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Abstract

This thesis presents novel Markov chain Monte Carlo methodology that

exploits the natural representation of a statistical model as a Riemannian

manifold. The methods developed provide generalisations of the Metropolis-

adjusted Langevin algorithm and the Hybrid Monte Carlo algorithm for

Bayesian statistical inference, and resolve many shortcomings of existing

Monte Carlo algorithms when sampling from target densities that may be

high dimensional and exhibit strong correlation structure. The performance

of these Riemannian manifold Markov chain Monte Carlo algorithms is

rigorously assessed by performing Bayesian inference on logistic regression

models, log-Gaussian Cox point process models, stochastic volatility mod-

els, and both parameter and model level inference of dynamical systems

described by nonlinear differential equations.



Thesis Statement

This thesis is submitted in accordance with the regulations for the degree of

Doctor of Philosophy at the University of Glasgow. Chapters 1 and 2, and

the first half of chapter 3 contain known results and relevant background

material presented from a statistical perspective. The remaining chapters

are the author’s original work, except where explicitly referenced. Parts

of Chapters 3 and 4 have already been published jointly with my PhD

supervisor Prof. Mark Girolami in the Journal of the Royal Statistical

Society: Series B (with discussion) (77), as have parts of Chapters 5 and

6 in Neural Information Processing Systems and the Journal of the Royal

Society Interface Focus (28, 29), respectively. No part of this thesis has

previously been submitted for a degree at this or any other University.



Overview of Thesis

The quantification of uncertainty plays a vital role in almost every area

of modern science and engineering, however it is only relatively recently

that the wide availability of high performance computing has made the

probabilistic analysis of more complex and realistic statistical models com-

putationally tractable. Despite this there remain many models that are

unapproachable using current methodology, particularly when employing

computationally intensive Bayesian methodology, which provides a consis-

tent framework for reasoning under uncertainty via the use of probability

theory. Markov chain Monte Carlo (MCMC) methods can produce corre-

lated samples from arbitrary posterior probability distributions, however

complex statistical models often result in high dimensional, strongly cor-

related parameter spaces, for which standard MCMC approaches fare ex-

tremely badly.

In this work, we introduce ideas of Riemannian geometry as a means of

creating novel and more efficient MCMC methods that work well in a wide

variety of scenarios. As one motivation for this work, we consider a bi-

ological example of modelling circadian genetic networks using statistical

models based on systems of nonlinear differential equations. Such models

are widely applicable throughout the sciences and exhibit many inferential

challenges to severely test new sampling methodology.

We begin in Chapter 1 by introducing some motivating examples and re-

viewing standard approaches to statistical inference over such models and

the challenges they present. In Chapter 2 we review the use of Monte Carlo

methods based on dynamical systems, as a means of improving sampling

efficiency. We note that such dynamical methods are implicitly based on



a Euclidean space and that there is in fact much more geometric structure

available, as was highlighted by Rao and Fisher in the 1940s.

In Chapter 3 we review ideas of Euclidean and Riemannian geometry and

present generalisations of the Langevin and Hybrid Monte Carlo methods by

defining them on a Riemannian manifold. We provide a thorough evaluation

of these new sampling methodologies in Chapter 4, investigating a variety

of challenging statistical models, including logistic regression, stochastic

volatility, and log-Gaussian Cox point processes. Some of these models

have unobserved high dimensional latent variables and structures that pose

significant computational issues.

We focus in Chapter 5 on the task of performing statistical inference over

systems of ordinary differential equations (ODEs). We describe the applica-

tion of differential geometric MCMC methods to ODE models and compare

the relative efficiency on a small biological example. We then consider an

alternative fast approximate inference method for ODEs based on auxiliary

Gaussian processes. Finally, we give a basic introduction and offer insight

into the Bayesian analysis of dynamical models described by ODE systems

using simple infection outbreak examples.

In Chapter 6 we tackle larger, biologically more realistic ODE models of

biochemical systems. We investigate models describing circadian rhythms

in the plant Arabidopsis thaliana, as well as a cell signalling network ex-

ample. We demonstrate how differential geometric MCMC methods allow

for efficient Bayesian inference and accurate estimates of marginal likeli-

hoods, which ultimately allows us to consider the systematic comparison

of competing model hypotheses to describe large and complex biological

systems.

In Appendix A we offer a summary of the manifold MCMC methods devel-

oped in this thesis, along with detailed pseudocode and guidelines for their

application.



Thesis Contributions

This thesis presents novel Markov chain Monte Carlo methodology that

exploits the natural representation of a statistical model as a Riemannian

manifold. The methods provide generalisations of the Metropolis-adjusted

Langevin algorithm (MALA) and the Hybrid Monte Carlo (HMC) algorithm

for Bayesian statistical inference. This methodology resolves many of the

shortcomings of existing Markov chain Monte Carlo algorithms, particularly

when sampling from high dimensional and strongly correlated probability

distributions. In particular, the mathematical theory generalising MALA

and HMC algorithms from a Euclidean space to a Riemannian manifold

is derived, and the necessary concepts from Hamiltonian mechanics and

differential geometry are presented from a statistical perspective.

A thorough numerical evaluation of these differential geometric MCMC

methods is conducted, and the necessary equations are derived to apply

these methods to a wide class of statistical models, including Bayesian lo-

gistic regression, stochastic volatility and log-Gaussian Cox point process

models. The methods allow automated scaling by taking into account the

local Riemannian structure at each point on the manifold of free parame-

ters. This is especially clear in the log-Gaussian Cox example, where these

methods require no tuning in the transient and stationary phases of the

Markov chain; in contrast, standard approaches using a MALA method

require different tuning parameters in each of these two regimes. These

novel MCMC methods scale between O(n log n) and O(n3) depending on

the statistical model of interest. Computationally more efficient versions

are therefore also developed, which decrease the computation by assuming

a locally constant metric on the Riemannian manifold. It is shown that these

Riemannian manifold MCMC algorithms provide state-of-the-art sampling

performance measured in terms of a time-normalised effective sample size.



Statistical models based on systems on differential equations are then con-

sidered and a novel sampling method is developed that employs Gaussian

processes to approximate the model solutions. It is shown that this approxi-

mate inference method allows for parameter inference over ordinary and de-

lay differential equations up to 2 orders of magnitude faster than alternative

approaches. Finally, it is shown how differential geometric MCMC meth-

ods, combined with thermodynamic integration, allow for efficient Bayesian

inference and accurate estimation of marginal likelihoods, which ultimately

allows systematic comparison of competing model hypotheses that describe

large and complex biological systems.
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1

Introduction

Scientific models have been used in the biological natural sciences as far back as the

1800s when Darwin and his cousin Francis Galton attempted to explain the observed

variability in the heights of self- and cross-fertilised Maize plants (47). It seemed to

Darwin that cross-fertilised plants were generally taller than self-fertilised plants and

he sought to prove this mathematically with the help of Galton, as Darwin himself was

not terribly proficient at mathematics. They proposed a very simple parametric model

taking into account just the systematic variation (due to the method of fertilisation)

and the random variability (due to all other factors, not explicitly defined), and asked

the question, was there a statistically significant difference in systematic variability

between the two types of fertilisation?

It is interesting to see, even in this early stage of the scientific revolution of the

19th century, the importance and indeed presence of multidisciplinary collaboration

that is nowadays beginning to define progress in the natural sciences and that will

without a doubt play an even greater role in the future. The approach of devising a

mathematical model to gain insight into the inner workings of biology is commonly

employed today, albeit on a more detailed level. Nowadays of course, we have the

computational advantage such that we need no longer restrict ourselves to mathematical

descriptions that are analytically tractable.

Throughout this thesis we follow in the spirit of Darwin and Galton by seeking to

develop methodology that allows us to reveal the structure and underlying mechanisms

that operate in plants by enlisting the power of statistical reasoning. This thesis was

initiated by a motivating example regarding the molecular genesis of circadian rhythms.
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Such daily rhythms in plants have been studied at varying levels of detail for hundreds

of years. Indeed even in the 1700s, the botanist Carl von Linne was able to construct a

clock comprising plants and flowers with differing flowering times emerging from these

underlying daily rhythms (124). As Darwin and others of his time were beginning to

realise, characterising statistical variation of measured observations is an essential step

towards explaining the underlying mechanisms that drive their behaviour; indeed this

is the case not just in biology but all areas of the natural and physical sciences. This

realisation heralded the start of a period of particular enlightenment in statistics (189).

Measurement is at the heart of any scientific procedure and we need a consistent

and rigorous method of incorporating new measurements within a statistical model in

order to update our current knowledge regarding the model parameters, as well as the

model itself. The 1930s brought Kolmogorov’s axioms for probability theory (111),

and shortly thereafter Cox’s derivation (41) making use of reasonable assumptions and

desiderata. With this came a mathematically self-consistent method of incorporat-

ing new information from experimental data into currently held knowledge or beliefs

encoded in the language of probability theory. Jaynes (97), in particular, argues elo-

quently that the Bayesian approach based on such an axiomatically derived system of

probability is the only sensible way of proceeding; all other methods simply aim to

approximate this gold standard.

Within this probabilistic Bayesian framework, we can imagine a sequence of analyses

slowly but steadily converging on an ever more accurate mathematical description of

the natural world as we measure it around us. Like a pixelated image that gradually

comes into focus at higher and higher resolution, so our understanding of the world

we observe increases as our measuring techniques become more and more accurate.

Often in research, as in nature (and indeed in everyday life), one observes but the final

outcome of a long and complicated process. It is easy to forget and often difficult to

imagine the sequence of events that led to this end result. As interesting and useful

as this final outcome may be, it is often the process that offers the greater insight. In

this thesis, I shall therefore endeavour to convey not only the main ideas but also the

process by which these ideas came about, in the hope of providing more insight and

stimulating further discussion and research of the topics presented.

Cross disciplinarity is becoming increasingly important, with statistical science un-

derpinning a great many endeavours in a multitude of seemingly disparate research
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1.1 Some Motivating Examples

areas, from neuroscience (1) to astrophysics (176), in a way that would not be possible

were it not for recent advances in computing science. Just beneath the surface of these

ventures we see the common task of reasoning with uncertain data and hypothesised

mathematical models. Indeed, in the recent report Towards 2020 Science published by

Microsoft Research (60), the authors note that An important development in science is

occurring at the intersection of computer science and the sciences that has the potential

to have a profound impact on science. The fact that Microsoft is funding important

research into the natural sciences, and has funded the research contained in this thesis,

highlights the significant impact computing science is poised to deliver.

This thesis focuses on methodological developments in computational statistics that

have arisen through the consideration of a specific problem; describing and predicting

the behaviour of circadian rhythms at a biomolecular level. We will revisit and draw on

many important mathematical and conceptual developments, stretching back almost

400 years, from Newton’s description of gravity through classical mechanics, Bayes’ the-

ory of inverse probability, Hamilton’s reformulation of classical mechanics, Riemann’s

framework for describing curved geometries, Kolmogorov and Cox’s axiomatic deriva-

tions of probability theory, which lay the groundwork for modern Bayesian statistics,

through to the Monte Carlo methods developed by the physicists Metropolis and Hast-

ings, not to mention the countless number of smaller advances that helped these ideas

reach their current states.

In short, we begin by looking for a particular solution to a specific problem, and

finish by developing a very general methodology with a wide variety of applications.

1.1 Some Motivating Examples

We will develop and test novel methodology based on a number of statistical models

that we believe characterise the main challenges encountered when reasoning under

uncertainty using Bayesian inference. One such motivating example involves the mod-

elling of plants. We are not interested in the variation of height that Darwin first

investigated, but rather the circadian rhythms that play a central role in regulating

their physiology.

Models based on differential equations can be used not only to describe circadian

rhythms, but also many other biological processes at a molecular level, and these models
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1.2 Statistical Models based on Differential Equations

are generally characterised by large numbers of parameters, strong correlation struc-

tures and likelihoods that are computationally expensive to compute. Many other com-

monly employed statistical models share these properties; we shall see other examples

in Chapter 4 that also have high dimensionality and whose structures pose significant

computational problems, such as logistic regression models, stochastic volatility models,

and models based on log-Gaussian Cox processes.

We shall use the example of differential equations as a starting point and return to

it again in Chapters 5 and 6; we examine the specific modelling issues that arise in this

context and use these as a motivation for developing new methodology that is relevant

to a wider class of problems that share its characteristics.

1.2 Statistical Models based on Differential Equations

As our knowledge of a complex process or system increases, so generally does the size

and sophistication of the statistical model required to accurately paint a mathematical

picture of it. With this increase in model complexity comes an increased complexity

of inference; we move from just a few model parameters to tens or perhaps hundreds,

and we introduce more involved calculations often based on highly nonlinear dynamics.

One natural approach to modelling such dynamics is to use differential equations to

encode a hypothesis about the nature of interactions in a system (203).

A dynamical system can be defined by a system of ordinary differential equations

(ODEs) that describe a deterministic functional relationship between the each of the n

process states x(t) = [x1(t) . . . xN (t)]T and their rate of change over time, such that

ẋ(t) ≡ dx

dt
= f(x,θ, t) (1.1)

We note that f is typically a nonlinear function of the the states at each time point,

x(t), the models parameters θ = [θ1 . . . θD]T , as well as sometimes time itself, t. This

defines a mechanistic model that can be used to describe the systematic components

in a biological system. We can account for random variation (due to all other sources)

through the use of some multivariate noise process ε(t) = [ε1(t)...εN (t)]T , which in

turn can be defined in terms of some time-dependent function, whose exact form can

depend on hyperparameters that may also be inferred from the experimental data.
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1.2 Statistical Models based on Differential Equations

We therefore construct our statistical model and, in a similar way to Darwin and

Galton, attempt to explain our data y(t) = [y1(t) . . . yN (t)]T in terms of systematic

and random components that are described through our mechanistic model and noise

process respectively, such that

y(t) = x(t) + ε(t) (1.2)

We note at this point that there are also other formalisms that can be used for modelling

dynamical systems. Whereas the inherently smooth solutions of ODEs may accurately

describe the average behaviour of a large population of molecules, stochastic differen-

tial equations may be considered for systems with very small numbers of molecules, in

which the randomness of individual molecules may play a much larger role in determin-

ing the overall behaviour of the system (204). Partial differential equations may also

be more appropriate for modelling spatial behaviour of a system (129). The current

availability of cellular transcript and proteomic assay techniques (149), which measure

average concentrations in cell populations leads us to focus our attention on continuous

deterministic ODE models for describing circadian rhythms, which are applicable not

just in biology but also in a large number of other areas of science and engineering,

e.g. (139). In addition, such models characterise many of the challenges associated

with much wider classes of statistical models, and so we hope that any methodological

advances we make may also be useful in other settings.

Although our approach to modelling is fundamentally the same as that employed

by Darwin and Galton, we notice that there are several important differences. Firstly,

we are modelling at a much finer granularity than the simple statistical model used

to explain the measured height of plants. Modern science is now in a position to

observe and measure changes all the way down to the molecular and genetic level of

a biological system, and it is therefore this level of detail that we may endeavour to

explain by building mathematical models. Secondly, there generally exist no analytic

solutions for the large parameterised systems of ODEs that we can use to describe

this complex biology. We must therefore employ computationally intensive numerical

methods to solve our equations, often tens of thousands of times for different parameter

combinations, before we find solutions that begin to describe our data and unlock

insights into the underlying biology. Finally, the complex dynamics of nonlinear ODEs
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result in strong correlations between parameters, indeed sensitivity analysis (175) is

often employed to determine the effect of changing parameter values, individually or

in combination, on the output of the model. This correlation structure can drastically

hamper efforts to optimise or sample parameters. An example of a posterior distribution

induced by a relatively simple system of ODEs (26, 27) is shown in Figure 1.1, in which

the oscillatory dynamics of the model result in ripples in the probability mass with

multiple local maxima.

Figure 1.1: A posterior distribution exhibiting strong correlation structure. -

This plot demonstrates the complexity of a small system of nonlinear ordinary differential

equations (26, 27) The ripples are produced by the model output moving in and out of

phase with the oscillatory data for different parameter combinations. Such probability

distributions are particularly challenging to sample from. The equations for this statistical

model follow as dx/dt = k1/(36+k2y)−k3 and dy/dt = k4x−k5, with parameters k1 = 72,

k2 = 1, k3 = 2, k4 = 1, k5 = 1, and initial conditions x(0) = 7, y(0) = −10. 120 data

points were simulated between t = 0 and t = 60, in steps of 0.5, and Gaussian noise was

added with variance σ2 = 0.5. This posterior plot was then calculated conditionally over

the parameters k3 and k4 between 0 and 5.

Advances in scientific understanding are generally driven by the computational

power and statistical techniques available to us. The use of ODEs allows greater com-

plexity to be modelled and simulated as computer experiments. This approach pulls
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theory and experimental work closer together; indeed predictive computer simulations

can be used in place of physical experiments that are expensive or simply infeasible.

In cases where parameters relate directly to rate constants and define physical rela-

tionships between interacting species, one may simply set the relevant parameters to

simulate a particular physical situation and this can be a powerful means of furthering

understanding, however we must take care when choosing the framework we wish to

employ when reasoning and drawing conclusions from such models. Any inferences we

make must be robust in the sense that they build upon our current knowledge in a con-

sistent manner and in turn may be built upon in the future, when more data becomes

available.

1.3 Computational Statistical Modelling

Decisions regarding our choice of modelling approach are often strongly influenced by

the statistical and computational tools we have at our disposal. Before computing

became widely available, more naive approaches to modelling complex systems were

commonplace. Investigations often focused on the properties of individual models, and

predictions were made using a single set of optimised parameters. This pragmatic

approach was no doubt due to the limited computation that was possible given the

tools of the time. Optimisation of a function is generally much faster than sampling,

particularly for well-behaved, smooth functions such as those considered in this the-

sis; intuitively, obtaining a single solution is quicker than characterising all plausible

solutions. Indeed it is perhaps no surprise that the rejuvenated interest in Bayesian

methodology coincided with the arrival of high-speed computing. With increased com-

puter power the focus is no longer on cleverly designing tractable approximate models,

but rather on designing general, practical methodology that may be efficiently applied

to a wide and general class of more accurate and complex statistical models.

Optimisation techniques are well suited for situations in which there is very little

or no uncertainty in the system of interest, however applying it to situations where

there is often large uncertainty, both in the data and the proposed model, presents

a number of problems. Many models are unidentifiable such that there is no single

most probable parameter value, but rather a collection of them. If we then wish to

make predictions, it is useful to have an idea of how well we can trust the answers we
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obtain; by formulating our answer in terms of a probability distribution we can assess

the variance and indeed full covariance structure of the predicted parameter values,

and have a built-in sensitivity analysis giving us information about the dependencies

between model parameters.

The greater the complexity of our statistical models, the more risk there is of over-

fitting (50); given any data set we can design a model complex enough to describe all

its features, however there is the danger of the statistical model describing the noise in

the data instead of the true underlying relationship. The use of a more sophisticated

system of reasoning allows us to guard against this. We would wish to be able to

compare hypotheses and make predictions based on a deeper level of inference, in

which uncertainties in the model are also taken into account. It is most appropriate to

use a system of inductive reasoning when uncertainty is present, and in most areas of

science it is exactly this kind of reasoning that we require.

Finally, we note that the probability distributions induced by more complex sta-

tistical models are sometimes multimodal, with local maxima and ridges that must be

explored in order to find the globally maximum values. Such scenarios provide sig-

nificant challenges to both optimisation and sampling methodologies, and it is worth

noticing that the Markov chain Monte Carlo methods used in exploring the resulting

probability distributions can be considered optimisation methods with an added de-

tailed balance constraint, and so there is a natural connection between these two fields,

although they have slightly different aims and applications.

1.3.1 The Bayesian Approach

Progress in the natural and physical sciences comes about by a process of developing

hypotheses, running experiments, then refining the hypotheses based on observations.

Descriptions of natural phenomena are often characterised by uncertainty, both in the

data collected and subsequently in the models used to make sense of the data. In

contrast to the deductive reasoning of Boolean logic (20), which defines an algebra of

two values with statements logically being either true or false, Bayesian statistics allows

for measures of uncertainty in a system to be propagated in a mathematically consistent

manner. Herein lies the usefulness and wide applicability of Bayesian methods; by em-

bedding inference within the mathematically sound framework of axiomatic probability,

we avoid the need for ad hoc statistical constructions that may lead to inconsistencies
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or even absurd results in extreme cases (97). Bayesian inference provides a consistent

and rational framework for making sense of the world around us, letting us explicitly

state our assumptions and update our current knowledge in light of newly acquired

data.

Probability theory has been around since the 18th century (16, 117) as a means

of making inferences in light of incomplete information. The axiomatic formulation of

probability theory by Kolmogorov (111) together with a derivation by Cox (41) from

a set of postulates that satisfy the desirable properties we would wish to have in a

system of reasoning, have made Bayesian methods arguably the preferred method for

inductive inference. Recent contributions by Knuth and Skilling (109) appear to add

further support for the use of Bayesian probability; based on symmetry assumptions,

they show that one is led to the probability calculus as the only logical and consistent

calculus for reasoning under uncertainty.

Bayes theorem is simply an expression based on conditional probability and it states

the conditional probability of an event A given an event B in terms of the probability of

A, and the probability of B given A. In the context of a statistical model, the posterior

distribution of the model parameters, θ = [θ1 . . . θD]T , given the data, y = [y1 . . . yN ]T ,

is proportional to the prior distribution of the parameters multiplied by the likelihood

of the data given the parameters.

p(θ|y) =
p(y|θ)p(θ)

p(y)
=

p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

(1.3)

Here the marginal likelihood in the denominator normalises the posterior density, such

that it integrates to one and is a correctly defined probability distribution.

1.4 Monte Carlo Methods

For the purpose of making predictions, we often want to calculate expectations of a

function with respect to the posterior distribution

µf = Ep(θ|y)(f(θ)) =

∫
f(θ)p(θ|y)dθ (1.4)
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Since calculating an expectation is essentially just the same task as evaluating an

integral, we could use quadrature methods and other numerical integration schemes.

While these may offer great accuracy in lower dimensions, they scale extremely badly

with the dimensionality of the problem and are therefore of little use when considering

statistical models with large numbers of parameters. The Monte Carlo method (134) is

a very useful approach for estimating such challenging integrals in high dimensions. It

was developed in a US government laboratory at Los Alamos in the late 1940s for the

purpose of modelling the random behaviour of subatomic particles in atomic bombs, and

was no doubt inspired by previous attempts at estimating probabilities based on random

simulation, such as the classic example of Buffon’s needle during the 18th century (2).

The Monte Carlo method has since found much wider applicability, particularly in

Bayesian statistics, which is rather dependent on calculating high dimensional integrals.

GivenN samples from p(θ|y) such integrals can be approximated using the Monte Carlo

estimator (167),

µ̂f =
1

N

N∑
i=1

f(θ) (1.5)

This estimator is unbiased and converges almost surely to the true integral. Assuming

the variance of f , σ̂2
f = Ep(θ|y)[f

2(θ)]− µ(f)2 is finite, we can also obtain the variance

of the estimator,

var(µ̂f ) = var

(
1

N

N∑
i=1

f(θ)

)
=
σ̂2
f

N
(1.6)

The advantage of this estimator is that the rate of convergence is independent

of the dimensionality of θ, assuming the samples are independent of one another. It

can however be tricky to draw independent samples from high dimensional and strongly

correlated probability distributions. The Monte Carlo estimator is our method of choice

given its theoretical indifference to dimensionality and in the rest of this thesis we shall

address the problem of how to draw independent, or least minimally correlated, samples

from distributions of interest.
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1.4.1 Markov Chain Monte Carlo Methods

The use of Markov chains to produce samples from an arbitrary probability distribution

was first suggested in the 1950s by Metropolis et al. (133). This approach allows us

to simulate a Markov chain such that its stationary distribution is in fact the target

distribution we are interested in; in other words the samples obtained from our Markov

chain are equivalent to correlated samples drawn from the target distribution, and this

may be implemented even when the normalising constant is unknown. The amount of

correlation impacts the variance of the Monte Carlo estimator, and we therefore wish

to use a Markov chain Monte Carlo (MCMC) method that reduces this as much as

possible.

We begin by defining a transition density that dictates how the chain explores the

parameter space. The aim is to find a transition density that proposes new minimally

correlated parameter values that are accepted with high probability. The Metropolis-

Hastings algorithm proceeds as follows

Algorithm 1 Standard Metropolis-Hastings Algorithm

1: Given current state θ, draw proposed state θ∗ from transition density T (θ∗|θ)

2: Calculate the acceptance ratio R(θ∗|θ) = min
[
1, p(θ

∗)T (θ|θ∗)
p(θ)T (θ∗|θ)

]
3: Draw U ∼ Uniform[0, 1]

4: Let θ =

{
θ∗ if U < R(θ∗|θ)

θ otherwise

Thus the new set of parameters θ∗ are accepted with probability R. We note that this

form is due to the generalisation by Hastings (87) that allows T to be any normalised

probability distribution, and in the original method by Metropolis the transition T was

required to be symmetric. Indeed, it was Hastings who first described this algorithm

in its more general form in terms of Markov chains sampling from an arbitrary target

distribution π(θ); before this it was described purely in physical terms using the moti-

vating example of statistical mechanics. Despite this publication, it was almost another

20 years until its utility to Bayesian statistics began to be fully realised (71). There are

many excellent expositions on the Metropolis-Hastings algorithm (37, 74, 101, 125, 167),

and this is no doubt linked to the fact that it is considered one of the most important

of all Monte Carlo algorithms (18).
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We can show that such a Markov chain does indeed converge to the required sta-

tionary distribution by considering the following transition function, which we denote

A(θ∗|θ). This is the total probability of firstly a proposed point being sampled from

T , and secondly this proposed point actually being accepted with probability R,

A(θ∗|θ) = T (θ∗|θ)R(θ∗|θ) (1.7)

A Markov chain will converge (167) if

∫
p(θ)A(θ∗|θ)dθ = p(θ∗) (1.8)

In other words the average probability of moving from any point in parameter space,

denoted by θ, to a particular point θ∗ is equal to the probability of θ∗ itself. This must

hold for all points θ∗.

A Markov chain will also converge under the following, more restrictive, condition

known as detailed balance

p(θ)A(θ∗|θ) = p(θ∗)A(θ|θ∗) (1.9)

and chains that satisfy this symmetry constraint are known as reversible, since the

probability of moving from θ to θ∗ is the same as moving from θ∗ to θ, for all values

of θ and θ∗. Assuming detailed balance, we can see straightforwardly that Equation

1.8 holds

∫
p(θ)A(θ∗|θ)dθ =

∫
p(θ∗)A(θ|θ∗)dθ (1.10)

= p(θ∗) (1.11)

since A is a normalised probability distribution that by definition integrates to 1. In

order to show that using the acceptance ratio R satisfies detailed balance, we again see

straightforwardly that
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p(θ)A(θ∗|θ) = p(θ)T (θ∗|θ) min

{
1,
p(θ∗)T (θ|θ∗)
p(θ)T (θ∗|θ)

}
(1.12)

= min {p(θ)T (θ∗|θ), p(θ∗)T (θ,θ∗)} (1.13)

= p(θ∗)A(θ|θ∗) (1.14)

Alternative acceptance rules are explored in (13), however Peskun, a PhD student

of Hastings, showed that the form given by Hastings was asymptotically optimal (154).

There are also a couple of technical conditions on a Markov chain that are required

for it to converge (167); a chain must be irreducible and aperiodic, which state that

a chain has a non-zero probability of reaching any point in parameter space from any

other point within a finite number of steps, and that the chain does not get stuck in

any loops such that it repeatedly visits the same location with some fixed regularity.

Constructing a Markov chain that adequately samples from the target distribution

however is not straightforward in practice due to the following three main issues.

Global Convergence Converging from a random starting position in parameter space

to the true stationary distribution may be difficult, due to the possibility of

multiple modes. We require sampling methods that can explore all modes globally

with the correct frequency without becoming stuck in local maxima of negligible

probability mass.

Local Mixing Once the Markov chain reaches a region of high probability mass, we

want it to fully explore and ideally obtain near-uncorrelated samples. This is

challenging for many types of differential equation based models, particularly

those that are high dimensional and whose nonlinear dynamics induce very strong

nonlinear correlation structures in the posterior distribution.

Computational Cost The likelihood of these models can be expensive to evaluate,

since it involves approximately solving the system of ODEs with a numerical inte-

gration scheme for each set of proposed parameters. Although generally unavoid-

able, this cost can be minimised through efficient exploration of the parameter

space, and measured in terms of effective sample size (ESS), normalised by the

overall computational time (77).
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In practice the proposal mechanism determines how efficiently a Markov chain can

explore the space, and this becomes particularly important in high dimensional and

strongly correlated parameter spaces, although even in low dimensions, statistical mod-

els based on nonlinear differential equations can induce complex, multimodal posterior

densities (see Figure 1.1 as an example). For exploring multimodal posterior distri-

butions, it is often useful to employ some form of tempered MCMC method. Similar

to simulated annealing (108), the idea is to explore a collection of tempered distribu-

tions, in which the Markov chains are allowed to interact and swap positions with each

other, whilst maintaining detailed balance, allowing for easier exploration of the tar-

get distribution. In addition, the samples drawn from the tempered distributions may

be employed to obtain accurate estimates of the marginal likelihood and thus calcu-

late Bayes factors for model comparison via thermodynamic integration (27, 67, 118).

We may choose any MCMC method to sample within each tempered distribution and

we shall consider a specific example in Chapter 5 that employs the manifold MCMC

methodology we develop in Chapter 3.

A great amount of research in MCMC methodology has been conducted over the

last 20 years. Alternative sampling approaches include slice sampling (143, 147) and

nested sampling (182). Reversible Jump MCMC can be used for sampling between

parameter spaces of varying dimension (79). There are also a number of approximate

methods available, such as the recent INLA method (174), which are based on Laplace

approximations and can often be much faster than MCMC sampling. One must bear

in mind however that such approaches are only approximate and often it is difficult to

quantify the errors associated with the answers obtained, as mentioned in the discussion

section of (174). In addition such methods often make assumptions regarding condi-

tional independence of parameters, and so information about parameter correlations in

the posterior distribution can be lost.

In this thesis we concentrate on developing computationally efficient methods that

retain all the information present in the posterior distribution and are exact in the

sense that arbitrary accuracy may be obtained by collecting as many posterior samples

as we require. Such an approach therefore acts as a gold standard when performing

Bayesian inference over complex statistical models. In particular we focus on extending

the dynamical MCMC methods introduced in Chapter 2, which are based on Langevin
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diffusions and Hamiltonian mechanics, in order to make use of the intrinsic geometry

of the probability distribution of interest.

1.5 Conclusions

Statistical models are being used to describe the natural world with increasing levels of

sophistication, and the use of probability theory through Bayesian statistics allows us

to naturally account for any sources of uncertainty, both in the measurements we make

and in the models we employ. Useful quantities in Bayesian statistics may be estimated

using Monte Carlo methods, and in particular MCMC methods may be used to draw

samples from the complex probability distributions induced by our statistical models.

The accuracy of the Monte Carlo method, although independent of the dimensionality

of the problem, is determined not only by the number of samples available, but also

by the magnitude of correlation within those samples, which may have a significant

effect on the variance of any estimates. The task of drawing independent samples

from arbitrary probability distributions is challenging due to the complex correlation

structure that is often present.

In the context of modelling biological systems, this structure in the posterior distri-

bution is closely related to the idea of sensitivity analysis, since changes in the model

parameters not only have an effect on the model output, but also on the probability

mass associated with the parameters. A particularly interesting and useful class of

MCMC methods that we have not yet mentioned are those based on dynamical sys-

tems, which make use of 1st order sensitivities in order to propose better moves within

an MCMC algorithm. The dynamical MCMC methods we review in Chapter 2 are

intimately tied to the study of dynamical systems and are implicitly defined on the

natural Euclidean geometry associated with the parameter space. In Chapter 3, we

will expand these ideas further by considering higher order sensitivities and exploring

the deeper links with Riemannian geometry, with the aim of developing MCMC meth-

ods that converge quicker to the stationary distribution and exhibit lower correlation

in the final samples. This will ultimately allow us perform statistical analyses of a wide

range of models, and in particular those based on differential equations, which can be

used to describe complex biological processes.
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Dynamical MCMC Methods

Shortly after the introduction of Monte Carlo methods in the 1950s, molecular dynam-

ical simulations were introduced as a means of directly probing the physical properties

of chemical systems by explicitly calculating the dynamics of individual molecules and

their interactions with one another. Such dynamics are naturally described in terms

of the rates of change of the interacting molecules and may therefore be conveniently

described using differential equations. In particular, these molecular dynamics can be

modelled as Hamiltonian systems, which are derived directly from Newton’s 2nd law of

motion, describing the acceleration of individual particles in terms of the forces acting

upon them. The aim of molecular dynamics is to provide information regarding the

average behaviour of the system under study. Since precise initial conditions for indi-

vidual molecules are unknown it is hoped that by averaging their physical behaviour

over time, the initial conditions become irrelevant; the overall properties of the system

are then represented in terms of a stationary distribution that describes the probability

of finding the system in any particular state.

In Bayesian statistics we are also interested in calculating averages over a range of

states. In particular, we often wish to calculate high dimensional integrals that are

written in terms of a particular function averaged over a probability distribution, which

may be evaluated using a Monte Carlo estimator. The Markov chain Monte Carlo and

Molecular Dynamics methods are closely linked through ergodic theorems, which state

that under certain conditions the time average of a dynamical system converges to the

same value as the space average of all the possible states of the system.
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A Markov chain must be aperiodic, irreducible and positive recurrent in order to be

ergodic, such that it will eventually visit all points of the space and that the time average

will equal the space average. While the continuous-time Hamiltonian dynamics, upon

which Molecular Dynamics are based, also have a time average that converges to the

space average, their discretised approximate solutions do not. This is perhaps the main

shortcoming of the Molecular Dynamics approach; often the Hamiltonian dynamics

cannot be calculated analytically and the approximate samples are therefore not drawn

from the true stationary distribution. The averages obtained are often assumed to

be “accurate enough” to be of use describing the average properties of the underlying

physical system, since in practice they are indeed often seen to be numerically very

close to the true solutions, given a small enough step size.

These two computational approaches for determining the average properties of a

physical system followed quite separate paths of development until the seminal paper

of Duane et al. (57), in which the authors proposed a “hybrid” algorithm combining

the two ideas; this was aptly named the Hybrid Monte Carlo method. Following more

recent convention however, we shall refer to this approach using the more suitably

descriptive title of the same acronym, Hamiltonian Monte Carlo (HMC), emphasising

the fact that MCMC proposals are made based on the Hamiltonian dynamics of the

underlying system, which are described in terms of a system of ordinary differential

equations. The use of a Metropolis-Hastings acceptance step on the HMC trajectories

corrects the error introduced by the discretisation of the continuous equations and

ensures that samples are drawn from the true stationary distribution.

Molecular dynamical simulations can also be conveniently modelled using Langevin

diffusions, which are described in terms of stochastic differential equations and whose

time evolution of states also tends to a stationary distribution in the continuous-time

case. Once again, however, discretisation of these Langevin dynamics causes time

averages to converge to the wrong stationary distribution, and a Metropolis-Hastings

acceptance step is needed to correct this problem.

For the purpose of efficiently obtaining low variance Monte Carlo estimates we wish

to have a Markov chain that converges quickly to the stationary distribution, produces

samples from the posterior distribution with low correlation, and has proposed moves

accepted with high probability. The most basic form of Metropolis-Hastings algorithms

employ random walks whereby the proposed steps are generated by a proposal density
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that is independent of the target distribution. Often these take a particular paramet-

ric form, which can be tuned to obtain the desired acceptance rate, then fixed such

that samples are drawn from the stationary distribution. Hamiltonian systems and

Langevin diffusions exhibit many properties that make them attractive to use for de-

veloping efficient MCMC methods, and we shall explore these later in this chapter. Such

approaches are often found to be more efficient than simple random-walk Metropolis

algorithms, both in terms of sampling correlation and convergence, since they make

use of additional geometric information from the target distribution in the form of first

order derivatives. Intuitively one might expect that proposed steps using gradient in-

formation will make better moves, since they can follow the gradient to points of higher

probability rather than relying on randomly chosen steps centred at the current point.

Indeed this intuition appears to be true when we consider the theoretical optimal ac-

ceptance ratios; the optimal for gradient based sampling methods are higher than basic

random walk Metropolis-Hastings (170).

Of course higher acceptance rates do not automatically mean more efficient sam-

pling, since this could be achieved simply by making smaller proposed steps that are

accepted more regularly but result in higher correlation between samples. Ultimately,

the overall efficiency of any method must also be measured against any increases in the

computational overhead of the sampler. For these dynamical methods we might then

ask whether it much more expensive to obtain the required geometric information? If

it is more expensive, we might well be better running a simpler and computationally

less expensive method for a larger number of iterations to achieve a similar accuracy

of estimate. On the other hand, for more complex models there may well also be a

large cost involved with evaluating the likelihood; in the statistical models considered

in Chapters 5 and 6 for example calculating the likelihood involves solving a complex

system of of differential equations. An efficient method will therefore also be one that

minimises the number of likelihood evaluations and takes larger steps in parameter

space that are accepted with greater probability.

We note in passing that one advantage of employing a gradient-based MCMC

method is that these gradient evaluations may usefully be reused. For example, cer-

tain variance reduction methods can make use of gradient information to achieve lower

variance MCMC estimates (137), meaning that fewer samples are necessary to obtain

the same level of accuracy as the standard MCMC estimator.
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2.1 Hamiltonian Dynamics

We now begin by reviewing some of the theory of Hamiltonian dynamics (Section

2.1), deriving Hamilton’s equations from Newton’s 2nd law of motion and investigating

some of its most important properties, in particular its symplectic geometric nature,

which is vital for developing valid MCMC schemes. We describe its use in molecu-

lar dynamical simulation via discretised computation (Section 2.2), and discuss the

challenges this introduces. In Section 2.3 we have a look at methods of numerical in-

tegration and the geometric properties that characterise methods that are particularly

suitable for accurately solving conserved systems, and we see that it is geometry that

intimately ties ideas from Hamiltonian dynamics with those from probability theory.

We then present the combination of Molecular Dynamics and Monte Carlo through the

Hamiltonian (Hybrid) Monte Carlo method in Section 2.4, discussing the properties,

advantages and difficulties of this approach. Finally, we review a stochastic approach

to molecular modelling based on a Langevin diffusion (Section 2.5), showing that it

corresponds to a special case of HMC.

2.1 Hamiltonian Dynamics

The Hamiltonian formalism has played a hugely influential role in computer simulation

within the natural and physical sciences over the last half a century. Hamiltonian

dynamics were first presented in 1834 by William Rowan Hamilton as a reformulation of

classical mechanics based on Newton’s equations of motion (85). Given a closed system

in which the total energy is conserved, Hamilton’s equations provide an alternative and

equivalent way of describing how particles in the system deterministically evolve over

time according to the laws of classical physics.

2.1.1 Hamilton’s Equations

Hamiltonian dynamics can be obtained as a reformulation of Newton’s 2nd law,

a =
d2θ

dτ2
= M−1f (2.1)

where a is an acceleration vector, M is a mass matrix, f is a force vector, τ is time

and θ is a state or position vector. It is also equivalent to the Lagrangian formalism

of classical mechanics (83), which imposes second order differential constraints on an
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2.1 Hamiltonian Dynamics

n-dimensional coordinate space. The Hamiltonian formalism however allows for easier

solution of the system’s evolution as it describes the same system in terms of only

first order differential constraints. The price that must be paid for this reduction in

differential order is that the coordinate space doubles in size; Hamiltonian systems are

described in a 2n-dimensional space, with n values describing position and a further n

values describing the associated momentum in each direction. In a statistical context

the n position variables θ correspond to the n parameter values of a statistical model.

The total energy of this Hamiltonian system is denoted by H and is composed

of kinetic energy and potential energy, with the assumption that the total energy is

conserved. Hamiltonians can therefore usefully be employed to describe complex dy-

namical systems that are devoid of friction. Interestingly such scenarios often occur on

the very large scale and the very small scale, such as celestial mechanics and molecular

dynamics. The standard form of the Hamiltonian is given as

H(θ,p) = Ep(θ) + Ek(θ,p) (2.2)

where Ek is the kinetic energy, Ep is the potential energy, and H is a constant equal to

the total energy in the system. If the kinetic energy is a function of momentum only, the

Hamiltonian is termed separable, otherwise it is a non-separable Hamiltonian. These

different types must be solved using different methods and induce differing underlying

geometries. We shall return to the differences later in the chapter and for now consider

only the simpler separable Hamiltonian. Hamilton’s first order equations are defined

as

dθ

dτ
=
∂H

∂p
,

dp

dτ
= −∂H

∂θ
(2.3)

and these may be solved to obtain solutions for the evolution of the position and

momentum variables of the Hamiltonian over time, τ . By differentiating Equation 2.2

with respect to time, a simple application of the chain rule shows that the rate of change

of the Hamiltonian is zero, and therefore the total energy is indeed constant.
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2.1 Hamiltonian Dynamics

dH(θ,p)

dτ
=

∂H

∂θ

∂θ

∂τ
+
∂H

∂p

∂p

∂τ
(2.4)

= −∂p

∂τ

∂θ

∂τ
+
∂θ

∂τ

∂p

∂τ
(2.5)

= 0 (2.6)

2.1.2 A Simple One Dimensional Example

We may gain some insight into what exactly these equations are describing by consid-

ering a one-dimensional example. The kinetic energy is defined in terms of mass and

velocity as

Ek ≡ 1

2
mv2 (2.7)

=
p2

2m
(2.8)

which we can express in terms of the momentum p by using the expression p = mv. A

one dimensional Hamiltonian may therefore be written as

H(θ, p) =
p2

2m
+ Ep(θ) (2.9)

where for now we leave the potential energy simply as some function of the position

coordinate. Let us consider first how the position coordinates change over time.

dθ

dτ
=
∂H

∂p
=

∂

∂p

[
p2

2m

]
=

p

m
= v (2.10)

We see from Hamilton’s equations that as expected, the rate of change of position is

simply the velocity with respect to time. It is more interesting to consider how the

momentum changes over time,

dp

dτ
=

d

dτ
[mv] = ma = f (2.11)

and
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2.1 Hamiltonian Dynamics

dp

dτ
= −∂H

∂θ
= −∂Ep(θ)

∂θ
(2.12)

The change of momentum is simply equal to the Newtonian force on our imaginary

particle, and via Hamilton’s equations we see that this force is equal to the rate of loss

of the potential energy with respect to the position coordinates θ. We can now verify

for this one dimensional Hamiltonian example that the energy is indeed conserved. We

proceed by once again differentiating the Hamiltonian with respect to time.

dH

dτ
=

d

dτ

[
1

2
mv2

]
+

d

dτ
[Ep(θ)] (2.13)

=
1

2
m
d

dτ

[
v2
]

+
dEp(θ)

dθ

dθ

dτ
(2.14)

= mv
F

m
+
dEp(θ)

dθ
v (2.15)

= Fv − Fv (2.16)

= 0 (2.17)

Hamilton’s equations can be derived directly from Newton’s second law, which

states that an object’s acceleration is directly proportional to the force applied to it

and inversely proportional to its mass. We have already seen that this applied force is

equal to the rate of the loss of potential energy with respect to the position,

f = Ma (2.18)

= M
d2θ

dτ2
(2.19)

=
d

dτ
[Mv] = −dEp(θ)

dθ
(2.20)

where we have written the mass in a more general form as a matrix. Since p = Mv,

we have

d

dτ
[p] = −dEp(θ)

dθ
,

d

dτ
[θ] = M−1p (2.21)

where the second equation is simply equal to the velocity v. There are of course many

other ways in which Newton’s second law could be rewritten in terms of two first order
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2.1 Hamiltonian Dynamics

differential equations, however they are conveniently written in this form with the

observation that they may be derived from derivatives of the same underlying function.

This Hamiltonian is therefore a function of position θ and momentum p,

H(θ,p) = Ep(θ) + pTM−1p (2.22)

Here the kinetic energy takes a quadratic form consisting of the mass and momentum

terms, and we note in passing the similarity to the logarithm of an unnormalised Gaus-

sian distribution. This allows us to give a statistical interpretation of this Hamiltonian,

which we review in Section 2.4.

2.1.3 Further Properties of Hamiltonian Systems

It is clear that there is an antisymmetry present in Hamilton’s equations (2.3), which

we can make explicit by writing them in a more compact form. Let us concatenate the

position and momentum vectors, such that z = [θ,p] is a single vector. Hamilton’s

equations may then be written as

d

dτ
[z] = J∇zH(z) (2.23)

where J is known as the structure matrix (122) and for this example has the form

J =

[
0 In
−In 0

]
(2.24)

Other forms of Hamiltonian systems may be expressed in this standard form with a

suitable choice of J; (122) gives an example of a Hamiltonian with an alternative J that

describes the motion of a charged particle in a magnetic field. For our current purposes

however the form above is sufficient, and indeed induces a specific symplectic structure

that will be a key feature of the Hamiltonian systems we are interested in. Symplec-

ticness implies the existence of integral invariants (122), in particular the invariance of

volume, and we shall algebraically define this shortly.

Hamiltonian systems exhibit many properties that we will see are particularly use-

ful in proving that their dynamics may be used to form the basis of a valid MCMC

23



2.1 Hamiltonian Dynamics

method. Some of these properties may be elucidated through the use of a flow map for

a Hamiltonian. The flow map (θ(τ),p(τ)) = Φτ (θ(0),p(0)) is a mapping from a set of

coordinates and momentum values at time τ = 0 to another set of coordinates and mo-

mentum values at some time τ . Such mappings are given by the deterministic solution

of Hamilton’s equations. As we have already seen, all exact solutions to Hamilton’s

equations preserve the initial total energy such that H(θ(τ),p(τ)) = H(θ(0),p(0)).

In addition, we shall show shortly that Hamiltonian dynamics are reversible and their

solutions volume preserving, two very useful properties for generating proposals in an

MCMC method.

Reversibility of Hamilton’s equations follows straightforwardly from the standard

theory of ordinary differential equations (9). Picard’s theorem guarantees the existence

and uniqueness of solutions to first order differential equations, given suitable initial

conditions. As a result, the flow map Φτ (θ(0),p(0)) is a bijection, whose invertibility

guarantees the reversibility of the dynamics; indeed this inverse map is obtained simply

by analytically integrating backwards in time.

Hamilton’s equations are also volume preserving, and this property will be useful

later for developing correct MCMC schemes based on Hamiltonian dynamics. Volume

preservation is the geometric concept that when points in the phase space, (θ(0),p(0)),

undergo a transformation, Φτ (θ(0),p(0)), the volume enclosed by the set of points does

not change.

Volume preservation is actually a weaker property implied by the fact that Hamil-

tonian systems are symplectic (83, 122). This property is induced by the structure

matrix J described in Equation 2.24 and is defined in terms of the sum of areas of the

parallelograms induced by pairs of vectors. We may see this property more clearly by

first considering two 2-dimensional vectors. We note that since the Hamiltonian phase

space consists of position and momentum, it will always by 2d-dimensional and can

therefore be split up into d 2-dimensional vectors, each consisting of a position and a

momentum. Any pair of 2-dimensional vectors, a = [aθ, ap]T and b = [bθ, bp]T , can

used to describe the length and height of a parallelogram, whose oriented (i.e. positive)

area is given by

Area =

∣∣∣∣det

(
ap bp

aθ bθ

)∣∣∣∣ =
∣∣∣apbθ − aθbp∣∣∣ (2.25)

24



2.1 Hamiltonian Dynamics

If d > 1 then the total area, η, is defined as the sum of the areas induced by the pairs

of position-momentum vectors, such that

η(a,b) ≡
d∑
i=1

∣∣∣∣det

(
api bpi
aθi bθi

)∣∣∣∣ =

d∑
i=1

∣∣∣api bθi − aθi bpi ∣∣∣ (2.26)

This can be written more succinctly in terms of the structure matrix J (Equation 2.24)

η(a,b) ≡ aTJ−1b (2.27)

This definition extends to classifying mappings as being symplectic. Let us consider a

linear transformation, M, of our vectors a and b,

η(Ma,Mb) = (Ma)TJ−1(Mb) (2.28)

= aTMTJ−1Mb (2.29)

If we want the areas enclosed by our original vectors and our newly transformed vectors

to be equal, this implies the condition

η(Ma,Mb) = η(a,b) (2.30)

and therefore

aTMTJ−1(Mb) = aTJ−1b ⇒ MTJ−1M = J−1 ∀a,b (2.31)

This is the symplectic condition that we can use to prove the symplecticness of the

flow map for a Hamiltonian system. In particular we want to check that the volume

enclosed by points in nearby solutions is constant for each value of τ . The application

of this symplectic condition extends to nonlinear mappings that can be approximated

by a local linearisation with respect to the initial position and momentum variables

(83). We must therefore show that the following condition holds for all τ ,

(
∂Φτ (z)

∂z

)T
J−1

(
∂Φτ (z)

∂z

)
= J−1 (2.32)
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2.1 Hamiltonian Dynamics

where z = [θ0,p0] are the initial conditions for Hamilton’s equations. This condition

can easily be proven to be true. We firstly show that the derivative of the left hand

side of Equation 2.32 is equal to 0, and therefore the left hand side must be equal to

some constant. We then evaluate this constant by considering the particular case when

τ = 0, and conclude that this must therefore be the solution for all values of τ .

Writing Hamilton’s equations (2.23) in terms of its flow map and differentiating

with respect to z we note that

d

dτ

[
∂Φτ (z)

∂z

]
=

∂

∂z

[
dΦτ (z)

dτ

]
(2.33)

= JHzz(Φτ (z))

(
∂Φτ (z)

∂z

)
(2.34)

where Hzz denotes the Hessian matrix of second partial derivatives of the Hamiltonian

function H with respect to z. We also note that the symplectic matrix J has the

following properties, JJ = 1, J−1 = −J and JT = −J. Using these identities, we

can show that the time derivative of the left hand side of Equation 2.32 is zero, which

follows as

d

dτ

[(
∂Φτ (z)

∂z

)T
J−1

(
∂Φτ (z)

∂z

)]
=

(
∂Φτ (z)

∂z

)T
J−1

[
JHzz(Φτ (z))

(
∂Φτ (z)

∂z

)]

+

[(
∂Φτ (z)

∂z

)T
Hzz(Φτ (z))JT

]
J−1

(
∂Φτ (z)

∂z

)

=

(
∂Φτ (z)

∂z

)T
Hzz(Φτ (z))

(
∂Φτ (z)

∂z

)
−
(
∂Φτ (z)

∂z

)T
Hzz(Φτ (z))

(
∂Φτ (z)

∂z

)
= 0

Finally, we make the observation that for τ = 0, the flow map is simply an identity

matrix and so condition 2.32 holds trivially, and therefore for all τ . This symplectic

property is also equivalent to the Jacobian of the transition map having unit determi-

nant. We can see this by considering the determinant of the symplectic condition
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det(J−1) = det

[(
∂Φτ (z)

∂z

)T
J−1

(
∂Φτ (z)

∂z

)]
(2.35)

=

[
det

(
∂Φτ (z)

∂z

)]2

det(J−1) (2.36)

Since det(J−1) 6= 0 then the above implies that

det

(
∂Φτ (z)

∂z

)
= 1 (2.37)

Given that the symplectic condition implies that the determinant of the Jacobian of

a symplectic mapping is equal to one, we can consider the effect of this mapping on

the volume, V , enclosed by a group of points by using the standard change of variables

formula from multivariate calculus,

V (Φτ (U)) =

∫
Φτ (U)

dz1...dz2d (2.38)

=

∫
U

∣∣∣∣det

(
∂Φτ

∂z

)∣∣∣∣ dz1...dz2d (2.39)

=

∫
U
dz1...dz2d (2.40)

= V (U) (2.41)

The volume enclosed by the group of transformed points is therefore equal to the vol-

ume enclosed by the original points and this identity is often referred to as Liouville’s

Theorem. This is equivalent to the divergence of the vector field described by Hamil-

ton’s equations being equal to zero (83), as the rate of change of the volume is zero.

Therefore, assuming we can exactly calculate the Hamiltonian flow, we see

∇.
[
dθ

dτ
,
dp

dτ

]
=

∂

∂θ

dθ

∂τ
+

∂

∂p

dp

∂τ
(2.42)

=
∂

∂θ

∂H

∂p
− ∂

∂p

∂H

∂θ
(2.43)

= 0 (2.44)

and so that the divergence is zero, as expected.

27



2.2 Molecular Dynamical Simulations

In the vast majority of cases however, analytic solutions of Hamilton’s equations

are not available and one must resort to numerical integration methods based on a

discretisation. Quite remarkably, it turns out that symplecticness can be preserved

even for approximate discretised solutions to Hamilton’s equations, and this is vital for

developing correct MCMC schemes. We will shortly see the impact of symplecticness

on the overall numerical accuracy when integrating conservative Hamiltonian systems,

however let us first look at the use of Hamiltonian systems for the purpose of simulating

molecular dynamics in a physical context.

2.2 Molecular Dynamical Simulations

Molecular Dynamics aims at estimating the average properties of a molecular system

as it evolves over time (3, 65). Such methods were originally developed for estimating

equilibrium properties of materials and fluids and have the advantage over Monte Carlo

methods that they also allow investigation of dynamic properties of the system, such

as time dependent responses to perturbations (162), since the individual movements of

molecules within the system are explicitly modelled in real time. This computational

approach in many ways mirrors a real life experimental approach; a mathematical model

is chosen to describe a complex system, its configuration is initialised at some sensible

values, and the evolution of the ensemble is modelled explicitly by simulating the motion

of each molecule according to the laws of classical mechanics, most conveniently in the

form of Hamilton’s equations. As we have seen already, Hamilton’s equations are

defined in continuous-time, however they do not generally admit analytic solutions

and so we must resort to numerically solving them in a discrete form. The challenge

is therefore to preserve at least the qualitative properties of the original continuous

system.

Each molecule is described by a position vector and momentum vector. As this

is a physical simulation, these vectors are both 3 dimensional and so each molecule is

represented in a 6 dimensional phase space. The quantities of interest, which must be

expressible as a function of position and momentum, are then computed as an average

of the time evolution of the system states. As in real life it is often necessary to allow the

system to reach an equilibrium state before accurate ergodic averages may be obtained.
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2.2 Molecular Dynamical Simulations

The main computational cost of a Molecular Dynamics simulation lies in computing

the force on each molecule, as opposed to the cost of integrating the equations them-

selves, since in principle each molecule exerts a force on every other one regardless of

distance, and so the required calculations can become exponentially more expensive.

This is particularly a problem when one considers that there may be thousands of

molecules being modelled, although in practice there are approximations that can be

made (65). The choice of integration scheme is also particularly important in Molecular

Dynamics for a couple of reasons. Firstly there must be good energy preservation over

the time period of the integration; the Hamiltonian is a conservative system and major

fluctuations in the total energy can seriously affect the type of dynamics predicted,

regardless of the accuracy of the model describing the forces involved. Later we will

see that approximate energy conservation also plays an important role in setting the

efficiency of a dynamical MCMC scheme. Secondly, it is desirable for the numerical

scheme to be accurate for relatively large time steps, as this means that fewer force

evaluations are required. We will see that in the context of MCMC, our force func-

tion will be replaced by a potentially expensive likelihood function, and so the same

principles will apply.

The main concern regarding the use of molecular dynamics is the error associated

with the integration of Hamilton’s equations. Most of the commonly used integration

schemes do not exactly preserve the total energy of the Hamiltonian, which raises

the question of how accurate such simulations might be over longer periods of time.

As an example, the stability of the solar system may be simulated by considering

interactions of planets instead of molecules and using appropriate force calculations

(190). In this case where the initial conditions are known precisely and the precise

trajectory is of interest, as opposed to the average behaviour, energy preservation will be

very important and small errors could seriously affect the results. In other applications

however, where it is a much larger number of interacting objects that is of interest, the

average behaviour may not be as strongly affected by small fluctuations in the total

energy; in such cases we are not interested in calculating a precise trajectory since we

will not know the precise initial positions and momentum of molecules, although we

will at least have some idea of sensible starting values.

This estimation of average behaviour relies on the assumption that approximate

simulation results using numerical integration schemes are generally close to the true
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2.3 Methods of Numerical Integration

trajectories of the continuous time system during a particular time period of interest,

despite the inevitable numerical integration errors. The use of symplectic integrators

can help preserve the geometric qualities of the system, although it seems that the

evidence for slow divergence from true trajectories is largely numerical and it is noted

that this does not appear to have been explicitly proven, even for specific systems of

interest (65). There is no doubt that Molecular Dynamics simulations are extremely

useful for modelling the time evolution of many-body problems and are capable of

reproducing the dynamical properties of many physical phenomena. Such simulations

must be run with a careful monitoring of the total energy in the system and with an

appropriate integration step size such that the average simulated dynamics may be

trusted to represent the true average behaviour. We must bear in mind however that

from a statistical point of view there is no mathematical guarantee of convergence to

the true stationary distribution when simulating these discrete dynamics.

2.3 Methods of Numerical Integration

The idea of obtaining a numerical solution to a system of differential equations by

employing a sequence of discrete calculations had already been considered in the 17th

century; indeed Newton used such numerical methods to approximate solutions to his

second law of motion, long before automated electronic computation became available.

Numerical integration schemes can be derived by considering truncated Taylor expan-

sions, which were formally introduced at the beginning of the 18th century, and it

is perhaps quite remarkable that such schemes are still among the most popular and

useful today. We shall briefly review some numerical methods for the integration of

differential equations and focus in particular on those properties of that are important

for obtaining solutions for conservative Hamiltonian systems. We will bear in mind our

ultimate goal of employing them within the context of an MCMC scheme.

2.3.1 Euler’s Method

We may consider the Taylor expansion of an infinitely differentiable function f at time

τ with a timestep ε,

f(τ + ε) ≈ f(τ) + εf ′(τ) +
ε2

2
f ′′(τ) +O(ε3) (2.45)
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2.3 Methods of Numerical Integration

From this simple formula we can derive numerical schemes capable of solving the type

of nonlinear differential equations we find expressed through Hamilton’s equations. If

we apply this Taylor expansion to a standard separable Hamiltonian system, expressed

in the concatenated vector form z = [θ,p] (Equation 2.23), truncate all terms involving

derivatives higher than first order and write out in terms of position and momentum

variables, we obtain Euler’s method.

θ(τ + ε) = θ(τ) + ε
dθ(τ)

dτ
(2.46)

= θ(τ) + εM−1p(τ) (2.47)

p(τ + ε) = p(τ) + ε
dp(τ)

dτ
(2.48)

= p(τ)− ε∂Ep(θ(τ))

∂θ
(2.49)

We can write this in terms of sequentially updating the nth step of our integration

scheme as,

θn+1 = θn + ε∇pH(θn,pn) (2.50)

pn+1 = pn − ε∇θH(θn,pn) (2.51)

where we use the short-hand convention of using ∇pH to denote the partial derivative

of the Hamiltonian with respect to the momentum; in this section we write out all other

derivatives in full for clarity. This method is said to be first order accurate, which is

clear from its construction. More generally, the magnitude of any errors associated with

an integration scheme can be determined by comparing the timestep updates with the

Taylor expansion around the current point. Unfortunately this Euler method produces

very poor results even for simple Hamiltonian systems, with both the dynamics and the

total energy rapidly diverging from their true trajectories, as demonstrated in Figure

2.1.

2.3.2 Method of Splitting

When considering the integration of separable Hamiltonians we can use the idea of

splitting to obtain numerical schemes that are better behaved, in particular with respect
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to energy conservation. A separable Hamiltonian may be represented as a sum of two

independent Hamiltonians; one a function of momentum and the other a function of

position. The original Hamiltonian may then be numerically integrated by considering

the composition of two separate flow maps, one evolving with respect to momentum

and the other with respect to position. Let us consider the Hamiltonian H(θ,p) =

1
2p2 +Ep(θ), which we may write as a sum of two independent Hamiltonians H(θ,p) =

H1(p)+H2(θ), whereH1 = 1
2p2 andH2 = Ep(θ). We can see that Hamilton’s equations

for H1 are

dθ

dτ
= 0,

dp

dτ
= −∂Ep(θ)

∂θ
(2.52)

which induce the flow map

Φε,H1

(
θ
p

)
=

[
θ

p− ε∂Ep(θ)
∂θ

]
(2.53)

Similarly for H2, Hamilton’s equations are simply

dθ

dτ
= p,

dp

dτ
= 0 (2.54)

which induce the flow map

Φε,H2

(
θ
p

)
=

[
θ + εp

p

]
(2.55)

Taking the composition of these two flow maps, we obtain the symplectic Euler method

of solving Hamilton’s equations, which we denote ΦA,

ΦA = Φε,H1 ◦ Φε,H2

(
θ
p

)
= Φε,H1

[
θ + εp

p

]
=

[
θ + εp

p− ε∂Ep(θ+εp)
∂θ

]
(2.56)

Writing this in terms of the original Hamiltonian we may update the position and

momentum vectors as follows,
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θn+1 = θn + ε∇pH(θn,pn) (2.57)

pn+1 = pn − ε∇θH(θn+1,pn) (2.58)

Reversing the composition of the flow maps gives an alternative symplectic Euler

method, ΦB, whereby the momentum values are calculated first and employed in the

update of the position vector,

ΦB = Φε,H2 ◦ Φε,H1

(
θ
p

)
= Φε,H2

[
θ

p− ε∂Ep(θ)
∂θ

]
=

[
θ + ε

(
p− ε∂Ep(θ)

∂θ

)
p− ε∂Ep(θ)

∂θ

]

Again we can write this in terms of sequentially updating the position and momentum

vectors as follows,

θn+1 = θn + ε∇pH(θn,pn+1) (2.59)

pn+1 = pn − ε∇θH(θn,pn) (2.60)

Both of these algorithms are first order methods and turn out to be superior to the Euler

scheme applied directly to the joint vector z. An illustrative comparison is shown in

Figure 2.1. This approach of splitting Hamiltonians easily allows higher order schemes

to be constructed; we can simply by split the Hamiltonian into more components with

fractional time steps, such that the overall time step of their composition is equal to 1,

for both potential and kinetic energy terms (122).

An important example of this is the splitting H = H1 + H2 + H3, where H1 =

1
2Ep = 1

2p2, H2 = Ek and H3 = 1
2Ep = 1

2p2, which corresponds to the composition of

the following flow maps,

Φ ε
2
,H1
◦ Φε,H2 ◦ Φ ε

2
,H3

(2.61)

This scheme may be used for separable Hamiltonians, since we assumed that the po-

tential energy was only a function of the position, θ, and that the kinetic energy was

only a function of the momentum, p. Writing this composition out in full, we obtain

the Leapfrog algorithm,
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pn+ 1
2 = pn − ε

2

∂Ep(θ
n)

∂θ
(2.62)

θn+1 = θn + εpn+ 1
2 (2.63)

pn+1 = pn+ 1
2 − ε

2

∂Ep(θ
n+1)

∂θ
(2.64)

This integration scheme is a second order method and is commonly used for integrating

conservative systems defined in terms of a separable Hamiltonian, due to to its low

divergence from true trajectories and relatively good energy preservation over time.

This Leapfrog scheme may also be derived from the two symplectic Euler schemes, by

considering the composition of the first with the second scheme, i.e. a half step using

Euler-B, then a half step using Euler-A,

Φ ε
2
,HA ◦ Φ ε

2
,HB (2.65)

which results in the following updating scheme

θn+ 1
2 = θn +

ε

2
pn+ 1

2 (2.66)

pn+ 1
2 = pn − ε

2

∂Ep(θ
n)

∂θ
(2.67)

θn+1 = θn+ 1
2 +

ε

2
pn+ 1

2 (2.68)

pn+1 = pn+ 1
2 − ε

2

∂Ep(θ
n+1)

∂θ
(2.69)

This may be simplified by substituting the first equation for θn+ 1
2 into the third equa-

tion. We may obtain a more general version of the Leapfrog algorithm by rewriting it

in terms of partial derivatives of the original Hamiltonian, such that

pn+ 1
2 = pn − ε

2
∇θH(θn,pn+ 1

2 ) (2.70)

θn+1 = θn +
ε

2

[
∇pH(θn,pn+ 1

2 ) +∇pH(θn+1,pn+ 1
2 )
]

(2.71)

pn+1 = pn+ 1
2 − ε

2
∇θH(θn+1,pn+ 1

2 ) (2.72)

34



2.3 Methods of Numerical Integration

This is the Störmer-Verlet or Generalised Leapfrog integration scheme and its equations

are explicit for separable Hamiltonians. For non-separable Hamiltonians, however, the

first two equations are defined implicitly; the same unknown term appears on both

sides of the equation. This must then be solved with the aid of an additional numerical

scheme, such as fixed point iterations. We shall discuss this further in Chapter 3 and

for now consider only separable Hamiltonian systems.

2.3.3 Illustrative Example: Parameters of a Gaussian Distribution

We can see the performance of such numerical integration schemes by considering a

Hamiltonian system in which the potential energy is given by the negative log-likelihood

of a simple statistical model, in this case a Gaussian distribution. We shall present

more detail about this statistical interpretation of a Hamiltonian later in Section 2.4,

but for the time being let us simply consider N = 30 observations drawn from a

Gaussian distribution N(y|µ = 0, σ = 10), such that our parameter (position) space is

2-dimensional. The log-likelihood for such a model follows as

L(y|µ, σ) ∝ −N log(σ)− 1

2σ2

N∑
n

(yn − µ)2 (2.73)

In order to solve Hamilton’s equations, we also need the derivatives of this expression

with respect to each of the parameters µ and σ. These follow as

∂L

∂µ
=

1

σ2

N∑
n

(yn − µ) (2.74)

∂L

∂µ
= −N

σ
+

1

σ3

N∑
n

(yn − µ)2 (2.75)

(2.76)

We initialise our parameters at µ = 2 and σ = 10, and initialise the momentum

variables at p = [1, 1]. We then integrate the appropriate Hamiltonian for 50 iterations

using the Euler, symplectic Euler and Leapfrog schemes with a stepsize of 0.1. Figure

2.1 shows both the trajectories in the parameter space and the fluctuations in the

total energy H. The Euler scheme has very poor accuracy overall. The symplectic
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Euler scheme has much better numerical accuracy for the position variables, however

the total energy fluctuates rather dramatically. In contrast, the higher order Leapfrog

scheme has visibly much better accuracy, both in terms of the position variables and

preservation of total energy.

Figure 2.1: Comparison of integration schemes for Hamilton’s Equations - The

left hand plot shows the trajectories of the position variables using a Hamiltonian whose

potential energy is defined by the negative log-likelihood of a simple Gaussian statistical

model. The right hand side shows the total energy of the Hamiltonian at each step of the

integration scheme. In both plots the Euler scheme output is red, the symplectic Euler

scheme output is blue and the Leapfrog scheme is black.

2.3.4 Properties of Integration Schemes

It is now interesting to investigate the fundamental properties these integration schemes

possess that make them particularly well suited for solving the Hamiltonian dynamics

of a conservative system. The Leapfrog integrator is another example of a symplectic

map, albeit a discrete map in contrast to the continuous symplectic map induced by

Hamilton’s equations, and this turns out to be the key property that enables accurate

results to be calculated for such systems. As we saw earlier in this chapter, we can

characterise symplecticness by considering the flow map of a transformation. An inte-

gration scheme with flow map Φ from R2d to R2d is volume preserving if the symplectic

condition holds

[
∂

∂z
Φ(z)

]T
J−1

[
∂

∂z
Φ(z)

]
= J−1 (2.77)
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where J is the symplectic structure matrix, which is given by representing the Hamil-

tonian in its canonical form (Equation 2.23). We can now show that the standard

Euler scheme is not symplectic, which explains its poor accuracy when integrating a

symplectic Hamiltonian system. We may calculate the derivative of the flow map of

the Euler method,

∂

∂z
Φ(z) =

[
∂θn+1

∂θn
∂θn+1

∂pn

∂pn+1

∂θn
∂pn+1

∂pn

]
=

[
I + εHθp(θn,pn) εHpp(θn,pn)
−εHθθ(θn,pn) I− εHpθ(θn,pn)

]
Noting that J−1 = −J, and denoting the partial derivative of H(θn,pn) with respect

to θ by Hθ, we see that

[
∂

∂z
Φ(z)

]T
J−1

[
∂

∂z
Φ(z)

]
=

[
I + εHθp −εHθθ
εHpp I− εHpθ

] [
0 −I
I 0

] [
I + εHθp εHpp

−εHθθ I− εHpθ

]
=

[
0 I + 2εHθp

I− ε2HθpHpθ + ε2HppHθθ 0

]
6= J−1

and so the standard Euler scheme is not symplectic. It can be verified that the symplec-

tic Euler schemes are indeed, as their name suggests, symplectic by implicitly differen-

tiating them and substituting the result into Equation 2.77 to show that the symplectic

condition holds. The power of the splitting method to produce new schemes lies in the

fact that the composition of symplectic flow maps preserves the symplectic property.

This follows straightforwardly by considering two symplectic maps Φ1 and Φ2, and

noting that their composition also satisfies the symplectic condition since, using the

chain rule,

[
∂Φ1

∂z

∂Φ2

∂∂z

]T
J−1

[
∂Φ1

∂z

∂Φ2

∂∂z

]
=

[
∂Φ2

∂z

]T [∂Φ1

∂z

T

J−1∂Φ1

∂z

] [
∂Φ2

∂z

]
(2.78)

=

[
∂Φ2

∂z

T

J−1∂Φ2

∂z

]
(2.79)

= J−1 (2.80)

From this it follows that the Generalised Leapfrog scheme must also be symplectic, as

it may be described as a composition of the two symplectic Euler schemes. Another
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observation we may make is that Newton’s equations are time-reversible, therefore we

may wish to have an integration scheme that is also time-reversible. Time-reversibility

also turns out to be very useful for defining a valid MCMC scheme as it allows the

detailed balance condition to be easily satisfied. If we reverse the timestep for the

Leapfrog method, we see that we end up back at exactly the same starting point, and so

this method is time-reversible. Let us consider one iteration of the Generalised Leapfrog

method as a straightforward example. We perform one iteration of this integrator with

a time step ε, moving from a point (θ,p) to (θ∗,p∗), via a half momentum step denoted

by p
1
2 . The equations follow as

p
1
2 = p− ε

2
∇θH(θ,p

1
2 ) (2.81)

θ∗ = θ +
ε

2
∇pH(θ,p

1
2 ) +

ε

2
∇pH(θ∗,p

1
2 ) (2.82)

p∗ = p
1
2 − ε

2
∇θH(θ∗,p

1
2 ) (2.83)

Let us now consider the backwards trajectory by once again applying one iteration of

the Generalised Leapfrog method, negating the timestep and starting at (θ∗,p∗),

p̂
1
2 = p∗ +

ε

2
∇θH(θ∗, p̂

1
2 ) (2.84)

θ̂ = θ∗ − ε

2
∇pH(θ∗, p̂

1
2 )− ε

2
∇pH(θ̂, p̂

1
2 ) (2.85)

p̂ = p̂
1
2 +

ε

2
∇θH(θ̂, p̂

1
2 ) (2.86)

where the newly obtained position and momentum values are denoted by θ̂ and p̂

respectively. We can see that by rearranging Equation 2.84 (the first step of the inte-

grator with the time reversed) we can compare with Equation 2.83 (the last step of the

integrator in forward time). Since the only unknown variable is p̂
1
2 , we conclude that

p̂
1
2 = p

1
2 . We can then rearrange Equation 2.85 and see that we can directly compare

with Equation 2.82. Once again, since the only unknown variable is θ̂, we conclude that

θ̂ = θ. Finally, we can rearrange Equation 2.86 and, comparing with Equation 2.81,

we conclude that p̂ = p, since p̂ is the only unknown variable. We note that we can

also instead negate p and integrate forwards in time to obtain the same results, due to

the symmetry of the Hamiltonian. By solving the implicit equations of the Generalised
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Leapfrog method, we can obtain exactly the same reverse path by negating t, and so

our method is reversible.

Molecular Dynamics simulations are often run by integrating a Hamiltonian system

using an accurate symplectic numerical scheme, such as the Leapfrog method we have

just seen. This particular method is popular because of its simple form and relatively

stable numerical properties. We may obtain even more accurate results by considering

higher order symplectic methods and there exists a large literature examining geomet-

ric integrators for a wide variety of Hamiltonian systems in many different contexts

(83, 122). Much research has also focused on investigating their numerical properties,

particularly with respect to stability and the rate of divergence from true solutions

(122).

Regardless of the numerical method used however, such approaches are not guaran-

teed to result in samples from the true stationary distribution, and often it is difficult to

quantify by exactly how much the results deviate from the true solution. This problem

may be solved by considering a statistical perspective and combining Molecular Dynam-

ics approaches with a Metropolis-Hastings acceptance step to correct for discretisation

errors.

2.4 Hamiltonian Monte Carlo

We can consider Hamiltonian Monte Carlo from two perspectives; from a Molecular

Dynamics viewpoint we see HMC as a method of correcting the errors introduced by a

discretisation of Hamilton’s equations. From a statistics point of view, we see the use

of Hamiltonian dynamics as an effective proposal mechanism for MCMC, such that the

proposal states will be far from the current state and accepted with high probability.

Molecular dynamics was put on statistically more solid ground by Duane et al. (57),

who combined its ideas with related concepts from MCMC methods. Until this point

these two approaches had been considered only separately, even though there is a great

overlap in the type of problem they are trying to solve. The approach is to employ a

standard discretised molecular dynamics scheme and correct for the integration error

at the end of the simulation step by accepting or rejecting the move according to

a Metropolis-Hastings ratio involving the total energy. The main advantage of this

approach is that we need no longer be concerned with obtaining great accuracy in
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the integration step, as the samples drawn from this statistically corrected version of

molecular dynamics will still be guaranteed to be from the desired target distribution.

The connection with more general statistical models was then made by Neal (145), who

demonstrated that the Hamiltonian could be defined in terms of the parameters of a

statistical model with the potential energy given by its negative log-likelihood.

Let us now focus on Hamiltonian dynamics from this statistical point of view. We

may interpret the coordinate vector θ as a random variable θ ∈ RD with density p(θ),

and we interpret the momentum p ∈ RD as an independent auxiliary variable with

density p(p) = N(p|0,M). The joint density follows in factorised form as p(θ,p) =

p(θ)p(p) = p(θ)N(p|0,M), and the Hamiltonian has a natural interpretation as the

negative logarithm of this joint likelihood

H(θ,p) = −L(θ) +
1

2
log
(
(2π)D|M|

)
+

1

2
pTM−1p (2.87)

where we have added an additional normalisation term for the Gaussian momentum,

such that the marginals correspond to the desired target distributions. We can see this

by integrating the negative exponential of the Hamiltonian with respect to p

p(θ) ∝
∫

exp(−H(θ,p))dp =
exp{L(θ)}√

(2π)D|M|

∫
exp

{
−1

2
pTM−1p

}
dp (2.88)

= exp{L(θ)} (2.89)

and by integrating the Hamiltonian with respect to θ we obtain

p(p) ∝
∫

exp(−H(θ,p))dθ =
exp

{
−1

2pTM−1p
}√

(2π)D|M|

∫
exp{L(θ)}dθ (2.90)

= N(p|0,M) (2.91)

which is the density of the momentum p(p|0,M). The mass matrix in the Hamiltonian

therefore corresponds to the covariance matrix of our auxiliary variable. As before, the

time evolution of this system may be described exactly by Hamilton’s equations and

we note that these simply involve the score functions with respect to θ and p of the

joint density H(θ,p) as follows
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dθ

dτ
= ∇pH(θ,p) = M−1p (2.92)

dp

dτ
= −∇θH(θ,p) = ∇θL(θ) (2.93)

where we denote the score function using the more succinct nabla notation, which we

now use for the rest of this chapter. We may therefore obtain samples from our joint

distribution p(θ,p) by simulating points from this system according to Hamiltonian

dynamics. Except in elementary cases, there are generally no analytic solutions to

these equations of motion, and so for practical applications we must resort to numer-

ical methods to obtain approximate solutions, as we saw in the previous section. Any

discretisation introduces some integration error, and consequently the samples we ob-

tain are no longer from the target distribution we are interested in. This is addressed

by embedding the HMC proposals within a Metropolis-Hastings algorithm.

We may integrate Hamilton’s equations using the Leapfrog integrator introduced in

the previous section. This integration method relies on the fact that the Hamiltonian

is separable and in statistical terms this means that the joint distribution must be

factorisable. The Leapfrog integrator is as follows

p(τ + ε/2) = p(τ) + (ε/2)∇θL(θ(τ)) (2.94)

θ(τ + ε) = θ(τ) + εM−1p(τ + ε/2) (2.95)

p(τ + ε) = p(τ + ε/2) + (ε/2)∇θL(θ(τ + ε)) (2.96)

Due to the volume preserving property of the integrator, the determinant of the Ja-

cobian matrix for the mapping defined by Φτ need not be taken into account in the

Hastings ratio for calculating the acceptance probability. Therefore for a mapping

(θ,p) 7→ (θ∗,p∗) obtained from a number of Leapfrog integration steps, the corre-

sponding acceptance probability is min[1, exp{−H(θ∗,p∗) + H(θ,p)}] and due to the

reversibility of the dynamics, the joint density and hence the marginals, p(θ) and p(p),

are invariant (148). We can explicitly see how detailed balance is satisfied,

p(xi)T (xj |xi) = p(xj)T (xi|xj),∀i, j (2.97)
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Considering a small volume of phase space xi = [θi,pi], and all other small volumes

of phase space xj = [θj ,pj ] to which xi can be mapped via a sequence of simulated

Hamiltonian dynamics steps using a symplectic, time-reversible integrator. Firstly,

since the transformation is volume preserving, the volume at xi is the same as the

volume at xj . Secondly, since the mapping is time-reversible the probability of moving

from xi to xj is the same as the reverse move. We then see that Equation 2.97 is

satisfied for the joint density given by the Hamiltonian since,

p(xi)T (xj |xi) =
exp(−H(xi))

z
min[1, exp(−H(xj))− exp(−H(xi))] (2.98)

=
exp(−H(xj))

z
min[1, exp(−H(xi))− exp(−H(xj))] (2.99)

= p(xj)T (xi|xj) (2.100)

where z is the unknown normalising constant. From a practical point of view, the

acceptance probability of such proposal steps can be directly controlled by limiting

the integration error through the choice of an appropriately small step size, ε. In

practice this can either be fixed or drawn from some distribution; the latter might be

helpful when the Markov chain starts far from the mode in the tails of the stationary

distribution, where a different stepsize may be needed to get accurate trajectories (148).

For separable Hamiltonians, the Leapfrog integrator therefore provides a determin-

istic proposal mechanism; given the current parameters of our statistical model, θ, and

random momentum values, p, that are drawn exactly from the marginal distribution

describing the kinetic energy, we obtain proposed values θ∗ and p∗ via numerical inte-

gration. These proposed values are accepted or rejected to ensure convergence to the

correct stationary distribution, and so this Hamiltonian Monte Carlo method produces

a time-reversible Markov chain that is ergodic and satisfies detailed balance (148). We

can see that the stationary marginal distribution is indeed our target distribution of

interest p(θ), which may be obtained by simply disregarding the momentum samples,

since p(θ) ∝ p(θ,p).

Hamiltonian Monte Carlo promises to offer more efficient sampling from high di-

mensional probability distributions by effectively reducing the amount of random walk

present in the parameter values being proposed and exploiting the first order geometric

information of the target density with respect to the model parameters. This has indeed
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been shown to be the case for relatively simple, albeit high-dimensional, multivariate

normal distributions, however there has been relatively little application to more com-

plex statistical models, with the notable exception of Neal (146). We believe the reason

for this lies in the amount of tuning that is often required to obtain reasonable mixing

and rates of acceptance, although there do exist heuristics for certain classes of models

used for linear and nonlinear regression (146). The two main parameters that require

tuning are the number of leapfrog steps, N , and the size of each leapfrog step, ε. Set-

ting different leapfrog stepsizes along different directions can be equivalently encoded

in the mass matrix M (146, 148), which we will look at in more detail in Chapter 3.

The use of exploratory runs of an MCMC sampler has been suggested (84) to obtain

initial estimates of the target distribution and inform step sizes, however there is the

obvious associated computational cost and the fact that this may not be feasible for

very complex, high dimensional and potentially multimodal distributions.

2.5 Metropolis-adjusted Langevin Algorithm

An alternative approach to simulating Molecular Dynamics is to use a Langevin diffu-

sion which describes the random movement of molecules in terms of a Brownian motion.

Let us consider a random variable θ ∈ RD with probability density p(θ) and denote the

log density as L(θ) ≡ log p(θ). A Langevin diffusion is defined by the continuous-time

stochastic differential equation (SDE)

dθ(t) =
1

2
∇θL(θ(t))dt+ db(t) (2.101)

where b denotes a D-dimensional Brownian motion. It is assumed that p(θ) is every-

where non-zero and differentiable, such that ∇θL(θ(t)) is suitably well defined.

It has been shown that this continuous-time SDE converges to a unique invariant

stationary distribution (105), however the discretised form of the SDE, the Unadjusted

Langevin Diffusion (151), may not always converge and indeed may end up converging

to a completely different stationary distribution. Despite this potential problem, the

Langevin diffusion was employed in molecular dynamics in the late 1970s (172, 199) as a

means of simulating molecular interactions, with further applications to areas of physics
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appearing throughout the next decade (15, 42). A first order Euler discretisation of

the SDE gives the following proposal mechanism

θn+1 = θn +
ε2

2
∇θL(θn) + εzn (2.102)

where z ∼ N(z|0, I) and ε is the integration stepsize. With this naive approximation,

convergence to the invariant distribution p(θ) is no longer guaranteed due to the first-

order integration error introduced by the finite step size ε. In a similar manner to Duane

et al. (57), a simple modification of the Unadjusted Langevin Diffusion was proposed to

circumvent this problem; we may use the discretised diffusion as a proposal step within

a Metropolis-Hastings algorithm (80, 104) in order to correct any numerical errors, just

as we did for a discretised Hamiltonian. This Metropolis Adjusted Langevin Algorithm

(MALA) is now guaranteed to converge to the correct stationary distribution. Let us

denote

µ(θn, ε) = θn +
ε2

2
∇θL(θn) (2.103)

then the discrete form of the SDE (Equation 2.101) defines a proposal density

q(θ∗|θn) = N(θ∗|µ(θn, ε), ε2I) (2.104)

with acceptance probability of the standard form, min{1, p(θ∗)q(θn|θ∗)/p(θn)q(θ∗|θn)}.
This “Metropolised” version of a discrete Langevin diffusion has been theoretically

examined in (169, 171), where the authors investigate the rate of convergence under

different conditions on the tails of the target distribution. The optimal scaling ε for

MALA has also been theoretically analysed in the limit as the dimension D → ∞ for

factorisable p(θ) (168) and the optimal value of the acceptance rate has been calculated

to be around 0.574, although in practice there may be reasonable performance using an

acceptance rate of between 40% and 70%. These asymptotic results only hold once the

Markov chain has reached stationarity, and more recently there has been investigation

into the optimal scaling for the transient regimes, in which the chain has not yet reached

equilibrium (38).
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As the noise term z is an isotropic standardised Normal variate, MALA is implicitly

defined in a Euclidean geometry with a basis over this space defined canonically in

terms of the parameters of the model. Proposed movement in each of these directions is

equally likely, however we note that the probability density may change at dramatically

different rates in each of these directions, so although the drift term in the proposal

mechanism for MALA in Equation 2.104 is defined in terms of a Euclidean form of

the gradient information, it is clear that an isotropic diffusion will be inefficient for

strongly correlated variables θ with widely differing variances, since the step size is

effectively forced to accommodate the variate with the smallest variance. This issue

can be partially addressed (38) by employing a pre-conditioning matrix M such that

θn+1 = θn +
ε2

2
M−1∇θL(θn) + εM−1zn (2.105)

The use of a pre-conditioning matrix is simply a linear transformation of the pa-

rameters, which may be interpreted as a change of basis. It might be hoped that this

change of basis results in the transformed space being less correlated and easier to

explore, allowing for larger proposal steps to be accepted. The tuning of MALA via

the careful choice of step size and pre-conditioning matrix often plays a pivotal role

in obtaining an efficient Markov chain with low correlation. Although it has proved

useful to use pre-conditioning based on some estimate of the second order structure

of the target density (116), it is often unclear how the pre-conditioning matrix should

be defined in any principled manner. In particular we note that a particular choice

of pre-conditioning may well be inappropriate for different regions of parameter space,

and in addition different scalings may be necessary for the transient and stationary

regimes of the Markov process as demonstrated in (38). We investigate this further in

Chapter 4 with the example of a log-Gaussian Cox model.

There is an interesting connection between HMC and MALA; if we consider a

single Leapfrog step, we see that by combining the update equations we obtain a single

equation of the form,

θ(τ + ε) = θ(τ) +
ε2

2
M−1∇θL(θ(τ)) + εM−1p(τ) (2.106)
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which can be interpreted as a discretised pre-conditioned Langevin diffusion as em-

ployed in MALA. We can now see that HMC will have similar issues to MALA with

respect to choosing a suitable basis. In the case of HMC, the momentum variables are

implicitly defined on a Euclidean space, with the canonical basis defined through the

use of an identity mass matrix. Once again, it is not entirely clear how such a mass

matrix could be chosen in a principled manner for different statistical models. Some

rules of thumb have been suggested for tuning the mass matrix (35, 146) however these

typically rely on some knowledge of the marginal distributions of the model parameters,

which for most problems are of course unknown at the time of simulation. Exploratory

runs of HMC, or indeed any other MCMC method, could be used to obtain estimates

of such information, however such an approach is rather ad hoc and the exploratory

simulations themselves may well have to be carefully tuned manually for individual

problems. Even with prior knowledge regarding the marginal variances, different mass

matrices may still be desirable for efficient sampling in the transient and stationary

phases of the Markov chain. Given a fixed mass matrix the acceptance rate can of

course be directly adjusted by choosing an appropriate integration step size, however

we shall see in the following chapters how this does not necessarily translate into fast

exploration of the target density.

2.6 Conclusions

Two separate ideas were developed around the 1950s for estimating the average prop-

erties of complex physical systems. Monte Carlo methods approached the problem by

averaging over a large number of random samples, obtained for example by a Markov

chain exploring the parameter space. Molecular Dynamics methods considered the evo-

lution of a dynamical system based on differential equations describing its Hamiltonian

mechanics and makes arguments based on ergodic theorems that the time average of

such a system will approximately converge to the same value as the space average. We

saw how a Langevin diffusion could also be used for this purpose. For physically real-

istic systems, Molecular Dynamics has the advantage of also being able to probe time

dependent properties, such as the effect of perturbations to the system. We have seen

how both of these approaches may usefully be applied to arbitrary statistical models,
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and indeed the statistical properties of both methods may be improved by combining

them in a single algorithm, Hamiltonian Monte Carlo.

The main problem associated with applying these methods to statistical models

is that of setting the pre-conditioning or mass matrix. Indeed this is likely to be

the reason that such methods have not been more enthusiastically adopted by the

statistical community in general. In the next chapter we shall address this shortcoming

by considering the use of geometric information to set the pre-conditioning matrix in

MALA and the mass matrix in HMC.

While approaching this task we bear in mind the original problem of performing

inference over statistical models based on systems of ODEs, where one of the main

issues is the varying sensitivities of different parameter combinations on the model

output, which directly affect the rate of change in probability mass of the target dis-

tribution with respect to these parameters. We will see that it is possible to take into

account these sensitivities automatically and that by exploiting the local structure of

the target density when proposing moves using these dynamical MCMC methods, we

can drastically improve the overall statistical properties of our Markov chain, such as

convergence and mixing. The local geometric structure of the target density may be

conveniently expressed in terms of the Expected Fisher Information, which is obtained

directly using the sensitivity equations of an ODE model. It turns out that the Fisher

Information has some very attractive properties that provide us with an ideal starting

point for developing a more general theory that allows us to integrate deeper geometric

structure into a principled MCMC methodology.
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3

Riemannian Manifold MCMC

Methods

The dynamical sampling methods introduced in the previous chapter are implicitly

defined on a simple Euclidean or vector space and there is in fact much more geometric

information available to us; indeed statistical models have a natural geometric structure

that is Riemannian in nature. We therefore generalise these sampling methods by

defining them on a Riemannian manifold, such that proposal steps take into account

the higher-order geometric information that is present. This results in more efficient

sampling algorithms that can propose steps in the parameter space of a statistical model

in which distance is measured in terms of the changes in probability mass, instead of the

changes in the parameter values themselves. This chapter follows from work published

with discussion in the Journal of the Royal Statistical Society: Series B (77).

3.1 Introduction

The idea of defining a distance between two parameterised probability distributions

dates back more than 70 years to Rao (161) and Jeffreys (98). Much work has been

done since then elucidating the relationship between statistics and Riemannian ge-

ometry, in particular examining geometric concepts such as distance, curvature and

geodesics on statistical manifolds, within a field that has become known as Informa-

tion Geometry (8). In the immediate 30 years after this relationship between statistics

and differential geometry had been established, relatively little progress was made in
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this area and it wasn’t until Efron established a result characterising the curvature of

exponential families (58) that there was a revival of interest. Much of the early work

in this field in the 1970s and 1980s was primarily theoretical, with the development of

geometries to describe higher order asymptotic theory, characterisation of exponential

families and inference in nonlinear regression (103). Over the last 20 years there has

been a second revival due to widely available high-speed computing, and differential ge-

ometry has subsequently had a much bigger impact on practical applications with more

emphasis being placed on computational aspects. It has been applied to many other

fields including econometrics (131), computer vision (136, 153), and machine learning

(92, 121). Many of the required computations however can still be computationally

expensive, and active areas of research often have to focus on how to implement these

ideas in a computationally feasible manner. Calculating “straight” lines or geodesics

between two points in a Riemannian geometry can be very useful, for example, in

providing a natural method of interpolation for objects that can be represented as a

Riemannian manifold, such as positive semi-definite matrices (153), however the bal-

ance between computational expense and gains in efficiency must be carefully weighed

when considering this geometric approach.

3.1.1 Why Consider a Riemannian Geometry?

Our motivation for looking at the geometry of posterior distributions began with inves-

tigating Bayesian inference over the statistical models based on systems of ODEs that

we can use to describe biological systems. In previous work (26, 27) it was observed that

equal perturbations in different model parameters could have very different effects on

the output of the ODE model, and hence on the resulting probability. Such differences

are due to the strong nonlinearities that are often present in such statistical models,

and indeed the nonlinearities are often necessary to accurately describe useful features

of biological systems such as robustness; biochemical systems in plants, for example,

need to cope with a wide variety of inputs, such as varying temperatures and levels of

light, and yet still be able to function properly in terms of correctly regulating the levels

of various proteins, which are modelled as outputs of the system. There are therefore

certain parameters that have large effects on the output of such models when subject

to small perturbations, and other parameters that can have very little effect even when

perturbed by much larger amounts. When we perform Bayesian inference over such
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systems, we want to find sets of parameters that have high probability of accurately

characterising the data given a particular model; from this perspective it makes sense

to define similarity between sets of parameters in terms of a distance based on the

output rather than the input of the system.

Sensitivity analysis of dynamical systems frequently forms an important part of gen-

eral investigation in systems biology and often such sensitivity analysis is performed

by looking at some second order statistics of system perturbations, for example as de-

scribed by the Expected Fisher Information. Somewhat conveniently, it is exactly this

quantity that Rao (161) discovered plays a useful role in defining distances between

probability densities; indeed he showed that the use of the Expected Fisher Informa-

tion as a metric endows a set of parameterised probability density functions with a

Riemannian geometry. There is therefore a natural link between the sensitivity anal-

ysis of a statistical model and the definition of distance between model parameters in

terms of a Riemannian geometry.

First order geometric information is already commonly employed in many optimi-

sation methods and MCMC sampling algorithms. In some instances, their use may

drastically speed up the convergence to a local maximum/minimum point or station-

ary distribution, respectively, however in other cases such algorithms exhibit very slow

convergence. This happens when the gradients are not isotropic in magnitude (6); gra-

dients may vary greatly in different directions and the rate of exploration of a parameter

space may in addition be dependent on the problem-specific choice of parameterisation.

This may often be seen most clearly in the proposed paths using Hamiltonian Monte

Carlo, an example of which is given in Figure 3.1.

Methods using the standard gradient implicitly assume that the gradient in each

direction is approximately constant over a small distance, when in fact these gradients

may rapidly change over short distances. In Figure 3.1 the chain starts on the top

of an elongated probability distribution. If we consider the standard gradient, then

the steepest ascent is along the x-axis, rather than diagonally downwards towards the

maximum point. When we consider the change in this gradient however, we see that

it changes more rapidly along the x-axis than along the direction pointing toward the

maximum. Intuitively, this means that moving “greedily” in the steepest direction

may mean that we more rapidly reach a point at which we are moving down a gradient

rather than up. Using second order geometric information therefore gives us a much
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Figure 3.1: Slow convergence of a Markov chain using Hamiltonian Monte

Carlo - This example is from the stochastic volatility model investigated in Chapter 4.

It demonstrates HMC implicitly defined on a Euclidean space and slowly converging to a

non-isotropic stationary distribution.

better idea of the direction in which we should be exploring, and in the optimisation

literature this is often known as using the natural gradient (6); in other words, we wish

to follow the steepest gradient relative to the local geometry at the current point, and

this is intimately linked with the idea of proposing shortest paths across a Riemannian

manifold.

3.1.2 A Quick Reminder of Euclidean Geometry

Let us first remind ourselves of some properties of Euclidean geometry before examining

the merits of defining distance using a different geometry that is local instead of global.

Many algorithms are implicitly defined on a vector space with a Euclidean geometry.

Let us consider the n-dimensional real space Rn as an example. Imposing a Euclidean

geometry means employing a measure of distance between 2 points θ and θ + εθ that

is given by
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DE(θ,θ + εθ) =

√√√√ D∑
i=1

εθ2
i (3.1)

=
√
εθT .εθ = ||εθ|| (3.2)

which is the Euclidean norm. The same is true of standard MCMC algorithms; we

implicitly use this canonical coordinate system to propose moves in the parameter

space without considering in advance the likely changes in probability mass. We can

see what this means in practice by thinking about how we measure distance on a map.

Maps often represent areas of the Earth as if they were flat and we use a distance

measure that is isotropic regardless of the geographical landscape. According to the

map representation, the distance between any two points is the same whether the terrain

is a gentle hill or a steep mountain. It is obvious however that the distance travelled

across the actual terrain depends not only on the 2-dimensional Euclidean coordinates

but also on any changes in height, which we can describe using some function of the

coordinates. This analogy transfers to the case of thinking about statistical models

with the coordinates now representing the model parameter values and the height

representing the probability mass at each point. In other words, a better measure of

the distance between two points in a parameter space may have a more complicated

structure defined in terms of the difference in some function of the parameters, rather

than directly based on differences in the parameter values themselves.

As a simple example we can consider the distance between univariate normal dis-

tributions given a single data point x = 0, where the coordinates of our space are given

by (µ, σ), the mean and standard deviation, respectively. Let us consider a measure

of dissimilarity between two points (µ1, σ1) and (µ2, σ2) in terms of the difference in

likelihood of this simple statistical model. Calculating the likelihoods, we see that the

difference between the points (1, 1) and (2, 1) is 0.188; this is much larger than the

difference between (1, 10) and (2, 10), which is just 0.0006. On the other hand, using

the standard Euclidean distance between parameter values we might come to the dif-

ferent opinion that both pairs of probability distributions are equally distant from one

another, since DE = 1 for both pairs.

The MALA method from Chapter 2 is implicitly defined with a Euclidean geometry;

the standard gradient is used and the Brownian motion is sampled from an isotropic
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Gaussian distribution. If we consider the pre-conditioned MALA, we see that this

pre-multiplication is just a linear mapping and is therefore equivalent to exploring an

inner product space, i.e. a vector space in which the linear mapping defines a change

of basis. Similarly, the HMC approach is also defined with a Euclidean geometry if

the mass matrix is equal to the identity matrix. Again, the mass matrix represents a

linear mapping that defines the basis for the vector space of momentum variables p,

and so the basis for the parameters is given by the inverse mass matrix via the relation

v = M−1p. By employing a fixed global metric in this manner, we assume that the

local geometry is the same in all areas of the parameter space and that a small change

in a particular parameter has the same effect on the output of the model irrespective

of the values of the other parameters.

The final important point we should note is that geometry is to a large extent

subjective. We may impose whichever geometry we wish, although usually we would

choose one that is helpful in describing the model in some way. From a statistical

point of view, it also makes sense that we should employ a geometry that has a deeper

statistical interpretation. Other factors may also influence our choice of geometry;

certain geometries may be computationally more tractable than others, for example.

We should keep this important notion of the subjectiveness of geometry in mind for

the rest of this chapter.

3.2 An Introduction to Riemannian Geometry

Curved spaces, far from being a mathematical abstraction, regularly occur in the real

world; a simple example being the surface of the earth embedded within the 3 dimen-

sional ambient space we inhabit, or even the shortest path taken by a beam of light

travelling nearby a massive object in space. Indeed this was described by Einstein in

his theory of relativity for which he used the formalism of Riemannian geometry.

For many statistical applications we do not need the full power of abstract differ-

ential geometry as presented in many modern mathematical texts. Indeed, also from a

pedagogical point of view, too much abstraction makes it harder for cross-disciplinary

researchers to pick up new concepts and ideas to use in their own work. This is par-

ticularly important in statistics, where statistical methodology may potentially be of

practical use to researchers in a wide variety of fields, from biology to economics. In the
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following introduction we therefore focus on the key concepts needed to work with such

objects from a computational perspective, such that the ideas may be quickly picked

up and easily implemented. There already exists a large selection of books available

on the topic giving the complete mathematical details and exploring their intricacies

more fully. Do Carmo offers a clear and very accessible introduction to the geome-

try of surfaces (31) and differential geometry (32), Marriott and Salmon provide an

excellent account from a statistical perspective (131), and more detailed accounts are

also available (34, 187, 205). The following introduction however should be sufficient

for understanding the ideas presented in this thesis in the context of developing new

MCMC methodology.

3.2.1 Differentiable Manifolds

We will first introduce the basics of Riemannian geometry from a more general per-

spective, and afterwards look at the Riemannian structure induced by a set of points

that represent a family of probability distributions.

Informally, a manifold M is an n-dimensional space that is locally Euclidean; it is

locally equivalent to Rn via some smooth transformation. A more formal definition

describes M as some set together with a collection of bijective functions (known as

charts), which map overlapping sections of M to Rn, such that there exists a map

f : M 7→ Rn such that f is a smooth continuous bijection. By using a combination of

these charts, any path on M can be continuously mapped into Rn. In this work however

we assume that there exists a single continuous chart that maps the whole of M onto

Rn. Every point on the manifold can therefore be uniquely paired with a point in Rn

and vice versa. In general, a manifold is differentiable if f is infinitely differentiable

and has continuous derivatives (32).

Given such a mathematical object, it is then possible to impose a geometry that

defines a distance between any 2 points and consequently induces more global proper-

ties of the manifold itself, such as geodesics. From an MCMC perspective, we might

sensibly regard locally similar points on a manifold to be those that have similar prob-

ability mass, however since our statistical model is parameterised in terms of the input

parameters the key point to note is that changes in the parameter values do not neces-

sarily correspond directly to changes in the probability of the model output; there may

be a complex nonlinear relationship between the two, induced by the statistical model.
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Being able to make appropriately sized steps for each parameter in terms of equal

changes in probability could therefore plausibly lead to much improved exploration of

the target distribution and the statistical properties of the samples drawn.

It is perhaps easiest to visualise a Riemannian manifold as an object embedded

within a higher dimensional space, and indeed this will be a useful idea when we later

consider a manifold from a statistical point of view. Riemannian manifolds can be

fully described locally in terms of a metric tensor without reference to an ambient

space, however it is more intuitive to learn the main concepts by thinking in terms of

an embedding space. In fact, every n-dimensional manifold can be embedded in Rm,

where m ≥ n, and this result is known as the Whitney embedding theorem. The surface

of a sphere is a familiar example of a 2 dimensional manifold sitting in a 3 dimensional

ambient or embedding space. A differentiable manifold becomes a Riemannian manifold

when we assign a smoothly varying inner product to each point on the manifold, which

in turn defines a tangent space at each point.

3.2.2 Tangent Spaces

At each point θ ∈ Rn on a Riemannian manifold M there exists a tangent space which

we denote as TθM . We can think of this as a linear approximation to the Riemannian

manifold at the point θ and this is simply a standard vector space, whose origin is the

current point on the manifold and whose vectors are tangent to this point. In terms of

the sphere example previously, we may picture this vector space by imagining a sheet

of stiff card balancing on top of the sphere at some point; all vectors in the space can be

drawn on this sheet and the single point at which the card touches the sphere represents

the origin of this vector space, as shown in Figure 3.2.

This tangent space exists independently of the coordinate system used and we can

consider the basis of the tangent space on a manifold to be defined purely in terms of

differential operators, which act on functions defining paths on the underlying manifold

(53). The vector space TθM is therefore spanned by the differential operators

[
∂

∂θ1
, . . . ,

∂

∂θn

]
(3.3)

which we may write in shorthand as [∂1 . . . ∂n]. This leads to the interpretation of the

basis vectors in the tangent space as directional derivatives; each differential operator
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θ1

θ2

Figure 3.2: Representation of the tangent space on a sphere - The tangent space

at a point on a sphere may be represented as all the vectors lying on a sheet of stiff card

pinned to the sphere at a point that denotes the origin. The basis vectors of this tangent

space are shown as θ1 and θ2.

in the basis can act on a function on the manifold to give its rate of change in each

direction.

3.2.3 Metric Tensors

The tangent space at each point θ arises when we equip our manifold with an inner

product at each point, which we can use to measure distance and angles between vectors.

This inner product is defined in terms of a metric tensor, Gθ, which defines the basis

of each tangent space TθM .

We now have the full definition that a Riemannian manifold is a differentiable

manifold in which the tangent space at each point has an inner product defined via a

metric tensor. A metric tensor is simply a generalisation of the dot product in Euclidean

space; it is a function that takes 2 vectors, t1 and t2, in the tangent space at some

point θ on the manifold M , and produces a real-valued scalar Gθ(t1, t2),

Gθ : TθM × TθM 7→ R (3.4)

This function can be used to define angles between two vectors and also the lengths of

individual vectors. Each tangent vector t1 ∈ TθM at a point on the manifold θ ∈ M
has a length ||t1|| ∈ R+, whose square is given by the inner product, such that
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||t1||2Gθ
= 〈t1, t1〉θ = tT1 Gθt1 (3.5)

This squared distance is known as the first fundamental form in Riemannian geometry

(32) and is invariant to reparameterisations of the coordinates, as we shall see later

when we consider the use of the Expected Fisher Information as a Riemannian metric

tensor. We may then obtain a vector field on a manifold by assigning a tangent vector

to each point such that this vector smoothly changes across the manifold, and this

can be defined in terms of a smooth function from an n-dimensional manifold to the

tangent space at each point, f : M → TθM .

The Riemannian metric tensor is a symmetric, bilinear, positive definite function

on M , such that

• Gθ(t1, t2) = Gθ(t2, t1)

• Gθ(t1 + t2, t3) = Gθ(t1, t3) +Gθ(t2, t3)

• Gθ(t1, t1) > 0

This metric tensor varies smoothly from point to point; for all vector fields on M,

G(t1, t2)(θ) = Gθ(t1, t2) is a smooth function of θ from M to R, where t1, t2 ∈ TθM ,

and we can therefore calculate derivatives of the metric tensor with respect to θ. It

is also possible to calculate lengths of curves on the manifold (32). Let us assume we

have some function that traces out a path on the manifold, θ(t) : R → M , then the

length of this curve on the manifold is given by

dR(θ(t)) =

∫ t2

t1

√
Gθ(t)

(
dθ

dt
,
dθ

dt

)
dt (3.6)

=

∫ t2

t1

∑
ij

G(θ(t))ij
dθi

dt

dθj

dt

 1
2

dt (3.7)

We can see that for a Euclidean geometry, when G is an identity matrix, Equation 3.6

simplifies to the standard equation for a line integral. Furthermore, if the metric tensor

is constant for all values of θ then the Riemannian manifold is equivalent to a vector

space with constant inner product.

57



3.2 An Introduction to Riemannian Geometry

3.2.4 Riemannian Manifolds from Statistical Models

We will now review how a family of probability distributions induced by a statistical

model can be represented as a Riemannian manifold. It is useful to consider first an

exponential family, which we shall present using a similar approach as (131, 144). In

this section we make use of the more succinct Einstein notation, such that summations

are denoted by adjacent upper and lower indices, for example

θisi =
I∑
i=1

θisi (3.8)

Given a random variable x this family of normalised probability distributions may be

parameterised as

p(x|θ) = exp(θisi −A(θ))m(x) (3.9)

where s(x) is a n-dimensional statistic, θ ∈ Rn the canonical parameter vector, and

m(x) is some non-negative function such that

∫
exp(θisi)m(x)dx <∞ (3.10)

The function A(θ) has the task of normalising the probability density function such

that its total density is equal to one. The function A(θ) is automatically determined

once the other functions and parameters have been specified.

One way of introducing a geometry on this family is to consider the log-likelihood,

log [p(x|θ)] = θisi −A(θ) + log [m(x)] (3.11)

∝ θisi + log [m(x)] (3.12)

We note that the log-likelihood of this family of distributions is defined up to a constant

of proportionality, and the key observation here is that this particular space of unnor-

malised log-densities has a very simple geometric structure; it forms an affine space. An

affine space pair consists of a set and a vector space, (S, V ), along with a transformation
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operation. Given a vector in V and a point in S, this transformation operation maps

this pair to another point which also lies in S. An affine space is generally interpreted

as a vector space without an origin point.

In the context of our unnormalised log exponential family, we can take our set to be

R, of which log
[
m(x) exp(θisi)

]
is a member, and our vector space to be Rn, in which

our parameter vector θ lies. We can then define our transformation to be

log
[
m(x) exp(θisi)

]
= log [m(x)] + θisi → log[m(x)] + θisi + θ̃isi

= log[m(x)] + (θi + θ̃i)si

= log
[
m(x) + exp

(
(θi + θ̃i)si

)]
This transformation satisfies the properties of an affine space since it maps into the

original set R. We therefore have an affine space in which each point represents an

unnormalised probability density in an exponential family. The choice of m(x) deter-

mines the exponential family, and conversely every such exponential family forms an

affine space.

We have seen that by working in log space, the unnormalised exponential families

exhibit a rather simple geometry. We note again that this geometrical structure is

rather arbitrary; we imposed this geometry just because it coincided with the simple

structure that we noticed was naturally present in the log exponential family. We

will see that this particular geometry is indeed very useful, however we bear in mind

that other types of geometries may also be used to describe a family of probability

distributions.

Let us now consider S as the set of all unnormalised log probability distributions,

and imagine an unnormalised log exponential family that has some parameterisation

different from the canonical parameters given in Equation 3.9. It is clear that this family

will no longer necessarily have an affine structure, but rather may form a submanifold

of the embedding space S as some kind of curved surface. Given such a representation

we can still define what it means for a path on this manifold to be “straight” via the

concept of a connection. In short, this dictates how vectors are mapped between tangent

spaces and we shall discuss this in more detail in Section 3.2.6. It turns out that using

this alternative description of “straightness” it is possible to characterise exponential

families regardless of their parameterisation (58); we may identify them in terms of their
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intrinsic qualities rather than the extrinsic parameter-dependent description, which

hints at the power of using a differential geometric approach in statistics.

For now let us focus on some manifold, M , whose points are given by the parameters

of an unnormalised density function, which we can consider as a log-likelihood of some

statistical model given some data. At a particular point θ, the derivatives of the log-

likelihood are tangent to the manifold and form a basis for the tangent space at θ,

denoted by TθM . These tangent basis vectors are simply the score vectors at θ,

∇θL =

[
∂L

∂θ1
, . . . ,

∂L

∂θn

]
(3.13)

The tangent space is a linear approximation of the manifold at a given point and it has

the same dimensionality. A natural inner product for this vector space is given by the

covariance of the basis score vectors, since the covariance function satisfies the same

properties, namely symmetry, bilinearity, and positive-definiteness. This inner product

then turns out simply to be the Expected Fisher Information

Gi,j = Cov

(
∂L

∂θi
,
∂L

∂θj

)
(3.14)

= Ep(x|θ)

(
∂L

∂θi

T ∂L

∂θj

)
(3.15)

which follows from the fact that the expectation of the score is zero,

Ep(x|θ)

(
∂L

∂θi

)
=

∫
1

p(x|θ)

∂

∂θi
p(x|θ)p(x|θ)dx (3.16)

=
∂

∂θi

∫
p(x|θ)dx (3.17)

= 0 (3.18)

The Expected Fisher Information can also be expressed in terms of second partial

derivatives, which may be easier to compute for certain problems. This can be obtained

by considering the expectation of the score function,
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Ep(x|θ)

(
∂L

∂θ

)
=

∫
∂L

∂θ
p(x|θ)dx (3.19)

=

∫
∂2L

∂θ2 p(x|θ)dx +

∫
∂L

∂θ

∂p(x|θ)

∂θ
dx (3.20)

=

∫
∂2L

∂θ2 p(x|θ)dx +

∫
∂L

∂θ

T ∂L

∂θ
p(x|θ)dx (3.21)

= Ep(x|θ)

(
∂L

∂θ

T ∂L

∂θ

)
+ Ep(x|θ)

(
∂2L

∂θ2

)
(3.22)

= 0 (3.23)

where we have used integration by parts and noted that the expectation of the score

function is equal to zero. It then follows straightforwardly that

Ep(x|θ)

(
∂L

∂θ

T ∂L

∂θ

)
= −Ep(x|θ)

(
∂2L

∂θ2

)
(3.24)

Rao (161) and Jeffreys (99) showed that the Expected Fisher Information satisfies

all the requirements for a metric tensor, and thus provides the extra structure needed

to turn our differentiable manifold into a Riemannian manifold. In (10) the authors

give the analytic expressions for geodesic distance between parameter values using this

metric for a variety of families of probability distributions, although in general geodesic

distances are analytically intractable. We shall see that while we need not necessarily

choose to use the Expected Fisher Information, it does have some useful properties that

may justify its choice.

Finally we note that although we have until now only considered exponential fami-

lies, many other families of parameterised probability density functions can be consid-

ered as Riemannian manifolds provided they satisfy the following regularity conditions

(8),

• All members have common support

• The basis vectors ∂L
∂θi

are linearly independent

• Higher order moments of ∂L
∂θi

exist

• Integration and differentiation are exchangeable with respect to parameters θ
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It has been shown that all of these properties are indeed satisfied by exponential families

(8).

3.2.5 Choosing a Metric

The Expected Fisher Information can often be convenient to use as a metric tensor.

It arises naturally by considering the covariance of vectors tangent to a manifold, its

inverse gives the best attainable asymptotic performance of any unbiased estimator

(161), it is invariant to reparameterisations of the data x (33, 40), and it has a natural

interpretation in many areas of science (66).

We will now demonstrate the invariance of the first fundamental form when using

the Expected Fisher Information specifically, remembering that this property more

generally applies to all Riemannian metric tensors. The Expected Fisher Information

defines a metric over a statistical model such that distances on the manifold of model

parameters are invariant to reparameterisations. Let us first consider two statistical

models, where one model is a reparameterisation of the other model, such that

log p(x|φ) = log p(x|θ(φ)) (3.25)

If we take derivatives of each side with respect to φ it follows that

∂ log p(x|φ)

∂φ
=
∑
k

∂ log p(x|θ(φ))

∂θk

∂θk
∂φ

(3.26)

The Expected Fisher Information then follows as

G(φ) =

(
∂θ

∂φ

)T
G(θ)

(
∂θ

∂φ

)
(3.27)

and so under the new coordinates the Expected Fisher Information is just a transforma-

tion of original using the Jacobian of the reparameterisation. We can observe how this

affects the definition of the inner product by considering two paths on the manifold,

γ(t) and γ̃(t) = φ(γ(t)). Comparing the inner products of the tangent vectors given by

the derivatives of our functions with respect to t, we see that
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(
dγ̃(t)

dt

)T
G(φ)

(
dγ̃(t)

dt

)
=

(
∂φ

∂θ

dγ(t)

dt

)T ( ∂θ
∂φ

)T
G(θ)

(
∂θ

∂φ

)(
∂φ

∂θ

dγ(t)

dt

)
=

(
dγ(t)

dt

)T ( ∂θ
∂φ

∂φ

∂θ

)T
G(θ)

(
∂φ

∂θ

∂θ

∂φ

)(
dγ(t)

dt

)
=

(
dγ(t)

dt

)T
G(θ)

(
dγ(t)

dt

)
(3.28)

The inner product is therefore coordinate-independent on a Riemannian manifold, such

that distance does not depend on the parameterisation of the statistical model. All

Riemannian metric tensors transform covariantly, in a similar manner to the Expected

Fisher Information. As a result the first fundamental form, defined as the squared

distance, is invariant in any Riemannian geometry.

Although the Expected Fisher Information has some useful properties, it has per-

haps one major disadvantage; for certain models it can be computationally intractable.

If we insist on using it in such cases, then we must resort to approximation or estimation

of this metric tensor (49, 186). An alternative is to note that we are not tied to the

Expected Fisher Information and that we may in fact use any other metric tensor that

satisfies the necessary conditions.

One useful method of obtaining new metrics is to derive them from other functions.

In Euclidean space, distances between probability distributions P can be measured

using functions that satisfy the following conditions

• Positive definiteness: ∀P1, P2, d(P1, P2) > 0

• Symmetry: d(P1, P2) = d(P2, P1)

• Triangle inequality: ∀P1, P2, P3, d(P1, P2) ≤ d(P1, P3) + d(P3, P2)

Since Riemannian manifolds are locally identifiable with Euclidean space, we require the

same properties when defining a metric. Divergence functions also provide a measure

of dissimilarity between probability distributions, indeed these types of functions were

introduced around the same time that Rao investigated Riemannian distance between

probability distributions. Such divergence functions have the property of being positive

definite, however they do not define proper Euclidean distances as they do not satisfy
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the symmetry and triangle inequality properties. One such function is the Kullback-

Leibler divergence (115) between two probability distributions, which is defined as

KL(P1||P2) =

∫
P1 log

P1

P2
dx (3.29)

= EP1

[
log

P1

P2

]
(3.30)

By considering a 2nd order Taylor approximation of the KL divergence between

two nearby probability distributions Pθ1 and Pθ1+εθ we obtain the Expected Fisher

Information. Letting u(ε) = KL(Pθ1+εθ||Pθ1), the 2nd order Taylor expansion is

u(ε) ≈ u(0) + εu′(0) +
1

2
ε2u′′(0) +O(ε3) (3.31)

Since u(0) = u′(0) = 0, we are left with only the 2nd order term.

u(ε) ≈ ε2

2

∑
ij

θi
[∫

Pθ1

(
1

Pθ1

∂Pθ1
∂θi

1

Pθ1

∂Pθ1
∂θj

)
dx

]
θj +O(ε3) (3.32)

=
ε2

2

∑
ij

θiGij(θ1)θj +O(ε3) (3.33)

=
ε2

2
θTG(θ1)θ +O(ε3) (3.34)

where G is simply the Expected Fisher Information. In fact metrics may also be derived

from other types of divergences. Amari (7) showed that a 2nd order approximation of

any divergence function gives a quadratic form that may be used as a metric,

D(Pθ1+dθ||Pθ1) ≈ 1

2

∑
ij

G(θ1)ijdθ
idθj (3.35)

In particular the f-divergences introduced by Csiszar (45) all induce a unique Rieman-

nian metric given by the Expected Fisher Information.

Another approach to deriving metrics was introduced by Burbea and Rao (23, 24)

who showed that a large class of metrics may be obtained by considering φ-entropy

functionals, which are based on convex functions. The φ-order entropy is defined as
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Hφ(P ) ≡ −
∫
X
φ(P )dx (3.36)

where P is some probability distribution in a parameterised family, and φ is any strictly

positive, twice differentiable convex function. They showed that the squared Rieman-

nian distance follows as

ds2
φ(θ) = −∆θHφ(P ) (3.37)

=

∫
φ′′(P )

[
D∑
k=1

∂P

∂θk
dθk

]2

(3.38)

=
∑
ij

Gφijdθ
idθj (3.39)

where the metric tensor is

Gφij =

∫
X
φ′′(P )

∂P

∂θi
∂P

∂θj
dx (3.40)

Choosing φ(P ) = P logP results once again in the Expected Fisher Information. We

can choose other functions that result in different metrics for measuring distance on a

Riemannian manifold of model parameters. One convenient set of such functions was

introduced by Havrda and Charat (88)

φ(P ) = (α− 1)−1(Pα − P ), α 6= 1 (3.41)

This function tends to P logP as α tends to 1, and produces the so-called α-order

entropy metric tensors. By choosing α = 2, the second derivative term of φ disappears

and we obtain a metric with the simple form

Gα=2
ij = 2

∫
∂P

∂θi
∂P

∂θj
dx (3.42)

We see that this is particularly useful for mixtures of Gaussians, since in contrast

to the Expected Fisher Information it is now analytically tractable. In addition the

required derivatives of this metric tensor are also analytically tractable for a mixture
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of Gaussians. Such φ-order entropy metric tensors have already been applied in the

field of medical statistics, in particular for imaging applications such as shape matching

(155).

Alternative versions of the Fisher Information are also available in the form of

the Observed and Empirical Fisher Information. The Observed Fisher Information is

simply the negative Hessian of the log target distribution and has the advantage of

being more easily computable and based directly on the observed data. Unfortunately,

if we consider the transformation properties of the negative Hessian we see that it

does not always transform in a manner that preserves the inner product, and hence

distances on the manifold may vary depending on the specific parameterisation used.

Considering a transformation from parameters θ to φ, the Hessian transforms as

∂L

∂φ∂φ
=

∂

∂φ

[
∂L

∂θ

∂θ

∂φ

]
=
∂θ

∂φ

T ∂L

∂θ∂θ

∂θ

∂φ
+
∂L

∂θ

∂2θ

∂φ∂φ
(3.43)

and so only transforms correctly if the score vector is zero. The Expected Fisher Infor-

mation on the other hand does transform correctly, since the expectation of the score

vector is zero. In addition, the negative Hessian is not guaranteed to be positive definite

and therefore does not constitute a proper metric tensor. Despite the potential numer-

ical problems associated with this fact, it has been used as a method of accelerating

optimisation, for example in Newton and quasi-Newton algorithms (64), and even in

developing MCMC sampling schemes (158) with the use of somewhat ad hoc schemes

to enforce positive definiteness. The Empirical Fisher Information is guaranteed to be

positive definite, however small sample sizes can adversely affect the convergence of

algorithms using it (64), and large sample sizes can result in greater computational

cost.

3.2.6 Connecting Tangent Spaces

So far we have described the differential geometric structure at individual points on

the manifold. There is just one more idea we need in order to be able to introduce

ideas of dynamics on this manifold for developing MCMC methods, and the final piece

is the concept of a connection. It is clear that if we want to develop MCMC schemes

based on differential geometry we need to be able to move around this manifold and

a connection tells us how to move vectors from the tangent space at one point on the
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manifold, to the tangent space of a neighbouring point. In other words, a connection

provides a mapping from the coordinate system of TθM to the coordinate system of

Tθ+εθM (32).

Since a vector in TθM can be described as a linear combination of the basis vectors

of TθM , it suffices to look at how these basis vectors transform. In particular we want

to know the rate of change of basis vector ∂j as it moves in the direction of the basis

vector ∂i. Again this is simply the covariant or directional derivative of the basis vector.

This operation results in another vector in tangent space, which we can again write as

a linear combination of the basis vectors as follows

∇∂i∂j = Γmij∂m (3.44)

noting the implicit sum over the basis vectors using Einstein notation. Here we have

used the Christoffel symbols as a shorthand. The Christoffel symbol Γmij denotes the

coefficient of the mth basis vector, obtained by moving the jth basis vector in the ith

direction. We can now see how a connection can be used to transport a vector from

the tangent space TθM to Tθ+dθM

vjθ+dθ = vjθ + dθiΓmij∂m (3.45)

The vector dθiΓmij∂m gives the total change in the jth component of our vector vθ, by

summing over the effect of moving a distance θi in each direction ∂i. This is visualised

in Figure 3.3.

Once again there are many ways of mapping each tangent space to its neighbours,

recalling that we may choose the geometry, with some choices being more suited to

certain situations than others. The decisions we make about which geometry to employ

can for instance be made in terms of the statistical interpretation of the geometry, or

sometimes simply in terms of computational convenience.

Another use of a connection is that it can be used to define the notion of straightness

on a manifold. Geodesics on a manifold are the equivalent of straight lines in Euclidean

space (32). We define geodesics in terms of mapping vectors along paths on the man-

ifold; if we take a vector in the tangent space of a point on a geodesic path and map

this vector to the tangent space of any other point on this path using some connection,
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Figure 3.3: Representation of a connection in a Riemannian manifold - A con-

nection in a Riemannian manifold provides a mapping of vectors from a tangent space to

another nearby tangent space in terms of changes in the underlying basis vectors.

then this tangent vector will still point in the same direction with the same magnitude.

It is immediately clear that different connections will induce different geodesic paths on

a given manifold, since the connection defines how tangent vectors map across nearby

tangent spaces. The condition for “straightness” on a manifold is therefore given by

the equation

∇θ̇θ̇ = 0 (3.46)

where we have a parameterised path θ(t) along the manifold with tangent vector θ̇,

which is the directional derivative along the path of θ with respect to t. In this equation

we impose the condition that the rate of change of the basis vectors of the tangent space

along a geodesic must be zero.

It is interesting to note that in Euclidean space the straight lines always give the

shortest route between two points, however the same is not always true for geodesics

on a manifold. On any particular manifold, the geodesics do not necessarily coincide

when using different connections. Given two points on a manifold, we could therefore

obtain two different geodesics when using different mappings between tangent spaces,

and these geodesic paths could have different lengths. This problem is resolved through

the fundamental lemma of Riemannian geometry, which states that there is a unique
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connection whose geodesics are locally1 of shortest length. This is given by the Levi-

Civita connection (32), which is sometimes also called the Riemannian connection or

metric connection. The Levi-Civita connection is given by

Γkij =
1

2
G−1
km(∂iGjm + ∂jGim − ∂mGij) (3.47)

As we have seen, geodesics on a manifold can be described as the solution to Equa-

tion 3.46. This is more commonly written in component form, in terms of the chosen

metric tensor and connection. If we define a parameterised path on the manifold as

θ(t), then the geodesics are those curves that satisfy the 2nd order differential equation

∂2θm

∂t2
+ Γmij

dθi

dt

dθj

dt
= 0 (3.48)

This is the Euler-Lagrange equation and it is closely linked with a variational ap-

proach to mechanics in which this equation can be derived based on the principle

of stationary action (83); this equation can also be more conveniently rewritten as

Hamilton’s equations and, given suitable initial conditions, it defines the path on a

Riemannian manifold along which the total energy, given by the Hamiltonian, is con-

stant. This provides a natural method for making proposals on a manifold for MCMC

algorithms, and provides a means of obtaining a Hamiltonian Monte Carlo algorithm

defined on a Riemannian manifold.

Given this method of following geodesics on a manifold, we can also choose the type

of connection we wish to employ, through which the concept of “straightness” is defined.

Although the Levi-Civita connection is a natural choice in the context of MCMC, since

it defines geodesics that are also paths of minimum length between two points, there

are a variety of other possible so-called non-metric or non-Riemannian connections we

could choose to use instead. An important example is the a family of α-connections

introduced by Cencov (33), Dawid (51, 52) and Amari (5). These connections are

indexed by the real-valued parameter α, and coincide with the Levi-Civita connection

when α = 0. The α-connections are defined as

1Consider for example the geodesics on a sphere, which are given by the great circles. We can

travel round the geodesic in two possible directions, only one of which will generally be the shortest

route. Geodesics can therefore only be described in terms of locally minimising distance.
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Γαi,jk = Γ0
i,jk −

α

2
Ti,jk (3.49)

where T is the skewness tensor, defined as

Ti,jk(α) = Ep(x|θ)

[
∂L

∂θi
∂L

∂θj
∂L

∂θk

]
(3.50)

These connections have useful interpretations in different statistical contexts, particu-

larly when considering the flatness of a manifold. A manifold can be considered flat

when there exists a coordinate system under which the metric tensor is independent of

the parameters (103); in particular exponential families form a flat manifold under the

+1-connection, and families of mixtures form a flat manifold under the −1-connection.

The +1-connection is closely related to the work presented in Efron’s seminal paper

(58), in which he introduced the idea of statistical curvature based on this connection

and uses it to quantify how well arbitrary probability distributions might be approxi-

mated using distributions from a curved exponential family. Such curvature is given by

the Riemann curvature tensor and is an intrinsic measure independent of parameteri-

sation, as opposed to the imbedding curvature which is a measure of curvature relative

to the embedding space (see e.g. (32, 119)). It is also known that there is a natural

duality between pairs of α-connections; if a manifold is flat using a +α-connection then

it will also be flat using a −α-connection, although statistical interpretations of these

properties are still the subject of current research (8). A statistical manifold can be

defined as the triple (M,G, T ), where M is a manifold, G is a metric tensor, and T is

a skewness tensor, and this was introduced by Lauritzen (119) as a means of unifying

the various related geometries suggested previously (5, 14, 59). An alternative general

framework which aims to unify this work is the preferred point geometry of Critchley

(43, 44), which provides a natural way of describing an asymmetric geometry in which

a chosen “preferred point” on the manifold plays a significant role. For example, if

the data is known to have been generated from a parameterised family of distributions

p(x|θ) for some unknown value θ = Φ then this information can be encoded using a

preferred point metric, which is defined as

GΦ
ij(θ) = Covp(x|Φ)

(
∂L

∂θi
∂L

∂θj

)
(3.51)
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The metric that this geometry induces however is not a valid Riemannian metric in

general, as it only transforms covariantly when the preferred point is equal to the

current parameters, in which case it coincides with the Expected Fisher Information.

There is clearly much greater structure available to us by considering the more

detailed, higher order geometries described in this general framework, however from

a practical point of view there is an important trade-off between complexity and the

additional benefit such complexity brings. Such an approach opens up the possibility of

introducing particular geometries suited to specific statistical models, although in this

work we decide to focus on developing geometric MCMC methods that are as widely

applicable as possible; with this aim in mind it seems that the standard Levi-Civita

(distance minimising) connection is most appropriate for this general and practical

purpose.

3.3 Riemannian Manifold MALA

We have seen how a family of probability distributions has a natural representation as

a Riemannian manifold, and we now return to the problem of sampling the parameters

of such families. We first consider a manifold version of the MALA sampling algorithm,

which we saw made proposal steps based on a stochastic differential equation defining

a Langevin diffusion. It turns out we can also define such a diffusion on a Riemannian

manifold, and so in a similar manner we can derive a sampling algorithm that takes

the underlying geometric structure into account when making proposals.

The manifold version of this Langevin diffusion equation is well known and can be

used to describe, for example, heat flow across a surface. It is based on the Laplace-

Beltrami operator (39, 105), which simply measures the divergence of a vector field on

a manifold. The stochastic differential equation defining the Langevin diffusion on a

manifold is

dθ(t) =
1

2
∇̃θL(θ(t))dt+ d ˜b(t) (3.52)

where the natural gradient (6) is ∇̃θL(θ(t)) = G−1(θ(t))∇θL(θ(t)) and the Brownian

motion on the Riemannian manifold is defined as
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db̃i(t) = |G(θ(t))|−
1
2

D∑
j=1

∂

∂θj
(G−1(θ(t))ij |G(θ(t))|

1
2 )dt+

(√
G−1(θ(t))db(t)

)
i
(3.53)

In order to understand how this equation arises we start with a couple of definitions.

Firstly, the gradient of a function on manifold, f : M → R, is defined as the vector

field

(gradf)i =
∑
j

G−1
ij

∂f

∂θj
(3.54)

We can also consider this as the gradient of the function translated into the tangent

space (a vector space) at the current point by a linear transformation using the basis

vectors defined by the metric tensor. Secondly, the divergence operator measures the

rate of change of a volume element as it moves along a vector field. Just as we considered

the idea of volume preservation of symplectic integrators in Chapter 2, so we can also

define an infinitesimal volume element on our manifold. On a Riemannian manifold

there is a natural volume form defined as

dv =
√

det(G)dθ (3.55)

and this is defined such that it is invariant under reparameterisations of the coordinates;

indeed it was this fact that lead Jeffreys to propose his eponymous prior (99). We see

that if the metric tensor is given by an identity matrix, then the volume element is the

standard Euclidean volume. The divergence operator measures the rate of change of

this volume element along a vector field and is defined as

divV =
1√

det(G)

∑
i

∂

∂θi

(√
det(G)V

)
(3.56)

where V is a vector field. Finally, the Laplace-Beltrami operator is defined using both

the gradient and the divergence

∆ = div ◦ grad (3.57)
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and this acts on functions defined on the manifold such that

∆if =
1√

det(G)

∑
i

∂

∂θi

∑
j

G−1
ij

√
det(G)

∂f

∂θj

 (3.58)

The stochastic differential equation defining the Langevin diffusion over a Riemannian

manifold is therefore made up of a drift term, which is a movement based on the natural

gradient of a function on the manifold, and a diffusion term which is defined based on

the Laplace-Beltrami operator. Indeed the SDE for Brownian motion on a manifold is

defined using the Laplace-Beltrami operator as its generator (93). Once again we see

that when the metric tensor is given by an identity matrix, then the Laplace-Beltrami

operator reduces to the standard Laplacian operator, which is simply the divergence of

the gradient on a Euclidean space.

Given the geometric structure for a statistical model, a Langevin diffusion with

invariant measure p(θ), where θ ∈ RD, can be defined directly upon the Riemannian

manifold with metric tensor G(θ) (105). Clearly in a Euclidean space where the metric

tensor is an identity matrix then Equation 3.52 reduces to the standard form of SDE

that we used to describe a Langevin diffusion in Chapter 2. The first part of the

right hand side of Equation 3.53 represents the 1st order terms of the Laplace-Beltrami

operator and these relate to the local curvature of the manifold, reducing to zero if

the metric is everywhere constant. The second term on the right hand side provides a

position specific linear transformation of the Brownian motion b(t) based on the local

metric.

Since the metric tensor is a function of the parameters θ, we can expand the ex-

pression for the ith component of the 1st order terms based on the Laplace-Beltrami

operator by differentiating as follows
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∆i =
1√

det(G)

∑
j

∂

∂θj

(
(G−1)ij

√
det(G)

)
(3.59)

= |G|−
1
2

∑
j

∂

∂θj

(
(G−1)ij

)
|G|

1
2 + |G|−

1
2

∑
j

(
(G−1)ij

∂

∂θj
|G|

1
2

)
(3.60)

= −
∑
j

(
G−1 ∂G

∂θj
G−1

)
ij

+ |G|−
1
2

∑
j

(
(G−1)ij

1

2
|G|−

1
2
∂

∂θj
|G|
)

(3.61)

= −
∑
j

(
G−1 ∂G

∂θj
G−1

)
ij

+
1

2
|G|−1

∑
j

(
(G−1)ij |G|trace

(
G−1 ∂G

∂θj

))
(3.62)

= −
∑
j

(
G−1 ∂G

∂θj
G−1

)
ij

+
1

2

∑
j

(
(G−1)ijtrace

(
G−1 ∂G

∂θj

))
(3.63)

where we have standard expressions for matrix calculus (156). Employing a first order

Euler integrator, the discrete form of the stochastic differential equation 3.52 therefore

follows as

θn+1
i = θni +

ε2

2
(G−1(θn)∇θL(θn))i − ε2

D∑
j=1

(
G−1(θn)

∂G(θn)

∂θj
G−1(θn)

)
ij

(3.64)

+
ε2

2

D∑
j=1

(
G−1(θn)

)
ij
Tr

(
G−1(θn)

∂G(θn)

∂θj

)
+
(
ε
√
G−1(θn)zn

)
i

(3.65)

= µ(θn, ε)i +
(
ε
√
G−1(θn)zn

)
i

(3.66)

which defines a proposal mechanism with density q(θ∗|θn) = N(θ∗|µ(θn, ε), ε2G−1(θn))

and acceptance probability min{1, p(θ∗)q(θn|θ∗)/p(θn)q(θ∗|θn)} to ensure convergence

to the invariant density p(θ). Immediately it is clear that the proposal mechanism

makes moves approximately along the D-dimensional manifold rather than the D-

dimensional Euclidean space, and that these moves respect the curvature at each point

of the manifold. Pseudo-code describing the full manifold MALA (mMALA) scheme is

given by Algorithm 2.

It may be computationally expensive to calculate the 3rd order derivatives needed

for working out the rate of change of the metric tensor, and so an obvious approxi-

mation is to assume these derivatives are zero for each step. In other words, for each

step we can assume that the metric is locally constant. Of course even if the curva-

ture of the manifold is not constant, this simplified proposal mechanism still defines a
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3.3 Riemannian Manifold MALA

Algorithm 2 Manifold MALA

1: Initialise current θ

2: for IterationNum = 1 to NumSamples do

3: Sample θnew based on Current θ according to first order discretisation

4: Calculate current log-likelihood L(θ) and proposed log-likelihood L(θnew)

5: Calculate log(p(θnew|θ)), log(p(θ|θnew)), log(Prior(θ)), log(Prior(θnew))

6: LogRatio = L(θnew) + log(Prior(θnew)) + log(p(θ|θnew))−L(θ)− log(Prior(θ))−
log(p(θnew|θ))

7: % Accept or reject according to Metropolis ratio

8: if LogRatio > 0 or LogRatio > log(rand) then

9: Set θ = θnew

10: end if

11: end for

correct MCMC method which converges to the target measure, as we accept or reject

moves using a Metropolis-Hastings ratio. This is equivalent to a position specific pre-

conditioned MALA proposal, where the preconditioning is dependent on the current

parameter values

θn+1 = θn +
ε2

2
G−1(θn)∇θL(θn) + ε

√
G−1(θn)zn (3.67)

For a manifold whose metric tensor is globally constant, this reduces further to the

preconditioned MALA proposal we saw in the last chapter, where the preconditioning is

effectively independent of the current parameter values. However, in contrast to before

pre-conditioning no longer needs to be chosen arbitrarily, but rather is now informed

by the geometry of the distribution we are exploring.

Intuitively we might expect such approximate proposal processes to be less be ef-

ficient in converging to the stationary distribution, since it is no longer following the

curvature of the target distribution precisely. We shall explore this further in the

experimental evaluation in the next chapter. We now consider a simple example for

the purposes of illustrating this geometric approach and gaining some insight into the

mMALA method.
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3.4 Riemannian Manifold Hamiltonian Monte Carlo

3.3.1 Illustrative Example: Parameters of a Gaussian Distribution

We return to the simple example from Chapter 2 of inferring the parameters of a

Gaussian distribution. We again consider N = 30 observations drawn from a Gaussian

distribution N(y|µ = 0, σ = 10). We shall investigate the differences in sampling the

model parameters using both MALA and mMALA schemes. For the MALA we simply

need the log-likelihood and its derivatives. For mMALA we also require the metric

tensor, given by the Expected Fisher Information, and its derivatives. The second

partial derivatives of the log-likelihood follow as

∂2L

∂µ2
= −N

σ2
(3.68)

∂2L

∂σ2
=

N

σ2
− 3

σ4

N∑
n=1

(yn − µ)2 (3.69)

∂2L

∂σ∂µ
=

∂2L

∂µ∂σ
= − 2

σ3

N∑
n=1

(yn − µ) (3.70)

and, noting that E[(yn − µ)2] = σ2, the metric tensor and its derivatives are simply

G =

[
N
σ2 0

0 2N
σ2

]
∂G

∂µ
=

[
0 0
0 0

]
∂G

∂σ
=

[
−2N
σ3 0

0 −4N
σ3

]
(3.71)

Starting at the point [µ = 0, σ = 10], we propose 50 steps using the MALA, mMALA

and simplified mMALA samplers, with stepsizes 0.005, 1 and 1 respectively. For MALA,

0.005 was the largest stepsize with which proposed moves were accepted from the

starting point. We see in Figure 3.4 how the scaling changes quickly using MALA;

large moves are taken at first, but as the gradient decreases the moves become smaller

and smaller. After 50 steps the chain is still some way from the mode, and most likely

a different stepsize is necessary in different parts of the parameter space. The manifold

methods perform far better, with both mMALA and simplified mMALA reaching the

mode without any need to rescale the stepsize.

3.4 Riemannian Manifold Hamiltonian Monte Carlo

We can now define the Hamiltonian that we saw in Chapter 2 in a more gen-

eral form on a Riemannian manifold and this allows us to obtain a Hamiltonian Monte
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3.4 Riemannian Manifold Hamiltonian Monte Carlo

Figure 3.4: Comparison of MALA, mMALA and simplified mMALA samplers

using a simple Gaussian model - Accepted moves are shown in black and rejected moves

in red. Scaling issues dramatically affect convergence of MALA with a fixed stepsize.

Carlo method that exploits the local geometric structure induced by a statistical model.

Zlochin and Baram (208) originally attempted to exploit this manifold structure within

a Molecular Dynamics framework, however their use of a non-reversible and non-

symplectic numerical integration method meant that samples were not drawn from

the correct stationary distribution; indeed even using a reversible, symplectic integra-

tion method we still need to correct for discretisation errors using a Metropolis-Hastings

step to guarantee a statistically correct MCMC procedure.

The definition of a Hamiltonian on a Riemannian manifold is straightforward. From

Newtonian mechanics we know that p = Mθ̇, and so the squared distance of each

tangent vector θ̇ under some metric M can be written in terms of the momentum

||θ̇||2M = θ̇
T
Mθ̇ = pTM−1p (3.72)

In a more general form, we can consider the case where our parameters θ define a

Riemannian manifold with metric tensor G(θ), which is induced by some statistical

model using for example the Expected Fisher Information. This now defines a position

specific squared distance such that

77



3.4 Riemannian Manifold Hamiltonian Monte Carlo

||θ̇||2G(θ) = θ̇
T
G(θ)θ̇ = pTG(θ)−1p (3.73)

We can define the kinetic energy term via a position dependent inverse metric tensor

(30). We now note that if we want to interpret this as the log-density of a Gaussian

distribution, as we did with the original HMC method, we must add a normalising

constant since this changes with the metric from point to point. We can therefore

define a Hamiltonian on the Riemannian manifold as

H(θ,p) = −L(θ) +
1

2
log
(
(2π)D|G(θ)|

)
+

1

2
pTG(θ)−1p (3.74)

so that the Hamiltonian can be considered as the negative joint log-likelihood of the

target density and the auxiliary variable p, since

exp(−H(θ,p)) = p(θ,p) = p(θ)p(p|θ) (3.75)

The desired target density is once again simply the marginal density

p(θ) ∝
∫

exp(−H(θ,p))dp =
exp{L(θ)}√
(2π)D|G(θ)|

∫
exp

{
−1

2
pTG(θ)−1p

}
dp

= exp{L(θ)}

Unlike in the previous case for HMC, this joint density is no longer factorisable

and therefore the log-likelihood does not correspond to a separable Hamiltonian. The

conditional distribution for momentum values given parameter values is a zero-mean

Gaussian with the point specific metric tensor acting as the covariance matrix

p(p|θ) = N(p|0, G(θ)) (3.76)

which like mMALA should resolve the problems associated with tuning the mass matrix

in HMC. We will investigate this further for a variety statistical model examples in

Chapter 4. The dynamics are once again defined by Hamilton’s equations as
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3.4 Riemannian Manifold Hamiltonian Monte Carlo

dθi
dτ

=
∂H

∂pi
=
(
G(θ)−1p

)
i

dpi
dτ

= −∂H
∂θi

=
∂L(θ)

∂θi
− 1

2
Tr

[
G(θ)−1∂G(θ)

∂θi

]
+

1

2
pTG(θ)−1∂G(θ)

∂θi
G(θ)−1p

The Hamiltonian dynamics on the manifold are simulated by solving these first or-

der differential equations, which are equivalent to calculating the geodesic path given

by the Euler-Lagrange equation (Equation 3.48) earlier in this chapter (83). These

continuous-time Hamiltonian equations are energy preserving, volume preserving and

time reversible, as we proved in Chapter 2. When we discretise the dynamics, how-

ever, numerical integration is no longer quite so straightforward as it was for a sep-

arable Hamiltonian. Naively employing the discrete Störmer-Verlet Leapfrog integra-

tor (Equation 2.62) it is clear that for a finite step size ε the mappings for θ and p

are no longer reversible, since the metric tensor is position dependent, and in general

G(θ(τ)) 6= G(θ(τ + ε)); as a result, measures of distance will be different at different

points and reverse steps will not move back to exactly the original position. Proposals

generated using this integrator will therefore not satisfy detailed balance in a Hamilto-

nian Monte Carlo scheme.

We require a time-reversible, volume preserving numerical integrator for solving

this non-separable Hamiltonian to ensure a correct MCMC algorithm. Such a second-

order integrator can be formed by the composition of the first-order symplectic Euler

integrators we saw in Chapter 2. This is the Generalised Leapfrog integration scheme

and we recap that it follows as

pn+ 1
2 = pn − ε

2
∇θH(θn,pn+ 1

2 ) (3.77)

θn+1 = θn +
ε

2

[
∇pH(θn,pn+ 1

2 ) +∇pH(θn+1,pn+ 1
2 )
]

(3.78)

pn+1 = pn+ 1
2 −∇θH(θn+1,pn+ 1

2 ) (3.79)

If the Hamiltonian is separable then the Generalised Leapfrog reduces to the standard

Störmer-Verlet Leapfrog scheme that is commonly used in HMC. For a non-separable

Hamiltonian that is defined on a Riemannian manifold however, then Equation 3.77

and Equation 3.78 are defined implicitly, and we then need a further numerical scheme
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3.5 Population Manifold Methods

to solve these steps. Many approaches exist, such as Newton’s method which makes

use of derivative information, however such calculations are often costly in this context,

particularly when the likelihood is expensive to compute. We therefore employ simple

fixed point iterations run to convergence, and we find that just 5 or 6 iterations typically

suffice for the statistical models we consider in Chapter 4.

The repeated application of the above steps provides the means to obtain a deter-

ministic proposal that is guided not only by the derivative information of the target

density, as in HMC and MALA, but also exploits the local geometric structure of the

manifold as determined by the metric tensor. Intuitively, comparing the two Hamil-

tonians in Equations 2.87 and 3.74 shows that the constant mass matrix M, defining

a globally constant metric, is now replaced with the position specific metric. We now

no longer need to tune the mass matrix M, which can so dramatically affect the per-

formance of HMC. Since the Generalised Leapfrog scheme is both time reversible and

volume preserving, we can employ it as a proposal process to obtain a correct MCMC

scheme that satisfies detailed balance (as shown in Chapter 2) and converges to the

desired target density. The overall Riemannian Manifold HMC (RMHMC) scheme is

given by Algorithm 3 and consists of drawing momentum values from a Gaussian dis-

tribution, whose covariance is the metric tensor given the current parameter values,

and then running the Generalised Leapfrog integrator for a certain number of steps

to give proposed moves θ∗ and p∗, which are then accepted or rejected with proba-

bility min[1, exp{−H(θ∗,p∗) + H(θ,p)}]. Just as for standard HMC, this sampling

scheme produces an ergodic, time-reversible Markov chain satisfying detailed balance

and whose stationary marginal density therefore gives us samples from p(θ). In this

case however, there is no need to manually select and tune the mass matrix, since it is

defined at each step by the underlying Riemannian geometry.

3.5 Population Manifold Methods

The manifold MCMC methods we have just introduced sample efficiently by exploiting

the local geometry of the Riemannian manifold, however they will still potentially have

difficulty sampling from multimodal distributions. This can be remedied by employ-

ing the manifold samplers within an overall parallel tempering or population Monte

Carlo scheme (75, 96). The use of tempered distributions allows the Markov chains
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to make more global steps between modes, and in addition the final samples may be

used to accurately estimate the marginal likelihood for Bayesian model comparison via

thermodynamic integration (27, 67, 118).

The tempered distributions are obtained by raising the likelihood to a power,

p(θ|y, β) ∝ p(θ)p(y|θ)β (3.80)

where 0 ≤ β ≤ 1. If the metric tensor is given by the Expected Fisher Information then,

given a uniform prior, the metric tensor for the tempered distribution has a particularly

simple form,

G(θ, β) = βG(θ) (3.81)

since the tempered log-likelihood is simply premultiplied by the power β. We shall

employ this type of sampling scheme using manifold MCMC methods in Chapters 5

and 6 for the purpose of estimating marginal likelihoods for statistical models based

on systems of ordinary differential equations. A example of tempered distributions

generated from an ODE model is shown in Figure 3.5. A theoretical and computational

investigation of the optimal annealing scheme for β is presented in (26, 27). Based on

the findings of this previous analysis we employ N = 30 tempered distributions, where

the values of 0 < βn < 1 are given by the formula

βn =

(
n− 1

N − 1

)5

(3.82)

We find that such an annealing scheme is robust to the choice of N for reasonably

small N > 20 (27) and this allows us to perform model ranking of statistical model

hypotheses by obtaining low variance estimates of the required marginal likelihoods.

3.6 Conclusions

In this chapter we have explored the idea that MCMC algorithms may be defined on

different geometries. Existing dynamical MCMC methods based on Langevin diffusions

and Hamiltonian systems are implicitly defined in a Euclidean space, whereby distance

is measured in terms of changes in the parameter values alone. Moving towards a Rie-

mannian geometry allows us to take changes in probability mass into account when
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Figure 3.5: Example of tempered distributions - These 6 tempered distributions

were obtained by employing the same ordinary differential equation model described in

Figure 1.1 (26, 27). We observe that the highly nonlinear ripple structure in the posterior

is gradually smoothed out until we reach the prior distribution. In population MCMC,

a Markov chain is able to make moves between these distributions that satisfy detailed

balance; if a chain becomes stuck in a local mode in the posterior, it may move down the

distribution ladder until it reaches a smoother surface to move along, and in this way it

may escape local modes and fully explore the parameter space.
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3.6 Conclusions

defining distance based on a position specific metric tensor. The use of the Expected

Fisher Information provides a natural link between statistical models, local sensitivity

analysis and Riemannian geometry. In particular, we have developed generalisations

of MALA and HMC methods based on a different geometry, which allows us to au-

tomatically propose moves that respect the local correlation structure induced by the

statistical model. In the next chapter we shall evaluate and compare the performance

of these new methods on a variety of models, and give some insight as to how they may

be best employed. A summary of the manifold methods developed in this chapter is

also given in Appendix A along with general guidelines for their use.
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Algorithm 3 RMHMC with Generalised Leapfrog

1: Initialise current θ

2: for IterationNum = 1 to NumSamples do

3: Sample new momentum p1

4: Calculate current H(θ,p1)

5: Randomise N (leapfrog steps)

6: θ1 = Current θ

7: for n = 1 to N (leapfrog steps) do

8: % Update the momentum with fixed point iterations

9: p̂0 = pn

10: for i = 1 to NumOfFixedPointSteps do

11: p̂i = pn − ε
2∇θH(θn, p̂i−1)

12: end for

13: pn+ 1
2 = p̂i

14: % Update the parameters with fixed point iterations

15: θ̂
0

= θn

16: for i = 1 to NumOfFixedPointSteps do

17: θ̂
i

= θn + ε
2∇pH(θn,pn+ 1

2 ) + ε
2∇pH(θ̂

i−1
,pn+ 1

2 )

18: end for

19: θn+1 = θ̂
i

20: % Update the momentum exactly

21: pn+1 = pn+ 1
2 − ε

2∇θH(θn+1,pn+ 1
2 )

22: end for

23: Calculate proposed H(θN ,pN )

24: LogRatio = − log(Proposed H) + log(Current H)

25: % Accept or reject according to Metropolis ratio

26: if LogRatio > 0 or LogRatio > log(rand) then

27: Set θ = θN

28: end if

29: end for
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4

An Evaluation of Manifold

MCMC Methods

We now investigate a number of applications of the differential geometric sampling

methods that we developed in Chapter 3. We have already seen that RMHMC and

mMALA methods appear to propose moves more effectively than HMC and MALA

when sampling from a simple statistical model based on a 1-dimensional Gaussian

distribution. We shall now examine in greater detail the efficiency of such methods on

more challenging statistical models taking into account the computational costs of each

approach. We note that the statistical models we look at in this chapter are purely

for the purpose of comparing MCMC methodology; we are not so much interested in

the particular interpretations of the statistical models themselves. Each chosen model

has a unique set of characteristics that provide a challenge for any MCMC method and

illuminate the advantages and disadvantages of each of the sampling approaches we

employ. This chapter follows work that was published in (77).

4.1 Methods of Comparison

We employ a variety of MCMC methods to draw samples from the posterior distribution

for each model. Each method is implemented in a similar fashion in the interpreted

language Matlab to ensure as fair a comparison as possible, and we compare the relative

efficiency of these sampling methods by calculating an effective sample size (ESS) using

the posterior samples for each covariate. This measure gives the number of effectively
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independent samples obtained from a larger collection of dependent samples and can

be defined as,

ESS =
N(

1 + 2
∑K

k=1 γ(k)
) (4.1)

where N is the number of posterior samples and
∑

k γ(k) is the sum of the K monotone

sample autocorrelations as estimated by the initial monotone sequence estimator (74).

Such an approach is also taken in (91), where the authors report the mean ESS, averaged

over each of the covariates, however we feel this could give a rather inflated measure

of the true ESS, since ideally we want a measure of the number of samples which are

uncorrelated over all covariates. We therefore propose reporting the minimum ESS of

the sampled covariates. Furthermore, we wish to take into account the computational

complexity of each method, since it is plausible that a poorly performing method (in

terms of ESS) may be very fast in obtaining samples and such a method could simply be

run for a larger number of iterations to obtain better estimates. We therefore normalise

the minimum ESS with respect to the CPU time and report the time taken to obtain 1

sample that is effectively uncorrelated across all covariates. Finally, the results reported

for each of the models are the average values of 10 runs.

We shall now give a brief overview of the sampling methods that were used for

comparison with the manifold-based sampling approaches.

4.1.1 Metropolis-Hastings

The simplest scheme implemented is an adaptive Metropolis-Hastings sampler; see for

example Chapter 7 in (167), in which each covariate is updated individually with its

stepsize being adapted every 100 iterations during the burn-in period to achieve an

acceptance rate of between 20% and 50%. The stepsize is then fixed at the end of

the burn-in period to ensure that samples are correctly drawn from the stationary

distribution.

4.1.2 Metropolis Adjusted Langevin Algorithm

We implement a standard MALA sampler with proposed covariates being drawn from

the multivariate normal distribution N(θ∗|µ(θn, ε), ε2I) as defined previously in Chap-

ter 2. We follow the advice of (168) by scaling ε proportional to D−
1
3 , where D is the
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4.2 Bayesian Logistic Regression

number of covariates, such that we obtain an acceptance rate of between 40% and 70%.

We make use of any available information is available regarding the suitable choice of

pre-conditioning matrix, as is the case for the log-Gaussian Cox example, otherwise we

use MALA without pre-conditioning and focus on tuning the stepsize.

4.1.3 Hamiltonian Monte Carlo

In the following simulations we employ a fixed number of leapfrog steps and vary the

stepsize manually for each dataset to achieve an acceptance rate of between 70% and

90%. This requires a number of exploratory runs of the algorithm, which we don’t take

into account when calculating computational time. As expected, the unit mass matrix

we employ worked well for posterior distributions whose standard deviations for each

covariate are of similar magnitudes, in other words when the parameter space is rela-

tively isotropic as we saw in Chapter 2. We encode any information we have regarding

the standard deviations of the marginal posterior distributions of the parameters in a

diagonal mass matrix. More often than not, however, such information is not avail-

able and it is unclear how one might otherwise tune the mass matrix in any principled

manner.

4.1.4 Manifold Methods

As we adopt a Bayesian approach in these examples, we wish to make proposals based

on the local geometry of the posterior density. We therefore calculate the metric tensor

employing the joint probability of data and parameters, such that

− Ey|θ

[
∂2

∂θ2 log{p(y,θ)}
]

= −Ey|θ

[
∂2L

∂θ2

]
− ∂2 log(p(θ))

∂θ2 (4.2)

which is the Expected Fisher Information plus the negative Hessian of the log-prior.

In this way we can capture the geometric structure of the prior in the metric tensor

(63, 198).

4.2 Bayesian Logistic Regression

Logistic regression is a generalised linear model commonly used for binary regression

(72, 125). It is a popular choice of model due to the regression coefficients having a
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strong statistical interpretation in terms of changes in the log odds. Let us consider an

N × D design matrix X comprising N samples each with D covariates and a binary

response variable t ∈ {0, 1}N . Denoting the logistic link function as s(·), a Bayesian

logistic regression model is obtained by the introduction of regression coefficients β ∈
RD with an appropriate prior, which for illustrative purposes is given as β ∼ N(0, αI)

where α is given. Neglecting constants, the log joint-likelihood follows in standard form

as

log p(t,β|X, α) = L(β)− 1

2α
βTβ = βTXTt−

N∑
n=1

log(1+exp(βTXT
n,·))−

1

2α
βTβ (4.3)

where Xn,· denotes the vector that is the nth row of the N×D matrix X. The derivative

of the log joint-likelihood is

∂L

∂β
− α−1β (4.4)

and its second derivative follows as

∂2L

∂β2 − α
−1I (4.5)

which comprises the matrix of second derivatives of the likelihood and the log-prior.

This particular model induces a non-constant metric tensor, and a variety of datasets

were used to provide a challenging test for any choice of sampling method; the number of

covariates ranges from 2 to 24, and the number of data points ranges from 250 to 1000.

We form the metric tensor based on the expected Fisher Information plus the negative

Hessian of the log-prior in order to include the effect of the prior on the geometry,

although in this particular model the expected and observed Fisher information are

the same. The metric tensor therefore follows as

G(β) = XTΛX + α−1I (4.6)

where the diagonal N × N matrix Λ has elements Λn,n = s(βTXT
n,·)(1 − s(βTXT

n,·))

where Xn,· denotes the vector that is the nth row of the N ×D matrix X. Finally the

derivative matrices of the metric tensor take the form
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4.2 Bayesian Logistic Regression

Table 4.1: Summary of datasets for Bayesian logistic regression

Name Covariates (D) Data Points (N) Dimension of β (b)

Pima Indian 7 532 8

Australian Credit 14 690 15

German Credit 24 1000 25

Heart 13 270 14

Ripley 2 250 7

∂G(β)

∂βi
= XTΛViX (4.7)

where the N×N diagonal matrix Vi has elements (1−2s(βTXT
n,·))Xni. The above iden-

tities are all that are required to define the RMHMC and mMALA sampling methods,

which will be illustrated in the following experimental section.

4.2.1 Experimental Results for Bayesian Logistic Regression

We present results from the analysis of 5 datasets (135, 166), summarised in Table 4.1.

Although the manifold based methods can easily cope with the raw data, we follow

standard practice and normalise the datasets such that each covariate has zero mean

and a standard deviation of one. This allows a fair comparison with other sampling

methods, which would generally run into numerical problems with unnormalised data

due to the non-isotropic nature of the resulting posterior distribution.

Given each dataset, we wish to sample from the posterior distribution over the

regression coefficients β, and in each experiment vague Gaussian prior distributions

were employed such that π(βi) ∼ N(0, 100). A linear logistic regression model with

intercept was used for each of the datasets with the exception of the Ripley dataset,

for which a cubic polynomial regression model was employed (166).

We reproduce the results of Holmes and Held (91) by allowing 5000 burn in itera-

tions, such that each sampler reaches the stationary distribution and has time to adapt

as necessary. The next 5000 iterations were used to collect posterior samples and the

CPU time that each method took to collect these samples was recorded. We investigate

the use of RMHMC, mMALA, HMC, MALA and Metropolis-Hastings applied to this
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problem, and in addition we implement the following sampling methods that have been

previously suggested in the literature for logistic regression models.

4.2.1.1 Auxiliary Variable Gibbs Sampler

The auxiliary variable Gibbs sampler of Holmes and Held (91) was implemented with

a joint update of {z,β}, where z ∈ RN is the auxiliary variable designed to improve

mixing of the covariate samples. We implemented the algorithm based on the very

detailed pseudo-code given in the appendix of their paper, and in contrast to the M-H

algorithm this method has the advantage of requiring no tuning of parameters. The

main computational expense however is in the repeated sampling from truncated normal

distributions, for which we implemented code based on the efficient method defined in

(100).

4.2.1.2 Iterated Weighted Least Squares

We consider in addition the second order method Iterated Weighted Least Squares

(IWLS) (68), which makes use of second derivatives in its Metropolis-Hastings proposal

steps. It should be noted that IWLS is equivalent to simplified mMALA but without

a tuneable stepsize. This method is relatively straightforward to implement and does

not allow any tuning, similar to the auxiliary variable Gibbs sampler (91).

4.2.2 Comparison of MCMC Methods

We begin by investigating the RMHMC method in detail for the most challenging of our

five datasets, German Credit, which consists of 24 covariates and 1000 datapoints. We

then compare the results for all datasets employing the alternative sampling methods

described previously.

Since RMHMC automatically adapts the full mass matrix via the metric tensor

depending on its current position, we consider fixing ε and adjusting the number of

leapfrog steps. Table 4.2 shows the results of the generalised leapfrog integration scheme

using a variety of choices for these parameters. We found that sampling generally

became more efficient as L, was increased, i.e. when the chain could traverse a greater

distance. RMHMC allows for larger integration steps to be used and the value of 0.5
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Table 4.2: RMHMC with generalised leapfrog integration scheme - investigating the effect

of parameter settings on sampling efficiency with German Credit dataset

εL Max ε Mean Time (s) Min ESS s/Min ESS

1 0.5 131.7 674 0.195

2 0.5 193.6 2139 0.090

3 0.5 287.9 4791 0.060

was found to be a suitable choice for ε. The choice of 6 leapfrog steps was implemented

for all datasets, resulting in an acceptance rate of between 70% and 90%.

We find that the RMHMC and mMALA sampling methods work very well for a

variety of datasets and are fairly robust to the choice of algorithm parameters. For

comparison with the alternative sampling methods, we chose the settings for RMHMC

based on the above analysis. The scaling for mMALA was chosen to obtain an accep-

tance rate of between 50% and 70%. We repeated the sampling experiments 10 times

and averaged the results, which are shown for each of the datasets in Tables 4.3 to 4.7.

All methods converge within 5000 burn-in iterations for all the normalised datasets.

The manifold based methods generally outperform their equivalent, non-manifold coun-

terparts, HMC and MALA, particularly for datasets that have stronger correlations

between the covariates.

Figure 4.1 shows the trace and autocorrelation plots for 1000 posterior samples

using the Heart dataset. The difference in autocorrelation is quite striking, both from

inspection of the traces and from examination of the autocorrelation plots themselves.

The autocorrelation of the RMHMC samples drop towards zero far quicker than any

of the other methods.

As the number of covariates in the dataset increases, so the overall performance of

RMHMC and mMALA decreases. This is due to the increased computational burden of

calculating partial derivatives of the metric tensor with respect to each of the covariates.

It is clear that for logistic regression problems with a very high number of covariates,

for example in excess of 100 covariates, the use of RMHMC and mMALA will become

computationally infeasible since we have to compute the partial derivatives of the metric

tensor with respect to each of the covariates. As an alternative we can use a simplified

mMALA scheme that assumes a locally constant metric tensor, avoiding the need to
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4.2 Bayesian Logistic Regression

Table 4.3: Comparison of sampling methods with Australian Credit dataset, D = 14,

N = 690, 15 regression coefficients

Method Time ESS (Min, Med, Max) s/Min ESS Rel. Speed

Metropolis 10.8 (314, 709, 979) 0.034 × 320

Aux. Var. 407.5 (37.4, 1054, 1405) 10.9 ×1

MALA 2.7 (22.3, 576.8, 990.6) 0.122 × 89.3

HMC 87.3 (3197, 3612, 3982) 0.027 × 403

IWLS 5.15 (130, 215, 346) 0.040 × 272

mMALA 11.7 (702, 867, 1037) 0.0167 × 652

mMALA Simp. 3.2 (487, 625, 746) 0.006 × 1817

RMHMC 81.7 (4975, 5000, 5000) 0.016 × 681

RMHMC (Stud. t) 87.3 (1083, 1625, 2002) 0.081 × 134

RMHMC (Fixed) 6.7 (4125, 4948, 5000) 0.0016 × 6812

calculate derivatives. Similarly, we could also employ an RMHMC sampling scheme

in which the metric tensor is fixed once the chain has converged to the stationary

distribution; this is equivalent to standard HMC with a preconditioning matrix given

by the Expected Fisher Information at some point in the posterior distribution.

We also consider an alternative second order method, IWLS, which makes use of

terms involving second derivatives and therefore some measure of the curvature of the

parameter space. IWLS performs fairly poorly however; indeed in the examples it

performs about the same as parameter-wise Metropolis-Hastings. The flexibility of

having an adjustable stepsize makes a great difference to the overall efficiency, which

becomes apparent when we compare IWLS with the results of simplified mMALA

method.

4.2.3 Comparison of mMALA and RMHMC Variants

We now investigate variants of RMHMC and mMALA to see whether results may be im-

proved based on slight alterations to the standard forms. We first consider a simplified

version of mMALA, which assumes a locally flat metric tensor during each Metropolis

step and will still converge to the stationary distribution due to the Metropolis-Hastings

adjustment. It is clear that this is computationally much less expensive than the full

mMALA as it avoids the calculation of metric tensor derivatives. It is interesting that
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4.2 Bayesian Logistic Regression

Table 4.4: Comparison of sampling methods with German Credit dataset, D = 24,

N = 1000, 25 regression coefficients

Method Time ESS (Min, Med, Max) s/Min ESS Rel. Speed

Metropolis 23.4 (167, 613, 1015) 0.140 × 4.4

Aux. Var. 618.8 (1006, 2211, 2640) 0.614 × 1

MALA 3.5 (95.5, 316, 667) 0.037 × 16.6

HMC 117.9 (3182, 3632, 3986) 0.037 × 16.6

IWLS 9.3 (253, 572, 918) 0.037 × 16.6

mMALA 42.3 (604, 766, 902) 0.070 × 8.8

mMALA Simp. 5.0 (435, 615, 747) 0.012 × 51.2

RMHMC 246.6 (4757, 5000, 5000) 0.052 × 11.8

RMHMC (Stud. t) 257.4 (3981, 4934, 5000) 0.065 × 9.4

RMHMC (Fixed) 8.6 (4409, 5000, 5000) 0.0019 × 323

Table 4.5: Comparison of sampling methods with Pima Indian dataset, D = 7, N = 532,

8 regression coefficients

Method Time ESS (Min, Med, Max) s/Min ESS Rel. Speed

Metropolis 3.8 (347, 552, 980) 0.011 × 19.3

Aux. Var. 304.3 (1432, 1888, 2295) 0.212 × 1

MALA 1.56 (316, 550, 895) 0.005 × 42.4

HMC 45.7 (3265, 3605, 3893) 0.014 × 15.1

IWLS 2.6 (1386, 1937, 2379) 0.0019 ×111.6

mMALA 4.2 (1135, 1286, 1412) 0.0037 × 57.3

mMALA Simp. 1.9 (1046, 1160, 1300) 0.0018 × 117.8

RMHMC 34.4 (5000, 5000, 5000) 0.0069 × 30.7

RMHMC (Stud. t) 38.6 (3928, 4432, 4688) 0.0098 × 21.6

RMHMC (Fixed) 5.8 (4912, 5000, 5000) 0.0012 × 177
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4.2 Bayesian Logistic Regression

Table 4.6: Comparison of sampling methods with Heart dataset, D = 13, N = 270, 14

regression coefficients

Method Time ESS (Min, Med, Max) s/Min ESS Rel. Speed

Metropolis 4.4 (418, 637, 905) 0.010 × 21.2

Aux. Var. 150.9 (711, 1233, 1676) 0.212 × 1

MALA 1.1 (279, 524, 814) 0.0038 × 55.8

HMC 27.6 (3246, 3647, 4003) 0.0085 × 24.9

IWLS 2.4 (87, 186, 381) 0.028 ×7.6

mMALA 5.6 (656, 789, 903) 0.0085 × 24.9

mMALA Simp. 1.6 (371, 481, 617) 0.0043 × 49.3

RMHMC 42.2 (4862, 5000, 5000) 0.0087 × 24.4

RMHMC (Stud. t) 48.0 (2603, 2904, 3171) 0.018 × 11.8

RMHMC (Fixed) 3.4 (4403, 4940, 5000) 0.00076 × 279

Table 4.7: Comparison of sampling methods with Ripley dataset, D = 2, N = 250, 7

regression coefficients

Method Time ESS (Min, Med, Max) s/Min ESS Rel. Speed

Metropolis 2.1 (59, 99, 271) 0.035 × 201

Aux. Var. 139.6 (19, 44, 283) 7.06 ×1

MALA 0.97 (33, 58, 101) 0.029 × 253

HMC 24.8 (3326, 3719, 4053) 0.0076 × 967

IWLS 1.46 (101, 207, 328) 0.015 × 490

mMALA 3.3 (447, 579, 685) 0.0075 × 980

mMALA Simp. 1.3 (291, 403, 473) 0.0045 × 1633

RMHMC 28.0 (4273, 4677, 4961) 0.0065 × 1131

RMHMC (Stud. t) 31.9 (2829, 3088, 3289) 0.011 × 668

RMHMC (Fixed) 3.0 (1917, 3572, 4204) 0.0016 × 4413
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4.2 Bayesian Logistic Regression

Figure 4.1: Autocorrelation of samples for Bayesian logistic regression with the

Heart dataset - Trace plots for 1000 posterior samples with the Heart dataset using (from

top to bottom) Metropolis, IWLS, auxiliary variable sampler, standard MALA, standard

HMC, mMALA, Simplified mMALA and RMHMC. Autocorrelation plots are also shown

for the first sampled covariate.
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4.2 Bayesian Logistic Regression

simplified mMALA has worse ESS than the full mMALA scheme, which intuitively

makes sense since proposed steps across the manifold are approximated by not taking

into account the rate of change of the local metric. The time normalised ESS however is

far better due to the computational cost being much smaller. For this statistical model

the best scheme in terms of the time normalised ESS is RMHMC with the metric tensor

being fixed at the end of the burn-in period, since the geometry does not change much

within the high probability region of the posterior distribution and it is mainly during

the burn in phase that the metric tensor changes most rapidly.

It is also interesting to investigate the use of an alternative kinetic energy function

in RMHMC. This idea is briefly mentioned in (125) although no example is given. We

therefore consider the use of a kinetic energy term based on the Student-t density,

with the idea that since the heavy tails might occasionally mean a larger momentum

is sampled, this could plausibly result in lower correlation in the samples drawn from

the target distribution. We note that since the multivariate Student-t distribution is

symmetric, then the resulting Hamiltonian is still reversible. The simulations take

slightly longer to run than with standard Gaussian distributed momentum using the

same integration time steps. This is due to the increased computation required to

sample from a Student-t distribution, and also the fact that there is more involved

computation required to calculate the dynamics of this new Hamiltonian. The results

show that the ESS is actually significantly less than that of a Hamiltonian defined

with Gaussian momentum. This is possibly a result of a higher concentration of mass

producing momenta with values closer to zero, even though there will be occasional

samples of momentum with much larger magnitude.

In our simulation study manifold based methods perform extremely well with this

statistical model compared to the other methods, when using small to medium sized

datasets. It is interesting to note that due to the dense matrix form of the metric tensor

and its inverse, the computational cost of mMALA and RMHMC on Bayesian logistic

regression will not scale favourably; it can be seen that their time-normalised efficiency

does indeed decrease as the number of regression coefficients in the dataset increases.

This issue of scaling can however be eased somewhat by employing simplified mMALA

sampling, which assumes a locally constant metric tensor and thus avoids the expensive

computation of the metric tensor derivatives, or by employing RMHMC with a fixed

mass matrix after the burn-in period.
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4.3 Stochastic Volatility Model

4.3 Stochastic Volatility Model

We now consider the stochastic volatility model (SVM) studied in (106, 125) which

takes the form of a latent variable model. It is defined with the latent volatilities taking

the form of a 1st order autoregressive process (AR(1) process). The observations are

defined as

yt = εtβ exp (xt/2) (4.8)

and the latent volatilities take the form

xt+1 = φxt + ηt+1 (4.9)

where εt ∼ N(0, 1), ηt ∼ N(0, σ2) and x1 ∼ N(0, σ2/(1 − φ2)). The joint probability

therefore follows as

p(y,x, β, φ, σ) =
∏T

t=1
p(yt|xt, β)p(x1)

∏T

t=2
p(xt|xt−1, φ, σ)π(β)π(φ)π(σ) (4.10)

We split up the sampling procedure into two steps, which allows the implementation

of both mMALA and RMHMC in a computationally efficient manner. Firstly we

simulate φ, σ, β from p(β, φ, σ|y,x), where the priors are chosen to be p(β) ∝ 1/β, σ2 ∼
Inv-χ2(10, 0.05) and (φ+1)/2 ∼ Beta(20, 1.5). The variable φ takes values between −1

and 1, and σ must be a positive real number. One way to deal with such constraints is

to implement transformations of these to the real line, which we describe in the next

subsection, noting that this introduces a Jacobian factor into the acceptance ratio in the

standard manner when transforming probability distributions. Secondly we sample the

latent volatilities by simulating from the conditional p(x|y, β, σ, φ). We shall consider

the use of mMALA, RMHMC, MALA and HMC for the purpose of sampling both the

parameters and latent volatilities.
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4.3 Stochastic Volatility Model

4.3.1 mMALA and RMHMC for SVM Parameters

We require the partial derivatives of the joint log probability with respect to the trans-

formed parameters to implement MALA and HMC, as well as expressions for the met-

ric tensor and its partial derivatives, in order to employ mMALA and RMHMC. All

of these quantities may be obtained straightforwardly. We then use these methods to

draw samples from the conditional posterior p(β, α, γ|y,x, ).
We employ the transformations σ = exp(γ) and φ = tanh(α) to deal with con-

strained parameters. The derivatives of the transformations follow as dσ
dγ = exp(γ) = σ

and dφ
dα = 1 − tanh2(α) = 1 − φ2. The partial derivatives of the joint log probability,

L = log p(y,x|β, σ, φ), with respect to the transformed parameters are as follows

∂L

∂β
= −T

β
+

T∑
t=1

y2
t

β3 exp(xt)
(4.11)

∂L

∂γ
=

∂L

∂σ

dσ

dγ
= −T +

x2
1(1− φ2)

σ2
+

T∑
t=2

(xt − φxt−1)2

σ2
(4.12)

∂L

∂α
=

∂L

∂φ

dφ

dα
= −φ+

φx2
1(1− φ2)

σ2
+

T∑
t=2

xt−1(xt − φxt−1)(1− φ2)

σ2
(4.13)

If we want to sample the parameters using mMALA or RMHMC, then we also need

expressions for the metric tensor and its partial derivatives with respect to β, σ and φ.

We can obtain the following expressions for the individual components of the metric

tensor for the log probability density

E

{
∂2L

∂β2

}
= −2T

β2
, E

{
∂2L

∂γ2

}
= −2T, E

{
∂2L

∂β∂γ

}
= E

{
∂2L

∂β∂α

}
= 0

E

{
∂2L

∂γ∂α

}
= −2φ, E

{
∂2L

∂α2

}
= −2φ2 − (T − 1)(1− φ2)

Thus the expected Fisher information and its partial derivatives follow as

G(α, γ, β) =

 2T
β2 0 0

0 2T 2φ
0 2φ 2φ2 + (T − 1)(1− φ2)

 , ∂G
∂β =

 −4T
β3 0 0

0 0 0
0 0 0


∂G
∂γ =

 0 0 0
0 0 0
0 0 0

, ∂G
∂α =

 0 0 0
0 0 0
0 0 2φ(3− T )(1− φ2)


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We therefore require expressions for the second order derivatives of the log priors

to get the overall metric tensor, and also the third order derivatives of the log priors to

calculate the partial derivatives of the metric tensor, which follow straightforwardly.

4.3.2 mMALA and RMHMC for SVM Latent Volatilities

Let us now consider the required expressions for sampling the latent volatilities. Defin-

ing u = (x3, · · · , xT )T, v = (x2, · · · , xT−1)T, w = φ
σ2 (u − φv), s = (s1, · · · , sT )T such

that si = 0.5(1− y2
i β
−2 exp(−xi)), δ1 = −σ−2(x1−φx2), and δT = −σ−2(xT −φxT−1),

we define the vector r = (δ1,w
T, δT )T and the gradient ∇x log p(y,x|β, φ, σ) = s− r.

To devise mMALA and RMHMC samplers for the latent volatilities, x, we also

require an expression for the metric tensor and its partial derivatives with respect to

the latent volatilities. For the data probability of the model, p(y|x, β), the expected

Fisher Information is the scaled identity matrix 1
2 × I. The latent volatility is an

AR(1) process having covariance matrix C with elements E{xt+nxt} = φ|n|σ2/(1−φ2)

(173) and as in the previous examples the metric tensor is defined as the sum of the

expected Fisher Information and the negative Hessian of the log-prior, G = 1
2 × I +

C−1, conditional on current values of σ, φ, β. Now the expression for the covariance

matrix is completely dense and is therefore computationally expensive to manipulate.

Fortunately, this AR(1) process admits a simple analytic expression for the precision

matrix in the form of a sparse tridiagonal matrix, such that the diagonal elements

are equal to (1 + φ2)/σ2, with the exception of the first and last diagonal elements

which are equal to 1/σ2, and the super and sub diagonal elements are equal to −φ/σ2.

Thus the metric tensor also has a tridiagonal form. For large numbers of observations

this sparse structure allows great gains in computational efficiency, since the inverse of

this tridiagonal metric tensor may be computed in O(T log T ) as opposed to the usual

O(T 3). We note that computationally efficient methods for manipulating tridiagonal

matrices are automatically implemented by the standard routines in Matlab.

We notice that the metric tensor in this case is not a function of the latent volatilities

x and so the associated partial derivatives with respect to the latent volatilities are zero.

In this case, the manifold is a simple inner product space and the RMHMC scheme

is effectively HMC where the mass matrix M is now defined based on the natural

Riemannian geometry using the globally constant metric tensor G. Likewise mMALA

collapses to a MALA scheme preconditioned by the constant matrix G−1. It is clear
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Table 4.8: Comparison of sampling the parameters β, σ and φ after 20,000 posterior

samples averaged over 10 runs with 2000 simulated observations, β = 0.65, σ = 0.15 and

φ = 0.98

Method Mean ESS S.E. s/(Min ESS) Rel.

Time (β,σ,φ) (β,σ,φ) Speed

MALA 44.0 (19.1, 11.3, 30.1) (1.9,0.8,2.1) 3.89 ×36.7

HMC 424.8 (117, 81, 198) (9.3, 3.1, 10.3) 5.19 ×27.5

mMALA 2455.9 (17.2, 17.4, 44.5) (2.8, 2.4, 9.2) 142.8 ×1

RMHMC 329.4 (325, 139, 344) (19.0, 7.3, 25.2) 2.37 ×60.3

Table 4.9: Comparison of sampling the latent volatilities after 20,000 posterior samples

averaged over 10 runs with 2000 simulated observations, β = 0.65, σ = 0.15 and φ = 0.98

Method Mean ESS s/(Min ESS) Rel.

Time (min, median, max) Speed

MALA 44.0 (9.7, 16.7, 28.4) 4.53 ×7.5

HMC 424.8 (409,624,1239) 1.04 ×32.9

mMALA 2455.9 (71.8, 131.0, 329.8) 34.2 ×1

RMHMC 329.4 (977, 1689, 3376) 0.34 ×100.6

that this preconditioning will improve both the mixing and overall ESS, see e.g. (116)

for a recent application of this type of preconditioning in MALA. Just as for RMHMC,

the preconditioning matrix emerges naturally from the underlying geometric principles.

4.3.3 Experimental Results for Stochastic Volatility Model

We now compare the computational efficiency of RMHMC, mMALA, HMC and MALA

for sampling both the parameters and the latent variables of the stochastic volatility

model as previously defined, and the results are shown in Tables (4.8) and (4.9). 2000

observations were simulated from the model with the parameter values β = 0.65, σ =

0.15 and φ = 0.98 as given in (125). Using this data, 20,000 posterior samples were col-

lected after a burn-in period of 10,000 samples. This sampling procedure was repeated

10 times. The efficiency of sampling the parameters and the latent volatilities was

once again compared in terms of time normalised ESS. MALA was tuned such that the

acceptance ratio was between 40% and 70%, and we note that in this example it was
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necessary to use a different tuning for the transient phase, at the start of the simulation

away from the mode, than for the stationary phase. HMC was implemented using 100

leapfrog steps and tuning the stepsize to obtain an acceptance rate of between 70%

and 90%, which resulted in a stepsize of 0.015 for hyperparameters and a stepsize of

0.03 for the latent volatilities. RMHMC was implemented using a stepsize of 0.5 and 6

integration steps per parameter proposal, and a stepsize of 0.1 and 50 integration steps

per volatility proposal, both of which resulted in an acceptance rate of between 70%

and 90%.

In terms of sampling the hyperparameters, manifold methods offer little advantage

over standard sampling approaches due to the small dimensionality of the problem and

lack of strong correlation present. RMHMC and MALA give the best performance in

terms of time normalised ESS. MALA exhibits a very poor ESS, however the compu-

tation time is also extremely small compared to the other two methods. RMHMC has

the highest raw ESS, but has much more computational overhead compared to MALA.

The posterior marginal densities of the hyperparameters are shown in Figure 4.2. When

we consider sampling the latent variables, RMHMC offers greater advantages. In par-

ticular, it samples more efficiently than HMC, partly because of the computationally

efficient tridiagonal structure of the metric tensor and partly because RMHMC fol-

lows the natural gradient through the parameter space and requires significantly fewer

leapfrog iterations to explore the target density. An illustration of the contrast between

HMC and RMHMC sampling of the parameters of this model is given in Figures 4.3

and 4.4. In this example, mMALA performs very badly due to the need to take a

Cholesky decomposition of the inverse metric tensor of the latent variables, which is a

dense matrix, compared to RMHMC which only requires use of the tridiagonal metric

tensor. It should be noted that RMHMC again requires very little tuning compared

to the other methods; unlike MALA it does not require different tuning in different

parts of the parameter space, and unlike HMC it requires no manual setting of a mass

matrix.

4.4 Log Gaussian Cox Model

As a final example in this chapter we examine the use of differential geometric method-

ology for inference in a log-Gaussian Cox point process model as detailed in (38). This
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Figure 4.2: Posterior marginal distributions of the stochastic volatility model

hyperparameters - Kernel smoothed posterior marginal densities for β, σ and φ respec-

tively, employing RMHMC to draw 20,000 samples of the parameters and latent volatilities

using a simulated dataset consisting of 2000 observations. The true values are β = 0.65,

σ = 0.15 and φ = 0.98.

Figure 4.3: Comparison of sampling the latent volatilities in a stochastic volatil-

ity model using HMC and RMHMC - Contours plotted from the stochastic volatility

model, in which the latent volatilities and the parameter β are set to their true values and

the log-joint probability given different values of σ and φ is shown. The left hand plot

shows the evolution of a Markov chain using HMC sampling with a unit mass matrix, the

right hand plot shows the evolution of a chain from the same starting point using RMHMC

sampling. We note that the use of the metric allows the RMHMC algorithm to converge

much more quickly to the target density.
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Figure 4.4: Close up of sampling the hyperparameters in a stochastic volatility

model using HMC and RMHMC - A close up is shown of the Markov chain paths from

Figure 4.3. The RMHMC sampling effectively normalises the gradients in each direction,

whereas HMC sampling, with a unit mass matrix, exhibits stronger gradients along the

horizontal direction compared to the vertical direction and therefore takes longer to con-

verge to the target density. A carefully tuned mass matrix may improve HMC sampling,

whereas RMHMC does this automatically by taking into account the local geometry.
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is a particularly insightful example of another latent variable model where the target

density is of high dimension with strong correlations, which provides a severe test of

MCMC capability. The data, model and experimental protocol as described in (38)

is adopted here. A 64 × 64 grid is overlaid on the area [0, 1]2 with the number of

points in each grid cell denoted by the random variables Y = {Yi,j} which are as-

sumed conditionally independent, given a latent intensity process Λ(·) = {Λ(i, j)},
and are Poisson distributed with means mΛ(i, j) = m exp(Xi,j), where m = 1/4096,

X = {Xi,j}, x = Vec(X), and y = Vec(Y), with X a Gaussian process having mean

E{x} = µ1, and covariance function Σ(i,j),(i′,j′) = σ2 exp(−δ(i, i′, j, j′)/64β), where

δ(i, i′, j, j′) =
√

(i− i′)2 + (j − j′)2. The joint density is

p(y,x|µ, σ, β) ∝
∏

i,j
exp{yi,jxi,j−m exp(xi,j)} exp(−(x−µ1)TΣ−1(x−µ1)/2) (4.14)

As in the previous example we consider an overall Gibbs scheme in which we alter-

nately sample from p(x|y, σ, β, µ) and p(σ, β|y,x, µ). Denoting L ≡ log p(y,x|µ, σ, β)

and e = {m exp(xi,j)}, then the derivative with respect to the latent variables fol-

lows straightforwardly as ∇xL = y − e − Σ−1(x − µ1). The metric tensor follows

as −Ey,x|θ{∇x∇xL} = Λ + Σ−1, where the diagonal matrix Λ, whose ith diagonal

element is defined as m exp(µ+ (Σ)ii), follows from the expectation of the exponential

of normal random variables. The metric tensor describing the manifold for the random

field is constant G = Λ+Σ−1. The mMALA and RMHMC schemes for the conditional,

p(x|y, σ, β, µ), are then equivalent to MALA and HMC with mass and preconditioning

matrices M = Λ + Σ−1 and M−1, respectively. The computational cost of calculating

the required inverse of the metric tensor scales as O(N3), however once this quantity

has been calculated, as for HMC, a large number of leapfrog steps may be made with

little additional overhead, resulting in efficient sampling of the latent variables.

For sampling from the conditional p(σ, β|y,x, µ) we employ a metric tensor based

on the expected Fisher information for the parameters θ = [σ, β] which follows as Dθ

whose (l,m)th element is 1
2Tr(Σ

−1 ∂Σ
∂θl

Σ−1 ∂Σ
∂θm

).

We employ a change of variables σ2 = exp(ϕ1) and β = exp(ϕ2) to allow con-

strained sampling such that σ2 and β are both strictly positive. The log-probability

and gradients required for sampling the hyperparameters of the Gaussian process follow

in standard form,
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∂L

∂ϕi
= −1

2
Tr

(
Σ−1 ∂Σ

∂ϕi

)
+

1

2
(x− µ1)TΣ−1 ∂Σ

∂ϕi
Σ−1(x− µ1) (4.15)

where i = 1, 2. The Fisher Information matrix also follows in standard form as

G(ϕ)ij =
1

2
Tr

(
Σ−1 ∂Σ

∂ϕi
Σ−1 ∂Σ

∂ϕj

)
(4.16)

Application of the standard expression for the derivative of trace operators provides

an analytic expression for the derivative of the metric tensor with respect to the trans-

formed parameters

∂G(ϕ)ij
∂ϕk

=
∂

∂ϕk

[
1

2
Tr
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= −1

2
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1
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Tr

(
Σ−1 ∂2Σ

∂ϕi∂ϕk
Σ−1 ∂Σ

∂ϕj

)
−1

2
Tr

(
Σ−1 ∂Σ

∂ϕi
Σ−1 ∂Σ

∂ϕk
Σ−1 ∂Σ

∂ϕj

)
+

1

2
Tr

(
Σ−1 ∂Σ

∂ϕi
Σ−1 ∂2Σ

∂ϕj∂ϕk

)
In our experiments we employ an infinitely differentiable stationary covariance func-

tion to calculate the (i,j)th entry of the covariance matrix,

Σ(i,j),(i′,j′) = σ2 exp

(
− 1

64β
δ(i, i′, j, j′)

)
(4.17)

where δ(i, i′, j, j′) =
√

(i− i′)2 + (j − j′)2. The gradients and the Fisher Information

matrix above may therefore be obtained using the first and second partial derivatives

of the covariance function. The first partial derivatives follow as,

∂Σi,j

∂ϕ1
= σ2 exp

(
− 1

64β
δ(i, i′, j, j′)

)
∂Σi,j

∂ϕ2
=

σ2

64β
exp

(
− 1

64β
δ(i, i′, j, j′)

)
δ(i, i′, j, j′)

The second partial derivatives may also be easily calculated,
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∂2Σi,j

∂ϕ2
1

= σ2 exp

(
− 1

64β
δ(i, i′, j, j′)

)
∂2Σi,j

∂ϕ1∂ϕ2
=

σ2

64β
exp

(
− 1

64β
δ(i, i′, j, j′)

)
δ(i, i′, j, j′)

∂2Σi,j

∂ϕ2
2

=
σ2

(64β)2
exp

(
− 1

64β
δ(i, i′, j, j′)

)
δ(i, i′, j, j′)2

− σ2

64β
exp

(
− 1

64β
δ(i, i′, j, j′)

)
δ(i, i′, j, j′)

Once again we require expressions for the second order derivatives of the log priors to get

the metric tensor over the full target distribution, and also the third order derivatives

of the log priors to calculate the partial derivatives of the metric tensor. These follow

straightforwardly from the Ga(2, 0.5) priors employed over the hyperparameters σ2 and

β.

Noting that the metric tensor for the latent variables has dimension N ×N , where

N = 4096 the O(N3) operations required in the mMALA and RMHMC schemes are

clearly going to be computationally costly. However, it should also be noted that in

previous studies of this Log-Gaussian Cox process, (38), a transformation of the latent

Gaussian field based on the Cholesky decomposition of Σ−1 + diag(x) was also used,

which therefore also scales as O(N3).

It is possible to consider jointly sampling the hyperparameters and the latent vari-

ables. With L ≡ log p(y,x, σ, β|µ), we see that the Expected Fisher Information matrix

is block diagonal with blocks Λ + Σ−1 and D−1
θ . Unfortunately, jointly sampling the

latent variables and the hyperparameters proves to be computationally too costly to

implement, as the metric tensor is now no longer fixed and so the generalised leapfrog

integration scheme would have to be implemented in RMHMC with fixed point itera-

tions, during each of which the metric tensor and its inverse have to be recalculated.

4.4.1 Experimental Results for Log-Gaussian Cox Processes

Following the example given in (38), we fix the parameters β = 1/33, σ2 = 1.91 and

µ = log(126)− σ2/2. We generate a latent Gaussian field x from the Gaussian process

and use these values to generate count data y from the latent intensity process Λ.

Given the generated data and the fixed hyperparameters, we infer x using mMALA,
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4.4 Log Gaussian Cox Model

Figure 4.5: Trace plots of the log joint probability of the log-Gaussian Cox

model - Trace plots of the log joint-probability for the first 10,000 samples of the latent

variables of a log-Gaussian Cox process. The left hand plot shows the convergence of the

RMHMC scheme which is able to directly sample the latent variables x without the need for

ad hoc reparameterisations and pilot runs for fine-tuning. The left-middle plot shows the

convergence of the mMALA scheme which, since it also uses information about the manifold

in the form of the metric tensor, is able to directly sample without any reparameterisations.

The right-middle plot shows the log joint-probability for samples drawn by MALA using

a reparameterisation of the latent variables. The scaling was carefully tuned to allow

traversal of the parameter space to the posterior mode. The right hand plot shows the

trace of the MALA sampler tuned for optimally sampling from the posterior mode. We

note that the algorithm is now unable to traverse the parameter space when initialised

away from this mode. Such fine-tuning and reparameterisation is frequently necessary

when employing MALA.
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4.4 Log Gaussian Cox Model

Figure 4.6: Posterior latent fields of the log-Gaussian Cox model - Posterior

latent fields and processes and associated variance, using each of the sampling methods,

compared to the true latent field and process. The data employed to infer the latent field

are also shown in the top right plot. RMHMC produces the lowest variance estimates,

which corresponds with it having the highest ESS. For RMHMC there is higher variance

where there is less data, however for the other methods there are patchy areas of high

variance due to correlations in the collected samples.
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4.4 Log Gaussian Cox Model

RMHMC and the MALA method as in (38). The algorithms were run on a single AMD

Opteron processor with 8GB of memory and were again coded in Matlab for fairness

of comparison.

In many settings MALA, like HMC, is particularly sensitive to the choice of scaling

and very often a reparameterisation of the target density is required for these meth-

ods to be effective. Indeed this is seen to be the case with this particular example,

where MALA is unable to sample x directly. We therefore follow (38) and employ the

transformation X = µ1 + LΓ, where L is obtained by Cholesky factorisation such that

{Σ + diag(x)}−1 = LLT. Even after this reparameterisation, it is still necessary to

carefully tune the scaling factor for this method to work at all. This challenging aspect

of employing MALA has been investigated in detail in (38) who characterise the prob-

lem very well, advising great care in its implementation, but are ultimately unable to

offer any panacea. In contrast to the necessary transformation and fine-tuning required

by MALA, both mMALA and RMHMC allow us to directly sample the latent variables

x without having to manually choose a reparameterisation of the target density.

Figure 4.5 shows the traces of the log joint-probability for both methods using the

starting position xi,j = µ for i, j = 1, . . . , 64. Note that for MALA these starting

positions must be transformed into corresponding values for Γ. The RMHMC sam-

pler quickly converges to the true mode after minimal tuning of the integration step-

size based on the integration error, which corresponds directly to the acceptance rate.

mMALA also converges very quickly to the true posterior mode. MALA converges in a

similar number of iterations, but only for a suitable choice of scaling factor. The right-

middle plot in Figure 4.5 shows convergence when the scaling factor is carefully tuned

for the transient phase of the Markov chain, however the right hand plot demonstrates

how it fails to converge at all given a scaling factor which is tuned for stationarity.

Detailed results of the sampling efficiency of each method are given in Table 4.10. In

this example the RMHMC method required just 1.5 seconds per effectively independent

sample compared to more than 2 hours needed by MALA. In addition to taking far

longer to sample, MALA also generates much more highly correlated samples and as a

result has a far worse effective sample size. This can also be seen in Figure 4.6 which

shows the inferred posterior latent field, the posterior latent process and the variance

associated with the Monte Carlo estimate. For RMHMC, the variance in the estimates

increases where there the data sample is small, i.e. in the top right hand corner of the
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4.4 Log Gaussian Cox Model

Table 4.10: Comparison of sampling methods for the latent variables of a log-Gaussian

Cox Process. We note that MALA requires the use of a Cholesky decomposition at every

iteration, which scales as O(n3). The manifold methods, mMALA and RMHMC, require

the inverse of the metric tensor to be calculated, which also scales as O(n3), however this

need only be calculated once as the metric is constant for the latent variables of this model.

Method Time ESS s/Min ESS Rel.

(Min, Med, Max) Speed

MALA with Trans. (Transient) 31,577 (3, 8, 50) 10,605 ×1

MALA with Trans. (Stationary) 31,118 (4, 16, 80) 7836 ×1.35

mMALA 634 (26, 84, 174) 24.1 ×440

RMHMC 2936 (1951, 4545, 5000) 1.5 ×7070

field. mMALA has slightly more variability, while the low ESS of the MALA methods

manifests itself in patchy regions of high variability across the entire field. We note

that MALA tuned for stationarity has slightly lower variance than MALA tuned for

the transient phase, as one would expect.

Conditionally sampling the hyperparameters using RMHMC proves more costly,

with 5000 posterior samples taking around 90 hours of computation time. However,

the posterior estimates for the hyperparameters correspond extremely well to their true

values, see Figure 4.7.

Figure 4.7: Kernel density estimates of the hyperparameters of the log-

Gaussian Cox model - The hyperparameter samples were obtained from Gibbs style

sampling from the log-Gaussian Cox model. The true values are σ = 1.9 (left hand plot)

and β = 0.03 (right hand plot).

Inferring the latent field of a log-Gaussian Cox process with a finely grained dis-

cretisation is clearly a very challenging problem due to the high dimensionality and
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strong spatial correlations present between the latent variables. The major challenges

associated with employing MALA are firstly finding a suitable reparameterisation of

the target density, and secondly making a suitable choice for the scaling factor accord-

ing to whether the Markov chain is in a transient or stationary regime. In contrast,

mMALA and RMHMC do not exhibit such extreme technical difficulties. We have

demonstrated that RMHMC is able to sample the latent variables directly with min-

imal tuning and effort and without the need for reparameterisation. By employing a

Gibbs style sampling scheme we were additionally able to sample the hyperparame-

ters of the covariance function in a relatively computationally efficient manner. An

investigation into the sparse approaches presented in (174, 201) may provide further

computational efficiencies.

4.5 Conclusions

We have considered a variety of challenging statistical models, whose dimensionality

varies from a few parameters to several thousand latent variables. For each of these

models we investigated the use of a number of commonly used MCMC methods and

compared these with the differential geometric methods we introduced in Chapter 3. In

terms of raw ESS, RMHMC consistently offered the best results, often drawing samples

with near independence. This generalisation of HMC to a Riemannian manifold can

however be computationally costly when the metric is not constant over the parameter

space, since it is necessary to calculate 2nd order derivatives of the log-likelihood with

respect to the parameters to calculate the derivative of the metric tensor. In addition

the generalised leapfrog integrator requires multiple fixed point iterations that can also

be costly to compute. Similarly, the full mMALA scheme can also be computationally

expensive due to the need to calculate derivatives of the metric tensor, although it

does avoid the use of fixed point iterations. In practice the pragmatic approach of

employing a constant metric tensor, in RMHMC, and a locally constant metric tensor,

in a simplified mMALA scheme, often works most effectively when taking into account

computational cost. Such approaches still make use of the local Riemannian geometry

and appear to work very well for many challenging models.

In the next chapter we return to the motivating example of statistical models based

on systems of differential equations, which are very useful for describing and predicting
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complex natural processes occurring in the physical and, in particular, the biological

sciences.
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5

Statistical Inference over

Dynamical Systems

Many dynamical systems in engineering, economics and, in particular, the natural sci-

ences can be described using ordinary differential equations (ODEs). The forward

problem consists of numerically obtaining a solution to a system of ODEs given the

model parameters and initial conditions, and this may be easily achieved using com-

monly available software. A much trickier task is the so called inverse problem; can we

work out the original parameter values of an ODE given some noisy measurements of its

solution? Since the 1970s, many approaches have been proposed to tackle this problem

from a mathematical and engineering perspective, during which time computer soft-

ware became publicly available for the automatic integration of many classes of ODEs

(70). This has often been considered from an inverse operator point of view, where the

main problem is the ill-conditioning of the problem (193). It is perhaps surprising that

there has been relatively little research on statistical methods for parameter estimation

of ODEs until only very recently. Bayesian approaches in particular provide a very

natural way of analysing the uncertainty in descriptions of dynamical systems defined

by nonlinear differential equations.

We recall that a dynamical system may be described by a collection of N ordinary

differential equations and model parameters θ, which define a functional relationship

between the process state, x(t), and its time derivative such that

ẋ(t) ≡ dx(t)

dt
= f(x(t),θ) (5.1)
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The first optimisation based approaches to this inverse problem were proposed

around 30 years ago and were based on solving the initial value problem (11, 19, 54).

Given initial conditions, the system of ODEs can be numerically solved and then com-

pared to the observed data. Using for example a least squares approach, the model

parameters can then be optimised. The main concern is usually the computational

expense of numerically solving ODE systems for many sets of parameters. The optimi-

sation task is made harder by the fact that nonlinear ODEs generally induce complex

objective functions with multiple local minima, given by

N∑
n=1

T∑
t=1

(yn(t)− xn(t))2 (5.2)

where xn(t) is the solution for the nth state at time point t to the given system of

differential equations, and yn(t) is the corresponding observed data.

An alternative approach (202) was soon suggested involving a very different two-

step procedure in an attempt to circumvent the computational issues. First, a spline

approximation was fitted to the data using a least squares approach. Then the pa-

rameters of the model were fitted, again using least squares, according to the following

alternative objective function,

N∑
n=1

T∑
t=1

(fn(m(t), θ)−m′n(t))2 (5.3)

where now m′n(t) is the derivative estimate from the spline, and fn(m(t), θ) is the dif-

ferential equation function evaluated using the smoothed observation estimates from

the spline approximation and the parameter values being optimised. Any optimisation

is therefore done over the derivative space instead of the state space. This is computa-

tionally much faster than explicitly solving the ODE for each set of parameter values

and the smoothing of the data also results in an smoother objective function that is

easier to optimise, however the drawback is that we must now work with an extended

statistical model in which inferences are made only approximately; the parameter val-

ues are chosen based on the spline approximation of the data, instead of directly on

the data itself.
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More recently there has been somewhat of a resurgence of developing these ap-

proaches, in particular viewing them from a statistical perspective. Smoothing based

methods may be useful for obtaining approximate parameter estimates, however ideally

we want to be able to fully quantify the uncertainty associated with both the model

parameters and the model itself, so that we may rank multiple hypotheses that encode

the possible structures of a system as ODE models. We therefore focus on Bayesian

methods for these differential equation models.

In this chapter we consider statistical approaches that allow us to analyse one

of the motivating examples mentioned in Chapter 1; using the differential equation

formalism we wish to model the biochemical structure responsible for circadian rhythms

in plants. There are two main strategies for reducing the cost of performing Bayesian

inference in this setting. We can either employ samplers that explore the parameter

space more efficiently, thereby increasing the raw ESS, or we can derive alternative

sampling schemes based on computationally less expensive approximations such as

using an alternative likelihood function; in this chapter we consider both approaches.

We first consider the application of the differential geometric sampling methods

developed in Chapter 3 to statistical models based on nonlinear systems of differential

equations. In particular we show that we can obtain more efficient sampling of the

posterior distribution by employing local sensitivity information from an ODE model,

which coincides with employing 2nd order geometric information in the form of the

Expected Fisher Information. This section follows from the published paper (77).

Having established efficient manifold MCMC sampling methodology based on ex-

plicitly solving systems of ODEs, we take a slight digression to look at an alternative

approach to performing inference over such models. We consider an approximate surro-

gate likelihood approach that avoids explicit solution of the ODE system to see whether

this could further improve computational efficiency, which might be useful for the task

of analysing the larger, more realistic biological dynamical systems that motivate this

work. In particular we investigate the use of Gaussian processes to smooth the data,

whilst performing inference on the parameters using the derivative estimates. This ap-

proach allows for uncertainty to be propagated from the smoothing step through to the

parameter inference step, and we consider both ordinary and delay differential equation

models. This section also follows from recently published work (29).
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5.1 Manifold Sampling for ODE Models

Finally, we examine the modelling issues that arise when using the differential equa-

tion formalism by considering some disease outbreak models. The models we use are

very simple, however they demonstrate clearly the Bayesian approach in such a setting

and we investigate the effects that changes in the priors and data have on the final

inferences. This analysis will provide useful insights before tackling the larger, more

complex biological systems in Chapter 6.

5.1 Manifold Sampling for ODE Models

We have already seen an example in Chapter 1 of a posterior distribution with strong

correlation structure that was induced by a very simple pair of coupled differential

equations. For larger, more complex models there may well be highly nonlinear re-

lationships between the inferred parameters, which may make the higher dimensional

posterior distribution much harder to sample efficiently from, particularly when using

a standard Metropolis-Hastings sampler. In this section we consider the application of

the manifold sampling methods, introduced in Chapter 3, to such ODE models. We see

that by employing a sampling scheme that explicitly takes into account the first and

second order sensitivities of the differential equations in the model, we may obtain sam-

ples from the posterior distribution far more efficiently, as the sampler automatically

takes into account the local geometry at each point in the parameter space.

A dynamical system may be described by a collection of N nonlinear ordinary

differential equations and model parameters θ which define a functional relationship

between the process state, x(t), and its time derivative such that ẋ(t) = f(x(t),θ). A

sequence of process observations, y(t), are usually assumed to be contaminated with

some measurement error, which is modelled as y(t) = x(t) + ε(t), where ε(t) defines

an appropriate multivariate noise process, e.g. a zero-mean Gaussian with variance σ2
n

for each of the N states. If observations are made at T distinct time points, the T ×N
matrices summarise the overall observed system as Y = X + E. In order to obtain

values for X, the system of ODEs must be solved, so that in the case of an initial value

problem X(θ,x0) denotes the solution of the system of equations at the specified time

points for the parameters θ and initial conditions x0. The posterior density follows by

employing appropriate priors such that
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p(θ|Y,x0,σ) ∝ π(θ)
∏
n

N(Y·,n|X(θ,x0)·,n, ITσn) (5.4)

5.1.1 First Order Sensitivities

If we wish to employ sampling methods involving first order geometric information,

such as MALA or HMC, we must be able to calculate the derivatives of the likelihood

with respect to each of the model parameters. If the log-likelihood is given by

L(Y·,n|X(θ,x0)·,n,Σn) ∝
N∑
n=1

−1

2
(Y·,n −X(θ,x0)·,n)T Σ−1

n (Y·,n −X(θ,x0)·,n) (5.5)

then the derivative with respect to the ith parameter follows as

∂L

∂θi
=

N∑
n=1

(Y·,n −X(θ,x0)·,n)T Σ−1
n Si·,n (5.6)

where the T -dimensional vectors of first order sensitivities for the nth component of

state relative to the ith parameter are denoted as Si·,n = ∂X·,n/∂θi. We see that the

first order sensitivities of the differential equations in the model therefore enter into

this expression. One method of obtaining these required sensitivities at all time points

is to approximate them using finite differences, however this approach is generally not

very accurate. For this example we differentiate the system of equations with respect

to each of the parameters and directly solve the first order sensitivity equations defined

as follows

Ṡit,n =
∂fn(x,θ, t)

∂θi
=

N∑
l=1

∂ft,n
∂xl

Sit,l +
∂ft,n
∂θi

We note that we must take the total derivative with respect to θ, since the states

x also depend on the parameter values. We may augment the original system with

these new differential equations, and then numerically integrate this new system with

respect to time in order to obtain both the states and the sensitivities of the states.

The computational time required to solve these equations will of course be more than
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solving the original system, however we note that the additional equations are linear

ODEs of the sensitivities, so we might not expect such a large increased computational

expenditure.

5.1.2 Second Order Sensitivities

We also need to calculate a metric tensor if we wish to employ manifold sampling

methods for this statistical model. By considering the Gaussian noise model described

above, where Σn = ITσ
2
n, using the Expected Fisher Information we straightforwardly

obtain the following analytic expressions for the metric tensor and its derivatives in

terms of the first and second order sensitivities of the states of the differential equations.

This metric tensor and its derivatives follow as

G(θ)ij =

N∑
n=1

Si
T

·,nΣ
−1
n Sj·,n

∂G(θ)ij
∂θk

=

N∑
n=1

(
∂Si

T

·,n
∂θk

Σ−1
n Sj·,n + Si

T

·,nΣ
−1
n

∂Sj·,n
∂θk

)

This expression for the metric tensor has an appealing interpretation in that the

actual sensitivity equations of the underlying dynamic system model explicitly enter

into the proposal process for our manifold based MCMC scheme. In a similar fashion

as before, we may augment the original system with additional equations to solve for

the second order sensitivities, which are required for calculating the partial derivatives

of the metric tensor with respect to the model parameters. These equations follow as

∂Ṡit,n
∂θk

=

N∑
l=1

[(
N∑
m=1

∂2ft,n
∂xl∂xm

Skt,m +
∂2ft,n
∂xl∂θk

)
Sit,l +

∂ft,n
∂xl

∂Sit,l
∂θk

]
+

N∑
l=1

∂2ft,n
∂θi∂xl

Skt,l+
∂2ft,n
∂θi∂θk

We now have everything required to implement RMHMC and mMALA sampling

schemes for statistical models defined by systems of nonlinear differential equations.

Interestingly the structure of the equations required for the metric tensor and its

derivatives are such that RMHMC can be used to form a parallel tempering or popula-

tion Monte Carlo scheme where the numerical solution of the sensitivity equations and

their derivatives can be used at all tempered posterior distributions defined as

p(θ|Y,x0,σ, β) ∝ π(θ)
∏
n

N(Y·,n|X(θ,x0)·,n,Σn)β (5.7)
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where 0 ≤ β ≤ 1 (as described at the end of Chapter 3) and the metric is a simple

scaling

G(θ, β)ij = β

N∑
n=1

Si
T

·,nΣ
−1
n Sj·,n (5.8)

5.1.3 Fitzhugh Nagumo Model

We present results comparing the sampling efficiency for the parameters of the Fitzhugh

Nagumo differential equations (159),

V̇ = c

(
V − V 3

3
+R

)
, Ṙ = −

(
V − a+ bR

c

)
(5.9)

We obtain samples from the posterior distribution p(θ|Y,x0,σ), and so in this example

X1,· = V and X2,· = R. The sampling schemes we employ are Metropolis-Hastings,

MALA and HMC, as described in Chapter 4, as well as the manifold methods mMALA,

simplified mMALA and RMHMC. We again compare the simulations by calculating the

effective sample size (ESS) normalised by the computational time required to produce

the samples.

Before proceeding we require the first and second partial derivatives of the Fitzhugh

Nagumo equations in order to calculate the metric tensor and its derivatives. In prac-

tice, all these expressions may be obtained automatically using symbolic differentiation.

∂V̇

∂a
=
∂V̇

∂b
= 0,

∂V̇

∂c
=

(
V − V 3

3
+R

)
,
∂Ṙ

∂a
=

1

c
,
∂Ṙ

∂b
=
−R
c
,
∂Ṙ

∂c
=

(
V − a+ bR

c2

)
All of the second derivatives of V̇ with respect to the model parameters are equal to

zero, and the five non-zero second partial derivatives of Ṙ are as follows,

∂2Ṙ

∂a∂c
= − 1

c2
,
∂2Ṙ

∂b∂c
=
R

c2
,
∂2Ṙ

∂c∂a
= − 1

c2
,
∂2Ṙ

∂c∂b
=
R

c2
,
∂2Ṙ

∂c2
= 2

(
−V + a− bR

c3

)
In addition, the second partial derivatives with respect to all states and parameters are

required for writing the differential equation describing the second order sensitivities.
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There are again five non-zero second partial derivatives with respect to the states and

parameters as follows

∂2V̇

∂V ∂c
= 1− V 2,

∂2V̇

∂R∂c
= 1,

∂2Ṙ

∂V ∂c
=

1

c2
,

∂2Ṙ

∂R∂b
= −1

c
,

∂2Ṙ

∂R∂c
=

b

c2

5.1.4 Experimental Results

We used 200 data points generated from the Fitzhugh Nagumo ODE model between

t = 0 and t = 20 with the model parameters a = 0.2, b = 0.2, c = 3 and initial conditions

V (0) = −1 and R(0) = 1. Gaussian distributed noise with standard deviation equal to

0.5 was then added to the data, see Figure 5.1.
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Figure 5.1: Fitzhugh Nagumo ODE model output. - Output for species V (left)

and species R (right) of the Fitzhugh Nagumo model with parameters a = 0.2, b = 0.2,

c = 3. An example noisy dataset is shown by the red points.

Nonlinear ODEs generally induce corresponding nonlinearities in the target distri-

bution, which may result in many local maxima (27). Careful attention must therefore

be paid so that the Markov chains do not converge to the wrong mode, but rather

sample from the correct distribution. All the sampling methods employed in this sec-

tion may be embedded within a population MCMC framework to allow full exploration

of and convergence to the target density (27), however for the purpose of comparing

sampling efficiency we employ a single Markov chain initialised on the true mode. We

collected 5000 posterior samples and calculated the ESS for each parameter, using the

minimum value to calculate the time per effectively independent sample. 10 simulations

were run for each method, using the same dataset, and all methods were implemented

in the interpreted language Matlab for consistency of comparison.

The results of our simulations are shown in Table 5.1. Standard HMC takes the

longest time for this problem due to the large number of leapfrog steps it needs to
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traverse the parameter space. RMHMC on the other hand requires relatively few

leapfrog steps, as it takes into account the local geometry to make better moves. We

note however the additional computational cost of the leapfrog steps, during each of

which it is necessary to solve the system of ODEs to evaluate the gradients and metric

tensor. The first momentum update of RMHMC is relatively quick since only a vector-

matrix multiplication is necessary, however updating the parameter values requires the

metric tensor to be evaluated for each fixed point iteration in the Generalised leapfrog

algorithm as the parameter values converge, thus adding a considerable amount of

computation to the overall algorithm. The mMALA methods offer the best performance

for this particular example, as they have the benefit of using manifold information to

guide the direction of the chain, but without the required fixed point iterations thus

only requiring the ODEs to be numerically solved once per iteration. This suggests that

mMALA is perhaps particularly suited for settings in which there is a non-constant

metric tensor which is expensive to compute, as in this case.

The Fitzhugh Nagumo model has only three parameters and we see that MALA and

HMC perform adequately in this low dimensional setting, indeed the largest marginal

parameter variance is only four times larger than the smallest marginal variance. We

would expect MALA and HMC to perform worse in cases where there is a greater dif-

ference in the marginal variances, since the step size of each is restricted by the smallest

marginal variance. Similarly, while component-wise Metropolis performs adequately in

this setting, we would expect its performance to deteriorate in higher dimensions, as

has been previously noted in the literature, when there are greater correlations in the

parameters. We shall see an example of this in Chapter 6.

The underlying forward problem of solving initial-value ODEs numerically is a well-

studied topic which has spawned very sophisticated numerical solvers. However, in an

MCMC context the computational expense required to simulate the ODEs is particu-

larly important, since a very large number of solves may be required to obtain sufficient

posterior samples. In the next section we therefore digress to investigate an approxi-

mate inference method designed to further reduce the computational cost of inference

under certain conditions.
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Table 5.1: Summary of results for the Fitzhugh Nagumo model with 10 runs of the

parameter sampling scheme and 5000 posterior samples

Sampling Time (s) Mean ESS Total Time/ Relative

Method (a, b, c) (Min mean ESS) Speed

Metropolis 18.5 132, 130, 108 0.17 ×3.9

MALA 14.4 125, 21, 46 0.67 ×1

HMC 815 4668, 3483, 3811 0.23 ×2.9

mMALA 34.9 1057, 925, 956 0.037 ×18.1

mMALA Simp. 14.9 1007, 479, 762 0.031 ×21.6

RMHMC 266 4302, 4202, 3199 0.083 ×8

5.2 Gaussian Processes for Approximate ODE Inference

In the MCMC approaches of the previous section most of the computation time is spent

obtaining solutions to the ODEs by solving the forward problem given some parameters

and initial conditions. One approach to minimising this cost is by sampling from the

space as efficiently as possible, using the local geometric information at each point to

make larger proposed steps that are accepted with high probability. An alternative

approach is to improve efficiency by replacing the likelihood function with a surrogate

that is computationally less expensive to evaluate. We therefore now divagate slightly

from manifold sampling to investigate alternatives to explicitly solving the systems

of ODEs, which might potentially increase even further the efficiency and speed of

statistically analysing the large dynamical systems we shall consider in Chapter 6. In

particular we consider an approximate Bayesian method for inferring the parameters

in systems of ODEs based on a smoothed approximation to the data and its derivatives

using Gaussian processes.

The basic idea is that we first smooth the data to obtain estimates of the underlying

state and its derivatives. The model parameters are then fitted to the ODE model based

on these state approximations. This two step procedure has previously appeared in the

literature using a smoothing spline approach, which we now briefly review. It is of

course assumed that the spline can accurately describe the dynamics of the data such

that errors in the parameter estimates will be minimal, and this is often dependent

on having enough accurate data. In particular, parameter values should be checked
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a posteriori by solving the ODE model explicitly. An cautionary example is given in

(202), showing how parameter values based on a plausible looking, but overfitted, spline

approximation results in parameter values whose exact explicit solution is actually quite

different from the data. An additional challenge with this approximation approach

regards dealing with unobserved species. Varah (202) suggests an example in which

the system can be converted into a higher order system of only the observed species,

however it is then necessary to make use of 2nd order derivative estimates from the

spline, which will likely be subject to even more error than the 1st order estimates.

The two-step method has been built upon recently by the Iterated Principal Differ-

ential Analysis framework (157, 160), which iterates between fitting the spline to the

data and ensuring fidelity to the ODE model through the penalty term,

M∑
m=1

(
∂x̂m
∂t
− f(x̂m,θ)

)2

(5.10)

where this term is based on a number of chosen collocation points at time points indexed

by m, which may be larger than the number of data points. We note that as the number

of collocation points tends to infinity and this residual tends to zero, we recover the

continuous integrated solution of the ODE model. Indeed for large models, the number

of collocation points to be optimised may have a large impact on the computational

speed of the method. In effect, both states and model parameters must be optimised.

More recently, Ramsay et al. (159) introduced the Generalised Smoothing approach

with a smoothing parameter λ that offers a way of interpolating between data fit and

model fit, with the method being equivalent to a standard least squares model fit to

the data as λ → ∞. While this is certainly an advance on the original methods of

(202), there are still a number of significant shortcomings. In particular, questions

arise concerning the choice of spline parameters that control the smoothing, the choice

of interpolation parameter λ, and how these choices ultimately affect the end results.

The methods are all critically dependent on additional regularisation parameters

to determine the level of data smoothing. They all exhibit the potential problem of

providing sub-optimal point estimates; even (159) may not converge to a reasonable

solution depending on the initial values selected, due to the nonlinearity of the op-

timisation space. Finally, these methods only provide point estimates of the “best”
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parameter set and are unable to cope with multiple possible solutions, although it

should be noted that (159) does offer a local estimate of uncertainty based on second

derivatives computed at a point and at additional computational cost.

5.2.1 Overview

Bayesian, and indeed non-Bayesian, approaches for parameter estimation and model

comparison (203) involve evaluating likelihood functions that generally require the ex-

plicit numerical solution of a system of differential equations. Similar to ODEs, delay

differential equations (DDEs) can also be used to describe certain dynamic systems,

where now an explicit time-delay τ is employed. The computational cost of obtaining

the required numerical solutions of the ODEs, and in particular DDEs, can result in

slow running times.

We now present a two-step method for performing Bayesian inference over mech-

anistic models by using Gaussian processes (GP) to predict the state variables of the

model as well as their derivatives, which avoids the need to solve the system explic-

itly. In certain cases, this can result in dramatically improved computational efficiency,

however this speed increase is not guaranteed in general due to the poor computational

scaling of GPs with respect to the number of observations. An additional shortcoming

that we must be wary of is that this approach introduces another layer of complexity

into our statistical model and inferences will be based on smoothed approximations

rather than the data directly, as we discuss later in this section.

We note that state space models offer an alternative approach for performing pa-

rameter inference over dynamical models particularly for on-line analysis of data, see

(55). Related to the work we present, we also note that in (78) the use of GPs has

been proposed in obtaining the solution of fully parameterised linear operator equations

such as ODEs. A little known paper by Skilling (181) is also of relevance, in which he

suggests that differential equations should be treated as just another inference problem

and he describes a method making use of GPs to approximate their solution, however

it ultimately fails to be computationally feasible in practice due to the poor computa-

tional scaling properties. In a slightly different context, GPs are employed in (163) as

emulators of the posterior response to parameter values as a means of improving the

computational efficiency of a hybrid Monte Carlo sampler.
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We now suggest a Bayesian method that utilises GPs to approximate the solution

states of our differential equation model. We demonstrate its speed and statistical ac-

curacy for performing statistical inference over ordinary and delay differential equations

under certain conditions, and provide comparisons with the alternative approaches. We

also present an example with unobserved species.

5.2.2 Introduction to Gaussian Processes

A Gaussian process (GP) can be considered a natural extension of a Gaussian distribu-

tion that is fully defined by a mean function and a covariance function. A GP may be

defined over arbitrary dimensions, however since we are only interested in time series

we introduce GPs in terms of a one dimensional input space t, representing time. Both

the mean and covariance functions in turn depend on some real process x(t) such that

µ(t) = E[x(t)] (5.11)

k(t1, t2) = E[x(t1 − µ(t1))x(t2 − µ(t2))] (5.12)

A GP is therefore a collection of random variables, whose most important property is

that any finite number of these random variables have a Gaussian joint distribution.

This marginalisation property allows us to perform straightforward computations with

this otherwise infinite dimensional object.

As a first example, let us assume we have noise free observations x at time points

t, and we wish to predict the values x∗ at time points x∗. Given the assumption that

the joint distribution of x and x∗ is Gaussian distributed, the values of x∗ at t∗ can be

calculated using a standard formula. If the joint distribution is given in the standard

form

[
x
x∗

]
∼ N

([
µx

µx∗

]
,

[
k(t, t) k(t, t∗)
k(t∗, t) k(t∗, t∗)

])
(5.13)

then the conditional distribution for x∗ is given by

p(x∗|x, t, t∗) = N(µx∗ + k(t∗, t)k(t, t)−1(x− µx), k(t∗, t∗)− k(t∗, t)k(t, t)−1k(t∗, t)T )
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We note that our covariance function defines the type of functions that our GP

is capable of describing, for example quickly or slowly varying functions, oscillatory

functions etc. Many examples of valid covariance functions are given in (164). Such

covariance functions often have hyperparameters defining these characteristics, and we

can either fix these if we know exactly what type of functions we want, or we can infer

these hyperparameters from the data.

In practice we often assume a zero mean and as we will be dealing with noisy

observations we can include an additional term to assume additive independent iden-

tically distributed noise, such that our observations take the form y = x + ε, where

ε ∼ N(0, Iσ2). We can conveniently include this in our covariance function such that

our joint distribution then becomes

[
y
x∗

]
∼ N

([
0
0

]
,

[
k(t, t) + Iσ2 k(t, t∗)
k(t∗, t) k(t∗, t∗)

])
(5.14)

and given hyperparameters φ and σ we can draw smooth functions from the marginal

distribution

p(x∗|y, t, t∗, σ,φ) ∼ N(µ,Σ) (5.15)

where φ are the hyperparameters of the GP and

µ = k(t, t∗)[k(t, t) + Iσ2]−1y (5.16)

Σ = k(t∗, t∗)− k(t, t∗)[k(t, t) + Iσ2]−1k(t, t∗)T (5.17)

Furthermore, by noticing that y ∼ N(k(t, t) + Iσ2), we can also sample the hyperpa-

rameters of our GP by putting priors over σ and φ and sampling from

p(φ, σ) ∝ p(y|φ, σ)p(φ)p(σ) (5.18)

and so we obtain an expression for the full joint posterior p(x∗, σ,φ|y, t, t∗). We note

that a non-Gaussian noise model may alternatively be implemented using warped GPs

(183).
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Another useful feature is that we can analytically obtain derivatives of functions

sampled from our GP for particular classes of covariance functions - all we require is

that the covariance function can be differentiated with respect to each of the inputs,

t1 and t2 in our case. Letting k′, ′k and k′′ be our covariance function differentiated

with respect to the first, second and both input variables t1 and t2 respectively, the

observed data and derivative predictions are again jointly Gaussian distributed (184),

[
y
ẋ∗

]
∼ N

([
0
0

]
,

[
k(t, t) + Iσ2 k′(t, t∗)
′k(t∗, t) k′′(t∗, t∗)

])
(5.19)

and so derivative predictions follow in a similar manner as before,

p(ẋ∗|y, t, t∗, σ,φ) ∼ N(m,K) (5.20)

where

m = ′k(t, t∗)[k(t, t) + Iσ2]−1y (5.21)

K = k′′(t∗, t∗)−′ k(t, t∗)[k(t, t) + Iσ2]−1k′(t, t∗)T (5.22)

We therefore have a Bayesian nonparametric smoothing of our data, for which we

can easily calculate derivatives, with uncertainty estimates.

5.2.3 Auxiliary Gaussian Processes on State Variables

Returning to the problem of inferring parameters in an ODE model, we see that we

could produce a two step approach , whereby we employ a likelihood function based on

the mismatch between the smoothed derivative estimates from the GP and the ODE

function output based on the parameters and the smoothed data estimates from the

GP.

Since the differential equations we consider are reasonably smooth and well-behaved,

we employ a standard squared exponential covariance function (164), which is infinitely

differentiable. We employ a simple zero mean Gaussian process prior since the shape of

the GP is inferred directly from the data, with the model solutions subsequently being

enforced through the likelihood function. We note that an alternative approach is to
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encode the ODE model directly into the covariance function of the Gaussian process,

as has been done for Latent Force models (4), instead of separating the data driven

and mechanistic modelling components, as is the case in this work (see Figure 5.2(b)).

In particular we obtain a posterior over the model parameters by assuming Normal

errors between the derivatives ẋn,·, for each of the N states of our ODE model, and

the functional fn(x,θ, t), which is estimated using the state predictions from the GP at

each of the specified time points. Then p(ẋn,·|x,θ, γn) = Nẋn,·(fn(x,θ, t), Iγn), where

we now have error variances γn and σn for each state.

We therefore have two statistical models describing the state derivatives; one in

terms of the data and one in terms of the ODE model. We can choose to model these

jointly as a simple product such that

p(ẋn,·|x,θ, γn,φn, σn) ∝ Nẋn,·(mn,Kn)Nẋn,·(fn(x,θ, t), Iγn) (5.23)

Finally, including priors π(θ) and π(γ) =
∏
n π(γn) we obtain

p(θ,γ|X,ϕ,σ) =

∫
p(Ẋ,θ,γ|X,ϕ,σ)dẊ

∝ π(θ)π(γ)
∏
n

∫
N(mn,Kn)N(fn(X,θ, t), Iγn)dẊn,·

∝ π(θ)π(γ)∏
n Z(γn)

exp

{
−1

2

∑
n

(fn −mn)T(Kn + Iγn)−1(fn −mn)

}

where fn ≡ fn(X,θ, t), and Z(γn) = |2π(Kn + Iγn)|
1
2 is a normalising constant. The

gradients can be marginalised exactly and we obtain a straightforward method for

sampling θ

5.2.4 Sampling Schemes for Fully Observed Systems

The introduction of the auxiliary model and its associated variables has enabled us

to recast the differential equation as another component of the inference process. The

relationship between the auxiliary model and the physical process that we are modelling

is shown in Figure 5.2(b), where the dotted lines represent a transfer of information

between the models. This information transfer takes place through sampling candidate

128



5.2 Gaussian Processes for Approximate ODE Inference

Figure 5.2: Graphical models representing different approaches to inference

over differential equation systems. - (a) Graphical model representing explicit solution

of an ODE system, (b) Graphical model representing approach developed in this chapter

with dashed lines showing how the two models are combined in product form.

solutions for the system in the GP model. Inference is performed by combining these

approximate solutions with the system dynamics from the differential equations. It

now remains to define an overall sampling scheme for the structural parameters. We

assume that the system is defined in terms of ODEs, however we note that our scheme

is easily extended for delay differential equations (DDEs), where now predictions at

each time point t and the associated delay (t − τ) are required. Predictions of these

additional time points can be easily obtained with the prediction inputs (t − τ). We

present results for a DDE system in Section 5.2.7. We can now consider the complete

sampling scheme by also inferring the hyperparameters and corresponding predictions

of the state variables and derivatives using the GP framework described in Section 5.2.3.

We can obtain samples θ from the desired marginal posterior p(θ|Y)1 by sampling from

the joint posterior p(θ,γ,X,ϕ,σ|Y) as follows

1Note that this is implicitly conditioned on the class of covariance function chosen.
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p(ϕn, σn|Yn,·) ∝ π(σn)π(ϕn)NYn,·(0, σ
2
nI + Cϕn) (5.24)

p(Xn,·|Yn,·, σn,ϕn) = NXn,·(µn,Σn) (5.25)

p(γ|X,θ,ϕ,σ) ∝ π(γ)∏
n Z(γn)

exp

{
−1

2

∑
n

δTn(Kn + Iγn)−1δn

}
(5.26)

p(θ|X,γ,ϕ,σ) ∝ π(θ) exp

{
−1

2

∑
n

δTn(Kn + Iγn)−1δn

}
(5.27)

where δn ≡ fn−mn. This requires two sampling schemes; one for inferring the param-

eters of the GP, ϕ and σ, and another for the parameters of the structural system, θ

and γ. As we are also sampling the hyperparameters, we can marginalise these out,

reducing the potential problem of overfitting, as was demonstrated previously by Varah

(202).

Figure 5.2(a) illustrates graphically the conditional dependencies of the overall sta-

tistical model and from this the posterior density follows by employing appropriate

priors such that p(θ,x0,σ|Y) ∝ π(θ)π(x0)π(σ)
∏
nNYn,·(X(θ,x0)n,·, Iσ

2
n). The de-

sired marginal p(θ|Y) can be obtained from this joint posterior1.

Using an explicit approach, we can run into difficulties sampling from multimodal

posteriors. Recent advances in MCMC methodology suggest solutions to this problem

in the form of population-based MCMC methods (96), which we therefore implement to

sample the structural parameters of our model. An advantage of the auxiliary variable

smoothing approach is that the posterior distribution is also smoothed, allowing for

easier sampling as noted by Ramsay et al. (159).

Sampling of the GP covariance function parameters requires computation of a ma-

trix determinant and its inverse, so for all N states in the system a dominant scaling of

O(NT 3) will be obtained. This poses little problem for many applications in systems

biology since T is often fairly small (T ≈ 10 to 100). For larger values of T , sparse

approximations can offer much improved computational scaling of order O(NM2T ),

where M is the number of time points selected (120). Sampling from a multivariate

Normal whose covariance matrix and corresponding decompositions have already been

computed therefore incurs no dominating additional computational overhead. The final

1This distribution is implicitly conditioned on the numerical solver and associated error tolerances.
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sampling step requires each of the Kn matrices to be constructed, thus incurring a total

O(NT 3) scaling per sample.

An approximate scheme can be constructed by first obtaining the maximum a pos-

teriori values for the GP hyperparameters and posterior mean state values, ϕ̂, σ̂,

X̂n, and then employing these in Equation 5.27. This will provide samples from

p(θ,γ|X̂, ϕ̂, σ̂,Y) which may be a useful surrogate for the full joint posterior incur-

ring lower computational cost as all matrix operations will have been pre-computed.

5.2.5 Extension to Partially Observed Systems

We can also construct a sampling scheme for the special case where some states are

unobserved. We partition X into Xo, and Xu. Let o index the observed states, then

we may infer all the unknown variables as follows

p(θ,γ,Xu|Xo,ϕ,σ) ∝ π(θ)π(γ)π(Xu) exp

{
−1

2

∑
n∈o

(δo,un )T(Kn + Iγn)−1(δo,un )

}

where δo,un ≡ fn(Xo,Xu,θ, t) −mn and π(Xu) is an appropriately chosen prior. The

values of unobserved species are obtained by propagating their sampled initial values

using the corresponding discrete versions of the differential equations and the smoothed

estimates of observed species. The p53 transcriptional network example we consider

shortly requires inference over unobserved protein species, see Section 5.2.8. We now

demonstrate our GP-based inference method using a standard squared exponential co-

variance function on a variety of examples involving both ordinary and delay differential

equations, and compare the accuracy and speed.

5.2.6 Example 1 - Nonlinear Ordinary Differential Equations

We first consider the Fitzhugh Nagumo model (159) which was originally developed

to model the behaviour of spike potentials in the giant axon of squid neurons and is

defined as

dV

dt
= c

(
V − V 3

3
+R

)
dR

dt
=

1

c
(V − a+ bR)
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Although consisting of only 2 equations and 3 parameters, this dynamical system

exhibits a highly nonlinear likelihood surface (159), which is induced by the sharp

changes in the properties of the limit cycle as the values of the parameters vary. Such a

feature is common to many nonlinear systems and so this model provides an excellent

test for our GP-based parameter inference method.

Data is generated from the model, with parameters a = 0.2, b = 0.2, c = 3, at

{40, 80, 120} time points with additive Gaussian noise, N(0, v) for v = 0.1× σn, where

σn is the standard deviation for the nth species. The parameters were then inferred

from these data sets using the full Bayesian sampling scheme and the approximate

sampling scheme, both employing population MCMC. Additionally, we inferred the

parameters using 2 alternative methods, the profiled estimation method of Ramsay et

al. (159) and a population MCMC sampling scheme, in which the ODEs were solved

explicitly, to complete the comparative study.

Fitzhugh Nagumo ODE Model

Samples Method a b c

40

GP MAP 0.1930 ± 0.0242 0.2070 ± 0.0453 2.9737 ± 0.0802

GP Fully Bayesian 0.1983 ± 0.0231 0.2097 ± 0.0481 3.0133 ± 0.0632

Explicit ODE 0.2015 ± 0.0107 0.2106 ± 0.0385 3.0153 ± 0.0247

80

GP MAP 0.1950 ± 0.0206 0.2114 ± 0.0386 2.9801 ± 0.0689

GP Fully Bayesian 0.2068 ± 0.0194 0.1947 ± 0.0413 3.0139 ± 0.0585

Explicit ODE 0.2029 ± 0.0121 0.1837 ± 0.0304 3.0099 ± 0.0158

120

GP MAP 0.1918 ± 0.0145 0.2088 ± 0.0317 3.0137 ± 0.0489

GP Fully Bayesian 0.1971 ± 0.0162 0.2081 ± 0.0330 3.0069 ± 0.0593

Explicit ODE 0.2071 ± 0.0112 0.2123 ± 0.0286 3.0112 ± 0.0139

Table 5.2: Summary statistics for each of the inferred parameters of the Fitzhugh Nagumo

model

All the algorithms were coded in Matlab, and the population MCMC algorithms

were run with 30 temperatures, and used a suitably diffuse Γ(2, 1) prior distribution

for all parameters, forming the base distribution for the sampler. Two of these pop-

ulation MCMC samplers were run in parallel and the R̂ statistic (72) was used to

monitor convergence of all chains at all temperatures. The required numerical approx-

imations to the ODE were calculated using the Sundials ODE solver (90, 178), which

has been demonstrated to be considerably (up to 100 times) faster than the standard
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ODE45/ODE15s solvers commonly used in Matlab. In our experiments the chains gen-

erally converged after around 5000 iterations, and 2000 samples were then drawn to

form the posterior distributions. Ramsay’s method (159) was implemented using the

Matlab code which accompanies their paper. The optimal algorithm settings were used,

tuned for the Fitzhugh Nagumo model (see (159) for details) which they also investi-

gated. Each experiment was repeated 100 times, and Table 1 shows summary statistics

for each of the inferred parameters. All of the three sampling methods based on pop-

ulation MCMC produced low variance samples from posteriors positioned close to the

true parameters values. Most noticeable from the results in Figure 5.3 is the speed

advantage the GP based methods have over the more direct approach, whereby the

differential equations are solved explicitly; the GP methods introduced in this chapter

offer up to a 10-fold increase in speed, even for this relatively simple system of ODEs.

Figure 5.3: Summary statistics for time taken to perform ODE inference using

a variety of methods. - Summary statistics of the overall time taken for the algorithms

to run to completion. Solid bars show mean time for 100 runs; superimposed boxplots

display median results with upper and lower quartiles.

We found the performance of the profiled estimation method (159) to be very sen-

sitive to the initial parameter values. In practice parameter values are unknown, in-

deed little may be known even about the range of possible values they may take,

thus it seems sensible to choose initial values from a wide prior distribution so as

to explore as many regions of parameter space as possible. Employing profiled es-
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timation using initial parameter values drawn from a wide gamma prior, however,

yielded highly biased results with the algorithm often converging to local maxima far

from the true parameter values. The parameter estimates become more biased as the

variance of the prior is increased and as the starting points move further from the

true parameter values. Consider parameter a; for 40 data points, for initial values

a, b, c ∼ N({0.2, 0.2, 3}, 0.2), the range of estimated values for â was [Min, Median,

Max] = [0.173, 0.203, 0.235]. For initial values a, b, c ∼ Γ(1, 0.5), the â had a range

[Min, Median, Max] = [−0.329, 0.205, 9.3 × 109] and for a wider prior a, b, c ∼ Γ(2, 1),

then â had range [Min, Median, Max] = [−1.4× 1010, 0.195, 2.2× 109]. Lack of robust-

ness therefore seems to be a significant problem with this profiled estimation method.

The speed of the profiled estimation method was also extremely variable, and this was

observed to be very dependent on the initial parameter values. For initial values a, b, c ∼
N({0.2, 0.2, 3}, 0.2), the times recorded were [Min, Mean, Max] = [193, 308, 475]. Using

initial values sampled from a different prior, such that a, b, c ∼ Γ(1, 0.5), the times were

[Min, Mean, Max] = [200, 913, 3265] and similarly for a wider prior a, b, c ∼ Γ(2, 1),

[Min, Mean, Max] = [132, 4171, 37411].

5.2.7 Example 2 - Nonlinear Delay Differential Equations

This example model describes the oscillatory behaviour of the concentration of mRNA

and its corresponding protein level in a genetic regulatory network, introduced by

Monk (140). The translocation of mRNA from the nucleus to the cytosol is explicitly

described by a delay differential equation,

dµ

dt
=

1

1 + (p(t− τ)/p0)n
− µmµ

dp

dt
= µ− µpp

where µm and µp are decay rates, p0 is the repression threshold, n is a Hill coefficient

and τ is the time delay. The application of our method to DDEs is of particular interest

since unobserved species or components of a system can often be modelled in terms

of a time delay. In addition, numerical solutions to DDEs are generally much more

computationally expensive to obtain than ODEs, and thus inference of such models

using MCMC methods with the more direct approach of explicitly solving the system at

each iteration becomes less feasible as the complexity of the system of DDEs increases.
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Monk DDE Model

Samples Method µm µp ×10−3 p0 ×10−3 τ

40
GP MAP 100.21 ± 2.08 29.7 ± 1.6 30.1 ± 0.3 25.65 ± 1.04

GP Full Bayes 99.75 ± 1.50 29.8 ± 1.2 30.1 ± 0.2 25.33 ± 0.85

80
GP MAP 99.48 ± 1.29 29.5 ± 0.9 30.1 ± 0.1 24.81 ± 0.59

GP Full Bayes 100.26 ± 1.03 30.1 ± 0.6 30.1 ± 0.1 24.87 ± 0.44

120
GP MAP 99.91 ± 1.02 30.0 ± 0.5 30.0 ± 0.1 24.97 ± 0.38

GP Full Bayes 100.23 ± 0.92 30.0 ± 0.4 30.0 ± 0.1 25.03 ± 0.25

Table 5.3: Summary statistics for each of the inferred parameters of the Monk model

We consider data generated from the above model, with parameters µm = 0.03,

µp = 0.03, p0 = 100, τ = 25, at {40, 80, 120} time points with added random noise

drawn from a Gaussian distribution, N(0, v) for v = 0.1×σn, where σn is the standard

deviation of the time-series data for the nth species. The parameters were then inferred

from these data sets using our GP-based population MCMC methods. Figure 5.4 shows

a time comparison for 10 iterations of the GP sampling algorithms and compares it to

explicitly solving the DDEs using the Matlab solver DDE23 (which is generally faster

than the Sundials solver for DDEs). The GP methods are around 400 times faster for

40 data points. Using the GP methods, samples from the full posterior can be obtained

in less than an hour. Solving the DDEs explicitly, the population MCMC algorithm

would take in excess of two weeks computation time, assuming the chains take a similar

number of iterations to converge.

Figure 5.4: Summary statistics for time taken to perform DDE inference using

a variety of methods - Summary statistics of the time taken for the algorithms to

complete 10 iterations using DDE model.
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5.2.8 Example 3 - The p53 Gene Regulatory Network with Unob-

served Species

Figure 5.5: The predicted output of the p53 gene using data from (12) and the

accelerated GP inference method for the linear model - The predicted output of

the p53 gene using data from (12) and the accelerated GP inference method for the linear

model. Our results are compared to the results obtained in (12) (shown as crosses) and

are comparable to those obtained in (69).

Our third example considers a linear and a nonlinear model describing the regulation

of 5 target genes by the tumour repressor transcription factor protein p53. We consider

the following differential equations which relate the expression level xj(t) of the jth

gene at time t to the concentration of the transcription factor protein f(t) which reg-

ulates it, ẋj = Bj + Sjg(f(t))−Djxj(t), where Bj is the basal rate of gene j, Sj is the

sensitivity of gene j to the transcription factor and Dj is the decay rate of the mRNA.

Letting g(f(t)) = f(t) gives us the linear model originally investigated in (12), and

letting g(f(t)) = exp(f(t)) gives us the nonlinear model investigated in (69). The tran-

scription factor f(t) is unobserved and must be inferred along with the other structural

parameters Bj , Sj and Dj using the sampling scheme detailed earlier in this chapter.

In this experiment, priors on the unobserved species used were f(t) ∼ Γ(2, 1) with a

log-Normal proposal. We tested our method using the leukaemia data set studied in

(12), which comprises 3 measurements at each of 7 time points for each of the 5 genes.

Figures 5.5 and 5.6 show the inferred missing species and the results are in good ac-

cordance with recent biological studies. For this example, our GP sampling algorithms
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Figure 5.6: The predicted output of the p53 gene using data from (12) and the

accelerated GP inference method for the nonlinear model - The predicted output

of the p53 gene using data from (12) and the accelerated GP inference method for the

nonlinear model. Note that the asymmetric error bars in the nonlinear model are due to

exp(y) being plotted, as opposed to just y for the linear model. Our results are compared

to the results obtained in (12) (shown as crosses) and are comparable to those obtained in

(69).

ran to completion in under an hour on a 2.2GHz Centrino laptop, with no difference in

speed between using the linear and nonlinear models; indeed the equations describing

this biological system could be made more complex with little additional computational

cost.

5.2.9 Discussion

Calculating explicit solutions to differential equations can pose computational chal-

lenges for the application of inferential methodology. An alternative approach to this

problem has been suggested in previous work based on employing computationally inex-

pensive spline-based approximations to provide surrogate solutions to the ODE system.

Such approaches are fast, although generally prone to errors that propagate from the

spline approximation step; overfitting the data is a particular problem.

In this section we have extended this approach by framing it within a Bayesian

framework and employing an auxiliary Gaussian process model, which allows uncer-

tainty in the data smoothing step to be better characterised. The hyperparameters

that control the level of smoothing may be inferred and this automatically provides a
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parsimonious fit to the data. There are a couple of drawbacks to this approach how-

ever. There must be enough data for the smoothing step to give reasonably accurate

derivative estimates, and it is well known that GPs scale badly with the number of

observations. In addition the chosen covariance function must be flexible enough to

describe the dynamics of the data. Further it is not possible to estimate marginal like-

lihoods, since the likelihood is based on a smoothing of the data via a GP, instead of

being based on the data directly. Consequently, although this GP based approach offers

great speed advantages for parameter inference in certain cases, we must conclude that

it is not so useful for model inference when we are most interested in the underlying

structure of the system and wish to estimate marginal likelihoods for model ranking.

For the rest of this thesis we therefore focus on manifold sampling methods that require

explicit solution of the systems of differential equations.

5.3 Disease Outbreak Models

One of the main aims in this thesis is to be able to tackle the motivating example of

modelling realistic networks of biochemical dynamics. In this chapter we have so far

investigated methodology that may be applied to models based on differential equations.

Before we tackle larger and more complex systems, such as the circadian rhythm model

we consider in Chapter 6, let us first investigate some of the modelling issues associated

with these types of mechanistic models. In this section, we shall examine some simple

ODE models describing the outbreak of a disease, which allows us to more closely

examine in a pedagogical manner the factors that may affect the results of a Bayesian

parameter and model analysis. The individual states within a complex system can

often be naturally described in terms of their rates of change, which can be defined in

terms of the interactions that take place. As a result, ordinary differential equations

(ODEs) have proved to be extremely useful tools for describing, in quantitative terms,

how physical systems change over time. Accurately modelling complex systems using

systems of ODEs that have some explanatory and predictive power involves identifying

the essential features of the system and representing these mathematically.

In the case of disease outbreaks, just as in any other modelling context, a good

model therefore allows us to
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explain the main interactions present within a system and the key mechanisms at

work,

predict the future dynamics of the system,

investigate hypothetical scenarios that are not amenable to experimental study.

Such models are of particular use in ecology, epidemiology and biology, where there

are many unobservable states and direct experimentation with the system of inter-

est may be very difficult or even impossible. The main challenge with these ODE

models is that they involve parameters whose values are also generally not observable.

These may correspond to rates of infection or interaction, which are often impossible

to measure experimentally. Such parameter values must therefore be inferred from the

available observed data, ideally using a probabilistic approach that can give a measure

of uncertainty in the answers.

We can use these models to answer specific questions, for example, if the num-

ber of observed people with a particular disease in a town over the past 5 days is

123, 127, 104, 92, 74, what is the likelihood of the infection spreading over the coming

weeks and when should I try to leave in order to minimise risk of infection? Using some

simple models motivated by (142), we will consider how much prior knowledge and how

much observational data is needed in order to make useful inferences about the spread

of a disease. We will also consider the issue of comparing model hypotheses. Suppose

we have two theories regarding how the disease spreads

(a) infection occurs from contact with one other infected person

(b) infection occurs from contact with two other infected people

We can encode both of these hypotheses in the form of ODE models, and employ

a Bayesian analysis to investigate which better explains the observed data; this kind

of Bayesian approach to model ranking is a topic that has only recently been tackled

systematically (27, 203).
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5.3.1 A Simple Infection Model

We now illustrate some key ideas by focusing on a very simple disease outbreak model.

We will let S(t) and I(t) represent the number of healthy people and diseased people

at time t. Since S(t) and I(t) will take real values, it is more appropriate to think of

these states as representing the concentration levels of the two species. We suppose

that there is just one event that can cause a change in these concentrations: a healthy

person may come into contact with a diseased person and contract the infection with

some probability. We note immediately that in this simple world the population of

healthy people will decrease to zero and the population level of diseased people will

correspondingly increase until everyone has become infected. We may model this as-

sumption by introducing a single parameter, a rate constant, β, that characterises the

rate of infection. The larger the value of β, the more virulent the disease. Simple mass

action modelling then leads us to the ODEs

Ṡ(t) = −βS(t)I(t), (5.28)

İ(t) = βS(t)I(t). (5.29)

So the ODE system (Equations 5.28 - 5.29) specifies the rate of change of the two

population levels. Adding the two equations, we see that the rate of change of the total

population is zero, which assumes that this particular disease is not fatal, at least not

for the modelling time period we consider. This is intuitively obvious, since each time

we lose a healthy person we gain a corresponding infected person, and so S(t) + I(t)

remains constant. Letting the constant K denote this overall population size, we have

S(t)+I(t) = K. We may then replace I(t) by K−S(t) in Equation 5.28 to get a single

ODE

Ṡ(t) = −βS(t) (K − S(t)) . (5.30)

This ODE fits into the class of logistic equations. Although nonlinear, it is sufficiently

simple to admit a pencil-and-paper solution. This may be written

S(t) =
S(0)K

S(0) + (K − S(0)) eβKt
. (5.31)
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Here t = 0 represents the initial time when we start to monitor the populations, so

S(0) is the initial level of the human population.

Let us first assume that the size of the total population, K, is known, and that the

initial number of healthy people, S(0), is also known. This leaves us with one unknown

parameter, β, which may be interpreted as the rate at which healthy people contract

the disease and is measured per infected person per day. Therefore if initially there are

1000 healthy people and just 1 infected person, a rate of β = 0.001 initially corresponds

to S(0)× β = 1000× 0.001 = 1 person being infected by each diseased person per day.

We note that the number of people becoming infected depends on both the number of

healthy people and the number of currently infected people at any particular time; by

solving our differential equations we may see how these two populations evolve relative

to one another.

Figure 5.7: Example output from a simple infection model - Sample solution of

the simple infection ODE with parameter β = 0.001.

Figure 5.7 shows how a population of 1000 healthy individuals diminishes to less

than 100 after just 10 days, based on a single infected person within the population

and the infection spreading at a rate of one person per infected person per day. We

may see the effect of doubling the rate constant to β = 0.002 in Figure 5.8. In this case

the population dwindles to less than 100 after just 5 days, and by the 7th day everyone

has effectively been infected.
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Figure 5.8: Example output from a simple infection model - Sample solution of

the simple infection ODE model with parameter β = 0.002.

These predictions have been made under the assumption that we know the exact

infection rate. Given an initial number of healthy and infected individuals, along with

a rate constant, our model tells us how the population evolves. In a more realistic

scenario, we would not know this rate constant, but instead have (usually inaccurate)

observations of how the population changes over a period of time. The goal in this case

is then reversed; given some observations regarding the number of infected people at

certain time points, we want to estimate the rate constant β such that our model best

describes the situation as we see it, and we do this by employing Bayesian methods.

Once we have inferred the rate parameter β, we may then quantify the probability of

future scenarios, based on parameter values such that our model adequately describes

the past.

There are three levels of inference that we may ultimately wish to carry out. The

first determines the parameters with which the model plausibly describes the data.

This is the probability of the free parameters θ = [θ1, ..., θn] given some data Y and a

particular model M , which may be written as P (θ|Y,M). In our example there is just

one parameter, θ = β and Y is a vector of observations at a number of time points.

The second level of inference sheds light on the uncertainty associated with our choice

of model, and this is the probability of a particular model M given the data Y, written

as P (M |Y). Finally, the third level of inference describes the probability of a prediction
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given the data, and this prediction may be based on multiple plausible models which

are weighted according to their relative probabilities.

Let us first define our prior and likelihood distributions for the model describing

simple infection dynamics. A prior can be constructed by considering a reasonable time

scale for the process; we may argue that not everyone will become infected in less than

a single day. This gives an upper limit for the rate constant of β = 1, since with that

value S(0)× β = S(0), so all S(0) people could be infected by one diseased person on

the very first day. Likewise, a reasonable minimum rate is β = 0, in which case nobody

else contracts the disease. With no further information, it is reasonable to take the

view that, a priori, any rate constant between 0 and 1 is equally likely. So we may

choose our prior on β to have a uniform distribution over this range.

The choice of probability distribution to describe the presumed measurement error

depends on the problem context. For some modelling scenarios, where for example the

observed data is the number of counts occurring within a particular time interval, the

choice of a Poisson distribution may be appropriate. Alternatively, if the observed data

is obtained from estimates that may be affected by a large number of small unknown

random factors, then due to the the Central Limit Theorem (97, 180) the associated

error may be well approximated by a Gaussian distribution. In the case of modelling

our disease outbreak, we shall assume that the estimated population levels are subject

to small unknown errors that affect the count of infected people. We also assume

that the errors at different observation times are independent, and therefore define the

likelihood function to be a product of Gaussian distributions,

L = P (Y|θ,M) =
∏
t

NY (t)(S(t), σ2). (5.32)

The variance σ2 can either be estimated and fixed in advance, or inferred along

with the other parameters. In the case of our simple infection model, S(t) is easily

calculated from Equation 5.31, however for more complex models it is necessary to

compute a numerical solution for the ODE model. Noting that the marginal likelihood

P (Y|M) is constant for a particular model M , we see it may be calculated as the

integral of the likelihood times the prior over all parameter values,
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P (Y|M) =

∫
. . .

∫
P (Y,θ|M)dθ1 . . . θn

=

∫
P (Y|θ,M)P (θ|M)dθ.

Performing the second and third levels of statistical inference over ODE models is

challenging precisely because we have to estimate such an integral, which is generally

analytically intractable and high dimensional. Only recently has it been demonstrated

that this integral may be efficiently and accurately estimated using thermodynamic

integration (27), and we shall employ this later to discriminate between competing

model hypotheses describing disease outbreaks and to predict future infection dynamics.

Figure 5.9: Varying numbers of data points generated from a simple infection

ODE model - [3, 5, 10, 50] data points generated from the simple infection model over 10

days with parameter β = 0.001 and Gaussian distributed noise with a standard deviation

of 50.

Figure 5.10: Posteriors inferred from a simple infection ODE model with a

varying number of data points - Posterior output from the simple infection model

with parameter β = 0.001 and Gaussian distributed noise with a standard deviation of

50. As the number of data points increases, so the posterior becomes more sharply peaked

around the true value of β.
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Using the simplified mMALA approach described in Section 5.1, we now infer the

posterior distribution over the parameter values given some synthetic data, which allows

us to judge the performance of the algorithm under controlled conditions. We evaluate

the solution of the differential equation 5.31 for a chosen value of β at a number of

time points and add Gaussian distributed noise with known variance to the solution

to generate some experimental data. We generated four data sets this way, as shown

in Figure 5.9. We can then treat this data as though it came from the model with an

unknown value of β, and investigate the effect this has on the variance of the inferred

posterior distribution. Figure 5.10 shows how the posterior distribution over β becomes

more sharply peaked around the true value as the number of data points increases from

3 to 50. The noise induces a noticeable bias when using just 3 data points, although the

posterior probability is reasonably large at the true value of 0.001. Figures 5.11 and 5.12

show how the posterior distribution becomes less diffuse as we add less noise, indicating

a greater confidence in the range of values for which the model could plausibly describe

the data. We may also examine the effect of our prior on the posterior. Changing the

prior from uniform over [0, 1] to uniform over [0, 0.01] has very little difference on the

posterior of β, as shown in the left and middle pictures of Figure 5.13. However, if

we were to badly mis-specify the prior, for example by setting it to be a low variance

Gaussian distribution over the wrong value, we observe the rather biased posterior

distribution shown in the picture on the right in Figure 5.13. This type of mis-specified

prior may be diagnosed by comparing the overlap of the prior and posterior.

Figure 5.11: Data points generated from a simple infection ODE model with

varying noise - 10 data points generated from the simple infection model over 10 days

with parameter β = 0.001 and Gaussian distributed noise with a standard deviations

[2, 10, 20, 50].
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Figure 5.12: Posterior distributions inferred from simple infection ODE model

with varying noise - Posterior output from the simple infection model with parameter

β = 0.001 and 10 data points. As the standard deviation of the additive noise decreases,

so the posterior becomes more sharply peaked around the true value of β.

Figure 5.13: Examining the effect of the prior on posterior inference over

a simple infection ODE model - Posterior output from the simple infection model

with parameter β = 0.001, 3 data points and Gaussian noise with standard deviation 20.

Changing the uniform prior from the range [0, 1] to [0, 0.01] has little effect on the posterior.

However, a mis-specified Gaussian prior with mean 0.003 and standard deviation 0.0001

cannot be properly corrected by this small amount of data.
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We have investigated the effects of data and priors when performing a Bayesian

analysis of a very simple ODE model describing spread of infection. In the next section

we will consider inference over slightly more complex models with partial observations.

5.3.2 A More Realistic Infection Model

The model derived in Section 2 of (142) splits the overall population into three classes.

At each time t we have

• Healthy individuals, S(t),

• Infected individuals, I(t),

• Individuals with dormant infection, R(t).

As in our simple model (Equations 5.28–5.29), healthy individuals may be infected

by coming into close contact with infected individuals. However, we now allow for the

possibility that the disease becomes dormant in an infected individual. We make the

assumption that people with the dormant infection are unable to be counted as they

may display no symptoms, and that their infection may become active again with some

probability. These modelling assumptions lead us to the following ODE system adapted

from (142), and for simplicity we consider only the short timescale regime (Π = δ = 0

in (142)), such that the total population size is constant.

Ṡ(t) = −βSI, (5.33)

İ(t) = βSI + ζR− αSI, (5.34)

Ṙ(t) = αSI − ζR. (5.35)

The parameters in this model are:

• β: an infection rate constant similar to that in the simple model of Section 5.3.1.

A larger value of β implies a more virulent infection.

• α: a rate constant relating to the probability that the disease in an infected person

becomes dormant. A larger value of α implies a higher probability of dormancy.
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Figure 5.14: Examining the effect of the number of data points on posterior

output from the complex infection ODE model - Posterior output from the complex

infection model (Equations 5.33–5.35) with parameters β = 0.00001, α = 0.00002, ζ = 0.1,

and Gaussian distributed noise with a standard deviation of 500. As the number the of

data points increases, so the uncertainty in the posterior model output decreases.
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Figure 5.15: Posterior inference over the initial conditions of a complex in-

fection ODE model - Posterior distributions of the inferred initial conditions from data

generated by the complex infection model with parameters β = 0.00001, α = 0.00002,

ζ = 0.1, and Gaussian distributed noise with a standard deviation of 500. We observe that

the initial conditions are in this case relatively insensitive to the number of data points

observed.

• ζ: a rate constant for a dormant infection to become active again. A larger value

of ζ implies a higher probability of the disease becoming active.

Here we consider a disease outbreak in a mid-sized town. As in Section 5.3.1,

we generate artificial data from the ODE model and investigate the variance of the

inferred posterior distributions. We infer the initial conditions for the infected and

healthy individuals, as well as all parameter values. We assume that initially there

are no individuals with a dormant infection, and that there are around 40, 000 healthy

people and already 10, 000 infected people living in the town. Given daily observations

over a period of [3, 5, 7, 9] days, we consider the predictive model output, that is, two

standard errors or a 95% confidence for the output of the ODE at each time point, over

the 10 days after the disease is first observed, shown in Figure 5.14. Figure 5.15 shows

also the inferred initial conditions, which in this example are relatively insensitive to

the number of observed data points. As the number of observed data points increases,

however, we see that the uncertainty in the predictive model output over subsequent

days does indeed decrease. This is also seen clearly when we consider the predictive

posterior model output for day 15, given observations over [3, 5, 7, 9] days, as shown in
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Figure 5.16: Prediction of future infection levels from a complex infection

ODE model - Predicted levels of healthy people, infected people and people with dormant

infection on day 15 having observed levels of healthy individuals and infected individuals

for [3, 5, 7, 9] days.
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Figure 5.16. After just 3 days of observations, we can say very little about the predicted

healthy and infected population sizes on day 15. Given an additional observation on

each of the following two days however, we can predict with much greater certainty that

the number of people who escape infection is likely to be between 10, 000 and 25, 000.

As we collect more data over the subsequent days, our predictions become more and

more confident, as seen from the more sharply peaked posterior distributions over the

each population. Indeed, after 7 and 9 days, the predicted number of infection-free

individuals is roughly between 10, 000 and 18, 000, and 13, 000 and 17, 000 respectively.

These predicted ranges are tending towards the “true” number of healthy individuals,

determined by the system of ODEs to be 14, 790. Likewise the predicted numbers of

people with active and dormant infection tend towards their “true” values of 10, 426

and 24, 784, respectively.

5.3.3 Model Selection

We now consider a second level of inference, in which there is uncertainty not only in

the parameters, but also in the specified model. Suppose we make the assumption that

an individual can only become infected when they come into contact with two people

who have an active infection. Applying similar arguments to those used for Equations

5.33 to 5.35 we may arrive at the alternative set of ODEs

Ṡ = −βSI2, (5.36)

İ = βSI2 + ζR− αSI, (5.37)

Ṙ = αSI − ζR. (5.38)

We refer to Equations 5.33 to 5.35 as Model 1, and Equations 5.36 to 5.38 as Model 2.

Given some data, we may now perform parameter inference over each model. Nine

days observed data was generated by simulating from Model 1, in which infection

can spread from a single individual, and adding some Gaussian distributed noise with

standard deviation 500. We wish to determine whether a Bayesian inference will allow

us to conclude that Model 1 describes this data better than Model 2, assuming we do

not have any detailed information about the rate constants. Figures 5.17, 5.18 and 5.19

show the posterior model outputs for the two proposed models, setting the standard
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deviation of the noise in the model to be [500, 1000, 2000] respectively. We note that

visually trying to assess which is the better model is difficult, since the posterior output

covers most of the data points for both models.

We may therefore resort to calculating Bayes factors such that B12 represents the

weight of statistical evidence in favour of Model 1 over Model 2. This is computed as

the ratio of the marginal likelihoods for the two competing models,

B12 =
P (Y|M1)

P (Y|M2)
. (5.39)

We recall that calculating the marginal likelihood involves estimating the integral of

the posterior over all values of the parameters, which is a rather challenging task. We

employ the technique of thermodynamic integration, which has recently been shown to

provide accurate, low variance estimates of this quantity (67), whereas other seemingly

simpler methods, such as the Posterior Harmonic Mean estimator, may fail to produce

usable results (27). We make use of the population MCMC approach described in

Section 3.5, again using the simplified mMALA algorithm from Section 5.1 to draw

samples from each of the tempered distributions.

Table 5.4 is a useful guide for interpreting the evidence provided by the estimated

Bayes factors (102). Table 5.5 shows the results of the marginal likelihoods estimated

10 times for each model. In each case, the Bayes factors correctly identify the model

that was used to produce the data. As the standard deviation of the additive noise

increases from 500 to 1000 to 2000, the weight of evidence as indicated by the Bayes

factors decreases, although the evidence remains substantially in favour of the correct

model.

Table 5.4: Interpretation of Bayes Factor

B12 Evidence against H2

1 to 3 Not worth more than a bare mention

3 to 10 Substantial

10 to 100 Strong

> 100 Decisive
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Figure 5.17: Comparison of posterior outputs from two plausible infection

models with low noise levels - Posterior output for the two competing model hypotheses

with the standard deviation of noise set to 500.

Figure 5.18: Comparison of posterior outputs from two plausible infection

models with medium noise levels - Posterior output for the two competing model

hypotheses with the standard deviation of noise set to 1000.

153



5.3 Disease Outbreak Models

Table 5.5: Summary of estimated marginal likelihoods for each infection model

Model Noise SD Marginal Likelihood Bayes Factor

(± Standard Error) B12

Model 1 500 -152.7 (± 0.1) 31.3 (± 1.7)

Model 2 500 -184.0 (± 1.6)

Model 1 1000 -158.5 (± 0.1) 16.7 (± 1.0)

Model 2 1000 -175.2 (± 0.9)

Model 1 2000 -167.1 (± 0.1) 9.8 (± 3.3)

Model 2 2000 -176.9 (± 3.2)

5.3.4 The Optimal Time to Escape

Having introduced the Bayesian approach for performing inference over systems of

differential equations to describe disease outbreaks, we now return to the scenario posed

in the introduction of this section. The number of observed people with a particular

disease in a town over the past 5 days is [123, 127, 104, 92, 74]. What is the likelihood of

the infection spreading over the coming weeks and when should I try to leave in order

to minimise risk of infection?

We now know how to address this question through the use of Bayesian modelling.

We shall assume Model 1 to be a fair representation of the interaction between the

infected population, healthy population and the dormant population, noting that if we

had multiple plausible models we could of course once again do full model comparison

by calculating Bayes factors. We perform parameter inference over the model given

our data of reported daily numbers of diseased people and plot the predictive model

output, shown on the left of Figure 5.20.

In this case, the 95% confidence output from the model includes a wide variety

of outcomes, and the uncertainty in the estimate naturally increases with time. We

cannot rule out the scenarios where (a) there is relatively little spread of disease within

the population, or (b) almost everyone becomes infected within the next month. The

mean number of infected individuals continues to decrease over the next 5 days, until

day 10 when it begins to increase. We therefore argue in favour of making an early exit

in order to minimise risk of exposure to an actively infected individual, since after day

10 there is much more uncertainty regarding population estimates.
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Figure 5.19: Comparison of posterior outputs from two plausible infection mod-

els with high noise levels - Posterior output for the two competing model hypotheses

with the standard deviation of noise set to 2000.

Figure 5.20: Model predictions of disease outbreak in a small town - The left hand

side plots show the predictive model output from the 3 parameter model given observations

of infections in a small town. The right hand side plots show the predictive model output

given additional observations of the number of healthy individuals in the population.
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If we have additional data regarding the likely number of healthy individuals in

the town over the past 5 days, then we may again perform parameter inference over

our model, this time including data for both healthy and infected individuals. The

additional data and predictive model output is shown on the right hand side of Figure

5.20. Given this extra data, we can say with much more certainty that the number of

actively infected individuals in the town will remain low for a longer period of time,

making it perhaps less urgent for us to make our getaway immediately.

5.3.5 Discussion

Mathematical modelling of natural phenomena has a long and illustrious history. Dif-

ferential equations have the potential to describe and predict the behaviour of many

different types of complex systems. However, any mathematical model represents an

abstracted summary that cannot be claimed to capture all characteristics of interest.

A well-known quote that is paraphrased from (21) and attributed to George Box says

that “All models are wrong but some are useful”. Modelling involves compromises and

it generates an inherent level of uncertainty. Moreover, the task of identifying unknown

or unmeasured model parameters introduces further uncertainty.

In cases where model predictions may be used to guide policy, for example, in eco-

nomics, weather forecasting and epidemiology, a systematic and consistent treatment

of all levels of model uncertainty is vital. We have demonstrated in this section, us-

ing simple examples, that the Bayesian statistical framework provides an appropriate

means with which to capture information and reason under uncertainty, and we have

shown how this Bayesian inferential methodology may be extremely useful, not only

for considering individual statistical models based on systems of differential equations

but also for systematically comparing different model hypotheses given limited and

uncertain observed data.

5.4 Conclusions

In this chapter we have seen two different Bayesian approaches for parameter inference

over models described by nonlinear differential equations. The most obvious computa-

tional bottleneck when inferring parameters over such models is the required numerical

solution of the system of differential equations. We have seen how data smoothing may
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be used to approximate the data and provide derivative estimates, such that we can

perform inference in the derivative space, instead of the state space, and the method we

have presented offers a number of advantages. The use of a Gaussian process instead of

a smoothing spline can help prevent overfitting to the data. Parameter inference can be

faster using the surrogate likelihood based on the derivative mismatch, instead of ex-

plicitly solving the system of ODEs at each iteration. It has been noted that posing the

problem in the derivative space has a smoothing effect on the posterior distribution,

making it easier to optimise or sample from (159), and with the Bayesian approach

described in this chapter, we may also implement our sampling scheme within a pop-

ulation MCMC framework, which allows the sampler to escape from potential local

maxima induced by nonlinearities in the ODEs.

However, the main problem is that marginal likelihoods cannot be calculated using

this GP approach, since inference is based on the approximate smoothing of the data

instead of the data directly. With sparse measurements there may be large amounts of

uncertainty in the Gaussian process approximation, resulting in poor derivative esti-

mates. Such an approach seems perhaps most useful for parameter inference, particu-

larly for delay differential equations, which can be extremely computationally expensive

to solve. Ultimately however, the inability to calculate marginal likelihoods prevents

us from performing full model comparison over hypothesised structures.

We therefore advocate the use of the explicit method, developed in Section 5.1, for

model ranking purposes, whereby we may obtain more efficient sampling proposals by

exploiting the local geometry of the parameter space. Explicitly solving the system of

differential equations at each iteration can be costly, however it allows the full Bayesian

machinery to be used, in particular the ability to estimate marginal likelihoods for

model comparison. By using the local sensitivity information at each point, moves

can be proposed with greater efficiency, and we saw that in particular the simplified

mMALA method offered the best performance of any of the MCMC methods tested on

these statistical models. Finally we note that the computational expense of obtaining

explicit solutions can be remedied somewhat by parallelising the population MCMC

code, which makes application to larger ODE models much more feasible, as we shall

see in Chapter 6.
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6

Modelling Biochemical Dynamics

We now consider the challenge of mathematically modelling biochemical dynamics, and

return to the motivating example of circadian rhythms in plants, employing the differ-

ential geometric sampling methodology developed in the previous chapters to investi-

gate and rank statistical models based on systems of nonlinear differential equations

to describe such rhythmic behaviour. Interestingly it was once again Darwin who first

suggested the heritability of circadian rhythms in plants (48, 132), implying that al-

though plants could adapt to their environment their natural behaviour was mainly

defined by the underlying biochemical structure. Mathematical modelling of the bio-

chemical processes of plants, and indeed other organisms, allows deeper insight to be

gained into the inner workings of a variety of physiological mechanisms originating at

the molecular level. In this chapter, we also consider inference over an ODE model of

a cell signalling pathway that is based on mass-action kinetics and exhibits a transient

response, in contrast to the limit-cycle behaviour of the circadian model. This work

follows from an invited paper published in the Journal of the Royal Society, Interface

Focus (28).

6.1 Mathematical Modelling

The use of mathematical modelling has long played an important role in describing

and predicting the behaviour of natural processes (73, 110, 195). It is only more re-

cently however that the use of such models within a statistical framework has allowed

modelling and experimental approaches to be more tightly bound together forming an
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iterative, more symbiotic relationship (139, 207). We recall that mathematical models

are abstract representations of reality that are useful for making testable predictions

with varying levels of detail. Deterministic nonlinear ordinary differential equations

(ODEs) for example may be most appropriate when describing the average concen-

tration of a protein within a population of cells, in which the stochastic effects of

individual molecules do not greatly affect the overall dynamics; this is estimated to be

for populations above the range of 102-103 molecules per chemical species (36). For

smaller numbers of molecules, the use of stochastic models may be more appropriate

(204). Similarly, when modelling more global physiology, at a tissue or organ level for

example, it is no longer feasible to describe the dynamics with such molecular detail

and a more course-grained approach or multi-scale techniques are often necessary, e.g.

(113, 130).

The biochemical mechanisms by which even relatively well-known enzymatic net-

works operate are not always clear (207). There are often multiple plausible network

topologies that are consistent with the known underlying biology, and in this context,

the idea of modularity within biology is important as it provides a natural means of

iteratively building up a model description alongside successive biological experiments,

with each half of the process informing the other. Model hypotheses can thus be

constructed and compared with one another by incorporating new components into an

existing model and then assessing the model based on the data (203). Recent advances

in understanding the molecular origin of circadian rhythms in Arabidopsis thaliana

(127, 128) offer an excellent example of this type of approach, whereby differential

equation models have been able to offer predictions that have subsequently been tested

experimentally (126).

Mechanistic modelling is a first step towards characterising the aetiology of many

different types of diseases that are thought to be the result of disruptions to the nor-

mal functioning of signalling pathways and biochemical networks. Obtaining a detailed

mechanistic understanding of such enzymatic control processes could have major im-

plications in the study and potential treatment of disease at a molecular level. The

circadian clock, for example, appears to play a central role in the physiology of plants

and mammals, controlling many important cellular functions and influencing pathways

implicated with a variety of diseases (192); indeed the timing of drug administration

relative to circadian rhythms appears to strongly affect the efficacy of certain anticancer
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agents (123). Signalling pathways are also strongly implicated in the origin of many

cancers (177) and understanding the intricate networks of nonlinear interactions is key

to being able to predict the impact of biochemical changes within the system, whether

natural or artificially induced with the use of drugs (25).

Current investigations into biochemical networks are characterised by complex non-

linear dynamics, as well as by measurement and model uncertainty. When studying the

possible structure of such systems, working hypotheses can be encoded as statistical

models based on systems of nonlinear differential equations that capture all assump-

tions regarding the likely mechanisms of interaction, as we saw in the disease outbreak

example in the previous chapter. As models increase in size and complexity, so too

does the need for sophisticated statistical methodology that can consistently evaluate

and update the evidence in favour of each model, as new data become available, see e.g.

(196, 207). Given the limited and variable experimental data that is often available, a

probabilistic approach based on Bayesian statistics offers a natural way of dealing with

such parameter and model uncertainty. Rather than finding an optimal working set

of parameters, as is the case in the frequentist setting (165), the Bayesian paradigm

advocates averaging over all possible parameter sets with respect to their individual

probabilities. This marginalisation procedure automatically provides a compromise

between fitting the data and penalising model complexity, such that we may find the

simplest model that is however still complex enough to accurately describe the observed

dynamic behaviour.

Initial proof of concept investigations have shown that a Bayesian approach to model

ranking can be very successful (203, 207), however it is acknowledged that performing

Bayesian inference over ODE models is extremely challenging (27). The procedure

is equivalent to evaluating integrals involving a highly nonlinear function over a high

dimensional space. In more than 3 or 4 dimensions deterministic approaches are no

longer feasible and we must resort to stochastic integration using simulation based

Monte Carlo techniques. A common approach is to construct a Markov process that

converges to the target posterior distribution (167), however this is not straightforward

in practice due to strong correlation structures and expensive to compute likelihoods,

as mentioned in the previous chapter.

In particular, the issue of identifiability is very important and has a direct impact on

our ability to perform efficient frequentist or Bayesian statistical analysis. It has been
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noted many times that ODE models of biochemical networks generally exhibit widely

varying parameter sensitivities (22, 46, 61, 81, 197); investigation of second order sen-

sitivities of these models, evaluated at the maximum likelihood, often reveals a wide

eigenvalue spectrum which itself may change depending on the point in parameter space

at which it is calculated. In settings with such varying parameter scalings, standard

Markov chain Monte Carlo (MCMC) samplers generally have very poor mixing proper-

ties and produce highly correlated samples (77), resulting in estimates of the required

Bayesian quantities with large Monte Carlo errors. This is often a result of structural

unidentifiability of the model (165), such that parameters cannot be estimated with

low variance. For example, if the output of a model depends strongly only on the ratio

of two parameters θ1/θ2, then the conditional distributions p(θ1|θ2) and p(θ2|θ1) may

be well constrained, but their marginal distributions p(θ1) and p(θ2) might not be.

The differential geometric MCMC methods developed in this thesis seem particu-

larly well suited to this type of application, since they exploit the natural representation

of the model parameter space as a Riemannian manifold (32), which is induced using

the Expected Fisher Information as a metric tensor (77). The Expected Fisher Infor-

mation therefore defines a local distance measure and effectively allows the MCMC

proposals to be based on the curvature of the manifold, which is directly defined by

the parameter sensitivities of the underlying model describing the dynamical system,

as we saw in Chapter 5.

We now examine the application of differential geometric MCMC methodology for

performing Bayesian inference over ODE models of biologically relevant size with com-

plex dynamics and partially unidentifiable structures. We perform posterior inference

on two biologically realistic examples of biochemical networks that have recently been

studied in the systems biology literature. We first consider a model describing the main

circadian clock components in Arabidopsis thaliana (128), building up inference over

different sets of model parameters to gain insight into the challenges of a statistical

analysis. We perform inference using a synthetic dataset generated from the model

and demonstrate how we may infer the posterior distributions over the parameters, in

addition to obtaining low variance estimates of the marginal likelihoods for the purpose

of model comparison. We then consider an alternative hypothesised model structure

with a positive instead of negative feedback loop. We once again calculate marginal

likelihoods based on the previous synthetic dataset, demonstrating the model ranking
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procedure over these complex dynamical systems. Finally we consider a biochemical

model based on mass-action kinetics with a transient response, which describes a cell

signalling pathway of recent biological interest (17).

6.1.1 Circadian Rhythms in Arabidopsis Thaliana

Circadian rhythms play a central role in regulating the physiology of many living or-

ganisms. Indeed, many plants and animals have gained competitive advantages by

adapting their internal physiology to synchronise with the environment they inhabit.

Internal clocks have evolved to react to many external stimuli, with nutrients, light and

temperature being obvious examples. The main mechanisms in a variety of different

organisms that generate such rhythmic cellular activity appear to be commonly built

upon positive and negative feedback loops. These 24 hour oscillations have to be sen-

sitive enough to react to external changes appropriately, yet robust enough to remain

stable in a variety of conditions over different timescales; interlocking feedback loops

are a likely way of achieving these robustness qualities (150, 188).

Biological research communities have focused on a number of model organisms in

order to study their basic design principles and increase the rate at which advances

are made. Arabidopsis thaliana is widely accepted in plant biology as a model plant

worthy of close and careful study (114). Although its genetic networks are much sim-

pler than higher organisms, it is still complex enough to offer much insight into a

large variety of biologically interesting mechanisms of biochemical interaction, such as

negative feedback loops that induce nonlinear oscillatory behaviour. Overviews of the

recent advances in understanding this reasonably complex biological system are given

in (94, 132). Although this organism is not of immediate economic use, unlike other

agricultural plants that have been studied, such as maize and rice (86), it is closely

related to hundreds of thousands of other plants, which allows insights into its inner

workings to be relatively easily extrapolated to these other species. There is a long his-

tory of study into this plant stretching back over the last one hundred years, although

widespread adoption began in earnest in the 1980s, with the advent of gene-cloning

methods and other advances in molecular biology and genetics (185). There are a num-

ber of practical considerations that have lead to the adoption of Arabidopsis. It is small

and easily grown in laboratories with a short lifecycle of around two months. It is rela-

tively easy to produce transgenic plants, with genetic modifications for the purpose of
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probing various aspects of the plant’s physiology, and in particular it is self-fertilising,

capable of producing thousands of seeds from a single plant.

Circadian rhythms in Arabidopsis are generated from a central feedback loop pro-

ducing cycles of mRNA and protein production and degradation (2). This small net-

work comprises the transcription factors Circadian Clock Associated 1 (CCA1) and

Late Elongated Hypocotyl (LHY), and the pseudo-response regulator Timing of Cab

Expression 1 (TOC1). This network appears to operate within each individual cell,

and such cell autonomy can be seen through experiments that induce oscillations with

different phasing in different parts of the plant simultaneously (194). This distributed

behaviour is also thought to help induce global robustness properties. As knowledge of

this biological system has advanced, additional components and loops have emerged as

also being important regulators of circadian rhythms. These include the transcription

factors Gigantea (GI) (152), Early Flowering 4 (ELF4) (56), Zeitlupe (ZTL) (107) and

Pseudo-response Regulators 3,5,7,9 (PRR3/5/7/9) (62, 138). Recent work has also

investigated widespread circadian control throughout different parts of the plant, with

regulation of circadian rhythms in the roots for example being controlled via sucrose

levels (95), implying that while circadian rhythms can be organ specific, they do not

appear to be organ autonomous. Overviews of the recent advances in understanding

this complex biological system are given by McClung (132) and Hubbard et al. (94)

A number of mechanistic models based on ordinary differential equations have been

proposed and analysed over the last 10 years, and such computer modelling has been an

important tool for advancing knowledge of circadian genetic networks in Arabidopsis,

however as yet there has been no use of more rigorous Bayesian statistical approaches

to prediction and model comparison for describing the circadian genetic networks in

Arabidopsis. Previous approaches have focused on parameter estimation using optimi-

sation algorithms, and model discrimination has proceeded in a manually intensive way

by comparing optimal predictions with experimental results under a variety of different

environmental conditions.

Particularly interesting has been the computational modelling undertaken in the

Millar Laboratory at the University of Edinburgh, who have developed increasingly

complex mathematical models of the main feedback loop structures thought to be

mainly responsible for driving circadian oscillations in Arabidopsis (126, 127, 128).

Owing to a lack of data however, their approach to analysing these systems has consisted
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of optimising the model parameters according to a cost function, constructed to take

into account not only the data but also other qualitative features of the biological

system, such as periodicity. Although useful insights have been gained in this way, the

design of the cost function is somewhat ad hoc and as such there is no natural way

of incorporating this scheme into a probabilistic framework to allow Bayesian model

comparison.

As more data becomes available, hypothesis-driven Bayesian approaches will be-

come more important and more widely used as a means of assimilating and updating

current knowledge about a system in a consistent manner in light of new experimental

data. The use of priors provides a natural means of incorporating information regard-

ing appropriate reaction rate values, and the use of Bayes factors allows a means of

comparing model structures, see e.g. (207).

The main challenge of performing Bayesian analysis over such large and complex

statistical models based on systems of differential equations lies with the difficulty

of sampling efficiently from the posterior distribution. We shall now implement the

manifold MCMC methods developed in Chapter 3 to examine a large circadian model

for Arabidopsis, and investigate the feasibility of performing a Bayesian analysis both

at the parameter level and at the model level.

We employ a model based on the core circadian network in Arabidopsis thaliana

comprising transcription factors LHY and CCA, and the pseudo-response regulator

TOC1. As a simplification, both LHY and CCA are modelled as one component,

since they have qualitatively similar behaviour. Michaelis-Menten kinetics are used to

describe enzyme-driven protein degradation, with Hill functions describing transcrip-

tional activation of mRNA for LHY/CCA and TOC1. The model is from (128) and is

the minimal description of the network describing circadian behaviour of Arabidopsis,

which we simulate in constant darkness. It consists of 6 nonlinear differential equations

and a total of 24 parameters. The concentrations of the species are represented by

[TOC1] and [LHY ] with subscripts m, c and n denoting mRNA, protein within the

cytoplasm and protein within the nucleus, respectively. The Hill coefficients a and b

are set to 1 and 2 respectively, based on evidence from the literature (128). There are

therefore 22 free parameters to be inferred from the experimental data, where (ni, gi)

are transcription rates, (mi, ki) are degradation rates, (pi) are translation rates, and

(ri) are rates defining transport between the nucleus and cytoplasm. The structure of
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this biochemical network is represented in Figure 6.1 and its equations can be written

as

d[LHY ]m
dt

=
n1[TOC1]an
ga1 + [TOC1]an

− m1[LHY ]m
k1 + [LHY ]m

(6.1)

d[LHY ]c
dt

= p1[LHY ]m − r1[LHY ]c + r2[LHY ]n −
m2[LHY ]c
k2 + [LHY ]c

(6.2)

d[LHY ]n
dt

= r1[LHY ]c − r2[LHY ]n −
m3[LHY ]n
k3 + [LHY ]n

(6.3)

d[TOC1]m
dt

=
n2g

b
2

gb2 + [LHY ]bn
− m4[TOC1]m
k4 + [TOC1]m

(6.4)

d[TOC1]c
dt

= p2[TOC1]m − r3[TOC1]c + r4[TOC1]n −
m5[TOC1]c
k5 + [TOC1]c

(6.5)

d[TOC1]n
dt

= r3[TOC1]c − r4[TOC1]n −
m6[TOC1]n
k6 + [TOC1]n

(6.6)

We used the following parameter values from the literature (128): p1 = 9.0002,

p2 = 3.6414, r1 = 5.6429, r2 = 8.2453, r3 = 1.2789, r4 = 5.3527, n1 = 0.6187,

n2 = 7.7768, g1 = 3.7051, g2 = 9.7142, k1 = 7.8618, m1 = 7.3892, k2 = 3.2829,

m2 = 0.4716, k3 = 6.3907, m3 = 4.1307, k4 = 1.0631, m4 = 5.7775, k5 = 0.9271,

m5 = 4.4555, k6 = 5.0376, m6 = 7.6121. The Hill coefficients were fixed at a = 1

and b = 2, and the initial conditions used for generating the synthetic data were

[LHY ]m(0) = 0.1290, [LHY ]c(0) = 13.6937, [LHY ]n(0) = 9.1584, [TOC1]m(0) =

1.9919, [TOC1]c(0) = 5.9266, [TOC1]n(0) = 1.1007.

6.1.2 Cell Signalling Networks

The modelling of cell surface receptors is an important means of furthering our un-

derstanding of intra-cellular signalling. Such mechanisms allow extra-cellular cues to

drive activation and dynamic behaviour within each cell (179). In particular, changes

in the environment are often encoded at a molecular level in terms of changes in the

concentration of ligands outside the cell; such ligands may then bind to the surface

of cells inducing internal changes brought about by phosphorylation mechanisms. A

recent example of such a model is given in (17), which describes the nonlinear dynamic

behaviour of the Erythropoietin (Epo) receptor in response to changes in the ligand
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Figure 6.1: A representation of the model developed in (128), which we employ

to model the main circadian oscillator network in Arabidopsis thaliana - TOC1

mRNA produces TOC1 protein in the cytoplasm, which is transported into the nucleus

and increases production of LHY/CCA mRNA. This in turn, produces LHY/CCA protein

in the cytoplasm, which is transported into the nucleus and inhibits production of TOC1

mRNA. This negative feedback loop is capable of producing oscillatory and highly nonlinear

dynamical behaviour, providing a challenge for any optimisation or MCMC algorithm.

Epo concentrations outside the cell. Encoded signals sent in this manner have signifi-

cant biological knock-on effects, invoking cellular responses that activate a number of

signalling networks further downstream. The model we employ consists of 6 nonlinear

differential equations, based on mass-action kinetics, with 8 parameters.

d[Epo]

dt
= −kon[Epo][EpoR] + konkD[Epo EpoR] + kex[Epo EpoR i]

d[EpoR]

dt
= −kon[Epo][EpoR] + konkD[Epo EpoR] + ktBmax

−kt[EpoR] + kex[Epo EpoR i]

d[Epo EpoR]

dt
= kon[Epo][EpoR]− konkD[Epo EpoR]− ke[Epo EpoR]

d[Epo EpoR i]

dt
= ke[Epo EpoR]− kex[Epo EpoR i]− kdi[Epo EpoR i]

−kde[Epo EpoR i]

d[dEpo i]

dt
= kdi[Epo EpoR i]

d[dEpo e]

dt
= kde[Epo EpoR i]

The parameter values (in log10 scale) were determined from the literature to be:
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kon = −4.091, kex = −2.447, kt = −1.758, ke = −1.177, kdi = −2.730, kde = −1.884.

The remaining parameters were fixed to enforce identifiability: kD = 2.583, Bmax =

2.821. The initial conditions were fixed at: [Epo](0) = 2098.9, [EpoR](0) = 662.22,

[Epo EpoR](0) = 0, [Epo EpoR i](0) = 0, [dEpo i](0) = 0, [dEpo e](0) = 0.

We reparameterise the model such that we have parameters measured in log10 space,

allowing us to more easily consider a wide range of possible parameter values that vary

by orders of magnitude. This model is complicated further by the addition of an ob-

servation model, since the biochemical species in this network are not all observable

individually; in particular only the total concentration of [Epo] and [dEpo e] is bio-

logically observable, along with [Epo EpoR], such that our observations take the form

y1 = [Epo] + [dEpo e] and y2 = [Epo EpoR].

6.1.3 Parameter Identifiability

A model parameter can be considered only weakly identifiable if changes in its value

have very little effect on the output of the model. There are two main causes of

unidentifiability (165); the first comes from measurement uncertainty in the data, and

the second is a result of the model structure, in particular the mathematical relationship

between the parameters and the states. Structural identifiability issues can occur, for

example, when the parameters of a statistical model appear as a ratio; if the output

of the model depends only on this ratio, then the numerator and denominator may

effectively take on an infinite number of values. This effect has been termed parameter

evaporation (197) since these unconstrained parameters can tend to infinity. This poses

a particular problem for methods that make use of 2nd order geometric information,

as the unconstrained parameters can result in an ill-conditioned Hessian or Fisher

Information matrix (200), and so the point-wise variance estimates of such parameters

can be very poor.

In the context of the circadian biochemical equations above, the commonly used

Michaelis-Menten terms are of particular interest (197). This is a model to describe an

irreversible enzymatic reaction and relates the rate of the reaction to the concentration

of a substrate, [S]. Let us consider the Michaelis-Menten equation,

r =
rmax[S]

K + [S]
(6.7)
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where r is the current reaction rate, rmax is the maximum reaction rate, and K is

the Michaelis-Menten rate, which is inversely related to the enzyme’s affinity for the

substrate S. Firstly let us note that,

K << [S], r ≈ rmax, since
[S]

K + [S]
≈ 1 (6.8)

In this case, when the rate constant K is much less than the concentration level of S,

the overall reaction rate is determined by rmax. K is therefore unidentifiable as it has

almost no effect on the model output. Similarly we see that,

K >> [S], r ≈ rmax[S]

K
(6.9)

and so it is the ratio of rmax to K that is important in determining model behaviour.

In this case, both rmax and K are potentially unidentifiable, depending on the values

of [S]. This unidentifiability results from our decision to employ Michaelis-Menten

kinetics to describe our system; the fact that parameter values could blow up to infinity

or evaporate to zero may not have any bearing on the biological reality, but are more

likely to be artefacts of our model approximation of the underlying system. Within

a Bayesian setting, the use of priors may be used to enforce weak identifiability and

improve numerical conditioning (200).

6.2 Implementation

We examine the application of differential geometric MCMC methodology for per-

forming Bayesian inference over large ODE models that exhibit complex dynamics and

partially unidentifiable structures. We embed the MCMC samplers within a population

framework to help escape local maxima and fully explore the parameter space, noting

that the samples obtained can then be further used for calculating Bayes factors via

thermodynamic integration (27, 67, 118). Within this framework, we explore multiple

tempered distributions simultaneously, each defined by a power posterior (67). These

form a smooth family of distributions between the prior and posterior, and exchange

moves between these distributions allow faster convergence to the global mode of in-

terest. We employ the same temperature schedule as detailed in (29) and more details

are given in Section 3.5.
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For each of the subsets of parameters, a burn-in phase of between 10,000 and 20,000

samples was found to be sufficiently long for the Markov chains to converge to the sta-

tionary distributions defined by each of the power posteriors used. For inferring the

complete set of parameters, the burn-in phase lasted 20,000 iterations and 100,000 sam-

ples were collected from each temperature for the purpose of estimating the marginal

likelihood. During this time the step sizes of the parameters were adjusted every 100 it-

erations to achieve an acceptance ratio of between 20% and 50% for standard Metropolis

and between 30% and 70% for manifold sampling using simplified mMALA. After the

burn-in period, step sizes were fixed to ensure samples were drawn from the stationary

distribution.

The cell signalling model is made identifiable by fixing 2 parameters, the values of

which may be obtained experimentally (17). The initial condition of EpoR may also be

found by experiment (17). The initial condition of Epo is assumed to be known, and

the other four initial conditions are set to zero. The initial conditions of the observed

species Epo+dEpo e and Epo EpoR are therefore fully known. The Fisher Information

for the remaining 6 parameters is well-conditioned and we may therefore infer these

together, without using a blocking approach. For this model, a burn-in phase of 5000

samples was found to be sufficiently long for the Markov chains to converge.

We obtained the auxiliary sensitivity equations for our ODE models using the Sym-

bolic Math Toolbox in Matlab. This automated process is extremely fast and helps

prevent human mathematical errors. We solve them making use of the SBToolbox2

(178) for Matlab, which provides an interface to a C implementation of the Sundials

solver (90) and is up to 2 orders of magnitude faster than using the built-in solvers in

Matlab.

Synthetic datasets are very useful for evaluating the performance of new methodol-

ogy, and with complex ODE models it is convenient to have a set of parameter values

that generate the data as a benchmark. We investigate the models using a variety of

noise levels, which we detail along with the results in the next section; ultimately we

wish to test our methodology using data with biologically realistic numbers of obser-

vations and levels of noise. For the circadian model we generate data by sampling 16

data points for each species evenly over a time period of 48 hours, using parameter

values given in the literature (128). Using a Gaussian error model, we add zero mean

noise to the data points generated for species [LHY ][m,c,n] and [TOC1][m,c,n], with
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standard deviation proportional to the amplitude of the concentration of each species.

The circadian model we investigate has the difficulty that the Fisher Information over

all parameters is numerically ill-conditioned, as often happens when parameters are

weakly identifiable (200).

6.2.1 The Choice of Priors and Ill-Conditioned Metric Tensors

Priors are used in Bayesian statistics as a means of incorporating existing knowledge

regarding likely parameter values. In this setting, such knowledge commonly arises

from consideration of the underlying biology and experimental observations, however it

may also arise by considering the model itself. In previous work examining oscillatory

behaviour of biochemical networks (89), bifurcation analysis of a relatively simple delay

differential equation model was employed to find the regions of parameter space that

permitted oscillatory output, and this information then informed the choice of priors.

This approach however is obviously dependent on the model being amenable to such

analysis; bifurcation analysis on much larger, more complex models quickly becomes

unfeasible. The idea of informing the range of admissible parameter values based on a

mathematical analysis of the model has also been suggested in (197), in particular for

the case of examining Michaelis-Menten kinetics, where the aim was to avoid numerical

issues and parameter evaporation. Using such an approach for the circadian rhythm

models considered in this chapter, we can enforce weak identifiability without restricting

the range of behaviour our model can produce. In this case we want K to be neither

too small nor too big, but rather roughly the same order of magnitude as we would

expect [S] to be.

In the clock model we employ vague gamma priors for the parameters, with shape

parameter k = 1.5 and scale parameter θ = 10. This prior results in the canonical

parameters having positive support, reflecting the fact that parameters correspond to

physical rate constants, and it discourages parameter values approaching zero, reflecting

the assumption that all terms in the model should play a role in the overall biochemical

process. Such priors are also suitable for preventing the rate parameters becoming too

large, since we assume that all chemical processes are slow enough to be observed. The

prior thus serves to constrain the parameter values, which has the added numerical

benefit of regularising the Fisher Information, when it might otherwise be near singular

with a very high condition number (200), as we note that it is often beneficial to add
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a diagonal scaling to the metric tensor to improve numerical conditioning. The overall

metric tensor is formed by taking the Expected Fisher Information and subtracting the

negative Hessian of the prior, as we saw previously in Chapter 4.

In the signalling model we employ Gaussian priors with a mean of −2 and a standard

deviation of 2; since we reparameterise the model in log10 space we no longer require

our prior to have only positive support, and such priors cover parameter values of many

orders of magnitude.

6.3 Circadian Model Results

We first consider three subsets of the parameters individually; the linear parameters

(p1:2, r1:4), the transcription parameters (n1:2,g1:2), and the Michaelis-Menten param-

eters (m1:6,k1:6). This allows us to see the potential challenges of inferring parameters

in these three different types of functions. We perform inference over each set of pa-

rameters with the other sets of parameters fixed at their true values.

6.3.1 Linear Parameters

For now, we run a single chain initialised on the true parameter values for the purpose

of evaluating the sampling properties at the mode, and we fix the initial conditions.

We first compare posterior sampling of the linear parameters using Metropolis, Sim-

plified mMALA, MALA and RMHMC, and a comparison of the sample traces is given

in Figure 6.2. We employ a component-wise Metropolis sampler, whereby each pa-

rameter is updated sequentially conditioned on all other parameters using a Gaussian

proposal, and we note that the component-wise Metropolis-Hastings sampler therefore

requires the ODE model to be solved once for each parameter. The proposal variances

are automatically tuned to achieve acceptance rates of between 20% and 50%, and then

fixed before drawing posterior samples. This standard sampler performs very poorly

and is unable to sample efficiently from the strongly correlated posterior distribution.

The manifold methods however perform far better, making use of the local geometry

information to propose better moves through parameter space. RMHMC makes pro-

posals that follow geodesic paths across the manifold, however in our implementation it
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Figure 6.2: Comparison of posterior samples of the linear parameters in the

circadian model obtained using a variety of MCMC sampling algorithms - The

true parameter values are represented by the grey line. The woeful performance of the

Metropolis-Hastings sampler is apparent from the slowly moving, highly correlated sam-

ples it produces. In contrast, the samplers that make proposals using local geometric

information, as defined by the sensitivities of the ODE system, do far better. RMHMC

produces nearly uncorrelated samples, however this is at great computational expense since

the 2nd order sensitivities must be calculated multiple times over the geodesic proposal

path. Similarly mMALA requires the 2nd order sensitivities to be computed. Simplified

mMALA offers performance approaching that of mMALA, at a much reduced computa-

tional cost requiring only the 1st order sensitivities to be calculated.

172



6.3 Circadian Model Results

is computationally much more expensive1, requiring an average of five evaluations of the

2nd order sensitivity equations and and average of twenty-five evaluations of the 1st or-

der sensitivity equations. mMALA makes moves based on a diffusion process across the

manifold, and also performs much better than Metropolis-Hastings, although again this

is computationally expensive because of the need to calculate second order sensitivities

of the differential equation model; it requires two evaluations of the 2nd order sensitiv-

ity equations per iteration. Simplified mMALA makes valid MCMC proposals based on

an approximate diffusion across the manifold. It gives similar results to mMALA and

is computationally much more efficient as it only requires two evaluations of the first

order sensitivities per iteration. In practice, we find that solving the extended 1st order

ODE system twice for simplified mMALA is only 3 to 4 times slower than solving the

original system for each parameter in a component-wise Metropolis-Hastings sampler,

yet it produces samples that are visibly far better (see Figure 6.2).

This verifies the results in Chapter 5, where we observed that simplified mMALA

generally provided the best balance, using the local geometry to improve sampling,

while remaining computationally feasible. We note that for our differential equation

models the extended 1st order system consists only of additional linear equations that

may be solved very efficiently (90). We therefore employ simplified mMALA as our

sampler of choice for all subsequent experiments in this paper.

Figure 6.3 shows scatter plots of the samples obtained from simplified mMALA for

each parameter combination. Even with these linear parameters, there are some very

strong correlations and severe scaling differences, illustrating the difficulty of sampling

from statistical models of this type. As an example, let us consider parameters r1 and

r2, which define transport between the nucleus and cytoplasm for LHY/CCA. There is a

very strong correlation structure between these parameters; as the concentration of the

protein in the nucleus increases, the concentration of protein in the cytoplasm decreases,

and vice versa. There is a similar strong correlation structure between parameters

r3 and r4 describing nuclear/cytoplasmic transport for TOC1. Although the other

parameters do not exhibit such strong dependencies, their differing scales are evident,

which further compounds the difficulties.

1This performance could be substantially improved by using adjoint differentiation methods and

programming using a compiled language, rather than the interpreted language Matlab, as we use here.
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Figure 6.3: Pairwise scatter plots and density estimates of posterior samples of

the linear parameters in the circadian model - We observe a strong correlation struc-

ture present in this nonlinear system for the linear parameters, with all other parameters

fixed at their true values. The samples were obtained using the simplified mMALA sam-

pler with a Gamma(1.5, 2) prior, using artificially generated data with zero mean Gaussian

noise, whose standard deviation was equal to 1% of the amplitude of the oscillations in

each species.
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We also compared the effect that changing the noise level has on parameter infer-

ence, and in particular on the practical identifiability of the model. Even with very

low levels of noise, we observed wide variability in the parameter estimates, however

the model was still able to make predictions with high certainty, as has been observed

in biological models examined in previous work (197); dealing with large uncertainty

in parameter values is an unavoidable part of the modelling process. For many models

the experimental accuracy required to obtain tight bounds on individual parameters is

simply unachievable, and indeed often undesirable if we are mainly interested in the

model predictions. The careful use of priors can therefore help to constrain parameter

values to biologically meaningful ranges.

Finally we examine the effect of the prior on the posterior distribution, using a

gamma prior over the parameters with selection of scale parameters, θ = [2, 10, 20]. We

observe that the choice of prior in this case has little effect on identifiable parameters,

however there is a noticeable effect on those parameters that are unidentifiable; such

parameters may take on a wide range of values while the model output still describes

the data, see Figure 6.4.

6.3.2 Transcription Parameters

We now consider inference over the 4 transcription parameters with Hill coefficients,

and fix all other parameters at their true values. Again, there are strong correlations

between these parameters, particularly between parameters appearing together within

the same algebraic term. This correlation structure is shown in Figure 6.5 and was seen

to remain even with increasing levels of error variance in the data.

6.3.3 Michaelis-Menten Parameters

Fixing all parameters apart from those appearing in the Michaelis-Menten terms, we

investigate the effect of bounding the eigenvalues of the metric tensor in order to im-

prove numerical conditioning and obtain better sampling. Based on the analysis of the

Michaelis-Menten terms in Section 6.1.3, we may note that each pair of parameters

appears together in a Michaelis-Menten term and in certain cases the system may re-

spond to changes in the ratios of these pairs. This can result in the Fisher Information

becoming very badly conditioned (condition number > 108) and the resulting numerical

inaccuracy results in very small step sizes and highly correlated samples being drawn.
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Figure 6.4: Posterior distributions over the linear parameters of the circadian

model using different priors - The samples were obtained using simplified mMALA

with Gamma(1.5, 2), Gamma(1.5, 10) and Gamma(1.5, 20) priors. We observe that the

prior only appears to have an effect on the unidentifiable parameters.
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Figure 6.5: Pairwise scatter plots and density estimates of posterior samples

of the Hill parameters in the circadian model - The samples were obtained using

simplified mMALA with a Gamma(1.5, 2) prior. This time the Gaussian noise used to

generate the data had standard deviation equal to 10% of the amplitude of the oscillations.

Even with this higher level of uncertainty in the data, the samples still exhibit very strong

correlation structure, reinforcing the need for more advanced sampling methodology.
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The condition number is given by the ratio of largest to smallest eigenvalues, and

so by bounding the lowest eigenvalue of the metric tensor we improve the numerical

conditioning, and this has a significant impact on sampling, as is shown in Figure

6.6. We may set a bound on the lowest eigenvalue by performing a singular value

decomposition (SVD) of the metric tensor, and setting a lower bound on the eigenvalues

appearing in the diagonal matrix. We can consider the SVD as a method of obtaining

an alternative basis for the local vector (tangent) space at a given point, where the

eigenvalues give the magnitude of the bases in each direction. We see that inverting

the decomposed metric tensor simply involves inverting the diagonal matrix of the

eigenvalues, and so the lower bound becomes an upper bound on the variance of the

proposals, since it is the inverse of the metric tensor that is employed as the covariance of

the proposal step in mMALA. This therefore helps to prevent the numerical instability

that is seen to occur when there are unidentifiable parameters. Figure 6.6 shows the

traces of Michaelis-Menten parameter samples obtained with and without bounding the

lowest eigenvalue, and this approach can be seen to improve the sampling of weakly

identifiable parameters.
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Figure 6.6: Comparison of sampling Michaelis-Menten parameters, with and

without a bounded eigenvalue strategy - The 12 Michaelis-Menten parameters from

the circadian model were sampled using simplified mMALA, with and without a bounded

eigenvalue strategy, displayed on the red and black respectively. All 12 parameters were

sampled simultaneously. In particular, Parameters (m1, k1) are only weakly identifiable

and this results in an ill-conditioned Fisher Information that negatively impacts on the

sampling efficiency using the full Fisher Information matrix. By performing a singular

value decomposition and bounding the lowest eigenvalue, better conditioned FI matrices

can be obtained; this numerical stability subsequently allows for more efficient sampling

using a bounded eigenvalue approach.

Scatter plots of the parameter pairs (mi, ki) are also shown in Figure 6.7. Interest-
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ingly, we see that the pair of Michaelis-Menten parameters with the strongest correla-

tion (m1, k1) is indeed for a species with low concentration, such that k1 >> [LHY ]m.

We see that this type of severe correlation structure was premeditated in Section 6.1.3,

where we considered the case of the ratio of m1 to k1 driving the dynamics. Clearly,

when performing inference using MCMC, we wish to make moves in parameter space

that take into account these strong correlations, and the differential geometric MCMC

approaches developed in Chapter 3 do this automatically.

Figure 6.7: Scatter plots and density estimates of the pairs of Michaelis-Menten

parameters from the circadian model - The samples were obtained using simplified

mMALA with a Gamma(1.5, 2) prior and Gaussian noise with standard deviation equal to

10% of the amplitudes of oscillation. The possibility of such strong correlation structure

can be predicted by an analytic consideration of the underlying equations.

6.3.4 Inference with Full and Partial Observations

Until now we have employed a single chain initialised at the correct parameter values to

examine the local mixing properties of manifold MCMC methodology. We now consider

the effect of using random starting values for our parameters. Performing inference on

just the linear parameters, keeping all others fixed, we find that there appears to be a

single mode, which our Markov chain can reach regardless of the starting parameters.

However, if we infer both the linear parameters and the transcription parameters, we
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find there is another mode that our Markov chain may converge to. This alternative set

of parameters gives a non-oscillatory output that roughly corresponds to the average

of the true model output, as shown in Figure 6.8. Systems with complex nonlinear

dynamics are particularly susceptible to this problem, since local maxima may occur

when the model moves in and out of phase with different parts of the data. Any

MCMC methodology used for this problem must therefore not only have good local

mixing properties, but it must also be capable of making more global steps, allowing it

to escape from local modes of negligible probability mass. Using simplified mMALA

to explore a population of tempered distributions (27) allows us to resolve this issue.

We infer all model parameters and initial conditions together based on all states

being observed, then with only the 4 protein states observed, and finally with only the 2

mRNA states observed. Each time we employed a population scheme with 50 tempered

distributions and the eigenvalues of the metric tensor were bounded to improve numer-

ical conditioning. Figure 6.9 shows the differences in the predictive model outputs for

differing numbers of observed states. Such simulations are important as it is usually

not possible to obtain measurements for all components in a biological system, due to

either financial or technical constraints.

6.3.5 Estimating Marginal Likelihoods for Model Ranking

Finally, we demonstrate that marginal likelihoods may be estimated with low variance

using this combination of population MCMC and differential geometric sampling, via

the use of thermodynamic integration (67, 118). We show how this approach may be

used for ranking multiple model hypotheses encoded as systems of differential equa-

tions, even for more complex systems with larger numbers of parameters. We infer

all parameters and initial values over 50 tempered distributions employing the lower

bounded eigenvalue strategy to improve numerical conditioning of each metric tensor

and upper bound the proposal variance. We drew 20,000 samples as burn in, then

stored the next 100,000 samples for each temperature. Marginal likelihood estimates

were calculated from the resulting samples based on a trapezoidal approximation to

the thermodynamic integral in a same manner as (27). The simulations were repeated

10 times and the summary statistics are presented in Table 6.1. Stable, low variance

estimates of the marginal likelihoods were obtained for the fully observed and the two

partially observed systems.
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Figure 6.8: Population-based MCMC is extremely useful for ensuring conver-

gence to the correct mode (27) - As an illustration, we first employ a single chain

initialised at a chosen set of parameter values to obtain samples from the correct posterior

mode using a manifold MCMC method. The predictive model output based on these sam-

ples is shown in red. We then initialised a single chain at a random set of parameter values

sampled from a Gamma(1.5, 2) prior distribution, and ran it until apparent convergence.

This time the predictive model output converges to a local maximum, shown in blue, with

the predictions cutting halfway through the oscillations in the data. Such local modes may

also occur as the model output moves in and out of phase with oscillatory data.
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Figure 6.9: Comparison of posterior outputs from the circadian model with

unobserved species - Samples were obtained by performing Bayesian inference over all

parameters using a population sampling scheme with simplified mMALA. For a fully ob-

served system, the posterior model predictions are all made with low uncertainty. In con-

trast, we obtain much more vague predictions for unobserved species, and the uncertainty

in the predictions increases as the number of observed species decreases.
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Using the same data we consider an alternative model hypothesis which we create

by replacing the negative feedback loop in this circadian model (see Figure 6.1) with a

positive feedback loop. The requires only a very small change to the underlying equa-

tions; in the equation describing the change in concentration of [TOC1]m we simply

replace the term
n2gb2

gb2+[LHY ]bn
with n2[LHY ]bn

gb2+[LHY ]bn
. The summary statistics for this new model

are given in Table 6.2. We see that such a simple change must drastically alter the pos-

sible range of dynamic behaviour of this circadian model, since the marginal likelihoods

are now far smaller. The Bayes factors suggest very strong support in favour of the

model with a negative feedback loop, and we conclude that the positive feedback loop

model is unable to reproduce the observed oscillatory behaviour. Indeed if we compare

the posterior model outputs of the two models, shown in Figure 6.10, we see that the

positive feedback model is unable to adequately describe the observed data.

Table 6.1: Marginal likelihood estimates for each of the sets of synthetic observations for

the circadian ODE model with negative feedback loop

Observed States Mean Standard Deviation

Full -119.3 0.7

Protein -142.4 0.9

mRNA 6.7 0.4

Table 6.2: Marginal likelihood estimates for each of the sets of synthetic observations for

the alternative circadian ODE model based on a positive feedback loop

Observed States Mean Standard Deviation

Full -1567.3 13

Protein -1443.7 12.7

mRNA -61.7 0.5

6.4 Cell Signalling Model Results

We now infer parameters over the cell signalling model in which the observations are

a linear combination of the underlying modelled species, demonstrating that manifold

sampling methodology extends straightforwardly to incorporate observation models. It

also demonstrates how this methodology may be used to infer parameters of models
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Figure 6.10: Comparison of posterior outputs from two fully observed circadian

models - Samples were obtained from 2 circadian models by performing Bayesian inference

over all parameters using a population sampling scheme with simplified mMALA. The data

was generated from a circadian model with a negative feedback loop, resulting in oscillatory

dynamical behaviour. The inferred posterior model predictions from the negative feedback

model are shown in blue; the inferred posterior model predictions from the positive feedback

model are shown in red. It is clear that the positive feedback model is unable to produce

the observed oscillatory behaviour, as was suggested by the relative marginal likelihoods

of the two models.
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based on commonly used mass-action kinetics. The model is parameterised in log10

space allowing exploration over several orders of magnitude. Despite having only 6

parameters, this cell signalling model still exhibits reasonably complex dynamics and

sensitivities that change markedly throughout the parameter space. This is shown in

Figure 6.13, where we observe the path taken by a Markov chain during the burn-in

period guided by the sensitivities of the model parameters, which dramatically change

as the chain explores new regions of the space. Despite the very wide priors covering

orders of magnitude, the population-based simplified mMALA sampler is still able to

converge to the correct mode. In addition, we find that such a model based on mass-

action kinetics also induces a highly correlated, asymmetric posterior distribution that

is challenging to sample from, as shown in Figure 6.12, particularly as the parameter

values are of differing orders of magnitude. Finally, model predictions are made with

very low uncertainty, Figure 6.11, however it has been noted (17) that a careful initial

analysis of the model is necessary to achieve this structural and practical identifiability.

Figure 6.11: Posterior model predictions for the cell signalling model with

additional observation model - The top row shows the posterior model predictions for

each of the biochemical species in the Erythropoietin cell signalling model, and the bottom

row shows the predictive model outputs using the additional observation model, with the

dataset shown in black. The tightest predictions are made for Epo, dEpo e and Epo EpoR,

and indeed the observations are a linear combination of these species. Inference on this

model produces reasonably tight predictions for the unobserved species too, although this

is a result of constraints on the model to ensure identifiability (17).
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Figure 6.12: Scatter plots and density estimates of the posterior distribution of

a cell signalling model - Scatter plots and density estimates of the parameter samples

from the Erythropoietin cell signalling model obtained using simplified mMALA with a

N(−2, 2) prior and Gaussian noise with standard deviation equal to 10% of the amplitudes

of the outputs. We note the orders of magnitude difference in the scaling of each of the

parameters.
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Figure 6.13: Example path taken during the burn-in phase of a Markov chain

exploring the posterior distribution of the cell signalling model - The path shown

was taken during the burn-in phase of a Markov chain as it moved through 3 of the 6 di-

mensions of parameter space of the cell signalling model, with the colour representing the

posterior probability of the current set of parameters; the chain starts with very low prob-

ability (blue) moves to higher probability region (red) and finally finds the posterior mode

(brown). All proposal steps were made using local sensitivity information via simplified

mMALA sampling. Interestingly, the sensitivities of the parameters change dramatically

as the chain moves through the parameter space. At the beginning of the path (shown by

the blue points), the chain moves in all 3 of these parameter directions, until it reaches

a plateau along which 2 of the parameters become tightly constrained. At the end of the

plateau, the sensitivities of 2 of the parameters switch with the chain now moving upwards,

with little movement along the previously preferred axis.
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6.5 Conclusions

Statistical analysis of mechanistic models describing biological systems plays a vital

role in furthering our understanding of the underlying mechanisms driving observed

behaviour (17, 191, 196, 207). Both frequentist and Bayesian approaches to statistical

inference face the challenge of searching through high dimensional parameter space; the

former relying on optimisation, the latter on MCMC sampling.

In this chapter we have focused on the Bayesian approach and find standard sam-

pling methods are inadequate for this task and are unable to sample even a subset

of the total parameters efficiently. We require a sampler that takes into account the

locally changing correlation structure in order to propose moves that are accepted with

high probability, such that samples are drawn efficiently from the parameter space.

One approach is to employ adaptive MCMC methods (82) that estimate the covari-

ance using previous samples from the Markov chain, however the rate of diminishing

adaptation must be carefully controlled to ensure convergence and it may also take a

while to obtain reasonable estimates of what is essentially an estimate of the covariance

structure; as adaptation diminishes, this estimate of the correlation structure becomes

constant, which may not be appropriate for exploring spaces in which the local struc-

ture varies from point to point. In contrast, we obtain the local covariance structure

directly at each point using the induced Riemannian geometry of the model via the Ex-

pected Fisher Information. Manifold MCMC methods (77) make moves in parameter

space based directly on the sensitivities of the underlying differential equations with

respect to each parameter, resulting in efficient convergence to the correct posterior

distribution.

A further inferential challenge stems from the fact that many complex ODE models

may induce multiple local modes, which can occur for example when a non-oscillatory

steady state solution is found that may be fitted to the average values of the observed

data as we have illustrated in Figure 6.8. Population MCMC approaches offer an effec-

tive solution to this problem and in combination with differential geometric sampling

methodology allow for accurate estimation of marginal likelihoods (67), which can be

used for model comparison.

The RMHMC sampler clearly offers the most effective scheme in terms of generat-

ing nearly-independent posterior samples, however solving the equations to calculate
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the geodesic paths on the induced manifold can be computationally expensive. Ideas

for mitigating this issue include the adoption of adjoint differentiation methods for ef-

ficiently calculating sensitivities of large numbers of parameters, the use of appropriate

guiding Hamiltonians in the proposal mechanism (57), and implementation in compu-

tationally more efficient programming languages. Further work will bring these costs

down and make RMHMC available to a larger class of problems. In the meantime,

the simplified mMALA sampler offers the benefits of a geometric approach to MCMC,

while remaining computationally feasible for larger models.

Many realistic biological models have parameters that are unidentifiable and this

issue has recently received a lot of attention (165). Such problems can be addressed

by considering a reduced model or, in a Bayesian setting, employing biological and

mathematical analysis to inform the choice of priors and enforce weak identifiability

(197). Although ODEs may be employed to model a wide range of important natural

phenomena, it is worth noting that other modelling formalisms, such as stochastic and

partial differential equations (141, 204), are also important in other settings. Recent

work on calculating the Fisher Information for SDEs (112) suggest that such systems

may also be considered within a differential geometric framework.

The manifold samplers we developed and employed use the local sensitivities of

the model to construct an efficient Markov transition kernel, allowing us to sample

from complex posterior densities, which in turn provide the desired global assessment

of sensitivity over a range of dynamic responses of the system and not just at a single

operating point. In this way, differential geometric samplers provide an efficient route

from local to global sensitivity analysis of dynamical systems.
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Discussion

7.1 Conclusions

Modern day science is becoming more and more dependent on the use of advanced

statistical methodology, and this is being facilitated by more widely available high

performance computing. A probabilistic Bayesian approach to statistical modelling is

essential for characterising and reasoning with the inevitable uncertainty in the obser-

vations and measurements of complex systems in many different areas of the natural

and physical sciences. We have seen in this thesis that the use of such a framework

allows for the quantification of uncertainty both at a parameter level and a model level,

although the development of efficient sampling methodology is essential in order for this

framework to be useful in practice. Standard MCMC techniques allow us to draw sam-

ples from arbitrary probability distributions, however current methods perform poorly

on models with large numbers of parameters and strong correlation structure.

In this thesis we have considered the use of Riemannian geometry in the context of

developing novel MCMC sampling algorithms, with the Expected Fisher Information

providing a natural link between statistics and differential geometry and allowing us to

represent a statistical model as a Riemannian manifold.

We first reviewed existing MCMC approaches in Chapter 2, focusing on dynamical

methods based on Langevin diffusions and Hamiltonian mechanics, and we noted that

such methods are implicitly defined on a Euclidean or vector space. We then intro-

duced the basic theory of differential geometry in Chapter 3 and presented a number

of alternative sampling algorithms based on both Langevin diffusions and Hamiltonian
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dynamics defined on a Riemannian manifold. We saw how the use of differential geom-

etry has the potential to dramatically improve sampling efficiency, and we highlighted

the link between local sensitivity analysis and the geometric structure induced by the

Expected Fisher Information.

We investigated the efficiency of these new algorithms in Chapter 4 by performing

simulation studies on a variety of challenging and topical statistical models, and we

found that a pragmatic choice is to employ MCMC methods involving just the 2nd

order geometric information, since they compromise between computational cost and

effective sampling guided by the local geometry. Having derived and evaluated dif-

ferential geometric MCMC methods on logistic regression models, stochastic volatility

models, and log-Gaussian Cox models, we returned to the motivating problem of ODE

modelling.

In Chapter 5 we derived the equations to allow us to employ differential geometric

MCMC on models described by systems of nonlinear differential equations and we eval-

uated the performance of these algorithms, finding again that methods based assuming

a locally constant metric gave the best time-normalised performance. We then proposed

an approximate inference method for ordinary and delay differential equation models,

and found that although this approach is computationally less expensive, especially for

DDEs, it does not allow for marginal likelihoods to be calculated since a surrogate,

approximate likelihood is employed. We therefore subsequently focused on inferential

methods that explicitly solve the system of ODEs at each iteration. Finally we con-

sidered the challenges associated with performing a Bayesian analysis of ODE models

using simple examples describing the spread of infection in a healthy population.

In the final chapter we returned to the original motivating example of modelling

circadian rhythms using a larger system of nonlinear ordinary differential equations,

demonstrating not only that we can perform inference on a model with unidentifiable

parameters, but also obtain low variance estimates of the marginal likelihood, which

we used to rank two competing model hypotheses; one with a negative feedback loop,

and another with a positive feedback loop. We also investigated a cell signalling model

that was based on commonly used mass-action kinetics and exhibited a different type

of dynamic behaviour. We concluded that the use of differential geometry in MCMC

allows us to use the local sensitivity information at each point to effectively perform a

global sensitivity analysis of dynamical systems within a Bayesian framework.
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In Appendix A we offer a summary of the manifold MCMC methods developed in

this thesis, along with detailed pseudocode and guidelines for their application.

7.2 Future Work and Extensions

The work in this thesis presents a huge number of opportunities for further research,

many of which have been brought up in discussion, documented in (77). The use of

differential geometry as a framework for developing Monte Carlo algorithms allows us

to exploit the wide variety of geometric ideas, structures and results that have been

developed over the past 100 years or more. We could employ alternative metrics, based

on more general divergence measures, or indeed alternative connections, which might

turn out to be computationally more efficient for particular classes of statistical models.

We could even consider non-Riemannian geometries, such as preferred point geometry,

and such approaches may well be necessary to extend differential geometric MCMC to

other types of models, for example those that currently require reversible jump methods

for sampling multiple spaces of varying dimensionality. There is also without doubt

much theoretical work still to be done, particularly for investigating the convergence

and robustness properties of differential geometric MCMC methods.

From a practical perspective, there is much scope for improving the computational

cost of this class of MCMC methodology. While the time normalised performance of

these algorithms outperforms standard methods for many models, there is still plenty of

room for further improving the computational scaling, which can be O(N3) as a worst

case scenario for simplified mMALA. Similarly, the main bottleneck for RMHMC is the

generalised Leapfrog integration scheme, which requires the use of fixed point iterations

to solve the implicitly defined equations of the Hamiltonian system, and so it would

perhaps be worthwhile investigating alternative integration schemes for simulating these

dynamics.

As we have seen, differential equation models can be particularly expensive to solve

within an MCMC framework, although the careful use of parallel algorithms can help

mitigate this cost. An alternative approach worth considering is the use of polynomial

chaos expansions (76, 206), which can provide finite approximations to probability dis-

tributions and stochastic processes in terms of a set of basis functions. Such approaches

are being more widely used in the field of engineering, however they have not yet had
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7.2 Future Work and Extensions

a significant impact in the statistics community. It would be interesting to consider

whether they might provide a computationally less expensive method of inference for

the differential equation models considered in this thesis.

Finally, there are other modelling formalisms that are likely to benefit from a dif-

ferential geometric perspective, such as partial and stochastic differential equations,

indeed recent work on calculating the Fisher Information for SDEs (112) may well pro-

vide the natural link to allow the development of more efficient MCMC methods in this

setting.
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Appendix A

Manifold MCMC Recipes

In this appendix we briefly review the manifold MCMC methodology introduced in this

thesis, detailing each algorithm and giving some guidance as to when each particular

method may be most appropriately employed. All of these methods make use of the

higher order geometric information available by considering the Riemannian manifold

induced by the statistical model of interest. The metric tensor G(θ) may be given for

example by the Expected Fisher Information at each point θ in the parameter space.

A.1 Simplified Manifold MALA (SmMALA)

This algorithm is based on a simplification of the full mMALA algorithm and assumes

a locally constant metric tensor at each point in the parameter space. The Gaussian

proposal mechanism is defined with the mean given by the natural gradient and the

covariance given by the inverse of the metric tensor. Pseudocode is given in Algorithm

4.

• Gives very good results for a wide range of models

• Quick and easy to code

• Requires only one metric tensor to be calculated per iteration, regardless of the

model

• Particularly appropriate when the metric tensor and its derivatives are expensive

to compute, e.g. models based on systems of ordinary differential equations
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A.2 Manifold MALA (mMALA)

Algorithm 4 Simplified Manifold MALA

1: Initialise current θ

2: for IterationNum = 1 to NumSamples do

3: Sample θnew ∼ p(θnew|θ) = N(µ(θ, ε),Σ(θ, ε)),

where µ(θ, ε) = θ + ε2

2 G
−1(θ)∇θL(θ) and Σ(θ, ε) = ε2G−1(θ)

4: Calculate current log-likelihood L(θ) and proposed log-likelihood L(θnew)

5: Calculate log(p(θnew|θ)), log(p(θ|θnew)), log(Prior(θ)), log(Prior(θnew))

6: LogRatio = L(θnew) + log(Prior(θnew)) + log(p(θ|θnew))−L(θ)− log(Prior(θ))−
log(p(θnew|θ))

7: if LogRatio > 0 or LogRatio > log(rand) then

8: Set θ = θnew

9: end if

10: end for

A.2 Manifold MALA (mMALA)

The mMALA algorithm employs the Laplace-Beltrami operator to define the mean and

covariance of a Gaussian proposal mechanism. This method takes into account the rate

of change of the local coordinate system on the Riemannian manifold, i.e. the rate of

change of the metric tensor. Pseudocode is given in Algorithm 5.

• Gives slightly better results than simplified mMALA in general

• Slightly more coding is required than simplified mMALA

• Requires one metric tensor and its derivatives with respect to each of the model

parameters to be calculated per iteration

• Can give good results if the derivatives of the metric tensor are not too expensive

to compute

A.3 Riemannian Manifold Hamiltonian Monte Carlo

(RMHMC)

The RMHMC algorithm is the generalisation of Hamiltonian Monte Carlo to a Rie-

mannian manifold. Instead of using the Leapfrog integrator, as in HMC, we must now
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A.3 Riemannian Manifold Hamiltonian Monte Carlo
(RMHMC)

Algorithm 5 Manifold MALA

1: Initialise current θ

2: for IterationNum = 1 to NumSamples do

3: Sample θnew ∼ p(θnew|θ) = N(µ(θ, ε),Σ(θ, ε)),

where µ(θ, ε)i = θi + ε2

2 (G−1(θ)∇θL(θ))i − ε2
∑D

j=1

(
G−1(θ)∂G(θ)

∂θj
G−1(θ)

)
ij

+

ε2

2

∑D
j=1

(
G−1(θ)

)
ij
Tr
(
G−1(θ)∂G(θ)

∂θj

)
and Σ(θ, ε) = ε2G−1(θ)

4: Calculate current log-likelihood L(θ) and proposed log-likelihood L(θnew)

5: Calculate log(p(θnew|θ)), log(p(θ|θnew)), log(Prior(θ)), log(Prior(θnew))

6: LogRatio = L(θnew) + log(Prior(θnew)) + log(p(θ|θnew))−L(θ)− log(Prior(θ))−
log(p(θnew|θ))

7: if LogRatio > 0 or LogRatio > log(rand) then

8: Set θ = θnew

9: end if

10: end for

use the generalised Leapfrog integrator to account for the fact that our Hamiltonian

is non-separable. In this integration scheme, two of the equations are now defined

implicitly, which we must solve using fixed point iterations. We note that when the

statistical model induces a constant metric tensor, then the metric is independent of

the parameters and the Hamiltonian becomes separable. In this case the generalised

Leapfrog integrator reduces to the standard Leapfrog method and no longer requires

the use of fixed point iterations. Pseudocode is given in Algorithm 6.

• High acceptance rate (close to 100%) and proposals are far from the current

position

• Fixed point iterations may be slow if the metric tensor and its derivatives are

expensive to compute

• Very fast when the statistical model induces a flat manifold, i.e. a manifold whose

metric tensor is constant, e.g. the latent variables of the log-Gaussian Cox process

in Chapter 4
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A.4 Fixed Metric RMHMC

A.4 Fixed Metric RMHMC

A pragmatic approach to obtaining excellent results using RMHMC is to employ a

constant metric tensor obtained from some set of parameters from a region of high

probability. For example, we could optimise (using the natural gradient) over the

posterior and use the maximum a posteriori (MAP) parameter values. This approach

is based on the assumption that the geometry of the statistical model does not change

much in the high probability region of the posterior. The generalised Leapfrog algorithm

then reduces to the standard Leapfrog integrator. Pseudocode is given in Algorithm 7.

• For most unimodal posterior distributions this approach will work well

• Very fast samples drawn using the standard Leapfrog method, while making use

of the geometric information from the Riemannian manifold using the MAP pa-

rameter estimate

• High acceptance rate (close to 100%) and proposals are far from the current

position

• This approach may not fare so well for posterior distributions with multiple modes

that have vastly different local covariance structure
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Algorithm 6 RMHMC with Generalised Leapfrog

1: Initialise current θ

2: for IterationNum = 1 to NumSamples do

3: Sample new momentum p1 ∼ p(p1|θ) = N(0, G(θ))

4: Calculate current H(θ,p1)

5: Randomise N (leapfrog steps)

6: θ1 = Current θ

7: for n = 1 to N (leapfrog steps) do

8: % Update the momentum with fixed point iterations

9: p̂0 = pn

10: for i = 1 to NumOfFixedPointSteps do

11: p̂i = pn − ε
2∇θH(θn, p̂i−1)

where ∇θiH = −∂L(θ)
∂θi

+ 1
2Tr

[
G(θ)−1 ∂G(θ)

∂θi

]
− 1

2pTG(θ)−1 ∂G(θ)
∂θi

G(θ)−1p

12: end for

13: pn+ 1
2 = p̂i

14: % Update the parameters with fixed point iterations

15: θ̂
0

= θn

16: for i = 1 to NumOfFixedPointSteps do

17: θ̂
i

= θn + ε
2∇pH(θn,pn+ 1

2 ) + ε
2∇pH(θ̂

i−1
,pn+ 1

2 )

where ∇pH(θ,p) =
(
G(θ)−1p

)
18: end for

19: θn+1 = θ̂
i

20: % Update the momentum exactly

21: pn+1 = pn+ 1
2 − ε

2∇θH(θn+1,pn+ 1
2 )

where ∇θiH = −∂L(θ)
∂θi

+ 1
2Tr

[
G(θ)−1 ∂G(θ)

∂θi

]
− 1

2pTG(θ)−1 ∂G(θ)
∂θi

G(θ)−1p

22: end for

23: Calculate proposed H(θN ,pN )

24: LogRatio = − log(Proposed H) + log(Current H)

25: % Accept or reject according to Metropolis ratio

26: if LogRatio > 0 or LogRatio > log(rand) then

27: Set θ = θN

28: end if

29: end for
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Algorithm 7 Fixed Metric RMHMC with Standard Leapfrog

1: Optimise to obtain θMAP

2: Initialise current θ = θMAP

3: for IterationNum = 1 to NumSamples do

4: Sample new momentum p1 ∼ p(p1|θMAP ) = N(0, G(θMAP ))

5: Calculate current H(θ,p1)

6: Randomise N (leapfrog steps)

7: θ1 = Current θ

8: for n = 1 to N (leapfrog steps) do

9: % Update the momentum

10: pn+ 1
2 = pn − ε

2∇θH(θn,pn)

where ∇θiH = −∂L(θ)
∂θi

11: % Update the parameters

12: θn+1 = θn + ε∇pH(θn,pn+ 1
2 )

where ∇pH(θ,p) =
(
G(θ)−1p

)
13: % Update the momentum

14: pn+1 = pn+ 1
2 − ε

2∇θH(θn+1,pn+ 1
2 )

where ∇θiH = −∂L(θ)
∂θi

15: end for

16: Calculate proposed H(θN ,pN )

17: LogRatio = − log(Proposed H) + log(Current H)

18: % Accept or reject according to Metropolis ratio

19: if LogRatio > 0 or LogRatio > log(rand) then

20: Set θ = θN

21: end if

22: end for
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