cytochrome P450 97B2 putative expressed AT4G15110.1 

CUST_16764_PI390587928 1.506 0.734 1.468 0.775 1.294 0.864 1.501 0.593 phospholipase A1 putative expressed  

CUST_24724_PI390587928 1.283 0.885 1.283 0.837 1.320 0.867 1.300 0.850 protein SPATULA putative expressed AT1G59640.1 

CUST_4927_PI390587928 1.375 0.577 1.548 0.485 1.604 0.451 1.678 0.317 protein binding protein putative expressed ATCG00490.1 

CUST_33691_PI390587928 1.238 0.767 1.362 0.764 1.231 0.799 1.260 0.646 expressed protein AT1G33290.2 

CUST_10563_PI390587928 1.658 0.774 1.368 0.627 1.688 0.848 1.504 0.759 adenylate kinase A putative expressed AT5G63400.1 

CUST_41465_PI390587928 1.207 0.540 1.253 0.368 1.595 0.549 1.444 0.495 transaldolase putative expressed AT1G12230.1 

CUST_19404_PI390587928 1.248 0.765 1.393 0.886 1.034 0.617 1.220 0.901 riboflavin biosynthesis protein ribAB chloroplast precursor putative expressed AT5G64300.1 

CUST_2527_PI390587928 1.311 0.675 1.180 0.734 1.368 0.820 1.304 0.653 -  

CUST_22138_PI390587928 1.471 0.836 1.153 0.669 1.227 0.690 1.115 0.523 mTERF family protein expressed AT5G55580.1 

CUST_40273_PI390587928 1.270 0.651 1.305 0.773 1.314 0.687 1.170 0.566 retrotransposon protein putative unclassified  

CUST_32360_PI390587928 1.446 0.424 1.706 0.291 1.632 0.336 1.476 0.308 - ATCG00300.1 

CUST_7382_PI390587928 1.303 0.586 1.532 0.598 1.596 0.824 1.344 0.663 expressed protein AT4G17240.1 

CUST_27210_PI390587928 1.412 0.522 1.318 0.392 1.440 0.481 1.312 0.344 expressed protein  

CUST_10829_PI390587928 1.440 0.319 1.346 0.252 1.499 0.277 1.574 0.266 -  

CUST_12298_PI390587928 1.133 0.762 1.085 0.629 1.144 0.711 1.183 0.686 stress regulated protein putative expressed AT5G27290.1 

CUST_4448_PI390587928 1.533 0.554 1.401 0.454 1.494 0.463 1.507 0.433 expressed protein AT1G59840.2 

CUST_35473_PI390587928 1.513 0.463 1.618 0.352 1.920 0.541 1.801 0.307 - AT2G40410.2 

CUST_29301_PI390587928 1.366 0.478 1.550 0.567 1.643 0.695 1.324 0.603 phosphoglycerate kinase cytosolic putative expressed  

CUST_10115_PI390587928 1.650 0.283 1.429 0.299 1.990 0.254 1.538 0.197 -  

CUST_11930_PI390587928 2.314 0.847 1.979 0.615 1.512 0.578 1.356 0.520 -  

CUST_10131_PI390587928 1.171 0.756 1.239 0.667 1.164 0.682 1.098 0.698 expressed protein AT3G58010.1 

CUST_33834_PI390587928 1.244 0.698 1.097 0.783 1.329 0.726 1.237 0.811 N-rich protein putative expressed AT3G27090.1 

CUST_42225_PI390587928 1.472 0.647 1.451 0.542 1.928 0.582 1.488 0.429 senescence-associated protein-like putative expressed AT3G12090.1 

CUST_29131_PI390587928 1.138 0.815 1.195 0.757 1.249 0.820 1.107 0.745 WD-repeat protein-like putative expressed AT3G13340.1 

CUST_13974_PI390587928 1.430 0.686 1.366 0.749 1.130 0.581 1.255 0.614 AIR9 putative expressed AT2G34680.1 

CUST_3117_PI390587928 1.284 0.759 1.305 0.642 1.358 0.726 1.353 0.795 lipoate-protein ligase putative expressed AT1G04640.2 

CUST_7120_PI390587928 1.172 0.647 1.083 0.565 1.359 0.701 1.332 0.598 -  

CUST_17029_PI390587928 1.724 0.795 1.669 0.640 1.672 0.814 1.437 0.731 naphthoate synthase putative expressed AT1G60550.1 

CUST_21594_PI390587928 1.279 0.602 1.017 0.512 1.318 0.595 1.269 0.576 alpha-soluble NSF attachment protein putative expressed  

CUST_8003_PI390587928 1.367 0.567 1.293 0.577 1.403 0.678 1.237 0.478 RNA polymerase sigma factor rpoD putative expressed AT1G64860.1 
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CUST_4576_PI390587928 1.261 0.848 1.130 0.630 1.321 0.803 1.175 0.815 thiamin pyrophosphokinase 1 putative expressed AT1G02880.3 

CUST_5831_PI390587928 1.294 0.650 1.298 0.510 1.301 0.594 1.134 0.545 CRS2-associated factor 1 putative expressed AT2G20020.1 

CUST_29917_PI390587928 1.680 0.579 1.749 0.509 1.451 0.470 1.554 0.489 epoxide hydrolase 2 putative expressed AT3G51000.1 

CUST_25442_PI390587928 1.158 0.856 1.170 0.819 1.312 0.894 1.146 0.834 RING-H2 finger protein ATL5D putative expressed AT4G10160.1 

CUST_33402_PI390587928 1.749 0.534 1.734 0.495 1.414 0.306 1.402 0.294 protein SUR2 putative expressed  

CUST_38884_PI390587928 1.324 0.878 1.090 0.921 1.402 0.818 1.324 0.818 NADPH oxidase putative expressed AT1G64060.1 

CUST_38915_PI390587928 1.373 0.406 1.430 0.442 1.498 0.576 1.341 0.471 phosphate transporter 1 putative expressed AT3G23430.1 

CUST_8440_PI390587928 1.703 0.582 1.902 0.454 2.629 0.413 2.368 0.286 tonoplast dicarboxylate transporter putative expressed AT5G47560.1 

CUST_10073_PI390587928 1.297 0.740 1.390 0.590 1.598 0.732 1.292 0.554 ATP binding protein putative expressed AT5G28680.1 

CUST_37692_PI390587928 1.124 0.634 1.254 0.570 1.955 0.828 1.654 0.568 PHD-finger family protein expressed AT3G14740.2 

CUST_11095_PI390587928 1.241 0.828 1.192 0.609 1.391 0.772 1.330 0.744 tricarboxylate transport protein mitochondrial precursor putative expressed AT5G01340.1 

CUST_3261_PI390587928 1.341 0.616 1.458 0.546 1.343 0.518 1.192 0.587 sucrose transport protein SUC4 putative expressed AT1G09960.1 

CUST_6528_PI390587928 1.116 0.694 1.072 0.728 1.202 0.789 1.232 0.833 protein kinase APK1B chloroplast precursor putative expressed AT2G28930.3 

CUST_4283_PI390587928 1.646 0.721 1.482 0.561 1.942 0.924 1.751 0.711 NAD(P)H-dependent oxidoreductase putative expressed AT1G59950.1 

CUST_18179_PI390587928 1.486 0.590 1.326 0.355 1.353 0.560 1.329 0.438 PAP fibrillin family protein expressed  

CUST_38559_PI390587928 1.411 0.694 1.495 0.673 1.373 0.583 1.263 0.575 preprotein translocase secA subunit chloroplast precursor putative expressed AT4G01800.1 

CUST_13186_PI390587928 1.327 0.788 1.335 0.828 1.363 0.910 1.259 0.731 - AT2G13440.1 

CUST_41495_PI390587928 1.591 0.702 1.477 0.478 1.356 0.684 1.157 0.467 50S ribosomal protein L1 putative expressed AT3G63490.1 

CUST_40504_PI390587928 1.242 0.832 1.425 0.812 1.302 0.781 1.234 0.779 protein kinase domain containing protein expressed AT5G57610.1 

CUST_23376_PI390587928 1.863 0.417 1.772 0.354 3.531 0.543 2.999 0.459 -  

CUST_15463_PI390587928 2.287 0.741 2.074 0.528 1.768 0.469 1.395 0.295 -  

CUST_30921_PI390587928 1.058 0.642 1.318 0.617 1.252 0.701 1.208 0.655 ubiquitin-conjugating enzyme E2 variant 1 putative expressed AT3G52560.1 

CUST_8131_PI390587928 1.664 0.733 1.559 0.481 1.421 0.618 1.275 0.439 ruBisCO large subunit-binding protein subunit alpha chloroplast precursor putative 
expressed 

AT2G28000.1 

CUST_40318_PI390587928 1.822 0.615 1.631 0.487 1.467 0.483 1.523 0.451 thylakoid lumen protein chloroplast precursor putative expressed AT1G76450.1 

CUST_39628_PI390587928 2.151 0.627 2.000 0.687 1.691 0.511 1.453 0.497 amino acid carrier putative expressed AT5G09220.1 

CUST_36159_PI390587928 2.112 0.443 1.735 0.371 1.527 0.422 1.407 0.260 FAD dependent oxidoreductase putative expressed  

CUST_6390_PI390587928 1.280 0.645 1.299 0.552 1.192 0.569 1.097 0.526 ATP binding protein putative expressed AT3G58140.1 

CUST_31182_PI390587928 1.342 0.608 1.361 0.552 1.486 0.545 1.438 0.607 serine-rich protein putative expressed  

CUST_5182_PI390587928 1.274 0.558 1.181 0.610 1.387 0.704 1.207 0.517 expressed protein  

CUST_19078_PI390587928 1.936 0.536 1.359 0.277 1.588 0.501 1.538 0.300 catalytic/ hydrolase putative expressed AT3G10840.1 

CUST_386_PI390587928 1.430 0.546 1.411 0.512 1.358 0.416 1.260 0.352 ATP binding protein putative expressed AT2G40120.1 

CUST_5027_PI390587928 1.475 0.683 1.740 0.658 1.273 0.633 1.152 0.469 subtilisin-like protease precursor putative expressed AT5G67360.1 

CUST_27979_PI390587928 1.446 0.785 1.384 0.770 1.257 0.721 1.226 0.664 - AT1G54520.1 

CUST_8933_PI390587928 1.203 0.712 1.232 0.745 1.290 0.759 1.135 0.633 -  

CUST_10582_PI390587928 1.347 0.595 1.554 0.534 1.827 0.702 1.670 0.559 -  

CUST_36520_PI390587928 1.635 0.457 1.726 0.350 2.534 0.573 1.916 0.401 expressed protein  

CUST_20803_PI390587928 1.490 0.624 1.467 0.454 1.414 0.562 1.129 0.392 expressed protein AT1G55140.1 

CUST_39772_PI390587928 1.559 0.545 1.408 0.260 1.375 0.386 1.418 0.391 expressed protein AT5G63500.1 

CUST_41484_PI390587928 1.364 0.938 1.325 0.843 1.184 0.788 1.109 0.799 UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase SEC putative AT3G04240.1 
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expressed 

CUST_3568_PI390587928 1.482 0.524 1.302 0.341 1.529 0.550 1.621 0.413 ubiquitin carboxyl-terminal hydrolase 4 putative expressed AT2G22310.1 

CUST_11465_PI390587928 1.241 0.586 1.446 0.539 1.513 0.503 1.406 0.424 ATP binding protein putative expressed  

CUST_7602_PI390587928 1.418 0.472 1.417 0.491 1.826 0.504 1.922 0.406 carbonic anhydrase chloroplast precursor putative expressed AT5G14740.2 

CUST_27686_PI390587928 1.130 0.843 1.130 0.775 1.127 0.740 1.080 0.783 diacylglycerol kinase putative expressed AT4G30340.1 

CUST_12518_PI390587928 4.318 0.682 2.377 0.260 3.370 0.373 1.826 0.082 early nodulin 93 putative expressed  

CUST_16521_PI390587928 1.281 0.660 1.272 0.743 1.411 0.853 1.427 0.661 expressed protein AT2G26760.1 

CUST_41361_PI390587928 1.141 0.826 1.176 0.783 1.333 0.793 1.169 0.774 zinc finger CCCH-type with G patch domain protein putative expressed AT2G24830.1 

CUST_33246_PI390587928 1.176 0.728 1.152 0.678 1.214 0.707 1.138 0.726 expressed protein AT5G51020.1 

CUST_189_PI390587928 1.703 0.766 1.505 0.700 1.286 0.720 1.207 0.768 indole-3-acetic acid-amido synthetase GH3.5 putative expressed AT2G46370.3 

CUST_21937_PI390587928 1.547 0.568 1.350 0.338 1.454 0.503 1.271 0.336 50S ribosomal protein L15 chloroplast precursor putative expressed AT3G25920.1 

CUST_22959_PI390587928 1.257 0.804 1.212 0.634 1.532 0.780 1.455 0.709 expressed protein AT3G55580.1 

CUST_8129_PI390587928 1.465 0.890 1.301 0.778 1.270 0.829 1.244 0.742 stromal 70 kDa heat shock-related protein chloroplast precursor putative expressed AT4G24280.1 

CUST_36375_PI390587928 1.090 0.674 1.229 0.765 1.252 0.769 1.182 0.717 -  

CUST_21767_PI390587928 1.484 0.638 1.686 0.597 1.320 0.600 1.140 0.430 UDP-glucose 6-dehydrogenase putative expressed AT5G15490.1 

CUST_26232_PI390587928 1.303 0.619 1.325 0.617 1.421 0.767 1.221 0.598 -  

CUST_4174_PI390587928 1.269 0.487 1.331 0.462 1.171 0.427 1.079 0.368 amino acid binding protein putative expressed AT2G39570.1 

CUST_5196_PI390587928 1.211 0.844 1.377 0.770 1.116 0.619 1.469 0.780 N-acetyl-gamma-glutamyl-phosphate reductase chloroplast precursor putative expressed AT2G19940.2 

CUST_35790_PI390587928 1.244 0.809 1.317 0.822 1.280 0.837 1.208 0.770 protein kinase domain containing protein expressed AT5G57610.1 

CUST_13901_PI390587928 1.379 0.696 1.356 0.756 1.763 0.710 1.418 0.633 ids4-like protein putative expressed AT2G45130.1 

CUST_36252_PI390587928 1.366 0.770 1.359 0.942 1.167 0.762 1.122 0.641 ATTIC110/TIC110 putative expressed AT1G06950.1 

CUST_34613_PI390587928 1.125 0.664 1.379 0.757 1.483 0.807 1.471 0.745 - AT1G17840.1 

CUST_30626_PI390587928 1.734 0.471 2.251 0.349 3.147 0.625 2.383 0.504 MYB59 putative expressed AT3G46130.1 

CUST_19746_PI390587928 1.395 0.801 1.124 0.760 1.137 0.710 1.144 0.621 terminal acidic SANT 1 putative expressed AT1G36160.1 

CUST_26700_PI390587928 1.723 0.887 1.460 0.610 1.478 0.725 1.419 0.597 chloroplast 30S ribosomal protein S10 putative expressed AT3G13120.1 

CUST_31648_PI390587928 1.776 0.522 1.583 0.225 2.361 0.434 2.179 0.360 fasciclin-like arabinogalactan protein 7 precursor putative expressed AT2G04780.2 

CUST_5664_PI390587928 1.389 0.748 1.535 0.668 1.278 0.653 1.213 0.667 expressed protein AT4G02920.2 

CUST_25965_PI390587928 1.189 0.803 1.382 0.837 1.646 0.791 1.400 0.739 -  

CUST_14800_PI390587928 1.083 0.804 1.184 0.732 1.164 0.880 1.099 0.825 expressed protein AT3G54360.1 

CUST_18010_PI390587928 1.192 0.758 1.079 0.730 1.337 0.838 1.328 0.707 rf1 protein mitochondrial precursor putative expressed AT1G09900.1 

CUST_37742_PI390587928 1.089 0.758 1.134 0.634 1.539 0.860 1.478 0.632 PINHEAD protein putative expressed AT1G48410.2 

CUST_28574_PI390587928 1.295 0.671 1.322 0.669 1.305 0.639 1.124 0.673 vesicle-associated membrane protein 712 putative expressed AT4G32150.1 

CUST_36550_PI390587928 1.578 0.891 1.352 0.757 1.532 0.829 1.514 0.703 -  

CUST_26864_PI390587928 1.896 0.775 1.977 0.899 2.532 0.618 2.754 0.651 -  

CUST_31355_PI390587928 1.470 0.503 1.259 0.363 1.246 0.490 1.237 0.354 expressed protein AT5G44600.1 

CUST_3598_PI390587928 2.083 0.624 1.819 0.537 1.650 0.361 1.580 0.341 protein SUR2 putative expressed  

CUST_18261_PI390587928 1.294 0.584 1.269 0.577 1.453 0.725 1.387 0.552 serine/threonine-protein kinase NAK putative expressed AT5G18610.1 

CUST_33399_PI390587928 1.541 0.752 1.458 0.577 1.347 0.637 1.280 0.501 PHD-finger family protein expressed AT5G23120.1 

CUST_34654_PI390587928 1.425 0.774 1.416 0.857 1.436 0.910 1.317 0.788 GATA transcription factor 25 putative expressed AT3G21175.2 

CUST_14321_PI390587928 3.128 0.425 3.612 0.536 2.997 0.527 2.323 0.269 indole-3-acetate beta-glucosyltransferase putative expressed AT3G02100.1 
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CUST_41189_PI390587928 1.287 0.463 1.205 0.380 1.645 0.513 1.745 0.642 carbonic anhydrase chloroplast precursor putative expressed AT4G33580.1 

CUST_9723_PI390587928 1.719 0.306 1.993 0.186 1.821 0.363 1.750 0.207 carbonic anhydrase chloroplast precursor putative expressed AT5G14740.2 

CUST_16365_PI390587928 1.953 0.310 2.612 0.101 2.140 0.118 1.859 0.109 OsWAK83 - OsWAK pseudogene expressed AT1G21230.1 

CUST_10941_PI390587928 1.308 0.775 1.197 0.726 1.415 0.745 1.300 0.759 -  

CUST_19160_PI390587928 1.551 0.480 1.351 0.399 1.598 0.559 1.542 0.446 -  

CUST_25347_PI390587928 1.175 0.765 1.208 0.823 1.266 0.814 1.137 0.707 -  

CUST_23910_PI390587928 1.769 0.760 1.376 0.561 1.381 0.701 1.322 0.510 preprotein translocase secY subunit chloroplast precursor putative expressed AT2G18710.1 

CUST_12969_PI390587928 1.486 0.646 1.261 0.663 1.782 0.897 1.640 0.733 -  

CUST_31062_PI390587928 1.363 0.653 1.340 0.580 1.364 0.713 1.241 0.517 sialin putative expressed AT4G00370.1 

CUST_15173_PI390587928 1.245 0.677 1.271 0.668 1.362 0.705 1.159 0.625 serine acetyltransferase 3 mitochondrial precursor putative expressed AT5G56760.1 

CUST_42258_PI390587928 1.460 0.582 1.343 0.394 1.528 0.747 1.407 0.690 -  

CUST_20929_PI390587928 1.367 0.842 1.360 0.712 1.200 0.806 1.161 0.710 C-terminal protease precursor putative expressed AT4G17740.2 

CUST_37093_PI390587928 1.150 0.840 1.201 0.765 1.360 0.744 1.282 0.717 nucleic acid binding protein putative expressed AT5G56140.1 

CUST_9414_PI390587928 1.682 0.403 1.433 0.298 1.560 0.339 1.422 0.172 expressed protein AT4G01150.1 

CUST_17280_PI390587928 1.483 0.795 1.452 0.507 1.319 0.614 1.252 0.573 glyoxalase/bleomycin resistance protein/dioxygenase putative expressed AT5G57040.1 

CUST_11047_PI390587928 1.202 0.688 1.180 0.737 1.352 0.643 1.286 0.674 signal transducer putative expressed  

CUST_21797_PI390587928 1.583 0.576 1.292 0.335 1.849 0.560 1.961 0.351 protein binding protein putative expressed  

CUST_29041_PI390587928 1.209 0.682 1.428 0.674 1.361 0.534 1.295 0.442 nitrate reductase 1 putative expressed AT1G37130.1 

CUST_4779_PI390587928 1.155 0.802 1.178 0.759 1.093 0.759 1.173 0.851 SNARE domain containing protein expressed AT1G79590.2 

CUST_38800_PI390587928 1.702 0.322 1.826 0.359 1.848 0.382 1.675 0.320 expressed protein  

CUST_37001_PI390587928 1.324 0.918 1.350 0.847 1.228 0.798 1.116 0.696 pseudouridylate synthase/ transporter putative expressed AT5G14460.1 

CUST_4795_PI390587928 1.440 0.778 1.561 0.772 1.509 0.715 1.355 0.707 metabolite transport protein csbC putative expressed AT1G05030.1 

CUST_39822_PI390587928 1.357 0.772 1.249 0.538 1.295 0.743 1.215 0.622 expressed protein AT5G62140.1 

CUST_38023_PI390587928 1.724 0.554 1.387 0.382 1.425 0.563 1.362 0.393 expressed protein AT5G48790.1 

CUST_27891_PI390587928 1.367 0.632 1.228 0.470 1.500 0.663 1.465 0.554 -  

CUST_19776_PI390587928 1.518 0.742 1.327 0.726 1.534 0.687 1.475 0.570 - AT4G17840.1 

CUST_11298_PI390587928 1.240 0.836 1.152 0.780 1.331 0.869 1.224 0.833 expressed protein  

CUST_1738_PI390587928 1.287 0.803 1.032 0.818 1.282 0.887 1.185 0.806 -  

CUST_39986_PI390587928 1.515 0.755 1.304 0.618 1.191 0.587 1.325 0.381 3-N-debenzoyl-2-deoxytaxol N-benzoyltransferase putative expressed AT3G62160.1 

CUST_2272_PI390587928 1.363 0.762 1.214 0.648 1.257 0.737 1.256 0.706 multisynthetase complex auxiliary component p43 putative expressed AT3G59980.1 

CUST_5571_PI390587928 1.262 0.574 1.440 0.476 1.451 0.433 1.362 0.450 phosphoethanolamine N-methyltransferase putative expressed  

CUST_24160_PI390587928 1.310 0.696 1.287 0.514 1.275 0.573 1.157 0.503 calcium homeostasis regulator CHoR1 putative expressed AT3G55250.1 

CUST_38825_PI390587928 1.208 0.686 1.390 0.672 1.120 0.559 1.230 0.595 prolyl carboxypeptidase like protein putative expressed AT4G36195.1 

CUST_26421_PI390587928 1.461 0.594 1.361 0.444 1.536 0.575 1.491 0.304 protochlorophyllide reductase B chloroplast precursor putative expressed AT1G03630.2 

CUST_27443_PI390587928 1.561 0.509 1.515 0.510 1.802 0.492 1.729 0.415 - ATCG00790.1 

CUST_36394_PI390587928 1.383 0.887 1.268 0.636 1.266 0.801 1.228 0.731 stromal 70 kDa heat shock-related protein chloroplast precursor putative expressed AT5G49910.1 

CUST_35403_PI390587928 1.387 0.783 1.317 0.643 1.259 0.758 1.199 0.745 inositol-1-monophosphatase putative expressed AT1G31190.1 

CUST_30970_PI390587928 1.510 0.682 1.453 0.541 1.464 0.693 1.278 0.557 expressed protein AT5G11450.1 

CUST_17300_PI390587928 1.786 0.538 1.638 0.429 1.957 0.511 1.521 0.353 chlorophyllide a oxygenase chloroplast precursor putative expressed AT1G44446.1 

CUST_14319_PI390587928 1.507 0.645 1.509 0.479 1.538 0.639 1.400 0.454 polyphosphoinositide binding protein putative expressed AT5G63060.1 
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CUST_41996_PI390587928 1.334 0.811 1.150 0.646 1.554 0.831 1.436 0.835 -  

CUST_8498_PI390587928 1.100 0.759 1.203 0.678 1.288 0.809 1.117 0.756 heterogeneous nuclear ribonucleoprotein U-like protein 1 putative expressed  

CUST_4054_PI390587928 1.521 0.670 1.453 0.551 1.348 0.533 1.400 0.547 -  

CUST_10971_PI390587928 1.224 0.779 1.301 0.726 1.327 0.721 1.183 0.608 chloride channel-like protein CLC-g putative expressed AT5G33280.1 

CUST_31076_PI390587928 1.624 0.609 1.549 0.457 2.015 0.736 1.885 0.539 alginate regulatory protein AlgP putative expressed  

CUST_2888_PI390587928 2.275 0.332 1.631 0.266 1.892 0.246 1.952 0.155 chlorophyll a-b binding protein 2 chloroplast precursor putative expressed AT2G34420.1 

CUST_31900_PI390587928 1.957 0.623 1.397 0.619 1.883 0.705 1.237 0.733 expressed protein  

CUST_37138_PI390587928 1.385 0.701 1.518 0.768 1.222 0.718 1.154 0.826 hydroxymethylbutenyl 4-diphosphate synthase putative expressed AT5G60600.1 

CUST_14803_PI390587928 1.602 0.611 1.486 0.324 1.694 0.707 1.606 0.458 calcium ion binding protein putative expressed AT2G39470.2 

CUST_39975_PI390587928 1.449 0.421 1.378 0.397 1.884 0.417 1.678 0.397 -  

CUST_29816_PI390587928 1.400 0.691 1.395 0.649 1.624 0.895 1.238 0.566 plant-specific domain TIGR01570 family protein expressed  

CUST_37761_PI390587928 2.635 0.409 2.633 0.274 2.528 0.260 1.891 0.128 -  

CUST_7774_PI390587928 1.160 0.769 1.283 0.770 1.336 0.800 1.263 0.873 ras-related protein Rab-18 putative expressed AT1G43890.3 

CUST_27602_PI390587928 1.222 0.719 1.179 0.689 1.309 0.711 1.157 0.632 expressed protein AT2G48110.1 

CUST_33790_PI390587928 1.137 0.840 1.202 0.773 1.287 0.859 1.135 0.802 VIP2 protein putative expressed AT3G05545.1 

CUST_11684_PI390587928 1.095 0.699 1.033 0.659 1.320 0.744 1.108 0.660 - AT5G23110.1 

CUST_37606_PI390587928 1.129 0.780 1.143 0.844 1.359 0.884 1.184 0.736 -  

CUST_24653_PI390587928 1.913 0.660 1.670 0.460 1.326 0.590 1.362 0.606 expressed protein AT4G16060.1 

CUST_35849_PI390587928 1.428 0.816 1.239 0.672 1.516 0.801 1.395 0.707 -  

CUST_5878_PI390587928 1.218 0.699 1.234 0.595 1.407 0.731 1.137 0.642 -  

CUST_37436_PI390587928 1.644 0.699 1.221 0.407 1.706 0.778 1.597 0.624 expressed protein  

CUST_641_PI390587928 1.156 0.712 1.342 0.878 1.167 0.717 1.205 0.634 fatty acid elongase putative expressed AT5G43760.1 

CUST_33481_PI390587928 1.389 0.609 1.533 0.602 1.504 0.673 1.475 0.695 elongation factor Tu mitochondrial precursor putative expressed  

CUST_18598_PI390587928 1.716 0.619 1.590 0.450 1.710 0.576 1.311 0.370 expressed protein AT3G29290.1 

CUST_17623_PI390587928 1.103 0.725 1.057 0.683 1.413 0.864 1.146 0.813 -  

CUST_6320_PI390587928 1.336 0.767 1.376 0.576 1.395 0.648 1.297 0.584 glutathione S-transferase N-terminal domain containing protein expressed AT5G03880.1 

CUST_38335_PI390587928 1.320 0.665 1.329 0.586 1.530 0.719 1.382 0.610 -  

CUST_9572_PI390587928 1.229 0.642 1.145 0.761 1.203 0.668 1.372 0.679 signal transducer putative expressed AT3G15470.1 

CUST_2147_PI390587928 1.525 0.461 1.661 0.606 1.554 0.548 1.473 0.424 potassium transporter 10 putative expressed AT1G70300.1 

CUST_16261_PI390587928 1.334 0.805 1.330 0.876 1.419 0.754 1.298 0.789 expressed protein  

CUST_30984_PI390587928 1.318 0.571 1.402 0.509 1.319 0.572 1.354 0.533 expressed protein AT1G22850.1 

CUST_64_PI390587928 1.518 0.829 1.235 0.533 1.397 0.725 1.422 0.621 expressed protein AT1G60230.1 

CUST_42170_PI390587928 2.545 0.514 2.792 0.503 2.864 0.357 2.160 0.446 expressed protein  

CUST_5462_PI390587928 1.560 0.627 1.468 0.542 1.439 0.649 1.203 0.461 RNA polymerase sigma factor rpoD putative expressed AT1G08540.1 

CUST_25850_PI390587928 1.396 0.530 1.768 0.409 1.519 0.607 1.478 0.459 ribulose bisphosphate carboxylase/oxygenase activase chloroplast precursor putative 
expressed 

AT2G39730.1 

CUST_12119_PI390587928 1.787 0.544 1.639 0.423 1.775 0.529 1.666 0.462 ATATH13 putative expressed AT5G64940.2 

CUST_33017_PI390587928 1.145 0.610 1.342 0.534 1.320 0.760 1.238 0.629 glutathione-regulated potassium-efflux system protein kefB putative expressed AT4G04850.1 

CUST_17144_PI390587928 1.350 0.471 1.504 0.496 1.235 0.494 1.312 0.414 homeodomain leucine zipper protein CPHB-5 putative expressed AT3G01470.1 

CUST_5276_PI390587928 1.318 0.873 1.241 0.739 1.235 0.851 1.135 0.780 ATP-dependent protease Clp ATPase subunit putative expressed AT3G26580.1 
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CUST_21677_PI390587928 1.209 0.592 1.236 0.626 1.319 0.735 1.216 0.572 zinc finger RING-type putative expressed AT1G11950.1 

CUST_10512_PI390587928 1.516 0.561 1.355 0.436 1.340 0.528 1.179 0.313 chlorophyll a-b binding protein 6A chloroplast precursor putative expressed AT3G54890.1 

CUST_27148_PI390587928 1.484 0.611 1.305 0.437 1.307 0.519 1.252 0.360 transposon protein putative CACTA En/Spm sub-class expressed AT2G40070.2 

CUST_30084_PI390587928 1.211 0.698 1.208 0.605 1.225 0.643 1.141 0.632 protein lap1 putative expressed AT3G11330.1 

CUST_6889_PI390587928 1.226 0.632 1.094 0.551 1.469 0.771 1.355 0.715 cyclin-A1 putative expressed  

CUST_29969_PI390587928 1.473 0.691 1.571 0.742 1.734 0.719 1.466 0.575 protein binding protein putative expressed AT1G78230.1 

CUST_4115_PI390587928 1.180 0.768 1.154 0.806 1.239 0.826 1.253 0.891 brain protein 44 putative expressed AT4G22310.1 

CUST_11550_PI390587928 1.442 0.620 1.263 0.473 1.474 0.664 1.363 0.568 60S ribosomal protein L28 putative expressed  

CUST_37168_PI390587928 1.213 0.835 1.267 0.772 1.287 0.821 1.119 0.718 tat pathway signal sequence family protein expressed AT1G77090.1 

CUST_2965_PI390587928 1.223 0.806 1.213 0.697 1.287 0.842 1.141 0.767 cleavage stimulation factor 64 putative expressed  

CUST_26003_PI390587928 1.329 0.797 1.347 0.620 1.521 0.741 1.325 0.800 -  

CUST_40742_PI390587928 1.298 0.906 1.243 0.826 1.365 0.756 1.228 0.765 nucleus protein putative expressed  

CUST_23629_PI390587928 1.191 0.768 1.192 0.920 1.151 0.795 1.138 0.789 expressed protein AT3G24740.2 

CUST_16738_PI390587928 1.446 0.797 1.332 0.638 2.033 0.753 1.663 0.729 transposon protein putative unclassified  

CUST_13502_PI390587928 1.211 0.786 1.271 0.712 1.360 0.893 1.239 0.758 expressed protein AT5G64840.1 

CUST_12263_PI390587928 1.401 0.567 1.434 0.436 1.520 0.528 1.408 0.395 expressed protein AT5G37360.1 

CUST_2656_PI390587928 1.456 0.368 1.523 0.330 1.445 0.444 1.641 0.228 chlorophyll a-b binding protein chloroplast precursor putative expressed AT3G61470.1 

CUST_16584_PI390587928 1.456 0.868 1.214 0.715 1.484 0.847 1.372 0.825 mitochondrial import inner membrane translocase subunit TIM16 putative expressed AT3G59280.1 

CUST_39743_PI390587928 1.987 0.400 2.018 0.245 3.296 0.504 2.657 0.398 -  

CUST_32504_PI390587928 1.201 0.902 1.191 0.738 1.193 0.768 1.125 0.763 protein kinase Pti1 putative expressed AT3G59350.3 

CUST_8750_PI390587928 1.311 0.809 1.150 0.841 1.190 0.776 1.102 0.701 nucleic acid binding protein putative expressed AT1G76940.1 

CUST_24358_PI390587928 1.269 0.835 1.315 0.732 1.246 0.762 1.115 0.732 charged multivesicular body protein 6 putative expressed AT5G09260.1 

CUST_5312_PI390587928 1.217 0.827 1.320 0.755 1.227 0.702 1.076 0.608 -  

CUST_29430_PI390587928 1.583 0.250 1.391 0.204 1.849 0.356 1.738 0.246 cytochrome P450 724B1 putative expressed AT3G50660.1 

CUST_37157_PI390587928 1.243 0.794 1.194 0.809 1.212 0.818 1.144 0.816 photolyase/blue-light receptor PHR2 putative expressed AT2G47590.1 

CUST_24219_PI390587928 1.224 0.465 1.411 0.492 1.456 0.585 1.398 0.419 patatin class 1 precursor putative expressed AT2G26560.1 

CUST_28222_PI390587928 1.815 0.699 1.583 0.447 1.246 0.562 1.344 0.618 expressed protein AT4G16060.1 

CUST_29228_PI390587928 1.239 0.572 1.249 0.589 1.384 0.658 1.262 0.558 disease resistance protein RPM1 putative expressed  

CUST_3976_PI390587928 1.194 0.677 1.283 0.717 1.459 0.824 1.389 0.690 -  

CUST_22005_PI390587928 1.138 0.782 1.194 0.734 1.375 0.771 1.268 0.772 MYBR5 putative expressed  

CUST_16306_PI390587928 1.348 0.647 1.264 0.690 1.311 0.694 1.358 0.592 galactosyltransferase/ transferase transferring hexosyl groups putative expressed AT5G62620.2 

CUST_11873_PI390587928 1.526 0.749 1.278 0.626 1.496 0.673 1.336 0.603 zinc ribbon 1 putative AT1G68730.1 

CUST_25848_PI390587928 3.154 0.165 2.922 0.105 3.418 0.052 3.996 0.091 cytokinin dehydrogenase 1 precursor putative expressed AT3G63440.1 

CUST_5003_PI390587928 1.114 0.718 1.424 0.741 1.293 0.753 1.313 0.675 acid phosphatase putative expressed AT4G29260.1 

CUST_16913_PI390587928 1.435 0.710 1.254 0.729 1.371 0.671 1.257 0.548 expressed protein AT5G07950.1 

CUST_20855_PI390587928 1.206 0.656 1.247 0.654 1.615 0.620 1.386 0.628 -  

CUST_29090_PI390587928 1.650 0.239 1.927 0.129 1.753 0.183 1.449 0.102 carotenoid cleavage dioxygenase 1 putative expressed AT4G19170.1 

CUST_37050_PI390587928 1.420 0.691 1.540 0.715 1.376 0.560 1.236 0.573 methylase putative expressed AT3G60910.1 

CUST_223_PI390587928 1.748 0.890 1.389 0.600 1.480 0.663 1.313 0.664 zinc finger C3HC4 type family protein expressed AT2G45530.1 

CUST_30859_PI390587928 1.121 0.746 1.258 0.798 1.329 0.866 1.093 0.796 1-phosphatidylinositol-4-phosphate 5-kinase/ zinc ion binding protein putative expressed AT4G33240.2 
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CUST_39871_PI390587928 1.868 0.399 1.734 0.265 2.165 0.296 1.617 0.182 CALS1 putative expressed AT5G13000.2 

CUST_25694_PI390587928 1.365 0.733 1.376 0.678 1.391 0.705 1.177 0.616 expressed protein AT2G37920.1 

CUST_4098_PI390587928 1.554 0.658 1.580 0.523 1.411 0.627 1.311 0.580 glutamine amidotransferase subunit pdxT putative expressed AT5G60540.1 

CUST_3900_PI390587928 1.691 0.556 1.609 0.368 1.539 0.460 1.367 0.372 elongation factor G chloroplast precursor putative expressed AT1G62750.1 

CUST_11548_PI390587928 1.819 0.618 1.795 0.610 1.653 0.748 1.559 0.352 expressed protein AT5G01530.1 

CUST_3730_PI390587928 1.329 0.766 1.296 0.623 1.246 0.696 1.104 0.519 nuclear WD protein putative expressed AT1G80480.1 

CUST_23325_PI390587928 1.523 0.756 1.380 0.619 1.370 0.661 1.226 0.581 uncharacterised protein family protein expressed AT2G34090.1 

CUST_19872_PI390587928 1.444 0.717 1.264 0.620 1.509 0.707 1.446 0.574 transcription factor ZmGLK1 putative expressed  

CUST_36814_PI390587928 1.545 0.430 1.688 0.321 2.133 0.422 1.664 0.392 -  

CUST_2336_PI390587928 1.646 0.833 1.447 0.595 1.541 0.792 1.380 0.745 rf1 protein mitochondrial precursor putative expressed AT1G09900.1 

CUST_29876_PI390587928 1.133 0.628 1.099 0.534 1.092 0.528 1.113 0.551 pRGR1 putative expressed AT5G23550.1 

CUST_17503_PI390587928 1.642 0.642 1.578 0.814 1.726 0.737 1.623 0.621 cytokinin-N-glucosyltransferase 1 putative expressed AT3G55700.1 

CUST_39407_PI390587928 1.482 0.784 1.228 0.676 1.187 0.692 1.142 0.650 -  

CUST_13299_PI390587928 1.468 0.877 1.233 0.702 1.329 0.839 1.264 0.768 expressed protein AT1G47740.2 

CUST_19547_PI390587928 1.983 0.611 1.829 0.454 1.549 0.601 1.377 0.497 esterase putative expressed AT1G29840.1 

CUST_6200_PI390587928 1.328 0.680 1.432 0.645 1.406 0.716 1.288 0.575 -  

CUST_42157_PI390587928 1.293 0.804 1.190 0.765 1.410 0.845 1.350 0.814 expressed protein AT5G40550.1 

CUST_42173_PI390587928 1.237 0.616 1.298 0.576 1.427 0.645 1.303 0.626 sialyltransferase-like protein putative expressed AT3G48820.1 

CUST_4257_PI390587928 1.291 0.628 1.202 0.559 1.449 0.934 1.434 0.675 squamosa promoter-binding-like protein 10 putative expressed AT5G43270.1 

CUST_22328_PI390587928 1.977 0.639 1.379 0.541 1.900 0.871 1.874 0.507 -  

CUST_39300_PI390587928 1.703 0.309 1.824 0.208 1.734 0.367 1.674 0.222 -  

CUST_41299_PI390587928 1.258 0.666 1.276 0.695 1.325 0.744 1.173 0.599 CRS1 putative expressed AT5G16180.1 

CUST_37373_PI390587928 1.407 0.663 1.262 0.446 1.461 0.494 1.620 0.615 -  

CUST_17040_PI390587928 1.706 0.840 1.563 0.815 1.379 0.776 1.193 0.650 mTERF family protein expressed AT5G64950.1 

CUST_28236_PI390587928 1.583 0.784 1.403 0.622 1.715 0.901 1.464 0.635 -  

CUST_11887_PI390587928 1.144 0.760 1.230 0.855 1.250 0.808 1.188 0.836 ubiquinone biosynthesis protein ubiB putative expressed  

CUST_16896_PI390587928 1.258 0.489 1.646 0.899 1.029 0.455 1.751 0.657 -  

CUST_23850_PI390587928 1.046 0.614 1.205 0.643 1.244 0.714 1.124 0.651 golgi-localized protein GRIP putative expressed AT5G66030.1 

CUST_31577_PI390587928 3.475 0.173 2.442 0.139 5.113 0.212 4.637 0.165 -  

CUST_37841_PI390587928 1.196 0.750 1.420 0.677 1.169 0.738 1.119 0.720 kinesin-1 putative expressed AT4G05190.1 

CUST_10726_PI390587928 1.165 0.628 1.319 0.554 1.253 0.598 1.075 0.558 lipid binding protein putative expressed AT3G20270.1 

CUST_39869_PI390587928 1.601 0.465 1.646 0.410 1.313 0.363 1.480 0.410 cytokinin-O-glucosyltransferase 2 putative expressed AT2G36970.1 

CUST_13505_PI390587928 1.349 0.892 1.116 0.805 1.284 0.875 1.334 0.746 serine/threonine-protein kinase AFC2 putative expressed AT4G24740.1 

CUST_22456_PI390587928 1.263 0.473 1.297 0.493 1.385 0.642 1.379 0.490 -  

CUST_31640_PI390587928 1.791 0.416 1.720 0.414 1.683 0.283 1.388 0.315 -  

CUST_37655_PI390587928 1.500 0.538 1.327 0.352 1.249 0.488 1.159 0.349 peptidyl-prolyl cis-trans isomerase FKBP-type family protein expressed AT1G20810.1 

CUST_4889_PI390587928 1.076 0.798 1.193 0.728 1.181 0.686 1.077 0.737 af10-protein putative expressed AT5G11710.1 

CUST_22472_PI390587928 1.459 0.660 1.556 0.524 1.559 0.643 1.421 0.561 nuc-1 negative regulatory protein preg putative expressed AT5G07450.1 

CUST_6662_PI390587928 1.483 0.583 1.679 0.488 1.427 0.504 1.525 0.393 CBS domain containing protein expressed  

CUST_40389_PI390587928 1.169 0.870 1.291 0.852 1.275 0.836 1.132 0.735 F-box domain containing protein expressed  
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CUST_7684_PI390587928 1.363 0.526 1.284 0.299 1.321 0.503 1.297 0.399 calcium sensing receptor putative expressed AT5G23060.1 

CUST_39932_PI390587928 1.707 0.637 1.891 0.683 1.389 0.618 1.281 0.532 expressed protein AT3G07565.1 

CUST_23525_PI390587928 1.267 0.824 1.163 0.799 1.206 0.821 1.167 0.695 expressed protein  

CUST_23541_PI390587928 1.282 0.792 1.138 0.804 1.162 0.821 1.145 0.697 expressed protein AT3G54750.1 

CUST_24547_PI390587928 1.344 0.812 1.286 0.714 1.318 0.752 1.176 0.662 -  

CUST_11594_PI390587928 1.346 0.594 1.627 0.516 1.911 0.645 1.742 0.558 expressed protein AT5G57460.1 

CUST_19886_PI390587928 1.345 0.843 1.224 0.850 1.340 0.889 1.353 0.822 reticulon putative expressed  

CUST_9806_PI390587928 1.251 0.649 1.060 0.418 1.366 0.618 1.235 0.617 expressed protein AT1G10140.1 

CUST_8567_PI390587928 1.441 0.800 1.245 0.652 1.696 0.853 1.285 0.620 -  

CUST_39576_PI390587928 1.258 0.728 1.363 0.778 1.275 0.659 1.317 0.566 fatty acid elongase putative expressed AT1G04220.1 

CUST_8583_PI390587928 1.318 0.749 1.317 0.715 1.360 0.757 1.196 0.680 nodulin-like protein putative expressed AT5G07050.1 

CUST_35636_PI390587928 1.829 0.765 1.854 0.561 1.644 0.788 1.255 0.737 -  

CUST_37207_PI390587928 1.219 0.699 1.150 0.527 1.193 0.667 1.137 0.517 oxygen-evolving enhancer protein 2 chloroplast precursor putative expressed AT1G06680.1 

CUST_22024_PI390587928 1.457 0.563 1.221 0.413 1.411 0.560 1.238 0.424 -  

CUST_19577_PI390587928 1.379 0.503 1.375 0.491 1.443 0.579 1.410 0.504 3-5 exonuclease eri-1 putative expressed  

CUST_7236_PI390587928 1.477 0.834 1.415 0.736 1.334 0.689 1.302 0.689 bifunctional thioredoxin reductase/thioredoxin putative expressed AT2G41680.1 

CUST_26298_PI390587928 1.431 0.614 1.332 0.514 1.620 0.644 1.397 0.504 -  

CUST_16932_PI390587928 1.280 0.586 1.551 0.564 1.508 0.666 1.419 0.670 nodulin-like family protein expressed AT4G19450.1 

CUST_9513_PI390587928 1.626 0.583 1.786 0.516 2.362 0.723 1.739 0.568 -  

CUST_12945_PI390587928 0.982 0.476 1.411 0.588 1.324 0.456 1.631 0.609 - AT1G72190.1 

CUST_26345_PI390587928 1.533 0.595 1.409 0.476 1.243 0.564 1.393 0.494 NHL repeat protein putative expressed AT1G56500.1 

CUST_3312_PI390587928 1.401 0.571 1.345 0.480 1.348 0.581 1.221 0.434 expressed protein AT4G34830.1 

CUST_30878_PI390587928 1.209 0.803 1.254 0.763 1.341 0.708 1.233 0.667 TLD family protein expressed AT5G06260.1 

CUST_7082_PI390587928 1.346 0.691 1.209 0.519 1.320 0.640 1.191 0.526 vegetative storage protein putative expressed AT2G29760.1 

CUST_8088_PI390587928 1.387 0.863 1.256 0.707 1.423 0.837 1.331 0.835 OsMPK14 - putative MAPK based on amino acid sequence homology expressed AT1G10210.2 

CUST_3903_PI390587928 2.673 0.290 1.896 0.086 2.448 0.094 1.517 0.046 O-methyltransferase ZRP4 putative expressed AT4G35160.1 

CUST_4909_PI390587928 1.943 0.517 1.869 0.371 2.946 0.644 2.725 0.595 expressed protein AT2G25737.1 

CUST_42064_PI390587928 1.115 0.562 1.235 0.585 1.273 0.697 1.180 0.519 desiccation-associated protein putative  

CUST_39144_PI390587928 2.006 0.535 1.645 0.585 1.400 0.439 1.782 0.534 flavoprotein wrbA putative expressed AT4G27270.1 

CUST_9157_PI390587928 1.524 0.700 1.246 0.570 1.385 0.706 1.309 0.647 nucleic acid binding protein putative expressed AT2G02570.4 

CUST_18262_PI390587928 1.263 0.703 1.353 0.649 1.615 0.864 1.282 0.629 serine/threonine-protein kinase NAK putative expressed AT5G18610.1 

CUST_16032_PI390587928 2.191 0.799 2.013 0.765 2.050 0.679 2.021 0.484 photosystem II D2 protein putative expressed ATCG00270.1 

CUST_31963_PI390587928 1.387 0.899 1.367 0.771 1.394 0.756 1.339 0.719 eukaryotic translation initiation factor 5 putative expressed AT1G36730.1 

CUST_26813_PI390587928 1.114 0.608 1.125 0.627 1.200 0.734 1.158 0.649 -  

CUST_25030_PI390587928 1.568 0.603 1.256 0.572 1.554 0.779 1.500 0.764 -  

CUST_11428_PI390587928 1.618 0.855 1.522 0.753 1.500 0.759 1.565 0.741 protein kinase putative expressed AT4G24810.2 

CUST_40775_PI390587928 1.182 0.675 1.240 0.707 1.316 0.737 1.301 0.784 secondary cell wall-related glycosyltransferase family 47 putative expressed AT5G16890.1 

CUST_24886_PI390587928 1.592 0.630 1.523 0.688 1.466 0.474 1.228 0.434 leucine-rich repeat-containing protein 40 putative expressed  

CUST_36056_PI390587928 1.282 0.828 1.214 0.515 1.191 0.682 1.162 0.661 2-hydroxy-3-oxopropionate reductase putative expressed AT3G25530.1 

CUST_25451_PI390587928 1.282 0.637 1.308 0.596 1.295 0.601 1.277 0.609 protein cbxX chromosomal putative expressed AT3G24530.1 
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CUST_26457_PI390587928 1.669 0.435 1.540 0.275 1.758 0.424 1.422 0.268 plant-specific domain TIGR01615 family protein expressed AT2G38820.2 

CUST_2891_PI390587928 1.119 0.503 1.283 0.386 1.751 0.771 1.533 0.774 rhythmically expressed gene 2 protein putative expressed AT2G41250.1 

CUST_26504_PI390587928 1.140 0.869 1.207 0.826 1.191 0.762 1.103 0.803 TENA/THI-4 family protein expressed AT5G32470.1 

CUST_18560_PI390587928 1.196 0.685 1.208 0.622 1.282 0.710 1.128 0.684 expressed protein AT2G06005.1 

CUST_28750_PI390587928 1.167 0.853 1.101 0.751 1.314 0.970 1.396 0.894 sugar transporter type 2a putative expressed AT4G35300.1 

CUST_5468_PI390587928 1.320 0.626 1.253 0.524 1.216 0.577 1.189 0.503 - AT5G52970.1 

CUST_9502_PI390587928 1.300 0.613 1.186 0.692 1.273 0.709 1.233 0.588 MAR binding filament-like protein 1 putative expressed AT3G16000.1 

CUST_7745_PI390587928 1.401 0.598 1.580 0.575 1.558 0.629 1.339 0.529 CP5 putative expressed AT1G64720.1 

CUST_38584_PI390587928 1.552 0.632 1.455 0.513 1.390 0.648 1.254 0.497 50S ribosomal protein L1 putative expressed AT3G63490.2 

CUST_5345_PI390587928 1.229 0.816 1.238 0.698 1.222 0.663 1.150 0.681 polygalacturonase putative expressed AT3G62110.1 

CUST_3115_PI390587928 1.307 0.914 1.214 0.846 1.077 0.778 1.099 0.778 tryptophanyl-tRNA synthetase putative expressed AT2G25840.2 

CUST_2427_PI390587928 1.865 0.660 1.812 0.477 1.533 0.504 1.252 0.386 expressed protein  

CUST_18081_PI390587928 1.475 0.319 1.227 0.342 1.392 0.448 1.346 0.266 expressed protein  

CUST_34001_PI390587928 1.506 0.452 1.582 0.317 1.476 0.454 1.375 0.328 mRNA binding protein precursor putative expressed AT3G63140.1 

CUST_18112_PI390587928 1.582 0.746 1.534 0.644 1.639 0.785 1.299 0.593 -  

CUST_426_PI390587928 1.200 0.540 1.434 0.541 1.411 0.567 1.274 0.508 ribonucleoside-diphosphate reductase large subunit putative expressed AT2G21790.1 

CUST_31036_PI390587928 1.742 0.592 1.632 0.382 1.535 0.496 1.283 0.354 50S ribosomal protein L12-1 chloroplast precursor putative expressed AT3G27850.1 

CUST_39328_PI390587928 1.251 0.802 1.141 0.699 1.259 0.855 1.259 0.869 protease Do-like 1 chloroplast precursor putative expressed AT3G27925.1 

CUST_33096_PI390587928 1.164 0.745 1.275 0.675 1.380 0.777 1.167 0.718 anthocyanidin 53-O-glucosyltransferase putative expressed AT3G16520.2 

CUST_33904_PI390587928 1.373 0.729 1.323 0.843 1.410 0.860 1.311 0.732 pathogenesis-related 10 protein PR10-1 putative  

CUST_847_PI390587928 1.503 0.548 1.674 0.389 2.023 0.410 1.678 0.397 expressed protein AT1G22540.1 

CUST_42078_PI390587928 1.228 0.625 1.300 0.547 1.541 0.909 1.409 0.691 -  

CUST_38152_PI390587928 1.169 0.816 1.319 0.832 1.407 0.760 1.327 0.819 eukaryotic peptide chain release factor subunit 1-1 putative expressed AT3G26618.1 

CUST_30971_PI390587928 1.195 0.859 1.112 0.673 1.234 0.784 1.129 0.717 maf-like protein CV_0124 putative expressed AT5G66550.1 

CUST_32542_PI390587928 1.284 0.784 1.170 0.646 1.371 0.828 1.220 0.708 - AT3G60250.1 

CUST_13890_PI390587928 1.388 0.536 1.359 0.630 1.484 0.597 1.342 0.480 -  

CUST_29622_PI390587928 1.612 0.510 1.717 0.471 1.781 0.458 1.475 0.371 potassium transporter 10 putative expressed AT5G14880.1 

CUST_35809_PI390587928 1.244 0.686 1.258 0.590 1.219 0.566 1.050 0.537 anaphase-promoting complex subunit 11 putative expressed AT3G05870.1 

CUST_9825_PI390587928 1.319 0.785 1.255 0.755 1.670 0.737 1.393 0.678 expressed protein AT4G35250.1 

CUST_4599_PI390587928 1.445 0.592 1.635 0.503 1.688 0.461 1.779 0.314 expressed protein AT5G23890.1 

CUST_18744_PI390587928 1.359 0.571 1.453 0.504 1.996 0.729 1.750 0.453 protein binding protein putative expressed  

CUST_15291_PI390587928 1.524 0.490 1.687 0.289 1.855 0.600 1.557 0.357 peroxisomal-coenzyme A synthetase putative expressed AT1G30520.1 

CUST_35702_PI390587928 1.366 0.603 1.502 0.659 1.524 0.629 1.437 0.585 GAMYB-binding protein putative expressed AT3G61600.2 

CUST_26534_PI390587928 1.223 0.757 1.316 0.621 1.361 0.834 1.230 0.644 ERD1 protein chloroplast precursor putative expressed AT5G51070.1 

CUST_11351_PI390587928 1.729 0.586 1.344 0.491 1.207 0.605 1.337 0.495 MAR binding filament-like protein 1 putative expressed AT3G16000.1 

CUST_33255_PI390587928 1.074 0.665 1.153 0.619 1.274 0.750 1.211 0.751 -  

CUST_10004_PI390587928 1.061 0.636 1.107 0.644 1.249 0.719 1.191 0.617 tRNA modification GTPase trmE putative expressed  

CUST_13256_PI390587928 1.483 0.731 1.324 0.642 1.395 0.769 1.478 0.650 peptidyl-prolyl cis-trans isomerase CYP37 chloroplast precursor putative expressed AT3G15520.1 

CUST_34154_PI390587928 1.630 0.514 1.885 0.553 1.443 0.453 1.726 0.616 expressed protein  

CUST_26225_PI390587928 2.596 0.628 1.753 0.502 3.426 0.628 2.564 0.481 expressed protein AT5G23110.1 
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CUST_37437_PI390587928 1.453 0.602 1.238 0.398 1.563 0.625 1.453 0.552 GRF zinc finger family protein expressed  

CUST_28316_PI390587928 1.498 0.808 1.380 0.694 1.533 0.862 1.482 0.717 ubiquitin-conjugating enzyme E2-21 kDa 1 putative expressed AT1G63800.1 

CUST_30028_PI390587928 1.666 0.931 1.526 0.721 1.441 0.776 1.307 0.732 complex interacting protein 9 putative expressed AT2G24020.1 

CUST_38289_PI390587928 1.487 0.628 1.419 0.502 1.195 0.604 1.256 0.649 alpha-amylase/trypsin inhibitor putative expressed AT4G11650.1 

CUST_6865_PI390587928 1.616 0.398 1.366 0.274 1.905 0.641 1.390 0.350 -  

CUST_5082_PI390587928 1.126 0.702 1.296 0.871 1.327 0.807 1.232 0.750 DNA binding protein putative expressed  

CUST_6088_PI390587928 1.372 0.759 1.313 0.640 1.310 0.713 1.107 0.603 histidyl-tRNA synthetase putative expressed AT3G46100.1 

CUST_13538_PI390587928 1.314 0.827 1.137 0.785 1.296 0.838 1.365 0.755 -  

CUST_1903_PI390587928 1.265 0.726 1.253 0.542 1.281 0.770 1.335 0.687 expressed protein AT5G54290.1 

CUST_15784_PI390587928 1.308 0.560 1.250 0.798 1.211 0.709 1.111 0.631 - AT4G19003.1 

CUST_14576_PI390587928 6.781 0.487 4.592 0.548 3.339 0.208 2.469 0.135 aquaporin PIP2.7 putative expressed AT4G35100.1 

CUST_3947_PI390587928 1.394 0.533 1.422 0.459 1.721 0.725 1.894 0.721 expressed protein  

CUST_15831_PI390587928 1.342 0.800 1.275 0.706 1.254 0.752 1.066 0.549 nucleic acid binding protein putative expressed AT1G30680.1 

CUST_3963_PI390587928 1.453 0.524 1.978 0.913 1.855 0.583 1.465 0.592 nodulin-like protein putative expressed AT4G34950.1 

CUST_2755_PI390587928 1.755 0.333 2.049 0.192 1.919 0.196 1.587 0.119 seven in absentia protein family protein expressed AT5G37930.1 

CUST_21344_PI390587928 1.764 0.547 1.946 0.837 1.767 0.731 2.292 0.696 BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 precursor putative 

expressed 

AT5G10290.1 

CUST_7764_PI390587928 1.244 0.604 1.247 0.632 1.197 0.601 1.199 0.649 ATP synthase B chain chloroplast precursor putative expressed AT4G32260.1 

CUST_38773_PI390587928 1.654 0.687 1.487 0.674 1.422 0.675 1.350 0.711 RWP-RK domain containing protein expressed  

CUST_21360_PI390587928 1.923 0.697 1.685 0.476 1.740 0.541 1.514 0.377 GTP-binding nuclear protein Ran-A1 putative expressed AT5G20020.1 

CUST_32556_PI390587928 2.004 0.551 1.926 0.455 1.695 0.449 1.298 0.298 protein kinase Kelch repeat:Kelch putative expressed AT1G80440.1 

CUST_13229_PI390587928 1.558 0.707 1.401 0.580 1.480 0.701 1.347 0.608 aspartyl/glutamyl-tRNA amidotransferase subunit B putative expressed AT1G48520.1 

CUST_9839_PI390587928 1.224 0.842 1.357 0.837 1.228 0.789 1.296 0.851 palmitoyltransferase pfa3 putative expressed AT5G04270.1 

CUST_37612_PI390587928 1.159 0.775 1.212 0.793 1.205 0.651 1.099 0.754 histone-lysine N-methyltransferase H3 lysine-9 specific SUVH1 putative expressed AT5G04940.2 

CUST_36373_PI390587928 1.170 0.728 1.295 0.802 1.333 0.840 1.295 0.775 cytochrome P450 89A2 putative expressed AT1G64950.1 

CUST_8647_PI390587928 1.373 0.935 1.141 0.823 1.328 0.887 1.220 0.790 harpin-induced protein putative AT3G44380.1 

CUST_39656_PI390587928 1.306 0.836 1.212 0.705 1.400 0.761 1.278 0.727 seed maturation protein PM23 putative expressed AT2G14910.1 

CUST_40362_PI390587928 1.668 0.797 1.588 0.720 1.374 0.783 1.282 0.647 expressed protein AT2G31040.1 

CUST_32433_PI390587928 1.328 0.478 1.428 0.454 1.957 0.646 1.487 0.412 -  

CUST_24520_PI390587928 1.514 0.671 1.591 0.659 1.429 0.621 1.253 0.582 TPR Domain containing protein expressed AT1G02910.1 

CUST_9716_PI390587928 1.989 0.496 1.927 0.359 1.707 0.475 1.742 0.368 carbonic anhydrase chloroplast precursor putative expressed AT5G14740.5 

CUST_10934_PI390587928 2.547 0.554 2.478 0.265 2.002 0.201 1.434 0.115 purple acid phosphatase precursor putative expressed AT1G52940.1 

CUST_20938_PI390587928 1.599 0.614 1.451 0.415 1.532 0.605 1.447 0.512 APE1 putative expressed AT5G38660.1 

CUST_28151_PI390587928 1.402 0.601 1.247 0.514 1.553 0.740 1.338 0.590 apospory-associated protein C putative expressed AT5G66530.1 

CUST_18449_PI390587928 1.413 0.594 1.335 0.435 1.637 0.691 1.588 0.543 -  

CUST_7099_PI390587928 1.587 0.611 1.367 0.350 1.699 0.506 1.635 0.373 serine carboxypeptidase 1 precursor putative expressed AT5G09640.1 

CUST_322_PI390587928 1.459 0.731 1.263 0.703 1.413 0.633 1.112 0.534 -  

CUST_2153_PI390587928 1.544 0.628 1.373 0.439 1.531 0.620 1.181 0.484 -  

CUST_35967_PI390587928 1.132 0.551 1.330 0.542 1.477 0.621 1.407 0.556 leucine-rich repeat receptor protein kinase EXS precursor putative expressed AT2G34930.1 

CUST_10034_PI390587928 1.143 0.799 1.250 0.730 1.318 0.649 1.481 0.619 ATP binding protein putative expressed AT4G32300.1 
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CUST_23003_PI390587928 1.313 0.750 1.338 0.800 1.344 0.756 1.266 0.722 tesmin/TSO1-like CXC domain containing protein expressed AT4G29000.1 

CUST_18295_PI390587928 1.243 0.775 1.218 0.781 1.171 0.669 1.015 0.641 sister-chromatide cohesion protein putative expressed AT2G47980.1 

CUST_13877_PI390587928 1.316 0.733 1.203 0.693 1.489 0.725 1.296 0.583 polyadenylate-binding protein 2 putative expressed  

CUST_27868_PI390587928 2.005 0.702 1.341 0.429 1.180 0.538 1.286 0.496 -  

CUST_10455_PI390587928 1.170 0.795 1.180 0.790 1.377 0.870 1.162 0.779 fiber protein Fb2 putative expressed AT3G05700.1 

CUST_2621_PI390587928 1.232 0.795 1.190 0.848 1.168 0.860 1.205 0.823 cleavage stimulation factor 64 putative expressed AT1G71800.1 

CUST_27698_PI390587928 1.112 0.702 1.188 0.657 1.079 0.634 1.057 0.625 aminopeptidase N putative expressed AT1G63770.4 

CUST_29975_PI390587928 1.444 0.759 1.200 0.541 1.230 0.574 1.188 0.610 expressed protein AT5G10200.1 

CUST_36696_PI390587928 1.487 0.740 1.375 0.506 1.477 0.648 1.412 0.538 peptidyl-prolyl cis-trans isomerase CYP37 chloroplast precursor putative expressed AT3G15520.1 

CUST_33948_PI390587928 1.319 0.893 1.210 0.815 1.207 0.866 1.184 0.721 pentatricopeptide repeat protein PPR986-12 putative expressed AT3G63370.1 

CUST_30712_PI390587928 1.564 0.554 1.820 0.438 1.984 0.621 1.689 0.374 Mg-chelatase subunit XANTHA-F putative expressed AT5G13630.1 

CUST_4712_PI390587928 1.424 0.821 1.208 0.814 1.310 0.710 1.396 0.783 NOL1/NOP2/sun family protein expressed AT5G66180.1 

CUST_13584_PI390587928 1.561 0.710 1.341 0.589 1.291 0.704 1.173 0.455 RNA binding protein putative expressed AT4G37510.1 

CUST_34482_PI390587928 1.154 0.782 1.260 0.867 1.178 0.764 1.216 0.817 - AT1G62020.1 

CUST_26553_PI390587928 1.958 0.423 2.009 0.254 1.882 0.401 1.497 0.335 haemolysin-III related family protein expressed AT5G20270.1 

CUST_29836_PI390587928 1.845 0.499 1.515 0.441 1.727 0.322 1.474 0.270 -  

CUST_18438_PI390587928 1.594 0.561 1.343 0.434 1.565 0.674 1.559 0.541 serine/threonine-protein kinase receptor precursor putative expressed AT1G11350.1 

CUST_40546_PI390587928 1.489 0.773 1.582 0.654 1.509 0.824 1.244 0.711 rf1 protein mitochondrial precursor putative expressed AT1G09900.1 

CUST_39856_PI390587928 1.616 0.525 1.622 0.561 1.490 0.383 1.705 0.433 40S ribosomal protein S5 putative expressed ATCG00900.1 

CUST_3148_PI390587928 1.212 0.618 1.248 0.538 1.327 0.600 1.194 0.571 F-box protein interaction domain containing protein expressed  

CUST_25695_PI390587928 1.169 0.691 1.164 0.699 1.517 0.725 1.265 0.618 -  

CUST_18331_PI390587928 1.865 0.183 1.493 0.158 2.041 0.139 2.284 0.118 -  

CUST_22273_PI390587928 1.466 0.732 1.498 0.665 1.338 0.602 1.166 0.544 sugar transporter family protein putative expressed AT5G59250.1 

CUST_39717_PI390587928 1.405 0.563 1.446 0.419 1.433 0.512 1.208 0.473 ATA15 protein putative expressed AT1G66330.2 

CUST_40423_PI390587928 1.452 0.735 1.365 0.620 1.571 0.623 1.386 0.750 protein binding protein putative expressed AT3G47990.1 

CUST_22087_PI390587928 1.233 0.554 1.238 0.571 1.309 0.608 1.162 0.483 calreticulin-3 precursor putative expressed AT1G08450.2 

CUST_24348_PI390587928 1.316 0.598 1.037 0.492 1.448 0.668 1.352 0.514 -  

CUST_8554_PI390587928 1.163 0.813 1.264 0.773 1.355 0.814 1.206 0.865 F-box domain containing protein expressed  

CUST_2928_PI390587928 1.280 0.643 1.270 0.502 1.306 0.752 1.283 0.681 proline synthetase co-transcribed bacterial homolog protein putative expressed AT4G26860.1 

CUST_32138_PI390587928 1.135 0.529 1.250 0.552 1.160 0.535 1.125 0.448 phototropin-1 putative expressed AT5G58140.1 

CUST_26999_PI390587928 1.685 0.633 1.591 0.598 1.440 0.552 1.208 0.499 -  

CUST_34959_PI390587928 1.399 0.771 1.364 0.806 1.526 0.784 1.422 0.784 - AT1G71440.1 

CUST_40705_PI390587928 1.185 0.742 1.357 0.704 1.349 0.763 1.143 0.653 -  

CUST_30988_PI390587928 1.723 0.646 1.778 0.523 1.925 0.602 1.822 0.541 MYB59 putative expressed AT5G59780.3 

CUST_8991_PI390587928 1.252 0.819 1.296 0.703 1.112 0.663 1.098 0.576 serine/threonine-protein kinase receptor precursor putative AT4G23130.2 

CUST_38792_PI390587928 2.378 0.226 2.160 0.161 2.083 0.229 1.618 0.131 retrotransposon protein putative unclassified  

CUST_13938_PI390587928 1.091 0.741 1.130 0.665 1.097 0.710 1.181 0.801 beta-13-galactosyltransferase sqv-2 putative expressed AT5G53340.1 

CUST_12699_PI390587928 1.310 0.559 1.227 0.347 1.271 0.560 1.278 0.459 2-hydroxy-3-oxopropionate reductase putative expressed AT1G17650.1 

CUST_9874_PI390587928 1.289 0.835 1.321 0.784 1.403 0.685 1.293 0.598 TLD family protein expressed AT5G39590.1 

CUST_39691_PI390587928 1.612 0.763 1.397 0.709 1.374 0.732 1.293 0.595 SET domain containing protein expressed AT5G14260.2 
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CUST_26800_PI390587928 1.083 0.636 1.227 0.402 1.618 0.522 1.524 0.457 expressed protein AT2G31560.2 

CUST_35751_PI390587928 1.529 0.606 1.420 0.514 1.478 0.629 1.258 0.358 chlorophyll a-b binding protein chloroplast precursor putative expressed AT3G61470.1 

CUST_16393_PI390587928 1.273 0.717 1.249 0.561 1.350 0.699 1.187 0.596 tRNA pseudouridine synthase A putative expressed AT3G06950.1 

CUST_511_PI390587928 1.381 0.694 1.345 0.638 1.506 0.681 1.303 0.548 -  

CUST_5578_PI390587928 1.190 0.847 1.196 0.765 1.219 0.858 1.174 0.830 transglutaminase-like superfamily protein expressed AT5G49570.1 

CUST_278_PI390587928 1.313 0.523 1.362 0.534 1.500 0.705 1.392 0.532 glycyl-tRNA synthetase 2 chloroplast/mitochondrial precursor putative expressed  

CUST_24167_PI390587928 1.168 0.811 1.231 0.713 1.140 0.754 1.094 0.675 HEC/Ndc80p family protein expressed AT3G54630.1 

CUST_21419_PI390587928 1.300 0.544 1.240 0.728 1.545 0.683 1.628 0.647 expressed protein  

CUST_9612_PI390587928 1.518 0.516 1.416 0.288 1.592 0.334 1.443 0.307 phospholipid hydroperoxide glutathione peroxidase putative expressed AT4G11600.1 

CUST_35379_PI390587928 1.372 0.612 1.448 0.576 1.304 0.629 1.106 0.466 expressed protein AT2G38780.1 

CUST_13491_PI390587928 1.243 0.601 1.447 0.729 1.362 0.674 1.287 0.520 - AT2G48160.1 

CUST_11261_PI390587928 1.604 0.596 1.448 0.401 1.359 0.563 1.266 0.456 NHL repeat protein putative expressed AT1G56500.1 

CUST_4417_PI390587928 1.612 0.612 1.377 0.431 1.613 0.631 1.451 0.414 4-methyl-5-thiazole monophosphate biosynthesis protein putative expressed AT4G34020.2 

CUST_33212_PI390587928 1.579 0.780 1.412 0.887 1.400 0.735 1.299 0.686 expressed protein AT1G44920.1 

CUST_9272_PI390587928 1.320 0.827 1.282 0.672 1.366 0.849 1.220 0.722 MYND finger family protein expressed  

CUST_35863_PI390587928 1.466 0.889 1.679 0.946 1.586 0.851 1.486 0.867 expressed protein  

CUST_26135_PI390587928 1.775 0.538 1.337 0.340 1.599 0.636 1.488 0.364 pentatricopeptide repeat protein PPR986-12 putative expressed AT1G25360.1 

CUST_22148_PI390587928 1.260 0.745 1.194 0.616 1.296 0.711 1.239 0.625 -  

CUST_35117_PI390587928 1.263 0.715 1.322 0.652 1.385 0.697 1.131 0.698 -  

CUST_22739_PI390587928 1.329 0.609 1.334 0.551 1.601 0.801 1.458 0.612 nucleoporin putative expressed  

CUST_14795_PI390587928 1.662 0.563 1.515 0.551 1.442 0.644 1.296 0.478 MAR binding filament-like protein 1 putative expressed AT3G16000.1 

CUST_4140_PI390587928 1.407 0.691 1.568 0.705 1.663 0.703 1.349 0.595 coronatine-insensitive protein 1 putative expressed AT2G39940.1 

CUST_35724_PI390587928 1.443 0.519 1.634 0.433 1.413 0.685 1.421 0.509 glyceraldehyde-3-phosphate dehydrogenase A chloroplast precursor putative expressed AT1G12900.1 

CUST_7967_PI390587928 1.489 0.665 1.560 0.567 1.549 0.763 1.636 0.677 resistance protein LR10 putative expressed  

CUST_32806_PI390587928 1.064 0.734 1.185 0.768 1.184 0.764 1.124 0.791 -  

CUST_10212_PI390587928 1.086 0.829 1.135 0.751 1.187 0.846 1.145 0.867 glycogen operon protein glgX putative expressed AT4G09020.1 

CUST_7828_PI390587928 1.185 0.632 1.164 0.684 1.357 0.851 1.432 0.742 -  

CUST_31583_PI390587928 6.297 0.343 3.561 0.144 4.759 0.090 2.541 0.043 thiol protease SEN102 precursor putative expressed AT2G34080.1 

CUST_11234_PI390587928 1.662 0.670 1.189 0.399 1.460 0.693 1.433 0.553 ATP-dependent peptidase putative AT1G35340.1 

CUST_29094_PI390587928 1.390 0.885 1.210 0.629 1.187 0.706 1.143 0.701 expp1 protein precursor putative expressed AT3G44150.1 

CUST_10716_PI390587928 2.805 0.487 1.706 0.260 1.920 0.443 1.618 0.240 3-oxoacyl-synthase I chloroplast precursor putative expressed AT5G46290.2 

CUST_29716_PI390587928 1.304 0.590 1.148 0.411 1.505 0.553 1.286 0.447 OTU-like cysteine protease family protein expressed AT3G57810.3 

CUST_17312_PI390587928 1.232 0.654 1.287 0.616 1.278 0.608 1.126 0.529 haloacid dehalogenase-like hydrolase domain-containing protein 1A putative expressed AT4G21470.1 

CUST_39689_PI390587928 1.626 0.651 1.195 0.568 1.579 0.587 1.766 0.470 SET domain containing protein expressed AT5G14260.2 

CUST_15369_PI390587928 1.210 0.662 1.212 0.508 1.197 0.632 1.228 0.625 expressed protein AT5G16810.1 

CUST_24553_PI390587928 1.551 0.609 1.403 0.516 1.804 0.747 1.674 0.542 repressor of RNA polymerase III transcription MAF1 putative expressed AT5G13240.1 

CUST_25591_PI390587928 1.322 0.881 1.154 0.797 1.340 0.863 1.270 0.798 -  

CUST_23361_PI390587928 1.367 0.722 1.330 0.688 1.623 0.682 1.493 0.731 armadillo/beta-catenin-like repeat family protein expressed AT4G34940.1 

CUST_2542_PI390587928 1.226 0.774 1.263 0.801 1.251 0.880 1.161 0.796 alpha-N-arabinofuranosidase 1 precursor putative expressed AT3G10740.1 

CUST_6327_PI390587928 1.603 0.765 1.607 0.662 1.360 0.730 1.393 0.808 JD1 putative expressed AT1G80950.1 
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CUST_15199_PI390587928 1.211 0.895 1.138 0.769 1.322 0.844 1.293 0.803 ybaK/prolyl-tRNA synthetase associated region putative expressed AT1G44835.1 

CUST_36330_PI390587928 1.138 0.603 1.429 0.707 1.499 0.877 1.206 0.699 AP2 domain-containing protein putative expressed  

CUST_41511_PI390587928 1.264 0.831 1.399 0.769 1.502 0.841 1.570 0.787 DNA binding protein putative expressed AT2G45850.2 

CUST_41325_PI390587928 1.430 0.854 1.359 0.726 1.388 0.761 1.212 0.667 dnaJ domain containing protein expressed AT5G23040.1 

CUST_11259_PI390587928 1.429 0.818 1.471 0.771 1.292 0.721 1.259 0.686 chaperone protein dnaJ putative expressed AT1G80030.2 

CUST_20864_PI390587928 1.139 0.868 1.161 0.801 1.158 0.827 1.121 0.788 -  

CUST_10690_PI390587928 1.356 0.637 1.189 0.532 1.708 0.892 1.483 0.548 -  

CUST_7103_PI390587928 1.199 0.844 1.113 0.730 1.238 0.834 1.150 0.810 expressed protein  

CUST_23504_PI390587928 1.454 0.500 1.643 0.393 1.582 0.561 1.420 0.426 fructose-bisphosphate aldolase chloroplast precursor putative expressed AT4G38970.1 

CUST_34685_PI390587928 1.294 0.739 1.280 0.748 1.276 0.691 1.208 0.702 protein dimerization putative expressed AT1G79740.1 

CUST_4698_PI390587928 1.422 0.710 1.244 0.573 1.300 0.804 1.382 0.709 expressed protein AT4G22890.5 

CUST_11573_PI390587928 1.592 0.756 1.535 0.499 1.406 0.652 1.203 0.472 esterase/lipase/thioesterase family active site protein putative expressed AT5G17670.1 

CUST_33710_PI390587928 1.673 0.522 1.464 0.313 2.335 0.310 2.256 0.217 tonoplast dicarboxylate transporter putative expressed AT5G47560.1 

CUST_12595_PI390587928 1.156 0.719 1.159 0.697 1.284 0.794 1.235 0.711 transposon protein putative unclassified AT4G15415.1 

CUST_35738_PI390587928 1.698 0.254 1.472 0.194 1.602 0.196 1.611 0.070 chlorophyll a-b binding protein 2 chloroplast precursor putative expressed AT2G34430.1 

CUST_18843_PI390587928 1.409 0.687 1.567 0.740 1.570 0.803 1.543 0.715 SET domain containing protein expressed  

CUST_33508_PI390587928 1.226 0.828 1.376 0.798 1.172 0.678 1.206 0.825 ras-related protein ARA-4 putative expressed AT5G47520.1 

CUST_35770_PI390587928 1.424 0.332 1.415 0.298 1.480 0.316 1.591 0.172 chlorophyll a-b binding protein 2 chloroplast precursor putative expressed AT2G34420.1 

CUST_19881_PI390587928 1.422 0.766 1.411 0.577 1.362 0.543 1.325 0.373 dnaJ protein homolog 1 putative expressed  

CUST_41957_PI390587928 1.367 0.637 1.361 0.509 1.353 0.639 1.165 0.604 naphthoate synthase putative expressed AT1G60550.1 

CUST_22832_PI390587928 1.378 0.679 1.414 0.577 1.508 0.702 1.276 0.537 ribose-phosphate pyrophosphokinase 1 putative expressed AT2G35390.2 

CUST_34562_PI390587928 1.172 0.765 1.134 0.707 1.084 0.700 1.213 0.791 transmembrane 9 superfamily protein member 2 precursor putative expressed AT5G25100.1 

CUST_39602_PI390587928 1.508 0.564 1.454 0.413 1.464 0.499 1.117 0.442 expressed protein  

CUST_4606_PI390587928 1.321 0.923 1.317 0.845 1.290 0.851 1.208 0.829 tyrosyl-tRNA synthetase putative expressed AT3G02660.1 

CUST_30389_PI390587928 1.238 0.734 1.291 0.743 1.344 0.770 1.143 0.684 -  

CUST_19556_PI390587928 1.225 0.701 1.314 0.713 1.421 0.883 1.314 0.714 3-5 exonuclease eri-1 putative expressed  

CUST_29746_PI390587928 1.389 0.705 1.240 0.676 1.324 0.651 1.261 0.605 -  

CUST_10103_PI390587928 1.207 0.586 1.302 0.531 1.466 0.729 1.304 0.565 nucleoporin putative expressed  

CUST_16134_PI390587928 1.219 0.363 1.177 0.383 1.419 0.566 1.230 0.367 -  

CUST_28554_PI390587928 1.323 0.883 1.129 0.686 1.272 0.759 1.118 0.670 thioredoxin X chloroplast precursor putative expressed AT1G50320.1 

CUST_26324_PI390587928 1.217 0.787 1.369 0.754 1.325 0.711 1.234 0.635 hexose carrier protein HEX6 putative expressed AT5G26340.1 

CUST_14377_PI390587928 1.200 0.804 1.200 0.733 1.408 0.758 1.304 0.819 BGGP Beta-1-3-galactosyl-O-glycosyl-glycoprotein putative expressed AT5G39990.1 

CUST_19386_PI390587928 1.479 0.714 1.475 0.751 1.432 0.582 1.292 0.507 EMB1381 putative expressed AT2G31340.1 

CUST_21129_PI390587928 1.385 0.771 1.166 0.748 1.176 0.751 1.274 0.627 U2 small nuclear ribonucleoprotein A putative expressed AT1G09760.1 

CUST_30313_PI390587928 1.734 0.809 1.371 0.677 1.483 0.843 1.263 0.730 zinc finger protein 7 putative expressed AT1G24625.1 

CUST_32373_PI390587928 1.230 0.904 1.182 0.768 1.181 0.838 1.116 0.809 FK506 binding protein putative expressed AT4G19830.1 

CUST_33395_PI390587928 1.661 0.443 1.567 0.366 2.013 0.352 1.530 0.333 FLP1 putative expressed  

CUST_13046_PI390587928 1.283 0.650 1.208 0.478 1.381 0.532 1.209 0.519 conserved hypothetical protein AT3G50120.1 

CUST_22821_PI390587928 2.900 0.214 2.373 0.222 2.120 0.252 1.691 0.215 -  

CUST_19093_PI390587928 1.321 0.774 1.153 0.790 1.156 0.796 1.226 0.837 actin-depolymerizing factor 6 putative expressed AT5G52360.1 
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CUST_15930_PI390587928 1.222 0.672 1.295 0.688 1.311 0.736 1.252 0.728 expressed protein  

CUST_41807_PI390587928 1.380 0.789 1.146 0.854 1.169 0.729 1.228 0.694 -  

CUST_25934_PI390587928 1.639 0.517 1.983 0.490 1.573 0.410 1.314 0.392 histone H3 putative expressed  

CUST_3907_PI390587928 3.116 0.285 2.505 0.086 3.095 0.079 1.884 0.050 O-methyltransferase ZRP4 putative expressed AT4G35160.1 

CUST_7693_PI390587928 1.471 0.827 1.400 0.707 1.564 0.786 1.472 0.750 apospory-associated protein C putative expressed AT5G66530.1 

CUST_27994_PI390587928 1.461 0.553 1.847 0.416 1.603 0.637 1.547 0.480 ribulose bisphosphate carboxylase/oxygenase activase chloroplast precursor putative 

expressed 

AT2G39730.1 

CUST_10581_PI390587928 1.594 0.597 1.476 0.715 1.501 0.700 1.269 0.464 expressed protein  

CUST_15605_PI390587928 1.158 0.700 1.343 0.663 1.489 0.812 1.269 0.695 actin-6 putative expressed AT5G56180.1 

CUST_6516_PI390587928 1.178 0.740 1.251 0.749 1.376 0.826 1.219 0.750 kelch motif family protein expressed AT1G22040.1 

CUST_29581_PI390587928 1.430 0.768 1.351 0.643 1.286 0.616 1.169 0.599 expressed protein AT3G60660.1 

CUST_7538_PI390587928 1.269 0.830 1.308 0.762 1.397 0.687 1.215 0.588 auxin-repressed protein putative expressed  

CUST_19422_PI390587928 1.122 0.697 1.109 0.772 1.111 0.685 1.243 0.710 expressed protein AT2G26770.2 

CUST_20616_PI390587928 1.245 0.816 1.335 0.856 1.445 0.788 1.285 0.660 zinc finger C2H2 type family protein expressed AT5G52010.1 

CUST_24386_PI390587928 1.490 0.802 1.216 0.601 1.503 0.871 1.652 0.732 peptidase M48 Ste24p putative expressed AT3G27110.2 

CUST_3567_PI390587928 1.163 0.776 1.163 0.789 1.152 0.708 1.106 0.685 -  

CUST_33570_PI390587928 1.390 0.851 1.302 0.604 1.328 0.505 1.206 0.514 CENP-E like kinetochore protein putative expressed AT2G30500.1 

CUST_18687_PI390587928 1.441 0.774 1.504 0.774 1.516 0.694 1.311 0.770 -  

CUST_7384_PI390587928 2.060 0.370 1.713 0.229 1.815 0.353 1.608 0.202 cytochrome P450 87A3 putative expressed AT1G12740.1 

CUST_41344_PI390587928 1.655 0.347 1.992 0.386 2.625 0.358 2.671 0.403 -  

CUST_29256_PI390587928 1.192 0.762 1.183 0.928 1.328 0.884 1.269 0.848 -  

CUST_22017_PI390587928 1.141 0.727 1.093 0.641 1.333 0.673 1.256 0.685 expressed protein  

CUST_6223_PI390587928 1.761 0.660 1.498 0.520 1.570 0.569 1.380 0.500 cytochrome c oxidase polypeptide Vc putative expressed AT5G40382.1 

CUST_4466_PI390587928 1.338 0.766 1.402 0.839 1.389 0.839 1.519 0.916 chromatin complex subunit A101 putative expressed AT5G66750.1 

CUST_13385_PI390587928 1.257 0.837 1.237 0.766 1.543 0.943 1.276 0.683 expressed protein  

CUST_10724_PI390587928 1.764 0.688 1.949 0.662 1.581 0.804 1.552 0.621 sigma factor sigB regulation protein rsbQ putative expressed AT3G24420.1 

CUST_26961_PI390587928 1.176 0.773 1.218 0.854 1.242 0.878 1.174 0.718 -  

CUST_18239_PI390587928 1.250 0.623 1.290 0.608 1.471 0.717 1.351 0.601 transport inhibitor response 1 protein putative expressed AT3G26810.1 

CUST_31956_PI390587928 1.502 0.793 1.305 0.822 1.276 0.789 1.233 0.743 membrane protein putative expressed AT1G54520.1 

CUST_8160_PI390587928 1.301 0.861 1.262 0.757 1.282 0.747 1.247 0.842 novel plant SNARE 11 putative expressed AT3G17440.1 

CUST_9166_PI390587928 1.335 0.748 1.359 0.656 1.622 0.744 1.581 0.752 F-box protein family AtFBL4 putative expressed AT5G23340.1 

CUST_11592_PI390587928 1.211 0.848 1.355 0.902 1.239 0.713 1.216 0.789 expressed protein AT5G57460.1 

CUST_14_PI390587928 1.294 0.696 1.299 0.660 1.568 0.744 1.449 0.649 transposon protein putative unclassified  

CUST_32978_PI390587928 1.195 0.746 1.212 0.630 1.148 0.653 1.193 0.738 HEAT repeat family protein expressed AT5G14790.1 

CUST_3742_PI390587928 1.186 0.734 1.256 0.685 1.298 0.663 1.153 0.852 glyoxylate reductase putative expressed AT1G79870.1 

CUST_15897_PI390587928 1.509 0.497 1.547 0.369 1.954 0.504 1.502 0.362 -  

CUST_26061_PI390587928 1.777 0.486 1.685 0.692 1.489 0.690 1.785 0.573 BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 precursor putative 

expressed 

 

CUST_20419_PI390587928 1.287 0.843 1.231 0.842 1.324 0.827 1.305 0.806 CCR4-NOT transcription complex subunit 3 putative expressed  

CUST_19745_PI390587928 1.429 0.782 1.377 0.732 1.259 0.633 1.109 0.557 acetyl-coenzyme A carboxylase putative expressed AT1G36160.1 
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CUST_2411_PI390587928 2.290 0.700 1.867 0.721 3.326 0.560 2.644 0.684 C-4 methylsterol oxidase putative expressed AT4G12110.1 

CUST_2884_PI390587928 2.125 0.889 1.510 0.637 2.191 0.876 1.856 0.804 -  

CUST_15790_PI390587928 1.380 0.637 1.467 0.725 1.285 0.636 1.355 0.466 receptor-like protein kinase 5 precursor putative expressed AT1G28440.1 

CUST_410_PI390587928 1.539 0.761 1.433 0.692 1.339 0.650 1.302 0.628 expressed protein  

CUST_36533_PI390587928 1.711 0.822 1.423 0.657 1.393 0.714 1.325 0.528 BSD domain containing protein expressed  

CUST_23580_PI390587928 1.173 0.683 1.136 0.698 1.137 0.729 1.115 0.680 polyamine ABC transporter periplasmic polyamine-binding protein putative expressed AT1G31410.1 

CUST_22372_PI390587928 1.456 0.685 1.870 0.834 1.250 0.641 1.411 0.678 cytokinin-O-glucosyltransferase 2 putative expressed AT2G28080.1 

CUST_19452_PI390587928 1.333 0.763 1.239 0.610 1.303 0.705 1.282 0.717 ubiquitin-conjugating enzyme E2-17 kDa putative expressed AT3G08690.1 

CUST_2575_PI390587928 1.149 0.783 1.184 0.930 1.248 0.853 1.162 0.765 -  

CUST_12043_PI390587928 1.140 0.679 1.425 0.586 1.511 0.707 1.455 0.650 retrotransposon protein putative unclassified expressed ATMG00860.1 

CUST_1414_PI390587928 1.277 0.809 1.330 0.798 1.380 0.714 1.254 0.664 -  

CUST_16534_PI390587928 1.509 0.381 1.471 0.311 1.507 0.434 1.669 0.215 chlorophyll a-b binding protein chloroplast precursor putative expressed AT3G27690.1 

CUST_26034_PI390587928 1.247 0.825 1.395 0.841 1.299 0.769 1.133 0.803 -  

CUST_14320_PI390587928 1.338 0.518 1.251 0.456 1.617 0.675 1.516 0.501 serine/threonine protein kinase putative expressed AT4G38830.1 

CUST_7461_PI390587928 1.354 0.636 1.364 0.509 1.527 0.746 1.217 0.747 expressed protein  

CUST_26050_PI390587928 1.339 0.856 1.208 0.790 1.346 0.817 1.319 0.763 myrosinase precursor putative expressed  

CUST_27072_PI390587928 1.547 0.273 1.367 0.295 1.855 0.240 1.422 0.185 histone H1 putative expressed  

CUST_10924_PI390587928 1.362 0.561 1.430 0.462 1.360 0.630 1.413 0.450 peptidyl-prolyl cis-trans isomerase NIMA-interacting 4 putative expressed AT1G26550.1 

CUST_10940_PI390587928 1.665 0.545 1.348 0.550 1.646 0.539 1.727 0.557 -  

CUST_31061_PI390587928 1.385 0.790 1.434 0.726 1.436 0.767 1.228 0.778 F-box only protein 9 putative expressed AT1G21760.1 

CUST_41251_PI390587928 1.518 0.688 1.590 0.475 1.709 0.615 1.235 0.473 6-phosphogluconolactonase putative expressed AT1G13700.1 

CUST_25362_PI390587928 1.285 0.747 1.285 0.833 1.381 0.858 1.227 0.809 -  

CUST_36101_PI390587928 1.363 0.625 1.472 0.722 1.491 0.745 1.468 0.576 BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 precursor putative 
expressed 

AT5G10290.1 

CUST_1681_PI390587928 1.147 0.748 1.196 0.765 1.355 0.768 1.266 0.695 expressed protein  

CUST_30948_PI390587928 1.904 0.419 2.011 0.256 1.832 0.294 1.389 0.210 protein ABIL1 putative expressed AT2G46225.1 

CUST_15033_PI390587928 1.307 0.846 1.396 0.824 1.193 0.697 1.098 0.804 gb protein putative expressed AT5G18250.1 

CUST_20790_PI390587928 1.235 0.722 1.329 0.814 1.191 0.702 1.081 0.596 tRNA 2phosphotransferase putative expressed AT2G45330.2 

CUST_20805_PI390587928 4.571 0.035 8.585 0.057 6.692 0.118 6.297 0.137 cytokinin-O-glucosyltransferase 2 putative expressed AT3G02100.1 

CUST_4187_PI390587928 1.320 0.630 1.291 0.594 1.577 0.746 1.381 0.611 -  

CUST_26836_PI390587928 1.200 0.844 1.108 0.781 1.106 0.720 1.186 0.835 ras-related protein RHN1 putative expressed AT5G45130.1 

CUST_34019_PI390587928 1.367 0.674 1.369 0.559 1.354 0.659 1.184 0.576 glycyl-tRNA synthetase 1 mitochondrial precursor putative expressed AT1G29880.1 

CUST_19945_PI390587928 1.159 0.725 1.142 0.776 1.152 0.714 1.076 0.697 membrane-associated 30 kDa protein chloroplast precursor putative expressed AT1G65260.1 

CUST_3617_PI390587928 1.303 0.716 1.349 0.609 1.556 0.682 1.472 0.687 coronatine-insensitive protein 1 putative expressed AT2G39940.1 

CUST_24452_PI390587928 1.636 0.464 1.828 0.435 1.748 0.453 1.519 0.413 expressed protein AT1G75100.1 

CUST_3633_PI390587928 1.286 0.625 1.049 0.409 1.371 0.508 1.349 0.555 receptor-like kinase ARK1AS putative expressed AT5G38280.1 

CUST_21720_PI390587928 1.793 0.560 1.577 0.388 1.652 0.496 1.350 0.281 plastid-specific 30S ribosomal protein 2 chloroplast precursor putative expressed AT2G35410.1 

CUST_31677_PI390587928 1.561 0.828 1.439 0.757 1.528 0.789 1.496 0.779 OsWRKY78 - Superfamily of rice TFs having WRKY and zinc finger domains expressed AT4G26640.2 

CUST_15788_PI390587928 1.180 0.623 1.170 0.516 1.238 0.548 1.343 0.652 SAM-dependent methyltransferase putative expressed AT2G26680.1 

CUST_5708_PI390587928 1.337 0.828 1.314 0.846 1.282 0.910 1.231 0.762 expressed protein AT2G46915.1 
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CUST_35509_PI390587928 2.880 0.342 2.768 0.262 2.153 0.301 2.037 0.250 phosphoglucomutase/phosphomannomutase family protein putative expressed AT1G70820.1 

CUST_3510_PI390587928 1.697 0.716 1.413 0.699 1.368 0.558 1.290 0.599 -  

CUST_40489_PI390587928 1.870 0.514 1.451 0.449 1.980 0.407 1.565 0.376 -  

CUST_7311_PI390587928 1.153 0.910 1.272 0.817 1.268 0.866 1.134 0.788 expressed protein AT1G27510.1 

CUST_21364_PI390587928 1.442 0.736 1.446 0.619 1.324 0.694 1.241 0.619 SOUL heme-binding protein expressed AT5G20140.1 

CUST_33109_PI390587928 1.250 0.864 1.193 0.797 1.227 0.824 1.197 0.769 oxysterol binding protein putative expressed AT1G13170.1 

CUST_29656_PI390587928 1.371 0.684 1.451 0.419 2.008 0.697 1.453 0.517 expressed protein AT1G02070.1 

CUST_15006_PI390587928 1.331 0.683 1.196 0.603 1.459 0.792 1.263 0.631 -  

CUST_22993_PI390587928 1.183 0.646 1.338 0.659 1.190 0.617 1.177 0.556 -  

CUST_13856_PI390587928 1.662 0.518 1.631 0.370 1.541 0.483 1.354 0.331 elongation factor TS family protein expressed AT4G29060.1 

CUST_20017_PI390587928 1.410 0.770 1.483 0.729 1.298 0.770 1.258 0.728 calcineurin B-like protein 10 putative expressed  

CUST_12711_PI390587928 1.693 0.238 2.031 0.148 3.129 0.290 3.346 0.423 peptide transporter PTR2 putative expressed AT1G32450.1 

CUST_9062_PI390587928 1.587 0.638 1.534 0.565 1.481 0.636 1.336 0.536 expressed protein AT5G28500.1 

CUST_1865_PI390587928 1.285 0.766 1.374 0.773 1.516 0.642 1.401 0.542 calcium binding atopy-related autoantigen 1 putative expressed AT4G32060.1 

CUST_6314_PI390587928 1.205 0.631 1.153 0.571 1.258 0.694 1.165 0.587 expressed protein AT1G78420.1 

CUST_4100_PI390587928 1.676 0.660 1.280 0.454 1.374 0.595 1.443 0.582 glutamine amidotransferase subunit pdxT putative expressed AT5G60540.1 

CUST_33927_PI390587928 1.215 0.670 1.086 0.578 1.370 0.685 1.241 0.701 -  

CUST_32719_PI390587928 1.361 0.796 1.219 0.746 1.441 0.775 1.371 0.772 10-deacetylbaccatin III 10-O-acetyltransferase putative expressed  

CUST_39197_PI390587928 1.837 0.637 1.997 0.451 2.107 0.507 1.382 0.168 OsGrx_C6 - glutaredoxin subgroup III AT4G15700.1 

CUST_763_PI390587928 1.354 0.641 1.752 0.686 1.703 0.750 1.491 0.790 major Facilitator Superfamily protein expressed AT5G45275.1 

CUST_13238_PI390587928 1.382 0.554 1.287 0.483 1.319 0.579 1.310 0.477 -  

CUST_16723_PI390587928 1.274 0.682 1.258 0.626 1.278 0.753 1.174 0.580 vegetative storage protein putative expressed AT3G57430.1 

CUST_40339_PI390587928 1.657 0.942 1.303 0.640 1.428 0.731 1.394 0.693 cell division protein ftsY putative expressed AT2G45770.1 

CUST_11497_PI390587928 1.366 0.452 1.415 0.458 1.538 0.545 1.407 0.428 hhH-GPD superfamily base excision DNA repair protein expressed  

CUST_33634_PI390587928 1.245 0.759 1.301 0.897 1.318 0.740 1.297 0.764 -  

CUST_32395_PI390587928 1.309 0.590 1.112 0.551 1.561 0.571 1.381 0.462 universal stress protein family protein expressed AT3G17020.1 

CUST_36413_PI390587928 1.426 0.485 1.477 0.374 1.536 0.542 1.297 0.382 leaf protein putative expressed AT5G25630.1 

CUST_5877_PI390587928 1.316 0.924 1.124 0.825 1.136 0.786 1.130 0.887 signal transducer putative expressed AT5G54200.1 

CUST_31420_PI390587928 1.455 0.579 1.526 0.649 1.514 0.528 1.604 0.522 expressed protein  

CUST_640_PI390587928 1.319 0.493 1.274 0.296 1.699 0.478 1.564 0.362 tubulin alpha-3 chain putative expressed AT4G14960.2 

CUST_22066_PI390587928 1.663 0.411 1.838 0.426 1.925 0.341 1.932 0.337 expressed protein  

CUST_15361_PI390587928 1.396 0.767 1.138 0.619 1.349 0.677 1.455 0.694 acid phosphatase putative expressed  

CUST_33278_PI390587928 1.294 0.733 1.375 0.610 1.564 0.719 1.368 0.593 ATP binding protein putative expressed  

CUST_14153_PI390587928 2.495 0.625 2.546 0.660 1.461 0.572 1.806 0.592 EBNA1 putative  

CUST_23135_PI390587928 1.462 0.753 1.374 0.701 1.418 0.700 1.309 0.654 bile acid sodium symporter putative expressed  

CUST_20372_PI390587928 1.486 0.631 1.284 0.420 1.405 0.635 1.359 0.537 cytochrome P450 97B2 putative expressed AT3G53130.1 

CUST_5568_PI390587928 1.225 0.559 1.466 0.495 1.400 0.418 1.375 0.445 phosphoethanolamine N-methyltransferase putative expressed AT3G18000.1 

CUST_35369_PI390587928 1.405 0.605 1.279 0.520 1.430 0.639 1.278 0.419 expressed protein  

CUST_37142_PI390587928 1.426 0.818 1.380 0.710 1.435 0.761 1.317 0.719 peroxin Pex14 putative expressed  

CUST_19023_PI390587928 1.258 0.632 1.334 0.501 1.317 0.565 1.208 0.463 nodulin-like protein putative expressed AT1G80530.1 
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CUST_26450_PI390587928 1.343 0.617 1.563 0.457 1.483 0.672 1.344 0.531 ferredoxin--NADP reductase leaf isozyme chloroplast precursor putative expressed AT5G66190.1 

CUST_27456_PI390587928 1.194 0.739 1.253 0.803 1.251 0.679 1.155 0.812 - AT1G21790.1 

CUST_4967_PI390587928 1.584 0.720 1.303 0.563 1.269 0.778 1.164 0.550 polynucleotide phosphorylase putative expressed AT3G03710.1 

CUST_27472_PI390587928 1.152 0.517 1.222 0.530 1.408 0.745 1.310 0.543 rab GDP dissociation inhibitor alpha putative expressed AT2G44100.2 

CUST_36438_PI390587928 2.274 0.615 2.298 0.525 1.769 0.486 1.433 0.289 serine-rich protein putative expressed  

CUST_12678_PI390587928 2.995 0.361 2.586 0.236 2.133 0.092 2.542 0.047 -  

CUST_16712_PI390587928 1.412 0.489 1.285 0.317 1.479 0.549 1.330 0.315 -  

CUST_9076_PI390587928 1.419 0.588 1.641 0.639 1.690 0.681 1.467 0.517 BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 precursor putative 
expressed 

AT5G65240.1 

CUST_8101_PI390587928 1.351 0.818 1.453 0.718 1.551 0.887 1.450 0.729 -  

CUST_35667_PI390587928 1.455 0.824 1.251 0.628 1.289 0.767 1.211 0.573 50S ribosomal protein L10 putative expressed AT5G13510.1 

CUST_40848_PI390587928 2.714 0.663 1.417 0.373 2.933 0.465 2.878 0.298 caffeic acid 3-O-methyltransferase putative expressed AT5G54160.1 

CUST_9714_PI390587928 1.363 0.876 1.242 0.694 1.431 0.851 1.385 0.795 lycopene beta cyclase chloroplast precursor putative expressed AT3G10230.2 

CUST_7973_PI390587928 1.548 0.714 1.360 0.687 1.350 0.808 1.296 0.741 - AT3G56160.1 

CUST_34336_PI390587928 1.188 0.730 1.229 0.738 1.279 0.727 1.160 0.654 cyclin-T1 putative expressed AT5G45190.2 

CUST_7818_PI390587928 1.845 0.526 1.731 0.486 1.728 0.538 1.386 0.342 -  

CUST_3677_PI390587928 1.181 0.802 1.181 0.873 1.284 0.847 1.303 0.899 recessive suppressor of secretory defect putative expressed AT3G51830.1 

CUST_11101_PI390587928 1.765 0.778 1.570 0.637 1.911 0.777 1.750 0.677 ubiquinone biosynthesis protein ubiB putative expressed AT1G71810.1 

CUST_27291_PI390587928 1.397 0.685 1.307 0.632 1.288 0.584 1.113 0.509 CDK5RAP1-like protein putative expressed AT4G36390.1 

CUST_19362_PI390587928 1.468 0.660 1.456 0.491 1.572 0.551 1.404 0.534 ubiquinone biosynthesis protein ubiB putative expressed AT1G71810.1 

CUST_32286_PI390587928 1.567 0.583 1.619 0.492 1.383 0.455 1.566 0.477 -  

CUST_37295_PI390587928 1.313 0.866 1.246 0.836 1.370 0.842 1.290 0.818 cysteine synthase putative expressed AT4G14880.2 

CUST_22920_PI390587928 1.189 0.700 1.216 0.574 1.326 0.788 1.193 0.732 relA-SpoT like protein RSH4 putative expressed AT3G17470.1 

CUST_11979_PI390587928 1.313 0.819 1.248 0.814 1.182 0.744 1.194 0.742 expressed protein AT2G02880.1 

CUST_4072_PI390587928 1.205 0.604 1.415 0.710 1.160 0.700 1.253 0.709 OsFtsH1 - Oryza sativa FtsH protease homologue of AtFtsH1/5 expressed AT5G42270.1 

CUST_31078_PI390587928 1.300 0.554 1.345 0.518 1.258 0.482 1.219 0.474 expressed protein  

CUST_25379_PI390587928 1.305 0.678 1.354 0.618 1.421 0.667 1.337 0.655 ubiquitin-conjugating enzyme E2-17 kDa putative expressed AT3G08690.1 

CUST_1884_PI390587928 1.365 0.667 1.352 0.608 1.381 0.610 1.265 0.584 mov34/MPN/PAD-1 family protein expressed AT1G80210.2 

CUST_28158_PI390587928 1.163 0.771 1.373 0.755 1.529 0.821 1.440 0.860 disulfide oxidoreductase/ monooxygenase putative expressed AT1G63370.1 

CUST_5094_PI390587928 1.470 0.737 1.087 0.602 1.564 0.745 1.614 0.755 armadillo/beta-catenin-like repeat family protein expressed AT5G66200.1 

CUST_2346_PI390587928 1.618 0.679 1.318 0.569 1.797 0.819 1.570 0.631 coatomer subunit beta putative expressed AT1G79990.5 

CUST_14805_PI390587928 1.114 0.778 1.159 0.721 1.437 0.788 1.217 0.788 expressed protein AT2G44090.2 

CUST_8984_PI390587928 1.263 0.736 1.248 0.713 1.530 0.835 1.616 0.811 enolase 1 putative expressed  

CUST_33185_PI390587928 2.027 0.340 1.664 0.228 2.072 0.266 1.512 0.187 - AT5G39210.1 

CUST_2192_PI390587928 1.428 0.742 1.480 0.720 1.413 0.854 1.167 0.647 -  

CUST_952_PI390587928 1.870 0.744 1.886 0.694 1.507 0.708 1.172 0.464 acid phosphatase putative expressed AT5G15070.1 

CUST_29057_PI390587928 1.503 0.521 1.323 0.298 1.621 0.355 1.488 0.254 rhodanese family protein putative expressed AT4G24750.1 

CUST_8238_PI390587928 1.421 0.916 1.226 0.713 1.263 0.737 1.180 0.827 WRKY transcription factor 3 putative expressed AT2G03340.1 

CUST_10664_PI390587928 1.224 0.529 1.217 0.412 1.385 0.547 1.137 0.364 expressed protein AT1G28760.1 

CUST_15518_PI390587928 1.279 0.685 1.235 0.650 1.365 0.680 1.199 0.568 expressed protein AT5G06560.1 
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CUST_39093_PI390587928 1.146 0.683 1.245 0.771 1.167 0.780 1.138 0.646 tRNA uridine 5-carboxymethylaminomethyl modification enzyme gidA putative expressed AT2G13440.1 

CUST_38102_PI390587928 1.791 0.514 1.390 0.352 2.015 0.668 1.788 0.425 cysteine synthase putative expressed AT3G59760.2 

CUST_27970_PI390587928 1.536 0.918 1.311 0.705 1.451 0.799 1.141 0.717 -  

CUST_8691_PI390587928 1.251 0.764 1.242 0.787 1.375 0.802 1.208 0.716 MAK16-like protein RBM13 putative expressed AT5G23860.1 

CUST_6949_PI390587928 1.538 0.786 1.898 0.634 1.811 0.613 1.344 0.486 expressed protein  

CUST_2474_PI390587928 1.853 0.741 1.624 0.707 1.335 0.520 1.311 0.443 lactoylglutathione lyase putative expressed AT1G67280.2 

CUST_31757_PI390587928 2.097 0.563 1.863 0.289 2.146 0.680 1.724 0.416 expressed protein AT1G74880.1 

CUST_26592_PI390587928 1.377 0.515 1.435 0.383 1.538 0.349 1.443 0.330 NB-ARC domain containing protein expressed  

CUST_42279_PI390587928 1.157 0.657 1.177 0.572 1.312 0.651 1.135 0.584 -  

CUST_40081_PI390587928 1.229 0.727 1.208 0.705 1.339 0.722 1.210 0.718 splicing factor arginine/serine-rich 7 putative expressed  

CUST_34382_PI390587928 3.650 0.464 2.535 0.146 3.118 0.263 2.429 0.103 plant-specific domain TIGR01568 family protein  

CUST_1143_PI390587928 1.000 0.698 1.419 0.940 1.197 0.719 1.218 0.773 lectin-like receptor kinase 7 putative expressed AT2G37710.1 

CUST_11254_PI390587928 1.239 0.762 1.231 0.528 1.399 0.743 1.305 0.764 zinc finger protein putative expressed AT2G02960.3 

CUST_17269_PI390587928 1.400 0.758 1.213 0.752 1.357 0.832 1.367 0.772 casein kinase II subunit beta-4 putative expressed AT2G44680.2 

CUST_5634_PI390587928 1.272 0.671 1.272 0.640 1.274 0.790 1.172 0.524 expressed protein AT1G28760.1 

CUST_30395_PI390587928 1.688 0.464 1.601 0.287 1.701 0.382 1.540 0.346 microtubule-associated protein MAP65-1a putative expressed AT1G14690.2 

CUST_17285_PI390587928 1.540 0.798 1.448 0.718 1.315 0.626 1.468 0.763 DNA binding protein putative expressed AT5G52660.2 

CUST_12292_PI390587928 1.222 0.684 1.156 0.760 1.483 0.868 1.336 0.825 -  

CUST_7205_PI390587928 1.766 0.310 1.471 0.169 1.642 0.308 1.649 0.147 CMV 1a interacting protein 1 putative expressed  

CUST_36457_PI390587928 1.304 0.795 1.107 0.796 1.286 0.804 1.268 0.725 -  

CUST_19562_PI390587928 1.445 0.513 1.330 0.389 1.290 0.521 1.129 0.468 thiamine biosynthesis protein thiC putative expressed AT2G29630.1 

CUST_28528_PI390587928 1.634 0.609 1.486 0.459 1.580 0.547 1.372 0.391 CIPK-like protein 1 putative expressed AT5G21326.1 

CUST_20082_PI390587928 1.389 0.739 1.355 0.722 1.666 0.885 1.367 0.733 40S ribosomal protein S14 putative expressed  

CUST_26330_PI390587928 1.479 0.495 1.554 0.483 1.508 0.477 1.294 0.373 zinc finger C3HC4 type family protein expressed AT2G45530.1 

CUST_35281_PI390587928 1.453 0.670 1.289 0.682 1.467 0.856 1.432 0.769 nuclear pore protein 84 / 107 containing protein expressed AT3G14120.2 

CUST_19423_PI390587928 2.790 0.415 2.312 0.207 1.756 0.221 1.957 0.194 -  

CUST_12744_PI390587928 1.183 0.521 1.397 0.353 1.257 0.537 1.246 0.434 protein tyrosine/serine/threonine phosphatase putative expressed AT3G01510.1 

CUST_9095_PI390587928 1.199 0.845 1.354 0.813 1.315 0.855 1.235 0.858 ATP binding protein putative expressed AT2G31010.1 

CUST_6347_PI390587928 1.561 0.518 1.194 0.365 1.712 0.706 1.559 0.369 senescence-associated protein DIN1 putative expressed AT2G17850.1 

CUST_30910_PI390587928 1.132 0.802 1.194 0.690 1.131 0.745 1.063 0.759 seed specific protein Bn15D14A putative expressed AT3G23090.1 

CUST_1929_PI390587928 2.075 0.555 1.696 0.616 1.521 0.366 1.900 0.250 -  

CUST_36148_PI390587928 2.080 0.461 1.914 0.337 2.395 0.577 2.073 0.444 XI-I putative expressed AT4G33200.1 

CUST_30724_PI390587928 1.406 0.599 1.312 0.520 1.519 0.710 1.393 0.581 -  

CUST_5746_PI390587928 1.226 0.809 1.165 0.671 1.168 0.675 1.054 0.572 expressed protein  

CUST_19130_PI390587928 1.371 0.612 1.203 0.545 1.367 0.567 1.203 0.458 disulfide oxidoreductase/ monooxygenase/ oxidoreductase putative expressed AT4G28720.1 

CUST_32831_PI390587928 1.122 0.717 1.183 0.813 1.211 0.782 1.086 0.738 expressed protein AT3G06180.1 

CUST_36041_PI390587928 1.154 0.704 1.394 0.650 1.327 0.637 1.356 0.674 OsMPK17-1 - putative MAPK based on amino acid sequence homology expressed AT3G18040.1 

CUST_14479_PI390587928 2.165 0.725 1.826 0.615 1.545 0.656 1.416 0.375 indole-3-acetate beta-glucosyltransferase putative  

CUST_24902_PI390587928 1.618 0.707 1.346 0.398 1.471 0.512 1.259 0.467 expressed protein AT2G21960.1 

CUST_28672_PI390587928 1.329 0.800 1.156 0.739 1.258 0.702 1.182 0.704 selenium-binding protein putative expressed AT4G14030.1 
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CUST_18513_PI390587928 1.552 0.752 1.367 0.587 1.547 0.685 1.225 0.514 structural constituent of ribosome putative expressed AT3G20230.1 

CUST_28703_PI390587928 1.387 0.617 1.419 0.420 1.317 0.634 1.158 0.513 APE1 putative expressed AT5G38660.1 

CUST_37654_PI390587928 1.610 0.574 1.474 0.391 1.487 0.501 1.369 0.364 - AT1G20810.1 

CUST_25940_PI390587928 2.069 0.536 1.792 0.607 1.770 0.357 1.902 0.235 bifunctional aspartokinase/homoserine dehydrogenase 2 chloroplast precursor putative 

expressed 

AT1G31230.1 

CUST_12769_PI390587928 1.673 0.810 1.548 0.812 1.539 0.742 1.533 0.685 expressed protein  

CUST_6661_PI390587928 1.461 0.450 1.651 0.428 1.473 0.425 1.452 0.305 CBS domain containing protein expressed  

CUST_20729_PI390587928 1.450 0.620 1.463 0.443 1.468 0.713 1.513 0.578 protein tyrosine/serine/threonine phosphatase putative expressed AT3G01510.1 

CUST_21263_PI390587928 1.139 0.718 1.112 0.591 1.193 0.692 1.147 0.643 stress regulated protein putative expressed AT5G27290.1 

CUST_8922_PI390587928 1.184 0.627 1.170 0.645 1.249 0.700 1.082 0.542 -  

CUST_14372_PI390587928 1.255 0.725 1.243 0.727 1.155 0.757 1.058 0.727 augmenter of liver regeneration putative expressed AT1G49880.1 

CUST_4765_PI390587928 1.259 0.570 1.321 0.486 1.576 0.638 1.271 0.516 PTI1-like kinase putative expressed AT3G17410.1 

CUST_40249_PI390587928 1.353 0.747 1.292 0.597 1.363 0.623 1.280 0.645 zinc finger protein 511 putative expressed AT5G14140.1 

CUST_38367_PI390587928 1.380 0.689 1.334 0.616 1.605 0.847 1.504 0.619 -  

CUST_36137_PI390587928 1.204 0.784 1.249 0.775 1.332 0.727 1.146 0.765 expressed protein AT5G40740.1 

CUST_24423_PI390587928 1.155 0.900 1.135 0.890 1.183 0.833 1.136 0.820 -  

CUST_10246_PI390587928 1.447 0.461 1.318 0.345 1.722 0.619 1.645 0.481 copper methylamine oxidase precursor putative expressed AT2G42490.1 

CUST_5144_PI390587928 1.336 0.704 1.284 0.712 1.347 0.665 1.317 0.810 histone H1 putative expressed AT2G30620.1 

CUST_10262_PI390587928 1.237 0.681 1.321 0.683 1.265 0.779 1.220 0.760 expressed protein AT5G03900.2 

CUST_15271_PI390587928 1.302 0.853 1.235 0.777 1.279 0.784 1.229 0.797 expressed protein AT5G45170.1 

CUST_37175_PI390587928 1.287 0.677 1.336 0.623 1.374 0.708 1.216 0.641 expressed protein AT5G55660.1 

CUST_2179_PI390587928 1.688 0.677 1.520 0.716 1.455 0.646 1.475 0.760 expressed protein AT3G02420.1 

CUST_34427_PI390587928 1.595 0.727 1.341 0.751 1.641 0.689 1.520 0.686 expressed protein AT2G36835.1 

CUST_17299_PI390587928 1.454 0.466 1.431 0.402 1.628 0.448 1.289 0.328 chlorophyllide a oxygenase chloroplast precursor putative expressed AT1G44446.1 

CUST_19103_PI390587928 1.073 0.848 1.258 0.880 1.182 0.800 1.138 0.867 nodulin-like protein putative expressed AT1G74780.1 

CUST_26328_PI390587928 1.429 0.529 1.443 0.395 1.378 0.495 1.145 0.269 - AT1G16080.1 

CUST_10714_PI390587928 1.414 0.792 1.494 0.727 1.650 0.720 1.431 0.615 TLD family protein expressed  

CUST_41009_PI390587928 1.333 0.739 1.401 0.625 1.225 0.721 1.281 0.634 expressed protein AT5G19540.1 

CUST_11736_PI390587928 1.465 0.485 1.653 0.413 2.245 0.713 1.873 0.493 MYB59 putative expressed AT3G46130.1 

CUST_9326_PI390587928 1.482 0.606 1.501 0.395 1.358 0.615 1.417 0.520 4-nitrophenylphosphatase putative expressed AT5G36790.2 

CUST_25727_PI390587928 1.463 0.781 1.383 0.784 1.513 0.754 1.387 0.707 nucleic acid binding protein putative expressed AT2G27790.1 

CUST_33112_PI390587928 1.227 0.832 1.284 0.822 1.231 0.739 1.217 0.718 snurportin-1 putative expressed AT4G24880.1 

CUST_4147_PI390587928 1.491 0.565 1.464 0.433 1.391 0.544 1.346 0.497 ATA15 protein putative expressed AT1G66330.2 

CUST_4738_PI390587928 1.422 0.391 1.353 0.425 1.370 0.311 1.304 0.340 expressed protein  

CUST_39004_PI390587928 1.382 0.569 1.555 0.536 2.135 0.316 1.967 0.231 cation transporter HKT6 putative expressed AT4G10310.1 

CUST_28872_PI390587928 1.307 0.394 1.590 0.398 1.475 0.549 1.432 0.267 Mg-chelatase subunit XANTHA-F putative expressed AT5G13630.2 

CUST_10219_PI390587928 1.558 0.803 1.368 0.718 1.569 0.623 1.558 0.717 expressed protein  

CUST_25450_PI390587928 3.851 0.442 3.642 0.339 4.607 0.516 2.264 0.303 -  

CUST_30398_PI390587928 1.252 0.584 1.360 0.613 1.575 0.716 1.372 0.605 AP2 domain-containing protein putative expressed AT1G78080.1 

CUST_19751_PI390587928 1.298 0.797 1.185 0.572 1.194 0.666 1.150 0.672 - AT2G34860.2 
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CUST_31653_PI390587928 1.418 0.638 1.263 0.562 1.346 0.645 1.228 0.523 hemimethylated DNA binding domain containing protein AT2G03390.1 

CUST_25264_PI390587928 1.678 0.525 1.739 0.498 1.663 0.363 1.455 0.258 bifunctional aspartokinase/homoserine dehydrogenase 2 chloroplast precursor putative 

expressed 

AT1G31230.1 

CUST_39929_PI390587928 1.655 0.848 1.342 0.744 1.512 0.826 1.452 0.700 NADH kinase putative expressed AT1G78590.1 

CUST_30461_PI390587928 1.542 0.766 1.536 0.567 1.317 0.658 1.264 0.466 chlorophyll a-b binding protein 8 chloroplast precursor putative expressed AT1G61520.1 

CUST_25768_PI390587928 1.423 0.848 1.343 0.754 1.349 0.756 1.308 0.791 protein ariadne-1 putative expressed AT1G65430.1 

CUST_15121_PI390587928 1.380 0.716 1.311 0.658 1.299 0.686 1.310 0.609 glutathione reductase chloroplast precursor putative expressed AT3G54660.1 

CUST_21324_PI390587928 1.421 0.476 1.402 0.439 1.712 0.594 1.503 0.463 -  

CUST_7744_PI390587928 1.386 0.588 1.528 0.556 1.534 0.630 1.355 0.524 CP5 putative expressed AT1G64720.1 

CUST_26333_PI390587928 1.550 0.405 1.500 0.251 1.508 0.383 1.262 0.218 nitric-oxide synthase putative expressed AT3G47450.2 

CUST_37561_PI390587928 1.803 0.360 1.354 0.207 3.032 0.368 2.107 0.128 GATA transcription factor 9 putative expressed AT3G60530.1 

CUST_31328_PI390587928 1.914 0.877 1.790 0.827 1.811 0.906 1.642 0.676 glutamyl-tRNA reductase chloroplast precursor putative expressed AT1G58290.1 

CUST_40279_PI390587928 1.335 0.576 1.403 0.483 1.435 0.579 1.280 0.424 -  

CUST_36400_PI390587928 1.210 0.690 1.304 0.679 1.393 0.662 1.214 0.700 splicing factor arginine/serine-rich 7 putative expressed AT2G24590.1 

CUST_32973_PI390587928 1.328 0.667 1.366 0.651 1.494 0.606 1.444 0.531 -  

CUST_25002_PI390587928 1.297 0.824 1.259 0.820 1.416 0.847 1.343 0.796 tRNA modification GTPase trmE putative expressed  

CUST_22814_PI390587928 1.394 0.771 1.222 0.832 1.188 0.713 1.297 0.683 glycogen synthase putative expressed AT4G18240.1 

CUST_10867_PI390587928 1.604 0.370 1.377 0.310 2.014 0.459 1.663 0.363 ribosomal RNA apurinic site specific lyase putative expressed  

CUST_28270_PI390587928 1.394 0.603 1.395 0.608 1.294 0.572 1.162 0.382 glycyl-tRNA synthetase 2 chloroplast/mitochondrial precursor putative expressed AT3G48110.1 

CUST_6227_PI390587928 1.733 0.708 1.573 0.475 1.432 0.592 1.549 0.530 protease Do-like 1 chloroplast precursor putative expressed AT5G39830.2 

CUST_30013_PI390587928 1.286 0.445 1.250 0.228 1.484 0.589 1.374 0.303 AMP binding protein putative expressed AT1G30520.1 

CUST_10697_PI390587928 1.731 0.574 1.663 0.472 1.296 0.509 1.093 0.336 zinc finger C3HC4 type family protein expressed  

CUST_16961_PI390587928 1.333 0.889 1.293 0.685 1.242 0.757 1.103 0.659 expressed protein AT2G39670.1 

CUST_30620_PI390587928 1.446 0.582 1.403 0.554 1.418 0.763 1.204 0.403 -  

CUST_40017_PI390587928 1.271 0.752 1.204 0.593 1.467 0.810 1.273 0.716 expressed protein AT4G29100.1 

CUST_3885_PI390587928 1.412 0.372 1.505 0.389 1.731 0.412 1.380 0.317 S-adenosylmethionine-dependent methyltransferase/ methyltransferase/ thiopurine S-
methyltransferase putative expressed 

AT2G43940.1 

CUST_34909_PI390587928 1.367 0.520 1.472 0.363 1.413 0.477 1.402 0.402 fructose-16-bisphosphatase chloroplast precursor putative expressed AT5G64380.1 

CUST_1485_PI390587928 1.194 0.775 1.159 0.673 1.107 0.708 1.162 0.715 -  

CUST_32509_PI390587928 1.193 0.813 1.112 0.762 1.372 0.891 1.315 0.911 calcium-dependent protein kinase isoform AK1 putative expressed AT5G04870.1 

CUST_25804_PI390587928 1.516 0.719 1.786 0.534 1.322 0.711 1.519 0.634 peroxidase 66 precursor putative expressed  

CUST_36985_PI390587928 1.595 0.698 1.693 0.674 1.461 0.657 1.152 0.707 indole-3-acetic acid-amido synthetase GH3.5 putative expressed AT2G46370.2 

CUST_707_PI390587928 1.331 0.787 1.331 0.801 1.312 0.672 1.165 0.610 expressed protein AT3G54500.2 

CUST_4768_PI390587928 1.168 0.720 1.224 0.870 1.257 0.704 1.150 0.790 F-box domain containing protein expressed AT3G10240.1 

CUST_33547_PI390587928 1.196 0.799 1.303 0.723 1.285 0.818 1.147 0.761 FPA putative expressed AT2G43410.4 

CUST_723_PI390587928 1.146 0.652 1.196 0.659 1.305 0.716 1.187 0.695 methyl-CpG binding domain containing protein expressed  

CUST_25618_PI390587928 1.537 0.726 1.560 0.711 1.421 0.714 1.060 0.456 transposon protein putative unclassified expressed  

CUST_39609_PI390587928 1.172 0.689 1.212 0.763 1.344 0.787 1.236 0.667 jmjC domain containing protein expressed  

CUST_13230_PI390587928 1.434 0.781 1.195 0.547 1.347 0.654 1.178 0.602 aspartyl/glutamyl-tRNA amidotransferase subunit B putative expressed AT1G48520.1 

CUST_17519_PI390587928 1.195 0.767 1.225 0.697 1.213 0.742 1.058 0.688 expressed protein  
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CUST_11287_PI390587928 1.467 0.835 1.415 0.873 1.447 0.913 1.347 0.763 expressed protein  

CUST_20471_PI390587928 1.263 0.610 1.307 0.669 1.539 0.714 1.424 0.570 -  

CUST_9670_PI390587928 1.430 0.606 1.327 0.633 1.494 0.594 1.497 0.558 myrosinase precursor putative expressed  

CUST_19579_PI390587928 1.204 0.725 1.173 0.729 1.253 0.794 1.208 0.706 3-5 exonuclease eri-1 putative expressed AT3G15140.1 

CUST_9515_PI390587928 1.473 0.366 1.498 0.291 1.716 0.222 1.324 0.194 cytochrome P450 72A1 putative expressed AT2G26710.1 

CUST_18620_PI390587928 1.214 0.361 1.935 0.433 1.155 0.248 1.361 0.389 conserved hypothetical protein  

CUST_28104_PI390587928 1.204 0.749 1.286 0.787 1.215 0.789 1.162 0.830 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase chloroplast precursor putative 

expressed 

AT2G26930.1 

CUST_41230_PI390587928 1.316 0.809 1.443 0.783 1.287 0.720 1.152 0.677 glycogen synthase putative expressed AT4G18240.1 

CUST_4522_PI390587928 1.451 0.458 1.519 0.335 1.507 0.512 1.589 0.335 oxygen-evolving enhancer protein 3-1 chloroplast precursor putative expressed AT4G21280.2 

CUST_21929_PI390587928 1.218 0.806 1.232 0.677 1.374 0.792 1.195 0.685 ubiquitinating enzyme putative expressed AT3G17000.1 

CUST_5358_PI390587928 2.364 0.527 1.784 0.318 1.730 0.448 1.612 0.274 FAD dependent oxidoreductase putative expressed AT4G30720.1 

CUST_21184_PI390587928 1.338 0.820 1.136 0.768 1.323 0.763 1.313 0.836 complex 1 protein containing protein expressed AT2G39725.2 

CUST_38001_PI390587928 1.321 0.621 1.227 0.652 1.275 0.710 1.083 0.547 protein kinase putative expressed AT3G57120.1 

CUST_4027_PI390587928 1.414 0.535 1.349 0.440 1.366 0.564 1.173 0.341 glycyl-tRNA synthetase 2 chloroplast/mitochondrial precursor putative expressed AT3G48110.1 

CUST_30587_PI390587928 1.423 0.606 1.527 0.554 1.720 0.700 1.560 0.616 lectin-like protein putative expressed AT4G19840.1 

CUST_21652_PI390587928 1.168 0.457 1.353 0.557 1.635 0.397 1.501 0.494 -  

CUST_16959_PI390587928 1.334 0.705 1.589 0.616 1.441 0.646 1.324 0.590 electron transporter/ heat shock protein binding protein putative expressed AT2G42750.1 

CUST_22690_PI390587928 1.246 0.559 1.416 0.559 1.538 0.756 1.363 0.575 nucleoporin putative expressed  

CUST_28145_PI390587928 1.376 0.564 1.355 0.499 1.301 0.719 1.250 0.545 ribulose bisphosphate carboxylase small chain C chloroplast precursor putative expressed AT1G67090.1 

CUST_33886_PI390587928 1.584 0.700 1.502 0.538 1.456 0.660 1.194 0.418 peptidase S16 lon N-terminal putative expressed  

CUST_29960_PI390587928 3.973 0.749 3.040 0.650 1.510 0.294 3.822 0.510 formate dehydrogenase 2 mitochondrial precursor putative expressed AT5G14780.1 

CUST_29167_PI390587928 1.323 0.860 1.256 0.867 1.374 0.845 1.360 0.817 NUP155 putative expressed AT1G14850.1 

CUST_10790_PI390587928 1.251 0.799 1.280 0.947 1.232 0.806 1.170 0.832 RING zinc finger protein-like putative expressed AT3G29270.2 

CUST_10588_PI390587928 1.189 0.750 1.318 0.845 1.150 0.741 1.232 0.670 carboxylic ester hydrolase putative expressed AT3G09405.1 

CUST_37750_PI390587928 1.189 0.839 1.235 0.779 1.251 0.729 1.161 0.759 -  

CUST_4511_PI390587928 1.418 0.784 1.190 0.603 1.169 0.671 1.086 0.492 uncharacterized low-complexity proteins putative expressed  

CUST_7763_PI390587928 1.455 0.704 1.376 0.666 1.227 0.636 1.201 0.690 expressed protein AT3G48070.2 

CUST_22365_PI390587928 2.020 0.575 1.377 0.485 1.518 0.471 1.471 0.346 valyl-tRNA synthetase putative expressed AT5G16715.1 

CUST_23620_PI390587928 1.508 0.704 1.403 0.582 1.356 0.634 1.297 0.556 permeases of the major facilitator superfamily putative expressed AT5G52970.1 

CUST_27405_PI390587928 1.336 0.526 1.399 0.563 1.441 0.706 1.428 0.481 expressed protein  

CUST_31347_PI390587928 1.271 0.734 1.398 0.650 1.314 0.669 1.075 0.546 nuc-1 negative regulatory protein preg putative expressed AT2G44740.1 

CUST_30139_PI390587928 1.634 0.898 1.338 0.562 1.380 0.793 1.299 0.590 expressed protein  

CUST_22195_PI390587928 1.276 0.866 1.421 0.789 1.287 0.746 1.222 0.663 salt tolerance-like protein putative expressed AT4G38960.1 

CUST_15521_PI390587928 1.263 0.671 1.358 0.659 1.370 0.809 1.244 0.520 geranylgeranyl hydrogenase putative expressed AT1G74470.1 

CUST_31208_PI390587928 1.329 0.538 1.396 0.427 1.546 0.426 1.664 0.314 -  

CUST_25509_PI390587928 2.693 0.505 3.009 0.411 2.154 0.429 1.942 0.465 phosphoglucomutase/phosphomannomutase family protein putative expressed AT1G70820.1 

CUST_21050_PI390587928 1.318 0.621 1.307 0.538 1.323 0.657 1.289 0.579 triosephosphate isomerase chloroplast precursor putative expressed AT2G21170.1 

CUST_7470_PI390587928 1.489 0.579 1.450 0.465 1.347 0.492 1.157 0.367 expressed protein AT1G16080.1 

CUST_40206_PI390587928 1.159 0.472 1.247 0.413 1.566 0.395 1.444 0.433 transfactor-like protein putative expressed AT3G13040.2 
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CUST_29326_PI390587928 1.220 0.690 1.263 0.544 1.418 0.716 1.297 0.690 zinc finger CCCH type domain-containing protein ZFN-like 2 putative expressed AT3G02830.1 

CUST_16964_PI390587928 1.352 0.574 1.434 0.578 1.515 0.675 1.257 0.503 -  

CUST_9545_PI390587928 1.466 0.569 1.818 0.422 1.594 0.651 1.550 0.508 ribulose bisphosphate carboxylase/oxygenase activase chloroplast precursor putative 

expressed 

AT2G39730.1 

CUST_37085_PI390587928 1.333 0.678 1.228 0.447 1.242 0.688 1.210 0.585 thylakoid membrane phosphoprotein 14 kda chloroplast precursor putative expressed AT1G52220.1 

CUST_20937_PI390587928 1.548 0.598 1.511 0.441 1.527 0.600 1.388 0.500 APE1 putative expressed AT5G38660.1 

CUST_37116_PI390587928 2.331 0.394 2.359 0.243 2.140 0.208 2.080 0.078 1-aminocyclopropane-1-carboxylate oxidase 1 putative expressed AT1G05010.1 

CUST_26984_PI390587928 1.234 0.739 1.448 0.828 1.391 0.883 1.380 0.697 PHD zinc finger protein putative expressed  

CUST_24754_PI390587928 1.300 0.730 1.285 0.766 1.284 0.734 1.204 0.665 peptide transporter PTR2-B putative expressed AT1G22540.1 

CUST_11816_PI390587928 1.807 0.660 1.545 0.534 1.510 0.452 1.394 0.404 -  

CUST_9391_PI390587928 1.800 0.714 1.647 0.583 1.621 0.648 1.592 0.701 naringenin2-oxoglutarate 3-dioxygenase putative expressed AT4G25310.1 

CUST_26798_PI390587928 1.600 0.871 1.598 0.587 1.919 0.503 1.558 0.371 -  

CUST_31979_PI390587928 1.150 0.855 1.171 0.690 1.498 0.872 1.381 0.899 hydroxyacylglutathione hydrolase putative expressed AT3G10850.1 

CUST_135_PI390587928 1.267 0.632 1.302 0.676 1.663 0.696 1.527 0.493 expressed protein  

CUST_31995_PI390587928 1.584 0.629 1.806 0.617 1.792 0.835 1.606 0.822 pirin-like protein putative expressed AT2G43120.1 

CUST_12870_PI390587928 1.167 0.746 1.190 0.745 1.212 0.824 1.241 0.757 -  

CUST_18885_PI390587928 1.219 0.774 1.187 0.675 1.406 0.713 1.255 0.706 -  

CUST_30787_PI390587928 3.021 0.314 2.926 0.299 1.516 0.142 3.102 0.178 formate dehydrogenase 2 mitochondrial precursor putative expressed AT5G14780.1 

CUST_4787_PI390587928 1.177 0.724 1.154 0.800 1.140 0.754 1.214 0.821 -  

CUST_12901_PI390587928 1.414 0.639 1.528 0.630 1.443 0.643 1.360 0.608 -  

CUST_33006_PI390587928 1.242 0.835 1.177 0.784 1.355 0.885 1.298 0.784 -  

CUST_27867_PI390587928 1.151 0.746 1.149 0.774 1.311 0.651 1.342 0.576 3-hydroxy-3-methylglutaryl-coenzyme A reductase 3 putative expressed AT1G76490.1 

CUST_18139_PI390587928 1.396 0.831 1.247 0.635 1.398 0.776 1.321 0.634 FKBP-type peptidyl-prolyl cis-trans isomerase 2 chloroplast precursor putative expressed AT2G43560.1 

CUST_27883_PI390587928 2.158 0.390 1.795 0.315 1.726 0.282 1.689 0.211 geranylgeranyl hydrogenase putative expressed AT1G74470.1 

CUST_21682_PI390587928 1.388 0.404 1.226 0.350 1.243 0.381 1.230 0.215 chlorophyll a-b binding protein chloroplast precursor putative expressed AT2G05070.1 

CUST_16989_PI390587928 1.494 0.455 1.684 0.381 1.326 0.331 2.199 0.405 N-acetyl-gamma-glutamyl-phosphate reductase chloroplast precursor putative expressed AT2G19940.2 

CUST_19768_PI390587928 2.039 0.402 1.693 0.308 2.371 0.305 2.003 0.295 FLP1 putative expressed AT5G24860.1 

CUST_6925_PI390587928 1.815 0.497 1.802 0.338 1.758 0.425 1.716 0.321 expressed protein AT3G56650.1 

CUST_5686_PI390587928 1.435 0.807 1.352 0.746 1.373 0.740 1.263 0.645 mTERF family protein expressed AT4G02990.1 

CUST_29990_PI390587928 1.326 0.852 1.233 0.748 1.203 0.889 1.235 0.767 expressed protein  

CUST_16362_PI390587928 1.542 0.452 1.477 0.495 1.642 0.557 1.391 0.510 expressed protein  

CUST_30494_PI390587928 1.307 0.890 1.225 0.835 1.255 0.805 1.159 0.712 expressed protein  

CUST_1746_PI390587928 1.152 0.721 1.337 0.791 1.213 0.735 1.198 0.703 DNA binding protein putative expressed AT4G35040.1 

CUST_21357_PI390587928 1.441 0.578 1.646 0.466 1.730 0.468 1.794 0.325 - ATCG00490.1 

CUST_42255_PI390587928 1.779 0.833 1.360 0.571 1.429 0.672 1.442 0.627 - AT5G52970.1 

CUST_30541_PI390587928 1.392 0.686 1.326 0.609 1.422 0.790 1.214 0.555 -  

CUST_40498_PI390587928 1.816 0.600 1.527 0.373 1.612 0.519 1.459 0.389 50S ribosomal protein L12-1 chloroplast precursor putative expressed  

CUST_34326_PI390587928 1.265 0.650 1.408 0.577 1.412 0.624 1.183 0.642 sialin putative expressed AT2G29650.1 

CUST_42271_PI390587928 1.428 0.769 1.183 0.577 1.434 0.701 1.185 0.507 expressed protein AT3G17668.1 

CUST_15488_PI390587928 2.002 0.526 1.668 0.668 1.628 0.562 1.981 0.491 - ATCG01010.1 
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CUST_6399_PI390587928 1.314 0.657 1.283 0.446 1.400 0.589 1.309 0.491 GMN10 putative expressed AT5G22830.1 

CUST_5408_PI390587928 1.456 0.732 1.206 0.525 1.286 0.717 1.148 0.499 metalloendopeptidase putative expressed AT5G05740.2 

CUST_9411_PI390587928 1.507 0.678 1.421 0.454 1.521 0.674 1.370 0.536 wound and phytochrome signaling involved receptor like kinase putative expressed  

CUST_23464_PI390587928 1.434 0.802 1.408 0.647 1.215 0.665 1.232 0.650 embryogenesis-associated protein EMB8 putative expressed AT3G50790.1 

CUST_38663_PI390587928 1.327 0.809 1.133 0.727 1.298 0.790 1.237 0.806 aldose reductase putative expressed AT2G37790.1 

CUST_25019_PI390587928 1.484 0.592 1.335 0.418 1.314 0.564 1.405 0.517 APE1 putative expressed AT5G38660.1 

CUST_13912_PI390587928 1.151 0.535 1.389 0.522 1.250 0.459 1.753 0.592 -  

CUST_30823_PI390587928 1.192 0.782 1.376 0.707 1.364 0.695 1.220 0.678 expressed protein AT5G47860.1 

CUST_21080_PI390587928 1.584 0.737 1.380 0.536 1.301 0.648 1.128 0.482 30S ribosomal protein S5 putative expressed AT2G33800.1 

CUST_35055_PI390587928 1.218 0.526 1.425 0.716 1.155 0.538 1.235 0.594 ubiquitin-protein ligase putative expressed AT5G01720.1 

CUST_13726_PI390587928 1.645 0.615 1.449 0.543 1.471 0.622 1.218 0.397 protein kinase domain containing protein expressed AT3G50380.1 

CUST_6292_PI390587928 1.218 0.732 1.210 0.744 1.289 0.746 1.194 0.654 ubiquitin ligase SINAT3 putative expressed AT3G61790.1 

CUST_28925_PI390587928 1.148 0.820 1.218 0.744 1.283 0.795 1.187 0.776 DNA binding protein putative expressed AT2G03500.1 

CUST_5301_PI390587928 1.160 0.788 1.413 0.771 1.410 0.808 1.251 0.835 RING zinc finger protein putative expressed AT3G06140.1 

CUST_37332_PI390587928 1.918 0.680 1.535 0.581 1.939 0.831 1.741 0.583 -  

CUST_36124_PI390587928 1.390 0.778 1.257 0.859 1.440 0.811 1.403 0.803 tubulin-specific chaperone E putative expressed AT1G71440.1 

CUST_30700_PI390587928 2.875 0.338 3.828 0.125 5.744 0.312 4.423 0.191 flavonoid 3-monooxygenase putative expressed AT2G45550.1 

CUST_21989_PI390587928 1.319 0.772 1.158 0.633 1.468 0.764 1.427 0.744 expressed protein  

CUST_8383_PI390587928 1.618 0.549 1.637 0.388 1.553 0.529 1.390 0.413 expressed protein AT4G01935.1 

CUST_6153_PI390587928 1.518 0.662 1.523 0.444 1.321 0.484 1.292 0.446 3-deoxy-manno-octulosonate cytidylyltransferase putative expressed AT1G53000.1 

CUST_15833_PI390587928 1.881 0.604 1.542 0.558 1.862 0.734 1.929 0.593 mitochondrial inner membrane protease subunit 2 putative expressed AT3G08980.1 

CUST_7766_PI390587928 1.260 0.759 1.237 0.600 1.366 0.684 1.262 0.770 endo-13;14-beta-D-glucanase precursor putative expressed AT3G23570.1 

CUST_12411_PI390587928 1.600 0.503 1.517 0.473 1.500 0.500 1.241 0.362 coproporphyrinogen III oxidase chloroplast precursor putative expressed AT1G03475.1 

CUST_28616_PI390587928 3.915 0.483 3.323 0.291 5.455 0.451 2.945 0.385 -  

CUST_6014_PI390587928 1.312 0.742 1.371 0.634 1.455 0.680 1.315 0.685 pterin-4-alpha-carbinolamine dehydratase putative expressed AT1G29810.1 

CUST_31366_PI390587928 1.652 0.691 1.538 0.840 1.263 0.698 1.520 0.667 threonyl-tRNA synthetase putative expressed AT2G04842.1 

CUST_29670_PI390587928 1.248 0.887 1.217 0.698 1.177 0.805 1.156 0.798 aspartyl aminopeptidase putative expressed AT5G04710.1 

CUST_22431_PI390587928 1.284 0.732 1.147 0.652 1.298 0.672 1.154 0.493 -  

CUST_35873_PI390587928 1.356 0.835 1.275 0.793 1.429 0.730 1.350 0.764 seed maturation protein putative expressed  

CUST_36895_PI390587928 1.545 0.498 1.570 0.334 1.629 0.465 1.424 0.369 signal recognition particle 54 kDa protein chloroplast precursor putative expressed AT5G03940.1 

CUST_3672_PI390587928 1.646 0.570 1.580 0.409 1.362 0.416 1.307 0.394 expressed protein AT2G04790.2 

CUST_24506_PI390587928 1.389 0.711 1.277 0.654 1.226 0.659 1.150 0.518 expressed protein AT1G73170.2 

CUST_29988_PI390587928 1.152 0.815 1.226 0.787 1.257 0.656 1.116 0.697 F-box domain containing protein  

CUST_4709_PI390587928 1.132 0.817 1.186 0.874 1.267 0.845 1.166 0.738 expressed protein AT5G12920.2 

CUST_35718_PI390587928 1.211 0.840 1.278 0.808 1.363 0.874 1.219 0.896 -  

CUST_8479_PI390587928 1.432 0.787 1.268 0.657 1.405 0.810 1.285 0.654 expressed protein AT5G43822.1 

CUST_11367_PI390587928 1.497 0.596 1.395 0.526 1.610 0.677 1.365 0.470 RNA polymerase sigma factor rpoD putative expressed AT1G64860.1 

CUST_2511_PI390587928 1.187 0.874 1.221 0.799 1.189 0.780 1.087 0.808 cyclic nucleotide-gated ion channel 14 putative expressed  

CUST_8526_PI390587928 1.455 0.868 1.302 0.748 1.145 0.699 1.144 0.604 GTP-binding protein hflX putative expressed AT5G57960.1 

CUST_2309_PI390587928 1.372 0.802 1.219 0.851 1.291 0.963 1.439 0.842 SWIRM domain containing protein expressed AT1G21700.1 
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CUST_27619_PI390587928 1.157 0.708 1.110 0.613 1.192 0.794 1.099 0.735 thioesterase superfamily member 2 putative expressed AT1G04290.1 

CUST_35564_PI390587928 1.327 0.828 1.188 0.752 1.319 0.906 1.248 0.770 tRNA uridine 5-carboxymethylaminomethyl modification enzyme gidA putative expressed AT2G13440.1 

CUST_10206_PI390587928 1.613 0.692 1.361 0.507 1.417 0.647 1.275 0.408 RNA binding protein putative expressed AT1G76050.2 

CUST_9580_PI390587928 1.575 0.577 1.757 0.471 1.983 0.565 2.057 0.681 aquaporin PIP1.1 putative expressed AT4G23400.1 

CUST_36586_PI390587928 1.261 0.590 1.252 0.551 1.316 0.624 1.194 0.505 polycomb protein EZ3 putative expressed AT4G02020.1 

CUST_21994_PI390587928 1.078 0.843 1.312 0.785 1.143 0.726 1.242 0.826 - AT5G52660.2 

CUST_26443_PI390587928 1.321 0.685 1.294 0.607 1.449 0.804 1.304 0.770 sucrose phosphate synthase putative expressed AT2G35840.2 

CUST_324_PI390587928 1.596 0.758 1.357 0.737 1.558 0.651 1.176 0.534 -  

CUST_3970_PI390587928 1.616 0.220 1.863 0.260 2.379 0.306 3.444 0.388 peptide transporter PTR2 putative expressed AT4G21680.1 

CUST_7180_PI390587928 1.235 0.824 1.230 0.695 1.425 0.809 1.257 0.759 phosphatase DCR2 putative expressed AT5G63140.1 

CUST_34186_PI390587928 1.377 0.787 1.381 0.690 1.264 0.642 1.162 0.563 carboxylic ester hydrolase putative expressed  

CUST_8186_PI390587928 1.178 0.848 1.233 0.764 1.247 0.774 1.293 0.832 expressed protein AT3G27460.1 

CUST_20817_PI390587928 1.276 0.595 1.324 0.562 1.470 0.630 1.175 0.456 -  

CUST_4246_PI390587928 1.179 0.804 1.245 0.645 1.645 0.760 1.604 0.826 CESA2 - cellulose synthase expressed AT5G05170.1 

CUST_16130_PI390587928 1.262 0.615 1.258 0.545 1.228 0.559 1.338 0.446 cellulase containing protein expressed  

CUST_14964_PI390587928 1.804 0.692 1.730 0.758 1.217 0.727 1.136 0.461 acid phosphatase putative expressed AT3G01310.2 

CUST_10504_PI390587928 1.968 0.598 1.958 0.539 2.091 0.362 1.297 0.415 MADS-box transcription factor 8 putative expressed AT4G22950.1 

CUST_18190_PI390587928 1.145 0.767 1.245 0.765 1.187 0.717 1.096 0.756 - AT1G69340.1 

CUST_18205_PI390587928 1.743 0.590 2.006 0.516 1.723 0.708 1.161 0.375 HLS1 putative expressed AT4G37580.1 

CUST_31098_PI390587928 1.226 0.800 1.263 0.768 1.377 0.695 1.407 0.860 nucleic acid binding protein putative expressed AT1G09660.2 

CUST_9116_PI390587928 1.237 0.889 1.190 0.856 1.172 0.890 1.087 0.771 OsFtsH7 - Oryza sativa FtsH protease homologue of AtFtsH7 expressed AT3G47060.1 

CUST_18781_PI390587928 1.204 0.723 1.171 0.728 1.314 0.808 1.293 0.808 -  

CUST_6758_PI390587928 1.395 0.722 1.292 0.707 1.479 0.908 1.330 0.691 homogentisic acid geranylgeranyl transferase putative expressed  

CUST_23823_PI390587928 1.230 0.599 1.241 0.567 1.465 0.734 1.258 0.535 serine/threonine-protein kinase NAK putative expressed AT1G20650.1 

CUST_21376_PI390587928 1.498 0.651 1.313 0.572 1.571 0.523 1.562 0.502 omega-6 fatty acid desaturase endoplasmic reticulum isozyme 2 putative expressed  

CUST_5566_PI390587928 2.492 0.570 1.457 0.186 2.106 0.302 1.586 0.138 expressed protein  

CUST_22461_PI390587928 1.355 0.472 1.384 0.406 1.402 0.552 1.409 0.419 -  

CUST_7657_PI390587928 1.324 0.729 1.303 0.684 1.838 0.684 1.450 0.663 vacuolar cation/proton exchanger 1a putative expressed  

CUST_33673_PI390587928 1.263 0.785 1.221 0.795 1.105 0.755 1.130 0.764 tic22 putative expressed AT4G33350.1 

CUST_19339_PI390587928 1.309 0.904 1.114 0.882 1.187 0.842 1.329 0.894 RXW8 putative expressed AT1G58520.1 

CUST_9934_PI390587928 1.114 0.602 1.230 0.702 1.261 0.551 1.329 0.688 -  

CUST_32465_PI390587928 1.441 0.692 1.522 0.574 1.498 0.767 1.270 0.590 OsMPK20-4 - putative MAPK based on amino acid sequence homology expressed AT2G42880.1 

CUST_26123_PI390587928 1.357 0.831 1.151 0.605 1.431 0.732 1.331 0.534 expressed protein AT2G33180.1 

CUST_36313_PI390587928 1.129 0.730 1.458 0.847 1.260 0.725 1.179 0.708 transposon protein putative unclassified expressed AT3G09880.1 

CUST_5087_PI390587928 1.489 0.420 1.448 0.321 1.953 0.431 1.602 0.361 -  

CUST_39581_PI390587928 1.150 0.777 1.336 0.624 1.390 0.805 1.215 0.706 -  

CUST_10796_PI390587928 1.509 0.865 1.326 0.800 1.410 0.687 1.163 0.660 Leucine Rich Repeat family protein expressed  

CUST_14830_PI390587928 1.186 0.707 1.201 0.586 1.313 0.716 1.185 0.704 - AT4G13150.1 

CUST_4399_PI390587928 1.252 0.702 1.156 0.731 1.711 0.755 1.481 0.678 -  

CUST_2962_PI390587928 1.357 0.659 1.262 0.608 1.458 0.719 1.412 0.645 expressed protein AT2G21960.1 
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CUST_34977_PI390587928 1.607 0.465 2.329 0.415 2.292 0.630 2.085 0.653 beta-galactosidase precursor putative expressed AT2G16730.1 

CUST_17289_PI390587928 1.275 0.740 1.311 0.671 1.327 0.614 1.221 0.593 expressed protein  

CUST_25249_PI390587928 1.284 0.847 1.310 0.904 1.363 0.801 1.191 0.805 -  

CUST_86_PI390587928 1.571 0.252 3.302 0.439 1.980 0.101 2.862 0.185 CBS domain containing protein expressed  

CUST_5011_PI390587928 1.547 0.834 1.641 0.737 1.753 0.874 1.289 0.576 MTN3 putative expressed AT3G48740.1 

CUST_35269_PI390587928 1.269 0.464 1.201 0.288 2.179 0.481 1.854 0.555 CBL-interacting serine/threonine-protein kinase 15 putative expressed AT4G14580.1 

CUST_16719_PI390587928 1.303 0.833 1.300 0.783 1.267 0.778 1.198 0.777 chloroplast outer envelope protein 86 putative expressed AT5G20300.3 

CUST_775_PI390587928 1.263 0.874 1.205 0.818 1.330 0.720 1.134 0.625 RING finger protein 13 putative expressed AT1G71980.1 

CUST_14978_PI390587928 1.349 0.932 1.061 0.635 1.155 0.689 1.216 0.765 polygalacturonase putative expressed AT3G62110.1 

CUST_35876_PI390587928 1.537 0.650 1.403 0.502 1.381 0.601 1.319 0.624 JD1 putative expressed AT1G80950.1 

CUST_17757_PI390587928 1.887 0.646 2.021 0.589 1.650 0.464 1.886 0.531 dehydration responsive element binding protein putative expressed AT4G06746.1 

CUST_8108_PI390587928 1.666 0.456 1.373 0.254 1.604 0.294 1.235 0.199 expressed protein AT1G35910.1 

CUST_11556_PI390587928 1.395 0.767 1.236 0.711 1.312 0.712 1.364 0.739 pRGR1 putative expressed AT5G23550.1 

CUST_16565_PI390587928 1.402 0.607 1.430 0.633 1.741 0.596 1.309 0.545 aspartic proteinase nepenthesin-2 precursor putative expressed AT3G12700.1 

CUST_39708_PI390587928 1.430 0.425 1.360 0.412 1.484 0.368 1.400 0.259 SET domain containing protein expressed AT5G14260.2 

CUST_39570_PI390587928 1.887 0.508 1.689 0.291 1.732 0.356 1.458 0.233 FK506 binding protein putative expressed AT4G26555.1 

CUST_513_PI390587928 1.030 0.505 1.230 0.640 1.300 0.649 1.197 0.523 exosome component 10 putative expressed  

CUST_5813_PI390587928 1.557 0.636 1.139 0.477 1.726 0.788 1.341 0.475 -  

CUST_19725_PI390587928 4.006 0.420 3.096 0.120 2.799 0.257 3.009 0.138 -  

CUST_327_PI390587928 1.519 0.485 1.388 0.375 1.495 0.506 1.340 0.341 expressed protein AT2G47910.1 

CUST_16272_PI390587928 1.440 0.865 1.371 0.705 1.396 0.746 1.336 0.699 plastid-lipid-associated protein 2 chloroplast precursor putative expressed AT2G46910.1 

CUST_36652_PI390587928 1.324 0.592 1.479 0.556 1.653 0.676 1.269 0.422 copine-8 putative expressed  

CUST_12285_PI390587928 1.525 0.625 1.398 0.638 1.279 0.623 1.189 0.493 gtk16 protein putative expressed AT1G01760.1 

CUST_36466_PI390587928 1.650 0.645 1.472 0.528 1.809 0.512 1.604 0.406 - AT4G32060.2 

CUST_75_PI390587928 1.296 0.652 1.355 0.711 1.665 0.671 1.620 0.628 -  

CUST_4249_PI390587928 1.223 0.530 1.296 0.395 1.341 0.448 1.208 0.430 DNA-directed RNA polymerase II 23 kDa polypeptide putative expressed AT3G57080.1 

CUST_19385_PI390587928 1.153 0.806 1.127 0.756 1.151 0.801 1.224 0.868 dnaJ homolog subfamily C member 8 putative expressed AT5G22080.1 

CUST_35290_PI390587928 1.326 0.680 1.314 0.694 1.442 0.704 1.176 0.623 -  

CUST_22352_PI390587928 1.170 0.676 1.271 0.767 1.359 0.802 1.179 0.721 -  

CUST_21921_PI390587928 1.527 0.551 1.290 0.429 1.304 0.587 1.341 0.422 PAP fibrillin family protein expressed AT1G51110.1 

CUST_5350_PI390587928 1.173 0.743 1.297 0.644 1.240 0.809 1.182 0.756 expressed protein AT5G03900.2 

CUST_36950_PI390587928 1.722 0.450 1.489 0.315 1.469 0.362 1.254 0.279 pentatricopeptide repeat protein PPR1106-17 putative expressed AT4G18750.1 

CUST_35151_PI390587928 1.138 0.892 1.131 0.803 1.307 0.914 1.201 0.986 phosphatidylinositol transfer protein alpha isoform putative expressed  

CUST_40099_PI390587928 1.270 0.673 1.331 0.563 1.291 0.642 1.150 0.602 D-xylose-proton symporter putative expressed AT1G05030.1 

CUST_7985_PI390587928 1.222 0.721 1.189 0.586 1.432 0.682 1.303 0.658 minor histocompatibility antigen H13 putative expressed AT2G03120.1 

CUST_29266_PI390587928 1.560 0.731 1.328 0.812 1.507 0.710 1.618 0.694 -  

CUST_1193_PI390587928 1.438 0.692 1.350 0.665 1.498 0.703 1.253 0.567 expressed protein  

CUST_33799_PI390587928 1.381 0.716 1.266 0.564 1.356 0.614 1.265 0.618 expressed protein  

CUST_22650_PI390587928 1.043 0.766 1.096 0.746 1.082 0.696 1.134 0.780 - AT2G16405.1 

CUST_5616_PI390587928 1.509 0.357 1.491 0.319 1.579 0.348 1.743 0.200 chlorophyll a-b binding protein 2 chloroplast precursor putative expressed AT2G34430.1 
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CUST_8884_PI390587928 1.427 0.684 1.308 0.563 1.296 0.637 1.144 0.538 -  

CUST_26955_PI390587928 1.545 0.691 1.160 0.601 1.244 0.721 1.396 0.559 sterol-4-alpha-carboxylate 3-dehydrogenase decarboxylating putative expressed AT2G26260.1 

CUST_24539_PI390587928 1.487 0.697 1.607 0.702 1.745 0.811 1.693 0.712 MYND finger family protein expressed  

CUST_37493_PI390587928 1.349 0.802 1.218 0.588 1.555 0.713 1.490 0.673 S-adenosylmethionine-dependent methyltransferase putative expressed AT1G78140.1 

CUST_2730_PI390587928 1.610 0.678 1.169 0.490 1.654 0.783 1.667 0.529 structural molecule putative expressed AT5G09820.2 

CUST_3736_PI390587928 1.377 0.820 1.386 0.690 1.162 0.840 1.180 0.688 14-3-3-like protein A putative expressed AT1G78300.1 

CUST_19405_PI390587928 1.234 0.586 1.270 0.567 1.389 0.768 1.198 0.574 TPR Domain containing protein expressed  

CUST_35767_PI390587928 1.270 0.898 1.293 0.686 1.243 0.814 1.244 0.707 rubredoxin family protein expressed AT5G17170.1 

CUST_17648_PI390587928 1.279 0.705 1.249 0.529 1.378 0.771 1.344 0.681 expressed protein AT5G54290.1 

CUST_32298_PI390587928 1.215 0.710 1.219 0.704 1.441 0.801 1.436 0.676 -  

CUST_27838_PI390587928 1.281 0.780 1.219 0.691 1.210 0.773 1.256 0.641 expressed protein  

CUST_19894_PI390587928 1.490 0.512 1.419 0.328 1.334 0.508 1.358 0.391 phosphoglycerate mutase putative expressed AT5G22620.2 

CUST_9814_PI390587928 1.415 0.794 1.210 0.739 1.299 0.754 1.278 0.745 RING zinc finger protein-like putative expressed AT3G29270.2 

CUST_18686_PI390587928 1.454 0.584 1.261 0.568 1.505 0.710 1.485 0.596 aspartic proteinase nepenthesin-2 precursor putative expressed AT5G22850.1 

CUST_22171_PI390587928 1.328 0.861 1.472 0.949 1.147 0.703 1.231 0.777 protein kinase APK1A chloroplast precursor putative expressed AT3G09830.2 

CUST_37401_PI390587928 1.493 0.796 1.383 0.636 1.408 0.832 1.269 0.659 expressed protein AT1G64770.1 

CUST_27684_PI390587928 1.285 0.873 1.304 0.699 1.327 0.870 1.279 0.838 ferredoxin-thioredoxin reductase catalytic chain chloroplast precursor putative expressed AT2G04700.1 

CUST_4635_PI390587928 1.522 0.475 1.294 0.287 1.425 0.408 1.424 0.361 chaperone protein dnaJ 10 putative expressed AT1G77020.1 

CUST_6191_PI390587928 1.247 0.663 1.292 0.640 1.441 0.648 1.280 0.574 -  

CUST_7197_PI390587928 1.448 0.816 1.216 0.734 1.173 0.720 1.240 0.758 SHL1 putative expressed AT4G22140.2 

CUST_11868_PI390587928 1.342 0.608 1.260 0.597 1.357 0.631 1.227 0.511 -  

CUST_9458_PI390587928 1.493 0.738 1.256 0.474 1.741 0.648 1.471 0.478 IN2-1 protein putative expressed AT3G55040.1 

CUST_31014_PI390587928 1.590 0.442 1.607 0.292 1.465 0.420 1.348 0.309 NADH dehydrogenase I subunit N putative expressed AT5G58260.1 

CUST_41220_PI390587928 1.701 0.500 1.744 0.446 1.527 0.381 1.189 0.281 protein ABIL1 putative expressed AT2G46225.2 

CUST_24900_PI390587928 1.122 0.716 1.119 0.792 1.214 0.797 1.189 0.719 OsPDIL1-4 - Oryza sativa protein disulfide isomerase expressed AT3G54960.2 

CUST_17169_PI390587928 1.665 0.632 1.529 0.526 1.563 0.591 1.459 0.491 phototropin-1 putative expressed AT5G58140.1 

CUST_38300_PI390587928 1.391 0.619 1.319 0.603 1.432 0.628 1.314 0.465 protein kinase PVPK-1 putative expressed AT2G44830.1 

CUST_11729_PI390587928 1.203 0.544 1.280 0.482 1.642 0.427 1.601 0.367 -  

CUST_4295_PI390587928 1.605 0.545 1.569 0.369 1.327 0.495 1.210 0.387 deoxyribodipyrimidine photolyase family protein expressed AT4G25290.1 

CUST_26928_PI390587928 1.263 0.672 1.170 0.686 1.251 0.711 1.147 0.599 -  

CUST_35351_PI390587928 1.400 0.769 1.307 0.559 1.385 0.692 1.195 0.661 expressed protein AT3G07310.1 

CUST_8920_PI390587928 1.163 0.633 1.144 0.646 1.205 0.690 1.103 0.573 expressed protein  

CUST_25752_PI390587928 1.356 0.729 1.270 0.693 1.380 0.801 1.384 0.721 expressed protein  

CUST_11015_PI390587928 1.339 0.594 1.256 0.543 1.418 0.657 1.216 0.475 -  

CUST_4156_PI390587928 1.411 0.582 1.333 0.467 1.557 0.457 1.817 0.466 aldose reductase putative expressed AT2G37790.1 

CUST_12037_PI390587928 1.496 0.699 1.503 0.746 1.659 0.836 1.345 0.545 -  

CUST_20557_PI390587928 1.381 0.661 1.284 0.615 1.445 0.700 1.375 0.642 expressed protein AT2G21960.1 

CUST_35756_PI390587928 1.424 0.584 1.637 0.534 1.630 0.489 1.756 0.311 strictosidine synthase precursor putative expressed AT5G22020.1 

CUST_35026_PI390587928 1.537 0.756 1.529 0.760 1.353 0.553 1.321 0.550 mitochondrial carrier-like protein putative expressed AT1G72820.1 

CUST_12458_PI390587928 1.535 0.386 1.361 0.366 2.448 0.434 2.438 0.325 -  
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CUST_16965_PI390587928 1.682 0.449 1.536 0.453 1.760 0.673 1.719 0.527 -  

CUST_38869_PI390587928 1.549 0.750 1.263 0.792 1.586 0.848 1.406 0.751 RAB5-interacting protein isoform a putative expressed AT5G59410.1 

CUST_12288_PI390587928 1.595 0.730 1.351 0.607 1.963 0.870 1.635 0.634 FIP1 putative expressed AT1G28200.1 

CUST_3889_PI390587928 3.496 0.262 2.726 0.280 1.718 0.136 3.056 0.108 cyanate hydratase putative expressed  

CUST_12319_PI390587928 1.385 0.625 1.319 0.669 1.357 0.669 1.440 0.578 aspartic proteinase nepenthesin-1 precursor putative expressed AT2G03200.1 

CUST_19574_PI390587928 1.478 0.752 1.134 0.588 1.552 0.749 1.505 0.686 3-5 exonuclease eri-1 putative expressed  

CUST_12335_PI390587928 1.306 0.702 1.347 0.728 1.462 0.755 1.239 0.608 protein tyrosine phosphatase putative expressed AT3G52180.1 

CUST_36485_PI390587928 1.124 0.787 1.133 0.810 1.135 0.745 1.175 0.776 -  

CUST_8961_PI390587928 1.433 0.818 1.250 0.673 1.380 0.743 1.363 0.724 agenet domain containing protein expressed AT5G52070.1 

CUST_32731_PI390587928 1.508 0.898 1.317 0.670 1.333 0.760 1.214 0.626 chloroplast 30S ribosomal protein S10 putative expressed AT3G13120.1 

CUST_42231_PI390587928 1.409 0.553 1.227 0.443 1.382 0.604 1.366 0.518 retrotransposon protein putative unclassified AT4G38180.1 

CUST_27348_PI390587928 1.567 0.554 1.416 0.410 1.471 0.540 1.208 0.362 expressed protein AT3G29290.1 

CUST_17190_PI390587928 1.290 0.943 1.248 0.826 1.282 0.806 1.137 0.778 expressed protein  

CUST_2574_PI390587928 1.308 0.595 1.372 0.753 1.375 0.812 1.238 0.519 expressed protein AT1G23170.1 

CUST_23424_PI390587928 1.222 0.814 1.175 0.749 1.266 0.852 1.226 0.747 expressed protein  

CUST_40335_PI390587928 1.390 0.672 1.439 0.663 1.654 0.742 1.467 0.633 -  

CUST_17035_PI390587928 2.663 0.172 2.228 0.132 2.365 0.090 1.899 0.072 amino acid carrier putative expressed AT1G44100.1 

CUST_6391_PI390587928 1.451 0.661 1.388 0.538 1.175 0.569 1.201 0.553 calmodulin binding protein putative expressed AT1G74690.1 

CUST_19079_PI390587928 1.347 0.613 1.248 0.556 1.260 0.609 1.276 0.513 ATP binding protein putative expressed AT5G35170.1 

CUST_1227_PI390587928 1.607 0.739 1.662 0.662 1.567 0.609 1.521 0.675 seed maturation protein PM23 putative expressed AT2G14910.1 

CUST_27071_PI390587928 1.625 0.715 1.622 0.790 1.894 0.857 1.571 0.687 histone H1 putative expressed  

CUST_32843_PI390587928 1.411 0.738 1.377 0.668 1.339 0.755 1.166 0.588 -  

CUST_24914_PI390587928 1.298 0.822 1.240 0.773 1.434 0.843 1.263 0.717 -  

CUST_41825_PI390587928 1.447 0.668 1.194 0.472 1.526 0.838 1.379 0.574 -  

CUST_23691_PI390587928 1.495 0.647 1.537 0.677 1.392 0.669 1.323 0.564 NAC domain-containing protein 18 putative expressed  

CUST_38921_PI390587928 1.710 0.673 1.392 0.640 1.318 0.581 1.449 0.701 expressed protein AT3G02420.1 

CUST_10567_PI390587928 1.527 0.387 1.599 0.338 1.504 0.462 1.736 0.240 -  

CUST_41655_PI390587928 1.074 0.534 1.319 0.614 1.669 0.469 1.663 0.564 protein kinase putative expressed  

CUST_20773_PI390587928 1.262 0.747 1.321 0.651 1.511 0.676 1.163 0.683 jacalin-like lectin domain containing protein expressed  

CUST_10614_PI390587928 1.138 0.663 1.187 0.654 1.174 0.715 1.113 0.610 expressed protein  

CUST_20804_PI390587928 1.124 0.822 1.231 0.913 1.206 0.901 1.160 0.862 expressed protein  

CUST_25596_PI390587928 1.201 0.849 1.105 0.807 1.148 0.861 1.218 0.869 calcium-binding mitochondrial protein Anon-60Da putative expressed AT1G65540.1 

CUST_16661_PI390587928 1.453 0.611 1.364 0.518 1.673 0.672 1.370 0.711 -  

CUST_10428_PI390587928 1.967 0.549 1.577 0.348 1.652 0.488 1.587 0.295 OsAPx8 - Thylakoid-bound Ascorbate Peroxidase encoding gene expressed AT1G77490.1 

CUST_33572_PI390587928 1.564 0.673 1.452 0.525 1.606 0.760 1.260 0.481 mTERF-like protein putative expressed AT2G36000.1 

CUST_20634_PI390587928 1.669 0.449 1.133 0.275 1.274 0.269 1.297 0.232 AP2 domain transcription factor putative expressed AT2G41710.1 

CUST_35833_PI390587928 1.319 0.835 1.138 0.791 1.146 0.668 1.140 0.620 - AT1G11290.1 

CUST_8594_PI390587928 1.167 0.824 1.215 0.914 1.021 0.780 1.251 0.958 -  

CUST_7603_PI390587928 1.388 0.495 1.566 0.406 1.331 0.634 1.346 0.474 glyceraldehyde-3-phosphate dehydrogenase A chloroplast precursor putative expressed AT1G12900.3 

CUST_2610_PI390587928 1.186 0.793 1.187 0.792 1.196 0.655 1.428 0.674 ATP binding protein putative expressed AT4G32300.1 



 
Table S4-2 Genes downregulated in response to K-starvation (Continued).   
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CUST_27920_PI390587928 1.424 0.649 1.389 0.701 1.431 0.676 1.104 0.516 ABC-type Co2+ transport system permease component putative expressed AT5G52780.1 
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Table S4-3 Genes with altered expression in response to Rhynchosporium secalis.   

Expression values relative to the medium for all data, of genes with altered expression in response to R. secalis (-K) plants with p-values < 0.005 corrected for false discoveries using 

Bonferroni multiple testing correction.  Results for control (C) and K-starved (-K) detached leaf segments mock inoculation with water (mock) or inoculated with R. secalis (+ RS), two 

and four days post inoculation are shown. 
SCRI_Hv35_44K_v1 probe 2 days 4 days Hit description Top TAIR9 

protein hit mock + R. secalis mock + R. secalis 

C -K C -K C -K C -K 

CUST_10450_PI390587928 0.866205 0.876973 1.204222 1.548257 0.496386 0.585586 1.063852 1.151802 blue copper protein precursor putative expressed AT1G22480.1 

CUST_13374_PI390587928 0.743486 0.520523 1.427603 1.340865 0.900762 0.499093 1.755946 1.051077 cucumisin precursor putative expressed AT4G10540.1 

CUST_17083_PI390587928 0.83888 0.407153 2.022993 2.477771 0.758858 0.387414 2.228917 0.997355 germin-like protein subfamily 1 member 11 precursor putative expressed AT5G39110.1 

CUST_17976_PI390587928 0.282497 0.113025 1.436617 2.71792 0.060155 0.093383 3.85107 2.742784 elongation factor 1-alpha putative expressed AT5G60390.2 

CUST_18174_PI390587928 0.904766 0.331968 1.901651 2.110275 0.862087 0.376867 2.719532 0.907433 germin-like protein subfamily 1 member 8 precursor putative  

CUST_18626_PI390587928 1.372593 0.243828 3.567727 1.654798 1.146354 0.216371 4.286512 0.438514 L-ascorbate oxidase precursor putative expressed AT4G39830.1 

CUST_19062_PI390587928 0.840218 0.921074 1.140276 1.373771 0.822658 0.922362 1.025981 1.229395 vacuolar sorting receptor 7 precursor putative expressed AT1G30900.1 

CUST_21330_PI390587928 0.752346 0.663686 1.260356 1.760995 0.450479 0.600348 1.101926 1.645373 blue copper protein precursor putative expressed AT2G31050.1 

CUST_21975_PI390587928 0.782343 0.433263 1.714526 1.273674 0.560677 0.629267 1.688013 0.906035 electron transporter putative expressed  

CUST_24709_PI390587928 0.630195 1.444811 0.902833 2.657249 0.43782 0.991013 0.744144 2.839921 cytokinin-O-glucosyltransferase 3 putative expressed AT2G36790.1 

CUST_25260_PI390587928 0.254655 1.080757 0.709211 3.235116 0.179631 1.480901 0.979576 2.994828 germin-like protein subfamily 1 member 7 precursor putative expressed 

CUST_2743_PI390587928 1.258444 0.606263 1.728606 1.463757 0.526171 0.487334 0.971283 1.460069 -  

CUST_27822_PI390587928 1.146428 0.276799 3.519706 1.927374 1.35195 0.267418 3.972169 0.751509 peroxidase 1 precursor putative expressed AT2G18140.1 

CUST_31717_PI390587928 0.711015 1.127725 1.128872 2.837142 0.586185 0.913062 1.001395 2.402245 endochitinase PR4 precursor putative expressed AT3G54420.1 

CUST_35250_PI390587928 0.076099 0.034405 1.583113 3.262655 0.01 0.014503 4.335918 2.552905 60S ribosomal protein L7-1 putative expressed AT2G44120.2 

CUST_36018_PI390587928 0.892114 0.796421 1.466077 1.537158 0.831305 0.768703 1.29645 1.036812 expressed protein  

CUST_37089_PI390587928 0.540049 0.562084 1.302992 2.539836 0.362934 0.472228 1.216219 1.957425 blue copper protein precursor putative expressed AT3G27200.1 

CUST_37091_PI390587928 0.602406 0.598453 1.177203 2.233511 0.392143 0.434253 1.269264 2.173245 blue copper protein precursor putative expressed AT2G32300.1 

CUST_37839_PI390587928 0.749864 0.90849 1.136403 2.100184 0.382622 0.645062 1.063824 1.557924 ATPUP3 putative expressed AT1G28220.1 

CUST_40183_PI390587928 0.202429 0.139274 1.43698 2.422063 0.035111 0.03538 4.218044 2.290781 40S ribosomal protein S27a putative expressed AT2G47110.1 

CUST_4540_PI390587928 0.827997 0.472021 1.916665 2.152302 0.811148 0.439844 1.958907 0.998882 germin-like protein subfamily 1 member 11 precursor putative expressed AT5G39110.1 

CUST_4542_PI390587928 0.919602 0.437717 1.915403 1.672079 0.986564 0.383572 2.256806 0.799991 germin-like protein subfamily 1 member 11 precursor putative expressed AT5G39110.1 

CUST_4545_PI390587928 1.045891 0.27514 2.678953 1.980312 1.125858 0.309295 3.022123 0.66859 germin-like protein subfamily 1 member 11 precursor putative expressed AT5G39110.1 

CUST_4546_PI390587928 0.919134 0.425064 1.465306 1.600915 0.910521 0.372457 1.937557 0.747652 germin-like protein subfamily 1 member 11 precursor putative expressed AT5G39110.1 

CUST_6518_PI390587928 1.162385 0.508537 1.797887 1.581312 0.877073 0.424096 1.755898 0.947338 uclacyanin-2 precursor putative expressed AT2G32300.1 

CUST_7429_PI390587928 0.736172 0.622878 1.424142 1.634614 0.601739 0.550908 1.824046 1.444416 40S ribosomal protein S3a putative expressed AT4G34670.1 

CUST_756_PI390587928 0.177416 0.207797 1.014496 2.457848 0.043797 0.053558 2.910917 2.005241 - AT5G45775.2 

CUST_7871_PI390587928 0.803011 0.944161 0.913712 1.278153 0.829879 1.054379 0.967487 1.231616 GDP-mannose 35-epimerase 1 putative expressed AT5G28840.1 
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