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Summary 

The availability of fully sequenced genomes of the model organisms including 

Drosophila, and their subsequent annotation has afforded seamless opportunities 

for reverse genetics in a complex model organism. With the advent of DNA 

microarrays to assay the levels of tens of thousands of genes in a single sample, 

functional genomics has been significantly aided to understand the functions in 

systems context. These microarrays have been employed predominantly on the 

RNA samples that are extracted from the whole animals for example at different 

developmental stages or in response to external stimuli. However, these 

approaches relied on the expression patterns that represent the sum of 

transcription coming from all the organs, which do not estimate the tissue-

specificity of transcription.   

The purpose of this thesis is to provide tissue-specific transcriptomes of 

Drosophila melanogaster that were generated as part of the large FlyAtlas 

project using Affymetrix Drosophila GeneChips® (or microarrays). These chips, 

one at a time interrogate the levels of 18,500 transcripts (that represent all 

known genes) using 18,880 distinct probe sets in a single, total RNA sample. For 

each tissue, four biological replicates were analysed using the chips and the 

normalised signal intensities were obtained that represent the relative levels of 

mRNA expression. Using the transcriptomes, a general analysis was performed 

for potential novel insights into tissue-specific functions (Chintapalli et al., 

2007) (Chapter 3). Then, a comparative analysis of epithelial tissues was 

performed to understand how the epithelia are organised in terms of their 

transcriptomes (Chapter 4).  

The Malpighian tubules are the Drosophila epithelial counterparts of the human 

kidney. They show asymmetric organisation in the body cavity. FlyAtlas segment-

specific tubule transcriptomes allowed the comparison of their potential 

functional similarities and differences, thus to understand the asymmetry in 

function (Chapter 5)(Chintapalli, 2012). This identified a human Best vitelliform 

macular dystrophy (BVMD) disease homolog, Best2 in only the anterior pair of 

tubules that have the morphologically and functionally distinct enlarged initial 

(or distal) segment, a storage organ for Ca2+. Bestrophins were accordingly 

selected as candidate genes to analyse organismal functions, and thus to 
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validate previous two theories that implicated bestrophins as Ca2+-activated Clˉ 

channels and/or Ca2+ channel regulators (Chapter 6).  

The confocal microscopy analysis of bestrophin YFP fusion proteins revealed 

interesting and novel localisations of bestrophins, in that Best1 was found in the 

apical plasma membranes, Best2 localised to peroxisomes, Best3 and Best4 were 

found intracellular. The salt survival analysis showed that Best1 is essential in 

regulating extra salt levels in the body. Furthermore, the fluid secretion analysis 

showed Best1’s potential role in Ca2+-dependent Clˉ function. Interestingly, the 

flies with reduced levels of Best2 expression showed increased ability to survive 

on extra salt food; the basis for this was investigated further in Chapter 7. Best2 

was also found abundant in the eyes than anywhere else in the head. A 

comparative analysis of anterior tubule- and eye-specific transcriptomes 

revealed a potential overlap of Ca2+ signaling components, in that the PLCβ 

signaling was one.  

A neuropeptide Ca2+ agonist, capa1 evoked secondary cytosolic Ca2+ responses 

were found high in Best2 knockdowns. A quantitative PCR (qPCR) analysis of 

candidate Ca2+ signaling and homeostasis genes in Best2 mutants revealed their 

gene expression upregulation, under control-fed and salt-fed conditions than 

their wildtype controls, fed on similar diet regimes. The norpA that encodes 

PLCβ was found significantly enriched in the mutants. Cyp6a23 is another gene 

that was highly upregulated in Best2 mutants; it is a Drosophila homologue of 

human Cyp11b, a Ca2+-responsive gene implicated in renal salt wasting. Upon the 

downregulation of Cyp6a23, flies became sensitive to salt diet feeding. Other 

genes investigated and found to be upregulated in the mutants include 

transient-receptor-potential (trp) Ca2+ channel and retinal degeneration C 

(rdgC). Together, these results strongly suggest Best2 as a potential Ca2+ channel 

regulator, and provide fascinating insight into bestrophin function.  

Peroxisomal localisation of Best2 in line with the implication that peroxisomes 

act as dynamic regulators of cell Ca2+ homeostasis led to another aspect of the 

project (Chapter 8). This study identified two peroxins that are most abundant 

in the tubules and play essential roles in the novel cyclic nucleotide-regulated 

peroxisomal Ca2+ sequestration and transport pathway and that are detrimental 

for peroxisome biogenesis and proliferation. 



3 

 
 

Table of Contents 

Summary ..................................................................................... 1 

Table of Contents .......................................................................... 3 

List of Tables ................................................................................ 8 

List of Figures ............................................................................... 9 

Contributions from this work ............................................................ 11 

Preface ...................................................................................... 12 

Acknowledgements ........................................................................ 13 

Definitions .................................................................................. 15 

1. Introduction ........................................................................... 21 

1.1 Systems Biology .................................................................. 21 

1.1.1 Functional genomics for systems biology ................................ 23 

1.1.2 A case for model organisms use in functional genomics ............... 24 

1.1.3 DNA microarrays for functional genomics ............................... 25 

1.1.4 Where integrative physiology meets systems biology .................. 26 

1.2 Drosophila as a model organism ............................................... 27 

1.2.1 Introduction and History ................................................... 27 

1.2.2 Reverse Genetics ............................................................ 28 

1.2.2.1 GAL4/UAS system ...................................................... 28 

1.2.3 Transgenesis .................................................................. 29 

1.3 Tubules as a model epithelium in transport and signaling ................ 32 

1.3.1 General mechanisms of second messenger signaling ................... 35 

1.3.1.1 Second messenger signaling in the tubules ........................ 37 

1.3.1.2 Second messenger signaling in tubules via capa peptides ....... 38 

1.3.1.3 The final targets of capa signaling in tubules ..................... 38 

1.3.1.4 Second messenger signaling in tubules via Drosokinin ........... 40 

1.3.1.5 Ca2+ handling by tubules .............................................. 40 

1.3.2 Weiczorek model for fluid secretion by tubules ........................ 41 

1.3.3 Neuroendocrine control of tubule fluid secretion ...................... 43 

1.4 Molecular Physiology of Clˉ ion transport .................................... 44 

1.4.1 Clˉ channels .................................................................. 45 

1.4.2 Clˉ channel functions and associated channelopathies ................ 47 

1.4.3 CaCCs .......................................................................... 48 

1.4.3.1 Mechanisms of Ca2+-dependent Clˉ secretion in epithelia ....... 49 

1.4.3.2 Ca2+-dependent Clˉ secretion in epithelia ......................... 51 

1.4.3.3 Disease relevance of CaCCs .......................................... 52 

1.4.3.4 Functional features and Molecular identity of CaCCs ............ 52 

1.4.3.4.1 ClCA family .......................................................... 53 

1.4.3.4.2 Tweety family ...................................................... 54 

1.4.3.4.3 Bestrophin family .................................................. 54 

1.4.3.4.4 Anoctamins .......................................................... 54 

1.5 Peroxisome dynamics in the living organism ................................ 55 

1.5.1 Peroxisome biogenesis ...................................................... 56 

1.5.2 How is peroxisome number controlled? .................................. 57 

1.6 Project aim ....................................................................... 59 

2. Materials and Methods ............................................................... 61 

2.1 Fly stocks ......................................................................... 61 

2.2 Normal fly husbandry ........................................................... 63 

2.3 Tissue dissections ................................................................ 63 

2.4 Total RNA extraction ............................................................ 65 

2.5 Complementary DNA (cDNA) synthesis ....................................... 65 



4 

 
 

2.6 Oligonucleotide (primer) synthesis ........................................... 66 

2.7 Polymerase chain reaction (PCR) .............................................. 66 

2.7.1 Standard PCR ................................................................. 66 

2.7.2 Pfu-based Herculase II Fusion polymerase PCR ......................... 67 

2.8 Quantitative reverse-transcriptase PCR (qPCR) ............................. 67 

2.9 Agarose gel electrophoresis .................................................... 69 

2.10 PCR/Gel purification ......................................................... 69 

2.11 Quantification of nucleic acids .............................................. 69 

2.12 Quality control of nucleic acids ............................................. 70 

2.13 Affymetrix microarrays ....................................................... 70 

2.14 Microarray data analysis ..................................................... 72 

2.14.1 Data processing .............................................................. 72 

2.14.2 Normalisation ................................................................ 72 

2.14.3 Grouping ...................................................................... 72 

2.14.4 Interpretation ................................................................ 72 

2.14.5 Quality control ............................................................... 73 

2.14.6 Principal Component Analysis (PCA) ...................................... 73 

2.14.7 Statistical analysis ........................................................... 75 

2.14.8 Functional annotation ...................................................... 75 

2.15 Fold change (FC) analysis .................................................... 75 

2.16 Ingenuity pathway analysis (IPA) ........................................... 75 

2.17 Molecular cloning ............................................................. 76 

2.17.1 Competent bacterial strains and plasmids ............................... 76 

2.17.2 Gateway® cloning ........................................................... 77 

2.17.2.1 Primer design and PCR amplification .............................. 77 

2.17.2.2 Entry clones ........................................................... 77 

2.17.2.3 Destination vectors ................................................... 77 

2.17.2.4 Gateway® recombination using LR-clonase ....................... 77 

2.17.3 Transformation of E. coli ................................................... 77 

2.17.4 Purification of plasmid DNA ................................................ 78 

2.17.5 Validation of cloning products ............................................. 78 

2.17.5.1 PCR ...................................................................... 78 

2.17.5.2 Restriction enzyme digestion ....................................... 78 

2.17.5.3 Sequencing ............................................................. 78 

2.17.6 Normal cDNA constructs .................................................... 78 

2.17.7 YFP fusion cDNA constructs ................................................ 79 

2.17.8 Double-stranded RNA constructs .......................................... 79 

2.17.9 DES® constructs ............................................................. 79 

2.17.10 Dual promoter constructs for in situ hybridization .................. 80 

2.17.11 Normal cloning procedure .............................................. 80 

2.18 Drosophila S2 cell culture ................................................... 81 

2.18.1 Passaging ..................................................................... 81 

2.18.2 Transient transfection ...................................................... 81 

2.19 Peroxisome Isolation .......................................................... 82 

2.19.1 Tissue preparation .......................................................... 82 

2.19.2 Gradient centrifugation .................................................... 82 

2.20 Protein analysis ................................................................ 83 

2.20.1 Extraction .................................................................... 83 

2.20.2 Bradford assay ............................................................... 83 

2.20.3 SDS-PAGE separation ........................................................ 83 

2.20.4 Western blotting ............................................................. 84 

2.21 Production and purification of antibodies ................................. 84 

2.21.1 Production .................................................................... 84 



5 

 
 

2.21.2 Purification ................................................................... 85 

2.21.2.1 Isolation of IgG fraction from immune-serum .................... 85 

2.21.2.2 Preparation of affinity columns..................................... 85 

2.21.2.3 Affinity purification of antibodies .................................. 86 

2.22 Immunocytochemistry (ICC) ................................................. 87 

2.22.1 ICC of S2 cells ................................................................ 87 

2.22.2 ICC of intact Drosophila tissues ........................................... 87 

2.23 Imaging ......................................................................... 88 

2.24 mRNA in situ hybridization .................................................. 88 

2.25 Fluid secretion assay ......................................................... 90 

2.26 [Ca2+]i measurements using recombinant aequorin....................... 91 

2.27 Diet regimes ................................................................... 92 

2.28 Metabolomic analysis ......................................................... 93 

2.28.1 Metabolite extraction ....................................................... 93 

2.28.2 Liquid chromatography (LC)-Mass spectrometry (MS) .................. 93 

2.28.3 Data capture and analysis .................................................. 94 

3. FlyAtlas, a gene expression database ............................................. 95 

Summary .................................................................................... 95 

3.1 Introduction ...................................................................... 95 

3.2 Results ............................................................................ 97 

3.2.1 Tissue-specific transcriptomes ............................................ 97 

3.2.2 Meta-analysis ................................................................ 100 

3.2.3 New transcription units .................................................... 100 

3.2.4 An ontogenetic perspective ............................................... 101 

3.2.5 Surprising expression....................................................... 103 

3.2.6 Organotypic disease models .............................................. 104 

4. A transcriptomic view on epithelial structure and function .................. 110 

Summary ................................................................................... 110 

4.1 Introduction ..................................................................... 111 

4.2 Results ........................................................................... 113 

4.2.1 Differential expression and coregulation ............................... 114 

4.2.2 Epithelial signatures ....................................................... 117 

4.2.2.1 Salivary glands ........................................................ 118 

4.2.2.2 Malpighian Tubules ................................................... 123 

4.2.2.3 Midgut .................................................................. 127 

4.2.2.4 Hindgut ................................................................. 130 

4.2.2.5 Functional compartmentalisation of the epithelia .............. 132 

4.2.3 Adult-specific functions ................................................... 134 

4.2.4 Direct comparison: adult tissue vs. larval tissue ...................... 135 

4.2.5 Ingenuity pathway analysis (IPA) ......................................... 137 

4.2.5.1 Biological functions................................................... 137 

4.2.5.2 Toxicology functions ................................................. 139 

4.2.5.3 Canonical pathways .................................................. 141 

4.2.5.4 Molecular networks ................................................... 142 

4.3 Discussion ........................................................................ 144 

4.3.1 Limitations of the IPA ...................................................... 148 

4.4 Conclusion ....................................................................... 149 

5. Microarray analysis of positional asymmetry of renal tubules in Drosophila ... 
  ......................................................................................... 150 

Summary ................................................................................... 150 

5.1 Introduction ..................................................................... 151 

5.2 Results ........................................................................... 153 



6 

 
 

5.2.1 Left vs. right: genes upregulated in right-side tubules suggest an .......    
interplay with the gut .............................................................. 153 

5.2.2 A mechanism for asymmetric Ca2+ handling ............................ 158 

5.3 Discussion ........................................................................ 159 

6. Functional studies on Drosophila bestrophins .................................. 161 

Summary ................................................................................... 161 

6.1 Bestrophins as candidate CaCCs .............................................. 162 

6.1.1 Identification in human disease .......................................... 162 

6.1.2 Structural aspects .......................................................... 164 

6.1.3 Clˉ channel function of bestrophins ..................................... 166 

6.1.4 Bestrophins as CaCCs ...................................................... 167 

6.1.5 Physiological functions of bestrophins .................................. 168 

6.1.6 Drosophila bestrophins .................................................... 169 

6.2 Results ........................................................................... 171 

6.2.1 Bestrophins in Drosophila melanogaster ................................ 171 

6.2.2 Gene expression ............................................................ 171 

6.2.3 Best1 & Best2 are differentially expressed in Malpighian tubules .. 175 

6.2.4 Best1 & Best2 show differential localisation both in vitro and in vivo . 
  ................................................................................ 177 

6.2.4.1 In vitro localisation ................................................... 178 

6.2.4.2 In vivo localisation.................................................... 180 

6.2.5 Making of transgenic fly lines and their validation .................... 183 

6.2.6 Salt and fluid regulation ................................................... 185 

6.2.6.1 Best1 .................................................................... 185 

6.2.6.2 Best2 .................................................................... 189 

6.2.7 Best3 & Best4 show high mRNA expression in the testis .............. 191 

6.2.8 Best3 and Best4 localisations ............................................. 191 

6.2.8.1 In vitro localisation ................................................... 191 

6.2.8.2 In vivo localisation.................................................... 192 

6.3 Discussion ........................................................................ 194 

6.4 Conclusion ....................................................................... 201 

7. Further studies on Drosophila bestrophin 2 ..................................... 203 

Summary ................................................................................ 203 

7.1 What is the link between increased secondary Ca2+ elevations in Best2 ...  
mutants and salt resistance? ......................................................... 205 

7.2 Results ........................................................................... 206 

7.2.1 Further validations of Best2 transgenics ................................ 206 

7.2.2 Best2 is an essential gene in Drosophila ................................ 207 

7.2.2.1 Best2 is confined to the Ca2+ storing initial segment ............ 208 

7.2.3 Best2 is highly abundant in the eyes .................................... 209 

7.2.4 Best2 mediates organismal oxidative stress responses ............... 210 

7.2.5 Best2 regulates stimulated [Ca2+] ........................................ 211 

7.2.6 Characterisation of Best2 mutants ....................................... 213 

7.2.7 Ca2+-dependent gene expression is changed in Best2 mutants under ..  
 stress ......................................................................... 215 

7.3 Discussion ........................................................................ 219 

7.4 Conclusions ...................................................................... 224 

8. Cell-specific peroxisome dynamics in the living organism .................... 225 

Summary ................................................................................... 225 

8.1 Novel roles of peroxisomes in Ca2+ homeostasis ........................... 227 

8.1.1 Drosophila Malpighian (renal) tubules as an in vivo model to study ....  
peroxisome Ca2+ homeostasis ..................................................... 229 

8.1.1.1 Morphology and functional domains ............................... 229 



7 

 
 

8.1.1.2 Tubule peroxisomes .................................................. 229 

8.1.2 Aequorin probes for [Ca2+] measurements in vivo ..................... 232 

8.1.3 Purpose of this study ....................................................... 233 

8.2 Results ........................................................................... 234 

8.2.1 Renal peroxisomal targeting and validation of aequorin probes .... 234 

8.2.1.1 Immunocytochemical localisation in vitro ........................ 234 

8.2.1.2 Immunocytochemical localisation in vivo ......................... 235 

8.2.1.3 [Ca2+]perox measurements in S2 cells ................................ 237 

8.2.1.4 [Ca2+]perox measurements in tubules................................ 239 

8.2.2 Identification of novel peroxins CG11919 and CG13827 as the ..........  
Drosophila orthologues of human PEX6 and PEX11 ............................. 243 

8.2.2.1 Renal peroxins are functional in adult tubules ................... 245 

8.2.2.1.1 Cell-specific G11919 and CG13827 knockdown depletes ........  
peroxisomes and increases peroxisome abundance respectively in .........  
tubules  ....................................................................... 245 

8.2.2.1.2 Cell-specific renal peroxin knockdown deregulates [Ca2+]perox ..  
buffering  ....................................................................... 247 

8.2.3 Identification of novel peroxisomal Ca2+ sequestration and transport .  
pathway in tubules .................................................................. 248 

8.2.3.1 cGMP regulates [Ca2+]perox buffering ............................... 249 

8.2.3.1.1 Peroxisomes buffer Ca2+ in the course of sustained [Ca2+]cyto ....  
elevations  ....................................................................... 249 

8.2.3.1.2 Peroxisomes uptake Ca2+ in response to external cGMP ..... 250 

8.2.3.1.3 Downregulation of PDE1c, a Ca2+/calmodulin-dependent PDE .  
induces peroxisomal Ca2+ uptake. ............................................ 250 

8.2.3.1.4 Zaprinast, a PDE inhibitor increases stimulated peroxisomal ..  
Ca2+ uptake ...................................................................... 250 

8.2.3.1.5 Best2 knockdown increases peroxisome Ca2+ uptake ........ 251 

8.2.3.2 Spherite formation was affected in CG13827-RNAi knockdowns .. 
  .......................................................................... 252 

8.3 Discussion ........................................................................ 253 

8.1.1 Renal peroxins .............................................................. 255 

8.3.1 A mechanism for [Ca2+]perox buffering and Ca2+ spherites ............. 257 

8.3.2 The significance of Ca2+ in terms of peroxisome function ............ 259 

8.4 Conclusion ....................................................................... 260 

9. General discussion and Future work ............................................. 262 

9.1 General discussion .............................................................. 262 

9.1.1 FlyAtlas ...................................................................... 262 

9.1.2 Epithelial transcriptomes ................................................. 263 

9.1.3 Renal asymmetry in Drosophila ........................................... 263 

9.1.4 Functional studies on bestrophins and the identification of Best2 as a  
modulator of Ca2+ signaling and homeostasis ................................... 264 

9.1.5 Peroxisome dynamics in the living organism ........................... 265 

9.2 Future work ..................................................................... 266 

Appendices ................................................................................ 268 

References ................................................................................. 275 



8 

 
 

List of Tables 

Table 2-1 Fly stocks used in this study. ................................................ 61 

Table 2-2 FlyAtlas tissue descriptions. ................................................. 63 

Table 2-3 Typical cyclic conditions for PCR. .......................................... 67 

Table 2-4 Pfu-based Herculase II fusion polymerase PCR reaction mix and .........  
protocol. .................................................................................... 67 

Table 2-5 Fly strains and plasmids used. ............................................... 76 

Table 2-6 Antibodies used for western blotting and immunocytochemistry. ..... 86 

Table 3-1 Genes that show extreme specificity of expression and that serve to ...  
validate the quality and discrimination of the data set. ............................ 98 

Table 3-2 Genes expressed uniquely in specific tissues. ............................ 99 

Table 3-3 Are the genes identified in embryonic tissues by in situ analyses also ..  
expressed in adult tissues? .............................................................. 102 

Table 3-4 Some genes that are predominantly expressed in unexpected places. .. 
 .............................................................................................. 103 

Table 3-5 Drosophila genes expressed in tissues analogous to those involved in ...  
human disease. ........................................................................... 105 

Table 4-1 The top 50 genes enriched in salivary glands. ........................... 120 

Table 4-2 The top 50 genes enriched in Malpighian tubules. ...................... 125 

Table 4-3 The top 50 genes enriched in midgut. .................................... 129 

Table 4-4 The top 50 genes enriched in hindgut. .................................... 131 

Table 4-5 GO functional classification of epithelial signatures.. .................. 133 

Table 4-6 The known genes that are consistently enriched across  epithelia.. . 135 

Table 4-7 Direct comparison of adult vs larval epithelial tissue. ................. 136 

Table 4-8 Top 5 IPA networks for each epithelium. ................................. 144 

Table 5-1 Genes with significant expression differences between right (anterior)  
and left (posterior) tubules. ............................................................ 153 

Table 6-1 Microarray gene expression data for all four bestrophins in various .....  
tissues of Drosophila melanogaster. ................................................... 173 

Table 7-1 The fold change (FC) mean differences and associated statistics of the  
data in Figure 13. ........................................................................ 217 

Table 8-1 Genes related to peroxisomes and their relative abundance in tubules. 
 .............................................................................................. 231 

Table 8-2 PEX6 and PEX11 gene expression across Drosophila melanogaster .......  
tissues. ..................................................................................... 244 

 



9 

 
 

List of Figures 

Figure 1-1 Schematic of heritable induction of transgenes using GAL4/UAS ........  
bipartite system. .......................................................................... 29 

Figure 1-2 Germline transformation of Drosophila. .................................. 30 

Figure 1-3 Tubules of Drosophila melanogaster. ..................................... 34 

Figure 1-4 Cyclic nucleotide-dependent signaling components (in intracellular ....  
Ca2+ mobilisation). ........................................................................ 36 

Figure 1-5 Human G-protein coupled receptor signaling pathway components in ..  
tubules. ..................................................................................... 39 

Figure 1-6 Peroxisome disorders in humans. .......................................... 55 

Figure 1-7 Peroxisome biogenesis machinery. ........................................ 59 

Figure 2-1 Best2 qPCR product melting curve. ........................................ 68 

Figure 2-2 Overview of the GeneChip 3' IVT express labelling assay. .............. 71 

Figure 2-3 Quality control using hybridization controls. ............................. 73 

Figure 2-4 Quality control of biological replicates of each individual tissue of  the 
FlyAtlas using PCA. ........................................................................ 74 

Figure 2-5 DES® TOPO ®TA vector map. ............................................... 80 

Figure 2-6 Fluid secretion assay schema. .............................................. 91 

Figure 2-7 A schematic of calcium measurements. .................................. 92 

Figure 3-1 Drosophila tissues typically express around half the computed ..........  
transcriptome. ............................................................................. 97 

Figure 3-2 Evidence for novel transcription units in the Drosophila genome. ... 101 

Figure 3-3 Calculating the equation of the fly. ...................................... 108 

Figure 4-1 Differential expression of epithelial transcriptomes. .................. 115 

Figure 4-2 Hierarchical clustering of epithelial transcriptomes. .................. 116 

Figure 4-3 Number of genes enriched (at least 5-fold) in larvae, adult or in both .  
epithelia. .................................................................................. 118 

Figure 4-4 The commonly enriched genes in both adult and larval epithelia in the 
adult context. ............................................................................. 134 

Figure 4-5 Mammalian ortholog/paralog mapping of Drosophila epithelial .........  
signatures. ................................................................................. 137 

Figure 4-6 Mammalian biological functions enriched in Drosophila epithelia. .. 138 

Figure 4-7 Mammalian toxicology functions enriched in Drosophila epithelia. . 140 

Figure 4-8 Mammalian canonical pathways enriched in Drosophila epithelia. .. 141 

Figure 4-9 Network analysis of epithelial enriched genes. ......................... 143 

Figure 4-10 Network analysis of salivary gland enriched, protein trafficking .......  
function. ................................................................................... 143 

Figure 5-1 Internal asymmetry in Drosophila. ........................................ 152 

Figure 5-2 Ammonia is high at the back end of the fly. ............................ 156 

Figure 6-1 Human retina in health and disease. ..................................... 163 

Figure 6-2 Transmembrane topology of hBest1. ..................................... 165 

Figure 6-3 Protein sequence alignment and putative protein sequence features of 
Drosophila bestrophins. ................................................................. 172 

Figure 6-4 Best1 is more abundant in female than male tubules. ................ 176 

Figure 6-5 Best2 is highly enriched in both male and female anterior tubules than 
their posterior counterparts. ........................................................... 176 

Figure 6-6 The absolute quantification of Best1 & Best2 mRNA expression, in the  
tubules and heads, using qPCR. ........................................................ 177 

Figure 6-7 Bestrophin translational fusion constructs. .............................. 178 

Figure 6-8 Best1 localisation in S2 cells. .............................................. 179 

Figure 6-9 Best2 colocalises with native peroxisomal SPoCk-C in S2 cells. ...... 179 

file:///F:/Finished%20review/copies/final%20phd3.docx%23_Toc322810062


10 

 
 

Figure 6-10 Best1::YFP localises in the apical plasma membrane of the tubules. .. 
 .............................................................................................. 181 

Figure 6-11 Best2::YFP colocalises with peroxisomal SPoCk-C in tubules. ....... 182 

Figure 6-12 Best2 is peroxisomal in vivo. ............................................. 182 

Figure 6-13 Western blot of Best2-Aeq from the protein extracted from the .......  
purified peroxisomes. .................................................................... 183 

Figure 6-14 qPCR validation of Best1-RNAi and deletion flies. .................... 184 

Figure 6-15 qPCR validation of Best2-RNAi knockdown. ............................ 184 

Figure 6-16 Salt sensitivity of Best1-RNAi knockdowns driven using Act5C-GAL4. .. 
 .............................................................................................. 187 

Figure 6-17 Salt sensitivity of Best1 deletion. ....................................... 188 

Figure 6-18 Ca2+ agonist, capa1 inhibits fluid secretion in Best1 deletion flies. 188 

Figure 6-19 Best2 knockdowns show increased salt resistance. ................... 190 

Figure 6-20 Genomic organisation of Best3 & Best4. ............................... 191 

Figure 6-21 Best3::YFP and Best4::YFP show distinct localisations in S2 cells. . 192 

Figure 6-22 Best3::YFP and Best4::YFP fluorescence was specifically found in the  
probable cyst cells of the testis in vivo. .............................................. 193 

Figure 6-23 Overexpression of Best3 causes morphologically defective testis. . 193 

Figure 7-1 Cell-specific knockdown of Best2 expression............................ 206 

Figure 7-2 qPCR validation of Best2 overexpression flies. ......................... 206 

Figure 7-3 Best2 is an essential gene in Drosophila. ................................ 208 

Figure 7-4 Best2 expression is confined to the Ca2+ storing anterior initial .........  
segment. ................................................................................... 209 

Figure 7-5 Best2 is highly abundant in the eyes. .................................... 209 

Figure 7-6 Best2 is antagonistic to survival on oxidative stress. .................. 211 

Figure 7-7 Best2 modulates secondary Ca2+ responses. ............................. 213 

Figure 7-8 The genomic location of transposon insertions of Best2............... 214 

Figure 7-9 Best2 insertional mutants are salt resistant. ............................ 214 

Figure 7-10 Flies eat salt food. ......................................................... 215 

Figure 7-11 Best2 regulates Ca2+-dependent transcription. ........................ 217 

Figure 8-1 Schema of the peroxisomal targeting construct. ....................... 234 

Figure 8-2 Targeting of Aequorinperox and immunocytochemical localisation with .  
native catalase in S2 cells. .............................................................. 235 

Figure 8-3 Validation of Aequorinperox targeting in vivo. ............................ 237 

Figure 8-4 [Ca2+] measurements in S2 cells. .......................................... 239 

Figure 8-5 Basal and stimulated [Ca2+]perox in tubules. .............................. 241 

Figure 8-6 Comparison of quantitative [Ca2+]cyto and [Ca2+]perox measurements. 242 

Figure 8-7 Typical resting [Ca2+]cyto and [Ca2+]perox measurements. ............... 242 

Figure 8-8 Equilibration of cytosolic and peroxisome targeted aequorin. ....... 242 

Figure 8-9 Renal peroxins are functional. ............................................ 246 

Figure 8-10 Mistargeting of Aequorinperox in different parts of the tubules in .......     
C42-GAL4>CG11919-RNAi knockdowns. ............................................... 246 

Figure 8-11 Aequorinperox targeting in the initial segment of the CG13827-RNAi ...  
knockdown tubule. ....................................................................... 247 

Figure 8-12 [Ca2+]perox buffering is impaired in the PEX mutants. ................. 248 

Figure 8-13 cGMP stimulates peroxisome Ca2+ uptake. ............................. 249 

Figure 8-14 [Ca2+]perox buffering in Best2-RNAi knockdowns is altered. .......... 251 

Figure 8-15. Spherite formation was affected in PEX knockdowns. ............... 252 

Figure 8-16. A model for peroxisomal Ca2+ sequestration and transport excretion. 
 .............................................................................................. 258 



11 

 
 

Contributions from this work 

Chintapalli, V., Wang, J., and Dow, J. (2007). Using FlyAtlas to identify better 
Drosophila melanogaster models of human disease. Nat Genet 39, 715-720. 
 
Venkateswara R. Chintapalli, Selim Terhzaz, Jing Wang, Mohammed Al Bratty, 
David G. Watson, Pawel Herzyk, Shireen A. Davies and Julian A. T. Dow (2012).   
Functional correlates of positional and gender-specific renal asymmetry in 
Drosophila. PLoS ONE 7(4): e32577. 
 
Venkateswara R. Chintapalli, Jing Wang, Pawel Herzyk, Shireen A. Davies and 
Julian A. T. Dow (2012). A transcriptomic view on epithelial structure and 
function. (in prep). 
 
Venkateswara R. Chintapalli, Shireen A. Davies and Julian A. T. Dow. Drosophila 
bestrophins: Best2 regulates calcium signaling. (in prep). 
 
Venkateswara R. Chintapalli, Shireen A. Davies and Julian A. T. Dow.  
Identification of two renal peroxins that encode Drosophila orthologs of human 
Pex6 and Pex11g in a novel cGMP-mediated peroxisome calcium sequestration 
pathway. (in prep). 

 

 

 

 

 

 

 

 

 



12 

 
 

Preface 

It is a great opportunity to do a research degree like Ph.D. which opens up a 

window of opportunity. I sincerely thank Professor Julian A.T. Dow for giving me 

such an opportunity.  

One of the wonderful happenings of the universe is our own earth that created 

our destiny in the cosmic system. Beginning to understand this universal creation 

became the habit of the human being that endowed with intellectual power. I 

am genuinely privileged to be a small part of the scientific discovery process. 

I dedicate this Ph.D. to my family. 

 

  



13 

 
 

Acknowledgements 

I am utmost grateful to my supervisor Professor Julian A.T. Dow for allowing me 

to do this Ph.D. I am grateful for all his advice and kind support, at all levels, 

during all these years. I am utmost grateful to Professor Shireen A. Davies for all 

the help and advice during all these years. 

I thank both Julian and Shireen for their warm hospitality and the tasteful food 

during the festive periods.  

I thank the University of Glasgow for the wonderful and supportive environment. 

I thank Professor Alan Taylor and Alastair Whitelaw of then graduate school of 

biomedical and life sciences and Dr. David Martin, the registrar of the University 

for their kind help with my Ph.D. matters. 

I also thank my first assessors Dr. Kevin O’ Dell and Dr. Stephen Goodwin for 

their advice.  

I thank Dr. Jing Wang for her personal advice and helpful discussions. I thank 

Pablo Cabrero, Dr. Selim Terhzaz, Sujith Sebastian, Rujuta Sahani, Dr. Jenny 

Evans, Louise Henderson and Dr. Anthony Dornan for their help and helpful 

discussions. I am also thankful to all the members of media preparation room, 

specifically, Linda and Tracey for providing me with fly food to the highest 

quality. 

I am thankful to Dr. Pawel Herzyk for allowing me to use their bioinformatics 

facility at the Polyomics facility of the University. I am thankful to Julie 

Galbraith at the Polyomic facility for her warm welcome at all times. I am 

thankful to Mohammed Albratty and Dr. David Watson for the useful 

collaboration to do Metabolomics and pursue some of the novel ideas. 

Last but not least, I am utmost grateful for my wife, Deepthi for being such a 

wonderful partner to pursue this dream. I owe a lot to her and my son, 

Shreeyash for their sacrifice all these years. I thank my family for all their love.  



14 

 
 

The research reported within this thesis is my own work 

 except where otherwise stated, and has not been 

 submitted for any other degree 

 

 

 

 

 

Venkateswara Rao Chintapalli 

 



15 

 
 

Definitions 

Aequorinperox peroxisomal-targeted aequorin 

[Ca2+] calcium concentration 

[Ca2+]cyto cytosolic calcium concentration 

[Ca2+]i intracellular calcium concentration 

[Ca2+]perox peroxisomal calcium concentration 

C degrees Celsius 

5-HT 5-hydroxytryptamine 

ANO anoctamin 

APS ammonium persulphate 

ATP adenosine triphosphate 

ATPase adenosine triphosphatase 

BCIP 5-bromo-4-chloro-3-indoyl phosphate 

BDGP Berkeley Drosophila Genome Project 

Best bestrophin 

BK big potassium 

BLAST basic local alignment search tool 

bp base pairs 

BSA bovine serum albumin 

C- carboxy- 

Ca2+ calcium 

CaCC 
cADPR 

Ca2+-activated Clˉ channel 
cyclic adenosine diphosphate ribose 

CAM calmodulin 

CAMK calmodulin kinase 

cAMP adenosine 3’-5’ cyclic monophosphate 

CAP2b cardioacceleratory peptide 2b 

cDNA complementary DNA 

CF cystic fibrosis 

CFTR cystic fibrosis transmembrane regulator 

cGK cGMP-dependent kinase 

cGMP guanosine 3’-5’ cyclic monophosphate 

Clˉ chloride ion 

ClC chloride channel 

CNG cyclic nucleotide gated channel 

CPA cation proton antiporter 

CRF corticotropin-releasing factor 

CYP Cytochrome P450 

DAB 3,3-diaminobenzamidine 
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DAG diacylglycerol 

DAPI 4,6-diamidino-2-phenylindole 

dATP 2’ deoxyadenosine triphosphate 

dCTP 2’ deoxycytosine triphosphate 

DEPC diethyl pyrocarbonate 

DES Drosophila expression system 

dGTP 2’ deoxyguanosine triphosphate 

Dh 
DIDS 

diuretic hormone 
4,4'-Diisothiocyano-2,2'-stilbenedisulfonic acid 

DIG digoxigenin 

DMF dimethylformamide 

DMSO dimethylsulphoxide 

DNA deoxyribonucleic acid 

dNTP 2’ deoxy (nucleotide) triphosphate 

dsRNA                     double strand RNA 

DTT dithiothreitol 

dTTP 2’ deoxythymidine triphosphate 

dUTP 2’ deoxyuridine triphosphate 

ECl Clˉ equilibrium potential  

EDTA ethylenediamine tetra acetic acid 

EGTA ethylene glycol bis tetracetic acid 

ER endoplasmic reticulum 

EST expressed sequence tag 

EtBr ethidium bromide 

FC fold change 

FCS foetal calf serum 

FDR false discovery rate 

FRET fluorescence resonance energy transfer  

g gram 

g centrifugal force equal to gravitational acceleration 

GABA γ-Aminobutyric acid  

GAL4 yeast transcription factor 

GCOS GeneChip® Operating Software 

GFP green fluorescent protein 

GO gene ontology 

GPCR G-protein-coupled receptor 

G-protein guanine nucleotide-binding protein 

GST glutathione-S-transferase 

GTP guanosine triphosphate 

h hours 

HBS HEPES buffered saline 
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HC hierarchical clustering 

HCO3ˉ bicarbonate 

HEK human embryonic kidney 

HEPES N-((2-hydroxylethyl) piperazine-N’-(2-ethanesulphonic acid)) 

HPSF high purity salt-free 

hs heat shock 

HSD Hydroxysteroid (17-beta) dehydrogenase 

IBMX 3-isobutyl-1-methylxanthine 

ICC immunocytochemistry 

IClCa Ca2+-activated Clˉ current 

IHCO3ˉ bicarbonate current 

InsP4 inositol 1,3,4,5-tetrakisphosphate 

IP3 inositol 1,4,5-trisphosphate 

IP3K inositol 1,4,5-trisphosphate kinase 

IP3R inositol 1,4,5-trisphosphate receptor 

IPA Ingenuity® pathway analysis 

IPTG isopropyl β-D-thiogalactoside 

IVT in vitro transcription 

K+ potassium ion 

Kb kilobases 

Kd an equlibrium constant for dissociation  

kDa kilo Dalton 

L.D.                       light/dark 

lacZ β-galactosidase 

LC-MS liquid chromatography-mass spectrometry 

M molar 

mAChR muscarinic M3 receptors 

MALDI-TOF matrix assisted laser desorption ionisation - time of flight  

MBSU Molecular Biology Support Unit 

mg milligram 

 microgram 

min minutes 

ml millilitre 

l microlitre 

mm millimetre 

mM millimolar 

 micromolar 

Mn2+ manganese 

MOPS 3-(N-morpholino)propane-sulphonic acid 

mRNA messenger RNA 
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N- amino- 

Na+ 

NAADP 
sodium ion 
Nicotinic acid adenine dinucleotide phosphate 

NBT nitroblue tetrazolium 

ng nanograms 

NHA Na+/H+ antiporter 

NHE Na+/H+ exchanger 

nm nanometre 

nM nanomolar 

NO nitric oxide 

NOS nitric oxide synthase 

OD optical density 

ORF open reading frame 

OSN olfactory sensory neuron 

P probability 

PAGE polyacrylamide gel electrophoresis 

PAT PBS, Triton X-100, BSA 

PBD peroxisomal biogenesis disorder 

PBS phosphate buffered saline 

PBT PBS, Triton X-100 

PCA principal component analysis 

PCR polymerase chain reaction 

PDE phosphodiesterase 

PEX peroxin 

Pfu 
pHi 

Pyrococcus furiosus 
intracellular pH 

PIP2 phosphatidylinositol 4,5-bisphosphate 

PKA cyclic AMP-dependent protein kinase 

PKC protein kinase C 

PLC phospholipase C 

PMSF phenylmethylsulphonylfluoride 

PPA peroxisome proliferating agent 

PRA prenylated Rab acceptor protein 

PTS peroxisomal targeting sequence 

qPCR  
quantitative reverse transcriptase polymerase chain 
reaction  

r.h.                         room humidity 

rdg retinal degeneration 

rGC receptor guanylate cyclase 

RLU relative light unit 

RNA ribonucleic acid 

RNAi RNA interference 
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RNAse ribonuclease 

RPE retinal pigment epithelia 

RT room temperature 

RT-PCR reverse transcriptase polymerase chain reaction 

RYR ryanodine receptor 

s second 

SDS sodium dodecyl sulphate 

SED single enzyme disease 

SEM standard error of the mean 

SERCA sarco/endoplasmic reticulum Ca2+-ATPase 

sGC soluble guanylate cyclase 

SLC solute carrier 

SPoCk secretory pathway Ca2+-ATPase 

TAP tandem affinity purification 

TBE tris-borate EDTA 

TE tris-EDTA 

TEMED N,N,N’,N’-tetramethylethylenediamine 

TEP trans-epithelial potential 

TMD 
TRH 

transmembrane domain 
Thyrotropin-releasing hormone 

Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol 

TRP transient receptor potential 

TRPL transient receptor potential-like 

U unit 

UAS upstream activating sequence 

UTP uridine triphosphate 

UTR untranslated region 

UV ultraviolet 

VASP vasodilator-stimulated phosphoprotein 

V-ATPase vacuolar-type H+ adenosine triphosphatase 

VDCC voltage-dependent Ca2+ channel 

X-gal 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 

YFP yellow fluorescent protein 

ZSS zellweger spectrum syndrome 
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One and three letter 
amino acid codes: 

A Ala Alanine 

C Cys Cysteine 

D Asp Aspartic acid 

E Glu Glutamic acid 

F Phe Phenylalanine 

G Gly Glycine 

H His Histidine 

I Ile Isoleucine 

K Lys Lysine 

L Leu Leucine 

M Met Methionine 

N Asn Asparagine 

P Pro Proline 

Q Gln Glutamine 

R Arg Arginine 

S Ser Serine 

T Thr Threonine 

V Val Valine 

W Trp Tryptophan 

Y Tyr Tyrosine 

* Stop 
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1. Introduction 

The ‘central dogma of life’ explains the flow of genetic information from DNA to 

RNA to protein. The foundation for the theory was the discovery of the DNA 

double helix structure that changed the world forever (Watson and Crick, 1953). 

Then ‘the invention of polymerase chain reaction (PCR) technique’, 

revolutionised molecular biology (Saiki et al., 1988). Later, completely 

sequenced genomes, from bacteria to higher eukaryotes including humans are 

made readily available to the scientific community (Mardis, 2011). Furthermore, 

comparative analysis of fully sequenced genomes provided further definition and 

annotation to the genomes sequences (Rubin et al., 2000; Ureta-Vidal et al., 

2003), in addition to providing information about the relative conservation of 

functional elements (Flicek et al., 2011). This led to the concept of functional 

genomics to functionally characterise the fully sequenced genomes. The 

integrative approach of functional genomics necessarily includes genomics, 

transcriptomics, proteomics and metabolomics to study genomes, and to assay 

the levels of RNAs, proteins, and metabolites at a genomic scale, respectively. 

This integrative approach draws upon the rapid advances in complementary 

technologies which range from such diverse fields as molecular biology to the 

silicon wafers within the field of information technology, and is seen as a holistic 

approach to understand biological complexity at the systems level. This holistic 

approach became an emerging field, the so called systems biology, in particular 

to explain biology at the systems level, and consequently the Science journal 

presented a special issue to mark systems biology’s potential staying power as a 

new modern scientific field (Chong, 2002). 

1.1 Systems Biology 

Systems theory was first introduced in a compilations book of writings by a 

biologist, Ludwig von Bertalanffy that dates back to the 1940’s (Bertalanffy, 

1969). In this book von Bertalanffy argued that the constitutive characteristics of 

a system open to its environment are not explainable from the characteristics of 

the isolated parts. In addition, he argued that these systems qualitatively 

acquire new properties through emergence in their environmental interactions, 

thus they are in a continual evolution.  
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‘Systems biology’ theory has evolved from the general systems theory as a 

holistic approach to describe and understand the mechanisms of complex 

biological systems. The ultimate goal of systems biology from a biologist point of 

view is to develop predictive models of biological systems at healthy and 

diseased states (Hood et al., 2004).  

Systems biology as a discipline tries to integrate systems from several levels 

from technology to biology and seeks to understand biological processes in 

quantitative terms (Albeck et al., 2006). In contrast to the traditional 

reductionist approach that aims to study functions of genes or proteins to gain 

broad knowledge, systems biology focuses towards more systems-level functions 

in networks and interactions between individual components of networks.  

The systems biology asks the question in the context of a whole system rather 

than in isolation as mentioned earlier. For example, it tries to understand how 

an organism works at systems level, and how disruption of a single component 

causes a system-wide change through a complex set of interactions among the 

interconnected networks of genes, proteins, and metabolites (Mustacchi et al., 

2006; Stuart et al., 2007). Thus, constructing meaningful and possibly accurate 

models of molecular, cell and tissue, and whole organism functions from a 

systems point is of utmost important.  This envisaged to eventually allow, for 

example, the translation of systems level understanding of genes to drugs at a 

faster rate with more precision.  

The need for a systems biology approach becomes clearer in multicellular 

organisms. Because, for example, increased complexity in multicellular 

organisms poses problems in fully comprehending the phenotypic consequences 

of a genetic intervention. In the post genomic era, genetic analysis using gene 

knockdown, over expression, deletion or knockout need precision. This is 

because to understand the phenotypes of genetic intervention depends on a 

variety of factors in multicellular organisms including developmental stages, 

cells types, and cellular processes in which it functions. In addition, highly 

sophisticated compensatory mechanisms exist in multicellular organisms unlike 

single celled yeast and bacteria that allow the former to overcome the genetic 

perturbation.   
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Moreover, second-site mutations in Drosophila, for example, often partially 

suppresses the phenotypes of genetic perturbation by the way of accumulating 

modifiers if they were maintained as homozygous stocks (Ashburner, 1989; 

Miklos and Rubin, 1996).  

1.1.1 Functional genomics for systems biology 

Systems biology needs high quality functional data sets. The omics technologies 

augmented systems biology approaches by means of providing semi-

quantitatively modelled data at gene, protein and metabolite levels (Ge et al., 

2003). Genomic level quantification of genes using microarrays and high parallel 

sequencing technologies has been more reliable than the quantification of 

proteins and metabolite levels. This is due to increased biological complexity at 

protein and metabolite level and inherent technical difficulties in extraction to 

identification of proteins and metabolites.  

For example, protein microarrays are limited in number of proteins that a single 

protein array can profile (Albeck et al., 2006). Analysis of metabolite flux needs 

more refined datasets with advanced mathematical models as the diversity and 

dynamics of the molecules increase many-fold from genes to metabolites. 

Nonetheless, the data from omics technologies has been allowing constructive 

and predictive biological models at various stages of a biological system, for 

example, at various stages of development, environmental conditions, disease 

states, genetic perturbations, physiological states, cells, tissues, and 

pharmacological interventions (Joyce and Palsson, 2006).  

Systems biology aims to integrate a multitude of information rich systems to 

build mathematical models to eventually predict, for example, a biological 

response to a particular drug or environmental stimuli. In addition, omics 

approaches have been dramatically accelerating hypothesis generation and 

testing in biological models; for example tissue-specific transcriptomics allowed 

to annotate probable tissue-specific functions in Drosophila (Chintapalli et al., 

2007).  
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With the advent of information technologies, computer simulations are made 

possible for biological information obtained through omics technologies (Joyce 

and Palsson, 2006), allowing to integrate the information to build informative 

models for example to prioritize drug targets and design clinical trials.   

1.1.2 A case for model organisms use in functional genomics 

Model organisms serve the need of systems biology in the form of providing 

large-scale omics data sets that provide systems level measurements for virtually 

all types of cellular components in a model organism (Joyce and Palsson, 2006). 

The model organisms from Yeast to Drosophila have been instrumental in aiding 

a systems biology approach for greater understanding biological systems 

(Mustacchi et al., 2006; Stuart et al., 2007).  This is crucial for functional 

genomics.  

Fully sequenced genomes for Drosophila species have now reached 12 (Adams et 

al., 2000; Celniker et al., 2002; Clark et al., 2007; Richards et al., 2005). This 

allows comparative analysis and functional annotation of genomes using both 

computational and experimental approaches (Shoemaker et al., 2001). Whole 

genome and tissue-specific gene expression quantification using DNA microarrays 

further provided information to draw parallels between the species of interest. 

For instance, a case for Drosophila suitability to study human disease in a 

cognate fly tissue of human disease was presented (Wang et al., 2004). In 

addition, a pioneering study into the tissue-specific gene expression patterns not 

only provided a wealth of information regarding tissue functions, but also 

yielded important insights into gene expression in its own right  (Chintapalli et 

al., 2007). This data are now in the form of an online expression database called 

FlyAtlas, which can be easily mined for genome-wide gene expression patterns 

across multiple tissues.  

By the time that fully sequenced genomes from different organisms became 

available to the scientific community, it was calculated that only 20% of the 

genome had been characterised, or at least named, in the well-studied model 

organism Drosophila. Not surprisingly, most of the previously annotated genome 

had been implicated in developmental functions of the organism.  
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The comparative analysis and computer annotations of the genomes revealed 

surprising numbers of genes, and without any functional information. This has 

been called the ‘phenotype gap’, where there is clear difference in functional 

phenotypes and the number of genes annotated (Dow, 2007; Dow and Davies, 

2003; Wang et al., 2004). 

However, in retrospect, it has been long calculated using the data from a range 

of organisms including yeast, worms, flies, and mice that one third of genetic 

loci are essential for fly survival. The rest of the two thirds of the genome when 

mutated may not show any instantly lethal phenotypes  (Miklos and Rubin, 1996). 

1.1.3 DNA microarrays for functional genomics 

DNA microarrays, that have the capacity to assay the expression of tens of 

thousands of genes at a time, have become a routine use to analyse systems 

level functions (Bammler et al., 2005; Schena et al., 1995).  Although, 

understanding protein levels may be more informative than understanding RNA 

levels, genome wide high throughput methods like mass spectrometry can 

identify only a fraction (0.2%) of proteins from a given sample because of 

technical difficulties and increased biological complexity from RNA to protein 

(Mirza and Olivier, 2008). This means that a global picture of the levels of 

proteins is much harder to obtain from a single MS experiment using current 

approaches than to obtain global RNA levels using DNA microarrays.  

Transcriptomics detail high throughput genomic scale measurements of mRNA 

expression. The DNA microarrays allow quantifying the levels of tens of 

thousands of genes in a single mRNA sample and pioneered the way for analysing 

transcriptomes at a massive scale.  As the disruption in mRNA levels is one of the 

indicators of the protein function, studying the function of genes at the mRNA 

level became a powerful technique for functional genomics (Adams, 2008). The 

microarrays have been employed for many of the experimental scenarios to 

study the global levels of mRNA changes, to analyse and compare transcriptomes 

of cells, tissues, whole organisms, under normal and disease, drug-treated and 

non-treated states.  
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The microarrays are the solid surfaces on to which thousands of small DNA 

products, cDNA or short oligonucleotide sequences are immobilised in sets (as 

probesets) in an orderly fashion (as an array) and are given a unique identifier. 

The solid surfaces can be either small glass slides that are regularly used in the 

labs or they can be compact silicon chips.  

The DNA is printed, spotted, or directly synthesized on the support which is 

mostly accomplished by the help of advanced engineering fields such as robotics 

and photolithographic printing (Nuwaysir et al., 2002).  

Different kinds of commercial microarrays exist depending on the species and 

length of the DNA probe. In particular, oligonucleotide microarrays, designed 

using Affymetrix technology are the first of their kind and are widely used 

(www.affymetrix.com). These Affymetrix DNA microarrays are also called 

GeneChips®. The GeneChip of Drosophila Genome v2.0 provides comprehensive 

coverage of the Drosophila melanogaster genome for surveying gene expression 

for more than 18,500 transcripts. This GeneChip is based on the content from 

the release 3.1 of the D. melanogaster genome by Flybase (www.flybase.org) 

and the Berkeley Drosophila Genome Project (BDGP) (www.fruitfly.org). The v2 

GeneChip® of D. melanogaster is the second generation GeneChips® and covers 

30 percent more content than the first generation D. melanogaster design. 

These arrays have been used in generating the FlyAtlas tissue-specific 

transcriptomes. 

1.1.4 Where integrative physiology meets systems biology 

‘Physiology’ is asking the bigger question of how an organism works at various 

states and levels. However, the classical physiological approaches were eroded 

by ethical issues in animal experimentation and increased belief in the analytical 

or reductionist approach to understand the complexity at cellular and molecular 

level (Dow, 2007). Physiology thus transformed into integrative physiology to 

accommodate the reductionism that had evolved in the form of cellular and 

molecular physiology. In the post-genomic era, systems biology approach with its 

powerful arsenal of techniques and modalities brought back the physiology as 

integrative and systems biology.  
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1.2 Drosophila as a model organism 

1.2.1 Introduction and History 

Thomas Hunt Morgan was the first to observe the white mutation in Drosophila 

in 1910. Since then Drosophila has been instrumental in genetic studies 

regarding a variety of biological questions that span development to physiology.  

Drosophila has been so successful as a model organism because it offered 

powerful genetics, in addition to its smaller size, short developmental cycles, 

and the relative ease and affordability in maintaining them in the lab. 

Furthermore, Drosophila has is a less complicated genome with just 2-fold higher 

redundancy of protein than the unicellular eukaryote, Saccharomyces cerevisiae 

(Rubin et al., 2000). In addition, integrated online genetic and genomic 

resources (such as Flybase.org) provide a wealth of functional information and 

stock centres that may have over a million different flies, send them at free or 

nominal costs. Fly genetics is enriched with the powerful genetic markers and 

balancer chromosomes that allow marking genes of interest and trace the 

lineages over the generations. The fully sequenced genomes with detailed 

genome annotations (so far for 12 different species) and transposon mediated 

transgenesis and powerful induction of RNAis at a precise spatiotemporal 

resolution offered enormous power to reengineer the entire genome of 

Drosophila (Golic and Golic, 1996; Ryder et al., 2007).  

Developmental biology has so much dominated Drosophila research that even 

genes which are now known to be expressed specifically in adults have been 

described in developmental roles (Chintapalli et al., 2007). In light of this and 

rapid developments in Drosophila genetic and genomic tools such as GAL4/UAS 

system, Drosophila now has become a valuable model organism for studying 

molecular physiology of post-embryonic functions (Dow and Davies, 2003). A case 

for Drosophila as a model for studying human genes became more clear with the 

implication that about 75% of Drosophila genes have human counterparts (Chien 

et al., 2002), including those involved in genetic disorders and cancer (Bier, 

2005; Vidal and Cagan, 2006). 



Chapter 1  28 

 
 

1.2.2 Reverse Genetics 

Reverse genetics is a powerful approach to elucidate gene function by analysing 

corresponding mutant phenotypes (Lewin, 1986; Orkin, 1986; Ruddle, 1982). This 

has been proposed to be a quickest and most promising way of inferring function 

for a novel gene (Dow and Davies, 2003). A variety of model organisms that are 

equipped with powerful genetic and genomic and physiological tools serve the 

need of the reverse genetics.  

In Drosophila it is much simpler to create a gene knockout or a hypomorph than 

potentially in any multicellular organism in addition to the existing hundreds of 

thousands of stock lines.  

1.2.2.1 GAL4/UAS system 

The transposon mediated transgenesis enabled the development of the 

GAL4/UAS binary system for tissue-specific expression of introduced DNA 

sequences (Figure 1-1).  The two components of the system were derived from 

the yeast and widely used in Drosophila transgenesis (Duffy, 2002). The 

GAL4/UAS system was first developed for targeted gene expression in Drosophila 

(Brand and Perrimon, 1993). 

As part of the bipartite system, the enhancer traps flies that express the yeast 

GAL4 transcription factor (that is not found in Drosophila) in a tissue and cell 

specific manner, and are crossed to the flies that are harbouring upstream 

activating sequence (UAS) -downstream fused cDNA sequences. The UAS is the 

high affinity binding site of the transcriptional activator GAL4. The F1 generation 

of the cross will have both UAS and GAL4 elements and GAL4 is produced under 

the regulation of native enhancer consequently driving the expression of the 

genes or cDNA sequences of interest. This system is generally used to ectopically 

express transgenes of interest including double-stranded RNAs (for RNAi) or 

cDNAs (for wildtype overexpression). More refined versions of the targeted 

expression tools are constantly evolving that are keeping the promise of 

‘Drosophila as a valuable model organism’ (Pfeiffer et al., 2010). 
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Figure 1-1 Schematic of heritable induction of transgenes using GAL4/UAS bipartite system. 
The first part of the system includes flies harbouring GAL4 in their genome under the 
control of genomic enhancers or promoters or cloned promoters of interest. The second 
part of the system includes the flies harbouring UAS (upstream activating sequence) fused 
to the DNA sequence of interest. When the flies from two systems crossed they produce F1 
progeny harbouring both GAL4 and UAS elements. GAL4 upon its expression (depending 
on the control of regulatory element) binds to the UAS drives the expression of the 
downstream DNA sequences. This way ectopic expression of a transgene (GFP, RNAi or 
cDNA) is achieved cell- and tissue-specifically using the appropriate regulatory elements. 
Figure adopted from (Dow, 2007). 

1.2.3 Transgenesis 

Efficient transgenesis techniques are an absolute necessity of reverse genetics. 

The transgenesis can be defined as a group of technologies for manipulating DNA 

or introducing a foreign DNA into an organism of interest (Venken and Bellen, 

2007).  

Transposons are semi-autonomous DNA sequences that move around in all 

genomes. They can be adopted by experimenters to ‘jump around’ DNA of 

choice far more efficiently than any direct attempts to insert DNA into the 

genome. Transposon-mediated germline transformation is an efficient 

transgenesis technique in Drosophila that allows a piece of a foreign DNA to 

integrate into the genome and transmit into the successive generations (Figure 

1-2).  
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The transgenesis in Drosophila can be achieved through transposon-mediated 

integration. Specifically, the P-element transposon mediated transposition has 

been relatively more successful than other transposons fairly due to the 

disadvantages of the later in Drosophila. Spradling and Rubin first used a 

genetically engineered P-elements to re-introduce the rosy gene back into the 

rosy mutant flies (Spradling and Rubin, 1982).  

The first generation Drosophila enhancer traps utilised P-element mediated 

transposition and is employed to possibly identify genomic enhancers (O'Kane 

and Gehring, 1987).  This technique employs the fusion of lacZ (that encode the 

β-galactosidase) with P-element, and a minimal promoter, germline transformed 

into Drosophila. The subsequent analysis of β-galactosidase expression allows 

the assessment of cell-type- and tissue-specific patterns of genomic enhancer 

elements.  

 

Figure 1-2 Germline transformation of Drosophila. [taken from (Venken and Bellen, 2007)] 
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P-elements are introduced into white- fly by the simultaneous microinjection 

into the syncytial blastoderm stage embryo of a plasmid encoding a transposase, 

allowing its transient expression.  In this way, the transposon is stably 

incorporated into the genome with no further transposition events.  The P-

element carries the mini-white gene, so the injected flies are white+ and easily 

scored for successful insertions.   

This technique alone has revolutionised the already hugely successful Drosophila 

genetic enterprise and allowed tissue-specific gene silencing using heritable 

RNAi (Kalidas and Smith, 2002; Kennerdell and Carthew, 2000), mis-expression 

screens to create dominant phenotypes (Rorth, 1996; Rorth et al., 1998) and the 

identification of the sub-cellular localisation of tagged proteins. 

Gene knockdown using double-stranded RNA (dsRNA), or RNAi has been 

instrumental (Hunter, 1999). Particularly, in Drosophila, RNAi became a routine 

after devising a GAL4/UAS bipartite system (explained in the following sections) 

to conditionally ablate gene expression at a single cell resolution within a 

systems context. 

The dsRNAs can be introduced in two ways in Drosophila, exogenous, and 

endogenous (Carthew, 2003). The exogenous approach involves the introduction 

of a small interfering RNAs (siRNA) directly into the embryos or cultured cells. 

The more widely used endogenous method depends on the GAL4/UAS system 

where a long inverted repeat RNA sequence is expressed in vivo. Upon the 

expression, they form hairpin-like dsRNAs in the cell, and are recognised by the 

RNAi pathway, leading to the inhibition of mRNA expression (Kennerdell and 

Carthew, 2000). The former method is more convenient and particularly suited 

for developmental studies; the later approach is convenient for one to express 

the RNAis of interest conditionally. Thus the endogenous method allows the 

study of adult functions of the genes of interest without intervening for 

example, in the organismal developmental functions. 

 

 



Chapter 1  32 

 
 

A novel transformation vector, pRISE was used to construct RNAis for making 

transgenic flies for this study (Kondo et al., 2006). This vector contains a 

characteristic Gateway™ cassette, attR1-ccdB-attR2 as an inverted repeat 

sequence between an intron for in vitro recombination and a pentameric GAL4 

binding sequence for conditional expression.  

This cassette allows recombination of entry clones containing the target 

sequence of interest into the pRISE for the subsequent germline transformation. 

More detailed information is provided in Materials and Methods chapter. 

Malpighian (renal) tubules (tubules, from now onwards) of Drosophila have been 

instrumental in elucidating cell-specific signaling and molecular physiology of ion 

transport mechanisms. The first microarrays ran on tubules provided a basis for 

generating FlyAtlas tissue-specific transcriptomes (Wang et al., 2004). In the 

following section, the tubules as model test beds for functional genomics to 

further our understanding of cell signaling and transport physiology mechanisms, 

is presented.  

1.3 Tubules as a model epithelium in transport and 
signaling 

Drosophila tubules are functionally analogous to mammalian kidneys (Dow and 

Romero, 2010; Wang et al., 2004). Drosophila has two pairs of tubules: one 

ramifies anteriorly in the body and the other towards posteriorly, and each pair 

is joined by a common ureter, which opens up into the hindgut of the alimentary 

canal (Figure 1-3, upper panel). Each pair of tubules consisting of around 150 

cells shows morphological and functional domains.  

Each anterior tubule has an enlarged initial segment, the organ that titres 

haemolymph Ca2+. In contrast, the posterior tubules show a smaller initial 

segment. In addition, each pair of the tubules has a distinctly narrower 

transitional segment and a fluid secreting main segment that leads to the ureter. 

In addition, GAL4 enhancer trap analysis revealed six distinct genetic boundaries 

in tubules (Figure 1-3, upper panel) (Sozen et al., 1997). 
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The main segment is composed of two cell-types including principal (type I) and 

stellate (type II) cells (Figure 1-3, lower panel). The principal cells are 

columnar, with deep basal infoldings and long microvilli, whereas stellate cells 

are star-shaped, smaller in shape with less basal infoldings with shorter apical 

microvilli. Other cells, including stem cells and mechano-sensory or 

chemosensory cells have also been shown using lineage tracing and molecular 

marker analysis and the enhancer trap analysis, respectively (Singh et al., 2007; 

Sozen et al., 1997). 

Because of the extensive genetic, genomic, and physiological characterisation of 

this simple epithelia, it has become a unique tool for analysing the molecular 

physiology of ion transport to dissecting cell signaling pathways that may have 

biomedical relevance in an organotypic context (Chintapalli et al., 2007; Dow et 

al., 1994b; Dow and Romero, 2010; Dow and Davies, 2003). 
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Figure 1-3 (Upper panel) Tubules of Drosophila melanogaster. 
Drosophila has two pairs of tubules namely anterior and posterior tubules that ramify 
anteriorly and posteriorly in the body respectively. Morphologically and functionally distinct 
domains are labelled for anterior tubules; their posterior counterparts have the equivalent 
domains except that they don’t have the enlarged initial segment. (adopted from (Wessing A, 
1978)) 

(Lower panel: taken from (Dow and Romero, 2010)) Two major cell types of tubules. 
The larger principal and smaller stellate cells are joined together with septate junction. 
These two cells intercalate tubule lumen thus separating the lumen from hemolymph. 
Detailed cell-specific signaling and physiological functions are depicted for both the cells. 
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1.3.1  General mechanisms of second messenger signaling  

Second messengers including Ca2+, cAMP and cGMP play important roles in signal 

transduction thereby regulating many physiological processes from neuronal 

excitability, muscle contraction to fluid secretion upon the activation of a 

variety of primary messengers. Ca2+ is a universal second messenger that 

transmits signals across the length and breadth of a cell (Berridge et al., 2000). 

Fundamentally, Ca2+ signaling is initiated in two ways starting either from a G 

protein-coupled receptor (GPCR), or receptor tyrosine kinase activation by a 

variety of primary messengers. Activation of both receptors leads to the 

production of IP3 from the conversion of phosphatidylinositol (4,5)-bisphosphate 

(PIP2) to diacylglycerol (DAG) (Berridge and Irvine, 1989). IP3 at stimulated 

concentrations binds to IP3 receptors on the ER, leading to the influx of Ca2+ into 

the cytosol at times leading to 10-times more [Ca2+]cyto. However, the Ca2+ 

response kinetics differ, in that the tyrosine kinase receptor mediated PLCγ 

activated Ca2+ release is slower and longer than the G-protein receptor 

mediated, PLCβ activated release. Another route for Ca2+ entry from the 

extracellular space in nonexcitable cells is hyperpolarization of plasma 

membrane where K+ entry through K+ channels changes the membrane potential 

to negative, leading to Ca2+ influx from voltage-independent Ca2+ channels. But, 

in excitable cells, Ca2+ transients occur with fast kinetics through voltage-

dependent Ca2+ channels. 

The second messenger signaling through cAMP and cGMP has been extensively 

studied in Drosophila, following the discovery and implication of dunce, a cAMP-

specific phosphodiesterase (PDE), in learning and memory (Davis and Kiger, 

1981; Dudai et al., 1976). The two components of the cyclic nucleotide 

signaling, cAMP and cGMP have their distinct mechanisms and pathways of 

regulation and signaling initiated by activation of a variety of hormone and 

neurotransmitter receptors as discussed earlier (Figure 1-4). The cAMP is 

synthesized by adenylate cyclases. The synthesis is stimulated in response to a 

primary messenger, such as adrenaline, leading to the activation of downstream 

effector proteins at high concentrations.  

A variety of primary messengers can initiate a cAMP signal involving G proteins in 

a given cell type reflecting the specificity of downstream signaling cascade 
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activation.  The binding of the primary messenger to G-protein coupled receptor 

induces a conformational change in the receptor leading to the activation of the 

α-subunit of the G-protein. Depending on the G-protein that is activated, (Gs 

stimulates and Gi inhibits) adenylate cyclase is either activated or inhibited. 

Activated adenylate cyclase then produces cAMP from the cytosolic ATP, and at 

stimulated concentrations cAMP activates cAMP-dependent protein kinases (e.g., 

PKA). Then the kinases transduce the signals by catalysing the phosphorylation 

(activation or deactivation) of intracellular enzymes, eliciting a wide array of 

metabolic and functional processes. 

 

Figure 1-4 Cyclic nucleotide-dependent signaling components (in intracellular Ca
2+

 
mobilisation). 
Intracellular second messenger system, cyclic nucleotide (cGMP and cAMP) signaling 
cascade is activated by the upstream first messengers (for example, neuropeptides). At 
both resting and activated states (in other words, spatiotemporal) cyclic nucleotide 
concentrations are regulated by PDEs. 
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For example, in blowfly salivary glands, two 5-hydroxytryptamine (5-HT) 

receptors with homologues in their Dipteran counterpart Drosophila 

melanogaster (Chapter 4) are found. The two receptors act through two 

independent second messenger signaling systems one involving cAMP and the 

other Ca2+ to drive potassium transport and to open Ca2+-activated Clˉ channels 

respectively leading to salivary gland secretion (Berridge, 2005). This is a classic 

example of how the second messenger systems are evolved to regulate similar 

physiological processes via distinct mechanisms. 

cGMP signaling has an added layer of complexity in that a cGMP signaling event 

can be initiated either by a primary messenger, via a receptor guanylate 

cyclases or by the gaseous signaling molecule nitric oxide (NO), which activates 

soluble guanylate cyclase, perhaps binding to its heme moiety in an autocrine or 

paracrine manner (Davies, 2006). In either ways, receptor activation leads to the 

production of cGMP from guanosine triphosphate (GTP).  

Then the cGMP at effective concentrations mediates its intracellular effects 

through the activation of specific cGMP-dependent protein kinases (e.g., PKG).  

PDEs negatively regulate cyclic nucleotides by hydrolytic catalysis, giving rise to 

adenosine- and guanosine-5’-monophosphate (5’-AMP or GMP) thus controlling 

the spatiotemporal aspects of the signaling (Baillie, 2009; Day et al., 2005; 

Zaccolo and Movsesian, 2007). A variety of PDEs can control either cAMP or cGMP 

or both. For example, PDE I activity depends on Ca2+/calmodulin-dependent 

kinase, perhaps through phosphorylation by PKA.  

1.3.1.1  Second messenger signaling in the tubules 

The fruit fly tubules provided a wealth of information in regards to the 

regulation of both cytosolic and organellar Ca2+ signaling and transport 

mechanisms (Davies and Terhzaz 2009). Furthermore, cGMP signaling 

mechanisms are well documented at a single cell resolution (Day et al., 2005; 

Kerr et al., 2004). This has been achieved via the identification and isolation of 

neuropeptides capa and leucokinin (Dow and Davies, 2003).  
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Particularly, the capa mediated GPCR signaling mechanisms are well 

characterised by combining the power of Drosophila classical and modern 

genetics (GAL4 enhancer trapping), physiological techniques (fluid secretion 

assays) with pharmacological approaches in tubules. The GAL4 enhancer trapping 

provided a panel of fly lines that express GAL4 in a cell-specific manner 

including principal and stellate cells (Sozen et al., 1997).   

1.3.1.2  Second messenger signaling in tubules via capa peptides 

The capa family of peptides consists of capa1, capa2 and CAP2b (Davies and 

Terhzaz, 2009; Predel and Wegener, 2006).  All these have been shown to 

mobilise Ca2+, nitric oxide and the cGMP in tubules with similar kinetics in only 

the principal cells of tubules thereby initiating the fluid secretion response 

(Broderick et al., 2004; Davies and Terhzaz, 2009; Sozen et al., 1997). In 

Drosophila tubules, CAP2b of Manduca sexta stimulates intracellular cGMP levels 

via the activation of nitric oxide synthase (Davies et al., 1995).  Furthermore, 

the increased cGMP levels can be rescued by the NO scavenger methylene blue.  

Although, NO seems to act as an autocrine signal via tubule localised dNOS, the 

ectopic expression of the dNOS, specifically in principal cells, did not appear to 

increase fluid secretion levels (Broderick et al., 2003).  However, when the PDE 

activity was inhibited by the cGMP-PDE inhibitor zaprinast, it did increase the 

secretion.   

1.3.1.3 The final targets of capa signaling in tubules 

The [cGMP] increase via capa peptide may have two potential targets in tubules, 

including cyclic GMP-dependent protein kinases (cGKs) cGMP-gated ion channels 

that allow Ca2+ ions. Drosophila encode two cGKs namely dg1 and dg2 (or 

foraging), and are expressed in tubules (MacPherson et al., 2004b). It has been 

proposed in tubules that cGK may control cGMP levels via phosphorylation of 

cGMP phosphodiesterases (MacPherson et al., 2004a). These have been further 

confirmed by transgenic expression of cGK genes in tubules, and expression of 

cGK-DG1 and DG2P2 in principal cells increases fluid secretion upon cGMP or 

capa1 stimulation respectively.  
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Previous observations suggest that cGMP treatment of the tubules increases the 

transepithelial potential (TEP) possibly by the activation of vacuolar-type ATPase 

(V-ATPase) (O'Donnell and Maddrell, 1995). The second sought after targets of 

capa are CNG channels. CNG channels like TRPs play important role in signal 

transduction. A Drosophila cGMP-specific CNG channel has been cloned and 

shown to be highly permeable to Ca2+ ions (Baumann et al., 1994).  This channel 

has been shown to be approximately 50-fold more sensitive to cGMP than to 

cAMP. The mRNA expression was found in tubules (MacPherson et al., 2001). 

The cGMP transport role of the famous white gene, that encodes an ATP binding 

cassette G2 (ABCG2) sub-family member, has recently been revealed in the 

tubules in consistent with its high mRNA expression in these organs other than 

eyes (Evans et al., 2008). Transport assays demonstrated defective transport of 

cGMP in white mutants (partial deletion and loss of function) leading to 

increased levels of cGMP which can be rescued upon expression of wildtype 

white transgene. This is another example of cGMP’s role in the tubule function.  

 

Figure 1-5 Human G-protein coupled receptor signaling pathway components in tubules. 
Drosophila tubule transcriptome was overlaid on to the mammalian pathway to show 
conservation of function. The shapes shaded in red colour are the mapped mammalian 
orthologues of Drosophila genes. 
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Mammalian network analysis of Drosophila epithelial tissue transcriptomes also 

revealed that there are many components that are orthologous to humans, are 

faithfully expressed in Drosophila tissues such as tubules (Figure 1-5). 

1.3.1.4  Second messenger signaling in tubules via Drosokinin 

On the other hand, Drosophila leucokinin (Drosokinin) acts upon the stellate 

cells and elevates intracellular Ca2+ and regulates fluid secretion. Besides these 

observations, in Ca2+-free conditions, thapsigargin, an endoplasmic reticulum 

(ER) Ca2+-ATPase inhibitor, elevates [Ca2+]cyto in only the tubule smaller stellate 

cells but not principal cells. Taken together, this data strongly demonstrates the 

existence of cell-specific Ca2+ signaling mechanisms in tubules. 

1.3.1.5  Ca2+ handling by tubules 

In a simple epithelium like tubule, regulatory mechanisms for Ca2+ handling are 

highly sophisticated in that several pumps and channels are involved under the 

control of multiple regulatory cascades (Davies and Terhzaz, 2009). The plasma 

membrane Ca2+ channels in tubules include L-type Ca2+ channels (voltage-gated), 

cyclic nucleotide-gated (CNG) channels, and transient-receptor-potential (TRP) 

channels. The organellar Ca2+ pumps that respond to Ca2+ upon IP3 stimulation 

include SERCA, or sarco/endoplasmic reticulum Ca2+-ATPase and SPoCk or 

secretory pathway Ca2+-ATPase.  

Tubules have been investigated for the Drosophila homologues of human L-type 

Ca2+ channels. The α-subunits, Dmca1A, Dmca1D are found to express in these 

non-neuronal tissues (MacPherson et al., 2001) in consistent with 

pharmacological studies on vertebrates that provided evidence for functional L-

type Ca2+ channels in the kidneys (Hayashi et al., 2007).  

In tubules, these channels were observed to be sensitive to the channel 

antagonists, verapamil and nifedipine, and found to inhibit stimulatory fluid 

secretion responses by tubules. Verapamil seems to inhibit thapsigargin induced 

[Ca2+]cyto increase; indicating an alternate route for thapsigargin action (probably 

via plasma membrane channels), and is consistent with previous observations.  

http://en.wikipedia.org/wiki/Sarcoplasmic_reticulum
http://en.wikipedia.org/wiki/Endoplasmic_reticulum
http://en.wikipedia.org/wiki/Calcium
http://en.wikipedia.org/wiki/ATPase
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The localisations of these channels in the tubules found to be apical and 

basolateral and segment specific in that the dihydropyridine-sensitive channels 

occur in the apical membranes of the Ca2+ storing initial segment suggesting the 

transepithelial transport route in these segments.  

The pharmacology of plasma membrane Ca2+channels seems to overlap. 

Verapamil and nifedipine have also been shown to modulate cGMP induced 

[Ca2+]cyto response in tubule principal cells that can be abolished by a reduction 

in extracellular Ca2+. This possibly suggests a role for CNG channels in mediating 

Ca2+ influx into the cells (MacPherson et al., 2001). According to the FlyAtlas 

mRNA signal, the CNGs are better candidates than L-type calcium channels in 

tubules as the former express more abundantly than the later. Given the kinetics 

of voltage-gated Ca2+ channels, CNG channel-mediated Ca2+ influx mechanisms 

may lead to the slow transient uptake by organelles that are seen in 

mitochondria for example (Terhzaz et al., 2006). 

In tubules, transient receptor potential-like (TRPL) channels, rather than the 

TRPs in photoreceptor cells, are required for normal epithelial function 

(MacPherson et al., 2005). However, the novel TRP members that are found in 

the FlyAtlas to be abundant in tubules and may also play roles in epithelial 

function.  

The famous intracellular Ca2+-release channels include IP3 and ryanodine 

receptors (IP3R and RyR) that facilitate the release of Ca2+ from internal stores. 

The function of IP3R in ER calcium release mechanisms have been extensively 

studied; and RyR is known in the sarcoplasmic reticulum (SR) and mediates 

skeletal muscle contraction through its allosteric activation by the 

conformational change in L-type Ca2+ channels, alpha subunit 1 (Cav1.1) 

(Proenza et al., 2002).  

1.3.2 Weiczorek model for fluid secretion by tubules 

It has been widely believed that the Na+-motive force generated by Na+/K+ 

ATPase energises animal plasma membranes. This has been an established route 

that allows secondary active transport of amino acids, glucose and several other 

nutrients.  
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In contrast, the ‘Wieczorek model’ conclusively presented evidence for an apical 

V-ATPase in energizing insect plasma membranes (Harvey and Wieczorek, 1997).  

Furthermore, this model argues a case for an apical alkali metal (Na+ and K+) 

exchanger as a functional partner for V-ATPase function.  

The strongest evidence for an apical V-ATPase came from the lepidopteran 

midgut  goblet cell apical membranes where K+ stimulated ATPase activity was 

localised (Wieczorek et al., 1986). In addition, the apparent 10, 000-fold proton 

gradient across the goblet cells was found to be balanced by a voltage of -240 

mV (Dow, 1989). This voltage difference later was conclusively demonstrated to 

be caused by a V-ATPase (Harvey and Wieczorek, 1997; Schweikl et al., 1989). 

In Drosophila, V-ATPase increases luminal positive transepithelial potential (TEP) 

in principal cells where it is found, and drives fluid secretion. Furthermore, the 

secretion can be pharmacologically abolished by both bafilomycin A1, and 

amiloride, the potential  V-ATPase and  Na+/H+ exchanger inhibitors respectively  

(Dow et al., 1994a; Giannakou and Dow, 2001).   

In the V-ATPase functional model, the apical NHE was thought to transport alkali 

metals, predominantly K+, into the lumen in exchange for H+. This will not only 

allow the membrane potential equilibrium, but it in turn drives the water flow 

into the lumen along its osmotic gradient. However, until recently, no plausible 

candidate for an apical antiport/exchanger partner for the V-ATPase (as 

required for the Wieczorek model) could be identified in Drosophila. Recently, 

two candidates including Nha1 and Nha2 have been shown to be the Drosophila 

representatives of the newly-discovered CPA2 branch of the cation proton 

antiporter family (also known as NHAs). These were proposed as better 

candidates for Wieczorek exchangers than the better known CPA1 branch that 

includes the classical Na+/H+ exchangers (or NHEs) (Day et al., 2008).  

However, as the name suggest, V-ATPases are predominantly found in the 

endomembrane vesicles in the endolysosomal pathway translocating protons into 

the vesicular compartments in expense of an ATP at the cytoplasmic side 

(Anraku et al., 1989; Jentsch, 2007).  
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Classically, this inward movement of H+ ions thought to be accompanied by a Clˉ 

influx leading to acidification of the compartments. However, ClC exchangers 

instead of Clˉ channels have been proposed to compensate the electrical 

currents generated by the V-ATPases (Scheel et al., 2005). 

Although the insect Wieczorek model offers an exciting avenue for plasma 

membrane energization via apical V-ATPases, it still remains to be seen whether 

Clˉ channels or exchangers offer anything to explain apical V-ATPase function.  

1.3.3 Neuroendocrine control of tubule fluid secretion 

Neuroendocrine signaling mechanisms are well characterised in tubules. 

Particularly, secretion physiology of tubules via neurohormone peptide 

modulation by the development of fluid transport assays (Dow et al., 1994b).  

Several short stretches of peptide sequences including Manduca sexta cardio-

acceleratory peptide CAP2b, Anopheles leucokinin, Drosophila capa, leucokinin, 

and calcitonin-like peptides stimulate fluid secretion via distinct or overlapping 

G-protein coupled receptor signaling mechanisms (Iversen et al., 2002; Radford 

et al., 2002).  

For example, CAP2b (Drosophila capa1 and capa2 (Kean, 2002 #200)) stimulates 

Drosophila tubule fluid secretion and cation conductance via principal-cells with 

an increase in intracellular Ca2+ (Rosay et al., 1997) and [cGMP] (Davies et al., 

1995).   

Drosokinin, in contrast, specifically stimulates intracellular [Ca2+] and fluid 

secretion in stellate cells leading to the activation of Clˉ conductance (Terhzaz 

et al., 1999b); (O'Donnell et al., 1998; Rosay et al., 1997); (Radford et al., 

2002). Furthermore, cyclic nucleotide levels do not seem to change in stellate 

cells (Davies et al., 1995).  CRF-like peptide diuretic hormone or Dh is another 

neurohormone that stimulates [cAMP] and tubule secretion (Cabrero et al., 

2002).  The external addition of cGMP and cAMP to tubules also increases fluid 

secretion (Dow et al., 1994a).  Taken together, neurohormone regulation of 

tubule diuretic responses via G-protein coupled receptor signaling mechanisms 

should prove useful for molecular physiological analysis using tubules as an 

organotypic test bed.  
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In the following sections the remaining two key areas will be introduced 

including the molecular physiology of Clˉ ion transport and peroxisome dynamics 

in the living organism, as these have been investigated as part of this thesis. 

1.4 Molecular Physiology of Clˉ
 
ion transport 

Organisms must respond to their surrounding environmental variations to sustain 

their life. They have evolved methods of maintaining their internal environments 

independently of external variations; this is called homeostasis. The homeostasis 

is achieved by sophisticated cellular physiological mechanisms, and the 

‘molecular physiology’ explains the basis for physiological functions of organisms 

at the molecular level.  

Ion channels are fundamental to the organismal homeostasis and survival. They 

are integral membrane proteins that facilitate the transport of ions across 

biological membranes. Several classes of ion channels are involved in the 

transport of inorganic ions such as Clˉ, Na+, K+ and Ca2+.   

The channel proteins have a marked difference from the transporters in that the 

latter form ‘alternate access’ thereby preventing the formation of a continuous 

pore that cannot generate a continuous ionic gradient like the channels. In 

contrast, the channels through their selectivity filters for different ions catalyse 

the specific downhill movement of the ions into and out of the cells or cellular 

compartments.  Unlike ion pumps, channels facilitate ions into and out of a cell 

(ionic flux) in a passive manner at very high ion conduction rates with a 

selectivity sequence for different ions. 

The selectivity sequence depends on the ability of a channel to conduct one ion 

over other. Channels play a fundamental role in modulating electrochemical 

gradients generated by ion pumps and exchangers.  The direction of the ionic 

flux is dictated by the concentrations of various ions within the cell, and its 

external milieu leading to the voltage differences across the membrane, and so 

ions move down their electrochemical gradient. The movement of ions across 

the membranes produces electrical currents (I) leading to changes in membrane 

potential. The membrane potential changes can influence the activity of other 

types of channels in the membrane.  
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1.4.1 Clˉ channels 

Clˉ channels are a structurally and functionally diverse group of ion channels 

that conduct Clˉ, and other anions. These channels reside both in the plasma 

membrane and in intracellular organelles and regulate the passive movements of 

Clˉ along its electrochemical gradients. Often, anion channels are called Clˉ 

channels  despite their capacity to conduct other anions, because of the 

abundance of Clˉ in biological systems (Duran et al., 2010).  

The low abundant anions such as bicarbonate (HCO3ˉ) and reactive oxygen 

species, superoxide (O2ˉ) produced from biological redox reactions are also 

transported through the channels. Accordingly, these anions are detrimental in 

cellular physiology and signaling. For example, HCO3ˉ secretion is important in 

CF pathology, although it is not fully clear CFTR itself can code for IHCO3ˉ or 

whether it modulates putative members of Clˉ/ HCO3ˉ exchangers like SLC26A3 

(Duran et al., 2010; Stewart et al., 2009).  The transport of O2ˉ, that plays 

essential roles in cellular signaling, has been shown to be mediated by ClC-3 

(Miller et al., 2007; Mumbengegwi et al., 2008). Although, the molecular identity 

of Clˉ channels remains obscure, they have been best categorised depending on 

the basis of their gating mechanisms into five broad classes as shown below 

(Verkman and Galietta, 2009).  

1. cAMP- or ATP-activated (cystic fibrosis (CF) transmembrane regulator or 

CFTR channels) 

2. Voltage-activated (Clˉ channels or ClC channels) 

3. Ligand-activated (γ-Aminobutyric acid or GABA channels) 

4. Volume- or swelling-activated (Tweety or Maxi channels) 

5. Ca2+-activated (bestrophins and anoctamins) 

The above classification is limited by the available data, thus overlapping gating 

mechanisms may exist. In addition, Clˉ channels may also be regulated by pH, 

anions and phosphorylation by proteins kinases , or on the binding or hydrolysis 

of ATP (Jentsch et al., 2002).  
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Moreover, the potential diversity of Clˉ channels has often been revealed in the 

patch-clamp experiments. Despite differences in experimental conditions, the 

diversity of Clˉ channels is widely accepted in terms of their single-channel 

conductance, anion selectivity, and mechanism of their regulation. 

Some of the well-known Clˉ channels like CFTR and ClC have been well studied. 

These studies provide some fascinating insights into Clˉ channels as a whole in 

terms of their mechanisms of regulation and physiological roles that can be used 

to study their molecular counterparts. 

The CFTR encoded channels are multifunctional channels that not only act as an 

anion channel but also act as a regulator of other ion channels including Ca2+-

activated Clˉ channels (CaCCs) (Nilius and Droogmans, 2003).  

These channels are predominantly gated by cAMP and are involved in fluid 

transport processes across various epithelia including the airways. The ∆508 

mutation causes impaired trafficking of CFTR thus reducing its incorporation into 

the plasma membrane. This was thought to be the major cause of the lethal 

airway lung disease, cystic fibrosis (Cuthbert, 2011).  

The ClC family has nine members that are grouped into three classes according 

to their sequence homology. These include ClC-1, ClC-2, hClC-Ka (rClC-K1) and 

hClC-Kb (rClC-K2); ClC-3 to ClC-5, and ClC-6 and ClC-7. The first crystal solved 

for a Clˉ channel was of a ClC from bacteria at 3 A° resolution. It revealed the 

homodimer structure of the ClC channel with a two-fold axis perpendicular to 

the membrane plane (Dutzler et al., 2002).  

Moreover, each of the subunits of the dimer forms its own ion-conduction pore. 

The ClC-1, ClC-2, ClC-Ka and ClC-Kb are plasma membrane channels. The other 

members of the ClC family are predominantly found in the intracellular vesicles 

in the endolysosomal pathway and may compensate currents of H+-ATPases thus 

facilitating their luminal acidification of these membranes. As such, impaired 

synaptic vesicle acidification is seen upon disruption of intracellular ClC-5 and 

ClC-3 channels (Piwon et al., 2000; Stobrawa et al., 2001).  
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However, upon heterologous expression, ClC-4 and ClC-5 have been found in the 

plasma membranes and mediated Clˉ currents at positive intracellular voltages 

(Friedrich et al., 1999; Steinmeyer et al., 1995). In contrast, the Thomas Jentsch 

lab provided compelling evidence for Clˉ/H+ exchanger activity for ClC-4 and 

ClC-5 that provide neutralising anion currents for V-type H+-ATPases that pump 

protons into the compartments (Jentsch, 2007; Jentsch et al., 2005). The 

significance of the electrogenic exchange mechanism however is unclear, as it 

needs additional metabolic energy, unlike Clˉ channels that mediate passive Clˉ 

movements.  

Nevertheless, it has been hypothesized that intracellular ClCs are not only 

important for facilitating vesicular acidification, but may also contribute the 

regulation of Clˉ concentrations in these compartments (Scheel et al., 2005).  

In line with this hypothesis, Jentsch and colleagues obtained some fascinating 

insight into the mystery of ClC-5 and ClC-7 function using knock-in mouse 

models; separately published in 2010 (Novarino et al., 2010; Weinert et al., 

2010).  The knock-in mouse models that have a single point mutation that 

uncouples H+ transport from inward Clˉ transport still show the same pathology 

as in both ClC-5 and ClC-7 knockout mouse. These findings emphasise the 

mysteries still surrounding ClC proteins in terms of their physiological functions.  

1.4.2 Clˉ channel functions and associated channelopathies 

Clˉ channels are implicated in a plethora of cellular and physiological functions 

including regulation of pHi, cell volume, [Ca2+]i, and membrane potential (resting 

and depolarization). Clˉ channels, thus mediate transepithelial transport of 

solutes, secretion of hormones, bone metabolism, cell proliferation, 

differentiation to neuronal signal propagation (Jentsch et al., 2002; Planells-

Cases and Jentsch, 2009). Clˉ channels mediate these functions through the 

transport of charge, the current flowing through the channel or transport of 

matter. The important distinction between Ca2+ and Clˉ a decade ago has been 

that the non-belief in Clˉ role in cellular signaling (Jentsch et al., 2002). 

However, a paradigm shift is currently seen in the Clˉ channel field, as the Clˉ 

movements, now, are clearly associated with cellular signaling events (Duran et 

al., 2010). 
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Diseases caused by dysfunction of channel proteins are collectively known as 

channelopathies, so the dysfunction in Clˉ channel function is responsible for Clˉ 

channelopathies. The famous Clˉ channelopathies include cystic fibrosis, Best 

disease, myotonia congenita, osteopetrosis, Bartter syndrome (with deafness), 

and Dent’s disease. These channelopathies are caused by their respective 

channel defects in CFTR, Best1, ClC-1, ClC7/Ostm1, Barttin, and ClC-5. The 

functional defects are manifest in Clˉ secretion in the airways, RPE Clˉ 

transport, decreased Clˉ conduction, acid secretion in osteoclasts, renal salt loss 

and endolymph secretion and endosomal acidification. 

Even the subtle functional disturbances in Clˉ channel functions can cause the 

diseases like myotonia congenita, a skeletal muscle disorder where decreased 

muscle contractility or muscle stiffness is seen. In the muscle cells and in various 

other systems, the interplay between Na+, K+ ATPase and the inwardly rectifying 

K+ channels establish the resting membrane potential. However, during muscle 

activity, the relatively large Clˉ conductance keeps the resting membrane 

potential near Clˉ equilibrium potential (ECl) thus contributing to the equilibrium 

of the membrane potential. This equilibrium is disrupted in myotonia congenita 

patients where decreased Clˉ conductance is observed (Bryant, 1969; Lipicky 

and Bryant, 1971; Lipicky et al., 1971). 

As this thesis deals with the characterisation of possible contributions of 

bestrophins as CaCCs or, the regulators of other channel functions, the literature 

surrounding these channels has been reviewed in Chapter 6 and Chapter 7. 

However in addition to these main chapters, the general rules of CaCCs are 

reviewed below. 

1.4.3 CaCCs 

In electrophysiological experiments, Ca2+ was found to activate Clˉ currents, 

thus these currents were called as Ca2+-activated Clˉ currents (IClCa). The IClCa 

were described about three decades ago in Xenopus levis oocytes. However, the 

molecular identity of the channels responsible for the IClCa phenomenon has long 

been elusive until the bestrophins and more recently anoctamins have been 

proposed to be the candidates (Barish, 1983; Hartzell et al., 2008; Hartzell et 

al., 2009; Miledi, 1982).  
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In the Xenopus oocytes, the activation of IClCa was found to occur upon 

fertilization that depolarizes the membrane, and prevents additional sperm 

entry into the oocytes. Later, IClCa were found in salamander photoreceptor inner 

segments, and suggested to be playing a role in transmitter release (Bader et 

al., 1982; MacLeish and Nurse, 2007).  Further studies demonstrated that IClCa in 

many cell types including cardiac, skeletal and vascular smooth muscle cells, 

endothelial and epithelial cells, as well as neurons. Accordingly, the candidate 

channels proposed to be encoding the currents have been shown to be important 

in epithelial secretion, excitability of cardiac and neuronal membranes, 

olfactory transduction, vascular tone regulation and photoreception 

(Kunzelmann et al., 2007). However, unambiguous identification of the 

molecular components responsible for the IClCa still remains elusive due to 

interfering native IClCa when studying a foreign protein in a heterologous 

electrophysiology experiment. 

1.4.3.1 Mechanisms of Ca2+-dependent Clˉ secretion in epithelia 

In glandular secretion, from acinar cells of various secretory glands including 

salivary, pancreatic and lachrymal glands, activated via muscarinic receptors, 

Ca2+-activated Clˉ secretion plays important role. This occurs via the primary 

neurotransmitter messenger during parasympathetic stimulation via basolateral 

muscarinic M3 receptors (mAChR) (Kunzelmann et al., 2007; Melvin et al., 2005).  

Activation of G-protein coupled mAChR or purinergic P2Y receptors is mediated 

by Ca2+-dependent Clˉ secretory mechanism in the airways and intestine.  

In all the above cases, intracellular Ca2+ [Ca2+]i is mobilised through various 

routes mentioned earlier leading to the activation of CaCCs.  In addition, other 

cellular signaling pathways that act on ryanodine receptors elicit repetitive local 

Ca2+ spikes near apical membrane. Furthermore, acidic stores like lysosomes and 

secretory granules act in concert with IP3-mediated ER and ryanodine receptor 

pathways (Menteyne et al., 2006). Activation of CaCCs via phosphorylation by 

the multifunctional calmodulin-dependent kinase II (CAMKII) depending on 

inositol tetraphosphate (InsP4) levels was shown to be one of the regulatory 

mechanisms in T84 epithelial cells (Ho et al., 2001). However, this was ruled out 

in other tissues like salivary glands (Kunzelmann et al., 2007).  
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The above reports suggest the diversity of activation of CaCCs in different cells 

and tissues. Thus suggesting differential regulation and function in secretion via 

CaCCs. In vascular smooth muscle cells, for example, the regulation of native 

CaCCs mediated by CaMK II and calcineurin and involved in vascular tone 

(Leblanc et al., 2005). In Drosophila, CaMKII expression is not that significantly 

found in the salivary glands according to the FlyAtlas suggesting the coregulation 

of different modules in signaling is also an important factor.  

CaCCs are activated upon increases in the [Ca2+]i. The elevation in [Ca2+]i 

possibly occurs through an extracellular primary messenger that acts on a 

membrane receptor, triggering the activation of Ca2+ mobilising events.  

The subsequent activation of Clˉ channels may dependent on multiple Ca2+ 

mobilising events including from intracellular stores, through the activation of 

plasma membrane Ca2+ channels (such as voltage-, cyclic nucleotide- or volume-

activated Ca2+ channels) or through store-operated Ca2+ channels.  Thus, the 

events coupled to the activation of CaCCs in various cell types have the 

potential in regulating multiple cellular events (Leblanc et al., 2005). Moreover, 

CaCCs provide a triggering mechanism in cellular signaling, as they are normally 

closed at resting, free intracellular Ca2+ concentration (~100 nmol/L) in most 

cell types, during signal transduction for membrane excitability, osmotic 

balance, transepithelial chloride movements, or fluid secretion (Leblanc et al., 

2005).  

Heterologous expression and characterisation of a non-native protein channels 

often hampered by the associated endogenous channel activation in the system 

(Jentsch et al., 2002).  In the case of CaCCs, questions have been raised 

regarding the activation of IClCa under experimental conditions that use Ca2+ 

ionophores such as ionomycin and in patch clamp experiments in which IClCa is 

activated independently of receptor stimulation (Kunzelmann et al., 2007). 

Often, very little activation of IClCa was observed in native airway epithelial cells 

with even at high concentrations of ionomycin, comparatively with the 

stimulation of P2Y2 receptors, for example (Kunzelmann et al., 2007). These 

observations led to the suggestion that methods using ionomycin and high 

external Ca2+ concentrations in excised membrane patches may be 

nonphysiological.  
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Furthermore, intracellular Ca2+ elevations by basolateral membrane stimulation 

via mAChR receptors in airways or distal colon does not directly activate Clˉ 

channels in the luminal membrane but enhances the driving force for luminal Clˉ 

secretion by activation via K+ channels in the basolateral membrane 

(Kunzelmann et al., 2007; Mall et al., 1998).  

1.4.3.2  Ca2+-dependent Clˉ secretion in epithelia 

The mammalian airways show IClCa (Yang et al., 2008). CF pathology linked to 

altered Clˉ secretion in human airways and other secretory epithelia is a life 

threatening disease. CF is caused by a cAMP-activated CFTR encoded Clˉ channel 

dysfunction (Schwiebert et al., 1999).  

In contrast, CFTR-/- transgenic mouse do not develop CF lung disease. Instead, it 

does show pronounced Ca2+-activated Clˉ secretion in the airway epithelia 

probably mediated by ClCA (Grubb et al., 1994). This Clˉ secretion in the 

airways was thought to compensate for the CFTR under pathological conditions 

in mouse airways; although such compensation was not observed in human 

airways. Interestingly, the purinergic receptor agonist treatment with UTP 

activates latent IClCa, and compensates for CFTR loss of function (Knowles et al., 

1991). These observations led to designing modified purine nucleotides for 

human CF therapeutic intervention. The airway surface liquid essentially is 

maintained by CFTR mediated Clˉ secretion rather than Ca2+-activated Clˉ 

secretion. Because the activation of CaCCs seems to result in transient Clˉ 

secretion partly due to the basolateral Clˉ uptake by Na+/2 Clˉ /K+ 

cotransporter. But, how this explains disease pathology is still not resolved. 

The colonic epithelium plays an important role in the absorption of nutrients. In 

the luminal membranes of the colonic rectal and distal segments, CFTR seems to 

be a predominant luminal Clˉ channel and an essential component in transient 

Ca2+-activated Clˉ secretion (Kunzelmann and Mall, 2002). 

The roles of CaCCs in intact renal tubules, a major transporting and fluid 

secreting epithelia, in the electrolyte transport have not been shown 

conclusively. However, the IClCa have been clearly presented for primary cultures 

of renal cells (Barro Soria et al., 2009).  
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The same study suggested that CaCCs in the renal epithelia may have essential 

roles in the re-absorption of large quantities of salt filtered by the mammalian 

glomerulus. 

As mentioned earlier, secretory stimulants such as acetyl choline and 

cholecystokinin clearly stimulates Clˉ secretion upon the activation of Ca2+ that 

is distinct from the cAMP pathway in the pancreatic ducts both in vivo and in 

vitro studies unlike the renal epithelium. However, the CFTR knockout mouse 

does not display pathological ductular secretion similar to airways that are not 

affected in the pathology. These results suggest alternative mechanisms or roles 

for CaCCs for example in modulating other channels or in regulating cell 

proliferation and controlling cell volume (Hartzell et al., 2005a).  

1.4.3.3  Disease relevance of CaCCs 

There is currently a lack of understanding of how CaCCs dependent Clˉ secretion 

can cause the pathological conditions of CFTR, Best disease, in the epithelia, 

making the disease relevance of these channels somewhat ambiguous. Although, 

these genes are implicated in the diseases, the functional studies so far are not 

conclusive to explain the defective contribution of Clˉ secretion via these 

channels. A proper elucidation of the functional roles of these proteins that 

explain the pathologies is necessary. This can only be achieved using relevant 

animal disease models as for example the IClCa seen in in vitro models cannot be 

recapitulated in vivo. However, model organisms including Drosophila, where 

there is a wealth of genetic and genomic tools available could be useful to 

understand the molecular mechanisms involved in the pathological conditions.  

1.4.3.4  Functional features and Molecular identity of CaCCs 

IClCa have been observed and studied in detail within several systems, however 

the molecular identity of the channels responsible for these currents has yet 

remained inconclusive. However, several candidate genes that may encode 

CaCCs have been cloned and characterised. Some common biophysical 

characteristics seems to be shared by CaCCs in different tissues in terms of their 

voltage dependence, degree of outward rectification Iˉ > Clˉ permeability and 

pharmacological inhibition.  
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They also show differences in single channel conductance and regulation; for 

example phospharylation by CaMKII in different tissues. The fact that they may 

be variably regulated by cell volume, pH, voltage and Ca2+, suggests that they 

should exist in a complex bioenergetic framework.  This diversity in regulation 

and function can be achieved by variable expression of different CaCCs, and 

their functional coregulated partners such as CaMKs in a cell- and tissue-specific 

manner and their potential impact on the other channels. In addition, the 

arrangement of CaCCs with different proteins seems to determine their function. 

For example, the interaction of large conductance potassium channel BK-subunit 

with the putative Ca2+-activated Clˉ channel protein ClCA1 has been shown 

(Greenwood et al., 2002).  

Some of the details regarding the ambiguity in molecular identity of CaCCs have 

been presented in the sections below. 

1.4.3.4.1 ClCA family 

ClCA1 was first cloned from a bovine tracheal expression library encoding DIDS- 

and  DTT-sensitive anion channel (Cunningham et al., 1995). The same study also 

showed that the ClCA1 was sensitive to ionomycin and DTT in COS-7 cells using 

whole-cell patch clamp experiments.  Later, the first human counterpart of the 

bovine ClCA1 was identified in Ca2+-activated Clˉ secretion and proposed to form 

an intermediate conductance chloride channel (Gandhi et al., 1998; Gruber et 

al., 1998).  

As mentioned earlier, Ca2+-activated Clˉ secretion via ClCA compensate for CFTR 

dysfunction in the mouse models and accordingly, they have been shown to be 

expressed in various epithelial tissues (Ritzka et al., 2004). However, ClCA and 

ClCA2 show different biophysical properties putting them under suspicion to be 

real candidates for CaCC (Yang et al., 2008). The potential functions of bovine 

ClCA2 in endothelial cell adhesion in tumour growth, and the human ClCA3 

protein’ secretory nature further supported the above notion (Yang et al., 2008). 

However, mouse ClCA1 when co-expressed with KCNMB1 (BK-subunit, a 

regulatory subunit of Ca2+-activated K+ channel) seem to produce IClCa that 

resemble those of endogenous CaCCs (Greenwood et al., 2002). 
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The human ClCK channels like the rodent ClCK1 have also been shown to be 

modulated by extracellular Ca2+ and protons (Gradogna et al., 2010). However, 

the activation of ClCKa channel was not completely abolished in the absence of 

Ca2+, demonstrating that Ca2+ is not strictly essential for the channel activation.  

Moreover, hydrophobicity analysis revealed one or two transmembrane segments 

in ClCK, a structure that seem to be unusual for α-subunits of ion channels and 

therefore may not be feasible as single entity Clˉ channel (Suzuki, 2006). 

Other members of ClC superfamily of Clˉ channels that are implicated in CaCC 

function include ClC-3, a homologue of the voltage-gated Clˉ channel ClC-0. 

Although this has been suggested to form a CaCC, the general biophysical 

characteristics differ substantially from those of native CaCCs. Moreover,  mice 

lacking ClC-3 does show normal Ca2+-activated Clˉ conductance thus may 

contribute to Ca2+-activated Clˉ secretion with other channels (Arreola et al., 

2002; Huang et al., 2001).  

1.4.3.4.2 Tweety family 

Tweety family has been long standing as a candidate for CaCC that form large 

conductance CaCCs (maxi Clˉ channels) in the excitable tissues including heart, 

brain and skeletal muscle (Suzuki, 2006). However, a role for these channels in 

non-excitable, epithelial tissues was not seen as a potential, since epithelial Clˉ 

channels show small conductance. 

1.4.3.4.3 Bestrophin family 

Bestrophins are discussed in detail in Chapters 6 and 7 as these have been 

chosen for the functional characterisation as part of this thesis. 

1.4.3.4.4 Anoctamins 

While the ambiguity has been increasing in bestrophins as a candidate CaCC 

hypothesis, novel members came into picture in the form of anoctamins.  

Anoctamins first got attention from the gene expression studies where first 

family member, ANO1, has been identified as upregulated in squamous cell 

carcinoma cells of the head and neck (Carles et al., 2006), and in 

gastrointestinal stromal tumours (Espinosa et al., 2008).  
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1.5 Peroxisome dynamics in the living organism 

Peroxisomes are single membrane-bound, ubiquitous and diverse organelles that 

perform key metabolic functions in almost all eukaryotic cells (Visser, van 

Roermund et al. 2007; Islinger, Cardoso et al. 2010). They can house as many as 

100 enzymes and perform a range of essential metabolic functions within a 

variety of cells from the α- and β-oxidation of fatty acids, synthesis of ether 

lipids (plasmalogens), and oxidation of bile acids and cholesterol and 

degradation of H2O2. Defects in peroxisomal formation and function in humans 

result in a spectrum of peroxisomal disorders which are broadly classified into 

two groups, peroxisome biogenesis disorders (PBDs), and single enzyme 

deficiencies (SEDs) (Figure 1-6).  

 

Figure 1-6 Peroxisome disorders in humans. 
Peroxisome disorders are broadly categorised into two groups, peroxisome biogenesis 
disorders (PBDs) and single enzyme deficiencies (SEDs). Two groups have overlapping 
symptoms and diagnostic features with manifestations in the brain, kidney and liver. 

Peroxisome biogenesis disorders show Zellweger spectrum syndrome (ZSS) 

including single enzyme deficiencies such as adrenoleukodystrophy (Reddy and 

Mannaerts 1994; Wanders 2004; Wanders and Waterham 2006) with severe to 

mild disease phenotypes.  
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ZSS patients show morphogenesis defects, severe neurological dysfunction, 

neurosensory defects, regressive changes, hepatodigestive involvement with 

failure to thrive leading to early death due to the absence of recognizable liver 

peroxisomes (Baumgartner et al., 1998; Poggi-Travert et al., 1995). 

In ZSS and other single enzyme deficiencies, human patients show hypotonicity 

or reduced muscle contractility associated with other factors such as 

hyponatremia where reduced sodium levels are found in the serum. Some 

reports suggest that the hypotonia could prolong to the adult stages. The 

hypotonicity is also associated with poor feeding (including reduced food intake) 

and increased very long chain fatty acids (VLCFAs). In single enzyme deficiencies 

caused by acyl Co-A oxidase 1 (ACOX1) and the multifunctional hydroxysteroid 

(17-beta) dehydrogenase 4 (HSD17B4) consistently show neonatal hypotonia and 

neonatal seizures refractory to resistant for therapeutic intervention. 

1.5.1 Peroxisome biogenesis 

The enigmatic biogenesis of peroxisomes can be divided into three conceptual 

steps including membrane formation, matrix protein import and proliferation. 

For de novo synthesis of peroxisomes, all proteins destined for peroxisomes 

should be transported to and assembled at the sites of peroxisome assembly as 

they are encoded by the nuclear genome, unlike for example mitochondrial 

proteins. The sequential formation of peroxisomes is achieved by peroxisome 

transport proteins, peroxins (or PEX) which can principally recognize two 

peroxisomal targeting consensus sequences (PTS) including PTS1, (S/A/C)-

(K/R/H)-(L/M) and PTS2, (R/K)-(L/I/V)-X5-(Q/H)-(L/I/V) (Figure 8-3). Two types 

of proteins need to be delivered to peroxisome assembly sites and into their 

lumen. These include peroxisome membrane proteins (PMPs) and luminal 

proteins. It is well established that peroxisomal luminal proteins are synthesised 

on polyribosomes and post-translationally imported directly into the peroxisome 

lumen, though the PMP transport is still a controversial area (Nuttall et al., 

2011).  

Peroxins are well conserved throughout evolution (Gould et al., 1990; Neuberger 

et al., 2003b; Purdue and Lazarow, 2001). Some peroxins cause severe defects in 

humans.  

http://www.medlink.com/cip.asp?UID=MLT000DM
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For example, defects in the PEX6 gene function are the second most common 

causes of ZSS disorders (Ebberink et al., 2010). The PEX6 encodes a putative AAA 

ATPase (ATPases Associated with diverse cellular Activities).  

PEX6 along with PEX1p recycle PEX5p in the last steps of the cargo delivery into 

the peroxisomal matrix for the next round of import (Rucktaschel et al., 2011).  

The PEX11 family is another important family that promotes peroxisome division 

in multiple eukaryote species. Like mammals (and unlike yeast), there are three 

known PEX11 genes in Drosophila melanogaster (mammalian counterpart is 

shown in brackets with the identification method) including CG8315 (PEX11β; 

Homologene), CG13827 (PEX11γ; Homologene) and CG33474 (PEX11γ; BLASTN). 

All are annotated to be involved in peroxisome fission. Unlike its human 

counterpart, the Drosophila PEX11γ (CG13827) has a putative carbohydrate 

kinase, FGGY, conserved site that shows phosphotransferase activity (alcohol 

group as acceptor). This site is also found in glycerol kinase, xylulokinase, 

gluconate kinase, L-fuculokinase and carbohydrate kinase. 

1.5.2 How is peroxisome number controlled? 

Peroxisomes, like many organelles, exist in defined copy numbers and sizes in a 

given cell type and its metabolic state (Chang et al., 1999; Thoms and Erdmann, 

2005).They can be as few as 3 and as many as 100s in number and can be 

inducible by external environment. For example, yeast grown on high 

concentrations of glucose can have as few as 1-3 peroxisomes while the same 

yeast grown on oleic acid can have 10 large peroxisomes (Erdmann and Blobel, 

1995). The peroxisome transitions between metabolic states of the cell should 

therefore be actively controlled. The molecular machinery driving membrane 

fusion and fragmentation on the organelle is key factor for this phenomenon 

where peroxins play well established roles in peroxisome formation and fission 

(Opalinski et al., 2011; Thoms and Erdmann, 2005). Two general classes of 

organelle division factors can be identified in organelle biogenesis including the 

one that has the components essential for division and directly participate in the 

vesicle budding event, and the other that has the recruitment factors, which 

helps bring the division machinery to the organelle membrane. 

http://www.peroxisomedb.org/show.php?action=fullGene&org=Drosophila_melanogaster&id=CG33474
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According to the available data, PEX11 proteins belong to the second class where 

they involve in the recruitment of the components required for the peroxisome 

division; VPS1/DLP1 the yeast and human dynamin-related GTPases respectively 

belong to the first class where they are directly involved in initiating the 

budding process.  

These hypotheses come from the fact that the loss of PEX11 protein function had 

a less severe effect on peroxisome abundance while its overexpression promoted 

peroxisome division (Li and Gould, 2002).  In contrast, the loss of VPS1/DLP1 

blocks peroxisome division completely though the overexpression did not 

increase the division (Hoepfner et al., 2001). 

A report by (Li et al., 2002) suggests PEX11γ to be different from PEX11α and 

PEX11β in that its overexpression does not induce peroxisome proliferation in 

mammalian fibroblasts. Its expression was neither altered by classical 

peroxisome proliferating agents (PPAs) that function as ligands for PPARα (Reddy 

and Hashimoto, 2001), nor by the loss of PEX11α or PEX11β. Thus, they 

concluded that the phenotypes caused by PEX11α-/-/PEX11β-/-/PEX11γ-/- 

knockouts in human fibroblasts were the same as the phenotypes in PEX11α-/-

/PEX11β-/- knockouts.  

They also showed that PPAs induce the expression of PEX11α and promote 

peroxisome division. The phenotypes of PEX11α-/- mice indicate the same for a 

novel class of PPAs (e.g., 4-Phenylbutyrate) that act independently of 

peroxisome proliferator-activated receptor alpha (PPARα). But it is not the case 

for classical PPAs that act as activators of PPARα. The cells lacking both PEX11 

genes have no defects in peroxisome abundance.  
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Figure 1-7 Peroxisome biogenesis machinery. 
The peroxisome biogenesis proteins (peroxins) involved in the peroxisome protein 
transport and assembly in different species studied are shown. The C11919 and CG13827 
are the Drosophila orthologs of human PEX6 (code for putative AAAATPase) and PEX11G 
(involved in peroxisome division and proliferation) respectively. Modified from (Schluter et 
al., 2010). 

1.6 Project aim 

The tissue-specific transcriptomes of Drosophila melanogaster have been 

generated as part of the large FlyAtlas project using Affymetrix Drosophila 

GeneChips® or microarrays. A meta-analysis of the transcriptomes revealed 

many novel insights into tissue-specific functions of genes in addition to 

providing a wealth of transcriptomic information. A comparative analysis of the 

transcriptomes with human disease genes identified many Drosophila homologs 

of human disease that are preferentially expressed in tissues that are 

functionally analogous to the human target. Although Drosophila is neither a 

mammal nor a vertebrate, does a physiological approach to Drosophila yield 

insights into human gene function that are not obtainable in humans or mice? 

This question has been functionally tested using a variety of molecular, cell and 

systems biology tools. 
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So the work plan was involved in identifying genes with highly specific 

expression patterns, ideally the genes that are enriched in tubules, because of 

the wealth of downstream phenotypes available in this tissue. Then, these genes 

were investigated using functional tools including heritable RNAi, 

overexpressors, GFP-fusions, fluid secretion, and other tools and techniques 

developed as needed. 
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2. Materials and Methods 

2.1 Fly stocks 

The original stocks used in this study are presented below (Table 2-1). The first 

column identifies the fly line, the second indicates the genotype, the third 

describes the line and the fourth shows whether it was obtained from stock 

centres or made in-house as part of the project. 

Table 2-1 Fly stocks used in this study.  
Flies were either obtained from the stock centres or made in house. Fly ID, fly identification; 
genotype, genetic description; description, what is the fly for; reference, where it was 
obtained from (if it is so). 

Fly ID Genotype Description Reference 

w1118 
white- (w-
);+/+;+/+ 

Isogenic white - background was used 
for P-element mediated germline 
transformation of transgenes of 
interest. It is a loss of function allele 
for white and acts as the wild-type for 
flies generated in this background. 

http://flybase.org/rep
orts/FBal0018186.ht
ml  

Canton S w+;+/+;+/+ Wild type - Drosophila melanogaster  

http://flybase.org/rep
orts/FBst0000001.ht
ml 

c42-GAL4 
w-; +/+; c42-
GAL4/c42-GAL4 

GAL4 enhancer trap specific to the 
tubule principal cells. 

(Sozen et al., 1997); 
Dow/Davies Labs 

c724-GAL4 
w-;+/+;c724-
GAL4/c724-
GAL4 

GAL4 enhancer trap specific to the 
tubule stellate cells. 

(Sozen et al., 1997); 
Dow/Davies Labs 

UAS-Best1 
w-;+/+;UAS-
Best1/TM3 

Best1 wild-type cDNA fusion with 
upstream activating sequence (UAS) 
promoter originally derived from 
Yeast. 

Venkat Chintapalli, 
Dow/Davies Labs 

UAS-Best1-
YFP 

w-; +/+; UAS-
Best1-YFP/TM3 

Best1 wild-type cDNA fusion with 
upstream UAS promoter and 
downstream yellow fluorescent 
protein (YFP). 

Venkat Chintapalli, 
Dow/Davies Labs 

UAS-Best1-
RNAi 

w-;+/+;UAS-
Best1-RNAi/TM3 

Best1 double stranded RNA (dsRNA) 
fusion with upstream UAS. 

Venkat Chintapalli, 
Dow/Davies Labs 

UAS-Best2 
w-; +/+; UAS-
Best2/TM3 

Best2 wild-type cDNA fusion with 
upstream UAS promoter. 

Venkat Chintapalli, 
Dow/Davies Labs 

UAS-Best2-
YFP 

w-; +/+; UAS-
Best2-YFP/TM3 

Best2 wild-type cDNA fusion with 
upstream UAS promoter and 
downstream yellow fluorescent 
protein (YFP). 

Venkat Chintapalli, 
Dow/Davies Labs 

UAS-Best2-
RNAi 

w-; +/+; UAS-
Best2-RNAi/TM3 

Best2 dsRNA fusion with upstream 
UAS. 

Venkat Chintapalli, 
Dow/Davies Labs 

UAS-Best3 
w-; +/+; UAS-
Best3-YFP/TM3 

Best3 wild-type cDNA fusion with 
upstream UAS promoter. 

Venkat Chintapalli, 
Dow/Davies Labs 

http://flybase.org/reports/FBal0018186.html
http://flybase.org/reports/FBal0018186.html
http://flybase.org/reports/FBal0018186.html
http://flybase.org/reports/FBst0000001.html
http://flybase.org/reports/FBst0000001.html
http://flybase.org/reports/FBst0000001.html
file:///L:/HOME%20DESKTOP/Ph.D/PhD%20Chapters/PhD%20primers.xlsx%23RANGE!_ENREF_315
file:///L:/HOME%20DESKTOP/Ph.D/PhD%20Chapters/PhD%20primers.xlsx%23RANGE!_ENREF_315
file:///L:/HOME%20DESKTOP/Ph.D/PhD%20Chapters/PhD%20primers.xlsx%23RANGE!_ENREF_315
file:///L:/HOME%20DESKTOP/Ph.D/PhD%20Chapters/PhD%20primers.xlsx%23RANGE!_ENREF_315


Chapter 2  62 

 
 

UAS-Best3-
YFP 

w-; UAS-Best3-
YFP/CyO;+/+ 

Best3 wild-type cDNA fusion with 
upstream UAS promoter and 
downstream yellow fluorescent 
protein (YFP). 

Venkat Chintapalli, 
Dow/Davies Labs 

UAS-Best3-
RNAi 

w-; +/+; UAS-
Best3-
RNAi/TM3,Sb 

Best3 dsRNA fusion with upstream UAS  

http://stockcenter.vdr
c.at/control/product/
~VIEW_INDEX=0/~VIE
W_SIZE=100/~produc
t_id=8371 

UAS-Best4 
w-; +/+; UAS-
Best4/TM3 

Best4 wild-type cDNA fusion with 
upstream UAS promoter. 

Venkat Chintapalli, 
Dow/Davies Labs 

UAS-Best4-
YFP 

w-; UAS-Best4-
YFP/CyO;+/+ 

Best4 wild-type cDNA fusion with 
upstream UAS promoter and 
downstream yellow fluorescent 
protein (YFP). 

Venkat Chintapalli, 
Dow/Davies Labs 

UAS-Best4-
RNAi 

w-; +/+; UAS-
Best3-
RNAi/UAS-
Best3-RNAi 

Best4 dsRNA fusion with upstream 
UAS. 

http://stockcenter.vdr
c.at/control/product/
~VIEW_INDEX=0/~VIE
W_SIZE=100/~produc
t_id=5272 

UAS-
Aequorin-
SKL 

w-; UAS-
Aequorin-
SKL/CyO; +/+ 

Aequorin wild-type cDNA fusion with 
upstream UAS and downstream 
canonical peroxisomal tripeptide 
signal sequence: SKL (Serine-Lysine-
Leucine) that targets the proteins to 
peroxisome lumen. 

Venkat Chintapalli, 
Dow/Davies Labs 

UAS-
Aequorin-
KVK-SKL 

w-; UAS-
Aequorin-KVK-
SKL/CyO; +/+ 

Aequorin wild-type cDNA fusion with 
upstream UAS and downstream 
hexapeptide sequence for KVK-SKL 
(Lysine-Valine-Lysine - Serine-Lysine-
Leucine) that targets the proteins to 
peroxisomes. Additional tripeptide 
preceding SKL has been shown to 
enhance the peroxisome luminal 
targeting. 

Venkat Chintapalli, 
Dow/Davies Labs 

UAS-
Aequorin 

w-; +/+; UAS-
Aequorin 

Aequorin wild-type cDNA fusion with 
upstream UAS. 

Dow/Davies Labs 

UAS-
pHluorin-
KVK-SKL 

w-;  UAS-
pHluorin-KVK-
SKL;+/+ 

pHluorin fusion with upstream UAS 
and downstream hexapeptide 
sequence for KVK-SKL (Lysine-Valine-
Lysine - Serine-Lysine-Leucine) that 
targets the proteins to peroxisomes. 
Additional tripeptide preceding SKL 
has been shown to enhance the 
peroxisomal targeting. 

Venkat Chintapalli, 
Dow/Davies Labs 

UAS-
pHluorin 

w-;  UAS-
pHluorin;+/+ 

pHluorin fusion with upstream UAS. 
Venkat Chintapalli, 
Dow/Davies Labs 

UAS-
CG11919-
RNAi 

w-;UAS-
CG11919-
RNAi;+/+ 

CG11919 dsRNA fusion with upstream 
UAS. 

http://stockcenter.vd
rc.at/control/product
/~VIEW_INDEX=0/~VIE
W_SIZE=100/~product
_id=32430 

UAS-
CG13827-
RNAi 

w-;UAS-
CG13827-RNAi 
;+/+ 

CG13827 dsRNA fusion with upstream 
UAS.  

http://stockcenter.vd
rc.at/control/product
/~VIEW_INDEX=0/~VIE
W_SIZE=100/~product
_id=101466 

http://stockcenter.vdrc.at/control/product/~VIEW_INDEX=0/~VIEW_SIZE=100/~product_id=8371
http://stockcenter.vdrc.at/control/product/~VIEW_INDEX=0/~VIEW_SIZE=100/~product_id=8371
http://stockcenter.vdrc.at/control/product/~VIEW_INDEX=0/~VIEW_SIZE=100/~product_id=8371
http://stockcenter.vdrc.at/control/product/~VIEW_INDEX=0/~VIEW_SIZE=100/~product_id=8371
http://stockcenter.vdrc.at/control/product/~VIEW_INDEX=0/~VIEW_SIZE=100/~product_id=8371
http://stockcenter.vdrc.at/control/product/~VIEW_INDEX=0/~VIEW_SIZE=100/~product_id=5272
http://stockcenter.vdrc.at/control/product/~VIEW_INDEX=0/~VIEW_SIZE=100/~product_id=5272
http://stockcenter.vdrc.at/control/product/~VIEW_INDEX=0/~VIEW_SIZE=100/~product_id=5272
http://stockcenter.vdrc.at/control/product/~VIEW_INDEX=0/~VIEW_SIZE=100/~product_id=5272
http://stockcenter.vdrc.at/control/product/~VIEW_INDEX=0/~VIEW_SIZE=100/~product_id=5272
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2.2 Normal fly husbandry 

Wildtype, Drosophila melanogaster (Canton S strain) flies were normally raised 

on standard medium (Appendix I) on a 12:12 h L:D cycle, at 23ºC, and at 55% 

room humidity. To facilitate the collection of accurately staged adults, a laying 

population of around 12 males and 12 females were transferred to fresh vials 

daily. When adults emerged, they were subsequently transferred to fresh vials 

on the day of emergence, and used 7 days later. Where larvae were used, they 

were of feeding third-instar. 

2.3 Tissue dissections 

Flies were anaesthetised briefly by chilling on ice, then immediately dissected 

for tissues in Drosophila Schneider’s medium (Invitrogen UK). Sample 

preparation information is presented in Table 2-2, including the number of 

tissues dissected, their definitions, total amount of RNA and Affymetrix 

amplification protocol for microarrays (Affymetrix Inc. UK). 

Table 2-2 FlyAtlas tissue descriptions. 
FlyAtlas Tissue Definitions 

Tissue Definition  Number 
per sample 

Total amount 
of RNA used 
(ng) 

Affymetrix 
protocol 

Adult Brain Excludes eyes and head capsule. 200-250 1500 One-Cycle 

Adult Head Severed at the neck. Includes 
brain, eyes, cuticle and some fat 
body. 

100-150 1500 One-Cycle 

Adult Eye Dissected from the brain and the 
rest of the head capsule. So 
includes plenty of cuticle. 

40-60 100 IVT-Express 

Adult 
Thoracicoab
dominal 
ganglion 

The fused thoracic ganglia that are 
easily dissected from the ventral 
surface of the thorax after 
removing the head. 

250-300 1500 One-Cycle 

Adult 
Salivary 
gland 

The glands lying on the ventral 
lateral sides of the thorax. 

80-100 1500 One-Cycle 

Adult Crop The round diverticulum of the 
foregut, including the stalk. 

100-120 1500 One-Cycle 

Adult Midgut From (and including) the 
proventriculus, down to just in 
front of the insertion of the 
Malpighian tubules. 

40-60 1500 One-Cycle 

Adult Tubule Both anterior and posterior tubules 
with their common ureters, 
severed at the junction with the 
gut. 

20 each 
separately 

100 Two-Cycle 
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Adult 
Hindgut 

From the insertion of the tubules, 
back to and including the rectum. 

80-100 1500 One-Cycle 

Adult Heart The Dorsal abdominal heart, 
necessarily including some 
adherent tissues (such as fat body) 

30-40 100 IVT-Express 

Adult Fat 
body 

Identifiable fat body from the 
thorax and abdomen. 

60-80 1500 One-Cycle 

Adult Ovary Ovaries from mated females, 
excluding the uterus and 
spermatheca. 

20-30 1500 One-Cycle 

Adult Testis Testis excluding the accessory 
glands. 

50-60 1500 One-Cycle 

Adult Male 
accessory 
glands 

Accessory glands excluding other 
parts of the male genital tract. 

50-60 1500 One-Cycle 

Adult Virgin 
spermatheca 

Spermatheca (excluding ovaries 
and uterus) from 7-day old virgin 
females kept isolated from males 
from adult emergence. 

40-50 100 Two-Cycle 

Adult Mated 
spermatheca 

Spermatheca (excluding ovaries 
and uterus) from 7-day old females 
allowed to mate from emergence. 

40-50 100 Two-Cycle 

Adult 
carcass 

What’s left of the thorax and 
abdomen after the gut and sexual 
tracts have been removed. 

40-60 1500 One-Cycle 

Larval CNS The brain and thoracic ganglia. 60-80 1500 One-Cycle 

Larval 
Salivary 
gland 

Salivary glands including ducts. 80-100 1500 One-Cycle 

Larval 
midgut 

From (and including) the 
proventriculus, down to just in 
front of the insertion of the 
Malpighian tubules. 

40-60 1500 One-Cycle 

Larval 
tubule 

Both anterior and posterior tubules 
with their common ureters, 
severed at the junction with the 
gut. 

60-80 1500 One-Cycle 

Larval 
hindgut 

From the insertion of the tubules, 
back to and including the rectum. 

80-100 1500 One-Cycle 

Larval fat 
body 

Prominent lateral fat bodies. 30-40 1500 One-Cycle 

Larval 
trachea 

The major tracheal trunks, 
excluding spiracles and obvious 
adherent tissues. 

40-50 100 IVT-Express 

Larval 
carcass 

What’s left after the other tissues 
have been removed. 

40-50 1500 One-Cycle 

Drosophila 
S2 cells 
(growing) 
(Invitrogen-
UK) 

S2 cells growing at 25°C in 
Schneider’s medium, before 
confluence. 

3-5 million 
cells 

1500 One-Cycle 

Whole fly Whole animal. 15-20 1500 One-Cycle 
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Except for the ovary, testis and accessory gland, equal number of males and 

females contributed to each RNA sample. As the tubules are bilaterally 

asymmetric, additional care was taken to include equal numbers of anterior and 

posterior tubules in each sample. Sufficient tissues were dissected in Schneider’s 

medium to obtain 2 µg total RNA. As this involves significant pooling for such 

tiny tissues, tissues were collected immediately after each dissection into RLT 

buffer for RNA extraction (Section 2.4). This procedure was repeated 4 times for 

each tissue; that is, each Affymetrix chip corresponds to an independent 

biological replicate. For whole fly RNA extraction at least 30 flies were used.  

2.4 Total RNA extraction 

RNA extraction was carried out in a nuclease-free environment using RNeasy Mini 

columns according to the manufacturer’s protocol (Qiagen UK). After the 

dissections and/or collection of tissues or whole flies, they were immediately 

frozen at -80°C. Homogenizations were done manually using a small blue 

rod/pestle for whole flies and heads, or an ultrasonic cell disruptor (Misonix, 

Inc., USA) for other soft tissues.  

Then the homogenate was centrifuged for 3 min and supernatant was collected 

into a fresh 1.5 ml microcentrifuge tube. The rest of the protocol was according 

to Qiagen kit. An on column DNA digestion step (using Qiagen DNAase kit) was 

included for reducing genomic DNA contamination. RNA was eluted using 20 µl of 

nuclease-free water from the column and it was stored at -80°C until further 

use. 

2.5 Complementary DNA (cDNA) synthesis 

cDNAs for PCR and qPCR were synthesised using 500 - 1000 ng of total RNA. 

Recombinant reverse transcriptase (SuperScript® II; Invitrogen UK) was used to 

reverse transcribe the RNA in a total of 20 µl of reaction volume. Firstly, Oligo 

(dT)12-18mers (500 µg/ml), 500 - 1000 ng total RNA, 1 µl dNTP (10 mM each of 

dCTP, dGTP, dATP and dTTP) and sterile distilled water to make up to 12 µl total 

volume were assembled in a PCR tube. This mixture was heated to 65°C for 5 

min and chilled for 2 min on ice.  



Chapter 2  66 

 
 

The contents were collected by brief centrifugation and mixed with 4 µl of 5x 

first-strand buffer, 2 µl of 0.1 M DTT and 1 µl of RNAaseOUT® (40 units/µl; 

Invitrogen). The reaction mixture was then incubated for 2 min at 42°C. After 

the incubation, 1 µl (200 units) of SuperScript® II RT was added and mixed by 

pipetting gently up and down. Then incubated at 42°C for further 50 min in a 

Hybaid PCR express thermal cycler (Thermo UK). Finally, the reaction was 

terminated by heating at 70°C for 15 min and centrifuged briefly to collect the 

cDNA contents at the bottom. The cDNA made was used for normal PCR, qPCR or 

Pfu-based PCR as described in the following sections. 

2.6 Oligonucleotide (primer) synthesis 

Oligonucleotide primers were designed using MacVector 11.1.1 (MacVector, Inc. 

UK) or other web resources (Primer3, NCBI; Oligodesign, Invitrogen UK). The 

sequences were sent to the MWG Biotech custom primer service for synthesis on 

a 0.01 μmol scale. This includes purification using high purity salt-free (HPSF) 

technology (MWG) based on reverse phased chromatography and quality 

assessment by matrix assisted laser desorption ionisation - time of flight (MALDI-

TOF) analysis. Primer stock concentrations at 100 µM were obtained for each 

primer by resuspending the lyophilised powder in ddH2O and a working 

concentration of 6.6 µM was prepared from the stocks. Primers were stored at -

20 ºC until further use.  

2.7 Polymerase chain reaction (PCR) 

2.7.1 Standard PCR 

Standard PCR was performed using pre-aliquoted ready-to-use mastermix in a 

Hybaid thermal cycler (Thermo UK). This mix uses the Taq-Polymerase 

(modified) which has 5’ to 3’ polymerization and exonuclease activity but lacks 

3’ to 5’ exonuclease (proofreading) activity. The mastermix includes 

Thermoprime plus DNA polymerase (1.24 U) (Thermo UK), Tris-HCl (75 Mm; pH 

8.8 at 25°C), (NH4)2 SO4 (20 Mm), MgCl2 (1.5 Mm), Tween 20 (0.01%), dNTPs (0.2 

mM each). PCR reactions were normally performed in a total of 25 µl volume. 

The cycling parameters used are presented in the table below. PCR products 

were separated by agarose gel electrophoresis described in section 2.9.  
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Table 2-3 Typical cyclic conditions for PCR. 
Step Number 

of 
cycles 

Temperature Duration Principle 

Initial 
denaturation 

1 95°C 5 - 10 min To denature secondary 
structures 

Denaturation 30 95°C 30s To denature the end products 
of each PCR cycle 

Annealing 55 - 62°C 30s Temperature is set depending 
on the melting temperature of 

the primers used; typically 
~5°C lower than Tm 

Extension 72°C 30s - 5 min Extension time is set at the 
rate of 20 basepairs/sec 

Final extension 1 72°C 10 min For the final extension of 
incomplete ssDNA 

 

2.7.2 Pfu-based Herculase II Fusion polymerase PCR 

Pfu-based Herculase II fusion polymerase (Agilent UK) was used for amplifying 

longer products. It has a high affinity double-stranded DNA binding domain that 

enhances the processivity and increases the yield.  The protocol used is 

presented in the table below. 

Table 2-4 Pfu-based Herculase II fusion polymerase PCR reaction mix and protocol. 
Parameter Targets <1 kb Targets 1 - 10 kb cDNA Targets 

Input template 
DNA 

100 - 300 ng 
genomic DNA or 1 
- 30 ng vector DNA 

100 - 400 ng 
genomic DNA or 1 - 
30 ng vector DNA 

1 - 2 µl cDNA from RT-PCR 
reaction 

Herculase II 
polymerase 

0.5 µl 1 µl 1 µl 

DMSO 0 - 8% final 
concentration 

0 - 8% final 
concentration 

0 - 8% final concentration 

Primers (each) 0.25 µm 0.25 µm 0.25 µm 

dNTPs 250 µm each dNTP 250 µm each dNTP 400 µm each dNTP 

Extension time 30s 30s per kb 60s per kb 

Denaturing 
temperature 

95°C 95°C 95°C 

Extension 
temperature 

72°C 72°C 68°C 

 

2.8 Quantitative reverse-transcriptase PCR (qPCR) 

QPCR was performed using SyberGreen® chemistry incorporating high-fidelity 

Taq-polymerase (Finnzymes GRI UK), and cycling was performed using DNA 

Opticon Engine (Bio-Rad UK) and amplification was monitored in real time using 

the Opticon III software.  
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QPCR was performed using either cDNA or RNA as the starting material. The 

negative controls (without Superscript II) and/or a blank (without cDNA) were 

maintained to monitor and subtract the genomic DNA contamination and 

background fluorescence respectively. The primer sequences for the specified 

gene amplifications are provided in Appendix VI. PCR conditions commonly used 

included denaturation at 94°C for 30s, annealing for 30 s at primer-dependent 

temperature and extension for 30 s at 72°C. An additional step (75-76°C for 10s) 

was included to melt primer dimers before reading the SyberGreen fluorescence 

of amplification products. The total number of PCR cycles used was 30-40. 

Finally, a melting curve step from 70°C to 90°C was used to determine if the 

primers amplified one specific product. The right PCR product was identified 

using the melting curve. If the melting curve shows one single peak like that is 

shown in Figure 2-1, at the right melting temperature predicted for the PCR 

product, then the expression 

data were further analysed. 

 

Figure 2-1 Best2 qPCR product 
melting curve. 

 

 

 

 
 

The ribosomal rp49 (or rpl32) or alpha-Tubulin84B genes were used as a 

reference controls (being house-keeping genes) to normalize the data. The data 

obtained was then expressed as fold difference on the basis of CT values using 

the 2-∆∆CT method (van Iterson et al., 2009). The standard error mean (SEM) 

and P-values for statistical significance were calculated using GraphPad Prism 

statistics software (GraphPad Software USA). 
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2.9 Agarose gel electrophoresis 

PCR products were run on 1% agarose gel to assess quality and specificity. Gel 

was casted using 0.5x TBE [90 mM Tris, 90 mM boric acid (pH 8.3), 2 mM EDTA], 

containing 0.1 µg/ml EtBr as described in (Joseph Sambrook, 2001). 6x loading 

dye [0.25% (w/v) bromophenol blue, 0.25% (w/v) xylene cyanol, 30% (v/v) 

glycerol in water] was added to samples and a 1 kb ladder (Invitrogen) to a final 

concentration of 1x 5 µl (500 ng) of ladder and 10-20 µl samples were loaded 

into the wells.  

Typically these were run at 100 V; the dye front was followed for electrophoresis 

termination and the DNA was visualised using high performance ultraviolet 

transilluminator (UVP UK) and compared against the ladder band size. Where 

needed gel extraction of PCR products was carried out as described in section 

2.10 and quantified using NanoDrop, described in section 2.11.   

2.10 PCR/Gel purification 

PCR products and the products excised from the gels were purified using Qiagen 

PCR/Gel purification kit according to manufacturer guidelines. DNA was eluted 

in 20-30 µl of nuclease-free water. 

2.11 Quantification of nucleic acids 

DNA and RNA quantification was performed using a NanoDrop 1000 

spectrophotometer (Thermo UK) in 1.5 µl sample volume. NanoDrop is a more 

robust spectrophotometer as the path lengths of 1.0 mm and 0.2 mm are used, 

compared to a standard 10.0 mm path spectrophotometer. This will allow it to 

quantify 50 times more concentrated samples than the normal ones. 

Quantity was automatically calculated using the formulas below. First, 

background absorbance was read using the reference (water or the buffer in 

which the nucleic acid was diluted) and zeroed for background. Then the sample 

was read for absorbance at two wavelengths:  A260 and A280 nm and their ratio 

(A260/A280) was used to assess the purity of DNA and/or RNA. A ratio of ~1.8 for 

DNA and ~2.0 for RNA were used as a guide for sample purity.  
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If the ratio was appreciably lower or higher in either case, the samples were 

discarded. Quantities were calculated as ng/µl using a modified Beer-Lambart 

equation based on A260 and their respective analysis constants for both DNA and 

RNA.  

C = (A * e)/b 

Where c is the nucleic acid concentration in ng/µl, A is the absorbance in AU, e 

is the wavelength-dependent extinction coefficient in ng-cm/ µl and b is the 

path length in cm. And the extinction coefficients used were 50, 33 and 40 for 

double-stranded DNA, single-stranded DNA (cDNA) and RNA respectively.  

2.12 Quality control of nucleic acids 

Due to environmental abundance of RNases, and the instability of RNA, integrity 

checks for quality control were performed before any RNA dependent 

application was carried out. In addition to NanoDrop A260/A280 ratio, an Agilent 

2100 Bioanalyzer (Agilent UK), based on the computer assisted nanogel 

electrophoresis for total RNA and complementary RNA (cRNA), was used for 

quality control. 

2.13 Affymetrix microarrays 

Total 2 µg of RNA was reverse-transcribed and in vitro transcribed according to 

the standard Affymetrix protocol to produce biotinylated complementary RNA 

(cRNA). Prior to the reverse transcription, poly-A RNA controls were spiked into 

the RNA samples in known staggering concentrations which help to monitor the 

labelling process independently from the quality of starting RNA samples.  The 

cRNA was then purified and checked for integrity (Section 2.12) and fragmented. 

Fragmented cRNA was hybridized on to Drosophila genome version 2 GeneChip® 

expression arrays (4 biological replicates per tissue). Hybridized probes were 

then stained using streptavidin phycoerythrin conjugate and scanned with an 

Affymetrix® GeneChip® Scanner 3000 7G. The overview of the GeneChip® 3’ IVT 

express kit labelling assay is shown in Figure 2-2. An additional amplification 

step was used as necessary for RNA samples less than 2 µg in the two-round 
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amplification protocol. The starting amount of RNA for the two-round 

amplification was 100 ng. 

 

Figure 2-2 Overview of the GeneChip 3' IVT express labelling assay (taken from 
www.affymetrix.com). 

 
For the FlyAtlas, data (signal intensity file or CEL file) were processed using 

Affymetrix® proprietary GCOS software (v 1.4) to obtain signal intensity values. 

Then these were exported into the data mining tool (v 3.1) and individual tissue 

specific transcriptomes were compared against the whole fly transcriptome to 

obtain t-test P-value for the statistical significance for differential expression of 

each probeset.  
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2.14 Microarray data analysis 

For advanced analysis and annotation, Partek® Genomics Suite™ (Partek Inc. UK) 

was used. Raw data (signal intensity) CEL files were obtained from the 

Affymetrix® GCOS and uploaded into GeneSpring for further data processing and 

analysis. In Partek®, data was analysed in several sequential steps which include 

data processing, normalisation, grouping, interpretation, quality control, 

statistical analysis and functional annotation.  

2.14.1 Data processing 

Standard data processing includes summarization, log transformation and 

baseline transformation. 

2.14.2 Normalisation  

Robust multi chip average method (RMA) was employed as the normalisation 

algorithm to normalise the signal intensity (Irizarry et al., 2003). The baseline to 

median of samples was chosen, in which, for each probe, the median of the log 

summarized signal intensity values from all the samples was calculated and 

subtracted from each of the samples. 

2.14.3 Grouping 

As four biological replicates were used (for each tissue sample), they were 

grouped into one condition (e.g., tissue) to obtain the average and SEM. The fold 

change was obtained by comparing the averaged signal intensities of each 

individual tissue transcriptome against the average of their respective whole fly 

or feeding whole larvae transcriptomes. 

2.14.4 Interpretation 

Replicate samples were grouped in the previous section as tissues. Tissue 

interpretation was used for sample analysis. 
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2.14.5 Quality control 

 

Figure 2-3 Quality control using hybridization controls. 
Log2 transformed signal intensities of Affymetrix standard hybridization controls are 
plotted on the graph for quality control of mRNA hybridization. Each line shows a single 
biological replicate of a tissue for different hybridization controls that are spiked in during 
the cRNA preparation.  

Quality control of the microarray experiment was performed on the 

transcriptome data to assess the hybridization and labelling efficiency across 

replicates, interreplicate signal variations independently of the starting mRNA 

quality. Hybridization controls were composed of a mixture of biotin-labelled 

cRNA transcripts of bioB, bioC, bioD, and cre prepared in staggered 

concentrations (1.5, 5, 25, and 100 pm respectively). This mixture was spiked-in 

into the hybridization cocktail. bioB is at the level of assay sensitivity and should 

be present at least 50% of the time. bioC, bioD and cre must be Present all of 

the time and must appear in increasing concentrations. The hybridization 

controls show the signal value profiles of these transcripts (only 3' probesets are 

taken) where the X-axis represents the Biotin labelled cRNA transcripts and the 

Y-axis represents the log of the normalized signal intensity. 

2.14.6 Principal Component Analysis (PCA) 

Principal component analysis (PCA) reduces the dimensionality of the data by 

taking linear combinations of dimensions. The gene expression data for each 

tissue exist in the form of rows (genes) and columns (tissues). So the major 

trends in the data are identified on the basis of these. The dimentionality of the 

data was reduced to three principal components that represent the total 

variation in the data (Figure 2-4). The four biological replicates of each tissue (in 

most cases) show less variation. 
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Figure 2-4 Quality control of biological replicates of each individual tissue of the FlyAtlas 
using PCA.  
PCA was performed on the replicated tissue transcriptomes. Similar tissue replicates are 
colour coded, and show the least variation (in most cases). (A) First two components 
capture the maximum variation. (B) The first and the third components correspond to the 
rest of the variation. Epithelial transcriptomes analysed as part of the Chapter 4 show less 
amount of variation. 
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2.14.7 Statistical analysis 

Each individual tissue transcriptome was compared against the whole fly 

transcriptome. The unpaired t-test was performed on two groups (tissue 

transcriptome versus whole fly transcriptome) and P-values were calculated. The 

multiple testing correction, Benjamini and Hochberg false discovery rate (FDR) 

being the least stringency method (Dudoit et al, 2000) was used for accounting 

false positives. The standard P-value cut-off 0.05 was used to obtain significantly 

‘differentially expressed genes’.  

2.14.8 Functional annotation 

Hierarchical clustering (HC) and GO methods were used to represent the data on 

an intuitive heat map and to functionally annotate using ontology terms 

respectively. HC was performed using GeneSpring™ standard method (Eisen et 

al., 1998). HC was performed using the filtered entities with Pearson uncentered 

similarity measure and average linkage rule. GO-enrichment P-values, also 

known as the enrichment scores, signify the relative importance or significance 

of the GO term among the genes in the selection compared to the genes in the 

whole dataset. The P-value cut-off was set at 0.05. Corrected P-value was also 

calculated to correct for false positives using Benjamini and Hochberg FDR. 

2.15 Fold change (FC) analysis 

Before the fold change analysis, all the entities (probe sets) filtered on 

expression on (10 - 100)th percentile in the raw data to filter for non-expressed 

probesets in any of the replicate.  These were called ‘filtered entities’. The 

ratio between condition 1 (tissue) and condition 2 (whole fly) was calculated 

which was called as the FC. FC analysis was used to identify genes with 

expression ratios or differences between two conditions, outside of a given cut-

off or threshold fold change.  

2.16 Ingenuity pathway analysis (IPA) 

The networks and functional analyses were generated through the use of 

Ingenuity Pathways Analysis or IPA (Ingenuity® Systems USA).  
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The datasets containing Drosophila Affymetrix probe set IDs and corresponding 

FCs were uploaded into the application. Each probe set ID was mapped to its 

corresponding gene object in the Ingenuity Pathways Knowledge Base via 

ortholog mapping (to their vertebrate counterparts including Human, Mouse, Rat 

and Canine). IPA considers Homologene clusters for the ortholog/paralog 

mapping (Wheeler et al., 2008). The genes significantly enriched in pathways, 

functions, lists were generated and compared to each other for specific, 

different and common functional themes.  

2.17 Molecular cloning 

2.17.1 Competent bacterial strains and plasmids 

Table 2-5 Fly strains and plasmids used. 

Strain Genotype Use 

TOP10 competent 
cells (Invitrogen) 

(F- mcrA, D(mrr-hsdRMS-mcrBC), f80lacZ 
DM15, DlacX74, recA1, deoR, araD139, 
D(ara-leu)7697,galU, galK, rpsL, (StrR), 
endA1,nupG). 

For plasmid transformation 
and propagation of TOPO- 
related clones 

DH5α subcloning 
efficiency 
competent cells 
(Invitrogen) 

(F- f80dlacZ DM15, D(lacZYA-argF), U169, 
deoR, recA1, endA1, hsdR17 (rK-,mK+), 
phoA, supE44,l-, thi-1, gyrA96, relA1). 

For normal plasmid 
transformation and 
propagation 

Plasmid Use 

pP[UAST] 
For germline transformation of cloned sequences under control of the UAS 
enhancer sequence (Brand and Perrimon, 1993).  

pCR®2.1-TOPO® 
For cloning poly adenylated PCR products according to the TOPO TA 
cloning kit protocol (Invitrogen). 

pMT/V5-His-
TOPOÒ 

For cloning of PCR products for expression in S2 cells (Invitrogen) 

pTW 

Gateway cloning destination vector for recombining entry clones (in 
pENTR) to generate final clones for germline transformation of cDNA of 
interest under the control of the upstream UAS in the UAS/GAL4 binary 
induction of transgenes in vivo.  

pTWV 

Gateway cloning destination vector for recombining entry clones (in 
pENTR) to generate final clones for germline transformation of cDNA of 
interest under the control of the upstream UAS. It also incorporates a C-
terminal yellow fluorescent protein (YFP) sequence for fluorescent 
tagging. 

pRISE 

Gateway cloning destination vector for recombining entry clones (in 
pENTR) to generate final clones for germline transformation of dsRNA of 
interest under the control of the upstream UAS (Kondo et al., 2006).  

pP[UAST Aequorin] 
Used to append peroxisomal signal sequence to its C-terminal before the 
stop codon for germline transformation. 
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2.17.2 Gateway® cloning 

The Gateway® cloning system (Invitrogen), which uses homologous 

recombination technique, was used to clone the cDNA or dsRNA amplicons for 

germline transformation of Drosophila embryos for GAL4/UAS system induction 

of transgene expression in vivo in the flies. The system uses entry (pENTR) and 

destination vectors (P-element containing germline transformation vectors).  

2.17.2.1 Primer design and PCR amplification 

For Gateway® entry cloning, a forward primer was designed to contain a CACC 

sequence for directional cloning into the entry vector: pENTR. PCR 

amplifications were performed using Herculase® fusion polymerase according to 

the protocol in Section 2.7.2. 

2.17.2.2 Entry clones 

Entry clones were made using pENTR vector according to the manufacturer’s 

instructions (Invitrogen). 

2.17.2.3 Destination vectors 

Destination vectors used include pRISE, pTW and pTWV for RNAi, normal 

overexpressor and tagged overexpressor constructs respectively. 

2.17.2.4 Gateway® recombination using LR-clonase 

Gateway® recombination of entry and destination clones was performed using 

LR-clonase enzyme mix according to the manufacturer’s protocol (Invitrogen). 

Essentially, the enzyme catalyses the in vitro homologous recombination 

between an entry clone (pENTR-attL-GENE OF INTEREST-attL) and a destination 

vector (containing attR sites) to generate an expression clone of interest.  

2.17.3 Transformation of E. coli 

Competent E. coli cells were transformed with the construct of interest 

according to the manufacturer’s protocol. Briefly, cells were thawed on ice and 

the plasmid was mixed and incubated for 5 min on ice. The positive clones were 

identified using the antibiotic resistance markers of the clones generated. 
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2.17.4 Purification of plasmid DNA 

Purification of plasmid DNA was done using Qiagen mini or maxi kits (Qiagen UK). 

The overnight grown cultures were spun down to pellet the cells. The cells were 

lysed in the lysis buffer and DNA was either column eluted in 30 µl of water (for 

minipreps) or resuspended in 500 µl of water (for maxipreps). 

2.17.5 Validation of cloning products 

The cloning products obtained using different cloning procedures were validated 

for sequence, direction and length using PCR, restriction enzyme digestion 

and/or sequencing. 

2.17.5.1 PCR 

For PCR validation, the clones were amplified using the combination of primers: 

one from the transgene, the other from the vector. This confirms whether it is 

inserted in the right direction and has the full length transgene. However, this 

approach was only employed for transgenes less than 2000 bp as the increase in 

length causes the cycling conditions greatly vary.  

2.17.5.2 Restriction enzyme digestion 

Restriction enzyme digestion was employed if the transgenes were inserted in 

the right direction and if they were right size.  

2.17.5.3 Sequencing 

Before they were sent off to be microinjected, DNA sequencing was done on the 

constructs for any possible errors in the proof reading of the polymerase.  

2.17.6 Normal cDNA constructs  

pTW destination vector was used to recombine the pENTR entry clones for the 

normal overexpression constructs Table 2-5. 
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2.17.7 YFP fusion cDNA constructs  

pTWV destination vector with a C-terminal YFP tag was used to recombine the 

pENTR entry clones for the tagged constructs Table 2-5. 

2.17.8 Double-stranded RNA constructs  

pRISE vector was used for making double stranded RNA constructs for transgenic 

RNAi flies for GAL4/UAS system induction of RNAi in vivo. Gateway 

recombination system was used for RNAi constructs where pRISE (Kondo et al., 

2006)  is used as donor and pENTR D TOPO® as an entry vector. RNAi constructs 

were made for Best1 and Best2. These were sent for Drosophila embryo germ 

line transformation to BestGene Company (USA). Best3 and Best4 UAS RNAi 

stocks were obtained from the collection of Vienna Drosophila Research Centre 

(http://stockcenter.vdrc.at/control/main) and/or in NIG-Fly, Japan Stock 

centre (http://www.shigen.nig.ac.jp/fly/nigfly/index.jsp). 

2.17.9 DES® constructs  

Drosophila expression system (DES®) constructs were designed for stable and 

transient expression of the protein of interest in vitro in S2 cells. A map is 

presented in Figure 2-5. PCR products (transgenes) with Adenine (A) overhangs 

produced using Taq-polymerase cloned into DES-TOPO-TA vector. Transient 

expression was induced using CuSO4 to activate the metallothionein promoter. 

These constructs were used for subcellular localisation and quantitative Ca2+ 

measurements. 



Chapter 2  80 

 
 

 

Figure 2-5 DES® TOPO ®TA vector map. 
This vector was used for cloning of transgenes of interest for transient expression in vitro 
in S2 cells. PCR products were generated to have Adenine (A) overhangs and cloned into 
the linearised covalently bound Topoisomerase (TOPO) containing vector that joins 
thymidines with adenosine overhangs of the product. 

2.17.10 Dual promoter constructs for in situ hybridization 

PCR II TOPO vector, with dual promoters either side of the multiple cloning site, 

was used for making RNA probe constructs for in situ hybridization.  

2.17.11 Normal cloning procedure 

PCR products were directly cloned, using the Invitrogen TOPO cloning kit into 

appropriate TOPO vectors according to the manufacturers’ instructions and 

transformed into TOP10 cells or DH5α. 100 µl of the transformed cells was then 

spread onto L-agar plates containing 100 µg/ml ampicillin or the antibiotic 

appropriate to the resistant marker of the plasmid, and incubated overnight at 

37C.  
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The transformants were removed as single colonies and grown overnight (with 

shaking) at 37C in 5 ml or 100 ml L-broth (Appendix II) using appropriate 

antibiotic for selecting the clones. 

2.18 Drosophila S2 cell culture 

2.18.1 Passaging 

Drosophila S2 cells (Invitrogen) were maintained in complete Schneider’s 

medium or CSM [Schneider’s medium supplemented with 10 % fetal calf serum 

(FCS)] at 28ºC.  15 ml of cells were kept in T75 flasks.  Cells were passaged when 

their density reached 107 cells/ml. The weakly adherent S2 cells were 

resuspended gently by pipetting and then diluted by adding 6 ml of cells into 9 

ml of CSM in a fresh flask.   

2.18.2 Transient transfection 

Transient transfection was carried out in tissue culture six-well plates.  24 hours 

before transfection 6 x 106 cells in a volume of 3 ml were seeded into individual 

wells.  The calcium phosphate method of transfection was used.  Plasmid DNA 

was prepared using a maxi-prep kit (Qiagen) and eluted in TE buffer.  For each 

transfection a 1.5 ml microcentrifuge tube containing 19 µg of each plasmid 

DNA, 240 mM CaCl2 in a total volume of 300 µl was set up.  This was mixed well 

and then added drop-wise over 1-2 min to 300 µl of 2x HEPES buffered saline 

(HBS) whilst bubbling air through to mix with a sterile Pasteur pipette.  After 

mixing the DNA/calcium phosphate was allowed to precipitate for 30 min at RT 

before being added drop-wise to the seeded S2 cells whilst swirling continually 

to mix.   

After overnight incubation at 28ºC the cells were resuspended by pipetting, 

pelleted by centrifugation at 1500 g at RT for 1 min and resuspended in 3 ml 

fresh CSM to wash.  This step was repeated twice more before cells were 

resuspended in 3 ml of CSM and returned to the six-well plates after residual 

cells had been carefully aspirated from the plates with a P200.  If a plasmid 

encoding a metal inducible promoter was used, CuSO4 to 0.5 mM was added to 

the cells to induce expression and expression was allowed to proceed for 40-42 

h.   
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Cells were then harvested by centrifugation at 1,500 g for 1 min at RT, washed 

once in PBS, pelleted and either frozen at -70ºC before use or used immediately. 

2.19 Peroxisome Isolation 

2.19.1 Tissue preparation 

A total of 100 flies were collected for peroxisome isolation using gradient 

centrifugation using the Pierce peroxisome isolation kit (Pierce UK). First the 

whole flies were washed in sterile PBS and homogenised for 30 s at 8000 rpm (on 

ice) in 800 µl of peroxisome enrichment buffer A. Prior to the homogenisation, 

protease inhibitor cocktail (Sigma) was added (1:100) to the solutions. After 

centrifugation in buffer A, 800 µl of peroxisome enrichment buffer B was added 

and the tube inverted to mix 15 times. The mix was centrifuged at 500 g for 10 

min at 4°C and supernatant was transferred to a new 2 ml tube by discarding the 

pellet. Lipids present after the centrifugation were removed from the surface 

using a pipette before the transfer of the supernatant.  

2.19.2 Gradient centrifugation 

Gradient centrifugation was performed using the Optiprep solution containing 

60% iodixanol in water with a density of 1.32 g/ml. Optiprep solution was 

specified to be endotoxin-free, non-ionic, non-toxic to cells and metabolically 

inert. The high density facilitates the fractionation of cells by flotation from a 

dense load zone through a continuous gradient. Two gradients of the Optiprep 

media (35% and 30%) were made using gradient dilution buffer and overlaid one 

top of the other in ultracentrifuge tubes (Beckman UK) and the sample 

(prepared in section 2.19.1) on top of them. Then the samples were 

ultracentrifuged at 180, 000 g for 90 min at 4°C in a Beckman Optima TL 

ultracentrifuge. The visible white band that appears at the bottom of the 

centrifuge was collected by pipetting for peroxisomes. And the samples were 

centrifuged for 20 mins at 18, 000 g to get rid of the Optiprep™ media to obtain 

pure peroxisomes as the pellet. These were stored at -20°C until further use. 

The peroxisomes were resuspended in buffers according to the downstream 

application.  
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2.20 Protein analysis 

2.20.1 Extraction  

Whole fly protein was extracted from about 10-50 flies. Flies were homogenised 

in 100 µl of Tris-Lysis buffer (2 % (w/v) SDS, 70 mM Tris, pH 6.8) containing 2 µl 

of Sigma protease inhibitor cocktail (Sigma) in a 1.5 ml microcentrifuge tube.  

Flies were homogenised using a hand-held pestle and then a Microson ultrasonic 

cell disrupter, until the sample appeared homogeneous.  The sample was then 

centrifuged at 13 000 rpm for 10 min to remove debris, and the supernatant 

transferred into a new tube. 

2.20.2 Bradford assay 

The Bradford protein assay was used to quantify the protein concentration using 

Bovine serum albumin (BSA) protein standard interpolation.  Assay carried out in 

a 96-well plate.  Appropriate standard concentrations were used to obtain the 

sample concentrations. Typically, eight BSA standards of 0-5 µg in water were 

set up in triplicate in a 50 µl total volume.  5 µl of protein supernatant 

(approximately 3-4 µg of protein) was also set up in triplicate in a final volume 

of 50 µl.  200 µl of a 1 in 5 dilution of Bradford reagent concentrate (BioRad UK) 

was added to both standard and sample proteins in the wells.  The absorbance at 

590 nm was read using a plate reader and each standard absorbance was plotted 

against the known concentration to interpolate the unknown protein sample 

absorbance to calculate their quantities. 

2.20.3 SDS-PAGE separation 

Electrophoretic separation of proteins was performed using Novex NuPAGE 

electrophoresis system. Novex Xcell II kit was used with 12-well 4-12 % Bis-

Tris-HCl (Bis(2-hydroxyethyl) imino-tris (hydroxymethyl) methane-HCl) buffered 

(pH 6.4) polyacrylamide gels were used. The 1x NuPAGE MOPS SDS running 

buffer was used: diluted from a 20x MOPS SDS running buffer stock solution 

(Appendix V). The gels were then run at 200 V constant with an expected 

current of 100-115 mA/gel at the start and 60-70 mA/gel at the end, for 

approximately 50 min. 
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Protein samples (20 µg) were prepared by adding 6x SDS-PAGE loading buffer to 

a 1X loading buffer final concentration. The samples were briefly vortexed, 

heated to 95°C for 5 min and pulse-spun to collect the samples at the bottom 

and loaded into the wells. Protein molecular weight marker: ECL Plex™ 

fluorescent Rainbow Marker (GE Life Sciences UK) was used for sizing the 

proteins on the gel. 

2.20.4 Western blotting 

Proteins along with the rainbow marker were separated on SDS-PAGE were 

transferred on to Hybond ECL membrane (GE Life Sciences, UK) for western 

blotting. Protein blots were then removed from the module and the efficiency of 

the transfer was checked by the fluorescent rainbow marker. After staining, the 

blots were washed with water to make the bands visible and after visualisation, 

washed with transfer solution before blocking. Blocking was done in PBS, 0.1 % 

(v/v) Tween 20, 5 % (w/v) Marvel milk powder for 1 h (at RT) to overnight (at 

4C). The blots were briefly washed for 15 min in PBS, 0.1 % (v/v) Tween 20. The 

primary antibody (at various concentrations) was then incubated in blocking 

solution for 3 h (at RT) to overnight (at 4C). Washes followed in PBS, 0.1 % (v/v) 

Tween 20, 1x 15 min, 3x 5 min on a horizontal shaker at RT. The secondary 

antibody (at various concentrations) was then incubated in PBS, 0.1 % (v/v) 

Tween 20 for 1 h at RT and the blot washed well for at least 3 h at RT in PBS 

before detection. Cyanine fluorescent dyes Cy5- or Cy3-conjugated secondary 

antibodies were used as the secondary antibodies (Amersham UK).  

2.21 Production and purification of antibodies        

2.21.1 Production 

Peptide sequences consisting 14 amino acids were designed for the unique 

regions of each individual bestrophin using Invitrogen peptide Select online free 

software. A  Cysteine (C) was added to the N terminus of the peptide so that 

they could be KLH conjugated. These peptide sequences were sent to 

Genosphere Biotechnologies (France) in order to synthesize the peptide in vitro 

and produce anti-rabbit polyclonal antibodies (http://www.genosphere-

biotech.com/). 
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Fourteen amino acid peptide sequences were selected from the C-terminal 

regions of the PDE protein sequence.  Sequences were selected on the basis of 

antigenicity using the Parker antigenicity option in MacVector. Modelling of the 

secondary structure of the proteins was also carried out to identify regions that 

were predicted to comprise turns and random-coils as these are most likely to 

reside on the solvent accessible surface of the protein. The chosen peptides 

were screened for low similarity to other proteins in the Drosophila database 

using BLAST searching; any peptide that had greater than 6 consecutive amino 

acids in common with another protein was rejected. 

2.21.2 Purification 

2.21.2.1 Isolation of IgG fraction from immune-serum 

A ‘HiTrap Protein A HP’ column (Amersham UK) was equilibrated by passing 30 

ml of PBS through at ~2ml/min.  5 ml of immune-serum was filtered through a 

0.22 µM filter, and then syringed through the column to bind.  The column was 

washed with 30 ml of PBS and the IgG fraction was eluted with 17 ml of 0.1 M 

glycine, pH 3.0.  The first 2 ml were discarded and 15 ml of IgG were collected 

in a 50 ml Falcon tube containing 1.5 ml 1 M Tris-HCl pH 8.0.  The absorbance at 

280 nm was read to check the yield and the IgG was dialysed overnight against 

PBS using a Slide-A-Lyzer dialysis cassette (Pierce). 

2.21.2.2 Preparation of affinity columns 

The bottom cap was fitted to a 10 ml polypropylene column (Pierce) and the 

column filled with deionised water.  A frit was pushed to the bottom of the 

column using the plunger from a disposable syringe.  The water was drained by 

removing the end cap and 5 ml of Sulfolink slurry (Pierce) was added and 

allowed to sediment for 30 min.  The slurry buffer was removed down to the 

surface of the gel and 25 ml of 50 mM Tris-HCl, 5 mM Na-EDTA pH 8.5 was added 

to the reservoir.  The buffer was run through the column and a further 25 ml of 

buffer added when there was space and allowed to run through to the top of the 

gel.  The end cap was replaced whilst 1 mg of antibody-specific peptide was 

dissolved in 4 ml of 50 mM Tris-HCl, 5 mM Na-EDTA.  This was added to the 

column, mixed well, the cap fitted and placed on a rotator for 15 min.  The 

column was set up right and left to settle for 45 min.   
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The caps were removed and the solution allowed to drain to the top of the gel.  

15 ml of 50 mM cysteine in 50 mM Tris-HCl, 5 mM Na-EDTA were run into the 

column.  The end caps were fitted, the contents mixed thoroughly and the 

column was placed on a rotator for 15 min.  The column was set upright and 

allowed to settle for 45 min.  The top cap was removed and the top frit fitted 

just above the level of the gel.  The end cap was removed and the solution 

allowed to run out.  60 ml of 1 M NaCl was then run through the column followed 

by 50 ml of PBS and then 40 ml of 0.05 % (w/v) sodium azide in PBS keeping the 

level above the gel.  The end caps were fitted and the column stored at 4ºC until 

use. 

2.21.2.3 Affinity purification of antibodies 

The affinity column was brought to RT and the sodium azide was drained. The 

column was equilibrated by passing through 30 ml of PBS and the IgG fraction 

was passed through.  Next followed a wash with 30 ml of PBS and finally the 

antibody was eluted with 0.1 M glycine, pH 3.0. 12 x 1 ml fractions were 

collected into 12 x 1.5 ml microcentrifuge tube containing 100 µl Tris-HCl pH 

8.0.  To determine the yield, the absorbance at 280 nm of each fraction was 

measured and fractions with readings greater than 0.05 were pooled and 

dialysed overnight against PBS with 0.01 % (w/v) sodium azide.  The absorbance 

at 280 nm was again taken in order to ascertain the final yield using the 

following equation: Antibody concentration (mg/ml) = A280 x 1.35 mg/ml. 

Aliquots of the antibodies were made and frozen at -20ºC until use. 

Table 2-6 Antibodies used for western blotting and immunocytochemistry. 
Antibody and Source Dilution and Use 

Anti-V5-tag (mouse monoclonal, Invitrogen) 1:500 (immunocytochemistry  or 
ICC); 1:5000 (Western) 

Anti-GFP (mouse monoclonal, ZYMED) 1:1000 (Western)  

Alexa Fluor®568-labelled anti-rabbit IgG H & L 
(goat polyclonal, Molecular Probes) 

1:500 (ICC) 

Alexa Fluor®568-labelled anti-mouse IgG H & L 
(goat polyclonal, Molecular Probes) 

1:500 (ICC) 

FITC-labelled anti-rabbit IgG H & L (donkey 
polyclonal, Diagnostics Scotland) 

1:250 (ICC) 

Anti-Best2, affinity purified (rabbit polyclonal, 
this study) 

1:200 (Western and ICC) 

Anti-Aequorin (rabbit polyclonal, Abcam UK) 1:1000 (ICC) 

Anti-LAMP (mouse polyclonal, Abcam UK) 1:1000 (ICC) 
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2.22 Immunocytochemistry (ICC) 

Immunocytochemical staining of cells and tissues, described in the following 

sections was performed for in vitro and in vivo localisation studies. 

2.22.1 ICC of S2 cells 

S2 cells were resuspended and collected into 15 ml falcon tubes from the tissue 

culture flasks. And these were spun at 3000 g free rotating tabletop centrifuge 

and supernatant was removed and cells were washed with PBS two times. About 

100 µl of cells at a density of 6x106 cells/ml were plated and left for 15 min to 

allow cells to settle and adhere. Excess solution was removed and the samples 

washed 3 times with PBS. Samples were then fixed by the addition of 4 % (w/v) 

paraformaldehyde in PBS for 15 min at RT. Samples were then washed 3 times 

with PBS, and blocked in PBS, 0.2 % (w/v) BSA, 0.1 % Triton X-100 for 10 min at 

RT.  

They were then incubated overnight at RT in a humidified box with primary 

antibody diluted to the desired concentration in PBS/BSA/Triton X-100. Samples 

were then washed 3 times with PBS and incubated for 1 h at RT with the 

appropriate secondary antibody, diluted to the desired concentration in 

PBS/BSA/Triton X-100. Samples were then washed 3 times in PBS and, if 

required, DAPI stained as described in section 2.22.2. The coverslips to which 

samples were attached were then mounted on slides using VectaShield mounting 

medium (Vector Laboratories UK) and sealed with glycerol-gelatin. Samples were 

imaged by a confocal microscope system, as described in section 2.23. 

2.22.2 ICC of intact Drosophila tissues 

Intact tissues were dissected carefully in Schneider’s medium and transferred 

into a 1.5 ml microcentrifuge tube containing PBS (pH 7.4).  Then the tissues 

were washed with PBS 2 more times and the PBS was carefully removed. Tissues 

were then fixed in 4 % (w/v) paraformaldehyde in PBS at RT for 10-30 min. The 

tissues were washed three times in PBS and permeabilised using PBS, 0.3 % (v/v) 

Triton X-100 (PBT) for 30 min. This was followed by incubation with PBT with 10 

% (v/v) goat serum (Sigma) (PBT-GS) for 3 h at RT.  
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Primary antibody, diluted to the desired concentration in PBT-GS, was then 

applied and the tubes incubated in a humidified box overnight at 4ºC. 

The following day the tubules were washed in PBT 5 x 30 min and incubated in  

PBT-GS (Sigma) for 3-4 h. Secondary antibody, diluted to the desired 

concentration in PBT-GS, was then applied and the tubes were incubated in a 

dark humidified box overnight at 4ºC.  

The tissues were then washed with PBT 3 x 1 h and in PBS 3 x 5 min. Then the 

nuclei were stained using 500 ng/ml DAPI for 2 min in PBS, diluted from a 10 

mg/ml (in H2O) stock solution. Tissues were washed 3 times with PBS before 

mounting. They were mounted in Vectashield mounting medium on confocal 

microscopy slides (BDH UK) or plates (Matek corporation USA). For slides, a 

coverslip was used and sealed with glycerol/gelatin (Sigma UK. The samples 

were viewed using a confocal microscopy system. 

2.23 Imaging 

Fluorescent imaging was carried out using confocal microscope system: LSM510 

Meta from Zeiss Technologies UK. A HeNe1 543nm laser and a 561-625 band pass 

filter were used for imaging the Alexafluor 568 secondary antibody. An Argon 

488 laser and a 505-530 band pass filter were used for imaging the FITC antibody 

or fluorescent proteins. For visualisation of DAPI, a pseudo-DAPI technique was 

used. The DAPI was excited using the standard UV source (mercury lamp) and 

the image captured using the confocal photomultipliers. The DAPI image was 

then merged with the other channels retrospectively using the proprietary LSM 

Meta software. A 40x objective was used in most cases. 

2.24 mRNA in situ hybridization 

The in situ protocol was adopted from those described by (Allan et al., 2005) 

and the Berkeley Drosophila Genome Project (BDGP) 96-well in situ protocol 

(http://www.fruitfly.org/about/methods/RNAinsitu.html). The same primers 

(Appendix VI) used for qPCR in the above-described method were used to 

generate in situ probes.  

http://www.fruitfly.org/about/methods/RNAinsitu.html
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The sequences of all PCR products were analysed using National Centre for 

Biotechnology Information (NCBI) and BDGP databases with basic local alignment 

search tool (BLAST) to check the cross-hybridization potential of the sequences 

and found no significant matches with other Drosophila melanogaster sequences 

in the database. 

PCR products were then cloned into the dual promoter PCR II TOPO vector 

(Invitrogen UK) and two types of DIG-labelled RNA in situ probes (sense and anti-

sense) were generated by in vitro transcription. The sense probes were used as 

negative controls. To distinguish between sense and anti-sense, the orientation 

of the insert was checked using colony PCR with the combination of either M13 

forward or reverse with a forward gene specific primer. 

Adult tubules were dissected in Schneider’s medium (Invitrogen UK) and placed 

into wells of a Millipore 96-well plate (MAGVN22 or MAGVS22) with 100 l of 

Schneider’s medium. Schneider’s medium was removed by the use of a vacuum 

pump, and postfix solution [10 mM potassium phosphate buffer (pH 7.0) 

containing 140 mM NaCl, 0.1% (v/v) Tween-20, and 5% (v/v) formaldehyde] was 

added for 20 min, followed by three washes with PBT [10 mM potassium 

phosphate buffer (pH 7.0) containing 140 mM NaCl and 0.1% (v/v) Tween-20]. 

The tissues were incubated with proteinase K in PBT (4 g/ml) for 3 min at RT; 

the reaction was stopped with two washes of PBT containing 2 mg/ml glycine. 

The samples were washed twice with PBT before incubation with postfix for a 

further 20 min at RT.  

The tissues were washed with five changes of PBT, followed by one wash with 

50% hybridization buffer [5x SSC containing 50% (v/v) formamide, 10 mM KH2PO4, 

140 mM NaCl, 1 mg/ml glycogen, 0.2 mg/ml sheared salmon sperm DNA, and 

0.1% Tween-20 (pH 7.0)] plus 50% (v/v) PBT. The samples were washed once 

with hybridization buffer before a 1 h preincubation with hybridization buffer at 

55°C and subsequently incubated for 43 h at 55°C with 100 l of hybridization 

buffer containing 200-300 ng of either the sense or anti-sense riboprobe, taking 

care to seal the wells with parafilm to prevent evaporation.  
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After hybridization, the samples were washed four times with hybridization 

buffer at 55°C, followed by a final wash overnight with hybridization buffer at 

55°C. Samples were washed once with 50% (v/v) hybridization buffer and 50% 

(v/v) PBT, followed by four washes with PBT, and then incubated overnight at 

RT with 100 l of preabsorbed alkaline phosphatase-conjugated anti-digoxigenin 

Fab fragment (Roche UK) diluted 1:2,000 with PBT. The unbound antibody was 

removed with extensive washing in PBT (at least 10 times for 5-10 min). The 

samples were incubated with DIG detection buffer (100 mM Tris-HCl, pH 9.5, 100 

mM NaCl, 50 mM MgCl2) for 5 min and then repeated again. The colour reaction 

was initiated by the addition of DIG detection buffer 5-bromo-4-chloro-3-indolyl 

phosphate (BCIP) and nitro blue tetrazolium (NBT) and left to 10 min to 2 h at 

RT. Development was stopped with extensive washing with PBT containing 50 

mM EDTA, and the tissues were removed from the wells and mounted on slides 

with 70% glycerol and viewed with the Axiocam imaging system (Carl Zeiss UK). 

2.25 Fluid secretion assay 

The miniaturised version of classical Ramsay assay for tubule fluid secretion was 

used for measuring rates of secretion (Dow et al., 1994b).  The pairs of tubules 

were dissected along with the ureter.  One end was wrapped around a metal pin 

under white, heavy mineral oil (Sigma UK) whilst the other tubule was immersed 

in 9 µl of Drosophila saline: Schneider’s (50:50), containing trace amounts of the 

red dye, Amaranth, for easy viewing of the emerging bubbles, ensuring the 

ureter remains in the oil.  Drops emerging from the ureter were removed with a 

fine glass rod every 10 minutes and measured under a microscope graticule.  

Drugs including antagonists and agonists were added to the Schneider:saline as a 

10x stock in 1 µl when required. 
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Figure 2-6 Fluid secretion assay schema (Dow et al., 1994b). 
Intact tubules are dissected along with their common ureter from the flies in Schneider’s 
medium using fine forceps (left panel). Tubule ureter is cut just before its joining with gut 
(middle panel). One tubule is wrapped around the needle and other tubule is in the 
Schneider:saline mix; all are immersed in the mineral oil (right panel; above). Finally tubule 
secreted droplets emanating from the ureter are measured using the microscope graticule 
and converted in to nl/min (right panel; below) 

2.26 [Ca
2+

]i measurements using recombinant aequorin 

Intracellular Ca2+ concentrations [Ca2+]i  were measured in tubules, using 

recombinant transgenic aequorin probes, according to the published protocols  

(Rosay et al., 1997; Southall et al., 2006). Briefly, 40 pairs of tubules ectopically 

expressing apo-aequorin were dissected, incubated at RT (in dark) with 2.5 µM 

coelenterazine to reconstitute aequorin for 3 h in a volume of 170 µl of 

Schneider’s medium. Then the Ca2+-dependent aequorin luminescence was 

measured using Lumat LB 9507 ultrasensitive luminometre (Berthold 

Technologies UK). At the end of each experiment, total aequorin was released 

using 300 µl of lysis buffer (1% (v/v) Triton X-100, 100 mM CaCl2) from tubules in 

order to calculate the total luminescence; and data were back-integrated using 

a program written in Perl, based on the method described by (Button and 

Eidsath, 1996).  
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Figure 2-7 A schematic of calcium measurements. 

 
For recording agonist/antagonist induced Ca2+ transients, the following steps 

were inserted after reading the basal luminescence for 10-120 sec and before 

the lysis release of total aequorin. First mock injections were made with 25 µl of 

Schneider’s for reading control transients due to mechanical disturbance from 

the injection. In the same way, agonist/antagonist was injected and recorded 

the luminescence Ca2+ changes, and later compared with the mock changes. 

2.27 Diet regimes 

For salt feeding assays, 3 % or 4 % NaCl was added into the normal fly food 

media; in the same way, KCl (5 %) sorbitol (14.5 %) was added. About 20-30 

males or females transferred after they were being raised in the same vial for 

one day at the age of 5 days. The flies were counted as they died at intervals of 

12 hrs. 
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2.28 Metabolomic analysis 

2.28.1 Metabolite extraction 

Metabolites were extracted in the solvent mixture of methanol: chloroform: 

water in the ratio of 3:1:1. Briefly, 10 whole flies or 200 tubules (males and 

females separately) were collected into a 1.5 ml microcentrifuge tube 

containing the solvent mixture. They were crushed using a small blue rod and 

sonicated using ultrasonic cell disruptor. The suspension was then centrifuged 

for 10 min at 10, 000 rpm in a tabletop microcentrifuge at 4ºC, and the 

supernatant was collected in a fresh tube. The precipitate was used for Bradford 

quantification of protein for normalisation of metabolite signal intensity 

arbitrary units where necessary. 

2.28.2 Liquid chromatography (LC)-Mass spectrometry (MS) 

LC-MS data were acquired using a Finnigan LTQ Orbitrap instrument (Thermo 

Fisher Scientific, UK) set at 30, 000 resolution at Strathclyde University 

metabolomic facility. Sample analysis was carried out under positive ion mode 

for small metabolites and negative mode for polar lipid compounds. The mass 

scanning range was m/z 50-1200, while the capillary temperature was 200°C and 

the sheath and auxiliary gas flow rates were 30 and 10 arbitrary units 

respectively. The LC-MS system automated by XCalibur version 2.0 (Thermo UK) 

was run in binary gradient mode. Solvent A was 0.1 % formic acid in HPLC grade 

water and solvent B was 0.1 % formic acid in acetonitrile. Analysis was carried 

out on a ZICHILIC column (150 x 4.6 mm, 5 µm particle size, HiChrom UK) fitted 

with a guard column. A flow rate of 300 µl/min was used and the injection 

volume was 10 µl, the gradient used was as follows: 90% B at (0 min) - 50% B at 

(16 min) - 20% B at (18 min) - 20% B at (28 min) - 90% B at (36 min). Samples 

were kept in a vial tray which was set at a constant temperature of 3˚C. The 

injection volume was 25µl. Mass measurement was externally calibrated 

according to the manufacturer’s instructions just before commencing the 

experiment, and was internally calibrated by lock masses (positive ion mode m/z 

83.06037 and m/z 195.08625, due to acetonitrile dimer and caffeine 

respectively and negative ion mode 91.00368 due to formic acid dimer).  
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Runs were carried out in negative ion mode using the conditions above after 

tuning in the negative ion mode and the assigning appropriate lock mass. Runs 

were also carried out on an Orbitrap Exactive™ instrument fitted with a HCD cell 

using the same mass spectrometry parameters and chromatographic conditions 

with a HCD cell energy of 20 eV. 

2.28.3 Data capture and analysis 

Data files were processed using Sieve 1.3 (Thermo UK). The parameters used in 

Sieve were: time range 4-30 min, mass range 75-700 amu, frame width 0.02 amu 

and Rt width 2.5 min. The output from Sieve was transferred into Sieve 

Extractor, an Excel spreadsheet and an in-house macro written in Visual Basic, 

used to search against a mass list of 65000 compounds taken from the KEGG, 

Metlin, Human Metabolome and Lipid Maps databases. 
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3. FlyAtlas, a gene expression database 

Summary 

FlyAtlas, an online resource, provides the most comprehensive view yet of 

expression in multiple tissues of Drosophila melanogaster. Meta-analysis of the 

data shows that a significant fraction of the genome is expressed with great 

tissue specificity in the adult, demonstrating the need for the functional 

genomic community to embrace a wide range of functional phenotypes. Well-

known developmental genes are often reused in surprising tissues in the adult, 

suggesting new functions. The homologs of many human genetic disease loci 

show selective expression in the Drosophila tissues analogous to the affected 

human tissues, providing a useful filter for potential candidate genes. 

Additionally, the contributions of each tissue to the wholefly array signal can be 

calculated, demonstrating the limitations of whole-organism approaches to 

functional genomics and allowing modeling of a simple tissue fractionation 

procedure that should improve detection of weak or tissue-specific signals. 

3.1 Introduction 

Experimental reverse genetics is a powerful tool for understanding novel genes, 

a key goal of functional genomics (Kaiser, 1990), both for basic science and for 

the understanding of human disease (Orkin, 1986; Ruddle, 1982). Simple genetic 

models have vital roles in this endeavour because of the relative ease, power 

and cost of their reverse genetic techniques compared with mouse (Adams and 

Sekelsky, 2002) (Bargmann, 2001). The announcement of the Drosophila genome 

was accompanied by prediction of its utility in understanding human genetic 

disease, and this optimism was accompanied by the formation and subsequent 

closure or refocusing of several companies. Now, a more prosaic approach 

pertains. The case for Drosophila as a model of human disease is based on a 

gene-by-gene argument, and the powerful genetics associated with this tiny fly 

is starting to produce useful insights. It has also proved possible to 'humanize' 

the fly by introducing human genes of interest and studying them in an 

organotypic context that can prove more informative than studies in cell 

culture. 
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However, recent data suggest that to study novel genes by reverse genetics (that 

is, studying gene function by generating mutants and studying the phenotypes), 

the Drosophila community may need to broaden its focus. It has long been 

realized that functional genomics demands functional phenotypes, whereas most 

model organisms were adopted for studies of development. The mismatch 

between the range of functions of an organism's genes and the range of 

phenotypes available in that organism has been termed the 'phenotype gap' 

(Brown and Peters, 1996; Bullard, 2001; Dow, 2003). The utility of Drosophila in 

studies of development is beyond dispute, but it is salutary to note that perhaps 

a third of a million researcher-years spent studying Drosophila (predominantly 

its development) had led to the identification of only 20% of its genes (Dow, 

2003) before the release of the genome sequence (Adams et al., 2000). So if 

most of the genes encoded by the Drosophila genome are not primarily 

developmental in function, where should one seek phenotypes for the rest? 

As well as providing some clear messages about the utility of whole-fly arrays, 

the database also helps delineate the phenotype gap by identifying those tissues 

in which specific genes of interest (and thus, the homologs of human disease 

genes) can be studied. The online data set thus provides an instant entrée into 

the field, not just for Drosophilists but also for scientists who can identify a 

likely homolog in the fly, regardless of the organism they use. 

FlyAtlas is composed of data covering 17 distinct adult tissues (brain, head, 

eyes, thoracoabdominal ganglion, salivary glands, crop, midgut, tubule, hindgut, 

heart, fatbody, ovary, testis, male accessory gland, virgin spermatheca, mated 

spermatheca, carcass), dissected from 7-day-old Canton S adults, and 8 larval 

tissues (CNS, salivary gland, midgut, tubule, hindgut, fat body, trachea and 

carcass), dissected from third-instar feeding larvae. Each tissue was processed 

with four biological replicates on Affymetrix Drosophila GeneChips® version 2 

(with 18, 880 probe sets for 18,500 transcripts), and compared with a matched 

whole-fly sample (Materials and Methods). Thus, the FlyAtlas presents an 

excellent opportunity to study gene expression in multiple tissues and provides a 

complementary resource to published developmental data sets (Arbeitman et 

al., 2002). 
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3.2 Results 

3.2.1 Tissue-specific transcriptomes 

FlyAtlas data provide a good survey of gene expression for both adult and larval 

tissues. About half of the genome is expressed in each tissue calculated on the 

basis of the number of probe sets that were called significant. Total percentage 

of expressed genome among tissues accounts for about 85% of the computed 

Drosophila transcriptome in contrast to 67% the whole-fly sample (Figure 3-1).  

Although the widespread practice of grinding up the whole organism for 

transcriptomic or proteomic studies is understandable, given the tiny size of the 

whole organism, the implication of this result, as we discuss later, is that a 

significant fraction of the genome will be missed or underrepresented in such 

samples. 

 

Figure 3-1 Drosophila tissues typically express around half the computed transcriptome 
(updated on 26

th
 January 2012).  

For each tissue, the number of probe sets giving at least one ‘present’ call is shown, 
together with those meeting the stricter criterion of giving four present calls out of four 
chips. 
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Of course, the quality of the data set and the underlying tissue dissections is 

critical for such assertions. It is possible to perform an informal 'quality control' 

on the data set by seeking genes that are strongly enriched in particular tissues. 

For example, the photoreceptor channel trp should be enriched in the head 

sample but ideally should not show up strongly in the brain. The results (Table 3-

1) confirm that there is excellent discrimination, even between physically 

adjacent tissues (such as brain and head; midgut, tubule and hindgut or testis 

and accessory gland). 

Table 3-1 Genes that show extreme specificity of expression and that serve to validate the 
quality and discrimination of the data set (updated on 26

th
 January 2012).  

Errors are omitted for clarity; these are in the range of 5%-10% and are given online at 
http://flyatlas.org/. Boldface indicates the maximum signal for each gene. Abbreviation: S, 
salivary; M, male; Acc, accessory; VNC, ventral nerve cord or thoracoabdominal ganglion.

 

Generalizing from these examples, although 25% of all probe sets are 

ubiquitously expressed ('housekeeping' genes), there is a significant fraction of 

the genome that is highly tissue-specifically expressed in the adult (Table 3-2). 

Although brain and testis are particularly distinctive (Andrews et al., 2000), 

every tissue has a population of tens to thousands of genes that are detected 

nowhere else. 

 

 

 

http://flyatlas.org/
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Table 3-2 Genes expressed uniquely in specific tissues. 
For each tissue 'unique expression' refers to the number of probe sets called 'present' at 
least twice but present nowhere else in the fly; 'predominant expression' refers to the 
number of probe sets called 'present' more often in a given tissue than in all other tissues 
combined.

 

The clear implication of this result is that, for over a quarter of Drosophila 

genes, there is a single tissue in which study should be focused. Indeed, it may 

be counterproductive to embark on a now-standard reverse-genetic workup of a 

novel gene unless that tissue is studied, because an informative phenotype may 

be missed. Analogous to the Krogh principle of comparative physiology that "for 

every physiological problem, there is an animal uniquely suited by nature to 

study it" (Krogh, 1929), we propose an analogous principle for functional 

genomics: for every novel gene, it is as sensible to study it where it is most 

abundantly expressed as to study it where it is first encountered. Thus, FlyAtlas 

is a first step toward connecting the researcher to the tissue. 

These results also show the importance of taking an organismal (tissue) and 

ontogenetic (multiple-life stage) view of gene expression in order to prevent a 

danger we term 'shoehorning': the squeezing of a gene's declared functions into 

expected phenotypes (for example, assuming that a channel must be neural in 

function) or into the phenotypes familiar to a particular experimenter 

(behavioral or developmental, for example). Given that the vast majority of 

Drosophila research focuses on embryonic development, and most of the 

remainder on neurogenetics, there is a real danger that major functions might 

be overlooked because of the dearth of functional research outside these areas. 

Again, the availability of tissue-specific expression data should encourage a 

more global view of each gene's possible functions. 
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3.2.2 Meta-analysis 

There are further useful meta-analyses possible for these data. For example, 

research in Drosophila has been revolutionized by the GAL4/UAS binary system 

for tissue-specific expression of transgenes (Brand and Perrimon, 1993). Many 

GAL4 drivers are derived from enhancer-trap screens and may not be absolutely 

specific to a particular tissue or cell type. Genes that are absolutely specific to a 

single tissue of those studied so far can be extracted from the data set 

(Chintapalli et al., 2007; Chapter 5); the control regions of these genes may 

prove ideal drivers for GAL4 expression in flies. Conversely, there is also a need 

to identify genes with abundant and relatively invariant expression. It has been 

shown that qPCR normalization is better performed with a basket of invariant 

genes, from which the best reference genes for a particular experiment can be 

deduced experimentally (Vandesompele et al., 2002). FlyAtlas offers good 

candidate reference genes for the adult (Chintapalli et al., 2007); interestingly, 

the Drosophila 'standard' reference gene rp49 (Rpl32) ranks 3,172nd. 

3.2.3 New transcription units 

There are 18,880 Drosophila probe sets on the Affymetrix Drosophila 2 

expression chip, covering around 13,500 genes. This is because many genes have 

additional, transcript-specific probe sets. However, several thousand probe sets 

were designed against features that were not considered sufficiently 

authoritative to justify annotation as a Drosophila gene, usually because of lack 

of compelling data that the putative gene was transcribed. It is clear from 

FlyAtlas that many of these features are genuinely transcribed, frequently 

tissue-specifically; this may explain why they were not hit with multiple ESTs. 

For example, HDP feature 01001 has a prodigious signal of 9,570 in male 

accessory glands and is almost undetectable elsewhere, so it is not surprising 

that its expression was not previously validated. Furthermore, each class of 

feature has a characteristic hit rate (Figure 3-2). Across FlyAtlas, 85% of probe 

sets against documented genes were found to be transcribed in at least one 

tissue; whereas 18%, 60% and 21% of HDP, sim4 and FGENESH features were 

found to be transcribed. Indeed, of 3,000 undocumented features on the 

Affymetrix array, 665 detect significant expression somewhere in the adult.  

http://www.nature.com/ng/journal/v39/n6/full/ng2049.html#f2
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Thus, microarrays of tissue-specific RNA samples may be useful tools in 

transcript discovery, even for a genome as well-documented as Drosophila.

 

Figure 3-2 Evidence for novel transcription units in the Drosophila genome. 
Probe sets were classified according to their Affymetrix annotations; documented genes 
refer to probe sets that are annotated with a FBgn or CG reference number and are thus 
known to FlyBase. The remaining probe sets were then categorized by feature code (HDP, 
sim4 or FGENESH). To provide a strict test of expression, the number of tissues for which 
all four chips were called 'present' by Affymetrix software was scored for each probe set, 
and only those with at least one expressed tissue were scored as 'expressed'. Data are 
expressed as a percentage of all probe sets in that category. 

3.2.4 An ontogenetic perspective 

These data provide perhaps the clearest view yet of the transcriptional 

landscape of adult Drosophila; but does it bear any resemblance to other life 

stages? The Berkeley Drosophila expression database 

(http://www.fruitfly.org/cgi-bin/ex/insitu.pl) thus far contains information on 

the systematic determination of patterns of gene expression in Drosophila 

embryogenesis by RNA in situ for 6,138 genes. The Berkeley Drosophila Genome 

Project (BDGP) data set is searched by FlyAtlas so that users are notified if an 

embryonic expression pattern is available for a particular gene. Additionally, the 

BDGP in situ data have been annotated with gene ontology (GO) terms for 

distinct body parts, so we looked for persuasive overlap between embryonic and 

adult expression patterns.  

http://www.fruitfly.org/cgi-bin/ex/insitu.pl
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There is very little reason to assert a priori that the same genes expressed in a 

given embryonic tissue are still expressed in the adult, but if around half the 

genome were expressed in an embryonic tissue (as in adult), and if there were 

no connection between embryonic and adult expression patterns, one would 

predict that only 25% of in situ hits would be expressed in the corresponding 

adult tissue. In fact, the concordance is far higher for the several tissues 

sampled (Table 3-3), with typically 90% of the genes identified by embryonic     

in situ analyses still expressed in adult flies, as measured by microarray. This 

result suggests intriguingly that the mature transcriptional profile of many 

tissues is substantially established by the late embryo. 

Table 3-3 Are the genes identified in embryonic tissues by in situ analyses also expressed 
in adult tissues?  
Adult regions selected were those for which there are recognizable late-embryonic 
precursors. A nonredundant list of CG numbers for genes called 'present' on four out of 
four chips was compared with CG numbers identified by embryonic in situ analyses to be 
either found in a given tissue, expressed ubiquitously or called 'faint ubiquitous' in stage 
13-16 embryos. CG numbers common to both lists were counted. 

 

In principle, in situ and microarray analyses are complementary; the former 

provides great spatial resolution (down to the single-cell level), whereas the 

latter is much more sensitive and quantitative. This can be seen in the relatively 

low numbers of genes detected by in situ analyses, even taking into account the 

6,138 genes in the data set. However, it is clear that a joint in situ/array 

approach is powerful. 

Region Adult array Embryonic in situ Common

Brain 8092 1218 1115

Midgut 6770 1452 1255

Tubule 5969 507 445

Hindgut 7588 827 759

Number of genes

http://www.nature.com/ng/journal/v39/n6/full/ng2049.html#t3
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3.2.5 Surprising expression 

FlyAtlas provides further provocative reminders that genes may not be expressed 

merely where they are expected. Table 3-4 shows some exciting insights into 

some well-known genes, selected to cover a range of gene class and function. 

Table 3-4 Some genes that are predominantly expressed in unexpected places. 
Bold face indicates the maximum signal for each gene.

 

Cryptochrome, important in circadian function (Stanewsky et al., 1998), is 

functionally significant in peripheral tissues as well as in brain (Ivanchenko et 

al., 2001). However, the signals in the tubule and hindgut are much higher than 

in brain, supporting reports that in this simple organism, tissues run autonomous 

clocks (Giebultowicz et al., 2000). Fasciclin2, implicated in neural functions 

from axonal path finding to short-term memory, is predominantly expressed in 

the tubule. Given the importance of homoeostasis to small organisms, the tubule 

enrichment could help to explain the low viability of some fas2 alleles, and it 

serves as a reminder of the non-neuronal significance of cell junctions (Carthew, 

2005).  

The large family of odorant-binding proteins provides specificity to olfactory 

sensing in insects and, accordingly, has been described in the context of 

olfaction or gustation in the head (Graham and Davies, 2002; Hekmat-Scafe et 

al., 2002). However, one of the odorant-binding protein genes (Obp56d) shows 

expression not just in the head but also at extremely high levels in the hindgut, 

providing an unexpected opening for olfactory research.  

Gene Described in Brain Head Midgut Tubule Hindgut Ovary Testis
Accessory 

gland

cry
Circadian 

behavior
279 575 267 1,972 868 7 25 205

fas2
Neuronal 

fasciculation
129 66 49 1,676 78 5 9 53

obp56d Olfaction 71 4,045 1 1 5,663 1 106 5

kelch Nurse cell 181 185 22 16 22 5 6 6

rpk
Sensory 

neurons
1 0 1 7 0 904 47 0

toe Eye, thorax 10 68 7 8 14 8 13 3,725

vnd
Embryonic 

CNS
6 4 289 5 6 3 2 8

dsx
Sex 

determination
21 119 89 140 106 9 1 8

Mean signal levels
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Another gene (Obp56e) is expressed in just the head and accessory gland, 

whereas Obp56f and Obp22a are expressed exclusively in the accessory gland but 

not in the head (www.flyatlas.org).  

Several developmental genes are reused in very unexpected places in the adult: 

for example, twin of eyegone, important in visual and thorax development 

(Aldaz et al., 2003; Dominguez et al., 2004), is virtually specific to the male 

accessory gland in the adult.  

Similarly, ventral nerve system defective (vnd) (Jimenez et al., 1995) is reused 

very specifically in the adult midgut. The sex determination gene doublesex is 

primarily an epithelial gene in the adult, suggesting that adult homeostasis may 

be sexually dimorphic.  

Kelch, a component of the ring canal (Robinson and Cooley, 1997), is expressed 

at much higher levels in brain and head than ovary.  

This is appropriate for a homolog of gigaxonin, a human gene associated with 

neuropathy (Bomont et al., 2000). Kelch may thus provide a better model for 

human disease than mere sequence similarity might predict. 

3.2.6 Organotypic disease models 

Can this analogy be taken further? Are there other human genetic disease loci 

with Drosophila homologs that are expressed preferentially in tissues 

functionally analogous to the human target, increasing confidence in the validity 

of the Drosophila gene as a model? Combining the FlyAtlas data set with the 

Homophila database (Chien et al., 2002) provides a unique opportunity to test 

the idea. In fact, cursory examination uncovers multiple loci with this persuasive 

combination of evidence (Table 3-5). 

 

 

 

http://www.flyatlas.org/
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Table 3-5 Drosophila genes expressed in tissues analogous to those involved in human 
disease. 
The entire Homophila database was downloaded from http://superfly.ucsd.edu/homophila/ 
and merged with the array database. We then selected probe sets against genes with 
Homophila annotations that showed signal enrichment in tissues analogous to those 
implicated in the human disease. Boldface indicates the maximum signal for each gene.

 

Although these genes are plausible candidates for investigation, Drosophila is 

neither a mammal nor a vertebrate. Does a physiological approach to Drosophila 

yield insights into human gene function that are not obtainable in humans or 

mice? In fact, our understanding of many human genes (and not just those 

involved in development) has emerged from Drosophila. Behavioural screens in 

Drosophila identified the role of cyclic AMP in memory (Byers et al., 1981). They 

also identified the first clock genes (Konopka and Benzer, 1971) and found the 

prototype for the Shaker family of potassium channels (Salkoff and Wyman, 

1981).  

Gene Brain Head Midgut Hindgut Tubule Ovary Testis
Accessory 

gland
Human gene OMIM entry

kek2 156 19 4 5 8 2 3 5
SLITRK1 

(KIAA1910 )
Tourette syndrome (137580)

CG5594 2,267 867 441 142 35 133 53 124 Slc12a6

Agenesis of the corpus 

callosum with peripheral 

neuropathy (218000)

CG1909 1,265 306 2 24 2 6 0 9 (RAPSYN)

Congenital myasthenic 

syndrome associated with 

AChR deficiency (608931)

Lcch3 748 173 2 3 3 2 8 5

Gaba-A 

receptor 

gamma-2

Myoclonic epilepsy, severe, 

of infancy (607208)

CG7971 1,722 437 117 62 70 31 23 171
NIPBL 

(delangin)

Cornelia de Lange syndrome 

(122470)

CG6295 3 21 5,461 4 2 1 1 2 LIPI  (PRED 5 )
Hypertriglyceridemia, 

susceptibility to (145750)

CG31636 2 19 159 2 1 1 7 1
c17orf79  (T 

TP1 )

Ataxia with isolated vitamin E 

deficiency (277460)

eTry 2 5 5,967 6 6 3 5 3 Proenterokinase
Enterokinase deficiency 

(226200)

CG3762 441 1,213 4,665 5,497 6,242 1,906 354 1,170
Vacuolar proton 

pump

Renal tubular acidosis with 

deafness (267300)

ry 80 142 97 49 770 2 18 7
Xanthine 

oxidase
Xanthinuria type I (278300)

Irk3 328 123 4 48 4,932 1 1 11

Renal outer-

medullary 

potassium 

Bartter syndrome, antenatal, 

type 2 (241200)

CG5284 568 451 292 361 1,334 540 75 357
Chloride 

channel CLCN5

Dent disease 1, 

nephrolithiasis, X-linked 

(30008)

CG17752 1 1 2 1 6,341 1 2 3
SLC22A12 

(URAT1 )
Hypouricemia, renal (220150)

Pi3K92E 283 171 182 188 108 395 92 185
PI 3-kinase, 

alpha
Ovarian cancer (604370)

bol 104 19 1 9 6 1 1,778 82 DAZL  (SPYGLA)
Spermatogenic failure, 

susceptibility to (601486)

Ubp64E 294 221 238 514 334 196 752 367
Drosophila  fat 

facets-related
Azoospermia (415000)

CG17150 2 2 5 3 5 2 391 6 ITLN1  (HL1 )
Kartagener syndrome 

(244400)

Testis

Tissue signals

Brain

Midgut

Tubule

Ovary

http://superfly.ucsd.edu/homophila/
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Of course, neurogenetics is an accepted area of functional similarity between 

human and fly, but the approach can extend to other tissues that are much less 

explored. The roles of the tubule, for example, are analogous to those of the 

human kidney, liver and innate immune system (Dow and Davies, 2006). As well 

as generating a primary urine, it is loaded with cytochrome P450s and 

glutathione transferases that imply a major role in detoxification (Yang et al., 

2007), and it is capable of mounting a robust immune response independent of 

the cardinal insect immune tissue, the fat body (Kaneko et al., 2006; McGettigan 

et al., 2005). The tubule data set contains genes with homologs well-known in 

the mammalian renal literature.  

The V-ATPase proton pump, for example, has been shown to be essential (Davies 

et al., 1996), and mutations in genes encoding all 13 V-ATPase subunits 

implicated in plasma membrane transport have resulted in a renal phenotype in 

Drosophila (Allan et al., 2005), presaging the discovery of a renal phenotype in 

humans with a similar mutation (Karet et al., 1999). All three inward-rectifier K+ 

channel genes (analogous to the ROMK channel associated with a form of Bartter 

syndrome) are strongly enriched in the tubule and hindgut, implying an 

epithelial transport role rather than the neural role that is usually sought for 

channels in Drosophila (Evans et al., 2005). Perhaps most famously, rosy, the 

second mutant ever identified in Drosophila (Glassman and Mitchell, 1959), 

exactly recapitulates the symptoms of xanthinuria type I, the human disease 

associated with xanthine oxidase mutations (Dent and Philpot, 1954; Wang et 

al., 2004). Thus, there are ample scope and informative phenotypes to explore 

renal function in this simple organism (Dow and Davies, 2003).  

The other tissues listed in Table 4 also show persuasive similarities, but the 

physiological study of other tissues is at an earlier stage. However, the data 

clearly illustrate the importance of a tissue-centered view in functional 

genomics, both a priori in the design of transcriptomic or proteomic experiments 

and post hoc in the central goal of functional genomics: the elucidation of the 

major functions of all the genes encoded by a genome. To this end, FlyAtlas 

provides a valuable tool to focus efforts directed at both goals.  
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We suggest an important and salutary meta-analysis of this data set. Many 

Drosophila microarray studies have used whole-organism RNA samples (from 

embryos, larvae or adults). Clearly, given the tissue specificity of expression we 

describe above, this is less than ideal. However, it is possible to demonstrate 

exactly how bad it is by modeling the whole-organism transcriptome from the 

transcriptomes of its constituent tissues-that is, drawing up an 'equation of the 

fly'. In principle, the whole-fly transcriptome is made up of the sum of the 

transcriptomes of each tissue, multiplied by a coefficient that is effectively the 

fraction of organismal mRNA contributed by that tissue:  

 

A set of hybridizations with tissue-specific mRNA preparations allows the 

coefficients to be calculated. In principle, for each gene with truly tissue-

specific expression, the whole-fly signal represents the contribution of that 

tissue to the whole fly. However, this approach depends on the accurate 

identification of truly tissue-specific genes. A simpler approach (Figure 3-3) is to 

plot tissue signal against whole-fly signal for each tissue and take the lowest 

gradient through the experimental points; this represents the best estimate of 

the coefficient for that tissue. The resulting equation can be tested against the 

real whole-fly transcriptome. As each tissue is added, the average abundance of 

widely expressed genes approaches the theoretical 1:1 line, and highly tissue-

specific genes disappear from the lower region of the plot as they reach the 

trend line. As can be seen, with 11 tissues, around 70% of the real signal can be 

modeled. The rest of the tissues may fill the gap between real and simulated fly 

signal.  

The implication of the equation for whole-organism transcriptomics is severe; it 

shows that most tissues each contribute less than 5% to the organismal signal. 

So, considering a typical array signal of 100, and taking a 50% change as a 

threshold for detection, a gene expressed in a single tissue would have to 

change its signal by at least 1,000 for the change to be detected in a wholefly 

hybridization. 
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Figure 3-3 Calculating the equation of the fly. 
Tissues are dissected from the adult fly, and their signals are plotted against the whole fly. 
Although all degrees of specificity are represented, most genes tend to be generally 
expressed, tissue excluded or tissue specific. By rescaling and plotting the lowest gradient 
that runs through experimental data, coefficients for the whole-fly array simulation can be 
estimated. These can then be tested iteratively against real-world results as new tissues are 
added. Calculated whole-fly signal = 0.02 x head + 0.05 x brain + 0.01 x crop + 0.025 x 
midgut + 0.015 x hindgut +0.02 x tubule + 0.25 x ovary + 0.04 x testis + 0.06 x accessory 
gland + 0.015x thoracicoabdominal ganglion + 0.17 x carcass 
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Thus, a whole-fly array is capable of detecting only orchestrated changes in 

widely expressed genes or truly exceptional changes in genes with more 

restricted expression patterns. Whole-fly arrays are thus a trade-off between 

convenience and sensitivity, reporting a severely attenuated subset of the true 

changes occurring between experimental groups. As the body plan and relative 

tissue sizes of the adult are largely established by the late embryo (with the 

conspicuous exception of those adult tissues generated by proliferation of the 

imaginal discs), the argument can be extended to whole-organism arrays or 

proteomic studies of other life stages.  

Is there a strategy that would maximize the chances of detecting a spatially 

restricted change, at least in the adult, for finite extra effort? From the data 

available at present, perhaps a five-way split would provide a working 

compromise: head, alimentary canal, male and female genitalia (separately) and 

carcass. 'Whole-head' would report on head, brain and fat body, with perhaps a 

threefold drop in sensitivity for the individual tissues; similarly, 'alimentary 

canal' would report on midgut, tubule and hindgut, with similar performance. 

Gonads would combine the distinctive transcriptomes of (for example) testes 

and accessory glands, without swamping either, and the carcass would report on 

cuticle, muscle and associated tissues. The increased cost could then be 

balanced against hugely increased authority and utility of the data.  

Thus, FlyAtlas hints at some exciting new directions for Drosophila functional 

genomics. Of course, this approach needs continual refinement; as new tissues 

and developmental stages are added to FlyAtlas, the authority of the data set 

will increase. Ideally, an atlas should include every domain that can be 

identified by a GAL4 enhancer trap, perhaps using poly-A binding protein 

technology to allow selective purification of mRNAs (Yang et al., 2005). 

Similarly, as the computational transcriptome of the fly is successively refined 

and the knowledge rolled out in new generations of array (such as tiling or exon 

arrays (Manak et al., 2006)), it will be useful to update the data iteratively. 

Overall, though, the emphasis on tissues and organ systems will help to redirect 

and focus efforts toward organism-level systems biology in this useful model 

organism. 
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4. A transcriptomic view on epithelial structure and 
function 

Summary 

The previous FlyAtlas analysis provided general insight into tissue-specific 

transcriptomes. In this chapter, a comparative analysis of epithelial 

transcriptomes was performed to uncover similarities and differences in any of 

the two epithelia to elucidate epithelial function. The transcriptomes of four 

major epithelial tissues (salivary glands, Malpighian tubules, midgut and hindgut) 

for both adult and larvae are compared. Each epithelial transcriptome is 

compared against the whole fly for adult and whole larvae for the larval 

transcriptome. A gene expression signature for each individual epithelium was 

obtained using the upregulated fold change enrichment. These signature genes 

were used to identify common signatures in adult and larvae. The signature 

genes were then analysed for their potential mammalian ortholog/paralog 

functions/diseases, canonical pathways and networks using Ingenuity pathway 

analysis (IPA). The significantly enriched IPA functional classes for novel genes 

demonstrate how the analogous tissues in flies and humans could be compelling 

examples of molecular and functional convergent evolution. Taken together, the 

meta-analysis of tissue specific transcriptomes in Drosophila not only uncovered 

potential similarities of the epithelia but also unravelled functional similarities 

with their vertebrate counterparts. 
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4.1 Introduction 

Molecular genetics and biochemical techniques extended our understanding of 

genes and their functions. The invertebrate model organism, the ‘fruit fly’ 

Drosophila melanogaster has been instrumental in this task. Advancements in 

molecular biology such as microarrays have provided a wealth of information-

rich gene expression datasets. For example, our laboratory generated ‘FlyAtlas’ 

provided authoritative gene expression levels in many fly tissues, leading to our 

proposed hypothesis that the best place to study the functional role of a gene is 

in the tissue it’s abundantly expressed but not where it’s first studied 

(Chintapalli et al., 2007).  

Developmental studies in Drosophila and several other model organisms have 

shed light on many of the molecular mechanisms that are conserved across 

species. Cell polarity is one of these processes that has been extensively 

modelled across epithelial cells and tissues (Gibson and Perrimon, 2003; Knust 

and Bossinger, 2002; Nelson, 2003). For example, planar cell polarity (PCP) is a 

highly conserved hallmark feature of epithelia, from flies to humans (Simons and 

Mlodzik, 2008). While the developmental functions and mechanisms are well 

studied for the epithelia, the adult functions of many novel genes still remain 

unexplored, because of the phenotype gap (Chintapalli et al., 2007; Dow, 2003; 

Wang et al., 2004).  

The alimentary canal ramifies throughout the body and constitutes the major 

epithelial tissue of the fly. The complex developmental transitions form the 

adult epithelia that include the major transporting and secreting epithelia of the 

fly: salivary glands, midgut, hindgut, and Malpighian tubules. These are divided 

into two groups including primary and secondary epithelia. The primary epithelia 

originate from ectoderm and include epidermis, fore and hindgut, Malpighian 

tubules, and salivary glands (Beyenbach et al., 2010a; Hartenstein, 1993). The 

secondary epithelium, the midgut, originates from mesenchymal intermediates 

during mesenchymal-epithelial transition (Tepass and Hartenstein, 1994). During 

larval and pupal transition, epithelial tissues including gut and salivary glands 

undergo extensive reconstruction (metamorphosis).  
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However, the posterior gut or hindgut is only partly replaced; Malpighian tubules 

persist into the adult and the gastric caeca, and outgrowths of the anterior 

larval midgut are not replaced in the adult (Hartenstein, 1993). Thus, these 

changes from larval to adult may reflect the major gene expression changes 

between these two life stages. 

Neuroendocrine control is the predominant mechanism of regulation of the 

epithelial tissues; in that insect tubules for example, share common endocrine 

mechanisms (G.M. Coast, 2002; Veenstra, 2009) such as the regulation of fluid 

secretion to excrete metabolic waste and to regulate stress resistance and 

insulin production (Soderberg et al., 2011). The stem cells and their niches have 

also been shown to be important in the tissue regeneration and repair in the 

epithelia (Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006; Singh et 

al., 2007). For hindgut, it is proposed that stem cell niches play a key role in the 

formation of adult tissue during larval and pupal phases (Takashima et al., 

2008).  

Epithelial tissues comprise distinct functional domains and multiple cell-types 

(Andrew et al., 2000; Micchelli and Perrimon, 2006; Sozen et al., 1997; 

Takashima et al., 2008). They perform wide ranging functions from transport, 

cell signaling, to immune sensing largely depending on their internal and 

external milieu and their opening and closing pose. While most of the epithelia 

are capable of doing functions related to one another, they must retain a 

functional theme. For example, salivary glands: secretion; midgut: nutrient 

uptake; Malpighian tubules: fluid transport and hindgut: excretion. Nutrient 

absorption, immune and endocrine functions are some that are predominantly 

performed and are shared by the epithelia. The molecular and functional 

understanding of some of the epithelia is better than the others because of their 

simplicity and adaptability to the manipulation that science requires in order to 

rapidly understand their biological and molecular complexity. The Malpighian 

(renal) tubules of the fly are the functionally analogous tissues to human kidneys 

and thus far best studied for their adult functions in ion transport (Dow and 

Davies, 2003); signalling through Ca2+, NO, cAMP and cGMP (Davies and Terhzaz, 

2009; Day et al., 2005); and host defence to xenobiotics and pathogens 

(McGettigan et al., 2005; Yang et al., 2007). 
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Here, a meta-analysis was carried out on four major epithelial tissue 

transcriptomes of the adult and the larval Drosophila melanogaster, generated 

as part of the FlyAtlas. A gene expression signature was obtained for each 

epithelium using the upregulated gene lists. Common signature lists were 

obtained for larval, adult and across both stages. Then, the signatures genes 

were analysed using Ingenuity® Pathway Analysis (IPA) for their potential 

vertebrate enriched functions/diseases, canonical pathways and networks. 

4.2 Results 

The principal component analysis (PCA) was performed to account for variation 

among the biological replicates of the same tissue (Figure 2-4). This identified 

among the tissues, epithelial tissues altogether show less variation in the 

principal component that represented the most variation. I then sought to find 

the differences between the epithelial tissues against whole fly or whole larvae. 

The first analysis (Section 4.2.1) includes the comparison of transcriptomes of 

each epithelium against their adult whole fly or whole larvae. The significantly 

differentially expressed (up and down regulated) (FDR≤0.05) gene lists were 

generated. A list of upregulated genes (at least 2-fold) was obtained for each 

epithelium, and was called the ‘epithelial signature’. The signature genes were 

then compared to each other (Section 4.2.2), first to uncover unique and 

common genes in adult versus larval transcriptomes of each epithelium; and 

second to uncover the commonality among adult and larval epithelia separately. 

In addition, a heatmap was constructed for all the epithelial tissues using a 

hierarchical clustering method to show possible relationships among the 

epithelia. 

The second analysis (Section 4.2.3) includes the comparisons of the epithelial 

transcriptomes against the adult whole fly to get an epithelial transcriptomic 

signature in an adult functional context. This is because of the distribution of 

the adult whole fly and whole larvae transcriptomes against the rest of the 

epithelia on the PCA map; all the epithelia show less variation (Figure 2-4). 
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This analysis was to find out the genes that show high expression in both adult 

and larval tissues, which probably do post-embryonic functions, rather than 

simply being confined to developmental functions. 

The third analysis (Section 4.2.4) includes the direct comparisons of adult versus 

larval tissue transcriptomes. This reveals the larval and adult abundant gene 

expression patterns.  

Finally, using the 2-fold enriched lists (FDR≤0.05) generated from the first 

analysis, Ingenuity Pathway Analysis (IPA) was performed for the potential 

vertebrate enriched functions/diseases, canonical pathways and networks 

(Section 4.2.5).  

4.2.1  Differential expression and coregulation 

The number of genes that were at least 2-fold differentially (FDR≤0.05) 

expressed is shown in (Figure 4-1). They were divided into 2-5-, 5-10-, 10-20- 

and ≥20-fold up- and down-regulated groups. The sum of the transcription of 

highly enriched (at least 5-fold) common genes is 60-70% higher in adult than the 

larval epithelia. 
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Figure 4-1 Differential expression of epithelial transcriptomes. 
The distribution of 2-fold or higher differentially expressed genes across epithelia is shown. 
The significantly changed (FDR≤0.05) genes are presented as 2-5, 5-10, 10-20 and ≥20 fold 
change up and downregulated groups. Abbreviations: A=adult, LF=larval feeding, 
HG=hindgut, MG=midgut, T=Malpighian tubules, SG=salivary glands. 
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Figure 4-2 Hierarchical clustering of epithelial transcriptomes.  
The vertical heatmap (left) represents the total (18880) number of probesets (that represent 
18500 transcripts). (right) An area of the heat map was taken to show the arrangement of 
genes (horizontal) and the tissues (vertical) on the basis of their transcriptomic similarities. 
The colour range (bottom) indicates the log-transformed intensity of gene expression from 
high (red) to low (blue). The epithelial (but not neuronal) tissue enriched apically localised 
Na

+
/H

+
 antiporters (Nha1 & Nha2) show faithful co-clustering (shown in the black horizontal 

boxes). 
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Hierarchical clustering (HC) of transcriptomes was performed in order to 

understand the global gene expression similarities across the epithelia and 

translate the similarity into tissue-tissue functional relationships on an intuitive 

heatmap diagram. This kind of clustering demands the datasets to their highest 

quality and consistency (Bjorklund et al., 2006; Eisen et al., 1998; Ling et al., 

2009). The quality was tested in two-independent ways including Affymetrix 

experimental hybridisation controls and principal component analysis (PCA) 

statistical method, and found to be satisfactory (Chapter 2: Materials and 

Methods). The clustering arranged the transcriptomes both vertically 

(conditions-tissues) and horizontally (entities-genes) (Figure 4-2) on the basis of 

their global similarity of expression.  

Interestingly, the most closely related transcriptomes were the pairs of cognate 

adult and larval tissue transcriptomes which cluster under one branch although 

they undergo extensive remodelling during metamorphosis. However, this was 

consistent with the number of related genes that were differentially expressed 

in each tissue over their respective whole organism. This analysis also confirmed 

the validity of the method and the quality of the datasets.  

The hierarchical tree was branched into two. The first branch includes the 

tubules, and the other branch includes the rest of the transcriptomes. The rest 

of the transcriptomes were split into two branches: one including the CNS and 

salivary glands; and the other including the guts and the whole animals. From 

this data, the most unique transcriptomes belong to both larval and the adult 

tubules as they were placed in a single branch from the rest of the 

transcriptomes. The guts and the whole animals were the immediate neighbours 

of the tubules. The gut transcriptomes were the closest and in one branch along 

with the whole animal transcriptomes. Next to guts and whole animals were the 

salivary glands and CNS which branched into one. 

4.2.2  Epithelial signatures 

The adult- and larval- specific signature for each individual epithelium was 

obtained by finding genes that were only enriched in either stage over their 

respective adult whole fly or whole larvae transcriptome.  
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For each epithelium, the larval and adult signatures were compared against each 

other to find the common and unique signature genes between two stages. 

Among the 5-fold or more enriched genes, there are hundreds that show a 

unique and common expression pattern within each epithelium of larval and 

adult stages (Figure 4-3). 

 

Figure 4-3 Number of genes enriched (at least 5-fold) in larvae, adult or in both epithelia 
(FDR≤0.05). 
Larval and adult epithelia were compared against their respective whole animals to obtain 
the fold changes. The number of larval- and adult-specific enriched genes was obtained 
along with the commonly enriched in both. This analysis shows how many of the genes 
confined to a particular developmental stage, in addition to commonalities between two 
developmental stages. 

A list of the 50 most enriched unique and common probesets (genes) for adult, 

larval transcriptomes were obtained to see if they describe their manifestation. 

The novel GO: transport genes were then analysed with Online Mendelian 

Inheritance in Man (OMIM) to identify any human disease phenotypes that match 

the cognate fly tissues (Borate and Baxevanis, 2009). 

4.2.2.1  Salivary glands 

The top 50 adult (but not larval) salivary gland enriched probesets represent 16 

known, 20 and 10 novel genes with and without GO terms respectively including 

3 unannotated probesets (Table 4-1A). The known genes include 5-HT2, DNaseII, 

Drip, ine, Buffy, yellow-d, Nep5, GS, Fsh, trol, Ir, pio, NLaz, wbl, 5-HT7 and 

stumps. 
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Not surprisingly, serotonin (5-hydroxytryptamine or 5-HT) receptor 2 and 7 (5-

HT2 & 7) are highly abundant in the adult salivary glands, although they have 

been shown to be expressed in the brain and modulating the aspects of circadian 

and aggressive behaviours (Johnson et al., 2009; Nichols, 2007). It is well known 

that two separate 5-HT receptors in blowfly salivary glands mediate secretion 

through two independent signaling mechanisms; constituting the key second 

messengers cAMP and Ca2+ (Berridge, 2005).  

The Drip is consistently expressed across the epithelia, and abundant in the 

adult salivary glands, to probably facilitate the secretory functions of salivary 

glands.  

The yellow-d belongs to the family of yellow proteins that show high similarity to 

the family of major royal jelly proteins produced by bees, which are discussed 

below. The Buffy is the Drosophila ortholog of human BClˉ2, an anti-apoptotic 

and cell cycle suppressor that was shown to act downstream of Rpr, Grim, Hid to 

block caspase-dependent cell death (Quinn et al., 2003). As the expression of 

Rpr and hid plays a crucial role in the ecdysone mediated cell death during 

metamorphosis, the apoptosis mediated by these genes need to be probably 

suppressed by the high expression of Buffy during the adult stages. Interestingly, 

the ine was shown to encode a neurotransporter; its expression is very high in 

the adult salivary glands. Accordingly, an increased neuronal excitability 

phenotype is seen in ine mutants (Huang and Stern, 2002). However, it has also 

been implicated in the regulation of osmotic balance of the fly by potentially 

contributing to the osmolyte concentrations in Malpighian tubules and hindgut 

(Huang et al., 2002; Huang and Stern, 2002). However, it is highly abundant in 

the salivary glands indicating the probable functions of salivary glands in the 

osmotic balance of the fly. 

The novel GO: Transport genes include CG7589, CG15094 and CG6836. The 

CG7589 shows high expression in the salivary glands, in addition to its expression 

in the tubules. It has an OMIM entry: gamma-aminobutyric acid receptor, 

gamma-2 (GABRG2G), a member of the GABA-A receptor gene family of 

pentameric ligand-gated ion channels which is associated with childhood 

epilepsy.  
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The CG15094 was identified as a gene that potentially encode Na+ and PO4
3- 

transporter by GO: biological process, and related to a known Na+-dependent 

inorganic phosphate cotransporter (NaPi-T), which shows tubule-specific 

expression. Thus the OMIM entry directs it, like NaPi-T, to human SLC17A8, a 

Na+/P04
3- cotransporter or vesicular glutamate transporter (VGLUT3) and 

conspicuously identified as a gene that is involved in deafness. 

Table 4-1 The top 50 genes enriched in salivary glands. 
(A) Adult Enrichment (B) Larval Enrichment (C) Common Enrichment 

Gene Symbol FCA Gene 
Symbol 

FCA Gene Symbol FCA 
(asg/awf) 

FCA 
(lfsg/wlf

) 

CG31202 244 CG32073 48 sens 160 65 

CG32984 185 Muc68Ca 47 CG34290 129 47 

CG32198 174 Pip 44 Sox21b 100 15 

5-HT2 127 Pip 42 sage 84 21 

CG14934 117 GRHRII 38 CG18581 77 48 

CG7589 107 CG12506 38 nvy 75 23 

CG12310 101 CG32071 37 LysP 66 12 

CG15515 98 CG9737 36 eyg 65 16 

CG6074 63 Y 36 l(3)82Fd 65 11 

DNaseII 55 sesB 36 CG8708 63 41 

Drip 50 Eig71Ea 36 CecC 57 50 

CG18088 49 CG14850 35 CG30371 53 17 

CG14880 45 CG15741 35 fkh 43 15 

ine 42 Pip 28 CG13461 36 34 

CG13946 41 CG2217 27 CG30411 36 12 

CG17121 39 CG15530 27 1634865_at 34 14 

CG5630 39 CG13694 26 toe 32 19 

Buffy 37 CG6763 26 CG15890 30 10 

CG31516 36 CG17134 22 net 29 17 

yellow-d 33 CG31809 21 CG13950 26 30 

CG5630 
32 

PH4alphaSG
1 21 

sage 
25 16 

Nep5 29 CG31810 20 CG14118 25 12 

CG7408 29 CG4334 20 GalNAc-T2 24 11 

GS 27 CG5402 20 GalNAc-T2 24 15 

CG15094 26 CG32074 20 PH4alphaSG2 22 18 

CG8668 26 CG34105 20 Tie 20 12 

CG15385 25 CG34279 19 p24-1 19 15 

1640606_x_at 24 CG12715 18 Gmap 18 11 

Fsh 24 CG17362 18 FucTA 16 30 

CG33099 23 CG33256 17 CG10918 15 14 

CG9098 22 Pip 17 CG13947 15 30 

CG8483 22 hoe2 16 CG14252 14 13 

trol 22 CG17362 16 CG30104 10 11 

1633370_s_at 22 CG14852 16 CG6225 10 14 

Ir 22 CG13445 16 CG33169 10 10 

CG31036 22 Br 15 CG30394 8 12 

CG31431 22 CG12508 15 cry 8 29 

CG6836 21 1637802_at 15 CG15743 8 15 

pio 21 Eig71Eb 15 Hsp70Bbb/c/a 8 14 

CG3655 21 CG13170 14 CG34276 8 48 

NLaz 21 l(1)G0222 14 pgant5 5 10 

CG6675 21 CG17283 13 D 83 6 

CG4839 21 CG10830 13 Awh 80 7 

wbl 21 Pip 12 CG13285 70 7 

CG4267 21 CG15404 12 CG6688 56 8 

5-HT7 20 CG15438 12 1624816_at 41 8 

stumps 20 Pip 12 CG15822 38 8 

CG7510 19 Cdc6 12 GlcAT-P 29 6 

CG14356 19 CG31704 12 CG18507 29 10 

1625316_s_at 19 1639017_at 12 CG18507 28 7 

 



Chapter 4  121 

 
 

The top 50 larval (but not adult salivary gland) enriched probesets represent 12 

known,10 and 22 novel genes with and without GO terms respectively, including 

2 unannotated probesets (Table 4-1B).  

The known genes include Muc68Ca, pip, GRHRII, y, sesB, Eig71Ea, PH4alphaSG1, 

hoe2, br, Eig71Eb, l(1)G0222 and Cdc6. The yellow(y) proteins are associated 

with normal pigmentation, and implicated in morphology and locomotion of the 

organism (Drapeau, 2001). Its closest counterparts found to be the major royal 

jelly proteins (MRJPs) in honeybees that comprise 12.5% of the mass, and 82-90% 

of the protein content largely constituting essential amino acids and thought to 

be important as nutrients (Schmitzova et al., 1998). The royal jelly facilitates 

the development of a queen bee from bee larvae. Although the biological 

functions still remain to be explored, recent findings suggest they may be 

important in the epigenetic control of the honeybee transcriptome (Foret et al., 

2009). Interestingly, all known transcripts of the pip show specific enrichment in 

the larval salivary glands.  

The novel GO: Transport genes include CG4334, CG10830, and CG15438. The 

CG4334 encode a putative metal ion transporter. The CG10830 has an OMIM 

entry: KCTD7, K+ channel tetramerization domain-containing protein 7, 

implicated in progressive myoclonic epilepsy-3 in consanguineous Moroccan 

family members. The CG15438has an OMIM entry: SLC17A5, a gene associated 

with lysosomal sialic acid storage disorder (SSD). SSD is an autosomal recessive 

neurodegenerative disorder that may come in two forms including severe 

infantile form and slowly progressive adult form.  

The larval salivary gland highly enriched genes encode secretory proteins (sgs1, 

3, 4, 5, 7, 8), which are required in the pupal adhesion, and are required for 

larvae to moult into pupae. For example, the larval serum proteins are produced 

by the fatbody (Roberts et al., 1991; Wolfe et al., 1977).  

The three subunits (alpha, beta and gamma) of larval serum proteins are 

encoded by 3 paralogous genes that may have been duplicated in evolution from 

a common ancestor (Brock and Roberts, 1980). These genes occupy the list of 

most highly enriched genes of the larval feeding salivary glands. However, the 

other larval tissues including tubules, midgut, and hindgut show predominant 
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expression of these genes which could be needed in large amounts during 

metamorphosis. Interestingly, the three null alleles of all three subunits 

together were shown to be dispensable for the organism survival (Roberts et al., 

1991). Other glue genes, that encode newglue 1 and 2, required for pupal 

adhesion, were also enriched.  

The top 50 commonly enriched probesets in both adult and larval salivary glands 

represent 22 known, 8 and 17 novel genes with and without GO terms 

respectively (Table 4-1C). The known genes include sens, Sox21b, nvy, LysP, 

eyg, l(3)82Fd, CecC, fkh, toe, net, sage, GalNAc-T2, PH4alphaSG2, Tie, P24-1, 

Gmap, FucTA, cry, Hsp70Bbb, pgant5, D, Awh and GlcAT-P. Only one GO 

inferred novel transport gene, CG30394, was found to be encoding a putative 

amino acid transporter. But, the other predominant expression patterns include 

the transcription factors related to development, antimicrobial peptides related 

to innate immunity, and genes related to proteolysis. 

The forkhead (fkh) is the closest homologue of human FOXOA transcription 

factor gene, and a well-known developmental gene required for correct 

development of the endoderm and ectoderm derived parts of the epithelia 

including guts, salivary glands, and tubules.  

The ecdysone induced transcriptional regulation of programmed cell death is 

widely studied in Drosophila salivary glands, in that the fkh is down regulated 

when the cell death activators reaper and hid need to be optimally expressed for 

the ecdysone prepupal pulse to induce the destruction of the obsolete larval 

tissues (Baehrecke, 2005; Thummel, 2007).  

In addition to cell death, fkh controls many interrelated transcriptional networks 

that regulate autophagy, phospholipid metabolism, hormone controlled signaling 

pathways, glucose and fatty acid metabolism (Liu and Lehmann, 2008a). The fkh 

target genes faithfully found in our analysis in the list of larval and adult 

commonly enriched genes which include sage, senseless encode transcription 

factors and prolyl-4-hydroxylase, PH4αsg2, and are involved in the modification 

of secreted proteins. Developmentally, the cooperative control of fkh and sage 

directly regulates the expression of PH4αsg2 and sage and indirectly regulates 

the expression of PH4αsg1 to regulate tubule lumen size to eventually accelerate 
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the secretion (Abrams et al., 2006). The other fkh targets found in the larvae 

include sgs, and ng in our direct comparisons of adult against larval tissue 

transcriptome (Table 4-7).  

The proteins that participate in O-Glycosylation, encoded by GalNAc-T2 and 

pgant5 were also enriched. These proteins transfer N-Acetylgalactosamine 

residue from UDP-GalNAc to the hydroxyl group of serine or threonine residues 

of the target proteins and are highly relevant to the secretory functions of the 

salivary glands. The Eyg (eye gone) and twin of eyegone (toe) show high 

specificity of expression in both larval and adult salivary glands, and the adult 

eye. They have been shown to be involved in the compound eye morphogenesis, 

but not known for any salivary gland-related functions. Malpighian Tubules 

4.2.2.2 Malpighian Tubules 

The top 50 adult (but not larval) tubule enriched probesets represent 16 known, 

16 and 16 novel genes with and without GO terms respectively; including 2 

unannotated probesets (Table 4-2A). The known genes include Hsp70Aa, 

Hsp70Bbb, alpha-Est6, Tsp42Eq, p38c, JhI-26, PhKgamma, Hsp70Bc, Kua, 

Cyp6a2, mthl14, l(2)08717, Oscillin, fusl, Fmo-1, and comm3.  

The novel GO: Transport genes include CG14694, CG10226, CG17664 and 

CG7720. The CG14694 has an OMIM entry: SLC19A3, a member of micronutrient 

transporter family, that transport reduced folate and has been implicated in 

biotin-responsive basal ganglia disease. It was first diagnosed in patients with 

consanguineous parents with origins from Saudi, Syria and Yemen. The CG10226 

belongs to an ABC transporter, ABCA4 in humans, with an OMIM entry: age 

related macular degeneration.  

The CG17664 has an OMIM entry: AQP3, a water channel implicated in blood 

group GIL. The CG7720 encodes a putative SLC family transporter, a sodium-

iodide symporter in humans, with an OMIM entry: SLC5A5, implicated in 

congenital hypothyroidism. The human counterpart plays a key role in the 

plasma membranes of the lactating breast and other tissues in I- uptake, the first 

step in the biosynthesis of iodine-containing thyroid hormones (Dohan et al., 

2007). 

http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=600170
http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=600170
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The top 50 larval (but not adult) Malpighian tubule enriched probesets represent 

19 known, 16 and 12 novel genes with and without GO terms respectively; 

including 2 unannotated probesets (Table 4-2B). The known genes include Btd, 

Jhe, Jhedup, rdgc, TwdlG, SelR, bw, csul, Or35a, cad, ome, Pvf1, AttD, 

l(3)82Fd, E23, BG642312, sprt, pyd and shn.  

The novel GO: transport genes include CG10505, CG8850, CG7888, CG11897 and 

CG6293. The CG10505 has an OMIM entry: PMP70, an ABC transporter associated 

peroxisomal disorder with Zellweger spectrum. The CG6293 is included in the 

family that code permeases that may transport xanthine, uracil and vitamin C 

according to Pfam (Finn et al., 2010). 

The top 50 commonly enriched probesets in both adult and larval tubules 

represent 9 known, 23 and 14 novel genes with and without GO terms 

respectively; including an additional unannotated probeset (Table 4-2C). 

Interestingly, scarlet which is highly enriched and only found in tubules, at both 

larval and adult stages, encodes a protein that participates in the eye pigment 

biosynthetic process indicating tubule’s key role in this function. 

Gp150-like is highly enriched and has a human ortholog: aspirin (ASPN) with 

OMIM entry associated with lumbar disc degeneration/osteoarthritis. ASPN 

belongs to a family of leucine-rich repeat proteins, and is an extracellular matrix 

component expressed abundantly in the articular cartilage of individuals with 

osteoarthritis, in the pathogenesis of the disorder (Kizawa et al., 2005). Why this 

is important in a simple invertebrate like a fly? The functionally distinct initial 

segment of the fly anterior tubule (Sozen et al., 1997) is a place for mineralised 

concretions (Wessing et al., 1992). Gp150-like found to be highly enriched in the 

initial segment of the tubule in our previous microarray study (unpublished). This 

broadens the horizon of an invertebrate tissue as a place to study a gene, 

important in human pathology, given its genetic and physiological amenability. 

The NaPi-T is highly enriched in both stages and found to be highly specific to 

tubules. Other genes enriched include the Oatp58Da and Oatp58Da which have 

no human orthologs; irk3 and Sr-CIV, encoding a protein product with a STAT 

binding consensi (Kwon et al., 2008), involved in defence response. 
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Table 4-2 The top 50 genes enriched in Malpighian tubules. 
(A) Adult Enrichment (B) Larval Enrichment (C) Common Enrichment 

Gene Symbol FCA Gene Symbol FCA Gene Symbol FCA(at vs 
awf) 

FCA( lft 
vs wlf) 

CG32024 59 CG13312 41 Sr-CIV 49 29 

CG32843 57 Btd 34 CG33282 91 43 

CG13313 49 Jhe 34 CG15408 68 27 

CG17636 46 Jhedup 33 CG8837 85 25 

CG32023 42 CG6475 30 CG3285 63 22 

CG6602 42 CG3264 25 CG15406 32 20 

CG14694 39 CG10505 20 CG18095 85 54 

CG4484 34 CG8850 19 CG15279 35 22 

CG7144 34 rdgC 18 Irk3 50 35 

CG33012 29 CG14958 18 CG34043 53 40 

CG9444 28 CG13516 18 Oatp58Da 57 47 

CG10226 27 CG13836 18 Oatp58Db/gb 61 30 

CG7992 27 CG32626 16 CG3270 45 21 

CG10170 25 rdgC 15 NaPi-T 78 27 

CG7881 23 CG17646 14 CG13905 75 35 

CG13309 23 CG14949 13 CG32195 43 22 

Hsp70Aa/b 23 CG14963 13 st 98 24 

CG13656 22 CG3303 12 CG10006 45 30 

CG17664 22 TwdlG 11 CG14606 62 40 

CG9629 22 CG7888 11 CG3014 42 41 

CG5431 22 CG15771 10 CG5361 58 25 

Hsp70Bbb 22 SelR 10 CG6465 52 22 

1638611_at 21 bw 10 Ugt86Dd 29 21 

CG33258 20 1631349_s_at 10 CG14857 22 21 

alpha-Est6 20 csul 10 CG17751 84 36 

Tsp42Eq 20 Or35a 10 CG16727 94 21 

p38c 20 cad 10 CG11659 150 45 

CG5849 20 CG9062 9 CG5697 40 27 

CG1315 20 CG14856 9 CG6733 26 20 

JhI-26 19 CG6225 9 CG17110 61 30 

CG8079 19 1638280_at 9 CG31106 48 25 

PhKgamma 18 ome 8 CG10553 24 20 

Hsp70Bc 18 CG34198 8 CG31097 46 32 

CG7720 18 Pvf1 8 CG31380 48 23 

CG15706 18 AttD 8 CG42235 62 33 

Kua 17 CG11897 8 CG42235 74 61 

Cyp6a2 17 CG32234 8 CG42235 69 52 

CG30411 17 CG4586 8 CG42235 60 23 

CG31562 17 l(3)82Fd 8 CG42235 66 23 

CG13604 17 E23 7 CG2187 33 28 

mthl14 17 BG642312 7 CG11889 26 33 

l(2)08717 17 CG6364 7 CG3690 62 33 

CG6891 17 CG6293 7 CG2680 29 26 

CG13827 17 sprt 7 CG15221 39 40 

1639729_s_at 16 CG30375 7 CG8028 78 46 

Oscillin 16 pyd 7 CG14195 31 21 

CG42329 16 CG10301 7 CG18814 19 31 

fusl 16 CG7431 7  1631526_s_at 19 23 

Fmo-1 16 shn 7 Ugt35b 20 37 

comm3 16 CG9328 7 Cyp6a8 31 20 

 

Sr-CIV has been shown to be upregulated in Nurf mutants (that show 

inflammatory syndrome) in which NURF was implicated as a regulator of a large 

set of JAK/STAT target genes (Kwon et al., 2008). The tubule senses the bacteria 

and may constitute a cell-autonomous system of immunity (McGettigan et al., 

2005). Sr-CIV has a putative concanavalin A-like lectin/glucanase domain.  
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The lectins and glucanases are found in all orders of life and show the common 

property of reversibly binding to specific complex carbohydrates. Some catalyse 

beta-glucans found in microorganisms (Hahn et al., 1995). This observation 

reinforces the idea that tubules may act as an independent system in 

potentiating innate immune responses to the pathogenic bacteria within their 

milieu.  

Other genes that did not show up in the top list, but did in the 10-fold or over 

upregulated lists include the famous xanthine dehydrogenase (or rosy), white, 

urate oxidase (uro). In that, rosy and white are well characterised classical 

mutants. The localisation of rosy and uro have been established to be 

peroxisomal (Beard and Holtzman, 1987; Wallrath et al., 1990). Mutations in rosy 

and white cause eye colour phenotypes, thus are important in the associated 

pigment biosynthesis and transport processes (Beyenbach et al., 2010b).  

The rosy gene encodes a bifunctional oxidoreductase that can act as a 

dehydrogenase or an oxidase depending on the substrate and acceptor 

availability (Parks and Granger, 1986; Stirpe and Della Corte, 1969). It catalyses 

the conversion of hypoxanthine to xanthine, and further to uric acid (Beard and 

Holtzman, 1987; Reaume et al., 1989). Most interestingly, the Drosophila rosy 

mutants recapitulate the human inborn error of metabolism, xanthinuria type I, 

caused by mutations in the human homolog of rosy (Beyenbach et al., 2010b). In 

conjunction, the studies using sedimentation gradient centrifugation, 

established that rosy-localised peroxisomal size, shape, and centrifugal 

behaviour are similar to peroxisomes of vertebrates (Beard and Holtzman, 1987; 

Parks and Granger, 1986).  

Uro encodes a functional urate oxidase that converts uric acid to 5-

hydroxyisourate which eventually is converted to allantoin. In humans and many 

primates uric acid is the end product of the catabolism of purines because they 

have a non-functional gene (Wu et al., 1989).  

The peroxisomal localisation of rosy is interesting which could regulate the 

downstream effectors of the peroxisomal resident enzymes in the purine 

degradation pathway.  
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For example, by the end of embryogenesis, distal tubule cells transport the 

organic solutes of urate (urates) into the lumen, where they precipitate as uric 

acid crystals but not until they hatch they are able to clear it by fluid transport 

process (Beyenbach et al., 2010a). As insects go through successive 

developmental stages from larvae to adult, the excretory load increases on the 

organism. For this task, Malpighian tubules have to rapidly adapt, as they are 

largely established during embryogenesis unlike other epithelial tissues 

(Beyenbach et al., 2010a; Skaer, 1993). Nevertheless, peroxisomes in the tubules 

play essential roles in the transport and excretory mechanisms of tubules, at 

both adult and larval stages. 

4.2.2.3  Midgut 

The top 50 probesets in the adult (but not larval) represent 8 known, 23 and 16 

genes with and without GO terms respectively (Table 4-3A). The known genes 

include lectin-24A, pcl, Vha100-4, ninaD, Lvpl, Cry, Ugt86Dc and CG3841 (nmo). 

The two genes that encode nmo, a protein that participates in the planar cell 

polarity, are CG7892 and CG3841. Interestingly CG7892 shows ubiquitous 

expression, while the CG3841 is specifically expressed in the midgut and shows 

some expression in testis.  

The novel GO: Transport genes include CG17930, CG6901, CG17929, CG33514, 

CG9981, CG9903, CG31636 and CG33514. According to the Interpro protein 

signature database (Hunter et al., 2009), both the protein products of CG17930 

and CG6901 are classified into the general substrate transporter family, which 

may transport sugars according to the Pfam (Finn et al., 2010). The Affymetrix® 

chip has two independent probesets for detecting CG33514, and they detect 

similar tissue-specific expression patterns. The Interpro suggests that the 

putative CG33514 protein product has several cellular retinaldehyde-binding and 

alpha-tocopherol domains. The cellular retinaldehyde-binding domains function 

in the phospholipid metabolism and transport. The alpha-tocopherol domain 

shows stereoselectivity and binds to α-Tocopherol, which is a form of vitamin E.  
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The CG9981 is classified as GO: phospholipid transporter which has an OMIM 

entry: autosomal recessive deafness, associated with P-type ATPase, the plasma 

membrane Ca2+-transporting ATPase (PMCA): ATP2B2. The CG9903 is a GO: 

sodium transporter. The Pfam suggests that it may belong to Na+/bile acid co-

transporters that function in the liver in humans in the uptake of bile acids from 

portal blood plasma. In another family member ARC3 from Saccharomyces 

cerevisiae, CG9903 was identified as a putative transmembrane protein, 

involved in the resistance to arsenic compounds. The CG31636 is related to OMIM 

entry: ataxia with isolated vitamin E deficiency that is explained in the later 

sections.  

Other genes enriched include the ones that participate in proteolysis, 

carbohydrate, and lipid metabolic process. Only 19 probesets are enriched at 

least 5-fold or higher in larval (but not adult) that represent 5 known 5 and 7 

novel genes with and without GO terms respectively; including two additional 

unannotated probesets (Table 4-3B). 

Only 46 probesets enriched at least 5-fold in both adult and larvae representing 

17 known, 12 and 16 novel genes with and without GO terms respectively; 

including two additional unannotated probesets (Table 4-3C). The novel GO: 

Transport genes include CG32054, CG32053 and CG7912. 
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Table 4-3 The top 50 genes enriched in midgut. 
(A) Adult Enrichment (B) Larvae Enrichment (C) Common Enrichment 

 
Gene 

Symbol 
FCA Gene 

Symbol 
FCA Gene 

Symbol 
FCA (amg vs 

awf) 
FCA (lfmg 

vs wlf) 

CG15263 137 CG7248 22 CG10659 55 7 

CG31446 70 1629230_at 16 CG6277 44 5 

CG34040 69 CG12951 11 NPC1b 33 5 

CG5770 55 mirr 10 Ugt86Dh 31 5 

CG34040 50 Yp1 9 Muc68E 31 11 

CG34316 42 1638967_at 7 CG32054 29 9 

CG17930 42 CG18606 7 1635270_at 27 5 

CG6901 38 CG5541 7 CG33346 26 7 

CG42335 33 CG7589 6 Cyp309a1 24 5 

CG3739 30 CG14204 6 CG31720 23 5 

lectin-24A 30 grn 5 exex 22 11 

CG3934 29 Epac 5 CG13658 21 6 

Pcl 29 CG4991 5 CG15170 20 7 

CG9465 29 CG9896 5 Try29F 20 7 

Vha100-4 28 CG18628 5 CG7381 19 5 

CG7025 27 nimC3 5 Tk 18 5 

CG5724 27 CG15816 5 Myo28B1 18 7 

CG16997 27 CG33272 5 Myo28B1 18 6 

ninaD 26 CG7720 5 CG8690 17 8 

CG17929 26     CG16965 17 7 

CG31148 26     CG31259 16 6 

CG16732 26     CG12194 16 6 

CG14500 26     CG17167 16 7 

CG8093 26     Amyrel 16 10 

CG18748 26     CG18635 16 5 

LvpL 26     CG30360 15 8 

CG34005 26     CG11318 15 7 

CG30272 25     CG9555 15 8 

CG1946 25     CG32053 15 8 

CG15533 25     sens-2 13 6 

CG33514 24     1638487_at 12 6 

CG34236 24     CG18744 12 5 

CG34005 24     Takl1 12 5 

CG2772 24     lab 11 7 

CG9981 24     CG14219 11 8 

CG18577 24     Cyp12d1-p 10 9 

Cry 23     CG7912 10 6 

Ugt86Dc 23     CG12780 10 6 

CG32483 22     CG32843 10 6 

CG9903 22     CG4363 10 6 

CG8693 22     Cyp6a14 9 7 

CG31636 22     CG33337 9 22 

CG9826 22     Cyp9f3Psi 9 6 

CG33514 22     CG42348 9 6 

CG12766 22     LvpH 6 6 

CG11909 21     CG7408 5 6 

Nmo 21           
CG15423 21         
CG18480 21         
CG11149 21         
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4.2.2.4  Hindgut 

The top 50 probesets in the adult (but not larval) hindgut represent 4 known, 18 

and 24 novel genes with and without any GO terms respectively; including one 

additional unannotated probeset (Table 4-4A). The known genes include Cpr62Ba 

(Cuticular protein related), yellow-b, NepYr, and TwdlT. 

The novel GO: Transport genes include CG42269, CG10026, CG3823, CG7888, and 

CG33970. The CG42269 is only expressed in the hindgut; according to OMIM, it is 

a Drosophila homolog of human SLC22A12 which encodes URAT1, a urate-anion 

exchanger, associated with renal hypouricemia. The URAT1 shows luminal 

plasma membrane localisation in the proximal tubule epithelium of the human 

kidney (Enomoto et al., 2002). Thus, CG42269 may be a probable fly candidate 

in the adult hindgut luminal reabsorption of the urate, to counter excessive 

excretion. Both the CG10026 and CG3823 are highly abundant in hindgut; other 

tissues show similar enrichment including larval fatbody (functionally analogous 

to human liver) and crop. They have a single OMIM entry, the tocopherol transfer 

protein alpha (TTPA) implicated in ataxia with isolated vitamin E deficiency. The 

northern blot analysis of several human tissues revealed that it is expressed only 

in the liver (Arita et al., 1995). Although there is a mouse model for TTPA 

(Terasawa et al., 2000), and a genome wide study comparing the gene 

expression in heart tissue of TTPA null mice with that of wild-type mice (Vasu et 

al., 2007), the Drosophila homologs’ adult hindgut specific expression pattern 

suggest hindgut’s role in the reabsorption of the vitamin E. The rest of the two 

genes including CG7888 and CG33970 are inferred to be involved in amino acid 

transmembrane transport and transport respectively. It is interesting to note 

from the above observations with respect to hindgut’s role in the reabsorption 

and homeostasis of useful metabolic compounds. 

 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=607096
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Table 4-4 The top 50 genes enriched in hindgut. 
(A) Adult Enrichment (B) Larval Enrichment (C) Common Enrichment 

Gene Symbol FCA Gene Symbol  FCA  Gene Symbol FCA(ahg 
vs awf) 

FC(lfhg vs 
wlf) 

CG9993 171 CG7906 63 CG1143 103 14 

CG34462 88 CG9021 54 CG13177 100 21 

CG17999 79 CG15615 33 CG15870 86 33 

CG32234 68 CG2157 31 Cyp49a1 80 21 

CG34109 67 CG9269 27 CG4459 76 28 

CG34109 63 Aret 26 CG3604 76 15 

CG6867 59 CG9702 25 CG14949 75 15 

CG42269 47 Cpr49Ae 24 CG32564 73 12 

CG4726 43 CG15394 20 CG7365 71 28 

1639350_at 40 Ggamma30A 20 byn 70 28 

Cpr62Ba 39 Esp 19 Cyp301a1 59 20 

CG3332 37 CG15212 19 CG13215 53 17 

CG13618 36 CG15890 17 comm3 52 19 

CG5639 34 CG13748 17 CG31530 51 55 

CG32234 32 CG13028 17 Fsh 48 25 

yellow-b 32 CG14516 17 Ahcy89E 48 11 

CG9427 32 Osi6 17 Pkg21D 44 16 

NepYr 31 Aret 17 CG4623 44 15 

CG7422 31 CG8303 15 CG14872 39 25 

CG18417 30 Ork1 15 CG8008 36 11 

TwdlT 29 Retn 14 CG31176 32 19 

CG31810 29 CG13082 14 ine 31 13 

CG4660 28 Rpr 14 swi2 31 19 

CG11550 28 SP71 14 1629538_s_at 31 17 

CG40486 28 CG15213 13 CG5404 30 21 

CG32850 27 CG14826 13 CG31100 30 15 

CG12990 27 CG9196 13 CG14275 29 23 

CG12995 26 CG15213 12 Irk2 29 15 

CG6074 26 CG9747 12 CS-2 25 11 

CG32234 26 Tup 12 fkh 25 10 

CG30047 25 Doc2 12 Rh50 24 18 

CG32284 24 CG13313 11 CG4462 23 12 

CG31809 24 CG7802 11 CG12826 22 16 

CG10200 24 CG15201 11 CG6836 22 17 

CG34109 23 CG13228 10 CG12655 21 14 

CG14830 23 CG11147 10 1638195_at 21 34 

CG10026 23 CG5002 10 CG13616 19 11 

CG15088 22 Shn 10 CG32397 18 15 

CG15822 21 Pip 10 CG16820 18 15 

CG3823 21 Cpr49Ag 9 Cyp4aa1 17 20 

CG7888 21 CG5910 9 1630614_s_at 16 15 

CG13024 20 CG32645 8 CG18473 15 11 

CG33012 20 l(2)08717 8 CG31900 13 12 

CG32850 20 CG30387 8 CG33143 13 14 

CG17190 20 Tadr 8 CG5070 13 26 

CG42246 20 Tadr 8 CG10702 11 19 

CG5928 20 CG14720 8 RluA-1 10 23 

CG2650 19 CG13217 8 CG31676 10 17 

CG33970 18 AdoR 8 D 10 16 

CG14253 18 CG30334 8 otp 9 11 

 

The top 50 probesets in the larval (but not adult) hindgut represents 16 known, 8 

and 22 novel genes with and without any GO terms (Table 4-4B). The known 

genes include aret, Cpr49Ae, Ggamma30A, Esp, Osi6, Ork1, retn, rpr, SP71, tup, 

Doc2, shn, pip, Cpr49Ag, l(2)08717, tadr and AdoR. The GO inferred novel 

transport genes include CG9702, CG11147 and CG5002. All the three novel 

transport genes have OMIM entries.  
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The CG9702 and CG5002 belong to human SLC transporter, SLC26A4; CG11147 

belongs to the ABC family transporter, ABCC11. 

The top 50 enriched genes in both adult and larval hindgut represent 16 known, 

11 and 20 novel genes with and without GO terms; including an additional 3 

unannotated probesets (Table 4-4C). The known genes include Cyp49a1, byn, 

comm3, Fsh, Ahcy89E, Pkg21D, ine, swi2, Irk2, CS-2, fkh, Rh50, Cyp4aa1, RluA1, 

D, and otp. The byn is expressed in the hindgut proliferation zone (HPZ) where 

the stem cells are able to self-renew and produce epithelial cells to replace the 

aged cells for the proper function (Takashima et al., 2008).  

4.2.2.5 Functional compartmentalisation of the epithelia 

At least 5-fold enriched gene lists for each epithelium were used to classify the 

function according to GO terms. The most significantly enriched (P≤0.001) 

ontology terms were sorted by their adjusted P-value, the lowest being the most 

significant and first in the list (Table 4-5). This analysis was only shown for adult 

epithelia as larval epithelia showed similar functional compartmentalisation. The 

most significantly enriched GO terms in the salivary glands include Golgi and 

vesicle mediated processes. These terms reiterate the secretory function of the 

salivary glands. The tubule enriched GO terms include active transmembrane 

transporter activity, membrane transport, anion and cation transporter activity 

and oxidoreductase activity. The mitochondria play a pivotal role in the ATP-

dependent processes. Accordingly, they are abundant in the apical microvilli of 

the tubule, where the epithelial V-ATPases drives fluid transport.  

The midgut enriched GO terms include catalytic activity, peptidase and protease 

activity hydrolase and lipase activity, thus suggesting midgut in the nutrient 

metabolism. The hindgut enriched GO terms are mostly similar to tubule GO 

terms and they include active and secondary active transmembrane transporter 

activity and metal ion transport. This data therefore support the general 

functions of the tubule and hindgut in the osmoregulatory and excretory 

functions. In addition, this analysis shows the places to study the functions of a 

novel gene.  
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Table 4-5 GO functional classification of epithelial signatures. The significantly (FDR≤0.001) 
enriched GO terms are arranged according to their P-value, the lowest being the most 
significant. For each tissue, besides the GO term, % count, percentage number of genes 
present in the analysis is shown. 

Salivary glands 
 

Malpighian tubules 
 

Midgut Hindgut 

GO Term % Count  GO Term % 
Count  

GO Term % 
Count  

GO Term % 
Count  

RCAF 
complex 

15.23 transmembrane 
transporter 
activity 

22.88 catalytic activity 88.71 secondary active 
transmembrane 
transporter activity 

8.43 

chromatin 
remodeling 
complex 

15.23 secondary active 
transmembrane 
transporter 
activity 

10.03 hydrolase activity 54.84 membrane 78.65 

Golgi 
apparatus 

18.54 transmembrane 
transport 

22.88 serine-type 
peptidase activity 

16.13 membrane part 54.49 

polytene 
chromosom
e 

17.22 transporter 
activity 

27.27 serine hydrolase 
activity 

16.13 transporter activity 23.6 

Golgi 
apparatus 
part 

13.25 active 
transmembrane 
transporter 
activity 

12.85 peptidase activity 25.48 active 
transmembrane 
transporter activity 

8.43 

chromatin 
assembly 

16.56 substrate-
specific 
transmembrane 
transporter 
activity 

14.42 proteolysis 26.45 transmembrane 
transporter activity 

10.67 

nucleosome 15.23 substrate-
specific 
transporter 
activity 

14.42 peptidase activity, 
acting on L-amino 
acid peptides 

20 transmembrane 
transport 

10.67 

nucleosome 
assembly 

15.23 ion 
transmembrane 
transporter 
activity 

12.54 serine-type 
endopeptidase 
activity 

14.19 intrinsic to 
membrane 

54.49 

chromatin 
assembly or 
disassembly 

16.56 ion 
transmembrane 
transport 

12.54 monooxygenase 
activity 

8.06 monooxygenase 
activity 

10.11 

protein-DNA 
complex 

15.23 monooxygenase 
activity 

9.4 metabolic process 93.23 integral to 
membrane 

53.93 

DNA 
packaging 

16.56 metal ion 
transmembrane 
transporter 
activity 

5.33 heme binding 8.71 substrate-specific 
transmembrane 
transporter activity 

8.43 

protein-DNA 
complex 
assembly 

15.23 ion transport 17.55 tetrapyrrole 
binding 

8.71 ion transmembrane 
transporter activity 

7.87 

protein-DNA 
complex 
subunit 
organizatio
n 

15.23 anion 
transmembrane 
transporter 
activity 

7.21 hydrolase activity, 
hydrolyzing O-
glycosyl compounds 

5.48 cation 
transmembrane 
transporter activity 

7.87 

nucleosome 
organizatio
n 

15.23 anion transport 7.21 electron carrier 
activity 

10.65 ion transmembrane 
transport 

7.87 

DNA 
conformatio
n change 

16.56 microsome 7.52 microsome 6.45 microsome 8.99 

cytoplasmic 
membrane-
bounded 
vesicle 

6.62 vesicular fraction 7.52 vesicular fraction 6.45 vesicular fraction 8.99 

Golgi 
membrane 

10.6 electron carrier 
activity 

11.91 hydrolase activity, 
acting on glycosyl 
bonds 

7.1 metal ion transport 7.3 

chromatin 16.56 solute:cation 
symporter 
activity 

3.76 triglyceride lipase 
activity 

4.19 membrane fraction 9.55 

membrane-
bounded 
vesicle 

6.62 membrane 54.55 endopeptidase 
activity 

14.52 substrate-specific 
transporter activity 

8.43 

Golgi 
vesicle 
transport 

2.65 oxidation 
reduction 

22.88 glucuronosyltransfe
rase activity 

3.87 metal ion 
transmembrane 
transporter activity 

3.93 
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4.2.3  Adult-specific functions 

To obtain common signatures of adult-specific functions of the epithelial tissues, 

the epithelial transcriptomes were compared against the adult whole fly. An 

‘epithelial signature’ for adult and larval epithelia separately and combined for 

both was obtained. The number of commonly enriched genes across adult, larval 

and both epithelia includes 309 and 327 and 106 respectively (Figure 4-4). Out of 

106 genes that show similar expression pattern across the epithelia, 66 were 

novel and the other 40 were known genes. The list of known genes is 

represented in Table 4-6. 

 

Figure 4-4 The commonly 
enriched genes in both adult 
and larval epithelia in the adult 
context. 
An enriched list for each 
epithelium was obtained by 
comparing them against the 
whole fly. Then at least 2-fold 
enriched genes were used to 
find the common genes among 
the epithelia. First a signature 
for both larval and adult 
epithelia was obtained 
separately, and then a final 
epithelial signature for both 
was obtained. 

 
 
 

 
A quick glance at the commonly enriched genes across the epithelia shows the 

famous epithelial genes encoding epithelial transcription factors (bowl); a water 

channel (Drip); an epithelial hormone receptor (Hr39), a potassium channel 

(KCNQ) and equally, all other genes, that have been implicated in epithelial 

tissue development or function. 
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Table 4-6 The known genes that are consistently enriched (at least 2-fold) across epithelia. 
FDR≤0.05. 

Gene Symbol Transcript ID 

Fold change over adult whole fly 

AHG AMG ASG AMT LFHG LFMG LFSG LFMT 

Bowl CG10021-RB 7.06 3.23 14.84 10.8 5.5 5.57 10.92 11.49 

bru-2 CG31761-RC 5.9 3.05 5.57 8.76 8.25 2.93 2.91 6.98 

Cdep CG31536-RA 3.69 4.86 6.04 4.87 4.89 4.35 4.01 5.87 

CHKov1 CG10618-RA 3.71 3.92 18.42 3.67 5.13 5.15 7.53 3.01 

Cyp12e1 CG14680-RA 2.78 4.43 2.82 5.28 5.47 9.08 10.91 12.12 

Cyp12e1 CG14680-RA 4.43 4.88 2.83 5.07 6.36 8.89 12.68 20.28 

Cyp9c1 CG3616-RA 7.29 3.99 3.76 8.52 16.9 9.12 7.07 10.13 

Drip CG9023-RA 5.57 3.79 63.1 8.19 14.55 3.67 5.98 10.03 

Eap CG32099-RA 2 2.29 2.09 6.72 3.01 2.11 4.32 5.57 

Edem2 CG5682-RA 2.34 6.05 2.79 2.07 3.38 3.78 6.91 3.14 

G-sα60A CG2835-RC 3.15 2.13 3.31 3.7 4.52 2.27 2.92 3.24 

Hr39 CG8676-RB 4.75 3.68 10.28 9.89 8.27 7.46 7.47 12.98 

Jim CG11352-RC 3.54 2.75 2.35 7.03 5.07 2.79 6.81 4.06 

KCNQ CG33135-RA 7.59 12.35 2.11 10.95 40.65 6.65 2.64 9.18 

Kr-h1 CG18783-RA 4.27 2.53 7.86 7.66 2.12 2.08 5.11 2.29 

Kst CG12008-RA 3.83 6.21 2.3 2.67 4.17 4.33 2.19 4.63 

l(1)G0168 CG33206-RA 3.56 2.4 20.46 3.45 4.83 4.02 17.58 6.2 

Lola RH31485 6.94 3.33 5.93 8.67 5.21 2.25 6.71 3.95 

Lqf CG8532-RB 2.28 2.14 2.06 5.86 6.34 4.85 3.01 10.03 

Mitf CG40476-RA 3.98 3.04 5.26 2.81 4.73 3.07 6.73 2.82 

Mkk4 CG9738-RA 2.22 2.36 2.26 3.04 2.77 3.02 3.88 3.08 

MsP-300 CG31916-RA 4.51 4 2.89 2.99 5.85 7.44 5.34 4.74 

mthl3 CG6530-RA 3.58 3.13 2.25 11.25 41.15 17.97 12.66 56.7 

mthl4 CG6536-RB 5.61 3.54 3.7 15.62 7.85 4.76 24.77 8.28 

mthl4 CG6536-RA 4.79 4.63 2.79 6.42 4.54 4.45 16.94 8.27 

Nhe1 CG12178-RA 3.05 2.41 10.53 5.97 2.78 2.91 14.04 4.11 

Ome CG32145-RA 5.54 8.87 8.6 4.18 5.72 7.19 6.21 4.58 

p24-2 CG33105-RA 2.02 3.99 10.77 2.05 2.46 3.72 6.6 4.51 

Pvr CG8222-RA 3.74 3.42 13.09 5.78 3.22 2.52 4.94 2.65 

Rab6 CG6601-RA 2.77 3.31 4.5 2.17 3.64 3.19 14.64 4.28 

Rhp CG8497-RA 2.44 5.76 3.64 7.71 8.76 5.96 5.35 6.02 

Scrib CG5462-RC 4.34 7.82 5.05 6.27 5.48 9.92 4.26 15.32 

Scrib CG5462-RC 3.37 4.88 3.06 5.9 3.95 6.01 3.34 9.94 

Smox CG2262-RA 3.1 2.38 2.29 12.77 3.92 4.63 2.51 4.76 

Snoo CG7093-RA 3.11 2.75 2.8 5.33 3.98 3.1 5.4 4.92 

Su(dx) CG4244-RD 2.65 4.93 2.14 6.7 3.26 7.84 2.8 4.32 

Syb CG12210-RB 3.88 4.06 2.56 2.48 3.09 4.09 3.01 4.47 

Traf-like CG4394-RC 4.3 14.78 2.89 14.07 6.73 20.61 3 26.33 

Troll CG7981-RB 6.01 3.69 23.66 5.9 4.21 7.51 3.88 5.88 

unc-115 CG31332-RC 4.47 3.94 4.9 2.99 4.54 3.62 4.52 3.19 

 

4.2.4  Direct comparison: adult tissue vs. larval tissue 

The direct comparison of adult against larval tissue yields the developmental 

specificity of the gene expression. Adult- and larval-specific enrichments for top 

20 genes are presented in Table 4-7. This analysis was performed to obtain larval 

tissue specific expression over the adult tissue and vice versa. However, this 

comparison does not show whether the gene that was highly enriched in larval 

tissue is specific for that tissue. A quick glance at the table shows that adult 

performs predominantly metabolic functions such as carbohydrate and fatty acid 

metabolism. Larval tissues abundantly express glue and larval storage proteins 

that have the roles in pupal adhesion, nutrition and metamorphosis.  



Chapter 4  136 

 
 

These include glue proteins, larval storage proteins, mucins and salivary gland 

secretion proteins. For example, in insects, larval storage proteins form 

hexameric complexes and used as storage sites for amino acids for the adult 

organ development. 

Table 4-7 Direct comparison of adult vs larval epithelial tissue. 
The top 20 genes that show high enrichment are presented in the table for adult and larvae 
separately over their respective larval or adult tissues. Gene symbol and absolute fold 
changes (over adult or larval tissue) are shown. FDR≤0.05.
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4.2.5 Ingenuity pathway analysis (IPA) 

Using ortholog/paralog mapping in ingenuity pathway analysis knowledgebase 

(IPA-KB) that holds vertebrate functional information, all genes enriched, at 

least 2-fold in Drosophila epithelial tissues were mapped to their vertebrate 

counterparts (Materials and Methods). A total of 3241 unique genes from the 

epithelial signatures, mapped to IPA knowledgebase in which 2092 were eligible 

for network analysis. The mapped genes (Figure 4-5) were analysed for their 

potential vertebrate functions/diseases, canonical pathways and molecular 

network functional classes. Then the functional classes were compared amongst 

the epithelia to find similarities and differences. The results are described in the 

order of their significant enrichment in their potential functions (biological and 

toxicological), canonical pathways and molecular networks.  

 

Figure 4-5 Mammalian ortholog/paralog mapping of Drosophila epithelial signatures. 
The genes at least 2-fold (FDR≤0.05) upregulated in each epithelial tissue with respective to 
their adult or larval whole organism were used to map to vertebrate orthologs (including 
paralogs) using IPA. The percentage of mapped vs unmapped is presented for each 
epithelium. Abbreviations: AT (adult tubule), LT (larval tubule), AMG (adult midgut), LMG 
(larval midgut), AHG (adult hindgut), LHG (larval hindgut), ASG (adult salivary glands) and 
LSG (larval salivary glands). 

4.2.5.1  Biological functions 

A wide range of vertebrate biological functional classes were enriched in 

Drosophila epithelia ranging from protein degradation to animal behaviour. The 

differential enrichment of functional classes among the epithelia was interesting 

(Figure 4-6).  

file:///E:/Materials%20and%20Methods/Materials%20and%20Methods.docx
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For example, biological functions including lipid metabolism (Figure 4-6A), small 

molecule biochemistry (Figure 4-6B), post-translational modifications (Figure 4-

6C) and cancer (Figure 4-6E) were almost enriched in all the epithelia for both 

adult and larvae. However, these functions show more significant enrichment in 

one tissue over the other. For example, lipid metabolism and small molecule 

biochemistry functions were more significantly enriched in guts than any tissue 

(Figure 4-6A). In the same way, post-translational modification functions were 

more significant in salivary glands and larval tubules than others (Figure 4-6C). 

Salivary glands do not show significant enrichment for biological functions 

related to renal system and urological development and function (Figure 4-6D), 

but they do show enrichment for protein folding function (Figure 4-6F). The 

cancer related functions are more significantly enriched in hindgut (Figure 4-6E). 

 

Figure 4-6 Mammalian biological functions enriched in Drosophila epithelia. 
At least 2-fold enriched genes in each epithelium for both larvae and adult were analysed for 
their potential vertebrate biological functions using the IPA. Significantly enriched 
biological functions (above the threshold) include lipid metabolism (A), small molecule 
biochemistry (B), post-translational modification (C), renal system and urological system 
development and function (D), cancer (E) and protein folding (F). Biological functions 
including A, B, C and E are significantly enriched in all the epithelia except that the lipid 
metabolism functions are not enriched in larval salivary glands. Renal and urological 
system development and functions (D) enriched in all the epithelia except in salivary glands. 
Protein folding functions are significantly enriched in larval salivary glands and larval 
tubules (F). Abbreviations: L = larvae; A = adult; T = tubule; MG = midgut; HG = hindgut; SG 
= salivary glands. 
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4.2.5.2  Toxicology functions 

The signature genes were scored against known mammalian toxicology related 

functions. This analysis showed which of the Drosophila epithelial tissues could 

be the most analogous in function to human tissues. The toxicology functions 

enriched in the epithelia include liver, cardiac and kidney and related toxicology 

functions. This analysis shows how the Drosophila epithelia are functionally 

analogous to the mammalian tissues. In addition, the analysis indicates the 

potential overlap in tissue functions. The most significantly enriched toxicology 

functions in all the tissues include cardiac arteriopathy (Figure 4-7A), cardiac 

hypertrophy (Figure 4-7B), renal nephritis (Figure 4-7C), liver cholestasis (Figure 

4-7D), liver cirrhosis (Figure 4-7E), and liver damage (Figure 4-7F). Strikingly, all 

these functions are predominantly shared by different tissues. Moreover, 

enrichment of functions of cardiac- liver- and renal-related in the tissues other 

than their human counterpart suggests that there may be potential overlap in 

these functions. It additionally suggests that there is a lack of functional data in 

the IPA database. However, some functions are exclusive to some tissues. For 

example, cardiac arteriopathy functions are not enriched in larval midgut and 

larval salivary glands (Figure 4-7A). Interestingly, hindgut shows significant 

enrichment for most of the functions (Figure 4-7). Functions related to liver 

cholestasis (Figure 4-7D) are the most significant in the larval midgut. In the 

same way, liver damage related functions are the most significant in adult 

tubules (Figure 4-7F). 
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Figure 4-7 Mammalian toxicology functions enriched in Drosophila epithelia. 
At least 2-fold enriched genes in each epithelium for both larvae and adult were analysed for 
their potential vertebrate toxicology functions using the IPA. Significantly enriched 
functions include (above the threshold) cardiac arteriopathy (A), cardiac hypertrophy (B), 
renal nephritis (C), liver cholestasis (D), liver cirrhosis (E) and liver damage (F).  
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4.2.5.3  Canonical pathways 

 

Figure 4-8 Mammalian canonical pathways enriched in Drosophila epithelia. 
At least 2-fold enriched genes in each epithelium were analysed for their potential 
vertebrate canonical pathways using the IPA. Significant pathways (above the threshold) 
enriched in each epithelia include valine, leucine and isoleucine degradation (A), 
metabolism of xenobiotics by cytochrome P450 (B), sphingolipid metabolism (C), colorectal 
cancer metastasis signaling (D), human embryonic stem cell pluripotency (E) and N-Glycan 
biosynthesis (F). They are respectively enriched in tubules, gut, midgut, hindgut, hindgut 
and salivary glands. However, some pathways have overlapping enrichments in different 
tissues, for example, metabolism of xenobiotics by cytochrome P450 (B) and sphingolipid 
metabolism (C) are enriched both in tubules and midgut.  

The significantly enriched canonical pathways show interesting distribution 

among the epithelia (Figure 4-8). For example, valine, leucine and isoleucine 

degradation were enriched in tubules with the most significance (Figure 4-8A). 

All these amino acids are essential and branched chained that produce NADH and 

FADH2 for the probable energy demands of the tubule. All the adult epithelia 

were more significantly enriched for xenobiotic metabolism excluding salivary 

glands (Figure 4-8B). The sphingolipid metabolism pathway was enriched in adult 

and larval midgut most significantly (Figure 4-8C). Colorectal cancer metabolism 

signaling was enriched in the adult hindgut most significantly (Figure 4-8D). The 

human embryonic stem cell pluripotency was enriched in both adult mid and 

hindgut (Figure 4-8E). The N-Glycan biosynthesis was enriched in the salivary 

glands most significantly (Figure 4-8F). 
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4.2.5.4  Molecular networks 

Network analysis was performed to enrich potential biological networks in the 

epithelia and their (overlapping) epithelial interactions as a group in a global 

network (Figure 4-9).  

Genes are called ‘network eligible’ only if they have at least one interaction 

with any other molecule in the IPA (Chapter 2). There were about 94 networks 

enriched in all the tissues (the top 5 were shown in Table 4-8) with the total 

number of genes mapping to these networks reaching to 2092 as mentioned 

earlier. All the networks obtained were presented as an interaction map to show 

how intricately they interact with each other.  

The comparative analysis of the networks yielded important functional insights 

into these epithelia to their vertebrate cognate tissue functions.  

When the top networks were overlaid with their associated functions, at least 

one interesting network was found for each tissue in terms of their conserved 

function. For example, the network that is involved in the protein trafficking 

function was significantly enriched in salivary glands but not in others (Figure 4-

10).  

Interestingly, the potential biological functions that these molecules implicated 

include protein (and their fragments) transport, infection of cervical cancer cell 

lines, cell stage of cervical cancer cell lines and arrest in metaphase of cervical 

cancer cell lines.  
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All the genes that were eligible for network analysis in IPA are shown here. Networks are 
constructed for each tissue individually (colour coded) and are then put together to show 
how they interact with each other and how many molecules they have in common in their 
enriched lists. The genes that form separate networks are shown as ‘orphan’ networks. An 

example of a network is 
shown in the below Figure. 

 Figure 4-10 Network 
analysis of salivary gland 
enriched, protein trafficking 
function (pulled from the 
inset). 
The significantly enriched 
protein trafficking function 
related genes are presented 
here in terms of their 
cellular localisation. Known 
biological interactions 
(direct, arrowhead lines; 
indirect, straight lines) are 
shown. The genes with 
unknown localisations are 
placed right to the vertical 
line.  

 

HG 

T 

SG 

MG 

Figure 4-9 Network analysis of epithelial enriched genes. 
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Table 4-8 Top 5 IPA networks for each epithelium. 
The epithelial signature genes were enriched for vertebrate networks. Then they were sorted 
on the basis of their highest significance for comparative understanding of tissue-specific 
functions. 

 

 

4.3 Discussion 

This study investigated epithelial tissues in more detail. As the tissue-specific 

transcriptomes of the FlyAtlas provide quality datasets (Chintapalli et al., 2007), 

a comparative analysis of the epithelial transcriptomes was thought to provide 

insight into similarities and differences in epithelial function. Furthermore, this 

kind of analysis is useful to generate testable hypothesis, to fill the phenotype 

gap, and to learn potential functions of the epithelia from each other. The 

primary PCA analysis of all the FlyAtlas transcriptomes showed less variation of 

gene expression among the epithelia comparatively with the neuronal and 

reproductive tissues (Figure 2-4).This clearly suggests that there is a distinction 

between epithelial tissues and other tissues.  

 

Malpighian Tubules Midgut Hindgut Salivary glands

1 Infectious Disease, Cellular 

Assembly and Organization, Lipid 

Metabolism 32

1 Cellular Growth and 

Proliferation, Cellular 

Development, Tissue 

Morphology 34

1 Endocrine System Development 

and Function, Small Molecule 

Biochemistry, Lipid Metabolism 32

1 Cardiac Hypertrophy, 

Cardiovascular Disease, 

Developmental Disorder 37

2 Developmental Disorder, Cell 

Death, Lipid Metabolism 29

2 Cell Death, Cell-To-Cell 

Signaling and Interaction, Cell 

Morphology 25

2 Cell Death, Hematological System 

Development and Function, Tissue 

Morphology 31

2 Cellular Assembly and 

Organization, Cell Death, Cancer 31

3 Cellular Movement, Cancer, 

Cell Morphology 27

3 Cellular Movement, Drug 

Metabolism, Endocrine System 

Development and Function 20

3 Cellular Movement, Cell Death, 

Cellular Development 27

3 Reproductive System 

Development and Function, Cellular 

Development, Cellular Growth and 

Proliferation 29

4 Cell Morphology, Cellular 

Function and Maintenance, 

Molecular Transport 27

4 Gene Expression, Lipid 

Metabolism, Molecular 

Transport 17

4 Cell Morphology, Cellular 

Movement, Cellular Assembly and 

Organization 25

4 Cell Signaling, Molecular 

Transport, Nucleic Acid Metabolism 

25

5 Cell Death, Lipid Metabolism, 

Small Molecule Biochemistry 22

Cancer, Renal and Urological 

Disease, Cell Cycle 17

5 Genetic Disorder, Metabolic 

Disease, Cellular Assembly and 

Organization 23

5 Infectious Disease, Cell Death, 

Cell-To-Cell Signaling and 

Interaction 25

1 Cancer, Gastrointestinal 

Disease, Cell Death 37

1 Cellular Movement, Cellular 

Growth and Proliferation, Gene 

Expression 38

1 Cell-To-Cell Signaling and 

Interaction, Cellular Assembly and 

Organization, Tissue Development 

38

1 Cellular Assembly and 

Organization, Cellular Function and 

Maintenance, Cell Morphology 37

2 Cellular Assembly and 

Organization, Endocrine System 

Development and Function, 

2 Lipid Metabolism, Small 

Molecule Biochemistry, Drug 

Metabolism 26

2 Cellular Movement, Cell Death, 

Drug Metabolism 33

2 DNA Replication, Recombination, 

and Repair, Gene Expression, 

Cellular Assembly and Organization 

3 Lipid Metabolism, Small 

Molecule Biochemistry, Cell 

Morphology 29

3 Molecular Transport, Lipid 

Metabolism, Small Molecule 

Biochemistry 19

3 Cell Death, Cellular Growth and 

Proliferation, Cellular Development 

28

3 Gene Expression, RNA Post-

Transcriptional Modification, Cell 

Signaling 35

4 Cell Cycle, Cellular Growth and 

Proliferation, Endocrine System 

Development and Function 26

4 Cancer, Cell Death, Gene 

Expression 17

4 Cell Death, Cancer, Neurological 

Disease 17

4 Gene Expression, Cell Death, 

Cellular Development 33

5 Gene Expression, Cellular 

Growth and Proliferation, Cell 

Death 19

5 Cellular Assembly and 

Organization, Cell Death, 

Cellular Growth and 

Proliferation 15

5 Nutritional Disease, Metabolic 

Disease, Renal and Urological 

Disease 14

5 Cell Morphology, Cellular Growth 

and Proliferation, Connective Tissue 

Development and Function 25
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ID-Associated Network Functions-Score
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To find the commonality in the epithelia, first, gene expression signatures were 

obtained for each epithelium for further analysis. For each epithelium, there 

were hundreds of thousands of genes that showed high specificity of expression 

or high enrichment (Figure 4-1), and a large fraction of these have no functions 

(novel genes shown in Section 4.2.2). The gap between the number of genes that 

are uncharacterized and the number of phenotypes that are available is large 

which is called the phenotype gap (Dow, 2003; Dow and Davies, 2003). This 

suggests that a large number of novel genes need to be characterized to fill this 

gap and try to elaborate our understanding of the genomes. This should be the 

primary goal of the functional genomics which would be highly achievable, when 

the genes are studied where they predominantly are expressed, but not where 

they are first studied (Chintapalli et al., 2007). To this end, epithelial tissues 

shows the way, as the conservation of function from humans to flies seem to be 

convincingly high enough to pursue studying functions of novel Drosophila genes, 

where a human disease homologue is present like that analysed here using the 

OMIM database (Section 4.2.2). 

A hierarchical clustering tree showed interesting tissue relationships (Figure 4-

2). The larval and adult transcriptomes of each epithelia branched in the same 

node confirming their identity and the method. The Drosophila gut develops as a 

simple epithelia surrounded by visceral mesoderm (Lengyel, 2002). Although, the 

origin of the midgut is separate from other ectodermal originated epithelia or 

primary epithelia, the midgut transcriptome clustered in the middle of the 

hindgut and the whole fly transcriptome. This may indicate that the 

transcriptomes may be largely specified by their environmental interaction of 

particular epithelia. 

The comparative analysis of the top 50 most enriched unique and common genes 

between two developmental stages of an epithelium, show the differing 

functional demands of different life stages (Section 4.2.2 & 4.2.4). The 

commonly found genes between larvae and adult epithelia always showed at 

least two-fold higher enrichment in the adult (for example, compare 2nd column 

with 3rd of Table 4-1C). A possible explanation for this is that they may not be 

as much needed in larvae than the adult. The other explanation could be the 

whole transcriptome of the larvae might be mostly coming from the epithelial 

tissues.  
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Obsolete tissues formed through successive developmental stages undergo 

moderate to extensive remodelling at pupal stages to form adult epithelium. The 

gene expression changes are huge between larvae and adult epithelia. A high 

number of genes expressed (at least 5-fold upregulated) show adult-specific 

enrichment (Figure 4-3). 

Developmental origins of epithelial tissues have similarities and differences. 

They are also specialised in function according to their external and internal 

milieu. Every epithelium shows a unique gene expression signature markedly due 

to their morphological specification during development and functional 

interaction with their internal and external milieu. The epithelial tissues play 

crucial roles in the organismal homeostasis, to stably maintain the internal 

environment despite external perturbations. They transport fluid at remarkable 

rates, secret proteins and metabolise organic compounds, and protect the 

animal against external environment. Thus, all these functions are represented 

in the GO functional compartmentalisation analysis of the epithelia (Table 4-5). 

The metabolic homeostasis (sugar and lipid) is achieved by the concerted action 

of epithelial tissues by their variety of functions including transport, secretion, 

absorption, digestion, and excretion. The conservation of the regulatory 

mechanisms involved in metabolic homeostasis has been gaining momentum 

from insights provided by model organisms such as Drosophila, in particular 

(Leopold and Perrimon, 2007). This analysis reinforces the conservation at 

different levels.  

How far do the transcriptomes of both larval and adult tubules tell us about 

their differences for example, in terms of organismal excretory load? As insects 

go through successive developmental stages from embryonic to larval to adult, 

the excretory load increases on the organism. For this task, tubules have to 

rapidly adapt, as they are largely established during embryogenesis unlike other 

epithelial tissues (Beyenbach et al., 2010a; Skaer, 1993). This is not only 

reflected in the gene ontologies for both larvae and adult (Table 4-5), those 

have predominantly similar terms and also the number of commonly enriched 

genes exceeding the average to 35% (Figure 4-3). 
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Insect epithelia are energised by an apical vacuolar (V)-type ATPase (V-ATPase), 

a multisubunit ATP pump, which consists of a membrane bound V0 and peripheral 

V1 complex (Wieczorek et al., 2009; Wieczorek et al., 1999). This partners with 

an apical alkali metal antiporter (K+ or Na+/nH+ ) for balancing the loss of 

protons (Wieczorek et al., 1991). There are at least 33 genes that encode 

presently known V-ATPase subunits including the accessory proteins in which 13 

have been proposed to show epithelial functions (Allan et al., 2005). The 

molecular identity of the antiporters that partner V-ATPases is now revealed for 

Drosophila and Anopheles species (Day et al., 2008; Rheault et al., 2007). This 

analysis did not find many V-ATPases in the top epithelial lists because they 

show high abundance across most of the tissues. The genes encoding Nha1 and 

Nha2 were found to be abundant in the tubule, hindgut and salivary glands but 

not in the neuronal tissues (Chintapalli et al., 2007). Interestingly, hierarchical 

clustering showed coregulation of NHAs with two probable, Ca2+-activated Clˉ 

channel genes namely Best1 and Best2 (Figure 4-2).  

There are seven known antimicrobial peptides (AMPs) in Drosophila which play 

crucial roles in protecting and defending the organism against pathogenic 

microbial flora (Imler and Bulet, 2005). It was previously shown that some of 

these peptides were tissue specifically regulated in response to the local and 

systemic infections (Levashina et al., 1998; Tzou et al., 2000). Epithelial tissues 

show distinct specificities of AMP gene expression.  

For example, while cecropin C is well abundant in both larval and adult salivary 

glands (Table 4-1C), attacin D is only enriched in the larval tubule (Table 4-1A). 

Obtaining a common signature between adult-specific functions across the 

epithelia from larvae to adult showed some interesting candidates (Figure 4-4 

and Table 4-6). The direct comparisons of adult vs. larval epithelia showed the 

stage-specificity of expression (Table 4-7). 

The striking functional parallels between some of the vertebrate and 

invertebrate epithelial tissues have been obtained by several decades of hard 

work (Greenspan and Dierick, 2004).  
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The origins of epithelial tissue development have been described to be different 

from vertebrates to invertebrates; for example, the hindgut epithelium arises 

from endoderm in vertebrates and ectoderm in insects (Compos-Ortega and 

Hartenstein, 1997; Wolpert, 1998; Sulston, 1988).  

However, the significance of the germ layer distinction still remains elusive. For 

example, the evidence for conservation of function from Drosophila hindgut to 

human hindgut could be demonstrated by comparing their analogous functions. 

IPA analysis of Drosophila epithelial enriched genes in the vertebrate disease 

and function context showed that there are many genes, including novel ones 

that have human disease orthologs, and are expressed in analogous tissues of the 

fly (Section 4.2.5). Approximately 30-60% of the genes that show at least 2-fold 

upregulation in the Drosophila epithelia were mapped to IPA database (Figure 4-

5).  

4.3.1  Limitations of the IPA 

The ortholog/paralog mapping in IPA depends on the information in Homologene. 

All the duplicate identifiers (in this case, Affymetrix identifiers, which may 

identify different transcripts of a single gene) are mapped to a single molecule 

(gene) in IPA, it is envisaged that the analysis is limited to gene level functional 

analysis rather than at the transcript level. IPA calculation of significance of 

network/functional analysis depends on the information present in its 

knowledgebase.  

In the salivary glands and tubules, 2/74 and 4/74 ‘nucleotide sugars metabolism’ 

canonical pathway molecules were enriched respectively, so is the P-value 

calculated, so that 4/74 molecules (in tubules) but not 2/74 molecules (in 

salivary glands) pass the P-value filter to be called as significantly enriched 

canonical pathway in that tissue. This is because the IPA supports all the 4/74 

molecules to be significant in that canonical pathway.  

If a pathway is not significantly enriched in all of the tissues, that group of genes 

were either not there in Drosophila or they are not conserved. However, one 

single key gene in a tissue will show its related pathway to be significantly 

enriched in that tissue.  
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A gene might be present in several networks with varying P-value and if we filter 

the molecule with their expression enrichment and on the basis of their P-value 

significance, it could narrow down the list of to potentially significant functions, 

diseases, and canonical pathways. If a tissue specifically enriched gene is 

categorised into a pathway with less significance (P-value), it either indicates 

that it is not essential or it needs further characterisation.     

4.4 Conclusion 

Tissue-specific transcriptomic enrichment data adds value to systems biology’s 

well needed extensive genome annotation. There is about 50% of the annotated 

genome that is differentially expressed across the epithelia over the adult fly. 

While the developmental functions of most of the known genes are well studied, 

there is a lot of scope for studying adult-specific functions, as at least 70% of the 

genes are still novel or not functionally explored. Every epithelial tissue could be 

in its own right a model test bed to study the genes that are abundant in that 

tissue. All the epithelia have distinct functional similarities to perform 

specialised functions while retaining a ‘gene expression signature’. From GO 

functional enrichment point of view, one could propose for each organelle of the 

cell in question to study, there is a convenient tissue to use as a model test bed 

in Drosophila. By identifying the epithelial enriched genes associated with 

human disease, phenotypes may help design the targeted drug screening in such 

a simple organism for identifying the lead compounds for human disease 

intervention and cure. 
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5. Microarray analysis of positional asymmetry of 
renal tubules in Drosophila 

Summary 

In humans and other animals, the internal organs are positioned asymmetrically 

in the body cavity, and disruption of this body plan can be fatal in humans. The 

mechanisms by which internal asymmetry are established are presently the 

subject of intense study; however, the functional significance of internal 

asymmetry (outside the brain) is largely unexplored. Is internal asymmetry 

functionally significant, or merely an expedient way of packing organs into a 

cavity? 

 
Like humans, Drosophila shows internal asymmetry, with the gut thrown into 

stereotyped folds. There is also renal asymmetry, with the rightmost pair of 

renal (Malpighian) tubules always ramifying anteriorly, and the leftmost pair 

always sitting posteriorly in the body cavity accordingly, transcriptomes of 

anterior-directed (right-side) and posterior-directed (left-side) Malpighian 

(renal) tubules were compared in both adult male and female Drosophila. 

Although genes encoding the basic functions of the tubules (transport, signalling) 

were uniformly expressed, some functions (like innate immunity) showed 

positional or gender differences in emphasis; others, like Ca2+ handling or the 

generation of potentially toxic ammonia, were reserved for just the right-side or 

left-side tubules, respectively. These findings correlated with the distinct 

locations of each tubule pair within the body cavity. Well known developmental 

genes (like dorsocross, dachshund and doublesex) were showed continuing, 

patterned expression in adult tubules, implying that somatic tissues maintain 

both left-right and gender identities throughout life. Accordingly, the physical 

asymmetry of the tubules in the body cavity is directly adaptive. Now that the 

detailed machinery underlying internal asymmetry is starting to be delineated, 

our work invites the investigation, not just of tissues in isolation, but in the 

context of their unique physical locations and milieux. 
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5.1 Introduction 

The vertebrate body plan is internally asymmetric (Burn and Hill, 2009; Levin 

and Palmer, 2007; Lopez-Gracia and Ros, 2007), and although complete situs 

inversus is benign in humans, partial disruption of this asymmetric organization 

(for example in herotaxy) can be lethal (Kartagener and Stucki, 1962; Sharma et 

al., 2008; Sutherland and Ware, 2009). Although separated by 450 M year of 

divergent evolution, many insect body plans show similar internal asymmetry; 

for example, the alimentary canal of the classical developmental model 

Drosophila starts development symmetrically, but is then thrown into highly 

stereotyped folds within the body cavity.  

Just as human kidneys sit slightly differently in the abdomen, so the Drosophila 

Malpighian (renal) tubules show marked asymmetry; the two tubule primordia 

initially sit dorsoventrally at the midgut/hindgut boundary, then a rotation of 

the developing alimentary canal sets the dorsal tubules on the right side, and 

the ventral tubules on the left side, of the body(Coutelis et al., 2008) (Figure 5-

1). Remarkably the right-side tubules always elongate anteriorly within the body 

cavity into the thorax, while the left-hand tubules always grow posteriorly 

(Beyenbach et al., 2010a). There is a clear advantage to this distribution, as it 

ensures that the tubules ramify throughout the body cavity (haemocoel). Thus 

the haemolymph, although circulating only sluggishly, is nonetheless regulated 

efficiently. However, the tubules also display morphological differences. The 

right-hand tubules contain conspicuous distal initial and transitional segments. 

Although no such segments are visible in the left-hand tubules, genetic markers 

that label initial and transitional domains in the anterior tubules also label 

smaller and otherwise morphologically cryptic domains in the posterior tubule 

(Sozen et al., 1997). Unusually, the Drosophila Malpighian tubule is capable of 

providing both developmental and functional readouts (Beyenbach et al., 

2010b), as its transport and signalling physiology has proved highly amenable to 

study (Dow and Davies, 2003). Although the cells of the initial domain are thin 

and do not display prominent structural adaptations for ion transport (like 

abundant mitochondria or deep microvilli), this region is capable of excreting 

Ca2+ at extremely high rates (Dube et al., 2000a). 
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Figure 5-1 Internal asymmetry in Drosophila. 
The alimentary canal is divided into ectodermal foregut (grey), endodermal midgut (yellow) 
and ectodermal hindgut (orange). The midgut and hindgut are thrown into tightly defined 
loops and folds, the most obvious consequence being that the two pairs of Malpighian 
(renal) tubules (blue) are oppositely directed. The right pair (with conspicuous dilated initial 
segment) is always directed anteriorly and wraps around the midgut; whereas the left pair 
are directed posteriorly and associate with the hindgut. 

There is thus already some evidence of functional asymmetry in this simple 

kidney, and this is reinforced by asymmetric gene expression: the homothorax / 

dorsotonals transcription factor is expressed exclusively in the initial segment of 

the right-hand tubules (Wang et al., 2004). One approach to address this and 

other possible asymmetries in the tubule is to compare the transcriptomes of 

right- and left-hand tubules; so in this study a comprehensive analysis was 

performed, using Affymetrix version 2 chips on left- and right-hand tubules.  
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The results showed previously unsuspected lateral or sex-specific asymmetry in 

expression in a diverse set of genes, including those involved in positional 

specification in the embryo, and others involved in signalling. The data thus 

allow a reappraisal of functional sequelae of positional asymmetry in somatic 

tissues in higher organisms. 

5.2 Results 

5.2.1 Left vs. right: genes upregulated in right-side tubules 
suggest an interplay with the gut 

As the posterior tubule appears morphologically similar to the anterior (right) 

tubule, but with a reduced initial segment (Sozen et al., 1997), the left tubule 

transcriptome was thought to be broadly a subset of the right tubule. Indeed, of 

88 genes significantly changed (at FDR<0.05), 74 genes were significantly uP-

regulated in right tubules, compared with only 14 in left tubules (Table 5-1).  

Table 5-1 Genes with significant expression differences between right (anterior) and left 
(posterior) tubules. 
Gene Symbol Gene Title P-value(Tissue) Fold-Change(A vs. P) 

CG14963 CG14963 1.93E-19 1940.88 

CG16762 CG16762 1.71E-10 239.659 

Best2 Bestrophin 2 1.40E-10 63.5515 

Doc1 Dorsocross 5.03E-12 52.3512 

CG6225 CG6225 2.84E-08 18.503 

Doc3 Dorsocross3 3.78E-12 16.6997 

NijA ninjurin A 2.74E-10 15.2286 

Ag5r antigen 5-related 1.05E-05 12.4774 

CG13748 CG13748 1.44E-09 10.6488 

CG10587 CG10587  2.84E-08 6.21122 

CG5194 CG5194 1.05E-06 5.23835 

CG3074 CG3074 1.05E-07 5.08742 

CG31248 CG31248 3.74E-09 5.0542 

Ptp10D Protein tyrosine phosphatase 10D 4.03E-09 4.72262 

CG16743 CG16743 1.57E-08 4.60355 

CG12602 CG12602 2.03E-09 4.40782 

CG18746 CG18746 2.75E-06 4.26911 

CAH1 Carbonic anhydrase 1 1.23E-06 4.25813 

debcl deborg 3.66E-09 4.16467 

CG7634 CG7634 3.42E-07 4.04019 

dac Dachshund 1.83E-05 3.95692 

Ace acetylcholine esterase 1.10E-08 3.51503 

out outsiders 7.10E-05 3.43072 

pgant8 polypeptide GalNAc transferase 8 1.89E-08 3.42025 

CG34454 --- 1.48E-05 3.34883 

hth dorsotonals 3.30E-08 3.26943 

Btk29A Btk family kinase at 29A 5.30E-07 3.14005 

betaggt-I type I Geranylgeranyl Transferase 1.30E-06 3.06347 

Ddc Dopa decarboxylase 4.01E-06 3.03603 
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CG1146 CG1146 7.29E-07 2.73723 

CG42314 CG42314 1.86E-07 2.69998 

CG6954 CG6954 1.04E-06 2.69589 

Ih putative Ih-channel 1.63E-06 2.6158 

sdt CG12657 5.00E-09 2.61408 

CG6688 CG6688 8.18E-06 2.5747 

CG8837 CG8837 7.52E-07 2.4715 

CG18507 CG18507 1.06E-06 2.29762 

CG18095 gp150-like 2.80E-05 2.23849 

CG13189 CG13189 4.33E-07 2.23458 

CG9717 CG9717 2.33E-08 2.21586 

ko knockout 5.96E-05 2.18748 

Rhp Rhophilin 8.45E-07 2.13755 

CG18507 CG18507 1.65E-05 2.09275 

CG8547 CG8547 1.94E-06 2.08754 

CG30116 CG30116 1.42E-05 1.88332 

CG42542 --- 1.77E-06 1.80539 

stumps heartbroken 6.33E-05 1.80312 

CG5867 CG5867 1.02E-07 1.79515 

CG15209 CG15209 2.38E-06 1.78683 

CG18812 CG18812 3.62E-06 1.77495 

CG2976 CG2976 1.73E-07 1.75695 

Lmpt Limpet 0.000186 1.74574 

CG18249 CG18249 3.70E-05 1.71547 

CG1674 CG1674 5.93E-05 1.6942 

CG13067 CG13067 1.33E-05 1.68701 

CG7724 CG7724 2.67E-05 1.68625 

CG31284 water witch 5.84E-06 1.6782 

CG8012 CG8012 9.51E-05 1.67114 

GstE10 Glutathione S transferase E10 2.33E-05 1.65665 

CG17111 CG17111 0.000112 1.65491 

CG7992 CG7992 4.56E-08 1.65211 

danr Distal antenna related 0.000108 1.6388 

capaR capa receptor 1.16E-05 1.6228 

CG5630 CG5630 1.85E-05 1.61542 

Ahcy89E AdoHcyase-like 0.000138 1.58219 

CG11852 CG11852 7.90E-05 1.57078 

Nep2 Neprilysin 2 8.19E-06 1.55144 

wun wunen 1.82E-05 1.52748 

Irk3 Inwardly rectifying potassium channel 3 0.000135 1.47707 

Hmgcr columbus 2.25E-06 1.40475 

CG14767 CG14767 9.32E-05 1.38802 

Muc11A Mucin 11A 6.61E-10 1.28682 

CG8230 CG8230 0.000142 1.24257 

CG34284 --- 0.00015 -1.20485 

su(Hw) suppressor of hairy-wing 0.000161 -1.2369 

multiple hits --- 9.52E-05 -1.25591 

fat2 fat-like 1.28E-07 -1.48107 

bab2 bric-a-brac 0.00017 -1.5376 

CG15353 CG15353 0.000182 -1.86275 

bowl bowel 8.66E-07 -1.93196 

CG33281 CG33281 1.52E-07 -2.43081 

CG33281 CG33281 3.50E-07 -2.72487 

CG11779  CG11779 0.000132 -3.32843 

nemy no extended memory 2.01E-05 -3.75797 

alpha-Est6 Esterase-6 3.89E-08 -3.83112 

CG3376 CG3376 5.09E-07 -7.59369 

CG14957 CG14957 9.18E-07 -9.03153 
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The results implicate the right-side tubules in specific defence and Ca2+ handling 

roles. CG14963 is 1940x upregulated in right (anterior) tubules, and the FlyAtlas 

reports that expression of this gene is utterly specific to the tubule. What 

function could be performed entirely by just two out of 4 tubules? CG14963 

encodes a protein containing an insect allergen related repeat, associated with 

nitrile-specific detoxification.  

To discourage herbivores, some plants (notably brassicas) have developed a 

glucosinolate-myrosinase system as a chemical defence mechanism, and 

consequently insects, like caterpillars of the small white butterfly (Pieris rapae), 

have adapted to produce a detoxifying molecule, nitrile-specifier protein (NSP) 

(Wheat et al., 2007). BLASTP searches reveal proteins closely similar to CG14963 

are found throughout the Diptera, but that the Dipteran branch is rather 

diverged from the Lepidopteran branch. The implication is that CG14963 is part 

of a Dipteran adaptation to dietary challenge. Why then is this gene confined to, 

and expressed at high level in, the right-hand tubules (Table 5-1)?  

The key observation is that the right-hand tubules ramify anteriorly to surround 

the midgut, whereas the left-hand tubules are confined to the posterior 

abdomen, where they surround the hindgut. The tubules are major tissues of 

detoxification (Yang et al., 2007); so if a toxic compound were released by 

digestion, and passed through the highly permeable midgut, it would thus be a 

task for primarily the anterior tubules to neutralize the compound. Conversely, 

the left tubules might be expected to be enriched for genes involved in 

detoxifying compounds leaching from the hindgut; this will be demonstrated 

later.  

A similar defensive role is implied for CG16762, another gene strongly (240x) up-

regulated in right-hand tubules (Table 5-1), and with tubule-restricted 

expression. BLASTP searching reveals similarity to TsetseEP, a mucin implicated 

in tsetse susceptibility to trypanosome attack. As all BLASTP hits are confined to 

the Schizophora, the gene family may represent a highly specific adaptive 

radiation within this subset of the Diptera, to defend against microbial attack.  
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Although Drosophilids are not susceptible to trypanosome attack, dog heartworm 

(Dirofilaria immitis) is an intracellular parasite of the Malpighian tubules of 

culicid mosquitos; so there may be a general requirement for the tubule to 

defend against luminal pathogens.  

By contrast, the left-side tubules, which wrap around the hindgut, show 3.8x 

enrichment for the probeset 1634658_a_at (www.flyatlas.org), which 

corresponds to CG42708, a mitochondrial glutaminase (Iliadi et al., 2008). 

FlyAtlas reports that this gene is particularly highly expressed in the tubules and 

hindgut. Glutaminase generates ammonia stoichometrically in the generation of 

glutamate from glutamine, and is found in kidney and liver in mammals: in 

kidney, the resulting ammonium ion can be used to rescue bicarbonate in the 

collecting duct (Marquez et al., 2006). Although abundantly produced in 

freshwater insects (where it can effectively diffuse away to harmless levels), 

ammonia is generally held to be a toxic and undesirable metabolite in terrestrial 

insects (ChapmanRF, 1982). Our data suggest that this reaction is concentrated 

in tissues in the back end of Drosophila, thus compartmentalizing it away from 

other potentially sensitive tissues. To confirm the spatial segregation of 

glutaminase activity, glutamine:glutamate ratio was assayed in acutely-dissected 

head, thorax and abdomen in adult flies, showing that the ratio is lowest in the 

abdomen (Figure 5-2).  

 

Figure 5-2 Ammonia is high at the back end of the fly. 
As an indicator of ammonia, glutamine and glutamate ratio was measured using LC-MS 
coupled to a high sensitive detector called Orbitrap. 
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Best2 encodes (of four Drosophila bestrophins) the most closely related to 

human bestrophin 1, a Ca2+- and/or volume-activated Clˉ channel of retinal 

pigmented epithelial cells, which is mutated in Best’s macular dystrophy 

(Caldwell et al., 1999; Marmorstein et al., 2000). However, Bestrophins play 

wider roles: they are implicated in epithelial-to-mesenchymal transitions in 

human kidney (Aldehni et al., 2009), and in olfactory transduction (Pifferi et al., 

2006). In Drosophila, Best1 also mediates a Ca2+- and/or volume-activated 

chloride current (Chien and Hartzell, 2007).  

FlyAtlas reports that, although expressed in eye, Best2 is abundant in epithelia; 

in adult tubule, it is 64x enriched in right-hand tubules (Table 5-1). From this 

observation, bestrophins became the candidate genes to unravel their potential 

functions using Drosophila as a model organism (Chapters 6, 7 & 8). 

Given that there are real functional differences between left- and right-side 

tubules, and that these are underpinned by significant transcriptional 

differences, it is interesting to start to identify the transcriptional programme 

involved in specifying asymmetry. The three Dorsocross transcription factors are 

found in a cluster on chromosome 3L. These T-box, p53-like, brachyury 

transcription factors were originally implicated in heart formation (Hatton-Ellis 

et al., 2007)] at the dorsal midline, under control of decapentaplegic and 

wingless. They are possibly the products of recent gene duplication, because 

they have similar embryonic expression profiles, and are partially redundant. 

Post-embryonically, however, FlyAtlas (Chintapalli et al., 2007) reveals 

differences in expression.  

Doc1 is expressed mainly in tubule, hindgut and testis; doc2 is confined to the 

hindgut, and doc3 to tubule, hindgut and heart. Our data are consistent with 

reported embryonic expression in only the anterior tubules (Reim and Frasch, 

2005); overexpression of Doc genes in the embryonic hindgut results in failure of 

the posterior tubules to develop, leaving only the anterior pair (Hatton-Ellis et 

al., 2007).  
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Although Doc genes are implicated in the very earliest stages of tubule 

specification, these data show that they continue to be expressed in the same 

spatially restricted pattern (Doc1 is 52x, and Doc3 is 17x, enriched in anterior 

rather than posterior tubule) through larval and into adult life, suggesting that 

the anterior/posterior distinction remains functionally significant throughout 

life, and that continued expression of Doc genes (or dorsocross transcriptional 

network) likely maintains that identity.  

Other transcription factors enriched in right-side tubules are dachshund (4.0x), 

the ski proto-oncogene homologue important in development of the legs and 

eyes, but not previously implicated in tubule function; and homothorax 

/dorsotonals (3.3x), also important in eye development. By contrast, bric-a-brac 

(1.5x), bowl (1.9x) and suppressor of hairy wing (1.2x) are all significantly 

enriched in the left-side (posterior) tubules (Table 5-1). 

5.2.2 A mechanism for asymmetric Ca2+ handling 

The only known functional asymmetry in tubule function is the anterior-specific 

storage excretion of Ca2+ as phosphate-rich mineral concretions in the enlarged 

initial segments of the right-side tubules (Dube et al., 2000a). Based on results 

implicating SPoCk, the secretory pathway Ca2+/Mn2+ ATPase, and Best2 (Shown in 

the following chapters) in Ca2+ handling in tubule initial segment, it is possible to 

build a model for spherites formation in the tubule. Interestingly, the right-side 

tubule transcriptome is enriched for genes implicated in Ca2+ and phosphate 

transport, and for peroxisomal biogenesis, allowing a conceptual model for 

spherite generation to be built a model that was functionally tested (Chapter 8 

and Figure 8-16). Calcium could be admitted to the specialized peroxisome by 

entry through a trp-like plasma membrane channel, together with a peroxisomal 

isoform of SPoCk; phosphate is provided by the Na+/phosphate cotransporter, 

NaPi-T; the membrane is polarized by a specialized V-ATPase (with protons 

provided by a highly enriched isoform of carbonic anhydrase), and charge 

balance provided by the Best2 chloride channel. Calcium is stabilized in the 

peroxisome by calexcitin, a specialized Ca2+-binding protein originally identified 

in sarcoplasmic reticulum. There is also scope for regulation of the pathway, 

because of high enrichment of calmodulin and a calmodulin-responsive 

transcriptional activator. 
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5.3 Discussion 

The key outputs of this work are: detailed transcriptomic datasets that outline 

the scope and extent of differences between male and female, and left and 

right insect Malpighian tubules; interesting novel hypothesis on the spatial and 

gender compartmentalization of different processes; and preliminary 

experimental data that suggest that some of these transcriptomic differences 

really do have physiological significance. For the first time, a transporting 

epithelium has been profiled for expression according to both its gender and its 

disposition within the body.  

The results show that all tubules are not equivalent; although they perform the 

same key functions (the generation of urine, detoxification and excretion of 

waste material) they also perform some tasks (like innate immune defence) with 

different emphases; and some tasks, (like Ca2+ homeostasis) are remarkably 

dimorphic in their transcriptional repertoire. The neuroendocrine control of 

tubules, though substantially the same for all, also shows subtle distinctions. 

Importantly, it appears that the same transcription factors which determine 

positional identity and gender in the early embryo persist into adulthood, 

implying that identity of the tubules remains important, and that these 

transcription factors must be considered to be important for more than early 

development.  

This work demonstrates relevance of the morphological asymmetry in terms of 

functional optimization of complex tissues in the whole organism, specifically 

putting transport processes near the organs that generate their substrates, and 

with both local and central control of output. The final model is that the basic 

fluid transport and homeostatic functions of the tubule are common to left and 

right tubules; but functional sequelae result from the proximity of the right-side 

tubules with the highly permeable midgut, and the left-side tubules with the 

excretory and concentrative power of the hindgut. Both dietary toxins and 

overabundant solutes (like Ca2+) must be sequestered rapidly by the tubules 

before they impact on the whole insect. Local signalling by neuroendocrine cells 

embedded along the length of the midgut (Veenstra, 2009) could complement 

central signals, by relaying information about the gut contents directly to the 

tubules.  
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The compartmentalization of ammonia handling to the hindgut and closely-

coupled left-side tubules would equally protect the insect against toxic levels of 

an essential metabolite. We and others have previously argued that the high 

number of anonymous (undocumented) genes with highly tissue-specific 

expression patterns found in FlyAtlas (Chintapalli et al., 2007) suggests that 

researchers need to become more interested in specific tissues within the 

organism, in order to functionally characterize the whole genome. This principle 

is demonstrated further here; although we have previously-identified novel 

tubule-specific genes (Wang et al., 2004), the present dataset shows that the 

principle further extends to sidedness and to gender, offering fascinating 

insights as to likely novel functions.  

The power of Drosophila genetics will allow a detailed examination of the 

interactions between tissues in their natural physical layout within the whole 

organism, and so allow an understanding of gene functions in an organotypic, 

organismal context. In an insect, this level of understanding is of great benefit 

to developing insights that might lead to novel control methods; but it further 

suggests that there may be asymmetry to be uncovered in other epithelia in the 

future. 
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6. Functional studies on Drosophila bestrophins 

Summary 

Mutations in Best1, encoding bestrophin 1, cause autosomal dominant Best 

disease, a disease associated with vitelliform macular degeneration. In the 

diagnostic EOG, patients show a diminished light peak, which was thought to be 

caused by the altered basolateral Clˉ conductance of the RPE cells. The disease 

leads to the accumulation of lipofuscin in retinal pigment epithelial cells (RPE), 

and fluid- and debris-filled retinal detachments, probably leading to the 

degeneration of the macula of the eye. Bestrophins have been predominantly 

thought to be Ca2+-activated Clˉ channels due to the pathological diagnostic 

features and subsequent biophysical characterisation. However, this hypothesis 

has not completely explained the variety of diseases that different mutations in 

bestrophins cause. The in vitro studies using cell culture systems and Xenopus 

levis oocytes failed to single out bestrophins as CaCCs, because of the native 

interfering currents of these models. Furthermore, a mouse knockout model 

neither showed any retinal pathology nor displayed any alteration in Ca2+-

activated Clˉ current. However, nobody has ever used Drosophila as a model 

organism to elucidate bestrophin function. Drosophila, with its powerful arsenal 

of post-genomic techniques and its wealth of genetic mutants, could provide 

real insight into organismal level functions of these proteins. The Drosophila 

genome encodes all four human homologues (Best1, Best2, Best3 and Best4) and 

therefore is suitable to study functions in an integrative physiology context. The 

gene expression patterns were investigated using FlyAtlas. This analysis 

suggested that Best1 is neuronal and epithelial expressed while Best2 is 

predominantly expressed in the epithelial tissues including the eyes. However, 

Best3 and Best4 showed high enrichment in the testes indicating specialised 

roles. The reverse genetic approach was employed using the GAL4/UAS system 

to ablate the expression of four bestrophins individually and assess the viability 

of the flies, at all developmental stages. This analysis revealed that Best2 and 

Best3 are essential for fly viability, while Best1 and Best4 are dispensable. The 

analysis of localisations using bestrophin YFP fusions suggested that they show 

diverse localisations. The localisations for Best1 and Best2 were confirmed to be 

apical plasma membranes and peroxisomes, respectively.  
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Best3 and Best4 showed intracellular localisations that may represent 

endolysosomal vesicles and endoplasmic reticulum, although these have not 

been confirmed. The salt survival analysis confirmed that Best1 is an essential 

gene in the regulation of salt; as the knockdowns and deletions showed reduced 

survival on high salt diets than their controls. In contrast, the flies with reduced 

levels of Best2 expression showed increased resistance to high salt diet 

indicating that it may not be a CaCC.  

6.1 Bestrophins as candidate CaCCs 

6.1.1 Identification in human disease  

The importance of bestrophins came from the fact that they manifest in Best 

disease in the human eye. The first bestrophin was identified and named as 

VMD2in 1998 as the mutations within this human gene result in vitelliform 

macular dystrophy (degeneration) (VMD) (Figure 6-1) (Marquardt et al., 1998; 

Petrukhin et al., 1998). It is also called Best vitelliform macular dystrophy 

(BVMD) or Best disease as it was named after a German ophthalmologist, 

Friedrich Best, who published the first genetic pedigree analysing this disorder in 

1905. The macular dystrophy is an eye disease that can potentially lead to 

progressive vision loss. In BMD patients, the degeneration was proposed to be 

caused by the sub-retinal (macular) deposition of egg yolk-like (vitelliform) 

lipoprotein called lipofuscin. However, it is characterised by a depressed light 

peak in the diagnostic electrooculogram (EOG) in all stages of disease 

progression, including in phenotypically normal carriers (Pinckers et al., 1996).  
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Figure 6-1 Human retina in health and disease. 
(A) Retinal organisation from ganglion cell axons to the retinal pigment epithelium (RPE) in 
the back of the photoreceptors. (B) The ophthalmoscopic images of retinas. The yellowish 
spot on the right of each retina is the optic nerve. Normal retina, Best vitelliform macular 
dystrophy (vitelliform stage), and age-related macular degeneration are shown from left to 
right. Taken from (Hartzell et al., 2005b) 

The pathophysiological contributions of several bestrophin mutations lead to 

different kinds of macular degeneration including BVMD (Marquardt et al., 1998; 

Petrukhin et al., 1998), adult-onset vitelliform dystrophy (Kramer et al., 2000), 

and autosomal dominant vitreoretinochoridopathy (Yardley et al., 2004). In 

addition, Canine multifocal disease models were also presented by (Guziewicz et 

al., 2007). These findings have been further supported by Best1 localisation to 

the basolateral plasma membrane of retinal pigment epithelia (RPE) (Guziewicz 

et al., 2007; Marmorstein et al., 2000).  

Best disease is rare in the general population, probably because it is caused by 

genetic factors unlike the age-related macular degeneration (AMD) that is 

caused by both environmental and genetic factors (Hartzell et al., 2005b). 

However, it shares some important phenotypic features with AMD, the leading 
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cause of visual deterioration in the elderly population of the developed 

countries. In the UK alone 250,000 people have been registered as visually 

impaired and almost the same number are affected by it to a lesser degree 

(according to www.maculardisease.org, accessed on 1st February, 2012).  

6.1.2  Structural aspects  

With the exception to other CaCCs, bestrophins have been well characterised in 

terms of their biophysical properties and their molecular structural aspects. 

Current topological predictions based on in silico and in vitro structural studies 

suggest that bestrophins may have 4-6 distinct transmembrane alpha-helices, 

and a large C-terminal cytoplasmic region (Figure 6-2). First structure-function 

analysis of bestorphins by Tsunenari et al. (2003) suggested four out of six TMDs 

(TMD1, -2, -4 and -6) traverse the membrane, and TMD3 forms a cytoplasmic 

side hydrophobic loop, while TMD5 forms a re-entrant loop (Figure 6-2A). In 

addition, they proposed the cytosolic face of both N- and C-termini of the 

protein.  

More recent studies in dog pancreas ER microsomes, led to an alternative 

topology for predicted TMDs (Milenkovic et al., 2007b) (Figure 6-2B). Using Lep 

H1 membrane targeting domain, hBest1 TMDs were targeted to ER microsomal 

membranes as single entities, and as combinations. These studies suggested that 

TMD1, -2, -4, -6 were capable of being incorporated into the membrane as 

singular entities, in that, only TMD1, -2, -5 and -6 can traverse the membrane. 

Furthermore, the same study provided additional data suggesting the integration 

of hBest1 into plasma membrane may depend on some of the critical amino acid 

residues that cluster near predicted TMDs. 

However, the first model was argued as more favourable in terms of the 

experimental parameters in addition to contradicting facts in the second model 

(Hartzell et al., 2008). The above studies have been mainly employed hBest1, in 

that all the TMDs span the first 350 amino acids of the N-terminus of the protein. 

Importantly, the N-terminus region is highly conserved across species, thus these 

studies may show a general insight into the TMD topology across Bestrophin 

family of proteins. 

http://www.maculardisease.org/
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Figure 6-2 Transmembrane topology of hBest1. 
(A) According to Tsunenari et al., (2003) model, four (1, 2, 4 and 6) out of 6 TMDs traverse 
the plasmamembrane, and the rest of the 2 TMDs (3 and 5) form a hydrophobic cytosolic 
loop and a re-entrant loop respectively. (B) According to Milenkovic et al., 2007 model, 4 
TMDs (1, 2, 5 and 6) traverse the plasma membrane and the other two TMDs (3 and4) form a 
relative hydrophobic loop. However, both models proposed N- and C- termini endup in 
cytosolic side (modified from Milenkovic et al., 2007). 

Immunocoprecipitation studies suggested that bestrophins may exist as 

tetramers or pentamers in a heterologous expression system (Sun et al., 2002). 

Homo-oligomerisation was predominantly seen when hBest1 with myc- and 

Rim3F4-tags were cotransfected, than when they were cotransfected in 

combination with Drosophila or C. elegans Best1. However, these conclusions 

were not supported by another study by (Stanton et al., 2006). These authors 

performed hydrodynamic studies on porcine Best1 (pBest1) that was extracted 

from porcine RPE cells using 1% Triton X-100 containing buffer. Using 

sedimentation calculations, they concluded that pBest1 may exist as a dimer.  

In support of this, when they heterologously expressed the pBest1 in HEK cells, a 

significant fraction of the protein was found as aggregates with the same 

experiments as above. This aggregation of overexpressed protein, led these 

authors to rule out a tetrameric or pentameric stoichiometry for Best1.  

Nonetheless, both studies showed that bestrophins may form oligomers. These 

observations are in consistent with the fact that the mutant versions of 

bestrophins can alter channel gating, even if they were oligomerised with a 

wildtype bestrophin. 

A B 
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6.1.3 Clˉchannel function of bestrophins 

In BVMD patients, reduced light peak in the electrooculogram (EOG) was thought 

to be caused by defects in epithelial ion transport. Electrophysiological studies 

in different species including chickens, cats and geckos revealed that the light 

peak may be caused by Clˉ conductance in the RPE basolateral membranes 

(Chien et al., 2006; Gallemore, 1997). The BVMD causing bestrophins presents a 

distinct family of proteins. The initial proposal of a Clˉ channel function of 

bestrophins was also based on the functional roles of RPE cells where Best1 was 

found in the basolateral membranes of these epithelial cells (Sun et al., 2002). 

The RPE cells play a vital role in retinal structure and function. They absorb, 

lactate, and lipofuscin, transport fluid, and maintain the volume and 

composition of the sub-retinal space (Kenyon et al., 1994; Kunzelmann et al., 

2007).  

Upon the activation of photoreceptors by light, the apical membranes of RPE 

cells that hyperpolarize and give rise to the c-wave component of the EOG. 

Further, the hyperpolarization causes the activation of Clˉ channels in the 

basolateral membrane leading to depolarization of the membrane. This 

depolarization causes the characteristic light peak in the EOG which was 

believed to be caused by Clˉ current (IClCa), which is diminished in the BVMD 

disease patient. 

The first convincing evidence for a Clˉ channel function of bestrophins came 

from studies on human, Drosophila and Caenorhabditis elegans proteins (Sun et 

al., 2002). The Clˉ currents were activated upon heterologous expression of 

various bestrophins in HEK cells. These Clˉ currents were thought to be the 

representatives of bestrophin expression as different bestrophins showed 

current-voltage differences and activation by Ca2+ (Tsunenari et al., 2003). The 

hBest1 elicited currents showed small amount of outward rectification and time 

dependency. In addition, the currents were dependent on intracellular Ca2+, as 

they were almost abolished at nominally zero free-Ca2+ buffered with Ca2+-

chelator EGTA. This observation led to the hypothesis that bestrophins may be 

activated by intracellular Ca2+.  
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Other evidence suggests the Clˉ function of bestrophins came from the site 

directed mutagenesis studies where the gating, selectivity and pharmacology of 

these channels was altered with the mutagenesis of key protein residues. These 

studies convincingly showed the probable Clˉ channel function of bestrophin 

channels (Qu et al., 2006; Qu et al., 2004; Qu and Hartzell, 2004). For example, 

the mutation at position 93 in mBest2 results in significant channel gating, in 

that the mutant channel, upon hyperpolarization, activates the currents that 

show time dependency and inward rectification. In addition, the rectification 

has been shown to be modulated by mutating a electroneutral amino acid, 

phenylalanine, at position 80 with either a positively charged arginine or 

negatively charged glutamate (Qu and Hartzell, 2004).  

6.1.4 Bestrophins as CaCCs 

Since the discovery of mutations in Best1, responsible for the Best disease, there 

has been extensive amount of data suggesting bestrophins as the components of 

CaCCs (Hartzell et al., 2008). At the same time, another hypothesis evolved  

implicating the bestrophins as Ca2+ channel regulators (Marmorstein et al., 

2009), and is separately discussed in Chapter 7.  

So far, hBest1 (Barro Soria et al., 2009; Tsunenari et al., 2003), hBest4, mBest2 

(Pifferi et al., 2006; Qu et al., 2004) and xBest2 (Qu et al., 2003) have been 

implicated in the Ca2+-activated Clˉ conduction with an estimated Kd of ~200 nM 

of Ca2+. This may suggest like for other CaCCs, bestrophins act upon intracellular 

elevations of Ca2+ concentrations.  

Furthermore, bestrophins have biophysical properties similar to those of 

endogenous CaCCs in terms of their direct activation by physiological elevations 

of intracellular Ca2+ with an anion permeability sequence. These have been 

demonstrated conclusively using mutant versions of wildtype bestrophins that 

alter anion permeability and the knockdown of Best1 causes reduced IClCa (Chien 

et al., 2006; Hartzell et al., 2008; Qu et al., 2004).  

However, the mechanisms of action of Ca2+ is so far not clear as there are no 

direct Ca2+ binding sites found in bestrophins in in silico analysis. However, 

several hypotheses have been put forward from the experimental observations. 
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For example, in hBest4, a high density of acidic amino acid residues are found 

that exhibits similarity to the Ca2+ bowl of BK K+ channels and proposed to be 

possible Ca2+ binding sites (Tsunenari et al., 2006). However, increased 

activation of endogenous Drosophila bestrophins and hBest1 in excised 

membrane patches in the whole cells upon ATP stimulation may suggest a 

complicated mechanism.  

Other mechanisms that regulate bestrophin function may exist including cAMP, 

cGMP-dependent phosphorylation via nitric oxide (NO) in calu-3 cells (Duta et 

al., 2006; Duta et al., 2004) or regulation via direct interaction with protein 

phosphatase 2A (Marmorstein et al., 2002). Furthermore, protein-protein 

interaction through proline-rich amino acids or autoinhibitory domain found in 

bestrophins at the C-termini in different bestrophins have been proposed to 

regulate bestrophin Clˉ channel function (Hartzell et al., 2008). 

6.1.5 Physiological functions of bestrophins 

The direct activation of Clˉ channel function of bestrophins by Ca2+ with an 

anion selectivity sequence has shown strong evidence for their potential function 

as CaCCs (Hartzell et al., 2005a; Kunzelmann et al., 2007). In particular, the 

data from the point mutations of hBest1 and mBest2 showing similar biophysical 

properties with classical CaCCs in terms of their rectification, voltage 

dependence and kinetics, further suggested CaCC function (Hartzell et al., 

2008). In intact S2 cells, Best1 has been shown to be regulated by changes in 

cellular osmolarity, independently of Ca2+ (Chien and Hartzell, 2007). Thus, 

Chien and Hartzell (2007) proposed Best1 as a type of volume-regulated anion 

channel (VRAC) involved in the control of cell volume. They convincingly showed 

that volume-activated Clˉ currents exist in S2 cells, and these currents can be 

abolished by RNAi. Furthermore, the RNAi effects can be rescued by 

overexpression of Best1. Moreover, an impaired ability in regulation of cell 

volume was seen in response to hypoosmotic solutions when Best1 expression 

was reduced using RNAi. These have been supported by the amplitude of the 

Best1 current and the ability of the cells to undergo RVD. These regulatory 

mechanisms suggest for at least Best1, that it may be dually regulated by Ca2+ 

and cell volume. 
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The hBest1 is expressed in the RPE, the epithelia that line the photoreceptor 

outer segments. The retinal homeostasis is controlled by RPE, by regulating the 

composition of the fluid surrounding the photoreceptor outer segments, provide 

nutrients for regeneration of the visual pigment, the retinoid and involved in 

phagocytosis of shed photoreceptor discs (Strauss, 2005). Bestrophins may 

possibly involve in any of these functions. However, like the CFTR knockout 

mouse model, the bestrophin knockout mouse model does not phenocopy the 

human eye disease and neither does it show any gross visual deficit or retinal 

pathology (Marmorstein and Marmorstein, 2007). 

mBest2 was proposed as a candidate coding for CaCC currents in the olfactory 

sensory neurons (OSNs) through the GPCR signaling and influx of Ca2+ via CNG 

channels using in vivo expression studies and in vitro biophysical 

characterisation in HEK cells (Pifferi et al., 2006). This activation has been 

proposed to amplify the response, causing the largest fraction of the olfactory 

receptor potential. However, the same authors published more findings refuting 

their prior hypothesis. In their second round of experiments, they used the 

knockout mouse, lacking Best2, and compared them with wildtype. They found 

no significant differences in their olfactory physiologies both in intact epithelium 

and isolated OSNs (Pifferi et al., 2009). This clearly excludes the possibility of 

mBest2 coding for IClCa in mouse OSNs. 

As discussed earlier, many epithelia exhibit clear IClCa, implicating CaCCs in the 

epithelia as detrimental for function. However, detailed characterisation of 

molecular components of epithelial CaCCs has not been published. Gene 

expression reports suggest mBest1 and hBest1 are expressed in the salivary 

glands, in parallel to their expression in various cell types (Barro Soria et al., 

2009; Kunzelmann et al., 2007). 

6.1.6 Drosophila bestrophins 

The data available on Drosophila bestrophins are very scarce, except that Criss 

Hartzell’s group showed Drosophila bestrophins as single entities that may 

mediate IClCa (Chien et al., 2006). However, there is a serious lack of integrative 

physiological approach in previous studies that attempted to study the functions 

of bestrophins in vitro. This is where Drosophila is useful.  
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Furthermore, the studies relied on in vitro cell culture system may not 

recapitulate the physiological context of a protein in question. In addition, there 

are no specific Clˉ channel blockers available in order to clearly implicate 

bestrophins as single entities responsible for IClCa, and thus to reveal their 

functional significance in vivo. The overlapping pharmacology of all extant Clˉ 

channels with other channels such as K+ channels may not be useful in these 

studies to clear the ambiguity in function (Greenwood and Leblanc, 2007).  

The focus of this thesis has been on the four bestrophin genes that are known to 

be expressed in the fly. Given its genetic physiological amenability, Drosophila 

was thought to provide insight into organismal functions of these proteins.  

Using a reverse genetics approach, in combination with Drosophila physiological 

tools such as fluid secretion assays along with neuropeptide Ca2+ agonists (such 

as capa and Drosokinin), had been thought to provide clues into bestrophin 

function as the candidate CaCCs. The tubules of Drosophila melanogaster are 

functional homologues of human kidney, containing around 150 cells, could be 

potential models to study Ca2+-mediated Clˉ conduction and Clˉ transport 

processes. The major functions of these include purification of the haemolymph 

(blood) of waste materials, excretion and adjustment of primary urine, thus 

playing a major role in physiological homeostasis. It has been shown that stellate 

cells are major sites of Clˉ conduction and that they express maxi Clˉ channels, 

like tweety (O'Donnell et al., 1998). The efflux of Clˉ can be stimulated by 

peptide hormone Drosokinin, which acts through its cognate G-protein coupled 

receptor signaling mechanism, that elevates intracellular Ca2+, specifically in 

stellate cells (Radford et al., 2002; Terhzaz et al., 1999a).  

As there is a serious gap between in vitro (and biophysical studies) and 

organismal functions of these channel proteins, it was envisaged that Drosophila 

melanogaster would be a potential model to investigate the roles in vivo.  
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6.2 Results 

6.2.1 Bestrophins in Drosophila melanogaster 

Bestrophins have been found to be widely conserved across the species (Hartzell 

et al., 2008). Drosophila genome encodes four bestrophins, Best1-4. All four 

show high sequence similarity at the N-terminus with variable C-termini (Figure 

3A). In addition, Best1, Best2 and Best3, 4 show more sequence similarity to 

each other. The ensemble hydropathy analysis suggests that these proteins have 

2-5 putative TMDs, in that Best2 has the least number and Best1-PA, Best1-PB, 

Best1-PC, Best3 and Best4 have 4, 5, 5, 5 and 5 TMDs respectively 

(www.ensembl.org). However, the Expasy server predicts 4 TMDs in all isoforms 

of Best1, 2 TMDs for Best2 (like the ensemble prediction), 3 TMDs for both Best3 

and Best4 (www.Expasy.org).  

6.2.2 Gene expression 

Bestrophins are highly conserved across species from vertebrates to 

invertebrates (Hartzell et al., 2008). The FlyAtlas data show interesting tissue-

wide expression patterns (Table 6-1). Best1 & Best2 are expressed in the tubules 

suggesting the suitability of tubules for functional studies using reverse genetics. 

In addition, both bestrophins are expressed in most of the adult tissues. 

However, Best3 and Best4 are specific to testis. 

 

 

 

http://www.ensembl.org/
http://www.expasy.org/
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Figure 6-3 Protein sequence alignment and putative protein sequence features of 
Drosophila bestrophins.  
(A) Bestrophin protein sequence alignment using CLUSTALW alignment. (B) The protein 
features were obtained from ExPASy protein server (Gasteiger et al., 2003). All four 
bestrophins are shown including the two isoforms of Best1. They all show a highly 
conserved bestrophin domain (green). The putative transmembrane domains are shaded in 
black; each shows 2-4 TMs. Other interesting domains predicted include prostaglandin D 
receptor (Pglndn_D_rcpt) in Best1 and NADH plastoquinone oxidoreductase domain in 
Best2. Interestingly none of them show the Ca

2+
 binding EF hand domains. 

 

A 

B 
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Table 6-1 Microarray gene expression data for all four bestrophins in various tissues of 
Drosophila melanogaster.  
The data were obtained from the FlyAtlas (20

th
 January, 2012). The gene expression (mRNA 

signal) and its enrichment is shown for each tissue. The standard error is omitted for clarity 
purposes as it is mostly less than 5% of the mRNA signal. The mRNA signal is colour coded 
from red to blue and the colour range indicates high to low abundance respectively.

 

 

 
 

 

 

 

 

 

 

Tissue mRNA Signal Enrichment mRNA Signal Enrichment mRNA Signal Enrichment mRNA Signal Enrichment

Brain 144 0.9 7 0 2 0.1 2 0.2

Head 158 1 220 1.2 1 0.1 3 0.3

Eye 60 0.3 139 0.7 2 0.1 0 0

VNC 270 1.7 8 0 4 0.2 4 0.4

Salivary gland 133 0.8 487 2.5 6 0.3 11 0.9

Crop 551 3.4 412 2.2 2 0.1 4 0.4

Midgut 79 0.5 32 0.2 9 0.5 7 0.7

Tubule 551 3.4 127 0.7 6 0.3 4 0.4

Hindgut 644 3.9 442 2.3 5 0.3 6 0.5

Heart 148 0.9 16 0 2 0.1 3 0.3

Fat body 90 0.5 17 0 6 0.3 10 0.9

Ovary 428 2.6 183 1 2 0.1 4 0.4

Testis 25 0.2 114 0.6 134 6.7 128 11

Male accessory glands 274 1.7 1962 10 5 0.3 9 0.9

Virgin spermatheca 153 0.9 937 4.9 7 0.3 8 0.7

Mated spermatheca 179 1.1 1196 6.2 10 0.5 7 0.6

Adult carcass 95 0.6 136 0.7 7 0.4 10 1

Larval CNS 65 0.4 21 0.1 2 0.1 5 0.4

Larval Salivary gland 26 0.1 196 1 2 0.1 5 0.4

Larval midgut 155 0.9 9 0 12 0.6 12 1

Larval tubule 300 1.8 96 0.5 1 0.1 6 0.5

Larval hindgut 405 2.4 541 2.8 3 0.1 7 0.7

Larval fat body 23 0.1 3 0 18 0.9 23 2.1

Larval trachea 150 0.9 139 0.7 3 0.1 4 0.3

Larval carcass 82 0.5 210 1.1 2 0.1 6 0.5

S2 cells (growing) 435 2.6 0 0 2 0.1 42 3.7

Whole fly 163 191 19 11

Best1 Best2 Best3 Best4
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Experimental Plan 
From the above genomic and expression analysis, the following experimental 

plan was designed to investigate organismal functions of bestrophins. 

1 Cloning of all 4 bestrophins of Drosophila for in vitro (S2 cells) and in vivo 

(fruit flies) functional analysis. 

2 Transfection of S2 cells with YFP fusions of bestrophins constructs for 

fluorescent localisation within the cell. This would distinguish plasma 

membrane from endosomal (e.g., peroxisomes, mitochondria, ER, Golgi and 

others) localisation.  

3 Validation of overexpressor and RNAi fly lines using qPCR, by crossing them 

with several GAL4 drivers (tubule principal cell, stellate cell tubule specific 

etc.). This shows if the mRNA levels are affected in the overexpressor and 

RNAi flies driven using ubiquitous GAL4 lines. The ‘cell-specific knockdown’ 

validations show which cells the bestrophins are expressed. For example in 

tubules, the anionic and cationic pathways are delineated into cell type-

specific in that the stellate cells show anion conductance and the principal 

cells show cation conductance.  

4 Assessment of the phenotypic characters (including survival, structural, 

morphological defects) of bestrophins using the transgenic fly lines. The 

observation of structural and morphological characters would show if the 

bestrophins play any developmental and morphological defects. Similarly, 

assessing the impact of high salt diet on bestrophin knockdowns and 

overexpressor would indicate their possible role in salt homeostasis. 

5 In vivo localisations of YFP tagged bestrophins using different GAL4 drivers 

to see the cellular location of these proteins in different tissues of the fly 

and in specific cells of an individual tissue (tubule principal cell, stellate 

cells etc.). 

6 Assaying fluid secretion rates of Malpighian tubules to see whether 

knockdown or overexpression causes any impairment.  
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This would show whether the proposed Ca2+-activated Clˉ theory or the 

modulators of other Ca2+ channels stands to this phenotypic screening using 

tubules. 

7 Assaying [Ca2+]i to see whether bestrophins modulates Ca2+ levels utilising 

transgenic recombinant Ca2+ reporter, aequorin. This would possibly link if 

bestrophins modulate Ca2+ signaling. 

8 Immunoblotting of the protein extracts and immunolocalisation using the 

antibodies raised against bestrophins. This would validate if the antibodies 

specifically recognise bestrophins in various tissues they show mRNA 

abundance. 

The results are presented first for Best1 & Best2 and then Best3 & Best4 as their 

comparative similarities and differences. This was because the coregulation of 

bestrophins across different tissues in the fruit fly, in that Best1 & Best2 show 

high coregulation (across the epithelial tissues) and Best3 & Best4 show the 

coregulation in testes (Table 6-1). 

6.2.3 Best1 & Best2 are differentially expressed in Malpighian 
tubules 

Tubules show distinct functional domains. Tubule-specific microarrays in the 

FlyAtlas showed sex- and segment-specific differential expression of several 

genes, in that, Best1 was found more in the females, both in anterior and 

posterior tubules with 2.2-fold (t-test; P=0.0273) and 2.5 (t-test; P=0.0004) 

respectively (Figure 6-4) and Best2 was found more in the anterior tubules (30-

40-fold, P=0.0005) (Figure 6-5). Comparatively, Best2 is more abundant in the 

head than the Best1 (Figure 6-6). In the next chapter, Best2 was confirmed to be 

specifically enriched in the eyes than anywhere else in the head (Figure 7-5) 

The gender-specific, physiological demands may cause the differential 

expression of Best1. But, the differential expression of Best2 was confirmed to 

be caused by the functionally distinct large initial segment, only found in the 

anterior tubules.  
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A qPCR was set up to investigate if Best2 was differentially expressed in the 

initial segment and the rest of the segment of the anterior tubule by cutting 

them separate. This revealed Best2 expression only in the initial segment but 

not in the rest of the anterior segment. These results were also confirmed by an 

in situ hybridization using anti-sense mRNA for Best2 and found that it was only 

expressed in the initial segments (Figure 7-4). 

 

 

Figure 6-4 Best1 is more abundant in female than male tubules. 
Normalised Affymetrix mRNA signal intensities were plotted on Y for males and female 
tubules; separately for anterior and posterior. In both anterior and posterior female tubules, 
Best1 was enriched 2.2-fold (t-test; P=0.0273) and 2.5 (t-test; P=0.0004) respectively, than 
their male counterparts. 

 

 

Figure 6-5 Best2 is highly enriched in both male and female anterior tubules than their 
posterior counterparts. 
Normalised Affymetrix mRNA signal intensities were plotted on Y for anterior and posterior 
tubules; separately for male and female. The differential expression was found to be 
statistically significant (t-test; P≤0.001). 
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Figure 6-6 The absolute quantification of Best1 & Best2 mRNA expression, in the tubules 
and heads, using qPCR. 
(left panel) Best1 was found significantly higher in the tubules than the head. Best2 shows 
anterior tubule abundance and significantly higher expression in heads than the anterior 
tubules (t-test, P≤0.05). 

6.2.4 Best1 & Best2 show differential localisation both in vitro 
and in vivo 

To study the subcellular localisations of bestrophins, both in vitro and in vivo, 

several YFP and V5 translational fusion constructs were engineered (Figure 6-7). 

Best1 has one transcript annotated by Flybase in the beginning of the project, 

and at the later stages, another isoform was added. Accordingly, Best1-RA and 

Best1-RB were fused with YFP and V5 epitope tags respectively, for 

colocalisation purposes. Best2 had one annotated transcript that was fused with 

YFP, and then separately with the V5. 

 

 

* 

* 
* 

* 
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Figure 6-7 Bestrophin translational fusion constructs. 
Several variants of bestrophin (YFP or V5) fusion constructs were generated for localisation 
of bestrophins in Drosophila S2 cells (pDES constructs) in vitro, and in tissues (pPUASt 
constructs) in vivo. 

6.2.4.1 In vitro localisation 

Best1-RA::YFP and Best1-RB::V5 were transiently transfected into S2 cells. Using 

immunocytochemical localisation Best1-RB-V5 was detected using α-V5 antibody 

(as the other transcript was fused with the YFP for localisation). Both the 

isoforms found in the plasma membranes of the S2 cells and showed 

colocalisation, as if they form dimers or multimers (Figure 6-8). In addition, a 

significant fraction of these fusion proteins is found intracellular. 

Best2 has one annotated transcript; accordingly it was cloned into pPUAST for 

localisation studies in S2 cells. The S2 cells were transiently transfected with the 

pPUAST-Best2::YFP along with a DES-GAL4 construct (that induces the expression 

upon CuSO4 addition). The fluorescent imaging of the transfected cells revealed 

Best2 localisation in the vesicular-like structures, like the ones that were 

observed for the peroxisomal localised SPoCk-C in previous findings (Southall et 

al., 2006). Unlike Best1, Best2 did not show any plasma membrane localisation 

(compare Figure 6-8 with Figure 6-9). To confirm if Best2 colocalises with the 

SPoCk-C, Best2::YFP transfected S2 cells were stained with α-SPoCk-C antibody. 
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Indeed, Best2 colocalised with SPoCk-C, indicating Best2 probable localisation in 

peroxisomes (Figure 6-9).  

 

Figure 6-8 Best1 localisation in S2 cells. 
The two isoforms of Best1 (RA & RB) translationally fused to YFP and V5 epitope tag 
respectively. They were constructed into the DES system and cotransfected into S2 cells. 
The expression was induced using CuSO4, as the DES systems has CuSO4-responsive 
metallothionein promoter, and the fusion proteins were in frame with the promoter. After 72 
h of induction of expression, cells were washed, and fluorescent immunocytochemical (ICC) 
localisation was performed using confocal microscopy. The isoform A was localised using 

YFP fluorescence, and the isoform B was localised using α-V5 antibody staining using 

rhodamine conjugated secondary antibody. Both the isoforms show significant overlap in 
localisation in plasma membranes and in the intracellular space (arrow heads). 

 

Figure 6-9 Best2 colocalises with native peroxisomal SPoCk-C in S2 cells. 
Best2-YFP transfected S2 cells were stained with α-SPoCk antibody (1:1000) that was 

published in Southall et al., (2006). An α-mouse rhodamine antibody (1:500) was used as the 

secondary antibody and imaged using a confocal microscope system. The colocalisation is 
shown in the ‘merge’ picture. 
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6.2.4.2  In vivo localisation 

The transgenic animals harbouring UAS fused Best1 & Best2 YFP fusion constructs 

(Figure 6-7) were first induced using GAL4/UAS system in vivo for protein 

localisations. In order to do that, stable fly lines containing hs-GAL4; UAS-

Bestrophin-(YFP) homozygous on second and third chromosomes respectively 

were generated. Then these flies were heat shocked for 1 h, starting from their 

4th day of emergence, from their pupal cases, for another 3 times, once a day.  

After the heat shock induction of transgenes, various tissues were dissected and 

the YFP fluorescence patterns were visualised under a confocal microscope. 

Initial observations suggested Best1-YFP & Best2-YFP localised to apical plasma 

membrane (Figure 6-10A) and vesicular structures in the tubules (Figure 6-11A) 

respectively. The Best1-YFP apical localisation was confirmed by staining the 

tubules with Phalloidin (rhodamine-conjugated) that stains F-actin filaments of 

the apical microvilli, where both were found colocalised (Figure 6-10B). The 

vesicular pattern seen for Best2-YFP was comparatively similar to the previously 

found SPoCk-C tubule peroxisomal pattern (Figure 6-11B). Thus, the Best2-YFP 

tubules were stained with α-SPoCk-C antibody and found that both Best2-YFP 

and SPoCk-C colocalise (Figure 6-11C). 

To further confirm Best2-YFP localisation to peroxisomes in vivo, the stable flies 

were crossed to the flies harbouring peroxisomal-targeted aequorin 

(Aequorinperox). These flies were heat shock induced for the expression of the 

transgenes. Then, tubules were dissected out and immunostained using a rabbit 

α-Aequorin antibody as the primary and α-rabbit Texas-Red as the secondary 

antibodies. These were then stained with a nuclear stain DAPI and visualised 

under a confocal microscope.  

The Best2-YFP colocalised with the Aequorinperox, confirming its peroxisomal 

localisation in tubules, and in various tissues (Figure 6-12). However, only some 

peroxisomes that show Aequorinperox, only show Best2-YFP (Figure 6-12, shown 

using light arrow heads). 
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The Best2 peroxisomal localisation was also confirmed using an independent 

approach by Western blotting technique. For this, peroxisomes were purified 

from the flies expressing Best2-aequorin fusion protein (hs-GAL4; UAS-Best2-

Aequorin). The rest of the fraction was also collected to see if the protein was 

localised elsewhere besides peroxisomes.  

The two protein fractions were separated on a sodium dodecyl sulfate 

polyacrylamide gel by electrophoresis (SDS-PAGE), and immunoblotted onto 

Hybond™ ECL (Amersham UK) nitrocellulose membrane. The blotted protein was 

detected using rabbit α-Aequorin antibody as the primary and α-rabbit Cy5-

labelled antibody as the secondary antibodies. Then, the fluorescence was 

imaged using a Typhoon variable mode imager (GE Healthcare UK). The antibody 

detected a band of ~110 kDa in the peroxisomal protein fraction but not in the 

rest of the fraction (Figure 6-13). This was of the right size for the Best2-

aequorin fusion protein, further confirming peroxisomal localisation of Best2. 

 

Figure 6-10 Best1::YFP localises in the apical plasma membrane of the tubules. 
UAS-Best1::YFP driven in vivo in the tubules using hs-GAL4 ubiquitously (A) and F-actin 
filaments were stained with phalloidin (B). The tubules were dissected out, formaldehyde 
fixed and stained with rhodamine conjugated phalloidin that binds with F-Actin filaments in 
the tubules. The nuclei were stained with DAPI and visualised under confocal microscope. 
The apical localisation is shown using arrow heads. 
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Figure 6-11 Best2::YFP colocalises with peroxisomal SPoCk-C in tubules. 
UAS-Best2::YFP was driven ubiquitously, in vivo, in the tubules using hs-GAL4, and stained 

with α-SPoCk-C antibody (1:200). The representatives of peroxisomal location of the two 

proteins are shown using the arrow heads. The colocalisation is shown in the merge 
picture. 

 

Figure 6-12 Best2 is peroxisomal in vivo. 
The colocalisation of Best2-YFP with Aequorinperox in vivo in various adult Drosophila 
tissues is shown. The tissues expressing Best2-YFP and Aequorinperox dissected out and 

formaldehyde fixed. They were then stained with rabbit α-aequorin antibody as the primary 

and α-rabbit alexa-fluor as the secondary antibodies. The tissues shown include tubules (A 

& B), trachea (C, thick arrow heads) and male accessory gland (D). Peroxisomal localisation 
of both Best2-YFP and Aequorinperox is shown using thick arrow heads. However, only some 
peroxisomes that show Aequorinperox, only show Best2-YFP (shown using light arrow 
heads). 

A B C 
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Figure 6-13 Western blot of Best2-Aeq from the protein extracted from the purified 
peroxisomes. 
Best2-Aeq was expressed in the whole flies using hs-GAL4 and peroxisomes were purified 
from the rest of fraction. Then both protein fractions were run on a polyacrylamide gel by 
electrophoresis and blotted on to the nitrocellulose membrane. The protein fractions were 

probed using rabbit α-aequorin as primary and α-rabbit Cy5 as the secondary antibodies. 

The right sized fusion protein band of 110 kDa was observed. 

6.2.5 Making of transgenic fly lines and their validation 

Several transgenic RNAi fly lines for Best1 & Best2 were generated using the 

Gateway™ recombinant vector pRISE to clone the inverted double-stranded 

complementary RNA. The Gateway™ destination vector consists of a P-element 

for genomic integration by the help of a P-transposase, in Drosophila germline, 

to segregate into successive generations through recombination. Using white 

marker, the transformants were selected and made either homozygous or 

heterozygous (if they were homozygous lethal, they were stabilised over 

balancer chromosomes as heterozygous insertions). Then, the fly lines were 

validated using GAL4/UAS bipartite system by driving the transgene expression 

using a variety of cell- or tissue-specific GAL4s or using a ubiquitous GAL4 such 

as Act5C-GAL4 or hs-GAL4. 

The RNAi fly lines were validated using a ubiquitous GAL4, either Act5C-GAL4 or 

hs-GAL4 (where the induction of the transgene was lethal using Act5C-GAL4) was 

used. Using qPCR, the percentage of knockdown or overexpression was 

quantified to proceed to functional studies. The absolute percentage of 

knockdown for UAS-Best1-RNAi, driven by Act5C-GAL4, was 66% (t-test, P < 

0.0001) to its heterozygous parental control (Figure 6-14). A Best1 deletion line 

along with a rescue line (kind gift from Dr. Edward Blumenthal, Marquette 

University, USA) (Tavsanli et al., 2001), were validated using qPCR for 

expression, and found to be a complete null (Figure 6-14). 
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Figure 6-14 qPCR validation of Best1-RNAi and deletion flies. 
RNAi for Best1 was induced in vivo using GAL4/UAS system with a ubiquitous GAL4 driver, 
Act5C-GAL4. A qPCR was run, and expression was compared against the UAS-parental 
control. The Best1 expression was reduced significantly in the RNAi induced flies than the 
controls (t-test, P<0.0001) with an absolute mean difference of 66%. The Best1 deletion line 
was compared with the rescue line and found that the deletion line was a complete null (t-
test, P<0.0001). 

 

Figure 6-15 qPCR validation of Best2-RNAi knockdown. 
The Best2-RNAi was driven conditionally in the adult flies using hs-GAL4. The RNAs were 
extracted and qPCR was performed. A significant knockdown of Best2 expression was 
found in hs-GAL4>Best2-RNAi flies when compared to the heterozygous controls, with an 
absolute percentage mean difference of 78% (t-test, P<0.0001). 

The UAS-Best2-RNAi was driven using hs-GAL4, as the Act5C-GAL4 showed 

lethality at the pupal stages of the fly development (Figure 7-3).  
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After the heat shock regimes, a qPCR was performed to validate the knockdown 

of gene expression. The percentage of knockdown was found to be 78% (t-test, 

P<0.0001) to its heterozygous parental control (Figure 6-15). 

6.2.6 Salt and fluid regulation 

Salt and fluid regulation is one of the important aspects of Clˉ channel function. 

Many of the epithelial Clˉ channels are involved in the transepithelial transport, 

fluid secretion, and cell volume regulation. Best1 shows an interesting 

expression pattern across the major epithelial tissues as well as neuronal tissues 

(Table 6-1). However, Best2 is the most abundant in the epithelial tissues, and 

in contrast with Best1, it is not significantly found in the neuronal tissues (Table 

6-1). The epithelial abundance led to the investigation of survival analysis of 

RNAi and deletion flies on food containing elevated levels of salt and osmotic 

dietary conditions, to explore their potential functions in salt homeostasis. The 

high salt food regime consisted of normal food with an additional 4% NaCl. The 

high osmotic food regime consisted of normal food with the addition of 15% 

sorbitol. 

6.2.6.1 Best1 

The transgenic flies used for Best1, including the flies, consisting of double 

stranded RNAs under the control of an upstream promoter element, UAS (w-; 

+/+; UAS-Best1-RNAi) and the flies consisting the GAL4 transcription factor with 

an upstream enhancer element for Act5C (Act5C-GAL4), useful for ubiquitous 

expression of transgenes.  

The transgenic animals of F1 generation, used for salt survival analysis, were 

contained in Act5C-GAL4 and UAS-Best1-RNAi, heterozygous on second and third 

chromosomes respectively (w-; Act5C-GAL4/+; UAS-Best1-RNAi/+). Essentially, 

the GAL4 induces RNAi ubiquitously all over the fly across the developmental 

stages. The F1 controls for these flies were their heterozygous CyO and UAS-

Best1-RNAi on second and third chromosomes respectively (w-; CyO/+; UAS-

Best1-RNAi/+). To control for the Actin-GAL4 insertion, an F1 progeny, w-; 

Act5C-GAL4/+; +/+ was also used.  
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In addition to GAL4/UAS system, a deletion mutant of best1, w-; best11-2, was 

also used, in which the entire gene has been removed by recombination along 

with a transgenic rescue line, w-λ5; Best1 1-2. These flies are viable and fertile 

and do not affect the photoreceptor cell integrity (Tavsanli et al., 2001).  

Once the flies emerged from their pupal cases, they were collected as a batch of 

20 flies in a vial and left for a day. Then they were separated as males and 

females into the food vials for another 3-4 d. At the age of 4-5 d, they were 

transferred into the food vials containing additional amounts (3% and 4%) of 

NaCl, and the number of dead flies was counted every 12-24 h. The same was 

repeated for the sorbitol survival assays with 15% sorbitol in the food for 

delineating the osmotic stress from the salt stress. The survival rates were 

plotted as percentage of survival on Y-axis over time on X-axis.  

The ability of the flies to survive on a high NaCl diet was severely affected in the 

flies with reduced levels of Best1 expression. The Best1 knockdowns, both males 

and females, showed decreased survival rates than the control flies upon 4% 

NaCl feeding (Figure 6-16 M & F). However, the same survival phenotype was not 

seen with high sorbitol feeding, during the same time periods (Figure 6-16, 

dimmed lines). 

Salt survival assays using Best1 deletion flies confirmed the above findings using 

GAL4/UAS systems, where decreased survival was observed upon 4% NaCl feeding 

for the deletion flies comparatively with their genomic rescue flies (Figure 6-17). 

In contrast to their sensitivity to high salt, both the deletion and knockdown flies 

survived well on food containing 0.8M sorbitol over the same time periods 

(Figure 6-17, dimmed lines).  
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Figure 6-16 Salt sensitivity of Best1-RNAi knockdowns driven using Act5C-GAL4. 
Once mated (males and females were kept in the same vial for 48 h) females were grown on 
normal food until the age of 3 days and then transferred on to the high salt (4% NaCl) or 
high osmotic (15% sorbitol) food regime. The survival counts were performed once a day. 
Survival curves for salt are shown in brighter colours, and the same for sorbitol are shown 
in dimmed colours. Best1-RNAi knockdown flies (red lines), both males (M) and females (F) 
showed marked decrease in ability to cope with high salt diet, than their controls (blue and 
black lines). 

Median survival for males: Act-GAL4/+, 4 days; UAS-Best1-RNAi/+, 4 days; UAS-Best1-
RNAi/Act-GAL4, 2 days. A Log-rank (Mantel-Cox) statistical algorithm was used to test the 
significance of difference between two survival curves; accordingly a P-value was obtained 
to denote the significance. P<0.0001 for comparisons of UAS-Best1-RNAi/Act-GAL4 versus 
UAS-Best1-RNAi/+ and UAS-Best1-RNAi/Act-GAL4 versus Act-GAL4/+. However, the same 
sensitivity was not observed on high sorbitol diet during the same time period. 

Median survival for females: Act-GAL4/+, 4 days; UAS-Best1-RNAi/+, 5 days; UAS-Best1-
RNAi/Act-GAL4, 3 days. A Log-rank (Mantel-Cox) statistical algorithm was used to test the 
significance of difference between two survival curves; accordingly a P-value was obtained 
to denote the significance. P<0.0001for comparisons of UAS-Best1-RNAi/Act-GAL4 versus 
UAS-Best1-RNAi/+ and UAS-Best1-RNAi/Act-GAL4 versus Act-GAL4/+. However, the same 
sensitivity was not observed on high sorbitol diet during the same time period. 
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Figure 6-17 Salt sensitivity of Best1 deletion. 
Survival assays were performed similarly as in Figure 6-16, but by using Best1-deletion flies 
versus a genomic rescue flies. Data are only presented for male flies. This analysis also 
confirmed the role of Best1 in the regulation of high salt concentrations. Median survival: w

-

λ5; Best1 1-2, 4 days; w
-
; Best1 1-2, 2 days. A Log-rank (Mantel-Cox) statistical algorithm 

was used to test the significance of difference between two survival curves (P<0.0001). 
However, the same sensitivity was not observed on high sorbitol diet during the same time 
period. 

 

Figure 6-18 (A) Ca
2+

 agonist, capa1 inhibits fluid secretion in Best1 deletion flies. 
Tubule secretion assays were performed using modified Ramsay assay (Section 2.25). The 
Ca

2+
 agonist capa1 was added after 30 min of basal readings for every 10 min. An additional 

50 min of secretion reading were taken for every 10 min. (B) The secretion rates were 
averaged as basal and capa1-stimulated and presented as a graph for statistical 
significance using a t-test, P-value. In deletions the capa1 inhibits secretion significantly 
from basals with a mean difference of 0.396±0.026 (t-test, P<0.0001) (red line), although it 
was not changed significantly in the rescue line (green line). The secretion went 
significantly up in the wildtype with a mean difference of -0.15±0.054 (t-test, P<0.05) (black 
line). 

Tubule secretion assays were successful with Best1 deletion line, compared 

against its genomic rescue and a wildtype control. Although the basal 

(unstimulated) rate of fluid secretion was not significantly changed, the Ca2+ 

agonist, capa1 stimulated secretion was significantly inhibited in the deletion 

line when compared to the rescue and wildtype control (Figure 6-18).  
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This clearly demonstrates a potential role for Best1 in the stimulated Ca2+-

dependent secretion. 

6.2.6.2 Best2 

The transgenic flies used for Best2 include the flies consisting of double stranded 

RNAs under the control of UAS (w-; +/+; UAS-Best2-RNAi), and the flies consisting 

the GAL4 transcription factor with an upstream heat-shock promoter (hs-GAL4), 

useful for conditional ubiquitous expression (unlike Act5C-GAL4) of transgenes, 

thus to mitigate the developmental lethality caused by the RNAi expression 

before adult emergence.  

The above two flies were crossed and the F1 progeny (w-; +/+; UAS-Best2-

RNAi/hs-GAL4) were assessed using salt survival analysis. The two parents of the 

F1 progeny were crossed into a wildtype background and used as heterozygous 

controls. These had the genotype w-; +/+; hs-GAL4/+ and w-; +/+; UAS-Best2-

RNAi/+. The F1 progeny were collected as a batch of 20 flies in a vial and left 

for two days. Then they were separated as males and females into the food vials 

for another 3-4 d, and heat shocked every day for 30 min at 37°C in an 

incubator. At the age of 4-5 d, the flies were transferred into the food vials 

containing additional amounts of NaCl (+4%), and the number of dead flies was 

counted every 12-24 h. The heat shocks were continued every 48 h until all the 

flies were counted dead. The survival rates were plotted as percentage of 

survival on Y-axis over time on X-axis.  

Survival analysis was performed separately for males and females. In contrast to 

Best1, the Best2 knockdowns (both males and females) showed increased 

survival rates than the control flies upon the salt feeding (Figure 6-19 M & F).  
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Figure 6-19 Best2 knockdowns show increased salt resistance. 
The protocol of salt survival was exactly followed like that of Best1 assays on 4% NaCl food 
regimes. Best2-RNAi knockdown flies (red lines), both males (M) and females (F) showed 
marked increase in ability to cope with high salt diet, than their controls (black and hash 
colour lines).  

Median survival for Males: hs-GAL4/hs-GAL4, 3 days; UAS-Best2-RNAi/+, 4 days, hs-
GAL4/+, 3 days and UAS-Best2-RNAi/hs-GAL4, 5 days. A Log-rank Mantel-Cox statistical 
algorithm was used to test the significance of difference between RNAi versus control 
survival curves; accordingly a P-value was obtained to denote the significance. P<0.0001 for 
RNAi versus controls separately. 

Median survival for Females: hs-GAL4/hs-GAL4, 4 days; UAS-Best2-RNAi/+, 4 days, hs-
GAL4/+, 3 days and UAS-Best2-RNAi/hs-GAL4, 5 days. A Log-rank Mantel-Cox statistical 
algorithm was used to test the significance of difference between RNAi versus control 
survival curves; accordingly a P-value was obtained to denote the significance. P<0.0001 for 
RNAi versus controls separately. 
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6.2.7 Best3 & Best4 show high mRNA expression in the testis 

Best3 and Best4 show an interesting genomic location in the fly because they are 

in close inverted repeat, suggesting recent gene duplication (Figure 6-20). 

According to the FlyAtlas, they are specifically enriched in the testis. 

Developmentally, Best4 but not Best3 is expressed between 8-14 h of embryonic 

development according to the highthroughput sequencing data of the FlyBase. 

However, both show consistent regulation from third-instar larval stage. When 

Best3 and Best4 were targeted using RNAi, in vivo, using GAL4/UAS system, with 

Act5C-GAL4 ubiquitous driver, RNAi for Best3 but not Best4 was lethal at pupal 

stages.  

 
 

Figure 6-20 Genomic organisation of Best3 & Best4. 
Best3 and Best4 are transcribed from minus and plus strands of the 3L chromosome 
respectively (upper panel). Each has one annotated transcript and show differential 
expression between 8-14 h of embryonic development (lower panel). (Data obtained from 
Flybase.org on 12

th
 Dec, 2011.) 

6.2.8 Best3 and Best4 localisations 

6.2.8.1  In vitro localisation 

The S2 cells were transiently transfected separately with Best3::YFP and 

Best4::YFP and induced for expression for 48 h. Then, they were washed with 

PBS and formaldehyde fixed. The nuclei were DAPI stained, and the cells were 

imaged using a confocal microscope system. Both fusion proteins showed distinct 

immunofluorescence patterns, in that, Best3::YFP may represent intracellular 

vesicles and Best4::YFP represents endoplasmic reticulum (ER) (Figure 6-21). 
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6.2.8.2  In vivo localisation 

For the in vivo localisation, the Best3::YFP and Best4::YFP fusion constructs 

were expressed using the Act5C-GAL4 and found that the overexpression of 

Best3::YFP overexpression was semilethal as some escapers come out this cross 

and Best4::YFP overexpression was complete lethal. The lethality was at pupal 

stages. Furthermore, the escapers of Best3::YFP overexpression show 

morphologically defective testis (Figure 6-23). Then these were conditionally 

expressed using hs-GAL4, as explained in the previous section to avoid the 

lethality, and imaged for localisation in vivo. As the mRNA was detectably found 

only in the testis, the testes were imaged. Both bestrophins showed distinct 

intracellular localisations in that Best3::YFP seems to be localised to vesicular-

like structures and Best4::YFP to ER, like the in vitro patterns in S2 cells (Figure 

6-22).  

 

Figure 6-21 Best3::YFP and Best4::YFP show distinct localisations in S2 cells.  
The S2 cells were transfected with Best3::YFP and Best4::YFP and induced for expression 
for 48 h. The cells were then washed with PBS and formaldehyde fixed. The nuclei were 
stained using DAPI and visualised under a confocal microscope. The fluorescence patterns 
seems to be intracellular and not plasma membrane. 
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Figure 6-22 Best3::YFP and Best4::YFP fluorescence was specifically found in the probable 
cyst cells of the testis in vivo. 
Best3-YFP and Best4-YFP were expressed separately, using hs-GAL4, at the adult stages. 
The testes were dissected out and formaldehyde fixed and stained with a nuclear stain 
DAPI. A confocal microscope system was used to visualise the fluorescence. A magnified 
image from the inset (the probable cyst cell) is shown where the fluorescence was found. 
Although, both bestrophins were similarly localised to cyst cells of the adult testis, the 
intracellular localisation pattern seems to be different, in that, the Best3-YFP was localised 
to large vesicular-like structures and Best4-YFP was localised to ER-like network. 

 

 

Figure 6-23 Overexpression of Best3 causes morphologically defective testis. 
The ubiquitous overexpression of Best3 is semilethal and gives rise to few escaper flies. 
When the testes of the escapers were observed under a light microscope, they seemed 
morphologically defective. 

 

 

 

 

Best3Over Wildtype 
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6.3 Discussion 

The reverse genetics approach, using a powerful model organism, where 

complementary approaches are possible, may help elucidate the functions of 

individual Clˉ channels. To this end Drosophila is useful, with its powerful 

arsenal of post-genomic and physiological techniques to study organismal 

functions (Dow and Davies, 2003). In line with this theory, this study investigated 

organismal functions of bestrophins, and sets up a basis for further studies on 

bestrophin functions in general using Drosophila as a model organism. 

Drosophila encodes all four of the homologs of human bestrophins. They show 

high sequence similarity at the N-terminus as revealed by the protein sequence 

alignment (Figure 6-3A). However, the C-terminus markedly differs between any 

two bestrophins. Interestingly, Best1 and 2 show putative Pglndn_D_rcpt and 

NADH plastoquinone oxidoreductase domain respectively (Figure 6-3B). The 

NADH oxidoreductase domain is only found in one other protein in the Drosophila 

euchromatic genome, called ND5. The ND5 complex participates in the 

mitochondrial electron transport chain. Interestingly, these domains have not 

been predicted for any other bestrophins except Anopheles gambiae.  

The hydropathy analysis using two different programs suggested variable number 

of TMDs from 4 - 6. Interestingly, Best2 has only two predicted TMDs, atypical 

for an ion channel unless it complexes with any other subunits of a 

heteromultimer (Suzuki, 2006). 

The expression patterns of the bestrophins have been investigated using FlyAtlas 

(Table 6-1). The Best1 shows expression in the neuronal tissue in addition to the 

enrichment in the epithelial tissues. In contrast, Best2 does not show detectable 

expression in the brain, although it is abundant in the eyes and other epithelial 

tissues (Table 6-1). The expression patterns of Best1 and Best2 were further 

confirmed by qPCR (Figures 6-4, 6-5 and 6-6). Best3 and Best4 were only found 

in the testis indicating specialised roles (Table 6-1).  

Furthermore, Best2 was highly enriched in the Ca2+ storing anterior initial 

segment of the tubules compared to their posterior counterparts (Figure 6-5).  
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However, this distinction was not observed for Best1, although it showed female 

abundance (Figure 6-4). In contrast to Best1 abundance in the neuronal tissue, 

Best2 was highly enriched in the eyes (Table 6-1). In addition, Best2 showed high 

abundance in the male accessory glands and spermatheca (Table 6-1). Both 

bestrophins were equally found in other epithelial tissues including salivary 

glands and hindgut indicating their potential roles in these tissues. The 

enrichment of Best2 expression in the Ca2+ storing initial segment and the eyes 

suggest its potential epithelial roles, in that it may regulate Ca2+ transport or 

signaling. Best1 does not seem to be an epithelial-specific gene, as it is also 

expressed in the neuronal tissue. 

This study revealed for the first time in vitro and in vivo localisations for all four 

Drosophila bestrophins using bestrophin YFP fusion protein constructs. The 

localisations seem to differ markedly from one bestrophin to the other. Both the 

isoforms of Best1 were predominantly found in the plasma membranes and 

showed significant intracellular trafficking in vitro (Figure 6-8). The in vivo 

localisation of Best1 was interesting, in that, it was predominantly found in the 

apical plasma membranes of the tubules (Figure 6-10A). This was confirmed by 

the colocalisation of F-actin staining of phalloidin (Figure 6-10B). This 

localisation in vivo was in contrast to the hBest1 localisation as hBest1 was 

predominantly found in the basolateral membranes of RPE cells (Marmorstein et 

al., 2000). However, apico-basal polarisation of RPE cells is different from other 

epithelial tissues. For example the basolateral Na+, K+, ATPase is polarised to 

apical membranes of the RPE (Strauss, 2005). In the tubules of Drosophila, an 

apical V-ATPase was thought to energise fluid secretion in the ‘Wieczorek 

model’ (Harvey and Wieczorek, 1997). However, a Ca2+-activated Clˉ channel, 

such as Best1 that is found in the apical membranes, was thought to explain 

secretion under stimulatory conditions upon which Ca2+ is elevated. To this end, 

the Ca2+ agonist capa1 inhibited fluid secretion in the Best1 deletion flies, in 

contrast to wildtype stimulatory action (Figure 6-18). This clearly demonstrates 

a role for Best1 in Ca2+-dependent apical secretion in the stimulatory conditions.  

The intracellular trafficking of Best1, in vitro, may suggest mistargeting of 

overexpressed protein in the isolated cells as has been previously observed for 

bestrophin family members (Hartzell et al., 2008; Kunzelmann et al., 2007; Qu 

and Hartzell, 2004; Qu et al., 2003; Tsunenari et al., 2003).  
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However, some ClC channels have been found both in the plasma membranes 

and in the intracellular organelles (Jentsch et al., 2002).  

In the airway epithelia, CFTR channels found to modulate the components of 

CaCCs channels at the apical plasma membranes. It also seems that CaCCs may 

compensate for the defective CFTR bicarbonate secretion (Zsembery et al., 

2000). Interestingly, bestrophins have been shown to be highly permeable to 

HCO3ˉ(Hartzell et al., 2008). These results suggest that CaCC activation could 

compensate for CFTR loss of function in cystic fibrosis, and that bestrophin may 

present an alternative target in cystic fibrosis. Thus, Best1 apical localisation 

may further provide evidence for an apical CaCC. Furthermore, in pancreatic 

acinal cells, cADPR and NAADP act through ryanodine receptors and elicit 

repetitive local Ca2+ spikes near apical membrane (Kunzelmann et al., 2007). 

This kind of mechanism may exist in the tubules that act to stimulates Ca2+-

activated Clˉ secretion given tubule apical membranes are packed with the 

mitochondria. The fluid secretion inhibition by the neuropeptide Ca2+ agonist 

capa1 (Figure 6-18) potentially reiterate such a mechanism in tubules for 

stimulatory apical secretion via the Ca2+-activated Clˉ function of Best1. This 

finding coincides with the fact that several bestrophins including hBest1 are 

Ca2+-activated with a Kd for Ca2+ between 150-200 nM (Hartzell et al., 2008). 

However, in the excised membranes patches endogenous Drosophila bestrophins 

seems to be activated by ATP, in addition to Ca2+ suggesting an interplay 

between ATP and Ca2+ that may regulate bestrophin CaCC function (Chien et al., 

2006). 

Best2, exclusively showed vesicular localisation in vitro (Figure 6-9), and in vivo 

(Figure 6-11) in various tissues (Figure 6-12). All the Best2-localised vesicles 

were confirmed to be peroxisomes. This localisation of Best2 is novel, and not 

reported for any other bestrophin. It is possible that, like ClCs, bestrophins may 

be important in the function of intracellular vesicles like peroxisomes. At least 

Best2 is such a candidate as it is highly found in the Ca2+ storing initial segment 

and colocalised with SPoCk-C (Figure 6-11). The SPoCk-C also coats the Ca2+ 

spherites that are highly abundant in the initial segment and into which Ca2+ is 

loaded (Southall et al., 2006). 
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For example, acidic stores like lysosomes and secretory granules act in concert 

with IP3-mediated ER and ryanodine receptor pathways where endocytosis plays 

key roles in the generation of repetitive local Ca2+ spikes in the apical plasma 

membranes (Menteyne et al., 2006; Yamasaki et al., 2005). 

Interestingly, accumulation of lipofuscin is the characteristic of Best disease, 

and in lysosomal storage diseases like neuronal ceroidlipofuscinosis (which leads 

to neurodegeneration). This led to the proposal that they may be involved in 

lysosomal function, as RPE cells are loaded with lysosomes, and these cells are 

involved in phagocytosis (Hartzell et al., 2008). Furthermore, the metabolic 

contributions of different organelles, in this case, for the proper function of 

photoreceptors, in different species may have emerged according to 

evolutionary pressures. As such, the localisation of Best2 may potentially be 

important for proper photoreceptor function in Drosophila, although no gross 

visual phenotypes were seen in the flies with reduced levels of expression of any 

of the bestrophins. The testes-specific Best3 and Best4 found to be intracellular 

both in vitro and in vivo and may represent vesicular and ER localisation 

respectively. These localisations themselves are fascinating in terms of the 

potential functional diversity of bestrophins. 

The epithelial expression of Best1 and Best2 in Drosophila has given power to 

investigate their potential epithelial functions, for example in salt regulation. 

The salt sensitivity of flies with reduced or no expression of Best1 suggest that it 

is an essential gene for regulating organismal excessive salt concentrations 

(Figure 6-16 & 6-17). However, when Best1 was specifically reduced using a 

neuronal-specific GAL4, this phenotype was not seen indicating Best1 salt 

regulatory function via epithelial tissues (not shown). Furthermore, high sorbitol 

feeding (that induces osmotic stress) of the RNAi or deletion flies, did not affect 

the survival, within the similar time interval as observed upon NaCl feeding 

(Figure 16-16 & 16-17, dimmed lines). This suggests that NaCl feeding 

specifically induced the sensitivity but not the osmotic disturbance.  

In contrast to Best1, Best2 gene expression reduction did not affect the survival 

of the flies negatively, but rather it had a positive impact.  
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However, as one would expect, the dysfunction in an epithelial-specifically 

expressed Clˉ channel should make the files more prone to high salt 

concentrations leading to the salt toxicity, and therefore a reduction in survival, 

as observed for Best1. Given the Best2 expression in the Ca2+ storing initial 

segment of the tubules and eyes, it may allow one to draw a hypothesis that it 

may not be a Clˉ channel, rather a channel regulator and a better candidate in 

epithelial function as a whole. But, the whole point of studying bestrophins is 

that the dysfunction of human bestrophin causes retinal degeneration. However, 

a previous Drosophila Best1 deletion model suggested Best1 to be non-essential 

gene for fly viability and photoreceptor integrity (Tavsanli et al., 2001). The 

same study was extended as part of this thesis using Best1 and Best2 knockdowns 

separately or combined as double-knockdowns. This confirmed the previous 

observations that Best1 was non-essential for the fly viability, but Best2 in 

contrast is an essential gene at pupal development of the fly (Figure 7-3). 

Furthermore, both Best1 and Best2 knockdowns separately or combined did not 

show any gross morphological defects. 

The most relevant model of human Best disease, ‘bestrophin knockout mouse’, 

did not phenocopy the human eye disease, and neither did it show any gross 

visual defect or retinal pathology (Marmorstein and Marmorstein, 2007). These 

observations suggest that bestrophins in different species may have different 

functional partners that may determine the overall function of the 

photoreceptors. The knockout mouse model of CFTR, did not show any disease 

pathology like human airway lung disease of CF patients (Guilbault et al., 2007). 

In this case, the Clˉ secretion was thought to be compensated by Ca2+-activated 

Clˉ secretion. Thus, there may be a potential diversity in the functions of 

bestrophins, in that the compensatory mechanisms might rescue the dysfunction 

of bestrophins in these organisms. However, modelling the compensatory 

mechanisms might provide useful understanding of functions of these proteins in 

the model organisms. 

The pH of the cellular compartments must be tightly regulated for the biological 

reactions to take place, and these must possess transporters in a complex 

bioenergetic framework. This may include a set of known Na+, K+ ATPases, V-

ATPases, Clˉ channels, K+, Na+/H+ exchangers.  
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In the endomembranes of endolysosomal pathway, however, Clˉ concentration 

has recently thought to be an important determinant of the vesicular function. 

Previously, Clˉ/H+ exchange rather the classical Clˉ channel function was 

thought to counteract the proton influx into the endosomes and lysosome 

mediated by V-ATPases (Scheel et al., 2005). However, mutants of ClC-5 and 

ClC-7 that uncouple H+ exchange and convert these exchangers to channels seem 

not to affect the pH of endosomes or lysosomes respectively. However, 

uncoupling mutants still show the pathological conditions like the knockouts of 

the same exchangers (Novarino et al., 2010; Weinert et al., 2010). These 

important findings led to the hypothesis that Clˉ concentrations might play 

essential roles in the function of the endomembranes. Previously, the allosteric 

effect of Clˉ was observed for intracellular ClCs (Davis-Kaplan et al., 1998).The 

localisation of Best2 to peroxisomes is the first ever identification of a probable 

channel to these organelles; although, it is not localised in all peroxisomes in 

various tissues (Figure 6-12). Given the importance of peroxisomes to the 

metabolic homeostasis, a Clˉ channel function of Best2 may show some insight 

into the function of peroxisomes. Furthermore, peroxisomes are the sites of β-

oxidation of fatty acids second only to mitochondria. An interplay between Clˉ 

channels and fatty acids, at least in colonic epithelium, seems to exist. For 

example, the pharmacological agent, lubiprostone (Amitiza™), a functional fatty 

acid is used as the selective Clˉ channel activator which increases fluid secretion 

in chronic idiopathic constipation in adults.  

It is also apparent that peroxisomes act as buffers of intracellular Ca2+ 

elevations, and may act as stores (Chapter 8) (Drago et al., 2008b; Lasorsa et 

al., 2008; Raychaudhury et al., 2006). Best2 colocalisation with SPoCk-C may 

indicate its potential role in the regulation of intracellular Ca2+ concentrations.  

Ca2+-activated Clˉ channels are involved in epithelial salt transport and in 

regulation of several different physiological processes (Jentsch et al., 2002). The 

Malpighian tubules and hindgut of Drosophila, comprise the insect excretory 

systems, thus are important osmoregulatory organs. The tubules are the fastest 

known fluid secreting epithelium (Dow et al., 1994b; Maddrell, 1991). 
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Fluid secretion into the Malpighian tubule lumen is driven by an apical proton 

pump coupled to both apical and basolateral Clˉ conductances (O'Donnell et al., 

1998).  

The neuropeptide diuretic agents such as leucokinin and tyramine stimulate fluid 

secretion via opening a CaCC conductance in the stellate cells (Blumenthal, 

2003; O'Donnell et al., 1998; Terhzaz et al., 1999a). In contrast, capa 

neuropeptide acts on principal cells, elevates intracellular Ca2+ leading to the 

increased fluid secretion (Rosay et al., 1997). Thus, the elevated Ca2+ levels may 

act on an apical CaCC, potentially Best1, leading to the increases in fluid 

secretion. 

Luminal positive voltage gradients generated by V-ATPases of endomembranes of 

vertebrates and apical plasma membranes of insects seems to be counteracted 

by ClC exchangers and NHA(E) exchangers/antiporters respectively through Clˉ 

/H+ or Na+ or K+/H+ exchange. This is because of the concentration gradients of 

Clˉ and K+ or Na+ exists in the cellular milieu. For example, K+ gradients are 

generated in the insect midgut goblet cells to counteract V-ATPase generated H+ 

luminal concentrations (Dow, 1989; Wieczorek et al., 1986). Upon hypotonic 

stress conditions, signal cascades open Clˉ selective channels and allow passive 

Clˉ outflow to decrease the osmotic pressure.  

However, under hypertonic conditions when haemolymph concentrations of the 

fly increase for example, primary regulatory mechanisms will be activated in the 

osmoregulatory organs like tubules and hindgut to counter high salt 

concentrations thereby to decrease the toxicity of ions to the cells (Naikkhwah 

and O'Donnell, 2012). Hypertonic conditions may activate transient influx of Ca2+ 

into the tubule cells that may lead to the activation of Clˉ channels. This 

increases Ca2+-activated Clˉ secretion followed by water and Na+ ions excreted 

into the lumen for their eventual removal out of the body. It is highly possible 

that Best1 may mediate Ca2+-activated Clˉ secretion, thereby contributes to the 

organismal ionic homeostasis. This idea is supported by the fact that the flies 

with reduced or no expression of Best1 become salt sensitive (Figure 6-16 & 6-

17).  
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High sorbitol feeding, in contrast to salt feeding, does not cause the Best1 

knockdowns or deletion flies to be sensitive indicating it might not be a 

candidate VRAC (Chien and Hartzell, 2007). Thus, the disruption of Best1 

expression does not cause flies to be osmosensitive, unlike disruption of the 

inebriated gene (Huang et al., 2002); rather the disruption causes sensitivity to 

the salt. These data clearly suggest a role for Best1 in the salt regulation, as 

might be expected to result from defective Clˉ transport. Thus, at least, Best1 

may facilitate Ca2+-activated Clˉ currents, or it may be a component of a Clˉ 

channel complex, and are likely to play a very important role in epithelial salt 

homeostasis. 

The salt resistance phenotype of Best2 (Figure 6-19) is further investigated in 

the next chapter (Chapter 7). 

6.4 Conclusion 

This is the first ever study investigating organismal functions of bestrophins using 

Drosophila as a model organism in an integrative physiology approach. The 

reverse genetics approach using GAL4/UAS system, proved useful to assess the 

contributions of bestrophins for whole organismal function. This approach 

revealed Best2 and Best3 as essential genes for the fly viability, while it further 

confirmed Best1 as a nonessential gene for fly viability. Furthermore, the 

knockdown of Best1 or Best2 separately and combined did not show any gross 

morphological defects. Best1 seems to be important in regulating ionic 

homeostasis, as it has been revealed by salt survival assays. Furthermore, fluid 

secretion study identified Best1 as a potential CaCC. Interestingly, Best2 

knockdowns showed increased resistance to salt feeding, indicating that it might 

be a potential channel regulator. This notion was reinforced by the virtue of its 

expression in the Ca2+ storing tubule distal initial segment and in the eyes along 

with other epithelial tissues such as salivary glands, crop, and hindgut. This 

study also revealed localisations of bestrophins in vitro and in vivo. Only Best1 

and Best2 are widely expressed across various tissues. In contrast, Best3 and 

Best4 showed testis-specific expression. These restrictive expression patterns 

may imply that bestrophins are diverged in function.  
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Finally, this work shows important functional insights into Drosophila bestrophins 

that may potentially contribute to the general understanding of these proteins. 

This study may also provide a basis for further studies, using Drosophila as a 

model organism. 
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7. Further studies on Drosophila bestrophin 2 

Summary 

As discussed in the previous chapter, two theories have evolved over the years 

for explaining bestrophin function and its associated disease pathology. The first 

theory suggests bestrophins as Ca2+-activated Clˉ channels and the second theory 

suggests bestrophins as regulators of Ca2+ channels and therefore Ca2+ signaling. 

The Mormorstein lab developed two mouse models of Best disease. The first 

model was a Best1-/-knockout (Marmorstein et al., 2006) and the second model 

was either a heterozygous or homozygous knock-in of BVMD causing Best1 allele, 

Best1+/W93C or Best1 W93C /W93C (Zhang et al., 2010b). Using the first model, the 

authors showed increased [Ca2+]i response upon ATP stimulation in the RPE cells 

(that were derived from Best1-/- knockout mouse) than their wildtype Best1+/+ 

littermates. This suggested that Best1, rather than being a CaCC, acts to 

suppress Ca2+ signaling. The same study showed that voltage-dependent Ca2+ 

channels (VDCCs) may contribute to light peak (LP) generation in the EOG; thus 

suggesting a role for Ca2+ in the LP generation. These observations led to the 

further suggestion that the disease pathology associated with the LP may not be 

the determinant of the loss of vision in Best disease, but rather an unknown 

mechanism via Best1-mediated Ca2+ signaling could play a role. In contrast to the 

knockout model, the knock-in model showed decreased [Ca2+]i response upon 

ATP stimulation. Unlike the knockout mouse, the knock-in mouse showed altered 

LP luminance-response function, accumulation of lipofuscin in RPE cells, and the 

formation of fluid- and debris-filled retinal detachments that correlate with 

human BVMD disease pathology. From the results using the second mouse model, 

the authors further argued that BVMD must result from Best1 dysfunction but not 

from the deficiency.  

From the following observations of the previous chapters, Best2 (among all four 

Drosophila bestrophins) was thought to be a potential regulator of Ca2+ signaling 

(second theory) or homeostasis. 
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1. Best2 shows high abundance in the Ca2+ storing enlarged initial segment and 

shows only nominal expression in the rest of the tubules. 

2. Similarly, it shows high abundance in the eyes, and shows very nominal 

expression in the neuronal tissues. 

3. The flies with reduced levels of Best2 expression show increased resistance to 

a high salt diet. 

4. Best2 like Best1, and unlike Best3 and Best4 shows high mRNA abundance in 

other epithelial tissues including salivary glands, hindgut, and crop. 

5. Interestingly, Best2 also shows high abundance in the male accessory glands 

of the adult flies and the spermatheca of females (virgins and mated). 

All the above findings reiterated the fact that Best2 may be a potential 

modulator of Ca2+ signaling rather than a simple Clˉ channel. It may play an 

antagonistic role like mBest1 (Zhang et al., 2010b), probably by antagonising 

Ca2+ signaling components such as the L-type Ca2+ channels that have been found 

in the RPE cells and equally shown to be expressed in the kidneys of humans to 

flies (Hayashi et al., 2007; MacPherson et al., 2001). 

This study further details the characterisation of Best2 function. It presents 

evidence that Best2 is an essential gene, by gene expression knockdown using 

GAL4/UAS system. The lethality can be rescued by expressing a wildtype Best2 

in the ubiquitous knockdown background. This study also identifies the genetic 

location of Best2 expression using cell-specific enhancer-GAL4s, in the initial 

segment of the tubules. In line with the increased salt resistance of Best2 

knockdowns, further data were obtained under oxidative stress conditions 

(induced using 1% hydrogen peroxide (H2O2)). These data showed increased 

oxidative stress resistance of the knockdowns. Taken together, all the data 

suggest that Best2 may not be a CaCC, rather it may be a regulator of Ca2+ 

channel function, and thereby of Ca2+ signaling.  

In support of this hypothesis, Best2 knockdowns showed increased stimulatory 

secondary Ca2+ responses upon neuropeptide agonist, capa1 stimulation.  
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The capa1-mediated secondary responses have been thought to be caused upon 

the activation of plasma membrane Ca2+ channels like that are of TRPL and/or 

CNGs. These observations in turn suggest that Best2 may suppress Ca2+ signaling, 

mediated by plasma membrane Ca2+ channels. Further, a comparative analysis of 

eye- and tubule-specific transcriptomes showed potential overlap of Ca2+ 

signaling components. The signaling components that overlapped were belonged 

to PLCβ signaling including norpA that encodes PLCβ. The norpA expression was 

assayed in Best2 mutants under normal and upon salt feeding. This showed 

norpA expression upregulation in control fed Best2 mutant flies than the 

similarly fed wildtype flies. Furthermore, the norpA expression levels relatively 

increased to even higher levels, in Best2 mutants, upon salt feeding, when 

compared to their wildtype controls fed on similar food regimes. 

7.1 What is the link between increased secondary Ca
2+ 

elevations in Best2 mutants and salt resistance? 

The transcription of human Cyp11b demonstrated to be sensitive to Ca2+ and 

CamKII, and clinically implicated in human renal salt wasting. The above 

comparative analysis in combination with medical subject headings (MeSH) 

interactions and Homophila (a database that identifies fly homologues of human 

disease) analysis identified a cytochrome P450, Cyp6a23, as a Drosophila 

homolog of human Cyp11b. The Drosophila counterpart, the Cyp6a23 is highly 

abundant in the tubules, crop and midgut. Given that the knockdowns of Best2 

show increased salt resistance and stimulatory [Ca2+]cyto, the Cyp6a23 was 

thought to go up in the mutants that were fed on normal and salt food diet 

regimes. 

Therefore, Cyp6a23 expression was measured using qPCR and found that it is 

significantly higher in the Best2 mutants both fed on normal and salt food 

regimes than the wildtype flies fed on similar diet regimes.  

From the above observations, the Ca2+-regulated INAD complexes were also 

tested using qPCR to investigate Best2’s potential Ca2+ modulatory role in the 

eyes. This analysis further showed the expression deregulation of the 

components of INAD complexe in the eye. Taken together, the data clearly 

implicate Best2 as a suppressor of Ca2+ signaling. 
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7.2 Results 

7.2.1 Further validations of Best2 transgenics 

In addition to previous validations of knockdowns using hs-GAL4 ubiquitous 

driver, the knockdowns were further validated using cell-specific GAL4 drivers. 

This was particularly useful for delineating cell-specific functional roles of Best2. 

Previously, enhancer trap GAL4 analysis identified cell-specific expression 

patterns in the tubules (Sozen et al., 1997). The C42-GAL4 has been shown to be 

expressed in the principal (and bar-shaped cells in the initial) of the tubules. 

Using the GAL4/UAS system, Best2-RNAi was induced the C42-GAL4 driver and 

mRNA levels were compared using qPCR. This showed C42-GAL4 efficacy in 

driving Best2-RNAi. The mean percentage difference of expression between the 

RNAi and the UAS control was 94.21 ± 9.6 (Figure 7-1).  

 

Figure 7-1 Cell-specific knockdown of 
Best2 expression. 
RNAi for Best2 was driven using C42-
GAL4. The anterior tubules were 
dissected and the total RNA was 
extracted. The cDNA was made and a 
qPCR was performed for the relative 
quantification of mRNA. The total mRNA 
was significantly reduced (t-test, P< 
0.0001) in C42-GAL4 driven UAS-Best2-
RNAi tubules, relative to their parental 
control, UAS-Best2-RNAi.  

 

 

Figure 7-2 qPCR validation of Best2 
overexpression flies. 
Best2 was conditionally expressed in 
the adult using hs-GAL4. The total 
RNA was extracted from the whole 
flies and reverse transcribed to 
cDNA. A qPCR was performed for 
relative mRNA quantification. Best2 
mRNA was found significantly high in 
the overexpressors than the parental 
controls (t-test, P<0.0001). 
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7.2.2 Best2 is an essential gene in Drosophila 

The following analysis demonstrates that Best2 is an essential gene in 

Drosophila. Best2-RNAi was driven ubiquitously using Act5C-GAL4/GFP-CyO, a 

ubiquitous GAL4 driver heterozygous on second chromosome (balanced over GFP-

CyO, a fluorescent and curly wing marker). Then, the progeny was followed over 

the developmental stages for lethality scoring to assess whether Best2 is 

essential at any stage. The phenotypes scored were for fluorescent and non-

fluorescent larvae.  

The larval offspring that has the genotype of Act5C-GAL4/UAS-Best2-RNAi, is 

where RNAi is induced. This doesn’t show any fluorescence. In contrast, the 

offspring with genotype: GFP-CyO/UAS-Best2-RNAi, is where RNAi is not driven 

as the Act5C-GAL4 is absent and do show fluorescence. If the successful outcome 

of the developmental course can be followed, half and half percentage of flies 

with and without fluorescence should be observed.  

The knockdowns showed lethality during third instar larvae until the pupal 

stages, as the percentage of non-fluorescent larvae observed was reduced during 

these stages, leading to complete lethality by the pupal stages (Figure 7-3, 

compare red with black bars). Thus, no adults were emerged from the pupal 

cases. In addition, the lethality was rescued by expressing a wildtype Best2 

transgene recombined into the lethal background by genetic recombination 

(Figure 7-3, compare green with white bars). This suggests that Best2 is an 

essential gene during development. Interestingly, there were no phenotypic 

outcomes were observed with the ubiquitous knockdowns during the third-instar 

to pupal stages, although knockdowns did show an effect on the organismal 

survival. Furthermore, the C42-GAL4 knockdown of Best2 causes 25% lethality at 

26°C indicating its efficacy in reducing Best2 expression (not shown). This result 

also validates the further characterisation using C42-GAL4. 
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Figure 7-3 Best2 is an essential gene in Drosophila. 
Using Act5C-GAL4 ubiquitous expression of Best2-RNAi, the lethality was followed over the 
developmental time course from 2

nd
 instar larvae to the adult. The genetic cross consisted 

of crossing Act5C-GAL4/GFP-CyO to a UAS-Best2-RNAi/UAS-Best2-RNAi fly line. This 
should give rise (if the RNAi is not lethal) to 50% of Act5C-GAL4/UAS-Best2-RNAi (red bars) 
flies and 50% of GFP-CyO/UAS-Best2-RNAi flies (black bars). These two genotypes can be 
easily followed across developmental stages as the first genotype is non-fluorescent and 
the second genotype is fluorescent. When these genotypes were followed, the flies with the 
first genotype were gradually reduced to ‘zero’; by the pupal stages suggesting that the 
Best2 knockdown is lethal. Furthermore, introducing a wildtype Best2 transgene (green bar, 
compare with non coloured bar), along with the RNAi transgene, rescues the developmental 
lethality.  

7.2.2.1  Best2 is confined to the Ca2+ storing initial segment 

In the anterior versus posterior microarray analysis, and the qPCR confirmation 

in the previous chapter (Chapter 6, Figure), Best2 was found to be abundant in 

the anterior tubules (Chapter 5). In order to see if the expression was confined 

to the enlarged initial segment of the anterior tubules, a qPCR investigation was 

carried out. First, the wildtype anterior tubules were dissected and cut into two 

parts including the initial segment and the rest of the tubule (consisting upper, 

lower and main segments). This showed Best2 mRNA expression only in the 

initial segment but not in the rest of the segment, with a percent mean 

difference 90.79 ± 4.2 (t-test, P<0.0001) (Figure 7-4A). The residual expression 

found in the rest of the tubule may be related to background fluorescence.  
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Furthermore, these results were also confirmed by in situ hybridization using 

antisense mRNA probes (Figure 7-4B, compare with control sense probes, Figure 

7-4C). 
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Figure 7-4 Best2 expression is confined to the Ca
2+

 storing anterior initial segment. 
(A) A qPCR probing Best2 mRNA expression in the initial and the rest of the segments 
confirms Best2 expression in the initial segment. An in situ mRNA hybridization of tubules 
probed with anti-sense (B) and sense (C) mRNA probes. A pronounced hybridization signal 
was found using anti-sense probes but not with sense probes, indicating Best2 expression 
in only the initial segment (shown using arrowheads).  

7.2.3 Best2 is highly abundant in the eyes 

The FlyAtlas microarray analysis revealed Best2 abundance in the eyes (Table 6-

1). Best2 is enriched in the head than the whole fly with an absolute mean 

difference of 69% (t-test, P<0.05) (Figure 7-5). However, its expression was 

found to be more predominant in the eyes than the rest of the head, as its 

comparative expression with the whole fly was significantly higher than the 

heads with an absolute mean difference of 241% (t-test, P<0.0001) (Figure 7-5).  

Figure 7-5 Best2 is highly abundant in 
the eyes. 
A qPCR revealed Best2 mRNA high 
abundance in the eyes than the heads 
and whole flies with the respective 
mean fold differences of 68.53 ± 22.29 
(t-test, P<0.05) and 240.8 ± 25.30 (t-
test, P<0.0001). 
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7.2.4 Best2 mediates organismal oxidative stress responses 

In order to test if the salt stress resistance phenotype of Best2 knockdowns 

recapitulates the oxidative stress resistance established for the genetic mutants 

of putative acyl-CoA oxidase (or enigma) in Drosophila (Mourikis et al., 2006), 

the knockdowns were subjected to oxidative stress induced with 1% H2O2 

feeding.  

As the ubiquitous knockdown using Act5C-GAL4 was lethal, hs-GAL4 was used to 

conditionally express RNAi (knockdown) or wildtype Best2 (overexpressor) at the 

adult stages. To control for genetic background mutations, first, all the flies 

were outcrossed using a wildtype ‘cantonised’ white, w1118cs strain as the RNAi 

and overexpressor constructs were germline transformed into w1118.  

Then, hs-GAL4/hs-GAL4 males were crossed to UAS-Best2, UAS-Best2-RNAi (1) 

and UAS-Best2-RNAi (2) virgin females, and hs-GAL4/UAS-Best2; hs-GAL4/UAS-

Best2-RNAi (1); hs-GAL4/UAS-Best2-RNAi (2) males and females were selected 

from the progeny.  

For the controls, hs-GAL4/hs-GAL4 males or UAS-Best2, UAS-Best2-RNAi (1) or 

UAS-Best2-RNAi (2) virgin females were crossed to w1118cs and UAS-Best2/+, hs-

GAL4/+, UAS-Best2-RNAi (1)/+ or UAS-Best2-RNAi (2)/+ males females were 

selected from the progeny. 

All crosses were set up at 26ºC and the flies were raised at standard density (20-

30 flies per 7 ml tube), allowed to mate for 48 h after emerging (once mated) 

then sorted into 20 males and females into separate vials and raised for another 

2 days before they were transferred on to diets (1% sucrose agar) with and 

without 1% H2O2. Vials were changed every 48 h and deaths per vial were scored 

until all flies were dead. The numbers of flies used in stress experiments were n 

= ~80-100. In line with the salt stress resistance phenotype, Best2 knockdowns 

also showed increased resistance to oxidative stress, induced by H2O2 feeding, 

while the overexpressors showed increased sensitivity to the same stress 

conditions. 
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Figure 7-6 Best2 is antagonistic to survival on oxidative stress. 
The Best2 knockdowns show increased resistance (A) while the overexpressors show 
sensitivity to 1% H2O2 diet feeding. Flies were fed on 1% sucrose agar media with 1% H2O2 
to induce oxidative stress or with water instead for the control. All the crosses were set up 
at 26ºC and the flies were raised at standard density of 20-30 flies and once mated flies were 
separated as males and females and raised for another 2 days before they were transferred 
on to the diet regimes. Two independent crosses were set up for RNAi induction using two 
separate UAS-Best2-RNAi; one (1) obtained from the NIG-Japan stock centre and the other 
(2) was made in house to control for insertional effects. The deaths were counted every day 
until all the flies were dead, and plotted as percent survival on Y-axis against time on X-axis. 
The median survival (in days):hs-GAL4/+, 2 UAS-Best2-RNAi (1)/+, 2.5; hs-GAL4/UAS-Best2-
RNAi (1), 3; UAS-Best2-RNAi (2)/+, 2.5; hs-GAL4/UAS-Best2-RNAi (2), 3; UAS-Best2/+, 2.5 
and hs-GAL4/UAS-Best2, 2. The control curves were significantly different from the RNAi 
and overexpressors compared using log-rank (Mantel-Cox) tests, n = 80-120. 

7.2.5 Best2 regulates stimulated [Ca2+] 

According to theory two to explain bestrophin function, bestrophins may 

regulate Ca2+ channels probably via their large cytoplasmic C-terminus. 

Consistent with this hypothesis, Best2 shows an interesting expression pattern in 

the organs where Ca2+ either plays a fundamental role in signaling or where it is 

sequestered (thereby contributing to the organismal homeostasis) such as the 

anterior tubule initial segments.  

The salt and oxidative stress resistance phenotypes of Best2 knockdowns in 

contrast to Best1 further supported a role for Best2 in regulating cellular 

signaling events mediated by Ca2+. The idea was that if Best2 was only there to 

regulate salt, the salt phenotype of the knockdowns should have probably been 

like Best1. 

In order to assess the hypothesis that bestrophins regulate voltage-dependent 

Ca2+ channels (Marmorstein et al., 2006), tubules were used to obtain functional 

Ca2+ readouts at a single-cell resolution. 
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This was achieved using genetic manipulation of Best2 expression (by knocking 

down or overexpressing using GAL4/UAS systems) and targeted expression of 

recombinant cytosolic aequorins (Aequorincyto) to measure Ca2+-dependent 

luminescence thus to measure [Ca2+] in vivo.  

Because tubules have been best studied for Ca2+ signaling at a single-cell 

resolution and Best2 is expressed in the initial segments of the tubules, the 

tubule model was envisaged to be useful for in vivo functional Ca2+ readouts to 

find if Best2 impacts on Ca2+ regulation. The functional Ca2+ channels including 

transient receptor potential like (TRPL) and cyclic nucleotide gated (CNG) 

channels are found to be expressed in the tubules. 

In the GAL4/UAS bipartite system, Aequorincyto probes were expressed using C42-

GAL4. The [Ca2+]cyto was measured in the intact anterior tubules of control flies 

and flies induced for Best2-RNAi or Best2 over-expression as transheterozygotes 

with Aequorincyto probes in vivo.  

First, resting levels (without agonist stimulation) were measured for 2 min, and 

then the agonist (capa1) stimulated was measured. The capa1 shows 

characteristic biphasic [Ca2+]cyto response called primary and secondary 

responses. The primary and secondary responses were thought to be mediated 

by respective activation of PLCβ signaling then its coupling to the activation of 

plasma membrane Ca2+ channels such as TRP family members including their 

closely related CNG channels.  
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Figure 7-7 Best2 modulates secondary Ca
2+

 responses. 
Calcium was measured in the anterior tubules of control flies and flies induced for Best2-
RNAi or Best2 overexpression using the cell-specific GAL4 driver C42-GAL4 in the 
transheterozygous background with Aequorincyto probes allowing to measure [Ca

2+
]cyto in 

vivo. The resting levels (without an agonist) were measured for 2 minutes then the agonist 
(capa1) stimulated was measured. The capa1 shows the characteristic biphasic [Ca

2+
]cyto 

response called primary and secondary responses. The primary was characterised to be 
dependent on the PLCβ signaling and the secondary was thought to be mediated upon the 
activation of plasma membrane Ca

2+
 channels. The secondary [Ca

2+
]cyto responses were 

significantly different in both Best2 knockdowns and overexpressors. The significance of 
difference in [Ca

2+
]cyto secondary response decay between control and RNAi or 

overexpressor background is shown in the bar graph (t-test, P< 0.0001). The secondary Ca
2+

 
decay can be characterised as the reduction in the [Ca

2+
] in the cytosol over time. 

The resting and primary [Ca2+]cyto levels were not significantly affected in both 

knockdowns and the overexpressors, while the secondary [Ca2+]cyto were 

significantly differed from the control (Figure 7-7). The significance of 

difference in [Ca2+]cyto secondary response ‘decay’ between control and RNAi or 

overexpressor background is shown in the bar graph (t-test, P<0.0001) (Figure 

7-7). The secondary Ca2+ decay can be characterised as the reduction in [Ca2+]cyto 

in the cytosol over time. These results further suggest that Best2 suppresses Ca2+ 

signaling. 

7.2.6 Characterisation of Best2 mutants 

I used hs-GAL4 as a ubiquitous GAL4 driver to induce Best2-RNAi in vivo, and 

performed salt and oxidative stress survival assays. However, this system needs 

several rounds of heat-shock that may potentially give rise to unwanted effects 

(Liu and Lehmann, 2008b). To further confirm the results of salt resistance of 

the hs-GAL4>Best2-RNAi knockdowns, an independent system was sought.  
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This led to a search in the Drosophila Bloomington stock centre for potential 

transposon insertions in the Best2 gene that may either cause disruption of gene 

expression, function or both. This search identified two potential insertional 

mutants including Best2c04759 and Best2c00039 (Figure 7-8). These were then 

obtained and validated using qPCR analysis of gene expression. The qPCR 

confirmed reduced levels of expression in the mutants than the wildtype 

controls, though the reduction was not as significant as the RNAi knockdowns 

(Figure 7-11). The two mutant lines were tested if they show similar salt 

resistance phenotypes of the knockdowns. Consistently, both the mutants 

showed increased resistance to high salt food compared to the wildtype controls 

(Figure 7-9). Furthermore the salt eating behaviour of the mutant flies along 

with the wildtype flies was assessed and confirmed that all the flies were eating 

the food (Figure 7-10). 

 

 

Figure 7-8 The genomic location of transposon insertions of Best2. 
Best2 is encoded by chromosome 3L of Drosophila melanogaster. It has a single annotated 
transcript with 11 exons. Two transposon insertional mutant stock available and the 
insertions are found one toward the 3’ and the other towards 5’ and within the UTR.  

 

Figure 7-9 Best2 insertional mutants are salt resistant. 
Salt assays were performed as outline before on 4% NaCl food. All the assays were 
performed separately for males (A) and females (B). The data were obtained from four 
independent replicates; the total number of flies in all the replicates is shown in the 
brackets. Both the mutants of Best2 show increased resistance over two wildtype controls 
including w

1118
 and Canton S.  

A B 
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Figure 7-10 Flies eat salt food. 
Fly eating behaviour was assayed using Indigo carmine dye. Similar experiments were 
performed elsewhere to show the satiety of the fly to high salt diet (Stergiopoulos et al., 
2009). The indigo carmine (500 mg/ml) dye was added to the food and 20 flies were 
transferred to the normal and 4% NaCl containing food. After 24 h, their abdomens were 
observed for blue colour under a light microscope. All most all the flies including Best2 
mutants observed (control-fed, in the upper panel and salt-fed in the lower panel) showed 
blue colour indicating that they eat food (even with high amounts of salt). However, blue 
colour was more pronounced in the salt fed flies, as the colour depends on the pH. The 
Canton S flies are the wildtype and the w

1118 
are the wildtype with white mutation. The Best2 

mutants were generated in the isogenic w
1118 

background. 

7.2.7 Ca2+-dependent gene expression is changed in Best2 
mutants under stress 

In many organisms from vertebrates to invertebrates, the amplitude and 

duration of intracellular Ca2+ elevations control diverse cell signaling 

mechanisms including differential activation of pro-inflammatory transcriptional 

regulators NF-kappaB, C-Jun N-terminal kinase (JNK) and NFAT (Dolmetsch et 

al., 1997). It has been established that the large transient [Ca2+]cyto rise activates 

the first two regulators while the low, sustained Ca2+ plateau activates NFAT.  

In order to investigate a possible link between the salt stress resistance 

phenotypes and increased cytosolic Ca2+ elevations in the Best2-RNAi 

knockdowns and Best2 insertional mutants, a comparative analysis of the 

transcriptomes of the eyes and the anterior tubules to understand similarities 

and differences in Ca2+ signaling. This was because Best2 was found enriched in 

both of these tissues. The Ca2+ signaling components then were overlaid on to 

vertebrate signaling pathways using homology mapping and using Online 

Mendelian Inheritance in Man (OMIM). 
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A first look at the analysis revealed a surprising number of Ca2+ signaling 

components that were similarly expressed between tubules and eyes, in that 

PLCβ signaling was one. Some of these components showed high conservations 

from flies to humans (Figure 1-5).  

The PLCβ pathway is a key component in the phototransduction pathway of 

Drosophila, because the null mutants of the PLC encoded by norpA do not 

respond to light excitation. In the photoreceptor cells, PLCβ signaling mediates 

the activation of at least two classes of plasma membrane Ca2+ channels 

including TRP and TRPL. The most likely candidates that may trigger the Ca2+ 

efflux have been proposed to be the hydrolysis products of phosphatidyl inositol 

4,5 bisphosphate (PIP2) including inositol triphosphate (IP3), diacylglycerol (DAG) 

or polyunsaturated fatty acids; each may elicit a unique cell signaling pathway 

(Berridge and Irvine, 1984; Hardie, 2007). However, it has been shown that IP3R 

genetic mutants do not have an effect on phototransduction, in contrast to most 

other inositol mediated signaling systems (Acharya et al., 1997; Raghu et al., 

2000).  

In other systems, such as the midgut of the fly, PLCβ signaling has been shown to 

be essential for normal host survival through ROS production by modulating dual 

oxidase (DUOX) activity (Ha et al., 2005; Milenkovic et al., 2007a). The activity 

of DUOX has also been shown to be Ca2+ dependent. It has been also shown in 

tubules that PLC-mediated signaling, through IP3, is essential and coupled to Ca2+ 

elevations that were physiologically relevant in terms of fluid secretion (Pollock 

et al., 2003). 

The expression of norpA that encodes PLCβ was assayed using qPCR in both 

control and salt fed flies of wildtype and mutant flies. The control-fed and ‘salt-

fed’ denotes normal food and 4% extra NaCl added food regimes respectively. 

The control-fed wildtype expression was compared against control-fed Best2 

mutant flies. In the same way, the salt-fed wildtype expression was compared 

against the salt-fed mutant flies. This analysis identifies the components that 

show upregulation in normal conditions that still remain upregulated in the salt-

fed conditions.  
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The norpA expression was significantly upregulated in Best2 mutants both in 

control-fed and salt-fed conditions over their respective controls fed on similar 

regimes (Figure 7-11). Furthermore, in the salt-fed mutants the expression was 

more pronounced than the control-fed conditions.  

 

Figure 7-11 Best2 regulates Ca
2+

-dependent transcription. 
A qPCR survey was carried out to assay some of the Ca

2+
 signaling components, and Ca

2+
-

dependent genes, in Best2 insertional mutants versus wildtype flies, under control- (A) and 
salt-fed (B) conditions. The relative FC with respect to their controls are shown for each 
sample in the following table. The significance of FC mean difference is calculated using t-
test, P<0.05.  

Table 7-1 The fold change (FC) mean differences and associated statistics of the data in 
Figure 13. 

 Statistics 

genes    Best2 
 norpA 

(HL) 
norpA rdgC trp 

Cyp6a2
3 

Control-
fed 

w
1118

 1.005 
 

1.02  
1.02 ± 
0.02 

1.01± 
0.01  

1.01 ± 
0.01 

1.002 

c
04759

 0.6 ± 0.01 
 

2.1 ± 0.3  1.3 ± 0.04 1.8 ± 0.2  1.87 ± 0.1 
5.4 ± 
0.1 

FC mean 
difference 

0.4 ± 0.01 
 

1.1 ± 0.3 0.25 ± 0.1 0.8 ± 0.2 0.87 ± 0.1 
4.4 ± 
0.1 

t-test (P<0.05) ***  * ** * *** *** 

Salt-fed 

w
1118

 1.003  
 1.01 ± 

0.01  
0.95 1.003 0.96  1.004 

c
04759

 
0.96 ± 
0.04 

 
3.13 ± 0.1 1.7 ± 0.1 2.4 ± 0.1 3.1 ± 0.2 

3.9 ± 
0.1 

FC mean 
difference 

0.05 ± 
0.04 

 
2.12 ± 0.1 0.73 

1.4 ± 
0.13 

2.2 ± 0.2 
2.9 ± 
0.1 

t-test (P<0.05) ns  *** *** *** *** *** 

 

The INAD complex in the eye is extensively researched and an established route 

for phototransduction (Hardie and Raghu, 2001). This complex was proposed to 

be formed by a complex number of proteins that are attached to the PDZ 

domains of INAD with a short linker region. The whole complex then is stabilised 

by a multimeric membrane bound TRP channel.  
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The partnered proteins including TRP channels have been shown to be expressed 

in a defined number with appropriate stoichiometries proposed. The Ca2+ 

feedback loop is important to relay signal from the complex, and is probably a 

defining step in determining the stoichiometry of the complex via calmodulin. 

The molecular mechanisms that regulate the Ca2+ feedback loop between the 

complex and cytosol remain unknown. Given bestrophins have been implicated 

in voltage-dependent Ca2+ channel modulation; it may link the feedback 

phenomenon. If Best2 regulates Ca2+ signaling, the mutants of the Best2 was 

thought to impact on the INAD signaling complex. One possible way of testing 

this complex was to see if the tightly coexpressed INAD components change their 

expression in the Best2 mutants at resting or at stress conditions. 

Furthermore, the TRP channels including their closest members, CNGs have been 

implicated in many sensory systems including phototransduction, olfaction and 

taste, as well as in the perception of heat, touch, and pain by virtue of their 

expression and with further experimentation (Gillespie and Walker, 2001). The 

TRP channels have been equally shown to sense osmotic changes in the 

mechanotransduction in the sensory neurons (Gillespie and Walker, 2001). 

The trp expression was assayed using qPCR and found its expression significantly 

upregulated in Best2 mutants both in control-fed and salt-fed conditions over 

their respective controls fed on similar regimes (Figure 7-11). Furthermore, in 

the salt-fed mutants the expression was more pronounced than in the control-

fed conditions.  

In the same way, a Ca2+/calmodulin-dependent retinal degeneration C (rdgC) 

was tested, and its expression found to be significantly higher in Best2 mutants 

both in control-fed and salt-fed conditions over their respective controls fed on 

similar regimes (Figure 7-11). Furthermore, in the salt-fed mutants the 

expression was more pronounced than the control-fed conditions.  

In order to test if Ca2+ plays a direct role in salt induced stress resistance, the 

expression of a cytochrome P450, Cyp6a23 was measured, The Cyp6a23 is a 

Drosophila homologue of mammalian Cyp11b2 that has been implicated in salt 

wasting in human patients (Mitsuuchi et al., 1993; Williams et al., 2004). 
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Furthermore, in human adrenocortical cell lines, CAMK1 was found to augment 

Cyp11b2 promoter reporter expression, when the intracellular Ca2+ was 

elevated; thus indicating its Ca2+-dependent gene expression regulation (Condon 

et al., 2002).  

In Drosophila, Cyp6a23 shows high mRNA abundance in tubules, crop and 

midgut. Using qPCR, this gene was found to be induced to 4- and 10-fold in the 

Best2 mutants fed on normal and 4 % salt food respectively over their controls 

fed on similar diet regimes. This clearly demonstrates Best2’s potential role in 

regulating of intracellular [Ca2+]. These changes in the [Ca2+], seems to be 

playing important roles when the organism encounters stress such as salt or 

oxidative stress.  

7.3 Discussion 

In this study, several important aspects of bestrophin regulation and function 

have been studied using a variety of genetic and physiological approaches. The 

studies using mutants were promising for explaining Best2 function as a potential 

Ca2+ signalling modulator at the same time as a component in the Ca2+ 

homeostasis. 

Further validations using cell-specific enhancer GAL4s suggested that Best2 

expression is confined to the Ca2+ storing initial segment (Figure 7-1). The 

overexpression line used in this was validated to be producing a high amount of 

mRNA when compared with its parental control (Figure 7-2). In the previous 

chapters, I found that the expression of Best2-RNAi using ubiquitous driver 

caused lethality. This lethality was investigated to determine the developmental 

stage where Best2 expression was detrimental. This analysis confirmed the 

lethality between third instar larval stages and pupal stages (Figure 7-3). 

Furthermore, the lethality was rescued to show that it is due to the RNAi 

induction, but not because of the off-target effects. This was achieved by 

introducing a wildtype Best2 transgene into the knockdown background. 

However, many metabolic genes seem to be essential at these developmental 

stages of Drosophila, and undergo rapid developmental transitions at these 

stages (Chung et al., 2009; Mourikis et al., 2006).  
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In the adult flies, Best2 mRNA can be detected in various tissues (Table 6-1). It is 

predominantly expressed in the eyes (the analogous tissue of human disease), 

and nominally expressed in the neuronal tissue including brain and 

thoracoabdominal ganglion. These expression patterns were further validated 

using qPCR (Figure 7-5). Interestingly, Best2 shows high abundance in the Ca2+ 

sequestering (and storing) distal initial segment of the tubules. This was also 

confirmed using qPCR probing Best2 expression in the distal segment and in the 

rest of the segment separately (Figure 7-4A). Later this was confirmed using     

in situ hybridization (Figure 7-4 B & C).  

Both tubules and eyes encounter oxidative stress at a regular basis, and the 

expression pattern of Best2, by virtue in these tissues, correlate with the 

proposed Ca2+ regulatory function of bestrophins. In the previous and current 

chapter, I found increased resistance of Best2 knockdowns or mutants to the 

high salt diet. Previously, oxidative stress resistance of the genetic mutants of 

putative acyl-CoA oxidase (or enigma) has been established in Drosophila that 

were fed on paraquat (Mourikis et al., 2006). These flies also showed increased 

longevity. In addition, the ubiquitous overexpression of dIP3K1 confers resistance 

to oxidative stress induced with H2O2, but not with paraquat (Monnier et al., 

2002). The oxidative stress responses to different stressors may be mediated by 

different cell signaling pathways. The IP3K family of proteins phosphorylate IP3 

leading to the reduction of IP3 levels. This observation led to the proposal that 

IP3Ks act to possibly terminate the IP3-mediated signaling cascade. However, the 

mechanisms of dIP3K1 action have been suggested to be diverged from flies to 

humans, as the fly IP3K1 does not have a calmodulin-binding domain like its 

mammalian counterpart, IP3K-A.  

When the oxidative stress was induced by feeding the flies with H2O2, the Best2 

knockdowns showed increased ability to cope with the stress, while the 

overexpressors showed the reduced ability (Figure 7-6). This indicates that Best2 

with its potential Ca2+ regulatory function may mediates the stress responses, 

but probably downstream of IP3 signaling. 

The tubule Ca2+ readouts in this study suggested that there was an increase in 

secondary [Ca2+]cyto in the knockdowns upon agonist, capa1 stimulation (Figure 7-

7).  
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This was in consistent with the analysis of primary RPE cultures, derived from 

the mouse lacking Best1 that revealed the antagonist role of Best1 in Ca2+ 

signaling (Neussert et al., 2010). This study showed increase in resting [Ca2+]cyto, 

as well as ATP-stimulated [Ca2+]cyto levels that were postulated to be 

downstream of PLC activation coupled to bafilomycin- and thapsigargin-sensitive 

store emptying (Neussert et al., 2010). However, the resting levels of [Ca2+]cyto 

were unchanged in the Best2 knockdowns (Figure 7-7). Furthermore, 

overexpressing a wildtype Best2 using GAL4/UAS system downgraded the capa1 

secondary stimulatory response, confirming the knockdown results, but without 

altering the resting Ca2+ levels. These results may not rule out the effect of 

knockdown or overexpressor on the resting Ca2+ levels as the quantitation may 

not be that sensitive to detect minute changes in the resting levels.  

Taken together, these data suggest that the plasma membrane Ca2+ channels 

may be hyperactivated in Best2 knockdowns and suppressed in overexpressors as 

the secondary [Ca2+]cyto decay was significantly reduced, thus leading to the 

elevated Ca2+ rises, for sustained periods of time, which was found opposite in 

the overexpressors. This was because the primary Ca2+ response upon capa1 

addition was not changed significantly in both the knockdowns and 

overexpressors as the primary response has been thought to be due to IP3-

stimulated transient efflux from the Ca2+ stores such as ER. The secondary capa1 

response has been thought to be due to the activation of plasma membrane Ca2+ 

channels.  

Two additional Best2 mutants have been validated to further support the 

findings from the GAL4/UAS system. These mutant files have two independent 

transposon insertions in their genome in the Best2 genomic locus; therefore they 

showed decreased expression levels and/or function. The decreased levels of 

expression of one of the mutant have been confirmed using qPCR (Figure 7-11). 

The mutant lines were assayed for salt resistance, as has been found for the 

knockdowns using GAL4/UAS system. Both the mutants showed increased 

resistance to high salt food (Figure 7-9). The satiety of the food was tested and 

confirmed that the flies eat salt food (Figure 7-10).  
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The insertional mutants were further used, to assay if the Ca2+-dependent gene 

expression is affected, using qPCR and found that several interesting candidates 

were highly upregulated under control-fed and salt-fed conditions (Figure 7-11). 

The genes tested were obtained through a comparative analysis of 

transcriptomes of adult eyes and tubules which revealed many Ca2+ signaling 

components that showed similar expression patterns, and are highly conserved. 

Furthermore, Homologene and OMIM analysis revealed a surprising number of 

signaling components to be highly conserved between the fruit flies and 

vertebrates; the Homologene seeks evolutionary homology of proteins, and the 

OMIM analysis identifies fruit fly homologs of human genetic disorders. 

Calcium signaling is a key component in visual transduction in the eyes (Hardie, 

2007; Hardie and Raghu, 2001). The molecular mechanisms of visual transduction 

pathways are highly conserved from humans to flies. Calcium signaling plays 

divergent roles from visual to stress signaling, thus the spatiotemporal aspects of 

the signaling need to be tightly regulated. In that, the eyes occupy the primary 

position for both the events given their interaction with external environment. 

The events in these processes mediated by Ca2+ should therefore be tightly 

regulated. 

Cytochrome P450 (CYPs) genes are widely found and well-studied in Drosophila 

(Chung et al., 2009). Some CYPs are developmentally important, and others do 

organismal detoxification functions. Overexpression of Cyp6a23, Cyp6a2, 

Cyp6a8, Cyp6t3 and Cyp6a19 has not been found to increase the survival of the 

flies on DDT, nitenpyram, dicyclanil and diazinon. However, the overexpression 

of Cyp6g1 (DDT, nitenpyram and dicyclanil), Cyp6g2 (nitenpyram and diazinon) 

and Cyp12d1 (DDT and dicyclanil) caused the resistance to the insecticides 

shown in the brackets (Daborn et al., 2007). The human homolog of Drosophila 

Cyp6a23 has been found to catalyse steroid metabolism. Infants with 

corticosterone methyloxidase type I deficiency found to be caused by a defect in 

aldosterone synthesis and severe salt-wasting due to hyponatremia and 

hyperkalemia (Mitsuuchi et al., 1993). Interestingly, the Cyp6a23 shows high 

abundance in the epithelia indicating its potential role in the epithelial function. 

The preliminary data using an RNAi directed against Cyp6a23 suggested that it is 

potentially important in the regulation of salt (Appendix VII). In addition, this 

result further confirms the antagonistic role in the Ca2+ signaling. 
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However, peroxisomal localisation of Best2 is intriguing for the fact that this has 

been the first ever Clˉ channel that is found to localise to peroxisomes. The 

localisations of mBest1 in the mouse RPE cells were also interesting as it showed 

localisation to ER in addition to its basolateral plasma membrane localisation 

(Neussert et al., 2010).  

Although, the localisation of Best2 needs further confirmations using an 

antibody, as the GFP protein fusion overexpressors may mistarget the proteins, 

the localisation can be true for the following reasons:  

1. It is abundant in the Ca2+ storing initial segment consisting of around 30 cells 

out of ~150 in MT, in which (specialised) peroxisomes are thought to be 

abundant.  

2. The Best2 fusion protein can be detected in the purified peroxisomes.  

3. It is also abundant in the eyes where lysosomes are abundant, thus may 

represent lysosomal-related vesicles.  

At least the vesicular pattern of the Best2 is interesting. Because the defective 

transport of endolysosomal vesicles cause devastating pathologies in humans. 

Moreover, Best disease is caused by accumulation of lipofuscin that is seen in 

other lysosomal storage diseases. For example, in Dent's disease, the defective 

acidification or Clˉ concentrations and defective membrane recycling seem to 

lead to excess renal excretion of Ca2+ and proteins perhaps through defective 

membrane recycling (Jentsch, 2007; Sun et al., 2002). 

Interestingly, in line with the salt resistance phenotypes, Best2 knockdowns also 

showed increased resistance to oxidative stress conditions (Figure 7-6). These 

results confirmed that Best2 may mediate the general Ca2+ signaling responses 

upon, for example, stress conditions that activate Ca2+-mediated signal 

transduction pathways.  
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7.4 Conclusions 

This study establishes Best2 as a regulator of Ca2+ signaling in Drosophila. 

However, this finding has been previously shown for mBest2 knock-in mice where 

the dysfunction, not the deficiency, has been shown to suppress Ca2+ signaling. 

However, this study, carried out as part of this chapter, clearly shows that the 

flies with reduced levels of Best2 expression can cause an impact on Ca2+ 

signaling along with the insertional mutants where the expression was not that 

severely affected. It seems that both the dysfunction and deficiency can cause 

the bestrophin phenotypes as it has been previously established, for example, 

for CFTR channels. Furthermore, the impact of Best2 on Ca2+ signaling has been 

shown by the upregulation of several interesting Ca2+-dependent genes including 

Cyp6a23, and the components of INAD complex including a trp channel. These 

results clearly established tissue-specific roles of Best2. Finally, this study 

unravelled the existence of a potentially novel Ca2+ signaling pathway mediated 

by Best2, which might help to elucidate similar mechanisms in higher order 

organisms to device therapeutic intervention in the disease.  
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8. Cell-specific peroxisome dynamics in the living 
organism 

Summary 

Peroxisomes are ubiquitous and diverse organelles that perform key metabolic 

functions in almost every eukaryotic cell. They can house as many as 100 

enzymes and perform a range of essential metabolic functions within the 

mammalian cell, from the β-oxidation of fatty acids to the degradation of H2O2. 

Defects in peroxisomal function can therefore result in a range of peroxisomal 

biogenesis disorders such as Zellwegger spectrum syndrome (ZSS). Recently, 

peroxisomes have been shown to be dynamic regulators of cellular Ca2+ 

homeostasis and signalling in vitro.  

This report provides an insight into in vivo mechanisms for peroxisomal Ca2+ 

buffering under resting and stimulatory conditions using Drosophila, and more 

specifically its renal system, the Malpighian tubules, a model tissue that 

provides a powerful array of genetic and genomic tools to study the regulation of 

both cytosolic and organellar Ca2+ signaling and transport mechanisms. In this 

study, targeted Ca2+-dependent recombinant aequorin luminescent probes were 

used to generate distinct peroxisomal and cytosolic Ca2+ signatures 

([Ca2+]perox&[Ca2+]cyto). Therefore, the successful targeting of aequorin to the 

peroxisomes in an actively transporting live renal epithelium was achieved. The 

resting peroxisomal [Ca2+]perox concentrations were measured to be two-fold 

higher than the [Ca2+]cyto. 

For agonist stimulated [Ca2+]perox response, a neuropeptide agonist (capa1) was 

used that shows characteristic biphasic [Ca2+]cyto response stemming from IP3-

induced ER Ca2+ efflux as primary, then leading to the activation of transient 

plasma membrane influx as secondary Ca2+ response. Peroxisomes did not buffer 

the rapid transients induced by IP3-mediated [Ca2+]cyto efflux from the internal 

stores, although they did transiently uptake secondary [Ca2+]cyto increases upon 

the activation of plasma membrane Ca2+ channels. The external addition of 

cyclic guanosine monophosphate (cGMP), and zaprinast, a nonspecific PDE 

inhibitor that increases cGMP concentrations, separately induced [Ca2+]perox 

buffering response.  
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In agreement with this, induction of an RNAi transgene in vivo for PDE1c, that 

encodes a Ca2+/calmodulin-dependent PDE, causes a non-characteristic primary 

and an enhanced secondary [Ca2+]perox response. A [Ca2+]perox signature for Best2-

RNAi was also obtained that showed increased secondary responses when 

compared to the controls. 

The [Ca2+]perox signatures were also validated by knocking down two PEX genes 

that encode peroxins, proteins required for normal peroxisomal protein assembly 

and formation. These PEX genes are specifically enriched in the tubules and are 

essential for proper renal-peroxisome formation. Finally, using an integrative 

systems approach, a model for peroxisomal Ca2+ sequestration and transport 

excretion mechanisms was obtained, that may be applied to relevant 

mammalian systems. 
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8.1 Novel roles of peroxisomes in Ca
2+

 homeostasis 

The ubiquitous intracellular messenger, Ca2+ plays key roles in cellular and 

physiological processes including proliferation, differentiation, development and 

cell death (Berridge et al., 2000) to transepithelial transport, secretion 

(Berridge, 2005; Dow and Romero, 2010). Its roles in apoptosis and cell death 

are well documented (Berridge et al., 1998). For example the Ca2+ 

concentrations in the ER regulates ceramide-induced apoptosis via TRP channels 

(Pinton et al., 2001; Wegierski et al., 2009). 

Two recent reports suggest a role for peroxisomes in dynamic modulation of cell 

Ca2+ homeostasis and signaling (Drago, Giacomello et al. 2008; Lasorsa, Pintonet 

al. 2008). These reports used two independent approaches to measure [Ca2+] in 

peroxisome lumen in vitro. The first report used GFP-based fluorescence 

resonance energy transfer (FRET) indicators (Dcpv) targeted to peroxisomes 

using KVK-SKL hexapeptide sequence. This approach was successful in obtaining 

[Ca2+]perox signatures at resting and upon agonist stimulation, and allowed to 

obtain [Ca2+]perox recordings one cell at a time, unlike aequorin approach that 

gives rise to [Ca2+]perox measurements for a group of cells. In GH3 cells, they 

demonstrated that in response to depolarization of the plasma membrane with 

the addition of KCl, peroxisomes buffer Ca2+ with slow kinetics in parallel with 

[Ca2+]cyto rise. They concluded that [Ca2+]perox equilibrate with [Ca2+]cyto without 

needing any driving force like ATP and/or Na+/H+ gradients. This was in 

consistent with previous findings (Jankowski et al., 2001); and their observation 

that the pH was indifferent between peroxisomes and cytosol even for example, 

under stimulatory conditions with Na+ ionophore, monensin. However in these 

cells, Ca2+ mobilisation from internal stores through TRH receptors via 

spontaneous action potential firing leading to the Ca2+ influx through voltage-

gated Ca2+ channels, never resulted in an increase in [Ca2+]perox.  

Under Ca2+-free conditions, no effect was seen in [Ca2+]perox by the addition of 

Ca2+ ionophore, ionomycin, an unspecific Ca2+ mobiliser from stores. Thus, 

peroxisomes seem to be insensitive to rapid transients as that are seen in GH3 

cells by TRH (IP3 production) or ionomycin.  
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However, they recognise for example, the KClˉdependent depolarization where 

[Ca2+]cyto reaches peak levels in 2 or more seconds, followed by a prolonged 

plateau level that lasts several seconds in cell systems. 

The Ca2+ agonist, histamine mobilises Ca2+ in HeLa cells from internal stores 

through the production of IP3 which produces larger and relatively more 

prolonged [Ca2+]cyto elevations compared with GH3 cells. This was shown to 

result in more [Ca2+]perox buffering response to histamine in HeLa cells than the 

response in GH3 cells to TRH. 

This finding was consistent with ionomycin induction of [Ca2+]perox response 

(100%) in HeLa cells than <5% in GH3 cells. Taken together, these data suggest 

larger and prolonged [Ca2+]cyto elevations cause peroxisomes to buffer Ca2+. No 

significant heterogeneity in [Ca2+]perox was observed in the groups of 

peroxisomes, without ruling out the possibility that the peroxisomes for 

example, nearby the plasma membrane Ca2+ channels or ER may show differing 

[Ca2+]perox buffering response (Drago et al., 2008a). Peroxisomes show distinct 

buffering capacities from other organelles (Drago et al., 2008a; Lasorsa et al., 

2008; Rizzuto and Pozzan, 2006). For example, unlike mitochondria, [Ca2+]perox 

increases, in response to agonists is much slower. The closest organelle to 

peroxisomes that partly recapitulate [Ca2+]perox buffering is the nucleus, although 

the peak values are 10 to 100-fold higher in the nucleus than peroxisomes.  

The mechanistic insight obtained from the cell culture systems may not reflect 

the physiology of the whole animal. Thus, understanding peroxisomes’ role in 

Ca2+ sequestration and homeostasis in vivo in an organotypic context could show 

real insight into physiological contributions of these organelles for organismal 

Ca2+ homeostasis. As the Ca2+ homeostasis by peroxisomes is a newly emerged 

concept, the in vivo mechanisms for [Ca2+]perox buffering is an exciting avenue to 

explore in multicellular organisms; plant [Ca2+]perox signatures have recently been 

obtained (Costa et al., 2010). The tubules of Drosophila fit the purpose in an 

animal, to explore the functions in an organotypic context as described in the 

following sections. 
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8.1.1 Drosophila Malpighian (renal) tubules as an in vivo model to 
study peroxisome Ca2+ homeostasis 

8.1.1.1 Morphology and functional domains 

Tubules are robust epithelial tissues that not only show distinct apico-basal 

polarity but also functional domains (Sozen et al., 1997). Each tubule is 2 mm 

long and 35 µm wide and are packed in an organised fashion in the body cavity, 

in that, one pair of tubules goes towards anterior and the other goes towards 

posterior, thus are called anterior and posterior tubules respectively. They 

constitute two major cell types including large principal cells and small stellate 

cells. In addition, the anterior tubules consist of a large initial segment, which 

was demonstrated to be functionally distinct from the rest of the tubule, that 

drives transepithelial Ca2+ transport, from the haemolymph to the tubule lumen, 

in soluble form and at the same time, sequestering into spherites (also called as 

Type I concretions) and precipitating as calcium phosphate (Dube et al., 2000a; 

Dube et al., 2000b). Unlike the main segment, it does not seem to pump fluid at 

detectable rates (Dow et al., 1994b).  

8.1.1.2 Tubule peroxisomes  

Tubules not only are the major organs for transepithelial transport and 

excretion, but also are responsible for metabolic and redox homeostasis. Tubule 

peroxisome abundance was previously shown using immunofluorescence 

microscopy (Southall et al., 2006). An isoform of secretory pathway Ca2+/Mn2+ 

ATPase SPoCk-C was documented to be localised to the peroxisome-derived 

calcium phosphate spherites in the anterior initial segment. Genes related to 

peroxisomal catabolic processes such as H2O2 degradation, very long chain fatty 

acid β-oxidation show high mRNA abundance in tubules in FlyAtlas (Table 8-1). 

These are including the famous catalase, acyl CoA oxidase (Acox-57D-p), urate 

oxidase (Uro), and ry (xanthine dehydrogenase). Novel genes CG11919 and 

CG13827 annotated to be peroxisome biogenesis and fission factors respectively 

show high abundance of mRNA expression in tubules, suggesting the importance 

of peroxisome function. However, very little is known about these Drosophila 

genes. 
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The microarray profiling of gene expression in anterior versus posterior tubules 

provided a wealth of information that suggests a role for peroxisomes in the Ca2+ 

loading into the spherites, to store it in the insoluble calcium phosphate form 

(Chapter 5). This microarray revealed Best2 expression at high levels in this part 

of the tubule and later it was found to be localised in the peroxisomes (Chapter 

6). Thus, studying the function of peroxisomes using a genetically-tractable 

model tissue was hoped to provide real insight into the diversity of function of 

peroxisomes, from metabolism to transport.  
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Table 8-1 Genes related to peroxisomes and their relative abundance in tubules.  
Genes that have peroxisomal targeting sequence (PTS) are coloured from red, brick red to 
green indicating PEX19, PTS1 and PTS2 signals, respectively. Abbreviations: GO, gene 
ontology; T, tubule; WF, whole fly; Pr, peroxisome; C, cytosol; M, mitochondria; L, lipid 
particle; PM, plasma membrane; Menv, mitochondrial envelope; Minner, mitochondrial inner 
membrane; PrM, peroxisome membrane; RNA signal, mRNA signal; FC, fold change tubule 
versus whole fly; Exp, expression in other tissues of the body.  

Gene 
Symbol 

GO: Biological Process 
GO: cell 
location 

RNA 
sig. 

FC  Exp 

Uro purine base metabolic process  Pr 6590 35 
 

CG11919  
perox organization/(S)-2-hydroxy-acid oxidase 
/glycolate oxidase /FMN binding /nucleoside-
triphosphatase 

Pr 2653 22   

ry 
determination of adult life span/compound eye 
pigmentation//xanthine dehydrogenase activity  

Pr 770 18 
F, S, 
EYE 

CG13827 
Carbo.Met.process/perox.fission//phosphotrans
ferase activity, alcohol group as acceptor  

PrM 1826 16 
S, M, 
HG 

CG14777    PrM 1941 10 S, G,U 

Spat 
glyoxylate catabolism/serine-pyruvate 
transaminase 

Mm/Pr/L 1682 10 
F, H, 
E 

CG32103 transport //calcium ion binding M/Pr 1170 7.2 U 

CG7970 PMP22 type Pr 2664 7 M, U 

CG12338 Oxidation reduction Pr 948 6 F, HU 

Cat 
response to oxidative stress/aging/Ca2+-
dependent cell-cell adhesion 

Pr/PM 4821 5 
H, F, 
U 

CG17597 
/ ScpX 

phospholipid transport//acetyl-CoA C-
acyltransferase 

C/M/P/LP 1249 4 M, U 

Acox57D-
p 

FA β-oxidation // acyl-CoA dehydrogenase, 
acting on the CH-CH group of donors / FAD bin  

Pr 621 4 Epi 

CG4289 protein targeting to peroxisome  PrM 837 4 M,H,U 

CG4663 
(PEX13) 

perox organization/protein import into perox 
matrix, docking  

Pr 684 3.4 U 

ScpX phospholipid transport//SCPX-related thiolase  C/M/P/L 711 2.9 
M,LF,
U  

CG9319 metabolic process Pr 264 2.5 U 

l(3)70Da 
(PEX1) 

peroxisome organization//nucleotide binding / 
ATPase activity, (un) coupled 

Pr 117 2.4 U 

CG7601 oxidation reduction //binding  PrM 211 2.3 C, U 

CG5325 
(PEX19) 

 nervous system development //protein binding  Pr 640 2 C, U 

CG7081 
(PEX2) 

peroxisome organization //protein binding/ 
zinc ion binding  

PrM 219 2 
H, Ep, 
F 

CG3415 oxidation reduction Pr 697 2 M, U 

ide Proteolysis Pr 537 2 U, B 

CG17544 FA β-oxidation//acyl-CoA dehydrogenase  Pr 322 1.9 M, U 

CG5009 
prostaglandin metabolic process/ FA 
oxidation//acyl-CoA dehydrogenase activity 

Pr 293 1.8 C, U 

DhaP-at glycerol-3-phosphate O-acyltransferase activity  M/Pr 162 1.8 C5, U 

CG8315 peroxisome fission Pr 302 1.7 C, U 

CG8315 Peroxisome organisation (PEX11) Pr 302 1.7 U 

CG1662   PrM 207 1.4 U 

CG1041 //carnitine O-acetyltransferase activity M/Pr 173 1.3 S, AG  

CG7864  Peroxisome organization (PEX10)   110 1 Epi 

CG12428 HOMO: choline acetyl transferase Pr 249 1 F, U 

CG12703 //ATP binding cassette family D Pr 315  0.6 U, F 

CG13890 metabolic process Pr 141 0.8  U 

CG9527 FA β-oxidation, phagocytosis//acyl-CoA DH, I Pr 184 0.5  M 

CG9577 metabolic process // HOMO: hydroxyl acyl CoA Pr 228 0.7  C, F 
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8.1.2 Aequorin probes for [Ca2+] measurements in vivo 

Aequorin is a Ca2+sensitive photoprotein, first isolated from the coelenterate, 

Jelly fish, Aequoria victoria. It is formed from apoaequorin, a 21 kDa 

polypeptide, and coelenterazine, a hydrophobic luminophore, bioluminescent as 

a complex in the natural system. To recapitulate the natural phenomena, first 

apoaequorin is expressed in a cell or a tissue, and then reconstituted to aequorin 

by incubating with coelenterazine to obtain its Ca2+-dependent luminescence. 

The GAL4/UAS ectopic expression system, particularly, allows non-invasive and 

non-cytotoxic method to obtain [Ca2+]i reading in vivo (Rosay et al., 1997). The 

addition of ER targeting motifs to the C-terminus of the aequorin was shown to 

modify its stability and Ca2+-dependent luminescence (Alvarez and Montero, 

2002). However, peroxisome targeting motifs were demonstrated not to alter 

aequorin kinetics, and so such probes can be used for quantitative [Ca2+]perox 

measurements (Lasorsa et al., 2006). Lasorsa et al., (2006) calibrated the probes 

by perforating the cells with a mild-detergent digitonin which permeabilises 

cells by forming complexes with plasma membrane cholesterol. As the organellar 

cholesterol present at low levels, this method of permeabilisation was 

presumably chosen to control-perforate peroxisomes to calibrate the targeted 

aequorin probes with the addition of predefined concentrations of external Ca2+. 

These calibrations confirmed the Ca2+-dependent luminescence of targeted 

aequorins which was rather similar to the cytosolic wildtype aequorin probes.  

In consistent with the previous report, under defined experimental conditions, 

pH was also not significantly different between cytosol and peroxisome lumen. 

However, peroxisomal pH in different cells and species was established to be 

slightly variable by different groups, in that it is slightly alkaline in mammalian 

fibroblasts (Dansen et al., 2000), or acidic (Lasorsa et al., 2004) or alkaline in 

yeast cells (van Roermund et al., 2004). Taken together these data suggest 

[Ca2+]perox measurements may be quantitatively compared against the cytosolic 

concentrations using the same back-integration algorithm (Lasorsa et al., 2008). 
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8.1.3 Purpose of this study 

Upon the observations that suggested the tubules are enriched for peroxisomes 

and sequester, store and mobilise Ca2+ according to their metabolic needs, I 

decided to generate peroxisome-targeted aequorin probes to generate distinct 

Ca2+ signatures for tubule peroxisomes thereby to assess the impact of 

peroxisomal localised Best2. 
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8.2 Results 

8.2.1 Renal peroxisomal targeting and validation of aequorin 
probes 

Luminescent aequorin proteins are widely used for measuring intracellular Ca2+ 

quantitatively. Previously, aequorins have been successfully targeted to 

mitochondria, Golgi and peroxisomes to measure Ca2+ levels in vivo and in vitro. 

Recently, peroxisomal targeted probes (both luminescence- and FRET-based) 

have been characterised in vitro in multiple cell types for exploring 

peroxisome’s role in cell Ca2+ homeostasis (Drago et al., 2008b; Lasorsa et al., 

2008b). For the first time, in this study, aequorin probes were targeted to 

peroxisomes in a transporting renal epithelia, the tubules of Drosophila 

melanogaster, in a cell-specific manner to unravel peroxisome’s role in Ca2+ 

homeostasis in vivo.  

The targeting was achieved using a canonical peroxisomal targeting sequence 

tripeptide SKL ( Ser-Lys-Leu) (Miura et al., 1992) to the C-terminus preceding 

KVK (Lys-Val-Lys), a positively charged tripeptide sequence (Figure 8-1). The KVK 

sequence has been shown to enhance the peroxisomal targeting according to the 

principles described by Neuberger et al. (Drago et al., 2008a; Neuberger et al., 

2003a, b).   

 

Figure 8-1 Schema of the peroxisomal targeting construct. 
An aequorin open reading frame (ORF) was C-terminally fused with KVK-SKL hexapeptide 
sequence before the stop codon and then cloned into a Drosophila germline transformation 
vector (pPUAST) for ectopic expression using GAL4/UAS system. 

8.2.1.1 Immunocytochemical localisation in vitro 

Aequorinperox probes were first validated in Drosophila embryonic S2 cells, before 

they were sent for germline transformation to generate transgenic flies and in 

vivo characterisation in tubules.  
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The validations were carried out to test if the construct was functional and 

localised in the peroxisomes using immunocytochemical localisation (Figure 8-2); 

then to test if targeted aequorin gives a luminescence signal when reconstituted 

that is distinct from the Aequorincyto using luminometry (Section 8.2.1.3). 

For the immunocytochemical localisation, the germline transformation 

construct, pPUASt-Aequorinperox was also validated, before it was sent for 

microinjection. The S2 cells were transfected with the targeted construct along 

with a DES-GAL4 construct using lipofectamine reagent, a lipid based 

transfection reagent. DES (Drosophila expression system) vector allows the 

transgenes to be cloned downstream of a metallothionein promoter that can be 

inducible by CuSO4. After 12 h of transfection, the cells were induced for 

expression and incubated for another 48-72 h. They were then washed with 

phosphate buffer saline (PBS) and immunocytochemistry was performed using 

the methods described in Chapter 2: Materials and Methods. The peroxisomal 

localisation of Aequorinperox was confirmed with its colocalisation with the native 

peroxisomal catalase (Figure 8-2). 

 

Figure 8-2 Targeting of Aequorinperox and immunocytochemical localisation with native 
catalase in S2 cells. 
Cells heterologously expressing peroxisomal targeted aequorin were immunostained 

sequentially, first with mouse α-catalase as the primary and α-mouse Texas-Red conjugated 

IgG as the secondary antibodies; second with rabbit α-aequorin as the primary and α-rabbit 

FITC conjugated IgG as the secondary antibodies. Then DAPI was used to stain the nucleus. 
A confocal microscope system was used to image the fluorescence. 

8.2.1.2 Immunocytochemical localisation in vivo 

The pPUASt-Aequorinperox construct was germline transformed for making 

transgenic flies harbouring the transgene in the genome for GAL4/UAS ectopic 

expression system.  

α− α− 
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Out of 13 transformed fly lines obtained, 4 were validated and confirmed to be 

giving good luminescence values. Out of the four, one was selected for 

recombining into two different GAL4 harbouring flies separately for making 

stable flies constitutively expressing targeted aequorin regulated by cell-specific 

GAL4. These include C42-GAL4, and C710-GAL4 that allow principal and stellate 

cell-specific expression of transgenes in tubules; both including the cells in the 

initial segment. Another GAL4 fly line, JAT20-GAL4, that drives transgene 

expression in the initial segment was also used for immunocytochemical 

localisation but not for [Ca2+]perox recordings as the luminescence readings were 

too low, probably due to its low strength in driving the transgenes. 

The stable stocks then contained the constitutively expressing Aequorinperox 

under UAS regulation by the constitutive, cell-specifically expressing GAL4 

transcription factor either under the control of C42 or C710 or JAT20-GAL4 

upstream promoter elements (C42-GAL4>Aequorinperox or C710-

GAL4>Aequorinperox or JAT20-GAL4). Immunocytochemical localisations were 

performed on the tubules expressing targeted aequorins and confirmed their 

peroxisomal localisation using an antibody for native catalase (Figure 8-3A). The 

catalase antibody was tested on purified peroxisomes using Western blotting. 

Although, a right sized band (~57 kDa) for catalase appeared, other bands were 

also observed, showing the potential unspecific nature of the antibody (Appendix 

VIII). The peroxisomal targeting was confirmed using α-aequorin antibody on 

immunoblotted protein purified from peroxisomes from the flies ectopically 

expressing the targeted aequorin which showed right band size of 21 kDa (Figure 

8-3B). 
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Figure 8-3 Validation of Aequorinperox targeting in vivo. 
(A) Cell-specific targeting of Aequorinperox and immunocytochemical colocalisation with 
native catalase in tubules. The principal cell-specific GAL4 driver, C42-GAL4 was used to 
ectopically express the Aequorinperox in tubule, and then imaged for localisation. Tubules 
ectopically expressing peroxisomal-targeted aequorin were immunostained sequentially, 

first with mouse α-catalase as the primary and α-mouse Texas-Red conjugated IgG as the 

secondary; second with rabbit α-aequorin as the primary and α-rabbit FITC conjugated IgG 

as the secondary antibodies. Then the tubules were incubated with DAPI for 1 min to stain 
the nucleus (blue).  

  

(C) Aequorinperox localisation in tubule anterior initial segment. The principal cell-specific 
GAL4 driver, C42-GAL4 was used to ectopically express the Aequorinperox in the whole 
tubule and then imaged for localisation. 

8.2.1.3 [Ca2+]perox measurements in S2 cells 

The targeted probes were validated in S2 cells and [Ca2+]perox signatures were 

obtained. As the aim of the project was to understand peroxisome Ca2+ buffering 

mechanisms in vivo, the S2 cell [Ca2+]perox readouts were majorly used for probe 

validation purposes.  

Both capa1 and Drosokinin neuropeptides have been studied in vivo in tubules 

and shown to elevate [Ca2+]cyto through IP3-dependent ER Ca2+ release.  

(B) Western blot of Aequorinperox. Protein from purified 
peroxisomes along with the rest of the cytosolic protein 
fraction as a negative control was used for blotting, and then 

probed using α−aequorin (rabbit) as the primary and 

Cy5−labelled α−rabbit antibody as the secondary. The blot was 

of expected size of 21 kD. 

 

 

 

 

Aequorin Catalase merge 
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Combining the S2 cell system with the neuropeptides as Ca2+ agonist was a 

possibility to explore if peroxisomes play roles in [Ca2+] buffering upon 

mobilisation from internal stores possibly leading to the activation and release 

from plasma membrane Ca2+ channels. 

For this purpose, (along with germline transformation vector constructs) the 

targeted aequorins were constructed into Drosophila expression system (DES) 

vectors downstream of CuSO4-responsive metallothioneine promoter for 

induction of expression in S2 cells for in vitro [Ca2+]perox measurements. The DES 

system reduces one additional plasmid cotransfection (thus reducing the 

transfection load) to induce the expression of the transgene, as pPUAST-

transgene transfection needs another helper plasmid, DES-GAL4 for expression 

induction. 

Therefore, [Ca2+]perox and [Ca2+]cyto traces were obtained in S2 cells and 

compared under control for resting levels, and in the presence of capa1 and 

Drosokinin for stimulated levels (Figure 8-4). As the receptors for capa1 and 

Drosokinin are only nominally expressed in S2 cells (www.flyatlas.org), the ORFs 

that encode these receptors (capaR and LkR) were separately transfected along 

with either cytosolic- or peroxisome-targeted aequorin ORFs and incubated for 1 

h in Schneider’s medium with 2.5 mM coelenterazine for reconstitution of 

apoaequorin to aequorin for Ca2+-dependent luminescent measurements.  

The resting and agonist (capa1 and Drosokinin) stimulated [Ca2+] levels were 

measured for cytosolic-(Figure 8-4 A & B, black line) and peroxisomal-(Figure 8-4 

A & B, red line) targeted probes. The resting levels of [Ca2+]perox were 2-fold 

higher than the [Ca2+]cyto levels (Figure 8-4 i & ii). Upon stimulation, transient 

and more prolonged [Ca2+]perox (than the [Ca2+]cyto) increase was observed, 

followed by a plateau (marked with star). After the plateau, the [Ca2+]perox levels 

gradually decreased but never falling off to the resting for a few minutes. 
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Figure 8-4 [Ca
2+

] measurements in S2 cells. 
Calcium concentrations were measured in the cytosol (black line) and peroxisomes (red 
line) at resting and stimulated using luminometry. In a continuous readout, resting levels 
were measured first and then the stimulated levels either with capa1 (A) or Drosokinin (B). 
The differences in resting and stimulated are presented for statistical significance (t-test, 
P≤0.0001) (i and ii).The plateau levels upon stimulation are shown using star marks in 
graphs A & B. The heterologous expression of Best2 significantly reduced basal and 
stimulated [Ca

2+
]perox (green line). 

In addition to the wildtype [Ca2+]perox readouts in S2 cells, another [Ca2+]perox 

readout was obtained after the overexpression of Best2. When the wildtype 

Best2 was cotransfected, the [Ca2+]perox resting levels were decreased to 

[Ca2+]cyto and followed by a reduced stimulatory Ca2+ rise in peroxisomes upon 

capa1 and Drosokinin stimulation (Figure 8-4, green line). 

8.2.1.4 [Ca2+]perox measurements in tubules 

The [Ca2+]perox signatures were successfully obtained only for principal cells 

(including the cells in the initial segment) using C42-GAL4 >Aequorinperox.  
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In contrast, the signal from C710-GAL4 >Aequorinperox tubules was too low as it is 

only expressed in stellate cells (including the bar-shaped cells in the initial 

segment) which are relatively low in number (33/178 in anterior 22/133 in 

posterior tubules) (Sozen et al., 1997). 

Firstly, in vivo [Ca2+]perox signatures at resting and stimulated (using Ca2+ 

mobilising neuropeptide agonist, capa1) were generated using live wildtype 

tubules. To investigate possible segment-specific peroxisomal Ca2+ buffering 

mechanisms, [Ca2+]perox signatures were generated separately for anterior (with 

and without initial segment), posterior tubules and just for initial segment of the 

anterior tubules without the rest of the segment (Figure 8-5). Then the 

[Ca2+]perox signatures were obtained in different genetic backgrounds, first to 

validate [Ca2+]perox signatures (Section 8.2.2) and to understand the mechanisms 

of [Ca2+]perox buffering (Section 8.2.3) in an intact epithelium.  

To generate distinct [Ca2+]perox signatures, about 20, 20, 30 and 50 anterior, 

posterior, anterior without initial segment tubules and just initial segments were 

dissected respectively for each replicate in Schneider’s medium. The hours of 

dissections (mornings, between 9 - 12 AM) were chosen to be similar so that the 

tubule diurnal cycles are maintained and reflected in all the replicated samples. 

Likewise, 15-30 replicates were generated for each sample. Tubules were cut- 

separated into two for initial segment and rest of the segment (without initial 

segment) samples.  

Then the samples were incubated in Schneider’s medium with 2.5 µM 

coelenterazine for reconstitution for Ca2+-dependent luminescence for 2 h. The 

[Ca2+]perox was measured using the standard procedures (Rosay et al., 1997). First 

resting levels were measured for 2 min and then the stimulated levels for 

another 16-20 min, reading the luminescence for every millisecond. 

Consistent with the previous observations that the anterior initial segment plays 

a vital role in organismal Ca2+ homeostasis, and a place for peroxisomes, it gives 

prominent [Ca2+]perox buffering response in contrast to the posterior segment 

(compare Figure 8-5 A with D). The initial segment alone can show this response 

(Figure 8-5B) while the rest of the segment [Ca2+]perox response looks like 

posterior segment (Figure 8-5D). 
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The comparative analysis of [Ca2+]cyto and [Ca2+]perox signatures revealed that the 

peroxisomes buffer the transient secondary rises, but not the rapid transient 

primary rise upon capa1 stimulation (Figure 8-6, left panel). The resting levels 

seem to be 2-fold higher in peroxisomes than the cytosol (Figure 8-6, right 

panel). Observing one [Ca2+]perox readout at a time revealed that the Ca2+ levels 

oscillate unlike [Ca2+]cyto (Figure 8-7). When cytosolic- and peroxisome-targeted 

probe was released into the high Ca2+ external media, they differ in the total 

luminescence, in that, the equilibration takes longer time for peroxisome-

targeted probe than the cytosolic-targeted probe (Figure 8-8). Nevertheless, the 

data with the strong backup from the next section (Section 8.2.2) suggest the 

targeted aequorins exhibit similar Ca2+ response kinetics and indeed represent 

peroxisomal [Ca2+] readings. 

 
 

Figure 8-5 Basal and stimulated [Ca
2+

]perox in tubules. 
In a continuous readout, resting and stimulated (capa1 at 10

-7
M) [Ca

2+
]perox (injected time 

point is shown using an arrow) were measured and presented in nanomolar concentrations 
on Y-axis against time over 10 min on X-axis. [Ca

2+
]perox were separately measured for 

anterior (with and without initial segment), posterior and just the initial segment without the 
rest of the segment. 

 

A 

C

 
 A 

D

 
 A 

B
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Figure 8-6 Comparison of quantitative [Ca
2+

]cyto and [Ca
2+

]perox measurements. 
[Ca

2+
]cyto was measured and presented along with [Ca

2+
]perox. The resting [Ca

2+
] was found to 

be 2-fold higher in peroxisomes than the cytosol. The significance of difference (t-test; 
P≤0.0001) is presented in the bar graph. 
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Figure 8-7 Typical resting [Ca
2+

]cyto and [Ca
2+

]perox measurements read every millisecond over 
2 seconds. 
PeroxisomalCa

2+
 seems to oscillate unlike the [Ca

2+
]cyto. 

 

 

Figure 8-8 Equilibration of cytosolic and peroxisome targeted aequorin with the addition of 
Triton-X100 and high concentrations of Ca

2+
 containing solution. 
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8.2.2 Identification of novel peroxins CG11919 and CG13827 as 
the Drosophila orthologues of human PEX6 and PEX11 

Two questions became apparent after measuring tubule segment-specific 

[Ca2+]perox and comparing them with the [Ca2+]cyto measurements. These were 

including whether the targeting was altering Ca2+-dependent luminescence of 

the aequorin, and if the quantitative comparisons can be made between 

cytosolic and peroxisomal [Ca2+] measurements. A genetic intervention was 

devised to address these questions, and a search for peroxisome biogenesis 

factors that are abundant in tubules was launched in the FlyAtlas including the 

anterior and posterior tubule transcriptomes. This search led to the 

identification two PEX genes among the others that showed high abundance in 

the tubules and particularly in the anterior tubules where the peroxisomes are in 

high abundance (Figure 8-1). These include CG13827 and CG11919, and were 

provocatively named as ‘renal peroxins’.  

Further comparative genomic approach and orthologue mapping identified these 

PEX genes as the Drosophila orthologues of human PEX6 and PEX11γ, 

respectively. The functions of the PEX6 and PEX11 gene families have been 

investigated previously in mammalian and yeast cells and implicated in the 

peroxisome biogenesis and fission respectively. 

In humans there are three PEX11 members including PEXα, PEXβ and PEXγ, 

likewise Drosophila has three members including the one that belong to human 

PEXβ and the rest belong to PEXγ (Figure 8-1). 

The experimental plan was then setup to address if knocking down any of the 

two peroxins separately impairs the formation of peroxisomes. If the formation 

had been affected, it was hoped that the probes will be mistargeted possibly 

into the cytosol in PEX6 knockdowns.  

But, in the case of PEX11 knockdowns, it was expected that peroxisomes could 

increase in size (or tubulated) and number as this gene has been implicated in 

the fission in mammalian and yeast cells (Li et al., 2002; Li and Gould, 2002). 
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The RNAi fly stocks were obtained for both genes from the VDRC stock centre 

(http://stockcenter.vdrc.at/control/main) to induce RNAi in vivo for their 

functional analysis. The immunocytochemical localisation of targeted aequorins 

in the RNAi backgrounds and then to obtain the [Ca2+]perox signatures for the 

same was carried out by cell-specifically ablating the expression of renal 

peroxins. The gene expression knockdown was induced separately for CG11919 

and CG13827 using C42-GAL4 driver, and confirmed using qPCR (Appendix IX and 

X). The knockdown of these genes did not cause developmental lethality either 

using C42-GAL4 or Act4C-GAL4. 

Table 8-2 PEX6 and PEX11 gene expression across Drosophila melanogaster tissues 
(www.flyatlas.org). 
Affymetrix mRNA signals are presented for each gene against the tissues. PEX11 family has 
three members in Drosophila that belong to β and γ genes of humans. The mRNA signal is 
predominant in tubules for both CG11919 (PEX6) and CG13827 (PEX11γ). 

Tissue 

PEX6 PEX11 

CG11919 

 

CG8315/ 

PEX11β 

CG13827/ 

PEX11 γ 

CG33474/ 

PEX11γ 

Brain 15 ± 2 98 ± 3 65 ± 2 2 ± 0 

Head 376 ± 29 147 ± 2 81 ± 2 6 ± 1 

Eye 154 ± 41 155 ± 4 53 ± 2 3 ± 1 

Thoracicoabd.ganglion 11 ± 1 125 ± 1 71 ± 4 3 ± 1 

Salivary gland 4 ± 1 307 ± 4 783 ± 28 10 ± 2 

Crop 7 ± 2 669 ± 25 523 ± 22 8 ± 2 

Midgut 1 ± 0 401 ± 13 269 ± 1 8 ± 2 

Tubule 2653 ± 159 302 ± 5 1826 ± 202 8 ± 1 

Hindgut 58 ± 5 322 ± 8 327 ± 12 7 ± 1 

Heart 172 ± 25 236 ± 11 106 ± 6 7 ± 0 

Fat body 285 ± 59 182 ± 5 93 ± 10 23 ± 2 

Ovary 0 ± 0 278 ± 3 96 ± 4 2 ± 0 

Testis 4 ± 1 17 ± 2 29 ± 1 13 ± 1 

Male acc. glands 3 ± 1 131 ± 7 124 ± 4 11 ± 1 

Virgin spermatheca 1246 ± 66 131 ± 5 103 ± 2 40 ± 4 

Mated spermatheca 483 ± 63 159 ± 14 94 ± 6 11 ± 1 

Adult carcass 300 ± 19 171 ± 3 89 ± 6 13 ± 2 

Larval CNS 1 ± 0 151 ± 7 67 ± 6 1 ± 1 

Larval Salivary gland 6 ± 3 199 ± 18 742 ± 64 7 ± 1 

Larval midgut 0 ± 0 233 ± 20 283 ± 16 19 ± 6 

Larval tubule 1606 ± 89 186 ± 3 1432 ± 43 9 ± 1 

Larval hindgut 25 ± 4 95 ± 2 224 ± 26 3 ± 1 

Larval fat body 1390 ± 165 129 ± 9 129 ± 16 16 ± 2 

Larval trachea 9 ± 10 230 ± 28 167 ± 15 4 ± 2 

Larval carcass 3 ± 0 100 ± 4 262 ± 25 2 ± 0 

S2 cells (growing) 2 ± 0 168 ± 6 38 ± 1 4 ± 1 

Whole fly 120 ± 4 182 ± 3 116 ± 1 2 ± 0 

http://www.flyatlas.org/
http://www.peroxisomedb.org/show.php?action=fullGene&org=Drosophila_melanogaster&id=CG33474
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8.2.2.1 Renal peroxins are functional in adult tubules 

In order to test if the renal peroxins were functional in adult tubules, the stable 

fly lines C42-GAL4>Aequorinperox or JAT20-GAL4>Aequorinperox were separately 

crossed to either UAS-CG13827-RNAi or UAS-CG11919-RNAi fly lines to induce the 

RNAis and express Aequorinperox at the same time cell-specifically. This allowed 

the immunocytochemical localisation of Aequorinperox in wildtype and RNAi 

backgrounds (Section 8.2.2.1.1) then to obtain [Ca2+]perox signatures in the same 

(Section 8.2.2.1.2). 

8.2.2.1.1 Cell-specific G11919 and CG13827 knockdown depletes 
peroxisomes and increases peroxisome abundance 
respectively in tubules 

The knockdown of CG11919 using C42-GAL4 depleted peroxisomes in a cell- and 

segment-specific manner in tubules. The C42-GAL4 drives the knockdown in the 

principal cells of the main segment (including the cells in the initial segment). In 

these knockdown tubules, the Aequorinperox probe was mistargeted into the 

cytosol (Figure 8-9B) and also found to be trafficked possibly at cell-cell 

junctions in the initial, transitional, and main segment Figure 8-10A, B & C). 

Interestingly, the depletion, thus mistargeting, was variable throughout the 

length of tubule, possibly due to the efficiency of knockdown and its metabolic 

state.  

The knockdown of CG13827 using C42-GAL4 increased the abundance of 

peroxisomes, but not in the entire length of the tubule (Figure 8-9C).This effect 

was also seen using JAT20-GAL4 which drives the knockdown (mildly) only in the 

initial segment where the aequorin was mistargeted to the cytoplasm (Figure 8- 

11).  
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Figure 8-9 Renal peroxins are functional. 
Cell-specific expression of Aequorinperox in tubules with different genetic backgrounds and 
immunostaining using rabbit anti-aequorin as the primary and anti-rabbit Texas-Red as the 
secondary antibodies. (A) Principal cells (with larger nucleus) but not stellate cells (star-
shaped with small nucleus, arrowed) expressing the Aequorinperox in the wildtype. (B) 
Peroxisomes are depleted and Aequorinperox is diffused into the cytosol in CG11919-RNAi 
knockdowns. (C) The abundance of peroxisomes appears increased in CG13827-RNAi 
knockdowns. (D) Primary antibody controls. 

 

Figure 8-10 Mistargeting of Aequorinperox in different parts of the tubules in C42-
GAL4>CG11919-RNAi knockdowns. 
The initial, transitional and main segments are shown sequentially where the mistrafficking 
of Aequorinperox is shown using arrow heads. 
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Figure 8-11 Aequorinperox targeting in the initial segment of the CG13827-RNAi knockdown 
tubule. 
An initial segment GAL4 driver was used to ectopically drive the expression of both 
Aequorinperox and CG13827-RNAi; the Aequorinperox seen mistargeted into the cytosol. 

8.2.2.1.2 Cell-specific renal peroxin knockdown deregulates 
[Ca2+

]perox buffering 

Consistent with mistargeting of Aequorinperox, the resting and stimulated 

[Ca2+]perox rise was deregulated in both CG11919- and CG13827-RNAi knockdowns 

(Figure 8-12 A & B). The [Ca2+]perox measurements in CG11919-RNAi background 

reflected the mistargeting of the targeted probes. The resting levels of 

[Ca2+]perox were almost reduced to [Ca2+]cyto levels. In addition, the 

uncharacteristic stimulated rapid primary transients were seen like the ones that 

are found using Aequorincyto in the wildtype background following sustained 

secondary rises. Therefore, it can be safely concluded that the kinetics of 

Aequorinperox, recapitulate the kinetics of the Aequorincyto when they are 

diffused into the cytosol even with the additional targeting motifs at the 

Aequroin C-terminus. Then, these data suggest the targeted probe validity in 

quantitative [Ca2+]perox measurements and their suitability in comparisons with 

the [Ca2+]cyto measurements. 

Not all the peroxisomes in the entire length of the tubule are affected by the 

CG11919-RNAi knockdown, probably due to differences in the percentage of 

knockdown in different parts of the tubule, and therefore the resting levels in 

this background were still high when compared to the wildtype cytosolic Ca2+ 

levels. This could be one of the reasons why the organism still copes with the 

reduced number of tubule peroxisomes. 

While the increase in number of peroxisomes in CG13827-RNAi knockdown did 

not affect the resting levels, it did affect the capa1 induced transient [Ca2+]perox 

uptake (Figure 8-12B). 
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Figure 8-12 [Ca
2+

]perox buffering is impaired in the PEX mutants. 
[Ca

2+
]perox signatures in the cell-specific knockdowns of CG11919-RNAi (A) and CG13827-

RNAi (B) tubules. The resting and stimulated (capa1) were measured in the controls along 
with the knockdowns. The CG11919-RNAi impaired both resting and stimulated [Ca

2+
]perox 

measurements; while CG13827-RNAi knockdown impaired the stimulated [Ca
2+

]perox. 

8.2.3 Identification of novel peroxisomal Ca2+ sequestration and 
transport pathway in tubules 

The neuropeptide capa1 acts as an agonist and stimulates [Ca2+]cyto in tubules. 

The typical [Ca2+]cyto response to capa1 constitutes two phases; a rapid transient 

primary and a sustained secondary rise. The primary response, possibly, is 

mediated by phospholipase C, PLCβ (encoded by norpA) through IP3 ER Ca2+ store 

release. The secondary response is caused by the activation of plasma 

membrane Ca2+ channels. The probable candidates for the secondary influx are 

plasma membrane Ca2+ channels including TRPL and cyclic nucleotide gate 

channels (CNGs).  

The CNGs were thought to be potential candidates that may be activated in 

response to capa1 stimulation that increases cGMP production in tubules. From 

these observations, cGMP pathway was a candidate for stimulated transient Ca2+ 

uptake mechanisms into peroxisomes upon capa1 stimulation. This was tested 

first using a genetic approach using RNAi fly resources directed against cGMP 

components, then by a pharmacological approach using cGMP pathway agonists 

and found to be a route for [Ca2+]perox entry.  
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8.2.3.1 cGMP regulates [Ca2+]perox buffering 

 

Figure 8-13 cGMP stimulates peroxisome Ca
2+

 uptake. 
[Ca

2+
]perox response to capa1 in wildtype (A) and PDE1c-RNAi knockdowns (C) is shown. The 

response to external additions of cGMP (10
-7

 M), (B) and to a non-specific PDE inhibitor, 
zaprinast (10

-6
 M) (D) is also shown. The arrow heads with a dashed line indicates the time 

point where the respective peptide, cGMP or zaprinast was added. 

8.2.3.1.1 Peroxisomes buffer Ca2+ in the course of sustained 
[Ca2+]cyto elevations 

The mechanism for rapid primary and sustained secondary Ca2+ transients upon 

capa1 mobilisation was characterised to be mediated by IP3 induced store 

release, leading to the activation of plasma membrane Ca2+ channels producing 

transient Ca2+ influx respectively. Peroxisomes did not significantly respond to 

the rapid primary [Ca2+] transients produced by capa1. However, they started 

buffering the slow transient secondary influx elicited by plasma membrane Ca2+ 

channels (Figure 8-13A) upon capa1 stimulation.  
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8.2.3.1.2 Peroxisomes uptake Ca2+ in response to external cGMP  

For a more direct evidence for a possible cGMP role in eliciting transient Ca2+ 

efflux into peroxisomes, several concentrations of cell-permeable cGMP 

(dibutyryl-cGMP) were added to tubules externally and [Ca2+]perox signatures 

were obtained. The optimal concentration for [Ca2+]perox response was found to 

be 10-8 M (Figure 8-13B). This response was almost similar to the one produced 

by capa1 addition (compare Figure 8-13B with A).  

8.2.3.1.3 Downregulation of PDE1c, a Ca2+/calmodulin-dependent 
PDE induces peroxisomal Ca2+ uptake. 

The negative regulators of [cGMP] were the candidates to test if the modulation 

of cGMP levels affect [Ca2+]perox buffering at resting and in response to 

stimulation by capa1. A search was carried out in the FlyAtlas to find which PDEs 

were highly abundant in tubules and several PDEs were found including PDE1c. 

PDE1c belongs to the Ca2+/calmodulin-dependent PDE1 family that acts in 

concert with Ca2+. PDE1c-RNAi fly lines were obtained and [Ca2+]perox was 

measured in the cell-specific knockdown backgrounds for the PDE1c. The 

[Ca2+]perox response to capa1 was altered upon capa1 stimulation at both primary 

and secondary levels (Figure 8-13C). Normally, no significant primary buffering 

in response to capa1 by peroxisomes is observed (Figure 8-13A, see primary 

peak). However, PDE1c knockdown did give rise to an atypical primary [Ca2+]perox 

response with enhanced secondary rise for longer periods of time.  

8.2.3.1.4 Zaprinast, a PDE inhibitor increases stimulated 
peroxisomal Ca2+ uptake 

A pharmacological inhibitor of PDEs, zaprinast, has been shown to increase 

tubule cGMP levels at the apical regions of principal cells, suggesting a place for 

apically localised zaprinast-sensitive cG-PDE (Broderick et al., 2003). An 

experiment was designed to test whether zaprinast inhibition of tubule PDEs 

alone could elevate transient [Ca2+]perox buffering. Zaprinast was added to the 

tubules externally at varying concentrations and found to elicit [Ca2+]perox 

buffering at several different concentrations. It was found that zaprinast showed 

sustained [Ca2+]perox rise (Figure 8-13D). 
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8.2.3.1.5 Best2 knockdown increases peroxisome Ca2+ uptake 

Increasing evidence suggests that bestrophins 1 & 2 may impact on Ca2+ channels 

(Marmorstein et al., 2006; Wu et al., 2007). The insights into purinergic 

activation of Clˉ current (by ATP and UTP) mediated by hBest1 was provided 

using HEK293 and clau-3 cells (Milenkovic et al., 2009). An ER localised isoform 

for hBest1 was found, and has been shown to interact with an ER-Ca2+ sensor, 

stromal interacting molecule 1 (Stim1) in human airway epithelial cells (Barro-

Soria et al., 2010). Overexpressing hBest1 augmented intracellular Ca2+ 

transients upon the stimulation of purinergic P2Y(2) receptors.  

Interestingly, the Drosophila bestrophins, Best1 & Best2 localised to plasma 

membranes and peroxisomes in S2 cells, and various tissues of Drosophila, 

respectively (Figures 6-9, -11 & -12). The in vitro experiments using dissipating 

H+ and Na+ gradients in the cells strongly suggested a complex bioenergetic 

framework potentially including V-ATPase, Ca2+/H+ and Ca2+/Na+ activities 

accounting for Ca2+ buffering mechanisms in peroxisomes (Lasorsa et al., 2008). 

From these observations, I sought to identify if Best2 plays any role in [Ca2+]perox 

buffering using a genetic approach. Using GAL4/UAS system, Best2-RNAi was 

driven cell-specifically in the tubules and [Ca2+]perox was measured (Figure 8-

14A). Although, the resting [Ca2+]perox levels were unchanged, the stimulated 

secondary maxima was significantly increased in the knockdowns (mean 

difference, 32.6 ± 6.8 nM) (Figure 8-14B).  

 

Figure 8-14 [Ca
2+

]perox buffering in Best2-RNAi knockdowns is altered. 
(A) [Ca

2+
]perox response at resting and stimulated (capa1 at 10

-7
 M) were plotted. (B) The 

resting levels were not changed significantly; the stimulated secondary transient rise was 
accelerated in Best2-RNAi tubules leading to the higher maxima than their control 
heterozygotes (t-test, P≤0.001). 

maxima 
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8.2.3.2  Spherite formation was affected in CG13827-RNAi knockdowns 

The initial segment sequesters large amounts of Ca2+ into spherites (Dube et al., 

2000a; Wessing, 1991), and these are peroxisomal in origin (Southall et al., 

2006). The gene that encodes the peroxisome fission factor (CG13827) shows 

predominant expression in the anterior initial segment (Table 8-1, coloured).This 

was investigated for its potential impact on the spherite formation in the initial 

segment. The CG13827-RNAi was induced cell-specifically in tubules using C42-

GAL4 driver that induces RNAi in the initial segment. These tubules at adult 

stages were quickly dissected and immediately transferred on to a microscope 

slide for observation under light microscope. Interestingly, the spherites that are 

distinct from other concretions (in size they are larger) are less abundant in the 

CG13827-RNAi knockdowns than the wildtype (Figure 8-15A).  

 

Figure 8-15. Spherite formation was affected in PEX knockdowns. 
The number of type I concretions (or calcium phosphate containing spherites) in CG13827-
RNAi (or PEX11g-RNAi) are significantly reduced (indicated using arrow heads). 

  

A B 
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8.3 Discussion 

Peroxisomes are single membrane bound organelles involved in a plethora of 

cellular metabolic functions thus contributing to cell survival & differentiation. 

For a long time, peroxisomes were thought to be acting as a permeability 

barrier, freely allowing the passage of only small molecules. However, evidence 

has been emerging against this idea, in the form of molecular identification of 

several peroxisomal membrane components that allow selective transport 

(Lasorsa et al., 2004; Palmieri et al., 2001; Rottensteiner and Theodoulou, 2006; 

Visser et al., 2007). 

The recent characterisation of [Ca2+]perox buffering mechanisms in vitro argued a 

case for a probable peroxisomal membrane machinery for allowing Ca2+ into 

their lumen (Drago et al., 2008a; Lasorsa et al., 2008). Interestingly, they never 

seem to release Ca2+ into the cytoplasm like intracellular Ca2+ stores such as 

E(S)R, Golgi, mitochondria. But, rather they seem to sequester the slow 

transients of plasma membrane mediated Ca2+ influx raising the question of why 

peroxisomes need a complex bioenergetic framework as suggested by (Lasorsa et 

al., 2008). 

In this study, the aequorin probes were successfully targeted to peroxisomes by 

a C-terminal KVK-SKL targeting sequence (Figure 8-1) in vivo in the renal 

transporting epithelia (Figure 8-3). The targeted protein was clearly trapped in 

the lumen, as demonstrated by its colocalisation with α-catalase antibody (for 

the native peroxisomal catalase) (Figures 8-3 A & C). The peroxisomal 

localisation was also confirmed by Western blotting of protein from the purified 

peroxisomes from the whole flies expressing the targeted aequorin (Figure 8-3B).  

The S2 cell [Ca2+]perox readouts were interesting (Figure 8-4). The S2 cells were 

originally derived from the primary cultures of late stage (20-24 h-old) embryos 

of Drosophila melanogaster (Schneider, 1972). Store operated calcium (SOC) 

channels are the characteristic of S2 cells, and these have been extensively 

characterised in this system (Yeromin et al., 2004). They are activated on the 

plasma membrane upon depletion of IP3-sensitive ER Ca2+ stores and deactivated 

upon refilling (Yeromin et al., 2004). Comparatively, the basal [Ca2+]perox were 

higher than the [Ca2+]cyto in S2 cells.  
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Both capa1 (Figure 8-4A) and Drosokinin (Figure 8-4B) elicited peroxisome Ca2+ 

uptake in concurrent with the cytosolic Ca2+ rises. Interestingly, peroxisomes 

showed little delayed response as the stimulated [Ca2+]perox reached their 

maximum after several seconds and stayed on for several seconds never reaching 

to near basal levels. This clearly indicates peroxisomes as the organelles that 

buffer Ca2+ potentially for excretion.  

The tubule [Ca2+]perox readouts proved useful to understand the molecular 

mechanisms of Ca2+ transport via peroxisomes (Figure 8-5). Anterior tubules 

showed a more prominent peroxisomal Ca2+ buffering response when compared 

to posterior tubules (Figure 8-5, compare A with D). This was interesting 

because, each anterior tubule consists of an enlarged initial segment with 

around 30 specialised cells, in contrast to their posterior counterparts (Sozen et 

al., 1997). These segments in the anterior tubules alone store 25-30% of the 

total Ca2+ content of the whole animal (Dube et al., 2000b). Ca2+ in the initial 

segment is stored as the calcium phosphate in the spherites. From the X-ray 

microanalysis observations, the spherites were only seen in the cytosol and 

luminal side in the distal initial segment and proposed to transport Ca2+ and Mg2+ 

for their eventual excretion to save water (Wessing, 1991). Thus (specialised) 

peroxisomes may facilitate the loading of spherites with Ca2+ or the spherites are 

formed from the peroxisomes. Peroxisomes purified from bovine kidney and 

reconstituted into proteoliposomes suggest peroxisomal membranes constitute 

mechanisms for phosphate transport (Visser et al., 2005). The enrichment of 

NaPi-T transporter mRNA in the anterior tubules indicate the requirement of 

phosphate to precipitate Ca2+ possibly in the spherites.  

Peroxisomes sense sustained Ca2+ changes due to the changes, for example, in 

the haemolymph, and buffer the extra cytosolic Ca2+ that appears in the initial 

segment cells. The resting levels measured were as high as 2-fold in peroxisomes 

under the given set of experimental conditions indicating their capacity to Ca2+ 

storage. Furthermore, they did not release Ca2+ upon agonist stimulation 

potentially to excrete as bulk. They buffer sustained secondary Ca2+ transients 

probably produced by the activation of plasma membrane Ca2+ channels. But 

they do not seem to buffer immediate Ca2+ transients produced by IP3-induced 

ER Ca2+ efflux.  
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These findings are in consistent with the previous observations that upon 

hyperpolarization of plasma membranes, a slow transient peroxisomal Ca2+ 

increase was observed (Lasorsa et al., 2008). 

The initial segment role in peroxisomal Ca2+ buffering became more apparent 

when a separate [Ca2+]perox readout was obtained for this segment. [Ca2+]perox 

signatures were obtained for anterior tubules that were cut-separated as initial 

and the rest of the segment. These unravelled a role for the initial segment in 

Ca2+ homeostasis in consistent with previous findings implicating this segment in 

Ca2+ sequestration and storage. The initial segment alone can give rise to agonist 

stimulated Ca2+ rise in peroxisomes (Figure 8-5B). In contrast, the rest of the 

segment failed to show this response (Figure 8-5C). Around 30 cells of the initial 

segment possibly regulate haemolymph Ca2+ concentrations, or the Ca2+ that is 

emanating from the gut through the plasma membrane Ca2+ channels that are in 

close contact with gut cells. Furthermore, the buffering of Ca2+ by peroxisomes 

by the tubules without initial segment exactly recapitulates the buffering by 

posterior segment peroxisomes (Figure 8-5, compare C with D). These results are 

in consistent with the microarray analysis of anterior versus posterior tubules, 

where a number of genes showed abundance in the anterior tubules than the 

posterior tubules (Table 5-1). 

The posterior tubules have a very small initial segment. The microarray provides 

evidence that the posterior tubules may perform distinct functions other than 

the ones that are performed by the anterior tubules (Table 5-1). From the 

peroxisomal Ca2+ measurement, these tubules do not fully equip to buffer 

secondary plasma membrane transients in contrast to their anterior counterparts 

(Figure 8-5D).  

8.1.1 Renal peroxins 

Many peroxisome biogenesis proteins have been identified, and some of their 

functions are well known (Nuttall et al., 2011; Purdue and Lazarow, 2001; 

Rucktaschel et al., 2011). Genetic complementation exists, in that the defects in 

one peroxins can be rescued by the other. Most of the peroxins show 

housekeeping functions and are expressed accordingly in all cells for the proper 

formation of peroxisomes.  



Chapter 8  256 

 
 

However, some peroxins show substrate specificity and high abundance in the 

tissues (for example that metabolise lipids) investigated where the peroxisomes 

are high in number (van den Bosch et al., 1992; Wanders and Waterham, 2006). 

The peroxisome biogenesis disorders predominately manifest in the neuronal 

tissue along with liver and kidneys, though the reason for this is not known 

(Figure 1-6) (Steinberg et al., 1993). 

In this study the two peroxins identified to be the Drosophila homologues of 

human PEX6 and PEX11. Both peroxins found to be abundant in the renal tubules 

(Table 8-1). The ubiquitous knockdowns of these peroxins did not cause 

developmental lethality. Possibly, PEX11γ function is redundant as there are 2 

other related members that exist in Drosophila similar to their human 

counterparts (Table 8-1), or it may not be necessary. However, cell-specific 

conditional ablation revealed their functions in the adult renal tubules. The 

expression pattern of these genes in the tubules correlated with tubule initial 

segment peroxisome abundance.  

The defects in PEX6 function are the second most common causes of ZSS 

disorders in humans (Ebberink et al., 2010). PEX6 participates in the recycling of 

PEX5p for the protein import into peroxisomes (Rucktaschel et al., 2011). 

Consistent with the significance of this protein in peroxisome biogenesis, the 

cell-specific knockdown of the CG11919, that is closest to the human PEX6, in 

tubules, led to a significant ablation of peroxisomes (Figure 8-9B, compare with 

A). This caused the diffusion of peroxisomal targeted probe into the cytoplasm 

(Figure 8-9B) and its mistrafficking to the cell-cell junctions (Figure 8-10). The 

peroxisomal Ca2+ response reflected these changes in peroxisomes, partially 

recapitulating the cytosolic Ca2+ response (Figure 8-12A). These observations 

clearly indicate a role for PEX6 in the proper formation of peroxisomes in the 

renal tubules. 

The PEX11 family of proteins help bring the components required for the 

peroxisome division. The loss of PEX11 function had a less severe effect on 

peroxisome abundance, while the overexpression had a marked affect where it 

promoted peroxisome division in mouse cells (Li and Gould, 2002). However, a 

peculiarity was shown for PEX11γ, that its overexpression does not induce 

peroxisome proliferation in mammalian fibroblasts (Li et al., 2002).  
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Ablating the expression of CG13827, that is closest to the human PEX11γ, in 

tubules, showed an interesting phenotype. Knocking down using C42-GAL4 

increased peroxisome abundance in the main segment (Figure 8-9C, compare 

with A). This suggests that it has an essential role in tubule peroxisome 

proliferation. Consistent with the change in peroxisome abundance, the Ca2+ 

buffering by peroxisomes was altered in response to the agonist, capa1 

stimulation (Figure 8-12B).  

These findings clearly demonstrate the functional significance of the renal 

peroxins in the tubules. In addition, they validate the peroxisomal Ca2+ 

signatures. 

8.3.1 A mechanism for [Ca2+]perox buffering and Ca2+ spherites 

The in vitro [Ca2+]perox buffering mechanisms are laid out by two recent reports 

implicating these organelles in cell Ca2+ dynamics and homeostasis (Drago et al., 

2008a; Lasorsa et al., 2008). Using a combination of different cell-types, 

pharmacology and Ca2+ agonists, these authors showed that peroxisomes buffer 

Ca2+ but never release it. Interestingly, peroxisomes only buffer sustained Ca2+ 

transients upon probably the activation of plasma membrane Ca2+ channels, but 

they do not seem to respond to the rapid transients. These observations strongly 

suggest a mechanism that needs to be activated in the peroxisomal membranes 

to facilitate the transient Ca2+ influx. 

These observations along with the findings in this study suggest that the initial 

segment plays a major role in Ca2+ buffering via peroxisomes, possibly to 

sequester as spherites. Ca2+ cannot be metabolised like other second messenger 

molecules such as cAMP, cGMP, DAG and IP3. The regulation of intracellular 

Ca2+concentrations thus is an important phenomenon in the cell. In animals with 

open circulatory systems where the tissues are packed in the haemolymph, Ca2+ 

needs to be tightly regulated for the spatiotemporal aspects of its signaling 

component. The nearest correlate of peroxisomal function affecting the 

vesicular transport is lipid droplets, the vesicles that store fat in the form of 

triacylglycerides (TAGs).  
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For example, the defects in the peroxisomal β-oxidation of fatty acids lead (in 

some cases) to enlarged lipid droplets (Zhang et al., 2010a). These droplets are 

mobile depending upon the organism’s metabolic needs. Although drawing 

parallels between unknown Ca2+ spherite formation and lipid droplets is quite 

vague, it is at least interesting to note the peroxisomal proper function in 

loading of the cargo into the vesicles.  

The evidence in this report suggests a possible role for peroxisomal scission in 

generating Ca2+ phosphate spherites. The case then arises as to whether the 

peroxisomes undergo vesicular scission to become spherites for the eventual 

excretion. Peroxisomes undergo fission in that the fully formed peroxisome 

vesiculates and form new peroxisomes. The molecular components of scission 

may require Ca2+ and the loading of peroxisomes with Ca2+ probably initiates the 

peroxisome fission process to form the spherites to store, and upon the 

activation they might be mobilised. Taken together, a model for peroxisome 

Ca2+handling in tubules can be built as shown in Figure 8-16. 

 

Figure 8-16. A model for peroxisomal Ca
2+

 sequestration and transport excretion. 
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Then the question arises when the peroxisomes buffer Ca2+. From this 

investigation and others findings (Drago et al., 2008b; Lasorsa et al., 2008), it is 

apparent that peroxisomes transiently uptake Ca2+, possibly stemming from the 

plasma membrane Ca2+ channels, for prolonged periods of time. This mechanism 

seems to be dependent on the second messengers such as cGMP that activate 

plasma membrane CNG channels. The neuropeptide agonist capa1 mobilised Ca2+ 

into peroxisomes (Figure 8-6, red line). This response is markedly different from 

the cytosolic response (Figure 8-6, black line). The capa1 action leads to the 

characteristic biphasic cytosolic Ca2+ response in tubules including primary (from 

ER) and secondary (from the activation of plasma membrane Ca2+ channels). 

Only, the secondary response was found for peroxisomes. But, the primary 

response can be obtained in the CG11919-RNAi knockdown background (Figure 8-

12A). This suggests that peroxisomes only buffer prolonged Ca2+ transients upon 

the activation of plasma membrane Ca2+ channels such as CNGs. The capa1 

action elicits cGMP concentrations in the tubules that may gate CNG channels 

(Davies and Terhzaz, 2009). The addition of cGMP to the tubules elicits 

peroxisomal Ca2+ uptake which partially recapitulates capa1 response (Figure 8-

13B, compare with A). In addition, genetic and pharmacological reduction of PDE 

activity by an RNAi transgene directed against the PDE1c and a PDE inhibitor, 

Zaprinast respectively resulted in peroxisomal Ca2+ uptake (Figure 8-13 C & D). 

The Best2-RNAi knockdowns showed increased peroxisome Ca2+ buffering (Figure 

8-14). The secondary cytosolic Ca2+ responses were significantly found increased 

in Best2-RNAi knockdowns as shown in the previous chapter (Figure 7-7). Thus 

the ablation of Best2 expression seems to affect the stimulated Ca2+ levels in the 

tubules. 

8.3.2 The significance of Ca2+ in terms of peroxisome function 

Peroxisomal Ca2+ regulation, and its role in cell Ca2+ homeostasis, is a relatively 

new and exciting field given its potential implications in cell metabolism, redox 

homeostasis, and survival. It is well known that prolonged elevations in 

intracellular Ca2+ levels are deleterious to cells (Wegierski et al., 2009). In these 

circumstances, Ca2+ must be buffered for excretion. Peroxisomes probably 

contribute to this function whereby they buffer the sustained secondary Ca2+ 

transients elicited by plasma membrane channels into the cytoplasm and then 

store in the bulk insoluble pools for its eventual excretion.  
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The other potential questions that arise from this study and others include how 

many peroxisomal reactions is Ca2+ dependent? Previously, a Ca2+/calmodulin-

regulated catalase isoform has been localised in plant peroxisomes (Yang and 

Poovaiah, 2002). An increase in peroxisomal Ca2+ concentrations have been 

shown to increase H2O2 scavenging activity via catalase (Costa et al., 2010). This 

establishes a route for a search of other peroxisomal functions for which Ca2+ is 

essential, in other systems. From animals to plants it is widely documented that 

reactive oxygen species (ROS), such as H2O2 and superoxide (O2
-) are not only the 

by-products of redox homeostasis but essential as signal transduction 

components (Alvarez et al., 1998; Owusu-Ansah and Banerjee, 2009). These 

species are highly produced in peroxisomes, and their generation might suggest a 

role for peroxisomes in signal transduction processes. Furthermore, this study 

clearly demonstrated a role for anterior initial segment in buffering transient 

influx of Ca2+ into the cytoplasm. This is the characteristic functional attribute 

to this segment. Then, what does the rest of the tubule possibly do? The 

prominent example is the urate oxidase gene that participates in the conversion 

of uric acid to allantoin, which is only expressed in the main segment of the 

tubule. Other genes that are well-known in the oxidative stress resistance, such 

as catalase and superoxide dismutase (SOD), probably are more prominent in the 

rest of the tubule.  

8.4 Conclusion 

Calcium homeostasis is a fundamental phenomenon required for organismal 

survival given its prominence in cellular signal transduction mechanisms. 

Equally, it is important in the formation of bones in vertebrate systems and their 

equivalents in other systems. The continuous Ca2+ diet supplement also needs to 

be regulated. Our understanding of the molecular machinery is rapidly increased 

over the years through the advancements in the genomic and post-genomic 

technologies. However, the systems approach for the functional analysis is 

rather lacking in a physiological perspective. Drosophila, more specifically its 

renal system, the tubules, provides a powerful array of genetic and physiological 

tools to study the regulation of both cytosolic and organellar Ca2+ signaling and 

transport mechanisms.  
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This study demonstrated the successful targeting of aequorin probes to 

peroxisomes in an actively transporting live renal epithelium to study in vivo 

[Ca2+]perox buffering mechanisms. The resting levels of [Ca2+]perox were found to 

be 2-fold higher than the [Ca2+]cyto. Peroxisomes act to buffer transient 

secondary Ca2+ efflux into the cytosol via plasma membrane Ca2+ channels like 

CNG channels that are activated in response to cGMP. External addition of cGMP 

induces Ca2+ uptake into peroxisomes in consistent with the uptake upon the 

pharmacological inhibition of PDEs with Zaprinast. Two independent genetic 

interventions through RNAis to peroxisome localised Best2 and Ca2+/calmodulin- 

dependent PDE1c mRNAs, although never resulted in significant resting [Ca2+]perox 

changes, they enhanced stimulated secondary maxima for the former and 

primary and secondary responses for the later. This reflects a possible triggering 

mechanism exist to buffer extraperoxisomal Ca2+ concentrations. Two PEX genes 

found to be highly abundant in the tubules and are confirmed to be essential for 

proper renal-peroxisome formation and proliferation. Finally, using an 

‘integrative systems approach’, a model generated from microarray data was 

tested for its validity using fly renal system that may be applicable to 

mammalian renal Ca2+ sequestration and transport mechanisms. 
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9. General discussion and Future work 

9.1 General discussion 

Systems approach requires greater understanding of genomes. Model organisms 

are useful not only for generating systems levels omics data sets but also are 

instrumental in integrating the datasets to allow to build predictive models 

(Joyce and Palsson, 2006). Omics data sets have been providing systems level 

annotation of nearly all components, broadly at three levels including 

components, interactions and functional states. Thus the omic annotation is a 

great step forward for the holistic understanding of systems, in the so called 

systems biology.  

A case for Drosophila as a model organism is validated with its continuous usage 

to understand many biological questions. The advent of RNAi technology along 

with the GAL4/UAS binary systems to express transgenes in vivo, at a remarkable 

spatiotemporal resolution, has given further strength to this model organism to 

deploy reverse genetic approach to understand functions of genes. Comparative 

analysis of fully sequenced genomes identified a greater phenotype gap, the gap 

that is present between number genes to available phenotypes. The study 

carried out as part of this thesis is useful for further functional annotation of the 

genomes. The highlights of this study are presented by the order of chapters. 

9.1.1 FlyAtlas 

The FlyAtlas pioneered the way to look at tissue-specific functions using 

transcriptomes.  

1. FlyAtlas provides authoritative gene expression levels for multiple tissues of 

Drosophila melanogaster for both adult and larval tissues. 

2. Drosophila tissues typically express around half of the computed 

transcriptome. 

3. There are hundreds and thousands of genes that show tissue-specificity of 

expression. 
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4. The genes that have been classically studied in development for example, are 

expressed in surprising places. Thus arguing a case for tissue-specific studies of 

genes where they are highly abundant rather than where they are first found.  

5. The genes that are expressed in tissues analogous to those involved in human 

disease provided further strength to Drosophila as a model organism to study 

human disease. 

9.1.2 Epithelial transcriptomes 

The tissue-specific transcriptomes of the FlyAtlas provided quality data sets to 

understand epithelial function in detail. The comparative analysis of the 

epithelial tissues provided insight into their potential functions in addition to 

their conservation of function with their vertebrate counterparts. 

1. Epithelial transcriptomes are highly organised and show similarity in 

expression from other transcriptomes such as reproductive and neuronal tissue 

transcriptomes which has been apparent in the PCA analysis. 

2. The adult and larval transcriptomes of any single epithelium shows highest 

similarity to each other, thus fall as neighbours in the hierarchical tree. 

3. In each epithelium, there are many novel genes that show high specificity of 

expression without any functional annotation. However, many of these show 

high similarity to human disease homologues thus allowing to guess their 

potential functions. 

4. Enrichment of epithelial signature genes in vertebrate functions revealed 

their cognate functions to human tissues. 

9.1.3 Renal asymmetry in Drosophila 

The microarray analysis of tubule disposition or asymmetry in the body cavity 

revealed interesting insight into function. 

1. Anterior tubules show high abundance for Ca2+ handling genes. 
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2. Posterior tubules show abundance for genes involved in ammonia generation, 

for example. 

9.1.4 Functional studies on bestrophins and the identification of 
Best2 as a modulator of Ca2+ signaling and homeostasis 

Clˉ channels have long been thought to be housekeeping in function in the 

regulation of cell volume and maintenance of the balance of electrical charge, 

unlike for example the Na+ and K+ channels that trigger nerve impulses. 

However, compelling evidence accumulated over the years suggesting Clˉ 

channels are equally important from neuronal signal propagation to salt 

regulation (Jentsch et al., 2002). The pharmacological approach to characterise 

Clˉ channel function has been hampered by the unspecific nature of the channel 

blockers (Greenwood and Leblanc, 2007). The low potency and broad specificity 

and tissue variability of these channel blockers made the studies more complex. 

Reverse genetic approach, using model organisms, where a wealth of genetic 

and physiological tools is available, argued as a most suitable approach to 

elucidate functions of a given gene (Dow, 2007; Dow and Davies, 2003).  

Furthermore, comparative genomics (Ureta-Vidal et al., 2003) helped elucidate 

the molecular identity of the putative Clˉ channels in the fruit fly with the 

readily available gene expression data across multiple tissues (Chintapalli et al., 

2007) that enable one to model the interaction of the Clˉ channels with other 

types of channels and transporters. This kind of an approach at systems level, 

permits advanced studies with prior knowledge of complex interplay of the ion 

transporter synergy in different compartments of the cell.  

Using an integrative physiology approach, organismal functions of bestrophins 

were investigated in this study.  

1. Firstly, a demonstration was made of cellular localisations for all Drosophila 

bestrophins. This showed the apical localisation of Best1-YFP, peroxisomal 

localisation of Best2-YFP, and intracellular localisations for Best3-YFP and Best4-

YFP. 

2. Best1 and Best4 are non-essential for fly viability; in contrast, Best2 and Best3 

are essential for the same. 
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4. Best1 is an essential gene for handling excessive salt load in the body. 

5. Best1 is a potential CaCC that function at the physiological elevations of 

intracellular Ca2+ concentrations. 

4. Best2 is a potential Ca2+ channel regulator, thus regulating Ca2+ signaling and 

homeostasis in the tissues it is highly abundant, the eyes and tubules 

respectively.  

5. In addition, this study elucidates the molecular mechanisms of Best2 function. 

The identification of Ca2+-responsive, epithelial abundant, Cyp6a23 upregulation 

in the Best2 mutants, in addition to the identification of the upregulation of 

other Ca2+ signaling modules that are essential for the fly retina including the 

components of the INAD complex, gives a fascinating insight into Best2 function. 

Furthermore, the upregulation of retinal degeneration C (rdgC) in the Best2 

mutants shows how the compensatory mechanisms are potentially deployed in 

the flies, possibly, to mitigate the effects of the dysfunction of Best2. This is in 

consistent with the fact that the knockdown of Best2 does not cause any 

apparent morphological defect in the flies. This means a fly bestrophin model of 

human disease can be developed, potentially with a double knockdown of Best2 

and rdgC, for example. Nonetheless, these results may form a basis to search for 

similar mechanisms in vertebrate disease models thus to intervene 

therapeutically, for example to increase the expression of rdgC related genes in 

humans and mouse to delay or cure the degeneration in the eye. 

9.1.5 Peroxisome dynamics in the living organism 

The potential peroxisomal localisation of Best2 led to the investigation of 

peroxisomes in Ca2+ homeostasis and signaling. This study provided following 

insight into function of peroxisomes in terms of Ca2+ homeostasis and peroxisome 

function. 

1. Aequorin probes are successfully targeted to peroxisomes in a live renal 

transporting epithelia 
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2. This study identified a novel peroxisomal Ca2+ sequestration and transport 

pathway.  

3. This study also identified two novel renal peroxins that are essential for 

proper peroxisome biogenesis and proliferation in the renal tubules.  

9.2 Future work 

The Affymetrix GeneChips® have been used to generate FlyAtlas tissue-specific 

transcriptomes which interrogate gene expression for 18,880 annotated 

transcripts one at a time. The FlyAtlas data have been extremely useful for the 

research community. The usefulness can be seen from the citation report of the 

FlyAtlas that reached around 369 according to Google Scholar (accessed on 

January 29th, 2012).  

The tissue-specific transcriptomic data has been extended using more advanced 

RNA-seq platform to generate digital readouts of every base-pair of expressed 

mRNA, without a bias towards annotated transcripts like the Affymetrix 

GeneChip®. This data needs to be further extended to other tissues, although it 

has been done elsewhere (www.modencode.org), the expertise at Glasgow is 

useful, to comparatively validate the results. As the systems biology requires 

highest quality datasets to build predictive biological models, this approach is 

useful. Furthermore, comparing the tissue-specific transcriptomes of Drosophila 

with the tissue-specific data sets of the vertebrate model organisms, for 

example, is useful to further validate the organotypic models of human disease 

in the fly. 

This dissertation identifies bestrophins as multifunctional proteins by virtue of 

their expression, localisation and further functional characterisation in 

Drosophila melanogaster. However, the localisations need to be validated using 

appropriate antibodies. 

Furthermore, the importance of functional characterisation of bestrophins 

comes from the fact that they are implicated in Best disease in the eye that 

causes retinal degeneration. Most of the diseases of the eye lead to various 

degeneration pathologies.  
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In this context, this thesis forms a basis for developing a Drosophila model for 

Best disease to understand the basis of disease for therapeutic intervention.  

A microarray analysis of Best2 mutants versus wildtype upon control- and salt-

fed conditions may identify genes whose expression is changed in the Best2 

mutants so to build a model for the disease. This will also allow the investigation 

of interacting proteins that may modulate bestrophin function. In the in silico 

analysis Best2 protein showed a putative NADHpl oxidoreductase domain like the 

one that is found in mitochondrial ND5. It would be interesting to test if this 

domain is really functional as the interaction between ClC-3 and NADPH oxidase 

(nox), that generate O2
- seems to exist within the cells (Lassegue.B., 2007).  
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Appendices 

Appendix I: Fly food recipe 
Fly food recipe (Mix the contents in 1 litre of H2O in the below order of preference. 

10 g Tayo agar 

1 tbsp Soya fluor 

15 g Sucrose 

33 g Glucose 

15 g Maize meal 

10 g Wheat germ 

30 g Treachle 

35 g Yeast 

Bring to boil, stirring constantly; simmer 10 min; allow to cool slightly to about 70 
ºC; leave for 20 min and then add: 

10 ml Nipagin (of below formulation) 

5 ml Propionic acid 

[Nipagin = 25 g. Nipagin M (Tegosept M, p-hydroxybenzoic acid methyl ester) in 250 
ml Ethanol] 

Dispense: 

Fly Vials = 8 ml 

Fly Bottles = 70 ml  

 
Appendix II: Phosphate Buffer Saline (PBS) 

Phosphate Buffer Saline (PBS) (in H2O)  

137 mM NaCl 

2.7 mM KCl 

10 mM Na3PO4 

2 mM KH2PO4,          pH 7.4 

Other solutions using PBS 

For PBST: 0.25% TritonX-100 was added. 

For PBSTw: 1% Tween20 was added. 

For blocking buffer for westerns: 10% non-fat milk power was added to PBSTw. 

For blocking buffer for ICCs: 10% goat serum was added to PBST. 
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Appendix III: Drosophila Schneider’s media (www.invitrogen.com, (accessed 
on 26th August 2011)) 

COMPONENTS Molecular 
Weight 

Concentration 
(mg/L) 

mM 

Amino Acids    

Glycine 75 250 3.33 

L-Arginine 174 400 2.3 

L-Aspartic acid 133 400 3.01 

L-Cysteine 121 60 0.496 

L-Cystine 240 100 0.417 

L-Glutamic Acid 147 800 5.44 

L-Glutamine 146 1800 12.33 

L-Histidine 155 400 2.58 

L-Isoleucine 131 150 1.15 

L-Leucine 131 150 1.15 

L-Lysine hydrochloride 183 1650 9.02 

L-Methionine 149 800 5.37 

L-Phenylalanine 165 150 0.909 

L-Proline 115 1700 14.78 

L-Serine 105 250 2.38 

L-Threonine 119 350 2.94 

L-Tryptophan 204 100 0.49 

L-Tyrosine 181 500 2.76 

L-Valine 117 300 2.56 

beta-Alanine 89 500 5.62 

Inorganic Salts    

Calcium Chloride (CaCl2-
2H2O) 

147 794 5.4 

Magnesium Sulfate 
(MgSO4-7H2O) 

246 3700 15.04 

Potassium Chloride (KCl) 75 1600 21.33 

Potassium Phosphate 
monobasic (KH2PO4) 

136 450 3.31 

Sodium Bicarbonate 
(NaHCO3) 

84 400 4.76 

Sodium Chloride (NaCl) 58 2100 36.21 

Sodium Phosphate 
monobasic (NaH2PO4-
2H2O) 

156 1321 8.47 

Other Components    

Alpha-Ketoglutaric acid 146 200 1.37 

D-Glucose (Dextrose) 180 2000 11.11 

Fumaric acid 116 100 0.862 

Malic acid 134 100 0.746 

Succinic acid 118 100 0.847 

Trehalose 342 2000 5.85 

Yeastolate  2000 - 
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Appendix IV: E. coli growth media 

COMPONENTS grams/litre 

LB-broth  

Bacto-tryptone 10 

Dried Yeast 5 

NaCl 10 

LB-agar  

Bacto-tryptone 10 

Dried yeast  5 

NaCl 10 

Bacto-agar 15 

SOC broth  

Bacto-tryptone 2 % (w/v)  

Dried yeast 0.5 % (w/v)  

NaCl 10 mM 

KCl 2.5 mM  

MgCl2 10 mM 

MgSO4 10 mM 

Glucose  20 mM  

 
Appendix V: Buffers for SDS-PAGE and Westerns 

From Sambrook and Russell, 2001 

6 x SDS-PAGE Loading buffer 

0.35 M Tris HCl,  pH6.8 

10.28 % (w/v) SDS 

36 % v/v glycerol 

5 % v/v b-mercaptoethanol 

0.012 % w/v bromophenol blue 

in 0.5 ml aliquots stored at -20°C 

Tris-Glycine Running Buffer  (in 500 ml of H2O) 

7.2 g Glycine 

1.5 g Tris Base  

6 ml 10% (w/v) SDS 

Staining Solution 

465 ml Brilliant blue R concentrate (Sigma) 

535 ml H2O 

Destaining Solution (in H2O) 

10 % (v/v) Acetic Acid 

45% (v/v) Methanol 

Ponceau S Staining Solution (in 500 ml H2O) 

1.5 g TCA 

0.5 g Ponceau S stain 

Transfer Buffer (in 1 litre of H2O) 

20 % (v/v) Methanol 

14.4 g Glycine 

3 g Tris Base 
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Resolving and Stacking gels for SDS-PAGE (from Sambrook and Russel, 2001) 

COMPONENTS Vol. (ml) 

Resolving gel 10%, volume for 2x 5 ml gels    

H2O                                                      4 

30 % acrylamide mix                          3.3 

1.5 M Tris (pH 8.8)                              2.5 

10 % (v/v) SDS                                    0.1 

10 % (v/v) APS                                    0.1 

TEMED                                                0.004 

  

Stacking gel 5%,  volume for 2x 1.5 ml  

H2O                                                      2.1 

30 % acrylamide mix                          0.5 

1.0 M Tris (pH 6.8)                                                                     0.38 

10 % (v/v) SDS                                    0.03 

10 % (v/v) APS                                    0.03 

TEMED                                                0.003 

 
Appendix VI: Primers sequences and applications 
 
Primer Name Sequence (5' to 3') Use 

Best1-F CAACAATGGACCGATGGCAAG qPCR 

Best1-R TAGAGTTCCCGAAACGCTCACCAG 

Best2-F TGGTCTTATTGGATACGACACGG  qPCR 

Best2-R AGGGATTGATTAGCACCTCGGC 

Best1-RA-F CACCATGACAATTACGTACACAGGTGAAGT Cloning 
overexpression 

Best1-RAstop-R TCAACTGCCGTTGATGGC 

Best1-RA-F1 CACCATGACAATTACGTACACAGGTGAAGT Cloning 
overexpression C- 
fusion  Best1-RAnonstop-R ACTGCCGTTGATGGCGTC 

Best1-RB-F CACCAGTTTCACATTGGCGGTCG Cloning 
overexpression C- 
fusion  Best1-RBnonstop-R TGGCATTTCATTTTTATTTAAGTCTTT 

Best2-RA-F CACC ATGACTGTCTCGTATGCGGG Cloning 
overexpression 

Best2-RAstop-R TCAGACGTACACCTCTCCGG 

Best2-RA-F CACCATGACTGTCTCGTATGCGGG Cloning 
overexpression C- 
fusion  Best2-RAnonstop-R GACGTACACCTCTCCGGTCTT 

Best3-RA-F CACC ATGACTGTCTCTTACACCGCTG Cloning 
overexpression C- 
fusion  Best3-RAnonstop-R TTTCTTAGATTCGTCACTGTCCTTATC 

Best4-RA-F CACCATGACTGTGACCTATACCTCACGT Cloning 
overexpression C- 
fusion  

Best4-RAnonstop-R ATCCTGCTTTTCCGTCTTATTTG 

Aequorin-BglII-F GC AGATCT ATGACAAGCAAACAATACTCA Cloning 
Aequorinperox 

Aequorin-KVK-SKL-XbaI-R GC TCT AGA 
TTACAGCTTGGACTTCACCTTGGGGACAGCTCC
ACC 
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CG11919-F TCGATCGAAGCCCTGCCGGA qPCR 

CG11919-R AGACAGCCGGACGACCCACA 

CG13827-F TTGTGGGGCGGCAAGCTGTC qPCR 

CG13827-R TGGCTAAACACACTTTCGAGTGCCG 

norpA (HL05775)-F CGGAGAAGCGTTTACACTGTGC qPCR 

norpA (HL05775)-R GGCAAAGGCGAAAGTATTGGAG 

norpA-F AGCAAGCAAAGATGTCGGCG qPCR 

norpA-R TGGGCGAGTGTGTGTTTTCG  

Cyp6a23-F CACAACAACGAGTTTACCTACGAGG qPCR 

Cyp6a23-R ATCACAACAGTGGTTCCCTTGG 

trp-F TCCAACTCCTACCAAATCATCTCG qPCR 

trp-R TAATGCCGTAATCGTCCCGC  

rdgC-F CACCAGGCACGGATAGTCAAAAG qPCR 

rdgC-R CCAGCAAGTCAATCGCAGTTTC  

 
 
Appendix VII. Cyp6a23 knockdowns show sensitivity to high salt feeding. 
Cyp6a23 gene expression was ablated using GAL4/UAS system using Act5C-GAL4 
ubiquitous driver. Survival assays were performed according to the standard 
protocols. Median survivals for males: Act-GAL4/+, 100; Act-GAL4/UAS-Cyp6a23-
RNAi, 53. Median survivals for females: Act-GAL4/+, 75; Act-GAL4/UAS-Cyp6a23-
RNAi, 55. Log-rank (Mantel-Cox) Test, P<0.0001. 
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Appendix VIII. Validation of the catalase antibody using Western blotting.  
Protein extracts were obtained from purified peroxisomes of wildtype (A), w1118 
and Best2 mutants (B) and probed using mouse α-catalase (Abcam, 1:100) 
antibody as the primary and α-mouse Cy5 antibody (1:2000) as the secondary 
antibody were used to detect the catalase in purified peroxisomes. The blot was 
imaged using the Typhoon variable mode scanner (Amersham). The sample bands 
were compared against the proteins maker (ECLPlex fluorescent rainbow 
Marker). The antibody seems to be unspecific as it is detecting several proteins. 
However, there is band that may approximately of the right size (~57 kDa) for 
catalase. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



274 

 
 

Appendix IX. Validation of CG11919-RNAi using qPCR. The gene expression 
knockdown was validated in the C42-GAL4 driven CG11919-RNAi tubules. The 
relative percentage of expression was calculated using UAS parental control as 
the baseline. The expression was significantly found reduced in the tubules 
driven for CG11919-RNAi with a mean fold difference of 48.87 ± 10.77 (t-test, 
P<0.05, N=4).  
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Appendix X. Validation of CG13827-RNAi using qPCR. The gene expression 
knockdown was validated in the C42-GAL4 driven CG13827-RNAi tubules. The 
relative percentage of expression was calculated using UAS parental control as 
the baseline. The expression was significantly found reduced in the tubules 
driven for CG13827-RNAi with a mean fold difference of 51.21 ± 4.228 (t-test, 
P<0.05, N=4). 
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