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Summary 

Dystroglycan is a heterodimeric cell adhesion molecule consisting of α and β subunits, 

which links the actin cytoskeleton to the extracellular matrix.  Dystroglycan has an 

important structural role and is integral for maintaining tissue integrity, but new avenues 

have research have implicated it in other roles within the cell due to its ability to bind a 

number of interacting proteins including cytoskeletal components and proteins involved in 

signal transduction.  To elucidate the functions of dystroglycan at the cellular level, 

fibroblasts were differentiated from dystroglycan null embryonic stem cells.  Analysis of 

these cells by western blot, however, showed them to be expressing dystroglycan and this 

was confirmed by RT-PCR, genomic PCR and northern blot.  Subsequently, Swiss 3T3 

fibroblasts with greater than 60% reduction in dystroglycan expression were generated by 

stable retroviral infection of a shRNA construct.  Dystroglycan deficient cells were smaller 

and were found to have a reduction in cell-substrate adhesions, when compared to a control 

cell line.  Dystroglycan deficiency did not affect cell motility or polarity in fibroblasts, but 

did result in a reduction in the rate of cell proliferation, which was thought to be the 

consequence of an increase in apoptosis.  Dystroglycan deficiency also inhibited the 

formation of filopodia and lamellipodia in response to dominant active Cdc42 or Rac1 

respectively, suggesting that it an important mediator of Rho GTPase-mediated 

cytoskeletal rearrangements.  This study has also identified a possible new function for 

dystroglycan during cytokinesis.  Endogenous dystroglycan was localised to the cleavage 

furrow and midbody of dividing fibroblasts, where it was found to co-localise with the 

ERM family member, ezrin.  Expression of mutated and truncated dystroglycan-GFP 

constructs in dividing HeLa cells revealed that the cytoplasmic domain is required for 

cleavage furrow localisation, but ezrin-binding is not.  A model for dystroglycan function 

at the cleavage furrow is presented whereby dystroglycan recruits ezrin to the site of 



   

 xv 

furrow ingression and together they serve to tether the actomyosin contractile ring to the 

plasma membrane during cytokinesis.  These findings provide further insight into the 

multifaceted functions of dystroglycan within the cell and also raised interesting questions 

about possible new roles for dystroglycan. 
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Chapter 1 

Introduction 

1.1 Introduction 

Dystroglycan is a widely expressed transmembrane cell adhesion molecule that links the 

actin cytoskeleton to the extracellular matrix (Ervasti and Campbell, 1993).  The 

dystroglycan gene is highly conserved in many different species, indicative that its product 

has a fundamentally important function.  Much of the early research into dystroglycan was 

focussed on its role in the pathogenesis of neuromuscular diseases, however it is now 

known to be a highly versatile receptor influencing multiple cellular functions including 

early development, epithelial morphogenesis, signal transduction, cytoskeletal remodelling 

and cancer progression.  The focus of this chapter will be current understanding of 

dystroglycan biosynthesis, structure and function. 

 

1.2 The dystrophin-glycoprotein complex 

Dystroglycan, or the dystrophin-associated glycoprotein (DAG), is a heterodimeric 

glycoprotein that was first identified in skeletal muscle as a constituent of the dystrophin-

glycoprotein complex (DGC) (Ervasti et al., 1990).  This complex is found on the 

sarcolemma and acts as a link between the cell cytoskeleton and the extracellular matrix 

(ECM) (Ervasti and Campbell, 1993).  The DGC in muscle is a large multimeric protein 

complex consisting of the dystroglycan complex, sarcoglycan complex and sarcospan, 

which are transmembrane proteins, associating with dystrophin, syntrophins and 

dystrobrevin which are located on the inner surface of the sarcolemma.   

The importance of dystroglycan arose from its association with dystrophin, the 

protein encoded by the Duchenne muscular dystrophy (DMD) gene.  DMD is an X-linked 

genetic disease that causes progressive muscle wasting and eventually death due to cardiac 
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or respiratory failure.  Dystrophin associates with actin in the cytoskeleton, and is missing 

or defective in DMD patients (Hoffman et al., 1987).  To try to understand the molecular 

pathogenesis of muscular dystrophy, proteins associated with dystrophin were isolated and 

included a glycoprotein component which was found to be depleted in dystrophic muscle 

and mdx mice (which lack dystrophin) (Ervasti et al., 1990); this was later named 

dystroglycan (Ibraghimov-Beskrovnaya et al., 1992).  The loss of one or more proteins 

from the DGC disrupts the link between the actin cytoskeleton and the ECM, which is 

essential for maintaining the structural integrity of the cell membrane.  One function of 

dystroglycan in muscle cells is thought to be as a transmembrane linker that strengthens 

the sarcolemma as the muscle alternately contracts and relaxes (Ervasti and Campbell, 

1993) and it is also thought to be involved in modulating muscle cell signalling (Batchelor 

and Winder, 2006). 

 

1.3 Dystroglycan complex in non-muscle cells 

Shortly after dystroglycan was cloned from skeletal muscle, a study into a laminin-binding 

protein found in the brain, called cranin, was shown to have identical sequence homology 

to dystroglycan (Smalheiser and Kim, 1995).  It is now well established that dystroglycan 

is widely expressed and has been found in every vertebrate tissue and cell type studied 

(Durbeej et al., 1998).  Since dystrophin expression is restricted to muscle and neuronal 

tissue, dystroglycan binds to truncated forms of dystrophin or dystrophin homologues in 

non-muscle cells.  Several truncated forms of dystrophin exist; these are alternatively 

spliced isoforms of dystrophin (Sadoulet-Puccio and Kunkel, 1996).  Dystrophin also 

associates with utrophin, a dystrophin homologue sharing approximately 69% sequence 

homology.  Utrophin was identified soon after dystrophin was sequenced, because its 

cDNA sequence was found to be very similar to the dystrophin gene.  Utrophin was 
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originally called dystrophin-related protein (DRP) (Love et al., 1991), but was renamed 

after it was cloned and sequenced to reflect its ubiquitous expression (Tinsley et al., 1992).  

Utrophin was also shown to associate with dystroglycan in cells that did not contain 

dystrophin (James et al., 1996).    

The dystroglycan complex in non-muscle cells is similar to the DGC in muscle 

cells in that it provides a link between the ECM and the actin cytoskeleton, however, the 

membrane complex itself contains fewer proteins (Durbeej and Campbell, 1999; Winder, 

1997).   

 

1.4 Dystroglycan biosynthesis and protein structure 

1.4.1 Dystroglycan gene 

Dystroglycan was initially cloned and sequenced from rabbit skeletal muscle in 1992 and 

was shown to be a heterodimer consisting of α and β subunits. α-Dystroglycan is a laminin 

receptor at its N-terminus and binds β-dystroglycan at its C-terminus through a non-

covalent interaction. β-Dystroglycan is a transmembrane protein that binds α-dystroglycan 

at its N-terminus and dystrophin or utrophin at its C-terminus (Figure 1.1).  The primary 

sequence of the gene encoding α and β dystroglycan was elucidated using complimentary 

DNA cloning (Ibraghimov-Beskrovnaya et al., 1992).  This revealed that both subunits are 

encoded by a single gene, DAG1, containing two exons, separated by a large intron.  

Cloning of human dystroglycan followed a short time later and was found to have 93% 

sequence homology to the rabbit gene (Ibraghimov-Beskrovnaya et al., 1993).  

Dystroglycan has since been cloned from a variety of other species including mouse 

(Gorecki et al., 1994), Torpedo (Bowe et al., 1994), zebrafish (Parsons et al., 2002), 

Caenorhabditis elegans (Grisoni et al., 2002) and Drosophila melanogaster (Deng et al., 
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2003).  Sequence analysis has shown that the dystroglycan gene is highly conserved 

among vertebrates, which may reflect a fundamental conserved role for this protein. 

 

1.4.2 Pro-peptide biosynthesis and processing 

DAG1 encodes a single 5.8 kb mRNA transcript, which is translated into a 160kDa 

precursor propeptide (Holt et al., 2000) and proteolytically cleaved after residue 653 by an 

unknown protease to form α and β dystroglycan (Deyst et al., 1995; Smalheiser and Kim, 

1995) (Figure 1.1 A).  Prior to cleavage, the dystroglycan propeptide is glycosylated within 

the endoplasmic reticulum and golgi.  The importance of glycosylation at this stage is not 

clear since separate studies have led to conflicting results as to whether glycosylation is 

required for cleavage and targeting of the precursor propeptide.  One group showed that 

glycosylation was not required for cleavage but was required for membrane localisation, 

whereas a different study has shown the opposite result whereby glycosylation was 

required for cleavage but did not completely abolish membrane localisation(Esapa et al., 

2003; Holt et al., 2000).   

 

1.4.3 Structure of α-dystroglycan  

The large dystroglycan subunit, α-dystroglycan, is a heavily glycosylated peripheral 

membrane protein that associates with components of the extracellular matrix via 

carbohydrate moieties and β-dystroglycan through a non-covalent interaction at its C-

terminus (Figure 1.1 B).  The predicted molecular weight from the primary sequence of α-

dystroglycan is 72 kDa, however its actual molecular weight ranges from 120 - 156 kDa in 

different tissues due to tissue specific glycosylation (Durbeej et al., 1998).  α-Dystroglycan 

has been shown to consist of two globular domains containing several sites for N-linked 
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glycosylation and glycosaminoglycan addition, connected by a central mucin-like region 

that is highly O-glycosylated (Brancaccio et al., 1995; Brancaccio et al., 1997).   

 

1.4.4 Structure of β-dystroglycan 

-Dystroglycan is a 43 kDa type I transmembrane glycoprotein containing an N-terminal 

extracellular domain, a short transmembrane region and an unstructured C-terminal 

cytoplasmic tail (Figure 1.1 B).  The N-terminal extracellular region forms a strong non-

covalent interaction with -dystroglycan.  This region has been shown to have a random 

coil structure and is capable of binding -dystroglycan in the absence of carbohydrate 

groups (Di Stasio et al., 1999).  The extracellular domain of β-dystroglycan was found to 

contain one potential N-linked glycosylation site and three putative O-linked glycosylation 

sites in mouse, although two of these sites are not conserved in other mammals (Di Stasio 

et al., 1999; Henry and Campbell, 1996).  Intracellularly, β-dystroglycan has an 

unstructured proline-rich cytoplasmic tail containing multiple binding sites for interacting 

proteins. 

 

1.5 Dystroglycan binding partners 

A multitude of interacting partners for dystroglycan have been identified and the list is still 

growing, emphasising the complexity of dystroglycan functions.  These interactions do not 

all occur at the same time, in fact many share the same binding region (Figure 1.1 B), 

therefore binding to dystroglycan is likely to be highly regulated by tissue-specific 

expression and post-translational protein modifications. 
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1.5.1 α-Dystroglycan interactions 

α-Dystroglycan is a receptor for a number of extracellular matrix components, such as 

laminin (Yamada et al., 1996) agrin (Yamada et al., 1996), perlecan (Peng et al., 1998), 

neurexins (Sugita et al., 2001) and biglycan (Bowe et al., 2000).  These interactions do not 

all occur together; rather they are regulated by both tissue-specific expression of the ECM 

components and differential glycosylation of α-dystroglycan.  Laminin (α1 and α2 chain), 

agrin, perlecan and neurexins bind to the carbohydrate moieties of sialyated O-linked 

oligosaccharides that are located on the α-dystroglycan mucin-like region (Chiba et al., 

1997).  These interactions are mediated by laminin G domain modules on the 

glycoproteins and are calcium-dependent (Hohenester et al., 1999; Tisi et al., 2000).  

Biglycan binds to the N-terminal globular region and this interaction is not dependent upon 

glycosylation.  A binding domain contained within the C-terminal globular domain of α-

Dystroglycan associates with the extracellular N-terminal region of β-dystroglycan through 

a tight non-covalent interaction that is not dependent upon glycosylation of either subunit 

(Bozzi et al., 2003; Di Stasio et al., 1999; Sciandra et al., 2001). 

 

1.5.2 β-Dystroglycan interactions 

1.5.2.1 Dystrophin and utrophin 

The β-dystroglycan cytoplasmic tail contains motifs capable of interacting with a plethora 

of cytoskeletal and cytosolic proteins due to its proline-rich sequence.  In particular, a 

binding motif  at the extreme C-terminus of the cytoplasmic tail can interact with WW 

domain containing proteins, such as dystrophin and utrophin (Jung et al., 1995; Tommasi 

di Vignano et al., 2000).  Dystrophin and utrophin contain a single type II WW domain in 

their cysteine-rich region.  This is a globular region of ~38-40 amino acids with two highly 

conserved tryptophan residues spaced 20-22 residues apart (Sudol, 1996).  Type II WW 
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domains recognise ligands with a P-P-x-Y motif (where x is any amino acid) (Chen et al., 

1997).   Type II WW domains have been likened to SH3 domains since they both bind to 

polyproline ligands.  The cytoplasmic tail of -dystroglycan contains two of these motifs, 

one starting at residue 828 (P-P-E-Y) and another at residue 889 (P-P-P-Y) (Ilsley et al., 

2002).  The latter of these two motifs, which is located in the last 10-15 amino acids of the 

cytoplasmic tail, was shown to be necessary but not sufficient for interaction with 

dystrophin (Jung et al., 1995).  This interaction also requires an EF-hand motif of 

dystrophin to bind to -dystroglycan (Rentschler et al., 1999).  The crystal structure of the 

WW domain-containing fragment of dystrophin interacting with -dystroglycan helped to 

explain the role of the EF-hand region.  This showed that the dystrophin WW domain is 

embedded between two EF-hand regions and one of these is required to stabilise the N-

terminal of the P-P-P-Y motif (Huang et al., 2000).  A closer analysis of the dystrophin 

(Ilsley et al., 2001) and utrophin (James et al., 2000) -dystroglycan binding region 

showed that the ZZ domain, a zinc finger region, (Ponting et al., 1996) close to the EF-

hand is also required for the interaction. 

 

1.5.2.2 Caveolin-3 

Caveolin-3, the main protein component of caveolae membranes in muscle cells, contains 

a WW-domain and associates with -dystroglycan by binding to the same P-P-P-Y motif 

as dystrophin.  Caveolin-3 competes with dystrophin for this binding site and the function 

of this may be to regulate the recruitment of dystrophin to the sarcolemma (Sotgia et al., 

2000).  Unlike dystrophin, caveolin-3 can interact with -dystroglycan when the P-P-P-Y 

is tyrosine phosphorylated.  This phosphorylation event could switch the binding partner of 

-dystroglycan from dystrophin to caveolin-3 (Ilsley et al., 2001).  Mutations in the 

caveolin-3 gene result in a form of limb-girdle muscular dystrophy (LGMD1C) (Minetti et 
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al., 1998).  When investigating the function of caveolin-3, it was found that overexpression 

in mice gives a DMD phenotype, this supports the theory that caveolin-3 competes for the 

dystrophin binding site (Galbiati et al., 2000).   

 

1.5.2.3 GRB2 

-Dystroglycan directly interacts with GRB2 (Growth factor receptor bound protein 2), 

which is an adaptor protein involved in the initiation of the Ras-MAP kinase signal 

transduction cascade and the control of cytoskeletal organisation.  This protein is 

composed of an SH2 domain sandwiched in between two SH3 domains (Lowenstein et al., 

1992).  In 1995, Yang et al showed that in brain and skeletal muscle, -dystroglycan 

interacts with an SH3 domain of GRB2 via its C-terminal proline-rich region (Yang et al., 

1995).  Closer examination of the -dystroglycan-GRB2 interaction using a range of 

binding assays identified the region of -dystroglycan that binds to the SH3 domain of 

GRB2 as residues 891-894 (P-Y-V-P), which overlaps with the P-P-P-Y 

dystrophin/utrophin binding motif (Russo et al., 2000). 

 

1.5.2.4 Other proteins 

β-Dystroglycan interacts with components of the ERK-MAP kinase signaling pathway 

through poly-proline rich motifs (Spence et al., 2004b).  Furthermore, β-dystroglycan 

associates with the cytoskeletal linker protein, ezrin through a binding motif located at the 

juxtamembrane region of the β-dystroglycan cytoplasmic tail (Spence et al., 2004a).  The 

cytoplasmic protein rapsyn associates with dystroglycan via a binding motif also in the 

juxtamembrane position (Bartoli et al., 2001; Cartaud et al., 1998). The β-dystroglycan 

cytoplasmic tail has also been shown to contain binding sites capable of interacting 

directly with F-actin (Chen et al., 2003).  Two other proteins, dystrobrevin and DRP2, 
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associate with dystroglycan since their C-terminal regions share substantial sequence 

homology with the dystroglycan-binding region of dystrophin.  These are products of 

distinct genes, but their functions are poorly understood (Blake et al., 1996; Chung and 

Campanelli, 1999; Roberts et al., 1996). 

 
Figure 1.1 Dystroglycan structure and binding partners.  A: Structure of dystroglycan pro-peptide.  αα = 
amino acid residue number; SS = signal sequence.  B: Schematic representation of the dystroglycan complex 

at the plasma membrane (P/M).  α-Dystroglycan is a dumbbell-shaped peripheral membrane protein that is 
highly decorated with carbohydrate residues (O- and N-linked glycosylation) that binds to ECM components 

and β-dystroglycan.  β-Dystroglycan is an integral membrane protein with a proline-rich cytoplasmic tail 
containing binding sites for a multitude of cytoskeletal and cytosolic binding partners.  The dystroglycan 
interacting proteins illustrated are unlikely to all bind dystroglycan at the same time; in fact several compete 
for the same binding region.  Binding is regulated by tissue-specific expression and protein modifications, 

such as differential glycosylation of α-dystroglycan or phosphorylation of β-dystroglycan. 
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1.5.3 Dystroglycan phosphorylation  

In non-muscle cells, tyrosine phosphorylation of the -dystroglycan P-P-x-Y motif in 

response to cell adhesion breaks the link between -dystroglycan and utrophin.  This in 

turn releases the dystroglycan complex from the underlying cytoskeleton, which may be 

important for processes such as cell adhesion, migration, proliferation and differentiation 

(James et al., 2000).  The adhesion-dependent phosphorylation of dystroglycan has not yet 

been demonstrated in muscle cells (Ilsley et al., 2002), but dystroglycan was shown to be 

tyrosine phosphorylated using the tyrosine phosphatase inhibitor, peroxyvanadate (Ilsley et 

al., 2001). 

The interaction between -dystroglycan and the WW domain of dystrophin or 

utrophin is regulated by phosphorylation of tyrosine 892 in the P-P-P-Y motif.  When this 

tyrosine is phosphorylated, -dystroglycan cannot interact with the WW domain of 

dystrophin (Ilsley et al., 2001) or utrophin (James et al., 2000).  The reason for the effect of 

phosphorylation can be explained using the crystal structure of dystrophin bound to -

dystroglycan.  In this structure, the extreme C-terminus of the cytoplasmic tail fits into a 

hydrophobic pocket produced by the EF-hand domains (Huang et al., 2000).  Following 

phosphorylation of the tyrosine residue contained within the P-P-P-Y motif, the bulky 

phosphate group prevents the motif from entering this pocket and an essential hydrogen 

bond cannot be formed (James et al., 2000).  

In v-Src transformed cells, it was discovered that the tyrosine-phosphorylation of -

dystroglycan was constitutively elevated.  This was reconstituted in vivo by transiently co-

expressing wild type c-Src with a fusion protein containing -dystroglycan.  This 

experiment showed that Src-induced tyrosine phosphorylation occurred on the P-P-x-Y 

motif of -dystroglycan.  Using a GST--dystroglycan fusion protein, five different SH2 

domain-containing proteins that interact with -dystroglycan in a phosphorylation-
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dependent manner were identified.  These proteins were c-Src, Fyn, Csk, NCK and SHC 

(Sotgia et al., 2001).  Adhesion-dependent tyrosine phosphorylation of the P-P-x-Y motif 

may act as a binary regulatory switch to inhibit the binding of certain WW-domain 

containing proteins, for example dystrophin, and promote the recruitment of other WW-

domain containing proteins or SH2 and SH3 domain-containing proteins.  This dynamic 

regulation of the DGC is not fully understood, but is undoubtedly very important for 

normal tissue function, since the loss of several different components have been shown to 

result in a muscular dystrophy phenotype (Sotgia et al., 2001).  In a recent study, Sotgia 

and colleagues have shown that tyrosine phosphorylation of β-dystroglycan causes it to be 

internalised into intracellular vesicles, which were shown to be recycling endosomes.  This 

suggests a mechanism by which dystroglycan function at the membrane might be regulated 

(Sotgia et al., 2003).  

 

1.6 Development 

1.6.1 Basement membrane formation 

A dystroglycan knockout mouse (DAG1 null) model was generated in order to gain further 

understanding of the function of dystroglycan in development.   The mice were found to be 

embryonic lethal, due to the failure to produce an early basement membrane (Reichert’s 

membrane) (Williamson et al., 1997).  The basement membrane is an ordered lattice of 

extracellular matrix proteins that lies in direct contact with cell surfaces.   α-Dystroglycan 

is a receptor for laminin-1, a major component of basement membranes (Ervasti and 

Campbell, 1993).  The role of dystroglycan in basement membrane assembly was further 

investigated using DAG1 null embryonic stem (ES) cells and embryoid bodies derived 

from them.  Dystroglycan was found to be required for initiating the self-assembly of the 

ECM by organising laminin on the surface of the cell.  One study found that in DAG1 null 
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embryoid bodies, the basement membrane was severely disrupted and in undifferentiated 

DAG1 null ES cells, laminin-1 did not form clusters on the cell surface as seen in wild-

type ES cells.  Re-introduction of dystroglycan rescued the ability of the DAG1 null 

embryoid bodies to form a basement membrane and DAG1 null ES cells to bind soluble 

laminin and organise it on the cell surface (Henry and Campbell, 1998).  This study was, 

however, disputed by a separate investigation into basement membrane assembly in DAG1 

null embryoid bodies.  In the later study, dystroglycan was not found to be essential for the 

development of the embryonal basement membrane adjacent to the epiblast, as had been 

reported earlier (Li et al., 2002).  This later study did not, however, contradict the finding 

that the DAG1 knockout mouse could not form the Reichert’s membrane, since this occurs 

at an earlier stage of development (Williamson et al., 1997).  Conditional deletion of 

dystroglycan in mouse brain resulted in partial disruption of the pial basement membrane 

(Moore et al., 2002), whereas conditional deletion of dystroglycan in skeletal muscle of 

mice did not affect basement membrane formation (Cote et al., 1999).  The importance of 

dystroglycan to basement membrane assembly is therefore still under question. 

  

1.6.2 Muscle 

Due to the embryonic lethality of the DAG1 knockout mouse, further investigation into 

dystroglycan deficiency in muscle was undertaken using different methods to deplete 

dystroglycan expression.  Cote et al used DAG1 null ES cells to generate chimaeric mice 

that had skeletal muscle lacking dystroglycan.  These mice exhibited a muscular dystrophy 

phenotype and disrupted neuromuscular synapses, but dystroglycan was not found to be 

required for basement membrane formation in skeletal muscle (Cote et al., 1999).  Another 

study in which dystroglycan was selectively deleted from mouse skeletal muscle produced 

mice with a surprisingly mild dystrophic phenotype.  This was found to be due to the 
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partial regeneration of muscle tissue by satellite cells still expressing dystroglycan.  

Satellite cells are quiescent adult stem cells of myogenic lineage that lie adjacent to the 

muscle fibre sarcolemma beneath the basal lamina.  These cells are triggered to proliferate 

and differentiate into myoblasts in order to repair muscle fibres in response to injury.  The 

results obtained from this study suggested that dystroglycan is important for muscle cell 

regeneration (Cohn et al., 2002).  Reduction of dystroglycan in mouse myotubes by RNAi 

resulted in a reduced ability of the cells to bind laminin accompanied by a gradual loss of 

cells caused by an increase in apoptosis (Montanaro et al., 1999) and a study in which α-

dystroglycan was prevented from binding to laminin by antibody interference induced a 

muscular dystrophy phenotype in primary mouse muscle cell cultures (Brown et al., 1999).  

 

1.6.3 Neuromuscular Junction 

Dystroglycan is found abundantly at the neuromuscular junction (NMJ) where it is 

important during synaptogenesis for the formation of the basement membrane and also for 

the maintainence of acetylcholine receptor aggregates (Jacobson et al., 2001; Jacobson et 

al., 1998).  Dystroglycan associates with agrin (Gee et al., 1994; Sugiyama et al., 1994), a 

proteoglycan component of the ECM that is important during embryogenesis for the 

development of the NMJ and the aggregation of acetylcholine receptors (AchR) during 

synaptogenesis (Nitkin et al., 1987).  Intracellularly, β-dystroglycan associates with rapsyn 

(Apel et al., 1995; Bartoli et al., 2001; Cartaud et al., 1998), which is involved in agrin-

induced AchR clustering via muscle-specific kinase (MuSK), a receptor tyrosine kinase.  

The importance of dystroglycan at the NMJ has been exemplified in studies investigating 

dystroglycan-deficient muscle cells, which were unable to aggregate AchR (Jacobson et 

al., 2001)and in the dystroglycan-deficient mouse which had disrupted neuromuscular 

synapses (Cote et al., 1999). 
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1.6.4 Epithelial Morphogenesis  

Dystroglycan expression was found to be elevated during branching epithelial 

morphogenesis of the developing mouse kidney, salivary gland and lung (Durbeej et al., 

1995).  This process involves the differentiation of mesenchymal cells into epithelial cells 

and requires close interaction between the cell and the basement membrane in order to 

allow for the developing epithelial cell to polarise correctly.  Binding of dystroglycan to 

laminin-1 was found to be crucial because inhibition of this interaction, since using 

antibodies to block the laminin-1 binding site on α-dystroglycan inhibited the process 

(Durbeej et al., 1995; Durbeej et al., 2001).  Furthermore, dystroglycan expression was 

found to increase during lactogenesis of mammary epithelial cells and reduction of 

dystroglycan by RNAi inhibited differentiation (Sgambato et al., 2006). 

 

1.6.5 Central and peripheral nervous system 

Selective deletion of the dystroglycan gene in mouse brain led to severe brain 

malformations resembling those caused by congential muscular dystrophies (CMD) such 

as Fukuyama CMD (FCMD), muscle-eye-brain disease (MEB) and Walker-Warburg 

syndrome (Moore et al., 2002).  The mutations causing these diseases are thought to be in 

genes encoding glycosyltransferases, which are required for the correct glycosylation of α-

dystroglycan.   

 Dystroglycan function has also been shown to extend to the peripheral nerve 

system in a study in which dystroglycan was selectively deleted in Schwann cells, which 

are responsible for creating the myelin sheaths surrounding axons.  Dystroglycan localises 

to the outer membrane of Schwann cells, opposing the basal lamina, where it associates 

with laminin and agrin in the ECM (Yamada et al., 1996).  Loss of dystroglycan in 

Schwann cells caused there to be a decrease in nerve conduction and abnormal myelination 
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accompanied by a reduction in Na+ channel density and disorganised microvilli at the 

nodes of Ranvier (Saito et al., 2003). 

 

1.7 Dystroglycan depletion in model organisms 

Dystroglycan homologues have been identified in a number of different species and loss of 

function studies in several model organisms have provided further insight into 

dystroglycan function.  Removal of dystroglycan expression in zebrafish using antisense 

morpholino oligonucleotides showed that it was not required for early embryogenesis, in 

contrast to the phenotype seen in the mouse model.  Unlike mice, zebrafish do not require 

early basement membrane formation, this is only important once organogenesis is 

underway.  At later stages of development, however, a muscular dystrophy phenotype 

emerged, manifested by loss of muscle integrity and cell death by necrosis and apoptosis 

(Parsons et al., 2002).   

Dystroglycan deficiency has also been studied in the model organism, Drosophila 

melanogaster using RNAi and mosaic analysis to knock down dystroglycan expression.  

The focus of this research was to investigate the role of dystroglycan in polarity 

determination.  Dystroglycan expression was depleted in follicle and imaginal disc 

epithelial cells and was found to disrupt apicobasal polarity, shown by the mislocalisation 

of polarity markers.  At early stages of drosophila embryogenesis, anteroposterior polarity 

is essential for the correct development of the drosophila oocyte and involved extensive 

cytoskeletal rearrangements.  In the early oocyte, the microtubule organising centre 

(MTOC) is located at the anterior of the oocyte, which moves to a posterior position as 

development progresses.  Dystroglycan depletion in the early oocyte disrupted this 

rearrangement suggesting that it is involved in the maintenance of anteroposterior polarity 

in the developing drosophila oocyte.  Moreover, dystroglycan depletion in follicle cell 
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epithelium was found to result in the disruption of cortical F-actin in neighbouring wild-

type cells, suggesting that dystroglycan also contributes to cell-cell communication (Deng 

et al., 2003). 

 Dystroglycan depletion in the retina of Xenopus laevis using antisense morpholino 

oligonucleotides highlighted the importance of dystroglycan during eye development.  

Dystroglycan depletion resulted in a decrease in the overall size of the eye, which was 

found to be a result of increased apoptosis, disruptions to the basement membrane and eye 

malformations similar to those seen in CMD (Lunardi et al., 2006). 

 

1.8 Signal transduction 

In addition to its structural role, dystroglycan is now thought to play an important role in 

signal transduction.  Due to its wide expression pattern and abundance of interacting 

proteins, dystroglycan is likely to function at the intersection of multiple cell signalling 

pathways. 

 

1.8.1 SH2 and SH3 domain containing signalling molecules 

There is evidence that -dystroglycan, in association with GRB2, recruits the non-receptor 

tyrosine kinase, FAK (focal adhesion kinase).  FAK is involved in regulating focal 

adhesion assembly, which are areas of close contact between the cytoskeleton and the 

ECM allowing for signal transduction to occur between the cell and its surroundings 

influencing cell motility and cytoskeletal reorganisation.  In bovine brain synaptosomes, 

GRB2 bound to FAK, was isolated together with the dystroglycan complex.  There was no 

evidence of a direct interaction between -dystroglycan and FAK, suggesting that GRB2 

links FAK to the dystroglycan complex (Cavaldesi et al., 1999).  Interestingly, 

dystroglycan and utrophin have both been shown to localise to focal adhesions, suggesting 

that dystroglycan may be important for mediating signal transduction through focal 
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adhesion complexes in a manner similar to integrins (Belkin and Burridge, 1995; Belkin 

and Burridge, 1995; Belkin and Smalheiser, 1996; James et al., 1996; James et al., 2000; 

Khurana et al., 1995; Spence et al., 2004b).    

 The β-dystroglycan cytoplasmic tail has also been shown to interact with the SH2-

domain containing signalling molecules c-Src, Fyn, Csk, NCK and SHC in a 

phosphorylation-dependent manner but consequences of these interactions have not yet 

been elucidated (Sotgia et al., 2001). 

 

1.8.2 ERK-MAP kinase signalling 

Dystroglycan has been implicated in modulating the ERK-MAP kinase signalling cascade, 

a pivotal signal transduction pathway that regulates diverse cellular functions, such as gene 

expression, mitosis, differentiation and cell survival.  Dystroglycan was found to have an 

inhibitory effect on the α6β1 integrin-mediated activation of the ERK-MAP kinase 

pathway following laminin binding in epithelial cells, suggesting that dystroglycan is 

involved in regulating ERK-MAP kinase signalling in response to cell adhesion (Ferletta et 

al., 2003).  The involvement of dystroglycan in ERK-MAP kinase signalling was further 

substantiated with the finding that the cytoplasmic tail of β-dystroglycan directly 

associates with two of its components, MEK2 (MAP kinase kinase 2) and the activated 

form of its downstream effector, ERK.  Dystroglycan was not found to be a substrate for 

ERK and did not affect the activity of MEK on ERK; rather its function appears to be to 

act as a membrane scaffold for these proteins.  Interestingly, dystroglycan was found to 

localise with MEK and ERK in different cellular structures: dystroglycan localised with 

active ERK to focal adhesions and with MEK to membrane ruffles.  This suggests a 

possible mechanism for how dystroglycan may be involved in regulating the activation of 

ERK-MAP kinase signalling, whereby sequestration by dystroglycan of MEK and ERK to 
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separate cellular compartments may serve to activate the MAP kinase cascade under 

different circumstances (Spence et al., 2004b).  A separate study, looking at the effects of 

mechanical stretch on lung epithelia found that, upon the induction of cyclic stretch, 

dystroglycan binding to laminin-6 transduced a mechanical signal that activated MAP-

kinase signalling.  Furthermore, depletion of dystroglycan by RNAi or perturbation of the 

dystroglycan-laminin interaction by antibody binding significantly reduced MAP-kinase 

activation in rat alveolar epithelial cells (Jones et al., 2005).  A separate study in which 

dystroglycan was downregulated by RNAi in mouse mammary epithelial cells reported an 

increase in phosphorylated ERK and MEK compared to control cells (Sgambato et al., 

2006).  Research into the role that dystroglycan plays in mediating ERK-MAP kinase 

signalling is still in its infancy, nonetheless it is clear that dystroglycan serves an important 

function in regulating this complex pathway.   

 

1.8.3 PI3K/AKT signalling 

Dystroglycan has been implicated in the regulation of the phosphoinositide 3-kinase 

(PI3K)/protein kinase B (AKT) pathway, which mediates a number of cellular processes 

including cell proliferation, motility and survival.  No direct interaction between 

dystroglycan and components of this pathway have been identified, however, perturbation 

of the dystroglycan-laminin interaction in myoblasts was found to disrupt PI3K/AKT 

signalling resulting in increased apoptosis (Langenbach and Rando, 2002).  Knockdown of 

dystroglycan expression in several different cell types has also been shown to result in 

increased apoptosis (Lunardi et al., 2006; Montanaro et al., 1999; Parsons et al., 2002; 

Sgambato et al., 2006). 
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1.8.4 ERM proteins and Rho GTPase signalling  

Dystroglycan has recently been found to interact with the ERM (ezrin-radixin-moesin) 

family member, ezrin, via a juxtamembrane binding motif (Spence et al., 2004a).  The 

ERM proteins are cytoskeletal linkers that connect the actin cytoskeleton to membrane-

bound proteins and are involved in the mediation of cell signalling (Tsukita and 

Yonemura, 1999).  The interaction between dystroglycan and ezrin was shown to be 

important for the formation of filopodia, previously reported to be induced upon 

dystroglycan overexpression (Chen et al., 2003).  This filopodia phenotype was also found 

to be dependent upon the activity of the Rho-GTPase family member, Cdc42 (Spence et 

al., 2004a).  Rho, Rac and Cdc42 are members of the Ras-related superfamily of small 

GTPases (guanosine triphosphatases) and link membrane receptors to signal transduction 

pathways that induce changes in the actin cytoskeleton (Nobes and Hall, 1995).  A recent 

study into the mechanism by which dystroglycan induces filopodia formation showed that 

the cytoplasmic tail of β-dystroglycan bound to ezrin recruits the GEF (GDP/GTP 

exchange factor), Dbl, an upstream activator of Cdc42 and Rho, which can then drive 

localised Cdc42 activation leading to the induction of filopodial protrusions on the 

membrane surface (Batchelor et al., 2007).  Concurrent with this study, dystroglycan was 

shown to co-localise with moesin in microvilli structures in the nodes of Ranvier, found in 

Schwann cells of the peripheral nerve, and selective deletion of dystroglycan caused the 

microvilli to be disrupted (Saito et al., 2003).  This is another example of dystroglycan 

functioning as a scaffold molecule for the recruitment of signalling molecules to the 

membrane, where they can exert their effects. 

 A study looking at the effects of cellular signalling upon reduction of the DGC in 

muscle atrophy supports the theory that there is a link between dystroglycan and Rho 

GTPase signalling.  In rat skeletal muscle atrophy, members of the DGC, including β-
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dystroglycan, were found to be reduced with a simultaneous reduction in the activity of the 

small GTPases (Chockalingam et al., 2002).  

 

1.9 Dystroglycan and disease 

1.9.1 Duchenne muscular dystrophy and secondary dystroglycanopathies 

Duchenne muscular dystrophy is caused by mutations in the dystrophin gene and  

disassembly of the DGC including loss of dystroglycan from the sarcolemma occurs as a 

consequence (Hoffman et al., 1987; Ibraghimov-Beskrovnaya et al., 1992).   

There have been no human diseases identified that are caused by primary mutations 

in the dystroglycan gene, however defective post-translational processing of dystroglycan 

implicates it in the pathogenesis of several forms of human congenital muscular 

dystrophies.  These diseases are caused by mutations in genes encoding known or putative 

glycosyltransferases whose function is to O-glycosylate α-dystroglycan during post-

translational processing.  In the disease state, α-dystroglycan is hypoglycosylated and as a 

result loses its ability to bind components of the ECM, such as laminin, perlecan, agrin and 

neurexins which normally associate with its heavily O-glycosylated mucin-like region.  

Fukuyama CMD (FCMD), muscle-eye-brain disease (MEB), Walker-Warburg syndrome 

(WWS) and congenital muscular dystrophies types 1C and 1D (MDC1C and MDC1D) are 

all congenital muscular dystrophies caused by mutations in glycosyltransferases such as 

POMT1, POMT2, POMGnT1, LARGE or putative glycosyltransferases fukutin and FKRP 

(Beltran-Valero de Bernabe et al., 2002; Brockington et al., 2001; Kobayashi et al., 1998; 

Longman et al., 2003; Yoshida et al., 2001).  Although the pathology of the disease is 

caused by α-dystroglycan loss of function, these diseases are sometimes referred to as 

secondary dystroglycanopathies since the mutations are not contained within the 

dystroglycan gene itself (Michele et al., 2002).  The Largemyd mouse has a spontaneous 
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mutation in the gene encoding LARGE and is a useful model system for studying the 

human disease, MDC1D(Grewal et al., 2001).  Recently, it has been found that 

overexpression of LARGE rescues the dystrophic phenotype in Largemyd mice.  Moreover, 

overexpression of LARGE in cells from patients with CMD caused by mutations in other 

glycosyltransferases also resulted in a functional hyperglycosylated α-dystroglycan 

capable of binding extracellular ligands (Barresi et al., 2004).  This has led to the 

suggestion that LARGE could be a potential therapeutic target for dystroglycanopathies 

and research into this area is ongoing. 

 

1.9.2 Cancer 

Aside from its involvement in the pathogenesis of neuromuscular disease, dystroglycan has 

also been implicated in the development of epithelial cancers.  Adhesion molecules such as 

dystroglycan and integrins mediate cell-cell and cell-ECM interactions and correct control 

of these interactions is vital for maintaining tissue integrity.  Adhesion molecules not only 

tether the cell to the surrounding matrix, but also act as modulators of the cytoskeleton and 

signalling cascades affecting growth and differentiation of the cell.  Deregulation of cell-

ECM interactions is a hallmark of cancer progression and promotes tumour cell metastasis. 

As previously discussed, dystroglycan is important in determining polarity, morphogenesis 

and basement membrane interactions in epithelial cells (Sections 1.6-1.7).  Recently, 

several groups have reported that dystroglycan expression is reduced or lost in a number of 

cancer cell lines and primary tumours (Henry et al., 2001; Jing et al., 2004; Losasso et al., 

2000; Muschler et al., 2002; Sgambato et al., 2003; Sgambato et al., 2006).  Furthermore, 

dystroglycan expression has been shown to be elevated in vascular endothelial cells during 

formation of new blood vessels (angiogenesis) in malignant tumours compared to vascular 

endothelial cells in normal tissue, but the significance of this and the molecular 

mechanisms involved are not yet understood (Hosokawa et al., 2002). 
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Immunohistochemical staining of tissue sections obtained from breast and prostate 

primary tumours revealed a marked reduction in dystroglycan expression (Henry et al., 

2001).  Biochemical analysis of dystroglycan expression in a variety of cancer cell lines 

and tumours from breast, prostate, colon, cervix and oral squamous cell carcinomas 

revealed that α-dystroglycan protein expression was undetectable in the majority, resulting 

in the loss of laminin-binding (Jing et al., 2004; Losasso et al., 2000; Muschler et al., 2002; 

Sgambato et al., 2003; Sgambato et al., 2006).  Reduction of β-dystroglycan protein 

expression has also been reported following western analysis of both tumour samples and 

cancer cell lines.  The reduced expression of 43 kDa β-dystroglycan was often 

accompanied by the increased incidence of a ~30 kDa β-dystroglycan band (Jing et al., 

2004; Losasso et al., 2000; Muschler et al., 2002; Sgambato et al., 2003).  RT-PCR 

analysis showed that dystroglycan mRNA levels did not reflect the reduction in protein 

expression (Jing et al., 2004; Sgambato et al., 2003) and there was no evidence of 

alternative spliced forms of β-dystroglycan, concluding that production of the ~30 kDa β-

dystroglycan must occur at the post-transcriptional level (Losasso et al., 2000).  The ~30 

kDa β-dystroglycan peptide was found to be the proteolytic product of membrane-

associated matrix metalloproteinases (MMPs), which cleave the extracellular portion of β-

dystroglycan leaving the transmembrane and cytoplasmic regions intact (Losasso et al., 

2000; Yamada et al., 2001).  A study using specific inhibitors to investigate this proteolytic 

event identified MMP-2 and MMP-9 as being important for β-dystroglycan cleavage 

(Zhong et al., 2006) and treatment of cell lines with MMP inhibitors decreased the 

appearance of ~30 kDa β-dystroglycan (Herzog et al., 2004).  The loss of the extracellular 

portion of β-dystroglycan causes the disintegration of the dystroglycan complex by 

simultaneously releasing α-dystroglycan from the cell surface and, therefore, disrupting 

the link with the ECM.  This would be an attractive mechanism for the apparent 
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disappearance of α-dystroglycan in cancer cells, however since the proportions of 43 kDa 

and ~30 kDa β-dystroglycan are highly variable, whereas α-dystroglycan is consistently 

reduced it is likely that aberrant glycosylation is also a factor as this would decrease the 

immunoreactivity of α-dystroglycan (Singh et al., 2004). 

 The most pronounced reduction of dystroglycan protein expression was found in 

high grade tumours (Henry et al., 2001; Sgambato et al., 2003) and has been linked to a 

decrease in patient survival (Sgambato et al., 2003).  A study carried out using different 

breast cancer cell lines found that those expressing the lowest levels were unable to 

polarise correctly, were not contact inhibited in response to basement membrane 

components and were highly invasive.  Over-expression of dystroglycan in a breast 

carcinoma cell line, expressing low levels of endogenous dystroglycan, rescued the cells 

ability to polarise and form growth-restricted epithelial structures, thus reducing their 

tumourigenic potential (Muschler et al., 2002).  A separate study also reported the 

reduction in tumourigenicity of a human breast cancer cell line in response to 

overexpression of dystroglycan cDNA.  This study, however, found that although β-

dystroglycan was overexpressed, they were unable to increase α-dystroglycan expression 

due to its continued release from the membrane due to proteolysis (Sgambato et al., 2004). 

 A study looking at the significance of reduced dystroglycan expression in breast 

cancer cells utilised RNAi in order to diminish dystroglycan expression in non-

tumourigenic mouse mammary epithelial cells.  Interestingly, dystroglycan knockdown 

resulted in the accumulation of cells in S-phase and an increase in apoptotic cell death 

while also affecting crucial cell signalling pathways (Sgambato et al., 2006).  While 

appearing paradoxical with respect to the previous findings in cancer cells, which undergo 

uncontrolled cell proliferation, these results highlight the complexity with which 

dystroglycan may be functioning during cancer progression.  As previously discussed, 
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proteolytic processing cleaves the extracellular domain of β-dystroglycan, resulting in the 

release of α-dystroglycan, whilst preserving the cytoplasmic domain of β-dystroglycan 

(Losasso et al., 2000; Yamada et al., 2001).  Since this cytoplasmic tail region binds to 

components of several different cell signalling pathways, perhaps in the absence of 

extracellular communication these proteins are retained at the membrane, resulting in 

aberrant signalling that may affect cell proliferation and apoptotic pathways. 

 

1.9.3 Viral infection 

Dystroglycan is the cellular receptor for several viral pathogens such as the arenaviruses, 

including LCMV (lymphocytic choriomeningitis virus) and the species that causes Lassa 

fever (Cao et al., 1998).  This binding was found to be dependent upon O-linked 

glycosylation in the mucin-like region of α-dystroglycan (Kunz et al., 2005).  α-

Dystroglycan in association with the α2 chain of laminin is also a receptor for 

Mycobacterium Leprae, the pathogen that causes leprosy (Rambukkana et al., 1998).  

These infectious agents use dystroglycan to gain entry into the host cell. 

 

1.10 Summary and aims 

Dystroglycan is a highly versatile adhesion molecule with multiple biological functions.  

With its wide expression pattern and ability to bind many different proteins, dystroglycan 

has been implicated in diverse functions ranging from early development and muscle 

stability to cellular signalling and cancer progression.   

 α-Dystroglycan is a cell surface receptor for several components of the ECM and 

these interactions are crucial for its correct functionality.  Binding of ECM components, 

such as laminin, agrin and perlecan, to α-dystroglycan is dependent upon correct 

glycosylation of the α-dystroglycan mucin-like region and perturbation by antibody 
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interference or mutations in glycosylation enzymes result in the inhibition of dystroglycan 

function.  The ramifications of incorrect dystroglycan glycosylation in the pathogenesis of 

neuromuscular disease and cancer progression are the current focus of many research 

groups. 

Comparatively speaking, while much research has focussed on the handful of 

interactions associated with α-dystroglycan, relatively little is known about the interactions 

that occur at the cytoplasmic domain of β-dystroglycan, which associates with a whole 

host of binding partners.  The extreme C-terminus of the β-dystroglycan cytoplasmic tail 

contains binding sites for a variety of signalling and signal-adaptor proteins, but our 

understanding of the regulation of these interactions and the consequent implications on 

cellular function is still at the early stages.  Furthermore, the association of β-dystroglycan 

with cytoskeletal components, such as the ERM family member ezrin and the discovery of 

a direct interaction between β-dystroglycan and F-actin suggests that dystroglycan may be 

intimately involved in actin cytoskeletal dynamics.  Clearly, there is much scope for 

research into the intracellular functions of β-dystroglycan since many questions remain to 

be answered.  For example: How does β-dystroglycan regulate binding to different 

proteins? In what intracellular processes does dystroglycan function?   

  Dystroglycan has not been extensively studied in relation to its influence on the 

reorganisation of the actin cytoskeleton, however emerging evidence links it to a Rho 

GTPase signalling pathway resulting in dramatic actin cytoskeleton rearrangements in 

cultured fibroblasts (Batchelor et al., 2007; Chen et al., 2003; Spence et al., 2004a).  

Fibroblasts are cells of mesenchymal origin that are a useful in vitro model system for 

studying the actin cytoskeleton as they are relatively easy to maintain and manipulate in 

cell culture and exhibit dynamic cytoskeletal rearrangements.  This study aims to further 

develop our current understanding of dystroglycan function at the cellular level, with 
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particular emphasis on the cytoskeleton, by investigating the effects of dystroglycan 

deficiency in cultured fibroblasts.  
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Chapter 2 

Materials and Methods 

2.1 Materials 

2.1.1 Molecular biology reagents 

Restrictions enzymes were obtained from New England Biolabs Inc. (75-77 Knowl Piece, 

Wilbury Way, Hitchin, Hertfordshire, SG4 OTY).  Pfu DNA polymerase was bought from 

Promega (Delta House, Enterprise Road, Chilworth Research Centre, Southampton SO1 

7NS) and the Rapid DNA ligation kit was manufactured by Fermentas Inc. (7520 

Connelley Drive, Hanover, MD 21076, USA).   

Absolutely RNA RT-PCR miniprep kit was purchased from Stratagene Inc. (11011 

N. Torrey Pines Road La Jolla, CA 92037, USA) and the Titan One-Tube RT-PCR System 

was obtained from Roche Applied Science Ltd. (Bell Lane, Lewes, East Sussex BN7 

1LG).  DEPC was bought from Sigma-Aldrich Company Ltd. (Fancy Road, Poole, Dorset, 

BH17 7NH) and RNase ZAP from Ambion Ltd. (Ermine Business Park, Spitfire Close, 

Huntingdon, Cambridgeshire, PE29 6XY). 

The DNeasy Tissue Kit, QIAprep Spin Miniprep kit, QIAprep Spin Maxiprep kit 

and QIAquick Gel Extraction kit were bought from Qiagen Ltd. (Fleming Way 

Crawley, West Sussex RH10 9NQ).  The DIG Northern Starter Kit was purchased from 

Roche Applied Science, Ltd. 

Electrophoresis grade, high gel strength agarose was bought from Melford 

Laboratories (Bideston Road, Chelsworth, Ipswich IP7 7LE) and ethidium bromide from 

VWR International (Hunter Boulevard, Magna Park, Lutterworth, Leicestershire LE17 

4XN). DNA Hyperladder I and dNTPs were both purchased from Bioline Ltd. (16 The 

Edge Business Centre, Humber Road, London NW2 6EW).  Oligonucleotides were 

purchased from MWG Biotech UK Ltd. (Waterside House, Peartree Bridge, Milton 
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Keynes, MK6 3BY) or Operon Biotechnologies GmbH (Nattermannallee 1 D- 50829 

Cologne, Germany).  DNA sequencing was carried out by The Sequencing Service, 

University of Dundee (School of Life Sciences, MSI/WTB Complex, University of 

Dundee, Dundee DD1 5EH). 

Agarose gels were run using the Mini Sub Cell GT electrophoresis tank  from Bio-

Rad Laboratories Ltd. (Bio-Rad House, Maxted Road, Hemel Hempstead, Hertfordshire, 

HP2 7DX) and visualised with a gel documentation system comprising a transilluminator 

(BST-15.M), camera, viewer and video copy processor (Mitsubishi P91), all of which were 

obtained from UVITEC Ltd. (Avebury House, 36a Union Lane, Cambridge, CB4 1QB). 

The pEGFP-N3 vector and the RNAi ready pSIREN-RetroQ vector kit were 

obtained from BD Biosciences-Clontech (21 Between Towns Road, Cowley, Oxford OX4 

3LY).  Plasmid maps and details of cloning strategies are detailed in Appendix I.  Other 

DNA constructs used in this study are detailed in Appendix II.   

PCR was carried out using either a Biometra Uno II or Biometra T-Gradient 

Thermocycler both manufactured by Biometra GmbH (Rudolf-Wissell-Straβe 30, 37079 

Goettingen, Germany). 

 

2.1.2 Cells, cell culture vessels and reagents 

Cells used in this study and their source are detailed in Appendix III.  All reagents used in 

the culture and maintenance of cell lines are detailed below. 

 

Dulbecco’s Minimum Essential Medium (DMEM), RPMI-1640 Medium, 

OptiMEM, foetal bovine serum (FBS), penicillin/streptomycin, Fungizone, Lipofectamine 

reagent and Annexin V Vybrant Apoptosis Assay Kit #2 (Alexa Fluor 448 annexin 

V/propidium iodide) were all purchased from Invitrogen Life Technologies Ltd.  0.25% 
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Trypsin/EDTA, Mitomycin C, Sequabrene (Hexadimethrine Bromide), sterile DMSO, 

gelatin and puromycin were obtained from Sigma-Aldrich Company Ltd.  ESGRO was 

purchased from Chemicon Ltd. (The Science Centre, Eagle Close, Chandlers Ford, 

Hampshire, SO53 4NF). 

 

All plastic ware, including tissue culture flasks, round dishes and multi-well dishes, 

were purchased from Griener Bio-One Ltd. (Brunel Way, Stroudwater Business Park, 

Stonehouse, Gloucestershire, GL10 3SX).  The haemocytometer was bought from Weber 

Scientific International Ltd. (Marlborough Road, Lancing Business Park, West Sussex 

BN15 8TN).  Cryoware cryogenic vials and the Cryofreezing container were manufactured 

by Nalgene and obtained from Fisher Scientific UK Ltd.  Glass coverslips and slides were 

purchased from VWR International.  0.2µm and 0.45µm Minisart syringe filters were from 

Sartorius Ltd. (Longmead Business Centre, Blenheim Road, Epsom, KT19 9QQ) and BD 

Microlance from BD Biosciences. 

Cells in culture were visualised using a Ceti Versus inverted brightfield microscope 

obtained from Wolf Laboratories Ltd. (Wolf House, 80 Market Street, Pocklington, York, 

YO42 2AB).  Fluorescence microscopy was carried out using a Leica DM IRE2 inverted 

fluorescence microscope in conjunction with a 1.3 megapixel CCD camera (DC 350F) 

from Leica Microsystems (UK) Ltd. (Davy Avenue, Knowlhill, Milton Keynes, MK5 

8LB).  The THD 60-16 heated stage and MC60 controller used for live-cell imaging were 

manufactured by Linkam Scientific Instruments (No. 8 Epsom Downs Metro Center, 

Waterfield, Tadworth, Surrey KT20 5HT). 
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2.1.3 SDS-PAGE, Western blotting and detection reagents 

The Mini-PROTEAN II gel system, Trans-Blot SD Semi-Dry Transfer Cell, PVDF and 

Coomassie Brilliant Blue R-250 were all purchased from Bio-Rad Laboratories Ltd.  

Nupage Transfer buffer was bought from Invitrogen Life Technologies Ltd.  

Acrylamide:bisacrylamide (37.5:1) was bought from GeneFlow Ltd. (Fradley Business 

Centre, Wood End Lane, Fradley, Staffordshire, WS13 8NF) and Broad-range prestained 

protein molecular weight markers were purchased from New England Biolabs Inc.  The 

Micro BCA Protein Assay Kit was obtained from Perbio Science UK Ltd. (Unit 9, Atley 

Way, North Nelson Industrial Estate, Cramlington, Northumberland, NE23 1WA). 

Protease inhibitors, TEMED, BCIP and NBT were all purchased from Sigma-Aldrich 

Company Ltd.  Marvel non-fat dry milk powder was purchased from a local supermarket.  

Kodak MXB film was purchased from Xograph Imaging Systems Ltd. (Xograph 

House, Hampton Street, Tetbury, Gloucestershire, GL8 8LD).  Films were fixed in Kodak 

RP X-OMAT LO, developed in Kodak X-OMAT EX II, both purchased from VWR 

International, using an Optimax 1170 film processor from IGP UK Ltd. (1/5 Cutlers Road, 

South Woodham Ferrers, Chelmsford, Essex, CM3 5WD).  Scanned images were obtained 

using a UMAX Powerlook 1000 transmissive scanner. 

 

2.1.4 Antisera 

Sources and details of working dilutions of primary and secondary antisera are detailed in 

Appendices IV and V respectively.   Rhodamine phalloidin and DAPI were both obtained 

from Invitrogen Life Technologies Ltd.  Hydromount mounting medium was 

manufactured by National Diagnostics and purchased from Fisher Scientific UK Ltd. 

(Bishop Meadow Road, Loughborough, Leicestershire, LE11 5RG).  
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All other chemicals used were of standard or AnalaR reagent grade and purchased from 

Sigma-Aldrich Company or VWR International. 

 

2.1.5 Miscellaneous lab equipment 

The Cyan ADP flow cytometer used in this study was obtained from Dakocytomation 

(4850 Innovation Drive, Fort Collins, Colorado 80525, USA) and run with 

Dakocytomation Summit Software (Version 4.1). 

The centrifuges used were Beckman Coulter Optima MAX Ultracentrifuge 

(Beckman TLA-100 rotor), Sigma 4K15, Sigma 12169-H, Sigma 12256, Sigma 1-15K 

(Sigma Nr.12132-H rotor) and Sigma 204 (Sigma 11030 rotor) bench top centrifuges.  All 

centrifuges were manufactured by Beckman Coulter (U.K.) Ltd. (Oakley Court, 

Kingsmead Business Park, London Road, High Wycombe, Buckinghamshire, HP11 1JU) 

or Sigma-Aldrich Company. 

 

2.2 Methods 

Methods for all of the protocols used in this study are detailed in this section.  The recipes 

for stock solutions, buffers and media compositions are listed in Appendix VI. 

 

2.2.1 Molecular biology techniques 

All standard molecular biology techniques such as restriction digests, cloning, bacterial 

transformation and agarose gel electrophoresis were carried out as described in Sambrook 

et al  (Sambrook et al., 1989).   

The Rapid DNA ligation kit was used according to the standard protocol supplied by the 

manufacturer.  Plasmid purification by mini- or maxi-prep kits and genomic DNA 

extraction using the DNeasy tissue kit were all carried out according to the manufacturer’s 
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instructions.  In circumstances where the purification of linear DNA was required, the 

QIAquick PCR Purification kit and QIAGEN gel extraction kit were used according to the 

manufacturer’s instructions. 

DNA concentration was determined by measuring absorbance at 260 nm using a 

spectrophotometer and calculated as follows:  

DNA concentration (µg/ml) = (OD 260) x (dilution factor) x (50 µg DNA/ml) / (1 OD260 

unit).   

RNA extraction was achieved using the Stratagene Absolutely RNA Miniprep kit 

using the protocol supplied, and RNA was eluted in 2 x 25 µl elution buffer.  RNA 

concentration was quantified by absorbance at 260 nm and calculated as follows:  

RNA concentration (µg/ml) = (OD 260) x (dilution factor) x (40 µg RNA/ml)/(1 OD260 unit) 

 

2.2.2 Polymerase chain reaction 

Polymerase chain reaction (PCR) was typically carried out using 1-10 ng of template 

DNA, which was either double stranded DNA from a large-scale plasmid preparation in a 

100 µl reaction volume or 250 µg genomic DNA in a 50 µl reaction.  The reaction also 

contained 100 pmol of each of the forward and reverse primers, 200 µM dNTPs 

(comprising equimolar concentrations of each of the four bases), 1 unit of Pfu DNA 

polymerase and 10 µl of enzyme buffer (supplied by the manufacturer). 

The following PCR conditions were typically used when amplifying from plasmid 

DNA: 95°C for 3 minutes; 30 cycles of 95°C for 30 seconds (denaturation), 55-60°C for 

30 seconds (primer annealing) and 70°C for 90 seconds (elongation); and, finally, 72°C for 

5 minutes.  Amplification of genomic DNA was carried out under the following 

conditions: 94°C for 60 seconds; 30 cycles of 94°C for 15 seconds, 60-65°C for 30 

seconds, 72°C for 3 minutes; and, finally, 72°C for 5 minutes.  Annealing temperatures 
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varied depending upon the melting temperature of the primers used; typically a 

temperature 5°C below the lowest melting temperature of the two primers was chosen.  On 

completion of the reaction, PCR products were analysed by agarose gel electrophoresis 

(1% (w/v) agarose gel) containing 80 ng/ml ethidium bromide and photographed using a 

UV transilluminator. 

2.2.3 RT-PCR 

Reverse transcription polymerase chain reaction (RT-PCR) was carried out using the Titan 

One-Tube RT-PCR System (Roche), according to the manufacturer’s protocol.  Total RNA 

(0.5-1 µg) was used as a template in all reactions in a 50 µl reaction volume.  The 

following reaction conditions were typically used: 50°C for 30 minutes (reverse 

transcription); followed by 30 cycles of 94°C for 10 seconds (denaturation), 55-65°C for 

30 seconds (primer annealing) , 68°C for 45 seconds (elongation); and, finally, 72°C for 5 

minutes.  PCR products were analysed by agarose gel electrophoresis (1% (w/v) agarose 

gel) containing 80 ng/ml ethidium bromide and photographed using a UV transilluminator. 

2.2.4 Northern blotting 

The presence of mouse dystroglycan mRNA in dystroglycan null-derived fibroblasts was 

detected by northern blot analysis using the DIG Northern Starter kit (Roche) according to 

the manufacturer’s instructions.  A DIG (digoxigenin)-labelled, single stranded RNA probe 

was generated by in vitro transcription of template DNA complimentary to the terminal 

366 bp of mouse DAG1 in the presence of digoxigenin-UTP using T7 RNA polymerase.  

Isolated total RNA (~1.5 µg) from dystroglycan null-derived fibroblasts was separated by 

electrophoresis through an agarose/formaldehyde gel (see Section 2.2.1).  RNA was 

transferred onto a positively charged nylon membrane by standard northern blot procedure 

(Sambrook et al., 1989) and crosslinked onto the membrane using a Stratalinker UV  
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crosslinker at 120 mJ.  Mouse DAG1 mRNA was detected by hybridisation using the DIG-

labelled probe followed by immunological detection using anti-digoxigenin-AP antisera 

and visualisation with CDP-Star chemiluminescent reagent. All procedures were carried 

out under RNase-free conditions. 

 

2.2.5 Growth and maintenance of mammalian tissue culture cells 

All cells used in this study were grown at 37°C under 5% CO2.  Cos-7, Ref52, Swiss 3T3 

and immortalised DAG1-/- derived fibroblast cell lines were cultured in DMEM medium 

supplemented with 10% FBS (fetal bovine serum).  HeLa and CHO-K1 cell lines were 

cultured in RPMI supplemented with 10% FBS.  Cells were sub-cultured by rinsing once 

in PBS (phosphate buffered saline) and then incubated in 0.25% Trypsin-EDTA 

(ethylenediaminetetraacetic acid) at 37°C to detach the cells from the dish.  Cells were 

resuspended in DMEM/RPMI supplemented with 10% FBS (working medium) and seeded 

into tissue culture flasks (between 1:2 and 1:10 dilution depending on cell line) to maintain 

the cells. 

 

2.2.6 Maintenance and differentiation of embryonic stem cells 

DAG-/- embryonic stem (ES) cells (a generous gift from S. Carbonetto (Cote et al., 1999)) 

were maintained in on a feeder cell layer (STO fibroblasts) that had been pre-treated with 

10 µg/ml mitomycin C for 4 hours to inhibit proliferation.  Cells were differentiated into 

embryoid bodies using a method adapted from Drab et al (Drab et al., 1997).  Briefly, 

~1000 cells in 20 µl medium were placed on the lids of petri dishes filled with PBS and 

cultivated in hanging drops for 2 days.  Embryoid bodies were transferred into petri dishes 

containing the same medium and cultured for 4 days.  Embryoid bodies were then 

transferred to individual wells of a 0.1% (w/v) gelatine-coated 24-well plate in 
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differentiation medium containing 10-8 M retinoic acid and 0.5 mM dibutyryl-cAMP to 

induce differentiation and maintained in culture for 2 days.  Medium was changed to 

differentiation medium without retinoic acid and dibutyryl-cAMP, and cells were cultured 

for a further 2 days.  Spontaneously contracting smooth muscle cells began to appear after 

approximately 10 days, and these were maintained in culture until they had lost all smooth 

muscle characteristics and reverted to fibroblasts.   Clonal fibroblast populations were 

generated by limiting dilution.  This was achieved by diluting cells in suspension to such a 

degree that, when seeded into a 96-well plate, each well contained ~1 cell/well.  

Dystroglycan null-derived fibroblasts were continually passaged until they had by-passed 

the Hayflick limit (Hayflick and Moorhead, 1961), to produce an immortal fibroblast cell 

line.  

 

2.2.7 Generation of stable dystroglycan RNAi knockdown cells  

SiRNA target sequences that were highly specific for dystroglycan were identified using 

the ‘RNAi target sequence prediction’ tool on the BBSRC Chick EST database 

(http://www.chick.umist.ac.uk/) and cross-checked using BLAST to ensure that there was 

no significant sequence homology to any other gene.  The four sequences selected for 

cloning were: DAG1 185 GGTTGGCATTCCAGACGGTAC 205, DAG 1 1298 

AACGCCTTCAACTGATTCGTC 1318, DAG1 1319 AACTACCACAACTCGGAGGCC 

1340, DAG1 1569 AATGAGGATACCACTACCGAC 1589.  These sequences were 

modified into antisense short hairpin RNA oligonucleotides (shRNA) using the siRNA 

Hairpin Oligonucleotide Sequence Designer, in order to generate 73mer siRNA constructs  

containing the target sequence in forward and reverse orientation separated by a 

TTCAAGAGA hairpin loop with BamH 1 and EcoR 1 overhangs 

(http://bioinfo.clontech.com/rnaidesigner/oligoDesigner.do).  These oligonucleotides were 
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ligated into the RNAi-Ready pSIREN RetroQ (Clontech) retroviral vector (see map in 

Appendix I) as detailed in the Clontech “Knockout RNAi Systems User Manual”.  The 

21mer sequence selected for generating dystroglycan knockdown fibroblasts was mouse 

DAG1 1319 AACTACCACAACTCGGAGGCC 1340.  The ‘sense’ control siRNA was 

generated using the complimentary strand of the chosen antisense siRNA sequence to 

generate a siRNA hairpin that produced a sense-oriented strand that could not anneal to the 

target sequence in DAG1 mRNA.  Constructs were sequenced and shown to be correct 

before they were stably transfected into a PT67 packaging cell line.  Retrovirus containing 

the dystroglycan shRNA construct was produced according to instruction in the Clontech 

“Retroviral Gene Transfer and Expression User Manual”.  Swiss 3T3 fibroblasts were 

exposed to two rounds of retroviral infection, followed by puromycin selection to identify 

cells expressing the shRNA construct.  Clonal populations were generated by limiting 

dilution as previously described in Section 2.2.6.  
 

2.2.8 Cryogenic preservation and storage  

Confluent cells in a T175 flask were harvested by trypsinisation and centrifuged at 1000 x 

g for 5 minutes.  The cell pellet was resuspended in 4 ml freezing media and 1 ml of this 

cell suspension was transferred to a 2 ml cryovial.  Cryovials were frozen in a Nalgene 1°C 

cryofreezer jacketed with isopropanol at -80°C overnight before being transferred to liquid 

nitrogen for long-term storage. 

 

2.2.9 LipofectAMINE transfection 

Cells were seeded on sterile glass coverslips in 35mm tissue culture dishes to 

approximately 50-70% confluency the day prior to transfection. 2 µg of DNA (4µg for 

HeLa transfections) and 100 µl OptiMEM were mixed gently by pipetting in a sterile 
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Eppendorf tube. 6 µl LipofectAMINE (10 µl for HeLa transfections) and 100 µl Opti-

MEM were mixed in a second Eppendorf tube. The two solutions were combined and 

incubated at room temperature for 30 minutes, after which 600 µl Opti-MEM was added.  

Cells were rinsed once in Opti-MEM and incubated with the transfection solution for 5 

hours at 37°C, under 5% CO2.  The transfection solution was then aspirated off, and cells 

were incubated in fresh growth media overnight. 

 

2.2.10 Generation of stable transfected cell lines 

Cells were seeded into 35 mm tissue culture dishes and transfected using lipofectamine 

reagent or retroviral infection as previously described in Section 2.2.9.  At 48 hours post-

transfection, cells were re-plated into a T25 cell culture flask to which antibiotic selection 

medium, specific for the resistance gene present in transfected vector, was added.  

Antibiotic selection of transfected PT67 cells and infected Swiss 3T3 fibroblasts was 

carried out using 10 µg/ml puromycin.  Cells were cultured in antibiotic selection medium 

for ~21 days, during which the medium was changed every 1-2 days.   

 

2.2.11 Cell fixation  

Cells were washed once with PBS and then fixed by incubation with 3.7% (v/v) 

paraformaldehyde/PBS (500 µl in 35 mm tissue culture dish) for 10 minutes at room 

temperature.  Cells were then washed three times in PBS.  Alternatively, cell were washed 

once in PBS and then incubated in 100% methanol chilled to -20°C.  In the case of 

methanol fixation, cells were incubated at -20°C for 4 minutes and then washed three times 

in PBS. 
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2.2.12 Immunocytochemistry 

Cells were seeded on sterile round glass coverslips, either 13 mm or 22 mm in diameter, 

and all incubations were carried out at room temperature in a humidified container.  Fixed 

cells were permeabilised by incubating in permeabilising buffer (see Appendix VI) for five 

minutes and then blocked in blocking buffer (see Appendix VI) for one hour.  Primary 

antibodies were diluted in blocking buffer at the appropriate concentration (Appendix IV), 

and the cells were incubated in primary antibody solutions for one hour before being 

washed once in blocking buffer followed by 3 x 5 minute washes in PBS.  For indirect 

immunofluorescence, cells were incubated with secondary antibodies diluted according to 

manufacturer’s specifications (detailed in Appendix V) in blocking buffer for one hour.  

Filamentous actin (F-actin) was stained using Rhodamine phalloidin, which was added to 

the secondary antibody solution.  Cells were then washed for 3 x 5 minutes in PBS and 

then mounted onto glass slides using Hydramount mounting medium containing DAPI 

(4',6-Diamidino-2-phenylindole).  Images were obtained with a Leica DMIRE2 inverted 

fluorescent microscope, collected with Leica QFluoro software and processed using Adobe 

Photoshop v.6.0. 

 

2.2.13 Morphological analysis 

Cell morphology was assessed using immunofluorescence images of cells stained with 

cortactin (for area and circularity) or vinculin (focal adhesion quantification). 

 

2.2.13.1 Area and circularity quantification 

Quantification of the area and circularity of cells was carried out using Image J software 

(http://rsb.info.nh.gov/ij/).  Area was determined by setting the threshold level to generate 
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a silhouette image of each cell and calculating the number of square pixels in the selection 

and converting this into the calibrated units i.e. µm2.   

 

Circularity was calculated using the area and perimeter measurements of each cell 

according to the following equation: 

 

       

    

 

 

2.2.13.2 Focal adhesion quantification  

Immunofluorescence images of cells stained for the general focal adhesion marker, 

vinculin, were processed using Adobe Photoshop v.6.0.  Cell area was determined as 

previously described (see Section 2.2.13.1) and the number of focal adhesions per µm was 

calculated.  Focal adhesions were counted and categorised according to size by comparison 

with a calibrated paintbrush tool that was 2 µm in diameter.  Adhesions that were < 2 µm 

were categorised as focal contacts, those > 2 µm as focal adhesions and those that were > 2 

µm and elongated as fibrillar adhesions, which are usually centrally located and not 

peripheral. 

 

2.2.14 Cell proliferation assay 

The proliferation rate of cultured cells was determined by cell counting over a five day 

period.  Cells were seeded into 5 x T25 cell culture flasks on Day 0 at ~50% confluency, 

such that each flask contained the approximately the same number of cells.  On Day 1 – 

Day 5, cells were trypsinised and resuspended in an appropriate volume of media, 

Circularity = 4π  
A 

P2 

Where A is area (µm2) and P is perimeter (µm).  A circularity value of 1.0 indicates a 
perfect circle, whereas values approaching 0 indicate an increasingly elongated polygon. 
The area and circularities of 100 cells were determined per sample. 
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dependent upon the cell density.  Typically, cells were diluted 1:10-1:20 v/v prior to 

analysis.  Cells were counted using a haemocytometer as described in Spector et al 

(Spector et al., 1998) and number of cells/ml was calculated. 

 

2.2.15 BrdU (5-bromo-2-deoxyuridine) incorporation 

Cells were seeded onto glass coverslips, grown to semiconfluence and then treated with 20 

µM BrdU for 45 minutes at 37°C, 5% CO2.  Cells were washed in PBS (3 x 5 minutes) and 

fixed in absolute ethanol (pre-chilled to -20°C) for 10 minutes at -20°C.  Fixative was 

removed by aspiration, and the cells were left to air dry for a few minutes at room 

temperature.  Cells were rehydrated by immersion in PBS for 3 minutes before treatment 

with 2 N HCl for 15 minutes at room temperature to denature the DNA.  HCl was 

neutralised by addition of 0.1 M Borate buffer pH 8.5, which was changed twice over a 10 

minute period followed by 3 x 5 min washes in PBS.  BrdU incorporation was visualised 

by staining cells with anti-BrdU antisera, followed by indirect immunofluorescence.  

Mitotic index was determined by counting ~1000 cells per experiment (visualised by DAPI 

staining) and calculating the percentage of cells counterstained with FITC-BrdU.  Three 

independent experiments per cell line were carried out. 

 

2.2.16 Cell synchronisation methods 

2.2.16.1 Double thymidine block and transfection 

HeLa cells were cultured to semiconfluence in RPMI supplemented with 10% FBS.  Cells 

were trypsinised and 1/20 of the culture seeded on a new 10 cm culture dish.  After 1 day, 

cells were synchronised in S phase by culturing in RPMI, containing 10% FBS and 10 mM 

thymidine for 15 h.  Cells were then washed twice in serum-free media and incubated in 

fresh media containing 10% FBS for 9 h.  A second thymidine block was then added for 3 



  Chapter 2: Materials and methods 

 43 

h, replaced with serum-free Opti-MEM and transfected with 4 µg DNA using 

LipofectAMINE for 3 h as previously described. After transfection, the cells were cultured 

again in the thymidine-containing medium for another 9 h.  The cells were then washed 

twice with serum-free media and cultured in fresh media containing 10% FBS. After 6 h, 

nocodazole was added to a final concentration of 40 ng/ml, and the culture was continued 

for another 6 h.  Round mitotic cells were further purified by shake-off procedure and 

suspended in fresh media containing 10% FBS to release from the nocodazole arrest.  This 

protocol was adapted from Kimura et al (Kimura et al., 2000). 

 

2.2.16.2 Cell Synchronisation by double block with thymidine and mimosine 

 
Swiss 3T3 fibroblasts were plated on 10 cm dishes to a cell density of ~2 x 105 cells/ml 

(~50% confluence) in DMEM containing 10% FBS. The following day, the medium was 

replaced with DMEM containing 2 mM thymidine and incubated for 12 h.  The cells were 

then washed with PBS and grown in fresh media for 13 h to recover.  The cells were 

blocked for a second time by incubation with DMEM, 10% FBS, and 200 µM mimosine 

for 12 h. The cells were washed twice with PBS and released from the block by incubating 

with fresh medium. This was taken as time 0 for the time course.  Samples were taken at 0, 

2, 4, 6, 8, 12 and 24 h.  At each time point, cells from each dish were trypsinised and 

transferred to a 15 ml Falcon, centrifuged at 100 x g in Sigma 204 benchtop centrifuge 

(Sigma 11030 rotor) for 3 minutes and washed twice in PBS.  The cells were fixed by 

drop-wise addition of ice-cold 70% ethanol, while mixing on a vortex. A further 10 ml of 

ethanol was added at this stage. An asynchronous population of cells was also collected.  

The fixed cells were pelleted and washed once in 10 ml PBS and then resuspended in 300 

µl PBS.  To this, 20 µl propidium iodide (1 mg/ml stock) and 16 µl RNase I (from 10 

mg/ml stock) were added before incubating at 37°C for 30 minutes.  The cells were 
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transferred to a flow cytometry tube and analysed using a CyAn ADP cytometer.  Data 

analysis was performed using Summit software v.4.1 and the MODfit LT v.3.0 program 

which uses a Gaussian Curve to mathematically model phases G1 and G2/M.  The S-phase 

limits were taken from G1 and G2/M positions.  This protocol was adapted from Spector et 

al (Spector et al., 1998). 

 

2.2.17 Time-lapse microscopy 

Time-lapse live cell images were acquired by seeding cells onto glass coverslips and 

placing them in 35 mm tissue culture dishes prior to transfection.  Dishes were placed onto 

a pre-warmed stage heated to 37°C, which was mounted on a Leica DMIRE2 inverted 

fluorescent microscope.  Fluorescence images of live cells were collected at 1 minute 

intervals. Movie images were collected using Leica QFluoro Software and processed using 

Adobe Photoshop v.6.0. 

2.2.18 Wound healing assays 

Cells were seeded onto coverslips and grown to confluence.  A wound was made by 

scraping the cell monolayer with a sterile micropipette tip.  The width of the wound was 

~200-300 µm.  For determining MTOC (microtubule organising centre) position, cells 

were fixed 3 hours post-wounding and stained for α-tubulin.  DNA was stained with 

DAPI.  Wound edges were analysed using a fluorescent microscope and images were 

captured on a 63 x objective lens, which facilitated MTOC localisation.  The position of 

the MTOC was determined in 100 cells on each wound edge (200 cells per experiment). 
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2.2.19 Annexin V apoptosis assay 

Apoptotic cells were detected using the Vybrant Apoptosis Assay Kit #2 (Alexa Fluor 448 

annexin V/propidium iodide) according to the manufacturer’s instructions.  Semiconfluent 

cells were harvested with trypsin and washed in cold PBS before incubation with Alexa 

Fluor 448 annexin V and propidium iodide in annexin V binding buffer.  Positive controls 

were pre-treated with 1 µM staurosporine for 5 hours to induce apoptosis.  Negative 

control cells were treated with annexin V binding buffer alone.  Stained cells were 

analysed by flow cytometry at 520 nm (Alexa Fluor 448 annexin v) and 670 nm 

(propidium iodide) using a CyAn ADP cytometer, and results were plotted as annexin V 

448 vs. propidium iodide using Summit software v 4.1.  Apoptotic cells were identified as 

only emitting green fluorescence, dead (necrotic) cells were identified as emitting both red 

and green fluorescence, and live cells could be distinguished based upon their emission of  

very low levels of green fluorescence.  Gates were set to define the three cell populations 

were applied identically to every plot, allowing for direct comparison of the proportion of 

apoptotic cells in each sample. 

   

2.2.20 Actin fractionation 

Semi-confluent cells in 10 cm diameter cell culture dishes were washed once in PBS and 

lysed by addition of 200 µl actin fractionation buffer.  Pools of globular actin (G-actin) and 

filamentous actin (F-actin) were separated from lysed cells by ultracentrifugation at 

386,000 x g for 30 minutes using a TL100 rotor in a Beckman ultracentrifuge.  The 

supernatant was transferred to a new Eppendorf tube and the pellet was resuspended in 200 

µl modified sample buffer, sonicated briefly, and incubated on ice for 30 minutes to 

solubilise further.  Equivalent volumes of supernatant (G-actin) and pellet (F-actin) were 
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loaded on a gel and probed for α-actin by western blot and enhanced chemiluminescence 

(ECL) development.  Western blots were scanned at 300 dpi on a UMAX Powerlook 1000 

scanner using Adobe Photoshop 6 and the UMAX Magic Scan software interface.  The 

proportions of G- and F-actin were determined by measuring the intensity (integrated 

density) of the actin bands using the Image J software (http://rsb.info.nh.gov/ij/).  

 

2.2.21 Total cell lysates 

Adherent cells were rinsed in PBS prior to lysis in modified sample buffer.  Cells were 

harvested using a cell scraper, transferred to an Eppendorf tube and then sonicated on ice.  

Protein concentration was determined using the Micro BCA assay kit and adjusting 

solution was added to the samples prior to boiling and loading onto SDS-PAGE gels. 

 

2.2.22 Determination of protein concentration 

Protein concentrations were determined using the Micro BCA Protein Assay kit according 

to the manufacturer’s instructions.  Briefly, the sample or the lysis buffer only control was 

diluted in 500 µl distilled H2O (dilutions ranged between 1:20 and 1:500 (v/v) depending 

on the sample) and incubated at 60°C for one hour with 500 µl Micro BCA reaction 

solution.  Samples were allowed to cool to room temperature, after which the absorbance 

was measured at a wavelength of 562 nm, using the control reaction as a reference.  

Protein concentration was determined using a standard curve, which was produced using 

known concentrations (in the range 1-20 µg/ml) of BSA (bovine serum albumin) in the 

relevant sample buffer. 
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2.2.23 SDS-polyacrylamide gel electrophoresis 

Protein samples were prepared by addition of 2 x sample buffer and denatured by boiling 

for 5 minutes.  SDS-PAGE (sodium dodecyl (lauryl) sulfate-polyacrylamide gel 

electrophoresis) was carried out according to Laemmli (Laemmli, 1970) in the Mini-

Protean II system (Bio-Rad) with 1mm spacers.  Proteins were resolved using 10% or 12% 

polyacrylamide gels.  Electrophoresis was carried out at 120 V for ~1 hour.  Resolved 

protein bands were stained using Coomassie blue stain followed by incubation in destain 

solution until protein bands were clearly visible.  Otherwise, gels were used unstained for 

western analysis. 

 

2.2.24 Western analysis 

Protein transfer from polyacrylamide gel to PVDF (polyvinylidene fluoride) membrane 

was performed using a semi-dry blotter (Bio-Rad Trans-Blot SD Semi-Dry Transfer Cell) 

in transfer buffer at 150 mA, 25 V for 30-45 minutes depending on protein size.  The 

membrane was then blocked in 2.5% (w/v) Marvel dried skimmed milk powder in TBST 

(Tris-buffered saline/Tween 20) for 1 hour before incubation in primary antisera in 2.5% 

(w/v) Marvel/TBST for either 2 hours at room temperature or overnight at 4°C.  Primary 

antibody dilutions are detailed in Appendix IV.  Membranes were then washed for 3 x 10 

minutes in TBST and incubated in secondary antisera diluted in 2.5% Marvel/TBST 

(detailed in Appendix V) for 1 hour at room temperature.  After a second wash step, 

immunoreactive bands were detected either by ECL or alkaline phosphatase chromogenic 

detection. 
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2.2.25 Western blot detection 

2.2.25.1 ECL detection 

Western blots probed with HRP (horseradish peroxidase)-conjugated secondary antisera 

were developed by enhanced chemiluminescence (ECL).  Equal volumes of ECL solution I 

and II  (see Appendix VI) were mixed and the membrane was incubated in this reaction 

mixture for 1 minute.  The membrane was subsequently transferred to an autoradiography 

cassette and exposed to Kodak MXB X-ray film.  Film was developed in a Kodak X-

OMAT film processor. 

 

2.2.25.2 Alkaline phosphatase detection 

Western blots probed with AP-conjugated secondary antisera were developed by 

chromogenic detection.  132 µl NBT (nitro blue tetrazolium chloride) stock solution and 

66 µl BCIP (5-Bromo-4-chloro-3’-indolyphosphate p-Toluidine salt) stock solution were 

added to 10 ml alkaline phosphatase buffer, mixed and added to membrane.  Membrane 

was gently agitated until the colour developed and bands were visible.  The reaction was 

stopped by immersing the membrane in distilled H20.
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Chapter 3 
 
Isolation and analysis of dystroglycan null-derived fibroblasts 
 
3.1 Introduction 
 
 
The cell adhesion molecule dystroglycan is the central component of a multiprotein 

membrane complex that links the actin cytoskeleton to the extracellular matrix 

(Ibraghimov-Beskrovnaya et al., 1993).  In muscle and neuronal tissue, dystroglycan forms 

part of the dystrophin-glycoprotein complex and mutations in components of this complex 

leads to severe neuromuscular diseases (Durbeej and Campbell, 2002), however no 

diseases have been attributed to mutations in the dystroglycan gene, suggesting that it 

plays a vital role within the cell. Several studies have previously been undertaken to 

investigate the outcome of dystroglycan deletion in different tissues.  The dystroglycan 

knockout mouse was found to be embryonic lethal.  This was thought to be due to the 

embryos inability to form a basement membrane because an interaction between 

dystroglycan and laminin initiates the process (Williamson et al., 1997).  However, this 

fundamental role in embryogenesis has been disputed since deletion of dystroglycan in 

zebrafish had no effect on early development, but did induce a dystrophic muscle 

phenotype at later stages (Parsons et al., 2002).  Dystroglycan does appear to be essential 

for later stages of development in mammals too since chimaeric mice deficient in 

dystroglycan developed a muscular dystrophy phenotype and had disrupted neuromuscular 

synapses (Cote et al., 1999) and selective deletion in differentiated striated muscle resulted 

in a mild dystrophic phenotype, thought to be partially compensated by satellite cells 

expressing dystroglycan (Cohn et al., 2002).  Moreover, deletion of dystroglycan in 

peripheral nerve caused abnormal myelination and neurological defects (Saito et al., 2003) 

and brain selective deletion of dystroglycan in mice resulted in the development of 

congenital muscular dystrophy-like malformations (Moore et al., 2002).  These studies 
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have focussed primarily on the interaction between α-dystroglycan and extracellular 

matrix components, which occurs on the outer surface of the cell. Intracellularly, β-

dystroglycan plays intricate roles in cell signalling pathways in addition to its function as a 

tether to the actin cytoskeleton via dystrophin or utrophin (Spence et al., 2004a; Spence et 

al., 2004b) and the effects of dystroglycan deletion on these intracellular processes have 

not yet been fully investigated. 

The aim of the present research was to examine the effect of dystroglycan 

deficiency at the cellular level by characterising dystroglycan null fibroblasts.  These 

fibroblasts were derived from the same DG -/- ES cells that were used to generate the 

dystroglycan chimaeric mice (Cote et al., 1999).  Initial observations of the cells suggested 

that they had a late cytokinetic defect due to the appearance or multinucleate cells and 

persistent intercellular connections. However, the discovery that the cells were actually 

expressing dystroglycan and did not contain the gene disrupting cassettes halted their 

characterisation and they were deemed unsuitable for further research. 
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3.2 Results 
 
3.2.1 Generation of fibroblasts from dystroglycan null embryonic stem cells 
 
Dystroglycan null (DG -/-) mouse embryonic stem (ES) cells (Figure 3.1 A), produced by 

targeted gene disruption of the DAG1 gene (Cote et al., 1999), were used to generate DG -

/- fibroblasts.  The methods used to differentiate and isolate DG -/- fibroblasts were 

adapted from Drab et al (Drab et al., 1997) and are detailed in Section 2.2.6.  Briefly, ES 

cells were differentiated into embryoid bodies in hanging drop cultures, which were then 

grown on 0.1% gelatin-coated tissue culture dishes and allowed to spread (Figure 3.1 B).  

After ~10 days, spontaneously contracting smooth muscle cells began to appear and these 

were maintained in culture until they had lost all smooth muscle characteristics and 

reverted to fibroblast-like cells.  Four different DG -/- derived clonal cell lines were 

established from these cells by limiting dilution, and will be referred to as DG-/- A, B, C 

and D.  These clones were sub-cultured until they were calculated to have passed the 

Hayflick Limit (Hayflick and Moorhead, 1961) to produce immortal cell lines.   

 

 
Figure 3.1:  Phase contrast images of DG -/- embryonic stem cells cultured on a fibroblast 
feeder layer (A) and a differentiating embryoid body (B).  A: Scale bar = 40 µm.  B: Scale 
bar = 100 µm. 
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3.2.2 Characterisation of DG -/- cell clones 
 
As previously described, DG -/- derived clones were differentiated from pluripotent 

embryonic stem cells which are capable of differentiation into any cell type leading to the 

formation of epithelial, connective, muscle and nerve tissues.  Consequently, prior to 

further investigation into dystroglycan deficiency, isolated DG -/- clones were 

characterised to study their morphology and if possible ascertain their cell lineage.   

 

3.2.2.1 DG -/- cells displayed typical fibroblast morphology 

Firstly, cells were seeded onto uncoated glass coverslips and their overall morphology 

analysed under a light microscope.  All cells exhibited classic, elongated spindle shaped 

morphology, which is characteristic of fibroblasts (Figure 3.2).  Interestingly, DG -/- B, C 

and D had a mesenchymal character, whereas DG -/- A grew in clusters reminiscent of 

epithelial cells, despite having a fibroblastic morphology (Figure 3.2, left panel).   

 

 
Figure 3.2:  Cellular morphology of DG -/- clones.  Example phase contrast images of 
clones DG -/- A and DG -/- B.  All clones displayed typical elongated spindle-shaped 
fibroblastic morphology.  DG -/- B, C and D cells grew happily as single cells after 
migrating away from each other (right panel), whereas DG -/- A cells grew in epithelial-
like clusters (left panel).  Scale bar = 20 µm. 
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3.2.2.2 Determination of DG -/- cell lineage 
 

Subsequently, the lineage of the DG -/- clones was investigated by preparing total 

cell lysates and determining the presence or absence of different intermediate filaments by 

western analysis.  Fibroblasts are cells of mesenchymal origin and express the intermediate 

filament, vimentin.  Desmin, however, is expressed only in cells of myogenic origin such 

as smooth muscle cells.  The expression of keratin is a marker for epithelial cells.  The 

results show that all four DG -/- clones were vimentin positive but desmin and keratin 

negative (Figure 3.3).  Together, these results suggest that DG -/- cells were fibroblasts 

since they expressed the mesenchymal marker, vimentin, and had a typical fibroblastic 

morphology. 

 

 
 

 
 

 
 
Figure 3.3: Determination of cell lineage.  Cell lysates from all four DG -/- cell clones 
were subjected to western analysis with specific antisera for different intermediate 
filaments.  Lysates of C2C7 myoblasts, A431 and Ref52 functioned as positive controls for 
desmin, keratin and vimentin respectively.  All four DG -/- clones contained only 
vimentin, which confirmed that they were of mesenchymal origin and therefore likely to be 
fibroblasts. 
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3.2.2.3 DG -/- cells exhibited a multinucleate phenotype 

Analysis by fluorescence microscopy revealed that many cells were multinucleated or 

alternatively, maintained long thin connections between other cells, despite being some 

distance apart (Figure 3.4).  Thus, the microtubule organisation of DG -/- fibroblasts was 

investigated by immunostaining for α-tubulin.  The presence of these connections between 

two well-spread cells suggests that these cells may have a late cytokinetic defect, since 

daughter cells appear to be unable to completely sever their connection.  

 

Figure 3.4: Immunofluorescence staining of DG -/- fibroblasts. α-Tubulin (green) and 
DNA (blue).  Many of the cells were found to be multinucleate and maintained long thin 
extensions despite being some distance apart.  Scale bar = 20 µm. 
 
3.2.3 DG -/- derived cells expressed dystroglycan 
 
Cell lysates were prepared from DG -/- derived fibroblasts and control cell lines and 

subjected to western analysis using specific antisera against β-dystroglycan as verification 

that they were, indeed, dystroglycan null.  Unexpectedly, however, the cells were found to 
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express β-dystroglycan and this was shown using three different anti-β-dystroglycan 

antisera (Figure 3.5).  All of the anti-β-dystroglycan antisera used in this study have been 

thoroughly characterised in other studies and have been shown to recognise the C-terminus 

of β-dystroglycan with high specificity (Cullen et al., 1994; Hnia et al., 2007; Ilsley et al., 

2001; James et al., 2000; Pereboev et al., 2001).  In addition to the 43 kDa band 

corresponding to β-dystroglycan, two other bands could sometimes be detected (Figure 3.5 

A and B).  The ~30 kDa band is a proteolytic product of β-dystroglycan previously 

reported in other cell lines (Durbeej and Campbell, 1999; Durbeej et al., 1998; Losasso et 

al., 2000; Saito et al., 1999; Sgambato et al., 2006; Sgambato et al., 2003; Yamada et al., 

1996; Yamada et al., 2001). The third band is an intermediate, which has been previously 

reported and may also result from proteolytic events (Losasso et al., 2000) (Driss et al., 

2006).  Thus, β-dystroglycan was found to be present in all four DG-/- fibroblast cell lines. 

 

Figure 3.5: DG -/- cells expressed dystroglycan.  Cell lysates from DG -/- fibroblasts were 

subjected to western analysis using specific antisera directed against β-dystroglycan.  A: 

Cell lysates probed with anti-β-dystroglycan 43DAG/8D5 monoclonal antisera.  B: Cell 

lysates probed with anti-β-dystroglycan MANDAG2 monoclonal antisera.  C: Cell lysates 

probed with anti-β-dystroglycan 1709 and 1710 polyclonal antisera (50:50 each) Lysates 
from COS-7 and Ref52 cells served as positive controls. 
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3.2.4 Proposed re-initiation of dystroglycan expression 
 
Further to the previous finding that DG -/- fibroblasts were in fact expressing dystroglycan, 

possible reasons as to how this could be possible were explored. The DAG1 gene was 

disrupted by the incorporation of neomycin and hygromycin resistance gene cassettes prior 

to exon 2 (Cote et al., 1999).  Close analysis of the DAG1 sequence using the Database of 

Transcriptional Start Sites (http://dbtss.hgc.jp/) revealed that there is a potential intraexonic 

transcriptional start site located in exon 2 in the region after the gene targeting cassette 

(Figure 3.6).  Furthermore, a Kozak sequence and start codon were located shortly 

downstream from this site.  This led to the hypothesis that, perhaps, a truncated form of the 

dystroglycan pro-protein was being expressed in DG -/- cells due to the re-initiation of 

transcription after the site of gene disruption.  Since the anti-β-dystroglycan antisera used 

for western analysis all target the extreme C-terminus of the β-dystroglycan cytoplasmic 

tail, perhaps expression of a truncated dystroglycan product would still allow a complete 

β-dystroglycan to be expressed and therefore it would be detected by β-dystroglycan 

western analysis.  

 



 Chapter 3: Isolation and analysis of dystroglycan null-
derived fibroblasts 

 58 

 

Figure 3.6: Potential re-initiation of dystroglycan expression. A: Schematic representation 
of the dystroglycan pro-protein. B: Exon structure of DAG1 gene.  C: Schematic diagrams 
of disrupted DAG1 alleles containing either a hygromycin or neomycin gene cassette 
showing potential intra-exonic re-initiation site in region after cassette (blue text) followed 
by a Kozak sequence and start codon (red text).  D: Proposed truncated dystroglycan 
product. 
 
3.2.4.1 RT-PCR analysis 
 
To investigate this re-initiation of transcription theory, total RNA was isolated from all 

four DG -/- fibroblasts and the presence of dystroglycan mRNA was determined by RT-

PCR.  Specifically designed primers were used to amplify DAG1 mRNA sequences before 

and after the proposed transcriptional re-initiation site (primer sequences are detailed in 

Appendix VII).  The location of each primer pair relative to the hygromycin/neomycin 

resistance cassette and proposed transcriptional re-initiation site on the DAG1 gene are 

illustrated in Figure 3.7 A.  Primer pair (a) amplifies a region occurring prior to the 

proposed re-initiation site, therefore if the gene has been disrupted in these cells we would 

not expect to see a product.  Primer pair (b) amplifies a region occurring after the proposed 

re-initiation site but still within the α-dystroglycan coding region.  Therefore, if a product 
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is amplified it may mean that a truncated form of the dystroglycan pro-protein is being 

expressed.  Primer pair (c) amplifies the first half of the β-dystroglycan gene and a product 

using these primers would tell us whether β-dystroglycan is expressed in DG -/- 

fibroblasts.  Finally, primer pair (d) recognise the first part of the α-dystroglycan gene, and 

a product would not be expected if the gene is disrupted as the reverse primer anneals to a 

sequence that is deleted by the incorporation of the hygromycin/neomycin cassette.  The 

mouse myoblast cell line, C2 C4, was used as a positive control and amplification of the 

ubiquitously expressed glyceraldehyde phosphate dehydrogenase (GAPDH) gene was used 

as an internal positive control in all samples.  As shown in Figure 3.7 B, DG -/- cells were 

found to express all of the mRNA sequences recognised by these primers.  These results 

disagree with the re-initiation hypothesis since primers recognising sequences prior to the 

proposed re-initiation site still amplified a product. Furthermore, these findings suggest 

that DG -/- fibroblasts did not contain the hygromycin/neomycin resistance cassettes since 

primers that recognised sequences that are disrupted by these cassettes were still capable of 

amplifying a product.  Since the primers used in this experiment collectively encompass 

the majority of the DAG1 gene, we can conclude that these cells in fact express full length 

dystroglycan and are therefore are invalid as a model for investigating dystroglycan 

deficiency. 
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Figure 3.7:  RT-PCR analysis of DG -/- cells.  A:  Schematic diagram illustrating location 
of each primer pair on the DAG1 gene.  PRS = Proposed re-initiation site. B: Agarose gel 
of RT-PCR products from each of the primer pairs.  DG -/- Cells G = GAPDH positive 
internal control. 
 
3.2.4.2 DG -/- cells express full-length DAG1 mRNA 
 
To confirm the presence of DAG1 mRNA in DG -/- cells, total RNA was analysed by 

northern blotting using a specifically designed RNA probe targeted to the cytoplasmic tail 

of β-dystroglycan.  The RNA probe was DIG (digoxigenin)-labelled and following 

hybridisation to total mRNA were immunodetected with anti-digoxigenin-AP antisera 

followed by chemiluminescent development.  The results, shown in Figure 3.8, confirm the 

presence of DAG1 mRNA in DG -/- derived cells.  In the absence of DNA markers, the 

size of the DAG1 band was determined relative to the 18s and 28s ribosomal subunits 

which are 1.9 kb and 4.8 kb respectively.  DAG1 mRNA is 5.8 kb (Ibraghimov-
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Beskrovnaya et al., 1992) and a band corresponding to this full length DAG1 transcript 

was observed (Figure 3.8) confirming the expression of dystroglycan in DG -/- derived 

fibroblasts.   

 
Figure 3.8: Northern blot of DAG1 mRNA.  Total RNA was isolated from DG -/- 
fibroblasts A, C, D and subjected to northern blotting using a DIG-labelled probe that 

targeted the cytoplasmic tail of β-dystroglycan.  C2 C4 mouse myoblasts were used as a 
positive control for dystroglycan expression. 
 

3.2.5 3C12 epithelial-like DG -/- derived cells expressed dystroglycan 

The fibroblasts generated using DG -/- embryonic stem cells were found to express 

dystroglycan and were therefore unsuitable for further study into dystroglycan deficiency.  

Consequently, an epithelial-like cell line derived from the same DG -/- ES cells was 

obtained in order to continue the investigation into dystroglycan deficiency.  This cell line 

will be referred to as 3C12.  In addition to this, a positive control cell line (R1) was also 

obtained, which had a wild type genotype (Zhan et al., 2005).  Unfortunately, the R1 cells 

did not survive the thawing process and could not be cultured.  3C12 cells also had a low 

rate of survival following thawing, however after a period of recovery, some the expansion 

of some cell colonies allowed for their analysis.  Cell lysates were prepared from 3C12 

cells and subjected to western analysis for β-dystroglycan to confirm that they were 
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dystroglycan null.  As shown in Figure 3.9, however, 3C12 cells were found to contain β-

dystroglycan and therefore could not be used for further study. 

 
Figure 3.9: Detection of β-dystroglycan in 3C12 cells.  Cell lysates from 3C12 were 

probed for the presence of β-dystroglycan using polyclonal (1709/1710) and monoclonal 
antisera (43DAG/8D5).  Cell lysates form Swiss 3T3 cells were also analysed as a positive 

control.  3C12 cells were found to express β-dystroglycan, shown using two different anti-

β-dystroglycan antisera. 
 
 
3.2.6 DG -/- fibroblasts and 3C12 cells did not contain gene disrupting cassette sequences 
 
To further confirm that the cells obtained in this study had a wild-type genotype and did 

not contain the hygromycin and neomycin resistance cassette sequences used to disrupt the 

DAG1 gene, specific primers were used to detect the presence of these sequences by 

genomic PCR.  Total genomic DNA was isolated from DG -/- fibroblasts and 3C12 cells to 

determine the presence of the targeted gene cassettes using specifically designed primer 

pairs, illustrated in Figure 3.10 A (primer sequences are detailed in Appendix VIII).  

Primers DG001/DG006 and primers DG001/DG002 determine the presence of the 

hygromycin and neomycin resistance cassettes respectively, since their reverse primers are 

located in the cassette sequences.  DG003/DG004 primers act as a diagnostic tool to 

decipher between wild-type and DG -/- cells since the primers are targeted on either side of 

the neomycin resistance cassette.  These primers amplify a 350 bp fragment in wild-type 

cells and a 1500 bp fragment in dystroglycan null cells since they contain the neomycin 

resistance gene.  The DG003 primer site is deleted in the hygromycin allele and therefore 
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does not give information about that allele, however, will identify cells contain the 

neomycin resistance cassette.  The results of this PCR, shown in Figure 3.10 B, show that 

all DG -/- cell clones and 3C12 cells do not contain the hygromycin or neomycin 

resistance cassettes.  This is concluded because primers DG001/DG002 and 

DG001/DG006 did not amplify a PCR product, indicating that these cells do not contain 

the sequences that the reverse primers anneal to, which are within the resistance genes.  

Further verification is provided by the fact that primers DG003/DG004 amplified a 350 bp 

fragment in all of the samples, which in indicative that the neomycin gene cassette is not 

present because these primers anneal to sequences located on either side of the neomycin 

resistance cassette and a product of this size is expected in wild-type cells.  The results 

obtained from this analysis confirm that DG -/- derived cell clones A, B, C and D and the 

previously published DG null 3C12 cells all contain dystroglycan and are unsuitable for 

further study into dystroglycan deficiency. 
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Figure 3.10:  Genomic PCR of DG -/- and 3C12 cells.  A: Schematic diagram illustrating 
the targets of the primer pairs used to determine the presence of disrupting gene cassettes.  
B: Genomic PCR products of diagnostic primers showing that DG -/- cells and 3C12 cells 
did not contain the hygromycin or neomycin resistance cassettes. 
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3.3 Discussion 
 
In the present study, four fibroblast clones were produced by differentiation of DG -/- ES 

cells in order to investigate the effect of dystroglycan deficiency at the cellular level 

(Section 3.2.1).  The cells used in this study were generated using DG -/- mouse embryonic 

stem cells that were produced by targeted gene disruption of both DAG1 alleles, which 

were previously used to generate the chimaeric mouse (Cote et al., 1999).     Confirmation 

that the isolated cells were, indeed, fibroblasts, was undertaken by firstly examining the 

overall cell shape, which were found to have a classic elongated and spindle-shaped 

fibroblastic morphology (Section 3.2.2.1) and secondly, the specific immunoblotting of 

DG -/- cell lysates for vimentin, an intermediate filament present in cells of mesenchymal 

origin (Section 3.2.2.2). 

 Initial observations carried out by immunofluorescence microscopy of DG -/- 

derived fibroblasts stained for α-tubulin and DNA revealed that many cells were 

multinucleated and/or retained thin intercellular connections despite being well spread and 

some distance apart (see Section 3.2.2.3).  This is indicative of a late cytokinetic defect as 

it suggests that the cells have failed to separate completely.   

 Considering that the main objective was to develop and study DG -/- fibroblasts, 

cell lysates were prepared and subjected to western analysis for β-dystroglycan to ensure 

that they were definitely null.  Astonishingly, the cells were found to express β-

dystroglycan at similar levels to wild-type cell lines and this was shown using three 

different anti-β-dystroglycan antisera (Section 3.2.3).  All of the anti-β-dystroglycan 

antisera used in this study have previously been thoroughly characterised and have been 

shown to be highly specific for the C-terminus of β-dystroglycan (Cullen et al., 1994; Hnia 

et al., 2007; Ilsley et al., 2001; James et al., 2000; Pereboev et al., 2001).  The possibility 

that these cell lines had been contaminated at some point with different cells is highly 
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unlikely for several reasons.  Firstly, utmost care was taken during the differentiation, 

isolation and culture of these cells to reduce the risk of cross-contamination, each 

individual clone having its own separate stock of growth medium.  Besides this, the cells 

did not resemble any other cell line used within the laboratory.  Furthermore, considering 

that each clone was isolated very early on and maintained separately, the risk of cross-

contamination of all four clones is highly improbable.  Clearly, these cells were deemed 

unsuitable for further research into dystroglycan deficiency; however, several more 

investigative steps were undertaken in an attempt to understand why these cells were 

expressing dystroglycan. 

 The DG null ES cells used in this study were developed by the incorporation of 

antibiotic resistance gene cassettes into the coding sequence of DAG1 by homologous 

recombination.  Both DAG1 alleles were targeted with different cassettes encoding either 

hygromycin or neomycin resistance (Cote et al., 1999).  Close examination of the coding 

sequences following the gene cassette revealed the existence of a possible intra exonic 

transcriptional re-initiation site (Section 3.2.4), suggesting perhaps that expression of 

dystroglycan could recommence following disruption by the gene cassette.  The predicted 

re-initiation site lies within exon 2 of DAG1 and the expected protein product would be a 

truncated α-dystroglycan and full-length β-dystroglycan.  Since western analysis was 

carried out using only anti-β-dystroglycan antisera, the resultant band of the correct size 

for full-length β-dystroglycan is consistent with this theory.  All western analyses carried 

out using anti-α-dystroglycan antisera were unsuccessful in both DG -/- -derived cell lines 

and control cell lines, therefore no evidence can be presented to show the existence of a 

truncated α-dystroglycan protein product.  A possible reason for this may be that α-

dystroglycan was constitutively shed from the membrane due to proteolytic activity of 

MMPs, which have previously been reported to act upon dystroglycan (Herzog et al., 
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2004; Yamada et al., 2001).  However, since α- and β-dystroglycan are expressed as a 

single polypeptide and post-translationally cleaved, the existence of β-dystroglycan leads 

to the assumption that α-dystroglycan was also expressed, albeit possibly in a truncated 

form.  

 The re-initiation hypothesis was, however, disproved by amplification of specific 

DAG1 mRNA sequences by RT-PCR (see Section 3.2.4.1).  Primers designed to recognise 

β-dystroglycan and a region encompassing the latter portion of α-dystroglycan and the 

early portion of β-dystroglycan amplified RT-PCR products from total RNA isolated from 

DG -/- derived fibroblasts (Figure 3.7 (b) and (c)). The results also showed that regions 

existing prior to the putative re-initiation site were amplified by primers recognising these 

regions, suggesting that a complete DAG1 mRNA transcript was, in fact, being expressed 

in DG -/- cells (Figure 3.7 (a) and (d).  This data strongly suggests that the DG -/- clonal 

fibroblasts had somehow lost the hygromycin and neomycin gene cassettes that were 

incorporated into the ES cells from which they were derived. 

 To confirm the expression of the complete DAG1 mRNA transcript in DG -/- cells, 

total RNA was isolated and subjected to northern blot analysis for the detection of 

dystroglycan mRNA (Section 3.2.4.2).  The DAG1 gene encodes a 5.8kb mRNA transcript 

(Ibraghimov-Beskrovnaya et al., 1992) and a band of this size was identified (Figure 3.8), 

thus further substantiating the evidence to suggest that the DAG1 gene was not disrupted 

in DG -/- cells. 

 Consequently, new epithelial-like cells (3C12) derived from DG -/- ES cells (a gift 

from S. Carbonetto (Zhan et al., 2005)) were cultured as an alternative to the DG -/- 

fibroblasts.  There was, however, a low survival rate following thawing of 3C12 cells and 

when eventually the cells did recover, allowing for their analysis, they too were found to 
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express β-dystroglycan (Section 3.2.5) and were therefore unsuitable for further 

investigation. 

 Conclusive evidence to show that the DG null ES-derived cell lines did not contain 

the hygromycin and neomycin gene targeting cassette was achieved by genomic PCR 

(Section 3.2.6).  Primers designed to recognise sequences within the gene targeting 

cassettes did not amplify a product.  Moreover, the amplification of a specific DNA 

sequence using primers that exist on either side of the neomycin cassette produced a 350 

bp product, which confirms their wild-type genotype since a product of 1500 bp would be 

expected if the neomycin cassette was present.  Although every effort was made in this 

study to minimise cross-contamination, it is possible that the targeted embryonic stem cell 

clones that were originally sent may have contained contaminating wt embryonic stem 

cells and these may have been favourably selected by limiting dilution. Other than 

contamination from another cell line, another explanation is the possibility that the 

incorporation of the gene targeting cassettes was unstable and they were subsequently lost 

by further homologous recombination events.  It is now clear that by verifying the 

resistance of the DAG -/- derived cells to hygromycin and neomycin early on in their 

analysis would have given a clear indication as to whether the cells were indeed correctly 

targeted. 

 In conclusion, the four clonal fibroblast cell lines derived from DG -/- ES cells 

were all found to express dystroglycan and did not carry the targeted gene cassettes that 

were originally incorporated into both alleles of the DAG1 gene of the ES cells.  Possible 

reasons for this unexpected expression have been explored but the mystery as to how these 

cells came to express dystroglycan remains to be solved.  Consequently, another approach 

was undertaken to generate dystroglycan deficient fibroblasts and this will be addressed in 

Chapter 4. 
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Chapter 4 

Investigation of dystroglycan deficiency in fibroblasts 

4.1 Introduction  

The aim of this research was to gain further understanding of the role dystroglycan 

plays in the cell using a loss of function approach.  The rationale behind loss of function 

studies is to learn more about a chosen protein by characterising the phenotype resulting 

from complete loss or knockdown of its expression.  One method of doing this is to 

generate a knockout animal, such as a null mouse.  However, as described in Chapter 3, the 

dystroglycan null-derived mouse fibroblasts used in this study were found to express 

dystroglycan, and therefore could not be used as a model for dystroglycan deficiency.  

Consequently, stable dystroglycan knockdown fibroblasts were generated by RNA 

interference (RNAi) to investigate the phenotype caused by sustained dystroglycan 

deficiency.   

RNAi exploits a cells inherent post-transcriptional gene silencing mechanism in 

response to double-stranded RNA in order to knockdown the expression of a target gene 

(Fire et al., 1998).  The dsRNA is cleaved into 21-23 nucleotide small interfering RNA 

molecules (siRNA) which bind to a nuclease complex to form an RNA-induced silencing 

complex (RISC) that binds and cleaves target mRNA transcripts (Hutvagner and Zamore, 

2002; Nykanen et al., 2001).  RNAi is an effective method for gene silencing since it is 

highly specific, inexpensive and relatively straightforward to accomplish.  In the present 

study, a DNA construct expressing hairpin siRNA molecules (shRNA) specific for mouse 

DAG1 was introduced to Swiss 3T3 mouse fibroblasts.  This construct uses the cell’s own 

RNA polymerase III to transcribe antisense siRNA targeted to the DAG1 gene using the 

human U6 promoter, which induces a high level of expression (Kunkel and Pederson, 

1989).  The construct was integrated into the cells genome by retroviral infection to 
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maximise the expression efficiency and promote permanent and stable shRNA gene 

expression.  A stable knockdown cell line system was preferentially used in this study 

because transient transfection is only short-lived and to achieve full characterisation of the 

phenotype long-term stable knockdown of dystroglycan gene expression was required. 

Previous studies investigating dystroglycan knockdown have focussed on its 

function in development and disease in animal model systems.  The aim of this study was 

to investigate the effect of dystroglycan deficiency in fibroblasts in order to gain insight 

into the fundamental functions of dystroglycan at the cellular level.   
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4.2 Results 

4.2.1 Establishment of stable dystroglycan knockdown fibroblasts  

4.2.1.1 shRNA knockdown 

In this study, stable dystroglycan knockdown Swiss 3T3 fibroblasts were generated by 

RNAi.  Several potential sequences were chosen for their specificity to mouse DAG1 and 

suitability for RNAi using the ‘RNAi target sequence prediction’ tool on the BBSRC 

Chick EST database (http://www.chick.umist.ac.uk/).  Four sequences were selected and 

used to generate constructs encoding antisense siRNA hairpin oligonucleotides (shRNA), 

which act as RNA interference molecules that suppressed the expression of dystroglycan.  

Sequences were chosen for their suitability for RNAi based on several criteria including 

GC content, Tm of sense/antisense duplex and the differential stability of the sequence 

ends and ranked depending on their similarities to the optimal values (details at 

http://bioinfo.clontech.com/rnaidesigner/).  Each of the four dystroglycan shRNA pSIREN 

constructs were stably transfected into the packaging cell line, PT67, which produces a 

non-replicative retrovirus carrying the shRNA vector.  A preliminary analysis of the 

transfected PT67 cell lines was carried out as an indication of the dystroglycan knockdown 

efficiency of each of the shRNA sequences since the shRNA sequences are designed to 

target the mouse DAG1 gene and PT67 cells are derived from a mouse fibroblast (NIH 

3T3) cell line.  Cell lysates from transfected PT67 cells were prepared and analysed for 

dystroglycan expression by western analysis. As shown in Figure 4.1, all of the shRNA 

sequences induced a reduction in β-dystroglycan expression in PT67 cells compared to 

cells transfected with a control construct.  Ultimitely, shRNA 1319 (mouse DAG1 1319 

AACTACCACAACTCGGAGGCC 1340) was selected to generate knockdown cells 

because overall it was the highest scoring sequence according to the criteria set for 

effective RNAi.  Swiss 3T3 cells were exposed to two rounds of retroviral infection and a 
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clonal stable cell line was established by antibiotic selection followed by limiting dilution.  

A stable knockdown cell line system was preferentially used because transient transfection 

is only short-lived and to achieve full characterisation of the phenotype long-term stable 

knockdown of gene expression was required.  Ideally, dystroglycan knockdown cells 

derived using several shRNA targeting different DAG1 sequences would have been 

generated, which would address any non-specific effects of one particular sequence.  In 

addition to this, it would be beneficial to examine several different clones generated from 

each shRNA to check for off target effects of the shRNA and/or effects of the retroviral 

insertion site.  In this study, the dystroglycan knockdown Swiss 3T3 fibroblast cell line 

will be referred to as DG - cells. 

 

Figure 4.1:  Four different shRNA sequences specific for dystroglycan induced a 
reduction in dystroglycan expression when stably transfected into PT67 packaging cells.  

A: β-Dystroglycan protein expression levels in cell lysates prepared from shRNA 
transfected PT67 packaging cell lines were compared by western blotting relative to an 

actin loading control.  B: β-Dystroglycan expression levels were quantified by measuring 

integrated density of the resultant bands using NIH Image and are expressed as β-
dystroglycan/actin. 
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4.2.1.2 shRNA control  
 
For the purpose of this study, a negative control cell line was generated alongside the DG - 

cells in order to control for any side-effects caused by either the shRNA vector or retroviral 

infection.  In order to generate such a negative control, Swiss 3T3 cells were infected with 

an RNAi vector expressing an oligonucleotide with no homology to mouse DAG1.  

Initially, the sense strand of the luciferase gene was used, however, after creating a stable 

cell line, there was an increase in the abundance of senescent cells which may have been a 

result of non-specific effects of this sequence (Figure 4.2), for this reason these cells were 

discarded.  Consequently, an alternative negative control was generated using the sense 

strand complimentary to the chosen antisense DAG1 shRNA sequence 

(GTTGATGGTGTTGAGCCTCCG), which had no homology to any other sequences in 

the mouse genome.  The resultant Swiss 3T3 cell line was indistinguishable from wild-type 

Swiss 3T3 fibroblasts and will henceforth be referred to as DG + cells. 

 

Figure 4.2:  Phase contrast image of negative control generated by retroviral infection of a 
construct containing the sense strand of the luciferase gene.  Following cloning out by 
limiting dilution, many cells appeared large and senescent (arrows). 
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4.2.2 Quantification of dystroglycan knockdown 

In order to determine the efficiency of dystroglycan knockdown, the dystroglycan protein 

expression level was determined in DG + and DG - cells.  Semi-confluent cells were lysed 

directly in their cell culture vessels and analysed by immunoblotting using monoclonal β-

dystroglycan antisera.  In order to quantify dystroglycan expression, the intensity of the 

dystroglycan bands was measured using NIH Image and normalised against an α-tubulin 

loading control.  A clone with ~60% decrease in dystroglycan expression was chosen for 

further characterisation (see Figure 4.3).  The highest level of dystroglycan knockdown 

achieved was ~80% in non-clonal transfected cells, however, this could not be maintained 

in a permanent stable cell line, possibly because a limiting threshold level of dystroglycan 

is required for cell survival.   

Figure 4.3: Quantification of dystroglycan expression following shRNA knockdown.  A: 

β-Dystroglycan protein expression levels in DG + and DG - cells were compared by 

western blotting relative to an α-tubulin loading control.  B: Expression levels were 

quantified by measuring integrated density of the resultant bands using NIH Image.  β-

dystroglycan expression levels are expressed as β-dystroglycan/α-tubulin.  The values 

attributed to dystroglycan expression level are represented in arbitrary units (± SE, n = 3, 
* p < 0.05). 

 

* 
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4.2.3 DG - fibroblasts have a reduced cell area and are less rounded than control 
 
Following the generation of stable dystroglycan knockdown fibroblasts, cell morphology 

was characterised and compared with that of the control.  Dystroglycan has multiple 

binding partners and is involved in numerous cell signalling pathways (see Chapter 1), 

therefore we would expect to see morphological changes in DG - cells that reflect the 

importance of this protein within the cell.   

Initially, overall morphology was investigated by immunofluorescence microscopy.  

Semi-confluent cells were stained with rhodamine phalloidin to visualise F-actin and 

probed with specific monoclonal antisera to visualize cortactin by indirect 

immunofluorescence (Figure 4.4 A).  Cortactin is an F-actin binding protein that is 

abundant in the cell cortex (Wu and Parsons, 1993) and was used in this experiment to 

discern the periphery of the cell in order to analyse cell size and shape.  After visualisation 

of the actin cytoskeleton, total cell area and circularity were determined using Image J 

software.  As is evident from Figure 4.4, DG - cells have a significantly decreased cell area 

compared to that of DG + cells (Figure 4.4 B).  Since dystroglycan is an adhesion 

molecule, this may reflect the cell’s inability to spread completely as a result of decreased 

dystroglycan expression.   

 During culture, it was observed that DG + cells appeared more rounded than DG - 

cells.  In order to determine if this was a real difference in cell morphology attributable to 

dystroglycan deficiency, the overall circularity of both cell types was calculated, as 

described in Section 2.2.9, whereby a value of 1.0 designates a perfect circle.  According 

to Figure 4.4 there was a highly significant difference in cell morphology between the two 

samples; DG - cells exhibited a much more elongated and jagged morphology whereas 

control cells were relatively uniformly spread (Figure 4.4 C).  Following on from the 

previous observation that overall cell area is decreased, the less rounded morphology 
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exhibited by DG - cells is possibly also the result of reduced cell spreading, perhaps owing 

to a reduction in the number of cell-substrate adhesions.  

 

 

 

 
Figure 4.4: Effect of dystroglycan depletion on size and shape of Swiss 3T3 fibroblasts.  
Cells were stained for cortactin, imaged by immunofluorescence and their area and 
circularity measured using Image J software.  A:  DG + and DG - cells stained for cortactin 
(green) and DNA (blue).  Scale bar = 20 µm.  B:  The mean area (µm2) of DG + and DG - 
fibroblasts is shown. C: The overall circularity of DG + and DG - fibroblasts was 
calculated using Image J software as described in Section 2.2.9. The area and circularity of 

100 cells were measured per sample and graphs represent a mean of these results (±SE,   
*** p < 0.001). 
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4.2.4 Focal adhesions are reduced in DG - cells  

The results obtained from measuring the area and circularity of DG - cells indicated that 

they are more spindle shaped than DG + cells.  Since dystroglycan is a cell adhesion 

molecule, a possible explanation of this may be that DG - cells have a reduced number of 

cell-substrate adhesions, otherwise known as focal adhesions.  In order to address this 

possibility, DG + and DG - cells were seeded onto glass coverslips, fixed and stained for 

the universal adhesion marker, vinculin (Geiger et al., 1980).  Immunofluorescence images 

of both samples were captured (Figure 4.5 A) and used to compare the quantity and size of 

focal adhesions in each cell line (Figure 4.5 B-C).  In this study, the term “focal adhesion” 

will refer to all types of cell-substrate adhesions. 

As mentioned previously (see Section 4.2.3), DG - cells were found to be markedly 

smaller than the control.  Hence, the observable difference in the quantity of focal 

adhesions per cell may be misleading since smaller cells are likely to have less adhesions 

overall.  To take this into consideration and to determine whether there was an actual 

reduction in focal adhesions irrespective of cell size, the number of adhesions per cell area 

was calculated.  The results, shown in Figure 4.5 (B), indicate that DG - fibroblasts have 

significantly fewer focal adhesions per µm2 than DG + cells, which supports the 

hypothesis that their smaller size may be due to an inability to spread due to less contacts 

with the substrate or due to fewer stress fibres as a result of downregulation of Rho. 

From visual inspection of vinculin staining by immunofluorescence, it is not only 

apparent that DG - cells have a decreased number of focal adhesions, but the adhesions 

themselves also appear smaller than those found in DG + cells (Figure 4.5 A).  In order to 

quantify this observation, focal adhesions visualised by vinculin staining were counted and 

broadly categorised according to their size (< 2 µm, > 2 µm and >2 µm elongated).  

According to Figure 4.5 C, DG - cells and DG + cells contained similar proportions of 
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small adhesions (< 2 µm) and adhesions that were > 2 µm.  However, DG - cells did have 

a significantly lesser proportion of large elongated adhesions (> 2 µm elongated); which 

suggests that dystroglycan may also be involved in the establishment of larger, more 

mature adhesions. 

 

Figure 4.5:  Effect of dystroglycan knockdown on number and size of focal adhesion 
complexes.  A: Immunofluorescence staining of DG + and DG - cells stained for vinculin 
(green), F-actin (red) and DNA (blue).  Scale bar = 10 µm.  B: Quantification of focal 
adhesions per cell area. Focal adhesions were manually counted in vinculin-stained DG - 
and DG + cells and normalised to total cell area, as determined (in µm2) using Image J 

software.  Data is represented as the mean number of focal adhesions per cell area (±SE, n 
= 35).  C: Categorisation of focal adhesion size.  The relative proportions of focal 

adhesions were calculated for each cell line (±SE, n = 36, ** p < 0.01). 
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4.2.5 DG - cells have weak actin stress fibres but no decrease in F-actin content 

Previous results have shown that DG - cells are generally smaller, more spindle-shaped 

and have a reduced number of focal adhesions when compared to DG + fibroblasts 

(Sections 4.2.3-4). Dystroglycan is not only an important extracellular cell adhesion 

molecule, but it has also been found to recruit proteins that modulate the actin cytoskeleton 

(Chen et al., 2003; Spence et al., 2004a).  Therefore, depletion of endogenous dystroglycan 

may have adverse effects on actin cytoskeletal organisation.  To investigate this 

hypothesis, DG - cells were stained for F-actin with rhodamine phalloidin and the actin 

cytoskeleton visualised by immunofluorescence. According to Figure 4.6 A, it appears that 

overall fluorescent intensity of F-actin in DG - cells is reduced in comparison to the 

control.  In addition, the actin stress fibres appear spindly and fragile when compared to 

those in DG + cells.   

To investigate the hypothesis that dystroglycan depletion disrupts F-actin production 

and/or stability, an actin fractionation assay was carried out in DG + and DG - cells to 

quantify the proportions of G- and F-actin.  Cell lysates were harvested and subjected to 

ultracentrifugation, as described (see Section 2.2.20), resulting in soluble G-actin 

monomers in the supernatant and insoluble F-actin fractionated into the pellet.  Following 

re-suspension of the pellet, equal volumes of each fraction were separated by SDS-PAGE 

and analysed by immunoblotting using anti-actin antisera.  Percentages of actin in the 

supernatant and pellet fractions were quantified by measuring the integrated density of the 

actin bands using NIH Image software.  The results of this fractionation represented in 

Figure 4.6 C as the percentage of F-actin content, show that there is a slight, but not 

significant, reduction in F-actin in DG - cells compared to the control.  Fluorescence 

microscopy revealed a reduction in stress fibres, which was very noticeable visually, 
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however this does not necessarily correlate with a reduction in total F-actin content and the 

biochemical analysis showed this to be the case. 

A possible explanation for the visual differences in phalloidin staining may be that 

there is a reduction in actin bundling in response to dystroglycan knockdown, thus making 

the stress fibres appear less robust by immunofluorescence imaging.  Further investigation 

is required to understand the apparent alteration in F-actin morphology. 

 

Figure 4.6:  Quantification of F-actin content.  A:  Rhodamine phalloidin staining of DG - 
and DG + cells.  DG - appear to have weaker actin stress fibres than DG +.  Both images 
were taken at the same exposure.  Scale bar = 10 µm.  B:  DG + and DG - fibroblasts were 
lysed in actin fractionation buffer and subjected to ultracentrifugation to separate G- and F-
actin.  Samples were analysed by immunoblotting using anti-actin antisera and the 
intensities of the bands quantified using NIH image.  C:  Quantification of actin 
fractionation showed that there was no significant difference in F-actin content between 

DG + and DG - cells (± SE, n = 3, p =  0.306). 
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4.2.6 Dystroglycan deficiency does not affect cell motility  

Recent evidence has suggested that dystroglycan is involved in modulating the actin 

cytoskeleton, particularly in the formation of filopodia (Spence et al., 2004a).  Since cell 

motility is governed by the actin cytoskeleton, DG - cells were subjected to an in vitro 

scratch wound healing assay to investigate the effect of dystroglycan deficiency on cell 

motility.  Cells were seeded into round tissue culture dishes and grown to confluence.  

Subsequently, a straight wound was made across the cell monolayer and the cells ability to 

move into the wound was observed over a 5 hour period.  Cell motility was quantified by 

measuring the width of the wound at 1 hour and 5 hours post-wounding and calculating the 

distance the cells had migrated in µm/hour. The results show that DG - cells moved into 

the wound at approximately the same rate as DG + cells (Figure 4.7).  This evidence 

suggests that dystroglycan is not essential for actin-based motility in fibroblasts, otherwise 

there was sufficient dystroglycan expression remaining in the DG - cells to allow for 

normal cell migration. 

 

 
 



 Chapter 4: Investigation of dystroglycan-deficiency in 
fibroblasts 

 83 

  
 

 

 

 

 

 

 

 

 




Figure 4.7: Dystroglycan deficiency does not 
affect cell motility.  DG + and DG - fibroblasts 
grown to confluence were subjected to a scratch 
wound healing assay to investigate cell 
motility.   
A: Cells were analysed 1 hour and 5 hours post-
wounding and phase contrast images were 
captured.  Scale bar = 50 µm. 
B: Quantification of wound-healing found that 
there was no significant difference in cell 
motility between dystroglycan depleted and wt 

Swiss 3T3 fibroblasts (± SE, p = 0.727).  This 
data is representative of 3 separate experiments. 
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4.2.7 Dystroglycan deficiency does not affect cell polarity 

Correct cytoskeletal organisation is vital for many cellular processes including cell polarity 

(Etienne-Manneville, 2004).  RNAi studies carried out in drosophila have shown that 

dystroglycan knockdown disrupts epithelial cell polarity during oogenesis (Deng et al., 

2003) and this has also been reported in the study of breast tumour epithelial cells in which 

dystroglycan expression is functionally diminished (Muschler et al., 2002).  Because this is 

the first characterisation of the cytoskeleton in dystroglycan-deficient fibroblasts, this 

study utilized the scratch wound model to investigate the ability of fibroblasts to polarise 

and hence determine if dystroglycan is similarly involved cell polarity in this cell type.   

The scratch wound model exploits the observation that, as fibroblasts migrate 

towards a wound, their microtubule organising centre (MTOC) reorientate forward of the 

nucleus in the direction of cell migration (Kupfer et al., 1982).  In the present study, DG + 

and DG - cells were subjected to a wound healing assay followed by fixation and staining 

with anti-α-tubulin antisera before visualisation by immunofluorescence (Figure 4.8 A).  

To quantify cell polarity, cells at the wound edge were scored depending on the position of 

their MTOC relative to the wound edge.  MTOC within 120° of the wound edge were 

scored positively for normal polarity as illustrated in Figure 4.8 B.  The results indicate 

that DG + and DG - cells polarise towards the wound edge to the same extent (Figure 4.7 

C).  Consequently, it appears that the level of dystroglycan deficiency seen here does not 

disrupt cell polarity in Swiss 3T3 fibroblasts. 
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Figure 4.8:  Dystroglycan deficiency does not affect cell polarity.  A: Semi-confluent cells 

were wounded, fixed, stained for α-tubulin (green) and DNA (blue), and visualised by 
immunofluorescence.  Scale bar = 20 µm B: Cell polarity was determined by locating the 
position of the MTOC of cells on the edge of the wound in relation to the wound edge.  If 

the MTOC (asterisk) was within 120° of the wound edge (dashed lines), cells were scored 
positively.  Arrow indicates direction of cell migration into the wound.  C:  Quantification 
of wound edge polarity found that there was no significant difference between wt and 
dystroglycan deficient Swiss 3T3 fibroblasts (p = 0.512).  Values are represented as mean 

percentage cells with correct cell polarity (± SE, n = 3).  100 cells were counted per 
experiment.   
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4.2.8 DG - cells exhibit a reduced proliferation rate 

Observations made during the maintenance of DG - cells in culture, based upon frequency 

of passaging, suggested that they had a reduced proliferation rate compared to DG + cells.  

To determine whether DG - cells had a growth defect, a proliferation assay was carried out 

over a five day period.  Briefly, DG + and DG - cells were each seeded at equal density (~ 

3 x 104 cells per dish) into five tissue culture dishes on Day 0, harvested sequentially over 

a five day period and cell count determined using a haemocytometer. According to Figure 

4.9, DG - cells have a markedly reduced proliferation rate compared to the control, 

suggesting that dystroglycan deficiency affects the cells ability to proliferate.   

 

Figure 4.9:  DG - cells have a reduced proliferation rate.  Cells at approximately equal 
density (3 x 104 cells per dish) were seeded onto five tissue culture dishes on Day 0 and 
cell number calculated using a haemocytometer over a five day period.  DG - cells had a 

reduced cell proliferation rate compared to the control (± SE, n = 3, *** p < 0.001) 
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4.2.9 DG - cells do not have reduced mitotic index 

To further investigate the finding that DG - cells have a reduced proliferation rate 

compared to DG + cells, the mitotic indices of DG + and DG - cells were determined.  

Dystroglycan protein levels have previously been shown to fluctuate as cells pass through 

the cell cycle, whereby dystroglycan expression peaks during S-phase (Hosokawa et al., 

2002; Sgambato et al., 2006).  Therefore, if dystroglycan is essential for passage through 

the cell cycle, dystroglycan deficiency may be perturbing its progression.  Consequently, 

this investigation aimed to establish if there was an accumulation of DG - cells in S-phase.  

To address this, cells were treated with BrdU before being fixed and stained with anti-

BrdU antisera to highlight cells undergoing DNA replication.  BrdU is a thymidine 

analogue that incorporates into newly synthesised DNA, allowing for the detection of 

actively proliferating cells. According to Figure 4.10, DG - cells appear to have a slight 

reduction in BrdU incorporation compared to DG + cells, but this was not found to be 

significant.  Therefore, the reduced proliferation rate exhibited by DG - cells cannot be 

attributed to the inhibition of DNA replication.  
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4.2.10 DG - cells do not have a multinucleate phenotype 

This study has previously shown DG - cells to have a slower proliferation rate, but a 

similar mitotic index, to that of the control (Sections 4.2.7-8).  These observations may be 

explained by a possible defect in cytokinesis.  To investigate this, the proportion of 

multinucleate cells in the cell population was determined.  DNA was visualised using 

DAPI, and nuclear morphology was examined by fluorescent microscopy.  Multinucleate 

cells are defined as those having two or more nuclei per cell and example images are 

shown in Figure 4.11 A.  Following quantification (Figure 4.11 B), it became apparent that 

DG - cells do not have a multinucleate phenotype, since the number of multinucleate cells 





Figure 4.10:  Effect of dystroglycan deficiency on 
mitotic index.  Cells treated with BrdU for 45 
minutes, followed by fixation and staining with 
anti-BrdU antisera were visualised by 
immunofluorescence (A) and the mitotic index was 
calculated as percentage mitotic cells.  Cells were 
co-stained for DNA with DAPI to facilitate total 
cell count.  There was found to be no significant 
difference in the mitotic index of wt and 

dystroglycan deficient Swiss 3T3 fibroblasts (± 
SE, n = 3, p = 0.149).  ~1000 cells were counted 
per experiment. 
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calculated for both samples was at a low frequency and within the level normally expected 

in cultured cells. 

 

Figure 4.11:  Effect of dystroglycan knockdown on the degree of multinucleation.  A: 
Immunofluorescence images of binucleate and multinucleate morphologies present in the 

cell population.  Cells were stained for α-tubulin (green) and DNA (blue).  B:  The 
percentage of multinucleate cells in DG + and DG - cells was calculated.  There was found 
to be no significant difference in the number of mitotic cells between wt and dystroglycan 

deficient Swiss 3T3 fibroblasts (± SE, n = 3, p = 0.17).  ~800 cells were counted per 
experiment. 
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4.2.11 DG - cells have an altered cell cycle profile 

This study has previously shown that DG - cells have a reduced proliferation rate 

compared to the control (see Section 4.2.8), however, this phenomenon does not appear to 

be a result of a low mitotic index nor accompanied by an increase in multinucleate cells 

(see Sections 4.2.9-10).  To investigate further the reasons why dystroglycan deficiency is 

affecting cell growth, DG + and DG - cells were analysed by flow cytometry to examine 

their progression through the cell cycle.  Cells were synchronised at the G1/S transition by 

arrest with the cell cycle inhibitors mimosine and thymidine.  Mimosine induces cell cycle 

arrest in late G1 phase by inhibiting DNA replication.  The addition of excess thymidine 

also inhibits DNA replication and blocks cell cycle progression at the onset of S-phase. 

Following release from the block, cells were harvested every hour over a 12 hour period.  

DNA was stained using propidium iodide, and the cells were analysed by flow cytometry.  

The aim of this experiment was to investigate whether DG - cells accumulated at a 

particular stage of the cell cycle or if overall progression was slower, in order to give some 

insight into how dystroglycan could be affecting cell growth.   

Figure 4.12 illustrates the cell cycle profiles of DG + (A) and DG - (B) cells over a 

12 hour period.  From these profiles, it appears that the synchronisation of DG - cells was 

marginally more successful than that of DG + fibroblasts, considering that following 

release from the block, 53% DG - were in G0/G1 compared with only 38% of the DG + 

cells.  Clearly, both cell types failed to synchronise fully, since less than 60% of cells were 

arrested in G0/G1.  As a consequence, the results are difficult to interpret.  However, the 

distribution patterns of each cell type differ considerably and it may be possible to deduce 

some information about how dystroglycan deficiency influences cell cycle progression.  

Namely, it appears that four hours after release from the block, there is an accumulation of 

DG - cells in S-phase that persists until approximately eight hours (Figure 4.12 B and 
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Table I) before shifting rapidly into G2/M at 10 hours post-release (Figure 4.12 B).  In 

contrast, DG + cells progress much more steadily with a gradual input through S-phase and 

a constant pool of cells in G2/M (Figure 4.12 A and Table I).  Dystroglycan expression has 

previously been shown to peak during S-phase (Hosokawa et al., 2002) and in DG 

knockdown mouse mammary epithelial cells there was an accumulation of cells in S-phase 

(Sgambato et al., 2006), suggesting it has a role in its progression, and the results shown 

here suggest that dystroglycan deficiency perturbs this process.  Further investigation is 

required to produce more conclusive results.  

 

DG + DG -  

% G0/G1 % S-phase % G2/M % G0/G1 % S-phase % G2/M 
Asynch 
Synch 
2 h 
4 h 
6 h 
8 h 
10 h 
12 h 

44.32 
37.99 
43.77 
37.70 
26.37 
24.55 
21.08 
26.04 

35.68 
53.46 
47.79 
53.19 
52.46 
53.99 
64.79 
66.23 

20.00 
8.55 
8.44 
9.10 
21.17 
21.46 
14.12 
7.72 

42.72 
53.34 
47.19 
32.60 
31.68 
28.11 
34.71 
36.69 

33.45 
41.96 
52.81 
67.40 
68.32 
71.89 
47.94 
46.67 

23.83 
4.70 
0.00 
0.00 
0.00 
0.00 
17.34 
16.64 

 
Table I: Percentage DG + and DG - cells in each phase of the cell cycle in asynchronous 
populations (Asynch), after synchronisation treatment (Synch) and at each time point are 
shown. 
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4.2.12 Reduced growth rate of DG - cells is a consequence of increased apoptosis 

Previous characterisation of dystroglycan deficient myoblasts showed that there was an 

increased incidence of apoptotic cells in the population (Montanaro et al., 1999), which has 

also been reported in morpholino-mediated dystroglycan knockdown in zebrafish (Parsons 

et al., 2002) and Xenopus retina (Lunardi et al., 2006). To investigate further the apparent 

growth defect observed in DG - cells (see Section 4.2.7), the percentage of apoptotic cells 

in the population was determined using an Annexin V assay.  This assay exploits the 

finding that, early in apoptosis, the cell experiences a loss of plasma membrane asymmetry 

manifested by the externalisation of phosphatidyl serine (PS) to the outer surface of the 

cell (membrane flipping).  Annexin V binds to PS with high affinity, meaning that 

fluorescently labelled Annexin V can be used to differentiate between apoptotic and 

necrotic cells when counterstained with propidium iodide (Koopman et al., 1994).  Using 

this technique, dead cells contain both fluorescent markers, whereas apoptotic cells only 

stain for Annexin V.   

The results in Figure 4.13 indicate an increase in the prevalence of apoptotic cells 

in the DG - population (~32%) compared to that of the DG + population (~12%).  This 

level of apoptotic cell death could account for the decreased growth rate exhibited by DG - 

cells (see Section 4.2.7) and suggests that dystroglycan is important for cell viability.  This 

may explain why cells with a high level of dystroglycan knockdown could not be 

maintained as a stable cell line. 
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Figure 4.13:  Dystroglycan deficiency causes increased apoptosis.  A: DG + and DG - 
cells (Untreated) were stained with Annexin V-FITC and PI before being analysed by flow 
cytometry.  Graphs show plots of PI vs. Annexin V-FITC.  Positive control cells (Positive) 
were treated with staurosporine to induce apoptosis and negative control cells (Negative) 
had the fluorescent markers excluded from the protocol.  L = live cells; D = dead cells; A = 
apoptotic cells.  Flow cytometry plots are representative examples of 3 individual 
experiments.  Percentage apoptotic cells following Staurosporine treatment: ~33% DG + 
and ~41% DG -.  B:  Quantification of Annexin V data.  ~32% untreated DG - cells were 
found to be apoptotic compared with ~12% untreated DG + cells.  Results are presented as 

a mean of three separate experiments (± SE, n = 3, * p < 0.05) 
 
 
 





* 
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4.2.13 ERK-MAP kinase expression is reduced in DG - fibroblasts 

A previous study has identified an interaction between the cytoplasmic tail of β-

dystroglycan and components of the ERK-MAP kinase signalling pathway (Spence et al., 

2004b).  To investigate whether there are any alterations to ERK-MAP kinase signalling in 

response to dystroglycan depletion, levels of total ERK expression in DG + and DG - cells 

were investigated by immunoblotting total cell lysates using anti-ERK1/2 antisera.  As 

shown in Figure 4.14, there was found to be a significant decrease in total ERK in DG - 

cells compared with DG + cells, suggesting that knockdown of dystroglycan expression 

causes levels of ERK to be reduced.   This finding may provide an explanation for the 

increased incidence of apoptosis in dystroglycan depleted cells (See Section 4.2.12), since 

activation of the ERK-MAP kinase cascade leads to the production of cell survival signals 

(Xia et al., 1995) and presumably a decrease in ERK levels will cause a reduction in 

survival signals. 

 
Figure 4.14:  ERK-MAP kinase expression is reduced in DG - cells.  Levels of ERK1/2 

expression were calculated relative to an α-tubulin loading control. A: The ERK1/2 protein 
expression levels of DG + and DG - Swiss 3T3 fibroblast cell lysates were determined by 

western analysis, relative to an α-tubulin loading control.  B: Bands were quantified by 
measuring integrated density using NIH Image software.  The results show that there was a 
significant reduction in ERK1/2 protein expression in DG - cells compared with the 

control (± SE, n = 3, * p < 0.05). 
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4.2.14 Effect of DA and DN Rho GTPase constructs on DG - cells 

Rho, Rac and Cdc42 are members of the Rho family of small GTPases and are important 

regulators of actin cytoskeleton dynamics by inducing the formation of distinctive actin-

based structures within the cell and act by linking membrane receptors to assembly and 

disassembly of actin (reviewed in (Hall, 1998).  Previous work implicates dystroglycan 

signalling via the small GTPase, Cdc42 in the assembly of actin-rich filopodia (Chen et al., 

2003). To assess whether dystroglycan deficiency has an effect on the action of the small 

GTPases, DG + and DG - cells were transiently transfected with dominant-active (DA) and 

dominant negative (DN) c-myc-tagged Cdc42, Rac1 and RhoA. 

 

4.2.14.1 Dystroglycan deficiency reduces filopodia in cells transfected with DA Cdc42 

Previous studies have shown that, when fibroblasts are transfected with a DA Cdc42 

construct, cells are induced to produce actin-rich filopodial protrusions (Nobes and Hall, 

1995).  Overexpression of dystroglycan in fibroblasts was later discovered to induce the 

same phenotype (Chen et al., 2003), which was found to be ezrin- and Cdc42-dependent  

(Spence et al., 2004a) and modulated through the Rho GEF Dbl (Batchelor et al., 2007).  

Dystroglycan is thought to function as a scaffold in this pathway, serving to recruit 

essential components to the membrane, thus allowing for activation of the actin 

polymerisation machinery.   

In the present study, the effect of dystroglycan deficiency on filopodia formation in 

response to constitutively active Cdc42 was investigated in order to determine if 

dystroglycan is crucial for this process.  To achieve this, semi-confluent DG + and DG - 

cells were transiently transfected with DA Cdc42, followed by fixation and indirect 

immunofluorescence analysis, using anti-myc antisera to visualise transfected cells and 

rhodamine phalloidin to stain for F-actin.  Transfected cells with more than 30 filopodia  
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per cell were scored positively for the filopodia phenotype.  Quantification of the filopodia 

phenotype was carried out on fixed cells, therefore in the absence of movement to decipher 

between filopodial and fixed protrusions, a classification system was utilised whereby 

filopodia were defined as protrusions containing both actin and Cdc42, while at the same 

time devoid of focal adhesions at the tip.  Representative example images of DG + and DG 

- cells transfected with DA Cdc42 are shown in Figure 4.15 A.  According to this data, DA 

Cdc42-transfected DG + cells (top panel) exhibit long filopodial protrusions similar to 

those described by Nobes and Hall in their early DA Cdc42 microinjection experiments 

(Nobes and Hall, 1995).  In contrast, DA Cdc42-transfected DG - cells displayed notably 

less filopodia than DG + cells, and those that did exist were scattered sparsely throughout 

the cell (Figure 4.15 A (lower panel) and B).  From these results, it is apparent that 

dystroglycan deficiency inhibits the cells ability to produce filopodia in response to active 

Cdc42.  Perhaps, because these cells were not completely devoid of dystroglycan, 

filopodia production was not inhibited completely, and the remaining expressed protein 

may be clustered in those areas where filopodia have formed. 
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Figure 4.15:  Dystroglycan depletion reduces filopodia formation.  A: DG - and DG + 
cells transiently transfected with DA Cdc42-myc were stained for F-actin with rhodamine 
phalloidin and anti-myc antisera to identify transfected cells.  DG - cells had very few 
filopodia following transfection (bottom panel) compared to DG + (top panel).  Scale bar = 
20 µm.  B:  Transfected cells with > 30 filopodia were scored positively for the filopodia 
phenotype.  DG - cells were inhibited in their ability to form filopodia in response to active 

Cdc42, compared to DG + cells (± SE, n = 3, *p < 0.05).  100 cells were counted per 
replicate. 
 

4.2.14.2 Dystroglycan deficiency prevents formation of lamellipodia in DA Rac1 

transfected cells 

The finding that dystroglycan deficiency inhibits filopodia formation in response to active 

Cdc42 (see Section 4.2.14.1) led to further investigation into how dystroglycan deficiency 

affects other Rho GTPases and their activity.  It has been previously shown that 

constitutively active Rac1 induces the formation of lamellipodia in fibroblasts (Ridley et 

al., 1992).  Consequently, in order to investigate if dystroglycan is involved in Rac1 

signalling, semi-confluent DG + and DG - cells were transiently transfected with DA 

Rac1, fixed and subsequently stained with both anti-myc antisera and rhodamine 

phalloidin to allow for analysis by indirect immunofluorescence.   
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For the purpose of quantification, the extent of lamellipodia formation was 

categorised into three morphologies, since visual analysis of both cell lines revealed that 

not all cells had a complete lamellipodia surrounding the cell.  Cells with a complete 

lamellipodia were categorised as “full”, those with > 50% lamellipodia around periphery 

of the cell were termed “intermediate” and those with aberrant lamellipodia formation 

were denoted “irregular.”  Examples of each of these lamellipodia morphologies are shown 

in Figure 4.16 A.  From these results, it appears that DG - cells have a reduced ability to 

form a complete lamellipodia and an increase in irregular lamellipodia morphology 

compared to DG + cells (Figure 4.16 B).  Examination of the proportion of cells with the 

intermediate phenotype reveals that the two cell types are virtually indistinguishable.   

Interestingly, the sporadic formation of lamellipodia in DG - cells in response to 

DA Rac1 can be compared to earlier findings that filopodia formation was perturbed in 

these cells following transfection with DA Cdc42 (see Section 4.2.14.1).  To reiterate, the 

ability of DG - cells to form any filopodia or lamellipodia is possibly due to the residual 

dystroglycan expressed in these cells since they are not a total knockdown.   These results 

suggest that dystroglycan deficiency inhibits lamellipodia formation by inhibiting the 

activation of Rac1. 
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Figure 4.16:  Dystroglycan depletion reduces lamellipodia formation.  A: DG - and DG + 
cells transiently transfected with DA Rac1-myc were stained for F-actin and myc with 
AlexaFluor 488 phalloidin (green) and anti-myc antisera (red), respectively. Myc staining 
was employed in order to identify transfected cells.  Cells were categorised into one of 
three different morphologies: Full, cells with a complete lamellipodia surrounding the 
periphery of the cell; Intermediate, cells with an incomplete lamellipodia that surrounds 
the majority of the cell (> 50%); Irregular, cells with sporadic lamellipodia encompassing 
< 50% of cell periphery.  Example images from both DG + and DG – cell populations are 
shown to illustrate the different morphologies seen.  Scale bar = 20 µm.  B:  The relative 

proportion of each lamellipodial morphology in Rac1 transfected DG - and DG + cells (± 
SE, n = 4, *** p < 0.001).  100 cells were counted per replicate.  
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4.2.14.3 Effect of dystroglycan deficiency on RhoA activity 

Based on previous findings that dystroglycan deficiency inhibits filopodia and lamellipodia 

formation in response to active Cdc42 and Rac1, respectively (see Section 4.2.14.1-2), the 

effect of dystroglycan deficiency on RhoA activity was also investigated.  RhoA 

influences actin cytoskeletal organisation by inducing the formation of stress fibres and 

focal adhesions (Ridley and Hall, 1992).  Semi-confluent DG - and DG + cells were 

transiently transfected with myc-tagged DA RhoA prior to analysis of their actin 

cytoskeleton by indirect immunofluorescence.  Figure 4.17 shows representative cellular 

morphologies of DG - and DG + cells post-transfection.  Overall, transfected DG - and DG 

+ cells did not appear to have any distinguishing features and, as such, were very similar to 

the morphology of untransfected cells.  A likely reason for this finding is that the cells 

were maintained in 10% serum throughout the course of this experiment; under these 

conditions, stress fibres are usually present.  Subsequently, cells were cultured in serum-

free media for 16 hours prior to transfection with DA RhoA.  The results of this 

experiment were inconclusive because transfected cells could not be clearly identified 

following staining with anti-myc antisera and indirect immunofluorescence analysis due to 

a high level of non-specific background fluorescence and low transfection efficiency (see 

Appendix IX).  
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4.2.14.4 Effect of dystroglycan deficiency on dominant negative Rho GTPases 

Following on from the investigation of dystroglycan deficiency on the function of 

dominant active RhoA, Rac1 and Cdc42, a similar investigation was carried out to explore 

possible effects dystroglycan deficiency might have on the function of dominant negative 

Rho GTPases, which have been modified so they are constitutively inactive.  DG + and 

DG - cells were transfected with DN Cdc42, DN Rac1 and DN RhoA.  As is apparent from 

Figure 4.18, the expression levels of the transfected myc-tagged DN Cdc42, DN Rac1 and 

DN RhoA constructs were very low. High background staining attributable to the anti-myc 

antibody, ultimately made it difficult to distinguish between transfected and untransfected 

cells.  For this reason, drawing conclusive results from this experiment is difficult.  

However, perhaps the similarity between transfected and untransfected cells results from 

the transfection of dominant negative constructs, which would not be expected to affect 

Figure 4.17:  Effect of dystroglycan depletion on RhoA activity. A: DG - and DG + 
cells transiently transfected with DA RhoA-myc were stained with Alexa Fluor 488 
phalloidin (green) and anti-myc antisera (red) to identify F-actin and transfected 
cells, respectively.  Visual inspection of the cells did not reveal any obvious 
morphological differences between transfected and untransfected cells.   
Scale bar = 20 µm.   
 



 Chapter 4: Investigation of dystroglycan-deficiency in 
fibroblasts 

 104 

actin morphology.  Probably these cells require stimulation to see the effect of the DN 

constructs as Swiss 3T3 cells do not have a prominent actin phenotype when un-

stimulated. 

 

 

 

 

 

 

 

 



Figure 4.18:  Effect of dystroglycan deficiency on dominant negative Rho GTPases.  
DG - and DG + cells transiently transfected with the myc-tagged DN Rho GTPase 
constructs; DN Cdc42 (A), DN Rac1 (B) and DN RhoA (C).  Cells were stained with 
anti-myc antisera (green) to identify transfected cells and rhodamine phalloidin to 
visualise F-actin (red).  Upon visual inspection, transfected and untransfected cells 
appear morphologically similar.  Scale bar = 20 µm.   
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4.2.15 Ezrin expression is upregulated but mislocalised in DG - fibroblasts 

The ERM proteins, ezrin, radixin and moesin, are cytoskeletal linkers involved in 

modulating the actin cytoskeleton (Bretscher et al., 2002).  An interaction between ezrin 

and the juxtamembrane region of the dystroglycan cytoplasmic tail has recently been 

identified and was shown to be crucial for the induction of the Cdc42-mediated filopodia 

phenotype previously described (see Section 4.2.14.1) (Spence et al., 2004a).  In the 

present study, the expression level and localisation of ezrin in dystroglycan-deficient cells 

was investigated.  To achieve this, ezrin protein expression levels in DG + and DG - cells 

were determined by western blot analysis relative to an α-tubulin loading control (Figure 

4.19 A).  Generated bands were subsequently quantified using NIH image, the results of 

which revealed that there was an increased expression of ezrin in DG - cells (Figure 4.19 

B).  To investigate this finding further, the localisation of endogenous ezrin was examined 

in DG + and DG - cells by indirect immunofluorescence using an anti-ezrin antibody 

(Figure 4.19 C).  According to this study, ezrin staining is spread diffusely throughout DG 

- cells and there does not appear to be any strong staining at the plasma membrane.  In 

contrast, DG + cells demonstrate punctate ezrin staining, which is localised to the tips of 

filopodia (inset in Figure 4.19 C).  Collectively, these results suggest that dystroglycan 

deficiency reduces the recruitment of ezrin to the membrane, and as a consequence, cells 

subsequently upregulate expression of the protein, possibly as a compensatory mechanism.  

To further investigate this apparent upregulation of ezrin expression, it would be 

interesting to carry out subcellular fractionation of DG + and DG - cells.  This method 

allows the separation of total protein content from the membrane, cytosol and cytoskeletal 

fractions of the cell and could be used to investigate whether there is indeed less ezrin 

associated with the membrane in dystroglycan depleted cells. 
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Figure 4.19:  Effect of dystroglycan deficiency on ezrin expression and localisation.   
A: The ezrin protein expression levels of DG + and DG - cell lysates were determined by 

western analysis, relative to an α-tubulin loading control.  B: Bands were quantified by 
measuring integrated density using NIH Image software.  The results show that there is a 

significant increase in ezrin expression in DG - cells. (± SE, n = 4, * p < 0.05).  C: Indirect 
immunofluorescence images of DG + and DG - cells stained for ezrin (green), actin (red) 
and DNA (blue).  Inset shows a magnified image of punctate ezrin staining at the tips of 
filopodia in DG + cells.  This was not seen in DG - cells.   
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4.3 Discussion 

Dystroglycan provides a crucial link between the actin cytoskeleton and the extracellular 

matrix and maintaining structural stability is undoubtedly a key function of the protein.  

However, emerging evidence implicates dystroglycan in more complex roles within the 

cell including transducing cellular signals, cytoskeletal organisation and cell polarity 

determination.  A valuable technique for elucidating the function of a protein is through 

loss of function studies, such as knockout animal models and RNA interference.  Several 

studies into dystroglycan deficiency have been carried out previously, although they have 

placed particular emphasis on developmental processes, neuromuscular diseases and 

cancer.  The present study investigated the function of dystroglycan in fibroblasts by the 

characterisation of dystroglycan deficient Swiss 3T3 cells in an attempt to determine its 

role in fundamental cellular processes.  

 

Dystroglycan deficient Swiss 3T3 fibroblasts (DG -) were generated by RNAi and 

dystroglycan was downregulated by ~60% in the resultant stable cell line (Section 4.2.2).  

Initially, a knockdown of ~80% was achieved, but this level of deficiency could not be 

maintained in a stable line, which perhaps reflects the functional importance of 

dystroglycan within the cell.  A control cell line expressing an shRNA construct that did 

not reduce dystroglycan expression (DG +) was also generated to control for any non-

specific effects of the RNAi process (Section 4.2.1.2).  Morphological analysis of DG - 

cells revealed that they were smaller and more elongated than DG + cells (Section 4.2.3).  

In addition to this, DG - cells were found to contain fewer focal adhesions and had a 

reduced ability to form large mature focal adhesions (Section 4.2.4).  Actin stress-fibres 

visualised by staining with rhodamine-phalloidin appeared less robust in DG - cells 

compared to those in the control, however biochemical analysis confirmed that DG - cells 
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did not have a decrease in F-actin content (Section 4.2.5).  Furthermore, dystroglycan 

deficiency resulted in cells exhibiting a slower proliferation rate but this was not 

accompanied by an increase in multinucleate cells or a decreased mitotic index (Section 

4.2.8-10).  There was, however, an increased incidence of apoptosis (Section 4.2.12) and a 

decrease in ERK 1/2 expression in the DG - population (Section 4.2.13).  Cell motility and 

polarity were found to be unaffected by dystroglycan deficiency (Section 4.2.6-7), 

however filopodia formation was shown to be inhibited in DG - cells transfected with 

dominant active Cdc42 and they were also unable to form a complete lamella in response 

to dominant active Rac1 (Section 4.2.14.1-2).  Additionally, ezrin expression was found to 

be upregulated, but mislocalised, in DG - cells (Section 4.2.15). 

 

There have been several previous studies into dystroglycan deficiency in various 

animal models and cell culture systems.  As discussed in Chapter 3, the dystroglycan 

knockout mouse was embryonic lethal due to its inability to form a basement membrane 

(Williamson et al., 1997).  Dystroglycan deficiency in other organisms produced less 

severe, but nonetheless detrimental phenotypes, for example, RNAi-mediated knockdown 

of dystroglycan in drosophila resulted in a loss of cell polarity during oogenesis (Deng et 

al., 2003) and morpholino knockdown in zebrafish caused a muscular dystrophy-type 

phenotype (Parsons et al., 2002).  In addition, brain selective deletion of dystroglycan in 

mice resulted in the development of congenital muscular dystrophy-like defects (Moore et 

al., 2002) and selective deletion in differentiated striated muscle resulted in a mild 

dystrophic phenotype, thought to be partially compensated by satellite cells expressing 

dystroglycan (Cohn et al., 2002).  Dystroglycan deficient cells were found to be smaller 

and more ellipsoidal in morphology than DG + cells (see Section 4.2.3).  A previous study 

into RNAi knockdown of dystroglycan in myotubes reported that at low density cells 
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appeared flatter and more spread than DG + cells (Montanaro et al., 1999).  Possible 

reasons for these conflicting results are that different cell types respond in different ways 

to dystroglycan deficiency or it may reflect the level at which dystroglycan has been 

depleted in each case.  There have also been RNAi-mediated dystroglycan knockdown 

studies involving mouse myoblasts (Montanaro et al., 1999) and mouse mammary 

epithelial cells (Sgambato et al., 2006) and results obtained from these studies will be 

discussed further in this section.   

 

A plausible explanation for the altered cell morphology exhibited by DG - cells is 

that they could not spread out onto the substrate effectively due to depleted dystroglycan 

expression levels.  To address this possibility, the quantity and size of focal adhesions in 

DG + and DG - cells was investigated.  Focal adhesion structures are sites of close contact 

between cytoskeletal and extracellular matrix components that provide a structural link 

between the cell and its substrate.  In addition to their structural role, focal adhesions also 

act as points of communication between the cell and its surroundings where signal 

transduction can occur in order to control cellular processes such as cell growth and 

motility.  The results presented here showed that dystroglycan depletion in fibroblasts 

resulted in a slight reduction of focal adhesions per unit area and in addition to this, a 

lesser proportion of larger mature adhesions were produced (Section 4.2.4).  These results 

concur with previous findings that implicate dystroglycan in cell adhesion.  Dystroglycan 

and its binding partner utrophin have previously been shown to co-localise in adhesion 

structures in a variety of non-muscle cells (Belkin and Burridge, 1995a; Belkin and 

Burridge, 1995b; Belkin and Smalheiser, 1996; James et al., 1996; James et al., 2000; 

Khurana et al., 1995) and an interaction between β-dystroglycan and FAK (focal adhesion 

kinase), via GRB2 has previously been identified.  FAK is a tyrosine kinase involved in 

focal adhesion assembly (Cavaldesi et al., 1999).  Since there was an apparent reduction in 
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quantity and size of focal adhesions in DG - cells, it suggests that dystroglycan is 

important for their assembly or maintenance.  This is a plausible concept considering that 

the formation of adhesion complexes is known to be regulated by tyrosine phosphorylation 

of cytoskeletal components (Burridge and Chrzanowska-Wodnicka, 1996) and tyrosine 

phosphorylation of β-dystroglycan was found to regulate its binding to utrophin in an 

adhesion-dependent manner (James et al., 2000).  Given that dystroglycan acts as a 

scaffold for cell signalling proteins, such as components of the ERK-MAP kinase 

signalling cascade (Spence et al., 2004b), perhaps this adhesion-dependent release from its 

cytoskeletal binding partner, utrophin, enables it to fulfil cell signalling roles.  This theory 

is supported by the finding that active ERK is targeted to newly forming focal adhesions 

during cell spreading (Fincham et al., 2000).  The reduction, as opposed to complete 

absence, of focal adhesions in DG - cells is likely due to maintenance of integrin-mediated 

adhesion and the presence of residual dystroglycan expression.  Even so, the reduced level 

of cell adhesions resulting from dystroglycan depletion supports a role for dystroglycan in 

the formation and organisation of focal adhesion structures.  A reduction in cell adhesions 

may also provide some explanation as to why morphologically, dystroglycan-depleted 

fibroblasts appeared much smaller and less well spread than DG + cells (see Section 4.2.3). 

 

DG - cells stained for F-actin with rhodamine-phalloidin appeared to have a 

reduction in actin stress fibres, since the fluorescent intensity was reduced compared to 

that of DG + cells when visualised by immunofluorescence.  Biochemical analysis of F-

actin content revealed that DG - cells contained a similar proportion to DG + cells and 

therefore this decrease was not due to a defect in actin polymerisation (Section 4.2.5).  

Another explanation could be, rather than a decrease in F-actin content, perhaps there is a 

decrease in actin bundling in DG - cells, which may result in less robust stress fibres.  
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Although, dystroglycan itself has been shown to have actin-bundling properties, this result 

is more likely to be a consequence of impaired cell signalling as opposed to a direct 

consequence of dystroglycan depletion because overexpression of the cytoplasmic domain 

of β-dystroglycan, which is the actin-bundling region, did not result in increased stress 

fibre formation in vivo(Chen et al., 2003). 

 

Cell motility is an intricately coordinated cytoskeletal process that requires 

lamellipodia and filopodia formation at the leading edge and focal adhesion assembly and 

disassembly at the leading and retracting edges respectively (Small and Resch, 2005). 

Following on from the results that implicate dystroglycan in the formation of focal 

adhesions (Section 4.2.4) and in filopodia and lamellipodia assembly (Chen et al., 2003) 

(Spence et al., 2004a) (Section 4.2.14.1-2), the effect of dystroglycan deficiency on cell 

motility was investigated by wound healing assay (Section 4.2.6).  The results showed that 

this level of dystroglycan deficiency in fibroblasts did not result in a cell motility defect.   

However, since DG - cells were not completely devoid of dystroglycan, perhaps residual 

dystroglycan expression was adequate for correct cell motility.  Alternatively, other 

adhesion molecules, such as integrins, may be functioning redundantly and could 

compensate in the absence of dystroglycan.  Overexpression of the cytoplasmic domain of 

β-dystroglycan in vascular endothelial cells caused a cell motility defect (Hosokawa et al., 

2002), which suggests that the dystroglycan-ECM interaction is required for normal cell 

motility.  A similar result might be expected in cells depleted of dystroglycan, however, an 

alternative explanation is that overexpression of the cytoplasmic domain, which was not 

membrane associated, may sequester components required for cell motility, thus 

explaining the observed defect.   
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Dystroglycan has previously been implicated in maintaining epithelial cell polarity 

(Deng et al., 2003; Muschler et al., 2002).  Correct cell polarity it a fundamental 

requirement in all cells as it is required for many aspects of cell survival including cell 

division, movement and differentiation. Since this is the first study to characterise the 

cytoskeletal changes resulting from dystroglycan deficiency in fibroblastic cells, the ability 

of these cells to polarise was investigated to determine if dystroglycan has a widespread 

function in determining cell polarity.  Cdc42 is a key player in regulating cell polarity 

(Etienne-Manneville, 2004) and local activation at the leading edge leads to filopodia 

formation, structures which are able to assess the environment as the cell moves forwards.  

This is where dystroglycan may be involved since, as previously discussed, it is involved 

in recruiting components leading to Cdc42 activation and filopodia formation (Batchelor et 

al., 2007).  A useful method for inducing fibroblasts to polarise is by way of a scratch-

wound assay, in which a confluent cell layer is scratched and cells at the wound edge 

polarise and migrate into the wound.  The microtubule organising centre (MTOC) can be 

used as a marker for cell polarity since it reorientates to the front of the nucleus in the 

direction of cell migration (Kupfer et al., 1982).  DG - cells did not appear to have a 

polarity defect since cells at the wound edge were polarised to the same extent as DG + 

cells (Section 4.2.7).  This suggests that, in Swiss 3T3 fibroblasts, dystroglycan is not 

required for maintaining correct cell polarity.  However, this does not necessarily preclude 

a function for dystroglycan in cell polarity, since residual expression may be adequate in 

concert with other cell adhesion molecules, such as integrins, which can function 

redundantly.   

 

The cell cycle profile of dystroglycan knockdown cells was markedly altered from 

that of the control in that there appeared to be a prolonged accumulation of  DG - cells in 
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S-phase resulting in a slower progression through the cell cycle compared to DG + cells 

(Section 4.2.11).  A similar result has been reported previously in a study that looked at 

depletion of dystroglycan in HC11 murine mammary epithelial cells. The same study also 

showed that dystroglycan expression levels are cell cycle regulated in untreated HC11 cells  

and in synchronised cultures, dystroglycan expression gradually increases following 

release from the block and peaks at around 12 hours, which corresponded with S-phase 

entry (Sgambato et al., 2006).  Another group have also reported this cell cycle regulated 

expression in bovine aortic endothelial cells in which dystroglycan expressions levels 

increase as the cells entered S-phase (Hosokawa et al., 2002).  This suggests a role for 

dystroglycan in cell cycle progression and strengthens the possibility that dystroglycan 

may play a role in cytokinesis, which will be discussed in Chapter 5.   

 

Findings obtained during the course of this study have shown that dystroglycan-

deficient fibroblasts had a reduced proliferation rate compared to DG + cells, but did not 

show an increase in multinucleate cells or reduced mitotic index.  There was however, 

found to be a 3-fold increase in apoptotic cells in the DG - population, shown by Annexin 

V assay (Section 4.2.12), which is likely to account for the observed proliferation defect.  

Consistent with these results, studies into RNAi-induced dystroglycan knockdown in 

myoblasts and murine mammary epithelial cells found an increase in apoptosis in response 

to dystroglycan deficiency (Montanaro et al., 1999; Sgambato et al., 2006).  It has also 

been reported that there was an increase in apoptotic cells in morpholino-mediated 

dystroglycan knockdown in Xenopus Laevis retina (Lunardi et al., 2006) and zebrafish 

embryo (Parsons et al., 2002).  The observed increase in apoptosis in DG - cells may be 

due to the disruption of the ERK-MAP (ERK, extracellular signal-regulated kinase; MAP, 

mitogen-activated protein) kinase cascade, which transduces cell survival signals (Xia et 
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al., 1995).  The cytoplasmic tail of β-dystroglycan has previously been shown to interact 

with the MAP kinase signalling components MEK2 and ERK.  β-Dystroglycan is thought 

to act as a membrane scaffold that can influence activation of the ERK-MAP kinase 

signalling pathway by sequestering components in different cellular compartments (Spence 

et al., 2004b). In the present study, total ERK expression levels were found to be 

significantly reduced in DG - fibroblasts (Section 4.2.13).  These results suggest that 

depletion of dystroglycan expression in fibroblasts has a significant impact on total levels 

of ERK within the cell, possibly resulting in a reduction in cell survival signals and leading 

to an increase in apoptotic cell death.  In this experiment, total levels of ERK were 

determined, consisting of both its active and inactive forms. Therefore, to further 

substantiate this result, it would be useful to examine the levels of active ERK in response 

to dystroglycan depletion.  This could be achieved by using antisera specific for the 

phosphorylated form of ERK. 

 

Alternatively, since dystroglycan is also an ECM receptor, perhaps its involvement 

in apoptosis is analogous to that of the integrins, since disruption of integrin-mediated 

adhesion to the ECM has previously been reported to induce apoptosis (Frisch and 

Ruoslahti, 1997).  This was addressed in a study investigating dystroglycan-induced 

apoptosis in myoblasts by disruption of its interaction with laminin, which determined that 

it was mediated through caspase activation.  An interaction between the cytoplasmic tail of 

β-dystroglycan and GRB2 and FAK was proposed to link dystroglycan to the 

phosphoinositide 3-kinase (PI3K)/Protein kinase B (AKT) pathway that initiates cell 

survival signals and if disrupted, ultimately triggers activation of the caspase-mediated 

apoptotic pathway (Langenbach and Rando, 2002).  The results presented here, concur 

with this theory since presumably dystroglycan depletion results in decreased ECM 
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binding, thus potentially disrupting the PI3K/AKT pathway and inducing apoptosis.  These 

results support a role for dystroglycan as an important modulator of signal transduction 

pathways and further research is required in order to understand the precise mechanisms 

linking dystroglycan to cell survival. 

 

DG - cells were transfected with DA and DN Rho-GTPase constructs to gain 

insight into how dystroglycan may be influencing cytoskeletal reorganisation.  The Rho 

GTPase proteins, RhoA, Rac1 and Cdc42 are crucial regulators of actin cytoskeletal 

dynamics.  Active RhoA induces the formation of stress fibres, active Rac1 induces 

lamellipodia formation and active Cdc42 induces filopodia protrusions (Nobes and Hall, 

1995).  Previous evidence has shown that dystroglycan is implicated in Cdc42-mediated 

filopodia formation and this was found to be dependent upon β-dystroglycan binding to the 

cytoskeletal linker protein, ezrin (Spence et al., 2004a).  Ezrin is known to bind to the 

GDP/GTP exchange factor (GEF), Dbl, which acts upon Cdc42 and Rho (Vanni et al., 

2004).  A recent study has shown that dystroglycan recruits an ezrin-Dbl complex to the 

cell periphery, where it interacts with active Cdc42.  Mislocalised truncated mutants of 

dystroglycan inhibited filopodia formation and this could be restored upon membrane 

targeting, suggesting that dystroglycan is essential for the correct localisation of ezrin and 

the Cdc42 activation machinery prior to filopodia formation (Batchelor et al., 2007).  In 

the present study, DG + cells transfected with a constitutively active Cdc42 construct 

produced an abundance of filopodia whereas DG - cells, transfected with the same 

construct, remained spread out and filopodia were only present in discrete patches that 

were sporadically located across the cell membrane (Section 4.2.14.1).  The finding that 

depletion of dystroglycan was sufficient to inhibit filopodia formation strengthens the 

existing argument that dystroglycan is fundamentally important for mediating Cdc42-
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dependent filopodia formation by recruiting essential components to the membrane.    

Interestingly, a similar result was exhibited by DG - cells transfected with active Rac1, 

since in DG + cells a complete lamellipodia formed around the periphery of the cell, 

whereas transfected DG - cells displayed an unusual morphology in which lamellipodial 

protrusions were produced in small sections of the membrane and appeared to be 

extending in opposite directions (Section 4.2.14.2).  This adds new complexity to the 

current understanding of the influence dystroglycan has on cytoskeletal dynamics, since 

Dbl is specific for Cdc42 and RhoA, this must be a consequence of the disruption of a 

different Rho GTPase signalling pathway.  One possible candidate is the PAK (P21-

activated kinase) pathway, which regulates processes such as cell motility and polarity 

(Bagrodia and Cerione, 1999) and is a downstream effector of Cdc42 and Rac1 (Manser et 

al., 1994).  These results suggest that perhaps residual dystroglycan is indirectly recruiting 

active Cdc42 and Rac1 and promoting cytoskeletal changes in localised patches of the cell 

membrane.  Active Cdc42 and Rac1 transfected cells displayed a more obvious phenotype 

than cells transfected with active RhoA, which in the presence of serum looked unaffected 

by the transfection (Section 4.2.14.3).  The addition of serum to growth medium has 

previously been shown to induce RhoA activation and stress fibre formation due to the 

presence of growth factors contained within the serum (Ridley and Hall, 1992).  Therefore 

in a second attempt to investigate the effect of dystroglycan deficiency on RhoA 

activation, cells were serum starved prior to transfection with DA RhoA.  This experiment 

did not, however, produce conclusive results due to a low transfection efficiency and high 

level of non-specific background fluorescence.  Further investigation is therefore required 

to produce more conclusive results on the effect of dystroglycan deficiency on RhoA 

activity, perhaps by using a different transfection technique.  Transfection of dominant 

negative Rho GTPase constructs did not induce a phenotype in either cell type, since DG + 
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and DG - cells morphology appeared unaltered.  This result was not surprising considering 

that unstimulated Swiss 3T3 cells do not display a prominent actin phenotype (Section 

4.2.14.4). 

 

Dystroglycan interacts with the ERM cytoskeletal linker protein, ezrin via a 

juxtamembrane binding site contained on the cytoplasmic tail of β-dystroglycan (Spence et 

al., 2004a).  The localisation of ezrin in DG - cells was investigated to determine if 

dystroglycan is critical for its membrane recruitment.  The results showed that that ezrin 

did not localise to the membrane in DG - cells, instead most of the staining was 

cytoplasmic with a large proportion in the perinuclear area, whereas, in DG + cells, ezrin 

localised to punctate spots at the tips of filopodia (Section 4.2.15).  This suggests that 

dystroglycan is important for the recruitment of ezrin to the membrane in fibroblast cells. 

Interestingly, the ezrin expression levels were found to be elevated in response to 

dystroglycan knockdown, which implies that mis-localisation leads to upregulation of the 

protein as a compensation mechanism.  This result was very interesting with respect to the 

relationship between dystroglycan and ezrin because published evidence has found that 

ezrin expression is upregulated in cancer cells, particularly those with high metastatic 

potential (Akisawa et al., 1999; Khanna et al., 2004; Yu et al., 2004), whereas 

dystroglycan expression has been shown to be reduced, or completely absent, in a number 

of cancer cell lines and primary tumours (Henry et al., 2001; Jing et al., 2004; Losasso et 

al., 2000; Muschler et al., 2002; Sgambato et al., 2003).  The significance of this is not yet 

fully understood, though what is clear is that reduced dystroglycan expression on the cell 

surface will undoubtedly influence the contacts between the ECM and cytoskeleton and 

disrupt intracellular signalling cascades, perhaps mediated through ezrin, which may 

eventually lead to the promotion of tumour metastasis.  
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 This study is the first to characterise the effects of dystroglycan deficiency on the 

cytoskeleton in fibroblast cells and has strengthened existing evidence that dystroglycan 

plays important roles within the cell in addition to its function as a structural molecule.  

The findings obtained during the course of this research were consistent with previous 

studies into dystroglycan deficiency in other cell types and support a role for dystroglycan 

in cell adhesion, filopodia formation, cell cycle progression and viability.  Additionally, 

this study has provided evidence to suggest that dystroglycan may also be involved in the 

function of Rac1 in lamellipodia formation.  Further research into dystroglycan is required 

in order to fully elucidate its multifaceted function within the cell, which may help us 

understand how these processes are deregulated in diseases such as muscular dystrophy 

and cancer. 
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Chapter 5 

Investigating dystroglycan localisation during cytokinesis  

5.1 Introduction 

Cytokinesis, the process by which a cell separates itself into two daughter cells, is the final 

stage of eukaryotic cell division.  Proper control of cytokinesis is vitally important to 

maintain the integrity of the cell, and for such separation to be successful, there must exist 

fine coordination between microtubules and the actin cytoskeleton.  Much of the 

knowledge surrounding cytokinesis has been obtained from studying the process in model 

organisms such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, Xenopus 

laevis and Drosophila melanogaster.  Because all work in the present study was carried 

out in cultured mammalian cells, however, mammalian cell cytokinesis will be reviewed 

briefly.  

Cytokinesis is the final stage of mitosis; a process by which replicated DNA is separated 

and divided into two identical daughter cells.  Mitosis consists of six distinct stages: 

prophase, prometaphase, metaphase, anaphase, telophase and finally cytokinesis.  During 

prophase, DNA condenses into chromosomes and microtubules start to form the mitotic 

spindle.  At prometaphase, the nuclear membrane is dissolved and microtubules attach to 

paired chromosomes through protein structures called kinetochores.  During metaphase the 

spindle microtubules align the paired chromosomes along the centre of the cell, termed the 

metaphase plate, which are then separated by the spindle and move to opposite poles of the 

cell at anaphase.  By telophase, separated chromatids have arrived at opposite at the 

spindle poles and new membranes form around daughter nuclei.  Cytokinesis, the ultimate 

separation and segregation of two daughter cells, commences at late telophase. 
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The process of cell separation is achieved by the concerted efforts of actin and 

myosin II, both of which are recruited to the cell midzone at late anaphase (Sanger et al., 

1989) to form an actomyosin contractile ring (Schroeder, 1970).  The contractile ring is 

closely associated with the plasma membrane and is assembled perpendicular to bundled 

microtubules, which lie along the long axis of the cell, thus ensuring correct orientation of 

the plane of cell division.  The Rho GTPase, RhoA, is the pivotal regulatory element 

controlling this process, and does so by influencing a number of crucial components either 

directly or through its numerous effectors (Reviewed in (Piekny et al., 2005)).  A restricted 

pool of RhoA is activated at the cell midzone by the RhoGEF, ECT2 (Tatsumoto et al., 

1999), which is associated with components of the central spindle, thus contributing to 

cleavage furrow site specification (Yuce et al., 2005).   The precise timing of the 

interactions between RhoA and ECT2 is thought to be regulated by the destruction of 

cyclins (Mishima et al., 2004). 

Active RhoA binds to the formin homology protein, mDia1, alleviating its 

autoinhibition (Alberts, 2001; Kato et al., 2001), which, in conjunction with profilin, 

nucleates the polymerisation of unbranched actin filaments to assemble the actomyosin 

contractile ring (Romero et al., 2004).  In addition, RhoA activates its effector Rho 

kinase/ROCK, which in turn phosphorylates myosin II on its regulatory light chain.  This 

phosphorylation allows myosin II to assemble into filaments (Amano et al., 1996) and  

Rho kinase/ROCK also inhibits the phosphatase that dephosphorylates myosin II (Kimura 

et al., 1996).  The motor activity of myosin II translocates bundled actin filaments, which 

drives the contractile ring to tighten, ultimately resulting in the ingression of the plasma 

membrane to form the cleavage furrow (Schroeder, 1970).  Furrowing of the membrane 

serves to push the mitotic spindle into a dense matrix consisting of spindle microtubules 

and associated proteins.  This structure, referred to as the midbody, is thought to maintain 
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the divide between the daughter cells prior to complete separation (Glotzer, 2001).  

Following complete membrane ingression, the cells remain connected by a thin, 

microtubule-rich cytoplasmic bridge, which is important for stabilisation during the final 

stages of cytokinesis.  Completion of cytokinesis requires midbody abscission and 

membrane remodelling to form two daughter cells (Figure 5.1).     

 

Figure 5.1:  Changes in the cytoskeleton during cytokinesis. A: Actin, myosin II and 
modulating proteins including polymerising machinery are recruited to the cleavage site, 
specified by mitotic spindle factors, and assemble the contractile ring. B: Myosin II motor 
activity forces contractile ring to ingress forming membrane furrow. C: After complete 
ingression, the contractile ring disassembles and midbody proteins associated with the 
mitotic spindle maintain segregation between daughter cells. D: Membrane fusion events 
complete cell separation. 
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Full understanding of the timing and regulatory mechanisms governing cytokinesis 

is still at the early stages and there are a number of key questions yet to be answered.  In 

particular; what structural components are required to stabilise the contractile ring and 

what links it to the plasma membrane?  A role for membrane glycoproteins, at the cleavage 

furrow has previously been identified and the interaction with ezrin/radixin/moesin (ERM) 

proteins is thought to be important (Po et al., 1999; Tsukita et al., 1994; Yonemura et al., 

1993).  The ERM family are cytoskeletal linker proteins that connect the cytoskeleton to 

the plasma membrane in a multitude of cellular structures such as membrane ruffles, 

adherens junctions and microvilli, and have also been shown to be involved in cytokinesis 

(Sato et al., 1991).   However, since the majority of research on the function of ERM 

protein and membrane glycoproteins at the cleavage furrow has been carried out on cells of 

the immune system, a universal structural component or mechanism has yet to be 

discovered.   

  In the present study, a possible role for the widely-expressed adhesion molecule, 

dystroglycan in cytokinesis was investigated by examining endogenous staining of 

dystroglycan and the localisation of several different fluorescently-tagged dystroglycan 

constructs in dividing cells.  This study proposes that dystroglycan forms part of a complex 

that tethers the actomyosin contractile ring to the plasma membrane and stabilises this 

interaction during cleavage furrow ingression.  The current body of work also leads us to 

question whether dystroglycan is acting as a scaffold to recruit upstream components of 

the contractile ring regulatory machinery. 
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5.2 Results 

5.2.1 Dystroglycan localises to the cleavage furrow and midbody of dividing Ref52 

fibroblasts 

In order to study the localisation of β-dystroglycan during cytokinesis, untreated Ref52 

fibroblasts were visualised by immunofluorescence staining with an anti-β-dystroglycan 

antibody.  Figure 5.2 (A) shows that, during interphase, β-dystroglycan staining is found 

throughout the membrane and co-localises with actin in membrane protrusions.  In 

contrast, cells undergoing cytokinesis exhibit a strong concentration of β-dystroglycan at 

the cleavage furrow (Figure 5.2 (B)) and in cells at later stages of division, once the 

cleavage furrow had further contracted, there was concentrated staining at the cell midbody 

(Figure 5.2 (C)).  These cells were also stained for filamentous-actin using rhodamine 

phalloidin and a strong band, likely corresponding to the contractile ring, co-localised with 

β-dystroglycan staining at the cleavage furrow and midbody.  This striking localisation 

suggests that dystroglycan is involved in cytokinesis and led to further investigation. 
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Figure 5.2: Endogenous dystroglycan localises to the cleavage furrow of Ref52 cells.  
Immunofluorescence images of fixed Ref52 fibroblasts stained for dystroglycan (green), 
actin (red phalloidin) and DNA (blue).  A: Ref52 cell during interphase.  Dystroglycan is 
expressed throughout the cell membrane and co-localises with actin in membrane 
protrusions (arrow, top panel).  B:  Dividing Ref52 cell in early telophase.  Dystroglycan 
co-localises with actin at the cleavage furrow (double arrowheads).  C: Dividing Ref52 cell 
in late telophase.  Dystroglycan co-localises with actin at the cell midbody once the 
cleavage furrow has contracted completely (arrow, bottom panel). Scale bar = 10 µm. 

5.2.2 Dystroglycan-GFP localises to the cleavage furrow of stably-expressing Swiss 3T3 

fibroblasts 

To further examine the localisation of dystroglycan in cytokinesis, Swiss 3T3 cells stably 

expressing full-length dystroglycan fused to a GFP tag (αβDG-GFP) were screened for 

dividing cells by fluorescent microscopy.  Cells undergoing cytokinesis were monitored by 

live-cell imaging.  As a control, Swiss 3T3 cells stably expressing GFP alone were 

analysed.  The lower panel of Figure 5.3 shows sequential images of a dividing Swiss 3T3 
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cell stably expressing αβDG-GFP, taken 1 minute apart.  As the cell progresses through 

cytokinesis, the fluorescence concentrates at the cleavage furrow and later in the midbody.  

In contrast, fluorescence is distributed throughout the cytoplasm and appears to be 

excluded from the cleavage furrow as the cell divides in the GFP control.  This suggests 

that dystroglycan is being recruited to the cleavage furrow during cell division. 

 

Figure 5.3:  Dystroglycan-GFP localises to the cleavage furrow of dividing Swiss 3T3 
cells.  Live cell imaging of dividing Swiss 3T3 fibroblasts stably transfected with GFP (top 

panel) or αβDG-GFP (bottom panel).  αβDG-GFP is localised to the cleavage furrow 
(double arrowheads, bottom panel) and the midbody (arrow, bottom panel), whereas GFP 
alone is excluded from this region (arrow, top panel).   Images were captured at 1 minute 
intervals.  n = 3 movies. Scale bar = 10 µm. 

5.2.3 Dystroglycan co-localises with ezrin in dividing Ref52 cells 

Earlier results suggest that dystroglycan is recruited to the cleavage furrow during 

cytokinesis and it has previously been shown in the literature that ERM proteins also 

localise to the cleavage furrow and are thought to be involved in linking the actin 

cytoskeleton to the plasma membrane during cell division (Sato et al., 1992; Sato et al., 

1991).  Since β-dystroglycan can interact with ezrin (Spence et al., 2004a), co-localisation 

of these two proteins during cytokinesis was investigated.  To achieve this, Ref52 cells 

were seeded onto glass coverslips overnight, then fixed and stained for endogenous β-

dystroglycan and ezrin.  Coverslips were screened for dividing cells using a fluorescent 

microscope.  According to Figure 5.4, β-dystroglycan and ezrin co-localise at the cleavage 
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furrow in the early stages (A) and at the midbody at later stages of cytokinesis (B - C).   

There was no bleedthrough between the fluorescence channels and this was controlled for 

by using a fluorescence microscope containing narrow band pass filters. 

 

 

 

 

 

 

 

Figure 5.4:  Dystroglycan co-localises with ezrin at the cleavage furrow.  Ref52 cells 

undergoing cytokinesis were stained for β-dystroglycan (red) and ezrin (green).  Nuclei 

were visualised by staining with DAPI (blue).  β-Dystroglycan and ezrin were found to co-
localise at the cleavage furrow (A) and midbody (B and C) (n = 10). Scale bar = 10 µm. 
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5.2.4 Investigating the localisation of dystroglycan-GFP constructs during cytokinesis 

The striking observation that dystroglycan is concentrated at the cleavage furrow and 

midbody during cytokinesis has been described thus far, however, the functional role of 

dystroglycan in cytokinesis is yet to be understood.  To address this, the cellular 

localisation of different GFP-tagged dystroglycan constructs (see Figure 5.5 and 

Appendices I and II) was investigated during cytokinesis.  An advantage of using GFP 

fusion proteins is that their localisation can be tracked using live cell imaging.  This is 

hugely beneficial for studying a dynamic process such as cytokinesis as it allows 

visualisation of the protein throughout the progression of cell division, as opposed to 

immuno-staining of fixed cells when only a single stage in the process can be captured. 

Within any population of transfected cells the level of GFP expression varied markedly 

from one cell to another.  Cells expressing the GFP-fusion proteins at high levels (i.e. cells 

emitting very bright fluorescence) for prolonged periods (> 24hours) were inviable due to 

the toxicity of the GFP-fusion.  These cells failed to divide and on close examination under 

the microscope, exhibited noticeable membrane blebbing, which is a hallmark of apoptosis 

(Kerr et al., 1972).  Therefore, high transfection efficiency was vital for the success of this 

study since it was necessary to find cells that were both expressing the fusion protein and 

undergoing cell division. Consequently, HeLa cells were preferentially used in this set of 

experiments because they could achieve a higher rate of transient transfection than Ref52 

or Swiss 3T3 cells.  Moreover, HeLa cells have been used in many studies on cell cycle 

and cytokinesis due to their rapid rate of cell division, ease of growth and symmetrical 

shape and were therefore considered to be a good choice of cell type for these experiments. 

For the purpose of this study, several attempts were made to synchronise cells in 

order to maximise the opportunity for visualising cytokinesis.  Initially, cells post-

transfection were first treated with the microtubule depolymerising drug, nocodazole, in 
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order to block the cells at the G2/M phase of the cell cycle.  In theory, following release 

from the block, all of the transfected cells should be preparing to undergo cytokinesis.  

However, this method was unsuccessful because, even after numerous modifications to the 

protocol such as varying the concentration of nocodazole and replating rounded up cells by 

mitotic shake-off, treated cells did not divide.  In a second attempt to synchronise the cells, 

a double thymidine block was carried out, prior to nocodazole arrest (from (Kimura et al., 

2000), see Methods Section 2.2.16.1).  In this case, although there appeared to be 

numerous rounded-up cells following treatment, they did not divide and there was a high 

degree of cell death, which may have been a consequence of the procedure, which exposed 

the cells to several toxic reagents within a short space of time.  Ultimately, the method 

used was simply to transfect the cells, leave them to recover overnight and subsequently 

screen the dish under the fluorescent microscope for dividing cells. Too much exposure to 

fluorescent light eventually resulted in cell death, but if transfected dividing cells were 

identified quickly, the localisation of the GFP-tagged dystroglycan could be studied. 

The dystroglycan-GFP constructs (αβDG-GFP, DG∆E-GFP , DG∆Cβ and Myr 

Cβ-GFP) used in this study have been previously characterised and shown to exhibit 

expected membrane targeted expression in several different mammalian cell lines 

(Batchelor et al., 2007; Chen et al., 2003; Spence et al., 2004a). 
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Figure 5.5: Schematic representation of the dystroglycan-GFP fusion constructs used in 

this study.  EGFP – empty vector; αβDG-GFP – Full-length dystroglycan fused to a C-

terminal GFP tag; DG∆E-GFP – Full-length dystroglycan containing a mutated ezrin-

binding site fused to GFP; DG∆Cβ-GFP – Truncation mutant of dystroglycan with the 

cytoplasmic tail deleted fused to GFP; Cβ-GFP – Cytoplasmic tail of β-dystroglycan fused 

to GFP; Myr Cβ-GFP – Cytoplasmic tail of β-dystroglycan containing an N-terminal 
myristoylation sequence fused to GFP; Myr-GFP – Myristoylation sequence of Lck fused 
to GFP. 
 

 
5.2.4.1 Dystroglycan-GFP localisation in dividing HeLa cells 

Earlier results have shown that the full-length dystroglycan-GFP construct (αβDG-GFP) 

localises to the cleavage furrow and midbody in stably expressing Swiss 3T3 cells (Section 

5.2.2), however, HeLa cells were found to be more reliable for transient transfection.  

Since all previous investigation has been undertaken using fibroblast cell lines, it was 

important to first investigate the localisation of αβDG-GFP in HeLa cells to confirm that 

this construct also localises to the cleavage furrow in epithelial cells.  HeLa cells were 

transiently transfected with αβDG-GFP and co-stained for α-tubulin and DNA.  

Transfected cells were then screened using fluorescence microscopy for cells undergoing 

cell division.  As shown in Figure 5.6, dystroglycan-GFP was localised strongly to the 

-GFP 

  -GFP 

-GFP 

ENG 

-GFP 

ss                 αααα                                 eββββ          tm       cββββ 

EGFP 

   ααααββββDG-GFP 

     DG∆∆∆∆E-GFP 

DG∆∆∆∆Cββββ-GFP 

-GFP cββββ Cββββ-GFP 

-GFP cββββ Myr - 

Myr - -GFP 

Myr Cββββ-GFP 

Myr-GFP 

ss                 αααα                                 eββββ          tm       cββββ 

ss                 αααα                                 eββββ          tm        

ss – signal sequence; αααα – α-dystroglycan; eββββ – extracellular β-dystroglycan; tm – 

transmembrane domain; cββββ – β-dystroglycan cytoplasmic domain; myr – myristoylation 
sequence of Lck. 



  Chapter 5: Investigating dystroglycan localisation 
during cytokinesis 

 131 

midbody of HeLa cells that were in the late stages of cytokinesis.  Co-staining of these 

cells for α-tubulin reveals that the strong localisation of dystroglycan-GFP corresponds to 

the point at which there is a gap between the microtubule bundles forming the central 

spindle, where the midbody protein complex is located. 

 

Figure 5.6: Dystroglycan-GFP is concentrated at the midbody in dividing HeLa cells.  

HeLa cells transfected with αβDG-GFP (green) were co-stained for α-tubulin (red) and 

DNA (blue).  Dystroglycan-GFP is concentrated strongly at the midbody, flanked by α-
tubulin (n = 5). Scale bar = 5 µm. 
 
Next, the progress of dividing cells was studied by live cell imaging.  Figure 5.7 shows 

dystroglycan-GFP strongly localising to the cleavage furrow during the early stages of 

division, after which the localisation is less restricted until late cytokinesis where it 

concentrates at the midbody.  This experiment confirms that dystroglycan localisation to 

the cleavage furrow is consistent in different cell types and it also showed that this new 

approach of imaging live transfected HeLa cells was successful and could be utilised to 

investigate the localisation of other dystroglycan-GFP constructs. 
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Figure 5.7: Dystroglycan-GFP localises to the cleavage furrow and midbody of dividing 

Hela cells.  Live cell imaging of a dividing HeLa cell transiently transfected with αβDG-
GFP.  Dystroglycan strongly localises to the cleavage furrow (double arrowheads) and 
later the midbody (arrow). Images were taken at 1 minute intervals (n = 4 movies).   
Scale bar = 5 µm. 
 

5.2.4.2 Myristolated-GFP does not localise to the cleavage furrow or midbody in dividing 

HeLa cells 

To ensure that the increased fluorescence at the cleavage furrow and midbody previously 

described, and attributed to dystroglycan concentration, was not due to concentration of the 

membrane at these points but shows genuine recruitment of dystroglycan, HeLa cells were 

transfected with a control GFP construct containing the N-terminal myristoylation 

sequence of Lck (MGCVCSS) which targets the protein to the plasma membrane.  This 

control differs from the previous GFP control (Section 5.2.2) because GFP is targeted to 

the plasma membrane.  Figure 5.8 (A) shows that in HeLa (i) and REF52 (ii) cells 

transfected with Myr-GFP, the construct is membrane localised and therefore correctly 

targeted.   Thus, if the cleavage furrow localisation was due to membrane density then this 

should also be evident in cells transfected with Myr-GFP.  According to Figure 5.8 (B), 

which shows a dividing cell transfected with Myr-GFP, this construct was excluded from 
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the cleavage furrow (Figure 5.8 B) and therefore the concentration of fluorescence 

observed in earlier experiments was not due to membrane density, but is attributed to 

genuine recruitment of dystroglycan. 

 

 
 
 

 
Figure 5.8: Myristoyl-tagged GFP does not localise to the cleavage furrow of dividing 
HeLa cells.  A:  Myristoyl-tagged GFP is correctly targeted to the membrane in transfected 
HeLa cells (i) and Ref52 cells (ii).  Myr-GFP can be seen at cell-cell junctions (i) and at 
the membrane surface (ii).  B: Live cell imaging of a dividing HeLa cell transiently 
transfected with myristoylated-GFP, which targets to the membrane.  Myr-GFP not only 
fails to localise to the cleavage furrow or midbody, but it acually appears to be excluded 
from these areas (arrow) (n = 4 movies).   Scale bar = 5 µm. 
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5.2.4.3 Dystroglycan requires its C-terminal cytoplasmic tail for cleavage furrow 

localisation 

The cytoplasmic tail of β-dystroglycan contains protein binding sites for many interacting 

proteins, including ezrin (discussed in Chapter 1). To determine whether this region is 

required for the localisation of dystroglycan during cytokinesis a dystroglycan-GFP 

construct with the cytoplasmic tail deleted (DG#C-GFP) was transfected into HeLa cells.  

If dystroglycan is recruited to the cleavage furrow at the start of cytokinesis by one of its 

cytoskeletal binding partners, perhaps ezrin, then it would require its cytoplasmic tail for 

its localisation.  By transfecting a truncated form of dystroglycan, it may be possible to 

determine if dystroglycan recruitment is dependent upon its cytoskeletal contacts.  Figure 

5.9 shows that DG#C-GFP did not accumulate specifically at the cleavage furrow or 

midbody of the dividing cell (compare with Figure 5.7), which suggests that dystroglycan 

requires cytoplasmic interactions for its localisation.    Cells transfected with DG∆C-GFP 

exhibited strong staining of the plasma membrane, which was more apparent than cells 

transfected with the other DG-GFP constructs.  A possible reason for this may be that, in 

the absence of the cytoplasmic domain, β-dystroglycan cannot be phosphorylated and/or 

turned over and is retained at the plasma membrane. 

 

Figure 5.9: Dystroglycan requires its cytoplasmic domain for cleavage furrow localisation.  
Live cell imaging of a dividing HeLa cell transiently transfected with DG#C-GFP.  This 
mutated protein does not accumulate at the cleavage furrow or midbody in these cells, 

suggesting that the cytoplasmic region of β-dystroglycan is essential for its localisation.  
Images were taken at 1 minute intervals (n = 8 movies).  Scale bar = 5 µm. 
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5.2.4.4 Expression of the cytoplasmic tail of β-dystroglycan  

Further investigations into the recruitment of dystroglycan to the cleavage furrow during 

cytokinesis were attempted by transfecting cells with a construct expressing only the 

cytoplasmic tail of β-dystroglycan, lacking the transmembrane domain, fused to GFP (Cβ-

GFP).  As shown in Figure 5.10 (A), in non-dividing Hela cells transfected with Cβ-GFP, 

the expressed protein does not localise to the membrane, but remains cytoplasmic and a 

high proportion of the expressed protein accumulates in the nucleus.   In this present study, 

no dividing HeLa cells expressing Cβ-GFP were observed, despite achieving ≥ 50% 

transfection efficiency.  A possible reason for this may be that by expressing the 

cytoplasmic domain of β-dystroglycan alone, it may be sequestering crucial factors away 

from the cleavage furrow and thus preventing cytokinesis. There was, however, no 

evidence of failure in cytokinesis, such as the presence of multinucleate cells.   

To further address this, cells were transfected with a Cβ-GFP construct containing 

an N-terminal myristoylation sequence, to target the protein to the membrane.  As shown 

in Figure 5.10 (B), Cβ-Myr is correctly targeted to the plasma membrane in transfected 

HeLa cells as it is clearly visible in surface filopodia. If the cytoplasmic tail alone 

sequesters cleavage furrow components away from the membrane, then this construct 

should allow for their membrane association, assuming that the β-dystroglycan 

cytoplasmic tail is sufficient for cleavage furrow localisation.  Unfortunately, the 

transfection efficiency of MyrCβ-GFP in HeLa cells was very low and no dividing cells 

expressing the protein could be found.   
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Figure 5.10: Myristoyl-tagged Cβ-GFP is correctly targeted to the plasma membrane.   

A: Hela cells transiently transfected with the cytoplasmic tail of β-dystroglycan fused to 
GFP (green) and stained for DNA (blue).  This construct is cytoplasmic and accumulates 

in the nucleus.  B: HeLa cells transiently transfected with the cytoplasmic tail of β-
dystroglycan containing a myristoyl tag fused to GFP.  This construct is membrane 
targeted and is visible in membrane surface protrusions.  Scale bar = 10 µm. 
 
5.2.4.5 Dystroglycan does not require ezrin binding for cleavage furrow localisation 

Previous data had suggested that dystroglycan accumulation at the cleavage furrow is 

modulated through the β-dystroglycan cytoplasmic tail, but we do not yet know what 

signals its recruitment.  A likely candidate is ezrin, since the ERM proteins are known to 

localise to the cleavage furrow (Sato et al., 1991).  One site responsible for ezrin binding is 

located on the cytoplasmic tail of β-dystroglycan and is dependent upon a group of basic 

residues at the juxtamembrane region (Spence et al., 2004a). To investigate whether ezrin-

binding is required for cleavage furrow localisation, HeLa cells were transfected with a 

dystroglycan-GFP construct in which these basic residues were mutated to prevent ezrin 
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from binding (DG#E GFP).  As shown in Figure 5.11, this mutant construct accumulates 

at the cleavage furrow in dividing cells, suggesting that ezrin binding is not essential for its 

localisation during cytokinesis.  This construct did not appear to concentrate at the 

midbody, which may indicate that ezrin-binding is required for maintaining dystroglycan 

localisation during the latter stages of cytokinesis.  This suggests that perhaps ezrin 

binding, although perhaps not essential for cleavage furrow recruitment of dystroglycan, 

may still play a role in this process. 

 

Figure 5.11: Dystroglycan does not require ezrin binding for cleavage furrow localisation.  
Live cell imaging of a dividing HeLa cell transiently transfected with DG#E GFP.  This 
mutated protein localises to the cleavage furrow of dividing cells (double arrowheads), 
though did not appear to accumulate at the midbody (arrow) (n = 4 movies).  Scale bar = 5 
µm. 
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5.3 Discussion 

Cytokinesis is a highly dynamic process that requires seamless coordination between the 

actin and microtubule networks.  However, many aspects of its mechanism are poorly 

understood.  For example, the proteins required by the actomyosin contractile ring at the 

cleavage furrow to fortify its structure and modulate its interactions with the mitotic 

spindle and the plasma membrane have not been extensively studied.   

In this chapter, the localisation of the widely expressed cell adhesion molecule, 

dystroglycan, during cell division was investigated.  This study provides evidence to show 

that dystroglycan accumulates at the cleavage furrow and midbody in fibroblasts and HeLa 

cells and that it co-localises with actin and ezrin during cytokinesis.  Also, by transiently 

transfecting cells with different mutated and truncated GFP constructs of dystroglycan, it 

was determined that localisation at the cleavage furrow requires the cytoplasmic domain of 

β-dystroglycan, but not the ability to bind to the ERM family member, ezrin.  However, it 

is speculated that ezrin binding may be required to maintain dystroglycan at the midbody 

during late cytokinesis. 

The accumulation of dystroglycan at the cleavage furrow, shown in this study by 

endogenous staining of dystroglycan (Figure 5.2) and expression of GFP-dystroglycan 

constructs in dividing fibroblasts (Figure 5.3) and HeLa cells (Figure 5.6-5.7), is highly 

plausible considering that several other membrane glycoproteins have previously been 

shown to accumulate there.  One such example is CD44, a widely-expressed heavily 

glycosylated transmembrane protein which was found to localise to the cleavage furrow in 

dividing BHK cells and mouse L fibroblasts (Tsukita et al., 1994).  Also, the membrane 

glycoprotein CD43, which is expressed on thymocytes and T-cells, accumulates at the 

cleavage furrow of dividing basophilic leukaemia cells (Yonemura et al., 1993) and the rat 

homologue of CD43 has been localised to the cleavage furrow of dividing rat thymocytes 
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(de Petris, 1984).  Dystroglycan shares several characteristics with both of these proteins in 

that they all contain a single transmembrane region, are heavily glycosylated and bind to 

ERM proteins through a positively charged cluster of residues at the juxta-membrane 

region (Legg and Isacke, 1998; Spence et al., 2004a; Yonemura et al., 1998).  This 

suggests that dystroglycan may share a common function with CD43 and CD44 at the 

cleavage furrow.   

Membrane glycoproteins are attractive candidates for the putative membrane 

anchor thought to link the contractile ring to the plasma membrane during cytokinesis, due 

to their location at the membrane and ability of the cytoplasmic tail to act as a scaffold for 

intracellular binding partners.  Other adhesion molecules found at the cleavage furrow are 

L-selectin (Po et al., 1999), leukocyte adhesion molecule-1 (Pilarski et al., 1991) and 

membrane immunoglobulins (de Petris, 1984).  Expression of these proteins is restricted to 

cells of the immune system, which may signify some functional redundancy between 

different cell types. 

The localisation of dystroglycan to the cleavage furrow in dividing HeLa cells was 

investigated by transient transfection of various dystroglycan-GFP constructs (Figure 5.5).  

Subsequent localisation of these constructs by live-cell imaging gave some insight into the 

possible function of dystroglycan during cytokinesis.   

To initially investigate the possibility that that the GFP-tag could be targeting 

dystroglycan to the cleavage furrow, the localisation of GFP was observed in dividing 

stable GFP-expressing Swiss 3T3 fibroblasts.  This was found not to be the case, since in 

dividing cells, GFP appeared to be excluded from the cleavage furrow (Figure 5.3).  This 

was also found to be the case in cells expressing GFP containing a myristoyl group, which 

targets the protein to the membrane (Figure 5.8).  This result indicates that the strong 

signal observed at the cleavage furrow in dystroglycan-GFP expressing cells is not due to 
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membrane density.  Moreover, specific immuno-staining showed that endogenous β-

dystroglycan localises to the cleavage furrow (Figure 5.2) and this cannot be attributed to 

GFP targeting. 

Expression of a truncated mutant of dystroglycan, lacking the cytoplasmic domain 

did not localise to the cleavage furrow of dividing HeLa cells, suggesting that this region is 

essential for its accumulation (Figure 5.9).  The β-dystroglycan cytoplasmic domain 

contains many protein-protein interaction domains including the ezrin-binding site.   

Previous studies investigating the localisation of CD43 showed that the region required for 

cleavage furrow localisation was the first half of the cytoplasmic domain adjacent to the 

transmembrane region.  The authors speculated that this domain may be expressed in other 

membrane proteins which would explain why cells lacking CD43 could divide (Yonemura 

et al., 1993).  This same argument could be used to explain why cells expressing truncated 

dystroglycan did not fail in cytokinesis. 

   Previous studies have shown that CD43 and CD44 co-localise with ERM family 

members, ezrin, radixin and moesin at the cleavage furrow (Tsukita et al., 1994; Yonemura 

et al., 1993).  The ERM proteins are cytoskeletal cross-linkers that are members of the 

Band 4.1 superfamily of proteins.  ERM proteins link the actin cytoskeleton to the plasma 

membrane through interaction with transmembrane receptors and are involved in 

mediating cytoskeletal reorganisation.  Radixin was the first of the ERM proteins to be 

observed at the cleavage furrow in mammalian cells (Sato et al., 1991) but since the ERM 

family proteins are highly homologous (Funayama et al., 1991; Gould et al., 1989; Lankes 

and Furthmayr, 1991; Turunen et al., 1989), it is now accepted that ezrin and moesin also 

localise to the cleavage furrow (Sato et al., 1992).  This has been confirmed in the present 

study by distinctive staining of ezrin at the cleavage furrow and midbody which co-

localised with dystroglycan (Figure 5.4).  Since the ERM proteins are able to bind directly 
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to actin filaments (Turunen et al., 1994), they are likely to function in tethering the 

cytoskeleton to transmembrane receptors, such as dystroglycan at the plasma membrane 

during furrow ingression.   

ERM proteins and CD43 have been localised specifically to small actin-rich 

protrusions called microvilli within the cleavage furrow and it has been determined that in 

thymocytes and basophilic leukaemia cells there was an increase in microvilli at the 

cleavage furrow compared to the rest of the cell (Yonemura et al., 1993).  However, this 

observation was not consistent with earlier studies undertaken in mastocytoma and PtK2 

cells (Knutton et al., 1975; Sanger et al., 1984).  The function of microvilli at the cleavage 

furrow has not been extensively studied, although after the initial discovery it was thought 

that their role was to increase the membrane surface area and thus physically unfold 

enough membrane to create two cells from a single cell (Knutton et al., 1975).  With 

current understanding of the terminal stages of cytokinesis during which new membrane 

insertion is critical, this early hypothesis may actually be fairly accurate (Reviewed in 

(Finger and White, 2002)).   

The formation of actin-rich membrane protrusions is mediated through activation 

of the Rho-family GTPase, Cdc42.  Dystroglycan has recently been found to be involved 

in mediating changes in the actin cytoskeleton that induce the formation of filopodia and 

microvilli (Chen et al., 2003) in an ezrin- and Cdc42-dependent manner (Spence et al., 

2004a).  These structures are highly dynamic and are important for many processes 

including cell movement and axon guidance (Nobes and Hall, 1995).  Most recently, it has 

been shown that dystroglycan recruits a complex containing ezrin and the Rho GDP/GTP 

exchange factor (GEF), Dbl, which activates both Rho and Cdc42 GTPases (Batchelor et 

al., 2007).  Taken together, this evidence adds new complexity to the possible function of 

dystroglycan in the cleavage furrow because it may act as a scaffolding molecule to recruit 
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a complex containing ezrin and Dbl to the membrane, in order to induce the formation of 

membrane protrusions and thus contribute towards termination of cytokinesis.  

The cytoplasmic domain of β-dystroglycan contains binding sites for multiple 

interacting proteins and is essential for correct functionality of the protein.  In this study, 

HeLa cells were transfected with the cytoplasmic domain alone, lacking the 

transmembrane domain, fused to GFP (Cβ-GFP) in order to investigate its effect on 

cytokinesis.  Fibroblasts transfected with Cβ-GFP were previously shown to have a 

significantly reduced number of filopodia, compared to cells expressing the full-length 

protein (Chen et al., 2003).  This was thought to be due to the Cβ-GFP construct, which 

remains cytoplasmic, sequestering important factors such as ezrin away from the 

membrane (Spence et al., 2004a).  This may also explain the lack of dividing cells in the 

Cβ-GFP-expressing population in the present study (see section 5.2.4.4).  Functional 

redundancy by other membrane glycoproteins may be overridden if the cytoplasmic 

domain is sequestering effector proteins required for cytokinesis.  There is evidence in the 

literature that a similar effect occurs during the expression of truncated ERM proteins.  For 

example, when the C-terminal domain of radixin is expressed in NIH 3T3 cells, it does not 

localise to the cleavage furrow, but produces a multinucleate phenotype and it is thought 

that this domain may sequester components required for F-actin formation and indirectly 

affect cytokinesis (Henry et al., 1995).  Also, the overexpression of the C-terminal domain 

of drosophila moesin in S.pombe produces multinucleate cells (Edwards et al., 1994).  

There was no noticeable increase in multinucleate cells after transfection with Cβ-GFP in 

the present study, although this possibility has not yet been fully investigated.  Perhaps, 

since the transfected cells were analysed very quickly following transfection, they had not 

yet been expressing the protein for long enough to show an obvious multinucleate 
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phenotype.  Alternatively, Cβ-GFP may be sequestering factors required for an earlier 

stage in cell division and as a result the process is halted prior to nuclear division. 

Hela cells were transfected with a construct encoding the C-terminal cytoplasmic 

tail tagged with a myristoyl group (MyrCβ-GFP) to investigate if membrane relocation 

could rescue the apparent cytokinesis defect in Cβ-GFP-expressing cells (Figure 5.10).  

Also, by observing the localisation of MyrCβ-GFP during cytokinesis, it may indicate 

whether any outside signalling is required for dystroglycan recruitment to the cleavage 

furrow.  Unfortunately, the localisation of this MyrCβ-GFP could not be determined due to 

a very low transfection ratio.  However, studies investigating CD43 localisation during 

cytokinesis have shown that outside-in signalling was not required and the C-terminal 

domain was both necessary and sufficient for its localisation to the cleavage furrow 

(Yonemura et al., 1993). 

Dystroglycan containing a mutated ezrin binding site (DG∆E) was found to localise 

to the cleavage furrow (Figure 5.11), which suggests that ezrin binding is not required for 

cleavage furrow localisation.  However, this does not necessarily mean that there is no 

interaction between these proteins at the cleavage furrow; just that ezrin does not recruit 

dystroglycan.  This is consistent with previous data which showed that dystroglycan 

recruits ezrin to filopodia (Spence et al., 2004a).  Localisation studies using truncated 

mutants of CD43 carried out in leukocytes, showed that the first half of the cytoplasmic 

region (i.e. closest to the membrane and containing the ERM binding region) was 

sufficient for cleavage furrow localisation (Yonemura et al., 1993).  It is important to 

consider that the CD43 study was carried out prior to the identification of the ERM-

binding site and the entire first half of the cytoplasmic domain was expressed.  Since the 

mutant construct used in the present study contained a specific mutation in the ERM-

binding site, this promotes the notion that another factor must be involved in order to 
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signal the recruitment of dystroglycan to the cleavage furrow, perhaps mediated through 

ligand binding to α-dystroglycan on the outer surface of the membrane.  Furthermore, 

expression of DG∆E did not result in failure of the cells to complete cytokinesis.  This can 

be explained by the possibility that other transmembrane glycoproteins, such as CD44, 

may be functioning redundantly.  Surprisingly, unlike full-length dystroglycan, DG∆E did 

not appear to localise to the midbody (Figure 5.11), which suggests that ezrin is required to 

maintain dystroglycan at the cleavage furrow.  Perhaps ezrin-binding masks a proteolytic 

cleavage site and at some point between furrow ingression and midbody formation, 

dystroglycan is vulnerable to proteolytic enzymes, such as matrix metalloproteinases 

(MMPs).  A cleavage site recognised by MMPs has previously been identified on the 

extracellular portion of β-dystroglycan (Yamada et al., 2001), which suggests that it is 

sensitive to degradation in some circumstances. 

The analysis of synchronised DG - cells by flow cytometry suggested that there 

was an accumulation of cells in S-phase resulting in a slower progression through the cell 

cycle than the control population (See Section 4.2.11).  Also, by Annexin V assay, it was 

shown that there was an increase in apoptotic cells in the DG - population (Section 

4.2.12)).  An increase in apoptotic cells has also been reported in other dystroglycan 

knockdown studies involving myotubes (Montanaro et al., 1999) and mouse mammary 

epithelial cells (Sgambato et al., 2006).  If dystroglycan is a fundamental component of the 

complex required for structural stability of the contractile ring-plasma membrane interface 

and the recruitment of components required for microvilli formation at the cleavage 

furrow, then perhaps other membrane glycoproteins cannot function efficiently in the 

absence of dystroglycan.  This could possibly explain the increased incidence of apoptosis 

observed in DG - cells.  Furthermore, β-Dystroglycan expression levels have been reported 

to dramatically change in synchronised cultures of murine mammary epithelial cells and 
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bovine aortic endothelial cells as they progress through the cell cycle (Hosokawa et al., 

2002; Sgambato et al., 2006).  This also supports a possible role for dystroglycan in 

cytokinesis.   

In conclusion, the data presented in this chapter provides evidence that 

dystroglycan accumulates at the cleavage furrow of dividing cells.  Cleavage furrow 

localisation was shown to be dependant upon the cytoplasmic tail of β-dystroglycan but 

not the ability to bind the ERM family member, ezrin.  The interaction with ezrin may 

however be important for retention of dystroglycan at the midbody during the final stages 

of cytokinesis.  These findings suggest that dystroglycan plays a role in cytokinesis, 

possibly as a component of a membrane complex that tethers the actin cytoskeleton to the 

plasma membrane and/or a scaffolding molecule for upstream components of cleavage 

furrow signalling pathways.  A proposed model for the function of dystroglycan at the 

cleavage furrow is illustrated in Figure 5.12.  This study has opened up new avenues of 

investigation into the function of dystroglycan and more research will be required to fully 

elucidate its role during cytokinesis. 
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Figure 5.12:  Model of dystroglycan function at the cleavage furrow.  (i): β-Dystroglycan 
localises to the site of furrow ingression ((a) and (c)) and requires its cytoplasmic tail 

region for this localisation (b).  (ii): β-Dystroglycan does not require ezrin binding for 
cleavage furrow localisation (c), but perhaps recruits ezrin and requires this interaction for 

its function at the cleavage furrow (a).  (iii): The β-dystroglycan-ezrin complex tethers the 
actomyosin contractile ring to the cell membrane during cleavage furrow ingression.  
P/M = plasma membrane. 
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Chapter 6 

Final Discussion 

Dystroglycan is a widely expressed cell adhesion molecule comprising two subunits, α-

dystroglycan (peripheral membrane protein) and β-dystroglycan (transmembrane protein) 

that links the actin cytoskeleton to the extracellular matrix (Ervasti and Campbell, 1993; 

Ibraghimov-Beskrovnaya et al., 1992).  Dystroglycan provides an important structural link 

tethering the cell to the surrounding matrix and is pivotal in maintaining tissue integrity. 

Dystroglycan is now known to also have important functions out with its structural role, as 

a receptor for extracellular binding partners and a regulator of intracellular signal 

transduction.  Much research has focussed on the role of dystroglycan in development and 

disease, whereas relatively little is known about how dystroglycan functions at the cellular 

level.  β-Dystroglycan has been shown to interact with a whole host of cytosolic and 

cytoskeletal binding partners, many of which are involved in signal transduction, 

suggesting that dystroglycan may be involved in regulating fundamental cellular processes 

such as proliferation, motility and cytoskeletal rearrangements.  However, the mechanisms 

by which dystroglycan regulates these intracellular interactions and the downstream effects 

are just starting to be elucidated.  The aim of this study was to build on current 

understanding of dystroglycan function at the cellular level by generating dystroglycan 

deficient fibroblasts and characterising their phenotype, with particular emphasis on how 

the cytoskeleton is affected. 

Complete targeted disruption of the dystroglycan gene in mice resulted in 

embryonic lethality (Williamson et al., 1997) and as a consequence other methods to study 

dystroglycan deficiency were developed.  One group used dystroglycan null ES cells to 

generate dystroglycan chimaeric mice, which had skeletal muscles effectively devoid of 



  Chapter 6: Final Discussion 

 149 

dystroglycan expression (Cote et al., 1999).  In this study, two different approaches were 

made to create dystroglycan deficient fibroblasts.  In the first method, the dystroglycan 

null ES cells used to generate dystroglycan chimaeric mice (Cote et al., 1999) were 

differentiated into an immortal fibroblast cell line (Section 3.2.1).  Further analysis of these 

cells was, however, abandoned following the discovery that they were, in fact, expressing 

dystroglycan (Section 3.2.3).  Possible explanations for this were thoroughly investigated, 

such as the possibility that dystroglycan expression could be re-initiated following gene 

disruption (Section 3.2.4).  However, it was confirmed using genomic PCR that the cells 

did not contain the gene targeted cassette (Section 3.2.6).  Further investigation into how 

these cells did come to express dystroglycan was not considered to be worthwhile and 

consequently another method to generate dystroglycan deficient fibroblasts was employed. 

Dystroglycan knockdown fibroblasts were produced by RNAi, in which the 

dystroglycan expression level was reduced by > 60 % (Sections 4.2.1 - 4.2.2).  This level 

of knockdown was a possible limitation since residual dystroglycan expression may be 

adequate for many cellular processes in which dystroglycan is involved.  Nonetheless, the 

resultant cells were significantly altered when compared to control cells, which suggests 

that this level of knockdown was sufficient to study dystroglycan deficiency.  Other groups 

have reported a reduction in dystroglycan expression of ~80 - 90% different cell lines 

during transient expression of shRNA constructs (Jones et al.; Montanaro et al., 1999; 

Sgambato et al., 2006).  Interestingly, in this study dystroglycan expression was found to 

be decreased by ~80% shortly after retroviral infection of the shRNA construct, but this 

level of knockdown could not be maintained in a stable cell line.  Together, these results 

suggest that perhaps there is a limiting threshold level of dystroglycan expression required 

for cell survival.   
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The cytoplasmic tail region of β-dystroglycan associates with the actin 

cytoskeleton via binding partners such as utrophin (James et al., 1996) and has also been 

found to associate with F-actin directly (Chen et al., 2003).  Dystroglycan localises to areas 

of close association between the actin-rich structures and the plasma membrane, for 

example focal adhesions (Belkin and Smalheiser, 1996; James et al., 1996) and membrane 

protrusions (Spence et al., 2004a) and, in view of this, it is reasonable to suppose that 

depletion of dystroglycan may have some detrimental effects on the actin cytoskeleton.  

Dystroglycan deficient fibroblasts were found to be less than 50% smaller in area than 

control cells and this was thought to be a consequence of the cell inability to spread 

effectively onto the substrate (Section 4.2.3).  This hypothesis was supported by the results 

obtained from analysing the quantity and size of vinculin-containing focal adhesions, 

which showed that dystroglycan deficient fibroblasts contained less focal adhesions per 

cell area than control cells and there was also found to be a slight decrease in the number 

of mature focal adhesions (Section 4.2.4). Interestingly, similar characteristics have been 

reported in cells deficient in focal adhesion proteins, such as fibroblasts isolated from 

vinculin null mice, which were found to be less spread than control cells (Xu et al., 1998).  

Dystroglycan has been localised to the area surrounding classical vinculin-rich focal 

adhesions (James et al., 1996) and it is therefore interesting that, in this study, there were 

less focal adhesions in dystroglycan-deficient cells, suggesting perhaps that dystroglycan is 

required for their formation and/or maintaining their stability.  Focal adhesion assembly 

and disassembly is regulated by tyrosine phosphorylation (Burridge and Chrzanowska-

Wodnicka, 1996) and the phosphorylation of a tyrosine residue on the cytoplasmic tail of 

β-dystroglycan has been shown to be adhesion-dependent (James et al., 2000).  Together, 

these results strongly suggest that dystroglycan is involved in the regulation of focal 
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adhesion assembly; however, further investigation is required to provide better 

understanding of the mechanisms by which this occurs.   

  To assess whether dystroglycan deficiency had any effect on the organisation of 

the F-actin network, dystroglycan deficient fibroblasts stained for F-actin were analysed by 

fluorescence microscopy.  The fluorescent intensity of the F-actin appeared reduced in 

comparison to control cells, however there was no apparent reduction in F-actin content as 

determined by biochemical assay (Section 4.2.5).  Further confirmation of this 

quantification could be carried out by staining cells with enough rhodamine-phalloidin to 

saturate the binding of F-actin before measuring the fluorescent intensity, which may be a 

more accurate measure of F-actin concentration (Cooper, 1987).  An alternative possibility 

for the reduction in fluorescent intensity is perhaps that dystroglycan deficient cells have a 

reduction in bundled actin filaments, since the fluorescent intensity of phalloidin-stained F-

actin increases when actin filaments are very close together.  Dystroglycan has been shown 

to have F-actin bundling activity in vitro and to be involved in formation of filopodia, 

which are composed of bundled actin filaments (Chen et al., 2003) and the results obtained 

in this study suggest that dystroglycan may be involved in bundling actin filaments, 

perhaps by anchoring actin stress fibres to the membrane at focal adhesion complexes.  

Further investigation is required to confirm these findings; in particular it would be 

interesting to see if re-expression of dystroglycan in dystroglycan deficient cells was 

sufficient to increase the fluorescent intensity of phalloidin staining to normal levels. 

Dystroglycan has recently been implicated in the formation of filopodial membrane 

protrusions by recruiting upstream components of the Cdc42 pathway to the plasma 

membrane resulting in localised activation of Cdc42, which was found to be dependent on 

dystroglycan binding to the cytoskeletal linker protein, ezrin (Batchelor et al., 2007; Chen 

et al., 2003; Spence et al., 2004a).  The results presented here strengthen this evidence 
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because the ability of dystroglycan deficient fibroblasts to induce filopodia in response to 

dominant active Cdc42 was found to be inhibited (Section 4.2.14.1).  Further confirmation 

of this result could be achieved by repeating this analysis following re-expression of 

dystroglycan in dystroglycan deficient cells.  In addition, this investigation has generated 

new questions about how dystroglycan could be involved upstream of Rho GTPase 

signalling pathways since lamellipodia formation was inhibited in dystroglycan deficient 

cells in response to dominant active Rac1, suggesting that dystroglycan may also be 

regulating upstream components of the Rac1 pathway (Section 4.2.14.2).  A previous study 

carried out in rat skeletal muscle subjected to atrophy, in which DGC components are 

depleted, found that Rac1 activity in these cells was reduced (Chockalingam et al., 2002).  

A recent study, also in muscle cells, found that binding of laminin-1 to α-dystroglycan 

initiated the tyrosine phosphorylation of syntrophin allowing it to bind to Grb2, which 

activates Sos1, which in turn activates the Rac1 pathway (Zhou et al., 2006).  Results 

obtained in this current study provided the first evidence to suggest that dystroglycan 

mediates Rac1 signalling in non-muscle cells and further investigation is required to 

determine the intermediate components linking dystroglycan to Rac1 signalling in 

fibroblasts.  This study also aimed to determine whether dystroglycan deficiency affected 

RhoA activity, however conclusive evidence could not be obtained due to low expression 

of the dominant active RhoA construct (Section 4.2.14.3).  Optimisation of the transfection 

conditions, for example by varying the DNA concentration and the length of exposure to 

the transfection media, may improve the transfection efficiency.  Low expression of the 

dominant negative Rho GTPase constructs also resulted in inconclusive results, but in 

hindsight the expression of any of these constructs was unlikely to affect cell morphology 

in unstimulated cells (Section 4.2.14.4).  Dominant negative Rho GTPases were found to 

inhibit the cytoskeletal rearrangements induced by the addition of growth factors (Nobes 
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and Hall, 1995; Ridley and Hall, 1992), but since dystroglycan mediates interactions 

upstream in the signalling pathway, stimulation of dystroglycan deficient cells prior to 

transfection with dominant negative Rho GTPases is unlikely to give any information 

about its function. 

Dystroglycan binds to the cytoskeletal linker protein, ezrin and this interaction is 

known to be important for the ability of dystroglycan to mediate Cdc42-dependent 

filopodia formation (Spence et al., 2004a).  The expression level and localisation of ezrin 

was investigated in dystroglycan deficient cells to gain further insight into the correlation 

between them.  Interestingly, ezrin appeared to be upregulated in dystroglycan deficient 

cells but there appeared to be an increased cytoplasmic localisation and decreased 

localisation at the plasma membrane (Section 4.2.15). This suggests that perhaps the 

absence of dystroglycan reduces the recruitment of ezrin to the membrane and ezrin 

expression is upregulated as a compensatory mechanism.  However, this result is 

unexpected because ezrin interacts with membrane proteins other than dystroglycan 

(Yonemura et al., 1998), so would presumably still be able to localise to the membrane.  

More detailed analysis of ezrin localisation and expression in dystroglycan deficient cells 

is required to further investigate the relationahip between dystroglycan and ezrin.. 

Dystroglycan has been shown to be important for epithelial polarisation in the 

Drosophila oocyte and in mammary epithelial cells (Deng et al., 2003; Muschler et al., 

2002; Schneider et al., 2006).  This coupled with recent evidence to suggest that 

dystroglycan functions upstream of the Cdc42 pathway, which is a key player in 

establishing cell polarity (Etienne-Manneville, 2004), suggests that dystroglycan may have 

a general role in cell polarity determination.  This was investigated in dystroglycan-

deficient fibroblasts by assessing their ability to polarise and move towards a wound.  

Results obtained from this study found that dystroglycan-deficient fibroblasts were not 
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defective in their ability to polarise or move towards a wound suggesting that dystroglycan 

is not essential for maintaining fibroblast cell polarity, otherwise residual dystroglycan 

expression or functional redundancy with other adhesion molecules may be the reason that 

there was no obvious polarity defect in dystroglycan deficient cells (Sections 4.2.6 - 4.2.7).   

Other studies investigating dystroglycan deficiency in mouse mammary epithelial 

cells (Sgambato et al., 2006), muscle myotubes (Montanaro et al., 1999) and Xenopus 

retina (Lunardi et al., 2006) have reported an increased incidence of apoptosis compared to 

their normal counterparts and it has also been proposed that dystroglycan is involved in 

maintaining cell survival signals in muscle cells (Langenbach and Rando, 2002).  In the 

present study, dystroglycan deficient fibroblasts were found to have a decrease in total 

ERK1/2 expression levels (Section 4.2.13).  Since the ERK-MAP kinase signalling 

pathway produces cell survival signals, this data is in agreement with the results obtained 

by Langenbach et al, however further investigation is required to determine the expression 

levels of active ERK in DG - cells.  The data presented here provides the first evidence that 

dystroglycan deficiency causes increased apoptosis in fibroblasts, which suggests that 

dystroglycan may have an important function in maintaining cell survival signals in a 

variety of cell types (Section 4.2.12-13). 

This study has shown that dystroglycan accumulates at the cleavage furrow in 

dividing Ref52 fibroblasts (Section 5.2.1).  Moreover, dystroglycan was found to co-

localise with its binding partner ezrin at the cleavage furrow (Section 5.2.3), a protein that 

has previously been shown to localise there (Sato et al., 1992).  Further investigation using 

HeLa cells transfected with different dystroglycan-GFP constructs revealed that 

dystroglycan requires its cytoplasmic tail region for localisation, but it was not dependent 

upon its ability to bind to ezrin (Section 5.2.4).  The requirement of the extracellular region 

of dystroglycan for cleavage furrow localisation could not be assessed due to low 
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transfection efficiency of the construct in HeLa cells, but this would be a valuable piece of 

data to gather in the future.  Studies involving CD43, another transmembrane glycoprotein 

that localises to the cleavage furrow found that the extracellular portion of the protein was 

not required for its localisation (Yonemura et al., 1993), which may also be the case for 

dystroglycan.   A possible role for dystroglycan in cytokinesis may be as a membrane 

tether to link the actin contractile ring to the membrane during furrow ingression.  This 

finding draws new light on the observation that dystroglycan expression levels fluctuate as 

cells passed through the cell cycle (Hosokawa et al., 2002; Sgambato et al., 2006), since it 

offers a possible reason as to why dystroglycan expression may be cell cycle regulated.  In 

this study, dystroglycan deficient fibroblasts did not exhibit an obvious defect in 

cytokinesis since there was no increase in multinucleate cells or reduction in mitotic index 

(Sections 4.2.9 - 4.2.10).  A possible reason for this may be that other membrane proteins 

were functioning redundantly or that residual dystroglycan was adequate for correct 

cytokinesis to occur.  Dystroglycan deficient cells did, however, show an altered cell cycle 

profile in which cells appeared to accumulate in S-phase for several hours, whereas control 

cells did not (Section 4.2.11).  Due to incomplete synchronisation of the cell cultures, this 

experiment needs to be repeated to give more conclusive results.  Interestingly, S-phase 

accumulation had also been reported in another study in which dystroglycan expression 

was depleted (Sgambato et al., 2006).  Any relationship between these observations and 

the function of dystroglycan at the cleavage furrow warrants further investigation as it will 

provide valuable insight into the role of dystroglycan in cell cycle progression.  The 

evidence presented here strongly suggests that dystroglycan is involved in cytokinesis and 

future research will be required to elucidate the mechanisms by which this occurs.  In order 

to continue with this investigation, the experimental conditions need to be optimised to 

improve the rate of cell survival following transfection, for example it would be beneficial 
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to carry out live cell imaging inside a microscope incubation chamber.  One way in which 

this could be achieved would be to re-clone the dystroglycan constructs into vectors 

expressing fluorescent tags that are less toxic to the cells than GFP.  In this study, cells 

were removed from the incubator to carry out their analysis which meant that there was 

limited time to capture dividing cells since cell survival outside the incubator was short-

lived.   

This study explored the effects of dystroglycan deficiency in fibroblasts and the 

data presented here contributes to our understanding of the function of this protein at the 

cellular level.  To follow on from this research, it would be interesting to see if re-

introduction of dystroglycan into dystroglycan deficient fibroblasts could rescue any of the 

phenotypes caused by dystroglycan depletion.  Since the shRNA expressed by 

dystroglycan deficient fibroblasts is directed towards mouse DAG1, re-expression would 

need to be carried out using the dystroglycan gene from a different species.  A rescue of 

dystroglycan expression in DG - cells was attempted by transfecting cells with DG-GFP, 

however expression very low, possibly because this is a mouse gene and was also 

downregulated by the constitutively expressed shRNA.  A further rescue attempt was made 

using full-length chick dystroglycan expressed in pCMV-Tag1, which was thought to be 

sufficiently altered from the mouse gene so that it was not affected by shRNA knockdown.  

This construct unfortunately had very low tranfection efficiency in DG - cells and therefore 

could not be used to rescue dystroglycan expression.   A drawback to using RNAi 

mediated dystroglycan depletion was that a complete knockdown was not achieved and 

there is the possibility that residual dystroglycan expression may mask any phenotype that 

would otherwise be seen in a complete knockout system.  Although in this study a higher 

level of dystroglycan knockdown could not be maintained in a stable cell line, it would 
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perhaps be beneficial to study fibroblasts that were transiently transfected with siRNA 

constructs to see if a greater level of knockdown could be attained. 

 Following on from the evidence to suggest that ezrin expression was upregulated in 

dystroglycan deficient cells, it may also be interesting to investigate the expression levels 

and localisation of other dystroglycan-associated proteins, such as utrophin.  This 

information may help to explain some of the phenotypes observed in dystroglycan 

deficient cells and could lead to further elucidation of the signalling pathways in which 

dystroglycan is involved. 

 Further investigation into the role of dystroglycan at the cleavage furrow would 

benefit from high resolution imaging and optimisation of the transfection procedure.  Re-

cloning of the GFP construct encoding the cytoplasmic domain containing a membrane 

targeting sequence would be advantageous because its localisation to the cleavage furrow 

would tell us whether outside signalling is required for this localisation.  The identification 

of dystroglycan binding partners at the cleavage furrow perhaps by isolation of midbody 

fractions may help to explain its function during cell division. 

In conclusion, this study has enhanced our knowledge of dystroglycan function at 

the cellular level and identified possible new roles for dystroglycan.  Future research into 

the numerous signal transduction pathways that dystroglycan has been linked to will 

provide further understanding of the very important role that dystroglycan plays within the 

cell and this may lead to new insights into how these processes are deregulated in muscular 

dystrophy and during cancer progression. 
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Appendix I: Plasmid Maps 

 
Figure A:  The dystroglycan shRNA construct was generates as described in Methods 
Section 2.2.7 and the “Knockout RNAi Systems User manual” (Clontech).  
Complimentary annealed oligonucleotides were ligated directly into the BamH I and EcoR 
I sites of the pSIREN retroviral vector (Clontech). 
 
The oligonucleotides sequences used to generate shRNA constructs were: 
 
DG Antisense: 
Top Strand 
5’GAT CCA ACT ACC ACA ACT CGG AGG CCT TCA AGA GAG GCC TCC GAG 
TTG TGG TAG TTT TTT 
Bottom Strand 
5’AAT TCA AAA AAA ACT ACC ACA ACT CGG AGG CCT CTC TTG AAG GCC 
TCC GAG TTG TGG TAG TTG 
 
DG Sense: 
Top Strand 
5’GAT CCG TTG ATG GTG TTG AGC CTC CGG TTC AAG AGA CCG GAG GCT 
CAA CAC CAT CAA TTT TTT G 
Bottom Strand 
5’AAT TCA AAA AAT TGA TGG TGT TGA GCC TCC GGT CTC TTG AAC CGG 
AGG CTC AAC ACC ATC AAC G 
 
Anneal Control 
Top Strand: 
5’GAT CCG TGC GCT GCT GGT GCC AAC TTC AAG AGA TTT TTT GCT AGC G 
Bottom Strand 
5’GCA CGC AAC GAT CAT GGT TGA AGT TCT CTA AAA AAC GAT CGC TTA A 
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Figure B:  The Cβ-GFP construct was generated by amplification of the cytoplasmic 

domain of β-dystroglycan by PCR from αβDG-GFP using the following primers; 
5’TTGCTCGAGATGTATCGCAAGAAGAGGAAGGGC and 
5’GATCCCGGGCCAGGGGGAACATACGGAGGGGGTGA and cloned into the TOPO 
vector, pCR4 (Invitrogen).  The cytoplasmic domain insert was then sub-cloned into the 
Xho I and Sma I sites of pEGFP-N3. 
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Appendix II: DNA Constructs 
 
 

Name Description Source/Reference 
N17Cdc42 Dominant negative Cdc42 

sequence cloned between BamHI 
and NheI sites in CMVneo-myc-1. 
AMPR

 

A. Hall  
(Nobes and Hall, 1995) 

V12Cdc42 Constitutively activated Cdc42 
sequence cloned between BamHI 
and NheI sites in CMVneo-myc1. 
AMPR

 

A. Hall  
(Nobes and Hall, 1995) 

N17 Rac1 Dominant negative Rac1 sequence 
cloned between BamHI and NheI 
sites in CMVneo-myc-1. AMPR

 

A. Hall  
(Ridley et al., 1992) 

V12 Rac1 Constitutively activated Rac1 
sequence cloned between BamHI 
and NheI sites in CMVneo-myc1. 
AMPR

 

A. Hall  
(Nobes and Hall, 1995) 

N19RhoA Dominant negative RhoA 
sequence cloned between BamHI 
and NheI sites in CMVneo-myc-1. 
AMPR

 

A. Hall  
(Nobes and Hall, 1995) 

V14RhoA Constitutively activated RhoA 
sequence cloned between BamHI 
and NheI sites in CMVneo-myc1. 
AMPR

 

A. Hall  
(Nobes and Hall, 1995) 

αβDG-GFP Full-length dystroglycan cloned 
into SalI and SmaI sites of 
pEGFP-N3 vector. 

Y-J Chen 
(Chen et al., 2003) 

αβDG∆Cβ-GFP Dystroglycan cytoplasmic 
deletion mutant cloned into SalI 
and SmaI sites of pEGFP-N3 
vector. 

Y-J Chen 
(Chen et al., 2003) 

αβDG∆E-GFP Full-length dystroglycan with 
ezrin binding site mutated 
(RKKRK to RENGK) cloned into 
SalI and SmaI sites of pEGFP-N3 
vector. 

Y-J Chen 
(Chen et al., 2003) 

Cβ-GFP Cytoplasmic tail of β-
dystroglycan cloned into XhoI and 
SmaI sites of pEGFP-N3 vector. 

This work 

Myr Cβ-GFP N-terminal myristoylation 
sequence of Lck (MGCVCSS) 
subcloned into the 5’ end of the 

Cβ-GFP construct in pEGFP-N3 
vector. 

C.L.Batchelor 
(Batchelor et al., 2007) 

Myr -GFP N-terminal myristoylation 
sequence of Lck (MGCVCSS) 
cloned into NheI and XhoI sites of 
pEGFP-N1 vector. 

C.L.Batchelor 
(Batchelor et al., 2007) 
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Appendix III: Cell Lines and Primary Cells 
 

 

 
 
 

Cells Description Source 

A431 Human epithelial carcinoma cell 
line 

E. Avizienyte  
(Beatson Institute) 

C2C4 Mouse myoblast cell line S. Hughes 
(Kings College London) 

C2C7 Mouse myoblast cell line 
 

S. Hughes 
(Kings College London) 

CHO-k1 Chinese hamster ovary cell line G. Gould 
(University of Glasgow) 

Cos-7 African green monkey kidney cell 
line 

M. Frame 
(Beatson Institute) 

HeLa Human epithelial cell line B. Earnshaw 
(Edinburgh University) 

Ref52 Rat embryo fibroblast cell line D. Helfman 
(Cold Spring Harbour 
Laboratories) 

Swiss 3t3 Mouse fibroblast cell line M. Frame 
(Beatson Institute) 

2aa Swiss 3t3 fibroblasts stably 
expressing dystroglycan-GFP 

H.J. Spence 
(Chen et al., 2003) 

3aa Swiss 3t3 fibroblasts stably 
expressing GFP. 

H.J. Spence 
(Chen et al., 2003) 

3H1 DAG1 -/- ES cells S.Carbonetto  
(McGill University) 
(Cote et al., 1999) 

R1 DAG1 +/+ ES cells S.Carbonetto 

SNL  STO feeder cells S.Carbonetto 
3C12 DAG-/- derived fibroblasts S.Carbonetto 

DAG1-/-  Clones 
A,B,C,D 

DAG-/- derived fibroblasts This work 

PT67 PT67 Cell Line is an NIH/3T3-
based packaging line expressing the 
10A1 viral envelope 

B. Ozanne 
(Beatson Institute) 

DG -  Swiss 3t3 cells stably expressing a 
antisense DAG1 RNAi construct 
that knocks down dystroglycan 
expression. 

This work 

DG + Swiss 3t3 cells stably expressing the 
sense strand of DAG1 RNAi 
construct. 

This work 
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Appendix IV: Primary Antisera 
 

Protein Species  Western 
Blotting 

Immuno-
cytochemistry 

Description/Source 

β-Dystroglycan 
Polyclonal 1709 

Rabbit 1:1000 1:100 S.Winder 
Tyr 895-P 1710 
(Ilsley et al., 2001) 

β-Dystroglycan 
Polyclonal 1710 

Rabbit 1:1000 1:100 S.Winder 
Tyr 895-P 1709 
(Ilsley et al., 2001) 

β-Dystroglycan 
Monoclonal 
43DAG/8D5 

Mouse 1:50 1:10 Novacastra 
Laboratories 

β-Dystroglycan 
Monoclonal 
MANDAG2 

Mouse 1:500 - G.E. Morris 
(Helliwell et al., 1994) 

Ezrin Rabbit 1:1000 1:50 D.Crouch 
(Woodward and 
Crouch, 2001) 

β-Actin (1-19) Goat 1:200 - Santa Cruz SC1616 

α-Tubulin 
Clone B-5-1-2 

Mouse 1:1000 1:1000 Sigma T5168 

Desmin Mouse 1:200 - Sigma 1033 

Keratin Guinea pig 1:200 - Sigma K4252 

P44/42 MAP Kinase Rabbit 1:1000 - Cell Signaling #9102 
Vimentin Goat 1:400 - Sigma V4630 
Vinculin Mouse - 1:100 Sigma V9131 

Myc 9E10 Mouse - 1:50 Santa Cruz SC40 

Anti-BrdU Mouse - 1:16 Roche 1170 376 
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Appendix V: Secondary Antisera 
 

Raised against Conjugate Western 
Blotting 

Immuno-
cytochemistry 

Description/Source 

Actin FITC - 1:100 Sigma P5282 

AP 1:70,000 - Sigma A8062 Goat/Sheep IgG 

HRP 1:10,000 - Sigma A9452 
Guinea Pig IgG AP 1:30,000 - Sigma A5062 

AP 1:5000 - Sigma A3562 

HRP 1:5000 - Sigma A4416 

FITC - 1:100 Vector 

Mouse IgG 

TRITC - 1:100 Vector TI-2000 
AP 1:5000 - Sigma A2556 

HRP 1:10,000 - Sigma A0545 

FITC - 1:100 Vector 

Rabbit IgG 

TRITC - 1:100 Vector 

 
AP = Alkaline Phosphatase 
FITC = Fluorescein 
HRP = Horseradish peroxidase 
TRITC = Texas Red 
- = N/A 
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Appendix VI: Stock Solutions, Buffers and Media Compositions 
 
Actin Fractionation Buffer 50mM NaCl 
 1mM EDTA 
 0.5% (v/v) Triton X-100 
 20mM HEPES pH 7.9 
 
Adjusting Solution (10x) 80 mM  Tris-HCl (pH 6.8) 
 50% (w/v)  SDS 
 30% (v/v)  Glycerol 

 40% (v/v)  β-Mercaptoethanol 
  Bromophenol Blue to colour 
 
Alkaline Phosphatase Buffer 100mM  NaCl 
 5mM  MgCl2 

 100mM Tris-HCl (pH 9.5) 
 
Annexin V binding buffer  10 mM  HEPES  
 140 mM  NaCl 
 2.5 mM  CaCl2 
 
BCIP Stock 57.7 mM BCIP 
  prepared in DMF 
 
Blocking Buffer 5% (v/v) FCS 
 1% (w/v) BSA 
  prepared in PBS 
 
Coomassie Blue Stain 0.1% (w/v) Coomassie Blue R250 
 40% (v/v) Methanol 
 10% (v/v) Acetic Acid 
 
Destaining Solution 5% (v/v) Methanol 
 10% (v/v) Acetic Acid 
 
ECL Solution I 100mM  Tris-HCl (pH 8.5) 
 25mM Luminol 

 396µM p-Coumaric Acid 
 
ECL Solution II 100mM Tris-HCl (pH 8.5) 
 0.02% (v/v)   H2O2 

 

ES Cell Differentiation Medium 20% (v/v) FCS 
 1% (v/v) Penicillin/Streptomycin 
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ES Cell Medium 20% (v/v) FCS 
 1% (v/v) Penicillin/Streptomycin 

 10-11M  β-Mercaptoethanol 
 1000 U/ml  ESGRO  
  in DMEM 
 
Freezing Medium 20% (v/v) FCS 
 10% (v/v) DMSO 
  in DMEM 
 
Maleic Acid Buffer 0.1M Maleic Acid 
 0.15M NaCl 
  adjusted to pH 7.5 
 
 
Modified Sample Buffer 50mM  Tris-HCl (pH 6.8) 
 1% (w/v)  SDS 
 10% (v/v)  Glycerol 
 1µM  Pepstatin 
 1mM  PMSF 
 100µM  TPCK 
 10mM  Benzamidine 
 
MOPS Buffer (10x) 0.2M MOPS  
 0.05M Sodium Acetate 
 0.01M EDTA 
  adjusted to pH 7.0 with NaOH 
 
 
 
NBT Stock 30.6mM  NBT 
 70% (v/v)  Dimethylformamide 
 
Northern Blot Detection Buffer 0.1M Tris-HCl 
 0.1M NaCl 
  adjusted to pH 9.5 
 
 
Northern Blot Washing Buffer 0.1M  Maleic Acid 
 0.15M NaCl 
 0.3% (v/v) Tween-20 
  adjusted to pH 7.5 
 
 
Orange G Loading Buffer 30% (w/v) Ficoll 
 100mM EDTA (pH 8.0) 
  Orange G to colour 
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Permeabilising Buffer 20mM Glycine 
 0.05% (v/v)  Triton X-100 
  prepared in PBS 
 
Phosphate Buffered Saline 137mM NaCl 
 2.68mM KCl 
 10mM Na2HPO4 

 1.76mM KH2PO4 

  adjusted to pH 7.4 with HCl 
 
Resolving Gel Buffer 1.5M Tris-HCl (pH 8.8) 
 0.4% (w/v) SDS 
 
RIPA Buffer 50mM Tris-HCl (pH7.5) 
 150mM NaCl 
 1mM EGTA 
 1mM  EDTA 
 1% (v/v) Triton X-100 
 0.5% (v/v) Sodium Deoxycholate 
 0.1% (w/v)   SDS 
 1mM (w/v) Sodium Azide 
 1mM PMSF 
 1mM Sodium Orthovanadate 
 10µM TPCK 
 10µM Leupeptin 
 1µM Pepstatin A 
 10µM Benzamidine 
 10µM Aprotinin 
 
RNA Elution Buffer 0.1mM EDTA 
 10mM Tris-HCl (pH 7.5) 
 
RNA Loading Buffer 50% (v/v) Formamide (100%) 
 16.6% (v/v)   Paraformaldehyde (37%) 
 10% (v/v) 10x MOPS 
 10% (v/v) Glycerol (100%) 
 2% (v/v) Bromophenol Blue (2.5%) 
  prepared in DEPC-treated H2O  
 
SCC Transfer Buffer (20x) 3M NaCl 
 0.3M Sodium Citrate 
  adjusted to pH 7.0 
 
 
 
SDS-PAGE Running Buffer (10x) 250mM  Tris 
 1% (w/v)  SDS 
 1.92M  Glycine (pH 8.3) 
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SDS-PAGE Sample Buffer (2x) 62.5mM Tris-HCl (pH 6.8) 
 2% (w/v) SDS 
 30% (v/v) Glycerol 
 0.01% (w/v) Bromophenol Blue 

 710mM β-Mercaptoethanol 
 
SNL (STO) Medium 10% (v/v) FCS 
 1% (v/v) Penicillin/Streptomycin 
  in DMEM 
 
 
Stacking Gel Buffer 0.5M Tris-HCl (pH 6.8) 
 0.4% (w/v) SDS 
 
Stripping Buffer 0.2M Glycine 
 1% (w/v) SDS 
  adjusted to pH 2.5 with HCl 
 
TAE (50x) 2M Tris 
 1M Acetic Acid 
 50mM EDTA 
 
TBST 50mM Tris-HCl (pH 7.5) 
 150mM NaCl 
 0.05% (v/v) Tween-20 
 
Transfer Buffer 1.25mM Bicine 
 1.25mM Bis-Tris 
 50µM EDTA 
 10% (v/v) Methanol 
 pH 7.2 
 
Working Medium 10% (v/v) FCS 
  in DMEM or RPMI   
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Appendix VII: RT-PCR primers 
 
 

 
RT-PCR 

Primer pair 
 

 
Forward primer 

Sequence 

 
Reverse Primer 

Sequence 

(a)  
5’ TGA CAC TGA TAA AGG TGT 
GCA 

 

5’ AGG GTA GTC GAC TTA AGG 
GGG AAC ATA CGG AGG GGG 
TGA 

 

(b)  
5’ ATC CAT GTT CAC AAG CGC C 

 

5’ AGG GTA GTC GAC TTA AGG 
GGG AAC ATA CGG AGG GGG 
TGA 

 

(c)  
5’ TGG AAT GGA CCA ACA ACA 
CT 

 

5’ AGG GTA GTC GAC TTA AGG 
GGG AAC ATA CGG AGG GGG 
TGA 

 

(d)  
5’ TTG GTC GAC ATG TCT GTG 
GAC AAC TGG CTA 

 

 
5’ AGT GTA GCC AAG ACG GTA 
AGG 

 

GAPDH 
 

 
5’ GAG TCA ACG GAT TTG GTC 
GT 

 

 
5’ TTG ATT TTG GAG GGA TCT 
CG 

 
 

 
Appendix VIII: Genomic PCR primers 
 

Primer Sequence 

 
DG001 

 
5’ CAG CCT GCG TGA GAT GAA CTA C 

 

 
DG002 

 
5’ ATT CGC CAA TGA CAA GAC GCT G 

 
 

DG003 

 
5’ ATG CCC AGT CAA AGT CCG TAT G 

 
 

DG004 

 
5’ GCG TGC AGC ACT CAC TGA GAT G 

 
 

DG006 

 
5’ GTA CTC GCC GAT AGT GGA AAC C 
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Appendix IX: Secondary Antisera Cross-reactivity 
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Appendix X: Experimental Timeline 
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