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Abstract 

Abstract 

 

This research examined the impact which onshore windfarms sited on peat-based soils 

have on streamwater carbon (C), phosphorus (P) and nitrogen (N) dynamics. Significant 

disturbance to peatland arises through the excavation of borrow pits, construction of 

access tracks, insertion of turbine bases and associated deforestation during windfarm 

development – potentially increasing the transfer of C, P and N from terrestrial stores to 

the stream network. To identify which impacts occur, streamwater samples from nine 

catchments draining the Whitelee windfarm, Scotland, Europe’s largest onshore windfarm, 

were collected approximately bi-monthly from October 2007 to September 2010 during 

and after windfarm construction, building on pre-disturbance data from Waldron et al. 

(2009). The samples were analysed for dissolved organic carbon (DOC), particulate 

organic carbon (POC), total organic carbon (TOC), soluble reactive phosphorus (SRP), 

total phosphorus (TP) and nitrate (NO3
-). Time series were constructed and annual 

streamwater exports were calculated so that inter-catchment and annual differences could 

be detected. 

 

DOC concentrations ranged from 2.9 mg L-1 to 57.1 mg L-1 and DOC exports ranged from 

9.0 g m-2 yr-1 to 42.3 g m-2 yr-1. POC concentrations ranged from 0.09 mg L-1 to 23.4 mg L-

1 with POC exports ranging from 0.80 g m-2 yr-1 to 3.93 g m-2 yr-1. DOC exhibited 

seasonality with maximum concentrations and exports towards the end of each summer. 

Harmonic regression analysis of the TOC data indicated a slight increase during the 

maximum phase of the seasonal cycle, coincident with windfarm-related disturbance 

observed in one catchment only. Regardless of windfarm development, streamwater DOC 

exports for four peatland-dominated catchments were observed to exceed typical values 

of C sequestration rate for Scottish peatlands over the four year time series.  

 

SRP concentrations ranged from 1 g L-1 to 289 g L-1 and exports from 12 mg m-2 yr-1 to 

104 mg m-2 yr-1 with TP concentrations and exports ranging from 2 g L-1 to 328 g L-1 and 

exports from 25 mg m-2 yr-1 to 206 mg m-2 yr-1 respectively. In two catchments where 

windfarm-related clear-felling and extensive brash mulching were carried out, as much as 

a tenfold increase was observed from June 2007 in P concentration, coincident with the 

timings of windfarm-related forestry operations. The water quality status of these two 

catchments declined from “good” to “moderate” in terms of the Water Framework Directive 

(2000) UK Technical Advisory Group Environmental Standards for SRP in Rivers, and had 

still not shown a full recovery after a further two years.  



Abstract 

NO3
- concentrations ranged from 0.001 mg L-1 to 2.44 mg L-1 and exports from 0.07 g m-2 

yr-1 to 1.64 g m-2 yr-1. Harmonic regression analysis indicated a potential impact on 

streamwater NO3
- concentration through a change in the seasonal pattern observed in 

three catchments during 2007-2008, coinciding with windfarm-related disturbance. 

 

To determine the most likely controls of C, P and N, a geographic information system 

(GIS) analysis was employed to describe the physiography of each catchment and to 

quantify the extent of windfarm-related disturbance. Multiple linear regression analysis 

was performed using median concentration and export for a low-disturbance phase from 

June 2006 to August 2007, and a maximum-disturbance phase from September 2007 until 

May 2009, with the catchment characteristics from the GIS analysis to identify potential 

impacts of windfarm-related disturbance.  

 

The percentage of the catchment which was HOST class 15 and 29, both peat-based soil 

types, was observed to influence streamwater C, with the proportion of the catchment 

which was pasture observed to influence streamwater N. Windfarm-related disturbances 

were also found to control streamwater dynamics. The extent of deforestation was 

observed to greatly increase streamwater P concentration and that there was a smaller 

increase in C, with consequent impacts on SRP and POC export. The source of this 

additional C and P resulted most likely from forestry operations, namely, clear-felling large 

areas of catchment and extensive brash mulching associated with the windfarm habitat 

restoration, with new organic material available for decomposition and the potential for 

erosion of the newly-exposed soil surface. Residual fertiliser used to establish the conifer 

trees, the reduced vegetation uptake of soil P and P release from the roots of the felled 

trees are three further sources of P in streamwater. The distance to the nearest 

disturbance was also found to influence streamwater dynamics. 

 

This research has shown that windfarm-related infrastructure can also influence 

streamwater chemistry, although exerting a less obvious impact: increasing access track 

length was correlated with decreasing POC and P concentration causing subsequent 

decreases in export. This is likely to be caused by the effective use of settlement ponds, 

flocculation blocks and ditch blocking in order to reduce the amount of particulate matter 

reaching the stream network and potentially through the adsorption of P by the access 

track construction material. Windfarm-related disturbance did not influence N dynamics; 

NO3
- concentration was strongly correlated with HOST class 24 and the proportion of the 

catchment which was pasture, and NO3
- exports were influenced by the flow length per 

catchment area, the percentage of coniferous forest cover and the extent of pasture. 
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Two recommendations for best practice at future windfarm developments on peatland are 

made: firstly, monitor C, P and N in streamwater in all catchments before, during and after 

windfarm construction on C rich soils as part of EIA process in order to ensure that water 

quality is maintained in rivers, to determine whether discharges from windfarm 

developments should require to be licensed and to improve the accuracy of C payback 

time estimates; and secondly, minimise brash-mulching to reduce the impact on 

streamwater P.  

 

Furthermore, some suggestions for future research were proposed, including: plot studies 

to determine the best practice mitigation measures for P release in peatland catchments, 

longitudinal catchment studies, investigation of the relationship between access track 

construction material and streamwater dynamics, installation of continuous monitoring 

equipment along with a sampling regime which targets high flow events, examination of 

the changing stiochiometry, quantification of inorganic C and gaseous forms of C, and 

measuring catchment C sequestration rates. 
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2-   carbonate 
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TP   total phosphorus 

TRP   total reactive phosphorus  

 

 

Square brackets are used to indicate concentration 
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1. Windfarms on Peatland and Streamwater Chemistry 

 

1.1. Chapter Outline 

 

The aim of this thesis is to examine the impact which onshore windfarms sited on 

peatland may have on streamwater chemistry. The first part of this introductory chapter 

gives a brief overview of the scale of peatlands in Scotland as a carbon (C) store, outlines 

current Scottish Government renewables policy and provides some information about the 

extent of windfarms situated on highly organic soils and the potential for environmental 

impact during windfarm development. The speciation, sources and significance of C, 

phosphorus (P) and nitrogen (N) in streamwater are described next, followed by a section 

explaining what is meant by windfarm-related disturbance and how it can impact on C, P 

and N dynamics in streamwater. The Environmental Impact Assessment process required 

for windfarm developments is briefly reviewed in relation to the potential for impact on 

streamwater chemistry. The chapter concludes with five research aims and an outline of 

the thesis structure. 

 

1.2. Windfarms on Peatland 

 

Peatlands are globally critical stores of soil C (Gorham, 1991). In Scotland, with its cool 

climate, average rainfall of over 1500 mm per annum and an abundant supply of dead 

organic material which has not fully decomposed, peat has accumulated since the 

Holocene, covering ~ 14 % of the land area (Bragg, 2002). The C store of Scottish 

peatlands has been estimated as anywhere between 0.6 Pg (Robertson, 1971) and 16.4 

Pg (Howard et al., 1995), with the latest estimates reported as 1.62 Pg (Chapman et al., 

2009). Globally, this is small compared to estimates of C stored in peatland in Canada 

(154 Pg) (Kettles and Tarnocai, 1999) and the former Soviet Union (212 Pg) (Turner et al., 

1998), but it is significant locally, representing 56 % of the total C in Scottish soils 

(Chapman et al., 2009). As climate change continues and C trading markets grow, C 

sequestered naturally in peatland will gain importance economically and politically, so 

there is a greater need now more than ever to understand the dynamics of Scotland’s C 

stores to preserve them in the future.  
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Peatlands in the UK have been under threat for centuries from extraction of peat for use 

as a fuel or growing medium (Glatzel et al., 2003; Rotherham, 2009), burning (Garnett et 

al., 2000; Yallop and Clutterbuck, 2009), drainage (Strack et al., 2008; Gibson et al., 

2009), grazing (Ward et al., 2007) and afforestation (Grieve, 1994). With the growth of 

onshore windfarms there is much pressure again in Scotland for development on these C 

stores. In response to increasing CO2 concentrations in the atmosphere, the Scottish 

Government put in place The Climate Change (Scotland) Act (2009), a legislative 

framework aiming to reduce greenhouse gas emissions associated with the use of fossil 

fuels and to increase the amount of electricity and heat generated from renewable 

sources. The Scottish Government has set a target of 100 % of energy generated to be 

from renewable sources by 2020. With a potential power output of 36.5 GW, Scotland has 

25 % of Europe's wind energy resource (http://www.sdi.co.uk/Key%20Industries/Energy/ 

Key%20Facts.aspx) and, as onshore wind turbines are currently the most developed 

technology and therefore have the lowest manufacturing cost, the bulk of this energy 

production will come from onshore windfarms. The number of onshore windfarms in 

Scotland has increased from just 22 in 2004 to 120 in 2011 

(http://www.bwea.com/ukwed/index.asp) and they currently supply over 2.61 GW of 

renewable energy to Scotland.  

 

However, the exposed, less agriculturally productive elevated landscapes which offer the 

most suitable sites for energy generation from windfarms are also the best for 

accumulating and storing C. By comparing the two maps in Figure 1 it is evident that 

onshore windfarms are often sited, or proposed to be sited, on areas of carbon rich soils 

which hold large stocks of soil C. The visual impact of windfarms on peatland has been 

much debated, but far less consideration has been given to how the landscape responds 

to hosting such infrastructure, especially in terms of streamwater chemistry. Disturbance 

to the soil during the construction of onshore windfarms, which involves the construction 

of access tracks as well as excavation to install the turbine bases, and can include 

deforestation, may impact on streamwater chemistry by increasing the transfer of C, P 

and N from the terrestrial environment to the stream network. This is undesirable for the 

protection of C stores and the maintenance of good quality streamwater in the usually low 

nutrient status streams which drain peatland.  
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Figure 1. Locations of windfarms in Scotland courtesy of Scottish Natural Heritage. 
Inset Figure 1B. Map of carbon rich topsoils in Scotland which, when presented 
beside windfarm locations, shows windfarms are often sited on carbon rich soils. 
Map in 1B adapted from Bradley et al. (2005). 
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1.3. Carbon, Phosphorus and Nitrogen in Streamwater 

 

This section outlines the speciation, sources and significance of C, P and N in 

streamwater, with particular emphasis on peatland streams.  

 

1.3.1. Carbon 

 

Three forms of streamwater C, encompassing both organic and inorganic species, are 

commonly identified: (i) dissolved i.e. dissolved organic carbon (DOC), bicarbonate ions 

(HCO3
-) and carbonate ions (CO3

2-) (ii) particulate organic carbon (POC), and (iii) 

gaseous, such as free CO2 or CH4 (Stumm and Morgan, 1981). In peatlands, DOC and 

POC are important components of streamwaters (e.g. Grieve, 1991; Hope et al., 1997a) 

and are mainly derived from terrestrial sources, for example, from soil organic matter, 

fragmented plant material and microbial processes (Vannote et al., 1980; Fiebig et al., 

1990; Brooks et al., 1999). The relative proportions of the inorganic forms of C present in 

streamwater are dependent on pH and, to a lesser extent, temperature, and are mainly 

derived from weathering and dissolution of CO3
2- containing minerals. In peatland streams 

which are characterised by low pH and drain catchments where the underlying parent 

material is usually CO3
2--poor, the concentration of CO3

2- ions is negligible (Stumm and 

Morgan, 1981).  

 

Organic C present in freshwater covers a size spectrum ranging from free monomers, 

fulvic and humic acids via macromolecules such as proteins and colloids, to aggregates 

and large particles (Thurman, 1985) (Figure 2). POC is generally defined as the fraction of 

organic C which is retained on a 0.7 m pore size filter (e.g. Dawson et al., 2004; 

Dinsmore et al., 2010). POC in streamwaters draining Scottish peatlands generally 

represents a much smaller component of C export than DOC (e.g. Dinsmore et al., 2010). 

DOC concentrations – concentration hereafter indicated by square brackets, e.g. [DOC] –

and exports in streamwater have been strongly positively related to the size of the soil C 

pool and the percentage of peat cover (e.g. Hope et al., 1994; Hope et al., 1997a,b; Dillon 

and Molot, 1997; Aitkenhead et al., 1999; Eckhardt and Moore, 1990; Mattsson et al., 

2005; Xie et al., 2005; Kortelainen et al., 2006). Other catchment variables such as 

discharge (Clark et al., 2007; Austnes et al., 2010), slope (Ludwig et al., 1996; Grieve and 

Marsden, 2001) and catchment size (Russell et al., 1998; Mattsson et al., 2005; Billett et 

al., 2006) have all been found to influence streamwater [DOC]. [POC] is highly variable 
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temporally in relation to high flow events, and spatially due to the patchiness of soil 

erosion within catchments (Hope et al., 1997a).  

 

 

 

C is an important source of energy to stream ecosystems (Fisher and Likens, 1973; 

Wetzel, 1992). The transport of DOC in peatland streams, although small compared to 

other terrestrial C fluxes and reservoirs (Kempe, 1979), is a major transfer pathway 

between the terrestrial and ocean C pools (c.f. Ludwig et al., 1996). In streamwater, in-

stream processes cycle and recycle C continually (c.f. Dawson et al., 2001a; Dawson et 

al., 2004) and additional C inputs are acquired as streams flow downstream into coastal 

environments and then the ocean. Isotopic studies have suggested that the majority of 

headwater terrestrial-derived DOC is from relatively young, decadal, 14C post-nuclear 

testing sources (Schiff et al., 1997; Palmer et al., 2001). In larger rivers, a combination of 

young and old DOC and predominantly old POC (> 1000 years) from terrestrial sources is 

observed (Raymond and Bauer, 2001). Younger, more labile DOC is respired selectively 

leaving an older organic matter component to enter oceanic C pools (Raymond and 

Bauer, 2001). Respiration (e.g. Lennon, 2004), degassing of soil-derived CO2 from 

headwaters (e.g. Hope et al., 2004), and UV-oxidation (e.g. Osburn et al., 2001) of DOC, 

resulting in CO2(aq) over-saturation and degassing (Cole et al., 2007) means that 

streamwaters, especially peatland streams, are potentially important conduits of C transfer 

Figure 2. Continuum of organic carbon in freshwater. From Robards et al. (1994). 
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to the atmosphere from the soil C pool (Kling et al., 1991; Cole et al., 1994; Cole and 

Caraco, 2001; Cole et al., 2007).  

 

Aquatic C exports from peatland have a pivotal influence in terms of C balance (Siemens, 

2003), with aquatic C exports from undisturbed peatland rivers reported to equal C 

sequestration in the peatland (Billett et al., 2004). Anthropogenic activity, such as the 

development of windfarms on peatland, has the potential to increase aquatic C export and 

may cause the peatland to shift from being in C balance or a C sink to being a source of 

C. The assessment of the impacts of disturbance associated with the construction of 

windfarm infrastructure on peatland appears to have received little attention from the 

scientific community. Change in streamwater chemistry due to peatland disturbance can 

be difficult to identify as it occurs in the wider context of other components of 

environmental variability which drive streamwater dynamics and is set against a 

background of already increasing [DOC] in freshwaters across northern temperate 

latitudes (Monteith et al., 2007). For example, in the UK, increasing trends in freshwater 

DOC were reported on a regional scale, with significant increases in [DOC] observed in all 

22 UK Acid Waters Monitoring Network catchments, ranging from 0.06 to 0.51 mg L-1 yr-1 

(Evans et al., 2005). In two catchments in northern England, one, Broken Scar (catchment 

area 818 km2) had a significant increase in the levels of water colour based on a 30 year 

data set with a median annual [DOC] increase of 0.11 mg L-1 yr-1 and at the other, 

Warkworth (589 km2) there was a significant but much smaller median annual [DOC] 

increase of 0.026 mg L-1 yr-1, based on a 39 year dataset (Worrall et al., 2004a). In 

another study, 77 % of 198 sites, comprising 29 lakes, 8 water supply reservoirs and 161 

rivers, there was an upward trend in [DOC] with the average annual increase in [DOC] of 

0.17 mg L-1 yr-1 (Worrall et al., 2004b). More variable trends have been reported in [TOC] 

in Scotland. In 39 of 58 river sites with long-term data, significant upward trends in [TOC] 

were observed and the rate of [TOC] increase averaged across all sites was 0.12 mg L-1 

yr-1 (SEPA, 2007). 

 

The cause of the observed increases in [DOC] has been subject to debate (c.f. SNIFFER, 

2011 for a detailed review of drivers of change in [DOC]). Freeman et al. (2001a) 

suggested that increased activity of the enzyme phenol oxidase, proposed to regulate C 

store in peatlands (Freeman et al., 2001b), due to a rise in temperature caused increased 

DOC production and recalcitrance. DOC accumulates and there is therefore a larger 

available DOC store. Changes in hydrology have also been suggested as causes, with 

Worrall et al. (2006) attributing the increases in [DOC] to enhanced DOC production in 
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post-drought periods whereas Tranvik and Jansson (2002) proposed that these increases 

were due to higher runoff volumes, resulting in greater export with more flow occurring 

through surficial pathways where DOC is more available. Other studies relate the 

increases in riverwater [DOC] to changes in atmospheric conditions. Freeman et al. 

(2004) proposed that the [DOC] increases were caused by elevated atmospheric CO2 

which in turn increased terrestrial productivity and litter production and hence the available 

terrestrial DOC store. Findlay (2005) hypothesised that a doubling in [DOC] in the Hudson 

River, New York, over 16 years was caused by increased soil microbial activity and 

consequent effects on plant and decomposer C dynamics stimulated by increased 

atmospheric N deposition, resulting in a larger terrestrial store of available DOC and 

therefore a greater export has been observed. Evans et al. (2008) suggest that it is the 

form of N deposition, not just the total amount of N deposition which is an important 

control on acidity and therefore [DOC]. Monteith et al. (2007) found that widespread 

increases in [DOC] in surface waters across eastern North America, northern and central 

Europe to be strongly correlated with a gradual decline in the sulphate content of 

atmospheric deposition which increased organic matter solubility and thus increasing 

[DOC]. Clark et al. (2010) comment that the increase in freshwater [DOC] is likely to be 

caused by a range of these different drivers and that the exact importance of a particular 

driver varies between locations. 

 

The potential loss of DOC and POC from soils to watercourses due to windfarm 

development, in addition to already increasing [DOC] in freshwater drainage systems, 

could present some benefits for aquatic ecosystems as discussed in Freeman et al. 

(2004). Increased [DOC] would create additional substrates for microbial food chains 

(Wetzel et al., 1992) as DOC can account for up to 30 – 75 % of the total in-stream energy 

inputs (Fisher and Likens, 1972) and the quantity of bacterial biomass is often controlled 

by the amount of C availability as well as source quality (Bott et al., 1984). Increased 

[DOC] also attenuates UV-light to protect organisms from harmful wavelengths (Schindler 

et al. 1997; Roulet and Moore, 2006). However, discolouration of water reduces light 

levels in the water column and on the stream bed which may decrease the amount of food 

for heterotrophic organisms by reducing primary productivity (Grieve and Gilvear, 2008). 

Further to ecological impacts, the quality and cost of treating drinking water supplies are 

of great concern (Roulet and Moore, 2006; Chapman et al., 2010) because the incomplete 

removal of DOC in water supplies leads to low residual chlorine thus limiting protection 

against biological contamination. The chlorination of DOC-rich water can produce 

potential carcinogens as a by-product of water treatment (Worrall et al., 2003). 

Consequently water suppliers have to investigate other more costly means of water 
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treatment, such as UV irradiation or ozonation, which are also less effective than 

chlorination in protecting against biological contamination within the water distribution 

system. 

 

1.3.2. Phosphorus 

 

When studying P, one of the major nutrients necessary for bacterial and plant growth, in 

water it is useful to categorise the P compounds present into types. From combinations of 

different physical (total, particulate and dissolved) and chemical (orthophosphate, 

inorganic and total) fractions there are at least 12 forms of P in water (Figure 3). 

Particulate P includes living and dead plankton, precipitates of P, P adsorbed to 

particulates, and amorphous P (Broberg and Persson, 1988). The dissolved forms include 

inorganic P and organic P. P in streams is usually found in the form of phosphates 

(MEWAM, 1992). Phosphates can be bound to organic matter, contained within organic 

matter, or inorganic, including polyphosphates and orthophosphates (MEWAM, 1992). P 

is highly chemically and biologically active in streamwater, undergoing numerous 

transformations and moving between the particulate and dissolved phases, between the 

sediment and water column, and between the biota and abiotic environment (Mainstone 

and Parr, 2002). Processes occurring in the aquatic system may either consume P, e.g. 

through sedimentation, sorption onto suspended solids or sediment, algal uptake, or 

produce P, e.g. through desorption, biological degradation or re-suspension (Robards et 

al., 1994). Polyphosphates, also known as metaphosphates or condensed phosphates, 

are unstable in water and will eventually convert to orthophosphate (Eaton et al., 2005). 

Orthophosphate is the most stable form of phosphate, and is the form used by in-stream 

biota since it is available immediately without any extracellular processing (Eaton et al., 

2005). Orthophosphate is commonly referred to as "reactive P”. The term “reactive” in this 

research is defined by the analytical methods for P meaning that P reacts in the acid 

molybdate reaction to produce the blue colour without prior hydrolysis or oxidation 

treatments. 

 

 



Chapter 1 

9 
 

 

Figure 3. Schematic of analytically defined particulate and dissolved phosphorus 
fractions. From Eaton et al. (2005) p.4.147. The forms of P which this research 
focuses on are indicated by the boxes with black thick lines. Dissolved reactive 
phosphorus (box E) in this research is termed soluble reactive phosphorus (SRP). 
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Of the several forms of P (Figure 3) which can be measured this research will focus on 

total phosphorus (TP), a measure of all the forms of P, dissolved or particulate, which are 

found in a water sample and also soluble reactive phosphorus (SRP), a measure of the 

filterable inorganic fraction of P, the form directly taken up by in-stream biological 

processes. SRP is a measure of orthophosphate but also includes any labile condensed 

and organic phosphate which is hydrolysed during the analytical measurement (Robards 

et al., 1994). 

 

P in streamwater arises from many sources, including the effluents of domestic or 

industrial origin, in particular from sewage and from diffuse inputs from agricultural land 

due to inorganic fertilizer use, organic manure application and natural deposits from 

grazing animals (Robards et al., 1994). In peat-dominated catchments where there is a 

low human influence, the leaching and weathering of igneous and sedimentary rocks, the 

decomposition of organic matter containing P compounds either weakly associated with 

the organic material or chemically bound within it, P from atmospheric deposition and 

soil/river bank erosion and P mobilised from in-stream sediments during high flow events 

are more influential sources than P from sewage effluents (Robards et al., 1994). 

 
 

The ‘average’ area-normalized TP and SRP exports to watercourses in Great Britain are 

approximately 240 mg P m-2 yr-1
 and 180 mg P m-2 yr-1, respectively (White and 

Hammond, 2009). These values were calculated using inventories of industrial P exports 

and estimates of P exports from sewage treatment works and diffuse sources. From this 

the annual TP and SRP exports to British waters are estimated to be 60 and 47 kt P yr-1 

respectively, of which households contribute 73 / 78 % (TP / SRP), agriculture contributes 

20 / 13 %, industry contributes 3 / 4 %, and 4 / 6 % comes from background sources 

(White and Hammond, 2009). Background sources are defined as atmospheric deposition, 

orchards, woodlands, forests, wetlands including bogs, fens, marshes and swamps (White 

and Hammond, 2009) and are generally low since P is not abundantly available from most 

British geologies (Mainstone and Parr, 2002). Estimates of rates of background P export 

to rivers vary widely, partly due to methodological differences in estimations and partly 

due to natural differences in catchment conditions. The majority of estimates range 

between 5 and 65 mg P m-2 yr-1 (e.g. Vighi and Chiaudani, 1985; Billen et al., 1991) and 

Withers and Jarvie (2008) more recently estimated the background input of P to rivers to 

be generally < 10 mg P m-2 yr-1.  
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Peatland streamwaters are generally classed as oligotrophic due to the fact they are 

characterised by extremely low nutrient concentrations, with P often the growth-limiting 

nutrient (Mainstone and Parr, 2002). The addition of excess P to freshwater environments 

may eventually result in eutrophication – the accumulation of nutrients – resulting in algae 

and aquatic plants in large quantities (Isermann, 1990; Mainstone and Parr, 2002). When 

these die, bacterial decomposition uses up dissolved oxygen which can result in fish kills 

(Nisbet, 2001). Whilst eutrophication can occur naturally, it is in many instances 

associated with anthropogenic sources of P which increase the rate at which P enters the 

water. The control of P loss is therefore important in mitigating the eutrophication of 

streamwaters. Peatland streams are highly sensitive to small increases in P availability, so 

even enrichment of the order of 10 g L-1 is of concern (Mainstone and Parr, 2002). 

 

Environmental standards set for [SRP] in rivers in the UK to comply with the European 

Community Water Framework Directive (2000) use annual mean [SRP] in different river 

types based on annual mean alkalinity in the form of [CaCO3] to determine the water 

quality status (UKTAG, 2008) (Table 1 and Table 2). The directive specified that 

substances which contribute to eutrophication, in particular phosphates, are priority 

pollutants. Not only are [P] important in terms of water quality and streamwater trophic 

status, but contemporaneous P availability with C will influence the connection of 

streamwater and atmospheric C cycles. Ecological stiochiometric theory predicts that the 

potential for DOC to be respired to CO2 is influenced strongly by availability of P (Frost et 

al., 2005; Cross et al., 2005) suggesting that a stoichiometric perspective could also be 

useful to investigate the fate of DOC. This is a simplistic overview of the interaction of C 

and P in streamwaters, since it is also influenced by environmental conditions and 

community structure, but ultimately nutrient availability will influence the fate of exported C 

(Dodds, 2006). 

 

Table 1. Typology for nutrient conditions for rivers, sourced from Water Framework 
Directive UK Technical Advisory Group Environmental Standards and Conditions 
Final Report p.28. (UKTAG, 2008). 

Altitude Annual mean alkalinity (mg L−1 CaCO3) 

< 50 > 50 

Under 80 m Type 1n Type 3n 

Over 80 m Type 2n Type 4n 
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Table 2. Standards for phosphorus in rivers based on [SRP], sourced from Water 
Framework Directive UK Technical Advisory Group Environmental Standards and 
Conditions Final Report p.29. (UKTAG, 2008). 

River type Annual mean [SRP], g L-1 

High Good Moderate Poor 

1n 30 50 150 500 

2n 20 40 150 500 

3n 50 120 250 1000 

4n 50 120 250 1000 
 

 

1.3.3. Nitrogen 

 

In streamwaters the forms of N of greatest interest are, in order of decreasing oxidation 

state, total oxidised N, ammonia (NH3) and organic N, all of which, as well as N2 gas, are 

biochemically inter-convertible (Robards et al., 1994) (Figure 4). Organic N includes 

proteins and peptides, nucleic acids and ureas, and numerous synthetic organic materials 

(Eaton et al., 2005). The concentration of NH4
+ is generally low in streamwaters as it 

adsorbs to soil and clay particles and is not leached readily from soils (Eaton et al., 2005). 

Total oxidised N (TON) consists of nitrate (NO3
-) and nitrite (NO2

-). NO2
- is an intermediate 

oxidation state of N, both in the oxidation of NH3 to NO3
- and in the reduction of NO3

- 

(Eaton et al., 2005), which occurs naturally in streamwaters. 

 

 

Figure 4. Schematic of nitrogen forms in streamwater. The forms this research 
focuses on are shown in the boxes with thick black line. 
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The concentration in streamwater of these species varies widely depending on the 

geographical location, local geology and land use but NO3
- is usually the most important in 

waters (Neal et al., 2003). NO3
- generally occurs in low concentration in peatland 

streamwaters, and increases with the amount of agricultural land within a catchment 

(Chapman et al., 2001). Apart from the input of N in rainfall, some of which is N from fossil 

fuel combustion (Neal et al., 2003), the main inputs of NO3
- into freshwater come from 

slurry, mainly as NH4
+ until nitrified, and fertiliser applied to agricultural land, via 

wastewater point discharges or through diffuse runoff (Robards et al., 1994). NO3
- is an 

essential nutrient for most photosynthetic autotrophs and [N] in streamwater is also 

important because, as with P, increasing concentrations are linked to excessive algal 

growth (Robards et al., 1994). NO3
- is identified in Annex VIII of the Water Framework 

Directive (2000) as a priority pollutant which contributes to eutrophication. Further to this, 

in excessive amounts NO3
- is linked to the illness known as methaemoglobinemia in 

infants and to gastric and stomach cancers (Magee, 1977). The EU Drinking Water 

Directive sets a maximum admissible concentration of 11.3 mg L-1 for NO3
--N in drinking 

water to avoid methaemoglobinemia in infants. Rather than assess the potential clinical 

effects, the measurement of TON and NO2
-, and the subsequent calculation of [NO3

-] (see 

Chapter 3.3.2.3) were conducted in this research in order to assess whether disturbance 

due to windfarm construction increases the transfer of NO3
- from soils to the aquatic 

system. Increases in NO3
- could impact on streamwater trophic status and, since NO3

- is 

the form of N most readily available for take-up by in-stream biota, could also affect the 

extent to which in-stream C is respired to CO2 (Lennon and Pfaff, 2005). 

 

1.4. Windfarm-Related Disturbance 

 

Windfarm-related disturbance to peatland can be separated into two types – windfarm 

construction activities associated with hosting the windfarm infrastructure, and forestry 

operations to improve air flow or to meet habitat management plan (HMP) requirements. A 

HMP usually has the objective of restoring commercial conifer plantation to peatland 

habitat through the re-establishment of bog forming plant species, often as part of 

measures to mitigate the impact of a windfarm on wildlife, particularly for the benefit of 

peatland breeding and wintering birds. The need for deforestation is especially apparent 

at Scottish windfarm developments where the large areas of commercial conifer forest 

planted after World War Two through to the 1980s on less productive upland soils 

provided a strategic timber reserve. Between c.1947 and c.1988, the area of blanket peat 

in Scotland is estimated to have declined by 21 % (Mackey et al., 1998). Half of the 
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reduction in the blanket peatland area (51 %) was due to afforestation and much of the 

remainder was drained (44 %), mainly in preparation for forest planting (Mackey et al., 

1998).  

 

1.4.1. Windfarm Construction Activities 

 

During windfarm construction disturbance to the soil is unavoidable. Disturbance arises 

from the excavation of borrow pits (onsite quarries), construction of access roads, 

insertion of turbine foundations and associated drainage channels at turbine bases and 

beside roads (see Appendix 1). Windfarm construction activities are likely to lead to the 

exposure, compaction and dewatering of peat, potentially impacting on [C] in streamwater, 

and are also likely to enhance peat decomposition rates and increase CO2 emissions. 

Construction activities especially those related to drainage could also affect C exports due 

to changes in hydrological pathways. The scale and impact of these activities are thought 

to be similar to disturbances associated with peat harvesting which has been shown to 

increase aquatic C exports, with DOC exports from harvested peatlands in Canada found 

to be approximately twice those from undisturbed peatlands (Glatzel et al., 2003).  

 

The few early concerns about windfarms on peatland centred on the risk of peat slides 

following the slide in 2003 during construction of the Derrybrien windfarm in County 

Galway, Ireland, where 70 ha of peat and conifer plantation slid downhill conveying 

450,000 tonnes of peat into surrounding watercourses. As a result of this incident, 

guidance is now extensive on mitigating slide risk and the EIA process in Scotland 

includes peat stability reports which should be conducted according to guidance in “Peat 

Landslide Hazard and Risk Assessments – Best Practice Guide for Proposed Electricity 

Generation Developments” (Scottish Government, 2007). This requirement has the added 

benefit of enforcing an extensive peat survey indicating areas of deep peat best avoided 

for construction. A detailed report on the Derrybrien windfarm peat slides (Lindsay and 

Bragg, 2005) did not focus solely on the peat slide but also highlighted the importance of 

losses of C through drainage and the oxidation of peat during windfarm construction in the 

overall C budget of the site.  

 

One of the only two published papers sourced after an extensive literature search on the 

impact of windfarm development on streamwater chemistry included exports of DOC and 

suspended sediment calculated during the period immediately following the completion of 
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construction of a windfarm on peatland in Scotland (Grieve and Gilvear, 2008). Six 

streams draining the Braes of Doune windfarm near Stirling, and three control streams 

were sampled on the same dates on seven occasions from October 2006 to February 

2008. [DOC] in the streams draining the windfarm were always greater than those in the 

control streams, with mean differences ranging from 2 to around 5 mg L-1 and maximum 

concentrations in excess of 30 mg L-1 during high flow events. Suspended sediment 

concentrations were found to be elevated markedly in the disturbed streams with 

maximum concentrations in event flow four to five times greater than in the controls. 

Comparing flow-weighted mean [DOC] between the disturbed and control catchments, 

DOC export attributed to windfarm-related disturbance was estimated at 5 g m-2 (Grieve 

and Gilvear, 2008). The second paper published regarding the impact of windfarm 

development on streamwater chemistry took a stiochiometric perspective on C, P and N 

export in streamwater before and during windfarm construction in peat-dominated 

catchments. C, P and N exports were reported to increase in a stoichiometric manner 

which supports aquatic respiration rather than promotes an increase in microbial biomass, 

thus greater CO2 degassing may prevail (Waldron et al., 2009). Hence, disturbance of 

terrestrial C stores may impact both the aquatic and gaseous C cycle (Waldron et al., 

2009). 

 

1.4.2. Forestry Operations 

 

Disturbance to the soil can also be caused by the forestry operations required for some 

windfarm developments to improve airflow and to reduce wind turbulence thereby 

increasing windfarm output, and for HMPs. Tree harvesting is a major disruption of the 

catchment nutrient cycle. The Forests and Water Guidelines (Forestry Commission, 2003) 

– the best practice guidelines in the UK for forest management and design – indicate that 

forestry operations can impact on C, P and N dynamics in streamwater. Four types of 

forestry operations are commonly carried out at windfarm developments: clear-felling, key-

holing, whole-tree mulching and brash mulching. Clear-felling is deforestation where all 

merchantable trees within a coup (area of plantation) are harvested and no significant tree 

cover remains. Statistically significant increases in streamwater [DOC] have been 

reported after clear-felling (Cummins and Farrell, 2003a, Tetzlaff et al., 2007, see Table 

3). In both cases the increases were superimposed on the seasonal cycle of streamwater 

[DOC] and observed only during the maximum phase of the season cycle. A number of 

studies have documented large increases in streamwater [P] (Ahtiainen and Huttunen, 

1999, Cummins and Farrell, 2003b and Rodgers et al., 2010) and [NO3
-] (Reynolds et al.,  
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1994, Neal et al., 2003a) following tree harvesting. The Forests and Water Guidelines 

state that elevated [P] in peatland streamwaters last 12 to 18 months after clear-felling 

(Forestry Commission, 2003) and elevated [NO3
-] may last 2 to 5 years (Forestry 

Commission, 2003), depending upon the rate of re-vegetation (Stevens and Hornung, 

1990; Emmett et al., 1991b).  

 

The second type of forestry operation commonly carried out at windfarm developments is 

‘key-holing’ in which minimal tree removal is conducted from a short distance around 

locations, for example a strip of 30 m of plantation removed either side along windfarm 

tracks and a 50 m radius removed around turbine bases. This felling type reduces wind 

turbulence around turbines in forested areas. Due to its smaller scale, disturbance from 

forestry ‘key-holing’ is less likely to impact on streamwater chemistry.  

 

In areas of forest where trees are too small to be merchantable or the ground is too wet 

for conventional felling machinery, whole-tree mulching may be employed. This is where 

standing trees are reduced to small chips which are left in-situ to degrade, from which a 

pulse of labile nutrients may be released to adjacent watercourses. Whole-tree mulching 

is conducted generally on a less extensive scale than clear-felling since it is carried out 

only where necessary due to the lack of economic return for the trees. 

 

Where clear-felling is conducted, the above-ground parts of the tree unacceptable for 

conventional timber processing, usually the tops of trees, branches and conifer needles as 

well as small dead trees – collectively termed ‘brash’ – are left on the ground. Some of 

this material is used to form a ‘brash mat’ to help protect the underling peat from physical 

damage, such as rutting, liquefaction, compaction and erosion, caused by the heavy 

felling machinery. Brash contains much higher nutrient concentrations than stem wood 

and is, therefore, an important source of leachable nutrients (Nisbet et al., 1997). 

Furthermore, although not directly comparable to fertiliser inputs, brash may contain 

approximately half the concentration of P and potassium recommended in fertiliser 

prescriptions and double the normal N application rate for conifer plantations (Taylor, 

1991). When brash is retained intact on site once felling is complete it returns nutrients to 

the soil over time. Stevens et al. (1995) presented evidence that brash is a source of P to 

drainage waters, showing that in the year after felling of a UK upland conifer plantation 

around one third of the total amount of P present in brash leached into soil water, which 

could potentially impact on streamwater.  
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If the brash is not left in-situ but mulched on site, the increased decomposition rate of the 

material has been shown to impact on water quality through the increased likelihood of 

leaching of labile nutrients (Titus and Malcolm, 1999; Moffat et al., 2006). Peatland 

streams are particularly sensitive to nutrient leaching from brash mulching because they 

are naturally nutrient-poor with biological activity usually P-limited. Brash mulching is 

known to lead to P enrichment and disruption of the stream ecosystem (Forestry 

Commission, 2003).  

 

1.5. Environmental Impact Assessment and Streamwater Chemistry 

 

Proposals to construct, extend or operate an onshore windfarm in Scotland with a 

generation capacity under 50 MW are submitted to the local planning authority. Under 

Section 36 of the 1989 Electricity Act, onshore windfarm proposals in excess of 50 MW 

require the consent of the Scottish Government. In either case an Environmental Impact 

Assessment (EIA) must be prepared in accordance with The Electricity Works 

(Environmental Impact Assessment) (Scotland) Regulations 2000 in advance of a 

consultation and the planning decision. The EIA usually includes a description of the 

physical characteristics of the windfarm and land use requirements during construction 

and operation and discusses aspects of the environment likely to be affected by the 

development including, population, flora, fauna, soil, water, air, climate, archaeology and 

landscape. The EIA also includes a summary of likely significant impacts of the 

development on the environment, whether they are direct, indirect, secondary, cumulative, 

short-, medium-, long-term, permanent, temporary, positive or negative, and a description 

of the mitigation measures designed to prevent, reduce and where possible offset any 

significant adverse effects. 

 

Although EIA usually mention possible impact on water quality, it is often in terms of 

maintaining public and private water supply or fish stocks and the eutrophication of lochs 

and reservoirs, rather than the potential for impact on the trophic status of streamwater 

draining disturbed peatlands, which are usually nutrient poor. Further to this, at present 

streamwater C export is not considered to cause a significant environmental impact and 

the link between peatland streams and the atmospheric C cycle (c.f Cole et al., 2007) 

does not appear to be considered in EIA. This is due to the paucity of data for peatland 

catchments subject to windfarm-related disturbance as there are no data available to 

assess whether or not there is an impact. This is an idea brought to the fore in Waldron et 

al. (2009). 
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1.6. Research Aims 

 

In the past five years, the impact of onshore renewables on peatland C stores has been 

attracting attention from the public, a growing awareness in political communities, and 

more gradual interest from the scientific arena (c.f. Grieve and Gilvear, 2008, Waldron et 

al., 2009). The basic premise of the research for this thesis which started in October 2007 

is to build on the preliminary data published by Waldron et al. (2009), to explore the 

effects of different windfarm disturbance activities on streamwater chemistry and thereby 

increase the accuracy of export estimates. Rather than adopting the same stiochiometric 

approach as Waldron et al. (2009), the focus of this research is to identify what impacts on 

streamwater C, P and N occur during and after windfarm development as there are 

currently knowledge gaps about how peatland streamwaters respond to windfarm 

construction and associated forestry operations. The research thus serves to inform 

windfarm developers, land managers, policy makers and environmental regulators about 

the impacts of windfarm-related disturbance on streamwater chemistry and will provide, 

based on the impacts observed, recommendations for best practice at future windfarm 

developments. The management of peatland C stores is important and, although the 

development and operation of onshore windfarms is currently the predominant form of 

disturbance to peatland, this research is also relevant to any type of development on 

peatland which shares the same disturbance mechanisms.  

 

This research aims to: 

1. Observe streamwater C, P and N concentrations in catchments draining a 

windfarm sited on peatland during and after windfarm construction to identify what 

impacts occur, examine the magnitude of any impacts and quantify the recovery 

time from these impacts; 

2. Quantify streamwater exports of C, P and N; 

3. Compare the magnitude of streamwater C exports to suggested peatland C 

sequestration rates; 

4. Use a geographic information system (GIS)-based analysis to describe catchment 

characteristics and to identify the controls on streamwater C, P and N 

concentrations and exports and to assess the impact of windfarm-related 

disturbance on these; and 

5. Make recommendations for best practice with regards to minimising impacts on C, 

P and N concentrations and exports at future windfarm developments on peatland. 
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1.7. Thesis Structure 

 

The thesis consists of six further chapters. Chapter 2 covers the field methodology and 

describes the field site, windfarm development, catchments and water sampling points. It 

also includes the water sampling procedure, a description of the deployment and use of a 

continuous water depth and water quality logger, the hydrograph during the study period 

and the flow duration curve of the nearest long-term SEPA gauged catchment. Chapter 3 

outlines the methodology for the laboratory analysis of concentrations in the water 

samples. The choice of filter procedure and filter pore size is discussed and the impact of 

different sample storage procedures on return from the field on [C] is examined. 

 

To address aim 1, the C, P and N time series of concentration from the approximate bi-

monthly sampling are presented in Chapter 4. For each parameter, whether there is an 

impact of disturbance detectable at the sampling points outwith the immediate area of 

disturbance is assessed through a harmonic regression analysis on the C and N time 

series and by referring to the UK Technical Advisory Group Environmental Standards in 

the case of the SRP time series. Inter-catchment and annual differences were identified 

and from these differences, the main controls on streamwater chemistry were inferred.  

 

In Chapter 5 the monthly and annual streamwater C, P and N exports for before, during 

and after windfarm construction are presented, interpreted and compared with estimates 

from a range of other catchments to address aim 2. The generation of long-term half-

hourly estimates of Q by three methods is described and the choice of the most suitable 

method of estimation of Q for each catchment is explained. To deliver aim 3, the C 

exports for the catchments are compared to estimated C sequestration rates for the 

Whitelee peatland. 

 

In the penultimate chapter the controls on streamwater chemistry are investigated in 

relation to windfarm-related disturbance through the creation of a GIS to describe the 

physiography of each catchment and to quantify the extent of windfarm-related 

disturbance classified into low- and maximum- disturbance phases to address aim 4. 

Next, multiple linear regression analysis between median concentration and export for 

each parameter during each disturbance phase is described with the aim of identifying the 

most likely controls on C, P and N in streamwater. Chapter 6 concludes with an 
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assessment of the impact of windfarm-related disturbance on streamwater chemistry and 

exports. 

 

In the final chapter the key results are summarised in relation to research aims 1-4. Next 

the impacts of windfarm-related disturbance are synthesised to address the fifth aim and 

two recommendations are suggested for minimising the impact on streamwater chemistry 

in future windfarm developments. In conclusion specific proposals are made for further 

research into streamwater chemistry at windfarm developments hosted on peatlands, 

based on the findings of this research.  
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2. Field Methodology 

 

2.1. Chapter Outline 

 

This chapter covers the field methodology and describes the field site, windfarm 

development, catchments and water sampling points. It also includes a description of the 

water sampling procedure and the deployment and use of a continuous water depth and 

water quality logger.  

 

2.2. Description of Field Site 

 

To examine the five research aims (see Chapter 1.6), a field site with rivers draining C-

rich soils, subject to disturbance, was sought. A peatland plateau, Whitelee, 30 km to the 

south of the city of Glasgow, central Scotland (55o 40’ 24” N, 04o 16’ 00” W), was selected 

(Figure 5). Here Europe’s largest onshore windfarm, comprising of 140 turbines and 

covering an area of 55 km2, was under construction during the research period. The 

attributes of this field site are representative of many peatlands under consideration for 

windfarm developments therefore the results of research will be applicable to peatlands 

across the UK. This fieldsite has relatively low human population densities so 

anthropogenic sources of C are low for almost all the catchments making them ideal for 

this kind of impact study. 

 

The Whitelee plateau has a maximum altitude of 376 m above sea level and is mainly 

covered with commercial plantations of Sitka spruce (Picea sitchensis) (Figure 6). For the 

history of the transformation of the Whitelee plateau moorland into the conifer forest see 

Tittensor (2009). There are three small water supply reservoirs, Lochgoin, Dunwan Dam 

and Craigendunton, to the west of the Whitelee Forest. The predominant land-use other 

than commercial forestry is rough grazing of sheep and cattle on the areas of open 

moorland (acid grassland and rush pastures), although there are some areas of improved 

pasture and arable land on the lower slopes to the north of the Whitelee plateau. A 

summary of meteorological data from the Whitelee area is included in Table 4 to indicates 

that the climate of the field site can be summarised as cool and moist. 
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Figure 5. Map of UK showing location of field site. 

 

 

 

Table 4. Meteorological data from the nearest meteorological station to the Whitelee 
catchments, Saughall (G.R. NS 259841 636403), 3 km west of sampling point 1. Data 
courtesy of Michael Chalton, Saughall Meteorological Station. 

Meteorological Data Saughall   

Altitude 221 m 

Mean annual rainfall 
(1975-2005) 

1342 mm 

Mean annual air temperature 
(1998-2005) 

Max 
11.5 °C 

Min 
4.2 °C 

Mean actual sunshine 
(1961-1990) 

3.61 hours/day 

Mean days of air frost per annum 
(1988-2005) 

72.8 

Mean no. of gales per annum 
(1988-1997) 

9.4 

Mean winter soil temperature @ 30 cm depth 
(1988-2005) 

2.69 °C 

Mean summer soil temperature @ 30 cm depth 
(1988-2005) 

13.5 °C 
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The dominant soil type across the Whitelee plateau is peat (Figure 7). Peat depth was 

measured (by Ritchies on behalf of CRE Energy) at 161 locations across the windfarm 

development. Depths ranged from 5 cm to over 8 m, with a mean depth of 190 cm (± 

134.7 cm 1 S.D.). The peat across much of the area has been affected by the commercial 

forestry operations, although relatively undisturbed areas of peat also exist. Adjacent to 

the peat are poorly drained non-calcareous gleys, peaty podzols which are freely draining 

below the iron pan, freely draining brown earth forest soils, imperfectly draining brown 

forest soils, very poorly drained humic gleys and poorly drained peaty gleys (Figure 7). 

The slopes of the Whitelee plateau are composed of very poorly draining humic gleys and 

imperfectly and poorly drained non-calcareous gleys (Figure 7). On the lower hillslopes 

and in association with stream channels there are freely draining brown forest soils of low 

base status and freely draining peaty podzols. 

 

The following description of the Whitelee plateau geology is sourced from the 

Environmental Impact Statement (EIS) prepared by Scottish Power for planning consent 

for the windfarm (CRE Energy, 2002). The underlying geology is dominated by 

carboniferous micro to macroporphyritic basalts of the Clyde plateau volcanic group of the 

calciferous sandstone series. There are small areas of basaltic tuffs and trachytes. 

Volcanic detritus deposits are present in many areas. The extrusive igneous rocks are 

associated with intrusive igneous bodies of trachyandesite, which also date to the 

Calciferous Sandstone age. The area is cut by major north-west – south-east trending 

andesite and andesitic quartz-dolerite dykes, which date from the Tertiary. The area has 

undergone some minor folding and is likely to have undergone some minor localised 

thermal metamorphism associated with the igneous activity. The bedrock is overlain 

generally by approximately 3 m of glacial and recent drift deposits but does outcrop in 

small areas throughout the field site. An area of earthy and sandy angular moraine is 

present in the centre of the field site. Drumlins are present in the south west of the field 

site in the till. 
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2.3. Whitelee Windfarm Development 

 

Whitelee is Europe’s largest onshore windfarm in terms of capacity with the potential to 

generate 322 MW and comprises 140 turbines. Construction began in October 2006 and 

Whitelee became fully operational in May 2009. It is estimated that Whitelee avoids more 

than 542,400 tonnes of CO2 emissions per annum, based on the direct replacement of 

energy production from coal-fired power stations (CRE Energy, 2002). The C payback 

time of the windfarm – the time of operation required to accumulate sufficient carbon 

savings to balance the carbon losses due to its development (c.f. Nayak et al., 2010) – is 

estimated to be three years, whilst the windfarm lifespan is 25 years (personal 

communication with Scottish Power Renewables).  

 

The following descriptions of the development of tracks, turbines and borrow pits have 

been sourced from the Environmental Impact Statement (CRE Energy, 2002) and through 

personal communication with Scottish Power Renewables. As well as the windfarm 

infrastructure much of the windfarm area was forested with plantations of Sitka spruce so 

felling of large areas of commercial forestry, owned by The Forestry Commission and 

adjacent private forestry holdings, was required for windfarm construction and operation. 

The locations, timings and likely extent of disturbance of felling activities were obtained 

from the Forestry Commission and Forest Enterprise.  

 

2.3.1. Access Tracks 

 

Prior to construction, there were no roads in the area of the windfarm, apart from forest 

tracks and a few access lanes to the scattered farms extending onto the higher ground. 

Only the main accesses to the windfarm development (< 1 km) were tarmac roads. 86 km 

of non-tarmac access track was required to link the turbines and control compound 

(Figure 6). The tracks were laid from west to east across the plateau from a 17 km non-

tarmac “spine road” (Appendix 1). Construction of the tracks began in October 2006 and 

was completed by June 2007. The majority of the tracks (70 %) were floating, constructed 

by first laying a geotextile mat on top of the heather, followed by a geogrid which is a 

plastic grid designed to interlock with road construction aggregates to stabilise the road 

while coping with tensile forces. A 6.5 m wide, 600 mm deep fill of graded rock was placed 

over this, with the rocks sized to fit through the holes in the geogrid to lock it in place. This 

was rolled, and 200 mm of crushed rock was laid over a second geogrid to form the 

surface. The tracks were built in short lengths and designed so that roadside drainage 
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was limited to small areas and disruption to the existing drainage regime was believed to 

be mitigated or wholly avoided. Water is able to permeate through the tracks into the 

underlying soil. The track layout was designed to use existing tracks as far as possible 

and to minimise the length of track required and adverse effects on landscape, ecology 

and archaeology, while maintaining appropriate gradients for construction vehicles. The 

tracks were aligned to reflect contours and field boundaries and avoided wherever 

possible areas of deep peat, cross-slopes and cuttings into existing terrain. There were 

over 200 water crossings, and runoff from roads and construction work was collected by 

drainage ditches into settlement ponds in which alum blocks were placed to encourage 

flocculation and settlement of suspended material prior to discharge into watercourses. 

 

2.3.2. Turbines 

 

Three-bladed horizontal axis turbines were erected on the Whitelee ridge, a location 

where the long-term average wind speed is approximately 8 m s-1 at a height of 70 m 

above the ground (CRE Energy, 2002). The turbine locations are shown in Figure 6. The 

following information regarding the construction of the turbine foundations was obtained 

through personal communication with John Buick, Project Engineer for Scottish Power 

Renewable Energy Ltd. The turbine bases consisted of a 3.1 m deep reinforced concrete 

base above granulated fill of stone obtained on-site, which varied in depth depending on 

the distance to the hardstanding below. The foundations vary in diameter from 15.85 m to 

16.75 m, with the wider bases used over deeper and more fluid peat. If the foundation was 

situated in fibrous peat, construction was straightforward, with a 50 m wide hole 

excavated to the hardstanding, granulated fill inserted and a layer of blinding concrete 

poured to form a solid base. The bases constructed in fluid peat required a different 

excavation technique, as the hole fills up with fluid peat during excavation. The “rock 

doughnut” technique was used. An excavator was used to punch large rocks in a circle 

through the fluid peat to the depth of the underlying glacial till. This was backfilled with 

smaller rock. The resulting circle of punched rock held the fluid peat back so that the 

middle could be scooped out and the base constructed. In both cases, the surface 

vegetation was reinstated following construction. Drainage was constructed around the 

turbine bases to provide extra stability.  

 

Approximately 77 km of buried cabling connects the turbines to the on-site substation at 

the eastern end of the windfarm development. This mostly follows the routes of the tracks 

in trenches of approximately 1 m depth. After cable-laying, the trenches were backfilled 

with the original excavated material, and the original turf and topsoil placed on top. A 
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further 6.5 km underground cabling carries the electricity generated from the substation at 

the east of the windfarm development (G.R NS 637 468) to a grid connection point at East 

Kilbride South transformer station (G.R NS 695 530). 

 

2.3.3. Borrow Pits 

 

In order to minimise transport movements on main and local roads, on-site borrow pits 

were used to source the majority of the inert material for track construction, turbine 

hardstandings, backfill on the turbine bases and temporary turbine construction platforms 

at each turbine to support the crane used to erect the wind turbine. In excess of 300,000 

m3 of peat were excavated to extract hard core from six on-site borrow pits (Figure 6 and 

Appendix 1). On-site and imported construction materials were analysed to check that 

they were inert in terms of leaching and would not impact later on soil and water 

chemistry. The position, size and shape of the borrow pits were chosen to minimise the 

impact on ecology, hydrology and views and to facilitate reinstatement. The areal size of 

the borrow pits in relation to the whole windfarm development is very small. After the 

extraction of hard core, the borrow pits were backfilled with surplus excavated peat and 

the stripped top layer of turf re-used for restoration to form stable profiles similar to the 

existing natural landform. The backfilled areas were firmed and the re-located turf lightly 

compacted to remove air pockets and to attach the turf to underlying peat, apart from at 

one borrow pit where turf was not available, and the backfilled area was seeded with a 

native grass seed mix containing some heather (Cameron Ecology, personal 

communication). 

 

2.3.4. Windfarm-Related Forestry Operations 

 

An overview of the impacts of clear-felling on peatland is given in Chapter 1.4.2. Felling 

took place from winter 2006, five months after water sampling commenced, and forestry 

operations were completed during July 2008. Felling was carried out in two phases in 

parallel with the other construction activities. The initial phase was localised felling to 

facilitate construction of the tracks, turbine bases, substation, and cable installation. 

“Keyhole” felling of an area of 100 m diameter was carried out around individual turbines 

located within retained areas of forestry. Access tracks required additional felling of 

approximately 30 m either side of the tracks although tracks were, as far as possible, 

located on existing forestry rides to minimise the amount of felling required and the risk of 

windthrow.  
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The second phase involved larger areas of tree removal to create the area to be retained 

as open ground for the life of the windfarm. The locations of this felling are shown in 

Figure 6. The nature, extent and timings of these large-scale felling activities are 

summarised in Table 5. Deforestation is required to improve airflow, reduce wind 

turbulence and thereby increase windfarm output. Deforestation was also required outwith 

the main area of turbines as part of the HMP with the objective of restoring commercial 

conifer plantation to bog as part of mitigation measures for the impact of windfarms on 

wildlife, particularly for the benefit of upland breeding and wintering birds.  

 

In total for both phases of felling 1042 ha of forest was clear-felled. In addition, and on-

going during the lifespan of the windfarm, 1999 ha of forest is managed on a short rotation 

to ensure that the average tree height does not exceed 10 m. Trees taller than this height 

can impede air flow and therefore have a negative impact on wind speed, strength and 

direction and power generation by the wind turbines. When the mean tree height reaches 

10 m the trees will be felled and each coupe will be restocked according to standard forest 

practice at the time. The extent of short rotation forestry areas can be seen in Figure 6.  

 

2.4. Description of Water Sampling Points 

 

As Whitelee windfarm is located on an elevated plateau surrounded by lower land there is 

a radial drainage pattern which constitutes several catchments. This research used the 

same water sampling points of the outlets at the nine catchments draining the Whitelee 

windfarm as Waldron et al. (2009) (Figure 8). The nine sampling points are outwith the 

windfarm boundary and are at different distances downstream from windfarm-related 

disturbance in order to assess how far downstream any impact of disturbance may be 

detectable. It was not possible to carry out longitudinal sampling due to access issues, 

time and logistical constraints. No control catchment exists because the catchments are 

subject to varying types and amounts of windfarm-related disturbance and through 

comparison it is possible to attribute an impact to a specific type of disturbance. 

 

Catchments 456, 9A, 9D and 17 are north draining and the remaining five, catchments 13, 

14, 15, 1 and 1632, are south draining (hereafter termed N-draining and S-draining 

respectively). The catchment names are those used in the EIS (CRE Energy, 2002). In 

August 2008, sampling was discontinued at catchment 17 due to the construction 

upstream of a flood storage facility which was considered to alter the flow regime and the 

water chemistry at this location.  
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Therefore in August 2008, 17U, 3.7 km upstream of sampling point 17, was added as an 

alternative to the discontinued sampling point. The grid references of the sampling points 

are given in Table 6 and an image of each sampling point is in Appendix 2. The streams 

draining the nine study catchments coalesce to form tributaries to the larger rivers of the 

area, with the N-draining catchments flowing into the White Cart Water, and the S-draining 

catchments feeding into the River Irvine. A stage board and a continuous water quality 

logger were deployed at sampling point 13 during the period of research (see Chapter 

2.5). 

 

2.4.1. Description of Catchments 

 

Table 6 includes the catchment area and length of the maximum flow path upstream of 

each sampling point calculated using ArcGIS, the elevation of each sample point 

generated from digital elevation data and the stream order at each sampling point 

generated using the Strahler ordering method (see Chapter 6.2.3.1.1). The ecological 

classification of the surface waters for the EU Water Framework Directive according to the 

SEPA River Basin Management Plan Interactive Map (www.sepa.org.uk/water/ 

river_basin_planning.aspx#Interactivemap) and the main land use data from Coordination 

of Information on the Environment (CORINE) Land Cover Map for 2000 (see Chapter 

6.2.3.1.3) are also included in Table 5. An overview of windfarm-related disturbance and 

forestry operations in each catchment is presented in Table 7.  

 

The Water Framework Directive (2000) UK Technical Advisory Group Environmental 

Standards for [SRP] require the classification of river type based on thresholds of altitude 

and alkalinity in the form of [CaCO3] (UKTAG, 2008) (Table 8); thus alkalinity analysis was 

carried out for one hydrologic year from October 2009. All the S-draining catchments and 

N-draining catchments 9A and 9D have annual mean alkalinity of < 50 mg L−1 CaCO3 at 

an altitude of > 80 m (Table 9) which classifies these rivers as Type 2n. Catchments 456 

and 17U have annual mean alkalinity of > 50 mg L−1 CaCO3 at an altitude of > 80 m (Table 

9) which classifies these rivers as Type 4n. 
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Table 8. River type thresholds required to determine SRP standards. 
 

Altitude Annual mean alkalinity (as mg L-1 [CaCO3]) 

< 50 > 50 

< 80 m Type 1n Type 3n 

> 80 m Type 2n Type 4n 

 

Table 9. Mean annual alkalinity for the Whitelee catchments for the hydrologic year 
2009-2010. The altitude of all the catchment sampling points was > 80 m.  
 

Catchment Altitude (m) Annual mean alkalinity (mg L−1 CaCO3) Type 

13 238 33.3 ± 27.4 2n 

14 167 27.1 ± 14.5 2n 

15 195 13.5 ± 10.4 2n 

1 104 37.3 ± 20.0 2n 

1632 206 28.7 ± 17.0 2n 

456 181 56.6 ± 20.8 4n 

9A 147 37.9 ± 20.2 2n 

9D 146 37.2 ± 20.2 2n 

17U 151 52.2 ± 22.9 4n 

 

2.4.2. Water Sampling Procedure 

 

In this research sampling of surface river water was carried out approximately every two 

to three weeks commencing in October 2007 and continued until September 2010 using 

the same sampling points as Waldron et al. (2009) to build on the five month baseline 

monitoring period prior to this research. Approximately bi-monthly sampling was favoured 

in the present research because, although still likely to miss the detail of high flow event 

transfers, the higher temporal resolution than monthly sampling allowed a more accurate 

estimation of C, P and N exports from the study catchments.  

 

At each sampling point samples were collected at approximately 2 cm below the surface 

of flowing water. On each occasion a 1 L polythene bottle was filled for C analysis and 

100 mL polypropylene vials were filled, one each for P, N and alkalinity analysis, the latter 

being added to the routine sampling regime during the research. New vials were always 

used for the P, N and alkalinity samples, whilst the same bottles, dedicated to each 

sampling point, were re-used for sample collection for C determination. Care was taken to 

sample upstream of any particulate matter disturbed upon entering the river and upstream 

of any visible pipes or drains from roads, fields and houses. The containers and tops were 

all rinsed twice with river water at the site to remove potential contaminants from the 

inside of the containers, with rinsings disposed of downstream from the sampling point, 

and then filled completely with sample.  
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On each sampling occasion all catchments were sampled within a five hour time period. 

The time at which each water sample was collected was recorded along with the water 

depth. At sampling points 13 and 1632 water depth was noted from the installed stage 

boards whilst at the other sampling points stage height was measured using a metre rule 

at the same predetermined location each time so that depth could be compared between 

sampling occasions as an indicator of whether baseflows or high flows were being 

sampled.  

 

Between sample collection and analysis there is the potential for physical, chemical and 

biological processes to change the water quality characteristics (Kotlash and Chessman, 

1998). This was minimised by the storage of samples in a cool box containing ice packs 

until arrival in the laboratory, and refrigeration at 4 °C upon arrival there for the short 

period of time, typically less than 3 hours, until filtration (see Chapter 3.3.1).  

 

2.5. Water Quality Logger 

 

An In-situ Inc. multi-parameter Troll 9000 water quality logger was installed from 

September 2007 to June 2010 in S-draining catchment 13 since this catchment was 

closest to windfarm-related disturbance, had amongst the highest percentage area 

deforested and percentage peat-based soils. The probes attached to the logger measured 

temperature, pH, specific conductivity, absolute pressure and barometric pressure. These 

parameters were measured every 30 minutes, offering an opportunity to characterize 

water quality in catchment 13 and to calculate stage height from pressure data which can 

be used to provide a continuous river flow record (see Chapter 5.2.3). Half-hourly data 

collection was chosen to strike a balance between gaining a better understanding of 

changes during event flow, and the time required to manage and analyse large quantities 

of data.  

 

2.5.1. Water Quality Logger Maintenance 

 

Approximately every two months the probes attached to the logger were cleaned and 

calibrated and the data downloaded using Win-Situ 4 software. The conductivity sensor 

was calibrated with 147 s cm-1 KCl solution (0.037275 g KCl in 500 mL de-ionised 

water). The reference electrolyte solution in the pH probe was refilled and the probe 

recalibrated with pH 4.0 and 7.0 buffers – an appropriate range for the pH in these river 
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systems. Prior to recalibration, the performance of the probes was tested using the 

standard solutions to assess for drift during the preceding two months.  

 

The absolute pressure data, measured using an unvented sensor was corrected for the 

barometric pressure and then converted to depth taking account of gravitational 

acceleration calculated in Win-Situ software from the logger latitude (55⁰) and elevation 

above sea level (238 m) and assuming that the water has a density of 0.998 g cm-3. It was 

9 cm above the streambed for the period 4th September 2007 to 8th September 2008 when 

the logger was swapped for maintenance and 16 cm for the period 22 September 2008 to 

17th September 2010. The time series of stage heights were then converted to Q as 

described in Chapter 5.2.3. 
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3. Laboratory Methodology 

 

3.1. Chapter Outline 

 

This chapter outlines the methodology for the analysis of C, P, N and alkalinity in the 

water samples. The first part of the chapter describes the methodology used for C 

analysis. The second part outlines the P, N and alkalinity analyses. An overview of the 

analysis of each water sample is included in Figure 9. The choice of filter procedure and 

filter pore size is discussed and the impact of different sample storage procedures on 

return from the field on [C] is examined. 

 

 

Figure 9. Overview of the analysis of each water sample. 

 

3.2. Carbon Analysis 

 

3.2.1. Particulate Organic Carbon 

 

POC is defined in this research as the fraction of organic C retained on a 0.7 m pore size 

glass fibre filter and was determined using a loss on ignition method. There is no 

standardised loss on ignition method for the determination of POC in water samples so 

the following procedure was employed using the method used on water samples from a 



Chapter 3 

40 

 

peatland catchment outlined in Hope et al. (1997a) and used by others (e.g. Dawson et 

al., 2002). The sample bottle was removed from the refrigerator and shaken prior to 

filtration to ensure that particulates were in suspension and not settled at the bottom of the 

bottle. A known volume, typically c.1 L, of sample was vacuum-filtered through a pre-

combusted (450 C for 8 hours) GF/F (0.7 m) filter. To minimise contamination the filter 

assembly was rinsed thoroughly between samples with some of the next sample and 

between bi-monthly sampling occasions the filter assembly was soaked in 5 % nitric acid 

solution overnight and then rinsed thoroughly with de-ionised water. 

  

Next the filter was oven-dried (105 C for 3 hours), weighed after cooling in a desiccator 

for 5 minutes and a reading to 0.01 mg was taken. Failure to dry the sample adequately at 

low temperature before removing the organic matter at high temperature can inflate the 

estimate of organic matter in the sample since the weight loss associated with removal of 

hydration water is assumed to be organic matter (Pribyl, 2010). The filter was then ashed 

at 375 C for 16 hours (Hope et al., 1997a). This ignition temperature and time was 

chosen because more than 90 % of carbonaceous material has been shown to be 

removed under such conditions (Keeling, 1962). Organic matter oxidises at ~500 C thus 

ashing at lower temperatures for a longer period avoids structural water loss from clay 

minerals and reduces the potential loss of CO2 from inorganic matter and carbonates, 

which would result in an overestimate of POC (Ball, 1964). The filter was re-weighed after 

cooling in a desiccator for 5 minutes and the readings to 0.01 mg on the balance were 

stable almost immediately. Finally [POC] was calculated using the standard van 

Bemmelen conversion factor of 0.58 (van Bemmelen, 1891; c.f Pribyl, 2010), that is 

assuming that 58 % of organic matter comprises C. Although this is a figure for loss on 

ignition of soils, it was deemed more appropriate for the water samples in this research 

which drain from organic-rich soils compared to another common conversion factor of 

0.33 derived for coastal surface sediment (Hunt, 1981). 

 

From June 2006 to September 2007 the majority of the analysis of POC was carried out 

on samples that were frozen on return from the field, and, at a later date, usually within a 

week, de-frosted overnight and filtered. From October 2007 onwards samples for POC 

analysis were refrigerated and filtered immediately on return from the field, usually within 

3 hours (see Chapter 2.4.2).  
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3.2.2. Dissolved Organic Carbon  

 

Two methods have been used to determine DOC in water samples from the Whitelee 

catchments. From June 2006 to September 2007, prior to this research, the methodology 

outlined in Waldron et al. (2009) used a 100 mL aliquot of a 1 L sample which had been 

frozen on return from the field, de-frosted overnight and filtered for POC analysis. Where 

carbonate was likely to be present in the sample, the filtrate was acidified to pH 4 with 0.1 

M H2SO4. It was then filtered through a GF/F filter, and reduced to a concentrate by rotary 

evaporation (at 50 C and 50 mbar). The concentrate was subsequently freeze-dried to a 

powder. wt % C was assayed by analysis of c. 2 mg of dried powder on a Costech C/N/S 

analyser, linked to a ThermoFinnigan continuous flow mass spectrometer (at the Scottish 

Universities Environmental Research Centre). From the volume of sample filtered, mass 

of solid residue and the wt % C [DOC] was calculated.  

 

From October 2007 to June 2010 DOC analysis was carried out on a 100 mL aliquot of 

the 1 L sample used for POC analysis which had been filtered through a GF/F filter on 

return from the field. The filtered 100 mL aliquot was frozen, for up to a year in some 

cases, prior to DOC analysis to minimise bacterial decomposition. After defrosting 

overnight, to convert inorganic C to dissolved CO2, 50 mL was acidified with 0.01 M H2SO4 

to pH 3.9 using a Mettler DL 20 Autotitrator and de-gassed for 20 minutes in an ultrasonic 

bath with the sample container lid loosened. The degassed samples were analysed on a 

Thermolux TOC analyser which oxidises organic C at high temperature (680 C) in a 

stream of O2 to CO2, subsequently detected by a non-dispersive infra-red sensor.  

 

Prior to each analysis run, linearity of the response to the standards was checked by 

calibration with standards prepared by the instrument, in the range of 10 – 60 mg L-1 

(dilution of a stabilised 1000 mg L-1 total organic C standard solution of potassium 

hydrogen phthalate in water with acidified de-ionised water). Zero standards were 

analysed as the first two and last two samples on a run, and also every 9 samples in order 

to check the background CO2 levels in the system, which were typically negligible. A 

gravimetrically prepared check standard (typically 10 mg L-1) was analysed after every ten 

samples to check for drift and the instrument-prepared standards used for the calibration 

were included as samples in every run to assess analyser performance. On all occasions 

the analyser performed satisfactorily, within 1 % of standard concentration therefore drift 

correction was not necessary. The limit of detection of the DOC analyser is 1 mg L-1. 

Reproducibility studies on 5 samples collected simultaneously on 20th October 2008 at 
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sampling point 456 produced a mean [DOC] of 23 ± 0.6 mg L-1, showing there is little 

intra-sample variation and that any contamination effects from sample containers are 

minimal and also that it is not necessary to run samples in duplicate. 

 

3.3. Phosphorus and Nitrogen Analysis  

 

Phosphorus and nitrogen analysis were primarily carried out by Helen Murray, however, 

some of the analysis was conducted by other analysts (Table 10) following identical 

protocols. The following methods used for the phosphorus and nitrogen analysis were 

taken from the Technicon Methods Handbook and were developed for low level analysis. 

It was decided to carry out the analysis for the same phosphorus and nitrogen species as 

the June 2006 to September 2007 pre-disturbance time series collected by Waldron et al. 

(2009), a decision based on time and cost constraints. The phosphorus and nitrogen 

species measured are the most important in terms of the sustainability of habitat 

downstream and the safe provision of drinking water for domestic use.  

 

Table 10. Analysis carried out by other analysts. 

 

Analyst Parameters Section of Time Series 

Waldron et al. (2009) DOC, POC, TP, SRP, NO3
-, NO2

-     Jun 2006 – Sep 2007 

Nigel Andrews SRP, NO3
-, NO2

- Oct 2007 – Jan 2008 

Steven Adam SRP, NO3
-, NO2

- Oct 2008 – Jan 2009 

Paul Gaffney SRP, NO3
-, NO2

- Oct 2009 – Jan 2010 

 

All glassware for the preparation of reagents and plastic filtration apparatus was soaked 

overnight in a 2 % solution of phosphate-free Decon® detergent before being rinsed with 

copious volumes of warm tap water followed by rinsing twice in de-ionised water and 

drying thoroughly. To reduce variability between analysts the stock standard solutions 

were kept consistent between analysts where possible.  

 

3.3.1. Sample Filtration for SRP, NO3
- and NO2

- 

 

On return from the field, the 100 mL aliquot for SRP, NO3
- and NO2

- analysis was briefly 

stored below 4 C before filtration which was typically carried out within 3 hours of 

collection. The aliquot was shaken by hand prior to filtration to re-suspend any material 

which had settled during storage and 50 mL was vacuum-filtered through a Whatman 47 
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mm diameter 0.2 m nylon membrane filter into a 50 mL centrifuge tube. Three blanks of 

de-ionised water were treated in the same way as the samples. The filter assembly was 

rinsed thoroughly with de-ionised water between samples and also with some of the next 

sample to avoid cross-contamination. These filtered samples and blanks were then stored 

overnight below 4 C until analysis which was carried out typically within the following two 

days.  

 

3.3.2. Analysis for SRP, TP, NO3
- and NO2

- 

 

The nutrient concentrations were determined colorimetrically using a Technicon 

Autoanalyser II, a segmented flow system, which uses an air bubble to separate samples 

within the system and splits each sample into several segments. It consisted of an 

autosampler, peristaltic pump, water bath at 20 °C for reagents, water bath at 37 °C for 

reactions and mixing, manifold, colorimeter, chart recorder and computer (Figure 10). To 

minimise cross-contamination between samples wash water was injected through the 

system between samples. For NO3
- and NO2

- analysis the wash solution was 0.2 mL L-1 

15 % Brij-35 solution in de-ionised water, and de-ionised water only was used for SRP 

analysis system because the wetting agent Brij-35 interferes with the TP and SRP system. 

Each nutrient analysis was carried out using the same apparatus except for the manifold 

which consists of the appropriate tubing and mixing coils for the specific colorimetric 

reaction.  

 

 

Figure 10. Diagram showing the main components of Technicon Autoanalyser II. 

 

After the colour development, reaction in the manifold the sample passes through the 

colorimeter. In the colorimeter light of the appropriate wavelength is selected using a 

coloured filter. This light passes through the solution in the flow cell and the absorbance is 

proportional to colour intensity which is plotted as a peak on the chart and the peak height 

is recorded by the computer. The colour intensity of the samples was compared to that of 

a previously analysed known concentration standard and the peak height used to 



Chapter 3 

44 

 

calculate concentration. Since concentration is calculated from peak height, the smoother 

the peak shape, the more precise the concentration value. 

 

The manifold and tubing of the Technicon were cleaned when switching between 

determinants by rinsing for 15 minutes with either 5 % H2SO4 solution or a 1 M NaOH 

solution if the reagent mix had been alkaline or acidic respectively, followed by flushing 

with de-ionised water for 20 minutes.  

 

A steady baseline signal and a regular bubble pattern were required on the Technicon 

Autoanalyser before any analysis was conducted. During a sample run, drift occurred due 

to electronic drift and changes in room temperature. To quantify drift, two standards 

followed by a wash and two zero standards were analysed after every 12 samples. The 

drift during the twelve samples was then calculated by the computer from the two adjacent 

sets of standards and used by the software to adjust the sample concentrations. In every 

run three blanks were analysed and subtracted by the software from the measured 

sample concentrations. Duplicate samples were analysed and a mean concentration 

calculated by the analyst. 

 

3.3.2.1. SRP Analysis 

 

To avoid changes caused by processes in solution and interactions of soluble compounds 

with suspended material of less than 0.2 m during storage (House et al., 1998), SRP was 

the priority analyte on return from the field, with analysis usually carried out within 24 

hours of sample filtration (Kotlash and Chessman, 1998; Eaton et al., 2005). SRP was 

measured using an ammonium molybdate-ascorbic acid method (Murphy and Riley, 1962) 

adapted for low level analysis. The method is based upon the orthophosphate ion reacting 

with ammonium molybdate in an acid solution to form phosphomolybdic acid, a faintly 

yellow coloured product. This is then reduced by ascorbic acid to give an intense blue 

colour. Antimony potassium tartrate is added to increase the rate of the reaction. This 

reaction is preferred over other methods as it is less temperature sensitive and the 

chromophore is more stable (Robards et al., 1994). Figure 11 shows the manifold set up 

for SRP analysis. The method had a limit of quantification of 1 g P L-1. See Appendix 3 

for the reagents required for P analysis on the Technicon Autoanalyser. 
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3.3.2.2. TP Analysis 

 

TP analysis required the digestion of an unfiltered sample. As vapour losses were not an 

issue during refrigerated storage, analysis was carried out at a convenient time after 

sample collection; for some samples up to one year after collection. All glassware for the 

digestion of samples was soaked in phosphate-free 2 % Decon® solution overnight, rinsed 

thoroughly, soaked in 10 % hydrochloric acid for at least 30 minutes, then rinsed 

thoroughly with de-ionised water and dried. 

 

The 100 mL unfiltered sample for TP analysis was removed from refrigeration, allowed to 

come to room temperature, shaken well and 25 mL pipetted into a small glass bottle. 0.5 

mL of 30 % H2SO4 and 0.25 g of K2S2O8 were added to each sample. The bottles were 

then capped loosely with aluminium foil and digested in an autoclave at 121 C for 30 

minutes (Eaton et al., 2005). Once cooled the digests were transferred quantitatively to 50 

mL volumetric flasks and made up to volume with de-ionised water. The same procedure 

was carried out on three blanks, using 25 mL de-ionised water, per batch of 20 digested 

samples. [TP] in the samples was determined by colorimetric analysis by the method used 

for SRP (see Chapter 3.3.2.1 and Appendix 3) using the same manifold set up as SRP 

(Figure 11). 

 

 

Figure 11. Manifold for SRP and TP analysis set up with a sampling rate of 40 per 
hour. 
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3.3.2.3. NO3
- Analysis  

 

The water sample remaining after SRP analysis was kept refrigerated and N species were 

measured, usually two days after filtration, in order to minimise the loss of nutrients 

through assimilation by micro-organisms present in the water and, in the case of NO2
-, 

bacterial conversion to NH4
+ and NO3

- (Kotlash and Chessman, 1998). [NO3
-] was 

determined using a method based on the reaction in Mullin and Riley (1955) and the 

automated methods of Henriksen (1965) and Best (1976). NO3
- is quantitatively reduced 

to NO2
- by hydrazine under alkaline conditions using the copper (II) ion as the catalyst. 

The total NO2
- is subsequently treated with sulphanilamide and N-1-napthylenediamine 

dihydrochloride under acidic conditions to form a pink azo dye. This method therefore 

measures TON, both NO3
- and NO2

- in the sample. In order to determine the [NO3
-] in the 

sample, NO2
- is measured separately (see Chapter 3.3.2.4) and subtracted from the 

[TON]. Figure 12 shows the manifold set up for TON analysis. The limit of quantification 

was 10 µg N L-1. See Appendix 3 for the reagents required for TON analysis on the 

Technicon Autoanalyser.  

 

 

Figure 12. Manifold for TON analysis set up with a sampling rate of 50 per hour. 
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3.3.2.4. NO2
- Analysis 

 

[NO2
-] was determined using an automated method based on Henriksen (1965) and Best 

(1976) which involves the diazotisation of sulphanilic acid by nitrites to form nitrous acid 

under acid conditions. The resultant diazonium salt then couples with the N-1-

napthylenediamine dihydrochloride to form a deep pink coloured azo compound. This 

method used a large sample:reagent ratio and had a limit of quantification of 1 µg N L-1. 

Figure 13 shows the manifold set up for NO2
- analysis and the reagents required are 

included in Appendix 3.  

 

Figure 13. Manifold for NO2
- analysis set up with a sampling rate of 40 per hour. 

 

3.3.3. SRP and NO2
- Analysis Colour Correction  

 

The analysis of nutrient concentration by colorimetry is where reagents react with the 

analyte to produce a colour of a certain wavelength whose absorbance is then measured 

by a colorimeter. A problem can occur when this method is used to analyse naturally 

highly-coloured samples and where the ratio of colour to analyte required for very low 

level analysis is high, such as in this research. Here, the background colour of the sample 

may interfere in the measurement of concentration at the same wavelength and lead to an 

increased measure of absorbance and thus an over-estimation of concentration in the 

sample. Correction for the background colour of the sample is therefore required.  
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The need for colour correction only became apparent in October 2008 when the filter pore 

size comparison experiment was carried out (see Chapter 3.7). Spiky peaks on the 

Technicon chart output were generated by the samples filtered through 0.7 m filters. To 

investigate the cause of these irregular peak shapes, samples were run with the non-

reacting reagents only. For these samples, if the peak shape was caused by the chemical 

reaction between the sample and reagents it was predicted that no noise and no peaks 

would be seen. If it was caused by particulate matter then a noisy baseline and no peaks 

were expected. The results showed that when the samples were run with the non-reacting 

reagents there was a noisy baseline but also peaks. Thus something else in the samples, 

e.g. background colour from humic compounds in the dissolved aqueous phase, was also 

absorbing light at the same wavelength and contributing to the [SRP] calculated for the 

sample.  

 

Running the same test with samples using the method for NO2
- determination showed that 

background colour was also influencing the measured [NO2
-]. Consequently the methods 

for SRP and NO2
- determination were altered to take account of background colour in 

future sample analyses and the results of previous analyses were corrected as explained 

below. Background colour correction is not necessary for NO3
- analysis as it is already 

accounted for in the subtraction of NO2
- from TON. Establishing the procedure was largely 

the work of Adam (2009) but is discussed here as it is required as part of the analytical 

protocol for this research and is currently unpublished. 

 

3.3.3.1. Colour Correction Procedure 

 

To correct for background colour in the SRP and NO2
- analyses, the samples were first 

analysed using the standard procedure and reagents to obtain non-colour corrected 

concentrations (Figure 14A). The relevant reagents were then replaced by the modified 

colour correction reagents (see Appendix 4) and the baseline was re-established. All other 

settings were kept the same so that the peak heights could be related directly to the peak 

heights of the previous run and subsequently subtracted. The same series of standards, 

blanks and samples was run and, since no colour reaction was taking place, both 

standards and blanks gave the same low reading, and the peaks produced here can be 

attributed to the background colour of the samples (Figure 14B).  
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Figure 14. Panel A is an example Technicon chart of non-colour corrected data. 
Panel B shows the colour contribution peaks of the same samples. i indicates the 
non-colour corrected standard peaks. ii indicates the non-colour corrected zero. iii 
the colour correction zero. 
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3.3.3.2. Colour Correction Calculation 

 

The method to correct for background colour is based on the assumption that the peaks 

produced by the reaction colour and the background colour are additive therefore the 

effect of the background colour can be quantified by subtracting the height of the peak 

produced by background colour in the absence of the colorimetric reagent from the 

sample peak height (Figure 14). The Technicon calculation software was run twice, once 

to determine uncorrected sample concentration and once to determine colour-corrected 

sample concentration. The colour corrected concentration for a sample was obtained by 

subtracting the concentration determined in the colour correction run from the 

concentration determined in the non-colour corrected run. 

 

The contribution of colour to the sample peaks is summarised in Table 11 and was 

variable between catchments and between sampling occasions. The greatest contribution 

of colour to the sample peaks was found in the S-draining catchments which are more 

peatland-dominated (see Figure 7, Chapter 2.2 for soil types and Table 7, Chapter 2.4.1 

for % of each catchment peat-based soils). Adam (2009) determined that, for water 

samples from all catchments on a number of sampling occasions, the absorbance was 

greater at 530 nm, the wavelength used to measure [NO2
-], than at 690 nm, the 

wavelength used to measure [SRP]. This can explain why colour is a greater interference 

when analysing for [NO2
-].  

 

Table 11. Range of colour interference expressed as g L-1 and as a % of peak 
height. 

Parameter 

S-draining 
Interference 

(g L-1) 

Average % 
contribution to 
peak height 

N-draining 
Interference 

(g L-1) 

Average % 
contribution to 
peak height 

[SRP] 1 - 14 15 0 - 4 9 

[NO2
-] 1 - 23 70 0 - 7 30 

 

 

3.3.3.3. Retrospective Colour Correction 

 

Direct colour correction, where two runs, one non-colour corrected, one colour correction, 

were carried out for all [SRP] and [NO2
-] determinations from October 2008. Direct colour 

correction was not carried out prior to October 2008 and therefore this section of the time 

series was thought to over-estimate concentration. In order to retrospectively colour 

correct the [SRP] and [NO2
-] time series from June 2006 to September 2008, the 

difference between the non-colour corrected concentration and the colour corrected 
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concentration was regressed linearly with the [DOC], which is related to water colour, from 

the 34 sampling occasions between October 2008 and June 2010. From the relationships 

in Figure 15 and Figure 16, colour corrections were applied retrospectively to the non-

colour corrected [SRP] and non-colour corrected [NO2
-].  

 

However, an individual colour correction for each catchment could not be justified due to 

the limited number of data points and variation around the regression line. Further to this, 

the variability between catchments meant that one correction relationship for all 

catchments would not be appropriate. A comparison of the regressions on the 

relationships of [SRP] and [NO2
-] with [DOC] pooled N- and S-draining was carried out. 

The regressions for the pooled N- and S- draining catchments were found to be highly 

significantly different for both [SRP] and [NO2
-] (t = 6.66, p < 0.0001, D.F. = 300 and t = 

6.01, p < 0.0001, D.F. = 289 respectively), confirming that a single correction for all 

catchments regardless of soil type would not appropriately correct for water colour. Two 

colour corrections were therefore carried out for each parameter based on the dominance 

of different soil types at Whitelee because of the different contributions of water colour to 

peak height. The difference in soil types with the drainage divide of the Whitelee plateau, 

the peatland-dominated S-draining catchments and the more agricultural influenced N-

draining catchments (Table 11) influences the colour of the water samples due to the 

differing types of organic matter and humic material mobilised in each catchment.  

 

The two outlying high [DOC] values in the pooled N-draining samples were checked, 

found to be correct and therefore it was not justifiable to remove them from the regression 

used to determine the retrospective colour correction. For the few sampling occasions 

where [DOC] data were not available these concentrations were not reported. Data from 

17U did not require correction since sampling here started after the colour-induced 

absorbance effect was noted. 
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Figure 15. The relationships, solid black lines, applied for retrospective colour 
correction of [SRP] in the S- and N-draining catchments from June 2006 to 
September 2008. The short dash lines indicate the 95 % confidence intervals and 
the long dash lines the 95 % prediction intervals. 
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Figure 16. The relationships, solid black lines, applied for retrospective colour 
correction of [NO2

-] in the S- and N-draining catchments from June 2006 to 
September 2008. The short dash lines indicate the 95 % confidence intervals and 
the long dash lines the 95 % prediction intervals. 
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3.4. Alkalinity Analysis 

 

Water samples were analysed for alkalinity for one hydrologic year from October 2009 

because alkalinity was required to determine the status of river water according to the 

Water Framework Directive (2000) UK Technical Advisory Group Environmental 

Standards for [SRP] (UKTAG, 2008) (see Chapter 1.3.2). Alkalinity was measured on an 

unfiltered sample immediately on return from the field using the method in MEWAM 

(1981a), as used by the Scottish Environment Protection Agency and the USA 

Environmental Protection Agency. A Metrohm DL20 auto-titrator was used which carries 

out acid-based titrations using a pH electrode to detect the endpoint and a micro-burette 

capable of measuring the titre to 0.1 l. Prior to analysis the pH electrode was calibrated 

using pH 4.0 and 7.0 buffers. The alkalinity was determined by titrating 50 mL of sample 

to pH 4.5 with 0.01 M H2SO4. 1 mL of 0.01 M H2SO4 is equivalent to 1 mg of CaCO3. The 

stirrer and pH electrode were rinsed with de-ionised water between samples, and between 

sampling occasions the electrode was conditioned in acidified 3 M KCl solution. 

 

3.5. Uncertainties in Quantification of Concentration  

 

A maximum uncertainty of ± 5.2 mg L-1 was calculated for [DOC]. This value is the 

maximum uncertainty on the lowest concentration standard measured on each calibration 

of the Thermolux TOC analyser calculated using the formulae for inverse confidence limits 

from Miller (2006) (see Appendix 6) as this was thought to be the greatest source of 

variation in [DOC]. 

 

Uncertainties in the determination of [POC], [SRP], [TP] and [NO3
-] were not calculated as 

part of this research. The greatest source of uncertainty is thought to be from the 

representativeness of the sample collected. In terms of [POC], the experimental error 

associated with the loss on ignition method and in terms of [TP] there is potential for there 

to be errors associated with sample digestion (e.g. contamination as shown by variation in 

the blanks), however, these sources of variation are thought to be small compared to 

sample variability. The uncertainty due to instrument measurement variation in the 

Technicon Autoanalyser II will be small because using a high precision automated system 

reduces operator variability and any drift in the instrumentation is corrected by the 

software. In future multiple samples should be collected at the same time for analysis to 

quantify sample variability.  
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3.6. Sample Filtration Investigation 

 

Since [SRP], [NO3
-] and [NO2

-] in a water sample can be decreased by microbial uptake 

and adsorption to particulate matter or, conversely, released into solution through 

microbial death, filtration is necessary to remove micro-organisms, such as bacteria and 

phytoplankton, and particulate matter. The length of time between sample collection and 

filtration is critical if measured concentrations are to be representative of field 

concentrations (MEWAM, 1981b). Nutrient concentrations can change (mostly losses) 

within 2 to 6 days if there is no attempt at preservation (Kotlash and Chessman, 1998).  

 

To test if there was any loss or gain of SRP, NO3
- and NO2

- from the samples during the 

time period from collection to filtration, additional water samples were collected on all 

sampling occasions at all catchments from January to April 2009. These samples, 

hereafter named field-filtered, were filtered immediately at the time of collection using a 

new 0.2 µm Supor® membrane syringe filter and a 10 mL sterile syringe for each sample, 

rinsed with water from the sample point before use. The samples were filtered into the 

same type of 50 mL centrifuge tube as used in the laboratory and transported to the 

laboratory in cool boxes. [SRP], [NO3
-] and [NO2

-] in the field-filtered samples were 

determined at the same time and under the same conditions as the samples collected and 

filtered following the standard procedure, hereafter named the laboratory-filtered samples. 

Blanks for the field-filtered samples were prepared in the laboratory by filtering de-ionised 

water through the 0.2 µm syringe filters using fresh 10 mL sterile syringes. The two sets of 

samples were analysed using the standard SRP, NO3
- and NO2

- protocols and a paired t-

test used to determine whether the sample populations have different means. This was 

done to determine whether there was a statistically significant difference due to the time of 

filtration or whether any difference was a coincidence of random sampling (Table 12).  

 

There were significant differences for [SRP] and [NO2
-] but not [NO3

-] (p = 0.54, Table 12). 

The field-filtered samples had a higher [SRP] than the laboratory-filtered samples. The p 

value from the t-test (Table 12) of < 0.001 shows a highly significant mean difference of 

2.78 g L-1 between the two filtration methods. This difference was considered 

scientifically significant as well as statistically significant because a mean difference of 

2.78 g L-1 where the mean concentration values are less than 30 µg L-1 was 

approximately a 10 % difference. The laboratory-filtered samples contained greater [NO2
-] 

than the field-filtered samples. The p value from the t-test (p = 0.01, Table 12) shows that 

this was a significant mean difference of 0.47 g L-1 between the two filtration methods.  
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Table 12. Paired t-test results of [SRP], [NO3
-] and [NO2

-] in field-filtered and 
laboratory-filtered samples. N = 28. 

 Mean [SRP], g L-1 Standard Deviation, g L-1 

Laboratory 23.4 16. 

Field 26.2 16.7 

Difference -2.78 3.48 

95 % confidence intervals for mean difference: (-4.15, -1.40) 

t-test of mean difference = 0 (vs not = 0): t = -4.15 p <0.001 

 

 Mean [NO3
-]mg L-1 Standard Deviationmg L-1 

Laboratory 0.56 0.43 

Field 0.56 043 

Difference -0.005 0.041 

95 % confidence intervals for mean difference: (-0.02, 0.01) 

t-test of mean difference = 0 (vs not = 0): t = -0.62 p = 0.54 

 

 Mean [NO2
-],g L-1 Standard Deviation,g L-1 

Laboratory 5.9 4.7 

Field 5.4 4.8 

Difference 0.4 0.90 

95 % Confidence Intervals for mean difference: (0.12, 0.82) 

T-Test of mean difference = 0 (vs not = 0): T = 2.76 P = 0.01 
 

 

To examine if it is the filter material which is affecting [SRP], [NO3
-] and [NO2

-], on one 

occasion the 100 mL aliquot was shaken well and split, with 50 mL filtered following the 

standard procedure and 50 mL filtered in the laboratory at the same time using the 0.2 µm 

Supor® membrane syringe filter and 10 mL syringe. The two sets of samples were 

analysed using the standard SRP, NO3
- and NO2

- protocols. A paired t-test (Table 13) was 

used to show whether the sample populations have statistically significant different 

means. These results were then compared with Table 12 to determine whether the 

difference was due to the time of filtration or the filtration material used. 

 

Table 13 shows that the differences observed between [SRP] and [NO2
-] Supor® 

membrane syringe filtered samples and the sample filtered through nylon membrane are 

consistent with the offset observed by comparison of field-filtered samples with laboratory 

filtered samples (Table 12). It seems likely that the greater [SRP] and lesser [NO2
-] in 

Supor® membrane syringe filtered samples were due to the filter material rather than the 

timing of filtration as it was still obvious when the samples were filtered at the same time. 

 

As immediate filtration in the field was a more expensive option, and would produce data 

not directly comparable with previous studies at this field site, samples for SRP, NO3
- and 

NO2
- analysis continued to be collected and stored in a cool box until return to the 

laboratory where filtration was performed immediately. 
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Table 13. Paired t-test of [SRP], [NO3
-] and [NO2

-] in 0.2 µm Supor® membrane 
syringe filtered and 0.2 µm nylon membrane filtered samples. N = 10. 

 Mean [SRP], g L-1 Standard Deviation, g L-1 

Nylon 25.0 28.7 

Supor® 28.2 30.3 

Difference -3.21 3.07 

95 % confidence intervals for mean difference: (1.01, 5.41) 

t-test of mean difference = 0 (vs not = 0): t = 3.31 p = 0.009 

 

 Mean [NO3
-]mg L-1 Standard Deviationmg L-1 

Nylon 0.75 0.64 

Supor® 0.75 0.65 

Difference -0.005 0.01 

95 % confidence intervals for mean difference: (-0.02, 0.01) 

t-test of mean difference = 0 (vs not = 0): t = -0.62 p = 0.54 

 

 Mean [NO2
-],g L-1 Standard Deviation,g L-1 

Nylon 16.2 11.8 

Supor® 14.8 12.0 

Difference 1.45 1.22 

95 % confidence intervals for mean difference: (-2.32, -0.58) 

t-test of mean difference = 0 (vs not = 0): t = -3.76 p = 0.004 
 

 

3.7. Filter Pore Size Investigation 

 

Either 0.45 µm or 1 µm filters can be used to prepare a water sample for [SRP], [NO3
-] 

and [NO2
-] analysis (MEWAM, 1992) as long as the filter size used is stated, with the 

choice dependent on the loading of suspended material in the sample. Eaton et al. (2005), 

state that 0.45 µm filters should be used yet there is no evidence that this pore size is a 

true separation of the suspended and dissolved fractions. It is merely a convenient and 

replicable choice. For this research a 0.2 µm nylon membrane filter was used to prepare 

the samples for [SRP], [NO3
-] and [NO2

-] analysis. The main justification for the original 

choice was that it was thought that particles between 0.45 µm and 0.2 µm would interfere 

in the analysis giving spikes on the trace. Since there is ambiguity over filter pore size in 

the literature, a test was undertaken to assess the impact of filter pore size on [SRP], 

[NO3
-] and [NO2

-] in the Whitelee samples. 

 

From July to September 2008 the samples for [SRP], [NO3
-] and [NO2

-] analysis were 

filtered through Whatman 0.2 µm nylon membrane filters as per the method described in 

Chapter 3.3.1. A further sample collected at the same time was filtered using a Whatman 

0.7 µm GF/F filter. [SRP], [NO3
-] and [NO2

-] were determined using the same methods in 

the two different sets of pre-filtered samples. Examination of the NO3
- and NO2

- traces 

showed that pore size has no effect on peak shape. Figure 17 shows an example trace 
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from the Technicon Autoanalyser II of peaks for samples analysed for SRP prepared with 

different filter pore sizes and shows the effect different pore sizes can have on SRP peak 

shape. The 0.2 µm filtered samples provide the desired conical peak shape for accurate 

calculation of the [SRP]. The 0.7 µm filtered samples however, in contrast, yield a poorly 

resolved peak shape with spiking at the top of the peak. This phenomenon occurs 

because, although the 0.7 µm filtration screens out a large proportion of particulates and 

micro-organisms from the water sample, the filtration process may neither remove 

bacteria completely nor colloidal particulate materials, and the light in the colorimeter 

bounces off these particulates, giving rise to interference in a particularly sensitive low 

range system. It is difficult for the Technicon software to determine accurately the height 

of spiky peaks, because the spikes can add 10 % on to the peak height and therefore 

result in unreliable [SRP]. Based on the effect of filter pore size on peak shape, the 0.2 µm 

filters were used for the analysis of the Whitelee samples as the peak shapes are clearer 

and thus more accurate. The use of this pore size is considered when comparing the 

Whitelee data to the results from other studies.  

 

3.8. Carbon Analysis Investigation 

 

A change in [POC] and temporal patterns was observed after October 2007, coincident 

with the analysis as part of this Ph.D research (Figure 18). After this date the mean [POC] 

in the S-draining catchments decreased from 6.13 mg C L-1 to 1.63 mg C L-1, and in the N-

draining catchments from 4.53 mg C L-1 to 2.07 mg C L-1. The apparent seasonal variation 

before October 2007 was also no longer observed. Thus it was considered that differing 

protocols between analysts were influencing the C partitioning in samples. To compare C 

exports pre- and post-construction it was necessary to identify why this difference had 

arisen. The protocols used by each analyst to determine POC and DOC are shown in 

(Figure 19 and Figure 20).  

 

Figure 17. Peaks from SRP trace of two samples filtered through the different pore 
sizes. 0.7 µm filtered samples yield a spiky peak shape.  
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Figure 18. [POC] time series for all the Whitelee catchments with the N-draining 
catchments in Panel A, and the S-draining in Panel B. The change in analyst in 
October 2007 is shown by a drop in [POC] and a loss of seasonal signal. 

 

3.8.1. Field Protocol 

 

All analysts followed the same protocol for sample collection in the field as described in 

Chapter 2.4.2.  

 

3.8.2. Loss on Ignition Measurement Protocol  

 

Pre-ashed (450 °C for 8 hours) Whatman Microfibre GF/F grade (rapid flow rate and high 

retention, high loading capacity glass microfibre, 0.7 µm retention, 47 mm diameter) filters 

were used by all analysts. One difference in protocol between the analysts was the loss 

on ignition temperature. The lower concentration samples from October 2007 onwards 

were ignited at 350 °C whereas the previous samples had been ignited at 375 °C. Ignition 

at too low or too high a temperature may seriously under- or overestimate the quantity of 

organic matter resulting in [POC] that are too low or too high (Pribyl, 2010). To test the 

effect of differing ignition temperatures, duplicate water samples were collected on one 

occasion in July 2008 from all sampling points and a paired t-test used to determine 
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whether ignition temperature was having an impact on [POC] (Table 14). There was a 

mean difference of 0.25 mg L-1 with the samples ignited at the higher temperature yielding 

a higher [POC], but this mean difference was not statistically significant (p = 0.68). From 

July 2008 the ignition temperature used was 375 °C.  

 

Table 14. Paired t-test conducted for the filter tests of [POC] in mg C L-1 determined 
for ignition temperature of 350 °C v. 375 °C. N = 4. 

 Mean [POC], mg L-1 Standard Deviation, mg L-1 

350 °C 2.58 0.56 

375 °C 2.83 0.78 

Difference -0.25 1.09 

95 % confidence intervals for mean difference: (-1.98, 1.48) 

t-test of mean difference = 0 (vs not = 0): t = -0.46 p = 0.68 
 

 

Another inconsistency between analysts was that the filters were weighed either 

immediately upon removal from the furnace or after cooling to room temperature in a 

desiccator. Hot objects create convection currents which distort mass measurements, 

however, weighing the filters once at room temperature could allow absorption of moisture 

from the atmosphere which could be a potential source of the difference in [POC]. To 

ascertain if filter temperature affected mass determination, a comparison between 

weighing filters hot and cool was carried out from August to October 2008 on samples 

from all sampling points on 4 sampling occasions (Table 15). The temperature of the 

filters when weighed has a negligible impact on mean [POC] (Table 15), and this small 

difference of hot filters yielding 0.01 mg L-1 more than the cool ones is not statistically 

significant (p = 0.43).  

 

Table 15. Paired t-test of [POC] in mg C L-1 determined when filters were weighed 
immediately after removal from the furnace (hot) and after cooling to room 
temperature (cool). N = 48. 

 Mean [POC], mg L-1 Standard Deviation, mg L-1 

Hot 1.71 0.93 

Cool 1.70 0.90 

Difference 0.01 0.14 

95 % confidence intervals for mean difference: (-0.025, 0.058) 

t-test of mean difference = 0 (vs not = 0): t = 0.79 p = 0.43 
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3.8.3. Sample Storage Comparison  

 

Since the sample collection and loss on ignition protocols did not account for the decrease 

in [POC], a comparative study of the sample storage methods on return from the field was 

carried out, since these methods differed between analysts. The majority of samples 

collected between June 2006 and September 2007 were frozen on return from the field, 

de-frosted at a later date and filtered (Figure 19). From October 2007 onwards samples 

were refrigerated on return from the field and filtered within 3 hours (Figure 20). To assess 

the impact of different storage mechanisms on return from the field on [POC], two 1 L 

samples were collected at every sampling point on each sampling occasion from June 

2009 until February 2010. One bottle, the refrigerated sample, was filtered immediately on 

return from the field as described (Figure 20), and the other, the frozen sample, was 

treated as outlined in Figure 21. Hereafter these samples subjected to differing storage 

methods are termed refrigerated and frozen respectively. [POC] and [DOC] were then 

determined on both sets of samples.  

 

Freezing the samples prior to filtration yielded a statistically significant (p < 0.01) higher 

[POC] than refrigeration, with a mean difference of 8.53 mg L-1 (Figure 22 and Table 16), 

which is the same magnitude as the decrease observed from October 2007 (Figure 18). It 

is hypothesised that the difference is caused by the flocculation or aggregation of particles 

to greater than 0.7 m during the freezing process. They are then removed during filtration 

and contribute to an increased POC fraction of the sample. Previous work on seawater 

has also postulated aggregation as the explanation for the determination of [POC], using a 

GF/F filter based method, of up to two orders of magnitude higher in water samples with 

temperatures < 0°C than in samples > 0°C (Turnewitsch et al., 2007).  

 

Table 16. Paired t-test results for [POC] determined from frozen and refrigerated 
samples. N = 103. 

 Mean [POC], mg L-1 Standard Deviation, mg L-1 

Refrigerated 2.1 2.2 

Frozen 10.6 8.3 

Difference -8.53 7.37 

95 % confidence intervals for mean difference: (-9.97, -7.09) 

t-test of mean difference = 0 (vs not = 0): t = -11.75 p < 0.01 
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Sample transported to lab in cool box

Sample collected

From June 2006 to Sept 2007 sample may have 

been frozen) upon return from the field, de-

frosted and processed at a later date, otherwise 

sample filtered straight away

Approx 1L of well shaken sample filtered through 

pre-ashed GF/F filter

Filtrate reduced to 

concentrate by rotary 

evaporation (at 50 °C, 50 

mbar) and concentrate 

freeze-dried

DOC calculated

from volume of sample 

filtered, mass of solid 

residue and

wt. % C and N 

Filters oven-dried at 105 °C 

for 3 hours and weighed to 

0.01 mg

Where CO3
2- was present 

(if pH > 5), the filtrate was 

acidified to pH 4 with 0.1M 

H2SO4 prior to evaporation

13C, wt. % C and wt. % N 

assayed by analysis of circa 

2 mg of powder on a 

Costech C/N/S analyser, 

linked to a continuous flow 

mass spectrometer

POC DOC

[POC] calculated by 

assuming 58 % of

loss on ignition was carbon

Loss on ignition carried out 

at 375 °C for 16 hours and 

weighed to 0.01 mg

  

Figure 19. Methods used for C analysis until September 2007 with stage of protocol 
where flocculation may be occurring in a thick dashed line box. 
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Sample transported to lab in cool box

Sample collected

From October 2007 samples refrigerated upon 

return from the field and filtered within 3 hours

Approx 1L of well shaken sample filtered through 

pre-ashed GF/F filter

First 250 ml used as rinse, 

the next 100 ml taken as an 

a aliquot for DOC analysis 

and the remaining sample 

was disposed of

Aliquot for DOC analysis 

frozen immediately

Filters oven-dried at 105 °C 

for 3 hours and weighed to 

0.01 mg

50 ml acidified to pH 3.9, 

refrigerated and analysed 

within 5 days

Aliquot for DOC analysis 

defrosted overnight (up to 3 

months later)

Samples de-gasses in ultra-

sonic bath prior to analysis 

on Thermolux TOC analyser

POC DOC

[POC] calculated by 

assuming 58 % of

loss on ignition was carbon

Loss on ignition carried out 

at 375 °C for 16 hours and 

weighed to 0.01 mg

 

Figure 20. Methods used for C analysis from October 2007 with stage of protocol 
where flocculation may be occurring in a thick dashed line box.  
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Sample transported to lab in cool box

Sample collected

From June 2009 samples frozen upon return from 

the field, de-frosted a week later and filtered

Approx 1L of well shaken sample filtered through 

pre-ashed GF/F filter

First 250 ml used as rinse, 

the next 100 ml taken as an 

a aliquot for DOC analysis 

and the remaining sample 

was disposed of

Aliquot for DOC analysis 

frozen immediately

Filters oven-dried at 105 °C 

for 3 hours and weighed to 

0.01 mg

50 ml acidified to pH 3.9, 

refrigerated and analysed 

within 5 days

Aliquot for DOC analysis 

defrosted overnight (up to 3 

months later)

Samples de-gasses in ultra-

sonic bath prior to analysis 

on Thermolux TOC analyser

POC DOC

[POC] calculated by 

assuming 58 % of

loss on ignition was carbon

Loss on ignition carried out 

at 375 °C for 16 hours and 

weighed to 0.01 mg

 
 
Figure 21. Methods used for C analysis of frozen test samples with stages of 
protocol where flocculation may be occurring in a thick dashed line box. 
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Figure 22 shows the effect of freezing on [POC] is variable between and within 

catchments, as there are wide prediction intervals and many points outwith the 95 % 

confidence intervals. The relationship between the two storage mechanisms was therefore 

considered insufficiently robust to apply a single correction factor for all catchments. 

Catchment specific correction factors could also not be applied because the R2 values for 

each catchment ranged from 0.15 in catchment 9A to 0.55 in catchment 13 (Table 17). 

Relationships were only significant at three of the sampling points, but the higher R2 

values were influenced by outlying values. 

 

0

5

10

15

20

25

30

35

0 5 10 15

fr
o

z
e

n
 [

P
O

C
],

 m
g

 C
 L

-1

refrigerated [POC], mg C L-1

13 14 15 1 1632 456 9A 9D

y = 1.93 x + 6.58

R2 = 0.27   

p < 0.0001

  

Figure 22. Comparison of [POC] in frozen samples vs. refrigerated for all sampling 
points, June 2009-February 2010. The solid line is the regression line. The short 
dashed lines indicate the 95 % confidence intervals and the long dashed lines the 
95 % prediction intervals.  

 

Table 17. Linear relationships between frozen and refrigerated samples for each 
sampling point. 

Catchment R2 p No. of samples 

13 0.55 0.001 15 

14 0.43 0.008 15 

15 0.34 0.029 14 

1 0.20 0.096 15 

1632 0.17 0.148 14 

456 0.22 0.167 10 

9A 0.15 0.263 10 

9D 0.45 0.034 10 
 

 

Having established that freezing samples on return from the field until filtration increases 

[POC], it was assumed that [TOC] would be the same in paired refrigerated and frozen 

samples. This assumption was not true. There is a significant linear relationship between 

[TOC] for a sample refrigerated or stored frozen (R2 = 0.77, p < 0.001, Figure 23). The 

mean difference of 6.76 mg L-1 (Table 18) shows that higher [TOC] were determined in 
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frozen samples compared to refrigerated samples, but this difference is less than the 

combined mean difference for [POC] and [DOC] between the frozen and refrigerated 

samples. Therefore, from October 2007 onwards when samples were refrigerated, the 

organic C in samples may be under-estimated as loss of C appears to occur during 

processing, not during sample storage.  

 

In summary, it appears that freezing samples before filtration promotes flocculation of a 

proportion of the < 0.7 m DOC, such that, when filtered, [POC] increases and therefore 

[DOC] decreases. However, since the difference in [TOC] between refrigerated and frozen 

samples is less than the sum of the differences in [POC] and [DOC], C mass balance is 

not maintained and there is a second stage of C loss during sample processing. 

 

Table 18. Paired t-test results for [TOC] determined from frozen and refrigerated 
samples. N = 80. 

 Mean [TOC], mg L-1 Standard Deviation, mg L-1 

Refrigerated 23.2 12.1 

Frozen 30.0 15.8 

Difference -6.76 7.66 

95 % confidence intervals for mean difference: (-8.46, -5.05) 

t-test of mean difference = 0 (vs not = 0): t = -7.89 p < 0.0001 
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Figure 23. Comparison of [TOC] (POC + DOC) in frozen samples compared with 
refrigerated. The solid line shows the regression line. The short dashed lines 
indicate the 95 % confidence intervals and the long dashed lines the 95 % 
prediction intervals. 
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3.8.4. Correction for Under-Estimation in [DOC]  

 

After filtration the aliquot for [DOC] analysis for samples collected from October 2007 

onwards was frozen to be prepared for analysis at a later date. It was hypothesised that, 

in the samples refrigerated and filtered on the day of collection, loss of DOC to the POC 

pool due to flocculation is occurring after filtration during frozen storage prior to DOC 

analysis. In the samples frozen prior to filtering, flocculation of DOC should be minimal 

during frozen storage after filtration, as it has already occurred prior to filtration and will be 

retained on the filter during POC analysis. Thus organic C has not been lost from the TOC 

pool. To test this hypothesis the remaining 50 mL of acidified and sparged aliquot not 

used for DOC analysis was compared with the remaining 50 mL of untreated aliquot of 

both the refrigerated and frozen DOC aliquots to look for flocculation in the samples. A 

visual assessment was carried out as filtration and loss on ignition of such a small volume 

is not viable. Greater amounts of flocculation were observed in both the refrigerated 50 

mL of acidified and sparged aliquot and the remaining 50 mL of untreated aliquot for DOC 

analysis compared to equivalent aliquots for the frozen samples (Figure 24) supporting 

the hypothesis of the cause of C loss in the refrigerated samples.  

 

A       B  

Figure 24. Examples of loss of C from dissolved to particulate fraction for 
samples from Catchment 15. Panel A - comparison of 50 mL of acidified and 
sparged aliquot for DOC analysis, with the frozen sample on the left and the 
refrigerated sample, with noticeably greater flocculation, on the right. Panel B - 
comparison of 50 mL of untreated aliquot for DOC analysis with the frozen sample 
on the right and the refrigerated sample, with greater flocculation, on the left. 

 

Hence it is concluded that [TOC] determined in samples processed before September 

2007 are accurate. However, [POC] and [DOC] before September 2007 are affected by 

the artefact of freezing and it was not possible to back-correct the data. Measurements of 

[TOC] and [DOC] from October 2007 are underestimates because a proportion of the 

DOC pool was lost during storage. In order to provide a correction for the underestimates 

of [DOC] from October 2007, all aliquots for DOC analysis collected between March 2010 
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and June 2010 were split after filtration into 50 mL which was frozen and 50 mL which 

was refrigerated before DOC analysis. The significant linear regression relationship 

between [DOC] determined in refrigerated and frozen aliquots of these samples (R2 = 

0.90, p < 0.001, Figure 25) was used to correct [DOC] and consequently [TOC] in 

samples between October 2007 and June 2010.  
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Figure 25. Retrospective correction of [DOC] to correct the data from October 2007 
to June 2010 for losses due to storage mechanism. The solid line shows the 
regression line. The short dashed lines indicate the 95 % confidence intervals and 
the long dashed lines the 95 % prediction intervals. 
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4. Impacts of Disturbance on Streamwater Chemistry 

 

4.1. Chapter Outline 

 

Here, discharge for the study period and the flow duration curve of the nearest long-term 

SEPA gauged catchment are presented as well as data from the three SEPA rainfall 

gauges nearest to the Whitelee catchments. These data related to catchment hydrology 

are followed by the time series of the approximate bi-monthly sampling. TOC, TP, SRP 

and NO3
- time series were constructed for October 2007 to September 2010, and are 

presented with data from Waldron et al. (2009) for June 2006 to September 2007. Due to 

the differing storage methods of samples on return to the laboratory between analysts 

rendering the dissolved and particulate C fractions for October 2007 to September 2010 

not comparable with the earlier data (see Chapter 3.8), DOC and POC time series are 

only presented for three years, for the period from October 2007 to September 2010. For 

each parameter, whether windfarm-related disturbance impact is detectable at the 

sampling points outwith the immediate area of disturbance is assessed. This is done by 

performing harmonic regression analysis using Minitab® v16 on the TOC and NO3
- data 

since there are no environmental standards available to assess for impact. As the DOC 

and POC time series were too short to compare before-and-after potential windfarm-

related impact, harmonic regression analysis was not carried out on these two 

parameters. The Water Framework Directive (2000) UK Technical Advisory Group has 

produced Environmental Standards for SRP in river water (UKTAG, 2008). These were 

used on the SRP data to assess for disturbance impact. NO2
- data were only collected to 

calculate [NO3
-] from [TON] and is therefore not presented. Inter-catchment and annual 

differences in streamwater chemistry were identified and from differences in the time 

series, the most likely controls on streamwater chemistry are discussed.  

 

4.2. Catchment Hydrology  

 

The hydrograph for the study period and the flow duration curve of the nearest long-term 

SEPA gauged catchment are presented. The In-situ Inc. multi-parameter Troll 9000 water 

quality logger time series follow along with data from the nearest SEPA rainfall gauges to 

the study catchments. 
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4.2.1. Discharge Data 

 

In order to investigate concentration-flow relationships and to calculate C, P and N exports 

for the Whitelee catchments, the river flows had to be gauged. Due to resource limitations 

continuous discharge, hereafter named Q, monitoring could not be conducted at all of the 

sampling sites throughout the study period so Q data (Figure 26) were obtained from the 

nearest long-term river flow gauging station which is operated by the Scottish 

Environment Protection Agency, in the town of Newmilns on the River Irvine, 3 km west of 

sampling point 1 (see Figure 6, Chapter 2.2 for location). The volume of half-hourly Q from 

SEPA Newmilns was totalled for each hydrologic year in order to compare differences in 

hydrology between years (Table 19). 2006-2007 was the wettest year with a total volume 

of half-hourly Q of 48295 m3, with 2009-2010 the driest year with a total of 34728 m3 

(Table 19). 

 

 

Figure 26. Hourly discharge (grey line) from the nearest long-term gauged 
catchment (River Irvine in Newmilns) for June 2006 to June 2010. Catchment area is 
72.8 km2. Discharge at approximate time of water sampling (time when catchment 1, 
the nearest sampling point, was sampled) indicated by black dots.  

 

 
Table 19. Total volume of half-hourly Q from SEPA Newmilns per hydrologic year. 

Hydrologic Year Total volume of half-hourly Q from SEPA Newmilns (m3)  

2006-2007 48295 

2007-2008 44547 

2008-2009 45136 

2009-2010 34728 
 

 

The flow duration curve produced by SEPA for the River Irvine in Newmilns (derived from 

mean daily Q from October 1976 to September 2009, Figure 27) was used to assess how 

representative of long-term flow conditions the sampled flows were. Comparison with the 
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flow duration curve showed that on the occasions sampled the probability of occurrence of 

flows ranged from 3 to 97 %, therefore the sampling regime employed sampled a 

representative range of flow conditions. The median Q of the River Irvine at Newmilns 

during the study period was 1.18 m3 s-1, with a probability of occurrence of 47 %. 

 

 

Figure 27. Flow duration curve for the River Irvine at Newmilns with axes on a 
cyclical log scale. Figure courtesy of SEPA.  

 
 

4.2.2. Water Quality Logger Time Series 

 

The water quality data are presented here and discussed with reference to what can be 

inferred from it regarding terrestrial and in-stream biological activity and water source. 

 

4.2.2.1. Water Temperature 

 

Water temperature reflects soil temperature and increased soil temperature increases soil 

microbial activity and therefore C, P and N cycling. Higher water temperatures also 

indicate surface/near-surface water flow with shorter residence compared to deeper soil 

water and groundwater which tends to be cooler. Thus water temperatures is an indicator 

of both the production and transport of C, P and N. Water temperature in catchment 13 

varied between -0.13 °C (January 2010) to 25.8 °C (June 2009) showing that there is a 

wide range in temperature with the seasons (Figure 28A). As well as the expected 

seasonal response there is also clear diurnal variation in water temperature, which has 
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also been observed at peatland streams in north-east of Scotland (Dawson et al., 2001b). 

At Whitelee the greatest diurnal variation in temperature occurred over May and June, 

where the temperature difference can be as great as 11.3 °C (29th May 2009) with the 

minimum temperature occurring approximately 6 am, and the maximum temperature 

around 4pm. The diurnal variation is much smaller over the winter months.  

 

4.2.2.2. Conductivity 

 

Specific conductivity measures the ability of a solution to conduct an electrical current. A 

greater amount of charged ionic species present in solution will register a greater specific 

conductivity. In catchment 13 at Whitelee specific conductivity ranged from 2.73 µS cm-1 

(January 2010) to 302.66 µS cm-1 (June 2008) (Figure 28B). The conductivity of rivers is 

affected by the geology of the area through which the water flows and at Whitelee where 

the underlying geology is Carboniferous sandstone (see Chapter 2.2) a low to medium 

range of conductivity was observed. A sudden change in conductivity often shows a 

pollution event as it indicates there is a greater amount and mobility of ions in the river but 

changes in conductivity can also indicate whether river flow is low or high. During May 

2008, June 2009 and June 2010 the stage height readings (Figure 28D) show there were 

prolonged periods of low flow in catchment 13. Specific conductivity was greater during 

these low flow periods (Figure 28B). This is because the flow is likely to be composed 

mainly of baseflow which has high conductivity as it has acquired ions from the rocks 

through which it moved before it reached the river network. The longer water residence 

time in the soil, the greater the influence on specific conductivity from products of soil and 

parent material weathering (Kobayashi et al., 1990). During higher stage heights (Figure 

28D) the conductivity is lower (Figure 28C). This is likely to be the result of surface runoff 

from rainfall entering the river. Surface runoff has a lower conductivity and the increased 

volume of water now in the river dilutes the concentration of the in-stream ions leading to 

a lower conductivity (Austnes et al., 2010).  

 

4.2.2.3. pH 

 

pH in catchment 13 at Whitelee ranged from 4.74 (January 2008) to 8.99 (June 2009) 

(Figure 28C), a wide range for a peatland catchment. Much of this variation is likely to be 

caused by changes in flow. During periods of low flow (Figure 28D) e.g. May 2008, June 

2009 and June 2010, there are prolonged periods of time where there is greater pH. At  



Chapter 4 

72 

 

 

 

 

 

 

 

A

0

5

10

15

20

25

30

o
C

 

B

0

50

100

150

200

250

300

350


S

ie
m

e
n

s
 c

m
-1

C

4

5

6

7

8

9

p
H

 

D

0

50

100

150

Sep-07 Dec-07 Mar-08 Jun-08 Sep-08 Dec-08 Mar-09 Jun-09 Sep-09 Dec-09 Mar-10 Jun-10 Sep-10

s
ta

g
e
 h

e
ig

h
t,

 c
m

 

Figure 28. Half-hourly time series of temperature (Panel A), conductivity (Panel B), 
pH (Panel C) and stage height (Panel D) for catchment 13 from In-situ Troll 9000 
water quality logger. Dash line boxes indicate an example of low flow. Dash line 
ovals show an example of high flow. 



Chapter 4 

73 

 

these times over the summer the flow is likely to be largely made up of the baseflow 

component (Neal et al., 1992; Tetzlaff et al., 2007). Since the origin of baseflow is 

groundwater, the water prior to reaching the stream has acquired ions from the rocks 

through which it moves, which means that there are few H+ ions in solution. During higher 

flows the pH lowers suddenly as more dissolved H+ ions enter the river in runoff and 

overland flow. At Whitelee after this drop in pH related to high flow, there is a gradual 

recovery back to a higher pH seen as an arc shaped response in the time series (Figure 

28C).  

 

4.2.2.4. Stage Height 

 

Stage height ranges from 29.2 cm (June 2008) to 139.2 cm (October 2009) in catchment 

13 (Figure 28D).  

 

4.2.3. SEPA Rainfall Data 

 

Data from the three SEPA tipping bucket rainfall gauges nearest to the Whitelee 

catchments were obtained. The monthly rainfall totals for the four hydrologic years are 

presented in Figure 29 and the annual rainfall totals in Table 20.  Picketlaw, to the north of 

the Whitelee plateau, receives the greatest amount of rainfall throughout the period of 

research, with Amlaird, to the west, receiving the least. Mean annual rainfall at Saughall 

from 1975 to 2005 was 1342 mm (data courtesy of Michael Chalton, Saughall 

Meteorological Station) so Table 20 shows 2006-2007 and 2008-2009 had above average 

rainfall, and 2009-2010 had below average rainfall. 

 

Table 20. Annual rainfall totals for the three SEPA tipping bucket rainfall gauges 
nearest to the Whitelee catchments, Picketlaw, to the north, Amlaird, to the west, 
and Saughall, to the south (locations in Figure 6, Chapter 2.2). 

Hydrologic Year Picketlaw (mm) Amlaird (mm) Saughall (mm) 

2006-2007 1865 1565 1657 

2007-2008 1579 1099 1350 

2008-2009 1626 1350 1462 

2009-2010 1270 1250 1180 
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Figure 29. Monthly rainfall totals for four hydrologic years from the three SEPA 
tipping bucket rainfall gauges nearest to the Whitelee area. Panel A, Picketlaw, to 
the north of the Whitelee plateau, panel B, Amlaird to the west and panel C, 
Saughall, to the south (locations in Figure 6, Chapter 2.2). 
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4.3. Bi-monthly Time Series 

 

Chapters 2 and 3 outlined the field and laboratory methodologies for generating the time 

series. Gaps exist in the [SRP] and [NO3
-] datasets from Waldron et al. (2009), < 10 % of 

the overall time series length, due to logistical difficulties in analyzing the samples quickly 

enough on return from the field to be confident that the measured concentration 

represented field concentrations accurately. Summary tables of the mean, median and 

range of concentrations in each catchment are provided in Appendix 5. The time series 

are presented in this section of the chapter with a brief description and are discussed in 

greater detail and compared with results from other catchments later in the chapter. 

 

4.3.1. Carbon 

 

[DOC] in the N-draining catchments ranged from 2.9 mg L−1 (9D, February 2007) to 41.4 

mg L−1 (456, October 2009) (Figure 30). [DOC] in the S-draining catchments is higher than 

that of the N-draining catchments, with [DOC] ranging from 5.2 mg L−1 (1, February 2007) 

to 57.1 mg L−1 (13, August 2008) (Figure 30). All catchment [DOC] exhibited seasonality 

with maximum concentrations towards the end of each summer and lowest concentrations 

in winter (Figure 30).  

 

[POC] in the N-draining catchments ranged from 0.31 mg L−1 (9A, January 2008) to 23.4 

mg L−1 (456, April 2009) (Figure 31). [POC] in the S-draining catchments was lower than 

in the N-draining catchments, ranging from 0.09 mg L−1 (13, January 2009) to 10.7 mg L−1 

(15, July 2009) (Figure 31). [POC] shows less seasonality than [DOC] (Figure 31). N-

draining catchment 456 has a spiky pattern in [POC] often having the highest [POC] of all 

the catchments from April 2009 to December 2009 (Figure 31). 

 

[TOC] in the N-draining catchments ranged from 4.2 mg L−1 (9D, January 2008) to 47.5 

mg L−1 (456, October 2009) (Figure 32) with [POC] on average 14.1 ± 15.2 % of the 

[TOC]. [TOC] in the S-draining catchments was higher than that of the N-draining 

catchments, with [TOC] ranging from 5.6 mg L−1 (1, February 2007) to 59.1 mg L−1 (13, 

August, 2008) (Figure 32). In the S-draining catchments, [POC] was on average 6.5 ± 4.4 

% of the [TOC]. The strong seasonal signal in [TOC] is driven by [DOC] rather than [POC] 

(Figure 32).  
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4.3.2. Phosphorus 

 

In the N-draining catchments [SRP] ranged from the limit of quantification of 1 g L−1 (9A, 

May 2010) to 149 g L−1 (456, December 2009) (Figure 33) with [SRP] in the S-draining 

catchments ranging from as low as the limit of quantification of 1 g L−1 (15, March 2007) 

to 289 g L−1 (14, June 2010) (Figure 33). In both N- and S-draining catchments [SRP] 

was higher in the summer months. The greatest [SRP] over the period of research was 

generally observed in S-draining catchments 13 and 14 from October 2007 right through 

until September 2010. Catchments 456 and 14 have occasional spikes in [SRP] (Figure 

33). 

 

In the N-draining catchments [TP] ranged from 2 g L−1 (9D, March 2008) to 255 g L−1 

(456, October 2007) (Figure 34). In these catchments [SRP] was on average 43.7 ± 37.5 

% of the [TP]. [TP] in the S-draining catchments ranged from 3 g L−1 (15, January 2007) 

to 328 g L−1 (13, May 2008) (Figure 34), with [SRP] on average 59.5 ± 37.7 % of the 

[TP]. [TP] showed a seasonal pattern with the highest concentrations in the summer 

months. The greatest [TP] was generally in S-draining catchments 13 and 14 from 

October 2007 until September 2010. 

 

4.3.3. Nitrogen 

 

[NO3
-] in the N-draining catchments ranged from 0.13 mg L−1 (9D, September 2009) to 

2.44 mg L−1 (456, April 2010) (Figure 35). In the S-draining catchments [NO3
-] was lower 

than the N-draining catchments and ranged from 0.001 mg L−1 (1632, May 2010) to 0.88 

mg L−1 (1632, August 2008) (Figure 35). [NO3
-] showed the opposite seasonality to C and 

P, with greater concentrations over winter and spring, and lower concentrations in 

summer and autumn.  
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4.4. Inter-Catchment and Annual Trends in Time Series  

 

4.4.1. Carbon 

 

4.4.1.1. Dissolved Organic Carbon 

 

[DOC] in Scottish peat-dominated catchment streamwaters have been reported to range 

between 0.8 and 56.6 mg L−1 (e.g. Dawson et al., 1995; Hope et al., 1997a,b; Dawson et 

al., 2002; Billett et al., 2004; Dawson et al., 2004; Tetzlaff et al., 2007; Dawson et al., 

2008; Grieve and Gilvear, 2008; Dinsmore et al., 2010). The [DOC] for 2007-2010 for the 

Whitelee catchments, ranging from 2.9 to 57.1 mg L−1, is comparable to these 

observations from other catchments.  

 

The wide range of [DOC] at Whitelee is caused by the seasonality in [DOC] (Figure 30). In 

the Whitelee catchments the greatest [DOC] occurs between July and October with 

correspondingly lower [DOC] from December to May. This marked autumnal flush in 

[DOC] was also observed by Waldron et al. (2009) and the continuation of the bi-monthly 

time series showed a similar seasonal amplitude to the earlier data. Streamwater in other 

UK upland peat catchments have been shown to have a seasonal periodicity in [DOC] 

(e.g. Naden and McDonald, 1989; Cummins and Farrell, 2003b; Billett et al., 2004; Worrall 

et al., 2006; Clark et al., 2007; Dawson et al., 2008; Dawson et al., 2011).  

 

The pattern of [DOC] at Whitelee is similar to that of water temperature in catchment 13 

(see Figure 28, Chapter 2.5). Rather than being dependent on water temperature as this 

comparison may suggest, and although in-stream fluvial processes can increase [DOC] 

(Dawson et al., 2001a,b), [DOC] is likely to be driven by soil temperature (Grieve, 1991). 

The timing of the maxima of [DOC] is likely to be controlled by peak terrestrial productivity, 

which influences the supply of organic matter for transport. Higher temperatures during 

the summer drive biological activity, increasing the decomposition of organic matter and 

solubility of C (Grieve, 1990; Miller et al., 2001; Billett et al., 2006; Clark et al., 2007; 

Dawson et al., 2008, Dawson et al., 2011) generating a store of DOC in the peat. The 

increased quantity of available DOC in terrestrial stores is flushed out in the transition 

from lower water tables as the catchment wets up during the autumn (Worrall et al., 2006; 

Tipping et al., 2007; Dawson et al., 2008). [DOC] are likely to be lower in the winter with 

decreasing temperature because of a decrease in fermentative processes which break 
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down organic matter and in phenol oxidase activity (Freeman et al., 2001b). The latter 

enzyme is associated with C cycling in soil and its presence in soil environments is 

important to the formation of humic substances. Therefore, because less DOC is 

produced in the soil during colder conditions, and less is available to be flushed out during 

winter/spring as the DOC store has become depleted (Brooks et al., 1999), a decrease in 

[DOC] is observed. The distinct annual signal in [DOC] at Whitelee reflects these changes 

in seasonal productivity. 

 

The occurrence of higher [DOC] in the S-draining compared to the N-draining catchments 

concurs with the earlier study of Whitelee by Waldron et al. (2009). This spatial variation in 

[DOC], which will be examined in greater detail in Chapter 6, is hypothesised to be caused 

by differing soil types and associated land use on either side of the drainage divide. 

Higher [DOC] in S-draining catchments could be due to greater extent of commercial 

forestry plantations in these catchments. Higher [C] have been reported in streams 

draining forested catchments in studies in other parts of Scotland. At Loch Fleet in 

southwest Scotland, discharge-weighted mean streamwater [DOC] showed only small 

differences between two catchments of a similar size draining afforested versus moorland 

catchments, although during storm events [DOC] in the forest stream were twice those in 

the moorland stream (Grieve, 1990). Large significant differences in soil solution [TOC] 

have been observed in a paired catchment study in Loch Dee, southwest Scotland, 

between forest and moorland sites with comparable slope angles and elevations. The 

forested sites are characterised by soil solution [TOC] up to 50 % greater than the 

moorland sites (Grieve and Marsden, 2001). This means that in catchments where there 

are large areas of forestry there is a greater pool of TOC available to reach the stream 

network (Grieve and Marsden, 2001). 

 

As well as afforestation, deforestation can impact on streamwater chemistry; although 

results from a number of studies provide conflicting evidence of the effects of clear-felling 

on [DOC] (c.f. Hope et al., 1994). Clear-felling has been reported to result in little change 

in [DOC] (McDowell and Likens, 1988), whereas in other catchments a slight increase in 

[DOC] was observed (Hobbie and Likens, 1973; Neal et al., 2004) and in some cases 

decreased [DOC] was identified (Meyer and Tate, 1983). This variation in the response of 

different catchments to deforestation is probably because [DOC] is also influenced by 

factors such as hydrology, season, slope, antecedent temperature and rainfall conditions, 

catchment size (Eckhardt and Moore, 1990; Grieve, 1994; Dawson et al., 2002, Dawson 

et al., 2011) and the spatial extent of peatlands within the catchment in addition to forest 

management (Grieve and Marsden, 2001). Statistically significant increases in 



Chapter 4 

85 

 

streamwater [DOC] were observed compared to a control catchment after clear-felling on 

blanket peat in Ireland (Cummins and Farrell (2003a). This impact was superimposed on 

the strong seasonal cycle for up to three years after the start of disturbance with the 

increases observed during the maximum phase of the seasonal cycle only. Deforestation 

enhanced [DOC] superimposed on [DOC] which varied seasonally following the 

commencement of felling and attributed this to increased organic matter decomposition at 

the soil surface where fresh litter material was provided due to the felling (Tetzlaff et al., 

2007). 

 

It has been consistently found that peatland streamwaters have the highest [DOC] 

compared to rivers draining other soil types (Thurman, 1985). For example, in north-east 

England the North Tyne river, which has a catchment dominated by upland peats that 

reach up to 10 m deep, was characterised by higher [DOC] than the South Tyne river, 

which drains a catchment containing a greater proportion of brown earth soils (Baker et 

al., 2008). Broad statistically positive relationships exist between both peat coverage, and 

more specifically the soil C pool, and streamwater [DOC] have been observed at 

catchment scales ranging from < 1 to 1800 km2 (Hope et al., 1994, 1997a,b; Aitkenhead 

et al., 1999; Dawson et al., 2002; Kortelainen et al., 2006, Dawson et al., 2011). As 

peatlands represent a large pool of organic C, peatland streams are characterised by high 

allochthonous [DOC] (Fiebig et al., 1990; Grieve, 1991, Hope et al., 1997a; Dinsmore et 

al., 2010), especially in catchments where soils are consistently saturated and throughflow 

primarily occurs in the near-surface peat layers (Aitkenhead et al., 1999; Billett et al., 

2004).  

 

However, the relationship between streamwater [DOC] and percentage peat coverage 

may occur in the upper part of the catchment only and becomes weaker downstream as 

the soil C pool becomes proportionally smaller (Dawson et al., 2001a; Dawson et al., 

2004; Billett et al., 2006; Dawson et al., 2008, Dawson et al., 2011). As stream order 

increases, terrestrial organic C inputs become less significant since further downstream 

freer draining mineral soils become spatially more important, therefore percentage peat 

cover as an approximation of the soil C pool can explain only the variation in [DOC] 

between small catchments. The main control on small-scale spatial changes in 

streamwater [DOC] in upland headwater catchments is the difference between soil water 

inputs from different parts of the catchment as the stream flows through different soil types 

(Grieve, 1990). It is hypothesised that the difference in soil types explains the differences 

in [DOC] with the topographic divide. The S-draining catchments have more peatland than 

the N-draining catchments (see Table 7, Chapter 2.4.1), which contain soils of 
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substantially lower organic matter (e.g. non-calcareous gleys) and better drained soils 

(e.g. brown forest soils) and consequently the streamwaters have lower [DOC].  

 

The seasonal variation and differences between catchments in [DOC] make the 

assessment of the effects of disturbance on [DOC] in the Whitelee catchments difficult. 

Pronounced temporal variations in [DOC] complicate the interpretation of before-and-after 

comparisons, and within-catchment spatial variations obscure the results of paired 

catchment studies (Grieve, 1994). It is hypothesised that the disturbance of peat through 

the construction of a windfarm may increase the loss of C from the terrestrial stores to the 

aquatic system. In addition to the hypothesized impact which hosting the windfarm access 

tracks and turbine foundations may have on streamwater chemistry (Grieve and Gilvear, 

2008) (see Chapter 1.4.1), forest management can impact on streamwater chemistry, and 

in particular on [DOC].  

 

Figure 30, Figure 31 and Figure 32 show that for most of the Whitelee catchments there 

was no obvious increase in streamwater [C] during the time series using a bi-monthly 

sampling frequency, although there is a suggestion in the data that [DOC] increased 

slightly in catchment 13 during summer/autumn 2008, after a period of large scale 

deforestation, compared to the other catchments. This potential impact is examined in 

Chapter 6, although it is hypothesised that the percentage of the catchment covered with 

peat-based soils plays a more significant role in determining streamwater [DOC] than 

windfarm-related disturbance. 

 

4.4.1.2. Particulate Organic Carbon 

 

[POC] in the Whitelee catchments ranged from 0.09 mg L−1 to 23.4 mg L−1 (Figure 31), 

which is similar to the range in [POC] of 0.00 mg L−1 to 22.9 mg L−1 observed in peat-

dominated catchments in northeast of Scotland (Dawson et al., 2004). Mean [POC] over 

the three years for all the Whitelee catchments was 1.8 mg L−1, similar to mean [POC] 

over 2 years at Auchencorth of 1.6 mg L−1 (Dinsmore et al., 2010). Catchment [POC] had 

little seasonal variation compared to the variation seen in [DOC], similar to observations in 

peatland catchments in northeast Scotland (Dawson et al., 2004).  

 

The most apparent trend in the [POC] time series is that the concentrations are lower in 

the S-draining catchments than in the N-draining catchments (Figure 31), with catchment 
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456 often having the highest [POC] of all the catchments, especially from April to 

December 2009. The spikes in [POC] in catchment 456 are an indication of point-source 

pollution and are thought to be due to a nearby dairy cattle farm which is a known source 

of contamination (Edwards and Withers, 2008). Hardstanding areas on dairy farms, such 

as in catchment 456, receive fresh faecal material daily, and they are cleaned more 

frequently than in other types of livestock farms (Edwards and Withers, 2008). This larger 

volume of water and available organic matter increases the likelihood of POC reaching the 

stream network at 456. As the farm is <1 km upstream of the sampling point, there is a 

limited dilution potential available by this point downstream which means that it is strongly 

impacted by agricultural C loss.  

 

There are other peaks in the [POC] time series which cannot be attributed to point source 

pollution. For example, a peak occurred in all the S-draining catchments during July 2009. 

The occurrence of this peak in all these catchments suggests it was not caused by 

windfarm-related construction or deforestation because disturbances such as these would 

not extend across all catchments at the same time. It is likely that this spike in particular is 

due to an extended drier period during June 2009. The drier conditions and higher 

temperatures during this period are likely to have increased the drying and cracking of 

peat, making it more susceptible to erosion, generating a store of POC in the terrestrial 

ecosystem which was flushed out in the first rainfall after the dry period.  

 

Based on increased suspended solid loads observed by Grieve and Gilvear (2008) it was 

presumed that a clear increase in [POC] would be observed in the Whitelee catchments, 

with the timings coinciding with windfarm-related disturbance such as borrow pit creation, 

the construction of access tracks and installation of turbine bases in each of the 

catchments. Significant increases in streamwater [POC] have also been documented 

following deforestation (Hobbie and Likens, 1973; Gurtz et al., 1980) and known to cause 

increases in soil C losses by erosion and sedimentation to upland streams (Farmer and 

Nisbet, 2004), but it has also been reported that harvesting of upland blanket peat forest 

does not necessarily lead to significantly increased suspended solid concentrations in 

receiving waters if the Forests and Water Guidelines (2003) are adhered to (Rodgers et 

al., 2011). No sudden increase or pulse in [POC] was observed at Whitelee (Figure 31).  
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Four possible explanations for this are: 

 

1. There was no erosion of peat during windfarm construction and therefore no impact on 

streamwater chemistry. This is unlikely due to the large volume of peat disturbed, around 

300,000 m3, exposed due to the excavation of borrow pits, insertion of turbine 

foundations, construction of access roads and associated forestry operations.  

 

2. More plausibly, there is an impact of windfarm construction on [POC] but it is not 

observed outwith the immediate area of disturbance. Dilution between the area of 

disturbance and the sampling point may lessen impact or any increased [POC] may be 

buffered through the cycling of POC within the river system upstream of the sampling 

point by bacteria and aquatic organisms respiring POC, and also DOC, which are 

removed from the streamwater through evasion.  

 

3. Measures in place to mitigate impact on streamwater chemistry have been effective so 

no impact is observed outwith the immediate zone of disturbance. At Whitelee, settling 

ponds (Figure 36) to attenuate flows within the drainage system, alum block deployment 

to increase flocculation of particles and forest drain blocking to reduce connectivity to the 

stream network were all employed to minimise the impacts of activities on streamwater 

suspended sediment. The potential for both windfarm construction and associated forest 

management to increase suspended sediment in streamwater was identified in the EIA 

provided by the windfarm developer (CRE Energy, 2002). The good working practice used 

on site, adherence to the Forests and Water Guidelines (2003), and the mitigation 

measures put in place to reduce the impacts of erosion and sedimentation may have been 

appropriate and effective, such that the effect on the water quality in terms of POC was 

insignificant.  

 

4. The detail of POC dynamics may have been missed in this time series because of the 

approximately bi-monthly sampling regime which did not target storm events, when the 

greatest transfers of POC from the terrestrial to the aquatic system are likely to occur 

(Pawson et al. 2008; Stutter et al. 2008a,b). Dawson et al. (2004) observed in peatland 

catchments in northeast Scotland that baseflow [POC] was mostly between 0.2 mg L-1 and 

0.8 mg L-1 but that [POC] increased substantially during periods of high discharge to a 

maximum of 22.9 mg L-1. [POC] in streamwater is often temporally highly variable in 

relation to storm events (Hope et al., 1997a) which may be responsible for greater 

transfers of POC than observable using routine sampling.  

 



Chapter 4 

89 

 

It is likely that the lack of observed windfarm-related increase in [POC] is due to a 

combination of explanations 2, 3 and 4. 

 

 

Figure 36. Use of settling ponds at Whitelee to increase the retention time of the 
water in the catchment so that the suspended load settles out as a mitigation 
measure to prevent suspended solids and consequently POC reaching 
streamwater. 

 

 

4.4.1.3. Assessment of Impact on Total Organic Carbon 

 

There are no environmental standards available to assess for impact on [TOC]. In order to 

assess for impact in organic C due to windfarm-related disturbance the seasonal signal in 

[TOC] had to be quantified for each catchment so that any inter-catchment or annual 

differences in catchment organic C could be identified. [TOC] was used so that data from 

hydrologic year 2006-2007 from Waldron et al. (2009) with different DOC / POC 

partitioning could be included. Since the periodicity in the TOC time series is not 

stochastic, that is, not due to random influences, but explained by changes in terrestrial 

productivity and catchment hydrology, the seasonality was modelled using harmonic 

regression for each catchment allowing any additional impacts to be identified. Regression 

analysis was carried out using Minitab® v16 statistical software. Harmonic regression was 

not carried out using the data from catchment 17/17U due to the interrupted continuity of 

the time series caused by the construction of flood storage upstream. 
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Prior to modelling the data, the distribution of the [TOC] time series data for each 

catchment was tested for normality through a visual inspection of the histogram of residual 

frequency, the normal probability plot and the plot of the fitted value against the residual 

values (Figure 37). A harmonic regression was applied to each catchment with covariate 

year day (as a decimal) as the X variable to model the trend and seasonal signal captured 

by sine and cosine terms in [TOC] time series (Piegorsch and Bailer, 2005). The 

regression was carried out first on the four hydrologic years worth of [TOC] to assess for 

any trends in the data across the four year period (Figure 38, Figure 39 and Table 21). 
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Figure 37. Example of the visual check carried out on the residual plots to check for 
normality in the [TOC] data, in this case, for catchment 13. The ‘normal probability’ 
follows a straight line. The ‘histogram of residual frequency’ is normally distributed. 
The ‘versus fits’ and ‘versus order’ plots show a random distribution. 

 

 

 
Table 21. Harmonic regression of [TOC] with year day as a decimal modelled over 
four hydrologic years. The P values associated with the Y intercepts were all < 
0.001.  

Catchment Y intercept Year day (slope) coefficient P value of slope  

N-draining    

456 11.9 ± 2.1 1.86 ± 0.70 0.011 

9A 13.8 ± 1.4 -0.17 ± 0.64 0.708 

9D 8.7 ± 1.0 0.60 ± 0.61 0.091 

S-draining    

13 27.5 ± 2.1 0.81 ± 0.70 0.248 

14 22.1 ± 1.9 0.58 ± 0.64 0.370 

15 26.4 ± 1.8 1.05 ± 0.61 0.087 

1 20.2 ± 1.9 0.50 ± 0.64 0.439 

1632 22.6 ± 2.0 0.35 ± 0.67 0.609 
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Figure 38. Harmonic regression of [TOC] and year day for four hydrologic years. 
[TOC] is in mg L-1 and 1st January of each year is marked on the X-axis. The R2 
values for the regressions are included in the graph key and the P values of the 
model fit are all highly significant. 
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Figure 39. Relationship between measured [TOC] and modelled [TOC] with 
examples from catchments 13 and 456 to show model fit. [TOC] is in mg L-1. 

 

The fitted [TOC] time series residuals were checked for autocorrelation with a lag of 2 

weeks and the graphical output of the autocorrelation function from Minitab v.16 showed 

that each of the catchments had data points which were independent of the previous data 

point (Figure 40).  

 

13, S-draining 

456, N-draining 



Chapter 4 

92 

 

2018161412108642

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

-0.5

Lag

A
u
to

c
o
rr

e
la

tio
n

 
Figure 40. A visual check was performed to test for autocorrelation in the data. An 
example of a correlogram of the fitted [TOC] residuals, in this case for catchment 
13, shows the autocorrection function is close to zero thus there is little time 
dependence in the data. The 5 % significance limits for the autocorrelations are in 
the dashed line. 

 

The harmonic regression of [TOC] with year day models the seasonality of TOC 

reasonably well, with R2 ranging from 44 to 77 % and all the relationships highly 

statistically significant (P < 0.001) (Figure 38 and Figure 39). Caution must be exercised in 

the identification of ‘long-term’ trends because it is difficult to interpret trends from a 

dataset less than a decade in length (Reynolds and Edwards, 1995), as Figure 38 

suggests there is a an increasing trend in all catchments. However, the P values of the 

slope coefficient in Table 21 shows that catchment 456 is the only catchment with 

statistically significant increases in [TOC] over the four year period, catchments 9D and 15 

have weakly significant increases (P = 0.09), with the remaining catchments showing no 

significant trends. 

 

The pre-disturbance baseline period from June 2006 to October 2006 was too short to 

carry out a before-and-after impact comparison, so the catchment time series for each 

catchment was split into four hydrologic years from October 2006 to September 2010, 

each of which were modelled separately to assess for windfarm-related disturbance 

impact (Figure 41). Harmonic regression allows the identification of changes in annual 

seasonal pattern and of changes in the ranked position of catchments in terms of the 

[TOC]. The results of the separate harmonic regressions for each hydrologic year show 

that in the S-draining catchments the fitted [TOC] model describes the seasonal trend in 

the data well in 2006-2007 and 2007-2008 (R2 generally > 75 %, P < 0.001) (Figure 41). In 
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the N-draining catchments, the model fit is good for 2006-2007 (R2 > 80 %, P < 0.001), but 

less satisfactory for 2007-2008, with R2 varying from 52 to 74 %. However, the smallest P 

value was P = 0.015, so the model still describes the variation in the data reasonably well 

and the relationships provided by the model are still statistically significant (Figure 41).  

 

If the catchments are not affected by windfarm-related disturbance, the modelled [TOC] 

patterns of the catchments should retain their pattern relative to one another. During 

2007-2008 (Figure 41B) catchment 13 has a change in ranked position relative to the 

other catchments in terms of highest [TOC], whereas during the other years catchment 

15, with the greatest percentage of peat-based soils (see Table 7, Chapter 2.4.1), had the 

highest [TOC]. This inter-annual change for catchment 13 in rank and amplitude (an 

increase of ~ 10 mg L-1 in maximum modelled [TOC]) is evidence of impact in this 

catchment during the 2007-2008 hydrologic year which is not sustained in the following 

two years. Controls on streamwater chemistry are identified in Chapter 6, but it is likely the 

increase in [TOC] is caused by clear-felling and brash mulching carried out in 12 % of the 

area of catchment 13 during this year. The magnitude of [TOC] increase in catchment 13 

is ~ 5 mg L-1, larger than the “relatively modest” impacts of clear-felling on [DOC] 

observed by Tetzlaff et al. (2007). The approximately year-long impact of deforestation 

activities at Whitelee is shorter than that observed by Cummings and Farrell (2003a) who 

found increases in streamwater [DOC] lasting up to three years after the start of 

disturbance. However, the Whitelee catchments exhibited a similar pattern of response to 

the Irish clear-felled peatland catchments with the increases observed mainly during the 

maximum phase of the seasonal cycle. Following felling on peaty gley soils in a catchment 

in mid-Wales there was a slight increase in streamwater [DOC] but at the main catchment 

outlet, the felling response seems insignificant compared to the normal fluctuations in 

DOC (Neal et al., 2005). The pattern of increases at Whitelee could be explained by Dai et 

al.’s (2001) conclusion from a study of Hubbard Brook Experimental Forest catchments in 

New Hampshire, U.S.A. that temporal variations in flowpaths and in-stream processes 

were more important controllers of streamwater DOC than was the disturbance of felling. 

 

For 2008-2009, regardless of topographic drainage divide, the reliability of the model fit 

decreases with R2 ranging from 36 % with a P value of 0.06 (catchment 9A) to 61 % with a 

P value of 0.001 (catchment 15) (Figure 41). Figure 41C shows that the amplitude of the 

seasonal signal in the S-draining catchments is less in 2008-2009. The deterioration in 

model fit and smaller magnitude of amplitude indicates that there was a change in [TOC] 

pattern in all catchments during 2008-2009. There is a spike in [TOC] in all catchments 

during April 2009 (Figure 41), which confounds the seasonal pattern. A windfarm-
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related impact would be expected on an individual catchment basis because construction 

and deforestation was carried out in focussed pockets of disturbance at different times, 

which suggests that this spike, which influences the model fit in 2008-2009, is not related 

to windfarm development. A hydrological or climatic difference during this month driving 

the availability of a terrestrial C store is the most likely explanation why the modelled 

seasonal [TOC] time series does not describe the data well compared to the other years 

of research. Further to this, during 2008-2009 there were six events in the Whitelee 

catchments with a probability of occurrence of 0.1 %, based on the SEPA Newmilns flow 

duration curve (see Figure 27, Chapter 4.2.1), including the event with the greatest Q (85 

m3 s-1) recorded for the duration of the research. These high flow events would have 

increased the connectivity between the available C in terrestrial stores and the stream 

network throughout the year, not just in the autumn, leading to a lesser seasonal signal in 

[TOC] during that year. 

 

In 2009-2010 the models describe the [TOC] time series data well again in the S-draining 

catchments with R2 increasing to > 75 % with a significance of P < 0.001. The model for 

N-draining catchment 9A fits the data well for 2009-2010 with R2 of 65 %, P < 0.001, but 

two N-draining catchments show a sustained decrease in model fit over the full duration of 

research with R2 in 2009-2010 in catchment 456 as low as R2 = 45 %, P = 0.03 and in 

catchment 9D as low as 34 %, P = 0.09. Since windfarm-related disturbance was 

complete by this stage, it is hypothesised that, rather than any lagged windfarm-related 

effect, the observed impact on model reliability was due to point source pollution events of 

[POC] from agriculture (see Chapter 4.4.1.2) in these two catchments driving the loss of 

seasonal signal. 

 

To summarise, the separate regression analysis for each hydrologic year showed 

evidence of windfarm-related impact at the sampling points outwith the zone of 

disturbance using bi-monthly sampling regime through an inter-annual change in [TOC] 

rank and amplitude in catchment 13 during 2007-2008 – most likely to be explained by the 

percentage of the catchment area subject to deforestation. This potential control on 

streamwater chemistry will be examined in the GIS-based analysis in Chapter 6. There 

was also a distinct change in [TOC] in all catchments during 2008-2009, thought to be 

driven by changes in hydrology or climate. 
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4.4.2. Phosphorus  

 

From June 2006 to June 2007 [SRP] and [TP] are comparable in the N- and S- draining 

catchments and there is homogeneity in the response between catchments (Figure 33 

and Figure 34). In all catchments there was a similar seasonal trend to the C dynamics, 

with the greatest [SRP] and [TP] in late summer/autumn and the least over winter and 

spring, but with a smaller amplitude than the [DOC] signal. A distinct seasonal signal of [P] 

in peatland streamwaters has been reported by others (Harriman, 1978; Cummins and 

Farrell, 2003b) who found the highest [P] in winter, coinciding with increased stream flow. 

However, the maxima in [SRP] and [TP] were earlier than this at Whitelee, occurring over 

autumn rather than winter. This may be explained by the difference in timings of greatest 

rainfall and frozen conditions over winter. Although precipitation at Whitelee is fairly evenly 

distributed throughout the year, autumn tends to be the wettest period (see Figure 29, 

Chapter 4.2.3, which is towards the end of the growing season after peak terrestrial 

productivity. A pool of P is retained in the terrestrial ecosystem during the summer 

growing period by bio-assimilation and exported as a result of plant decomposition in the 

autumn (Bowes et al., 2003). When coupled with less plant uptake at the end of the 

growing season, more P is available to be flushed out through the greater hydrological 

connectivity due to the Whitelee catchments being wetter for longer periods.  

 

[TP] is more variable in the N-draining catchments than in the S-draining. This 

phenomenon is likely to be due to the difference in land use between the N- and S-

draining catchments, with agriculture more prevalent in the N-draining catchments. The 

variability in the [TP] time series is likely to be caused by the direct deposition of 

particulate P in the form of faecal matter in and near the rivers by grazing dairy cattle, 

which often come down to the stream to drink and may also cause erosion around river 

banks and disturb P in-stream sediments. Catchment 456 generally has higher and more 

variable [TP] and [SRP] than the other N-draining catchments which is most likely to be 

due to the farmyard < 1 km away from the sampling point (Edwards and Withers, 2008).  

 

The seasonal [P] signal was still apparent but the pattern changed in S-draining 

catchments 13 and 14 from June 2007 with as much as a tenfold increase observed in 

[SRP] in these two catchments (Figure 33 and Figure 34). Waldron et al. (2009) reported 

the start of this increase in [P] at the end of the [TP] time series of the mean of the S-

draining catchments [TP] sampled on the same day. 
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4.4.2.1. Assessment of Impact on Phosphorus 

 

The Water Framework Directive (2000) UK Technical Advisory Group has provided 

standards for [SRP] in rivers based on annual mean [SRP] and river type (UKTAG, 2008) 

(see Chapter 1.3.2 and Table 22). These standards were used to assess for impact of 

windfarm-related disturbance on streamwater [P], negating the need to conduct harmonic 

regression analysis on the [P] time series.   

 

Table 22. Standards for phosphorus in rivers, based on [SRP]. Only the standards 
for the river typologies relevant to the Whitelee catchments are shown. 

River type Annual mean [SRP], g L-1 

High Good Moderate Poor 

2n 20 40 150 500 

4n 50 120 250 1000 
 

 

Annual mean [SRP] for each of the catchments were calculated for each of the four 

hydrologic years, including the data from Waldron et al. (2009), and compared to the 

standards for the river type appropriate for each catchment (Table 22). N-draining 

catchments 9A and 9D have mean annual [SRP] of < 20 g L-1 for the four hydrologic 

years (Table 23) which, for Type 2n rivers, is a “high” water quality thus these catchments 

are generally mesotrophic. Similarly catchments 456 and 17U, which are classified as 

Type 4n rivers, have “high” water quality throughout the duration of research with mean 

annual [SRP] of < 50 g L-1 (Table 23) which means these catchments are also of low 

trophic status. S-draining Type 2n catchments 15, 1 and 1632 have a “good” status with 

mean annual [SRP] for the four hydrologic years of < 40 g L-1 (Table 23). However, there 

is a clear impact on streamwater [P] in catchments 13 and 14, which are Type 2n rivers 

and have “good” status in 2006-2007 but deteriorated in 2007-2008 to “moderate” 

because of a mean annual [SRP] between 40 and 150 g L-1 (Table 23). A full recovery 

from eutrophication back to “good” water quality status in terms of [SRP] has still not been 

observed in these two catchments after two further hydrologic years.  

 

Potential sources of P within a catchment were outlined in Chapter 1.3.2 and the controls 

on streamwater [P] are examined in more detail in Chapter 6, but some provisional 

explanations for the increases observed in catchments 13 and 14 can be outlined at this 

stage based on the information about the two catchments and the type and scale of 

windfarm-related disturbance. P sources entering streams are best grouped into 

wastewater discharges (for example, septic tank discharges), runoff from impervious 
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surfaces (for example, roads and farmyards) and runoff from pervious surfaces (for 

example, forestry, cultivated lands and pasture) (Robards et al., 1994; Withers and Jarvie, 

2008). In rural catchments such as 13 and 14 at Whitelee, the population uses septic tank 

systems for wastewater disposal, and if not emptied regularly, or if they do not have 

adequate soakaway facilities, can impact on streamwater [P]. Farmyard runoff is a mixture 

of various sources including parlour washings, runoff from silage and manure stores on 

concrete, livestock sheds, roof water and domestic septic tank discharges as well as open 

yard runoff (Withers and Jarvie, 2008). Farmyard runoff is therefore another potential 

source of P to streamwater in rural catchments like 13 and 14. However, the source of the 

increases in [P] is unlikely to be domestic septic tanks due to the low levels of human 

settlement in these two catchments, and although both 13 and 14 also have farms 

upstream of the sampling point, the increase was observed in two catchments 

simultaneously, suggesting a larger, more diffuse source of P is likely to have impacted 

both catchments. 

 

Large areas of catchments 13 and 14, 12 % and 10 % respectively, were clear-felled from 

November 2006 to January 2008 due to bog restoration requirements as part of the HMP 

(see Table 5, Chapter 2.3.4). An impact on [P] is unsurprising since deforestation is 

known to have a negative impact on streamwater chemistry, especially in terms of nutrient 

enrichment (e.g. Nisbet, 2001; Feller 2005). The magnitude of [P] increases, pattern of a 

decline after peaks in the late summer to tail off in winter followed by a second increase of 

similar magnitude the next summer, and the timescale of recovery to pre-disturbance 

levels observed at Whitelee is similar to the response to clear-felling reported in other 

peatland catchments (see Chapter 1.4.2 for a review of observations from Ahtiainen and 

Huttunen, 1999; Cummins and Farrell, 2003b and Rodgers et al., 2010).  

 

Catchment Annual mean [SRP], g L-1 

2006-2007 2007-2008 2008-2009 2009-2010 

N-draining     

456 18.5 ± 7.6 21.1 ± 10.6 28.1 ± 24.5 36.3 ± 36.0 

9A 11.7 ± 6.1 12.7 ± 7.9 13.5 ± 8.1 12.4 ± 8.4 

9D 10.1 ± 8.4 17.1 ± 17.3 11.9 ± 9.4 10.9 ± 4.8 

17/17U 19.2 ± 10.0 22.2 ± 8.6 23.0 ± 17.5 21.0 ± 8.6 

S-draining     

13 23.6 ± 16.0 84.7 ± 39.7 70.8 ± 21.1 46.3 ± 11.4 

14 21.1 ± 15.2 62.8 ± 40.9 55.2 ± 47.4 47.7 ± 59.8 

15 16.2 ± 7.4 22.5 ± 11.0 37.6 ± 26.5 26.6 ± 8.6 

1 15.6 ± 9.9 25.3 ± 12.4 22.8 ± 8.2 21.1 ± 8.4 

1632 13.9 ± 7.5 28.5 ± 13.3 26.3 ± 8.3 21.1 ± 3.8 
 

Table 23. Annual mean [SRP] ± 1 standard deviation for four hydrologic years from 
2006. 
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The source of some of the P in catchments 13 and 14 could be from the remains of 

fertilisers used to establish the conifer trees in the 1960s. P as rock phosphate was the 

principal fertiliser routinely applied in the first rotation at this time and although its input 

would have been very much lower than is typical of most agricultural systems, it would 

have been considerably higher than is typical of the low-input agricultural or other uses of 

blanket peatland (Cummins and Farrell, 2003b). After clear-felling, any remains of this 

fertiliser could have been washed in-stream in runoff from newly-exposed soils (Malcolm 

and Cuttle, 1983). With reduced vegetation uptake P levels are likely to exceed greatly 

plant requirements because felling interrupts the P cycle until the vegetation cover re-

establishes (Forestry Commission, 2003).  

 

During harvesting activities, despite the use of brash mats (see Chapter 1.4.2) to reduce 

the soil disturbance, the forestry machinery may still disturb the forest floor and as a result 

increase the probability of erosion of particulate matter especially during rain events, 

consequently increasing P levels in receiving waters (Ensign and Mallin, 2001). After 

clear-felling, as no significant tree cover remains, soil erosion from the newly-bare 

peatland surface, which has often been progressively dried due to tree growth (Hope et 

al., 1994) and become cracked and degraded (Patterson and Anderson, 2000), may 

increase due to greatly reduced interception and is another likely source of P. Any 

breaking up of the peat surface is apt to accelerate the mineralisation of nutrients 

(Vitousek and Melillo, 1979). P is also released from the roots of the felled trees 

(Ahtiainen and Huttunen, 1999) and after clear-felling, an increase in soil temperature due 

to increased light penetration to the forest surface can increase decomposition rates 

(Messina et al., 1997; Perison et al., 1997) and increase P release from the soils 

(Walbridge and Lockaby, 1994).  

 

The pulse of [P] in streamwater in catchments 13 and 14 is likely to be not due solely to 

there being a greater pool of available P after disturbance but also there is connectivity 

which means that P is transported into the stream network. The export of P from the 

terrestrial ecosystem to streamwater is linked to the P adsorption ability of the soil (Tamm 

et al., 1974). P is not retained well by peat. The potential of peat to sorb P is extremely 

low (Fox and Kamprath, 1971; Malcolm et al., 1977). This low P sorption capacity results 

from the low levels of iron and aluminium in peat to which P can bind (Tamm et al., 1974). 

Two mechanisms known to cause the transport of this poorly retained P within the 

landscape are runoff and erosion (Shigaki et al., 2006). A major part of P load after 

catchment disturbance is derived from movement from the topsoil to the stream by 

overland flow (McDowell and Wilcock, 2004; Monaghan et al., 2007). Particulate P in 
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particular is likely to increase in runoff at a clear-felled site due to the increase in volume 

of water reaching the soil surface in the absence of interception by vegetation cover. This 

water has a greater energy, and therefore erosive power, and when coupled with greater 

availability of P following clear-felling, a consequent impact on streamwater [TP] and 

[SRP] could be expected. Where felling has been carried out on podzolic catchments, P 

released from clear-felling was almost entirely immobilised in the soil and not lost from the 

site thus there was no noticeable change in streamwater [P], rather [P] were consistently 

below the analytical detection limit (Stevens et al., 1995). However, this was not the case 

in peat-dominated Whitelee catchments 13 and 14. 

 

New pathways for water to reach the stream network, less accessible before clear-felling, 

may become available (Figure 42), allowing nutrients to “by-pass” uptake since terrestrial 

water becomes rapidly connected to the stream network. Although forest drains in 

catchments 13 and 14 were blocked during felling, the original plough furrows used to 

establish the forest in the 1960s may now act as linkages to the streamwaters.  

 

 

Figure 42. The vegetation has been scraped back off the peat surface at the clear-
felled and mulched area in catchment 13 to demonstrate that the original plough 
furrows have the potential to act as subsurface linkages to stream network.  

 

However, large areas of catchments 1 and 1632, 11 % and 13 % respectively, were also 

subject to clear-felling yet no increases in [SRP] were observed in these two catchments 

compared to the drop from “good” to “moderate” water quality status in terms of the 

standards for annual mean [SRP] reported for catchment 13 and 14.  
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There are two likely explanations for this: 

1) Although similar percentages of the catchment areas were subject to forestry 

operations, the area of clear-felling in catchment 1 was 7.3 km away from the 

sampling point and 4.6 km from the sampling point in catchment 1632, whereas it 

was only 1.0 km upstream to the nearest disturbed area in catchment 13 and 1.8 

km in catchment 14. This longer distance from disturbance in catchments 1 and 

1632 means that although losses were likely due to extensive felling on peatland, 

there may have been dilution available between the clear-felled area and the 

sampling point, and a greater chance that P exiting the felled areas was utilised by 

bacterial and aquatic organisms upstream of the sampling point. Thus no impact 

on streamwater chemistry was observed, indicating that distance to disturbance is 

a key factor influencing the detection of impact on [P]. 

 

2) As well clear-felling in catchments 13 and 14, whole tree mulching was also 

employed, from May 2007 to February 2008 and brash mulching was carried out 

from May 2007 to July 2008. Although exact figures of the area which was subject 

to these two forms of mulching are not available, it is known to be extensive 

compared to the other Whitelee catchments (Personal communication with Ross 

Kennedy of RTS Woodland and Malcolm Crosby of Forest Commission). Brash 

mulching was employed so extensively in these catchments because of the need 

for the quick degradation of brash in order to increase the amount of light reaching 

the peat surface to speed up the restoration of the peatland habitat and re-

vegetation of bog forming plant species as part of the HMP. Whole tree mulching 

and brash mat mulching were not employed over such a widespread area in 

catchments 1 and 1632 as these were outside the HMP area where the quick 

degradation of brash was required. Brash is an important source of leachable 

nutrients (see Chapter 1.4.2) and when retained intact on site once felling is 

complete, returns the P to the soil over time. In contrast, when mulched on site like 

in catchments 13 and 14, this rapid decomposition of the material is known to 

impact on water quality through the increased likelihood of P leaching (Titus and 

Malcolm, 1999; Moffat et al., 2006) which is the most likely explanation for the 

increases observed in streamwater [P]. 

 

To summarise, streamwater quality has deteriorated in catchments 13 and 14 with regard 

to P environmental standards, and a full recovery has still not been observed nearly three 

years after disturbance commenced. The most likely explanation for the increases 

reported in these two catchments is a combination of the distance from disturbance to 

sampling point and the large percentage of the catchment subject to forestry operations. 
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4.4.3. Nitrogen 

 

[NO3
-] ranged from as low as the limit of quantification of 0.01 mg L-1 to 2.44 mg L−1 

(Figure 35). These values are comparable to [NO3
-] observed at Whitelee from June 2006 

to September 2007 which ranged from 0.1 mg L-1 to 1.9 mg L−1 (Waldron et al., 2009). 

[NO3
-] were lower in the peatland-dominated S-draining catchments, consistent with the 

observations in Waldron et al. (2009). [NO3
-] in the S-draining catchments from October 

2007 to September 2010 ranged from the limit of quantification to 0.88 mg L−1. This is 

consistent with other research which has shown that [NO3
-] in moorland streams is 

generally very low, typically below 1 mg L−1 (Harriman and Morrison, 1982; Reynolds and 

Edwards, 1995; Adamson et al., 1998, Chapman et al., 2001; Willett et al., 2004; Helliwell 

et al., 2007a,b; Cundill et al., 2007). In small upland catchments supporting low intensity 

agriculture or forestry, such as the Whitelee catchments, groundwater supplying the 

stream as baseflow typically has a low NO3
- content (Reynolds and Edwards, 1995). The 

main observation in the [NO3
-] time series is that there was no obvious increase in any of 

the Whitelee catchments, and over a year after windfarm-related disturbance commenced, 

there was no indication of a lagged impact. Other catchments that were subject to 

extensive clear-felling have shown elevated streamwater [NO3
-] (Reynolds et al., 1994, 

Neal et al., 2003a) for up to four years after forestry operations (Tetzlaff et al., 2007) (see 

Table 3, Chapter 1.4.2), yet no increases were observed at Whitelee. 

 

Although [NO3
-] in the N-draining catchments was greater than the S-draining (Figure 35) 

the maximum [NO3
-] observed in the streams at Whitelee is considerably below the 

potable drinking water limit of 11.3 mg N L-1, equivalent to 50 mg NO3
- L-1 (EU Drinking 

Water Directive, 98/83/EC). Controls on [NO3
-] are examined in more detail in Chapter 6, 

but it is hypothesised that inter-catchment variation is due to the different land uses with 

the drainage divide at the Whitelee catchments, with N-draining catchments having 

greater [NO3
-] because there is more cattle grazing and more arable land on the lower 

slopes of the N-draining catchments. [NO3
-] in streamwater is known to increase where 

there is more improved pasture, reflecting the inputs from more intensive agriculture 

(Reynolds and Edwards, 1995). In a study of the River Dee and River Don catchments in 

Scotland, elevated streamwater [NO3
-] reflected greater overall agricultural productivity 

and intensity in these catchments (Edwards et al., 1990).  

 

In both the N- and S-draining catchments [NO3
-] was greatest over winter and spring with 

lower [NO3
-] during summer and autumn, which is the opposite seasonal pattern of the C 
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and P time series. This seasonal [NO3
-] pattern has been commonly, but not exclusively, 

observed in several UK studies, many of which were catchments containing either 

relatively low intensity agriculture or extensive areas of upland, peatland or moorland 

(Betton et al., 1991; Reynolds et al., 1992; Reynolds and Edwards, 1995; Chapman et al., 

2001; Whitehead et al., 2004; Clark et al., 2004; Helliwell et al., 2007a).  

 

The seasonal pattern in streamwater [NO3
-] is generally explained by the seasonal 

availability of NO3
- within the soil for leaching, which is linked to the uptake of NO3

- by 

plants during the growing season (Edwards and Thornes, 1973). The greater biological 

activity during the spring and summer generally means soil NO3
- availability is low if plant 

uptake exceeds the rate of N supply from the atmosphere and from NO3
- production 

through mineralisation and nitrification (Reynolds and Edwards, 1995), so there is less 

NO3
- available to leach into the stream network (Helliwell et al., 2007b). In winter, there is 

less retention of NO3
- within the terrestrial ecosystem since transformation and biological 

uptake of NO3
- is greatly reduced due to the decrease in biological growth (Helliwell et al., 

2007b) and atmospheric inputs increase, which may lead to an increase in soil water 

[NO3
-] (Reynolds and Edwards, 1995). This, coupled with greater throughputs of water 

and increased runoff from soils which become saturated during the autumn and winter, 

increases the connectivity between the catchment soils and the stream network hence 

NO3
- transfers are greater during these two seasons (Reid et al., 1981; Neal et al., 1997; 

Helliwell et al., 2007b). 

 

The most apparent trend in the NO3
- time series is that even three years after windfarm-

related disturbance commenced there have been no significant increases in [NO3
-] in any 

of the catchments like the tenfold increases in [P] observed in catchments 13 and 14. A 

number of studies in the UK have documented large increases in streamwater [NO3
-] 

following tree harvesting (Adamson et al., 1987; Stevens and Hornung, 1990; Adamson 

and Hornung, 1990; Reynolds et al., 1992). Rapid NO3
-
 mobilisation and leaching from 

felled biomass and enhanced nitrification in soils following harvesting have been well 

documented in the UK uplands (e.g. Neal et al., 1992; Harriman et al., 2001). These 

increases in streamwater [NO3
-] are due to increased rates of mineralisation and 

nitrification in the organic layers of the soil in response to changes in temperature and 

moisture regime (Emmett et al., 1991a) combined with a much reduced root demand for N 

in the absence of uptake by trees (Reynolds and Edwards, 1995) and may last 2 to 5 

years, depending upon the rate of re-vegetation (Stevens and Hornung, 1990; Emmett et 

al., 1991b; Forestry Commission, 2003). It was therefore thought that increases in [NO3
-] 

may be observed at the Whitelee catchments due to the extensive forest management 
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and soil disturbance but no clear increases were observed. This could be due to the 

peatland vegetation taking up any available N before it is able to reach the stream 

network, or it could be due to the sampling points being located too far downstream from 

the area of disturbance to observe impact. 

 

4.4.3.1. Assessment of Impact on NO3
- 

 

Harmonic regression was performed on [NO3
-] time series from June 2006 to September 

2010 to assess for trends in [NO3
-] over the four year research period. Harmonic 

regression was not carried out for catchment 17/17U due to the construction of flood 

storage upstream. One data point (8.4 mg L-1, catchment 9A, May 2009) was omitted from 

the analysis as it was an extreme high value. The [NO3
-] data were checked for normality 

prior to regression – the same approach described for [TOC] time series – and the 

residuals of the fitted data checked after regression to check for autocorrelation (see 

Chapter 4.4.1.3). Harmonic regression was carried out on data from each catchment with 

year day as a decimal as the X variable to model the seasonal signal in [NO3
-], first on the 

four year dataset (Figure 43, Figure 44 and Table 24).  

 

The harmonic regression models the [NO3
-] data less well than [TOC] because there was 

a greater amount of variation in [NO3
-] data and seasonal signal was lesser in the [NO3

-] 

time series. The model fit over the four years ranges from a weakly significant (P < 0.05) 

R2 value of 11 % in catchment 9A to a highly significant model fit with an R2 value of 52 % 

in catchment 13. The harmonic regressions in Figure 43 suggest that there may be a 

decreasing trend in [NO3
-] over the four years and Table 24 shows that the slope 

coefficients are mostly negative. However, when the slope coefficients are considered 

with their standard errors, the slope is not different from zero in most of the catchments, 

and the high P values (ranging from 0.06 to 0.99) show that there are no statistically 

different trends in six of the catchments. Only catchments 9D and 15 show statistically 

significant decreases in [NO3
-] over the four years. 
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Table 24. Harmonic regression of [NO3
-] with year day as a decimal modelled over 

four hydrologic years. P values associated with the Y intercepts were all < 0.001. 

Catchment Y intercept Year day (slope) coefficient P value of slope 

N-draining    

456 1.17 ± 0.14 - 0.05 ± 0.04 0.258 

9A 1.05 ± 0.35 - 0.001 ± 0.11 0.993 

9D 1.05 ± 0.09 - 0.08 ± 0.03 0.015 

S-draining    

13 0.08 ± 0.02 0.01 ± 0.01 0.077 

14 0.22 ± 0.04 - 0.002 ± 0.01 0.880 

15 0.14 ± 0.02 - 0.02 ± 0.01 0.005 

1 0.38 ± 0.05 - 0.03 ± 0.02 0.058 

1632 0.24 ± 0.05 - 0.02 ± 0.01 0.291 
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Figure 44. Relationship between measured [NO3
-] and modelled [NO3

-] with examples 
from catchments 13, S-draining, (R2 = 52 %) (Panel A) and 456, N-draining, (R2 = 28 
%) (Panel B) to show model fit. [NO3

-] is in mg L-1.  
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Figure 43. Harmonic regression of [NO3
-] and year day for four hydrologic years. 

[NO3
-] is in mg L-1 and 1st January of each year is marked on the X-axis. The R2 

values and P values for the regression model fit are included in the graph key. 
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The harmonic regression for [NO3
-] was performed for each hydrologic year separately 

because the pre-disturbance baseline period from June 2006 to October 2006 was too 

short to carry out a direct before-and-after impact comparison. The results for the [NO3
-] 

data are more variable than for the [TOC] regression (Figure 45). During 2006-2007 the 

modelled [NO3
-] generally had a good fit to the time series data apart from catchments 1, 

456 and 9D, where the R2 values are not as high (≤ 60 %) and the relationships less 

strongly significant. In 2007-2008 the quality of the fit of modelled [NO3
-] decreases in all 

catchments and no highly significant relationships exist between [NO3
-] and year day apart 

from in catchment 456 (R2 = 75 %, P < 0.001) (Figure 45).  

 

In 2008-2009 a highly significant negative relationship between [NO3
-] and year day (R2 > 

74 %, P < 0.001) was observed in catchments 13, 15 and 1632, a weakly significant 

negative relationship (R2 = 35 %, P = 0.07) was observed in catchment 1 and there are no 

statistically significant relationships in the remaining catchments during this year (Figure 

45). The amplitude of the seasonal signal, especially in the N- draining catchments, is 

much less in 2008-2009 (Figure 45C), with a maximum fitted [NO3
-] of ~1 mg L-1, 

compared to the preceding two years which both had greater maximum fitted [NO3
-]. This 

deterioration in model fit and different magnitude of amplitude evident across all 

catchments during 2008-2009 suggests that there is either a hydrological control, such as 

an increased number of high flow events during this year (see Chapter 4.4.1.3) diluting the 

seasonal signal as more surface water with a lower [NO3
-] enters the stream (Stutter et al. 

2008a). It could also be a climatic control influencing terrestrial sources and production of 

NO3
- across the catchments. It is not thought to be due to a windfarm-related impact since 

that would be expected on an individual catchment basis because disturbance occurs in 

different catchments at different times.  

 

In 2009-2010 the relationships between [NO3
-] and year day show the same cross-

catchment patterns as 2008-2009 with catchments 13, 15 and 1632 exhibiting statistically 

highly significant negative relationships between [NO3
-] and year day (R2 > 69 %, P < 

0.001), catchment 1 with a significant negative relationship (R2 = 52 %, P = 0.01) and 

catchments 14, 456, 9A and 9D with no statistically significant relationships. Figure 45D 

does, however, clearly show in contrast that the amplitude of the seasonal signal is 

greater again, with a maximum fitted [NO3
-] of ~1.4 mg L-1, suggesting that high flow 

events or a climatic control had had less of an influence on [NO3
-] during 2009-2010. 
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There is considerable variation in inter-catchment and annual responses in streamwater 

[NO3
-] at Whitelee. Chapter 6 examines the controls on streamwater chemistry in more 

detail but this variation is likely to be caused by varying N inputs in each catchment, due 

to varying land use, driven by differing soil types. As the N-draining catchments are 

agriculturally-dominated, the catchments receive more N inputs through fertiliser and 

manure application. Thus the shapes of fitted [NO3
-] curves in the N-draining catchments 

may be more variable than the S-draining catchments. Variations not only occur spatially 

but also temporally, for example, the maximum fitted [NO3
-] of all the catchments was 

catchment 9D in hydrologic years 2006-2007 and 2009-2010, but in 2007-2008 and 2008-

2009 [NO3
-] was considerably lower in this catchment. Land management decisions made 

in each catchment change from year to year, for example, the rotation of fallow field, 

grazing areas and arable land, which can explain some of the variation between years in 

the N-draining agriculturally-dominated catchments. Further to this, not only does the 

amplitude change but also the phase of the wave differs between years. For example the 

maximum fitted [NO3
-] for catchment 456 occurs in December/January in 2006-2007 and 

2007-2008, but it is later in 2008-2009 with the maximum fitted [NO3
-] occurring in 

February/March and even later in March/April during 2009-2010. The is likely to be due to 

a cold winter in 2009 and even colder, prolonged winter in 2010 (see Figure 28, Chapter 

2.5) delaying the start of the growing season and therefore delaying the application of N 

inputs, meaning that maximum fitted [NO3
-] occurs later in these two years. This change in 

amplitude with year day coinciding with these two cold winters could also be due to NO3
- 

release from freeze-thaw and snowmelt (c.f. Reynolds and Edwards, 1995).  

 

This variation in inter-catchment and annual response makes the assessment of impact 

due to windfarm-related disturbance difficult. Nevertheless, in three of the S-draining 

catchments (13, 15 and 1632) with less improved pasture, a potential windfarm-related 

disturbance impact may be discernable. The separate harmonic regression models for 

each hydrologic year have a good fit every year in these catchments with the exception of 

2007-2008, when the model fit decreases. This indicates that there is a change in the 

expected seasonal signal in these catchments during this time, and that it could be 

hypothesised that this is due to windfarm-related disturbance because the timing of impact 

coincides with construction and deforestation activity in these catchments.  
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4.5. Summary of Impacts on Streamwater Chemistry 

 

This chapter has allowed identification of impacts in streamwater chemistry detectable at 

the sampling points outside the windfarm boundary using an approximately bi-monthly 

sampling regime to examine streamwater chemistry before, during and after windfarm 

construction. The harmonic regression analysis showed an impact on [TOC] in catchment 

13 during 2007-2008 which changed ranked position relative to the other catchments in 

terms of highest [TOC]. This was thought to be due to forestry operations within this 

catchment during this year, however, it is hypothesised that the area of catchment 

covered by peat has the greatest influence on [C] in streamwater.  

 

The Water Framework Directive (2000) UK Technical Advisory Group Environmental 

Standards for [SRP] in rivers were used to assess for impact on [SRP]. Whilst the other 

catchments either had “high” or “good” status based on these standards, catchments 13 

and 14 only had “good” status in 2006-2007 but deteriorated in 2007-2008 to “moderate” 

and a full recovery from eutrophication back to “good” water quality status in terms of 

[SRP] has still not been observed after two further hydrologic years. As the timing of this 

deterioration coincided with windfarm-related deforestation in these two catchments, it is 

hypothesised that the percentage of the catchment deforested controls [TP] and [SRP]. 

 

The NO3
- time series indicates that three years after windfarm-related disturbance 

commenced there have been no significant increases in [NO3
-] in any of the catchments 

like the tenfold increases in [P] observed in catchments 13 and 14. The harmonic 

regression analysis indicated a potential impact on streamwater [NO3
-] through a change 

in the seasonal pattern of [NO3
-] observed in S-draining catchments 13, 15 and 1632 

during 2007-2008. Since the timing of the change coincides with windfarm-related 

disturbance it is thought to explain these potential impacts, however, it is likely that the 

percentage of pasture in a catchment will exert the greatest control on [NO3
-]. 
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5. Streamwater Export Estimates 

 

5.1. Chapter Outline 

 

Using discharge (hereafter named Q) data and the almost bi-monthly time series of 

concentrations from Chapter 4, monthly and annual streamwater DOC, POC, TP, SRP 

and NO3
- export estimates were calculated for the Whitelee catchments. Within this 

chapter the generation of long-term half-hourly estimates of Q by three methods is 

discussed and the choice of the most suitable method of estimation of Q for each 

catchment is explained. Streamwater export estimates for all the Whitelee catchments are 

presented, interpreted and compared with estimates from other catchments. Finally, the C 

exports are compared to the suggested C sequestration rate of the Whitelee catchments 

so that the scale and significance of exports can be assessed. 

 

5.2.  Generation of Long-term Half-hourly Q Estimates 

 

In order to calculate exports from the Whitelee catchments a long-term high-frequency 

estimation of Q was required. Three methods were used to estimate Q at half-hourly 

intervals. Method 1 used the Q at the SEPA Newmilns gauging site scaled for catchment 

area, the same method employed by Waldron et al. (2009). Method 2 used the 

relationship between Q measured using an Isco 4150 Area Velocity Flow Logger and Q 

measured at SEPA Newmilns for the same period to provide a long-term estimate of Q. 

Method 3 used the relationship between flow measured using an Isco 4150 Area Velocity 

Flow Logger and stage height measured by an In-Situ Troll 9000 water quality logger (see 

Chapter 2.5) to provide long-term estimates of Q. Due to equipment constraints Method 3 

was carried out for catchment 13 only.  

 

5.2.1. Method 1 – SEPA Q scaled for catchment area 

 

The export estimates calculated previously for the Whitelee catchments in Waldron et al. 

(2009) were based on the assumption that the specific Q for the nearest SEPA gauging 

station, the River Irvine at Newmilns, (hereafter named SEPA Q), c.3 km west of 

catchment 1, scaled for each catchment area, described Q in each of the catchments. 

This method was used in the earlier study because the Whitelee catchments were not 
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gauged at the time of sample collection. Method 1 for generation of long-term Q estimates 

for this research followed the same approach. The catchment area for the River Irvine at 

Newmilns is 72.8 km2, so the half-hourly Q measurements were divided by this value to 

yield Q in m3 s-1 km-2 (specific discharge). This value was multiplied by the study 

catchment area to give half-hourly Q estimates scaled for catchment area from October 

2006 to September 2010. Statistics of Q estimated for each catchment are shown in Table 

25 and the hydrographs are shown in Figure 46 and Figure 47. 

 

 

Table 25. Summary statistics of estimated half-hourly Q by hydrologic year for 
October 2006 to September 2010 for all the Whitelee catchments. These estimates 
were calculated using SEPA Q scaled for catchment area.  

Catchment Area (km2) Mean Q (m3 s-1) Median Q (m3 s-1) Range of Q (m3 s-1) 

456 11.7 

2006-07 = 0.44 
2007-08 = 0.41 
2008-09 = 0.42 
2009-10 = 0.32 

2006-07 = 0.20 
2007-08 = 0.21 
2008-09 = 0.18 
2009-10 = 0.13 

0.02 – 13.77 

9A 7.9 

2006-07 = 0.30 
2007-08 = 0.28 
2008-09 = 0.28 
2009-10 = 0.22 

2006-07 = 0.13 
2007-08 = 0.14 
2008-09 = 0.12 
2009-10 = 0.09 

0.01 – 9.30 

9D 11.6 

2006-07 = 0.44 
2007-08 = 0.40 
2008-09 = 0.41 
2009-10 = 0.32 

2006-07 = 0.20 
2007-08 = 0.21 
2008-09 = 0.18 
2009-10 = 0.13 

0.02 – 13.65 

17 15.1 
2006-07 = 0.57 
2007-08 = 0.53 

2006-07 = 0.26 
2007-08 = 0.27 

0.04 – 13.99 

17U 12.0 
2008-09 = 0.43 
2009-10 = 0.33 

2008-09 = 0.19 
2009-10 = 0.14 

0.02 – 14.12 

13 9.4 

2006-07 = 0.36 
2007-08 = 0.31 
2008-09 = 0.32 
2009-10 = 0.25 

2006-07 = 0.16 
2007-08 = 0.16 
2008-09 = 0.14 
2009-10 = 0.10 

0.02 – 10.59 

14 14.4 

2006-07 = 0.55 
2007-08 = 0.50 
2008-09 = 0.51 
2009-10 = 0.39 

2006-07 = 0.24 
2007-08 = 0.26 
2008-09 = 0.22 
2009-10 = 0.16 

0.03 – 16.94 

15 13.4 

2006-07 = 0.51 
2007-08 = 0.47 
2008-09 = 0.48 
2009-10 = 0.37 

2006-07 = 0.23 
2007-08 = 0.24 
2008-09 = 0.21 
2009-10 = 0.15 

0.02 – 15.77 

1 29.4 

2006-07 = 1.11 
2007-08 = 1.02 
2008-09 = 1.05 
2009-10 = 0.80 

2006-07 = 0.50 
2007-08 = 0.53 
2008-09 = 0.46 
2009-10 = 0.33 

0.05 – 34.59 

1632 30.0 

2006-07 = 1.14 
2007-08 = 1.04 
2008-09 = 1.07 
2009-10 = 0.82 

2006-07 = 0.51 
2007-08 = 0.54 
2008-09 = 0.47 
2009-10 = 0.34 

0.06 – 35.30 
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Figure 46. Long-term record of Q at half-hourly intervals for N-draining catchments 
456, 9A, 9D, 17 and 17U generated by scaling Q from the nearest SEPA gauged 
catchment the River Irvine in Newmilns (catchment area 72.8 km2) by catchment area. 
Q in catchment 17 was estimated until September 2008 due to the construction 
upstream of flood storage which altered the flow regime. Q in catchment 17U was 
estimated from October 2008 onwards, indicated by the black dashed line. Same scale 
on all y axes for comparison of catchment size.  

9D 

456 

9A 

17U 17 
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Figure 47. Long-term record of Q at half-hourly intervals for S-draining catchments 13, 
14, 15, 1 and 1632 generated by scaling Q from the nearest SEPA gauged catchment, 
the River Irvine in Newmilns (catchment area 72.8 km2), by catchment area. Same scale 
on all y axes for comparison of catchment size. 
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5.2.2. Method 2 – Relationship Between SEPA Q and Isco Q 

 

An Isco 4150 Area Velocity Flow Logger (hereafter named Isco logger) programmed to 

measure water depth and velocity at 30 minute intervals, was deployed in seven of the ten 

Whitelee catchments to capture a range of flow conditions (Table 26). Catchment 1 was 

not gauged due to the high risk that the equipment would be vandalised. Catchment 456 

was not gauged because of the concern that suspended solids could lead to biofilm 

growth and sedimentation on the sensor, reducing the accuracy of Q measurement. 

Catchment 17 was not gauged due to the construction of a flood storage facility upstream 

which was considered to have altered the flow regime during the study period. 

 

 

The logger was deployed close to the water sampling point in each catchment in a section 

of river with near-laminar flow and where the sensor would be under water even in low 

flow conditions. The sensor was mounted on a coated lead weight in the middle of the 

stream bed. The Doppler ultrasonic (500 kHz) sensor on the stream bed measured the 

average velocity in the flow stream. The acoustic signal emitted by the sensor is reflected 

by air bubbles or suspended particles in the flow. Thus the time taken for the signal to be 

received is related to the velocity of water, with quicker times indicating higher flow 

velocity. A pressure transducer in the sensor unit measured the water depth with a 

maximum error of ± 0.003 m. The pressure transducer cable was vented so that water 

Table 26. Summary of where the Isco 4150 Area Velocity Flow Logger was deployed, 
duration of deployment and the range of Qs measured. The approximate probability of 
occurrence of these Qs was determined as the probability of occurrence of the SEPA 
Newmilns Qs at the same time using the flow duration curve for SEPA Newmilns in 
Chapter 4.2.  

Catchment Duration 
Dates of Min.  
and Max. Q 

Isco Q 
(m3 s-1) 

SEPA Q 
(m3 s-1) 

Prob. SEPA 
Newmilns Q (%) 

9A 

3 Aug 2010 – 
10 Aug 2010 
5 Oct 2010 – 
8 Nov 2010 

19 Oct 2010 23:30 
01 Nov 2010 20:30 

0.01 
5.71 

0.83 
16.86 

58.8 
0.9 

9D 
8 Nov 2010 – 
2 Dec 2010 

21 Nov 2010 06:00 
11 Nov 2010 21:45 

0.21 
3.11 

0.85 
11.77 

57.6 
2.8 

17U  
15 Dec 2010 – 
11 Jan 2011 

20 Dec 2010 17:45 
4 Jan 2011 22:30 

0.03 
3.12 

0.70 
12.50 

64.4 
2.4 

13 
22 Dec 2009 – 
24 Feb 2010 

24 Feb 2010 09:00 
15 Feb 2010 18:45 

0.01 
0.51 

0.45 
3.64 

78.4 
19.3 

14 
10 Sep 2010 – 

5 Oct 2010 
11 Sep 2010 16:45 
13 Sep 2010 18:00 

0.07 
3.14 

1.62 
31.98 

38.4 
0.1 

15 
7 Jun 2010 – 
4 Aug 2010 

31 Jul 2010 04:45 
15 Jul 2010 09:45 

0.06 
2.72 

0.46 
8.41 

77.8 
5.8 

1632 
13 Mar 2010 – 
29 Mar 2010 

22 Mar 2010 00:00 
26 Mar 2010 18:45 

0.17 
9.25 

0.49 
24.08 

75.9 
0.3 
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depth measurements took account of changes in atmospheric pressure. An offset of 8 cm 

was input to the Isco Flowlink 4 software to account for the height of the sensor above the 

stream bed. A detailed survey of the channel bed where the logger was deployed was 

carried out to construct a water depth to flow area conversion in order to calculate the 

cross-sectional area of flow from the water depth measured by the sensor. Finally, Q was 

calculated by multiplying the area of the flow by its average velocity. Half-hourly Q 

estimates for each catchment from June 2006 to September 2010 were calculated from 

the relationship between Q measured by the Isco logger (hereafter named Isco Q) and the 

long-term record of SEPA Q for the period of deployment of the Isco logger. 

  

During deployment in catchment 13 in December 2009 and January 2010 the SEPA Q 

fluctuated but the Isco Q was almost constant. These data were removed from further 

analysis because the temperature data from the In-situ Troll 9000 water quality logger 

showed that the river was frozen at the smaller, more elevated sampling point for 

catchment 13 during a prolonged very cold period. Hence the relationship was calculated 

using the February 2010 data only. Although it might be expected that the timing of high 

flows would differ between catchment 13 and the Newmilns gauging station because of 

the different catchment areas and thereby reducing the R2 value of the relationship 

between the flows measured in the two catchments, there was still a highly significant 

positive relationship between SEPA Q and Isco Q (R2 = 94 %, P < 0.001) (Figure 48). 

Relationships between the data after log transformation were also examined but the linear 

relationship gave the greatest R2 value and most significant P values.  

 

For catchment 15 the relationship between SEPA Q and Isco Q was skewed by data for 

the period of greatest flows around 15 July 2010 when the SEPA Q increased at a faster 

rate than the Isco Q. This could have been due to overbank flow from the channel in 

catchment 15, that is the water depth exceeded the channel capacity and spilled out 

laterally, resulting in an underestimate of the cross-sectional area of flow and therefore of 

Q. However, there was insufficient evidence to exclude any data and the good linear 

relationship between SEPA Q and Isco Q was used (R2 = 76 %, P < 0.001) (Figure 48).  
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At catchment 1632 there were some anomalous Isco-determined Q values at the end of 

the Isco logger dataset on the falling limb of a storm hydrograph and these were rejected 

because the velocity was almost constant. The most likely explanation for the anomalous 

velocity readings was that the sensor became dislodged from the river bed during event 

flow. When these data points were removed the R2 value of the linear relationship 

between SEPA Q and Isco Q increased from 92 % to 95 % (Figure 48). 

 

Although there are likely to be differences between catchments in the R2 values for the 

relationship between SEPA Q and Isco Q due to the different catchment areas, and 

therefore different timings of high flow events between Newmilns and the Isco-measured 

Q, the R2 values were all > 76 % and all were significant (P < 0.001) (Figure 48). These 

likely differences in flow timing may account for the systematic scatter of points around the 

best-fit lines, for example, in catchment 9D there is a reservoir upstream which may 

impact on the timings of high flow downstream (Figure 48). From these relationships, time 

series of half-hourly Q estimates for the seven catchments where the Isco logger was 

deployed were generated (Figure 49 and Figure 50). Summary statistics of the estimates 

of Q generated by Method 2 are shown in Table 27.  

 

 
Figure 49. Long-term record of Q at half-hourly intervals for N-draining catchments 
9A, 9D and 17U estimated using the relationship between SEPA Q and Isco Q. 456 
and 17 are not included because Q was estimated for these catchments using 
Method 1 only. 

 

9A 

9D 

17U 
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Figure 50. Long-term record of Q at half-hourly intervals for S-draining catchments 
13, 14, 15 and 1632 from the relationship between Isco Q and SEPA Q. Q for 
catchment 1 is not included because Q was estimated for this catchment using 
Method 1 only. 
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5.2.3. Method 3 – Relationship Between Troll Stage Height and Isco Q  

 

A ratings curve was created using Isco Q measurements for February 2010 (see Method 

2) and stage height recorded simultaneously by the In-situ Troll 9000 water quality logger 

for catchment 13 (see Chapter 2.5) (hereafter named Troll logger) (Figure 51). The 

positive statistically significant (R2 = 85 %, P < 0.001) linear relationship between Troll 

stage height and Isco Q was used to produce a long-term time series of 30 minute Q at 

catchment 13 since October 2007, when the Troll logger was deployed, to September 

2010 (Figure 52). Relationships fitted to logarithmic and semi-logarithmic transformations 

of the data used to construct the ratings curve (log10stage = 0.1222 log10Isco Q + 1.7455, 

R2 = 91 %; stage = 4.9747 ln(Isco Q) + 53.75, R2 = 89 %) produced higher R2 values than 

using the untransformed data. 

 

Table 27. Summary statistics of estimated half-hourly Q by hydrologic year for October 
2006 to September 2010 for catchments 9A, 9D, 17U, 13, 14, 15 and 1632. Estimates were 
generated using the relationship between Isco Q and SEPA Q. 

Catchment 
Area 
(km2) 

Mean Q 
(m3 s-1) 

Median Q 
(m3 s-1) 

Range of Q 
(m3 s-1) 

Range of measured 
Isco Q (m3 s-1)  

9A 7.9 

2006-07 = 0.53 
2007-08 = 0.49 
2008-09 = 0.50 
2009-10 = 0.37 

2006-07 = 0.21 
2007-08 = 0.23 
2008-09 = 0.19 
2009-10 = 0.12 

0.01 – 18.13 0.01 – 5.71 

9D 11.6 

2006-07 = 0.47 
2007-08 = 0.44 
2008-09 = 0.45 
2009-10 = 0.37 

2006-07 = 0.27 
2007-08 = 0.28 
2008-09 = 0.26 
2009-10 = 0.21 

0.12 – 11.42 0.21 – 3.11 

17U 12.0 
2008-09 = 0.39 
2009-10 = 0.28 

2008-09 = 0.14 
2009-10 = 0.09 

0.01 – 14.43 0.03 – 3.12 

13 9.4 

2006-07 = 0.33 
2007-08 = 0.30 
2008-09 = 0.31 
2009-10 = 0.22 

2006-07 = 0.12 
2007-08 = 0.13 
2008-09 = 0.10 
2009-10 = 0.06 

0.01 – 12.10 0.01 – 0.51  

14 14.4 

2006-07 = 0.34 
2007-08 = 0.31 
2008-09 = 0.32 
2009-10 = 0.24 

2006-07 = 0.14 
2007-08 = 0.15 
2008-09 = 0.13 
2009-10 = 0.09 

0.01 – 11.01 0.07 – 3.14 

15 13.4 

2006-07 = 0.63 
2007-08 = 0.58 
2008-09 = 0.59 
2009-10 = 0.45 

2006-07 = 0.26 
2007-08 = 0.28 
2008-09 = 0.25 
2009-10 = 0.17 

0.01 – 20.59 0.06 – 2.72 

1632 30.0 

2006-07 = 2.89 
2007-08 = 2.67 
2008-09 = 2.73 
2009-10 = 2.13 

2006-07 = 1.39 
2007-08 = 1.46 
2008-09 = 1.32 
2009-10 = 0.99 

0.35 – 32.39 0.17 – 9.25 
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However, using these relationships to calculate long-term time series of Q at catchment 

13 yielded unfeasibly high Q estimates at stage heights greater than the stage heights 

measured during the period when the equation was derived (33 - 55 cm) because of the 

logarithmic relationship. Therefore the linear relationship between untransformed Troll 

stage height and untransformed Isco Q was used to obtain the long-term Q estimates at 

13. Negative estimated Q values generated by the equation in Figure 51 were replaced 

with a nominal low flow value of 0.001 m3 s-1 to enable the calculation of exports. This is 

thought to have little impact on calculated exports since C, P and N exports are normally 

dominated by high flows (Clark et al., 2007; Pawson et al., 2008; Stutter et al., 2008a,b). 

Where there were data gaps in the stage height record (5 % of the recorded length) due to 

logger maintenance and calibration, the relationship between Isco Q and SEPA Q for 

catchment 13 from Method 2 (see Chapter 5.1.2) was used to estimate Q.  

 

 

Figure 51. Ratings curve of Isco Q and stage height from the Troll logger in 
catchment 13 from 9th February 2010 to 24th February 2010 with suspect Isco Q 
values removed (see Chapter 5.2.2 for explanation). 

 

 

Figure 52. Long-term record of Q at half-hourly intervals for S-draining catchment 
13, constructed through a ratings curve between Isco Q and the stage height 
recorded on Troll 9000 water quality logger deployed since October 2007. 
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5.2.4. Comparison of Methods to Estimate Q 

 

The range of estimated Q generated by Methods 1 and 2 is reasonable for rivers of these 

catchment areas and for the most part fits with field observations during event flow. It is 

assumed that Method 2 for estimating Q is more accurate than Method 1 because it is 

based on direct measurements of Q in each catchment. Method 2, which does involve a 

direct measurement of Q, generally gives estimates of Q at low flows which are lower than 

Method 1 and estimates of high flows which are greater than Method 1. It is likely that 

Method 1 overestimates Q at low flows and underestimates Q at high flows because it 

scales Q from a catchment with a much larger area in which variations in flow are 

expected to be buffered more than in the smaller areas of the study catchments. One 

inaccuracy in the estimation of Q based on the long-term record of SEPA Q is the 

differences in the timings of events. Peak flow is likely to occur earlier in the smaller 

catchments than in the larger SEPA catchment of the River Irvine in Newmilns, where 

there is likely to be a lag in peak flow timing. 

 

However, using Method 2 to estimate Q results in catchments 9A and 15 having Qs which 

are higher than would be expected from their areas (Table 27). Catchment 9A had a 

maximum Q of 18.1 m3 s-1 using Method 2; double the maximum of 9.3 m3 s-1 estimated 

by Method 1. Catchment 15 had a maximum Q of 20.6 m3 s-1 using Method 2; 25 % 

greater than the maximum estimated by Method 1 of 15.8 m3 s-1. Based on catchment 

size, it was expected that estimates of Q from Method 2 for catchment 9A (7.9 km2) would 

have a smaller maximum Q than catchment 13 (9.4 km2), due to its smaller area, when 

maximum Q for catchment 9A is in fact greater than catchment 13. It was also expected 

that catchment 15 (13.4 km2) would have a similar maximum Q to catchment 14 (14.4 

km2) as these catchments have similar areas, but catchment 15 has a maximum Q double 

that of catchment 14. This could be due to the relatively short time period of deployment of 

the Isco logger in each catchment, which was not long enough to capture seasonal 

variability in flows.  

 

Although the approximate probability of occurrence of flows measured by the Isco logger 

(Table 26) shows that a range of hydrological conditions were captured, the relationship 

between SEPA Q and Isco Q can only be used with confidence to estimate Q between the 

minimum and maximum Q measured by the Isco logger (Table 26). For estimates of Q 

outwith the range of Q measured by the Isco the uncertainties are greater. Since these 

estimates of Q for catchment 9A and 15 are not realistic when compared to the estimates 
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for the other catchments, Method 2 was not used in the calculation of exports and Method 

1 was used for these two catchments instead. 

 

Although the average Qs are reasonably similar between methods, the estimates of Q 

generated by Method 3 for catchment 13 are the lowest maximum Qs of the three 

estimation methods (Table 28). The evidence from fieldwork observations of flood debris 

on the bankside at catchment 13 indicated that high flows had occurred between routine 

sampling occasions which suggested that Q would have been higher than the estimates 

generated using Method 3. This suggests that the issue with Method 3 is in regard to 

estimating high flows. The main explanation for the underestimation of Q using Method 3 

is that during high flow at this catchment, water is accommodated laterally rather than 

vertically. This leads to a lower stage height than expected for a greater volume of water 

in the channel which could have caused underestimates of Q at high flow. As with the two 

other estimation methods discussed, the relationship between Troll logger stage height 

and Isco Q can only be used with confidence to estimate Q between the range of Q 

measured by the Isco logger. Due to its apparent underestimation of maximum Q, Method 

3 was not used to calculate export from catchment 13. 

 

Estimates of Q by Method 1 were used in the calculation of exports from catchments 15, 

1, 456, 9A and 17. Estimates of Q by Method 2 were used in the calculation of exports 

from catchments 13, 14, 1632, 9D and 17U. 

 

 

Table 28. Summary statistics of estimated half-hourly Q by hydrologic year for 
catchment 13 estimated by the three different methods.  

 
Mean  

(Q, m3 s-1) 
Median  

(Q, m3 s-1) 
Range  

(Q, m3 s-1) 

Method 1     
2006-2007 0.36 0.16 0.04 - 5.51 
2007-2008 0.31 0.16 0.05 - 8.34 
2008-2009 0.32 0.14 0.02 - 10.6 
2009-2010 0.25 0.10 0.07 - 4.59 

Method 2    
2006-2007 0.33 0.12 0.01 - 8.33 
2007-2008 0.30 0.13 0.01 - 9.52 
2008-2009 0.31 0.10 0.01 - 12.1 
2009-2010 0.22 0.06 0.01 - 5.21 

Method 3    
2007-2008 0.34 0.26 0.001 - 2.33 
2008-2009 0.21 0.10 0.001 - 2.14 
2009-2010 0.17 0.08 0.001 - 1.92 
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5.3. Streamwater Export Estimates 

 

5.3.1. Method of Export Calculation 

 

The export of a substance by a river is the product of Q and the concentration of the 

substance in the river water. Instantaneous values of export are simple to derive but long-

term exports are more complicated to calculate. The problems associated with obtaining 

reliable estimates of river exports have long been recognised (e.g. Ongley, 1978; Verhoff 

et al., 1980; Walling and Webb, 1981; Rodda and Jones, 1983; Rekolainen et al., 1991; 

Cooper and Watts, 2002; Johnes, 2007). Long-term export calculations introduce 

problems because, whereas continuous records of Q are commonly available, 

concentration data frequently only represents individual samples taken at weekly, or even 

greater intervals (Walling and Webb, 1985) and therefore there are different export 

estimation methods with different suitabilities and biases. With the development of high 

resolution bankside analysers (e.g Jordan et al., 2007), this problem may decrease in the 

future but currently the resource requirements of such analysers prevents widespread 

deployment. 

 

The most commonly used methods of export estimation are based on either interpolation 

or extrapolation calculations (c.f Phillips et al., 1999). Much of the literature which has 

investigated the reliability of export estimation methods has concluded that the accuracy 

of both methods is questionable (Phillips et al., 1999; Cooper and Watts, 2002; Johnes, 

2007). Extrapolation methods use relationships between concentration and Q determined 

at the same time which results in the known concentration being replaced by an estimated 

concentration from the empirical relationship to provide a prediction of high-frequency 

concentrations on the basis of continuously-measured values of Q (Stevens and Smith, 

1978; Ferguson, 1986). An extrapolation method was tried first since it does not make the 

assumption of constant parameter concentration between bi-monthly sampling occasions. 

The relationships between concentration and Q estimated by both Methods 1 and 2 were 

examined for all the Whitelee catchments for all parameters (TOC, DOC, POC, TP, SRP 

and NO3
-). No significant relationships were found, with R2 ranging from <1 % to 25 % and 

n = 82. Therefore, since high-frequency estimates of concentration on the basis of Q 

measurements could not be generated, an interpolation method was used as follows. 

 

Monthly and annual exports were calculated by multiplying the concentration determined 

from approximately bi-monthly sampling (mg L-1, Chapter 4.1) with the estimated half-
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hourly Q (m3 s-1), outlined in Chapter 5.2.4, to yield an export value in g s-1 after 

corrections for units. This value was multiplied by 60 to convert to g min-1, then multiplied 

by 30 to obtain the mass exported for each half hour and the half-hourly exports were 

summed for each month and each hydrologic year. The calculation assumed that the 

concentration between sampling occasions was constant until the next bi-monthly 

sampling concentration, while Q varied between sampling. This assumption is not valid as 

it is not representative of nutrient dynamics, but functions as a means for preliminary 

export estimates. Monthly and annual exports were divided by the catchment area to give 

an export per m2 of catchment area (hereafter termed export) because the comparison of 

exports between the Whitelee catchments and other rivers must take account of varying 

catchment size (Russell et al., 1998). Since export estimates were based on intermittent 

sampling, they are expected to be underestimates because the probability of incorporating 

within the dataset short-term extreme concentrations which can occur during high flow 

(Clark et al., 2007; Pawson et al., 2008; Stutter et al., 2008a,b) is significantly reduced 

(Johnes, 2007). Although continuous discharge data has been incorporated into the 

export calculations, it is possible that export values were underestimated also due to the 

flashy hydrological response in each of the Whitelee catchments. 

 

Monthly and annual export estimates for TOC, TP, SRP and NO3
- were calculated for the 

four hydrologic years from October 2006 to September 2010. Due to the differing storage 

methods of samples on return to the laboratory between analysts (see Chapter 3.8) 

monthly and annual export estimates for DOC and POC were calculated for three years, 

for the period from October 2007 to September 2010 when a consistent storage method 

was used.  

 

5.3.2. Monthly Export Estimates 

 

The range of exports is summarised in Table 29. The greatest monthly DOC exports from 

both N- and S-draining catchments occurred generally in October and November, with the 

minimum in May and June (Figure 53). In all catchments, the POC exports had minima 

generally in May and June and maxima in autumn and winter (Figure 54). Monthly POC 

exports are more variable in the N-draining catchments with 456 often having a higher 

monthly export than the other N-draining catchments (e.g. December 2007 to January 

2008 and August 2009 until January 2010). The greatest monthly TOC exports occurred 

generally in the autumn, with the minimum in the summer (Figure 55). 
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For both monthly SRP and TP exports, during the period June 2006 to July 2007, there 

was general homogeneity in exports between the catchments (Figure 56 and Figure 57). 

From August 2007, catchment 13 consistently had the greatest export of TP and SRP due 

to sustained higher [SRP] and [TP] in catchment 13 compared to the other catchments 

(Figure 33 and Figure 34). During January 2008 and October 2008 the estimated export 

from catchment 13 was approximately double that of the other catchments. There were 

two spikes in the SRP export in catchment 456 in November 2009 and January 2010 

(Figure 56). There were occasional spikes in monthly export of TP, but not SRP, indicating 

increases in particulate P and non reactive soluble P in catchment 1 in March 2008, in 

catchment 9A in September 2006, November 2006 and January 2008, and in catchment 

456 in January 2008 and August 2008 (Figure 57). Apart from these occasional spikes, 

exports in all catchments followed generally similar seasonal patterns for the four years, 

with the lowest monthly exports occurring from April through to June and the greatest over 

the autumn months. Although the TP time series (see Chapter 4.4, Figure 34), showed 

spikes in catchment 14 during May 2009 and June 2010 these high concentrations were 

not translated into large exports because they coincided with extended periods of low 

flow. 

 

The greatest monthly NO3
- exports occurred generally over the winter months in the N-

draining catchments (Figure 58).  

 

Table 29. Minimum and maximum monthly exports from the Whitelee catchments. C 
and N in g m-2 per month and P in mg m-2 per month. 

Parameter Range of Monthly Exports  

DOC 
0.01 (17U, Jun 2009) 
9.53 (15, Oct 2008) 

POC 
0.002 (13, May 2008) 
0.99 (456, Jan 2010) 

TOC 
0.01 (17U, Jun 2009) 
9.96 (15, Oct 2008) 

SRP 
0.001 (17U, Jun 2010) 

23.1 (13, Oct 2008) 

TP 
0.001 (17U, Jun 2010)  

38.4 (13, Oct 2008) 

NO3
- 

0.0001 (15, Jun 2010) 
0.60 (17, Sep 2006) 
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5.3.3. Annual Export Estimates 

 

The range of annual exports is included in Table 30 and annual exports are summarised 

in Appendix 7. Annual DOC and TOC exports from the S-draining catchments were 

generally higher than from the N-draining catchments (Figure 59). In all catchments the 

greatest annual DOC exports occurred in 2008-2009 (Figure 59). Annual POC exports 

were, on average, 12 % and 6 % of the TOC export in the N- and S-draining catchments 

respectively. In all catchments the greatest annual POC exports occurred in 2008-2009 

with the exception of catchment 13 where the greatest POC export occurred in 2007-2008 

(Figure 59). 

 

In the N- and S-draining catchments SRP export accounted for, on average, 41 % and 50 

% of the annual TP export respectively. The greatest annual TP exports during the 

research period were in 2007-2008 except for catchments 17U and 15 where greatest TP 

export occurred during 2008-2009 (Figure 60). There was no clear pattern indicating in 

which year the greatest SRP export in the N-draining catchments occurred, but in the S-

draining catchments maximum SRP export occurred in the hydrologic year 2008-2009.  

 

The NO3
- exports were an order of magnitude higher in the N-draining catchments than in 

the S-draining catchments. The greatest NO3
- exports occurred generally in 2006-2007, 

regardless of whether the catchments were N- or S-draining (Figure 61). There is a 

suggestion in the data that NO3
- exports decreased over the four years of research. 

 

Table 30. Minimum and maximum annual exports from the Whitelee catchments. C 
and N in g m-2 yr−1 and P in mg m-2 yr−1. 

Parameter Range of Annual Exports  

DOC 
9.0 (17U, 2009-10)  
42.3 (13, 2008-09) 

POC 
0.80 (14, 2009-10)  
3.93 (456, 2008-09) 

TOC 
10.7 (17U, 2009-10)  
44.9 (13, 2008-09) 

SRP 
12 (9A, 2009-10) 
104 (13, 2008-09) 

TP 
25 (9A, 2009-10) 
206 (13, 2007-08) 

NO3
- 

0.07 (15, 2009-10) 
1.64 (456, 2006-07) 
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Figure 59. Annual carbon export estimates for the Whitelee catchments with 
the method used for estimating Q underneath the catchment identifier. Panel A 
shows the annual DOC export, Panel B the annual POC export and Panel C the 
annual TOC export. Due to the differing storage methods of samples on return 
to the laboratory between analysts (see Chapter 3.8) annual export estimates 
for DOC and POC were calculated only for the period 2007-2010. 
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Figure 60. Annual phosphorus export estimates for the Whitelee catchments (mg P 
m-2 yr-1) by hydrologic year for the period 2006-2010. Panel A shows the annual SRP 
export. Panel B shows the annual TP export. 
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Figure 61. Annual NO3

- export estimates for the Whitelee catchments by hydrologic 
year for the period 2006-2010. 
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5.4. Inter-Catchment and Annual Differences in Exports  

 

5.4.1. Streamwater Carbon Export 

 

5.4.1.1. Inter-Catchment Differences in DOC and TOC Exports 

 

It is estimated that riverine DOC export to British tidal waters is 0.68 ± 0.07 Mt (Hope et 

al., 1997b). Of this total, rivers in Scotland accounted for 53 %, England 38 % and Wales 

9 % (Hope et al., 1997b). Scottish blanket peat is the largest single source of DOC 

exports in British rivers (Hope et al., 1997b). Table 31 shows that most research into C 

export in the UK has been carried out in headwater catchments (e.g. Brocky Burn, 

northeast Scotland) or large river basins (e.g. River Dee and River Don, northeast 

Scotland) and that there is a paucity of data for C export from meso-scale basins. Table 

31 shows export estimates from several Scottish upland catchments with organic rich soils 

(e.g. Water of Dye, northeast Scotland), a lowland peatland catchment (Black Burn, 

central Scotland) and actively-eroding peatland catchments (Upper North Grain and 

Rough Sike, Pennies, England) but there is little data regarding catchments subject to 

windfarm-related disturbance: only the Garvald Burn, at the Braes of Doune windfarm and 

this research based at Whitelee windfarm, both in Central Scotland.  

 

The latest export estimates for Whitelee are likely to be underestimates since C exported 

during storm events may not have been captured by the fortnightly sampling regime. 

Nevertheless they are generally higher, especially for the S-draining catchments, than 

exports estimated for other UK peatland-dominated catchments (Table 31), notably the 

Water of Charr (Dawson et al., 2004), which has comparable catchment characteristics 

such as area and percentage peat cover. Catchments 13 and 15, the two catchments with 

the greatest [DOC] and [TOC] (Figure 30 and Figure 32), have a high coverage of peat, 

with 74 % and 79 % respectively of the catchment covered by peat (see Table 7, Chapter 

2.4.1). These two catchments also have the greatest DOC and TOC exports (Figure 53 

and Figure 55). DOC export has been found to increase with percentage peat cover in 

other small (10s of km2 scale) northern latitude catchments (e.g. Hope et al., 1997b; Billett 

et al., 2006; Kortelainen et al., 2006) and could explain the difference in DOC and TOC 

export between the agriculturally-dominated N-draining and peatland-dominated S-

draining catchments. 
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Table 31. Summary of UK catchment studies which included the estimation of aquatic 
DOC and POC exports. Where TOC data only is available the export estimates straddle 
both the DOC and POC columns. Either the range of estimates or an annual mean value, 
with confidence intervals where available, is stated. The results from this research are 
at the top of the table, with other catchments for comparison grouped by country and 
listed with the most recent estimates first. This table is reproduced from Dawson and 
Smith (2007), updated and with available windfarm-related catchment data added. 

Details of catchment 
(area km2) 

DOC 
(g C m-2 yr−1) 

POC  
(g C m-2 yr−1) 

Reference 

Whitelee (7.9-30.0) 9.0 – 42.3 0.08 – 3.93 This study 

Scotland    

Whitelee (7.9-30.) 11.2 – 25.5 Waldron et al. (2009) 

River Dee (3.4-1837) 3.41 – 9.48  Dawson et al. (2011) 

Black Burn (3.35)    18.6 ± 16.0 – 
32.2 ± 18.7 

   1.8 ± 0.7 – 
5.5 ± 1.8 

Dinsmore et al. (2010) 

Garvald, Braes of Doune (4.5) 24.6  Grieve & Gilvear (2008) 

Annett, Braes of Doune (3.5) 19.5  Grieve & Gilvear (2008) 

Brocky Burn - upper (0.68) 17.4 – 21.4 0.9 – 2.1 Dawson et al. (2004) 

Brocky Burn - middle (0.83) 16.2 – 20.6 0.82 – 1.9 Dawson et al. (2004) 

Brocky Burn - lower (1.3) 14.2 – 19.3 0.59 – 2.8 Dawson et al. (2004) 

Water of Charr (14.2) 16.9 – 26.2 2.0 – 17.5 Dawson et al. (2004) 

Small Burn (0.41) 9.5 – 15.0 0.46 – 1.2 Dawson et al. (2004) 

Burn of Waterhead (3.4) 8.3 – 16.6 0.44 – 1.6 Dawson et al. (2004) 

Water of Dye - upper (24.6) 8.5 – 14.5 0.54 – 1.9 Dawson et al. (2004) 

Water of Dye - lower (46.3) 10.3 – 17.8 0.59 – 2.6 Dawson et al. (2004) 

Black Burn (3.35) 25.7 – 30.9 Billett et al. (2004) 

Brocky Burn (1.3) 16.9 1.9 Dawson et al. (2002) 

River Don, Parkhill (1273) 1.8 ± 1.0 0.53 ± 0.4 Hope et al. (1997a) 

River Dee, Park Bridge (1844) 2.2 ± 1.2 0.19 ± 0.12 Hope et al. (1997a) 

Dionard (73) 7.0  Hope et al. (1997b) 

Conon (962) 7.1  Hope et al. (1997b) 

Thurso (413) 8.8  Hope et al. (1997b) 

Halladale (205) 10.3  Hope et al. (1997b) 

Stag Burn (2.4) 3.44  Dawson et al. (1995) 

England    

Moor House (11.4) 10.3 – 21.8 7.0 – 22.4 Worrall et al. (2009) 

Moor House (11.4) 0.7 – 6.02  Gibson et al. (2009) 

Upper North Grain (0.38) 18.5 74.0 Pawson et al. (2008) 

Cottage Hill Sike (0.2) 6.1 – 7.1  Clark et al. (2007) 

Upper North Grain (0.38) 10.8 77.3 Evans et al. (2006) 

Rough Sike (0.83) 9.4 17.7 – 45.0 Evans et al. (2006) 

Moor House (11.4) 13.4 – 22.5  Worrall et al. (2006) 

Moor House (11.4) 9.4 – 15.0 2.7 – 31.7 Worrall et al. (2003) 

Wales    

Upper Hafren (0.93) 8.4 ± 3.8 2.7 ± 1.9 Dawson et al. (2002) 

Afon Hafren (3.35) 3.57  Neal & Hill (1994) 

Afon Hore (3.35) 2.58  Neal & Hill (1994) 

South2-Hore (0.14) 2.12  Neal & Hill (1994) 

Afon Cyff (0.04) 5.4 0.88 Reynolds (1986) 
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5.4.1.2. Annual Differences in DOC and TOC Exports 

 

Preliminary TOC export estimates for the Whitelee catchments, calculated for one 

calendar year running from 3rd July 2006 to June 2007, ranged from 11.2 to 25.5 g C m-2 

yr−1 (Waldron et al., 2009). The latest maximum annual TOC export estimate (44.9 g C m-2 

yr−1, catchment 13, 2008-2009) is approximately double the TOC export estimate for the 

same catchment (23.1 g C m-2 yr−1, catchment 13) calculated by Waldron et al. (2009). 

This difference in export estimates is likely to be due to the method used to estimate the 

flow component of the calculation. The preliminary estimates of TOC export from Waldron 

et al. (2009) were calculated using Q estimated by Method 1 (see Chapter 5.2.1) therefore 

are likely to be less representative as they were not based on direct measurements of Q. 

The latest estimates are greater because these estimates were calculated using Method 2 

estimates of Q (see Chapter 5.2.2). A comparison between exports generated by the two 

methods used to estimate Q was performed on export data for the five catchments, 13, 

14, 1632, 9D and 17U that were estimated using Q calculated by Method 2. Table 32 

shows that, for example, catchments 13 had exports as much as 33 % greater using 

Method 2 to estimate Q rather than Method 1. The exports based on Method 2 to estimate 

Q are likely to be more representative as they were based on direct measurements of Q in 

the catchment. 

 

Table 32. Comparison between exports generated by Method 1, scaling SEPA Q, 
and Method 2, using the relationship between SEPA Q and Isco Q, to estimate Q for 
the export calculations for the five catchments, 13, 14, 1632, 9D and 17U where 
Method 2 was used. The direction of the difference between the exports calculated 
using the two Q estimation methods is a summary of the trends observed for TOC, 
DOC, POC, TP, SRP and NO3

- exports. The % difference is the average % difference 
for the catchments across the full range of years for TOC, DOC, POC, TP, SRP and 
NO3

- exports. See Appendix 8 for the full data set for all five catchments. 

Catchment Method 2 > or < than Method 1 % difference 

13 > 33 

14 < 39 

1632 > 22 

9D > 15 

17U < 10 
 

 

Monitoring the catchments at Whitelee which have different amounts of disturbance 

enables the identification of disturbance effects on C exports. DOC exports are usually 

high immediately after disturbance (Hope et al., 1994), although variable results have 

been observed in other catchments. Clear-felling has been reported to produce little 

change in DOC export (McDowell and Likens, 1988), a slight increase in DOC export 
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(Hobbie and Likens, 1973; Moore and Jackson, 1989) and also reduced DOC exports 

(Meyer and Tate, 1983). DOC exports have been reported to be lowest in undisturbed 

catchments and highest in catchments which had been clear-felled (Moore and Jackson, 

1989). There are no clear inter-catchment differences between the Whitelee catchments, 

therefore at sampling points outwith the immediate zone of disturbance, there is no 

discernable impact on DOC export related to windfarm-related disturbance. 

 

Annual TOC and DOC export from the Whitelee catchments were calculated for only four 

and three years respectively; consequently any comparison to long-term trends in DOC 

export (c.f. Monteith et al., 2007) is not possible. However, this length of record does allow 

annual comparisons. There was no clear trend in the annual TOC exports but one was 

apparent in the annual DOC exports, with the greatest exports for all catchments 

occurring during 2008-2009. These greatest exports are likely to be due to annual 

hydrological variability and a function of high Q occurring when DOC is available for 

flushing from catchment soils. The total volume of half-hourly Q at SEPA Newmilns and 

the total annual rainfall were the greatest during 2006-2007 (see Table 19 and Table 20, 

Chapter 4.2) and there were 10 high flow events with a probability of occurrence of ≤ 0.1 

% (see Figure 27, Chapter 4.2.1), with the largest occurring in February and December. 

Although the highest annual flow volume and rainfall occurred in 2006-2007, it is 

hypothesised that it did not result in the greatest TOC export because the highest flows 

occurred in months when DOC availability is low in catchment soils. During 2008-2009 

there were six events with a probability of occurrence of 0.1 %, with two during October 

2008, including the event with the greatest Q (85 m3 s-1) recorded for the duration of the 

research, occurring when there was high DOC availability in UK upland peat catchments 

(Naden and McDonald, 1989; Cummins and Farrell, 2003b; Billett et al., 2004; Worrall et 

al., 2006; Clark et al., 2007; Dawson et al., 2008) which may account for the highest DOC 

exports occurring in this year for all catchments. 

 

In 2009-2010 there was no windfarm-related disturbance, which could explain why the 

exports of TOC and DOC were lower than for the previous two years. However, a simpler 

interpretation is the lower volume of Q compared to previous years. The annual Q volume 

at SEPA Newmilns in 2009-2010 was around three quarters of the annual Q volumes for 

the three previous years (see Table 19, Chapter 4.2) with the maximum Q less than half 

the maximum recorded in the previous year and the annual rainfall totals (Table 20, 

Chapter 4.2) were lower for 2009-2010 compared to the other years. Although unable to 

confidently determine a relationship based on three years worth of data, when rainfall is 

plotted against DOC export (Figure 62) the general trend is for DOC export to be greater 
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with greater rainfall, the same as the relationship observed in Clark et al., (2007) for the 

Cottage Hill Sike catchment. 
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Figure 62. Rainfall and DOC export for the Whitelee catchments, with the total 
rainfall data from the three SEPA tipping bucket rainfall gauges nearest to the 
Whitelee area averaged to give approximate annual rainfall across the catchments. 

 

The TOC and DOC export data from Whitelee suggests that percentage peat cover, 

seasonality in [DOC] and variability in Q have more impact on annual DOC exports than 

windfarm-related disturbance. 

 

5.4.2. Streamwater POC Export 

 

5.4.2.1. Inter-Catchment Differences in POC Exports 

 

The C export estimates reported in this research are consistent with Waldron et al. (2009) 

in that DOC is the largest component of aquatic TOC export, with POC export 

representing a small percentage of TOC export, ~ 9 %, in the latest estimates for 

Whitelee. This figure is comparable to the other UK catchments (Table 31). For example, 

the POC export of the Rivers Dee and Don is ~ 10 % of the TOC export, and for the Black 

Burn POC export is ~ 5 % of the TOC export, occasionally 8 % in high flow (Billett et al., 

2004; Dinsmore et al., 2010). There are only two exceptions to this. The first is the Water 

of Charr where POC is a higher percentage, 30 %, of TOC export (Dawson et al., 2004). 

This catchment is > 80 % peatland and, due to its larger catchment size (14.2 km2) 

compared to the surrounding catchments, there is enough stream energy to transport 

POC generated from the extensive areas of peat in the catchment, some of which are 
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exposed and actively-eroding (Dawson et al., 2004). The second exception is the Upper 

North Grain catchment in the Pennines, England. This catchment has 90 % peat coverage 

which is actively-eroding, where the majority (88 %) of aquatic C export is as POC (Evans 

et al., 2006). As the percentage of TOC export which is POC is low (< 10 %) it suggests 

the Whitelee catchments are not actively-eroding to a large extent.  

 

However, at Upper North Grain, 95 % of POC export occurred in only 8 % of the 

catchment monitoring time (Pawson et al., 2008). Significant erosion of disturbed peatland 

may be occurring at Whitelee during high flow but, as the POC export estimates for 

Whitelee are based on a bi-monthly sampling routine, they may be underestimates since 

significant transfers of POC from the terrestrial to aquatic environments are likely during 

high flow events (Pawson et al., 2008). The change in the nature of hydrological flow 

pathways, possible increases in quantity and power of Q and likely increases in [POC] 

source could explain why the greatest annual POC export occurred in catchment 13 

during 2007-2008 co-incident with disturbance.  

 

There was homogeneity in the response of POC exports between catchments for monthly 

and annual POC exports during the period of research but there were spikes in monthly 

POC export from catchment 456 (Figure 54). Annual POC exports were on average 12 % 

and 6 % of the TOC export in the N- and S-draining catchments respectively. These 

spikes and inter-catchment differences with drainage divide, as explained earlier in 

Chapter 4.4.1.2, are probably due to inputs from agricultural sources rather than the 

windfarm development.  

 

5.4.2.2. Annual Differences in POC Exports 

 

In the less agriculturally-dominated S-draining catchments, the timing of greatest annual 

POC export estimates over the three years was expected to be in the same year across 

the catchments, but this was not the case. The greatest annual POC export in the S-

draining catchments occurred during 2008-2009 except for catchment 13 which had the 

greatest annual export in 2007-2008 (Figure 59), driven by the greatest monthly POC 

exports of the S-draining catchments for approximately six months during 2007-2008 

(Figure 54). The different temporal pattern of POC export for catchment 13 is likely to be 

caused by windfarm-related disturbance, notably the close proximity of deforestation. 

Clear-felling has been reported to increases aquatic POC exports (Hope et al., 1994). The 

sampling site in catchment 13 is 1 km from the area of extensive forestry operations; the 
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nearest of all the sampling sites to an area of disturbance (see Chapter 6). Although the 

annual POC export of 2.95 g C m-2 yr−1 for catchment 13 during 2007-2008 was not the 

greatest annual POC export of all the Whitelee catchments, the change in annual trend 

indicates that windfarm-related forestry operations could be increasing [POC] in 

streamwater.  

 

With a large area of catchment 13 subject to forestry operations (12 % of the catchment) 

during 2007-2008, Q could also have increased due to the increased accessibility of flow 

pathways caused by the removal of tree cover, (see Figure 42, Chapter 4.4.2.1), 

increasing the connectivity of terrestrial C stores to streamwaters. After the removal of 

vegetation cover in many peatlands, dominant overland and near-surface flow accelerate 

peat exposure, resulting in enhanced POC export (Holden et al., 2007). The clear-felling 

and subsequent mulching will create a greater store of POC on the peat surface, for 

example, loosened soil particles and mulch material. With the reduction of vegetation 

cover there may be increased subsurface erosion of preferential pathways leading to 

greater connectivity between the peatland and streamwater, which may lead to 

unexpected aquatic carbon and nutrient losses in some catchments (Holden et al., 

2006a). With less interception of rainfall due to reduced tree cover, there is likely to be a 

greater quantity of overland flow, which has greater erosive power than other hydrological 

flow pathways, and may entrain loosened soil particles and mulch material, and thus 

POC, from the newly-bare peat surface which has often undergone cracking and increase 

transport of POC into the stream network (Dawson and Smith, 2007).  

 

The extent and timing of disturbance in catchment 14 was similar, with clear-felling and 

mulching of 10 % of catchment 14 (see Chapter 4.4.2.1) conducted at the same time as in 

catchment 13. However, one of the headwater tributaries of catchment 14 drains into the 

Craigendunton reservoir upstream of the sample point and this may be acting as a buffer 

supporting sedimentation of POC and thus precluding a similar increase in annual POC 

export during 2007-2008 in catchment 14 to that observed in 13. Other than this slight 

change in pattern in response for catchment 13, the values for POC export from the 

Whitelee catchments show little evidence of increased erosion associated with windfarm-

related disturbance.  
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5.4.3. Carbon Balance at Whitelee  

 

Aquatic C exports are critical in terms of peatland C balance since aquatic C exports from 

undisturbed peatland rivers have been reported to equal C sequestration in the peatland 

(Schlesinger, 1990; Billett et al., 2004). It was therefore important to compare the annual 

TOC export estimates for the Whitelee catchments to the C sequestration rate of the 

peatland. C sequestration rates of UK peatlands range between 5 and 50 g C m-2 yr-1 

(Dawson and Smith, 2007). Auchencorth Moss, a 3.5 km2 lowland ombotrophic raised bog 

25 km east from Whitelee, has an estimated C sequestration rate of 25 g C m−2 yr−1 

(Hargreaves et al., 2003). 210Pb dating of three peat cores collected from just outside the 

Whitelee field site have a C sequestration rate of 18.7 g C m−2 yr−1 (Waldron et al., 2009).  

 

If these two figures for C sequestration rate are representative of the Whitelee 

catchments, the streamwater DOC and TOC exports calculated in this research ranging 

from 26.3 to 42.3 g C m-2 yr−1 and 26.9 to 44.9 g C m-2 yr−1 respectively for S-draining 

catchments 13, 15, 1 and 1632, exceed the suggested C sequestration rates. These 

exports are likely to be underestimates due to the assumptions in the method of 

calculation; and as a full streamwater C budget including dissolved gases (CO2 and CH4) 

and inorganic C has not been constructed for the Whitelee catchments, streamwater C 

losses are likely to be even larger and the suggested sequestration rate exceeded even 

more. This means that in order for the Whitelee catchments to remain sequestering C, the 

minimum amount of C fixed has to equal the amount lost via the streamwater pathway 

plus 18 g C m-2 yr-1 against a background of increasing [DOC] and export in freshwaters 

across northern temperate latitudes (Monteith et al., 2007). 

 

5.4.4. Streamwater Phosphorus Exports  

 

5.4.4.1. Inter-Catchment Differences in P Exports 

 

The Whitelee data provides preliminary P exports for disturbed peatland catchments for 

which little data exists. The annual aquatic TP exports, in the Whitelee catchments, with 

the exception of catchment 13, were < 90 mg P m-2 yr-1 (Figure 60) revealing that these 

catchments contribute more than the most recent estimates of background P export (see 

Chapter 1.3.2). The greater export values from all Whitelee catchments are likely to be 

caused by the mixed land use, with, in addition to conifer forest plantation, stocking of 
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dairy cattle on the improved pastures of the N-draining catchments and rough grazing of 

mainly sheep and occasional cattle on the areas of open moorland in the S-draining 

catchments. Livestock within a catchment are known to be potential sources of P (e.g. 

Heathwaite et al., 2003). As discussed in Chapters 4, water quality at the sampling point 

in catchment 456 is thought to be impacted by episodic runoff from the farmyard of a 

nearby dairy farm (c.f. Edwards and Withers, 2008) and by the cattle having direct access 

to the stream. This can explain why N-draining catchment 456 often had the greatest 

monthly TP and SRP exports of the N-draining catchments for many consecutive months 

during 2009-2010, leading to the maximum SRP export in catchment 456 occurring during 

this year. The P export estimates from the agriculturally-dominated N-draining catchments 

estimates are, however, low compared to catchments where there are large areas of 

intensive, high input agriculture. Catchment P exports from agricultural land are typically in 

the range < 10 – 600 mg TP m-2 yr−1 (Ryden et al., 1973; Haygarth and Jarvis, 1999; 

Kronvang et al., 2007).  

 

In catchment 13 the annual SRP exports exceed the maximum TP export for a catchment 

determined by Waldron et al. (2009). Monthly SRP and TP exports for catchment 13 did 

not follow the same temporal pattern as the other catchments (Figure 56 and Figure 57). 

The elevated exports of SRP and TP from catchment 13 from 2007 to 2009 are likely to 

have been caused by extensive windfarm-related forestry operations as explained in 

Chapter 4. TP exports of 206 mg P m-2 yr−1 from catchment 13 for the year when most 

clear-felling and mulching was conducted (2007-2008) were 41 times higher than TP 

export from unmanaged boreal forest catchments in Finland (5 mg TP m-2 yr−1) 

(Kortelainen et al., 2006). Exports from catchment 13 are more than double the TP 

exports from the more agriculturally influenced N-draining Whitelee catchments, although 

still less than diffuse TP export from three agriculturally-dominated catchments in the 

West of Scotland, UK, which ranged from 394 – 559 mg TP m-2 yr−1 (Hooda et al., 2000). 

Even in 2009-2010, when there is evidence in catchment 13 of the elevated [P] 

decreasing (see Figure 33 and Figure 34, Chapter 4.3.2), TP and SRP exports in this year 

from catchment 13 are comparable to the maximum exports of TP and SRP in the other 

catchments for the 4-year study period (Figure 60).  

 

Many studies have reported increases in [P] due to clear-felling (e.g. Lebo and Herrmann, 

1994; Ahtiainen and Huttunen, 1999; Ensign and Mallin, 2001; Nisbet, 2001; Cummins 

and Farrell, 2003b; Feller 2005) but few have presented P export estimates. For an area 

of forested blanket peat in Co. Mayo, Ireland, estimated monthly total reactive phosphorus 

(TRP) exports from the undisturbed forested upstream part of a catchment (0.72 km2) and 



Chapter 5 

144 

 

the harvested downstream area of the same catchment (0.11 km2) were 0.08 – 1.87 mg P 

m-2 and 0.09 – 5.73 mg P m-2, respectively (Rodgers et al., 2008). Annual TRP exports 

from the harvested part of the catchment at 224 mg P m-2 yr−1 were an order of magnitude 

higher than from the undisturbed area at 20 mg P m-2 yr−1. In a clear-felled catchment in 

Burrishoole, clear-felling on peat was observed similarly to increase TRP export in 

streamwater, with sustained impact for four years (Rodgers et al., 2010). This is similar to 

the timescale of increased exports observed at Whitelee. At Burrishoole, in the second 

year alone after clear-felling, 230 mg TRP m-2 yr-1 was exported from a 0.25 km2 

catchment, with up to 515 mg TRP m-2 exported from the catchment into streamwater in 

the first three years following harvesting. Although the TRP exports from this study in 

Ireland are expected to be less than the Whitelee TP exports because the TP exports also 

include the fraction of unreactive phosphorus (see Figure 3, Chapter 1.3.2), the order of 

magnitude of the estimated TRP exports is similar to the TP export from catchment 13, 

the most impacted of the Whitelee catchments, which over the four years of this study 

exported an estimated 530 mg P m-2. Sources of TP in catchment 13 related to 

deforestation could be the residual rock phosphate fertiliser used to establish and 

maintain the tree coupe in the 1960s and loosened soil particles and mulch material in 

runoff from the newly-exposed soils (Forestry Commission, 2003). Another source of SRP 

in catchment 13 is likely to be from the breakdown of the mulched brash mat (Moffat et al., 

2006) which is known to increase P leaching over 12 to 18 months (Forestry Commission, 

2003).  

 

5.4.4.2. Annual Differences in P Exports 

 

The greatest catchment annual DOC and POC exports generally occurred in 2008-2009 

but any annual differences in the P exports are less clear. The greatest annual TP exports 

generally occurred in 2007-2008 and in the S-draining catchments the maximum SRP 

export occurred in hydrologic year 2008-2009 (Figure 60). As SRP and C exports have 

the same annual trend in the S-draining catchments this suggests that they share a similar 

source and/or flow pathways. C exports are thought to be strongly influenced by hydrology 

(see Chapter 5.4.1.2) and, since the greatest export of SRP occurred during the wettest of 

the years studied, this indicates that SRP exports are also strongly influenced by 

hydrology. The greater transfer of SRP from the catchment to the streamwater during this 

wetter year is likely to be caused by a higher degree of hydrological connectivity in which 

there would have more linked soil flow pathways, over a range of scales from micropores 

to peatland piping (Holden et al., 2006b) and over a longer period of time for transfer of 

water containing high [SRP] from the terrestrial system to the stream network. The 
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greatest SRP exports were seen during 2008-2009, a combination of an available source 

of P and the greatest connectivity due to being the wettest year of the research period. 

 

In addition P is likely to be transported during high flow events (Jordan et al., 2007, Stutter 

et al., 2008a,b) of which there were several during 2008-2009, with four during October 

2008 at the end of the growing season when there is less terrestrial P uptake and more 

available P to be washed in-stream. Waldron et al. (2009) found statistically significant 

positive linear relationships between [SRP] and [DOC] in the Whitelee catchments and 

hypothesised that if catchment SRP and C exports are derived from the same source, or 

share similar export pathways, then the concentrations will be positively correlated; and if 

they are derived from different source or share different export pathways, a positive 

correlation will not exist. This more recent research observed similar annual trends in SRP 

and C exports and therefore supports the hypothesis in Waldron et al. (2009) that the SRP 

source is closely linked to the C source and/or they share the same export mechanism 

pathways.  

 

The greatest TP exports from Whitelee occurred in 2007-2008, a year earlier than the 

greatest C and SRP exports which generally occurred in 2008-2009. This difference in 

annual patterns suggests that TP has a different mobilisation mechanism to SRP. SRP is 

most likely to be mobilised in wet periods in winter when limited biological uptake from the 

soil and the soil profile is wet so that there is a high degree of hydrological connectivity. 

Exports of particulate P, (TP - SRP), occur mainly during high flow events in surface runoff 

and sub-surface runoff (Withers and Jarvie, 2008) at any time of year when overland flow 

and erosion are most favoured. During 2007-2008 there was more TP available in the 

catchments due to windfarm-related forestry operations but over time less TP was 

available (see Figure 34, Chapter 4.3.2), and the greatest transfers expected with the 

highest flows during 2008-2009 were not observed.  

 

The P exports from Whitelee are low compared, for example, to exports in wastewater 

from sewage treatment works (c.f. Bowes et al., 2003) or runoff from a dairy farmyard (c.f. 

Edwards and Hooda, 2007). However, even the low level exports of P from Whitelee are 

still significant because streamwater draining peatland is naturally nutrient-poor, with 

biological activity usually P-limited (Forestry Commision, 2003), therefore even a small 

increase in exports can impact on streamwater quality. This can have implications for 

complying with the Water Framework Directive (2000) and its regulatory requirement to 

achieve “good” ecological status in a range of waterbodies by 2027.  
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5.4.5. Streamwater NO3
- Exports  

 

5.4.5.1. Inter-Catchment Differences in NO3
- Exports 

 

There are numerous studies of N hydrochemistry in streamwater. A few studies have 

considered NO3
- in peatland streams (e.g. Chapman et al., 2001; Lepistö et al., 2001; 

Clark et al., 2004; Kortelainen et al., 2006; Lepistö et al., 2006; Helliwell et al., 2007a,b; 

Cundill et al., 2007; Austnes et al., 2010). A smaller number of studies have reported NO3
- 

exports (e.g. Neal et al., 2003; Mattsson et al., 2005), and an even smaller number of 

studies report exports for disturbed peatland catchments (e.g. Waldron et al., 2009).  

 

There were three main temporal and spatial patterns in the Whitelee aquatic N export 

estimates. Firstly, there is a clear seasonal pattern in N export from all catchments in 

which the greatest NO3
- exports occurred over the winter months, with summer minima 

(Figure 58). This seasonal pattern has been observed in many other UK catchments in 

terms of [NO3
-]. For example, from analysis of data for 743 British rivers Betton et al. 

(1991) reported that 80 % exhibited maximum [NO3
-] in the winter months. The same 

seasonal trend in [NO3
-] has been reported in upland rivers in mid-Wales and throughout 

Scotland (Reynolds et al., 1992; Chapman et al., 2001; Whitehead et al., 2004; Clark et 

al., 2004; Helliwell et al., 2007a,b) As discussed in Chapter 4.4.3, this is thought to be 

controlled by seasonal patterns in catchment biological activity with the growing season.  

 

The second pattern is that there are clear inter-catchment differences in the magnitude of 

streamwater NO3
- exports. S-draining catchments 13, 14 and 15 have a mean 

streamwater NO3
- export over the 4 years of study of 0.14 g m-2 yr−1. Given the low 

intensity of the agriculture in these catchments, streamwater [NO3
-] are therefore low in 

these catchments hence the S-draining peatland-dominated catchments 13, 14 and 15 

have the lowest exports. Similar magnitudes of annual NO3
- exports have been reported 

from a blanket peat catchment, Moor House, Pennines, UK, of 0.03-0.21 g m-2 yr−1 

(Adamson et al., 1998) and a mean of 0.13 g m-2 yr−1 for Finnish catchments of mainly 

forestry, peatland and lakes (Mattsson et al., 2005). In a study of Finnish catchments 

retention of NO3
- within the catchments was observed to be high in northern N-limited 

forest ecosystems and even higher in peatlands. Consequently [NO3
-] in peatland waters 

is low (Lepistö et al., 2001).  
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S-draining catchments 1 and 1632 have a mean streamwater NO3
- export over the 4 years 

of 0.33 g m-2 yr−1, more than double that of the other S-draining catchments. N-draining 

catchments 456, 9A, 9D and 17/17U have an even greater mean NO3
- export over the 4 

years of 1.07 g m-2 yr−1. Catchments 1 and 1632 are also peatland-dominated but have 

larger areas and therefore the length of stream to sampling point is much longer, 

increasing the opportunity for NO3
- input to streamwater. These two catchments also have 

larger areas of pastures with sheep grazing and catchment 1 has the most settlement of 

all the S-draining catchments, both potential sources of NO3
- inputs. The N-draining 

catchments only have peatland in their upper reaches, thus so much larger proportions of 

the catchment areas comprise improved pastures and the grazing of dairy cattle. The 

influence of this agricultural activity is evident in the greater NO3
- exports.  

 

The inter-catchment differences in the streamwater NO3
- exports from Whitelee are 

consistent with observations from Finnish catchments where agricultural activities resulted 

in an approximate tenfold N loss per unit area compared to forest land (Lepistö et al., 

2001). Furthermore, in streams draining four different upland regions of Scotland NO3
- 

exports were found to be strongly correlated with the percentage of agricultural land in the 

catchment (Chapman et al., 2001). Increases in NO3
-export with increasing proportions of 

agricultural land have been reported for catchments in Finland (Lepistö et al., 2001; 

Mattsson et al., 2005) and the USA (Jordan et al., 1997; Qualls and Richardson, 2003) 

probably related to application of fertilisers and higher biological productivity. The 

Whitelee estimates are lower than estimates of export from the Severn, Avon, Exe and 

Dart rivers in the southern UK, which have TON exports of 1.50, 1.94, 1.88 and 2.65 g m-2 

yr−1 respectively (Russell et al., 1998). Although TON exports will be higher than aquatic 

NO3
- exports as they also include NO2

-, this is likely to account only for a small fraction of 

TON export. Thus the higher exports for these four rivers compared to the Whitelee 

catchments reflects the greater number of septic tanks, greater areas of pasture and the 

likely application of fertiliser at a higher rate to maximise grazing potential and silage 

production.  

 

5.4.5.2. Annual Differences in NO3
- Exports 

 

There is a general trend of decreasing streamwater NO3
- exports over the 4 four years of 

research (Figure 61). By 2009-2010 there has been a ~ 50 % reduction in exports 

compared to 2006-2007 exports. Since the annual pattern of streamwater NO3
- exports is 

different to that of the C and P exports, it appears that hydrology exerts less control on 

NO3
- exports and suggests that sources of NO3

- are limited in the Whitelee catchments, 
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quickly taken up by peatland vegetation. An increase in rainfall may suppress nitrification 

and release of NO3
- in the soil (Rodgers et al., 1983) which could explain this decreasing 

trend but Table 20 in Chapter 4.2.3 shows no obvious increase in rainfall. A decreasing 

trend in flow during the study period may drive the decreasing NO3
- exports because less 

NO3
- would be flushed out of the soil, however, Figure 26 in Chapter 4.2.1 does not show 

a decreasing trend in flow across the 4 years. It is therefore hypothesised that a decrease 

in temperature may result in reduced nitrification and release of NO3
- in the soil or 

decreasing atmospheric deposition of N may explain the general trend of decreasing 

streamwater NO3
- exports rather than windfarm-related disturbance. 

 

5.5. Summary of Streamwater Exports 

 

There were no clear patterns in the annual TOC exports but the greatest annual DOC 

exports occurred in all catchments in 2008-2009 with the difference attributed to a greater 

number of high flow events occurring when there was a high DOC availability in the 

catchments. The greatest annual POC exports also occurred in 2008-2009 with the 

exception of catchment 13 where the greatest POC export occurred in 2007-2008. The 

different temporal pattern of POC export for catchment 13 was thought to be caused by 

the close proximity to extensive forestry operations.  

 

Annual DOC and TOC exports from the S-draining catchments were generally higher than 

from the N-draining catchments, thought to be due to the greater proportion of peat-based 

soils in the S-draining catchments, with C exports from catchments 13, 15, 1 and 1632 for 

each hydrologic year of the four years of research exceeding the suggested C 

sequestration rate of 18 g C m-2 yr−1 for the Whitelee peatland.  

 

There was no clear pattern in which year greatest P exports occurred, however, the 

greatest P exports were always from catchment 13, most likely to be caused by windfarm-

related forestry operations. The greatest NO3
- exports generally occurred in 2006-2007, 

with NO3
- exports an order of magnitude higher in the N-draining catchments than in the 

S-draining, thought to be due to differences in land use since the N-draining catchments 

are dominated by agriculture.  
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6. Controls on Streamwater Concentration and Export 

 

6.1. Chapter Outline 

 

The main aim of this chapter is to investigate the controls on streamwater C, P and N 

concentration and export and to assess if there is an impact of windfarm-related 

disturbance on these in the Whitelee catchments or not. Although inferences have been 

made throughout Chapters 4 and 5 to explain the inter-catchment and annual differences 

in streamwater chemistry, an approach is required which tests these explanations. 

Windfarm construction began at Whitelee in November 2006. The pre-disturbance 

streamwater chemistry data determined by Waldron et al. (2009) are too short in length 

(five months) to perform a reliable and representative before-and-after impact comparison. 

Thus by comparing low- and maximum- disturbance phases in the time series presented 

in Chapter 4 it is possible to identify potential impacts of windfarm-related disturbance. To 

determine the most likely controls of C, P and N, multiple regression analysis was carried 

out using median concentration and export for DOC, POC, TOC, SRP, TP and NO3
- for 

the two phases of the time series. These were regressed with the outputs of a geographic 

information system (GIS) analysis to describe the physiography of each catchment and to 

quantify the extent of windfarm-related disturbance. The rationale and methodology of a 

GIS-based approach are outlined at the beginning of this chapter, the multiple linear 

regression methodology and results are described next. The chapter concludes with an 

assessment of the impact of windfarm-related disturbance on streamwater chemistry and 

exports. 

 

6.2. GIS Analysis of the Whitelee Catchments  

 

6.2.1. Rationale for GIS-Based Approach 

 

A GIS approach was used in order to quantify catchment characteristics with the potential 

to control streamwater chemistry and exports. This approach was chosen because GIS is 

adept at processing large volumes of spatial data and has the analysis tools to order 

information in new formats and to create high quality map outputs which make the 

different catchment characteristics and windfarm-related disturbance visually 

comprehensible. Although errors will be introduced through the use of the various 
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software analysis tools, as there is no control catchment in this study, this approach 

allows catchments of varying types and scales of disturbance to be compared. A GIS-

based approach to understand the biogeochemistry of rivers has been used effectively for 

investigating the complex effects of land use change on streamwater chemistry and to 

establish statistically relationships between streamwater chemistry and catchment 

characteristics which identify the most likely controls (e.g. Ballester et al., 2003; Brandt et 

al., 2004; Xie et al., 2005; Davies and Neal, 2007; Yuan et al., 2008). Furthermore, as GIS 

is already widely used in other windfarm-related planning decisions, a desk-based GIS 

approach was chosen also because it can be adopted readily by policy makers, windfarm 

developers, environmental regulators, environmental consultants and land managers 

involved with windfarm construction.  

 

6.2.2. Catchment Physiography 

 

The GIS analysis of the Whitelee catchments was split into two categories: (i) catchment 

physiography and (ii) windfarm-related disturbance. In order to distinguish windfarm-

related disturbance, other catchment characteristics which may influence streamwater 

chemistry had to be quantified and in this section the rationale is outlined for which 

potential controls were included in the GIS analysis of the catchments.   

 

6.2.2.1. Catchment Area and Maximum Flow Length to Sampling Point 

 

Several studies have noted that catchment area can be an important control on 

streamwater chemistry, for example, it can influence the efficiency of sediment delivery 

(Walling, 1983); and, in catchments with mixed land use, [C] and [N] in streamwater were 

negatively correlated with catchment area, reflecting the retention and decomposition of 

dissolved organic matter in the catchment (Mattsson et al. 2005). In a large catchment, 

the flow paths from C, P and N sources within the catchment to the stream network are 

longer and consequently C, P and N have a greater opportunity to be exposed to various 

biogeochemical processes before reaching the stream. Moreover, in large catchments, 

large areas of the catchments are not closely connected to the stream network resulting in 

decreasing load compared to the near stream zone (Mattsson et al. 2005). Conversely, 

[NO3
-] in an agriculturally-dominated catchment has been observed to increase as 

catchment area increases due to increasing source size (Edwards and Withers, 2008). 

However this was at the < 10 km2 catchment scale compared to Mattsson et al. (2005) 

where the catchments were considerably larger, ranging from 10s to 10 000s km2 in area. 



Chapter 6 

151 

 

C and P dynamics are controlled by catchment area with streamwater concentrations 

decreasing with increasing catchment area in catchments ranging from 10 to 10 000 km2 

in area, attributed to in-stream transformations of C and P (Russell et al., 1998). In the 

case of DOC, DOC exports in catchments < 10 km2 in area tend to decrease with 

increasing catchment size owing to dilution by groundwater which contains low [DOC] 

(Grieve, 1990). Even though there is variable evidence concerning catchment size as a 

control of streamwater chemistry, catchment area and maximum flow length to sample 

point are important descriptors to be included in the GIS analysis of the Whitelee 

catchments. 

 

6.2.2.2. Soil Type and Hydrology of Soil Type 

 

Many previous studies have found that elevated [C] and export were associated with a 

high proportion of peatlands within a catchment (e.g. Hope et al., 1994; Hope et al., 

1997a,b; Dillon and Molot, 1997; Aitkenhead et al., 1999; Eckhardt and Moore, 1990; 

Mattsson et al., 2005; Xie et al., 2005; Kortelainen et al., 2006). [DOC] has been reported 

to be positively correlated to percentage peat and inversely related to the extent of mineral 

soils (Dawson et al., 2011). Streamwater [DOC] has been found to increase downstream, 

reaching a maximum in the centre of the catchment, and then decreasing in the lower part 

of the catchment – a  pattern which was linked to spatial changes in the soil C pool (Billett 

et al., 2006). Sub-catchment analysis of the soil C pool and DOC export showed that the 

strong relationship between the percentage of peat coverage and streamwater DOC in the 

upper part of the catchment did not hold downstream, where freely draining mineral soils 

become spatially more important (Billett et al., 2006). Further downstream, the relationship 

between organic C in the soil and the stream becomes weaker while other processes (for 

example, inputs from minerals soils and allochthonous within-stream processing of DOC) 

become more important (Billett et al., 2006). 

 

In studies of unmanaged and managed Finnish catchments statistically significant 

relationships between percentage peatland and P export were not observed (Kortelainen 

et al., 2006). In contrast, larger sources of P from peatlands have been reported 

compared to mineral soils (Dillon and Molot, 1997) and thought to be due to the weak P 

adsorption capacity of peatland, so a high proportion of the P available within a catchment 

can be exported downstream (Nieminen and Jarva, 1996).  
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The significance of catchment properties, particularly soil type, in determining streamwater 

[NO3
-] has been demonstrated for moorland catchments in northeast Scotland (Black et 

al., 1993). Peatlands were least able to retain N, and, if the availability of inorganic N is in 

excess of that required for biological activity, there is significant export in streamwater 

from peatland-dominated areas (Black et al., 1993). A negative relationship has been 

observed between [NO3
-] and the percentage of peatland within a catchment (Helliwell et 

al., 2007a). [NO3
-] in catchments dominated by peat with its large C pool were observed to 

be much less than in catchments dominated by mineral soil with its smaller C pool 

(Helliwell et al., 2007a). 

 

As the percentage of different soil types in a catchment is an important factor recognised 

by many studies to influence C, P and N dynamics it was included in the GIS analysis of 

potential controls of streamwater chemistry in the Whitelee catchments. However, soil 

type alone does not give an indication of the flow pathways and connectivity between the 

terrestrial and aquatic ecosystems. Many studies of controls on streamwater chemistry 

have also included an indicator of the movement of water through the soil, for example, 

standard percentage runoff as an indication of soil hydrological response (Helliwell et al., 

2007a) or a hydrological soil group code which is a measure of the infiltration capacity of 

water in a soil (Yuan et al., 2008). However, soil drainage characteristics are not always 

observed to be a significant control on [DOC] (Eckhardt and Moore, 1990). As there is the 

potential for the hydrology of soil types (HOST) to control streamwater chemistry at 

Whitelee, a classification of this property in UK soils was included in the GIS analysis of 

the catchments.  

 

6.2.2.3. Land Use 

 

Land use plays an important role in determining streamwater chemistry. Agricultural land 

has been shown to be an important control of [NO3
-] and export, with N in surface waters 

increasing with the increasing percentage of agricultural land, related to the application of 

fertilisers (Jordan et al., 1997; Russell et al., 1998; Nedwell et al., 2002; Xie et al., 2005; 

Mattsson et al., 2005; Helliwell et al., 2007b). Both agriculture and forestry have been 

shown to contribute to N export, but agricultural lands have approximately a tenfold N loss 

per unit area than forested land (Lepistö et al., 2001). Agriculturally-dominated areas 

within a catchment have been reported to be highly positively correlated to streamwater 

[NO3
-] (Ferrier et al., 2001; Davies and Neal, 2007) but weakly related to [SRP] (Davies 

and Neal, 2007) although significant positive relationships have been found to exist 

between grassland cover and [SRP] (Ferrier et al., 2001). As well as percentage peatland, 
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forestry is an important source of DOC within a catchment due to a greater amount of 

organic material within these catchments (Grieve, 1994). Since land use other than the 

windfarm development is important in controlling streamwater chemistry, land use was 

included in the GIS analysis of the Whitelee catchments. 

 

6.2.2.4. Slope 

 

Slope has been identified by many as an important control of streamwater chemistry 

because it influences the connectivity between the terrestrial and the aquatic ecosystems, 

with several studies using mean slope angle to describe the topography of the catchment. 

Catchment topography exerts an important control on N and P dynamics and on 

particulate transport through its effect on sediment conveyance and delivery (Russell et 

al., 1998). Large areas of flat morphology will have a longer average water residence time 

in the catchment, whereas steep slopes result in a higher share of surface runoff with 

respect to total runoff. A significant negative relationship was observed between mean 

slope and both [TP] and export in Finnish catchments but a strong significant relationship 

was not reported with [PO4
-] or export (Kortelainen et al., 2006). A significant positive 

relationship was observed between mean slope and surface water [NO3
-] (Helliwell et al., 

2007a,b) and greater proportions of steeper slopes in a catchment have been associated 

with enhanced NO3
- leaching (Smart et al., 2005). Catchment slope can strongly influence 

both DOC and POC exports (Ludwig et al., 1996). [TOC] was observed to be correlated 

negatively with slope angle, with streamwater [TOC] in valley floor moorland catchments 

double the concentrations in streamwater draining moorland catchments with steeper 

slopes (Grieve and Marsden, 2001). However, slope is not always an influential control on 

streamwater [DOC] (Eckhardt and Moore, 1990; Ballester et al., 2003). For these reasons 

it was decided that slope should be included in the GIS analysis of the Whitelee 

catchments. 

 

6.2.3. GIS Analysis Methodology  

 

This section outlines the methodology for the GIS analysis of the Whitelee catchments 

using ESRI® ArcGIS™ 9.2 software. The GIS analysis output files named throughout the 

following sections are in italics for clarity. Appendix 9 contains tables summarising raw 

and derived GIS data files and includes information on file type and a description of the 

file contents. 
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6.2.3.1. Catchment Physiography  

 

6.2.3.1.1. Catchment Area and Flow Length to Sampling Point 

 

The first step in the GIS analysis of the Whitelee field site was to delineate the catchment 

boundaries and to establish the catchment areas and maximum flow length of stream to 

sampling point. This involved several stages. The elevation data of the area in the form of 

OS Land-Form PROFILETM profile digital terrain model (DTM) tiles at 1:10,000 scale was 

downloaded from www.edina.ac.uk/digimap. The downloaded data tiles were imported 

into ArcMap™ through data conversion from NTF files to ASCII format. The tiles were 

merged using the data management tool ‘raster mosaic’ to create the layer dtmraster. In 

order to use the spatial analyst hydrology tools on the dtmraster layer, a hydrologically 

correct topographic surface needed to be created. The ‘fill’ tool was used to fill the surface 

sinks in the digital terrain model input layer and to prepare a layer, dtmfill, for surface 

analysis. The spatial analyst hydrology tools were used to analyse this new hydrologically 

correct layer.  

 

The next step in the surface hydrology analysis of the Whitelee area was to determine the 

direction of flow through each cell. The ‘flow direction’ tool indentifies the flow direction of 

a cell by comparing its elevation to that of its eight neighbours. The output from this, 

flowdirofdtm, was put into the ‘flow accumulation’ tool to calculate for every cell the 

amount of water which flows into the cell from all the uphill cells which drain through it. 

This produced the flowaccum dataset and the high value cells in this output were 

considered to be in a stream. The symbology was manipulated to determine the flow 

value for generating a stream network which resembled that on a 1:25,000 scale map of 

the area. From this, the set null function was used to make a raster stream network 

output, strmnet. 

 

The ‘stream link’ tool was used to give each stream segment in the previous output a 

unique ID in a new layer called strmlnk. There were many short segments in this layer 

which did not connect with other segments, so the surface hydrology tools and map 

algebra processing were used to remove stream segments of 5 cells or less. The ‘stream 

order’ tool was run using the Strahler ordering method to assign stream order to each 

stream segment based on the number of upstream segments connected to it. The ‘stream 

to feature’ tool was used to convert the raster stream segments in the strmorder layer into 

line features in the streamnetwork layer. The ‘region group’ tool was used on the 
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streamnetwork layer to assign unique basin identifiers to the streams, creating the strmgrp 

layer. The eight cell option was used to define the connectivity, so that the cells could also 

be connected by the corners as well as by their sides. To calculate the maximum 

accumulated flow within each stream region, the ‘zonal statistics’ tool was used on the 

strmgrp layer to define the region and the flowaccum layer to provide the summary values 

for each region. This created the zonflowmax layer.  

 

A shapefile of grid references for the sample points, GPSlocations, was uploaded from a 

handheld GPS and, using the ‘identify’ tool, the elevation of each sample point was 

generated from the elevation data in the DTM added to the attributes of each sampling 

point. Using the GPSlocations file and the flowaccum layer, a separate point shapefile for 

each sampling location was created. This was named WL# (# indicates the ID number 

unique to each catchment). This point feature was then converted to raster, named 

catchment# and linked with flowaccum so that the ‘watershed’ tool could be used to 

delineate the catchment area, named catch#. This raster catch# was converted to a 

polygon feature, named areacatch#. The area of the catchment in km2 was calculated 

using the ‘calculate geometry’ tool and added to the attribute table of the catchment area. 

The maximum possible stream flow length to the sampling point in km was calculated 

using the ‘flow length’ tool in the hydrology spatial analyst toolbox and added to the 

attribute table, as was the grid co-ordinate of the sampling point. A summary of catchment 

data for each of the Whitelee catchments is provided in the sampling point locations and 

catchment characteristics description in Table 7 in Chapter 2.4.1. 

 

6.2.3.1.2. Soil Type and Hydrology of Soil Type 

 

A shapefile, WhiteleeSoil, of the soil type and HOST data (c.f. Boorman et al., 1995) was 

purchased from the Macaulay Land Use Research Institute (MLURI, now the James 

Hutton Institute). HOST is a hydrologically-based classification of UK soils where soils are 

assigned to a class on the basis of their physical properties with reference to the 

hydrogeology of the substrate. Using the ‘clip’ tool in the extract function of the ArcMap™ 

analysis tools on the WhiteleeSoil shapefile with the catchment areas generated in 

Chapter 6.2.3.1.1 as the clip feature, an output of a file with the geometry of the 

catchment area and the attributes for that shape was created from the input file, following 

the method used by Cundill et al. (2007). From this, the soil type and HOST were 

determined for each catchment. By exporting this attribute table for the catchment into 

Microsoft® Excel, the percentage of each soil type and HOST expressed relative to the 

catchment area was calculated for each catchment. The soil types found at Whitelee are 
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alluvial, humic gleys, non-calcareous gleys, peat, blanket peat (defined by MLURI as peat 

> 1m deep), peaty gleys, peaty podzols, humus-iron podzols, and brown forest soils (see 

Table 33 and Figure 7, Chapter 2.2). Of the 29 HOST classes, the Whitelee catchments 

contain 12 HOST classes (Table 34). There are predominant HOST classes at Whitelee – 

15, 24 and 29 – all poorly draining. A description of soil type and hydrological conditions of 

soil type in each HOST class is included in Table 35. The percentage of HOST classes 

associated with each soil type at Whitelee are shown in Table 36. 

 

6.2.3.1.3. Land Use 

 

The percentage of each land use expressed relative to the catchment area was generated 

for each catchment using the same procedure as Cundill et al. (2007). The catchment 

area was the clip feature and the input was a shapefile of the Whitelee area of the 

Coordination of Information on the Environment (CORINE) Land Cover Map for 2000 at 

the scale of 1:100,000, called LandUse. This was the most up-to-date licensed data for 

land use available through the University of Glasgow. The data was produced jointly by 

the European Commission and the Member States, which record 44 land use classes. Of 

the 44 land use classes, 11 are recorded in the Whitelee catchments, the main ones being 

coniferous forest, natural grassland, pastures and peatbog (Table 37). 

 

6.2.3.1.4. Slope Analysis 

 

Using the DTM layer, dtmraster, mean and maximum slopes were calculated in degrees 

for each of the Whitelee catchments utilising the ‘extract by mask’ tool in the extraction 

menu of the spatial analysis tools, with the catchment area as the input feature mask to 

produce a file named slope#. The mean and standard deviation, and maximum slopes in 

each catchment were determined from the statistics table in the ‘layer properties’ window. 

A common slope category system was created for all the catchments using the ‘reclassify’ 

tool in the analyst tools, and a layer file called Reclass of slope # was created for each 

catchment. The attribute table of number of cells for each catchment was exported to 

Microsoft® Excel and the count of each slope angle in each category, expressed as a 

percentage relative to the number of cells in the catchment, was calculated (Table 38). 
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Table 35. Description of soil type and hydrological conditions in soil associated 
with the 12 HOST classes occurring in the Whitelee catchments. Information 
sourced from http://www.macaulay.ac.uk/host/ 

 

 

HOST  
Class 

Soil Type Hydrological Conditions 

5 humus-iron podzols, brown earths with brown 
calcareous soils, alluvial sands and gravel 

freely drained 

8 immature loamy textured alluvial soils free & imperfectly drained 

9 alluvial soils imperfect to poorly drained 

10 alluvial soils and mineral groundwater gleys poorly drained 

12 predominantly peaty gleys, peaty alluvial soils 
and peaty podzols 

poorly drained 

14 mineral non-calcareous gleys and humic gleys poorly drained 

15 peaty gley, peaty podzols and peaty rankers 
on porous rock types 

poorly drained 

17 brown earths, humus-iron podzols, some 
brown magnesian soils, sub- and alpine soils 

freely drained 

18 mineral non-calcareous gley soils imperfectly drained 

24 non-calcareous mineral gleys imperfect to poorly drained 

26 peaty gleys poorly drained 

29 blanket peats (> 1 m deep) poorly drained 

Table 36. % HOST classes associated with each soil type at Whitelee. 

 HOST Classes 

Soil Type 5 8 9 10 12 14 15 17 18 24 26 29 

Alluvial  5 21 74         

Humic gley    4  12    84   

Non-
calcareous  

gley 
     2    98   

Blanket peat            100 

Peat     37       63 

Peaty gley       94    6  

Peaty podzol       100      

Humus-iron  
podzol 

       100     

Brown forest 49       49 2    
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6.2.3.2. Windfarm-Related Disturbance  

 

Windfarm construction is not solely about erecting turbines; a major part of the impact can 

be associated with other windfarm infrastructure, such as borrow pits and access tracks, 

and felling of forest. Therefore the location and extent of such activities must be known in 

order to assess for impacts on streamwater chemistry and exports. An overview of 

windfarm-related disturbance and associated deforestation in the Whitelee catchments is 

provided in Table 7 in Chapter 2.4.1. 

 

6.2.3.2.1. Turbine and Borrow Pit Locations  

 

Grid co-ordinates of the as-built (rather than proposed) locations of turbine bases obtained 

from Scottish Power Renewables were inputted as a DBF file and from this a shapefile of 

the turbine locations was created, called TurbineLocations. Where available, the mean 

peat depth before construction was calculated from survey data at 10 m intervals at each 

turbine location obtained from Scottish Power Renewables and was added to the attribute 

table of the turbine locations. The locations of the borrow pits were also digitised using the 

‘trace’ tool from geo-referenced DWG files received from Scottish Power Renewables and 

a shapefile BorrowPits was created. 

 

6.2.3.2.2. Windfarm Access Tracks 

 

The windfarm boundary was digitised from a geo-referenced DWG file received from 

Scottish Power Renewables using the ‘trace’ tool in ArcMap™, to give a shapefile called 

DevelopmentBoundary. Similarly, the access tracks were digitised from geo-referenced 

DWG files received from Scottish Power Renewables using the ‘trace’ tool in ArcMap™. 

The road polylines were changed from dashed road centrelines to continuous lines to give 

a shapefile for all the Whitelee catchments called AccessTracks. The access tracks in this 

shapefile are the road locations as-built rather than the proposed road layout from the 

EIS, since the proposed layout may have changed during construction due to difficult 

ground conditions. Using the ‘clip’ tool with the catchment area as the clip feature, data 

from the AccessTracks separate shapefiles were created for each catchment of the 

location of access tracks, AccessTracks_#. From this, the length of each road in each 

catchment in km was calculated using the ‘measure’ tool. 
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6.2.3.2.3. Deforestation 

 

Shapefiles called Forestry, ShortRotation and FelledAreasWindfarm outlining forest 

management in the Whitelee catchments during the research period from June 2006 to 

September 2010 were received from the Forestry Commission. No spatial data was 

available regarding the extent of mulching in each catchment. The attribute table for 

FelledAreasWindfarm contained the year of clear-felling. Forestry was more up to date 

and spatially accurate than the coniferous forestry class in the CORINE Land Use data 

and the felling plans included in the Environmental Impact Statement (CRE Energy, 

2002). The area of clear-fell in each catchment, #deforest, was determined using the ‘clip’ 

tool with the catchment area as the clip feature and the resulting attribute table was 

exported to Microsoft® Excel where the percentage of the catchment deforested 

expressed relative to the catchment area was calculated (Table 37). A detailed summary 

of the forestry operations carried out in each of the Whitelee catchments is provided in 

Table 5 in Chapter 2.4.1 and Figure 6 in Chapter 2.2. 

 

6.2.3.2.4. Distance to Windfarm-Related Disturbance 

 

The ‘raster calculator’ in the map algebra tools of the spatial analyst toolbox was used to 

measure the stream distance from the sampling point to the nearest windfarm-related 

disturbance in each catchment.  

 

6.3. Multiple Linear Regression 

 

To identify the catchment characteristics important in the release of C, P and N, two 

multiple linear regression analyses were carried out in order to model the controls on both 

streamwater concentration and export. The relationship of both concentration and export 

with catchment physiography and windfarm-related disturbance was compared not only to 

gain information about potential sources of C, P and N but also about the impact of 

hydrological pathways on C, P and N movement within the catchment. Multiple linear 

regression analysis was chosen because it is an approach which has been successfully 

employed in other studies (e.g. Ballester et al., 2003; Mattsson et al., 2005; Billett et al., 

2006; Helliwell et al., 2007a) to determine the correlation between catchment 

characteristics and streamwater chemistry responses. A best subsets approach to 

regression analysis was carried out using Minitab® v16 statistical software. 
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6.3.1. Multiple Linear Regression Inputs 

 

6.3.1.1. Dependent Variable 

 

As the pre-disturbance streamwater chemistry data determined by Waldron et al. (2009) 

was for too short a time period to perform a direct before-and-after impact comparison, 

two regression analyses were carried out, for a low- and a maximum- disturbance phase. 

The low-disturbance phase was from June 2006 to August 2007 (personal communication 

with Scottish Power Renewables and Forestry Commission), and the maximum-

disturbance phase was from September 2007 until May 2009 when infrastructure 

construction and windfarm-related deforestation was completed. In the case of DOC and 

POC time series, concentration and export data for each catchment exist only for the 

maximum-disturbance phase so no comparison of controls on streamwater chemistry can 

be made to the low-disturbance phase. Catchments 17 and 17U were not included in the 

regression analysis because the time series were shorter in these catchments (see 

Chapter 2.4). 

 

6.3.1.1.1. Dependent Variable - Concentration 

 

The dependent variable used for the regressions with [DOC], [POC], [TOC], [SRP], [TP] 

and [NO3
-] were median concentrations calculated for each catchment for both the low- 

and maximum-disturbance phases (see Appendix 10). The number of sampling occasions 

used to calculate median concentrations was 23 in the low-disturbance phase and 34 in 

the maximum-disturbance phase. Median values for concentration were chosen as they 

are influenced less by extremes in the data than mean values. Median values have been 

used as the dependent variable in other multiple linear regression-based studies to 

identify the controls on streamwater chemistry (e.g. Xie et al., 2005; Kortelainen et al., 

2006). 

 

6.3.1.1.2. Dependent Variable - Export 

 

The dependent variable for the regressions with DOC, POC, TOC, SRP, TP and NO3
- 

exports was the median value of monthly exports for the duration of each phase (see 

Appendix 10). The median value for the low-disturbance phase was calculated from 14 

months of data and for the maximum-disturbance phase from 21 months of data.  
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6.3.1.2. Potential Controls on Streamwater Concentrations and Exports 

 

To avoid the duplication of data through the inter-relationships between potential controls, 

to reduce the number of potential controls and to select the most important potential 

controls for the regression analysis, the potential controls were checked for 

multicollinearity. This was done by plotting all the potential controls in a correlation matrix. 

A highly significant correlation was found between catchment area and stream flow length 

(r = 0.872, P = 0.005) which is expected as the greater the catchment area the longer the 

flow path of the river. It was therefore decided to divide the catchment area by the length 

of the river in each catchment because of this multicollinearity in order to provide a 

variable which represents the connectivity within the catchment and the potential for in-

stream cycling.  

 

There was a highly significant positive correlation between catchment area and access 

track length (r = 0.902, P = 0.002). This is not surprising as the greater the catchment 

area, the greater the number of turbines which could be sited in the catchment and 

consequently the greater the length of access track required. There was also a highly 

significant positive correlation between the access track length and the number of turbines 

(r = 0.949, P < 0.001). Therefore only the length of the access track was used in the 

regression as it is also a proxy for the number of turbines.  

 

There were significant correlations between the soil type and the hydrology of soil type 

which were expected because HOST classes are assigned on the basis of soil physical 

properties (Table 32). As these correlations would result in the duplication of information, 

HOST classes rather than soil type were inputted into the regression. Many of the HOST 

classes covered < 2 % of a catchment area and were considered not to influence 

streamwater chemistry strongly enough to be included as a potential control. Due to the 

limited number of variables which can be inputted into the regression analysis, the three 

main HOST classes of the 12 HOST classes in the Whitelee catchments – classes 15, 24 

and 29 – were chosen to feature in the regression. HOST classes 15 and 29 were 

grouped together to form one potential control. This was done on the basis that these two 

classes largely represent poorly-drained peat-based soils, whereas HOST class 24 

represents imperfectly to poorly-drained non-calcareous mineral soils (Table 35). As 

HOST indirectly accounts for slope since soil formation and therefore soil type is strongly 

influenced by topography (Boorman et al., 1995), slope was not included in the regression 

analysis.  
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The selection of the other potential controls inputted into the regression analysis was 

driven by the most likely controls hypothesised throughout Chapter 4 and 5 to explain the 

variation in streamwater chemistry observed at Whitelee, such as the proportion of peat-

based soils, the area of pasture within a catchment and the extent of windfarm-related 

forestry operations. 

 

The 11 CORINE land use classes present at Whitelee were simplified into two main land 

use potential controls: coniferous forestry and pasture. The percentage coniferous forestry 

potential control figures are different for the low- and maximum-disturbance phase since 

the maximum-disturbance phase takes into account the area of windfarm-related 

deforestation in each catchment. Peatbog is another land use class which is extensive at 

Whitelee and likely to influence streamwater chemistry. However as HOST class 29, 

which represents blanket peatland, was already included in the regression analysis the 

peatbog land use class was not used.  

 

For the low-disturbance phase, five catchment physiography potential controls were 

selected to be inputted into the regression analysis (Table 39). Since the number of 

potential controls inputted into the regression cannot be greater than the number of 

observations – in this case the observations from eight catchments – (catchment 17U 

excluded), the five controls describing catchment physiography identified as influential for 

each parameter for the low-disturbance phase were inputted into the regression for the 

maximum-disturbance phase plus the three potential controls describing windfarm-related 

disturbance (Table 39). When the regressions were carried out the variance inflation 

factors, which quantify the severity of multicollinearity, were plotted as a final check and 

these were all < 3 for the regressions showing that multicollinearity was minimal.  

 

 Potential controls 

Catchment physiography Stream flow length per catchment area (km km-2) 
 % area HOST classes 15 and 29 
 % area HOST class 24 
 % coniferous forest (low- and max- disturbance) 
 % pasture 

Windfarm-related disturbance % deforested 
 access track length (km) 

 
Stream distance from sampling point to nearest 

disturbance (km) 
 

 

Table 39. Overview of the potential controls inputted into multiple linear 
regressions with median values for each catchment of streamwater concentration 
and export as the dependent variables.  
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6.3.2. Multiple Linear Regression Results 

 

The results of the best subset regressions are presented individually for C, P and N in 

turn. The equation chosen for each parameter to describe the variation in streamwater 

concentration and in export was selected due to their high R2 and low Mallows Cp value. 

 

6.3.2.1. Carbon  

 

The best fit equations for median [C] and export obtained by the regression analysis for 

both the low- and maximum- disturbance phases are shown in Table 40. 

 

6.3.2.1.1. Concentration 

 

The relationship between median [TOC] and the catchment characteristics for the low-

disturbance phase was highly significant (R2 = 99 %, P = 0.005) at the 95 % confidence 

level. Four catchment physiography controls model [TOC] before any windfarm-related 

impact on streamwater chemistry. The percentage of peat-based soil in a catchment was 

expected to exert a positive control on [TOC] (Hope et al., 1994; Hope et al., 1997a,b; 

Dillon and Molot, 1997; Aitkenhead et al., 1999; Eckhardt and Moore, 1990; Mattsson et 

al., 2005; Xie et al., 2005; Kortelainen et al., 2006), and the regression analysis indicated 

a positive relationship between [TOC] and HOST classes 15 and 29, which represent 

peat-rich soil types (blanket peat, peaty podzols, peaty gleys). This positive control is 

attributed to the size of the soil C pool (Dawson et al., 2001a; Dawson et al., 2004; Billett 

et al., 2006; Dawson et al., 2008, Dawson et al., 2011). 

 

The regression analysis identified that the percentage coniferous forest cover positively 

influenced [TOC] during the low-disturbance phase. In a study of one forested and two 

moorland catchments in southwest Scotland, the mean streamwater [DOC] of the 

catchment forested with Sitka spruce and lodgepole pine, the same species as the 

Whitelee forests, was observed to be twice that of the moorland catchments (Grieve, 

1990). It has previously been demonstrated that plantation forestry on organic soils can 

alter DOC export in several ways by impacting on the thickness and nature of soil organic 

horizons (Miles, 1985) and influencing the proportion of water flowing through the different 

soil horizons with more water flowing through surface organic horizons and less at depth 

due to drainage associated with plantation forestry (Hornung and Newson, 1986).   
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There is a greater input of more mobile organic compounds to the soil from throughfall 

below a forest canopy (Malcolm and McCracken, 1968) and the development of a forest 

litter layer is likely to increase the production of DOC. Hence Sitka spruce forest has been 

shown to be associated with larger mean [DOC] in the underlying soil solution than 

beneath acid grassland vegetation (Reynolds et al., 1988) and moorland (Grieve and 

Marsden, 2001). Establishment of coniferous forestry in the UK uplands typically requires 

drainage of highly organic soils which results in a lowering of the water table, causing 

increased decomposition rates due to increased aeration, and thereby reducing the 

potential for DOC retention within the soil (e.g. Holden et al., 2004; Worrall et al., 2004b). 

As [DOC] is the main component of [TOC] at Whitelee, streamwater [TOC] is expected to 

be driven by the controls on [DOC]. Thus these influences on source and flow pathways 

on DOC may explain why [TOC] and export in the catchment increases with a greater 

proportion of coniferous forestry. 

 

The stream flow length per catchment area was also identified as a control on [TOC] for 

the low-disturbance phase, exerting a negative influence on [TOC], showing that the 

greater the stream density within the catchment, the lower the [TOC]. This control may be 

interpreted as the effect of residence time of water in the soil on [TOC]. The less well 

connected the catchment soil C store is to the river network (low stream density), the 

longer the residence time of the water in the soil and the greater the [TOC] due to more 

time for leaching of DOC from the soil. 

 

The proportion of pasture within the catchment was also found to exert a positive control 

on [TOC] during the low-disturbance phase which was unexpected. Improved pastures 

typically contain less soil C than peatlands since soil conditions underlying pastoral lands 

are much less favourable for the accumulation of organic matter and therefore a negative 

relationship was expected between [TOC] and pasture. However, this unexpected positive 

control is likely to be driven by spikes in the [POC] time series in catchment 456 

downstream of a dairy cattle farm (see Figure 31, Chapter 4.3.1.2). 

 

The regression analyses for the maximum-disturbance phase show that significant 

relationships at the 95 % confidence level described the variation in [DOC] (R2 = 78 %, P 

= 0.022) and [POC] (R2 = 96 %, P = 0.004), but not for [TOC] (R2 = 87 %, P = 0.110). As 

expected, peat-based HOST classes 15 and 29 exert a positive control on [DOC] due to 

the greater soil C pool of these two HOST classes. However, HOST class 24 soils 

(imperfectly and poorly drained non-calcareous mineral gleys) rather than HOST classes 

15 and 29 exert a positive control on [POC]. Since the peat, and therefore soil C pool, 
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from personal observation show no evidence of active erosion, HOST classes 15 and 29 

were not expected to control [POC]. The positive relationship between the percentage of 

HOST class 24 soils and streamwater [POC] is likely to be due to the fact that HOST class 

24 soils are more extensive in the agriculturally-dominated N-draining catchments (Table 

30) so this control is also representing the effect of agricultural activity on [POC]. 

 

It was considered from the time series and harmonic regression analysis presented in 

Chapter 4.3.1 and 4.4, that, as well as the proportion of peat-based soils in a catchment 

controlling C dynamics, deforestation may result in an increase in streamwater [C] 

because this has been observed in other catchment studies (Hobbie and Likens, 1973; 

Cummins and Farrell, 2003a; Neal et al., 2004; Neal et al., 2005; Tetzlaff et al., 2007). 

Indeed the regression analysis indicates that during the maximum-disturbance phase, 

there are positive relationships between the percentage of the catchment deforested and 

[DOC] and [POC]. These relationships are likely to be caused by increased brash and 

litter material and more favourable conditions for organic matter decomposition at the 

exposed soil surface provided by deforestation, creating a larger soil store of soluble and 

particulate C for mobilisation in streamwater.  

 

It was expected that [POC] would be influenced by the area of the catchment which is 

pasture since spikes in the POC time series for the N-draining catchments suggested that 

the dominant pasture land use in these catchments influences POC loss (see Figure 31, 

Chapter 4.3.1.2). However, the regression analysis has not identified the percentage of 

pasture as a control of [POC] and this is likely to be due to the fact that HOST class 24 is 

more extensive in the agriculturally-dominated N-draining catchments. In addition to 

HOST class 24 and the proportion of the catchment deforested exerting positive controls 

on the variation in [POC] during the maximum-disturbance phase, [POC] is also controlled 

by a negative relationship with access track length. This is an unexpected relationship and 

is interpreted as evidence that the mitigation measures employed to minimise the impacts 

of activities on streamwater suspended sediment, such as settling ponds (Figure 36), 

alum block flocculation and forest drain blocking, have been effective in minimising POC 

reaching the stream network. 

 

6.3.2.1.2. Export 

 

The regression equations for median monthly export of TOC during the low-disturbance 

and maximum-disturbance phases had lower R2 values (68 and 64 %, respectively) 
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compared to the equations for [TOC] during these phases and were not significant at the 

95 % confidence level (P = 0.058 and 0.076, respectively). Both equations indicated that 

the same controls, HOST classes 15 and 29 and coniferous forest, influence TOC export 

regardless of windfarm-related disturbance. These two positive controls were also 

identified as controls of [TOC] during the low-disturbance phase (see Chapter 6.3.2.1.1 for 

explanation). 

 

A highly significant relationship at the 95 % confidence level (R2 = 90 %, P = 0.003) 

describes the variation in DOC export during the maximum-disturbance phase. It was 

thought that deforestation would be positively related to DOC export as well as [DOC]. 

However, rather than the proportion of the catchment deforested controlling DOC export 

during the maximum-disturbance phase, the percentage of the catchment which was 

coniferous forest was found to be positively related to DOC export. A possible explanation 

for why the percentage deforested was not positively related to DOC export is that the 

increase in [DOC] in the Whitelee S-draining catchment 13 associated with deforestation 

was observed during the maximum phase of the seasonal cycle (see Figure 30, Chapter 

4.3.1) and the effect of felling on [DOC] seemed insignificant compared to seasonal 

fluctuations in [DOC]. Deforestation may also have not been identified as a control on 

DOC export because the higher [DOC] associated with felling occurred earlier than the 

timing of highest flows during the year. Furthermore, only one catchment showed 

enhanced [DOC] therefore the relationship is stronger with the proportion of forestry rather 

than the felled area.  The forested areas remain a source of DOC within the catchment 

with continual fresh litter production and organic matter decomposition, whereas the felled 

areas become depleted as a source of DOC fairly rapidly after deforestation.  

 

HOST classes 15 and 29 were also not identified as a control of DOC export (in contrast 

to [DOC]), rather stream distance to nearest disturbance was found to exert a control, with 

the shorter the distance to nearest windfarm-related disturbance, the greater the DOC 

export. In terms of a windfarm-related control, it therefore appears that the type of 

windfarm-related disturbance is not influential, but that the connectivity between available 

DOC and the stream network is important. From a study of felling at Hubbard Brook, New 

Hampshire, U.S.A., it was observed that temporal variations in flowpaths were more 

important controls of streamwater [DOC] than the area disturbed by felling (Dai et al., 

2001). 

 

A significant relationship (R2 = 96 %, P = 0.018) at the 95 % confidence level describes 

POC export during the maximum-disturbance phase. The same three controls which 
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explained the variation in [POC] during the maximum-disturbance phase – a positive 

relationship with HOST class 24, a positive relationship with the percentage deforested 

and a negative relationship with access track length – describe the variation in POC 

export, plus one other control; a negative relationship with flow length per catchment area. 

An explanation for this relationship is not clear since it indicates that the greater the 

connectivity within the catchment, the lower the [POC].  

 

6.3.2.2.  Phosphorus  

 

The best fit equations for median [P] and export obtained by the regression analysis for 

both the low- and maximum- disturbance phases are shown in Table 41. 

 

6.3.2.2.1. Concentration 

 

Median [SRP] during the low-disturbance phase of the time series (R2 = 75 %, P = 0.032) 

was controlled positively by the main HOST classes in the Whitelee catchments. The most 

likely explanation for this is that sources of P in the catchments are relatively small and 

uniform so that streamwater [P] is linked to the P adsorption ability of the soil type within 

the catchment. P is not retained well by HOST classes 15 and 19 because the potential of 

blanket peat to sorb P is extremely low (Fox and Kamprath, 1971; Malcolm et al., 1977; 

Nieminen and Jarva, 1996) due to the low levels of iron and aluminium (Tamm et al., 

1974), thus more SRP reaches the stream network. 

 

In contrast, the HOST classes are not found to be as influential on [SRP] during the 

maximum-disturbance phase whereas a significant relationship exists at the 95 % 

confidence limit (R2 = 93 %, P = 0.010) between median [SRP] and three windfarm-related 

disturbance controls. In the assessment of impact on [SRP] time series (see Chapter 

4.4.2.1) it was hypothesised that the most likely control on streamwater [SRP] was the 

extent of the catchment subject to deforestation and the regression analysis for the 

maximum-disturbance phase provides evidence supporting this hypothesis. Deforestation 

is known to have a negative impact on streamwater chemistry, especially in terms of 

nutrient enrichment (e.g. Ahtiainen and Huttunen, 1999; Nisbet, 2001; Cummins and 

Farrell, 2003b; Feller 2005; Rodgers et al., 2010). 
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An increase in streamwater [SRP] after deforestation is likely to be from a combination of 

potential sources: the remains of fertilisers used to establish the conifer trees in the 1960s 

washed in-stream in runoff from newly-exposed soils (Malcolm and Cuttle, 1983), reduced 

uptake of soil P by vegetation (Forestry Commission, 2003), P release from the roots of 

the felled trees (Ahtiainen and Huttunen, 1999), increased decomposition rates at the 

newly-bare soil surface (Walbridger and Lockaby, 1994; Messina et al., 1997; Perison et 

al., 1997) and leaching from brash material which is an important source of SRP (Taylor, 

1991; Stevens et al., 1995; Nisbet et al., 1997; Titus and Malcolm, 1999; Moffat et al., 

2006).  

 

Access track length was also identified as a control on [SRP] during the maximum-

disturbance phase, indicating an unexpected negative relationship, with increasing track 

length associated with lower [SRP]. This decrease in [SRP] with access track length was 

not observable during the time of maximum disturbance in the time series figure (Figure 

33, see Chapter 4.3.2). It was hypothesised that windfarm-related disturbance, especially 

in the case of access tracks with their improved drainage, would increase the transfer of 

nutrients from soil to water. The most likely explanation for this negative relationship is the 

adsorption of P by mineral material used to construct the windfarm access tracks which 

reduces the amount of SRP in the catchment available to reach the stream network. The 

construction stone is likely to have been tested only for inertness in terms of leaching prior 

to construction rather than for likelihood of chemical uptake. 

 

The third control on median [SRP] in the maximum-disturbance phase was stream 

distance to nearest windfarm-related disturbance, with the shorter the distance, the 

greater the [SRP]. This emphasises that median [SRP] is not only influenced by the 

source of available P due to deforestation but also the connectivity between the source 

and the stream network. The shorter the flow paths to the stream network, the lower the 

chance of retention of P within the catchment due to various biogeochemical processes, 

including sorption to any available mineral soil and mineralization, before reaching the 

stream. 

 

During the low-disturbance phase [TP] is described by a significant positive relationship 

(R2 = 73 %, P = 0.038) with both the percentage of HOST class 24 and the proportion of 

pasture within the catchment. It is thought that these two controls are linked as HOST 

class 24 is more extensive in the agriculturally-dominated N-draining catchments. The 

variation in the [TP] time series is also positively controlled by these two controls through 

the direct deposition of particulate P in the form of faecal matter in and near the stream 
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network by grazing dairy cattle, which often come down to the stream to drink and may 

also cause erosion around river banks and disturb P in-stream sediments. In addition to 

this source of TP, [TP] measured at the sampling point in catchment 456 is thought to be 

impacted by episodic runoff from a nearby farmyard. 

 

During the maximum-disturbance phase median [TP] is also described by a significant 

relationship (R2 = 90 %, P = 0.020) in which % HOST class 24 remains a control, with two 

windfarm-related disturbance controls also identified. As expected, the percentage of the 

catchment deforested exerts a positive control on [TP]. In addition to the potential sources 

already described for [SRP] from deforestation, [TP] may also increase after deforestation 

because of the greater susceptibility to erosion of the newly-bare peat surface, which is 

often dry, cracked and degraded (Patterson and Anderson, 2000), especially during rain 

events due to greatly reduced interception (Vitousek and Melillo, 1979; Ensign and Mallin, 

2001). The length of access track per catchment has a negative influence on [TP], similar 

to the control on [SRP]. As well as the potential adsorption of P by the mineral 

construction material used in the windfarm access tracks, particulate P is also likely to be 

reduced in catchments where there is greater length of access track and turbine bases 

since there will be a greater presence of silt traps to retain particulates, therefore less TP 

reaches the stream network, as already described for POC (see Chapter 6.3.2.1.1).    

 

6.3.2.2.2. Export 

 

All the regression equations for describing the variation in [P] are significant and enable 

identification of windfarm-related disturbance as an important control through comparison 

of controls on concentrations in low- and maximum-disturbance phases. However, 

although the majority of regression equations for describing the variation in P export have 

R2 values of 84 - 97 %, only two are significant. The relationship to describe the variation 

in SRP export is not significant during the low-disturbance phase (R2 = 53 %, P = 0.148), 

but is significant for the maximum-disturbance phase (R2 = 86 %, P = 0.037). Both the 

percentage of HOST classes 15 and 29 and the proportion of the catchment deforested 

positively influence SRP exports during the maximum-disturbance phase, reflecting, in the 

case of the HOST, the poor retention of P by peat-based soils, and, in terms of 

deforestation, increases in the source of available P within the catchment (see Chapter 

6.3.2.2.1). 
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Variation in TP export is described by a weakly significant relationship (R2 = 84 %, P = 

0.046) during the low-disturbance phase, but not during the maximum-disturbance phase 

(R2 = 97 %, P = 0.086). The relationship for the low-disturbance phase TP export is not 

only weakly significant but identifies controls which are difficult to interpret as the 

relationship is not as expected. There is a positive relationship between TP export and 

flow length per catchment area in the low-disturbance phase, yet a negative influence 

between TP export and flow length per catchment area in the maximum-disturbance 

phase. The percentage of HOST classes 15 and 29 may be expected to exert a positive 

control on TP export because streamwater [P] is linked to the P adsorption ability of the 

soil within the catchment which, in the case of these two peat-based soil classes, would 

be low (see Chapter 6.3.2.2.1) thus more P would reach the stream network. However, a 

negative relationship is shown which is interpreted most simply that the larger the area 

covered by these soils the less P there is – suggesting they are not a source of P.  

 

Although the relationships between TP export flow length per catchment area and the 

percentage of HOST classes 15 and 29 cannot be explained and the relationships 

between the potential controls and P export do not describe the variation in the data very 

well, the approach is strong enough to show that there are changes in controls between 

the low- and maximum- disturbance phases due to windfarm-related disturbance.  

 

6.3.2.3. Nitrogen 

 

The best fit equations for median [NO3
-] and export obtained by the regression analysis for 

both the low- and maximum- disturbance phases are shown in Table 42. 

 

6.3.2.3.1. Concentration 

 

During the low-disturbance phase, a highly significant relationship (R2 = 94 %, P = 0.001) 

exists at the 95 % confidence limits between median [NO3
-] and two controls. The 

percentage of HOST class 24 exerts a negative control on [NO3
-] which may be indicative 

of denitrification occurring in these waterlogged gley soils (Ryden, 1983), reducing the 

NO3
- available for leaching into streamwater. It could also be that the percentage of HOST 

class 24 is a surrogate indicator of the S-draining catchments which have lower coverage 

of this HOST class and fewer NO3
- sources. As expected (see Chapter 4.4.3), the  
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proportion of pasture exerts a positive control on [NO3
-], consistent with the results from 

other studies (Jordan et al.,1997; Russell et al., 1998; Lepistö et al., 2001; Nedwell et 

al.,2002; Xie et al., 2005; Mattsson et al., 2005; Helliwell et al., 2007a,b) and is attributed 

to more sources of NO3
- as the percentage of pasture increases from diffuse inputs, such 

as inorganic fertilizer use, organic manure application and excretion from grazing animals 

(Robards et al., 1994). 

 

The assessment of impact on streamwater [NO3
-] in Chapter 4.3.3.1 indicated that in S-

draining catchments 13, 15 and 1632 a potential windfarm-related disturbance impact was 

discernable through a change in the expected seasonal signal coinciding with windfarm-

related disturbance in these catchments. However, the same two controls – HOST class 

24 and percentage pasture – explain most of the variation in [NO3
-] in highly significant 

relationships during both the low- and maximum-disturbance phases suggesting that the 

difference observed in the time series in these three S-draining catchments cannot be 

explained by either the windfarm-related construction or the forestry operations 

considered here. 

 

6.3.2.3.2. Export 

 

Similarly, the results of the regression for both the low- and maximum- disturbance 

phases show that the same three controls influence NO3
- export. However, a statistically 

significant relationship only exists for NO3
- export during the low-disturbance phase (R2 = 

91 %, P = 0.014) because one does not exist for the maximum-disturbance phase at the 

95 % confidence limits (R2 = 76 %, P = 0.097). As well as the percentage of the catchment 

which is pasture, which was expected to exert a positive control on streamwater NO3
- 

export (see Chapter 6.3.2.3.1), the flow length per catchment area also exhibits a positive 

control on NO3
- export, indicating that connectivity between N sources within the 

catchment and the stream network is important in determining NO3
- export. In a Finnish 

catchment study, large catchments, with extensive areas not closely connected to the 

stream network resulted in decreasing load compared to the near stream zone (Mattsson 

et al. 2005).  

 

Furthermore, the proportion of the catchment covered by coniferous forest also has a 

positive influence on NO3
- export at Whitelee, with greater exports from the catchments 

containing greater coniferous forest cover. [NO3
-] has been observed to be significantly 

larger in forested streams compared to moorland streams as a result of changes in the 
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soil N cycle due to the different vegetation types (Reynolds and Edwards, 1995; Chapman 

et al., 1999). The forest vegetation has a much greater ability to capture inputs of occult 

and dry deposition than moorland vegetation and thus the forested catchments receive 

larger inputs of atmospheric N (Reynolds et al., 1997) and forestry can promote 

nitrification within the soil, making more NO3
- available for leaching into runoff and thereby 

increasing streamwater [NO3
-]. No controls associated with windfarm-related disturbance 

were found by this research to influence NO3
- export.  

 

6.4. Summary of Windfarm-Related Controls on Streamwater Chemistry  

 

The results of the GIS analysis-supported multiple linear regression presented and 

discussed in this chapter confirm, as hypothesised in Chapters 4 and 5, that during the 

maximum-disturbance phase windfarm-related disturbance influences streamwater C and 

P dynamics in the Whitelee catchments through the relationships listed in Table 43. 

Although windfarm-related disturbances control some aspects of streamwater dynamics, it 

is clear from the regression analysis that other catchment characteristics, such as flow 

length per catchment area, HOST and land use also influence streamwater concentrations 

and exports. For example, the regression analysis also showed that there were no 

statistically significant windfarm-related controls on streamwater N dynamics (Table 43), 

and that N dynamics are influenced by factors such as stream density, HOST class and 

land use.  

 

Table 43. Summary of windfarm-related controls on streamwater chemistry. 

Windfarm-Related 

Disturbance 
Concentration Export 

Direction of 

relationship 

% deforested DOC, POC, SRP, TP POC, SRP positive 

access track length (km) POC, SRP, TP POC, SRP negative 

distance to nearest 

disturbance (km) 
SRP DOC negative 

 

 

6.4.1. Deforestation 

 

The percentage of the catchment area subject to deforestation exerts a significant positive 

control on streamwater [DOC], [POC], [SRP] and [TP] and POC and SRP exports. 

Concentrations and exports of these parameters increased with a greater percentage 
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deforestation within the catchment. The sources of C and P in the catchment area are 

likely to increase after forestry operations due to brash and felling litter, increased organic 

matter decomposition and erosion of the newly-exposed soil surface. P sources may also 

increase after deforestation from the remains of fertilisers used to establish the conifer 

trees, increased soil P resulting from reduced vegetation uptake of P levels, and P release 

from the roots of the felled trees.  

  

6.4.2. Access Tracks  

 

The length of access track was observed to exert a significant negative control on both the 

concentration and export of POC, SRP and TP, with concentrations and exports 

decreasing with increasing access track length. This is thought to be due to two reasons. 

Firstly, the effective employment of settlement ponds, flocculation blocks and ditch 

blocking where new drainage was installed alongside tracks which reduced the amount of 

particulate matter reaching the stream network, and secondly, the adsorption of P by the 

mineral material used for access track construction.  

 

6.4.3. Distance to Nearest Disturbance 

 

The regression analysis also identified that the nearer the sampling point to the nearest 

windfarm-related disturbance, the greater the [SRP] and DOC export. This emphasises 

that [SRP] and DOC export are controlled not only by size and availability of the P and C 

sources, but also by the connectivity between the source and the stream network. For 

example, clear-felling was carried out in catchments 13, 14, 1 and 1632, yet an impact on 

the time series was observed only in catchments 13 and 14, 1.0 km and 1.8 km 

respectively away from the nearest disturbance, whereas no impact was observed in 

catchments 1 and 1632, 7.3 km and 4.6 km downstream of deforestation (see Chapter 

4.4.2.1). Consequently, it may be that the sampling points in some catchments are too far 

away from areas of disturbance to show any effect, highlighting the importance of 

hydrological pathways, the role of dilution and in-stream cycling of P and C in mitigating 

disturbance-related impacts downstream. 
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7. Concluding Remarks: Synthesis of Research, Windfarm-

Related Impacts and Recommendations for Suitable 

Management and Future Research 

 

7.1. Chapter Outline 

 

This chapter consists of four further sections. The first section summarises the outcomes 

of this research, highlighting the key findings of C, P and N dynamics in relation to the first 

four aims outlined in Chapter 1.6. The second section summarises the overall impact of 

windfarm-related disturbance on streamwater chemistry. The third section uses the 

synthesis of these findings to address the fifth aim of this research, also outlined in 

Chapter 1.6, and makes two recommendations for best practice at future windfarm 

developments on peatland. The final section proposes seven ideas for further research 

into streamwater chemistry at windfarm developments hosted on peatlands based on the 

findings of this research.  

 

7.2. Concluding Remarks Regarding Aims of Research 

 

There is a greater need now more than ever, due to climate change, an increase in [DOC] 

in freshwaters (c.f Monteith et al., 2007) caused by various factors (c.f. Clark et al. (2010), 

the continued development of onshore renewables and the growing economic and political 

importance of C sequestered naturally, to understand the dynamics of Scotland’s C stores 

and to preserve them. The impact of windfarms on peatland streamwater chemistry has 

gradually been attracting interest from the scientific community (c.f. Grieve and Gilvear, 

2008; Waldron et al., 2009). The research reported in this thesis has built on the pre-

disturbance data of streamwater chemistry for the Whitelee catchments from Waldron et 

al. (2009) and has provided valuable insight into the impacts which occur, their magnitude 

and their duration. This proved to be challenging because streamwater chemistry is highly 

dynamic at a range of temporal scales such as high flow events, seasonal responses and 

long-term climatic changes, thus this too had to be characterised in order to discern 

impact. 

 

Chapter 1.4 explained that windfarm-related disturbance can be separated into two types 

– windfarm construction activities associated with installing the windfarm infrastructure, 
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and forestry operations to improve air flow or to meet HMP requirements. This research 

has been successful in separating the impacts of these two types of windfarm-related 

disturbance. The results of the research carried out at Whitelee can be used to advise 

best practice at other windfarm developments on peatland, especially where extensive 

forestry operations are required, and are relevant to any other type of development on 

peatland which share similar disturbance mechanisms.  

 

As well as identifying impacts on streamwater chemistry due to windfarm-related 

disturbance, during this research improvements in analytical protocols were developed 

(see Chapter 2); namely, the colour correction protocol, filtration protocol, and pore size 

investigation in conjunction with Adam (2009), and the impacts of sample storage on [C]. 

Since many of the water samples were collected from peat-dominated catchments they 

were highly coloured, leading to interferences in the peak height determined 

colorimetrically on the Technicon Autoanalyser II which resulted in over-estimates of [P] 

and [N]. Using the colour correction methods developed by Adam (2009) on the water 

samples from Whitelee, more accurate measurements of [P] and [N] can now be made for 

highly coloured samples – important for future research at these and other peat-

dominated catchments. Further to this, using the relationship between DOC and the 

difference between the non-colour corrected and colour corrected [P] and [N], 

retrospective colour corrections were carried out on the earlier data from Waldron et al. 

(2009) and the data from October 2007 until September 2008 collected as part of this 

doctoral research. This allowed for the identification of an accurate magnitude of impact 

and the use of a longer time series of concentration data in the assessment of impact.  

 

Also related to analytical method development was the examination of sample 

preservation protocol in terms of filtration on [P] and [N]. This included a comparison 

between immediate filtration in the field and filtering in the laboratory which concluded that 

transporting the samples in an iced cool box followed by immediate filtration in the 

laboratory was a suitable method of preserving and preparing samples for analysis. Filter 

pore size influence on N and P was also examined due to ambiguity over filter pore size in 

the literature relating to the methodology for colorimetry. The results of this investigation 

showed that for water samples from the Whitelee catchments a 0.2 µm filter should be 

used for determination of concentrations on Technicon Autoanalyser II since this pore size 

gives clearer, more accurate peak shapes because particles > 0.2 µm interfere in the 

analysis. 
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The reduction in [C] observed with a change in analysts in October 2007 was investigated. 

Differing protocols in the preservation of samples for [C] analysis between analysts was 

found to influence the C partitioning in samples, with samples which had been stored 

frozen prior to filtration yielding higher [POC] and lower [DOC] than samples which had 

been in refrigerated storage. This was thought to be due to the flocculation of particles 

upon freezing which were consequently filtered out of solution leading to higher [POC]. 

The [POC] and [DOC] data from Waldron et al. (2009) could not be corrected to 

accommodate for this difference. Additionally, the investigation also found that the [DOC] 

from October 2007 to June 2010 was under-estimated because of flocculation when the 

aliquots already filtered for DOC analysis were frozen prior to DOC analysis at a later 

date. A  correction was carried out to account for this underestimate, but for the full time-

series [TOC] is used for comparison. This research has shown that in future samples for 

[C] analysis should not be frozen at any stage. 

 

This research had four aims, building on the pre-disturbance data in Waldron et al. (2009). 

Chapter 4 addressed the first aim which was to identify the impacts which occur on 

streamwater C, P and N during and after windfarm construction, examine impact 

magnitude and quantify the recovery time after impact. The [DOC] time series and the 

harmonic regression of the [TOC] showed that there was a small increase in catchment 13 

during 2007-2008, the period of maximum-disturbance in the catchments. [POC] did not 

show any obvious increases co-incident with windfarm-related disturbance, but there was 

evidence of occasional increases most likely attributed to point source pollution events 

from agricultural activity in the N-draining catchments. The most obvious impact was on 

[SRP] in S-draining catchments 13 and 14 where as much as a tenfold increase was 

observed from June 2007, which lead to increases in [TP]. The water quality status of 

these two catchments declined from “good” to “moderate” in terms of the Water 

Framework Directive (2000) UK Technical Advisory Group Environmental Standards for 

[SRP] (UKTAG, 2008) and these two catchments have still not shown a full recovery after 

a further two years. The [NO3
-] time series did not show the same increases as [P]; 

however the harmonic regression analysis indicated that there may have been an impact 

in catchments 13, 15 and 1632 during 2007-2008 because the model of [NO3
-] does not 

describe the data well in these catchments during this year. 

 

Chapter 5 dealt with the second and third aims of this research by quantifying annual 

streamwater exports and comparing the magnitude of streamwater C exports to 

suggested peatland C sequestration rates. There was no clear inter-annual differences in 

the annual TOC exports but the greatest annual DOC exports occurred in all catchments 
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in 2008-2009 with the difference attributed to a greater number of high flow events 

occurring when there was a high DOC availability in the catchments. The greatest annual 

POC exports also occurred in 2008-2009 with the exception of catchment 13 where the 

greatest POC export occurred in 2007-2008. The different temporal pattern of POC export 

for catchment 13 was thought to be caused by the close proximity to extensive clear-

felling and mulching. There was no clear pattern in which year the greatest SRP export 

from the N-draining catchments occurred, but in the S-draining catchments the maximum 

SRP export occurred in hydrologic year 2008-2009. The greatest annual TP exports 

during the research period were in 2007-2008 except for catchments 17U and 15 where 

greatest TP occurred during 2008-2009. The greatest NO3
- exports occurred generally in 

2006-2007, regardless of whether the catchments were N- or S- draining. Streamwater C 

exports from catchments 13, 15, 1 and 1632 exceeded the only measure that exists of C 

sequestration rates for the Whitelee peatland (of 18 g C m-2 yr−1) for the duration of the 

research period. Thus for the Whitelee catchments to continue sequestering C, the 

minimum amount of C fixed has to equal the amount lost via the streamwater pathway 

plus 18 g C m-2 yr-1.  

 

Chapter 6 covered the fourth aim which was to identify the controls on streamwater 

concentration and export in order to assess if there is impact of windfarm-related 

disturbance. GIS data was used to describe the physiography of each catchment and to 

quantify the extent of windfarm-related disturbance. The pre-disturbance streamwater 

chemistry data determined by Waldron et al. (2009) was too short in length to perform a 

before-and-after impact comparison thus low- and maximum- disturbance phases in the 

time series were compared to identify potential impacts of windfarm-related disturbance. 

Best subsets multiple linear regressions were carried out for each parameter with the GIS-

derived data and median concentration data during the low- and maximum- disturbance 

phases for each. 

 

This approach found that flow length per catchment area, the percentage of hydrology of 

soil type classes 15 and 29, the percentage of coniferous forest and the extent of pasture 

within the catchment explained the variation in [TOC] during the low-disturbance phase. 

During the maximum-disturbance phase the HOST classes within the catchment remain 

controls on streamwater [C] but the percentage of the catchment deforested positively 

influences [DOC] and [POC] and the access track length negatively controls [POC]. The 

area of coniferous forest rather than the area deforested exerts a positive control on DOC 

export, and the distance to the nearest disturbance which exerts a negative control. POC 

export during the maximum-disturbance phase is influenced by the flow length per 
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catchment area and the percentage of HOST class 24 as well as two windfarm-related 

disturbances – deforestation and access track length. 

 

During the low-disturbance phase [SRP] was influenced by the two HOST classes and 

there is a clear change during the maximum-disturbance phase, because the variation in 

[SRP] in this phase is influenced by three windfarm-related disturbance controls – a 

positive relationship with the percentage deforested, negative relationships with access 

track length and distance to nearest disturbance. [TP] was also controlled by the same 

relationships with deforestation and access track length. Windfarm-related disturbances 

were not found to influence TP export yet the extent of deforestation and the length of 

access track were found to control SRP export. 

 

The percentage of the catchment which is pasture and HOST class 24 representing 

poorly-drained gley soils were found to influence [NO3
-] during both the low- and 

maximum- disturbance phases. Similarly, pasture, flow length per catchment area and the 

proportion of coniferous forest were observed to influence NO3
- export during both the 

low- and maximum- disturbance phases. No windfarm-related disturbance was identified 

as a significant control on either [NO3
-] or NO3

- export.  

 

7.3. Overall Impact of Windfarm-Related Disturbance on Streamwater Chemistry 

 

This research found that the greatest impact on streamwater chemistry was through the 

enrichment of [P] and that there was a smaller increase on [C], with consequent impacts 

of SRP and POC export. The source of this additional C and P resulted most likely from 

forestry operations, namely, clear-felling large areas of catchment and extensive brash 

mulching associated with the windfarm HMP, with new organic material available for 

decomposition and the potential for erosion of the newly-exposed soil surface. The 

remains of fertilisers used to establish the conifer trees, reduced vegetation uptake of soil 

P and P release from the roots of the felled trees are three further sources of P in 

streamwater. 

 

This research has shown that windfarm-related infrastructure can also influence 

streamwater chemistry, although exerting a less obvious impact, with increasing access 

track length decreasing [POC], [SRP] and [TP] causing subsequent decreases in POC 

and SRP export. This is likely to be caused by the effective use of settlement ponds, 
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flocculation blocks and ditch blocking to reduce the amount of particulate matter reaching 

the stream network; and potentially through the adsorption of P by the access track 

construction material. Although it is encouraging that there are no large increases 

detrimental to streamwater quality due to the construction of the windfarm infrastructure, 

this more subtle relationship between streamwater chemistry and windfarm access track 

infrastructure has the potential to impact on in-stream ecology by changing the energy 

budgets of streams and the availability of organic matter for consumption.  

 

7.4. Recommendations for Future Windfarm Developments 

 

Based on the summary of findings of Chapter 7.3 and to address aim 5, the following two 

recommendations for best practice at future windfarm developments on peatland are 

suggested: 

 

7.4.1. Recommendation 1 

 

 Monitor C, P and N in streamwater in all catchments draining a windfarm on C rich 

soils before, during and after construction to allow the identification of impact  

 

Using an approximately bi-monthly water sampling regime at sampling points outwith the 

immediate area of disturbance, an impact on streamwater [C] was observed at Whitelee. 

Although there was only a small increase in streamwater [C] and POC export, 

development at the Braes of Doune windfarm showed a more significant impact on 

streamwater [C] (Grieve and Gilvear, 2008). This variation in response between windfarm 

developments highlights the need for a site-by-site assessment of impact on streamwater 

[C]. Additionally, streamwater [C] data from monitoring could be used to improve the 

accuracy of C payback time estimates in the “C calculator” (Nayak et al., 2010), which is 

being adopted readily by windfarm developers and anti-wind campaign groups to show 

whether the C footprint of a development is appropriate. 

 

This research has shown there is a significant increase in [P] in catchments 13 and 14 

and a significant increase in SRP export in catchment 13, both due to windfarm-related 

deforestation, underpinning the need for establishing a long pre-disturbance baseline to 

allow the identification of impact as well as monitoring during and after windfarm 

construction until a full recovery from any impact is observed. Although no windfarm-
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related impact on streamwater [NO3
-] was observed at Whitelee, studies of other disturbed 

catchments have shown significant increases in [NO3
-] (Reynolds et al., 1994, Neal et al., 

2003a, Tetzlaff et al., 2007). The lack of impact at Whitelee does not necessarily mean 

that an impact will not occur at other peatland-based catchments therefore [N] should be 

included in any monitoring programme. 

 

Windfarm EIAs often mention a possible impact on water quality, in terms of 

eutrophication of lochs and reservoirs, maintaining public and private water supply or fish 

stocks but at present nutrient export in streamwater draining windfarm developments is 

not considered as likely (CRE Energy, 2002). The incorporation of long-term monitoring 

for impact on streamwater [P] and [N] can supplement the hydrological studies already 

carried out at windfarm developments in order to ensure that water quality is maintained in 

rivers as well as in lochs, reservoirs and drinking water supplies. The focus should not be 

on maintaining drinking water supplies only, because environmental regulators will also be 

concerned about the change in trophic status observed in the two usually low nutrient 

status catchments in light of the Water Framework Directive (2000). This raises questions 

about whether discharges from forest management such as mulching on peatland, should 

require to be licensed. 

 

Further studies at catchments subject to windfarm-related disturbance should include an 

undisturbed control catchment and a long (approximately a year) pre-disturbance baseline 

to understand the seasonality of the river system. Including these two suggestions in 

future catchment studies will assist in the clear identification of any impact on streamwater 

chemistry. Ideally both bi-monthly and event sampling should be carried out, but if this is 

not feasible then a monthly sampling frequency will allow the identification of, at the very 

least, large impacts on streamwater chemistry. The distance downstream the sampling 

points should be from disturbance depends on the catchment size and the scale of the 

disturbance in each catchment, as there will always be a localised impact on streamwater 

chemistry. A catchment study of multiple, longitudinal sampling points in the same stream 

at increasing distance from disturbance should allow the identification of the most 

appropriate sampling point location for a catchment and determine at what distance no 

impact is observed. Sampling points should certainly be upstream of any reservoirs or 

lochs which may act as a buffer and attenuate impact, and upstream of any other sources 

of C, P and N within the catchment such as dairy farming, to allow the clear identification 

of any impact. Along with the monitoring of concentration, the volume of water passing 

thought the catchment should also be gauged to allow the calculation of export.  
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7.4.2. Recommendation 2 

 

 Minimise potential for P impact of brash mulching on streamwater chemistry  

 

Adhering to the Forests and Water Guidelines (Forestry Commission, 2003) appears to 

have limited the impact of forestry operations on streamwater C, P and N dynamics in the 

Whitelee catchments but the tenfold increase in streamwater [P] in S-draining catchments 

13 and 14 indicates that windfarm-related forestry operations have had a significant 

impact on streamwater quality. Three further mitigation strategies are suggested to 

minimise the potential for P impact from brash mulching.  

 

7.4.2.1. Recommendation 2 – Mitigation Strategy 1 

 

Large areas of the impacted catchments were not only clear-felled but extensive areas 

were also subject to brash mulching. Dense layers of brash can hinder natural 

regeneration of vegetation (Moffat et al., 2006) and this management was chosen 

undoubtedly because mulching means the breakdown of brash occurs over a shorter 

timescale, therefore the re-establishment of bog forming vegetation occurs more quickly 

(Fahley et al., 1991). However, brash is an important source of leachable nutrients and, 

although mulching would have been understandably desirable for rapid restoration of bog, 

the large scale (3 km2) at which this was carried out within an extended timeframe (14 

months) appears to have been to the detriment of water quality lasting more than 2 years 

after mulching was completed. The clear-felling of small blocks of forest relative to 

catchment size, called phased felling, mitigates impacts which are observable at the larger 

scale (Harriman et al., 2003; Neal et al., 2004; Soulsby et al., 2006). The first 

recommended mitigation strategy is to phase the brash mulching in order to reduce the 

proportion of a catchment with P available for transportation into streams, mitigating the 

impact. However, it is noted that this strategy does not reduce the total P load leaving the 

harvested area, it simply spreads the load reaching the stream network over time. 

 

7.4.2.2. Recommendation 2 – Mitigation Strategy 2 

 

The second recommended mitigation strategy involves reducing the P availability after 

clear-felling by clearing much of the brash from the felled area in order to minimise 

downstream P losses. Forest residues can be a source of woodfuel energy generation, 
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and brash can be subdivided into the amount necessary for soil protection in the form of 

brash mats and the remainder used for biofuel (Moffat et al., 2006). In catchments where 

the main objective of felling is restoration of peatland habitat, the harvesting of forest 

residues may make a positive contribution to this restoration process and brash removal 

through brash bundling can be used to reduce P enrichment by removing a large 

proportion of the nutrient store from the catchment (pers. comm. Andrew Heald, Head of 

Assurance with UPM Tilhill). 

 

7.4.2.3. Recommendation 2 – Mitigation Strategy 3 

 

The final recommended mitigation strategy is based on increasing the retention capacity 

of the catchment. Buffer zones, which can filter runoff before it reaches streamwater, are 

effective in removing particulate P but are far less efficient in removing SRP (Uusi-

Kämppä, 2005; Stutter et al., 2009) and the creation of buffer zones in peatland can be 

challenging (Ryder et al., 2010). Natural re-vegetation is too slow to mitigate against P 

release from mulching, however, seeding clear-felled areas with suitable fast-growing 

native grasses immediately after tree harvesting can reduce P release from blanket 

peatlands compared to clear-fell only control areas (O’Driscoll et al., 2011). The P 

contents of the above-ground vegetation biomass were significantly higher than those of 

the control areas and the water extractable P in the seeded areas was significantly lower 

than in the control areas (O’Driscoll et al., 2011). It is therefore recommended that at 

future windfarm developments, and also at other forestry operations on peatland, where 

large areas of clear-felling and mulching are required, the immediate seeding with fast 

growing grass should be employed as a mitigation measure for P release.  

 

7.5. Ideas for Further Research  

 

Based on the findings of this research the following seven ideas for further research into 

streamwater chemistry at windfarm developments hosted on peatlands are proposed: 

 

1) The mitigation measures recommended in this research warrant some additional 

research. Plot studies should be carried out to determine the best practice 

mitigation measures for P release in peatland catchments. By comparing the effect 

on streamwater [P] of brash mulching with bailing a proportion of brash for the 

biomass market, and with the seeding of clear-felled areas immediately after tree 

harvesting with suitable fast-growing native grasses, the best practice to minimise 
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P enrichment of receiving watercourses can be determined. 

 

2) Multiple, longitudinal sampling points in the same stream at increasing distance 

from disturbance are recommended in future catchment studies to clearly 

determine impact. As an increase in [P] was only observed in the two Whitelee 

catchments where the sampling points were < 2 km away from the nearest 

disturbance, whereas no response was observed in the other catchments where 

the sampling points were > 4 km away from the nearest disturbance, the lack of an 

increase in [NO3
-] may also have been due to the distance downstream to the 

sampling point. Further to this, Chapter 6 showed that the distance to disturbance 

was an important control on streamwater [SRP] and DOC export, highlighting the 

issue of scale when implementing a water sampling regime. It is not yet clear at 

what distance downstream there is no observable impact therefore longitudinal 

catchment studies in the most impacted catchments are suggested because it 

would help determine how great the impact is on water quality in the immediate 

area of disturbance and at what point impact is no longer detected.  

 

3) Further research is required into the relationship between access track 

construction material and streamwater dynamics. Although the EIA states that 

sources of site-won and imported material were checked to ensure inertness in 

relation to its place of use in order to prevent any potential reaction with water 

(CRE Energy, 2002), there is evidence that it reduces streamwater [POC], [SRP] 

and [TP] which subsequently impacts on exports. Studies could be carried out to 

see if the material could be used as a flocculent treatment, for example, in the 

original forest plough furrows which may be acting as a conduit to the stream 

network, as a measure to treat P mobilised by forestry operations on peat soils. 

 

4) Although the bi-monthly sampling used in this research is a greater frequency than 

is employed by regulatory bodies and was frequent enough to detect impact in the 

catchments, some of the detail of concentrations and exports during high flow 

events are likely to have been missed. The installation of in-stream continuous 

monitoring equipment such as the SCA:N spectrolyser which can provide an 

output of DOC-equivalents and is now successfully generating data from 

catchment 13 as part of the NERC KE CLAD network (www.clad.ac.uk). This 

would yield higher resolution data with more accuracy and enable the identification 

of more detailed impacts. Along with a sampling regime which targets high flow 
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events where there are often large transfers of C and P, this would add to our 

understanding of streamwater chemistry dynamics and processes in a disturbed 

peat-dominated catchment. 

 

5) The main focus of this research was to indentify the impacts and controls of 

streamwater C, P and N, however, the changing stiochiometry of the streamwater 

has yet to be examined for the latest data, building on the findings of Waldron et 

al. (2009). The interaction of C, P and N in streamwaters is complex but the 

potential for DOC to be respired to CO2 is ultimately influenced by the availability 

of P and N, connecting the terrestrial C cycle to the atmospheric C cycle. 

Examining the changes in stiochiometry would add to our understanding of the 

interaction of C with P and N and ultimately the fate of C in streamwater, whether it 

is used to increase in-stream microbial biomass or used to support aquatic 

respiration where greater CO2 evasion may prevail – important when considering 

that windfarms are built with the particular purpose of offsetting CO2 emissions. 

This could be supplemented with a laboratory-based incubation study of water 

samples from streams draining windfarm-related disturbance designed to 

investigate how changing C, N and P ratios may impact the cycling of C, with 

particular reference to CO2 and CH4 evasion. 

 

6) This research is one of the first studies to examine the impacts of windfarm 

development on peatland and the sole focus was streamwater C, P and N 

dynamics; and in terms of C, examined the DOC and POC only. Further research 

could take a similar approach to Dawson et al. (2004), Billett et al. (2004) and 

Dinsmore et al. (2010) by also studying inorganic C and gaseous forms of C to 

include the whole aquatic C cycle. 

 

7) Streamwater C exports from Whitelee were compared to C sequestration rates for 

the nearest peatland, so further research should contextualise streamwater 

exports with an understanding of catchment C sequestration rates. 
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7.6. Postscript 

 

Two extensions to the Whitelee windfarm have been consented and will be constructed by 

July 2012. The Phase 1 extension will comprise 36 turbines generating 130 MW and 

Phase 2 will add a further 39 turbines with a capacity to generate 141 MW. These 

additional turbines will be in catchments 14, 15 and 1, southwest of the original 

development. The extensions will require the construction of 40 km of access track and 

the extraction of construction material from 4 new and 2 existing borrow pits. The 

monitoring of streamwater quality is ongoing throughout the construction of the 

extensions.  
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Appendices 

 

A.1 Photographs of Windfarm-Related Disturbance 

  

Figure A1. Borrow pit (onsite quarry) 
where stone has been removed and 
then backfilled with peat. 

Figure A2. Floating road design 
access track with cable trenches 
parallel to road lines. 

  

Figure A3. Excavation for installation 
of turbine foundation. Photo courtesy 
of Scottish Power.  

Figure A4. Sediment settling ponds as 
a water quality mitigation measure. 

 

 

 

Figure A5. Whole tree mulching in 
practice where trees were not viable 
for harvest. 
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A.2 Sampling Point Photographs 

A.2.1 Sampling Points in North Draining Catchments 

  

Figure A6. Sampling point 17. Looking 
downstream in summer 2007. Photo 
courtesy of Kate Heal. 

Figure A7. Sampling point 17U. 
Looking upstream in spring 2010. 

  

Figure A8. Sampling point 9A. 
Looking upstream during event flow 
in winter 2008.  

Figure A9. Sampling point 9D. 
Looking upstream in summer 2007. 
Photo courtesy of Kate Heal.  

 

 

Figure A10. Sampling point 456. 
Looking upstream. 
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A.2.2 Sampling Points in South Draining Catchments 

 

  

Figure A11. Sampling point 13. Looking 
upstream during event flow in winter 
2008. 

Figure A12. Sampling point 14. Looking 
upstream in winter 2010. 

  

Figure A13. Sampling point 15. Looking 
upstream in winter 2010. 

Figure A14. Sampling point 1. Looking 
upstream during event flow in winter 
2007. 

 

 

Figure A15. Sampling point 1632. 
Looking upstream in winter 2010. 
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A.3 Reagents for Analysis on Technicon Autoanalyser 

 

Reagents were made using AnalaR® grade chemicals and helium de-gassed de-ionised 

water. Standard stock solutions and working standards were stored below 4 °C between 

analyses.  

 

A.3.1 SRP and TP Analysis 

 

A.3.1.1 Reagents for SRP and TP Analysis 

 

The same reagents were required for SRP and TP analysis. 

 

 Acid molybdate solution  

120 mL concentrated sulphuric acid was added to 700 mL de-ionised water in a 1 L glass 

amber bottle and the solution was allowed to cool. 10.4 g ammonium molybdate was 

added whilst stirring. 0.2 g antimony potassium tartrate was dissolved in 50 mL de-ionised 

water and added to the acid solution with gentle mixing to avoid the formation of a 

precipitate and made up to 1 L with de-ionised water. This solution was stored in the dark. 

 

 Ascorbic acid solution 

1.5 g ascorbic acid was dissolved in 90 mL de-ionised water in a 100 mL volumetric flask. 

1.25 mL of 20 % sodium dodecyl sulphate (SDS) wetting agent was added, and the 

volume made up to the mark with de-ionised water. This reagent is unstable upon long-

term storage so was freshly prepared on the day of analysis.  

 

A.3.1.2 Standard Solutions for SRP and TP Analysis 

 

A 1000 mg L-1 phosphate-phosphorous standard stock solution was made using 

potassium dihydrogen phosphate, dried at 105 °C for 1 hour and allowed to cool in a 

desiccator. 4.394 g of the dry potassium dihydrogen phosphate was dissolved in 

approximately 900 mL de-ionised water in a 1 L volumetric flask and made up to the 

volume with de-ionised water. A working standard of 0.1 mg L-1 was prepared for SRP 



Appendix 3 

222 

 

from this using the appropriate dilution. A working standard of 0.1 mg L-1 was prepared for 

TP analysis from the same stock solution and, to keep the matrix the same as the 

samples, 1 mL 30 % H2SO4 plus 0.3 g K2SO4 was added to 100 mL of standard. 1 mL of 

30 % H2SO4 plus 0.3 g K2SO4 was added to 100 mL de-ionised water and used as a zero 

standard.  

 

A.3.2 TON Analysis  

 

A.3.2.1 Reagents for TON Analysis 

 

 Buffer solution 

22.5 g sodium tetraborate and 2.5 g sodium hydroxide were dissolved in 900 mL of de-

ionised water and the solution was made up to 1 L. 

 

 Griess Reagent 

100 mL concentrated hydrochloric acid was added to 800 mL de-ionised water in a 1 L 

volumetric flask. 10.0 g sulphanilamide and 0.5 g n-1-napthylenediamine dihydrochloride 

were weighed into a 1 L beaker and a quantity of the acid solution was added with stirring. 

This solution was then added to the remaining hydrochloric acid and made up to 1 L using 

de-ionised water.   

 

 Reducing agent 

0.3 g hydrazine sulphate was added to 800 mL of de-ionised water and the solution made 

up to the mark without shaking. The mixture was stirred gently with a magnetic stirrer 

avoiding the formation of a vortex to prevent the entry of oxygen. 

 

 Catalyst solution 

1 mL of 2.47 % copper sulphate solution and 1 mL of Brij-35 15 % solution were added to 

100 mL de-ionised water and the resulting solution was gently stirred.  
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A.3.2.2 Standard Solution for TON Analysis 

 

A 1000 mg L-1 nitrate-nitrogen standard stock solution was made using sodium nitrate, 

dried at 105 °C for an hour and allowed to cool in a desiccator. 6.068 g of the dry sodium 

nitrate was dissolved in approximately 900 mL de-ionised water in a 1 L volumetric flask 

and made up to the volume with de-ionised water. A working standard was prepared by 

dilution to produce a 1 mg L-1 solution.  

 

A.3.3 NO2
- Analysis  

 

A.3.3.1 Reagents for NO2
- Analysis  

 

 Griess Reagent 

As prepared in A3.2.1. 

 

 Wetting agent solution 

8 mL of 15 % Brij-35 solution was added to 1 L of de-ionised water with gentle mixing. 

 

A.3.3.2 Standard Solution for NO2
- Analysis 

 

A 1000 mg L -1 nitrite-nitrogen standard stock solution was made by drying sodium nitrite 

at 105 °C for an hour and allowing it to cool in a desiccator. 4.926 g of the dry sodium 

nitrite was dissolved in approximately 900 mL de-ionised water in 1 L volumetric flask and 

made up to volume with de-ionised water. A working standard of 0.1 mg L-1 was prepared 

from this using the appropriate dilution.  
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A.4 Background Colour Correction 

 

Background colour correction for highly coloured samples is not mentioned for the 

automated analysis of SRP, NO3
- and NO2

- (MEWAM, 1981b; MEWAM, 1992). Eaton et 

al. (2005) states that automated analysis for SRP and NO3
-, sample colour that absorbs in 

the photometric range used will interfere, but does not advise of a method for addressing 

this interference. Manual SRP methods do mention that a correction for colour may be 

required, recommending that the absorbance of a blank, prepared by adding all reagents 

except ascorbic acid or antimony potassium tartrate to a sample, should be subtracted 

from the absorbance of each sample (Eaton et al., 2005). In the SRP by 

vanadomolybdophosphoric acid method that excess colour is removed by shaking 50 mL 

of sample with 200 mg activated carbon in an Erlenmeyer flask. However Sarirullah et al. 

(1990) found that even charcoals sold specifically as low in phosphate, have high 

phosphorus content and are only suitable for de-colourising in the concentration range 

expected in soil extracts and sewage effluents but not for low level water analysis.  

 

A.4.1 Methodology for Colour Correction 

 

As there is no method reported in the literature for colour correction, modified reagents 

which do not cause a colour reaction had to be developed for SRP and NO2
- analysis. The 

following methodology was developed by Adams (2009) in an unpublished Honours 

Dissertation. Using the same manifold, for each system it involved removing one 

constituent at a time from the reagent while leaving the conditions (pH, viscosity, ionic 

environment) of the new, non-reacting reagents as similar as possible to the original 

reagents. A series of standards and samples were then run to see if peaks were 

measured. If a peak was observed for a standard then a colour reaction must have taken 

place and another reagent was made removing a further constituent. This procedure was 

continued until no peaks occurred for the standards, but peaks were still observed in the 

samples. 
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A.4.2 Reagents for Colour Correction 

 

 Colour Correction Reagent for SRP  

 

250 mL of the background colour correction reagent was made by adding 30 mL 

concentrated sulphuric acid to approximately 200 mL helium de-gassed de-ionised water 

in a 250 mL volumetric flask. This was allowed to cool and then 1.67g ammonium 

sulphate was dissolved in the solution by stirring gently. The reagent was then made up to 

250 mL with helium de-gassed de-ionised water and mixed gently. 

 

The colour correction reagent was made with ammonium sulphate instead of ammonium 

molybdate and antimony potassium tartrate. This reagent replaced the acid molybdate 

reagent, with the ascorbic acid solution kept the same as the standard set-up. 

 

 Colour Correction Reagent for NO2
- 

 

A 250 mL solution was made by adding 25 mL concentrated HCl to approximately 200 mL 

of helium de-gassed de-ionised water in a 250 mL volumetric flask and mixed gently 

before making up to volume with helium de-gassed de-ionised water. This colour 

correction reagent replaces the Griess reagent and does not contain sulphanilamide and   

n-1-napthylenediamine dihydrochloride. 
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A.5 Summary of Concentrations from Time Series  

 

Parameter Catchment Mean Median Range 

TOC (mg L−1) 456 17.9 15.3 4.8 – 47.5 
 9A 13.2 11.4 4.2 – 30.3 
 9D 11.0 10.0 5.4 – 24.4 
 17 11.0 10.5 4.3 – 27.4 
 17U 14.1 11.1 5.6 – 32.2 

DOC (mg L−1) 456 13.3 12.0 3.7 – 41.4 
 9A 11.4 10.7 3.5 – 28.5 
 9D 8.7 8.0 2.9 – 22.4 
 17 8.7 8.2 3.1 – 26.3 
 17U 11.9 9.8 5.0 – 29.9 

POC (mg L−1) 456 3.59 1.82 0.49 – 23.38 
 9A 1.15 0.93 0.31 – 7.23 
 9D 1.52 1.03 0.34 – 17.78 
 17 1.19 1.07 0.46 – 1.86 
 17U 2.22 1.24 0.50 – 16.56 

Alkalinity (mg CaCO3 L
−1) 456 55.9 55.0 26.4 – 103.2 

 9A 37.4 36.9 5.4 – 79.3 
 9D 37.2 41.2 9.8 – 53.4 
 17 N/A N/A N/A 
 17U 52.4 53.4 15.5 – 100.7 

TP (g L−1) 456 70 62 6 – 255  

 9A 34 24 3 – 152  
 9D 35 25 3 – 155  
 17 49 36 4 – 165  
 17U 61 47 14 – 198  

SRP (g L−1) 456 27 20 3 – 149  

 9A 13 12 1 – 41  
 9D 13 10 2 – 68  
 17 22 22 4 – 41  
 17U 22 18 9 – 91  

NO3
- (mg L−1) 456 1.02 0.97 0.27 – 2.44 

 9A 0.97 0.71 0.14 – 8.44 
 9D 0.82 0.82 0.13 – 1.79 
 17 1.12 1.04 0.52 – 1.82 
 17U 0.80 0.79 0.31 – 1.55 

NO2
- (g L−1) 456 19.2 14.4 0.2 – 91.6 

 9A 7.4 5.6 0.7 – 61.4 
 9D 4.6 3.9 0.1 – 26.7 
 17 10.0 9.7 1.1 – 26.3 
 17U 8.5 5.7 2.0 – 28.0 

 

  

 

 

 

Table A1. Summary of mean, median and range of concentrations in N-draining 
catchments. 
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Parameter Catchment Mean Median Range 

TOC (mg L−1) 13 31.1 28.3 13.5 – 59.1 
 14 24.3 21.9 9.5 – 50.8 
 15 29.8 27.5 9.9 – 55.5 
 1 21.6 18.9 7.8 – 47.8 
 1632 23.9 19.8 9.8 – 58.6 

DOC (mg L−1) 13 27.3 25.6 7.7 – 57.1 
 14 21.2 20.2 6.7 – 47.4 
 15 26.9 25.5 6.6 – 50.3 
 1 8.9 18.1 5.2 – 42.6 
 1632 21.3 18.9 6.5 – 51.8 

POC (mg L−1) 13 2.03 1.71 0.09 – 8.85 
 14 1.65 1.22 0.44 – 6.45 
 15 1.62 1.09 0.38 – 10.67 
 1 1.60 1.25 0.34 – 8.95 
 1632 1.63 1.06 0.38 – 8.03 

Alkalinity (mg CaCO3 L
−1) 13 33.3 24.3 5.0 – 99.3 

 14 262 24.8 6.9 – 50.4 
 15 13.1 8.7 0.4 – 47.5 
 1 36.6 31.4 1.7 – 84.3 
 1632 28.1 23.6 7.0 – 70.3 

TP (g L−1) 13 101 96 6 – 328  

 14 82 70 7 – 296  
 15 45 40 3 – 128  
 1 50 40 4 – 171  
 1632 48 38 4 – 133  

SRP (g L−1) 13 59 53 3 – 164  

 14 49 36 3 –289  
 15 27 22 1 – 122  
 1 22 20 4 – 51  
 1632 23 22 3 – 59  

NO3
- (mg L−1) 13 0.11 0.09 0.003 – 0.27 

 14 0.21 0.19 0.02 – 0.61 
 15 0.07 0.06 0.002 – 0.28 
 1 0.28 0.26 0.05 – 0.63 
 1632 0.19 0.18 0.01 – 0.88 

NO2
- (g L−1) 13 5.9 5.1 0.1 – 18.6 

 1 6.2 4.5 0.3 – 42.9 
 15 4.8 3.4 0.3 – 16.4 
 1 5.7 4.7 0.8 – 27.0 
 1632 4.8 4.0 0.1 – 12.3 

 

Table A2. Summary of mean, median and range of concentrations in S-draining 
catchments. 
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A.6 Uncertainties in [DOC] Calibration  

 

A.6.1 Calculation of Standard Deviation of Unknown [DOC] 

 

s0, the standard deviation of an unknown [DOC], was calculated for each calibration of the 

Thermolux TOC analyser using the three equations below (c.f. Miller, 2006). From this the 

95 % confidence interval could be calculated for x0, the [DOC]. 
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Equation A1. Calculation for s0, the standard deviation of an unknown [DOC]. The 
term sy/x is defined by Equation A2. b is the gradient of the calibration line. m is the 
number of times the test material was measured. n is the number of points on the 
calibration graph. y0 is the unknown [DOC] response as peak area. y is the mean 

calibration response in peak area. xi is the [DOC] of the calibration standards. x is 

the mean [DOC] . 
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Equation A2. The term sy/x for Equation A1 is defined by this equation. yi is the peak 
area of the calibration standards. ŷi is the fitted y values.  
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Equation A3. Equation A1 is only valid if Equation A3 is true. t is t value taken at the 
required probability level and (n-2) degrees of freedom. 
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A.6.2 Worked Example 

 

The following is a worked example of the calculation of s0 using the calibration of the 

Thermolux TOC analyser for the batch of samples analysed on the 6th July 2009. 51 

samples were run on this calibration and the calibration standards were in the 10 – 60 mg 

L-1 range. The data from this calibration are in Table A3 and Figure A16.  
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Figure A16. Calibration line of the Thermolux TOC analyser for 6th July 2009. 

 

 

 

 

Table A3. Data of calibration graph for the Thermolux TOC analyser for 6th July 
2009. ŷ was generated in Minitab v.16 using the “predict” subcommand. 

xi, [DOC], mg L-1 yi, peak area ŷ, fitted peak area 

10 10432 9753 

20 19480 21537 

30 34546 33321 

40 45640 45105 

50 56977 56888 

60 68201 68672 
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A.6.2.1 Equation A2 for Example Calibration 

 

In order to carry out Equation 1, the term sy/x needed to be calculated (Equation ). sy/x for 

this sample run is 1295.2. 

xys
2

1

26

7.6709673










 

Equation A4. Equation A2 for calibration of Thermolux TOC analyser from 6th July 
2009. yi was the peak area of the calibration standards and ŷi was the fitted y values 
as shown in Table A3.  

 

A.6.2.2 Equation A1 for Example Calibration 

 

Using sy/x as defined by Equation A4, s0, the standard deviation of an unknown [DOC] 

could be calculated using Equation A1 (Equation A5). For example, an unknown [DOC] y0 

had a peak area recorded using this calibration was 37092, which has an s0 of 1.19.  The 

95 % confidence limits for x0 are thus 33.2 ± 3.3 mg L-1. 

2

1

220
0.1750*4.1178

4497227

6

1

1

1

4.1178

2.1295









s  

Equation A5. Calculation of s0, the standard deviation of a peak area of 6336, the 
lowest recorded peak area on the sample run on the Thermolux TOC analyser on 
6th July 2009. 

 

A.6.2.3 Equation A3 for Example Calibration 

05.0
0.1750*4.1178

15.1295*78.2
2

22

  

Equation A6. Equation A3 for calibration of Thermolux TOC analyser from 6th July 
2009 using the 2-tailed t-value for p = 0.05 and 4 degrees of freedom of 2.78. 

 

The function in Equation A6 has the value 0.005, which is less than 0.05 which means 

that the approximation is valid and that the 95 % confidence intervals are good 

approximations. 
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A.7 Summary of Annual Exports  

 

Parameter Catchment Year 

  2006-07 2007-08 2008-09 2009-10 

TOC  456 17.8 14.4 19.0 17.9 
(g C m-2 yr−1) 9A 18.0 11.7 16.0 11.2 

 9D 12.6 13.1 13.9 12.1 
 17 13.5 10.9 N/A N/A 
 17U N/A N/A 15.0 10.7 

DOC  456 N/A 12.8 16.4 15.1 
(g C m-2 yr−1) 9A N/A 12.1 16.1 11.5 

 9D N/A 11.3 12.5 9.8 
 17 N/A 9.8 N/A N/A 
 17U N/A N/A 13.0 9.0 

POC  456 N/A 3.15 3.93 3.69 
(g C m-2 yr−1) 9A N/A 1.12 1.31 0.91 

 9D N/A 1.16 1.30 1.09 
 17 N/A 1.12 N/A N/A 
 17U N/A N/A 1.92 1.73 

TP  456 46.1 89.5 89.3 63.6 
(mg P m-2 yr−1) 9A 32.6 44.7 41.4 25.1 

 9D 38.5 60.9 36.6 28.7 
 17 40.3 63.5 N/A N/A 
 17U N/A N/A 67.7 36.6 

SRP  456 25.5 21.6 28.7 42.1 
(mg P m-2 yr−1) 9A 27.4 23.2 29.9 20.7 

 9D 20.1 19.2 14.0 12.3 
 17 23.4 17.3 N/A N/A 
 17U N/A N/A 20.0 20.0 

NO3
-  456 1.64 1.50 0.88 0.94 

(g N m-2 yr−1) 9A 1.08 0.97 0.89 0.74 
 9D 1.51 0.97 0.89 0.81 
 17 1.63 1.37 N/A N/A 
 17U N/A N/A 0.78 0.61 

 

  

 

 

 

Table A4. Summary of annual exports for the N-draining catchments. Estimates of 
Q by Method 1 were used in the calculation of exports from catchments 456, 9A and 
17. Estimates of Q by Method 2 were used in the calculation of exports from 
catchments 9D and 17U. Due to the differing storage methods of samples on return 
to the laboratory, the DOC and POC exports could only be calculated for three 
years from the hydrological year 2007.  As sampling was discontinued at catchment 
17 due to the construction upstream of a flood storage facility and 17U was added 
as an alternative to the discontinued sampling point in 2008, exports for these two 
catchments were calculated for two years only. 
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Parameter Catchment Year 

  2006-07 2007-08 2008-09 2009-10 

TOC  13 38.5 44.0 44.9 35.3 
(g C m-2 yr−1) 14 17.7 15.1 17.0 13.0 

 15 34.2 29.3 36.5 28.3 
 1 26.7 20.8 24.9 20.2 
 1632 33.2 28.1 33.9 26.9 

DOC  13 N/A 40.6 42.3 33.7 
(g C m-2 yr−1) 14 N/A 14.4 16.3 12.6 

 15 N/A 28.1 34.7 26.9 
 1 N/A 20.0 23.8 19.5 
 1632 N/A 27.3 31.9 26.3 

POC  13 N/A 2.95 2.59 1.67 
(g C m-2 yr−1) 14 N/A 0.98 1.05 0.80 

 15 N/A 1.20 1.80 1.46 
 1 N/A 1.58 1.89 1.45 
 1632 N/A 1.87 2.59 1.46 

TP  13 62.5 206.4 171.7 89.9 
(mg P m-2 yr−1) 14 47.8 69.2 50.7 29.8 

 15 41.4 47.2 57.1 39.1 
 1 49.3 77.7 58.7 40.7 
 1632 52.1 80.2 70.7 45.2 

SRP  13 32.9 100.7 104.4 56.6 
(mg P m-2 yr−1) 14 15.7 27.4 29.8 17.3 

 15 30.5 30.5 51.7 39.0 
 1 20.1 24.7 27.8 19.9 
 1632 18.8 32.5 36.2 25.6 

NO3
-  13 0.18 0.17 0.16 0.18 

(g N m-2 yr−1) 14 0.21 0.09 0.13 0.11 
 15 0.22 0.08 0.07 0.07 
 1 0.45 0.42 0.28 0.25 
 1632 0.36 0.40 0.23 0.23 

 

 

 

 

 

 

 

Table A5. Summary of annual exports for the S-draining catchments. Estimates of Q 
by Method 1 were used in the calculation of exports from catchments 15 and 1. 
Estimates of Q by Method 2 were used in the calculation of exports from 
catchments 13, 14 and 1632.  Due to the differing storage methods of samples on 
return to the laboratory, the DOC and POC exports could only be calculated for 
three years from the hydrological year 2007. 
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A.8 Comparison of Annual Export Discharge Estimation Methods 

 

Parameter Catchment Year 

  2006-07 
M1    M2 

2007-08 
M1    M2 

2008-09 
M1    M2 

2009-10 
M1    M2 

TOC  13 30.1 38.5 32.1 44.0 34.1 44.9 25.3 35.3 
(g C m-2 yr−1) 14 28.5 17.7 24.4 15.1 27.3 17.0 21.3 13.0 

 1632 28.2 33.2 23.3 28.1 29.2 33.9 21.3 26.9 
 9D 12.1 12.6 10.0 13.1 11.4 13.9 9.1 12.1 
 17U N/A N/A N/A N/A 16.6 12.4 10.1 10.7 

DOC  13 N/A N/A 30.1 40.6 32.2 42.3 24.5 33.7 
(g C m-2 yr−1) 14 N/A N/A 23.4 14.4 26.2 16.3 20.6 12.6 

 1632 N/A N/A 22.6 27.3 27.5 31.9 20.8 26.3 
 9D N/A N/A 10.5 11.3 11.8 12.5 8.5 9.8 
 17U N/A N/A N/A N/A 13.8 11.3 10.0 9.0 

POC  13 N/A N/A 2.13 2.95 1.92 2.59 1.18 1.67 
(g C m-2 yr−1) 14 N/A N/A 1.59 0.98 1.71 1.05 1.31 0.80 

 1632 N/A N/A 1.50 1.87 2.19 2.59 1.13 1.46 
 9D N/A N/A 1.16 1.38 1.30 1.42 1.09 1.27 
 17U N/A N/A N/A N/A 2.22 1.92 1.96 1.73 

TP  13 49 63 151 206 129 172 64 90 
(mg P m-2 yr−1) 14 77 48 113 69 82 51 50 30 

 1632 43 52 65 80 57 71 34 45 
 9D 38 39 54 61 34 37 24 29 
 17U N/A N/A N/A N/A 73 68 42 37 

SRP  13 25 33 77 101 82 104 42 57 
(mg P m-2 yr−1) 14 25 16 45 27 49 30 30 17 

 1632 16 19 27 33 31 36 20 26 
 9D 16 20 16 19 13 14 11 12 
 17U N/A N/A N/A N/A 22 20 18 16 

NO3
-  13 0.14 0.18 0.14 0.17 0.13 0.16 0.14 0.18 

(g N m-2 yr−1) 14 0.34 0.21 0.14 0.09 0.21 0.13 0.18 0.11 
 1632 0.30 0.36 0.35 0.40 0.20 0.23 0.19 0.23 
 9D 1.36 1.51 0.89 0.97 0.81 0.89 0.67 0.81 
 17U N/A N/A N/A N/A 0.84 0.78 0.69 0.61 

 

 

 

Table A6.  Comparison of annual exports for catchments 13, 14, 1632, 9D and 17U 
using the two different methods to estimate Q used in the calculation of export. 
Estimates of export calculated using Q from Method 1, scaling SEPA Q for 
catchment size, are the column labelled M1. Estimates of export calculated using Q 
from Method 2, using the relationship between SEPA Q and Isco Q, are in the 
column labelled M2. Due to the differing storage methods of samples on return to 
the laboratory, the DOC and POC exports could only be calculated for three years 
from the hydrological year 2007. 17U was added as an alternative to the 
discontinued sampling point 17 in 2008, so exports for this catchments were 
calculated for two years only. 
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A.10 Dependent Variables for Multiple Linear Regression Analysis  
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