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Abstract 

 

  In Scotland, the Scottish Environment Protection Agency (SEPA) is the regulatory agency 

responsible for monitoring water quality and reporting back to the Scottish and UK 

governments and the European community.  In order to improve water quality in surface 

waters such as rivers and lochs, the European Parliament has established directives over the 

past twenty years outlining targets for nutrient levels and water quality status.  Moxley 

(2010), states that the concentration of organic carbon in many Scottish rivers, has 

approximately doubled over the last twenty years, with soils being the most likely source.  

According to Moxley (2010), the rate of total organic carbon (TOC) increase, averaged 

across all sites with increasing concentrations, was 0.12 milligrams per litre per year (mg/l/y).  

This is an increase in TOC concentration of nearly 2.5 mg/l over a twenty year period.  

Consequently, the behaviour of organic carbon in Scottish rivers and lochs has become of 

interest and is the focus of analysis within this thesis. 

   

  Chapter 1 introduces organic carbon, providing an insight into observed trends in the United 

Kingdom, but also, other parts of the world.  Furthermore, Chapter 1 discusses environmental 

and physical factors which are thought to be associated with changing levels in organic 

carbon.  Moreover, Chapter 1 provides a description of the data and sampling techniques 

which have been used.  The exploratory analysis in Chapter 2 reveals that the log TOC levels 

in rivers and lochs have been increasing up until the early 2000’s, and that the log TOC 
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follows a seasonal pattern.  Furthermore, the exploratory analysis reveals the high level of 

association between total organic carbon and dissolved organic carbon.  The exploratory 

analysis also highlighted issues with the covariates; therefore Chapter 2 explores suitable 

methods of dealing with values at the limit of detection, as well as appropriately imputing 

missing values. 

 

  Chapter 3 explores log TOC at a selection of river and loch sites, and the relationship 

between log TOC and covariates at each site in detail.  In addition, Chapter 3 explores the use 

of different regression techniques (e.g. linear and additive modelling) in order to 

appropriately capture the behaviour of log TOC at each site.  Chapter 4 progresses from 

investigating and modelling individual sites, to exploring sites which are connected in some 

manner.  Chapter 4 considers the behaviour of log TOC in sites which are part of the River 

Dee network, where the distance between each site and how the river flows between each of 

the sites had to be taken into consideration. Chapter 4 investigates the behaviour of log TOC 

across the river network over time and space visually; but, also explores appropriate 

modelling techniques which suitably capture the behaviour of log TOC over time and space, 

taking into consideration suitable covariates to plausibly explain the observed trends. 

 

  Chapter 5 addresses the main theme of the thesis: coherency is defined and explored there.  

A literature review was conducted to consider possible methods of measuring coherency.  

The seasonal Mann-Kendall test was found to be an appropriate method of measuring the 

heterogeneity of a group of sites; and dynamic factor analysis was found to be an effective 

technique of identifying common trends in a group of sites; hence, these methods were 

applied in Chapter 5 to measure the level of coherency between sites in the River Dee 

network, but also, sites located in the same Scottish region.  Progressing from the analysis 

carried out in Chapter 5, Chapter 6 aims to appropriately model the levels of log TOC in 

Scottish regions, taking into account time and space, but also, possible covariates thought to 

be driving such trends.  Finally, Chapter 7 provides a summary of the findings, and discusses 

limitations of the study and possible areas of future research. 
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Chapter 1  
 

Introduction 

 

1.1 Background and Motivation for Research 

 

 

In the past few decades, humanity’s concern regarding the well-being of the environment 

has risen.  The media continues to raise public awareness of each generation’s “carbon 

footprint”, while researchers and scientists investigate why the environment is changing.  A 

key focus of study and research in Scotland, is the trend of organic carbon concentrations in 

rivers and lochs, particularly, Dissolved Organic Carbon (DOC) and Total Organic Carbon 

(TOC).   

 

  In Scotland, the Scottish Environment Protection Agency (SEPA) is the regulatory agency 

responsible for monitoring water quality and reporting back to the Scottish and UK 

Governments and the European community.  In order to improve water quality in surface 

waters such as rivers and lochs, the European Parliament has established directives over the 

past twenty years outlining targets for nutrient levels and water quality status.  For example, 
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legislation such as the Urban Waste Water Treatment Directive (UWWT, 1991) was 

introduced, which requires waste water for all cities or towns of more than 2,000 population 

equivalents discharging to freshwaters to be collected and treated appropriately according to 

the Directive.  Furthermore, the European Union Water Framework Directive (WFD, 

European Parliament, 2000) has set aims to prevent further deterioration of Europe’s water 

bodies by protecting and improving water quality in all aquatic ecosystems.  In order to 

achieve a better quality of water, the Directive aims for progressive reduction in discharges 

and emissions of hazardous substances, as well as reducing the volume of man-made 

synthetic substances which are being introduced in some waters.  In particular, the EU Water 

Framework outlines targets for nutrients levels in all rivers and requires control of discharges 

which cause limits to be exceeded.  Over the years, European Water policy has undergone 

many amendments in an attempt to tighten the gaps in legislation and to ensure that our 

waters are as clean and safe as possible. The Water Framework Directive (WFD) monitoring 

is risk-based and focuses where there is likely to be a problem – the WFD offers suggestions 

about improving monitoring to maintain high standards of water quality 

(http://ec.europa.eu/environment/water/water-framework/index_en.html). 

 

Monitoring the organic carbon levels in rivers and lochs is important, as the carbon cycle is 

essential to the way in which ecosystems function and survive.  Rivers play an important role 

in transporting carbon from the land to the oceans, with constant feedbacks to and from the 

atmospheric carbon pool (where the feedbacks involve sequestration or release of the 

greenhouse gases CO2 and methane). 

The carbon exported from catchments by rivers can be either organic or inorganic and in the 

phases of solid, solute or gas. All of this carbon has ultimately been drawn down from 

atmospheric CO2 via the essential process of photosynthesis (Dixon and Turner, 1991).  DOC 

plays an important role in aquatic systems by influencing light regime and nutrient supply, 

acidity, trace metal transport and potability.  (Eimers et al., 2008) 

   

http://ec.europa.eu/environment/water/water-framework/index_en.html
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  Furthermore, monitoring carbon levels is important, as carbon lost from soils to water may 

be oxidised to produce carbon dioxide.  Since Scotland has large stocks of organic carbon 

held in peaty and organic soils, estimated at 2735 metric megatons (MtC) in total (ECOSSE 

Report 2007), if it was all to be converted to carbon dioxide, it would be equal to 174 years of 

human emissions at current rates.  Also, loss of organic carbon from soils also affects the 

quality of the soil – it leads to poor water holding capacity and impacts the soil’s ability to 

retain pollutants and nutrients.  Loss of soil organic matter could increase run-off which in 

turn increases flood risk and pollutant content in water. The most obvious effect of an 

increase in the level of TOC is the darkening of water colour, which reduces available light 

and energy, particularly in deeper lochs.  (Moxley, 2011) 

 

SEPA published research generally refers to Dissolved Organic Carbon rather than Total 

Organic Carbon, similar to many other papers which have recently been published by other 

researchers – while, the focus of this thesis shall be on TOC.  DOC is made up of a fraction 

of the water based carbon which can pass through a filter; however, TOC consists of 

particulate (NPOC) and purgeable (POC) carbon as Figure 1.1.1 displays.  In the past, SEPA 

has generally monitored TOC in rivers and DOC in lochs.  When rivers contain little 

suspended solid material DOC and TOC values are likely to be similar, but when sediment 

loadings are high, for example, in high flows, TOC values will be higher than DOC as TOC 

measurements include organic material bound to sediments (Moxley, 2011). 

 

 

 

 

 

 

Figure 1.1.1: Flow chart of Total Carbon (Sepa Chemistry1, ES-INR-P-004) 
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Moxley (2011), states that the concentration of organic carbon in many Scottish rivers, has 

approximately doubled over the last twenty years, with soils being the most likely source.  

According to Moxley (2011), the rate of TOC increase, averaged across all sites with 

increasing concentrations, was 0.12 milligrams per litre per year (mg/l/y), giving an increase 

in TOC concentration of nearly 2.5 mg/l over a twenty year period.  However, this increase in 

organic carbon is not a unique trait of Scottish waters.  Increasing DOC concentrations in 

rivers of boreal and sub-boreal regions have been observed across Great Britain over the past 

10 years (Worall et al., 2007).  Furthermore, there was an observed increase in DOC 

concentrations over large regions in the Northern Hemisphere in the last few decades 

(Monteith et al., 2007; Weyhenmeyer et al., 2009).  Moreover, increases in DOC 

concentration have been observed in North America (Driscoll et al., 2003; Stoddard et al., 

2003), central Europe (Hejzlar et al., 2003), and Scandanavia (Skjelkvale et al., 2001). 

Increasing levels of DOC are a cause for concern, as Worrall et al., (2004) explain that the 

removal of DOC from water resources is a major cost to water treatment in large parts of 

Britain.  If DOC is not removed properly: it can result in water of low aesthetic quality; it can 

lead to water failing to meet the colour criteria specified in the Drinking Water Directive; it 

increases the threat of biological contamination of treated water; and can result in the 

formation of tri-halomethanes, which are potential carcinogens and if present in drinking 

water, are very dangerous. 

 

1.2 Factors Driving Trends 

 

Many papers which discuss factors driving increasing trends in organic carbon focus on 

DOC concentrations.  The relationship between TOC and DOC shall be explored in Chapter 

2 – if there is a strong relationship between the two types of organic carbon, it is plausible 

that factors thought to be associated with a change in DOC concentrations, will also be 

associated with a change in TOC concentrations. 
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  Several explanations have to been put forward to explain the recent observed increase in 

DOC concentrations.  Freeman et al., (2001a) have associated observed increases in DOC 

with the rising temperatures over the previous decades.  Worrall et al., (2004) explains that an 

increase in temperature, leads to greater microbial activity and enhanced decomposition of 

peat and thus increased production of DOC; but, it is unlikely that temperature increases 

alone could explain the observed DOC concentrations. However, increases in temperature 

can lead to a greater draw-down of water tables in the summer, especially when rainfall is 

low, which in turn increases the depth of the zone of oxidation and production of DOC 

(Evans et al., 2002).  Having said this, Worral et al., (2004) believe that changes in 

temperature and water table depths are not the only factors which will have influenced 

changes in DOC concentrations, other factors will also contribute.  Naturally, drought can 

also cause the water-table depth to drop, and once the water tables have recovered, can 

trigger anaerobic production of DOC (Worrall et al., 2007).  However, as the water tables 

decline during a drought, Clark et al., (2005) suggest that sulphides low in the peat profile are 

oxidised, generating high sulphate concentrations that suppress the DOC release; but, as the 

water table rises, decreasing sulphate inputs could also increase DOC release.  The frequency 

and severity of droughts is thought to be increasing as a result of climate (change) (Sniffer, 

2006). 

  Krug and Frink (1983) proposed that the increasing levels of DOC concentration in the UK 

could be explained by the decreasing mineral acidity, particularly sulphate (and possibly also 

nitrate).  Sulphate deposition has led to acidification particularly in areas where the soil and 

geology have limited buffering capacity. The deposition is thought to have suppressed soil 

microbial activity and so DOC production. As regulation has controlled the emission of 

sulphate from industrial sources since the 1980s, deposition to land and water has returned to 

more natural levels and ecosystems have gradually recovered. It is thought that the reduction 

in sulphate deposition has allowed soil microbial activity to return to more natural levels 

which has increased DOC production.  This argument was supported by Evans and Monteith 

(2001), as they stated that UK uplands are showing signs of recovering from acidification and 

suggested that increasing DOC concentrations could be correlated with this behaviour.  

Whereas acidification of rivers and lochs can be a direct result of a discharge of 

contaminants– nitrates are often washed into surface waters (from nearby farms) during 
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heavy rainfall; most sulphate inputs are from the deposition of sulphate released from 

combustion processes. 

Based on studies of DOC concentrations in lakes and streams in Sweden, during the 1970s 

and 1980s, Tranvik and Jansson (2002) argued that the increase in DOC could be possibly 

explained by changes in hydrology i.e. a decreasing discharge could result in increasing DOC 

concentrations.  The observed increase in DOC coincided with decreases in temperature and 

increased precipitation – where increased precipitation during this time period, led to an 

increased run off from wetland areas and hence an increased DOC flux to these catchments.  

Alternatively, Worrall et al., (2003) suggested that the increase in DOC could be possibly 

explained by a change in the flow path through the soil, allowing richer sources of DOC to be 

accessed. 

  It is thought that changes to the land management surrounding surface waters (rivers, 

lakes, streams etc) could possibly explain increases in DOC concentrations.  Worrall et al., 

2004) explain that afforestation of upland peat, can lead to a significant loss of carbon 

storage.  A disturbance, such as afforestation, will lead to high values of DOC being recorded 

in the catchment, followed by a sharp decline (Worral et al., 2004).  Upland peat is not only 

altered by afforestation - draining used to be a popular practice to improve grazing.  Drainage 

makes the water table deeper below the surface (so could be considered a decrease in 

elevation above sea level or an increase in depth below the surface) and provokes DOC 

production (due to the increased oxygen supply, as described earlier).  Legislation introduced 

in 1995 prevented further drainage of peat and could possibly explain changes in DOC trends 

observed after this time period. 
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1.3 SEPA: Sampling and Measuring of Data 

 

  The Scottish Environment Protection Agency (SEPA) has provided the data for the 

purpose of this research.  SEPA has provided data on the levels of TOC and DOC 

concentrations recorded in 333 river sites (time series between: 1983-2010) and 187 loch 

sites (time series between: 1994-2010) across Scotland; but also provided data for a selection 

of covariates as discussed in Section 1.3.2.  SEPA monitors sites approximately once a month 

or once a fortnight.  Due to independent research projects carried out by SEPA, sampling at 

some particular sites has been carried out more frequently. 

 

1.3.1 SEPA: Measuring DOC and TOC Concentrations 

 

  Water samples are generally collected at the river or loch bank, with the exception of a few 

boat based samples taken from lochs.  The sampler reaches out, filling a 100 ml Pyrex glass 

bottle (to ensure accurate analysis, the glass bottles are free of any organic contaminants), 

avoiding any local contamination such as dead sheep or detritus.  The glass bottles are then 

taken back to the SEPA lab for analysis.  All samples are analyzed within 8 days of being 

collected.  Depending on which region of Scotland, the DOC and TOC concentrations in the 

sample are measured using one of two methods.    However, inter-comparisons tests have been 

run between the labs, which show that no significant difference is caused by the different 

techniques.  (SEPA Chemistry
1
) 

 

  In the SEPA’s South East and South West region, TOC concentration levels are determined 

using chemical oxidation and an Aurora 1030W TOC Analyser. The samples are introduced 

to the reaction vessel of the instrument where the total inorganic carbon (TIC) is removed. 

Orthophosphoric acid is added to the sample and the acidified sample is sparged with a 

stream of inert gas as bicarbonates in the sample dissociate to CO2. The resulting gas flow is 

vented for the pre-programmed sparge time. After TIC removal, sodium persulphate 
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(Na2S2O8), a strong oxidizer, is added. This oxidant quickly reacts with organic carbon in the 

sample at 100 °C to form carbon dioxide. When the oxidation reaction is complete, the 

carbon dioxide is purged from the solution and routed to the NDIR (nondispersive infrared) 

detector that is sensitive to the specific absorption for the wavelength of carbon dioxide. 

(Sepa Chemistry
1
) 

  In the SEPA’s North region, thermal oxidation is used. Following acidification and 

subsequent purging with purified air to remove inorganic carbon (carbonates, bicarbonates, 

dissolved CO2 etc.), samples are injected into a high temperature reactor where, in the presence 

of a carrier stream of purified air and an oxidation catalyst, elemental and organic carbon are 

converted to carbon dioxide. The resulting gaseous mixture is swept from the reactor and 

following cooling, drying and removal of halogen compounds, the CO2 content is measured in 

a Non-Dispersive InfraRed (NDIR) detector.  The output of the detector is continually 

monitored by the system’s software and the area of the resulting signal peak is converted into a 

concentration of carbon by comparison with a calibration curve.  (SEPA Chemistry
2
) 

  Dissolved Organic Carbon is measured in the same way as Total Organic Carbon, but 

samples are filtered (within 3 days of sampling) before analysis to remove any particulate 

material and leave only dissolved organic carbon (for both thermal and chemical oxidation).  

SEPA now use a 0.45 µm filter for all samples, but in the past the South East region used a 

1.2 µm filter.  This will have led to some differences in what is being measured in different 

locations, but generally the particulate material only makes up a small proportion of the TOC, 

so the effect of the different filter pore sizes is likely to be small in most cases - it may be 

more important for more silty samples, for example, after heavy rainfall. 
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1.3.2 Covariates 

 

  For each of the sites, SEPA recorded the DOC and TOC concentrations, as described earlier; 

but also, recorded physical and chemical properties of the sites.  For the purpose of this 

thesis, SEPA has provided data for the following covariates: temperature (degrees Celsius), 

pH, alkalinity, nitrate concentration (mg/l), sulphate concentration (mg/l) and river flow 

[note: river flow was only recorded at 49 river sites].  Similar to the DOC and TOC, sampling 

frequency for chemical parameters was on a fortnightly or monthly basis.   

Temperature is measured in the field at the time of sampling using either a conventional 

thermometer or digital thermometer which has been calibrated.   

The pH of a solution is defined by the equation: pH = -log aH where aH is the activity of 

hydrogen ions in the solution expressed in gram-moles/l (pH levels fall into a scale between 0-

14).  The pH of a sample is measured using an electrochemical probe which is dipped into the 

sample.  The alkalinity of natural or treated waters is usually due to the presence of 

bicarbonate, carbonate and hydroxide compounds of calcium, magnesium, sodium and 

potassium.  Alkalinity is measured by titrating the sample with acid to an endpoint of pH 4.5 

(pH 4.2 for samples with very low level alkalinity) measured against the pH probe.  There are 

two different types of apparatus which have been used by SEPA to measure the levels of pH 

and alkalinity: the radiometer TITRALAB TIM 900; and the Metrohm Autotritator.  However, 

QC and inter-lab proficiency schemes do not indicate any significant differences between the 

two forms of measurement (SEPA chemistry 
3
, SEPA chemistry 

4
).   

The term ‘loading’ is often used when discussing river chemistry – it refers to the amount of 

TOC or DOC passing a given point on the river in a given time for a given volume (1 litre).  

For example, if the concentration is 2 mg/l, a small stream with a flow of 1 m
3
/s will have a 

loading of 100012  mg/s.  The factor 1000 is the conversion of m
3
 to 1 litre. 

 

  SEPA measure nitrate and sulphate levels in the lab (separately), using an instrument known 

as the ‘Konelab 30 Analyser’.  Nitrate levels are measured based on the methods for the 

examination of waters and associated materials, outlined in ‘Oxidised Nitrogen in 
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Waters’(1981); similarly, sulphate levels are measured based on the methods for the 

examination of waters and associated materials, outlined in ‘Sulphate in Waters, Effluents 

And Solids’ (2
nd

 Edition, 1988). 

  Based on the data available for covariates, the relationship between each of the covariates 

and the organic carbons can be explored; but, also, the covariates data can be used to possibly 

explain the different DOC and TOC trends and patterns present at each of the sites. 

 

1.4 Missing Data and Time Series 

 

Missing SEPA data can be due to numerous factors: poor weather conditions; staff 

absences; instrument and analytical difficulties; or revisions to the monitoring plan.  Remote 

sites can be difficult or dangerous to reach during heavy rainfall; or impossible to sample, if 

frozen over during the winter.  The original aim of the thesis was to consider the trends of 

DOC and TOC across Scotland; but, after exploring the data available for both organic 

carbons, it became apparent that there were large portions of missing data across the years, 

with regards to DOC and TOC – distinctly more so for the DOC data.  Hence, the decision 

was made, and agreed with SEPA, to focus on TOC.  Data imputation was discussed, but the 

decision was made to work with the TOC data available – missing data does not present a 

problem for the standard regression techniques which shall be used later in this thesis for 

analysis.  For both river and loch sites, missing values were present in the following 

covariates: pH, alkalinity, temperature, nitrate and sulphate.  Due to the seasonal behaviour of 

temperature, the missing temperature values were imputed (as discussed in Section 2.7) and 

used in the analysis; however, the missing values of the other covariates (pH, alkalinity, 

nitrate and sulphate) were not imputed.   

There was a wide variability in the lengths of time series.  Hence, the most common lengths 

of time series are summarised in Figure 1.4.1.  The pie charts highlight the increase in the 

number of sites added to the study in the past five years – the highest percentage of time 

series falling into this category for both rivers and lochs.  There are only 3% of the river sites 
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Other

1995-2010

2000-2010

2005-2010

Percentage Of Loch Sites With The Following Length

Of Time Series

13.6%

7.57%

12.43%

66.4%

Other

1984-2010

1990-2010

2000-2010

2007-2010

Percentage Of River Sites With The Following Length

Of Time Series

28.94%

3%

23.16%

8.44%

39.46%

with a time series greater than 20 years – the longest being between 1984 and 2010; and only 

7.57% of loch sites with a time series greater than 10 years – the longest being between 1995 

and 2010.  (Note, “Other”, refers to those sites which had a time period which did not fall 

into the main categories noted, and generally, sites with fairly small time series). 

 

                                                                  (a)                                                                                   

 

                                    

  

 

 

 

 

         (b)      

      

 

 

 

 

 

Figure 1.4.1: Summary of length of time series at river (a) and loch (b) sites with regards to the 

TOC data available. 
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1.5 Overview of Thesis 

   

This thesis aims to: 

 Carry out a detailed investigation into the trends of total organic carbon in Scottish 

rivers and Scottish lochs. 

 Investigate environmental and physical factors which could possibly be driving any 

of the observed trends of total organic carbon in Scottish rivers and Scottish lochs. 

 Measure the coherency of the total organic carbon levels between different sites 

located in Scottish regions. 

 Find a model which suitably explains the behaviour of total organic carbon across 

rivers and lochs in Scottish regions. 

 

  To gain an initial impression, Chapter 2 explores the trends and seasonal patterns of TOC 

across Scotland, but also, investigates the relationship between TOC and the different 

covariates.  The relationship between TOC and DOC is also explored graphically and 

formally. 

Following from this, Chapters 3 to 6 explore the behaviour of TOC in a more formal manner 

– the thesis aims to move from capturing the behaviour of TOC at one single site, to 

understanding the trends, and what factors are driving these trends, across Scotland. Chapter 

3 simply starts with considering a selection of individual sites and explores the use of 

parametric and non-parametric regression techniques, to suitably model the TOC.  Moving on 

from this, Chapter 4 (in detail) considers the trend of TOC over time and space in the River 

Dee network.  Unlike Chapter 3, more than one site is being considered.  Hence, Chapter 4 

discusses finding a model which suitably captures the trends over time and space, which 

takes into account the location of sites and their relationship to one another (with regards to 
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river flow and distance).  The River Dee network is still being considered in Chapter 5; 

however, after finding a suitable model in Chapter 4, Chapter 5 aims to measure the 

coherency between the sites and distinguish common trends within the time series.  Chapter 5 

then considers measuring coherency on a larger scale than the River Dee network - the 

coherency between river and lochs sites (separately), in a selection of Scottish regions is 

explored in detail.  Having investigated the coherency between the river and loch sites 

(separately) in Chapter 5, Chapter 6 aims to build a model which appropriately captures the 

behaviour of log TOC in each region, taking into consideration time and space. Finally, 

Chapter 7 ends with a summary and discussion of the findings within the thesis and also 

discusses possible future work. 

  



  14 

 

 

 

Chapter 2  

Exploring Trends, Seasonality and 

Relationships 

 

  In this chapter, graphical tools shall be used to gain an initial impression of the distribution 

of Total Organic Carbon at river and loch sites across Scotland.  This chapter explores 

different transformations of the data to find a suitable way of stabilizing the variability in 

TOC levels across the years.  Having found an appropriate transformation of TOC values, 

scatter plots, box plots and descriptive statistics are used to investigate the trends and 

seasonal patterns.  After exploring the trends and seasonal patterns, this chapter will then 

switch its focus to obtaining an understanding of the relationships between the transformed 

TOC values and different covariates.  The covariates under investigation are: temperature 

(degrees Celsius), alkalinity, pH, flow (m
3
s

-1
) [only data available for 49 sites], nitrate (mg/l) 

and sulphate (mg/l).  Before exploring the relationship between the transformed TOC values 

and the different covariates, certain issues regarding the covariates had to be addressed.  

Similar to TOC, the distribution of the data (for each covariate) was examined and different 

transformations performed.  Also, issues regarding values at the limit of detection, with the 

covariates nitrate and sulphate, will be discussed in this chapter, as well as suitably imputing 

missing temperature values. 
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2.1  Initial Impression of Total Organic Carbon  

 

To gain an initial impression of the distribution of TOC in rivers and lochs, the levels of 

TOC from all sites (for rivers and lochs separately) were simply plotted against time, as 

Figure 2.1.1 [(a) and (d)] displays.  Figure 2.1.1 [(a) and (d)] highlights the non-constant 

variability in the data over time, but also, highlights possible outliers in the data.  Therefore, 

in order to stabilize the variability, different transformations of the data were explored.  It 

was found that taking the log of each value seemed to be the most appropriate for both river 

and lochs, as Figure 2.1.1 [(b) and (e)] displays, respectively.  However, it is clear that even 

after the log transformation, outliers were still present.  Hence, values that were deemed 

(based on visual exploration of the data) to be outliers were removed from the data set – 

0.14% of TOC values were removed from the rivers and 0.06% of the TOC values were 

removed from the lochs.  Having removed the outliers, the log TOC was plotted against time 

again, as seen in Figure 2.1.1 [(c) and (f)] for rivers and lochs, respectively.    

Inspecting Figure 2.1.1, allows an insight into the trends of log TOC present in rivers and 

lochs.  Considering Figure 2.1.1 (c), the plot suggests that the levels of log TOC in the river 

sites seems to steadily increase from 1985 until the early 2000’s, after which the values start 

to “level off”.  The plot effectively highlights the wide variability at the beginning of the time 

period and between 2007 and 2010.  The latter is most likely due to the increase in number of 

sites being monitored by SEPA. 

  Figure 2.1.1 (f) emphasizes the missing data for the loch sites between 1993 and early 2000; 

however, from the data available, it appears that the lochs follow a similar pattern to river 

sites with regard to log TOC (although, the pattern is a little weaker and there seems to be 

less variability in the values). 
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           (c)       (d) 

 

 

 

 

 

 

              (e)        (f) 

 

 

 

 

 

 

 

Figure 2.1.1: Scatter plots of TOC again year at river (a) and lochs sites (d); Log TOC against 

year at river (b) and loch (e) sites; Log TOC against year with outliers removed at river(c) and 

loch (f) sites. 
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The river sites seem to have a lower level of log TOC than lochs on average – rivers having 

a mean value of 1.68 mg/l compared to the 1.79 mg/l of lochs.  This is not unexpected as 

lochs are generally located in areas with peatier, higher carbon soil, so likely to have more 

inputs than rivers.  The wider variability of the log TOC values in river sites than loch sites is 

supported by the quartile ranges expressed in Table 2.1.1.  However, it is important to 

remember, that there are log TOC data from 333 river sites, compared to the 187 loch sites 

being considered – so that, the difference in variability could be due to the smaller number of 

lochs. 

 

 

Summary of Log TOC Levels (mg/l) at the 333 River Sites 

Minimum 1
st
 Quartile Median Mean 3

rd
 Quartile Maximum 

-1.89 1.16 1.64 1.68 2.2 4.24 

Summary of Log TOC Levels (mg/l) at the 187 Lochs 

Minimum 1
st
 Quartile Median Mean 3

rd
 Quartile Maximum 

-1.14 1.41 1.78 1.79 2.13 4.09 

 

Table 2.1.1: Summary of log TOC levels (mg/l) at river and loch sites 
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2.2 Specific Trends of Log TOC in Rivers and Lochs 

   

In Section 2.1, the levels of TOC and log TOC at the river and loch sites were explored as a 

whole, providing an indication of the overall trend.  However, studying the levels of log TOC 

at the individual river and loch sites is more beneficial, as it allows the trends of the sites to 

be looked at in more detail.  A selection of the sites have been chosen to represent the most 

common trends of different river and lochs sites over the different lengths of time series.  

Figures 2.2.1 and 2.2.3 presents the trends at ten sites on each plot, for rivers and lochs 

respectively; and Figures 2.2.2 and 2.2.4 look at the trends of a selection of individual river 

and loch sites in more details.  A loess curve (which is based on weighted least squares) has 

been fitted to the plots in Figure 2.2.2 and 2.2.4 to highlight the presence of any trends. 

The individual river sites displayed Figure 2.2.1 [(a)-(e)] suggests that the levels of log TOC 

either remains fairly flat between early 2000 and 2010 or shows signs of a slight decrease.  

The more detailed plots of the River Etive and Tower burn in Figure 2.2.2 [(a) and (b)] also 

support this impression.  The missing data around 2005 in many of the river sites is also 

highlighted in Figure 2.2.1 and in the Rivers Almond and Lossie in Figure 2.2.2 [(c) and (d)].  

For the river sites with data available from 1983, the level of log TOC seems to steadily 

increase up until the early 2000’s (as shown in detail by the River Quoich in Figure 2.2.2 (e)), 

after which, the sites follow the same pattern of those with data between the early 2000’s and 

2010 – the log TOC levels either level off or slightly decrease. 

 

Comparing the river to loch sites, there appears to be similarities between the trends 

displayed in Figures 2.2.1 and 2.2.3: the level of log TOC in lochs appears to increase from 

the early 1990’s until the early 2000’s, which is followed by a levelling off or slight decrease 

in levels.  But, this comparison, again, highlights the wider variability of log TOC levels 

present in rivers sites, similar to Section 2.1.  Figures 2.2.3 [(a)-(e)] and 2.2.4 [(a)-(e)] also 

stress the missing data present at individual sites – Loch Glashan in Figure 2.2.4 (e) 

represents a group of loch sites that have large periods of missing data between 1995 to 2000. 
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Figure 2.2.1: Scatter Plots of Log TOC against Year at a selection of river sites, with 10 Sites 

displayed on each plot. 



  20 

 

2006 2007 2008 2009 2010 2011

-2
-1

0
1

2
3

4

Years

L
o

g
 T

O
C

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/l
)

Log TOC Concentrations Across the 

Years in the River Etive

2007 2008 2009 2010 2011

-2
-1

0
1

2
3

4

Years

L
o

g
 T

O
C

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/l
)

Log TOC Concentrations Across the 

Years in Tower Burn

2002 2004 2006 2008 2010

-2
-1

0
1

2
3

4

Years

L
o

g
 T

O
C

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/l
)

Log TOC Concentrations Across the 

Years in the River Almond

1985 1990 1995 2000 2005 2010

-2
-1

0
1

2
3

4

Years

L
o

g
 T

O
C

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/l
)

Log TOC Concentrations Across the 

Years in the River Quoich

1990 1995 2000 2005 2010

-2
-1

0
1

2
3

4

Years

L
o

g
 T

O
C

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/l
)

Log TOC Concentrations Across the 

Years in the River Lossie - Arthurs Bridge

 
(a)    (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                      (c)                                                               (d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   (e) 

     

 

 

 

 

 

 

 

 
 

 

Figure 2.2.2: Scatter Plots of Log TOC against year at a selection of individual river sites with a 

lowess curve fitted. 
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Figure 2.2.3: Scatter Plots of Log TOC against year for a selection of loch sites.  10 sites 

displayed on each plot. 
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Figure 2.2.4: Scatter Plots of Log TOC against year for a selection of individual loch sites with a 

lowess curve fitted. 
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2.3 Seasonality of Total Organic Carbon in Rivers and 

Lochs 

 

Section 2.2 explored the presence of trends; but, exploring the presence of any seasonal 

patterns at the sites is also important.  In order to obtain an initial impression of the 

seasonality, the log TOC levels were plotted against the day of the year in which they were 

sampled e.g. 1
st
 February relates to the 32

nd
 day of the year.  The seasonality of individual 

sites was explored at a selection of river and loch sites, as Figures 2.3.1 and 2.3.2 displays – 

again, a loess curve is fitted to a selection of plots to highlight any seasonal patterns.  

Considering the plots in Figures 2.3.1 and 2.3.2, the log TOC levels appear to be following a 

seasonal pattern, in both rivers and loch sites. The levels of log TOC appears to be lowest 

during early spring, which is followed by a gradual increase until early autumn, when the log 

TOC levels decline.  Log TOC levels seem to be at their highest during the month of 

September, for both rivers and lochs.  Comparing Figure 2.3.1 to Figure 2.3.2, would suggest 

that the river sites appear to have a stronger seasonal pattern and a wider variability of log 

TOC levels (in all seasons), than the lochs – similar to the trends discussed previously. 
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Figure 2.3.1: Scatter Plots of Log TOC against day of the year for a selection of river sites (a)-

(c); and plots of individual river sites with a loess curve fitted (d)-(e). 
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Figure 2.3.2: Scatter Plots of Log TOC against day of the year for a selection of loch sites (a)-(c); 

and plots of individual river loch with a loess curve fitted (d)-(e). 
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2.4 Relationship between TOC and DOC 

 

  As explained previously, there was a lack of available data for dissolved organic carbon, so 

the decision was made to only consider the behaviour of TOC.  However, a question of 

interest remains – is there a strong relationship between DOC and TOC?  If the two organic 

carbons are highly correlated, it is possible that factors associated with a change in TOC, 

would also be associated with a change in DOC.    

  Thus, to gain a subjective impression of the relationship between the two organic carbons, 

the TOC and DOC values were simply plotted using a scatter plot.  Note, since section 2.1 

found the log transformation of TOC to be appropriate, a log transformation of DOC was also 

performed, and these values used for analysis.  When plotting the data, it was essential to 

overcome some common environmental problems: there was differing amounts of data 

available for each variable; they were not necessarily collected on the same date; and there 

was missing data.  Hence, the data had to be matched in an appropriate manner to allow an 

investigation into their relationship.  At first, an attempt was made to class a value, sampled 

on a certain date, as the fortnight of that year in which it fell.  For example, the 8
th

 January 

2005, would be the first fortnight in the year 2005.  But, this was not effective, as it failed to 

provide an adequate number of pairs for analysis.  Therefore, the window of matching was 

increased to a month, so that a sample from the 8
th

 January 2005, would be classed as month 

1 of the year 2005.  If there was 2 samples in a given month, of a given year, an average of 

the two values would be taken and used for analysis (although two samples in a given month 

was rare).  Note, for the purposes of the rest of this chapter, and the proceeding chapters, the 

log TOC and covariates samples were classified in this manner, with regards to the date on 

which they were sampled. 

  Having found a suitable method for matching the data, a selection of river and loch sites 

were chosen for analysis.  At each of the sites, the log DOC was plotted against the log TOC, 

as Figure 2.4.1 [(a) and (b)] displays.  In both river and lochs, there seems to a strong 

relationship between TOC and DOC.  The scatter plot suggests that TOC and DOC are highly 

associated with each other: at river and loch sites, as the level of log TOC increases, the level 

of log DOC also appears to increase.  
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Plotting the data provided an informal insight into the relationship.  Hence, a formal 

technique, known as the Spearman’s rank correlation coefficient test of association (Best & 

Roberts, 1975), between the two variables, was implemented.  [Note, Pearson’s test of 

association was also considered, but provided very similar results (Hollander & Wolfe, 

1973)].  The closer the Spearman’s correlation coefficient is to 1, the higher the positive 

association between the two variables. 

 

(a) (b) 

 

 

 
Figure 2.4 1: Scatter plots of log TOC against log DOC at a selection of river (a) and loch (b) 

sites. 
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Relationship Between Log TOC and Log DOC 
Rivers Lochs 

Site Rho Coefficient Site Rho Coefficient 
Eye Water at Ayton Bridge 0.91 Leven 0.68 

Whiteadder Water 0.99 Gelly 0.68 

Blackadder Water Foot 0.99 Achray 0.95 

Tweed at Norham Gauge 0.99 Katrine 0.76 

Tweed at Dryburgh 0.99 Gladhouse Reservoir 0.88 

Earn at St.Fillans 0.89 Tay 0.87 

Earn at Crieff 0.94 Rannoch 0.96 

Earn at Forteviot 0.98 St. Marys 0.94 

Ruthven 0.97 Rescobie 0.88 

Eye Water Gauging Station 0.98 Earn 0.85 

 

Table 2.4.1: Spearman’s Rho coefficients for the correlation between a selection of river and 

loch sites. 

 

  Table 2.4.1 shows the coefficients for the sites displayed in Figure 2.4.1.  The Spearman’s 

rank correlation coefficients were fairly close to 1, for most of the river and loch sites (with 

the exception of Loch Gelly and Loch Leven, which still had a reasonably high level of 

association).  The formal and informal testing of the relationship between log TOC and log 

DOC at this selection of river and loch sites suggests that there is a strong association 

between the two types of organic carbon across Scotland.  Therefore, based on this, it seems 

plausibly, that the trend and seasonal patterns displayed in TOC may be similar to that of 

DOC.  Furthermore, it is possible that factors found to be plausible drivers of such trends and 

seasonal patterns may also have a similar effect on DOC.  Lower correlations for lochs might 

suggest that there are additional processes affecting TOC here e.g algal growth and seasonal 

stratification/turn over in some lochs. 
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2.5 Further Exploratory Analysis – Log TOC 

Relationships With Covariates 

   

This section shall focus on the covariates, specifically, their relationship with log TOC.  

Similar to Section 2.1, the data for each of the covariates was plotted over time to attain an 

idea of the distribution.  After plotting, it became evident that there was a wide variability in 

the alkalinity, sulphate (mg/l), nitrate (mg/l) and flow data for both rivers and lochs [Note, 

only flow data for rivers].  Hence, similar to Section 2.1, different transformations of the data 

were taken and it was found, that the log transformation stabilized the variability in the 

covariates data appropriately.  Figure 2.5.1 provides an example of the effective use of the 

log transformation with regards to the river flow data available for the 49 river sites.  

Therefore, throughout this thesis, the log transformation of the alkalinity, sulphate, nitrate and 

flow data shall be used for analysis. 

 

(a)      (b) 

  

Figure 2.5.1: Time series of river flow at 49 sites with (a) and without (b) the use of the log 

transformation. 
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  Having inspected the distribution of the covariates, the log TOC of the rivers and lochs 

could be plotted against each of the covariates to gain an initial impression of their 

relationships.  Figures 2.5.2 [(a)-(f)] and 2.5.3 [(a)-(e)] present log TOC plotted against 

temperature, log flow (rivers only), pH, log alkalinity, log sulphate and log nitrate at the river 

and loch sites, respectively. 

 

Comparing Figures 2.5.2 [(a)-(f)] and 2.5.3 [(a)-(e)], allows an insight into whether the 

physical and chemical effects on log TOC are similar in rivers and lochs.  It seems plausible, 

that the levels of log TOC in both, rivers and lochs, increases as the temperature of the water 

increases as displayed in Figure 2.5.2 (a) and Figure 2.5.3 (a)- the highest values of log TOC 

occurring in temperatures of 12-15 degrees Celsius.  This suggests that TOC is similar to 

DOC, in the respect that an increase in temperature leads to great microbial activity, which in 

turn, increases the production of TOC. 

 

With regards to the effects of pH on log TOC, an overall pattern is not clear.  The effects 

of the variables appear to be site specific in both rivers and lochs.  For example, Figure 2.5.2 

(c) shows in the River Carrick Lane, that an increase in pH level, is associated with an 

increase in log TOC - this river is located in the south west of Scotland (Galloway Hills) and 

so is likely to have been strongly impacted by historical sulphate deposition and acidification.  

But, this is contrasted by the behaviour observed at Lyne Water Foot [Figure 2.5.2 (c)]: an 

increase in pH level is associated with a decrease in log TOC levels.    In the scatter plots (for 

lochs) of log TOC against pH, seen in Figure 2.5.3 (b), the points collectively resemble a sine 

curve, highlighting the site specificity of the effect of pH on log TOC.  An increase in pH at 

some lochs is associated with an increase in log TOC – e.g Castle Loch (similar to the River 

Carrick Lane, this loch in Dumfries and Galloway is likely to have been strongly impacted by 

historical sulphate deposition and acidification); but, at other loch sites, it is the contrary, as 

Loch Strathclyde displays (however, Loch Strathclyde is an artificial water body which was 

created in the 1970s on an old mining site and is likely to have experienced a variety of 

pressures different from those in natural and remote locations). 

Considering the plot of log TOC against log alkalinity in Figure 2.5.2 (d), it highlights that 

the effects seem to be differ with each river site.  An increase in log alkalinity at Hope River 
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is associated with an increase in log TOC; however, as seen in Tarf Water – Mindork Bridge, 

an increase in log alkalinity is associated with the log TOC levels dropping.  In contrast, 

observing the behaviour in the lochs, an increase in log alkalinity seems to be associated with 

an increase in log TOC at each of the sites, as seen in Figure 2.5.3 (c). 
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Figure 2.5.2: Scatter plots of log TOC against temperature (a), log flow (b), pH (c), log alkalinity 

(d), log sulphate (e) and log nitrate (f) at a selection of river sites. 
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Figure 2.5.3: Scatter plots of log TOC against temperature (a), pH (b), log alkalinity (c), log 

sulphate (d) and log nitrate (e) at a selection of loch sites. 
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The coloured points used in Figures 2.5.2 [(c) and (d)] and 2.5.3 [(b) and (c)], highlight 

that the pH and log alkalinity levels of each site do not seem to have a wide variability. 

   Subjectively, considering Figure 2.5.2 [(e) and (f)] and Figure 2.5.3 [(d) and (e)], it does 

not seem likely that the levels of log nitrate or log sulphate influence the levels of log TOC in 

either river or loch sites.  The log TOC levels remain fairly flat, regardless of any increase or 

decrease in the log nitrate or sulphate concentration of the water. 

  As possibly expected, Figure 2.5.2 (b) demonstrates that an increase in the river flow is 

associated with an increase in log TOC.  An increased river flow is generally due to heavy 

rainfall, which can cause organic carbon to be washed into the water from the soil in the 

catchment. 

 

2.6 Values at the limit of detection: Regression on Order 

Statistics (ROS) 

 

It is clear from Figures 2.5.2 (f) and 2.5.3 [(d) and (e)], that the plots of log TOC against log 

nitrate in the rivers and log TOC against log nitrate and log sulphate in the lochs, that there 

appears to be a distinct vertical line of points on the left hand side of the plots.  These points 

are known as values at the limit of detection and are desctibed as left-censored observations.  

This was not an issue that affected either log DOC or log TOC.  Apparatus used to measure 

any element, has a minimum level which it is able to detect - this is known as the Limit of 

Detection.  In the cases in which a value is at the limit of detection – SEPA halves the value 

recorded, since it is believed that the true value will lie somewhere between zero and this value.  

If there were only a few values (generally less than 10%) at this limit of detection, common 

practice would be to ignore the issue.  However, that is not the case, with log nitrate in rivers 

or log nitrate and log sulphate in lochs.  Hence, a method called regression on order statistics 

(ROS) can be used (Helsel, 2005).  It is a semi-parametric method for computing summary 

statistics of a distribution where there is left censored or non-detect data.  Left censored 

observations are modeled using a linear regression model of the observed un-censored values 

against their normal quantiles.  The ROS method requires the same key assumptions as linear 
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regression: that the response is a linear function of the explanatory variable or variables and 

that the variance is constant.  However, since it is extremely common in environmental 

contexts that the variables of interest are skewed, a log transformation of the data is often 

taken prior to application of the ROS method. (Helsel, 2005). 

 

Figure 2.6.1 shows an example of this regression on order statistics technique in practice.  

Figure 2.6.1 shows the log nitrate levels in the River Muick – Allt Darrarie with the values 

clearly at the limit of detection; and the log nitrate levels after performing Helsel’s method.   

 

From visual inspection, it seems that the technique is effective and statistically sound.  From 

this point on, the log nitrate levels in the rivers, and the log nitrate and log sulphate levels in 

the lochs, shall be computed using ROS if they are deemed to be at the limit of the detection. 

 

 

 

Figure 2.6.1: Time series of log nitrate (mg/l) with and without the ROS computation at the 

River Muick – Allt Darrarie. 
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2.7 Predicting Temperature 

   

After plotting the log TOC levels against temperature at the river and loch sites, and then 

having a closer look at the data available for each site, dealing with the missing temperature 

values became of interest.  As temperature tends to follow a seasonal pattern, predicting the 

missing temperature values could be achieved in a sensible manner.  The missing temperature 

values were simply replaced with the mean temperature value of the month in which it was 

missing.  For example, if the temperature value of Loch Kilbirnie was missing in January 

2005, then, the temperature of Loch Kilbirnie in January 2005 would be predicted as being 

the mean of all the observed January temperatures over the time series.  Figure 2.7.1 displays 

the temperature values over the years at Loch Kilbirnie, with and without the predicted 

values.  Figure 2.7.1 highlights that the predicted temperature values at Loch Kilbirnie seem 

to fit in with the rest of the data effectively.  This method shall be performed on all the 

missing temperature values at all river and loch sites. 

 

 

Figure 2.7.1: Time series of log TOC (mg/l) against temperature (degrees Celsius) with and 

without predicted missing temperature values. 
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2.8 Conclusions 

 

The aim of Chapter 2 was to explore the data – firstly, to explore the trend and seasonal 

pattern of TOC, and then to explore the relationships between TOC and DOC, but also, the 

relationships between TOC and the covariates.   

Section 2.1 highlighted that log transformation of the TOC, suitably stabilized the variability 

observed in the data.  Furthermore, the exploratory analysis suggested that the levels of log 

TOC in Scottish rivers and lochs are behaving in a similar manner to DOC studied in the 

Northern Hemisphere, North America, central Europe and Scandinavia (as Discussed in 

Chapter 1) – there has been an observed increase.  The levels of log TOC seemed to increase 

throughout the 1990’s in both rivers and lochs; it is not until the early 2000’s that the increase 

seems to weaken. 

Plotting the levels of log TOC against the day of the year in which they were sampled, 

allowed an inspection of any seasonal patterns.  The plots revealed a clear seasonal pattern in 

both, rivers and lochs – the log TOC levels seemed to be increasing from early spring until 

early autumn.  The seasonal pattern appears to be stronger in rivers. 

Having explored the trend and seasonal patterns, the relationships between log TOC and log 

DOC was of interest.  The use of scatter plots and correlation tests (Spearman’s and 

Pearson’s) suggested that there was a strong relationship between the two types of organic 

carbon. 

  An initial impression of the relationships between log TOC and the covariates could be 

gained through the use of scatter plots.  Similar to the ideas discussed in Chapter 1 by 

Freeman et al., (2001a) and Worrall et al., (2004), the plots suggest that temperature is also 

associated with an increase in log TOC levels in Scottish rivers and lochs.  Given the short 

time series for lochs, this may reflect seasonal temperature variation rather than long term 

year on year climate change.  Highest levels of log TOC are associated with a temperature of 

approximately 12-15 degrees Celsius. 
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  However, with regards to the effects of pH on log TOC, the effect seems to be site specific, 

for both rivers and lochs.  An increase in pH at one site is associated with an increase in log 

TOC; but, at other sites, it is the contrary.  The site specificity is similar in rivers, with 

regards to log alkalinity effects on log TOC; however, at loch sites, an increase in log 

alkalinity is associated with an increase in log TOC. 

   Unlike the other covariates, the levels of log nitrate or log sulphate do not seem to influence 

the levels of log TOC in either river or loch sites.  The log TOC levels remain fairly flat, 

regardless of any increase or decrease in the log nitrate or sulphate concentration in the water. 

Based on visual exploration, it seems likely that an increase in the river flow is associated 

with an increase in log TOC levels at the site. 

The plotting of the different covariates raised two issues – values at the limit of detection 

and missing values.  Log nitrate (in rivers and lochs) and log sulphate (in lochs) had values 

which were recorded at the limit of detection.  To overcome this issue, a technique known as 

regression on order statistics (Helsel, 2005) was implemented, which seemed to effectively 

deal with the problem.  Now, for the second issue – as temperature generally follows a 

seasonal pattern, the missing values could be predicted in a sensible manner by simple 

computation based on the monthly mean. 
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Chapter 3  

Modelling Trend, Seasonality and 

Covariates at Sites  

 

  The previous chapters have explored the trends and seasonality of log TOC, but also the 

relationship between log TOC and the different covariates.  However, only a subjective 

impression has been obtained.  The focus of this chapter shall be to investigate three river and 

three lochs sites.  Each site (approximately) represents different time periods of data available 

and were chosen on the basis that they are assumed to be representatives of the full data set.  

The river sites under study are: Callater Burn (1984-2010); Dall Bridge at Bridge Main Street 

(2006-2010); River Tweed above Gala Water Foot (2002-2010).  The loch sites to be 

considered are: Loch Kilbirnie – Beith (2000 – 2010); Loch Lomond – Creinch (1994-2010); 

and Loch Naver (2005 – 2010).  Studying sites with differing lengths of time series will 

provide an insight into whether the length of time period will have an effect on the observed 

trends; but, also, whether or not it will influence the relationships between log TOC and the 

different covariates at each of the sites.  In this chapter, suitable modeling techniques shall be 

explored and a final model shall be chosen to appropriately capture the behaviour of log TOC 

at each of the sites individually. 
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3.1 Initial Impression of the sites 

 

  The log TOC levels are plotted over time and against the day of the year in which they were 

sampled, to provide an insight into the trends and seasonal patterns present at each of the 

sites.  Studying Figure 3.1.1 [(a),(c) and (e)], suggests that the trend differs between sites.  At 

Callater Burn [Figure 3.1.1 (a)], there appears to be a consistent increase in log TOC levels 

from the early 1980’s, through until the early 2000’s – this constant increase is followed by a 

“leveling off” of the log TOC levels after the year 2004.  This “leveling off” of log TOC 

levels is apparent in most sites, after the year 2004.  The river sites Tweed above Gala Water 

Foot [Figure 3.1.1 (c)] and Dall Bridge [Figure 3.1.1 (e)], which have data available from a 

shorter time period than Callater Burn, maintain a constant level of log TOC throughout their 

time periods.   

 

  Switching our focus to Figure 3.1.2 [(a),(c) and (e)], the loch sites show a similar pattern to 

that of the river sites, with regards to trend.  However, the “leveling off” of log TOC levels 

occurs later.  At the Loch Lomond – Creinch site [Figure 3.1.2 (a)], the levels increase from 

the middle of the 1990’s, through until the year 2005.  It is from then, that the log TOC levels 

are fairly constant.  This trend is also seen in Loch Kilbirnie (Beith) [Figure 3.1.2 (c)], even 

with the shorter time period. Loch Naver [Figure 3.1.2 (e)], with five years of data, shows no 

significant trend, and behaves similar to the other two loch sites in their latter years. 

 

  Considering the seasonality of river sites in Figure 3.1.1 [(b),(d) and (f)], it seems fair to 

say, that the log TOC levels behave in a similar manner.  The lowess curve fitted to the plots, 

suggest that levels are lowest during late winter and early spring and gradually increase 

throughout the summer until early August.  This pattern is more evident at Callater Burn and 

Dall Bridge [Figure 3.1.1 (b) and (f)], than Tweed above Gala Water Foot [Figure 3.1.2 (d)] – 

Callater Burn and Dall Bridge are peatier catchments (more soil carbon) which plausibly 

explains the observed patterns.  A visual inspection of the plots in Figure 3.1.2 [(b),(d) and 

(f)], suggests that the seasonal pattern in the loch sites is not as strong – with the exception of 
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Loch Kilbirnie [Figure 3.1.2 (d)].  The seasonality of Loch Lomond and Loch Naver appears 

to be rather flat [Figure 3.1.2 (b) and (f)]. 
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Figure 3.1.1: Time series of log TOC (mg/l) at the three river sites [(a),(c) and (e)]; and 

seasonality plots of the three river sites [(b),(d) and (e)] with regards to log TOC levels. 
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Figure 3.1.2: Time series of log TOC (mg/l) at the three loch sites [(a),(c) and (e)]; and 

seasonality plots of the three loch sites [(b),(d) and (e)] with regards to log TOC levels. 
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3.2 Relationship Between Log TOC and Covariates 

 

  Similar to the previous sections, the relationship between log TOC and the covariates shall 

be explored through the aid of graphical tools.  Figure 3.2.1 [(a)-(f)] displays covariates 

which appeared to be associated with a change in log TOC levels at the three river sites.  

Figure 3.2.1 (a) suggests an increase in the log Alkalinity at Dall Bridge and Callater Burn, is 

associated with a decrease in the log TOC levels.  Figure 3.2.1 (b) suggests that an increase in 

the temperature is associated with an increase in log TOC at all three sites.  Figure 3.2.1 (d) 

suggests that log nitrate appeared to be associated with a decrease in log TOC levels only at 

the River Tweed.  Figure 3.2.1 (e) suggests that an increase in log sulphate is associated with 

a decrease in log TOC levels at Dall Bridge; but not associated with a change in log TOC 

levels at the other two sites.  Figure 3.2.1 (f) suggests that an increase in log flow at Callater 

Burn is associated with an increase in log TOC levels. 

  Figure 3.2.2 [(a)-(e)] leads one to believe, that unlike the river sites discussed previously, 

the covariates measured at the loch sites do not seem to have any strong relationship with the 

log TOC.  Figure 3.2.2 [(a) and (b), respectively] suggests that an increase in temperature or 

log alkalinity in Loch Naver, could possibly be associated with a change in log TOC levels – 

an increase in temperature (optimum temperature, once again, of approximately 10-15 

degrees Celsius), could be plausibly associated with an increase in log TOC levels; and an 

increase in log alkalinity could be associated with a decrease in log TOC.  Loch Kilbirnie 

(Beith) displayed a similar relationship with regards to temperature; but, the other covariates 

did not appear to show any strong relationships.  Considering the relationship between log 

TOC and the covariates, Figure 3.2.2 [(a)-(e)] reveals no evidence of any strong relationships 

at Loch Lomond (Creinch). 

From comparing Figures 3.2.1 and 3.2.2, it seems plausible that the physical and chemical 

factors have a different effect on log TOC levels in rivers and lochs. 
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               (a)                                                    (b) 

 
                                             (c)                                                     (d) 

 
    (e)                   (f) 

 
 

Figure 3.2.1: Log TOC plotted against temperature (a), log alkalinity (b), pH (c), log nitrate (d), 

log sulphate (e) and log flow (f) [Callater Burn only] at the river sites     
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     (a)                                                          (b) 

  
      (c)                                                           (d) 

 

 
(e) 

 
                                                                                                  

Figure 3.2.2: Log TOC plotted against temperature (a), log alkalinity (b), pH (c), log nitrate (d), 

log sulphate (e) at each of the loch sites. 
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3.3 Modelling Log TOC At Each Site 

 

    Exploratory analysis is useful in providing a subjective impression of which factors 

influence log TOC at different sites.  A natural progression from exploratory analysis is to 

move to performing formal analysis at each of the sites.  Formal analysis allows us to explore 

different modelling techniques with an aim of finding a model which appropriately explains 

the behaviour of log TOC at each site separately. 

 

3.3.1 Harmonic Regression 

 

From the exploratory analysis, it became clear that a trend over time was apparent in those 

sites with a longer time series; but, a seasonal pattern was evident in all of the sites.  Bearing 

this in mind, a sensible starting point would be to fit a model using harmonic regression. 

  Harmonic regression is used to incorporate seasonal patterns.  For a periodically oscillating 

observation y (log TOC), the sine function is used to build a regression model of the form 

 

  i=1,…,n   (3.3.1.1)                                                                                       

                                                                                    

where ti is an independent predictor variable that captures the time effect, (e.g. month), θ is an 

angle of the sine function, ε is an additive error term, and the remaining quantities are 

parameters that affect the nature and shape of the sine wave.  If in equation 3.3.1.1 we 

assume no temporal correlation exists among the error terms, then it may be reasonable to set 

εi ~ i.i.d. N(0, σ
2
) and view the model as relatively straightforward nonlinear regression.  If 

we make the further assumption, that the period p (e.g. 12 here) is known, then the model can 

be reduced to simpler multiple linear regression model.  That is, 
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               (3.3.1.2) 

 

the latter equality following from the well known trigonometric ‘double angle’ formula  

sin(ψ – φ) = sin(ψ) cos(φ) - cos(ψ) sin(φ).  For known p (months in the year), each of the 

terms in this expansion can be written in a simpler form.  Let ci = cos(2  ti /p) and si = sin 

(2  ti /p) be two new ( known) regression variables, and take β1 = - γ sin (2  θ/p) and β2 = 

γ cos (2  θ/p) as two new (unknown) regression coefficients.  Then, this simplifies to the 

following multiple linear regression (Piegorsch et al., 2005): 

 

                                                                 (3.3.1.3) 

 

Linear terms, such as ‘Year’ can be easily incorporated into the harmonic regression.  For 

example: 

 

                                               (3.3.1.4)                    

 

Which can also be written as a multiple linear regression: 

                                                       (3.3.1.5) 

The first step was to consider the trend and seasonality of the sites. Expression (3.3.1.5) was 

fitted to each of the sites.  If the p-value of a fitted term was not significant (i.e. p-value 

>0.05), the model was refitted.  A summary of the fitted multiple linear regression models 

can be seen in Table 3.3.1.1.  (Note, if either the sine or cosine term in the model has a p-

value < 0.05, both terms remain in the model, and deemed to be significant). 
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       (a)            (b) 

  
  
Figure 3.3.1.1: Trend and Seasonality Models fitted to the time series plots at the sites Callater 

Burn (a) and Loch Kilbirnie - Beith (b). 

 
Table 3.3.1.1: Summary of the final trend and seasonality models fitted to the three river and 

three loch sites. 
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Error 

Pr(>|t|) Adjusted R-

Sq 

 

 

 

Rivers 

 

Callater Burn 

Intercept -72.05 7.09 <0.001  

 

36.5% 
Year 0.04 7.1 <0.001 

Cos(Month) 0.01 0.01 0.86 

Sin(Month) -0.22 0.04 <0.001 

 

Dall Bridge 

Intercept 2.17 0.05 <0.001  

42% Cos(Month) -0.05 0.07 0.5 

Sin(Month) -0.37 0.07 <0.001 

Tweed above Gala 

Waterfoot 

Intercept 1.31 0.04 <0.001 15.1% 

Cos(Month) -0.07 0.05 0.19 

Sin(Month) -0.19 0.05 <0.001 

 

 

 

Lochs 

 

Kilbirnie 

Intercept -116.52 24.01 <0.001  

36.17% Year 0.06 0.01 <0.001 

Cos(Month) 0.03 0.05 0.48 

Sin(Month) -0.33 0.05 <0.001 

Lomond Intercept -42.27 13.83 0.003 9.4% 

Year 0.02 0.006 0.008 

Loch Naver Intercept 2.09 0.04 <0.001  

13.07% Cos(Month) -0.04 0.04 0.45 

Sin(Month) -0.15 0.05 0.004 



  50 

 

If we focus on the river sites at first, it was found when fitting the multiple linear regression 

(3.3.1.5), that the trend term (Year) was only significant at Callater Burn (p-value <0.05).  

Table 3.3.1.1 shows that coefficient for year is 0.04 at Callater Burn.  Thus, for any given 

month, on average, the level of log TOC is increasing by 0.04 mg/l for every one year 

increase at Callater Burn.  The sine and cosine terms fitted in the model were significant at all 

three sites.  Figure 3.3.1.1 (a) effectively shows the use of the harmonic regression – the trend 

and seasonal model fitted to Callater Burn (highlighted in blue) clearly shows the 

incorporation of the seasonal effect.  However, in saying that, Figure 3.3.1.1 (a), also 

highlights that there is a lot of unexplained variation, which is confirmed by an adjusted R-

Squared value of only 36.5%.  This was similar for the models fitted to the Rivers Dall 

Bridge and Tweed above Gala Water Foot - Table 3.3.1.1 displays the adjusted R-squared 

values of 42% and 15.1%, respectively.  

Fitting expression (3.3.1.5) to the loch sites revealed that the trend was significant at the sites 

Loch Lomond (Creinch) and Loch Kilbirnie (Beith).  Table 3.3.1.1 displays the coefficient 

for year at each site, respectively, to be 0.02 and 0.06.  Thus, for any given month, on 

average, the level of log TOC is increasing by 0.02 mg/l at Loch Lomond (Creinch) and 

increasing by 0.06 mg/l at Loch Kilbirnie (Beith), for every one year increase.  The seasonal 

terms were only significant at Loch Kilbirnie (Beith) and Loch Naver as Table 3.3.1.1 

displays.  Table 3.3.1.1 highlights the amount of unexplained variation in the data from the 

models fitted to Loch Kilbirnie, Loch Lomond and Loch Naver, with adjusted R-squared 

values of 36.17%, 9.4% and 13.07%, respectively.  The models do not seem to be an 

adequate fit to the data.  
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3.3.2 Auto-Correlation of Residuals 

 

When modelling the levels of log TOC at river and loch sites, it is plausible that the level of 

log TOC sampled one month, may be related to the level of log TOC sampled the following 

month.  The correlation between the residuals of linear models can be considered using auto 

correlation function (acf) and partial auto correlation function (pacf) plots.  In the case of a 

time series, autocorrelation measures the extent of linear relation between values at time 

points that are a fixed interval (the lag) apart.  For a random variable X at time t, the 

population autocorrelation function (ACF) for lag l, ρl, is given by 

 

                                                                    (3.3.2.1) 

where the numerator is the autocovariance function for lag l and the denominator is the 

variance of Xt.  At low lags autocorrelation is usually positive.  It usually declines towards 0 

(for an AR process) as the lag increases.  The partial autocorrelation function describes the 

relation between the lag k and the corresponding coefficient in an autoregressive model.  

These plots highlight any patterns or trends of the residuals.  (Venables et al., 2002)  

Figure 3.3.2.1 [(a) and (b)] displays the ACF and PACF plots of the residuals of the trend and 

seasonality model fitted to Callater Burn in Figure 3.3.1.1 (a).  Figure 3.3.2.1 [(a) and (b)] 

suggests that there is no significant correlation between the residuals; hence, correlation shall 

not need to be incorporated in the model.  The ACF and PACF plots were produced for the 

other five sites – similar to Callater Burn, there was no suggestion of significant correlation 

between the residuals at the sites. 
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              (a)                                                                (b) 

 
 

Figure 3.3.22: Auto-Correlation Function (a) and Partial Auto-Correlation Function (b) plots of 

the residuals from the trend and seasonality model fitted to Callater Burn. 

 

3.3.3 Fitting Multiple Linear Regression Models 

 

  As the correlation of the residuals is not an issue, a natural progression from these 

preliminary models is to fit a multiple linear regression including the trend and seasonality 

terms (where appropriate), but also include the other covariates as linear terms.  Letting y = 

log TOC, temperature = T, log Alkalinity = A, pH = pH, log Nitrate = N, log Flow = F (note, 

flow data only available for Callater Burn) and log Sulphate = S, the formula for the multiple 

linear regression can be written as: 

          (3.3.3.1) 

Where  is the level of log TOC and  are assumed to be independent with mean 0 and 

constant variance.  Again, terms that were not significant in the fitted model, were removed, 

and the model was re-fitted.  A summary of the final linear models fitted to each of the sites 
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are summarized in Table 3.3.3.1.  With regards to the other covariates, only log alkalinity, 

seemed to have a significant effect on log TOC – and this was only at the sites Dall Bridge, 

Tweed above Gala Water Foot and the Loch Naver.  This suggests that log alkalinity is 

associated with a change in log TOC levels in both rivers and lochs.  

Based on the residuals vs fitted values, displayed in Figure 3.3.3.1 [(a)-(f)], there does not 

appear to be any evidence of trends or patterns present; hence, the final linear models fitted to 

the three river and three lochs sites seem to be appropriate. 

However, when taking into account the adjusted R-squared values of each of the final models 

fitted, there appears to be a lot of unexplained variation.  The final models are a fairly poor fit 

to the data at Callater Burn and the River Tweed above Gala Water Foot with adjusted R-

squared values of 50.5% and 43%, respectively.  This is similar in all 3 loch sites, with 

adjusted R squared values of 21.6%, 39.3% and 13% at the Lochs Naver, Kilbirnie –Beith 

and Lomond – Creinch, respectively.  The only site, which the model seemed to fit 

adequately, was at the river site, Dall Bridge, which had an adjusted R squared value of 

78.4%.  Therefore, other models shall be explored, in an attempt to find a better model, which 

appropriately describes the behaviour of log TOC at each of the sites. 
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Table 3.3.3.1: Summary of the final linear models fitted to each sites; and the significance of 

each term when included in the final linear models. 

 

  

 

Summary of Final Linear Models Fitted to Sites 
 Sites Terms Estimate St. Error Pr(>|t|) 

 

 

 

 

 

 

Rivers 

 

Callater Burn 

Intercept -70.41 11.89 <0.001 

Year 0.04 0.01 <0.001 

Cos(Month) -0.15 0.05 <0.001 

Sin(Month) -0.38 0.04 <0.001 

Log(Flow) 0.45 0.05 <0.001 

 

Dall Bridge 

Intercept 2.51 0.06 <0.001 

Cos(Month) -0.29 0.06 <0.001 

Sin(Month) -0.44 0.05 <0.001 

Log(Alkalinity) -0.39 0.05 <0.001 

 

Tweed above Gala Waterfoot 

Intercept 5.24 0.77 <0.001 

Cos(Month) -0.16 0.05 0.002 

Sin(Month) -0.23 0.04 <0.001 

Log(Alkalinity) -0.86 0.22 <0.001 

 

 

 

 

 

Lochs 

 

 

Kilbirnie (Beith) 

Intercept -98.4 26.25 <0.001 

Year 0.05 0.01 <0.001 

Cos(Month)     0.04 0.06 <0.001 

Sin(Month) -0.36 0.05 <0.001 

Log(Alkalinity) -0.15 0.05 <0.001 

Lomond (Creinch) Intercept -42.27 13.83 0.003 

Year 0.02 0.006 0.008 

 

Loch Naver 

Intercept 3.76 0.67 <0.001 

Cos(Month) -0.06 0.05 0.29 

Sin(Month) -0.12 0.05 0.02 

Log(Alkalinity) -0.34 0.14 0.02 
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                                            (a)            (b) 

 
(c)       (d) 

 
    (e)          (f) 

  
 

Figure 3.3.3.1: Residuals vs Fitted values plots for the final linear models fitted to Callater 

Burn(a), Loch Naver (b), Dall Bridge (c), Loch Kilbirnie (d), Tweed above Gala Waterfoot (e) 

and Loch Lomond (f). 
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3.3.4 Additive Models and Non-Parametric Regression 

 

 Multiple linear regression models were fitted in the previous sub-section; however, after 

inspecting the various plots, it seems plausible that non-parametric regression techniques may 

be more appropriate.  A generalized additive model (Hastie and Tibshirani, 1986 and 1990; 

Wood, 2006) [which is fitted using the back-fitting algorithm] may be more suitable, as it is 

more flexible than linear models.  For example, the trend over time is not always linear - 

additive models fit a smooth curve to the data, which effectively captures the shape of the 

data over time, when the trend does not appear to be linear.  Additive models are a non-

parametric regression technique, and shall be explored in this section.   

The linear regression models explored previously can be extended to additive models in the 

following manner: 

 

              i=1,…,n.     (3.3.4.1)   

The  are functions whose shapes are unrestricted, apart from an assumption of smoothness 

and the constraint, for identifiability, that  for all j=1,…,p.  As a consequence, 

we usually estimate  by .  This allows a very flexible set of modelling tools.  To see 

how these models can be fitted, consider the case of only two covariates,  

                                          i=1,…,n.       (3.3.4.2)    

A rearrangement of this as  suggests that an estimate of 

component  can then be obtained by smoothing the residuals of the data after fitting .  

If we express the curve estimator in symbolic form as  

Where  denotes the vector of estimates at a set of evaluation points of interest, S denotes a 

smoothing matrix whose rows consist of the weights appropriate to estimation at each 

evaluation point, and y denotes the observed responses in vector form.  Then,  
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                                                                                    (3.3.4.3) 

and similarly, subsequent estimates of  can be obtained as 

                                                                                   (3.3.4.4)                                                 

These smoothing operations are repeated until convergence.  In general, a model with p 

covariates, like so:  

                            i=1,…,n,          (3.3.4.5) 

is a simple extension of the steps outlined for two covariates gives a form of the backfitting 

algorithm.  At each step we smooth over a particular variable using as a response the y 

variable with the current estimates of the other components subtracted.  The backfitting 

algorithm can be expressed as: 

                               j=1,…,p            (3.3.4.6)                      

 

(Nobile and Bowman, 2010; Wood, 2006; Hastie and Tibshirani, 1986 and 1990) 
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3.3.5 Fitting Additive Models to Sites 

 

  Similar to section 3.3.1, additive models were fitted at each of the sites, initially to consider 

trend and seasonality only.  The term year and the covariates shall be expressed in the 

additive model in the same manner as before, but, the harmonic terms (sine and cosine) shall 

not be included – the seasonality shall be represented by the month (i.e. 1,2,…,12) in which 

the sample was taken.  At first, the following additive model was fitted to each site: 

                                      (3.3.5.1) 

Where  is the level of log TOC and  are assumed to be independent with mean 0 and 

constant variance.  The term, month, in the model is fitted using a cyclic cubic regression 

spline as a base to ensure that the start point is the same as the end point (also known as a 

‘circular’ term).  Furthermore, the degree of smoothing applied to each smooth term in the 

model is chosen by a method known as Generalized Cross Validation (GCV).  The additive 

model (3.3.5.1) fitted to Loch Kilbirnie is displayed in Figure 3.3.5.1 [(a) and (b)].  The plot 

highlights that the model effectively captures the shape of the trend of log TOC at Loch 

Kilbirnie, but also the seasonal pattern.  Both terms being highly significant in the model, 

with p-values less than 0.001.  The additive model fitted to Loch Kilbirnie, has an adjusted R-

squared value of 49.3% - this model already explains more of the variation in the data, than 

the final linear model fitted previously (as seen in Table 3.3.3.1). 

 

  Similar to before, covariates shall be included in the additive model to try to improve the 

trend and seasonality model already fitted.  Additive models are flexible in the way that they 

allow covariates to be included as either a smooth term or as a linear term.  For example, the 

covariate temperature could be included in the model (3.3.5.1) resulting in either an additive 

or additive semi-parametric model, like so: 

 

  Additive model:                                   

 

Additive Semi-parametric model:     
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To find the best additive model, firstly, at each of the river and loch sites, an additive model 

was fitted, which included the terms year and month, as well as the covariates temperature, 

pH, log(alkalinity), log(sulphate), log(nitrate) and log(flow) [if flow data was available].  The 

additive models (including all terms) were expressed as: 

 (3.3.5.2) 

Terms that were not significant (i.e. p-value not less than 0.05) were removed from the 

additive model.  Figure 3.3.5.1 [(c)-(e)] displays the effect plots of the significant terms 

included in the following additive model fitted to the River Tweed above Gala Water Foot: 

                 (3.3.5.3) 

The plots in Figure 3.3.5.1 include the partial residuals from the GAM model fitted, as well 

as 2 standard error bands.  However, it is clear from the effect plots displayed, as log 

Sulphate levels increase at the River Tweed, the levels of log TOC decreases in a linear 

manner.  A favourable attribute of the mgcv package allows the additive model to be re-fitted 

as an additive semi-parametric model (including log Sulphate as a linear term): 

                       (3.3.5.4) 

Whether a term should be included in the GAM model as a parametric or non-parametric 

term, an approximate F-test (Hastie and Tibshirani, 1990) can be used to formally test what 

would be more appropriate.  The approximate F-test rejects expression (3.3.5.3) in favour of 

expression (3.3.5.4) [a p-value of <0.001 rejecting the ‘smooth’ term in favour of the 

parametric term]. 

  The final additive models fitted to the river and loch sites are summarized in Tables 3.3.5.1 

to 3.3.5.6.  The final additive models highlight that the covariates only seem to have an affect 

on log TOC levels at the river sites.  The additive models seem to be a good fit to the data at 

the river sites Callater Burn and Dall Bridge: adjusted R squared values of 73.6%, and 80%, 

respectively; and Figure 3.3.5.2 [(a) and (c)] displays that the residuals vs fitted values plots 
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show no trend or pattern.  The additive model fitted to the River Tweed above Gala 

Waterfoot explains more of the variation than the linear model fitted previously, with an 

increased adjusted R squared value of 49.6%.  The only significant terms included in the final 

additive models at the loch sites are either year, month or both.  The three additive models 

fitted to the loch sites seem to be a poor fit to the data, with adjusted R-squared values 23.7% 

(Loch Naver), 49.3% (Loch Kilbirnie –Beith) and 10.7% (Loch Lomond – Creinch); 

although, Figure 3.3.5.2 [(b), (d) and (e)] reveals reasonable residuals vs fitted values plots.  

This suggests that there are other covariates possibly influencing the levels of log TOC at 

these particular loch sites.  These models re-iterate the point, that it seems plausible, that 

across Scotland, the log TOC levels in rivers are affected by different physical and chemical 

factors than lochs.  But, only six sites have been investigated in great detail in this chapter.  

They are not a reflection of all of the Scottish rivers and lochs – just an insight. 
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Figure 3.3.5.1: Effect plots of additive model fitted at: the River Tweed above Gala Waterfoot 

[(a)- (c)]; andLoch Kilbirnie [(d) and (e)]. 
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Summary of Additive Semi-Parametric 

Model Fitted at Callater Burn 

Parametric 

Coefficients 

Estimate Std. Error Pr(>|t|) 

Intercept 0.89 0.07 <0.001 

Temperature 0.02 0.009 0.0192 

Smooth Terms Npar Df Npar F Pr(F) 

Year 5.21 14.58 <0.001 

Month 2.79 17.96 <0.001 

Log(Flow) 3.01 31.88 <0.001 

Log(Sulphate) 6.97 2.1 0.04 

 
Table 3.3.5.1: The significance of each term, when included in the final additive semi-

parametric model, at the River site Callater Burn.  Note: - ‘Npar Df’ refers to non-parametric 

degrees of freedom; ‘Npar F’ refers to non-parametric F-value. 

     

       

 

 

 

 

 

Table 3.3.5.2: The significance of each term when included in the final additive model at the 

River site Dall Bridge. 

Summary of Additive 

Model Fitted at Dall Bridge 

Parametric Coefficients Estimate Std. Error Pr(>|t|) 

Intercept 2.23 0.03 <0.001 

Smooth Terms Npar DF Npar F Pr(F) 

Month 3.56 18.67 <0.001 

Log(Alkalinity) 2.02 29.78 <0.001 
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Summary of Additive Semi-parametric 

Model Fitted at Tweed above Gala Water Foot 

Parametric Coefficients Estimate Std. Error Pr(>|t|) 

Intercept 2.03 0.23 <0.001 

Log(Sulphate) -0.41 0.13 0.002 

Smooth Terms Npar DF Npar F Pr(F) 

Month 2.35 7.96 <0.001 

Log (Alkalinity) 5.19 3.63 0.003 

 
Table 3.3.5.3: The significance of each term when included in the final additive semi-parametric 

model at the River site Tweed above Gala Waterfoot. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3.3.5.4: The significance of each term when included in the final additive model fitted at 

the site. 

 

 

Summary of Additive 

Model Fitted at Loch Naver 

Parametric Coefficients Estimate Std. Error Pr(>|t|) 

Intercept 2.09 0.03 <0.001 

Smooth Terms -0.06 0.05 0.29 

Month -0.12 0.05 0.02 
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Table 3.3.5.5: The significance of each term when included in the final additive mode fitted at 

the site Loch Kilbirnie (Beith). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3.5.6: The significance of each term when included in the final additive model fitted at 

the site Loch Lomond (Creinch). 

 

Summary of Additive 

Model Fitted at Loch Kilbirnie (Beith) 

Parametric Coefficients Estimate Std. Error Pr(>|t|) 

Intercept 1.56 0.03 <0.001 

Smooth Terms Npar Df Npar F Pr(F) 

Year 6.68 7.79 <0.001 

Month 2.45 3.25 <0.001 

Summary of Additive 

Model Fitted at Loch Lomond (Creinch) 

Parametric Coefficients Estimate Std. Error Pr(>|t|) 

Intercept 1.46 0.04 <0.001 

Smooth Terms Npar Df Npar F Pr(F) 

Year 1.43 5.14 0.01 
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Figure 3.3.5.2: Residuals vs Fitted values plots for the final additive models fitted to Callater 

Burn(a), Loch Naver (b), Dall Bridge (c), Loch Kilbirnie (d), Tweed above Gala Waterfoot (e) 

and Loch Lomond (f).  
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3.4  Choosing The ‘Best’ Model: Linear or Additive? 

 

To formally test whether one model is better than another, additive models can be compared 

to linear models using F-tests (Hastie and Tibshirani, 1990; Bowman and Azzalini, 1997).  

Hastie and Tibshirani (1990) recommend the use of residual sums-of-squares and their 

associated degrees of freedom to provide guidance for model comparisons.  For an additive 

model, the residual sum-of-squares can easily be defined as 

                                                                (3.3.6.1) 

Where  denotes the fitted value, produced by evaluating the additive model at the 

observation .  Comparisons of a linear model to an additive model can be expressed 

quantitatively as 

 

                                             (3.3.6.2) 

by analogy with the F-statistic used to compare linear models.  Unfortunately, this analogy 

does not extend to distributional calculations.  However, Hastie and Tibshirani (1990) suggest 

that at least some approximate guidance can be given by referring the observed 

nonparametric F-statistic to an F-distribution with  and  degrees of freedom. 

 

  The null hypothesis is that the linear model (the simpler model) is an adequate fit to the log 

TOC levels at that particular site; the alternative hypothesis being that the additive model is a 

better fit to the data.  If the F-statistic is greater than the rejection region found using the F-

distribution, the null hypothesis is rejected in favour of the alternative.  A summary of the 

approximate F-tests for each of the river and loch sites can be seen in Table 3.3.6.1. 

 

  With regards to the river sites, it is apparent from Table 3.3.6.1 that the sites (Callater Burn 

and River Tweed) with a longer time series, are more appropriately described by an additive 

model.  This was expected, as the trends displayed by these sites, did not behave in a linear 

manner. However, the site Dall Bridge could be described adequately using a linear model. 
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iŷ

ix

,
/

)/()(

11

1212

dfRSS

dfdfRSSRSS
F




)( 12 dfdf  1df



  67 

 

On the other hand, the loch sites did not seem to show as clear a pattern – Loch Lomond 

(Creinch) with the longest time series, was better described by a linear model, than an 

additive model.  The lochs seem to be site specific with regards to way in which the levels of 

log TOC behaves, and the way in which they are most effectively modelled. 

 

 

 

 

Comparison of Final Linear and Additive Models Fitted to River 

and Loch Sites Using Approximate F-tests 

Site Model RSS Df F-

statistic 

Rejection 

Region 

Preferred 

Model 

R. Callater 

Burn 

Linear 10.59 124  

4.47 

 

1.81 

 

Additive Additive 7.11 111.03 

R. Dall Bridge Linear 1.03 30  

1.87 

 

3.09 

 

Linear Additive 0.88 27.43 

R. Tweed Linear 5.51 76  

3.19 

 

2.41 

 

Additive Additive 4.58 71.45 

L. Kilbirnie Linear 12.69 87 1.92 1.68 Additive 

Additive 3.64 38.02 

L. Creinch Linear 8.85 83 2.39 3.38 Linear 

Additive 9.26 84.57 

L. Naver Linear 2.84 47 2.38 4.18 Linear 

Addititve 2.71 46.09 

 

Table 3.3.6.1: Comparison of final linear and additive models fitted to the river and loch sites 

using an Approximate F-test. 
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3.5 Conclusion 

 
  The main aim of this chapter was to explore three river and three loch sites in detail.  The 

sites were chosen on the basis that each site represented the different lengths of time series 

present in the whole data set.  The trend, seasonality and relationships with covariates at each 

site were examined.  The overall aim of this chapter was explore suitable methods of 

modelling log TOC at individual sites.  

 

  At Callater Burn, (the river site with the longest time series), the log TOC levels appear to 

increase from the early 1980’s until the early 2000’s – after 2004, the log TOC levels seem to 

“level off”.  However, the log TOC levels in the other river sites, Tweed above Gala Water 

Foot and Dall Bridge, (with shorter time series) remain fairly flat across the years.  The loch 

sites show a similar trend to the three river sites: log TOC seems to increase from the early 

1990’s up until the mid-2000’s. However, Loch Naver with only five years of data, shows no 

significant trend, and behaves similar to the other two loch sites in their latter years. 

   

  With regards to seasonality, log TOC seems to follow a seasonal pattern in all three river 

sites and Loch Kilbirnie.  At these sites, it seems that levels of log TOC appear to increase 

from early spring up until early autumn – during late autumn and winter, the log TOC levels 

seem to decrease.  There does not seem to be a strong seasonal pattern in either Loch Lomond 

or Loch Naver. 

 

  From the exploratory plots, an initial impression of the relationships between log TOC and 

the different covariates could be formed.  At the river sites Tweed and Dall Bridge, an 

increase in the log Alkalinity levels was associated with a decrease in log TOC levels. An 

increase in temperature was associated with an increase in log TOC levels at each of the three 

river sites.  Log nitrate seemed to be associated with a decrease in log TOC levels at the 

River Tweed only.  An increase in log flow seemed to be associated with an increase in log 

TOC levels at Callater Burn.  On the other hand, the covariates did not appear to have a 

strong relationship with log TOC at any of the loch sites.  If anything, an increase in 
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temperature and log alkalinity seemed to be associated with an increase in log TOC – but, 

this was a very weak relationship 

  Based on the six sites investigated, the exploratory analysis suggested that the covariates 

were more likely to be associated with a change in log TOC levels in rivers, than lochs.  But, 

it was important to remember that only three river and three loch sites were being considered. 

 

  Having explored the trend, seasonality and relationship with covariates, different modelling 

techniques were applied to each site, separately.  Linear models and generalized additive 

models were explored – each model addressing trend, seasonality and the covariates.  A 

linear model and generalized additive model was fitted to each site. 

 

From the linear regression, the rate of increase in log TOC at sites could be calculated (note: 

it was only calculated for sites with a significant trend term).  The levels of log TOC at 

Callater Burn for any given month, on average, are increasing by 0.04 mg/l for every one 

year increase at Callater Burn; and for any given month, on average, the level of log TOC is 

increasing by 0.02 mg/l at Loch Lomond (Creinch) and increasing by 0.06 mg/l at Loch 

Kilbirnie (Beith), for every one year increase. As discussed in Chapter 1, according to 

Moxley (2010), the rate of TOC increase, averaged across all sites with increasing 

concentrations, was 0.12 milligrams per litre per year (mg/l/y).  Hence, the rate of increase 

does not seem to be as severe at these select sites. 

 

  F-tests (Hastie and Tibshirani, 1990) were used to formally compare the inclusion of a term 

as being linear or non-parametric in a GAM; but also, an F-test (Hastie and Tibshirani, 1990; 

Bowman and Azzalini, 1997) was used to compare whether a linear or additive model was 

more appropriate for describing the behaviour of log TOC at each of the sites. 

 

 The length of time period did not seem to determine whether a linear or additive model was a 

more appropriate fit to a site.  The river sites Callater Burn and River Tweed (with longer 

time series than the other site, Dall Bridge) were appropriately described by an additive 

model.  This was expected, as the trends displayed by these sites, did not behave in a linear 
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manner. However, Loch Lomond (Creinch) with the longest time series (out of the three 

lochs), was more appropriately described by a linear model.  Based on these six sites, it 

seems that the most appropriate modeling technique is specific to each site. 

 

 This chapter has considered three river and three loch sites –these sites are not spatially 

grouped or ecologically connected; but, have provided a further insight into the trend, 

seasonality and relationships of log TOC.  The next chapter shall consider sites which are 

located in the same river network.  The relationship between their spatial location, distance 

between sites, and the way in which the river flow connects each site, shall have to be 

considered in order to find a suitable model to capture the behaviour of log TOC.  
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Chapter 4  

River Networks 

 
 

  SEPA has implemented the River Basin Management Plan (2009-2015) in accordance with 

the Water Framework Directive (2000) to ensure that Scotland maintains or takes steps to 

move towards good water quality in all water bodies.  For monitoring purposes, Scotland is 

split up into different catchments.  Catchments include all of the rivers, lochs, wetlands and 

groundwater which eventually drain into the sea, as well as coastal waters and estuaries.  

River catchments are made up of different tributaries.  The term ‘river network’ is used to 

describe a particular region within a catchment.  It is thought that, all the different tributaries 

included within a given network can influence the levels of total organic carbon across the 

whole river network.  This is why river networks are investigated as a whole.  We shall focus 

on the River Dee, situated in Aberdeenshire, which rises in the Cairngorms and flows North- 

East across Scotland towards the North Sea as displayed in Figure 4.1.  At first, the focus 

shall be on the sites which sit on the main river channel (i.e. those sites which are located on 

the River Dee itself) then the focus shall be switched to the River Dee network as a whole 

(which includes rivers and streams which flow into the River Dee).  The main aims of this 

chapter are: to model those sites which are situated on the River Dee’s main channel 

individually; find a global model which best describes all of the sites situated on the River 

Dee’s main channel; predict the levels of log TOC across the whole river network based on 

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32000L0060:EN:NOT
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the information available; and to find a model which captures the behaviour of log TOC 

across space and time in the river network. 

 

 

 

 

Figure 4.1: Location of the River Dee (River Dee Map - http://www.theriverdee.org/explore-the-

catchment.asp) 

 

 

 

4.1 Initial Impression of the Sites Along the Main  

Channel (i.e. The River Dee)  

 

 
  Similar to the previous sections, to gain an initial impression of each of the five sites 

situated on the main river, the log TOC at each site shall be plotted against Year, Month, log 

Alkalinity, pH, log river Flow, Temperature, log Nitrate and log Sulphate.  The sites being 

explored in sections 4.1, 4.2 and 4.3 are summarised in Table 4.1.1 and the corresponding 

time series are plotted in Figure 4.1.1 (a).  The time series plot highlights the missing data of 

sites 1, 2, 4 and 5 (particularly) between the year 2000 and 2007.  Figure 4.1.1 features the 

seasonality of each site (b) and also scatterplots of log TOC against different covariates [(c)-

(e)]. Sites 1, 2, 4 and 5 (between the years 1990 and 2000) seem to follow the same trend – 

http://www.theriverdee.org/explore-the-catchment.asp
http://www.theriverdee.org/explore-the-catchment.asp
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all sites revealing an increase in levels of log TOC up until 2000. Site 5 with the longest 

times series shows the “leveling off” of log TOC levels post 2000.  The time series plot 

highlights the small amount of data available for the site ‘Banchory Bridge’ and the large 

amount of missing data between 1990 and 2007.  The colour scheme in the time series plot 

effectively highlights that as the water flows towards the North Sea i.e. down the river, the 

levels of log TOC seem to increase. 

 

 
Table 4.1.1: Summary of the 5 river sites under investigation situated on the River Dee 

 

  The seasonality plots in Figure 4.1.1 (b) suggest that in all 5 sites, the seasonal pattern is 

very similar to those sites investigated in previous sections– there is an increase in levels of 

log TOC during the summer and autumn months, followed by a decrease in the winter.  

 

  Considering the log alkalinity levels displayed in Figure 4.1.1 (c), it appears that site 5 

seems to have the lowest levels of log alkalinity.  It seems plausible that the level of alkalinity 

in the water increases as the water moves downstream.  But, as the alkalinity increases at site 

5, the log TOC also increases.  For sites 1,2 and 4, it appears that an increase in the level of 

log alkalinity, is associated with a decrease in the level of log TOC. 

 

  The plot of log TOC against river flow in Figure 4.1.1 (d) highlights, at sites 1,2,4 and 5, 

that an increase in river flow induces an increase in log TOC levels.  Site 5 again, stands out 

from the other sites, as it seems to have a lower volume flow than the others [Linn of Dee is a 

long way upstream of the other sites and is very narrow (but quite deep) so has a lower 

Flow 

Direction 

Site Site Name Time Period Covariate Data Not 

Available 

 

 

1 Bridge of Dee 1989-2000 Nitrate 

2 Milltimber 1989-2010 ( large gap with 

missing data) 

 

3 Banchory 

Bridge  

1989–2010 (large gap between 

1991 and 2007) 

Flow,Nitrate, Sulphate 

4 Potarch 

Bridge 

1989-2010 Nitrate 

5 Linn of Dee 1989-2000  
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volume than other sites], which in turn possibly explains the lower levels of log TOC present 

at site 5.   

 

 

  Considering Figure 4.1.1 (e), it is evident that levels of log sulphate seem to be lowest, 

again, at site 5. Looking at sites 1, 2, 4 and 5, it seems likely that an increase in the level of 

log sulphate is associated with an increase in log TOC levels. 

 

  With regards to the temperature, pH and log nitrate levels at each of the sites, these 

covariates did not appear to have any significant effect on the 5 River Dee sites as Figure 

4.1.2 [(a)-(c),respectively] displays.  

 

  For the purpose of Sections 4.2 and 4.3, the decision was made not to include Banchory 

Bridge in the analysis as it does not seem like a worthwhile exercise, based on the missing 

total organic carbon data, and the small amount of data (if any) available for the covariates. 
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    (a)                                                         (b) 

 
(c)                                                     (d) 

 

 
(e) 

 

 
 
Figure 4.1.1: Log TOC plotted against Year (a), Month (b), Log Alkalinity (c), Log Flow (d) and 

Log Sulpahte (e) at the 5 river sites situated on the River Dee 
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                                    (a)                                                                (b) 

                                                                      

   
 

  (c) 

 

  

 

 
Figure 4.1.2: Log TOC plotted against Temperature (a), pH (b) and log nitrate (c) at the 5 river 

sites situated on the River Dee. 
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4.2 Modelling Each Site Along the Main Channel (i.e. The 

River Dee)  

 
 

  Firstly, each of the sites shall be modelled independently of one another, to gain an insight 

into behaviour of log TOC at each site, before attempting to model the sites on the River Dee 

as a whole.  As mentioned previously, the site “Banchory Bridge” shall not be explored in 

this section.  This section shall focus on modelling the following sites only: Bridge of Dee, 

Milltimber, Potarch Bridge and Linn of Dee.  Similar to the previous chapter, linear models 

and generalized additive models shall be fitted to each of the sites to capture the behaviour of 

log TOC.  Again, an F-test (Hastie and Tibshirani, 1990; Bowman and Azzalini, 1997) shall 

be used to compare the linear and additive models fitted to each site. 

 

  Similar to Section 3.3.1, linear models were fitted to each of the sites.  At first, a linear 

model considering the trend and seasonality (using harmonic terms) only was fitted to each of 

the sites using equation (3.3.1.5); this linear model was then extended to a multiple linear 

regression which included all of the available covariates, as linear terms, using equation 

(3.3.3.1).  Figure 4.2.1 displays the trend and seasonality models fitted to the time series at 

sites 1 and 2 – it can be seen visually, that there is a lot of unexplained variation, which is 

reinforced by the adjusted R-squared values of 26.3% and 22.8% (respectively). 

 

 

  This was also the case at sites 4 and 5, with adjusted R-squared values of 21.4% and 25.9%, 

respectively.  At each of the sites, the linear models (which initially included trend and 

seasonality terms) were improved by including one or more of the covariates.  The final 

linear models fitted to sites 1, 2, 4 and 5 are summarised in Table 4.2.1.  Note: the correlation 

of the residuals was explored, again, using Auto Correlation Function Plots similar to those 

seen in Chapter 3 [Figure 3.3.2.1 for example] - there did not appear to be any significant 

correlation between the residuals; hence, correlation did not need to be incorporated in the 

final linear models.   
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                                   (a)                                                                 (b) 

 
 
Figure 4.2.1: Time series of Log TOC at sites 1 (a) and 2 (b) on the River Dee, with the 

corresponding trend and seasonality model fitted to each plot. 

 

 

  As expected, the trend and seasonality are significant in the final linear models fitted at each 

of the 4 River Dee Sites.  However, it is also of interest to note that the covariate ‘log flow’ 

has a significant effect on log TOC levels at each of the 4 sites (with the addition of log 

Alkalinity at Bridge of Dee). 

 

  The residuals vs fitted values from the final linear models are displayed in Figure 4.2.2 [(a)-

(d)] – there does not appear to be any strong trend or pattern; hence, the linear models seem 

to be a reasonable fit to the data.  However, the final linear models fitted to the sites Bridge of 

Dee, Milltimber, Linn of Dee and Potarch Bridge had the following adjusted R-squared 

values: 56.4%, 56.2%, 47.3% and 48.6%, respectively.  The adjusted R-squared values 

suggest that the final linear models fitted have left a lot of unexplained variation.  It is 

therefore of interest to investigate if a different modelling approach would be more 

appropriate.  Non-parametric regression may be more appropriate for capturing the behaviour 

of the trend, seasonality and covariates at each of the sites.  Hence, using methods explored in 

section 3.3.5, additive models were also fitted to each of the 4 sites on the River Dee in an 

attempt to improve the modelling at each site.  The final additive models are summarised in 

Tables 4.2.2 to 4.2.5.  Interestingly, sites 1 and 2 (Bridge of Dee and Milltimber) and sites 4 

1990 1992 1994 1996 1998 2000

-2
-1

0
1

2
3

4

Time Series of Log TOC levels at Site 1

Trend and Seasonality Model Fitted

Year

L
o

g
 T

O
C

 L
e

v
e

ls
 (

m
g

/l
)

1990 1995 2000 2005 2010

-2
-1

0
1

2
3

4

Time Series of Log TOC levels at Site 2

Trend and Seasonality Model Fitted

Year

L
o

g
 T

O
C

 L
e

v
e

ls
 (

m
g

/l
)



  79 

 

and 5 (Potarch Bridge and Linn of Dee) have the same covariates included in their final 

additive models [i.e. Year, Month, log Alkalinity, log Flow; and Year, Month, log Flow 

respectively]. 

 

 

 

 

 

Table 4.2.1: The significance of each term when included in the final linear models fitted to each 

of the sites. 

 

 

 

 

 

 

 

Summary of the Multiple Linear Regression 

Models Fitted to the River Dee’s Sites on the Main Channel 

 

Site 

Variables 

 Intercept Year Cosine Sine Log (Alkalinity) Log (Flow) 

 

Bridge of Dee 

Coeff  -69.39 0.04 -0.05 -0.37 -0.45 0.28 

P-value 0.001 0.001 0.44 <0.001 <0.001 <0.001 

 

Milltimber 

Coeff -41.84 0.02 -0.99 -0.33 - 0.47 

P-value <0.001 <0.001 0.03 <0.001 - <0.001 

 

Potarch Bridge 

Coeff -86.11 0.04 -0.067 -0.35 - 0.53 

P-value <0.001 <0.001 0.38 <0.001 - <0.001 

 

Linn of Dee 

Coeff -64.57 0.03 -0.148 -0.386 - 0.476 

P-value 0.001 0.001 0.065 <0.001 - <0.001 
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                                   (a)                                                                      (b) 

 

  
 

(c) (d) 

 

           
 

 

 
Figure 4.2.2: Residuals vs Fitted Values plotted for the final linear models fitted to the sites 

Bridge of Dee (a), Milltimber (b), Potarch Bridge (c) and Linn of Dee (d). 
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  Figure 4.2.3 highlights the key difference between the final additive models fitted at Bridge 

of Dee (a) and Linn of Dee (b): the term ‘Year’ is fitted as a linear term at Bridge of Dee 

(results of the approximate F-test revealed a p-value of <0.001, hence rejecting an additive 

model including ‘Year’ as a smooth term); but, on the contrary, ‘Year’ was fitted as a smooth 

term at Linn of Dee - the approximate F-test rejecting the additive model including ‘Year’ as 

a linear term (p-value <0.05) in favour of the additive model including ‘Year’ as a smooth 

term.  A reason for this may be the differing time periods at each site – as seen in the 

exploratory analysis, the levels of log TOC increase in a linear fashion from early 1990’s to 

early 2000’s and then start to ‘level-off’.  Both sites increase linearly between 1990 and 2000; 

but, the site ‘Linn of Dee’ with data post 2000 shows a decrease in log TOC levels after the 

year 2005.  Hence, a smooth year term seems to be more appropriate for the longer time 

series, such as the Linn of Dee. 

 

  However, this explanation is not plausible for the difference in final additive models at 

Potarch Bridge and Linn of Dee: the term ‘log flow’ is included as a linear term at Potarch 

Bridge, but as a smooth term at Linn of Dee.  An increase in the log flow levels 

reveal a slightly different effect on the log TOC at each site.  Potarch Bridge showing a linear 

increase in log TOC; Linn of Dee showing an increase resembling an ‘S’ shape – this can be 

seen graphically in Figure 4.2.3 [(c) and (d)]. 
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                                    (c)                                                                     (d) 

 

 

 

 

 

 

 

 

 

Figure 4.2.3: A selection of effect plots from the final additive models fitted to sites Bridge of 

Dee (a), Linn of Dee (b), Potarch Bridge (c) and Linn of Dee (d). 
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Summary of Additive Semi-parametric 

Model Fitted at Bridge of Dee 

Parametric Coefficients Estimate Std. Error Pr(>|t|) 

Intercept -71.8 20.41 <0.001 

Year 0.04 0.01 <0.001 

Smooth Terms Npar DF Npar F Pr(F) 

Month 2.47 13.8 <0.001 

Log (Alkalinity) 1.83 4.36 0.01 

Log ( Flow) 1.61 7.61 0.001 

 
Table 4.2.2: The significance of each term when included in the final additive semi-parametric 

model at the River site Bridge of Dee. 

 

Summary of Additive Semi-parametric 

Model Fitted at Milltimber 

Parametric Coefficients Estimate Std. Error Pr(>|t|) 

Intercept 1.33 0.02 <2e-16 

Year 0.02 0.005 <0.001 

Smooth Terms Npar DF Npar F Pr(F) 

Month 3.19 17.6 <0.001 

Log (Alkalinity) 2.29 3.12 0.03 

Log ( Flow) 3.16 16.9 <0.001 

 
Table 4.2.3: The significance of each term when included in the final additive semi-parametric 

model at the River site Milltimber. 
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Table 4.2.4:The significance of each term when included in the final additive semi-parametric 

model at the River site Potarch Bridge. 

 

Summary of Additive 

Model Fitted at Linn of Dee 

Parametric Coefficients Estimate Std. Error Pr(>|t|) 

Intercept 1.01 0.043 <2e-16 

Smooth Terms Npar DF Npar F Pr(F) 

Year 3.151 6.59 <0.001 

Month 2.58 9.44 <0.001 

Log (Flow) 2.89 16.3 <0.001 

 

 

Table 4.2.5: The significance of each term when included in the final additive semi-parametric 

model at the River site Linn of Dee. 

Summary of Additive Semi-parametric 

Model Fitted at Potarch Bridge 

Parametric Coefficients Estimate Std. Error Pr(>|t|) 

Intercept -84.83 24.06 <0.001 

Year 0.04 0.01 <0.001 

Log (Flow) 0.49 0.09 <0.001 

Smooth Terms Npar DF Npar F Pr(F) 

Month 2.12 7.78 <0.001 
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Comparison of Final Linear and Additive Models Fitted to the 

River Dee Sites Using Approximate F-tests 

Site Model RSS Df F-

statistic 

Rejection 

Region 

Preferred 

Model 

Bridge of Dee Linear 4.865 59 3.6 

 

3.2 

 

Additive 

 Additive 4.342 57.09 

Milltimber Linear 10.173 115 5.4 

 

2.11 

 

Additive 

 Additive 7.583 108.248 

Potarch 

Bridge 

Linear 6.622 58 2.18 

 

2.71 

 

Linear 

 Additive 5.868 54.78 

Linn of Dee Linear 18.33 88 5.15 2.37 Additive 

Additive 14.25 83.37 

 

Table 4.2.6: Comparison of final linear and additive models fitted to the River Dee sites using an 

Approximate F-test. 

 

As discussed in section 3.3.6, an approximate F-test can be used to compare the final linear 

models fitted at each site, to the final additive model fitted to each site.  The results of the 

approximate F-tests are summarised in Table 4.2.6.  The results of the approximate F-tests 

suggest that an additive model is more appropriate for explaining the levels of log TOC at the 

River Dee sites: Bridge of Dee, Milltimber and Linn of Dee.  This can be expected, based on 

comparing the adjusted R-squared values from the final linear and additive models.  At the 

Bridge of Dee, the adjusted R-squared value increases from 56.4% to 59.7%; at Milltimber, 

there is an increase from 56.2% to 65.7%; and at Linn of Dee, there is an increase from 

47.3% to 56.7%.  But, a linear model is more appropriate to describe the levels of log TOC at 

the River Dee site Potarch Bridge [which is not entirely surprising, taking into account the 

adjusted R-squared values of the linear model (48.6%) and the additive model (47.2%)]. 

 



  86 

 

 

4.3 Modelling the Levels of Log TOC on the Main 

Channel: Finding a Global Model 

 

 

The focus of section 4.2 was to investigate the sites situated on the main channel and find a 

model to appropriately describe log TOC levels at each site – independently of each other.  

However, this section shall differ from the sections previously discussed in the thesis.  The 

main difference being, that for the first time, the sites will be not be treated as being 

independent of each other, as in reality, the sites are located on the same river.  It is of interest 

to find a model to describe the log TOC levels along the River Dee, taking into account that 

the data were measured at four different sites along river.  A Generalized Additive Mixed 

Model (GAMM) shall be fitted to the four sites.  GAMM’s are similar to GAM’s; but, 

contain a useful characteristic – they allow the inclusion of a random site effect to be 

included in the model, to capture the spatial effect.  In the previous section, Table 4.1.1 and 

the time series plots in Figure 4.1.1 (a) highlight the differing time periods available for the 

log TOC data.  Since a global model is sought which best describes the log TOC levels in the 

River Dee, a common time period is required.  The time period chosen, is between 1989 and 

2000 as the time series plot in figure 4.3.1 displays. 
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Figure 4.3.1: Time series of log TOC levels at the 4 River Dee sites 

 

4.3.1 Global Modelling: Generalized Additive Mixed Models 

(GAMM’s) 

 

  In the previous sections, additive models have been fitted to each of the sites, independently 

of one another.  GAMM’s build on the ideas already explored, with regards to additive 

modelling.  They allow the modeller to include a random effect within the additive model.  

Including random effects, such as site, allows the introduction of a spatial effect in the model.  

GAMM’s are a combination of GAM’s and Linear-Mixed Effects models.  GAMM’s have 

the luxury of fitting covariates as smooth or linear terms, but also including a structure which 

allows for random effects.    The GAM’s have already been explored.  Linear mixed models 

take the general form: 

                 (4.3.1.1)              

where random vector, b, contains random effects, with zero expected value and covariance 

matrix  , with unknown parameters ; Z is a model matrix for the random effects.   is a 
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positive definite matrix, of simple structure, which is typically used to model residual 

autocorrelation: its elements are usually determined by some simple model, with few (or no) 

unknown parameters.  Often  is simply the identity matrix.  This extension allows the 

model a more complex stochastic structure than the ordinary linear model, and, in particular, 

implies that the elements of the response vector, y, are no longer independent.  (Wood, 2006).   

 Taking into account the four sites, a GAMM model can be fitted to the River Dee, using the 

mgcv package in the statistical software R, where the smoothing parameter was selected using 

cross validation (Wood, 2006).  Letting y = log TOC, Year = Year, Month = Month (fitted as 

a ‘circular’ term), temperature = T, log Alkalinity = A, pH = pH, log Nitrate = N, log Flow = 

F and log Sulphate = S, a general form of the Generalized Additive Mixed Model can be 

written as: 

          (4.3.1.2) 

Where  is the level of log TOC at the river site .  Site is included in the GAMM 

model as a random effect, represented by in the model.  In the GAMM model 

 and .   

  Furthermore, GAMM’s allow the inclusion of a spatial correlation structure.  In Section 

3.3.2, the auto-correlation between residuals at each site was separately investigated.  Since a 

global model is being built, the correlation of residuals between sites must be considered.  

Cross-Correlation Function plots can be used to assess the correlation.  The cross-correlation 

coefficient at lag k is defined as 

 

                                  (4.3.1.3) 

 

Where the sum in the numerator is computed over all t for which both  and  are 

available;  is a measure of association between values of y and values of x that 
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occurred k time units previously.  The CCF is the collection  of all sample cross-

correlation coefficients.  When y responds to x after a delay of l time units (months), the CCF 

would show a prominent spike at lag l.  (Chandler and Scott, 2011) 

 

  Using the residuals from the trend and seasonal linear models fitted to each of the four sites 

in Section 4.2 (exemplar models displayed in Figure 4.2.1), Cross-Correlation Function plots 

were constructed.  The selection of CCF’s plots displayed in Figure 4.3.1.1 [(a) and (b)] 

highlights the auto-correlation between sites.  Furthermore, Figure 4.3.1.1 (c) emphasizes that 

the lag 0 auto-correlations appear to decrease in an exponential manner as the sites move 

further apart.  The four sites on the River Dee seem to be spatially correlated.  There is 

evidence of inter-station correlation; therefore a correlation structure can be incorporated into 

the GAMM model.  Due to the exponential decrease in lag 0 auto-correlation values 

discussed earlier, a plausible correlation structure is the exponential: 

 

                                                 (4.3.1.4) 

where  denotes the Euclidean distance between stations  and (Chandler and Scott, 

2011) and   is the coefficient that explains the strength of the correlation structure as a 

function of the distance between the sites .  The Euclidean distance is the shortest distance 

calculated between two stations (i.e. the distance calculated if a straight line was to be drawn 

between the two stations and was measured).  Euclidean distance is not the only method of 

measuring distance between sites.  Other approaches have been explored by Cressie et al. 

(2006) and Ver Hoef et al. (2006), which shall be discussed further in Section 4.4.3.  For the 

purposes of the GAMM model fitted to the sites along the main channel, Euclidean distance 

shall be used. 
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                               (a)                                                                       (b) 

  

 

                                                                      (c) 

 

 

 

Figure 4.3.1.1: Cross-Correlation Function plots of sites: 1 and 2 (a), 2 and 3 (b), using the 

residuals from the trend and seasonal linear models fitted in Section 4.2; Plot of lag 0 auto-

correlation coefficients from CCF’s (c). 
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The GAMM model (4.3.1.2) expressed previously was fitted - removing covariates that were 

not significant at the 5% significance level from the model.  Hence, the final GAMM model 

fitted to the 4 River Dee sites can be expressed as: 

   (4.3.1.5) 

To re-iterate a point made earlier, the error structure in expression (4.3.1.5),       refers to the 

exponential spatial correlation between sites which is incorporated in the model.  Considering 

Figure 4.3.1, it is evident that the trends of the sites are similar.  Therefore, it is no surprise 

that  seen in Table 4.3.1.2 is  <0.001 i.e. the standard deviation of the intercept is very low 

due to the similarity of the trends; hence, there does not appear to be a significant site effect 

along the main channel.  

 

From the global model fitted to the River Dee, it appears that between the year 1989 and 

2000, levels of log TOC have increased gradually, in a non-parametric fashion (emphasized 

by the smooth curve seen in Figure 4.3.1.2 (a)).  As expected, there is a seasonal effect on log 

TOC (Figure 4.3.1.2 (b)) – levels at their highest during late summer and early autumn.  

Interestingly, an increase in log Flow and log Sulphate (Figure 4.3.1.2 (d) and (e)), is 

associated with an increase in log TOC levels; but, an increase in log Alkalinity levels 

(Figure 4.3.1.2 (c)), is associated with a decrease in log TOC levels.  From Table 4.3.1.2 it is 

evident that log Sulphate is highly correlated with, both, log Flow and log Alkalinity.   

 

The global model, incorporates an exponential spatial correlation structure (expression 

4.3.1.4) with   estimated to be 0.238 – hence, there does not appear to be a strong correlation 

between the sites (as a function of the distance between sites).  The final GAMM model 

seems to be a good fit to the data - the R-squared (Adj) value of 71.9% reinforces this. 

 

  The final GAMM model fitted to the 4 sites on the main channel seems to be appropriate; 

however, if one wishes to consider modeling sites which do not lie on the main channel (i.e. 

sites which are located on different tributaries which flow into the main channel), including a 

random site effect in the GAMM model may not be sufficient.  A different modeling 

approach may be more appropriate.  A model which takes into account the relationship 
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between sites located on different tributaries and incorporates a more appropriate way to 

measure the distance between sites shall be explored in the next section, which shall consider 

a larger number of sites, over a longer time series, across the river network. 
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Figure 4.3.1.2: Year (a), Month (b), Log Alkalinity (c), Log Flow (d) and Log Sulphate (e) effect 

plots of the GAMM model fitted to the River Dee. 
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Summary of Final GAMM Model 

Fitted to the River Dee 

Parametric Coefficients Estimate Std. Error Pr(>|t|) 

Intercept 1.723 0.179 <0.001 

Log (Flow) 0.292 0.033 <0.001 

Log (Sulphate) 0.422 0.119 <0.001 

Log (Alkalinity) -0.80 0.113 <0.001 

Smooth Terms Npar DF Npar F Pr(F) 

Year 6.67 16.7 <0.001 

Month 5.54 24.02 <0.001 

 

 
Table 4.3.1.1: Summary of the Final GAMM model fitted to the River Dee 

Correlation Between Linear Covariates 

 Intercept Log (Alkalinity) Log (Flow) Log (Sulphate) 

Year 0.091 -0.064 0.193 -0.073 

Log (Sulphate) 0.477 -0.756 -0.606  

Log (Flow) -0.003 0.098  

Log (Alkalinity) -0.899  

 

 Intercept ( ) Residuals ( ) 

Standard Deviation <0.001 0.262 

 

Table 4.3.1.2: Summary of the Correlations between covariates and standard deviations in the  

GAMM model fitted to the River Dee. 

 

2

a 2
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4.4 The River Dee Network 

 

  The focus of this section shall be to consider the log TOC levels across the River Dee 

network (Aberdeenshire) – particularly, tributaries of the network where there are data 

available.  The previous Sub-Sections have focused on modelling the sites situated on the 

main channel in the network; but, it is of interest to study log TOC levels across a wider 

region, with the knowledge that not all of the sites are situated on the same stream or channel, 

and that the sites are not all ‘flow-connected’.  This section shall focus on the log TOC levels 

at 13 River Dee sites (displayed in Figure 4.4.1 in red), with a common time period of 1989 

to 2010.  The sites under investigation in section 4.4 are listed in Table 4.4.1. Note: some of 

the sites have missing data across the years, in particular, ‘Banchory Bridge’.  As a common 

period of 1989 to 2010 is now being considered, it was decided to include ‘Banchory Bridge’ 

for the purposes of analysis - even though it only contributes a small amount of data over the 

given time period, it still adds to our understanding of the behaviour of log TOC across the 

network.   

 A key focus of this section is the comparison between the use of Euclidean distance and river 

distance to measure the distances between sites.  Euclidean distance has been previously 

explained in section 4.3.  River distance is a measurement of the shortest distance between 

sites following the river.  Incorporating these different distance measurements into spatial 

models has been discussed by Ver Hoef et al. (2006) and Cressie et al. (2006), and as 

mentioned previously, shall be explored in section 4.4.4.   

  However, the main aim of this section shall be to conduct spatial modelling over a river 

network appropriately.  In able to achieve this: the behaviour of log TOC shall be studied 

over space (i.e. across the network); then, the behaviour of log TOC shall be studied over 

time; before finding an additive model which captures the behaviour of log TOC over time 

and space appropriately. 
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                    Table 4.4.1     Figure 4.4.1   

                     

Table 4.4.1(left): List of the sites under investigation in the River Dee Network. 

Figure 4.4.1 (right): Portion of the River Dee network plotted in blue and locations of 13 River 

Dee network sites marked in red on Figure 4.4.1 (a);  and the corresponding ‘site number’ of 

each site is stated on Figure 4.4.1 (b). 

 

Name Site 

River Dee - Milltimber 1 

Culter Burn - Peterculter 2 

Sheeoch Burn 3 

Water of Feugh – Bridge of Feugh 4 

River Dee- Banchory Bridge 5 

River Gairn 6 

River Muick 7 

Dubh Loch – Dubh Loch Outlet 8 

River Quoich – Quoich Water 9 

Callater Burn 10 

Clunie Water – Baddoch Burn 11 

River Lui - Lui 12 

River Dee – Linn of Dee 13 
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4.4.1 Trends, Seasonality and Relationships 

 

 The thirteen time series under investigation can be explored using standard exploratory 

analysis techniques.  The trend and seasonality of log TOC in each of the sites shall be 

explored graphically; as well as the relationship between log TOC and the following 

covariates: log Alkalinity, temperature, pH, log sulphate, log nitrate and log flow [Note: site 5 

does not have available data for the covariates log alkalinity, log nitrate, log sulphate and log 

flow]. 

It is of interest to investigate if the thirteen time series in the network are behaving 

coherently.  Figure 4.4.1.1 (a) suggests that most of the log TOC trends in the thirteen time 

series are similar with the exception of sites 5 and 8, where the trend slightly differs between 

2005 and 2010.  Furthermore, the seasonal pattern of the log TOC seems to be similar across 

the network as Figure 4.4.1.1 (b) displays.  Overall, the trend and seasonal patterns seem to 

be similar to the initial impressions expressed earlier in Chapter 2 (with regards to river sites). 

  It is also of interest, to gain an understanding of the relationship between log TOC and the 

different covariates at the sites.  Inspecting Figures 4.4.1.1 and 4.4.1.2, suggests that the 

covariates pH and log alkalinity [Figure 4.4.1.1 (c) and (d)] are associated with an increase in 

the levels of log TOC at the thirteen sites.  The other covariates do not seem to have a strong 

relationship with the log TOC levels. 
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                            (a)                                                                   (b) 

 

                                 (c)                                                              (d)  

 

 

 

 

Figure 4.4.1.1: The trend (a) and seasonality (b) of log TOC at the thirteen sites; log TOC 

against pH (c) and log Alkalinity (d) at the thirteen sites. 
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Figure 4.4.1.2: Log TOC against temperature (a), log sulphate (b), log nitrate and log flow (d) at 

the thirteen sites. 
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4.4.2 Measures of Spatial Dependence 

 

  In section 4.3.1, the spatial correlation was considered for the four sites located on the main 

channel.  Similarly, the spatial correlation of the thirteen River Dee sites scattered across the 

network (many located on different tributaries), shall be considered.  Variograms are used in 

geo-statistics as a measure of spatial dependence.  A variogram is an efficient and effective 

way of displaying if spatial correlation is, or is not, present.  Diblasi and Bowman (2001) 

developed a test which evaluates the evidence that the empirical variogram changes as a 

function of h (where h represents the distance between locations).   

Firstly, if observations are made on a spatial process , where denotes a vector of 

location coordinates, then a key quantity is the variogram, defined by: 

         (4.4.2.1) 

where  denotes a displacement vector.  Diblasi and Bowman (2001) states that under the 

assumption of an intrinsically stationary process, where , the variogram 

captures the spatial covariance of the process and is an essential component of any spatial 

model.  A natural estimator is the empirical variogram defined by 

    (4.4.2.2) 

where N(h) denotes the collection of pairs of observations separated by a distance h;  and 

 denotes different sites (Webster and Oliver, 2001; Diblasi and Bowman, 2001; Hawkins 

and Cressie, 1984).  This test can be used for diagnostic checks for regression models, which 

need the assumption of independence to hold, and is recommended for examining the 

variance of residuals from linear models.   

  Under the assumptions of stationarity and isotropy, a model for the data can be expressed as   

                                      (4.4.2.3) 
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where  is normally distributed with mean zero and variogram .  Under the null 

hypothesis of independence,   If the errors are independent, the variogram  is 

constant; otherwise, there is evidence of spatial correlation.  Nonparametric regression is used 

to create a smooth estimate of the variogram from the difference pairs   

, denoted by  where .  A smooth estimate of the 

variogram, can be expressed as: 

                                     (4.4.2.4) 

where the weights sum to one and shrink with the distance of from the point of 

estimation h.  (Diblasi and Bowman, 2001) 

  The sm library in the statistical software R, allows one to build a variogram, using the test 

built by Diblasi and Bowman (2001), which assesses the presence of spatial correlation.  The 

test produces a p-value, of the null hypothesis that  

  A simple linear regression was carried out for a single time point, which included the 

thirteen log TOC levels and the location of each site (longitude and latitude).  This time point 

was chosen to be March 2009, as there was data available for all thirteen sites.  Hence, the 

following linear model was fitted, where y = a vector of 13 log TOC values (one for each 

site), longitude = Long, and latitude = Lat: 

                                         (4.4.2.5) 

 Using the residuals from the fitted linear model 4.4.2.6, a variogram could be constructed 

using the Euclidean distance as displayed in Figure 4.4.2.1 (a).  The distance is measured in 

degrees, where 1 degree relates to approximately 69.17 km.  The test of spatial independence 

produced a p-value which was equal to 0.736.  Therefore, we fail to reject that the log TOC 

levels at the thirteen locations are spatially independent, based on Euclidean distance being 

used. Figure 4.4.2.1 (a) displays that the variogram  seems fairly constant. 
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 The test developed in the sm package in the statistical software R, was originally designed 

for the use of Euclidean distance.  However, it was possible to construct a variogram using 

river distance, where the river distance is taken to be the shortest distance between sites 

following the river path.  The spatial coordinates of each site were marked on an ordinance 

survey map, and then the river distance (km) between each site and site 1 was measured.  The 

variogram constructed using river distance is displayed in Figure 4.4.2.1 (b).  Again, the 

residuals from the fitted linear model 4.4.2.6 were used.  The test of spatial independence 

using river distance provided a p-value which was equal to 0.881.  Again, we fail to reject 

that log TOC levels at the 13 locations are spatially independent, based on river distance 

being used. Figure 4.4.2.1 (b) displays that the variogram  seems to be fairly constant.  

Based on the variogram, spatial dependence does not seem to be an issue, and the conclusions 

are not altered by the distance measurement used.  However, an important point to raise is 

that the variogram ignores how the river flows between each of the sites i.e. the ‘flow-

connectedness’ of the sites is not taken into consideration. 
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                                                                        (a)                                                                

 
 

 

   (b) 

 
  

 
Figure 4.4.2.1: Variograms of 13 River Dee network sites, using Euclidean 

distance (a) and River Distance (b) [lowess curve fitted to both plots]. 
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4.4.3 Flow Connected Sites 

 

  Understanding the spatial dependence between sites is important; however, understanding 

how the water flows between each of the sites is equally important (i.e. are the sites flow 

connected?).  A Directed Acyclic Graph (DAG) (Whittaker, 1990) is an effective method of 

explaining the meaning of sites being or not being flow connected as Figure 4.4.3.1 displays. 

 

 

 

Figure 4.4.3.1: Directed Acyclic Graph used to express sites which are flow- connected across a 

network. 

 

The Directed Acyclic Graph shows: sites 1,2,4 and 5 are flow connected; sites 3, 4 and 5 are 

flow connected; but, sites 1 and 2 are not flow connected with site 3. 
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4.4.4 Moving Average Constructions and Valid Covariances 

 

As mentioned previously, appropriately measuring the distance between sites is very 

important.  Choosing the “best” method has been at the heart of current debates and has been 

thoroughly discussed in recent papers (Ver Hoef et al., 2006; Cressie et al., 2006).  Both 

Cressie et al. (2006) and Ver Hoef et al. (2006) discuss developing valid covariance 

structures to be incorporated in variograms, when working with river networks. 

 

Ver Hoef et al. (2006) discuss the use of river distances and developing valid spatial 

autocovariance models for river networks.  They argue that the application of typical spatial 

autocovariance functions based on Euclidean distance may not be valid when using river 

distance (Ver Hoef et al., 2006).  Ver Hoef et al. (2006) use moving average constructions 

(also called kernel convolutions) to develop suitable models for such networks. 

 

Barry and Ver Hoef (1996) showed that a large class of auto-covariances can be developed 

by creating random variables as the integrations of a moving-average function over a white 

noise random process, 

 

         (4.4.4.1) 

 

Where  is a white noise process and  is called the moving average function and 

it is defined on .  The moving average function can be chosen, but it must have a finite 

volume in order to create a stationary process.  Typically functions centred on 0 are chosen, 

where most of their mass occurs as well.  The moving-average construction allows a valid 

auto-covariance to be expressed as,  

 

if h=0,                       (4.4.4.2) 
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where it is assumed that the integrals exist and a discontinuity,  at h=0, which is the 

“nugget” effect in geo-statistical terms, is allowed.  The moving average construction can be 

used to build valid models for streams, but also account for water flow.  (Ver Hoef et al., 

2006) 

 

It is necessary to include in Equation (4.4.4.2) a proper weighting to compensate for the 

effect in the variance caused by splits in some part of the river (Ver Hoef et al., 2006).  The 

idea is to provide a weight to those cases where there are splits upriver in such a way that the 

sum of all of them is equal to 1 (Ver Hoef et al., 2006; Rincon, 2009).  An appropriate 

weighting, is to define the sites or the streams making up the network as being flow 

connected or not.  Hence, Equation (4.4.4.2) can be modified to account for proper 

weighting: 

 

 

if s and t are not flow-connected 

 

   

Otherwise.                                 (4.4.4.3)       (4.4.4.3) 

 

        

Where   and recall that  is the distance between  

and on the river network; is a weight for each stream on the network; and   is 

the set of all stream sections in the river network, that are between section i  and section j. 

 

 

However, Cressie et al. (2006) build on this, putting forward the idea of using both Euclidean 

distance and river distance.  Cressie et al. (2006) use a kernel that is non-negative, linear 

decreasing, and puts zero weight on river distances larger than r:  
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 Cressie et al. (2006) express the covariance function as:    

 

          (4.4.4.5) 

 

The parameter  is incorporated to control the amount of spatial dependence 

described by a river distance in relation to the amount of spatial dependence described by 

Euclidean distance.   

 

 Appropriately capturing the nature of the spatial locations in river networks is very 

important.  The papers by Ver Hoef et al. (2006) and Cressie et al. (2006) highlight that there 

are different way to tackle this problem; but also highlight, the difficulty of appropriately 

capturing the relationship between stations located in a river network.  In section 4.4.5, a non-

parametric technique developed by O’Donnell (2011) [which is based on Ver Hoef’s model 

for a variogram] shall be used to model log TOC over an entire river network. 

 

4.4.5 Modelling the River Network 

 

 The main aim of Section 4.4 is to build a spatiotemporal model i.e. a model which captures 

the behaviour of log TOC over time and space in the River Dee network.  However, a natural 

starting point is to consider the behaviour of log TOC over space initially.  This sub-section 

shall explore the log TOC levels across the network.  To examine the behaviour of log TOC 

over space, one time point was chosen – the log TOC values for March of 2009.  This 

particular point in time was chosen as there was log TOC data available for all thirteen sites 

(note: other time points fitted the criteria and could have been chosen!).  Again, further 

investigation into the use of Euclidean and river distance shall be explored in this sub-section. 

 

To model log TOC over the entire network, a non-parametric technique developed by 

O’Donnell (2011) can be implemented to capture the behaviour of log TOC.  This technique 
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is based on a very simple local mean smooth function.  O’Donnell (2011) adapted Ver Hoef’s 

model for a variogram, so that it could be used as non-parametric smooth, as seen in 

expression (4.4.5.1).  This technique allows one to smooth observations over space.  

O’Donnell’s method shall be carried out to obtain a smooth estimate at each of the 13 known 

locations; but also, predict smooth estimates at unknown locations across the network.  

Expression (4.4.5.1) fits a smooth value that is a weighted average of the observations, where 

the weights are based on the Ver Hoef covariance structure.  Expression (4.4.5.1) takes into 

consideration the distance between locations and whether or not the locations are flow 

connected.  Both, Euclidean and river distance shall be used.  Obtaining smooth estimates at 

the known and unknown locations will provide an indication of the behaviour of log TOC 

over space.   

 

Firstly, the connectedness between the sites needs to be defined.  This is an important step in 

the modelling of the river network.  The connectedness can be expressed in a  matrix, 

where  is the number of sites, there are 1’s on the diagonal, and the off-diagonal 

corresponds to a 1 if the sites are flow-connected and a 0 if they are not.  In the River Dee 

network, a  matrix shall be used. 

 

  The distance between sites, shall be defined as the distance from each site to site 1 across 

the river network, where the river flows towards site 1.  The Euclidean distance and the river 

flow distance (km) between each site and site 1 were calculated. 

 

  An estimate for  can be attained using a local mean estimator, using expression 

(4.4.5.1).  The local mean estimator ensures that more weight is given to the observations 

whose covariate values lie close to the point of interest  (Bowman and Azzalini, 1997). 

 

                                                      (4.4.5.1) 

 

The refers to the 13 log TOC values at each station.  The weight function chosen, , 

corresponds to a normal kernel density function centred on zero, with standard deviation h.  
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The smoothing parameter h controls the width of the kernel function, and hence the degree of 

smoothing applied to the data.  As the smoothing parameter increases, the resulting estimator 

misses some details in the curvature of the data.  As the smoothing parameter decreases, the 

estimator begins to track the data too closely and will end up interpolating the observed 

points.  (Bowman and Azzalini, 1997; Rincon 2009).  The distance between point and site 

1 is defined by .   denotes  

                           

       if point x is flow-connected to xi,                                   (4.4.5.2) 

otherwise 

 

which enables an estimate  to be obtained using only flow connected points in the river 

network. 

 

 To obtain estimates of the log TOC levels across the network: the river distance and 

Euclidean distance between 217 new locations and site 1 was calculated; and the flow 

connectedness with the 13 known sites in the network was calculated. 

   

 Figure 4.4.5.1 (a-d) displays the smooth estimates of the known and unknown locations 

using Euclidean distance, with different choices of the smoothing parameter ‘h’ (i.e. h=5, 10, 

15, 20).  Similarly, Figure 4.4.5.2 (a-d) displays the smoothed estimates using river distance.  

After exploring the use of different values of ‘h’, 15 seemed to be the most appropriate as it 

did not over-fit, nor, the contrary.  Figure 4.4.5.1 displays that changing the value of ‘h’ 

seemed to have little effect on the smooth estimates using Euclidean distance. 

 

  Studying Figure 4.4.5.2 (a-d) suggests that as the river flows downstream towards the sea, 

the levels of log TOC appear to increase; this is not necessarily clear from Figure 4.4.5.1 (a-

d).  Furthermore, comparing Figure 4.4.5.1 to Figure 4.4.5.2, the plots suggest that the use of 

river distance between sites seems to be more appropriate – river distance gives a lower root 

mean square error value (0.08 compared to 0.31), suggesting that it is a more appropriate 

distance measurement for river networks. 
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  From Figures 4.4.5.1 and 4.4.5.2 it is apparent, that there is a distinct contrast in the levels 

of log TOC between sites 7 and 8.  A plausible reason for this is not clear from the detail of 

the map – after reaching the monitoring station, denoted as site 8, the water flows into Dubh 

Loch, before reaching site 7.  This flow-path, could possibly explain the high levels of log 

TOC in this particular section of the network. 
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                       (a)          (b) 

      Euclidean Distance; h=5           Euclidean Distance; h=10 

 

    
 

                         

         (c)            (d) 

        Euclidean Distance; h=15  Euclidean Distance; h=20 

 

    
 

 
Figure 4.4.5.1: Smooth estimates of 13 known locations and 217 new locations across the 

RiverDee Network, using Euclidean distance with the smoothing parameter h =5 (a), 10 (b), 15 

(c) and 20 (d).  Log TOC values from the month of March in the year 2009 were selected. 
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       (a)                        (b) 

            River Distance; h=5         River Distance; h=10 

 

    
 

 

      (c)                                  (d) 

              River Distance; h=15                          River Distance; h=20 

 

    
 

 

   
Figure 4.4.5.2: Estimates of 13 known locations and 217 new locations across the RiverDee 

Network, using River distance with the smoothing parameter h =5 (a), 10 (b), 15 (c) and 20 (d).  

Log TOC values from the month of March in the year 2009 were selected. 
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4.4.6 Visualising Trend Over Space 

 

 

  Having examined the behaviour of log TOC levels over the network at one point in time, the 

natural next step is to consider the temporal trend of log TOC across the network.  An 

exploratory and effective way to visualise the trend of log TOC over time and space, is to use 

the same ideas expressed in the previous sub-section; but this time, use four individual points 

in time.  The analysis previously used the log TOC values from March  2009; however, for 

the purpose of the plots in Figure 4.4.6.1, log TOC levels are used from March, 1990, 1997, 

2000 and 2009.  Due to the missing data present in site 5, it was not possible to include site 5 

in Figure 4.4.6.1 [(b) and (c)] for the years 1997 and 2000.  To re-iterate a point expressed 

earlier, river distance between the sites shall be used as the distance measurement for analysis 

in the rest of the thesis. 

 

  Based on the month of March, inspection of Figure 4.4.6.1 [(a)-(d)] complies with the 

subjective impressions gained earlier.  Levels of log TOC seem to increase between the years 

1990 and 2000, particularly where the river rises in the Cairngorms.  Comparing Figure 

4.4.6.1 (a) to Figure 4.4.6.1 [(b) and (c)] highlights the main increase in log TOC levels 

between the years 1990 and 2000.  The log TOC levels in the sites located where the river 

rises in the Cairngorms (sites 8-13) are predominantly coloured dark red and orange in (a); 

but, this is not the case, when the years 1997 and 2000 are considered – the colour scale 

suggests an increase in this part of the network.  The subjective impression gained in earlier 

chapters is supported further by Figure 4.4.6.1, as it shows that the log TOC levels appear to 

slightly decrease between the year 2000 (c) and 2009 (d).  These plots effectively display the 

trend over time and space; however, it is important to remember that these plots only consider 

the month of March across four different years! 

 

  A point of interest is the levels of log TOC found in the stream where site 7 is situated – 

they are consistently high throughout the years.  It is only in 2009 a decrease is seen.  The 

interference of Dubh Loch in the river flow between sites 7 and 8, again, is a plausible 

explanation.  
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 Even without the inclusion of site 5 in the years 1997 and 2000, it is clear from each of the 

four points in time, as the river flows through the network, towards sites 1, the levels of log 

TOC gradually increase.  
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                   1990 (a)                                1997 (b) 

 

  

 

                    2000 (c)                                2009 (d) 

 

  

 

 
Figure 4.4.6.1: Estimates of 13 known locations and 217 new locations across the River Dee 

Network, using river distance (km) and month of March for the years 1990 (a), 1997 (b), 2000 

(c) and 2009 (d).  Note: site 5 is not included in the years 1997 and 2000. 
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4.4.7 Modelling the River Dee Network: Non-Parametric 

Regression Over Time and Space 

 
 

 

After exploring the trend over space graphically, it is now appropriate to move from fitting 

smoothed log TOC estimates across the network at different points in time, to fitting a model 

which capture smoothly the behaviour of the log TOC levels between the years 1989 and 

2010 across the network.  Previously, in section 4.3.1, a GAMM model was fitted to 4 sites 

situated on the main channel, which included a random site effect.  However, since a river 

network is being considered, including site as a random effect does not seem appropriate.  

Alternatively, a GAM model can be fitted over time which captures space more effectively.  

A common way is to include the spatial location of the site as a bivariate term i.e.  

s(longitude, latitude).  Furthermore, a GAM model can be fitted, so that it incorporates a time 

and space interaction, as it is plausible that the trend in log TOC levels differ between sites. 

 

  Initially, a GAM model was fitted to the River Dee sites (still assuming the  are 

independent with mean 0 and constant variance ), which focused on the trend, seasonality 

and spatial location of the sites.  As it is possible that the log TOC levels may differ between 

sites, the interactions between ‘year’ and ‘site’, and ‘month’ and ‘site’ are included in the 

initial GAM model fitted.  Letting y = log TOC levels of the 13 sites; Year = Year; Month = 

Month; Site = Site Number, Location = Spatial Location (longitude, latitude); the following 

GAM model can be fitted,  

 

                                       

                                                                                                        (4.4.7.1) 
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                                         (a)                                                        (b)  

 
                                       (c) (d) 

 

       
                                                                       (e)  

                                              
 

Figure 4.4.7.1: Effect plots of the trend and seasonality GAM model fitted to the thirteen sites: 

Year (a), Month (b). 3D Trend and Seasonality plots of Callater Burn (c) and River Lui (d).  

Fitted values extracted from GAM model, for each site separately (e). 
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Summary of the Trend and Seasonality 

Additive Model Fitted to the River Dee 

Network 

Parametric 

Coefficients 

Estimate Std. 

Error 

Pr(>|t|) 

Intercept -0.81 0.1 <0.001 

Smooth 

Terms 

Npar Df Npar F Pr(F) 

Year 8.52 13.59 <0.001 

Month 3.42 16.74 <0.001 

Year:Site 2.0 10.87 <0.001 

Location 2.79 30.2 <0.001 

 

Table 4.4.7.1: The significance of each term, when included in the trend and seasonality additive 

model, at the River Dee network. 

 

 Table 4.4.7.1 displays the significant terms included in the trend and seasonality GAM 

model fitted to the thirteen sites.  The effect plots of the additive model can be seen in Figure 

4.4.7.1.  The initial impression of the trend and seasonality of log TOC coincides with the 

effect plots displayed in Figure 4.4.7.1 (a) and (b), respectively.  Since the interaction term, 

(Year and Site) is significant, this leads one to believe that the levels of log TOC slightly 

differ between the thirteen sites across the years.  Figure 4.4.7.1 [(c) and (d)] supports this 

idea – it displays the seasonality over time at two of the network sites (Callater Burn and 

River Lui).  The 3D plots highlight the similarity of the seasonal patterns at each site (which 

supports the non-significant Month and Site interaction term in the GAM); but, the 3D plots 

highlight the slight difference in trends, particularly from 2000 onwards (which supports the 

significant Year and Site interaction term in the GAM).  Table 4.4.7.1 highlights, that the 

term ‘location’ is significant.  This suggests that the spatial location of the site within the 

network will have an effect on the log TOC levels, which coincides with idea that as the river 
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flows downstream towards site 1, the levels of log TOC seem to increase.  Figure 4.4.7.1 (e) 

displays the fitted values extracted from the trend and seasonality GAM model for each of the 

thirteen sites – inspection of this plot, would suggest that it is likely, that groups of sites in the 

network are behaving coherently.  It seems plausible, that groups of sites in the network share 

a common trend, specifically, sites located near each other. 

 

To investigate whether the term  was capturing the trend over space 

appropriately, the partial residuals of the term were calculated (Rincon, 2009).  To attain the 

partial residuals of the term ,  was calculated in the following manner: 

 

    

                                                                                                                (4.4.7.2)          

 

  GAM Model Fitted to River Dee Network -  

                             Time Over Space 

 

 
   s(Location); h=15 

    

 

Figure 4.4.7.2: Smoothed mean partial residuals of the term for each of the 

thirteen sites (a); but, also the smoothed partial residuals of the other 217 new locations. 
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Once  had been calculated, the mean partial residuals of each site could then be calculated.  

Figure 4.4.7.2 displays the smoothed mean partial residuals of the term for 

each of the thirteen sites; but, also the smoothed partial residuals of the other 217 new 

locations.  The average partial residuals provide a guide to the pattern (Rincon, 2009).  These 

values have a black outline around their circles on the plot.  Figure 4.4.7.2 suggests that the 

term  is capturing the trend over space suitably.   

 

  The adjusted R-squared value (37.7%) suggests that the trend and seasonality additive 

model could be possibly improved by the inclusion of covariates.  Letting y = log TOC levels 

of the 13 sites; Year = Year; Month = Month; Site = Site Number, Location = Spatial 

Location (longitude, latitude); T = temperature; A = log alkalinity; pH = pH; S = log 

sulphate; N = log nitrate; and F = log flow, the following GAM model can be fitted,  

 

                                       

                                                                                                        (4.4.7.3) 

    

Again, terms that were not significant at the 5% level were removed from the GAM model, 

and the model was refitted.  Hence, the final GAM model fitted to the thirteen sites can be 

expressed as: 

 

                                     

 

                                                                                                        (4.4.7.4) 

 

 

 The final GAM model fitted to the River Dee network is summarized in Table 4.4.7.2 and 

the effect plots of log alkalinity, pH, and log nitrate corresponding to the model can be seen 

in Figure 4.4.7.2 (a),(b) and (c) respectively.   
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Summary of the final GAM fitted to the River 

Dee Network 

Parametric 

Coefficients 

Estimate Std. 

Error 

Pr(>|t|) 

Intercept 1.22 0.15 <0.001 

Smooth 

Terms 

Npar Df Npar F Pr(F) 

Year 7.86 7.04 <0.001 

Month 5.43 8.65 <0.001 

Log 

Alkalinity 

5.5 16.62 <0.001 

pH 5.84 13.8 <0.001 

Log Nitrate 4.22 8.86 <0.001 

Location 2.08 6.4 <0.001 

Year : Site 2.0 6.81 <0.001 

 

Table 4.4.7.2: The significance of each term, when included in the final additive model, at the 

River Dee network. 
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                              (a)                                                               (b) 

 

         (c)                          (d) 

 

             

 

Figure 4.4.7.3: Effect plots of the final GAM model fitted to the thirteen sites: Log Alkalinity 

(a), pH (b) and log nitrate (c).  Residuals vs Fitted values from the final GAM model fitted to the 

thirteen sites (c). 
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  Figure 4.4.7.3 (a) suggests that as the levels of log alkalinity increase in the River Dee 

network, the levels of log TOC appear to increase; however, as the levels of log alkalinity 

increase above approximately 2.5, the levels of log TOC seem to decrease.  With regards to 

pH, Figure 4.4.7.3 (b) suggests that an increase in the pH level in the River Dee network is 

associated with a smooth decrease in log TOC levels.  Figure 4.4.7.3 (c) suggests that log 

nitrate levels below 0 are not associated with any change in log TOC levels; but, log nitrate 

levels above 0 are associated with a sharp increase in log TOC levels.  The residuals vs fitted 

values plot in Figure 4.4.7.3 (d) suggests that there is no issues with the model fitted to the 

data; having said this, even though the adjusted R-squared value (45%) suggests that it is an 

improvement on the trend and seasonality additive model, it is not a reasonable fit to the data.  

Future work on the River Dee network, could explore the inclusion of other covariates to 

improve the final model fitted. 

 

 

 

 

4.4.8 Conclusions of the River Dee Network 

 
 

  At first, Sections 4.1 to 4.3 considered the five sites located on the main channel of the 

River Dee independently of one another.  The exploratory analysis suggested that there was a 

common signal – the log TOC levels were increasing steadily until the early 2000’s, which 

was followed by a weaker increase in the remaining years; there was a seasonal pattern 

evident in all sites; and the covariate ‘log flow’ seemed to influence log TOC levels at all 

sites (where flow data was available).  Two modelling approaches were explored – the use of 

linear models and additive models.  The approximate F-tests used concluded: additive 

modelling was appropriate at three of the sites; and a linear model was more appropriate at 

Potarch Bridge. [Noting – analysis of Banchory Bridge was deemed not to be of any value in 

Sections 4.2 and 4.3, due to the large amount of missing data]. 
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  A Generalized Additive Mixed Model was then fitted to capture the common signals of the 

four sites located on the River Dee itself.  The final GAMM model (4.3.1.5) revealed that 

there was a significant trend and seasonal pattern amongst the four sites; but also, the 

covariates log Alkalinity, log Sulphate and log Flow influenced log TOC levels at the four 

sites.  The final GAMM model (4.3.1.5) had advantages over the linear and additive models 

fitted to the sites individually: a global model was found to describe the behaviour of log 

TOC along the River Dee; it allowed the inclusion of a random site effect; and a spatial 

correlation structure (exponential) could be incorporated in the model to account for the 

correlation between sites (as a function of the distance between sites).  In a sense, the spatial 

correlation structure highlighted, that the distance between sites along the river, had an 

influence on the levels of log TOC. 

 

 Having considered sites which were located on the main channel in the River Dee network, it 

was then of interest to consider sites located on streams and estuaries which flowed into the 

main channel.  To gain an understanding of the behaviour of log TOC across the network, a 

non-parametric smoothing technique developed by O’Donnell (2011) was chosen.  

O’Donnell’s smoothing technique effectively captured the structure of the River Dee network 

– the distance between sites, and how each site was ‘flow connected’ were taken into 

consideration, allowing smooth log TOC estimates for the known and unknown locations in 

the network to be obtained.  Initially, the behaviour of log TOC was studied over space – 

particularly, the log TOC values during March 2009.  As this chapter was interested in 

comparing Euclidean to river distance as an appropriate distance measurement between sites, 

O’Donnell’s non-parametric smoothing technique was conducted using both measurements.  

Regardless of which distance measurement was used, it was clear, that as the river flows 

through the network, downstream towards site 1, the levels of log TOC seem to increase.  

Based on the visual inspection of plots, and comparison of the root mean square error values, 

it was concluded, that river distance seems to be a more appropriate measurement between 

sites and was used in subsequent analysis.  A natural progression from investigating the 

behaviour of log TOC over space was to monitor the trend of log TOC over time and space.  

To achieve this, four points in time were chosen – the log TOC values from March 1990, 

1997, 2000 and 2009. Unfortunately, ‘site 5’ was missing data in the years 1997 and 2000.  

The trend appeared to coincide with initial impressions previously formed in earlier sections 
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– in the month of March (in the chosen years) the log TOC levels seemed to increase 

throughout the 1990’s up until the early 2000’s, and then “level off”.  Levels of log TOC 

seem to increase between the years 1990 and 2000, particularly at the sites located where the 

river rises (near the Cairngorms).  The plots in Figure 4.4.6.1 are effective for visualising the 

trend over space in the network; however, these plots only considered four time points, and 

log TOC values from the month of March.  Without time restraints, it would have been 

interesting to study the behaviour of log TOC over time and space, for the four seasons, and 

also, a greater number of years.  However, the missing data may cause problems, as finding 

months which had log TOC data for every year and every site was a challenge. 

 

  The GAMM model appropriately captured the behaviour of sites situated on the same 

channel; however, in order to capture the common signals of the sites located across the 

network, a different approach was required.  A GAM was fitted (4.4.7.1) to initially capture 

the trend and seasonality of the log TOC levels across the network.  The spatial location was 

included in the model as a covariate to capture the space element of the network; and the 

interactions between ‘year’ and ‘site’, and ‘month’ and ‘site’, were included, as it was 

thought that the levels of log TOC may be differ between sites.  Having fitted the GAM 

model, it was clear that the trend, seasonality, spatial location and interaction between the site 

and year were all significant.  The inclusion of the spatial location in the model, effectively 

capture the spatial element of the network - based on Figure 4.4.7.2, the inclusion of the 

smooth term, ‘location’, seemed to capture the trend over space suitably (using river distance 

and including flow connectedness).   

 

  Plotting the fitted values from the trend and seasonality GAM model [Figure 4.4.7.1 (e)] for 

each of the thirteen sites, supported the significant interaction terms in the model and the idea 

that the log TOC levels differ between sites; but leads one to believe, that it was more 

plausible that groups of sites in the network were behaving coherently, particularly, sites 

located near each other.  It seems plausible, that groups of sites in the network share a 

common trend.  

 

  The trend and seasonality GAM model was improved by the inclusion of the covariates log 

alkalinity, pH and log nitrate.  As the levels of log alkalinity increase in the River Dee 
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network, the levels of log TOC appear to increase; however, as the levels of log alkalinity 

increase above approximately 2.5, the levels of log TOC seem to decrease.  With regards to 

pH, it seems that as the pH levels increase in the network, the log TOC levels seem to 

decrease in a smooth, gradual, manner. 

 

  In the River Dee network, it appears that log nitrate levels below 0 are not associated with 

any change in log TOC levels; but, log nitrate levels above 0 are associated with a sharp 

increase in log TOC levels.  The additive model including covariates did improve the trend 

and seasonality model; however, the adjusted R-squared value was only 0.45.  It is possible 

that data for other environmental covariates could be explored and used to explain the 

behaviour of log TOC in the River Dee network. 

 

 This chapter has focussed on the log TOC levels of sites located in the River Dee network, 

finding an appropriate model for a site or a group of sites.  However, it is of interest to 

explore the coherency of log TOC levels at different sites – are the log TOC levels at sites 

located close to each other behaving similarly?  The next chapter shall explore different 

techniques of measuring coherency; and consider log TOC levels of sites located in regions 

of Scotland. 
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Chapter 5  

Coherency 

 

 

Identifying common signals and trends across monitoring stations in Scotland is the key 

focus of this thesis.  In other words, we are measuring the coherency of sites.  Coherency is 

the main theme throughout this thesis.   The Cambridge Dictionary of Statistics defines 

coherency to be: 

"In time series analysis, it is used to describe the strength of association between two or more 

time series where the possible dependence between the series is not limited to simultaneous 

values but may include leading, lagged and smoothed relationships." 

Measuring coherency allows an investigation into whether the behaviour of log TOC is 

similar across the rivers and lochs in Scotland.  It also allows an insight into whether sites 

with similar climatic factors, biological processes or geographical surroundings are 

coherently similar.  Coherency has been used in a variety of statistical genres to identify 

‘common signals’.  This section, shall explore how different authors have approached 

measuring ‘coherency’.  A literature review has been conducted in order to obtain an 

understanding of the variety of ways in which different papers have tackled the problem of 

measuring coherency.  Following the literature review, this chapter applies several methods 

(Seasonal Mann Kendall and Dynamic Factor Analysis) of measuring coherency to the River 
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Dee network and a selection of Scottish regions and compares the results with the analysis in 

Chapter 4. 

 

5.1 Literature Review 

 

Correlation has been used as a measure of coherence and temporal coherence.  To obtain an 

initial idea of the coherency between different time series, Munoz-Carpena et al., (2005) 

proposed calculating cross-correlations between all response and explanatory variables, 

across all time series.  The cross-correlation coefficients are a useful exploratory tool and also 

provide a measure of the relationship between paired data sets; but, do not capture the 

simultaneous interactions of multivariate time series.   

Many papers have estimated coherence by calculating the correlation between time series 

for each of the different variables (Magnuson et al.,1990; George et al., 2000; Magnuson et 

al., 2006b; Pace et al., 2002; Patoine et al., 2006; Benson et al., 2000).  The mean correlation 

and the percentage of strong correlations are calculated for each pair of time series across all 

variables, and for each variable across all time series pairs.  Magnuson et al. (1990) state, 

‘temporal coherence, which we define as the degree to which different locations within a 

region behave similarly through time,  is a useful concept because the more coherent different 

locations are, the easier it is to generalize about specific regional responses to variation in 

climatic factors, changes in land use, or even environmental stress from contaminants’.  

Magnuson et al., (1990) calculate the arithmetic mean correlation for each variable and 

each time series pair.  Then the percentage of strong correlations was calculated for each 

variable and each time series pair – the percentage of correlation coefficients larger than a 

threshold of +0.67 [which is the critical value for a one-tail test of the correlation coefficient 

for significance at the 0.05 level with 5 degrees of freedom].  This procedure was carried out 

with the view that strong correlations represented the strength of temporal coherence. 

  Baines et al., (2000) measure the coherency of physical and chemical properties of different 

lakes in Wisconsin, by simply fitting a linear regression which ‘predicts observations of a 

)(r



  129 

 

variable in one lake, against simultaneous observations of the same variable in another’ 

(Baines et al., 2000; Bloch et al., 2010) and then comparing the r
2 

values.  The r
2 

value has the 

advantage of simple interpretation, where r
2 

is the proportion of the variance in the response 

variable that can be explained by the model.  Baines et al., (2000) use the ‘Pearson product-

moment correlation coefficient, r, to inspect distributions of correlations.’ 

Ghanbari et al., (2011) use methods which are based on the linear spectral approach used by 

Ghanbari et al., (2009) to analyze coherence between time series.  In a linear spectral 

approach, Hanson et al., (2004), compute the spectrum of each time series, and then the 

spectra of the two time series are compared to find common frequency bands in their 

variability.  This differs from a coherency function approach, where ‘the co-spectra and cross 

spectra are computed and these functions are used to calculate the squared coherency that 

objectively shows the frequency bands that are common between two time series’ (Ghanbari 

et al., 2011).  Ghanbari et al., (2011) estimate the squared coherency, in a similar manner to 

Jenkins et al., (1968) and Bloomfield (1976).  ‘The values of coherency estimates were 

considered significant at the 95% level of confidence when they were larger than the critical 

value T derived from the upper 5% point of the F-distribution on (2, d-2) degrees of freedom, 

where d is the degrees of freedom associated with the univariate spectrum estimates’ 

(Ghanbari et al., 2011).  Cygnus Research International (CRI) argue that calculating the 

coherency function, is an alternative, and more effective measurement of coherency among 

time series, than the use of correlation coefficients.’  The CRI, state that the coherency 

function ‘is a function of frequency’ and therefore, it has the ability to ‘show at which 

frequencies two sets of time series data are coherent and at which frequencies they are not’.   

 

  Curtis et al., (2005) recently measured coherency in a medical sense.  The focal point of 

their paper was not based on ‘which parts of the brain are active during working memory 

delays, but instead on what might persistent activity represent’.   Coherence is formally used 

to characterize functional interactions between different regions of the brain.  Curtis et al., 

(2005) think of the coherence statistic, ‘as a correlation in frequency space’.  Where the 

coherence between time series is defined by:  
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‘Where  is the cross-spectrum of x and y, and  is the power spectrum of x 

(Brillinger, 2001; Muller et al., 2001). It is a normalized measure from 0 to 1, where 0 

indicates an absence of any linear relation, and 1 indicates that the signals are perfectly 

related by a linear magnitude and phase transform’. (Curtis et al., 2005) 

  Lange et al., (2004) measure coherency using the cross correlation function between 

‘runoff and global-long time indices’.  The cross-correlation function measures the 

correlation between two time series at n different time lags; and Lange et al., (2004) fit 95% 

significance bands to their cross-correlation function plot, to provide an insight into the 

significance of each correlation coefficient.  Lange et al., (2004) admit that ‘additional 

methods are required to elaborate further on the linkages between the filtered time series and 

plausible drivers’.  However, Lange et al., (2004) managed to successfully identify the 

‘synchronous behaviour of the signals confined to a geographical region’. 

To determine whether or not a large number of time series are behaving coherently, 

Blenckner et al., (2007) used a method more commonly used in biostatistics: meta-analysis.  

Many biostatistical papers have used and discussed meta-analysis (Marshall et al., 1996; Fine 

et al., 1993); but, Blenckner et al., (2007) have used meta-analysis to measure the common 

signals in lakes across Europe.  Coherency can be measured through the use of meta-analysis 

techniques.  They are very effective when one wishes to investigate whether a large number 

of sites behave coherently – a meta-analysis compares results from numerous studies, 

providing an aggregated statistical test which is more powerful than statistical tests performed 

on the sites individually.  The meta-analysis can provide information on the overall 

magnitude of an effect, on whether that effect differs among contrasting categories of studies, 

and how the variation is distributed within and among categories (similar to analysis of 

variance).  Furthermore, meta-analysis allows the factors that influence the overall pattern of 

coherence to be determined, and offers the additional advantage of allowing each individual 

study to be weighted by the number of samples included in the study.  The meta-analysis is 

not flawed with respect to outliers, hence, possible effect sizes are not due to outliers from 
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one site.  The overall effect size (E
++

) and the corresponding 95% confidence intervals (CI) is 

calculated for all target variables as outlined by Rosenberg et al. (2000). 

 

where Ei is the calculated effect size for the i
th

 study.  The variance of E
++

 is the reciprocal of 

the sum of the weights given to each of the n studies: 

 

. 

The confidence interval (CI) of E
++

 is then given by 

                                                     

where  is the two-tailed value of Student’s t-distribution at the critical level , and n 

is the number of individual studies.  An overall effect is considered to be significant if the CI 

does not include zero (Gurevitch et al., 2000). 

  Folster et al., (2005) considered the coherency of an even larger number of time series than 

Blenckner et al. (2007).  Folster et al., (2005) aimed to investigate the common signals of 80 

lakes in Sweden.  Similar to Magnuson et al. (1990), pearson product moment correlation 

coefficients (r) were calculated for each variable, for every lake pair.  Again, the r value is a 

measure of coherence between a lake pair, with regards to that particular variable.  As the 

lakes were widely spread across Sweden, the dependence of coherence on distance between 

lakes was studied by linear regression.  In order to investigate if the coherency of a lake-pair 

was related to the similarity of the traits of two lakes, Folster et al., (2005) calculated the 

relative difference , Dx , for a number of lake and catchments traits. 
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where xa and xb are the characteristics for lakes a and b. Dx was calculated for select 

variables.  Folster et al., (2005) then explored the relationship between coherency and Dx 

graphically and by linear regression. 

A more efficient and effective way to capture the coherency of multivariate time series, was 

developed by Zuur et al., (2003) – a technique known as Dynamic Factor analysis.  Dynamic 

Factor analysis has been used to identify common signals of time series and specify the 

number of common trends present in multivariate time series in a variety of papers (Zuur et 

al., 2003a; Zuur et al., 2004; Zuur et al., 2003b; Munoz-Carpena et al., 2005).  Munoz-

Carpena et al., (2005) state that the aim of Dynamic Factor analysis is to ‘choose the smallest 

number of common trends as possible – because, although increasing the numbers of 

common trends leads to a better model fit, it results in more information that needs to be 

interpreted’ (which can often be difficult). 

  The results from DFA are interpreted in terms of the estimated parameters, the canonical 

correlations, and match between model estimates and observed values.  The goodness-of-fit 

of the model can be assessed by visual inspection, the coefficient of efficiency (Nash et al., 

1970) and Akaike’s Information Criterion (Akaike., 1974; Munoz-Carpena et al., 2005). 

Choosing the “best” Dymamic Factor model, to describe the n time series, takes into account 

all of these factors.  

Zuur et al., (2003a) also discuss another criticism, that DFA is based on normality.  As DFA 

can be seen as a regression model, and therefore relies on the same underlying assumptions, 

then non-normality does not prove to be an issue.  Similar to linear regression, if there is a 

problem of non-normality due to outliers, different transformations of the data can be 

performed to achieve normality. 

Seasonality within time series is a key issue when using DFA.  If the time series has cyclic or 

seasonal components present in the data, they will be masked and included in the trend 

component of the Dynamic Factor model.  Zuur et al., (2004) discuss this issue: when 

analyzing seasonal data, the most common time series models fitted, takes the following 

form: 

 tetItStTtY  )()()()(
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Where Y(t) is a univariate time series, T(t) is the trend, S(t) the time-dependent seasonal 

component, I(t) can contain cycles, explanatory variables or autoregressive terms and e(t) is 

the error.  Dynamic Factor Analysis, in a sense, is a multivariate extension of this model.  

However, Zuur et al., (2003a) states that such a Dynamic Factor model results in 

computational problems.  Zuur et al., (2004), suggest an alternative method of dealing with 

the seasonal component i.e. remove the seasonal component from the data before any 

analysis (de-seasonalising).  Removing the seasonal component can be executed through 

calculating the monthly averages over all the years, and then simply subtracting the 

appropriate average from each value.  Another possibility, suggested by Harvey et al., (1989) 

is to model the monthly data as a parametric cosine function.  If seasonality seems fairly 

constant over time, these are plausible methods.  These approaches assume that there is no 

shift in seasonal maxima or minima.  If there was evidence of a shift in maxima or minima, 

the strategy would have to be re-considered to allow for this fluctuation. 

  Alternatively, literature addressing Seasonal Dynamic Factor analysis has been published 

recently, by Alonso et al., (2011).  Alonso et al., (2011) apply seasonal dynamic factor 

analysis (SeaDFA) techniques to electricity market forecasting – the SeaDFA allows the 

extraction of the common factors of a vector of time series, and the estimation of a seasonal 

multiplicative Vector Auto Regressive Integrated Moving Average (VARIMA) model, so 

that both regular and seasonal dynamics can be modelled. 

  A Bayesian approach has been employed by statisticians to measure the coherency of time 

series (Lopes et al., 2008; Strickland et al., 2009), based on the use of dynamic factor analysis 

methods to develop methods which consider spatial dynamic factor analysis.  Strickland et 

al., (2009) argues ‘data sets that vary across space and time have become so large that 

“standard” approaches are no longer feasible’.  Lopes et al. (2008) and Strickland et al., 

(2009) believe that Bayesian methods are the most appropriate method for performing 

dynamic factor analysis and dealing with seasonal or cyclic components.  Lopes et al., (2008) 

explain that ‘the temporal dependence is modelled by latent factors while the spatial 

dependence is modelled by the factor loadings; the spatial dependence is incorporated into 

the factor loadings by a combination of deterministic and stochastic elements; the number of 

factors is treated as another unknown parameter and fully Bayesian inference is performed 

via a reversible jump Markov Chain Monte Carlo Algorithm’.   
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  Nye et al., (2008) measure coherency in three different ways: dynamic factor analysis (as 

previously discussed); loess smoothing; and minimum/maximum autocorrelation factor 

analysis (MAFA).  Nye et al., (2008) fit the ‘locally weighted regression smoother (loess) to 

sections of data by weighting points relative to their distance from the target value’, where 

the ‘smoothed mean trend of all survey time-series is simply the average of the smoothed 

trends calculated for each time-series’.  Nye et al., (2008) also used MAFA, which is a ‘data 

reduction technique’, similar to principal components analysis (Zuur et al., 2007).  MAFA 

takes into account, the temporal autocorrelation structure, which is used to detect the number 

of statistically significant trends.  Once the statistically significant trends have been 

identified, ‘the canonical correlations between extracted trends and both individual time 

series and explanatory variables’ are calculated.  (Nye et al., 2008) 

 

   Another appropriate technique to measure coherency, is a non-parametric test known as the 

Mann Kendall.  It is a method used for trend analysis, predominantly in an environmental 

setting (Gilbert., 1987; Chen et al., 2008; Esterby., 1993; Mann., 1945; Kendall., 1975; 

Weyhenmeyer., 2008).  The Mann Kendall test has appealing characteristics: missing values 

do not cause any problems; and the data do not need to follow a particular distribution.  The 

Mann Kendall test is used to determine whether or not there is a trend within a particular time 

series, and an estimate of the slope is calculated using a Sen estimator (Sen., 1968b).  To 

assess coherency, the Mann Kendall test can be performed on numerous stations (i.e. a 

number of time series), and the homogeneity of the stations can be measured (Gilbert., 1987) 

– this allows us to infer if there is a common signal at a group of sites. 

Gilbert (1987) addresses the issue of seasonal cycles present in data, and discusses the 

seasonal Kendall test developed by Hirsch et al., (1982) – a test built on the fundamentals of 

the Mann Kendall.  The seasonal Kendall test (Hirsch et al., 1982) provides: a slope estimator 

of the i
th

 season for the k
th

 year; a test of the homogeneity of trends in different seasons [a test 

closely related to the procedure developed by van Belle et al., (1984)]; and a test for global 

trends (van belle et al., 1984).  

  However, Bloch et al., (2010) highlight that the Mann Kendall test does not ‘reveal how 

coherent temporal variations, in particular seasonal variations, are between lakes’ (i.e. n 
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number of time series).  Bloch et al., (2010) measure coherency using Kendall’s  test, 

which ‘gives a rank correlation coefficient (Kendall’s , ranging from -1 to 1), expressing 

how good temporal variations of a variable in one lake is following the temporal variations of 

the same variable in another lake (Helsel and Hirsch, 1992).’  Bloch et al., (2010) goes on to 

explain that using both tests, is useful, as ‘the results of both the Kendall’s  test and the 

Mann–Kendall give information about individual variables and how they behave in different 

lakes.’ 

 

  Pryor et al., (2009) investigate the coherency of ‘century-long precipitation records from 

stations in the contiguous USA’.  Pryor et al., (2009) admits that trend analysis is most easily 

accomplished by ordinary least squares regression, which has been used extensively in 

previous studies, has some flaws e.g. it is not ‘robust to outliers or to deviations from 

normality such as might reasonably be expected to characterize “extreme” descriptors’.  

Pryor et al., (2009) use two different methods: Kendall’s tau-based slope estimator 

(Alexander et al., 2011; Sen, 1968) similar to the papers discussed previously (Gilbert., 1987; 

Chen et al., 2009; Esterby, 1993; Mann, 1945; Kendall, 1975); and ‘application of bootsrap 

re-sampling (Lunneborg, 2000) of the residuals from OLSR analysis.’ ‘These residuals are 

computed and then randomly selected using a bootstrapping technique and added onto the 

linear fit line from the trend analysis and the trend is re-estimated (Kiktev et al., 2003). This 

procedure is repeated 1000 times to generate 1000 plausible trends for each station. The trend 

terms from those 1000 samples are then tested to determine if a zero trend falls within the 

middle 900 values in an ordered sequence of the distribution of 1000 realizations. If so the 

original trend is deemed not significant at the 90% confidence level. The trend magnitude is 

given by the median value of the 1000 samples.’ (Pryor et al., 2009).  Pryor et al., (2009) 

found that ‘bootstrap techniques generally resolve a larger number of significant trends’. 

 

 Potamias et al., (2001) express the importance of coherency: ‘Measuring similarity between 

objects is a crucial issue in many data retrieval and data mining applications’.  The main aim 

of measuring coherency, is to achieve a final outcome, which includes ‘the clustering of time 

series into similar-groups’ (Potamias et al., 2001).  To achieve a clustering of time series, 

Potamias et al., (2001), follow a piecewise linear segmentation approach, where the different 

time-to-time changes, based on their significance according to the full time series, are 
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weighted.  Computing the distances between time series, ‘feeds an appropriate distance-based 

clustering algorithm in order to form clusters of similar time series’ and uses the ‘neighbour 

joining clustering algorithm’ by Saitou et al., (1987) to produce clear and informative 

phylogeny trees and dendograms. 

 

  Another plausible method of measuring coherency is to use the “wavelet coherency” method 

(Sanderson et al., 2010; Hassan et al., 2009; Polansky et al., 2010; Torrence et al., 1998).  

Wavelets can be used to model the dependence between two non-stationary time series.  

Polansky et al., (2010) suggest ‘frequency and time–frequency domain methods, embodied 

by Fourier and wavelet transforms’ as a suitable measurement of coherency – where the use 

of continuous wavelet transforms, solve some of the limitations of the Fourier analysis. ‘The 

wavelet transform uses short windows for higher frequencies, which leads to more natural 

localization in time and scale’ (Sanderson et al., 2010).  Torrence et al., (1998) argue that 

‘decomposing a time series into time–frequency space, one is able to determine both the 

dominant modes of variability and how those modes vary in time’, which makes it a very 

appealing strategy for measuring coherency.  The concept of the wavelet cross-spectrum, in 

terms of the continuous wavelet transform, was introduced by Hudgins et al. (1993), and has 

since been applied to fields including climatology (Maraun and Kurths, 2004) and 

neuroscience (Lachaux et al., 2002).  

 

 

  Carey et al., (2010) use Principal Components Analysis (PCA) to measure coherency of 

time series.  Carey et al., (2010) portray PCA to be ‘exploratory in nature’, but goes on to 

explain that PCA has been ‘previously used to map catchments into similar groupings based 

on hydrological and other indices, and can provide additional insight when exploring the 

dependency among factors’ (Pfister et al., 2000; Monk et al., 2007; Tetzlaff and Soulsby, 

2008; Carey et al., 2010). 

  Kent et al., (2007) tackle coherency in a different manner, by performing correspondence 

analysis of bacterial communities.  The Bray-Curtis similarity coefficient (Legendre and 

Legendre, 1998) is calculated for each sample obtained by Kent et al., (2007) to ‘assess the 

degree of similarity between bacterial communities obtained from different samples’, using 

the following: 
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where yij is the normalized peak area of the i
th

 population in the j
th

 sample and yik is the 

normalized peak area of the i
th

 population in the k
th

 sample. Kent et al., (2007) generate a 

similarity matrix for all possible pairs of samples; this similarity matrix was used to produce 

an analysis of similarity (ANOSIM) statistics (Clarke and Green, 1988) to test the hypothesis 

that bacterial communities from the same lake were more coherent than communities in 

different lakes.  Kent et al., (2007) produce a test statistic, R, for the analysis of similarity [an 

approach also used by Gremberghe et al., (2007)].  Where, the magnitude of R provides an 

indication of the ‘degree of separation between groups of samples, with a score of 1 

indicating complete separation and 0 indicating no separation.’ 

  The coherency between sites is at the centre of this thesis.  This section highlighted that 

coherency is measured in many fields and with the aid of different techniques; but, coherency 

is always assessed with a common aim - to identify common signals. 

 

5.2 Methodology 

  The literature review has highlighted the vast number of techniques which have been used 

in different papers, to measure coherency.  Based on the literature, it seems appropriate that 

the Seasonal Mann Kendall test and Dynamic Factor analysis shall be applied to the River 

Dee network (previously explored) and the Scottish regions to gain an idea of the coherency 

present between the sites. 

 

5.2.1 Seasonal Mann Kendall Test 

 

One approach to measuring the coherency of sites is to use the non-parametric Mann-

Kendall test for trend (Mann, 1945; Kendall, 1975).  Since, the exploratory analysis 

highlighted the presence of seasonality in log TOC, it is appropriate to use the Seasonal Mann 
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Kendall (Hirsch et al., 1982; 1982; Van Bell et al., 1984) test to measure the homogeneity of 

sites.  Van Belle and Hughes (1984) developed a test to identify global trends, when using the 

Seasonal Mann Kendall test.  At each station, the data has been split into 4 seasons (Winter, 

Spring, Summer and Autumn).  [It is important to mention that the test could of been applied 

to months also, instead of simply just the seasons]. 

 

The first step, is to compute the Mann-Kendall statistic for each season at each station, in 

the following manner (where Si denotes the statistic computed for season i) 

 

                                 (5.2.1.1)   

   

Now, letting Sim denote the Mann-Kendall statistic for the k
th

 season at the m
th

 station: 

 

               (5.2.1.2) 

Where VAR(Sim) is obtained by calculating 

 

  

 

              (5.2.1.3) 









ii n

Kl

ikil

n

k

i xxS
1

1

1

)sgn(

2/1)]([ im

im
im

SVAR

S
Z  4,3,2,1i nm ,...,2,1

)1(2

)1()1(

)2)(1(9

)2)(1()2)(1(

)52)(1()52)(1()52)(1(
18

1
)(

1 111

11






















 



 



ii

gi

p

hi

q

iqiqipip

iii

hi

q

iqiqiq

gi

p

ipipip

h

q

iqiqiq

gi

p

ipipipiiii

nn

uutt

nnn

uuuttt

uuutttnnnSVAR



  139 

 

 

And where gi is the number of groups of tied (equal valued) data in season i, tip is the number 

of tied data in the p
th

 group for season i, hi  is the number of sampling times (or time periods) 

in season i that contain multiple data, and uiq is the number of multiple data in the q
th 

time 

period in season i.  (Gilbert, 1987) 

Van Belle and Hughes (1984) then suggest computing the mean over the n stations for the i
th 

season in the following manner: 

                                        (5.2.1.4) 

 

And then the mean over 4 seasons for the m
th 

station, in the following way: 

 

                                  (5.2.1.5) 

And also, the mean over all KM stations and seasons, like so 

 

                                            (5.2.1.6) 

Bearing this in mind, Chi-Square Statistics can be computed and referred to the appropriate 

corresponding degrees of freedom to test for station and seasonal heterogeneity, as Table 

5.2.1.1 displays.   
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Seasonal Mann Kendall Test 

Chi-Square Statistics Degrees of Freedom 

 
 

 
 

 

Table 5.2.1.1: Summary of Seasonal Mann Kendall Test chi-square statistics and corresponding 

degrees of freedom. 

 

5.2.2 Dynamic Factor Analysis 

 

  Dynamic Factor Analysis (DFA) is a method which has the ability to model the common 

signals of a group of time series.  DFA is a method which can estimate the common trends, 

effects of explanatory variables and interactions in multivariate time series datasets.  The 

main aim of DFA is to estimate underlying common trends.  Therefore, letting the vector 

 contain the values at year t for the n sites, the simplest DFA model contains 

only one common trend and is given by 

.                                            (5.2.2.1) 

Where the elements of A are called factor loadings and indicate which common trends are 

important for which of the N response variables;    represents one common trend at time  ; 

the term    represents noise components and it is assumed that    are normally distributed 

with expectation 0 and covariance matrix R (covariance matrix R is described in more detail 

later). 
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To model time lags, the simple Dynamic Factor model (5.2.2.1) can be easily extended to 

(Zuur et al, 2003a): 

         (5.2.2.2) 

In these models, the response variables are modelled as a function of latent variables at time t, 

plus a time delay in these variables (by latent, we mean hypothetical or made up).  DFA falls 

under criticism for being a “latent variable model”: DFA generates latent variables, 

suggesting that these variables are an existing quantity and can be measured – which, 

logically thinking, is not always the case.  However, if the latent variables represent a factor, 

e.g., temperature, such a model would be plausible. 

If A is a vector of dimension     with unknown loadings, and zt is the trend, then 

 

                       (5.2.2.3) 

The model with one common trend assumes that all the n time series follow the same pattern, 

namely that of zt.  To obtain the fitted value for each time series, we multiply the trend zt by a 

loading.  If the loading is relatively large and positive, we know that the corresponding time 

series follows the pattern of the trend.  If the loading is close to zero, we know it does not 

follow this pattern.  A loading that is relatively large and negative indicates that the time 

series follows the opposite pattern of the trend.  These statements assume that the spread in 

the n time series is the same.  One way to ensure this is normalisation of the time series prior 

to analysis.  It is also an option to include an intercept: 

                                  (5.2.2.4) 

The DFA model can be extended to include covariates, similar to that of a linear model.  For 

example: 
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                          (5.2.2.5) 

Where    is the value of the explanatory variable at time t; and    is a regression coefficient. 

The dynamic factor analysis model so far has only considered a group of time series with one 

common trend – an advantage of DFA, is that it allows for one to p common trends if groups 

of time series show similar trends.  Equation (5.2.2.6) shows the DFA model extended to two 

trends: 

 

            (5.2.2.6) 

 

One can add even more trends, but just as in PCA the interpretation of three or more axes 

(trends) becomes difficult.  (Zuur et al., 2007).  

Zuur et al., (2003a) also discuss another criticism, that DFA is based on normality.  As DFA 

can be seen as a regression model, and therefore relies on the same underlying assumptions, 

then non-normality does not seem to be an issue.  Similar to linear regression, if there is a 

problem of non-normality due to outliers, different transformations of the data can be 

performed to achieve normality.  Furthermore, it is important to note that missing log TOC 

values do not present a problem when fitting a DFA model.   

Previous chapters have highlighted the seasonal pattern present in the time series.  

Therefore, as suggested by Zuur et al., (2004), the seasonal component is removed from the 

data before any analysis, through calculating the monthly averages over all the years, and 

then simply subtracting the appropriate average from each log TOC value (for each time 

series independently).  Therefore, the DFA models fitted will not account for seasonality!   
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When a DFA model is fitted, it can be modelled using a diagonal error covariance matrix or 

a non-diagonal error covariance matrix – previously described as ‘covariance matrix R’.  A 

diagonal error covariance matrix indicates the amount of information that cannot be 

explained by the common trends.  A non-diagonal error covariance matrix is similar to that of 

a diagonal error covariance matrix, but, if present, 2-way interactions between the time series 

are modelled by the off-diagonal elements.  (Zuur, 2011).  DFA models can be fitted with 

both types of error covariance matrices and compared.   

Dynamic Factor Analysis aims to find a model with the lowest number of common trends, 

but still finding a reasonable fit.  Akaike’s Information Criterion (AIC) is a measure for 

goodness of fit which can be used to compare DFA models and choose the “best” model. 

 

 

5.3 Applications of Methodology: River Dee Network 

  Having studied the River Dee network in depth in the previous chapter, it seemed 

appropriate to apply the methods discussed in Section 5.2 to the thirteen River Dee sites.  

Applying the methods discussed in Section 5.2 shall provide an insight into the coherency of 

the sites located in the River Dee network. 

 

5.3.1 Applying the Seasonal Mann-Kendall Test to the River Dee 

Network 

 

The heterogeneity of the River Dee sites can be measured using the Seasonal Mann-

Kendall test as discussed in Section 5.2.1.  The chi-square statistic in Table 5.2.1.1 ( ) 

tests the null hypothesis that the trend at each site is in the same direction.  When applied to 

the thirteen River Dee sites, the  statistic was equal to 17.55.  This value was 

subsequently referred to the appropriate degrees of freedom stated in Table 5.2.1.1 [where 

2

station

2

station
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] - the chi-square critical value was equal to 19.68.  Since  did not exceed this 

critical value, we fail to reject the null hypothesis, and conclude that the trend at each site is 

in the same direction in the River Dee network.  Similarly, the chi-square statistic in Table 

5.2.1.1 ( ) tests the null hypothesis that the trend is in the same direction in each season.  

Again,  was referred to the appropriate degrees of freedom, as outlined in Table 

5.2.1.1.  Since  was equal to 33.9 and the chi-square critical value was equal to 7.8, the 

null hypothesis was rejected.  Since  is significant, but,  is not, this means that 

the trends have significantly different directions in a different season or seasons, but not at 

different stations.  Since this is the case, van Belle and Hughes (1984) developed a chi-square 

statistic to test the null hypothesis that there was a different trend direction in each season by 

computing the K seasonal statistics: 

 

                                              seasons                  (5.3.1.1) 

 

The seasonal statistics for winter, spring, summer and autumn were equal to 0.36, 2.99, 55.63 

and 2.21, respectively.  These values were referred to a chi square distribution, with 1 degree 

of freedom, which was equal to 3.84.  Hence, the null hypothesis could not be rejected for 

winter, spring or autumn.  But, the null hypothesis was rejected for summer.  For all stations, 

the trend is in the same direction in winter, spring and autumn; but, the trend is not in the 

same direction during the summer as the test statistic (55.63) is greater than the chi-square 

critical value (3.84).  To conclude, the overall trend is the same at all sites as are the winter, 

spring and autumn trends, but the summer trend varies between sites. 
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Figure 5.3.1.1: The summer trend of the 13 River Dee network sites log TOC values. 

 

Figure 5.3.1.1 highlights that the summer trend is not in the same direction at all stations – 

the points of stations 7, 8, 9 and 11 are in bold to emphasize that their log TOC values appear 

to steadily increase between 1990 and early 2000’s before levelling off; compared to the log 

TOC values at the other stations which remain fairly flat between 1990 and 2010.  The season 

in the River Dee network seems to have a strong influence on the trend. 
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5.3.2 Applying Dynamic Factor Analysis to the River Dee 

Network 

   

To measure the coherency of the thirteen sites in the River Dee network further, DFA 

models were fitted using Brodgar 2.7.2 (Zuur, 2011)  The DFA models were fitted to the 13 

time series over the same length of time period: 336 months.  Missing log TOC values do not 

present a problem when fitting a DFA model.  At first, DFA models were fitted which only 

considered common trends using expression (5.2.2.4).  DFA models were fitted with varying 

number of common trends, and either incorporating a diagonal or non-diagonal error 

covariance matrix.  Each time, the AIC value was recorded.  Based on the DFA models 

which only considered trend, Table 5.3.2.1 highlights that a model fitted with two common 

trends and a non-diagonal error covariance matrix has the lowest AIC value, and is the most 

appropriate (highlighted in red in Table 5.3.2.1).  This suggests that there are two underlying 

common trends in the River Dee network.   

However, covariates can be added to the DFA models to try to explain what is driving the 

observed trends.  Hence, using expression (5.2.2.5), DFA models were fitted with varying 

numbers of common trends, a diagonal or non-diagonal error covariance matrix and a 

combination of covariates.  Unlike previous chapters, the explanatory variables need to be 

included in the DFA model as a covariate which is common to all sites.  Hence, data from the 

Met Office has been used.  Data on the annual mean temperature (degrees Celsius) and 

annual rainfall (mm) has been extracted for use in the DFA models, as these explanatory 

variables are common to all sites and are physical factors thought to influence organic carbon 

levels (Freeman et al., 2001a; Worrall et al., 2004; Moxley, 2010).  The Met Office provides 

summaries of these explanatory variables for the north, east and west of Scotland – therefore, 

the appropriate data are used, depending on the location of the sites i.e. data for the east of 

Scotland is used for the River Dee sites.  Again, the AIC value of each DFA model was 

recorded and is displayed in Table 5.3.2.1.  

  Table 5.3.2.1 suggest that including covariates, has improved the DFA models.  Based on 

the AIC values, Table 5.3.2.1 suggests that a DFA model with 2 common trends, which 

includes a non-diagonal error covariance matrix and both explanatory variables (mean 
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temperature and annual rainfall) is the most appropriate model to be fitted to the thirteen 

River Dee sites (highlighted in blue in Table 5.3.2.1).   

  Figure 5.3.2.1 (a) displays the corresponding factor loadings – this plot suggests grouping of 

sites, pending on whether they lie closer to axis 1 or axis 2.  The factor loadings suggest that 

sites 1, 2, 3, 4, 6, 7, 9, 10, 11, 12 are mainly driven by the first common trend; but, sites 5 and 

8 are mainly driven by the second.   

 

 

Table 5.3.2.1: Summary of Dynamic Factor Analysis models fitted to the 13 time series in the 

River Dee network. 

Summary of Dynamic Factor Analysis 

Models Fitted to River Dee Network 

Diagonal Error Covariance 

Matrix 

Non-Diagonal Error Covariance 

Matrix 

No. Trends Explanatory Variables AIC Explanatory Variables AIC 

1 - 

 

2074.91 - 1765.41 

2 - 

 

2043.19 - 1730.926 

3 - 

 

2007.401 - 1760.776 

1 Temperature 2079.257 Temperature 1765.364 

 

1 Rain 2082.407 Rain 1765.365 

 

1 Temperature and Rain 

 

2087.27 Temperature and Rain 1765.21 

2 Temperature 2056.836 Temperature 1731.058 

 

2 Rain 2056.836 Rain 1731.012 

 

2 Temperature and Rain 

 

2047.404 Temperature and Rain 1730.906 

3 Temperature 2008.899 Temperature 1752.529 

 

3 Rain 2009.256 

 

Rain 1750.962 

3 Temperature and Rain 2008.288 Temperature and Rain 1762.348 
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   (a)      (b) 

 

Figure 5.3.2.1: Factor loadings corresponding to the two common trends (a); Fitted values 

obtained by the DFA model with two common trends.  The blue line corresponds to site 5 and 

the red line corresponds to site 8 (sites 5 and 8 seem to influence one common trend); black lines 

correspond to the other sites which seem to influence the other common trend. 

 

 

 

 

 

 

 

 

 

Figure 5.3.2.2: Residuals vs Fitted Values of the 13 time series from the final DFA model fitted. 
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To demonstrate the differences between the groups of time series, the fitted values for each of 

the sites are displayed in Figure 5.3.2.1 (b).  A blue and red line is used to represents sites 5 

and 8, respectively in Figure 5.3.2.1 (b) – this highlights the coherence of their trends, but 

also, how their trends slightly differ from the other sites, especially after 150 months 

(approximately from the year 1995 onwards). 

To check the validation of the final DFA model fitted to the River Dee sites, the residuals 

can be plotted against the fitted values for each of the thirteen time series, as seen in Figure 

5.3.2.2.  Zuur et al. (2007) state that as the n time series are being summarised by a small 

number of common trends, it is likely that validation plots, such as Figure 5.3.2.2 will show 

some patterns.  Having said this, the residuals vs fitted values do not seem to show any strong 

trends or patterns. 

 

 

5.4 River Dee Network Conclusion 

 

The Seasonal Mann Kendall test (Hirsch et al., 1982; Van Bell et al., 1984) and Dynamic 

Factor Analysis (Zuur et al., 2007) was applied to the thirteen River Dee network sites to 

measure the homogeneity of the sites.  Based on the  value from the Seasonal Mann 

Kendall test, we failed to reject the null hypothesis that the trend at each site is in the same 

direction; but, the trend was only in the same direction during the seasons: winter, spring and 

autumn.  The season seems to have a strong influence on the trend in the River Dee network.  

The use of Dynamic Factor Analysis was effective in providing a more detailed insight into 

the trends (but applied to the de-seasonalised data).  The DFA highlighted that, based on AIC 

values, a DFA model fitted with two common trends, the inclusion of a non-diagonal error 

covariance matrix and the explanatory variables (annual mean temperature and annual 

rainfall) appropriately captured the coherency between the thirteen time series.  Overall, the 

seasonal Mann-Kendall test leads one to believe that the trend of the log TOC at each of the 

2
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network sites is in the same direction; but, more specifically, the DFA suggests that there are 

actually two underling common trends in the network.  Furthermore, the DFA suggests that 

the explanatory variables annual mean temperature and annual rainfall possibly drive the 

observed trends. 

 

5.5 Scottish Regions 

  This section shall focus on investigating the trends of log TOC on a larger scale than 

previously explored.  For rivers and lochs independently, the trends of log TOC shall be 

examined in a selection of different regions in Scotland.  It is important to mention that the 

spatial groupings are not ecologically based, and that the specified regions are of different 

catchment and river basin sizes.  SEPA has defined in which region of Scotland each river 

and loch site is located.  The sites have been grouped based on SEPA’s definition.  The 

locations of the regions under scrutiny are displayed in Figure 5.5.1.  With regards to river 

sites, the following regions shall be considered: Argyll, Ayrshire, Borders, Dumfries and 

Galloway, West Highlands, Perthshire and Sutherland.  The regions concerning loch sites 

shall be: Dunbartonshire, West Highlands, Perthshire, Stirlingshire, Sutherland and Lewis.  

These particular regions were chosen for analysis, based on there reasonable number of sites 

situated within the region.   
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Regions Investigated in Scotland
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Perth
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Stirlingshire
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Figure 5.5.1: Regions under investigation in Scotland. 

 

5.5.1 Initial Impression of Regions 

 

The regions under investigation are summarized in Table 5.5.1.1.  Time series plots are 

useful for gaining an initial impression of the coherency between sites situated in the same 

region.  Based on the examination of Figures 5.5.1.1 to 5.5.1.3, it seems plausible (for both 

rivers and lochs) that sites situated in the same region, have log TOC trends which could be 

described as being coherent.  The trends displayed, reinforce previous subjective impressions 

of rivers: the log TOC levels seem to increase up until the early 2000’s, where the increase 

then either weakens or evens out.  This trend seems to be stronger in the rivers sites, as 

expressed in earlier chapters.  With regards to lochs, Figure 5.5.1.3 (a) suggests that log TOC 

levels are also increasing in the Dunbartonshire lochs from the late 1990’s through until the 

mid-2000’s; but, overall, Figure 5.5.3.1 highlights the unsteadiness of the log TOC levels in 

each region from 2005 onwards which was not emphasized in previous analysis.    
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Furthermore, it is evident from Figures 5.5.1.1 to 5.5.1.3 that the number of sites being 

monitored in the past five years has clearly increased – possibly explaining the increase in 

variability.  The seasonality of log TOC within the regions was also considered.  Figure 

5.5.1.4 (a) displays the seasonality of the river sites log TOC levels in Argyll between 1994 

and 2010; and to highlight the seasonal pattern in Argyll, Figure 5.5.1.4 (b) shows the 

seasonality in the year 2007.  The exploratory analysis in the previous chapters highlighted 

the seasonal pattern of log TOC, which again is supported by Figures 5.5.1.4 (a) and (b).  It is 

clear from Figure 5.5.1.4 that the variability increases from 2007 onwards – this is possibly 

due to an increase in number of sites being monitored in Argyll from this point in time.  In 

Argyll, the levels of log TOC appear to increase from early spring until early autumn, which 

is then followed by a decrease - this is similar behaviour of rivers and lochs in the other 

regions. 

Summary of Time Series in Regions 

Region Number of Time Series Longest Length of Time Series 

Rivers in Argyll 21 1993-2011 

Rivers in Ayrshire 19 1997-2011 

Rivers in Borders 23 2002-2011 

Rivers in Dumfries & Galloway 57 2001-2011 

Rivers in W. Highlands 13 1993-2011 

Rivers in Perthshire 22 2007-2011 

Rivers in Sutherland 17 1993-2011 

Lochs in Dunbartonshire 8 1999-2011 

Lochs in W. Highlands 7 2005-2011 

Lochs in Perthshire 8 2005-2011 

Lochs in Sutherland 9 2005-2011 

Lochs in Lewis 16 2005-2011 

Lochs in Stirlingshire 10 2006-2011 

 

Table 5.5.1.1: Summary of the river and lochs sites in each regio 
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(a) (b) 

   

                                  (c)              (d)     

      

 

Figure 5.5.1.1: Time series plots of log TOC in river sites at the Scottish regions: Argyll (a), 

Ayrshire (b), Borders (c) and Dumfries and Galloway (d). 
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(a)            (b) 

 

              (c) 

 

 

Figure 5.5.1.2: Time series plot of log TOC in river sites in the Scottish regions: West Highlands 

(a), Perthshire (b) and Sutherland (c). 
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Time Series Plots of River Sites in the West Highlands

1985 1990 1995 2000 2005 2010

-2
-1

0
1

2
3

4

Year
L

o
g

 T
O

C
 L

e
v
e

ls
 (

m
g

/l
)

Time Series Plots of River Sites in Perthshire

1985 1990 1995 2000 2005 2010

-2
-1

0
1

2
3

4

Year

L
o

g
 T

O
C

 L
e

v
e

ls
 (

m
g

/l
)

Time Series Plots of River Sites in Sutherland



  155 

 

  (a)                              (b) 

 
      (c)                                           (d) 

 
    (e)                                            (f) 

 

 

Figure 5.5.1.3: Time series plot of log TOC in loch sites at the Scottish regions: Dunbartonshire 

(a), West Highlands (b), Perthshire (c), Sutherland (d), Lewis (e) and Stirlingshire (f) 
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  (a)       

 

     (b) 

     

Figure 5.5.1.4: Seasonality of log TOC levels in the Argyll rivers (a); and seasonality of log TOC 

levels in the Argyll rivers during the year 2007 (b).   
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5.5.2 Applying the Seasonal Mann-Kendall Test to Scottish 

Regions 

 

  With regards to the Seasonal Mann Kendall test, it was decided, that it was only necessary 

to perform the test on a selection of regions, as this would give a further insight into the 

heterogeneity of sites located in the same region and a further understanding of the trends in 

each season.  The rivers in the regions West Highlands and Perthshire; and the lochs in the 

regions Lewis and Sutherland were considered – these regions were assumed to be 

representatives of the other regions log TOC behaviour.  Again, the methodology discussed 

in Section 5.2.1 was applied.  The chi square test statistics and the corresponding chi square 

values from the Seasonal Mann Kendall analysis are summarised in Table 5.5.2.1. 

The chi-square statistic in Table 5.2.1.1 ( ) can be applied to each region to test the 

null hypothesis that the trend at each site in the Scottish region is in the same direction.  The 

chi-square statistic for each of the selected regions are displayed in Table 5.5.2.1.  With 

regards to the heterogeneity of the stations, we fail to reject the null hypothesis for any of the 

specified regions, as the  statistics do not exceed the chi-square critical values [        

as Table 5.5.2.1 displays. 

 

Similarly, the chi-square statistic in Table 5.2.1.1 ( ) can be applied to each of the 

specified regions to test the null hypothesis that the trend is in the same direction in each 

season.  The values for each region are displayed in Table 5.5.2.1 – again, the chi-

square statistics were referred to the appropriate degrees of freedom, as outlined earlier in 

Table 5.2.2.1. 
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Summary of Seasonal Mann Kendall Test 

Regions   

Critical 

Value 

  

Critical 

Value 

Seasons which the trends 

are in significantly 

different directions 

West 

Highland 

Rivers 

9.08 21.02 33.11 7.81 Winter, Summer and Autumn 

Perthshire 

Rivers 

14.42 32.67 55.48 7.81 Winter and Summer 

Lewis Lochs 21.02 24.99 33.75 7.81 Winter and Spring 

Sutherland 

Lochs 

4.31 15.50 32.09 7.81 Winter and Summer 

 

Table 5.5.2.1: Summary of the Seasonal Mann Kendall tests performed on the specified regions. 

 

Since  was greater than the critical value of 7.81 in each region, the null hypothesis 

was rejected. Similar to the River Dee network, the        
  is significant, but,  is not, 

which means that the trends have significantly different directions in a different season or 

seasons, but not at different stations.  Since this is the case, again, van Belle and Hughes 

(1984) chi-square statistic (5.3.1.1) can be applied to test the null hypothesis that there was a 

different trend direction in each season.  Table 5.5.2.1 reveals that the direction of the trend is 

significantly different in the season ‘winter’ in each of the specified regions.   

 

 

 

2

station 2

station 2

season 2

season

2

season

2

station



  159 

 

5.5.3 Applying the Dynamic Factor Analysis to the Scottish 

Regions 

 

Similar to Section 5.3.2, DFA model were fitted to each of the regions which initially 

considered common trends using expression (5.2.2.4).  Again, the DFA model were fitted to 

the n number of time series present in each region with a varying number of common trends 

and either incorporating a diagonal or non-diagonal error covariance matrix.  Each time, the 

AIC was recorded.  This procedure was conducted for the groups of rivers and lochs located 

in each of the specified regions.  The DFA model with the lowest AIC value was chosen to be 

the “best” model.  Note: unfortunately, the software Brodgar 2.7.2 struggles to fit DFA 

models with more than 30 time series as using larger data sets means that the computing time 

becomes in the order of hours and the algorithm becomes unstable (Zuur, 2003a).  Hence, a 

DFA model could not be fitted to the 57 river sites in Dumfries and Galloway.  Table 5.5.3.1 

summarises the number of common trends and error covariance matrix included in the final 

DFA models (which only considered common trends) fitted to each of the Scottish regions, 

for rivers and lochs, respectively. 

Studying Table 5.5.3.1 highlights that all of the final DFA models fitted to the regions, only 

include one common trend.  A DFA model fitted with one common trend, suggests that the 

log TOC levels in different sites (located in the same region) are behaving in a coherent 

fashion.  Figure 5.5.3.1 displays a selection of plots – the fitted values in each of the plots 

were extracted from the final DFA models fitted to these particular regions (which included 

only one common trend).  Figure 5.5.3.1 highlights the coherency between sites in each of the 

specified regions and supports the final DFA models only including one common trend.  
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Summary of the DFA Models Fitted to Scottish Regions 

-Common Trends 

 

 

 

Rivers 

Region No. 

Trends 

Error Covariance 

Matrix 

Argyll 1 Diagonal 

Ayrshire 1 Non-Diagonal 

Borders 1 Non-Diagonal 

West Highlands 1 Diagonal 

Perthshire 1 Non-Diagonal 

Sutherland 1 Non-Diagonal 

 

 

Lochs 

Dunbartonshire 1 Non-Diagonal 

West Highlands 1 Non-Diagonal 

Perthshire 1 Diagonal 

Stirling 1 Non-Diagonal 

Sutherland 1 Non-Diagonal 

Lewis 1 Non-Diagonal 

 

Table 5.5.3.1: Summary of the final DFA models fitted to each of the Scottish Regions, for rivers 

and lochs. 
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   (a)                (b) 

      West Highland Rivers        Sutherland Rivers 

          
      (c)            (d) 

                          Ayrshire Rivers     Stirling Lochs 

                          
          (e)             (f) 

                        Perthshire Lochs     West Highland Lochs 

         

 

Figure 5.5.3.1: Selection of plots with the fitted values obtained from the final DFA models with 

one common trend.  River sites located in the regions West Highlands (a), Sutherland (b) and 

Ayrshire (c).  Loch sites located in the regions Stirling (d), Perthshire (e) and West Highlands 

(f).   
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Again, similar to the River Dee network, covariates were added to the added to the DFA 

models using expression (5.2.2.5) to try to explain what is driving the common trend at each 

region.  DFA models were fitted to the regions with varying numbers of common trends, a 

diagonal or non-diagonal error covariance matrix and combinations of the explanatory 

variables mean temperature and annual rainfall.  The AIC values of the DFA models only 

considering common trends were compared to the AIC values of those DFA models taking 

into account common trends and explanatory variables.  The model with the lowest AIC 

value was taken to be the best DFA model for each region and are summarised in Table 

5.5.3.2. 

It is important to note, that nine out of the twelve regions studied, included either one or 

both of the explanatory variables in the final DFA models fitted.  The DFA has been an 

effective method of measuring the coherency of log TOC levels between sites in these 

particular regions; but, it has also highlighted that temperature and/or rainfall could plausibly 

be driving the observed trends in a majority of the regions.  In Section 1.2, possible factors 

driving trends were discussed – albeit, the focus was DOC.  It is thought that an increase in 

temperature, leads to greater microbial activity and enhanced decomposition of peat and thus 

increased production of DOC (Worral et al., 2004) – hence, it is possible that, in a similar 

manner, an increase in temperature could have a similar effect on TOC.  Furthermore, Worral 

et al., (2003) suggested that an increase in DOC could be possibly explained by a change in 

the flow path of rivers (as a result of heavy rainfall), allowing richer sources of DOC to be 

accessed – again, it is possible that heavy rainfall has a similar effect on TOC.  These 

explanatory variables are not specific to each of the sites included in each of the regions, but 

their inclusion, indicates that environmental factors may be driving the observed trends, 

based on the DFA models. 

  To check the validation of the final DFA models fitted to the regions, the residuals can be 

plotted against the fitted values – a selection are displayed in Figures 5.5.2.2 and 5.5.2.3.  

Having inspected the residuals vs fitted values plots displayed in Figures 5.5.2.2 and 5.5.2.3 

and the residuals vs fitted values plots from the other DFA models, the plots do not seem to 

show any strong trends or patterns.  Hence, the final DFA models seem to be appropriate. 
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Summary of the DFA Models Fitted to Scottish Regions 

- Common Trends and Covariates 

 

 

 

Rivers 

Region No. 

Trends 

Error Covariance 

Matrix 

Explanatory Variables 

Argyll 1 Diagonal - 

Ayrshire 1 Non-Diagonal Temperature and Rain 

Borders 1 Non-Diagonal Temperature and Rain 

West Highlands 1 Diagonal - 

Perthshire 1 Non-Diagonal Temperature and Rain 

Sutherland 1 Non-Diagonal Rain 

 

 

Lochs 

Dunbartonshire 1 Non-Diagonal - 

West Highlands 1 Non-Diagonal Temperature 

Perthshire 1 Diagonal Rain 

Stirling 1 Non-Diagonal Temperature 

Sutherland 1 Non-Diagonal Temperature and Rain 

Lewis 1 Non-Diagonal Temperature and Rain 

 
Table 5.5.3.2: Summary of the final DFA models fitted to each of the Scottish Regions, for rivers 

and lochs. 
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(a)                                                                             (b) 

         

 

 
 

 

 

 

                                          (c) 

 

 
 

 

 
Figure 5.5.3.2: A selection of residuals vs fitted values plots from the final DFA models fitted to 

the river sites in the regions: Ayrshire (a), Borders (b) and Sutherland (c).  
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(a)                                                                        (b) 

 

 

 
 

 

(c) 

 

 
 

 

 

 
Figure 5.5.3.3: A selection of residuals vs fitted values plots from the final DFA models fitted to 

the loch sites in the regions: Stirlingshire (a), Sutherland (b) and Dunbartonshire (c). 
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5.6 Conclusion 

 

The literature review in this chapter highlighted the variety of ways in which the problem of 

coherency can be tackled.  Having studied the literature, it was thought, that dynamic factor 

analysis and the seasonal Mann-Kendall test were appropriate techniques to be applied in this 

thesis. 

 

Having considered the River Dee network in great detail in the previous chapter and finding 

the sites to be spatially independent (Section 4.4.2), it was of interest to measure the 

coherency between the log TOC levels at the thirteen sites.  The seasonal Mann-Kendall test 

and dynamic factor analysis were applied to the thirteen sites.  Based on the Seasonal Mann 

Kendall test, it was concluded that the trend at each of the thirteen sites was in the same 

direction; but, the trend was not in the same direction in each of the seasons. It was concluded 

that the trend was in the same direction in the seasons: winter, spring and autumn; but, the 

trend was not in the same direction during the summer season.  Dynamic factor analysis 

models were then fitted to the thirteen sites with varying number of common trends, the 

inclusion of an error covariance matrix (diagonal or non-diagonal) and the inclusion of 

explanatory variables common to all sites (annual mean temperature and annual rainfall).  

The AIC values of each DFA model were compared and the final DFA model fitted to the 

thirteen River Dee sites included two common trends, the inclusion of a non-diagonal error 

covariance matrix and the explanatory variables annual mean temperature and annual rainfall 

(for the data relevant to the East of Scotland).  Interpreting the results from the analysis 

would lead one to believe that overall, the log TOC at each of the network sites is behaving 

coherently; but, more specifically, there are actually two underlying common trends in the 

network.  Furthermore, it seems possible that the annual mean temperature and annual 

rainfall in the east of Scotland were driving the increase in log TOC in the River Dee network 

between 1990 and 2006 (Worral et al., 2003;Worral et al., 2004). 
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This chapter then moved on to considering rivers and lochs on a larger scale than the 

analysis conducted previously in the thesis.  Regions of Scotland were investigated.  

 

Based on exploratory analysis, it seemed plausible (for both rivers and lochs) that sites 

situated in the same region, have log TOC trends which could be described as being coherent.  

The trends displayed, supported previous subjective impressions of rivers: the log TOC levels 

seemed to increase up until the early 2000’s, where the increase then either weakened or 

flattened out.  This trend seems to be stronger in the rivers sites, as expressed in earlier 

chapters.  However, exploring the trends of the lochs in different regions suggested that log 

TOC levels in Dunbartonshire behave similarly to the rivers in regions; but, overall, from 

2005 onwards the log TOC levels become fairly unsteady in each region. The seasonality of 

log TOC within the regions was also considered and was found to mirror the seasonal 

patterns seen previously. 

  Similar to the River Dee sites, a seasonal Mann-Kendall test was applied to a selection of 

the regions and DFA was performed to gain an understanding of the coherency of log TOC 

levels in different sites located in the same region.  The seasonal Mann-Kendall test was 

performed on the rivers in the regions West Highlands and Perthshire; and the lochs in the 

regions Lewis and Sutherland were considered.  For each of these regions, it could be 

concluded that the trend of the sites was in the same direction; but, similar to the River Dee 

sites, the trend was not in the same direction in each of the seasons, suggesting that the 

season could also be a strong driver of trend in the regions. 

  Dynamic factor analysis models were then fitted to each of the regions – again, with 

varying number of common trends, the inclusion of an error covariance matrix (diagonal or 

non-diagonal) and the inclusion of explanatory variables common to all sites (annual mean 

temperature and annual rainfall).  All of the final DFA models fitted included one common 

trend.  This suggests that the log TOC levels of river and loch sites located in the same 

region, behave coherently.  Also, nine out of the twelve regions studied, included either one 

or both of the explanatory variables in the final DFA models fitted.  Even though the 

explanatory variables included in the DFA were not site specific, their inclusion in nine out of 
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the twelve final DFA models, suggests that environmental factors such temperature and 

rainfall, appear to influence the trends of log TOC in the majority of regions. 

  Having explored the coherency between sites in each region, the next chapter focuses on 

appropriately modelling the log TOC levels in each region – taking into consideration the 

trend and seasonality, over time and space. 
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Chapter 6  
 

Modelling Log TOC, Over Time and 

Space in Scottish Regions 

 

The previous chapter explored the coherency between sites located in the same region.  

Taking into consideration the results from the coherency analysis, this chapter aims to build a 

model which appropriately captures the behaviour of log TOC for the rivers and lochs in each 

of the regions (specified in the previous chapter).  This chapter shall fit additive models to 

each of the regions to capture the trend and seasonality of the log TOC, over time and space.  

The inclusion of covariates in the additive models shall be explored, in an attempt to explain 

the observed trends and patterns in each of the regions. 
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6.1 Modelling Trend and Seasonality 

 

Based on the visual inspection of the time series plots in Figures 5.5.1.1-5.5.1.3 displayed in 

Chapter 5, non-parametric regression seems to be the most appropriate method of capturing 

the behaviour of log TOC in each of the regions, for both rivers and lochs.  Hence, similar to 

previous chapters, a GAM model shall be fitted to each of the regions.   

Initially, the trend and seasonality of the regions shall be considered by fitting additive 

models which take into consideration time and space.  The ‘Site’ shall be included in the 

GAM models fitted to capture the ‘space’ element across the region.  The time and space 

shall be incorporated in the GAM models by fitting an interaction between year and site, but 

also, month and site.  The spatial coordinates were used in Chapter 4 for the analysis of the 

River Dee network; however, including the ‘site’ essentially serves the same purpose in the 

regions. Due to the previous analysis, the presence of a seasonal pattern is evident, and 

therefore shall be incorporated in the models fitted.  Therefore, letting y = log TOC level at a 

site; Year = Year; Month = Month; and each Site in the region = Site, the following additive 

model can be fitted, which incorporates trend, seasonality and the time and space interactions 

(still assuming the  are independent with mean 0 and constant variance ) : 

                                      

          (6.1.1) 

Again, the degree of smoothing applied to each term was chosen by generalized cross 

validation.  In expression (6.1.1), the are still assumed to be independent based on the 

spatial dependence analysis performed in Section 4.4.2 – the River Dee sites in the same 

network were deemed to be spatially independent; therefore, it seems plausible that sites 

located in a larger geographical space, will also be spatially independent.
 

  
Tables 6.1.1 and 6.1.2 summarise the final trend and seasonality GAM models fitted to each 

of the regions, with regards to rivers and lochs.  Note: a GAM model was also fitted to the 57 

rivers in the region Dumfries and Galloway – unlike the DFA, a large number of time series 

did not present a problem.  Studying Tables 6.1.1 and 6.1.2 highlights that the trend and 

i
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seasonality terms fitted in each GAM model (for each region independently) are significant 

with p-values less than 0.05.  The exceptions being, the lochs in Stirlingshire (Year term not 

significant) and the lochs in Sutherland (Year and Month term not significant); however, if 

the interaction term including that particular term was significant, standard practise is for the 

term to remain in the model.   

  Figure 6.1.1 displays a selection of the effect plots from the fitted trend and seasonality 

GAM models.  Figure 6.1.1 (a) and (b) display the trend at the rivers located in Argyll and 

Sutherland, respectively.  Similar to the previous initial impressions formed, it appears, that 

as the log TOC levels increase between the early 1990’s and early 2000’s – after this time 

period, the log TOC levels seem to level out.  This trend is similar in the rivers located in the 

regions: the Borders, Dumfries and Galloway, West Highlands and Perthshire.  Figure 6.2.3.2 

(d) displays the trend of log TOC in the Dunbartonshire Lochs.  The longest time series 

available for the lochs is in Dunbartonshire – the log TOC levels appear to decrease in the 

late 1990’s, before sharply increasing until the mid-2000’s.  After the year 2005, the log TOC 

levels appear to be fairly unsteady – showing signs of increasing and decreasing over the 

remaining years.  This trend from 2005 onwards was similar in lochs located in the West 

Highlands, Perthshire, Sutherland, Stirlingshire and Lewis.  Figure 6.1.1 (c) displays the 

seasonality of log TOC in the Ayrshire rivers – a pattern which is similar in the all the rivers 

and lochs located in the other regions. 
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Table 6.1.1: Summary of the trend and seasonality GAM models fitted to the river sites located 

in the different regions of Scotland.  

 

 

 

 
 

Table 6.1.2: Summary of the trend and seasonality GAM models fitted to the loch sites located 

in the different regions of Scotland.  Note: all the terms in the final model are included as non-

parametric terms, except from those marked with a “(P)” – these terms are parametric. 

 

 

 

 

 

 

 

Summary of GAM Models Fitted to River Sites in Each Region 
 Pr(>|t|) 

Region Year Month Site Year*Site Month*Site Adjusted R.Sq 
Argyll <0.001 <0.001 <0.001 <0.001 <0.001 47% 

Ayrshire <0.001 <0.001 <0.001 <0.001 <0.001 51.6% 

Borders <0.001 <0.001 <0.001 <0.001 <0.001 29.6% 

Dumfries and Galloway <0.001 <0.001 <0.001 <0.001 <0.001 33.7% 

West Highlands <0.001 <0.001 <0.001 <0.001 <0.001 57% 

Perthshire <0.001 <0.001 <0.001 <0.001 <0.001 30.3% 

Sutherland <0.001  <0.001 <0.001 <0.001 <0.001 40.7% 

Summary of GAM Models Fitted to Loch Sites in Each Region 
 Pr(>|t|) 

Region Year Month Site Year*Site Month*Site Adjusted R.Sq 
Dumbartonshire <0.001 <0.001 <0.001 <0.001 <0.001 27.2% 

West Highlands 0.03 <0.001 <0.001 <0.001 <0.001 82.5% 

Perthshire <0.001 <0.001 <0.001 <0.001 <0.001 62.9% 

Sutherland 0.15(P) 0.32 <0.001 <0.001 <0.001 61% 

Stirlingshire 0.06 0.01 <0.001 <0.001 0.009 60% 

Lewis 0.41 <0.001 <0.001 <0.001 <0.001 42% 
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(a)                                                          (b) 

 
 

(c)     (d) 

 
 

        (e)                                                (f) 
 

 
Figure 6.1.1: A selection of effects plots from the fitted trend and seasonality GAM models: year 

at the Argyll rivers (a), year at the Sutherland rivers (b), month at the Ayrshire rivers (c), year 

at the Dunbartonshire Lochs (d).  Trend and seasonality 3D plots in the West Highland rivers 

site 1 (e) and site 2 (f). 
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Tables 6.1.1 and 6.1.2 highlight that the ‘Site’ term and interaction terms included in the 

GAM models are significant in each of the regions.  In a similar fashion to Figure 4.4.7.1 

(Chapter 4), 3D trend and seasonality plots have been used to support the inclusion of the 

significant interaction terms in the GAM models.  Two river sites from the West Highland 

region have been selected and are shown in Figure 6.1.1 [(e) and (f)].  Comparing ‘site 1’ to 

‘site 2’ shows the seasonal pattern of the log TOC at both sites; but, highlights that the 

increase in log TOC levels between spring and autumn is more rapid in ‘site 1’ than ‘site 2’.  

With regards to trends, log TOC levels appear to increase up until the year 2005 in ‘site 1’ 

before decreasing; log TOC levels seem to smoothly increase up until the year 2003, before 

decreasing in ‘site 2.  These slight differences in trend and seasonal patterns could be 

observed between sites in each of the regions.  These significant interaction terms imply that 

even if the log TOC levels of sites in a particular region are behaving coherently, it is still 

plausible that the levels differ between sites throughout the seasons and over the years. 

Table 6.1.2 highlights that the GAM models fitted to the loch sites in the West Highlands is 

a very good fit to the data – with an adjusted R squared value of 82.5%.  However, having 

fitted a GAM model which considers time and space, it is of interest to incorporate 

covariates, to see if they improve the GAM models fitted to each region. 

 

6.2 Modelling Trend, Seasonality and Covariates 

 

  Section 6.1 identified that the terms: Year, Month, Site, Year*Site and Month*Site were 

included in the models fitted to each of the regions.  A natural progression from this is to 

build a model, which captures the trend and seasonality of log TOC in each of the regions, 

over time and space, but also, incorporate covariates.  Hence, the GAM models will be re-

fitted to the regions, but this time, include the covariates temperature, pH, log alkalinity, log 

nitrate, log sulphate and the annual rainfall (mm) as it seems to be a sensible progression 

from Chapter 5.  Each covariate added to the model shall be site specific, except from the 

annual rainfall unlike the mean annual temperature and annual rainfall included in the DFA 

models fitted in Chapter 5. 
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Letting y = log TOC level at a site; Year = Year; Month = Month; each site in the region = 

Site, T = temperature; A = log alkalinity; pH = pH; S = log sulphate; N = log nitrate; R = 

Annual Rainfall (mm), the following additive model can be fitted, (again, assuming the  

are independent with mean 0 and constant variance ) : 

 

y
i
=β

0
 m1 Yeari  m2      i  m3      ) m4   ) m5     m6 p  

  m7      

       m8  i  m9     m10     m11 Yeari         m12      i            

 

                                                    (6.2.1) 

                                                                                       

Terms that were not significant at the 5% level were removed from the GAM model, and the 

model was refitted.  A summary of the final GAM models fitted to each of the regions is 

presented in Tables 6.2.1 and 6.2.2.  Including the covariates has not altered the inclusion of 

the terms ‘Year’, ‘Month’, ‘Site’ or the interaction terms in the GAM models fitted – these 

terms remain in the final GAM models fitted for both rivers and lochs in each of the regions. 

The rivers shall be considered first.  Based on the adjusted R-squared values, Table 6.2.1 

reveals that including covariates in the GAM models fitted to the regions, has improved the 

models – with the exception being the rivers in Argyll.  When expression (6.2.1) was fitted to 

the rivers in Argyll, the only covariate which was significant in the model was log nitrate; 

however, the GAM model including log nitrate had an adjusted R-squared value of 34.7%, 

compared to an adjusted R-squared value of 47% when expression (6.2.1) was fitted without 

any covariates (as seen in Table 6.2.1).  This contrast in adjusted R-squared values was due to 

the missing log nitrate values – GAM model are fitted using ‘complete row analysis’, hence 

missing covariate values will have an effect on the fitted model and the amount of variation 

in the data which the model explains. 

i

2

ni ,...,1



  176 

 

 

Table 6.2.1: Summary of the final GAM models fitted to rivers in the specified regions. Note: if a term was not included in the final GAM model, it is 

represented by “-“; all the terms in the final model are included as non-parametric terms, except from those marked with a “(P)” – these terms are 

parametric. 

Summary of the Final GAM Models Fitted to Rivers in Regions 

 

 

 

 

 

 

Rivers 

 

Region 

Pr(>|t|)  

Adjusted 

R. Sq 
Year Month Site Year*Site Month*Site Temperature pH Log 

Alkalinity 

Log 

Nitrate 

Log 

Sulphate 

Annual 

Rainfall 

Argyll <0.001 <0.001 <0.001 <0.001 <0.001 - - - - - - 47% 

Ayrshire <0.001 <0.001 <0.001 <0.001 <0.001 - - <0.001 0.004 <0.002 

(P) 

<0.001 63.1% 

Borders <0.001 <0.001 <0.001 0.04 <0.001 <0.001 <0.001 <0.001  <0.001 - 46.2% 

Dumfries 

and 

Galloway 

<0.001 <0.001 <0.001 <0.001 <0.001 - <0.001 <0.001 <0.001 <0.001 - 56.2% 

West 

Highlands 

0.002 <0.001 <0.001 <0.001 <0.001 0.005 - <0.001 - - 0.006 62% 

Perthshire <0.001 <0.001 <0.001 <0.001 <0.001 0.002 - <0.001 <0.001 <0.001 - 73.5% 

Sutherland <0.001  <0.001 <0.001 <0.001 <0.001 - 0.02 (P) - - 0.01 (P) 

 

- 53% 
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  (a)                           (b) 

                  

                

  (c)                         (d) 

                

   

                      

Figure 6.2.1: A selection of effect plots from the final GAM models fitted- log nitrate in the 

Borders (a); log nitrate in Ayrshire (b); log alkalinity in Dumfries and Galloway (c); 

temperature in the West Highlands (d). 
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Studying Table 6.2.1 reveals that none of the covariates fitted in the GAM models are 

significant in all of the specified regions.  However, log alkalinity and log sulphate are 

significant in 5 out of the 7 final GAM models fitted; pH, log nitrate and temperature are 

significant in 3 out of the 7 regions; and annual rainfall is significant in 2 out of the 7 regions.  

Only 7 of the Scottish regions have been considered here; however, the final GAM models 

fitted to the rivers suggests that the covariates considered here may not be able to explain the 

trends and patterns of log TOC in all seven regions, but, may be responsible for what is 

driving the trends and patterns in some of the regions.  Figures 6.2.1 and 6.2.2 display a 

selection of the effect plots from the fitted GAM models – particularly focussing on 

covariates which seem to have the greatest effect on log TOC levels across the regions, based 

on the final GAM models fitted (as seen in Table 6.2.1).   

Increasing log nitrate levels appear to have a different effect on log TOC levels in each of 

the regions, with regards to rivers.  For example, Figure 6.2.1 [(a) and (b)] shows a 

contrasting effect of increasing log nitrate levels in the regions Perthshire, and Ayrshire.  An 

increase in log nitrate levels in the Perthshire rivers seems to be associated with a smooth 

increase in the log TOC levels; but, an increase in log nitrate levels in the Dumfries and 

Galloway rivers, is associated with a smooth decrease in log TOC levels.  An increase in the 

Ayrshire rivers is associated with an initial increase in log TOC levels followed by a gentle 

decrease. 

The effect of increasing log alkalinity levels in Dumfries and Galloway, displayed in Figure 

6.2.1 (c), is similar in Ayrshire, the Borders, West Highlands and Perthshire (with regards to 

rivers): the log TOC levels appear to remain fairly steady or faintly increase when log 

alkalinity levels increase up to (approximately) than 2.5; however, when log alkalinity levels 

exceed (approximately) 2.5, log TOC levels seems to decrease smoothly. 

Similar to the initial impressions gained in earlier chapters, Figure 6.2.1 (d) displays the 

effect of increasing temperature levels in the rivers located in the West Highlands.  As 

temperature increases to approximately 12 degrees Celsius, log TOC also appears to increase; 

if temperature levels rise above approximately 12 degrees Celsius, log TOC levels appear to 

fall.  This pattern is similar in the Borders and Perthshire. 
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                (a)                        (b) 

                    

          (c) 

                                         

Figure 6.2.2: A selection of effect plots from the final GAM models fitted- pH in Dumfries and Galloway 

(a); log sulphate in the Borders (b); and annual rainfall in Ayrshire (c). 

 

 

 

 

5 6 7 8

-3
-2

-1
0

1
2

3

Dumfries and Galloway Rivers

pH.Dumfries.Gallow

s
(p

H
.D

u
m

fr
ie

s
.G

a
ll
o

w
,5

.4
6

)

-2 0 2 4

-2
-1

0
1

2
3

4

Borders Rivers

Log.Sulphate.Borders

s
(L

o
g

.S
u

lp
h

a
te

.B
o

rd
e

rs
,7

.5
2

)

1400 1500 1600 1700 1800 1900 2000

-2
-1

0
1

2
3

Ayrshire Rivers

Rainfall.W.Ayrshire

s
(R

a
in

fa
ll
.W

.A
y
rs

h
ir

e
,1

.8
)



  180 

 

 

Figure 6.2.2 (a) displays the effects of increasing pH levels in the rivers located in Dumfries 

and Galloway.  It seems that as the pH levels increase, the levels of log TOC appear to 

decrease smoothly (a similar effect can be observed in the Borders) - this could be because 

pH is higher at sites with less peaty soils (less peaty = lower carbon content).  The rivers in 

Sutherland and Perthshire behave in a similar manner; however, the decrease in log TOC 

levels appears to be linear. 

Figure 6.2.2 (b) displays the effects of increasing log sulphate levels in the rivers located in 

the Borders.  As log sulphate levels increase up to approximately the value of 2 mg/l, log 

TOC levels seem to gradually decrease; however, if the log sulphates increase above 

approximately 2 mg/l, the log TOC levels seem to gradually increase – this pattern is similar 

in Perthshire and Dumfries and Galloway.  This is not the case in Sutherland though, 

increasing log sulphate levels seem to be associated with a linear decrease in log TOC levels; 

and it is the opposite in Ayrshire, where increasing log sulphate levels seem to be associated 

with a linear increase in log TOC levels. 

  Figure 6.2.2 (c) shows the effect of increasing annual rainfall in the rivers located in 

Ayrshire – an increase in annual rainfall up to 1700mm appears to be associated with an 

increase in log TOC levels; however, a further increase appears to be associated with a 

decrease in log TOC levels.  An increase in annual rainfall was associated with similar 

behaviour in the West Highland rivers. 

  Now, to consider the lochs located in the specified regions.  Considering Table 6.2.2, 

highlights that 5 out of the 6 GAM models fitted to lochs in regions were improved with the 

inclusion of covariates, based on the adjusted R squared values – especially the lochs in 

Stirlingshire (increase from 60% to 83.1%) and the lochs in Lewis (increase from 42% to 

80.4%).  However, expression (6.2.1) was a more appropriate GAM model to be fitted to the 

lochs in the West Highlands.  When fitting expression (6.2.1) to the lochs in the West 

Highlands, the only significant covariate was pH, which resulted in a decrease in the adjusted 

R-squared value from 83.5% to 43% (again, the missing pH values could be a plausible 

explanation for these results).   
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Summary of the Final GAM Models Fitted to Lochs in Regions 

 

 

 

 

Lochs 

 

Region 

Pr(>|t|)  

Adjusted R. 

Sq 
Year Month Site Year*Site Month*Site Temperature pH Log 

Alkalinity 

Log 

Nitrate 

Log 

Sulphate 

Annual 

Rainfall 

Dunbartonshire <0.001 0.002 <0.001 <0.001 <0.001 0.04 (P) - - - 0.008 - 29.5% 

West 

Highlands 

0.03 <0.001 <0.001 <0.001 <0.001 - - - - - - 83.5% 

Perthshire <0.001 <0.001 <0.001 <0.001 <0.001 - <0.001 <0.001 (P) <0.001 <0.001  76.7% 

Stirlingshire <0.001 <0.001 <0.001 <0.001 <0.001 0.002 (P) <0.001 - - <0.001 <0.001 83.1% 

Sutherland 0.41 

(P) 

<0.001 <0.001 0.006 0.04 - - <0.001 - <0.001  68.2% 

Lewis 0.09 0.02 <0.001 <0.001 <0.001 - <0.001 <0.001 <0.001 

(P) 

- <0.001 (p) 80.4% 

 

Table 6.2.2: Summary of the final GAM models fitted to lochs in the specified regions. Note: if a term was not included in the final GAM model, it is 

represented by “-“; all the terms in the final model are included as non-parametric terms, except from those marked with a “(P)” – these terms are 

parametric. 
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   (a)             (b) 

 
         

 
   (c)              (d) 

 
   

 
 

Figure 6.2.3: A selection of effect plots from the final GAM models fitted- pH in Stirlingshire 

(a); log sulphate in Stirlingshire (b); log alkalinity in Lewis (c); log nitrate in Perthshire (d). 
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From studying Table 6.2.2, it is also clear that log sulphate is the most common covariate 

included in the final GAM models fitted to the lochs – log sulphate is included in 4 out of the 

6 final GAM models fitted to the regions.  Log alkalinity and pH are fairly common, as they 

are included in 3 out of the 6 final GAM models fitted.  Annual rainfall is only significant in 

2 out of the 6 regions  Even though, only 6 regions have been investigated, these results 

suggest that it is likely that log sulphate, log alkalinity and pH could also possibly explain the 

observed trends and patterns of log TOC in the regions of Scotland which were not 

considered.  Figure 6.2.3 and 6.2.4 displays a selection of the effect plots from the final GAM 

models fitted to lochs in the different regions. 

  Figure 6.2.3 (a) displays the effect of increasing levels of pH in Stirlingshire – an effect 

which is similar in Lewis and Perthshire.  An increase in pH levels between approximately 6 

and 7 is associated with an increase in log TOC levels; however, if levels increase above 7, 

log TOC levels appear to levels out. 

  Figure 6.2.3 (b) displays the effect of increasing levels of log sulphate in Stirlingshire.  As 

levels of log sulphate increase to approximately 1 mg/l, levels of log TOC seem to decrease; 

but, as levels of log sulphate rise, levels of log TOC seem to increase rapidly.  This behaviour 

is similar in Dunbartonshire and Sutherland.  However, Perthshire displays a different 

pattern: as levels of log sulphate increase, levels of log TOC appear to smoothly decrease. 

Figure 6.2.3 (c) shows the effect of increasing levels of log alkalinity in the lochs of Lewis.  

As levels of log alkalinity in the lochs increase, log TOC levels appear to increase rapidly – 

this behaviour is similar in Sutherland and Perthshire. 

Figures 6.2.3 (d) and 6.2.4 (a) contrast the effects of increasing log nitrate levels in 

Perthshire and Lewis, respectively.  An increase in log nitrate levels in Perthshire, is 

associated with a steady, smooth decrease in log TOC levels; however, in Lewis, it is 

associated with a linear increase in log TOC levels. 

Figure 6.2.4 (b) shows the effect of increasing temperature levels in Dunbartonshire.  Unlike 

the initial impressions gained in earlier chapters, Figure 6.2.4 (b) suggests that as the 

temperature increases, the levels of log TOC increases in a linear fashion. 
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   (a)           (b) 

 

(c) 

 

 

Figure 6.2.4: A selection of effect plots from the final GAM models fitted- log nitrate in Lewis 

(a); temperature in Dunbartonshire (b); and annual rainfall in Lewis (c). 
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Unlike the rivers, log TOC levels appear to continue to increase at temperature levels above 

12 degrees Celsius.  This behaviour is similar in the lochs in Stirlingshire. 

  Figure 6.2.4 (c) shows the effect of increasing annual rainfall in the lochs located in Lewis – 

an increase in annual rainfall appears to be associated with a linear increase in log TOC 

levels.  An increase in annual rainfall was associated with similar behaviour in the 

Stirlingshire lochs. 

In a usual manner, the validation of the final GAM models fitted to the regions (displayed in 

Tables 6.2.1 and 6.2.2) was considered by plotting the residuals against the fitted values.  A 

selection of the residuals vs fitted values plots are displayed in Figure 6.2.5 – based on the 

plots, the residuals vs fitted values do not appear to show any signs of trends or patterns.  

Hence, the final GAM models fitted to each region seem to be appropriate.
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   (a)          (b) 

 
   (c)          (d) 

  
   (e)          (f) 

  
 

Figure 6.2.5: A selection of residuals vs fitted values plots extracted from the final GAM models 

fitted in the regions Ayrshire (a), Dumfries and Galloway (b), and Perthshire (c) [with regards 

to rivers]; and the regions Dunbartonshire (d), Perthshire (e) and Sutherland (f) [with regards 

to lochs].  
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6.3 Conclusion 

 

  After exploring the coherency of sites in each region in the previous chapter, this chapter 

focused on fitting additive models to each region, which appropriately captured the log TOC 

levels over time and space.  At first, the trend and seasonality of the regions were considered; 

but also, the interaction between the year and site, and the month and site.  Tables 6.1.1 and 

6.1.2 highlighted that the interaction terms were significant in all regions.  This suggested 

that levels of log TOC differed between sites located in the same region.  From the seasonal 

Mann-Kendall test performed in Chapter 5, it was found that sites located in the same region 

seem to have trends which are in the same direction; but, the direction of the trends are in a 

different direction in one or more seasons.  However, the significant interaction terms in the 

GAM models suggest that even though the trends of the sites (in the same region) are in the 

same direction, the levels of log TOC vary from site to site across the years and throughout 

the months. 

  The significant interaction terms in the GAM models, required the results of the final DFA 

models in Chapter 5 to be investigated.  All of the final DFA models fitted to the regions in 

Chapter 5 included only one underlying common trend.  One common trend suggests that the 

levels of log TOC in the region are behaving very coherently, and that the levels do not 

significantly vary between sites.  It has been established throughout the thesis that there is a 

strong seasonal pattern in the rivers and lochs, with regards to log TOC levels.  Alonso et al., 

(2011) discussed seasonal dynamic factor analysis – unfortunately seasonal dynamic factor 

analysis could not be performed in the Brodgar software used for fitting the DFA models.  

Hence, the seasonal component of the data was removed as suggested by Zuur et al. (2004).  

The season seems to have a strong influence on the trend, and since this is not appropriately 

incorporated in the DFA models, it is possible that this will have affected the results of the 

final DFA models fitted to each of the regions.   

  After fitting GAM models which considered trend and seasonality, covariates were added 

to the models to try to improve the amount of variation explained in the data.  It was found 



188 

 

that adding covariates to the trend and seasonality GAM models fitted to the rivers in the 

different regions, improved six out of the seven GAM models.  It was only for the rivers in 

Argyll which the trend and seasonality GAM models was seen to be a more appropriate fit.  

Similarly, it was only the lochs in the West Highlands, where the trend and seasonality GAM 

model was a better fit to the data.  None of the covariates fitted in the final GAM models 

were significant in all regions – for rivers or lochs.  But, for the rivers, log alkalinity and log 

sulphate were significant in five out of the seven final GAM models fitted to the regions.  

With regards to the lochs, log sulphate was the most common covariate – it was included in 

four out of the six final GAM models fitted.  Log alkalinity and pH were the second most 

common covariate fitted to the lochs as they were included in 3 out of the 6 final GAM 

models fitted to the regions. 
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Chapter 7  
 

Discussions and Conclusions 

 

 

7.1 Summary 

 

  The Scottish Environment Protection Agency (SEPA) is the regulatory agency responsible 

for monitoring water quality in Scottish waters and reporting back to the Scottish and UK 

governments and the European Community.  The rising levels of organic carbon in Scottish 

rivers and lochs is of interest because it could indicate loss of soil carbon stocks and a source 

for carbon dioxide. Hence, the aim of this thesis was to perform a detailed investigation into 

the behaviour of total organic carbon and dissolved organic carbon.  Furthermore, the aim 

was to explore physical and chemical factors which could possibly be driving such behaviour. 

Having established that the thesis would focus on total organic carbon, due to the volume of 

missing dissolved organic carbon data, Chapter 2 explored trends, seasonality and 

relationships in rivers and lochs.  The non-constant variability in total organic was clear in 

rivers and lochs; subsequently, a log transformation of the data suitably stabilized the 
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variability. The missing log TOC data at sites was also clear -data imputation was discussed, 

but the decision was made to work with the TOC data available as missing data would not 

present a problem for the standard regression techniques to be used in this thesis for analysis.  

Plotting the log TOC data for rivers and lochs, suggested that the trend was similar to the 

behaviour of dissolved organic carbon observed in the Northern Hemisphere, North America, 

central Europe and Scandinavia.  Levels of log TOC appeared to increase throughout the 

1990’s, up until the early 2000’s.  It is not until the early 2000’s that the increase in log TOC 

levels seems to weaken.  Plotting the log TOC levels against the day of the year in which they 

were sampled, highlighted that there was a clear seasonal pattern in rivers and lochs: the log 

TOC levels seemed to be increasing from early spring until early autumn, which was 

followed by a steady decline through winter.  However, the plots did suggest that the seasonal 

pattern appeared to be stronger in rivers.   

Having explored the trend and seasonal patterns, the strength of the relationship between 

total organic carbon and dissolved carbon was of interest.  Scatter plots and correlation tests 

suggested that there was a strong relationship between the two types of organic carbon. The 

relationships between log TOC and the covariates temperature, pH, alkalinity, nitrate, 

sulphate and river flow [data only available for 49 sites only] were also of interest.  Similar to 

the ideas discussed in Chapter 1 by Freeman et al., (2001a) and Worrall et al., (2004), the 

plots suggested that temperature is associated with an increase in log TOC levels in Scottish 

rivers and lochs.  Highest levels of log TOC are associated with a temperature of 

approximately 15 degrees Celsius.  However, with regards to the effects of pH on log TOC, 

the effect seemed to be site specific, for both rivers and lochs.  An increase in pH at one site 

is associated with an increase in log TOC; but, at other sites, it was the contrary.  The site 

specificity was similar in rivers, with regards to log alkalinity’s effect on log TOC; however, 

at loch sites, an increase in log alkalinity is associated with an increase in log TOC.  The 

initial impression of log nitrate and log sulphate, suggested that unlike the other covariates, 

they do not seem to influence the levels of log TOC in either river or loch sites.  The log TOC 

levels remain fairly flat, regardless of any increase or decrease in the log nitrate or sulphate 

concentration in the water.  Based on visual exploration, for the sites with available flow data, 

it was found that an increase in the river flow is associated with an increase in log TOC levels 

at the sites. 
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  The plotting of the different covariates raised two issues – values at the limit of detection 

and missing values.  Log nitrate (in rivers and lochs) and log sulphate (in lochs) had values 

which were recorded at the limit of detection.  To overcome this issue, a technique known as 

regression on order statistics (Helsel, 2005) was used, which seemed to effectively deal with 

the problem.  Now, for the second issue – as temperature generally follows a seasonal pattern, 

the missing values could be predicted in a sensible manner by simple computation based on 

the monthly mean. 

  Chapter 2 provided an overview of the trends, seasonality and relationships in rivers and 

lochs; but, as 333 river sites and 187 loch sites were being considered, it was thought, that 

investigating individual sites in detail would be beneficial.  Thus, Chapter 3 explored three 

river and three loch sites in detail.  Sites with differing lengths of time series were chosen to 

represent the most common time periods in rivers and lochs.  Plotting the trends, suggested, 

that for the sites with the longer time series (Callater Burn, Loch Kilbirnie, Loch Lomond), 

log TOC appears to increase up until the early 2000’s, before “levelling off”.  The sites with 

data only between early 2000’s and 2010 (River Tweed, River Dall Bridge, Loch Naver), did 

not show any strong trend – levels of log TOC remained fairly flat across the years.  With 

regards to seasonality, log TOC seems to follow a seasonal pattern in all three river sites and 

Loch Kilbirnie.  At these sites, it seems that levels of log TOC appear to increase from early 

spring up until early autumn – during late autumn and winter, the log TOC levels seem to 

decrease.  There does not seem to be a strong seasonal pattern in either Loch Lomond or 

Loch Naver. 

  The relationship between log TOC and covariates were explored at each of the sites.  At the 

river sites Tweed and Dall Bridge, an increase in the log Alkalinity levels was associated with 

a decrease in log TOC levels. An increase in temperature was associated with an increase in 

log TOC levels at each of the three sites.  Log nitrate seemed to be associated with a decrease 

in log TOC levels at the River Tweed only.  An increase in log flow seemed to be associated 

with an increase in log TOC at Callater Burn.  On the other hand, the covariates did not 

appear to have a strong relationship with log TOC at any of the loch sites.  If anything, an 

increase in temperature and log alkalinity seemed to be associated with an increase in log 

TOC – but, this was a very weak relationship.  Based on the six sites investigated, the 

exploratory analysis suggested that the covariates were more likely to be associated with a 
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change in log TOC levels in rivers, than lochs.  However, it was important to remember that 

only three river and three loch sites were being considered. 

  Having explored the trend, seasonality and relationship with covariates, Chapter 3 

progressed on to considering different modelling techniques.  Linear models and generalized 

additive models were explored – each model addressing trend, seasonality and the covariates.  

A linear model and generalized additive model was fitted to each site.  It was found that the 

levels of log TOC at Callater Burn for any given month, on average, are increasing by 0.04 

mg/l per year; and for any given month, on average, the level of log TOC is increasing by 

0.02 mg/l at Loch Lomond (Creinch) and increasing by 0.06 mg/l at Loch Kilbirnie (Beith), 

per year. Moxley (2010), states that the rate of TOC increase, averaged across all Scottish 

sites with increasing concentrations, was 0.12 milligrams per litre per year (mg/l/y).  Hence, 

the rate of increase does not seem to be as severe at these selected sites. 

 

  In Chapter 3, it was found that the length of time period did not seem to determine whether 

a linear or additive model was a more appropriate fit to a site.  The river sites Callater Burn 

and River Tweed (with longer time series than the other site, Dall Bridge) were appropriately 

described by an additive model.  This was expected, as the trends displayed by these sites, did 

not behave in a linear manner. However, Loch Lomond (Creinch) with the longest time series 

(out of the three lochs), was more appropriately described by a linear model.  Based on these 

six sites, it seems that the most appropriate modeling technique is specific to each site. 

 

  The sites in Chapter 3 were not spatially or ecologically connected.  Instead of continuing 

to explore sites on an individual basis, a logical next step was to consider sites which are 

connected in some manner.  Chapter 4 considered sites which are located in, what has been 

described as, the River Dee network. The sites in the River Dee network were connected (or 

not connected) by the flow path of the river.  In general, a river network consists of a main 

channel, and the streams and estuaries which flow in to the main channel.  Therefore, a 

natural place to start was to consider five sites located on the main channel (River Dee itself).  

Initially, the sites were considered independently of one another.  The exploratory analysis 

suggested that there was a common signal – the log TOC levels were increasing steadily until 

the early 2000’s, which was followed by a weaker increase in the remaining years; there was 

a seasonal pattern evident in all sites; and the covariate ‘log flow’ seemed to influence log 
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TOC levels at all sites.  Based on the exploratory analysis, the decision was made to not 

continue with further analysis of Banchory Bridge in Sections 4.2 and 4.3, due to the large 

amount of missing data.  Similar to the previous chapter, two modelling approaches were 

used –linear and additive models were fitted to each site.  Again, an approximate F-test was 

used to choose the “best” model to be fitted to each site.  It was found that additive modelling 

was appropriate at three of the sites; and a linear model was more appropriate at Potarch 

Bridge. 

 

Moving on from modelling each site separately, Chapter 4 attempted to find a global model 

to capture the behaviour of all four sites located on the main channel.  To achieve this, a 

Generalized Additive Mixed Model (GAMM) was fitted to capture the common signals of 

the four sites.  The final GAMM model revealed that there was a significant trend and 

seasonal pattern amongst the 4 sites; but also, the covariates log Alkalinity, log Sulphate and 

log Flow were associated with a change in log TOC levels at the four sites.  The final GAMM 

model was more informative that the linear and additive models fitted to the sites 

individually.  A global model was found to describe the behaviour of log TOC along the 

River Dee, which allowed the inclusion of a random site effect and a spatial correlation 

structure (exponential).  In a sense, the inclusion of the spatial correlation structure 

highlighted that the distance between sites along the river, had an influence on the levels of 

log TOC. 

 

Chapter 4 then progressed on to taking into consideration the sites located on the main 

channel, but also, the streams and estuaries flowing into the main channel.  Defining the flow 

connectivity and the distance (Euclidean and river distance) between each of the sites, 

allowed the behaviour of log TOC across the network to be studied using a non-parametric 

smoothing technique developed by O’Donnell (2011).  O’Donnell’s smoothing technique 

effectively captured the structure of the network.  At first, O’Donnell’s technique was used to 

study the behaviour of log TOC over space –the log TOC values during the month of March 

in 2009 were chosen for analysis.  O’Donnell’s non-parametric smoothing technique was 

conducted using both river and Euclidean distance – it was found (regardless of which 

distance measurement was used) that as the river flows through the network, downstream 

towards site 1, the levels of log TOC seem to increase.  Based on the visual inspection of 
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plots, and comparison of the root mean square error values, it was concluded, that river 

distance seems to be a more appropriate measurement between sites and would be used in the 

analysis to proceed.  A natural progression from investigating the behaviour of log TOC over 

space was to monitor the trend of log TOC over time and space.  To achieve this, four points 

in time were chosen – the log TOC values from March in the years: 1990, 1997, 2000 and 

2009.  The trend appeared to coincide with initial impressions previously formed in earlier 

sections – in the month of March (in the chosen years) the log TOC levels seemed to increase 

throughout the 1990’s up until the early 2000’s, and then “level off”.  Levels of log TOC 

seem to increase between the years 1990 and 2000, particularly at the sites located where the 

river rises (near the Cairngorms). 

 

The GAMM model appropriately captured the behaviour of sites situated on the same 

channel; however, in order to capture the common signals of the sites located across the 

network, a different approach was required.  A GAM was fitted to initially capture the trend 

and seasonality of the log TOC levels across the network.  The spatial location of the sites 

was included in the model as a covariate to capture the space element of the network; and the 

interactions between ‘year’ and ‘site’, and ‘month’ and ‘site’, were included, as it was 

thought that the levels of log TOC may be differ between sites.  The covariates pH, 

temperature, log alkalinity, log nitrate, log sulphate and log flow were then added to the trend 

and seasonality GAM in an attempt to improve the model.  It was found, that the “best” 

additive model to describe the log TOC levels of the thirteen sites in the River Dee network 

included: year, month, the interaction between the year and each site, the spatial location of 

the sites, log alkalinity, pH and log nitrate.  The significant interaction between year and site, 

suggested that the levels of log TOC differ between the sites over the years - plotting the 

fitted values for each of the thirteen sites suggested that groups of sites (particularly sites 

close to each other) behaved coherently.  Furthermore, this was supported by the significant 

spatial location term being included in the GAM – suggesting that the location of the site in 

the network influenced the levels of log TOC.  However, the final GAM fitted to the River 

Dee network, was not a great fit to the data.  Further research into the River Dee network 

could explore different environmental factors, such as the surrounding land use, which may 

be useful in explaining more of the variation in log TOC levels in the network. 
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Chapter 5 then addressed the main theme throughout the thesis – coherency.  A literature 

review was conducted in Chapter 5 highlighting the variety of ways in which coherency has 

been measured in different papers.  Having studied the literature, it was thought, that dynamic 

factor analysis and the seasonal Mann-Kendall test were appropriate techniques to be applied 

in this thesis.  As the River Dee network was a key focus of Chapter 4, the coherency of the 

network sites was assessed.  From the seasonal Mann-Kendall, it was found that the trend 

was in the same direction in each of the sites; but, the trend was only in the same direction 

during the season’s winter, spring and autumn.  The season seems to have a strong influence 

on the trend.  Furthermore, the DFA highlighted that the best DFA model to describe the log 

TOC levels in the River Dee network included two common trends, the inclusion of a non-

diagonal error covariance matrix and the explanatory variables annual mean temperature and 

annual rainfall.  An overall interpretation of the coherency analysis of the network suggests 

that the log TOC at each of the network sites is behaving coherently; but, more specifically, 

there are actually two underling common trends in the network.  The annual mean 

temperature and annual rainfall in the east of Scotland appear to be driving the observed 

trends in the network. 

 

Chapter 5 then considered rivers and lochs on a larger scale than the analysis carried out on 

the River Dee network - regions of Scotland were investigated.  Based on exploratory 

analysis, it seemed plausible (for both rivers and lochs) that sites situated in the same region, 

have log TOC trends which could be described as being coherent.  The trends displayed, 

supported previous subjective impressions of rivers: the log TOC levels seemed to increase 

up until the early 2000’s, where the increase then either weakened or flattened out.  However, 

exploring the trends of the lochs in different regions suggested that only in Dunbartonshire 

did log TOC levels behave similarly to the rivers regions.  Previous exploratory analysis 

suggested that log TOC levels in lochs were fairly flat from 2005 onwards; but, analysis of 

each region highlighted that from 2005 onwards, the log TOC levels are fairly unsteady.  The 

seasonality of log TOC within the regions was also considered (with regards to rivers and 

lochs) and was found to mirror the seasonal patterns seen previously.   

 

Similar to the River Dee sites, a seasonal Mann-Kendall test was applied to a selection of 

the regions and DFA was performed to gain an understanding of the coherency of log TOC 
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levels in different sites located in the same region.  The seasonal Mann-Kendall test was 

performed on the rivers in the regions West Highlands and Perthshire; and the lochs in the 

regions Lewis and Sutherland were considered.  For each of these regions, it could be 

concluded that the trend of the sites was in the same direction; but, similar to the River Dee 

sites, the trend was not in the same direction in each of the seasons.  Again, this re-iterates 

that the season could be a strong driver of trend in the regions.  Chapter 5 then moved on to 

fitting dynamic factor analysis models to each of the regions – again, with varying number of 

common trends, the inclusion of an error covariance matrix (diagonal or non-diagonal) and 

the inclusion of explanatory variables common to all sites (annual mean temperature and 

annual rainfall).  All of the final DFA models fitted included one common trend.  This 

suggested that the log TOC levels of river and loch sites located in the same region, behave 

coherently.  Also, nine out of the twelve regions studied, included either one or both of the 

explanatory variables in the final DFA models fitted.  The environmental factors temperature 

and rainfall appear to influence the trends of log TOC in the majority of regions across 

Scotland. 

 

After exploring the coherency of sites in Chapter 5, Chapter 6 focused on fitting additive 

models to each region, which appropriately captured the log TOC levels over time and space.  

At first, the trend and seasonality of the regions were considered; but also, the interaction 

between the year and site, and the month and site.  It was found that the trend, seasonality, 

site and interaction between year and site, and month and site were all significant terms in the 

GAM’s fitted to each region. The significant interaction terms in the GAM models suggest 

that even though the trends of the sites (in the same region) are in the same direction, the 

levels of log TOC vary from site to site across the years and throughout the months.  

However, the significant interaction terms in the GAM models did not seem to support the 

final DFA models fitted in Chapter 5.  All of the final DFA models fitted to the regions in 

Chapter 5 included only one underlying common trend.  One common trend suggests that the 

levels of log TOC in the region are behaving very coherently, and that the levels do not 

significantly vary between sites.  However, it has been established throughout the thesis that 

there is a strong seasonal pattern in the rivers and lochs, with regards to log TOC levels – 

unfortunately seasonal dynamic factor analysis could not be performed in the Brodgar 

software used for fitting the DFA models.  Hence, the seasonal component of the data was 
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removed as suggested by Zuur et al. (2004).  The season seems to have a strong influence on 

the trend, and since this is not appropriately incorporated in the DFA models, it is possible 

that this will have affected the results of the final DFA models fitted to each of the regions.   

   

Chapter 6 then focused on improving the trend and seasonality GAM models by including 

covariates.  It was found that adding covariates to the trend and seasonality GAM models 

fitted to the rivers in the different regions, improved six out of the seven GAM models.  It 

was only for the rivers in Argyll which the trend and seasonality GAM models was seen to be 

a more appropriate fit.  Similarly, it was only the lochs in the West Highlands, where the 

trend and seasonality GAM model was a better fit to the data.  None of the covariates fitted in 

the final GAM models were significant in all regions – for rivers or lochs.  But, for the rivers, 

log alkalinity was significant in five out of the seven final GAM models fitted to the regions 

and pH and log sulphate were significant in four out of the seven.  With regards to lochs, log 

sulphate was the most common covariate – it was included in four out of the six final GAM 

models fitted.  Log alkalinity and pH were the second most common covariate fitted to the 

lochs as they were included in 3 out of the 6 final GAM models fitted to the regions. 

 

 

7.2 Limitations of the Study and Future Work 

 

  It is clear from the data provided by the Scottish Environment Protection Agency, for 

various reasons, total organic carbon samples were not obtained from the river and loch sites 

every month.  Missing data did not present a problem for the regression techniques used 

throughout the thesis; however, a greater amount of data, may have displayed clearer trends 

and seasonal patterns of log TOC at particular sites.  Furthermore, due to the location of sites 

(loch sites in particular) , independent projects carried out at particular sites and lengths of 

time series, there was varying amount of log TOC data available for each of the river and 

loch sites.  It is unrealistic to expect SEPA to have obtained the same number of total organic 

carbon samples for each of the 333 river and 187 loch sites over the past 30 years; but, the 

increasing awareness of the environment’s wellbeing and the improvement in technology, 



198 

 

will hopefully lead to a greater sample size at each site, and allow for a fairer comparison of 

trends and patterns between sites, and provide more accurate results.  Furthermore, the 

missing data restricted the analysis which could have been carried out on dissolved organic 

carbon.  The relationship between log TOC and log DOC was explored at a selection of sites; 

however, given more available DOC data, it would have been interesting to compare the 

behaviour of log TOC across the River Dee network and regions of Scotland, to the 

behaviour of log DOC.  Ideally, SEPA could increase the frequency of sampling at each, to 

gain a greater understanding of total organic carbon throughout each month, and over time.  

However, increased sampling could lead to analytical problems.  Observations which are 

sampled days or weeks apart are more likely to be dependent and related to each other – this 

is an issue which would have to be addressed during analysis.  Realistically, increased 

sampling frequency may not be cost effective, and may not improve the understanding of 

total organic carbon’s behaviour significantly, to justify the cost.    For the purpose of this 

thesis, missing data did not cause too many problems; but, future research into the behaviour 

of total organic carbon and dissolved organic carbon may want to consider exploring 

plausible techniques of imputing missing data in sensible and statistically sound manner. 

Coherency was a theme at the heart of this thesis, one which was discussed in depth in 

Chapter 5.  The dynamic factor analysis used in Chapter 5 was an effective measurement of 

coherency in the River Dee network, but also a selection of Scottish regions.  Unfortunately, 

a seasonal component could not be incorporated into the dynamic factor analysis, using the 

software Brodgar.  Due to the clear seasonal pattern evident in log TOC across Scottish rivers 

and lochs, it would be useful and appropriate, in future research, to be able to incorporate a 

seasonal component, as discussed by Alonso et al., (2011), and apply seasonal dynamic factor 

analysis to the River Dee network and regions across Scotland.   

The main aim of Chapter 6 was appropriately capture behaviour of log TOC over time and 

space in a selection of Scottish regions.  The  in the GAM models fitted to each of the 

regions were assumed to be independent based on the spatial dependence analysis performed 

in Section 4.4.2.  It was assumed that if the River Dee sites in the same network were deemed 

to be spatially independent, it seemed plausible that sites located in a larger geographical 

space, would also be spatially independent.  Further research could explore the spatial 

dependence of sites located in the same region, taking into consideration that a region may 

i
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contain more than one river network; and also investigate alternative ways to capturing the 

‘space’ element in regions – similar to Section 4.4.7, finding and including the spatial 

coordinates (longitude and latitude) of each site may have been a more appropriate way of 

capturing ‘space’. 

  The covariates temperature, pH, alkalinity, nitrate, sulphate and flow have been useful in 

explaining what is possibly driving the behaviour of log TOC in particular sites, the River 

Dee network and regions of Scotland; but, it is possible that other environmental factors 

could also be driving such behaviour.  The environment is complex, and it seems more than 

likely, that several factors could be influencing the changes in total organic carbon.  Further 

research should incorporate a wider spectrum of covariates to (hopefully!) improve the final 

models fitted to explain the behaviour of log TOC.  For example, Worrall et al. (2007) and 

Clark et al. (2005), discussed the influence that changing water tables depths had on DOC – 

incorporating the water table depth could improve the understanding of what is driving said 

trends and patterns of log TOC.  Furthermore, Worrall et al. (2004), discussed the effect that 

changes in land management could have on DOC.  Disturbances, such as afforestation, have 

been associated with short term increases in DOC in surrounding surface waters.  

Incorporating background information about the surrounding land management of rivers and 

lochs could be useful. 

 

7.3 Conclusion 

 

The exploratory and formal analysis applied to the data, has indicated that in general, the 

log TOC levels has increased in Scottish rivers and lochs predominantly between the early 

1990’s and early 2000’s.  In the past five years, generally, an increase has not been observed 

in the rivers– the levels of log TOC have remained fairly constant.  However, based on the 

regional analysis of lochs, from 2005 onwards, the log TOC levels appear to be fairly 

unsteady – showing signs of increasing and decreasing over the years.  The analysis has also 

highlighted that log TOC appears to follow a seasonal pattern, although, it is more prevalent 

in rivers: log TOC levels seem to increase from early spring until early autumn, before 



200 

 

decreasing through winter.  The dynamic factor analysis was effective in measuring the 

coherency of log TOC levels in regions – based on this method it seems plausible that river 

and loch sites located in the same region, are behaving coherently.  Based on the final GAM 

models fitted to the regions, it seems plausible that the main drivers of change in log TOC 

levels are log alkalinity and log sulphate in rivers; and the main drivers of change in log TOC 

levels are log alkalinity, pH and log sulphate in lochs. 
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