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Abstract 

 

 

The aim of the present thesis is to develop new methods that are useful for a space 

mission analyst to design low thrust trajectories in the preliminary phases of a mission 

study, where the focus is more on exploring various concepts than on obtaining one 

optimal transfer. The tools cover three main axes: generating low thrust trajectories 

from scratch, improving existing low thrust trajectories and exploring large search 

spaces related to multiple gravity assist transfers. Stress is put on the computational 

efficiency of the tools. 

Transfer arcs are generated with shaped based approaches, which have the 

advantage of having the ability to reproduce close to optimal transfers satisfying time 

of flight constraints and varied boundary constraints without the need for propagation. 

This thesis presents a general framework for the development of shape-based 

approaches to low-thrust trajectory design. A novel shaping method, based on a three-

dimensional description of the trajectory in spherical coordinates, is developed within 

this general framework. Both the exponential sinusoid and the inverse polynomial 

shaping are demonstrated to be particular two-dimensional cases of the spherical one. 

The pseudo-equinoctial shaping is revisited within the new framework, and the 

nonosculating nature of the pseudo-equinoctial elements is analysed. A two-step 

approach is introduced to solve the time of flight constraint, related to the design of 

low-thrust arcs with boundary constraints for both spherical and pseudo-equinoctial 

shaping. 

The solutions derived from the shaping approach are improved with a feedback 

linear-quadratic controller and compared against a direct collocation method based on 

finite elements in time. Theoretical results are given on the validity of the method and 

a theorem is derived on the criteria of optimality of the results. The shaping 

approaches and the combination of shaping and linear-quadratic controller are tested 

on four case studies: a mission to Mars, a mission to asteroid 1989ML, to comet 

Tempel-1 and to Neptune. 

The design of low thrust multiple gravity assist trajectories is tackled by an 

incremental pruning approach. The incremental pruning of reduced search spaces is 

performed for decoupled pairs of transfer legs, after which regions of the total search 

space are identified where all acceptable pairs can be linked together. The gravity 
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assists are not powered therefore the trajectory is purely low thrust and the transfer 

arcs are modelled by shaping functions and improved with the linear quadratic 

controller. Such an approach can reduce the computational burden of finding a global 

optimum. Numerical examples are presented for LTMGA transfers from Earth to 

asteroid Apollo and to Jupiter. 
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CHAPTER 1 INTRODUCTION 

Equation Chapter (Next) Section 1 

 

The intention that motivated the work presented in this thesis was to develop 

useful mathematical and numerical tools that can be used by a space mission analyst 

in the preliminary phases of a low thrust mission study. It will become obvious to the 

reader that these methods involve several fields of astrodynamics, and mathematics in 

general. 

To put the scope of this work into perspective within the rich field of space 

mission analysis, before immersing into the review of the state of the art found in the 

scientific literature, it is useful to skim through the major milestones that paved the 

way for astrodynamics and low thrust trajectory design, as we know them today. The 

author would like to mention the names of major mathematicians, astronomers, 

physicists and engineers who introduced powerful concepts that form the backbone of 

current research, and whose names are recurrent in the field. 

Because mission analysts usually require inputs from propulsion system engineers, 

an overview of the current trends in low thrust propulsion technology is also 

presented. This helps understand which are the most important parameters that are 

relevant for trajectory design during a study. 

After stating the objectives, the structure of the thesis is laid out in the last part of 

this chapter.  

 

1.1 Concise history of astrodynamics and celestial mechanics leading 

up to mission analysis 

 

Astrodynamics is the study of the motion of objects moving in gravity fields and 

possibly subject to non-gravitational perturbations. It is a branch of celestial 

mechanics, where the studied objects are assumed to have a negligible mass compared 

to the primary celestial bodies that generate the gravity fields. Astrodynamics 

provides therefore the tools to study the motion of artificial satellites. The 

perturbations to which the artificial satellites can be subject to can be understood 

broadly as any force that has an effect on a nominal trajectory. Perturbations can 
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originate from external effects, such as solar radiation pressure, or internal, such as 

engine firings. 

In the following, the main milestones leading up to modern astrodynamics are 

summarised, the section is not intended to be a detailed account of the history of 

astrodynamics and celestial mechanics. 

 

1.1.1 Celestial mechanics as the foundations of astrodynamics 

 

Astrodynamics grew out as a branch of celestial mechanics progressively. Its 

origins are confounded with the latter’s and can be traced back to Johannes Kepler 

who started to treat astronomy – a branch of mathematics in his time – as part of 

universal mathematical physics. Kepler laid down the mathematical foundations of 

orbital dynamics. Kepler’s three laws of planetary motion, dating from the beginning 

of the 17th century, enabled the more accurate computation of the ephemerides of 

planets. They were later derived by Isaac Newton from the latter’s law of universal 

gravitation, which he published in 1686 [1]. 

Newton’s contribution was fundamental because he laid down the underlying 

physical laws of celestial mechanics and provided the mathematical tools that later 

allowed describing more complex systems and developing techniques to treat 

elaborate problems. Johann Heinrich Lambert, in the middle of the 18th century, 

studied conic sections and formulated the theorem linked to his name and which is 

used for finding impulsive transfers still today. Later on, with the development of 

calculus of variations and analytical mechanics, Joseph Louis Lagrange and Carl 

Friedrich Gauss derived the planetary equations governing the evolution of the orbital 

elements under perturbations. Carl Gustav Jacob Jacobi studied the problem of a 

small body moving in the field of two larger celestial bodies that move circularly 

around their barycentre. Along with the refinement of observational gears, 

mathematical techniques also improved for determining accurately orbits using 

terrestrial observations. Sir William Herschel discovered Uranus in 1781, the first 

planet to be discovered using a telescope, and in 1821 Alexis Bouvard realised that its 

motion is perturbed, for which he suggested that a yet unknown planet’s gravity field 

perturbs its orbit. The level of refinement of the mathematical techniques in celestial 

mechanics reached such heights by the middle of the 19th century that Neptune was 

discovered by shear mathematical prediction. In fact, Johann Gottfried Galle from the 
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Berlin Observatory observed Neptune within 1 degree from Urbain Le Verrier’s 

theoretical prediction. This marked the culmination of Newtonian mechanics. 

Observations of Mercury’s perihelion precession led Le Verrier to apply the 

techniques he used for predicting Neptune’s orbit and to propose the presence of a 

planet closer to the Sun. The name Vulcan was already given to that hypothesised 

planet, and it was expected to be only a matter of time for the planet to be observed 

for the first time. Many astronomers put effort into finding the hiding Vulcan but the 

discovery never came. The correct explanation for the anomaly of Mercury’s orbit 

only came from Albert Einstein’s General Theory of Relativity, published in 1916, 

which actually exploited the precession as one of the major validations of the theory. 

In the beginning of the 20th century, another important scientist gave a strong 

impulse to mathematical methods of celestial mechanics, namely Henri Poincaré. He 

applied the tools he developed in dynamical systems theory to the N-body problem, 

with the objective of studying the stability of the Solar System, a problem that 

attracted much interest in his time. The modern mathematical methods that Poincaré 

introduced are actively used today, whence the problem is centred on a nonlinear 

dynamical system. 

 

1.1.2 Modern astrodynamics and mission analysis 

 

Konstantin Tsiolkovsky’s publication in 1903 [2] was the first one to address the 

dynamical property of an object propelled by a thruster expelling exhaust gas and 

carrying its own propellant on board. Tsiolkovsky used the kinematic quantity Δv, the 

change in velocity due to the thrust, and linked it to the exhaust velocity of the gases 

and the mass of expelled propellant. If one writes down the conservation of linear 

momentum, one has: 

 

 T = mv = − mve       (1.1) 

 

where T is the thrust acting on the spacecraft, m is the spacecraft’s mass and ve the 

exhaust velocity of the propellant. Rearranging and integrating the second equation 

results in the Tsiolkovsky equation: 
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mpropellant = −∆m = minitial 1− exp − ∆v
ve

⎛
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⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

   (1.2) 

 

Although the model can be applied to many mechanical scenarios, it marks the 

start of the theoretical study of the motion of man-made objects moving outwith the 

Earth’s atmosphere. The exhaust velocity is a key parameter of the propulsion system 

since it governs the amount of Δv achievable for a given initial and propellant mass. It 

is in fact the thrust per unit mass flow of propellant. Engineers later introduced the so-

called specific impulse Isp, defined in seconds, as the thrust per unit weight flow of 

propellant. 

 

  
Isp = − T

mg
=

ve

g      (1.3) 

 

The German engineer Walter Hohmann, interested in interplanetary transfers in the 

1920s, studied the most efficient way to transfer between two circular coplanar orbits 

[3]. He devised an approach using two impulsive thrusts, one to escape the initial orbit 

and one to insert into the final orbit, and which are tangential to the departure and 

arrival velocities. Hohmann’s works were the first ones to address the need to 

minimise propellant mass, a crucial consideration in designing real space missions. 

Research in the field of astrodynamics considerably accelerated with the advent of 

the Space Age in 1957, when the first artificial satellite, Sputnik 1, was sent into 

space. Mission analysis emerged as the engineering activity during space mission 

design dealing with the design and the analysis of orbits and transfers, interfacing 

with different subsystems of the space mission. At the heart of mission analysis lies 

astrodynamics. The geopolitical context imposed the need for ever-increasing mission 

performances and capabilities and astrodynamics made considerable advancements. 

These were made possible with the development of two disciplines: mathematics and 

computer sciences. A central focus of astrodynamics quickly became transfer 

optimisation, and Pontryagin’s maximum principle, published in 1962 [4], laid down 

the mathematical bases for it. 

It became clear that analytical solutions are very scarcely available, so numerical 

techniques have been developed, adapted to the computational resources at hand. In 

the early days, engineers relied heavily on their experience due to the limited 
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resources available. Their models had to be simple in the first place and, when using 

iterations, like Newton loops, for finding solutions numerically, they had to spend 

time finding initial guesses themselves to help the computers converging. 

Transfers were initially designed by patching together segments of orbits with 

impulsive manoeuvres in between. This assumption of instantaneous orbit changes 

proves to be valid when the acceleration created by the thruster exceeds significantly 

the acceleration created by the local gravity field and the manoeuvre is short. This is 

often the case when chemical propulsion is employed. 

With time, the complexities of the envisaged transfers increased, because it was 

recognised that by increasing the search space, better solutions could be found. For 

example, introducing gravity assists provided free orbit changes but increased the 

number of variables. Not only did the mathematical formulation of mission scenarios 

increase in complexity, but also the underlying dynamical systems became more 

sophisticated. The effects of various perturbing forces were introduced into the 

equations of motion. 

With the advent of missions relying on spacecraft flying at Lagrange points, an 

active field of study became the design and control of trajectories in the three-body 

problem. The aim there is to exploit the properties of the corresponding dynamical 

system to reach and maintain optimally exotic orbits (e.g. halo, Lissajous, Lyapunov, 

homoclinic, heteroclinic orbits). It has also been proven that reduction in propellant 

mass can be achieved by exploiting four-body dynamics. The Japanese Hiten mission 

to the Moon was rescued in 1991 using the trajectory proposed by Edward Belbruno 

[5] going through the weak stability boundary of the Earth-Moon-Sun system. It 

should be noted that the improvement in the necessary propellant mass comes at the 

expense of increased transfer time. 

Optimisation is central to most of today’s research in astrodynamics, be it for the 

design of transfers or for elaborating a navigation strategy. Efforts are put into 

combining mathematical results and numerical methods in different ratios, with the 

ultimate aim of automating the search for optimal transfers as much as possible and 

raising the reliability of numerical techniques. 

Since the mid 1990s, an area under increased investigation is low-thrust trajectory 

design, whereby transfers are not subject to manoeuvres considered impulsive 

anymore but to continuous ones whose magnitudes are the same or lower than the 

local gravity field’s. Electric propulsion and solar sails are example of technologies 
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that have such characteristics. The former are considered flight proven since NASA’s 

Deep Space 1, launched in 1999, to asteroid Braille and comet Borrelly. A higher 

specific impulse is achieved by accelerating charged particles in an electric field; 

therefore higher Δv is obtained compared to chemical propulsion for the same mass of 

propellant. However the thrust magnitude is much lower, so thrusting is done for long 

periods of time and transfers take longer. The impact on trajectory design is that a 

thrust profile is to be optimised. This is mathematically and numerically a particularly 

challenging task since a function and not a finite dimensional vector has to be 

theoretically optimised, and a multitude of approaches – which will be thoroughly 

covered later in this chapter – have been tried with different levels of success. 

Astrodynamics is a rich field and it is not in the scope of the present section to 

describe all of the aspect being researched. It can be said however that the study of 

low thrust propulsion opened up new topics of research in which its combination with 

high thrust or even solar sails are explored. Other major topics of interest today in 

astrodynamics are those where the subject of the study is a system of objects instead 

of a single object. These can be space tethers, constellations, satellite formations or 

swarms, whereby the dynamics of the system become more complex. 

 

1.2 Low thrust propulsion 

1.2.1 Principle 

 

The main reason why a space mission analyst makes a distinction between low 

thrust and high thrust propulsion is because of the impact on trajectory design. For 

high thrust manoeuvres the total momentum change is generally achieved in a very 

short time compared to the time scales of the trajectory. In the two-body model for 

instance, the relevant time scale of reference would be the lower between the initial 

and final orbital period. In that case, a convenient assumption is that the thrust is 

impulsive such that a simple Δv vector representing the instantaneous change in 

velocity can model the manoeuvre. For low thrust propulsion, thrust can be applied 

for very long times. 

One can define propulsion as being low thrust when the thrust produced on the 

spacecraft is substantially lower than the gravitational force acting upon the satellite. 
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It is also possible to define it in terms of acceleration: the relative difference between 

the spacecraft’s total acceleration and the local gravitational acceleration is close to 

zero. 

The latter definition is general in the sense that it does not fix the engineering 

technique with which the action-reaction principle is implemented. The change in 

momentum can therefore originate either from mass that is first accelerated and then 

ejected from the spacecraft or from external particles that transfer their momentum to 

the spacecraft by interacting with it. The former case gives rise to the more 

conventional propulsion systems where an on-board tank carries fuel that is 

accelerated by exploiting chemical, thermodynamic or electric processes, while the 

latter, less common solution, can be implemented by a momentum exchange with 

solar photons or laser beam photons. 

It is important to note that from the point of view of a mission analyst, if the thrust 

duration allowed by the propulsion system is short, designing transfers where the 

thrust is low is the same as when the thrust is high, such that the manoeuvres can in 

either case be modelled as impulses. Thus the possibility to apply thrust for longer 

periods, up to multiple revolutions, is an important specificity of the so-called low 

thrust propulsion systems for the mission analyst. This observation discards for 

example miniaturized cold gas or chemical propulsion systems, where achievable 

acceleration is effectively low but the limited size of the propellant tank on board 

forbids any longer thrust duration. 

One can argue then that by putting a larger tank on board the spacecraft that the 

aforementioned cold gas and chemical propulsion can be considered as low thrust 

propulsion for a mission analyst. It would certainly be the case in theory, but in 

practice that would not happen because the spacecraft would tend to become a flying 

tank, whereby the thrust would mainly be used for accelerating the propulsion system 

alone. 

However, if the exhaust velocity is raised while every other parameter remains 

unchanged, the same low thrust level can be achieved with lower mass flow rate of 

the ejected particles, in which case there will be enough propellant in the tank to 

thrust for longer. This is the reason why in practice, for mission analysts, low thrust 

propulsion suggests automatically high exhaust velocity, i.e. specific impulse. In the 

following, different propulsion technologies are presented, from conceptual to flight 

proven, and which would be qualified as low thrust by a mission analyst. 
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1.2.2 Low thrust propulsion systems carrying propellant on board 

 

Increasing the specific impulse of a propulsion system can be achieved by having a 

system that converts energy from an abundant source into kinetic energy for the 

exhaust particles. There are many ways to do that and many types of propulsion 

systems have been studied and developed up to different levels of technology 

readiness in that regard. Here it is not the purpose to explain in detail the way in 

which the different types of engines work but to provide an oversight of the different 

physical effects that are exploited in order to achieve an acceleration of the spacecraft. 

Extensive references are found in [6], [7] and [8]. The goal is to extract the main 

parameters that a mission analyst would have to take into account when designing and 

analysing transfers for real missions using low thrust propulsion. 

According to the implementation of the thruster, the energy from the source can be 

converted into different forms before ending up as the propellant’s kinetic energy. 

The conversions are generally not perfect and losses arise. The efficiency η  of the 

thruster is then defined as the ratio between the rate of kinetic energy expelled by the 

thruster and the power P input to the system. 

 

   
η =
mpropellantve

2

2P       (1.4) 

  

so 

 

   
P = T 2

2η mpropellant

= − m2a2

2η m
      (1.5) 

 

where a is the acceleration of the spacecraft. Note that these equations are valid if all 

particles are exhausted with the same velocity ve, in the direction opposite to the 

spacecraft’s velocity vector. Note that ve can however depend on time.  

Nuclear and solar energy are two abundant energy sources but the power they can 

provide depends on the size of the power plant on board the spacecraft. Hence it is not 

worth increasing the specific impulse limitlessly: the higher the specific impulse the 
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less propellant mass is needed on board, but the more power is required to accelerate 

the propellant and therefore the heavier the power system will be. Indeed, if one 

considers the often-used power to thrust ratio: 

 

  

P
T
=

ve

2η       (1.6) 

 

then it becomes obvious that for the same thrust, a higher exhaust velocity will require 

proportionately higher power. 

Nuclear energy can be used to heat a chemically non-reactive propellant, which is 

then expelled through a nozzle. Another way to harness nuclear energy is by 

converting it into electric energy, which is then used to accelerate charged particles. 

Solar energy can be exploited the same way by converting electromagnetic power 

from sunlight into electric power. The solar power obtained with a fixed area of solar 

panel is inversely proportional to the square of the distance from the Sun, so this 

power source becomes inefficient when going far from the Sun. 

Many concepts have been identified and developed for using electric power for 

spacecraft propulsion [6]. Electrothermal propulsions heat the propellant, usually 

hydrogen, ammonium or hydrazine using electric energy. Resistojets and arcjets are 

the two main types of electrothermal thrusters. Resistojets transfer heat through 

resistive conductors shaped in coils. They have specific impulses of about 300 s and 

require 0.4 to 2 kW power and have the advantage of being relatively simple. Arcjets 

create electric arcs in the gas flow to heat up the propellant and expand it. Their 

power requirement is of the same order of magnitude as that of resistojets but their 

specific impulse can go up to 800 s. Electrothermal propulsion has been used on 

several Earth orbiting missions for station keeping and orbit insertion. 

Electrostatic and electromagnetic propulsion is based on accelerating charged 

particles using differences of electric potential for the former and Lorentz force for 

the latter. Electrostatic types of thrusters include gridded ion thrusters that work 

generally with Xenon gas which is ionised by bombarding it with electrons. The gas is 

accelerated by passing through grids within which a strong electric field is applied. 

Specific impulses of more than 3000 s are achievable with power consumption up to 

2.5 kW. Thrust magnitudes from a few millinewtons up to a Newton can be obtained, 
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depending on the input power. These thrusters can be throttled by adjusting the flow 

rate of propellant and the input power. 

Hall effect thrusters also accelerate charged particles, but the ionisation of the gas 

and the acceleration of the created plasma takes place in a cylindrical region where 

the electrons move circularly under the effect of a radial magnetic field forming 

effectively a Hall current. The electric field is created by the anode placed at the base 

of the cylinder and the cathode formed by the cloud of electrons. Similar 

performances are achievable compared to the gridded ion thrusters and both have 

been proven to operate for thousands of hours continuously or in cycles. 

Electrostatic thrusters based on accelerating charged colloid droplets were first 

studied in the 1960s and have known a rebirth of interest in recent years due to their 

potential to serve as engines for very small spacecraft. They generally provide thrust 

below 10 mN with a specific impulse of 1000 s. 

Propulsion systems using electromagnetic force are characterised by whether they 

are steady or unsteady, and self-field or applied field. An external field is applied 

when the discharge current does not generate a magnetic field strong enough to ensure 

the high performance of the thruster. When it comes to unsteady systems, capacitors 

discharge power in pulses. The most common electromagnetic thruster is the pulsed 

plasma thruster where the propellant is usually solid Teflon that is ablated, ionised 

and expelled. They are simple and reliable and have specific impulses around 1000 s, 

but provide thrust only below 10 mN. 

Magnetoplasmadynamic thrusters are on the other hand steady thrusters, where a 

complex interaction between either induced or applied magnetic fields and electric 

fields accelerates the plasma out of the engine. They have been proven to allow for 

specific impulses above 2000 s and thrust above 20 N, but at the expense of power 

consumption of the order of megawatts. Due to the complexity of the phenomena 

involved in this kind of propulsion system, theoretical and numerical results lag 

behind empirical results. 

 

1.2.3 Alternative low thrust propulsion systems 

 

Propulsion systems where no propellant is carried on board have also been studied. 

Among these are solar lightsailing, magnetic loop sail and beamed laser propulsion 

[6]. They are considered more exotic due to the physical phenomena they exploit and 
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the particular dynamics they involve, in a way that trajectory design, from the point of 

view of a mission analyst, requires specific methods. Solar sailing attracts the most 

interest from researchers because it would be less challenging and expensive to 

implement than the others. At 1 AU, a perfectly reflective sail perpendicular to the 

Sun line would produce a thrust per sail area ratio of 9.1 µN/m2. The accelerations for 

a spacecraft are therefore very small. This property, combined with the necessity to 

take into account the directional constraints on the sail and its controllability, makes 

transfer designs challenging [9]. Indeed, it is difficult to find a priori initial guesses 

that are feasible in terms of control constraints and state constraints. Even for a simple 

rigid solar sail model, the control direction constraint is an additional constraint 

compared to a scenario using conventional electric propulsion. In practice however, 

the inertia and the flexible nature of the sail complicates the real dynamics by a lot. 

 

1.2.4 Missions flown using low thrust propulsion 

 

Many of the propulsion system types described above are flight proven already. 

Resistojets, arcjets, hall effect thrusters and pulsed plasma thrusters have all flown 

many times, but due to their limited size and performance they have only been used 

for precise attitude control or minor station keeping manoeuvres. Using low thrust 

propulsion systems as primary propulsion system to perform major orbit changing 

manoeuvres dates back only to 1998, with the launch of NASA’s Deep Space 1. Since 

then more such spacecraft have flown or are planned due to the reduction in 

propellant mass that they allow and the progressing advances in technology readiness 

levels. 

Deep Space 1 was equipped with Boeing’s NSTAR gridded ion engine and flew by 

asteroid Braille and comet Borrelly [10]. The launch mass was 486 kg and 81.5 kg of 

Xenon was initially carried in the tank. The mission’s trajectory is illustrated in Fig. 

1.1. 

The same engines are currently flying on NASA’s Dawn mission, launched in 

2007, to rendezvous Vesta and Ceres [11]. A gravity assist at Mars is performed. The 

engine delivers a maximum thrust of 92 mN that is reached for an input power of 2.6 

kW and a specific impulse of 3200 s. The Dawn spacecraft weighed 1240 kg at launch 

and carried 450 kg of xenon on board. Fig. 1.2 illustrates the transfer strategy of the 

mission. 
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Fig. 1.1 Deep Space 1 mission trajectory [10] 

 

ESA launched SMART-1 to orbit the Moon in 2003. It carried SNECMA’s PPS 

1350-G Hall effect thruster using Xenon [12]. The initial launch mass was 367 kg 

which included 82 kg of Xenon. The total thrust time reached almost 5000 hours to 

provide a total Δv of 3.9 km/s. The thruster was supplied with electrical power of up 

to 1200 W. 

Japan launched Hayabusa in 2003 to return samples from asteroid Itokawa [13]. 

The mission weighed 510 kg at launch and carried four cathode-less electron 

cyclotron resonance ion engines, providing 8 mN each and a specific impulse of 3200 

s. 60 kg of xenon was carried in the propellant tank. Depending on the distance of the 

spacecraft from the Sun, the solar arrays provided power to the propulsion thruster up 

between 250 and 1100 W. 

The success of SMART-1 encouraged ESA to employ electric propulsion on 

BepiColombo, its cornerstone mission to Mercury. BepiColombo will be a spacecraft 

of a larger class. It will be launched in 2014 and cruise for 6 years until being 

ballistically inserted in an elliptical orbit around Mercury [14]. The spacecraft will 

weigh 2.3 tons at launch and will be propelled by four of QinetiQ’s T6 gridded ion 

thruster using xenon, inherited from the T5 thruster currently flying on ESA’s GOCE 

384  Low-Cost Planeta rry Missions 

spacecraft mass. The instability in that value has 
contributed to the difficulty in the trajectory 
design. 

As the spacecraft design (as well as 
estimates of the relevant models) has evolved, 
the trajectory optimization has required continual 
updating. This is one of the primary differences 
between designing SEP trajectories and those 
which employ chemical propulsion systems. 
The trajectory optimization and spacecraft 
systems characteristics are highly coupled. With 
SEP, in which not only the thrust but also the 
specific impulse of the propulsion system 
change with heliocentric distance, a mass opti- 
mization depends on models of the various 
spacecraft systems which generate or consume 
power. This is not the case with conventional 
propulsion systems, in which deep space 
maneuvers are essentially discrete events and the 
specific impulse does not depend on heliocentric 
distance. 

Software tools to produce low-thrust 
trajectories are few and, because of the complex 
nature of the optimization, require more time to 
initialize and run than tools for missions using 
conventional propulsion. In addition, highly- 
skilled and specialized talent is needed to achieve 
useful and accurate products. Indeed, an 
important component of the validation of SEP 
on DS 1 is the generation of the trajectories from 
conceptual design through flight. 

As discussed earlier, the two-year DS 1 
trajectory begins in July or August 1998; a 
schematic is shown in Figure 1 for a July 20 
launch. The initial goal for the mission included 
only an asteroid and a comet flyby. McAuliffe 
and West-Kohoutek-Ikemura were selected from 
among a set of candidates based on high allowed 
“neutral” mass (defined to be all flight mass 
except Xe propellant) and good conditions at the 
encounters (including speeds, phase angles, and 
target sizes) for validating the technologies. 
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mission. The thrusters have been shown to provide up to 145 mN of thrust and a 

specific impulse of up to 4300 s when powered by 4.5 kW. The efficiency has been 

shown to reach 66%. In order to reduce the propellant requirement, BepiColombo will 

make use of a number of gravity assists around the Earth, Venus and Mercury such 

that the nominal Δv will be close to 7 km/s. BepiColombo’s complex trajectory is 

illustrated in Fig. 1.3. 

 

 

 

Fig. 1.2 Baseline trajectory of NASA's Dawn mission [11]  

 

Low thrust propulsion with high specific impulse opens up clearly new 

possibilities for future missions. Their combination with gravity assists makes it 

clearly possible to fly missions necessitating high Δvs while keeping a high scientific 

return. 

The more missions are flown the more technology readiness levels rise and 

manufacturing costs reduce, endowing electric propulsion with even more potential 

for future flights. 

 

612 M.D. Rayman et al. / Acta Astronautica 58 (2006) 605–616

Fig. 2. Dawn baseline interplanetary trajectory for primary mission. The dotted portions denote periods of coasting, and the solid portions
show when the IPS is thrusting. Coasting periods !7 days are not shown.

from May 2006 to September 2007, during which the as-
teroid arrival dates are essentially unaffected. The abil-
ity to satisfy the science objectives over such a broad
range of launch dates has proved valuable, because as
this paper was in final preparation in October 2005, it
was decided to postpone the launch to 2007 to accom-
modate delays that have occurred during flight system
integration as well as to move financial expenditures
into a later year.

The mission presented here has been the baseline un-
til this recent decision and is largely unchanged with
a later launch. For any launch date, the baseline is on
a continuum of options that vary in science return and
technical robustness and are distinguished principally
by the durations at the two asteroids and, thus, the
scope of the activities in orbit. The minimum mission,
which satisfies the minimum mission success criteria,
spends less time at Vesta and Ceres in exchange for

greater technical margins. The decision to switch from
the baseline to the minimum may be made in flight.
Indeed, the mission design is sufficiently flexible that
arrival dates and durations of residences may be modi-
fied in many ways. The key technical margins (includ-
ing mass/power/missed-thrust) at the present are quite
large, and if, as is likely, they are not fully consumed by
engineering necessities, they can be translated directly
into longer times at both bodies, thereby exceeding the
science return already described [9]. The interplanetary
trajectory is illustrated in Fig. 2.

The interplanetary injection will be accomplished
with a Delta II 7925H-9.5, launched from Cape
Canaveral Air Force Station. The maximum neutral
mass at launch is achieved with an injection of 1290 kg
to C3 =3 km2/s2. This allows a neutral mass of 840 kg,
providing a comfortable margin compared to the cur-
rent estimate of 790 kg. The launch vehicle has the
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Fig. 1.3 One of the studied trajectories for the BepiColombo mission [14]. Thrust arcs are in red 
and green. Axes’ unit is km. 

 

1.3 Gravity loss 

 

When dealing with low thrust manoeuvres, the change in momentum of the 

spacecraft happens continuously while the duration of the manoeuvre can be 

substantial. The manoeuvre cannot be considered instantaneous anymore and is 

modelled by a vector function of time. The consequence of the continuous thrust 

model is that both the engine and the gravity field act on the spacecraft 

simultaneously along the trajectory, so in order to achieve a given change in 

momentum, the manoeuvre must take into account the gravity’s continuous effect. 

This phenomenon is called gravity loss. There is however no general mathematical 

definition for it, because it is not straightforward to define the impulsive manoeuvre to 

be used as reference for a manoeuvre lasting longer. 

It can be argued however that gravity loss can be both positive and negative, 

depending on whether gravity acts along or opposite the direction of the thrust. 

Therefore the term gravity loss is inappropriate, since gravity can also help achieve 

the desired change in velocity. The expression gravity loss originally comes from the 

pull that gravity exerts on a launcher while climbing. Indeed, in that scenario, to 

286 D. Garcia Yarnoz et al. / Acta Astronautica 59 (2006) 284 – 293
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Fig. 1. Trajectory for the transfer with a gravitational capture in
April 2017.
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Fig. 2. Thrust profile during the interplanetary transfer.

projected onto the ecliptic plane, and Fig. 2 displays the
SEP thrust level modulus during the whole trajectory.

Fig. 3 shows the reference trajectory in a rotating
coordinate system with the Sun–Earth direction fixed
(x-axis). Fig. 4 shows the distance from the Earth to
the spacecraft and its declination during the interplane-
tary transfer. These geometric parameters influence the
quality of the radiometric measurements and, hence, the
accuracy of the orbit determination. Especially, declina-
tions close to zero can severely degrade the determina-
tion of the spacecraft angular position based on Doppler
data.

The periods of superior solar conjunction (i.e. when
the spacecraft is within 2.8◦ behind the Sun) are
given in Table 3. During these periods the telemetry is
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Fig. 3. Interplanetary trajectory of BepiColombo plotted in a
Sun–Earth fixed coordinate system. Planetary encounters are marked
with e.g. VF1 (first Venus flyby), Mercury arrival is indicated with
“Arr” and the thrust arcs are shown as thick lines.
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Fig. 4. Distance and declination profile from Earth for the interplan-
etary trajectory of BepiColombo.

Table 3
Periods of superior solar conjunction during the interplanetary tra-
jectory

Begin End Duration (d) Thrust

2014/10/20 2014/11/5 16.1 Off
2015/6/18 2015/6/23 4.7 On
2016/1/10 2016/1/21 10.5 On
2016/6/12 2016/6/16 4.2 On
2016/10/23 2016/11/1 8.5 Off
2017/3/4 2017/3/9 5.0 Off

degraded due to solar plasma effects which reduces
the orbit determination accuracy and limits the up-link
capabilities. For operational purposes a more conser-
vative critical angle—around 5◦—may be considered.
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obtain the rocket’s change in velocity, the Δv due to gravity needs to be subtracted 

from the Δv imparted by the rocket’s engines. 

Qualitatively one expects higher absolute value of gravity loss when the local 

gravity field gets higher and when the thrust time gets longer. So the lower the thrust 

level provided by the propulsion system, the more gravity loss should be taken into 

account. Gravity loss also depends on the direction of thrust. Indeed, an infinitesimal 

change of momentum in a direction perpendicular to the local gravity field can be 

obtained without having to compensate for gravity, whereas for the same change in 

momentum in a direction along the local gravity line requires a priori a small 

manoeuvre that compensates the effect of gravity. 

A similar phenomenon also occurs when the spacecraft is subject to atmospheric 

drag, whereby the manoeuvre has to take into account the effect of the drag. This 

analogy explains why gravity loss is sometimes also called gravity drag. 

After designing a low thrust manoeuvre, gravity loss is generally not computed 

because it does not provide any information that can be made use of, it just tells 

whether gravity has been acting in average with the manoeuvre or against it. 

There is a case when assessing the gravity loss can be useful. When manoeuvres 

are initially modelled by impulses, due to the instantaneous nature of the manoeuvres, 

there is no gravity loss. But when the real manoeuvres are recomputed with a 

constraint on the thrust magnitude, the engines fire for non-zero durations. The 

difference in Δv can be interpreted as gravity loss. A mission analyst who uses an 

impulsive model should add a line in the Δv budget for the margin due to gravity loss, 

because it is not taken into account in the model. That margin, as described above, 

will depend on the maximum thrust magnitude, which impacts the duration of firing 

to achieve the desired Δv. 

An important observation arises from the latter consideration. When modelling a 

low thrust transfer with a succession of impulsive Δvs, no matter how densely the 

impulsive Δvs are distributed, the model will never take into account the effect of 

gravity, because gravity is never allowed to affect the manoeuvres’ efficiency at any 

time. Indeed, if one isolates an arc between two impulsive manoeuvres, the arc can be 

considered as a Lambert arc with an initial and a final Δv. But if the two impulsive 

manoeuvres at the tips are recomputed and spread out to account for the thrust limit, 

the total Δv is generally different from the Lambert arc’s Δv. This is true no matter 
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how low the Lambert arc’s Δv is, although the model’s error converges to zero if the 

density of impulsive manoeuvres gets high. 

 

1.4 Preliminary design of low thrust trajectories 

 

The need to design low thrust transfers dates back to the late 90s with the Deep 

Space 1 mission. At that point, the techniques relied heavily on the initial inputs from 

experienced mission analysts. Modelling thrust arcs is inherently more complicated 

than modelling impulsive manoeuvres, therefore optimising them can become tricky, 

because one not only needs to make sure that the optimiser converges, but also that it 

does not converge to an unfavourable local optimum.  

A plethora of techniques have been developed to optimise low thrust trajectories 

[15]. These can be classified into local and global methods and the former into direct 

and indirect methods. The following literature review does not cover the optimisation 

of low thrust trajectories per se, but the methods used to create efficiently suboptimal 

trajectories, which can eventually be fed into optimisers as a starting point. 

Due to the nonlinearity of the low thrust dynamics, it is clear that generating 

acceptable initial guesses for local optimisers is essential and it has therefore been the 

focus of several research groups for the last 15 years. Two main approaches exist, that 

work in generic mission scenarios. The first approach, pioneered by Sims and 

Flanagan [16], represents thrust arcs by a series of impulsive manoeuvres, which are 

then optimised by a direct optimiser. An improvement to the initial approach was 

brought by Yam et al. [17] by replacing the sequence of impulsive manoeuvres by 

series of low thrust arcs propagated on segments with fixed thrust directions. 

The problem with this approach is that an optimisation is required for each 

trajectory otherwise it does not represent a feasible low thrust transfer: the trajectory 

would not be continuous or would not satisfy boundary constraints. Therefore it 

cannot be used within global optimisers without sacrificing computing speeds. 

The other approach that has been proposed is through the use of the so-called 

shaping method [18][19], which is discussed in more detail in the next subsection. 

This method turns out to be both able to initialise local optimisers and to represent a 

large array of suboptimal trajectories, such that they can be used either for systematic 

searches or for global optimisations. 
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Both these methods have been applied to multiple gravity assist scenarios, as will 

be elaborated below. 

The general approach in the literature is to generate an initial guess using one of 

the two listed methods for analysing the search space directly or to use it as input to a 

local optimiser. This can be considered as being a two-step approach. Although the 

trajectories can be generated fast, their quality can be a problem, in which case the 

optimiser may not converge, converge to an unfavourable local optimum or converge 

slowly. It can be then argued that an intermediate step may be of use, whereby the 

generated trajectories are improved in an efficient way before starting the 

optimisation. The time lost by improving the first guess would then be compensated 

by the robustness and speed of the optimisation. This three-step approach has not been 

addressed in the literature. 

 

1.4.1 Shaping methods 

 

During the preliminary assessment of a new mission concept, a large number of 

scenarios need to be investigated. As a result, the associated search space can be very 

large. For instance, launch and arrival windows can each span several years. The 

assessment of different scenarios over a wide range of design parameters requires the 

efficient generation and evaluation of a large number of feasible trajectories. Finally, 

common techniques for low-thrust trajectory design [15] require some form of initial 

guess. However, the generation of suitable initial guess trajectories during the 

preliminary mission design phase is not trivial. 

To make this step more efficient, modelling trajectories analytically has proven to 

be a viable option. Markopoulos [18] found a class of planar trajectories with a 

specific expression for the thrust, which he calls Keplerian thrust, with which the 

trajectory can be expressed analytically while imposing boundary constraints. 

Markopoulos’s results remained, however, academic, and were not applied to the 

systematic design of transfers. Petropoulos and Longuski [19] proposed to model low-

thrust trajectories with exponential sinusoids and obtain the thrust profile from the 

dynamics, with the aim of designing propellant-optimal low-thrust gravity-assist 

trajectories. Petropoulos and Longuski’s model is planar; the out-of-plane components 

are only approximated. Moreover the constraints on the total time of flight cannot be 

satisfied together with the boundary constraints on the velocity vector. However, the 
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exponential sinusoids turned out to provide valuable solutions in the pure point-to-

point low-thrust problem. Wall and Conway [20] introduced an inverse polynomial to 

model the radius of a planar trajectory in polar coordinates, under the assumption of a 

variable unbounded tangential thrust. The advantage of this approach compared with 

Petropoulos and Longuski’s is the possibility to satisfy all boundary conditions. Later 

in 2008, Wall extended their approach to cylindrical coordinates [21]. De Pascale and 

Vasile proposed to shape the variations of the non-singular equinoctial elements due 

to small perturbations [22]. This shaping approach could model three-dimensional 

trajectories and satisfy boundary, time of flight and thrust constraints. Furthermore, it 

was demonstrated that the initial guess was good enough to initialize both direct and 

indirect methods [23]. 

 

1.4.2 MGA transfers 

 

Before the eighties, multiple gravity assist (MGA) trajectories were computed with 

ad hoc methods. It was during the design of the Galileo mission in the eighties that the 

first codes to compute large sets of trajectories, using impulsive maneuvers, were 

initially run. These codes gave rise later to STOUR [24]. Williams and Longuski [25] 

automated the MGA search. STOUR was then used extensively by Petropoulos et al. 

[26] for assessing a large number of mission scenarios to Jupiter. They also applied 

STOUR with a model for low thrust transfers called exponential sinusoids [27]. With 

the development of the field of global optimization, different approaches were tested 

in order to reduce the computational time to find interesting regions in the search 

space, for both high thrust and low thrust transfers. These approaches included 

differential evolution [28], particle swarm optimization [28], evolutionary branching 

[29] and simulated annealing [30]. Evolutionary neurocontrol was also applied 

successfully by Carnelli et al. [31] to the low thrust MGA (LTMGA) problems. 

Depending on the mathematical transcription of the LTMGA transfers, the swingbys 

can be powered [32]. If the swingby is not powered, consecutive legs are linked 

together one after the other by specifying the swingby parameters as part of the search 

space [29], or by computing the best swingby parameters in an inner loop [30][31]. 

In order to reduce the size of the search space, incremental pruning has been 

proposed by Becerra et al. [33] on MGA missions and is based on the construction of 

sets of MGA trajectories, one leg at a time, and removing subsets that do not satisfy a 
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given criterion, e.g. Δv of the leg too high. The approach exploits the decoupling of 

the transfer arcs offered by the powered swing-by model. Such decoupling removes 

the dependency of one arc from the preceding ones, and allows for pruning the search 

space in polynomial time. The final pruned space can then be explored with a global 

optimizer. Vasile, Schütze et al. used the exponential sinusoid model [34] to apply 

incremental pruning to LTMGA problems with powered swingbys. 

However the disadvantage in the current techniques using incremental pruning is 

that gravity assists involve impulsive manoeuvres, such that both a low thrust and a 

high thrust propulsion system is assumed on board. The problem resides in the lack of 

flexibility of the low-thrust trajectory models. The exponential sinusoids [27] have the 

disadvantage of being a planar model and one cannot impose boundary constraints on 

velocity and time of flight together. Pseudo-equinoctial elements, proposed by Vasile 

et al. [29] can provide first guess trajectories satisfying boundary constraints, time of 

flight constraint and thrust constraints. However, the satisfaction of the boundary 

constraints relies on the convergence of a Newton loop, due to the fact that pseudo-

equinoctial elements are not osculating. Indeed, the pseudo-equinoctial elements 

cannot be solved analytically because the presence of a thrust makes the velocity 

vector associated to the pseudo-equinoctial elements becomes different from the one 

associated to the osculating elements without presence of thrust. 

 

1.5 Objectives 

 

The primary objective of this thesis is to identify regions of a large search space 

that contain potentially interesting transfers and not to develop the tools to find the 

globally optimal trajectory of a low thrust mission. Indeed, in the preliminary phases 

of mission design many parameters, e.g. launch parameters or propulsion system 

parameters, are not fixed yet, and finding globally optimal solutions for all 

combinations of values would be too time consuming, if not impossible. A reduced 

model representing the main features of a trajectory is therefore central to preliminary 

low thrust mission analysis. 

Along this thesis, the spacecraft is represented as a point subject to the 

gravitational pull of a single celestial body and to the acceleration generated by a 

propulsion system. Not including the mass of the spacecraft in the system allows 
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reducing the number of equations of motion from seven to six. Proceeding this way 

leaves the trajectory design method independent of the propulsion system’s 

properties. Indeed, the change of mass and the thrust profile of the spacecraft can be 

computed from the acceleration once an initial mass and the specific impulse are 

provided. Simple propulsion system models where the specific impulse is constant to 

complicated ones where the specific impulse depends on the available power on 

board, which in turn depends on the heliocentric distance of the spacecraft, can also 

be accommodated a posteriori. This provides flexibility to evaluate in the preliminary 

stages of the mission study if certain propulsion systems are more appropriate than 

others. 

Often the objective during transfer design is a minimal propellant mass. From the 

rocket equation one can see that, assuming a constant specific impulse, a lower the Δv 

the lower the propellant mass, however an optimal trajectory for the Δv can differ 

from an optimal one for the propellant mass. In fact, optimising for the Δv would be 

equivalent to setting the specific impulse to infinity, such that the mass of the 

spacecraft stays constant and therefore the acceleration and the thrust profile are 

proportional. If the specific impulse is changed into a finite value, the thrust becomes 

more efficient towards the end of the transfer, when the spacecraft mass is lower and 

the acceleration is higher, so one would expect intuitively to see the major 

manoeuvres have the tendency to be shifted towards the end of a transfer. However, 

the difference between the two optimal trajectories becomes lower the higher the 

specific impulse. 

The level of specific impulse for low thrust missions is usually of the order of 

thousands of seconds and the thrust magnitude up to a few hundreds of mN, so for a 

one-ton spacecraft which thrusts for one year in total, one can expect to have a 

relative change in mass of up to 30%. None of the missions described in subsection 

1.2.4 has a mass change ratio above that. Therefore it is not unreasonable to use the 

Δv as a measure of merit for a trajectory. 

 

A primary objective of this thesis is to present tools to generate three-dimensional 

trajectories quickly from scratch such that they satisfy boundary constraints on 

position and velocity as well as time of flight constraints. The trajectory shaping 

approach has been chosen to tackle this, for which a general mathematical framework 

has been laid out, covering the shaping methods existing in the literature. A 
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generalisation of Petropoulos’ exponential sinusoids and Wall’s inverse polynomials 

to three-dimensional motion has been performed with success. 

It is important that the shaped trajectories represent with reasonable fidelity the 

feasibility and the optimality of a scenario. Hence it is expected for example for 

Lambert arcs not to be altered too much if the boundary conditions change slightly. It 

then becomes possible to assess search spaces without the need to optimise each 

individual trajectory. Moreover, having the flexibility to construct such trajectories is 

important for launching local optimisers that usually require an initial guess to 

converge. The shaping methods within this thesis are shown to behave well in that 

regard. 

It is important to note the Lambert problem for low thrust trajectories, unlike for 

coast arcs, is not completely defined as long as one does not assign additional 

constraints or objectives, such as the requirement of a minimal Δv, such that the 

degree of freedom arising from the possible existence of a thrust arc is dealt with. 

In real missions there are limits on the thrust magnitude, so one would want to 

have the possibility to discard whole regions of the search space if the initial guess 

trajectories have much higher peak thrust than the theoretical optimal one. Therefore 

it has been decided to develop a tool that improves the thrust magnitude, and 

generally the Δv with it, while not performing a complete optimisation. Focus is put 

on the computational speed of the tool. 

The ultimate objective within this thesis is to be able to assess search spaces not 

only for direct transfers but for MGA transfers as well. Dimensionality can quickly 

become a problem when the number of encountered planets increases. Recognising 

the advantages of the incremental pruning of Becerra et al, an adaptation of it has 

been done by eliminating from the swingby model the impulsive manoeuvre and by 

using the newly developed trajectory generation tools to model each leg. In this way, 

the dimension of the search space remains polynomial with respect to the number of 

planets. 

 

1.6 Outline 

 

The present thesis is structured following an order such the newly introduced tools 

only make use of tools presented beforehand. The first two chapters are dedicated 
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respectively to the generation and improvement of low thrust trajectory legs and the 

third one presents a method using the techniques of the first two chapters to find sets 

of MGA transfers interesting for a mission analyst. 

Trajectory shaping is used to construct low thrust trajectories. A general 

mathematical framework is built, within which any type of trajectory shaping can be 

described. A new shaping method is presented whereby the trajectories are described 

in spherical coordinates. The radius and the elevation angles are expressed as 

functions of the azimuthal angle. Such an approach is shown to be a more realistic 

modelling than with of the exponential sinusoids and the inverse polynomials. 

Following that, the pseudo-equinoctial shaping method is revisited with theoretical 

insights, which help predict the scenarios in which the generation of acceptable 

trajectories would fail. For both shaping methods, particular attention is given to the 

satisfaction of boundary constraints on position and velocity. The satisfaction of time 

of flight constraints is addressed in a separate subsection, since a new technique is 

presented that can be applied to any kind of shaping method. Finally both shaping 

methods studied are applied to test cases of transfers to Mars, a near Earth asteroid, a 

comet with eccentric orbit and to Neptune. 

The following chapter is dedicated to the improvement of low thrust, initial guess 

trajectories. The new technique can be applied to any trajectory governed by the 

dynamics of the two-body problem, in particular to trajectories generated by a shaping 

method. The main aim is to use the initial guesses to lower the peak thrust magnitude. 

It is shown that in the majority of the cases, a lower thrust profile results in reduced 

Δv. It is to be stressed that the objective at this stage is not to optimise the initial 

guesses but to improve them in a computationally efficient manner by reducing peak 

thrust and total Δv. For this reason, the most is done to make use of analytical results. 

The technique relies on the linearisation of the equations of motion around the initial 

trajectory and assigning a quadratic cost function. Theoretical results are provided on 

the limits of validity of the linearisations. An important theorem is also derived in a 

series of steps, linking the L2 optimality of the trajectories described with the 

linearised equations of motion with the L2 optimality of the trajectories described with 

the original equations of motion. The new technique of improvement is tested with 

initial trajectories generated by the two shaping methods of the first chapter. 

The third chapter presents an algorithm to prune out large search spaces arising in 

MGA trajectories. The method, based on the discretisation of the search space into a 
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grid, is particularly adapted to transfers that employ low thrust only. The trajectory 

generation and improvement techniques presented in the first two chapters can be 

used to design each leg of the MGA transfers. In order to avoid powered swingbys, a 

special technique is developed that links incoming and outgoing velocities. The 

retained trajectories of the pruned space are classified such that a discretised launch 

window is created with the best possible trajectory at each node. Several test cases are 

provided to prove the efficiency of the algorithm. 

Mathematical results that are necessary or useful to support the main text of the 

thesis are provided in appendix, as well as the framework for a third type of shaping 

function, called hybrid shaping, which combines the features of both the spherical and 

pseudo-equinoctial shaping, but for which no shaping function was found so far that 

would result in thrust profiles low enough to be considered practical. 

 



CHAPTER 2 LOW THRUST TRAJECTORY SHAPING 

Equation Section (Next) 

 

This chapter lays down the basic framework in which any trajectory shaping 

method can be described and analysed. An abstract mathematical formulation is 

constructed because it ensures rigor and generality. The two trajectory shaping 

methods that follow are formulated within that framework: a spherical shaping and a 

pseudo-equinoctial shaping. Numerous test cases are provided which prove the utility 

of the spherical shaping and the pseudo-equinoctial shaping. A shaping that can be 

considered hybrid between the first two is also presented in 5.2APPENDIX C. 

However, no result is given for the hybrid shaping due to the difficulty to find 

transfers with it with a Δv low enough. 

 

2.1 General framework 

 

The main motivation for the shaping method is to find solutions to a controlled 

dynamical system, satisfying some conditions on the state vector, by avoiding both 

the numerical integration of the equations of motion and the solution of an optimal 

control problem. The underlying idea is to first assign a parameterised shape to the 

state vector and then compute the control law. This process is normally known as an 

inverse control problem in aeronautics [35]. In mathematical terms, given the 

controlled dynamical system x = f x,u( )  where x∈W  and u∈m , m is the 

dimension of u, n the dimension of x and   W ⊂ n , one needs to perform the inverse 

transformation: 

 

    

∀x ∈W ,gx :
Ωx → 

m

x u = gx x( )
⎧
⎨
⎪

⎩⎪
    (2.1) 

 

such that the control law u is obtained as a function of the state vector x and its 

derivative  x . In the following it is assumed that m < n and fx represents the function f 

when x is given. Note that    u ∈m , which means that no constraints on the control are 

applied at this stage. 
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One of the main issues when shaping the state vector x is the definition of the set 

Ωx . In fact, a necessary condition to have a physical control vector u is that the image 

of   m  under fx is included in Ωx , or Im f ⊂Ωx x , for all state vectors x, and the 

corresponding sufficient condition is that the function gx is defined on ( )Im fΩ =x x . If 

gx exists and is defined on ( )Im fΩ =x x  then the composition gx  fx  is bijective (both 

one-to-one and onto) and therefore fx is injective (one-to-one) and gx is surjective 

(onto). This property means that for the same state vectors, two different control 

vectors will yield different derivatives of the state vector, which will be easily verified 

in the scenarios presented later. In practice, given a coordinate system, a shaping 

method and a set of dynamic equations, it is required that fx is surjective, and that gx is 

defined on Im fx( ) . If, furthermore, gx is bijective, then the control law is unique. 

The dynamical equations dealt with here are the ones describing the three 

dimensional motion of a spacecraft subject to the gravitational pull of a central body 

and to a controllable acceleration. The spacecraft and the central body are assumed to 

be point masses, with the mass of the spacecraft negligible compared to the one of the 

planet. The gravity constant of the central mass is denoted by µ. No assumption is 

made on the propulsion system: the thrust magnitude and the propellant consumption 

are obtained from the control law once an initial spacecraft mass and a value for the 

specific impulse are provided. 

Independent of whether Cartesian, spherical coordinates, Keplerian or Equinoctial 

elements are used to parameterize the motion of the spacecraft, the equations of 

motion around the central body can be expressed as: 

 

  
x = A x( ) +B x( )u    (2.2) 

 

with the number of  states n = 6  and the number of controls m = 3 . The space in 

which the state vectors x are defined, W, is an open subset of   6 . Note that fx  in this 

case is affine. The physics of the problem are such that each of the three components 

of the control vector has an effect on the state vector, thus xf  is injective. ( )Im fx  is a 

three dimensional manifold of   6 , which can be defined by three equations of the 

type 
   
Cx x( ) = 0 . A general expression for gx  can be given by:  
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u = B x( )T

B x( )⎡
⎣⎢

⎤
⎦⎥
−1

B x( )T
x − A x( )⎡⎣ ⎤⎦     (2.3) 

 

Note that ( ) ( ) ( )
1T T−

⎡ ⎤
⎣ ⎦B x B x B x  is the Moore-Penrose pseudo-inverse of ( )B x . It will 

be shown that for all W∈x , ( ) ( )TB x B x  is invertible and gx is surjective since gx is 

affine and each component of the control vector will be influenced by at least one 

component of   x . 

Finally, the particular type of dynamical system that will be considered in this 

document is described by a set of three second-order differential equations. In that 

case, three independent coordinates q and their respective derivatives   q  define the 

state vector   x = [qT , qT ]T . The vector q represents the state of the spacecraft in the 

configuration space expressed either in Cartesian or spherical coordinates. 

Let us assume that the trajectory is parameterised by a variable s, defined on a 

closed interval [  ]i fs s  and that there is a smooth mapping, i.e. diffeomorphism, 

between the time t and s. Denoting by a prime the derivatives with respect to s, one 

would have the relationship 
   
s s( ) = 1/ ′t s( )  and

   
s(s) = − ′′t (s) / ′t (s)( )3 . Hence, the state 

vector becomes x = [qT , s ′q T ]T  and the dynamical equations can be written as: 

 

s2 ′′q + s ′q = A q, s ′q( )+ B q, s ′q( )u     (2.4) 

 

such that A and B in (2.2) would be A = qT , AT⎡⎣ ⎤⎦
T

  and B = O1×3, B
T⎡⎣ ⎤⎦

T
. 

This kind of reparameterisation was first used by Baumgarte in 1972 [36] for the 

purpose of stabilizing the numerical integration of equations of motion. The general 

formulation in Eqs. (2.3) and (2.4) will be translated into three specific shaping 

approaches in spherical coordinates and Cartesian coordinates. 

 

2.2 Spherical shaping 

 

This section is devoted to a newly developed shaping method based on the shaping 

of spherical coordinates. The method can be regarded as the generalisation of the 

approach used by Petropoulos with the exponential sinusoids [27] and of the shaping 
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in polar coordinates with inverse polynomials by Wall and Conway [29]. It will be 

shown that the latter two can be described within the framework of the spherical 

shaping. 

The equations of motion are written in the radial-orthoradial-out-of-plane reference 

frame and the control vector is present through its components in the tangential-

normal-out-of-plane frame. An important relationship is derived, whereby the 

magnitude of the velocity is related to the geometrical properties of the trajectory and 

to the normal component of the control vector. Assuming that the normal component 

of the control vector is zero, it will be shown that the physical trajectory and therefore 

velocity is completely defined by the pure geometry of the trajectory, without any 

consideration on the dynamical properties along the trajectory. 

A scalar criterion on the geometry of the trajectory is derived such that a physically 

feasible trajectory exists with a solely tangential control profile. 

Once the general setting of the spherical shaping is established, it can be applied to 

any particular analytical expression for the radius and the elevation angle as a 

function of the azimuthal angle, such that the aforementioned criterion is satisfied. In 

particular, an expression for the radius is used such that the uncontrolled Keplerian 

motion is covered, and the expression of the elevation angle approximates a linear 

evolution of the angular momentum vector when the inclination changes are small. 

Finally, particular cases are addressed where some interesting physical properties 

are found. 

 

2.2.1 Derivation of the spherical shaping method 

 

The spherical shaping method describes the spatial properties of the trajectories 

using spherical coordinates. 

The trajectory of the spacecraft in the three dimensional space is uniquely defined 

by the spherical coordinates 
   

r,θ ,ϕ( )∈+ × 2π× −π / 2+π( ) , where r is the distance 

from the central body, θ is the azimuthal angle and φ is the elevation angle (see Fig. 

2.1). In the following the two angular components of the coordinates will be allowed 

to have any real value, since there will be no necessity for a unique representation for 

positions. If the variation of the position is taken with respect to time, the state vector 

is    [r,θ ,ϕ , r, θ , ϕ]T . 
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Fig. 2.1 Illustration of the spherical coordinate system 

 

If, instead, the angle θ is taken as parameter s to parameterize the trajectory, then 

( )r R θ= , ( )ϕ θ=Φ and ( )t T θ= . The transformation between t and θ holds if there is a 

smooth one-to-one mapping, also called diffeomorphism, between t and θ, which 

implies that θ is strictly monotonous with respect to time. The state vector becomes 

[ , , , , , ]Tr t r tϕ ϕ′ ′ ′=x  where the prime represents the derivative with respect to s =θ . This 

parameterisation is non-singular if the poles and the origin are excluded from the set 

of admissible positions. Moreover, the angle θ will account for the nr revolutions of 

the trajectory. Hence, the space W is defined as: 

 

W =  +
* × θi   θ f + 2nrπ⎡⎣ ⎤⎦ × −π 2   π 2( )×3

 
 

The equations of motion in an inertial reference frame are: 

 
2

2 3

d
dt r

µ= − +r r u     (2.5) 

 

where the position vector is [ ]cos cos , sin cos , sin Tr r rθ ϕ θ ϕ ϕ=r . Since the position 

vector is parametrised with θ, then: 

 

    
θ 2 d 2r

dθ 2 + θ
dr
dθ

= −µ r
r3 + u     (2.6) 

 

with    θ = 1/ ′t  and    θ = − ′′t / ′t 3 . Here W =  +
* × ti   t f⎡⎣ ⎤⎦ × −π 2   π 2( )×3 . Finally, the control 

vector u is obtained straight from Eq. (2.6), after having inserted the expression of r 

as a function of the spherical coordinates. 
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2.2.2 Properties of the trajectory of a tangentially controlled spacecraft 

 

If the geometrical trajectory is given, then one still needs to set the evolution of the 

spacecraft along that trajectory in order to define completely the physical transfer. 

This is done by providing  θ  as a function of θ . Then one also has  θ , and through 

(2.6), the control profile u is extracted. Therefore, if the shape of a trajectory is fixed, 

only one degree of freedom remains for defining the transfer completely. However, it 

is not straightforward to set the time evolution a priori, such that the final control 

profile is systematically low, or even close to optimal. 

In this section a simple relationship will be established between  θ  and the normal 

component of u, in the tangential-normal-out-of-plane frame. This relationship turns 

out to be useful to set a “shape” for the time evolution t based on physical 

considerations. 

The velocity vector v is expressed as: 

 

   
v = dr

dt
= θ dr

dθ
   (2.7) 

 

and the acceleration vector a as: 

 

    
a = dv

dt
= θ dr

dθ
+ θ 2 d 2r

dθ 2    (2.8) 

 

In the following, the vectors dr / dθ  and d 2r / dθ 2  will be denoted by   v  and   a  

respectively. They are entirely described by the geometry of the trajectory and 

therefore by r, φ and their first and second derivatives with respect to the azimuthal 

angle. The vector   h = r ∧ v  is also introduced, its magnitude is noted h . 

The unit vectors ( ), ,t n he e e  defining the tangential-normal-out-of-plane reference 

frame are introduced and the equations of motion (2.6) are projected onto it: 
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u=

ut
un
uh

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

µ
r2
er ⋅et + θ v ⋅et + θ

2a ⋅et

µ
r2
er ⋅en + θ

2a ⋅en
θ 2a ⋅eh

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

    (2.9) 

 

The second and the third component of u in (2.9) are of interest because they only 

involve   θ
2  while  θ  is absent. The projection on the out-of-plane component does not 

provide much information. However, since en = eh ∧ et , the normal component of u 

can be rewritten as: 

 

    
u

n
=

µ

r 2
er ⋅ en + θ 2

a ⋅ h ∧ v( )
h v

    (2.10) 

 

At this stage the flight path angle γ  is introduced, which is the angle between the 

velocity vector and the local horizon. An illustration is provided in Fig. 2.2. 

 

Fig. 2.2 Illustration of the flight path angle. The local horizon is tangent to the dashed circle 

 

One obtains then er ⋅en = -cosγ  and    
h = r v cosγ , one obtains: 

 

   
D θ 2 =

µ

r 2
+

u
n

cosγ
   (2.11) 

 

where 

 

 

  

  en

er

  eo

v

 

γ
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D = r

h2
a ⋅ h∧ v( )    (2.12) 

 

This expression depends uniquely on R , ′R , ′′R , Φ , ′Φ and ′′Φ , so on the pure 

geometrical shape of the trajectory. Finally, if one uses the physical velocity v, 

acceleration a and angular momentum h, then: 

 

   

a ⋅ h∧ v( ) = θ v + θ 2 a( ) ⋅ θ h∧ θ v( )
= θ 4 a ⋅ h∧ v( )

     (2.13) 

 

and D can then be rewritten as: 

 

    
D = r

θ 2h2 a ⋅ h∧ v( )    (2.14) 

 

The quantity D has the sign of ( )⋅ ∧a h v , which is the same as the sign of 
  
a ⋅ h∧ v( ) , 

thus D is positive when the trajectory is curved towards the central body. One can 

exhibit the symmetry within the expression of D by reformulating (2.12) as: 

 

    

D
r
=
a ⋅ h∧ v( )
h2 =

′′r ⋅ r ∧ ′r( )∧ ′r( )
r ∧ ′r

2 =
r ∧ ′r( ) ⋅ ′r ∧ ′′r( )

r ∧ ′r
2 =

r ⋅ ′r( ) ′r ⋅ ′′r( )− ′r 2 r ⋅ ′′r( )
r 2 ′r 2 − r ⋅ ′r( )2  (2.15) 

 

The scalar D is independent of the reference frame, and can be expressed using the 

components of the position, velocity and acceleration in any one reference frame. 

Using the radial-orthoradial-out-of-plane coordinate system ( ), ,r o he e e , one has    vh = 0 , 

such that: 

 

  
D =
vr
ao − vo

ar

vo

   (2.16) 

 

It is shown in appendix that   v  and   a  are written in ( ), ,r o he e e  as 

 

v=

vr
vo
vh

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
′r

r ′ϕ 2+cos2ϕ
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

    (2.17) 
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a =

ar
ao
ah

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=

′′r − r ′ϕ 2 + cos2ϕ( )
2 ′r ′ϕ 2 + cos2ϕ + r ′ϕ ′′ϕ − sinϕ cosϕ

′ϕ 2 + cos2ϕ
r

′ϕ 2 + cos2ϕ
cosϕ ′′ϕ − sinϕ cosϕ( )+ 2sinϕ ′ϕ 2 + cos2ϕ( )( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (2.18) 

 

The expression for D becomes then: 

 

  
D = − ′′r + 2

′r 2

r
+ ′r ′ϕ ′′ϕ − sinϕ cosϕ

′ϕ 2 + cos2ϕ
+ r ′ϕ 2 + cos2ϕ( )     (2.19) 

 

The functions R, Φ and T are introduced as the shaping functions of r, φ and t 

respectively and the corresponding control profile can be obtained, along with the Δv 

and the propellant consumption if the spacecraft’s initial mass and specific impulse 

are provided. R and Φ model the pure geometry of the trajectory, while T shapes the 

time evolution along the trajectory. It is assumed that the shaping functions R, Φ and 

T belong to sets of admissible functions SR, SΦ and ST that are twice continuously 

differentiable. Now, if the function T, defined through its derivative: 

 

′T ' = DR2

µ
     (2.20) 

 

is used to shape t, then from Eq. (2.11) it can be seen that the control vector 

corresponding to the geometrical trajectory defined by R and Φ will have no 

component out of the tangential plane to the trajectory (i.e. 0nu = ). This is an 

important novel result: no matter how the trajectory is shaped, there is no normal 

component to the control vector if and only if the satellite evolves along the trajectory 

according to (2.20). 

Note that shaping of the derivative T ′  instead of T is not an issue because the 

origin of time can be set as an additive constant to T. Eq. (2.20) requires the condition 

D > 0 in order to have a real time of flight. Geometrically speaking, this means that 

the plane defined by v and h (or in other words by the admissible control vectors) 

divides the space in two, and the trajectory must be curved towards the half-space 

containing the center of gravity. In fact, if the acceleration vector pointed towards the 

opposite half-space, a control component outside of the separating plane would be 
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required to balance the gravitational pull of the central body, therefore 0nu ≠  (see Fig. 

2.3). 

 

 Fig. 2.3 Illustration in 2D of the condition D > 0. The trajectory is the arc, the velocity vector is 
aligned with the tangent (dashed line).  

 

The time of flight and the Δv corresponding to the shaped trajectory are obtained 

by integrating respectively T ′and T ′u  over the interval   2i f rnθ θ π⎡ ⎤+⎣ ⎦ . 

It should be noted that by shaping the time evolution T with the expression in Eq. 

(2.20), R and Φ define completely T ′  and the time of flight ( ) ( )f iT Tθ θ− . This can be 

problematic when a constraint on the time of flight exists. However it is generally 

difficult to shape a priori T in such a way to obtain a control that is not too far from 

optimal, i.e. interesting in practice. Using such an expression for T ′  will result, for 

certain transfers, in reasonable thrust profiles and Δv. 

 

2.2.3 Particular case of planar trajectories 

 

Planar trajectories have already been addressed in the literature and the 

corresponding models are, as expected, technically less cumbersome. However, the 

problem has not been approached using the present the vectorial framework. The 

general three-dimensional model is simplified to two dimensions here and interesting 

relationships are found, which, when applied to existing models in the literature, go 

further in the physical understanding of the models and the predictions they enable. 

The spherical coordinate system and the radial-orthoradial-out-of-plane one 

become confounded in the 2D model and are commonly called polar coordinate 

system. The basis of the system is denoted by ( ),re eθ . 

a 

r 

v 
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After reducing the three dimensional model, the velocity and acceleration from 

(2.17) and (2.18) become 

 

v =
vr
vθ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ′r

r
⎛

⎝⎜
⎞

⎠⎟
   (2.21) 

a =
ar
aθ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ′′r − r

2 ′r
⎛

⎝⎜
⎞

⎠⎟
   (2.22) 

 

D in expression (2.11) linking the dynamics along the trajectory with the normal 

component of the control vector has now the simpler expression 

 

D =
vr aθ − vθ ar
vθ

= r − ′′r + 2 ′r 2

r
=
r−1 + r−1( )′′
r−1( )2

    (2.23) 

 

If one introduces the signed curvature c defined by [37]: 

 

c = r
2 + 2 ′r 2 − r ′′r

r2 + ′r 2( )3 2
= rD
v
3     (2.24) 

 

then one obtains another expression for D: 

 

    
D =

c v
3

r
   (2.25) 

 

The latter equation shows that D has the sign of the curvature. Therefore, a 

spacecraft can stay on a prescribed trajectory using only tangential thrust as long as 

the trajectory bends towards the central body. 

A simple expression can be obtained for the osculating semi-latus rectum p. It is 

linked to the norm h of the angular velocity vector by 2 4 2/ /p h r t′= =µ µ . If the radius 

is shaped by a function R and if it is assumed that the thrust is tangential, in which 

case the time evolution is shaped as in Eq. (2.20), then the semi-latus rectum becomes 
2 /p R D= . Using Eq. (2.23) one gets: 

 

( )1 1

1p
R R− −

=
′′+

   (2.26) 
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The semi-latus rectum is a positive quantity so the previous formula is valid only if 

D > 0. Otherwise the assumption of having only tangential thrust is incompatible with 

the shape of the trajectory defined by R. 

Finally, a result can be found on the range of eccentricities that can be reached by 

the osculating orbits, when the transfer is planar and the control vector is assumed to 

be tangential. The osculating eccentricity is defined by the osculating semi-latus 

rectum and the osculating semi-major axis a: 

 

1 pe
a

= −    (2.27) 

 

The energy of the spacecraft is defined by: 

 
2

2 2
µ µE
a r

= − = −v    (2.28) 

 

therefore the eccentricity becomes 

 

e = 1+ 2p
µ

v2

2
− µ
r

⎛

⎝⎜
⎞

⎠⎟
= 1+ 2p

µ
v2

2 ′t 2
− µ
r

⎛

⎝⎜
⎞

⎠⎟
 

   (2.29) 

 

If the planar trajectory is shaped by R and the control vector is tangential, by using 

(2.20), (2.21) and (2.26) and after some algebraic manipulations, the following 

expression is obtained: 

 

e =
R−1( )′2 + R−1( )′′2

R−1 + R−1( )′′⎛
⎝⎜

⎞
⎠⎟

2    (2.30) 

 

The result is reassuring in the sense that the eccentricity is always defined because 

it is the root of a positive number. It is easy to verify the formula by observing that the 

eccentricity is zero if and only if R is constant. Moreover, the eccentricity is not 

defined when the function 
  
R−1 + R−1( )′′  takes the value zero. This corresponds to the 

case when the curvature of the trajectory is zero. 
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In the next two sections the shaping approaches of Petropoulos and Wall and 

Conway will be revisited in the light of the generalised three-dimensional spherical 

model. The two methods describe trajectories in 2 dimensions only and Petropoulos’s 

and Wall and Conway’s shaping can be obtained from the novel spherical shaping 

method which is valid in 3 dimensions. 

 

2.2.4 The exponential shaping of Petropoulos 

 

In 2000 Petropoulos et al. [27] proposed the use of a two dimensional shape, 

expressed in polar coordinates, for low thrust trajectory design. The radius takes the 

following form: 

 

( ) ( )( )0 1 2exp sinR k k kθ θ φ= +     (2.31) 

 

A tangential thrust is assumed along the trajectory and, according to the theory 

developed for the three dimensional spherical model, this is possible only if the 

quantity D defined in Eq. (2.23) is strictly positive. If one inserts Eq. (2.31) into the 

expression of D and remembers that R is strictly positive, then the following 

inequality condition is obtained: 

 

( ) ( )2 2 2 2
1 2 2 1 2 21 sin cos 0D k k k k k k

R
θ φ θ φ= + + + + >      (2.32) 

 

The above inequality must hold for all θ, and in particular for ( )1 22 kθ φ π= − +  and 

( )2 22 kθ φ π= − − , in which case we get the two inequalities 2
1 21 1k k− < < , or in a compact 

form 2
1 2 1k k < . Reciprocally, if 2

1 2 1k k < , then one easily gets that D is strictly positive 

for all θ. 

Petropoulos and Longuski found solutions to the two-point boundary value 

problem by tuning the value of k2 such that the spiral intersects the target orbit at the 

right time, without necessarily matching the velocities at the boundaries [38]. Izzo 

[39] studied the Lambert problem for the exponential sinusoids and found that it could 

be solved for certain ranges of time of flight that depend on the initial flight path 

angles. Therefore, this method cannot satisfy all possible boundary conditions on 

position and velocity without an additional impulsive Δv at the tips. 
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2.2.5 The inverse polynomials of Wall and Conway 

 

Wall and Conway [20] devised a shape-based method similar to Petropoulos, with 

the difference that they used inverse polynomials to model the radius instead of an 

exponential sinusoid. Their expression of R contains more free parameters such that 

the boundary conditions on both position and velocity can be accommodated. An 

additional parameter in R is used to satisfy the time of flight constraints. The function 

R has the form: 

 

2 3 4 5 6
0 1 2 3 4 5 6

1R
a a a a a a aθ θ θ θ θ θ

=
+ + + + + +

     (2.33) 

 

The expression in Eq. (2.33) provides feasible transfers if and only if, for all θ, 

R > 0 . This condition depends on the values of the coefficients and therefore on the 

boundary conditions and the required time of flight. One more condition to be 

satisfied for all θ is D > 0 , otherwise no tangential control would be admissible with 

the given shape of the trajectory. From (2.23), D > 0  if ( )1 1 0R R− − ′′+ > , which 

translates into 
  
∀θ ∈ θ i;θ f + 2nrπ⎡⎣ ⎤⎦ : 

 

a0 + 2a2( )+ a1 + 6a3( )θ + a2 +12a4( )θ 2 + a3 + 20a5( )θ 3 + a4 + 30a6( )θ 4 + a5θ 5 + a6θ 6 > 0  (1.34) 

 

If one uses the inverse polynomials for one particular trajectory only, then (2.34) is 

a necessary and sufficient conditions for the trajectory to be feasible with only 

tangential thrust. If one uses the same shaping for any planar transfer with any 

number of revolutions, then Eq. (2.34) must be valid on  + . Note that one necessary 

condition for this to hold true is a6 > 0. Finally, the 6th degree polynomial in the 

expression of R can have at most 5 extrema. Therefore, if one models a transfer 

between two elliptical orbits using 3 revolutions or more, these inverse polynomials 

would not be able to model oscillations of the radius between successive pericenters 

and apocenters. If one uses a succession of these shaping functions then the latter 

deficiency is clearly removed.  
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2.2.6 Particular case of trajectories with constant radius 

 

This case is addressed because the equations simplify a lot and interesting results 

can be extracted from the model. It is assumed that R is a constant function that takes 

the value R0. The spacecraft moves on the sphere of radius R0, vr = 0 and the flight 

path angle γ  is zero. However the radial acceleration is not zero because an 

acceleration along the radial direction is necessary in order to stay on the surface of 

the sphere. 

From (2.16) one gets D = − ar , so 

 

( )2 2
0 cosD R ′= Φ + Φ    (2.35) 

 

The tangential-normal-out-of-plane frame and radial-orthoradial-out-of-plane 

frame are confounded, so assuming a control profile without a normal component is 

equivalent to assuming that the control direction is tangential to the sphere on which 

the spacecraft moves. In that case, the time evolution is written as: 

 

( )
3

2 20 cosRT
µ

′ ′= Φ + Φ    (2.36) 

 

The time of flight is the sum of T’ along the trajectory and the following time 

equation is obtained: 

 

ΔT =
R0
3

µ
′Φ 2 + cos2Φ dθ

θi

θi∫ = n dΦ2 + dθ2 cos2Φ
θi

θi∫ = nΔΘ   (2.37) 

 

Θ is the arc length associated to the trajectory divided by the radius, so it can be 

considered as an ‘angular length’. What is remarkable is that the angular velocity 

stays constant and is that of a Keplerian circular orbit of radius R0. Hence the velocity 

of the spacecraft is constant. Indeed, Eq. (2.37) can be rewritten as: 

 

ΔT =
R0
µ

R0 dΘΘi

Θ f∫ = 1
v0

dl
li

l f∫ = Δl
v0

    (2.38) 
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The consequence of this is that the kinetic energy of the spacecraft is constant, so 

the thrust does not provide work. The result is that the control vector can only be 

directed normally to the osculating orbital plane. This makes physical sense, because 

if a spacecraft were initially left on a circular orbit and had to change its trajectory by 

always staying on the sphere of the same radius as the initial orbit, then it would go 

through a succession of intermediate circular orbits, and for doing that, small amounts 

of Δvs orthogonal to the orbital plane are required. 

It is possible to apply the results above to the case of a spacecraft that orbits on a 

circular orbit displaced towards one of the poles. In other words, the subsatellite point 

stays at a constant latitude Φ0 . 

 

2.2.7 Application of the general framework to particular shaping functions 

 

R and Φ can be in any function space such that R > 0  and −π 2 <Φ < π 2 , but it is 

judicious to choose expressions for which the boundary constraints on the position 

and velocity can be imposed analytically. The boundary conditions are: 

 

R θi( )= Ri , R θ f +2nrπ( )= Rf
Φ θi( )=Φi , Φ θ f +2nrπ( )=Φf

′T θi( )= RicosΦivθi
, ′T θ f +2nrπ( )= Rf cosΦf

vθ f
′R θi( )= vri , ′R θ f +2nrπ( )= vrf
′Φ θi( )= vϕiRi , ′Φ θ f +2nrπ( )= vϕ fRf

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

   (2.39) 

 

It is assumed at this stage that the control vector has no normal component, such 

that T ′  satisfies (2.20). The boundary conditions on T ′  are expressed as the boundary 

conditions on R and Φ and their first and second derivatives. Then linear constraints 

on R′′  and ′′Φ  are found using the expression for D in (2.19) and (2.20): 

 

( ) ( )
( ) ( )

i i i i

f f f f

R C

R C

′′ ′′⎧ + Φ =⎪
⎨ ′′ ′′+ Φ =⎪⎩

θ α θ

θ α θ
    (2.40) 
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where  

 

αi/ f = −
′R ′Φ θi/ f( )

′Φ 2 θi/ f( )+ cos2Φ θi/ f( ) = −
vri/ f vϕi/ f

Ri/ f vϕi/ f
2 Ri/ f

2 + cos2Φi/ f( )    (2.41) 

 

and 

 

( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( )

2 2
/ / // 2 2

/ / / / / /2 2 2
/ / / /

2 2 2
/ / / / / / /2

/ / 22 2
// / / /
2
/

sin cos
2 cos

cos

cos sin cos
2 cos

i f i f i fi f
i f i f i f i f i f i f

i f i f i f i f

i f ri f i f ri f i f i f i f
i f i f

i fi f i f i f i f

i f

T R
C R R

R R

v v v v
R

vv R R R
R

ϕ ϕ

ϕθ

′ Φ Φ′
′ ′ ′= − + + Φ + Φ − Φ

′Φ + Φ

⎛ ⎞Φ Φ Φ
= − + + + Φ −⎜ ⎟⎜ ⎟⎝ ⎠

µ θ θ θ
θ θ θ

θ θ

µ

2
/cos i f+ Φ

 (2.42) 

 

There are therefore ten boundary conditions: four on the radius, four on the 

elevation angle and two combined between the two. Thus, the functions R and Φ must 

have at least 10 free parameters altogether to satisfy all boundary conditions, with at 

least four for R and four for Φ. In three dimensions, one would expect to have a total 

of 12 boundary conditions, the last two would be t θi( ) = ti  and t θ f( ) = t f . These two 

can be imposed as design constraints, however if one fixes T ′  as in (2.20), then the 

time of flight t f − ti  is fixed by the shaping functions R and Φ. 

 

2.2.8 Choice of the shaping functions and analytical resolution of the boundary 
constraints 

 

This section shows that a relatively wide set of shaping functions for R and Φ can 

be used such that the boundary conditions can be satisfied analytically. The boundary 

conditions expressed in (2.39) and (2.40) suggest that functions of the form 

( ) ( )
1

n

k k
k

R a R
=

θ = θ∑  and ( ) ( )
1

m

k k
k
b

=

Φ θ = Φ θ∑  are interesting because their derivatives remain 

linear combinations of the unknown coefficients and therefore the boundary 

conditions can be solved by inverting a 10 by 10 matrix. Note that one needs to have 

4n ≥ , 4m ≥  and 10n m+ = . 

However there is a wider set of functions that allow satisfying constraints in such a 

way. If one considers those functions that can be written as ( ) ( )0
1

n

k k
k

R R a R
=

⎛ ⎞θ = θ⎜ ⎟
⎝ ⎠
∑  and 
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( ) ( )0
1

m

k k
i
b

=

⎛ ⎞Φ θ =Φ Φ θ⎜ ⎟
⎝ ⎠
∑ , where R0 and Φ0 can be analytically inverted, then it can be 

shown that the coefficients can be solved for analytically as well. Indeed, in that case, 

first the boundary conditions on R and Φ need to be rewritten as ( ) ( )1
0 /

1

n

k k i f i f
k
a R R R−

=

θ =∑  

and ( ) ( )1
/ 0 /

1

m

k k i f i f
i
b −

=

Φ θ =Φ Φ∑ , those on R’ and Φ’ become: 

 

( )
( ) ( )( )

( )
( ) ( )( )

/ /

1
1 0 0 /

0
1

/ / / /
/ 1

1 0 0 /
0 /

1

n
ri f ri f

k k i f n
k i f

k k i f
k

m
i f i f i f i f

k k i f m
i i f

k k i f
i

v v
a R

R R RR a R

v R v R
b

b

−
=

=

ϕ ϕ

−
=

=

′ θ = =
⎛ ⎞ ′′ θ⎜ ⎟
⎝ ⎠

′Φ θ = =
⎛ ⎞ ′Φ Φ Φ′Φ Φ θ⎜ ⎟
⎝ ⎠

∑
∑

∑
∑

  (2.43) 

 

Finally the boundary conditions on T’ in (2.40), where the second derivatives of R 

and Φ are present, become 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

0 0
1 1 1 1

2

/ / 0 / / 0 / /
1 1 1 1

n n n n

k k i f k k i f k k i f k k i f
k k k k

m m m m

i f k k i f k k i f k k i f k k i f i f
i i i i

a R R a R a R R a R

b b b b C

= = = =

= = = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′′′ ′′⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′′′ ′′⎜ ⎟+ Φ ⋅Φ Φ + Φ ⋅Φ Φ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

θ θ θ θ

α θ θ θ θ
 (2.44) 

 
and after rearranging, the following linear equations are obtained: 

 

( ) ( )( ) ( ) ( )( )

( )( )
( )( )

( )( )
( )( )

1 1
0 0 / / / 0 0 /

1 1
2 2 2
/ / /1 1

/ 0 0 / / 0 0 /2 2
1 1

0 0 / 0 0 /

n m

k k i f i f i f k k i f i f
k i

ri f i f i f
i f i f i f i f

i f i f

a R R R R b

v v R
C R R R

R R R

− −

= =

− −

− −

′ ′′′ ′′⋅ + Φ ⋅Φ Φ Φ =

′′ ′′= − ⋅ − ⋅Φ Φ Φ
′ ′Φ Φ Φ

∑ ∑
ϕ

θ α θ

α
 (2.45) 

 

Therefore one has a relatively wide array of possibilities for the shaping functions 

and boundary conditions on position and velocity can be satisfied by inverting a 10 by 

10 matrix. 

One is not obliged to constrain the tips of the transfer both on position and 

velocity. Indeed, with the aforementioned form for the shaping functions, one has the 

flexibility to impose any combination of constraints within (2.39). For example it is 

possible to impose the initial and arrival position and only the arrival velocity. In that 

case the number of coefficients to be determined in R will be lower by two and in Φ 

by one. The number of coefficients can also be increased by adapting the shaping 
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functions and solving for additional constraints like the time of flight or maximum 

thrust.  

 

2.2.9 Selection of the function shaping the radius 

 

At this point it is possible to use any shaping function that has the form described 

above, but the expression has to be judiciously chosen, otherwise the trajectory would 

be curved badly and normal thrust would be required to stay on it, or the 

corresponding control profile would result in unacceptably high magnitudes and Δvs. 

Considering that the Keplerian motion described in polar coordinates satisfies 

 

( )1 cos
pr

e
=

+ θ −ω
   (2.46) 

 

where ω is the argument of pericenter, the following expression is promising to be 

suitable for the shaping function R: 

 

R θ( ) = 1
α θ( )+β θ( )cosθ + γ θ( )sinθ     (2.47) 

 

The above expression covers the case of the Keplerian motion, which corresponds 

to the case when the coefficients are constant, i.e. the initial and final boundary 

conditions are such that the Keplerian elements are constant. 

It must be noted that in the particular case of planar transfers, the osculating semi-

latus rectum and eccentricity are not obtained directly from (2.47) as being p =1/α  

and e = β2 + γ 2 /α , because if it were the case, then they would only take into account 

the geometry of the trajectory and not the physical velocity as well. The osculating 

semi-latus rectum is obtained from Eq. (2.26). 

For the particular transfers defined by Eq. (2.47), the following equation is 

obtained: 

 

1
p
= α + ′′α + ′′β + 2 ′γ( )cosθ + ′′γ − 2 ′β( )sinθ      (2.48) 
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Therefore the osculating semi-latus rectum, in the particular case of tangential 

thrust, is not, in general p =1/α . It can be shown that the latter is the case if and only 

if R has the expression 

 

( )
0 1 0 0

1
cos sin

R
a a b c

θ =
+ θ+ θ+ θ

    (2.49) 

 

In that case, the semi-latus rectum will be p =1/ a0 + a1θ( ) , and it will always be 

strictly positive once a0 and a1 are set by the boundary conditions. 

Keeping the expression in (2.49) for R would leave four degrees of freedom to 

define a transfer. That is not enough if initial and final boundary conditions need to be 

set for both position and velocity, so at least two more free parameters are required. 

Hence the following form has been chosen for R: 

 

( ) ( )2
0 1 2 3 4 5 6

1
cos sin

R
a a a a a a a

=
+ + + + + +θ θ θ θ θ θ

    (2.50) 

 

The coefficient a2 is set to 0 by default, but it can be used as an additional degree 

of freedom to satisfy other constraints on the transfer. 

 

2.2.10 Choice of the shaping functions 

 

In the presented test cases, SR is the set of functions expressed in a form that is 

reminiscent of the expression of the radius in Keplerian elements, and SΦ is such that 

Φ oscillates: 

 

( ) ( )
( ) ( )

2
0 1 2 3 4 5 6

0 1 2 3

1
cos sin

cos sin

R
a a a a a a a

b b b b

θ θ θ θ θ θ

θ θ θ θ

⎧ =⎪ + + + + + +⎨
⎪Φ = + + +⎩

    (2.51) 

 

The motivation for this choice is that the minimum-thrust arc is the Keplerian arc. 

Moreover, the proposed expression for R can account for oscillations of the radius 

between pericenter and apocenter. No singularity was encountered for R in the test 

cases of this document, the value for the radius remained strictly positive. In the same 
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way, Φ always remained in the interval ( )2; 2π π− . The choice of the expression for 

Φ is motivated in detail in 5.2APPENDIX B and covers the case of Keplerian arcs.  

Note that, in (2.51), the total number of free parameters is 11 and not 10. The extra 

parameter can be used as an additional degree of freedom to modify the shape of the 

trajectory. It can for instance be used to satisfy a constraint on the time of flight. 

However, if fewer boundary conditions are imposed on the trajectory, the number 

of coefficients to fix would be lower, and some would be fixed to a default value of 

zero. For example, if one intends to impose only the initial position, the initial 

velocity and the final position, then four coefficients should be fixed for R and three 

for Φ. In this particular case, the R and Φ could have the following expression: 

 

( )
0 1 2 3

0 1 2

1
cos sin

cos sin

R
a a a a
b b b

⎧ =⎪ + + +⎨
⎪Φ = + +⎩

θ θ θ
θ θ θ

    (2.52) 

 
The boundary conditions would be solved using the appropriate subset of equations in 

(2.39), after using the expression of T’ in (2.20). 

 

2.3 Pseudo-equinoctial shaping 

 

In 2006, De Pascale and Vasile proposed a different shaping approach based on the 

variation of the orbital elements [29]. Their shaping approach makes use of a set of 

pseudo-equinoctial elements to shape the Cartesian coordinates. Here, the pseudo-

equinoctial shaping is revisited in the general framework laid out in section 2.1. The 

equations of motion used to calculate the control vector are the same as Eqs. (2.6). 

The expression of the equinoctial elements with respect to the Keplerian elements 

( )a e i Ω ω ν  is reminded here: 

 

( )
( )
( )

21

cos

sin

tan cos
2

tan sin
2

p a e

f e

g e
ih

ik

L

= −

= ω+Ω

= ω+Ω

= Ω

= Ω

=Ω +ω+ ν

   (2.53) 
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The longitudinal anomaly L is used as parameter s instead of the azimuthal angle θ. 

The state vector is defined as [ ], , , , , Tp f g h k t=x  and one can obtain the Cartesian 

position vector from the transformation [40]: 

 

r x,L( ) =

p 1+ h2 − k 2( )cosL + 2hk sin L⎡
⎣

⎤
⎦

(1+ f cosL + g sin L) 1+ h2 + k 2( )
p 1− h2 + k 2( )sin L + 2hk cosL⎡
⎣

⎤
⎦

(1+ f cosL + g sin L) 1+ h2 + k 2( )
2p hsin L − k cosL( )

(1+ f cosL + g sin L) 1+ h2 + k 2( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

    (2.54) 

 

A trajectory can be described as a continuous succession of points, parameterised 

by L here, where each point is on an instantaneous ellipse. So a succession of ellipses 

can be used to characterize a trajectory. However, at each point more than one ellipse 

can be chosen since one has the freedom to choose in what direction the instantaneous 

ellipse is going through the point, i.e. what is the velocity at that point on that 

instantaneous ellipse. There are therefore three degrees of freedom when choosing to 

characterize a trajectory as a succession of ellipses. This flexibility is called gauge 

freedom. 

Among all the possible ellipses one can choose from at each instant, there is a 

special choice whereby the velocity of the instantaneous ellipse is equal to the 

physical velocity v along the trajectory. That special ellipse is qualified as osculating. 

This description of the trajectory is explained in detail by Efroimsky [41]. 

If one uses equinoctial elements and assigns a function of L to each of them to 

describe the evolution of the ellipses, then one can write the physical velocity as: 

 

1d dL d
dL dt t dL L

∂ ∂⎛ ⎞= = +⎜ ⎟′ ∂ ∂⎝ ⎠
r r x rv

x
    (2.55) 

 

Primes denote differentiations with respect to L. The physical, osculating, velocity 

can be decomposed into two components: a velocity on an instantaneous non-

osculating ellipse described by the shaped elements and a gauge term. The expression 
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of the velocity along the non-osculating ellipse is obtained by differentiating (2.54) 

with respect to L, while assuming that all other elements are fixed. Therefore one has: 

 

v0 =
1
′t0

∂r
∂L

 (2.56) 

 

′t0 = L0 is the value obtained from the conservation of angular momentum and so: 

 

′t0 =
r2

µ p
= 1

µ p
p

1+ f cosL + g sin L
⎛
⎝⎜

⎞
⎠⎟

2

    (2.57) 

 

Since the physical velocity can be written as the sum of the non-osculating term 

and a gauge term vgauge, one obtains the following expression for the latter: 

 

vgauge =
1
′t

∂r
∂x
dx
dL

+ ∂r
∂L

⎛
⎝⎜

⎞
⎠⎟
− 1

′tosc

∂r
∂L

= 1
′t
1− ′t

′tosc

⎛

⎝⎜
⎞

⎠⎟
∂r
∂L

+ ∂r
∂x
dx
dL

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

′t
Φ   (2.58) 

 

 

 

Fig. 2.4: Plot of a trajectory (bold line) whose points pass through instantaneous ellipses. In the 
illustrated case, the ellipses are not osculating because Φ ≠ 0 . 

 

Fig. 2.4 illustrates the decomposition of the velocity into v0 and vgauge. The 

osculating condition imposes vgauge = 0. 

If one sets functions of L to describe the evolution of the respective equinoctial 

elements, then the osculating condition will not necessarily be satisfied. These 

functions shall be called shaping functions and shall be denoted by the capital letters. 
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Developing (2.58) in a system of three nonlinear differential equations that define 

( )Im fx , and assuming that the equinoctial elements are governed by shaping 

functions, after simplification, the osculating conditions are written as: 

 

( )2

2 2 2

cos sin 1 sin cos

1
1

sin cos 0

PP F L G L T F L G L
r r

PHK KH T
H K r

H L K L

⎧ ⎛ ⎞′ ′ ′ ′⎪ − − = − −⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎪⎪ ′ ′−⎨ ′= −⎪ + +
⎪
⎪
⎪ ′ ′− =⎩

µ

µ   (2.59) 

 

where 

 

1 cos sin
Pr

F L G L
=

+ +
   (2.60) 

 

It is generally accepted to call the set of elements described by P, F, G, H, K and L 

equinoctial only when they describe osculating orbits, and pseudo-equinoctial 

otherwise. The Gauss planetary equations are obtained from the three equations of 

motion and the three osculating conditions. Therefore if the parameters defining x 

were computed from the propagation of Gauss planetary equations, under a low-thrust 

action, then they would be conventional osculating non-singular equinoctial elements. 

In the pseudo-equinoctial shaping, however, the dependency of all five elements p, 

f, g, h and k on L is defined by arbitrary shaping functions. In particular, the following 

functions were proposed in [29]: 

 

( )
( )
( )
( )
( )

0 1 1

0 1 2

0 1 2

0 1 3

0 1 3

exp

exp

exp

exp

exp

P L p p L

F L f f L

G L g g L

H L h h L

K L k k L

⎧ = +
⎪

= +⎪
⎪ = +⎨
⎪ = +⎪
⎪ = +⎩

λ

λ

λ

λ

λ

    (2.61) 

 

The parameters 1 2 3, ,λ λ λ  are called shaping parameters and they are additional 

degrees of freedom that one can use to modify the shape of the trajectory. 
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The shaping function for the time component of the state vector, as in the spherical 

shaping method, is defined through its derivative with respect to the parameter L, for 

which the following expression was used: 

 

′T = ′t0 =
1

µP
P

1+ F cosL +Gsin L
⎛
⎝⎜

⎞
⎠⎟

2

    (2.62) 

 

Adopting the latter expression is like assuming that the out-of-plane component of 

the control vector is negligible with respect to the magnitude of the gravity field. The 

gauge function has then the expression Φ = ∂r / ∂x( ) dx / dL( ) . 
It can be verified that the shaping of the elements in Eqs. (2.61) and (2.62) does not 

satisfy 0=Φ  and therefore these elements do not represent an osculating orbit. 

Hence, they represent an orbit which passes through the same point as the osculating 

one but with a different velocity. It can be shown indeed that if (2.62) is chosen for 

the expression of ′T , then osculating conditions would impose ′H = ′K = 0

0H K′ ′= = , i.e. the transfer is planar, and 

 

( )1 cos sin cos sin 0P F L F L F L G L
P
′ ′ ′+ + − − =     (2.63) 

 

What actually happens is that by imposing a shape for the elements in x one fixes 

the gauge function Φ . If that function is not zero, i.e. the Lagrange constraint is not 

satisfied, then the elements in x are not osculating and do not satisfy the Gauss 

planetary equations. 

Providing T from (2.62) and arbitrary shaping functions P, F, G, H and K defines 

the position through Eq. (2.54), the gauge function  and the velocity through 

v = ∂r / ∂L +Φ( ) / ′T . Reciprocally, it can be shown that if one provides the position r, 

the velocity v and an arbitrary gauge function , and assumes that T is defined as in 

(2.62), then the corresponding profiles for P, F, G, H and K exist and are unique. In 

fact, P, F, G, H, K and L are the osculating equinoctial elements corresponding to the 

position r and the velocity v -Φ v / ∂r / ∂L +Φ . The special case of ∂r / ∂L +Φ = 0  

corresponds to v = 0, which is rarely encountered in practice. It is worth noting that 

the component t of x is absent in the expression of  because ∂r / ∂t = 0 . 

Φ

Φ

Φ
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2.3.1 Satisfying the boundary constraints 

 

The coefficients 0 0 0 0 0, , , ,p f g h k  and 1 1 1 1 1, , , ,p f g h k  are computed by satisfying the 

boundary conditions on position and velocity. A Newton loop is performed to satisfy 

the boundary conditions exactly, since the sextuplet of functions 

( )P F G H K L  does not define osculating equinoctial elements. The Newton 

loop is initialised with values for the coefficients that provide the osculating values 

for ( )P F G H K T  at the boundaries. In mathematical terms, the osculating 

values correspond to the solution to: 

 

r xi ,Li( ) = ri
1

′to xi ,Li( )
∂r
∂L

xi ,Li( )
= vi

r x f ,Lf( ) = rf
1

′to x f ,Lf( )
∂r
∂L

x f ,Lf( )
= v f

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

   (2.64) 

 

From ( ),i iLx  and ( ),f fLx  one gets the values of the coefficients by solving the 

linear system (2.61). These coefficients are used to initialize the Newton loop to 

satisfy the boundary constraints. If the coefficients inside the shaping functions are 

assembled into a vector c with 10 components, then the solution to the following 

system in ( ), ,i fL Lc  is searched for iteratively: 

 

( )( )

( )( ) ( )( )
( )( )

( )( )

( )( ) ( )( )
( )( )

, ,

, ,

, ,

1 , ,
, ,

, ,

1 , ,
, ,

i i

f f

i i i

i i i
L Li i

f f f

f f f
L Lf f

L L

L L
LT L L

L L

L L
LT L L

⎧ =
⎪
⎪ ⎡ ⎤∂⎪ ⎢ ⎥+ =
⎪ ∂′ ⎢ ⎥⎣ ⎦⎪
⎨

=⎪
⎪

⎡ ⎤⎪ ∂⎢ ⎥+ =⎪
∂⎢ ⎥′⎪ ⎣ ⎦⎩

x c

x c

r x c r

r x c v
x c

r x c r

r x c v
x c

Φ

Φ

  (2.65) 
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Eqs. (2.65) are a system of 12 equations with 12 unknowns. Using the coefficients 

from the osculating elements can be expected to be a good starting point for solving 

the system as long as the gauge function remains small, i.e. the pseudo-equinoctial 

elements are not too far from being osculating. In mathematical terms, this condition 

translates into: 

 

Φ  ∂r
∂L

 (2.66) 

 

Due to the fact that Φ = ∂r / ∂x( ) dx / dL( )  and that one can expect the orders of 

magnitude of each ∂r / ∂x j  be the same as the one of ∂r / ∂L , the condition (2.66) 

becomes ultimately    
dxi / dL  xi . The meaning of the latter is that the shaping 

functions should not have too abrupt variations. Therefore, no matter which 

expressions for the shaping functions are used, the shorter the transfer in terms of 

Lf − Li , the farther the osculating initial guess will be from the solution of (2.65) and 

the smaller will be the chance that the Newton loop converges. This observation of 

course threatens the applicability of the method. Further research needs to be 

performed however on quantifying more in detail how and when the Newton-Raphson 

iteration does not converge. It can be said nevertheless, that if the flight is short, i.e. 

significantly shorter than one revolution, and the difference between the initial and 

final orbits is large, the iteration would be expected to be deficient with a higher 

chance. 

When one needs to satisfy fewer boundary conditions, then a Newton loop can be 

applied to a smaller number of coefficients in the expression of the shaping functions 

while fixing the value of all extra coefficients. The values for the latter can 

theoretically be any but it is judicious to choose values such that the Newton loop 

converges more robustly. The values corresponding to appropriate osculating initial 

and final orbits can be used as starting point for the Newton loop as discussed 

previously. 

When selecting the coefficients on which the Newton loop would be run, one 

needs to be consistent with the boundary constraints to be satisfied. For example, if 

the z-component of the position vector is imposed, then at least one of the coefficients 

in H or K should be used inside the Newton loop. 
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Once the values of the longitudinal anomalies at the boundaries and the 

coefficients inside the shaping functions of the pseudo-equinoctial elements are 

obtained, the trajectory is completely characterised. T ′  is defined through Eq. (2.62) 

and the evolution of time is then computed by solving the integral: 

 

( ) ( )
i

L

L
t T L T l dl′= = ∫    (2.67) 

 

The time of flight is uniquely defined. If the time of flight is constrained, then a 

second Newton loop over one of the shaping parameters can be used to satisfy that 

constraint. Finally, the total Δv is obtained by integrating T ′u  over   2i f rL L n π⎡ ⎤+⎣ ⎦ . 

The magnitude of the Δv can vary substantially, depending on the time of flight to be 

satisfied. 

 

2.4 Satisfaction of the time of flight constraint 

 

The advantage of generating trajectories by shaping the state vectors is that the 

equations of motion provide the corresponding control law analytically. However 

there are physical quantities that are more difficult to obtain with this method, one of 

them is the time of flight corresponding to a given shape. The time of flight is defined 

as ( ) ( )f iT s T s−  and is a function of the parameter s. If the derivative of T is 

provided, as in the case of the shaping methods described above, then the time of 

flight is the integral of T’ over [   ]i fs s . The analytical integral of T’ is not generally 

possible and has to be solved numerically. 

The time of flight is often constrained as the spacecraft has to arrive at destination 

at a given time to rendezvous or fly by a celestial body. In order to satisfy that 

constraint, at least one additional parameter is required when shaping the trajectory. A 

way to satisfy automatically the time of flight constraint is by shaping T or T’ such 

that the desired time of flight Tf is exactly ( ) ( ) f

i

s

f i s
T s T s T ds′− = ∫ . One would be 

tempted to choose an expression for T’ that can be analytically reduced to quadrature. 

Although this approach would be computationally the ideal way to solve the time of 

flight constraints, the resulting thrust profiles would not necessarily have reasonable 
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magnitudes in practice. That explains why, in the previous subsections, the time 

evolution profiles were chosen to correspond either to a tangential thrust or a 2D 

motion. 

If the parameterisation is performed using the time t, one could then trivially define 

the trajectory in the desired segment [    ]i ft t . This approach would remove the need to 

address any time of flight constraints further down in the calculations. On the other 

hand, quantities like the azimuthal angle θ or the longitudinal anomaly L would need 

to be constrained to take values within the desired limits such that the boundary 

conditions are satisfied. The problem of satisfying the time of flight constraint is then 

replaced by the problem of satisfying the boundary conditions. 

A two-step approach to address the time of flight constraints is presented in this 

subsection, the second step being applied if the first one fails. The two steps differ in 

the way the additional parameter is used in the formulation of the shaping. The first 

one includes the parameter within the expression of the functions shaping the state 

vector. The second approach consists of augmenting the initial time evolution 

function T in a way that the time of flight constraint is exactly satisfied. 

 

2.4.1 Inserting an additional parameter within the shaping functions of the state 
vector  

 

This approach can be applied to all the shaping methods described in this 

document. It consists of adding a degree of freedom to the expression of one of the 

functions shaping the state vectors. The idea is that when one varies the value of the 

additional parameter, the time of flight varies, and the problem translates into the 

search for the right value of the parameter that satisfies the time constraint. Due to the 

nonlinear relationship between the time of flight and the shaping parameters, it is 

generally impossible to solve the problem analytically. Here, the Newton iteration for 

the solution of nonlinear equations was used. 
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2.4.2 Augmenting the original time of flight evolution 

 

If the time t is decoupled from the other state variables in Eq.(2.4), instead of 

inserting the additional parameter within the expression of the shaping function, one 

can insert the additional parameter in the definition of t = T s( ) . 

Let us suppose that an initial trajectory, provided by a shaping method, has a time 

profile t = T s( ) . Without loss of generality, one can take T si( ) = 0  and T sf( )  equal 

to the computed time of flight. If fT  is the desired time of flight and Tviol = T sf( )−Tf
is the time of flight violation, one can introduce a function χ  satisfying  

χ s f( )− χ si( ) =1  such that the time profile is Tχ = T −Tviolχ , with T that verifies

( )f fT s Tχ = . The shaping of the time must be such that Tχ is strictly monotonous and 

′Tχ  never becomes 0, otherwise singularities occur when calculating the control law. 

The simplest form that χ  can take is ( ) ( )is s s sχ = − Δ  where f is s sΔ = − , however it 

is often the case that boundary conditions exist on s  and thus on ′Tχ . Therefore, the 

function χ  must satisfy three conditions: 

 

( )
( )
( ) ( )

0;

0;

1

i

f

f i

s

s

s s

χ

χ

χ χ

′ =

′ =

− =

   (2.68) 

 

The last condition can be rewritten as 1dsχ′ =∫ . Eqs. (2.68) can be satisfied by 

choosing a polynomial of degree two for χ  such as ′χ s( ) = −6 s − si( ) s − s f( ) Δs . 

This method for satisfying the time of flight constraints is faster than the use of the 

Newton loop since only two iterations are needed to find the desired trajectory: the 

first iteration computes the time of flight violation Tviol, the second recalculates the 

dynamics with Tχ = T −Tviolχ . 

It should be noted, however, that if this method was applied alone to satisfy the 

time of flight constraints, then undesired phenomena might occur. In fact, the addition 

of −Tviolχ  to the time evolution profile can distort the initial low-thrust character of 

the dynamics, and the resulting control profile can have a high magnitude. The 
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method can also break down in some cases when Tχ = T −Tviolχ  stops being strictly 

monotonous, in which case singularities occur when calculating s =1/ ′t  , moreover 

time can go backwards. These inconvenient behaviours led to the decision to use this 

method only when the Newton loop fails to satisfy the time of flight constraint. When 

both methods break down, then one should try to find a different, more adapted 

expression for χ  on an eventually more case by case basis. 

 

2.5 Test cases 

 

Four mission scenarios were selected to test the shaping methods and the method 

to satisfy the time of flight constraint: a rendezvous mission from the Earth to Mars, 

to the near Earth asteroid 1989ML, to comet Tempel-1 and to Neptune. The orbital 

elements of the four target bodies are listed in Table 2.1. 

Only results for the spherical and the pseudo-equinoctial shaping are provided 

because of the lack of success for finding expressions for the shaping functions in the 

case of the hybrid shaping that result in Δvs low enough to be considered interesting 

in practice. 

Systematic searches were conducted on a wide range of launch windows and times 

of flight, in order to evaluate the overall capacity of the shaping methods to model 

low thrust transfers. The characteristics of the spacecraft and its dynamics are the 

same in all three cases. The spacecraft is represented by a point with a mass of 1000 

kg. It carries a propulsion system with a specific impulse of 3000 s. No limit on the 

achievable thrust magnitude is assumed. The spacecraft is subject only to the 

gravitational pull of a central body (the Sun in all four cases) and to the propulsion 

system. 

 

Table 2.1 Orbital elements of Mars, near Earth asteroid 1989ML, Tempel-1 and Neptune 

 Mars 1989ML Tempel-1 Neptune 
Semi-major axis 1.524 AU 1.272 AU 3.124 AU 30.104 AU 
Eccentricity 0.093 0.137 0.517 0.011 
Inclination 1.850° 4.378° 10.527° 1.768° 
Right ascension 49.557° 104.411° 68.933° 131.794° 
Argument of 
periapsis 286.502° 183.267° 178.926° 265.647° 
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The shapes were implemented in a Matlab code with all computations performed 

on an Intel Core 2 Duo processor running Linux. 

The best shaped solutions were then used as initial guess for the direct trajectory 

analysis tool DITAN. DITAN takes the control profile resulting from the shaping as 

input and transcribes the optimal control problem associated to low-thrust trajectories 

with finite elements in time generated on spectral bases [42]. In this subsection, 

DITAN was run taking as maximum thrust level the peak thrust obtained from the 

shaping approaches, and minimizing the propellant mass, with the aim of assessing 

how close to optimal the Δvs provided by the shaping methods are. Proceeding this 

way for optimising clearly gives a significant advantage when it comes to test how the 

optimiser can be initialised since the initial guess does not violate the constraint on 

maximum thrust. However, not only would it be an arbitrary act to select a maximum 

thrust and see if the shaped trajectories can initialise the optimiser, but also, by 

proceeding in the proposed way, it is a better measure of propellant mass optimality to 

remove the issue of satisfying the peak thrust limit. 

 

2.5.1 Rendezvous with Mars 

 

The launch date ti considered for this mission covers the period between January 

1st 2020 and December 31st 2027 and is discretised with a 15-day time step. This 

window is large enough to contain almost four synodic periods of Mars (2.14 years). 

The time of flight ranges between 500 and 2000 days and is discretised with a 20-day 

time step size. The number of revolutions nr allowed for the transfers is between 1 and 

4. 

 

Table 2.2 Results of each shaping method for the Mars rendezvous mission. 

 Spherical Pseudo-equinoctial 
Percentage of feasible trajectories 100% 89.1% 
Δv of the best trajectory [km/s] 5.74 5.83 
Peak thrust of the shaped trajectory with the best Δv [N] 0.22 0.16 
DITAN optimised Δv [km/s] 5.69 5.68 
Average computational time for shaping a trajectory [s] 0.316 0.238 

 

Trajectories were deemed feasible if the time of flight constraints were satisfied. 

Table 2.2 shows the percentage of feasible trajectories obtained through the 

systematic search for both the spherical and pseudo-equinoctial shaping methods. The 
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Δv of the best solution from each shaping is also presented together with the 

corresponding optimal solution when fed into DITAN. Note that the trajectories with 

the lowest Δv provided by the spherical shaping and by the pseudo-equinoctial 

shaping are different. A limit on the thrust was set when performing the optimisation, 

equal to the peak thrust of the shaped trajectory. Table 2.2 also reports the average 

time required to generate a solution with the shaping approach. Fig. 2.5 represents all 

the feasible solutions with their associated Δv cost. Note how the spherical shape 

provides a wider set of feasible solution with lower Δv. On the other hand both shapes 

identify the same regions in the ti −Tf  space where the transfer requires a high Δv. 

These regions are located towards the lower values of Tf. A periodic pattern can be 

observed in the plots, where the period corresponds to the Earth-Mars synodic period. 

The regions where the Δv is lower than 8 km/s are very similar, however the 

similarities break down when comparing the regions where the Δv is below 7 km/s. 

The differences are even more compelling when considering regions with a Δv lower 

than 6 km/s.  

The two methods capture almost identical minimal Δvs however the basins 

corresponding to the local minima are much flatter for the spherical shaping than the 

pseudo-equinoctial shaping. The exponential evolution of the pseudo-equinoctial 

shaping functions is a good assumption for representing the local minima but when it 

comes to compressing or stretching the range of longitudinal anomalies and 

correspondingly the times of flight, the exponential form is not anymore the best 

representation. In the spherical shaping changing the time of flight has only an effect 

on the coefficients inside the function shaping the radius while the function shaping 

the elevation is only affected by the changing azimuthal angle range, which in the 

case of an Earth-Mars transfer should remain small. 
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a)  

b)  
 

Fig. 2.5 Illustration of the set of combinations of launch date and time of flight for which the 
spherical a) and the pseudo-equinoctial shaping b) found feasible solutions to rendezvous Mars. 
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2.5.2 Rendezvous with Near Earth Asteroid 1989ML 

 

The launch window is the same as for the Mars case and was discretised with the 

same time step. The synodic period of asteroid 1989ML is 3.30 years, thus the launch 

window includes two full synodic periods. The range of the time of flight is between 

100 and 1000 days, and is discretised with a 20-day time step size. The number of 

revolutions nr allowed for the transfers is between 1 and 2. 

 

Table 2.3 Results of each shaping method for the 1989ML rendezvous mission. 

 Spherical Pseudo-equinoctial 
Percentage of feasible trajectories 83.7% 75.5% 
Δv of the best trajectory [km/s] 4.47 4.82 
Peak thrust of the shaped trajectory with the best Δv [N] 0.31 0.33 
DITAN optimised Δv [km/s] 4.21 4.45 
Average computational time for shaping a trajectory [s] 0.316 0.264 

 

Table 2.3 presents the percentage of feasible solutions for both the spherical and 

pseudo-equinoctial shaping. The behaviour of the shaping method is similar to the 

case of the Mars rendezvous mission (see Fig. 2.5). The Δvs are on average lower 

than for the Mars mission, because the semi-major axis of 1989ML is lower. The 

difference in orbital inclination between Mars and 1989ML is only 2.5 degrees and it 

has a weaker impact on the total Δv than a difference of semi-major axis of 0.25 AU. 

The percentage of feasible trajectories is lower than for the Mars mission because the 

second step of the method to satisfy the time of flight results in a singularity, due to 

the behaviour explained in Section 2.4. Indeed, the Newton loop for satisfying the 

time of flight does not converge for the cases where the desired time of flight is very 

low compared to the number of revolutions. The reshaping of the time evolution T 

takes over in that case. However, the value of Tviol is too high causing T’ to tend 

towards 0, and the resulting trajectory is not physical. Fig. 2.6 is a plot of the 

departure dates and times of flight of the feasible trajectories for both shaping 

methods. It can be observed that the spherical shaping always provides at least one 

feasible trajectory if the time of flight is above 300 days. For numbers of revolution 

that are unreasonable compared to the desired time of flight, both shaping methods 

break down.  
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a)  

b)  

Fig. 2.6 Illustration of the set of combinations of launch date and time of flight for which the 
spherical a) and the pseudo-equinoctial b) shaping method found feasible solutions to rendezvous 
1989ML. 

 

The pseudo-equinoctial shaping provides fewer feasible trajectories than the 

spherical shaping, because the shaping parameters do not give enough flexibility to 

change the shapes and attain wide ranges of times of flight. However similar patterns 
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can be observed in the results of both shaping methods, which hints to better suited 

relative configurations between Earth and 1989ML for a low-thrust transfer. The 

patterns show a periodicity equal to the value of the synodic period of the Earth-

1989ML system. 

 

2.5.3 Rendezvous with Comet Tempel-1 

 

Tempel-1 was chosen as a target because it has a very eccentric and relatively 

inclined orbit. McConaghy et al. [43] used this test case for the exponential sinusoid 

shaping. A systematic search was performed on the same launch window proposed by 

McConaghy et al.: between 1 January 2000 and 3 January 2016. The range of the time 

of flight is between 400 and 1500 days, and the number of revolutions nr was set 

between 0 and 2. 

 

Table 2.4 Results of each shaping method for the Tempel-1 rendezvous mission. 

 Spherical Pseudo-
equinoctial 

Percentage of feasible trajectories 68.1% 43.2% 
Δv of the best trajectory [km/s] 11.13 13.44 
Peak thrust of the shaped trajectory with the best Δv [N] 1.40 1.13 
DITAN optimised Δv [km/s] 10.69 10.81 
Average computational time for shaping a trajectory [s] 0.318 0.286 
 

Table 2.4 presents the percentage of feasible solutions for both the spherical and 

pseudo-equinoctial shaping. The behaviour of the two shaping methods is similar to 

the previous two cases; however fewer trajectories are feasible because the Newton 

loop fails to converge more often, although for every launch date at least one feasible 

trajectory exists. McConaghy et al. present the propellant mass fractions resulting 

from the exponential sinusoids. A constant specific impulse of 3000 seconds is used 

to convert the low-thrust Δv from the exponential sinusoid. Using this value for the 

specific impulse, the Δv of 11.13 km/s of the best transfer from the spherical shaping 

converts into a propellant mass fraction of 31.5%. The pseudo-equinoctial’s best Δv of 

13.44 km/s converts into 36.7% of propellant mass fraction. No impulsive Δvs are to 

be taken into account because the boundary constraints on velocity are satisfied. A 

substantial improvement in the best Δv found is obtained compared to McConaghy et 

al. whose best shaped trajectory requires 50% of propellant mass fraction. 
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a)  

b)  

Fig. 2.7 Illustration of the set of combinations of launch date and time of flight for which the 
spherical a) and the pseudo-equinoctial b) shaping method found feasible solutions to rendezvous 
Tempel 1. 

 

Fig. 2.7 illustrates the set of feasible combinations of launch dates and times of 

flight found by the spherical and the pseudo-equinoctial shaping methods. When more 

than one number of revolutions is feasible for a given combination of launch date and 
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time of flight then only the one with the lowest Δv is plotted. Both shaping methods 

identify the same region where the transfer is too costly in Δv. These regions are 

periodically distributed, with the period of Tempel 1. A smaller scale periodicity also 

exists, and corresponds to the Earth’s period (and close to the synodic period of the 

Earth-Tempel 1 system). 

It can be therefore deduced from the plots that the arrival position on Tempel 1’s 

orbit has more impact than the departure position on Earth’s orbit. There is physical 

sense in this observation because the transfer can change substantially if the 

spacecraft arrives at Tempel 1’s perihelion at 1.51 AU or apohelion at 4.74 AU. 

Indeed, in the first case the perihelion is raised first, followed by the apohelion just 

before arrival, and in the second case the order of the two maneuvers is inversed. 

Finally, the results show that the transfers are generally more costly in Δv when the 

time of flight shortens. 

 

2.5.4 Rendezvous with Neptune 

 

In order to test the shaping methods on a wide range of transfer types, a 

rendezvous with Neptune is also studied as test case. Neptune has a semi-major axis 

of 30.1 AU and an orbital period of 164.8 years. One can make initial estimations of 

the orders of magnitude involved in a rendezvous to Neptune by studying the 

Hohmann transfer between two circular orbits representing Earth’s and Neptune’s. 

Straightforward computations provide the characteristics of the Hohmann transfer. 

The transfer ellipse has a semimajor axis of 15.6 AU and eccentricity of 0.94 and the 

transfer time is 30.7 years. The first maneuver at Earth has a Δv of 11.66 km/s and the 

second one at Neptune is of 4.05 km/s, so the total Hohmann transfer requires a Δv of 

15.71 km/s. 

Table 2.5 Results of each shaping method for the Neptune rendezvous mission with no revolution 

 Spherical Pseudo-
equinoctial 

Percentage of feasible trajectories 92.4% 13.6% 
Δv of the best trajectory [km/s] 14.99 50.37 
Peak thrust of the shaped trajectory with the best Δv [N] 1.36 3.25 
DITAN optimised Δv [km/s] 13.34 13.41 
Average computational time for shaping a trajectory [s] 0.321 0.292 
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a)  

b)  

Fig. 2.8 Illustration of the set of combinations of launch date and time of flight for which the 
spherical a) and the pseudo-equinoctial b) shaping method found feasible solutions to rendezvous 
Neptune, without any revolution. 

 

A systematic search was performed over a launch window between January 1st 

2020 and December 31st 2025, discretised at every 15 days. Two scenarios have been 



Chapter 2. Low Thrust Trajectory Shaping 

 64 

addressed: one without heliocentric revolutions and one with 10 revolutions. The 

values of times of flight that were investigated differed between the two cases. For no 

revolutions that set ranged between 11000 and 30000 days (that is 30.1 and 82.1 

years) at 500-day time steps.  For the case of 10 revolutions, the times of flight ranged 

between 40000 and 80000 days, with intervals of 500 days. An initial tangential 

velocity of 3 km/s relative to Earth was set at the departure for the transfers without 

revolutions, while in the other case the initial relative velocity at the Earth is zero. The 

reason for that is to limit the peak thrust of the transfer. Moreover it would also be 

likely that such a mission would be injected directly into an Earth escape trajectory by 

the launcher. 

 

It can be seen from Fig. 2.8 that the two shaping methods provide different results 

when no revolutions are allowed. The spherical shaping produces transfers with 

substantially lower Δvs, with the lowest values of Δv reaching 15 km/s. The results 

have a periodicity of a year, which is the synodical period of the Sun-Earth-Neptune 

system. With the spherical shaping, the lowest Δvs are obtained for transfers between 

13000 days and 20000 days. Shaping the pseudo-equinoctial elements does not 

provide interesting results for two reasons. The first is that the Newton loop does not 

impose the boundary conditions well, the other is that the range of times of flight 

covered by varying the shaping parameter λ1 is limited and the reshaping of the time 

evolution has to be used, which can potentially raise the Δvs by much. 

Much fewer acceptable results are provided by the pseudo-equinoctial shaping 

since the Newton-Raphson iteration on the boundary conditions has more difficulties 

to converge due to the larger effect of the gauge term. This is because the relative 

variation of pseudo-equinoctial elements is high. Moreover the time of flight 

constraint is less often satisfied through Newton-Raphson iteration due to the interval 

of values that would be allowed by the shaping parameters’ variation, and therefore 

the time of flight is satisfied by reshaping the time of flight evolution which increases 

the necessary Δv substantially. 

 

2.5.5 Discussion 

 

Both shaping methods generated a number of feasible solutions for every launch 

date, although the Newton loop failed to converge for a number of times of flight. In 
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particular, the loop did not converge when the flight time is short for the given 

number of revolutions. The cases in which the Newton loop fails correspond to 

trajectories with very high Δvs and as such, are often not interesting in practice. It 

should be noted, however, that due to the imposed shape there is no guarantee that the 

thrust magnitude is close to the optimal one. More importantly, the peak thrust 

recovered from the dynamic equations might be higher than the maximum thrust 

allowed for the transfer. This problem will be addressed in the next chapter of this 

thesis and represents a limitation of the shaping approach, as it does not allow for a 

clear discrimination of the feasibility of a transfer given a specific engine. 

 



CHAPTER 3 IMPROVEMENT OF TRAJECTORIES 

WITH A LINEAR QUADRATIC CONTROLLER 

 

Equation Section (Next) 

This section describes a method to quickly improve the quality of the shaped 

solutions. The assumption behind this approach is that if the shaped solution is not 

locally optimal then one can reasonably expect an optimal solution in a 

neighbourhood of the shaped one. The validity of this assumption will be verified 

theoretically at the end of this section. 

 

3.1 Derivation of the LQ controller  

 

Let one assume that a spacecraft has position r, velocity v and is subject to the 

gravitational pull of a central body with a gravity parameter µ. Additionally the 

spacecraft has an on-board controllable propulsion system that contributes to the 

motion of the spacecraft with an acceleration u. If one defines the state vector x as

x = rT ,vT⎡⎣ ⎤⎦
T

then the equations of motion can be written as 
  
x = A x( ) +Bu , with 

A x( ) = O3,−µr
T r3⎡⎣ ⎤⎦

T
 and B = O3,13[ ]T . The equations of motion are then linearised in 

the neighbourhood of the nominal x0 and u0 within the time interval It. Indicating by 

the subscript l the linearised variable and setting ξ = xl − x0  and ν = ul − u0 , the 

linearised system is: 

 

ξ ti( ) = 0, 0, 0, 0, 0, 0⎡⎣ ⎤⎦
T

ξ = ∇A
x0 t( )

xl − x0 t( )( )+B ul - u0 t( )( ) = ∇A
x0 t( )

ξ +Bυ

⎧

⎨
⎪⎪

⎩
⎪
⎪

  (3.1) 

 

The gradient of A at a point x is expressed as: 

 

3 3

3g

⎡ ⎤
∇ = ⎢ ⎥

⎣ ⎦

O I
A

A O
    (3.2) 
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such that O3 is the nil square matrix of order 3, I3 is the identity matrix of order 3 and 

Ag is written: 

 
2 2

2 2
5

2 2
g

y z xy xz
xy x z yz

r
xz yz x y

µ
⎡ ⎤+ − −
⎢ ⎥= − + −⎢ ⎥
⎢ ⎥− − +⎣ ⎦

A    (3.3) 

 

with r = x, y, z[ ]T . Defining ξ1 = ξT ,1⎡⎣ ⎤⎦
T

, A1 and B1 such that: 

 

 A1 = ∇A,O3×1[ ]    (3.4) 

 

and 

 

B1 = B,−Bu0[ ]    (3.5) 

 

Eq. (3.1) can be rewritten as: 

 

ξ1 ti( ) = 0, 0, 0, 0, 0, 0,1⎡⎣ ⎤⎦
T

ξ1 = A1 t( )ξ1 +B1ul
⎧
⎨
⎪

⎩⎪
    (3.6) 

 

with the control vector denoted by ul  and the augmented state ξ1 = ξT ,1⎡⎣ ⎤⎦
T

 to 

remove u0 from the equations. The desired optimal control has to minimize the 

objective function: 

 

( ) ( ) ( ) 2
1 1 1 1

1
2

T
l f f lI

J t t dt= + ∫u ξ Q ξ u     (3.7) 

 

The minimisation of (3.7) provides the feedback control: 

 

1 1
T

l =u B Eξ      (3.8) 

 

where the matrix E is computed by integrating backwards the Riccati differential 

equation: 
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E t f( ) = −Q1

E = −A1
TE−EA1 −EB1B1

TE,∀t ∈It

⎧
⎨
⎪

⎩⎪
   (3.9) 

 

The first term in the objective function will make ξ1  tend towards 0, which is what 

is required: the perturbations on the trajectory should not affect the boundaries. The 

fact that the last component of ξ1  is always 1 is not an issue because the choice of Q1 

is made such that it does not influence the convergence of the other components of ξ1 

towards 0. The matrix Q1 is defined as: 

 

3

1 3

0 0
0 0 for 0, 0
0 0 0

r

v r v

q
q q q

⎡ ⎤
⎢ ⎥= > >⎢ ⎥
⎢ ⎥⎣ ⎦

I
Q I   (3.10) 

 

where qr is a weight on the final position vector to satisfy the final boundary 

constraint, and qv has the same role but for the velocity. The values for the two 

weights were set to 1 in order to satisfy the boundary conditions at arrival up to a 

relative accuracy of 10-6. Note that minimizing J1  with Eq. (3.6) is the same as 

minimizing ( ) ( ) ( ) 21
2

T
l l f f lI
J t t dt= + ∫u ξ Qξ u with the condition in Eq. (3.1). Q is the 

matrix composed of the block containing the first six rows and six columns inside Q1. 

The optimisation requires the integration of a 7 by 7 matrix differential equation 

backwards in time, followed by the forward integration of the linearised equations of 

motion using the matrix E. The first integration can be made computationally faster 

by noting that E is a symmetric, hence it is sufficient to compute 28 variables instead 

of 49. The numerical propagations, in this paper, were performed with the Matlab 

function ode45, that implements a 4th-5th order Runge-Kutta variable step size 

integrator, with a relative and absolute tolerance of 10-9. 

Once the optimised linearised trajectory x0 +ξ  is computed, the corresponding 

control law needs to be updated since it verifies the linearised equations of motion and 

not the real ones. The real control law corresponding to the physical trajectory is 

calculated from: 

 

    
ureal = rreal +

µ
rreal

3 rreal     (3.11) 
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Note that keeping the linearised control law and calculating the corresponding state 

vectors by propagation would not only be more computationally intensive but would 

not guarantee that the trajectory ends at the target state vector. Finally, the total Δv 

can be calculated by an integration of ureal over It. 

 

3.2 Estimation of the Error on the Control Profile 

 

The accuracy of the linearised solution can be assessed by computing the error 

between ul  and ureal . If x0  and u0  define the reference trajectory, x0 + ξ,ul( )  the 

optimal linearised trajectory and x0 +ξ,ureal( )  the trajectory obtained after 

recomputing ul  with the real dynamics, then one has the equations: 

 

   
x0 = A x0( ) +Bu0     (3.12) 

    
ξ = ∇A

x0

⋅ξ +B ul − u0( )    (3.13) 

    
x0 +
ξ = A x0 +ξ( ) +Bureal    (3.14) 

 

By subtracting Eq. (3.12) and (3.13) from Eq., (3.14) one gets 

 

( ) ( ) ( )
0

0 0l real− = + − −∇ ⋅
x

B u u A x ξ A x A ξ   (3.15) 

 

which can be approximated by:  

 

( ) ( )
0

3T
l real O− = +A x

B u u ξ H ξ ξ    (3.16) 

 

where 
0

A x
H is the Hessian of A at x0 . Because A depends only on the reference 

position r0 , 
0

A x
H also depends on r0 only. If one defines , ,

T

l real x y zu u u⎡ ⎤Δ = − = Δ Δ Δ⎣ ⎦u u u

and rξ  as the first three components of ξ , i.e., the change of position resulting from 

the LQ controller, then Eq. (3.16) can be developed into the system: 
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( )
( )
( )

0

0

0

31

32

33

T
x

T
y

T
z

u O

u O

u O

⎧Δ = +⎪
⎪⎪Δ = +⎨
⎪
⎪Δ = +⎪⎩

r A r r

r A r r

r A r r

ξ H ξ ξ

ξ H ξ ξ

ξ H ξ ξ

r

r

r

    (3.17) 

 

In Eqs. (3.17) one has that all of i
AH depends only on r0  and that ( )40

i O −=AH r . 

The interpretation of these equations is that the error on the control law corresponding 

to the linearised equations of motion depends uniquely on the position of the 

reference trajectory and the perturbations in position. Moreover, when one assumes 

that the perturbations in the position are small, then the error behaves as 4
0

−r , or as 

2
0

−r  if one considers the relative perturbations 0rξ r . Therefore, when the reference 

trajectory approaches the central body, the difference between the control 

corresponding to the real equations of motion and the control computed with the 

linearised equations of motion increases. 

The evolution of  depends on its integration along the nominal trajectory. 

Initially its norm is small since it starts at 0, and upon arrival it also goes to 0 since the 

final state is reached. Therefore what is important is that in the middle of the cruising 

phase the corrected trajectory does not go lower considerably closer to the central 

body than the initial and final position. 

  

3.3 Optimality of the LQ and shaped solutions  

 

In this section, it will be proven that: if the shaped solution is locally optimal, then 

the output from the LQ controller will be equal to the shaped solution. Vice versa, it is 

demonstrated that when the output of the LQ controller is equal to the shaped 

solution, the shaped solution is locally optimal. As will be shown, the latter inference 

is not trivial due to the non-linearity of the dynamical system. 

 Let us define the two mathematical problems: 

 

    

℘l :=

min
ul

Jl ul( )
ξ ti( ) = 0

ξ = fl ξ ,ul( ) = ∇A
x0 t( ) ⋅ξ +B ul − u0( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

  (3.18) 

rξ
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and: 

 

℘:=

min
u
J u( )

x ti( ) = r0 ti( )T , v0 ti( )T⎡
⎣⎢

⎤
⎦⎥
T

x = f x,u( ) = A x( )+Bu

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

   (3.19) 

 

where J has the form: 

 

( ) ( ) ( )( ) ( ) ( )( ) 2
0 0

1
2

T

f f f f I
J t t t t dt= − − + ∫u x x Q x x u   (3.20) 

 

The Hamiltonians corresponding to ℘  and to ℘l  are respectively 2  – / 2H f= p u  

and 2   – / 2l l l lH f= p u . If one calls p* ,   u
* , *

lp  and ul
*  the respective optimal adjoint 

variables and control profiles, then the optimality conditions / 0H∂ ∂ =u  and 

∂Hl / ∂ul =  0  give the control laws: 

 
* * *

* * *

T T T

T T T
l l l

= =

= =
v

v

u B p p
u B p p

    (3.21) 

 

The subscripts r and v denote respectively the first three and the last three 

components of the adjoint vectors. The differential equations governing the optimal 

adjoint variables *p and *
lp  are: 

 

    

p* = −∂H ∂x = −p* ⋅ ∂ f ∂x = −p* ⋅∇A
x*

pl
* = −∂H ∂ξ = −pl

* ⋅ ∂ fl ∂ξ = −pl
* ⋅∇A

x0 t( )
  (3.22) 

 

with the transversality conditions: 

 

( ) ( ) ( )( )
( ) ( )

*
0 0

*
0

T

f f f

T

l f f

t t t

t t

= − −

= −

p x x Q

p Qξ
    (3.23) 
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From the latter, one gets ( ) ( )* *
f l ft t=p p . It is important to note that due to the 

smoothness of A and the expression of the differential equations governing *x , *
lx , 

*p and *
lp , the last four quantities are C∞ on their interval of definition. Therefore, the 

control profiles   u
*  and ul

*  are also C∞ .  

Three lemmas establishing some properties of gA and three propositions on the 

nature of the solutions to problems ℘  and ℘l are now proved.  

Lemma 1: Given the set U = 3 \ 0,0,0( ){ } ,    ∀x ∈U ,∀q ∈3 , ( ) ( )5g
µ⋅ = ∧ ∧A x q x q x
x

. 

Proof:  Let 
   
x = x, y,z⎡⎣ ⎤⎦

T
∈U  and 

    
q = q1,q2 ,q3⎡⎣ ⎤⎦

T
∈3 . From the definition of 

  
Ag , one 

has: 

 

( )
2 2

2 2
5

2 2
g

y z xy xz
xy x z yz
xz yz x y

µ
⎡ ⎤+ − −
⎢ ⎥= − + −⎢ ⎥
⎢ ⎥− − +⎣ ⎦

A x
x

    (3.24) 

 

then: 

 

( )
( )

( )
( )

2 2
1 2 3

2 2
1 2 35

2 2
1 2 3

g

y z q xyq xzq

xyq x z q yzq

xzq yzq x y q

µ
⎛ ⎞+ − −
⎜ ⎟
⎜ ⎟⋅ = − + + −⎜ ⎟
⎜ ⎟⎜ ⎟− − +⎝ ⎠

A x q
x

   (3.25) 

 

and since 

 

( )
( )

( )
( )

2 2
1 2 3

2 3
2 2

3 1 1 2 3

2 21 2
1 2 3

y z q xyq xzqx q z q y
y q x q z xyq x z q yzq
z q y q x xzq yzq x y q

⎛ ⎞+ − −−⎛ ⎞ ⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∧ ∧ = ∧ − = − + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎜ ⎟− − +⎝ ⎠

x q x   (3.26) 

 

then . ■ 

 

Lemma 2: ∀x∈U  and q∈3 \ 0,0,0( ){ } , ( ) 0g ⋅ = ⇔A x q  q and x are collinear. 

Note that x cannot be the null vector. 

( ) ( )5g
µ⋅ = ∧ ∧A x q x q x
x
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Proof:  From Lemma 1, if one has ( ) ( )5 0g µ −⋅ = ∧ ∧ =A x q x x q x , then there exists 

 λ ∈  such that λ∧ =q x x . Taking the dot product of both sides with x in the latter 

equation and remembering that 0≠x , one gets 0λ = . Thus q and x are collinear. 

Reciprocally, if q is collinear with x, then ( ) 0g ⋅ =A x q . ■ 

 

Lemma 3: Let    x,y ∈U . The matrix ( ) ( )g g−A x A y  has maximum rank if and only 

if x ≠ ±y . 

Proof: Let , U∈x y  such that ≠ ±x y , and    q ∈3  such that Ag x( ) ⋅q=Ag y( ) ⋅q , 

then if x  and y  are the Euclidian norms of x and y respectively, one has: 

 

( ) ( )5 5∧ ∧ = ∧ ∧x q x x y q y y    (3.27) 

 

Expanding and rearranging this expression to isolate q, one obtains: 

 

3 3 5 5
1 1⎛ ⎞ ⋅ ⋅⎜ ⎟− = −

⎜ ⎟⎝ ⎠

x q y qq x y
x y x y

    (3.28) 

 

If =x y , then Eq.(3.28) yields ( ) ( )⋅ = ⋅x q x y q y  therefore = ±x y , which goes 

against our initial assumption. Therefore ≠x y  and then Eq. (3.28) results in 

+α β= q qq x y  with, 

 
1 1

3 3 5 3 3 5
1 1 1 1α β

− −
⎛ ⎞ ⎛ ⎞⋅ ⋅⎜ ⎟ ⎜ ⎟= − = −
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

q q
x q y q

x y x x y y
  (3.29) 

 

Inserting the expression for q into Eq. (3.27) one has, after rearranging the terms: 

 

βq
x
5 x -

αq

y
5 y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
∧ x ∧ y( ) = 0     (3.30) 

 

From Eq. (3.27) it can be obtained that if x and y are collinear then =x y . 

Hence x and y are not collinear, i.e., 0∧ ≠x y . This means that q lies in the plane 
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generated by x and y. Eq.(3.30) results in βq x
−5
x -αq y

−5
y=0 , thus 0α β= =q q  and 

0⋅ = ⋅ =x q y q which implies 0=q . Therefore the endomorphism ( ) ( )g g−A x A y  is 

injective and hence invertible, and its rank is 3. 

Conversely, it can be checked that if = ±x y , then ( ) ( )g g=A x A y  and ( ) ( )g g−A x A y  

does not have maximum rank.  ■ 

 

Proposition 1: Let *u  (respectively *
lu ) be a solution of the optimisation problem 

℘  (resp. l℘ ). Then     p
*T = − u*T u*T κ⎡

⎣
⎤
⎦

T

 (resp. 
    
pl

*T = − ul
*T ul

*T κ l
⎡
⎣⎢

⎤
⎦⎥

T

), where κ  

(resp. lκ  ) is a scalar function, and *u  (resp. *
lu ) satisfies the differential equations: 

 

    

u* + Ag x0 + ξ( ) t( )( )u* = 0

ul
* + Ag x0 t( )( )ul

* = 0
    (3.31) 

 

Proof:  From the optimality conditions, one has the expressions * *
1
T T=u B p  and 

* *
1
T T

l l=u B p . Developing these expressions, the control vectors correspond to the fourth 

to sixth components of the adjoint variables. Moreover, since 
    
p*T = −A1

T x0 + ξ( ) t( )( )p*T  

and 
    
pl

*T = −A1
T x0 t( )( )pl

*T , one gets 
    
u* = B1

T p*T = −B1
T A1

T x0 + ξ( ) t( )( )p*T  and 

    
ul

* = B1
T pl

*T = −B1
T A1

T x0 t( )( )pl
*T . By developing the expressions of 1

TA  and 1
TB , one finds 

that the first three components of the adjoint variables correspond to the opposite of 

the derivative of the controls. So one can write     p
*T = − u*T u*T κ⎡

⎣
⎤
⎦

T

 and 

    
pl

*T = − ul
*T ul

*T κ l
⎡
⎣⎢

⎤
⎦⎥

T

. From the expressions of the derivatives of the adjoint 

variables, one obtains: 

 

    

p*T =
−u*

u*

κ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= −A1

T x0 + ξ( ) t( )( )
− u*

u*

κ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

−Ag x0 + ξ( ) t( )( )u*

u*

u0
T u*

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (3.32) 

    

pl
*T =

−ul
*

ul
*

κ l

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= −A1
T x0 t( )( )

− ul
*

ul
*

κ l

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

−Ag x0 t( )( )ul
*

ul
*

u0
T ul

*

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  (3.33) 
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The differential equations satisfied by the components of *u and *
lu  are the first 

three components in Eqs. (3.32) and (3.33). ■ 

 

Proposition 2: Let *u  (respectively *
lu ) be a solution of the optimisation problem 

℘  (resp. l℘ ). Let 
   
It = t1 t2( )⊂   be an open interval of time. Let us assume that 

the angular momentum along the trajectory corresponding to *u  (resp. u0 ) is never 

zero. If * 0=rp  (resp. * 0l =rp ) on It, then * 0=u  (resp. * 0l =u ) on It. 

Proof:  From proposition 1, * 0=rp  (resp. * 0l =rp ) on It implies that    u
* = 0  (resp. 

ul
* = 0 ) on It, and thus    u

* = 0  (resp.     ul
* = 0 ) on It. From the differential equations 

provided by Proposition 1, one obtains ( )( )( ) *
0 0g t+ =A x uξ  (resp. ( )( ) *

0 0g lt =A x u ). Thus, 

according to Lemma 2, there exists a scalar function λ on It, such that ( )*
0λ= +r ru x ξ

(resp. *
0l λ= ru x ). λ  is continuously differentiable because 0 +r rx ξ  (resp. 0rx ) is 

continuously differentiable. From this, one obtains the differential equation 

   
λ xr0 + ξr( ) + λ xr0 +

ξr( ) = 0  (resp. 
   
λxr0 + λ xr0 = 0 ). Because the trajectories are always 

assumed to have angular momentum bounded away from zero, one gets 0λ =  and 

  
λ = 0  and thus * 0=u  (resp. * 0l =u ) on It. Due to the continuous nature of the optimal 

thrust profiles, the latter result is valid on 1 2tI t t= ⎡ ⎤⎣ ⎦. ■ 

 

Proposition 3: Let *u  be a solution of ℘ and *
lu a solution of l℘ . Let us assume 

that the angular momentum of the initial trajectory x0 never cancels. If * *
l=u u  then 

there are three regimes in which the trajectory can evolve: 

1. x* = x0  

2. x* = −x0  

3. u* = ul* = 0 , i.e. the optimal trajectories are coast arcs. 

Moreover, the optimal trajectories cannot switch between regimes 1 and 2 without 

passing through regime 3 on an open interval of time ( )1 2t t , and switching between 

regime 1 and regime 3 can only happen if 0 0=u  at the boundary. 
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Proof:  From Eqs. (3.21), if * *
l=u u then * *

l=v vp p and 
    
pv

* = plv
* . Furthermore, 

   
pv

* = −pr
*  

and     
plv

* = −plr
* implies * *

l=r rp p , thus * *
l=p p . From Eqs.(3.22) one gets 

( )*
0

* 0l ⋅ ∇ −∇ =
x x

p A A  therefore ( ) ( )( )* *
0 0l g g⋅ − =rp A x A x . According to Lemma 3, 

( ) ( )( )*
0g g−A x A x  has full rank as long as *

0≠ ±x x , therefore, there exists three regimes 

in which the trajectory can evolve: *
0=x x , *

0= −x x or * 0l =rp . Proposition 2 can be 

applied for regime 3 because the angular momentum of the initial trajectory x0 is 

assumed to never cancel. If * 0l =rp  on an interval of time ( )1 2t t , then u* = ul* = 0  on 

( )1 2t t , i.e. the optimal trajectories are coast arcs.  

The trajectory cannot switch between regime 1 and regime 2 directly because the 

trajectory is continuous. Therefore, regimes 1 and 2 can switch only if regime 3 takes 

place between the two. However, in that case, the system has to be in regime 3 on an 

interval of time ( )1 2t t  and not for an isolated instant of time t0, because otherwise, 

due to the continuity of the trajectory, the system would bounce back to the regime 

leading up to regime 3. There is a condition when the system can swap between 

regime 1 and regime 3 on an interval of time ( )1 2t t  since at the boundary between 

regime 1 and regime 3 0=ξ  and ξ = 0 , from Eq. (3.1) one obtains that *
0l =u u  at the 

switching point, otherwise the velocity profile would not be continuous. Finally, 

because when the system is in regime 3 on ( )1 2tI t t= , u* = ul* = 0  on I, by continuity 

on the controls are zero on the closure of I, i.e. on 1 2tI t t= ⎡ ⎤⎣ ⎦, and finally one obtains 

that at the boundary between regimes 1 and 3, 0 0=u . ■ 

Theorem: Let u*  be a solution of ℘  and ul
*  a solution of ℘l , then 

u* = u0 ⇒ u* = ul
* . Furthermore, if u0 ≠ 0  along the whole trajectory and the angular 

momentum of the reference trajectory x0 is never zero, then u* = ul
* ⇒ u* = u0 . 

Proof:  The first inference is proven first. If u* = u0 , then x* = x0  and the equations 

governing p*  and p*l  are identical, thus p* = pl
*  and u* = ul

* . Note that to establish 

this inference, no particular property of ∇A  is required. 

The proof of the reciprocal inference requires special properties of the dynamical 

systems, and therefore of the gravity field. This inference is a corollary of Proposition 

3. Because the starting points of the trajectories are fixed at ( ) ( ) ( )* *
0i l i it t t= =x x x , the 

optimised trajectories start in regime 1 and since 0 0≠u  along the whole trajectory, the 
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system remains in the same regime all the time. Therefore, x* = x0  and u* = u0  along 

the whole trajectory.  ■ 

From this result one could argue that if the LQ controller does not modify the 

reference trajectory, then the reference trajectory is locally optimal, on the other hand, 

little can be said if the control *
lu is worse than 0u . 

 

3.4 Application of the LQ Controller 

 

The LQ controller is applied to the improvement of the solutions to the four 

mission test cases presented in Section 2.5. Only those transfers that do not pass 

inside Venus’s orbit were retained in order to keep the error due to linearisation small. 

The reason for this comes from the considerations in subsection 3.3 which sets a limit 

of validity of the linearisation involved in the LQ controller. Fig. 3.1 to Fig. 3.3 show 

the improvement of the L2 norm of the control profiles 
21

2 I

dt∫ u
 
between the shaped 

trajectories and the corresponding LQ controlled trajectories. 

Fig. 3.5 to Fig. 3.10 are examples of thrust profiles corresponding to the shaped 

trajectories, the LQ controlled trajectories and the DITAN re-optimised trajectories, 

for all three rendezvous missions. The figures illustrate well how the control profiles 

improve at each step. 

There are cases where there is no improvement of the L2 norm of the control. This 

happens when the trajectory is too close to the central body, i.e. inside Venus’s orbit, 

in which case the control corresponding to the real equations of motion diverges from 

the optimal control of the linearised equations of motion, as described in technical 

terms in Section 3.2. Otherwise, the LQ controller has the tendency to reduce the 

control magnitude because a better L2 norm of the control translates, in general, to 

lower peak controls. Indeed, when a function is squared, the peaks become more 

prominent and it becomes more effective to reduce these peaks. Applying the LQ 

controller to shaped trajectories can therefore reduce the risk of discarding some 

mission scenarios due to the high magnitude of the peak thrust. 
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a)  

b)  

Fig. 3.1: Comparison between the L2 norms of the controls of the spherical and pseudo-
equinoctial shaped transfers and the corresponding LQ-controlled improvement for the Mars 
rendezvous mission. a) Spherical shaping b) Pseudo-equinoctial shaping 
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a)  

b)  

Fig. 3.2: Comparison between the L2 norms of the controls of the spherical and pseudo-
equinoctial shaped transfers and the corresponding LQ-controlled improvement for the 1989ML 
rendezvous mission. a) Spherical shaping b) Pseudo-equinoctial shaping 
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a)  

b)  

Fig. 3.3: Comparison between the L2 norms of the controls of the spherical and pseudo-
equinoctial shaped transfers and the corresponding LQ-controlled improvement for the Tempel 
1 rendezvous mission. a) Spherical shaping b) Pseudo-equinoctial shaping 
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Fig. 3.4: Comparison between the L2 norms of the controls of the spherical and pseudo-
equinoctial shaped transfers and the corresponding LQ-controlled improvement for the Neptune 
rendezvous mission, without revolutions. 
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a)  

b)  

Fig. 3.5: Rendezvous mission to Mars. Comparison between spherical shaped solution, LQ 
optimised solution and DITAN optimised solution: a) control profile, b) trajectory. 
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a)  

b)  

Fig. 3.6: Rendezvous mission to Mars. Comparison between pseudo-equinoctial shaped solution, 
LQ optimised solution and DITAN optimised solution: a) control profile, b) trajectory. 
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a)  

b)  

Fig. 3.7: Rendezvous mission to asteroid 1989ML. Comparison between spherical shaped 
solution, LQ optimised solution and DITAN optimised solution: a) control profile, b) trajectory. 
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a)  

b)  

Fig. 3.8: Rendezvous mission to asteroid 1989ML. Comparison between pseudo-equinoctial 
shaped solution, LQ optimised solution and DITAN optimised solution: a) control profile, b) 
trajectory. 
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a)  

b)  

Fig. 3.9: Rendezvous mission to Tempel 1. Comparison between spherical shaped solution, LQ 
optimised solution and DITAN optimised solution: a) control profile, b) trajectory. 
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a)  

b)  

Fig. 3.10: Rendezvous mission to Tempel 1. Comparison between pseudo-equinoctial shaped 
solution, LQ optimised solution and DITAN optimised solution: a) control profile, b) trajectory. 
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a)  

b)  
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c)  

Fig. 3.11: Rendezvous mission to Neptune, with an initial tangential relative velocity of 3 km/s. 
Comparison between spherical shaped solution, LQ optimized solution and DITAN optimized 
solution: a) first part of control profile, b) second part of control profile, c) trajectory. 

 

Fig. 3.11 illustrates the thrust profiles and the trajectories corresponding to a 

typical rendezvous transfer to Neptune. The plots include the results from the 

spherical shaping, the LQ controller and DITAN for minimal L2 norm of the thrust 

and minimal propellant mass. The figures show that the results from the shaping are 

closer to the ones of the optimal propellant mass trajectory than to the others. The 

thrust profile of the shaped trajectory is close to being bang-off-bang and the optimal 

propellant mass trajectory is very similar. However a maneuver is added towards the 

end of the transfer for a plane change since it is more efficient to perform that 

maneuver far from the Sun. Note that the bang-off-bang thrust profiles from DITAN 

would be more pronounced with a higher grid density. 

 

3.5 Computational times 

 

Table 3.1 summarizes the computational times required by each tool used in the 

present study. The shaping methods require a fraction of a second, depending on the 

number of times the trajectory is recomputed within the Newton loop in order to 

satisfy the time of flight constraints. The computational effort required by the LQ 
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controller is generally one order of magnitude higher, i.e. seconds, than the 

trajectories generated by shaping. The calculation time depends on the length of the 

trajectory, and the tolerances used to integrate the Riccati differential equation and the 

equations of motion. This time also depends on how many points are used to define 

the reference; the more points provided along the trajectory, the more time the 

interpolations require for the integrators to calculate each step. The speed of 

convergence of the low thrust optimizer DITAN generally depends on the initial 

thrust profile, and varies between 20 and 100 seconds. A better initial guess, i.e. 

smaller initial constraint violations and proximity to the optimal solution, will 

generally reduce the number of iterations and therefore the computational time. All 

times are compute 

The shaping approach is mainly affected by the time step used for computing the 

position and the control as well as to integrate the control to obtain the Δv. The time 

depends linearly on this step size. The LQ controller also depends linearly on the time 

step used for the nominal reference trajectory. The DITAN optimiser requires roughly 

an order of magnitude more time to converge when the tolerances on optimality and 

feasibility are reduced by an order of magnitude. The processors used were AMD 

Athlon(tm) 64 Processor 3500+ at 3 GHz running OpenSUSE 11. 

 

Table 3.1: Computational effort required by the different trajectory generating and improving 
tools used in this study. 

 Computational time [s] 
Shaping methods ~ 0.1 – 0.3 
LQ controller ~ 2 – 6 
DITAN optimizer ~ 20 – 100 

 

 



CHAPTER 4 INCREMENTAL PRUNING FOR LTMGA 

MISSIONS 

 

Equation Section (Next) 

Incremental pruning is a technique first proposed by Becerra et al. [33] for finding 

globally optimum multiple gravity-assist trajectories. The idea is that if one can 

construct the legs of the MGA transfers independently, then it is possible to prune out 

whole sets of transfers if one of the legs does not satisfy some required criteria. 

Constructing and assessing legs one after the other prunes the space of acceptable 

transfers incrementally. Once the final pruned search space for the full problem is 

obtained, a global optimisation can be performed on it. It has been shown that 

applying such a pruning can increase the chance of finding the most promising 

trajectories. 

The issue arising when trying to eliminate the manoeuvre at a swing-by is that 

successive legs cannot be computed independently, because the outgoing relative 

velocity at a gravity assist must always be reachable with any incoming relative 

velocity computed for the previous leg, while assuming that the pericenter is at an 

altitude above a prescribed value. For example, a necessary condition for linking two 

relative velocities at a planet by assuming a non-powered swing-by is that the 

magnitudes of both must be equal. 

The Gravity Assist Space Pruning (GASP) algorithm [33] has therefore been 

modified such that pairs of successive legs are independent instead of individual legs. 

The low-thrust trajectory model is such that given a departure and arrival date 

between two successive planets, all the legs arrive with the same velocity, but can 

depart with different velocities depending on the arrival velocity of the previous leg. 

The latter property ensures that the pairs of successive legs are independent of the 

pairs of legs of the previous step. 

For the first leg, only Lambert arcs are considered. For each additional leg i, 

linking planet i to planet i+1, the Lambert arcs are first computed, and the initial 

relative velocity is compared with the previous leg’s (leg i-1) arrival relative velocity. 

If the two can be matched, then the Lambert arc is kept, otherwise the initial relative 

velocity is modified such that no impulse is required at the gravity assist. The leg i is 

then recomputed with a low-thrust trajectory model which can accommodate the new 

boundary constraints on velocity. Hence with this approach the departure date ti-1 of 
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leg i-1 defines the incoming relative velocity at the swing-by at date ti, which can 

influence the outgoing relative velocity, while the arrival date ti+1 defines the arrival 

velocity alone. 

The model used to compute the outgoing relative velocity from a gravity assist is 

explained first, followed by the description of the complete LTMGA trajectory 

design. 

 

4.1 GASP 

 

As introduced by Becerra et al. in their code called GASP, the pruning relies on a 

systematic search on the discretized search space. The problem is formulated in such a 

way that the different legs can be constructed independently, but can also be linked 

together to form complete MGA trajectories. In the initial form of pruning, the legs 

are Lambert arcs linked together by powered swing-bys. The search space consists of 

a grid of departure dates, encounter dates for the gravity assist and arrival dates. All 

the possible Lambert arcs are constructed for the first leg and a pruning of the 

departure and first gravity-assist dates is performed, based on the magnitude of the 

initial relative velocity. If there are launch dates for which no Lambert arc is 

acceptable, then that launch date is pruned out for the problem. In a similar manner, if 

no Lambert arc is acceptable for a given date for the first gravity-assist, then that date 

is not considered as starting date for the second leg. In the next step, all possible 

second legs are constructed except for the dates of first gravity-assist that were pruned 

out in the previous step. Criteria to prune out the initial and final dates of the second 

leg are based on the maximum thrust constraints and angular constraints on the 

incoming and outgoing relative velocities at the first gravity assist. 

The following legs are constructed and pruned out similarly to the second leg. A 

constraint on the relative arrival velocity is imposed during the pruning of the final 

leg’s departure and arrival dates. 

After the computation of all the legs and the pruning of departure, gravity assist 

and arrival dates, an additional forward and backward pruning is performed on the 

complete space, based on the consideration that if no Lambert arc arrives on a given 

date for a gravity assist, then that date is not considered as departure date for the next 
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leg, and if no Lambert arc can depart on a given date, then all Lambert arcs of the 

previous leg and arriving on that date are pruned out. 

Once the grid space of the complete problem is pruned, one recovers the 

acceptable combinations of intervals for the initial and arrival dates of each leg. One 

obtains hence so-called boxes, and a global optimization is performed on each one of 

them. Becerra et al., for instance, applied differential evolution. 

The algorithms that make up GASP have been used with trajectory models that are 

more complex than simple Lambert arcs. GASP has been tested successfully when a 

deep space maneuver (DSM) is inserted in each leg [43]. DSMs increase the 

flexibility to design each leg and represent more realistic missions, to the expense of 

an increased dimension for the search space. The objective in that case is to minimize 

the sum of the DSMs’ Δv and the gravity assists’ Δv. Schütze et al. applied GASP 

with exponential sinusoids [34][44] as trajectory models for the problem of 

optimizing low thrust MGA transfers. The inconvenience with the latter approach, 

however, is that one needs to employ powered swing-bys represented by impulsive 

Δvs, which would suggest both a chemical and a low-thrust propulsion system on 

board the spacecraft. This constraint is addressed in this paper, by eliminating the 

need of an impulsive maneuver at the swing-by. 

 

4.2 Gravity assist model 

 

Most often the outgoing relative velocity ( )1
,
i
i rel
+v  at the beginning of a given leg i+1 

cannot be matched with the incoming one ( )
,
i
f relv , obtained from the previous leg i, 

while imposing a minimum pericenter altitude. If that happens, a transformation is 

applied to the outgoing relative velocity. The new relative outgoing velocity ( )1
,
i
i rel

+′v  is 

computed such that ( ) ( )1 1
, ,
i i
i rel i rel

+ +′ −v v  is minimal, while constraining it to be attainable with 

an unpowered swing-by.  

It can be first observed that the vector ( )1
,
i
i rel

+′v  with such a property is always in the 

plane P defined by ( )
,
i
f relv  and ( )1

,
i
i rel
+v . The case of ( ) ( )1

, ,
i i
f rel i rel

+=v v  is rare and corresponds to 

legs i and i+1 that can be matched by a non-powered swing-by with a very high 

altitude in practice, i.e. no flyby. The case of ( ) ( )1
, ,
i i
f rel i rel

+= −v v  is also very rare and the 
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satellite goes through the planet in that case. If it happens ( )1
,
i
i rel

+′v  is in the plane P 

defined by ( )
,
i
f relv  and ( )itr . 

The angle δ  between ( )
,
i
f relv  and ( )1

,
i
i rel
+v  is computed, and if it is greater than the 

maximum deflection angle maxδ  allowed by the gravity assist, defined by [40]: 

 

max 2( )
,min ,

12arcsin

1
i

p f relr
=

+
v

δ

µ  
 

then ( )1
,
i
i rel

+′v  is defined such that its angle with ( )
,
i
f relv  is maxδ . If the line carrying ( )

,
i
f relv  

separates the plane P in two, ( )1
,
i
i rel

+′v  points towards the same half-plane as ( )1
,
i
i rel
+v . ( )1

,
i
i rel

+′v  is 

then fully defined by assigning it the same magnitude as ( )
,
i
f relv . Fig. 4.1 illustrates this 

transformation. If max≤δ δ  then only the magnitude of ( )1
,
i
i rel
+v  is adjusted to ( )

,
i
f relv , if at all 

necessary. 

 

 

 

Fig. 4.1: Illustration of the transformation applied to the initial relative velocity of leg i+1 if it 
cannot be obtained by a non-powered gravity-assist with incoming relative velocity ( )

,
i
f relv . 

 

4.3 Description of the adapted incremental pruning 

 

The inputs to the problem are the sequence of N planets to be encountered, 

including the departure one, the launch window W and the range of times of flight 

( )1 1i i N
T

≤ ≤ −
 allowed for each leg of the transfer. The total search space is therefore 

   I =W ×T1 ××TN−1 . One constructs recursively N sets ( )1i i N
I

≤ ≤
 starting from 1I W= . 1iI +  is 

 
 

 

δ 
δmax 
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the set of possible encounter dates of planet i+1 such that the spacecraft can leave 

planet i at any date whose value is in iI  and flies leg i in a time whose value is in iT . 

The induction defining Ii can be written with sets as: 

 

1

1i i i

I W
I I T+

=
= +

   (4.1) 

 

therefore 

 

1

1

min min min
max max max

i i i

i i i

I I T
I I T
+

+

= +
= +

   (4.2) 

 

Subtracting the first equation in (4.2) from the second one yields: 

 

max Ii+1 −min Ii+1 = max Ii −min Ii +maxTi −minTi
ΔIi+1 = ΔIi + ΔTi

   (4.3) 

 

and then, from the induction formula (4.3) on the amplitude of Ii, one gets: 

 
1

1
1

i

i k
k

I I T
−

=

= +∑Δ Δ Δ    (4.4) 

 

This means that the amplitude of iI  grows with i. One also provides a set of N 

integers 
   

k1,…,kN{ } strictly greater than 1, representing the number of points of the grid 

that discretizes each Ii. The discretised Ii are denoted d
iI . The spacing between 

consecutive dates in d
iI  is: 

 

τ i =
ΔIi
ki −1

=
ΔI1 + ΔTk

k=1

i−1

∑
ki −1

   (4.5) 

 

The pruning then acts on the sets of dates ( )
1

d
i i N
I

≤ ≤
. Since the amplitude of iI  grows 

with i, one would be tempted to augment the number of discretisation points ik  for 

maintaining iτ  stable, however it is not always necessary. The value of iτ  should 

generally be compared to the orbital period of planet i because if their ratio is not low 

enough the possible positions of the planet upon arrival are not well sampled. 
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Minimum pericenter radii have to be specified for each gravity-assist as well as the 

number of complete revolutions for each leg. One can then specify varied pruning 

criteria. These can be upper limits on the magnitude of launch and arrival relative 

velocities, maximum values of Δv for each leg or maximum thrust magnitude. Further 

constraints can be on avoidance of conjunction with the Earth during the gravity 

assist. 

The pruning algorithm starts by generating all possible first legs. Three Lambert 

arcs are computed for each element of 1 2
d dI I× , one with no revolution, and two with 

one revolution (the long arc and the short arc). Out of the three Lambert arcs, only the 

one whose initial relative velocity is lowest is retained. If one of the Lambert arcs has 

a zero initial relative velocity, which can happen if the first gravity assist planet is 

identical to the launch planet, then that Lambert arc is discarded. The retained 

Lambert arc is then assessed for its launch velocity and the element in 1 2
d dI I×  to which 

it corresponds is either validated or invalidated. At the end of this step, a set of valid 

points in 1 2
d dI I×  is obtained. This set can be denoted 1

dV . Thus 1 1 2
d d dV I I⊂ ×  .If there are 

dates in 1
dI  or in 2

dI  for which all Lambert arcs were pruned out, i.e. there are lines or 

columns in 1 2
d dI I×  full with invalid transfers, then those dates will not be present in 1

dV  

and the number of rows or columns of 1
dV  will be reduced accordingly. The set of 

departure and arrival dates for which a valid Lambert arc exists is noted respectively 

( )1 1
d dV I  and ( )1 2

d dV I  respectively, they are the projections of 1
dV  onto 1

dI  and 2
dI  

respectively. 

For the second leg, five Lambert arcs are generated for each element of ( )1 2 3
d d dV I I× : 

one for zero revolutions and the short and long arc for both the one revolution case 

and the two revolutions case. The retained Lambert arc is the one for which the 

difference between departure velocity and arrival velocity of the previous leg is 

smallest but non-zero. The retained Lambert arc therefore depends on the arrival 

velocity of the first leg’s Lambert arc, so one ends up with a new Lambert arc for 

every element of ( ) ( )1 1 1 2 3
d d d d dV I V I I× × . For each of them, the initial relative velocity ( )2

,i relv  

is compared to the incoming arrival relative velocity vector ( )1
,f relv  of the first leg and, if 

necessary, ( )2
,i rel′v  is constructed with the procedure described in subsection 4.2. Then a 

shaped trajectory is generated to replace the Lambert arc, such that the initial relative 

velocity is ( )2
,i rel′v  instead of the Lambert arc’s ( )2

,i relv . All other boundary conditions are 
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kept the same. Because of the nature of the trajectory model, the shaping method 

covers the Keplerian arc and is continuous with respect to the boundary constraints, so 

the closer ( )2
,i rel′v  is to ( )2

,i relv , the closer the shaped trajectory will be to the Lambert arc. It 

is important to notice that generating the second leg this way retains the arrival 

velocity of the Lambert arc at the end of the leg, so the arrival velocity of the second 

leg does not depend on the first leg. However the initial velocity does, so second legs 

are fully defined by providing a triplet of dates that are in ( ) ( )1 1 1 2 3
d d d d dV I V I I× × . Hence 

the application that assigns the transfer arc of the second leg to a triplet of dates in 

( ) ( )1 1 1 2 3
d d d d dV I V I I× ×  is surjective. 

If ( )2
,i relv  can never be matched with ( )1

,f relv , one would end up computing a new 

shaped trajectory for every element of ( ) ( )1 1 1 2 3
d d d d dV I V I I× × . Each shaped trajectory is 

assessed against predefined criteria such as the highest allowed Δv for the leg, 

resulting in elements of ( ) ( )1 1 1 2 3
d d d d dV I V I I× ×  being either retained or marked invalid. A 

first pruning, called backward pruning, is then performed, on the basis that if 

( )0 1 2
d dt V I∈  all possible second legs departing on ( )0 1 2

d dt V I∈ , i.e. legs corresponding to 

dates in 
  
V1

d I1
d( )× t0{ }× I3

d , are invalid, then that date is pruned out for the rest of the 

computations and all corresponding elements in 1
dV  are marked invalid. In an 

analogous way, a forward pruning is performed: if all possible first legs arriving on a 

given date in ( )1 2
d dV I  are invalid, then that date is pruned out. The same check is 

performed on arrival dates for the second leg in 3
dI . The sequence of backward and 

forward prunings results in a new set of valid triplets of dates ( ) ( )2 1 1 1 2 3
d d d d d dV V I V I I⊂ × × . 

The individual encounter dates for which valid second legs exist are therefore the 

projection of 2
dV  onto 1

dI , 2
dI  and 3

dI . These can be written ( )2 1
d dV I , ( )2 2

d dV I  and ( )2 3
d dV I  

respectively. Note that ( ) ( )2 1 1 1
d d d dV I V I⊂ , ( ) ( )2 2 1 2

d d d dV I V I⊂  and ( ) ( )2 3 1 3
d d d dV I V I⊂ . If the 

inclusions are strict, then encounter dates can be pruned out for the remainder of the 

algorithm. 

The trajectories of the following legs are generated and assessed in the same way 

as those of the second one. A number of departure and arrival dates can then be 

potentially marked invalid. The effect of this on the rest of the trajectory is propagated 

by backward and forward pruning. From the way the method is built, legs are 

decoupled in pairs, instead of individually like in GASP. Indeed, by construction, for 
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any leg j+1, the arrival velocity does not depend on leg j. Moreover, the initial 

velocity of leg j+1 depends on the arrival velocity of leg j, which, from the previous 

property, does not depend on leg j-1. Therefore, in order to construct leg j+1, one 

only needs information from leg j that does not depend on previous legs. Hence pairs 

of consecutive legs are decoupled in the proposed method. 

The last leg is treated differently if the objective is to rendezvous with the final 

celestial body. Indeed, in that case, the Lambert arc is generally not a good initial 

guess for that leg, because the arrival velocity can be far from the target body’s 

velocity. In that case, a shaped trajectory is generated instead of the Lambert arc, 

where the initial velocity is unconstrained, and the final velocity is that of the planet. 

The coefficients a4, a6 and b3 are set to zero in the expressions of R and Φ in (2.51). If 

the mission objective is not to rendezvous with the target body, then Lambert arcs are 

generated for the last leg and a further pruning is performed based on the highest 

acceptable relative velocity upon arrival. 

At this point, one has to analyse the distribution of the dates defining the 

acceptable pairs of consecutive legs. An acceptable pair of legs ( ), 1j j +  will be 

defined by a triplet of dates ( )1 2, ,j j jt t t+ + . The set of all valid triplets, after backward and 

forward pruning, form 1
d
jV + . One can then proceed to construct the new continuous 

search spaces from the pruned discrete ones. For this, the connected components 

inside every 1
d
jV +  are identified and boxes ( )

1
p
jBV +  are created around each one of them. 

Finally, hyperboxes ( )mBV I⊂  are identified such that an element ( ) ( )
1 ...

m
Nt t BV∈  has 

each of its components jt  belonging to one of the ( )p
jBV  and ( )

1
q
jBV + : 

 

   

t1…tN( )∈BV m( ) ⇔

∃p, t1 ∈BV1
p( )

∀j ∈ 2; N −1



, ∃ p ,q( ), t j ∈BVj−1

p( ) ∩ BVj
q( )

∃p, tN ∈BVN−1
p( )

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 

 

The hyperboxes ( )mBV  are disconnected subsets of I, and one of them is expected to 

contain the global optimum. However, due to the discretised approach to the pruning, 

this is not necessarily the case, even though the probability for that can be raised. 

One can apply a global optimisation algorithm on each hyperbox. In this study, the 

differential evolution algorithm devec3 of Matlab was employed. When applying it, 
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the LQ controller was called after the shaping for the last leg in order to improve the 

rendezvous with the destination planet.  

Finally, the best trajectories were locally optimised with the low thrust trajectory 

optimizer called DITAN. DITAN transcribes the optimal control problem into finite 

elements in time and uses collocation. The objective was to maximize the final mass 

at arrival and a constraint was set for the maximum thrust to be the value of the 

maximum thrust of the shaped trajectory used as initial guess. 

 

4.4 Computational effort 

 

During the pruning, the part that takes by far the most time is the generation of the 

shaped trajectory. The computational effort for a Lambert arc is negligible compared 

to it. The trajectory shaping is called from the second leg onward. If one discretizes 

the initial and arrival dates of the leg into k points, as well as the previous leg’s initial 

dates, then the shapes are called potentially k3 times. This is the case for all the legs 

except the first and the last, which adds up to ( ) 31N k−  calls to the shaping. In the final 

leg there are up to two calls to the trajectory shaping for each node, adding up to 38k  

calls. So in total, the shaping is called at most ( ) 37N k+  times. The latter formula 

provides the number of times the shaping is called if no pruning is applied and is 

therefore a considerable over-estimation of the real number of calls to the shaping. 

Moreover, the possibility of overlapping between intervals of encounter dates is not 

accounted for, whereby the arrival date can be earlier than the departure date, in 

which case the transfer arc is not generated. The effect of the latter on the pruning of 

the dates can be approximated using the inputs. 

To find the approximation, it is assumed that one wants to compute the transfer 

arcs for leg i for all possible departure and arrival dates. If 1min maxd d
i iI I+ < , then the 

number of calls to compute the transfer arc is simply 1i ik k + . If there is an overlap 

between iI  and 1iI +  then the number of calls is smaller because some departure dates 

in d
iI  are after some arrival dates in 1

d
iI + . In that case, according, as illustrated in Fig. 

4.2, d
iI  is split into two sets A and B, and 1

d
iI +  into C and D. Note that B CΔ = Δ . 

Transfers are computed for every case where the departure date is in A and the arrival 

in 1
d
iI + . These amount to ( )1 1 1i i i iN A k k B k+ += = −  calls. In the case when the departure 
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date is B, the number of calls is approximated by (4.6). The accuracy of the 

approximation rises with the number of elements in B and C. 

 

   

Ni2  ki+1 −
τ i

τ i+1

⎛

⎝⎜
⎞

⎠⎟
+ ki+1 − 2

τ i

τ i+1

⎛

⎝⎜
⎞

⎠⎟
++ ki+1 − B

τ i

τ i+1

⎛

⎝⎜
⎞

⎠⎟

 B ki+1 −
1
2

τ i

τ i+1

B
2

   (4.6) 

 

 

Fig. 4.2: Illustration of departure dates d
iI  and arrival dates 1

d
iI +  for leg i, when the ranges 

covered by the two overlap each other. 

 

The total number of calls is then close to: 

 

   

Ni = Ni1 + Ni2

 kiki+1 −
1
2

τ i

τ i+1

B
2    (4.7) 

 

since 

 

   
B 

max Ii − min Ii+1

τ i

=
ΔIi − minTi

τ i

    (4.8) 

 

and from (4.5) τ i 
ΔIi
ki

, the following expression is obtained for Ni: 

 

1
1 1 2

i i
i i iN k k

+ −
+

+

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

β β    (4.9) 

 

where 

 

 
 

A B 

D 

time 

time C 
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βi
+ =

ΔIi
d −minTi
ΔIi

d 
ΔB
ΔIi

d

βi+1
− =

ΔIi
d −minTi
ΔIi+1

d 
ΔC
ΔIi+1

d

   (4.10) 

 

So for a leg i, an overlap between the range of departure and arrival dates results in 

a reduction of the number of possible transfers represented by the factor iα : 

 

11
2
i i

i

+ −
+= − β βα  (4.11) 

 

Expression (4.11) is remarkable in the sense that it does not include information 

about the density of either d
iI  and 1

d
iI + . As a matter of fact, it could also have been 

obtained by reasoning on continuous intervals of dates instead of discrete sets, after 

assuming that 
   ki 1  and 

   ki+11 : 

 

    

α i =
1Ii

t( )1Ii+1
u( )1 t ;+∞⎡⎣ ) u( )du dt

R2∫∫
1Ii

t( )1Ii+1
u( )du dt

R2∫∫
= 1
ΔIiΔIi+1

du dt
max t ,min Ii+1( )
max Ii+1∫0

ΔIi∫⎛⎝⎜
⎞
⎠⎟

= 1
ΔIiΔIi+1

du dt
min Ii+1

max Ii+1∫0

min Ii+1∫ + du dt
t

max Ii+1∫min Ii+1

ΔIi∫⎛
⎝

⎞
⎠

= 1
ΔIiΔIi+1

ΔIi − ΔB( )ΔIi+1 + du dt
t

max Ii+1∫min Ii+1

ΔIi∫⎛
⎝

⎞
⎠

= 1
ΔIiΔIi+1

ΔIi − ΔB( )ΔIi+1 + du dt
t

ΔIi+1∫0

ΔB

∫⎛
⎝

⎞
⎠

= 1
ΔIiΔIi+1

ΔIiΔIi+1 − ΔBΔIi+1 + ΔIi+1 − t( )dt
0

ΔB

∫⎛
⎝

⎞
⎠

= 1
ΔIiΔIi+1

ΔIiΔIi+1 − ΔBΔIi+1 −
ΔIi+1 − t( )2

2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

0

ΔB⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= 1
ΔIiΔIi+1

ΔIiΔIi+1 − ΔBΔIi+1 −
ΔIi+1 − ΔB( )2

2
+
ΔIi+1

2

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= 1
ΔIiΔIi+1

ΔIiΔIi+1 −
ΔB2

2
⎛

⎝⎜
⎞

⎠⎟

= 1−
βi

+βi+1
−

2

  (4.12) 

 

Hence, before considering any pruning, the real number of calls to the shaping is 

generally a fraction of ( ) 37N k+ . If transfer arcs are pruned according to given criteria, 

that fraction becomes even lower, according to how stringent the conditions are. It is 
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difficult to quantify a priori the effect of the pruning criteria on the final number of 

calls to the trajectory shaping, unless one has a statistical model of the parameters on 

which the pruning is based with respect to initial conditions, final conditions and 

times of flight. 

If one assumes that at least a fraction α  of the k encounter dates is always pruned 

out, after considering consistency of encounter dates, pruning on user-defined criteria 

and backward and forward pruning, then the number of calls to the trajectory shaping 

function will be at most ( ) 3 37N k+ α . 

 

4.5 Test cases 

 

This section presents the test cases to which the shaping and the new incremental 

pruning was applied to. Rendezvous missions are presented from Earth to Apollo and 

Jupiter. The search space was pruned out incrementally and a differential evolution 

algorithm was run on each connected component of the pruned space. The differential 

algorithm operated on a population 10 times the size of the search space’s dimension. 

The population evolved over 20 generations. Different values were tested for the two 

parameters and these values were retained because they turned out to result in the 

algorithm converging in the test cases presented below while keeping the 

computational effort reasonably low. 

The low thrust trajectory optimizer DITAN was employed to find the transfer with 

the lowest propellant consumption. DITAN is a local optimizer and transcribes the 

problem into finite elements of time and uses collocation to model the evolution of the 

state and control vectors. A limit on the thrust magnitude was set each time, its value 

being the peak thrust value of the initial guess trajectory. The initial mass of the 

spacecraft was set to 1000 kg and the specific impulse of its propulsion system to 

3000 s. The initial relative velocity at launch was limited to 5 km/s. 

The computations were performed on Intel Xeon processors clocked at 2.67 GHz 

and running Linux Centos 5.4 operating system. 
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4.5.1 Earth-Earth-Apollo rendezvous 

 

As a first test for the pruning algorithm, a rendezvous to asteroid Apollo was 

chosen with a single flyby at the Earth. The selection of the asteroid was based mainly 

on the high eccentricity of its orbit, making the search for gravity assist transfers 

relevant. Apollo’s orbital elements are reported in Table 4.1. 

 

Table 4.1 Orbital elements of Asteroid Apollo 

Semi-major axis 1.471 AU 
Eccentricity 0.56 
Inclination 6.4° 
Ascending node 25.9° 
Argument of pericenter 285.7° 

 

The mission scenario has two legs, which makes the search space of dimension 3. 

The launch window W was set to be the interval between 1st January 2010 and 1st 

January 2015. W was discretised into 240 equidistant dates, i.e. in average three 

launch dates per month. The first leg’s range of times of flight was set between 200 

days and 800 days and the range of dates for the gravity assist was discretised into 

250 dates, the second leg’s time of flight took values in [200 d ; 1000 d] and the range 

of rendezvous dates was discretised into 300 equidistant values. The initial relative 

velocity was allowed to be 5 km/s maximum and a limit was set on the second leg’s 

total Δv to 10 km/s. Therefore only two criteria were used to prune out the search 

space. The minimal altitude allowed for the gravity-assist at Earth was 200 km. The 

pruned pairs of legs are plotted in Fig. 4.3. 

In total, 29 separate hyperboxes were obtained by the pruning after 8.5 hours of 

computation, and a differential evolution algorithm was run on all of them, in order to 

locate the global minimum, taking 8.9 minutes each. 

The trajectory with the lowest Δv obtained from the DE turned out to be of 5.32 

km/s with an initial launch velocity of 4.93 km/s. One should note that part of the Δv 

of the low thrust transfer includes gravity-loss. The total time of flight is 3.17 years. 

The local optimisation with DITAN resulted in a transfer also lasting 3.17 years and 

requiring 4.49 km/s of Δv and an initial launch velocity of 5.00 km/s. Table 4.2 

provides the dates of encounter of each planet for the best trajectory. 
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Fig. 4.3: Plotted are the triplets of dates, corresponding to the pair of Earth-Earth-Apollo legs, 
that were not pruned 

 

 

Table 4.2 Dates at each planet for the LTMGA trajectory with the lowest Δv. 

 Date from DE Date from DITAN 
Launch from Earth 9/2/2011 19/3/2011 
Earth GA 27/7/2012 4/9/2012 
Rendezvous at Apollo 12/4/2014 20/5/2014 

 

Fig. 4.4 shows that the optimised transfer is close to the initial guess one. After 

launch, the spacecraft coasts for more than one revolution and performs a flyby of 

Earth. The flyby occurs close to the line of apsides of Apollo, on the side of the 

pericenter. The flyby raises the apocenter of the trajectory, such that the thrust in the 

Earth-Venus leg is predominantly about reducing the pericenter. The gravity assist has 

thus a beneficial effect, reducing the necessary total Δv for the rendezvous. 
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a)  

b)  

Fig. 4.4: Result from DE with the lowest Δv and its optimised solution from DITAN, a) thrust 
profile, b) trajectory plot 

 

4.5.2 Earth-Venus-Earth-Apollo rendezvous 

 

Analysing the results obtained in subsection 4.5.1 for the rendezvous with asteroid 

Apollo suggests that inserting an additional gravity assist that reduces the pericenter 

of the spacecraft’s orbit to that of asteroid’s can be beneficial. The pericenter of the 
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asteroid is at 0.65 AU from the Sun, therefore an initial flyby at Venus was envisaged 

since its pericenter is at 0.72 AU. 

The mission scenario has three legs, so the dimension of the search space is four. 

The launch window W was set again to be the interval between 1st January 2010 and 

1st January 2015 and was discretised into 240 equidistant dates, i.e. in average three 

launch dates per month. The Earth-Venus leg’s range of times of flight was set to [100 

d ; 500 d] and the range of encounter dates of Venus was discretised into 250 points, 

the second leg’s time of flight spanned [50 d ; 700 d] and the interval of dates for the 

Earth gravity assist was discretised into 250 equidistant dates. The final leg’s time of 

flight was in the range [200 d ; 1000 d] and the range of possible arrival dates was 

discretised into 300 equidistant dates. The initial relative velocity was allowed to be 5 

km/s maximum and a limit was set on the second leg’s Δv to 10 km/s and on the third 

leg’s Δv to 10 km/s. Three criteria were used to prune out the search space. The 

minimal altitude allowed for both gravity assists 200 km. The pruned pairs of legs are 

plotted in Fig. 4.5. 

 

a)  
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b)  

Fig. 4.5: Plotted are the triplets of dates, corresponding to the pair of a) Earth-Venus-Earth legs 
and b) Venus-Earth-Apollo legs, that were not pruned 

 

In total, 13 separate hyperboxes were obtained by the pruning after 1.21 days of 

computation, and a differential evolution algorithm was run on all of them, in order to 

locate the global minimum, taking 34 minutes in average each. 

The trajectory with the lowest Δv obtained from the DE turned out to be of 2.21 

km/s with an initial launch velocity of 4.24 km/s. One should note that part of the Δv 

of the low thrust transfer includes gravity-loss. The total time of flight is 4.59 years. 

The local optimisation with DITAN resulted in a transfer lasting 4.65 years and 

requiring 1.61 km/s of Δv and an initial launch velocity of 5.00 km/s. Table 4.3 

provides the dates of encounter of each planet for the best trajectory. 

 

Table 4.3 Dates at each planet for the LTMGA trajectory with the lowest Δv. 

 Date from DE Date from DITAN 
Launch from Earth 15/2/2010 13/1/2010 
Venus GA 4/4/2011 30/3/2011 
Earth GA 19/10/2012 14/10/2012 
Rendezvous at Apollo 20/9/2014 9/9/2014 
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a)  

b)  

Fig. 4.6: Result from DE with the lowest Δv and its optimised solution from DITAN, a) thrust 
profile, b) trajectory plot 

 

Fig. 4.6 shows that the optimised transfer is close to the initial guess. The initial 

relative launch velocity reduces the pericenter to Venus’s level and the Venus gravity 

assist occurs after coasting for more than one revolution. The Venus flyby raises the 

apocenter of the trajectory. The following flyby at Earth further raises the apocenter 

and aligns the line of apsides with that of Apollo. Both gravity assists are beneficially 

exploited, reducing the necessary total Δv for the rendezvous. The role of the 
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manoeuvres at the final leg is to adjust the keplerian elements to arrive with no 

relative velocity. It is noteworthy that the optimal result found by DITAN employs 

manoeuvres only in the last leg, while the first two legs are coast arcs. The physical 

explanation is that manoeuvres are more efficient at greater distance from the Sun, 

where the thrust to local gravity field magnitude is higher. 

 

4.5.3 Earth-Venus-Earth-Earth-Jupiter rendezvous 

 

Another target body to rendezvous with that was used as test for the pruning 

algorithm was Jupiter. Its orbital elements are reported in Table 4.4. Because of the 

larger semi-major axis of Jupiter compared to the Earth’s, employing successive 

gravity-assists can be beneficial to lower the total Δv. The same sequence of flyby 

planets as for the Galileo mission was used. 

 

Table 4.4 Orbital elements of Jupiter 

Semi-major axis 5.203 AU 
Eccentricity 0.05 
Inclination 1.3° 
Ascending node 100.4° 
Argument of pericenter 273.9° 

 

 

This LTMGA transfer has four legs. The launch window W was set to be the 

interval between 1st January 2010 and 1st January 2020. W was discretised into 240 

equidistant dates, i.e. in average two launch dates per month. The first leg’s range of 

times of flight was set to [50 d ; 500 d], the second one’s to [50 d ; 700 d], the third 

one to [100 d ; 1000 d] and the fourth to [500 d ; 2000 d]. The ranges of encounter 

dates were discretised into respectively 45, 65, 90 and 75 points. The initial relative 

velocity was allowed to be 5 km/s at most and limits were set on the last three leg’s 

total Δv to 10 km/s, 10 km/s and 15 km/s respectively. It can be therefore noted that 

the discretisation grid is course while the pruning criteria are not stringent. The 

minimal altitude allowed for all gravity assists was 200 km. The pruned pairs of legs 

are plotted in Fig. 4.7. 

In total, 5 separate hyperboxes were obtained by the pruning, and a differential 

evolution algorithm was run on all of them, in order to locate the global minimum. 
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a)  

b)  
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c)  

Fig. 4.7: Plotted are the triplets of dates, corresponding to the pair of a) Earth-Venus-Earth legs, 
b) Venus-Earth-Earth legs, c) Earth-Earth-Jupiter legs, that were not pruned  

 

 

Table 4.5: Dates at each planet for the LTMGA trajectory with the lowest Δv, obtained from the 
differential evolution and from DITAN 

 Date from DE Date from DITAN 
Launch from Earth 15/1/2017 3/2/2017 
Venus GA 20/4/2017 20/4/2017 
First Earth GA 28/8/2018 1/9/2018 
Second Earth GA 25/3/2021 25/3/2021 
Rendezvous at Jupiter 8/9/2024 27/12/2024 

 
 

The lowest Δv obtained from DE was 7.66 km/s plus a relative launch velocity of 

3.58 km/s, to be compared with the Hohmann transfer’s 14.44 km/s. The total time of 

flight is 7.65 years. One should note that the Δv also includes the gravity loss due to 

the low and long nature of the thrust arcs. The optimised transfer from DITAN has a 

Δv 6.64 km/s and the relative launch velocity is 5 km/s which is the maximum value 

allowed. Table 4.5 provides the dates of encounter of each planet for that trajectory. 

Fig. 4.8 illustrates how close the best transfer from the DE is from the optimal transfer 

computed by DITAN. It is worth mentioning that the optimised transfer only employs 

thrust arcs at the last leg on the way to Jupiter, when the spacecraft is far from the 

Sun, because the thruster has more effect on the trajectory at greater distances. The 
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role of the thrust arc at the last leg is mainly to raise the pericenter to the level of 

Jupiter. 
 

a)  

b)  

Fig. 4.8 Comparison between the best transfer obtained from the DE and the corresponding 
optimal result from DITAN: a) thrust profiles, b) trajectory plot 
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4.6 Limitations 

 

While the pruning and the generation of the hyperboxes reduce the total search 

space considerably and keep promising regions, the number of hyperboxes is difficult 

to difficult to predict. The number depends on the density of the discretisation of the 

encounter dates and the stringency of the filtering of each leg. Therefore, running a 

global optimisation can become long if many hyperboxes result from a pruning. The 

parameters need to be well set for a good compromise between computational 

intensity and quality of the results. 

Moreover, it can happen that a hyperbox contains only unacceptable transfers for a 

given leg, because of the way hey are constructed. In fact, when constructing a box 

around a cluster of date triplets, there will be areas in the box that contain 

unacceptable legs. Therefore when intersecting boxes for consecutive pairs of legs, 

the intersections may only contain these regions of unacceptable legs. 

 



CHAPTER 5 CONCLUSIONS 

 

5.1 Summary and findings of the thesis 

 

The purpose of this thesis was to ease a mission analyst’s task to generate a variety 

of interesting low thrust transfers satisfying a certain number of constraints while 

keeping computational efforts reasonably low. The approach has been to address first 

direct transfers between a departure and arrival planet. An essential tool of generating 

low thrust trajectories from scratch has been developed. It was sought that resulting 

trajectories would estimate well the level of optimality for propellant mass 

consumption, such that large sets of transfers could be generated, and then pruned out 

to keep most promising ones. Transfer generating tools can be used by global 

optimisers to identify promising regions in a search space, as well as by local 

optimisers to provide an initial guess. 

Since generally the generating tools do not provide optimal transfers, and 

optimising locally can be computationally intensive, an efficient method to improve 

the trajectories locally was developed. With such a tool, the mission analyst can 

identify the regions of interest in the search space with more confidence. The 

compromise is between computational efficiency and level of improvement of the 

trajectory. 

Finally the issue of MGA transfers was addressed. Gravity assist is more and more 

being used to reduce necessary propellant to carry on board interplanetary missions, 

however the difficulty of finding the best trajectories is increased by the dimensions 

of the search space that each candidate swingby planet adds. A method to address the 

problem of dimensionality has been developed based on an incremental method first 

proposed by Becerra et al. With this method, the trajectory generators and improvers 

can be used for each leg, while the overall search strategy is governed by an 

incremental pruning that keeps the search space polynomial with the number of 

swingby planets. The outputs of the pruning are candidate trajectories that can be used 

to initialise local optimisers on the full transfer. 
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5.1.1 Shaping methods 

 

A trajectory shaping approach has been adopted to generate trajectories from 

scratch due to their flexibility and their computational efficiency. Due to the 

description of the trajectory using analytical functions, the control profile from the 

equations of motion without propagation, and boundary constraints can be applied 

easily if the shaping functions are well chosen. 

Several authors have already studied this approach; this thesis provided a unified 

mathematical framework in which any shaping can be applied, independently of the 

coordinates, or the equations of motion. The standardised framework enabled then to 

develop a new shaping method, dubbed spherical shaping, that describes the evolution 

of spherical coordinates by assigning shaping functions to them. This method is a 

generalisation to three dimensions of the exponential sinusoids and the polar shaping 

proposed by Petropoulos et al. and Wall et al. 

The new framework also let Vasile and De Pascale’s pseudo-equinoctial shaping to 

be revisited. The major contribution of the thesis is the understanding of the non-

osculating nature of the elements that the shaping functions parameterise. 

Only six equations of motion were used to describe the system, the mass evolution 

being obtained by specifying a posteriori a propulsion model. To obtain a propellant 

mass corresponding to a trajectory, one needs at least an initial spacecraft mass and a 

specific impulse as input, but a more complicated model can also be applied with 

dependencies on the available power, distance from the Sun, etc. There would still be 

no need to use a propagator for the trajectories. 

Numerical integration of the trajectory is however generally necessary if one wants 

to compute the Δv and the time of flight. But since the trajectories are normally 

sampled at multiple points for analysis reasons, one can choose in that case 

sufficiently dense Gauss points on which integration becomes straightforward. 

Attention was paid in both methods for the shaping functions to cover the case of 

pure Keplerian transfer arcs, such that in the vicinity of Keplerian arcs, by the 

continuous nature of the problem, the generated trajectory keeps a low Δv. 

Time of flight constraints are shown to be satisfied by a applying a Newton loop 

first followed by a reshaping of the time evolution along the trajectory if there is no 

convergence. The reason for not applying only an independent shaping to the time 

coordinate like for the other coordinates is that it is difficult to find a generic 
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analytical expression for the time evolution that ends up with an acceptable thrust 

profile. Therefore, in the spherical shaping, the time evolution was shaped using an 

expression depending on the distance from the central body, such that the control 

profile is assumed to have tangential and out-of-plane components. This assumption is 

proven to be reasonable in most cases and ends up in trajectories that are close to 

optimal in many cases. In the pseudo-equinoctial case, the time evolution is also 

assumed to have the expression of the one of a trajectory without normal component. 

Test cases prove that both shaping methods can identify promising regions in a 

search space and can initialise a local optimiser. It was shown that satisfying time of 

flight constraints with a Newton loop on an extra coefficient in the shaping functions 

is feasible in all the interesting cases and that the Newton loop only breaks down 

when the number of revolutions is inappropriate with the desired time of flight. 

The test cases all cover heliocentric transfers, however the trajectory generation 

can also be applied for orbit changes around a planet like the Earth, in which case 

time constraints are not always necessary because one does not need to arrive to the 

final orbit at a given time. 

The theoretical basis for a hybrid shaping has also been laid down. The motivation 

for its development was to combine the advantages of both the spherical shaping and 

the pseudo-equinoctial shaping. The number of shaped parameters was reduced to 

three from five in the case of the pseudo-equinoctial shaping and the equinoctial 

elements derived from them satisfy the variational equations so are osculating. 

Moreover the out-of-plane behaviour of the shaping covers the case of the Keplerian 

motion, unlike in the spherical shaping. Unfortunately, no generic expression for the 

shaping functions has been found that results in transfers with Δvs low enough to be 

considered interesting in practice. This opens up a direction for the future research. 

 

5.1.2 LQ controller 

 

The LQ controller was developed with the purpose of improving transfers, both in 

terms of Δv and peak thrust. In fact, when pruning large numbers of candidate 

trajectories, the latter two are common bases for filtering. An improvement is sought 

for in the vicinity of a reference trajectory after linearising the 6 equations of motion 

for position and velocity. The rationale is that by optimising for the L2 norm of the 
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control vector, thrust profiles tend to be smoothed out and peak thrusts reduced, 

which in turn can reduce Δv. 

The term improvement is used instead of optimisation because a fully-fledged 

efficient optimisation is not available and the optimal trajectory corresponding to the 

linearised system does not necessarily correspond to an optimal trajectory in the non-

linearised model. 

An estimate was provided for the error between the linearise and the non-linearised 

trajectory and it was shown that the error decreases with the square of the distance 

with respect to the central body. 

It was then proved in a theorem that the two are the same if and only if the 

reference trajectory is already optimal. It was shown in test cases, that when the 

linearised trajectory does not diverge too much from the corresponding real trajectory, 

then the LQ controller does improve the real trajectory. This is the case when 

reference thrust is not high for extended portions of the trajectory. 

Adding a specific model for the propulsion system can be done a posteriori after 

computing the improved trajectory, while another option is to include this model in 

the equation governing the evolution of mass and linearise that model as well around 

the reference trajectory. In that case the system becomes 7 dimensional and the 

Riccati equation to solve becomes 49 dimensional up from 36, a 36% increase. It was 

deemed that the increase in computing intensity does not necessarily compensate for 

the potential improvement of the reference trajectory. In fact, by linearising the 

propulsion model, the optimal linearised trajectory would not automatically result in 

improved trajectories satisfying the real equations of motion. 

The LQ controller has been applied to numerous test cases covering different 

mission types. A systematic search has been applied in order to assess the regions 

where the controller best works. 

 

5.1.3 Incremental pruning 

 

When Becerra et al. introduced the idea of the incremental pruning of MGA 

transfers, the search for globally optimal transfers became computationally much 

easier, due to the reduction of the search space. Becerra’s approach used Keplerian 

arcs with eventually deep space manoeuvres, as well as powered swingbys. While it 

would have been possible to simply use the shaping methods to generate the legs 



 

 118 

between the encountered planets, the powered nature of the swingby would still have 

suggested chemical propulsion on board the spacecraft. Since this is not generally the 

case, Becerra’s method would not have been useful for purely low thrust missions. 

The pruning method has therefore been adapted, such that swingbys are not powered 

anymore. The trick is to construct legs by pairs with a swingby in between, instead of 

individually. The incremental pruning therefore happens on the pairs of legs. The 

remaining pairs of legs are then matched with each other in order to get a full transfer. 

The swingby model that has been developed is based on a simple patched conic 

model. The incoming and outgoing legs are computed first separately, and the 

velocities at the swingby are tried to be matched. If that is not possible without a 

manoeuvre, the second leg is modified such that its initial velocity, i.e. outgoing 

velocity, matches the unpowered swingby’s conditions. 

The spherical shaping was used to generate the trajectories since it allows 

constraining analytically any combination of position and velocity, which is needed 

for matching the legs at the gravity assist. 

Boxes were defined around clusters of triplets of dates representing pairs of legs 

and hyperboxes are obtained by intersecting boxes for consecutive pairs of legs, such 

that the promising regions of the total search space are found. The search space is 

successfully reduced and a global optimisation can be run on each of the hyperboxes. 

Test cases have shown that this method results in transfers with low Δv. Due to the 

much bigger size of the total search space relative to the union of the hyperboxes, it 

can be asserted safely that the with the same number of function calls, running a 

global optimisation after pruning method will find better results than without pruning 

with very high probability 

It is unfortunately not possible to predict exactly the number of hyperboxes 

generated by the method; the number depends on the number and configuration of the 

boxes, which themselves depend on initial parameters such as the density of the 

search grid and the pruning thresholds. 

 

5.2 Proposed directions for future study 

 

All tools and methods presented in this thesis have their limitations and are prone 

to improvement. 
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The expressions of the shaping functions presented in this thesis might not be the 

best ones, and expressions may exist that result in more interesting trajectories. The 

number of possible expressions is unlimited, although some physical considerations 

provide guidelines into choosing them. The thesis provides however the framework 

and one just has to plug in the new expressions. It also follows from this that 

interesting shaping functions might exist for the hybrid shaping that would increase 

the utility of this shaping method. 

It might also be interesting to shape Poincaré elements. The interest in Poincaré 

elements lies in their canonical nature: they satisfy particularly simple equations in the 

Hamiltonian formulation that are reminiscent of the necessary conditions of 

optimality. If one shapes these elements, it may be possible to find a certain 

relationship between the violation of osculation and optimality. 

It is to be noted that due to the general nature of the framework proposed for 

shaping trajectories, one is not limited to work in the two-body model. In fact, nothing 

restricts the user to apply a more complex physical model for the dynamics, such as 

three- or four-body models. Any coordinate frame can be used, including non-inertial. 

According to the chosen approach, certain choices of coordinates to be shaped are 

more relevant than others. For instance, pseudo-equinoctial elements loose their utility 

when a second celestial body acts substantially on the spacecraft. 

In a general context, an essential tool that a mission analyst needs is a metric 

measuring violations of optimality. Methods have already been proposed, based on 

the violation of the necessary condition of optimality, but they are not necessarily 

robust, because adjoint variables must be computed iteratively such that the violation 

is minimal. Also, the ideal measure should have topologically desirable properties 

such as continuity, a monotonous relationship between the violation and the change in 

the value of the objective function. 

When it comes to improving existing trajectories, it is a promising idea to keep the 

geometry fixed and optimise the velocity at which the satellite travels on the fixed 

path. The optimal time evolution is therefore a solution of a second order differential 

equation obtained from Lagrangian variational formulation. The two coefficients, 

representing the initial conditions, are set to satisfying the initial and final velocity 

constraints. This entails a shooting problem and an initial value must be well guessed. 

When the time of flight is constrained, i.e. there is an isoperimetric constraint, a 

constant parameter in the differential equation must be tuned such that the time of 
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flight is right. The author has found analytical results for the case when the trajectory 

is circular, but not necessarily centred on the central body, and intends to publish the 

results in a scientific journal in the future. This method should be studied in detail to 

understand whether the difficulty to solve the differential equation is compensated by 

the improvement of the transfer. 

Adaptations to the pruning technique applied to the LTMGA transfer design could 

be applied. A direction of interest is not to create boxes around triplets of dates 

representing pairs of legs but to compute all combinations of transfers by gluing the 

pairs of legs together. This is a fast process that is simple to implement and the result 

is the list of all MGA transfers on the defined grid of encounter dates that satisfy the 

filter criteria for each leg. One can then sort the list, study the distribution of the 

transfers and optimise the best transfers, both with the shaping functions and with 

local optimiser using a full physical model. If the grids are dense enough, one should 

localise the global optimal. A special study however is necessary to prove that for a 

given grid density the optimal transfer does not migrate out of the clusters of 

promising trajectories, in which case there is a risk of missing promising regions in 

the total search space. 

 



APPENDIX A Derivation of the velocity and acceleration’s 
expressions in different reference frames 

Equation Chapter  1 Section 1 

 

This appendix presents the derivations for the expressions of v  and a  in different 

reference frames. The resulting expressions are used in particular in the computation 

of D in (2.12). Three coordinate systems are introduced, together with their basis 

vectors: 

• The Cartesian coordinates (C), with basis vectors 
  

i , j ,k( )  

• The spherical coordinates (S), with basis vectors ( ), ,re e eθ ϕ  

• The radial-orthoradial-out-of-plane coordinates (R), with basis vectors 

( ), ,re e eθ ϕ  

Written in (C), the basis vectors of (S) are: 

 

er =
cosθcosϕ
sinθcosϕ
sinϕ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
(C )

eθ =
−sinθ
cosθ
0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
(C )

eϕ = er × eθ =
−cosθsinϕ
−sinθsinϕ
cosϕ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
(C )

 

 

therefore the matrix that transforms the coordinates of a vector in (S) to the 

coordinates in (C) is: 

 

( ) ( )

cos cos sin cos sin
sin cos cos sin sin
sin 0 cos

S CP →

θ ϕ − θ − θ ϕ⎛ ⎞
⎜ ⎟= θ ϕ θ − θ ϕ⎜ ⎟
⎜ ⎟ϕ ϕ⎝ ⎠

 

 

By differentiating the components of basis vectors of (S), and using 
1

( ) ( ) ( ) ( ) ( ) ( )
T

C S S C S CP P P−
→ → →= = , one obtains the expression of the derivatives of re , θe  and ϕe  

with respect to θ, expressed in (S): 

 

 



 

 122 

der
dθ

=
0
cosϕ

′ϕ
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⎟
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The velocity vector v = dr / dθ  can now be expressed in the spherical coordinates, 

knowing that r = rer : 

 

v = ′r er + r
der
dθ

=
′r

rcosϕ
r ′ϕ

⎛

⎝

⎜
⎜
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⎞
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⎟
⎟
⎟
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The out-of-plane basis vector is therefore: 

 

eh =
er × v
er × v

= 1

U

0
− ′ϕ
cosϕ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
(S )

 

 

where U = ′ϕ 2 + cos2ϕ . eo is finally expressed in the spherical coordinates: 

 

eo = eh × er

= 1

U

0
cosϕ

′ϕ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
(S )

 

 

The matrix that transforms the coordinates of a vector in (R) to the coordinates in 

(S) is then: 
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( ) ( )

1 0 0
cos0

cos0

R SP
U U

U U

→

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟′ϕ −ϕ= ⎜ ⎟
⎜ ⎟
⎜ ⎟′ϕ ϕ
⎜ ⎟
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Using 1
( ) ( ) ( ) ( ) ( ) ( )

T
S R R S R SP P P−
→ → →= = , the velocity vector can be expressed in (R): 

 

v =
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r U
0

⎛

⎝

⎜
⎜
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⎟
⎟
⎟
(R)

 

 

From the latter, one can see that to get the components of a = dv / dθ  in (R), the 

expressions of der / dθ  and deo / dθ  are required. ( ) ( )S RP →  provides the components of 

der / dθ  in (R): 

 

der
dθ

=
0
U
0

⎛
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⎜
⎜
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⎟
⎟
⎟
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By differentiating oe  and using the expression of deθ / dθ  and deϕ / dθ  in spherical 

coordinates, one gets deo / dθ  in (S) first: 

 

deo
dθ

=

− U
−U −3/2 ′ϕ cosϕ ′′ϕ − sinϕcosϕ( )+ 2U sinϕ( )
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and then, with ( ) ( )S RP → , the latter is expressed in (R): 
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So finally   a  is obtained in (R): 
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a =

′′r − rU

2 ′r U + r ′ϕ ′′ϕ − sinϕcosϕ
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One can also check that in the spherical coordinate system,   a  is written: 

 

a =
′′r − rU

2 ′r cosϕ − 2r ′ϕ sinϕ
2 ′r ′ϕ + r ′′ϕ + sinϕ cosϕ( )

⎛
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The expression of   a  in Cartesian coordinates is obtained by applying ( ) ( )S CP →  to the 

latter. 

 

 



APPENDIX B Derivation of the elevation angle profile for 
Keplerian arcs 

 

Equation Chapter  2 Section 1 

This appendix establishes a relationship between the elevation angle, the azimuthal 

angle and the inclination of a given orbit. This relationship is then approximated for 

low inclinations and a simple expression is derived to shape the elevation angle such 

that the orbital plane evolves linearly. That expression is then used for all the 

spherical shaping methods. 

 

 

 

 

A first relationship between the angles illustrated in Fig. B.1 is obtained. All the 

vectors are considered unitary and the angles present in the figure are defined as 

follows: 
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Fig. B.1 Illustration of the angles and vectors present in the spherical and the radial-orthoradial-
out-of-plane reference frames. Ω is the direction of the ascending node, eh the unitary vector 
carrying the angular momentum, er the unitary vector carrying the radius vector, π the unitary 
vector carrying the orthogonal projection of er on the equatorial plane, i the orbital inclination, θ 
the azimuthal angle, φ the elevation angle and f the sum of the true anomaly and the argument of 
pericenter. 



Appendix B Derivation of the elevation angle profile for Keplerian arcs 

 126 

 

It is also assumed that ( )r z∧ ⋅e eπ = 0  and ( ) z∧ ∧eΩ π = 0 . One can write first 

( ) ( ) ( )sin sin cos sinr z r i f∧ ⋅ ∧ θ ⋅ ∧ = θe e eΩ π Ω = Ω . The same quantity can be also written as: 

 

( ) ( ) ( )( )
( )( )
cos

cos cos cos

r r

r

r r

f

∧ ⋅ ∧ = ∧ ∧ ⋅

= ⋅ ⋅

= ⋅ − θ ⋅
= ϕ− θ

e e

e

e e

Ω π Ω Ω π Ω

π − Ω π Ω

π Ω
 

 

 

There is therefore a first relationship: 

 

cos sin cos sin cos cosi f fϕ = θ + θ     (B.1) 

 

Furthermore, from ( )r z∧ ⋅e eπ = 0  one can write ( ) ( )r ∧ ⋅ ∧e π Ω π = 0 . Expanding the 

latter equation results in: 

 

( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )
cos cos cos

r r

r r

r r

f

∧ ⋅ ∧ = ∧ ∧ ⋅

⋅ ⋅ ⋅

⋅ − ⋅ ⋅

= − θ ϕ

e e

e e

e e

π Ω π π Ω π

= Ω π − π Ω π

= Ω π Ω π
 

 

So cos cos cosf = θ ϕ . By substituting the expression of cosϕ  in (B.1) into the latter 

equation, after some algebraic manipulation, one ends up with 

cos sin cos sin cosf i fθ = θ , which can be rewritten as: 

 

tan cos tani fθ =    (B.2) 
 

The latter equation is useful because it links the evolution of the true anomaly with 

the azimuthal angle and the inclination of the orbit. 

The z-component of the radius vector is rsin isin f , thus sinϕ = z / r = sin isin f . 

Using (B.2) to eliminate f, the following expression holds: 

 

2 2 2

sinsin sin
sin cos cos

i
i

θϕ =
θ+ θ
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Finally, in the general case, when the right ascension of the ascending node Ω is 

arbitrary, then one has to replace θ by θ −Ω  in the previous equation, which then 

becomes: 

 

( )
( ) ( )2 2 2

sin
sin sin

sin cos cos
i

i

θ −Ω
ϕ =

θ −Ω + θ −Ω
     (B.3) 

 

This is an important relation for the spherical shaping because if the behaviour of 

the osculating plane is known, then the shape of the elevation angle as a function of 

the azimuthal angle is obtained. Fig. B.2 illustrates the relation between the elevation 

angle and the azimuthal angle when the motion stays inside a fixed plane of different 

inclinations. When the inclination is small, the elevation angle evolves almost as a 

sinusoid, whereas when the inclination approaches π/2, the evolution tends towards a 

step function with values of -π/2 or π/2. 

 

 

Fig. B.2 Evolution of φ with respect to θ for Ω = 0 and different values of the inclination i. 

 

If the motion stays in a plane with a constant inclination, it can be verified that the 

expression for ϕ verifies ( ) ( )2 2cos sin cos 2sin cos 0′′ ′− + + =ϕ ϕ ϕ ϕ ϕ ϕ ϕ , and one finds 

therefore that    ah = 0  from (2.18). 
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There is a simple expression for ϕ when the inclination i is small. If i1 , since 

iϕ ≤ , ϕ 1  and one gets ϕ  sin isin θ −Ω( ) . However, sin i  2tan i
2

, so finally: 

 

   

ϕ  2tan
i
2

sinθcosΩ− cosθsinΩ( )
= 2hsinθ− 2k cosθ

    (B.4) 

 

Therefore the elevation angle is a linear combination of the two equinoctial 

elements describing the orientation of the osculating orbital plane. If one wants to 

have a roughly linear evolution for h and k, then an appropriate shaping function for 

the elevation angle would have the expression ( ) ( )0 1 2 3cos sinb b b bθ θ θ θΦ = + + + , where the 

terms in front of the sine and cosine are small. Adopting such an approach is 

reasonable because it excludes brisk changes in the orientation of the orbital plane, 

and therefore the chances of high spikes in the magnitude of the control are reduced. 

Moreover, such a shaping function covers the case of an unperturbed Keplerian 

orbit, where h and k remain constant, provided that the inclination of the orbit is not 

high. Technically, one can always define an intermediate inertial reference frame 

where the initial osculating orbital plane is the x-y plane, and describe the transfer in 

that frame using the corresponding azimuthal and elevation angle. One would have to 

transform all the vector components to the initial frame in the end. Proceeding this 

way covers exactly the planar transfer case, where the elevation angle always stays 

zero. Furthermore, the proposed shaping function will then provide a reasonable 

profile for the elevation angle for all the transfers where the inclination changes are 

reasonably small, with any initial inclination. 



APPENDIX C Hybrid shaping method 
 

Equation Chapter  3 Section 1 

A third, novel, shaping approach is presented here. It is a hybrid between the 

spherical shaping method and the pseudo-equinoctial method and has theoretical 

advantages compared to both. The quantity s that parameterizes the trajectory is the 

longitudinal anomaly L, i.e. the same parameter as in the pseudo-equinoctial shaping. 

As will be shown, the advantage compared to the pseudo-equinoctial shaping is the 

lower number of required shaping functions, due to the satisfaction of the osculating 

conditions. Moreover, the parameter chosen to shape the out-of-plane behavior of the 

trajectory covers the Keplerian motion for any inclination, based in any reference 

frame. 

The hybrid shaping method is presented in appendix since no expression for the 

shaping functions has been found which results in trajectories with Δv  or peak thrust 

values that would be interesting in practice. Further research in this direction may 

however end up in acceptable results. 

 

Derivation 

 

The motivation to construct the hybrid shaping originates from the analysis of the 

conditions satisfied by the osculating equinoctial elements (see (2.59)). They are 

reminded here: 

 

( )2

2 2 2

cos sin 1 sin cos

1
1

sin cos 0

pp f L g L g f L g L
r r

phk kh t
h k r

h L k L

⎧ ⎛ ⎞′ ′ ′ ′⎪ − − = − −⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎪⎪ ′ ′−⎨ ′= −⎪ + +
⎪
⎪
⎪ ′ ′− =⎩

µ

µ   (C.1) 

 

As a function of the equinoctial elements, the radius r is written: 

 

1 cos sin
pr

f L g L
=

+ +
   (C.2) 
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Analysing the system of equations in (C.1), one observes that if one chooses three 

functions shaping any three elements out of ( ), , , , ,p f g h k t , the remaining three can 

only be obtained by solving a system of nonlinear differential equations, for which an 

analytical solution is generally impossible to find. However, through algebraic 

manipulations, it is possible to verify that if one introduces the following quantities: 

 

   

f = f cos L+ g sin L
g = f sin L− g cos L
h = hcos L+ k sin L
k = hsin L− k cos L

   (C.3) 

 

then (C.1) takes the form: 

 

   

′r p
µ

= g ′t

k k + ′′k( )
1+ h2 + k 2 = 1− ′t

µp
r 2

′k = h

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

   (C.4) 

 

where 

 

   
r = p

1+ f  (C.5) 

 

Analysis of equations (C.4) leads to a useful observation. Indeed, if one chooses to 

assign shaping functions to r, p and   k , then one can apply the reformulated 

osculating conditions (C.4) and obtain all the remaining parameters with simple 

algebra. The steps to perform are the following: 

 

• Obtain   h  from the third equation 

• From the second equation get t′  

• Get   g  from the first equation 

• Inverting equations (C.3) in order to one obtains the equinoctial elements f, g, h 

and k: 
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f = f cos L+ g sin L
g = f sin L− g cos L
h = hcos L+ k sin L
k = hsin L− k cos L

   (C.6) 

 

• Recover the Cartesian position and velocity using (2.54), (2.56) and (2.57) 

 

In a summary, if functions of L shaping the radius, the semi-latus rectum and the 

parameter   k  are introduced, denoted respectively by R, P and   K , then the trajectory 

will be completely defined. It is worth noting that R and   K  carry purely geometrical 

information on the trajectory, whereas information on the dynamics is provided by the 

shaping of the semi-latus rectum, since it is related to the angular momentum by 
2 /P = h µ . Hence the time of flight is also set by the provision of R, P and   K . 

 

Interpretation of the new parameters 

 

Using (2.53) and (C.3), the parameters   
f ,   g ,   h  and   k  have the following 

relationship with the Keplerian elements: 

 

   

f = ecosν
g = esinν

h = tan
i
2

cos ω +ν( )
k = tan

i
2

sin ω +ν( )

   (C.7) 

 

It is clear therefore that these parameters are not conventional elements since they 

are not constant along an orbit. However, they can be related to usual physical 

quantities. An additional note can be made on the physical quantity that   k  represents. 

  k  has no units and in the case of an inclined unperturbed elliptical orbit, the value of 

  k  oscillates between − tan i / 2  and tan i / 2 , and is zero at the line of nodes.   k  is 

therefore related to the instantaneous elevation ϕ of the radius vector. The relationship 

becomes very simple with the assumption of low inclinations, since (B.4) leads to 

   
k ϕ / 2 . 
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  g  can also be expressed through quantities that have more physical meaning. 

Starting with the first equation in (C.4) one obtains: 

 

g = ′r
′t
p
µ

=
r h
µ

=
vr h
µ

   (C.8) 

 

Therefore   g  is proportional to the radial velocity and the magnitude of the angular 

momentum. 

 

Particular case of a planar transfer 

 

In this subsection the case of planar transfers is analysed. A trajectory will not be 

perturbed in the out-of-plane direction if    k = 0  along the trajectory. Hence, from, 

   h = 0 , from which follows that: 

 
2rt
p

′ =
µ

 (C.9) 

 

and 

 

   
g = p ′r

r 2  (C.10) 

 

The relationship (C.9) is significant because of the absence of the controls, 

meaning that if the radius and the semi-latus rectum are fixed then t’ is fixed. Thus, if 

one assigns a given profile for the radius, i.e. r’ is also fixed, then the magnitude of 

the velocity will be constrained to be 

 

v = 1
′t

′r 2 + r2 =
µ p ′r 2 + r2( )

r2
   (C.11) 
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Implementation of boundary constraints 

 

It is presented here how boundary constraints can be enforced for to a trajectory 

modelled by the hybrid shaping. Assuming that the shaping functions to be 

constrained are R, P and   K  and that both the position 0r  and velocity 0v  are to be met, 

then the following steps are performed to obtain the values of the shaping functions at 

the point of interest: 

 

1. compute r0 = r0 , h0 = r0 ∧ v0  and p0 = h02 / µ  

2. compute the inclination i0 from cosi0 = h0 ⋅e z  

3. compute the ascending node’s direction 0 0 z= ∧u h e  and 0Ω  from 

0
0

0

cos x⋅= u e
u

Ω  and 0
0

0

sin y⋅
=
u e
u

Ω  

4. compute ω0 +υ0  from cos ω0 +υ0( ) = r0 ⋅u0 / (r0 u0 )  and 

    sin ω 0 +υ0( ) = sgn h0 ⋅ u0 ∧ r0( )( ) / 1− cos2 ω 0 +υ0( )  

5. compute L0 and    
k0  and    

h0  from L0 =Ω0 +ω0 +ν0  and (C.7) 

 

In the particular case when the result of step 2 is 0 2i =π , in step 3 u0 is set to ex 

and Ω0 to 0. 

Note that these steps define the inverse operation of the one presented in 

subsection 0, whereby the position and velocity are computed from R, P and   K . A set 

of three equations defining boundary constraints is thus given: 

 

   

R L0( ) = r0

P L0( ) = p0

K L0( ) = k0

   (C.12) 

 

These three, combined with the value set for the longitudinal anomaly L0 add up to 

four boundary constraints. The two additional boundary constraints are obtained from 

osculating conditions (C.4) for the new parameters. First the value of    g0  is obtained 

from 0 0 0 0rv r= ⋅v r  and (C.8) and the one of value of    
h0  from (C.7). Then an 

expression for 0t′  is obtained the second equation of (C.4): 
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′t0 =
r0

2

µp0

1−
k0
k0 +  ′′K L0( )( )

1+ h0
2 + k0

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

    (C.13) 

 

This expression is then plugged into the first equation of (C.4), and after 

rearrangements one gets: 

 

   
′R L0( ) + g0r0

2

p0

k0

1+ h0
2 + k0

2
 ′′K L0( ) = g0r0

2

p0

1−
k0

2

1+ h0
2 + k0

2

⎛

⎝
⎜

⎞

⎠
⎟   (C.14) 

 

This constraint is expressed as a linear combination of ( )0R L′  and 
   
 ′′K L0( ) , in the 

same way as in the spherical shaping the constraint on T ′  develops into a linear 

combination of R′′  and ′′Φ  (see (2.40)). The final boundary constraint comes from the 

third equation in (C.4) and is: 

 

   
 ′K L0( ) = h0    (C.15) 

 

Therefore, if the trajectory has to satisfy constraints both on position and velocity 

at a certain point, one degree of freedom is necessary within P, plus, due to the nature 

of (C.14), either two degrees of freedom for R and two for   K , or one for R and three 

for   K . However, because the coefficient in front of 
   
 ′′K L0( )  in (C.14) becomes zero 

for planar trajectories, in order to keep (C.14) solvable in that case, the choice of two 

degrees of freedom for R and two for   K  is the more appropriate. 

Based on these considerations, if constraints on both position and velocity exist at 

both tips of the trajectory, then four degrees of freedom are necessary for setting R, 

two for P and four for   K , much in the same way as in the spherical shaping, where 

six degrees of freedom are required for R and four for Φ. 

 

Choice of the shaping functions’ expression 

 

At this point, a particular expression can be assigned for the function governing r, 

p and   k . It was chosen to shape the radius r, similarly to the spherical shaping (see 

(2.51)) because of its ability to model the Keplerian unperturbed motion. The 
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difference is that here the variable is the longitudinal anomaly L instead of the 

azimuthal angle θ and that two less coefficients are required, based on the results of 

subsection 0. The expression adopted for R is then: 

 

( ) 2
0 1 2 3 4

1
cos sin

R L
a a L a L a L a L

=
+ + + +

    (C.16) 

 

The a2 coefficient is set to zero by default, but can be tuned to satisfy other 

constraints, e.g. time of flight constraints. 

The semi-latus rectum p is the other parameter selected for shaping the in-plane 

motion of a spacecraft. The shaping function P used in the pseudo-equinoctial shaping 

(see (2.61)) is simple, simulates smooth evolutions, remains strictly positive once it’s 

strictly positive at the boundaries, and is capable of covering Keplerian coast arcs. 

Hence the identical expression is used for the hybrid shaping: 

 

( ) 0 1 1expP L p p L= + λ    (C.17) 

 

1λ , as in the pseudo-equinoctial shaping, adds a degree of freedom to design the 

trajectory and is called shaping parameter. Finally the out-of-plane component k  is 

shaped by the function   K  and requires four coefficients. Since    k = hsin L− k cos L , the 

expressions of H and K of the pseudo-equinoctial shaping were used for   K : 

 

   
K L( ) = h0 + h1e

λ3L( )sin L− k0 + k1e
λ3L( )cos L     (C.18) 

 

Like for P, an additional degree of freedom is inserted in the expression of   K  that 

can be tuned optionally. 
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