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Abstract 
 

One of the main concerns in multi-centre clinical trials is how to enrol an adequate number of 

patients during a specific period of time. Accordingly, the sponsors are keen to minimise the 

recruitment time for cost effectiveness purposes.  

 

This research tended to concentrate on forecasting the patients’ accrual time for the pre-

arranged number of sample size by simulating an on-going trial. The method was to model the 

data from the recruitment frequency domain and apply the estimations derived from the 

frequency domain to predict the time domain.  

 

Whereas previous papers did not concentrate on variations of recruiting over centres, this 

research assumed that patient arrivals followed the Poisson process and let the parameter of 

the process vary as a Gamma distribution. Consequently, the Poisson-gamma mixed 

distribution was confirmed as the promising model of the frequency domain. Then with the 

help of the relationship between the Poisson process and the exponential distribution, accrual 

time was predicted assuming that the waiting time between patients followed the Gamma-

exponential distribution.  

 

As the result of the project, a trial was simulated based on the estimated values derived from 

completed trials.  The first part of the prediction estimated the expected average number of 

patients per centre per month in an on-going trial. The second part, predicted the length of 

time (in months) to enrol specific number of patients in the simulated trial.   
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Chapter 1 

Literature and Approach 

 

1.1. Introduction 

A clinical trial is an experiment in which human subjects are exposed to medical treatment to 

understand the effects of the treatment for their well-being [9]. One of the main concerns in 

multi-centre clinical trials is to enrol sufficient numbers of patients during a specific period. 

The numbers of patients recruited over time may reflect the intended study sample size but 

also the capabilities of participating centre. Some clinical trial delays are due to inadequate 

accrual of patients [11] but most are because of delay in recruitment.  

Investigators need robust and reliable statistical tools to deal with the stochastic variations 

occurring in patient accrual rates. The recruitment rate may also vary depending on several 

factors such as the time of the year, the capacity of the centre [7], the number of staff [1], the 

popularity of the centre and the nature and the population of the local area. Consequently, 

with good planning tools, researchers would be able to reach a reasonable sample size rather 

than a sample size that could not be achieved during the trial period. Efficient recruitment 

planning tools can also reduce the number of centres required in clinical trials.   
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Recruitment time, however, is a fundamental aspect to the success of planning multi-centre 

clinical trials and appears to be even more important compared to the recruitment sample size. 

Due to it being costly, recruitment time is the biggest obstacle in, for example, drug 

development trials. On the one hand, in order to compete with other treatments and prevent 

loss of sales [1], the recruitment period should be shorter. If the recruitment time is too long, 

it can cost the sponsor revenue since a competing treatment may be released to the market 

first [9]. On the other hand, an inadequate number of patients may reduce the power of the 

trial [9]. Very often, in real trials, the number of patients that can be recruited is over 

estimated and the length of time to accomplish the trial is under estimated [8]. 

The primary objective of this thesis is to propose a method to predict patient recruitment 

across a fixed time length as well as modelling accrual time for pre-arranged sites and patient 

number. 

 

1.2. Reviewing literatures 

In reviewing the literature the aim was to identify publications dealing with the modelling of 

patient recruitment in order to see first, whether any suitable methods are available with easy 

implementation and second, if not, what further work would be needed. 

In order to gain some overall knowledge of the requirements of analysing multi-centre clinical 

trials; the starting point was chapter 14 of Statistical Issues in Drug Development by Senn 

[1].  In the next step, to find the other currently existing statistical approaches in modelling 

patient enrolment,  English language papers were searched for: ‘recruitment’, ‘clinical trial’, 

‘predicting’, ‘recruitment time’, ‘patient recruitment’, ‘multicentre’, ‘multi-centre’, ‘accrual 
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periods’, ‘recruitment period’, ‘modelling’ and ‘enrolment’. To find the source journals, I 

used the Google® search engine. Salience was determined by reviewing the abstract 

identified. Then, using the server of the University of Glasgow, I was able to download the 

salient full texts. In fact, after I registered for EndNote®, an alternative approach was possible 

and consequently, I had access to more papers through PubMed®. The references at the end 

of each paper were also employed to identify relevant papers.  In addition, in response to an 

email sent to a leading authority in the field, Vladimir Anisimov (who is an honorary 

Professor in the School of Mathematics and Statistics at University of Glasgow and Senior 

Director in Research Statistics Unit at GlaxoSmithKline), I was kindly sent some of his papers 

as well as chapter 25 [4] of his book.  

Among the numerous papers found, not all were of relevance for our research. I retained those 

papers focusing directly upon modelling patient recruitment, predicting the patient enrolment 

or predicting recruitment period for clinical trials.  

 

1.2.1. Summary of various papers 

The papers were summarised by grouping them chronologically by the first paper by the lead 

author. The most important publications which encompass the topic were  those by Williford 

et al [6], Haidich et al [7], Carter et al [8,9], Abbas et al [10], Anisimov et al [2-5] and 

Gajewski et al [11]. This summary briefly describes the main statistical approaches proposed 

by the authors, followed by the application of the models suggested. Furthermore, an overall 

summary is provided at the end of this review. The reader, requiring a basic overview, may 

wish to skip to the following descriptions of  individual papers.  
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 Williford et al [6] 

Williford et al [6] propose a negative binomial distribution as a mixture of Poisson 

distributions for modelling the recruitment data. They discuss that although the basic 

assumption, usually made when enrolling patients, is that the recruitment rate is constant; this 

is not always true in real trials. This is evidenced from several NIH (National Institutes of 

Health) funded multi-centre clinical trials [15-17]. Nevertheless, based on a constant 

recruitment rate, the number of patients enrolled in a trial is normally supposed to arise from a 

Poisson distribution. After testing the adequacy of the Poisson model, they suggest the 

parameter of the Poisson distribution, which is the average of recruitment rates, varies based 

on a gamma distribution. The outcome is a Negative Binomial.  

This is an early paper using a Poisson-gamma mixture. This approach is discussed in more 

detail under Anisimov below. 

 

 Haidich et al [7] 

In a particular database lunched by the AIDS Clinical Trial Group (ACTG) including a large 

set of over 700 trials with overall 120000 enrolments, Haidich et al [7] examined whether 

quarterly patients enrolment could be modelled to predict the number of new studies as well 

as the recruitment time and the effect of large trials. The relationship between the 

performance of large studies and enrolment, which accelerated over time, were significant in 

multivariate autoregressive modelling applied in SPSS. Observing the current trend and its 

variations was potentially beneficial for predicting future recruitment time.  
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They then showed that for a fixed sample size, the recruitment rate differs significantly 

between different months, seasons and centres as well as being influenced by launching large 

studies. The capacity of centres and the sample size play important roles in the number of 

patients arriving to participate in the trial. The effect of large studies, however, increases the 

overall patient intake, which is due to the huge demands on enrolling patients.  

 

 Carter et al [8, 9] 

In a particular multi-centre effectiveness study, Carter et al [8] proposed three methods. In 

another paper [9], they propose the stochastic process to support theoretically the final method. 

In fact, with the help of the Poisson process and simulation, they provide a model to estimate 

the recruitment time. At the beginning of the trial, Carter seeks the basic historical 

information of each centre through questionnaires including the total number of subjects 

which have been entered in the centres [8].  

One model considered an unconditional approach, which is, to divide the whole sample size 

by the total expected recruitment rate in individual centres. This method would be feasible 

only if all the centres initiate recruitment simultaneously. In reality, an unconditional 

approach cannot be applied if there are gaps between starting timesamongst participating 

centres [8]. To deal with this variation, Carter suggests a conditional approach depending on 

the recruitment rate in each centre and the length of the time each site recruits patients for.  

In the two methods discussed above, since the number of participants in each time period and 

in each centre is assumed to be fixed, the variation of the estimated rate is not taken into 

account [9]. Carter has demonstrated in his third method to deal with the variation in the 
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average number of patients over time at each centre that patients are assumed to enter the trial 

according to a Poisson process. Carter concludes that a Poisson distribution can be applied to 

model the recruiting probabilities according to the rate assumptions [9]. This approach is 

mostly useful when a clinical trial is designed to accrue the requisite number of patients in a 

finite time [8].  

Overall, they recommend applying the conditional approaches for most multi-centre trials. 

However, in the case of uncertainty in the recruitment rate, a Poisson method is suggested [8]. 

 

 Abbas et al [10] 

Abbas et al indicate that the Markov model simulation has mostly been used in clinical trials 

for other purposes than patient recruitment such as evaluation of the benefits of treatments. 

However, in their paper, they use a Monte Carlo Markov simulation model for modelling 

recruitment patterns. In the interest of calculating the recruitment time, depending on the 

availability and accessibility of the data, Abbas et al [10] consider either continuous or 

discrete time variables. In order to increase the validity of the model, they regard the 

continuous time variables if the investigator knows that patients arrive one by one over time. 

In contrast, if the only available information is the average rate of arrivals in a particular time, 

the recruitment time needs to be considered as a discrete variable.  

In the first simulation method (SM1)[10], with a constant pre-arranged probability p, not all 

the patients arriving to the centre are recruited. In fact, p plays the role of a filter to prevent 

patients passing from arrival phase to recruited phase. However, it is still assumed that the 

recruitment time is a continuous variable. There is also a random variable R, which is 
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generated from a uniform distribution between 0 and 1, to be compared with p to decide if a 

patient is recruited (R<=p). As a result, the remaining time is highly related to p, such that the 

duration increases when the probability p decreases. Due to containing a probabilistic factor, 

the simulation needs to be repeated many times in order to calculate the variability of t. The 

simulation would stop when it reaches the target sample size. The next simulation method 

(SM2) considers the case of having no idea about what p might be. It, then, can be produced 

randomly from the uniform distribution. This is the only difference between SM1 and SM2. 

In this case, it is expected to reach the same average recruitment time as what we get with 

constant p=0.5! As a result, in a special case the two last methods could be merged in a 

particular case.  

In the third simulation model (SM3), Abbas et al apply a discrete time variable, in which a 

group of patients arrive during a period of time T. The ultimate goal is to estimate the number 

of enrolled patients in each period of time. The patients who fail to be recruited (if R<p) are 

contacted again in the ensuing trial. The process continues throughout the time period, and the 

number of patients is recorded. Simulation model 3 fixes the length of recruitment time and 

estimates the mean number of patients at the end of the period. However, in SM4 (fourth 

simulation model), the objective is to calculate the expected delay of recruitment or remaining 

time. Such that the patients are recruited with a controlling fixed p but they are not replaced 

from the population. 

 

 Anisimov et al [2-5] 

Since a robust method is required to plan for enrolling patients in multi-centre trials, a model 

is sought to deal with the uncertainties observed in practice. Vladimir V. Anisimov [2] and 
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Anisimov et al [3] propose a Poisson-Gamma approach for modelling patient recruitment. It is 

assumed that patients arrive in the centres independently [4, 5]. Therefore, the Poisson 

process is the most common and suitable distribution for the rate of patients recruiting in 

centres [1]. In a Poisson distribution, the average rate of patient arrival, which is the 

parameter of the model, is unchanged. However, due to some differences among centres such 

as size, number of staff, number of patients in the area and type of centre, the rate may vary 

among centres [2, 3]. Therefore, Anisimov et al [3, 5] let the rates vary, as samples coming 

from a Gamma distribution. That means that the simulation is performed in two steps, first a 

sample of rates of size N (N is the number of centres) is taken from a Gamma distribution. 

The patients are then enrolled according to a Poisson process with these sample rates [5]. This 

aspect of modelling leads to the use of an empirical Bayesian approach since the recruitment 

rate can be a random variable in the ‘prior’ distribution. The Gamma distribution is 

particularly convenient because it is a distribution of non-negative variables and the mean of a 

Poisson is, of course, non-negative. With this technique the number of centres with zero or 

few participants could be evaluated as well [2, 5]. The Poisson –Gamma recruitment model 

has been validated for large centres (>20) through GlaxoSmithKline (GSK) studies. Moreover, 

the techniques, to predict the additional number of centres to be added to complete the trial, 

are also suggested [3].  

 

In order to estimate the shape parameter of the recruitment model with a Gamma distributed 

rate, supposing that all the centres initiated at the same time, Anisimov [5] uses three 

estimation techniques: the Method of Maximum Likelihood, the Least Squares and the 

Method of Moments. Then he runs a Monte Carlo simulation method to compare the three 

estimation methods. All three methods, he concludes, are similar for large sample sizes and 
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centres. The number of centres plays a more essential role in effective parameter estimation, 

though.  

Regarding the analysis of recruitment time, Anisimov et al [4] have also considered three 

enrolment policies.  One of which is competitive time, in which the enrolment stops whenever 

the total number of patients reaches the pre-arranged sample size. The second policy is the 

balanced time in which all the centres should reach a fixed number of patient arrivals. 

According to calculations, the recruitment time in this case can be longer that the competitive 

time. Opposed to the two former analyses, in the third approach, in which there are 

restrictions on the number of patients recruited by centres, Anisimov et al have not come to a 

closed solution. However, they conclude that it should be something between competitive 

times and balanced times [4]. Nevertheless, the real trial may not be flexible to incorporate 

into a particular model once the trial has started.  

 

 Gajewski et al [11] 

In order to calculate the patient recruitment rate in a clinical trial, Byron J. Gajewski et al [11] 

propose a Bayesian approach. With the help of Bayesian posterior predictive distributions 

derived from prior knowledge, they provide a model to estimate the average waiting time 

between each patient. Hence, the overall recruiting time would be calculated for a fixed 

sample size. In addition, if the arrival process is to stop after a particular time, the model can 

predict the expected number of patients by the end of the trial.  

Gajewski et al suppose that the waiting time is exponentially distributed with parameter (the 

parameterisation has not been mentioned in the paper!) and a conjugate prior distribution for 
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  is the inverse gamma distribution. In a particular case, the prior distribution is supposed to 

be an Inverse Gamma distribution with parameters nP and TP, in which n is the prior sample 

size, T is the waiting time and P is the weighting factor for accuracy of n and T according to 

the historical information. In an example, Gajewski et al [11] compare three methods of 

predicting the waiting time and the total length of the trial. The first is only to consider the 

information at the beginning of the study. Hence, the average waiting time is distributed as an 

Inverse Gamma (nP,TP). The second approach relies solely on observed data from the 

ongoing trial. The third suggestion, however, is to take advantage of both the prior 

information and the observations from the ongoing trial. As a result, this third approach 

culminates in an Inverse Gamma distribution in which the shape parameter is nP plus the 

number of observed patients in the current trial and the scale parameter is TP plus the time 

period, in which they have experienced the real recruitment. The authors conclude that the 

posterior with informative prior estimation (third approach) shows the faster rate of prediction 

compared to applying only the information at the outset of the study or using the observed 

data only.  

 

It should be noted that if the number of events in a given interval follows the Poisson 

distribution, then inter-arrival times lead to an exponential distribution. Thus, the basic model 

in this approach can be regarded as being the time domain equivalent of the frequency domain 

model considered by Anisimov. 
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1.2.2. Overall conclusions based on reviewing papers 

Based on reviewing the papers, a number of issues can be identified as follows: 

1.2.2.1. General appropriate approach to modelling patient 

recruitment  

Almost none of the approaches discussed above focused deeply on variations in recruiting 

among centres. They did not concentrate on the variations in recruiting over time either. 

Also, it is obvious that in real trials the rates of patient intake cannot be fixed. As a result, 

a tentative conclusion is that the Poisson-Gamma model is a promising approach. The 

Poisson-Gamma model lets the rates vary as random variables from Gamma distributed 

samples. The patient arrivals are then assumed to follow the Poisson distribution with the 

average rate being derived from Gamma distribution. The model originally was proposed 

by Williford et al in the context of clinical trials [6] but has been extensively developed by 

Anisimov [2-5].  

 

1.2.2.2. Variations and risk factors that should be 

considered to optimise the model 

Anisimov emphasised that recruitment rates are not fixed in real trials. Haidich [7] 

concluded the various factors such as time of the year and the influences of large sample 

size are significant. Gaps between centres such as the differences in capacity and the 

popularity of the centres and the numbers of staff, which Senn [1] highlights, should be 

taken into account.  
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1.2.2.3. Clarity and feasibility of the applying model 

In his discussion, Abbas [10] does not consider a statistical model for the waiting times 

between patients. Hence, it is not clear which statistical distribution the time follows for 

the suggested simulation models.  

In all his approaches, Carter [8, 9] assumes the average patients’ arrival rates are fixed 

although he considers the variation regarding the initiation time. The conditional approach 

has not been sufficiently clarified enough to be practically applicable for large clinical 

trials.  

Haidich’s time series method is primarily designed to analyse the risk factors of the 

recruitment period focusing upon the reasons for delays rather than on a mature model for 

recruiting patients.  

Gajewski [11], in contrast, proposes a Bayesian approach for the waiting time, which is 

more practical and easier to apply. However, Anisimov [2-5] expands the statistical model 

with the interest of feasibility and supporting the idea theoretically as well. The Poisson-

Gamma distribution is more reliable to apply; but it is complicated compared to 

Gajewski’s approach.  

 

1.3. Aims 

From reviewing the literature, possible modelling approaches to predict the patient 

recruitment prior to the start of the study were identified. The next step for the on-going trial, 

however, would be to predict the patient recruitment and accrual times with respect to the 
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frequency domain
1
 and the time domain

2
 respectively. Therefore, it is proposed that to fulfil 

these aims for the present project the future approaches are adopted: 

 Initially, the plan is to apply the theory of Vladimir Anisimov to model the frequency 

data as well as the time data. But in the case of any practical issue in modelling the 

recruitment data the aim is to apply an alternative model for the recruitment sample 

data. 

 The models in the literature will be applied to identify a suitable model for the 

frequency and time domain.  

 Test for the suitability of the fitted distributions. 

 Use the alternative methods in case of unsuitable fitted models.  

 Estimate the parameters based on Maximum Likelihood Estimation. 

 Check the possible correlations between parameters in case they are dependent in 

order to make the modelling process easier.  

 Model the estimated parameters to gain the prior distribution of parameters 

 Apply Bayesian forecasting to predict patient recruitment founded upon predictive 

distribution and simulation 

  

                                                 
1
 Frequency domain is the number of pat 

ients that are recruited in centres in a clinical trial. 
2
 Time domain is the length of time (in the current research project the unit of time was set to months) to recruit 

patients in clinical centres.  
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Chapter 2 

Recruitment Data Description  

 

The first step in modelling the patient recruitment in multi-centre clinical trials is to identify 

and collect some possible prior information from previous trials. The aim is to employ 

previous data and observations in clinical trials to forecast the required patient arrivals for a 

given trial even though the patients are not recruited yet. The forecast may not be exact but it 

will produce enough information to set a plan based on these historical data and experiences; 

otherwise, the trial experiment would be very intuitive and inaccurate. For this reason, ICON 

Clinical Research, the sponsor of this MSc project, provided data from completed studies in 

Excel spread sheet format. Each trial dataset consists of site codes and country information, 

number of patients’ arrivals in clinical centres; and start and finish recruitment dates in 

centres.  

 

Table 2.1 illustrates the general feature of the historical data provided by ICON. It includes 18 

completed trials (column 1) with the number of clinical centres in each trial (column 2). Next 

(column 3) is the total number of recruited patients in the studies accompanied by the 

minimum (column 4) and maximum (column 5) number of patients in the centres in each trial. 
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The last two columns summarise the minimum and the maximum length of time (in months) 

that have taken to recruit patients in the trials.    

 

 

2.1. Software platforms 

All the analyses were performed in Statistical Analysis Software (SAS®) version 9.2 and 

package R 2.12.1. R is freely downloadable from http://www.r-project.org/, but SAS is 

licensed and was only accessible from the university computers. Microsoft Excel was also 

used for making new data sheets and some graphical applications.  

 

2.2. Frequency domain 

Although the studies vary a lot regarding the number of clinical centres and patients (table 

2.1), the general features of the Kernel density curves [21] in the frequency domain follow a 

similar statistical distribution (figures 2.1). A Kernel density curve is a graphical and non-

parametric method of estimating the probability density functions. Kernel density curves and 

histograms are closely related. In a histogram, the horizontal axis is divided into bins, which 

should cover the whole range of the data. For a kernel density, each point is allocated to a 

normal kernel density. The individual kernels are added up to make the kernel estimate. The 

advantage of the kernel density is its smoothness compared to the histogram.  

 

R produces the kernel density curves in the MASS package (Appendix 1). In SAS, however, 

‘kernel’ option in the UNIVARIATE procedure superimposes the kernel density curve on the 

histogram. Many different kernel densities are possible but just the default one has been 

applied in this project.  
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Study 

code 

N  

(number 

of sites) 

n  

(total 

number of 

patients) 

Min number 

of patients in 

clinical 

centers 

Maximum 

number of 

patients in 

clinical centers 

Minimum 

recruitment 

time 

Maximum 

recruitment 

time 

1 24 385 2 77 7.30 14.70 

2 12 152 2 28 0.40 3.13 

3 24 811 4 76 0.97 18.23 

4 16 80 1 17 0.97 3.00 

5 25 244 2 26 0.97 9.76 

6 66 796 1 48 16.23 34.80 

7 110 1126 0 41 0.33 7.27 

8 141 1241 0 40 0.57 14.80 

9 51 927 2 67 7.30 14.70 

10 150 2000 0 63 4.67 16.30 

11 97 2936 0 115 3.50 7.90 

12 75 546 0 20 3.27 6.47 

13 270 4363 0 263 2.97 28.30 

14 410 3274 0 59 3.60 35.73 

15 30 103 0 9 5.23 21.80 

16 92 533 0 60 1.80 12.57 

17 26 549 1 76 2.60 10.03 

18 60 1696 3 122 6.47 21.00 

Table 2.1: General information about the 18 completed clinical trial studies 

 

 

In figure 2.1, histograms of the frequency data of the 18 studies are illustrated as well, which 

are accompanied by the fitted Negative Binomial distributions (solid lines on the histograms).  
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Kernel Density of patients in Study 3 

Histogram of recruited patients with fitted NB in Study 2 
Kernel Density of patients in Study 2 

Histogram of recruited patients with fitted NB in Study 1 Kernel Density of patients in Study 1 

Histogram of recruited patients with fitted NB in Study 3 
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Histogram of recruited patients with fitted NB in Study 6 Kernel Density of patients in Study 6 

Histogram of recruited patients with fitted NB in Study 5 Kernel Density of patients in Study 5 

Histogram of recruited patients with fitted NB in Study 4 Kernel Density of patients in Study 4 
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Histogram of recruited patients with fitted NB in Study 9 Kernel Density of patients in Study 9 

Histogram of recruited patients with fitted NB in Study 8 Kernel Density of patients in Study 8 

Histogram of recruited patients with fitted NB in Study 7 Kernel Density of patients in Study 7 
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Histogram of recruited patients with fitted NB in Study 12 Kernel Density of patients in Study 12 

Histogram of recruited patients with fitted NB in Study 11 Kernel Density of patients in Study 11 

Histogram of recruited patients with fitted NB in Study 10 
Kernel Density of patients in Study 10 
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Histogram of recruited patients with fitted NB in Study 15 Kernel Density of patients in Study 15 

Histogram of recruited patients with fitted NB in Study 14 Kernel Density of patients in Study 14 

Histogram of recruited patients with fitted NB in Study 13 Kernel Density of patients in Study 13 



Andisheh Bakhshi  Supervisor: Prof. Stephen Senn 22 

 
 
 

 

 
 

 
Figure 2.1: Histograms of the frequency data with the fitted Negative Binomial curves (left) and the 

Kernel density curves (right) in studies 

 

Histogram of recruited patients with fitted NB in Study 18 Kernel Density of patients in Study 18 

Histogram of recruited patients with fitted NB in Study 17 Kernel Density of patients in Study 17 

Histogram of recruited patients with fitted NB in Study 16 Kernel Density of patients in Study 16 
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The initial aim is to model the patient recruitment process for each completed study. It is, in 

fact, to find a feasible distribution for the recruitment data in order to be able to assess how 

many patients arrive into the clinical centres during a maximum recruitment time in a real on-

going trial.  

 

2.3. Time domain 

Analysing the accrual time (length of time to recruit patients), however, appears to be more 

important in clinical trials. This is due to the fact that in clinical trials the number of patients 

to be recruited is usually arranged in advance. Therefore, the companies know how many 

patients and centres are needed for a clinical trial. As a result, with a pre-arranged sample size 

and number of clinical centres, predicting the required time to recruit patients becomes 

essential. That is, a critical question when designing studies on how long will the studies take 

to recruit a pre-defined number of patients given a pre-specified number of centres.  Hence, 

the length of time to recruit patients was also to be modelled for forecasting the maximum 

recruitment time. Nevertheless, there were some problems with the time data that had to be 

addressed for the prediction purpose.  

 

The first issue was inadequacy of information about the individual patients’ arrival dates to 

the clinical centres. Only the total recruitment period for each centre was available in most 

trials. It meant that there was very little information about the waiting time between patient 

arrivals in clinical centres. It, then, made the analysis of the waiting time between patients 

more challenging.  The possible solution was simulation, which is discussed in chapter 6.  
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The second issue was the lack of compatibility between the distribution of the frequency 

domain and the distribution of the time domain. The density of the recruitment time data was 

not similar to what was expected in Anisimov’s theory [3]. This problem is evidenced from 

the histograms and kernel density curves of the time data (figure 2.2). Overall, the arrival 

times in the trials do not follow a similar distribution. The general characteristics of the 

accrual time are illustrated in figures 2.2. The issue is expanded in chapter 3 and an analytical 

solution has been provided as well. 
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Figure 2.2: Probability histograms of patients’ accrual times (months) in centres and estimated Kernel 

density curves 
 

 

 

 

The units of the time domain were set to months throughout the analysis. Specifying the units 

of time in the time domain should be compatible with the units of time in the frequency 

domain. Rescaling the units from one domain to the other one would end up getting very 

different values in estimating the mean and variance of the distribution of the time domain 

and results in different parameters.  Prof. Stephen Senn has highlighted this aspect in his notes 

and explained that it is the BETA parameter that is affected not the ALPHA parameter.  (See 

appendix 2) 
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Chapter 3 

Modelling the Recruitment Data 
 

 

3.1. Modelling the frequency domain 

Exploring the distributions of the variables in a data set is a fundamental step in data analysis. 

As discussed in the literature review chapter, the promising statistical model for the patient 

arrivals to clinical centres was the Poisson–Gamma mixture distribution. 

 

The advantage of the Poisson–Gamma mixed model is that it lets the rate of patient arrivals, 

for a given centre; vary as a random realisation from a Gamma distribution. Then, patient 

arrivals at a centre are assumed to follow the Poisson distribution with the average rate given 

by the Gamma variable. 

 

In the case that the mean parameter varies in the population but follows a Gamma distribution, 

the Poisson process can be suitably replaced by the Negative Binomial distribution. That is 

why the Negative Binomial distribution is more flexible in modelling the count data than the 

Poisson model. In contrast to the Poisson distribution in which the mean and variance are 

identical, in a Negative Binomial distribution the mean is smaller than the variance.   
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In this section, the recruitment data are modelled in the frequency domain assuming that they 

follow the Negative Binomial distribution. Then two methods of estimating the parameters are 

discussed and compared. Finally the goodness of fit test is developed to assess the suitability 

of the fitted model to the frequency data. However, it should be emphasised that only the 

frequency data have been modelled and the recruitment time has not been taken into account 

yet.  

A further model, taking into account the recruitment time, will be discussed in chapter 5. 

 

 

3.1.1. Distribution of the recruitment frequency data 

 

If it is assumed that there are N  clinical centres and each centre recruits  Nini ,...,1,   

patients with the recruitment rate i ; then the distribution of ix , patient arrivals in centre i , 

follows the Poisson distribution with mean i  and probability density function 
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If, however, i  is Gamma distributed with shape parameter   and scale parameter   and  
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Then by multiplying  the Poisson and Gamma function together and integrating out the 

unknown lambda [12], the outcome would be a Negative Binomial distribution with 

parameters r  and 



1

1
p  [12,13] 
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In another word: 
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If, however, it is supposed that all the clinical centres initiate simultaneously and each centre 

recruits in  patients during a fixed time period t , the total number of patients recruited up to 

time t  follows the Negative Binomial distribution with parameters N  and 


t
[3] and the 

probability density: 
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Since all the centres are activated at the same time the variation in initiation date is not 

included in (3.5). Nevertheless, the recruitment time from trial to trial may vary due to 

different nature and structure of the studies. This aspect is considered in modelling the 

frequency domain in equation (3.5) as it follows the Negative Binomial distribution.  
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3.1.2. Parameter estimation 

Before analysing the data, we need to assess the values of the parameters and translate this 

information into a sort of prior distribution for the parameters. The marginal distribution of 

the frequency data was modelled as a Poisson–Gamma mixture, which led to a Negative 

Binomial distribution. But, in order to use this model the value of the parameters should be 

known. Since the parameters of the Negative Binomial distribution were unknown, the 

Maximum Likelihood (ML) estimation and Method of Moments (MM) were applied in R as 

well as SAS® to estimate the parameters.  

 

3.1.2.1. Maximum likelihood estimation 

The log-likelihood function of a Negative Binomial distribution with the probability function 

(3.3) is 
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And the log-likelihood function from the equation (3.5) is  
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The parameters were estimated by writing programs in R (see appendix 1) and also applying 

two different procedures in SAS®.  

 

In R, the ‘function’ statement was applied to construct the Negative Binomial log-likelihood 

function then the ‘optim’ statement estimated the maximum likelihood of the parameters. To 

proceed with this estimation process, R requires initial values of the parameters. Hence, from 

the trial data the minimum numbers of patients in the completed trials were set as starting 
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points for ; and the starting point for  were derived with the help of method of moments 

from (3.4) as 


)(xE
.  ‘fitdistr’ in the MASS package can also estimate the MLE of the 

parameters.  

 

A straight-forward way to solve the estimation problem in SAS® is applying the Negative 

Binomial null model in the GENMOD procedure. The parameters to be estimated in PROC 

GENMOD are 


1
and   . In order to optimise a function, the NLP procedure in SAS® is a 

classic solution.  

 

The estimated parameters were identical from applying either the log-likelihood function (3.6) 

or (3.7). This is because the maximum accrual times were entered as a known part of the 

function in (3.7). In fact, in this step the Negative Binomial distribution was only fitted to the 

numbers of patients recruited in clinical centres. It was, however, the case that the factor of 

accrual time had not been entered in the modelling. The outcome has been summarised in 

table 3.1.  
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  Maximum Likelihood Estimation of frequency data  

Study ALPHA 

SE-

alpha BETA SE-beta 

P= 

1/(1+beta) mu SE-mu 

sd of 

data(N

B) 

1 1.273 0.361 12.599 4.286 0.074 16.042 3.015 18.334 

2 3.220 1.641 3.934 2.126 0.203 12.667 2.282 7.905 

3 2.392 0.717 14.125 4.655 0.066 33.791 4.615 22.608 

4 1.280 0.534 3.907 1.896 0.204 5.000 1.238 4.953 

5 2.745 0.977 3.556 1.356 0.220 9.760 1.334 6.668 

6 1.435 0.270 8.402 1.826 0.106 12.061 1.311 10.649 

7 1.417 0.218 7.225 1.271 0.122 10.236 0.875 9.176 

8 1.416 0.198 6.216 0.991 0.139 8.801 0.671 7.970 

9 2.478 0.540 7.334 1.744 0.120 18.176 1.723 12.308 

10 1.314 0.162 10.146 1.462 0.090 13.333 0.995 12.191 

11 1.739 0.252 18.449 3.046 0.051 30.816 2.523 24.979 

12 3.988 1.043 1.826 0.495 0.354 7.280 0.524 4.536 

13 0.995 0.083 16.245 1.699 0.058 16.159 1.016 16.693 

14 1.227 0.095 6.505 0.592 0.133 7.985 0.382 7.742 

15 2.191 1.006 1.567 0.761 0.390 3.433 0.542 2.969 

16 1.070 0.182 5.416 1.096 0.156 5.794 0.636 6.097 

17 0.816 0.214 25.873 8.868 0.037 21.115 4.672 23.821 

18 2.130 0.401 13.270 2.777 0.070 28.267 2.593 20.084 

Table 3.1: Estimated parameters from fitting Negative Binomial to the frequency data  

 

The contour plots of the Maximum likelihood functions with the maximum values of    and 

the probability values p , in which



1

1
p , were provided (see appendix 1). The purpose of 

drawing the contour plots was to have a graphical view of the maximum likelihood point of 

both parameters in the function (figures 3.1). The 3D panels of the maximum likelihood 

estimation are also available (see appendix 1).  
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 Study 1       Study 2 

 

Study 3       Study 4 

 

 

 Study 5       Study 6 
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 Study 7       Study 8 

 

 Study 9      Study 10 

 

 

 Study 11       Study 12 
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Study 13       Study 14 

 

 

Study 15       Study 16 

 

 

Study 17       Study 18 

Figure 3.1: Maximum Likelihood contour plots for parameters in the studies  
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3.1.2.2. Method of Moments 

To capture the parameter estimation from the Method of Moments, the relationship between 

the parameters, mean and variance were considered as follows: 

)())(var(

))((
2

2

xEx

xE


   




E(x)
   




1

1
p    (3.8) 

Table 3.2 shows the estimated parameter derived from Method of Moments.  

  Method of moment 

Study ALPHA BETA p 

1 0.799 20.080 0.047 

2 2.415 5.244 0.160 

3 2.608 12.957 0.072 

4 0.822 6.080 0.141 

5 2.059 4.741 0.174 

6 1.454 8.294 0.108 

7 1.505 6.803 0.128 

8 1.216 7.236 0.121 

9 1.949 9.326 0.097 

10 1.176 11.333 0.081 

11 1.384 23.179 0.041 

12 2.651 2.746 0.267 

13 0.413 39.133 0.025 

14 0.827 9.651 0.094 

15 1.428 2.404 0.294 

16 0.532 10.886 0.084 

17 0.886 23.832 0.040 

18 1.826 15.478 0.061 

Table 3.2: Estimated parameters from Method of Moments 

 

Figures 3.2 and 3.3 compare the Maximum likelihood method and Method of moments in 

estimating the values of the Negative Binomial parameters. The Maximum likelihood 

estimator produces slightly bigger values for the scale parameter   compared to the method 

of moments. However, most of the estimated   values are smaller in Maximum likelihood 
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estimation method.

 

Figure 3.2: Comparing the Maximum Likelihood Estimation and Method of Moments in estimating shape 

parameter  by fitting Negative Binomial distribution to the frequency data  

 

 

 
Figure 3.3: Comparing the Maximum Likelihood Estimation and Method of Moments in estimating scale 

parameter   by fitting the Negative Binomial distribution to the frequency data 
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3.1.3. Goodness of fit test (GOF) 

The goodness of fit tests were run to make sure that the Negative binomial model fits well to 

the recruitment data. In fact, this was to measure the discrepancy between the recruitment data 

and the values expected for the Negative Binomial model. These measures were found by the 

Pearson’s chi-square test in SAS.  

The null hypotheses were that the frequency data follow the Negative Binomial distribution. 

To test the hypotheses the Pearson chi-square values were compared to a chi-squared 

distribution. In some of the studies, the test was not significant (table 3.3), which shows that 

the Negative Binomial distribution has been a suitable fit for the frequency domain. 

Nevertheless in one or two trials the fit is clearly far from perfect and this suggests that future 

work could consider alternatives to the NB. 

NB GOF Test in SAS  

Study 

Pearson Chi-Square 

value in GOF test p-value 

value in chi-sq table  

 01.0  df 

1 35.438 0.05 41.638 23 

2 11.692 0.39 24.725 11 

3 19.703 0.66 41.638 23 

4 18.587 0.23 30.578 15 

5 24.977 0.41 42.980 24 

6 64.253 0.50 94.422 65 

7 103.396 0.63 146.257 109 

8 140.383 0.48 181.840 140 

9 55.950 0.26 76.154 50 

10 151.499 0.43 192.073 149 

11 115.603 0.10 132.309 97 

12 71.904 0.55 105.202 74 

13 610.415 0.00 325.881 269 

14 525.943 0.00 478.461 409 

15 27.158 0.56 49.588 29 

16 154.387 0.00 125.290 91 

17 22.171 0.63 44.314 25 

18 63.997 0.31 87.166 59 

Table 3.3: Negative Binomial Goodness of Fit test to the recruitment data (Frequency domain) 
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Drawing the QQ-Plot is a popular graphical approach to assess the suitability of fitting the 

negative Binomial to the frequency data. This is the plot of the quartiles of the negative 

Binomial and the quartiles of the sorted recruitment data. The plot, however, should not be far 

too much away from the straight line (figures 3.4) 

 

Another visual method was also applied to test the goodness of fit for the Negative Binomial 

to the data. The method was to compare the empirical cumulative density function (ecdf) of 

the frequency data and the random values of the Negative Binomial. The two cumulative 

functions should be similar for a good fit (figure 3.4). The graphical GOF test approve that the 

Negative Binomial is a good model for recruitment data in the frequency domain. 

 

Study 1, QQ-plot (left) and the Empirical cumulative density functions (right) 
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Study 2, QQ-plot (left) and the Empirical cumulative density functions (right) 

 

 

Study 3, QQ-plot (left) and the Empirical cumulative density functions (right) 

 

Study 4, QQ-plot (left) and the Empirical cumulative density functions (right) 
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Study 5, QQ-plot (left) and the Empirical cumulative density functions (right) 

 

 

Study 6, QQ-plot (left) and the Empirical cumulative density functions (right) 

 

Study 7, QQ-plot (left) and the Empirical cumulative density functions (right) 
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Study 8, QQ-plot (left) and the Empirical cumulative density functions (right) 

 

 

Study 9, QQ-plot (left) and the Empirical cumulative density functions (right) 

 

Study 10, QQ-plot (left) and the Empirical cumulative density functions (right) 
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Study 11, QQ-plot (left) and the Empirical cumulative density functions (right) 

 

 

Study 12, QQ-plot (left) and the Empirical cumulative density functions (right) 

 

Study 13, QQ-plot (left) and the Empirical cumulative density functions (right) 
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Study 14, QQ-plot (left) and the Empirical cumulative density functions (right) 

 

 

Study 15, QQ-plot (left) and the Empirical cumulative density functions (right) 

 

 

Study 16, QQ-plot (left) and the Empirical cumulative density functions (right) 
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Study 17, QQ-plot (left) and the Empirical cumulative density functions (right) 

 

 

Study 18, QQ-plot (left) and the Empirical cumulative density functions (right) 

Figures 3.4: QQ-Plots and the Empirical cumulative density functions to test the suitability of the Negative 

Binomial to the frequency data. 

 

 

3.1.4. Discussion 

The unknown parameters of fitting the Negative Binomial to the frequency domain were 

estimated. Moreover, the tests show that the Negative Binomial is a suitable model for many 

trials of the recruitment frequency data. However, there are still two main issues to deal with.  
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First is finding a posterior distribution for the recruitment data. This requires an adequate 

knowledge of the true distribution of the parameters. However, there are only estimated 

parameters from the past studies available. Chapter 4 highlights the obstacles of modelling the 

parameters and brings some ideas to deal with the issue.  

 

Second is the accrual time as an effective factor in patient recruitment analysis. The time 

should be considered as a factor that varies from centre to centre. Hence, in chapter 5 the 

accrual time was considered as an offset factor in analysing the recruitment frequency data. If 

the offset time variables are included in the model, the general Negative Binomial model 

remains unchanged although the parameters could be slightly different. In the current chapter, 

it was assumed that all the centres initiate simultaneously. In the case that centres initiate in 

different dates during the trial then the recruitment time would come across to another source 

of variation.  This issue is also solved by adding the start time in simulating the recruitment 

period in chapter 5.  

 

 

 

3.2. Modelling in time domain 
 

Based on the theory that Anisimov & Federov [3] had in their paper, if  Nitni ,...,1)(  , which 

is the number of patients that are recruited in the clinical centre i up to time t , follow the 

Poisson process with parameter i  then the total number of patients recruited until time t  in 
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all the N clinical centres is    



N

i

i tntn
1

 and follows the Poisson distribution with the 

overall rate parameter 



N

i

i

1

 .  

Consequently,  NnT , , the length of time to recruit n  patients in  N  clinical centres will 

follow a Gamma distribution with shape parameter n  and scale parameter   with the 

probability density function: 

  11),,(
  nTenTp nnT         (3.9)   

in which  n  is the gamma function. Hence, the expected time to recruit  n  patients in N

clinical centres is 


n
and  

2


n
TVar .  

However, back to the assumption of the distribution of the frequency domain, i is a random 

variable from a Gamma distribution with parameters  and  . Hence, the overall rate 





N

i

i

1

 is also Gamma distributed with parameters   ,N .  

As a result, the total time to recruit patients has a mixture of two independent Gamma 

distributions and is 

     ,,~, NGammanGammaNnT       (3.10)  

The above process leads to the Pearson VI distribution with the probability density function 
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in which a  NnBeta ,  is beta function [3]. Therefore, the expected time to recruit n  patients 

in N clinical centres will be 
1N

n




 and the variance of the recruiting time is 

 
   21

1
2

2




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Nnn




, 2N .  
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3.2.1 Parameter estimation 

The parameters of the Pearson VI distribution in table 3.4 were estimated by applying the 

Maximum Likelihood Estimation method in SAS and also R. The log-likelihood function of 

the Pearson distribution with the probability function (3.11) is: 

              



N

i

i

N

i

ii tNnNtnNnbetaNNntl
1

2

1

logloglog1,log,,,   

(3.12) 

 
Maximum Likelihood Estimation of the Time domain 

 
Study ALPHA SE-alpha BETA SE-beta E(T)

3
 

1 2.260 0.753 1.610 0.540 11.648 

2 0.196 0.004 0.019 0.004 2.159 

3 0.046 0.012 0.009 0.003 73.130 

4 0.396 0.146 0.113 0.044 1.689 

5 0.192 0.054 0.032 0.009 2.019 

6 0.534 0.097 1.142 0.209 26.525 

7 0.024 0.003 0.006 0.001 3.995 

8 0.011 0.001 0.009 0.001 18.568 

9 0.121 0.003 0.039 0.002 6.945 

10 0.174 0.020 0.167 0.020 13.335 

11 0.571 0.083 0.102 0.015 5.820 

12 0.373 0.064 0.260 0.045 5.274 

13 0.024 0.002 0.025 0.002 20.240 

14 0.014 0.001 0.029 0.002 19.720 

15 0.229 0.064 0.996 0.291 17.501 

16 0.045 0.006 0.063 0.010 10.698 

17 0.233 0.064 0.054 0.015 5.849 

18 0.133 0.024 0.081 0.081 19.594 

Table 3.4: Estimated parameters from fitting the Pearson VI distribution to the time domain data 

 

                                                 
3
E(T) is the expected length of time (months) to recruit patients in trials with the fixed number of patients based 

on the assumption that the time domain follow the Pearson VI distribution with the estimated parameters.  
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In SAS, the NLP procedure estimated the parameters with the maximum likelihood estimation 

method. The parameters were also estimated in the MASS package in R. The ‘function’ 

statement was applied for the Pearson VI distribution log-likelihood function then the ‘optim’ 

statement estimated the maximum likelihood of the parameters. The package ‘pearsonDS’ 

also resulted in the similar ML estimation of the parameters.  

 

 

3.3. Time and frequency parameters correlation test 

It was taken from the theory that the relationship between the Negative Binomial distribution 

and the Pearson VI distribution is similar to the relationship between the Poisson process and 

the Exponential distribution. It means that the parameters    and   in the Poisson-gamma 

mixture are the same as the parameters   and   in the Pearson VI distribution [3]. Hence, it 

was expected that in the completed trials the shape parameter   in the time domain, which 

was estimated from Pearson VI distribution, to be broadly similar to the shape parameter 

estimated from Negative Binomial distribution in frequency domain. Also the scale 

parameters   are to be very similar in both recruitment domains. Even if the parameters were 

not similar due to different parameterisations, they were expected to be strongly related. 

However, due to difficulty of estimating the parameters from Pearson VI distribution and 

probably because of software issues, the results were not as they were expected. Lack of 

specific option in SAS procedures for Pearson VI distribution could reduce the reliability of 

estimating the parameters. The Pearson VI distribution was hardly a good fit for most of the 

time data among the 18 completed trials. More over the frequency data were well better 

presented than the time data.  
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Nevertheless, the analysis were carried out to draw a scatter plot and run statistical correlation 

test for any possible correlation coefficients between estimated parameters  in frequency 

and time domain. The scatter plot hardly showed any relationship between the   values 

(figure 3.5) estimated from Negative Binomial and Pearson VI distribution. 

 

Figure 3.5: Scatter plot of the estimated ALPHA values in Frequency and time domain  

 

Table 3.5 presents the SAS output of the correlation test between the  values in frequency 

domain, which were estimated from Negative Binomial distribution and the estimated   

values from the Pearson VI distribution in time domain. Based on the calculated p-value (0.63) 

and the 95% confidence correlation limit (-0.5, 0.4) in the Pearson correlation coefficient test, 

the null hypotheses of no correlation between   values could not be rejected.  
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The CORR Procedure between alpha values 
 

Variable        N          Mean       StdDev        Median       Min           Max 

alpha_freq              18       1.84033       0.85517       1.42600       0.81600       3.98800 

alpha_time             18       0.32178       0.51210       0.19400       0.01100       2.26000 

              

Pearson Correlation Coefficients, N = 18 
Correlation Estimate=-0.12 

P-value= 0.6316 

 

              

Pearson Correlation Statistics (Fisher's z Transformation) 

 Variable   With variable 95% Confidence Limits p Value for H0:Rho=0 

alpha_freq alpha_time -0.554176 0.369404 0.6369 

Table 3.5: SAS output of the correlation test between the ALPHA values in Frequency and Time domain 

 

Similar analyses were run to test if the   values estimated in Frequency domain and time 

domain was correlated. The scatter plot hardly illustrates any relationship among   values 

either (figure 3.6).  

 

 

Figure 3.6: Scatter plot of the estimated BETA values in Frequency and time domain  
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The SAS out put of the correlation test between the estimated   values in the Frequency 

domain and the estimated  values in the time domain are displayed in table 3.6.  In the 

CORR procedure the null hypotheses was not rejected within the 95% confidence correlation 

coefficient limit.  

The CORR Procedure between Beta values 
Correlation Estimate = -0.07 

P-value= 0.7169 

         

Pearson Correlation Statistics (Fisher's z Transformation) 

 Variable   
                     With 

variable 
95% Confidence Limits p Value for H0:Rho=0 

beta_freq beta_time -0.523456 0.406185 0.7647 

Table 3.6: SAS output of the correlation test between the BETA values in Frequency and Time domain 

 

 

3.4. A proposed solution to the time analysis problem 

A logical and practical solution for the issue of analysing the recruitment time was to derive a 

time domain distribution directly from Poisson-gamma process. The application of the first 

principle of the relationship between frequency domain and time domain is that if the 

frequency domain follows Poisson-gamma mixture, the time to recruit patients will follow the 

Gamma-exponential mixture. The Gamma-exponential mixture is a special case of the 

Gamma-gamma mixture and it would end up with a similar expression to what Anisimov & 

Federov [3] had in their paper.  

 

For the forecasting purpose, if the patient arrivals are simulated using the Poisson-gamma 

mixture, then the recruitment time are estimated by summing up the individual waiting times 

between patients until the last recruited patient in clinical centres.  
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In the proposed Bayesian based simulation method, a prior distribution had to be found for the 

parameters fitted from the Negative Binomial distribution.  Then, to precede the simulation, 

the posterior mean and variance of the estimated parameters in the frequency domain were 

required as well. The next chapter expands the practical obstacles of modelling the parameters 

for the Bayesian prior distribution.  Finally, in chapter 5 it has been tried to come up with a 

feasible modelling solution for all the analytical issues throughout the research.  
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Chapter 4 

Independence of Model 

Parameters 

 

The key aspect for Bayesian updating was to have a suitable prior distribution of the true 

value of the parameters. However, the uncertainty about the value of the parameters was a 

major issue in forecasting the recruitment. A fundamental assumption was that the parameters 

 and   had to be independent in the frequency domain as well as the time domain so that 

they can be modelled individually. Otherwise, fitting them to a bivariate prior distribution 

could be very complicated.  

 

In this chapter, the independency of the estimated parameters in the recruitment frequency 

domain was tested. Then, regardless of the issues in modelling the time domain (chapter 3), 

the relationship between shape and scale parameters estimated from Pearson VI distribution 

has also been analysed.  
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4.1. Parameters estimated from Recruitment 

frequency domain 

 

A scatter plot was very informative and told most of the story about the relationship between 

parameters. Figure 4.1, illustrates a simple scatter plot and reveals graphically the correlation 

between estimated parameters  and  in the recruitment frequency data. 

 
 

Figure 4.1: Scatter plot of estimated   and   from NB distribution in frequency domain 

 

The scatter plot of   and   with their standard errors, however, gave a wider view of the 

relationship between parameters. If it is imagined that a horizontal whisker illustrates the 

standard error of   and a vertical line represents the standard error of   through each point 

in the scatter plot, it ends up having something like ‘+’ around each point. As a result, the size 

of each point could indicate how reliable and informative the estimate was. The scatter plot of 

the shape parameter   and the scale parameter  , which were estimated by fitting the 

Negative Binomial distribution to the recruitment frequency domain, with one standard 

deviation has been visualised in figure 4.2. The green horizontal lines are the standard errors 

of the estimated parameter   and the blue vertical whiskers represent the standard errors of 
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the scale parameter  in clinical trials. Obviously, the points with bigger standard errors are 

less informative and less reliable than others.  

 

Figure 4.2: Scatter plot of  and  with 1*SE 

 

The scatter plot in figure 5.2 illustrated only the between-trial correlations between the shape 

and the scale parameters. Overall, there were within trial correlation coefficients of the 

parameters which were negative (table 4.1 and 4.2) and a between trial coefficient that was 

also negative (figure 4.2 & table 4.3). 

 

The within-trial correlation coefficients displayed in table 4.1 were calculated in SAS 

GENMOD procedure while estimating the parameters from fitting the Negative Binomial to 

the recruitment frequency data. This was, however, before taking the accrual time-spans into 

account. The table illustrates that there was quite a strong negative correlation coefficient 

between each pair of   , .  
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Study ALPHA BETA 
corr-

coefficient 

1 1.273 12.599 -0.860 

2 3.220 3.934 -0.943 

3 2.392 14.125 -0.910 

4 1.280 3.907 -0.860 

5 2.745 3.556 -0.934 

6 1.435 8.402 -0.866 

7 1.417 7.225 -0.874 

8 1.416 6.216 -0.878 

9 2.478 7.334 -0.917 

10 1.314 10.146 -0.855 

11 1.739 18.449 -0.879 

12 3.988 1.826 -0.964 

13 0.995 16.245 -0.799 

14 1.227 6.505 -0.850 

15 2.191 1.567 -0.946 

16 1.070 5.416 -0.840 

17 0.816 25.873 -0.764 

18 2.130 13.270 -0.899 

Table 4.1: Estimated values of parameters from Negative Binomial and within trial correlation coefficient 

 

It is also evidenced from the SAS output, which is displayed in table 4.2, that the mean of the 

within trial correlation coefficient in the frequency domain was not zero under the default 95% 

confidence limit.  

 

The SAS System 
The UNIVARIATE Procedure 

Within-trial   correlation coefficient (alpha vs beta in each trial) 

 N                          18   Sum Weights                 18 
Mean                    -0.88  Sum Observations       -15.84 
Std Deviation       0.051  Variance                           0.003 
Skewness              0.40  Kurtosis                             0.24 
Uncorrected SS  13.98  Corrected SS                     0.04 
Coeff Variation   -5.85                            Std Error Mean                0.012 

Tests for Location: Mu0=0 
Test -Statistic- -----p Value------ 

Student's t t -72.4724 Pr > |t|    <.0001 
Sign M -9 Pr >= |M|   <.0001 

Signed Rank S -85.5 Pr >= |S|   <.0001 

Table 4.2: SAS output for the location test of the within trial correlation between parameters in frequency 

domain 
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The negative between trial correlations coefficient in the frequency domain has also been 

statistically documented in the SAS CORR procedure in table 4.3. The between trial 

correlation were calculated between the two vectors of the estimated parameters.  

 

    The SAS System       

   

The CORR Procedure 
Between-trial correlation coefficient 
(Between the vectors of alpha and 

beta)     
          
    2  Variables:   ALPHA       BETA     

Variable           N          Mean       Std Dev        Median       Minimum       Maximum 
ALPHA          18       1.84033       0.85517       1.42600       0.81600       3.98800 
 BETA            18       9.25528       6.44033       7.27950       1.56700      25.87300 

P_value = 0.0456  
               

Table 4.3: SAS output of the between correlation coefficient of parameters among all the trials in the 

frequency domain 

 

It was clear from the analysis that there were strong negative correlations between the 

parameters   and   that were estimated from Negative Binomial distribution in the 

recruitment frequency data. This implied that the parameters could not be modelled 

individually as a prior distribution for the Bayesian update. Therefore, the question raised here 

was whether a particular parameterisation could be found to make the estimates of   and 

independent in some level. In this case, the new parameters had to be estimated and modelled 

for all the trials.  

 

4.2. Parameter estimation from recruitment time 
domain 

 

Despite the issue of incomparability of modelling the time domain from Pearson VI 

distribution (chapter 3), the correlation coefficients between shape and scale parameters were 
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put under assessment. The scatter plots in figure 4.3 & 4.4 and also the statistical tests in table 

4.5 revealed that the estimated parameters are highly correlated inside the trials. This time, 

however, the correlation coefficients between the shape and the scale parameters are strongly 

positive. 

 

 

Figure 4.3: Scatter plot of Alpha and beta in time domain 

 

Opposite the frequency domain, the estimated parameters in the time domain were less 

scattered and more informative. This was due to the smaller standard errors for each point 

(figure 4.4). Although the parameters estimated in the recruitment time data seemed to be 

more reliable, the quality of data provided in the frequency domain was more suitable for 

modelling patient recruitment.  So, it is still aimed to analyse the recruitment time by moving 

from frequency domain to time domain.  

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5

Scatter plot of the estimated ALPHA and BETA from Pearson VI 
distribution

ALPHA

B
ET

A



Andisheh Bakhshi  Supervisor: Prof. Stephen Senn 60 

 

Figure 4.4: Scatter plot of ALPHA and BETA estimated from Pearson VI distribution with 1*Standard 

Deviation 

 

The within trial correlation coefficients in table 4.4 were estimated in SAS NLP procedure 

after each Pearson VI parameter were estimated. The location test for the within trial 

correlation coefficient has been summarised in table 4.5, which shows a strong positive value 

of 0.87.  
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Study ALPHA BETA corr-coefficient 

1 2.260 1.610 0.996 

2 0.196 0.019 0.146 

3 0.046 0.009 0.798 

4 0.396 0.113 0.964 

5 0.192 0.032 0.950 

6 0.534 1.142 0.993 

7 0.024 0.006 0.909 

8 0.011 0.009 0.853 

9 0.121 0.039 0.420 

10 0.174 0.167 0.991 

11 0.571 0.102 0.996 

12 0.373 0.260 0.992 

13 0.240 0.025 0.962 

14 0.014 0.029 0.958 

15 0.229 0.996 0.969 

16 0.045 0.063 0.942 

17 0.233 0.054 0.960 

18 0.133 0.081 0.969 

Table 4.4: Estimated values of parameters from Pearson VI distribution and within trial correlation 

coefficient  

 

The SAS System   

 The UNIVARIATE Procedure   
Within-trial correlation coefficient 

(Between alpha and beta values in each trial)   

          

                                             Moments    

N                          18     Sum Weights                 18   

Mean                    0.88 Sum Observations        15.77   

Std Deviation      0.23 Variance            0.05   

Skewness            -2.68  Kurtosis            6.81   

Uncorrected SS      14.69 Corrected SS          0.87   

Coeff Variation    25.88 Std Error Mean      0.05   

          

                                    Tests for Location: Mu0=0   

 Student's t           Pr > |t|    <.0001 

Signed Rank           Pr >= |S|   <.0001 

Table 4.5: SAS output for the location test of the within trial correlation between parameters in time 

domain 
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The CORR procedure output, which is displayed in table 4.5, proved that there was also a 

high correlation-coefficient between the trials in time domain. The correlation of the between 

trial parameters was also positive.  

 

The SAS System 
The CORR Procedure 

Between-trial correlation coefficient  
(Between the vectors of alpha and beta) 

2  Variables:   ALPHA        BETA 

Simple Statistics 

    Variable               N          Mean       Std Dev        Median       Minimum       Maximum 

ALPHA                 18       0.32178       0.51210       0.19400       0.01100       2.26000 

BETA                18       0.26422       0.47081       0.05850       0.00600       1.61000 

            

Pearson Correlation Coefficients, N = 18 
P_value = .0001     

           

Table 4.6: SAS output of the between correlation coefficient of parameters among all the trials in the time 

domain 

 

 

 

 

4.3. Discussion 

In the previous chapter it was decided to analyse the recruitment by moving smoothly from 

the recruitment frequency data to the time domain. This required the frequency parameters to 

be estimated and the distribution of the true parameters were to be found. Nevertheless, as it 

was highlighted formerly, the two Negative Binomial parameters had to be independent. In 

the next step, the issue was addressed by including the time spans into modelling the 

frequency domain. Simultaneously, two other parameters were estimated by fitting the 

Negative Binomial distribution to the recruitment frequency data. Therefore, the new 



Andisheh Bakhshi  Supervisor: Prof. Stephen Senn 63 

independent parameters could be modelled individually to find a suitable prior distribution for 

the frequency data.   
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Chapter 5 

Transformations and Predictions 

 

5.1. Issues in modelling and solutions 

The modelling and predicting process came across several issues, some of which were 

covered in previous chapters. In chapter 3, the shape parameters  and scale parameters   

were estimated by fitting the Negative Binomial distribution to the recruitment frequency data 

only   ,~ NBx . The frequency scale was later found to be broadly compatible when the 

time-spans of patient recruitment were included in the modelling. This update was applied by 

using ‘offset’ option in SAS modelling procedures. The offset variable was equalled to the 

patients’ accrual time (the time unit was set to months throughout the research) in centres, 

which considered the time as a fixed factor in the null regression model.  

 

The second problem appeared when the estimated parameters in the time domain (chapter 3) 

were far different from the theoretical expectations. Hence, the data that were provided were 

really only suitable for modelling the frequency domain, but the time domain was more 

important for practical forecasting. This issue was addressed by simulating the frequency data 

in the Poisson-gamma process and generating the waiting time between patients from the 

Gamma-exponential mixture.  
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The dependency of   and   especially in the frequency domain made the business of 

applying Bayesian methods more complex. Hence, it was not feasible to treat them as if they 

are independent for handling forecasting. Therefore, a transformation of parameters was 

desirable to make them independent [18]. To deal with the problem, two transformed 

parameters 


1
k and   , were considered for the estimation instead of   , .  

 

To apply the Bayesian forecasting methods properly, further data of individual recruitment 

dates were required. The forecasting approach for waiting time between patients and also the 

length of time required to accrue patients in clinical centres were finally illuminated by 

applying the simulation method using a Poisson-gamma and Gamma- exponential mixture.  

 

 

5.2. Parameter estimation 

In addition to estimating two different parameters by fitting the Negative Binomial 

distribution (equation 3.3) to the recruitment frequency data, the time-spans have been 

included in the model by using ‘offset’ option in Genmod procedure in SAS. The new 

parameters were the dispersion parameter, which is


1
k  and the mean parameter which is in 

fact   ;  is the parameter representing the mean number of recruited patients per centre 

in the trial.  

 

The GENMOD procedure in SAS® was applied to estimate the new parameters using the 

method of maximum likelihood. The results are displayed in table 5.1. The values of the 

estimated parameters are slightly different from the estimated parameters in table 3.1, which 
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is due to including recruitment time into the Negative Binomial parameter estimation using 

‘offset’ option.  

 

Study n 

K = 

1/ALPHA= 

dispersion SE (K) 

within trial 

variance (k) mu 

SE 

(mu) 

within trial 

variance (mu) 

1 385 0.789 0.238 0.057 13.658 3.026 9.155 

2 152 0.274 0.145 0.021 11.838 2.138 4.569 

3 811 0.406 0.122 0.015 30.960 4.522 20.451 

4 80 0.673 0.295 0.087 4.065 1.109 1.229 

5 244 0.351 0.127 0.016 9.088 1.304 1.701 

6 796 0.687 0.130 0.017 8.679 1.296 1.680 

7 1126 0.678 0.106 0.011 8.884 0.847 0.718 

8 1241 1.000 0.135 0.018 8.802 0.671 0.451 

9 927 0.395 0.087 0.007 16.187 1.700 2.889 

10 2000 0.754 0.093 0.009 10.669 0.988 0.975 

11 2936 0.574 0.083 0.007 30.304 2.521 6.353 

12 546 0.250 0.065 0.004 5.634 0.523 0.273 

13 4363 0.986 0.083 0.007 12.882 0.995 0.991 

14 3274 0.781 0.061 0.004 4.851 0.369 0.136 

15 103 0.528 0.227 0.051 0.903 0.569 0.324 

16 533 0.894 0.154 0.024 3.367 0.610 0.372 

17 549 1.226 0.321 0.103 19.475 4.675 21.859 

18 1696 0.469 0.088 0.008 25.364 2.592 6.721 

Table 5.1: Estimated transformed parameters from fitting Negative Binomial to the frequency data and 

including time-spans to the model 

 

 

 

5.3. Correlation test for the transformed 

parameters in frequency domain 

 

The transformation of the estimated parameters was beneficial only if the parameters end up 

being independent. In this case, it is possible to model them individually to find a prior 
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distribution for the parameters. There were two approaches to look at independence. The first 

was combining the evidence from each trial as regards the within-study correlation test. The 

second was examining the pairs of parameter estimates from each trial to look at the between 

trial correlation. It is clear from table 5.2 that the within-study correlation coefficients 

between the estimated values of parameters  ,k  are remarkably reduced compared to the 

correlation coefficient between  and   in table 4.1. Of course, including an offset might in 

any case produce some change but this is not the explanation here.   

 

Study n 

1/ALPHA= 

k= dispersion mu 

corr-coefficient    

(k & mu) cov  (k & mu) 

1 385 0.789 13.658 0.0002 0.00013 

2 152 0.274 11.838 -0.0101 -0.00313 

3 811 0.406 30.960 -0.0010 -0.00054 

4 80 0.673 4.065 -0.0234 -0.00765 

5 244 0.351 9.088 -0.0024 -0.00040 

6 796 0.687 8.679 -0.0009 -0.00015 

7 1126 0.678 8.884 -0.0029 -0.00026 

8 1241 1.000 8.802 0.0000 0.00000 

9 927 0.395 16.187 -0.0011 -0.00016 

10 2000 0.754 10.669 -0.0005 -0.00005 

11 2936 0.574 30.304 0.0000 -0.00001 

12 546 0.250 5.634 -0.0001 0.00000 

13 4363 0.986 12.882 -0.0009 -0.00008 

14 3274 0.781 4.851 -0.0038 -0.00009 

15 103 0.528 0.903 0.0306 0.00395 

16 533 0.894 3.367 -0.0055 -0.00051 

17 549 1.226 19.475 0.0000 0.00002 

18 1696 0.469 25.364 0.0000 0.00000 

Table 5.2: Table of the correlation-coefficient and covariance between estimated parameters k and mu 

from Negative Binomial with adding time-spans in the model 
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As regards the first matter, the statistical correlation test between parameters  ,k  in trials 

suggested that it was possible to treat them as two independent parameters. Table 5.3 tests the 

18 within-study correlation coefficients to see if there is any evidence that on average they are 

different from zero. The summary of results is displayed below. 

 

 

The SAS System  

                                     The UNIVARIATE Procedure   

                                          Variable:  corr 

          (Within-trial correlation coefficient between k and mu)    

                                    Tests for Location: Mu0=0 

p Value= 0.6057 

 

Table 5.3: SAS output of the within trial correlation coefficient test between parameters k & mu 

 

The second matter was also addressed by testing the independence between pairs of estimated 

parameters in trials. The Pearson correlation coefficient test (table 5.4) did not reject the 

independence of the parameters among the trials either, which meant that two issues have 

been solved simultaneously. Adding the time-spans (accrual time) into the Negative Binomial 

model tuned the estimations into more compatible results. At the same time, a transformation 

in parameters made them independent from each other.  

The SAS System  

 The CORR Procedure 

Between-trial correlation coefficient 

2  Variables:    k        mu 

Simple Statistics 

Variable           N          Mean       Std Dev           Sum        

            k             18       0.65            0.27               11.71            

           mu           18      12.53          8.87                225.61        

              

                             Pearson Correlation Coefficients 

   P_value=  0.6604  

Table 5.4: SAS output of the correlation test between parameters k & mu among the trials 
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5.4. Prior distribution of parameters 

Based on the literature review, the most feasible marginal distribution for the recruitment 

frequency data was the Negative Binomial distribution. Then, to proceed to the Bayesian 

prediction method, the true values of the parameters were to be modelled. The true values are 

different from what would be estimated. The true parameters are what are observed if each 

trial had an infinitive number of centres with an infinitive number of patients. Because this is 

not the case, the variability of the observed parameters is bigger than the true parameters. In 

addition to that, the initial parameters    and   were previously found to be dependent. 

Hence, the transformed parameters k  and  were considered for the maximum likelihood 

estimation.  

 

The parameters k  and  were modelled individually to see if they follow the Normal 

distribution. The Normal distribution although not ideal could be a suitable approximate prior 

distribution for the Negative Binomial parameters given an appropriate transformation of the 

parameters. If the Normal distribution was a good fit for parameters, then estimating the 

posterior values of the parameters would be easier. The result of testing how well the Normal 

distribution fits to the to the Negative Binomial parameters  k  and   showed that it was a 

practical fit. The SAS univariate outputs are displayed in table 5.5 for the parameter k and 

table 5.6 for . All the three statistical GOF tests approved the assumptions of the Negative 

Binomial parameters following the Normal distribution.  
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The SAS System 

The UNIVARIATE Procedure 

Fitted Distribution for k 

  

Parameters for Normal Distribution 

Parameter   Symbol   Estimate 

Mean        Mu       0.651 

StdDev     Sigma    0.271 

  

Goodness-of-Fit Tests for Normal Distribution 

Test                  -----p Value----- 

Kolmogorov-Smirnov   >0.150 

Cramer-von Mises      >0.250 

Anderson-Darling      >0.250 

Table 5.5:  SAS output of the normality test of the parameter k 

 

The SAS System 

The UNIVARIATE Procedure 

Fitted Distribution for mu 

  

Parameters for Normal Distribution 

Parameter   Symbol   Estimate 

Mean        Mu       12.53 

StdDev     Sigma    8.87 

  

Goodness-of-Fit Tests for Normal Distribution 

Test                  -----p Value----- 

Kolmogorov-Smirnov   >0.150 

Cramer-von Mises      0.065 

Anderson-Darling      0.051 

Table 5.6: SAS output of the normality test of the parameter mu  

 

The normality test was also run for Ln(k). It was to apply Ln (k) instead of k in the simulation 

process in order to avoid generating negative k values. The parameter k in the Negative 

Binomial distribution gets positive values only. However, the estimated values of the 

parameter k could get negative values in the process of generating the Normal distribution. 

For that reason, the parameter Ln (k) was initially applied. There was no such consideration 
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for parameter   since its mean was big enough compared to its standard deviation in each 

trial.  

 

The SAS System 

The UNIVARIATE Procedure 

Fitted Distribution for Ln_k 

  

Parameters for Normal Distribution 

Parameter   Symbol   Estimate 

Mean        Mu       -0.51 

StdDev     Sigma    0.43 

  

Goodness-of-Fit Tests for Normal Distribution 

Test                  -----p Value----- 

Kolmogorov-Smirnov                         >0.150 

Cramer-von Mises                              >0.250 

Anderson-Darling                               >0.250 

Table 5.7: SAS output of the normality test of Ln (k)  

 

Among all the 18 completed trials, one trial was chosen to illustrate the calculation of the 

posterior distribution. The prediction process relied on the posterior values of the selected trial. 

To calculate the posterior values of the trial it was necessary to estimate the variances 

between the 18 completed trials. In theory the relationship between the variances of 

parameters is:  

Total variance = between trial variance + within trial variance    (5.1) 

The within trial variances for parameters k and   (displayed in table 5.1 and table 5.8) were 

estimated in the SAS GENMOD procedure in Fitting the Negative Binomial distribution to 

the frequency data. The within trial variances for Ln (k), however, were calculated using the 

equation:  

    k
k

k var
1

lnvar
2

          (5.2) 
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The above is an approximate formula based on Taylor’s expansion of  Ln(k) using the so-

called ‘delta method’.  

 

Study mu SE (mu) 

within trial 

variance 

(mu) Ln_k Se (Ln_k) 

within trial 

variance 

(Ln_k) 

1 13.658 3.026 9.155 -0.237 0.302 0.091 

2 11.838 2.138 4.569 -1.295 0.529 0.280 

3 30.960 4.522 20.451 -0.902 0.301 0.091 

4 4.065 1.109 1.229 -0.396 0.439 0.193 

5 9.088 1.304 1.701 -1.048 0.361 0.130 

6 8.679 1.296 1.680 -0.376 0.189 0.036 

7 8.884 0.847 0.718 -0.389 0.156 0.024 

8 8.802 0.671 0.451 0.000 0.134 0.018 

9 16.187 1.700 2.889 -0.929 0.219 0.048 

10 10.669 0.988 0.975 -0.282 0.123 0.015 

11 30.304 2.521 6.353 -0.555 0.145 0.021 

12 5.634 0.523 0.273 -1.388 0.262 0.069 

13 12.882 0.995 0.991 -0.014 0.084 0.007 

14 4.851 0.369 0.136 -0.247 0.078 0.006 

15 0.903 0.569 0.324 -0.638 0.429 0.184 

16 3.367 0.610 0.372 -0.112 0.172 0.030 

17 19.475 4.675 21.859 0.204 0.262 0.069 

18 25.364 2.592 6.721 -0.756 0.188 0.035 

Table 5.8: Estimated parameters mu and Ln (k) with their within-trial standard errors and variances 

 

The observed (total) variance of the parameters could be calculated while modelling the 

parameters as a normal distribution. From table 5.5 the total variance of parameter k is 

  073.0271.0
2
 , based on table 5.6 the total variance of parameter   is   730.78873.8

2


and according to the table 5.7 the total variance of parameter Ln (k) is   187.0433.0
2
 .  
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5.5. Random Effect meta-analysis [19, 20] 

The general purpose of meta-analysis is to estimate the true effect size of the parameters taken 

from a study under special assumptions and conditions. The meta-analysis combines the 

results of the completed trials and gives the effect size of the parameters as its output. Since 

the parameters are independent, the one dimensional random effect analysis would work 

efficiently. That is to say, a separate meta-analysis was applied to both Ln (k) and  .  

 

The random effect meta-analysis macro in SAS [19,20] takes the estimated values as well as 

the estimated within-trial standard deviations of the parameter in all trials and calculates the 

posterior estimation of the parameter based on the normal distribution. It also estimates the 

random effect variance of the parameter. The result of the random effect meta-analysis of 

parameters k, Ln (k) and   are summarised in tables 5.9, 5.10 and 5.11 respectively. The 

posterior variances of the parameters, however, were calculated based on the assumption of 

normal distribution of parameters and applying the equation: 

iancetrialwithinVarianceER

iancePosterior

var..

1

..

1

1
var.



     (5.3) 

 

 

 

 

 

 

 

 



Andisheh Bakhshi  Supervisor: Prof. Stephen Senn 74 

Meta-analysis, Der Simonian& Laird method 

Study 

1/ALPHA= 

k= 

dispersion 

within trial 

variance (k) 

Posterior estimation 

of k 

Posterior 

variance of k 

1 0.789 0.057 0.707 0.028 

2 0.274 0.021 0.372 0.015 

3 0.406 0.015 0.453 0.012 

4 0.673 0.087 0.645 0.034 

5 0.351 0.016 0.413 0.012 

6 0.687 0.017 0.673 0.013 

7 0.678 0.011 0.669 0.009 

8 1.000 0.018 0.908 0.014 

9 0.395 0.007 0.423 0.007 

10 0.754 0.009 0.737 0.007 

11 0.574 0.007 0.580 0.006 

12 0.250 0.004 0.277 0.004 

13 0.986 0.007 0.946 0.006 

14 0.781 0.004 0.772 0.003 

15 0.528 0.051 0.576 0.027 

16 0.894 0.024 0.813 0.017 

17 1.226 0.103 0.835 0.036 

18 0.469 0.008 0.489 0.007 

Estimated mean of k from meta-analysis 0.627 

R.E Variance of the parameter k 0.055 

Table 5.9: SAS results of the random effects meta-analysis for parameter k 
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Meta-analysis, Der Simonian& Laird method 

Study Ln_k 

within trial 

variance (Ln_k) 

Posterior estimation 

of Ln_k 

Posterior 

variance of 

Ln_k 

1 -0.237 0.091 -0.342 0.044 

2 -1.295 0.280 -0.642 0.066 

3 -0.902 0.091 -0.665 0.044 

4 -0.396 0.193 -0.427 0.059 

5 -1.048 0.130 -0.682 0.052 

6 -0.376 0.036 -0.395 0.025 

7 -0.389 0.024 -0.400 0.019 

8 0.000 0.018 -0.076 0.015 

9 -0.929 0.048 -0.754 0.031 

10 -0.282 0.015 -0.306 0.013 

11 -0.555 0.021 -0.532 0.017 

12 -1.388 0.069 -0.967 0.038 

13 -0.014 0.007 -0.047 0.007 

14 -0.247 0.006 -0.260 0.006 

15 -0.638 0.184 -0.504 0.059 

16 -0.112 0.030 -0.197 0.022 

17 0.204 0.069 -0.082 0.038 

18 -0.756 0.035 -0.664 0.025 

Estimated mean of Ln(k) from meta-analysis -0.441 

R.E Variance of parameter Ln(k) 0.086 

Table 5.10: SAS results of the random effects meta-analysis for parameter Ln (k) 
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Meta- analysis , Der Simonian& Laird method 

Study mu 

within trial 

variance (mu) 

Posterior estimation 

of mu 

Posterior 

variance of mu 

1 13.658 9.155 12.921 6.300 

2 11.838 4.569 11.739 3.726 

3 30.960 20.451 21.066 10.163 

4 4.065 1.229 4.475 1.159 

5 9.088 1.701 9.261 1.569 

6 8.679 1.680 8.880 1.551 

7 8.884 0.718 8.963 0.693 

8 8.802 0.451 8.854 0.441 

9 16.187 2.889 15.577 2.527 

10 10.669 0.975 10.699 0.930 

11 30.304 6.353 25.751 4.833 

12 5.634 0.273 5.705 0.269 

13 12.882 0.991 12.806 0.944 

14 4.851 0.136 4.893 0.135 

15 0.903 0.324 1.064 0.319 

16 3.367 0.372 3.513 0.365 

17 19.475 21.859 15.225 10.499 

18 25.364 6.721 21.849 5.043 

Estimated mean of mu from meta-analysis 11.291 

R.E Variance of the parameter mu 20.202 

Table 5.11: SAS results of the random effects meta-analysis for parameter mu 

 

 

 

5.6. Posterior estimations for the selected trial 

The Bayesian prediction method was applied on one completed trial. The chosen trial had 

special information that was essential for the forecasting process.  The study included the 

details about the individual recruitment date as well as each centre’s activation date. 

Therefore, the waiting time between patients in the whole trial was available. The trial had 

recruited 152 patients in 12 centres in just less than 4 months.  
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The trial, then, was monitored in four different time intervals. After each interval a new 

dataset was produced and the Negative Binomial parameters in the frequency domain were 

estimated for every new data set. The first dataset included the number of patients that had 

been recruited by the first month after the first centre had been activated. The second data 

sheet had the details about the patients in clinical centres just 2 months after the first site had 

been activated. In the third data set, there was the number of patients that were recruited by 

the third month of the start of the trial.  Finally the last data set contained the total recruitment 

details of the trial by the time it had finished, when all the clinical centres had entered the trial. 

There were 4 data sets in total and the parameters were estimated by fitting the Negative 

Binomial distribution to the frequency domain.    

 

The recruitment had not initiated simultaneously in all centres. In other word, the clinical 

centres had been activated in different dates. Consequently, in each data set, the recruitment 

times varied among centres and depend on the activation date.  The clinical centres were 

added to the datasets one by one. Only the fourth data set included all the centres in the trial.   

 

Table 5.12 illustrates the number of patients that had been recruited in the clinical centres as 

well as their accrual time in the four data sets. 
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By the end of the 

1
st
 month (15/04/) 

By the end of the 

2
nd

 month (15/05/) 

By the end of the 

3
rd

  month (15/06/) 

BY the end of the 

trial (15/07/) 

site 

site 

activation 

date patients 

Accrual 

time-

month patients 

Accrual 

time-

month patients 

Accrual 

time-

month patients 

Accrual 

time-

month 

1 15/03/ 6 0.99 14 1.89 23 3.05 26 3.36 

2 16/03/ 2 0.89 5 1.79 6 2.52 6 2.52 

3 16/03/ 1 0.89 5 1.83 12 3.03 18 3.89 

4 16/03/ 7 0.99 18 1.90 25 3.03 28 3.79 

5 30/05/         1 0.46 10 1.49 

6 23/06/             11 0.70 

7 30/05/             2 1.42 

8 19/04/     4 0.80 5 1.44 6 2.37 

9 19/04/     1 0.73 5 1.89 6 2.76 

10 19/04/     2 0.79 5 1.19 9 2.86 

11 19/04/     3 0.76 10 1.66 17 2.77 

12 06/06/         4 0.29 13 1.27 

Patientsrecruited 

16 

   

52 

   

96 

   

152 

   

Average 

recruitment per 

centre per month 4.00   3.25   3.20   3.25   

Table 5.12: The four recruitment data set made from the selected trial in four time intervals monitoring 

 

In the next step the posterior mean values and the posterior variances of the parameters were 

calculated in all the four data sets derived from the trial.  

The posterior estimations of the parameters were based on the assumption that the parameters 

follow the normal distribution. Equation (5.3) was applied to calculate the posterior variances 

of the parameters.  
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Estimated parameters and the posterior values 

  1
st
 data set 2

nd
 data set 3

rd
 data set 4

th
 data set 

number of patients 16 52 96 152 

parameter k 0.187 0.463 0.423 0.290 

se (k) 0.339 0.301 0.233 0.151 

within trial variance (k) 0.115 0.090 0.054 0.023 

Ln_k -1.675 -0.770 -0.860 -1.239 

se (Ln_k) 1.810 0.650 0.551 0.520 

within trial variance 

(Ln_k) 
3.278 0.422 0.303 0.271 

Posterior estimation 

(Ln_k) 
-0.473 -0.497 -0.534 -0.633 

Posterior variance ( Ln_k) 0.084 0.071 0.067 0.065 

parameter mu (estimated 

mean number of patients 

in centres after each 

interval) 

4.016 5.854 8.501 11.667 

Estimated mean number of 

patients per centre per 

month (mu/time interval) 

4.02 2.93 2.83 2.99 

se (mu) 1.318 1.742 2.119 2.199 

within trial variance (mu) 1.737 3.033 4.490 4.836 

posterior estimation (mu) 4.592 6.564 9.009 11.595 

Posterior estimation of the 

average recruitment per 

centre per month (mu/time 

interval) 

4.59 3.28 3.00 2.97 

posterior variance (mu) 1.599 2.637 3.674 3.902 

Table 5.13: Summary of the estimated parameters and the posterior values for the selected trial in four 

time intervals 

 

The posterior mean of the parameters were calculated from substituting the values in the 

equations (5.4) and (5.5).  
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In calculating the posterior values, (.).. 2ER is the random effect variance of the parameters 

among the 18 completed trials and (.)mean is the estimated mean of the parameters in the 

trials derived from meta-analysis. The  ... 2trialwithin , in the second part of the equations, is 

the within trial variance of the parameter, which was estimated from fitting the Negative 

Binomial distribution to the frequency data. The estimated parameters in the four time interval 

data sets and the within trial variances of the parameters are displayed in table (5.13).  

 

 

5.7. Prediction of patient recruitment 

The aim of the current simulation was to use the data from completed trials in the frequency 

domain and forecast the patient recruitment in the time domain in multi-centre clinical trials. 

In practice, predicting the accrual time for the pre-arranged sample size was more important 

than predicting the number of patients in the clinical trials. However, the data provided was 

more suitable for working on the frequency domain. This research, however, managed to 

simulate the patients accrual times (in month) in an on-going trial by using the frequency 

domain in completed trials.  

 

Regarding the prediction approach, it was to look at the predictions that were estimated from 

the trial simulations and compare them with the real trial.  
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In section 5.7.1 we discuss the theoretical problem of predicting how long it would take to run 

a second 152 patient trial given the information available at month 1, 2, 3 and 4. For example, 

suppose we need to conduct a second similar trial for regulatory submission to satisfy the 

regulatory needs of replication. If the planning phase occurs whilst the initial study is going 

on, we investigate how long it will take to recruit 152 patients in a new study using the 1, 2 

and 3 month data. The more interesting practical question of concern is how long it will take 

to complete the on-going trial which is discussed in section 5.7.2. That is, at month 1 how 

long will it take to recruit the additional 136 patients, at month 2 how long will it take to 

recruit the additional 100 patients etc. 

 

The predictions were run 1000 times in R version 2.12.1. The simulations were initially based 

on the posterior information of the four datasets derived from the selected trial.  

 

The selected trial had recruited 152 patients in 12 clinical centres. In order to make a similar 

trial, N=12 clinical centres were simulated for the trial. However, taking the safe side, 152 

individuals were simulated for each centre, which makes a trial of n=12*152 patients. 

Although n=152 patients of the whole trial would be used only.  It did not affect the 

predicting process since the n patients are considered by the order they arrived to the trial 

regardless of the centres.  

 

 

5.7.1. Prediction in the frequency domain 

Each centre had one pair of estimated parameters  ),ln(k  and it was supposed that they 

follow the Normal distribution. Hence, for each data set, the simulation approach was to 
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generate N=12 random values of )ln(k and   with the estimated posterior mean values and 

posterior variances displayed in table (5.13). Random values of k were derived by taking 

exp(ln(k)) from the generated )ln(k .  

 

The next step for the four data sets was to generate n=152 random numbers (patients) from 

the Negative Binomial distribution with the parameters ( k ,  ) generated for each centre. 

Although, the total number of patients in the whole trial was 152, this amount was generated 

for each centre to be able to predict recruitment time for a second trial of the same size. So far 

the simulated trials of the four data sets have produced matrices of N=12 rows (centres) and 

n=152 frequencies, which represented the number of patients that have been recruited in 

clinical centres. Consequently, the overall mean of each matrix divided by their monitoring 

interval times gave the mean number of patients per centre per month in the simulated trial.    

 

According to the data set collected by the end of 1
st
 month of the trial (table 5.12), 4 patients 

in average were recruited in each centre during the first month of the trial.  When the trial 

went on to its second month four new centres were activated as well as more patients were 

recruited. But the average number of patients reduced to 3.25 per centre per month. Another 

slight reduction of 0.05 in the average number of recruited patients appeared by the end of 3
rd

 

month. The average number of accrued patients per centre per month slightly recovered to 

reach to 3.62 by the end of the trial. Figure 5.1 illustrates the average recruitment trend per 

centre per month in the completed trial.  
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Figure 5.1: Line graph of the average number of recruited patients per centre per month in the completed 

trial througout the four monitoring intervals. 
 

Figure 5.2 shows the histogram of the predicted average number of patients per centre per 

month based on the one-month information simulated trial. The histogram says that having 

had the recruitment data of the first month only, it is expected to recruit the average number 

of 4.09 to 5.13 (95% CI: 4.43-5.04) patients per centre per month throughout the trial. 

Although the value of the real trial is very close to the lower band of the histogram, the 95% 

confidence interval does not cover the values of the real trial. It means that the simulated trial 

has slightly over estimated the recruitment.  
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Figure 5.2: Average number of recruited patients per centre per month based on one month monitoring 

 

The prediction on the frequency domain changed slightly after the trial finished the second 

month of recruiting patients. Based on the two months information in an on-going trial, the 

simulated average number of patients was a number between 3.02 and 3.73 (95% CI: 3.13-

3.57) patients per centre per month (Figure 5.3). The prediction is perfectly matched to the 

values of the completed trial.  
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Figure 5.3: Average number of recruited patients per centre per month based on two months monitoring 

 

 

The expected frequency of patients per centre per month is predicted to be between 2.71 and 

3.60 (95% CI: 2.90-3.31) based on the simulated trial of the three-month data set in an 

ongoing trial (figure 5.4).  The confidence interval included the average value of the real trial 

in the third data set (3.20) as well as the last data set (3.24).  
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Figure 5.4: Average number of recruited patients per centre per month based on three months monitoring 

 

By the end of the trial, the average number of patients per centre per month in the example 

trial were about 3.25. It was located inside the 95% confidence interval of the predicted 

average number of patients. In the simulated trial,derived after the trial ended, the expected 

range was between 2.60 and 3.39 (95% CI: 2.80-3.27). The histogram of the final simulation 

is displyed in figure 5.5.  
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Figure 5.5: Average number of recruited patients per centre per month based on four months monitoring 

Figure 5.6 illustrates a visual comparison between the average number of recruited patients 

per centre per month in the simulated trials and the real completed trial as well as the marginal 

and posterior estimation in different time intervals. The values of the observed data are taken 

from table 5.12 and the estimated values derived from table 5.13. The general trends of the 

mean number of patients’ arrivals to the clinical centres are similar except for the last data, 

where the recruitment has a clear reduction. The average number of patients per centre per 

month is slightly underestimated in the last simulation. 
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Figure 5.6: Line graph of the mean number of patients arrived to the centres per month in the real trial, 

marginal estimation, posterior estimation and the simulated trial 

 

 

5.7.2. Prediction in time domain 

In this section we consider the more relevant question of how long it will take to complete the 

on-going trial. That is, at month 1 how long will it take to recruit the additional 136 patients, 

at month 2 how long will it take to recruit the additional 100 patients and at month 3 how long 

will it take to recruit 56 patients. 

In this research, the recruitment frequency data were used for almost all the analysis. 

Therefore, the process of the simulation in the recruitment time required a movement from the 

frequency domain to the time domain. Due to the frequency domain of the recruitment data 

following the Poisson-gamma mixture, the time domain was assumed to have the Gamma-

exponential mixture distribution. What the assumption implies is that the waiting times 

between patients follow the exponential distribution with parameter lambda, which itself is 

the Gamma distributed with parameters   , .  

 

1st month 2nd month 3rd month end of trial

Observed trial 4 3.25 3.2 3.25
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In order to simulate the patients’ accrual time, waiting times between patients’ arrival should 

be estimated first. Accrual time is the length of time that it would take to recruit a number of 

patients in clinical centres. But the waiting time between patients is the delay time between 

two patients’ arrival into centres in a clinical trial. Therefore, by summing up the waiting time 

between patients we would get the accrual time for that number of patients.  

 

To simulate the waiting time between patients, first, N=12 pairs of the parameters k  and   

from the Normal distribution were generated.  Then, for each pair, n=152 random numbers 

from the Gamma distribution with the shape parameter 
k

1
  and the scale parameter 

 k were simulated. These numbers, which made a matrix of N=12 rows and n=152 

columns, were in fact the values of the parameter lambda of the exponential distribution. So 

far, there were 152 lambda values generated for each pair of the parameters. Consequently, 

for each centre (row) the mean numbers of the lambda values were calculated to get only one 

representative parameter of lambda generated from the Gamma distribution for each centre. 

After this step the simulated matrix had N=12 rows (centres) and one column (average of 

lambda values generated from gamma distribution).  

The lambda values that were generated from the Gamma distribution were supposed to be the 

parameters of the Exponential distribution. Hence, for each centre, n=152 waiting times 

between patients’ arrival were simulated from the Exponential distribution using the lambda 

values as the distribution parameters. The result was again a matrix of N=12 rows and n=152 

columns but in the new matrix the values represented waiting times between patients’ arrivals.  

 

Although the waiting times between patients’ arrivals to the centres had been simulated, there 

was no clue about the patients’ accrual time yet. To gain the answer, in the next step of the 
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simulation process, the waiting times in centres were summed up to calculate the total 

recruiting time. This, however, was under the condition that all the centres initiated 

simultaneously. But, in the completed trial, different centres were activated in different dates. 

This meant that some centres started to recruit patients with some sorts of delay from the start 

of the trial. There was no doubt that the delay had to be considered in the simulation as well. 

To address the issue, the delay of the first site was set to zero.  But the difference between the 

activation date of each centre and the first one was added to the matrix of the accrual time. 

The delay values were taken from the selected completed trial. Then, regardless of the centres, 

the whole data were sorted by their accrual time. As a result, a set of time data were generated, 

in which the ith value represented the length of time (in month) to recruit the ith patient in an 

on-going trial.  

 

The process explained above was repeated for the four data sets gathered in the four time 

intervals of monitoring the completed trial. In fact, the four data sets of the trial were 

simulated separately to predict the accrual time based on the different recruiting data. Also, all 

the four sets of the simulation were run for 1000 times to be able to draw histograms of the 

accrual times. 

In the selected trial, 16 patients were recruited during the first month of initiating the trial. But 

after the second month of the start of the trial the arrivals increased to three times as many as 

the first month. 36 more patients had arrived into the clinical centres to increase the total 

number of patients to 52 by the end of the second month. After the third month, the total 

quantity of the patients was 96, which meant that the trial had accrued 44 patients during the 

third month. By the end of the trial 152 patients had arrived into the clinical centres (table 

5.12).  
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The line graph in figure 5.7 shows the sharp increasing trend of the recruitment process in the 

completed trial.  Also, the pie chart in figure 5.8 reveals by how much the number of patients 

went up after each month.  

 

 

 Figure 5.7: Line graph of the recruiting trend througout the trial 

 

Figure 5.8: Pie chart of the share of each time interval in recruiting patients 
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An important consideration here is that the increasing rate of the patient recruitment would 

affect the accrual time. Therefore, it is expected to view a decreasing trend in the accrual time 

as the trial goes on. This research aimed to predict the accrual time for the remaining patients 

based on the information in an on-going trial, which was gained in the different follow up 

times.  

 

Although the main interest was to predict the time to recruit the remaining patients to 

complete the on-going trial, which are illustrated in figures 5.12, 5.14 and 5.15, short term 

predictions were also considered (figures 5.10, 5.11 and 5.13).  They were, in fact, 

comparisons between the simulated trial and the actual data. The histograms in figures 5.9, 

5.10, 5.11 and 5.13 are mainly to check the compatibility of the simulated on-going trial and 

the actual trial. While the results in figures 5.12, 5.14 and 5.15 are the answers to the main 

question of the research. They illustrate the expected time to recruit the remaining individuals 

from the total sample size of 152 patients if 16, 52 and 96 patients had already arrived to the 

centres in the past 1
st
, 2

nd
 and 3

rd
 month of the trial, respectively.  

 

The first trial was simulated based on the first month follow up, during which 16 patients only 

were recruited. Figure 5.9 is the simulated accrual time to recruit 16 patients. It is basically to 

check the comparability of the real trial and the simulated one. The length of time to recruit 

16 patients estimated from 1000 simulation was stretched from 0.26 to 1.38 month (95% CI: 

0.48-1.2). It represented the example trial very well since the one month accrual time in the 

trial was included in the predicted 95% confidence interval.  
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Figure 5.9: Histogram of the simulated accrual time for 16 patients based on one month follow up 

 

The simulated trial, however, was mainly to predict the accrual time to recruit the remaining 

patients from the sample size. It had taken 1 month to recruit 36 more patients (52-16=36) in 

the completed trial after the 16 patients had already arrived into the clinical centres in the first 

month. The simulation predicted that it would be between 0.58 to 1.66 months (95% CI: 0.75-

1.43, median=1.09 months) (figure 5.10).  
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Figure 5.10: Histogram of the predicted accrual time of 36 patients based on the assumption that 16 

patients had already arrived into the centres in the past month 

 

 

 

Based on 1000 simulation, it was predicted to take between 1.51 to 2.92 months (95% CI: 

1.73-2.47; median=2.10 months) for 80 more patients (96-16=80) to arrive the clinical centres 

if 16 patients had already done so in one month (figure 5.11). The value in the completed trial 

was 2 months, which is very similar to the predicted median and fell into the 95% confidence 

interval.  
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Figure 5.11: Histogram of the predicted accrual time of 80 patients based on the assumption that 16 

patients had already arrived into the centres in the past month 

 

 

If it was known that during the first month of the trial 16 patients had arrived into the centres, 

figure 5.12 shows the predicted accrual time for the remaining 136 patients out of the 152 

sample size (152-16=136). The simulated trial, predicted an average of 3.11 months. In 95% 

of the trials the accrual time for the remaining 136 patients was between 2.67 and 3.60 months.  

In the real trial the total accrual time was about 3.90 months. Considering the arrivals of 16 

patients in the first month, the accrual time for the remaining 136 patients had been about 2.90 

months and it was contained in the confidence interval. 
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Figure 5.12: Histogram of the predicted accrual time of 136 patients based on the assumption that 16 

patients had already arrived into the centres in the past month 

 

The second trial was simulated based on two months follow up of the completed trial, during 

which 52 patients had arrived into clinical centres. The simulation was first to predict how 

long it would take to recruit another 44 patients (96-52=44). According to the simulation 

result, it was predicted to take 0.86 month in average, which is less than one month. However, 

the one month accrual time for the extra 44 patients in the real trial was included in the 95% 

confidence interval of the prediction (CI: 0.63-1.08 months) (figure 5.13).  
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Figure 5.13: Histogram of the predicted accrual time of 44 patients based on the assumption that 52 

patients had already arrived into the centres in the past two months 

 

If it was to recruit 152 patients in a clinical trial, the question raised here could be how long it 

would take to recruit 100 individuals (152-52=100) if 52 had been recruited in the past two 

months. The 1000 simulations highlighted that the 95% confidence interval was expected to 

be between 1.40 and 1.96 months. The real accrual time for the remaining patients to arrive 

into centres was about 1.90 months which was very well covered by the predicted CI (figure 

5.14).  
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Figure 5.14: Histogram of the predicted accrual time of 100 patients based on the assumption that 52 

patients had already arrived into the centres in the past two months 

 

Finally, the simulated trial predicted the expected accrual time of 0.50 to 1.20(95% CI: 0.55 – 

0.88) months to recruit the 56 remaining individuals from the sample size of 152 patients(152-

96=56) in an on-going trial, in which 96 patients had been already recruited in three months. 

In the completed trial, the recruitment time for the remaining 56 patients was about 0.90 

months which has been slightly underestimated in the last simulation (figure 5.15). 
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Figure 5.15: Histogram of the predicted accrual time of 56 patients based on the assumption that 96 

patients had already arrived into the centres in the past three months 

For the final view, table 5.14 shows how the predictions of the accrual time of the remaining 

patients changed based on the simulated on-going trials.  

Time 

intervals 

Patients to be 

recruited after 

each time 

interval 

Mean of the 

predicted time 

(month) to 

recruit the 

remaining 

individuals 

95% CI 

prediction for 

the time (month) 

to recruit the 

remaining 

patients 

Actual time to 

predict the 

remaining 

patients 

1st month 136 3.11 (2.67 - 3.60) 2.9 

2nd month 100 1.6 (1.40 - 1.96) 1.9 

3rd month 56 0.72 (0.56 - 0.88) 0.9 
Table 5.14: Summary table of the predicted accrual times based on the 1

st
, 2

nd
 and 3

rd
 month data 

 

 

Overall, the aim of the project was achieved in the way that it was successful in using the 

frequency domain to predict the time domain in an on-going multi-centre clinical trial. 

Moreover, almost all of the predictions covered the accrual time of the real trial. 
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Conclusion and discussion 

 

 

In this research an on-going trial was simulated using the data from completed trials provided 

by ICON. The overall approach was to model the frequency domain from recruitment data 

and move smoothly to predict the time domain.  

 

The frequency of patients’ arrivals was modelled as if they followed the Poisson-gamma 

mixture distribution with the accrual times included in the model as the offset variables. Then, 

the waiting times between patients were simulated based on the assumption that they were 

Gamma-exponential distributed. The total recruitment time for a pre-fixed number of 

individuals were predicted by summing up the waiting times between the patients’ arrivals.  

 

The main interest was to predict the accrual time of the remaining individuals in an on-going 

trial. As an example, in the trial in which 152 patients were to be recruited by the end of the 

trial, the main interest was to predict the time to recruit the remaining 136 patients if 16 

patients had already been taken into the clinical centres in the first month of the trial. 

However, short term predictions were applied as well to see whether the simulated trials 

provided similar time to the actual trials. To make it clearer, in the example above, the time to 

recruit 36 more patients was also predicted if 16 patients had already arrived by the end of the 

first month. Hence, the short term prediction was basically to see if the predicted recruiting 

time for 36 more patients is close to the actual recruiting time in the selected trial. Overall, 

three different on-going trials were simulated based on the information of the follow up 
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intervals of a selected completed trial. Initially, the simulations predicted the expected number 

of recruitments per centre per month derived from the 1
st
, 2

nd
 and 3

rd
 month recruitment 

information. Then the expected length of time (month) to recruit the remaining number of 

patients and complete the trial was predicted based on the one, two and three months of data 

collection. 

 

As regards the frequency domain, the comparison results between the simulated trials and the 

actual data were very reasonable. The average frequencies of the completed trials were well 

covered by the 95% confidence intervals of the expected values predicted from the simulated 

on-going trials. The exception, however, was the first simulation which slightly overestimated 

the average number of patients per centre per month.  The average number of patients per 

centre per month is expected to remain unchanged throughout the trial. This value is 

remarkably more in the first month of the actual trial. That could be the reason of the over-

estimation outcome. The line graph in figure 5.6 compares the expected number of individuals 

to be recruited in the simulated on-going trials and the actual completed trial in different time 

steps.  

 

In the main forecasting area, the time domain, the predictions of the time to accrue the 

remaining individuals from the pre-arranged sample size were reasonable compared to the 

values in the actual trial. Although it may imply that the real accrual time of the remaining 

patients in the 3
rd

 trial has been underestimated by the 3
rd

 simulation, it is located in the upper 

end of the histogram.  

 

In the first simulated trial, the question was that how long it would take to recruit the 

remaining 136 patients (152 patients to be recruited) if 16 patients had already arrived into the 
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clinical centres during the first month of the trial. The recruitment time in the actual trial was 

about 3.90 month for the sample size of the 152 individuals and 16 patients were recruited by 

the end of the first month of the trial. Hence, the accrual time for the remaining 136 patients 

was 2.90 months. The relative simulated on-going trial, with 95% confidence interval, 

predicted that the recruitment time for the remaining 136 patients is between 2.67 and 3.60 

month, which was a reasonable result.  

In the second data set that was derived from the actual trial, 52 patients had arrived into the 

centres by the end of the second month. So, the time for the remaining 100 patients to enter 

the trial was 1.90 months. The second simulation (based on the two-month information) 

suggested 1.40-1.96 months in its 95% confidence interval. It is an acceptable result, although 

the value of the actual trial is moving towards the upper end of the CI.  

By the end of the 3
rd

 month, the trial had recruited 96 patients and took less than a month to 

take the remaining 56 individuals. However, in a 95% confidence interval, the simulated trial 

predicted a range of 0.56 to 0.88 months for 56 patients to be accrued in the clinical trial. As a 

discussion, it implies that it may slightly underestimate the accrual time if the model is 

applied. This is due to the observed data being at the upper end of the confidence interval.   

 

Overall, the main purpose of the research was to predict the patients accrual time in an on-

going clinical trial. It was in fact to forecast the recruitment time for the remaining patients in 

an on-going trial. Since the recruitment data were better presented in the frequency domain, 

the project had to manage to use the recruitment data from the completed trials in the 

frequency domain to forecast the recruitment in the time domain in an on-going trial. In future, 

we could improve the recruitment prediction by applying the statistical distribution to the time 

domain directly. In this case the Pearson VI distribution that was suggested by Anisimov et al 

would be a more reasonable fit.   
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Appendix 1 
 
 
Parameters of Negative Binomial distribution were estimated applying maximum likelihood 

estimation method in R.  

 
### *** Analysing  recruitment data by fitting Negative Binomial distribution to the 

frequency domain with parameters r=alpha   ,    p=1/(1+beta)*** ### 

# log-likelihood function # 

log.like  <-function(par,x)  

{ 

a <- log(gamma(x+par[1])) 

b <- length(x)* log(gamma(par[1])) 

c <- length(x)*par[1]*log(par[2]+1) 

d <- x*log(par[2]/(par[2]+1)) 

e <- log(gamma(x+1)) 

log.like  <-sum(a)-b-c+sum(d)-sum(e) 

} 

# To optimize the function starting from lowest number of patient in centres for alpha(here is 

2),  beta=mean/alpha (here is 8)# 

estimation <-optim(c(2,8),log.like, control=list(fnscale=-1) , hessian=TRUE, x=patients) 

estimation 

 

alpha <-estimation$par[1]  #estimated parameter alpha# 

beta <-estimation$par[2]  #estimated parameter beta# 

p <-1/(1+beta)   #scale parameter in NB distribution# 

m.u <- alpha*(1-p)/p   #mean number of values in NB # 

variance <-alpha*(1-p)/(p^2)  #variance of data in NB distribution# 

s.d <-  variance^.5   #standard deviation# 
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#standard error of the parameter# 

se.par <- sqrt(diag(-solve(estimation$hessian))) 

  

### **** confidence intervals for alpha and beta *** ### 

b  <- c(1,0) # vector to consider alpha only(the first parameter)# 

lower.alpha <-(t(b)%*%estimation$par)-(1.96*sqrt(t(b)%*%(-

solve(estimation$hessian))%*%b)) 

upper.alpha <-(t(b)%*%estimation$par)+(1.96*sqrt(t(b)%*%(-

solve(estimation$hessian))%*%b)) 

# the vector to consider beta only  (the second parameter)# 

b  <- c(0,1)  

k  <-(-estimation$hessian) # the sample information matrix# 

lower.beta<-(t(b)%*%estimation$par)-(1.96*sqrt(t(b)%*%(-

solve(estimation$hessian))%*%b))    #lower band for the CI# 

upper.beta<-(t(b)%*%estimation$par)+(1.96*sqrt(t(b)%*%(-

solve(estimation$hessian))%*%b))    #upper band for the CI# 

 

# Estimating parameters using Maximum Likelihood Method in MASS package # 

library(MASS)       # laoding package MASS # 

fitdistr(patients , "negative binomial")  # fitting Negative binomial parameters #  

 

### *** log-likelihood contour plot *** ### 

ngrid <-60          # Produce the number of grid lines# 

alpha <-seq(1,5,length=ngrid)     # location of grid line of parameter alpha # 

P <- seq( 0, 1, length=ngrid)      #location of grid line of  parameter p # 

# Make a data frame and then matrix from alpha and p# 

grid <-as.matrix(expand.grid(alpha,p))  

log.like  <-rep(0, nrow(grid)) 

n  <-24   #Number of patients in the centre#   

for (i in 1:n)    # to calculate the log-likelihood for the given data# 

{ 

 log.like   <-log.like+log(dnbinom(patients[i], grid[,1], grid[,2])) 

 log.like[log.like <-150] <-NA 
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 log.like   <-matrix(log.like, nrow=ngrid) 

} 

 

contour (alpha, p, log.like)  

#Draw the contour plot with x=alpha, y=p, z=log-likelihood# 

title(xlab="alpha", ylab="p", main="Likelihood function") 

text(1.273, .073, "max") 

 

image (alpha, p, log.like)   #Image of the contour plot# 

text(1.273, .073, "max")   #Label the MLE value# 

 

### *** panel *** ### 

library(rpanel) 

log.like  <-function(theta, data)   

# writing the likelihood function separately then adding all togetherfor simplicity# 

{ par <-theta 

 x <-data 

 a <- log(gamma(x+par[1])) 

 b <- length(x)* log(gamma(par[1])) 

 c <- length(x)*par[1]*log(par[2]+1) 

 d <- x*log(par[2]/(par[2]+1)) 

 e <- log(gamma(x+1)) 

log.like<-sum(a)-b-c+sum(d)-sum(e) 

invisible (sum(a)-b-c+sum(d)-sum(e)) 

} 

# Draw the panel for log-likelihood estimated parameters# 

rp.likelihood(log.like, patients, c(0.1, 2), c(2, 8) )    

rp.likelihood("sum(dnbinom(data, theta[2], theta[1], log = TRUE))",   patients, c(0.1, 2), c(0.9, 

4)) 

 

### *** Goodness of fit test *** ### 

### *** H0: the data follow NB distribution  *** ## 

library (vcd) 
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gf.NB <- goodfit(patients,type= "nbinomial", method= "MinChisq") 

summary(gf.NB) 

 

### *** estimating parameters applying method of moments *** ### 

x.bar  <- mean (patients)  # expected value from the sample # 

s2.bar  <-  var(patients)  # variance from the sample# 

alpha.moment <- x.bar^2/s2.bar  # estimating alpha from the mean and variance # 

beta.moment <- x.bar/alpha.moment # estimating beta from alpha and mean# 

p.moment <- 1/(1+beta.moment) # estimating probabity from its relationship with beta#

  

 

# *** qplot *** # 

#to check if the number of patients recruited follow the negative binomial distribution# 

plot(qnbinom(ppoints(patients), size=1.274, mu=16.044), sort(patients), xlab=" 

Empericalquantiles from NB", ylab="sample empericalquantile") 

abline(0,1) #drawing a 45-degree reference line# 

 

### *** emperical density functions *** ### 

#producing random numbers from NB distribution with the given parameters# 

y<-rnbinom(24,size=1.274,prob=.074) 

#to draw the cumulative functions in one window# 

Par(mfrow=c(1,2)) 

# to plot empirical cumulative distribution function for recruited patients # 

plot.ecdf(patients, verticals = TRUE, pch=19, col="red",  

xlab="Number of patients per country", ylab="probability function", main= "Empirical 

cumulative step function, study 1") 

 

#empirical cumulative step function plot for the random NB values# 

plot.ecdf(y, verticals=TRUE, pch=19, col="darkblue",  

xlab="Negative Binomial random Values", ylab="probability function") 

 

### *** Histogram with fitted distribution *** ### 

#histogram of the patients recruited# 
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hist(patients, freq=FALSE, xlim=c(0,80),  

col="lightblue", border="red", plot=TRUE,  

xlab="Number of patients recruited", ylab="Probability densities",  

main="Histogram of recruited patients with the fitted NB in study1")   

  

 

x<-seq(2,80,1)      #produce a sequence of numbers from 2 

to 80# 

fn.nb<-dnbinom(x,size=1.274,prob=.074)  #calculate a function of negative 

binomial distribution with the given parameters# 

lines(x,fn.nb)      # Negative binomial curve for the given 

parameters # 

 

### *** kernel density plot *** ### 

d <- density(patients)     # to estimate the frequency density of the 

data#   

plot(d, main="Kernel Density of patients in study 1") 

polygon(d, col="red", border="red")  

 

### *** Analysing the number of patients by fitting Negative Binomial distribution with 

parameters r=alpha*N and p=t/beta *** ### 

### *** N  isthe number of clinical centres and t is the total recruitment time  *** ### 

#The log-likelihood function for NB distribution with parameters alpha*N and t/beta ## 

logl<-function(par,y,N,t)   

{ 

a<-log(gamma(y+par[1]*N)) 

b<-length(y)*log(gamma(par[1]*N)) 

c<-log(gamma(y+1)) 

d<-y*log((t/(t+par[2]))) 

e<-length(y)*par[1]*N*log(par[2]/(t+par[2])) 

logl<-sum(a)-b-sum(c)+sum(d)+e 

} 

logl 
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est<-optim(c(2,5),logl, control=list(fnscale=-1),hessian=TRUE, y=patients, 

N=length(country),t=max(time.month))# to estimate the parameter alpha=par[1] and 

beta=par[2] by maximising the function # 

est 

 

alphat<- est$par[1] 

betat<- est$par[2] 

shape<- alphat * N 

scale<- max(time.month)/betat 
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Appendix 2 
 

Notes regarding the influence of units of time in 

modelling the Poisson process on the time or 

frequency domain. 

 

Suppose we have a Poisson process with mean  observed for time 1T  . Note, in practice, 

T is not unit-free it will have to have units attached. To take a concrete example, we might 

have 1T year . The probability mass function for the number of events X  is given by the 

Poisson distribution with 

  
!

xe
P X x

x

 

  .(1.1) 

 

Note also that the   that is used must be the   that is consistent withT . This   is a rate 

parameter and if the rate parameter is defined with respect to a different period of observation 

it must be adjusted accordingly so that when substituted in (1.1) it gives the correct 

probability. For example if we choose to define  as a rate per month but observe the process 

for a year we must substitute 12  for  in (1.1). Note that the mean of the resulting Poisson 

is 12  and its variance is also12 . This is because the resulting probability distribution does 

not involve any multiplication of X . Mere multiplication of an X that was observed for one 

month by 12 would no longer result in a Poisson distribution. Instead we would have a 

random variable with mean 12 times as large and variance 212 144 times as large. On the 

other hand observing a Poisson process for 12 months and adding together the 12 independent 

random variables consisting of the numbers in each month would give a total that was still 

Poisson with expectation and variance of 12 . 
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Let the inter-arrival time be Z . The mean inter-arrival time is 1  . Note that   is also 

not unit free and must be measured in the same time units as Z . The probability density 

function for inter-arrival times is an exponential distribution with 

  
1

.

z

zf Z z e dz e dz 



   (1.2) 

Now suppose that we choose to measure in new time units t . If we create a new random 

variableY tZ then , ,y tz z y t dz dy t    and so we have 

   .
y

tf Y y e dy
t


 

  (1.3) 

To take a concrete example, we might decide to measure in days rather than years. In that case 

we would have 365t days year . Clearly this new random variable is also an exponential 

distribution with mean * t t    .  

 

The gamma distribution which includes (1.2) as a special case is given by 

  
 

11
w

g W w e w dw

 


 


. (1.4) 

Clearly by setting 1  in (1.4) and ,W Z z w  we get (1.2). Specifically, if  takes on a 

positive integer value and we define 

 
1

i

i

W Z




  (1.5) 

as the sum of  inter-arrival times then (1.4) can be used as the waiting time until   events 

occur. More generally, however, we can let   be some positive real number and apply a 

distribution like (1.4) as a mixing distribution for a Poisson process itself. 

 

If, analogously to the case with the exponential distribution, we create a new random variable 

V tW then , ,v tw w v t dw dv t   and then substitute in (1.4) we get  

  
    

1

11 1 1
v v

t tv
g V v e dv e v dv

t t t



 

   


 

 
   

   
 (1.6) 

Clearly this is a gamma distribution with parameters , t   rather than ,  . Note also that 

(1.4) has mean   and variance 2 . Whereas (1.6) has mean t   and variance 2 2t  . 
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This is clearly appropriate since the random variable V  is simply created by multiplying the 

random variable W by a constant .t  

 

Stephen Senn, 7 June 2011 
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