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Summary 

Hypertension is a major risk factor for all cardiovascular disease, which is the 

largest known cause of global mortality. Essential hypertension-that is 

hypertension of unknown cause-is thought to have genetic and environmental 

risk factors. The best studied genetic system is that concerning corticosteroid 

biosynthesis. In humans, the principal glucocorticoid is cortisol, the main 

function of which is the control of intermediary metabolism; the major 

mineralocorticoid is aldosterone, which affects electrolyte and acid-base 

homeostasis. These steroid hormones are produced in the adrenal cortex through 

a series of biosynthetic reactions and under the influence of multiple regulatory 

factors. The final step in cortisol and aldosterone production involves, 

respectively, the cytochrome p450 enzymes, 11β-hydroxylase and aldosterone 

synthase. These are encoded by the CYP11B1 and CYP11B2 genes which have a 

similar sequence and are highly polymorphic and lie, in tandem, on human 

chromosome 8. 

Regulation of CYP11B1 and CYP11B2 mRNA abundance and of aldosterone and 

cortisol production have been extensively investigated. These studies have 

identified that there are several polymorphisms located across the locus which 

are associated with an increased aldosterone to renin ratio (ARR; used as an 

indicator of aldosterone regulation), inefficient 11β-hydroxylation and essential 

hypertension. However, to date, no underlying mechanism for these associations 

has been established. Regulation of expression by transcription factors has been 

widely studied but, in this thesis, it is the role of a novel regulator, microRNA 

(miRNA) that is central. 

miRNAs are short, non-coding RNAs which negatively regulate mRNA abundance 

They are transcribed from endogenous loci, then undergo a series of enzymatic 

maturation reactions that result in the production of a single-stranded molecule 

of approximately 20 nucleotides. They function by associating with a group of 

proteins known as the RNA-induced silencing complex (RISC) and targeting the 3’ 

untranslated region (3’UTR) of specific target mRNAs which they bind with 

imperfect complementarity. There are approximately 1100 human miRNAs, 

which have been implicated in the regulation of a range of target mRNAs and in 
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several pathologies including cancer and cardiovascular disease. The aim of this 

project was to investigate what role, if any, miRNAs have in the regulation of 

CYP11B1 and CYP11B2 expression and in corticosteroid production.  

The studies in Chapter 3 investigated miRNA regulation of corticosteroidogenesis 

in the adrenal cell line H295R. miRNA levels were universally reduced by 

targeting Dicer mRNA, a key component of the miRNA synthetic pathway, with 

short interfering RNA (siRNA). This study identified all of the CYP450 enzymes of 

the corticosteroidogenic pathway (CYP11A1, CYP17A1, CYP21A1, CYP11B1 and 

CYP11B2) as likely candidates for miR-mediated regulation based on mRNA and 

steroid analysis. The study also suggested that StAR, 3βHSDII and 11βHSDII are 

not modulated by miRNAs. To determine whether apparent miRNA regulation of 

CYP11B1 and CYP11B2 expression occurs by direct action at their 3’UTRs, 

reporter constructs were generated and tested. Under both basal and stimulated 

(AngII) conditions, these studies support a regulatory mechanism involving the 

3’UTR of CYP11B1 and CYP11B2. This chapter therefore provides evidence for 

miRNA-mediated regulation of corticosteroidogenesis.  

In Chapter 4, putative miRNA target sites in the CYP11B1 and CYP11B2 3’UTR 

were identified using bioinformatic prediction algorithms and the miRNA 

expression profile of the normal human adrenal, as determined by microarray 

analysis. Based on miRNA target site prediction and analyses of the 3’UTR 

sequences (including such parameters as relative length, predicted sequence 

conservation and RNA secondary structure), in silico methods indicated the 

possibility that miRNAs can target CYP11B1 and CYP11B2 mRNA. Furthermore, 

the expression of 107 miRNAs in the normal adrenal gland was confirmed. 

Cross-referencing of microarray expression and bioinformatic data identified 16 

adrenal miRNAs predicted to bind putative sites in CYP11B1 and 16 predicted to 

bind CYP11B2; 12 of these miRNAs were common to both genes.  

These formed the basis of the miRNA target validation studies in Chapter 5. 

Sixteen adrenal miRNAs identified by bioinformatic analysis were tested 

individually in vitro. This was achieved by measuring mRNA expression, steroid 

production and 3’UTR reporter construct activity following artificially induced 

increases or reductions in the levels of specific miRNAs. These studies identified 

some miRNAs as being false positive predictions, while certain others were 
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validated. The miRNA that gave the most striking and consistent results, for 

targeting both CYP11B1 and CYP11B2, was miR-24, which significantly decreased 

mRNA levels and steroid production. Analysis of adrenal miRNAs predicted only 

to target the CYP11B2 3’UTR confirmed miR-125a-5p and miR-125b as novel 

regulators, although effects on steroid secretion remain to be assessed. The 

studies in this chapter are the first to report of miRNA-mediated regulation of 

CYP11B1 and CYP11B2 expression. 

Finally, in Chapter 6, the miRNA expression profiles of four aldosterone-

producing adenoma (APA) samples were generated and compared to those of 

normal adrenal gland. Analysis identified 67 miRNAs expressed within the APAs; 

54 were also present in the normal tissue. The levels of several miRNAs, 

including miR-24 and miR-125a-5p, were shown to be differentially expressed 

between the tissue types. This chapter also describes polymorphisms within the 

3’UTR of the CYP11B1 gene, generated from 26 normotensive patients. No novel 

SNPs were identified, but three are located in putative miRNA-binding sites. 

Previously, sequence analysis of the CYP11B2 3’UTR had been used to map 

miRNA binding sites, this identified two miRNA-binding sites which mapped to a 

known SNP. Taken together, the studies in this chapter provide a foundation for 

exploring altered miRNA function and/or expression within the adrenal gland. 

In summary, the results presented in this thesis support a role for miRNA-

mediated regulation of corticosteroidogenesis through actions on CYP11B1 and 

CYP11B2 expression. It demonstrates that miRNA are present in the adrenal 

gland, that miRNA-binding sites are present on the 3’UTR of relevant mRNAs, 

and that miRNAs are capable of post-transcriptional regulation that significantly 

alters mRNA abundance and steroid production. My findings describe a novel 

regulatory mechanism of corticosteroidogenesis. Whether this mechanism is 

altered in diseases such as essential hypertension remains to be elucidated. If 

so, miRNAs could, in the longer term, be used as targets for novel therapies or 

as biomarkers to classify more precisely specific pathologies.  
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Definitions/Abbreviations 
* strand Passenger strand/non functional

[K+]e Extracellular potassium ion concentration

11βHSDII 11β-hydroxysteroid dehydrogenase type 2

12-HETE 12-Hydroxyeicosatetraenoic acid

12-LO 12-lipoxygenase 

17-OH-P 17-Hydroxyprogesterone

17-OH-PREG 17-Hydroxypregenolone

18-OHB 18-hydroxycorticosterone 

18-OH-B 18-Hydroxycorticosterone

18-OHDOC 18-hydroxy-11-deoxycorticosterone 

19-OHDOC 19-hydroxy-11-deoxycorticosterone 

3' UTR 3 prime untranslated region

3β-HSD 3β-hydroxysteroid dehydrogenase 

5' UTR 5 prime untranslated region

A Adenosine

A’dione Androstenedione

ACE Angiotension Converting Enzyme

AD1- AD6 Adrenal transcription factor binding site 1 - 6

ADARs Adenosine deaminase action on RNA

AGO Argonaut Protein

AGT Gene encoding angiontensinogen 

AIP Aldosterone-induced Proteins 

AKR1C3 Aldo-keto-reductase family

Aldo Aldosterone

AME Apparent Mineralocorticoid Excess 

AngII Angiotensin II

ANOVA Analysis of variance 

AP-1 Activation protein-1 

APA Aldosterone-producing adenoma 

AP-O Aminopeptidase-O 

AR Androgen receptor 

ARE Adenylate Uridylate-rich element 

ARR Aldosterone to renin ratio

AT1R Angiotensin II receptor type I

AT2R Angiotensin II receptor type II

ATCC American Type Culture Collection 

ACTH Adrenocorticotropic hormone 

ATF Activating transcription factors

ATP Adenosine triphosphate

AU Arbitrary units 

B Corticosterone

BCA Bicinchoninic acid 

bp Base pairs

BRIGHT British Genetics of Hypertension

BSA Bovine serum albumin  
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C Cholesterol

Ca
2+ 

Calcium ions

CAH Congenital adrenal hyperplasia

Calmodulin or CaM Calcium-modulating protein 

CaMK CaM-dependent protein kinases 

cAMP Cyclic adenosine monophosphate 

CAT-1 Cationic amino acid transporter 

CCD Cortical collecting duct 

cDNA Complementary DNA 

c-fos Protein product of FOS gene

CHARGE Cohorts for Heart and Ageing Research in Genome 

Epidemiology BP consortium

CHIF Channel-inducing factor 

CLL Chronic lymphocytic leukaemia 

CMV Cytomegalovirus

CNS central nervous system

CO Cardiac output

CRE cAMP response element 

CREB CRE-binding protein

CRH Corticotrophin-releasing hormone 

Ct Cycle threshold

C-terminus Carboxyl terminal domain

CVD Cardiovascular diseases 

CYP11B1 11β-Hydroxylase

CYP11B2 Aldosterone Synthase

CYP17A1 17α-Hydroxylase

CYP450s Cytochrome P450 enzymes 

DAG Diacylglycerol

Dcp2 Decapping enzyme 2

DGCR8 Drosha and Di George critical region 8 

DHEA Dehydroxyprogesterone

DHFR Dihydrofolate reducatase

DLRA Dual Luciferase Reporter Assay

DMSO Dimethyl sulphoxide 

DNA Deoxyribonucleic acid

dNTPs Deoxynucleoside triphosphates

DOC 11-Deoxycorticosterone

dsRBD Double stranded RNA binding domain 

dsRNA Double-stranded RNA

E Cortisone

EDTA Ethylenediamine tetra-acetic acid

eIF Eukaryotic initiation factor

ENaC Epithelial sodium channel 

ER Estrogen receptors 

ERK Extracellular signal-regulated kinase 

ET-1 Endothelin-1 
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F Cortisol

FAM Fluorescein

FCS Fetal calf serum 

FFPE Formalin-fixed Paraffin-embedded

FH Familial hyperaldosteronism

FOS Gene encoding c-fos

g G-force  (relative centrifugal force)

G Guanine

GAPDH Glyceraldehyde 3-phosphate dehydrogenase

GILZ Glucocorticoid-induced leucine-zipper 

GPCR G-protein coupled receptors

GR Glucocorticoid receptor

GRA Glucocorticoid Remediable Aldosteronism 

GRE Glucocorticoid-responsive elements 

GTP Guanosine-5'-triphosphate (GTP)

GW182 Glycine(G)-tryptophan(W) protein of 182 kD

GWAS Genome-wide association study

HDL High-density lipoproteins 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HITS-CLIP High throughput sequencing of cross-linking immunoprecipitation

HMGA2 Gene encoding High-mobility group AT-hook 2

HPA Hypothalamic-pituitary-adrenal 

HPLC High-performance liquid chromatography

HRE Hormone-response elements 

hsp Heat shock protein

HWE Hardy-Weinberg equilibrium

IC Intron conversion 

IHA Bilateral idiopathic hyperplasia 

INTERSALT International Study of Salt and Blood Pressure 

IP3 1,4,5-trisphosphate 

IRES Internal ribosome entry site

ITS Insulin-transferrin-selenium 

IU International Unit

K
+

Potassium ions

kb Kilobases

kcal/mol Kilocalorie per mole

Kd Dissociation Constant

kD KiloDalton

KiRasA GTP-dependent signalling protein K-ras2 

KIT Gene encoding tyrosine-protein kinase Kit

LAR II Luciferase assay buffer II 

LB Luria Broth

LC/MS:MS Liquid chromatography tandem mass spectrometry

LD Linkage disequilibrium 

LDL Low-density lipoproteins 

LNA Lock Nucleic Acid 

Lod Logarithmic odds ratio  



20 

 

LPP Gene encoding lipoma-preferred partner is a protein

MAF Minor allele frequency

MFE Minimum free-energy 

miRISC miRNA-Induced silencing complex 

miRNA Micro ribonucleic acid (microRNA)

mM Millimolar

mm Millimetre

MONICA North Glasgow Monitoring of Trends and Determinants in CVD

MR Mineralocorticoid receptor 

mRNA Messenger ribonucleic acid

MTHFR Gene encoding Methylenetetrahydrofolate reductase

NaOAc Sodium acetate

NAPDH Nicotinamide adenine dinucleotide phosphate

NBRE-1 Neuronal growth factor-induced clone B response element 

Nedd4-2 Neural precursor cell expressed, developmentally down-regulated 4?2 

nGRE Negative glucocorticoid-responsive elements 

NGRI-B Nneuronal growth factor-induced clone B

NHE Na+/H+ exchanger

nm Nanometer

nM Nanomolar (nanomoles per litre)

NR3C2 Gene encoding mineralocorticoid receptor 

N-terminus Amino acid terminal domain

Obs. Het Observed Heterozygosity 

P Progesterone

p16 Cyclin-dependent kinase inhibitor 2A

PA Primary Aldosteronism 

PABP Poly A binding protein 

PACT Protein activator of PKR

PAZ Piwi-Argonaute-Zwille 

P-bodies Processing-bodies 

PBS Phosphate buffered saline 

PCR Polymerase Chain Reaction 

pEZX Reporter construct

pg Picogram

piwiRNA P-element-induced wimpy testis RNA

PKA Protein kinase A 

PKC Protein kinase C 

PKR Interferon-induced protein kinase

PLB Passive Lysis Buffer

POMC Pro-opiomelanocortin

PR Progesterone receptor 

PREG Pregnenolone

pre-miRNA/pre-miR Preliminary miRNA

pri-miRNA/pri-miR Primary miRNA 

PTEN Phosphatase and tensin homologue 

PTK9 Gene encoding 

qRT-PCR Quantitative Real-time Polymerase chain reaction  
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QTL Quantitative trait loci

RALES Randomized Aldactone Evaluation Study

Ran-GTP RAs-related Nuclear protein-Guanosine-5'-triphosphate

RAS Renin-Angiotensin System

REST Repressor element 1-silencing transcription factor

RIN RNA integrity number 

RISC RNA induced silencing complex

RLB Reporter Lysis Buffer 

RLU Relative light units 

RNA Ribonucleic acid

RNAi RNA interference 

rpm Revolutions per minute

RT Reverse transcriptase

S 11-Deoxycortisol

SEM Standard error of the mean

SF-1 Steroidogenic factor-1 

SGK1 Serum- and glucocorticoid-regulated kinase 1 

SILAC Stable isotope labelling with amino acids in cell culture

siRNA Short interfering ribonucleic acid 

SLIT2 Gene encoding Slit homolog 2 protein

SNP Single nucleotide polymorphism

SPRI Solid phase reversible immobilization

ssRNA Single stranded RNA

StAR Steroidogenic Acute Regulatory 

SV40 Simian virus 40

T Thymine

TASK channel TWIK-related acid-sensitive potassium channel 

TBE Tris/Borate/EDTA 

TFS Transcription factors 

THDOC Tetrahydrodeoxycorticosterone

THS Tetrahydrodeoxycortisol 

TIMP3 Tissue inhibitor of metalloproteinase 3

TPR Total peripheral resistance

TRBP Tar RNA binding protein 

tRNA Transfer RNA 

U Unit

UPL Universal ProbeLibrary 

UTR Untranslated Regeion

UV Ultraviolet

V Voltage

v/v Volume/volume

WR Working reagent 

Wt Wild-type

XRN-2 5'-3' exoribonuclease 2

ZF Zona fasciculata 

ZG Zona glomerulosa 

ZR Zona reticularis 

µM Micromolar (micromoles per litre)
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1 Introduction  
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High blood pressure and associated cardiovascular and cerebrovascular disease 

are massive contributors to morbidity and early mortality in developed societies. 

While lifestyle factors such as smoking, high saturated fat and high salt diets and 

reduced rates of physical exercise are important factors, variations in the 

efficiency of several physiological systems, often genetically-based, contribute 

significantly.  

The adrenal cortex is among the most important of these. In the following 

review, the structure of the adrenal cortex and the nature of its principle 

products, the corticosteroids, are described. The synthesis and control of 

secretion of the two major categories of corticosteroids, those which affect 

electrolyte and acid-base homeostasis, the mineralocorticoids, and those whose 

main function is in the control of intermediary metabolism, the glucocorticoids, 

are briefly outlined. Their mechanism of action in target tissue is then 

described, addressing briefly classical receptor-linked processes and presenting 

information on the more recently discovered non-classical modes of action. 

The importance of the adrenal cortex in hypertension will be discussed by 

describing the effects of corticosteroids in experimental animal models and in a 

group of relatively uncommon disorders of corticosteroidogenesis. However, the 

most frequent form of hypertension is primary or essential hypertension, that is, 

hypertension of unknown aetiology. Studies over recent decades strongly suggest 

that small, genetically-related differences in the control of secretion and rate of 

catabolism of corticosteroids may predispose to hypertension and cardiovascular 

diseases. These studies are outlined and evaluated. 

In the control of metabolism, mRNA transcription is initiated in response to 

specific agonist-induced transcription factors. The resulting mRNA may be 

modified prior to the process of translation into new protein and the longevity 

and eventually destruction of mRNA is determined by other biochemical 

processes. The efficiency of each of these components may contribute to 

biological variation of clinical significance. In the final sections of this review, 

the structure and control of expression of two key genes in corticosteroid 

synthesis are described in detail. Of particular relevance to this thesis, the 

identification and action of novel RNA species, microRNAs, powerful modulators 
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of mRNA is analysed. It is with these microRNAs that the experimental work 

described in sections 3, 4, 5 and 6 is concerned. 

1.1 Blood Pressure and Hypertension 

The heart contracts periodically, with each beat it ejects a bolus of blood into 

the circulation. That creates a cyclic change in blood pressure throughout the 

vasculature. Blood pressure is highest immediately after the contraction, known 

as systolic blood pressure and lowest prior to the next contraction, known as 

diastolic blood pressure. Blood pressure can be defined as the cardiac output 

(CO, the volume of blood ejected from the heart) multiplied by the total 

peripheral resistance (TPR, the sum of resistance in vasculature), these are 

under independent control (Figure 1-1). 

Blood pressure is maintained by a variety of homeostatic controls (Figure 1-1). 

These must tolerate everyday stresses such as changes in posture and exercise to 

ensure continuous perfusion of vital organs. Under healthy circumstances, 

normal adult blood pressure is defined as systolic pressure under 120 mmHg and 

diastolic pressure under 80 mmHg (Chobanian et al., 2003) but this is arbitrary. 

This is further addressed in Section 1.1.2. Blood pressure is under the control of 

several complex regulatory systems including the sympathetic nervous system, 

endocrine stimuli, local tissue control (for example, flow-autoregulation) and 

finally regulation of sodium and water balance by the kidneys (Figure 1-1). The 

renal component is under the control of the renin-angiotensin system, which 

through the production of angiotensin II (AngII) regulates the synthesis of 

aldosterone and will be described in Section 1.1.1. 
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Figure 1-1. Mechanisms of Arterial Pressure Regulat ion. 

Adapted from Cowley (2006). 
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1.1.1 The Renin-Angiotensin System (RAS) 

The renin-angiotensin system (RAS) (Figure 1-2) is composed of a series of 

tightly-regulated enzymatic reactions, the ultimate product of which is 

Angiotensin II (AngII), a pressor octapeptide. Activation of the RAS cascade 

occurs when low blood pressure is detected by the renal afferent arteriole or 

when decreased NaCl concentration is sensed by specialised epithelial cells of 

the distal tubule called the macula densa, stimulating the secretion of renin 

from renal juxtaglomerular cells. Renin is an aspartyl protease which is originally 

synthesised from preprorenin, subsequently cleaved to prorenin and finally to 

renin by the prorenin processing enzyme. Renin catalyses the cleavage of 

angiotensinogen, a hepatic α-globulin to angiotensin I. N-terminal amino acids of 

angiotensin I, an inactive decapeptide, are cleaved by angiotensin converting 

enzyme (ACE) to produce the vasoactive, octapeptide AngII (Figure 1-2). ACE 

was first discovered in the 1950s and is a membrane-bound zinc metalloprotease 

located on vasculature endothelial surfaces in the lungs, the kidneys, the 

intestine and the placenta. 

AngII has many actions in several target tissues including, the vasculature, the 

adrenal cortex, the kidney, the brain and adipose tissue. It binds to specific 

transmembrane G-protein coupled receptors (GPCR) of two types: type 1 (AT1R) 

or type 2 (AT2R) (Figure 1-2) (Timmermans et al., 1993). Once activated, the 

different subtypes of receptors mediate opposing effects on resistant vessels, 

the AT1R promoting vasoconstriction and the AT2R receptor vasodilation. Both 

receptors have similar affinities for AngII, are widely distributed and yet have 

heterogeneous expression patterns. In human adults AT1R serves as the principle 

mediator of blood pressure regulation (Timmermans et al., 1993;Shanmugam et 

al., 1996). By acting on AT1R, AngII contributes to blood pressure regulation by 

three main actions: it promotes the release of aldosterone from the adrenal 

cortex, it increases the re-absorption of sodium in the distal convoluted tubules 

of the kidney and finally, it causes vasoconstriction.  
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Figure 1-2. The Renin-Angiotensin System. 

ACE: angiotensin converting enzyme; AT1R: angiotensin II receptor type 1; AT2R: 

angiotensin II receptor type 2. 
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1.1.2 Hypertension 

Hypertension; that is, blood pressure above the upper limit of the normal range, 

is the major risk factor for all cardiovascular diseases (CVD); 54% of death from 

strokes and 47% of death in patients of ischemic heart disease can be attributed 

to hypertension (Lawes et al., 2008). CVD is the largest known cause of mortality 

globally (Chobanian et al., 2003).  

Blood pressure is subject to short term variability and obtaining a 

‘representative’ clinical value in clinic is difficult. Therefore, defining 

hypertension is problematic (Carretero and Oparil, 2000). As a necessary, though 

arbitrary, guide hypertension is defined as a systolic blood pressure greater than 

140 mmHg or a diastolic blood pressure over 90 mmHg. However, risk varies 

incrementally with blood pressure (Chobanian et al., 2003), even at levels below 

140/90 mmHg (‘pre-hypertensive’) (Table 1-1) (Kshirsagar et al., 2006). This 

emphasises that small changes in the factors governing blood pressure can have 

significant detrimental effects.  

In only a small number of patients (approximately 5%) can an underlying medical 

cause of their hypertension be identified (Section 1.4.1.1). The remaining 95% 

are classified as having essential hypertension (also known as primary 

hypertension or idiopathic hypertension) (Section 1.1.3). 

Table 1-1. Classification of Blood Pressure (Choban ian et al ., 2003). 

Classification Systolic BP (mm Hg) Diastolic BP (mm Hg) 

Normal <120 and <80 

Pre-hypertension 120-139 or 80-89 

Stage 1 Hypertension 140-159 or 90-99 

Stage 2 Hypertension >160 or >100 
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1.1.3 Essential Hypertension 

The aetiology of essential hypertension remains elusive, despite large numbers 

of investigative studies. However, there are several known risk factors which 

contribute to the development of hypertension which can be split into lifestyle 

or genetic risk factors. The next section will briefly discuss the effects of these 

on blood pressure.  

1.1.3.1 Lifestyle Risk Factors 

Environmental risk factors include high sodium intake and low potassium intake, 

obesity, stress, lack of exercise, smoking and alcohol intake. Of these, sodium 

and potassium intake are the most relevant to the studies of this thesis because 

they alter the production and action of corticosteroids (Section 1.2.5 and 1.3). 

The International Study of Salt and Blood Pressure (INTERSALT) project was a 

large, prospective epidemiological study which involved 52 centres from 32 

countries. Results from 10,079 individuals identified a strong link between 

sodium excretion and systolic blood pressure that was independent of any other 

risk factors (Stamler et al., 1989). Other intervention studies reduced salt intake 

in either normotensive or hypertensive people and showed that blood pressure 

was reduced on low sodium diets. This is true for both acute (less than 4 weeks) 

or prolonged salt restricted diets, which reduced salt intake from 10 g/day to 5 

g/day (Macgregor et al., 1982;Meneton et al., 2005). Moreover, a recent meta-

analysis of 19 separate cohorts demonstrated that high sodium intake (average 

increase in salt intake of 5 g/day) increased the risk of stroke and total 

incidence of CVD (Strazzullo et al., 2009). 

INTERSALT identified a relationship between potassium intake and blood 

pressure; urinary excretion of potassium had an independent, inverse association 

with systolic blood pressure. Also, the ratio of sodium: potassium excretion was 

positively and significantly related to both systolic and diastolic blood pressure 

(Stamler et al., 1989). A meta-analysis of 33 randomised controlled trials 

(totalling 2609 subjects), which each investigated the use of potassium 

supplements, found that exogenous potassium significantly reduced blood 

pressure (Whelton et al., 1997). Further, hypertensive animals fed high 
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potassium and high sodium diets had lower blood pressures than those on high 

sodium, standard potassium diets (Adrogue and Madias, 2007). Corticosteroids 

both respond to, and participate in, the control of electrolyte status (Sections 

1.2.5 and 1.3). 

1.1.3.2 Genetic Risk Factors  

The studies in this thesis relate to the control of gene transcription. It is 

therefore relevant briefly to consider how genetic variation and disease in the 

population is studied. Evidence implicating a genetic link to blood pressure 

regulation and pathology is strong and arises from several sources. Several key 

family studies suggest a genetic link; individual members of a family unit have a 

greater similarity in their blood pressures when compared to individuals from 

other families (Longini et al., 1984). Findings from twin studies found a greater 

concordance of blood pressure in monozygotic twins than in dizygotic twins 

(Feinleib et al., 1977). Furthermore, the blood pressures of biological siblings is 

more highly correlated than those of adopted siblings (Biron et al., 1976;Rice et 

al., 1989). Other evidence of a genetic link arises from several defined 

monogenic diseases which affect blood pressure (Section 1.4.1.4). 

Heritability is a parameter measuring the likelihood that a trait is attributed to 

genetic rather than environment factors. Blood pressure has a relatively high 

percentage of heritability, reported 15-40% for systolic blood pressure and     15-

30% for diastolic. A systematic review of family studies estimated the joint 

heritability rate to be approximately 35% (Ward, 1990). Thus, evidence supports 

a genetic risk to blood pressure. 

Hypertension is a polygenic disorder, where the combination of several 

detrimental genetic traits is manifested as a small increase in blood pressure. 

However, to date, the identity of the genes responsible for this association 

remains elusive, although information obtained from the study of rare 

monogenic disorders has made a useful contribution to our understanding of the 

genetics of hypertension (Section 1.4.1.4). Also, several other scientific 

approaches such as linkage and association studies have identified causative 

genetic defects that may allow for more focused preventative measures and 

treatment. 
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Association Studies 

Genome-wide association studies (GWAS) as the name suggest, span the entire 

genome and tend to involve the highest number of subjects as well as being the 

most expensive method to perform. GWAS assesses over a million single 

nucleotide polymorphisms (SNPs) located throughout the genome to identify 

variations important to a disease trait. GWAS studies are carried out in large 

populations, in cases and controls or in individuals. The aim is to identify novel 

associations of SNPs with diseases, and been useful in the study of many diseases 

(Burton et al., 2007). 

However, the complex nature of blood pressure, the problem of choosing 

appropriate controls and the inadequate coverage of SNPs in commercial gene 

arrays have prevented GWAS from being as successful for the investigation of 

hypertension. Of the twelve independent blood pressure GWAS studies (all of 

European origin), only two have successfully identified regions with positive 

associations to blood pressure: the Global BPGen consortium and the CHARGE 

(Cohorts for Heart and Ageing Research in Genome Epidemiology BP consortium) 

(Newton-Cheh et al., 2009;Levy et al., 2009). In total, 14 independent genetic 

loci have been identified for blood pressure traits, several of which lie near 

genes which encode enzymes (kinases and cyp450 (see Section 1.2.2.1)), solute 

channels, transcription factors, a cell signalling protein and a structural protein 

(Ehret, 2010). Two of the candidates, the CYP17A1 gene and the MTHFR gene 

are plausible candidates (their significance is explained in Section 1.4.1.4), the 

role and implication of the others remains to be understood. The analysis of this 

in GWAS data predicts that each associated allele would represent a change of 

about 1 mm Hg in systolic pressure (Ehret, 2010). Thus, genetic variations may 

each have a small impact on blood pressure but the coexistence of several 

detrimental loci could have a cumulative effect. 
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Linkage Analysis 

Linkage analysis studies aim to identify genomic loci, known as quantitative trait 

loci (QTL) which are genetically linked, heritable and may be attributable to the 

disease being investigated. The largest study of this type has been the British 

Genetics of Hypertension (BRIGHT) study that identified two QTL (Caulfield et 

al., 2003). However, the results have been criticised due to the location of the 

QTL being close to the end of chromosomes, this is often problematic as linkage 

programmes can generate errors at the extremes of chromosome, and the use of 

multiple testing which requires a higher Lod (logarithmic odds ratio, a score 

used to indicate the likelihood of linkage) of 3.6 to attain significance. In the 

case of BRIGHT the was Lod score was only 2.5 (Binder, 2007;Delles et al., 

2010). Individual linkage studies have identified QTLs on nearly all human 

chromosomes but these are rarely replicated by other studies (Binder, 2007). 

Thus, linkage analysis is not an accurate or reproducible method for studying the 

importance of genes and hypertension. 

Candidate Gene Analysis 

An alternative approach, candidate gene studies, dissects the variability of 

genes with a known physiological link to blood pressure, such as those involved 

in salt and fluid homeostasis (e.g. RAS) or the adrenergic system. The results of 

these studies have been inconsistent, frequently due to poor study design 

(selection of heterogeneous cases and controls) or SNP coverage. One of the 

most extensively studied genes using this approach is the AGT gene which 

encodes angiotensinogen, a pivotal enzyme in the RAS (Figure 1-2). Many SNPs 

have been identified in this gene in coding and non-coding DNA regions. Two 

SNPs, T174M and M235T, are associated with hypertension in some studies but 

not others (Dickson and Sigmund, 2006). A meta-analysis of several studies failed 

to confirm these associations but the T allele at position 235 was associated with 

an increased relative risk of hypertension (Sethi et al., 2003). Another candidate 

is the ACE gene, which again has a high frequency of polymorphisms, the one of 

most interest being a 287 base-pair insertion/deletion within intron 16. This 

polymorphism is associated with increased ACE plasma levels, coronary artery 

disease and endothelial dysfunction, as measured by monitoring cardiac blood 

flow following infusion of acetylcholine and sodium nitroprusside (Prasad et al., 

2000). However it does not play a role in hypertension (Jeunemaitre, 2008). The 
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genes that provided the focus in this thesis, CYP11B2 and CYP11B1, are also 

well-studied candidate genes and will be discussed in greater detail in sections 

1.2.2, 1.2.6 and 1.4.2. 

To summarise, there are significant genetic and lifestyle components to blood 

pressure regulation and the development of hypertension.  Essential 

hypertension is a complex disease and the genetic aetiology is difficult to study. 

One candidate system which studies have shown to be important for blood 

pressure regulation and the development of essential hypertension is the adrenal 

cortex. The main mineralocorticoid, aldosterone and, main glucocorticoid, 

cortisol are synthesised here and altered synthesis plays a role in the aetiology 

of essential hypertension. The next three sections of this review will focus on 

these compounds, their actions and the evidence of their dysregulation in 

several pathologies. 



 34 

 

1.2 Corticosteroids 

Steroid hormones are classified by their structural characteristics and biological 

function.  Examples include estrogens, androgens, progestins, corticosteroids 

and vitamin D. All steroids are derived from cholesterol. Corticosteroids are 

products of the adrenal cortex and, based on their function, can be subdivided 

into mineralocorticoids and glucocorticoids, the main human examples of which 

are aldosterone and cortisol, respectively. The adrenal cortex also synthesises 

androgens and small quantities of estrogens.  

1.2.1 The Adrenal Gland 

The adrenal glands are paired endocrine organs that lie anatomically superior to 

each kidney. Each adrenal gland has independent blood, lymph and nervous 

supplies and can therefore function independently of one another. The glands 

are surrounded by an outer fibrous capsule. The functional tissue of the adrenal 

gland is divided into two separate anatomical regions, which have specialised 

functions. The inner medulla is responsible for producing and secreting 

catecholamines.  The primary function of the outer region, the adrenal cortex, is 

to produce and secrete steroid hormones, for example aldosterone and cortisol. 

The adrenal cortex is divided into three zones, which are functionally and 

histologically distinguishable. The names, position and functions of each zone 

are outlined in Table 1-2 and illustrated in Figure 1-3. 
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Table 1-2. Name, Function and Location of the Layer s of the Adrenal Cortex. 

Zone Position Steroids Produced 

Zona glomerulosa (ZG) Outer Mineralocorticoids 

Zona fasciculata (ZF) Middle Glucocorticoids 

Zona reticularis (ZR) Inner Sex steroids and glucocorticoids 

 
 

 

Figure 1-3. Cross-Sectional Illustration of the Lay ers of the Adrenal Gland. 

Adrenal gland showing inner medulla, outer cortex and capsule. Magnified section 

showing schematic and haematoxylin and eosin staining of individual layers (taken from 

the McGraw-Hill online learning centre; chapter 10 Endocrine System, 

http://www.mhhe.com/biosci/ap/seeleyessentials/student/olc/chap10out.html). 
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1.2.2 Enzymes of the Corticosteroid Pathway 

Two classes of enzymes are required for corticosteroidogenesis: five cytochrome 

P450 enzymes and one hydroxysteroid dehydrogenase. Characteristics of each of 

these enzymes are briefly discussed below; the succeeding sections will describe 

the features and functions of these enzymes in relation to corticosteroid 

synthesis. Steroid synthesis involves a complex pathway of intermediates; the 

names and common abbreviations of components in the pathway are in Table 1-3 

and their structures illustrated in Figure 1-4. 

1.2.2.1 Cytochrome P450 Enzymes 

To convert cholesterol to the C21 corticosteroids (Figure 1-4), most of its side 

chain must be removed and the pregnane structure modified by a series of 

oxidative reactions. Androgen synthesis requires the complete removal of the 

side chain. The majority of enzymes involved are mixed function oxidases or 

mono-oxygenases belonging to the cytochrome P450 group of enzymes 

(CYP450s). These are a large class of haemoproteins which catalyse oxidative 

reactions in a wide range of cells. They are so named because, when in a 

carbon-monoxide-bound form, they produce an absorption band at 450 nm. 

CYP450s are a very diverse family which is sub-classified into 69 families based 

on structural and phylogenetic similarities (Nelson et al., 1996). CYP450s are 

involved in a wide range of cellular functions including xenobiotic metabolism, 

steroid synthesis and lipid synthesis. They catalyse the addition of an oxygen 

atom from a molecule of oxygen to the substrate in a locus and stereo-specific 

manner, utilising an electron donor, usually NAPDH. The remaining oxygen atom 

is reduced to water. The stoichiometry of the reaction is; 

R-H + NADPH + H+ + O2 R-OH + NADP+ + H2O
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1.2.2.2 Hydroxysteroid Dehydrogenases 

Hydroxysteroid dehydrogenases are bidirectional, non-metalloenzymes that are 

expressed in several tissue types. There are several different isoforms of each 

dehydrogenase, each with a specific expression pattern, cellular localisation, 

catalytic activity and each is encoded by a different gene. All dehydrogenase 

enzymes utilise co-factors, which act as hydrogen donors or acceptors, for 

example NAD+/NADP+. Within the adrenal cortex, 3β-hydroxysteroid 

dehydrogenase (3β-HSD) is essential for the synthesis of mineralocorticoids, 

glucocorticoids and androgens. In contrast, hydroxysteroid dehydrogenases 

expressed in peripheral tissue, for example in the kidney, are responsible for 

metabolism of steroids (Penning, 1997;Payne and Hales, 2004). 

1.2.3 Cholesterol Transfer into the Mitochondria 

Cholesterol is a sterol and is the precursor of all steroids Figure 1-4. It is 

comprised of four hydrocarbon rings, a hydrocarbon tail (carbons 20-27) and a 

3β-hydroxyl group. Cholesterol can be synthesised de novo in the adrenal cortex 

but most is derived from extra-adrenal sources, predominantly in the liver or the 

diet. Cholesterol is amphipathic and must be incorporated in low-density 

lipoproteins (LDL) or high-density lipoproteins (HDL) to circulate in the blood.  

In humans, the adrenal gland preferentially uses cholesterol derived from LDL in 

circulating plasma, which is internalised into the adrenal cells by receptor-

mediated endocytosis whereas, in rats the main source is from HDL (Gwynne and 

Strauss, 1982). Once inside the cell, cholesterol must be transported across the 

outer mitochondrial membrane. Several transporters have been identified which 

facilitate this transfer but it is now widely accepted that the principle 

transporter is the steroidogenic acute regulatory (StAR) protein.  Some 

cholesterol can diffuse across the membrane but its hydrophobic nature means 

that the rate of diffusion is extremely slow and contributes little to 

steroidogenesis (Phillips et al., 1987). Cholesterol transport via StAR is the rate-

limiting step of corticosteroidogenesis.  
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Steroidogenic Acute Regulatory (StAR) Protein  

StAR is expressed exclusively in steroid-producing tissues. The StAR protein is 

generated in the cytoplasm and directed to the mitochondrion by an NH2 

(N)-terminal targeting motif. Once localised to the mitochondrion, the targeting 

motif is cleaved from a 37 kD mature protein to produce a 30 kD transporter. 

The carboxyl (C)-terminus region of the protein is also crucial to StAR function; 

truncation of the C-terminus severely decreased the activity of StAR (Arakane et 

al., 1996). The C-terminus is believed to be crucial for the association of StAR 

with the outer mitochondrial membrane and conformational changes important 

to its activity (Yaworsky et al., 2005). 

Cholesterol transport by StAR was first observed in rat adrenal cells stimulated 

with either adrenocorticotropic hormone (ACTH) or dibutyryl cyclic adenosine 

monophosphate (cAMP) (Krueger and Ormejohnson, 1983). Cloning and 

expression of the protein confirmed its role in steroidogenesis (Stocco and Clark, 

1996) and StAR-knockout mice have dramatically reduced levels of steroid 

production and increased levels of stimulatory trophins (owing to a negative 

feedback mechanism, see section 1.2.5). Moreover, these knockout mice have 

impaired growth and die prematurely, highlighting the essential functions of 

corticosteroids (Caron et al., 1997).  Patients with mutations in the StAR gene 

can show an almost complete lack of corticosteroids, and can be lethal in 

newborn infants. This condition is known as lipoid congenital adrenal hyperplasia 

(Lin et al., 1995). Although StAR’s key role is now established, the mechanism by 

which it transports cholesterol is not fully understood. However, four modes of 

action have been proposed (for review see Miller (2007)). 
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Figure 1-4. Structure of Corticosteroids and Interm ediate Compounds. 

The carbon atoms are numbered in the cholesterol molecule. 
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Table 1-3. Identities and Abbreviations of Key Adre nal Steroids. 

Common Name Abbreviation Systematic Name 

Cholesterol C Cholest-5-en-3β-ol 

Pregnenolone PREG 3β-hydroxypregn-5-ene-20-one 

Progesterone P pregn-4-ene-3,20-dione 

17-Hydroxypregenolone 17-OH-PREG 3β,17α-dihydroxypregn-5-ene-20-one 

17-Hydroxyprogesterone 17-OH-P 17α-hydroxypregn-4-ene-3,20-dione 

Dehydroxyprogesterone DHEA 3β-hydroxyandrost-5-ene-17-one 

Androstenedione A’dione androst-4-ene-3,17-dione 

11-Deoxycortisol S 17α,21-dihydroxypregn-4-ene-3,20-dione 

Cortisol F 11β,17α,21-trihydroxyprepn-4-ene-3,20-dione 

Cortisone E 17α,21-dihydroxypregn-4-ene-3,11,20-trione 

11-Deoxycorticosterone DOC 21-dihydroxypregn-4-ene-3,20-dione 

Corticosterone B 11β,21-dihydroxypregn-4-ene-3,20-dione 

18-Hydroxycorticosterone 18-OH-B 11β,18,21-trihydroxypregn-4-ene-3,20-dione 

Aldosterone Aldo 11β-21-dihydroxypregn-4-ene-3,20-dione-18-al 
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Figure 1-5. Corticosteroid Biosynthetic Pathway. 

Pathway of corticosteroid synthesis in the adrenal cortex. Dashed lines represent the zone of the adrenal cortex in which each reaction occurs.



 42 

 

1.2.4 Corticosteroidogenesis  

Cholesterol Side-Chain Cleavage (P450scc) 

The first step in steroidogenesis involves the cleavage of cholesterol to 

pregnenolone (Figure 1-5), which is mediated by the cholesterol side-chain 

cleavage enzyme (CYP11A1 or P450ssc). CYP11A1 is encoded by the CYP11A1 

gene, which is located on human chromosome 15. It is expressed in all three 

zones of the adrenal cortex. The enzyme is located on the inner mitochondrial 

membrane and catalyses three separate oxidative reactions (Figure 1-4); the 

first is hydroxylation at C22 and the second the hydroxylation of C20, producing 

the intermediate compound, 20,22R,hydroxyl-cholesterol. The final reaction 

catalysed by CYP11A1 is cleavage between C22 and C20, which shortens the side 

chain of cholesterol by six amino acids, creating the C21 steroid pregnenolone 

(Figure 1-5). Each reaction requires one molecule of O2 and one of NADPH, 

acting via ferredoxin and ferredoxin reductase, to donate electrons. 

Pregnenolone is the precursor for all steroids of the adrenal cortex (Lieberman 

and Lin, 2001) and is released into the cytoplasm for further modifications. 

3β-Hydroxysteroid Dehydrogenase (3β-HSD) 

Pregnenolone is converted to progesterone by 3β-hydroxysteroid dehydrogenase 

(3β-HSD). This enzyme is located in the membrane of the smooth endoplasmic 

reticulum and catalyses three alterative reactions, pregnenolone to 

progesterone, 17α-pregnenolone to 17α-progesterone and 

dehydroepiandrosterone (DHEA) to androstenedione (Figure 1-5). Two human 

isoforms of 3β-HSD have been identified: type I (3β-HSDI) and type 2 (3β-HSDII). 

Each is encoded by a separate gene, both located on human chromosome 1 

(Berube et al., 1989;Lachance et al., 1991). The predominant isoform in the 

human adrenal cortex is 3β-HSDII. Mutations of this isoform have been identified 

and associated with congenital adrenal hyperplasia (CAH) (Section 1.4.1.4) 

(Rheaume et al., 1992). 

The corticosteroidogenesis pathway is different in the zona fasciculata and 

glomerulosa (and reticularis), due to the local enzyme expression profile which 

is cell type-dependent (Table 1-2). There is little or no evidence of exchange of 

substrate between zones. 
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Zona Fasciculata Pathway 

The major glucocorticoid, cortisol can be synthesised from pregnenolone or 

progesterone, but it is probably the pregnenolone pathway that is more 

important (Figure 1-5). Both compounds result from 17α-hydroxylase catalysis to 

produce 17-OH-pregnenolone and 17-OH-progesterone, respectively. As 

mentioned above 17-OH-progesterone can also be synthesised through the 

reduction of 17-OH-pregnenolone by 3β-HSDII. 

17α-Hydroxylase is encoded by the CYP17A1 gene, located on chromosome 10 

and expressed in the zona fasciculata and zona reticularis. It is a dual-

functioning enzyme with both 17α-hydroxylase activity and 17, 20-lyase activity 

(Figure 1-5). While 17α-hydroxylation produces 17-OH-pregnenolone and 17-OH-

progesterone, 17, 20-Lyase activity (predominant in ZR) removes the residual 

side chain and is necessary for the synthesis of the C19 androgens; it also 

converts 17-OH-pregnenolone to DHEA and 17-OH-progesterone to 

androstenedione. 

The next zona fasciculata step involves 21-hydroxylation, catalysed by 21α-

hydroxylase (CYP21A1), which converts progesterone and 17-OH-progesterone to 

11-deoxycorticosterone (DOC) and 11-deoxycortisol (S), respectively. This 

enzyme is encoded by the CYP21A1  gene on human chromosome 6 (White et al., 

1986) and expressed in all cell types of  the adrenal cortex (Shinzawa et al., 

1988).  

The final step in cortisol synthesis is the 11-hydroxylation of 11-deoxycortisol, 

which is catalysed by the 11β-hydroxylase and occurs in the mitochondria 

requiring that the 11-deoxy-precursors are again transported to the inner 

membrane. This enzyme is encoded by the CYP11B1 gene, which is located on 

human chromosome 8 (Mornet et al., 1989) and expressed in the zonae 

fasciculata and reticularis (Ogishima et al., 1992). 11β-Hydroxylase also converts 

DOC to corticosterone (B), and also catalyses 18- and 19- hydroxylation, 

converting DOC to 18-hydroxy-11-deoxycorticosterone (18-OHDOC) and 

19-hydroxy-11-deoxycorticosterone (19-OHDOC), respectively. In addition, it 

converts corticosterone to 18-hydroxycorticosterone (18-OHB). Corticosterone is 

the principal glucocorticoid in the rat. 
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Zona Glomerulosa Pathway 

The zona glomerulosa is the site of aldosterone synthesis (Figure 1-5). This zone 

lacks 17α-hydroxylase and therefore the intermediary substrate synthesised is 

DOC. To complete aldosterone synthesis, DOC is oxidised in three separate and 

sequential reactions, each of which is catalysed by a zona glomerulosa-specific 

enzyme, aldosterone synthase. Aldosterone synthase is encoded by the CYP11B2 

gene, which lies in tandem with the CYP11B1 gene on human chromosome 8 

(Section 1.4.2.1) (Curnow et al., 1991;Kawamoto et al., 1992). Firstly, 

aldosterone synthase catalyses 11β-hydroxylation of DOC to produce 

corticosterone (B), C18 of B is then hydroxylated to produce 18-

hydroxycorticosterone (18-OHB). Finally, the hydroxyl group on C18 is 

hydroxylsed, this create an unstable structure that is resolved by a spontaneous 

dehydration, producing an aldehyde group at C18 and resulting in the formation 

of aldosterone (Denner et al., 1995). The reactions catalysed by aldosterone 

synthase are summarised in Table 1-4 and the structural modification depicted 

in Figure 1-4.  

Table 1-4. Reactions Catalysed by Aldosterone Synth ase. 

Substrate Reaction Product 

DOC 11β-hydroxylation Corticosterone (B) 

B 18-hydroxylation 18-Hydroxycorticosterone (18-OHB) 

Aldosterone ‘18-oxidation’ Aldosterone 

 

1.2.5 Control of Secretion of Corticosteroids 

Expression of the CYP11B1 and CYP11B2 genes is primarily regulated by 

endocrine trophins, including AngII and ACTH. The extracellular concentration of 

potassium also contributes to their regulation. Circulating AngII and potassium 

concentrations are the predominant regulators of aldosterone synthesis and 

share a common intracellular second messenger pathway that increases 

transcription of the CYP11B2 gene and production of aldosterone, whereas ACTH 

is the key regulator of CYP11B1 gene transcription and cortisol production. 

These will be described below. The second level of regulation at the molecular 

level includes regulation of gene transcription and translational and protein 

formation. This will be discussed in sections 1.2.6 and 1.2.7. 
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1.2.5.1 Angiotensin II (AngII) 

As previously described, AngII synthesis is under the control of the RAS and its 

release is stimulated by detection of low blood pressure, sodium depletion or 

hyperkalaemia. It acts on AT1R, exclusively expressed in the ZG of the adrenal 

cortex (Section 1.2.1). Antagonising AT1Rs inhibits the AngII dependent increase 

in CYP11B2 mRNA in rabbit and rat adrenal glands (Dudley et al., 

1990;Hajnoczky et al., 1992). AngII-mediated effects on adrenal function are 

achieved by activating multiple intracellular second messenger systems, 

including the scr family of kinases and the 12-lipoxygenase (12-LO) pathway 

(Bassett et al., 2004). Furthermore, AngII stimulation activates membrane-bound 

phospholipase C which hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) to 

produce inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Both affect 

corticosteroidogenesis, IP3 is soluble and diffuses through the cytoplasm to 

mobilize bound calcium from endoplasmic reticulum and sacroplasmic reticulum 

stores, ultimately increasing intracellular free calcium concentrations. By 

binding calcium-modulating protein (calmodulin or CaM), calcium activates other 

intracellular pathways, including CaM-dependent protein kinases (CaMK). 

Several isoforms of CaMKs are important for corticosteroidogenesis. CaMKI is 

localized to the ZG and studies using the CAMK inhibitor KN93 and expression 

vectors in the human adrenocarcinoma cell line, H295R, demonstrated that 

CaMKI is important for basal CYP11B2 mRNA expression and also for increased 

aldosterone production upon stimulation with AngII or K+ (Condon et al., 2002). 

CaMKI is believed to phosphorylate transcription factors that influence CYP11B2 

mRNA transcription (Section 1.2.6). 

CaM also activates the CaM-dependent protein phosphatase, calcineurin. A 

recent study showed that calcineurin mRNA is increased from basal in H295R 

cells stimulated with AngII, and manipulating calcineurin levels by 

pharmacological agents, short interfering RNAs (siRNAs) or adenovirus transfer 

suggest it is a new calcium-dependent regulator of CYP11B2, at least in vitro 

(Yamashiro et al., 2010).   

In contrast to IP3, DAG remains at the cell membrane, initiating translocation of 

protein kinase C (PKC) to the plasma membrane, then its activation. Several 
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members of the PKC family have been implicated in adrenal steroidogenesis 

(Lehoux et al., 2001) and many intermediates, including arachidonate and 

12-HETE, may be involved in the stimulation of aldosterone secretion. PKC does 

not appear to have direct effects on CYP11B2 transcription but may act by 

inhibiting the CYP17A1 gene, thus making aldosterone synthesis the preferred 

route of steroidogenesis (Bassett et al., 2004). 

While AngII is a potent stimulator of CYP11B2 expression, it also influences other 

genes that may contribute indirectly to increased production of aldosterone. A 

recent gene microarray study of stimulated H295R cells identified several genes 

which has altered expression compared to non-stimulated cells. For example, 

members of the nerve growth factor IB family successfully increased aldosterone 

production when exogenously expressed in cells (Romero et al., 2007). 

1.2.5.2 Potassium Ions (K +) 

Potassium ions (K+) stimulate aldosterone production by both RAS-dependent 

(alterations in electrolyte balance can modulate the production of AngII 

synthesis) and RAS-independent direct effects on the adrenal cortex. Increased 

extracellular K+ concentration ([K+]e) increases aldosterone synthesis and 

secretion. 

Increased [K+]e  causes the ZG cell membrane to depolarise, opening cell 

membrane voltage-gated calcium channels. This occurs in a concentration 

dependent manner; changes within physiological ranges activate T-type calcium 

channels, whereas higher concentrations activate L-Type calcium channels 

(Lotshaw, 2001). Calcium flux into the cells rapidly increases the intracellular 

free calcium concentration which, in turn, activates calmodulin and CaM kinases 

to stimulate aldosterone production in a similar manner to AngII (Section 

1.2.5.1) (Pezzi et al., 1997). 

Adrenal glomerulosa cells are highly sensitive potassium-sensor cells and exhibit 

a rapid response to very small changes in [K+]e; for example, a small potassium 

chloride infusion in normal volunteers, which did not significantly change plasma 

[K+], caused an increase in plasma aldosterone within 30 minutes 

(Himathongkam et al., 1975). Moreover, in an in vitro system that tends to be 
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less sensitive to stimulation, an increase of only 1 mM of K+  was sufficient to 

double the production of aldosterone in primary rat glomerulosa cells (Pralong et 

al., 1992). This sensitivity arises due to a very large negative resting membrane 

potential of the ZG cells, consequentially the membrane is highly permeable to 

potassium. The identity of the channel responsible for maintaining the 

membrane at this voltage was identified in 2000. The expression of TWIK-related 

acid-sensitive K+ (TASK) channel was verified in ZG cells using single-cell PCR. 

Xenopus Laevis oocytes were used as a model to test the function of these 

channels and their susceptibility to inhibitors (Czirjak et al., 2000). The voltage-

insensitive nature of this class of channels allows them to be constitutively open 

in ZG cells. Reduction of the levels of TASK mRNA by short interfering RNA 

(Section 1.5.1) directed against the TASK channel transcript attenuated the 

potassium current. Further studies identified TASK-3 (KCNK9) as the 

predominant sub-type in ZG cells (Czirjak and Enyedi, 2002). Homozygous 

knockout mice have confirmed a role for TASK channels in the regulation of 

aldosterone production and interestingly show that TASK knockout mice have 

impaired adrenal zonation, adrenal cortex function and developed a phenotype 

similar to primary aldosteronism (Section 1.4.1) (Heitzmann et al., 2008). Taken 

together, these studies demonstrate outward rectifying K+ channels are required 

for corticosteroid synthesis and for the correct development of the adrenal 

gland. 

1.2.5.3 Adrenocorticotropic Hormone (ACTH) 

Adrenocorticotropic hormone (ACTH) is the principal secretagogue of cortisol 

production but also exerts a modest stimulatory effect on aldosterone secretion 

which is dependent on sodium status. ACTH is the main active component of the 

hypothalamic-pituitary-adrenal (HPA) axis (Figure 1-6). Typically, central neural 

pathways are activated by stimuli such as stress and initiate the release of 

corticotrophin-releasing hormone (CRH) by the hypothalamus. CRH is transferred 

along the hypophyseal portal circulatory system to stimulate the release of pro-

opiomelanocortin (POMC), from which ACTH is excised by prohormone 

convertase in the anterior pituitary gland. Cleavage releases ACTH and several 

other biological peptides, including, melanocyte stimulating hormone and β-

endorphin. ACTH secretion exhibits a diurnal rhythm, highest in early morning 

and lowest late at night. 
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ACTH is released from the anterior pituitary gland into the systemic circulation 

and binds with high affinity to the ACTH-receptor. The ACTH-receptor is 

expressed in adrenal cortical cell membranes and is a member of the G-protein-

coupled receptor family. ACTH binding activates adenylate cyclase increasing 

the intracellular level of cyclic adenosine monophosphate (cAMP) which 

activates protein kinase A (PKA). These second messengers stimulate CYP11B1 

gene transcription  via transcription factors (Section 1.2.6). 

ACTH secretion is essential to correct adrenal formation, growth and 

corticosteroid production whereas, hyper-secretion of cortisol leads to 

hypertension and Cushing’s Syndrome (Section 1.4). To maintain cortisol 

homeostasis ACTH secretion is subject to negative feedback regulation (Figure 

1-6). Cortisol prevents further ACTH secretion by binding to glucocorticoid 

receptors (GR) in the hypothalamus. 
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Figure 1-6. Hypothalamic Pituitary Axis Regulation of Cortisol Secretion .  

POMC: pro-opiomelanocrtin; ACTH: adrenocorticotropic hormone. 
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1.2.6 Transcriptional Regulation of CYP11B Genes 

Transcription factors (TF) are the largest class of DNA-binding proteins. TFs bind 

to a specific recognition site (or sites) in the 5’-UTR/ promoter region of a gene 

and function to regulate gene transcription. There are numerous TFs which are 

cell- and pathway-dependent. Their expression is tightly regulated and they 

often work in combination with co-factor proteins. They form one of the most 

important regulatory control systems of gene transcription and understanding 

how they function with regard to a particular gene can give an important insight 

in to normo- and patho-physiology. Variation in the 5’ promoter structures of the 

CYP11B1 and CYP11B2 genes affect blood pressure regulation and hypertension; 

this may be because altered sequences influence TF binding this will be 

discussed further in section 1.4.2.2. 

Prior to characterisation of the human CYP11B1 and CYP11B2 promoters or of 

the equivalent regions in rats or mice, the single CYP11B bovine gene had been 

investigated. Several conserved cis-elements, known as Ad1 - Ad6 (Adrenal 1-6) 

were identified (Figure 1-7) (Kirita et al., 1990). Each DNA-binding motif was 

predicted to bind a nuclear receptor (Bassett et al., 2004). These have since 

been investigated in the human genes and the findings of these, together with 

other 5’ regulatory mechanisms, will be discussed below. 

Ad1Ad5Ad6 Ad2Ad3Ad4

0-100-200-300-400 0-100-200-300-400

TATA

 

Figure 1-7. Regions of Transcriptional Importance i n the CYP11B Genes. 

Ad1-6: adrenal 1-6. Not to scale. (Kirita et al., 1990;Bassett et al., 2004) 

 
 

1.2.6.1 Transcription Regulation of CYP11B2 

In addition to the cis-elements detailed above, studies using reporter constructs 

containing the  CYP11B2 promoter, from which had series of sequence deletions 

had been made, identified two additional regions of transcriptional importance: 

a cAMP response element (CRE) and a NBRE-1 site (neuronal growth factor-

induced clone B (NGRI-B) response element (Figure 1-8). This study also 
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confirmed the importance of  the Ad5 site in human CYP11B2 transcriptional 

regulation (Clyne et al., 1997).  

The CRE site binds several TFs, including activating transcription factors 1 and 2 

(ATF1 and ATF2) and CRE-binding protein (CREB) (Bassett et al., 2004). All of 

these TFs can interact with the activation protein-1 (AP-1) complex, specifically 

the JUN and FOS genes. Moreover, AngII and ACTH both increase levels of c-fos 

(the protein product of FOS), which can dimerise with Jun to form the AP-1 

transcription complex (Romero et al., 2007). 

The NBRE-1 site binds members of the NGFI-B nuclear orphan receptor 

superfamily. Members of the NGFI-B family include NGFI-B, NR4A2 (NURR1), and 

NR4A3 (NOR1). The family is a member of the Nur nuclear receptor family of 

TFs. There are highly expressed in the adrenal cortex, in a zone-specific 

manner. Two members of the family, NR4A1 and NR4A2 (nuclear receptor 

subfamily 4 group A member 1 and 2), are targets for AngII stimulation; NR4A1 

also responds to ACTH and NR4A2 to changes in K+ concentration. Both have 

been shown to regulate expression of three steroidogenic-related genes: 

3β-HSDII, CYP11A1 and CYP11B2 (Bassett et al., 2004;Nogueira et al., 2009). A 

recent study conducted in H295R cells investigated the NBRE-1 site and 

identified a stimulatory transcriptional role for the other NGFI-B family 

members, NURR1 and ATF/CREB, a synergistic relationship between them was 

observed (Nogueira and Rainey, 2010). 

The Ad4 site at -344 to -366 of the CYP11B2 promoter is a consensus match for 

the steroidogenic factor-1 (SF-1) TF binding site (Figure 1-8). SF-1 is a 

monomeric orphan nuclear receptor required for correct development and 

function of the adrenal gland. The site has been the focus of a great detail of 

research because of the common polymorphism at this site observed in certain 

hypertensive population; this will be discussed later, in section 1.4.2.2. This 

research has revealed a positive regulatory function for other genes in the 

corticosteroid pathway including all steroid hydroxylase genes (Bassett et al., 

2002). However, deletion of this sequence (Ad-4) (Section 1.2.6) was without 

effect on CYP11B2 expression and further analysis suggested an inhibitory role 

for SF-1 on CYP11B2 (Bassett et al., 2002).  
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NBRE-1 Ad4                                     Ad5      Ad1  

Figure 1-8. Transcription Factor Binding Sites on t he CYP11B2 Promoter. 

Not to scale. Adapted from Bassett et al., (2004). 

 

1.2.6.2 Transcriptional Regulation of CYP11B1 

Reporter construct analysis of the human CYP11B1 promoter sequence suggested 

that, under basal and ACTH stimulation, there are two important regulatory 

regions:, Ad-1, a cAMP response element (CRE), and Ad-4, a SF-1 consensus 

sequence (Figure 1-9) (Wang et al., 2000). The CRE site is nearly identical to 

that observed in the CYP11B2 gene and mutational studies have proved that it is 

essential for CYP11B1 expression during basal conditions (Bassett et al., 2000). 

The CYP11B1 Ad-4 site differs from the CYP11B2 site by only one nucleotide, but 

this is sufficient to make SF-1 an effective regulator of CYP11B1 transcription 

but not of CYP11B2 (Bassett et al., 2002). Moreover, CYP11B1 mRNA is more 

abundant in H295R cells that over-express SF-1 compared to unmodified cells, 

and this increase is greater when cells are stimulated with AngII. Targeting SF-1 

with an siRNA prevents these increases in CYP11B1  mRNA (Ye et al., 2009), 

giving more evidence of the differential effect of SF-1 on the CYP11B1 and 

CYP11B2 genes, which helps to determine the pattern from steroid output of the 

adrenal cortex. Studies from the same group also identified a regulatory role for 

SF-1 on several other corticosteroidogenic enzymes, including StAR, CYP11A1 

and 17α-hydroxylase (Bassett et al., 2002). 

Investigations of the transcriptional regulation of the CYP11B1 and CYP11B2 

genes have identified numerous transcriptional active proteins, many of which 

are regulated by AngII, K+ and ACTH. However, this area of regulation requires 

further research and, to date, no good evidence exists to support a role for 

changes in transcriptional regulation (via TFs) and the development of essential 

hypertension.  
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CREBSF1
SF1/
LRH1

TATAPtx1/
Ptx1

-766/-759 -344/-366                         -120/-112          -71/-64

Ad4                                     Ad5      Ad1  

Figure 1-9. Transcription Factor Binding Sites on t he CYP11B1 Promoter. 

Not to scale. Adapted from Wang et al., (2000). 

 

1.2.7 Post-Translational Regulation 

Another level at which gene expression can be regulated is by post-translational 

modification. This includes acetylation, phosphorylation and ubiquitination. 

There is no reported evidence of post-transcriptional regulation of the CYP11B1 

and CYP11B2 genes and it is rarely observed in other CYP450 enzymes. However, 

there is one example: CYP17A1 can be phosphorylated at serine and threonine 

residues and this can alter the function of the enzyme, with phosphorylation 

favouring 17,20-lyase activity (Section 1.2.4) (Zhang et al., 1995). Another post-

translational modification that is relevant to corticosteroids production is the 

phosphorylation of bovine adrendoxin (Bureik et al., 2005) and modification of 

TFs involved in regulating the CYP11B1 and CYP11B2 genes (Cammarota et al., 

2001;Nogueira and Rainey, 2010). 

To summarise, the understanding of transcriptional regulation of the CYP11B1 

and CYP11B2 genes is relatively well studied. Until recently, it was believed that 

transcriptional regulation was the dominant factor regulating protein synthesis 

but novel regulatory mechanisms and regulatory molecules for example 

microRNAs, has opened new avenues of investigation. microRNAs will be 

introduced in section 1.5.2. 
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1.3 Physiological Actions of Corticosteroids 

Both aldosterone and cortisol exert their effects by binding to specific nuclear 

receptors. Nuclear receptors belong to a large superfamily with 49 human 

members that can be sub-divided on the basis of their receptor dimerization and 

DNA-binding characteristics.  Class I comprises the estrogen receptors (ERα and 

ERβ), the progesterone receptor (PR), the androgen receptor (AR), the 

glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). These 

receptors all share similar structural characteristics; with GR and MR being the 

most closely related phylogenetically (Mangelsdorf et al., 1995). All have an N-

terminal domain, a DNA-binding domain and a C-terminal ligand-binding domain 

(Arriza et al., 1987).  

Unlike other receptors which span or are associated with the plasma membrane, 

steroid receptors are located in the cellular cytosol (Figure 1-10). In their 

inactive form, steroid receptors are associated with a complex of chaperone 

proteins, including heat shock proteins (Hsp90 and Hsp50) (Funder, 1997). Upon 

binding an agonist, the receptor undergoes a conformational change, dissociates 

from the chaperone proteins, dimerises and is translocated to the nucleus. The 

steroid receptor dimer functions as a TF in common with all ligand-bound 

steroid-binding receptors. The steroid receptor dimer binds consensus hormone-

response elements (HRE), which are approximately 15 nucleotides in length and 

are located in 5’ enhancer or promoter regions of target genes (Figure 1-10). 

Two zinc fingers present in the DNA-binding domain of the MR are responsible for 

tethering it to the HRE. Gene transcription is initiated, leading to the synthesis 

of new protein.  

1.3.1 Mineralocorticoids 

The MR is encoded by the NR3C2 gene, located on human chromosome 4 

(Morrison et al., 1990) and is mainly expressed in polarised epithelial cells in 

such organs as the kidney, colon and salivary glands. It play a key part in 

regulating electrolyte metabolism and acid base balance and more recently, it 

has been identified in non-epithelial cells in the brain, heart and vascular tissue 

(Funder, 2005).  
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The MR has poor specificity with aldosterone and cortisol demonstrating 

approximately equal binding affinity. The circulating plasma levels of 

aldosterone are relatively low, (<1nmol/L) and half is bound to albumin, and the 

rest readily available for receptor binding. In contrast, the circulating levels of 

cortisol are 100- to 1000-fold higher and only 5% is bound. Thus, it would be 

expected that cortisol would be the dominant ligand of MR. However, this is not 

the case because MR is protected from cortisol by 11β-hydroxysteroid 

dehydrogenase type 2 (11βHSDII) which is co-localised with MR in epithelial cells 

(Figure 1-10) (Funder et al., 1988;Edwards et al., 1988). 11βHSDII metabolises 

cortisol to cortisone, which does not bind the MR. As previously mentioned, DOC 

has mineralocorticoid properties and may have a higher affinity for MR than its 

physiological potency implies. A recent study demonstrated that MR, in 

epithelial tissue, also co-localises with a member of the aldo-keto-reductase 

family, AKR1C3. The investigators found that AKR1C3 can protect MR from 

inappropriate DOC activation by converting it to 20α-hydroxy-DOC, an inactive 

steroid (Sharma et al., 2006). 

In epithelial tissues, the principal function of aldosterone-bound MR is to 

increase sodium reabsorption, linked to fluid retention, and increase excretion 

of potassium and hydrogen ions. Within the kidney, MR is expressed in the distal 

convoluted tubule and the cortical collecting duct (CCD) (Todd-Turla et al., 

1993). The main cell type in this region, responsible for salt homeostasis are 

principal cells, which lie adjacent to intercalated cells.  

The primary function of intercalated cells is in the control of acid-base balance. 

They express H+-ATPase channels and MRs which are both regulated by 

aldosterone. In addition to MR, several channels and transporters (discussed 

below) are expressed within principal cells to facilitate the movement of Na+ 

and K+ across apical and basolateral membranes, and these are all subject to 

aldosterone regulation.  

The amiloride-sensitive epithelial sodium channel (ENaC) is located on the apical 

membrane and allows Na+ to move from the lumen of the nephron down an 

electrochemical gradient into the principal cell. This is the rate-limiting step of 

Na+ reabsorption (Horisberger, 1998). Also expressed on the apical membrane is 

the renal outer medullary potassium channel (ROMK), which facilitates passive 
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movement of K+ across the membrane. The basolateral membrane contains three 

transporters, the Na+/K+ ATPase, the Na+/H+ exchanger (NHE) and the ATP 

sensitive K+ channel (Figure 1-10). These all function to complete Na+ 

reabsorption into the blood while maintaining the electrochemical gradient for 

transport across the apical membrane.  

There are 8 human isoforms of NHE and each has different expression patterns 

and regulatory mechanisms. NHE3 has been identified as the isoform most 

sensitive to aldosterone and its effect is blocked by spironolactone, an MR 

antagonist (Drumm et al., 2006). It is believed that aldosterone works in 

conjunction with the epidermal growth factor receptor to activate NHE3 

expression and increase trafficking of the transporter to the membrane surface 

(Thomas and Harvey, 2010). Aldosterone also has slower effects which may be 

mediated by protein kinase C (PKC) or by the aldosterone-inducible proteins 

serum- and glucocorticoid-regulated kinase 1 (SGK1) and channel-inducing factor 

(CHIF) (Section 1.3.1.1) (Odermatt and Atanasov, 2009;Thomas and Harvey, 

2010). 

Finally, aldosterone regulation of the ENaC is essential for salt and fluid 

homeostasis and the steroid can alter the rate of reabsorption in two ways: by 

altering the number and density of ENaC channels on the cells’ surface or by 

changing the opening probability of ENaC. The former is likely to be a chronic 

(3-24 hours) effect requiring synthesis of new protein, whilst the latter is more 

likely to be an acute effect (<3 hours). ENaC is composed of three subunits (α, β 

and γ) and is continually recycled from the membrane surface and intracellular 

pools (Butterworth et al., 2005). In rats treated with either aldosterone or 

dexamethasone, a synthetic corticosteroid, ENaC subunit mRNA was increased in 

a cell-type specific manner; in the cortex of the kidney, there was an increase in 

the α-ENaC mRNA, whereas in the distal colon both β-ENaC and γ-ENaC subunits 

were increased (Asher et al., 1996). A proposed mechanism for direct 

aldosterone action is that ligand-bound MR binds to the 5’ regulatory regions on 

the ENaC gene increases transcription (Mick et al., 2001). Additionally, 

aldosterone can have indirect effects on ENaC, which are mainly mediated 

through Aldosterone-induced Proteins (AIP) (Section 1.3.1.1). 
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1.3.1.1 Aldosterone-Induced Proteins 

The most widely studied AIP is SGK1, a serine-threonine kinase upregulated in 

response to mineralocorticoids (Figure 1-10). Experiments conducted in 

epithelial cell lines, adrenalectomised mice and using ectopic expression of SGK1 

in Xenopus Laevis oocytes identified a regulatory role for SGK1 through 

increased ENaC activity (Chen et al., 1999). Moreover, SGK1 mRNA was shown to 

increase in response to dexamethasone stimulation (Chen et al., 1999). Further 

evidence of SGK1 involvement in salt homeostasis came from homozygous sgk1 

knockout mice, mice on a low NaCl diet had impaired salt reabsorption and low 

blood pressure, despite high circulating aldosterone levels (Wulff et al., 2002). 

SGK1 action can affect sodium transport; for example, it phosphorylates the 

ubiquitin protein ligase, neural precursor cell expressed, developmentally down-

regulated 4-2 (Nedd4-2) (Figure 1-10). In its unphosphorylated state Nedd4-2 

ubiquitinates ENaC, which directs the channel for degradation but 

phosphorylation inactivates Nedd4-2 and prevents this, leading to increased 

ENaC at the apical membrane (Debonneville et al., 2001). 

Another AIP is the corticosteroid hormone induced factor or channel-inducing 

factor (CHIF), a small membrane protein (FXYD family) associated with the 

Na+/K+ ATPase transporter in renal tissue (Figure 1-10). CHIF mRNA expression is 

increased in rats administered aldosterone (Brennan and Fuller, 1999). CHIP is 

homologous to the γ-subunit of Na+/K+ ATPase and it is thought that it increases 

Na+/K+ ATPase affinity for Na+, thus enhancing the reabsorption rate of Na+
. 

Increased transport of Na+ increases the electrochemical gradient of Na+, thus 

also increasing transport across the apical membrane (Beguin et al., 2001).  

The mRNA of endothelin-1, another AIP (Figure 1-10), is rapidly increased in 

response to aldosterone in a rat smooth muscle cell lines (Wolf et al., 2006). 

This increase was also observed in adrenalectomized rat kidneys and colon 

following aldosterone treatment (Wong et al., 2007). More recently, 

aldosterone-induced endothelin-1 was shown to be specifically expressed in the 

renal collecting duct and its induction to be mediated by two putative HRE 

present in the endothelin-1 promoter (Stow et al., 2009). The mechanisms of 

endothelin-1 actions are unclear but in vitro and in vivo experiments have 
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demonstrated that it can increase SGK1 mRNA and may exert its actions via this 

AIP (Wolf et al., 2006). 

The importance of other AIPs is less clear. GTP-dependent signalling protein K-

ras2 (KiRasA) increases ENaC opening time in vitro but experiments in rats 

detected increased expression only in the colon and not in the kidney (Odermatt 

and Atanasov, 2009). Another AIP with an unclear mechanism or relevance is 

glucocorticoid-induced leucine-zipper (GILZ) protein. This antagonises 

extracellular signal-regulated kinase (ERK), a negative regulator of ENaC; thus 

GILZ increases Na+ reabsorption (Bhalla et al., 2006).  

Taken together, there is substantial evidence that aldosterone affects several 

transporter systems in the nephron, both directly and indirectly, via AIPs, and 

that this facilitates the homeostatic regulation of sodium and potassium 

transport and water balance, which are key factors in blood pressure control. 
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Figure 1-10. Classical Mechanism of Aldosterone Act ion in Epithelial Cells. 

Aldosterone binds to the mineralocorticoid receptor (MR). This complex dimerizes and 

translocates to the nucleus. The dimer binds to a hormone-response element (HRE) on 

the gene promoter and influences transcription. Cortisol is inactivated by 11β-

dehydrogenase II (11βHSDII) to form cortisone. ENaC: epithelial sodium channel; GILZ: 

glucocorticoid-induced leucine zipper protein: ERK; extracellular signal-regulated kinase; 

ROMK; renal outer medullary potassium channel; Sgk1: serum- and glucocorticoid-

regulated kinase 1; CHIF: corticosteroid hormone induced factor; Nedd4-2 neural 

precursor cell expressed, developmentally down-regulated 4-2. 
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1.3.1.2 Non-Genomic Actions of Aldosterone 

In addition to acting as a ligand-dependent TF in combination with MR, 

aldosterone has rapid cellular effects which cannot be explained by changes in 

gene regulation. Classical aldosterone actions mediated via the MR are subject 

to a lag phase (1-2 hours), can be blocked by MR inhibitors and are susceptible to 

transcription or translational blockade, for example with puromycin or 

actinomycin D (Edelman et al., 1963;Horisberger and Diezi, 1984). However, 

physiological responses to aldosterone have been observed over shorter time 

frames (1-2 minutes) and are not affected by blockade of the nuclear MR 

(Funder, 2005). 

Aldosterone’s capacity to increase sodium exchange in canine erythrocytes was 

observed in the 1960s, a response which obviously does not involve the nucleus 

(Spach and Streeten, 1964). This was followed by elegant studies in human 

leucocytes and the idea of non-genomic aldosterone action was founded 

(Wehling et al., 1989). A striking finding of these studies was that membrane 

binding sites had very low Kd, indicating high affinity. These mechanisms have 

since been demonstrated in renal epithelial cells (Gekle et al., 1996), in several 

primary renal cell cultures (Koppel et al., 2003), in vascular smooth muscle cells 

(Christ et al., 1995) and in primary human colon cells (Doolan et al., 1998).  In 

vivo non-genomic effects of aldosterone have been supported by MR knockout 

mice; ex vivo skin cells from MR-/- mice respond rapidly (<2 minutes) to 

aldosterone stimulation (Haseroth et al., 1999). Several reports show rapid 

vasoconstriction in response to aldosterone however, recent evidence 

demonstrates vasodilation, that may be mediated via nitric oxide; the 

physiological significant of this mechanism of action in light of the classical 

mechanism remains unclear (Grossmann and Gekle, 2009). 

It has been postulated that the rapid response may be attributed to a novel 

receptor, the MR receptor working in a novel, non-genomic way or that classical 

gene transcription may facilitate a signalling cascade more rapidly than is 

currently estimated (Vinson and Coghlan, 2010). Evidence suggests that this 

rapid response mechanism involves changes in intracellular free Ca2+ 

concentration, as well as several second messenger systems (Grossmann and 

Gekle, 2009).  A list of proteins induced by aldosterone has been derived from 
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2D-electrophoresis experiments of yeast extracts, which do not express nuclear 

receptors (Bohmer et al., 2006). This is promising work but functional 

experiments will be required to understand fully the mechanism involved. 

1.3.1.3 Aldosterone Actions in Non-Epithelial Cells  

MR expression in non-epithelial tissues has revealed a novel mechanism of 

aldosterone action in tissues other than epithelia. MR expression has been 

identified in many cell types including vascular cells (smooth vascular and 

endothelial), cardiac cells (fibroblast and cardiomyocytes), neuronal cells 

(particularly in the CNS) and circulatory cells (monocytes, leucocytes and 

lymphocytes) (Viengchareun et al., 2007;Odermatt and Atanasov, 2009). With 

the exception of the vascular cells, the MR is not co-expressed with 11βHSDII. 

Thus, activation of MR will be dominated by glucocorticoids in these tissues 

(Alzamora et al., 2000).  

The clinical significance of aldosterone’s blood pressure controlling properties 

will be discussed later in section 1.4, but it is worth noting here that 

aldosterone’s actions in the cardiovascular system extend beyond blood pressure 

control and are often detrimental. An early study showed that rats on a high salt 

diet had greater cardiac collagen accumulation, fibrosis and left ventricular 

hypertrophy when given aldosterone in comparison to control animals (Brilla and 

Weber, 1992). This phenomenon is called cardiac remodelling. A subsequent 

study showed that these effects were dependent on high salt status and 

independent of blood pressure changes (Young et al., 1995). Furthermore, a 

recent study conditionally over-expressing MR in endothelial cells of mice found 

the animals to have increased vascular resistance, vasoconstriction and 

hypertension (Cat et al., 2010).  

The mechanism of aldosterone-induced cardiovascular damage is unclear; a 

number genes which appear to be regulated by MR have been identified, 

including those involved in collagen synthesis, inflammation and cell 

proliferation (Viengchareun et al., 2007). Prior to these observations, cardiac 

remodelling had been attributed to indirect effects of aldosterone and DOC 

mineralocorticoid activity principally raised blood pressure. However, an 

important clinical heart failure trial (RALES) in the late 1990s showed that the 
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addition of spironolactone (an MR antagonist) to standard treatment reduced the 

risk of morbidity and mortality when compared to standard treatment alone (Pitt 

et al., 1999). 

1.3.2 Glucocorticoids 

The majority of cortisol’s effects are mediated through binding to the 

glucocorticoid receptor (GR). GR activation is identical to that of MR; the active 

GR dimer complex translocates to the nucleus and binds to specific 

glucocorticoid-responsive elements (GRE) located in promoter regions of target 

genes stimulating their expression. This process is known as transactivation. An 

alternative method of GR function is transrepression, involving negative GRE 

(nGRE) sites. Once bound, these act to repress gene transcription. An example of 

transrepression is the negative feedback mediated by nGRE located in the pro-

opipmalencortin (POMC) gene, which is an ACTH precursor gene (Section 1.2.5.3) 

(Drouin et al., 1993).  

The GR is ubiquitously expressed (Ballard et al., 1974) and thus cortisol has a 

wide range of target tissues and can facilitate a range of effects (Sapolsky et al., 

2000). The primary role of cortisol is to mediate the stress response and 

metabolism of fat and carbohydrate, leading to increased glycogenolysis and 

blood glucose levels in competition with insulin. Other known roles of cortisol 

include suppression of the inflammatory and immune responses and, most 

relevant to this review, regulation of blood pressure. The mechanisms by which 

cortisol can regulate blood pressure are complex and several examples are listed 

in Table 1-5. 
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Table 1-5. Cardiovascular Effects of Glucocorticoid s (Walker, 2007). 

Target Cell Type Via GR Via MR 

Vascular Smooth Muscle Cell Increased contractility 
Decreased proliferation 
Decreased migration 

Increase perivascular inflammation 
Changes in vasotone 

Endothelial Cell Decreased vasodilation 
Decreased angiogenesis 

Changes in vasotone 

Myocardium  Increased fibrosis 

Macrophage Changes in cytokines 
Increase apoptosis 

 

Non-Cardiovascular Organs Obesity 
Hypertension 
Dyslipidaemia 
Insulin resistance 
Glucose intolerance 
Prethombotic 

Hypertension 
Prothrombotic 
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1.4 The Role of Corticosteroids in Hypertension 

The previous sections have discussed the synthesis, regulation and function of 

corticosteroids and their role in blood pressure homeostasis. The detrimental 

affects of hypertension and its role as a risk factor for cardiovascular disease 

was described in section 1.1.2. In approximately 5% of hypertensive patients, 

there is a definable cause of hypertension, known as secondary hypertension. 

The following sections describe these rare but important causes. They show 

clearly that corticosteroids can cause hypertension. More recent studies indicate 

that corticosteroid metabolism may also be altered in the remaining 95%, so-

called essential hypertension. This will be reviewed with particular attention to 

the CYP11B1 and CYP11B2 genes. 

1.4.1 Secondary Hypertension 

For the purpose of this thesis, and to highlight the importance of the adrenal 

cortex and hypertension two types of secondary hypertension, first primary 

aldosteronism which will also introduce the aldosterone to renin ratio and its use 

as a diagnostic tool; secondly monogenic forms of hypertension will be 

introduced, paying particular attention to those in which mineralocorticoid 

production is altered. 

1.4.1.1 Primary Aldosteronism 

Primary aldosteronism (PA) (or primary hyperaldosteronism) is an important 

cause of secondary hypertension characterised by increased aldosterone 

concentration and associated with normal renin levels (Section 1.4.1.2). PA was 

first recognised by Dr Jerome W. Conn in 1954 in a 34-year old woman with 

hypertension and muscle spasms and weakness due to hypokalaemia. This led to 

a diagnosis of excess production of the salt-retaining corticoid from the adrenal 

cortex. Surgical intervention revealed a right-sided adrenal tumour which, when 

removed, left the patient free of all symptoms (Conn, 1955). In the following ten 

years, Conn identified 145 similar cases and proposed that a proportion of 

essential hypertension cases might have primary aldosteronism.  
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Since then, the number of essential hypertensive patients with primary 

aldosteronism is estimated to be 10% of patients (Funder et al., 2008) although 

in accepting this figure, it is important to stress that the definition of the 

disorder has been modified since Conn’s original description. 

Currently, there are several sub-classifications of primary aldosteronism which 

differ in terms of pathology and treatment. The subtypes of primary 

aldosteronism are listed in Table 1-6. One of the main causes is a small, solitary 

aldosterone-producing adenoma (APA), similar to the first case described by 

Conn; currently the aetiology of APA is unknown. Adenomas are autonomous 

sources of aldosterone synthesis that is not under the control of AngII 

stimulation. In cases of the main type of PA, bilateral idiopathic hyperplasia 

(IHA) the ZG is hyper-responsive to AngII, which leads to the expansion of the 

ZG. Patients with APA have higher blood pressures than those with IHA 

(Blumenfeld et al., 1994). Diagnosis and treatment of PA is important as they 

have a higher rate of cardiac events  (stroke, myocardial infarction etc) than 

age-, gender- and blood pressure-matched essential hypertensive patients 

(Milliez et al., 2005). 

Table 1-6. Subtypes of Primary Aldosteronism (taken  from Young (2007). 

Pathology Prevalence 

Aldosterone-producing adenoma (APA) 35% 

Bilateral idiopathic hyperplasia (IHA) 60% 

Unilateral (primary) adrenal hyperplasia 2% 

Pure aldosterone-producing adrenocortical carcinoma <1% 

Familial hyperaldosteronism  (FH) 
    FH-I  (Glucocorticoid-remediable aldosteronism) 
    FH-II (APA or IHA) 

 
< 1% 
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1.4.1.2 The Aldosterone to Renin Ratio (ARR) 

The diagnosis of PA is now largely dependent on the aldosterone to renin ratio 

(ARR). This index was introduced in 1981 and has since been accepted as a 

useful diagnostic tool for hypertensive diseases as it is relatively simple, 

inexpensive and can compensate for salt intake, diurnal variation and posture 

(Hiramatsu et al., 1981;Montori and Young, 2002). A high ARR demonstrates that 

aldosterone production is inappropriately high for the level of renin, suggesting 

an error in the efficiency of corticosteroid synthesis. The test has been shown to 

be useful for diagnosis of PA, hypertension, hypotension, resistant hypertension 

(Funder et al., 2008). Furthermore, the ARR is highly heritable (38.1%) thus is 

likely to be at least partly determined by genetic variation (Alvarez-Madrazo et 

al., 2009). To summarise, aldosterone concentration and electrolyte balance are 

frequently normal in PA patients, therefore the ARR can detect alterations in the 

corticosteroid pathway that signify an underlying pathology. 

1.4.1.3 Disorders of Cortisol Production 

Cortisol deficiency, for example in Addison’s Disease leads to hypotension, 

hypoglycaemia and weight loss (Ten et al., 2001). Conversely, in Cushing’s 

syndrome, where cortisol levels are high, blood pressure is severely elevated. 

Other clinical examples of cortisol excess associated with hypertension are: 

unilateral benign or malignant adrenal adenomas or bilateral adrenal hyperplasia 

or dysplasia, overproduction of ACTH caused by anterior pituitary adenomas 

(Cushing’s disease) or, rarely, by ectopic ACTH-producing tumours. It is also a 

risk for patient’s dependant on long-term glucocorticoid therapy such as 

autoimmune disease and after heterogenic transplantation. The syndrome is 

characterised by central adiposity, glucose intolerance and hyperglycaemia, 

hyperlipidaemia, hypertension and severely increased risk of cardiovascular 

disease. In addition to its actions mediated through the GR pathologically high 

levels of cortisol may overwhelm the capacity of 11βHSDII to protect the MR 

allowing cortisol to exert additional MR-like actions (Section 1.3.1).  
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1.4.1.4 Monogenic Causes of Hypertension 

Another source of secondary hypertension is the mutations arising in genes 

encoding enzymes of the corticosteroid biosynthetic pathway. This type of 

Mendelian disease offers an interesting perspective on the contribution of 

genetics to the development of blood pressure pathology. However, these are 

rare, only accounting for less than 1% of hypertensive cases. To date, mutations 

in 8 human genes have been identified as causing hypertension and 9 as causing 

hypotension (Lifton et al., 2001). All of these mutations result in changes in 

renal salt reabsorption which cause early onset, severe changes in blood 

pressure.  

Congenital Adrenal Hyperplasia (CAH) 

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive loss-of-

function mutations in genes of the corticosteroid biosynthetic pathway. Defects 

reduce the production of cortisol therefore, stimulating massive continued ACTH 

production which causes hyperplasia of the cortex as well as abnormal increases 

in precursor levels (Section 1.2.5). Clinical symptoms result from two 

abnormalities, increased levels of DOC and altered levels of adrenal androgens. 

The symptoms present in CAH patients depends on which enzyme the causal 

mutation lies. The most common mutations are in the CYP21A2 gene coding for 

21-hydroxylase which accounts for approximately 90-95% of cases of CAH; 

approximately 75% of patients cannot synthesise appropriate levels of 

aldosterone and have severe salt-wasting and hypotension (White and Speiser, 

2000). As can be inferred from Figure 1-5, 21α-hydroxylase deficiency will result 

in insufficient cortisol synthesis, but the resulting increase in ACTH drive will 

result in high levels of 21-deoxy-precursors (17-OH-pregnenolone and 17-OH-

progesterone) and raised androgen synthesis, creating masculinisation in women 

(Krone et al., 2007).  

17α-Hydroxylase deficiency comprises approximately 5-8% of CAH cases and was 

identified in the 1960s (Biglieri et al., 1966). Inactivating mutations can be 

located at many positions in the CYP17A1 gene and lead to inefficient conversion 

of 17-OH-pregnenolone to dehydroepiandrosterone (DHEA) (Figure 1-5).This 

deficiency also affects sex steroid production in the gonads and leads to 
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feminisation of males and failure of normal development of secondary sex 

characteristics in females. Massively raised DOC levels cause mineralocorticoid 

hypertension; high corticosterone level as a substitute glucocorticoid for 

cortisol.  

Mutations in the CYP11B1 gene (which codes for 11β-hydroxylase) lead to 

deficient 11β-hydroxylation, creating inefficient conversion of DOC to 

corticosterone and of 11-deoxycortisol to cortisol (Figure 1-5). The ratio of 11-

deoxycortisol to cortisol concentration (S:F ratio) is used as an index of 11β-

hydroxylase deficiency. This form of CAH presents with mineralocorticoid 

hypertension and glucocorticoid (cortisol) deficiency. High androgen production 

leads to virilisation in girls and precocious puberty in boys. 

Both 17α-hydroxylase and 11β-hydroxylase deficiencies cause symptoms that are 

associated with hypermineralocorticoidism, for example hypertension, but in 

this instance the causative steroid is DOC and not aldosterone. Decreased 

circulating cortisol concentrations associated with both deficiencies lead to an 

increased ACTH drive, which further increase the rate of DOC synthesis. 

Diagnosis is confirmed by genetic screening of the genes involved and analysing 

androgen concentrations. Treatment is by glucocorticoid replacement therapy 

which normalises ACTH drive, correcting overproduction of corticosteroid 

precursors and in turn, correcting the hypertension.  

Glucocorticoid Remediable Aldosteronism (GRA) 

GRA (familial hyperaldosteronism type I, FH-I) is an autosomal dominant disease 

which is characterised by high aldosterone, low renin and early onset 

hypertension. GRA is caused by a chimeric gene generated by unequal crossing 

over during meiosis at the promoter regions of the CYP11B1 and CYP11B2 genes. 

The hybrid gene contains the promoter sequence of the CYP11B1 gene and distal 

regions of the CYP11B2 gene. Thus, the novel gene is expressed in the ZF and 

allows ectopic aldosterone production abnormally under the control of ACTH, 

producing massive excess (Lifton et al., 1992). Aldosterone production does not 

therefore respond to normal signals such as high sodium levels or expanded 

extracellular volume (Section 1.2.5). The unique feature of GRA is that, upon 

treatment with glucocorticoids, the phenotype is completely suppressed, by 

removing ACTH drive. A second class of familial hyperaldosteronism also exists 
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(FH-II) and is thought to be more prevalent than type I. Patients do not have a 

chimeric gene and do not respond to glucocorticoids. The molecular basis of this 

disease is not known but has been link to genetic variation, identified on human 

chromosome 7, investigations continue to identify the gene(s) involved (Jeska et 

al., 2008). 

Apparent Mineralocorticoid Excess (AME) 

The syndrome of apparent mineralocorticoid excess (AME) is a rare, autosomal 

recessive hypertensive disorder (Ulick et al., 1979). It is characterised by 

hypokalemia and metabolic acidosis resulting from low renin and aldosterone 

levels and is caused by loss of function mutations in the 11βHSDII gene, which 

prevents the 11β-dehydrogenase 2 enzyme (11βHSDII) from oxidising cortisol to 

cortisone in the kidney (Section 1.3.1). This allows cortisol to saturate the renal 

MR and induce a severe mineralocorticoid form of hypertension (Mune et al., 

1995;Stewart et al., 1996). Treatment includes the use of MR antagonists, such 

as spironolactone. The importance of 11βHSDII is illustrated by knockout mice 

which exhibit severe hypertension (Kotelevtsev et al., 1999). 

Aldosterone Synthase Deficiency 

Rare loss of function mutations in the CYP11B2 genes impairs the final three 

steps of aldosterone synthesis. This rare condition causes salt-wasting and 

hyperkalemia, increased plasma renin activity and hypotension, with normal 

cortisol and sex steroids levels (White, 2004). Two forms of aldosterone synthase 

deficiency have been described; corticosteroid methyloxidase (CMO) type I and 

type II (Ulick, 1976).  

In summary, PA and monogenic mutations of corticosteroid enzymes are rare in 

the general population and result in extreme phenotypes, but they provide 

irrefutable evidence that altered corticosteroid synthesis resulting from a 

variety of genetic changes can affect blood pressure. Recent evidence suggests 

that, in essential hypertension (a much more common disease) subtle genetic 

changes in the genes coding for corticosteroid enzymes may significantly 

contribute to the heritable component. This is discussed below. 
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1.4.2 Corticosteroids and Essential Hypertension 

The following section will first outline the characteristics of the CYP11B1 and 

CYP11B2 genes and then discuss the role of these genes in essential 

hypertension, including the association of several polymorphisms present within 

theses genes with raised blood pressure. 

1.4.2.1 The CYP11B1 and CYP11B2 Genes 

To recap, the CYP11B1 and CYP11B2 genes encode 11β-hydroxylase and 

aldosterone synthase, respectively. As previously described, these gene products 

are crucial to the synthesis of corticosteroids and the maintenance of blood 

pressure. To date, only one mRNA transcript has been identified for each of the 

human genes; each has 9 exons and 8 introns (Figure 1-11). The genes are 

located in tandem on human chromosome 8 and lie only 40 kilobases (kb) apart. 

Both enzymes are comprised of 503 amino acids and share 95% sequence identity 

in coding regions and 90%  in intronic regions. The 5’- and 3’- regulatory regions 

are the area of most heterogeneity (Mornet et al., 1989). At present the 3-

dimensional structure has not been solved for either protein. 

5’ 3’

CYP11B2

Exon:

CYP11B1

91 2 6543 7 8 91 2 6543 7 8

 

Figure 1-11. The Exon and Intron Structure of the CYP11B1 and CYP11B2 Genes. 

Located on Human Chromosome 8. Diagram not to scale. 

 

1.4.2.2 Genetic Variation in the CYP11B Locus 

Several variants have been identified across the CYP11B locus and include SNPs, 

conversions and insertion/deletions. These variants are in relatively high linkage 

disequilibrium (LD) (a marker of the likelihood of alleles being inherited 

together), meaning there are few common haplotypes. One of the most 

commonly studied SNPs is in the CYP11B2 promoter located at position -344 

(rs1799998). This SNP lies in a binding site for the SF-1 transcription factor and 

can either be a C (cytosine) or T (thymine) nucleotide, in approximately equal 
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frequencies (Figure 1-12). A second common mutation is a gene conversion, 

where part of intron 2 of the CYP11B1 gene is duplicated in the corresponding 

intron 2 region of CYP11B2 (Figure 1-12) (White and Slutsker, 1995).  Together, 

these variants are in tight LD; the frequencies of their haplotypes are : T/Conc 

(38%), C/Wt (45%) and T/Wt (16%) (Davies et al., 1999). 

5’ 3’
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Figure 1-12. The Location of the -344 SNP and the I ntronic Conversion Polymorphism. 
Diagram not to scale. 
 
Several studies in the late 1990s associated the T allele at -344 (-344T) and the 

presence of the intron conversion (IC) with raised blood pressure. A case-control 

study found that the -344T allele was more frequently identified in hypertensive 

patients than in normotensive controls (Brand et al., 1998). However, this study 

failed to detect any association of the IC with hypertension possibly due to an 

equal frequency of this allele in both the cases and control populations (Brand et 

al., 1998). A small study found that male subjects with the -344T allele had 

higher urinary aldosterone levels (Hautanen et al., 1998). Moreover, Davies et 

al., (1999) found that both the -344T allele and the IC were more frequently 

observed in hypertensive patients than age- and sex- matched normotensive 

controls. They also showed in the North Glasgow Monitoring of Trends and 

Determinants in Cardiovascular Disease (MONICA) study, which contained 486 

individuals, there was a significant increase in urinary excretion of 

tetrahydroaldosterone (the main aldosterone metabolite) associated with the 

-344T allele of heterozygotic subjects (-344 C/T) when compared to homozygous 

-344C subjects (Davies et al., 1999). This finding was corroborated in a separate 

study carried out in normotensive subjects by Paillard et al., (1999) who 

reported significantly higher levels of plasma aldosterone concentration in -344T 

subjects compared to -344C subjects.  A study of a small Japanese cohort 

identified an association between the -344T allele and low-renin hypertension, 

but failed to identify any difference plasma in activity or plasma aldosterone 

concentration (Komiya et al., 2000).  
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However, not all reports of this type have been consistent; in one study, the 

-344C allele was associated with increased plasma aldosterone concentration in 

hypertensive patients (Pojoga et al., 1998) and a large case-control study in 

Japanese patients failed to detect any association of the -344 SNP and the IC 

with hypertension (Tsujita et al., 2001). A recent meta-analysis set out to 

address this disagreement between the studies; it confirmed the association 

between the -344T allele and increased risk of hypertension (Sookoian et al., 

2007). However, the findings were limited. It could not positively associate the 

-344 SNP with systolic or diastolic blood pressure or define a link between the 

polymorphisms and aldosterone excretion or plasma concentration (Sookoian et 

al., 2007). These polymorphisms may have a role in PA; in 27 well-characterised 

Conn’s patients there was a higher frequency of the -344T and IC allele (Inglis et 

al., 2001) and the -344T allele was associated with a higher ARR in non-selected 

hypertensive subjects (Lim et al., 2002). Despite the abundance of studies which 

suggest a link between the CYP11B2 polymorphism and essential hypertension, 

the causative mechanism has not yet been identified. It was suggested that the 

-344 SNP altered the binding of SF-1 TF to the promoter to affect transcription 

but in vitro, the -344T allele has 4-fold less affinity of SF-1 and yet has no effect 

on gene transcription (Bassett et al., 2002). There are several possible 

explanations; it may be the -344 and IC polymorphisms are merely markers of a 

causal variant in near-by genes in this region of high LD. Alternatively, the 

functional mutation may lie in the relatively under-studied IC region, or that 

other polymorphisms located across the locus may have yet undiscovered 

functions. 

The first of these proposals that -344T/C is a marker for linked polymorphisms 

elsewhere has been investigated in the CYP11B1 gene. Similar to the CYP11B2 

gene, CYP11B1 is highly polymorphic and these polymorphisms are in tight LD 

with those in CYP11B2. It has been proposed that polymorphisms in CYP11B1 

result in inefficient 11β-hydroxylation, identifiable by altered plasma S:F and 

DOC:B ratios or of urinary metabolites, tetrahydrodeoxycortisol (THS) to 

tetrahydrodeoxycorticosterone (THDOC) (Section 1.4.1.4). A mild 

11β-hydroxylase inefficiency, while it would not affect cortisol levels, would 

result in increased ACTH drive over a long time, contributing to the development 

of essential hypertension and mildly raised aldosterone secretion (Davies et al., 



 73 

 

2009). An argument supported by the associated increase in ARR (Lim et al., 

2002). 

In the presence of impaired efficiency, exogenous ACTH should accentuate 

abnormal S:F ratio. Essential hypertensive patients given an ACTH infusion had 

increased S:F ratios compared to controls, supporting reduced 11β-hydroxylation 

efficiency as a disease marker (Honda et al., 1977;de Simone et al., 

1985;Connell et al., 1996). This observation was then linked to polymorphisms in 

the CYP11B2 gene in a study undertaken in 92 male subjects; those with the 

-344T/ intron 2 conversion had higher urinary aldosterone excretion rates than 

-344C/intron 2 wild-type subjects. Further, they had higher 11-deoxycortisol 

levels in plasma when stimulated with ACTH (Hautanen et al., 1998). Davies et 

al., (2001) observed a similar relationship with the polymorphisms and plasma 

DOC concentration in normotensive subjects and in another normotensive cohort 

study the excretion rate of the major 11-deoxycortisol metabolite (tetrahydro-

11-deoxycortisol) being higher in urine from -344T subjects; supporting the 

hypothesis of inefficient 11β-hydroxylation (Kennon et al., 2004).  

Other genetic variants within CYP11B2 and CYP11B1 genes have also been 

implicated in altered 11β-hydroxylation efficiency. A large study evaluated the 

roles of 6 CYP11B2 SNPs and 3 CYP11B1 SNPs, finding a significant association 

between the presence of a SNP in exon 7 (T4986C) of CYP11B2, plasma cortisol 

concentrations and the S:F ratio . Additionally, a family-based studied found a 

significant association between THaldo excretion rate, and a SNP in intron 3 

(rs6387) of the CYP11B1 gene (Imrie et al., 2006). However, a complete genetic 

screen of the CYP11B1 gene in normo- and hyper-tensive subjects could not 

relate variation in the coding region of this gene to hypertension or to an altered 

ARR (Barr et al., 2006). Interestingly, a screen of the non-coding regions 

identified two novel polymorphisms in the promoter region of CYP11B1, at -1889 

(G/T) and -1859 (A/G) (Figure 1-13), which associated with the ratio of urinary 

THS:total cortisol excretion. Moreover, these polymorphisms were found to be 

transcriptionally functional, responding differently to trophins in vitro. 

Crucially, these polymorphisms are in strong LD with the -344T/C, IC CYP11B2 

polymorphisms (Barr et al., 2007).  
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Figure 1-13. The Location of the CYP11B1 Promoter SNPs: -1859 and -1889.  
Diagram not to scale. 
 
To summarise, genetic variation in the CYP11B1 and CYP11B2 genes is associated 

altered corticosteroid metabolism, the ARR and hypertension. The precise causal 

molecular modifications are uncertain but it appears likely that variation in one 

CYP11B gene can affect the other and this is supported by the strong LD 

identified across the locus. The foregoing discussion strongly supports the 

conclusion that small changes: the efficiency of corticosteroid-related enzymes, 

genetically-based and expressed over a lifetime, can result in clinically 

important changes. It seems reasonable to suggest that any other mechanism 

which influences the expression of the CYP11B genes may have a similar effect. 

microRNAs may be just such a mechanism, and are discussed in the following 

sections.  
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1.5 RNA Interference (RNAi) 

RNA Interference (RNAi) is an evolutionarily conserved, naturally-occurring 

regulation mechanism in eukaryotes. Utilising small, non-coding, double-

stranded (ds) RNA that is complementary to, and binds mRNA, RNAi results in 

post-transcriptional gene silencing. The mechanism of RNAi was first observed in 

plants (Napoli et al., 1990) but the molecular mechanism was only fully 

described several years later in the nematode Caenorhabditis elegans (C. 

elegans) by the Melo Group (Fire et al., 1998). RNAi has since been identified in 

many organisms. High-throughput sequencing has identified several classes of 

small RNA that facilitate RNAi: short interfering RNA (siRNA), micro RNA (miRNA) 

and p-element-induced wimpy testis RNA (piRNA or piwiRNA) (Farazi et al., 

2008;Kim et al., 2009).  

Since their discovery small RNAs have become an effective scientific tool for 

investigating control of gene expression which has shown them to be important 

regulators of cellular function with great relevance to understanding disease 

pathologies. 

1.5.1 Short Interfering RNA 

siRNAs are small double-stranded RNA molecules that bind to and silence specific 

mRNA targets. siRNAs can be used experimentally and introduced into cells 

exogenously but also can be derived endogenously by viral infection or gene 

transcription. siRNAs have perfect base-pairing complementarity to their target 

genes and result in mRNA degradation by cleavage thus, siRNAs are important 

regulators of various cellular functions and have become a useful research tool 

and offering the possibility of novel therapies (Ghildiyal and Zamore, 2009). 

1.5.2 microRNAs 

miRNAs are a tightly defined class of endogenous, non-coding RNA molecules 

that are highly conserved across evolution. The regulatory power of these 

molecules is a relatively new discovery and was awarded the title of scientific 

breakthrough of the year by ‘Science’ in 2002 (Couzin, 2002).  miRNAs have been 
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identified in a wide range of eukaryotes but for the purpose of this thesis, the 

main focus will be on human miRNAs, unless otherwise stated. 

1.5.2.1 Nomenclature 

The identities and sequences of experimentally-validated miRNAs are deposited 

in the miRNA repository, miRBase (Griffiths-Jones, 2004;Griffiths-Jones et al., 

2006;Griffiths-Jones et al., 2008). The database maintains accurate information 

on each miRNA identified thus preventing duplication. Leading scientists in the 

field have devised a strict naming convention for miRNAs (Ambros et al., 2003). 

Each miRNA is preceded with a species identifier, for example, hsa (human) or 

mmu (mouse). miRNAs are numbered chronologically from the time of 

submission to miRBase and, where applicable, miRNAs with identical sequences 

in different species are given matching numbers. The miRNA number may be 

followed by a lowercase letter that identifies miRNAs with similar sequences 

(e.g. hsa-miR-125a and hsa-miR-125b); miRNAs with similar sequences belong to 

a ‘miRNA family’. Two miRNAs may possibly be generated from each hair-pin 

pre-miRNA (Section 1.6.2.3); these are given the same number but are 

distinguished by -3p (3’) or -5p (5’) according to the arm of the hair pin from 

which the miRNA originated (e.g. hsa-miR-125a-3p and hsa-miR-125a-5p). 

Alternatively, the strands can be distinguished by an asterisk (*), representing 

the non-functional miRNA strand (e.g. hsa-miR-149 and hsa-miR-149*). A single 

miRNA type may arise from two different genetic loci and in this instance, 

miRNAs are given a numerical suffix to identify their origin (e.g. hsa-miR-24-1, 

hsa-24-2) (Ambros et al., 2003).   

1.5.2.2 Discovery 

miRNAs were discovered in 1993, the inaugural miRNA, lin-4, was isolated from 

C. elegans (Lee et al., 1993). By cloning the lin-4 gene, Lee et al. (1993) 

established that the product was not translated into a protein but instead 

generated a non-coding RNA. At the same time, Ruvkun and colleagues 

demonstrated that lin-4 could bind to the 3’UTR (untranslated region) of the 

lin-14 gene and reduce protein production (Wightman et al., 1993). Further 

experiments showed that repression of lin-14 by lin-4 was an important 
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mechanism in controlling developmental timing in C. elegans (Olsen and Ambros, 

1999).  

At the time of publication, the full significance of miRNA post-transcriptional 

regulation was not appreciated. However, with the discovery of the second 

miRNA in 2000, the importance of miRNA regulation started to become clearer. 

The candidate miRNA was let-7c; it was found to be highly conserved across 

species (Reinhart et al., 2000) and to be a member of the large let-7 family, 

which has several subtypes. Let-7c is capable of regulating a number of 

developmental genes by binding to their 3’UTR and proved to be important in 

temporal changes in the late development of C. elegans. It is not expressed 

during early development then increases 10-fold at early pupal stage that is 

sustained to adulthood (Pasquinelli et al., 2000).  

Over the last 10 years, interest in miRNA-mediated gene regulation has 

accelerated and the latest update of miRBase (v. 16, September 2010) includes 

sequences of 1048 human miRNAs (Griffiths-Jones, 2004;Griffiths-Jones et al., 

2006;Griffiths-Jones et al., 2008). Moreover, novel regulatory pathways have 

been unveiled since the discovery of miRNA (Section 1.7). 
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Figure 1-14. Overview of miRNA Maturation and Degra dation. 

Primary miRNA (Pri-miR) transcripts are transcribed in the nucleus from miRNA genes. A 

hair-pin structure is cleaved from the pri-miR by Drosha endonuclease. The Pre-miR is 

exported to the cytoplasm via Exportin-5, further cleaved by Dicer, and then unwound to 

form a mature miRNA (yellow). This then associates with several proteins known as the 

miRNA-induced silencing complex (miRISC). This then targets mRNA by binding to the 

3’UTR. The passenger strand (black) is degraded by XRN-2. 

 



 79 

 

1.5.2.3 Synthesis 

miRNA transcription and maturation is a multistep process that starts with the 

nuclear transcription of a stem-loop structure from genomic DNA (Figure 1-14).  

Nuclear Processing 

Primary miRNA transcripts (pri-miR) are transcribed from miRNA-genes, located 

in intergenic chromosomal regions, by RNA polymerase II or RNA polymerase III 

(Lee et al., 2004a;Borchert et al., 2006) (Figure 1-15). Pri-miRNAs are several 

kilobases in length, are polyadenylated and have 5’ 7-methyl-guanylate caps. 

Several different miRNA molecules can be excised from a single polycistronic pri-

miR. miRNAs generated from the same genetic location (i.e. from one pri-miR) 

are termed a miRNA cluster. This is important as their production is subject to 

the same regulation (Mourelatos et al., 2002) and can be important in 

pathophysiology for example, in lung cancer samples the expression of all six 

members of the miR-17-92 cluster is higher than in controls (Hayashita et al., 

2005). 

Pri-miR transcription may be regulated by a mechanism involving ADARs 

(adenosine deaminase acting on RNA). ADARs catalyse the substitution of 

adenosine nucleotides for inosine in a process known as A-to-I editing. This was 

first described for both human and mouse pri-miR-22 by (Luciano et al., 2004) 

but has been subsequently identified for other pri-miRs (Blow et al., 2006;Yang 

et al., 2006). By altering the secondary structure of a pri-miR molecule, A-to-I 

editing can affect miRNA processing (Section 1.5.2.3 and Figure 1-14)  both 

enhancing synthesis (e.g. pri-miR-142;(Kawahara et al., 2008) or preventing 

further maturation (Scadden, 2005). Thus, pri-miRs are subject to post-

transcriptional regulation prior to the cleavage steps described below. 

Hair-pin structures are then cropped from the pri-miR transcript. This is 

catalysed by a nuclear Microprocessor Complex, of which the primary 

components are Drosha and Di George critical region 8 (DGCR8, also known as 

Pasha) proteins (Figure 1-14).  Drosha, an RNAse III enzyme, is highly conserved 

between species and contains two RNAse III domains and a double stranded RNA 

binding domain (dsRBD).  DGCR8 contains two dsRBDs and is responsible for 

binding to the pri-miRNA and determining the site of cleavage that creates the 
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pre-miRNA. Other proteins involved in the microprocessor are DEAD box RNA 

helicases, p68 (DDX5) and p72, heterozygous nuclear ribonucleoprotein and 

SMAD proteins (Gregory et al., 2004;Davis et al., 2008). These co-factors can 

affect miRNA synthesis; p68 or p72 knockout mice have reduced levels of a 

specific subset of miRNAs (Fukuda et al., 2007). 

The endonucleolytic action of Drosha cleaves the pri-miRNA to produce a 

hair-pin structure(s), approximately 70 nucleotides in length, called pre-miRNA 

(pre-miR) (Figure 1-15). The pre-miR is a double-stranded hair-pin RNA molecule 

with regions of imperfect base-pairing along the hair-pin (Figure 1-16). Other 

characteristics of a pre-miRNA include a 5’ phosphate group, 3’ hydroxyl group 

and a 2-nucleotide overhang at the 3’ end. The overhang serves as a recognition 

motif for further cleavage steps (Lund et al., 2004;Zeng and Cullen, 2004). 

Single nucleotide polymorphisms in pri-miRNAs can prevent correct processing, 

for example a SNP in the mature sequence of miR-125a prevents Drosha cleavage 

leading to an accumulation of pri-miR-125a (Duan et al., 2007). This illustrates 

the high degree of specificity in miRNA processing. 
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Figure 1-15. Transcription of microRNA from an Inte rgenic Region. 

miRNA genes are located in the intergenic region (white) of chromosomes and are 

transcribed by RNA polymerase II to produce a primary-miRNA (pri-miRNA). Splicing 

produces a pri-miR. This then undergoes maturation to produce a mature miRNA. 

 
 
 
 
 

 

Figure 1-16. Nucleotide Sequence of a pre-miR. 

An example of the nucleotide sequence for the pre-miR hair-pin of hsa-miR-25. 

Underlined based show the sequences of the mature miRNA. Taken from Lagos-Quintana 

et al., (2001). 
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miRTrons 

A Drosha-independent pathway for pre-miR production also exists in mammals, 

C. elegans and plants (Lund et al., 2004;Ruby et al., 2007;Okamura et al., 

2007;Berezikov et al., 2007). miRNAs produced in this pathway are generated 

from miRtrons, where the hair-pin pre-miR structure is located in an intronic 

sequence of a protein coding gene. They are spliced out during transcription and 

then processed identically to those produced from the canonical pathway (Figure 

1-17). 
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Figure 1-17. miRNAs Generated from miRtrons. 

Gene transcription produces a pre-messenger RNA (pre-mRNA) strand with exons (solid 

red), introns (solid black) and regulatory regions (red and white stripes). Splicing removes 

the intron and allows mature mRNA to continue to by translated to produce protein 

(green). Introns a degraded but may contain a pre-miRNA (yellow), which is spliced out 

and can produce mature miRNAs. 
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Nuclear-Cytoplasm Transport  

The second stage of miRNA maturation occurs in the cytoplasm (Figure 1-14). 

The pre-miRNA molecule is transported from the nucleus by Exportin-5 which 

requires Ran-GTP as a co-factor (Yi et al., 2003). Exportin-5 is postulated to 

have quality control properties; it will only transport  double stranded pre-miRs 

of a defined length, that have a 3’ 2-nucleotide overhang (Lund et al., 

2004;Zeng and Cullen, 2004). 

Cytoplasmic Processing 

Once localised in the cytoplasm, the pre-miRNA is incorporated into the RISC 

(RNA Induced Silencing Complex) Loading Complex (RLC). The key components of 

the RLC are Dicer, an RNAse III enzyme, Tar RNA binding protein (TRBP), protein 

activator of PKR (PACT) and Argonaut 2 (AGO2) (Gregory et al., 2005;Haase et 

al., 2005;Lee et al., 2006). The pre-miR is tethered by the dsRBD of the TRBP. 

TRBP activates Dicer by conformational rearrangement (Ma et al., 2008). Dicer 

cleaves the pre-miRNA at the hairpin loop of the pre-miR to produce a double-

stranded miRNA, each strand of which is approximately 22 nucleotides in length. 

This intermediate structure contains a miRNA guide strand and a miRNA 

passenger strand (also known as the * strand) (Section 1.5.2.1). 

The processing enzymes are essential to miRNA maturation and, as such, loss-of-

function mutations in Dicer1, but not those in Dicer2 prevent miRNA production 

(Lee et al., 2004b). In contrast, depletion of PACT or TRBP only reduces the 

efficiency of miRNA maturation (Hutvagner et al., 2001;Grishok et al., 2001). 

Further, Dicer double knockout mice die early in development (Bernstein et al., 

2003) emphasising the importance of Dicer in miRNA production and of miRNA-

regulation in early development. Thus, it is not surprising that Dicer levels must 

be closely regulated. Moreover, a product of Dicer, let-7 can repress Dicer 

mRNA, thus providing a negative feedback loop (Forman et al., 2008). Further 

layers of regulation will undoubtedly be identified in coming years. 

Following cleavage, Dicer and the helper-proteins dissociate from the miRNA. 

The final step in miRNA maturation is the unwinding of the dsRNA releasing the 

functional guide strand and the non-functional passenger strand. The enzyme 

that mediates the unwinding of miRNA has not been ascertained but there are 

several candidates for this roles e.g. p68 which unwinds the  let-7c duplex in 
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mice (Salzman et al., 2007); the DEAD box helicase, RCK/p54, is an alternative 

candidates in humans (Chu and Rana, 2006). Establishing the mechanism of 

miRNA unwinding and degradation (Section 1.5.2.4) will be important to 

understanding miRNA strand selection and expression level. 

miRISC 

The guide miRNA strand directs the miRNA-induced silencing complex (miRISC) 

to its target mRNA (Figure 1-14). The passenger strand is degraded. Whilst the 

full mechanism of strand selection is not known, studies with siRNA and miRNA 

molecules have shown that the strand with the less stable base-pairing at the 5’ 

end of the duplex is incorporated into the (mi)RISC (Khvorova et al., 

2003;Schwarz et al., 2003). The passenger strand is sometimes functional and, in 

one example, both the guide and passenger strand of a miR species are believed 

to be active; co-regulation of the REST and Co-REST transcription factors, which 

are important in Huntington’s disease, by  hsa-miR-9 and hsa-miR-9*, has 

recently been described (Packer et al., 2008). 

The core component of miRISC is an Argonaut protein. Argonaut proteins are a 

highly-conserved, ubiquitously-expressed protein family consisting of four 

members in mammals: AGO1, AGO2, AGO3, AGO4. They comprise a Piwi-

Argonaute-Zwille (PAZ) domain, a MID (middle) domain and a PIWI domain. 

Structural studies in bacteria have shown that the PAZ domain forms a pocket to 

associate with the 3’ nucleotide overhang of the miRNA (Jinek and Doudna, 

2009). The PIWI domain resembles RNAse H, an endoribonuclease and therefore 

is believed to be important for silencing (Jinek and Doudna, 2009). Argonaut 

proteins also have strand selection properties but this may be more relevant to 

siRNA silencing (Matranga et al., 2005). In mammalian systems, only AGO2 has 

cleavage properties and is the predominant mediator of RNAi (Liu et al., 2004). 

In vitro experiments have shown that expression levels of Argonaut proteins 

correlate with the levels of mature miRNA, whereas their levels of are 

independent of those of Drosha, DGCR8 and Dicer (Diederichs and Haber, 2007). 

1.5.2.4 Turnover 

Given the powerful regulatory role of miRNAs and their ability to modify mRNA 

directly, the levels of active miRNAs are likely to be closely regulated. Similar to 
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most cellular molecules, the abundance of miRNAs in the cytoplasm is a balance 

of transcription, processing and decay. Variations in miRNA levels are often 

associated with disease phenotypes (Section 1.7). 

The regulation of miRNA degradation has a dual purpose: first to remove the 

passenger strand after separation of the pre-miRNA duplex and thus, preventing 

aberrant miRNA action, and secondly, to clear redundant guide miRNAs. 

Relatively little is understood about the process of miRNA degradation and the 

half life of miRNAs. However, recently XRN-2 exonuclease was shown to degrade 

single-stranded animal miRNA, both guide and passengers in vitro (Figure 1-14) 

(Chatterjee and Grosshans, 2009). Several strategies that protect against 

degradation have been identified, including 3’ adenylation in mammals (Katoh et 

al., 2009) and 3’ methylation in plants (Yu et al., 2005;Li et al., 2005). 

Moreover, miRNA abundance is correlated with the number and levels of target 

mRNA (Chi et al., 2009) which may suggest that miRNAs incorporated into miRISC 

and bound to Argonaut are resistant to degradation. 

In summary, miRNA synthesis, maturation and degradation are regulated, multi-

step, multi-protein processes. Errors occurring during maturation, or 

polymorphisms in the miRNA sequence can alter the levels of miRNA and 

therefore have down-stream effects on target protein expression and function. 
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1.6 miRNA-Mediated Gene Silencing 

Canonical miRNA action involves binding to the 3’UTR and consequent repression 

of mRNA levels, this can occur by transcriptional repression or mRNA 

degradation and will be discussed in section 1.6.2. Variants of this pathway have 

been described but it is believed that the majority of miRNAs act via this 

repressive mechanism. 

1.6.1 miRNA Target Recognition 

The sequence of miRNAs serves as a target recognition motif for guiding miRISC 

to target mRNA and thereby tethering the two together. miRNAs predominantly 

bind to the 3’UTR of mRNA, although there are examples of mammalian miRNA 

binding to coding regions and 5’UTR regulatory regions (Orom et al., 

2008;Duursma et al., 2008;Lee et al., 2009). Most studies, however, focus on 

binding to the 3’UTR and subsequent changes in target expression. 

The degree of miRNA-to-mRNA base-pairing complementarity determines the 

fate of the targeted mRNA. Perfect base-pairing complementarity leads to mRNA 

endonucleolytic cleavage by AGO2, a similar mechanism to siRNA-mediated 

silencing. Perfect base-pairing and cleavage is the prevalent mechanism in 

plants but is less common in animals. In contrast, imperfect miRNA base-pairing 

can cause mRNA destabilisation or translational repression. The ability of miRNA 

to regulate, despite imperfect complementarity, is a special trait of miRNA 

action in animals. There are a large number of bioinformatic databases which 

provide researchers with in silico tools to predict miRNA:mRNA interaction. 

However, the ability of miRNAs to act even though complementarity is imperfect 

increases the difficulty of predicting bone fide targets for miRNAs accurately. 

This will be discussed further in Chapter 5. 

1.6.2 miRNA-Mediated mRNA Repression 

The original miRNA experiments, that identified lin-14 as a target for lin-4, only 

observed repression at the protein level, changes in mRNA levels were negligible 

(Lee et al., 1993;Reinhart et al., 2000). From this, it was concluded that miRNA 
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regulation of mRNA expression was only apparent at the level of protein 

synthesis. However, repetition of these experiments (Bagga et al., 2005) and 

subsequent studies have shown that miRNAs can reduce both mRNA and protein 

levels (Lim et al., 2005;Guo et al., 2010).  

The exact mechanisms and rules governing miRNA-mediated repression are not 

fully understood. Current evidence suggests to two models of silencing following 

miRNA:mRNA target interaction: mRNA destabilisation followed by degradation 

or mRNA translation repression. There is strong experimental evidence in 

support of each model and this will be described below. 

1.6.2.1 mRNA Destabilisation 

miRNAs may prevent translation by destabilising mRNA which can, in turn, lead 

to degradation. The first step of degradation involves shortening the poly(A) tail 

(Wu et al., 2006). Removal of the 3’ poly (A) tail leaves the mRNA vulnerable to 

degradation and also prevents binding of PABPs (Poly (A)-binding protein) and 

translation initiation. mRNA degradation can then proceed in a 3’-5’ manner 

facilitated by exosomes. Alternatively, the 5’ m7GpppN cap is removed, typically 

by the decapping enzyme Dcp2, and then the mRNA is degraded in a 5’-3’ 

direction, mediated by XRN1 (Figure 1-18) (Behm-Ansmant et al., 2006). 

miRNA-targeted mRNAs destined for degradation are directed to, and 

accumulate in, cytoplasmic foci called processing-bodies (P-bodies) (Figure 

1-18)(Liu et al., 2004). These were first discovered in 1997 and were implicated 

in miRNA silencing in 2005 (Bashkirov et al., 1997;Pillai et al., 2005). mRNA with 

shortened poly(A) tails are inducted into P-bodies (Kulkarni et al., 2010). Once 

internalised, many degradation factors contained in P-bodies degrade the 

targeted mRNA. Examples of these factors were recently reviewed by Kulkarni et 

al., (2010) and key factors are summarised in Table 1-7. 

miRISC components GW182 (Protein with multiple glycine(G)-tryptophan(W) 

repeats and a molecular mass of 182 kD) and AGO proteins are required for 

mRNA de-adenylation, decapping and decay (Behm-Ansmant et al., 2006). 

Experiments that artificially tethered GW182 to the 3’UTR of a reporter 

construct identified it as the key protein for decay. Thus, the current model of 
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miRNA-mediated decay is: miRNA targets the 3’UTR of mRNA, which is bound by 

the AGO of miRISC and targeted to P-bodies. AGO protein then recruits GW182, 

which is responsible for mRNA decay (Behm-Ansmant et al., 2006;Li et al., 

2008). 

P-bodies are motile entities that can move through the cytoplasm and also 

fluctuate in number and size. Decreasing XRN-1 in human cells, thus, preventing 

5’-3’ degradation, leads to an increase in the number and size of P-bodies (Sheth 

and Parker, 2003). 

miRNA repression is not always irreversible. An elegant study demonstrated that 

the cationic amino acid transporter (CAT-1) mRNA is targeted by miR-122 (a liver 

specific miRNA) and directed to P-bodies (Bhattacharyya et al., 2006). However, 

under cellular stress conditions, such as oxidative stress (induced with sodium 

arsenite) or endoplasmic reticulum stress (induced with thapsigargin), the mRNA 

can be released back in to the cytoplasm, where it can engage again in active 

translation. The authors demonstrated that this reversal was due to an AU-rich-

element binding protein, HuR, which also bound the 3’UTR and provoked CAT-1-

induced mRNA release (Bhattacharyya et al., 2006). This raises the possibility 

that P-bodies may be temporary stores for sequestered mRNA and again 

emphasises the dynamic nature of miRNA ‘fine-tuning’ of mRNA levels. 

 

Table 1-7. P-bodies Degradation Components and Func tion. 

Component Function 

XNR1 5’-3’ Exonuclease 

GW182 Degradation 

Dcp2:Dcp1 Decapping Complex 

Rck DEAD/H box RNA Helicase 

Ccr4, Caf1 3’-5’ exoribonuclease (Deadenylase) 

AGO (1-4) RISC Complex 
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Figure 1-18. miRNA-Mediated mRNA Destabilisation. 

mRNA (blue) in its pre-circularized position. miRNA (red) binds the miRNA-induced 

silencing complex (miRISC) (green) to the 3’ untranslated region of mRNA. The top 

diagram shows CCR4 de-adenylating the 3’ poly (A) tail. The bottom figure illustrates the 

Dcp2:Dcp1 complex dislodging and decapping the mRNA of its 7-methyl guanine (M7G) 5’ 

cap. Each method leads to mRNA being targeted to cytoplasmic foci, called Processing 

bodies (P-bodies). Within P-bodies, mRNAs are degraded in a bi-directional action, 

mediated by XRN1 or other exonucleases.  
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1.6.2.2  Translation Repression 

miRNA-mediated silencing may occur at several stages of translation. Translation 

is a multi-step process, transfer RNA (tRNA) is produce using the sequence of 

mRNA as a template. tRNA then forms the template for amino acids assembly 

and protein synthesis. Translation can be divided into three stages: initiation, 

elongation and termination. Each step must be completed for the production of 

a correctly aligned and folded protein. Current research seeks to establish 

whether miRNAs act by preventing initiation or by inhibiting other post-initiation 

translational steps. 

The initiation step of translation begins when a ribosome recognises and binds to 

the 5’ mRNA m7GpppN (where N is any nucleotide) cap. This cap is present on all 

transcribed eukaryotic mRNAs. Several eukaryotic initiation factors (eIFs) are 

required for cap recognition; there are at least 13 eIFs subtypes. They recruit 

the small (40S) ribosomal subunit to the 5’UTR of mRNA and interact with 

poly(A)-binding proteins (PABPs), present at the 3’UTR (Pelletier and Sonenberg, 

1988). This interaction brings the ends of the transcript together in what is 

known as circularisation, which is thought to increase eIFs affinity for PABPs and 

increase the rate of initiation (Figure 1-19A) (Kahvejian et al., 2005). The 

initiation process is the rate-limiting step and is under a high degree of 

regulatory control. In certain circumstances, mRNA translation initiation can be 

cap-independent. In these cases, internal ribosome entry sites (IRESs) located in 

the 5’UTR allow interaction with the 40S subunit (Pelletier and Sonenberg, 

1988). 
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Initiation Inhibition 

miRNA-mediated repression of translation initiation was first proposed by 

Humphreys et al., (2005) and Pillai et al., (2005) from experiments with HeLa 

cells transfected with reporter constructs containing known miRNA targets. They 

proposed that miRNAs interfere with cap recognition, therefore preventing 

translation initiation, and the latter study implicated cap protein, eIF4E as a 

target for miRNA (Figure 1-19B) (Pillai et al., 2005). Several studies have 

demonstrated that cap-independent translation is not subjected to miRNA 

repression, thus modulation of cap-recognition in cap-dependent translation 

appears to be one method for miRNA-mediated silencing. 

AGO2, a core component of the mammalian miRISC binds directly to the cap 

structure (Kiriakidou et al., 2007). The MID region of AGO2 has a highly similar 

sequence to the cap-binding eIF and may competitively antagonise binding to 

mRNA. Further evidence of this is illustrated by mutations in the MID region 

which can prevent AGO2 binding (Kiriakidou et al., 2007). However, the results 

of more recent studies disagree. One study suggested that the mutations 

employed by Kiriakidou et al., (2007) affected interaction with GW182 proteins, 

thus preventing miRISC silencing (Eulalio et al., 2008).  Another study cast doubt 

on the sequence and structural similarities between the eIF and AGO2 (Kinch and 

Grishin, 2009). 
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Post-Initiation 

The same group who reported the first miRNA, lin-4 first described miRNA 

repression that occurs post-initiation (Olsen and Ambros, 1999). Much later, in 

2006, polysomal sucrose gradients used to assess the presence of active 

ribosomal translation began to uncover a mechanism for repression. These 

studies favoured post-initiation repression that prevents successful mRNA 

translation during peptide elongation or at termination. However, the results of 

several studies seemed to indicate marginally different modes of repression. In 

HeLa cells, miRNA-targeted mRNA was located in active polysomes, indicating 

that active translation was already in progress (Maroney et al., 2006). This was 

corroborated in experiments using the C. elegans lin-41 3’UTR targeted with let-

7a in HeLa cells, and further verified using the translation inhibitor puromycin, 

that blocks protein synthesis. When used in this study it released let-7a-bound 

miRISC from polysomes therefore, confirming active translation (Nottrott et al., 

2006). Further, co-immunoprecipitation of an artificial N-terminal tag from 

miRNA-targeted mRNA in this study failed to identify nascent polypeptides, the 

authors concluded that miRNAs act by recruiting proteases to degrade newly 

synthesised peptide, termed co-translational protein degradation (Figure 1-19D) 

(Nottrott et al., 2006).  

Finally, Petersen et al., (2006) demonstrated that translation already in progress 

could be prematurely terminated by the dissociation of the ribosome from 

mRNA, and that this dissociation could be caused by miRNA. Pre-mature 

termination of translation, termed ‘ribosome drop-off’, has been recently 

verified in a large-scale study of human and mouse cells (Figure 1-19C) (Guo et 

al., 2010). Taken together, these studies support the concept that miRNA can 

repress mRNA translation post-initiation. 

In summary, miRNA-mediated silencing occurs either by preventing translation or 

by degrading mRNA prior to translation. Whether these two methods are 

mutually exclusive is not yet known. Understanding how miRNAs negatively 

regulate mRNA is necessary for identifying miRNA targets and increases the 

potential for therapeutic manipulation.  
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Figure 1-19. miRNA-Mediated Translation Repression:  Post-initiation Mechanisms. 

A – Classical transcription; mRNA (blue) in circularized position, stabilised by poly (A) binding protein C1 (PABPC1) and eukaryote initiation factors (eIF) 

4e and 4G. miRNA (red) binds the miRISC (green) to the 3’ UTR of the mRNA. Active ribosomes (orange) are translating mRNA to form nascent 

polypeptide.  

B – Elongation Prevention; Indicating miRISC repression by blocking eIF4E binding to the 7-melthy guanine (M
7
G) cap, thereby preventing mRNA 

circularisation.  

C –  ‘Ribosomal Drop-off’; miRISC causing ribosome to prematurely ‘drop-off’ mRNA. 

D – Co-translational protein degradation; miRISC causing nascent polypeptide to be degraded by protease (red). 
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1.7 Examples of Gene Regulation by miRNAs 

It has been estimated that miRNAs bind and regulate approximately 30% of all 

genes (Lewis et al., 2005) and commonly function to ‘fine-tune’ mRNA levels and 

protein expression rather than as ‘on-off’ switches. However, decreased 

expression of a miRNA or expression of de novo miRNAs is common in 

embryogenesis and development and also in several disease phenotypes. This 

section will focus on several examples miRNA regulating genes, pathways and 

diseases. 

1.7.1 miRNAs and Cancer    

Alterations in miRNA expression have been widely implicated in tumour 

development and growth. Understanding the role of miRNAs in cancer will, it is 

to be hoped, increase understanding of pathogenesis, allow earlier diagnosis and 

hopefully lead to the development of new therapies. 

Altered miRNA expression as a participating factor in neoplastic disease was first 

observed by the Croce group investigating a chromosomal locus which is absent 

in chronic lymphocytic leukaemia (CLL). They showed that this region coded for 

two miRNAs, miR-15a and miR-16 and that the production of these was disrupted 

and down-regulated in 70% of CLL cases (Calin et al., 2002). Sequence analysis of 

New Zealand Black mice, a model of CLL, identified polymorphisms in the region 

coding for these miRNAs thus supporting their role in the development of CLL 

(Calin et al., 2005;Raveche et al., 2007). 

To date miRNAs have been implicated in many cancers including those of the 

lung, colon, prostate and breast; these have been reviewed by Farazi  et al., 

(2011). miRNAs implicated in cancer broadly fall into two groups based on their 

function: tumour suppressors or oncogenes. However, classing miRNAs in this 

manner has to be done carefully as they can function differently depending on 

the tissue or cell type in which they act. For example, miR-221 and miR-222 

have contrasting functions; they can act as tumour suppressors in erythroblast 

cells by targeting the oncogene, KIT (Felli et al., 2005), or conversely in CLL, 

thyroid carcinoma and hepatocellular carcinoma, miR-221 and miR-222 can 
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target and de-repress several tumour suppressors including, p27, p57, 

phosphatase and tensin homologue (PTEN) and tissue inhibitor of 

metalloproteinase 3 (TIMP3) (Garofalo et al., 2009), thereby acting as oncogenic 

molecules.  

Broader dysregulation of miRNAs by altered expression of biosynthetic enzymes 

may be important, as demonstrated by a study which measured  Dicer and 

Drosha levels in patients with ovarian cancer (Merritt et al., 2008). Low 

expression of these enzymes was positively correlated with disease stage, 

response to treatment and outcome. Given the relatively short time since the 

discovery of miRNAs, research has come a long way in identifying the key players 

in major cancers. However, much still needs to be learned and, given the 

heterogeneity of cancer, this may prove challenging. 

1.7.2 miRNAs and Cardiovascular Disease 

There is a large body of research that supports a regulatory role for miRNAs in 

the function of the cardiovascular system and may implicate them in 

cardiovascular disease. Targeted knockdown of Dicer during late development in 

mice leads to dilated cardiomyopathy, decreased cardiac output and heart 

failure; mice die prematurely at  post-natal day 4 (Chen et al., 2008a). Thus, 

miRNAs are essential for heart development and normal cardiac function. 

miRNAs have also been extensively studied in a wide variety of cardiovascular 

disorders and have been implicated in the pathogenesis of left ventricular 

hypertrophy, arrhythmias and fibrosis (for a review see Small et al., (2010). 

Several miRNAs, including miR-1 and miR-133, are cardiac-specific and appear to 

contribute to the regulation of a diverse range of cardiovascular functions. 

Very few studies so far have investigated what role miRNAs may have in human 

hypertension; this is possibly due to the complex nature of hypertension. A 

limited number of studies have used in vitro methods or animal models to 

evaluate their role. miR-155 has emerged as a potential candidate, which may 

target and repress the expression of the AngII type I receptor (AT1R) (Martin et 

al., 2006). This repression is dependent on the presence of a sequence variant 

A1166C (rs5186) located in the AT1R gene. miRNA repression of a reporter 
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construct was observed with the 1166A allele but not with the 1166C allele 

(Sethypathy, 2007). miR-155 expression is lower in aortic samples taken from 

spontaneously hypertensive rats (SHR) than those from control Wistar-Kyoto rats, 

moreover in these samples there was decreased protein levels of the AT1R 

(Zheng et al., 2010). Repression of AT1R by miR-155 would be expected to 

decrease the vasoconstrictive effects of angiotensin II, thus lowering blood 

pressure. Hypertension has been associated with the 1166C allele in some 

populations but not others; if there is a link with the 1166C and hypertension, it 

would be expected that patients with the 1166C allele would have reduced miR-

155 repression of AT1R and, therefore, greater AngII signalling. SNPs present in 

the genes of other RAS components may similarly modulate the effects of miRNA 

regulation (Elton et al., 2010).  

Thus, whilst miRNAs have distinct expression patterns in cardiovascular tissue 

and may have major roles in heart development and disease progression 

(including hypertension-related cardiac pathology), their role in hypertension 

has not yet been incontrovertibly established. 

1.8 Therapeutic Potential of miRNAs 

Novel therapeutic strategies are always being sought for diseases, either to 

improve existing treatment (e.g. less invasive, more specific and manageable 

strategies), or to treat conditions that do not respond to standard treatment. 

Unsurprisingly, much research time and money has been devoted to identifying 

ways of manipulating miRNAs, either by increasing or decreasing their expression 

as the basis of novel therapies. Problems to be solved include the methods of 

delivery to target tissues, synthesising stable analogues and reducing off-target 

effects. 

Current synthetic miRNA therapies include the use of viruses to generate pre-

miR molecules (Kota et al., 2009), or direct administration of nucleotide 

analogues that act as mature miRNAs (Figure 1-20). Several companies are 

concentrating on making these mRNA-mimics as short as possible in order to 

increase specificity; RXi Pharmaceuticals (Worcester, MA) are investigating the 
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potential of 15-nucleotide-long dsRNA molecules, whereas Santaris Pharma 

(Hoersholm, DK) have tested molecules as short as 8 nucleotides. 

Options for reducing the destructive effects of miRNA broadly fall into three 

areas that are summarised in Figure 1-20. They include direct inhibition of the 

miRNA using antisense molecules, sequestering miRNA with a miRNA-sponge 

(Ebert et al., 2007), which has several repeats of 100% complementary miRNA 

sequences, or antagonising miRNA binding sites in the 3’UTR of mRNA (Figure 

1-20). 

Mechanisms for miRNA delivery include viral vectors or short synthetic 

oligonucleotides which include the miRNA sequence (Figure 1-20). While viral 

vectors can provide long term treatment, they also require accurate targeting to 

the cell nucleus (Section 1.5.2.3). Synthetic RNA molecules are easier to deliver 

to the cytoplasm but have very short half-lives. For this reason, several 

strategies that modify nucleic acid structure, helping to stabilise them have 

been devised (Figure 1-21). Modifications include addition of a methylene bridge 

between the 2’-O atom and 4’-C atom of the ribose ring. Termed Lock Nucleic 

Acid (LNA), this can increase the hybridisation affinity to ssRNA (Vester and 

Wengel, 2004). Another modification introduces a 2’-O-methyl group to the 

nucleotide which by reducing nuclease degradation, increases stability and also 

increases affinity for specific RNA molecules (Hutvagner et al., 2004). Finally, a 

phosphorothioate linkage can be modified; this involves the replacement of the 

oxygen molecule that normally links a nucleotide to its adjacent nucleotide with 

a sulphur molecule. Again, this increases stability and reduces plasma clearance; 

however, it also reduces the affinity for the target RNA. That these approaches 

are promising is shown by the fact that anti-miRs with both a 2’-P-methyl group 

and phosphorothioate link successfully target and repress mature miR-122 in the 

liver for up to 23 days following injection into the tail vein of mice (Krutzfeldt et 

al., 2005); this was the first effective use of antisense miRNA molecules in vivo. 
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Figure 1-20. Methods of Inhibiting miRNAs. 

A - miRNA inhibition by small anti-sense molecules, which bind to the miRNA molecules, 

thus preventing them from acting. Delivery mechanisms include small oligonucleotide, 

with or without modification, or by viruses. B - miR-sponge is a reporter construct with 

several repeats of the antisense miRNA sequence; these bind miRNAs and inhibit them. C- 

miR-masking inhibitors are small molecules which competitively antagonise the miRNA 

binding site present on the 3’UTR.  

 
 

 

Figure 1-21. RNA Structural Modifications. 

Examples of modifications to nucleotides which stabilise small RNAs. Locked Nucleic Acid 

(LNA) involves adding a methylene bridge between the 2’-O atom and 4’-Carbon atom of 

the ribose ring. 2’O-Methyl modification introduces a 2’O-Methyl group to the nucleotide. 

A phosphorothioate link replaces the oxygen molecule on the nucleotide with sulphur. 

Taken from Garzon et al., (2010). 
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1.8.1 Current Clinical Trials  

Despite the challenges described in the previous section, there are several 

pharmaceutical companies who are conducting early pre-clinical trials of miRNA-

based therapy. The in vivo delivery in small mammals could be replicated in 

higher mammals was first demonstrated by Elmen et al., (2008), they 

successfully targeted the liver of African green monkey with a LNA anti-miR-122. 

Subsequently, several pharmaceutical companies have lodged patents for miRNA 

therapies and Santaris Pharma this year announced that they are commencing 

phase II clinical trials using a similar anti-miR-122 (SPC3249) as a treatment for 

Hepatitis C Virus. Several other companies (and presumably academic institutes) 

are actively pursuing similar therapies and, thus, the search for new treatments 

based on miRNAs appears highly promising.  

1.8.2 miRNAs as Biomarkers 

Further clinical benefits of miRNAs lie in their potential as biomarkers, providing 

diagnostic signatures of disease. Biomarkers aim to be non-invasive, routine 

identifier of disease phenotype, stage and response to treatment. DNA is 

routinely recovered from plasma and, more recently, techniques to isolate RNA 

(both coding and non-coding) from plasma have opened the door to their use as 

novel biomarkers (Lawrie et al., 2008). miRNAs have also been successfully 

isolated from urine, saliva and amniotic fluid (Chen et al., 2008b). The pattern 

of miRNAs in biological fluids is remarkably reproducible between patients (Chen 

et al., 2008b) and as they are relatively unharmed by enzyme degradation, 

freeze-thawing and pH changes, they survive isolation unchanged (Mitchell et 

al., 2008). 

Recent analysis of blood samples from patients with non-small cell lung 

carcinoma revealed a sub-set of 24 miRNAs whose expression levels were 

different from those of healthy controls. miRNA levels could be measured with 

greater than 95% accuracy and specificity and with greater than 90% sensitivity  

(Keller et al., 2009). Another study examined plasma from patients with 

colorectal cancer and identified 5 miRNAs (out of 95 miRNAs screened) were up-

regulated relative to healthy controls (Ng et al., 2009). The same 5 miRNAs were 
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up-regulated in cancerous tissue compared to adjacent non-cancerous tissue (Ng 

et al., 2009). 

These examples indicate the great potential of miRNAs to act as a diagnostic 

tool in disease. 

1.9 miRNAs and Endocrine Disease 

The only published report of miRNAs modulating aldosterone production was 

published in 2007 and identified an affect of miR-21 (Romero et al., 2008), 

which is expressed in the adrenocortical cell line, H295R, and is significantly up-

regulated in response to AngII stimulation. H295R cells are of cancerous origin 

and miR-21 has previously been implicated in oncogenesis (for review see 

Krichevsky and Gabriely (2009)). Experimental over-expression of miR-21 in 

these cells increased aldosterone production but not cortisol (Romero et al., 

2008). Unfortunately, the investigators failed to assess the effect of miR-21 on 

CYP11B2 mRNA or other known regulators of aldosterone biosynthesis. Although 

this important study suggests a role for miRNAs in corticosteroid production, 

further work is warranted. 

As discussed in section 1.7.1 miRNAs are frequently discordantly expressed in 

tumours, and this applies also to endocrine tumours. Of particular relevance to 

this thesis are two recent profiling studies, one of which profiled normal adrenal 

glands, benign adenomas and adrenocortical carcinoma (ACC) (Tombol et al., 

2009), and another which compared macronodular adrenocortical disease 

samples with normal control tissue (Bimpaki et al., 2010). These studies used 

Taqman Low Density Arrays to measure the expression of 365 miRNAs, less than 

a third currently of the total known human miRNA species. The expression of 

several miRNAs was altered in the diseased tissue compared to the control tissue 

but neither of these studies was designed to assess miRNA regulation of the 

CYP11B1 or CYP11B2 genes directly. 

Further evidence that miRNAs may be determinants of adrenal function comes 

from a recent study in which SF-1 positive cells (adrenal, ovary and testis cells) 

were selectively targeted for Dicer knockout by Cre- mediated (Huang and Yao, 

2010). While embryonic development of all SF-1 organs proceeded as normal, at 
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18.5 days post-coitum, adrenal cortex cells became apoptotic and, 48 hours 

later, the primordial adrenal gland degenerated. It is interesting to note that 

the testes were affected in a similar manner but the ovaries were normal for the 

duration of the study, until post-natal day 5 (Huang and Yao, 2010). This 

emphasises the absolute necessity of miRNAs in late adrenal development and 

organ maintenance. 

The review of recent studies makes clear that miRNAs are important in adrenal 

development and pathology, and provide preliminary evidence for miRNA-

mediated regulation of genes involved in corticosteroid biosynthesis. Moreover, 

several groups have reported the regulation of steroid receptors including MR 

(Sober et al., 2010) and others by miRNAs (for review see Tessel (2010). miRNA 

involvement in the regulation of adrenocortical function is becoming 

established, adding another facet to an already complex system of control. A 

further understanding of its precise contribution will require careful dissection 

of its involvement at the important steps of corticosteroid synthesis and 

function, as described in the earlier sections of this review. 
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1.10 Aims 

The influence of the CYP11B1 and CYP11B2 genes in hypertension is well 

established. However, much still needs to be understood about the regulation of 

these genes and the consequential impact on aldosterone and cortisol 

production. Both genes are highly polymorphic (Section 1.4.2.1). The link 

between these polymorphisms and enzyme activities is yet to be fully 

elucidated. Finally, the processes underlying the development of APA are still 

unclear. The novel regulator miRNA may provide some explanations will be 

investigated in this study.   

The aims of the study were: 

To investigate the 3’UTR of the CYP11B1 and CYP11B2 genes in order to identify 

putative miRNA binding sites and also the existence and location of polymorphic 

variation in the 3’UTR. 

To establish the expression profile for miRNAs in normal adrenal glands and in 

aldosterone-producing adenoma samples. 

To develop methods to determine the identity and effect of miRNAs acting on 

CYP11B1 and CYP11B2 mRNA. 

To determine using in vitro systems, whether miRNAs regulate the 

corticosteroidogenic pathway. 
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2 Material and Methods 
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2.1 Cell Culture 

Culturing of cell lines was performed in a biological class II vertical laminar flow 

cabinet using sterile conditions. Cells were grown in a monolayer in tissue 

culture flasks, with normal growth medium placed in a humidified chamber at 

37°C in 5% CO2/95% air. 

HeLa cells (an immortalised cell human line derived from cervical cancer) were 

purchased from the European Collection of Animal Cell Cultures (Porton Down, 

Wiltshire, U.K.). HeLa cells were maintained in Dulbecco’s modified Eagles 

medium supplemented with 10% (v/v) fetal calf serum (FCS), 2 mM L- glutamine 

and 1 IU penicillin, 100 µg/ml streptomycin (Invitrogen, Paisley, U.K.). 

The H295R (strain 2) human adrenocortical tumour cell line was a kind gift from 

Professor William Rainey (Medical College of Georgia, GA, U.S.A.). H295R cells 

were maintained in Dulbecco’s modified Eagles medium with F12 supplement 

(Invitrogen, Paisley, U.K.) containing HEPES buffer, L-Glutamine and pyridoxine 

HCl medium. This was supplemented with 2.5% Ultroser G (Pall Bioscience, 

France), 1% insulin-transferrin-selenium (ITS) (BD Biosciences, Paisley, U.K.), 1 

IU penicillin, 100 µg/mL streptomycin (Invitrogen, Paisley, U.K.). 

2.1.1 Cryopreservation 

For long-term storage, cells were preserved by collection as described in section 

2.1.3. After centrifugation, cells were resuspended in complete growth medium, 

supplemented with 10% (v/v) dimethyl sulphoxide (DMSO) to prevent ice crystals 

forming during the freezing process. Cells were aliquoted into cryopreservation 

vials, which were cooled at a constant -1°C/minute to -80°C using isopropanol 

and a Nalgene Cryo-Container and then placed into the vapour phase of liquid 

nitrogen for storage. 

2.1.2 Revival of Cell Stocks from Liquid Nitrogen 

To revive cells from cryopreservation, vials were quickly thawed in a 37°C water 

bath and the cell suspension immediately transferred to a universal container 

with 10 ml of complete growth medium. The suspension was centrifuged at 478 x 
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g for 5 minutes to remove the DMSO. The cell pellet was resuspended in 5 ml of 

complete growth medium, transferred to a T-25 cell culture flask and cultured, 

as described in section 2.1.3. 

2.1.3 Sub-Culturing Cells 

Cells were sub-cultured when approximately 70-80% confluent. The medium was 

removed and the cells were washed with 10 ml of phosphate buffered saline 

(PBS), which was also discarded. To detach the cells from the flask, 5 ml of   

0.025% Trypsin-EDTA solution was added to the cells and the flask placed into 

the incubator for approximately 5 minutes. Once the cells were successfully 

dispersed, 5 ml of normal growth medium was added to inactivate the Trypsin-

EDTA. The cell suspension was placed in a 25 ml universal container and 

centrifuged at 478 x g for 5 minutes. The supernatant was discarded and the cell 

pellet resuspended in an appropriate volume of normal growth medium for sub-

culturing. Typically H295R cells were sub-cultured at a ratio of 1 in 3, and HeLa 

cells at 1 in 8. 

2.1.4 Counting Cells 

Counting of cells was carried out using a Bright Line Haemocytometer (Sigma-

Aldrich, Poole, U.K.). Cells were collected using Trypsin-EDTA, as described in 

section 2.1.3. After centrifugation, cells were resuspended in 1 ml of complete 

growth medium. A coverslip was placed on the haemocytometer and 20 µl of cell 

suspension applied by capillary action across the chamber. Using a light 

microscope, the number of viable cells in each 1 mm corner square was counted 

and the average calculated. Each corner square on the haemocytometer, with 

coverslip in place, represents a total volume of 1 mm3 (equivalent to 10-4 cm3). 

Since 1 cm3 is equivalent to a volume of approximately 1 ml, the subsequent 

concentration of cells per ml can be determined using the following calculation: 

Cell number /ml = average cell count per square x 104 x original volume 

The calculated cell concentration (cell/ml) was then used for plating cells at the 

desired density. 
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2.1.5 Stimulation of Cells with Angiotensin II 

CYP11B2 gene transcription was stimulated in H295R cells by supplementing the 

medium with Angiotensin II (AngII) (Sigma-Aldrich, Poole, U.K.).  Normal growth 

medium was supplemented with AngII at a final concentration of 10 nM by 

adding 150 µl of AngII (10 µM stock) to 150 ml of growth medium and added to 

the cells for 1, 6 or 24 hours.  

2.2 Total RNA Isolation  

Specialised methods preserving the small RNA fraction were used to isolate total 

RNA from cells and tissue. The miRNeasy mini kit (QIAGEN, Crawley, U.K.) was 

used to isolate total RNA from cells and frozen tissue samples because it 

facilitates the purification of both large and small (<200 base pairs) RNA 

molecules. The RecoverAll™ Total Nucleic Acid Isolation Kit (Applied Biosystems, 

Warrington, U.K.) was used to isolate total RNA from formalin-embedded 

paraffin-embedded tissue. RNase free plastics, reagents and handling techniques 

were implemented when working with RNA to minimise degradation of sample. 

2.2.1 Total RNA Isolation from Cells and Frozen Tis sue 

For isolation of total RNA from cells, the direct lysis method of the miRNeasy Kit 

was followed. The cell medium was removed and the cells washed twice with 

PBS before adding 700 µl of Qiazol regent directly to the cells in order to 

homogenise them. The Qiazol lysis reagent contains phenol and guanidine 

thiocyanate which efficiently lyse the cells and inhibit RNases. The cell culture 

vessels were placed in the -80°C freezer for at least 15 minutes to facilitate lysis 

then thawed at room temperature. The sample was then transferred to an 

RNase-free 1.5 mL tube and left at room temperature for 5 minutes.  

For frozen adrenal glands, a 3 mm3 sample (approximately 40 mg of tissue) was 

placed into a FastPrep Lysing Matrix D Tube (MP Biomedicals, Illkirch, France) 

with 700 µl of QIAzol lysis reagent. Samples were homogenised in a bench top 

MagNA Lyser instrument (Roche Applied Science, Indianapolis, USA) for 30 

seconds at a speed of 535 rpm. The tube was briefly centrifuged to collect the 
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contents, which were then transferred to an RNase-free tube and left at room 

temperature for 5 minutes.  

Following this incubation, 140 µl of chloroform was added and the tube shaken 

vigorously for 15 seconds, then incubated at room temperature for 3 minutes. To 

separate the sample into aqueous and organic phases, the samples were 

centrifuged at 4°C, 12,000 x g for 15 minutes. The upper, aqueous phase, 

containing the RNA fraction, was transferred to a clean tube and 1.5 volumes 

(approximately 425 µl) of 100% molecular grade ethanol added to each sample. 

The sample was then loaded into an RNeasy mini spin column which was 

centrifuged for 30 seconds at 8,000 x g to bind RNA molecules within the sample 

to the silica membrane. The flow-through was discarded and then the membrane 

washed with 700 µl of Buffer RWT. This was followed by two further washes with 

500 µl of Buffer RPE, the first was centrifuged at 8,000 x g for 30 seconds and 

the second for 2 minutes. The spin column was then placed in a fresh collection 

tube and centrifuged at 13,000 x g for 1 minute to prevent carry-over of wash 

buffers. The column was then placed into a 1.5 ml tube, 50 µl of RNase-free 

water added to the centre of the membrane, left to stand for 1 minute and 

centrifuged at 8,000 x g for 1 minute to elute the RNA.  

RNA was quantified using the Nanodrop (section 2.2.4), DNase treated (section 

2.2.3) prior to qRT-PCR measurement, and stored at -80°C. 

2.2.2 Total RNA Isolation from Formalin-Fixed Paraf fin-Embedded 

Tissue 

The RecoverAll™ Total Nucleic Acid Isolation Kit (Applied Biosystems, 

Warrington, U.K.) was used to isolate total RNA from adrenal gland samples that 

had been formalin-fixed and paraffin-embedded. Four 20 µm sections of tissue 

were cut using a microtome by Tim Harvey (University of Glasgow, Department 

of Pathology) and placed in a FastPrep Lysing Matrix D Tube (MP Biomedicals, 

Illkirch, France) with 1 ml of xylene. The samples were placed in a benchtop 

MagNA Lyser instrument (Roche Applied Science, Indianapolis, USA) for 30 

seconds at a speed of 535 rpm to homogenise the sample. The matrix tube was 

briefly centrifuged to collect the contents, which were then transferred to an 
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RNase-free 1.5 mL tube and placed in a 50°C heat block for 3 minutes to melt 

the paraffin.  

The sample was separated into a tissue pellet and a xylene upper layer by 

centrifugation at maximum speed for 2 minutes. The xylene layer was discarded. 

Two washes with 100% ethanol were then carried out to remove residual traces 

of xylene and to aid drying of the tissue. Ethanol was carefully removed and 

discarded each time. The pellet was then left at room temperature for 40 

minutes to air dry. 100 µl of digestion buffer and 4 µl of protease solution (both 

supplied in the kit; concentration unknown)) were added to each sample tube, 

gently mixed and then placed in a heat block for 15 minutes at 50°C, which was 

increased to 80°C for a further 15 minutes.  

The sample was cooled to room temperature prior to adding 120 µl of Isolation 

Additive and 275 µl of ethanol. The solution was mixed by pipetting, then 

applied to a filter cartridge, placed in a collection tube, was centrifuged at 

10,000 x g for 30 seconds, the flow through was discarded. One wash step with 

700 µl of Wash 1 and one with 500 µl of Wash 2/3 was performed, centrifuging at 

10,000 x g for 30 seconds each time. A final spin of 30 seconds was performed to 

remove residual fluid from the filter.  

An on-column DNase reaction was performed by combining 6 µl of DNase buffer, 

4 µl of DNase solution (supplied in the kit) and 50 µl of Nuclease-free water, 

then adding this solution to the cartridge.  The filter was incubated for 30 

minutes at room temperature. The two previous wash steps were repeated, this 

time with a final spin for 1 minute at 10,000 x g. The filter was transferred to a 

new RNase-free 1.5 mL tube and 60 µl of nuclease-free water added. The sample 

was incubated at room temperature for 1 minute before eluting the RNA at 

10,000 x g for 1 minute. The sample quality was verified by Nanodrop (section 

2.2.4) and Bioanalyser (section 2.2.5) and then stored at -80°C. 

2.2.3 DNase Treatment of RNA 

DNase treatment was performed to remove residual genomic DNA from RNA 

samples, thus ensuring qPCR measured only mRNA. DNase treatment was 

performed using the TURBO DNA-free™ kit (Ambion, Texas, USA). For a 50 µl RNA 
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sample, 2 µl of TURBO DNase (2U/µl) and 5 µl of 10X TURBO DNase Buffer was 

added and carefully mixed. The reaction was incubated at 37°C for 30 minutes. 

To inhibit the reaction, 10 µl of DNase Inactivation reagent was added, mixed 

and left at room temperature for 2 minutes. The samples were then centrifuged 

at 10,000 x g for 1.5 minutes. The supernatant, containing RNA, was collected 

and stored in an RNase-free tube at -80°C. 

2.2.4 Determination of Nucleic Acid Quantity 

A Nanodrop® ND-100 Spectrophotometer with ND-1000 v3.1.0 software (Labtech 

International Ltd, Lewes, East Sussex, U.K.) was used to determine the quantity 

and quality of nucleic acids. The Nanodrop® was set to measure DNA or RNA as 

appropriate. Nuclease-free water was used to blank the Nanodrop prior to 

measuring samples. To load the pedestal, 2 µl of water or sample was applied 

and the arm lowered. The arm automatically moves to pull the sample into a 

column between it and the pedestal, which creates an optimal path length for 

the sample to be measured. The concentration of the sample is calculated using 

the Beer-Lambert Law of absorption; 

Concentration of DNA (µg/ml) = (A260 reading – A320 reading) x 50 
 

Concentration of RNA (µg/ml) = (A260 reading – A320 reading) x 40 
 
The ratio of absorption at 260 nm and 280 nm was used as an indicator of purity 

of DNA and RNA samples, with ratios of 1.8 and 2, respectively being indicative 

of pure samples. Additionally, the ratio of absorption at 260 nm and 230 nm was 

used as an indicator of RNA purity; pure RNA has a ratio of 2.0 - 2.2, (a common 

contaminant is phenol, which absorbs at 230 nm and is used in Total RNA 

extraction).  

2.2.5 Agilent Bioanalyser 

Total RNA samples isolated for microarray analyses were tested for degradation 

using an Agilent Bioanalyser 2100 and a Eukaryote Total RNA Nano Series II chip. 

The analysis was run at the Molecular Biology Support Unit at the University of 

Glasgow. Results produced included an electropherogram, with RNA peaks at 18S 

and 28S, and a RNA integrity number (RIN).  
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2.3 miRNA Microarray  

To determine the miRNA expression profile of adrenal tissue (non-tumourous 

‘normal’ and aldosterone-producing adenoma) total RNA was analysed on a 

miRNA microarray. This was performed by LC Sciences (Houston, Texas, U.S.A.) 

using 5 µg of the total RNA previously prepared. For shipping, 0.1 volume of 3M 

NaOAc (pH 5.2) and 3 volumes of 100% ethanol were added, mixed and placed in 

an RNase-free 1.5 mL tube. The samples were packed in dry ice and ice blocks 

for shipping. 

Samples were further quality checked prior to proceeding with the miRNA 

µParaflo® technology microarray, version 10.1. Briefly, the RNA was labelled 

with a fluorescent dye then hybridised overnight onto a microfluidic chip 

containing complementary probes for 723 human miRNAs and other RNA 

controls. The chip was imaged using a GenePiz 4000B laser scanner and digitised 

using Array-Pro image analysis software. Raw data matrix was then subtracted 

from the background matrix. Data adjustment included data filtering, Log2 

transformation, gene centring and normalisation.   

2.4 Reverse Transcription 

First strand complementary DNA (cDNA) was produced from RNA by reverse 

transcription to allow quantification of miRNA and mRNA by qRT-PCR. Three 

different protocols were followed to achieve this depending on the nature of the 

experiment and each is detailed below. For each RNA sample a no template and 

a no reverse transcriptase (-RT) control was included to assess the specificity of 

the qRT-PCR reaction to detect genomic DNA. 

2.4.1 ImProm-II™ Reverse Transcription System 

The ImProm-II™ Reverse Transcription System (Promega, Madison, WI, U.S.A.) 

utilises random primers to reverse transcribe mRNA transcripts in the sample. 

Following the manufacturer’s instructions, 200 ng of DNase treated RNA was 

combined with 1 µl of Random primers (0.5 µg/reaction) and made up to a final 

volume of 5 µl with RNase-free water in a 96-well plate. The samples were 
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heated to 70°C for 5 minutes on a 96-well Dyad Disciple™ thermal cycler (MJ 

Research, Waltham, M.A, U.S.A.), then placed on ice for 5 minutes. The 

following reagents were combined in a master mix, mixed, centrifuged and then 

15 µl of the master mix added to each sample. 

Volume (µl) 
Reagent 

+RT -RT 

Final 
Concentration 

5X ImProm-II™ Reaction Buffer 4.0  4.0  1X 

dNTP Mix 1.0  1.0  0.5 mM/dNTP 

MgCl2 4.8  4.8  6 mM 

RNasin Ribonuclease Inhibitor 0.5  0.5   

ImProm-II™ Reverse Transcriptase 1.0  0.0   

RNase-Free Water 3.7  4.7   

 
The samples were subjected to the conditions below on a 96-well Dyad Disciple™  

thermal cycler (MJ Research, Waltham, M.A, U.S.A.) then 80 µl of nuclease-free 

water added to each sample, which was then stored at -20°C until required. 

 Step Time (minutes) Temperature (°C) 

1 Annealing of primers 5  25 

2 Extension 60  42 

3 Inactivation of RT 70  95 
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2.4.2 TaqMan® microRNA Reverse Transcription 

TaqMan® MicroRNA Reverse Transcription Kit (Applied Biosystems, Warrington, 

U.K.) was used to generate cDNA of specific miRNAs or controls, to be used with 

Taqman® MicroRNA Assays. A reverse transcription master mix was prepared as 

follows; 

Volume (µl) 
Reagent 

+RT -RT 

10X Reverse Transcription Buffer 0.750 0.750 

dNTP Mix (100 mM) 0.075 0.075 

RNase Inhibitor (20 U/µl) 0.094 0.094 

MultiScribe™ Reverse Transcriptase (50 U/µl) 0.500 0.000 

TaqMan® MicroRNA assay primer 1.500 1.500 

RNase-Free Water 3.581 4.081 

 
The reverse transcription master mix was added to 2 µl of DNase treated Total 

RNA (5 ng/µl). The plate was placed on a 96-well Dyad DiscipleTM thermal cycler 

(MJ Research, Waltham, M.A., U.S.A.) and the samples subjected to the 

following conditions below. 105 µl of RNase-free water was added to each 

sample and stored at -20°C. 

 Step Time (minutes) Temperature (°C) 

1 Primer Annealing 30  16 

2 Extension 30  42 

3 Inactivation of RT 5  85 
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2.4.3 miScript Reverse Transcription Kit 

The miScript Reverse Transcription Kit (QIAGEN, Crawley, U.K.) comprises a 

unique reverse transcription mix that contains two enzymes: a poly(A) 

polymerase that polyadenylates mature miRNA molecules in the sample, and a 

traditional reverse transcriptase enzyme. The buffer contains random primers to 

reverse transcribe mRNA and oligo-dT primers to bind and transcribe miRNA 

products.  

The following reaction was set up for each sample: 200 ng of DNase treated RNA 

was combined with 1 µl of Reverse Transcription Mix, 4 µl of 5X miScript Reverse 

Transcription Buffer and made up to 20 µl with RNase-free water in a 96 well 

plate. The reaction was run on the Multi Block System Satellite 0.2 Thermo 

Cooler (Thermo Fisher Scientific, U.K.) set with the following below. Following 

the reaction, 80 µl of RNase-free water was added to each sample and then 

stored at -20°C. 

Step Time (minutes) Temperature (°C) 

Reverse Transcription 120  37  

Inactivation of RT Mix 5  95  

 

2.5 Quantitative Real-Time Polymerase Chain Reactio n 

Quantitative real-time PCR (qRT-PCR) was performed on cDNA template to 

determine the relative quantities of mRNA or miRNA in a sample. The reactions 

were set up using the methods described below in Thermo-Fast® 384-well PCR 

plate (Thermo Fisher Scientific, U.K.) and run on an ABI PRISM 7900HT PCR 

system. Triplicate reactions were set up for +RT cDNA samples and a duplicate 

for the -RT sample. Positive controls and water blanks were also included.  
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2.5.1 Universal ProbeLibrary  

The Universal ProbeLibrary (UPL) System (Roche Applied Science, Indianapolis, 

USA) comprises 165 pre-validated, real-time PCR probes that are labelled with 

fluorescein (FAM) at the 5’ end and a dark quencher dye at the 3' end. Primers 

were designed using the UPL assay design centre and ordered from Eurofins MWG 

Operon (Ebersberg, Germany). The amplicon for each primer pair encompassed a 

specific probe binding site and where possible, intron spanning primers were 

used. Details of primers and probes can be found in (Appendix, Table 8-7-1). 

Reaction master mixes were set up as follows; 

Reagent Volume (µl) 
Final 

Concentration 

ABsolute™ QPCR ROX MIX (2x) 5.0 1X  

Forward Primer (10 µM) 0.4 400 nM  

Reverse Primer (10 µM) 0.4 400 nM  

UPL Probe (10 µM) 0.1 100 nM  

Nuclease-Free Water 2.1  

 
Two µl of cDNA prepared using either the ImPromII RT System or the miScript 

Reverse Transcription Kit (sections 2.4.1 and 2.4.3) was added to a 384-well PCR 

plate and the plate briefly centrifuged to collect the solution. 8 µl of the master 

mix was added to the appropriate well and mixed. The plate was sealed with an 

optical QPCR Absolute seal (ABgene Ltd, Epsom, U.K.), centrifuged to collect the 

reaction and run on the ABI PRISM 7900HT cycler using SDS software with the 

conditions outlined below: 

Step Time Temperature (°C) Cycles 

Enzyme Activation 15 minutes  95 1  

Denaturation 15 seconds  95 

Annealing and Extension 1 minute  60 
40  
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2.5.2 TaqMan® qRT-PCR 

TaqMan® pre-designed RT-PCR gene expression assays (Applied Biosystems, 

Warrington, U.K.) were used to measure relative quantities of PTK9 

(Hs00702289_s1), Dicer-1 (Hs00229023_m1) and HMGA2 (Rn00583330_m1*) 

mRNA. A master mix was set up as detailed below, with 8 µl of this added to 2 µl 

of cDNA sample (section 2.4.1) in a 384-well optical plate. The reaction was run 

according to the conditions detailed in Section 2.5.1. 

Reagent Volume (µl) 

ABsolute™ QPCR ROX MIX (2x) 5 

TaqMan® Gene expression Assay 0.5 

Nuclease-Free Water 2.5 

 
TaqMan® miRNA assays (Applied Biosystems, Warrington, U.K.) were used to 

measure relative quantities of mature miRNA, details of which are in (Appendix; 

Table 8-7-2). 1.5 µl of cDNA, produced using the TaqMan® MicroRNA Reverse 

Transcription Kit (section 2.4.2), was added to a 384-well optical plate with    

8.5 µl of miRNA Taqman® master mix, detailed below. This reaction was run 

according to the cycling conditions in Section 2.5.1. 

Reagent Volume (µl) 

ABsolute™ QPCR ROX MIX (2x) 5.0 

TaqMan® miRNA expression Assay 0.5 

Nuclease-Free Water 3.0 
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2.5.3 miScript qRT-PCR System 

Detection of mature miRNA was performed using the miScript SYBR Green PCR 

Kit (QIAGEN, Crawley, U.K.) and cDNA template generated using the miScript 

Reverse Transcription Kit (Section 2.4.3). 10X miScript Primer Assays (Appendix; 

Table 8-7-3) were reconstituted with 550 µl of TE (pH 8.0) and stored at -20°C. A 

reaction mix was set up, as detailed below and 8 µl of this was added to cDNA, 

prepared as in Section 2.4.3, in a 384 well plate. 

Reagent Volume (µl) 

QuantiTect SYBR Green PCR Master Mix (2X) 10  

10X miScript Universal Primer 2  

10X miScript Primer Assay 2  

Nuclease-Free Water 4  

 
The reaction was subjected to the conditions detailed below on an ABI PRISM 

7900HT PCR cycler. A melt curve was performed immediately after the cycling 

conditions to verify specificity and identity of PCR products; data was collected 

during the 60°C-95°C ramp phase. A single peak was observed for each primer 

assay, confirming a single and unique PCR product. 

 

Step Time Temperature (°C) Cycles 

Enzyme Activation 15 minutes 95 1  

Denature 15 seconds 95 

Annealing 30 seconds 55 

Extension 30 seconds 70 

40  

15 seconds 95 

15 seconds 60 Melt curve 

15 seconds 95 (slow ramp) 

1  
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2.5.4 Analysis of qRT-PCR Results 

The extension phase of the PCR releases the fluorescence from the respective 

qRT-PCR probe, which is measured by the ABI PRISM 7900HT thermo cycler. A 

threshold of florescence is set during the exponential phase of amplification. 

The cycle number at which the fluorescence signal breaches this set threshold is 

termed the cycle threshold (Ct). 

qRT-PCR results were analysed using the relative quantification method of 

comparative Ct. This method assumes the efficiencies of each assays under 

comparison to be approximately equal. Efficiencies were calculated using serial 

dilutions of cDNA product and the equation: 

Efficiency (%) = (10-1/slope) x 100 

The genes GAPDH and β-Actin, and small nucleolar RNA 48 (RNU48) were used as 

housekeeping genes and assays for each were run on all plates. These act as a 

normalising control for RNA concentration and small pipetting discrepancies. 

They had each been tested for consistent expression and reproducibility in 

appropriate samples. Housekeeping gene expression was used to calculate the 

∆Ct for the given gene of interest as follows; 

∆Ct = Ct(sample) - Ct(Housekeeper) 

All experiments were compared to a reference control (e.g. Non transfected 

cells) and the ∆∆Ct calculated as follows; 

∆∆Ct = ∆Ct(sample) - ∆Ct(reference) 

The fold change in mRNA or miRNA was calculated as follows; 

Fold Change = 2-∆∆Ct 
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2.6 Polymerase Chain Reaction 

Polymerase chain reaction (PCR) was performed on a subset of the North 

Glasgow Monitoring Trends and Determinants in Cardiovascular (MONICA) 

normotensive cohort to facilitate sequencing of the 3’UTR region of the CYP11B1 

gene.  

2.6.1 PCR of CYP11B1 3’UTR 

Selected DNA samples previously extracted from patients of the MONICA study 

were quantified using the Nanodrop (section 2.2.4) and diluted to 20 ng/µl.  The 

following reaction used primers, detailed in Table 2-1, and the Expand Hi-

Fidelity PCR System (Roche Applied Science, Indianapolis, USA); 

Reagent 
Volume per 

Reaction (µl) 

Expand High Fidelity Buffer 10x with (MgCl2) 2.5  

dNTP Mix 2.0  

Forward Primer (10 µM) 1.0  

Reverse Primer (10 µM) 1.0  

Expand High-Fidelity Enzyme Mix 1.0  

Nucleases-Free Water 12.5  

DNA 5.0  

Total 20  
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Table 2-1. Primers Used to Amplify CYP11B1 3’UTR. 

Name Sequence (5’-3’) Direction 
Tm 
(°C) 

B1 ex9 seq1F CAGGTGGAGACACTAACCCA Sense 59.3 

B1 ex9 R1 ATGCTCTGCCCCTGCAGCTT Anti-Sense 61.4 

 
Reactions were set up in a 96-well plate and subjected to the following 

conditions on a 96-well Dyad DiscipleTM sample block powered by the PTC-0221 

thermal cycler (MJ Research, Waltham, M.A, USA). 

Time (seconds) Temperature (°C) Cycles 

120  94 1  

15  94 

30  66 

90  72 

10  

15  94 

30  66 

90 + 5 seconds / cycle 72 

20  

420  72 1  

 
The PCR product (2,225 base pairs) was verified by agarose gel electrophoresis 

(section 2.6.2) prior to sequencing (section 2.7). 

2.6.2 Agarose Gel Electrophoresis 

Agarose gel electrophoresis was used for analysing PCR fragments or restriction 

endonuclease reactions. A 0.7% agarose gel was prepared by combining 0.7% 

(w/v) Ultrapure agarose (Invitrogen, Paisley, U.K.) with 100 ml 1x 

Tris/Borate/EDTA (TBE) (10 mM Tris, 10 mM boric acid, 10 mM EDTA, pH 8.3) and 

heating in a microwave oven for approximately 80 seconds. Ethidium bromide, 1 

µl (10 mg/ml) (Sigma-Aldrich, Poole, U.K.) was added to the liquid gel in a fume 

hood; this intercalates with the nucleic acids and fluoresces under UV light. The 

gel was poured into a gel mould with a Teflon comb and allowed to set for 30 

minutes, then submerged in 1 X TBE buffer in an electrophoresis tank and the 

comb removed.  
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The samples were combined with loading dye (0.02% bromophenol blue, 0.02% 

xylene cyanol and 2.5% glycerol) and carefully loaded into the cast wells. 5 µl of 

1 kb DNA size ladder (Promega, Madison, W.I, USA) was run to allow the 

resolution of molecular size. The gel was resolved at a constant voltage of 80 V 

for 60 minutes. DNA fragments were visualised and captured using UV light on a 

molecular Imager ChemiDoc™ XRS+ Imaging system (Bio-Rad Laboratories, Hemel 

Hampstead, U.K.) and Multi-Analyst software v 1.1 (Bio-Rad). 

2.7 DNA Sequencing Reaction 

2.7.1 PCR Purification 

The AMPure purification method (Agencourt, USA) was used to purify PCR 

products from PCR reagents. For PCR reactions with a final volume of 20 µl, 36 

µl of resuspended, room temperature AMPure reagent was added to each well, 

the plate sealed, vortexed to mix and left to sit at room temperature for 5 

minutes. The PCR products, at least 100 base pairs, bind to the magnetic beads. 

The plate was then placed on an SPRI (solid phase reversible immobilization) 

magnet for 5 minutes to draw the beads/PCR product from the liquid phase, 

which was subsequently cleared from the plate by inversion. The beads/PCR 

product was washed by two 200 µl volumes of 70%. Following the second wash, 

the plate was inverted on a tissue and centrifuged at 76 x g for 30 seconds, then 

removed from the magnet and left to dry for 10 minutes.  

The PCR product was eluted from the beads by adding 40 µl of nuclease-free 

water, vortexing and placing the plate back on the magnet. This cleaned PCR 

product was then transferred to a new plate for use in the sequencing reaction 

(section 2.7.2) or stored at -20°C. 

2.7.2 Sequencing Reaction 

DNA sequencing was performed using 10 µl of purified PCR product or 200 ng of 

plasmid DNA and the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied 

Biosystems, Warrington, U.K.). The following components were set up in a 96-

well plate: 
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Reagent 
Volume per 

Reaction (µl) 

ABI PRISM BigDye v3.1 Sequencing Buffer 4.0 

ABI PRISM BigDye Terminator v3.1 Ready Reaction Mix 1.0 

Primer (3.2 µM) 1.0 

Plasmid DNA or PCR product Variable 

Nuclease-Free Water Up to 20 µl 

 
Details of sequencing primers can be found in Table 6-1. The sequencing 

reaction was subjected to the following conditions on a 96-well heating block. 

Time (minutes) Temperature (°C) Cycles 

45 96 

240 60 
25 

 

2.7.3 Sequencing Reaction Purification 

The CleanSEQ purification method (Agencourt, USA) was used to remove 

reagents from the sequencing product. 10 µl of resuspended, room temperature 

CleanSEQ and 62 µl of freshly prepared 85% ethanol were each added to a 20 µl 

sequencing reaction. The plate was resealed, vortexed and briefly centrifuged, 

then placed on a SPRI magnet for 5 minutes. The liquid phase was cleared from 

the wells by inversion then washed in 150 µl of 85% ethanol for 30 seconds. The 

plate was inverted and centrifuged at 76 x g for 30 seconds to remove ethanol. 

The plate, off the magnet, was then left to air dry at room temperature for 10 

minutes. 

To elute the sequencing product from the beads, 40 µl of nuclease-free water 

was added to each well, the plate sealed, vortexed and centrifuged then placed 

onto the SPRI magnet to remove beads from the purified sequencing reaction.  

2.7.4 Automated Cycle Sequencing 

To analyse sequencing products, 20 µl of the purified sequencing reaction was 

transferred to a 96-well bar-coded plate. Sequencing was analysed using the 

Applied Biosystems 3730 DNA Analyzer and SeqScape v 2.1.1 software. 
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2.8 pEZX - 3’UTR Reporter Construct 

Reporter constructs were purchased from LabOmics (Nivelles, Belgium) to 

determine miRNA binding to the 3’UTR. Each construct contained a pEZX-

reporter backbone, which comprises a renilla reporter gene coupled to a SV40 

(Simian virus 40) viral promoter, a firefly experimental gene coupled to a CMV 

(Cytomegalovirus) promoter with a multiple cloning site located at the 3’ end of 

the gene, and a Kanamycin resistant gene for antibiotic selection. Constructs 

containing the 3’UTR of CYP11B1 (pEZX-B1), the 3’UTR of CYP11B2 (pEZX-B2) or 

a negative control empty vector (pEZX-Con) were purchased (Figure 2-1). The 

constructs were transformed and grown as detailed below. 

2.8.1 Transformation of Competent Cells 

One Shot® TOP10 E.coli competent cells (Invitrogen, Paisley, U.K.) were 

transformed according to the manufacturer’s protocol. Briefly, 1 vial (50 µl) of 

cells was thawed on ice for each reaction, and then briefly centrifuged to 

collect cells. 1 µl of DNA (approximately 50 pg) was added and the tubes were 

gently flicked to mix. The cells were incubated on ice for 30 minutes, then 

heat-shocked by placing vials in a 42°C water bath for 30 seconds. The cells 

were cooled by placing on ice for 2 minutes. 200 µl of room temperature SOC 

(super optimal broth catabolite repression) medium was added to each vial 

before shaking at 225 rpm, 37°C for 1 hr in an Innova® 44 incubator shaker (New 

Brunswick Scientific, St. Albans, U.K.). 200 µl of the transformation reaction was 

plated onto LB (Luria Broth) Agar plates with kanamycin (50 mg/ml) and 

incubated overnight at 37°C. 

Plates were inspected the following day. Single colonies were picked from the 

plate using sterile pipette tips and placed into individual 15 mL tubes with 2 ml 

of LB, supplemented with Kanamycin (50 mg/ml). These starter cultures were 

shaken overnight at 37°C at 225 rpm. 



 123 

 

 
a) 

 

 

 

 

b) 

 

 

 

 

 

c) 

 

 

 

 

 

Figure 2-1. pEZX Reporter Constructs.  

Outline of the pEZX vector map a) pEZX-control, b) pEZX-B1, c) pEZX-B2. Schematic 

generated using SerialCloner v2.0 software. 

 

pEZX-Con - 7416 nucleotidespEZX-Con - 7416 nucleotides

pEZX-B1 - 9426 nucleotidespEZX-B1 - 9426 nucleotides

pEZX-B2 - 8835 nucleotidespEZX-B2 - 8835 nucleotides
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2.8.2 Small Scale DNA Purification  

The QIAprep Spin Miniprep Kit (QIAGEN, Crawley, U.K.) was used to purify 

plasmid DNA from overnight incubations. 1 ml of the incubation was transferred 

into a 1.5 ml tube, which was centrifuged at 10,000 x g for 10 minutes to pellet 

the cells. The supernatant was discarded and the cells lysed by resuspending 

them in 250 µl of Buffer P1. The DNA was denatured by adding 250 µl Buffer P2 

and mixing by inversion. This reaction was neutralised by adding 350 µl of Buffer 

N3 and immediately mixing by inversion. The samples were centrifuged for       

10 minutes at 13,000 x g in a table top centrifuge. The supernatants were 

transferred into a QIAprep spin column, which was centrifuged at 13,000 x g for 

1 minute to load DNA on to the silica membrane. The flow through was 

discarded.  The column was washed by adding 500 µl of Buffer PB and 

centrifuging at 13,000 x g for 1 minute. Another wash with 750 µl of Buffer PE 

was performed, after which the column was centrifuged at top speed for           

1 minute to ensure there was no residual buffer remaining. The column was 

transferred to a new 1.5 mL tube and the DNA eluted by adding 50 µl of 

nuclease-free water, standing at room temperature for 1 minute then 

centrifuging at 13,000 x g for 1 minute. Plasmid DNA was quantified by Nanodrop 

(Section 2.2.4) and stored at -20°C until required. 

2.8.3 Large Scale DNA Purification 

Large bacterial culture preparations were set up using 500 µl of the starter 

culture (Section 2.8.2) added to 400 ml of LB and supplemented with kanamycin. 

The culture was shaken at 37°C, 225 rpm overnight.  

The QIAGEN® Plasmid Purification Kit (Maxi) was used to purify plasmid DNA from 

e. coli cells on a large scale. Following the manufacturer’s protocol, the cells 

were collected in an ultra centrifuge at 6,000 x g for 15 minutes at 4°C, then 

the cell pellet was resuspended in 10 ml of Buffer P1. To these lysed cells, 10 ml 

of Buffer P2 was added, mixed by shaking, then 10 ml of chilled Buffer P3 was 

added and mixed by inversion. The solution was centrifuged at 20,000 x g for 30 

minutes at 4°C to remove cell debris. The supernatant containing the DNA was 

removed and applied to a QIAGEN-tip 100 and the sample allowed to run through 
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the resin by gravity. The QIAGEN-tip was washed twice with 10 ml of Buffer QC. 

The DNA was eluted with 5 ml of Buffer QF and precipitated by adding 3.5 ml of 

isopropanol and centrifuged at 15,000 x g for 30 minutes at 4°C. The pelleted 

DNA was washed with 2 ml of 70% ethanol, which was placed into multiple 1.5 

ml tubes and centrifuged at maximum speed for 10 minutes. The supernatant 

was discarded and the pellet air dried. Finally, the DNA was eluted by 

resuspending and combining the DNA in nuclease-free water. The DNA was 

quantified (Section 2.2.4), used in transfection and stored at -20°C. 

2.8.4 Restriction Endonuclease Digestion 

Restriction digests were performed using enzymes shown in Table 2-2 to 

establish the molecular size of the plasmid and insert. Approximately 500 ng of 

plasmid DNA was combined with 1 µl of enzyme (1 unit), 2 µl of buffer, specific 

to each enzyme (Table 2-2), 0.2 µl of BSA (except with HindIII) and nuclease-

free water, up to a final volume of 20 µl in a 96-well plate. Control reactions 

included those omitting DNA or enzyme. The plate was placed at 37°C for 2 

hours. The product was analysed by agarose gel electrophoresis (Section 2.6.2) 

Table 2-2. Endonuclease Enzymes Used for Plasmid Di gestion. 

Enzyme Brand Buffer 

HindIII New England Biosciences 2 

SacI New England Biosciences 4 

BamHI New England Biosciences 3 

StuI Promega B 
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2.9 Transient Cell Line Transfection 

2.9.1 Preparation of Small Molecules  

Specific miRNA mimics (Pre-miR™) and miRNA antagonists (Anti-miR™) were 

purchased from Applied Bioscience (Warrington, U.K.) to test the effects of 

particular miRNAs on CYP11B1 and CYP11B2 mRNA in vitro. Scrambled control 

molecules for each Pre-miR and Anti-miR were also purchased. Details of the 

molecules used can be found in Table 5-1. Each Pre-miR™ or Anti-miR™ was 

resuspended to 6.25 µmoles by adding 800 µl of RNase-free water, vortexing to 

mix and collecting the contents by centrifugation. Molecules were stored at -

20°C. 

Two siRNAs designed to target human Dicer-1 mRNA (s23755 and s23756; Figure 

8-7-1) were purchased from Applied Biosystems (Warrington, U.K.) and used to 

determine the effect of global down regulation  of miRNAs. A positive control 

GAPDH-targeted siRNA and a scrambled negative control siRNA were also 

purchased. The siRNA molecules were reconstituted to a final concentration of 

10 µM and stored at -20°C 

2.9.2 Small Molecule Transient Transfection 

Small molecules (Pre-miR™, Anti-miR™ or siRNAs) were transfected into H295R 

cells in 6-well plates. Reactions were performed in triplicate. Following the 

transfection agent manufacturer’s protocol, cells were trypsinised as in section 

2.1.3 and counted as in section 2.1.4. Cells were diluted to a concentration of   

2 x 105 cells/ml using normal growth medium and the suspension placed in the 

37°C incubator until required.  

A transfection reagent master mix was prepared by adding 9 µl of siPORT™ 

NeoFX transfection (Applied Bioscience, Warrington, U.K.) to 291 µl of OptiMEM® 

I reduced serum medium (Invitrogen, Paisley, U.K.) per reaction plus a 10% 

excess in a 30 mL tube and kept in the dark for 10 minutes.  

Small molecules were prepared for transfection by diluting them in OptiMEM® 

medium as detailed in Table 2-3.  
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Table 2-3. Constituents of Transfection Reaction. 

Small Molecule 
Stock 

Concentration 
(µmoles) 

Volume  
(µl) 

Final 
concentration 

(nM) 

Volume  
of OptiMEM  

(µl) 

siRNA 10.00   9  30 291 

Pre-miR™ 6.25   24  50 274 

Anti-miR™ 6.25   24  50 274 

 
The transfection agent and small molecules were combined by adding 300 µl of 

the siPORT™ NeoFX/OptiMEM to each transfectant, mixing and incubating for 10 

minutes at room temperature.   

Following the incubation, 600 µl of the transfection complex was then added to 

the cell culture plate. The cells were then removed from the incubator, 

resuspended and 2.4 ml of the cells added to each well to a final cell density of 

4.8 x105 cell/well. The plate was rocked to mix the reagents and then placed in 

the incubator.  

After 24 hours the medium on the cells was exchanged for 3 ml of normal growth 

medium. After a further 24 hours the medium was removed and stored at -20°C 

for subsequent steroid analysis (Section 2.11) The cells were lysed for RNA 

(Section 2.2.1) or protein (Section 2.12) isolation. 

2.9.3 Reporter Construct Transient Transfection 

The pEZX-reporter construct (section 2.6) was transfected into H295R or HeLa 

cells in quadruplicate on a 24-well plate. The transfection was set up in a similar 

manner as detailed in Section 2.9.2, except that the volumes of reagents used 

were reduced. For a 24-well plate, 1.5 µl of siPORT™ NeoFX and 48.5 µl of 

OptiMEM® I were combined and incubated for 10 minutes. The pEZX-construct 

(100 ng/µl) was combined with OptiMEM® medium to a final concentration of 50 

µl (Table 2-4).  

Table 2-4. Constituents of Transfection Reaction fo r pEZX-Reporter Construct. 

 
Stock 

Concentration 
(ng/µl) 

Volume 
(µl) 

Final 
Concentration 

(nM) 

OptiMEM 
Volume (µl) 

pEZX construct 100 1 100 49 
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50 µl of the NeoFX/OptiMEM® mix was added to each transfectant, mixed and 

then incubated for 10 minutes at room temperature. Following the incubation, 

100 µl of the transfection complex was added to each well of the cell culture 

plate. The cells were removed from the incubator, mixed to resuspend and    

400 µl added to each well, to a final cell density of 8x104 cells/well. The plate 

was rocked to mix the reagents and then placed in the 37°C incubator.  

The medium was changed after 24 hours. After a further 24 hours the medium 

was removed and discarded, and the cells were lysed with 100 µl of 1X Passive 

Lysis Buffer (1X PLB) (section 2.10) and stored at -80°C, for subsequent 

luciferase analysis. 

2.9.4 Co-transfection 

The pEZX-reporter construct was co-transfected with Pre-miR™ or Anti-miR™ 

molecules to directly investigate the effects of miRNAs on the 3’UTR of the 

CYP11B1 or CYP11B2 genes. This was performed using HeLa cells in 24-well 

plates, in a similar manner to that described above. This pEZX-construct (100 ng) 

was added to Pre-miR™ or Anti-miR™ molecules (final concentration 50 nM) and 

made to a final volume of 50 µl of OptiMEM® medium. 

2.10 Dual Reporter Luciferase Assay 

Renilla and Firefly luciferase activity was measured in cells, lysed in 1X passive 

lysis buffer, using the Dual Luciferase Reporter Assay system (Promega, Madison, 

WI, USA) on a Lumat LB 9507 tube luminometer (Berthold Technologies, 

Harpenden, U.K.). All reagents were thawed at room temperature and then 

prepared by reconstituting the lyophilised luciferase assay substrate in 10 ml of 

luciferase assay buffer II (LAR II) and adding 400 µl of Stop and Glo Substrate to 

10 ml of Stop and Glo Buffer. The luminometer was prepared by priming line 1 

with the Luciferase assay reagent and line 2 with Stop and Glow reagent. 10 µl 

of lysates were added to round bottomed tubes, in duplicate, and loaded into 

the luminometer. The Lumat 9507 was set to automatically inject 50 µl of LAR II 

reagent, pause for 2 seconds then measure luciferase for 10 seconds. This was 

immediately followed by an injection of 50 µl Stop and Glo reagent, a further 2 



 129 

 

second pause and then a luciferase measurement over 10 seconds. Firefly 

luciferase activity measured in relative light units (RLU) was divided by renilla 

luciferase activity (RLU) to normalise for transfection efficiency and the mean 

taken of the duplicate ratios. 

2.11  Steroid Quantification 

Cell media was stored at -20°C until steroids could be measured using Liquid 

Chromatography Tandem Mass spectrophometry (LC:MS/MS) by Miss Mary Ingram. 

Steroids were extracted from the media using Chem Elute cartridges (Varian, CA, 

USA) and eluted with dichloromethane. The sample was then evaporated to 

dryness under nitrogen and reconstituted in 60 µl acetylonitrile. A 20 µl aliquot 

was injected into a Polaris 5 micron, 150 mm x 2 mm C-18-A reversed phase 

HPLC column. Identification and quantification of steroid products was achieved 

by tandem mass spectrometry using a Varian 1200L mass spectrometer with a 

triple quadruple detector.  

2.12 Determination of Protein Concentration 

Total protein concentration in cells lysed in 1 X Reporter Lysis Buffer (1X RLB) 

was measured using a bicinchoninic acid (BCA) assay kit (PIERCE, Perbio Science, 

Northumberland, U.K.) following the manufacturer’s protocol. A BCA working 

reagent (WR) was prepared by mixing BCA Reagent A with BCA Reagent B at a 

ratio of 50:1 (A:B). Protein standards were prepared using the albumin standard 

included in the kit and 1X RLB to cover a range of 25 µg/ml - 2000 µg/ml, 1X RLB 

was used as the blank for calibration. In duplicate, 25 µl of protein standards or 

unknown sample was added to a 96-well flat bottom plate, to which 200 µl of 

the working reagent was added. The plate was incubated at 37°C for 30 minutes 

then cooled prior to measuring the samples’ absorbance at 560 nm, using a 

Wallac Victor2 plate reader (Wallac, Turku, Finland). The blank absorbance 

reading (1X RLB) was subtracted from each sample or standard reading. A 

standard curve was plotted and the concentration of the samples extrapolated.  
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2.13 Statistical Analysis 

Statistical analysis was performed using Prism 4.0 Graph Pad software. All 

results are expressed as mean ± SEM (standard error of the mean). In vitro 

experiments were performed in at least three technical replicates, at three 

independent biological times (unless otherwise stated). In vitro results were 

analysed by either an unpaired Student’s t-test or one-sample t-test as stated. 

Analysis of results for multiple groups was performed by one-way analysis of 

variance (ANOVA) and Bonferroni’s post-hoc test, comparing all results to a 

designated control group or all sets of data as required. 

Confidence intervals of 95% were used, with a P-value of < 0.05 therefore being 

considered significant.  
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3 Investigating a Role for miRNA Regulation in 

Adrenal Cells 
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3.1 Introduction 

miRNA molecules are novel regulators of mRNA levels and protein expression 

(Section 1.5 and 1.6). The RNase III, Dicer, is essential for miRNA maturation and 

its deletion in the SF-1 positive cells of mouse embryos prevents adrenal 

formation (Huang and Yao, 2010). Therefore, miRNAs are crucial to the 

embryonic development of the adrenal gland. However, their influence on 

corticosteroidogenesis has not been established. This study uses Dicer-targeted 

siRNAs (Section 1.5.1) and 3’UTR reporter constructs, each transfected into an 

adrenocortical cell line, to determine which enzymes in the corticosteroidogenic 

pathway are subject to miRNA-regulation.  

In order to understand whether miRNAs regulate genes in the adrenal gland a 

suitable in vitro model is required. The most widely used cell model of adrenal 

steroidogenesis is the NCI-H295 cell line. It was established from an 

adrenocortical carcinoma mass that was surgically removed from a 48-year-old 

black female. Initial characterisation of this cell line concluded that it continued 

to synthesise and secrete most adrenal steroids (Gazdar et al., 1990) but cells 

had to be maintained in suspension. Subsequent manipulations of growth 

conditions resulted in an adherent cell line, H295R, which retains steroid 

producing capabilities, largely due to the use of the bovine-derived serum 

substitute, Ultroser G. A modified strain of this cell line was also derived using 

Nu-Serum in place of Ultroser G, which overcomes the limited availability which 

can be an issue with Ultroser G. This cell line is available from the American 

Type Culture Collection (ATCC) (Rainey et al., 1994). For studies in this thesis, 

H295R cells maintained in Ultroser G were used.  Unlike the spatial separation of 

corticosteroidogenesis that occurs in discrete zones of the adrenal gland, the 

H295R cells co-express enzymes for the biosynthesis of mineralocorticoids, 

glucocorticoids and androgens and therefore secrete these various steroids. The 

cells are responsive to AngII and K+ and express the AT1R (Bird et al., 1993). 

They do not express the ACTH receptor and are therefore unresponsive to ACTH 

stimulation (Mountjoy et al., 1994). The cells are commonly used for 

investigating various aspects of steroid production including transcription factor, 

inhibitor and mutational studies (Lehoux et al., 2001;Ye et al., 2009).  
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The expression of miR-21 has been assessed in H295R cells, where it was shown 

to increase in response to AngII stimulation and to be associated with raised 

aldosterone production (Romero et al., 2008). However, the molecular 

mechanism of miR-21 action was not investigated and this remains the only 

report of miRNA modulation of steroid production to date. In order to test 

whether miRNAs exert control over the corticosteroidogenic pathway, it would 

be highly desirable to measure the levels of relative mRNA and steroid in order 

to gain the fullest possible picture of their effects. 

3.2 Aims 

The aim of this study was to determine whether miRNA-mediated regulation is 

an important factor in the regulation of steroidogenic enzyme production and of 

corticosteroid biosynthesis in adrenal cells. Additionally, this study examined 

whether miRNA regulation of the CYP11B1 and CYP11B2 genes occurs at their 

respective 3’UTRs and whether this is modulated by AngII stimulation. 
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3.3 Methods 

3.3.1 Transfection of H295R Cells with siRNA molecu les 

H295R cells were transfected in 6-well plates as described in section 2.9. Six 

replicate wells per condition were set up on three independent occasions. The 

siRNA molecules used and the preparation methods are detailed in section 2.9.1. 

The medium was replaced on the cells after 24 hours and, after 48 hours, the 

medium was removed for steroid analysis by LC:MS/MS (Section 2.11). Cell 

lysates were prepared for protein quantification from three replicates (Section 

2.12). Steroid concentrations were normalised per mg of protein and then 

expressed as fold-change compared to control siRNA transfected cells. The final 

three replicates were used for qRT-PCR analysis as described in section 2.4 and 

2.5. Data were analysed using the ∆∆Ct method (Section 2.5.4) with β-actin as a 

housekeeping gene, and results expressed relative to the control siRNA 

transfected cells.  

3.3.2 3’UTR Reporter Construct Plasmids 

The pEZX-control, pEZX-B1 and pEZX-B2 3’UTR reporter construct plasmids 

(Figure 2-1) were prepared as described in section 2.8.3. For verification, each 

construct was digested with several restriction endonuclease enzymes (Section 

2.8.4) and resolved by agarose gel electrophoresis (Section 2.6.2). Also, the 

3’UTR insert and a small region covering the multiple cloning site of each 

plasmid was sequenced, as described in section 2.7.  

3.3.3  Investigation of 3’UTR Activity In Vitro 

H295R cells were transfected with the pEZX reporter constructs in 24-well plates 

as described in section 2.9.3. Cell medium was replaced at 24 hours with normal 

growth medium. Further, at 1, 6 and 24 hours prior to cell lysate preparation, 

medium was removed and replaced with normal growth medium (control, non-

stimulated cells) or normal growth medium supplemented with AngII (10 nM), 

(Section 2.1.5). 48 Hours post-transfection, cell lysates were prepared and their 

luciferase activities measured DRLA (Section 2.10). As controls non-transfected 
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cells were used as well as cells transfected with construct containing only 

virally-driven firefly (pGL4.13) or renilla reporter gene (pGL4.73, Promega 

Madison, WI, USA). These were prepared as described in section 2.8.3. and acted 

as transfection controls and as controls for background luminescence, and also 

determined whether firefly luminescence was fully quenched by the Stop and 

Glo reagent of the DLRA. Normalisation for transfection efficiency was achieved 

by dividing firefly luciferase luminescence by renilla luciferase luminescence 

(both expressed as RLU). The firefly to renilla ratio from AngII-stimulated cells 

was expressed as a percentage of that from non-stimulated time-matched 

control transfected cells.   

3.3.4 Statistical Analysis 

Statistical difference in mRNA or steroid levels in siRNA experiments was 

assessed by a one-way analysis of variance (ANOVA) test and by Bonferroni’s 

post-hoc test, comparing the Dicer1 siRNA results for each with that from 

control siRNA-transfected cells. Reporter construct results were analysed by 

one-way ANOVA and Bonferroni’s post-hoc tests, comparing all time-points.  

For all analyses, confidence intervals of 95% were used and P < 0.05 was 

required for statistical significance. Data are expressed as the mean ± standard 

error of the mean (SEM). 
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3.4 Results 

3.4.1 Confirmation of siRNA Transfection 

The suitability of the transfection conditions for siRNA delivery into H295R cells 

was assessed using a positive control siRNA targeted against GAPDH mRNA. 

Following the transfection, RNA was isolated and the levels of GAPDH mRNA 

measured by qRT-PCR. GAPDH-specific siRNA significantly reduced GAPDH mRNA 

levels to 0.46 ± 0.03 to that of the control transfected cell (p < 0.001) (Figure 

3-1). 
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Figure 3-1. Assessment of the GAPDH-targeted siRNA on GAPDH mRNA in H295R Cells. 

H295R cells were transfected with scrambled negative control siRNA or a GAPDH-specific 

siRNA (final concentration 30 nM). GAPDH mRNA was analysed 48 hours post-

transfection by qRT-PCR. Cycle threshold values were normalised to β-actin mRNA and 

expressed relative to control cell values. The mean of three independent biological 

experiments performed in triplicate, error bars represent SEM. *** p < 0.001 compared 

to control. 
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3.4.2 siRNA-mediated Dicer-knockdown in H295R cells  

Following transfection of the H295R cells with Dicer1-specific siRNAs, targeting 

was validated by measuring Dicer1 mRNA levels using qRT-PCR (Section 3.4.1).  

Dicer1 A siRNA significantly decreased Dicer1 mRNA to 0.56  ± 0.07 fold (p < 

0.001) and Dicer1 B siRNA decreased Dicer1 mRNA to 0.50 ± 0.06 fold (p < 

0.001), compared to control siRNA transfected cells (1.01 ± 0.05; Figure 3-2). 

This depletion of Dicer1 mRNA had no significant effect on StAR, 3β-HSD11 or 

HSD11B2 mRNA abundance (Figure 3-3 A,C and F). CYP11A1 mRNA abundance 

increased from control cell levels (1.03 ± 0.10) following transfection of Dicer1 A 

siRNA (1.41 ± 0.09; p < 0.05) and of Dicer1 B siRNA (1.42 ± 0.10; p < 0.05; Figure 

3-3B). Dicer1 A siRNA significantly increased CYP21A1 mRNA abundance from 

1.01 ± 0.05 in control cells to 2.40 ± 0.34 fold (p < 0.01). However, the change in 

CYP21A1 mRNA with Dicer1 B siRNA (1.72 ± 0.30) did not reach statistical 

significance relative to control (Figure 3-3D). The results for CYP17A1 mRNA 

showed a similar pattern, with Dicer1 A siRNA significantly increasing abundance 

relative to control (1.73 ± 0.22 vs 1.02 ± 0.07; p < 0.01) but Dicer1 B siRNA (1.37 

± 0.07) not achieving statistical significance (Figure 3-3E). 

Reducing Dicer1 mRNA led to a significant increase in the relative level of 

CYP11B1 mRNA present in cells transfected with Dicer1 A siRNA from 1.00 ± 0.04 

to 1.75 ± 0.24 (p < 0.05) (Figure 3-4A). There was no significant change in cells 

transfected with Dicer1 B siRNA (1.39 ± 0.23). In addition, there was a 

significant increase in CYP11B2 mRNA abundance with Dicer1 A siRNA from 1.00 

± 0.02 to 2.12 ± 0.41 (p < 0.01). However, Dicer1 B siRNA (1.40 ± 0.09) did not 

result in a statistically-significant increase (Figure 3-4B). 

24-Hour steroid secretion was measured in the media of transfected cells by 

LC:MS/MS. Figure 3-5 shows the results for steroids synthesised on the 

aldosterone arm of the corticosteroid pathway. Firstly, deoxycorticosterone 

(DOC) levels (panel A) were significantly increased relative to control cell (1.00 

± 0.02) for both Dicer-targeting siRNAs (Dicer1 A, 1.23 ± 0.01, p < 0.05 relative 

to control; Dicer1 B siRNA, 1.53 ± 0.09, p < 0.001 relative to control). There was 

a significant change in corticosterone production between cells transfected with 

control siRNA or with Dicer1 siRNA A (1.00 ± 0.03 and 1.10 ± 0.06, respectively; 
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Figure 3-5B). In contrast, corticosterone secretion was significantly increased in 

cells transfected with Dicer1 B siRNA 1.32 ± 0.13 fold (p < 0.05 relative to 

control). A similar pattern was observed with 18-OH-corticosterone production, 

with no change to control levels following Dicer1 A siRNA transfection (1.00 ± 

0.01 and 1.17 ± 0.06, respectively) and a slight but significant increase following 

Dicer1 B siRNA transfection to 1.28 ± 0.10 (p < 0.05 relative to control) (Figure 

3-5C). Control aldosterone levels (1.00 ± 0.06) were similar following Dicer1 A 

siRNA transfection (1.06 ± 0.06) but significantly increased in Dicer1 B siRNA 

transfected cells (1.47 ± 0.11 fold; p < 0.01; Figure 3-5D). 

Cortisol-related steroids are shown in Figure 3-6. There was no significant 

change in 11-deoxycortisol secretion (control cells 1.00 ± 0.01; Dicer1 A siRNA 

cells 1.14 ± 0.07; Dicer1 B siRNA cells 1.26 ± 0.12; Figure 3-6A).  There was no 

significant difference in cortisol secretion following in Dicer1 A siRNA 

transfection (control cells 1.00 ± 0.01; Dicer1 A siRNA cells 1.07 ± 0.08) but cells 

transfected with Dicer1 B siRNA had significantly increased cortisol (1.33 ± 0.11 

fold, p < 0.05; Figure 3-6B). Secretion of the cortisol metabolite cortisone did 

not change significantly in cells transfected with either Dicer siRNA molecule, 

relative to control (Figure 3-6C). 
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Figure 3-2. Assessment of the Effect of Dicer1 siRN As on Dicer1  mRNA in H295R Cells. 

H295R cells were transfected with one of two siRNAs targeted against Dicer1, designated 

Dicer1 A and Dicer1 B or with a scrambled negative control siRNA (final concentration 30 

nM). Dicer1 mRNA were analysed 48 hours post-transfection by qRT-PCR. Cycle threshold 

values were normalised to β-actin mRNA and expressed relative to the control cells. 

Results represent the mean of three independent biological experiments performed in 

triplicate; error bars represent SEM. *** p < 0.001 compared to control. 
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Figure 3-3. Assessment of the Effect of Dicer1 siRN As on Steroidogenic mRNAs in H295R 
Cells. 

H295R cells were transfected with one of two siRNAs targeted against Dicer1, designated 

Dicer1 A and Dicer1 B, or with a scrambled negative control siRNA (final concentration 30 

nM). StAR mRNA (A), CYP11A1 mRNA (B), 3βHSDII mRNA (C), CYP21A1 mRNA (D), 

CYP17A1 mRNA (E) and HSD11B2 mRNA (F) were analysed 48 hours post-transfection by 

qRT-PCR. Cycle threshold values were normalised to β-actin mRNA and expressed relative 

to the control cells. Results represent the mean of three independent biological 

experiments performed in triplicate; error bars represent SEM. * p < 0.05, ** p < 0.01 

compared to control. 
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Figure 3-4. Assessment of the Effect of Dicer1 siRN As on CYP11B1 and CYP11B2 mRNA in 
H295R Cells. 

H295R cells were transfected with one of two siRNAs targeted against Dicer1, designated 

Dicer1 A and Dicer1 B, or with a scrambled negative control siRNA (final concentration 30 

nM). CYP11B1 mRNA (A) and CYP11B2 mRNA (B) were analysed 48 hours post-

transfection by qRT-PCR. Cycle threshold values were normalised to β-actin mRNA and 

expressed relative to the control cells. Results represent the mean of three independent 

biological experiments performed in triplicate; error bars represent SEM. * p < 0.05, ** p 

< 0.01 compared to control. 
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Figure 3-5. Assessment of the Effect of Dicer1 siRN As on Steroid Production in H295R Cells 
(aldosterone pathway). 

H295R cells were transfected with one of two siRNAs targeted against Dicer1, designated 

Dicer1 A and Dicer1 B, or with a scrambled negative control siRNA (final concentration 30 

nM). 24-Hour steroid secretion was measured in cell growth media by liquid 

chromatography with tandem mass spectrometry. Steroid production was normalised to 

total cell protein and expressed as fold-change relative to control cells. Production of 

deoxycorticosterone (A), corticosterone (B), 18-OH-corticosterone (C) and aldosterone (D) 

are shown. The results represent the mean of two independent biological experiments 

performed in replicate groups of 6; error bars represent SEM * p < 0.05, ** p < 0.01, *** p 

< 0.001 compared to control. 
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Figure 3-6. Assessment of the Effect of Dicer1 siRN As on Steroid Production in H295R Cells 
(cortisol pathway). 

H295R cells were transfected with one of two siRNAs targeted against Dicer1, designated 

Dicer1 A and Dicer1 B, or with a scrambled negative control siRNA (final concentration 30 

nM). 24-Hour steroid secretion was measured in cell growth media by liquid 

chromatography with tandem mass spectrometry. Steroid production was normalised to 

total cell protein and expressed as fold-change relative to control cells. Production of 11-

deoxycortisol (A), cortisol (B) and cortisone (C) are shown. The results represent the mean 

of two independent biological experiments performed in replicate groups of 6; error bars 

represent SEM. * p < 0.05. 
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3.4.3 Verification of the pEZX 3’UTR Construct  

pEZX-Control plasmid (Figure 2-1) comprises the pEZX backbone contains the 

firefly and renilla genes and is 7416 base pairs (bp) in size; this is confirmed by 

restriction endonuclease digestion shown in Figure 3-7. HindIII, SacI and SpeI all 

linearise the plasmid, yielding a band of that size. Stu I enzyme cleaves pEZX-

control twice creating two DNA products; 4908 bp and 2508 bp (Figure 3-7). 

The pEZX-B1 plasmid comprises the 3’UTR of the CYP11B1 gene which is 

approximately 2000 bp in length. Therefore, the pEZX-B1 is 9426 bp in length 

(Figure 2-1), and this was confirmed by digestion using the HindIII enzyme 

(Figure 3-8A). Both SacI and BamHI cleave the pEZX-B1 plasmid twice, once in 

the 3’UTR insert and once in the pEZX backbone. Figure 3-8A shows that SacI 

creates products approximately 7146 bp and 2280 bp in size and BamHI creates 

products 7587 bp and 1839 bp. 

The pEZX-B2 plasmid comprises the 3’UTR of the CYP11B2 gene which is 

approximately 1500 bp in length. Therefore, the pEZX-B2 is 8835 bp in length 

(Figure 2-1), and this was confirmed by digestion using the HindIII enzyme 

(Figure 3-8B). SacI cleaves the pEZX-B2 plasmid twice, once in the 3’UTR and 

once in the pEZX backbone and Figure 3-8B shows that SacI creates two products 

approximately 7158 bp and 1677 bp in size. BamHI cleaves pEZX-B2 three times, 

the two larger products  7600 bp and 1839 bp can be visualised in Figure 3-8B, 

the other DNA fragment at 276 bp was too small to be clearly visible on a 0.7% 

agarose gel. Finally, SpeI digests at either side of the 3’UTR construct creating 

two products, 7400 bp and 1435 bp in size (Figure 3-8B). 

Additionally, the plasmids were directly sequenced (Section 2.7) and examples 

of the electropherograms generated for each plasmid using SeqScape software 

are shown in Figure 3-9. Analysis of sequencing spanning the complete insert and 

adjoining sections of the pEZX backbone verified the identities of the plasmids. 
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Figure 3-7. Restriction Endonuclease Digestion of p EZX-Control Plasmid. 

pEZX-Control plasmid (1 µg ) was digested by various restriction endonuclease and 

resolved on 0.7% agarose gel. Promega 1 kb ladder was used for size determination; sizes 

indicated are in kilobase pairs. 
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Figure 3-8. Restriction Endonuclease Digestion of p EZX-B1 and pEZX-B2 Plasmid. 

pEZX-B1 plasmid (A) or pEZX-B2 plasmid (B) (1 µg  each) was digested by various 

restriction endonuclease and resolved on 0.7% agarose gel. Promega 1 kb ladder was 

used for size determination; sizes indicated are in kilobase pairs. 
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Figure 3-9. Sequence Analysis of pEZX Plasmids. 

Examples of electropherogram read from sequence analysis of the pEZX-Control, pEZX-B1 

and pEZX-B2 plasmids. 
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3.4.4 Response of 3’UTR Reporter Construct Activity  to AngII 

Stimulation  

pEZX-plasmids (Figure 2-1) were transfected into H295R cells. Firefly and renilla 

luciferase results (relative light units, RLU) demonstrated that all plasmids were 

functional and control transfections indicated that the DLRA (Dual Luciferase 

Reporter Assay) was an appropriate assay for measuring luciferase. 

The relative levels of the firefly:renilla ratios of the pEZX-C, pEZX-B1 and pEZX-

B2 reporter constructs was assessed after transfecting equal amounts (500ng) of 

the plasmids into H295R cells (Figure 3-10). The addition of either the 3’UTR of 

the CYP11B1 or CYP11B2 gene to the pEZX backbone caused a significant 

decrease in the firefly:renilla ratio (0.00048 ± 0.00012 and 0.00050 ± 0.00016) 

compared to the empty pEZX-C plasmid (0.00220 ± 0.00053). This demonstrates 

the addition of the 3’UTR of the CYP11B1 or CYP11B2 gene is sufficient to cause 

negative regulation of the firefly mRNA in the H295R cells. 

The response the pEZX plasmids was tested in H295R cells stimulated with AngII 

for 1, 6 or 24 hours (Figure 3-11). There was no significant change in the 

luciferase ratio for pEZX-control plasmid in the stimulated cells at any time-

point (Figure 3-11A). This demonstrates that the pEZX backbone is not 

responsive to the corticosteroid trophin, AngII. There were no significant 

differences in the luciferase ratio of the pEZX-B1 plasmid after stimulation with 

AngII for 1 or 6 hours (105.93 ± 5.62% and 101.39 ± 2.88%, respectively; Figure 

3-11B). When stimulated with AngII for 24 hr, the luciferase ratio increased to 

192.70 ± 28.04% of non-stimulated cells (p < 0.05; Figure 3-11B). The luciferase 

ratio of pEZX-B2 plasmid did not significantly differ in AngII-stimulated H295R 

cells at 1 or 6 hours (101.82 ± 2.41% and 100.67 ± 3.85%, respectively; Figure 

3-11C). 24-Hour AngII stimulation increased the luciferase ratio to 220.58 ± 

43.52% (p < 0.05; Figure 3-11C). 
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Figure 3-10. Assessment of Relative Levels of Repor ter Construct Activities.    

H295R cells were transfected with the pEZX control, pEZX-B1 or pEZX-B2 then lysed after 

48 hours. Firefly and renilla luciferase activities were measured using the Dual Luciferase 

Reporter Assay Kit and normalised for transfection efficiency using the ratio of firefly to 

renilla luminescence. Results represent the mean of at least three independent biological 

experiments performed in quadruplicate; error bars represent SEM. Statistical analysis 

was a 1-way ANOVA with Bonferroni’s Multiple Comparison correction.  * p < 0.05 

relative to pEZX-C. 
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Figure 3-11. Response of pEZX 3’UTR Reporter Constr ucts to Angiotensin II Stimulation 

H295R cells were transfected with the pEZX control (A), pEZX-B1 (B) or pEZX-B2(C) then 

lysed after 48 hours. Prior to lysis, medium was replaced with AngII (10 nM) 

supplemented medium for 1, 6 or 24 hrs. Firefly and renilla luciferase activities were 

measured using the Dual Luciferase Reporter Assay Kit and normalised for transfection 

efficiency using the ratio of firefly to renilla luminescence. The results for the stimulated 

cells were expressed as a percentage of time matched non-stimulated control cells. 

Results represent the mean of at least three independent biological experiments 

performed in quadruplicate; error bars represent SEM. Statistical analysis was a 1-way 

ANOVA with Bonferroni’s Multiple Comparison correction. ns; non-significant, * p < 0.05. 
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3.5 Discussion 

The experiments presented in this chapter investigated if miRNAs mediate 

regulation of corticosteroid-related mRNA levels and steroid production in the 

adrenocortical cell line, H295R. To achieve this, miRNA levels were reduced 

using Dicer1-targeted siRNA and the activation of the CYP11B1 and CYP11B2 

3’UTR investigated in response to the classical corticotrophic peptide, AngII.  

The first stage involved transient siRNA transfection into H295R cells; the 

transfection protocol and the positive control siRNA molecule were shown to be 

successful in altering GAPDH mRNA levels.  Therefore, a method was successfully 

developed for small RNA transfection into the H295R cells, and was adopted for 

the subsequent siRNA transfections. The siRNA molecules were purchased as pre-

validated siRNAs from Applied Biosciences and this study confirmed Dicer1 mRNA 

silencing in H295R cells. The magnitude of Dicer1 mRNA reduction was relatively 

small: 0.5 fold change relative to control cells. This is equivalent to reducing 

them to approximately 75% of their original levels. siRNA-silencing only affects 

nascent mRNAs therefore, Dicer1 enzyme synthesised prior to transfection will 

still be present and functional within cells, assessing the level of Dicer protein 

by western blot analysis would help quantify the impact of this. The reduction in 

Dicer1 mRNA levels is slightly less then that reported in the HeLa cell line by the 

manufacturer; this is likely to be caused by differences in the cell types (H295R 

cells are notoriously difficult to transfect) and altered concentrations of siRNA. 

Despite the modest decrease in Dicer1 mRNA, a reduction in miRNA levels would 

still be expected; a change of similar magnitude has already been shown to 

reduce levels of several miRNAs (Lee et al., 2006). Yet, this protocol does not 

eliminate all miRNAs as some Dicer activity remains and the turnover rate of 

most miRNAs is still unknown (Section 1.5.2.4). To determine miRNA levels in 

Dicer1 knockdown cells, it would be necessary to perform miRNA microarray, 

qRT-PCR or northern blot analyses. Moreover, recent reports suggest that 

miRNAs may be formed by a Dicer1-independent pathway, and this has been 

demonstrated for miR-451 in vitro (Yang et al., 2010) and in mice models 

(Cheloufi et al., 2010;Cifuentes et al., 2010). In this relatively newly-discovered 

pathway pre-miR-451 is cleaved by Argonaut2, the importance of this alternative 



 152 

 

pathway remains to be evaluated. In summary, transient transfection of Dicer1-

targeted siRNA in H295R cells reduces maturation of novel miRNAs and thus 

serves as a good model to test the potential impact of miRNA-regulation on 

corticosteroidogenesis. 

The mRNA levels of several key enzymes in the adrenal steroid production 

pathway were assessed cells transfected with in Dicer1-targeted siRNA. 

Reduction of Dicer1 mRNA did not change the relative levels of StAR, 3βHSDII or 

HSD11B2 mRNA, but did increase the levels of the CYP450 mRNA analysed 

(Sections 1.2.3 and 1.2.4). This indicates that reducing miRNAs leads to the de-

repression of CYP450 expression in H295R cells. The change in mRNA level was 

approximately 1.5 - 2 fold depending on the gene and this is typical of the fine-

tuning effect usually exerted by miRNAs (Sevignani et al., 2006). Significant 

increases in the mRNA level of CYP450 mRNAs, other than CYP11A1, were only 

achieved with the Dicer1 A siRNA. Although an increase in these mRNA was 

always observed with the Dicer1 B siRNA, the magnitude of change was smaller 

or the error slightly larger relative to the Dicer1 A siRNA, meaning a statistical 

significant change was not observed.  One possible explanation for this 

difference is that each siRNA targets different regions of Dicer1 mRNA 

(Appendix; Figure 8-7-1), and this may alter the mechanism and/or efficiency of 

silencing. This study validated two separate Dicer-targeting siRNAs for this 

purpose but could have also co-transfected two Dicer-targeting siRNAs. 

The majority of steroids produced from H295R cells are androgens although they 

also retain corticosteroid-synthesising abilities. Dicer1-targeted siRNA 

transfected cells had increased production of DOC, B, 18-OH-B and aldosterone. 

Together, these steroid results and those measuring mRNA indicate that 

expression of the CYP21A1 and CYP11B2 enzymes may be regulated by miRNAs. 

Moreover, cortisol production was increased, suggesting miRNA regulation of 

CYP11B1 transcript abundance. The cortisol precursor, S, was not significantly 

increased in the knockdown cells, which is inconsistent with the role of CYP21A1 

mRNA results and increased DOC production. It was not possible to assess the 

enzyme efficiency by comparing the relative levels of precursor and substrate 

(for example, the S:F ratio) as the sample size and the relative amounts of 

steroid produced were too small. The level of HSD11B2 mRNA was unaffected by 

Dicer1-targeted siRNA, which might be expected given that the conversion of 



 153 

 

cortisol to cortisone is of greater relevance to peripheral tissues, rather than in 

the adrenal gland.  

The focus of this thesis is to investigate the role of miRNAs in adrenal 

corticosteroidogenesis. Therefore, the majority of work described in subsequent 

chapters will be concerned with the CYP11B1 and CYP11B2 genes. The above 

experiments undoubtedly support a role for miRNA regulation in these genes’ 

expression and the generation of their relevant steroid products. To investigate 

whether this is mediated by direct action on the 3’UTR of CYP11B1 and/or 

CYP11B2 mRNAs, reporter constructs containing the 3’UTR of these genes were 

used. Initial experiments demonstrated that there was significant repression of 

the luciferase mRNA compared to a no-3’UTR control construct (as indicated by 

the relative firely:renilla activity ratios), this supports a role for miRNA-

mediated regulation acting at the 3’UTR of both the CYP11B1 and CYP11B2 

genes. 

The construct were then further tested in H295R cells to determine whether 

miRNA repression could be overcome by stimulation of H295R cells with AngII, 

which has repeatedly been shown to increase CYP11B2 and, to a lesser extent, 

CYP11B1 expression (Denner et al., 1996). The presence of CYP11B1 or CYP11B2 

3’UTR was sufficient to increase reporter construct activity levels in response to 

AngII stimulation. This increase was only observed in cells stimulated for 24 

hours and no response was observed in the control plasmid, which lacked a 

3’UTR. Thus, the observed increase in activity can be attributed to the CYP11B1 

or CYP11B2 3’UTRs. This is consistent with AngII stimulating CYP11B2 or CYP11B1 

protein synthesis and de-repression of the 3’UTR by miRNAs. Although the 

influence of AngII on the expression levels of miRNAs cannot be determined from 

these experiments, a previous study using H295R cells found that miR-21 was 

increased following AngII stimulation for 6, 12 and 24 hours (Romero et al., 

2008) suggesting that the regulation of certain some adrenal miRNAs is sensitive 

to AngII. However, the expression profile of adrenal miRNAs and their response 

to AngII has not been fully determined and it is, therefore, difficult to ascertain 

what regulatory mechanism dominates. Therefore, further experiments are 

required in order to determine whether the observed changes in reporter gene 

activity are attributable to modulation of miRNA levels or to indirect effects 

such as alterations in Dicer2 levels.  
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In conclusion, these studies have provided evidence of a role for miRNA-

mediated regulation of CYP450 expression, which has an impact on adrenal 

corticosteroidogenesis and therefore, appears to be of biological significance. 

The identity or contribution of individual miRNAs cannot be assessed on the basis 

of these experiments, but they clearly support further investigation.  
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4 Normal Adrenal Gland microRNA Profiling and 

Target-Site Prediction 



156 

 

4.1 Introduction 

To investigate miRNA-mediated regulation of a particular mRNA, the investigator 

is required to have an understanding of the expression of miRNAs in the tissue or 

cell type that expresses the mRNA. It is then necessary to understand whether 

miRNA targeting of the mRNA is feasible by identifying miRNA-binding sites in its 

3’UTR. The miRNA expression profile of a tissue or a cell can only be properly 

determined by experimental analysis, whether by qRT-PCR, miRNA microarray 

analysis, northern blot or deep-sequencing. However, computational strategies 

are available that either map experimentally validated genomic locations of 

miRNAs or facilitate prediction of the genetic location of novel miRNA species. 

Using this strategy offers the investigator the opportunity to perform a relatively 

quick and cost-effective analysis prior to investing in expensive ‘wet-lab’ 

techniques that may take time and require precious tissue samples.  

Computational methods designed to identify genomic regions that encode pri-

miR transcripts have been developed based on common features of miRNAs, for 

example: structural properties such as hairpin length, mismatched base-pair 

bulge size and thermodynamic stability or pri-miR sequence properties 

(Bentwich et al., 2005;Bentwich, 2005). Frequently the algorithms used rely on 

evolutionary sequence conservation for identification of miRNAs; this is valid as 

many miRNAs are well conserved across species (Berezikov et al., 2005). 

However, this method is limited by the accuracy of the algorithm and also by 

miRNAs which are not conserved, therefore it fails to detect species-specific 

miRNAs (Bentwich et al., 2005). Validation of miRNA prediction is required and 

this can be achieved by various methods of direct sequencing. More recently, 

deep-sequencing has proved successful for identifying novel miRNAs. This 

involves sequencing large fractions of RNA of unknown function, with the aim of 

identifying novel regions which resemble a pri-miRNA or pre-miRNA (Friedlander 

et al., 2008).  

In circumstances where a specific gene target is unknown (e.g. in studies of 

defined disease phenotypes or of cell differentiation), a gene expression 

microarray is often performed concurrently with miRNA expression analysis. The 
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aim is to identify negatively correlated miRNA:mRNA combinations. This strategy 

is complicated as a single miRNA can regulate many genes.  

In addition, in silico methods have been developed to predict mRNA targets for 

miRNAs. However, as will be discussed below, this is highly complex and has 

proven to be problematic. There are numerous miRNA databases and target-

prediction algorithms but in general, the validation rate is low, possibly because 

miRNAs are promiscuous and believed to bind to hundreds of different targets 

(Lewis et al., 2003). Further, miRNA regulation does not require perfect base-

pairing complementarity of miRNA to mRNA and, therefore, target identification 

by simple BLAST (Basic Local Alignment Search Tool) base-pairing analysis cannot 

be used (Rehmsmeier et al., 2004). Moreover, this leads to the formation of 

complex RNA secondary structure. Experimental testing and validation of miRNA 

target sites has provided a learning dataset against which algorithms can be 

compared; this has improved the accuracy of the algorithms and of the target 

site predictions. It has also identified a region known as the ‘seed site’, which 

refers to nucleotides 2-7 of the miRNA from the 5’ end (Figure 4-1). Watson-

Crick base-pairing in this region is often evolutionarily conserved and leads to a 

higher rate of positive target predictions being generated (Lewis et al., 2005). 

Perfect complementarity in this region is referred to as a 6mer site (Figure 4-1). 

Further analysis has identified that a base-pairing at nucleotide 8 further 

increases target recognition, as does an adenosine nucleotide at position 1 of 

the miRNA; instances of these are termed 7mer-m8 site and 7mer-A1 sites, 

respectively (Figure 4-1). miRNA:mRNA pairings which have both of these 

additional features are termed 8mer sites (Figure 4-1) (Lewis et al., 2003;Lewis 

et al., 2005). Some miRNAs have common sequences at the seed site, having 

evolved from a common ancestor, and are collectively known as a miRNA family 

(Griffiths-Jones et al., 2003). Seed site base-pairing forms one of the strongest 

criteria for several target prediction databases, increasing the reliability and 

reducing the rate of false positive predictions (Bartel, 2009). Moreover, base-

pairing in the seed region is sufficient to elicit miRNA-regulation as even a single 

nucleotide polymorphism in the seed region can disrupt miRNA function (Doench 

and Sharp, 2004).  
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Figure 4-1. miRNA Target Recognition Base Pairing R equirements. 

miRNA seed site base-pairing is shown in the left panel. Nucleotides (N) are numbered 

from the 5’ end of the miRNA. Yellow nucleotides (N) represent Watson-Crick matches to 

the 3’UTR of mRNA. Red bases are the additional matches that increase target 

recognition and miRNA silencing and include, adenosine (A) at position 1. The right hand 

panel shows nucleotide matches in the 3’ end that can be present with or without a 

canonical seed site. The bottom miRNA illustrates centered pairing. 
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In addition to the seed region, pairing of the mRNA target to other miRNA bases 

can affect its target recognition and silencing. Complementary binding at the 3’ 

end of the miRNA (Figure 4-1) can enhance miRNA function for targets which 

also have a strong seed site complementarity; this is known as supplementary 

pairing, and refers to continuous base-pairing at nucleotides 13-16 (Grimson et 

al., 2007). Further, enhanced base-pairing, typically from nucleotides 13-19, can 

make up for mismatched bases within the seed site and is known as 

compensatory pairing  (Figure 4-1) (Grimson et al., 2007;Bartel, 2009). Recently, 

miRNA-mediated regulation lacking both a traditional seed site and 3’ 

complementarity has been identified. This involves alternative base-pairing of 11 

or 12 continuous bases in the centre region of the miRNA (nucleotides 4-15) to a 

target mRNA (Figure 4-1). At high Mg2+ concentrations this is sufficient to cause 

miRNA-mediated silencing (Shin et al., 2010). 

Another parameter used by prediction algorithms is the degree of evolutionary 

sequence conservation of the miRNA species and of the target sites. A higher 

degree of sequence conservation is associated with a decreased number of false-

positive miRNA target predictions (Lewis et al., 2005;Bartel, 2009). Moreover, 

the conservation of most miRNA target sites identified to date is higher than 

would be expected by chance. Thus, they are believed to be under selective 

pressure and indicates a strong likelihood of biological function. However, the 

stringency of conservation used by bioinformatic analyses may miss miRNA-

targets that are species-specific, and it has been estimated that 30% of validated 

miRNA:mRNA interactions are not conserved (Sethupathy et al., 2006). 

Finally, most target prediction algorithms do not account for RNA secondary 

structure of mRNA or for miRNAs which will affect the ability for base-pairing to 

occur efficiently; this may contribute to a poor rate of target validation. 

Prediction of secondary structure and the minimum free-energy may be useful 

for identifying interactions that are physiologically likely to occur (Robins et al., 

2005;Kertesz et al., 2007). However, modelling RNA secondary structure is not 

100% accurate and removing this feature from one of the databases does not 

change the specificity of target prediction (Lewis et al., 2005;Bartel, 2009). 
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Despite the problems outlined above, target site prediction databases still 

provide the investigator with useful information regarding miRNA-targeting  

4.2 Aims 

The aims of this study were to investigate the genomic location of pri-miRNA 

sequences; to utilise bioinformatic prediction algorithms to identify putative 

miRNA binding sites in the 3’UTR of the CYP11B1 and CYP11B2 genes; and to 

establish the expression profile of miRNAs in non-tumorous (normal) adrenal 

glands and then to cross-reference the target and profiling data to compile a list 

of candidate miRNAs that may be important in the regulation of the CYP11B1 

and CYP11B2 genes. 
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4.3 Materials and Methods 

4.3.1 Bioinformatic Analysis 

4.3.1.1 Identification of the Genomic Location of m iRNAs 

The genomic co-ordinates, strand location and mRNA transcript length of the 

human genes encoding corticosteroidogenic enzymes were identified using the 

Ensembl Genome Browser (release 61 – Feb. 2011). These details were used to 

cross-reference with known miRNA precursor sequences that are, mapped and 

stored in the miRBase database (release 16 – Sept. 2010). 

4.3.1.2 Investigation of the Evolutionary Sequence Conservation of the 

CYP11B1 and CYP11B2 3’UTR 

Analysis of the evolutionary sequence conservation of the 3’UTR of the CYP11B1 

and CYP11B2 mRNA was performed using the UCSC Genome Browser Gateway 

(Feb. 2009 assembly). For comparison, 3 non-human primates (chimp, gorilla and 

rhesus macaque) and 5 other mammals (mouse, rat, rabbit, cow and dog) were 

used, and a graphical representation was generated.  

4.3.1.3 Structural Prediction of the 3’UTR of CYP11B1 and CYP11B2 

The secondary structure of the 3’UTR of CYP11B1 and CYP11B2 genes was 

predicted using the RNAFold program from the Vienna RNA Package (version 

1.8.5). This was achieved by entering gene information from the UCSC Genome 

Browser Gateway system and exporting pictorial results and free-energy 

predictions from the software program. 

4.3.1.4 Bioinformatic miRNA Target Site Prediction 

A combinational approach using five databases was applied to identify putative 

miRNA binding sites in mRNAs involved with corticosteroidogenesis. The 

databases are listed in Table 4-1. Where required, the full-length human 

transcript was selected and conservation was set to low. All other parameters 

were left at default settings. Database predictions for each gene from the 
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database were recorded, pooled and duplicate results removed to create a list 

of putative miRNA binding sites for each gene. 

4.3.2 miRNA Expression Profiling of Normal Adrenal Glands 

4.3.2.1 miRNA Microarray Analysis of miRNA Expressi on 

Total RNA was isolated from four frozen non-tumorous adrenal glands (section 

2.2.1) and quantified as described in sections 2.2.4 and 2.2.5. Samples were 

shipped to the microarray provider (LC Sciences, Houston, Texas) and the array 

performed (Section 2.3). A background threshold cut-off of 500 arbitrary units 

was used as recommended by the array chip manufacturer; miRNAs expressed at 

levels greater than this threshold were deemed to be expressed in the adrenal 

gland. 

4.3.2.2 qRT-PCR Validation of miRNA Expression 

Twenty miRNAs with expression levels greater than the threshold were validated 

by qRT-PCR. This was performed by LC Sciences (Houston, Texas, U.S.A.) using 

the Applied Biosciences miRNA Taqman® Assay and the method described in 

Section 2.4.2 and 2.5.2. Two small nucleolar housekeeping RNAs, RNU48 

(SNORD48) and U47 (SNORD47), were also run in the assay. RNU48 was the most 

stably expressed and, therefore, was used for normalisation purposes. 

4.3.3 Statistical Analysis 

All data are presented as mean ± SEM. the correlation of the microarray 

expression data and the qRT-PCR validation was tested using Prism 4.0 Graph 

Pad software. 
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Table 4-1. Bioinformatic Databases Used for Screeni ng miRNA Target Sites. 

Database Version Algorithm  Reference 

microrna.org August 2010 miRanda – miRSVR 
(Support Vector Regression) 

(John et al., 2004;Betel et al., 2010) 

miR-viewer June 2005 miRanda http://cbio.mskcc.org/cgi-bin/mirnaviewer/mirnaviewer.pl 

TargetScan 5.1, April 2009  (Lewis et al., 2005;Grimson et al., 2007;Friedman et al., 
2009) 

MicroCosm Targets 
(formally miRBase) 

5  (Griffiths-Jones et al., 2006;Griffiths-Jones et al., 2008) 

TarBase 5  (Papadopoulos et al., 2009) 
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4.4 Results 

4.4.1 Genomic Prediction of pre-miRNA Coding Region s 

No miRNA precursor sequences are currently mapped to the intronic regions of 

the nine selected corticosteroidogenic genes analysed (Table 4-2). The most 

proximal miRNA sequence to any of the genes was hsa-miR-146b, which is coded 

on the forward strand of human chromosome 10. It is approximately 300,000 

bases downstream of the CYP17A1 gene at co-ordinates 104,196,269 to 

104,196,341. This miRNA is located in an intergenic region and is surrounded by 

several other protein-coding genes.  

Table 4-2. Genetic Location of Human Corticosteroid  Genes and the Predicted miRNAs 
Sequences. 
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Start and End co-ordinated refer to transcription start and stop sites. 
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4.4.2 Analysis of the 3’UTR of the CYP11B1 and CYP1 1B2 Genes 

The predicted secondary structure of the CYP11B1 and CYP11B2 3’UTRs is shown 

in Figure 4-2. Secondary structure can affect the accessibility of a miRNA to its 

target-site; if the energy required for binding is too high then binding would be 

unlikely. This analysis does not evaluate any miRNA binding sites but does give 

an estimation of the unbound secondary structure of the native 3’UTR, which 

appears not to have too many complex folds (Figure 4-2).  

The evolutionary sequence conservation of the 3’UTR of the CYP11B1 and 

CYP11B2 3’UTRs was assessed using the comparative genomic analysis available 

within the UCSC Genome browser. The regions (highlighted in blue and indicated 

by red dashed lines) were compared to other mammals and the results can be 

seen in Figure 4-3. The 3’UTR of both genes is well conserved across the higher 

mammals, including the chimp, gorilla and rhesus macaque, as indicated by the 

solid black bars, which indicate sequence similarity. The degree of similarity is 

substantially reduced for the mouse, rat, rabbit, cow and dog sequences (Figure 

4-3). 
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Figure 4-2. Predicted RNA Secondary Structure of th e 3’UTR of the CYP11B1 and CYP11B2 
Genes. 

Predicted structure of the 3’UTR of CYP11B1 (A) and CYP11B2 (B) from the UCSC Genome 

Browser Gateway and the Vienna RNA Package.  
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Figure 4-3. Mammalian Evolutionary Conservation of the 3’UTR of the CYP11B1 and CYP11B2 Genes. 

The sequence conservation, generated by the UCSC Genome Browser for the CYP11B1 (top) and CYP11B2 (bottom) 3’UTR, shown by the blue bar and 

indicated by the dashed red lines. Conservation is represented by black bars for the species listed on the left-hand side and is defined as per default 

settings of the Genome Browser. 
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4.4.3 Identification of Putative miRNA Binding Site s 

Table 4-3 lists the 3’UTR length for each of the selected corticosteroidogenic 

genes. Of the genes chosen, the CYP11B1 and CYP11B2 genes have the longest 

3’UTR at 2022 base-pairs and 1428 base-pairs, respectively. This region 

comprises a large proportion of the total size of each mRNA transcript (Table 

4-2) and the 3’UTR is relatively large in comparison to those of the other genes 

especially CYP11A1 gene, whose 3’UTR comprises less than 1% of its total size 

(Table 4-3). 

The five databases listed in Table 4-1 were searched, in turn, to identify 

putative miRNA binding sites in each of the selected corticosteroidogenic genes. 

The Tarbase database relies on validated targets and produced no miRNA target 

predictions for any of the genes investigated. Table 4-3 summarises the results 

generated from the other four databases. It lists the number of target sites 

predicted by each algorithm, with the number of individual miRNAs in 

parentheses. The collated results are shown in the final column; this excludes 

any duplicate predictions made by one or more algorithm.  

The longest (CYP11B1) and shortest (CYP17A1) 3’UTRs match the highest and 

lowest number of miRNA prediction, respectively. However, the numbers of 

predictions do not correlate well with the size of the 3’UTR for other mRNAs. 

The CYP11B2 3’UTR has approximately the same number of predicted binding 

sites as StAR and HSD11B1 despite being over twice as long as that of the other 

genes. 

The extent of sequence similarity between the CYP11B1 and CYP11B2 genes 

prompted the comparison of predicted miRNA target sites. There was a large 

degree of similarity; in total 84 putative miRNA binding sites common to both 

genes are listed in Table 4-5. The identities of the 119 miRNAs predicted to bind 

to CYP11B1 only are listed in Table 4-4 and the 88 miRNAs with putative binding 

sites to CYP11B2 are listed in Table 4-6. 
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Table 4-3. Bioinformatic miRNA Target Site Predicti ons for Corticosteroidogenic Genes 

 

The 3’UTR length of the genes involved in corticosteroidogenesis was identified using the UCSC Genome Browser Gateway and Ensemble Genome 

Browser.  The number of predicted miRNA target sites from each database is listed and the  number of individual miRNA predicted to bind is shown in 

parentheses. The final column shows the cumulative number of miRNAs target-sites, with duplicates removed. NA: Not applicable/no predictions. 
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Table 4-4. Identities of miRNAs with Putative Bindi ng Sites in the CYP11B1 Gene, but not 
CYP11B2. 

Putative miRNA binding sites in the CYP11B1 genes
hsa-miR-105 hsa-miR-361-3p hsa-miR-543 hsa-miR-661
hsa-miR-149* hsa-miR-371-5p hsa-miR-545 hsa-miR-665
hsa-miR-150 hsa-miR-373 hsa-miR-548d-3p hsa-miR-744
hsa-miR-151-5p hsa-miR-376a hsa-miR-548o hsa-miR-768-5p
hsa-miR-181a hsa-miR-376b hsa-miR-550 hsa-miR-876-5p
hsa-miR-181b hsa-miR-382 hsa-miR-551a hsa-miR-924
hsa-miR-181c hsa-miR-423-5p hsa-miR-554 hsa-miR-933
hsa-miR-181d hsa-miR-429 hsa-miR-561 hsa-miR-938
hsa-miR-190b hsa-miR-431 hsa-miR-568 hsa-miR-1197
hsa-miR-193a-5p hsa-miR-432 hsa-miR-583 hsa-miR-1207-5p
hsa-miR-196a hsa-miR-449a hsa-miR-588 hsa-miR-1224-5p
hsa-miR-196b hsa-miR-449b hsa-miR-590-3p hsa-miR-1225-5p
hsa-miR-200b hsa-miR-452 hsa-miR-593 hsa-miR-1226
hsa-miR-200c hsa-miR-483-3p hsa-miR-596 hsa-miR-1244
hsa-miR-204 hsa-miR-490-3p hsa-miR-599 hsa-miR-1248
hsa-miR-205 hsa-miR-494 hsa-miR-608 hsa-miR-1251
hsa-miR-210 hsa-miR-497* hsa-miR-609 hsa-miR-1256
hsa-miR-214 hsa-miR-503 hsa-miR-618 hsa-miR-1259
hsa-miR-218 hsa-miR-515-3p hsa-miR-620 hsa-miR-1269
hsa-miR-219-1-3p hsa-miR-516a-3p hsa-miR-622 hsa-miR-1270
hsa-miR-219-2-3p hsa-miR-518d-5p hsa-miR-626 hsa-miR-1273
hsa-miR-221* hsa-miR-518e* hsa-miR-627 hsa-miR-1281
hsa-miR-23a hsa-miR-519a hsa-miR-630 hsa-miR-1290
hsa-miR-23b hsa-miR-519b-5p hsa-miR-636 hsa-miR-1294
hsa-miR-297 hsa-miR-519c-3p hsa-miR-637 hsa-miR-1300
hsa-miR-298 hsa-miR-519c-5p hsa-miR-643 hsa-miR-1303
hsa-miR-299-3p hsa-miR-519e hsa-miR-652 hsa-miR-1304
hsa-miR-302c hsa-miR-526b hsa-miR-655 hsa-miR-1321
hsa-miR-340 hsa-miR-532-5p hsa-miR-657 hsa-miR-1322
hsa-miR-34c-5p hsa-miR-539 hsa-miR-660  

For information regarding miRNA nomenclature please see Section 1.5.2.1
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Table 4-5. Identities of miRNAs with Putative Binding Sites in the CYP11B1 and CYP11B2 

Genes. 

Putative miRNA binding sites in the CYP11B1 and the  CYP11B2 genes

hsa-miR-1 hsa-miR-378 hsa-miR-592 hsa-miR-1184
hsa-miR-10a hsa-miR-422a hsa-miR-604 hsa-miR-1204
hsa-miR-10b hsa-miR-450b-3p hsa-miR-613 hsa-miR-1205
hsa-miR-138 hsa-miR-484 hsa-miR-615-5p hsa-miR-1207-3p
hsa-miR-140-3p hsa-miR-485-5p hsa-miR-624 hsa-miR-1224-3p
hsa-miR-143 hsa-miR-486-3p hsa-miR-625 hsa-miR-1236
hsa-miR-146b-3p hsa-miR-504 hsa-miR-628-5p hsa-miR-1253
hsa-miR-185 hsa-miR-509-3-5p hsa-miR-632 hsa-miR-1254
hsa-miR-188-3p hsa-miR-509-5p hsa-miR-638 hsa-miR-1260
hsa-miR-198 hsa-miR-510 hsa-miR-647 hsa-miR-1265
hsa-miR-206 hsa-miR-515-5p hsa-miR-651 hsa-miR-1266
hsa-miR-22 hsa-miR-516b hsa-miR-671-5p hsa-miR-1274a
hsa-miR-220c hsa-miR-520a-5p hsa-miR-708 hsa-miR-1274b
hsa-miR-24 hsa-miR-520f hsa-miR-769-3p hsa-miR-1275
hsa-miR-28-5p hsa-miR-548a-3p hsa-miR-873 hsa-miR-1280
hsa-miR-328 hsa-miR-548e hsa-miR-874 hsa-miR-1285
hsa-miR-339-5p hsa-miR-548f hsa-miR-875-3p hsa-miR-1286
hsa-miR-33b hsa-miR-549 hsa-miR-877 hsa-miR-1287
hsa-miR-34a hsa-miR-558 hsa-miR-939 hsa-miR-1291
hsa-miR-34c-3p hsa-miR-571 hsa-miR-940 hsa-miR-1299
hsa-miR-370 hsa-miR-577 hsa-miR-943 hsa-miR-1308

Putative miRNA binding sites in the CYP11B1 and the  CYP11B2 genes

hsa-miR-1 hsa-miR-378 hsa-miR-592 hsa-miR-1184
hsa-miR-10a hsa-miR-422a hsa-miR-604 hsa-miR-1204
hsa-miR-10b hsa-miR-450b-3p hsa-miR-613 hsa-miR-1205
hsa-miR-138 hsa-miR-484 hsa-miR-615-5p hsa-miR-1207-3p
hsa-miR-140-3p hsa-miR-485-5p hsa-miR-624 hsa-miR-1224-3p
hsa-miR-143 hsa-miR-486-3p hsa-miR-625 hsa-miR-1236
hsa-miR-146b-3p hsa-miR-504 hsa-miR-628-5p hsa-miR-1253
hsa-miR-185 hsa-miR-509-3-5p hsa-miR-632 hsa-miR-1254
hsa-miR-188-3p hsa-miR-509-5p hsa-miR-638 hsa-miR-1260
hsa-miR-198 hsa-miR-510 hsa-miR-647 hsa-miR-1265
hsa-miR-206 hsa-miR-515-5p hsa-miR-651 hsa-miR-1266
hsa-miR-22 hsa-miR-516b hsa-miR-671-5p hsa-miR-1274a
hsa-miR-220c hsa-miR-520a-5p hsa-miR-708 hsa-miR-1274b
hsa-miR-24 hsa-miR-520f hsa-miR-769-3p hsa-miR-1275
hsa-miR-28-5p hsa-miR-548a-3p hsa-miR-873 hsa-miR-1280
hsa-miR-328 hsa-miR-548e hsa-miR-874 hsa-miR-1285
hsa-miR-339-5p hsa-miR-548f hsa-miR-875-3p hsa-miR-1286
hsa-miR-33b hsa-miR-549 hsa-miR-877 hsa-miR-1287
hsa-miR-34a hsa-miR-558 hsa-miR-939 hsa-miR-1291
hsa-miR-34c-3p hsa-miR-571 hsa-miR-940 hsa-miR-1299
hsa-miR-370 hsa-miR-577 hsa-miR-943 hsa-miR-1308  

Table 4-6. Identities of miRNAs with Putative Bindi ng Sites in the CYP11B2 Gene, but not 
CYP11B1. 

Putative miRNA binding sites in the CYP11B2 genes
hsa-miR-125a-3p hsa-miR-362-5p hsa-miR-606 hsa-miR-1225-3p
hsa-miR-125a-5p hsa-miR-367* hsa-miR-612 hsa-miR-1228
hsa-miR-125b hsa-miR-378* hsa-miR-614 hsa-miR-1229
hsa-miR-134 hsa-miR-378b hsa-miR-619 hsa-miR-1260b
hsa-miR-184 hsa-miR-378c hsa-miR-624* hsa-miR-1914
hsa-miR-188-5p hsa-miR-383 hsa-miR-631 hsa-miR-1914*
hsa-miR-18b* hsa-miR-431* hsa-miR-639 hsa-miR-1975
hsa-miR-193 hsa-miR-432* hsa-miR-650 hsa-miR-2113
hsa-miR-193a-3p hsa-miR-449 hsa-miR-657 hsa-miR-3065-3p
hsa-miR-193b hsa-miR-452* hsa-miR-658 hsa-miR-3125
hsa-miR-217 hsa-miR-495 hsa-miR-661 hsa-miR-3126-5p
hsa-miR-224* hsa-miR-500* hsa-miR-665 hsa-miR-3127
hsa-miR-30c-1* hsa-miR-505* hsa-miR-711 hsa-miR-3153
hsa-miR-30c-2* hsa-miR-512-3p hsa-miR-720 hsa-miR-3162
hsa-miR-31 hsa-miR-513a-5p hsa-miR-744* hsa-miR-3176
hsa-miR-326 hsa-miR-514 hsa-miR-760 hsa-miR-3192
hsa-miR-329 hsa-miR-523 hsa-miR-766 hsa-miR-4292
hsa-miR-337-3p hsa-miR-525-5p hsa-miR-801 hsa-miR-4306
hsa-miR-33a hsa-miR-552 hsa-miR-888* hsa-miR-4313
hsa-miR-346 hsa-miR-593 hsa-miR-93* hsa-miR-4319
hsa-miR-34c hsa-miR-597 hsa-miR-942 hsa-miR-4323
hsa-miR-362-3p hsa-miR-605 hsa-miR-1202 hsa-miR-4327  

For information regarding miRNA nomenclature please see Section 1.5.2.1 
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4.4.4 miRNA Expression Profiling of the Adrenal Gla nd 

RNA extracted from four normal human adrenal glands was tested for quality 

prior to performing the microarray analysis. The quantity of the samples was 

first assessed using the Nanodrop (Section 2.2.4) then each sample was diluted 

to run on an Agilent Bioanalyser chip (Section 2.2.5). The electropherogram and 

RIN (RNA integrity number) are shown in Figure 4-4. The peaks labelled 18S and 

28S represent the ribosomal RNA and are used to calculate the RIN. The first 

small peak is a spike-in RNA control, the second represents small RNA molecules 

that would encompass miRNAs. The ‘Normal Adrenal 4’ sample had the lowest 

RIN which may have proved problematic for mRNA studies, but it had a strong 

‘microRNA’ peak. All samples were subject to further quality control testing by 

LC Sciences (Houston, Texas) prior to being run on the miRNA microarray. All 

samples successfully passed the internal quality control tests and, therefore, the 

miRNA microarray was performed on four normal adrenal gland samples. 
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Figure 4-4. Agilent Bioanalyser Electropherogram of  Adrenal RNA Samples. 

RIN: RNA integrity Number; FU: fluorescence.  
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The mean microarray output intensity is shown in Figure 4-5 for each of the 728 

human miRNAs on the chip (Version 10.1). The manufacturers of the microarray 

microfluidic chip recommended a cut off value of 500 arbitrary units (AU) to 

positively determine a miRNA expressed within a sample; this is represented by 

the red line on Figure 4-5. For future investigations miRNAs expressed below the 

threshold were discarded, leaving 103 miRNAs expressed in the human adrenal 

gland above the stated threshold. The mean expression level of these miRNAs is 

shown in Figure 4-6. The microarray results for individual miRNAs was relatively 

consistent across each of the four adrenal samples. The expression ranged from 

510 ± 88 AU for miR-106a, to the highly expressed miR-26a, expressed at 31,535 

± 2,012 AU. Some of the expressed miRNAs included both strands of the 

precursor-miRNA e.g. pre-miR-574 and pre-miR-768. In this case the -5p and -3p 

miRNA were expressed at approximately equal levels. However, for pre-miR-151 

the -5p miRNA was expressed at a higher level than the -3p form, 6,052 ± 190 AU 

and 943 ± 58 AU respectively. In contrast the expression of miR-199a-5p was (713 

± 135 AU) the miR-199a-3p (8,405 ± 1,282 AU). Eight members of the let-7 (a-g 

and i) family were highly expressed in the tissue. 

To validate the miRNA microarray result, 40 miRNAs were chosen to be 

quantified by Taqman® qRT-PCR. The mean cycle threshold value for each miRNA 

is shown in Table 4-7. Again, the intra-sample variation was low confirming the 

homology of the adrenal samples tested. The qRT-PCR results were normalised 

to a housekeeping gene, RNU48, creating a delta Ct value (∆Ct). The negative 

∆Ct was expressed to the power of 2 (representing the doubling of RNA 

concentration per Ct). This value is, therefore, proportional to the abundance of 

the miRNA in the sample. These results were highly and significantly correlated 

with the microarray values; r2 = 0.50 and p < 0.0001 (Figure 4-7). One notable 

outlier was miR-638, which had a relatively high expression as quantified by 

microarray analysis (17,630 ± 1,681 AU), but low expression according to qRT-

PCR validation (mean Ct value 29.78 ± 0.18; 2-∆Ct equivalent: 0.004) (Figure 4-7 

and Table 4-7). qRT-PCR is the gold standard for expression quantification and 

therefore miR-638 should be regarded as a low-expression miRNA in the adrenal 

gland. Other than this the qRT-PCR results confirmed the findings of the miRNA 

microarray experiment. 
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Figure 4-5. Normal Adrenal Gland miRNA Microarray O utput. 

The average normalised microarray expression signal of 728 human miRNAs (x-axis, in miRNA numerical order) in four normal adrenal glands. The red 

line represents the expression cut-off threshold of 500 Arbitrary Units (AU). 



176 

 

Human miRNA

A
ve

ra
ge

 M
ic

ro
ar

ra
y 

S
ig

na
l (

A
U

)

hs
a

-le
t-

7a
hs

a
-le

t-
7

b
hs

a
-le

t-
7c

hs
a

-le
t-

7
d

hs
a

-le
t-

7
e

hs
a

-le
t-

7f
hs

a
-le

t-
7

g
hs

a
-le

t-
7

i
hs

a
-m

iR
-1

0
0

hs
a

-m
iR

-1
0

1
hs

a
-m

iR
-1

0
3

hs
a

-m
iR

-1
0

6a
hs

a
-m

iR
-1

0
6

b
hs

a
-m

iR
-1

0
7

hs
a

-m
iR

-1
0

a
hs

a
-m

iR
-1

0
b

hs
a

-m
iR

-1
25

a-
5

p
hs

a
-m

iR
-1

2
5

b
hs

a
-m

iR
-1

2
6

hs
a

-m
iR

-1
2

7
-3

p
hs

a
-m

iR
-1

2
8

hs
a

-m
iR

-1
3

2
hs

a
-m

iR
-1

3
4

hs
a

-m
iR

-1
3

9
-5

p
hs

a
-m

iR
-1

4
0

-3
p

hs
a

-m
iR

-1
4

3
hs

a
-m

iR
-1

4
5

hs
a

-m
iR

-1
4

6
b

-5
p

hs
a

-m
iR

-1
4

8a
hs

a
-m

iR
-1

4
9

*
hs

a
-m

iR
-1

5
1

-3
p

hs
a

-m
iR

-1
5

1
-5

p
hs

a
-m

iR
-1

5
2

hs
a

-m
iR

-1
5

a
hs

a
-m

iR
-1

5
b

hs
a-

m
iR

-1
6

hs
a-

m
iR

-1
7

hs
a

-m
iR

-1
8

1a
hs

a
-m

iR
-1

8
5

hs
a

-m
iR

-1
9

1
hs

a
-m

iR
-1

9
5

hs
a

-m
iR

-1
99

a-
3

p
hs

a
-m

iR
-1

99
a-

5
p

hs
a

-m
iR

-2
0

2
hs

a
-m

iR
-2

0
2

*
hs

a
-m

iR
-2

0
a

hs
a-

m
iR

-2
1

hs
a

-m
iR

-2
1

4
hs

a
-m

iR
-2

1
8

hs
a-

m
iR

-2
2

hs
a

-m
iR

-2
2

*
hs

a
-m

iR
-2

3
a

hs
a

-m
iR

-2
3

b
hs

a-
m

iR
-2

4
hs

a-
m

iR
-2

5
hs

a
-m

iR
-2

6
a

hs
a

-m
iR

-2
6

b
hs

a
-m

iR
-2

7
a

hs
a

-m
iR

-2
7

b
hs

a-
m

iR
-2

8
-5

p
hs

a
-m

iR
-2

9
a

hs
a

-m
iR

-2
9

b
hs

a
-m

iR
-2

9
c

hs
a

-m
iR

-3
0

a
hs

a
-m

iR
-3

0
b

hs
a

-m
iR

-3
0

c
hs

a
-m

iR
-3

0
d

hs
a

-m
iR

-3
0

e
hs

a
-m

iR
-3

2
0

hs
a

-m
iR

-3
3

5
hs

a
-m

iR
-3

4
a

hs
a

-m
iR

-3
4

c-
3

p
hs

a
-m

iR
-3

6
1

-5
p

hs
a

-m
iR

-3
6

5
hs

a
-m

iR
-3

7
4

b
hs

a
-m

iR
-3

7
5

hs
a

-m
iR

-3
7

6c
hs

a
-m

iR
-3

7
9

hs
a

-m
iR

-3
8

2
hs

a
-m

iR
-4

2
3

-5
p

hs
a

-m
iR

-4
2

4
hs

a
-m

iR
-4

3
2

hs
a

-m
iR

-4
5

5
-3

p
hs

a
-m

iR
-4

8
7

b
hs

a
-m

iR
-4

9
4

hs
a

-m
iR

-4
9

5
hs

a
-m

iR
-5

0
9

-3
p

hs
a

-m
iR

-5
7

2
hs

a
-m

iR
-5

7
4

-3
p

hs
a

-m
iR

-5
7

4
-5

p
hs

a
-m

iR
-6

3
8

hs
a

-m
iR

-6
5

4
-3

p
hs

a
-m

iR
-6

6
3

hs
a

-m
iR

-7
hs

a
-m

iR
-7

6
8

-3
p

hs
a

-m
iR

-7
6

8
-5

p
hs

a
-m

iR
-9

2
3

hs
a

-m
iR

-9
2

a
hs

a
-m

iR
-9

2
b

hs
a

-m
iR

-9
4

0
hs

a-
m

iR
-9

8
hs

a
-m

iR
-9

9
a

hs
a

-m
iR

-9
9

b

 

Figure 4-6. Average Microarray Signals of miRNAs Ex pressed in the Adrenal Gland.  

The average normalised microarray expression signal of miRNAs with an expression level greater than 500 Arbitrary Units (AU). The mean of four 

tissues, error bars represent SEM. 
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Table 4-7. qRT-PCR Expression Validation of Selecte d miRNAs. 

miRNA Taqman® 
Assay

Ct value Standard 
Error

miRNA Taqman® 
Assay

Ct value Standard 
Error

hsa-let-7a 20.75 0.12 hsa-miR-185 31.35 0.34
hsa-let-7b 20.63 0.11 hsa-miR-195 21.42 0.12
hsa-let-7e 25.62 0.15 hsa-miR-202 25.74 0.10
hsa-miR-101 25.10 0.13 hsa-miR-214 24.08 0.13
hsa-miR-103 23.05 0.08 hsa-miR-218 25.25 0.19
hsa-miR-106a 25.76 0.09 hsa-miR-22 22.74 0.06
hsa-miR-106b 24.39 0.08 hsa-miR-23a 23.43 0.13
hsa-miR-107 27.35 0.06 hsa-miR-23b 22.58 0.11
hsa-miR-10a 24.44 0.10 hsa-miR-24 21.60 0.09
hsa-miR-10b 22.50 0.17 hsa-miR-26b 21.22 0.07
hsa-miR-125b 20.33 0.10 hsa-miR-29b 23.16 0.12
hsa-miR-126 21.38 0.14 hsa-miR-30b 21.22 0.09
hsa-miR-132 25.19 0.12 hsa-miR-30c 21.68 0.08
hsa-miR-134 25.99 0.12 hsa-miR-320 22.72 0.08
hsa-miR-143 24.45 0.24 hsa-miR-34a 23.70 0.17
hsa-miR-145 24.25 0.18 hsa-miR-379 25.38 0.07
hsa-miR-150 25.71 0.36 hsa-miR-382 25.90 0.14
hsa-miR-15a 25.57 0.12 hsa-miR-432 26.11 0.15
hsa-miR-16 20.58 0.13 hsa-miR-487b 24.62 0.14
hsa-miR-181a 24.97 0.16 hsa-miR-638 29.78 0.18  

Mean cycle threshold (Ct) values are from four adrenal gland samples measured by 

qRT-PCR in technical triplicate (three repeats per sample per assay) 
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Figure 4-7. Correlation of Microarray and qRT-PCR m iRNA Expression. 

The microarray expression levels of twenty miRNAs plotted against their qRT-PCR 

expression. The cycle threshold (Ct) the housekeeping reference, RNU48, was deducted 

from that of the miRNA (ΔCt). The negative ΔCt was expressed to the power of 2 

(assuming 100% efficiency). 
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4.4.5 Adrenal-miRNAs with CYP11B1 and CYP11B2 Bindi ng Sites 

To identify the miRNAs which may regulate CYP11B1 and CYP11B2 mRNA in the 

adrenal gland, the putative miRNA-target sites and miRNA expression data sets 

were combined. The results of this are summarised in Figure 4-8. Half of the 

miRNA target sites for CYP11B1 are shared with the target sites predicted for 

CYP11B2, whereas, the miRNAs predicted to target both genes comprise the 

majority of these predicted to target CYP11B2. In total, 24 adrenal-expressed 

miRNAs were predicted to bind CYP11B1 3’UTR and 16 to bind CYP11B2 3’UTR; in 

total, 28 miRNAs are predicted to bind to both genes. Therefore, based on the 

computational approaches used, 75 miRNAs expressed in the adrenal gland do 

not bind to the CYP11B1 or CYP11B2 mRNA.  

Detailed information for the 28 miRNAs is shown in Table 4-8. None of these 

miRNAs are located in genes which have been directly implicated in 

corticosteroidogenesis. However, their genetic locations may prove interesting: 

both miR-638 and miR-214 are located in a region coding for dynamin mRNA 

(type 2 and 3 respectively); miR-218 and miR148* are located in the SLIT2 gene 

and the GPC1 gene, whose products are known to interact; miR-10a and miR-10b 

are both located in genes belonging to the homeobox transcription factor family. 

Finally, several miRNAs are transcribed in clusters including miR-24 and miR-23b 

which are in the C9orf3 cluster. 

Table 4-9 and Table 4-10 give specific information regarding the bioinformatic 

target site predictions, including which database(s) predicted each miRNA 

binding site, the number of binding sites predicted and the proposed degree of 

base-pairing complementarity in the seed region (Figure 4-1). These tables also 

contain the microarray expression values for each miRNA (Table 4-9 and Table 

4-10).  Only three of the miRNAs (miR-149*, miR-423-5p and miR-34a) were 

predicted to possess two separate target sites, for miR-149* and miR-423-5 the 

binding sites are relatively close, (206 and 69 bases apart, respectively). Most 

target site predictions were provided by only one or two of the databases but 

three databases (the exception being miRViewer) predict a binding site for miR-

638 on the CYP11B1 3’UTR (Table 4-9). 
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Given the tendency of bioinformatics databases to rely on seed site base-pairing 

for miRNA-target prediction, it is unsurprising that the majority of target sites 

predicted have full complementarity at the seed region (Figure 4-9) and that 

most are 7mer predictions, indicating a strong likelihood of miRNA regulation. 

miR-940 is predicted to bind with the strongest seed-pairing, 8mer, to both of 

the genes; miR-149* is also predicted to have an 8mer site on the CYP11B1 gene 

(Table 4-9). Two miRNAs, miR-125a-5p and miR-125b, are predicted to bind with 

a 8mer seed site to the CYP11B2 gene (Table 4-10). These miRNAs belong to the 

same miRNA family and therefore share a high degree of sequence similarity 

with identical sequence in the seed region; for this reason their 8mer predicted 

site lies in exactly the same place on the 3’UTR. 
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Figure 4-8. Venn Diagram of Adrenal miRNAs with Put ative miRNA-Target Sites in the 3’UTR 
of the CYP11B1 and CYP11B2 Genes 

miRNA microarray analyses of non-tumorous adrenal tissue combined with  

bioinformatics analysis of putative miRNA binding sites in the 3’-UTR of the CYP11B1 and 

CYP11B2 genes 
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Table 4-8. Genomic and Sequence Information of Adre nal-miRNAs Predicted to Bind to 
CYP11B1 and CYP11B2. 

hsa-miR-149* agggagggacgggggcugugc Intronic 2 : 241,395,418 - 241,395,506 [+]

hsa-miR-151-5p ucgaggagcucacagucuagu Intronic 8 : 141,742,663 - 141,742,752 [-]

hsa-miR-181a aacauucaacgcugucggugagu Intergenic 1 : 198,828,173 - 198,828,282 [-]

hsa-miR-214 acagcaggcacagacaggcagu Intronic 1 : 172,107,938 - 172,108,047 [-]

hsa-miR-218 uugugcuugaucuaaccaugu Intronic 4 : 20,529,898 - 20,530,007 [+]

hsa-miR-23a aucacauugccagggauuucc Intergenic 19 : 13,947,401 - 13,947,473 [-]

hsa-miR-23b aucacauugccagggauuacc Intronic 9 : 97,847,490 - 97,847,586 [+]

hsa-miR-382 gaaguuguucgugguggauucg Intergenic 14 : 101,520,643 - 101,520,718 [+]

hsa-miR-423-5p ugaggggcagagagcgagacuuu Intronic 17 : 28,444,097 - 28,444,190 [+]

hsa-miR-432 ucuuggaguaggucauugggugg Intergenic 14 : 101,350,820 - 101,350,913 [+]

hsa-miR-494 ucuuggaguaggucauugggugg Intergenic 14 : 101,495,971 - 101,496,051 [+]

hsa-miR-768-5p guuggaggaugaaaguacggagugau Intergenic 16 : 70,349,796 - 70,349,899 [-]

hsa-miR-10a caaauucguaucuaggggaaua Intronic 17 : 46,657,200 - 46,657,309 [-]

hsa-miR-10b uacccuguagaaccgaauuugug Intronic 2 : 177,015,031 - 177,015,140 [+]

hsa-miR-140-3p cagugguuuuacccuaugguag Intronic 16 : 69,966,984 - 69,967,083 [+]

hsa-miR-143 ugagaugaagcacuguagcuc Intergenic 5 : 148,808,481 - 148,808,586 [+]

hsa-miR-185 uggagagaaaggcaguuccuga Intronic 22 : 20,020,662 - 20,020,743 [+]

hsa-miR-22 aagcugccaguugaagaacugu Intronic 17 : 1,617,197 - 1,617,281 [-]

hsa-miR-24 uggcucaguucagcaggaacag Intronic 9 : 97,848,303 - 97,848,370 [+]

hsa-miR-28-5p aaggagcucacagucuauugag Intronic 3 : 188,406,569 - 188,406,654 [+]

hsa-miR-34a uggcagugucuuagcugguugu Intergenic 1 : 9,211,727 - 9,211,836 [-]

hsa-miR-34c-3p aaucacuaaccacacggccagg Intergenic 11 : 111,384,164 - 111,384,240 [+]

hsa-miR-638 agggaucgcgggcggguggcggccu Intronic 19 : 10,829,080 - 10,829,179 [+]

hsa-miR-940 aaggcagggcccccgcucccc Intergenic 16 : 2,321,748 - 2,321,841 [+]

miR-125a-5p ucccugagacccuuuaaccuguga Intergenic 19 : 52,196,507 - 52,196,592 [+]

miR-125b ucccugagacccuaacuuguga Intergenic 11 : 121,970,465 - 121,970,552 [-]

miR-134 ugugacugguugaccagagggg Intergenic 14 : 101,521,024 - 101,521,096 [+]

miR-495 aaacaaacauggugcacuucuu Intergenic 14 : 101,500,092 - 101,500,173 [+]

Genetic  
Location Co-ordinates of miRNA LocationmicroRNA miRNA Seqeunce

 
 

Adrenal miRNA information obtained from miRBASE. miRNA sequence:  5’- 3’ direction. 

Genomic co-ordinates: chromosome number: co-ordinates [strand]. The double lines 

separate miRNAs according to bioinformatic prediction, the top section includes miRNAs 

with putative binding site in CYP11B1, the middle section miRNAs predicted to bind to 

both genes; and the bottom miRNAs putative binding sites on the CYP11B2 3’UTR.
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Table 4-9. Bioinformatic and Microarray Information  of Adrenal-miRNA with Putative Binding Sites in th e CYP11B1 3’UTR. 
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miR-149* 1 � 2 8mer / Offset 6mer 206 608 ± 89
miR-151-5p 2 � � 1 7mer-m8 6,052 ± 190
miR-181a 1 � 1 7mer-m8 2,011 ± 274
miR-214 1 � 1 Offset 6mer 6,894 ± 1,106
miR-218 1 � 1 7mer-1A 642 ± 197
miR-23a 2 � � 1 7mer-m8 17,047 ± 2,074
miR-23b 2 � � 1 7mer-m8 18,033 ± 1,998
miR-382 1 � 1 Offset 6mer 1,116 ± 195
miR-423-5p 2 � � 2 Offset 6mer / Offset 6mer 69 2,272 ± 507
miR-432 2 � � 1 Offset 6mer 611 ± 90
miR-494 1 � 1 7mer-1A 1,576 ± 369
miR-768-5p 1 � 1 7mer-1A 2,832 ± 1,021
hsa-miR-10a 2 � � 1 7mer-1A 1,872 ± 470
hsa-miR-10b 2 � � 1 7mer-1A 9,496 ± 1,152
hsa-miR-140-3p 1 � 1 7mer-m8 1,082 ± 79
hsa-miR-143 1 � 1 7mer-1A 6,877 ± 1,236
hsa-miR-185 1 � 1 7mer-m8 1,141 ± 90
hsa-miR-22 1 � 1 7mer-m8 3,473 ± 670
hsa-miR-24 2 � � 2 Offset 6mer 930 8,938 ± 810
hsa-miR-28-5p 2 � � 1 7mer-m8 788 ± 75
hsa-miR-34a 2 � � 2 7mer-m8/Offset 6mer 1,275 1,418 ± 98
hsa-miR-34c-3p 1 � 1 7mer-1A 752 ± 264
hsa-miR-638 3 � � � 1 7mer-1A 17,630 ± 1,681
hsa-miR-940 2 � � 1 8mer 735 ± 264

Microarray 
Average Signal 
Intensity (AU)microRNA

Number of 
Database Hits

Database

Number of 
Binding Sites Seed Site Match

Distance Between 
Binding Sites 
(nucleotides)
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Table 4-10. Bioinformatic and Microarray Informatio n of Adrenal-miRNA with Putative Binding Sites in t he CYP11B2 3’UTR. 
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hsa-miR-125a-5p 2 � � 1 8mer 18,278 ± 1,808
hsa-miR-125b 2 � � 1 8mer 22,781 ± 1,558
hsa-miR-134 1 � 1 7mer-m8 1,130 ± 217
hsa-miR-495 1 � 1 7mer-m8 777 ± 210
hsa-miR-10a 1 � 1 7mer-1A 1,872 ± 470
hsa-miR-10b 2 � � 1 7mer-1A 9,496 ± 1,152
hsa-miR-140-3p 1 � 1 7mer-m8 1,082 ± 79
hsa-miR-143 1 � 1 7mer-1A 6,877 ± 1,236
hsa-miR-185 2 � � 1 7mer-m8 1,141 ± 90
hsa-miR-22 2 � � 1 7mer-m8 3,473 ± 670
hsa-miR-24 1 � 1 Offset 6mer 8,938 ± 810
hsa-miR-28-5p 2 � � 1 7mer-m8 788 ± 75
hsa-miR-34a 1 � 2 7mer-m8/Offset 6mer 1,275 1,418 ± 98
hsa-miR-34c-3p 1 � 1 7mer-1A 752 ± 264
hsa-miR-638 1 � 1 7mer-1A 17,630 ± 1,681
hsa-miR-940 2 � � 1 8mer 735 ± 264

Microarray Average 
Signal Intensity (AU)Seed Site Match

Distance Between 
Binding Sites 
(nucleotides)microRNA

Number of 
Database Hits

Database

Number of 
Binding Sites
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Figure 4-9. Seed Site Distribution of Putative miRN A Binding Sites. 

Base-pairing in the seed region of miRNAs with putative binding sites in the CYP11B1 and 

CYP11B2 3’UTR.  
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4.5 Discussion 

The experiments presented in this chapter investigated the existence of miRNA 

target sites in corticosteroidogenic genes using computational methods. It also 

identified the array of miRNAs expressed within the adrenal gland: this data was 

used to construct a list of potential miRNAs which may regulate the CYP11B1 and 

CYP11B2 genes in vivo. The main outcome of this part of the project was the 

identification of 24 miRNAs expressed in the adrenal gland which may regulate 

CYP11B1 transcription and 16 that may regulate CYP11B2. 

The first stage of in silico analysis investigated whether any non-coding RNAs are 

located within the coding regions of genes involved in corticosteroidogenesis. 

None of the 1,048 miRNAs currently registered at the miRNA repository, MiRBase 

(Chobanian et al., 2003;Griffiths-Jones et al., 2006;Griffiths-Jones et al., 2008) 

were mapped to genomic regions encompassing the important 

corticosteroidogenic genes, including CYP11B1 and CYP11B2. Hence, altered 

transcriptional regulation of these genes or SNPs located in these genes will not 

directly affect the transcription or quantity of any miRNA. Therefore, miRNAs 

found to regulate CYP11B1 and CYP11B2 will be located in separate genomic 

locations and subject to their own transcriptional regulation. 

In-depth analysis of the 3’UTR sequence of CYP11B1 and CYP11B2 revealed both 

to be conserved across a few, but not all, mammalian species. Conservation of 

the 3’UTR and, in particular the putative miRNA-target sites is proposed to be an 

indicator of miRNA regulation (Friedman et al., 2009). miRNA sequences 

themselves are highly conserved, yet there are examples of mammalian-specific 

miRNAs which may target non-conserved sites (Sethupathy et al., 2006;Friedman 

et al., 2009). It could be argued that target site conservation is preferentially 

selected for or that non-conserved regions in higher mammals have evolved.  

The CYP11B1 and CYP11B2 genes have the longest 3’UTRs of all the genes 

analysed and this might reflect the importance of this region for regulation of 

mRNA stability. Studies have shown that genes involved in basic cell 

homeostasis, for example ribosomal genes, have shorter 3’UTRs and are resistant 

to miRNA-mediated repression (Stark et al., 2005). Assessment of the unbound 

secondary mRNA structure was performed but without the addition of a miRNA, 
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it is difficult to interpret this. The software used to generate this structure 

cannot generate miRNA interactions but an alternative software package, 

RNAHybrid, has been developed (Kruger and Rehmsmeier, 2006). This software 

will be useful for assessing the impact of miRNAs on the secondary structure of 

the CYP11B1 or CYP11B2 3’UTR and evaluating the minimum free energy of 

binding (Kruger and Rehmsmeier, 2006) and will be utilised in Section 5.4.9. 

Another parameter which may influence miRNA regulation is the turnover rate of 

mRNA, which is determined by the rate of transcription vs. the rate of mRNA 

degradation. mRNAs with a relatively quick turnover are less likely to be subject 

to miRNA regulation and more likely to be regulated by other degrading factors 

that act on AU-rich element (AREs). However, those with longer half-lives are 

more likely to be regulated by miRNAs (Larsson et al., 2010). The assessment of 

the half-lives of CYP11B1 and CYP11B2 mRNA has been previously estimated in 

H295R cells. These were treated with Actinomycin D for 2 hr, then the relative 

abundance of the mRNA transcripts measured at hourly intervals (Lin et al., 

2006). The abundance of both CYP11B1 and CYP11B2 mRNA decreased to half of 

the starting level by approximately 3 hr. This is on the borderline of what 

Larsson et al. (2010) describe as a slow or medium turnover rate and, based on 

their analysis, CYP11B1 and CYP11B2 mRNA are less likely to be regulated by 

miRNAs than a longer turnover rate mRNA (half-life > 1000 minutes). However, 

they did show that 4.4% of the slower turnover mRNAs were liable to strong 

repression by miRNAs, compared to 10.2% of long turnover mRNAs. There is also 

quite a lot of scatter within their data; 3 of the previously published data-sets 

used did not show a correlation of repression to turnover rate. Finally, the data-

sets were all generated in a non-specific cell line (HeLa), used miRNA species 

and defined miRNA-mediated regulation by strong repression of mRNA target 

(Larsson et al., 2010) which may not reflect canonical fine-tuning miRNA action 

in specific cell types (Sevignani et al., 2006). The authors also mention that the 

relative abundance of mRNA could have an impact on regulation. Thus, in the 

CYP11B1 and CYP11B2 expression-specific cells of the adrenal cortex, this may 

not be a factor. The importance of mRNA turnover rate remains to be seen. 

miRNA target sites were predicted by bioinformatic analysis all of the genes 

analysed. Of the databases employed, only Tarbase failed to predict any miRNA 

target sites, presumably because it relies solely on experimentally-validated 
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miRNA targets (Papadopoulos et al., 2009), and there are currently no validated 

miRNA, mRNA targets in this pathway (Section 1.9).   

In general, there was a large degree of variation in the number of predicted 

sites generated by the other four databases. miR-viewer predicted the lowest 

number of miRNA binding sites and, for CYP17A1 and 3βHSDII mRNA, it failed to 

predict any sites at all. The database with the next lowest prediction count was 

MicroCosm Targets. The algorithms used by the TargetScan and microrna.org 

databases appear to have equivalent stringencies for identifying miRNA target 

sites, as demonstrated by their similar number of target-site predictions. 

Interestingly, both of these databases have user-definable parameters, e.g. the 

levels of miRNA sequence conservation. The results presented from these two 

databases in this thesis have been generated without restrictions on 

conservation. In fact, TargetScan identified no miRNA-target sites for 

evolutionarily conserved miRNAs in the CYP11B1 or CYP11B2 3’UTRs. The exact 

details of what governs miRNA:mRNA target interaction are still being 

investigated and, as such, databases are continually evolving. Therefore, it was 

decided no to increased the stringency of conservation required for miRNA-

target prediction, thus avoiding excessive false negative predictions, and also to 

use a combinational approach of several databases to improve accuracy. 

The degree of variation between the databases is consistent with other reports 

(Bartel, 2009;Saito and Saetrom, 2010). This highlights the current lack of 

understanding regarding miRNA-target binding and the fact that relatively few 

miRNA targets have been experimentally validated. Two recent reviews on this 

subject highlighted the variation between the current group of bioinformatic 

databases and emphasised that validation is biased towards complementary seed 

site binding and sequence conservation (Bartel, 2009;Saito and Saetrom, 2010). 

However, this may itself be biased due the high weighting placed on these 

features by several of the commonly-used databases.  Other features which are 

absent from the currently-available databases include alternative miRNA:mRNA 

complementarity (e.g. centered site base-pairing, Figure 4-1); accounting for 

optimal distance between multiple miRNA binding sites; or the ability to search 

for binding sites in the coding-region or 5’ untranslated region of genes (Saito 

and Saetrom, 2010). 
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Based on computational bioinformatics it appears that all the genes within the 

corticosteroidogenic pathway possess miRNA binding sites and hence could be 

subject to miRNA-mediated regulation. As previously stated, the main focus of 

this thesis is the regulation of CYP11B1 and CYP11B2 mRNA expression, and 

therefore the remainder of the work presented will be concerned with these 

genes. Bioinformatic prediction identified 202 and 172 miRNA binding sites in the 

3’UTRs of the CYP11B1 and CYP11B2 genes, respectively. There was a relatively 

high overlap of miRNA binding-site predictions; given the high degree of 

sequence similarity in the 3’UTRs (approximately 80%) this is probably not 

surprising. Moreover, it is comparable to the similarity observed in transcription 

factor binding sites located at the 5’UTR (Bassett et al., 2000;Bassett et al., 

2002). However, there are numerous miRNAs with putative binding sites in only 

one of the genes so, potentially, miRNA-mediated regulation could be achieved 

by target-sites common to both genes or by specific miRNAs, thereby accounting 

for the differential regulation of these genes.  

Two striking observations arise from the predictions: the lack of any let-7 miRNA 

family target-sites and the high number of miRNA* (passenger strand) predictions 

for the CYP11B2 3’UTR. The let-7 family includes the let-7c miRNA, which was 

the second miRNA to be identified (Reinhart et al., 2000). This family is believed 

to have a major role in developmental timing and cell regulation (Roush and 

Slack, 2008) and hence would be thought unlikely to target the CYP11B1 and 

CYP11B2 genes. miRNA* are thought to be the redundant strand of the pre-miR 

hair-pin that generates the functioning miRNA (Section 1.5.2.1 and 1.5.2.3). 

However, as the function of more miRNAs is being discovered, many are being 

renamed to indicate from which arm they are cleaved (-3p or -5p) and, as such, 

do not indicate which mature arm of the pre-miRNA is likely to be functional. 

Therefore, the miRNA* predictions for CYP11B2 should not be discounted as 

regulators and, in fact, regulation of CYP11B2 may even represent a novel 

function of these * miRNAs. 

To determine the miRNA expression profile of the adrenal gland, human non-

tumorous (termed ‘normal’) adrenal glands were chosen for miRNA microarray 

analysis. The samples were obtained from four kidney donor patients undergoing 

nephrectomy and their adrenal glands were retained and frozen at -80°C. RNA 

isolation from the tissues was successful, each sample obtaining strong RIN 
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scores. The microarray and subsequent qRT-PCR validation indicated that the 

samples were of good quality and homogeneous for miRNA expression. 

Therefore, the results in this thesis can confidently confirm the expression of 

103 human miRNAs in the adrenal gland. At the time the miRNA microarray was 

performed it contained probes which covered 100% of the known human miRNAs 

and therefore, represented the best option for assessing the relative levels of all 

miRNA in samples. The quality of the microarray was confirmed by qRT-PCR 

performed in the same samples; this correlated highly with the microarray 

expression results. 

The samples of adrenal gland used for RNA isolation could not be cut precisely 

enough to include only tissue from the adrenal cortex and may also have 

included part of the adrenal medulla. Moreover, they would likely have 

contained portions of all three layers of the adrenal cortex. Therefore, the 

miRNA expression profile generated in this thesis is representative of the whole 

adrenal gland. It would be beneficial to obtain tissue from specific zones of the 

cortex in order to determine the zone-specific distribution, if any, of individual 

miRNAs. However, obtaining sufficient human, normal adrenal tissue for this 

has, as of yet, proved difficult. 

When this investigation started, there were no existing publications describing 

adrenal miRNA expression. However, there have since been a small number of 

such studies with the main focus being on adrenal pathology e.g. adrenocortical 

adenoma or carcinoma. These have not studied normal adrenal function or the 

role of miRNAs in hypertension and have only used normal adrenal glands for 

purposes of comparison (Tombol et al., 2009;Soon et al., 2009;Iliopoulos et al., 

2009;Bimpaki et al., 2010;Schmitz et al., 2011). In general, it is hard to compare 

the miRNA-expression profiling in these publications with that which is presented 

in this thesis. It appears that none of the publications have submitted their 

microarray results to a microarray repository to allow open access of individual 

miRNA expression results, meaning that only information regarding selected 

published miRNAs can be obtained. Furthermore, comparison is complicated as 

all of these studies used different profiling platforms to each other, and to the 

one used in this thesis. Only the study by Soon et al., (2009) used microarray 

system of the same level of miRNA coverage as this study (100% of miRNAs in 

miRBase v10). The others used a Taqman Low Density Array® (Applied 
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Biosciences) platform which is a good alternative for assessing miRNA expression 

but typically contains fewer miRNA probes (365 probes) than chip-based arrays. 

Finally, interpreting the data is complicated due to post-assay data manipulation 

for example depicting expression levels by hierarchical heat-map clustering, 

meaning that relative quantities of miRNAs can not be compared. However, 

careful analysis shows that at least 33 of the 103 miRNAs identified in this thesis 

have been previously identified (Tombol et al., 2009;Soon et al., 2009;Iliopoulos 

et al., 2009;Bimpaki et al., 2010;Schmitz et al., 2011). This number may in fact 

be higher but full data-sets are not available and, for one study (Schmitz et al., 

2011), the online supplementary data is not currently accessible and another 

presents only profiling data from tumorous tissue (Soon et al., 2009). Several 

miRNAs have been consistently detected both in the current study and in more 

than one of the other published studies: miR-100, miR-143, miR-145, miR-375, 

miR-424 and miR-7. Without access to the full data from the published 

microarray studies it is impossible to comment on how representative is the data 

presented in this thesis, but even the small degree of overlap described above 

suggests that the findings in this thesis are comparable. This current study 

presents the most comprehensive adrenal miRNA expression investigation in 

normal subjects; with the exception of Tombol et al., (2009), the other studies 

used either commercially-purchased, pooled adrenal samples or adjacent 

adrenal tissue lying next to an adrenal tumour. Tombol et al., (2009) used 

adrenal tissue samples obtained from patients undergoing nephrectomy for 

kidney tumours and, while there is no reason to suggest that the adrenal glands 

were also affected by tumorous tissue, the adrenal gland and kidney are linked 

by blood supply and miRNAs can circulate through the bloodstream (Section 

1.8.2). Therefore, using the adrenal glands of kidney donor patients, as in the 

current study, is probably the most reliable source of normal adrenal tissue. 

By combining the adrenal miRNA-expression data and the bioinformatic target 

site analysis, those miRNAs which may regulate CYP11B1 and CYP11B2 expression 

in the adrenal gland could be identified. This approach identified 24 miRNAs 

with putative binding sites on the CYP11B1 3’UTR and 16 on CYP11B2 3’UTR; 12 

miRNAs were common to both. Since these data were complied, one potential 

CYP11B1-regulating miRNA, miR-768-5p, has been removed from miRBase as the 

genomic location from which it was transcribed has been re-annotated as 
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containing a small nucleolar RNA, HBII-239. Evolutionary conservation analysis 

supports the mapping of HBII-239, therefore this miRNA is excluded from future 

investigation. One adrenal-miRNA, miR-638, was predicted in three databases, 

the most of all the miRNAs, and may have represented the best candidate miRNA 

for further study if qRT-PCR quantification had not shown that it is actually 

relatively lowly expressed within the adrenal gland.  

To identify which miRNA may be likely to regulate these genes it was interesting 

to note that several of the predicted miRNAs belong to the same miRNA family, 

e.g. miR-10a and miR-10b, which share the same target site on the 3’UTR. 

Moreover, other miRNAs which are not part of a miR-family also share common 

binding regions e.g. miR-23a, miR-23b and miR-181a which all bind to a similar 

region in the 3’UTR of CYP11B1. This may add complexity to the mechanism by 

which these miRNAs work; a recent study has been the first to demonstrate that 

more than one miRNA can regulate an mRNA (Wu et al., 2010). Several adrenal 

miRNAs in the target lists are produced as part of a cluster, and this may 

represent some sort of adrenal transcriptional specificity. For example, miR-24, 

miR-23b and miR-27b are all found in the adrenal gland, but only miR-24 and 

miR-23b have binding sites in the CYP11B1 and CYP11B2 genes. Cluster members 

miR-381 and miR-134 are transcribed together but have putative binding sites on 

different 3’UTR (CYP11B1 and CYP11B2, respectively). 

A literature search found that the previously-reported functions of the miRNAs 

identified fall into four categories: those involved in cancer, including action on 

tumour suppressor genes, oncogenes or genes that alter cell cycle regulation; 

those with association to cardiovascular disease; those with association to neural 

disease; or those whose function has not yet been established. Numerous miRNAs 

fall into several of these categories, highlighting that each may act on several 

mRNA targets (Lewis et al., 2003) and, in some cases, a miRNA may act in a cell-

type specific manner (Section 1.7.1). 

Finally, in the hope of identifying miRNAs that may be associated with 

hypertension, the genomic locations of the miRNAs were compared with those of 

published QTL (quantitative trait loci) associated with hypertension (Cowley, 

2006). In total, six miRNAs are encoded in known hypertension QTL and of these, 

four are located in the QTL of defined causes of hypertension or identified in 
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non-Caucasian cohorts. Of the remaining two, the sequence of miR-10a lies 

within an intron of a homeobox gene on chromosome 17 at location identified in 

the Framingham Heart Study as being associated with hypertension (Levy et al., 

2009), while miR-28-5p is found in an intron of the LPP gene, at a region 

identified in the HERITAGE Family Study (Rice et al., 2002). As previously 

discussed (Section 1.1.3.2), the identification of QTL for hypertension has 

proved difficult to replicate and to validate by functional experiments 

investigating the gene coded within them. However, it may be possible that 

miRNAs located in QTL may be the functioning regulator of pathways involved in 

the development of hypertension. 

In conclusion, these studies have identified several putative miRNA binding sites 

in all of the genes involved in corticosteroid synthesis and have defined the 

miRNA expression profile of a normal human adrenal gland to produce a shortlist 

of potential miRNAs that may regulate CYP11B1 and CYP11B2 mRNA stability. 

The work presented in this chapter has also highlighted, by sequence 

conservation analysis and relative 3’UTR length, that the CYP11B1 and CYP11B2 

genes are good candidates for miRNA regulation. The subset of adrenal-miRNAs 

which have a putative miRNA target-site on the 3’UTR are currently based on 

bioinformatic prediction only. Therefore, they require experimental validation 

which will be presented in Chapter 5 of this thesis.  
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5 miRNA Target-Site Validation in the 3’UTR of 

CYP11B1 and CYP11B2. 
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5.1 Introduction 

Putative miRNA binding sites must be experimentally investigated in order to 

validate bioinformatic analyses and this will be the focus of the current chapter. 

Validation can be achieved by several methods, most of which involve in vitro 

analysis, that may provide direct or indirect evidence of miRNA-mediated 

regulation. Two important considerations when designing experiments are that 

the measurements should be highly specific and accurate to allow for detection 

of the small changes typical of miRNA-mediated regulation, and that a suitable 

model be chosen, that best represents the in vivo situation. 

Methods to validate miRNA target sites typically involve manipulating miRNA-

expression levels, then assessing mRNA abundance or protein levels. Several 

examples of miRNA inhibition are given in Section 1.8 and Figure 1-20. Increasing 

cellular miRNA levels can be achieved by introducing exogenous miRNA mimics 

into cells, these can be in the form of short single-stranded RNA molecules, 

larger molecules which are cleaved intracellulary to form short single-stranded 

miRNA molecules, or plasmid constructs containing pre-miR or pri-miR sequences 

that are expressed under the control of a viral or cell-type specific promoter. In 

this chapter, short single-stranded molecules are used to manipulate miRNA 

abundance; these include Pre-miR™ molecules, which increase miRNA 

expression, and Anti-miR™ molecules whose complementarity to specific 

endogenous miRNAs causes them to be bound and competitively antagonised. 

The benefits of these molecules are that they do not require endogenous miRNA 

processing enzymes, such as Dicer, that they are specific to one miRNA (whereas 

those involving expression of a pre-miR will lead to exogenous expression of 

miRNA and miRNA* species) and that it is possible to measure their effect on 

miRNA expression by qRT-PCR analysis.  

Two types of miRNA target validation experiment will be used in this chapter: 

firstly, the 3’UTR reporter plasmid construct used in Chapter 3 will be tested 

with specific Pre-miR™ or Anti-miR™ molecules and miRNA binding assessed by 

measuring the relative luciferase levels; secondly, miRNA-action will be assessed 

by transfecting these molecules into the human adrenocortical cell line, H295R 

(Section  3.1), and then assessing the levels of CYP11B1 or CYP11B2 mRNA by 



196 

 

qRT-PCR. The subsequent effects on steroid production will also be assessed by 

measuring cortisol and aldosterone secretion in cell media. 

An additional parameter that is often investigated in miRNA analysis is the effect 

on protein synthesis, usually measured by western blot analysis. However, there 

are currently no antibodies available for detecting the human CYP11B1 and 

CYP11B2 proteins specifically and effectively. Therefore, this could not be 

performed in this current study, although changes in steroid production can be 

suggestive of changes in protein abundance. 

5.2 Aims 

The aims of this study are to investigate the function of adrenal miRNAs 

predicted to have binding sites on the CYP11B1 and/or CYP11B2 3’UTR with a 

view to validating the bioinformatic analyses. To achieve this, miRNA targeting 

of the 3’UTR will be assessed by reporter construct analysis, as determined by 

measurement of steroids and of CYP11B1 and CYP11B2 mRNA following 

transfection of H295R cells with small molecules capable of modulation miRNA 

levels (i.e. Pre-miR™ and Anti-miR™). 
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5.3 Materials and Methods 

5.3.1 Investigation of miRNA Binding to 3’UTR Repor ter Construct 

HeLa cells were co-transfected with pEZX reporter constructs (500 ng) and Pre-

miR™ or Anti-miR™ molecules (50 nM) in 24-well plates as described in Section 

2.9.4. 48 Hours post-transfection, cell lysates were prepared and their firefly 

and renilla luciferase activities measured using the Dual Reporter Luciferase 

Assay (DLRA, Sections 2.10). Control transfections and normalisation methods 

were identical to those described in Section 3.3.3. 

5.3.2 Pre-miR™ or Anti-miR™ Transfection of H295R C ells 

H295R cells were transfected in 6-well plates as described in Section 2.9. The 

Pre-miR™ or Anti-miR™ molecules used are listed Table 5-1 and were prepared as 

detailed in Section 2.9.1. The medium was replaced on the cells after 24 hours 

and, after 48 hours, this was removed for steroid analysis by LC:MS/MS (Section 

2.11). Cell lysates were prepared for total RNA isolation (Section 2.2.1), ready 

for qRT-PCR analysis as described in Section 2.4 and 2.5. Data were analysed 

using the ∆∆Ct method (Section 2.5.4), with GAPDH or RNU48 used as a 

housekeeping gene and results expressed relative to the negative (Pre-miR™ or 

Anti-miR™) control-transfected cells.  

5.3.3 Statistical Analysis 

For experiments performed once in technical triplicate statistical analysis was 

performed using a Student’s t-test.  

All other experiments were performed at least in triplicate and at least two 

biologically-independent times. As described above, the miRNA, Pre-miR™ or 

Anti-miR™ molecules were normalised to a negative control transfected with a 

scrambled Pre-miR™ or Anti-miR as appropriate. The mean result of the 

biologically replicated experiments were then taken and statistical analysis was 

performed using a one-sample t-test, imputing either 100% or a 1-fold change as 

a reference level to which experimental values were compared. 
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For mature miRNA measurement following increasing Pre-miR™ or Anti-miR™ 

concentrations, a one-way ANOVA and Bonferroni’s post-hoc tests were used, 

comparing each concentration to the negative control cells.  

For all analyses, confidence intervals of 95% were used and P < 0.05 was 

required for statistical significance. Data are expressed as the mean ± standard 

error of the mean (SEM). 

 

Table 5-1. Pre-miR™ and Anti-miR™ molecules. 

miRNA Pre-miR™ Product Code Anti-miR™ Product Code 

Negative Control #1 AM17110 AM17010 

Let-7c  4392431 

miR-1 AM17150  

miR-10a PM10787 AM10787 

miR-10b PM11108 AM11108 

miR-125a-5p PM12561 AM12561 

miR-125b PM10148 AM10148 

miR-134 PM10341 AM10341 

mir-140-3p PM12503 AM12503 

miR-143 PM10883 AM10883 

miR-185 PM12486 AM12486 

miR-22 PM10203 AM10203 

miR-23b PM10711 AM10711 

miR-24 PM10737 AM10737 

miR-34a PM11030 AM11030 

miR-382 PM10924 AM10924 

miR-423-5p PM11164 AM11164 

miR-495 PM11526 AM11526 

miR-638 PM11594 AM11594 

miR-940 PM12798 AM12798 

Supplier: Applied Biosystems (Warrington, U.K.) 
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5.4 Results 

5.4.1 Assessing Potential Repression of the pEZX Re porter 

Construct  

To investigate the suitability of the 3’UTR reporter construct as an experimental 

tool, a siRNA molecule with perfect complementarity was designed to target 

each 3’UTR (Table 5-2). Each was co-transfected into HeLa cells with the 

corresponding reporter construct. The ratio of firefly luciferase to renilla 

luciferase was calculated and normalised to a transfected control siRNA. The 

CYP11B1 3’UTR siRNA significantly decreased the normalised ratio from the 100% 

control level to 16.13% ± 0.67 (Figure 5-1A).  Similarly, the CYP11B2 3’UTR siRNA 

significantly decreased the ratio to 52.34% ± 4.51 relative to the control level of 

100% (Figure 5-1B). These results offered proof of concept that miRNAs targeting 

the 3’UTR of either mRNA will result in significantly different luciferase activity 

that can be measured with a good degree of sensitivity. 

Table 5-2. siRNA Molecules Targeted to the CYP11B1 and CYP11B2  3’UTR. 

siRNA Name Sequence 

CYP11B1 siRNA UCUACAUCCUUCUCAUAUA 

CYP11B2 siRNA  AUACUUAGGUAAUCAUUCC 
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Figure 5-1. siRNA Verification of  the pEZX-B1 and pEZX-B2 Reporter Plasmids. 

HeLa cells were co-transfected with (A) pEZX-B1 construct and CYP11B1 3’-UTR siRNA or 

(B) pEZX-B2 construct and CYP11B2 3’UTR siRNA. Firefly and renilla luciferase were 

measured 48 hours post-transfection using the Dual Luciferase Reporter Assay Kit. To 

normalise for transfection efficiency the ratio of firefly to renilla was measured and 

expressed as a percentage of the negative control siRNA value. Results represent the 

mean of three independent biological experiments, performed in quadruplicate; error 

bars represent standard error of the mean (SEM). ** p < 0.01, *** p < 0.001 compared to 

control. 
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5.4.2 miRNA Targeting to the 3’UTR of CYP11B1 mRNA.  

miRNAs with putative binding sites in the 3’UTR of  both CYP11B1 and CYP11B2 

mRNA (Figure 4-8) were tested in turn, using the pEZX-reporter constructs to 

establish if the miRNA bind to the 3’UTR and cause repression. Specific single-

stranded Pre-miR™ or Anti-miR™ were co-transfected into HeLa cells alongside 

the reporter construct to either overexpress or competitively inhibit a particular 

miRNA species. 

Manipulating the levels of: miR-10a, miR-10b, miR-140-3p, miR-143, miR-22 and 

miR-34a did not change the relative levels of luciferase activity (Figure 5-2A-D: F 

and Figure 5-3B). Therefore, experimental data failed to validate the predicted 

bioinformatic target sites for these miRNAs on the CYP11B1 3’UTR. 

However, several other miRNAs did cause changes in the relative luciferase 

levels. Firstly, increasing miR-185, reduced luciferase activity to 79.50 ± 4.35% 

(p = 0.018) although inhibiting the same miRNA with an Anti-miR™ did not 

increase the level of luciferase activity (Figure 5-2E). miR-24 (Figure 5-3A) and 

miR-638 (Figure 5-3E) a similarly consistent pattern of results with neither 

producing a change in luciferase activity when overexpressed despite seeing an 

increase in Anti-miR™ transfected cells: miR-24 increased luciferase activity to 

137.30 ± 5.87% (p = 0.023) and miR-638 increased it to 144.8 ± 4.65%              (p 

= 0.066). The putative miR-382 binding site on the CYP11B1 3’UTR was 

confirmed by changes in luciferase activity characteristic of canonical miRNA 

action i.e. Pre-miR™ decreased luciferase activity to 58.51 ± 2.63% (p = 0.004) 

and Anti-miR™ transfected cells increased it to 121.90 ± 3.22% (p = 0.021) of 

control cells (Figure 5-3C). A similar pattern was observed for miR-940 (Figure 

5-3F): Pre-miR™ caused a large decrease in luciferase activity to 34.14 ± 2.25% 

(p = 0.0012). However, the Anti-miR™ only marginally increased it to 121.40 ± 

8.98% and did not reach statistical significance. Manipulation of miR-423-5p 

caused interesting results: Anti-miR™ cells did not cause a change in luciferase 

activity but Pre-miR™ increased it to 186.50 ± 8.015% (p = 0.0085). While this 

result does not confirm the existence of a miRNA target site it may suggest some 

other type of regulation (Figure 5-3D). 

A summary of these results is shown in Table 5-3. 
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Figure 5-2. Effect of miRNAs on the Luciferase Acti vity of the pEZX-B1 Reporter Construct. 

HeLa cells were co-transfected with the pEZX-B1 construct and Pre-miR™ or Anti-miR™ 

molecules for the indicated miRNAs. Firefly and renilla luciferase activity were measured 

48 hours post-transfection using the Dual Luciferase Reporter Assay System. To normalise 

for transfection efficiency, the ratio of firefly to renilla luminescence was calculated and 

expressed as a percentage of the negative, scrambled control. Results represent the 

mean of at least three independent biological experiments, performed in quadruplicate; 

error bars represent standard error of the mean (SEM). * p < 0.05. 



203 

 

miR-24

Control Pre-miR Anti-miR
0

25

50

75

100

125

150

175

*

Transfectant

pE
Z

X
-B

1 
3'

U
T

R
F

ir
ef

ly
/R

en
ill

a 
R

at
io

(%
 n

eg
at

iv
e 

co
nt

ro
l)

miR-34a

Control Pre-miR Anti-miR
0

25

50

75

100

125

Transfectant

pE
Z

X
-B

1 
3'

U
T

R
F

ir
ef

ly
/R

en
ill

a 
R

at
io

(%
 n

eg
at

iv
e 

co
nt

ro
l)

miR-382

Control Pre-miR Anti-miR
0

25

50

75

100

125

150

*

**

Transfectant

pE
Z

X
-B

1 
3'

U
T

R
F

ir
ef

ly
/R

en
ill

a 
R

at
io

(%
 n

eg
at

iv
e 

co
nt

ro
l)

miR-423-5p

Control Pre-miR Anti-miR
0

25

50

75

100

125

150

175

200

225

**

Transfectant

pE
Z

X
-B

1 
3'

U
T

R
F

ir
ef

ly
/R

en
ill

a 
R

at
io

(%
 n

eg
at

iv
e 

co
nt

ro
l)

miR-638

Control Pre-miR Anti-miR
0

25

50

75

100

125

150

175

p  = 0.066

Transfectant

pE
Z

X
-B

1 
3'

U
T

R
F

ir
ef

ly
/R

en
ill

a 
R

at
io

(%
 n

eg
at

iv
e 

co
nt

ro
l)

miR-940

Control Pre-miR Anti-miR
0

25

50

75

100

125

150

**

Transfectant

pE
Z

X
-B

1 
3'

U
T

R
F

ir
ef

ly
/R

en
ill

a 
R

at
io

(%
 n

eg
at

iv
e 

co
nt

ro
l)

A B

C                       D

E F

 

Figure 5-3. Effect of miRNAs on the Luciferase Acti vity of the pEZX-B1 Reporter Construct 
(2). 

HeLa cells were co-transfected with the pEZX-B1 construct and Pre-miR™ or Anti-miR™ 

molecules for the indicated miRNAs. Firefly and renilla luciferase activity were measured 

48 hours post-transfection using the Dual Luciferase Reporter Assay System. To normalise 

for transfection efficiency, the ratio of firefly to renilla luminescence was calculated and 

expressed as a percentage of the negative, scrambled control. Results represent the 

mean of at least three independent biological experiments, performed in quadruplicate; 

error bars represent standard error of the mean (SEM). * p < 0.05, ** <0.01 or p-value as 

stated. 
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5.4.3 miRNA Targeting to the 3’UTR of CYP11B2 mRNA.  

Bioinformatic target site predictions on the CYP11B2 mRNA were tested using 

the pEZX-B2 reporter construct. These experiments failed to confirm target-site 

predictions for miR-10a (Figure 5-4A), miR-10b (Figure 5-4B), miR-140-3p (Figure 

5-4C), miR-22 (Figure 5-4F), miR-382 (Figure 5-5C) miR-423-5p (Figure 5-5D) or 

miR-638 (Figure 5-5E), none of which caused a significant change in luciferase 

activity when either overexpressed or inhibited in HeLa cells. However, in some 

circumstances (e.g. miR-22, miR-384 and miR-423-5p), large changes in 

luciferase activity were observed, but which failed to reach statistical 

significance, probably due to large standard deviations in the replicate results 

(Figure 5-4 and Figure 5-5). 

In contrast, the results for miR-143 indicate that it does bind to the 3’UTR of 

CYP11B2 (Figure 5-4D); increasing miR-143 significantly reduced luciferase 

activity to 79.03 ± 4.86% (p = 0.499), while inhibiting miR-143 increased 

luciferase activity, 128.50 ± 9.57% although this failed to reach statistical 

significance (p = 0.093). A similar pattern of results was observed for miR-185, 

with the Pre-miR™ significantly reducing luciferase activity (64.06 ± 4.12%; p = 

0.003), and the Anti-miR™ increasing luciferase activity (145.10 ± 10.91%) but 

without reaching statistical significance (p = 0.054; Figure 5-4E).  

Increasing miR-24 did not change the luciferase activity of the pEZX-B2 reporter 

construct in HeLa cells but inhibiting miR-24 with the Anti-miR™ molecule caused 

it to increase significantly to 162.80 ± 11.20% ( p = 0.030, Figure 5-5A). Results 

also show that miR-34a overexpression reduce luciferase activity to 68.52 ± 

7.20% (p = 0.485, Figure 5-5B) but there was no change in Anti-miR™-transfected 

cells. A similar pattern was observed for miR-940 (Figure 5-5F) where Pre-miR™ 

reduced luciferase activity by a large margin (27.23 ± 5.23%; p = 0.0081) but 

Anti-miR™ did not achieve significance (123.00 ± 8.00; p = 0.1028). 
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Figure 5-4. Effect of miRNAs on the Luciferase Acti vity of the pEZX-B2 Reporter Construct. 

HeLa cells were co-transfected with the pEZX-B1 construct and Pre-miR™ or Anti-miR™ 

molecules for the indicated miRNAs. Firefly and renilla luciferase activity were measured 

48 hours post-transfection using the Dual Luciferase Reporter Assay System. To normalise 

for transfection efficiency, the ratio of firefly to renilla luminescence was calculated and 

expressed as a percentage of the negative, scrambled control. Results represent the 

mean of at least three independent biological experiments, performed in quadruplicate; 

error bars represent standard error of the mean (SEM). * p < 0.05, ** <0.01 or p-value as 

stated. 
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Figure 5-5. Effect of miRNAs on the Luciferase Acti vity of the pEZX-B2 Reporter Construct 
[2]. 

HeLa cells were co-transfected with the pEZX-B1 construct and Pre-miR™ or Anti-miR™ 

molecules for the indicated miRNAs. Firefly and renilla luciferase activity were measured 

48 hours post-transfection using the Dual Luciferase Reporter Assay System. To normalise 

for transfection efficiency, the ratio of firefly to renilla luminescence was calculated and 

expressed as a percentage of the negative, scrambled control. Results represent the 

mean of at least three independent biological experiments, performed in quadruplicate; 

error bars represent standard error of the mean (SEM). * p < 0.05, ** <0.01 or p-value as 

stated. 
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5.4.4 miRNAs with Unique Target Sites on the CYP11B 2 3’UTR. 

In addition to testing those miRNAs which had putative miRNA binding sites in 

CYP11B1 and CYP11B2, the four miRNAs which were predicted only to bind the 

CYP11B2 3’UTR (Figure 4-8) were also tested using the same system. The results 

of these experiments are shown in Figure 5-6. 

Manipulating the levels of miR-134 or miR-495 did not significantly alter the 

luciferase activity of the pEZX-B2 reporter construct (Figure 5-6C-D). However, 

the existence of a miRNA binding site for miR-125a-5p and miR-125b on the 

CYP11B2 3’UTR was confirmed by these experiments; increasing the levels of 

miR-125a-5p in Pre-miR™ transfected cells reduced luciferase activity to a non-

significant level of 63.78 ± 8.09% but decreasing miR-125a-5p in Anti-miR™ 

transfected cells significantly increased luciferase activity to 143.50 ± 9.02% (p = 

0.040, Figure 5-6A). miR-125b Pre-miR™ transfected cells had significantly 

decreased luciferase activity (75.90 ± 1.28%; p = 0.033) and conversely, the Anti-

miR™ transfected cells produced a significant increase in luciferase activity 

(148.70 ± 7.61; p = 0.023), in line with canonical miRNA action (Figure 5-6B). 

A summary of the results for all miRNAs targeting the CYP11B2 3’UTR are shown 

in Table 5-4 (page 227). 
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Figure 5-6. Effect of CYP11B2-Specific Targeting miRNAs on the Luciferase Activi ty of the 
pEZX-B2 Reporter Construct. 

HeLa cells were co-transfected with the pEZX-B1 construct and Pre-miR™ or Anti-miR™ 

molecules for the indicated miRNAs. Firefly and renilla luciferase activity were measured 

48 hours post-transfection using the Dual Luciferase Reporter Assay Kit. To normalise for 

transfection efficiency, the ratio of firefly to renilla luminescence was calculated and 

expressed as a percentage of the negative, scrambled control. Results represent the 

mean of at least three independent biological experiments, performed in quadruplicate; 

error bars represent standard error of the mean (SEM). * p < 0.05. 
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5.4.5 Assessment of H295R Transfection with Pre-miR ™ and Anti-

miR™ Molecules. 

To investigate the action of miRNA on the full-length CYP11B1 or CYP11B2 

mRNAs, the Pre-miR™ and Anti-miR™ molecules were transfected into the H295R 

adrenocortical cell line and their effects assessed by measuring the relative 

abundance of  CYP11B1 or CYP11B2 mRNA and the levels of steroids secreted 

into the cell media.  

First, it was necessary to assess the viability of using these small molecules and 

the suitability of the transfection conditions for H295R cells. A positive control 

experiment was performed and the levels of mature miRNA measured following 

transfection with three different concentrations of miR-24 Pre-miR™ or Anti-

miR™. 

Figure 5-7 shows the levels of mature miR-24 measured by qRT-PCR following 

transfection of 1, 10 or 50 nM of the miR-24 Pre-miR™ or Anti-miR™. A 

concentration-dependent increase in mature miR-24 was observed (Figure 5-7A). 

1 nM increased the levels 50.24 ± 2.73-fold compared to control transfected cells 

but this did not reach statistical significance; 10 nM and 50 nM concentrations 

increased the level of mature miR-24 by 499.79 ± 67.46 (p < 0.05) and 1914.04 ± 

225.22 (p < 0.001) fold, respectively. Similarly, the levels of mature miR-24 

decreased in a concentration-dependent manner (1 nM: 0.705 ± 0.009; 10 nM: 

0.027 ± 0.003; 50 nM: 0.023 ± 0.007, with results statistically different relative 

to the scrambled, negative control (Figure 5-7B). 

The extent to which different miRNAs were overexpressed relative to their basal 

level was compared by transfecting H295R cells with Pre-miR™ molecules for five 

different miRNAs and then measuring the levels of those miRNAs. Figure 5-8 

shows the results for miR-10b, miR-125a-5p, miR-21, miR-24 and miR-143, all 

transfected at a final concentration of 50 nM. All miRNAs tested saw an increase, 

and there was a large range of fold-changes in the miRNA levels; the extent of 

this change may be influenced strongly by the basal level of the miRNA in H295R 

cells.  
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These results suggests that transfection of H295R cells with small molecules was 

successful and that all Pre-miR™ molecules are suitable for increasing their 

specific miRNAs and while Anti-miR™ molecules are capable of decreasing 

mature miRNA levels in a specific manner. The magnitude of change caused by 

Pre-miR™ transfection does vary depending on the individual miRNA species and 

the basal endogenous levels however, in general, there is a significant and large 

change with a 50 nM concentration of Pre-miR™ or Anti-miR™. 

To assess the ability of Pre-miR™ or Anti-miR™ to modulate mRNA targets, 

positive control experiments were set up to measure the effect of miR-1 Pre-

miR™ transfection on its validated target, PTK9 (Lim et al., 2005), and of let-7c 

Anti-miR™ on its target, HMGA2 (Lee and Dutta, 2007). Increasing the levels of 

miR-1 successfully decreased the level of PTK9 mRNA abundance to 0.56 ± 0.05 

fold (p = 0.004, Figure 5-9A), while decreasing the levels of let-7c increased 

HMGA2 mRNA by 1.47 ± 0.06 fold (p = 0.014, Figure 5-9B). These results matched 

the expected results, as set out by the manufacturer, and confirmed that the 

transfection protocol is appropriate for assessing miRNA function in the H295R 

cell. It was therefore adopted for the subsequent experiments described in this 

chapter.  
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Figure 5-7. Mature miR-24 Levels Following Transfec tion with Various Concentrations of 
miR-24 Pre-miR™ or Anti-miR™. 

H295R cells were transfected with (A) miR-24 Pre-miR™ or (B) miR-24 Anti-miR™ and 

equivalent scrambled negative controls at 1, 10 and 50 nM. Mature miR-24 levels were 

measured 48 hours post-transfection by qRT-PCR. Cycle threshold values were normalised 

to RNU48 mRNA and expressed relative to the control, scrambled Pre-miR™ or Anti-miR 

Pre-miR™, cells. Results represent the mean of one independent biological experiments 

performed in triplicate; error bars represent standard error of the mean (SEM). * p < 0.05, 

*** p < 0.001 compared to control. 
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Figure 5-8. Mature miRNAs Levels Post-Transfection in H295R Cells. 

H295R cells were transfected with miR-10b, miR-125-5p, miR-21, miR-24 and miR-143 

Pre-miR™ and a scrambled negative control (final concentration 50 nM). Mature miRNA 

levels were measured 48 hours post-transfection by qRT-PCR. Cycle threshold values were 

normalised to RNU48 mRNA and expressed relative to the negative control cells. Results 

represent the mean of one independent biological experiments performed in triplicate; 

error bars represent standard error of the mean (SEM).  
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Figure 5-9. Verification of Pre-miR™ and Anti-miR™ Action Using Positive Control Target 
Genes. 

H295R cells were transfected with (A) miR-1 Pre-miR™, (B) let-7c Anti-miR Pre-miR™ or 

with a scrambled negative control (all final concentration 50 nM). (A) PTK9 mRNA and (B) 

HMGA2 mRNA levels were measured 48 hours post-transfection by qRT-PCR. Cycle 

threshold values were normalised to RNU48 mRNA and expressed relative to the control 

cells. Results represent the mean of three independent biological experiments, 

performed in triplicate; error bars represent standard error of the mean (SEM). * p < 0.05 

and ** p < 0.01 compared to control.  
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5.4.6  Assessment of mRNA effect on CYP11B1 and CYP 11B2 

mRNA Abundance and Steroid Production. 

Based on the results of the reporter construct studies described earlier in this 

chapter several miRNAs were chosen for further investigation in the H295R cell 

line, which is the best available in vitro model for adrenocortical tissue. The 

miRNA selected were miR-140-3p, miR-143, miR-185, miR-382, miR-24, miR-628 

and miR-940.  

miR-10b was also investigated using its specific Pre-miR™ molecule. As it did not 

change luciferase activity when tested on the pEZX-B1 or pEZX-B2 reporter 

construct, its use in H295R cells acted as an internal negative control to verify 

the reporter construct experiments. As expected, increasing miR-10b levels 

through in Pre-miR™-transfected cells did not significantly change the levels of 

CYP11B2 mRNA abundance (1.02 ± 0.12 fold, p = 0.88, Figure 5-10A) or CYP11B1 

mRNA abundance (1.10 ± 0.51, p = 0.58, Figure 5-10C); Neither aldosterone nor 

cortisol levels were significantly altered (Figure 5-10B and D). Therefore, both 

pEZX reporter constructs and H295R miRNA transfection experiments show that 

miR-10b does not regulate the CYP11B1 or CYP11B2 genes and provide evidence 

that these two experiment protocols provide consistent data for assessing miRNA 

action. 

Due to some constraints (e.g. difficult cell line), many of these experiments 

were only performed once in triplicate; precise details can be found in the 

figure legends and further replication would be required to provide stronger 

evidence of miRNA action. 

miR-140-3p Pre-miR™ transfected H295R cells had significantly reduced levels of 

CYP11B2 mRNA  (0.70 ± 0.03 fold of control transfected cells; p = 0.009) while 

Anti-miR™ transfected cells increased to CYP11B2 mRNA 1.18 ± 0.05 fold (p = 

0.095, Figure 5-11A). These mRNA changes were not supported by aldosterone 

levels, which were unchanged for both Pre-miR™ and Anti-miR™ cells (Figure 

5-11B). The pattern of results for CYP11B1 mRNA and cortisol production were 

inconsistent and, as no single result reached statistical significance, no 

definitive conclusion can be drawn (Figure 5-11C and D). 
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miR-143-transfected cells did not significantly alter CYP11B2 or CYP11B1 mRNA 

abundance, although there was a trend towards decreased CYP11B2 levels in 

Pre-miR™ transfected cells (0.85 ± 0.03 fold; p = 0.055, Figure 5-12A). While 

cortisol levels reflected the lack of change in CYP11B1 mRNA (Figure 5-12C and 

D), the aldosterone levels showed a trend towards increased production in Pre-

miR™ transfected cells (1.61 ± 0.15, p = 0.077). This conflicts with the mRNA and 

reporter construct results, and with canonical miRNA action. Aldosterone 

production in Anti-miR™ transfected cells was not significantly different from 

control (Figure 5-12B). 

H295R cells transfected with miR-185 Pre-miR™ or Anti-miR™ did not exhibit a 

significant change in either CYP11B2 mRNA abundance or aldosterone production 

(Figure 5-13A and B). However, both the Pre-miR™ and Anti-miR™ transfected 

cells showed a trend towards decreased CYP11B1 mRNA abundance ( 0.77 ± 0.04 

fold; p = 0.055 and 0.58 ± 0.16 fold; p = 0.070, Figure 5-13C), with great 

variability in Anti-miR™ results. Cortisol production levels were unchanged with 

either molecule (Figure 5-13D). Further replicates would be required to 

definitively determine miR-185’s effects. 

The results of miR-24 Pre-miR™ or Anti-miR™ transfection into H295R cells 

support a role for miR-24 in the regulation of both CYP11B1 and CYP11B2 mRNA 

levels; the experiments involving miRNA were carried out three independent 

biological times each time in triplicate and the results are shown in Figure 5-14.  

Pre-miR™ transfection reduced CYP11B2 levels to 0.58 ± 0.07 fold of control 

levels, which was significant (p = 0.026); moreover, this change was 

corroborated by a significant decrease in aldosterone production (0.78 ± 0.02; p 

= 0.044). The opposite effect was observed with Anti-miR transfection: a 

significant increase in CYP11B2 mRNA abundance (1.32 ± 0.06 fold; p = 0.035) 

and in aldosterone production (1.22 ± 0.03 fold; p = 0.014, Figure 5-14A and B). 

Similar observations were made for CYP11B1 mRNA abundance and cortisol 

production: Pre-miR™ transfected cells had significantly reduced CYP11B1 mRNA 

levels (0.638 ± 0.06 fold; p = 0.037) and cortisol production (0.71 ± 0.05 fold; p = 

0.033). The Anti-miR™ transfected cells had increased CYP11B1 mRNA levels 

(1.38 ± 0.05 fold; p = 0.02) but no change in cortisol (0.93 ± 0.03 fold; p = 0.144, 

Figure 5-14C and D). 
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The results for miR-382 were ambiguous; overall, the only significant result was 

a small increase in CYP11B2 mRNA following Anti-miR™ transfection (1.19 ± 0.02 

fold; Figure 5-15A). However, Pre-miR™ also increased CYP11B2 abundance by a 

similar magnitude, although this was not statistically significant, due to a large 

variability in the replicates. The aldosterone results were also quite variable 

and, statistically, neither Pre-miR™ nor Anti-miR™ significantly changed 

aldosterone production in H295R cells (Figure 5-15B). There was also no 

significant change in CYP11B1 mRNA or cortisol production (Figure 5-15C and D). 

There was a small but significant increase in CYP11B2 mRNA abundance 

following in miR-638 Pre-miR™ transfection of H295R cells (1.16 ± 0.03 fold; p = 

0.047) together with a large increase in aldosterone production (1.63 ±0.21 fold) 

although this was not statistically significant (Figure 5-16A and B). The Anti-

miR™ transfected cells saw no significant changes in CYP11B2 mRNA or 

aldosterone (Figure 5-16A and B). CYP11B1 and cortisol production were also 

unaffected by miR-638 (Figure 5-16C and D). 

Results following transfection of H295R cells with miR-940 Pre-miR™ and Anti-

miR™ molecules do support a regulatory effect on CYP11B2 mRNA; levels 

changed to 0.79 ± 0.01 fold (p = 0.008) and 1.46 ± 0.05 fold (p = 0.009), 

respectively (Figure 5-17A and B).  There was large variability in the aldosterone 

levels and no significant difference was seen in the Pre-miR™ transfected cells 

nor in Anti-miR™ transfected cells (1.47 ± 0.12 fold; p = 0.090, Figure 5-17A and 

B). The existence of a miR-940 binding site in CYP11B1  3’UTR was not confirmed 

by these transfection experiments, as there was no significant change in mRNA 

abundance or cortisol production following Pre-miR™ or Anti-miR™ transfection 

(Figure 5-17C and D). 



217 

 

CYP11B2 Abundance

Neg Pre-miR

0.00

0.25

0.50

0.75

1.00

1.25

Transfectant

F
ol

d 
C

ha
ng

e
C

Y
P

11
B

2 
m

R
N

A
(N

or
m

al
is

ed
 t

o
G

A
P

D
H

,
R

el
at

iv
e 

to
 N

eg
at

iv
e 

C
on

tr
ol

)

Aldosterone Production

Neg Pre-miR

0.00

0.25

0.50

0.75

1.00

1.25

Transfectant

A
ld

os
te

ro
ne

 P
ro

du
ct

io
n

F
ol

d 
C

ha
ng

e
(R

el
at

iv
e 

to
 N

eg
at

iv
e 

C
on

tr
ol

)

CYP11B1 Abundance

Neg Pre-miR

0.00

0.25

0.50

0.75

1.00

1.25

Transfectant

F
ol

d 
C

ha
ng

e
C

Y
P

11
B

1 
m

R
N

A
(N

or
m

al
is

ed
 t

o
G

A
P

D
H

,
R

el
at

iv
e 

to
 N

eg
at

iv
e 

C
on

tr
ol

)

Cortisol Production

Neg Pre-miR

0.00

0.25

0.50

0.75

1.00

1.25

Transfectant

C
or

tis
ol

 P
ro

du
ct

io
n

F
ol

d 
C

ha
ng

e
(R

el
at

iv
e 

to
 N

eg
at

iv
e 

C
on

tr
ol

)

A B

C D

miR-10b

 

Figure 5-10. Assessment of miR-10b Effects on CYP11B1 and CYP11B2 mRNA Levels and 
on Steroid Production.  

H295R cells were transfected with miR-10b Pre-miR™ or with a scrambled negative 

control miRNA (Neg), at a final concentration of 50 nM. 48 Hours post-transfection, the 

abundance of CYP11B2 (A) and CYP11B1 (C) mRNA were measured by qRT-PCR. Cycle 

threshold values were normalised to GAPDH mRNA and expressed relative to the control 

cells. The levels of aldosterone (B) and cortisol (D) secretion were measured by 

LC:MS/MS. The results represent the mean of three independent biological experiments 

performed in triplicate; error bars represent standard error of the mean (SEM). 
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Figure 5-11. Assessment of miR-140-3p Effect on CYP11B1 and CYP11B2 mRNA Levels and 
on Steroid Production.  

H295R cells were transfected with miR-140-3p Pre-miR™, miR-140-3p Anti-miR™ or with a 

scrambled negative control (Neg), at a final concentration of 50 nM. 48 Hours post-

transfection, the abundance of CYP11B2 (A) and CYP11B1 (C) mRNA were measured by 

qRT-PCR. Cycle threshold values were normalised to GAPDH mRNA and expressed relative 

to the control cells. The levels of aldosterone (B) and cortisol (D) secretion were 

measured by LC:MS/MS. Results represent the mean of one biological experiment 

performed in triplicate; error bars represent standard error of the mean (SEM). ** p < 

0.01 compared to negative control. 
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Figure 5-12. Assessment of miR-143 Effect on CYP11B1 and CYP11B2 mRNA Levels and on 
Steroid Production.  

H295R cells were transfected with miR-143 Pre-miR™, miR-143 Anti-miR™ or with a 

scrambled negative control (Neg), at a final concentration of 50 nM. 48 Hours post-

transfection, the abundance of CYP11B2 (A) and CYP11B1 (C) mRNA were measured by 

qRT-PCR. Cycle threshold values were normalised to GAPDH mRNA and expressed relative 

to the control cells. The levels of aldosterone (B) and cortisol (D) secretion were 

measured by LC:MS/MS. Results represent the mean of one biological experiment 

performed in triplicate; error bars represent standard error of the mean (SEM). Where 

appropriate, p-values are as stated and are relative to negative control values. 
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Figure 5-13. Assessment of miR-185 Effect on CYP11B1 and CYP11B2 mRNA Levels and on 
Steroid Production.  

H295R cells were transfected with miR-185 Pre-miR™, miR-185 Anti-miR™ or with a 

scrambled negative control (Neg), at a final concentration of 50 nM. 48 Hours post-

transfection, the abundance of CYP11B2 (A) and CYP11B1 (C) mRNA were measured by 

qRT-PCR. Cycle threshold values were normalised to GAPDH mRNA and expressed relative 

to the control cells. The levels of aldosterone (B) and cortisol (D) secretion were 

measured by LC:MS/MS. Results represent the mean of one biological experiment 

performed in triplicate; error bars represent standard error of the mean (SEM). Where 

appropriate, p-values are as stated and are relative to negative control values. 
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Figure 5-14. Assessment of miR-24 Effect on CYP11B1 and CYP11B2 mRNA Levels and on 
Steroid Production.  

H295R cells were transfected with miR-24 Pre-miR™, miR-24 Anti-miR™ or with a 

scrambled negative control (Neg), at a final concentration of 50 nM. 48 Hours post-

transfection, the abundance of CYP11B2 (A) and CYP11B1 (C) mRNA were measured by 

qRT-PCR. Cycle threshold values were normalised to GAPDH mRNA and expressed relative 

to the control cells. The levels of aldosterone (B) and cortisol (D) secretion were 

measured by LC:MS/MS. Results represent the mean of three biological experiments 

performed in triplicate; error bars represent standard error of the mean (SEM). * p < 0.05 

compared to negative control. 
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Figure 5-15. Assessment of miR-382 Effect on CYP11B1 and CYP11B2 mRNA Levels and on 
Steroid Production.  

H295R cells were transfected with miR-382 Pre-miR™, miR-382 Anti-miR™ or with a 

scrambled negative control (Neg), at a final concentration of 50 nM. 48 Hours post-

transfection, the abundance of CYP11B2 (A) and CYP11B1 (C) mRNA were measured by 

qRT-PCR. Cycle threshold values were normalised to GAPDH mRNA and expressed relative 

to the control cells. The levels of aldosterone (B) and cortisol (D) secretion were 

measured by LC:MS/MS. Results represent the mean of one biological experiment 

performed in triplicate; error bars represent standard error of the mean (SEM). * p < 0.05 

compared to negative control. 
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Figure 5-16. Assessment of miR-638 Effect on CYP11B1 and CYP11B2 mRNA Levels and on 
Steroid Production.  

H295R cells were transfected with miR-638 Pre-miR™, miR-638 Anti-miR™ or with a 

scrambled negative control (Neg), at a final concentration of 50 nM. 48 Hours post-

transfection, the abundance of CYP11B2 (A) and CYP11B1 (C) mRNA were measured by 

qRT-PCR. Cycle threshold values were normalised to GAPDH mRNA and expressed relative 

to the control cells. The levels of aldosterone (B) and cortisol (D) secretion were 

measured by LC:MS/MS. Results represent the mean of one biological experiment 

performed in triplicate; error bars represent standard error of the mean (SEM). Where 

appropriate p values are stated, or * represents p < 0.05 relative to negative control. 
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Figure 5-17. Assessment of miR-940 Effect on CYP11B1 and CYP11B2 mRNA Levels and on 
Steroid Production.  

H295R cells were transfected with miR-940 Pre-miR™, miR-940 Anti-miR™ or with a 

scrambled negative control (Neg), at a final concentration of 50 nM. 48 Hours post-

transfection, the abundance of CYP11B2 (A) and CYP11B1 (C) mRNA were measured by 

qRT-PCR. Cycle threshold values were normalised to GAPDH mRNA and expressed relative 

to the control cells. The levels of aldosterone (B) and cortisol (D) secretion were 

measured by LC:MS/MS. Results represent the mean of one biological experiment 

performed in triplicate; error bars represent standard error of the mean (SEM). Where 

appropriate p values are stated, or ** represents p < 0.01 relative to negative control. 
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5.4.7 Effect of CYP11B2-Specific miRNAs on CYP11B2 mRNA 

Abundance. 

The results from the pEZX reporter construct studies described earlier in this 

chapter supported a role for a miR-125a-5p and miR-125b binding site on the 

3’UTR of CYP11B2. To test this further, the Pre-miR™ or Anti-miR™ molecules 

corresponding to these miRNAs were transfected into H295R cells. The results 

for three independent biological replicate experiments are shown in Figure 5-18. 

Firstly, results confirm that the action of miR-125a-5p on CYP11B2 is typical of 

that exerted by miRNAs, with increasing miRNA levels leading to decreased 

CYP11B2 mRNA abundance (0.70 ± 0.001 fold, p = 0.004) and decreasing miRNA 

levels leading to significant increase in CYP11B2 mRNA abundance (1.53 ± 0.05 

fold, p = 0.009, Figure 5-18A). Similarly, CYP11B2 mRNA levels decreased to 0.66 

± 0.02 fold (p = 0.033) in Pre-miR™ transfected cells and increased by 1.58 ± 

0.09 fold however, this failed to attain statistical significance (p = 0.101, Figure 

5-18B).  

A summary of all of the miRNA results detailed in this chapter is provided in 

Table 5-3 and Table 5-4. 
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Figure 5-18. Assessment of miR-125a-5p and miR-125b  Effect on CYP11B2 mRNA Levels. 

H295R cells were transfected with Pre-miR™ or Anti-miR™ molecules for miR-125a-5p (A), 

miR-125b (B) or with a scrambled negative control (Neg), at a final concentration of 50 

nM. 48 Hours post-transfection, the abundance of CYP11B2 mRNA was measured by qRT-

PCR. Cycle threshold values were normalised to GAPDH mRNA and expressed relative to 

the control cells. The results represent the mean of two biological experiment performed 

in triplicate; error bars represent standard error of the mean (SEM). * p < 0.05, ** p < 

0.01 compared to negative control. 
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Table 5-3. Summary of miRNA Target-Site Validation Experiments for the CYP11B1 Gene. 

 

Dashes (-): unmeasured parameters; unchanged arrows (    ): non-statistically significant changes.  
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Table 5-4. Summary of miRNA Target-Site Validation Experiments for the CYP11B2 Gene. 

 

Dashes (-): unmeasured parameters; unchanged arrows (    ): non-statistically significant changes.  
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5.4.8 Investigating miRNA Clustered with miR-24. 

The above results suggest a role for miR-24 in regulating the CYP11B1 and 

CYP11B2 mRNA levels and in steroid production. miR-24 is transcribed in an 

intronic cluster from a chromosomal location on chromosome 9, C9orf3, along 

with two other miRNA, miR-23b and miR-27b. These miRNAs are also expressed 

in the adrenal gland (Figure 4-6), with miR-23b predicted to bind the CYP11B1 

3’UTR; miR-27b was not predicted to bind CYP11B1 or CYP11B2. To test whether 

the individual components of this cluster act together to regulate the CYP11B1 

or CYP11B2 genes, miR-23b and miR-27b were analysed using the pEZX reporter 

constructs in HeLa cells. The results of three independent biological experiments 

are shown in Figure 5-19. 

Neither of these other two clustered miRNAs bind to and regulate CYP11B1 or 

CYP11B2 by canonical miRNA action. However, they do appear to be altering the 

luciferase activity of the reporter constructs; in miR-23b Anti-miR™ transfected 

cells, there was no significant change in luciferase activity (Figure 5-19A and B) 

but there was a significant increase in luciferase activity with the miR-23b Pre-

miR™ transfected cells for both the pEZX-B2 (226.10 ± 29.29%; p = 0.049, Figure 

5-19A) and pEZX-B1 reporter construct (144.00 ± 5.87%; p = 0.017, Figure 5-19B). 

A similar trend was observed for miR-27b; the luciferase activity in Anti-miR™ 

transfected cells was not significantly different in pEZX-B2 cells and was 

marginally decreased in pEZX-B1 cells (83.31 ± 0.10%). This was statistically 

significant (p = 0.003) largely due to the small error associated with these 

results (Figure 5-19C and D). Furthermore, Pre-miR™ transfection increased the 

luciferase activity of both constructs: pEZX-B2 to 159.70 ± 6.78% (p = 0.013) and 

pEZX-B1 to 167.20 ± 19.22% (p = 0.177). While this result is not statistically 

significant, it is an increase of large magnitude (Figure 5-19C and D). The results 

for miR-24 are presented again in Figure 5-19E and F for comparison. 
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Figure 5-19. CYP11B2 and CYP11B1 3’UTR Binding of miR-24 Cluster miRNAs. 

HeLa cells were co-transfected with the pEZX-B1 (A, C, E) or pEZX-B2 (B, D, F) construct 

and Pre-miR™ or Anti-miR™ molecules for miR-23b (A-B), miR-27b (C-D) or miR-24 (E-F). 

Firefly and renilla luciferase were measured 48 hours post-transfection using the Dual 

Luciferase Reporter Assay System  To normalise for transfection efficiency, the ratio of 

firefly to renilla luminescence was calculated and expressed as a percentage of the 

negative scrambled control. Results represent the mean of at least three independent 

biological experiments, performed in quadruplicate; error bars represent standard error 

of the mean (SEM). * p < 0.05, ** p < 0.01.  
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5.4.9 Investigation of the miRNA Binding Sites of m iR-24, miR-

125a-5p and miR-125b. 

In addition to other findings, this chapter has identified a regulatory effect of 

miR-24 on both the CYP11B1 and CYP11B2 3’UTRs and of miR-125a-5p and miR-

125b on the CYP11B2. The sequence of the 3’UTR binding site and the mature 

miRNA were entered into in the RNAHybrid Secondary Structure Software, which 

has been specifically adapted to predict secondary structure of miRNA:mRNA 

interactions and to give greater detail regarding these binding sites (Kruger and 

Rehmsmeier, 2006). 

miR-24 was predicted to target the CYP11B2 gene by only one database, 

miRviewer, which also predicted the same site on the CYP11B1 gene (Table 4-9 

and Table 4-10); this site is an offset 6mer site spanning bases 489 to 502 of the 

3’UTR (Figure 5-20A) with a predicted minimum free energy (MFE) of -22.1 

kcal/mol. A second miR-24 site was predicted by microRNAs.org at bases 1206 to 

1228 of the CYP11B1 3’UTR (Table 4-10). This site is a 7mer-m8 site, but with a 

mismatch at nucleotide number 6 (Figure 5-1B); the MFE for this predicted 

pairing is -27.3 kcal/mol. 

Two databases predicted miR-125a-5p and miR-125b to bind to CYP11B2 3’UTR. 

Each was predicted to have the highest complementarity in the seed region 

(8mer) and furthermore, the region of the 3’UTR to which they bind was the 

same for both miRNAs (bases 1,200 to 1,223). The predicted secondary structure 

for both miRNA:mRNA interactions are shown in Figure 5-21 with the MFE for 

miR-125a-5p being -24.0 kcal/mol, and -28.0 kcal/mol for miR-125b. 
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A       miR-24 site 1 B     miR-24 site 2

 

Figure 5-20. Predicted Secondary Structure of miR-2 4 Target Sites in the CYP11B1 and 
CYP11B2 3’UTRs. 

Secondary structure and base-complementarity of miR-24 (green) binding to 3’UTR of 

CYP11B1 or CYP11B2 (red). Blue boxes indicate the 6mer seed region and extensions 

indicate additional target recognition feature: complementary base-pairing and the 8
th

 

nucleotide. Site 1 (A) represents the binding of miR-24 to both the CYP11B1 and CYP11B2 

3’UTR. Site 2 (B) only exists in the CYP11B1 3’UTR. Structures predicted by RNAHybrid 

(Kruger and Rehmsmeier, 2006) 

 
 

A   miR-125a-5p B      miR-125bA   miR-125a-5p B      miR-125b

 

Figure 5-21. Predicted Secondary Structure of miR-1 25a-5p and miR-125b Target Sites in the 
CYP11B2 3’UTR. 

Secondary structure and base-complementarity of miR-125a-5p (A) and miR-125b (B)  

(green) binding to the CYP11B2 3’UTR (red). Blue boxes indicate the 6mer seed region and 

extensions indicate additional target recognition features: an adenosine base at 

nucleotide 1 on the 3’UTR and the complementary base-pairing and the 8
th

 nucleotide. 

Structures predicted by RNAHybrid (Kruger and Rehmsmeier, 2006). 
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5.5 Discussion 

The experiments presented in this chapter investigated which of the miRNA 

target sites in the 3’UTR of CYP11B1 and CYP11B2 as predicted in Chapter 4 are 

regulated by the adrenal miRNAs indentified in Chapter 3. Two primary methods 

were employed in the present chapter: 3’UTR reporter construct studies, and 

investigation of gain and loss of miRNA function in an adrenocortical cell line. 

The merits of these methods and the findings of this chapter, including the 

identification for the first time of miRNAs which directly regulate the CYP11B1 

and/or the CYP11B2 genes, will be discussed below. 

The first stage of miRNA target site validation utilised a 3’UTR reporter plasmid, 

which coupled a viral promoter-driven firefly luciferase coding region to the full 

length 3’UTR of the either CYP11B1 or CYP11B2 gene. This plasmid also 

contained a separate renilla luciferase reporter gene for the assessment of 

transfection efficiency. It was, therefore, not necessary to co-transfect a 

separate control reporter plasmid, which may have caused transfection 

efficiency problems, particularly as small molecules were also required to be 

transfected. By inserting the full length 3’UTR, rather than smaller sections that 

only encompass the predicted miRNA-binding region, the results of these 

experiments give a true reflection of miRNA:mRNA interaction and will, to a 

degree, account for the secondary structure present in this region (Rehmsmeier 

et al., 2004). The HeLa cell line was used to evaluate miRNA binding; this was 

chosen as it is a well established cell line that does not change dramatically over 

time, is easy to transfect, has been used in other miRNA target site validation 

experiments and does not endogenously express the CYP11B1 or CYP11B2 genes, 

so miRNA target site competition would not be a problem for assessing miRNA 

action (Lim et al., 2005).  

The final experimental tools used in this chapter were the Pre-miR™ and Anti-

miR™ molecules, which were purchased from Applied Biosystems. These are an 

established tool for use in miRNA investigation (Cheng et al., 2005); similar 

types of molecule are available from other suppliers.  The molecules are single 

stranded, so there is no risk of passenger strand expression and they are highly 

specific, which is important because miRNAs often only differ by one or two 
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bases and, if specificity is not high, there may be off-target effects. 

Furthermore, as shown in this chapter, the actions of either the Pre-miR™ or 

Anti-miR™ molecules can be directly assessed by measuring the levels of mature 

miRNAs post-transfection.  This chapter has shown both that Pre-miR™ and Anti-

miR™ were highly effective at modulating the levels of specific miRNAs. The 

change in miRNA levels were very large and probably not representative of the 

change observed in physiological circumstances however, as is often the case in 

in vitro model systems, a supraphysiological change is required to investigate a 

pathway. Moreover, the degree of change measured for several miRNAs was 

vastly different yet, in all cases the increase in miRNA expression would have 

been sufficient to exert a measurable level of regulation. These molecules offer 

the best method to consistently modulate the levels of a specific miRNA in vitro 

and are suitable for measuring changes in mRNA, as shown by changes in PTK9 or 

HMGA2 mRNA abundance. 

This chapter aimed to test the actions of the sixteen miRNAs predicted to have 

binding sites in the CYP11B2 3’UTR; twelve of these miRNAs also have a 

predicted binding site in CYP11B1 so they were also tested for regulation that 

gene. During the course of this project, the bioinformatic target site predictions 

have been updated and now include two additional miRNAs that are predicted to 

bind to both genes: miR-28-5p and miR-34c-3p. Unfortunately, these miRNA 

were not investigated in this project and will need to be studied at a later date. 

Furthermore, another two miRNAs, miR-382 and miR-423-5p, are now only 

predicted to bind CYP11B1 although, they have been tested against the CYP11B2 

gene. The updated list of adrenal miRNAs predicted to bind CYP11B1 and 

CYP11B2 is given in Figure 4-8. 

The first phase of testing involved modulating the level of miRNAs and 

evaluating the response using a 3’UTR reporter construct. The results for the 

CYP11B1 3’UTR construct show that seven miRNAs either do not bind to the 

3’UTR, or bind and cause effects that are not typical of the repressive miRNA 

action. The other five miRNAs showed promising results, suggestive of 3’UTR 

binding and consistent with canonical miRNA action. The influence of these 

miRNAs on endogenous CYP11B1 mRNA abundance and steroid production was 

tested in the H295R cell line. Except for the miR-24 experiments, the other 

miRNA experiments were performed one biological time, with three technical 
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replicates. The actions of three out of the five miRNAs (miR-382, miR-638 and 

miR-940) were not verified in H295R cells. miR-185 and miR-24 were the only 

two miRNAs for which the results indicated a regulatory role. The magnitude of 

miR-185 action was small and will require replication to verify and the action of 

miR-24 will be discussed below. 

A similar strategy was adopted for testing sixteen miRNAs for CYP11B2 

regulation; eight miRNAs were ruled out after reporter construct studies. 

Increasing miR-34a levels in HeLa cells did indicate miR-34a binding of the 

CYP11B2 3’UTR, but this miRNA was not investigated further in this project. The 

mRNA or steroid results for miR-185 did not verify the miRNA regulation that was 

observed with the reporter construct. The CYP11B2 mRNA showed a trend 

towards regulation by miR-143 but aldosterone production was not consistent 

with this; more experimental replicates are required to understand the role of 

miR-143. Similarly, the results from H295R cells did not substantiate the 

reporter construct results indicating a role for miR-382. Given that this miRNA 

does not possess a putative binding site in the 3’UTR, according to the latest 

predictions, then the results support the current bioinformatic information. 

The results from both validation experiments support a regulatory role for four 

miRNAs acting on the CYP11B2 gene; three were tested comprehensively and the 

implications of these will be discussed below. The other one was miR-940, which 

consistently demonstrated regulation of CYP11B2, including actions at the 3’UTR 

and modulation of mRNA abundance. Unfortunately, only one experiment in 

H295R cells was performed but, with further replicates, it would be anticipated 

that these results would be validated and that the levels of aldosterone would 

be modulated accordingly. 

Of the four miRNAs with predicted sites in CYP11B2, (miR-134 and miR-495), did 

not bind to the 3’UTR of CYP11B2 and modulate luciferase activity so were not 

verified by this study. However, the results suggest that the other two mRNAs, 

miR-125a-5p and miR-125b, are genuine regulators of CYP11B2 mRNA; both 

miRNAs decreased mRNA abundance when over-expressed in H295R cells. 

Inhibiting miR-125a-5p also increased the levels of mRNA significantly. The 

reporter construct studies confirmed that this regulation occurs through binding 

of the 3’UTR. These miRNAs are from the same family and therefore share 
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similar sequences; they are predicted to bind to the same seed site on the 

CYP11B2 3’UTR. This target site was predicted by two databases and predicted 

to have the highest complementarity in the seed region, 8mer. The magnitude of 

change in mRNA abundance is equivalent to that previously observed and is 

consistent with other reported results from miRNA targets with only one seed 

site in a 3’UTR  (Selbach et al., 2008). The location of the target site is near to 

the Poly (A) tail of the 3’UTR; miRNAs with target sites located at the proximal 

or distal end of the 3’UTR are likely to more effectively target and cause 

repression than those targeting central regions (Grimson et al., 2007). The 

secondary structure predicted for miR-125b has a lower MFE than that of miR-

125a-5p, which may suggest that this miRNA interacts with the mRNA 

preferentially (Rehmsmeier et al., 2004). The value of the MFE is comparable to 

the preferential binding sites identified for let-7 targeting of lin-14, a well-

verified miRNA:mRNA interaction (Reinhart et al., 2000;Rehmsmeier et al., 

2004).  

These miRNAs are expressed in a wide range of tissue types (Lagos-Quintana et 

al., 2002) and are transcribed from separate chromosomal locations: miR-125a-

5p from chromosome 11, and miR-125b from chromosome 19. miR-125a is 

transcribed alongside two other miRNAs, let-7e and miR-99b, which are also 

expressed within the adrenal gland (Figure 4-6) but were not predicted to bind 

to the CYP11B2 3’UTR. However, in addition to miR-125a-5p regulating CYP11B2, 

these other miRNAs may regulate other genes, providing a novel adrenal 

regulatory network.  

Due to their sequence similarity, miR-125a and miR-125b are frequently studied 

together. miR-125a-5p and miR-125b have both been shown to repress two 

members of the ERBB oncogene family (ERBB2 (HER2) and ERBB3 (HER3)). 

Targeting of these genes in a breast cancer cell line, by exogenous 

overexpression of miR-125a-5p or miR-125b, reduced cell growth and migration 

(Scott et al., 2007). Furthermore, they have both been shown to regulate the 

levels of endothelin-1 (ET-1) in vascular endothelial cells by targeting 

preproET-1 at its 3’UTR (Lia et al., 2010). Therefore, co-regulation of the 

CYP11B2 gene by miR-125a-5p and miR-125b, as described in this chapter, is not 

unusual. The interplay between these miRNAs has not been established; it would 

be interesting to establish whether they act synergistically or competitively. 
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Increasing the levels of both of these miRNA in H295R cells or with a reporter 

construct may help to answer these questions. 

Finally, miR-125b has been implicated in cardiac hypertrophy. It was found to be 

upregulated in a mouse model of cardiac hypertrophy, when compared with the 

hearts of control animals, although the authors failed to directly correlate 

increased expression of miR-125b with a target gene or pathway (van Rooij et 

al., 2006). This miRNA has been implicated in regulation of cell proliferation and 

its expression is down regulated in a range of cancer tissues and cancer cell lines 

(Lee et al., 2005;Iorio et al., 2005). Therefore, in adrenal cells miR-125b may 

have target multiplicity and control several pathways. 

The only miRNA which was identified in this chapter as a regulator of both 

CYP11B1 and CYP11B2 mRNA abundance and of steroid production was miR-24. 

This miRNA targets one site that is common to both genes: an offset 6mer site 

with an additional G:U wobble pairing at base 2, which can be tolerated in 

miRNA seed sites (Bartel, 2009). There is a further 7mer-m8 target site unique to 

the CYP11B1 3’UTR, although this has a 7mer-m8 with a mismatch in the seed 

region. However, this site also contains a large degree of base-pairing 

complementarity to the centre region and 3’ end of the miRNA, which would 

most likely compensate for this mismatch (Shin et al., 2010). 

The reporter construct studies confirmed that inhibiting the levels of miR-24 

caused an increase in luciferase activity. However, the corresponding decrease 

was not observed when miR-24 was over expressed. One possible explanation is 

that high endogenous levels of miR-24 in HeLa cells may already occupy the 

available miR-24 targets sites and repress the construct to a maximal level  

(Ritchie et al., 2010). Nonetheless, experiments with the Anti-miR™ molecule 

confirm that miR-24 regulation of the CYP11B1 and CYP11B2 genes occurs at the 

3’UTR and investigations in H295R cells were consistent with this, showing that 

miR-24 acts to regulate both of these genes in a canonical miRNA manner.  

miR-24 is transcribed from two genomic locations, known as miR-24-1 (intronic 

region on Chromosome 9) and miR-24-2 (intergenic region on Chromosome 19). 

These miRNAs have identical mature sequences but different primary 

transcripts; therefore they have similar biological function but may have 
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different regulation and expression patterns (Chhabra et al., 2010). Each miRNA 

is transcribed as part of a triplet cluster that includes miR-23a and miR-27a 

(cluster 2) or miR-23b and miR-27b (cluster 1). The sequences of the miR-23 and 

miR-27 families are not identical and vary by one or two bases, meaning their 

mRNA targets will be different. The members of the miR-24-1 cluster were also 

tested for their action on CYP11B1 and CYP11B2 (miR-23b has a putative binding 

site on CYP11B1), but neither miRNA demonstrated canonical miRNA action. Both 

caused an increase in luciferase activity when over expressed in HeLa cells but 

the meaning of this is unclear; miR-27b is not thought to have a site on either 

3’UTR and miR-23b only on CYP11B1, so these miRNA may be having an indirect 

effect that subsequently increases the transcription of luciferase.  

The implications of novel regulation by miR-24 are still to be identified. It may 

have a role in maintaining CYP11B1 and CYP11B2 mRNA levels at baseline levels, 

or changes in the level of miR-24, for example in response to AngII, may allow 

for increases in CYP11B1 and CYP11B2 expression, thus increasing aldosterone 

and/or cortisol production. The members of both of the miR-24 clusters have 

been reported to be dysregulated in several pathologies, including several types 

of cancer, although there does not appear to be a consistent pattern of 

expression, with the miRNA clusters sometimes being increased and, at other 

times, reduced in cancer samples (Volinia et al., 2006;Saumet et al., 2009). 

Previous studies have identified a role for miR-24 in the regulation of several 

cellular pathways (Chhabra et al., 2010). The action of miR-24 appears to be 

cell-type specific, as it has been reported to regulate opposing cell mechanisms, 

such as cell proliferation and cell apoptosis (Lal et al., 2008;Qian et al., 2011). 

The majority of validated targets for miR-24 are related to regulation of the cell 

cycle (Chhabra et al., 2010), which may explain the observed differential 

expression in tumour tissue. However, in this chapter miR-24 has been shown to 

regulate CYP11B1 and CYP11B2 mRNA levels in normal conditions. Whether 

adrenal miR-24 has a dual function and contributes to adrenal plasticity remains 

to be seen. 

The results presented in this chapter highlight some difficulties in assessing 

miRNA function. Because miRNAs are promiscuous, altering the levels of only one 

miRNA may not represent the true physiological situation. miRNAs are 
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hypothesised to only modulate mRNA levels by small amounts, which may be 

difficult to measure unless specific and sensitive methods, such as those 

employed in this chapter, are used. Moreover, the results highlight the 

shortcomings of bioinformatic miRNA target prediction algorithms: very few of 

the predicted miRNAs could be validated as the target of either gene by either 

of the two methods used here. However, the techniques chosen and developed 

in this chapter are frequently used to assess miRNA targeting and they were 

carefully verified to ensure a good level of accuracy. They proved successful at 

validating some miRNA target predictions and at discounting others. Other 

strengths of this chapter include the use of the H295R cell line; this is a human 

cell line which maintains basal steroid secretion. Assessing miRNA function in 

these cells is the best available model for studying steroid production in the 

human adrenal gland. Target validation could be taken further by mutating the 

seed region in the 3’UTR construct and assessing whether this disrupts miRNA 

function. Other more sophisticated techniques include HITS-CLIP (high 

throughput sequencing of cross-linking immunoprecipitation), which offers the 

advantage of assessing the action of endogenous miRNA on endogenous mRNA 

targets (Chi et al., 2009). Further, modified versions of SILAC (stable isotope 

labelling with amino acids in cell culture), including pulsed SILAC, have been 

developed to monitor changes in novel protein production following miRNA 

transfection. This method allows for many targets of a single miRNA to be 

identified (Selbach et al., 2008).  

In summary, these studies have investigated putative miRNA binding sites in the 

CYP11B1 and CYP11B2 3’UTRs. This chapter has disproved some of the 

bioinformatic prediction and found several miRNAs to be novel regulators of 

CYP11B1 mRNA and cortisol production and/or of CYP11B2 mRNA and 

aldosterone production. miR-24 is the best example of a miRNA regulating the 

expression of these genes in an adrenal cell line. Regulation of miR-24 

expression and its function under stimulated or pathophysiological conditions 

may prove interesting in circumstances of altered adrenal function. In 

conclusion, the results presented in this chapter show for the first time that the 

CYP11B1 and CYP11B2 genes are directly regulated by miRNAs. 



240 

 

6 Altered Adrenal-miRNA Expression and 

Function. 
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6.1 Introduction 

Altered miRNA expression and/or disrupted miRNA regulation have been 

implicated in the aetiology of several pathologies (Section 1.7.1 and 1.7.2); 

investigating the influence of miRNA regulation and expression on adrenal-

related disease will be the focus of the studies in this chapter.  

There are numerous ways in which miRNAs may impact on disease. For example, 

they may be important in disease initiation and progression, they may contribute 

the symptoms of a disease and, additionally, aberrant miRNA expression may 

occur as a result of the pathology itself. A single miRNA could contribute to 

more than one of the deleterious effects in a pathological state. For example, 

miRNAs have been reported to affect cell cycle regulation and vascularisation of 

tissue, and also have direct effects on cell-specific genes. Finally, because 

normal physiological miRNA regulation is required to moderate mRNA stability by 

only small amounts, then any change in miRNA abundance could be associated 

with subtle changes in cell function and phenotype, such as increased 

aldosterone production and small changes in blood pressure. 

Both relative miRNA expression and target site sequence can influence miRNA-

mediated regulation. These changes can be divided into cis-factors (such as 

polymorphisms at the genomic loci encoding miRNAs, epigenetic modifications 

and chromosomal alterations) or by trans-factors (e.g. polymorphisms that 

disrupt established miRNA target sites or create novel ones, or polymorphisms in 

the genes encoding proteins involved in miRNA processing and maturation) 

(Sethupathy and Collins, 2008;Ryan et al., 2010). A specific example of a cis-

acting polymorphism and a trans-acting polymorphism is given in Section 1.5.2.2 

and Section 1.7.2, respectively.  

The initial studies in this chapter aim to explore the role of miRNAs in the 

aetiology of aldosterone-producing adenoma (APA), one of the common types of 

primary aldosteronism (PA) (Young, 2007) (Section 1.4.1.1). The cause of these 

spontaneous masses is unknown but they occur more frequently in patients with 

the -344T CYP11B2 promoter allele (Inglis et al., 2001). 



242 

 

In addition to the miRNA expression data for the normal adrenal gland presented 

in Chapter 4, a small number of studies have investigated the role of miRNAs in 

adrenal samples of various origins (Tombol et al., 2009;Soon et al., 

2009;Iliopoulos et al., 2009;Bimpaki et al., 2010;Schmitz et al., 2011). However, 

only two investigated miRNA expression in adrenocortical adenoma and only a 

subset of these samples were classified as Conn’s tissue (Schmidt et al., 

2003;Soon et al., 2009). Moreover, the coverage of miRNAs and access to data 

presented in these studies are limited. Therefore, further studies were 

warranted. To this end, the miRNA expression profile of APA samples was 

determined by miRNA microarray, the data-set generated being comparable to 

the comprehensive normal adrenal gland miRNA expression profile (Chapter 4). 

Currently, the cause and regulation of increased CYP11B2 expression in APAs is 

unknown (Gomez-Sanchez and Gomez-Sanchez, 2010); the information gained 

from performing this microarray experiment will be useful in the identification 

of miRNAs involved in neoplastic adrenal growth and will also, in conjunction 

with earlier studies presented in this thesis, contribute to our understanding of 

miRNA regulation of CYP11B2 mRNA.  

The latter studies in this chapter will be concerned with identifying genetic 

variation in the 3’UTR of the CYP11B1 and CYP11B2 genes and investigating how 

this may influence miRNA-binding. One hypothesis is that such polymorphisms 

may lie in miRNA binding sites and, hence, alter miRNA-mediated regulation of 

these genes under basal conditions, thereby leading to changes in the levels of 

corticosteroid production and contributing to the aetiology of essential 

hypertension.  

6.2 Aims 

The aims of this study were to identify whether miRNA-mediated regulation of 

corticosteroidogenic genes contribute to the development or the phenotype of 

adrenal pathology and to determine and investigate genetic variation in the 

3’UTR of the CYP11B1 and CYP11B2 genes, to compare the miRNA expression in 

aldosterone-producing adenoma samples to that of the normal adrenal gland.  
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6.3 Methods 

6.3.1 miRNA Expression Profiling of Aldosterone-Pro ducing 

Adenomas 

Total RNA was isolated from four formalin-fixed paraffin-embedded aldosterone-

producing adenoma tissue samples (section 2.2.2) and quantified as described in 

Sections 2.2.4 and 2.2.5. Samples were shipped to the microarray provider (LC 

Sciences, Houston, Texas) and the array experiment was performed (Section 

2.3). A background threshold cut-off of 500 arbitrary units was used, as 

recommended by the array chip manufacturer. miRNAs expressed at levels 

greater than this threshold were deemed to be expressed in the adrenal gland. 

A cross-array normalisation was performed between normal adrenal and APA 

microarray experiments. The relative signal intensities of normal and APA 

samples were compared. 

6.3.1.1 Statistical Analysis of Expression Data 

The correlation of the microarray expression data and miRNA expression 

differences (Student’s t-test) were tested using Prism 4.0 Graph Pad software. 

For all analyses, confidence intervals of 95% were used and p < 0.05 was 

required for statistical significance. Data are expressed as the mean ± SEM. 

6.3.2 Genotyping of the 3’UTR of CYP11B1  

6.3.2.1 Subjects 

Twenty-six normotensive patients participating in the North Glasgow Monitoring 

Trends and Determinants in Cardiovascular (MONICA IV) were selected for 

analysis (Fraser et al., 1999). These subjects had previously been sequenced for 

two common genetic variants: the CYP11B2 promoter -344 C/T SNP and the 

intron 2 conversion. The characteristics of these patients have previously been 

published (Barr et al., 2007). 
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6.3.2.2 Sequence Analysis 

The full-length CYP11B1 3’UTR (2014 base-pairs) was first amplified by PCR 

(Section 2.6.1), verified by gel electrophoresis (Section 2.6.2) and the products 

were then sequenced according to methods described in Section 2.7 using the 

primers in Table 6-1. 

Table 6-1. Primers Used to Sequence the CYP11B1 3’UTR. 

Primer Name Sequence (5’-3’) Direction 

B1 ex9 seq1F CAGGTGGAGACACTAACCCA Sense 

B1 ex9 seq3F AGTCTCACATGTCCCTGTTC Sense 

B1 ex9 seq5F AAGGACTCAGACGAGTTTTA Sense 

B1 ex9 seq7F AAGAAAACGCCATAGACTGG Sense 

B1 ex9 R1 ATGCTCTGCCCCTGCAGCTT Anti-sense 

 

6.3.2.3 Statistical Analysis of Genetic Sequences 

Sequencing was visualised using the SeqScape v. 2.1.1 software. Data taken from 

Ensembl release 66 (Feb 2012) using genotype data from the 1000 genome CEU 

population; low coverage panel was analysed using Haploview v. 4.2 Software 

(Barrett et al., 2005). Genotype distribution was calculated by using the Hardy 

Weinberg equilibrium and LD calculated using D’. 
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6.4 Results 

6.4.1 miRNA Expression Profiling of Aldosterone-Pro ducing 

Adenoma Tissue. 

The results of the microarray experiment are shown in Figure 6-1; the red line 

represents the expression cut-off of 500 AU, 62 miRNAs were expressed in APA 

tissue above the stated threshold. The mean expression level of these miRNAs is 

shown in Figure 6-2. The signal intensity for individual miRNAs was consistent 

between the samples. 

To compare the relative expression levels of miRNAs in aldosterone-producing 

adenoma samples to those in the normal adrenal gland, the two miRNA 

microarrays were normalised using a global normalisation approach which allows 

for direct comparison of the two data-sets. This adjusted the signal intensities 

for the normal adrenal gland miRNA expression results so that the signal 

intensity of 67 miRNAs was greater than 500 AU following normalisation. Of 

these 51 were also expressed in the APA samples and 16 were not. Eleven 

miRNAs were only expressed in APA samples (Figure 6-3). 

The signals from the normal and APA samples were highly correlated (p < 0.0001, 

r2 0.825; purple dots, Figure 6-4). This correlation was maintained when only 

samples expressed above 500 AU were analysed (p < 0.0001, r2 0.8703; red 

diamonds, Figure 6-4). 27 highly-expressed miRNAs are differentially expressed 

by greater than 2-fold (Figure 6-4). Table 6-2 lists the mean expression levels of 

all the miRNAs which differed significantly between samples types, including 

those which are classified as being expressed in only one tissue, as determined 

by microarray analysis. 
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Figure 6-1. Aldosterone-Producing Adenoma miRNA Mic roarray Output. 

The average normalised microarray expression signal of 728 human miRNAs (x-axis, in miRNA numerical order) in four aldosterone-producing adenoma 

samples. Red line represents the expression cut-off threshold of 500 Arbitrary Units (AU). 
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Figure 6-2. Average Microarray Signals of miRNAs Ex pressed in Aldosterone-Producing Adenoma.  

The average normalised microarray expression signal of miRNAs with an expression level greater than 500 Arbitrary Units (AU). The mean of four 

tissues samples; error bars represent SEM. 
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Figure 6-3. Number of miRNAs Expressed in Normal an d APA Samples. 

The number of miRNAs expressed in each sample type: normal (non-tumorous adrenal 

gland) and APA (aldosterone-producing adenoma) following miRNA microarray 

normalisation. 
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Figure 6-4. Correlation of miRNA Expression in Norm al and APA Adrenal Tissue. 

miRNA expression levels (purple: < 500 AU; red: >500AU) from normal adrenal gland (x-

axis) and APA samples (y-axis) on log scales. Blue line indicates change of greater than 2-

fold. 
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Table 6-2. Normalised Adrenal and APA Microarray Si gnals. 
miRNA p-value

let-7a 16,002 ± 1,189 23,866 ± 895 < 0.01

let-7b 10,072 ± 855 19,235 ± 2,202 < 0.01

let-7c 13,232 ± 1,047 20,486 ± 1,593 < 0.01

let-7d 11,534 ± 756 14,091 ± 480 < 0.05

let-7f 13,709 ± 557 18,592 ± 407 < 0.01

miR-103 1,109 ± 138 1,813 ± 217 < 0.05

miR-107 958 ± 120 1,527 ± 176 < 0.05

miR-10b 2,835 ± 374 1,438 ± 107 < 0.05

miR-125a-5p 6,919 ± 715 4,475 ± 466 < 0.05

miR-126 5,331 ± 511 2,029 ± 373 < 0.01

miR-140-3p 320 ± 25 567 ± 22 < 0.01

miR-148a 1,680 ± 278 169 ± 33 < 0.01

miR-15a 868 ± 122 143 ± 35 < 0.01

miR-195 5,193 ± 568 2,267 ± 712 < 0.05

miR-202* 7,125 ± 735 577 ± 250 < 0.001

miR-21 7,871 ± 1,345 2,284 ± 943 < 0.05

miR-23a 7,247 ± 265 4,436 ± 317 < 0.05

miR-23b 7,622 ± 177 4,290 ± 317 < 0.01

miR-24 2,625 ± 225 1,691 ± 219 < 0.05

miR-27a 2,040 ± 138 495 ± 76 < 0.001

miR-27b 2,522 ± 147 792 ± 78 < 0.001

miR-29a 5,160 ± 553 1,269 ± 195 < 0.01

miR-29b 561 ± 91 69 ± 20 < 0.001

miR-29c 3,407 ± 308 141 ± 37 < 0.001

miR-30a 914 ± 82 253 ± 58 < 0.05

miR-30b 1,759 ± 153 1,066 ± 152 < 0.05

miR-30c 1,668 ± 150 1,113 ± 109 < 0.05

miR-320 2,416 ± 347 4,507 ± 543 < 0.01

miR-335 821 ± 179 136 ± 34 < 0.01

miR-34c-3p 209 ± 64 1,493 ± 235 < 0.05

miR-361-5p 1,347 ± 139 1,944 ± 88 < 0.01

miR-365 460 ± 67 115 ± 23 < 0.01

miR-424 824 ± 163 74 ± 23 < 0.01

miR-432 197 ± 29 693 ± 131 < 0.05

miR-451 64 ± 33 4,226 ± 2,809 < 0.05

miR-574-5p 244 ± 86 1,919 ± 470 < 0.05

miR-768-3p 771 ± 280 3,699 ± 753 < 0.05

miR-768-5p 857 ± 353 4,863 ± 1,099 < 0.05

miR-92a 1,421 ± 82 2,649 ± 171 < 0.001

miR-92b 428 ± 32 633 ± 54 < 0.05

miR-99b 671 ± 87 1,285 ± 166 < 0.05

Normal Adrenal APA
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6.4.2 APA miRNAs Targeting the CYP11B1 and CYP11B2 Genes. 

The role of APA-expressed miRNAs in the regulation of the CYP11B1 and CYP11B2 

genes was investigated by comparing the miRNA array with the putative target 

sites identified in these genes by bioinformatic target site (see Chapter 4). APA 

miRNAs with target sites within these genes are shown in Figure 6-5; 18 miRNAs 

were predicted to target the 3’UTR of CYP11B1 and 11 to bind CYP11B2. Of 

these, 8 miRNAs had target sites common to both genes. 

Merging the miRNA target site lists for the normal adrenal and APA samples 

identified that all miRNAs predicted to target the CYP11B1 or CYP11B2 3’UTR are 

expressed in the normal adrenal gland (Figure 6-6), although some are expressed 

at significantly different levels between sample groups (Table 6-2). However, 7 

miRNAs are only detectable in normal adrenal gland and not in APA samples. Of 

these, 2 target CYP11B1, 1 targets CYP11B2 and 4 target both genes (Figure 6-6). 

The relative, normalised expression levels of the miRNAs expressed in both 

tissue types at significantly different levels are depicted in Figure 6-7. Two of 

the CYP11B1-targeting miRNAs, miR-23a and miR-23b, are expressed at 

significantly lower levels in APA tissue than normal adrenal gland, whereas the 

abundance of miR-432 and miR-768-5p is significantly lower in APA tissue than 

normal adrenal gland (Figure 6-7 and Table 6-2). Only one miRNA which 

exclusively targets the CYP11B2 3’UTR, miR-125a-5p, is present in different 

levels being significantly higher in normal adrenal gland than APA tissue (Figure 

6-7 and Table 6-2). 

Finally, 4 miRNAs predicted to target both CYP11B1 and CYP11B2 are 

differentially expressed in these tissues (Figure 6-7 and Table 6-2). The levels of 

miR-10b and miR-24 are significantly higher in normal tissue than in APA, 

whereas miR-140-3p and miR-34c-3p are expressed at higher levels in APA 

samples relative to normal adrenal tissue (Figure 6-7 and Table 6-2). 

It should be reiterated the removal of miR-768-5p from the miRNA repository 

and therefore does not represent a likely regulator of adrenal physiology. 
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Figure 6-5. Venn Diagram of APA Adrenal miRNAs Pred icted to Bind to the CYP11B1 and 
CYP11B2 Genes 

Results of miRNA microarray analyses of aldosterone-producing adenoma adrenal tissue 

combined with data from bioinformatics searches for putative miRNA binding sites in the 

3’-UTR of the CYP11B1 and CYP11B2 genes. 
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Figure 6-6. Putative miRNA Binding Sites in CYP11B1 and CYP11B2 and miRNA Expression 
in Adrenal Tissue. 
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Figure 6-7. Differentially Expressed, Predicted CYP11B1 or CYP11B2 Targeting miRNAs. 

Results show the relative expression levels of miRNAs in normal adrenal (Red) or APA 

(blue) tissue. Results are presented according to whether predicted miRNA binding occurs 

in CYP11B1 and/or CYP11B2. * p < 0.05, ** p < 0.01. 



253 

 

6.4.3 Genetic Variation at the 3’UTR of CYP11B1 and  CYP11B2 

Genes 

Approximately 2,000 base-pairs of the 3’UTR of CYP11B1 were successfully 

amplified (Figure 6-8) and sequenced (Figure 6-9) in 26 normotensive patients, 

which were stratified based on their genotype at the -344 C/T (rs1799998) and 

intron 2 conversion loci: TT/ConCon (n = 11); CC/WtWt (n = 10); TT/WtWt (n = 

5) (Table 6-4). This small sub-set of subjects was chosen to allow the 

identification of novel SNPs across this region and to ensure all three major 

haplotypes in the region were represented. Twelve polymorphisms were 

identified across the region; all were single-base changes (Table 6-3) and the 

alleles corresponding to each genotype group are shown in Table 6-4. All twelve 

of the SNPs identified are recorded in the Single Nucleotide Polymorphism 

Database (dbSNP).  

Non-random selection of subjects in this study prevents analysis of allele and 

haplotypes frequencies or calculation of LD. The  pattern of SNPs certainly 

supports high LD, as is observed across the whole CYP11B1/B2 locus (Davies et 

al., 2009). To explore this further, population data from the 1000 genome 

project was evaluated for each of the SNPs; unfortunately for two SNPs (rs5301 

and rs72552270) no population data was available (Table 6-5).  Analysis indicates 

that for the majority of SNPs the two alleles are present at approximately equal 

frequency in a Caucasian population, but for three SNPs (rs61752812, rs1752809, 

rs61752805) the minor allele is only rarely observed in a Caucasian population; 

therefore were excluded from linkage disequilibrium analysis. The LD plot 

demonstrated a high degree of Linkage Disequilibrium between seven 3‘UTR 

SNPs (Figure 6-10). Comparable population data was not available for CYP11B1 

promoter SNPs (rs4471016 and rs4313136) thus, the level of linkage 

disequilibrium across the gene could not be determined. 

The 3’UTR of CYP11B2 has previously been sequenced in the same cohort of 

patients by other members of the group during a full gene SNP discovery 

investigation (Barr et al., 2007). This analysis identified four genetic variants 

within the 3’UTR, the details of the variants - 3 single-base changes and a 3-base 

insertion (rs113094040) - are described in Table 6-6. The base changes 
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attributed to the polymorphisms and their association with the -344 C/T and 

intron 2 polymorphisms are shown in Table 6-7. One of these polymorphisms 

appears to be a novel finding; no previous report of it was found in dbSNP, and 

as such does not have a reference sequence (rs) number. Again, for statistical 

analysis genotype from genotype data taken from a small subset (low coverage 

panel) of subjects in the 1000 genome project (Table 6-8); this could only be 

achieved for two SNPs (rs28491316 and rs3802230) and CYP11B2 -344C/T 

promoter SNP (rs1799998). All three of these variants are in high LD (Figure 

6-12). 
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Figure 6-8. CYP11B1 3’UTR PCR Amplification in MONICA Patients. 

PCR product from a random selection of MONICA patients was resolved on a 0.7% 

agarose gel. Promega 1 kb ladder was used for size determination; sizes indicated are in 

kilobase pairs. 
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Figure 6-9. Genotype Analysis of CYP11B1 3’UTR 

An example of the electropherogram reads from one subject of each haplotype group 

(indicated on the left hand-side; -344(promoter SNP)/intron conversion status). This 

example shows the C/T SNP (re58961462) and the A/G SNP (rs57991037). 
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Table 6-3. Characteristics of Polymorphisms Genotyp ed in the CYP11B1 3’UTR. 
SNP Postion Location Alleles 

rs4736312 143953937 7926 T/G

rs1134096 143954223 7640 G/T

rs1134095 143954290 7573 C/T

rs61752812 143954372 7491 G/A

rs61752809 143954501 7362 A/G

rs7003319 143954747 7116 A/G

rs5017238 143954769 7094 C/T

rs61752805 143954866 6997 G/C

rs12543598 143955318 6545 A/C

rs5299 143955471 6392 A/G

rs5301 143955669 6590 A/G

rs72552270 143955891 6812 G/A
 

 

Table 6-4. Polymorphisms Identified in the CYP11B1 3’UTR (grouped according to -344 and 
IC genotype). 

6392 6545 6590 6812 6997 7094 7116 7362 7491 7573 7640 7926

TT/ConCon A A A G G C A A G C G T

CC/WtWt G C G A G/C# T G A G T T G

TT/WtWt G C G/A* A G T G G/A* G/A* T T G

Position 

 

#: 2 subjects were heterozygous (G/C) at position 6997, 8 subjects were homozygous 

(G/G) 

*: 3 subjects were heterozygous (G/A) at positions 6590, 7362 and 7491. One subject was 

homozygous (G/G) and one homozygous (A). 
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Table 6-5. Statistical Analysis of CYP11B1 Polymorphisms. 

SNP Postion MAF Obs. Het HWE (p)

rs4736312 143953937 3'UTR 0.48 0.50 1.00

rs1134096 143954223 3'UTR 0.49 0.48 0.95

rs1134095 143954290 3'UTR 0.49 0.48 0.95

rs61752812 143954372 3'UTR 0.06 0.12 1.00

rs61752809 143954501 3'UTR 0.06 0.12 1.00

rs7003319 143954747 3'UTR 0.49 0.48 0.95

rs5017238 143954769 3'UTR 0.49 0.48 0.95

rs61752805 143954866 3'UTR 0.04 0.08 1.00

rs12543598 143955318 3'UTR 0.48 0.45 0.57

rs5299 143955471 3'UTR 0.49 0.48 0.95

rs5301 143955669 3'UTR No population data available

rs72552270 143955891 3'UTR No population data available

rs4471016 143963087 Promoter No population data available

rs4313136 143963117 Promoter No population data available
 

Data taken from Ensembl release 66 (Feb 2012) using genotype data from the 1000 

genome CEU population, low coverage panel. 

 

 

Figure 6-10. LD Plot and Haplotypes of Polymorphism s in the CYP11B1 3’UTR. 

The LD plot (generated with the D’ method) of CYP11B1 polymorphisms, generated using 

genotype data from the 1000 genome CEU population, low coverage panel. 
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Figure 6-11. Genotype Analysis of CYP11B2 3’UTR 

An example of the electropherogram read from one subject of each genotype group 

(indicated on the left hand-side). This example shows the TCC insertion (rs57991037). 
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Table 6-6. Characteristics of the Polymorphisms Gen otyped in the CYP11B2 3’UTR. 
SNP Postion Location Alleles 

rs113094040 143993104 6756 -/TCC

rs28491316 143992661 7199 G/A

rs3802230 143992864 6996 G/T

Unassigned 143992411 6543 A/G
 

 
 

Table 6-7. Polymorphisms Identified in the CYP11B2 3’UTR (grouped according to -344 and 
IC genotype). 

6543 6756 6996 7199

TT/ConCon A --- G G

CC/WtWt G TCC T A

TT/WtWt G TCC T G

Position 

 
 

Table 6-8. Statistical Analysis of CYP11B2 Polymorphisms. 
SNP Postion MAF Obs. Het HWE (p)

rs1799998 143999600 Promoter 0.43 0.50 1.00

rs28491316 143992661 3'UTR 0.45 0.47 0.8

rs3802230 143992864 3'UTR 0.50 0.50 1.00

Unassigned 143992411 3'UTR No population data available

rs113094040 143963117 3'UTR No population data available
 

Data taken from Ensembl release 66 (Feb 2012) using genotype data from the 1000 

genome CEU population, low coverage panel. 

 

 

Figure 6-12. LD Plot and Haplotypes of Polymorphism s in the CYP11B2 3’UTR. 

The LD plot (generated with the D’ method) of CYP11B2 polymorphisms, generated using 

genotype data from the 1000 genome CEU population, low coverage panel. 
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6.4.4 Impact of Polymorphisms on miRNA Binding Site s 

The putative binding sites of miRNAs expressed in the normal adrenal gland 

(Figure 4-8) were mapped to the 3’UTR of the CYP11B1 or CYP11B2 gene to 

determine whether genetic variation in this region could disrupt a miRNA binding 

site (Figure 6-13 and Figure 6-14).  

Three CYP11B1 3’UTR SNPs lie in putative miRNA binding sites: rs5299 and miR-

140-3p: rs57250946 and miR-22; rs61752812 and miR-494 (shown in red in Figure 

6-13). According to TargetScan or microrna.org predictions, none of the SNPs are 

located in the seed site of the miRNA binding site, or in other complementary 

base-matches between the 3’UTR and the other regions of the miRNA. 

Furthermore, 13 miRNA target-sites lie within 50 base-pairs of a SNP (indicated 

in yellow in Figure 6-13) whereas, the binding sites for the other 10 miRNAs do 

not lie in close proximity to a 3’UTR SNP. 

Of the four polymorphisms in the CYP11B2 3’UTR (Figure 6-14), only one SNP is 

located in a miRNA binding site: rs380223 which lies in the common miR-

10a/miR-10b region; again this SNP does not lie in the seed region. Another 9 

miRNA binding sites lie within 50 bases of a SNP (yellow in Figure 6-14) and 6 

binding sites were not in close proximity to a polymorphism.  
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Figure 6-13. Schematic Diagram of SNPs and miRNA Bi nding Sites in the CYP11B1 3’UTR. 

Location of single nucleotide polymorphisms (SNPs) on the 3’UTR of the CYP11B1 gene. 

Adrenal-expressed miRNA binding sites are colour-coded. Red: SNP located in binding 

region; Yellow: SNP with 50 base-pairs (bp) of binding site; Purple: binding site not in 

close proximity to SNP. Diagram not to scale. 
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Figure 6-14. Schematic Diagram of SNPs and miRNA Bi nding Sites in the CYP11B2 3’UTR. 

Location of single nucleotide polymorphisms (SNPs) on the 3’UTR of the CYP11B2 gene. 

Adrenal-expressed miRNA binding sites are colour-coded. Red: SNP located in binding 

region; Yellow: SNP with 50 base-pairs (bp) of binding site; Purple: binding site not in 

close proximity to SNP. Diagram not to scale. 
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6.5 Discussion 

The experiments presented in this chapter investigated the role of miRNA in 

adrenal pathologies and the influence of SNPs in the 3’UTR of the CYP11B1 and 

CYP11B2 genes on miRNA binding.  

This study successfully determined the miRNA expression profile of APA samples, 

identifying several miRNAs not expressed in normal tissue and many more with 

differential expression levels. However, the observed differences in miRNA 

expression shown and discussed here need to be validated by qRT-PCR analysis in 

order to confirm the accuracy of the array data and to determine more precisely 

the magnitude of these changes. This work will be conducted in the future, but 

time constraints prevent their presentation in this thesis. 

The APA tissue samples were fixed in formalin and embedded in paraffin blocks 

(FFPE), which is normally problematic as it leads to degradation of longer RNA 

species. However, due to their small size, miRNAs can successfully be isolated 

and measured in archived preserved tissue (Xi et al., 2007;Li et al., 2007). As 

shown in this study, utilising archived tissue increases the range of viable tissues 

available for miRNA studies. Four samples were used in this study to establish 

the APA miRNA expression profile and this number is comparable to those used 

in the two previous adrenal miRNA investigations (Soon et al., 2009;Schmitz et 

al., 2011). Given the appropriate sample number for human adrenal miRNA 

profiling and the low intrasample variation in expression pattern, the results 

appear to confirm the homogeneity of the selected samples and the accuracy of 

expression measurements. 

Despite the miRNA microarrays for the two sample types (APA and normal 

adrenal) being performed at different times, care was taken to permit data-sets 

to be compared accurately; arrays were performed using the same method, at 

the same supplier and using the same microfluidic chips with identical miRNA 

coverage. Post-array analysis utilised internal spike-in controls to cross-

normalise the array data output, allowing signals to be compared between chips. 

There was a good number of APA-expressed miRNAs with target sites in the 

CYP11B1 and/or CYP11B2 genes and this was similar to those previously observed 
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for normal adrenal tissue (Chapter 4). Furthermore, there was overlap of miRNA 

species with several being expressed in both sample types. This adds confidence 

to the miRNA expression profile data generated this part of the study and 

indicates that the miRNA coverage and tissues types were appropriate and of 

suitable stringency.  

Seven miRNAs which were predicted to have binding sites in CYP11B1 and 

CYP11B2 genes were only expressed in normal adrenal gland. Additionally, nine 

miRNAs targeting both CYP11B1 and CYP11B2 were expressed at significantly 

different levels in the two tissue types. This may suggest that these miRNAs are 

important in regulatory processes surrounding adrenal pathology. Moreover, 

several of the miRNAs identified have also been implicated in tumourogenesis: 

miR-24 represses the translation of p16 (Cyclin-dependent kinase inhibitor 2A) 

(Lal et al., 2008) and miR-10b is strongly implicated in breast cancer (Ma et al., 

2007). This may indicate that, in addition to regulating adrenal-specific genes, 

these miRNAs can change cell cycle regulation or cell morphology, leading to 

neoplastic growths. 

Two of the miRNAs which target CYP11B1 and CYP11B2, miR-23 and miR-24, are 

transcribed in two separate clusters (Section 6.5). All cluster members (including 

miR-27a and miR-27b which are not predicted to bind CYP11B1 or CYP11B2) are 

expressed at lower levels in APA samples. The miRNAs from the miR-24-2 cluster 

are located on a intergenic region, whereas the genomic locus which includes 

the miR-24-1 cluster, C9orf3, is believed to encode a novel metalloprotease 

called aminopeptidase-O (AP-O) (Diaz-Perales et al., 2005). AP-O may be a novel 

dysregulated gene in APA. An attempt was made to measure the relative mRNA 

levels of AP-O in normal and APA samples but the RNA quality of the samples was 

not suitable for mRNA qRT-PCR analysis. The role of AP-O in adrenal physiology 

has not been studied, but AP-O is proposed to be important in vascular cell 

biology (Xi et al., 2007) and another aminopeptidase (AP-A) is integral to the 

RAAS, cleaving angiotensin II into angiotensin III; it also plays a critical role in 

blood pressure regulation (Ahmad and Ward, 1990;Mitsui et al., 2003). Further 

investigation of the AP-O protein and the miRNAs transcribed from its eight 

introns is required in order to establish their role in adrenal function. 
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This study also analysed 26 subjects who had been selected from a larger 

normotensive cardiovascular population study on the basis of their genotype at 

the -344 C/T and IC loci.  These polymorphisms have been shown to be linked to 

increased aldosterone production, inefficient 11β-hydroxylation and 

hypertension (Davies et al., 2009). They are also in tight LD, the frequencies of 

their haplotypes in a normotensive Caucasian population are: CC/WtWt (45%), 

TT/ConCon (38%) and T/Wt (16%) (Davies et al., 1999).  

Previous sequencing analysis identified 4 polymorphisms in the CYP11B2 3’UTR 

and this current investigation identified 12 further SNPs in the CYP11B1 3’UTR. 

Population data from the 1000 genome project found that seven CYP11B1 3’UTR 

SNPs are in high LD and additionally, two CYP11B2 3’UTR and the -344 promoter 

are in high LD. This agrees with previous assessment of LD across the locus (Barr 

et al., 2007). Therefore, the causative mechanism governing the association of 

the -344C/T SNP with hypertension (Sookoian et al., 2007) or the CYP11B1 

promoter SNPs  with inefficient 11β-hydroxylation (Barr et al., 2006) could lie 

with variation in the 3’UTR. 

Currently, the molecular mechanism to explain the relationship between 

CYP11B1/CYP11B2 genotype and blood pressure phenotype remains elusive. A 

study of genetic variants and gene expression in brain cortical samples showed 

that genes with a high degree of variation are more likely to be regulated by 

miRNAs than less variable genes (Zhang and Su, 2008). Therefore, regulation of 

the CYP11B1 and CYP11B2 genes by miRNA offers a novel method of gene 

regulation, which may control basal mRNA expression levels but may also be 

influential in cases of altered gene transcription and steroid production. As the 

subjects in this study were drawn solely from a normal Caucasian normotensive 

population (Fraser et al., 1999), the possibility exist that, in a hypertensive 

population, the frequencies of these haplotypes may vary, or that there may 

even be additional novel SNPs. Additionally, this study only evaluated 26 

subjects which would not detect very rare SNPs i.e. those present in less than 

0.01% of the population.  

This study confirmed that the highly polymorphic nature of this locus extends to 

the 3’ regulatory region, but none of the 3’UTR SNPs were located in the seed 

region of a putative miRNA target site. The seed site only accounts for 8 bases of 
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a miRNA and complementary binding in other regions of the miRNA have been 

shown to be important (Grimson et al., 2007;Shin et al., 2010) but, according to 

my bioinformatic analysis, no SNP is located in a complementary mRNA:miRNA 

base-pairing region either. Yet, SNPs may still influence miRNA action in other 

ways; mismatches and bulges are frequently tolerated by miRNAs, as are G:U 

wobble. Therefore, it is possible that a SNP in a miRNA-binding region may alter 

the binding capacity and/or structure of miRNA:target interactions. Thus, while 

the influence of SNPs may extend beyond simple base-pairing, this would need 

to be tested in vitro. Furthermore, the collective influence of SNPs with a 

haplotype may be more important than individual SNPs, and be more 

representative of actual physiology. One way of testing this would be to mutate 

the 3’UTR of the pEZX reporter construct (Chapter 3), in order to recreate the 

various haplotypes then test the relative responses in vitro. Sequence analysis of 

the pEZX-B1 and pEZX-B2 plasmid constructs (Section 3.4.3) indicates that they 

contain the alleles identified in the CC/WtWt subjects (Table 6-4 and Table 6-7).  

Furthermore, experiments presented in this thesis have tested miRNA action in 

the H295R cell line; the 3’UTR of CYP11B1 or CYP11B2 not been sequenced in 

DNA isolated from these cells. They have however, been sequenced for the 

common polymorphism and contain the CC allele at -344 and the ‘wild type’ 

sequence at intron 2. Based on information in this chapter the sequences at the 

3’UTR could be inferred, but direct sequencing would need to be carried out to 

confirm this. 

Bioinformatic analysis in Chapter 4 confirmed that no pri-miRNA or pre-miRNA 

sequences are located in the genomic region encompassing these genes: ruling 

out the possibility of an intronic SNP that causes altered miRNA-expression or 

function. Investigating the other possible cis-factors are beyond the scope of this 

project but, should a CYP11B1 or CYP11B2-regulating miRNA(s) be identified, 

then exploration of the epigenetic regulation of that miRNA would clearly prove 

to be of interest (Lehmann et al., 2008;Ryan et al., 2010).  

Finally, polymorphic variations need not be located in a miRNA-binding site to 

influence miRNA-action; there is evidence that 3’UTR SNPs located adjacent to 

miRNA binding sites have a profound influence on miRNA-mediated regulation.  

The C829T polymorphism in the 3’UTR of the human DHFR (Dihydrofolate 

reductase) gene is located 14 base-pairs downstream of a verified miR-24 target 
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site. Cells expressing the T allele (at position 829) DHFR exhibit no repression 

when miR-24 levels are increased, in contrast with the observed effect in wild-

type (C allele at position 829) DHFR cells (Mishra et al., 2007). It is possible that 

SNPs in the CYP11B1 and CYP11B2 genes are acting in a similar manner. Such 

SNPs could influence miRNA regulation by altering the secondary structure of the 

3’UTR, which may in turn affect the miRNA target-site accessibility or prevent 

the association of the large protein complexes that make up RISC (RNA-induced 

silencing complex) and which are crucial to miRNA action (Kertesz et al., 

2007;Mishra et al., 2007;Jinek and Doudna, 2009). 

In summary, miRNA expression levels were shown to be altered in APA samples 

relative to normal controls, and this could be indicative of their role in the 

pathogenesis of adrenal disease and in hypertension. Additionally, some miRNA 

binding sites in the CYP11B1 and CYP11B2 genes are located in regions which 

possess a common genetic variant, while others are located proximal to variants 

and may also play a role in miRNA regulation. Further in vitro studies would be 

helpful in understanding the influence of both individual SNPs and the full 

haplotype on miRNA regulation. 
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7 General Discussion 
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Essential hypertension (EH) is a common condition and a risk factor for 

cardiovascular and cerebrovascular disease. The aetiology of EH is unknown but 

both lifestyle and genetic factors are known to contribute. The genes involved in 

the adrenal corticosteroid biosynthesis pathway are a major candidate system; 

understanding the regulation of these genes should increase our current 

understanding of EH. 

There are multiple factors which control the regulation of aldosterone and 

cortisol production in the adrenal cortex, including those which alter the 

expression of the CYP11B2 and CYP11B1 enzymes that respectively catalyse the 

final steps in their production. The roles these enzymes (and their genes) play in 

the regulation of blood pressure, and their contribution to the development of 

hypertension, were outlined in Chapter 1. The aim of this project was to 

investigate the existence of a novel CYP11B1 and CYP11B2 regulating mechanism 

involving miRNAs.  

This study is the first to examine, directly, the regulation of CYP11B1 and 

CYP11B2 by miRNAs, and this was accomplished using both direct and indirect 

methods performed in vitro, in silico or ex vivo. In Chapter 3, the levels of 

mRNA encoding Dicer mRNA (an important enzyme in the process of miRNA 

maturation) was reduced in H295R cells. Knockdown of miRNA levels by this 

method increased the abundance of several key corticosteroidogenic mRNAs 

(including CYP11B1 and CYP11B2) and of their corresponding steroid products. 

Cloning of the CYP11B1 or CYP11B2 3’UTR into a reporter construct indicated 

that these regions were capable of, and sufficient to, exert a negative 

regulatory effect on the expression of a reporter gene. It was further 

demonstrated that this regulation is responsive to AngII stimulation. Taken 

together, these studies supported the initial hypothesis of miRNA-mediated 

regulation of adrenal corticosteroidogenesis.   

The studies in Chapter 4 utilised bioinformatic prediction algorithms to identify 

miRNAs likely to target the 3’UTR of CYP11B1 and CYP11B2 mRNAs. Based on 

miRNA target site prediction and analyses of the 3’UTR sequences (which 

included relative length, predicted sequence conservation and RNA secondary 

structure), in silico methods concluded that it was possible that miRNAs can 

target CYP11B1 and/or CYP11B2 in this way. Prediction of biological processes by 
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bioinformatic algorithms is generally problematic; the imperfect nature of 

miRNA binding to the target site complicates it further. The currently available 

databases are built on our best understanding of miRNA biology, but the novelty 

and rapid development of the field entails continual modification of their 

algorithms. Even in the three-year duration of this study, predicted target sites 

have changed; interestingly my validation studies (Chapter 5) support the more 

recent predictions suggesting that these updates have, on the whole, tended 

towards improvements. There will always be an inherent error associated with 

bioinformatic predictions and this study has identified several false-positive 

predictions; one would imagine that the frequency of these will be reduced as 

algorithms are refined. However, this study has not investigated the presence of 

false-negative target site predictions. Recent findings have identified miRNA-

mediated regulation of mRNAs that do not possess strict base-pairing 

complementarity in the seed region (Grimson et al., 2007;Shin et al., 2010). This 

would, at least, suggest the possibility of false-negative predictions given that 

many of the databases are designed to favour seed site sequence matches. To 

exclude this possibility, the binding site properties of all adrenal miRNAs would 

need to be tested in vitro with CYP11B1 and CYP11B2 3’UTR requiring a lot of 

time and expense. Therefore, the rationale in this study was to use five 

databases in order to broaden the prediction and include algorithms of varying 

stringencies. As these algorithms continue to develop the list of potential 

targeting miRNAs will need to be updated and tested, as appropriate. 

miRNA expression analysis was performed in Chapter 4 for normal human adrenal 

gland samples and in Chapter 6 for aldosterone-producing adenoma samples. 

miRNA microarray and qRT-PCR experiments both identified the presence of 

specific miRNAs within these tissues; in total, 103 miRNAs were detected above 

a pre-determined threshold in the normal adrenal gland, compared with 67 in 

the APA samples. A microarray signal intensity of 500 arbitrary units (AU) was 

chosen, based on advice from the microarray chip manufacturer that presumably 

takes into account the scanner’s lower limit of detection and the efficiency of 

hybridisation. Of course several miRNAs expressed marginally below this 

borderline may still be of importance in adrenal physiology. One obvious reason 

for this is that a miRNA may only be expressed in a certain adrenal cell type, 

meaning its concentration is diluted within the heterogeneous adrenal cell 
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populations analysed here. Zonal micro-dissection and subsequent expression 

analysis (presumable by qRT-PCR, as the quantity of isolated RNA would be low) 

would help to determine if this is the case. Analysis of the microarray data 

requires a cut-off value to be selected and enforced in order to avoid both 

experimental noise and error; the threshold of 500 AU used here enabled the 

identification of a manageable number of adrenal miRNAs to be carried forward 

for subsequent investigation. It was also logical to focus initial studies on miRNAs 

expressed at higher levels given their likelihood of producing more pronounced 

biological response. 

The studies described in Chapter 5 involved the in vitro overexpression or 

competitive inhibition of miRNAs in order to assess the validity of miRNA binding 

sites predicted in the previous chapters. The effect of altered miRNA levels was 

assessed by reporter construct assays and by direct measurement of mRNA and 

steroids. These studies were useful for screening the predicted miRNA target 

sites; several of these were shown to be false positives, while a small number 

were found to be ambiguous and one showed an action opposite to that 

generally accepted to be exerted by miRNAs; others were successfully validated. 

The miRNA that gave the most striking and consistent results for targeting both 

CYP11B1 and CYP11B2 was miR-24. Analysis of adrenal miRNAs predicted only to 

target the CYP11B2 3’UTR confirmed miR-125a-5p and miR-125b as novel 

regulators, although effects on steroid secretion are still to be assessed. 

Expression levels of miR-24 (and of a number of other miRNAs) were shown to be 

dysregulated in APA samples relative to normal adrenals. This raises the 

possibility of a role for miR-24 in adrenal pathology and this requires further 

investigation, possibly utilising in vivo studies, for example altering the levels of 

miR-24 in rats and measuring their steroid production, level of CYP11B1 and 

CYP11B2 expression and cardiovascular parameters.  

The experimental work described in this thesis has identified the importance of 

miRNA-mediated regulation to the adrenal gland. There are several interesting 

further experiments which now suggest themselves. Firstly, examining the 

spatial expression of individual miRNAs in adrenal sections would be of interest; 

there are a number of methods through which this can be achieved, such as by 

in situ hybridisation using either fluorescent probes (Silahtaroglu et al., 2007) or 
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labelled LNA probes (Nelson et al., 2006). These have been successfully used to 

identify miRNA localisation in formalin-fixed, paraffin-embedded preserved 

tissue samples (Nelson et al., 2006) and this is especially pertinent given the 

difficulty in obtaining good-quality fresh or frozen human adrenal gland sections. 

Assessment of adrenal miRNA localisation would determine whether a particular 

miRNA is universally expressed, is confined to a specific zone or exhibits 

differential expression levels across cell types. The zone-specific expression of 

CYP11B1 and CYP11B2 means that information gained from these experiments 

could clarify miRNAs’ relative impact on these genes. 

Secondly, to establish whether miRNAs identified in the present study contribute 

to other adrenal pathologies. The information gained by doing so may help to 

further narrow down those miRNAs that target CYP11B2. To investigate miRNA 

involvement in essential hypertension (EH), it would be desirable to examine 

miRNA expression in the adrenal glands of EH subjects (specifically those with a 

high ARR), but practical and ethical consideration make this impossible. Where 

human studies are impractical, it is usual to turn to animal models, but much is 

still not known about the similarity and conservation of miRNA-mediated 

mechanisms across species. While, superficially, it may seem attractive to 

examine the impact of miR-24 knockout on steroid secretion and blood pressure 

in a mouse model, many differences exist that could render its relevance to 

human negligible. These include important physiological difference 

(corticosterone is the major rodent glucocorticoid), before one even considered 

whether miRNA target sites or expression patterns are maintained across 

species. Although this may prove to be the case, careful and extensive studies 

would have to be conducted before the suitability of such animal models was 

confirmed. 

However, human studies may not be reliant on prohibitively invasive methods in 

order to analyse miRNA action recent publications have successfully 

demonstrated that miRNAs levels can be measured in blood (Section 1.8.2). That 

is miRNAs expressed in one organ can be released into the circulation and travel 

to act in a different organ, therefore miRNAs may act like a novel endocrine 

signal. In time, develop into a novel diagnostic tool or permit the generation of 

miRNA expression profiles indicative of the EH patient. 
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This study has only investigated the role of individual miRNAs in gene regulation 

but, in normal physiology, it is likely that multiple miRNAs act to regulate the 

abundance of mRNAs and that the regulation of the miRNAs themselves is crucial 

to their effect. Furthermore, post-transcriptional regulation by miRNAs may only 

constitute to a small proportion of the total regulatory influences exerted over 

the CYP11B1 and CYP11B2 genes. Other known or potential factors that 

contribute to their regulation include epigenetic modulation (e.g. methylation or 

histone acetylation), transcription factors and post-translational mechanisms 

(e.g. phosphorylation). In addition to the regulation of CYP11B1 and CYP11B2, a 

greater knowledge miRNA-mediated regulation throughout adrenal gland may 

contribute to a better understanding of the regulatory pathways that control 

adrenal development (Huang and Yao, 2010), adrenal cell differentiation and 

medullary catecholamine synthesis. 

In the more distant future, the regulatory pathways identified in this thesis may 

prove useful as novel diagnostic tools (possibly through stratification of patient 

groups) and therapies. Currently, there are no specific aldosterone synthase 

inhibitors on the market; results presented in this thesis show potential for the 

development and use of miRNA-based therapies to treat disorders of aldosterone 

production, particularly hypertension. As previously mentioned there are already 

early-stage clinical trials of miRNA-targeted treatments in progress (Section 

1.8.1), and, as the field continues to mature, the range of conditions for which 

miRNAs are used may become many and diverse. 

In summary, the main findings of this thesis include: the identification of the a 

general mechanism of miRNA-mediated regulation in an adrenal cell line; the 

determination of miRNA expression profiles for normal adrenal gland and APA 

samples; the identification of predicted miRNA binding sites in the 3’UTR of 

CYP11B1 and CYP11B2, and the development of in vitro systems to test and 

validate several of these. The most prominent regulatory mechanism identified 

in the course of this project involved the direct and canonical regulation of 

CYP11B1 and CYP11B2 mRNA abundance and steroid secretion by miR-24. 

Additionally, levels of miR-24 were found to be lower in APA samples than in the 

normal adrenal gland; this signals a possible role for miR-24 in adrenal 

pathophysiology.  
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In conclusion, I have, for the first time; demonstrated the direct involvement of 

miRNAs in the regulation of CYP11B1 and CYP11B2 expression. The discovery of 

this novel regulatory mechanism raises the possibility, in the longer term, of 

miRNA-based therapies for the treatment of aldosterone excess and essential 

hypertension. Such therapies permit the specific targeting and fine control of 

this system, leading to better management of hypertension and, therefore, 

reducing the incidence of cardiovascular disease. 
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8 Appendices 

Table 8-7-1. Universal Probe Library qRT-PCR Assays .  

Gene Forward Primer Reverse Primer 
UPL 
Probe # 

β-actin CCAACCGCGAGAAGATGA CCAGAGGCGTACAGGGATAG 64 

GAPDH GCTCTCTGCTCCTCCTGTTC ACGACCAAATCCGTTGACTC 60 

StAR TACGTGGCTACTCAGCATCG  ACCTGGTTGATGATGCTCTTG 83 

CYP11A1 AGGAGGGGTGGACACGAC  TTGCGTGCCATCTCATACA 59 

CYP21A1 GAGGGCACAGTCATCATTCC GCTCCAGGAAGCGATCAG 14 

CYP17A1 CTATGCTCATCCCCCACAG TTGTCCACAGCAAACTCACC 67 

3βHSDII AGGCCTTCAGACCAGAATTG  CCTCAAGTACAGTCAGCTTGG 50 

CYP11B1 ACTAGGGCCCATTTTCAGGT GGCAGCATCACACACACC 68 

CYP11B2 GCACCTGCACCTGGAGATG CACACACCATGCGTGGTCC 57 

HSD11BI CAATGGAAGCATTGTTGTTCG  GGCAGCAACCATTGGATAAG 20 

HSD11BII GGGTCAAGGTCAGCATCATC CACTGACCCACGTTTCTCAC 71 

The UPL Probe # refers to the specific fluorescent probe supplied in the Universal Probe 

Library Human Set (Roche Applied Sciences) which is unique to the amplicon.  

 

Table 8-7-2. TaqMan ® miRNA Assays 

Assay miRNA Sequence Product Code 

miR-24 UGGCUCAGUUCAGCAGGAACAG 000402 

miR-21 UAGCUUAUCAGACUGAUGUUGA 000397 

miR-125a-5p UCCCUGAGACCCUUUAACCUGUGA 002198 

miR-10b UACCCUGUAGAACCGAAUUUGUG 002218 

miR-143 UGAGAUGAAGCACUGUAGCUC 002249 

RNU48 
GATGACCCCAGGTAACTCTGAG

TGTGTCGCTGATGCCATCACCG

CAGCGCTCTGACC 

001006 

 

Table 8-7-3. miScript Primer Assays 

Assay miRNA Sequence Product Code 

miR-24 UGGCUCAGUUCAGCAGGAACAG MS00006552 

SNORD48  MS00007511 
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Figure 8-7-1. Location of Dicer1-Targeted siRNA Mol ecules. 

Human Dicer-1 mRNA structure; exons shown in blue boxes. s23755:siRNA A; 

s23756:siRNA B 
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