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Abstract 
Trypanosoma brucei is a protistan parasite of mammals that evades its host’s 

immune responses by antigenic variation, which in T. brucei involves the 

periodic switching of the Variant Surface Glycoprotein (VSG) coat to 

antigenically distinct variants. The T. brucei genome contains a huge archive of 

silent VSG genes that are expressed from specialised expression sites, only one 

of which is actively transcribed at any one time. Copying of silent VSG genes into 

the active expression site has been shown to occur by homologous 

recombination, as mutation of the RAD51 recombinase and a distantly related 

gene, RAD51-3, impairs this process. BRCA2 is a protein that binds and regulates 

the function of Rad51 during homologous recombination. Mutation of BRCA2 in 

bloodstream form T. brucei leads to increased sensitivity to DNA damaging 

agents, and impairments in homologous recombination, RAD51 subnuclear foci 

formation and VSG switching, suggesting that it too acts in recombination-repair 

and antigenic variation. Beyond these phenotypes, an accumulation of putative 

gross chromosomal rearrangements in the megabase chromosomes of the T. 

brucei genome and a novel replication phenotype were also observed, and the 

basis of both these processes was unclear. T. brucei BRCA2 is highly unusual 

relative to orthologues in other eukaryotes, as the protein contains an expansion 

in the number of RAD51-binding BRC repeat motifs, which are arranged in a 

tandem repeat array that has not been observed elsewhere. 

In order to examine the function of BRCA2 in the maintenance of genome 

stability in T. brucei, brca2 homozygous mutants were generated in procyclic 

form TREU 927 and Lister 427 cells. Analysis of genomic stability by Southern 

blotting and pulsed field agarose gel electrophoresis revealed that BRCA2’s 

function in the maintenance of genome stability appears to be either 

bloodstream form-specific, or plays a more substantial role in this life cycle 

stage. To examine the function of the BRC repeat expansion, cell lines 

containing variants of BRCA2 with reduced numbers of BRC repeats were 

generated, expressed in brca2 homozygous mutants and phenotype analysis 

carried out. Growth and DNA repair were restored by the expression of virtually 

all variants, suggesting the BRC repeat expansion is not an adaptation for 

general genome maintenance, though the repair activity of a variant with a 
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single BRC repeat appeared to differ between bloodstream and procyclic form 

parasites. In contrast to this, a striking correlation between BRC repeat number 

and the regulation of RAD51 subnuclear dynamics was observed, showing that 

the BRC array expansion has important functional significance. 

GST pull-down analysis was used to examine the domains of T. brucei BRCA2 that 

interact with RAD51, revealing an extent of interaction not apparent in BRCA2 

orthologues in other organisms. This complexity of interaction was further 

analysed by immunolocalisation of BRCA2 and RAD51, before and after DNA 

damage, which showed potentially dynamic co-localisation of the two repair 

factors. Finally, a putative interaction between T. brucei BRCA2 and CDC45 was 

tested both in vitro and in vivo, but could not be validated, suggesting it does 

not provide an explanation for the replication defects observed in bloodstream 

form brca2-/- mutant cells. All of the analyses above shed light on the function 

of the BRCA2 protein in the regulation of homologous recombination in T. 

brucei. 
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1.1 General Introduction to Trypanosoma brucei 

1.1.1  Phylogeny of Trypanosoma 

Recent advances in molecular phylogenetics have allowed the division of 

Eukaryotes into five supergroups: Excavata, Chromalveolata, Archaeplastida, 

Amoebozoa and Opisthokonta (Adl et al., 2005;Hampl et al., 2009). This new 

grouping places many protistan parasites, including members of the genera 

Trypanosoma, Leishmania, Trichomonas and Giardia, in the Excavata supergroup 

(Figure 1-1;Dacks, Walker, and Field, 2008). Trypanosoma belong to the family 

Trypanosomatidae, which contains at least nine genera, including Leishmania. 

Trypanosomatids are members of the order Kinetoplastidae, which are 

characterised by the possession of a complex catenated network of 

mitochondrial DNA circles organised in a disc-like structure called the 

kinetoplast (Lukes et al., 2002). Kinetoplastids are members of the phylum 

Euglenoza. Thus, the taxonomic ranks for Trypanosoma are as follows: 

supergroup, Excavata; phylum, Euglenozoa; order, Kinetoplastidae; family, 

Trypanosomatidae and genus, Trypanosoma (Simpson, Stevens, and Lukes, 

2006). Much of our understanding of fundamental molecular biology in 

eukaryotes comes from studies of yeasts, metazoa and plants. Relative to this, 

less work has considered protozoan organisms, though it is clear that many key 

processes, such as transcription and mitochondrial biology, are diverged (i.e. 

extensive trans-splicing, multigene transcription units, kinetoplast DNA structure 

and extensive mRNA editing). Given these aspects of divergence, it is of interest 

to consider whether the processes that control genome stability display similar 

divergence, either because of evolutionary distance or because of the needs of a 

parasitic lifestyle. In this regard, Trypanosoma are a key organism of study, as 

extensive tools for genetic manipulation are available. 

The genus Trypanosoma includes both American and African trypanosome 

species. Trypanosoma cruzi is an intracellular parasite of mammals, which 

causes Chagas disease in South America. In contrast, members of the African 

Salivarian branch of trypanosomes are extracellular parasites of mammals mainly 

found in sub-saharan Africa, and include Trypanosoma congolense, Trypanosoma 

vivax and Trypanosoma brucei, which cause Human African Trypanosomiasis 
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(HAT; also called Sleeping Sickness) in humans and Nagana in domestic cattle 

and horses. 

 
Figure 1-1 A phylogenetic tree of the six supergrou ps that have been proposed within the 
kingdom eukarya. 
The supergroups are named and indicated by shaded l ozenges. Taxon supergroups are 
colour-coded and parasitic taxa are in bold. Trypanosoma brucei is indicated by a red circle. 
Taxa represented are Dd; Dictyostelium discoidium, Ec; Encephalitozoon cuniculi, Eg; 
Euglena gracilis, Eh; Entamoeba histolytica, Gi; Giardia intestinalis, Lm; Leishmania major, 
Pf; Plasmodium falciparum, Pr; Phytophthora ramorum, Tb; Trypanosoma brucei, Tg; 
Toxoplasma gondii, Tp; Thalassiosira pseudonana, Tt; Tetrahymena thermophila and Tv; 
Trichomonas vaginalis. Figure reproduced from Dacks, Walker, and Field, 2008. 

1.1.2  Disease, symptoms and treatment  

Trypanosoma brucei is the only African trypanosome that infects humans, and is 

divided into three morphologically identical sub-species: T. b. brucei, T. b. 

gambiense and T. b. rhodesiense. These sub-species classifications are based on 

geographical distribution, host specificity and the course of infection in humans. 

T. b. brucei is unable to establish human infections, in part because it is 

susceptible to lysis by apolipoprotein L1 (ApoL1), a component of trypanolytic 

factor (TLF) found in human serum (Pays et al., 2006). T. b. brucei infects 

domestic cattle and horses causing the wasting disease Nagana. T. b. gambiense 

and T. b. rhodesiense have developed resistance to human trypanolysis; in T. b. 

rhodesiense through the expression of the serum resistance-associated (SRA) 

gene (Xong et al., 1998;Oli et al., 2006), and in T. b gambiense through SRA-

independent resistance to lysis by ApoL1 and, in some strains, reduced uptake of 

TLF (Kieft et al., 2010;Capewell et al., 2011). The clinical course of HAT differs 

depending on which of these sub-species is involved (Turner et al., 2004). T. b. 

gambiense causes a chronic form of HAT in west and central Africa, whereas T. 
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b. rhodesiense causes a more acute form of the disease in east and southern 

Africa (Hoare, 1973). 

African trypanosomes are extracellular parasites, which proliferate in the tissue 

fluids and bloodstream of their mammalian host. The early-stage of the disease 

is characterised by fever, anaemia, lack of appetite and wasting caused by 

inflammation and necrosis within the capillaries of major organs (Vickerman, 

1985). If the infection is allowed to progress, the parasites eventually cross the 

blood brain barrier. This late-stage infection is characterised by motor and 

sensory disorders, sleep disturbances, followed by seizures and finally coma. If 

untreated, Human African Trypanosomiasis is always fatal (Barrett et al., 

2003;Sternberg, 2004;Barrett et al., 2007). 

In 1995, the World Health Organisation (WHO) estimated that 60 million people 

were at risk of HAT, with an estimated 300,000 new cases per year, with fewer 

than 30,000 cases diagnosed and treated (WHO, 1995). In 2004, a review of the 

figures on HAT showed the number of new reported cases falling to 17,616 with 

an estimated cumulative rate of between 50,000 and 70,000 cases (WHO, 2004), 

and this decrease is thought to be due to increased control. 

Only four drugs are registered for the treatment of HAT, and all are associated 

with side effects and an increasing rate of treatment failure (Barrett et al., 

2003;Kennedy, 2004). Pentamidine is used for the treatment of early-stage T. b. 

gambiense infections and is a diamidine compound. Some of the observed side 

effects include nephrotoxicity and pancreatic damage. Suramin is a colourless 

analog of the trypanocidal dye trypan blue and is used for the treatment of 

early-stage T. b. rhodesiense infections. Some of the observed side effects are 

heavy proteinuria, exfoliative dermatitis, severe diarrhoea and prolonged high 

fever. Melarsoprol is an organic arsenical compound that has the ability to enter 

the central nervous system, making it a suitable drug for treating late-stage 

cases of T. b. gambiense and T. b. rhodesiense infections. Fatalities have been 

known to occur in ~ 8% of cases with this treatment, but the most common side 

effects include headache, tremor, slurring of speech and convulsions. Finally, 

eflornithine is used for the treatment of both early- and late-stage T. b. 

gambiense infections. It is an ornithine derivative that acts by inhibiting the 

enzyme ornithine decarboxylase, which is involved in polyamine synthesis in 



Chapter 1  25 

trypanosomes. The most common side effects include diarrhoea, anaemia, 

leukopenia, and convulsions. In 2009, the WHO added the combination therapy 

of eflornithine and nifurtimox, which is used to treat American Trypanosomiasis 

(Chagas disease), to its list of essential medicines. This has reduced the duration 

of eflornithine monotherapy and, hopefully, the onset of drug resistance. 

1.1.3  The life cycle of T. brucei 

T. brucei is transmitted between mammals by the tsetse fly (Glossina sp) (Cross, 

2001;Steverding, 2008), and employs a complex life cycle to allow development 

within both the mammalian host and fly vector. These organisms provide 

contrasting environments and the parasite has evolved several distinct life cycle 

stages adapted to their respective hosts (Figure 1-2). Two main types of life 

cycle stage have been identified: replicative stages and transmission stages. 

Replicative stage parasites include the long slender bloodstream form, the 

procyclic form and the epimastigote form, and their role is to establish and 

maintain infections in their respective environments (Barry and McCulloch, 

2001). Transmission stage parasites include the short stumpy bloodstream form 

and the metacyclic form. These are pre-adapted to their destination host, but 

have a finite half-life if not transmitted as they are non-replicative, cell cycle 

arrested forms (e.g. short stumpy cells lie in G0 phase; Matthews and Gull, 

1997). 

When an infective tsetse fly takes a blood meal from a mammalian host, it 

deposits metacyclic form cells below the skin (Vickerman, 1985). Cells of this 

life cycle stage develop in the salivary glands of the tsetse fly and express a 

Metacyclic Variant Surface Glycoprotein (MVSG) coat (Tetley et al., 1987), which 

serves to protect against the mammalian host’s innate immune system (section 

1.2.1), and also to hide invariant surface molecules from the host’s immune 

surveillance. In the mammal these non-dividing metacyclic form cells 

differentiate into long slender bloodstream form parasites, which can proliferate 

by cell division whilst moving from the site of deposition to the bloodstream 

(Vickerman, 1985;Matthews and Gull, 1994;Matthews, Ellis, and Paterou, 2004). 

In the long slender bloodstream form cells the MVSG coat is replaced by 

Bloodstream Variant Surface Glycoproteins (BVSGs), which involves expression of 

the VSG gene from a distinct genomic location and enables the trypanosome 
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population to evade eradication by the host immune system to establish and 

maintain an infection by a process called antigenic variation (section 1.2.1). In 

the bloodstream, long slender cells can differentiate into a short stumpy 

bloodstream form. This occurs in a density dependent manner due to the 

accumulated secretion of a low molecular weight factor, termed stumpy 

induction factor (SIF), from the long slender bloodstream form trypanosomes. SIF 

induces growth arrest through a cyclic adenosine monophosphate (cAMP) 

signalling pathway (Vassella et al., 1997). Short stumpy form trypanosomes are 

pre-adapted to the tsetse fly environment with metabolic changes that allow 

them to switch from the glucose energy source in the mammalian bloodstream 

to the proline energy source found in the tsetse fly midgut (Hendriks et al., 

2000). Once ingested by a tsetse fly, the short stumpy form cells differentiate 

into replicative procyclic form cells that express a procyclin protein coat on 

their surface. The precise function of the procyclin coat is unknown, though it is 

thought to protect against trypanocidal factors in the tsetse fly midgut (Roditi 

and Liniger, 2002). The procyclic form cells move to the alimentary tract where 

they proliferate by cell division before differentiating into mesocyclic form cells, 

which migrate into the tsetse fly salivary glands (Roditi and Liniger, 2002) . Once 

in the salivary glands, mesocyclic form cells undergo an asymmetrical cell 

division, producing a large daughter cell (that appears to be discarded) and a 

small daughter cell, which is the progenitor of the epimastigote form that 

attaches to the salivary gland wall and multiplies by cell division (Van den 

Abbeele et al., 1999;Fenn and Matthews, 2007). It is here that genetic exchange 

is thought to occur in the life cycle, including between different T. brucei 

strains and sub-species, though it appears to be non-obligatory (Tait and Turner, 

1990;Gibson and Stevens, 1999;Gibson et al., 2008). Analysis of fluorescently 

tagged meiosis-specific proteins has allowed the recent identification of the 

meiotic stage of T. brucei within the tsetse fly (Peacock et al., 2011). This 

morphologically distinct dividing epimastigote form, present in the salivary 

glands, was identified due to strong expression of meiosis-specific proteins in 

the nucleus (Peacock et al., 2011). When the epimastigote form cells detach 

from the salivary gland wall they differentiate into metacyclic form cells and are 

ready to be transmitted to another mammalian host. The life cycle is then 

complete. 
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In the laboratory, two replicative stages of T. brucei are able to be maintained 

and manipulated in culture; these are the procyclic form of the parasite, which 

replicates in the tsetse fly midgut, and the long slender bloodstream form of the 

parasite, which replicates in the blood and tissue fluids of the mammalian host 

(Brun and Schonenberger, 1979;Hirumi and Hirumi, 1989). Some laboratory 

strains, which have been termed monomorphic, have lost the ability to 

differentiate from the long slender bloodstream form to the short stumpy form, 

undermining the natural route of transmission through the fly. Other strains, 

which retain this ability to differentiate are termed pleomorphic (Wijers and 

Willett, 1960;Matthews and Gull, 1994). 

 
Figure 1-2 The life cycle of T. brucei.  
The different life cycle stages shown are scanning electron micrographs, reproduced to 
scale. An erythrocyte is shown next to the long sle nder bloodstream stage for comparison. 
Curved arrows depict stages capable of replication,  whereas straight arrows represent 
differentiation and progression through the life cy cle. The host organism and the name of 
the life cycle stage are indicated. Figure reproduc ed from Barry and McCulloch, 2001. 

1.1.4  The genome of T. brucei 

In 2005, the project to sequence the megabase-sized chromosome DNA of T. 

brucei was completed (Berriman et al., 2005) using the genome of the T. brucei 

strain TREU (Trypanosomiasis Research Edinburgh University) 927/4. The nuclear 

genome of T. brucei contains 11 megabase chromosomes that range in size from 
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~ 0.9 Mb to ~ 5.7 Mb and are named from 1-11 in order of increasing size; their 

total size is ~ 26 Mb (Berriman et al., 2005;Hertz-Fowler, Renauld, and 

Berriman, 2007) The megabase chromosomes contain 9068 predicted genes that 

include ~ 900 pseudogenes and ~ 1700 T. brucei-specific genes (Berriman et al., 

2005). 

The T. brucei megabase chromosomes have been divided into three domains. 

The central core contains most of the housekeeping genes, which are mainly 

transcribed by RNA polymerase II (RNA Pol II) as multigene transcription units. A 

proximal subtelomeric region is also defined that is largely composed of 

transcriptionally silent arrays of tandemly repeated units of variant surface 

glycoprotein (VSG) gene cassettes; interspersed with this are retrotransposon 

and retrotransposon-associated sequences, and some expression site-associated 

genes (ESAGs). Finally, there is a distal subtelomeric region that contains MVSG 

and BVSG expression sites (ESs), which are RNA Pol I transcription units that are 

the sole locations in which VSGs are expressed (Hertz-Fowler, Renauld, and 

Berriman, 2007). It is predicted that up to 55% of the T. brucei megabase 

chromosomes are devoted to subtelomeres, containing ~ 10% of the total 

predicted gene repertoire (Callejas et al., 2006;Hertz-Fowler, Renauld, and 

Berriman, 2007). Since the majority of this subtelomeric repertoire is VSG and 

VSG-associated genes and sequences involved in the evasion of host immune 

destruction, this illustrates the importance of antigenic variation to trypanosome 

survival (section 1.2.1;Barry and McCulloch, 2001;Marcello and Barry, 2007). 

The T. brucei nucleus also contains intermediate- and mini-chromosomes 

(Melville et al., 1998;El Sayed et al., 2000), which appear to have evolved to 

expand the VSG repertoire. In most strains, there are between 1 and 5 

intermediate-chromosomes, of 200-900 kb in size, and numerous (~ 100) mini-

chromosomes of 30-150 kb in size (Melville et al., 1998;Melville et al., 2000;El 

Sayed et al., 2000;Alsford et al., 2003;Wickstead, Ersfeld, and Gull, 2004). The 

intermediate-chromosomes contain VSG expression sites in the subtelomeres and 

a core sequence consisting of many copies of a 177 bp repeat sequence 

(Wickstead, Ersfeld, and Gull, 2004). The mini-chromosomes also contain many 

copies of the 177 bp repeats, arranged in a large repetitive palindrome, as well 

as a repertoire of silent subtelomeric VSG genes (Wickstead, Ersfeld, and Gull, 

2004). It has been suggested that the 177 bp repeat sequences function in the 
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maintenance of mini- and intermediate-chromosomes through mediating 

replication (Weiden et al., 1991). 

Comparison of different T. brucei isolates revealed considerable chromosome 

size polymorphisms between isolates and also between diploid chromosome 

homologs within a single isolate (Melville et al., 1998;Melville, Gerrard, and 

Blackwell, 1999;Melville et al., 2000). This variation in chromosome size is also 

observed in other kinetoplastid parasites, including Leishmania, Trypanosoma 

cruzi and also Plasmodium, although not to the same extent as observed in T. 

brucei (Janse, 1993;Henriksson et al., 1995;Wincker et al., 1996). This variation 

in chromosome and genome size has been attributed, in part, to expansion in 

the many arrays of tandemly repeated gene families (Melville et al., 

2000;Melville, Gerrard, and Blackwell, 1999). The expansion of gene families in 

this manner is thought to be a mechanism to increase gene expression levels and 

therefore the level of protein, due to the lack of transcriptional regulation found 

in T. brucei (section 1.1.5;Ivens et al., 2005;Callejas et al., 2006). However, the 

major size variation appears to arise due to changes in the number and 

organisation of VSGs in the subtelomeric arrays (Callejas et al., 2006), and this 

cannot be driven by gene expression as these sequences are not normally 

transcribed at these locations. 

Analysis of the genome sequences of T. brucei, T. cruzi and L. major (also 

known as the TriTryps) has revealed a striking conservation of gene order 

(synteny), despite high levels of divergence at the sequence level and major 

differences in chromosome numbers and size (Melville et al., 1998;Melville, 

Gerrard, and Blackwell, 1999;Melville et al., 2000;Ghedin et al., 2004;El Sayed 

et al., 2005). The presence of retrotransposon-like elements at the few sites of 

genome rearrangements observed, suggests a role for retrotransposons in 

shaping the genomes of these kinetoplastid organisms (Ghedin et al., 2004). 

1.1.5  Transcription and translation in T. brucei 

The housekeeping genes contained in the central core of the megabase 

chromosomes of T. brucei are arranged in directional gene clusters (DGCs), 

separated by so-called strand switch regions. All genes in a DGC are transcribed 

polycistronically from a single promoter, leading to a lack of control over the 
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transcription of most individual genes (Kooter et al., 1987;El Sayed et al., 

2003;Berriman et al., 2005). In contrast to bacteria, the co-transcribed genes in 

T. brucei are not generally functionally related (Clayton, 2002). A single pre-

mRNA is thought to be generated from each DGC and requires post-

transcriptional modification to generate mature mRNA ready for translation. In 

trans-splicing, a ‘spliced leader’ (SL) RNA is fused to the 5’ end of each mRNA 

(Gunzl, 2010), creating a cap structure that appears unique to kinetoplastids and 

consists of 7-methylguanosine and 4 methylated nucleotides (Bangs et al., 1992). 

The addition of a polyadenylated (PolyA) tail to the 3’ end of the mRNA appears 

to occur in a co-ordinated reaction with trans-splicing, producing mature mRNA 

(Clayton, 2002). The RNA polymerases utilised by trypanosomes for transcription 

are also unusual. In most eukaryotes, transcription is carried out by 3 types of 

RNA polymerase: RNA pol I generates rRNA, RNA pol II produces mRNA, and RNA 

pol III yields tRNA (Rutter et al., 1976;Tamura et al., 1996;Cramer, 2002), 

although additional small RNAs are also produced by RNA pol II and III. In T. 

brucei, RNA pol II is primarily responsible for the transcription of housekeeping 

genes (Devaux et al., 2006). Uniquely, a small number of protein-encoding genes 

are transcribed by RNA pol I, including the VSG expression site and procyclin 

genes (Navarro and Gull, 2001;Gunzl et al., 2003), and this is thought to be an 

adaptation to allow the high level of transcription required for these abundant 

proteins (Gunzl et al., 2003). 

1.2 Antigenic variation 

The survival of pathogens within a host relies on the successful evasion of host 

immune responses and many adaptations to allow persistence and enhanced 

transmission of pathogens have been observed. The invasion of host cells allows 

parasites, such as members of the genera Toxoplasma and Leishmania, an 

environment safe from immune surveillance in which to replicate (Sibley, 2004). 

Parasites that do not invade host cells, such as T. brucei, are constantly exposed 

to host immune defences and may use antigenic variation to evade host immune 

responses. Antigenic variation involves periodic changes in the antigens exposed 

on the pathogen surface to antigenically distinct variants, thus altering their 

appearance to the host immune system (Barbour and Restrepo, 2000;Zambrano-

Villa et al., 2002). 
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Antigenic variation is observed in a diverse array of pathogens with a wide 

variety of underlying mechanisms. For instance, Giardia lamblia, the causative 

agent of Giardiasis, utilises a transcriptional control mechanism to switch 

expression between a repertoire of 150 genes that encode the Variant Surface 

Protein (VSP) (Mowatt, Aggarwal, and Nash, 1991;Kulakova et al., 2006). In 

contrast, some members of the genus Borrelia use a mechanism of gene 

conversion by recombination to switch their surface lipoprotein antigens, called 

variable large protein (vlp) and variable small protein (vsp) (Zhang et al., 1997). 

B. hermsii has been found to contain approximately 60 silent genes present on 

episomes, and gene conversion between fragments of vlp and vsp genes utilise 

this genetic material (Dai et al., 2006). However, in B. burgdorferi homologous 

recombination does not play a role in antigenic variation as mutation of the 

RecA recombinase enzyme in this organism does not impair infection rates 

(Liveris et al., 2008). 

1.2.1  Antigenic variation in T. brucei 

T. brucei was the first organism discovered to undergo antigenic variation as a 

means of escaping the host immune system (Vickerman, 1978;Borst, 

1986;Greaves and Borst, 1987) and remains one of the best-studied examples of 

this process (reviewed in Borst, 2002;Figueiredo, Cross, and Janzen, 

2009;Morrison, Marcello, and McCulloch, 2009;Horn and McCulloch, 

2010;Rudenko, 2010). Infections with T. brucei are characterised by waves of 

parasitaemia (Figure 1-3). In part, these waves are due to the formation of non-

replicating short stumpy cells at high parasiteamias (MacGregor et al., 2011), 

however another major contributing factor is antigenic variation of the major 

surface antigen, the VSG (McCulloch, 2004). The production of specific 

antibodies against the VSG surface coat leads to the destruction of those 

parasites. The avoidance of complete parasite elimination is due to a sub-

population of parasites that have switched to a new, antigenically distinct VSG 

and will be temporarily rendered invisible to the immune system, and so escape 

immune destruction to re-populate the host organism (Morrison et al., 2005). 

Nevertheless, as these VSG-expressing cells outgrow, they too will be targeted 

for immune killing. Thus, antigenic variation succeeds by the continual switching 

to new VSGs, keeping the parasites ‘one step ahead’ of the host immune 

response. 
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Figure 1-3 A parasitaemic profile of a T. brucei infection in a cow. 
The x-axis follows the timeline of infection, from days 0-70. The parasitaemic profile of the 
cow was plotted as measured by the prepatent period  in days ( y-axis), from inoculating 0.2 
ml cattle blood into an immunosuppressed mouse to a chieve a parasitaemia of 1 x 10 8.1 
trypanosomes.ml −1, a measure that is approximately proportional to t he parasite density in 
the cow. Figure reproduced from Morrison et al., 2005. 

1.2.2  The Variant Surface Glycoprotein 

In the mammalian host, 5 x 106 dimers (107 copies) of a VSG form a densely 

packed coat on the parasite surface that performs multiple protective functions 

(Figure 1-4;Cross, 1975). Firstly, the tightly packed VSG coat shields invariant 

surface molecules, such as receptors and transport channels, from immune 

recognition (Ziegelbauer and Overath, 1993;Chung, Carrington, and Field, 

2004;Schwede et al., 2011). Secondly, it protects the parasite from the host’s 

innate and adaptive immune responses, not simply by antigenic variation but 

also due to modulation of these immune responses, the mechanism of which is 

incompletely understood (Leppert, Mansfield, and Paulnock, 2007;Paulnock, 

Freeman, and Mansfield, 2010). Lastly, antibody binding to VSG molecules leads 

to rapid internalisation and degradation of the antibody and recycling of the VSG 

back to the cell surface (Engstler et al., 2007). VSG proteins are anchored to the 

parasite membrane by a glycosylphosphatidylinositol (GPI) anchor at their C-

terminus, which is buried in the coat and is more conserved than the surface 

exposed and highly antigenic N-terminus (Blum et al., 1993;Ferguson, 

1999;Schwede et al., 2011). 
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Figure 1-4 The Variant Surface Glycoprotein (VSG).  
(A) The structure of a VSG homodimer (monomers in l ight blue and purple) that is attached 
to the T. brucei plasma membrane by a glycosylphosphatidylinositol ( GPI) anchor. (B) A 
schematic representation of the cell surface of blo odstream form T. brucei showing the 
densely packed VSG coat bound by IgG and IgM molecu les (drawn to scale). Figure 
reproduced from Engstler et al., 2007. 

The T. brucei genome contains ~ 1600 non-expressed VSG genes located in 

subtelomeric tandem arrays in the megabase-chromosomes, containing between 

3 and ~ 250 VSG genes and pseudogenes (Figure 1-5;Berriman et al., 2005). VSGs 

are effectively the only genes found on the mini-chromosomes, and are located 

immediately adjacent to the telomere (Williams, Young, and Majiwa, 

1982;Wickstead, Ersfeld, and Gull, 2004). The gene archives used for antigenic 

variation are commonly found at subtelomeric locations, as observed in 

Pneumocystis carinii (Keely et al., 2005) and Plasmodium falciparum (Scherf, 

Figueiredo, and Freitas-Junior, 2001). It is thought that this is because the 

subtelomeric environment allows for greater ectopic recombination than 

elsewhere in linear chromosomes (Barry et al., 2003). 

VSG genes have a basic ‘cassette’ organisation, comprising in total between 3 

and 4 kb of sequence: one or more 70 bp repeat sequences are normally found at 

the 5’ flank of the cassette, followed downstream by so-called ‘co-transposed 

sequence’ upstream of the VSG open reading frame (ORF), which is then flanked 

by 3’ sequence with limited sequence homology between cassettes (Liu et al., 

1983). The genome sequencing project of T. brucei revealed that the majority of 

VSG genes are defective in some way: only 7% were found to be fully functional, 

9% were atypical, 66% are full-length pseudogenes (with frame shifts and/or in-
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frame stop codons) and 18% are gene fragments (Berriman and Harris, 

2004;Marcello and Barry, 2007). Initially, it was thought that there was no 

organisation of VSG genes according to sequence similarity (Berriman et al., 

2005). However, a more recent study has found that approximately 550 VSGs 

exist in high-identity subfamilies of pairs, triplets and quadruplets, which are 

thought to be important in mosaic gene formation (section 1.2.4.2;Marcello and 

Barry, 2007). This process is a form of antigenic variation that utilises the vast 

archive of VSG pseudogenes and gene fragments to create antigenically novel 

VSG variants (Marcello and Barry, 2007). Indeed, the use of mosaic gene 

formation may be the predominant form of antigenic variation in other 

pathogens such as Borrelia sp, Neisseria sp and Anaplasma sp (Zhang and Norris, 

1998;Hamrick et al., 2001;Brayton et al., 2002). 

 
Figure 1-5 The chromosomal location of silent VSG arrays in T. brucei strain TREU 927.  
The assembled megabase chromosomes are represented by horizontal lines, with the 
chromosome number in a grey box to the left of each  chromosome. Arrays of VSGs are 
depicted by black blocks; the orientation of sets o f VSGs is shown by the position of the 
box above or below the line. The provisional number  of VSGs in each array is shown. 
Breaks in contiguation in chromosome 11 are represe nted by oblique lines. Figure 
reproduced from Barry et al., 2005. 

1.2.3  VSG expression sites 

A pre-requisite for the success of antigenic variation is that a single VSG is 

expressed at any one time, from a specialised polycistronic transcription unit 

called a VSG expression site (ES) (Figure 1-6;Pays et al., 2001). At least 10 

bloodstream expression sites (BESs) are thought to exist, located at the 

subtelomeres of the megabase- and intermediate-chromosomes (Becker et al., 

2004;Hertz-Fowler et al., 2008;Young et al., 2008). BESs vary hugely in size, 

from 40-100 kb, but have a conserved structure. The VSG gene is invariably 

located closest to the telomere (Berriman et al., 2002), and upstream are the 70 
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bp repeats, which can be present in large arrays containing hundreds of copies. 

Located further upstream of these repeats lie between 8 and 12 expression site 

associated genes (ESAGs) and pseudogenes (Berriman et al., 2002;Hertz-Fowler 

et al., 2008;Young et al., 2008). ESAGs 6 and 7 are the only ESAGs to have been 

found in every BES analysed to date and encode two subunits of the transferrin 

receptor which is required for iron uptake from the host (Schell et al., 

1991;Berriman et al., 2002). Transcription of the active BES is carried out by 

RNA pol I from a single upstream promoter (Gunzl et al., 2003). The parasite 

employs multiple mechanisms to ensure that only a single BES is actively 

transcribed at any one time and accumulating evidence suggests that multiple 

epigenetic phenomena may be involved in maintaining transcriptionally silent 

chromatin at inactive BESs (Rudenko, 2010;Horn and McCulloch, 2010). 

 
Figure 1-6 A schematic representation of a generic bloodstream expression site.  
The diagram shows an example of a T. brucei Lister 427 bloodstream expression site and 
indicates the variant surface glycoprotein (VSG, bl ue box) and expression-site associated 
genes (ESAG 1, 2, 3, 4, 5, 6, 7, 8, black boxes) se parated by a region of 70 bp repeats 
(orange boxes). Also shown are the promoter (red ar row), telomeric repeat region (vertical 
black line), and pseudo-ESAGs ( Ψ, grey boxes). Figure adapted from Hertz-Fowler et al., 
2008. 

1.2.4  VSG switching mechanisms 

Antigenic variation relies on the periodic switching of the surface antigen to an 

antigenically distinct variant. In T. brucei this is achieved by utilising the 

multiplicity of the BESs and also the vast archive of silent VSG genes and 

pseudogenes. VSG switching is spontaneous and occurs at a rate of about 10-2 to 

10-3 switches per cell per generation in isolates recently recovered from hosts 

(pleomorphic cells;Lamont, Tucker, and Cross, 1986;Turner and Barry, 1989), 

but at a reduced rate in lab-adapted strains (monomorphic cells, 10-5 to          

10-6;Turner, 1997). VSG switches appear to operate in a hierarchy; telomeric 

VSGs are activated earliest in infections, followed by intact subtelomeric VSGs 

and, lastly, pseudogenes are recombined to form mosaic VSGs (Thon et al., 

1990;Marcello and Barry, 2007;Morrison, Marcello, and McCulloch, 2009). The 

mechanisms that underlie this ordering strategy remain unknown (Capbern et 
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al., 1977;Morrison et al., 2005), and we have only a partial picture of the 

mechanisms that drive VSG switching. 

1.2.4.1  Transcriptional switching 

Only one BES is actively transcribed at any one time, but because there may be 

up to 20 BESs, each containing a different VSG gene, switching to the expression 

of a new VSG can occur by turning off transcription of the active BES and 

activating a previously silent BES (Figure 1-7). This is termed transcriptional, or 

in situ, switching and is thought to occur by epigenetic mechanisms (Rudenko, 

2010;Horn and McCulloch, 2010). However, this only allows access to a 

repertoire of approximately 20 VSG genes, which would rapidly become 

exhausted during the course of an infection. In situ switching is not thought to 

contribute significantly in pleomorphic cell lines (Robinson et al., 1999), though 

it is thought to be the dominant switching mechanism in lab-adapted 

monomorphic cell lines (Barry, 1997). Mutation of a number of genes has been 

shown to result in the loss of singular ES transcription (Rudenko, 2010), and two 

genes, DOT1B and Cohesin, have been implicated in the switch between a silent 

and inactive BES (Figueiredo, Janzen, and Cross, 2008;Landeira et al., 

2009;Frederiks et al., 2010). However, the trigger for such a switch, and the 

mechanisms that are thought to co-ordinate this process are unknown (Chaves et 

al., 1998). Though a putative subnuclear site for BES transcription, termed the 

Expression Site Body (ESB), was described 10 years ago (Navarro and Gull, 2001), 

the nature of this entity remains obscure. 
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Figure 1-7  In situ transcriptional  VSG switching.  
An in situ transcriptional VSG switching event occurs when the active expression site (red 
dashed arrow) is transcriptionally switched off and  a previously silent expression site (blue 
dashed arrow) is transcriptionally switched on. Thi s results in the expression of the green 
VSG being switched off and the initiation of the expre ssion of the blue VSG. Also shown are 
expression site associated genes (ESAG, black boxes ), 70 bp repeats (orange boxes), 
promoter (red and blue arrows), and telomeric repea t region (vertical black line). Figure 
adapted from Rachel Dobson, PhD Thesis, 2009. 

1.2.4.2  Recombinational switching 

The most common form of VSG switching requires DNA recombination events. 

Such recombinational switching involves the movement of a VSG from a silent 

location in the genome into the active BES, replacing the existing VSG gene 

(Robinson et al., 1999). There are three different pathways of recombinational 

switching all putatively utilising homologous recombination (HR). HR is 

commonly used by organisms to generate diversity in surface antigens, including 

Candida albicans, Borrellia sp and Neisseria sp (Palmer and Brayton, 2007). 

The first recombinational pathway is gene conversion and involves copying a 

silent VSG gene from the megabase subtelomeric arrays, from a silent BES or 

from the telomere of a mini-chromosome, into the active BES where it replaces 

the existing, previously expressed, VSG (Figure 1-8). The amount of sequence 

copied is variable, but generally extends from the 70 bp repeats to homology in 

the 3’ end of the VSG ORF, although this can extend into the 3’ untranslated 

region (UTR) and beyond into the telomere (Liu et al., 1983;Michels et al., 

1983;Timmers et al., 1987;Matthews et al., 1990). In monomorphic cell lines, 
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gene conversion reactions between BESs can utilise homology from at least 6 kb 

upstream of the VSG, beyond the 70 bp repeats (Lee and Van der Ploeg, 1987). 

Though VSG gene conversion commonly utilises the 70 bp repeats, the deletion 

of these sequences does not inhibit VSG switching (McCulloch, Rudenko, and 

Borst, 1997;Boothroyd et al., 2009). 

The second recombinational pathway is mosaic gene conversion and, as 

previously mentioned, allows the use of the vast archive of VSG pseudogenes and 

gene fragments to form novel VSG variants (Figure 1-9). Mosaic VSG genes are 

assembled using multiple segmental gene conversion reactions, and are distinct 

from the above conversions of intact VSGs because the reaction relies on regions 

of homology within VSG ORFs, rather than flanking homology. Mosaic VSG genes 

generally form and are expressed later in infections, perhaps because the 

reaction is less efficient (Thon et al., 1990;Barbet and Kamper, 1993;Marcello 

and Barry, 2007). Indeed, it is not clear where the novel VSGs are formed, 

though they must eventually be moved to the BES. 

The final recombinational pathway is telomere reciprocal exchange and involves 

a simple cross-over event between two telomeric VSGs, where the chromosome 

ends containing the active BES and a silent telomeric VSG (in an ES or mini-

chromosome) are simply exchanged with no loss of DNA sequence (Figure 1-10). 

This pathway is thought to occur less commonly, as it is limited to telomeric 

VSGs (Pays et al., 1985;Shea et al., 1986). 

Our understanding of the mechanisms of VSG switching by recombination stems 

primarily from the generation and analysis of T. brucei mutants in homologues of 

genes that have been implicated in HR. These are discussed below (section 

1.5.3), but the broad conclusion is that VSG switching exploits HR, rather than 

being a specialised, parasite-specific reaction. Nonetheless, a number of 

questions remain. One question that has recently attracted attention is how the 

reaction is initiated. It has been suggested that a double strand break in the 

region of the BES 70 bp repeats forms a trigger for HR (Liu et al., 

1983;Boothroyd et al., 2009). However, how such a break might form is unclear, 

and it is surprising that the deletion of the 70 bp repeats does not then impair 

VSG switching (McCulloch, Rudenko, and Borst, 1997). Another question 

surrounds mosaic VSG formation and whether it is a related reaction to intact 



Chapter 1  39 

VSG gene conversion. The assays that have been used to examine the impact of 

gene mutation on VSG switching only detect early VSG switch events (McCulloch, 

Rudenko, and Borst, 1997;Kim and Cross, 2010), and no study has asked if mosaic 

VSG formation is similarly impaired. 

 
Figure 1-8  VSG switching utilises silent VSG genes from different genome locations.  
A silent VSG gene (blue boxes) is copied by homologous recombin ation into the active 
expression site replacing the existing active VSG (red box). Donor VSGs can come from 
subtelomeric silent VSG arrays, telomeric mini-chromosomal VSGs or one of the other 
silent VSG expression sites. Brackets indicate the amount of sequence copied, with dashes 
indicating variation in the amount of sequence that  may be copied. Also shown are 
expression site associated genes (black boxes), 70 bp repeats (orange boxes), telomeric 
repeat region (vertical black line). Figure adapted  from Rachel Dobson, PhD Thesis, 2009. 

 
Figure 1-9 Mosaic VSG formation by segmental gene conversion.  
A new mosaic VSG gene (red, blue and green box) is formed by segmen tal gene conversion 
from a number of VSG pseudogenes ( Ψ, red, blue and green boxes). Brackets indicate the  
extent of sequence copied. Also shown are expressio n site associated genes (black boxes), 
70 bp repeats (orange boxes), and telomeric repeat region (vertical black line). Figure 
adapted from Rachel Dobson, PhD Thesis, 2009. 
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Figure 1-10 Telomere reciprocal exchange resulting in a VSG switching event. 
Telomere reciprocal exchange occurs when homologous  recombination (crossed lines) 
between two BESs (shown, top) or an active BES and a silent mini-chromosomal VSG (not 
shown) leads to the simple switching of the VSG and/or surrounding sequences. The 
previously silent VSG (blue box) recombines into the active expression s ite (red dashed 
arrow). There is no loss of DNA during this cross-o ver event and both VSGs are retained. 
Also shown are expression site associated genes (bl ack boxes), 70 bp repeats (orange 
boxes), promoter (red arrow), and telomeric repeats  (vertical black line). Figure adapted 
from Rachel Dobson, PhD Thesis, 2009. 

1.3 DNA repair 

Genomes encode the information required to produce all cellular components 

within the structure of nucleic acid molecules. DNA and RNA allow this 

information to be stored, transferred between generations and read to allow 

protein production. Maintenance of the sequence fidelity of the genome is 

therefore of utmost importance. Many endogenous and exogenous agents, as 

well as the intrinsic instability of DNA molecules and the complex processes it 

undergoes, have the ability to cause damage to DNA (Kuzminov, 1995). The 

consequences of DNA damage include DNA fragmentation and rearrangement, 

which in multi-cellular organisms can lead to cancer and ultimately death 

(Khanna and Jackson, 2001). It is therefore desirable, at least in most settings, 

that DNA damage is repaired as swiftly as possible without the loss of genome 

fidelity. Given the diversity of DNA damage, many different mechanisms of DNA 

repair exist. These mechanisms may be broadly divided into two groups; those 

that join broken DNA molecules by repairing phosphodiester bonds at strand 

breaks, and those that use excision mechanisms to remove damaged bases or 

strands. Three main pathways of excision repair have been described: mismatch 
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repair (MMR), base excision repair (BER) and nucleotide excision repair (NER). All 

three mechanisms have two common properties; the use of a nuclease(s) to 

remove the damaged bases and a DNA polymerase(s) and ligase(s) to fill in the 

resulting gap and repair the DNA backbone. The specific proteins used in the 

three pathways differ greatly and, as these processes are not closely related to 

the subject of this thesis, they will not be discussed further. 

1.3.1  Double strand break repair 

Amongst the lesions that break the phospodiester backbone of DNA molecules, 

those in which both strands are cleaved, termed DNA double strand breaks 

(DSBs), are considered particularly genotoxic. DSBs arise frequently during DNA 

replication and can also be induced by ionising radiation, mutagenic chemicals 

and free radicals. Repair of DSBs occurs primarily by two independent 

mechanisms; non-homologous end joining (NHEJ) and homologous recombination 

(HR) (Figure 1-11). These two pathways of DSB repair are conserved in most 

eukaryotes. However, NHEJ appears to be favoured in mammalian cells, whilst 

HR is favoured by lower eukaryotes (Liang et al., 1998). There are a number of 

determinants that have been shown to affect repair pathway choice, including 

the cell cycle stage at which the DNA damage occurs, the position of the DSB 

along the chromosome and the nature of the DNA substrate (Kass and Jasin, 

2010;Symington and Gautier, 2011;Xu and Price, 2011), however the precise 

mechanism remains to be elucidated. 
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Figure 1-11 Pathways of eukaryotic DNA double stran d break repair.  
The two main pathways of eukaryotic DSB repair; non -homologous end joining (A), and 
homologous recombination (B - E). DNA containing a DSB is represented by black lines, 
intact duplex DNA by blue lines, newly synthesised DNA by dashed lines, and NHEJ 
machinery by red circles. (B) Single-strand anneali ng (SSA) occurs where the boxes 
indicate sequence homology, (C) Break-induced repli cation (BIR), and (D-E) Gene 
conversion. Figure adapted from Jo Bell, PhD thesis , 2002. 

1.3.2  Non-homologous end joining 

Non-homologous end joining involves the repair of a DSB by re-ligation of the 

DNA ends and frequently results in changes in the DNA sequence at the site of 

the DSB through loss or addition of sequence. No sequence homology is required 

for NHEJ to occur and therefore NHEJ acts on a wide variety of DSB substrates 



Chapter 1  43 

(Lieber et al., 2008;Lieber, 2010). The core proteins that carry out NHEJ consist 

of; the Ku heterodimer (Ku70 and Ku80), the catalytic subunit DNA-PKcs, and the 

DNA ligase IV-XRCC4 complex (Figure 1-12). The Ku heterodimer forms a DNA 

end-binding complex that recognises and binds, with high affinity, to both ends 

of the DSB, forming a bridge and leading to recruitment of other NHEJ factors. 

DNA-PKcs is the first factor to be recruited, and there is some evidence to 

suggest that (auto-) phosphorylation plays a role in the interaction of DNA-PKcs 

at the DSB (Smith and Jackson, 1999;Dobbs, Tainer, and Lees-Miller, 2010). 

However, this phosphorylation is not essential as some eukaryotes, including 

yeast, lack a homolog of DNA-PKcs (Critchlow and Jackson, 1998;Featherstone 

and Jackson, 1999;Parsons et al., 2005). DNA-PKcs is a member of the 

phosphatidylinositol 3-kinase-like kinase (PIKK) family that includes ATM and 

ATR, which are also involved in the response to DNA damage (Smith and Jackson, 

1999). The next factor to be recruited is the DNA ligase complex consisting of 

DNA ligase IV and the XRCC4 protein, a ligase IV-interacting protein (Sibanda et 

al., 2001). The gaps in the DNA are ligated together and the break is repaired. It 

has been shown that NHEJ is the main pathway in V(D)J recombination, which 

creates diversity among the immunoglobulin and T cell receptor genes found in 

the mammalian immune system (Xu et al., 2005). To date, no evidence for NHEJ 

has emerged from studies of DNA repair in T. brucei and related kinetoplastids 

(Conway et al., 2002b;Glover, McCulloch, and Horn, 2008). Indeed, there is no 

bioinformatic evidence for the existence of DNA ligase IV or XRCC4 (Burton et 

al., 2007), though each Ku subunit is present (Conway et al., 2002a;Janzen et 

al., 2004). 
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Figure 1-12 The core proteins involved in non-homol ogous end joining.  
Black lines represent duplex DNA. Following a DSB t he Ku70/80 heterodimer (red and blue 
circles) binds to the DNA ends and recruits the cat alytic subunit of the DNA protein kinase 
(DNA-PKcs, green octagon). The DNA ligase IV – XRCC 4 complex (purple cyclinder and 
yellow square, respectively) is recruited to comple te the ligation reaction. Figure adapted 
from Claire Hartley, PhD Thesis, 2008. 

1.3.2.1  Micro-homology mediated end joining 

A number of reports have shown a distinct form of DSB end-joining that is 

mediated by short, ~ 5-25 bp stretches of sequence homology (Decottignies, 

2007). This pathway was thought to act as a backup to classical NHEJ 

(Nussenzweig and Nussenzweig, 2007), but has been shown to play a prominent 

role in Ig class switch recombination in B cells (Yan et al., 2007) and cancer 

development (Zhu et al., 2002). The micro-homology mediated end joining 

(MMEJ) pathway is independent of core NHEJ factors, such as Ku70 and Ku80, 

but the precise proteins involved are as yet unknown (McVey and Lee, 2008), 

meaning it is unclear if it is distinct from NHEJ or HR, or uses aspects of both 

pathways. Nonetheless, MMEJ has been described in T. brucei both in vivo and in 

vitro (Conway et al., 2002b;Burton et al., 2007;Glover, McCulloch, and Horn, 

2008;Glover, Jun, and Horn, 2011), and may have assumed the role of NHEJ, 

though until catalytic factors can be indentified its functional significance is 

hard to define. 

1.3.3  Homologous recombination 

Homologous recombination involves the repair of a DSB by utilising the 

homologous sequence of an unbroken DNA molecule as a template and therefore 



Chapter 1  45 

generally conserves the sequence fidelity of the genome. HR is conserved in all 

organisms, from bacteria to humans (Cromie, Connelly, and Leach, 2001), and is 

more complex than NHEJ, involving multiple sub-pathways and a greater number 

of factors. HR has been shown to repair DSBs resulting from stalled or collapsed 

replication forks (section 1.3.5) and exposure to DNA damaging agents 

(Petermann and Helleday, 2010;Symington and Gautier, 2011). It also has a role 

in the exchange of genetic material during meiosis, creating genetic diversity 

(Ehmsen and Heyer, 2008), and in antigenic variation of pathogens such as T. 

brucei (Vickerman, 1978). HR can be split into a number of different 

mechanisms, including single-strand annealing (Figure 1-11B), break-induced 

replication (Figure 1-11C) and gene conversion (Figure 1-11D and E). These 

mechanisms appear quite different, and appear to employ subtly differing 

catalytic components, but share the use of a homologous template and the same 

catalytic steps of pre-synapsis, synapsis and post-synapsis (Hamatake, Dykstra, 

and Sugino, 1989;San Filippo, Sung, and Klein, 2008;Holthausen, Wyman, and 

Kanaar, 2010). HR in eukaryotes requires a large number of proteins known as 

the Rad52 epistasis group, which include the proteins Rad50, Rad51, Rad52, 

Rad54, Rad55, Rad57, Rad59, Mre11 and Xrs2 (Symington, 2002). Rad51 is a 

recombinase enzyme and acts by forming a helical nucleoprotein filament on 

single-stranded DNA (ssDNA) to facilitate HR (section 1.6). Rad51 is functionally 

and structurally conserved with RecA and RadA in bacteria and archaea, 

respectively. The other members of the Rad52 epistasis group appear to promote 

Rad51 activity, acting either upstream or downstream of the formation of the 

Rad51 nucleoprotein filament (Symington, 2002). 

1.3.4  Mechanism of homologous recombination 

The proteins involved in the early stages of HR in eukaryotes are displayed in 

Figure 1-13. In pre-synapsis, the DSB is recognised and the DNA ends are 

resected by exonucleases to reveal 3’ ssDNA overhangs which allow the binding 

of the recombinase (Rad51/RadA/RecA in eukaryotes/archaea/bacteria, 

respectively) with the aid of cofactors. DNA end resection is carried out by the 

RecBCD complex in bacteria, the MRX complex in yeast (comprising of Mre11, 

Rad50 and Xrs2) and the MRN complex in mammals (comprising of Mre11, Rad50 

and Nbs1) (Paull, 2010;Longhese et al., 2010;Symington and Gautier 2011). 

These complexes all have helicase and nuclease activity and are responsible for 
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the production of 3’ ssDNA overhangs that can be thousands of bases long (White 

and Haber, 1990;Sun, Treco, and Szostak, 1991). In eukaryotes, the ssDNA 

overhangs are coated with replication protein A (RPA), a homologue of the 

bacterial ssDNA-binding protein (SSB). These proteins have wider roles in the cell 

than simply acting in HR, but protect the ssDNA from nucleases and also remove 

any secondary structure which is inhibitory to nucleoprotein filament formation 

(Sugiyama, Zaitseva, and Kowalczykowski, 1997). Cofactors involved in the 

loading of the recombinase onto the ssDNA overhangs must first remove RPA/SSB 

from the ssDNA (Sung, 1997a;Sung, 1997b). Rad52 has been shown to carry out 

this function in yeast and mammals (Sung, 1997a;Benson, Baumann, and West, 

1998), however, Rad52 is absent from D. melanogaster, C. elegans and T. 

brucei. Evidence exists that the breast cancer susceptibility protein BRCA2 can 

carry out this role (section 1.4). Most eukaryotes express multiple Rad51-related 

proteins, often called Rad51 paralogues, which aid Rad51 function and are 

required for recombinational DNA repair (Thacker, 2005;Lin et al., 2006). Yeast 

utilise a complex of Rad55 and Rad57 to help nucleate the Rad51 nucleoprotein 

filament on ssDNA (Hays, Firmenich, and Berg, 1995;Sung, 1997b). Mammals 

contain five Rad51 paralogues, which form two distinct complexes, the precise 

functions of which have not yet been ascertained (Suwaki et al., 2011). In T. 

brucei, four RAD51 paralogues are found, each of which acts in HR and 

influences the subnuclear mobility of RAD51 (Proudfoot and McCulloch, 

2005;Dobson et al., 2011). In addition, at least three of the RAD51 paralogues 

have been shown to interact and therefore presumably form a complex or 

complexes (Dobson et al., 2011), but the evolutionary relationship between 

these proteins and those present in yeast and mammals remains unclear. 

Once the DNA-recombinase nucleoprotein filament has been assembled synapsis, 

or strand exchange, occurs. This involves the invasion of a homologous duplex 

DNA molecule by the broken DSB end(s) and the formation of a displacement-

loop (D-loop) structure at the point of base-pairing. Strand invasion is aided by 

Rad54, a double-stranded DNA (dsDNA)-dependent ATPase, which is a member of 

the Swi2/Snf2 family of chromatin remodelling factors (Heyer et al., 2006;Mazin 

et al., 2010) Rad54 uses the energy released from the hydrolysis of ATP to 

supercoil and separate the strands of the homologous DNA template and stabilise 

the nucleoprotein filament (Heyer et al., 2006;Mazin et al., 2010). DNA synthesis 
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occurs following the formation of the D-loop structure using the 3’ DSB end as a 

primer and the homologous strand as a template (Paques and Haber, 

1999;Holmes and Haber, 1999). The second 3’ end of the DSB can also invade the 

D-loop in a process called second end capture, this can lead to the formation of 

a four-branched DNA structure called a Holliday Junction (HJ) (Holliday, 1964). 

In post-synapsis the resolution of the strand exchange intermediate takes place. 

Cleavage of the HJ is carried out, at least in humans, by a recently discovered 

resolvase, GEN1 (Ip et al., 2008;Rass et al., 2010), and yields either a crossover 

product (section 1.3.4.3) or a non-crossover product (gene conversion; section 

1.3.4.4). 

 
Figure 1-13 The proteins involved in the early stag es of eukaryotic homologous 
recombination. 
Black lines represent duplex DNA and grey lines rep resent intact duplex DNA used as a 
template for repair. Following a DSB the 5 ′ ends of the DSB are resected with the aid of the 
MRN complex (purple arrow) to form 3 ′ ssDNA tails. The ssDNA tails becomes coated with 
RPA (pink squares). The loading of the Rad51 (red c ircles) nucleoprotein filament is aided 
by Rad52 (light blue cylinder), the Rad51 paralogue s (green cylinder) and BRCA2 (orange 
oval). The filament then actively ‘scans’ the genom e for homologous sequences in a ‘strand 
invasion’ process that is aided by Rad54 (dark blue  squares). Following this, one tail 
invades the homologous DNA duplex forming a displac ement (D)-loop, which is then 
extended by DNA synthesis (not shown). Figure adapt ed from Claire Hartley, PhD Thesis, 
2008. 

1.3.4.1  Single-strand annealing 

Single-strand annealing (Figure 1-11B) occurs on repetitive DNA sequences and is 

a Rad51-independent HR pathway, which usually involves the loss of some 

genetic material (Paques and Haber, 1999). Following the formation of a DSB, 
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the 5’ ends are resected to expose complementary regions within the 3’ strands 

flanking the break site. These complementary sequences are able to anneal to 

each other, eliminating the need for a strand exchange step. The 3’ non-

homologous ends are excised and DNA synthesis and ligation complete the 

repair. Annealing of the complementary sequences is facilitated by accessory 

proteins: Rad52 can act in this way in H. sapiens, U. maydis and S. cerevisiae 

(Sugiyama, New, and Kowalczykowski, 1998;Kojic et al., 2008;Feng et al., 

2011;Liu and Heyer, 2011), and BRCA2 homologues (section 1.4) in U. maydis and 

C.elegans, which lacks a Rad52 homologue, have also been shown to function in 

the SSA pathway (Petalcorin et al., 2006;Mazloum, Zhou, and Holloman, 2007). 

1.3.4.2  Break-induced replication 

Break-induced replication (Figure 1-11C) involves invasion by only one end of the 

DSB and can occur by both Rad51-dependent and Rad51-independent 

mechanisms (McEachern and Haber, 2006;Llorente, Smith, and Symington, 2008). 

Once DNA resection has occurred the 3’ ssDNA overhang invades a homologous 

chromosome. Following this, a replication fork is established and the 

chromosome is copied for long distances, even to the chromosome end. Rad51-

dependent BIR is much more efficient than Rad51-independent, but requires a 

longer length of homologous substrate (Davis and Symington, 2004;Malkova et 

al., 2005). 

1.3.4.3  Gene conversion 

Gene conversion allows the transfer of genetic material from one DNA molecule 

to its homologue in a uni-directional manner, and is the most common 

mechanism of HR in DSB repair (Chen et al., 2007). Gene conversion occurs most 

frequently between newly replicated sister chromatids, in which settings it is 

genetically silent. However, it can also occur between two allelic chromosomes, 

and between homologous sequences on different chromosomes (Chen et al., 

2007). If an HJ is formed following the formation of the strand exchange 

intermediate(Figure 1-11D), the product generated from resolution of this HJ 

depends on the orientation of strand cleavage (Figure 1-14): a non-crossover 

product results from cleavage of the HJ along the one axis and results in gene 

conversion; if the strands are cleaved along different axes, a non-crossover 
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product is generated. This model for DSB repair predicts that HJ resolution 

would lead to an equal number of crossover and non-crossover events. However, 

this is not the case, as mitotic recombination events result in an extremely low 

occurrence of crossover events (Esposito, 1978;Haber and Hearn, 1985;Kupiec 

and Petes, 1988). To account for this, the synthesis-dependent strand annealing 

(SDSA) model was proposed (section 1.3.4.4;Nassif et al., 1994;Paques and 

Haber, 1999). 

 
Figure 1-14 Holliday junction resolution.  
A schematic representation of the two possible prod ucts formed following Holliday junction 
resolution. A crossover product occurs when cleavag e of both strands of the HJ occurs 
along the same axis (a, red arrows) and a non-cross over event occurs when cleavage of the 
HJ occurs in different axes (b, green arrows). Figu re adapted from Rachel Dobson, PhD 
Thesis, 2009. 

1.3.4.4  Synthesis-dependent strand annealing 

In this model (Figure 1-11E), only one 3’ strand invades the homologous DNA 

template, while the other strand remains unengaged (Nassif et al., 1994). 

Following DNA polymerisation, the newly synthesised strand is then displaced 

from the template and anneals to the previously unengaged 3’ strand by a 

second strand annealing step, allowing repair of the DSB (Haber et al., 2004;Ira, 

Satory, and Haber, 2006). The products that arise from this process are 

predominantly non-crossover. However, modification of the pathway can lead to 

crossover events (Ferguson and Holloman, 1996). 
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1.3.5  The role of homologous recombination in 
replication 

As already mentioned, HR has been shown to be involved in the repair of stalled 

replication forks that are often associated with genome rearrangements (Michel 

et al., 2007;Nagaraju and Scully, 2007;Budzowska and Kanaar, 2009;Petermann 

and Helleday, 2010;Branzei and Foiani, 2010). Replication forks may stall and 

collapse for a variety of reasons, including damage to DNA replication 

substrates, DNA-bound proteins blocking replication progression, DNA secondary 

structures and transcription. HR is implicated in at least three pathways of 

replication fork re-start or repair. Firstly, trans-lesion synthesis uses error-prone 

DNA polymerases to by-pass a DNA lesion and enables the progression of 

replication across the lesion (Prakash, Johnson, and Prakash, 2005). The DNA 

lesion remains (called a daughter strand gap) and may be repaired using the 

sister chromatid as a template in an HR mechanism called sister chromatid 

recombination (SCR) (Scully, Puget, and Vlasakova, 2000;Michel et al., 

2004;Nagaraju and Scully, 2007). Secondly, template switching may occur when 

a stalled replication fork switches to using the nascent daughter strand as a 

replication template. HR is implicated in this process that often leads to 

complex genome rearrangements, such as observed in yeast and U. maydis 

(Lambert et al., 2005;Mazloum and Holloman, 2009;Lambert et al., 2010). 

Finally, the HR proteins Rad51 and BRCA2 have been shown to play multiple 

roles during DNA replication, including maintaining replication fork progression 

(Daboussi et al., 2008), stabilisation of stalled replication forks (Lomonosov et 

al., 2003), protection against degradation of nascent DNA (Hashimoto et al., 

2010;Schlacher et al., 2011), direct processing of stalled replication forks into 

DSBs (Michel et al., 2004), and reversal of stalled replication forks to allow 

replication re-start without the occurrence of DNA damage (Michel et al., 2001). 

brca2 mutant phenotypes, which include an accumulation of gross chromosomal 

rearrangements and extensive chromosomal abnormalities (section 1.4;Patel et 

al., 1998;Yu et al., 2000), point to a failure in replication fork rescue by HR 

(Michel, Ehrlich, and Uzest, 1997;Seigneur et al., 1998;Chen and Kolodner, 

1999). 

The repair of DNA structures created during replication has been proposed to 

occur during the G2 gap phase of the cell cycle, prior to entry into mitosis and 
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after S-phase and the completion of DNA replication (Su, Bernal, and 

Venkitaraman, 2008). Microscopically visible focal accumulations containing 

Rad51, BRCA1, BRCA2 and PCNA (proliferating cell nuclear antigen) form in 

undamaged S-phase mammalian cells where they are proposed to be repair 

centres for broken replication forks (Tashiro et al., 1996;Scully et al., 1997;Chen 

et al., 1998). However, the formation of these Rad51 replication-coupled repair 

foci does not require BRCA2 or the Rad51 paralogues (Tarsounas, Davies, and 

West, 2004). The multiple pathways for the bypass and removal of DNA-template 

lesions, and for the restart of stalled replication forks, highlights the importance 

of such mechanisms to ensure that DNA replication is completed faithfully every 

cell cycle (Michel et al., 2004). 

1.4 BRCA2 

1.4.1  The discovery of BRCA2 

Breast cancer is one of the most common causes of cancer-related deaths in 

women and approximately 10% of individuals who develop the disease are 

genetically predisposed to it (Nathanson, Wooster, and Weber, 2001). The first 

breast cancer susceptibility gene, BRCA1, was identified in 1990 by linkage 

analysis and positional mapping (Hall et al., 1990). However, a failure to assign 

all cases of breast cancer to a mutation in BRCA1 led to the search for a second 

breast cancer susceptibility gene and, in 1995, BRCA2 was identified (Wooster et 

al., 1994;Wooster et al., 1995). The products of both these genes function in the 

maintenance of genome stability through HR (Moynahan et al., 1999;Xia et al., 

2001;Moynahan, Pierce, and Jasin, 2001). However, they are remarkably 

different proteins, most notably in terms of their size and the proteins with 

which they interact (Figure 1-15). The following sections will focus on the BRCA2 

protein, which is the subject of this thesis. 
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Figure 1-15 A representation of human BRCA1 and BRC A2 proteins showing their functional 
domains and interacting proteins. 
Both proteins are large polypeptides (1,863 and 3,4 18 amino acids, respectively) that 
interact with each other and with several other pro teins. BRCA1 interacts with BRCA2 and 
the MRN (Mre11/Rad50/Nbs1) complex. The RING finger  domain, nuclear localisation signals 
(NLSs) and BRCA1 C-terminal (BRCT) domains are indi cated. Similarly, BRCA2 interacts 
with BRCA1, Rad51 (the HR recombinase), DMC1 (the m eiosis-specific recombinase), and 
DSS1. The eight BRC repeats, the PhePP motif that i nteracts with DMC1, the DNA/DSS1-
binding domain (alpha-helical domain, oligonucleoti de-binding (OB) domains and tower 
domain) that interacts with ssDNA and DSS1, and the  C-terminal NLSs and CDK 
phosphorylation site are indicated. Figure adapted from West, 2003. 

1.4.2  The structure of BRCA2 

The human BRCA2 protein is a large polypeptide, 3418 amino acid residues in 

length, and initial investigations revealed no obvious similarities with other 

published protein sequences (Wooster et al., 1995). Further investigation 

revealed that BRCA2 contains several key motifs, including eight BRC repeats, a 

DNA binding domain (DBD) and two nuclear localisation signals (NLSs). 

1.4.2.1  The BRC repeats 

A series of eight degenerate BRC repeat motifs were discovered in the central 

third of BRCA2, encoded by exon 11 (Bork, Blomberg, and Nilges, 1996). These 

repeated motifs are highly conserved at the sequence level between mammalian 

BRCA2 proteins (Lo et al., 2003). However, a remarkable degree of divergence 

exists between the eight BRC repeats within a single BRCA2 homologue (Figure 

1-20), suggesting that they may have evolved to achieve different functions 

(Bork, Blomberg, and Nilges, 1996;Bignell et al., 1997;Pellegrini and 

Venkitaraman, 2004). The BRC repeat motif is approximately 30 amino acid 

residues in length and separated by linker regions that vary in size from 60 to 
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300 amino acids, which show no sequence conservation (Bork, Blomberg, and 

Nilges, 1996;Bignell et al., 1997). 

The phenotypes of brca2-/- mutants in mammalian cells include early embryonic 

lethality, severe growth retardation, impaired cell division and sensitivity to 

ionising radiation, indicating the essential function of this protein (Sharan et al., 

1997;Ludwig et al., 1997;Suzuki et al., 1997). A major breakthrough occurred 

when it was discovered that BRCA2 binds Rad51, the HR recombinase (Sharan et 

al., 1997;Chen et al., 1998;Marmorstein, Ouchi, and Aaronson, 1998). In 

mammalian cells, it was observed that after the induction of DNA damage BRCA2 

and Rad51 co-localise to form mega-Dalton structures observed microscopically 

as foci, and that these Rad51 foci fail to form in the absence of BRCA2 (Yuan et 

al., 1999;Tarsounas, Davies, and West, 2003). An interaction between BRCA2 and 

monomeric Rad51 was confirmed to occur at the BRC repeats, and six or eight of 

the BRC repeats have been reported to bind Rad51 in vitro, depending on the 

assay used (co-immunoprecipitation or yeast 2-hybrid;Wong et al., 1997;Chen et 

al., 1998;Marmorstein, Ouchi, and Aaronson, 1998). A possible explanation for 

the differences in Rad51 binding observed is that the level of sequence diversity 

across the BRC repeats could produce binding sites with a range of affinities for 

Rad51 (Pellegrini and Venkitaraman, 2004). Indeed, this theory is supported by 

the fact that although all BRC repeats have the ability to bind Rad51 in vitro, 

some bind with a stronger affinity than others (see below;Chen et al., 

1998;Esashi et al., 2005;Thorslund, Esashi, and West, 2007;Carreira and 

Kowalczykowski, 2011). 

The elucidation of the X-ray crystal structure of human BRC repeat 4 bound to 

the core domain of Rad51 led to the identification of a seven amino acid motif 

(F-TASGK) located within the BRC repeat that is critical for making hydrophobic 

and hydrophilic interactions with Rad51 (Pellegrini et al., 2002). These residues 

are conserved in all of the eight BRC repeats in human BRCA2 and form a BRC 

repeat sequence fingerprint (Pellegrini et al., 2002;Lo et al., 2003). Point 

mutations within the BRC repeat fingerprint are associated with an increased 

susceptibility to breast and ovarian cancers and have been shown to be 

sufficient to disrupt the binding of Rad51 to the BRC repeat motif (Chen et al., 

1999), indicating the importance of this motif in the regulation of Rad51 by 

BRCA2 (Gayther et al., 1997;Davies et al., 2001;Pellegrini et al., 2002;Tal, 



Chapter 1  54 

Arbel-Goren, and Stavans, 2009;Ochiai et al., 2011). Further analysis has 

identified a second structural domain of the BRC repeat, within an alpha-helical 

context, that is also essential for the interaction with Rad51 (Rajendra and 

Venkitaraman, 2010). Additionally, it has been shown that an oligomerisation 

motif in Rad51 exists at the subunit-subunit interface (section 1.6), which has 

been shown to function in the assembly of Rad51 into multimeric filament and 

ring forms (Pellegrini et al., 2002;Shin et al., 2003). It is thought that the BRC 

repeat mimics this oligomerisation motif using a β-hairpin structure and so 

regulates the assembly of Rad51 filaments onto DNA (Pellegrini et al., 2002;Lo et 

al., 2003;Shin et al., 2003;Nomme et al., 2008). 

A recent paper has systematically analysed Rad51 binding by each of eight 

peptides corresponding to the BRC repeats in vitro and showed that there are 

two categories of BRC repeat in human BRCA2 (Figure 1-16;Carreira and 

Kowalczykowski, 2011). The first category, consisting of BRC repeats 1 to 4, bind 

with high affinity to monomeric Rad51, reduce its ATPase activity, and maintain 

the recombinase in an active ATP-bound state until required (Carreira et al., 

2009;Carreira and Kowalczykowski, 2011). In addition, members of this category 

of BRC repeats limit the assembly of Rad51 onto dsDNA and have the ability to 

remove RPA from ssDNA, thereby promoting nucleation onto ssDNA (Davies et 

al., 2001;Galkin et al., 2005;San Filippo et al., 2006;Shivji et al., 2009;Carreira 

et al., 2009). BRC4 has also been shown to disrupt Rad51-dsDNA nucleoprotein 

filaments when present in molar excess of Rad51 (Davies et al., 2001;Tarsounas, 

Davies, and West, 2004;Davies and Pellegrini, 2007;Esashi et al., 2007). The 

second category of BRC repeats, consisting of BRC repeats 5 to 8, bind free 

Rad51 with low affinity but bind to Rad51-ssDNA filaments with high affinity and 

function to stabilise these filaments through a reduction in ATP hydrolysis by 

Rad51, thereby promoting nascent filament growth (Galkin et al., 2005;Carreira 

et al., 2009;Carreira and Kowalczykowski, 2011). It is thought that the two 

groups of BRC repeats co-operate in order to bring about delivery of monomeric 

Rad51 to the site of DNA damage, facilitate efficient filament nucleation 

preferentially onto ssDNA whilst impeding nucleation on dsDNA and the 

propagation of filament growth through binding and stabilisation, thereby 

stimulating DNA strand exchange. 
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The requirement for eight copies of the BRC repeat motif observed in human 

BRCA2 was originally postulated to be an adaptation to deliver sufficient Rad51 

molecules to the sites of DNA damage, thereby allowing efficient repair 

(Pellegrini and Venkitaraman, 2004). However, experiments in brca2 mutant cell 

lines expressing a single BRC repeat fused to the ssDNA-binding domain of RPA70 

showed a partial reversal of the brca2 phenotype with substantially improved HR 

and DNA repair, suppression of genome instability and restoration of Rad51 focus 

formation after DNA damage, indicating that BRCA2 with a single BRC repeat can 

function in HR to some extent (Saeki et al., 2006). Also, BRCA2 orthologues in 

Caenorhabditis elegans and Ustilago maydis function with a single BRC repeat 

(section 1.5.1 and 1.5.2, respectively;Kojic et al., 2002;Martin et al., 2005). The 

additional BRC repeats could simply be indicative of the necessity for greater 

control of HR in the putatively more complex biological systems acting in 

mammals. However, if correct, there are exceptions to this rule, most notably 

the T. brucei homologue of BRCA2 that is predicted to contain up to fifteen BRC 

repeats (section 1.5.3.1;Lo et al., 2003;Hartley and McCulloch, 2008). 

1.4.2.2  Rad51 binding at the BRCA2 C-terminus 

Human BRCA2 has also been shown to bind Rad51 at an extreme C-terminal 

motif, encoded by exon 27, that is highly conserved in mammalian BRCA2 and 

distinct from the BRC repeat motif (Mizuta et al., 1997;Sharan et al., 

1997;Esashi et al., 2005;Esashi et al., 2007;Davies and Pellegrini, 2007). This C-

terminal motif has the ability to bind Rad51 in its oligomerised heptameric ring 

form, and also Rad51-DNA nucleoprotein filament form, by binding at the 

interface between two Rad51 monomers. In both settings BRCA2 binding 

functions to stabilise the Rad51 multimeric forms (Davies and Pellegrini, 

2007;Esashi et al., 2007). This C-terminal Rad51 binding motif is phosphorylated 

by unknown cyclin-dependent kinases (CDKs) at Serine 3291 (S3291), and this 

phosphorylation functions to abrogate the interaction of the C-terminal binding 

domain with Rad51 (Esashi et al., 2005). The extent of S3291 phosphorylation 

was shown to decrease after the induction of DNA damage by ionising radiation 

(Esashi et al., 2005), and to increase as cells progress from G2 to M phase. Thus, 

it was postulated S3291 phosphorylation allows BRCA2 to regulate Rad51-

dependent HR to ensure completion of DNA repair before entry into mitosis. In 

addition, induced DNA damage results in increased BRCA2-Rad51 interaction via 
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the C-terminal motif, and perhaps overcomes cell-cycle regulation to allow 

dephosphorylation of S3291, Rad51 filament binding and stabilisation, thereby 

stimulating HR-mediated repair of DNA damage (Lord and Ashworth, 2007). 

Cancer-associated mutations in BRCA2 occur at S3291 and residue 3292, which 

could disrupt the regulation of Rad51 by this C-terminal motif (McAllister et al., 

2002;Donoho et al., 2003;Esashi et al., 2005). The binding and stabilisation of 

Rad51 nucleoprotein filaments by the C-terminus of BRCA2 and was initially 

thought to protect against filament disassembly by BRC repeat 4 (Davies and 

Pellegrini, 2007;Esashi et al., 2007). However, in light of the role of a subset of 

the BRC repeats in the stabilisation of Rad51-ssDNA nucleoprotein filaments, the 

function of the C-terminal Rad51-binding domain has been re-investigated. 

Recent work has suggested that this C-terminal Rad51-binding motif is 

dispensable for DNA repair by HR as a derivative of chicken BRCA2 with the C-

terminal CDK phosphorylation site mutated to mimic the constitutive presence of 

a phosphate group (and therefore unable to bind Rad51) did not show any 

detectable DNA repair or recombination defects (Ayoub et al., 2009). However, 

the disassembly of Rad51 foci after the induction of DNA damage was shown to 

be impaired and linked to a delay in the onset of mitosis (Ayoub et al., 2009). 

The finding that this CDK phosporylation site mutant is capable of supporting 

DNA repair and HR is consistent with earlier work that showed the C-terminus of 

mammalian BRCA2, encompassing all residues downstream of the most C-

terminal BRC repeat, can be replaced with RPA and still function in these 

processes (Saeki et al., 2006); it was not determined if cells expressing such a 

fusion protein display mitosis defects. Very recent work has also indicated that 

the C-terminal Rad51-binding domain of human BRCA2 may be critical for the 

protection of stalled replication forks from degradation (Schlacher et al., 2011), 

and may function through the stabilisation of Rad51 nucleoprotein filaments on 

nascent ssDNA (Figure 1-17;Hashimoto et al., 2010). 

1.4.2.3  Rad51 binding in the context of full-lengt h BRCA2 

The large size of the human BRCA2 protein had precluded the purification of the 

full-length polypeptide until 2010, when three labs published the purification of 

BRCA2 by three distinct methods (Jensen, Carreira, and Kowalczykowski, 

2010;Liu et al., 2010;Thorslund et al., 2010). Initial experiments in vitro 

demonstrate that BRCA2 binds approximately six Rad51 molecules (Liu et al., 
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2010;Jensen, Carreira, and Kowalczykowski, 2010), directs the nucleation of 

Rad51 filaments onto ssDNA in preference over dsDNA (Thorslund et al., 2010;Liu 

et al., 2010;Jensen, Carreira, and Kowalczykowski, 2010), and stimulates the 

displacement of RPA by the Rad51 filament (although a direct interaction with 

RPA was not observed;Liu et al., 2010;Jensen, Carreira, and Kowalczykowski, 

2010). A role for DSS1 (section 1.4.2.4) in the stimulation of BRCA2-mediated 

Rad51 binding to RPA-covered ssDNA was also observed (Liu et al., 2010). BRCA2 

was also shown to stabilise active ATP-bound Rad51-ssDNA nucleoprotein 

filaments by reducing the ATPase activity of Rad51 (Jensen, Carreira, and 

Kowalczykowski, 2010), and thus stimulates DNA strand exchange (Thorslund et 

al., 2010;Liu et al., 2010;Jensen, Carreira, and Kowalczykowski, 2010). No DNA 

polarity preference was detected, with nucleation on both 3’ and 5’ ssDNA tails 

observed, indicating a possible function for BRCA2 in daughter strand gap repair 

during replication (Jensen, Carreira, and Kowalczykowski, 2010). In support of 

this, a binding requirement for the junction between ss- and dsDNA was not 

detected (Jensen, Carreira, and Kowalczykowski, 2010), and binding to 

replication fork structures was observed in vitro (Thorslund et al., 2010). Unlike 

the U. maydis and C.elegans orthologues of BRCA2 (section 1.5.1 and 1.5.2), the 

ability of human BRCA2 to anneal ssDNA-RPA complexes was not detected 

(Jensen, Carreira, and Kowalczykowski, 2010). Uniquely, both monomeric and 

dimeric forms of BRCA2 were observed by electron microscopy (Thorslund et al., 

2010). 

1.4.2.4  The BRCA2 DNA binding domain 

The region of human BRCA2 downstream of the BRC repeats has been shown to 

bind a small, highly acidic protein named DSS1, which is mutated in split 

hand/split foot syndrome (Crackower et al., 1996;Marston et al., 1999). The co-

expression of DSS1 and the C-terminal domain of mouse and rat BRCA2 (~ 800 

amino acids) allowed the elucidation of the X-ray crystal structure of the C-

terminal domain of BRCA2 bound to DSS1 (Yang et al., 2002). Structures were 

determined with and without bound ssDNA, revealing five distinct domains in the 

C-terminal region of BRCA2. The first domain is 190 amino acids in size and 

consists mainly of α helices (α-helical domain). This is followed by three 

oligonucleotide/oligosaccharide-binding folds (OB1, OB2 and OB3), which are 

structurally similar to the OB fold present in most ssDNA binding proteins. 
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Protruding from OB2 is a 130-amino acid insertion that adopts a tower-like 

structure (tower domain), consisting of a pair of long anti-parallel helices that 

support a three-helix bundle, which contains a helix-turn-helix motif (HTH). This 

HTH motif is similar to the DNA-binding domains of bacterial site-specific 

recombinases. ssDNA was observed bound to the OB2 and OB3 domains and the 

presence of the HTH motif analogous to that of bacterial site-specific 

recombinases led to the prediction that the BRCA2 DNA/DSS1-binding domain 

would bind dsDNA, as well as ssDNA. Indeed, when the DNA binding preferences 

of the BRCA2 DNA/DSS1-binding domain were investigated, it was shown to bind 

with high affinity to ssDNA, presumably through the three OB folds, and a role 

for the tower domain in binding to dsDNA was observed, although with much 

lower affinity (San Filippo et al., 2006). In light of these data, it was proposed 

that BRCA2 could be responsible for targeting Rad51 to the ssDNA/dsDNA 

junction at the sites of processed DSBs, and in the removal of RPA from ssDNA to 

facilitate Rad51 nucleoprotein filament formation (Yang et al., 2002;Pellegrini 

and Venkitaraman, 2004). 

Experiments to investigate the function of this conserved C-terminal DBD were 

performed with CAPAN-1 cells, which have lost one BRCA2 allele and the 

remaining allele contains a frame-shift that causes premature termination of 

translation leading to a truncated BRCA2 lacking the entire C-terminal DBD 

(Goggins et al., 1996). CAPAN-1 cells are sensitive to DNA damage, have lost the 

ability to form Rad51 foci and display chromosome instability (Abbott, Freeman, 

and Holt, 1998;Yuan et al., 1999). Analysis of the repair of an I-SceI induced DSB 

lead to the discovery that homology-directed DNA repair was defective in this 

cell line (Moynahan, Pierce, and Jasin, 2001). Culturing of CAPAN-1 cells in the 

presence of Poly ADP-ribose polymerase (PARP) inhibitors, a breast cancer 

therapy that causes lethality in brca2 null cells (Helleday, 2011), lead to the 

occasional resistant clones arising. These resistant cells were active in 

homology-directed repair of DSBs, proficient at Rad51 focus formation and 

recovered chromosome stability, all in the absence of the DBD of BRCA2 

(Edwards et al., 2008). Coupled with the findings from experiments in which the 

BRC repeat region of BRCA2 was fused to the RPA70 ssDNA binding domain, 

leading to attenuation of the brca2-/- phenotype, this indicates that the DBD is 

to some extent expendable for DNA repair (Saeki et al., 2006). As mentioned 



Chapter 1  59 

previously, the BRC repeats of BRCA2 seem to possess an inherent preference for 

facilitating Rad51 nucleation on ssDNA over dsDNA (Carreira and 

Kowalczykowski, 2011), the molecular basis of which has not yet been 

elucidated. 

1.4.2.5  The BRCA2 nuclear localisation signals 

Antibodies against human BRCA2 show it to be localised to the nucleus 

(Bertwistle et al., 1997). Characterisation of the rat and mouse homologues of 

BRCA2 lead to the discovery of two nuclear localisation signals (NLSs) at the 

extreme C-terminus of the protein, which are characterised by a positively 

charged core peptide unit of KKRR (McAllister et al., 1997;Spain et al., 

1999;McAllister et al., 2002). Investigation of the localisation of the smallest 

known cancer-associated truncation of BRCA2, which removes 224 amino acids 

from the C-terminal of the protein (including the two NLSs), demonstrated this 

protein to be cytoplasmically located, indicating that the two NLSs are 

functional and that translocation to the nucleus is required for the normal 

function of BRCA2 in HR (Spain et al., 1999;Davies et al., 2001). 

1.4.3  The function of BRCA2 in homologous 
recombination 

The phenotypes of brca2 null mice demonstrate a critical function for BRCA2 in 

the regulation of homology directed repair of DSBs, and the maintenance of 

genome stability (Sharan et al., 1997;Ludwig et al., 1997;Suzuki et al., 

1997;Connor et al., 1997;Patel et al., 1998;Yu et al., 2000;Moynahan, Pierce, 

and Jasin, 2001;Holloman, 2011). Summaries of current understanding of the 

roles provided by BRCA2 in promoting genome stability via Rad51 are shown in 

Figure 1-16 and Figure 1-17. It is thought that the BRC repeats of mammalian 

BRCA2 provide mediator functions for Rad51 during homology-directed repair of 

DSBs (Holloman, 2011;Carreira and Kowalczykowski, 2011). Specifically, BRC 

repeats 1-4 bind monomeric Rad51 and initiate Rad51 filament nucleation on 

ssDNA, which is then extended by BRC repeats 5-8 through stabilisation of the 

nascent filaments and facilitation of filament growth, therefore promoting DNA 

strand exchange (Figure 1-16;Carreira and Kowalczykowski, 2011). The C-

terminal Rad51-binding site, though dispensable, may play a role in the 
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regulation of this activity, linking it to cell cycle progression, with CDK 

phosphorylation of Serine3291 disrupting Rad51 binding and hastening the 

disassembly of the Rad51 filament (Ayoub et al., 2009;Holloman, 2011). 

Alternatively, or perhaps in addition, the C-terminus of BRCA2 may play a 

critical role in the protection of stalled replication forks from degradation 

(Figure 1-17), via stabilisation of Rad51 filaments on nascent DNA via the BRCA2 

C-terminal Rad51-binding domain, regulation of which is achieved by CDK 

phosphorylation of Serine3291 (Holloman, 2011;Schlacher et al., 2011). What 

seems unclear is how this latter role for the BRCA2 C-terminus, which is not 

proposed to lead to HR (Schlacher et al., 2011), can be reconciled with the 

explicitly HR-promoting role of previous models of BRCA2 function. 

 
Figure 1-16 Proposed model for the role of the BRCA 2 BRC repeats in DSB repair. 
Upon formation of a DSB (top), the dsDNA is resecte d to generate ssDNA tails. (1) BRC 
repeats 1-4 (yellow crescents) bind monomeric Rad51  (blue circles) and enhance binding to 
ssDNA (“locked” Rad51, 2). The binding of BRCA2 dir ects Rad51 onto the ssDNA of a 
processed DSB and restricts assembly onto the dsDNA  nearby. “Locked” Rad51 nucleates 
onto ssDNA and BRC repeats 5-8 (blue crescents) sta bilise the nascent nucleoprotein 
filament by limiting ATP hydrolysis by Rad51 (3). T he subsequent growth of the Rad51 
nucleoprotein filament displaces RPA (yellow circle s) from the ssDNA. At this point, BRCA2 
can be released from the DNA to promote Rad51 nucle ation at another DSB (4). The Rad51 
filament continues to grow from the BRCA2-stablised nucleus to form the ATP-bound 
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nucleoprotein filament capable of homologous DNA pai ring (5). Figure reproduced from 
Carreira and Kowalczykowski, 2011. 

 
Figure 1-17 Proposed model for role of the BRCA2 C- terminal Rad51-binding motif during 
DNA replication. 
In S-phase, BRCA2 (pink circle) stabilises Rad51 fi laments (blue circles) on ssDNA at stalled 
replication forks, thereby preventing fork reversal . Alternatively, stabilised filaments directly 
protect a reversed fork. Once the replication stall  is removed, genome duplication can 
proceed until completed. BRCA2 is then no longer re quired for fork protection, and CDK 
phosphorylation of the BRCA2 C-terminus allows Rad5 1 filaments to dissociate and 
progression into M phase is initiated. In the absen ce of BRCA2, nascent strands of the 
stalled fork are unprotected and degraded, possibly  by Mre11 (yellow pacman), leading to 
chromosomal instability. Figure reproduced from Sch lacher et al., 2011. 

1.4.4  BRCA2 interacting proteins 

Mammalian BRCA2 has been shown to interact with a large number of proteins, 

the first of which to be described was BRCA1, and these two proteins co-localise 

in subnuclear foci following DNA damage (Chen et al., 1998). As mentioned 

above, the C-terminal DNA-binding domain of BRCA2 also binds DSS1, a small 

highly acidic protein that is mutated in split hand/split foot syndrome 

(Crackower et al., 1996). DSS1 is required for recombinational repair but its 

mechanism of action remains to be elucidated (Marston et al., 1999;Kojic et al., 

2003;Gudmundsdottir et al., 2004). The X-ray crystal structure determined of 

the C-terminal ~ 800 residues of BRCA2 showed that DSS1 binds BRCA2 in an 

extended conformation, interacting with the α-helical, OB1 and OB2 domains 

(Yang et al., 2002). The interaction between these two proteins has also been 
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observed in vitro with full-length purified BRCA2, and DSS1 has been shown to 

stimulate Rad51 binding to RPA covered ssDNA (Liu et al., 2010). 

A 2 MDa BRCA2-containing complex was isolated in 2001, within which a 

structural DNA binding component was identified and named BRCA2-associated 

factor 35 (BRAF35;Marmorstein et al., 2001). Since then, BRAF35 (also called 

HMG20b) has been identified as a member of the high-motility group of non-

sequence specific DNA-binding proteins (Wang et al., 1998;Sumoy et al., 

2000;Marmorstein et al., 2001;Lee et al., 2011), and a novel function for BRAF35 

in facilitating the completion of cytokinesis via an interaction with BRCA2 has 

been proposed (Lee et al., 2011). 

BRCA2 has also been shown to be part of the Fanconi Anaemia (FA) pathway 

(section 1.4.5), where it interacts with FANCD2 and FANCG (Hussain et al., 

2003;Hussain et al., 2004). BRCA2 function has also been shown to require the 

protein PALB2/FANCN, another component of the FA pathway (Xia et al., 

2006;Xia et al., 2007), and PALB2 has been demonstrated to co-purify with full-

length BRCA2 (Thorslund et al., 2010). 

Human BRCA2 is required for meiotic recombination, and this function is thought 

to be mediated by its interaction with the meiosis-specific recombinase, DMC1 

(Bishop et al., 1992). DMC1 is a closely related paralogue of Rad51 found widely 

in eukaryotes, capable of promoting strand exchange in similar ways to the 

mitotic recombinase (Masson and West, 2001). Human BRCA2 binds DMC1 at a 

conserved motif called the PhePP motif (KVFVPPFK) that is located downstream 

of the BRC repeats (Thorslund, Esashi, and West, 2007). This PhePP motif is 

distinct from the BRC repeats and promotes specific interactions with DMC1, but 

not with Rad51 (Thorslund, Esashi, and West, 2007). BRCA2 and DMC1 co-localise 

in nuclear foci during meiotic recombination (Bishop, 1994;Tarsounas et al., 

1999), and purified full-length BRCA2 has been shown to interact with DMC1 in 

vitro (Jensen, Carreira, and Kowalczykowski, 2010). 
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1.4.5  Functions of BRCA2 in the Fanconi Anaemia 
pathway 

Fanconi anaemia is an autosomal recessive disorder characterised by bone 

marrow failure, compromised genome stability, and a predisposition to cancer 

(D'Andrea and Grompe, 2003;D'Andrea, 2010). FA is a highly complicated and 

heterogeneous disease caused by mutations in 13 genes, whose products include 

FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ, 

FANCL, FANCM and FANCN, each of which have been demonstrated to function in 

the FA pathway although their precise roles remain unclear (Joenje and Patel, 

2001;Meetei et al., 2005;Levitus, Joenje, and de Winter, 2006;Smogorzewska et 

al., 2007). The hallmark phenotype of FA cells is hypersensitivity to DNA cross-

linking agents, and this lead to the implication of homology-directed DNA repair 

in the FA pathway (Grompe and D'Andrea, 2001;Joenje and Patel, 2001). The 

breast cancer susceptibility proteins have been demonstrated to play integral 

roles in the FA pathway, indeed in 2002 it was concluded that FANCD1 and 

BRCA2 are one and the same (Howlett et al., 2002). This was due to the 

observation that cell lines defective in FANCD1 carry bi-allelic mutations in 

BRCA2 (Howlett et al., 2002), coupled with the discovery that BRCA2 can 

complement for the defect in FANCD1 cell lines (Howlett et al., 2002). BRCA1 is 

known to be required for the efficient foci formation of FANCD2 (Garcia-Higuera 

et al., 2001;Vandenberg et al., 2003), and BRCA2 interacts with FANCD2 and 

FANCN (Hussain et al., 2004;Reid et al., 2007;Xia et al., 2007). Of the remaining 

proteins, it is known that FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL 

and FANCM interact to form a multi-subunit nuclear complex. This core complex 

is known to play multiple roles within the FA pathway, an example of which is 

found following exposure to DNA damage, when the FA core complex 

monoubiquitylates FANCD2, causing it to re-locate to subnuclear foci with BRCA1 

and Rad51 (Garcia-Higuera et al., 2001;Taniguchi and D'Andrea, 2006). Here, 

FANCD2 is thought to promote the loading of BRCA2/FANCD1 into chromatin 

complexes, facilitating the assembly of Rad51 foci and thereby promoting HR 

(Wang, Andreassen, and D'Andrea, 2004;Hussain et al., 2004). 
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1.5 DNA repair in other organisms 

The DNA repair systems in Caenorhabditis elegans, Ustilago maydis and 

Trypanosoma brucei have been characterised and provide an interesting 

comparison with the extensively studied system in mammals. DNA repair in these 

organisms is described with particular emphasis placed on homology-directed 

repair and the BRCA2 orthologues. In some respects, the streamlined machinery 

of HR in these systems may provide insights into the minimum requirements for 

DNA repair. 

1.5.1 Homologous recombination in Caenorhabditis 
elegans 

A BRCA2-related protein, CeBRC-2, was discovered in C. elegans from a yeast 

two-hybrid screen of Rad51 interacting partners (Martin et al., 2005). CeBRC-2 is 

a polypeptide, 394 amino acids in length, and contains a single BRC repeat, a 

single oligonucleotide binding (OB) domain (with similarity to the OB domains 

present in the ssDNA binding protein RPA) and two NLS motifs. CeBRC-2 was 

demonstrated to interact directly with monomeric CeRad51 via the single BRC 

repeat motif present and bind preferentially to ssDNA, in an interaction thought 

to be important for Rad51 filament nucleation onto ssDNA at the site of DNA 

damage (Martin et al., 2005;Petalcorin et al., 2006;Petalcorin et al., 2007). in 

vitro analysis of CeBRC-2 demonstrated an ability to stimulate D-loop formation 

by CeRad51 and, unusually for a BRCA2 orthologue, to promote DNA single-

strand annealing (Petalcorin et al., 2006). The lack of a detectable Rad52 

homologue in this organism may provide an explanation for this unusual 

annealing function of CeBRC-2 (Liu and Heyer, 2011). The single BRC repeat of 

CeBRC-2 has also been shown to stabilise Rad51-DNA filaments via interaction 

with the Rad51 N-terminal domain and may function to promote filament 

propagation (Petalcorin et al., 2007). 

Mutants that contain an N-terminal truncated variant of Cebrc-2, lacking the OB 

domain, display embryonic lethality and meiotic recombination defects (Martin 

et al., 2005). Formation of CeRad51 foci at the sites of DSBs is dependent on 

CeBRC-2 and suggests a requirement for CeBRC-2 for the repair of DSBs by HR 

(Martin et al., 2005). Complementation studies in mammalian cells demonstrate 
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that CeBRC-2 is able to bind directly to mammalian Rad51 and also restore the 

formation of Rad51 foci formation after DNA damage in brca2-/- cells (Min et 

al., 2007). Analysis of differences between the phenotypes of CeRad51 and 

CeBRC-2 mutant cells suggested a role for CeBRC-2 in promoting the use of an 

alternative repair pathway in the absence of CeRad51. CeBRC-2 mutants form 

DNA damage foci in the absence of CeRad51 and the abnormal chromosomal 

aggregates that form in CeBRC-2 mutants can be rescued by blocking NHEJ 

(Martin et al., 2005). 

1.5.2 Homologous recombination in Ustilago maydis 

The yeast-like fungus Ustilago maydis is extremely resistant to killing by ionising 

radiation (Holliday et al., 1971;Resnick, 1978). The homologous recombination 

system in this organism is unusual in containing both a Rad51 orthologue and 

Rec2, an evolutionarily divergent Rad51-paralogue (Rubin, Ferguson, and 

Holloman, 1994). Rec2 has inherent homologous pairing and DNA strand transfer 

activity, unlike Rad51 paralogues in other systems (Bennett and Holloman, 

2001). U. maydis Rad51 and Rec2 appear to have non-redundant roles in DNA 

repair, as mutation of either gene results in radiation sensitivity (Ferguson et 

al., 1997). Rad51 and Rec2 have been shown to interact with each other, and in 

response to DNA damage both Rad51 and Rec2 form intra-nuclear foci thought to 

be the sites of active recombinational repair (Kojic, Thompson, and Holloman, 

2001). Rad51 foci formation is dependent on Rec2 or Brh2 (see below); however, 

Rec2 foci can form in response to DNA damage in the absence of Rad51 and Brh2 

(Kojic et al., 2006). 

A screen for DNA repair-defective mutants in U. maydis identified a BRCA2 

orthologue, Brh2 (Kojic et al., 2002). U. maydis Brh2 is also a simplified version 

of mammal BRCA2, being 1,075 amino acids in length and containing a single BRC 

repeat. Brh2 contains two NLSs, and a highly conserved DBD at the C-terminus 

consisting of a small alpha-helical domain, two OB domains and a tower domain. 

brh2 mutant cells have the same phenotype as rad51 mutant cells, with defects 

in allelic recombination, meiosis, gap repair and repair of ionising radiation 

damage (Bennett and Holloman, 2001;Kojic et al., 2002). However, genomic 

instability and the accumulation of gross chromosomal rearrangements were 

additionally observed in brh2 mutants (Kojic et al., 2002). Interactions between 
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Brh2 and Rad51 were shown to occur at the single BRC repeat motif and also an 

extreme C-terminal motif thought to be analogous to the C-terminal Rad51-

binding motif in mammalian BRCA2 (Kojic et al., 2002;Kojic et al., 2005), though 

no sequence homology can be found. In vitro experiments have shown that Brh2 

nucleates Rad51 filament formation at a dsDNA/ssDNA junction, promotes 

filament elongation and thereby stimulates DNA recombination (Yang et al., 

2005;Mazloum, Zhou, and Holloman, 2007). U. maydis Brh2 is unusual in that the 

N-terminal domain, containing the single BRC repeat, was shown to be sufficient 

for rescue of the brh2 mutant phenotype (Zhou, Kojic, and Holloman, 2009). 

However, the discovery of an additional DNA-binding domain, that was not 

identifiable by sequence analysis, explained this result (Zhou, Kojic, and 

Holloman, 2009). Deletion of this non-canonical N-terminal DNA-binding domain 

creates a requirement for Rad52 for DNA repair activity (Kojic et al., 2011). Brh2 

also possesses inherent DNA annealing activity and an ability to perform second 

end capture; these functions are thought to enable the single-strand annealing 

and synthesis-dependent strand-annealing pathways in this highly radiation 

resistant organism (Mazloum, Zhou, and Holloman, 2007;Mazloum, Zhou, and 

Holloman, 2008;Mazloum and Holloman, 2009). Brh2 has additionally been shown 

to promote template-switching reactions that enable recombinational bypass of 

lesions that occur during DNA replication (Mazloum and Holloman, 2009). 

1.5.3  DNA repair in T. brucei 

Many genes involved in DNA repair mechanisms have been identified in T. 

brucei, most notably RAD51, BRCA2, MRE11, DMC1, KU70/KU80 and four RAD51 

paralogues. T. brucei contains homologues of the KU70 and KU80 proteins, which 

have been shown to function in telomere maintenance in this organism (Conway 

et al., 2002a;Janzen et al., 2004). However, evidence of NHEJ has not been 

obtained and the apparent absence of the key DNA ligase IV and XRCC4 proteins 

may be a possible explanation for this (Burton et al., 2007). Mutation of the 

MRE11 homologue identified in T. brucei has been shown to cause retarded 

growth, impaired HR, an accumulation of gross chromosomal rearrangements 

and increased sensitivity to DNA damaging agents (but not MMS). Despite this, 

evidence for a role in antigenic variation was not seen (Tan, Leal, and Cross, 

2002;Robinson et al., 2002). T. brucei DMC1 has been identified as a close 

homologue of RAD51, which groups with DMC1 from other eukaryotes in 
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phylogenetic analysis (Proudfoot and McCulloch, 2006). Consistent with this, 

mutation of DMC1 does not result in any detectable changes in DNA repair, 

recombination or antigenic variation in bloodstream form cells, which grow 

exclusively by mitotic division (Proudfoot and McCulloch, 2006). The likelihood 

that T. brucei DMC1 contributes to the meiotic genetic exchange that has been 

recorded in the tsetse fly (Tait and Turner, 1990;Gibson and Stevens, 1999) is 

consistent with evidence that expression of the protein appears limited to a 

previously unidentified meiotic life cycle stage in the tsetse salivary glands 

(Peacock et al., 2011), though experiments to show that mutation of the gene 

impairs this process are lacking. Mutation of the RAD51 homologue identified in 

T. brucei has been shown to cause retarded growth, sensitivity to DNA damaging 

agents, impaired homologous recombination and antigenic variation, with down-

regulation of both in situ and transcriptional VSG switching observed (McCulloch 

and Barry, 1999). However, VSG switches were still observed, so alternative, 

RAD51-independent mechanisms for VSG switching must exist. After the 

induction of DNA damage T. brucei RAD51 is detected in clearly visible 

subnuclear foci (Proudfoot and McCulloch, 2005). The levels of RAD51 expression 

upon the induction of DNA damage in T. brucei do not increase, in contrast to 

the up-regulation observed in other closely related organisms, including T. cruzi 

(Regis-da-Silva et al., 2006) and L. major (McKean et al., 2001). T. brucei 

contains four RAD51 paralogues (RAD51-3, RAD51-4, RAD51-5 and RAd51-6), 

which is an unusually large repertoire among protists (Dobson et al., 2011). Each 

of the four paralogues has been systematically mutated and all have been shown 

to cause impaired DNA repair and homologous recombination. However, only one 

paralogue (RAD51-3) has been shown to impair VSG switching (Proudfoot and 

McCulloch, 2005;Dobson et al., 2011). RAD51-3 and RAD51-4 have been shown to 

interact with each other in vivo, and interactions between RAD51-3 and RAD51-

6, and RAD51-4 and RAD51-6 have been detected in vitro (Dobson et al., 2011). 

As mentioned previously (section 1.3.2.1), micro-homology mediated end joining 

has been demonstrated to play a significant, secondary role to HR in DNA repair 

in trypanosomes (Conway et al., 2002b;Burton et al., 2007;Glover, McCulloch, 

and Horn, 2008), and may yet prove to play an important role in genome 

evolution and antigenic variation in this organism (Glover, Jun, and Horn, 2011).  



Chapter 1  68 

1.5.3.1  T. brucei BRCA2 

The T. brucei homologue of BRCA2 (predicted 1,649 amino acids) was identified 

by BLAST searching the T. brucei genome sequence with the sequence of the 

human BRCA2 polypeptide (Lo et al., 2003;Hartley and McCulloch, 2008). The 

most striking feature of T. brucei BRCA2 was the prediction of the presence of 

15 BRC repeat motifs from the genome sequence of TREU 927 (Figure 1-18). This 

number of BRC repeat motifs is a remarkable expansion that is particularly 

noticeable as BRCA2 proteins in other trypanosomatids contain between 1 and 3 

BRC repeats, which is more reminiscent of other unicellular organisms (Figure 

1-19). The BRC repeats of T. brucei BRCA2 display sequence conservation with 

BRC repeats from other organisms, and the sequence fingerprint residues 

identified as critical for Rad51 binding demonstrate this conservation (Figure 

1-20;Lo et al., 2003). However, the organisation of the BRC repeats is unlike 

that seen in multiple BRC repeat BRCA2 homologues in other organisms. In 

contrast with the sequence divergence of the 8 individual BRC repeats of 

mammalian BRCA2, all but the most C-terminal BRC repeat in T. brucei BRCA2 

are identical in sequence. In addition, whereas the human BRC repeats are 

dispersed throughout the middle third of the polypeptide, the T. brucei BRC 

repeats are arranged as a near perfect array close to the N-terminus, with the 

intervening, non-BRC repeat sequences near-perfectly conserved between 

repeat units. Only one other organism is known to contain a BRCA2 with close to 

this number of BRC repeats: Trichomonas vaginalis (14 predicted BRC repeats; 

data not shown). However, here the BRC repeats are not so closely conserved 

relative to each as those in T. brucei, and the inter-BRC repeat sequences are 

not conserved. 

T. brucei BRCA2 displays considerable conservation in the region containing the 

DSS1/DNA-binding domain present in mammalian BRCA2 proteins. Amongst these 

motifs, the α-helical and OB domains 1 and 2 are remarkably conserved, and 

even the more C-terminal tower domain and OB domain 3, though less 

conserved, appear recognisable (Figure 1-21; Claire Hartley, PhD Thesis, 2008). 

Downstream of this DBD is a C-terminal extension, absent in U. maydis Brh2 and 

in A. thaliana BRCA2 (Figure 1-22), which shows limited overall sequence 

homology with human BRCA2. Nevertheless, within this domain a serine residue 

is positionally conserved adjacent to a proline and therefore bears a 
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resemblance to the C-terminal CDK phosphorylation site present at Serine 3291 

in mammalian BRCA2 proteins: in T. brucei BRCA2 this would correspond with 

Serine 1523 (Figure 1-22; Claire Hartley, PhD Thesis, 2008). The same motif, if 

functional, appears conserved also in T. cruzi, but not in L. major. Three 

putative NLS motifs have been proposed in T. brucei BRCA2 (Claire Hartley, PhD 

Thesis, 2008), two upstream of the BRC repeats and a single, bipartite sequence 

present downstream of the last BRC repeat. A divergent PhePP motif may also be 

present just downstream of the bipartite NLS (section 5.2.1). 

brca2-/- mutants in bloodstream form Lister 427 T. brucei cells display DNA 

repair phenotypes characterised by retarded growth, increased DNA damage 

sensitivity, impaired homologous recombination, impaired localisation of RAD51 

to subnuclear foci after DNA damage, and impaired antigenic variation. 

Interestingly, an accumulation of putative gross chromosomal rearrangements 

(GCRs) were observed after prolonged passaging (Hartley and McCulloch, 2008), 

and also a replication phenotype that is manifest as an increase in the number of 

cells with aberrant DNA configurations, as measured by DAPI staining and 

counting of individual cells. Further analysis of these ‘others’ showed they are 

mainly 1N0K and 2N1K cells, suggesting progression through cytokinesis before 

the completion of mitosis. Consistent with this was an observed increase in the 

number of 2N2K cells in which the two nuclei were visibly connected, rather 

than being separate in the cell (Claire Hartley, PhD Thesis, 2008). 

In an attempt to determine the function of the BRC repeat expansion in T. 

brucei BRCA2, brca2-/- mutant cells were complemented with a variant of 

BRCA2 containing a single BRC repeat (the divergent C-terminal repeat), which 

restored the growth, replication, and VSG switching phenotypes to wild-type 

levels, but not the recombination, DNA damage sensitivity, or RAD51 foci 

formation defects (Hartley and McCulloch, 2008;Claire Hartley, PhD Thesis, 

2008). The brca2-/- mutant cells were also complemented with a variant of 

BRCA2 containing the BRC repeat domain fused to the T. brucei RPA50 subunit 

that is homologous to the 70 kDa RPA-1 of eukaryotes, in a recapitulation of 

successful experiments in mammalian and U. maydis cells (Kojic et al., 

2005;Saeki et al., 2006). This led to the restoration of the DNA repair and 

recombination phenotypes and to the conclusion that the C-terminal DBD was 

not required for DNA repair, as seen in other organisms. However, the 
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replication phenotype was not complemented, leading to the conclusion that the 

C-terminal domain of BRCA2 is critical for replication progression, though the 

basis for this was unclear (Claire Hartley, PhD Thesis, 2008). This C-terminal 

domain of BRCA2 has been suggested to interact in vitro with part of the T. 

brucei homologue of CDC45 (Oyola, Bringaud, and Melville, 2009), which is a 

protein essential for the initiation and progression of DNA replication (Chapter 

6;Zou, Mitchell, and Stillman, 1997). The BRC repeats of T. brucei BRCA2 have 

also been suggested to interact with RAD51 and the four RAD51 paralogues by 

yeast 2-hybrid, with a single BRC repeat sufficient for binding to RAD51-3 and 

RAD51-5 (Hall et al., 2011), although the function of these interactions, not seen 

to date in any other organism, remains to be elucidated. 

 
Figure 1-18 A schematic representation of T. brucei BRCA2 and its putative functional 
domains. 
The diagram represents the predicted functional dom ains of T. brucei BRCA2, including the 
BRC repeats 1-14 (red bars), BRC repeat 15 (dark re d bar), NLS (light blue bar), PhePP motif 
(orange bar), alpha helical domain (green oval), OB  domains (blue boxes), tower domain 
(purple box), and putative CDK phosphorylation site  (light green bar). Figure adapted from 
Claire Hartley, PhD Thesis, 2008. 

 
Figure 1-19 Representation of the number of BRC rep eats in BRCA2 proteins from 
trypanosomatids and other eukaryotes. 
BRC repeat motifs are displayed (red bars), and the ir position within the BRCA2 
polypeptides are shown. Protein sizes in amino acid  residues are indicated. Figure 
reproduced from Hartley and McCulloch, 2008. 
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Figure 1-20 Multiple sequence alignment of the BRC repeats from trypansomatids and 
humans. 
The polypeptide sequences of the BRC repeats were t aken from T. brucei, T. congolense, T. 
vivax, T. cruzi and H. sapiens. Residues that are identical in greater than 50% o f the 
sequences are shaded in black and similarly conserv ed residues shaded in grey. Figure 
reproduced from Claire Hartley, PhD Thesis, 2008. 

 
Figure 1-21 Alignment of the C-terminal DNA/DSS1-bi nding domains of BRCA2. 
Multiple sequence alignment of the C-terminal DNA/D SS1-binding domains of the BRCA2 
proteins from T. brucei, T. cruzi, L. major, H. sapiens, G. gallus, A. thaliana and U. maydis. 
Residues that are identical in at least 50% of the proteins are shaded in black and similarly 
conserved residues are shaded in grey. The coloured  blocks within the alignment represent 
the corresponding domains in the diagram of BRCA2 s hown above. Figure adapted from 
Claire Hartley, PhD Thesis, 2008. 



Chapter 1  72 

 
Figure 1-22 C-terminal alignment around a CDK phosp horylation site in human BRCA2. 
Multiple sequence alignment of the C-terminus of th e BRCA2 proteins from T. brucei, T. 
cruzi, L. major, H. sapiens, G. gallus, A. thaliana and U. maydis. Residues that are identical 
in at least 50% of the proteins are shaded in black  and similarly conserved residues are 
shaded in grey. The putative CDK phosphorylation si te is highlighted (CDK). Figure adapted 
from Claire Hartley, PhD Thesis, 2008. 

1.6 Rad51 

Rad51, the eukaryotic HR recombinase (Radding, 1991;Sung, 1994;Sung and 

Robberson, 1995), appears to be one of only a small number of proteins that are 

universally conserved, with orthologues named RecA and RadA found in bacteria 

and archea, respectively (Ogawa et al., 1993). This implies that HR is an 

essential process for the propagation of all living cells. Human Rad51 is a protein 

of 37 kDa that possesses a core domain, termed the RecA-fold, which contains 

Walker A and B motifs that are responsible for ATP binding and hydrolysis 

(Walker et al., 1982). In the absence of DNA, Rad51 forms inactive heptameric 

ring structures (Shin et al., 2003). In the presence of DNA, Rad51 forms a highly 

ordered right-handed nucleoprotein filament (Benson, Stasiak, and West, 1994). 

Interactions between Rad51 monomers are thought to occur via an 

oligomerisation motif located at the subunit interface (Shin et al., 2003). The 

Rad51 nucleoprotein filament forms with equal affinity on ss- and dsDNA, with a 

stoichiometry of 3 - 4 bp per protein (Benson, Stasiak, and West, 1994). DNA in 

the nucleoprotein filament is under-wound and extended by ~ 50% relative to B-

form DNA (Ogawa et al., 1993;Arata et al., 2009). These Rad51 nucleoprotein 

filaments are active and possess DNA pairing, strand invasion and strand 

exchange activities (Shinohara, Ogawa, and Ogawa, 1992;Baumann and West, 

1997), which are stimulated by RPA, through removal of secondary structure in 
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the ssDNA tail (McIlwraith et al., 2000), and by Ca2+, through a reduction in the 

ATPase activity of Rad51 thereby maintaining the filament in an active, stable 

state (Bugreev and Mazin, 2004;Chi et al., 2006). No intrinsic polarity preference 

for DNA has been observed, and filaments form on both the 3’ and 5’ ssDNA tails 

produced by the processing of a DSB (McIlwraith et al., 2000). Rad51 

nucleoprotein filament assembly occurs in two steps: nucleation and growth. 2 – 

5 Rad51 monomers are required to form a stable nucleation event and growth 

occurs in vitro to a finite length (Van der Heijden et al., 2007;Mine et al., 

2007;Hilario et al., 2009). It is thought that in vivo Rad51 filaments are made up 

of many small fragments arising from multiple nucleation events, and the highly 

dynamic and flexible nature of this Rad51 filament is thought to facilitate strand 

exchange (Galletto et al., 2006). Filament disassembly after the completion of 

strand exchange requires Rad54, an ATP-dependant DNA translocase, and also 

the hydrolysis of ATP by Rad51 (Amitani, Baskin, and Kowalczykowski, 2006;Li et 

al., 2007). 

When bacteria are exposed to DNA damage, expression of the bacterial 

recombinase (RecA) is induced to increase more than 15 fold in an ‘SOS 

response’ (Little and Mount, 1982;Walker, 1984;Janion, 2008); mammalian cells 

do not exhibit such an induction (Tarsounas, Davies, and West, 2004;Michel, 

2005), but it is common in eukaryotes as diverse as yeast and T. cruzi (Regis-da-

Silva et al., 2006;Putnam, Jaehnig, and Kolodner, 2009), suggesting mammals 

may be the exception. When DNA damage is detected, Rad51 and other repair 

proteins that are normally diffuse throughout the nucleus (Haaf et al., 

1995;Scully et al., 1997) are rapidly relocated and concentrated into subnuclear 

complexes that are microscopically detected as foci. This creates an effect 

whereby the local concentration of repair enzymes is increased, forming what is 

considered a repair centre (Tarsounas, Davies, and West, 2004;Lisby and 

Rothstein, 2009), the precise composition and function of which remains 

unknown. Studies of the nuclear localisation and dynamics of mammalian Rad51 

have identified three pools of Rad51; a large mobile pool of Rad51 exists 

alongside two smaller, relatively immobile pools, one bound by BRCA2 and the 

other self-associated in oligomeric heptamers (Essers et al., 2002;Yu et al., 

2003). 
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1.7 Aims of this thesis 

The initial aim of this thesis was to further investigate the role of BRCA2 in the 

regulation of genome stability in T. brucei, with particular focus on the genetic 

dissection of the chromosomal rearrangements observed in brca2-/- mutants and 

the function of the unusual BRC repeat expansion. 

A second aim of this thesis was to define the interactions between T. brucei 

BRCA2 and RAD51 in the hope this would shed further light on the mechanism of 

the regulation of homology-directed DNA repair by BRCA2 in this organism. 

Finally, the putative function for T. brucei BRCA2 in the repair of stalled 

replication forks was further investigated, focusing on the proposed interaction 

with CDC45. 



75 

 Chapter 2: Methods and materials 



Chapter 2  76 

2.1 Trypanosome culture 

2.1.1  Trypanosome strains 

The bloodstream form (BSF) T. brucei strain used in this thesis is Lister 427 

(Rudenko et al., 1996;McCulloch, Rudenko, and Borst, 1997). This is a 

monomorphic strain, which usually only displays the long slender BSF cells. The 

switching frequency of the VSG being expressed is approximately 10-6 - 10-7 

switches/cell/generation (Lamont, Tucker, and Cross, 1986;Turner, 1997). The 

procyclic form (PCF) T. brucei strains used in this thesis are Lister 427 and TREU 

(Trypanosomiasis Research Edinburgh University) 927 (Turner et al., 1990). 

2.1.2  Trypanosome growth 

BSF cell density was determined microscopically using a Bright-Line 

haemocytometer (Hausser Scientific). In a 10 µl aliquot of culture, the number 

of parasites under a 1 mm square area (0.1 µl volume) was counted and 

multiplied by 104 to obtain the number of cells.ml-1 of culture. In vitro growth of 

BSF cells was carried out at 37°C in a humidified 5% CO2 incubator using HMI-9 

growth medium (Hirumi and Hirumi, 1989) supplemented with 20% (v/v) heat-

inactivated foetal calf serum (FCS; Sigma) and 1% (v/v) penicillin/streptomycin 

(Sigma). The population doubling time of this strain is approximately 8 hours 

(Proudfoot and McCulloch, 2006). To keep a working culture of BSF cell lines, 

cells were passaged three times weekly by the addition of 20 µl of a culture 

grown to a density of ~ 4 x 106 cells.ml-1 to 1.5 ml HMI-9 medium in a 24-well 

plate. BSF cultures were grown in petri dishes in volumes of up to 25 mls to 

obtain large numbers of cells. 

PCF cell density was determined using a Z2 Coulter Particle Count and Size 

Analyzer (Beckman Coulter) according to manufacturer’s instructions. 

Background counts due to particles in the culture medium were subtracted from 

readings of cell dilutions into IsoFlow Sheath Fluid (Beckman Coulter), typically 

of 1:1000. Output is given in cells.ml-1 of culture. In vitro growth of PCF cells 

was carried out at 27°C using a derivative of semi-defined medium (SDM-79;Brun 

and Schonenberger, 1979) supplemented with 10% (v/v) heat-inactivated FCS 

(Sigma) and 0.2% (v/v) Haemin (Sigma; diluted from 2 mg.mL-1 solution in 0.2 M 
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NaOH). The population doubling time of the PCF is approximately 10 hours. To 

keep a working culture of PCF cell lines, cells were passaged three times weekly 

by addition of 1 ml of a culture grown to a density of ~ 4 x 107 cells.ml-1 to 9 mls 

SDM-79 medium in a vented 25 cm2 tissue culture flask. PCF cultures were grown 

in vented 75 cm2 tissue culture flasks in volumes of up to 100 mls to obtain large 

numbers of cells. 

2.1.2.1  Stabilate preparation and retrieval 

For the long term storage of trypanosomes, stabilates were prepared by the 

addition of 100 µl of sterile 100% glycerol to 900 µl of culture grown to a density 

of ~ 2 x 106 cells.ml-1 (BSF) or ~ 8 x 106 cells.ml-1 (PCF). These 1 ml aliquots were 

placed in 1.2 ml cryotubes (Nunc), before being wrapped in cotton wool, frozen 

slowly at - 80°C overnight and then transferred to liquid nitrogen storage. For 

retrieval of stabilates from liquid nitrogen storage, frozen cells were defrosted 

at 37°C (BSF) or 27°C (PCF), and placed in 10 mls HMI-9 growth medium (BSF) or 

5 mls SDM-79 growth medium (PCF) overnight; cells were then passaged normally 

as described above. 

2.1.3  Stable, clonal transformation of trypanosome s 

BSF cells were grown to a density of ~ 2 x 106 cells.ml-1 and centrifuged at room 

temperature for 10 minutes at 583 x g. The cells were re-suspended in 

Zimmerman post-fusion medium (ZM; 5 M NaCl, 1 M KCl, 1 M Na2HPO4, 1 M 

KH2HPO4, 1 M MgOAc, 0.2 M CaCl2) supplemented with 1 M D-glucose (ZMG), at a 

concentration of 1 x 108 cells.ml-1. 5 x 107 cells per transformation were 

electroporated in 500 µl ZMG at 1.5 kV and 25 µF capacitance using a BioRad 

Gene Pulser II. Approximately 5 µg of purified DNA in a maximum volume of 10 

µl, that had been restriction digested and ethanol precipitated was routinely 

used for transformations. After electroporation, cells were placed in 10 mls HMI-

9 for 24 hours before being subjected to antibiotic selection. The recovered cells 

were centrifuged at room temperature for 10 minutes at 583 x g and re-

suspended in HMI-9 supplemented with the appropriate antibiotics at a 

concentration of 5 x 105 cells.ml-1. 1-2 x 107 cells were plated out in 1.5 ml 

aliquots over two 24 well plates. Transformants were counted after 7-10 days by 

looking at the plates using a light microscope (Leitz) and counting the number of 
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wells that contained growing cells. The population of cells in a well should have 

descended from a single transformant, and could therefore be considered as 

clonal, so long as less than 80% of the wells contain living cells (Wickstead, 

Ersfeld, and Gull, 2003). Typically six clones were chosen and expanded for 

further analysis. 

PCF cells were grown to a density of ~ 8 x 106 cells.ml-1 and centrifuged at room 

temperature for 10 minutes at 583 x g. The cells were re-suspended in 

Zimmerman post-fusion medium (ZM; 5 M NaCl, 1 M KCl, 1 M Na2HPO4, 1 M 

KH2HPO4, 1 M MgOAc, 0.2 M CaCl2), at a concentration of 1 x 108 cells.ml-1. 5 x 

107 cells per transformation were electroporated twice in 500 µl ZM at 1.5 kV 

and 25 µF capacitance using a BioRad Gene Pulser II. Approximately 5 µg of 

purified DNA in a maximum volume of 10 µl, that had been restriction digested 

and ethanol precipitated was routinely used for transformations. After 

electroporation, cells were placed in 10 mls of SDM-79 for 24 hours before being 

subjected to antibiotic selection. The recovered cells were diluted to 

concentrations of 103, 104, 105 and 106 cells in 20 mls of conditioned media (75% 

(v/v) SDM-79, 10% (v/v) FCS, 15% (v/v) SDM-79 conditioned by growth of wild-

type PCF cells to ~ 8 x 106.ml-1, centrifuged and filter sterilised to remove 

trypanosomes) supplemented with the appropriate antibiotics, and plated out 

over four 96-well plates (175 µl per well). Transformants were counted after 10-

14 days by looking at the plates under a light microscope (Leitz) and counting 

the number of wells that contained growing cells. The population of cells in a 

well should have descended from a single transformant, and could therefore be 

considered as clonal, so long as less than 20% of the wells contain living cells. 

Typically six clones were chosen and expanded for further analysis. 

2.1.4  Re-cloning of polyclonal trypanosome populat ions 

After prolonged passaging of trypanosome cultures, clonal populations were 

obtained by re-cloning the cell cultures prior to further analysis. BSF cells were 

grown to a density of ~ 2 x 106 cells.ml-1 before plating out cells in two 24 well 

plates on HMI-9 supplemented with the appropriate antibiotics at a 

concentration of ~ 12 cells per plate. Clones typically emerged after 7-10 days 

and were counted by looking at the number of wells containing living cells using 

a light microscope (Leitz). The population of cells in a well should have 
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descended from a single cell, and could therefore be considered as clonal, so 

long as less than 80% of the wells contain living cells (Wickstead, Ersfeld, and 

Gull, 2003). Typically six clones were selected and expanded for further 

analysis. 

PCF cells were grown to a density of ~ 8 x 106 cells.ml-1 before plating out cells 

in four 96 well plates on conditioned media supplemented with the appropriate 

antibiotics at concentrations of 103, 104, 105 and 106 cells per plate. Clones 

typically emerged after 10-14 days and were counted by looking at the number 

of wells containing living cells using a light microscope (Leitz). The population of 

cells in a well should have descended from a single cell, and could therefore be 

considered as clonal, so long as less than 20% of the wells contain living cells. 

Typically six clones were selected and expanded for further analysis. 

2.2 Isolation of material from trypanosomes 

2.2.1  Isolation of genomic DNA 

Genomic DNA (gDNA) was prepared using the DNeasy Blood and Tissue kit 

(Qiagen). 10 mls of BSF grown to a density of ~ 4 x 106 cells.ml-1 or 5 mls of PCF 

grown to a density of ~ 2 x 107 cells.ml-1 were harvested by centrifugation at 

1620 x g for 10 minutes at room temperature, washed with 1 ml PBS, before DNA 

extraction according to manufacturer’s protocol. 

Genomic DNA that was to be subsequently used for restriction digestion and 

Southern blot analysis was prepared using the Gentra Puregene cell kit (Qiagen). 

50 mls of BSF grown to a density of ~ 4 x 106 cells.ml-1 or 20 mls of PCF grown to 

a density of ~ 2 x 107 cells.ml-1 were harvested by centrifugation at 1620 x g for 

10 minutes at room temperature. Cell pellets were washed twice with 1 ml PBS 

before DNA extraction according to manufacturer’s protocol. The concentration 

of gDNA extracted was quantified using a spectrophotometer (Eppendorf) to 

measure the absorbance at 260nm, typically using a dilution of 1 µl of gDNA into 

49 µl of dH2O. 
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2.2.2  Genomic plug preparation 

Each genomic agarose plug prepared for the work in this thesis contained ~ 1 x 

108 PCF cells. PCF cells were grown to a density of ~ 8 x 106 cells.ml-1, 

centrifuged at 2500 x g for 5 minutes at room temperature and washed twice in 

25 mls of cold Trypanosome Dilution Buffer (TDB; 120 mM NaCl, 1.2 mM KH2PO4, 

30 mM TES, 40 mM NaH2PO4, 5 mM NaHCO3, 5 mM KCl, 10 mM D-Glucose, 1 µM 

MgSO4.7H2O). The pellet was then re-suspended in 50 µl TDB and warmed at 

37°C for 2 minutes, before adding an equal volume of pre-warmed 1.4% Hi-

strength Low Melting Point (LMP) agarose (Biogene) made with dH2O. This 

mixture was swirled to mix before filling disposable plug moulds (BioRad) with 

100 µl of the agarose/trypanosome solution and leaving for 15 minutes at room 

temperature to set. Plug moulds were submerged in ice cold NDS buffer, pH 9.0 

(0.5 M EDTA, 10 mM Tris and 34.1 mM lauroyl sarcosine) for 10 minutes at 4°C. 

The agarose plugs were then removed from the moulds, incubated in 1 ml NDS 

buffer, pH 9.0 containing 1 mg.ml-1 proteinase K (Invitrogen) at 50°C for ~ 24 

hours and then transferred into 1 ml NDS buffer, pH 8.0 containing 1 mg.ml-1 

proteinase K at 50°C for ~ 24 hours. The plugs were finally transferred into 1 ml 

NDS buffer, pH 8.0 for storage at 4°C indefinetly. 

2.2.3  Isolation of RNA 

2 x 107 BSF or PCF cells from cultures grown to densities of ~ 2 x 106 cells.ml-1 

and ~ 8 x 106 cells.ml-1 respectively, were centrifuged at 583 x g for 10 minutes 

at room temperature. Cell pellets were washed once with 1ml PBS. Cell pellets 

were stored at - 80°C until required. Total RNA was extracted using the RNeasy 

mini kit (Qiagen) according to manufacturer’s instructions. On-column DNase 

treatment (Qiagen) was carried out according to manufacturer’s instructions for 

RNA to be subsequently used for qRT-PCR (section 2.5.5). 

2.2.4  Protein extraction 

2.2.4.1  For SDS-PAGE separation 

25 mls of BSF cells grown to a density of ~ 4 x 106 cells.ml-1, or 10 mls of PCF 

cells grown to a density of ~ 2 x 107 cells.ml-1, were harvested by centrifugation 

at 1620 x g for 10 minutes at room temperature and washed once with 1 ml PBS. 
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The pellet was re-suspended in SDS-PAGE sample buffer (0.5 M Tris-HCL, pH 6.8, 

20% Glycerol, 10% SDS, 5% 2-mercaptoethanol, 0.1% (w/v) bromophenol blue, 

170 mM DTT) to a concentration of 5 x 108 cells.ml-1. Protein extracts were 

denatured at 98°C for 5 minutes prior to electrophoretic separation (section 

2.8.3). 

2.2.4.2  For co-immunoprecipitation 

3 x 108 PCF cells from a culture grown to a density of ~ 8 x 106 cells.ml-1 were 

centrifuged at 1620 x g for 10 minutes at room temperature. The cell pellet was 

washed twice with 1 ml PBS prior to resuspension in 500 µl Trypanosome Lysis 

Buffer (TLB; 20 mM Tris-HCl (pH 8.0), 400 mM NaCl, 1 mM EDTA, 0.5% Nonidet P-

40, 10% Glycerol, 1 mM DTT, 1 x Complete EDTA-free Protease Inhibitor Cocktail 

(Roche)). Cell suspensions were frozen at - 80°C until required. Frozen cell 

suspensions were defrosted on ice and then lysed by vortexing for 30 seconds at 

high speed before incubation on ice for 30 minutes. Cell debris was pelleted by 

centrifugation at 20,000 x g for 20 minutes at 4°C. The supernatant was 

transferred to a clean eppendorf and used immediately for experiments (section 

2.12). 

2.2.5  Aqueous fractionation  

Aqueous fractionation was performed to separate the soluble nuclear and 

cytoplasmic proteins from T. brucei as described in Zeiner et al., (2003). 5 x 108 

PCF cells from a culture grown to a density of ~ 8 x 106 cells.ml-1 were 

centrifuged at 1620 x g and washed twice in 5 ml ice cold Fractionation Buffer A 

(FBA; 150 mM sucrose, 20 mM KCl, 3 mM MgCl2, 20 mM HEPES-KOH (pH 7.9), 1 

mM DTT, and 1 x Complete EDTA-free Protease Inhibitor Cocktail (Roche)). The 

cell pellet was re-suspended in 1 ml of FBA and 0.2% Nonidet P-40 (Calbiochem) 

was added. The cell suspension was passed through a 26-gauge syringe needle 

three times. The suspension was centrifuged at 20,000 x g for 10 minutes at 4°C. 

The supernatant was separated and centrifuged again at 20,000 x g at 4°C. This 

supernatant contains the soluble cytoplasmic proteins. The cell pellet was re-

suspended in 500 µl of FBA and passed through a 26-guage syringe needle 15 

times. The suspension was centrifuged at 20,000 x g at 4°C for 10 minutes. The 
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supernatant was removed and the pellet re-suspended in 500 µl of FBA. This 

suspension contains the soluble nuclear proteins. 

2.3 Phenotype analysis 

2.3.1  In vitro growth and doubling time 

In vitro growth analysis was carried out on BSF cells by inoculating 2 ml cultures 

with 5 x 104 cells.ml-1, from a culture grown to a density of ~ 2 x 106 cells.ml-1. 

The numbers of cells were counted at 24, 48, and 72 hours subsequently using a 

Bright-Line haemocytometer (Hausser Scientific). 

For PCF cells, a 2 ml culture was inoculated with 5 x 105 cells.ml-1, from a 

culture grown to a density of ~ 8 x 106 cells.ml-1. The numbers of cells were 

counted at 24, 48, and 72 hours subsequently using a Z2 Coulter particle count 

and size analyzer (Beckman Coulter). 

Three repetitions of each cell line were carried out and the results plotted on a 

semi-logarithmic scale. The doubling time for the cell populations were 

calculated by comparing the cell count in mid-log phase using the following 

equation: Time Elapsed ÷ (3.3 x Log [Cell count at the end of time elapsed ÷ Cell 

count at the beginning]), where the time elapsed is in hours, and the cell count 

is in cells.ml-1. All population doubling times calculated in this thesis were 

determined using cell counts obtained between 24 and 48 hours. 

2.3.2  DNA damage sensitivity 

The sensitivity of trypanosomes to DNA damaging agents can be analysed using 

the Alamar Blue assay (Raz et al., 1997;Onyango, Burri, and Brun, 2000). Alamar 

Blue (resazurin sodium salt; Sigma) is a blue-coloured, non-fluorescent 

compound. However, in actively metabolising cells, resazurin is reduced to 

resorufin, which is pink and highly fluorescent (Raz et al., 1997;O'Brien et al., 

2000). Cells were grown to a density of ~ 2 x 106 cells.ml-1 (BSF) or ~ 8 x 106 

cells.ml-1 (PCF). First, the 96 well plate (Nunc) was prepared; 100 µl of the 

corresponding media was added to all wells except for the first column. To the 

first column, 200 µl of the stock of MMS or phleomycin were added (0.01% and 4 
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µg.ml-1 respectively for BSF or 0.08% and 32 µg.ml-1 respectively for PCF). A two-

fold serial dilution was made by taking 100 µl from the first column and mixing it 

with the next column. Then 100 µl from the second column was added to the 

third column and mixed, and so on until the last column to which no drug was 

added. To each row, 100 µl of cells at a density of 2 x 105 cells.ml-1 (BSF) or 5 x 

105 cells.ml-1 (PCF) were added, except for the last row which was left with no 

cells as a background control. These cells were allowed to grow for 48 hours at 

their respective normal culture temperatures, after which 20 µl of 0.125 mg.ml-1 

resazurin sodium salt (Sigma) in PBS was added. This was then incubated for 24 

hours and the plate read by a spectrophotometer using filters of 540 nm 

excitation and 590 nm emission (Wallac Envision, 2102 Multi-label reader) and 

the data analysed using Microsoft Office Excel and GraphPad Prism4. In Excel, 

average background counts with no cells added were subtracted from all values 

and percentage survival was calculated relative to no drug controls. In 

GraphPad, these data were transformed using X=Log(X) and nonlinear regression 

(curve fitting) was then performed. EC50 values relative to the wild type cell 

line in each case were plotted with 95% confidence intervals. 

2.3.2.1  Hydroxyurea damage 

Hydroxyurea (HU) inhibits ribonucleotide reductase, an enzyme involved in 

deoxyribonucleotide triphosphate (dNTP) synthesis and thereby causes a stall in 

DNA replication (Hofer et al., 1997). PCF cells grown to a density of ~ 4 x 106 

cells.ml-1 were treated with 0.3 mM HU for 16 hours (2 cell cycles). The effect of 

HU was confirmed by FACS analysis of cells (section 2.3.3;Forsythe, McCulloch, 

and Hammarton, 2009). 

2.3.2.2  Phleomycin damage 

Phleomycin is a group of copper-containing antibiotic peptides of the bleomycin 

family first isolated from Streptomyces verticillus. It has been shown to inhibit 

DNA synthesis by blocking the activity of DNA polymerase and inducing the 

formation of DNA double strand breaks (Falaschi and Kornberg, 1964;Reiter, 

Kelley, and Milewski, 1972). PCF cells grown to a density of ~ 4 x 106 cells.ml-1 

were treated with 1-2 µg.ml-1 phleomycin for 18-24 hours, as indicated. BSF 
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cells grown to a density of ~ 1 x 106 cells.ml-1 were treated with 0.25-1 µg.ml-1 

phleomycin for 18 hours, as indicated. 

2.3.2.3  Methyl methanesulphonate damage 

Methyl methanesulphonate (MMS) is an alkylating agent that methylates DNA to 

produce methylated purines at the 7’ position of guanine residues and the 3’ 

position of adenine residues (Brookes and Lawley, 1961;Reiter et al., 1967). PCF 

cells grown to a density of ~ 4 x 106 cells.ml-1 were treated with MMS as 

indicated. 

2.3.3  Fluorescent Activated Cell Sorting Analysis 

For fluorescent activated cell sorting (FACS) analysis, 1 x 106 cells from a culture 

of PCF cells grown to a density of ~ 8 x 106 cells.ml-1 were pelleted by 

centrifugation at 583 x g for 10 minutes at room temperature, washed once with 

1 ml PBS and re-suspended in cold 70% methanol (v/v) in PBS. The cells were 

fixed by incubation at 4°C overnight. After fixation, cells were washed in 10 ml 

of ice cold PBS, re-suspended in 1 ml of PBS containing 10 µg.ml-1 propidium 

iodide (Sigma) and 10 µg.ml-1 RNase A (Sigma), and incubated at 37°C for 45 

minutes. FACS was performed with a Becton Dickinson FACSCalibur using 

detector FL2-A and an AmpGain value of 1.75. 

2.4 Microscopy 

2.4.1  Cell cycle analysis 

In order to analyse the cell cycle, cells were prepared for microscopy by DAPI 

staining (4, 6-diamidino-2-phenylindole; Vector Laboratories). DAPI stain binds 

preferentially to dsDNA and fluoresces under UV light, allowing the DNA content 

of fixed cells to be analysed. 100 µl of BSF cells grown to a density of ~ 2 x 106 

cells.ml-1 or 50 µl of PCF cells grown to a density of ~ 8 x 106 cells.ml-1 were 

spread thinly on a microscope slide and allowed to air dry. Cells were fixed by 

immersion in methanol at room temperature for 10 minutes. Slides were allowed 

to air dry before placing two drops of vectashield with DAPI (1.5 µg.ml-1; Vector 

Laboratories) onto the slide, positioning a coverslip and sealing the slide with 

clear nail varnish. Differential interface contrast (DIC) was used to visualise 
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intact cells and UV (461 nm) to visualise DAPI using a Zeiss Axioskop microscope. 

Cells were counted according to the number of nuclei and kinetoplasts they 

contained. Cells in G1 phase of the cell cycle contain 1 nucleus and 1 kinetoplast 

(1N1K). Kinetoplast division then occurs resulting in cells with 1 nucleus and 2 

kinetoplasts (1N2K). After this, the nucleus divides leading to cells containing 2 

nuclei and 2 kinetoplasts (2N2K). Completion of cytokinesis forms two daughter 

cells in G1 phase, containing 1 nucleus and 1 kinetoplast (1N1K). Any cells that 

were observed not to be in these cell cycle phases were noted as being aberrant 

cell types and were described as ‘others’. 

2.4.2  Immunolocalisation 

Endogenously expressed epitope-tagged proteins were visualised by 

immunolocalisation using a microscope. 5 x 105 PCF cells from a culture grown to 

a density of ~ 8 x 106 cells.ml-1, or 5 x 106 BSF cells from a culture grown to a 

density of ~ 2 x 106 cells.ml-1, were centrifuged at 735 x g for 5 mins and washed 

in 1 ml ice cold PBS. The cell pellet was re-suspended in 50 µl ice cold PBS 

before being spread thinly on a silane prep glass slide (Sigma) and allowed to air 

dry. Cells were fixed by soaking in cold methanol for 15 minutes. Excess 

methanol was washed off by submersion in ice cold PBS twice before blocking in 

2% FCS in PBS for 1 hour to overnight. Primary antibodies (Table 2-2) were 

diluted to the required concentration in 2% FCS in PBS and incubated on the 

slide for 1 hour. Excess antibody was washed off with 2% FCS in PBS and the 

procedure repeated with the secondary Alexa Fluor-conjugated antibody 

(Invitrogen, Table 2-3). The slides were washed for the final time in ice cold PBS 

and dried to remove excess liquid. One drop of DAPI (Vector laboratories) was 

added to the slide and a coverslip positioned and sealed with clear nail varnish. 

A FITC (520 nm) filter was used to visualise Alexa Fluor 488 conjugated 

antibodies, a Rhodamine (673 nm) filter was used to visualise Alexa Fluor 594 

conjugated antibodies, differential interface contrast (DIC) was used to visualise 

intact cells and UV (461 nm) was used to visualise DAPI using a Zeiss Axioskop 

microscope. High resolution images were obtained with a Deltavision confocal 

microscope using the same slides. De-convolution was carried out and flattened 

projections of the resulting image slices obtained using softWoRx Explorer 

(Applied Precision) are shown. 
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2.5 Molecular biology techniques 

2.5.1  Primer design 

Gene sequences were downloaded from GeneDB (www.genedb.org) using the 

gene accession number. Sequences were viewed in CLC Genomics Workbench 4 

(CLC Bio). Primers were designed using the web-based programme Primer 3 

(http://frodo.wi.mit.edu/primer3/). Restriction sites were added to the 5’ end 

of the primer along with an additional three cytosine bases at the 5’ terminus to 

allow efficient restriction digest of PCR products. Start and stop codons were 

added or removed as required and care was taken to ensure coding sequences 

remained in-frame with fusion tags after cloning. Mutagenesis primers were 

designed with the base pairs to be altered in the centre and 15 to 20 base pairs 

of flanking complementary sequence. Primers for qRT-PCR were designed using 

the Applied Biosystems qRT-PCR primer design programme. All oligonucleotides 

used in this thesis were synthesised by Eurofins MWG Operon 

(www.eurofinsdna.com) and are listed in Table 2-1. Appendix 1 displays the 

location of all primers within the T. brucei BRCA2 gene. 

No Sequence Restriction sites 
1 CCCACTAGTGCTGATACACTTTCACCGTG SpeI  
2 CCCCTCGAGCTACGGGTGCTGCATCGCCA XhoI  
3 CCCCTCGAGGCTACTGTGTCTTCTCGGAC XhoI  
4 CCCGGATCCCAACCGCACGTGCGTCTGGGTACT BamHI  
5 CCCAAGCTTGGCGGGAGCTTCCAGACGATGTG HindIII  
6 CCCTCTAGAGCGCCCGCCAGCGAGGGAGT XbaI  
16 CCCCTCGAGCTATTCTCGCATAAGATCAGCG XhoI  
32 CCCAAGCTTGAAGTGGAAAGTTTGTAGTGTCC HindIII  
33 CCCTCTAGATTCTCGCATAAGATCAGCG XbaI  
37 CCCCTCGAGGTTGAAGTGAGGGGTGGTTAGC XhoI  
40 CCCTCGCGAGGATCCCAACCGCACGTGCGTCTG NruI BamHI 
41 CCCTCGCGAGATATCAAAACATAGATTCACGCACACAC NruI EcoRV 
42 CCCTCTAGAGGACATTGTCATTCGCTGTAG XbaI  
43 CTCAAACCAAGGTAAGAGCTCCTTCCGTGCTTCAT   
44 ATGAAGCACGGAAGGAGCTCTTACCTTGGTTTGAG   
45 CAAAACAATGCGCTCAAACCAAGGTAAGAGAACCTTCCGTGCTTCAT   
46 ATGAAGCACGGAAGGTTCTCTTACCTTGGTTTGAGCGCATTGTTTTG   
48 ATACTTGTTTGCCGACACTGC   
49 TCGAGGACCTTAAATCCTCTACC   
51 CCCGGATCCATCCAAGCTAGCAAGAAAGC BamHI  
59 CGCTAATCAGCATGAAGTCG   
75 CCCGGATCCCACAAGTGCAGCACGTACCTTAAGC BamHI  
76 CCCCTCGAGCTATTCTGAAACCGTAATACTCTGC XhoI  
86 CTTTGTGCGAGCTGATGC   
87 CGTCCGGTGCTTTTCCTG   
88 AGGGTGAAACCCTCACACAG   
89 CTTTGCAGAGACAGCTCGTG   
91 CCCGGATCCCGCTAAGAATAAAGGAGCGGTTGC BamHI  
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93 CCCGGATCCCAGCCACAAAAAAGGAAGAC BamHI  
94 CCCCTCGAGCTATGTACGTGGCGTCCTCTTC XhoI  
97 TTGAAGCAGCGAACAAAGAC   
98 TGCCCCTTGTAGACCTATGC   
99 ACACTCGCAGCAATCCAAG   
100 AAAAAGCAGCAGCATTCACC   
101 TTAGAGAGCGGAACCAAAGC   
102 GCAGATAGCTGCTGCTAGGG   
103 CAAGGTGCCACCCTTAAATG   
104 CCTTTTGTGCCTTGTCCTTG   
112 CCCACTAGTAGCCACAAAAAAGGAAGAC SpeI  
113 CCCTCTAGACTCTTGGCCATTTTCAGTCCCG XbaI  
114 CCCTCTAGAATTCACATCTGCGCTTGTTG XbaI  
115 CCCGGATCCATAATCAGAATTTGACTTCCG BamHI  
116 CCCACTAGTAACACTCGCACCAAAAATAAG SpeI  
117 CCCGGTACCTTCTCAGCCTTTGCCTCAC KpnI  
118 CCCGGTACCACCGAAGTGTGCCTTTTGTC KpnI  
119 CCCGGATCCCCCCTGGTATACGCGTTAAG BamHI  
129 CCCGGATCCGCTGATACACTTTCACCGTG BamHI  
130 CCCCTCGAGTCAGCGCCCGCCAGCGAG XhoI  
133 AAGCGGTGCACCTAACTGAC   
138 GCTGCCTTCCGCTATGGAT   
139 CCACTCGCCCTTTCAAACAA   
140 ATGGCCAAGCCTTTGTCTC   
141 TTAGCCCTCCCACACATAACC   
142 TGGGGAGCAAAGATGAAAAC   
143 CCGTTGCCATAACGGGTCCC   
144 ATGACCGAGTACAAGCCC   
145 TCAGGCACCGGGCTTGCG   
146 TAACCTTTACAACAGAGCGCACAAACTTAA   
147 CGCTGGCTGTGGTGCTCAGAATCATGCAGA   
150 CAGGAGGATCGTTCGGCACCTTGGC   
151 CATGCGCCTGTGGTTCAGCATAGC   
152 CCCTCGAGGACATGACATTTCTTGACCC XhoI  
153 CCTCGCGAGGATCCATAATCAGAATTTGACTTCCG NruI BamHI 
154 TACGGAGTCCATTGTACCTG   
155 TTCAGGCTGGCCAATGCG   

Table 2-1 List of oligonucleotide primers used in t his thesis. 
Primer numbers referred to throughout the text are shown, as are the oligonucleotide 
sequences and restriction sites. Base pairs to be m utated during site-directed mutagenesis 
are indicated by underline . 

2.5.2  Polymerase Chain Reaction 

Template DNA used for polymerase chain reactions (PCRs) was typically 0.025 µg 

of gDNA prepared using DNeasy Blood and Tissue kit (Qiagen; section 2.2.1) or 

0.025 ng of circular plasmid prepared by QIAprep spin miniprep kit (Qiagen; 

section 2.7.2). 

For diagnostic PCR reactions Taq DNA polymerase (New England Biolabs [NEB]) 

was used, typically in a reaction of 25 µl containing 0.1 µM 5’ primer, 0.1 µM 3’ 

primer, 1 x ThermoPol Buffer (NEB), 200 µM dNTPs (Invitrogen), 0.5 Units of Taq 

DNA polymerase (NEB), and dH2O to 25 µl. PCRs were conducted in a Robocycler 
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(Stratagene) with typical conditions of 95°C for 5 minutes, followed by 25 to 30 

cycles of 95°C for 1 minute, 50-60°C for 1 minute, 72°C for 1 minute per kb of 

expected product, and a final cycle of 72°C for 10 minutes. 

For PCR reactions where low error rates were required the high fidelity Phusion 

DNA polymerase (Finnzymes) was used, typically in a reaction of 50 µl containing 

0.5 µM 5’ primer, 0.5 µM 3’ primer, 1 x Phusion High Fidelity (HF) buffer 

(Finnzymes), 200 µM dNTPs (Invitrogen), 1 Unit of Phusion DNA polymerase 

(Finnzymes), and dH2O to 50 µl. PCRs were conducted in a Robocycler 

(Stratagene) with typical conditions of 98°C for 5 minutes, followed by 30 to 35 

cycles of 98°C for 1 minute, 50-60°C for 1 minute, 72°C for 1 minute per kb of 

expected product, and a final cycle of 72°C for 10 minutes.  

2.5.2.1  PCR purification 

Specific PCR products required for cloning were routinely cleaned up using the 

QIAquick PCR purification kit (Qiagen) according to the manufacturer’s protocol. 

2.5.3  Site-directed mutagenesis 

Site-directed mutagenesis was carried using KOD hot start DNA polymerase 

(Novagen). Circular plasmid containing the sequence to be mutated was used as 

a template for a 50 µl PCR reaction containing 0.3 µM 5’ primer, 0.3 µM 3’ 

primer, 1 x KOD buffer (Novagen), 0.2 mM dNTPs (Invitrogen), 1.5 mM MgSO4, 1 

Unit of KOD DNA polymerase (Novagen), and dH2O to 50 µl. PCRs were conducted 

in a Robocycler (Stratagene) with typical conditions of 95°C for 5 mins, followed 

by 18 to 20 cycles of 95°C for 30 seconds, 50-60°C for 30 seconds, 70°C for 1 

minute per kb of plasmid. Template DNA was restriction digested with DpnI 

(Promega) for ~ 3 hours prior to transformation into E. coli (section 2.7). Plasmid 

DNA was extracted from E. coli colonies (section 2.7.2) and screened by 

sequencing (Eurofins MWG Operon). 

2.5.4  Reverse Transcription Polymerase Chain React ion 

Reverse Transcription PCR (RT-PCR) was carried out on 2 µg of the total RNA 

extracted from trypanosomes (section 2.2.3) in order to produce the cDNA 

required for quantitative real-time PCR (qRT-PCR; section 2.5.4). The 
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SuperScript First Strand Reverse Transcription kit (Invitrogen) was used 

according to manufacturer’s protocol. Random hexameric primers (Invitrogen) 

were used and controls without reverse transcriptase were prepared for each 

sample. cDNA was stored at - 20°C until required. PCR was carried out on the 

plus and minus RT cDNA samples generated in order to test for gDNA 

contamination. Primers for DNA polymerase I (150 and 151; Table 2-1) were used 

to amplify from the products of the cDNA reactions and the absence of PCR 

product from the minus RT samples confirms the absence of gDNA 

contamination. 

2.5.5  Quantitative Real-Time Polymerase Chain Reac tion 

qRT-PCR was carried out on the cDNA samples generated by RT-PCR (section 

2.5.4). qRT-PCR primers against the gene of interest were used together with 

qRT-PCR primers against an endogenous control gene (tubulin, 154 and 155). 

Power SYBR Green PCR master mix (Applied Biosystems) was used to set up the 

qRT-PCR reactions in a volume of 25 µl in a Micro Amp optical 96-well reaction 

plate (Applied Biosystems) before sealing with clear adhesive film (Applied 

Biosystems). Reactions were carried out in quadruplicate so that outliers could 

be discarded prior to data analysis. Plates were frozen at – 20°C until required. 

qRT-PCR was carried out on a 7500 Real Time PCR System machine (Applied 

Biosystems) using the standard cycling conditions and data was analysed using 

the 7500 System Software (Applied Biosystems). 

2.5.6  Restriction digest 

PCR products and plasmids for cloning were routinely digested by specific 

restriction endonucleases. A typical digest for cloning contained 2 µg of DNA, 1 x 

buffer specific to restriction enzyme (NEB), 100 µg.ml-1 BSA (NEB), up to 10 Units 

of restriction endonuclease enzyme (NEB) and dH2O to 50 µl. Reactions were 

incubated for 2 hours to overnight at 37°C. A typical digest for plasmid screening 

contained 0.25 µg of DNA, 1 x buffer specific to restriction enzyme (NEB), 100 

µg.ml-1 BSA (NEB), up to 2 Units of restriction endonuclease enzyme (NEB) and 

dH2O to 20 µl. Reactions were incubated for 1 hour at 37°C. 
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2.5.7  Phosphatase treatment 

Restriction digests of plasmid backbones subsequently required for ligation 

reactions were treated with Alakaline Phosphatase (Calf Intestinal; CIP [NEB]) in 

order to remove the 5’ phosphate groups from the cut DNA ends and so prevent 

vector re-circularisation during ligation. 5 Units of CIP (NEB) was added to 

restriction digestion reactions and incubated for a further 30 minutes at 37°C 

prior to DNA purification. 

2.5.8  DNA fragment purification 

PCR reactions yielding non-specific products and plasmid restriction digests were 

separated by DNA electrophoresis (section 2.8.1) and visualised on a UV 

transilluminator. The product of interest was excised using a scalpel blade and 

purified using a QIAquick gel extraction kit (Qiagen) according to the 

manufacturer’s protocol. 

2.5.9  DNA fragment blunting 

The blunting of sticky ends produced from restriction digestion was carried out 

using T4 DNA polymerase (NEB) in a 20 µl reaction containing 10 µl of gel 

extracted insert DNA, 1 x T4 DNA ligase buffer (NEB), 1.5 Units of T4 DNA 

polymerase, 0.2 mM dNTPs, 100 µg.ml-1 BSA (NEB) and dH2O to 20 µl. Reactions 

were incubated at 37°C for 1 hour before heat inactivation of the T4 DNA 

polymerase at 75°C for 10 minutes. Ligation reactions were set up directly with 

the resulting insert DNA. 

2.6 Cloning 

2.6.1  T4 DNA ligase 

Insert fragments for cloning were prepared by PCR followed by PCR purification 

(section 2.5.2.1) or DNA fragment purification from an agarose gel (section 

2.5.8). Vector backbones were prepared by restriction digest, Phosphatase 

treatment and DNA fragment purification. The concentration of insert and 

vector DNA was determined by measuring the absorbance at 260 nm using a 

spectrophotometer (Eppendorf). The volume of insert and vector DNA in a 
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ligation reaction was determined by using the equation: [(ng vector x kb 

insert)/kb vector] x ratio insert/vector = ng insert. Ligation reactions were 

carried out in a volume of 20 µl typically containing 100 ng vector, 1 x T4 DNA 

ligase buffer (NEB), 400 Units T4 DNA ligase (NEB), the correct volume of insert 

and dH2O to 20 µl. Reactions were incubated at room temperature for one hour 

to overnight prior to transformation into E. coli (section 2.7). 

2.7 Transformation of E. coli 

All E. coli growth was carried out in Luria-Bertani broth ([LB; 5 g yeast extract 

(Formedium), 10 g tryptone (Formedium), 10 g NaCl in 1 L dH20 pH 7.0 (NaOH)] 

and 20 g agar (Formedium) was added if plates were required). For cloning, 10 µl 

of ligation or 10 ng of circular plasmid was added to a 100 µl aliquot of 

chemically competent DH5α E. coli (Invitrogen). After incubation on ice for 15 

minutes the cells were subjected to heat shock at 42°C for 45 seconds after 

which they were cooled on ice for 5 minutes. 250 µl of super optimal broth (SOB) 

with added glucose (SOC; 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 10 ml 1 M 

MgCl2, 10 ml 1 M MgSO4, 10 ml 2 M glucose in 1 L dH20) was added and cells 

allowed to recover in a shaking incubator at 37°C for one hour. Cells were 

spread on plates containing the appropriate antibiotic for the plasmid 

transformed. To allow single colonies to grow overnight at 37°C, typically 100 µl 

of cells transformed with a ligation were plated, and only 20 µl of cells 

transformed with a circular plasmid were plated.  

2.7.1  E. coli colony screening  

E. coli colonies transformed with ligation reactions were routinely screened for 

the insert of interest by PCR. Colonies were picked using a pipette tip and 

inoculated into 20 µl of dH2O. 2 µl of this solution was used as a template for a 

PCR reaction (section 2.5.2) using primers specific to the vector insert required. 

Colonies containing the correct insert were inoculated into 5 ml LB containing 

the appropriate antibiotic in a universal vial (Greiner) and DNA extracted 

(section 2.7.2). E. coli colonies transformed with circular plasmid were picked 

using a pipette tip and placed in 5 ml LB containing the appropriate antibiotic in 

a universal vial and grown overnight in a shaking incubator at 37°C. DNA was 

extracted as below (section 2.7.2). 
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2.7.2  DNA extraction from E. coli 

Plasmid DNA was extracted from 5 ml overnight cultures of E. coli using the 

QIAprep spin miniprep kit (Qiagen) according to the manufacturer’s protocol. 

2.7.3  Ethanol precipitation of DNA 

In preparation for transformation into trypanosomes, DNA was cleaned and 

concentrated by ethanol precipitation after restriction digestion. One tenth of 

the total volume of 3 M sodium acetate (pH 5.2) was added along with three 

times the total volume of 100% ethanol. The solution was then incubated at - 

20°C for one hour to overnight, after which the DNA was centrifuged at 20,000 x 

g for 30 minutes at 4°C. The DNA pellet was washed with 1 ml of 70% ethanol 

and re-centrifuged for one minute. The pellet was air dried for 10 minutes and 

re-suspended in the required volume of dH2O. 

2.8 Electrophoresis 

2.8.1  DNA electrophoresis 

Standard DNA separations were performed on 1.0% UltraPure agarose 

(Invitrogen) gels made with 1 x TAE buffer (40 mM Tris, 19 mM acetic acid, 1 mM 

EDTA) and containing 1 x SYBRSafe (Invitrogen). The separations were run in 1 x 

TAE buffer at 100 V for ~ 30 minutes. 1 kb DNA ladder (NEB) was used as a size 

marker and apparatus was supplied by BioRad. Separating gDNA restriction 

digests for Southern blot analysis was carried out as above except they were 

electrophoresed at ~ 30 V overnight. Small DNA products of 500 bp or less was 

separated on 2% agarose gels as above. DNA gels were visualised and 

photographed using a GelDoc (BioRad) machine using UV light with a SYBRSafe 

filter. 

2.8.2  Pulsed field agarose gel electrophoresis 

Prior to electrophoretic separation, the pulsed field agarose gel electrophoresis 

apparatus (CHEF-DR III, BioRad) was cleaned by the circulation of 2 litres of 0.1% 

SDS for 1 hour at 20°C. The tank was then rinsed by circulating dH2O for 1 hour 

at 20°C, and once by circulating the electrophoresis buffer 1 x TB1/10E (90 mM 
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Tris, 90 mM boric acid, 2 mM EDTA) for 1 hour at 15°C. Gels were 

electrophoresed in 2 litres of buffer, which was circulated in the tank for at 

least 30 minutes at 15°C before the gel was run. Separations of megabase-

chromosomes were conducted using 1.2% agarose (Seakem LE). Agarose was 

dissolved in 150 mls of electrophoresis buffer, and 140 mls used to prepare a gel 

using the tray provided with the pulsed field agarose gel electrophoresis system, 

keeping the remainder at 37°C. After the agarose gel had set, the comb was 

removed, agarose genomic plugs placed into the wells, and the wells sealed with 

the remaining agarose. The agarose genomic plugs had been prepared by a 

minimum of three rounds of dialysis for a minimum of 1 hour in the appropriate 

electrophoresis buffer. Gels were electrophoresed at 15°C with an included 

angle of 120°, and 2.5 V.cm-1 for 144 hours with an initial switch time of 1400 

seconds and final switch time of 700 seconds for the separation of megabase-

chromosomes. 

2.8.2.1  Ethidium bromide staining of pulsed field agarose gels 

Chromosomes were visualised by placing agarose gels in 200 mls of 

electrophoresis buffer containing 4 µl ethidium bromide (EtBr) at 10 µg.ml-1 and 

placing on a rocking table for ~ 30 minutes. They were then de-stained in dH2O 

for ~ 30 minutes, or until they could be visualised clearly by UV illumination. 

2.8.3  Protein electrophoresis 

Protein samples were fractionated either on NuPAGE Novex Bis-Tris 10% mini gels 

(Invitrogen) or NuPAGE Novex Tris-Acetate 3-8% mini gels (Invitrogen). The gels 

were electrophoresed at 200 Volts in 1 x MOPS SDS running buffer (Invitrogen) or 

1 x Tris–Acetate SDS running buffer (Invitrogen) respectively, in the XCell 

SureLock Mini-Cell (Invitrogen). Proteins were visualised directly by Coomassie 

staining; gels were placed in Coomassie stain solution (0.25 g Coomassie brilliant 

blue R (Sigma) in 90 ml of methanol: water (1:1, v/v) and 10 mls glacial acetic 

acid), and placed on a rocker for 1 hour to overnight. Visualisation of protein 

bands was achieved by placing the gels in destaining solution (10% glacial acetic 

acid, 40% methanol) for 1-3 hours and viewing on a light box. 
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2.9 Blotting 

2.9.1  Southern blotting 

Agarose gels to be Southern blotted were photographed on a UV transilluminator 

alongside a ruler parallel to the gel in order to allow calculation of the sizes of 

fragments hybridised by radioactively labelled DNA. To depurinate the DNA, the 

gel was soaked in 125 mM HCl for 15 minutes and then rinsed with dH2O. The 

DNA was then denatured by placing the gel in denaturation solution (0.5 M 

NaOH, 1.5 M NaCl) for 30 minutes. Following rinsing with dH2O, the gel was 

placed in neutralisation solution (1 M Tris base, 1.5 M NaCl, 186 mM HCl) for 30 

minutes. The gel was rinsed again in dH2O, before rinsing in 20 x SSC transfer 

buffer (3 M NaCl, 300 mM NaOAc). The DNA was subsequently transferred to a 

nylon membrane (Hybond XL, Amersham Biosciences) by overnight capillary 

blotting (Sambrook, Fritsch, and Maniatis, 1989) using 20 x SSC transfer buffer. 

Following transfer, the DNA was cross-linked to the membrane twice using the 

auto-crosslink setting on a UV Stratalinker (Stratagene). 

Pulsed field gels were Southern blotted essentially as described above, but with 

slightly different wash treatments due to the chromosomes being tightly bound 

within the agarose. After ethidium bromide staining, the chromosomes were 

nicked by soaking the gels twice in 125 mM HCl for 30 minutes. After rinsing in 

dH2O the chromosomes were denatured by soaking in denaturation solution 

twice for 1 hour. The treatment then resumed as the protocol above, apart from 

the capillary blotting, which was usually performed for at least 96 hours with the 

addition of extra transfer buffer after 48 hours. 

2.9.2  Western blotting 

Western blotting of protein gels was carried out using the Mini Trans-Blot Cell 

(Bio-Rad). Gels, Hybond ECL nitrocellulose membrane (Amersham), foam and 

filter paper (BioRad) were equilibrated in transfer buffer (0.19 M Glycine, 0.025 

M Tris base, 20% methanol), before assembling the gel sandwich. The sandwich 

consisted of the gel and the nitrocellulose membrane, surrounded by filter paper 

and foam, sandwiched between plastic cassettes. An ice block was placed 
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alongside the cassette to prevent overheating. Transfer was carried out by 

electrophoresing at 100 Volts for 2 hours. 

2.10  Radiolabelling and hybridisation of DNA 
probes 

2.10.1 Probe manufacture by random primer labelling  
of DNA 

The DNA fragments used for probe manufacture were specific PCR products 

amplified as described previously (section 2.5.2), separated on an agarose gel 

and purified using the QIAquick gel extraction kit (section 2.5.8). Radio-labelling 

of these fragments was performed using the Prime It II kit (Stratagene). 25 ng of 

DNA was mixed with 10 µl random oligonucleotide primers (27 OD units.ml-1) and 

dH20 in a final reaction volume of 36 µl. The DNA was denatured by incubation at 

95°C for 5 minutes. 10 µl of 5 x dATP primer buffer, 3 µl of α32P-labelled dATP (~ 

0.74 MBq; Perkin Elmer) and 1 µl Klenow DNA polymerase (5 U.µl-1) was added 

and the reaction incubated at 37°C for 5 minutes. The reaction was stopped by 

the addition of 2 µl of stop mix (Stratagene). The probes were then purified 

from any unincorporated nucleotides by size exclusion chromatography using 

illustra Probe Quant G-50 Micro columns (GE Healthcare) according to the 

manufacturer’s protocol. After purification, the probes were denatured at 95°C 

for 5 minutes before hybridisation. 

2.10.2 Hybridisation and detection of radiolabelled  
DNA probes 

Nylon membranes blotted with DNA were placed in a hybridisation tube (Hybaid) 

with ~ 50 mls of pre-warmed 0.5 M Church Gilbert solution (342 mM Na2HPO4, 

158 mM NaH2PO4, 7% (w/v) SDS, 1 mM EDTA) and pre- hybridised for a minimum 

of 1 hour typically at 60°C in a rotating hybridisation oven. The denatured, 

radiolabelled probe was then added to the Church Gilbert solution in the 

hybridisation tube and allowed to hybridise to the blot overnight typically at 

60°C in a rotating hybridisation oven. Following hybridisation, the membrane 

was washed in a rotating hybridisation oven with 50 mls of 2 x SSC, 0.1% SDS for 

15 minutes typically at 60°C and then 50 mls of 0.2 x SSC, 0.1% SDS for another 
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15 minutes. After washing, the membranes were sealed in plastic and exposed to 

a Storage Phosphor screen (GE Healthcare) at room temperature for 1-72 hours 

(depending on the strength of the signal). The Storage Phosphor screen was then 

visualised using a Typhoon 8610 phosphorimager (Molecular Dynamics). Washes 

were repeated as necessary. To strip nylon membranes of hybridised probe DNA, 

membranes were placed in a heat-proof container with boiling stripping buffer 

(0.1% SDS, 0.4 M NaOH). After incubation for 10 minutes the solution was poured 

off and the procedure repeated. Successful stripping was checked by exposure to 

a Storage Phosphor screen for 24 hours and visualisation using a Typhoon 8610. 

2.11  Western blot detection 

2.11.1 Hybridisation and detection of antibodies 

Nitrocellulose membranes blotted with protein were placed in blocking buffer 

(PBS, 5% Milk (Marvel), 0.1% Tween 20 (Sigma)), for 1 hour to overnight, on a 

rocker. Membranes were rinsed in blocking buffer before placing in blocking 

buffer containing the primary antibody (Table 2-2) for 1 hour. Membranes were 

rinsed three times in PBST (PBS, 0.1% Tween 20 (Sigma)) for 10 minutes, before 

placing in blocking buffer containing the secondary antibody (Table 2-3) for 1 

hour. In this thesis, all secondary antibodies used for western blot were 

horseradish peroxidise conjugated. Membranes were rinsed three times in PBST 

for 10 minutes before applying the SuperSignal West Pico Chemiluminescent 

Substrate (Pierce). The substrate was applied to the membrane and placed in 

the dark for 5 minutes before exposing the membrane to an X-ray film (Kodak) 

for 5 seconds to overnight. X-ray films were visualised by developing in a Kodak 

M-35-M X-omat processor. To strip the nitrocellulose membranes of bound 

antibodies, membranes were placed in a container with 10 mls of Restore 

Western Blot Stripping Buffer (Pierce) and rocked for 30 minutes. Successful 

stripping was checked by applying SuperSignal West Pico Chemiluminescent 

Substrate (Pierce) to the membrane and exposing it to an X-ray film. Membranes 

were finally rinsed in PBST before being re-probed as above. 
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Name Host animal Company/Laboratory Dilution 
Anti-BRCA2 Chicken Covalab 1:200 
Anti-RAD51 Rabbit R. McCulloch 1:500-1000 
Anti-NOG1 Rabbit M. Parsons 1:5000 
Anti-OPB1 Sheep J. Mottram 1:1000 
Anti-Myc Mouse Millipore 1:7000 
Anti-HA Mouse Sigma 1:10000 
Anti-His Mouse Sigma 1:750 
Anti-GST Mouse Novagen 1:10000 

Table 2-2 List of primary antiserum used in this th esis. 

 
Name Conjugation Company/Laboratory Dilution 
Anti-Chicken HRP Invitrogen 1:200 
Anti-Rabbit HRP Molecular Probes 1:500 
Anti-Sheep HRP Santa Cruz 1:5000 
Anti-Mouse HRP Invitrogen 1:1000 
Anti-Rabbit Alexa Fluor 594 Alexa Fluor 594 Invitrogen 1:7000 
Anti-Myc Alexa Fluor 488 Alexa Fluor 488 Invitrogen 1:7000 

Table 2-3 List of secondary antiserum used in this thesis. 

 
2.11.2 Anti-BRCA2 Antiserum 

Two peptide antigens corresponding to amino acids 105-ARARMNTENGQEST-118 

and 1556-RIKQLEDWQTPHEEC-1570 were inoculated into two chickens with 

complete Freund’s adjuvant at day 0 and with incomplete Freund’s adjuvant at 

days 14, 28 and 63 (Covalab). The final bleeds (day 90) from the two chickens 

were subjected to affinity purification using the two peptides and the resultant 

antisera was pooled. This is referred to as anti-BRCA2 antiserum. 

2.12  In vivo co-immunoprecipitation  

Protein was extracted from PCF cells as above (section 2.2.4.2). A 50 µl aliquot 

of protein extract was taken as an input sample and frozen in SDS-PAGE sample 

buffer until required. The remaining protein extract was split into two 

eppendorfs, ~ 250 µl each. To this was added 50 µl of 50% bead slurry. Beads 

(Anti-Myc agarose (Millipore) and Anti-HA agarose (Roche)) were prepared by 

washing twice with 1 ml Trypanosome Lysis Buffer (TLB) with centrifugation at 

5,000 x g for 1 minute at 4°C and adding an equal volume of TLB to make up to a 

50% slurry. Samples were incubated with end-over-end rotation at 4°C for 1 

hour. Beads were pelleted by centrifugation at 5,000 x g for 1 minute at 4°C and 

washed 5 times with 1 ml TLB. 100 µl of SDS-PAGE sample buffer was added and 
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the sample boiled for 5 minutes at 98°C prior to separation on an SDS-PAGE gel 

and western blotting. 

2.13  In vitro Glutathione S-Transferase pull-down 

Glutathione S-Transferase (GST) pull-down studies in E. coli were carried out as 

co-expression studies, with two complementary plasmids (pGEX-4T-3 (GE 

healthcare) and pRSF-1b (Novagen)) transformed into the same bacterial cell 

line. For each experiment fresh transformations of Rosetta2 BL21 (Novagen) 

chemically competent E. coli were prepared. A single colony was picked from 

the transformation plate, inoculated into 5 ml LB containing the appropriate 

antibiotics and grown at 37°C overnight in a shaking incubator. 1 ml of culture 

was diluted into 50 ml LB containing the appropriate antibiotics in a 250 ml 

conical flask and grown at 37°C until an OD600 nm of ~ 0.5 was reached 

whereupon protein expression was induced by the addition of isopropyl-β-D-

thiogalactopyranoside (IPTG; Melford) at a final concentration of 1 mM. Once 

induced, flasks were transferred to a shaking incubator at 25°C and grown 

overnight. Cells were harvested by centrifugation at 3750 x g for 20 minutes at 

4°C. Cell pellets were re-suspended in 5 ml ice cold Wash/Lysis Buffer (WLB; 1 

mM DTT (Melford), 0.1% (v/v) NP-40, 13 Units.ml-1 DNase1 (Invitrogen), 1 x 

Complete EDTA-free Protease Inhibitor Cocktail (Roche) in PBS) by vortexing. 

Cells were subjected to a cycle of freeze thaw at - 80°C prior to sonication on 

ice for 4 cycles of 10 seconds sonication with 20 seconds rest between pulses 

using a Soniprep 150 (MSE). Insoluble material was removed by centrifugation at 

20,000 x g for 20 minutes at 4°C. A 100 µl aliquot of supernatant (input) was 

frozen in SDS-PAGE sample buffer until required. 

100 µl of bead slurry (Glutathione Sepharose HP (GE Healthcare)) per cell 

extract was prepared by washing twice with 5 ml WLB at 500 x g for 2 minutes at 

4°C. After washing beads, were re-suspended in 10 volumes of WLB and 1 ml of 

bead slurry added to each cell extract. After incubation with end-over-end 

rotation at 4°C for 1 hour beads were pelleted by centrifugation at 500 x g for 2 

minutes at 4°C and the supernatant carefully removed. Beads were washed five 

times with 5 ml WLB. To elute bound proteins, beads were incubated with 500 µl 

elution buffer (50 mM Tris-HCL (pH 8.0), 200 mM NaCl, 20 mM reduced 

glutathione (Sigma), 0.1% NP-40, 1 mM DTT) for 1 hour with end-over-end 
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rotation at 4°C. Beads were pelleted at 500 x g for 2 minutes at 4°C and elution 

buffer removed to a clean eppendorf. A 100 µl aliquot (elution) was frozen in 

SDS-PAGE sample buffer until required. 

2.14  Bioinformatics 

Gene sequences were downloaded from GeneDB (www.genedb.org) and viewed 

in CLC Genomics Workbench (CLC Bio). Sequence alignments were carried out 

and trees generated using CLC Genomics workbench. BLASTn search of the T. 

brucei TREU 927 genome sequence was carried out using the facility at 

www.genedb.org.
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 Chapter 3: The function of T. brucei 
BRCA2 in the maintenance of 

genome stability. 
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3.1 Introduction 

Previous studies on brca2-/- mutants generated in T. brucei bloodstream form 

(BSF) cells in strain Lister 427 demonstrated that they display a genomic 

instability phenotype, detectable by an accumulation of visible karyotype 

changes in the megabase chromosomes (Hartley and McCulloch, 2008), which 

may correspond with gross chromosomal rearrangements (GCRs) observed in 

brca2-/- mutants in other organisms (see below;Yu et al., 2000;Kojic et al., 

2002;Ko, Lee, and Lee, 2008). At least some of the genome rearrangements in T. 

brucei BSF brca2-/- mutant cells appear to arise due to deletions within the 

subtelomeric VSG arrays, as evidenced by the loss of members of the VSG121 

gene family after prolonged passaging (Hartley and McCulloch, 2008). However, 

in the absence of a genome-wide annotation of the VSG repertoire in T. brucei 

Lister 427, indicating their chromosomal locations, it has not been possible to 

determine how widely affected the VSG arrays are by mutation of BRCA2. 

Interestingly, no rearrangements were observed in the intermediate or mini-

chromosomes and, as these chromosomes do not harbour VSG arrays, this lends 

support to the idea that the karyotype changes may be limited to, or at least 

most severely evident as, changes within the VSG arrays. This genomic instability 

phenotype has not been observed in rad51-/- mutants in T. brucei, though the 

experimental procedures adopted were not equivalent to the brca2-/- mutant 

analysis: here, rad51-/- clones were examined after prolonged passaging and 

isolation of VSG switch variants (McCulloch and Barry, 1999), and also after 

transformation to measure recombination events and characterise the 

recombinants (McCulloch and Barry, 1999). A very similar genomic instability 

phenotype is, however, observed in mre11-/- mutants (section 1.5.3; Robinson 

et al., 2002). The function of BRCA2 in the maintenance of genome integrity has 

been well documented in mammals and Ustilago maydis (Moynahan, Pierce, and 

Jasin, 2001;Kojic et al., 2002), and it is possible that this is a function that is 

conserved in the trypanosomatids. However, where GCRs in these organisms are 

manifest as chromosome deletions and translocations, deletion appeared to 

predominate in T. brucei brca2-/-, and mre11-/-, mutants. Whether this is 

because BRCA2 plays subtly different roles in T. brucei, or is due to differences 

in genome composition, is unknown. 
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This chapter aims to understand the precise genetic modifications that occur 

during the genome rearrangements observed in T. brucei brca2-/- mutants. In 

order to achieve this, it was decided to mutate BRCA2 in the genome strain of T. 

brucei, TREU 927. The availability of the complete genome sequence for this 

strain, including annotation of > 800 VSGs (Marcello and Barry, 2007), should 

allow the dissection of the rearrangements at the sequence level, with a focus 

on the subtelomeric VSG archive. TREU 927 is a pleomorphic strain of T. brucei, 

and although gene mutants have been described in the BSF (van Deursen et al., 

2001), due to the difficulties associated with the prolonged passaging of these 

cells, it was decided to analyse brca2-/- mutants in the procyclic form (PCF) 

cells of this strain. 

3.2 Generation of BRCA2 gene disruption mutants 
in PCF TREU 927 T. brucei 

3.2.1  BRCA2 gene deletion constructs 

Homozygous mutants of BRCA2 were generated in PCF TREU 927 T. brucei using 

a classical gene deletion strategy where the entire BRCA2 open reading frame 

(ORF) is removed. The BRCA2 gene deletion constructs that were used, 

∆BRCA2::BSD and ∆BRCA2::PUR, are displayed in Figure 3-1 (gift, Claire Hartley). 

These constructs contain regions of the 5’ and 3’ un-translated regions (UTR) 

flanking the BRCA2 ORF cloned into pBluescript (Stratagene) and used as 

targeting sequence to enable homologous recombination and replacement of the 

entire BRCA2 ORF with antibiotic resistance cassettes, following transformation. 

To allow selection of constructs that have integrated into the genome, one of 

two antibiotic resistance cassettes was cloned between the flanks. The 

blasticidin (BSD) and puromycin (PUR) resistance cassettes each contain 

processing signals derived from actin and tubulin intergenic sequences flanking 

the antibiotic resistance ORFs to allow RNA trans-splicing and polyadenylation, 

respectively. For transformation, the ∆BRCA2::BSD and ∆BRCA2::PUR constructs 

were excised from pBluescript by restriction digestion with XhoI and XbaI, the 

digested DNA was then ethanol precipitated and approximately 5 µg of the 

resuspended DNA was used for each transformation. 
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Figure 3-1 BRCA2 gene deletion constructs. 
Restriction maps of the constructs used for the del etion of BRCA2 are shown, relative to the 
BRCA2 ORF (top). Sizes of the individual components are s hown (bp), and are not drawn to 
scale. Constructs were cloned into the pBluescript plasmid and excised using the XhoI and 
XbaI restriction sites shown. 5’ UTR and 3’ UTR corres pond to un-translated regions 
upstream and downstream of the BRCA2 ORF, respectively. βα Tub: βα tubulin intergenic 
region. Actin IR: actin intergenic region. BSD: blasticidin resistance ORF. PUR: puromycin 
resistance ORF. 

3.2.2  Generation of BRCA2 mutants in PCF TREU 927 T. 
brucei 

Two separate transformations were carried out in order to generate two 

independent BRCA2 heterozygous (-/+) cell lines using the ∆BRCA2::BSD and 

∆BRCA2::PUR constructs. To do this, wild-type PCF TREU 927 (WT 927) cells 

were transformed using the protocol described in section 2.1.3 and antibiotic 

resistant transformants were selected by placing cells on SDM-79 media (GIBCO) 

supplemented with 10 µg.ml-1 blasticidin (Calbiochem) or 1 µg.ml-1 puromycin 

(Sigma). The generation of BRCA2-/+ mutants was confirmed by PCR analysis 

performed on genomic DNA extracted from six blasticidin resistant clones and six 

puromycin resistant clones. Two independent BRCA2-/+ mutant clones were 

chosen (-/+ BSD and -/+ PUR; Figure 3-2B) and subsequently transformed with 

the complementary BRCA2 gene deletion construct in order to generate 

independent BRCA2 homozygous (-/-) mutant cell lines. Antibiotic resistant 

transformants were selected with 5 µg.ml-1 blasticidin and 0.5 µg.ml-1 

puromycin.  
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3.2.3  Confirmation of BRCA2 mutants by PCR 

The generation of brca2-/- mutants was initially confirmed by PCR performed on 

genomic DNA extracted from seven putative -/- BSD-PUR transformant clones 

and eight putative -/- PUR-BSD transformant clones. PCR was performed using 

primers specific to the BSD (primers 140 and 141) and PUR (primers 144 and 145) 

resistance ORFs, and also a 1.2 kb region of the BRCA2 ORF (primers 48 and 49). 

The location of the primers and expected sizes of the PCR products are displayed 

in Figure 3-2A. The sequences of all primers used in this thesis are displayed in 

Table 2-1 and their location if within the BRCA2 gene sequence can be found in 

Appendix 1. 

The agarose gel in Figure 3-2B demonstrates the presence of the BSD and PUR 

resistance ORFs in all of the putative brca2-/- mutant clones. Some of these 

clones still retained the BRCA2 ORF, and produced a PCR product with the 

primers specific to part of the BRCA2 ORF; whether these had integrated the 

second knockout construct into an unknown genomic location, or were triploid 

for the BRCA2 locus or chromosome, is unknown. These ‘incorrect’ clones were 

discarded. Apart from these, a number of clones were apparent (five -/- BSD-

PUR, and at least one -/- PUR-BSD; indicated by ‘*’ in Figure 3-2B) that failed to 

amplify a PCR product using the primers specific to part of the BRCA2 ORF, and 

had integrated both the BSD and PUR resistance cassettes. Two of these putative 

brca2-/- mutant clones, from distinct BRCA2-/+ antecedents (and thus 

independently derived), were selected for further analysis (from now on, 

referred to as -/- BSD-PUR and -/- PUR-BSD). 
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Figure 3-2 Confirmation of PCF TREU 927 BRCA2 mutants by PCR. 
(A) Primers used to amplify part of the BRCA2 ORF, and the BSD and PUR resistance ORFs 
are indicated (black arrows), with the expected siz es of the resulting PCR products shown 
(bp). (B) An agarose gel of the PCR products obtain ed using the primers, described above, 
and genomic DNA extracted from wild-type TREU 927 ( WT 927), BRCA2 heterozygous (-/+) 
and putative brca2 homozygous (-/-)  mutant cell lines. The two independent BRCA2-/+ 
mutants are indicated by -/+ BSD and -/+ PUR, and the putative brca2-/- mutants derived 
from these are indicated by -/- BSD-PUR and -/- PUR-BSD, respectively. Distilled water 
(dH2O) was used as a negative control. The PCR products  produced from the BSD, PUR and 
BRCA2 ORFs are indicated (black arrows), and size marker s are shown (Ladder, kb). ‘*’ 
indicates brca2-/- mutants that are confirmed by PCR. 

3.2.4  Confirmation of BRCA2 mutants by Southern 
analysis 

To confirm the generation of two independent brca2-/- mutant cell lines, 

Southern analysis was performed. Genomic DNA extracted from wild-type TREU 

927, -/+ and -/- BRCA2 mutant cell lines was digested with SacII and HindIII, 

separated by electrophoresis on a 1% agarose gel, Southern blotted and 

hybridised at 60°C with a DNA probe generated by PCR-amplification with the 

primers 152 and 153, corresponding with the 5’ UTR of the BRCA2 ORF (the 
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region included in the gene deletion constructs). The location of primers, 

predicted restriction enzyme recognition sites and expected DNA fragment sizes 

in this approach are displayed in Figure 3-3A. 

 

 
Figure 3-3 Confirmation of PCF TREU 927 BRCA2 mutants by Southern analysis. 
(A) Restriction maps showing the expected products of restriction digestion, Southern 
blotting and hybridisation with the 5’ UTR of the BRCA2 ORF (black arrows indicate the 
primers used to PCR-amplify this as a DNA probe). T he restriction sites are indicated, with 
the expected restriction fragment sizes shown (kb).  (B) 5 µg of genomic DNA extracted from 
wild-type TREU 927 (WT 927), -/+ and -/- BRCA2 mutant cell lines was digested with SacII 
and HindIII before being separated by electrophoresis on a n agarose gel. The DNA was 
Southern blotted before being hybridised with a DNA  probe against the 5’ UTR of the 
BRCA2 ORF. The bands produced from the WT allele and the  BRCA2 mutant alleles are 
indicated (black arrows), and size markers are show n (Ladder, kb).  

The Southern blot in Figure 3-3B demonstrates that the intact BRCA2 ORF exists 

in wild-type TREU 927 cells. In this strain no allelic size variation is detectable at 

this gene locus, as observed in wild-type BSF Lister 427 cells where the two 
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alleles of BRCA2 possess different numbers of BRC repeat motifs (Hartley and 

McCulloch, 2008). The BRCA2-/+ mutants have one BRCA2 allele replaced with 

either a BSD or PUR resistance cassette. In the putative brca2-/- mutants, there 

was no evidence for the presence of an intact BRCA2 ORF, suggesting both 

alleles of the gene were deleted, one replaced by the BSD cassette and the 

other replaced by the PUR cassette (though these cannot be distinguished in this 

Southern approach, Figure 3-2B shows that each antibiotic resistance ORF is 

present). 

3.2.5  Confirmation of BRCA2 mutants by western 
analysis 

In order to try and detect BRCA2 protein in T. brucei, antiserum was raised in 

chickens against two peptides that were synthesised based on the predicted T. 

brucei BRCA2 polypeptide (section 2.11.2). One peptide corresponded with the 

BRC repeat domain (amino acids 105 to 118), and the second was derived from 

the C-terminus of the protein (amino acids 1556 to 1570). A number of attempts 

at western blot analyses were performed (data not shown), using whole cell 

extracts from PCF T. brucei cells. This revealed that, on occasion, a band of the 

size expected for T. brucei BRCA2 was observed (176 kDa); however, in all cases, 

significant numbers of further bands were seen, presumably reflecting non-

specific binding of the antiserum to other T. brucei proteins, and in many cases 

the 176 kDa band expected for BRCA2 was not seen. Despite the lack of 

reproducibility of this antiserum, confirmation of the brca2-/- mutants by 

western blot was attempted multiple times using total protein extract from 

wild-type TREU 927, -/+ and -/- BRCA2 mutant cell lines, which was separated 

by SDS-PAGE on a 3-8% Tris-Acetate gel, blotted and probed with anti-BRCA2 

antiserum at a dilution of 1:200. The clearest result of these experiments is 

displayed in Figure 3-4. 

The western blot in Figure 3-4 suggested that BRCA2 protein was visible at 

approximately the expected size (176 kDa) in the wild-type and two BRCA2-/+ 

mutant cell lines, and was absent in the two brca2-/- mutant cell lines. A non-

specific protein band is visible at ~ 58 kDa and, if this is considered as a protein 

loading control, demonstrates approximately equal loading of cell extracts from 

the five cell lines. 
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Figure 3-4 Confirmation of PCF TREU 927 BRCA2 mutants by western analysis. 
Total protein extracts from wild-type TREU 927 (WT 927), -/+ and -/- BRCA2 mutant cell lines 
were separated by SDS-PAGE and western blotted befo re being probed with anti-BRCA2 
antiserum (1:200 dilution). The band of the size ex pected for the BRCA2 protein is indicated 
(black arrow), and size markers are shown (kDa). 

3.3  Phenotypic analysis of PCF TREU 927 BRCA2 
mutants 

3.3.1  Analysis of in vitro growth 

brca2-/- mutants in BSF Lister 427 T. brucei display an increased population 

doubling time (approximately 2-fold) when compared to wild-type BSF Lister 427 

cells (Claire Hartley, PhD Thesis, 2008). To determine if the same phenotype is 

observed in PCF TREU 927 brca2-/- mutant cells, in vitro growth was analysed. 2 

ml cultures were inoculated at a density of 5 x 105 cells.ml-1 and counted using a 

Coulter Counter (Beckman) at 24, 48 and 72 hours subsequently. The average 

counts from three experimental repetitions are plotted in Figure 3-5, and 

extrapolated doubling times (calculated as detailed in section 2.3.1) are 

displayed in Table 3-1. 

From the growth curves and doubling times displayed it is apparent that 

disruption of a single BRCA2 allele has no discernible effect on the growth of 

BRCA2-/+ cells when compared to wild-type cells. However, the brca2-/- 

mutants display a slight retardation in growth as evidenced by an increase in 

doubling time from the wild-type value of ~ 11 hours to between 13 and 19 hours 

for the two mutant cell lines. This is an increase in doubling time that is less 

than the observed 2-fold increase of brca2-/- mutants in BSF Lister 427 cells 

(Hartley and McCulloch, 2008). 
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Figure 3-5 Analysis of in vitro growth of PCF TREU 927 BRCA2 mutants. 
2 ml cultures of wild-type TREU 927 (WT 927), -/+ a nd -/- BRCA2 mutant cell lines were 
inoculated at 5 x 10 5 cells.ml -1 and cell densities counted 24, 48, and 72 hours su bsequently 
are shown. Values are averaged from the counts from  three experimental repetitions, and 
vertical lines indicate standard deviation. 

 
Table 3-1 In vitro population doubling times of PCF TREU 927 BRCA2 mutants. 
The mean doubling time for wild-type TREU 927 (WT 9 27), -/+ and -/- BRCA2 mutant cell 
lines is displayed, in hours, and was calculated fr om the data displayed in Figure 3-5. 

3.3.2  Analysis of DNA damage sensitivity 

brca2-/- mutants in BSF Lister 427 display increased sensitivity to DNA damaging 

agents, including methyl methanesulphonate (MMS) and phleomycin, when 

compared to wild-type BSF Lister 427 cells (Hartley and McCulloch, 2008). MMS is 

an alkylating agent that methylates DNA to produce methylated purines at the 7’ 

position of guanine residues and the 3’ position of adenine residues (Brookes and 

Lawley, 1961;Reiter et al., 1967). Phleomycin is a group of copper-containing 

antibiotic peptides of the bleomycin family first isolated from Streptomyces 

verticillus. Phleomycin has been shown to inhibit DNA synthesis by blocking the 
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activity of DNA polymerase and inducing the formation of DNA double strand 

breaks (Falaschi and Kornberg, 1964;Reiter, Kelley, and Milewski, 1972). In order 

to determine the sensitivity of the PCF TREU 927 brca2-/- mutant cell lines to 

these DNA damaging agents, the Alamar Blue assay was used. Alamar Blue 

(resazurin sodium salt; Sigma) is a blue-coloured, non-fluorescent compound. 

However, in actively metabolising cells, resazurin is reduced to resorufin, which 

is pink and highly fluorescent (Raz et al., 1997;O'Brien et al., 2000). Monitoring 

the reduction of Alamar Blue can be achieved by measuring the production of 

fluorescent resorufin with a spectrophotometer (Wallac Envision) using filters of 

540 nm excitation and 590 nm emission. By plotting the extent of fluorescence 

against log drug concentration, and performing nonlinear regression on these 

data, a sigmoidal survival curve was generated. Calculation of EC50, the drug 

concentration that causes 50% cell death, allows the metabolic capacity of the 

cells to be quantified, and provides an indirect assessment of cell growth or 

survival. 

The Alamar blue assay was set up as detailed in section 2.3.2 with wild-type 

TREU 927, -/+ and -/- BRCA2 mutant cell lines. The extent of fluorescence for 

each cell line was plotted graphically over the range of log drug concentrations 

(for representative examples see Figure 3-6 and Figure 3-7). From this, EC50s 

were determined from each individual plot and then average EC50s (plus 95% 

confidence intervals) were calculated from the three experimental repetitions. 

The mean EC50s for each cell line were then plotted relative to the wild-type 

EC50, which was taken as 100% (Figure 3-8 and Figure 3-9). Data was presented 

in this way due to the fact that between experimental repetitions variation in 

the absolute EC50 values was observed despite the patterns of relative 

sensitivity between the cell lines being essentially equivalent. 

The survival curves displayed in Figure 3-6 and Figure 3-7 are representative of 

the three experimental repetitions performed. These data demonstrate that as 

the concentration of DNA damaging agent increases the fluorescence, and 

therefore the percentage of surviving cells that are actively reducing Alamar 

blue to fluorescent resorufin, reduces until the concentration at which all cells 

are killed is reached. It is apparent that the brca2-/- cell lines display reduced 

survival in the presence of both MMS and phleomycin, when compared to wild-

type cells. The BRCA2-/+ PUR cell line appeared to demonstrate survival that is 
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intermediate between the wild-type and brca2-/- cell lines for both DNA 

damaging agents and the BRCA2-/+ BSD cell line shows survival essentially 

equivalent to wild-type cells. The extrapolated EC50 values (graphs displayed in 

Figure 3-8 and Figure 3-9) support the graphical observations. In Figure 3-8, 

measuring sensitivity to MMS, the disruption of a single BRCA2 allele in the 

BRCA2-/+ BSD cell line does not detectably alter the sensitivity of the cell line 

to MMS, when compared to wild-type cells. In the same assay, the BRCA2-/+ PUR 

cells appeared to have a lower EC50, suggesting they had increased sensitivity to 

MMS, though this was not statistically significant (see below). In Figure 3-9, 

measuring sensitivity to phleomycin, the BRCA2-/+ PUR cell line again appeared 

to be more sensitive than wild-type cells (though not significantly, see below), 

while the BRCA2-/+ BSD cells were more resistant to this damaging agent 

(although not significantly). Why single gene disruptions of BRCA2 potentially 

display such changes is unclear. Irrespective of this, both brca2-/- mutants 

displayed a greater sensitivity to both DNA damaging agents. 

To evaluate the above data, the EC50 values of the wild-type TREU 927, -/+ and 

-/- BRCA2 mutant cell lines were compared using student’s T-tests, and the 

results of this are displayed in Table 3-2. The statistical analyses largely confirm 

the graphical observations. No statistical difference in the calculated EC50 

values was observed between wild-type cells and BRCA2-/+ mutants (p > 0.05) 

for both DNA damaging agents. However, the BRCA2-/+ BSD cell line was 

statistically different to all cell lines analysed (p ≤ 0.05) after phleomycin 

treatment, apart from wild-type. A statistically significant difference was found 

between wild-type cells and both brca2-/- mutants (p ≤ 0.05) after MMS 

treatment, and one of the brca2-/- mutants (PUR-BSD; p ≤ 0.05) after 

phleomycin treatment. 
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Figure 3-6 A representative survival curve for PCF TREU 927 BRCA2 mutants exposed to 
MMS. 
The extent of fluorescence for each cell line (WT, -/+ and -/-), obtained using the Alamar blue 
assay, is plotted against the log of MMS concentrat ions. Nonlinear regression was 
performed and fitted curves are shown for each cell  line. 

 
Figure 3-7 A representative survival curve for PCF TREU 927 BRCA2 mutants exposed to 
phleomycin. 
The extent of fluorescence for each cell line (WT, -/+ and -/-), obtained using the Alamar blue 
assay, is plotted against the log of phleomycin con centrations. Nonlinear regression was 
performed and fitted curves are shown for each cell  line. 
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Figure 3-8 EC50 values of PCF TREU 927  BRCA2 mutants exposed to MMS. 
Wild-type TREU 927 (WT 927), -/+ and -/- BRCA2 mutant cell lines were placed in serially 
decreasing amounts of MMS and allowed to grow for 4 8 hours, before the addition of 
Alamar Blue. After a further 24 hours, the reductio n of Alamar Blue was measured by the 
amount of fluorescent resorufin generated. EC50 val ues are the mean from three 
experimental repetitions expressed as a percentage relative to wild-type and bars indicate 
95% confidence intervals. 

 
Figure 3-9 EC50 values of PCF TREU 927  BRCA2 mutants exposed to phleomycin. 
Wild-type TREU 927 (WT 927), -/+  and -/- BRCA2 mutant cell lines were placed in serially 
decreasing amounts of phleomycin and allowed to gro w for 48 hours, before the addition of 
Alamar Blue. After a further 24 hours, the reductio n of Alamar Blue was measured by the 
amount of fluorescent resorufin generated. EC50 val ues are the mean from three 
experimental repetitions expressed as a percentage relative to wild-type and bars indicate 
95% confidence intervals. 
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Table 3-2 Statistical analysis of Alamar Blue resul ts. 
P values are shown for student’s T-tests comparing the mean EC50 values of wild-type 
TREU 927 (WT 927), -/+ and -/- BRCA2 mutant cell lines grown in the presence of MMS (A)  or 
phleomycin (B). Areas shaded in yellow indicate a s ignificant difference (P ≤ 0.05). No 
correction has been made for simultaneous multiple comparisons. 

3.3.3  Analysis of the cell cycle 

brca2-/- mutants in BSF Lister 427 display an unusual replication phenotype 

consistent with the initiation of cytokinesis prior to the completion of nuclear 

DNA replication (Claire Hartley, PhD Thesis, 2008), which is not seen in other 

DNA repair mutants, most notably rad51-/- (McCulloch and Barry, 1999). The cell 

cycle stage of kinetoplastids can be easily defined by visualising the DNA content 

of fixed cells by DAPI staining. In addition to staining the nuclear DNA (nDNA), 

the mitochondrial DNA of kinetoplastids is also visible following DAPI staining, as 

it is organised in a concentrated collection of mini- and maxi-circle DNAs within 

an organelle called the kinetoplast (and hence is called kinetoplast DNA; kDNA) 

(Lukes et al., 2002). The kinetoplast divides slightly ahead of the nucleus in the 

T. brucei cell cycle, and therefore allows the cell cycle stage of individual cells 

within an unsynchronised population to be determined by their N-K ratio (Figure 

3-10;McKean, 2003). 

Following fixation and DAPI staining (section 2.4.1), cells were counted 

according to the number of nuclei and kinetoplasts they contained. Cells in the 

G1 and S phases of the cell cycle contain 1 nucleus and 1 kinetoplast (1N1K). 

Cells in the G2 phase of the cell cycle contain 1 nucleus and 2 kinetoplasts 

(1N2K), as kinetoplast division precedes nuclear division. Following this, the 

nucleus divides and generates cells with 2 nuclei and 2 kinetoplasts (2N2K). Such 
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cells are in the M, mitotic, phase of the cell cycle. Cytokinesis subsequently 

generates two 1N1K cells in G1 phase, re-starting the cell cycle. Any cells that 

were observed not to conform to these standard configurations were noted as 

being aberrant cell types and were described as ‘others’. The data from the cell 

cycle analysis of the PCF TREU 927 BRCA2 mutant cell lines is displayed in Figure 

3-11. 

These data demonstrate that the mutation of one BRCA2 allele has no 

discernible effect on the distribution of cell cycle stages. In contrast, the   

brca2-/- mutants showed an accumulation in the number of ‘others’ and a 

concomitant decrease in the number of 1N1K cells, when compared to wild-type 

cells. The DNA content of these ‘others’ was further analysed (Figure 3-12) and 

the majority (66%) were observed to be anucleate cells (primarily 0N1K; zoids) 

(Figure 3-13). This was subtly different from the distribution of ‘others’ 

observed in the BSF Lister 427 brca2-/- mutants (Claire Hartley, PhD thesis, 

2008): though increased numbers of 0N1K cells were seen in the BSF, these did 

not predominate to the same extent, and the ‘others’ were more evenly split 

between cells with raised kDNA (primarily 0N1K and 0N2K) and raised nDNA 

content (primarily 1N0K and 2N1K). In addition, in the BSF mutants an increase 

in the number of 2N2K cells with attached nuclei were seen, which were not 

observed here in the PCF. Oyola et al., (2009) observed that upon deletion of 

BRCA2 in PCF Lister 427 T. brucei cells approximately 80% of the total cell 

population presented a ‘nundu’ phenotype, characterised by a round, swollen 

DAPI-stained structure situated approximately in the middle of the cell body. No 

cells with this ‘nundu’ morphology were observed in this work. 

 
Figure 3-10 The cell cycle of procyclic form T. brucei. 
The diagram shows the replication and division of t he nucleus and kinetoplast during the T. 
brucei cell cycle. During the G1 and S phases of the cell  cycle T. brucei contains 1 nucleus 
and 1 kinetoplast (1N1K). Kinetoplast division occu rs in G2 phase of the cell cycle before 
nuclear division, resulting in cells containing 1 n ucleus and 2 kinetoplasts (1N2K). Nuclear 
mitosis (M) leads to cells having 2 nuclei (2N2K), and occurs prior to cytokinesis, which 
generates two progeny containing 1N1K, which will r estart the cell cycle. G1 and G2 
represent cell cycle growth phases. Diagram reprodu ced from Hammarton, 2007. 
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Figure 3-11 Cell cycle analysis of PCF TREU 927 BRCA2 mutants. 
The DNA content of wild-type TREU 927 (WT 927), -/+  and -/- BRCA2 mutant cell lines were 
visualised by DAPI staining of fixed cells. The num bers of cells with 1 nucleus and 1 
kinetoplast (1N 1K), 1 nucleus and 2 kinetoplasts ( 1N2K), 2 nuclei and 2 kinetoplasts (2N2K), 
and cells that do not fit into the expected classif ications (others), were counted and 
represented by their count as a percentage of the t otal cells counted (N). 

 
Figure 3-12 DNA content of ‘others’ in PCF TREU 927  brca2-/- mutants. 
Total numbers of cells that do not fit into the exp ected classifications (others) are 
represented for the PCF TREU 927 brca2-/- mutants. The DNA content is displayed as the 
number of nuclei (N) and the number of kinetoplasts  (K). 
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Figure 3-13 Examples of zoids in PCF TREU 927 brca2-/- mutants. 
Each cell is shown after staining with DAPI (DAPI) and in differential interface contrast 
(DIC). Merged images of DAPI and DIC cells are also  shown (Merge). 

3.3.4  Analysis of RAD51 focus formation 

brca2-/- mutants in BSF Lister 427 T. brucei display a marked deficiency in the 

ability to form RAD51 foci after DNA damage (Proudfoot and McCulloch, 

2005;Glover, McCulloch, and Horn, 2008;Hartley and McCulloch, 2008). To date, 

the localisation of RAD51 in response to DNA damage in PCF cells has not been 

examined, and so the ability of the PCF TREU 927 BRCA2 mutant cell lines to 

form RAD51 foci was analysed. Cells were treated with phleomycin (1 µg.ml-1 for 

18 hours) before being fixed onto slides and probed with anti-RAD51 antiserum 

at a dilution of 1:1000 and visualised with Alexa Fluor 594 conjugated anti-rabbit 

antiserum (1:7000 dilution, Invitrogen); DNA was visualised with DAPI, and 

control cells without phleomycin treatment were similarly examined. The 

number of RAD51 foci present in the nucleus of the cells were counted for at 

least 200 cells per cell line and represented as a percentage of the total number 

of cells counted in Table 3-3 and plotted graphically (Figure 3-14). 

Representative images of cells are displayed in Figure 3-15. 

In the absence of DNA damage RAD51 foci were seen in ~ 2% of cells (data not 

shown; examples are depicted in Figure 3-15). The small numbers of RAD51 foci 

that are seen in the wild-type TREU 927, -/+ and -/- BRCA2 mutant cell lines 
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without phleomycin treatment may be due to repair at sites of stalled 

replication forks, as these foci have been suggested to able to form in the 

absence of BRCA2 (Tarsounas, Davies, and West, 2004). After the induction of 

DNA damage, the number of wild-type and BRCA2-/+ cells containing no 

detectable RAD51 foci reduced to ~ 25% (Figure 3-14, Table 3-3). These data 

demonstrate that the wild-type and BRCA2-/+ cell lines are efficient at forming 

RAD51 foci following DNA damage. This response is quantitatively very similar to 

that described in BSF T. brucei (Proudfoot and McCulloch, 2005;Hartley and 

McCulloch, 2008;Glover, McCulloch, and Horn, 2008), where 70-80% of cells 

formed foci after the same treatment and most cells, like the PCF cells analysed 

here, had 1-2 detectable foci, although some had more. The brca2-/- mutant 

cell line appeared to have almost completely lost the ability to form RAD51 foci 

after the induction of DNA damage, as almost no foci were visible (only 2 cells 

had a detectable focus out of the 212 analysed). This may, in fact, be a more 

severe defect than observed in BSF cells, where up to 4% of brca2-/- cells 

display RAD51 foci (Hartley and McCulloch, 2008), though it would be preferable 

to analyse greater numbers of cells, and it cannot be excluded that there is 

greater background fluorescence in the BSF cells with this anti-RAD51 antiserum 

possibly causing greater apparent foci. 

 
Table 3-3 RAD51 focus formation in PCF TREU 927 BRCA2 mutants exposed to phleomycin. 
Wild-type TREU 927 (WT 927), -/+ and -/- BRCA2 mutant cell lines were treated with 1 µg.ml -1 

phleomycin for 18 hours and the number of cells wit h a specific number of subnuclear 
RAD51 foci formed (0, 1, 2, 3, 4, > 4) were counted  and are represented as a percentage of 
the total cells counted (N). Boxes shaded in light yellow contain foci, whilst boxes shaded in 
bright yellow contain the highest percentage of foc i. 
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Figure 3-14 Graphical representation of RAD51 focus  formation in PCF TREU 927 BRCA2 
mutants exposed to phleomycin. 
Wild-type TREU 927 (WT 927), -/+, and -/- BRCA2 mutant cell lines were treated with 1 µg.ml -1 

phleomycin for 18 hours and the number of cells wit h a specific number of subnuclear 
RAD51 foci formed (0, 1, 2, 3, 4, > 4) were counted  and are represented as a percentage of 
the total cells counted (N). 
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Figure 3-15 Representative images of RAD51 focus fo rmation in PCF TREU 927 BRCA2 
mutants exposed to phleomycin. 
(A) Images of wild-type TREU 927 (WT 927) -/+ and - /- BRCA2 mutant cell lines after 
phleomycin treatment (1 µg.ml -1 for 18 hours). Images were similarly prepared from cells 
without phleomycin treatment (B). White arrows indi cate RAD51 foci. Each cell is shown in 
differential interface contrast (DIC), after staini ng with DAPI (DAPI) and after hybridisation 
with anti-RAD51 antiserum (1:1000 dilution) and sec ondary hybridisation with Alexa Fluor 
594 conjugated anti-rabbit antiserum (RAD51, 1:7000  dilution). Merged images of DAPI and 
RAD51 cells are also shown (Merge). 

To ensure that the observed differences in RAD51 foci were not due simply to a 

difference in the levels of RAD51 in the brca2-/- cells, or that they could be 

accounted for by a loss of RAD51 up-regulation after phleomycin treatment, 

western analysis was carried out. Total protein was extracted from cells before 

and after the same regime of phleomycin treatment as employed above and 

separated by SDS PAGE on a 10% Bis-Tris gel. After blotting, the gel was probed 

with anti-RAD51 antiserum at a dilution of 1:500. The blot was then stripped 

(section 2.11.1) and re-probed with anti-OPB1 antiserum (1:1000 dilution) to 

ensure equal protein loading levels. The western blot in Figure 3-16 

demonstrates that the levels of RAD51 protein remain constant after phleomycin 
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treatment in wild-type, and BRCA2-/+ cell lines, and are unchanged in the 

brca2-/- cells. Thus, BRCA2 is not a determinant of RAD51 stability and the 

recombinase expression levels are not detectably upregulated by phleomycin 

damage, unlike RAD51 in the related parasites T. cruzi and L. major (McKean et 

al., 2001;Regis-da-Silva et al., 2006). 

 
Figure 3-16 Western analysis of RAD51 in PCF TREU 9 27 BRCA2 mutants exposed to 
phleomycin. 
Total protein extracts from wild-type TREU 927 (WT 927), -/+, and -/- BRCA2 mutant cell lines 
were separated by SDS PAGE and western blotted befo re being probed with anti-RAD51 
antiserum (1:500 dilution). ‘-’ indicates protein e xtracts prepared without phleomycin 
treatment and ‘+’ indicates protein extracts prepar ed after phleomycin treatment (1 µg.ml -1 

BLE for 18 hours). The blots were stripped and re-p robed with anti-OPB1 antiserum (1:1000 
dilution) as a loading control. Size markers are sh own (kDa). 

3.3.5  Analysis of genomic stability in PCF TREU 92 7 
BRCA2 mutants 

After prolonged passaging (~ 290 generations) brca2-/- mutants in BSF Lister 427 

T. brucei display genomic instability, detectable by an accumulation of visible 

karyotype changes in the megabase chromosomes, at least some of which arise 

due to deletions within the VSG arrays (Hartley and McCulloch, 2008). In order to 

examine these rearrangements in more detail, the brca2-/- mutant cell lines 

generated here, in PCF TREU 927, were grown for ~ 380 generations before 

analysis of genomic stability by examination of the molecular karyotype in 

multiple clones generated from passaged populations. 

After prolonged passaging, the wild-type TREU 927, -/+ BSD and -/- BSD-PUR 

BRCA2 mutant cell lines were re-cloned as described in section 2.1.4 and a total 

of eight clones were chosen for analysis. The brca2-/- clones were checked by 

PCR, using the primers described in Figure 3-2A, to ensure that they remained 

homozygous mutants, in order to exclude the possibility that cross-

contamination with either wild-type or BRCA2-/+ cells had occurred during the 
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prolonged passaging, as these would likely have a growth advantage. The 

agarose gel in Figure 3-17 demonstrates that the BRCA2 ORF remained absent 

from the six brca2-/- mutant clones, and that both the BSD and PUR ORFs were 

present in each. 

 
Figure 3-17 Screening PCF TREU 927 BRCA2 mutant re-clones by PCR. 
An agarose gel of PCR products obtained using the p rimers, described in Figure 3-2A, and 
genomic DNA extracted from wild-type TREU 927 (WT 9 27), -/+ and -/- BRCA2 mutant clonal 
cell lines grown for ~ 380 generations. Distilled w ater (dH 20) was used as a negative control. 
The PCR products produced from the BSD, PUR and BRCA2 ORFs are indicated (black 
arrows), and size markers are shown (Ladder, kb). 

Southern analysis was then performed using DNA probes designed to hybridise to 

multiple members of the ingi retrotransposon family. Retrotransposons 

constitute the most abundant mobile genetic element described in the genome 

of T. brucei, consisting of up to ~ 5% of the haploid genome (Berriman et al., 

2005). The ingi retrotransposon is 5.25 kb in size and composed of a 4.7 kb 

fragment bordered by two separate halves of the ribosomal mobile element 

(RIME) (Kimmel, Olemoiyoi, and Young, 1987;Murphy et al., 1987). If functional, 

it encodes a 1,657 amino acid protein containing a central reverse transcriptase 

domain, a C-terminal DNA-binding domain and an N-terminal 

apurinic/apyrimidinic (AP)-like endonuclease domain (Murphy et al., 

1987;Olivares, Alonso, and Lopez, 1997). The T. brucei genome contains ~ 115 
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copies of the ingi retrotransposon with only three intact copies that potentially 

code for functional retrotransposition machinery (Bringaud et al., 2004;Berriman 

et al., 2005;Bringaud et al., 2008). Ingi retrotransposons are autonomous, which 

means that they encode for their own transposition. It was originally thought 

that they were randomly distributed throughout the genome, but it is now 

known that they show a relative site-specificity for insertion (Bringaud et al., 

2004). The majority of ingi retrotransposons contain a ~ 12 bp direct repeat 

sequence upstream that is thought may be the recognition site of the ingi-

encoded endonuclease (Bringaud et al., 2004). The distribution of 

retrotransposons in the T. brucei genome has been analysed and it was 

discovered that they are over-represented in strand-switch regions (113 

elements per Mb), compared to coding regions (1.8 elements per Mb) and 

subtelomeric regions (26.7 elements per Mb) (Bringaud et al., 2007;Bringaud et 

al., 2008). Ingi retrotransposons in the subtelomeres are interspersed between 

VSG genes located in the silent VSG arrays (Figure 3-18;Berriman et al., 2005). 

The rationale behind using the ingi DNA probes was that it was considered they 

may provide a more complete picture of genetic changes in the genome, and 

more specifically within the subtelomeres, than could be obtained by designing 

DNA probes for a large number of individual VSG genes. 77 of the most complete 

ingi sequences extracted from the TREU 927 genome sequence were aligned 

(Appendix 2) and two DNA probes were designed against relatively conserved 

regions, named INGI-1 and INGI-2, and amplified by PCR using primers 86 and 87, 

and 88 and 89, respectively. The eight clonal cell lines analysed in Figure 3-17 

were used for this analysis. Genomic DNA was extracted from each, digested 

with XhoI or HindIII, separated by electrophoresis on a 1% agarose gel, Southern 

blotted and hybridised at 60°C with the ingi DNA probes. 

The Southern blots in Figure 3-19 demonstrate that this approach revealed no 

obvious ingi rearrangements in the six brca2-/- mutant clones, as the complex 

banding patterns closely resembled each other and that seen in the single wild-

type and BRCA2-/+ clones used for comparison. Though this may indicate an 

absence of ingi-associated rearrangements, it is possible that the complexity of 

the banding pattern masked any subtle changes. 
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Figure 3-18 The location of ingi retrotransposons in the subtelomeres of TREU 927 
chromosome 9. 
The location of VGSs (blue), ESAGs (green) and ingi retrotransposons (purple) are shown 
for the subtelomere of chromosome 9. Reproduced fro m Berriman et al., 2005. 

 
Figure 3-19 Analysis of genomic stability of PCF TR EU 927 BRCA2 mutants by Southern 
analysis using DNA probes against ingi retrotransposons. 
5 µg of genomic DNA extracted from wild-type TREU 927 (WT 927), -/+ and -/- BRCA2 mutant 
clones was digested with XhoI (A) or HindIII (B), before being separated by electrophoresis  
on an agarose gel. The DNA was Southern blotted bef ore being hybridised with a DNA 
probe against ingi (INGI-1 (A) or  INGI-2 (B)). Size markers are shown (kb). The clones 
analysed in Figure 3-17 were used for this analysis  and grown for ~ 380 generations. 
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In order to test whether the ingi DNA probes are suitable for detecting the 

putative GCRs predicted for T. brucei brca2-/- mutants, the INGI-1 probe was 

used to hybridise at 60°C to a Southern blot of genomic DNA from BSF Lister 427 

brca2-/- mutants that had undergone passaging and cloning, and where genome 

rearrangements had been predicted by the loss of members of the VSG121 family 

(section 3.4;Hartley and McCulloch, 2008). The Southern blot in Figure 3-20 

reveals a similarly complex banding pattern as seen in the PCF TREU 927 cells 

that, again, does not provide clear evidence for GCRs. As such, we can conclude 

that the ingi DNA probes are unsuitable for monitoring the genomic instability 

previously described in BSF Lister 427 brca2-/- mutants. 

 

 
Figure 3-20 Analysis of the suitability of ingi DNA probes for detection of genomic instability 
in BSF Lister 427 BRCA2 mutants. 
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5 µg of genomic DNA extracted from wild-type Lister 42 7 (WT 427) and brca2-/- mutant 
clones (-/-1 or -/-2) was digested with XmnI, before being separated by electrophoresis on an 
agarose gel. The DNA was Southern blotted before be ing hybridised with a DNA probe 
against ingi (INGI-1). Size markers are shown (kb). The clones analysed in section 3.4 were 
used for this analysis and grown for ~ 150 generati ons. 

In order to ask if genome rearrangements occur in the brca2-/- TREU 927 PCF 

mutants, DNA probes were next designed to analyse specific VSGs within the VSG 

arrays in these cells. VSG protein sequences from TREU 927 were aligned and a 

tree generated (Appendix 3). Four VSG families were identified containing 

between 5 and 6 relatively closely related members. The VSG genes of these 

families were aligned (Appendix 4) and primers were designed to amplify DNA 

probes that should hybridise to regions conserved within these VSG family 

members. BLASTn searches of the T. brucei TREU 927 genome were carried out 

using the DNA probe sequences and the results are detailed in Table 3-4. Five 

DNA probes were designed, named VSG1 to VSG5, and amplified using primers 97 

and 98, 99 and 100, 101 and 102, and 103 and 104, and 102 and 133, 

respectively. The eight clonal cell lines analysed in Figure 3-17 were used for 

this analysis. Genomic DNA was extracted, digested with HindIII, separated by 

electrophoresis on a 1% agarose gel, Southern blotted and hybridised at 50°C 

with the VSG1 or VSG2 DNA probes. These Southern blots were then stripped and 

re-probed with the VSG3 or VSG4 DNA probes. 

The Southern blots in Figure 3-21 provide no evidence for karyotype changes in 

the brca2-/- mutant cells, as the banding patterns of the six brca2-/- mutant 

clones closely resemble each other, and that seen in the wild-type and BRCA2-/+ 

mutant clones used for comparison. The Southern blot in Figure 3-21A was 

hybridised with the VSG1 probe that binds predominantly to two restriction 

fragments of ~ 8.5 kb and ~ 10 kb in size. These bands are visible in the wild-

type and BRCA2-/+ cell lines, and are maintained at the same size in all six 

brca2-/- mutant clones analysed. The Southern blot in Figure 3-21B was 

hybridised with the VSG2 probe which displays a much more complex banding 

pattern, with predominant restriction fragments visible at ~ 1.7 kb, ~ 2.7 kb and 

~ 8.0 kb. These bands are present, at the same size, in all clones analysed. The 

Southern blot in Figure 3-21C was hybridised with the VSG3 probe which again 

binds predominantly to two restriction fragments of ~ 5.0 kb and ~ 2.0 kb in size 

that are present at the same size in all the clones analysed. The final Southern 

blot in Figure 3-21D was hybridised with the VSG4 probe and displays two 
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restriction fragments at ~ 1.5 kb and ~ 5.0 kb that are again maintained in size 

across all the clones analysed. Thus, for each VSG analysed, there is no sign of 

gene loss, or of rearrangements that would lead to changes in restriction digest 

patterns. 

 
Table 3-4 BLASTn hits for the five VSG DNA probes. 
The five DNA probes designed were subjected to BLAS Tn search of the T. brucei TREU 927 
genome and the Gene IDs of the hits returned are sh own with their Expect values and 
percentage identities. 
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Figure 3-21 Analysis of genomic stability of PCF TR EU 927 BRCA2 mutants by Southern 
analysis using DNA probes against VSGs. 
5 µg of genomic DNA extracted from wild-type TREU 927 (WT 927), -/+ and -/- BRCA2 mutant 
clones was digested with HindIII before being separated by electrophoresis on a n agarose 
gel. The DNA was Southern blotted before being hybr idised with DNA probes against VSG1 
(A), VSG2 (B), VSG3 (C) or VSG4 (D). Size markers are shown (Ladder, kb). The clone s 
analysed in Figure 3-17 were used for this analysis  and grown for ~ 380 generations. 
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In order to assay more globally for any genome rearrangements, the molecular 

karyotype of the intact chromosomes in the eight clonal cell lines was analysed 

by pulsed field agarose gel electrophoresis. Genomic plugs containing 1 x 108 

cells of each of the clones derived from the passaged populations were made as 

detailed in section 2.2.2 and the intact chromosomes were separated by 

electrophoresis on a 1.2% agarose gel using conditions detailed in section 2.8.2. 

The ethidium bromide-stained pulsed field agarose gel in Figure 3-22A shows the 

expected karyotype of T. brucei TREU 927 (Melville et al., 1998), and little 

evidence for rearrangements in the brca2-/- mutant clones after prolonged 

passaging. Unlike in BSF Lister 427 brca2-/- mutants (Melville et al., 

2000;Hartley and McCulloch, 2008), substantial reductions in the size of the 

megabase chromosomes, visible as faster migrating bands, were not seen in this 

analysis. Southern blotting of the pulsed field agarose gel was next used to allow 

specific chromosomes to be visualised. DNA probes against VSGs predicted to 

reside on chromosome 5 (VSG5, primers 102 and 133; see Table 3-4) and 

chromosome 9 (VSG1, primers 97 and 98), and against Glucose-6-phosphate 

isomerase (GPI, primers 142 and 143), which is located on chromosome 1, were 

amplified by PCR, and hybridised at 50°C to the pulsed field agarose gel 

Southern blot (Figure 3-22B, C and D). For each DNA probe, hybridisation to a 

chromosome of the expected size was seen in each brca2-/- mutant clone, 

suggesting no loss of the complete genes. In addition, there was no evidence in 

any of the clones for significant reduction (or increase) in the size of 

chromosomes when compared to wild-type and BRCA2-/+ mutant clones, 

suggesting that large-scale genome rearrangements had not occurred. 
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Figure 3-22 Analysis of genomic stability of PCF TR EU 927 BRCA2 mutants by pulsed field 
agarose gel electrophoresis. 
(A) Ethidium bromide-stained pulsed field agarose g el electrophoresis separation of intact 
genomic DNA from wild-type TREU 927 (WT 927), -/+ a nd -/- BRCA2 mutant clones. Lanes 
containing marker DNA molecules are indicated: H. wingei. The clones analysed in Figure 
3-17 were used for this analysis and grown for ~ 38 0 generations. (B-D) Southern blots of 
the pulsed field agarose gel electrophoresis separa tion of intact genomic DNA from wild-
type TREU 927 (WT 927), -/+ and -/- BRCA2 mutant clones. The Southern blot was hybridised 
sequentially with DNA probes gainst GPI (Glucose-6-phosphate isomerase, B), VSG5 (C) 
and VSG1 (D). The chromosomes probed for are indicated (bla ck arrows), and size markers 
are shown (Mb). 

Taken together, the above data suggest that brca2-/- mutants in PCF TREU 927 

do not display equivalent levels of putative GCRs to those seen in BSF Lister 427 

brca2-/- mutants, even after more extensive passaging. These data could 

indicate a function for BRCA2 in the maintenance of genome stability that is 

restricted to the BSF of T. brucei. However, an alternative explanation for this 

could be found in the differences in the relative size or composition of the VSG 
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arrays in the TREU 927 and Lister 427 strains. Karyotype analysis has suggested 

that the genome size of TREU 927 is amongst the smallest of the T. brucei 

strains examined (Melville et al., 1998). Microarray analysis suggests that the 

larger size of the genome in Lister 427 is accounted for by significantly larger 

numbers of VSGs in the subtelomeres of the megabase chromosome (Callejas et 

al., 2006). Assuming that the brca2-/- GCRs observed in Lister 427 are 

concentrated in the VSG-containing subtelomeres, the putatively smaller VSG 

repertoire of TREU 927 may mean that these rearrangements are less frequent 

or less detectable. Another plausible explanation is that the composition of the 

VSG arrays in the strain Lister 427 may contribute to the accumulation of 

putative GCRs in BSF Lister 427 brca2-/- mutants, as a large number of families 

of VSGs exist containing multiple members with very high sequence similarity 

(Boothroyd et al., 1982;Carrington et al., 1991). The VSG array of the strain 

TREU 927 does not contain families of VSGs with large numbers of similar genes 

(Marcello and Barry, 2007) and therefore may be less prone to the homologous 

recombination reactions that may lead to an accumulation of GCRs. 

3.4  Analysis of the timescale of genomic 
rearrangements in BSF Lister 427 BRCA2 
mutants 

The timeline over which the putative GCRs occur in the brca2-/- mutants in BSF 

Lister 427 is unknown. Analysis was conducted only after ~ 290 generations of 

growth and revealed rearrangements in the VSG121 gene family (Hartley and 

McCulloch, 2008), which contains five closely related VSG genes, one located at 

the telomere and the other four likely to be located in subtelomeric arrays. Two 

independent BSF Lister 427 brca2-/- mutants were generated previously (-/-1 

and -/-2;Hartley and McCulloch, 2008), and were recovered from frozen storage 

after passaging for ~ 140 generations. To ask if genome rearrangements are 

detectable after this amount of growth, 23 clones of these mutants were 

generated, as described in section 2.1.4, and grown for a mimimal further 

number of generations (~ 10) until sufficient genomic DNA could be recovered 

for Southern analysis. The clones were checked by PCR, using primers described 

in Figure 3-2A, to check the genetic status of the brca2-/- cells. The agarose gel 

in Figure 3-23 demonstrates that the BRCA2 ORF remained absent from the 23 

brca2-/- mutant clones. 
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Figure 3-23 Screening BSF Lister 427 brca2-/- mutant re-clones by PCR. 
An agarose gel of the PCR products obtained using t he primers, described in Figure 3-2A, 
and genomic DNA extracted from wild-type Lister 427  (WT 427) and brca2-/- mutant  clonal 
cell lines. Distilled water (dH 2O) was used as a negative control. The PCR products  
produced from the BSD, PUR and BRCA2 ORFs are indicated (black arrows), and size 
markers are shown (Ladder, kb). 

Southern analysis was then performed using a DNA probe specific to a region 

conserved in all five members of the VSG121 family. Genomic DNA was 

extracted, digested with XmnI, separated by electrophoresis on a 1% agarose 

gel, Southern blotted and hybridised at 60°C with the DNA probe for VSG121, 

generated by PCR with primers 146 and 147. The Southern blot in Figure 3-24 

demonstrates that loss of VSG121 occurs at an earlier time-point than thought 

previously (Hartley and McCulloch, 2008). As expected, five copies of VSG121 are 

present in wild-type BSF Lister 427 clones. However, in the majority of brca2-/- 

mutant clones analysed (16 out of 22) one or more copies of VSG121 had been 

lost, consistent with the presence of putative GCRs that result in the loss of non-

essential genetic material. The telomeric copy of VSG121 varies in size, 

presumably due to varying length of the telomere in some clones (lanes 1, 13, 17 

and 24;Van der Ploeg, Liu, and Borst, 1984), but was never lost suggesting that 

such chromosomal rearrangements infrequently affect telomeres.  
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Figure 3-24 Analysis of genomic stability of BSF Li ster 427 BRCA2 mutants by Southern 
analysis using a DNA probe against VSG121. 
5 µg of genomic DNA extracted from wild-type Lister 42 7 (WT 427) and brca2-/- mutant 
clones was digested with XmnI, before being separated by electrophoresis on an agarose 
gel. The DNA was Southern blotted before being hybr idised with a DNA probe against 
VSG121. One telomeric (TEL) gene and four genes that are likely to be present in 
subtelomeric arrays (Ii, Iii, Iiii and Iiv) are sho wn. ‘*’ indicates clones in which an internal 
gene copy has been lost. Size markers are shown (kb ). The clones analysed in Figure 3-23 
were used for this analysis and grown for ~ 150 gen erations. 

3.5 Generation of BRCA2 gene disruption mutants 
in PCF Lister 427 T. brucei 

In order to test further the possibility that the function of BRCA2 in maintaining 

genomic integrity is limited to the BSF parasites, homozygous mutants of BRCA2 

were generated in PCF cells in the Lister 427 strain using the same strategy 

described in section 3.2.1. Ideally, BRCA2 mutants would also have been 

generated in BSF TREU 927 T. brucei, but as this strain is pleomorphic it was 

considered that the generation of homozygous mutants would be problematic, as 

would maintenance in culture during the passaging needed to reveal karyotype 

changes. In order to circumvent some of these difficulties it was attempted to 

transmit the PCF TREU 927 brca2-/- mutants generated here through the tsetse 

fly vector (Craig Lapsley), however no visible metacyclic form trypanosomes 
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were observed in tsetse fly saliva and therefore infection of mammals and 

isolation of BSF TREU 927 brca2-/- mutants was not possible. 

3.5.1  Generation of BRCA2 mutants in PCF Lister 427 T. 
brucei 

Two separate transformations were carried out in order to generate two 

independent BRCA2-/+ cell lines using the ∆BRCA2::BSD and ∆BRCA2::PUR gene 

deletion constructs (Figure 3-1). Wild-type PCF Lister 427 (WT 427) cells were 

transformed and antibiotic resistant transformants were selected by placing cells 

on SDM-79 media supplemented with 10 µg.ml-1 blasticidin or 1 µg.ml-1 

puromycin. Two independent BRCA2-/+ clones were chosen (-/+ BSD and -/+ 

PUR; Figure 3-25) and subsequently transformed with the complementary BRCA2 

gene deletion construct in order to generate two independent brca2-/- mutant 

cell lines. Antibiotic resistant transformants were selected with 5 µg.ml-1 

blasticidin and 0.5 µg.ml-1 puromycin. 

3.5.2  Confirmation of BRCA2 mutants by PCR 

The generation of brca2-/- mutants was initially confirmed by PCR performed on 

genomic DNA extracted from the putative brca2-/- cell lines (six -/- BSD-PUR 

clones and six -/- PUR-BSD clones were chosen). PCR was performed using 

primers specific to the BSD, PUR and BRCA2 ORFs as described in section 3.2.3 

and Figure 3-2A. 

The agarose gel in Figure 3-25 demonstrates the presence of the BSD and PUR 

resistance ORFs in all bar one (BSD-PUR) of the putative brca2-/- mutants. As 

seen in brca2-/- mutants in PCF TREU 927, a number of these clones still 

retained the BRCA2 ORF, producing a PCR product with the primers to amplify 

part of the BRCA2 ORF. These ‘incorrect’ clones were discarded and two 

independent brca2-/- mutant clones were selected from the clones that failed to 

amplify a PCR product using these primers (indicated by ‘*’ in Figure 3-25). The 

two independent brca2-/- mutant clones chosen were referred to as -/- BSD-PUR 

and -/- PUR-BSD. 
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Figure 3-25 Confirmation of PCF Lister 427 BRCA2 mutants by PCR. 
An agarose gel of the PCR products, obtained using the primers, described in Figure 3-2A, 
and genomic DNA extracted from wild-type Lister 427  (WT 427), BRCA2 heterozygous (-/+)  
and putative brca2 homozygous (-/-) mutant cell lines. The two indepe ndent BRCA2-/+ 
mutants are indicated by -/+ BSD and -/+ PUR, and the putative brca2-/- mutants derived 
from these are indicated by -/- BSD-PUR and -/- PUR-BSD, respectively. Distilled water 
(dH2O) was used as a negative control. The PCR products  produced from the BSD, PUR and 
BRCA2 ORFs are indicated (black arrows), and size marker s are shown (Ladder, kb). ‘*’ 
indicates brca2-/- mutants that are confirmed by PCR. 

3.5.3  Confirmation of BRCA2 mutants by Southern 
analysis 

To confirm the generation of two independent brca2-/- mutant cell lines, 

Southern analysis was performed as described in section 3.2.4. The only 

difference was that the genomic DNA extracted was digested with SacII and StuI 

prior to Southern blotting to enable the differentiation between the BSD and 

PUR alleles. The location of primers, predicted restriction enzyme recognition 

sites and expected DNA fragment sizes are displayed in Figure 3-26A. 

The Southern blot in Figure 3-26B demonstrates that the intact BRCA2 ORF exists 

in wild-type Lister 427 cells as two allelic size variants, and these have been 

shown to vary in the number of BRC repeat motifs they encode (Hartley and 

McCulloch, 2008). In each BRCA2-/+ mutant, a distinct BRCA2 allele was 

replaced with either a BSD or PUR resistance cassette. In neither brca2-/- 

mutant could an intact BRCA2 ORF be detected, and instead both alleles of the 

gene were deleted, one replaced by a BSD cassette and the other replaced by a 

PUR cassette. 
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Figure 3-26 Confirmation of PCF Lister 427 BRCA2 mutants by Southern analysis. 
(A) Restriction maps showing the expected products of restriction digestion, Southern 
blotting and hybridisation with the 5’ UTR of the BRCA2 ORF (black arrows indicate the 
primers used to PCR-amplify this as a DNA probe). T he restriction sites are indicated, with 
the expected restriction fragment sizes shown (kb).  (B) 5 µg of genomic DNA extracted from 
wild-type Lister 427 (WT 427), -/+  and -/- BRCA2 mutant cell lines was digested with SacII 
and StuII before being separated by electrophoresis on an agarose gel. The DNA was 
Southern blotted before being hybridised with a DNA  probe against the 5’ UTR of the 
BRCA2 ORF. The bands produced from the WT alleles and th e BRCA2 mutant alleles are 
indicated (black arrows), and size markers are show n (Ladder, kb). 

3.5.4  Attempt at confirmation of BRCA2 mutants by 
western analysis 

Attempts at confirmation of the absence of expression of BRCA2 in the PCF 

Lister 427 brca2-/- cells by western blot using anti-BRCA2 antiserum was 
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performed multiple times, including with the addition of 5% chicken serum 

(Sigma) in the blocking solution to reduce non-specific binding of the antibody. 

The result of these attempts was inconclusive due to the extensive nature of the 

non-specific binding of the antiserum and, therefore, is not displayed. 

3.6  Phenotypic analysis of PCF Lister 427 BRCA2 
mutants 

3.6.1  Analysis of in vitro growth 

The in vitro growth of the PCF Lister 427 BRCA2 mutant cell lines was analysed 

and the average counts from three experimental repetitions are plotted in 

Figure 3-27, and extrapolated doubling times are displayed in Table 3-5. 

From the growth curves and doubling times displayed it is apparent that 

disruption of a single BRCA2 allele has no discernible effect on the growth of 

BRCA2-/+ cell lines when compared to wild-type cells. However, the brca2-/- 

mutants display a very slight retardation in growth as evidenced by a slight 

increase in the doubling time from the wild-type value of ~ 11 hours to ~ 13 

hours for the mutants. This minor growth impairment appears to be even slighter 

than that observed for the PCF TREU 927 brca2-/- cells (section 3.3.1). 

 
Figure 3-27 Analysis of in vitro growth of PCF Lister 427 BRCA2 mutants. 
2 ml cultures of wild-type Lister 427 (WT 427), -/+  and -/- BRCA2 mutant cell lines were 
inoculated at 5 x 10 5 cells.ml -1 and cell densities counted 24, 48, and 72 hours su bsequently 
are shown. Values are averaged from the counts from  three experimental repetitions, and 
vertical lines indicate standard deviation. 
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Table 3-5 In vitro population doubling times of PCF Lister 427 BRCA2 mutants. 
The mean doubling time for wild-type Lister 427 (WT  427), -/+ and -/- BRCA2 mutant cell 
lines is displayed, in hours, and was calculated fr om the data displayed in Figure 3-27. 

3.6.2  Analysis of DNA damage sensitivity 

The Alamar blue assay was used to determine the sensitivity of the PCF Lister 

427 BRCA2 mutant cell lines to the DNA damaging agents MMS and phleomycin. 

The Alamar blue assay was set up with wild-type Lister 427, -/+ and -/- BRCA2 

mutant cell lines. The extent of fluorescence for each cell line was plotted 

graphically over the range of log drug concentrations (for representative 

examples see Figure 3-28 and Figure 3-29). From this, EC50s were determined 

from each individual plot and then average EC50s (plus 95% confidence intervals) 

were calculated from the three experimental repetitions. The mean EC50s for 

each cell line were then plotted relative to the wild-type EC50, which was taken 

as 100% (Figure 3-30 and Figure 3-31). 

The survival curves displayed in Figure 3-28 and Figure 3-29 are representative 

of the three experimental repetitions performed. These data demonstrate that 

as the concentration of DNA damaging agent increases the fluorescence, and 

therefore the percentage of surviving cells that are actively reducing Alamar 

blue to fluorescent resorufin reduces, until the concentration at which all cells 

are killed is reached. It is apparent that the brca2-/- cell lines display reduced 

survival in the presence of both compounds, when compared to wild-type cells. 

The BRCA2-/+ cell lines display survival that is essentially equivalent to wild-

type cells, except for the BRCA2-/+ PUR cell line that appears to show a slightly 

greater survival in the presence of phleomycin (although not significantly, see 

below), perhaps similar to the differences in damage sensitivity seen previously 

for a BRCA2-/+ mutant cell line in PCF TREU 927 (section 3.3.2). The graphs of 

relative EC50 values displayed in Figure 3-30 and Figure 3-31 support the 

graphical observations and demonstrate that the disruption of a single BRCA2 
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allele has no discernible effect on the sensitivity of the BRCA2-/+ cell lines to 

the DNA damage caused by either compound when compared to wild-type cells. 

In contrast, the brca2-/- mutants appeared to display a slightly greater 

sensitivity to both DNA damaging agents, though this was very slight and was 

markedly less than the brca2-/- mutants in PCF TREU 927 (section 3.3.2)  

To evaluate the above data the EC50 values of the wild-type Lister 427, -/+ and 

-/- BRCA2 mutant cell lines were analysed using student’s T-tests and the results 

of this are displayed in Table 3-6. The statistical analyses confirm the graphical 

observations. No statistical difference was observed between wild-type, -/+ or -

/- BRCA2 mutant cells (p > 0.05) for both DNA damaging agents, underlining that 

the brca2-/- mutants display at best only a slight phenotype of increased DNA 

damage sensitivity. 

 
Figure 3-28 A representative survival curve for PCF  Lister 427 BRCA2 mutants exposed to 
MMS. 
The extent of fluorescence for each cell line (WT, -/+ and -/-) obtained using the Alamar blue 
assay is plotted against the log of MMS concentrati ons. Nonlinear regression was 
performed and fitted curves are shown for each cell  line. 

 
Figure 3-29 A representative survival curve for PCF  Lister 427 BRCA2 mutants exposed to 
phleomycin. 
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The extent of fluorescence for each cell line (WT, -/+ and -/-) obtained using the Alamar blue 
assay is plotted against the log of phleomycin conc entrations. Nonlinear regression was 
performed and fitted curves are shown for each cell  line. 

 
Figure 3-30 EC50 values of PCF Lister 427  BRCA2 mutants exposed to MMS. 
Wild-type Lister 427 (WT 427), -/+  and -/- BRCA2 mutant cell lines were placed in serially 
decreasing amounts of MMS and allowed to grow for 4 8 hours, before the addition of 
Alamar Blue. After a further 24 hours, the reductio n of Alamar Blue was measured by the 
amount of fluorescent resorufin generated. EC50 val ues are the mean from three 
experimental repetitions expressed as a percentage relative to wild-type and bars indicate 
95% confidence intervals. 

 
Figure 3-31 EC50 values of PCF Lister 427  BRCA2 mutants exposed to phleomycin. 
Wild-type Lister 427 (WT 427), -/+  and -/- BRCA2 mutant cell lines were placed in serially 
decreasing amounts of phleomycin and allowed to gro w for 48 hours, before the addition of 
Alamar Blue. After a further 24 hours, the reductio n of Alamar Blue was measured by the 
amount of fluorescent resorufin generated. EC50 val ues are the mean from three 
experimental repetitions expressed as a percentage relative to wild-type and bars indicate 
95% confidence intervals. 
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Table 3-6 Statistical analysis of Alamar Blue resul ts. 
P values are shown for student’s T-tests comparing the mean EC50 values of wild-type 
Lister 427 (WT 427), -/+ and -/- BRCA2 mutant cell lines grown in the presence of MMS (A)  or 
phleomycin (B). Areas shaded in yellow indicate a s ignificant difference (P ≤ 0.05). No 
correction has been made for simultaneous multiple comparisons. 

3.6.3  Confirmation of the DNA damage sensitivity o f PCF 
Lister 427 BRCA2 mutants 

Due to the lack of statistical significance associated with the DNA damage 

sensitivity of the two PCF Lister 427 brca2-/- mutant cell lines, it was decided to 

analyse the in vitro growth of these cells in the presence of MMS in order to 

confirm the results of the Alamar blue assay. 2 ml cultures were inoculated at 5 

x 105 cells.ml-1 in SDM-79 media supplemented with 0.0004% MMS and counted at 

24, 48 and 72 hours subsequently. The average counts from three repetitions are 

plotted in Figure 3-32. 

From the growth curve displayed it is apparent that the disruption of a single 

BRCA2 allele has no discernible effect on the growth of the cells in the presence 

of MMS, when compared to wild-type cells. However, the brca2-/- mutant cells 

display a visible retardation in growth after 48 hours, indicating that disruption 

of BRCA2 results in an increase in the DNA damage sensitivity of the mutant cell 

lines. For all the cells, the rate of growth was reduced by the presence of MMS, 

but this growth retardation was more pronounced for the brca2-/- mutants 
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Figure 3-32 Analysis of in vitro growth of PCF Lister 427 BRCA2 mutants exposed to MMS. 
2 ml cultures of wild-type Lister 427 (WT 427), -/+  and -/- BRCA2 mutant cell lines were 
inoculated at 5 x 10 5 cells.ml -1 in media supplemented with 0.0004% MMS, and cell d ensities 
counted 24, 48, and 72 hours subsequently are shown . Values are averaged from the counts 
from three experimental repetitions, and vertical l ines indicate standard deviation. 

3.6.4  Analysis of genomic stability in PCF Lister 427 
BRCA2 mutants 

After prolonged passaging (~ 290 generations) brca2-/- mutants in BSF Lister 427 

T. brucei display evidence for putative GCRs, including gene deletions within the 

subtelomeric VSG arrays (Hartley and McCulloch, 2008). Data displayed in 

section 3.4 demonstrates that these rearrangements can occur earlier than 

previously thought (~ 150 generations), and provided a timescale over which 

analysis of the genomic stability of the brca2-/- mutants generated in PCF Lister 

427 should be considered. The brca2-/- mutants in PCF Lister 427 were initially 

grown for ~ 80 generations before analysis of genomic stability by examination 

of the molecular karyotype. 

Wild-type Lister 427, -/+ and -/- BRCA2 mutant polyclonal cell lines were re-

cloned and a total of 19 clones were chosen for analysis. PCR using primers 

described in Figure 3-2A was carried out to check the genetic status of the 

brca2-/- cells. The agarose gel in Figure 3-33 demonstrates that the BRCA2 ORF 

remained absent from the 12 brca2-/- mutant clones. 
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Figure 3-33 Screening PCF Lister 427  brca2-/- mutant re-clones by PCR. 
An agarose gel of the PCR products obtained using t he primers, described in Figure 3-2A, 
and genomic DNA extracted from wild-type Lister 427  (WT 427), -/+ and -/- BRCA2 mutant 
clonal cell lines. Distilled water (dH 2O) was used as a negative control. The PCR products  
produced from the BSD, PUR and BRCA2 ORFs are indicated (black arrows), and size 
markers are shown (Ladder, kb). 

Southern analysis was then performed using a DNA probe against members of the 

VSG121 family as described in section 3.4. The Southern blot in Figure 3-34 

demonstrates that no loss of VSG121 was detectable after ~ 80 generations of 

growth in PCF Lister 427 brca2-/- mutant cells. As expected, five copies of 

VSG121 were present in wild-type and BRCA2-/+ clones. However, five copies of 

VSG121 were also present in all of the brca2-/- mutant clones analysed, 

indicating the absence of genome rearrangements affecting the VSG arrays. 

Indeed in the brca2-/- mutant clone in lane 6 a further copy of VSG121 had been 

generated, by an unknown mechanism, and this cell line now contains a sixth 

copy of the gene. Such gene duplication has not been observed before, only 

gene loss. As seen before, the telomeric copy of VSG121 varied in size but was 

never lost. 

 
Figure 3-34 Analysis of genome stability of PCF Lis ter 427 BRCA2 mutants by Southern 
analysis using a DNA probe against VSG121. 
5 µg of genomic DNA extracted from wild-type Lister 42 7 (WT 427), -/+ and -/- BRCA2 mutant 
clones was digested with XmnI before being separated by electrophoresis on an a garose 
gel. The DNA was Southern blotted before being hybr idised with a DNA probe against 
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VSG121. One telomeric (TEL) gene and four genes that are likely to be present in 
subtelomeric arrays (Ii, Iii, Iiii and Iiv) are sho wn. Size markers are shown (kb). The clones 
analysed in Figure 3-33 were used for this analysis  and grown for ~ 80 generations. 

Because of the discrepancy between the number of passages used here and the ~ 

150 generations after which extensive loss of VSG121 was seen in Lister 427 

brca2-/- mutants (section 3.4), the BRCA2 mutants in PCF Lister 427 were grown 

for a longer period of time and subsequently re-cloned at ~ 230 generations 

growth. Clones were generated from the wild-type Lister 427, -/+ and -/- BRCA2 

mutant polyclonal cell lines and a total of 24 clones were chosen for analysis. 

PCR using primers described in Figure 3-2A was again carried out to confirm the 

absence of BRCA2 ORF in the brca2-/- clones; and Figure 3-35 demonstrates that 

the BRCA2 ORF remained absent from the 15 brca2-/- mutant clones.  

 
Figure 3-35 Screening PCF Lister 427 brca2-/- mutant re-clones by PCR. 
An agarose gel of the PCR products obtained using t he primers, described in Figure 3-2A, 
and genomic DNA extracted from wild-type Lister 427  (WT 427), -/+ and -/- BRCA2 mutant 
clonal cell lines. Distilled water (dH 2O) was used as a negative control. The PCR products  
produced from the BSD, PUR and BRCA2 ORFs are indicated (black arrows), and size 
markers are shown (Ladder, kb). 

Southern analysis was then performed using a DNA probe against members of the 

VSG121 family, as described in section 3.4. The Southern blot in Figure 3-36 

demonstrates that no loss of VSG121 was detectable in PCF Lister 427 brca2-/- 

mutants, even after ~ 230 generations of growth. The wild-type Lister 427 clones 

in lanes 1, 10 and 11 appeared to have duplicated VSG121 and contain a sixth 

copy of the gene, as seen for one brca2-/- clone at ~ 80 generations (Figure 

3-34, lane 6). As seen before, the telomeric copy of VSG121 varied in size, quite 

considerably in lane 22, but was never lost. 
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Figure 3-36 Analysis of genomic stability of PCF Li ster 427 BRCA2 mutants by Southern 
analysis using a DNA probe against VSG121. 
5 µg of genomic DNA extracted from wild-type Lister 42 7 (WT 427), -/+ and -/- BRCA2 mutant 
clones was digested with XmnI before being separated by electrophoresis on an a garose 
gel. The DNA was Southern blotted before being hybr idised with a DNA probe against 
VSG121. One telomeric (TEL) gene and four genes that are likely to be present in 
subtelomeric arrays (Ii, Iii, Iiii and Iiv) are sho wn. Size markers are shown (kb). The clones 
analysed in Figure 3-35 were used for this analysis  and grown for ~ 230 generations. 

In order to confirm the putative absence of genome rearrangements, the 

molecular karyotype of a number of the clones analysed in Figure 3-36 was 

carried out by pulsed field agarose gel electrophoresis. Genomic plugs containing 

1 x 108 cells were made and the intact chromosomes were separated by 

electrophoresis on a 1.2% agarose gel. 

The ethidium bromide-stained pulsed field agarose gel in Figure 3-37A shows the 

expected karyotype of T. brucei Lister 427 (Melville et al., 2000) and indicates 

the absence of clear GCRs in the brca2-/- mutants after prolonged passaging. 

Unlike in BSF Lister 427 brca2-/- cells, where considerable size variation was 

evident in the chromosomes between 1.05-3.13 Mbps, there was a notable 

uniformity in size of the chromosomes in the different PCF Lister 427 brca2-/- 

clones and relative to the wild-type and BRCA2-/+ clones. Only in the brca2-/- 

clone in lane 12 did there appear to be a detectable change, with loss of signal 

for a band of ~ 2.35 Mb.  

A Southern blot was next prepared from the pulsed field agarose gel and 

hybridised with DNA probes against VSG121 and Glucose-6-phosphate isomerase 

(GPI), which is located on chromosome 1, which were amplified by PCR. The 

Southern blots in Figure 3-37B and Figure 3-37C, demonstrate chromosomes at 

the expected sizes for GPI and VSG121 in the strain Lister 427 (Melville et al., 

2000;Hartley and McCulloch, 2008). As observed in the ethidium bromide-stained 

pulsed field agarose gel, the brca2-/- mutant clone in lane 12 contains the only 
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detectable change in karyotype, and appeared to have lost genetic material 

leading to a reduction in size of the chromosome that harbours both GPI and at 

least one of the VSG121 family genes. As only a small number of wild-type and 

BRCA2-/+ clones were analysed for genomic stability in this manner, it is 

possible that the rearrangement in the single brca2-/- clone in lane 12 is simply 

due to changes in chromosome sequences as previously observed after prolonged 

passaging of T. brucei (Anneli Cooper, PhD, Thesis 2010). 

 

 
Figure 3-37 Analysis of genomic stability of PCF Li ster 427 BRCA2 mutants by pulsed field 
agarose gel electrophoresis. 
(A) Ethidium bromide-stained pulsed field agarose g el electrophoresis separation of intact 
genomic DNA from wild-type Lister 427 (WT 427), -/+  and -/- BRCA2 mutant clones. Lanes 
containing marker DNA molecules are indicated: H. wingei. The clones analysed in Figure 
3-35 were analysed here and grown for ~ 230 generat ions. (B-C) Southern blots of the 
pulsed field agarose gel electrophoresis separation  of intact genomic DNA from wild-type 
Lister 427 (WT 427), -/+  and -/- BRCA2 mutant clones. The Southern blot was hybridised 
sequentially with DNA probes against GPI (Glucose-6-phosphate isomerase, B) and VSG 
121 (C). The chromosomes probed for are indicated (bla ck arrows), and size markers are 
shown (Mb). 



Chapter 3  147 

3.7 Summary 

In this work, it has been shown that BRCA2 provides a role in the repair of DNA 

damage and in the subnuclear relocalisation of RAD51 after damage in PCF T. 

brucei, which was only previously examined in BSF cells. Despite this, the 

growth impairment and DNA damage sensitivity phenotypes of the PCF brca2-/- 

mutants generated here are slighter than those observed for the BSF brca2-/- 

mutants generated previously (Hartley and McCulloch, 2008). Why this might be 

is unclear, especially as the extent to which the PCF cells formed detectable 

subnuclear RAD51 foci is very comparable to that of the BSF cells (Hartley and 

McCulloch, 2008). One possible explanation is that BRCA2 plays an additional 

role in the BSF life cycle stage, or that it performs dual functions in both life 

cycle stages but one of these is more pronounced in the BSF. What this function 

might be is unclear from these data, but perhaps BRCA2’s role in general repair 

of DNA damage is distinct from another role in the maintenance of genome 

stability. If this stability function required a greater proportion of the available 

BRCA2 in the BSF, then less BRCA2 might be available for general repair and 

mutation of BRCA2 in the BSF stage would then have a much greater impact on 

the general well being of the cells, manifested as a larger growth defect and 

greater sensitivity to exogenously added DNA damaging agents. For this proposed 

dual function of BRCA2, perhaps specific to BSF cells, to be true, it supposes 

that the levels of BRCA2 available for DNA repair may be higher in PCF cells, and 

we have no further evidence for this. It is also not obvious why the levels of 

BRCA2 could not simply be life cycle stage regulated. The only known functions 

of BRCA2 are to aid RAD51-mediated HR (O'Donovan and Livingston, 

2010;Holloman, 2011), so it seems likely that any such dual function for BRCA2 

would be manifest through RAD51. In this regard, it would be intriguing to 

analyse the levels of RAD51 and BRCA2 proteins in the two life cycle stages and 

also to generate and analyse rad51-/- mutants in PCF cells to see if the 

phenotypes of this mutation are comparable in PCF and BSF cells. It is not clear 

whether the observation that T. brucei RAD51 levels do not respond to DNA 

damage, as they do in T. cruzi and L. major (McKean et al., 2001;Regis-da-Silva 

et al., 2006), may be related to this. What is clear though, is that RAD51 is able 

to be relocalised efficiently to induced DNA damage in both PCF and BSF cells 

(Hartley and McCulloch, 2008). 
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A major issue that would need to be addressed in the above hypothesis is the 

nature of the putative dual roles for BRCA2. An obvious possibility is a function 

in VSG switching, which may only occur in the BSF where the VSG ES are actively 

transcribed (Horn and McCulloch, 2010;Rudenko, 2010). Why this should differ 

from general repair by HR is unknown. An alternative is that BRCA2 contributes 

to the maintenance of the subtelomeres, which may have features (such as 

chromatin structure) that differ between the two life cycle stages, rendering 

them more prone to instability in the BSF. This is clearly a possibility, as it would 

explain the observed differences in genome instability described here (see 

below). Nonetheless, we cannot discount more trivial explanations for the 

differences in growth and repair in BRCA2 mutants in BSF and PCF cells. For 

instance, it may be that differences in underlying doubling times of the two life 

cycle stages in culture simply mean that the assays employed here provide less 

discrimination in the PCF, which divide more slowly. It is also possible that the 

PCF cells experience increased oxidative damage, due to the greater 

mitochondrial metabolism in PCF cells relative to BSF cells (Bienen et al., 

1991;Hajduk et al., 1992;Fang and Beattie, 2003) that is likely to yield higher 

levels of reactive oxygen species, which can damage DNA (Kryston et al., 2011). 

Alternatively, previous work has suggested that cell cycle checkpoints differ in 

PCF and BSF cells (Hammarton, 2007), and it may then be that DNA damage is 

recognised, signalled or repaired differently.  

 The observed replication phenotype in BSF brca2-/- mutant cells, consistent 

with the initiation of cytokinesis prior to the completion of DNA replication, 

manifests as an accumulation of cells with aberrant DNA configurations (Hartley 

and McCulloch, 2008). Analysis of the cell cycle in the TREU 927 PCF brca2-/- 

mutants generated here revealed an accumulation of zoids (anucleate cells) and 

this may be due to differences in the cell cycle checkpoints between the two life 

cycle forms; with PCF cells lacking the mitosis to cytokinesis checkpoint that is 

present in BSF cells (Hammarton et al., 2003;Hammarton, 2007), allowing PCF 

cells that have not replicated their nuclear DNA (1N2K) to proceed through 

cytokinesis generating progeny containing 1N1K and 0N1K DNA content 

(Woodward and Gull, 1990). It is also possible that BRCA2 plays a more central 

role in replication progression and/or re-start in the BSF, and this could account 
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for the reduction in the severity of the brca2-/- mutant phenotypes in the PCF 

Lister 427 and TREU 927 strains. 

This work reveals a clear life cycle stage difference in genome stability, which is 

more marked than the repair differences discussed above. It is shown that the 

genomic instability phenotype observed in Lister 427 BSF brca2-/- mutant cells 

cannot be detected in the same brca2-/- mutants generated here in PCF cells of 

both TREU 927 and Lister 427 strains. This surprising finding appears to indicate 

a function of BRCA2 in the maintenance of genome stability that is a BSF-specific 

phenomenon. The differences in the size and composition of the subtelomeric 

VSG arrays in the two strains, TREU 927 and Lister 427, do not appear to account 

for the absence of putative GCRs in the TREU 927 PCF brca2-/- mutants 

generated here, as the Lister 427 PCF brca2-/- mutants also generated do not 

display putative GCRs after prolonged passaging. Though any rearrangements in 

PCF brca2-/- mutant cells may require a longer period of growth before 

accumulating to a level that is detectable, the increased population doubling 

times of this life cycle stage have been taken into account when estimating 

generation times. Thus, the lack of rearrangements in the PCF cells cannot be 

accounted for simply by growth rate differences. In fact, the genome 

rearrangements observed in the BSF brca2-/- mutant cells have been detected at 

an earlier time point (~ 150 generations) than previously examined, and 

significantly earlier than the PCF analyses. The original aim of this chapter was 

to map the genomic rearrangements at the DNA sequence level using the 

assembled genome sequence of strain TREU 927. Due to the absence of genome 

rearrangements in the PCF brca2-/- mutants generated here, this aim could not 

be carried out. Completion of the assembly of the Lister 427 genome, in 

particular the subtelomeres of the megabase chromosomes, and the design of a 

microarray to allow whole genome hybridisation would allow the genetic 

dissection of the rearrangements observed in BSF Lister 427 brca2-/- mutants. In 

the absence of these data, we can only speculate about the reasons for these 

life cycle differences. 

The basis of this function for BRCA2 in the maintenance of genome stability in 

the BSF may be differences in the chromatin structure between the two life 

cycle stages (Schlimme et al., 1993;Burri et al., 1994), possibly due to the 

requirement for antigenic variation and VSG expression in the BSF only (Hughes 
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et al., 2007;Figueiredo, Janzen, and Cross, 2008;Stanne and Rudenko, 

2010;Figueiredo and Cross, 2010). In this regard, there is some evidence to 

suggest that these rearrangements may be specifically targeted to VSGs. The 

large karyotype changes that occur in BSF brca2-/- mutants, that lead to the loss 

of copies of VSG121, do not detectably encompass the ingi retrotransposon 

families (or at least the families analysed here). Many of these ingi 

retrotransposons are located in strand switch regions, and some are distributed 

throughout the VSG arrays in the subtelomeres of the megabase chromosomes. 

This builds upon previous work showing that the intermediate- and mini-

chromosomes, which do not harbour VSG arrays, are not affected by loss of 

BRCA2 (Hartley and McCulloch, 2008). Perhaps, then, the rearrangements are 

even more VSG-localised than previously thought
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 Chapter 4: The function of the 
BRCA2 BRC repeat expansion in T. 

brucei. 
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4.1 Introduction 

The BRCA2 protein in T. brucei contains an unusual number and arrangement of 

the RAD51-binding motif, the BRC repeat, which distinguishes it from BRCA2 

proteins in other species. The human BRCA2 protein contains eight BRC repeats 

(Figure 1-15), all of which have been shown to bind Rad51 in either monomer or 

nucleoprotein filament forms (Wong et al., 1997;Carreira and Kowalczykowski, 

2011). The BRC repeats have been demonstrated to have different affinities for 

binding Rad51 due to the variation in amino acid sequence that is apparent 

across the eight BRC repeats (Chen et al., 1998;Pellegrini and Venkitaraman, 

2004;Esashi et al., 2005;Thorslund, Esashi, and West, 2007;Carreira and 

Kowalczykowski, 2011). The BRC repeats are spread across the central third of 

the BRCA2 protein, with spacer regions between repeats varying from between 

60 and 100 amino acids in length, and showing no sequence conservation (Bork, 

Blomberg, and Nilges, 1996;Bignell et al., 1997). In contrast to this, the BRCA2 

protein identified in T. brucei is unusual in containing an expansion in the 

number of BRC repeats; up to 15 BRC repeat motifs were predicted from the 

TREU 927 genome sequence, and Southern and minisatellite variant repeat (MVR) 

mapping shows that, while this number is variable both between strains and 

between alleles within a strain, BRCA2 always has greater than 8 BRC repeats 

(Lo et al., 2003;Hartley and McCulloch, 2008). If it is assumed that a given 

BRCA2 allele encodes fifteen BRC repeats, sequence analysis revealed that the 

14 most N-terminal motifs are identical in amino acid sequence, while the 

sequence of the most C-terminal motif is slightly diverged in the last 11 amino 

acids. In addition, the BRC repeat motifs are arranged across the N-terminal half 

of the T. brucei BRCA2 protein and exist in a perfect tandem repeated array, 

with exactly 9 amino acids separating each repeat from the next and showing 

complete conservation (Hartley and McCulloch, 2008). This unusual BRC repeat 

expansion and arrangement appears largely unique to T. brucei (Figure 1-19). 

Amongst kinetoplastid parasites, BRCA2 proteins in T. cruzi and Leishmania sp. 

each possess 2 non-identical BRC repeats, while the African trypanosomes T. 

vivax and T. congolense contain 1 and 3 BRC repeats, respectively (Hartley and 

McCulloch, 2008). In other protists, 1-2 BRC repeats appear the norm, though 

larger numbers are found in apicomplexan parasites and in Trichomonas 

vaginalis (6-8 and 14, respectively), though here the repeats do not show the 
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same level of sequence uniformity or array organisation (Hartley and McCulloch, 

2008;Lo et al., 2003). Indeed, only in T. congolense are the repeats arranged 

like the T. brucei tandem repeat array, albeit in a truncated form. 

It has been postulated that this expansion in BRC repeat number in T. brucei 

BRCA2 could be an adaptation for the elevated rates of homologous 

recombination required by T. brucei in order to carry out antigenic variation 

efficiently. However, this appears not to be the case, or at least to be too 

simplistic a hypothesis. In BSF Lister 427 brca2-/- mutant cells the re-expression 

of variants of BRCA2 from T. brucei and T. vivax containing only a single BRC 

repeat restored observed VSG switching frequencies to wild-type levels (Hartley 

and McCulloch, 2008), indicating that 15 BRC repeats are not a requirement for 

efficient antigenic variation in T. brucei, at least as measured by the VSG 

switching assay employed. Despite this, expression of these BRCA2 variants in 

BSF brca2-/- cells did cause detectable impairment in two aspects of 

homologous recombination: homology-directed integration of transformed DNA 

constructs, and re-organisation of RAD51 into detectable subnuclear foci 

following phleomycin-induced DNA damage (Hartley and McCulloch, 2008). 

This chapter aims to characterise the function of the BRC repeat expansion in T. 

brucei BRCA2 further, by investigating the phenotype of T. brucei cells 

expressing a number of variants of BRCA2 with reduced numbers of BRC repeats. 

Full-length BRCA2 was re-expressed in the brca2-/- mutant cell lines in the same 

manner as the BRC variants, in order to determine whether or not the 

phenotypic defects observed were due to loss of BRCA2 (Chapter 3), and not the 

result of secondary mutation(s). 

4.2 Complementation of PCF TREU 927 brca2-/- 
mutant with variants of BRCA2 with reduced 
numbers of BRC repeats 

4.2.1  Generation of constructs containing variants  of 
BRCA2 with reduced numbers of BRC repeats 

Constructs to enable the re-expression of variants of BRCA2 with reduced 

numbers of BRC repeats were generated. Re-expression constructs containing 
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the full-length BRCA2 gene (cloned from Lister 427 and estimated to contain 12 

BRC repeats) and a variant containing the single, most C-terminal, degenerate 

BRC repeat motif were generated previously (gift, Claire Hartley). Multiple 

attempts to create variants of BRCA2 with reduced numbers of BRC repeats by 

PCR have failed (data not shown), and therefore the required BRC variant 

domains of BRCA2 were synthesised. The synthesised DNA contained the 216 bp 

of the BRCA2 ORF from the ATG start codon to the start of the first BRC repeat 

sequence, followed by 3, 6 or 9 ‘normal’ BRC repeats, then followed by the 

degenerate BRC repeat and finally 277 bp of sequence extending down to a 

unique MfeI restriction site (2473 bp; Figure 4-1). These BRC variant domains of 

BRCA2 differ from each other only in the number of BRC repeats, since each 

conserved repeat is identical, and were called 4BRC, 7BRC and 10BRC, 

respectively. A restriction digestion-based cloning approach was then used to 

assemble the re-expresser constructs by adding the variant BRC repeat domains 

to the BRCA2 ORF sequence downstream of MfeI, avoiding problematic PCR-

amplification across the BRC repeat sequences. The variant BRC repeat domains 

were synthesised with EcoRV and XhoI sites at the 5’ and 3’ ends, respectively, 

to allow direct cloning into pBluescript. The 2,473 bp C-terminal domain of 

BRCA2, from the unique MfeI restriction site downstream to the stop codon, was 

excised from an existing construct (pRSF1b BRCA2 C-term, section 5.2.1) using 

the restriction endonucleases MfeI and XhoI. This C-terminal BRCA2 DNA 

fragment was then cloned into the pBluescript BRC variant constructs using the 

MfeI and XhoI restriction sites. To create pRM482::BRC re-expression constructs 

(see below), the whole assembly of each variant was then excised from 

pBluescript by digestion with EcoRV and XhoI, and blunt cloned into pRM482 

(gift, Richard McCulloch) prepared by EcoRV restriction digestion. The cloning 

strategy is displayed in Figure 4-2. 

 
Figure 4-1 A diagram of the 7BRC variant domain of T. brucei BRCA2 generated by DNA  
synthesis. 
Indicated are the sequence motifs present including ; 6 ‘normal’ BRC repeats (red boxes), 
the C-terminal degenerate BRC repeat (dark red box) , the start (ATG), and the restriction 
sites used for cloning. The sizes of the component parts are shown (bp). 4BRC and 10BRC 
variant domains are not shown, but differ from 7BRC only in possessing 3 and 9 ‘normal’ 
BRC repeat-encoding sequences, respectively.  
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Figure 4-2 Cloning strategy used for the assembly o f the pRM482::BRC variant re-expresser 
constructs. 
The synthesised BRC repeat variants (top, yellow; o nly 7BRC is shown) were initially cloned 
into pBluescript using EcoRV and XhoI restriction sites. The C-terminus of BRCA2 (orange) 
was prepared by restriction digestion with MfeI and XhoI, from an existing construct, and 
was ligated into the pBluescript-BRC construct dire ctly downstream of the BRC variant 
insert. The whole insert was then excised using EcoRV and XhoI, and ligated into pRM482 
(bottom) prepared by EcoRV digestion. 

pRM482 is a construct that allows re-expression of a gene from the tubulin array 

in T. brucei (Figure 4-3), where it is transcribed initially as part of the 

endogenous transcript. The mature mRNA produced contains non-endogenous 5’ 

and 3’ UTRs derived from trans-splicing via an upstream actin intergenic 

sequence and polyadenylation from a downstream tubulin intergenic sequence. 

As such, the level of mRNA produced, and its stability, is likely to be altered 

relative to endogenous BRCA2. Nevertheless, re-expression by this strategy was 

successful for BRCA2 in BSF Lister 427 brca2-/- T. brucei leading to significant 

reversion of recombination and RAD51 foci impairment phenotypes (Hartley and 

McCulloch, 2008). pRM482 contains regions derived from tubulin intergenic 

sequences flanking the entire insert in pBluescript that provide targeting 

sequences to enable homologous recombination and replacement of an α tubulin 

ORF with the construct following transformation. To allow selection of 

constructs that have integrated into the genome, pRM482 contains the G418 

antibiotic resistance cassette (NEO) containing processing signals derived from 

tubulin and actin intergenic sequences flanking the antibiotic resistance ORF. 

For transformation, the pRM482::BRC constructs were excised from pBluescript 
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by restriction digestion with XhoI and XbaI, the digested DNA was then ethanol 

precipitated and approximately 5 µg of the resuspended DNA was used for each 

transformation. 

 
Figure 4-3 pRM482::BRC re-expression constructs. 
The full-length BRCA2 ORF and four BRC variant ORFs ( 1BRC, 4BRC, 7BRC and  10BRC) 
were cloned into an EcoRV site between the actin (Act IR) and αβ tubulin (αβ Tub) intergenic 
sequences of the plasmid pRM482, which contains the  antibiotic resistance cassette for 
G418 (NEO). The construct is flanked with tubulin intergenic regions ( βα Tub and αβ Tub) 
that allow integration by homologous recombination into the tubulin array (top), replacing 
an α tubulin ORF. Sizes of the BRCA2 variants are shown (bp), and are not drawn to scal e. 
Full-length BRCA2 is shown with 12 BRC repeats, as it is cloned from Lister 427 cells and 
estimated to contain 12 BRC repeats. 

4.2.2  Generation of re-expresser cell lines in PCF  TREU 
927 

Transformations were carried out in order to generate five re-expresser cell 

lines in PCF TREU 927 brca2-/- cells (section 3.2) containing full-length BRCA2, 

and variants of BRCA2 with 1, 4, 7 and 10 BRC repeats using the pRM482::BRC re-

expresser constructs (section 4.2.1). To do this, PCF TREU 927 brca2-/- BSD-PUR 

mutant cells were transformed and antibiotic resistant transformants were 

selected by placing cells on SDM-79 media supplemented with 20 µg.ml-1 G418 

(Sigma). 
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4.2.3  Confirmation of re-expresser cell lines by P CR 

The generation of BRCA2 re-expresser cell lines was initially confirmed by PCR 

performed on genomic DNA extracted from putative re-expresser clones 

resulting from the five transformations. PCR was performed using primers 

specific to the BSD and PUR resistance ORFs, and also a 1.2 kb region of the 

BRCA2 ORF. The location of the primers and expected sizes of the PCR products 

are displayed in Figure 4-4A. 

 

 
Figure 4-4 Confirmation of PCF TREU 927 BRCA2 re-expresser cell lines by PCR. 
(A) Primers used to amplify part of the BRCA2 ORF, and the BSD and PUR resistance ORFs, 
are indicated (black arrows), with the expected siz es of the resulting PCR products shown 
(bp). (B) An agarose gel of the PCR products obtain ed using the primers, described above, 
and genomic DNA extracted from wild-type TREU 927 ( WT 927), -/+ and -/- BRCA2 mutant, 
and putative BRCA2 re-expresser (-/-/+) cell lines. Distilled water ( dH2O) was used as a 
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negative control. The PCR products produced from th e BSD, PUR and BRCA2 ORFs are 
indicated (black arrows), and size markers are show n (Ladder, kb). 

The agarose gel in Figure 4-4B demonstrates the presence of the BSD and PUR 

resistance ORFs in all of the putative re-expresser cell lines. All five clones 

analysed here produced a PCR product with the primers specific to part of the 

BRCA2 ORF, indicating they have integrated the re-expression construct. The 

five re-expresser cell lines selected for further analysis are referred to as; -/-/+ 

1BRC, -/-/+ 4BRC, -/-/+ 7BRC, -/-/+ 10BRC and -/-/+ BRCA2. 

4.2.4  Confirmation of re-expresser cell lines by S outhern 
analysis 

To confirm the generation of re-expresser cell lines, Southern analysis was 

performed. Genomic DNA extracted from wild-type TREU 927, brca2-/- mutant 

and the five re-expresser (-/-/+) cell lines was digested with HindIII, separated 

by electrophoresis on a 1% agarose gel, Southern blotted and hybridised at 60°C 

with a DNA probe generated by PCR-amplification with the primers 48 and 49, 

corresponding to a 1.2 kb region of the BRCA2 ORF. The location of primers, 

predicted restriction enzyme recognition sites and expected DNA fragment sizes 

in this approach are displayed in Figure 4-5A. 

The Southern blot in Figure 4-5B demonstrates that the intact BRCA2 ORF exists 

as a single size variant in wild-type TREU 927 cells and the brca2-/- mutant cells 

no longer posses a BRCA2 ORF (as described in section 3.2.4). The five re-

expresser cell lines all contained a DNA fragment of the expected size for the 

BRCA2 BRC variants after integration and dependent on the number of BRC 

repeats, which indicates that they have integrated the pRM482::BRC constructs 

correctly into the tubulin array. 
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Figure 4-5 Confirmation of PCF TREU 927 BRCA2 re-expresser cell lines by Southern 
analysis. 
(A) Restriction maps showing the expected products of restriction digestion, Southern 
blotting and hybridisation with 1.2 kb of the BRCA2 ORF (black arrows indicate the primers 
used to PCR-amplify this as a DNA probe). The restr iction sites are indicated, with the 
expected restriction fragment sizes shown (kb). (B)  5 µg of genomic DNA extracted from 
wild-type TREU 927 (WT 927), brca2-/- mutant, and BRCA2 re-expresser (-/-/+) cell lines was 
digested with HindIII before being separated by electrophoresis on a n agarose gel. The DNA 
was Southern blotted before being hybridised with a  DNA probe against 1.2 kb of the 
BRCA2 ORF. Size markers are shown (kb). 

4.2.5  Attempt at confirmation of re-expresser cell  lines by 
western analysis 

Attempts at confirmation of the re-expression of the variants of BRCA2 in the 

PCF TREU 927 brca2-/- cells by western blot using anti-BRCA2 antiserum were 
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performed multiple times, including with the addition of 5% chicken serum 

(Sigma) in the blocking solution to reduce non-specific binding of the antibody. 

The clearest result of these experiments is displayed in Figure 4-6. 

The western blot in Figure 4-6 demonstrates a band visible at approximately the 

expected size (176 kDa) for the BRCA2 protein in the wild-type and BRCA2-/+ 

mutant cell lines, which was not present in the brca2-/- cell line. Bands of the 

expected sizes for the BRCA2 BRC variants were not visible in the re-expresser 

cell lines. If the non-specific band visible at ~ 58 kDa is viewed as a loading 

control, it is apparent that although there was significant variation in the 

protein loading between the different cell lines, protein was detectable in all 

samples. This may suggest that the level of expression of the variants of BRCA2 

is reduced relative to the endogenous locus and below the threshold of detection 

of the antiserum. However, one of the peptides recognised by the antiserum is 

the BRC repeat, and it is therefore possible the antiserum does not bind to the 

re-expressed variants as efficiently as full-length BRCA2. 

 
Figure 4-6 Attempt at confirmation of PCF TREU 927 BRCA2 re-expresser cell lines by 
western analysis. 
Total protein extracts from wild-type TREU 927 (WT 927), -/+ and -/- BRCA2 mutant, and 
BRCA2 re-expresser (-/-/+) cell lines were separate d by SDS-PAGE and western blotted 
before being probed with anti-BRCA2 antiserum (1:20 0 dilution). Size markers are shown 
(kDa). 

4.2.6  Analysis of BRCA2 mRNA levels in re-expresser cell 
lines by quantitative RT-PCR 

As the expression of the BRCA2 variants could not be confirmed by western 

analysis, the mRNA levels were analysed by quantitative RT-PCR. Total RNA was 

extracted from wild-type TREU 927, BRCA2-/+ mutant and BRCA2 re-expresser (-

/-/+) cell lines, DNase treated and subsequently cDNA was synthesised by RT-

PCR using the SuperScript First Strand Reverse Transcription Kit (section 2.5.4). 
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To confirm the absence of genomic DNA contamination in the extracted RNA, 

control cDNA reactions were performed without the addition of the reverse 

transcriptase (RT) enzyme. PCR analysis with primers specific for part of an 

endogenous gene, DNA polymerase I (PolI; 150 and 151), was used to test for 

PCR-amplification of cDNA in RT plus and control RT minus samples. The agarose 

gel in Figure 4-7 demonstrates that cDNA had been generated successfully in all 

the RT plus samples, and that genomic DNA contamination was absent from all 

the RT minus samples, as no PCR product was visible. 

Quantitative RT-PCR was carried out (section 2.5.5) on the cDNA produced in the 

RT plus samples using primers specific for part of an endogenous control gene, 

tubulin (154 and 155), and part of the BRCA2 gene (138 and 139). Primer 

annealing was tested after the qRT-PCR reaction by running a dissociation curve 

step (data not shown), which confirmed that that the primers were only 

producing a single product and were not producing primer dimers, which could 

adversely affect the results. The mRNA detected in this and subsequent qRT-PCR 

experiments (section 4.4.2 and section 4.6.5) cannot be absolutely confirmed to 

be BRCA2 mRNA. Analysis of the brca2-/- cell line, and the absence of a product 

could have provided further evidence that this is in fact BRCA2 mRNA. In 

addition, electrophoretic separation of the PCR products would have allowed 

determination of the size of the product and sequencing of the product could 

have been carried out to absolutely confirm the amplification of BRCA2 mRNA. 

However, the data in Figure 4-8 demonstrate that the BRCA2-/+ mutant cell 

lines have a ~ 50% reduced level of BRCA2 mRNA when compared to wild-type 

cells, that is consistent with the deletion of a single BRCA2 allele. However, the 

two different -/+ cell lines analysed showed some inconsistency, with ~ 40% and 

~ 60% reduction. It is possible that a different BRCA2 allele has been deleted in 

each cell line, and the alleles show differences in levels of steady state mRNA, 

though these differences may simply reflect variation in the accuracy of qRT-

PCR measurements. The five BRCA2 re-expresser cell lines had varying levels of 

BRCA2 mRNA, ranging from a ~ 20 - 60% reduced level when compared to wild-

type cells. These variations may be real, and could reflect changes in mRNA due 

to the genes being expressed from variable locations within the tubulin array. 

Nevertheless, the data show a trend not dissimilar to the mRNA levels seen for -

/+ BSD, and suggest that this expression strategy generates BRCA2 mRNA levels 
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close to those of a BRCA2-/+ mutant and slightly less than a wild-type cell line 

with two BRCA2 alleles, consistent with integration of a single gene in each 

case. 

 
Figure 4-7 Testing PCF TREU 927 BRCA2 re-expresser RT-PCR reactions by PCR. 
An agarose gel of the PCR products generated using primers specific to DNA polymerase I 
(PolI), amplified from cDNA generated by RT-PCR reaction s containing reverse 
transcriptase (top, + RT). Control cDNA reactions w ere also analysed, lacking reverse 
transcriptase (bottom, - RT). Distilled water (dH 2O) was used as a negative control, and a 
genomic DNA sample (gDNA) as a positive control. Si ze markers are shown (Ladder, kb). 

 
Figure 4-8 Quantitative RT-PCR analysis of the PCF TREU 927 BRCA2 re-expresser cell 
lines. 
Quantitative RT-PCR was carried out on cDNA generat ed from wild-type TREU 927 (WT 927), 
BRCA2-/+ mutant ( BSD or PUR), and BRCA2 re-expresser (-/-/+) cell lines using primers 
specific for an endogenous control, tubulin, and BRCA2. All samples were normalised to the 
tubulin endogenous control and the level for BRCA2 expressed relative to the WT 927 
sample (which was set as one); values are the avera ge quantification from four repetitions, 
and vertical lines indicate standard deviation. 
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4.3 Phenotypic analysis of PCF TREU 927 BRCA2 
re-expresser cell lines 

4.3.1  Analysis of in vitro growth 

The in vitro growth of the PCF TREU 927 BRCA2 re-expresser cell lines was 

analysed in order to determine if variation in BRC repeat number correlates with 

the extent of the relatively minor growth impairment in TREU 927 brca2-/- cells 

(section 3.3.1). In addition, the re-expression of full-length BRCA2 allows us to 

determine if the impaired growth phenotype of the brca2-/- cell line is due to 

loss of BRCA2, or might result from secondary mutations in the absence of a 

factor needed for repair of DNA damage. The average counts from three 

experimental repetitions are plotted in Figure 4-9, and extrapolated doubling 

times are displayed in Table 4-1. 

From the growth curves and doubling times displayed it is apparent that the re-

expression of BRCA2 with 1, 4, 7 or 10 BRC repeats, or full-length BRCA2, 

restores growth of the brca2-/- mutant cell line to essentially wild-type levels, 

with doubling times of between ~ 10.7 and ~ 11.3 hours for the re-expresser cell 

lines and ~ 11 hours for wild-type cells. It therefore appears that BRCA2 with 

even a single BRC repeat is capable of supporting wild-type rates of growth, at 

least in culture. 

 
Figure 4-9 Analysis of in vitro growth of the PCF TREU 927 BRCA2 re-expresser cell  lines. 
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2 ml cultures of wild-type TREU 927 (WT 927), -/+ a nd -/- BRCA2 mutant, and BRCA2 re-
expresser (-/-/+) cell lines were inoculated at 5 x  105 cells.ml -1 and cell densities counted 24, 
48, and 72 hours subsequently are shown. Values are  averaged from the counts from three 
experimental repetitions, and vertical lines indica te standard deviation. 

 
Table 4-1  In vitro population doubling times of PCF TREU 927 BRCA2 re -expresser cell 
lines. 
The mean doubling time for wild-type TREU 927 (WT 9 27), -/+ and -/- BRCA2 mutant, and 
BRCA2 re-expresser (-/-/+) cell lines is displayed,  in hours, and was calculated from the data 
displayed in Figure 4-9. 

4.3.2  Analysis of DNA damage sensitivity 

The Alamar blue assay was used to determine the sensitivity of the PCF TREU 

927 BRCA2 re-expresser cell lines to the DNA damaging agents MMS and 

phleomycin. The Alamar blue assay was set up with wild-type TREU 927, -/+ and 

-/- BRCA2 mutant and BRCA2 re-expresser (-/-/+) cell lines. The extent of 

fluorescence for each cell line was plotted graphically over the range of log drug 

concentrations (for representative examples see Figure 4-10 and Figure 4-11). 

From this, EC50s were determined from each individual plot and then average 

EC50s (plus 95% confidence intervals) were calculated from two experimental 

repetitions. The mean EC50s for each cell line were then plotted relative to the 

wild-type EC50, which was taken as 100% (Figure 4-12 and Figure 4-13). 

The survival curves displayed in Figure 4-10 and Figure 4-11 are representative 

of the two repetitions performed. These data demonstrate that as the 

concentration of DNA damaging agent increases the fluorescence, and therefore 

the percentage of surviving cells that are actively reducing Alamar blue to 

fluorescent resorufin, reduces until the concentration at which all cells are 

killed is reached. It is apparent that the brca2-/- mutant cell line displayed 

reduced survival in the presence of both compounds (section 3.3.2), whilst the 

re-expression of BRCA2 with 1, 4, 7, or 10 BRC repeats in this cell line restored 
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the reduced survival back to at least wild-type levels. Similarly, the full-length 

BRCA2 re-expresser cell line also displayed levels of survival comparable to wild-

type cells when exposed to both MMS and phleomycin. Indeed, in the presence 

of phleomycin, it could be argued that all the re-expresser cell lines displayed 

slightly increased survival compared to wild-type cells. The extrapolated EC50 

values (graphs displayed in Figure 4-12 and Figure 4-13) confirm this, and also 

demonstrate that the re-expression of BRCA2 with 1, 4, 7, or 10 BRC repeats or 

full-length BRCA2 restored the increased sensitivity to MMS observed in the 

brca2-/- cells back to approximately wild-type levels, with calculated EC50s 

being essentially equivalent. These data also appear to confirm that each re-

expresser cell line, with the exception of 7BRC, displayed an increased (though 

not statistically significant, see below) resistance to phleomycin relative to wild-

type and BRCA2-/+ cells, with EC50s between 50 and 100% higher than in wild-

type cells. This increase has also been observed in BSF Lister 427 brca2-/- cell 

lines re-expressing full-length BRCA2 (Hartley and McCulloch, unpublished), 

though the basis for this phenomenon is unknown. Nevertheless, it is striking 

that the number of BRC repeats present in the re-expressed BRCA2 variants does 

not correlate with an increase or decrease in sensitivity to DNA damage, with 

EC50s to both compounds and all variants being essentially equivalent. 

To evaluate the above data further, the EC50 values of wild-type TREU 927, -/+ 

and -/- BRCA2 mutant and BRCA2 re-expresser (-/-/+) cell lines were compared 

using student’s T-tests, and the results of this are displayed in Table 4-2. No 

statistical difference was observed between wild-type, -/+, -/- and BRCA2 re-

expresser cell lines (p > 0.05) for both DNA damaging agents. However, the lack 

of statistical significance may be due to the fact that only two experimental 

repetitions were performed, and further experiments may be needed to clarify if 

the observed trend for greater resistance to phleomycin is real. Indeed, though 

the brca2-/- cells appeared more sensitive to MMS, this too was not seen to be 

statistically significant in these experiments, though it was in previous analysis 

(section 3.3.2). 
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Figure 4-10 A representative survival curve for PCF  TREU 927 BRCA2 re-expresser cell lines 
exposed to MMS. 
The extent of fluorescence for each cell line (WT, -/+, -/- and -/-/+) obtained using the Alamar 
blue assay is plotted against the log of MMS concen trations. Nonlinear regression was 
performed and fitted curves are shown for each cell  line. 

 
Figure 4-11 A representative survival curve for PCF  TREU 927 BRCA2 re-expresser cell lines 
exposed to phleomycin. 
The extent of fluorescence for each cell line (WT, -/+, -/- and -/-/+) obtained using the Alamar 
blue assay is plotted against the log of phleomycin  concentrations. Nonlinear regression 
was performed and fitted curves are shown for each cell line. 

 
Figure 4-12 EC50 values of PCF TREU 927  BRCA2  re-expresser cell lines exposed to MMS. 
Wild-type TREU 927 (WT 927), -/+ and -/- BRCA2 mutant, and BRCA2 re-expresser (-/-/+) cell 
lines were placed in serially decreasing amounts of  MMS and allowed to grow for 48 hours, 
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before the addition of Alamar Blue. After a further  24 hours the reduction of Alamar Blue 
was measured by the amount of fluorescent resorufin  generated. EC50 values are the mean 
from two experimental repetitions expressed as a pe rcentage relative to wild-type, and bars 
indicate 95% confidence intervals. 

 
Figure 4-13 EC50 values of PCF TREU 927 BRCA2  re-expresser cell lines exposed to 
phleomycin. 
Wild-type TREU 927 (WT 927), -/+ and -/- BRCA2 mutant, and BRCA2 re-expresser (-/-/+) cell 
lines were placed in serially decreasing amounts of  phleomycin and allowed to grow for 48 
hours, before the addition of Alamar Blue. After a further 24 hours the reduction of Alamar 
Blue was measured by the amount of fluorescent reso rufin generated. EC50 values are the 
mean from two experimental repetitions expressed as  a percentage relative to wild-type, 
and bars indicate 95% confidence intervals. 

 
Table 4-2 Statistical analysis of Alamar Blue resul ts. 
(A) P values are shown for student’s T-tests compar ing the mean EC50 values of wild-type 
TREU 927 (WT 927), -/+ and -/- BRCA2 mutant, and BRCA2 re-expresser (-/-/+) cell lines 
grown in the presence of MMS (A) or phleomycin (B).  Areas shaded in yellow indicate a 
significant difference (P ≤ 0.05). No correction has been made for simultaneou s multiple 
comparisons. 
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4.3.3  Analysis of RAD51 focus formation 

The ability of PCF TREU 927 BRCA2 re-expresser cell lines to form RAD51 foci 

was next analysed in order to ask about the role of the BRC repeats and their 

expansion in RAD51 function. The numbers of RAD51 foci present in the nucleus 

of each of the cell lines that had been exposed to 1 ug.ml-1 phleomycin for 18 

hours were counted for approximately 200 cells per cell line (Table 4-3) and 

plotted graphically (Figure 4-14). Representative images of cells are displayed in 

Figure 4-15A, and compared with control cells without phleomycin treatment in 

Figure 4-15B. 

In the absence of DNA damage RAD51 foci were rarely seen (~ 2% of cells, Figure 

4-15B), irrespective of the BRC repeat number or the presence or absence of 

intact, full-length BRCA2. As described previously (section 3.3.4), after the 

induction of DNA damage the number of wild-type and BRCA2-/+ cells containing 

no detectable RAD51 foci reduced to ~ 25%, with the majority of cells containing 

1, 2 or 3 foci, while the brca2-/- mutant cells appeared to have lost the ability 

to form RAD51 foci. Comparing the re-expresser cell lines revealed a striking BRC 

repeat number-dependent increase in the ability to form RAD51 foci. The 

number of cells containing no RAD51 foci decreased as the BRC repeat number 

increased, with the full-length BRCA2 re-expresser cell line containing only 13% 

of cells with no detectable RAD51 foci, less than the ~ 25% of wild-type and 

BRCA2-/+ cells containing no RAD51 foci. The number of cells with detectable 

RAD51 foci increased as the BRC repeat number increased, though it appeared 

that under these experimental conditions the relative proportions of cells 

containing 1 or 2 RAD51 foci remained relatively constant as BRC repeat number 

increased, with the largest increases seen in the numbers of cells containing 3 or 

4 RAD51 foci. Indeed, the 1BRC, 4BRC and 7BRC re-expresser cell lines were 

markedly less efficient than wild-type or BRCA2-/+ cells at forming RAD51 foci, 

and it appears that ~ 10 BRC repeats are needed for the cells to respond 

equivalently. Overall, the correlation seen in this phenotype with BRC repeat 

number is quite distinct from the lack of correlation between BRC repeat 

number and cell survival after phleomycin treatment (section 4.3.2). 
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Table 4-3 RAD51 focus formation in PCF TREU 927 BRC A2 re-expresser cell lines exposed 
to phleomycin. 
Wild-type TREU 927 (WT 927), -/+ and -/- BRCA2 mutant, and BRCA2 re-expresser (-/-/+) cell 
lines were treated with 1 µg.ml -1 phleomycin for 18 hours and the number of cells wit h a 
specific number of subnuclear RAD51 foci formed (0,  1, 2, 3, 4, > 4) were counted and are 
represented as a percentage of the total cells coun ted (N). Boxes shaded in light yellow 
contain foci, whilst boxes shaded in bright yellow contain the highest percentage of foci. 

 
Figure 4-14 Graphical representation of RAD51 focus  formation in PCF TREU 927 BRCA2 re-
expresser cell lines exposed to phleomycin. 
Wild-type TREU 927 (WT 927), -/+ and -/- BRCA2 mutant, and BRCA2 re-expresser (-/-/+) cell 
lines were treated with 1 µg.ml -1 phleomycin for 18 hours and the number of cells wit h a 
specific number of subnuclear RAD51 foci formed (0,  1, 2, 3, 4, > 4) were counted and are 
represented as a percentage of the total cells coun ted (N). 
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Figure 4-15A Representative images of RAD51 focus f ormation in PCF TREU 927 BRCA2 re-
expresser cell lines exposed to phleomycin. 
Images of wild-type TREU 927 (WT 927), -/+ and -/- BRCA2 mutant, and BRCA2 re-expresser 
(-/-/+) cell lines after phleomycin treatment (1 µg.ml -1 for 18 hours). Each cell is shown in 
differential interface contrast (DIC), after staini ng with DAPI (DAPI) and after hybridisation 
with anti-RAD51 antiserum (1:1000 dilution) and sec ondary hybridisation with Alexa Fluor 
594 conjugated anti-rabbit antiserum (1:7000 diluti on, RAD51). Merged images of DAPI and 
RAD51 cells are also shown (Merge). White arrows in dicate RAD51 foci. 
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Figure 4-15B Representative images of RAD51 focus f ormation in PCF TREU 927 BRCA2 re-
expresser cell lines. 
Images of wild-type TREU 927 (WT 927), -/+ and -/- BRCA2 mutant, and BRCA2 re-expresser 
(-/-/+) cell lines without phleomycin treatment. Ea ch cell is shown in differential interface 
contrast (DIC), after staining with DAPI (DAPI) and  after hybridisation with anti-RAD51 
antiserum (1:1000 dilution) and secondary hybridisa tion with Alexa Fluor 594 conjugated 
anti-rabbit antiserum (1:7000 dilution, RAD51). Mer ged images of DAPI and RAD51 cells are 
also shown (Merge). 
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To ensure that the observed differences in RAD51 focus formation were not due 

simply to a difference in the levels of RAD51 in the BRCA2 re-expresser cell lines 

after phleomycin treatment, western analysis was carried out. The western blot 

in Figure 4-16 demonstrates that the levels of RAD51 protein remain constant 

before and after phleomycin treatment in all cell lines. 

 
Figure 4-16 Western analysis of RAD51 in PCF TREU 9 27 BRCA2 re-expresser cell lines 
exposed to phleomycin. 
Total protein extracts from wild-type TREU 927 (WT 927), -/+ and -/- BRCA2 mutant, and 
BRCA2 re-expresser (-/-/+) cell lines were separate d by SDS PAGE and western blotted 
before being probed with anti-RAD51 antiserum (1:50 0 dilution). ‘-’ indicates protein extracts 
prepared without phleomycin treatment, and ‘+’ indi cates protein extracts prepared after 
phleomycin treatment (1 µg.ml -1 BLE for 18 hours). The blots were stripped and re-p robed 
with anti-OPB1 antiserum (1:1000 dilution) as a loa ding control. Size markers are shown 
(kDa). 

4.3.4  Analysis of the sub-cellular distribution of  RAD51 
by aqueous fractionation 

A potential explanation for the above findings is that a primary function of the 

BRC repeats in BRCA2 is to sequester Rad51 until it is required for the repair of 

DNA double strand breaks, at which point it provides a means of transportation 

into the nucleus (Wong et al., 1997;Chen et al., 1998;Lord and Ashworth, 2007). 

In support of this, no nuclear localisation signal has been identified in T. brucei 

RAD51 to date and, in contrast to the clear subnuclear detection of RAD51 in 

foci following damage, the weaker signal detected by anti-RAD51 antiserum 

before damage appears to be distributed throughout the cell (Proudfoot and 

McCulloch, 2005;Hartley and McCulloch, 2008;Glover, McCulloch and Horn, 

2008). In addition, BRCA2 contains three nuclear localisation signals in T. brucei 

(Figure 1-18), and evidence has been presented that BRCA2 carries out this 

nuclear transport of Rad51 in other organisms, as well as facilitating the loading 

of Rad51 onto the processed ssDNA tail and the formation of the nucleoprotein 

filament (Yuan et al., 1999;Davies et al., 2001;Venkitaraman, 2002). However, 

BRCA2-independent mechanisms of Rad51 transport have also been described 
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(Tarsounas, Davies, and West, 2003;Gildemeister, Sage, and Knight, 2009). The 

expansion in the number of BRC repeats in T. brucei could therefore be an 

adaptation to ensure the transport of sufficient RAD51 molecules into the 

nucleus and to the sites of DNA damage, perhaps to ensure general repair occurs 

efficiently whilst antigenic variation takes up a further requirement for RAD51 

(see Chapter 3). In order to test this hypothesis, the distribution of RAD51 

protein between the nucleus and the cytoplasm in the BRC variant re-expresser 

cell lines was analysed. 

Aqueous fractionation was carried out on T. brucei whole cell extracts as 

detailed in section 2.2.5 (Zeiner, Sturm, and Campbell, 2003). Nuclear and 

cytoplasmic protein extracts were prepared from wild-type TREU 927, -/+ and -

/- BRCA2 mutant and BRCA2 re-expresser (-/-/+) cell lines after phleomycin 

treatment (1 µg.ml-1 for 18 hours), and control protein extracts without 

phleomycin treatment were similarly prepared. Protein extracts were separated 

by SDS-PAGE on 10% Bis-Tris gels before western blotting and probing 

sequentially with anti-RAD51 antiserum (1:500 dilution), anti-OPB1 antiserum 

(1:1000 dilution) and anti-NOG1 antiserum (1:5000 dilution). Blots were stripped 

between probings as described in section 2.11.1. 

Anti-OPB1 antiserum (gift, Jeremy Mottram) was raised in sheep against 

Leishmania major recombinant oligopeptidase B and subsequently affinity-

purified. Anti-NOG1 antiserum (gift, Marilyn Parsons) was raised in rabbits 

against T. brucei recombinant NOG1. OPB1 and NOG1 are proteins located in the 

cytoplasm and nucleolus of T. brucei cells, respectively, and were used to check 

that aqueous fractionation was successful (Park et al., 2001;Munday et al., 

2011). 

The western blots probed with NOG1 and OPB1 antiserum in Figure 4-17 

demonstrate that the separation of nuclear and cytoplasmic proteins by aqueous 

fractionation was successful; OPB1 and NOG1 proteins were only present in the 

cytoplasmic and nuclear fractions, respectively. In all cell lines RAD51 was 

detected in both the nuclear and the cytoplasmic fractions, both before and 

after the induction of DNA damage. Notably, RAD51 was found in the nucleus in 

the brca2-/- cells, as also observed in mammalian cells (Orelli and Bishop, 

2001;Yu et al., 2003;Tarsounas, Davies, and West, 2003;Lee et al., 



Chapter 4  174 

2009;Gildemeister, Sage, and Knight, 2009). In addition, there was no strong 

evidence that the number of BRC repeats present in BRCA2 affects the relative 

amount of RAD51 in the nucleus and cytoplasm. In some cell lines there seemed 

to be a slight increase in the RAD51 concentration in the nucleus after the 

induction of DNA damage; for example, in the -/+ and -/- BRCA2 mutants, and 

also the 4BRC and 7BRC re-expresser cell lines. It may be that this small increase 

is present in all nuclear extracts but is more easily detected in the western blots 

with either less total RAD51 present or a reduced X-ray film exposure time. As 

there was no evidence for the up-regulation of RAD51 expression after the 

induction of DNA damage in T. brucei (section 4.3.3), this increase, if real, may 

be due to a cellular re-distribution of RAD51. If correct, this is not inhibited by 

the deletion of BRCA2. The results presented in section 4.3.3 indicate that BRC 

repeat number is important for the ability to form RAD51 foci after DNA damage, 

and from these data it seems likely that this is a reflection of subnuclear 

dynamics, and not transport into the nucleus. 

 
Figure 4-17 Aqueous fractionation of PCF TREU 927 B RCA2 re-expresser cell lines exposed 
to phleomycin. 
Aqueous fractionation was performed to generate pro tein fractions enriched in soluble 
cytoplasmic proteins (C) and soluble nuclear protei ns (N). Fractions were prepared from 
wild-type TREU 927 (WT 927), -/+ and -/- BRCA2 mutant, and BRCA2 re-expresser (-/-/+) cell 
lines. ‘-’ indicates fractions prepared without phl eomycin treatment and ‘+’ indicates 
fractions prepared after phleomycin treatment (1 µg.ml -1 BLE for 18 hours). Fractions were 
separated by SDS PAGE and western blotted before be ing sequentially probed, stripped and 
re-probed with anti-RAD51 antiserum (1:500 dilution ), anti-OPB1 antiserum (1:1000 dilution) 
and anti-NOG1 antiserum (1:5000 dilution). Size mar kers are indicated (kDa). 
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4.4 Complementation of PCF Lister 427 brca2-/- 
mutants with variants of BRCA2 with reduced 
numbers of BRC repeats 

4.4.1  Generation of re-expresser cell lines in PCF  Lister 
427 

Given the potential differences in VSG archive size between Lister 427 and TREU 

927 T. brucei strains, and the availability of PCF Lister 427 brca2-/- mutants, the 

same strategy used to re-express the BRC variants described for TREU 927 

(section 4.2) was adopted here with PCF Lister 427. To do this, PCF Lister 427 

brca2-/- BSD-PUR mutant cells were transformed with each of the pRM482::BRC 

re-expresser constructs (section 4.2.1) and antibiotic resistant transformants 

were selected by placing cells on SDM-79 media supplemented with 20 µg.ml-1 

G418. The generation of BRCA2 re-expresser cell lines was initially confirmed by 

PCR performed on genomic DNA extracted from putative re-expresser clones 

resulting from the five transformations, as described in section 4.2.3. The 

agarose gel in Figure 4-18 demonstrates that the BSD resistance ORF was 

detected in the 1BRC, 4BRC, 10BRC and full-length BRCA2 putative re-expresser 

cell lines, while the 7BRC cell line appeared to have lost the BSD resistance ORF 

by an unknown mechanism. The PUR resistance ORF was present in all of the 

putative re-expresser cell lines, and all five clones produced a PCR product with 

the BRCA2 ORF primers, suggesting correct integration of the re-expression 

constructs. The five re-expresser cell lines are referred to as; -/-/+ 1BRC, -/-/+ 

4BRC, -/-/+ 7BRC, -/-/+ 10BRC and -/-/+ BRCA2. 
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Figure 4-18 Confirmation of PCF Lister 427 BRCA2 re-expresser cell lines by PCR. 
An agarose gel of the PCR products obtained using t he primers, described in Figure 4-4A, 
and genomic DNA extracted from wild-type Lister 427  (WT 427), -/+ and -/- BRCA2 mutant, 
and putative BRCA2 re-expresser (-/-/+) cell lines. Distilled water ( dH2O) was used as a 
negative control. The PCR products produced from th e BSD, PUR and BRCA2 ORFs are 
indicated (black arrows), and size markers are show n (Ladder, kb). 

To confirm the generation of re-expresser cell lines, Southern analysis was 

performed as described in section 4.2.4. The Southern blot in Figure 4-19 

demonstrates that the five re-expresser cell lines all contained a BRCA2 DNA 

fragment of the expected size for the pRM482::BRC constructs correctly 

integrated into the tubulin array. The 7BRC re-expresser line also displayed a 

DNA fragment corresponding in size to the larger wild-type allele of BRCA2 (the 

alleles are of distinct sizes in this strain; section 3.5.3;Hartley and McCulloch, 

2008). The reason for this is not known, but it shows that this clone is not 

equivalent in genetic composition to the other BRC variants, and the results 

from this cell line will be included from here on for illustrative purposes only. 
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Figure 4-19 Confirmation of PCF Lister 427 BRCA2 re-expresser cell lines by Southern 
analysis. 
5 µg of genomic DNA extracted from wild-type Lister 42 7 (WT 427), -/+ and -/- BRCA2 
mutant, and BRCA2 re-expresser (-/-/+) cell lines was digested with HindIII before being 
separated by electrophoresis on an agarose gel. The  DNA was Southern blotted before 
being hybridised with a DNA probe against 1.2 kb of  the BRCA2 ORF. Restriction maps 
showing the expected products are displayed in Figu re 4-5A, and size markers are shown 
(kb). 

4.4.2  Analysis of BRCA2 mRNA levels in re-expresser cell 
lines by quantitative RT-PCR 

As the expression of the BRCA2 variants cannot be confirmed by western 

analysis, the mRNA levels of the genes were analysed by quantitative RT-PCR as 

described in section 4.2.6. The agarose gel in Figure 4-20 shows the PCR 

products produced using primers specific for part of a control gene, DNA 

polymerase I (PolI), used to demonstrate that cDNA has been amplified 

successfully in all the RT plus samples, and that genomic DNA contamination is 

absent from all the RT minus samples. The data in Figure 4-21 demonstrate that 

the BRCA2-/+ mutant cell lines have a ~ 50% reduced level of BRCA2 mRNA when 

compared to wild-type levels, and four of the five re-expresser cell lines (-/-/+ 

1BRC, 4BRC, 10BRC and BRCA2) have varying levels of BRCA2 mRNA (from a ~ 10 

- 40% reduced level compared to wild-type levels), but showed a consistent 

trend suggestive of a single copy gene. In contrast, the 7BRC re-expresser cell 

line displayed a ~ 40% increased level in BRCA2 mRNA when compared to wild-

type levels. This is consistent with the presence of more than one BRCA2 gene 

and confirms the suspicion that a wild-type BRCA2 allele is still present in this 

cell line. 
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Figure 4-20 Testing PCF Lister 427 BRCA2 re-expresser RT-PCR reaction products by PCR. 
An agarose gel of the PCR products generated using primers specific to DNA polymerase I 
(PolI), amplified from cDNA generated by RT-PCR reaction s containing reverse 
transcriptase (top, + RT). Control reactions were a lso analysed, lacking reverse 
transcriptase (bottom, - RT). Distilled water (dH 2O) was used as a negative control and a 
genomic DNA sample (gDNA) as a positive control. Si ze markers are shown (Ladder, kb). 

 
Figure 4-21 Quantitative RT-PCR analysis of the PCF  Lister 427 BRCA2 re-expresser cell 
lines. 
Quantitative RT-PCR was carried out on cDNA generat ed from wild-type Lister 427 (WT 427), 
BRCA2-/+ mutant ( BSD or PUR), and BRCA2 re-expresser (-/-/+) cell lines using primers 
specific for an endogenous control, tubulin, and BRCA2. All samples were normalised to the 
tubulin endogenous control and the level for BRCA2 expressed relative to the WT 427 
sample (which was set as one); values are the avera ge quantification from four repetitions 
and vertical lines indicate standard deviation. 
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4.5 Phenotypic analysis of PCF Lister 427 BRCA2 
re-expresser cell lines 

The in vitro growth of the PCF Lister 427 BRCA2 re-expresser cell lines was first 

analysed. These data are plotted in Figure 4-22, and extrapolated doubling times 

are displayed in Table 4-4. As seen previously, re-expression of BRCA2 with 1, 4 

or 10 BRC repeats, or full-length BRCA2, restored the growth of the brca2-/- 

mutant cell line to essentially wild-type levels, with doubling times of ~ 10.5 

hours for the re-expresser cell lines, ~ 11 hours for wild-type cells, and ~13 

hours for the brca2-/- cells. The 7BRC re-expresser displays an increased 

doubling time of ~ 9.6 hours, which is faster than that observed for wild-type 

cells. 

 
Figure 4-22 Analysis of in vitro growth of the PCF Lister 427 BRCA2 re-expresser ce ll lines. 
2 ml cultures of wild-type Lister 427 (WT 427), -/+  and -/- BRCA2 mutant, and BRCA2 re-
expresser (-/-/+) cell lines were inoculated at 5 x  105 cells.ml -1 and cell densities counted 24, 
48, and 72 hours subsequently are shown. Values are  averaged from the counts from three 
experimental repetitions, and vertical lines indica te standard deviation. 
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Table 4-4  In vitro population doubling times of PCF Lister 427 BRCA2 re-expresser cell 
lines. 
The mean doubling time for wild-type Lister 427 (WT  427), -/+ and -/- BRCA2 mutant, and 
BRCA2 re-expresser (-/-/+) cell lines is displayed,  in hours, from data displayed in Figure 
4-22. 

To measure sensitivity of these cell lines to DNA damage, the Alamar blue assay 

was set up with wild-type Lister 427, -/+ and -/- BRCA2 mutant, and BRCA2 re-

expresser (-/-/+) cell lines. Survival curves displayed in Figure 4-23 and Figure 

4-24 are representative of the two repetitions performed, and show again that 

brca2-/- cell lines display reduced survival in the presence of both MMS and 

phleomycin, when compared to the wild-type and BRCA2-/+ cell lines. All the re-

expresser cell lines displayed increased survival in the presence of both 

compounds, to levels above that of wild-type cells, and to essentially equivalent 

amounts. This is similar to that observed previously for TREU 927 PCF cells 

(section 4.3.2), but appears more marked in the Lister 427 PCF cells. The 

extrapolated EC50 values for MMS in Figure 4-25 is consistent with this: re-

expression of BRCA2 with 1, 4, 7 or 10 BRC repeats or full-length BRCA2 restores 

the sensitivity to MMS observed in the brca2-/- cell line to values slightly above 

wild-type levels (10 – 20% increased). However, these data did not display 

statistical significance (Table 4-5). The EC50 data for phleomycin sensitivity, 

Figure 4-26, displays a more pronounced increase in survival, with EC50 values 

between 25% and 100% increased relative to wild-type cells. However, these 

were not seen as statistically significant differences (Table 4-5) between the 

wild-type cells and the 1BRC, 4BRC, 7BRC and full-length BRCA2 re-expresser 

cell lines (p > 0.05), though it was for the 10BRC re-expresser cell line (p ≤ 

0.05). Overall, the behaviour of the Lister 427 PCF cells is very comparable with 

the TREU 927 PCF cells, with the number of BRC repeats in the BRCA2 variants 

being indistinguishable in terms of their ability to support survival after DNA 
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damage, and even 1 BRC repeat being capable of reverting the small sensitivity 

of the brca2-/- mutants. Given this, RAD51 foci formation was not examined. 

 
Figure 4-23 A representative survival curve for PCF  Lister 427 BRCA2 re-expresser cell lines 
exposed to MMS. 
The extent of fluorescence for each cell line (WT, -/+, -/- and -/-/+) obtained using the Alamar 
blue assay is plotted against the log of MMS concen trations. Nonlinear regression was 
performed and fitted curves are shown for each cell  line. 

 
Figure 4-24 A representative survival curve for PCF  Lister 427 BRCA2 re-expresser cell lines 
exposed to phleomycin. 
The extent of fluorescence for each cell line (WT, -/+, -/- and -/-/+) obtained using the Alamar 
blue assay is plotted against the log of phleomycin  concentrations. Nonlinear regression 
was performed and fitted curves are shown for each cell line. 
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Figure 4-25 EC50 values of PCF Lister 427  BRCA2 re-expresser cell lines exposed to MMS. 
Wild-type Lister 427 (WT 427), -/+ and -/- BRCA2 mutant, and BRCA2 re-expresser (-/-/+) cell 
lines were placed in serially decreasing amounts of  MMS and allowed to grow for 48 hours, 
before the addition of Alamar Blue. After a further  24 hours the reduction of Alamar Blue 
was measured by the amount of fluorescent resorufin  generated. EC50 values are the mean 
from two experimental repetitions expressed as a pe rcentage relative to wild-type and bars 
indicate 95% confidence intervals. 

 
Figure 4-26 EC50 values of PCF Lister 427  BRCA2  re-expresser cell lines exposed to 
phleomycin. 
Wild-type Lister 427 (WT 427), -/+ and -/- BRCA2 mutant, and BRCA2 re-expresser (-/-/+) cell 
lines were placed in serially decreasing amounts of  phleomycin and allowed to grow for 48 
hours, before the addition of Alamar Blue. After a further 24 hours the reduction of Alamar 
Blue was measured by the amount of fluorescent reso rufin generated. EC50 values are the 
mean from two experimental repetitions expressed as  a percentage relative to wild-type and 
bars indicate 95% confidence intervals. 
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Table 4-5 Statistical analysis of Alamar Blue resul ts. 
P values are shown for student’s T-tests comparing the mean EC50 values of wild-type 
Lister 427 (WT 427), -/+ and -/- BRCA2 mutant, and BRCA2 re-expresser (-/-/+) cell lines 
grown in the presence of MMS (A) or phleomycin (B).  Areas shaded in yellow indicate a 
significant difference (P ≤ 0.05). No correction has been made for simultaneou s multiple 
comparisons. 

4.6 Complementation of BSF Lister 427 brca2-/- 
mutants with variants of BRCA2 with reduced 
numbers of BRC repeats 

4.6.1  Generation of re-expresser cell lines in BSF  Lister 
427 

In Chapter 3, it was demonstrated that mutation of BRCA2 appeared to have 

more profound consequences in BSF than in PCF cells, with visible chromosome 

rearrangements and more severe sensitivity to DNA damaging agents. To see if 

this may be a consequence of the BRCA2 BRC repeat expansion being a selection 

for a BSF-specific process, the BRC variants were functionally examined in Lister 

427 BSF T. brucei cells. As before (section 4.2), transformations were carried out 

in order to generate re-expresser cell lines in BSF Lister 427 brca2-/- cells 

(generated previously; brca2-/-1;Hartley and McCulloch, 2008) containing 

variants of BRCA2 with 1, 4, 7 and 10 BRC repeats using the pRM482::BRC re-

expresser constructs (section 4.2.1). Antibiotic resistant transformants were 

selected by placing cells on HMI-9 media supplemented with 2.5 µg.ml-1 G418. 

The full-length BRCA2 re-expresser BSF Lister 427 cell line generated previously 

(Hartley and McCulloch, 2008) was recovered from frozen storage. 
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4.6.2  Confirmation of re-expresser cell lines by P CR 

PCR was performed on genomic DNA extracted from putative BRCA2 re-expresser 

clones resulting from the four transformations, and also the full-length BRCA2 

re-expresser cell line, using primers specific to the BSD, PUR and BRCA2 ORFs as 

described in section 4.2.3. The agarose gel in Figure 4-27 shows that the BSD and 

PUR resistance ORFs are present in all of the putative re-expresser cell lines, 

and that all five clones analysed here produced a PCR product with the primers 

specific to part of the BRCA2 ORF. The cell lines are referred to as; -/-/+ 1BRC, -

/-/+ 4BRC, -/-/+ 7BRC, -/-/+ 10BRC and -/-/+ BRCA2. 

 
Figure 4-27 Confirmation of BSF Lister 427 BRCA2 re-expresser cell lines by PCR. 
An agarose gel of the PCR products obtained using t he primers, described in Figure 4-4A, 
and genomic DNA extracted from wild-type Lister 427  (WT 427), brca2-/- mutant, and 
putative BRCA2 re-expresser (-/-/+) cell lines. Distilled water ( dH2O) was used as a negative 
control. The PCR products produced from the BSD, PUR and BRCA2 ORFs are indicated 
(black arrows), and size markers are shown (Ladder,  kb). 

4.6.3  Confirmation of re-expresser cell lines by S outhern 
analysis 

Southern analysis was next performed, as described in section 4.2.4, to check 

integration of the pRM482::BRC constructs. The Southern blot in Figure 4-28 

demonstrates that the BRCA2 ORF is present in two allelic size variants in wild-
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type Lister 427 cells, as was seen for the PCF cells of this strain (section 3.5.3), 

and the brca2-/- mutant cell line no longer possesses a BRCA2 ORF, as previously 

observed (Hartley and McCulloch, 2008). The four re-expresser cell lines 

analysed here demonstrate a DNA fragment of the expected size for their BRC 

repeat variant BRCA2 ORF, which indicates the constructs had integrated 

correctly into the tubulin array. The full-length BRCA2 re-expresser cell line, 

which was generated previously and independently verified (Hartley and 

McCulloch, 2008), demonstrated a DNA fragment that was slightly smaller than 

expected, although this could be explained by irregularities in the 

electrophoresis separation of the genomic DNA due the presence of a large 

amount of DNA. 

 
Figure 4-28 Confirmation of BSF Lister 427 BRCA2 re-expresser cell lines by Southern 
analysis. 
5 µg of genomic DNA extracted from wild-type Lister 42 7 (WT 427), brca2-/- mutant, and 
BRCA2 re-expresser (-/-/+) cell lines was digested with HindIII before being separated by 
electrophoresis on an agarose gel. The DNA was Sout hern blotted before being hybridised 
with a DNA probe against 1.2 kb of the BRCA2 ORF. Restriction maps showing the expected 
fragment sizes are displayed in Figure 4-5A, and si ze markers are shown (kb). 

4.6.4  Attempt at confirmation of re-expresser cell  lines by 
western analysis 

Multiple attempts were made at confirmation of the re-expression of the 

variants of BRCA2 in the BSF Lister 427 brca2-/- cells by western blot using anti-

BRCA2 antiserum, as before (section 4.2.5). The western blot in Figure 4-29 is 

the clearest of these experiments and demonstrates the presence of two faint 

bands at approximately the expected size for the BRCA2 protein (176 kDa) in all 

cell lines, including the brca2-/- mutant cell line, suggesting that it is not BRCA2 

but results from non-specific binding of the antiserum to other parasite proteins, 

such as also seen at ~ 58 kDa. 
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Figure 4-29 Attempt at confirmation of BSF Lister 4 27 BRCA2 re-expresser cell lines by 
western analysis. 
Total protein extracts from wild-type Lister 427 (W T 427), brca2-/- mutant, and BRCA2 re-
expresser (-/-/+) cell lines were separated by SDS- PAGE and western blotted before being 
probed with anti-BRCA2 antiserum (1:200 dilution). Size markers are shown (kDa). 

4.6.5  Analysis of BRCA2 mRNA levels in re-expresser cell 
lines by quantitative RT-PCR 

As the western analysis was unsuccessful, BRCA2 mRNA levels in the re-expresser 

cell lines were analysed by quantitative RT-PCR as described in section 4.2.6. 

The agarose gel in Figure 4-30 shows the PCR products produced using primers 

specific for part of a control gene, DNA polymerase I (PolI), used to demonstrate 

that cDNA could be PCR-amplified successfully in all the RT plus samples, and 

that genomic DNA contamination was absent from all the RT minus samples. The 

qRT-PCR data in Figure 4-31 demonstrate greater variation of BRCA2 mRNA 

levels in the five BSF re-expresser cell lines than was seen for either of the PCF 

analyses (sections 4.2.6 and 4.4.2). The -/-/+ 1BRC, 4BRC, 7BRC and 10BRC cell 

lines each displayed ~ 10 - 30% reduced levels compared with wild-type cells, 

which could be consistent with a lower copy number of the gene, but in all cases 

the level appeared higher than seen in PCF re-expresser cell lines, which was 

closer to 50% of wild-type (Figure 4-8 and Figure 4-21). Unusually, the full-length 

BRCA2 re-expresser cell line displayed a ~ 20% increased level of BRCA2 mRNA 

compared to wild-type cells, which could be more consistent with the presence 

of two copies of the BRCA2 gene, which we cannot evaluate from the Southern 

data available. The reason for this increase is therefore not known, and nor is 

the reason for the increased BRCA2 mRNA variation in BSF cells. 
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Figure 4-30 Testing BSF Lister 427 BRCA2 re-expresser RT-PCR reaction products by PCR. 
An agarose gel of the PCR products generated using primers specific to DNA polymerase I 
(PolI), amplified from cDNA generated by RT-PCR reaction s containing reverse 
transcriptase (top, + RT). Control reactions were a lso analysed, lacking reverse 
transcriptase (bottom, - RT). Distilled water (dH 2O) was used as a negative control and a 
genomic DNA sample (gDNA) as a positive control. Si ze markers are shown (Ladder, kb). 

 
Figure 4-31 Quantitative RT-PCR analysis of the BSF  Lister 427 BRCA2 re-expresser cell 
lines. 
Quantitative RT-PCR was carried out on cDNA generat ed from wild-type Lister 427 (WT 427) 
and BRCA2 re-expresser (-/-/+) cell lines using primers spec ific for an endogenous control, 
tubulin, and BRCA2. All samples were normalised to the tubulin endogenous control and 
the level for BRCA2 expressed relative to the WT 427 sample (which was  set as one); values 
are the average quantification from four repetition s and vertical lines indicate standard 
deviation. 
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4.7 Phenotypic analysis of BSF Lister 427 BRCA2 
re-expresser cell lines 

4.7.1  Analysis of in vitro growth 

The in vitro growth of the BSF Lister 427 BRCA2 re-expresser cell lines was 

analysed, the results of which are plotted in Figure 4-32 and extrapolated 

doubling times displayed in Table 4-6. As described previously (Claire Hartley, 

PhD thesis, 2008), the BSF brca2-/- mutants displayed substantial growth 

impairment relative to wild-type cells. Figure 4-32 clearly shows that the re-

expression of of BRCA2 with 1, 4, 7 or 10 BRC repeats, or full-length BRCA2, 

restored the impaired growth of the brca2-/-mutant cell line to levels above 

that observed for wild-type cells. The calculated doubling times were less clear 

with the values obtained for the re-expresser cell lines varing between ~ 11 to ~ 

14.5 hours compared to the wild-type doubling time of ~ 10.5 hours, while 

brca2-/- cells doubled in ~ 12.6 hrs. The reliability of these data could have 

been improved by measuring growth over a longer timescale using linear 

regression. 

 
Figure 4-32 Analysis of in vitro growth of the BSF Lister 427 BRCA2 re-expresser ce ll lines. 
2 ml cultures of wild-type Lister 427 (WT 427), brca2-/- mutant, and BRCA2 re-expresser (-/-
/+) cell lines were inoculated at 5 x 10 4 cells.ml -1 and cell densities counted 24, 48, and 72 
hours subsequently are shown. Values are averaged f rom three experimental repetitions 
and vertical lines indicate standard deviation. 
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Table 4-6  In vitro population doubling times for BSF Lister 427 BRCA2  re-expresser cell 
lines. 
The mean doubling time for wild-type Lister 427 (WT  427), brca2-/- mutant, and BRCA2 re-
expresser (-/-/+) cell lines is displayed, in hours , and was calculated from the data displayed 
in Figure 4-32. 

4.7.2  Analysis of DNA damage sensitivity 

The Alamar blue assay was set up with wild-type Lister 427, brca2-/- mutant and 

BRCA2 re-expresser (-/-/+) cell lines. As before, the extent of fluorescence for 

each cell line was plotted graphically over the range of MMS and phleomycin 

concentrations (for representative examples see Figure 4-33 and Figure 4-34), 

and average EC50s (plus 95% confidence intervals) calculated from the three 

experimental repetitions were plotted relative to the wild-type EC50, which was 

taken as 100% (Figure 4-35 and Figure 4-36). From the survival curves, it was 

clear that BSF brca2-/- mutants were significantly more sensitive to both DNA 

damaging agents, and this was confirmed by analysing the data with student’s T-

tests; displayed in Table 4-7. The re-expression of BRCA2 with 1BRC repeat 

produced a cell line that alleviated some of the decreased survival observed in 

the brca2-/- mutant cell line, but was still more sensitive than wild-type cells to 

both compounds. In contrast, the re-expression of BRCA2 with 4, 7, or 10 BRC 

repeats, or re-expression of full-length BRCA2, restored survival of the brca2-/- 

mutants to essentially wild-type levels. The extrapolated EC50 values displayed 

in Figure 4-35 and Figure 4-36 confirm these findings. The -/-/+1BRC cell line 

displayed a 30% and 40% reduction in survival relative to wild-type cells for MMS 

and phleomycin, respectively, compared with a 70% and 80% reduction in 

survival for the brca2-/- mutants. Furthermore, this increased sensitivity of the -

/-/+1BRC cells relative to wild-type cells was found to be statistically significant 

in both cases (p ≤ 0.05, Table 4-7). The 4, 7 and 10 BRC repeat and full-length 

re-expresser cell lines displayed EC50 values essentially indistinguishable from 

the wild-type EC50, and no statistically significant differences were observed (p 

> 0.05). 
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Taken together, these data reveal a difference between BRCA2 function in BSF 

and PCF T. brucei cells. In both life cycle stages, reducing the number of BRC 

repeats in BRCA2 from 12-15 to 4, 7, 10 did not have any effect on sensitivity to 

DNA damaging agents. In contrast, whereas expression of a BRCA2 variant with 1 

BRC repeat (the divergent, C-terminal repeat) has no effect on DNA damage 

sensitivity in PCF cells, it displays significantly increased sensitivity in BSF cells. 

 
Figure 4-33 A representative survival curve for BSF  Lister 427 BRCA2 re-expresser cell lines 
exposed to MMS. 
The extent of fluorescence for each cell line (WT, -/- and -/-/+) obtained using the Alamar 
blue assay is plotted against the log of MMS concen trations. Nonlinear regression was 
performed and fitted curves are shown for each cell  line. 

 
Figure 4-34 A representative survival curve for BSF  Lister 427 BRCA2 re-expresser cell lines 
exposed to phleomycin. 
The extent of fluorescence for each cell line (WT, -/- and -/-/+) obtained using the Alamar 
blue assay is plotted against the log of phleomycin  concentrations. Nonlinear regression 
was performed and fitted curves are shown for each cell line. 
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Figure 4-35 EC50 values of BSF Lister 427  BRCA2  re-expresser cell lines exposed to MMS. 
Wild-type Lister 427 (WT 427), brca2-/- mutant, and BRCA2 re-expresser (-/-/+) cell lin es were 
placed in serially decreasing amounts of MMS and al lowed to grow for 48 hours, before the 
addition of Alamar Blue. After a further 24 hours t he reduction of Alamar Blue was 
measured by the amount of fluorescent resorufin gen erated. EC50 values are the mean from 
three experimental repetitions expressed as a perce ntage relative to wild-type and bars 
indicate 95% confidence intervals. 

 
Figure 4-36 EC50 values of BSF Lister 427  BRCA2  re-expresser cell lines exposed to 
phleomycin. 
Wild-type Lister 427 (WT 427), brca2-/- mutant, and BRCA2 re-expresser (-/-/+) cell lin es were 
placed in serially decreasing amounts of phleomycin  and allowed to grow for 48 hours, 
before the addition of Alamar Blue. After a further  24 hours the reduction of Alamar Blue 
was measured by the amount of fluorescent resorufin  generated. EC50 values are the mean 
from three experimental repetitions expressed as a percentage relative to wild-type and bars 
indicate 95% confidence intervals. 
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Table 4-7 Statistical analysis of Alamar Blue resul ts. 
P values are shown for student’s T-tests comparing the mean EC50 values of wild-type 
Lister 427 (WT 427), brca2-/- mutant, and BRCA2 re-expresser (-/-/+) cell lines grown in the 
presence of MMS (A) or phleomycin (B). Areas shaded  in yellow indicate a significant 
difference (P ≤ 0.05). No correction has been made for simultaneou s multiple comparisons. 

4.7.3  Analysis of RAD51 focus formation 

The ability of the BSF Lister 427 BRCA2 re-expresser cell lines to form RAD51 foci 

was next analysed. In this life cycle stage, the methanol fixation procedure used 

appears to result in greater background staining with the anti-RAD51 antiserum 

than is seen with formaldehyde fixation (Dobson et al., 2011), but subnuclear 

foci were nevertheless detectable after 18 hrs growth in the presence of 

phleomycin; representative images of cells are displayed in Figure 4-38, and the 

numbers of RAD51 foci present in the nucleus of each cell line are shown in 

Table 4-8 and Figure 4-37. The brca2-/- cells were analysed after growth in a 

reduced concentration of phleomycin (0.25 µg.ml-1) due to their increased 

sensitivity to this compound (section 4.3.2 and section 4.7.2 ). 

In the absence of DNA damage clearly discernible RAD51 foci were rarely seen (~ 

2% of cells), despite the greater amount of background staining (Figure 4-38B). 

After the induction of DNA damage with phleomycin, the number of wild-type 

cells containing no detectable RAD51 foci reduced to ~ 30%, a quantitatively 

similar response to that observed in PCF TREU 927 cells (section 4.3.3) and 

reported previously in Lister 427 BSF cells (Hartley and McCulloch, 2008). The 

BSF brca2-/- mutant cell line had greatly reduced ability to form RAD51 foci 
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after the induction of DNA damage, as a single focus was detected in only 3.3% 

of cells. Again, this is a quantifiably similar finding to that described previously 

in the same mutants (Hartley and McCulloch, 2008). Though PCF TREU 927 brca2-

/- mutants appear even more impaired in RAD51 foci formation (only 0.9% 

displayed a detectable focus; Figure 4-14), it may be that this reflects the lesser 

background staining with anti-RAD51 antiserum in the tsetse fly stage. Hartley 

and McCulloch (2008) showed that BRCA2 with 1 BRC repeat is impaired in RAD51 

foci formation in BSF cells, and these data confirm that finding; ~ 90% of the 

1BRC re-expresser cells contained no detectable foci after phleomycin 

treatment. The number of cells containing at least one detectable focus (~ 10%) 

appears greater than that observed for BSF Lister 427 brca2-/- mutants, but 

remains a substantial impairment. Indeed, this impairment is more severe than 

that seen in the PCF TREU 927 -/-/+1BRC re-expresser cell line, where 45% of 

cells displayed RAD51 foci, consistent with the difference in phleomycin 

sensitivity detailed in the two cells lines (section 4.7.2).  

The previous analysis of BRCA2 BRC repeat function in the contribution to RAD51 

focus formation in BSF T. brucei was limited to BRCA2 variants with a single BRC 

repeat (Hartley and McCulloch, 2008). This work builds on that analysis by 

examining BRCA2 variants with increasing numbers of BRC repeats (4, 7 and 10) 

that are still reduced relative to full-length BRCA2, which has 12 BRC repeats in 

this T. brucei strain. Like the findings in TREU 927 PCF cells, a BRC-repeat 

number-dependent increase in the ability to form RAD51 foci was found. The 

number of cells containing no detectable RAD51 foci decreased as the BRC 

repeat number increased, with the full-length BRCA2 re-expresser cell line 

containing ~ 30% of cells without RAD51 foci, which is essentially equivalent to 

wild-type cells. In contrast to TREU 927 PCF cells, where the 10BRC variant re-

expresser appeared to display an equivalent number and pattern of RAD51 foci 

to wild-type cells (Figure 4-14), here the 10BRC variant did not respond to the 

same extent as wild-type cells (> 40% of cells did not display foci). Indeed, it is 

apparent that, overall, each BRC variant generates a greater proportion of cells 

with RAD51 foci in PCF cells compared with BSF. Moreover, the proportion of 

cells with larger numbers of RAD51 foci are consistently higher in PCF BRC 

variant re-expresser cell lines than in BSF BRC variants. Taken together, this 

appears to suggest that BRCA2 is more effective at re-distributing RAD51 to sites 
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of damage in PCF cells than in BSF cells, which may explain the difference in 

DNA damage sensitivities in the two life cycle stages (Chapter 3), both in wild-

type cells and in BRC variant re-expresser cell lines (sections 4.3.2 and 4.7.2).  

 
Table 4-8 RAD51 focus formation in BSF Lister 427 B RCA2 re-expresser cell lines exposed 
to phleomycin. 
Wild-type Lister 427 (WT 427) and BRCA2 re-expresse r (-/-/+) cell lines were treated with 1 
µg.ml -1 phleomycin for 18 hours and the brca2-/- mutant cell line was treated with 0.25 µg.ml -

1 phleomycin for 18 hours. The number of cells with a  specific number of subnuclear RAD51 
foci formed (0, 1, 2, 3, 4, > 4) were counted and a re represented as a percentage of the total 
cells counted (N). Boxes shaded in light yellow con tain foci, whilst boxes shaded in bright 
yellow contain the highest percentage of foci. 

 
Figure 4-37 Graphical representation of RAD51 focus  formation in BSF Lister 427 BRCA2 re-
expresser cell lines exposed to phleomycin. 
Wild-type Lister 427 (WT 427) and BRCA2 re-expresse r (-/-/+) cell lines were treated with 1 
µg.ml -1 phleomycin for 18 hours and the brca2-/- mutant cell line was treated with 0.25 µg.ml -

1 phleomycin for 18 hours. The number of cells with a  specific number of subnuclear RAD51 
foci formed (0, 1, 2, 3, 4, > 4) were counted and a re represented as a percentage of the total 
cells counted (N). 
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Figure 4-38A Representative images of RAD51 focus f ormation in BSF Lister 427 BRCA2 re-
expresser cell lines exposed to phleomycin. 
Images of wild-type Lister 427 (WT 427) and BRCA2 r e-expresser (-/-/+) cell lines after 
phleomycin treatment (1 µg.ml -1 BLE for 18 hours) and brca2-/- mutant cell line after 
phleomycin treatment (0.25 µg.ml -1 BLE for 18 hours). Each cell is shown in different ial 
interface contrast (DIC), after staining with DAPI (DAPI) and after hybridisation with anti-
RAD51 antiserum (1:1000 dilution) and secondary hyb ridisation with Alexa Fluor 594 
conjugated anti-rabbit antiserum (1:7000 dilution, RAD51). Merged images of DAPI and 
RAD51 cells are also shown (Merge). White arrows in dicate RAD51 foci. 
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Figure 4-38B Representative images of RAD51 focus f ormation in BSF Lister 427 BRCA2 re-
expresser cell lines. 
Images of wild-type Lister 427 (WT 427), brca2-/- mutant and BRCA2 re-expresser (-/-/+) cell 
lines without phleomycin treatment. Each cell is sh own in differential interface contrast 
(DIC), after staining with DAPI (DAPI) and after hy bridisation with anti-RAD51 antiserum 
(1:1000 dilution) and secondary hybridisation with Alexa Fluor 594 conjugated anti-rabbit 
antiserum (1:7000 dilution, RAD51). Merged images o f DAPI and RAD51 cells are also shown 
(Merge). 

Finally, to ensure that the observed differences in RAD51 foci formation are not 

due to differences in the levels of RAD51 in the BRCA2 re-expresser cell lines 

before or after phleomycin treatment, western analysis was carried out. As was 

seen in PCF cells, the western blot in Figure 4-39 demonstrates that the levels of 

RAD51 protein remain constant before or after phleomycin treatment in all cell 

lines. 
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Figure 4-39 Western analysis of RAD51 in BSF Lister  427 BRCA2 re-expresser cell lines 
exposed to phleomycin. 
Total protein extracts from wild-type Lister 427 (W T 427), brca2-/- mutant and BRCA2 re-
expresser (-/-/+) cell lines were separated by SDS PAGE and western blotted before being 
probed with anti-RAD51 antiserum (1:500 dilution). ‘-’ indicates protein extracts prepared 
without phleomycin treatment and ‘+’ indicates prot ein extracts prepared after phleomycin 
treatment (1 µg.ml -1 BLE for 18 hours), except for the brca2-/- mutant which was additionally 
treated with 0.25 µg.ml -1 BLE for 18 hours. The blots were stripped and re-pr obed with anti-
OPB1 antiserum (1:1000 dilution) as a loading contr ol. Size markers are shown (kDa). 

4.8 Summary 

The data presented in this chapter indicate that the phenotypes associated with 

the brca2-/- mutants generated in the PCF TREU 927 and Lister 427 cells of T. 

brucei are due to the absence of BRCA2, and not a secondary mutation, as the 

re-expression of full-length BRCA2 in these cell lines restores the wild-type 

growth, DNA damage sensitivity and RAD51 foci formation phenotypes. This also 

confirms the data observed previously with the full-length BRCA2 re-expresser 

cell line generated in BSF Lister 427 brca2-/- cells (Hartley and McCulloch, 

2008). 

Here, the importance of BRC repeat number in T. brucei BRCA2 has been 

systematically analysed by varying the number of BRC repeat motifs from 1 to 12 

(the ‘natural’ repertoire); previously the function of a single BRC repeat was 

examined in T. brucei (Claire Hartley, PhD Thesis, 2008;Hartley and McCulloch, 

2008). Indeed, in no other organism with BRCA2 possessing multiple BRC repeats 

has such an analysis been attempted. The data associated with the re-expression 

of variants of BRCA2 with varying numbers of BRC repeats reveals a number of 

things about BRCA2 function. Virtually all the BRC repeat variant re-expresser 

cell lines generated in all three strains demonstrated restored growth and DNA 

damage sensitivity when compared to the brca2-/- mutant cell lines. The sole 

exception to this was the 1BRC re-expresser cell line in BSF Lister 427, which 

displayed greater DNA damage sensitivity than wild-type cells and all the other 

BRC variant expressers. Though the 1 BRC variant appeared less sensitive to DNA 
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damage than the parental brca2-/-1 cell line, it was still detectably repair-

deficient, which is consistent with previous findings (Claire Hartley, PhD Thesis, 

2008). The first thing these data show is that the strong growth impairment in 

BSF brca2-/- mutants, and the weaker growth impairment in PCF mutants, is 

complemented irrespective of the BRC complement of BRCA2. This indicates that 

BRC repeat number is not a determinant of the role BRCA2 plays in promoting 

effective growth, and perhaps cell division or replication, in T. brucei. The 

second, more striking, finding is that these data demonstrate that it is not 

necessary for BRCA2 to have 12-15 BRC repeats in order to carry out efficient 

DNA damage repair in T. brucei. In the PCF re-expresser cell lines, a single BRC 

repeat is sufficient for maximal detectable levels of DNA repair, whereas 3 BRC 

repeats are required in BSF. An important caveat is that this finding is limited to 

the ability to repair damage to the extent measured by the assays adopted here, 

which is based on growth. More detailed analysis of lesion numbers, if this were 

possible, would be useful. Despite this, it is important to note that the BSF and 

PCF cells are not equivalent in terms of DNA repair; in Chapter 3 it was shown 

that PCF brca2-/- mutants are less sensitive to DNA damage. Here, we show that 

the PCF cells expressing BRCA2 variants with reduced BRC repeat numbers form 

RAD51 foci after DNA damage more readily than the equivalent proteins in BSF, 

and greater numbers of foci are detected (see below). This could be an 

explanation as to why BRCA2 with a single BRC repeat is functional in DNA repair 

in PCF cells, but impaired in BSF cells. 

Analysis of the ability of the re-expresser cell lines to form RAD51 foci 

demonstrated a striking concordance between BRC repeat number and the 

ability to form RAD51 subnuclear foci, in both life cycle stages. This is not 

because BRCA2 transports RAD51 to the nucleus (see below), but clearly 

demonstrates a functional and quantitative interaction between BRCA2 and 

RAD51. This is the first time that a biological process has been identified that is 

determined by multiple BRC repeats. However, the composition of these repair 

foci is unknown, in any organism (Lisby and Rothstein, 2009), as is the 

requirement for the multiple foci observed here during DNA repair (for instance, 

it is unclear if each foci represents a single site of DNA damage, or an 

accumulation of DNA breaks into a repair centre). These data require further 

verification, as a number of potential problems exist. For instance; the 
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detection threshold of RAD51 foci using fluorescence microscopy could be higher 

than expected, and therefore the absence of detectable foci may not necessarily 

correlate with the absence of RAD51-dependent DNA repair. It is also surprising 

that the sensitivity of the re-expresser cell lines to exogenous DNA damage does 

not display a BRC-repeat number dependence, as would be expected from the 

RAD51 foci formation data. However, the Alamar blue assay employed here is a 

secondary assay, which measures the metabolic capacity of the cells in the 

presence of DNA damaging agents, not directly the repair of the induced DNA 

damage, and could therefore be masking a more subtle phenotype revealed by 

the immunofluorescence. 

These data also demonstrate the functionality of the ‘degenerate’ C-terminal 

BRC repeat, that was not clear from previous data (Claire Hartley, PhD Thesis, 

2008), which showed that the 1BRC variant was deficient in HR and RAD51 focus 

formation. The demonstration that the 1BRC variant can support DNA repair, and 

to some extent RAD51 foci formation, in PCF cells shows that it is not 

degenerate, but can support RAD51-associated functions. It would be interesting 

to determine if there are differences in the mode and function of RAD51 binding 

between the conserved BRC repeats and the degenerate BRC repeat, as observed 

in mammalian BRCA2 where BRC 1 to 4 bind with high affinity to monomeric 

Rad51, bring about delivery to ssDNA at the site of DNA damage and facilitate 

efficient nucleation onto ssDNA, and BRC 5 to 8 bind to the nucleoprotein 

filament and stabilise it ensuring filament growth, thereby co-operating to bring 

about efficient DNA strand exchange (Carreira and Kowalczykowski, 2011). It 

would also be valuable to determine if the T. brucei 1BRC variant is capable of 

supporting HR in the PCF cells, since it is not in BSF cells (Hartley and 

McCulloch, 2008). 

Aqueous fractionation indicates that RAD51 is found both in the nucleus and the 

cytoplasm of brca2-/- cells to the same extent as in wild-type cells. This 

indicates that BRCA2 is either not responsible for nuclear transport of T. brucei 

RAD51, is one of a number of transporters, or that RAD51 mediates its own 

transport into the nucleus (Tarsounas, Davies, and West, 2003;Tarsounas, 

Davies, and West, 2004). In order to try and address this question further, site-

directed mutants of the three putative T. brucei BRCA2 nuclear localisation 

signal sequences were generated, and re-expression in brca2-/- mutant cells was 
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attempted (van den Hoek, Trenaman and McCulloch, data not shown). The 

supposition behind this analysis was that if BRCA2 was present, and able to bind 

RAD51, but unable to translocate to the nucleus this might reveal a transport 

function (for instance, alternate RAD51 transporters may be activated in the 

complete absence of BRCA2). For unknown reasons, these cell lines could not be 

generated, despite being based on precisely the same pRM482 re-expression 

system used here. It is possible that an ‘untransportable’ BRCA2 mutant acts in a 

dominant negative manner and leads to an impairment in DNA repair that is 

worse than a knockout of brca2 or rad51, however an alternative approach will 

be required to investigate this further.
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 Chapter 5: Analysis of BRCA2-
RAD51 interactions. 
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5.1 Introduction 

In mammalian cells, it has been demonstrated that BRCA2 interacts directly with 

the Rad51 recombinase via multiple BRC repeat motifs, and also through a 

distinct C-terminal Rad51-binding motif (Wong et al., 1997;Mizuta et al., 

1997;Chen et al., 1998;Sharan et al., 1997;Marmorstein, Ouchi, and Aaronson, 

1998;Esashi et al., 2005;Esashi et al., 2007). Two classes of BRC repeat motifs 

have been described and it is proposed that they have evolved to promote Rad51 

nucleation on single-stranded DNA resulting from the processing of a DSB and 

also to stabilise nascent Rad51-ssDNA filaments, facilitating propagation and 

thereby stimulating DNA strand exchange (Tarsounas, Davies, and West, 

2003;Bugreev and Mazin, 2004;Esashi et al., 2005;Esashi et al., 2007;Shivji et 

al., 2009;Carreira et al., 2009;Carreira and Kowalczykowski, 2011). The first 

group of BRC repeats, consisting of repeats 1 to 4, bind with high affinity to 

monomeric Rad51 and reduce its ATPase activity, thereby maintaining Rad51 in 

an active ATP-bound state until required for filament nucleation (Carreira and 

Kowalczykowski, 2009;Carreira and Kowalczykowski, 2011). The second group, 

consisting of BRC repeats 5 to 8, bind free Rad51 with low affinity but bind to 

Rad51-ssDNA filaments with high affinity and function to stabilise them, thereby 

promoting filament growth (Galkin et al., 2005;Carreira and Kowalczykowski, 

2009;Carreira and Kowalczykowski, 2011). The BRCA2 C-terminal Rad51-binding 

motif is unrelated to the BRC repeat motif and, although highly conserved 

among vertebrate BRCA2 proteins, appears to be absent from BRCA2 orthologues 

in other taxa. The C-terminal motif binds and stabilises Rad51 in the multimeric 

filament, but not monomeric form (Davies and Pellegrini, 2007;Esashi et al., 

2007), and binding is cell cycle regulated by cyclin dependent kinase (CDK) 

phosphorylation of Serine3291 (Esashi et al., 2005). Phosphorylation of 

Serine3291 in response to DNA damage inhibits binding by Rad51 at this site 

(Ayoub et al., 2009). However, this C-terminal Rad51-binding motif appears to 

be dispensable for recombination and DNA repair; as a constitutively 

phosphorylated mutant that cannot bind Rad51 expressed in Chicken DT40 cells 

did not produce any detectable recombination or DNA repair defects (Ayoub et 

al., 2009). A function for the C-terminal Rad51-binding motif in the protection of 

stalled replication forks from degradation has been described (Schlacher et al., 
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2011) and may operate via stabilisation of Rad51 filaments on nascent DNA 

(Hashimoto et al., 2010). 

The BRCA2 orthologues identified in C. elegans and U. maydis, CeBRC-2 and Brh2 

respectively, also demonstrate binding to Rad51, although with different 

mechanisms to that observed with mammalian BRCA2. C. elegans CeBRC-2 

contains a single N-terminal BRC repeat that interacts directly with monomeric 

Rad51 (Martin et al., 2005;Petalcorin et al., 2006). No evidence of binding in the 

C-terminal region of CeBRC-2 has been found to date, though the region directly 

downstream of, and distinct from, the BRC repeat has been shown to bind Rad51 

in filament form, inhibit ATP hydrolysis and so function to stabilise the 

nucleoprotein filament in a possibly analogous mechanism (Petalcorin et al., 

2007). U. maydis Brh2 also contains a single, N-terminal BRC repeat motif which 

binds monomeric Rad51 (Kojic et al., 2002) and also a distinct C-terminal Rad51-

binding domain, in the region downstream of the conserved DNA-binding domain 

(Kojic et al., 2005). However, the N-terminal domain of Brh2 has been shown to 

rescue the brh2-/- mutant phenotype, and this was due to the presence of a 

non-canonical DNA-binding domain that was not identifiable from sequence data 

(Zhou, Kojic, and Holloman, 2009). 

This chapter aims to investigate the interactions between T. brucei BRCA2 and 

RAD51, including during repair of DNA damage, using in vitro GST pull-down and 

in vivo co-immunolocalisation approaches. These data will allow us to ask if the 

mode of BRCA2-RAD51 interaction in T. brucei is conserved with that seen in 

other organisms, and should deepen our understanding of the regulation of 

RAD51-mediated homologous recombination by BRCA2. 

5.2 In vitro GST pull-down 

In vitro GST pull-down was performed order to define the domains of the T. 

brucei BRCA2 protein that mediate its interaction with RAD51 during DNA repair. 

This experiment was carried out using tagged fusion proteins co-expressed in E. 

coli, in an approach previously successful in detecting interactions between T. 

brucei RAD51 paralogue proteins (Dobson et al., 2011). The GST pull-down 

strategy is displayed in Figure 5-1. GST-tagged RAD51 was expressed in E. coli 

and captured from whole cell lysates (input) using glutathione conjugated to 
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sepharose beads. After extensive washing, co-expressed His-tagged variants of 

BRCA2 that interacted with GST-RAD51 were detected in elution samples by 

western blot and hybridisation with anti-His antiserum. 

 
Figure 5-1 GST pull-down strategy. 
GST RAD51 (GST, blue circle) and His BRCA2 variants  (His, red circle) were co-expressed in 
E. coli. Whole cell lysates were prepared and incubated wi th Glutathione (Glu) conjugated to 
sepharose beads (S, green circle). Beads and bound protein complex were captured by 
centrifugation and washed extensively. His BRCA2 va riants were detected after elution with 
20 mM glutathione followed by SDS PAGE, blotting an d hybridisation with anti-His 
antiserum. 

5.2.1  Generation of bacterial fusion protein over-
expression constructs 

Two compatible bacterial protein over-expression constructs were used; pGEX-

4T-3 (Amersham) and pRSF-1b (Novagen). T. brucei RAD51 was over-expressed in 

E. coli using the pGEX-4T-3 construct, which results in RAD51 being expressed as 

an N-terminal Glutathione S-Transferase (GST) fusion; the construct also 

contains an ampicillin (AMP) resistance cassette for selection (Figure 5-2). The 

pGEX-4T-3 construct containing the full-length RAD51 gene was generated 

previously (gift, Chris Stockdale). Multiple variants of T. brucei BRCA2 were 

over-expressed in E. coli as N-terminal hexa-Histidine (His) fusions using the 

pRSF-1b construct; in each case, the constructs were maintained via a 
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kanamycin (KAN) resistance cassette for selection (Figure 5-3). The variants of 

BRCA2 (Figure 5-4) were generated by PCR using primers containing a BamHI 

restriction site in the forward primer and an XhoI restriction site in the reverse 

primer to enable cloning into the pRSF-1b construct. The two empty vectors 

were used to express the His and GST tags (not fused to a protein) for control 

purposes. 

The BRCA2 variants generated are grouped into the two ‘halves’ of the BRCA2 

protein: the N-terminal and the C-terminal. The N-terminal half contains two 

putative nuclear localisation signal (NLS) sequences and the BRC repeat motifs; 

N-terminal BRCA2 variants were cloned with 1, 4, 7 or 10 BRC repeats, and were 

PCR-amplified using primers 93 and 94 from the pRM482::BRC re-expression 

constructs (section 4.2.1). The expressed BRC variant polypeptides were called 

His 1BRC, His 4BRC, His 7BRC and His 10BRC. The C-terminal half of BRCA2 

contains all motifs present in the region downstream from the last BRC repeat 

motif. The His BRCA2 C-term variant contains this complete portion of the 

protein, including a putative PhePP motif (see below), the DNA/DSS1-binding 

domain (consisting of the alpha-helical domain, the three oligonucleotide-

binding (OB) domains and the tower domain), and a putative CDK 

phosphorylation site at Serine1523 (section 1.4.2.4). This sequence was PCR-

amplified from genomic DNA extracted from PCF TREU 927 cells using the 

primers 16 and 51. Site-directed mutagenesis (section 2.5.3) was then carried 

out on this construct to mutate the putative CDK phosphorylation site at 

Serine1523 to determine if the binding of RAD51 to the C-terminus of BRCA2 

might be regulated by phosphorylation, as reported in mammalian cells (Mizuta 

et al., 1997;Sharan et al., 1997;Esashi et al., 2005;Esashi et al., 2007). The 

Serine residue at position 1523 was mutated to a Glutamine residue (Ser1523Glu) 

in order to mimic the presence of a phosphate group (using primers 45 and 46). 

As a control for any side effects due to manipulation of the Serine residue, an 

Alanine mutant (Ser1523Ala) was similarly generated (using primers 43 and 44). 

These variants were called His BRCA2 C-term Glu and His BRCA2 C-term Ala, 

respectively. 

In order to determine if RAD51 binding localises to the region of BRCA2 

downstream from the end of the DNA/DSS1-binding domain and containing the 

putative Serine1523 phosphorylation residue, truncated variants of His BRCA2 C-
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term were constructed. Firstly, the His BRCA2 C-term variant was modified, 

using primers 51 and 76, to remove the sequence downstream from the end of 

the DNA/DSS1-binding domain, and this variant was called His BRCA2 DBD + 

PhePP. Secondly, the region downstream of the DNA/DSS1-binding domain was 

cloned, using primers 16 and 75, allowing the small, extreme C-terminus 

containing Serine1523 to be expressed as a fusion protein called His BRCA2 C-

tail. To allow comparison with the Serine1523 mutants of His BRCA2 C-term, 

constructs were derived from each of the putative phosphorylation mutant 

variants described above (generating the proteins His BRCA2 C-tail Glu, and His 

BRCA2 C-tail Ala). 

It has been previously reported that mammalian BRCA2 binds DMC1, the meiosis-

specific recombinase, at a conserved motif called the PhePP motif (KVFVPPFK) 

that is located just downstream of the BRC repeats (Thorslund, Esashi, and 

West, 2007). GST pull-down experiments with a fragment of human BRCA2 

corresponding to the PhePP motif did not demonstrate binding to Rad51 

(Thorslund, Esashi, and West, 2007). However, both the U. maydis and C. 

elegans orthologues of BRCA2, Brh2 and CeBRC-2 respectively, display binding 

between a PhePP motif, albeit slightly diverged in sequence (Figure 5-5), and 

Rad51 (Petalcorin et al., 2007;Kojic et al., 2011). A sequence of substantial 

similarity (KPFVVPFA) was identified in T. brucei BRCA2 located immediately 

downstream of the central bi-partite NLS sequence at amino acids 764 to 771 

(Figure 5-5). A function for T. brucei DMC1 in DNA repair has not been detected 

to date (Proudfoot and McCulloch, 2006), and due to the similarity between 

DMC1 and RAD51 (Proudfoot and McCulloch, 2005;Proudfoot and McCulloch, 

2006), it was considered that this putative DMC1-binding site might be capable 

of binding RAD51. In order to test this, the His BRCA2 DBD + PhePP variant was 

modified, using primers 76 and 91, to remove the putative DMC1/RAD51-binding 

site to create His BRCA2 DBD - PhePP. 

Finally, in order to test if the DNA/DSS1-binding domain interacts with RAD51, 

expression of a variant of BRCA2 consisting of the DNA/DSS1-binding domain was 

attempted. In mammalian cells, this region has been shown to interact with 

DSS1, a small, highly acidic protein which is mutated in split hand/split foot 

syndrome (Crackower et al., 1996;Marston et al., 1999), but there has been no 
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evidence for interaction with Rad51 to date. Unfortunately, expression of the T. 

brucei BRCA2 DNA/DSS1-binding domain in E. coli was unable to be detected. 

 
Figure 5-2 Construct used for N-terminal GST taggin g of RAD51 for over-expression in E. 
coli. 
The RAD51 ORF (blue) was cloned into BamHI and XhoI restriction sites downstream of the 
GST tag (red). AMP: ampicillin resistance ORF (grey). LacI: lac repressor ORF (green). Sizes 
are shown (bp). 

 
Figure 5-3 Construct used for N-terminal His taggin g of BRCA2 variants for over-expression 
in E. coli. 
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The BRCA2 variant ORFs (yellow, only BRCA2 C-term is shown) were cloned into BamHI 
and XhoI restriction sites downstream of the His tag (oran ge). KAN: kanamycin resistance 
ORF (grey). LacI: lac repressor ORF (green). Sizes are shown (bp). 

 
Figure 5-4 A schematic diagram of the His-tagged BR CA2 variant proteins over-expressed in 
E. coli. 
Full length BRCA2 is shown (top) with protein domai ns indicated; nuclear localisation 
signals (light blue bars), ‘normal’ BRC repeats (re d boxes), degenerate BRC repeat (dark red 
box), PhePP motif (orange bar), α helical domain (green oval), oligonucleotide bindi ng 
domains (blue boxes), tower doman (purple bar) and putative CDK phosphorylation site (S, 
light green bar). The His-tagged BRCA2 variants gen erated are shown with the domains 
present. Mutation of the putative CDK phosphorylati on site is indicated; Ser1523Ala (A) and 
Ser1523Glu (Q), and amino acid positions are number ed. 
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Figure 5-5 Sequence alignment of putative PhePP mot ifs from BRCA2 orthologues. 
BRCA2 from a variety of organisms; At (A): Arabidopsis thaliana BRCA2 homologue A. Ce: 
Caenorhabditis elegans. Um: Ustilago maydis. Tc: Trypanosoma cruzi. Tb: Trypanosoma 
brucei. Amino acids indicated in red are fully conserved in mammalian species. Figure 
adapted from Thorslund, Esashi, and West, 2007. 

5.2.2  Generation of co-expressing bacterial cultur es 

Competent cells of the Rosetta2 E. coli bacterial strain (Novagen) were 

transformed with the constructs generated in section 5.2 to produce bacterial 

cultures co-expressing GST RAD51 and each of the His BRCA2 variants. Rosetta2 

cells contain the pRare construct, which was maintained via a chloramphenicol 

(CHL) resistance cassette. Control cultures co-expressing GST RAD51 and the His 

tag alone (from construct pRSF-1b), His 10BRC and the GST tag alone (pGEX-4T-

3), and His BRCA2 C-term and the GST tag alone were also generated to control 

for binding of the T. brucei proteins to the His or GST tags, rather than to each 

other. The competent E. coli cells were co-transformed, as detailed in section 

2.7, with two constructs and selected on LB agar supplemented with 100 µg.ml-1 

ampicillin (Sigma), 50 µg.ml-1 kanamycin (Sigma) and 34 µg.ml-1 chloramphenicol 

(Sigma). 

5.2.3  GST pull-down using co-expressing bacterial 
cultures 

50 ml cultures of the bacterial cell lines were grown in LB media supplemented 

with antibiotics (see above) and protein expression induced with 1 mM IPTG as 

described in section 2.13. After growth for 16 hours at 25°C the bacterial cells 

were then harvested by centrifugation, lysed by sonication and the soluble 

proteins retained after the removal of insoluble cell debris by further 
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centrifugation as described in section 2.13; this is referred to as the input. GST 

and GST RAD51 were then recovered from the lysates using Glutathione 

conjugated to sepharose beads (Amersham) as described in section 2.13; protein 

recovered is referred to as the elution. The input and elution protein samples 

were separated by SDS PAGE on 10% Bis-Tris gels, western blotted and first 

probed with anti-His antiserum (Sigma) at a dilution of 1:750. The blots were 

then stripped and re-probed with anti-GST antiserum (Novagen) at a dilution of 

1:10000. For unknown reasons the expressed GST-tagged RAD51 protein was not 

able to be detected by western blot in these conditions, despite the GST tag 

alone being detected (data not shown). Coomassie stained protein gels of the 

same elution samples showed clearly visible protein of the expected sizes for 

GST (28 kDa) and a prominent band at just under 80 kDa in size that is thought 

to be GST RAD51, for unknown reasons running at higher than its expected size 

of 67 kDa. Due to the problems with western blot detection, eluted GST RAD51 is 

shown as a coomassie-stained gel. 

Interaction between RAD51 and the BRCA2 N-terminal BRC repeat region is 

shown in Figure 5-6. The western blot in Figure 5-6A shows the N-terminal BRCA2 

variant input samples probed with anti-His antiserum and demonstrates the 

expression of His-tagged proteins at approximately the expected sizes for the His 

BRC variants; 1BRC (16 kDa), 4BRC (34 kDa), 7BRC (52 kDa) and 10BRC (66 kDa). 

The coomassie stained protein gel (Figure 5-6B) of the separated elution samples 

demonstrates that the GST and GST RAD51 proteins were successfully recovered 

by the GST pull-down approach. The western blot in Figure 5-6C shows the 

elution samples probed with anti-His antiserum and demonstrates the presence 

of only a very faint band corresponding to the His 10BRC variant (lane 4), which 

was not seen when 10BRC was co-expressed with GST alone (lane 5). This 

indicates that while 10BRC binds GST-RAD51, the 1BRC, 4BRC and 7BRC variants 

either do not bind, or bind so weakly that they cannot be detected under these 

experimental conditions. These data may indicate that binding between the BRC 

repeats of T. brucei BRCA2 and RAD51 is surprisingly weak and, at least in this 

experimental system, 10 BRC repeats must be present to detect this. 
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Figure 5-6 GST pull-down analysis of the interactio ns between RAD51 and the N-terminal 
domain of BRCA2. 
(A) A western blot of the separated input samples p robed with anti-His antiserum (1:750 
dilution). His tagged proteins are indicated (black  arrows), and the GST-tagged proteins that 
were co-expressed are indicated (top). (B) A coomas sie stained gel of the separated elution 
samples showing GST RAD51 and the GST tag (black ar rows). His-tagged proteins that were 
co-expressed are indicated (top). (C) A western blo t of the separated elution samples 
probed with anti-His antiserum (1:750 dilution). GS T-tagged proteins used for the pull-down 
are indicated (top). In each panel, size markers ar e shown (kDa). 

Figure 5-7 shows analysis of interaction between RAD51 and the C-terminal 

BRCA2 variants. The western blot in Figure 5-7A shows input samples probed 

with anti-His antiserum and demonstrates expression of His-tagged proteins of 

the expected sizes for each of the variants; four His BRCA2 C-term variants (100 

kDa; lanes 1, 3-5), His BRCA2 DBD + PhePP ( 75 kDa; lane 6), His BRCA2 DBD – 
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PhePP ( 73.5 kDa; lane 7), three His BRCA2 C-tail variants (28 kDa; lanes 8-10), 

and also the His tag (7 kDa; lane 2). The coomassie stained protein gel (Figure 

5-7B) of the separated elution samples demonstrates the presence of the GST 

and GST RAD51 proteins, indicating they were successfully recovered by the GST 

pull-down approach. The western blot in Figure 5-7C shows the elution samples 

probed with anti-His antiserum to detect the His BRCA2 variants. The first 

control culture, where GST RAD51 was co-expressed with the His tag (lane 2), 

displayed some binding of the anti-His antiserum in the elution sample (see 

below). The second control culture, with His BRCA2 C-term co-expressed with 

GST did not display His tagged protein in the elution sample, indicating that no 

binding between the His BRCA2 C-term variant and GST has occurred (lane 3). 

Strong bands corresponding to each of the three His BRCA2 C-term variants were 

seen in each eluate (Figure 5-7C. lanes 1, 4-5). This indicates that all of the His 

BRCA2 C-term variants have bound to GST RAD51, irrespective of whether or not 

this was the wild-type sequence or the Ser1523Ala or Ser1523Glu mutants, 

indicating that RAD51 can bind T. brucei BRCA2 in the region downstream of the 

BRC repeats. Each of the His BRCA2 C-tail variants were also recovered by the 

GST pull-down (lanes 8-10), indicating that RAD51 can bind to the region C-

terminal of the DNA/DSS1-binding domain. Though this appears analogous to 

Rad51-BRCA2 C-terminal interaction in mammals (Mizuta et al., 1997;Sharan et 

al., 1997;Esashi et al., 2005;Esashi et al., 2007;Davies and Pellegrini, 2007), the 

status of Serine1523 in T. brucei BRCA2 had no influence on RAD51 binding, 

suggesting binding to the C-tail region is not regulated by phosphorylation on 

this residue. Surprisingly, the His BRCA2 variant encompassing only the region 

between the BRC repeats and the C-tail (mainly composed of DNA/DSS1-binding 

domain) was also pulled down by GST RAD51 (lane 6), and this was unaffected by 

removal of the putative PhePP motif (lane 7). This suggests, firstly, that this 

PhePP motif is not a mediator of T. brucei RAD51 interaction and, secondly, that 

T. brucei BRCA2 possesses a binding site for RAD51 in the vicinity of the 

DNA/DSS1-binding domain that has not been observed in any other BRCA2 

orthologue. Taken together, these data suggest that T. brucei RAD51 binds to at 

least two regions in the BRCA2 C-terminus downstream from the last BRC repeat: 

one region is found in or around the DNA/DSS1-binding domain, and the other in 

the poorly conserved C-tail. Thus, BRCA2-RAD51 interaction in T. brucei appears 

extensive, including these C-terminal regions and the BRC repeats. 
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As mentioned above, problems were encountered with the detection of the His 

tag alone due to its small size (7 kDa). The control input sample in Figure 5-7A 

(lane 2), with GST-RAD51 co-expressed with the His tag, shows a clearly visible 

band of the expected size for the His tag. In the corresponding elution sample in 

Figure 5-7C (lane 2) it appears that binding of the His antiserum was observed at 

just above the expected size for the His tag. Due to this, a coomassie stained gel 

of the input and elution samples containing GST-RAD51 co-expressed with the 

His tag were also analysed (Figure 5-7D). The input sample (lane 1) in Figure 

5-7D shows the expression of a protein of the expected size for the His tag, and 

this band is not visible in the elution sample (lane 2), confirming that GST RAD51 

has not bound to the His tag. In addition, no binding between the His tagged 

1BRC, 4BRC and 7BRC variants of BRCA2 and GST RAD51 was detected in the 

previous experiment (Figure 5-6C lanes 1-3) and this acts as a negative control 

for this experiment also. 
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Figure 5-7 GST pull-down analysis of the interactio ns between RAD51 and the C-terminal 
domain of BRCA2. 
(A) A western blot of the separated input samples p robed with anti-His antiserum (1:750 
dilution). His tagged proteins are indicated (black  arrows), and the GST-tagged proteins that 
were co-expressed are indicated (top). (B) A coomas sie stained gel of the separated elution 
samples showing GST Rad51 and the GST tag (black ar rows). His-tagged proteins that were 
co-expressed are indicated (top). Lanes 4 and 9 con tain the Ser1523Ala mutants, and lanes 
5 and 10 the Ser1523Glu mutants. (C) A western blot  of the separated elution samples 
probed with anti-His antiserum (1:750 dilution). GS T-tagged proteins used for the pull-down 
are indicated (top). (D) A coomassie stained gel of  the separated input and elution samples 
from GST Rad51 co-expressed with the His tag (black  arrows). In each panel, size markers 
are shown (kDa). 
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5.3 Co-immunolocalisation of RAD51 and BRCA2 

The GST pull-down analysis above indicates extensive BRCA2-RAD51 interaction 

in vitro. However, it does not tell us how the proteins might interact in the cell 

and in response to DNA damage. For this reason, co-immunolocalisation using 

epitope tagged BRCA2 and anti-RAD51 antiserum was carried out in order to 

investigate the cellular localisation of BRCA2 and RAD51 before and after the 

induction of DNA damage, and to test for co-localisation. Though a number of T. 

brucei factors, including BRCA2 and RAD51 paralogues (Hartley and McCulloch, 

2008;Dobson et al., 2011), have been shown to influence the ability of RAD51 to 

form subnuclear foci after damage, it is not clear if the proteins physically 

interact in these putative repair structures. Epitope tagged BRCA2 was used in 

this approach due to the lack of reproducibility and specificity of the anti-BRCA2 

antiserum. A tag consisting of twelve copies of the c-myc epitope was added to 

the C-terminus of BRCA2 in PCF TREU 927 cells in a strategy previously used for 

PTP tagging and purification of T. brucei proteins (Schimanski, Nguyen, and 

Gunzl, 2005). 

5.3.1  Endogenous C-terminal epitope tagging strate gy 

A construct (pNAT x12myc) that enables the fusion of a C-terminal 12myc epitope 

tag at the endogenous loci of a gene of interest was modified to target BRCA2 

(Figure 5-8;Alsford and Horn, 2008). The strategy to enable the C-terminal 

tagging of T. brucei proteins at their endogenous loci is displayed in Figure 5-9. 

The C-terminal epitope tagging construct uses a region of the 3’ end of the ORF 

to enable homologous recombination and integration into the genome. Selection 

of clones is enabled by the presence of a blasticidin (BSD) resistance cassette 

flanked by tubulin and actin processing sequences. After integration of the 

construct, endogenous upstream gene sequences are used for RNA trans-splicing, 

while the downstream integrated BSD cassette provides polyadenylation signals 

for the tagged gene, meaning that the 3’ UTR is non-endogenous. For BRCA2, a 

491 bp region of the 3’ end of the BRCA2 ORF was amplified by PCR using 

primers 32 and 33, which contained HindIII and XbaI restriction sites, 

respectively. The PCR-amplified region includes all ORF sequence up to, but 

omitting the stop codon to allow translational read-through into the epitope tag. 

This region also contains a unique restriction site (SphI) to allow linearisation of 
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the construct prior to transformation. The DNA fragment was cloned into the 

construct upstream of the epitope tag using the HindIII and XbaI restriction sites. 

For transformation, the construct was linearised by restriction digestion with 

SphI, the digested DNA was then ethanol precipitated and approximately 5 µg of 

the resuspended DNA was used for each transformation. 

 
Figure 5-8 Construct used for C-terminal 12myc tagg ing of T. brucei BRCA2. 
491 bp of the 3’ end of the BRCA2 ORF (orange) containing a unique restriction site (SphI) 
was cloned into HindIII and XbaI restriction sites. The 12myc epitope tag (green) consists of 
12 tandemly repeated copies of the c-myc epitope. T he BSD resistance cassette is shown 
(red) flanked by the tubulin (βα Tub, blue) and actin (Act IR, purple) intergenic sequences. 
AMP: Ampicillin resistance ORF (grey). Sizes are shown  (bp). 

 
Figure 5-9 Strategy for C-terminal 12 myc tagging o f T. brucei proteins at their endogenous 
loci. 



Chapter 5  218 

A schematic of the C-terminal 12myc tagging constru ct, described in Figure 5-8, is shown 
(top). Linearisation of the construct using a uniqu e restriction site, within the 3’ end of the 
ORF (orange), allows integration into the genome by  homologous recombination (HR). This 
produces the endogenous ORF fused with the C-termin al 12myc tag (green, bottom). 

5.3.2  Generation of C-terminal 12myc tagged BRCA2 cell 
line 

A transformation was carried out in order to generate a C-terminal 12myc tagged 

BRCA2 cell line. To do this, wild-type PCF TREU 927 cells were transformed with 

the BRCA2 12myc tagging construct and antibiotic resistant transformants were 

selected by placing cells on SDM-79 media supplemented with 10 µg.ml-1 

blasticidin. The clones obtained from transformation were screened by western 

blot performed on total protein extracted from six blasticidin resistant clones. 

The total protein extracts were separated by SDS PAGE on a 3-8% Tris-Acetate 

gel before western blotting and probing with anti-myc antiserum at a dilution of 

1:7000. The western blot in Figure 5-10 demonstrates that four of the six 

putative BRCA2 12myc cell lines contained a protein band of the expected size 

for BRCA2 12myc (193 kDa). One of these was taken forward for further analysis. 

 
Figure 5-10 Confirmation of expression of C-termina l 12myc tagged BRCA2 by western 
analysis. 
Total protein extract from wild-type TREU 927 (WT 9 27) and putative BRCA2 12myc tagged 
cell lines were separated by SDS-PAGE and western b lotted before being probed with anti-
myc anti-serum (1:7000 dilution). A band of the siz e expected for BRCA2 12myc tagged 
protein is indicated (black arrow), and size marker s are shown (kDa). 

5.3.3  Co-immunolocalisation of BRCA2 and RAD51 

Fluorescence microscopy was performed (section 2.4.2) using the BRCA2 12myc 

cell line; anti-myc antiserum conjugated to Alexa Fluor 488 (1:7000 dilution, 

Invitrogen) was used to detect 12myc tagged BRCA2, and anti-RAD51 antiserum 

(1:1000 dilution), in conjunction with Alexa Fluor 594 conjugated anti-rabbit 

secondary antiserum (1:7000 dilution, Invitrogen), to detect RAD51. Cells were 
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treated with 2 µg.ml-1 phleomycin and slides prepared 5 hours and 24 hours 

subsequently (Figure 5-11 and Figure 5-12, respectively). Control slides were 

similarly prepared without phleomycin treatment (Figure 5-13). Images were 

captured using a Zeiss Axioskop microscope with DAPI, DIC, Rhodamine and FITC 

filters. These images were used for quantification of the various categories of 

localisation observed (Table 5-1). The images presented in Figure 5-11, Figure 

5-12 and Figure 5-13 were obtained from the same slides, but using a Deltavision 

confocal microscope (Volodymyr Nechyporuk-Zloy), and were subjected to 

deconvolution. 

The localisation of BRCA2 in the absence of DNA damage appeared to be largely 

nuclear. In most cells (58 of 87), concentration of BRCA2 in multiple, discrete 

foci-like punctate structures was clearly visible, either around the nuclear 

periphery or throughout the nucleus (examples are shown in Figure 5-13). In a 

smaller, but still substantial number of cells (24 out of 87), BRCA2 localisation 

was less focal, either because staining was visible throughout the nucleus or 

because no clear subcellular staining was apparent. In a very small proportion of 

cells (~ 6%) BRCA2 was seen in peripheral nuclear ‘rings’ (see below). As has 

been seen previously (Chapter 3 and Chapter 4) in the absence of damage 

detectable RAD51 localisation was negligible (indeed, in this analysis, no RAD51 

signal was detected). 

After the induction of DNA damage, as has been described previously (Chapter 3 

and Chapter 4) RAD51 formed clear subnuclear foci, the numbers of which 

increased between 5 and 24 hours (40% and 62% of total cells, respectively). The 

localisation of BRCA2 and RAD51 in these conditions can be broadly classified 

into several distinct types. Firstly, BRCA2 was seen much more frequently to be 

forming distinctive, generally continuous, rings around the edge of the DAPI 

stained DNA (Figure 5-11A and Figure 5-12A). The numbers of cells displaying 

this localisation increased with time, and in many cases no RAD51 foci were 

observed in these cells. When cells were seen with both RAD51 foci and BRCA2 

rings, the RAD51 foci were observed in the nucleus within the BRCA2 ring (Figure 

5-11B and Figure 5-12B), and the signals did not overlap. Secondly, there 

appeared to be little change, between 5 and 24 hours, in the numbers of cells 

with punctate BRCA2 rings around the DAPI stained DNA; again, these cells were 

seen both with and without the presence of subnuclear RAD51 foci (Figure 5-11C 
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and Figure 5-12C). Co-localisation was observed in ~ 50% of cells that had 

multiple BRCA2 and RAD51 foci, but in no cases was there complete co-

localisation of all foci as observed in mammalian cells. Instead, it appeared that 

this colocalisation was essentially always between a single BRCA2 ‘focus’ that 

made up part of the punctate ring and a single RAD51 focus (Figure 5-11D and 

Figure 5-12D). Thirdly, BRCA2 was observed as focal accumulations spread 

throughout the nucleus, rather than being concentrated in the periphery (Figure 

5-11E and Figure 5-12E). In some cases, however, predominantly peripheral foci 

were seen, with one or two more central foci (Figure 5-11B and D for examples), 

suggesting that the distinction between peripheral and subnuclear localisation, 

and perhaps also with rings, may be less clear-cut than presented here. 

Nevertheless, in the cells with BRCA2 subnuclear foci, some displayed no RAD51 

foci, while others displayed both BRCA2 and RAD51 foci. Where BRCA2 and 

RAD51 foci were both present, most did not co-localise, though overlap in the 

signals between single BRCA2 and RAD51 foci were common (Figure 5-11F and 

Figure 5-12F). 

 
Table 5-1 Quantification of the localisation of BRC A2 and RAD51 in PCF TREU 927 T. brucei 
before and after exposure to phleomycin. 
(A) Quantification of BRCA2 localisation without ph leomycin treatment and after 5 or 24 
hours growth in phleomycin (2 µg.ml -1); cells in which BRCA2 localises in peripheral nuc lear 
rings (BRCA2 rings), in more punctuate peripheral r ings (BRCA2 punctate rings), in 
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subnuclear foci (BRCA2 foci), or where clear locali sation of BRCA2 was not apparent 
(Diffuse/no BRCA2), are distinguished. Numbers indi cate total number of cells observed and 
N indicates the total number of cells counted. Quan tification of the number of cells that 
display RAD51 foci, and whether any of these foci c o-localise with BRCA2; this is separated 
into cells with BRCA2 rings (B), BRCA2 punctate rin gs (C) and BRCA2 foci (D). 

 
Figure 5-11 Representative images of BRCA2 and RAD5 1 localisation in PCF TREU 927 T. 
brucei exposed to phleomycin for 5 hours. 
Images of BRCA2 12myc cells after phleomycin treatm ent (2 µg.ml -1 BLE for 5 hours). Each 
cell is shown after staining with DAPI (DAPI), afte r hybridisation with anti-myc Alexa Fluor 
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488 conjugated antiserum (1:7000 dilution, BRCA2) a nd after hybridisation with anti-RAD51 
antiserum (1:1000 dilution) and secondary hybridisa tion with Alexa Fluor 594 conjugated 
anti-rabbit antiserum (1:7000 dilution, RAD51). Mer ged images of DAPI, BRCA2 and RAD51 
cells are also shown (Merge). White arrows indicate  co-localisation between BRCA2 and 
RAD51. A: BRCA2 ring, B: BRCA2 ring with RAD51 foci , C: Punctate BRCA2 ring with 
RAD51 foci, D: Punctate BRCA2 ring with RAD51 co-lo calisation, E: BRCA2 foci, F: BRCA2 
foci with RAD51 co-localisation. 

 
Figure 5-12 Representative images of BRCA2 and RAD5 1 localisation in PCF TREU 927 T. 
brucei exposed to phleomycin for 24 hours. 
Images of BRCA2 12myc cells after phleomycin treatm ent (2 µg.ml -1 BLE for 24 hours). Each 
cell is shown after staining with DAPI (DAPI), afte r hybridisation with anti-myc Alexa Fluor 
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488 conjugated antiserum (1:7000 dilution, BRCA2) a nd after hybridisation with anti-RAD51 
antiserum (1:1000 dilution) and secondary hybridisa tion with Alexa Fluor 594 conjugated 
anti-rabbit antiserum (1:7000 dilution, RAD51). Mer ged images of DAPI, BRCA2 and RAD51 
cells are also shown (Merge). White arrows indicate  co-localisation between BRCA2 and 
RAD51. A: BRCA2 ring, B: BRCA2 ring with RAD51 foci , C: Punctate BRCA2 ring with 
RAD51 foci, D: Punctate BRCA2 ring with RAD51 co-lo calisation, E: BRCA2 foci, F: BRCA2 
foci with RAD51 co-localisation. 

 
Figure 5-13 Representative images of BRCA2 and RAD5 1 localisation in PCF TREU 927 T. 
brucei in the absence of DNA damage. 
Images of BRCA2 12myc cells without phleomycin trea tment. Each cell is shown after 
staining with DAPI (DAPI), after hybridisation with  anti-myc Alexa Fluor 488 conjugated 
antiserum (1:7000 dilution, BRCA2) and after hybrid isation with anti-RAD51 antiserum 
(1:1000 dilution) and secondary hybridisation with Alexa Fluor 594 conjugated anti-rabbit 
antiserum (1:7000 dilution, RAD51). Merged images o f DAPI, BRCA2 and RAD51 cells are 
also shown (Merge). 

Having performed the above immunofluorescence, western analysis was next 

carried out in order to check that the differences in localisation observed were 

not simply due to changes in protein expression levels after DNA damage. Total 

protein extracts were prepared before and after phleomycin treatment (2 µg.ml-

1 for 24 hours), separated by SDS PAGE on 3-8% Tris-Acetates gels and western 

blotted. The blot was probed with anti-myc antiserum (1:7000 dilution), anti-

RAD51 antiserum (1:1000 dilution), and anti-OPB1 antiserum (1:1000 dilution) as 

a loading control. The blot was stripped between probings (section 2.11.1). The 

western blot in Figure 5-14 demonstrates that the levels of RAD51 and BRCA2 

12myc remained constant after phleomycin treatment. 
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Figure 5-14 Western analysis of BRCA2 12myc and RAD 51 in PCF TREU 927 T. brucei after 
exposure to phleomycin. 
Total protein extracted from BRCA2 12myc tagged cel ls was separated by SDS PAGE and 
western blotted before being probed with anti-myc a ntiserum (1:7000 dilution) and anti-
RAD51 antiserum (1:500 dilution). ‘-’ indicates pro tein extracts prepared without phleomycin 
treatment, and ‘+’ indicates protein extracts prepa red after phleomycin treatment (2 µg.ml -1 

BLE for 24 hours). The blots were stripped and re-p robed with anti-OPB1 antiserum (1:1000 
dilution) as a loading control. Size markers are sh own (kDa). 

5.3.4  Analysis of the sub-cellular distribution of  BRCA2 
by aqueous fractionation 

In order to examine further the subcellular distribution of BRCA2, aqueous 

fractionation was carried out on T. brucei whole cell extracts as detailed in 

section 2.2.5 (Zeiner, Sturm, and Campbell, 2003). Nuclear and cytoplasmic 

protein extracts were prepared from BRCA2 12myc cells after phleomycin 

treatment (1 µg.ml-1 for 18 hours), and control protein extracts without 

phleomycin treatment were similarly prepared. Protein extracts were separated 

by SDS-PAGE on 3-8% Tris-Acetate gels before western blotting and probing 

sequentially with anti-myc antiserum (1:7000 dilution), anti-RAD51 antiserum 

(1:500 dilution), anti-OPB1 antiserum (1:1000 dilution) and anti-NOG1 antiserum 

(1:5000 dilution). Blots were stripped between probings as described in section 

2.11.1. The western blot probed with NOG1 and OPB1 antiserum in Figure 5-15 

demonstrates that the separation of nuclear and cytoplasmic proteins by 

aqueous fractionation was successful; OPB1 and NOG1 proteins were only 

present in the cytoplasmic and nuclear fractions, respectively. BRCA2 12myc was 

detected in both the nuclear and the cytoplasmic fractions, both before and 

after the induction of DNA damage. This is in agreement with the images 

obtained by fluorescence microscopy that were not subjected to deconvolution 

(data not shown) which show BRCA2 localised predominantly nuclearly in the 

formations discussed in section 5.3.3, but also present at low levels throughout 

the cytoplasm of the parasite. As seen previously (section 4.3.4), RAD51 was 
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detected in both nuclear and cytoplasmic fractions both with and without 

phleomycin treatment. 

 
Figure 5-15 Aqueous fractionation of PCF TREU 927 B RCA2 12myc tagged cell line exposed 
to phleomycin. 
Aqueous fractionation was performed to generate pro tein fractions enriched in soluble 
cytoplasmic proteins (C) and soluble nuclear protei ns (N). Fractions were prepared from the 
BRCA2 12myc cell line. ‘-’ indicates fractions prep ared without phleomycin treatment and ‘+’ 
indicates fractions prepared after phleomycin treat ment (1 µg.ml -1 BLE for 18 hours). 
Fractions were separated by SDS PAGE and western bl otted before being sequentially 
probed, stripped and re-probed with anti-myc antise rum (1:7000), anti-RAD51 antiserum 
(1:500 dilution), anti-OPB1 antiserum (1:1000 dilut ion) and anti-NOG1 antiserum (1:5000 
dilution). Size markers are indicated (kDa). 

5.4 Summary 

The results from the in vitro GST pull-down experiment to identify the domains 

of T. brucei BRCA2 that interact with RAD51 are summarised in Figure 5-16, 

which also shows the protein interacting domains of BRCA2 orthologues from H. 

sapiens, U. maydis and C.elegans. Perhaps the most surprising finding from the 

GST pull-down analysis is that these data indicate that T. brucei RAD51 

interaction with the N-terminal BRC repeat domain of BRCA2 is not observed 

until 10 BRC repeat motifs are present, at least in this experimental system. This 

is in direct contrast to in vitro observations with the BRC repeats of mammalian 

BRCA2, where a single repeat is sufficient to bind Rad51 (Wong et al., 1997;Chen 

et al., 1998;Carreira and Kowalczykowski, 2011), and the BRCA2 orthologues in 

C. elegans and U. maydis that only possess a single BRC repeat that is also 

sufficient to bind Rad51 and function in DNA repair (Figure 5-16;Kojic et al., 

2002;Martin et al., 2005;Petalcorin et al., 2006). However, it is hard to evaluate 

just how weak the observed binding of RAD51 to the BRC repeats of T. brucei 

BRCA2 is in comparison to the equivalent in vitro experiments performed with 

BRC repeat fragments of mammalian BRCA2 (Carreira and Kowalczykowski, 
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2011). It is possible that the T. brucei BRC repeats are simply poor at binding 

monomeric RAD51, and that in vivo they bind predominantly, or with higher 

affinity, to RAD51-ssDNA nucleoprotein filaments that may not be present in this 

experimental system. This is supported by the fact that the T. brucei BRC 

repeats most closely resemble the human BRC repeat 7 (with 48.6% similarity for 

the ‘normal’ T. brucei BRC repeat and 51.4% similarity for the ‘degenerate’ T. 

brucei BRC repeat), which is a member of the second group of human BRC 

repeats that are thought to bind with high affinity to Rad51 nucleoprotein 

filaments and function to stabilise them (Carreira and Kowalczykowski, 2011). If 

the BRC repeat expansion in T. brucei is an adaptation in order to bind with high 

affinity and stabilise RAD51-ssDNA nucleoprotein filaments, then it is possible 

that the perfect tandem repeat organisation of the array is critical in this 

function. The demonstration of binding of the BRC repeat array to RAD51 

filaments using electrophoretic mobility shift assays (EMSAs) could be used to 

test this. It would also be interesting to investigate the DNA repair function of a 

variant of T. brucei BRCA2 with the BRC repeats dispersed, as in mammalian 

BRCA2. The BRC repeats of T. brucei BRCA2 have also been suggested to bind to 

the five RAD51 paralogues by yeast 2-hybrid analysis (Hall et al., 2011), and 

these interactions were shown to be stronger than the observed interaction with 

RAD51 (Hall et al., 2011). However, to date there is no report of an interaction 

between a BRCA2 orthologue and Rad51 paralogues in any other organism. 

Binding of T. brucei RAD51 to the C-terminal domain of BRCA2 was observed 

with all of the BRCA2 variants tested here. RAD51 was shown to bind to the C-

tail of BRCA2, the region downstream of the DNA/DSS1-binding domain, and this 

binding was not affected by mutation of a putative CDK phopshorylation site. 

RAD51 binding to this C-tail region may be analogous to the discrete C-terminal 

Rad51-binding site displayed by mammalian BRCA2 and U. maydis Brh2 (Esashi et 

al., 2005;Kojic et al., 2005;Esashi et al., 2007). However, the mammalian 

Rad51-binding motif is not conserved across the BRCA2 orthologues, and notably 

not in U. maydis, so its functional significance outside mammals is unclear (Kojic 

et al., 2005). Nonetheless, it would also be interesting to determine if T. brucei 

BRCA2 is indeed phosphorylated, how this phosphorylation changes throughout 

the cell cycle and the effect of phosphorylation on RAD51 binding (including at 

the C-terminus). It is highly likely that cell cycle-dependent phosphorylation is a 
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universal mechanism for the regulation of RAD51 binding and therefore function 

by BRCA2, as observed in mammalian cells (Esashi et al., 2005;Ayoub et al., 

2009), due to the requirement of a homologous template that is most likely 

present after nuclear DNA replication has been completed. There is some 

evidence to suggest that the C-terminal Rad51-binding motif present in 

mammalian BRCA2 plays a critical role in replication by stabilising Rad51 

filament formation on nascent DNA, preventing its degradation (Hashimoto et 

al., 2010;Schlacher et al., 2011). The mapping of the replication phenotype in T. 

brucei to the C-terminus of BRCA2 is consistent with this function (Claire 

Hartley, PhD Thesis, 2008) and a role for the observed multiple sites of RAD51 

binding to the C-terminal region of BRCA2 in the maintenance of replication 

could be interesting to investigate. 

T. brucei RAD51 was also shown to interact with a region of BRCA2 upstream of 

the C-tail, containing the DNA/DSS1-binding domain and including a putative 

DMC1 interaction motif (PhePP). Removal of this PhePP motif did not affect 

RAD51 binding, indicating that binding is occurring downstream of this motif, 

possibly within the DNA/DSS1-binding domain. DMC1 binding to the putative 

PhePP motif has not been demonstrated in T. brucei, and cannot be ruled out. 

However, the observed binding of Rad51 by the U. maydis orthologue of BRCA2 

via the putative PhePP motif (Kojic et al., 2011) does not appear to be 

conserved in T. brucei BRCA2. Further fine mapping of the interaction between 

RAD51 and the C-terminus of T. brucei BRCA2 is required to determine if indeed 

Rad51 binds to the DNA/DSS1-binding domain, which has not been detected to 

date in any organism. However, the possibility remains that an uncharacterised 

RAD51-binding domain exists in the region between the PhePP motif and the 

DNA/DSS1-binding domain. 

The in vivo immunolocalisation of BRCA2 and RAD51 has produced a complex 

picture of the distribution of these proteins in T. brucei. BRCA2 appears to be a 

largely nuclearly located protein both before and after the induction of DNA 

damage, though subcellular fractionation does detect extra-nuclear protein. 

Focal accumulations of BRCA2 are clearly visible in the absence of DNA damage. 

However, once DNA damage has been induced a more complex distribution of 

BRCA2 is observed. Rings of BRCA2 around the DAPI stained DNA are observed 

more frequently, both ‘smooth’ and ‘punctate’ in nature, as well as BRCA2 foci 
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distributed throughout the nucleus and at the periphery. Co-localisation with 

RAD51 foci is observed, but at a much lower frequency than observed in 

mammalian cells (Mizuta et al., 1997;Tarsounas, Davies, and West, 2003). 

However, BRCA2 and RAD51 do bind and interact with each other in T. brucei, as 

demonstrated by in vivo co-immunoprecipitation in Chapter 6 and the GST pull-

down analysis here. RAD51 and BRCA2 localisation has been investigated in 

multiple systems. In mammalian cells multiple Rad51 foci are observed after 

DNA damage, the majority of which co-localise with BRCA2 (Mizuta et al., 

1997;Tarsounas, Davies, and West, 2003), which is similar to that observed in 

Drosophila (Brough et al., 2008). Localisation of Rad51 in C. elegans is observed 

as multiple subnuclear foci during meiosis, and in Cebrc-2 null mutants this 

localisation of Rad51 is dramatically reduced (Martin et al., 2005). Bimolecular 

fluorescence complementation analysis in C. elegans using fluorescently labelled 

Cebrc-2 and mammalian Rad51 indicates that Cebrc-2 binds mammalian Rad51 

and forms multiple discrete foci that increase in size after DNA damage (Min et 

al., 2007). Co-localisation of Rad51 and Brh2 has not been studied in U. maydis, 

but the formation of Rad51 foci is observed after DNA damage in this organism, 

and is co-incident with the formation of Brh2 foci (Kojic et al., 2006). The 

composition of DNA repair foci is not known, though it is assumed that they 

contain multiple copies of DNA repair factors and form a highly efficient DNA 

repair factory (Lisby and Rothstein, 2009). The relatively low occurrence of 

RAD51 and BRCA2 co-localisation in T. brucei when compared to mammalian 

cells could point to a role for BRCA2 in establishing the RAD51 foci and then 

moving away, leaving the RAD51 foci in place. It may also be consistent with 

BRCA2 acting in DNA damage and an additional role, as discussed in Chapter 4. 

The most striking observation from the imunolocalisation images are the ‘rings’ 

of BRCA2 that are observed in a small percentage of cells after DNA damage. It 

may be possible that this ring structure represents sites of replication located at 

the periphery of the nucleus (Elias et al., 2002;Calderano et al., 2011), or even 

binding to chromosome telomeres, which have been demonstrated to be located 

at the nuclear periphery (Chung et al., 1990). A role in VSG switching can 

probably be discarded as this analysis was carried out in PCF cells that 

presumably do not undergo VSG switching. 
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Taken together, these data reveal a complex picture of T. brucei BRCA2 

subnuclear behaviour, with a perhaps dynamic redistribution between general 

peripheral nuclear localisation and accumulation into more discrete foci both at 

the nuclear periphery and in the interior. Furthermore, this localisation shows 

surprisingly little overlap with RAD51, which is only seen in subnuclear foci after 

damage. In contrast to the extensive co-localisation seen between BRCA2 and 

RAD51 in the nuclei of mammals and Drosophila (Mizuta et al., 1997;Tarsounas, 

Davies, and West, 2003;Brough et al., 2008) after damage, here we see frequent 

examples where there is no such co-localisation. In addition, when T. brucei 

BRCA2 and RAD51 do localise it appears to be nearly always in a single focus 

amongst many foci. 
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Figure 5-16 A representation of BRCA2 orthologues s howing their functional domains and 
interacting proteins. 
BRCA2 orthologues from H. sapiens, T. brucei, U. Maydis and C. elegans are shown with the 
protein domains indicated; BRC repeats (red bars), ‘degenerate’ BRC repeat (dark red bar), 
PhePP motif (orange line), alpha-helical domain (gr een oval/semi-circle), oligonucleotide-
binding domain (blue box), and tower domain (purple  bar). Interacting proteins and their 
sites of binding are indicated below the protein, a nd ‘?’ indicates predicted binding sites. 
Not to scale.



231 

 Chapter 6: Does T. brucei BRCA2 
interact with CDC45? 
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6.1 Introduction 

In mammalian cells, it has been demonstrated that BRCA2 plays multiple roles to 

ensure faithful genome replication, although the precise mechanisms remain to 

be elucidated (Michel et al., 2004;Nagaraju and Scully, 2007;Constanzo, 2011). A 

number of publications have begun to implicate BRCA2 in the maintenance of 

replication fork progression (Daboussi et al., 2008), the stabilisation of DNA 

structures at stalled replication forks (Lomonosov et al., 2003) and, in some 

cases, DNA replication directly (Michel et al., 2001;Michel et al., 2004). A 

function for the BRCA2 C-terminal Rad51-binding motif in the protection of 

stalled replication forks from degradation by Mre11 has been described 

(Schlacher et al., 2011), and may operate via stabilisation of Rad51 filaments on 

nascent DNA (Hashimoto et al., 2010). Mutation of the BRCA2 C-terminal CDK 

phosphorylation site at Serine 3291 to Alanine, which does not support Rad51 

binding to this motif, was shown to be deficient in this protection function, 

despite being HR proficient (Schlacher et al., 2011). Mutation of the equivalent 

C-terminal Rad51-binding motif in avian BRCA2, which also ablates Rad51 

binding, has been demonstrated to link the observed faster disassembly of Rad51 

subnuclear complexes to the early onset of mitosis, despite having no effect on 

HR-mediated DNA repair (Ayoub et al., 2009). BRCA2 has also been shown to 

interact with BRAF35 (also called HMG20b), a member of the high-motility group 

of non-sequence specific DNA-binding proteins (Wang et al., 1998;Sumoy et al., 

2000;Marmorstein et al., 2001;Lee et al., 2011). This interaction was localised 

to the BRC repeats of BRCA2, and BRAF35 displays the highest affinity for BRC 

repeat 5, a motif that binds poorly to Rad51 (Lee et al., 2011;Carreira and 

Kowalczykowski, 2011). Depletion of BRAF35 by RNAi delays and disrupts the 

completion of cell division by cytokinesis (Lee et al., 2011) in a phenotype 

previously detected in BRCA2-deficient cells (Daniels et al., 2004). Therefore, a 

novel function of BRAF35 in facilitating the completion of cytokinesis via an 

interaction with the BRC repeats of BRCA2 has been proposed (Lee et al., 2011). 

A role for BRCA2 in facilitating the completion of cell division by cytokinesis has 

also been observed (Daniels et al., 2004;Jonsdottir et al., 2009;Vinciguerra et 

al., 2010;Rowley et al., 2011), though doubt has been cast due to the absence of 

hallmarks of a failure to complete cytokinesis in HeLa cells depleted of BRCA2 by 

RNAi and a lack of BRCA2 localisation to cytokinetic structures (Lekomtsev et 
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al., 2010). BRCA2 has also been shown to associate with telomeres in mouse 

embryonic fibroblasts during the S and G2 phases of the cell cycle (Badie et al., 

2010), and is proposed to act in loading Rad51 to facilitate telomere replication 

and protection by capping (Badie et al., 2010). Finally, in the highly radiation 

resistant fungus U. maydis, the BRCA2 orthologue Brh2 has been show to 

promote template switching reactions that enable HR-mediated bypass of DNA 

replication blocking lesions (Mazloum and Holloman, 2009). 

brca2-/- mutants in BSF Lister 427 T. brucei display a replication phenotype that 

is not observed in other DNA repair mutants, most notably rad51-/- (Claire 

Hartley, PhD Thesis, 2008), which is consistent with the initiation of cytokinesis 

prior to the completion of nuclear DNA replication (Claire Hartley, PhD Thesis, 

2008). There is evidence to suggest that the C-terminal region of T. brucei 

BRCA2 may function in this replication role. Firstly, DAPI analysis of brca2-/- 

cells in which the C-terminal region of BRCA2 in isolation was re-expressed 

suggested partial complementation of the replication defect observed in the 

brca2-/- mutant cells, as the number of aberrant cells was more comparable 

with wild-type and full-length BRCA2 re-expresser cell lines (Claire Hartley, PhD 

Thesis, 2008). Secondly, the re-expression of a variant of BRCA2 consisting of the 

BRC repeat region fused to the RPA50 subunit continued to generate aberrant 

cells, indicating that C-terminal-specific functions underlie this replication 

phenotype (Claire Hartley, PhD Thesis, 2008). The publication of an observed 

interaction between the C-terminal domain of BRCA2 and a region of the T. 

brucei homologue of CDC45 (Oyola, Bringaud, and Melville, 2009), a protein 

essential for DNA replication (see below;Zou, Mitchell, and Stillman, 

1997;Tercero, Labib, and Diffley, 2000), presented a possible novel mechanism 

for the involvement of BRCA2 in DNA replication. This publication did not 

explore this question, but perhaps the interaction with CDC45 allows homology-

directed DNA repair of stalled replication forks in a mechanism to ensure that 

replication stalls are overcome in T. brucei. 

CDC45 is a protein originally identified in Saccharomyces cerevisiae (Hardy, 

1997) that is essential for the initiation and progression of DNA replication (Zou, 

Mitchell, and Stillman, 1997;Tercero, Labib, and Diffley, 2000). CDC45 localises 

to the nucleus (Hopwood and Dalton, 1996) and has been shown to bind to the 

minichromosome maintenance (MCM2-7) and GINS complexes to form the 
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replicative helicase, the CMG complex (CDC45-MCM-GINS; Aparicio, Ibarra, and 

Mendez, 2006;Aparicio et al., 2009;Ilves et al., 2010;Costa et al., 2011). CDC45 

is thought to play a critical role in firing assembled pre-replication complexes to 

allow the start of DNA replication (Zou, Mitchell, and Stillman, 1997), and has 

also been shown to move with replication forks, presumably functioning during 

fork progression (Aparicio, Weinstein, and Bell, 1997). The MCM2-7 proteins have 

weak DNA helicase activity on their own, and binding to CDC45 and GINS 

stimulates this helicase activity (Aparicio et al., 2009;Ilves et al., 2010;Costa et 

al., 2011), allowing unwinding of DNA at the origin of replication. The 

components of the CMG complex have recently been identified in T. brucei and 

depletion of CDC45 by RNAi was observed to be lethal (Dang and Li, 2011). 

Further observations indicate that CDC45 is excluded from the nucleus after the 

completion of nuclear DNA replication (Dang and Li, 2011), and may suggest a 

possible role for CDC45 in a mechanism to prevent re-replication of nuclear DNA 

during the cell cycle in trypanosomes (Dang and Li, 2011). 

Oyola et al., (2009) used a T. brucei cDNA library in a yeast 2-hybrid screen to 

detect potential BRCA2 interactors. A homologue of T. brucei CDC45 was 

identified in approximately one-third of colonies analysed. Further yeast 2-

hybrid analysis was carried out with the two ‘halves’ of BRCA2, and positive 

colonies were only obtained with the C-terminal half of BRCA2. The interaction 

was quantitatively much stronger than that observed with a positive control, and 

only a medium strength interaction was observed between BRCA2 and RAD51 

using the same assay. Co-immunoprecipitation analysis was carried out using 

full-length BRCA2 over-expressed in T. brucei or the C-terminal half of BRCA2 

over-expressed as a hexa-histidine fusion in E. coli. Interaction with a fragment 

of CDC45 (residues 371-523) over expressed in E. coli as a GST fusion was tested 

for and observed with both the full-length and the C-terminal fragment of 

BRCA2. The detection of this interaction between the C-terminal half of BRCA2 

and CDC45 in T. brucei was interesting as a potential explanation for the 

replication phenotype observed in BSF brca2-/- mutants (Hartley and McCulloch, 

2008), and is consistent with the location of the replication phenotype to the C-

terminus of BRCA2 (Claire Hartley, PhD Thesis, 2008). 

This chapter aims to test the validity of the putative interaction between BRCA2 

and CDC45 in T. brucei. Two approaches were taken. Firstly, the interaction was 
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investigated in vivo by co-immunoprecipitation using epitope-tagged proteins 

expressed from their endogenous loci in T. brucei. Secondly, in vitro GST pull-

down was performed using fusion proteins over-expressed in E. coli. Both of 

these approaches have been used successfully to identify interacting proteins in 

T. brucei (Dobson et al., 2011;Calvin Tiengwe, PhD Thesis, 2010), and GST pull-

down was used to examine BRCA2-RAD51 interaction in this work (Chapter 5). 

6.2 In vivo co-immunoprecipitation 

The lack of antiserum against T. brucei CDC45 meant that in order to detect the 

presence of this protein a tag consisting of twelve copies of the c-myc epitope 

was added to the C-terminus in PCF TREU 927 cells, as described previously 

(section 5.3.1). This epitope tag allowed the immunoprecipitation of CDC45 

using antiserum against the c-myc epitope. 

6.2.1  Endogenous C-terminal epitope tagging strate gy 

The pNAT x12myc construct, which enables the fusion of a C-terminal 12myc 

epitope tag at the endogenous loci of a gene of interest, was modified to target 

CDC45 (Figure 6-1;Alsford and Horn, 2008). The epitope tagging strategy is 

described in section 5.3.1. A 925 bp region of the 3’ end of the CDC45 ORF was 

PCR-amplified using primers 5 and 6, which contained HindIII and XbaI restriction 

sites, respectively, to allow cloning into the construct upstream of the epitope 

tag. The DNA fragment contained a unique restriction site (EcoRV) to allow 

linearisation prior to transformation. For transformation, the construct was 

linearised by restriction digestion, the digested DNA was then ethanol 

precipitated and approximately 5 µg of the resuspended DNA was used for each 

transformation. 
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Figure 6-1 Construct used for C-terminal 12myc tagg ing of T. brucei CDC45. 
925 bp of the 3’ end of the CDC45 ORF (orange) containing a unique restriction site (EcoRV) 
was cloned into HindIII and XbaI restriction sites. The 12myc epitope tag (green) consists of 
12 tandemly repeated copies of the c-myc epitope. T he BSD resistance cassette is shown 
(red) flanked by the tubulin (βα Tub, blue) and actin (Act IR, purple) intergenic sequences. 
AMP: Ampicillin resistance ORF (grey). Sizes are shown  (bp). 

6.2.2  Generation of a CDC45-/+ mutant cell line in PCF 
TREU 927 T. brucei 

In order to confirm that the presence of the 12myc epitope tag was not 

interfering with the function of the CDC45 protein it was decided to generate 

the tagged cell line in a CDC45 heterozygous (-/+) background, meaning that all 

of the CDC45 expressed would contain the epitope tag. CDC45 is an essential 

protein in mammals, S. cerevisiae and Xenopus laevis (Hardy, 1997;Zou, 

Mitchell, and Stillman, 1997;Mimura and Takisawa, 1998;Tercero, Labib, and 

Diffley, 2000;Aparicio et al., 2009) and RNAi of T. brucei CDC45 in PCF cells 

leads to cell death (Dang and Li, 2011). Therefore the generation of the tagged 

cell line in a heterozygous background would confirm that the tagged protein is 

functional. 

The CDC45-/+ mutant cell line was generated in PCF TREU 927 T. brucei using a 

classical gene knockout strategy where the entire CDC45 ORF is removed. A 

CDC45 knockout construct, ∆CDC45::PUR (Figure 6-2), was assembled. The 

construct contains regions of the 5’ and 3’ UTRs flanking the CDC45 ORF cloned 

into pBluescript and used as targeting sequence to enable homologous 
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recombination and replacement of the entire CDC45 ORF with an antibiotic 

resistance cassette following transformation. Primers were designed to amplify 

503 bp of the 5’ UTR and 526 bp of the 3’ UTR flanking the CDC45 ORF. The 5’ 

UTR was amplified using primers 37 and 40, which contained XhoI and NruI 

restriction sites, respectively. The 3’ UTR was amplified using primers 41 and 42, 

which contained NruI and XbaI restriction sites, respectively. The two DNA 

fragments were cloned into pBluescript in a three-way ligation using the XhoI, 

NruI and XbaI restriction sites. To allow selection of the construct that has 

integrated into the genome a puromycin (PUR) resistance cassette, prepared by 

restriction digestion with NruI from ∆BRCA2::PUR construct (section 3.2.1), was 

blunt cloned between the flanks using the NruI restriction site. The PUR 

resistance cassette contained mRNA processing signals derived from actin and 

tubulin intergenic sequences, flanking the antibiotic resistance ORF, to allow 

RNA trans-splicing and polyadenylation, respectively. For transformation, the 

construct was excised from pBluescript by restriction digestion with XhoI and 

XbaI, the digested DNA was then ethanol precipitated and approximately 5 µg of 

the resuspended DNA was used for transformation. 

 
Figure 6-2  CDC45 gene deletion construct. 
Restriction map of the construct used for the delet ion of CDC45 is shown, relative to the 
CDC45 ORF (top). Sizes of the individual components are shown (bp) and are not to scale. 
Constructs were cloned into pBluescript and excised  using the XhoI and XbaI restriction 
sites shown. 5’ UTR and 3’ UTR correspond to un-tra nslated regions upstream and 
downstream of the CDC45 ORF, respectively. βα Tub: βα tubulin intergenic region, Actin IR: 
Actin intergenic region, PUR: puromycin resistance ORF. 

A transformation was carried out in order to generate a CDC45-/+ mutant cell 

line using the ∆CDC45::PUR construct. To do this, PCF wild-type TREU 927 cells 

were transformed and antibiotic resistant transformants were selected by 

placing cells on SDM-79 media supplemented with 1 µg.ml-1 puromycin. 
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The generation of CDC45-/+ mutants was confirmed by PCR analysis performed 

on genomic DNA extracted from six puromycin resistant clones. PCR was 

performed using primers specific to the PUR resistance ORF (primers 144 and 

145) in order to confirm that the cassette was integrated into the genome. 

Integration into the correct locus was checked by PCR using a forward primer 

specific to the PUR resistance ORF (primer 144) and a reverse primer located in 

the 3’ UTR outside of the region cloned in the gene deletion construct (primer 

59). The location of the primers and expected sizes of the PCR products are 

displayed in Figure 6-3A. The agarose gel in Figure 6-3B demonstrates the 

presence of the PUR resistance gene in all of the putative CDC45-/+ mutant 

clones analysed. The PCR with primers 144 and 59 demonstrates that in two cell 

lines (indicated by ‘*’ in Figure 6-3B) the gene deletion construct has integrated 

in the correct location and replaced a CDC45 ORF. The CDC45-/+ mutant clone 

chosen for further analysis is referred to as CDC45-/+ PUR. 

 

 
Figure 6-3 Confirmation of PCF TREU 927 CDC45-/+ mutant cell lines by PCR. 
(A) Primers used to amplify the puromycin resistanc e ORF (PUR), or a region spanning PUR 
and the CDC45 3’UTR, are indicated (black arrows), with the expe cted sizes of the resulting 
PCR products shown (bp). (B) An agarose gel of the PCR products obtained using the 
primers, described above, and genomic DNA extracted  from wild-type TREU 927 (WT 927) 
and putative CDC45-/+ mutant cell lines. Distilled water (dH 2O) was used as a negative 
control. The PCR products produced from the PUR and -/+ allele are indicated (black 
arrows), and size markers are shown (Ladder, kb). ‘ *’ indicates CDC45-/+ mutants that are 
confirmed by PCR. 
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6.2.3  Generation of C-terminal 12myc tagged CDC45-/+ 
cell line 

A transformation was next carried out in order to generate a C-terminal 12myc 

tagged CDC45 cell line in the CDC45-/+ background. To do this, the CDC45-/+ 

PUR cell line was transformed with the CDC45 12myc tagging construct (section 

5.3.1) and antibiotic resistant transformants were selected by placing cells on 

SDM-79 media supplemented with 10 µg.ml-1 blasticidin and 0.5 µg.ml-1 

puromycin. The clones obtained from transformation were screened by western 

blot performed on total protein extracted from six blasticidin and puromycin 

resistant clones. The total protein extracts were separated by SDS PAGE on a 3-

8% Tris-Acetate gel before western blotting and probing with anti-myc antiserum 

(Millipore) at a dilution of 1:7000. The western blot in Figure 6-4 demonstrates 

that four of the six putative CDC45-/+ 12myc cell lines contain a protein band of 

the expected size (93 kDa) for CDC45 12myc. Also present is a smaller protein 

band, which could be a degradation product or a post-translationally modified 

CDC45 variant (e.g. phosphorylated); it may also simply result from the 

antiserum binding to non-specific T. brucei proteins, though why then it would 

not be detected in wild-type cells is unclear. One of these clones was taken 

forward for further analysis. Given the efficiency of generating blasticidin and 

puromycin resistant cells that detectably express myc-tagged CDC45, and the 

fact that the cells display no gross growth rate changes (data not shown), it 

seems likely that the C-terminal epitope tag does not critically impair CDC45 

function. However, without checking for the presence of a wild-type CDC45 

allele, this remains to be confirmed. 

 
Figure 6-4 Confirmation of expression of C-terminal  12myc tagged CDC45-/+ by western 
analysis. 
Total protein extract from wild-type TREU 927 (WT 9 27) and putative 12myc tagged CDC45-
/+PUR cell lines, were separated by SDS-PAGE and we stern blotted before being probed 
with anti-myc antiserum (1:7000 dilution). The band  predicted to correspond with the CDC45 
12myc tagged protein is indicated (black arrow), an d size markers are shown (kDa). 
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6.2.4  Co-immunoprecipitation using the CDC45-/+ 12myc 
tagged cell line 

Co-immunoprecipitation using the CDC45-/+ 12myc tagged cell line, and wild-

type TREU 927 cells as a control was next performed. Total protein was 

extracted (section 2.2.4.2) from cells; this is referred to as the input. 

Immunoprecipitation of CDC45 12myc was carried out using anti-myc antiserum 

conjugated to agarose beads (Millipore) as described in section 2.12; protein 

recovered is referred to as the elution. The input and elution protein samples 

were separated by SDS PAGE on 3-8% Tris-Acetate gels, western blotted and first 

probed with anti-BRCA2 antiserum at a dilution of 1:200. The blots were then 

stripped and re-probed with anti-myc antiserum at a dilution of 1:7000. The 

western blot in Figure 6-5 demonstrates that in both the wild-type TREU 927 and 

CDC45-/+ 12myc cell lines a band of the expected size for the BRCA2 protein 

(176 kDa) was present in the input samples (lanes 1 and 2). A band of the 

expected size for CDC45 12myc (93 kDa) was present only in the tagged cell line 

input (lane 2) and elution (lane 4). The elution samples demonstrate that CDC45 

12myc was successfully immunopreciptated from the tagged cell line (lane 4), 

and was not detectable in wild-type cells (lane 3). No BRCA2 protein was 

detected in the elution sample of either cell line, suggesting that an interaction 

was undetectable under these conditions. However, given the unreliable nature 

of the detection of BRCA2 with the anti-BRCA2 antiserum (see previous 

chapters), this could not be considered a definitive experiment. 

 
Figure 6-5 Co-immunoprecipitation analysis of the i nteraction between CDC45 12myc and 
BRCA2. 
Total protein extracts from wild-type TREU 927 (WT 927) and CDC45-/+ 12myc cell lines were 
subjected to immunoprecipitation using anti-myc ant iserum conjugated to agarose beads. 
Input and elution samples were separated by SDS-PAG E and western blotted before being 
probed with anti-myc antiserum (1:7000 dilution) an d anti-BRCA2 anti-serum (1:200 
dilution). Size markers are indicated (kDa). 
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6.2.5  Generation of C-terminal double-tagged cell lines in 
PCF TREU 927 T. brucei 

In order to overcome the limitations of the anti-BRCA2 antiserum it was decided 

to generate cell lines in which both BRCA2 and CDC45 were epitope tagged at 

the C-terminus. A construct was assembled to allow the addition of a 6HA 

epitope tag to the C-terminus of BRCA2 at the endogenous locus in the T. brucei 

genome. This 6HA tagging construct was identical to the 12 myc tagging 

construct except the 12myc epitope tag was replaced with a 6HA epitope tag, 

and a bleomycin (BLE) resistance cassette was inserted in place of the BSD 

resistance cassette to allow selection of clones. The cloning of the section of the 

3’ end of the BRCA2 ORF was carried out using the same strategy as for the 

BRCA2 12myc construct (section 5.3.1). Primers 32 and 33 were used to amplify 

491 bp region at the 3’ end of the BRCA2 ORF containing a unique SphI 

restriction site. 

It was also decided to create a positive control for the co-immunoprecipitation 

reaction and test for the functionality of interactions with the epitope tagged 

BRCA2 protein. It has been demonstrated that both mammalian and T. brucei 

BRCA2 and Rad51 interact strongly with each other in vitro (Chapter 5;Sharan et 

al., 1997;Chen et al., 1998;Marmorstein, Ouchi, and Aaronson, 1998). The 

generation of a T. brucei cell line with both BRCA2 and RAD51 C-terminally 

epitope tagged allowed this interaction to act as a positive control for the co-

immunoprecipitation experiment. A construct to allow the addition of a 12myc 

epitope tag to the C-terminus of RAD51 at the endogenous locus in the T. brucei 

genome was generated previously (gift, Rachel Dobson) with a blasticidin (BSD) 

resistance cassette for selection (Figure 6-1). The unique site used for 

linearisation of this construct was BlpI. In a recent study (Dang and Li, 2011), 

endogenously tagged CDC45 with a C-terminal epitope tag consisting of 3 copies 

of the HA epitope was demonstrated to interact with the other two members of 

the CMG complex in T. brucei. This provides some evidence that C-terminal 

epitope tagging if CDC45 does not impair its ability to functionally interact with 

members of the CMG complex, albeit in a slightly different context to that used 

here. However, we cannot rule out that 12myc tagging of CDC45 somehow 

impairs functional interaction with BRCA2, or with other proteins, despite the 

fact that the CDC45+/- 12myc cells grow normally (data not shown). 
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Because of the limitations in the availability of suitable resistance cassettes it 

was decided to generate the two double-tagged cell lines in wild-type PCF TREU 

927 cells, as opposed to heterozygous backgrounds for all tagged proteins. This 

meant that half of the protein expressed in each cell line was epitope tagged as 

only one allele had the tagging construct integrated. The generation of the 

BRCA2 6HA tagged cell line was carried out by the transformation of wild-type 

PCF TREU 927 cells with the linearised BRCA2 6HA construct. Cells were selected 

on SDM-79 media supplemented with 15 µg.ml-1 Zeocin (Invitrogen) and six of the 

resulting clones were chosen. BRCA2 6HA protein expression was confirmed by 

western blot (data not shown), prior to further transformation. One of these 

confirmed cell lines was then subjected to two transformations, with the 

linearised CDC45 12myc construct or the linearised RAD51 12myc construct. For 

each transformation, cells were selected on SDM-79 media supplemented with 10 

µg.ml-1 blasticidin and 10 µg.ml-1 Zeocin, and six of the resulting clones were 

chosen from each transformation. 

6.2.6  Confirmation of C-terminal double-tagged cel l lines 

The twelve putative double-tagged cell lines were subject to screening by 

western blot in order to confirm the expression of the two epitope tagged 

proteins in each. Total protein was extracted from wild-type TREU 927 and the 

twelve double-tagged cell lines and separated by SDS PAGE on 3-8% Tris-Acetate 

gels, western blotted and probed with anti-HA antiserum (Sigma) at a dilution of 

1:10000. The blots were then stripped and re-probed with anti-myc antiserum 

(Millipore) at a dilution of 1:7000. The western blots in Figure 6-6 demonstrate 

that all twelve of the tested clones contained correctly expressed BRCA2 6HA 

tagged protein of the expected size (183 kDa). Half of the twelve clones also 

expressed a protein of the expected size for the myc-tagged variants; 55 kDa for 

RAD51 12myc, or 93 kDa for CDC45 12myc. One of each of the double-tagged cell 

lines was chosen for co-immunoprecipitation analysis. 
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Figure 6-6 Confirmation of co-expression of C-termi nal epitope tagged proteins in PCF 
TREU 927 T. brucei. 
Total protein extracts from wild-type TREU 927 (WT 927) and the two putative double-tagged 
cell lines (BRCA2 6HA CDC45 12myc and BRCA2 6HA RAD 51 12myc) were separated by 
SDS-PAGE and western blotted before being probed wi th anti-HA antiserum (1:10000 
dilution, top). The blots were stripped and re-prob ed with anti-myc antiserum (1:7000 
dilution, bottom). The bands produced by BRCA2 6HA,  CDC45 12myc, and RAD51 12myc 
proteins are indicated (black arrows), and size mar kers are shown (kDa). 

6.2.7  Co-immunoprecipitation using C-terminal doub le-
tagged cell lines 

Co-immunoprecipitation using the two C-terminal double-tagged cell lines, and 

wild-type TREU 927 cells as a control, was performed with anti-myc antiserum as 

described above (section 6.2.4). The co-immunoprecpitation experiment was 

additionally performed using anti-HA antiserum conjugated to agarose beads 

(Roche). The input and elution samples were separated by SDS PAGE on 3-8% 

Tris-Acetate gels, western blotted and probed with anti-HA antiserum at a 

dilution of 1:10000. The blot was then stripped and re-probed with anti-myc 

antiserum at a dilution of 1:7000. 

The western blots in Figure 6-7 show analysis of interaction between BRCA2 and 

RAD51, and also BRCA2 and CDC45. The input samples demonstrate expression of 

tagged proteins of the expected size for the tagged cell lines analysed, but 

absent in wild-type cells. The elution samples demonstrate the successful 

immunoprecipitation of BRCA2 6HA by the anti-HA beads and either RAD51 

12myc or CDC45 12myc by the anti-myc beads. An interaction between either 

RAD51 or CDC45 and BRCA2 could not be detected using the anti-HA 

immunoprecipitation, as evidenced by the blank anti-myc probed elution blot 

(Figure 6-7A). However, an interaction between BRCA2 and RAD51 was detected 

using the anti-myc immunoprecipitation of RAD51 12myc, as evidenced by the 

presence of a band consistent with BRCA2 6HA in the anti-HA probed elution blot 

(Figure 6-7B). In contrast, an interaction between CDC45 and BRCA2 was not 

detected. This could be because the proteins do not interact, or could result 
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from a variety of experimental reasons, the most probable of which is that such 

an interaction is not strong or abundant enough to survive the relatively harsh 

conditions during such a co-immunoprecipitation experiment. 

 
Figure 6-7 Co-immunoprecipitation analysis of the i nteraction between BRCA2 and CDC45, 
and between BRCA2 and RAD51. 
Total protein extracts from wild-type TREU 927 (WT 927) and the double-tagged cell lines 
(BRCA2 6HA CDC45 12myc, and BRCA2 6HA RAD51 12myc) were immunoprecipitated 
using anti-HA antiserum (A) or anti-myc antiserum ( B) conjugated to agarose beads. Input 
and elution samples were separated by SDS-PAGE and western blotted before being probed 
with anti-myc antiserum (1:7000 dilution) and anti- HA anti-serum (1:10000 dilution). Size 
markers are shown (kDa). 

6.2.8  Co-immunoprecipitation after exposure to DNA  
damage 

In order to try and increase the probability of detecting an interaction between 

CDC45 and BRCA2, it was decided to repeat the co-immunoprecipitation 

experiment with protein extracted after the cells had been treated with DNA 

damage. The rationale behind this was that BRCA2-CDC45 interaction in vivo 

may only occur in the presence of replication-blocking lesions, which are only 

present in low abundance during normal growth in culture. Two types of DNA 

damaging agent were therefore chosen; methyl methanesulphonate (MMS) and 

hydroxyurea (HU). MMS is a DNA alkylating agent and may form DNA replication 

fork barriers (Brookes and Lawley, 1961;Reiter et al., 1967;Beranek, 

1990;Sedgwick, 2004). T. brucei mutants of components of the homologous 

recombination machinery, rad51, rad51-3, rad51-5 and brca2, all display 

increased sensitivity to MMS (McCulloch and Barry, 1999;Proudfoot and 

McCulloch, 2005;Hartley and McCulloch, 2008). HU acts by inhibiting 

ribonucleotide reductase, an enzyme involved in deoxyribonucleotide 

triphosphate (dNTP) synthesis, depleting the nucleotide pool and thereby stalling 

DNA replication (Hofer et al., 1997). HU has been used to successfully 
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synchronise bloodstream T. brucei by causing an S-phase block (Forsythe, 

McCulloch, and Hammarton, 2009). Wild-type TREU 927 cells and the two 

double-tagged cell lines were treated with 0.002% MMS for 16 hours, or 0.3 mM 

HU for 16 hours, before protein was extracted as described in section 2.2.4.2. 

Immunoprecipitation using anti-myc antiserum conjugated to agarose beads and 

also anti-HA antiserum conjugated to agarose beads was carried out as described 

in section 6.2.4. The input and elution samples were separated by SDS PAGE on 

3-8% Tris-Acetate gels, western blotted and probed with anti-HA antiserum at a 

dilution of 1:10000. The blot was then stripped and re-probed with anti-myc 

antiserum at a dilution of 1:7000. 

The western blots in Figure 6-8 and Figure 6-9 show analysis of interaction 

between BRCA2 and RAD51, and also BRCA2 and CDC45, after DNA damage with 

HU and MMS, respectively. For both co-immunoprecipitation experiments 

performed, in the presence of MMS or HU, both results are essentially equivalent 

to each other, and to the data presented in Figure 6-7, in the absence of DNA 

damage and despite this increased amount of DNA damage from both 

treatments, an interaction between BRCA2 and CDC45 could still not be 

detected. 

 
Figure 6-8 Co-immunoprecipitation analysis of the i nteraction between BRCA2 and CDC45, 
and BRCA2 and RAD51 after exposure to hydroxyurea. 
Total protein extracts from wild-type TREU 927 (WT 927) and double-tagged cell lines 
(BRCA2 6HA CDC45 12myc and BRCA2 6HA RAD51 12myc) p repared after treatment with 
hydroxyurea (0.3 mM for 16 hours) were immunoprecip itated using anti-HA antiserum (A) or 
anti-myc antiserum (B) conjugated to agarose beads.  Input and elution samples were 
separated by SDS-PAGE and western blotted before be ing probed with anti-myc antiserum 
(1:7000 dilution) and anti-HA anti-serum (1:10000 d ilution). Size markers are indicated (kDa). 
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Figure 6-9 Co-immunoprecipitation analysis of the i nteraction between BRCA2 and CDC45, 
and BRCA2 and RAD51 after exposure to MMS. 
Protein extracts from wild-type TREU 927 (WT 927) a nd double-tagged cell lines (BRCA2 
6HA CDC45 12myc and BRCA2 6HA RAD51 12myc) prepared  after treatment with MMS 
(0.002% for 16 hours) were immunoprecipitated using  anti-HA antiserum (A) or anti-myc 
antiserum (B) conjugated to agarose beads. Input an d elution samples were separated by 
SDS-PAGE and western blotted before being probed wi th anti-myc antiserum (1:7000 
dilution) and anti-HA anti-serum (1:10000 dilution) . Size markers are indicated (kDa). 

6.2.8.1  Confirmation of DNA damage 

In order to ensure that the above HU treatment resulted in replication stalling, 

the cells used for the immunoprecipitation were analysed, in parallel, for the 

distribution of cells in the various phases of the cell cycle. This was done by 

analysing DNA content by fluorescent-activated cell sorting (FACS) after 

propidium iodide-staining of the DNA of the cells. Samples from untreated wild-

type PCF TREU 927, and from the two double-tagged cell lines treated with HU, 

were prepared as described in section 2.2.4.2, and a total of 104 cells were 

sorted using detector FL2-A. The FACS plots in Figure 6-10 show that the wild-

type, non HU-treated, cell population gave a characteristic flow cytometry 

profile comprising two peaks; cells in the G1 phase of the cell cycle are 

represented by the peak at position 200, corresponding to 2C DNA content (C 

represents haploid DNA content); and cells with double DNA content (4C) are in 

G2 phase, M phase or cytokinesis and appear as a peak at position 400. S phase 

cells with intermediate DNA contents were detected between the two peaks 

(Chowdhury, Zhao, and Englund, 2008;Forsythe, McCulloch, and Hammarton, 

2009). The double-tagged, HU-treated cell populations gave a flow cytometry 

profile characteristic of cells with an S-phase block, with the majority of cells 

present in a peak between the 200 and 400 position; this indicates that the 

treatment with HU caused stalling of replication and accumulation of cells in this 

cell cycle stage. As MMS is in more routine use in the laboratory during analysis 
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of the sensitivity of DNA repair mutants, it was deemed unnecessary to check its 

effectiveness in this experiment. 

 
Figure 6-10 Flow cytometry profiles of propidium io dide-stained cells after exposure to 
hydroxyurea. 
Histograms show propidium iodide-stained untreated wild-type TREU 927 (WT 927) and HU-
treated (0.3 mM for 16 hours) double-tagged cell li nes after flow cytometry analysis.  The 
peaks corresponding with cells containing 2C and 4C  DNA content are indicated. 

6.2.9  Endogenous N-terminal epitope tagging strate gy 

It is possible that the presence of an epitope tag at the C-terminus of either or 

both of BRCA2 and CDC45 could interfere with the proposed interaction between 

the proteins, and this is the reason that an interaction could not be detected. It 

was therefore decided to use a construct that allows the addition of an epitope 

tag to the N-terminus of a gene to generate a second set of cell lines with 

proteins double-tagged, this time at the N-terminus. 

Two constructs that enable the fusion of an N-terminal 12myc or 6HA epitope 

tag at the endogenous locus of a gene of interest were generated by 

modification of an existing construct containing a fluorescent protein and TY 
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epitope tag (pEnT6B;Kelly et al., 2007). Maps of the two constructs are 

displayed in Figure 6-11, and the strategy to enable the N-terminal tagging of T. 

brucei proteins at their endogenous loci is displayed in Figure 6-12. The N-

terminal epitope tagging construct uses a region of the 5’ UTR immediately 

upstream of the ORF and also a region of the 5’ end of the ORF to enable 

homologous recombination and integration into the genome. Selection of clones 

is enabled by the presence of a BSD resistance cassette in the 12myc construct 

and a BLE resistance cassette in the 6HA construct. The resistance ORFs are 

flanked by tubulin and actin processing sequences. After integration of the 

construct, endogenous downstream gene sequences provide polyadenylation 

signals for the tagged gene, while upstream sequences of the integrated 

resistance cassette are used for RNA trans-splicing, meaning that the 5’ UTR is 

non-endogenous. For BRCA2, primers 112 and 113 were used to PCR-amplify 213 

bp of the 5’ end of the BRCA2 ORF; the forward primer contained a SpeI 

restriction site and the reverse primer a unique restriction site (XbaI) to allow 

linearisation of the construct prior to transformation. Primers 114 and 115 were 

used to PCR-amplify 274 bp of the BRCA2 5’ UTR; the forward primer contained 

the same unique restriction site (XbaI) and the reverse primer a BamHI 

restriction site. The DNA fragments were cloned into the 6HA tagging construct 

downstream of the epitope tag in a three-way ligation using the SpeI, XbaI and 

BamHI restriction sites. The same strategy was used to clone the sequences 

specific to RAD51 and CDC45 into the 12myc N-terminal tagging constructs. The 

primers used to amplify the respective 5’ end of ORFs and 5’ UTRs were; 116, 

117 and 118, 119 for RAD51; and 1, 2 and 3, 4 for CDC45, and the unique 

restriction sites used were KpnI and XhoI, respectively. In this manner three 

constructs were assembled to enable the generation of N-terminally tagged 

BRCA2 6HA, RAD51 12myc and CDC45 12myc. For transformation, the constructs 

were linearised by restriction digest using the unique restriction enzymes, the 

digested DNA was then ethanol precipitated and approximately 5 µg of the 

resuspended DNA was used for each transformation. 
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Figure 6-11 Constructs used for N-terminal epitope tagging of T. brucei proteins. 
(A) Construct used for the N-terminal 12myc tagging  of CDC45 and RAD51 (only CDC45 is 
shown). 250 bp of the 5’ end of the CDC45 ORF (orange) and 272 bp of the 5’ UTR (light 
blue) were cloned into the SpeI and BamHI restriction sites with a unique restriction site  
between ( XhoI). The 12myc epitope tag (green) consists of 12 ta ndemly repeated copies of 
the c-myc epitope. (B) Construct used for the N-ter minal 6HA tagging of BRCA2. 213 bp of 
the 5’ end of the BRCA2 ORF (orange) and 274 bp of the 5’ UTR (light blue)  were cloned into 
the SpeI and BamHI restriction sites with a unique restriction site  between ( XbaI). The 6HA 
epitope tag (green) consists of 6 copies of the HA epitope. In both maps, The BSD or BLE 
resistance cassette (red) is shown flanked by the tubulin (βα Tub, dark blue) and actin (Act 
IR, purple) intergenic sequences. AMP: Ampicillin resistance ORF. Sizes are shown (bp).  
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Figure 6-12 Strategy for N-terminal epitope tagging  of T. brucei proteins at their endogenous 
loci. 
A schematic of the N-terminal tagging constructs, d escribed in Figure 6-11, is shown (top). 
Linearisation of the construct using a unique restr iction site, between the 3’ end of the ORF 
(orange) and the 5’ UTR (light blue), allows integr ation into the genome by homologous 
recombination (HR). This produces the endogenous OR F fused with the N-terminal epitope 
tag (green, bottom). 

6.2.10 Generation of N-terminal double-tagged cell 
lines in PCF TREU 927 T. brucei 

Cell lines in which both BRCA2 and CDC45, and BRCA2 and RAD51 were epitope 

tagged at the N-terminus were generated as described in section 6.2.5. The 

generation of CDC45 12myc and RAD51 12myc tagged cell lines was carried out 

first by the transformation of wild-type PCF TREU 927 cells with linearised 

constructs. The expression of tagged protein was confirmed by western blot 

(data not shown). These two confirmed cell lines were then subjected to 

transformation with the linearised BRCA2 6HA construct and six clones were 

chosen from each transformation. The twelve putative double-tagged cell lines 

were subject to screening as described in section 6.2.6. The western blots in 

Figure 6-13 demonstrate that all of the tested clones expressed proteins of the 

expected size for CDC45 12myc or RAD51 12myc (93 kDa and 55 kDa, 

respectively) that were recognised by anti-myc antiserum. All of the twelve 

clones also expressed proteins recognised by anti-HA antiserum of the expected 

size for BRCA2 6HA (183 kDa). 
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Figure 6-13 Confirmation of co-expression of N-term inal epitope tagged proteins in PCF 
TREU 927 T. brucei. 
Total protein extracts from wild-type TREU 927 (WT 927) and the two putative double-tagged 
cell lines (BRCA2 6HA CDC45 12myc and BRCA2 6HA RAD 51 12myc) were separated by 
SDS-PAGE and western blotted before being probed wi th anti-HA antiserum (1:10000 
dilution, top). The blots were stripped and re-prob ed with anti-myc antiserum (1:7000 
dilution, bottom). The bands produced by BRCA2 6HA,  CDC45 12myc, and RAD51 12myc 
are indicated (black arrows), and size markers are shown (kDa). 

6.2.11 Co-immunoprecipitation using N-terminal 
double-tagged cell lines 

Co-immunoprecipitation using the two double-tagged cell lines, and wild-type 

TREU 927 cells as a control was performed, as described in section 6.2.7. 

Additional controls were also performed to ensure that binding had not occurred 

between the epitope-tagged proteins and the antiserum-conjugated beads. Cell 

lines containing a single protein epitope-tagged at the N-terminus were subject 

to immunoprecipitation using antiserum conjugated to agarose beads that were 

specific to the epitope tag not present in the cell line analysed. For example, 

the single-tagged BRCA2 6HA cell line was subject to immunoprecipitation with 

anti-myc antiserum conjugated to agarose beads and the elution sample was 

probed with anti-HA antiserum in order to detect any non-specific binding of 

BRCA2 6HA to the anti-myc beads. The western blots in Figure 6-14 show analysis 

of interaction between BRCA2 and RAD51, and also BRCA2 and CDC45. The input 

samples in Figure 6-14A demonstrate expression of the tagged proteins of the 

expected size for the cell lines analysed. The elution samples in Figure 6-14B 

(anti-HA beads) demonstrate the successful immunoprecipitation of BRCA2 6HA 

(lanes 4 and 5, α-HA). However, interaction between either RAD51 or CDC45 and 

BRCA2 could not be detected, as the anti-myc probed elution blot was blank 

(lanes 4 and 5, α-myc). The control experiments with single tagged RAD51 12myc 

or CDC45 12myc cell lines also did not show any myc-tagged proteins in the 

elution samples (lanes 2 and 3, α-myc), indicating that there was no non-specific 

binding to the anti-HA beads. The elution samples in Figure 6-14C (anti-myc 

beads) demonstrate the successful immunoprecipitation of RAD51 12myc and 
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CDC45 12myc by the anti-myc beads (lanes 3 and 4, α-myc). A possible 

interaction between BRCA2 and RAD51 can be detected, as evidenced by the 

presence of a faint band of the expected size for BRCA2 6HA in the anti-HA 

probed elution blot (lane 4, α-HA), though there was considerable background, 

non-specific binding in this blot. An interaction between CDC45 and BRCA2 was 

not detected (lane 3, α-HA), but the background makes this difficult to be 

certain of. The control experiment with the single tagged BRCA2 6HA cell line 

showed small amounts of HA tagged proteins in the elution sample (lane 2, α-

HA), indicating that there was some non-specific binding to the anti-myc beads 

in this experiment. 

 
Figure 6-14 Co-immunoprecipitation analysis of the interaction between BRCA2 and CDC45, 
and BRCA2 and RAD51. 
Total protein extracts from wild-type TREU 927 (WT 927) and double-tagged cell lines 
(BRCA2 6HA CDC45 12myc, and BRCA2 6HA RAD51 12myc) were immunoprecipitated 
using anti-HA antiserum (B) or anti-myc antiserum ( C) conjugated to agarose beads. Input 
(A) and elution (B and C) samples were separated by  SDS-PAGE and western blotted before 
being probed with anti-myc antiserum (1:7000 diluti on) and anti-HA antiserum (1:10000 
dilution). Size markers are shown (kDa). 
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6.3 In vitro GST pull-down 

Given the lack of convincing evidence for BRCA2-CDC45 interaction in vivo from 

the above experiments, an attempt was next made to recapitulate the 

interaction between T. brucei BRCA2 and CDC45 observed in Oyola et al., 

(2009). To do this, GST pull-down was carried out using proteins over-expressed 

in E. coli. 

6.3.1  Generation of bacterial protein over-express ion 
constructs 

The co-expression of two tagged proteins from compatible bacterial over-

expression constructs has successfully been used to detect interaction between 

T. brucei proteins previously (Chapter 5;Dobson et al., 2011). The His BRCA2 C-

term and His 10BRC expression constructs described in section 5.2.1 were used 

in conjunction with CDC45 over-expressed in E. coli using the pGEX-4T-3 

construct. This results in CDC45 being expressed as an N-terminal Glutathione S-

Transferase (GST) fusion; the plasmid also contains an ampicillin (AMP) 

resistance cassette for selection (Figure 6-15). The CDC45 ORF was PCR-

amplified using primers 129 and 130 that contained BamHI and XhoI restriction 

sites, respectively, to allow cloning into pGEX-4T-3. The two empty vectors were 

used to express the His and GST tags (not fused to a protein) for control 

purposes. 
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Figure 6-15 Construct used for N-terminal GST taggi ng of CDC45 for over-expression in E. 
coli. 
The CDC45 ORF (blue) was cloned into the BamHI and XhoI restriction sites downstream of 
the GST tag (red). AMP: ampicillin resistance ORF(grey). LacI: lac repressor ORF (green). 
Sizes are shown (bp). 

6.3.2  Generation of co-expressing bacterial cultur es 

Competent cells of the Rosetta2 E. coli strain were transformed with the 

constructs generated in section 6.3.1 and 5.2 to produce five bacterial cultures. 

The first experimental culture contained the His BRCA2 C-term and GST CDC45. 

The three other cultures were controls, containing one of each of the expression 

constructs (His BRCA2 C-term, His 10BRC and GST CDC45) and the 

complementary empty vector, to control for binding of the T. brucei proteins to 

the His or GST tags. The competent E. coli cells were co-transformed with two 

plasmids and selected on LB agar supplemented with 100 µg.ml-1 ampicillin, 50 

µg.ml-1 kanamycin and 34 µg.ml-1 chloramphenicol. 

6.3.3  GST pull-down using co-expressing bacterial 
cultures 

GST pull-down was carried out as described in section 5.2.3. For unknown 

reasons the expressed GST-tagged CDC45 protein was not able to be detected by 

western blot in these conditions, as previously encountered with GST RAD51 

(section 5.2.3). For this reason eluted GST CDC45 is shown as a coomassie-

stained gel. Analysis of interaction between BRCA2 and CDC45 is displayed in 
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Figure 6-16. The western blot in Figure 6-16A shows input samples probed with 

anti-His antiserum and demonstrates expression of His-tagged proteins of the 

expected sizes for the BRCA2 C-term (100 kDa), 10BRC (66 kDa) and His tag (7 

kDa). Figure 6-16B shows a coomassie stained protein gel of the separated 

elution samples and demonstrates the presence of the GST (28 kDa) and GST 

CDC45 (104 kDa) proteins, indicating they were successfully recovered by the 

GST pull-down approach. The western blot in Figure 6-16C shows the elution 

samples probed with anti-His antiserum to detect the His-tagged BRCA2 variants: 

no signal was detected even with very long exposures (overnight), demonstrating 

that no His-tagged proteins were recovered. This indicates that the BRCA2 C-

term and 10BRC proteins have not bound either GST (lanes 4 and 5) or GST 

CDC45 (lanes 2 and 3), and also that the His tag itself has not bound to GST 

CDC45 (lane 1), although some binding is observed. For this reason, a coomassie 

stained gel of the input and elution samples of the control culture co-expressing 

GST-CDC45 and the His tag is shown in Figure 6-16D, and demonstrates the 

presence of a protein of the expected size for the His tag (7 kDa) in the input 

sample, which is absent from the elution sample, confirming the GST CDC45 has 

not bound non-specifically to the His tag. In addition, no binding between either 

the His BRCA2 C-term or the His 10BRC variant of BRCA2 and GST RAD51 was 

detected (Figure 6-16C) and this acts as a negative control. From these 

experiments, interaction between T. brucei CDC45 and T. brucei BRCA2 is not 

apparent. This was tested for the BRC repeats, for which no such interaction 

might be predicted, and also for the C-terminal ‘half’ of the protein downstream 

of the BRC repeats, which has been suggested to mediate CDC45 binding (Oyola, 

Bringaud, and Melville, 2009). 
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Figure 6-16 GST pull-down analysis of the interacti ons between CDC45 and BRCA2. 
(A) A western blot of the separated input samples p robed with anti-His antiserum (1:750 
dilution). His-tagged proteins are indicated (black  arrows), and the GST-tagged proteins that 
were co-expressed are indicated (top). (B) A coomas sie stained gel of the separated elution 
samples showing GST CDC45 and the GST tag (black ar rows). His-tagged proteins that were 
co-expressed are indicated (top). (C) A western blo t of the separated elution samples 
probed with anti-His antiserum (1:750 dilution). GS T-tagged proteins immunoprecipitated 
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are indicated as are the co-expressed His-tagged pr oteins (top). (D) A coomassie stained gel 
of the separated input and elution samples from GST  CDC45 co-expressed with the His tag 
(black arrows). In each panel size markers are show n (kDa). 

6.4 Summary 

The aim of this chapter was to test the reported interaction between the C-

terminus of T. brucei BRCA2 and CDC45 (Oyola, Bringaud, and Melville, 2009), 

with the longer term goal of investigating the potential mechanism this provided 

for the observed replication phenotype in BSF brca2-/- mutants that was also 

localised to the C-terminus of BRCA2 (Claire Hartley, PhD Thesis, 2008). In vivo 

co-immunoprecipitation was carried out using endogenous C- and N- terminally 

epitope tagged CDC45 and BRCA2. The robust interaction between T. brucei 

BRCA2 and RAD51 was used to ensure that epitope tagging of BRCA2 did not 

impair its ability to functionally interact with RAD51 and subsequent co-

immunoprecipitation between BRCA2 and RAD51 was reliably detected. In 

contrast, no such interaction was observed between BRCA2 and CDC45. The 

induction of DNA damage prior to harvesting cells for co-immunoprecpitation 

was carried out in order to try and increase the probability of detecting an 

interaction between BRCA2 and CDC45, with the assumption that such an 

interaction may only occur in this context. Again, no interaction was found in 

vivo by immunoprecipitation. Next, in vitro GST pull-down was employed using 

full length CDC45 and the C-terminal ‘half’ of BRCA2 expressed in E. coli. Again, 

no interaction was detected. 

Why might the above experiments and those reported by Oyola et al., (2009) be 

in disagreement? It is clearly possible that BRCA2 and CDC45 do, indeed, interact 

in T. brucei and that this interaction is either transient and the in vivo 

approaches therefore too insensitive, or these approaches are disrupted by the 

tagging strategies employed. It is less clear why the GST pull-down approach 

should not reveal an interaction, given that the BRCA2 variants used are clearly 

functional in this context for interaction with RAD51 (Chapter 5). Of course, we 

cannot rule out that the CDC45 expressed in this setting is non-functional, but it 

is in the 2-hybrid approach used by Oyola et al., (2009). Nevertheless, the 

experiments employed by Oyola et al., (2009) expressed only a fragment of 

CDC45, and this was demonstrated to bind to the C-terminus of BRCA2. No 

experiments were performed with full length CDC45, as attempted here. It is 
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clearly possible that this fragment of CDC45 may have folded anomalously, and 

led to a non-physiological and artefactual interaction between BRCA2 and 

CDC45. Nonetheless, immunoprecipitation of T. brucei BRCA2 from cell extracts 

and mass spectrometry identification of interacting proteins could be used to 

test this further. Indeed, this approach may find novel factors that interact with 

BRCA2, some of which may be components of the replication machinery and 

could provide an understanding of the replication phenotype observed in BSF 

brca2-/- mutants.
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7.1 Introduction 

The initial aim of this thesis was to further investigate the role of BRCA2 in the 

regulation of genome stability in T. brucei, extending previous work by Hartley 

and McCulloch (2008). This was achieved by generation of brca2-/- mutants in 

the PCF life cycle stage in both TREU 927 and Lister 427 strains of T. brucei and 

subsequent phenotypic analyses. Investigation of genomic stability in these 

brca2-/- mutant cell lines was performed after prolonged passaging, looking for 

evidence for genome rearrangements by Southern blotting and pulsed field 

agarose gel electrophoresis. Neither of these approaches revealed evidence for 

putative gross chromosomal rearrangements as previously observed in the BSF 

brca2-/- mutants in the Lister 427 strain (Hartley and McCulloch, 2008), which 

meant that genetic dissection of these rearrangements at the sequence level 

was unable to be carried out. Nonetheless, the generation of these mutants 

allowed, for the first time in any organism, the function of multiple BRC repeats 

in a BRCA2 orthologue to be examined by the systematic generation and 

expression of variants of BRCA2 with reduced numbers of BRC repeats. This 

approach was possible due to the unusual BRC repeat expansion present in T. 

brucei BRCA2, where the RAD51-binding repeats are found in a tandem array 

organisation. BRC repeat number variants of T. brucei BRCA2 were examined in 

both the PCF and BSF life cycle stages, in order to try and understand the 

contribution this BRC repeat expansion makes to growth, DNA repair and RAD51 

foci formation, since a function in VSG switching had been previously ruled out 

by the observation that a BRCA2 variant with a single BRC repeat could support 

this process (Hartley and McCulloch, 2008). 

A further aim of this thesis was to define the interactions T. brucei BRCA2 makes 

with some key further factors. Interaction between BRCA2 and RAD51, which is 

considered the central function of BRCA2 orthologues (Holloman, 2011), was 

analysed by in vitro GST pull-down, in vivo immunoprecipitation and 

immunolocalisation of the two proteins. This revealed a surprising level of 

complexity in the interplay between these two HR proteins in T. brucei, both in 

terms of the extent of BRCA2 domains that mediate physical interaction with 

RAD51 and also the dynamics of detectable co-localisation. By related 

approaches, the final chapter of this thesis investigated a putative function for 

T. brucei BRCA2 in DNA replication by attempting to validate a proposed 
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interaction with CDC45 (Oyola, Bringaud, and Melville, 2009). Such a putative 

protein:protein interaction was tested both in vivo and in vitro, however we 

were unable to demonstrate the validity of this interaction.  

7.2 T. brucei BRCA2 functions in the maintenance 
of genome stability in the bloodstream form 
only. 

Analysis of the growth and DNA repair phenotypes of the PCF TREU 927 and PCF 

Lister 427 brca2-/- mutants, and comparison to the relatively severe phenotype 

of the BSF Lister 427 brca2-/- mutants (Hartley and McCulloch, 2008;Claire 

Hartley, PhD thesis, 2008), revealed a striking difference in the consequences of 

the removal of BRCA2 between the two life cycle stages. PCF brca2-/- mutant 

cells, in both parasite strains, were found to be growth impaired and to display 

increased sensitivity to exogenous DNA damage (MMS or phleomycin). However, 

the extent of each of these phenotypes was less severe than when observed in 

BSF brca2-/- mutants (Hartley and McCulloch, 2008). 

A number of reasons can be considered for these life cycle stage differences. It 

is possible that the differences simply result from aspects of growth that impact 

on the assays used. For instance, the underlying growth rate of BSF cells is 

higher than PCF cells in culture (8 hrs relative to 10 hrs, respectively), which 

may result in greater apparent levels of death in the BSF relative to the PCF 

when the mutants are exposed to damage. A number of studies have also 

suggested that cell cycle checkpoints differ between BSF and PCF cells 

(Hammarton et al., 2003;Hammarton, 2007). Though very little is known 

regarding DNA damage checkpoints, if PCF cells did not cease growth after MMS 

or phleomycin treatment to the same extent as BSF cells, this would be manifest 

as lesser apparent killing in the Alamar blue assay employed here. The 

alternative is that the differences reflect variation in genome maintenance 

functions between PCF and BSF cells. It seems unlikely that PCF and BSF cells 

are naturally exposed to differing levels of general DNA damage, which might 

have selected for increased BRCA2-mediated repair activity in the BSF. The only 

potential exception to this may be increased oxidative damage, as the greater 

mitochondrial metabolism in PCF cells relative to BSF cells (Bienen et al., 

1991;Hajduk et al., 1992;Fang and Beattie, 2003) is likely to yield higher levels 
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of reactive oxygen species (ROS), which can damage DNA (Kryston et al., 2011). 

Perhaps, then, some undefined repair activity is upregulated in PCF cells to deal 

with this, and can also contribute to greater repair of MMS- and phleomycin-

induced damage and reduce the impact of BRCA2 loss. BRCA2 has also been 

suggested to play a key role in ensuring the efficient progression of DNA 

replication (Michel et al., 2004;Nagaraju and Scully, 2007;Constanzo, 2011). 

However, as for DNA repair, it seems unlikely that this fundamental mechanism 

could differ substantially between PCF and BSF cells. A final possible explanation 

is that BRCA2 acts in an additional, as yet undefined, function beyond general 

repair and replication maintenance. If such a function assumed greater 

importance in the BSF life cycle stage, more of the available pool of BRCA2 may 

be directed to that function, and less then might be available to tackle the 

increased DNA damage imposed by exogenous MMS or phleomycin. The 

difference in growth rates of PCF and BSF brca2-/- mutants in the absence of 

induced damage is less easy to explain in this scenario, but it may be that such a 

putative role has a significant impact on the general health of BSF cells. Below, I 

consider whether the broader phenotypes detailed in this thesis might offer 

support for any of the above suggestions. In particular, the discussion will focus 

on that proposed role of BRCA2 in the maintenance of genome stability, which is 

only apparent in the BSF, the DNA replication phenotypes observed in brca2-/- 

mutants, and the contribution of BRCA2 to RAD51 subnuclear dynamics, as 

revealed by analysis of the BRC repeat variants and co-localisation.  

brca2-/- mutants in BSF Lister 427 T. brucei display an accumulation of putative 

gross chromosomal rearrangements after prolonged passaging (~ 290 

generations;Hartley and McCulloch, 2008). Work presented here demonstrates 

that these genome rearrangements occur at an earlier time point than previously 

analysed (~ 150 generations). Even more strikingly, this work shows that brca2-/- 

mutants in PCF cells of both TREU 927 and Lister 427 strains do not display 

detectable genome rearrangements, even after passaging (~ 380 and ~ 230 

generations, respectively) to an extent at least equivalent to that in the BSF 

mutants. This work also provides further evidence to suggest that the putative 

GCRs observed in BSF brca2-/- mutants may be specifically targeted to VSGs 

located in the megabase chromosome, although genetic dissection of the 

genome rearrangements is required to confirm this. It was previously reported 
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that detectable GCRs in BSF mutants were only seen in the megabase 

chromosomes, which harbour VSG subtelomere arrays, and not in intermediate- 

and mini-chromosomes, which carry only telomeric VSGs (Hartley and McCulloch, 

2008). Here, probing of the BSF brca2-/- mutants with ingi sequences revealed 

complex banding patterns in Southern blots that showed no variation between 

clones, in contrast to the changes in VSG121 copy number that is observed. 

These data are consistent with ingi being widespread in the T. brucei genome 

(Bringaud et al., 2004;Berriman et al., 2005;Bringaud et al., 2008), but 

demonstrate that ingi are not detectably rearranged during the rearrangements 

that cause visible changes in the subtelomeres of the megabase chromosomes of 

the BSF brca2-/- mutants. 

Is it possible that the above data point to a BSF-specific function for BRCA2 in 

the maintenance of the subtelomeric VSG arrays? If so, quite why the functions 

of BRCA2 in this role would differ between the BSF and PCF life cycle stages so 

dramatically is not known. An obvious explanation could be a requirement for 

antigenic variation in the BSF, which may be inactivated in the PCF. Most VSG 

switching is driven by gene conversion, which means that sequence changes 

normally focus on the recipient DNA molecule, which would be the VSG ES 

(Robinson et al., 1999;Glover, Jun, and Horn, 2011). However, perhaps during 

the process of VSG switching homology searching scans the subtelomeric VSGs to 

a significant extent, and in the absence of BRCA2 this reaction is undermined, 

leading to broad destabilisation of the VSGs. Alternatively, it may be that there 

is a greater level of background, silent VSG gene conversion occurring in the 

subtelomeres than has been appreciated, which is again undermined by the 

absence of BRCA2 and leads to GCRs. This could perhaps explain the extensive 

chromosome size variations observed in T. brucei, which have been localised to 

the VSGs (Callejas et al., 2006). In this regard, it is interesting to consider the 

process of mosaic VSG formation (Thon et al., 1990;Barbet and Kamper, 

1993;Marcello and Barry, 2007), which is not well understood mechanistically, 

and may rely on a novel function for BRCA2 in the BSF.  
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7.3 The BRC repeat expansion is critical for RAD51 
subnuclear dynamics. 

Analysis of variants of T. brucei BRCA2 with 1, 4, 7, 10 and 12 BRC repeats in 

vivo has allowd us to ask why HR in some organisms, such as mammals, plants 

and T. brucei, functions with a BRCA2 protein containing multiple BRC repeats, 

while others, such as C. elegans and U. maydis, utilises an orthologue with a 

single BRC repeat. A similar study by Carreira and Kowalczykowski (2011), relied 

upon in vitro interaction analyses, and suggested that eight BRC repeats of 

human BRCA2 fall into two classes with differing affinities for Rad51 monomers 

and nucleoprotein filaments which co-operate to bring about Rad51 nucleation 

onto ssDNA and filament propagation thereby stimulating DNA strand exchange 

(Carreira and Kowalczykowski, 2011). The question of the need for multiple BRC 

repeats in T. brucei is especially compelling because bioinformatic analysis 

suggest that the BRC repeat expansion is not found in closely related species, 

notably T. vivax and T. congolense, where BRCA2 is predicted to have 1 and 3 

BRC repeats, respectively (Lo et al., 2003). 

This work reveals that the purpose of the BRC repeat expansion in T. brucei is 

more subtle than might have been predicted. Hartley and McCulloch (2008) 

examined T. brucei BSF cells expressing BRCA2 containing only the single, most 

C-terminal BRC repeat and found that they were impaired in the following 

processes: repair of MMS and phleomycin damage, HR and the formation of 

subnuclear RAD51 foci after damage. This thesis shows that those findings paint 

only part of the picture. In both life cycle stages, cells expressing BRCA2 variants 

with 3 or more BRC repeats were capable of repairing MMS and phleomycin 

damage with the same efficiency as wild-type cells. In addition, every BRC 

variant analysed supported growth at wild-type rates. This indicates that the 

BRC repeat expansion is largely dispensable for normal growth and DNA repair. 

Notably, PCF cell lines expressing BRCA2 containing only the most C-terminal 

‘degenerate’ BRC repeat repaired DNA damage as well as wild-type cells, 

showing that even a single BRC repeat can operate in DNA repair. The 

impairment in DNA repair observed by Hartley and McCulloch (2008) is, in fact, 

limited to BSF 1BRC cells, which is the only BRC variant cell line analysed where 

repair of DNA damage is impaired relative to wild-type cells. These data 

indicate, first, that the putatively degenerate C-terminal BRC repeat is 
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functional. Second, they illustrate again that the function of BRCA2 differs 

between PCF and BSF cells. Finally, they suggest that the BRC repeat expansion 

evolved to serve another purpose than general DNA repair, which would make 

sense as it is hard to imagine what aspect of the biology of T. brucei would 

require greater general repair than a close relative such as T. vivax. 

The most striking data on the BRC repeat expansion was obtained when 

analysing the ability of the BRCA2 BRC variant cell lines to form subnuclear 

RAD51 foci after the induction of DNA damage. In both life cycle stages a BRC 

repeat number-dependent increase in the ability to form RAD51 foci was 

observed, with both the number of cells that display detectable RAD51 foci and 

the number of RAD51 foci observed per cell increasing with increasing BRC 

repeat number. This was found for both the PCF cells and BSF cells. However, 

again, life cycle stage differences were found. In the PCF cells, BRCA2 with 1 

BRC repeat was found to be sufficient for RAD51 foci formation to be detectably 

improved relative to brca2-/- cells, though still impaired relative to wild-type 

cells. In contrast, in BSF cells, BRCA2 with 1 BRC repeat was virtually 

indistinguishable from brca2-/- mutant cells, consistent with the findings of 

Hartley and McCulloch (2008), and 3 BRC repeats were required to begin to 

complement the RAD51 foci formation defect in brca2-/- mutant cells. For both 

life cycle stages, it was also apparent that multiple BRC repeats were needed to 

reach the levels of RAD51 foci formation seen in wild-type cells (minimally 10 

BRC repeats and 12 BRC repeats in PCF and BSF, respectively). These data 

indicate a function for the BRC repeat expansion in the regulation of RAD51 foci 

formation and, hence, in RAD51 subnuclear dynamics. 

The above data provide a quantitative link between BRC repeat number and 

BRCA2 function, and suggest that the number of repeats present in the array is 

important. However, it remains unclear why T. brucei BRCA2 possesses this 

unusual BRC repeat expansion, and the disconnection between DNA repair 

efficiency and RAD51 foci formation observed here is perplexing. The 

composition of DNA repair foci is unknown (Lisby and Rothstein, 2009;Bekker-

Jensen and Mailand, 2010), however, they have been shown to contain multiple 

copies of HR proteins including Rad51, BRCA1 and BRCA2, and are thought to be 

repair factories where the high local concentration of repair factors facilitates 

efficient DSB repair (Lisby and Rothstein, 2009;Bekker-Jensen and Mailand, 
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2010). After the induction of DNA damage in mammalian cells, Drosophila and C. 

elegans multiple repair foci are observed microscopically (Mizuta et al., 

1997;Tarsounas, Davies, and West, 2003;Martin et al., 2005;Brough et al., 2008). 

However, it is important to consider that a focus indicates an attempt to repair 

DNA damage, that may not necessarily be successful and also that the repair 

reaction may occur faster than detection can allow (Lisby and Rothstein, 2009). 

The available data rule out that the BRC repeat expansion is needed for the 

normal requirements of DNA repair or for the activation of intact VSGs during 

VSG switching, as a single BRC repeat is sufficient for these functions (Hartley 

and McCulloch, 2008). This work has shown that the ability to form RAD51 foci is 

proportionally linked to the number of BRC repeats present in BRCA2, but 

further work will be needed to understand this. For instance, it would be 

interesting to determine if the BRC repeat number was also related to the 

extent of GCRs observed in the BSF, as this would suggest it has evolved for the 

maintenance of genome stability in BSF cells (section 7.2). It would also be 

interesting to measure the number of lesions induced by damage and see how 

this relates to the number of foci, or whether a single lesion is a site for 

accumulation of increasing amounts of RAD51. Finally, it would useful to detail if 

the unique tandem repeat organisation of the BRC repeats in T. brucei BRCA2 is 

important, or whether multiple BRC repeats in a dispersed arrangement would 

suffice (section 7.4). Is it possible that these data are consistent with the dual 

function of BRCA2 proposed in section 7.2? For instance, is the purpose of the 

BRC repeat expansion in T. brucei BRCA2 to allow the efficient relocalisation of 

RAD51 or BRCA2, or both, from a non-repair function to sites of damage when 

they arise? This would assume that RAD51 or BRCA2 are present in excess to 

accommodate this, and that the non-physiological levels of damage generated in 

these experiments are rapidly repaired, but result in concentrating the proteins 

at damage sites, visible as foci. This is consistent with the absence of evidence 

for an upregulation of RAD51 after DNA damage in T. brucei, as observed in T. 

cruzi and L. major (McKean et al., 2001;Regis-da-Silva et al., 2006). 

7.4 Interactions between T. brucei BRCA2 and 
RAD51 are unusually extensive. 

Mammalian BRCA2 interacts with Rad51 at two well-defined locations: through 

the conserved eight BRC repeat motifs, which function to promote strand 
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exchange (Wong et al., 1997;Chen et al., 1998;Carreira and Kowalczykowski, 

2011), and also through a distinct C-terminal Rad51-binding domain that is 

regulated by cell cycle dependent phosphorylation and may function in DNA 

replication (Esashi et al., 2005;Esashi et al., 2007;Ayoub et al., 2009;Schlacher 

et al., 2011). The data presented here indicate that the interactions between T. 

brucei BRCA2 and RAD51 are more extensive than those observed in mammals, 

and may differ in their details. In vitro GST pull-down analysis indicates that 10 

BRC repeats are required for detectable binding of T. brucei BRCA2 to RAD51, 

which would be consistent with the general picture that BRC repeat number is 

critical for RAD51 interaction (section 7.3). However, the physiological 

significance of this is unclear, as we do not know if the BRC repeat binding 

observed was to RAD51 monomers or to protein filaments (perhaps even 

nucleoprotein filaments). Thus, these experiments do not reveal the function for 

the unusual tandem repeat organisation of the BRC repeats. Nonetheless, this 

requirement for 10 BRC repeats to detect RAD51 binding is in contrast to other 

systems: a single BRC repeat motif isolated from mammalian BRCA2, or the 

naturally occurring single BRC repeat from C. elegans CeBRC-2 or U. maydis 

Brh2, is sufficient for binding to Rad51 in vitro (Wong et al., 1997;Chen et al., 

1998;Kojic et al., 2002;Martin et al., 2005;Petalcorin et al., 2006). 

Analysis of the interaction between the C-terminal ‘half’ of T. brucei BRCA2 and 

RAD51 indicates that a RAD51-binding site exists in the non-conserved C-tail 

region downstream of the DNA/DSS1-binding domain, and that this interaction is 

not regulated by phosphorylation of Serine1523. Thus, though it appears that 

binding between RAD51 and BRCA2 via a C-terminal motif is positionally 

conserved between T. brucei and mammals, the sequence requirements for this 

interaction are not (Esashi et al., 2005;Esashi et al., 2007). Further work will be 

needed to localise this binding site in T. brucei BRCA2 in order to dissect its 

function. 

RAD51 binding was found to occur at a yet further location in T. brucei BRCA2, 

which has not been described in any other organism. This was between the BRC 

repeats and the C-tail and, if it is assumed to result from a single domain, it is 

proposed that the interaction would either localise within the DNA/DSS1-binding 

domain or in the region of BRCA2 between a putatively conserved DMC1 

interaction motif (PhePP) and the start of the DNA/DSS1-binding domain. Again, 
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further work is required to fine map this site of interaction and to understand its 

function. Purification of T. brucei RAD51 and BRCA2, with the aim to set up in 

vitro DNA recombination assays, was attempted during this work but was 

hampered by insolubility of BRCA2 in the bacterial expression systems adopted. 

However, were this to be pursued, especially in the light of the recent successful 

purification of the much lager human BRCA2 protein (Jensen, Carreira, and 

Kowalczykowski, 2010), this would allow biochemical analyses to be conducted 

that might detail how the above interactions influence the mechanism of RAD51 

regulation in HR by BRCA2. 

Immunolocalisation of BRCA2 in T. brucei suggests a complex picture of BRCA2 

subnuclear localisation, with peripheral nuclear ‘rings’ observed in some cells, 

while in others BRCA2 was found in more discrete focal accumulations. Possibly 

the most surprising finding was that overlap between BRCA2 and RAD51 signals 

was observed relatively rarely. In cells without induced DNA damage, RAD51 is 

essentially undetectable by immunofluorescence, whereas BRCA2 signal is 

detectable in > 70% of cells, primarily as ‘foci’ in the nucleus and rings of ‘foci’ 

around the nuclear periphery. After damage, RAD51 foci can be seen and BRCA2 

nuclear peripheral rings were more common, but these signals were found not to 

overlap. RAD51 and BRCA2 were seen only to overlap when each was seen as 

foci, and even here this was only in ~ 50% of cells and in a single focus amongst 

many BRCA2 foci. This appears to contrast with mammals and Drosophila where 

almost complete co-localisation between BRCA2 and Rad51 is observed after 

damage in multiple foci (Mizuta et al., 1997;Tarsounas, Davies, and West, 

2003;Brough et al., 2008). Why the subnuclear localisation between T. brucei 

BRCA2 and RAD51 appears more complex than in any other organism to date, 

remains elusive, and it is not clear if this relates to the apparently greater 

physical interactions between the proteins. Nonetheless, it is intriguing that 

BRCA2 appears to be more readily localised in the T. brucei nucleus than RAD51, 

and that the putative mediator does not always co-localise at sites of RAD51 

foci. It is possible that this is consistent with BRCA2 not simply acting in DNA 

repair, and therefore supporting the proposal that it may have dual roles in the 

biology of T. brucei.  
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7.5 T. brucei BRCA2 does not bind CDC45. 

The report of a putative interaction between the C-terminus of BRCA2 and 

CDC45 in T. brucei (Oyola, Bringaud, and Melville, 2009), coupled with the 

finding that the impaired replication seen in BSF brca2-/- mutants cells could be 

localised to the C-terminus of BRCA2 (Claire Hartley, PhD Thesis, 2008), 

presented a possible novel mechanism for the involvement of BRCA2 in DNA 

replication. brca2-/- mutants in BSF Lister 427 and PCF TREU 927 display defects 

in replication, albeit with differences. BSF brca2-/- mutants display a defect 

which is manifest as an accumulation of cells with either raised kDNA or raised 

nDNA content (Claire Hartley, PhD Thesis, 2008;Oyola, Bringaud, and Melville, 

2009). The PCF TREU 927 brca2-/- mutants analysed here display a predominant 

accumulation of zoids (anucleate cells) which may be due to the lack of a 

mitosis to cytokinesis checkpoint in this life cycle stage (Hammarton, 2007), 

allowing cells that have not completed their nuclear DNA replication to proceed 

through cytokinesis generating zoids. Many approaches were taken in order to 

validate the putative interaction between BRCA2 and CDC45, but none were 

successful. Though it remains possible that the interaction is real, it must be 

sufficiently transient or infrequent to escape detection in the experiments 

performed here. In addition, this meant that the precise mechanism of 

involvement of BRCA2 in DNA replication in T. brucei could not be elucidated, 

and distinct approaches will be needed. 

Very recently, evidence has been published to suggest that in mammalian cells 

the C-terminal Rad51-binding motif of BRCA2 acts to stabilise Rad51 filaments on 

nascent DNA at a stalled replication fork and so prevent degradation of this DNA 

by Mre11 (Hashimoto et al., 2010;Schlacher et al., 2011). It would clearly be 

interesting to investigate if this action is conserved in trypanosomatids, 

especially in light of the extensive interactions between the C-terminus of 

BRCA2 and RAD51 found here (section 7.4). A striking similarity is seen between 

the BRCA2 ‘rings’ observed after immunolocalisation in T. brucei and the 

localisation of the replication origin recognition complex protein (orc1/cdc6) in 

Trypanosoma cruzi (Elias et al., 2002;Calderano et al., 2011). This may suggest 

that BRCA2 does indeed play a role in replication, and in fact this could be the 

non-repair function that has been proposed. However, if correct, it is not clear 

how this could lead to GCRs in BSF cells and not in PCF cells, unless the 
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connection is specific to some aspects of the genome, such as the VSG 

subtelomeres. Exploration of this may reveal a novel mechanism for the function 

of BRCA2 in DNA replication. 
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Appendix 1: BRCA2 gene sequence 
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Appendix 2: Alignment of ingi retrotransposons in TREU 927. 
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Appendix 3: Tree of TREU 927 VSGs 
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Appendix 4: Alignment of TREU 927 VSG family members 

VSG family 1 

 
 

VSG family 2 
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VSG family 3 
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