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Abstract

The increasing availability of information on the World Wide Web
(Web), and the need to access relevant specs of this information pro-
vide an important impetus for the development of automatic intelli-
gent Information Retrieval (IR) technology. IR systems convert hu-
man authored language into representations that can be processed by
computers, with the aim to provide humans with access to knowl-
edge. Specifically, IR applications locate and quantify informative
content in data, and make statistical decisions on the topical similar-
ity, or relevance, between different items of data. The wide popular-
ity of IR applications in the last decades has driven intensive research
and development into theoretical models of information and relevance,
and their implementation into usable applications, such as commercial
search engines.

The majority of IR systems today typically rely on statistical ma-
nipulations of individual lexical frequencies (i.e., single word counts)
to estimate the relevance of a document to a user request, on the
assumption that such lexical statistics can be sufficiently representa-
tive of informative content. Such estimations implicitly assume that
words occur independently of each other, and as such ignore the com-
positional semantics of language. This assumption however is not
entirely true, and can cause several problems, such as ambiguity in
understanding textual information, misinterpreting or falsifying the
original informative intent, and limiting the semantic scope of text.
These problems can hinder the accurate estimation of relevance be-
tween texts, and hence harm the performance of an IR application.

This thesis investigates the use of non-lexical statistics by IR models,
with the goal to enhance the estimation of relevance between a docu-
ment and a user request. These non-lexical statistics consist of part of
speech information. The parts of speech are the grammatical classes



of words (e.g., noun, verb). Part of speech statistics are modelled
in the form of part of speech (POS) n-grams, which are contiguous
sequences of parts of speech, extracted from text.

The distribution of POS n-grams in language is statistically analysed.
It is shown that there exists a relationship between the frequency and
informative content of POS n-grams. Based on this, different appli-
cations of POS n-grams to IR technology are described and evaluated
with state of the art systems. Experimental results show that POS
n-grams can assist the retrieval process.
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Chapter 1

Introduction

1.1 Introduction

This thesis investigates the use of part of speech (POS) n-grams to information
retrieval (IR). The main argument of the thesis is that POS n-grams encode
grammatical and structural information about language in a shallow way, which
can be statistically manipulated to indicate the non-topical informative content
of words in a reliable way. Non-topical content refers to how informative a word
is in general, and not with respect to a topic.

Two main issues are addressed in this thesis. Firstly, a set theoretical frame-
work is introduced for representing grammatical categories (parts of speech),
which are modelled as contiguous sequences (n-grams). Within this framework,
it is shown that there exists an approximately directly proportional relationship
between the frequency and informative content of POS n-grams, unlike words,
for which frequency and informative content are approximately inversely propor-
tional. Based on this finding, it is shown how to derive a non-topical information
score for words using exclusively POS n-grams. Secondly, applications of POS n-
grams to IR are presented and evaluated. In total, four applications are presented:
two of them are direct applications of POS n-gram frequency to IR, namely for
query reformulation and index pruning; the other two are applications of the
proposed term information score to IR, namely as an alternative to the inverse
document frequency (IDF) term weight, and also as additional evidence that can
enhance overall retrieval performance.

The remainder of this chapter is organised as follows. Section 1.2 presents
the motivation of this work. Section 1.3 states the contributions of this work.
Section 1.4 gives an overview of the structure of this thesis.
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1.2 Motivation

In textual IR, information is usually identified and quantified using lexical statis-
tics, e.g., word counts. Identifying information allows for decisions to be made
about the topical similarity, or relevance, between two pieces of text. Quantifying
information extends these decisions to how related one piece of text is to another.

The lexical statistics used in IR stem from two observations about language:

e A word occurring very often in a document is likely to indicate the document
content.

e A word occurring very often in a general collection of documents is not
likely to indicate the content of any document in particular (Sparck Jones,
1972).

On the basis of these observations, different types of lexical statistics are com-
bined to estimate the content of a document automatically. Such lexical statistics
are usually the frequency of a word in a document, the number of documents con-
taining a word, and so on. These lexical statistics are the main ingredients of
mathematical functions that compute scores for words (term weights). These
term weights represent the contribution of a word to the content of a document.
The document content is then derived from the term weights of the words oc-
curring in it. The more accurate these term weights, the more accurate the
estimation of the document content, and hence the more accurate the estimation
of relevance between a document and a query.

The estimation of relevance between a document and a query based on lexical
statistics uses mainly topical information. For example, given a word A and
a word B, the task is to decide how related the topic of A is to the topic of
B. This thesis proposes that this estimation can be improved by non-topical
information, and specifically grammatical and structural statistics of language.
For example, given a word A and a word B, the task is to decide if A is generally
more informative than B on the basis of their respective grammatical type and
the contexts in which they are likely to occur, regardless of their topic. The
hypothesis underlying this thesis is that adding a non-topical information layer
(grammatical and structural statistics) to the estimation of topical information
(lexical statistics) by IR systems can improve retrieval performance.

This thesis models grammatical and structural statistics as POS n-grams,
which are contiguous sequences of parts of speech, e.g., determiner-adjective-
noun, adjective-noun-verb, noun-verb-adverb, and so on. The motivation for
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using part of speech information, as opposed to using other types of linguistic
information, such as semantic or discourse evidence, is that:

e Parts of speech represent shallow grammatical information, which can indi-
cate to an extent the presence or absence of content. For example, a word
is likely to be informative if it is a noun, and similarly not very informative
if it is a pronoun. When viewed like this, the indication of presence or ab-
sence of content is independent of the exact sense (semantics) of the word.
Hence parts of speech capture non-topical information about words, with-
out having semantic or discourse knowledge about their use or context. In
this light, POS n-grams can become ‘POS contexts’ for which there is some
prior knowledge of content, e.g., POS n-grams containing nouns and verbs
are likely to be more informative than POS n-grams containing prepositions
and adverbs.

e Parts of speech are a small and finite set of categories, which can be used to
annotate text of any domain quickly and relatively accurately (state of the
art POS tagging performance approaches > 90% accuracy). In this respect,
parts of speech are better suited for being used in IR than other bigger and
open-ended ontologies, such as semantic graphs for example, which can be
domain-bounded, and also subject to scalability issues and accuracy < 90%.

Based on the empirical observation that the more frequent these ‘POS con-
texts’ are, the more informative they actually are, this thesis develops several
applications of POS n-grams to IR.

1.3 Thesis statement

The statement of this thesis is that shallow grammatical and structural informa-
tion about language can be encoded in POS n-grams and used to estimate the
non-topical informative content of words in a reliable way. Shallow grammatical
information is captured by parts of speech. Structural information is captured by
n-gram modelling. Basic principles of linguistic theory are used to rank the infor-
mative content of parts of speech. Basic principles of probability theory are used
to approximate the informative content in POS n-grams and individual words.
The main contributions of this thesis are the following. A framework is intro-
duced for representing grammatical and structural information about language
in a shallow way using POS n-grams. Within this framework, it is shown that
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there exists an approximately directly proportional relationship between the fre-
quency and informative content of POS n-grams, and also that a term weight
can be derived exclusively from POS n-grams. The statistical properties of POS
n-grams and of the proposed term weight that is computed from them are ex-
amined in a series of thorough experiments on different corpora and settings. In
addition, different applications of POS n-grams and of the proposed term weight
to IR are presented and evaluated. Experimental evidence shows that the pro-
posed applications can enhance retrieval performance, in different datasets and
settings.

1.4 Thesis outline

This thesis is organised as follows.

e Chapter 2, page 8, provides a brief overview of the main concepts of IR.
This chapter presents the main processes involved in a standard IR system,
the main retrieval models, and issues of IR system operation and evaluation.

e Chapter 3, page 38, provides a brief overview of the main concepts of parts
of speech as shallow grammatical categories. A linguistic theory for ranking
parts of speech is introduced. This chapter also presents the set theoretical
notation of parts of speech proposed in this thesis, and related studies using
parts of speech.

e Chapter 4, page 50, provides a brief overview of the main concepts of n-
grams, including the notation used in this thesis. This chapter also intro-
duces POS n-grams. Related studies using n-grams and POS n-grams in
particular are also presented.

e Chapter 5, page 59, discusses the relationship between the frequency and in-
formative content of POS n-grams, and also introduces the proposed frame-
work for deriving a term information score using POS n-grams. Two al-
ternative term scores are proposed, and different facets of this derivation
(assumptions and implications) are discussed.

e Chapter 6, page 76, studies the distribution of POS n-grams and their cor-
responding POS n-gram based term information score in different corpora.
The choice of experimental settings is analysed thoroughly to show that it
is not biased. The POS n-gram based term information score is statistically
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analysed with reference to a lexically based term score (IDF), and the two
are shown to be positively correlated.

e Chapter 7, page 99, proposes applications of POS n-grams to IR. Four
applications are integrated into the retrieval process and evaluated as part
of an IR system: two direct applications of POS n-gram frequency to IR, and
two applications of the proposed POS n-gram based term information score
to IR. Overall, experimental evidence shows that the proposed applications
can enhance retrieval performance.

e Chapter 8, page 143, summarises the contributions and conclusions of this
thesis. Limitations of this work are discussed and future research directions
are suggested.

1.5 Contributions

The main contributions of this thesis are the following.

e A linguistic theory for ranking parts of speech, namely Jespersen’s Rank
Theory (Jespersen, 1913, 1929), is used in a principled way in IR. To our
knowledge, this is the first time that this theory is used in IR or any other
automatic language processing technology.

e Heuristical evidence is presented which suggests that there exists an ap-
proximately directly proportional relationship between POS n-gram fre-
quency and informative content. This novel finding is the opposite of what
is observed with words, for which the relationship between frequency and
informative content is approximately inversely proportional.

e A framework is introduced for deriving an original term information score
exclusively from POS n-grams, based on the relationship between POS
n-gram frequency and informative content and also on Jespersen’s Rank
Theory.

e POS n-grams are used, not as a feature for classification, neither to make
predictions about the occurrence of parts of speech /words, as has been done
so far, but as a feature of non-topical informative content. This is a novel
use of POS n-grams.
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e The statistical properties of POS n-grams and of the proposed term in-
formation score that is computed from them are examined in a series of
thorough and unbiased experiments, which include five standard and es-
tablished collections of different size (totalling >32GB) and domain, three
established state of the art POS taggers, and a variation of the n-gram or-
der n between n= 1 - 100. Experimental evidence shows that POS n-grams
are distributed similarly in different collections, and that the POS n-gram
based term information score is positively correlated to inverse document
frequency.

e Four novel applications of POS n-grams to IR are presented and evaluated
on standard and established datasets, under default and competitive set-
tings. Experimental evidence shows that retrieval performance can benefit
considerably.

1.6 Publications

Parts of this thesis are included in the following publications:

e Lioma & Ounis (2005) Deploying part-of-speech patterns to enhance statis-
tical phrase-based machine translation resources. Association for Computa-
tional Linguistics (ACL) Workshop on Building and Using Parallel Texts.

e Lioma & Ounis (2006) Ezamining the content load of part-of-speech blocks
for information retrieval. Joint Conference of the International Commit-

tee on Computational Linguistics and the Association for Computational
Linguistics, (COLING/ACL).

e Lioma et al. (2006) University of Glasgow at TREC 2006: experiments in
terabyte and enterprise tracks with Terrier. National Institute of Standards
and Technology (NIST) Text REtrieval Conference (TREC).

e Ounis et al. (2007) Research directions in Terrier: a search engine for ad-
vanced retrieval on the Web. Novatica/UPGRADE Special Issue on Web
Information Access.
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Chapter 2

Basic concepts of information
retrieval

2.1 Introduction

This chapter presents some basic concepts of information retrieval (IR), and the
main processes involved in an IR system. Issues affecting the operation and
evaluation of IR systems are also introduced. The material in this chapter has
been drawn from Baeza-Yates & Ribeiro-Neto (1999); Belew (2000); Lancaster
& Fayen (1973); Salton (1971); Salton & McGill (1983); Sparck Jones & Willett
(1997); van Rijsbergen (1979), unless otherwise stated.

Section 2.2 presents a general overview of IR, and gives the structure of the
rest of this chapter.

2.2 Information retrieval overview

IR investigates the efficient and effective storage and access of information in
text, sound, video, images, or other types of data, which can be found stand-
alone, in databases, or hypertext networks like the World Wide Web (Web). The
increasing widespread of technology for generating and disseminating data has
led to an explosion of information availability, rendering the retrieval of relevant
information a necessary and cumbersome task. Automatic IR processes address
this task by locating and quantifying information in data, and estimating its
topical similarity, or relevance, to user needs.

A common IR scenario is the following: while performing a task, a user needs
to locate information in a repository of documents. In IR, document typically
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refers to any type of data stored in the system (e.g., documents, emails, book
chapters). The repository of documents from which information is retrieved is
typically referred to as document collection (Sparck Jones & van Rijsbergen,
1976). The user’s expression of information need is typically referred to as query,
and usually contains keywords. The user is interested in documents that are
relevant to the query. The goal of an IR system is to return all the relevant
documents, and no non-relevant documents. The retrieved documents should
preferably be ranked with respect to their relevance to the query. The process
exemplified in this scenario is referred to as ad-hoc information retrieval.

IR systems usually operate in stages. Given a system and a collection of
documents, these stages are:

1. The collection from which information is to be retrieved is entered into the
IR system. User queries are formulated and entered into the system'.

2. Queries and documents are transformed into representations that the sys-
tem can process.

3. Document representations are matched to query representations.
4. Documents matched to queries are returned to the user.

This process can be iterative, i.e., a query can be reformulated and then parts of
this process will be repeated. (This process is discussed in Section 2.5.1.)

How users formulate and enter queries to the system, and how retrieved doc-
uments are displayed to users are stages that involve human interaction. There is
extended research on how these processes can be tailored to user needs and sat-
isfaction (see Marchionini (1995) and Shneiderman (1997) for an introduction).
The intermediate stages of the retrieval process, namely how to represent and
match documents and queries, are usually fully automatic, involving very little
or no human interaction. These automatic processes are the focus of this thesis,
in the context of ad-hoc information retrieval from text.

The rest of this chapter is organised as follows: Section 2.3 introduces how
IR systems represent documents and queries. Section 2.4 gives an overview of
retrieval models for matching documents to queries. Section 2.5 presents tech-
niques often used to enhance retrieval performance. Section 2.6 presents issues

IThe collection of documents and user queries do not have to be entered into the system
simultaneously.
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relating to the efficiency of IR systems (e.g., faster processing, or saving mem-
ory). Section 2.7 introduces how IR systems are typically evaluated. Section 2.8
summarises and concludes this chapter.

2.3 Query and document representation

Given a query and a collection of documents as input, the IR system creates
in an efficient way a representation of this input. Queries and documents are
represented in the same way, so that they can be matched later (see Section 2.4
for matching documents to queries). In an experimental situation, queries can be
processed at the same time as documents. In an operational situation, usually
documents are processed in advance (offline), and queries are processed when they
are submitted to the system (online). The document representation techniques
described next also apply to query representation.

Extracting a representation of documents consists in splitting the input into
tokens, and realising a set of operations to transform the raw tokens into fea-
tures that can be stored by the system. This process is often referred to as
pre-processing or parsing. The main pre-processing operations are stopword re-
moval (or stopping) and stemming. The output of these operations is stored by
the IR system in an indez. Confusingly, in some IR literature pre-processing is re-
ferred to as index term extraction or simply indexing, while in other IR literature
indexing refers to the task of constructing an index after pre-processing (Zobel &
Moffat, 2006). In this thesis, indexing refers to the task of constructing an index
after pre-processing.

Section 2.3.1 presents an overview of pre-processing, and Section 2.3.2 presents
an overview of indexing.

2.3.1 Pre-processing

The IR system input is pre-processed before it is indexed. Typically, pre-processing
entails a set of operations, aiming to address the following questions:

e Should very frequent words of very little meaning (e.g., the) be indexed?
This point is addressed by stopword removal, which is presented in Section 2.3.1.1.

e Should terms be indexed in their full form (e.g., medicine, medical), or
should morphological variants be reduced to some base form (e.g., medic)?

10



2.3 Query and document representation

This point is addressed by stemming, which is presented in Section 2.3.1.2.

e Should terms be lowercased? Should hyphenated terms be considered as
one word or two? When HTML documents are being indexed, should the
markup tags be indexed? Should terms within such tags be indexed?

The last three questions are of lesser impact to retrieval performance (Zobel &
Moffat, 2006), and are usually addressed arbitrarily (Kobayashi & Takeda, 2000).

2.3.1.1 Stopword removal

The aim of stopword removal is to remove commonly occurring words from text.
Stopwords are content-poor words, which tend to occur very frequently in many
documents, e.g., the, and, of. As such, the contribution of stopwords to the
content of a document is usually negligible. IR systems tend to remove stopwords
altogether for two main reasons:

e Stopwords are non-discriminate words, which do not contribute significantly
towards better matching documents to queries.

e Stopwords add considerably to the storage required by the system because
they occur in almost all documents.

As a result, removing stopwords can benefit system effectiveness (there is less
chance of matching query words to stopwords erroneously), and system efficiency
(storing less words requires less resources (e.g., disk space, processing time)).
There are exceptions to this, for instance with some queries containing phrases,
even stopwords can make an important contribution when matching documents
to queries (Zobel & Moffat, 2006).

Stopwords can be manually predefined, or selected according to their fre-
quency on the basis that they occur very frequently in the whole collection. If
documents are grammatically annotated, stopwords can also be defined according
to grammatical information (e.g., the is a determiner, and is a coordinating con-
junction, of is a preposition) (Strzalkowski & Lin, 1997). One of the first widely
used IR systems, the SMART system developed at Cornell University, initially
used a stopword list of 571 words (Zobel & Moffat, 2006). Today, stopword lists
can contain from a few dozens up to approximately over a thousand terms, for
English.

The output of stopword removal is a set of words for each document. This is
passed onto stemming.

11
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2.3.1.2 Stemming

In an IR system, stemming is used to reduce variant word forms to common
‘stems’ or base forms, so that morphological variants (e.g., medical, medicine)
are stored under one entry (e.g., medic). This can improve the ability of the
system to match query and document vocabulary, by increasing the number of
relevant documents retrieved (recall), because it can expand the original query
with related word forms (Krovetz, 1993; Porter, 1980; 7), and also by fetching
more relevant documents (precision), because it can promote the more relevant
documents to higher ranks than the other retrieved documents (Xu & Croft,
1996). (The notions of recall and precision are explained in Section 2.7.)

In language, the variety in word forms comes from both inflectional and deriva-
tional morphology, and stemmers are usually designed to handle both, although
in some systems stemming consists solely of handling plurals (Xu & Croft, 1996).
Stemmers typically use some surface linguistic information (e.g., removing deriva-

“ion”) and pattern matching rules. Stemming can also

tional endings, such as
be realised by removing word endings or suffixes, using tables of common endings
and heuristics about when it is appropriate to remove them.

One of the best known stemmers used in experimental IR systems is the
Porter stemmer (Porter, 1980), which iteratively removes endings from a word
until termination conditions are met. The Porter stemmer has been criticised for
having a number of problems that are also found in other stemmers, in varying

degrees (Xu & Croft, 1996):

e The stemming algorithm is not always easy to understand and modify.

e The stemmer makes errors by sometimes being too aggressive in conflation
(e.g., policy - police, executive - execute are conflated), and by missing
others (e.g., European - Europe, matrices - matrix are not conflated).

e The stemmer produces stems that are not words and which are not always
easy for a user to intepret (e.g., iteration produces iter, and general
produces gener).

Another stemmer is KSTEM (Krovetz, 1993), which stems words based on
machine-readable dictionaries and well-defined rules for inflectional and deriva-
tional morphology. Even though KSTEM addresses many of the problems with
the Porter stemmer, it does not produce consistently better retrieval performance.
KSTEM has been criticised for being heavily dependent on the entries of the dic-
tionary being used, and for being conservative in conflation.

12
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Overall, evaluations of stemming for IR have produced mixed results (Harman,
1987, 1991a,b; Hull, 1996): recall/precision evaluations of the Porter stemmer
have shown that it performs at least as well as other stemmers, and at most
slightly better than other stemmers (Hull, 1996). Krovetz (1993) and Xu &
Croft (1996) have showed small improvement in retrieval performance when using
stemming. Today, there is still no clear consensus on the usability of stemming
for IR.

The output of stemming is a set of stemmed words, or terms', for each doc-
ument. The output of stemming is passed on to indexing.

2.3.2 Indexing

In a standard IR system, after parsing the documents and queries, an index is
constructed, so that documents can be retrieved with respect to a query, on the
basis of the terms contained in the documents and queries. Broadly speaking,
this process consists in storing in the IR system two types of information:

e Straight-forward mappings between terms and documents (e.g., which term
occurs in which document). Such mappings typically consist of frequency
counts.

e A weight for each term, which represents how much the term contributes
to the content of the document in which it occurs. Such term weights are
computed from term and document frequency statistics, using mathematical
formulae.

Section 2.3.2.1 presents an overview of how IR indices are usually structured to
store straight-forward mappings between terms and documents. Section 2.3.2.2
presents an overview of how IR systems compute and store term weights, during
indexing. The computational costs of creating, storing, maintaining and process-
ing indices are addressed by the field of IR efficiency, which is presented briefly
in Section 2.6.

2.3.2.1 Index data structures

An index is a data structure that maps terms to the documents that contain
them (Zobel & Moffat, 2006). In IR systems, the use of an index allows for query

! Term usually refers to a word that has been processed (i.e., stemmed), while word usu-
ally refers to a word in its grammatically correct form. In IR, term and word can be used
interchangeably, even though the former is more accurate.

13
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processing to be restricted to documents that contain at least one of the query
terms. Many different types of index have been described (see Baeza-Yates et al.
(2002) and Zobel et al. (1996) for more information). The most efficient index
structure is the inverted file'. Typically, an inverted file is a collection of lists,
one per term, recording the identifiers of the documents containing that term.
(A document identifier is usually a document number.) Specifically, an inverted
file index consists of two major components:

1. A wvocabulary

2. A set of inverted lists

The vocabulary stores for each distinct term:

e A count of the documents containing the term

e A pointer to the start of the corresponding inverted list

The vocabulary may be pre-processed, by stopword removal (Section 2.3.1.1) and
stemming (Section 2.3.1.2). In IR systems operating on the Web, any visible
component of a Web page might be reasonably used as a query term and hence
it is often included in the vocabulary (e.g., numbers, or parts of the URL of Web
pages).

In the set of inverted lists, each list stores for the corresponding term:

e The identifiers of documents containing the term (also called postings)
e The associated set of frequencies of the terms contained in a document

For example, an inverted list can consist of sequences of < d, fi 4 > pairs,
where d is a document identifier, and f; 4 is the frequency of a term in a docu-
ment. This is an example of a document level index, because it indicates whether
a term occurs in a document or not, but does not contain information about pre-
cisely where the term appears. Alternatively, inverted lists may be augmented
with further information, i.e., recording word positions within documents, or
co-occurring terms. Such information can be used to enhance the matching of
documents to queries (e.g., by considering more significant the terms that co-
occur with query terms), or for advanced retrieval options (e.g., using queries

'Even though today the inverted file is generally accepted as the most efficient index struc-
ture, not all early studies agreed with this, given the resources of the time (Bird et al., 1978;
Haskin, 1980; Salton, 1972).
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that contain phrases). IR using positional or phrasal information is discussed in
Section 2.5.2.

In addition to the inverted file, in a complete IR system, several other indexing
structures can also be used, e.g., a table that maps document identifiers to disk
locations, or a direct index that stores a list of terms that appear in a document
for each document.

Finally, when an index is constructed and no information is altered (e.g.,
added) in it, it is called static. On the contrary, when the collection indexed
changes over time, e.g., in the case of Web search engines, with data being added
to the index, the index is called dynamic.

2.3.2.2 Index term weighting

In order to match documents to queries, a standard IR system requires three
things: the two indexing data structures described above, namely the vocabulary
and list of inverted files, and an array of weighted terms (stored separately), which
is described here. The term weights produced from the term weighting process
for indexing are then used to match documents to queries, by computing a score
of a document for a query, as described in Section 2.4.2.

The aim of the term weighting process for indexing is to select which terms
contribute to the document content and hence should be stored in the system.
This selection is realised through term weighting formulae, which assign weights
to terms. This section presents a brief overview of the main term weighting
formulae used for indexing.

Early studies on automatic term weighting for indexing are based on Zipf’s
law, which states that the product of term frequency and term rank order (i.e.,
the frequency of term frequency) is approximately constant (Zipf, 1949). Let f;
be the frequency of terms in a given text, and r; be their rank order, then Zipf
showed that a plot of [; against r yields a roughly hyperbolic curve. More simply,
this means that there exists a large number of rare terms, and a small number
of very frequent terms. Luhn used the frequency of words in a collection to
determine automatically which words were sufficiently significant to characterise
documents, and their degree of significance (Luhn, 1958). Specifically, Luhn used
Zipt’s law to specify two cut-offs of term frequency, an upper and a lower. Terms
exceeding the upper cut-off were considered common, and terms below the lower
cut-off were considered rare, and therefore not contributing significantly to the
content of the document. Luhn assumed that the ability of words to discriminate
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content reached a peak at a rank order position half way between the two cut-
offs, and from the peak fell off in either direction reducing to almost zero at the
cut-off points. This provided a simple weighting scheme for the keywords in each
document.

Luhn’s efforts to automatically assign weights to terms according to their
contribution to the document content in which they occur were further exploited
(Bookstein & Swanson, 1974; Cooper & Maron, 1978; Damerau, 1965; Harter,
1974; Luhn, 1960; Maron & Kuhns, 1960; Yu & Salton, 1976), and soon extended
to include further statistics, apart from the frequency and frequency rank of
words. Specifically, weighting formulae were suggested, which processed a small
number of fundamental statistical values, such as the frequency of a term in a
document /query /collection, the number of documents containing one or more
occurrences of a query term, and the number of documents/terms in the collec-
tion. Today, these are the basic values typically combined to assign weights to
individual terms, which represent the contribution of each term to the document
content.

Generally, the basic statistical values described above are combined in a way
that results in three monotonicity observations being enforced (Zobel & Moffat,
2006):

1. Less weight is given to terms that occur in many documents, because such
words are not likely to indicate the content of any document in particular.

2. More weight is given to terms that occur many times in a document, because
such words are likely to indicate the document content.

3. Less weight is given to documents that contain many terms, in order to
avoid document length bias.

Hence, most term weighting formulae aim to favour terms that appear to be
discriminative, and to reduce the impact of terms that appear to be randomly
distributed. An example of how the above statistical values combine is as follows:

e Observation 1, that a term occurring in many documents is not likely to
be discriminative, is the inverse document frequency (IDF) (Sparck Jones,
1972) of a term, computed as:

IDF=logN

7 (2.1)

where
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— N is the number of documents in the collection, and

— [; is the number of documents in which term ¢ occurs in the collection.

High IDF means that a term appears in few documents in the collection.
The higher the IDF, the higher the discriminatory power of a term in the
collection (hence the better).

e Observation 2, that a term occurring many times in a document is likely to
indicate the document content, and observation 3, that less weight should
be given to longer documents, can be combined in order to compute a ‘nor-
malised’ term frequency for a term in a document: in IR, term frequency
in a document is usually normalised by document length, so that it is com-
puted fairly for long and short documents alike. A simple computation of
this normalised term frequency is:

_ log f, t,d
log dl

(2.2)

where

— [ta is the count of term ¢ in document d, and

— dl is the number of terms in the document (document length).

High TF means that a term appears frequently in a document. The higher
the TF, the more specific the term is with respect to the document (hence
the better).

TF and IDF combined make the well-known TF:IDF term weighting formula,
which computes the contribution of a word in a document as follows:

wyg=TF-IDF (2.3)

where w; 4 is the weight of a term in a document.

The contribution of TF:IDF term weighting to IR has been significant. Im-
plicitly or explicitly, most IR approaches contain a TF and IDF component (or
their variants) (Robertson, 2004).

Other term weighting formulae used for indexing have also been suggested
(for instance the work of Kang & Lee (2005), or see Fuhr (1989) for an earlier
overview).
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The term weights computed from term weighting are stored by the IR sys-
tem index, similarly to the way frequency statistics are stored (described in Sec-
tion 2.3.2.1). Then, the above two components, namely the frequency statistics
and the term weights (stored separately), provide all the information required to
match documents to queries.

The next section presents how queries and documents are matched by IR
systems. Matching documents to queries involves processing the index described
in this section.

2.4 Query and document matching

Given a representation of the query and documents, as described in Section 2.3,
the IR system matches the document representations to query representations.
For simplicity, this is often referred to as matching documents to queries. The aim
of this matching is to retrieve documents matched to a query, on the assumption
that they are relevant. This section presents the process of matching documents
to queries using their representations in the index of the system (Section 2.4.1),
and the retrieval models used to realise this matching process (Section 2.4.2).

2.4.1 Matching process

Matching documents to a query can be realised in different ways. One way,
called exhaustive matching, compares each document in turn to the query, until
all documents in the collection are ‘exhausted’. The score of each document
with respect to the query (S,q) is computed. Then, the best matches (i.e., the
documents with the highest S, 4 scores) are returned to the user. An example of
an algorithm for exhaustive matching between documents and a query is shown
in Algorithm 1.

The drawback of exhaustive matching is that every document is explicitly
considered, even though typically the number of documents in the collection that
are relevant to a query is only a tiny fraction of the total number of documents in
the collection (Zobel & Moffat, 2006). Hence, with exhaustive matching, for most
documents, the vast majority of matching values are insignificant. Exhaustive
matching is suitable only when the collection is small or is highly relative to the
query rate.

18



2.4 Query and document matching

Algorithm 1 Exhaustive matching of documents to a query
: for each term ¢ in query ¢ do
compute wy 4
end for
: for each document d in the collection do
set Sgq 0
for each query term ¢ do
calculate wy 4
set Sqd < Sga+ Wiq - Wi
end for
calculate W
set Sq’d — Sq7d/Wd
: end for
. identify the r greatest S, 4 values and return the corresponding documents.

= e =
w N = O

Another way for matching documents to a query, called indexed matching,
uses the inverted lists of the IR system index. (Inverted lists and other index
structures were discussed in Section 2.3.2.1.) With indexed matching, query
terms are processed one at a time. This is represented by creating an array of
matching scores referred to as accumulators, one for each document. Initially,
each document has a match zero to the query. Then, for each query term, the
accumulator for each document mentioned in the given term’s inverted list is
increased by the contribution of the term to the matching score of the document
for the query. Once all query terms are processed, matching scores S,  are
calculated. These scores represent how much a document representation matches
a query representation. Finally, the documents with the highest matching scores
are returned to the user. An example of an algorithm for indexed matching
between a document and a query is shown in Algorithm 2.

Indexed matching is computationally more economical than exhaustive match-
ing, because it processes only documents that contain query terms, not all the
documents in the collection.
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Algorithm 2 Indexed matching of documents to a query
1: for each document d do

2:  allocate an accumulator Ay

3 set A0

4:  for each term t in query ¢ do

5: calculate wy

6

7

8

9

fetch the inverted list for ¢
for each pair < d, f; 4 > in the inverted list do
calculate wy 4
: set Ag «— Ag+ wiq - Wi g
10: end for
11:  end for
12:  read the array of Wy values
13:  for each A; > 0 do

14: set Sgd “f‘V—Z
15:  end for
16: end for

17: identify the r greatest S, 4 values and return the corresponding documents.

The next section presents the main models used to match documents to
queries.

2.4.2 Matching models

The process of matching documents to queries, presented in Section 2.4.1, can be
realised by different matching models. An overview of such matching models is
presented in this section.

The common underlying principle of most matching models (Boolean mod-
els excepted) is that the better the match between a document representation
and a query representation, the greater the likelihood that a user will find the
document relevant to the query. Generally, matching models are separated into
different categories, the main of which are: Boolean, Vector Space, Probabilis-
tic, and Language Models'. (Note that language models can also be seen as a
branch of probabilistic models, according to Lafferty & Zhai (2003).) Other cat-
egories of matching models have also been proposed in the past, for example

1Language models are a general category of statistical models, which are briefly introduced
in Chapter 4. The type of language models referred to here are language models for IR, and they
are related but not identical to the general class of statistical language models. The difference
between language models for IR and statistical language models is presented in Section 4.2.2.

20



2.4 Query and document matching

using logic (van Rijsbergen, 1986), or inference networks (Turtle & Croft, 1991).
Surveys and overviews of retrieval models in general can be found in Salton &
Buckley (1988); Zobel & Moffat (2006); Zobel et al. (1998).

The remainder of this section presents some of the main categories of matching
models, with emphasis on the models used in this thesis (for the experiments
described in Chapter 7).

2.4.2.1 Boolean models

In order to match documents to queries, Boolean models (Fox et al., 1992) use
Boolean logic and set theory, and treat the query and the documents as sets of
terms. The user needs to formulate the query as a boolean statement. An example
of a boolean query is information AND search AND (NOT storage). The
Boolean model for this query would retrieve all the documents containing the
terms information, search and not containing the term storage.

Boolean models are exact match models: documents are retrieved only if there
is an exact match between the document terms and query terms. The matched
documents are then presented to the user as a set, without any particular ranking.

Boolean models are the earliest form of matching models. The restrictions in
query formulation and lack of ranking of the results have been criticised for the
Boolean models (Salton & McGill, 1983). As a result, today research on Boolean
models is increasingly of historical interest (Zobel & Moffat, 2006).

2.4.2.2 Vector space models

Vector space models, formally explained by Salton et al. (1975), but in use much
earlier (Ivie, 1966; Salton, 1962), represent terms as vectors in a multi-dimensional
linear space: in order to match documents to queries, queries and documents are
represented as vectors of index terms. There is one component in each vector for
every distinct term that occurs in the collection. The vector for a document is
of size n and contains an entry for each distinct term (where n is the number of
terms in the document). The components in the vector are filled with weights
that are computed for each term in the collection. These weights are computed
using the term weighting formulae described in Section 2.3.2.2, so that the more
often the term appears in the document and the less often it appears in all other
documents, the higher the weight. Similarly, a vector is constructed for the terms
found in the query.
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2.4 Query and document matching

Once the vectors are constructed, the distance between the query and doc-
ument vectors, or the size of the angle between the vectors, is used to compute
a score of match between a document and a query (S;q). The closer the query
vector is to the document vector, the more relevant the document is assumed to
be to the query. For vector space models, S, 4 is often referred to as similarity
coefficient between the query and document vectors.

Several different measures for computing the distance between the document
and query vectors have been suggested (van Rijsbergen, 1979). A typical formu-
lation calculates the cosine of the angle in n-dimensional space between a query
vector < wy, > and a document vector < wy 4 > as follows:

S = D _1eq W * Wed
q,a
W, W,

(2.4)

where

e 5,4 is the score of match between a document d and a query ¢;

o w;, is the weight of a query term, computed with a term weighting model
as the ones described in Section 2.3.2.2. For example, w; , can be computed
by varying the IDF formula given in Equation 2.1, page 16, as follows:

mﬂ=bgy+%) (2.5)

where

— N is the number of documents in the collection, and

— [; is the number of documents in which term ¢ occurs in the collection.

® w4 is the weight of a document term, also computed with a term weighting
formula as the ones described in Section 2.3.2.2. For example, w, 4 can be
computed by varying the TF formula given in Equation 2.2, page 17, as

follows:
wig=1+1log fia (2.6)

where f; 4 is the frequency of term ¢ in document d;

e W, is the weight of a document, computed from the weights of the terms it

Wa= > w?, (2.7)
teq
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o W, is the weight of a query, computed from the weights of the terms it

Wy= > w?, (2.8)
teq

Another way for computing the similarity between a query and a document

contains. For example,

vector is the Euclidean distance between the two vectors, which is used in the
experiments described in Chapter 7. The Euclidean distance formulation for
computing the similarity between a query and a document vector is:

Sq,d = Z Wy q * Wt,d (29)
teq
where w; , and w4 can be computed using Equations 2.5 and 2.6, respectively.

A significant variation of the vector space model formulation for matching
documents to queries has been the introduction of document length pivoting
by Singhal et al. (1996), which addressed the issue that document length and
likelihood of relevance are correlated.

Vector space models are best match models: they retrieve documents that best
match the query. This means that the retrieved documents may contain some,
but not all, of the query terms. Best match models typically rank documents
according to their relevance to the query.

Today, vector space models have become standard for matching documents
to queries. For much of the history of IR, the principal alternative to vector
space models has been probabilistic models (Zobel & Moffat, 2006). Probabilistic
models are presented next.

2.4.2.3 Probabilistic models

In order to match documents to queries, probabilistic models estimate the proba-
bility of relevance for a document given a query. The basis of probabilistic models
is the probability ranking principle, explored by Maron & Kuhns (1960), and later
formalised by Robertson (1977). Given a collection of documents and a query,
the probability ranking principle views the documents in the collection as belong-
ing to either a relevant class with respect to a query, or to a non-relevant class
with respect to a query. Then, the probability ranking principle suggests that,
for optimum retrieval performance, the retrieved documents should be ranked by
their odds of being observed in the relevant class:
P(dlr)
P(d|n)

(2.10)
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where
e ( is a document,
e 1 is the relevant class of documents,
e 1 is the non-relevant class of documents, and

e P(d|r) (resp. P(d|n)) is the probability of observing document d in the
relevant (resp. non-relevant) class of documents.

Hence, the probability ranking principle, and by extension probabilistic mod-
els, assume that there is some knowledge of the distribution of terms in the
relevant documents. Similarly to vector space models, probabilistic models are
best match models: they retrieve documents that best match the query, and rank
documents according to their relevance to the query.

One of the most popular probabilistic models, introduced by Robertson &
Sparck Jones (1976), ranks documents by the probability of belonging to the
relevant class of documents for a query based on the estimated word occurrence
characteristics of those classes. Today, among the most popular probabilistic
models are the well-known BM25 model from the Best Match (BM) family of
models used in the Okapi system (Robertson & Walker, 1994), and the PL2
model from the Divergence From Randomness (DFR) framework (Amati, 2003).
Many of the underpinnings of probabilistic IR are summarised by Sparck Jones
et al. (2000), who give a detailed derivation of BM25. BM25 and PL2, which are
used in the experiments described in Chapter 7, are described separately next.

2.4.2.3.1 Best Match 25 (BM25) BM25 computes the matching score Sy 4
between a document d and a query q as follows:

S(Ld = Z Wt,q * Wt,d (211)

teq

where

® w;, is the weight of a query term, given by:

N — fi+0.5
fi +0.5

(ks +1)- fiq
ks + fiq

w4 = log( ) (2.12)

’

where
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— N is the number of documents in the collection;
— [; is the frequency of documents containing term ¢ in the collection;

— ks is a parameter, the recommended value of which is 1000 (Robertson
& Walker, 1994); and

— [tq is the term frequency in the query.
® w4 is the weight of a document term, given by

(kl 1) : ft d
pr— —’ 2- 13
wt?d K ft,d ( )

where

— ky is a parameter, the recommended value of which is 1.2 (Robertson
& Walker, 1994);

— [ta is the term frequency in the document; and

— K is given by: p

where

* b is a parameter, the recommended value of which is 0.75 (Robert-
son & Walker, 1994);

* dl is the document length, measured in any suitable units (e.g.,
indexed terms, bytes, and so on); and

x avdl is the average document length in the collection, measured
similarly to dl.

Combining the above, BM25 computes the matching score of a document d for a
query ¢ as follows:

N—fi+05  (ks+1)-fig (k1+1)- fia
S, 4= 1 . 4. ’
@ Z 8 Jt +0.5 ) ks + fiq K+ fia

(2.15)

teq

2.4.2.3.2 Poisson Laplace 2 (PL2) The PL2 matching model belongs to
the DFR framework of models. DFR models comprise three components: a
randomness model (RM), an information gain model (GM), and a term frequency
normalisation model (T'FN). The randomness model estimates the probability
that a term occurs in a document randomly. The less randomly a term occurs

25



2.4 Query and document matching

in a document, the more information it conveys. The information gain model
estimates the probability that a term is a good descriptor of a document, within
a collection. The information gain model estimates the informative content risk
1 — P of the probability Prisk that a term ¢ is a good descriptor for a document.
Good descriptors are terms occurring rarely in the collection, but frequently in
the subset of documents relevant to the query (this notion was presented in
Section 2.3). The term frequency normalisation model adjusts the frequency of a
term in a document, on the basis of the length of that document and the average
document length in the whole collection, so that longer documents do not have
an unfair advantage over shorter documents.
PL2 computes the matching score S, 4 between a document d to a query ¢ as
follows:
Sq,d = Z Wt,q * Wt,d (216)
teq

where

e w;, is the query term weight, given by:

ft q
= — 2.17
Wi fmaz, ( )

where
— [iq is the query term frequency; and
— fmax, is the maximum query term frequency.
o w4 is the weight of the term ¢ in document d, given by:
Wia = (1 — Prisk) - (—log2Prar) (2.18)
where

— the information gain component is computed from F,;s, which is the
conditional probability of having one more occurrence of a term in a
document, where the term appears f; 4 times already. F,s is computed

as follows:
Jia
1— P =1— d 2.19
g 1+ fia (2.19)
1
- 2.20
L+ fia ( )

where f; 4 is the term frequency in document d;
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— the randomness model component is computed as follows:

Jra
A

—logy Pry = [fra-log, +(A—fr.a)-log, e+0.5-log, (27 - frq) (2.21)

ft,c

&, Where

where \ =
* fic is the term frequency in the collection,

% (' is the number of all terms in the collection.

— the term frequency normalisation (ffn) component is computed as
follows:

tfn = fia-log,(1+c- —az’;l) (2.22)

where

% ¢ is a parameter, the recommended value of which is 7.0 (Amati,
2003);

* dl is the document length, measured in any suitable units (e.g.,
indexed terms, bytes, and so on); and

x avdl is the average document length in the collection, measured
similarly to dl.

Combining the above, and replacing f; 4 with ¢ fn, PL2 computes the matching
score of a document for a query as follows:

1 tfn
Sgd = Zwt:q nt 1(tfn -log, ~ -logye +0.5-log, (27 - tfn))  (2.23)

teq

2.4.2.4 Language models

In order to match documents to queries, language models estimate the probability
that a query is generated from a document by generating a ‘language model’ for
each document (Ponte & Croft, 1998). The language model of a document is a
‘data model’ consisting of the words occurring in the document. For a document,
the probability of occurrence of a query term can be easily estimated (e.g., using
maximum likelihood (Ng, 1999)). Then, for a given query, the documents are
ranked according to the probability that the data model of the corresponding
document generates the query. This type of estimation is usually smoothed to
avoid assigning zero probabilities to terms not occurring in a document. Several
smoothing techniques have been suggested (see Zhai & Lafferty (2001) for an
overview).
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A language model computes the matching score S, 4 of a document d for a
query ¢ as follows:
Sed = D Wiq* Wig (2.24)
teq

where

® w;, is the query term weight, given by the frequency of a term in the query

o w4 is the weight of a term in document d, given by:

wia " T Plald) (2.25)

teq

where P(g|d) is the likelihood of the query according to the document
model. In the language modelling formalism, given a query ¢ = {q1, ¢2, ---, Gn }»
where {q1, qa, ..., ¢, } is the sequence of query terms, P(q|d) is computed as
follows:

P(qld) = HP (gilar; g2, -5 Gio1, d) (2.26)

P(q|d) can be computed not only for each individual term separately, but also
for contiguous sequences of terms. When processing sequences of n terms, lan-
guage models are called n-gram models. Typically, for 1-gram language models,
Equation 2.26 is approximated as follows:

P(g|d) ~ HP qild) (2.27)

As mentioned above, there are several alternatives of computing P(g|d), so
that the overall estimation is not affected negatively if query terms occur very
rarely or not at all in the collection. One such alternative, which uses Dirichlet
smoothing, is given by:

dl
Plald) = Pmle(qld) - 5+ P(alC) - 55—

2.2
dl +p (2.28)

where

e Pmle(g|d) is the maximum likelihood of a query term occurring in a docu-
ment, given by:

Jua

Pmle(q|d) = ¥

(2.29)

where
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— [fia 1s the frequency of a term in a document, and

— dl is the document length, measured in any suitable units (e.g., indexed
terms, bytes, and so on).

e P(q|C) is the probability of a query term occurring in a collection, given
by:
f t,c

Pmle(q|C) = %

(2.30)

where

— [t is the frequency of a term in the whole collection, and

— (' is the number of all terms in the collection, and
e 1 is a parameter, typically set to 2500 (Zhai & Lafferty, 2001).

Another alternative for computing P(g|d), which uses Jelinek-Mercer (JM) smooth-
ing, is given by:

P(q|ld) = (1 = X) - Pmle(qld) + X\ - P(q|C) (2.31)
where
e Pmle(q|d) is as defined in Equation 2.29;
e P(q|C) is as defined in Equation 2.30; and
e )\ is a parameter, which should be set between 0-1 (Zhai & Lafferty, 2001).

In language models, in addition to estimating the likelihood of the query
having been generated from a document, several other alternatives have been
proposed: one alternative, proposed by Lavrenko & Croft (2001), is to associate
a language model with the query or topic of interest, and to rank documents
based on the probability of them being generated by the query language model
(i.e., the document-likelihood); another alternative, proposed by Lafferty & Zhai
(2001), is a query document model similarity based on the Risk Minimization
Framework, according to which documents are ranked based on the similarity
between language models associated with the query and a document.

Initially, n-gram language models of n > 1, in particular smoothed n-gram
language models, were shown to perform better than smoothed 1-gram language
models (Miller et al., 1999; Song & Croft, 1999). More recently, 1-gram language
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models have been reported to outperform language models of n > 1 (Zobel &
Moffat, 2006).

It has been shown that 1-gram language models can be estimated using the
settings of a vector space or probabilistic model (Hiemstra, 2000). Similarly to
vector space and probabilistic models, language models are best match models:
they retrieve documents that best match the query, and rank documents accord-
ing to their relevance to the query.

It has been argued that probabilistic and language models are equivalent from
a probabilistic point of view, but differ in terms of statistical estimation: proba-
bilistic models estimate a model for relevant documents based on a query, while
language models estimate a model for relevant queries based on a document (Laf-
ferty & Zhai, 2003).

2.5 Retrieval boosting techniques

Sections 2.3 and 2.4 have presented basic concepts of IR systems, i.e., the mini-
mum resources and processing required to have an operational IR system. This
section presents two performance enhancing techniques, which are often used on
top of basic IR operations, in order to boost IR system performance. Specifically,
these performance boosting techniques are:

e Feeding back to the system evidence about what is considered relevant to
the query (relevance feedback, presented in Section 2.5.1).

e Considering phrases or terms co-occurring often, when matching documents
to queries (phrasal IR, presented in Section 2.5.2).

2.5.1 Relevance feedback

The aim of relevance feedback is to enrich queries with more relevant words in
order to facilitate the retrieval of more relevant documents (Zhang et al., 2004).
This can be useful when the initial query contains few or non-informative terms,
which makes the task of retrieving relevant documents harder (Carmel et al.,
2006; van Rijsbergen et al., 1981). The main methodology of relevance feedback
is firstly to expand the initial user query with relevant words, and secondly to
re-submit the expanded query to the IR system.

Relevance feedback has been widely explored in IR. In explicit relevance feed-
back systems, users identify the answers that are of value (and perhaps others
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that are not) to their query, and this information is incorporated into a revised
query, which is re-submitted to the system in order to facilitate the retrieval of
relevant documents (Harman, 1988). Much of this research assumes that queries
submitted by the same user are independent of each other. A problem with ex-
plicit relevance feedback is that in real-life IR systems, it has not been proven
easy to gather relevance feedback from users.

An alternative to explicit relevance feedback is implicit relevance feedback.
Implicit relevance feedback systems incorporate information about which answers
are likely to be relevant into revised queries, having collected this information
without asking the user explicitly, but instead by recording some elements of
user behaviour implicitly. For example, in a system processing large numbers of
queries, is it not hard to identify which answers users choose to view. The action
of a user clicking on a link (referred to as click-through) can be interpreted as a
vote for a document. Such a voting can be used to alter the weights computed
when matching documents to queries, and thus the document ordering in the
ranking generated for subsequent queries, even if the subsequent queries differ
from the one that triggered the click-through.

An alternative to relevance feedback from the user (either explicitly, or im-
plicitly) is pseudo-relevance feedback (PRF). PRF is an automatic technique that
does not involve the user. In PRF, after documents have been matched to queries,
the query is expanded with terms that are correlated with relevance (Robertson,
1990), computed using term weighting formulae such as the ones presented in
Section 2.3.2.2. The expanded query is re-weighted and re-matched to docu-
ments (Buckley et al., 1994). Amati (2003); Rocchio (1971); Salton & Buckley
(1980); Xu & Croft (1996) describe various PRF models that enhance retrieval
performance.

PRF is criticised for involving some heuristic tuning, for instance in deciding
how many assumed relevant terms to add to the query. These heuristics can be
collection-dependent, or also affected by the initial query length (Carpineto et al.,
2001). Tuning PRF separately for different collections or query length is neither
a feasible nor robust option. Recent work on query prediction, i.e., predicting the
difficulty of a query in retrieving relevant documents, has allowed for PRF to be
applied selectively only to those queries that retrieve relevant documents (Carmel
et al., 2006).
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2.5.2 Phrases and co-occurring terms

When matching documents to queries, most retrieval models process single words
individually and regardless of their context, hence they are called bag of words
models. By doing so, they assume that terms occur independently of each other
(term independence assumption). However, this is more a matter of mathematical
convenience rather than a reality in natural language (Kilgarriff, 2005; Nallapati
& Allan, 2002). In IR, efforts to process words in the contexts in which they
occur are often referred to as modelling dependence, co-occurrence, adjacency
and lexical affinities', or collectivelly as phrasal IR.

Broadly speaking, efforts to model term co-occurrence and term dependence in
IR typically aim to model phrases, found in queries and/or documents. Modelling
phrases in queries is motivated by the fact that a small but significant fraction of
user queries include an explicit phrase (Zobel & Moffat, 2006). Modelling phrases
in documents is motivated by the intuition to consider more relevant documents
in which terms appear in the same order and patterns as they appear in the query,
and less relevant documents in which the terms are separated (Smith & Devine,
1985).

Generally in phrasal IR, phrases are detected using either statistical or lin-
guistic information. Research on the general topic of phrasal IR began with
the early work on statistical term associations (Doyle, 1962; Giuliano & Jones,
1963; Lesk, 1969; Stiles, 1961) and syntax-based approaches (Baxendale, 1958;
Earl, 1972; Salton, 1966). Investigation continued with work on probabilistic
term dependence models (Harper & van Rijsbergen, 1978; Salton et al., 1983;
Turtle & Croft, 1991; van Rijsbergen, 1977; Yu et al., 1983), syntactic meth-
ods (Dillon & Gray, 1983; Metzler et al., 1984; Smeaton, 1986) and statistical
approaches (Fagan, 1989; Lewis, 1992). More recently, relevant research has fo-
cussed on statistical methods, mostly using language modelling (Metzler & Croft,
2005; Mishne & de Rijke, 2005; Nallapati & Allan, 2002; Song & Croft, 1999),
but not exclusively (Losee, 1994; Plachouras & Ounis, 2007).

Often, the use of co-occurrence information in IR results in a reduction of
retrieval effectiveness (Salton et al., 1983). It has been suggested that this is due
to the fact that the term relationships modelled tend to have little discriminating
power (Metzler & Croft, 2005) because:

1Strictly speaking dependence, co-occurrence, adjacency or lexical affinities are not syn-
onyms (Heylighen & Dewaele, 2002; Sinclair, 1991), but in IR they have been used intechange-
ably.
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e For phrasal IR that uses probabilistic matching models, term dependence
must be estimated in the relevant and the non-relevant classes, where there
is often a very small or non-existent sample of relevant/non-relevant docu-
ments available to estimate the model parameters from. Hence there is not
enough data to make an accurate estimation.

e The document collections used in past work consist of a very small number
of short documents, hence there is very little hope of accurately modelling
term dependencies when most pairs of terms only occur a handful of times,
if at all.

Recently, Metzler & Croft (2005) have reported significant improvement in
retrieval perfomance when modelling term dependence.

2.6 Information retrieval system efficiency

Sections 2.3, 2.4 and 2.5 have presented the main resources, processes, and tech-
niques typically used to represent and match documents and queries in an IR
system. This section presents briefly the main efficiency concerns relating to
these processes.

IR system efficiency is affected by the size of the collections from which infor-
mation is retrieved. Collection size can vary dramatically. For instance, the text
of all books held in a small university library might occupy around 100 gigabytes
(GB) of disk space, whereas the complete text of the Web in 2005 was estimated
to occupy several tens of terabytes (TB) (Zobel & Moffat, 2006).

In addition, the computational costs of storing and matching documents to
queries are significant:

e Disk space is required for the index at 20%-60% of the original size of the col-
lection (indices and their data structures were presented in Section 2.3.2.1).

e Memory is required for an accumulator for each document and for some or
all of the vocabulary (the role of the accumulator in matching documents
to queries was described in Section 2.4.1).

e Central Processing Unit (CPU) time is required for processing inverted lists
and accumulators.

e Disk traffic is used to fetch inverted lists.
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How to reduce these costs without hurting retrieval effectiveness is one of the
aims of the efficiency field of IR.

Efficiency is of outmost importance in operational IR systems. For further
information on efficiency for IR, see Frakes & Baeza-Yates (1992); Grossman &
Frieder (2004); Witten et al. (1999).

Next, two main facets of efficiency are introduced briefly, namely data com-
pression (in Section 2.6.1) and data distribution (in Section 2.6.2).

2.6.1 Data compression

The information stored in the index of an IR system is usually ‘encoded’, i.e.,
stored in a compressed form, so that large collections of documents are efficiently
indexed without large computational costs (Witten et al., 1999). Specifically, with
appropriate compression techniques, compression has the following advantages:

e The costs of index construction can be reduced

e The disk space consumption needed to store the index can be reduced
e The costs of index maintainance can be reduced

e The disk traffic of the system can be reduced:

— The overall transfer costs during query-document matching time can
be reduced, because the inverted lists of the index are shorter. (In-
verted lists were presented in Section 2.3.2.1).

— The overall seek times can be reduced because the index is smaller.

The principal disadvantage of compression is that inverted lists must be de-
coded before they are used. A related problem is that they may need to be
re-coded if and when they are updated (i.e., in the case of dynamic indices, pre-
sented in Section 2.3.2.1), and, for some codes, the addition of new information
can require complex decoding. Generally, if the index is larger than the available
main memory of the system, there is no disadvantage to compression (Zobel &
Moffat, 2006). And even if the index is in memory, processing can be faster than
for uncompressed data. The use of appropriate index compression techniques is
an important facet of the design of an efficient IR system.
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2.6.2 Data distribution

An IR system index can consist of either a single or a distributed body of data,
the latter of which is usually prefered to facilitate the processing of very large
collections, which cannot be supported by a single machine. For example, in
mid-2004, the Google search engine processed more than 200 million queries a
day against more than 20TB of data, using more that 20,000 computers (Zobel
& Moffat, 2006). Data distribution refers to the fact that a document collection
and its index are split across multiple machines. Hence, answers to a query
must be synthesised from the various collection components. Data distribution is
often used with replication (or mirroring). Replication involves making enough
identical copies of the system, so that the required query load can be handled. A
distributed IR system in which the set of retrieved documents is synthesised from
the possibly overlapping sets provided by a range of different services is called a
metasearcher.

More information on distribution and Web IR can be found in Arusu et al.
(2001); Kobayashi & Takeda (2000).

2.7 Information retrieval evaluation

In Section 2.2, it was stated that, in an IR system, a document matches the user’s
information need if the user perceives it to be relevant. However, relevance is not
an exact notion: a document that contains some but not all of the query terms
might be relevant to the user information need, while a document that contains
all of the query terms might be irrelevant to the user need. Most users are aware
that only some of the matches returned by the IR system will be relevant to their
need, and also that different IR systems may return different matches for the
same query (Zobel & Moffat, 2006).

This inexactitude introduces the notion of effectiveness: informally, an IR
system is effective if a good proportion of the first matched documents returned
are relevant. Formally, given a collection C', the primary goal of an IR system
is to identify a set C'r C C of documents relevant to a query. This is a set-
based decision task, but, in practice, most retrieval systems are evaluated by
how well they rank the documents in the collection (van Rijsbergen, 1979). Let
di,ds,...dy denote some ordering of the documents in the collection. Then, for
every rank k, recall is the number of relevant documents that were observed in the
set {d; ...dy}, divided by the total number of relevant documents in the collec-
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tion. Similarly, precision is the number of relevant documents among {d; . ..dy},
divided by k. System performance is evaluated by comparing precision at dif-
ferent levels of recall. A common objective is to increase precision at all levels
of recall. For applications that require interaction with a user, it is common to
report precision at specific ranks, e.g., after 5 or 10 retrieved documents.

When one desires a single number as a measure of performance, several alter-
natives have been proposed. A popular choice is the average precision, defined
as the arithmetic average of precision at every rank where the relevant document
occurs, using zero as the precision for relevant documents that are not retrieved.
Geometrically, average precision is the equivalent to the area underneath an un-
interpolated recall-precision graph (Buckley & Voorhees, 2004). Another possible
choice is R-precision, precision that is achieved at rank R, where R is the number
of relevant documents in the dataset. In these measures, precision values are usu-
ally averaged across a large set of queries with known relevant sets. An example
is the mean average precision (MAP) measure. An overview of evaluation mea-
sures for IR systems is found in Baeza-Yates & Ribeiro-Neto (1999); Demartini
& Mizzaro (2006).

IR systems are often evaluated on standard datasets of documents and queries,
for which relevant documents are known previously. This evaluation paradigm is
part of the Text REtrieval Conference (TREC!), an organised effort to support
the evaluation of IR methodologies. Overviews and discussions of TREC can
be found in Blair (2002), as well as on the annual overviews of the conference
proceedings, available on the TREC Website. The idea behind TREC is to eval-
uate IR systems on standard and controlled datasets. These datasets consist of
a collection of documents, with an associated set of queries, along with human
relevance judgments about which documents are relevant to the queries. These
judgments are not exhaustive, but pooled. This means that, for each query, hu-
man annotators do not judge all documents in the collection, but only top-ranked
documents from a set of retrieval systems. TREC queries usually contain a title,
description, and narrative portion. The title contains few keywords; the descrip-
tion includes a brief description of the information need; the narrative contains a
longer description of the information need.

In addition to TREC, there are other evaluation paradigms, which are spe-
cialised on specific IR branches: for instance, the Cross Language Evaluation
Forum (CLEF?) addresses mainly monolingual, multilingual, and crosslingual

Thttp:/ /trec.nist.gov/
2http:www.clef-campaign.org
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IR in European languages; the NII Test Collections for IR Systems (NTCIR')
project focusses on monolingual, multilingual, and crosslingual IR in East Asian
languages. Both CLEF and NTCIR have been developed in accordance to the
TREC paradigm.

Finally, the evaluation of IR systems can be extended to other issues than re-
trieval effectiveness, namely the efficiency of the system (presented in Section 2.6).
Typical criteria for rating IR system efficiency are:

e Indexing speed: how many documents per hour does the system index for
a certain distribution over document size?

e Retrieval speed: what is the system’s latency as a function of index size?

e Collection cost: how large is the collection stored in the system, in terms
of number of documents, or the collection having information distributed
across a broad range of topics?

2.8 Summary

This chapter introduced the basic concepts involved in IR systems (Section 2.2),
and the main processes for representing documents and queries (Section 2.3), and
for matching documents to queries (Section 2.4). In addition, two main retrieval
enhancing techniques often used by IR systems were presented (Section 2.5).
Issues of IR system efficiency were briefly addressed (Section 2.6). Finally, the
main concepts and paradigms of IR evaluation were presented (Section 2.7).

Chapter 3 presents the basic concepts of parts of speech, which are the shallow
grammatical categories modelled as n-grams in this thesis.

Thttp:research.nii.ac.jp/ntcir/data/data-en.html
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Chapter 3

Basic concepts of parts of speech

3.1 Introduction

This chapter presents parts of speech. First, parts of speech are defined and their
main properties are introduced. Then, applications are presented for automati-
cally assigning parts of speech to words (POS tagging), as well as IR applications
using parts of speech to enhance retrieval performance.

This chapter is organised as follows: Section 3.2 introduces parts of speech.
Section 3.3 presents a linguistic theory for ranking parts of speech, which is used
extensively in this thesis. Section 3.4 presents automatic ways for assigning parts
of speech to words, and in particular three standard POS taggers. Section 3.5
gives an overview of IR applications that use parts of speech to enhance retrieval
performance. Section 3.6 summarises and concludes this chapter.

3.2 Part of speech categories

Parts of speech are grammatical categories of words, such as noun or verb. There
are several levels of grammatical categories in language. Using the terminology of
Lyons (1977), the parts of speech are primary grammatical categories. Secondary
grammatical categories are such notions as verbal tense, or nominal case, which
relate to the inflection or conjugation of words. Functional grammatical categories
are the traditional syntactic notions of subject, predicate, object, and so on, which
relate to the discourse roles of words (Hopper & Thompson, 1984).

Parts of speech are found with some variation in most languages, and are much
fewer in number than the number of words in language. Also, unlike words, there
exists a specific number of parts of speech, which can range according to different
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3.2 Part of speech categories

classifications. A word can have more than one part of speech, e.g., book can
be a noun (to read a book) and a verb (to book a flight). An introduction
into parts of speech can be found in Radford (1988).

Categorising words into parts of speech can be traced to 4" century BC stud-
ies of Sanskrit and ancient Greek (Lyons, 1977, page 19), which independently
observed that language and mathematics alike are made up of individual units,
defined and arranged through rules. Some of these units operate as constants,
while other units operate as variables. Two classes were defined as universal and
necessary categories of language: (i) nouns, and (ii) verbs' and adjectives. These
grammatical classes were defined on logical grounds: nouns were the subject of a
predication (the thing about which something is said), and verbs and adjectives
expressed the action or quality predicated. All other language units received
little attention. Thus, language was formally defined as a structure-based set-
ting, where specific and indispensable units interacted with circumstantial and
dispenable units (Lyons, 1977, Chapter 1.2).

Today grammatical categories are extended to include more parts of speech,
such as prepositions, pronouns, and so on. A widely accepted part of speech
categorisation is the Penn TreeBank set (Marcus et al., 1993), the primary gram-
matical categories of which are shown in Table 3.1. The distinction of modern
categories from the early ‘fundamental’ categories remains (Crystal, 1967): mod-
ern parts of speech are separated into major (nouns, verbs, participles?, adjec-
tives, and sometimes adverbs®) and minor (all other categories). Major categories
are also known as open, because membership to this class is open to new nouns,
verbs, and adjectives that are formed in language. Minor categories are also
known as closed, because membership to this class is mostly fixed: for example,
new prepositions are not coined.

This bifurcation of primary grammatical categories into two classes is widely
accepted by theorists and practitioners of linguistics and language technologies
alike. Linguists often compare it to the Aristotelian opposition of ‘matter’ and
‘form’. the open class parts of speech ‘signify’ the objects of thought which
constitute the ‘matter’ of discourse; the closed parts of speech do not ‘signify’
anything of themselves, but merely contribute to the total meaning of sentences,

IThe category of verbs included participles.

2Even today, participles are sometimes classified as verbs, and sometimes classified sepa-
rately. When participles are classified separately, they share the properties of verbs. In this
thesis, participles are classified separately than verbs, following the Penn TreeBank classifica-
tion.

3The classification of adverbs has always been borderline (Lyons, 1968).
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| Penn Treebank classification: primary parts of speech |

part of speech | abbr. | part of speech abbr.
adjective JJ participle VR
adverb RB | particle RP
conjunction CC | possessive ending PO
determiner DT | preposition IN
modal verb MD | pronoun PP
noun NN | symbol SY
numeral CD | verb VB

Table 3.1: Primary part of speech categories (Penn Treebank set).

by imposing upon them a certain ‘form’, or organisation (Bas et al., 2004, pages
29-64), (Hjelmslev, 1943). This separation is also reminiscent of the distinction
traditionally drawn between ‘full’ and ‘empty’ words in Chinese grammatical
theory (Lyons, 1977, page 273). In language processing technologies, closed class
parts of speech tend to correspond to the stopwords that are often excluded from
processing because of their negligible contribution to the overall content (see
Section 2.3 for stopword removal in IR, or Mani (2001) for stopword removal in
automatic summarisation).

The open and closed class division of parts of speech can be represented using
set theoretical notation as follows.

Notation Standard set theoretic notation is used, where {...} is an unordered
set, and [...] is an ordered set. Let {pos} be the set of all parts of speech.
Let {pos,} be the set of all open class parts of speech, and {pos.} be the
set of all closed class parts of speech.

Open class The set of open class parts of speech {pos,} is a proper subset of
the set of all parts of speech {pos}.

{pos,} C {pos} (3.1)

This means two things:
e {pos,} C {pos}: all members of {pos,} also belong to {pos}

o {pos,} # {pos}: {pos} has at least one member that does not belong to
{poso}
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Closed class The set of closed class parts of speech {pos.} is a proper subset of
the set of all parts of speech {pos}.

{pos.} C {pos} (3.2)

({posc} C {pos} and {pos.} # {pos}).

All classes The set of all parts of speech {pos} is the union of the set of open
class parts of speech {pos,} and the set of closed class parts of speech
{pos.}.

{pos} = {pos,} U {pos.} (3.3)

This notation is used extensively in the rest of the thesis, and particularly in
Section 5.3.

3.3 Jespersen’s rank theory

Grouping all major or open parts of speech into one class does not imply that the
historical distinction between nouns as the fundamental grammatical unit, versus
verbs and adjectives is lost (Ross, 1973). An early formulation of this distinction
is Jespersen’s Rank Theory (Jespersen, 1913, 1929). Jespersen suggested that
grammatical categories are semantically definable and subject to ranking. He
identified degrees of parts of speech:

e First degree (or primary) parts of speech: nouns.

e Second degree (or secondary) parts of speech: verbs (including participles)
and adjectives.

e Third degree (or tertiary) parts of speech: adverbs.

Jespersen defined the notion of degree in terms of the combinatorial properties of
the parts of speech: each part of speech is modified by a part of speech of higher
degree. E.g., nouns are modified by verbs, and verbs are modified by adverbs. No
more than three degrees are required, because there is no major part of speech
with the function to modify parts of speech of the third degree.

Jespersen’s ranking may be seen as crude because it does not distinguish
between different ranks of open or closed class parts of speech, some of which are
likely to be more informative than others. For example, whereas Jespersen ranks
all closed class parts of speech in one group, some closed class parts of speech, such
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as cardinal numbers or modal verbs for instance, may be more informative than
other closed class parts of speech, such as determiners or conjunctions for instance.
Similarly for open class parts of speech, Jespersen’s ranking does not distinguish
between different classes of open class parts of speech, some of which are likely
to hold more content than others, such as action verbs, emotion verbs, or mass
nouns, proper nouns, and so on. Despite this criticism, Jespersen’s Rank Theory
has influenced linguistics extensively (see Anderson (1997); Newmeyer (2000);
O’Grady (1988) for more information) and partially forms the basis of later well-
known grammatical theories, such as Categorial Grammars (Chomsky, 1961).
This thesis draws from Jespersen’s Rank Theory, and not from its derivatives,
because of its antecedence and clarity.

Extending the set theoretical notation introduced in Section 3.2, Jespersen’s
ranking of parts of speech can be formally represented as follows:

Notation Let {pos’'} be the set of first degree parts of speech, {pos”’} be the
set of second degree parts of speech, and {pos”’} be the set of third degree
parts of speech.

1st Degree First degree parts of speech are a proper subset of the open class.
{pos'} C {pos,} (3.4)
({pos'} € {poso} and {pos'} # {pos.}).
2nd Degree Second degree parts of speech are a proper subset of the open class.
{pos"} C {pos,} (3.5)
({pos"} C {pos,} and {pos"} # {pos,}).
3rd Degree Third degree parts of speech are a proper subset of the closed class.
{pos"} C {pos.} (3.6)

({pos™} C {posc} and {pos™} # {posc}).

Open Class The open class is the union of first and second degree parts of
speech.

{poso} = {pos'} U {pos"} (3.7)

This notation is used extensively in the rest of the thesis, and particularly in

Section 5.3
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3.4 Part of speech tagging

This section presents briefly the automatic process of annotating previously un-
seen sequences of words forming phrases or sentences with their respective POS
tags. This process is often called part of speech (POS) tagging, but may also be
referred to as POS disambiguation. Given a sequence of words, the task of a POS
tagger is to make a decision about the part of speech of each word. Even though
this decision cannot be made without understanding the meaning of the input
sequence of words, it can be reasonably approximated using automatic means
that ignore the semantics of the input (Church & Hanks, 1989; DeRose, 1988;
Garside et al., 1987).

The input of a POS tagger is a string of words and a specified POS tagset.
The output is a single best tag for each word. Typically, tags are also applied to
punctuation marks. Each POS tag is composed of the part of speech or primary
grammatical category of the word, and usually adds secondary grammaticaly
information (number, gender, person, etc.) (Primary and secondary grammatical
categories were introduced in Section 3.2). Typically, the set of POS tags is pre-
defined by an expert human for a specific language. A well-known tagset is the
Penn TreeBank tagset (Marcus et al., 1993) (Table 3.1, page 40).

Assigning POS tags to unannotated text is not trivial (Santorini, 1990). Some
words are ambiguous, in the sense that they have more than one grammatical role.
For example, book can be a noun or a verb, as mentioned in Section 3.2. This is
not rare: words of two or more possible POS tags account for over 10% of all the
words in the Brown corpus (DeRose, 1988).

The difficulty in assigning the correct POS tag to a word can be overcome by
looking at the context of the word. E.g. book in isolation is ambiguous, but in
the context to read a book, it is a noun. Different POS tagging approaches use
context in different ways. Initially, most POS taggers assign POS tags to words
on the basis of a pre-specified word-tag lexicon. These initial POS tags are then
altered according to contextual evidence. Rule-based POS taggers usually apply
pre-specified rules:

pos; = pos; if P (3.8)

where pos; is the POS tag assigned to a word initially, and pos; is the POS tag
assigned to the word under the contextual conditions described in P. Stochas-
tic POS taggers generally alter the initial POS tags using word-tag probabilities
(P(word|pos)), extracted from a human annotated corpus. Transition probabil-
ities are probabilities of a POS tag given the previous POS tag, and emission
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probabilities are probabilities of a word given a POS tag. The probability of a
POS sequence given a word sentence is then the product of the transition and
emission probabilities involved.

Next, three standard POS taggers (Mihalcea, 2003) are presented, which are
used later in the thesis (Chapter 6).

3.4.1 Transformation based (Brill) tagger

The Transformation Based tagger (aka Brill tagger) is a POS tagger that
implements an approach to natural language processing called transformation-
based error-driven learning (TBL) (Brill, 1995). TBL consists of learning trans-
formation rules automatically (Equation 3.8 is an example of a transformation
rule). The Brill tagger learns automatically POS transformation rules from a pre-
tagged corpus and uses them to POS tag sequences of words. The Brill tagger
uses morphological and contextual rules: morphological rules take into account
word morphology (prefixes, suffixes, capitalization, and so on); contextual rules
take into account the words and POS tags occurring before and after a given
word. The Brill tagger shares features of both rule-based and stochastic tag-
ging approaches: like rule-based taggers, it assigns POS tags to words according
to rules; like stochastic taggers, it learns rules automatically from a pre-tagged

training corpus. The Brill tagger is popular due to its accuracy and public avail-
ability (Mihalcea, 2003).

3.4.2 DMaximum entropy tagger

The Maximum Entropy tagger (Mzpost) (Ratnaparkhi, 1996) is a stocha-
stic POS tagger, which implements the Maximum Entropy principle of Rosenfeld
(1994): the basic idea is that better use of context improves tagging accuracy.
Mxpost models the probability of a tagged sequence of words using the transition
and emission probabilities presented above. When deriving P(word|pos) from a
corpus, if a word is sparse, the resulting probabilities risk of being unreliable, so
Mxpost uses morphological information for such cases: prefixes, suffixes, numbers,
upper-case characters, or special symbols. The inference of Mxpost consists of
the estimation of the parameters that combine these features and minimise the
uncertainty in assigning a POS tag to a word. Mxpost has been popular because
of its accuracy and rich set of contextual features (Mihalcea, 2003).
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3.4.3 TreeTagger

The TreeTagger (Schmid, 1994) is a stochastic POS tagger, which uses tran-
sition and emission probabilities to model the probability of a tagged sequence
of words, similarly to Mxpost. Rare or uncommon words can cause inaccurate
estimations as mentioned above. Mxpost addresses this by using morphological
information. The TreeTagger addresses this by estimating P(word|pos) proba-
bilities with binary decision trees (Schmid, 1994). Decision trees are trained on
pre-tagged corpora, and output a set of questions that can be asked about a word
to determine its correct POS tag. Decision trees are then built by finding the
question whose resulting partition is the ‘purest’, splitting the training data ac-
cording to that question, and then recursively reapplying this procedure on each
resulting subset. The decision trees used in the TreeTagger are built recursively
using a modified version of the ID3-algorithm (Quinlan, 1983). The TreeTag-
ger is popular because of its accuracy and availability in languages other than
English (Mihalcea, 2003).

3.5 Information retrieval applications using parts
of speech

Parts of speech have been applied to many language processing applications. Most
of these applications process first degree parts of speech differently to second and
third degree parts of speech on empirical grounds, with the goal to maximise
the performance of the process involved. In IR, these efforts were initiated in
the 1980s, and intensified in the 1990s, reporting retrieval benefits. After that
time, these efforts decreased: baseline system performance improved, and the
cost associated with linguistic processing was not worth the small benefits over
the already improved baselines (Tait, 2005).

Generally, part of speech information has been used for stemming, generating
stopword lists, and identifying pertinent terms or phrases in documents and/or
in queries. Some of these numerous applications of parts of speech in IR are
listed below in chronological order. More information is found in the overviews
by Karlgren (1993); Smeaton (1986, 1999); Tait (2005). Unless otherwise stated,
most of the following applications report the use of parts of speech in IR systems
that use the vector space model to match documents to queries. (The vector
space model for retrieval was presented in Section 2.4.2.2.)
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Dillon & Gray (1983) used parts of speech to identify and index phrases.
They applied a set of rules which searched for part of speech patterns known to
indicate content-bearing terms. They reported improvement in the performance
of their FASIT system. Along the same lines, Salton (1988); Sparck Jones & Tait
(1984) used parts of speech to select indexing terms, and reported similar results.
Similarly to these studies, Fagan (1987) used parts of speech to identify and index
2-word and 3-word phrases. In addition, he also used statistical co-occurrence
to identify and index phrases. He compared retrieval performance when using
statistical versus syntactic phrases (identified by their part of speech). He found
not much difference between the two in terms of retrieval effectiveness, though
the statistical approach was computationally more economical.

Instead of processing parts of speech in documents in order to identify phrases
for indexing, which is computationally expensive, Smeaton & van Rijsbergen
(1988) used parts of speech to identify and index noun groups in queries, in order
to get a better representation and understanding of the user information need. A
syntactic parse of the query was used to identify dependent word pairs, and the
retrieval strategy was to search for co-occurrence of word pairs within a sentence
in documents. They reported improved retrieval performance.

In the 1990s, studies using parts of speech to identify indexing phrases became
more elaborate: Lewis & Croft (1990) proposed to link syntactic and semantic
information as follows: they used parts of speech to identify and index phrases,
in which they also identified topical clusters. They reported small improvements
in retrieval effectiveness. Similarly, Jacobs & Rau (1993) proposed using parts
of speech to identify syntactic frames, i.e., relations between events and actions.
They reported promising results, and their system was the highest-scoring system
at the Message Understanding Conference (MUC) evaluation for 1993.

Apart from the above more elaborate efforts to combine parts of speech with
semantic evidence, several studies using parts of speech for IR remained focussed
on improving the selection of indexing keywords and phrases: Lin (1995) used
parts of speech to identify and index compound nouns and adjective - noun collo-
cations. He evaluated this approach as part of MUC 1995, and reported promis-
ing results. Evans & Zhai (1996) proposed a hybrid technique that identified
and indexed noun phrases, by combining both part of speech and statistical co-
occurrence. They reported improvement in retrieval recall and precision. This
work was followed up by Arampatzis et al. (1997); Jacquemin et al. (1997); Zhai
et al. (1997), who focussed on the use of nouns and adjectives for indexing, and
reported improvement in retrieval performance.
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A different approach to using parts of speech for IR was put forward by Zhai
(1997), who proposed enhancing the IR system’s index representation as follows:
he added noun phrases to all terms in the index, in order to represent better what
the document is about, and thus to improve retrieval performance. He reported
that adding noun phrases to the index of all terms improved precision and recall
of their IR system indeed.

Another approach, also using parts of speech with the IR system’s index, was
presented by Pederson et al. (1997), who indexed selectively based on parts of
speech. They indexed nouns, verbs, adjectives, adverbs, interjections, numerals,
abbreviations, and participles, and left out conjunctions, determiners, infinite
markers, prepositions, and pronouns. In addition, they implemented a term
weighting formula based on parts of speech, which favoured noun phrases and
adjective phrases when computing term weights. They reported improvement in
precision and recall over standard indexing of all terms.

In the same year, Strzalkowski & Lin (1997) used parts of speech to select
indexing keywords, to remove stopwords from the index, and also to index phrases.
Specifically, they removed all but nouns, verbs, adjectives, participles, adverbs, as
well as some very frequent words. Similarly to Pederson et al. (1997), they used
different weighting formulae for the various parts of speech, which they tuned
to optimise retrieval performance. They also applied a term weighting formula
that ‘boosted’ the term weights of words inside noun phrases. They reported an
improvement in retrieval performance, but high computational costs.

The results of Strzalkowski & Lin (1997) were in line with another study
of the previous year by Strzalkowski & Sparck Jones (1996), which concluded
that NLP has solid but limited impact on retrieval quality. This observation
was partially shared by Crestani et al. (1997), who showed that improvement in
retrieval performance did not apply when indexing noun phrases alone and when
using short queries (approximately three words long).

Generally, the overview of the Text Retrieval Evaluation Conference (TREC)
for 1997 indicates that the state of the art in IR systems at the time used parts
of speech to index or retrieve information (Voorhees & Harman, 1998).

Efforts to use parts of speech in selecting indexing keywords were also reported
by Chowdhury & McCabe (1998), who compared indexing only nouns to indexing
all parts of speech, and also to indexing everything but nouns. They used the
following part of speech categories only: nouns, verbs', adjectives, adverbs, other,
and constructed three indices:

'In this study, the category of verbs included participles.
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e Indexing all terms (baseline).
e Indexing nouns only.

e Indexing only verbs, adjectives, adverbs, and other parts of speech, except
nouns.

The index that included all parts of speech gave the best retrieval performance.
The only-nouns index was a close second, and the everything-but-nouns index was
markedly poor. Indexing only nouns overall reduced the system’s performance
by less than 1%, and gave system storage savings of around 9.5% for the index
data.

In the same year, Flank (1998) proposed a different use of parts of speech for
IR, namely, not only for selecting indexing keywords, but also when matching
documents to queries. Her system, called Intermezzo, was deployed in a pre-
product form at a government site and used a Boolean retrieval model. Parts of
speech were used in two ways. First, part of speech patterns were used to iden-
tify multiword expressions (i.e., noun phrases). The identified patterns were then
weighted differently than individual words. Second, incoming queries were POS
tagged: only words that matched by part of speech the query terms were consid-
ered for matching by the system; if two or more parts of speech were possible for
a particular word, the word was tagged with both. Also, the system implemented
semantic expansion (using WordNet), which was constrained by part of speech
information: terms were expanded with their synonyms from WordNet; however,
only those expansions that applied to the correct part of speech in context were
retrieved. The system also used parts of speech (combined with databases) for
name recognition. Overall, results indicated that the combination of noun phrase
syntax and name recognition improved recall by 18%, and that name recognition
played a larger role in the improvement of the system performance than did noun
phrase syntax.

In late 1990s, the general consensus seemed to be that simple statistical ap-
proaches were generally more effective than well-executed linguistically-motivated
techniques for IR, such as elaborated use of parts of speech and semantics (Sparck
Jones, 1999).

A different use of parts of speech was proposed by Narita & Ogawa (2000), who
suggested using parts of speech for query construction. They examined the utility
of phrases, extracted from query texts using parts of speech, as search terms for
IR. They used single terms and phrasal terms in their query construction. They
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matched phrases of two terms using proximity constraints. They also associated
lesser weight to phrasal terms than single terms, reasoning that the occurrence
of a phrase in a document also indicates the occurrence of its constituent words.
They reported some improvement in retrieval performance.

Studies using parts of speech to identify indexing keywords and phrases were
also reported at that time (Fujita, 2001; Lin, 2001), which concluded that there
were some retrieval benefits in the efficiency of the IR system, namely for rapid
large-scale indexing.

More recently, Srikanth & Srihari (2003) used of parts of speech to iden-
tify concepts for IR. Using the language modelling approach (presented in Sec-
tion 2.4.2.4), they proposed a Concept Language Model, which views the query as
a sequence of concepts, and a concept as a sequence of terms. They assumed that
concepts are phrases that are identified by the parts of speech of the query terms.
They showed improved retrieval performance for some but not all queries. This
approach differs from most previous techniques because it uses parts of speech
solely to enhance the retrieval process of IR systems, and not the representation
of document terms in the system index.

Parts of speech are also used consistently in other language processing ap-
plications, such as summarisation (see Mani (2001) for an overview), seman-
tic taxonomies (Caraballo & Charniak, 1999), question-answering (Anick
& Tipirneni, 1999), text categorisation (Jacobs, 1992). Parts of speech have
also been used in language teaching, where nouns have been used for detecting
language difficulty (Mikk, 2000, 2001), or in more general studies as the primary
units for detecting textual content (Savicky & Hlavacova, 2002; Zubov, 2004).

3.6 Summary

This chapter introduced parts of speech as primary (or shallow) grammatical
categories (Section 3.2), and presented a ranking of parts of speech (Section 3.3),
which is used extensively in the rest of the thesis. Automatic ways for assigning
parts of speech to words were also presented (Section 3.4), and in particular
three standard POS taggers, which are used later in the thesis (Chapter 6),
were discussed. Last, IR applications using parts of speech to enhance retrieval
performance were overviewed (Section 3.5).
Chapter 4 introduces n-grams, and specifically POS n-grams.
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Chapter 4

Part of speech n-grams

4.1 Introduction

This chapter presents part of speech (POS) n-grams. The chapter is organised
as follows: Section 4.2 presents basic concepts and applications of n-grams. Sec-
tion 4.3 presents basic concepts and applications of POS n-grams. Section 4.4
summarises and concludes this chapter.

4.2 n-grams

4.2.1 Basic concepts of n-grams

Given a contiguous sequence of items, an n-gram is a contiguous subsequence of
that sequence. (This thesis follows the n-gram notation of Brown et al. (1992),
where the subscript is the first item in the n-gram, and the superscript is the last
item in the n-gram.) Let if be a contiguous sequence of items, where i, is the
first item, and ¢ is the last item in the sequence. Then, i;JFn_l is a contiguous
subsequence or string of that sequence, if i; > h and n < k. Such subsequences
are called n-grams, usually when the number of items n in the string is fixed,
and when they are extracted in a recurrent and overlapping way from the initial
sequence (Damerau, 1971). For example, the 3-grams extracted from the initial
sequence 45 are: 43, i3, and 5. The total of all sequences from which n-grams
are extracted is often called sample, denoted S. mn-grams are usually extracted
from very large samples. The likelihood of observing an n-gram in the sample is
assigned a probability, so that the more frequent the n-gram is in the sample, the

higher its probability of occurrence. The computational mechanism for obtaining
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these probabilities is referred to as a language model' (Brown et al., 1992). Hence,
a language model is a probability distribution over sets of n-grams.

To compute the probability of occurrence of an n-gram in a sample, in the
simplest case, its relative frequency® can be used. Let c(z'§+"_1)
times that the n-gram i§+n_1 occurs in the sample S. Let |S| be the number of
all n-grams in the sample. Then, the relative frequency of z';%_l in the sample

be the number of

is:
c ij—i—n—l

RFi;}n—l = 7( J|S| ) (4.1)
n-gram language models typically assume that the likelihood of an item de-
pends only on its immediate context, i.e., the n — 1 item before it (Markov inde-
pendence assumption (Markov, 1913)). This assumption implies that the proba-
bility for an n-gram can be decomposed into the probabilities of smaller n-grams

appearing in it:
PN = Piy) - P(i|e*h) - Pligli? ™) (n>2) (4.2)

J

The value of n is called the order of the language model, and controls the
amount of context captured inside the n-gram. As n increases, the accuracy of an
n-gram model increases, but the reliability of the estimation decreases (because
the number of n-grams in the sample decreases). Typically, the number of all
possible n-grams in the sample is called the complezity of the language model.
The complexity of a language model increases exponentially with n: if the sample
contains |i| items, then, for a fixed n, the number of all possible n-grams in the
sample is:

language model complexity: |i|" (4.3)

In evaluating language models (stand-alone, not as part of another process), an
intrinsic measure of their quality is their perplexity: given a sample S, and a
number |S| of possible n-grams in it, the perplexity of a language model is the
number of probability predictions P(S) that can be computed in total. (Equa-
tion 4.2 is an example of such probability predictions.) Mathematically, language
model perplexity is the reciprocal of the geometric average of the probabilities of

!The language modelling approach to IR (Section 2.4.2.4, page 27) is related but not identi-
cal to this general model. The difference between the two is discussed in Section 4.2.2, page 52.

2Often, the terms relative frequency and mazimum likelihood (Jurafsky & Martin, 2000)
are used interchangeably (Manning & Schutze, 1999), under a relaxed definition of the lat-
ter (Aldrich, 1997).
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4.2 n-grams

the predictions in S:

1

language model perplexity: P(S) 15T (4.4)

The smaller the perplexity, the more accurately the language model captures
language regularities of the sample. Because perplexity depends not only on the
language model but also on the sample, it is important that the sample be large
and representative.

4.2.2 Applications of n-grams

An overview of applications using n-grams is presented. Applications using POS
n-grams are presented separately later, in Section 4.3.3.

Early language models can be traced to Markov (1913), who used 2-grams
and 3-grams of letters (Markov chains) to predict the occurrence of vowels and
consonants in Russian. Shannon (1948) also used sequences of letters and words
to measure the degree to which the English language can be compressed, with
implications to coding and information theory. Feller (1950) and Gallager (1968)
introduce n-grams for information theory.

Since the early efforts of Markov (1913) and Shannon (1948), n-grams have
been used in many language processing applications. In speech recognition
(Bahl & Jelinek, 1975; Bahl et al., 1990; Baker, 1975; Jelinek, 1977; Rabiner,
1989), n-grams of phonemes have been used to predict the most likely phoneme
combinations, hence the most likely sound. The aim in these approaches is to
use part of speech information in order to identify word triggers or term de-
pendence, that might be of help in predicting a spoken word. In general pars-
ing (Suen, 1979) and part of speech tagging (Brown et al., 1992; Cutting
et al., 1992; Ratnaparkhi, 1996; Schmid, 1997), n-grams of words and parts of
speech have been used to predict the most probable part of speech, given its
preceeding part of speech, and the most probable word, given its part of speech.
In language generation (Ratnaparkhi, 2000), n-grams of letters or words have
been used to create text automatically (for example, the dissociated press algo-
rithm (Beeler et al., 1972)). In named entity identification (Burger et al.,
1998), n-grams of words have been used to predict named entities (for example
names of companies or persons). In machine translation (Marioo et al., 2006;
Och & Ney, 2004), word n-grams have been used to model correspondences of
words between languages, and hence to predict the most likely translation. In
language recognition, for example the TextCat language guesser by Canvar
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& Trenkle (1994), letter n-grams from different languages have been used as a
feature to identify language. In pattern recognition (Hull & Srihari, 1982; Kim
& Shawe-Taylor, 1994; McElwain & Evens, 1962), word n-grams have been used
to predict word patterns. In spelling correction (Angell et al., 1983; Ullmann,
1977; Zamora et al., 1981), letter n-grams have been used to find candidates for
the correct spelling of misspelled words. In keyword indexing for IR (Adams,
1991; Burnett et al., 1979; Canvar, 1993, 1994; Cohen, 1995; Crowder & Nicholas,
1995; Feng et al., 2000; Huffman & Damashek, 1994; Mehmet, 1990; Schuegraf
& Heaps, 1973; Willett, 1979), word n-grams have been used to select indexing
keywords (the indexing process was presented in Section 2.3.2). In text com-
pression (Wiskiewski, 1987), word n-grams have been used to summarise text.
In clustering (Collier, 1994a,b), word n-grams have used to identify the bound-
aries and order of different topics in text. In text classification, part of speech
n-grams (Argamon et al., 1998a,b; Johannes, 1998; Santini, 2007) have been used
as a genre-revealing feature to predict the genre or domain of text.

Apart from identifying indexing keywords for IR, n-grams have also been used
in IR to match documents with respect to a query, according to the likelihood
that the query has been generated from the document (Croft & Lafferty, 2003;
Hiemstra, 2001; Kraaij, 2004). Language models for IR were presented in Sec-
tion 2.4.2.4. In short, the use of language models for IR is different to the above
applications because it uses n-grams not to model language regularities, but sim-
ply as a mechanism to estimate the probability of a term given a document.

n-gram applications are found not only in academia, but also in industry:
Google! announced using n-grams for machine translation, speech recognition,
spelling checking, entity detection, and data mining, and, in 2006 released through
the Linguistic Data Consortium a list of word n-grams compiled from in-house
data.

n-grams have also been used in non-linguistic applications. In genetic se-
quence analysis (Cheng et al., 2005; White et al., 1993) n-grams of DNA
sequences are used in genetic sequence search and to identify which species
short DNA sequences were taken from (e.g., Basic Local Alignment Search Tool
(BLAST) family of programs (Zhang & Madden, 1997)). In image recogni-
tion (Soffer, 1997), n-grams are used to extract features for clustering large sets
of satellite earth images and for determining what part of the earth a particu-
lar image came from. In machine learning (Kurai et al., 2006), n-grams are

Thttp: //googleresearch.blogspot.com /2006 /08 /all-our-n-gram-are-belong-to-you.html
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used to design kernels that allow machine learning algorithms (e.g., support vec-
tor machines) to ‘learn’ from string data. In compression algorithms (Teng
& Neuhoff, 1995), n-grams are used to improve compression where a small area
of data requires n-grams of greater length. In optical character recognition
(OCR) and intelligent character recognition (ICR) systems (Harding et al.,
1997), character n-grams are used to identify correct sequences of characters.

To recapitulate, n-grams are contiguous subsequences of a contiguous sequence
of items. Typically, n-grams are used to predict the occurrence of an item in a
sequence (e.g., POS tagging), and/or to characterise the sample from which they
were extracted (e.g., text classification).

4.3 Part of speech n-grams

4.3.1 Introduction

Section 4.2 introduced n-grams as contiguous subsequences of a sequence of items.
The applications of n-grams presented showed that n-grams tend to be used to
predict the occurrence of an item in a sequence, or to model the sample from
which they were extracted. In this section, n-grams of contiguous part of speech
(POS) sequences are presented, as well as the notation to be used in the rest of
the thesis.

4.3.2 Definitions and notation

Let S be a sample, containing contiguous sequences of terms ¢ (e.g., sentences).
Then, for some fixed n, t;+"_1 is a term n-gram, where ¢; is the first term, and
ljtn—1 is the last term in the n-gram. For example, for S = the cat sat on

the mat, and for n=3:

{3 = the cat sat
{3 = cat sat on
{3 = sat on the
% = on the mat

Let pos be a part of speech, and ¢ be a function that maps term ¢; to its part of
speech pos;, so that:

6(t:) = pos: (4.5)
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4.3 Part of speech n-grams

This can be done by any POS tagger (see Section 3.4)'. The relation between
t; and pos; in Equation 4.5 is not symmetrical: knowing pos; does not imply ;.
E.g., the term cat is a noun; but a noun corresponds to many different terms.
For some fixed n, pos;}”_l is a POS n-gram, where pos; is the first part of
speech in the n-gram, and pos;i,_; is the last part of speech in the n-gram. For
each term n-gram, there exists a POS n-gram. This means that the order of the
parts of speech inside a POS n-gram reflects the order of the words in the term
n-gram. It follows that:
¢/(t§+n—1) _ p08§+n_1 (46)

where ¢’ denotes applying function 4.5 to every term inside tfrn_l. Applying

function 4.6 to the above term n-grams gives the following POS n-grams:

¢ (t}) = pos}
¢/ (t3) = pos
¢ (t3) = pos;
¢/ (t5) = pos§

For this example, the correspondence between POS n-grams and term n-grams
is:

¢'(the cat sat) = DT NN VB
¢'(cat sat on) = NN VB IN
¢'(sat on the) = VB IN DT
¢'(on the mat) = IN DT NN

The part of speech abbreviations used in this thesis are explained in Table 3.1,
page 40.

Let {tﬁ"_l}i be the set of all term n-grams t§+"_1 that contain term ¢; at any
position inside the n-gram. For example, given the above 3-grams:

for t; = cat,
{*""'},={the cat sat, cat sat on}ca

for t; = the,
{tf”_l}i:{the cat sat, sat on the, on the mat}ihe

IParts of speech are assigned to terms in the context of sentences or phrases, not individually
as shown above. This point is discussed in Section 3.4.
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Then, . .
¢" ({65 }) = {pos] ™' (4.7)

where ¢” denotes applying function 4.6 to each term n-gram in the set {t;J’”_l}i.
For example,

¢"({the cat sat, cat sat on}cs.) =
{DT NN VB, NN VB IN}ca

¢"({the cat sat, sat on the, on the mat}y.) =
{DT NN VB, VB IN DT, IN DT NN}the

The relation described by function 4.7 is important for computing a term
weight from POS n-grams, because it maps a term to all the POS n-grams that
‘contain’ it. How this is done is shown in Section 5.3.

The next section presents applications of POS n-grams.

4.3.3 Applications of part of speech n-grams

Section 4.2.2 presented an overview of applications of n-grams, including POS
n-grams. Here, applications of POS n-grams are discussed in detail.

A common application that uses POS n-grams is stylometric text categori-
sation, which consists of making predictions about the author or genre of a given
text (Lim et al., 2005). (See Sebastiani (2002) for an overview of approaches and
problems of text categorisation.)

Baayen et al. (1996) used POS n-grams, which they described as ‘pseudo-
word sequences’, to measure syntactic differences among texts. They then used
these differences for automatic authorship attribution. Their motivation was that
particular document classes can favour certain syntactic structures. They used
automatic parsing to classify input texts. They reported promising results and
concluded that part of speech information is at least as revealing as any other
stylistic text classification feature, for example lexical information.

Argamon et al. (1998a,b) suggested the use of POS 3-grams, which they called
part of speech triplets, for text classification, as a shallow approach to syntax.
Their approach was presented as a computationally inexpensive and robust al-
ternative to the idea of Baayen et al. (1996) of using syntactic structures for text
classification. Their rationale was that POS 3-grams are large enough to encode

1POS n-grams ‘containing’ a term = POS n-grams corresponding to term n-grams contain-
ing a term.
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4.3 Part of speech n-grams

useful information, yet small enough to be computationally manageable. They
used POS 3-grams and function words for automatic text classification. POS
tagging was done with the Brill tagger (presented in Section 3.4.1), and POS 3-
grams included punctuation. For classification they used only POS 3-grams that
occurred in between 25% and 75% of all the documents; the rest POS 3-grams
were ignored. They concluded that the use of POS 3-grams for text classification
was promising, but not entirely conclusive, hence that further experimentation
and variation of experimental settings was needed.

Studies by Johannes (1998) showed similar conclusions. Efforts were also made
to use POS n-grams for author gender classification (Koppel et al., 2003a,b). In
these studies, POS n-grams were used together with function words and machine
learning techniques to identify the gender of authored text. POS n-grams were
described as ‘quasi-syntactic features’, and were shown to be promising classifi-
cation features.

Santini (2007) extended the work of Argamon et al. (1998a,b), by using POS
n-grams for text classification. She used POS n-grams on their own, not in com-
bination with other features (e.g., function words) as reported in Argamon et al.
(1998a,b). Additionally, she varied n between 1-3, and experimented with the
classification of both spoken and written genres included in the British National
Corpus (BNC) (Aston & Burnard, 1998). She used POS n-grams, both including
and excluding punctuation, and she selected POS n-grams with a frequency of
occurrence between 30-100 in a single genre collection. She showed that POS
n-grams excluding punctuation resulted in higher classification accuracy for the
written genres, but that including punctuation improved the classification ac-
curacy for spoken genres. She also confirmed the reasoning of Argamon et al.
(1998a,b) about the order n = 3 of POS n-grams, by showing that, overall, POS
3-grams resulted in better classification accuracy than POS 2-grams and POS 1-
grams. Overall, she showed that POS n-grams have strong discriminating power
as features for text classification.

Even though the above studies have reported promising results in using POS
n-grams for text classification, there also exist studies claiming that the dis-
criminating power of POS n-grams for text classification is limited and prone
to noise (Aaronson, 1999; Kessler et al., 1997). These studies refer to the unre-
stricted use of POS n-grams for classification, i.e., without selecting POS n-grams
of certain frequencies, or removing punctuation, as reported in Argamon et al.
(1998a,b); Santini (2007) and most other studies using POS n-grams for classi-
fication. The conclusion from the above seems to be that POS n-grams, when
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selected carefully, can be stable indicators of style and hence useful for text clas-
sification.

4.4 Summary

This chapter introduced n-grams (Section 4.2), and particularly POS n-grams
(Section 4.3). Basic definitions, notation, and main assumptions were intro-
duced. Also, applications using n-grams, and POS n-grams in particular, were
overviewed.

Chapter 5 discusses the relation between POS n-grams and informative con-
tent, which is central in this thesis.
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Chapter 5

Part of speech n-grams and
informative content

5.1 Introduction

This chapter discusses the link between POS n-grams and informative content,
which is the main motivation of this work. Firstly, the relationship between POS
n-gram frequency and informative content is presented. Secondly, based on this
relationship, a methodology is presented for using POS n-grams to compute how
informative a word is in general, not with respect to a topic. This is called Part
of Speech Information Score (PIS) and this chapter develops two alternative ways
of calculating this (denoted by PIS; and PIS,).

This chapter is organised as follows. Section 5.2 presents the relation be-
tween POS n-gram frequency and informative content. Section 5.3 presents the
general methodology for computing PIS, and discusses the reasoning behind this
computation. Section 5.4 summarises and concludes this chapter.

5.2 Frequency and informative content of part
of speech n-grams

The initial motivation for using POS n-grams in IR was the empirical observa-
tion that, when ranking all the POS n-grams in a collection according to their
frequency, the most frequent POS n-grams have a tendency to contain mostly
open class parts of speech, and the least frequent POS n-grams have a tendency
to contain mostly closed class part of speech. (Open and closed parts of speech
were presented in Section 3.2.)
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AP DISK 4&5

inf inf

5

0 f 10 0 f 10

Figure 5.1: Frequency versus informative content of POS 4-grams (AP, Disks
4&5).

wreG WT10G

inf inf

0 f 10° 0 f 10°

Figure 5.2: Frequency versus informative content of POS 4-grams (WT2G,
WT10G).

This observation made sense: there exists a much greater number of open class
than closed class words in language (Francis & Kucera, 1982; Tuldava, 1996), i.e.,
compare the number of nouns to the number of determiners (Hudson, 1994). Also,
by definition, open class words tend to convey meaning, hence they are necessary
in language, whereas closed class words tend to modify existing meaning, hence
they can become redundant (Miller, 1951). A common illustration of this aspect
of language is the predominant use of nouns in user queries on the Web (Ozmutlu
et al., 2004).

To illustrate this observation, the frequency of POS n-grams in a collection
(f) is plotted against how informative POS n-grams are (inf) (Figures 5.1 -
5.3). The informative content of POS n-grams is measured by counting how
many informative parts of speech are contained in them (see Algorithm 3). In
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.GOV

inf

0 f 10°

Figure 5.3: Frequency versus informative content of POS 4-grams (.GOV).
this context, ‘informative content’ refers to gaining awareness of content, as op-

posed to identifying specific semantic properties (e.g., topic). Hence, this type of
informative content is by definition non-topical.

Algorithm 3 Counter of informative content for POS n-grams
1: for each POS n-gram do
allocate a counter inf
set inf «— 0
for each part of speech pos in the POS n-gram do
if pos € open class then
set inf «—inf +1
end if
end for
end for

Figures 5.1 - 5.3 plot POS n-gram frequency (x axis) against informative
content (y axis) for POS 4-grams extracted in five different standard TREC
collections, namely AP, Disks 4&5, WT2G, WT10G, .GOV. These collections are
used extensively in the experiments reported in Chapters 6-7, and are presented
in details in Table 6.3, page 80. Figures 5.1 - 5.3 show that when f increases, in f
increases too, and vice versa. This observation is also valid for POS 5-grams, the
corresponding figures of which are presented in Appendix C, Figures C.1 - C.3,
pages 167 - 167.

Algorithm 3 is a simple heuristical way of looking at how informative POS n-
grams are; other heuristics, which for instance distinguish between different open
and closed class parts of speech and penalise the presence of closed class parts
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AP DISK 485
10° 10° ‘
inf inf
10” 1107
10° 100 1 10° 10 10° 10" 10° 10°

Figure 5.4: Frequency versus informative content of POS 4-grams (AP, Disks
4&5).

WT2G WT10G
10° 10° ‘
inf inf
10” 1107
10° 100 1 10° 10 10° 100 1 10° 10°

Figure 5.5: Frequency versus informative content of POS 4-grams (WT2G,
WT10G).

.GOV

2 4

10 10"t 10°

10°

Figure 5.6: Frequency versus informative content of POS 4-grams (.GOV).
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of speech inside the POS n-gram (such as Algorithm 4 for instance), have also
produced very similar findings: Figures 5.4 - 5.6 plot POS 4-gram frequency (x
axis) against informative content (y axis) for POS 4-grams, where the informative
content of POS 4-grams has been computed with Algorithm 4. Similarly to
Figures 5.1 - 5.3, Figures 5.4 - 5.6 also show that when f increases, inf increases
too, and vice versa.

Algorithm 4 Refined counter of informative content for POS n-grams
1: for each POS n-gram do

2:  allocate a counter inf

3 setinf «—0

4:  for each part of speech pos in the POS n-gram do
5: if pos € open class then

6: if pos € first degree then

7 set inf —inf +1

8: else if pos € rank then

9: set inf «—inf+~v (0<vy<1)
10: end if

11: end if

12: if pos € closed class then

13: set inf «—inf —1

14: end if

15:  end for

16: end for

The observation that POS n-gram frequency is rougly proportional to how
informative a POS n-gram is, is the motivation for using POS n-grams in IR.

5.3 Part of speech information score for terms

This section introduces a framework for deriving a term information score (called
PIS) exclusively from POS n-grams, based on one hand on the finding that POS n-
gram frequency and informative content are approximately directly proportional,
and on the other hand on the rankings of parts of speech presented in Sections 3.2-
3.3. The main motivation of PIS is that the more often a term co-occurs with
other informative terms, and the higher the rank of the part of speech of the term,
the more informative that term is likely to be. Term co-occurrence information
is derived from POS n-grams, and the frequency of this co-occurrence is derived
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from POS n-gram frequency. The type of informative content measured by PIS
is non-topical, and it applies to individual terms, i.e., like a term weight.
To compute PIS, these two types of information are combined:

e Part of speech class and rank
e POS n-gram statistics

POS class and rank represent a priori information about non-topical content in
language (how informative a part of speech is, in general); POS n-gram statistics
represent observed information about language structure (how words' co-occur
in general). To compute PIS, the above two types of information are combined
using basic probabilities. See Good (1968) for an introduction into probabilistic
reasoning, and Best (2001) for probability distributions in language.

5.3.1 General methodology
The general methodology for computing PIS is as follows:

e Step 1. Approximation of the probability that an individual part of speech
is informative, using part of speech class and rank information. E.g., how
informative an individual noun or verb is. (Section 5.3.2).

e Step 2. Extension of step 1 to approximate the probability that a POS
n-gram is informative. E.g., how informative a POS n-gram is, on the basis
of how informative its part of speech components are. (Section 5.3.3).

e Step 3. Extension of step 2 to approximate the probability that an indi-
vidual term is informative, by mapping term n-grams containing this term
to their corresponding POS n-grams:

1. For a term, get all the term n-grams that contain it.

2. Map all these term n-grams to their corresponding POS n-grams.

3. The total probability that these POS n-grams are informative gives
PIS. (Step 3 is described in Section 5.3.4).

The methodology shown above is one of several possible ways of computing
PIS. Alternative computations of the probabilities shown above are also possi-
ble. For instance, the probabilities of informative content for individual parts

IPart of speech classes of words, in particular.
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| POS | class | degree | relation |
NN open = {pos,} | first = {pos’} {pos'} C {pos,}, Eq. 3.4
JJ,VR,VB | open = {pos,} | second = {pos”} | {pos"} C {pos,}, Eq. 3.5
RB closed = {pos.} | third = {pos”'} | {pos”} C {pos.}, Eq. 3.6
rest closed = {pos.} | - -

Table 5.1: Classes, degrees & relations of primary parts of speech.

of speech are derived above from Jespersen’s Rank Theory, a linguistic theory,
and as such they are to a large extent empirical approximations. Alternatively,
more mathematically accurate probabilities could be derived using statistics in-
stead of Rank Theory. Also, the probability of informative content of a POS
n-gram shown above is computed by decomposing it to the probabilities of its
individual components, whereas it could also be derived by considering the n-
gram as a whole. This and other alternative computations of PIS are discussed
in Section 8.2.3.

The next section presents how the probabilities involved in computing PIS
are derived.

5.3.2 Probability that a part of speech is informative

This section presents how to approximate the probability that an individual part
of speech is informative (Step 1 in the methodology for computing PIS).

Let inf be an event of informative content, and pos be an event of an individ-
ual POS. Then P(inf|pos) is the conditional probability that inf occurs given
pos, or more simply the probability of pos being informative (0 < P(inf|pos) <
1).

Recall the set theoretic notation of part of speech classes (Section 3.2) and
ranks (Section 3.3), pages 38-41, also summarised in Table 5.1 for easy reference.
Then, drawing from the principles of Rank Theory,

0 < P(inf|pos,) <1 (5.1)
where pos, is an open class part of speech, and
P(inf|pos.) =0 (5.2)

where pos. is a closed class part of speech. Equation 5.1 states that there is
always some probability of an open class part of speech being informative (> 0).
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Equation 5.2 states that there is no probability of a closed class parts of speech
being informative (= 0). These are assumptions that do not always hold: for
example, a closed class part of speech can be informative. These assumptions are
in line with Rank Theory, and are made as approximations.

Open class parts of speech can be either first degree or second degree parts of
speech (Equations 3.4, 3.5, Table 5.1, and Equation 3.7, page 42.) Equation 5.1
can be further modified to approximate the probability that an open class part
of speech is informative, differently for first degree - open class parts of speech
and second degree - open class parts of speech, according to Jespersen’s Rank
Theory".

Assuming that a first degree part of speech (pos’) is always informative, and
that a second degree part of speech (pos”) is always informative, but less than a
first degree part of speech:

P(inf|pos’) = A
P(inflpos”) = o
0<pop< A<

Equation 5.3 states that there is always a probability that nouns (Jespersen’s
first degree) are informative. Equation 5.4 states that the probability of verbs,
participles, and adjectives (Jespersen’s second degree) being informative is shared
by verbs, participles, and adjectives equally and can never be the maximum or
minimum. These are assumptions which do not always hold, and which are made
here as approximations.

Equations 5.3-5.4 define the probability of a first and second degree part of
speech being informative as A and p, where 0 < p < A < 1. Two ways of
computing A and ¢ are suggested:

e )\ and p can be tuned to optimise the performance of a process (presented
in Section 5.3.2.1).

e )\ and p can be derived probabilistically (presented in Section 5.3.2.1 ).

In this thesis, both alternatives are implemented in Chapter 7.

! Alternatively, the assignment of probabilities to different POS classes could be realised
according to POS statistics. Even though this thesis does not use statistics to compute the
probabilities of POS classes, this point is discussed as a future extension in Section 8.2.3.
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5.3.2.1 Tuning )\ and p to optimise system performance

The aim is to assign A and p values that reflect the probability that a first and
second degree part of speech respectively is informative. Doing so will allow the
computation of a term information score called PIS. If PIS is used as part of an
overall process, the performance of which can be measured, A and ¢ can be tuned
to optimise this performance. For example, if PIS is used by an IR system, A
and o can be tuned to maximise the Mean Average Precision (MAP) of the IR
system. (MAP was presented in Section 2.7.)

argmax = MAP(o|\) (5.5)
oA

In Chapter 7, PIS is used as part of an IR system, and A\ and p are tuned to
optimise MAP. The resulting A\ and o values are shown in Tables E.1 and E.2,
Appendix E, pages 176 - 177.

5.3.2.2 Deriving A and p probabilistically

Another way to set A and ¢ is to use Bayes rule and the probabilities of individual
parts of speech being informative, defined in Equations 5.3-5.4.

P(inflpos’) = A = (5.6)
P(pos'linf)P(inf)

Ppos) == (5.7)

P(pos'|inf)P(inf) = AP(pos’) (5.8)

P(pos”|inf)P(inf)

P(inflpos”) = Plpos) (5.9)
_ [1 = P(pos'|inf)] P(inf)
- o (5.10)
_ P(inf) — AP(pos')
= = ed] (5.11)
Without assuming any prior knowledge of P(inf),
P(inf) = P(inf) = P(inf) = 0.5 (5.12)

Then, fixing a value for A gives the value for o.
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This section approximated the probability that an individual part of speech is
informative using Jespersen’s Rank Theory. The next section approximates the
probability that a POS n-gram is informative on the basis that its member parts
of speech are informative.

5.3.3 Probability that a part of speech n-gram is informa-
tive

This section presents how to approximate the probability that a POS n-gram is
informative (Step 2 in the methodology for computing PIS, Section 5.3.1). This
probability is used later (Section 5.3.4) to compute how informative a term is
(PIS).

How informative a POS n-gram is can be estimated on the basis of how
informative its member parts of speech are. For each member of a POS n-gram,
the probability of how informative it is can be computed with Equations 5.3-5.4,
page 66. The combination of these probabilities gives an approximation of how
informative the POS n-gram is.

Let posf“"_1 be a POS n-gram (this notation was introduced in Section 4.3.2).
jt+n—1
J

proximated by averaging the probabilities of each of its members being informa-

Then, the probability that pong’"_1 is informative P(inf|pos ) can be ap-

tive:

n—1
P(mf|posfr RS - E P(infl|pos;) (5.13)
i=1

where P(inf|pos;) is an approximation of the probability that an individual part
of speech is informative, computed using Equations 5.3 & 5.4, page 66. Closed
class parts of speech can be excluded from the computation of Equation 5.13,
because they are assumed to be non-informative always (Equation 5.2, page 65).
Note that this approximation does not apply to POS 1-grams.

In Equation 5.13, probabilities are combined linearly; there exist other alter-
natives to this, for instance computing their product or summing their logarithms.
Generally, these alternatives are considered approximately equivalent. This point
is discussed further in Section 8.2.4.

This section presented a way of approximating the probability that a POS
n-gram is informative. The next section uses this probability to estimate how
informative a term is.
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5.3 Part of speech information score for terms

5.3.4 Probability that a term is informative

This section presents how to approximate the probability that a term is informa-
tive, which is referred to as PIS (Step 3 in the methodology for computing PIS,
Section 5.3.1).

For a term, PIS is estimated by doing two things:

1. All the term n-grams in which the term occurs are mapped to their corre-
sponding POS n-grams.

2. The probabilities that each of these POS n-grams is informative are com-
bined.

Two different computations of PIS are proposed, referred to as PIS; and PIS,,
in the rest of the thesis. PIS; is presented in Section 5.3.4.1, and PIS, is presented
in Section 5.3.4.3.

5.3.4.1 Part of speech information score - PIS;

The set of all POS n-grams which correspond to a term n-gram containing term
i was defined in Section 4.3.2, Equation 4.7, page 56, as {posj e }@ Using this,
the probability of a term ¢; being informative can be approximated as:

P(infl|t;) ~ |o| ZP inf|{pos;};) (5.14)

where

o P(inf|{pos;}i) is computed with Equation 5.13 by replacing pos; with
{pos,}i, and

e |(] is the number of all POS n-grams in the collection.

Equation 5.14 states that the probability of a term being informative is a
function of how informative and how many are the POS contexts (POS n-grams)
in which it occurs. The reasoning behind Equation 5.14 is that a term that occurs
in many term n-grams, which themselves correspond to informative POS n-grams,
is likely to be informative. This is quantified by combining the informative content
of these POS n-grams, and their probability of occurrence.
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5.3 Part of speech information score for terms

More simply, PIS can be seen as the ratio of

how informative all POS n-grams ‘containing’ a term are,

PIS = (5.15)

how many POS n-grams occur in the collection

In this thesis, the numerator is derived from basic principles of linguistics
(presented in Sections 3.2 & 3.3), but alternatively it can also be derived from
POS statistics (discussed in Section 8.2.3). The denominator is a frequency count
of the total number of POS n-grams in the collection.

This section defined PIS; as the probability that a term is informative in
general using only POS n-grams. The next section discusses PIS;.

5.3.4.2 Discussion

The use of POS n-grams to compute a term information score, shown in Equa-
tion 5.14, begs the question: Why compute how informative POS n-grams are,
and not simply how informative individual parts of speech are? This would mean
using individual parts of speech only, and no POS n-grams at all. Equation 5.14
would then become:

P(inf|t;) |C|ZPznf|{pos]}) (5.16)
, Plinflpos;)

~ = (5.17)

(5.18)

where

e P(inf|pos;) is the probability that the part of speech corresponding to term
t; is informative (computed with Equations 5.2, 5.3, and 5.4), and

e |(| is the number of all terms in the collection.

Given that 0 < P(inf|pos;) < 1,

Plinf|t;) ~ %'T’OS") (5.19)
~ log |C| (5.20)

ITo be precise, POS n-grams ‘containing’ a term are POS n-grams that correspond to term
n-grams which contain a term.
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term f,, | PIS; | term | f. | PIS, |
recall 2 0.3343 lyric 22,001 | 0.3134
tours 2 0.4388 tube 31,383 | 0.3496
linkin 56 0.5882 jose 35,629 | 0.4163
facebook 97 0.4114 dental 36,821 | 0.2886
mary 143 | 0.5005 || symptom | 36,881 | 0.3453
lady 164 | 0.3937 || anderson | 38,907 | 0.3884
you 214 | 0.2848 van 84,607 | 0.3701
paris 276 | 0.4885 girl 104,386 | 0.3306
boy 364 | 0.5016 aol 129,000 | 0.3292
mattel 672 | 0.4582 yahoo 138,589 | 0.3645
walmart 684 | 0.4312 hot 138,796 | 0.2402
jenna 757 | 0.4952 || weather | 155,278 | 0.3032
halen 1,201 | 0.5173 radio 156,908 | 0.3315
jameson | 1,549 | 0.4261 || station 162,711 | 0.3217
hotmail | 1,684 | 0.4600 || english 177,158 | 0.2645
sonia 1,743 | 0.4936 west 219,494 | 0.2686
bikini 1,818 | 0.4153 white 234,691 | 0.2509
play 2,484 | 0.2829 video 251,345 | 0.2913
nile 5,175 | 0.4136 park 284,315 | 0.2828
umbrella | 5,450 | 0.3823 job 343,179 | 0.3138
nigeria | 5,475 | 0.3982 game 359,590 | 0.3109
porn 5,744 | 0.4013 care 383,359 | 0.2300
depot 7,115 | 0.4143 music 411,467 | 0.2710
hilton 7,563 | 0.4365 local 467,758 | 0.2136
cheat 8,414 | 0.2598 free 523,669 | 0.2050
pamela | 8,761 | 0.4470 find 524,453 | 0.1990
fever 11,894 | 0.3711 world 773,497 | 0.2891
gospel | 14,946 | 0.3720 mail 855,685 | 0.2423
cnn 15,971 | 0.3895 name 901,525 | 0.2275
msn 16,788 | 0.3678 home 1,365,190 | 0.2567

Table 5.2: Example: terms, their frequency in WT10G, and their part of speech
information score.

Hence, by using single parts of speech, instead of POS n-grams, the term
information score would not model the ‘part of speech context’ in which terms
occur, but it would only be a simple function of part of speech frequency in the
collection.

On the contrary, by using POS n-grams instead of individual parts of speech
to compute PIS;, all the POS n-grams ‘containing’ a term in a collection are
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5.3 Part of speech information score for terms

considered, and hence all the ‘part of speech contexts’ in which a term occurs are
modelled. These ‘part of speech contexts’ contribute to PIS; the following: how
informative the terms co-occurring with a given term are. The more informative
these co-occurring terms, the higher the value of PIS;. Also, the more often such
terms co-occur, the higher the value of PIS;. Hence, PIS; does not correspond
to a ‘flat’ score for all terms of the same part of speech. Table 5.2 illustrates
this point by showing the PIS; values of sample terms’. These term scores have
been computed using Equation 5.14, page 69, with POS n-grams extracted from
the WT10G TREC collection, which is presented later, in Table 6.3, page 0.
These weights take into account all the ‘part of speech contexts’ in which these
terms occur in WT10G. The term frequency in the collection is also presented
for comparison with PIS;.

Table 5.2 shows that overall, term frequency in the collection and PIS; tend
to agree, however, they are not identical. For instance, several terms of similar
frequency in the collection and/or of the same part of speech have different PIS;.
For example:

e recall - tours: same frequency (2), same part of speech (noun?), different
PIS; (0.3343 - 0.4388);

e mary - lady: similar frequency (143 - 164), same part of speech (noun?),
different PIS; (0.5005 - 0.3937);

e jose - dental - symptom: similar frequency (35,629 - 36,821 - 36,881),
different part of speech (noun - adjective - noun), different PIS; (0.4163 -
0.2886 - 0.3453).

Conversely, there exist terms of similar PIS;, but of different frequency and/or
part of speech. For instance:

e you - world: similar PIS; (0.2848 - 0.2891), different frequency (214 -
773,497), different part of speech (pronoun - noun).

These examples illustrate the point that PIS; is more than a simple a function
of the part of speech of a term and its term frequency in the collection. This does

IThese terms were taken from the top 500 search engine keywords of the wordtracker Web
site on 22/08/2007: http://www.searchengineguide.com/wt/2007/0822_wt1.html

2Either of these terms can also be a verb.

3To be precise, mary is a proper noun. This thesis does not distinguish between different
noun classes, as described in Section 3.2, page 38.
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not imply that the frequency of a term in the collection does not impact the
computation of PIS;, but rather that this impact is not a deciding factor. The
next section presents an alternative computation of PIS, called PIS,, for which
the term frequency in the collection impacts the overall computation more.

5.3.4.3 Part of speech information score - PIS,

Equation 5.14, page 69, computes the probability that a term is informative as
a function of how informative are the POS n-grams containing the term and the
total number of POS n-grams in the collection. Equation 5.14 can be simplified
to produce a different estimation of how informative a term is (P(inf|t;)') as
follows:

Plinflt) = i 07 Plinfl{pos;})
can become

Plinflty) =~ ke 0L Pling {pos;}) (5.21)
where

o P(inf|{pos;}i) is computed with Equation 5.13, page 68, by replacing pos;
with {pos;}:, (exactly as in PIS;), and

o | {pos}; | is the total number of {pos}; parts of speech' in the collection
(differently to PISy).

Equation 5.21 states that the probability that a term is informative corre-
sponds to how informative are the POS n-grams containing the term and how
many these POS n-grams are in the collection. This is called part of speech in-
formation score (PIS,). Hence, this is the average probability that a POS n-gram
containing the term is informative. More simply, PIS, is the ratio of

how informative all POS n-grams ‘containing’ a term are

how many POS n-grams ‘contain’ a term

1Given a term t;, {pos}; are its corresponding parts of speech, see Function 4.7, page 56.
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As mentioned in Section 5.3.4.2, the numerator is derived from Jespersen’s
Rank Theory (Jespersen, 1913, 1929). The denominator is a frequency count,
and specifically an ‘inflated’” estimation of the term frequency in the collection.
It is inflated because, if a term occurs once in a sentence, it will occur repeatedly
in n-grams extracted from that sentence’.

5.3.4.4 Discussion

The computation of PIS; is reminiscent of the computation of inverse document
frequency (IDF), presented in Section 2.3.2.2, Equation 2.1, page 16: On one
hand, the IDF computation of a word looks at how many documents, in a gen-
eral collection, contain the word. The intuition is that a word occurring in many
documents is not likely to be very informative. On the other hand, the compu-
tation of PISy looks at how many POS n-grams in a collection ‘contain’ a word.
The intuition is that a word occurring in many and informative POS n-grams
is likely to be informative. How informative POS n-grams are is computed by
looking at their components. Hence, PIS, is expected to be more correlated to
IDF than PIS;, because the frequency of a term in the collection, which is central
in IDF (namely in the denominator of Equation 2.1 as the number of documents
that contain a term), also impacts the computation of PIS, (namely in the de-
nominator of Equation 5.21).

Nevertheless, the differences between IDF and PIS; (and PIS; for that respect)
are clear:

e IDF approximates the power of a term in discriminating between docu-
ments, whereas PIS; & PIS, approximate the non-topical informative con-
tent in a term, regardless how many documents the term occurs in.

e IDF uses lexical statistics (word/document counts), whereas PIS; & PIS,
use shallow grammarical statistics.

e IDF is a bag-of-words measure (it does not consider term context), whereas
PIS; & PIS; consider the ‘part of speech context’ of a term.

IThis inflated estimation does not apply to terms at the start or end of a sentence, because
these terms occur in one n-gram, unless they are repeated in the sentence.
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5.4 Summary

This chapter presented the approximately proportional relationship between the
frequency and informative content of POS n-grams (Section 5.2), and introduced
a non-topical term score for approximating the probability that a term is infor-
mative using POS n-grams (Section 5.3). Two alternatives of this part of speech
term information score were presented (PIS; and PIS,), collectivelly referred to
as PIS. The reasoning behind the computation of PIS as well as how it differs
from an established term information score that uses lexical statistics (IDF) were
also presented.

Next, Chapter 6 studies the statistical properties of POS n-grams and PIS in
different collections, and with respect to IDF.
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Chapter 6

Distribution of part of speech
n-grams

6.1 Introduction

Chapter 5 discussed the relationship between POS n-gram frequency and informa-
tive content, and also proposed a term information score (PIS) that approximates
the probability that a term is informative from POS n-grams. This chapter looks
at the distribution of POS n-grams in different collections, and also compares
PIS to IDF, by looking at their correlations in different collections.

Thic chapter is organised as follows. Section 6.2 presents the aims of this
study. Section 6.3 presents the settings used, and shows that they are not biased.
Section 6.4 presents the methodology followed. Section 6.5 presents and discusses
the results of this study. Section 6.6 summarises and concludes this chapter.

6.2 Aims and anticipated outcomes

This study looks at POS n-gram distribution and compares the part of speech
information score proposed in this thesis (PIS) to an established term information
score (IDF). The aim is to see how POS n-grams are distributed in language, and
also if PIS is correlated to IDF. Looking at the distribution of POS n-grams is
motivated by the empirical finding that there seems to be a relationship between
POS n-gram frequency and informative content. Finding a consistent POS n-
gram distribution across collections would indicate that the relationship between
POS n-gram frequency and informative content is not collection-dependent. Also,
looking at a possible correlation between PIS and IDF can show the extent to
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6.3 Experimental settings

which these two term scores differ from each other in modelling how informative
a term is. Both PIS alternatives (PIS; and PIS;) are compared to IDF.

6.3 Experimental settings

The distribution of POS n-grams in a collection and the relation between PIS;
and PISs to IDF are studied in five standard TREC collections using non-biased
experimental settings. The experimental settings consist of:

e the POS tagger used to tag the collection, presented in Section 6.3.1;
e the collection characteristics (size, domain), presented in Section 6.3.2; and
e the order n of POS n-grams, presented in Section 6.3.3.

Each of these settings is presented separately in order to show that it does
not bias this study.

6.3.1 Part of speech tagger
Chapter 3 presented three standard POS taggers (Mihalcea, 2003):

e the Transformation Based (Brill) tagger (Brill, 1995), described in Sec-
tion 3.4.1;

e the Maximum Entropy (Mxpost) tagger (Ratnaparkhi, 1996), described in
Section 3.4.2; and

e the TreeTagger (Schmid, 1994), described in Section 3.4.3.

The aim of this section is to compare these three taggers, and select a POS tagger
that is most appropriate for these experiments. The selected POS tagger will be
used for the rest of the thesis.

Table 6.1 shows the functionalities of these three POS taggers, (tokenisation
and HTML-like processing), and their reported POS tagging accuracy.

Tokenisation refers to splitting text into individual tokens. The Brill tagger
and Mxpost require their input to be pre-tokenised because they do not include
a tokeniser. This means that an extra pre-processing step must be added before
using them for POS tagging. The TreeTagger also requires input to be tokenised,
but includes a tokeniser, so no extra pre-processing is needed. This is advanta-
geous.
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| Features ‘ Brill tagger | Mxpost tagger | TreeTagger ‘
tokenisation not included | not included included
HTML-like processing | not included | not included included
accuracy on WSJ 96.5% 96.6% 96.4%

Table 6.1: Functionalities of the Brill tagger, the Mxpost tagger, and the Tree-
Tagger.

HTML-like processing refers to the processing of specific annotation such as
HTML tags, i.e., not tagging this annotation as if it were text, but ignoring
it. The Brill tagger and Mxpost cannot ignore HTML-like annotation. This
means than an extra pre-procesing step is required to remove annotation, and
an extra post-processing step is required to re-apply the annotation. HTML-
like annotation needs to be re-applied when using standard TREC collections
for instance, because it marks document identification and structure, needed for
retrieval. Unlike the Brill tagger and Mxpost, the TreeTagger has an option to
ignore HTML-like annotation. This is advantageous.

The Brill tagger, Mxpost, and the TreeTagger are approximately equally ac-
curate (Mihalcea, 2003). For English, POS taggers are typically evaluated on the
Penn Treebank Wall Street Journal (WSJ) corpus, which is a human POS anno-
tated corpus, containing 4.5 million words of American English (Marcus et al.,
1993). All three POS taggers report very similar accuracy levels on WSJ, as
shown in Table 6.1. Hence, these POS taggers are approximately equally accu-
rate.

To verifiy further the accuracy of these POS taggers, a small experiment is
conducted: a collection is POS tagged with each of these three POS taggers
separately, and the relative frequency (RF) of individual parts of speech in each
of the three POS tagged versions of the collection is compared. (The relative
frequency was introduced in Section 4.2.1, Equation 4.1, page 51.) Ideally, all
POS tags should have the same RF, because they belong to the same text, but,
in practice, using different POS taggers can produce slightly different outputs.
The more similar the relative frequency of a part of speech is across the three
POS tagged versions of the collection, the more similar the performance of the
POS taggers is to each other.

The POS tagged collection is the Associated Press (AP) collection, which
contains newswire text. The AP is one of the five TREC collections used in this
thesis. All five collections are presented in the next section, in Table 6.3. As
stated in Section 3.2, page 38, the POS tags used are the ones corresponding to
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| POS tagging AP with 3 different taggers |

pos | Brill tagger | Mxpost tagger | TreeTagger | st. deviation
NN 0.35 0.34 0.34 0.005
VB 0.11 0.10 0.11 0.005
JJ 0.06 0.07 0.07 0.005
VR 0.03 0.03 0.04 0.005
RB 0.02 0.03 0.03 0.005
IN 0.14 0.14 0.14 none
DT 0.10 0.09 0.10 0.005
MD 0.05 0.05 0.05 none
PP 0.05 0.05 0.04 0.005
CD 0.05 0.04 0.04 0.005
cC 0.03 0.03 0.03 none
PO 0.03 0.02 0.01 0.008

Table 6.2: Relative frequency of parts of speech in AP.

the primary grammatical categories of the Penn TreeBank tagset (presented in
Table 3.1, page 40).

Table 6.2 presents the relative frequency of individual parts of speech in three
differently tagged versions of the AP collection. For each POS tag, its relative
frequency values in the different versions of the collection are very similar to each
other. Hence, the standard deviation values reported are very low (between 0 -
0.008, with an average of 0.003). POS tagging the AP with any of the three POS
taggers does not bias the relative frequency of any part of speech. This finding is
expected, because all three POS taggers are reported to be approximately equally
accurate.

The conclusion is that none of the three POS taggers introduces bias. The
TreeTagger is more appealing, because it has extra functionalities (a tokeniser
and HTML-like processing). For these reasons, the TreeTagger is used in the rest
of the thesis.

6.3.2 Collection characteristics

The second parameter in these experiments is the characteristics of the collections
used. Five different standard TREC test collections are used: AP, Disks 4&5,
WT2G, WT10G, and .GOV. Table 6.3 presents each collection. AP and Disks
4&5 contain news releases from printed media; these collections are mostly ho-
mogeneous (they contain documents from a single source). WT2G, WT10G, and
.GOV consist of crawled pages from the Web, which is itself a heterogeneous
source (albeit from a restricted .gov domain in the case of .GOV). These five
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| Collection | Size | Documents | Unique Terms | Domain |
AP 742 MB 242 918 315,539 | journalistics

Disks 4&5 1.9 GB 528,155 521,469 | journalistic

WT2G 2 GB 247 491 1,002,586 | Web

WT10G 0GB | 1,692,006 3,140,837 | Web

GOV 181GB | 1,247,753 2,788,457 | Web (.gov domain)

Table 6.3: Characteristics of the AP, Disks 4&5, WT2G, WT10G, and .GOV
collections.

collections also differ in their word statistics, since larger collections do not nec-
essarily contain more unique terms. For instance, even though .GOV is roughly
8 times larger than WT10G, WT10G contains many more unique terms that
.GOV. Overall, the collections vary in size (742MB - 18.1GB), word statistics,
and domain (newswire, Web).

To test the effect of collection characteristics on the distribution of POS n-
grams and the estimation of PIS, a small experiment is conducted: The collections
are POS tagged, and two things are observed:

1. Similarly to the experiment in Section 6.3.1, the relative frequency of indi-
vidual parts of speech is compared across collections (Section 6.3.2.1).

2. For each collection separately, POS n-grams are extracted and ranked by
their frequency in the collection. Then, the ranked lists are compared across
collections (Section 6.3.2.2).

The more similar (i) the relative frequencies of parts of speech, and (ii) the ranked
lists of POS n-grams, across collections, the smaller the effect of the collection
characteristics towards specific parts of speech or POS n-grams. Hence, the
smaller the effect of collection characteristics on the distribution of POS n-grams
and on the computation of PIS.

Next, these two observations are discussed separately.

6.3.2.1 Individual parts of speech

Five collections are POS tagged. Separately for each collection, the relative
frequency (RF) of individual parts of speech is computed, using Equation 4.1,
page 51. This is similar to the experiment in Section 6.3.1, with one difference:
in Section 6.3.1, the RF of individual parts of speech was compared in versions
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| Relative frequency of parts of speech in five TREC collections |

POS | AP | Disks 4&5 | WT2G | WT10G | .GOV | st. deviation | mean
NN | 0.34 0.34 0.40 0.39 0.43 0.035 0.38
VB | 0.11 0.11 0.10 0.10 0.07 0.015 0.10
JJ 10.07 0.07 0.08 0.07 0.08 0.005 0.07
VR | 0.04 0.04 0.03 0.03 0.03 0.005 0.03
RB | 0.03 0.04 0.03 0.03 0.02 0.006 0.03
IN |0.14 0.12 0.09 0.10 0.11 0.017 0.11
DT | 0.10 0.09 0.07 0.08 0.08 0.010 0.08
MD | 0.05 0.07 0.06 0.06 0.03 0.013 0.05
PP | 0.04 0.05 0.05 0.05 0.01 0.015 0.04
CD | 0.04 0.03 0.04 0.05 0.09 0.021 0.05
CC ]0.03 0.03 0.03 0.03 0.03 none 0.03
PO | 0.01 0.01 <0.01 <0.01 | <0.01 0.005 <0.01

Table 6.4:  Relative frequency of parts of speech (AP, Disks 4&5, WT2G,
WT10G, .GOV).

of the same collection that were tagged differently, whereas now the RF of indi-
vidual parts of speech is compared in different collections that have been tagged
identically. Hence, RF scores are expected to be less similar to each other here,
compared to the ones in Section 6.3.1.

Table 6.4 shows the RF values of individual parts of speech in each collection.
The standard deviation of RF of all parts of speech is very low (between 0 -
0.035, with an average of approximately 0.01). Hence, none of these collections
is particularly biased to a specific part of speech.

The conclusion is that the different collection characteristics (size, domain)
do not seem to affect the distribution of individual parts of speech per collection.

6.3.2.2 Part of speech n-grams

For each collection separately, POS n-grams are extracted and ranked by their
frequency in the whole collection. This gives five lists of POS n-grams, one for
each collection. The similarity between these pairs of lists is compared. The
more similar they are, the less biased either of the collections is for a POS n-
gram. This is repeated for all possible pairs of the five collections. The order n is
varied between 4-5. (Setting n is discussed in Section 6.3.3, where it is shown that
n = 4-5 is an unbiased setting.) Tables 6.5 - 6.6 show Spearman’s p correlation
values of POS n-grams for each collection pair. All collection pairs are very
strongly correlated for n=4,5. This means that different collections, of different
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| Spearman’s rank correlation (p) for ranks of POS 4-grams |

AP Disks 4&5 | WT2G | WT10G GOV

AP - p~10 |p=~10| p~1.0 p~1.0

Disks 4&5 | p~ 1.0 - p~10| p=1.0 p~1.0

WT2G | p=1.0| p=1.0 - p=~1.0 p~1.0

WTI10G | p=10| p=10 |p~1.0 - p=~1.0
.GOV p=10| p=10 |p~10| p~1.0 -

Table 6.5: Spearman’s rank correlation between ranks of POS 4-grams (AP, Disks
4&5, WT2G, WT10G, .GOV).

| Spearman’s rank correlation (p) for ranks of POS 5-grams |

AP Disks 4&5 | WT2G | WT10G .GOV

AP - p~10 |p=10| p=1.0 p=~1.0

Disks 4&5 | p~ 1.0 - p~10| p=1.0 p~1.0

WT2G | p=1.0| p=1.0 - p=~1.0 p~1.0

WTI10G | p~10| p~10 |p=1.0 - p~1.0
.GOV p=10| p=10 |p~10]| p~1.0 -

Table 6.6: Spearman’s rank correlation between ranks of POS 5-grams (AP, Disks
4&5, WT2G, WT10G, .GOV).

size and domain, produce very similar lists of POS n-grams. This is not entirely
surprising because, as Table 6.4 showed, the five collections contain very similar
proportions of individual parts of speech. Since the possible arrangements of
these parts of speech are bounded by the same grammatical rules, their resulting
POS n-grams are likely to be recurrent. However, a possible factor for the very
strong correlations reported in Tables 6.5 - 6.6 could also be due to an extent to
the POS tagging process, which tends to ‘favour’ popular POS tag arrangements'.
More simply, the more frequently a POS n-gram occurs, the more likely it is to
occur again, especially for collections of such large size (742MB - 18.1GB), and
for such a small number of POS tags (14 classes).

Figures 6.1 - 6.2 plot the distribution of POS 4-grams in each collection sepa-
rately. The x axis is the frequency of a POS n-gram in the collection. The y axis is
the rank of that frequency. The corresponding plots for POS 5-grams are included
in Appendix D, Figures B.1 - B.2, pages 156 - 157. These figures show that the
distribution of POS n-grams is similar, not only across collections, but also for
n=4-5. This point about POS n-gram order is discussed in Section 6.3.3. The dis-

IThis is common practice for most POS taggers that use statistics.
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tribution of POS 4-grams and 5-grams across collections resembles a large number
of rare events distribution, a type of which are power laws (Mitzenmacher, 2004;
Newman, 2005). As the name suggests, in these distributions there are many
very rare events, and few very common events. As stated in Section 2.3.2.2, Zipf
showed that in language, words are distributed in this way (Li, 1992; Sigurd et al.,
2004; Zipf, 1949). For the purposes of this experiment, the fact that POS 4-grams
and 5-grams are distributed similarly to power laws across the five collections in-
dicates that their distribution tends to be regular across collections, hence not
heavily dependent on collection characteristics (Naranan & Balasubrahmanyan,
1998).

The findings from Tables 6.5 - 6.6, Figures 6.1 - 6.2, and Figures B.1 - B.2
are also illustrated in Tables 6.7 and 6.8, which show the ten most frequent
POS 4-grams and POS 5-grams in each collection. POS n-grams common to all
collections, in the top ten, are in bold. Bold with asterisk * denotes POS n-grams
common to four out of five collections, in the top ten. Most POS n-grams among
the top ten are common across collections. An exception to this is the series of
cardinal numbers (CD) observed in .GOV, which indicates that .GOV contains a
considerably larger proportion of numbers, than any other collection. This is the
type of domain-specific characteristic that n-gram based language models use to
represent language regularities in applications like text classification (presented
in Section 4.2.2).
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Overall, Tables 6.7 and 6.8 confirm the conclusions of Tables 6.5 - 6.6, Fig-
ures 6.1 - 6.2 and Figures B.1 - B.2, that the distribution of POS n-grams across
collections does not alter much. It is concluded that collection characteristics do
not bias the extraction of POS n-grams.

6.3.3 Order n of part of speech n-grams

The order of the POS n-grams n is the last parameter in these experiments.
Generally in n-grams, n should be large enough to encode contextual information,
and small enough to allow for sensible estimations, as discussed in Section 4.2.1.

In this study, the most appropriate order of POS n-grams needs to be selected.
Appropriate here means that it should give enough POS n-grams to derive PIS
from, and also be able to capture linguistic structure to an extent. To make
this decision, a small experiment is conducted: POS n-grams are extracted from
a collection, varying n between 1-100. For each n, the total number of POS
n-grams extracted is counted. E.g., for n=1, there will be a total of 14 POS
1-grams, one for each part of speech. The n that gives more POS n-grams, and
also which captures linguistic structure to some extent is more appropriate here.
Generally in n-grams, as n increases, n-gram frequency tends to decrease, so the
selection of n is usually a compromise between the width of the context captured
(n) and n-gram frequency.

For this experiment, the AP collection is used. (Collection characteristics
are shown in Table 6.3, page 80.) The order n is ranged within [1,100] with an
increasing interval:

e from 1 to 15, with an interval of 1,
e from 20 to 100, with an interval of 5.

Figure 6.3 plots n (x axis) against the frequency of POS n-grams in the col-
lection (y axis) for n = 1-100, from the AP collection. n = 4-7 gives more POS
n-grams (>5000), with n=4 and n=7 giving roughly the same number of POS
n-grams (= 5000).

From Figure 6.3 it is concluded that n = 4-7 seems to be more appropriate for
this study, because it gives the most POS n-grams, which also capture linguistic
structure between 4 and 7 words.

A small additional experiment is conducted to look at how POS n-gram order
n affects the distribution of POS n-grams in the collection. The aim is to make
sure that the selected value for n, not only gives many POS n-grams, but also
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Figure 6.3: Order n value versus number of unique POS n-grams (AP).

corresponds to a POS n-gram distribution that is generally representative (i.e.,
one that does not give irregular distributions). Similarly to the experiments in
Section 6.3.2.2, where frequency - rank plots of POS n-grams were presented
across different collections, here the frequency - rank plot of POS n-grams from
the AP collection is presented, while varying n between 1 and 100. Figure 6.4
shows the resulting plots for n = 4-7. The corresponding plots for all other n
values used are included in Appendix B, Figures B.3 - B.10, page 155.

Figure 6.4 shows that the distribution of POS n-grams in a collection does
not alter much when varying n between 4-7. It also shows that the distribution
of POS n-grams resembles a power law distribution, characterised by many POS
n-grams of low frequency, and a few of very high frequency.

Figures B.3 - B.10 in Appendix B, page 155, show that the shape of the plot
for POS n-grams is preserved for n between 4-40 (Figures B.3 - B.7, pages 158 -
162). n=1,2 do not provide enough POS n-grams to make a distribution, since, if
all frequencies are unique, all frequency ranks are 1 (Figure B.3, page 158). For
n >15 POS n-grams are increasingly sparse (Figures B.6 - B.10, pages 161 - 165).

The conclusion is that setting n=4-7 gives POS n-grams that are represen-
tative of how POS n-grams are distributed generally in language, and also gives
the most number of POS n-grams. For these reasons, POS 4-grams will be used
in the rest of this thesis.

6.3.4 Summary of experimental settings

Three parameters are involved in extracting POS n-grams from collections: (i)
the POS tagger used to POS tag the collections, (ii) the collection characteristics
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from which POS n-grams are extracted, and (iii) the order n of the POS n-
grams. In Section 6.3, three standard POS taggers were compared and found to
have no considerable impact on POS n-gram distribution, because the taggers are
approximately equally accurate. Five collections of different characteristics were
compared and found to have no considerable impact on POS n-gram distribution,
because POS occurrence is generally robust across collections. The order n of POS
n-grams was ranged between 1-100 and 4-7 was found to be the value that gives
the most POS n-grams that also captures linguistic structure to an extent. It
was also found that varying n between 4-7 has no considerable impact on POS
n-gram distribution. The conclusion is that, when studying POS n-grams, using
the TreeTagger and setting n=4 are unbiased settings, and also that the overall
study is not expected to be considerably collection-dependent.

In addition, Section 6.3 showed that the distribution of POS n-grams in a
collection resembles a power law, similarly to the distribution of words, and also
that it tends to be similar across collections. The remainder of this chapter
looks at whether the term information score derived from POS n-grams (PIS) is
correlated to IDF.

6.4 Experimental methodology

In order to test if PIS; and PIS, are correlated to IDF, PIS; and PIS; are com-
pared to IDF as follows:

1. The IDF, PIS; and PIS, of all terms' in a collection is computed:;

2. The correlation between the IDF:PIS; and IDF:PIS, of all the terms in a

collection is measured.

The process is repeated separately for five standard TREC collections. Each col-
lection is processed twice separately, once to compute IDF, and once to compute
PIS; and PIS,.

Prior to computing IDF, standard IR pre-processing operations apply (pre-
sented in Section 2.3): terms are tokenised on whitespace and punctuation marks,
and lower-cased. Stopwords are removed, and words are stemmed with the Porter
stemming algorithm (Porter, 1980). The above process is done using the Terrier
IR platform (Ounis et al., 2007). IDF is computed with Equation 2.1, page 16.

IMore accurately, all indexed terms in a collection.
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Prior to computing PIS; and PISs, each collection is POS tagged with the
TreeTagger, which includes a tokeniser (presented in Section 3.4.3). POS 4-
grams are extracted (setting n=4 is discussed in Section 6.3.3). PIS; is computed
with Equation 5.14, page 69. PISy is computed with Equation 5.21, page 73.
Both Equations 5.14 and 5.21 include the variables A and p, which represent the
probability that a first and second degree part of speech is informative, respec-
tively (presented in Section 5.3.2). For these experiments, the values of A and o
are derived using Bayes Rule, as shown in Section 5.3.2.2, by setting A = 1 and
solving for o. In Chapter 7, it is shown that A\ = 1 is the optimal value for A,
when used as part of an IR system and tuned for retrieval perfrormance.

In order to test whether the computations of PIS; and PIS; are collection-
dependent, two rounds of experiments are defined:

e Round 1: Compare IDF:PIS; & IDF:PIS,, having computed PIS; and
PIS, from the same collection. This is referred to as per-collection com-
parison and is presented in Section 6.5.1.

e Round 2: Compare IDF:PIS; & IDF:PIS,, having computed PIS; and
PIS,; from a different collection. For example, given two collections, C'1
and C2, and a term ¢ occurring in C'1, the PIS; (resp. PIS;) of that term
is computed using POS n-grams from C2. This is referred to as cross-
collection comparison and is presented in Section 6.5.2.

Conducting the above experiments on all five collections would result in 2x5°
possible combinations. This large number of combinations is not necessary, be-
cause all collections used are standard TREC datasets, hence they are expected
to be large enough and representative enough of language use in the journalistic
and general Web domain. For this reason, the five collections are split evenly
into two sets, and round 1 is realised with one set, and round 2 with the other
set. Each set contains three collections; one collection is common to both sets.
The collections are split so that both sets contain a ‘balanced’ number of unique
terms: Set 1 includes Disks 4&5, WT2G, and WT10G, with a total of 4.7M unique
terms. Set 2 contains AP, WT2G, and .GOV, with a total of 4.1M unique terms.
Collection statistics are displayed in Table 6.3, page 80. Table 6.9 displays all the
collection combinations used for the per-collection and cross-collection compar-
isons presented next: IDF, PIS; & PIS, are computed for terms in the collections
in the first column; PIS; & PIS, are computed using POS n-grams extracted
from the collections in the second column.

90



6.4 Experimental methodology

"eSId pue 1SId ‘AdI JO Suoneuiquiod uonds[oy) :6'9 SRl

HOTLM wolj pendurod

NHZ LA woxy pejnduroo
G2¥ SYSI(] woj pendurod

¢SId % 'SId
¢SId ¥ 'SId
¢SId ¥ 'SId

AOD" Ul swey 10} Q1 d:AdI 'SId Al

OOTLM woiy pandurod
G29F SYSI(q woxy panduron

¢S1d 23 'SId
¢SId 23 'SId

DTLA Ul suey 103 &SI d:AdI 'SId Al

HOTLM wolj pendurod
NHZILM wory panduos
G2¥ SYsI(] woj pendurod

¢SId ¥ 'SId
¢SId %y 'SId
¢SId ¥ 'SId

dV ut swoy 10§ eI Adl FSId:Adl

QI AAI 73 'SId:AdI :SUOoIeuIlquIod UOI}II[[0I-SSOID) |

HOTILA wolj pandurod

¢SId ¥ 'SId

DOTLM Ul suiey 10§ eG1 441 “'SId:AdI

HZILM woly penduod

¢S1d 2 'SId

DA Ul suLe) 107 eS1q: A1 'S1d Al

GY sysig woy pendmiod 51 3 'SId

GRF SYSIA Ul swiey 103 EG1 g AdI TSI Adl

°SId:ddI 23 'SId:dI :SUOIJRUIGUIOD UOI3OR[[09-19]

91




6.5 Experimental results

| Spearman’s rank correlation p |

Collection | IDF versus PIS; | IDF versus PIS,

Disks 4&5 p=0.402 p=0.945
WT2G p=0.440 p=0.955
WT10G p=0.622 »=0.990

Table 6.10: Spearman’s rank correlation between IDF and PIS (Disks 4&5,
WT2G, WT10G).

Because PIS; and PIS; are derived from POS n-grams, and, Section 6.3.2
showed that collection statistics do not affect considerably the distribution of
POS n-grams, it is expected that IDF:PIS; and IDF:PIS, are correlated similarly
across collections in both rounds of experiments.

6.5 Experimental results

6.5.1 Per-collection comparison

The aim is to compare the IDF:PIS; and IDF:PIS, for each term in a collection,
having computed PIS; and PIS; from the same collection. To do so, the following
steps are taken:

e Step 1. Compute the IDF for each term in a collection, and sort the IDF
values of all the terms in the collection.

e Step 2. Compute the PIS; for each term in the same collection, and sort
the PIS values of all the terms in the collection. Do the same for PISs
separately.

e Step 3. Compute the correlation between the two sorted lists (IDF:PIS;,
IDF:PIS,), using Spearman’s rank coefficient.

This is repeated separately for Disks 4&5, WT2G, and WT10G. These collections
make the first set of collections, as discussed in Section 6.4.

The results are presented in Table 6.10. Table 6.10 displays Spearman’s p for
each IDF:PIS; and IDF:PIS, pair. Table 6.10 shows two things:

e for each collection, all IDF:PIS; and IDF:PIS; combinations are positively
correlated (between p= 0.402 - 0.990); and
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e for each collection, IDF:PIS; is less correlated than IDF:PIS, (between
p=0.402 - 0.622 for IDF:PIS;, and between p=0.945 - 0.990 for IDF:PIS,).

Finding a very high correlation between IDF:PIS, is expected, because the com-
putation of both PIS; and IDF consider term frequency in a collection (in the
case of PIS, as an ‘inflated term frequency’ as discussed in Section 5.3.4.4, and in
the case of IDF as the number of documents that contain the term). This point is
also illustrated in Figure 6.5.1 for the Disks 4&5 collection as follows: Figure 6.5.1
plots the IDF and PIS, of all terms in the collection, first separately, and then
against each other. Figure 6.5.1 shows that the plot of IDF has a very similar
shape to the PIS,; plot, for Disks 4&5, and also that the plot of IDF against
PIS, approximates a straight line. This is also the case for WT2G and WT10G,
the corresponding plots of which are included in Appendix D, Figures D.1 - D.6,
pages 169 - 170.

Overall, Table 6.10 shows that IDF:PIS; and IDF:PIS, are correlated, when
PIS; and PIS, are computed from the same collection. The next section shows
that PIS; and PIS, are correlated to IDF, even when PIS; and PIS, are computed
from a different collection.

6.5.2 Cross-collection comparison

The aim is to compare the IDF:PIS; and IDF:PIS, for each term in a collection,
having computed PIS; and PIS; from a different collection. This will confirm
that PIS; and PIS, are collection-independent. To do so, Steps 1 - 3 described in
Section 6.5.1, are repeated with one difference: when computing PIS; and PISs,
POS n-grams from another collection are used. The collections used to compute
IDF are referred to as idf collections. The collections used to compute PIS;
and PIS, are referred to as pis collections. The idf collections are AP, WT2G,
and .GOV. This is the second set of collections, presented in Section 6.4. The pis
collections are Disks 4&5, WT2G, and WT10G. This is the first set of collections,
presented in Section 6.4. The possible combinations are summarised in Table 6.9.
The combination WT2G - WT2G is omitted from this section, because it was
already presented in Section 6.5.1.

Similarly to Section 6.5.1, Spearman rank correlations between the IDF-PIS;
and PIS, combinations are shown in Table 6.11.

Table 6.11 displays Spearman’s p for each IDF:PIS; and IDF:PIS, combina-
tion. The collections in brackets are the collections from which POS n-grams were
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| Spearman’s rank correlation (p) |

collections IDF:PIS, | IDF:PIS,
AP (PIS; and PIS; computed from Disks 4&5) p=0.499 | p=0.968
AP (PIS; and PIS; computed from WT2G) p=0.402 | p=0.955

AP (PIS; and PIS; computed from WT10G) p=0.580 | p=0.990
WT2G (PIS; and PIS; computed from Disks 4&5) | p=0.623 | p=0.998
WT2G (PIS; and PIS; computed from WT10G) | p=0.616 | p=0.990
.GOV (PIS; and PIS; computed from Disks 4&5) | p=0.628 | p=1.000
.GOV (PIS; and PIS; computed from WT2G) p=0.400 | p=0.993
.GOV (PIS; and PIS; computed from WT10G) p=0.590 | p=0.998

Table 6.11: Spearman’s rank correlation between IDF and PIS (AP, WT2G,
.GOV).

extracted and used to compute the two versions of PIS. The conclusions drawn
from Table 6.11 are similar to the conclusions drawn from Table 6.10, namely:

e for each collection, all IDF:PIS; and IDF:PIS; combinations are positively
correlated (between p= 0.400 - 1.000); and

e for each collection, IDF:PIS; is less correlated than IDF:PIS, (between
p=0.400 - 0.628 for IDF - PIS;, and between p=0.955 - 1.000 for IDF:PIS,).

As expected, IDF:PIS, are strongly correlated (this point was discussed in Sec-
tion 6.5.1). This point is also illustrated in Figures 6.8 - 6.14 for the AP collection
as follows: Figure 6.8 plots the IDF of all terms in the collection; Figures 6.9 - 6.11
plot the PIS; of all terms in the collection, where PIS, has been computed using
POS n-grams from a different collection than AP, namely Disks 4&5, WT2G,
and WT10G. Figures 6.12 - 6.14 plot each of these plots of PIS, against the IDF
of all terms in AP, and show that the plot of IDF has a very similar shape to
the PIS; plot, for AP, and also that the plot of IDF against PIS; approximates a
straight line. This is also the case for WT2G and .GOV, the corresponding plots
of which are included in Appendix D, Figures D.7 - D.17, pages 171 - 174.

Overall, Section 6.5.2 shows that IDF:PIS; and IDF:PIS, are correlated, when
PIS; and PIS, are computed from any collection. This means that the computa-
tion of PIS; and PIS, is indeed collection-independent. It is concluded that PIS;
is correlated to IDF and that PIS, is strongly correlated to IDF. Also, the com-
putation of PIS; and PIS; is not collection-dependent. This is validated across
five standard TREC collections.
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6.6 Summary

This chapter showed that POS n-grams are distributed in language similarly to
words, i.e., in a Zipfian distribution. This chapter also showed that the term
information score computed from POS n-grams, proposed in Chapter 5, is cor-
related to IDF. These points were validated in five TREC collections of varying
size, word statistics, and domain, and under unbiased experimental settings. The
next chapter suggests how POS n-gram frequency and the two PIS alternatives
can be used for IR.
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Chapter 7

Applications to information
retrieval

7.1 Introduction

So far, this thesis has presented empirical evidence suggesting that there exists a
relationship between POS n-gram frequency and informative content. Based on
this relationship, a term information score called PIS has been proposed, which
is derived exclusively from POS n-grams. Specifically, two versions of PIS have
been presented, called PIS; and PIS;. This chapter suggests applications of POS
n-gram frequency and of PIS to IR. This chapter is split into two parts:

e Section 7.2 presents and evaluates two applications of POS n-gram fre-
quency to IR which remove content-poor text from queries and documents,
namely to reformulate queries (Section 7.2.2) and to prune noise from the
index of an IR system (Section 7.2.3).

e Section 7.3 presents and evaluates applications of PIS to IR, namely as an
alternative to IDF (Section 7.3.2), and also as additional evidence that can
enhance overall retrieval performance (Section 7.3.3).

7.2 Part of speech n-gram frequency

7.2.1 Introduction

This section presents two IR applications that use the frequency of POS n-grams
in a collection in order to detect content-poor text. The initial motivation for
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these applications was the observation that, when ranking all the POS n-grams in
a collection according to their frequency, the most frequent POS n-grams had a
tendency to contain mostly open class parts of speech, and the least frequent POS
n-grams had a tendency to contain mostly closed class parts of speech. This point
was presented in Section 5.2. Based on this observation, this section suggests two
applications which use POS n-gram frequency to detect and remove content-poor
text from either queries (query reformulation) or documents (index pruning).

7.2.2 Part of speech-based query reformulation

7.2.2.1 Experimental hypothesis

Experiments are conducted to test the hypothesis that the frequency of POS n-
grams in a collection can be used to detect content-poor text. Removing such
content-poor text from verbose queries can render them more informative, hence
they can fetch more informative documents. This can benefit retrieval effective-
ness.

7.2.2.2 Experimental methodology

The experiments are organised as follows. The setting is a retrieval system,
implementing an established retrieval model, and matching documents to queries
from standard TREC datasets. The baseline is matching documents to full TREC
queries, using two standard probabilistic models at default settings. To test
the hypothesis, documents are matched to queries that have been reformulated
according to POS n-gram frequency. Specifically, POS n-gram frequency is used
to remove content-poor text from queries as follows:

1. Given a POS tagged collection, all POS n-grams are extracted from it and
ranked by their frequency in the collection. A threshold 6 of POS n-gram
frequency is defined, so that POS n-grams below the threshold are assumed
to be too infrequent to be informative. These POS n-grams are considered
content-poor.

2. The queries of the experiments are POS tagged, and all POS n-grams are
extracted from them.

3. Each POS n-gram in the queries is compared to the list of POS n-grams
extracted from the collection. For each POS n-gram below the threshold
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0, its corresponding terms are removed from the query, on the assumption
that they are content-poor.

7.2.2.3 Experimental settings

As explained in Section 2.7, within TREC-style evaluation, each collection has
an associated set of queries and relevance assessments. Here, for retrieval, two
standard TREC collections are used: WT2G and WT10G, initially presented
in Section 6.3.2, Table 6.3, page 80, and their corresponding queries: queries
401-450 for WT2G, and queries 451-550 for WT10G. Even though any of the
five standard TREC datasets presented in Section 6.3.2 could be used, these
two datasets are selected because there exists previous literature describing very
similar applications, to which the results described here can be compared directly
(Section 7.2.2 compares performance to best TREC scores for these datasets). For
these experiments very long queries are used, which include all TREC topic fields
(title + description + narrative). The reason for using very long queries
is that, for this application, queries need to be POS tagged, and short queries
which contain few keywords cannot be POS tagged accurately.

The pre-processing involved in these retrieval experiments is exactly the same
as the pre-processing reported in Section 6.4: in brief, terms are tokenised on
whitespace and punctuation marks, and lower-cased; stopwords are removed and
terms are stemmed. Two different probabilistic models are used to match doc-
uments to queries: BM25 (Robertson & Walker, 1994) and PL2 (Amati, 2003).
These models were introduced in Section 2.4.2.3. BM25 and PL2 include pa-
rameters, which are set at default settings for these experiments: for BM25
b=0.75 (Robertson & Walker, 1994), and for PL2 ¢=7 (Amati, 2003, Chapter
7). Tuning these parameters to achieve more competitive retrieval performance
is discussed later in Section 7.3.3.4.4.

POS n-grams are extracted from the same collection used for retrieval. The
pre-processing involved in POS tagging a collection and extracting POS n-grams
from it are exactly as reported in Section 6.4: the collections are POS tagged with
the TreeTagger, and POS 4-grams are extracted. These choices of POS tagger
and POS n-gram order n were discussed in Section 6.3. Terms which correspond
to POS 4-grams of low frequency are removed, where this frequency is bounded
by a threshold 6. For these experiments, 6 = 20,000, a setting chosen empirically.
(The focus of these experiments is to illustrate the proposed use of POS n-grams
for IR. This is why parameters are at default or empirically set values, and not
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| Very long queries |

WT2G
settings | eval. | Full queries | POS reduced queries
BM25 MAP 0.280 0.298 (+6.4%)
P10 0.460 0.480 (+4.3%)
PL2 MAP 0.265 0.313 (+18.1%)*
P10 0.453 0.468 (4+3.3%)*
WT10G
settings | eval. | Full queries | POS reduced queries
BM25 MAP 0.234 0.248 (+6.0%)
P10 0.394 0.401 (4+1.8%)
PL MAP 0.235 0.260 (4+10.6%)*
P10 0.383 0.396 (+3.4%)*

Table 7.1: Retrieval performance for very long queries.

| MAP in WT2G |
Full queries POS reduced queries
settings | long | very long | very long

BM25 | 0.293 | 0.280 0.298

PL2 0.319 | 0.265 0.313

MAP in WT10G

Full queries POS reduced queries
settings | long | very long | very long

BM25 | 0.233 | 0.234 0.248

PL2 0.257 | 0.235 0.260

Table 7.2: Retrieval performance for long and very long queries.

optimised for retrieval performance.)

7.2.2.4 Experimental results

This section presents the evaluation results of the retrieval experiments which
test whether removing content-poor text from verbose queries, using POS n-gram
information only, can improve retrieval precision (both MAP and P10).

The experimental results are presented in Table 7.1. Best MAP and P10
scores for each collection are printed in bold. The asterisk * shows statistical
significance at p <0.05, according to the Wilcoxon matched-pairs signed-ranks
test.

Table 7.1 shows that removing content-poor text from very long queries using

102



7.2 Part of speech n-gram frequency

POS n-grams produces a higher measure of retrieval performance at all times
in all cases, which is statistically significant in some cases. This improvement is
consistent for both collections and evaluation measures, and generally consider-
able: between +3.3% and +18.1%, both with a statistical significance, for WT2G;
between +3.4% - +10.6% with a statistical significance, for WT10G. Also, this
improvement in retrieval performance over the baseline is always more for MAP
than for P10. This indicates that the documents retrieved are overall more rele-
vant, less at the top ranks (precision) and more at the lower ranks (recall).

In order to place the retrieval performance reported in Table 7.1 into context,
Table 7.2 compares them to the retrieval performance of shorter queries, under the
exact same settings. Table 7.2 shows that removing content-poor text from very
long queries using POS n-grams improves retrieval performance with respect to
different query lengths. This improvement is generally consistent, the only excep-
tion being the WT2G collection, for which retrieval with PL2 from long queries
slightly outperforms retrieval with POS-based reduced queries (MAP is 0.319 ver-
sus 0.313). Note that the MAP scores displayed in Tables 7.1 & 7.2 also compare
favourably to the high-scoring equivalent TREC runs, namely, MAP=0.324 (and
MAP=0.383 when using Web evidence) Robertson & Walker (1994) for TREC-8,
and MAP=0.269 Fujita (2001) for TREC-9.

Overall, the experimental evidence in Tables 7.1 & 7.2 validates the hypothesis
presented in Section 7.2.3.1 that the frequency of POS n-grams in a collection
can be used to detect content-poor text, because it shows that removing such
content-poor text from long queries can benefit retrieval performance.

A limitation of the POS-based query reformulation technique presented in this
section is that it can be applied to verbose queries only, because it requires that
queries are previously POS tagged. A natural extension of this technique is it to
apply it to whole documents, not only queries. Such an application is presented
next.

7.2.3 Part of speech-based index pruning
7.2.3.1 Experimental hypothesis

Experiments are conducted to test the hypothesis that the frequency of POS n-
grams in a collection can be used to detect content-poor text. Removing such
content-poor text from documents means that less resources are needed to index
and store these documents in the system. This can benefit retrieval efficiency.
This application is called index pruning, because by removing text from doc-
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uments, the overall size of the document index is reduced. (The index of IR
systems was presented in Section 2.3.2.)

7.2.3.2 Experimental methodology

The baseline of these experiments is the same two probabilistic models for match-
ing documents to queries (BM25 and PL2) used in Section 7.2.2, at default set-
tings. To test the hypothesis, POS n-gram frequency is used to remove content-
poor text from documents. The general methodology is the same as the one used
for query reformulation in Section 7.2.2:

1. Given a POS tagged collection, all POS n-grams are extracted from it and
ranked by their frequency in the collection. A threshold 8 of POS n-gram
frequency is defined, so that POS n-grams below the threshold are assumed
to be too infrequent to be informative. These POS n-grams are considered
content-poor.

2. The documents of the experiments are POS tagged, and all POS n-grams
are extracted from them.

3. Each POS n-gram in the documents is compared to the list of POS n-grams
extracted from the collection. For each POS n-gram below the threshold 6,
its corresponding terms are removed from the document, on the assumption
that they are content-poor.

7.2.3.3 Experimental settings

The TREC datasets used in these experiments are the same as the ones used
in Section 7.2.2: WT2G and WT10G, initially presented in Section 6.3.2, Ta-
ble 6.3, page 80, and their corresponding queries: queries 401-450 for WT2G,
and queries 451-550 for WT10G. Even though any of the five standard TREC
datasets presented in Section 6.3.2 could be used, these two datasets are selected
because there exists previous literature describing very similar applications, to
which the results described here can be compared directly (Section 7.2.3 com-
pares performance to past state of the art applications for these datasets). For
these experiments, very short queries are used (title only), because they are
more realistic of real queries used on the Web (Ozmutlu et al., 2004).

The pre-processing involved in retrieval is exactly as reported in Section 6.4:
in brief, terms are tokenised on whitespace and punctuation marks, and lower-
cased; stopwords are removed and terms are stemmed. Two different probabilistic
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% pruned from full index
WT2G WT10G
POS 4-grams tokens | terms | postings | tokens | terms | postings
23,000 18.39 5.07 14.56 16.57 4.68 14.30
22,000 12.13 3.55 9.46 11.16 3.23 9.38
21,000 8.47 2.16 6.53 7.90 1.96 6.56
20,000 6.00 1.46 4.57 5.70 1.39 4.65
19,000 4.38 1.10 3.31 4.24 1.08 3.41
18,000 3.24 0.82 2.44 3.33 0.84 2.55
17,000 2.44 0.65 1.83 2.43 0.66 1.93
16,000 1.84 0.50 1.37 1.86 0.53 1.46
15,000 1.41 0.39 1.04 1.44 0.40 1.11
14,000 1.10 0.31 0.80 1.13 0.31 0.86
13,000 0.82 0.24 0.61 0.86 0.25 0.66

Table 7.3: Collection statistics after pruning.

models are used to match documents to queries: BM25 (Robertson & Walker,
1994) and PL2 (Amati, 2003). These models were introduced in Section 2.4.2.3.
BM25 and PL2 include parameters, as discussed in Section 7.3.3.4.4, page 122.
The default values of these parameters are used, namely b=0.75 (Robertson &
Walker, 1994), and ¢=7 (Amati, 2003, Chapter 7), respectively.

POS n-grams are extracted from the same collection used for retrieval. The
pre-processing involved in POS tagging a collection and extracting POS n-grams
from it are exactly as reported in Section 6.4: collections are POS tagged with
the TreeTagger, and POS 4-grams are extracted. Terms which correspond to
POS 4-grams of low frequency are removed, where this frequency is bounded by
a threshold 6. For these experiments, 6 = 20,000, a setting chosen empirically.
(The focus of these experiments is to illustrate the proposed use of POS n-grams
for IR. This is why parameters are at default or empirically set values, and not
optimised for retrieval performance.)

7.2.3.4 Experimental results

This section presents the evaluation results of the retrieval experiments which
test whether removing content-poor text from documents, using POS n-gram
information only, can improve retrieval efficiency. The general idea of these ex-
periments is to remove content-poor text from documents, so that the overall size
of the index is reduced, without significant effects on retrieval effectiveness, since
content-poor text is of little use to retrieval.
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Table 7.3 presents how much the overall size of the index is reduced, when
terms corresponding to low-frequency This is shown for two different collections,
and with respect to a reduction measured in (i) tokens, (ii) individual terms, and
(iii) postings. (Postings are the document pointers for a term that are contained
in the inverted list, as presented in Section 2.3.2.1.) The first column of Table 7.3
corresponds to the value of the threshold 6, i.e. how many low-frequency POS
n-grams are used. For example, § = 13,000 means that the terms removed cor-
respond to the 13,000 least frequent POS 4-grams in the collection. Hence, the
more 6 increases, the more the resulting index pruning.

Table 7.4 presents the retrieval performance corresponding to each level of
index pruning shown in Table 7.3, separately for each collection. Pruning lev-
els are reported in % reduction of postings. Best MAP and P10 scores for each
collection are printed in bold. Italics denote scores equal to or better than the
baseline. The asterisk * (**) shows statistical significance at p <0.05 (p <0.01),
according to the Wilcoxon matched-pairs signed-ranks test. Table 7.4 shows that
light pruning leads to an overall improvement in MAP and P10 over the full
index, which is sometimes statistically significant. Two important observations
are drawn from this table. Firstly, at no point does pruning hurt significantly re-
trieval. This point is very encouraging, considering that the POS n-gram pruning
technique uses no document-specific criteria. Secondly, light pruning can improve
both MAP and P10. In fact, the best obtained MAP and P10 scores for WT2G,
namely MAP = 0.317 and P10 = 0.467, are not given by the full index, but by
slightly pruning the index. Both of these scores are statistically very significant
(p << 0.01). For WT10G, the best overall MAP score, namely MAP = 0.209, is
given by slightly pruning the index, but the best P10 (P10 = 0.324) is given by
the full index.
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Overall, Table 7.4 shows that removing content-poor text from documents
using POS n-grams improves retrieval efficiency without significantly harming
retrieval effectiveness, at all times. This observation is consistent for both collec-
tions and evaluation measures:

e for WT2G, index pruning ranges between -0.61% and -14.56% of the original
index size, which is a small gain in retrieval efficiency, with no considerable
alternation to retrieval effectiveness (between +1.6% and -6.2% for MAP;
between +3.8% and -0.4% for P10);

e for WT10G, index pruning ranges between -0.66% and -14.30% of the orig-
inal index size, which is a small gain in retrieval efficiency, with no consid-

erable alternation to retrieval effectiveness (between +0.5% and -6.9% for
MAP; between +1.3% and -9.1% for P10);

This indicates that the documents retrieved are overall smaller and roughly as
relevant as their corresponding full documents. The highest rates of index pruning
generally correspond to the highest gain in retrieval efficiency, but also to the
highest deterioration in retrieval effectiveness. Balancing these two is central in
IR research.

In order to place the figures presented in Table 7.4 into context, they are com-
pared to corresponding figures reported for the same datasets in literature: Ta-
ble 7.5 compares the POS-based index pruning technique reported in Table 7.4 to
other related work of similar index pruning levels. Table 7.5 shows that the POS-
based technique is at least comparable to the technique of Carmel et al. (2001a,b),
which is among the best performing index pruning techniques reported for these
datasets. In Table 7.5, T refers to Carmel et al. (2001a), and § refers to Carmel
et al. (2001b). The technique of Carmel et al. (2001a,b) removes individual terms
from the index, according to their lexical statistics (term frequency, and resulting
term weights). This type of evidence is document-based, i.e., a term occurring in
document A and document B can be removed from document A, but not from
document B, if it is found to contribute to the content of document B but not
to the content of document A. On the contrary, the POS-based pruning tech-
nique removes term n-grams (not individual terms), according to POS evidence
only, which is derived from the whole collection. This type of evidence is not
document-specific, i.e., a term n-gram estimated to be content-poor is removed
from all documents in the collection.
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pruning index diff. from full index collection
strategy compression | MAP | P10
POS n-grams 14.5% -6.2% +1.4%
termsf 13.2% -4.0% +2.5% WT2G
POS n-grams 9.46% -2.4% +0.9%
POS n-grams 14.3% -6.9% -2.4%
termsi 10.7% -1.9% none WT10G
POS n-grams 9.38% -2.7% +1.3%

Table 7.5: Comparison of POS n-gram based versus term based pruning.

7.2.4 Conclusion

Section 7.2 tested the hypothesis that POS n-gram frequency in the collection can
be used to detect content-poor text from verbose queries and documents, which,
if removed, can improve retrieval performance. A series of experiments were con-
ducted, testing this hypothesis first with very long queries (query reformulation
application), and then with documents (index pruning application). Experimen-
tal evidence using standard models and datasets validated the hypothesis.

7.3 Part of speech n-gram information score

7.3.1 Introduction

Section 5.3 presented a term information score called PIS, which is derived ex-
clusively from POS n-grams. Specifically, two versions of PIS were presented,
called PIS; and PIS,. This section suggests applications of PIS; and PIS, to IR.
Firstly, PIS; is presented as an alternative to IDF (Section 7.3.2), and secondly
PIS; is presented as an additional type of evidence that can be used to improve
overall retrieval performance (Section 7.3.3).

7.3.2 Alternative to inverse document frequency

Section 6.5 showed that PIS, has a strong positive correlation to IDF. The aim of
this section is to test whether PIS; and IDF are equivalent when used to match
documents to queries in an IR system.

The remainder of this section is organised as follows. Section 7.3.2.1 states the
experimental hypothesis. Section 7.3.2.2 presents the experimental methodology.
Section 7.3.2.3 presents the experimental settings. Section 7.3.2.4 reports and
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discusses the experimental results, and Section 7.3.2.5 summarises and concludes
this section.

7.3.2.1 Experimental hypothesis

The experimental hypothesis is that PIS; can replace conventional IDF, when
matching documents to queries, without causing any significant change in the
retrieval performance. The reasoning behind this is that IDF - PIS, are very
strongly correlated, because they both include a term frequency component im-
plicitly in their respective computations. This point was discussed in Section 5.3.4.4.

7.3.2.2 Experimental methodology

The experiments are organised as follows. The setting is a retrieval system, imple-
menting an established model for matching documents to queries from standard
TREC datasets. The baseline is a basic TF:IDF vector space model. Two rounds
of experiments are conducted:

e First experiment: Replace the IDF component of the baseline with PISs,
and compare retrieval performance to that of the baseline:

TF:IDF = TF : PIS, (7.1)

TF:PIS2 differs from TF:IDF in only one respect: it replaces IDF, which is
computed from term frequencies, with an approximation of IDF, which is
computed from POS n-grams.

e Second experiment: Combine the IDF of the baseline model with PISs,
and compare retrieval performance to that of the baseline:

TF:IDF =TF:IDF: PIS, (7.2)

TF:IDF:PIS2 differs from TF:IDF in only one respect: in addition to the
baseline components, which are computed from term frequencies, it contains
an approximation of IDF, which is computed from POS n-grams.

It is expected that TF:PIS2 and TF:IDF:PIS; will give similar retrieval
perfomance to TF:IDF.
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| Query | WT10G | Disks 4&5 |
Title 2.42 2.62
Description 5.28 6.99

Table 7.6: Average query length (in words).

7.3.2.3 Experimental settings

This section presents the experimental settings used in these experiments, sepa-
rately for retrieval and to compute PIS,. Section 7.3.2.3.1 presents the datasets.
Section 7.3.2.3.2 presents the pre-processing involved in the retrieval process and
also in computing PIS;. Section 7.3.2.3.3 presents the processing involved in
matching documents to queries. Section 7.3.2.3.4 presents the measures used to
evaluate retrieval performance.

7.3.2.3.1 Datasets For retrieval, two standard TREC collections are used:
WT10G and Disks 4&5. These collections are used because there are more ad-hoc
queries available for them, than for the other TREC collections presented in Sec-
tion 6.3.2. The collection characteristics are displayed in Table 6.3, page 80.
Queries 451-550 are used for WT10G, and queries 301-450 and 601-700 are
used for Disks 4&5. Two types of queries are used: short (title) and long
(description). These two query types are standard in TREC (Voorhees & Har-
man, 2001). The average length of these queries is presented in Table 7.6.

PIS; is computed from the same collection used for retrieval. (Section 6.5
showed that the computation of PIS, is not collection-dependent.)

7.3.2.3.2 Pre-processing The pre-processing involved in retrieval is exactly
as reported in Section 6.4: terms are tokenised on whitespace and punctuation
marks, and lower-cased. Stopwords are removed, and words are stemmed with
the Porter stemming algorithm (Porter, 1980). The process described above is
done using the Terrier IR platform (Ounis et al., 2007).

The pre-processing involved in computing PIS, is exactly as reported in Sec-
tion 6.4, page 89: the collections are POS tagged with the TreeTagger, and POS
4-grams are extracted. These choices of POS tagger and POS n-gram order n
were discussed in Section 6.3.
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| Experimental settings overview

) ] -Disks 4&5
Retrieval collection “WT10G

] -Disks 4&5
POS n-gram collection “WT10G

-short (Title)

Query length -long (Description)

Retrieval model TF:IDF (Eq. 2.5, 2.6, 2.9, pages 22 - 23)
-TF:IDF, no PIS, (baseline)
Use of PIS, -TF:PIS,, no IDF (PIS, replaces IDF) (Eq. 7.1, page 110)

-TF:IDF:PIS, (PIS; and IDF combined) (Eq. 7.2, page 110)

Table 7.7: Settings of the experiments reported in Section 7.3.2.4.

7.3.2.3.3 Processing The processing involved in retrieval is the following: a
basic TF:IDF vector space formulation is used to match documents to queries.
(Matching models were introduced in Section 2.4.2, and vector space models in
particular were presented in Section 2.4.2.2). Specifically, Equation 2.9 is used,
which computes the score of a document for a query as the Euclidean distance
between a TF and IDF component, for each term ¢ in query ¢:

Spa=> TF-IDF =~ wq-wyg

teq teq

where

® w4 is the weight of a term in the document, given by Equation 2.6, page 22;
and

® w;, is the weight of a term in the query, given by Equation 2.5, page 22.

The processing involved in computing PIS; is as follows: PIS, is computed
with Equation 5.21, page 73. Equation 5.21 includes the two variables A and p,
which represent the probability that a first and second degree part of speech is
informative, respectively (presented in Section 5.3.2). For these experiments, the
values of A and o are derived using Bayes Rule, as shown in Section 5.3.2.2, by
setting A = 1 and solving for o. The values of A\ and p used here are derived from
Bayes Rule instead of being tuned to optimise retrieval performance, because the
aim of these experiments is to compare PIS; to IDF on a basic setting, and not to
achieve competitive retrieval performance. In Section 7.3.3, where experiments
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| Short queries |

Disks 4&5

row | eval. | TF:IDF TF:PIS, TF:IDF:PIS,

1 | MAP | 0.203 | 0.204 (4+0.5%)* | 0.204 (+0.5%)**

2 P10 0.391 | 0.397 (+1.5%)* | 0.397 (4+1.5%)**
WT10G
row | eval. | TF:IDF TF:PIS, TF:IDF:PIS,

3 | MAP | 0.187 | 0.187 (none)* 0.187 (none)**

4 | P10 | 0.297 | 0.297 (none)* 0.297 (none)**

Table 7.8: Retrieval performance with TF:IDF for short queries (Disks 4&5 and
WT10G)

with PIS aim to enhance retrieval performance, A and p is tuned to optimise
retrieval performance.

7.3.2.3.4 Evaluation PIS, is compared to IDF with respect to retrieval per-
formance. Retrieval performance is evaluated in terms of MAP and P10 (pre-
sented in Section 2.7), which are standard measures are standard in the TREC
paradigm (Voorhees & Harman, 2001). In order to establish whether the experi-
mental results occurred by chance or not, results of statistical significance tests,
using the Wilcoxon matched-pairs signed-ranks test, are reported (p < 0.05 is
statistically significant, and p < 0.01 is statistically very significant).
Table 7.7 summarises the experimental settings.

7.3.2.4 Experimental results

This section presents the experimental results, in Tables 7.8 and 7.9, for short
and long queries, respectively. Best score(s) are printed in bold. The asterisk *
(**) shows statistical significance at p <0.05 (p <0.01).

Tables 7.8 and 7.9 show that:

1. There is no consistently significant difference in retrieval performance be-
tween TF:PIS; and TF:IDF:PIS,, nor with respect to different query lengths,
collections, or evaluation measures.

2. The best overall performance is always associated with PISs.

The first observation from Tables 7.8 and 7.9 is that there is no consistently
significant difference in retrieval performance between either combination of PIS,
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| Long queries |
Disks 4&5
row | eval. | TF:IDF TF:PIS, TF:IDF:PIS,
1 |MAP | 0216 | 0.217 (+05%) |0.220 (+1.9%)**
2 | P10 | 0409 | 0.410 (+0.2%)* | 0.410 (+0.2%)**
WT10G
row | eval. | TF:IDF TF:PIS, TF:IDF:PIS,
3 | MAP | 0.200 0.200 (none)** | 0.203 (+1.5%)**
4 P10 0.324 0.324 (none)** | 0.325 (40.3%)**

Table 7.9: Retrieval performance with TF:IDF for long queries (Disks 4&5 and
WT10G).

into the baseline, nor with regard to query length, collection, or evaluation mea-
sure. Specifically, the % difference from the baseline tends to be overall similar,

e for different PIS, combinations:

— TF:PIS,: between none (Table 7.8, rows 3&4, column 4, and Ta-
ble 7.9, rows 3&4, column 4) - +1.5% (Table 7.8, row 2, column 4);

— TF:IDF:PIS,: between none (Table 7.8, rows 3&4, last column) -
+1.9% (Table 7.9, row 1, last column);

for different query lengths:

— short queries: between none (Table 7.8, all WT10G) - +1.5% (Ta-
ble 7.8, row 2, columns 3&4);

— long queries: between none (Table 7.9, rows 3&4, column 4) - +1.9%
(Table 7.9, row 3, last column);

for different collections:

— Disks 4&5: between +0.2% (Table 7.9, rows 1&2, columns 4 & 5) -
+1.9% (Table 7.9, row 1, last column);

— WT10G: between none (Table 7.8, all WT10G, and Table 7.9, rows
3&4, column 4) - +1.5% (Table 7.9, row 3, last column);

for different evaluation measures:

— MAP: between none (Table 7.8, row 3, columns 4&5, and Table 7.9,
row 3, column 4) - +1.9% (Table 7.9, row 1, last column);
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— P10: between none (Table 7.8, row 4, columns 4&5, and Table 7.9,
row 4, column 4) - +1.5% (Table 7.8, row 2, columns 4&5).

This lack of consistently significant difference in retrieval performance val-
idates the hypothesis that PIS; can replace IDF without significantly altering
retrieval performance.

The second observation from Tables 7.8 & 7.9 is that the best overall per-
formance (printed in bold in the tables) is always associated with PIS,;. The
improvement marked when using PIS; tends to be overall small, as discussed
above, however it is statistically significant at all times. Using PIS, in the place
of IDF, compared to using both PIS, and IDF together, does not alter retrieval
performance significantly. This indicates the validity of the hypothesis that PIS,,
computed from POS n-grams, can replace IDF, computed from frequency statis-
tics, without significanlty altering retrieval performance.

7.3.2.5 Conclusion

Section 7.3.2 compared a term information score computed from POS n-grams
(PIS) with an established term information score computed from lexical statistics
(IDF). Specifically, it tested whether PIS; and IDF are equivalent, when used to
match documents to queries in an IR system. FExperiments with a standard
baseline system on two TREC collections showed that PIS; can replace IDF
without altering significantly retrieval performance, and even improving retrieval
performance (not considerably). This conclusion agrees with the observations
drawn from Section 6.5, namely that PIS; and IDF are very strongly correlated,
a fact due to an extent to their common use of term frequency implicitly in their
respective computations.

7.3.3 Enhancement to retrieval performance

7.3.3.1 Introduction

The previous section tested whether PISy can replace IDF in an IR system. This
section aims to test whether PIS; can enhance the retrieval performance of an IR
system.

The remainder of this section is organised as follows. Section 7.3.3.2 states the
experimental hypothesis. Section 7.3.3.3 presents the experimental methodology.
Section 7.3.3.4 presents the experimental settings. Section 7.3.3.5 reports and
discusses the experimental results, and Section 7.3.3.6 concludes Section 7.3.
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7.3.3.2 Experimental hypothesis

The hypothesis is that using PIS; when retrieving documents with respect to
queries can improve retrieval performance. The reasoning behind this is that,
when computing how informative document terms are with respect to query
terms, non-topical information (given by PIS;) can be used to ‘boost’ the score
of generally informative terms, and similarly decrease the score of generally non-
informative terms.

7.3.3.3 Experimental methodology

The experiments are organised as follows. Similarly to Section 7.3.2.2, the setting
is a retrieval system, implementing an established retrieval model, and matching
documents to queries from standard TREC datasets. The baseline is a standard
competitive probabilistic model for matching documents to queries. The hypoth-
esis is tested by integrating PIS; into the matching model, and comparing its
retrieval performance to that of the baseline. Two rounds of experiments are
conducted to test the hypothesis, i.e., PIS; is integrated into the matching model
in two different ways:

e First experiment: PIS; is combined with the term frequency component
of the retrieval model (f;4). Specificaly, f; 4 is the frequency of a term in a
document. With this integration, the input of the matching process is
altered, which computes how important a term is to a document.

e Second experiment: PIS; is combined with the final weight of a term
in a document with respect to a query (w:q). Hence, the output of the
matching process is altered.

These integrations are discussed separately in Sections 7.3.3.3.1 and 7.3.3.3.2.
Separately for each integration, two further rounds of experiments are realised:

e with default retrieval settings; and
e with retrieval settings optimised for retrieval performance.

The aim is to show that PIS; can improve retrieval performance on any set-
ting, i.e., in a robust way. The default and optimal settings are presented in
Section 7.3.3.4.4.

The next section discusses the integration of PIS; into the retrieval model.
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7.3.3.3.1 First integration The previous section suggested two ways of in-
tegrating PIS; into the retrieval model: one that alters the input of the matching
process, and one that alters the output of the matching process. For the first
integration, PIS; is multiplied to the frequency of a term in a document, f; 4:

ft,d = ft,d . P[Sl (73)

Equation 7.3 states that f; 4 is replaced by fi 4 PIS; in the retrieval model. This
takes place at the beginning, before the model processes f; 4. Hence, PIS; is part
of the input of the matching process.

PIS; is combined to f;4 for the following reason: PIS; is the probability
of a term being informative in a non-topical way (Section 5.3.4). As such, it
characterises terms. f;4 also characterises terms, but in a topical way (with
respect to the topic of a document). It seems appropriate to combine PIS; to
fr.d, in the sense that they should complement each other. Specifically, their
combination should be an estimation of how informative a term is in general and
also in a document.

Different matching models process f; 4 differently. For example, often f; 4 is
normalised according to document length, as presented in Section 2.3.2.2. This
means that, when PIS; is integrated into the matching process as shown in Equa-
tion 7.3, PIS; will also be normalised according to document length. For f; 4,
normalisation according to document length makes sense, as discussed in Sec-
tion 2.3.2.2. However, for PIS;, document length normalisation is not intuitive,
because of two reasons:

e PIS; is an approximation of a probability, derived from a computation that
already includes a form of normalisation: in Equation 5.14, page 69, the
probability that a term is informative, computed from POS n-grams, is
‘normalised” by the number of all POS n-grams in the collection. On the
contrary, f;q is a ‘raw’ frequency count, which has not been normalised.
In this respect, PIS; and f; 4 differ, not only in what they represent (non-
topical term content - topical term content), but also in their ‘statistical
properties’ (approximated probability - frequency count).

e PIS; represents the non-topical informative content of a term, whereas f; 4
represents the topical informative content of a term. Topical information is
by definition related to the topic of the document in which a term occurs.
Hence, topical information can be affected by document length. On the
contrary, non-topical term content is not related to the document in which
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a term occurs. (PIS; is computed from statistics derived from a whole
collection, and uses no document-specific information.) Hence, PIS; should
not be affected by document length.

The next section presents the second integration of PIS; into the retrieval
process.

7.3.3.3.2 Second integration The second integration combines PIS; with
the weight of a term in a document w4, i.e., to the output of the matching
process. Contrary to the first integration, PIS; undergoes no processes, such as
document length normalisation; it is simply multiplied to w; 4:

We.a = W q * P]Sl (74)

Equation 7.4 states that w; 4 is replaced by w; q- P15, in the model that matches
documents to queries. This type of integration resembles the way prior proba-
bilities, or priors are sometimes integrated into the retrieval process (Craswell
et al., 2005; Kraaij et al., 2002). Even though their integration can be similar,
there is a fundamental difference between PIS; and such priors: Typically, these
priors represent the likelihood of a document being relevant, i.e., they apply to
documents, not individual terms. On the contrary, PIS; represents the likelihood
of a term being informative, i.e., it applies to individual terms.

In both integrations presented in Sections 7.3.3.3.1 and 7.3.3.3.2, the combina-
tion of PIS; is realised by multiplication. These integrations are neither exclusive,
nor necessarily optimal. They are suggested to illustrate the usability of PIS; to
IR. Multiplication is chosen because PIS; is an approximated probability, as pre-
sented in Chapter 5. As such, its range is 0 - 1. The ranges of f; ; and w; 4 are far
greater than 1. This difference in magnitude means that simple summation would
be unfair and ineffective. Summation of logs could be an alternative. However,
using log f4; and log w; 4 instead of f; 4 and w; 4 would mean tampering with the
computations of the matching models. In any case, probability multiplication
and summation of log probability are generally considered to be approximately
equivalent.

The next section presents the experimental settings.

7.3.3.4 Experimental settings

This section presents the experimental settings used in these experiments, sepa-
rately for retrieval, and to compute PIS;.
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Section 7.3.3.4.1 presents the datasets used. Section 7.3.3.4.2 presents the
pre-processing involved in the retrieval process and also in computing PIS; from
POS n-grams. Section 7.3.3.4.3 presents the processing involved in matching
documents to queries. Section 7.3.3.4.4 presents how parameters or variables
involved in the experiments are tuned. Section 7.3.3.4.5 presents the evaluation
measures used to evaluate retrieval performance.

7.3.3.4.1 Datasets The TREC datasets (test collections, topics, and rele-
vance judgements) used in these experiments are the same as the ones presented
in Section 7.3.2.3.1. The choice of these datasets was justified in page 111. In
brief, the WT10G and Disks 4&5 collections are used, initially presented in Sec-
tion 6.3.2, Table 6.3, page 80, and their corresponding short and long queries:
queries 451-550 for WT10G, and queries 301-450 & 601-700 for Disks 4&5. The
average length of these queries was presented in Table 7.6, page 111.

Similarly to the computation of PIS, reported in Section 7.3.2.3.1, PIS; is
computed from the same collection used for retrieval. (Section 6.5 showed that
the computation of PIS; is collection-independent.)

7.3.3.4.2 Pre-processing The pre-processing involved in retrieval is exactly
as reported in Section 7.3.2.3.3: in brief, terms are tokenised on whitespace
and punctuation marks, and lower-cased; stopwords are removed and terms are
stemmed.

Similarly, the pre-processing involved in computing PIS; is exactly as reported
in Section 6.3: collections are POS tagged with the TreeTagger, and POS 4-grams
are extracted.

7.3.3.4.3 Processing For retrieval, two different probabilistic models are
used to match documents to queries. (Retrieval models were introduced in Sec-
tion 2.4.2, and probabilistic models in particular were presented in Section 2.4.2.3.)
The two models are: Okapi’s Best Match 25 (BM25) (Robertson & Walker, 1994)
and Poisson Laplace 2 (PL2) from the Divergence From Randomness (DFR)
framework (Amati, 2003). The formulae of these models are repeated next, in
order to point out how PIS; is integrated into them.

Regarding BM25, Equations 2.11 & 2.15, pages 24 & 25, state that BM25
computes the relevance score of a document d for a query ¢ as follows:

Sgd = E :wtq * Wtd

teq

119



7.3 Part of speech n-gram information score

_ N—-fi+05, (ks+1)-frqg (k1+1)-fra
Zlog( Ji+0.5 ) ks + fiq K+ fia

where
e N is the number of documents in the collection;
e f; is the frequency of documents containing term ¢ in the collection;

e k3 is a parameter, the recommended value of which is 1000 (Robertson &
Walker, 1994);

o fi4 is the term frequency in the query;

e ky is a parameter, the recommended value of which is 1.2 (Robertson &
Walker, 1994);

o fi 4 is the term frequency in the document; and

e K is given by:
dl

K=hk((1=b)+b-——)

where
— b is a parameter, the recommended value of which is 0.75 (Robertson
& Walker, 1994);

— dl is the document length, measured in any suitable units (e.g. indexed
terms, bytes, and so on); and

— awdl is the average document length in the collection, measured simi-

larly to di.

For the first integration (Section 7.3.3.3.1, Equation 7.3, page 117), PIS; is
multiplied to f; 4, which affects the model as follows:

(k1 +1) fia (k1 +1)- fra- PI1S
K+ fia K—i—(ft,d-P]Sl)

(7.5)

For the second integration (Section 7.3.3.3.2, Equation 7.4, page 118), PIS; is
multiplied to S, 4, which affects the model as follows (using the concise formula-
tion):

Spa = WiqWwyq- PIS; (7.6)

teq
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Regarding PL2, Equations 2.16 & 2.23, pages 26 & 27, state that PL2 com-
putes the relevance score of a document d for a query ¢ as follows:

Sgd = E :wtq * Wtd

teq

tfn
_Z tf +1(tfn'10g2fT.log26+0‘5.10g2(27r,tfn)>

where tfn is the normalised frequency of a term in a document, given by Equa-
tion 2.22, page 27 as follows:

avdl

tfn:ft’d-logz(l—i-c 7)

where
e c is a parameter, the recommended value of which is 7.0 (Amati, 2003);

e dl is the document length, measured in any suitable units (e.g. indexed
terms, bytes, and so on); and

e auvdl is the average document length in the collection, measured similarly
to dl.

For the first integration (Section 7.3.3.3.1, Equation 7.3, page 117), PIS; is
multiplied to f; 4. This affects the ¢fn component (Equation 2.22) of the model
as follows:

avdl avdl
ft,d‘lng (1+C 7) (fth[Sl) 10g2 (1+C 7) (77)

For the second integration (Section 7.3.3.3.2, Equation 7.4, page 118), PIS;
is multiplied to S, 4. This affects the model as follows (using the concise PL2
formulation of Equation 2.16):

Spa = WiqWwyq- PIS; (7.8)

teq

Both BM25 and PL2 include parameters. The next section presents how
these parameters, and also any other parameters or variables involved in the
experiments are set.
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7.3.3.4.4 Default and optimal settings As mentioned in Section 7.3.3.3,
all experiments are conducted twice: (i) with default settings, and (ii) with set-
tings optimised for retrieval precision. The aim is to evaluate the hypothesis
first on standard settings, and then on a stronger baseline. Settings here means
parameters or variables in the retrieval models and in the computation of PIS;.
Specifically, these are:

e parameter b of the retrieval model BM25 (Equation 2.11, page 24);
e parameter ¢ of the retrieval model PL2 (Equation 2.16, page 26); and
e variables \ and o' of the computation of PIS; (Equation 5.14, page 69).

BM25 includes further parameters (k; and k3); these do not have a significant
impact on retrieval performance (Robertson & Walker, 1994), hence their recom-
mended values are used and they are treated as constants. These values are k1=

1.2 and k3= 1000 (Robertson & Walker, 1994).

Default parameters For retrieval, parameters b of BM25 and ¢ of PL2 have
a ‘smoothing’ role, i.e., they normalise the relevance score of a document for a
query across document lengths, in order to avoid bias towards longer documents.
The default /recommended settings are b=0.75 (Robertson & Walker, 1994), and
c¢=7 (Amati, 2003, Chapter 7). For computing PIS;, the values of A and p are
derived using Bayes Rule, as shown in Section 5.3.2.2, by setting A = 1 and
solving for p.

Parameters optimised for retrieval The setting of b and ¢ depends on
the collection and the query set, and has been shown to have an important impact
on retrieval performance (Chowdhury et al., 2002; He & Ounis, 2003, 2005b).
Generally, the less sensitive a retrieval model is to changes in its parameters,
the more robust it is. Hence, by comparing system performance on default and
optimal settings, we can evaluate how robust the system is.

Parameters b, ¢, A, and ¢ are optimised for retrieval performance, and specifi-
cally MAP and P10 separately, by training using data sweeping over a large range
of values.

The range of the parameter values are:

I\ and o are probability approximations, not parameters. Here, they are treated as vari-
ables, and tuned to optimise retrieval performance.
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e for b: within (0,1] with a unique interval of 0.05.
e for ¢: within [1,32] with an increasing interval:

— from 1 to 4 with an interval of 1,
— from 6 to 8 with an interval of 2,
— from 12 to 16 with an interval of 4,

— from 24 to 32 with an interval of 8.
The ten values sampled are 1, 2, 3, 4, 6, 8, 12, 16, 24, and 32.
e for A and p: within (0,1] with a unique interval of 0.05.

For BM25 and PL2, the chosen ranges are believed to be wide enough to cover
the optimal settings of BM25 and PL2, according to He & Ounis (2003, 2005a,b).
For X\ and p, this range follows from the fact that A\ and p are approximated
probabilities. For each parameter, the value selected gives the best MAP/P10
performance.

This optimisation is repeated separately for short and long queries, separately
for MAP and P10, and also separately for:

e the baseline retrieval model (no PIS;, hence no A and p); and
e the retrieval model with PIS;.

In the second case, when using the retrieval model with PIS;, there are three
parameters: (i) b or ¢ depending on the model, (ii) A, and (iii) o. All three
parameters are optimised over all possible combinations.

All parameter values (default and optimised) are shown in Tables E.1 and
E.2, Appendix E, pages 176 - 177.

7.3.3.4.5 Evaluation Retrieval performance is evaluated in terms of MAP
and P10, and the results of statistical significance tests, using the Wilcoxon
matched-pairs signed-ranks test are reported.

An additional evaluation measure is used to evaluate how robust retrieval
performance is. Specifically, Section 7.3.3.4.4 stated that comparing retrieval
performance across a range of parameter values reveals whether changes are due
to PIS; or to the model parameters. The effect of this parameter tuning upon the
model robustness can be quantitatively analysed using the parameter sensitivity
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| Experimental settings overview |

. . -Disks 4&5
Retrieval collection “WT10G

] -Disks 4&5
POS n-gram collection “WT10C

-short (title)

-long (description)

-BM25 (Equation 2.11, page 24)
-PL2 (Equation 2.16, page 26)
-no PIS; (baseline)

Query length

Retrieval model

Use of PIS; -PIS; X fi 4 (input of matching process)
-PIS; xw; 4 (output of matching)
-default

Settings -optimised for MAP

-optimised for P10

Table 7.10: Settings for the experiments reported in Section 7.3.3.5.

Spread measure, which measures the flatness of a posterior distribution over a set
of parameter values (Metzler, 2006):

S =m(max, X) — m(min, X) (7.9)

By substituting m(maz, X') (resp. m(min, X)) for maximum MAP/P10 (resp.
minimum MAP/P10) in Equation 7.9, one can observe the flatness of the MAP /P10
distribution across a range of parameter values. This indicates how sensitive the
retrieval model is to parameter tuning: smaller spread S indicates less sensitivity
to parameter tuning, hence more robust models.

The experimental settings presented in Section 7.3.3.4 are summarised in Ta-
ble 7.10.

7.3.3.5 Experimental results

This section presents the evaluation results of the retrieval experiments. The
aim of these experiments is to test whether using PIS; for retrieval is beneficial.
Section 7.3.3.5.1 presents results on retrieval precision (both MAP and P10).
Section 7.3.3.5.2 presents results on retrieval robustness.

7.3.3.5.1 Retrieval precision A series of experiments is conducted to test
whether PIS; can improve retrieval precision (both MAP and P10). This section
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presents results in tables, first for short queries, and then for long queries. (Ta-
ble 7.6, page 111 shows the average query length.) The result tables should be
read as follows:

e cach table is split into an upper and a lower part:

— the upper part reports on Disks 4&5;
— the lower part reports on WT10G;

e the rows are arranged in this order:

— row number (to facilitate referring to the tables);
— default settings for BM25 and then PL2;
— optimised settings for BM25 and then PL2;

e the columns are arranged in this order:

— columns 1 and 2 show the settings and then the measure;

— column 3 shows the retrieval score of the baseline (=only the retrieval
model);

— column 4 shows the retrieval scores of the first integration of PIS; into
the retrieval model (Section 7.3.3.4.3);

— column 5 shows the retrieval score of the second integration of PIS;
into the retrieval model (Section 7.3.3.4.3).

Tables 7.11 and 7.12 show the results for short and long queries, respectively.
The best score(s) for each row is printed in bold. The asterisk * (**) shows
statistical significance at p <0.05 (p <0.01), according to the Wilcoxon matched-
pairs signed-ranks test.

Tables 7.11 and 7.12 show that:

1. 1st versus 2nd integration of PIS; into the model: retrieval perfor-
mance with PIS; into the retrieval model is better for the second integration
(altering the output of the model) than the first integration (altering the
input of the model);

2. short versus long queries: retrieval performance with PIS; into the
model is better for long queries than short queries;
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| Short Queries - Retrieval Precision ‘

Disks 4&5

row settings measure | baseline Jr.a x P1S; wy g X P1S;

1 MAP 0.242 0.228 (-5.8% 0.242 (none

2 def. BM25 P10 0.424 0.417 E—l.?%; 0.424 gnoneg
3| 4ot pLo | MAP [ 0236 0.253 (-1.2%) | 0.259 (+1.2%)
4 ’ P10 0.445 0.441 (-0.9%) 0.447 (40.4%)
5 MAP 0.254 0.237 (-7.2% 0.254 (none

6 | Pt BM2 T hig g uss 0.428 2-2.3%; 0.442 (10.9‘7?))
7 opt. PL2 MAP 0.257 0.254 (-1.2%) 0.259 (40.8%)
8 ' P10 0.446 0.441 (-1.1%) 0.447 (40.2%)

WT10G

row | settings measure | baseline Jra x P15, wyqg X P1S;

9 dof. BM25 MAP 0.187 0.180 (-3.9%) 0.188 (40.5%)
10 ’ P10 0.300 0.304 (+1.3%) 0.310 (+3.3%)
11 dof. PL2 MAP 0.208 0.206 (-1.0%)* | 0.215 (4+3.4%)*
12 ’ P10 0.324 0.320 (-1.3%)* | 0.326 (40.6%)*
13 opt. BM25 MAP 0.211 0.203 (-3.8%) 0.212 (4+0.4%)
14 ' P10 0.328 0.329 (+0.3%) 0.337 (4+2.7%)
15 opt. PL2 MAP 0.211 0.209 (-1.0%)* | 0.218 (+3.3%)*
16 ' P10 0.325 | 0.326 (4+0.3%)* | 0.326 (+0.3%)*

Table 7.11: Retrieval performance with BM25 and PL2 for short queries (WT10G

and Disks 4&5).
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| Long Queries - Retrieval Precision |

Disks 4&5
row settings measure | baseline Jra x PIS; wy g X PIS;
1 dof. BM25 MAP 0.242 0.236 (-2.5%)* 0.256 (+5.8%)**
2 ' P10 0.423 0.428 (+1.2%)* 0.436 (+3.1%)**
3 dof. PL2 MAP 0.218 0.241 (+10.5%)* | 0.258 (+18.3%)**
4 ' P10 0.388 0.430 (+10.8%) * | 0.430 (+10.8%)**
5 opt. BM25 MAP 0.244 0.238 (-2.5%)** 0.259 (46.1%)**
6 ’ P10 0.423 0.429 (+1.4%)** | 0.437 (+3.3%)**
7 MAP 0.235 0.241 (+2.6%)* | 0.260 (4+10.6%)**
g | PE L2 pig | 0418 | 0430 (42.9%)% | 0.437 (+4.5%)**
WTI10G
row settings measure | baseline Jra x PIS; wy g X PIS;
9 dof. BM25 MAP 0.175 0.185 (+5.7%) 0.200 (+14.3%)**
10 ' P10 0.334 0.346 (+3.6%) 0.356 (+6.6%)**
11 dof. PL2 MAP 0.167 | 0.201 (+20.4%) ** | 0.215 (428.7%)**
12 ’ P10 0.320 | 0.359 (+12.2%) ** | 0.360 (4+12.5%)**
13 opt. BM25 MAP 0.187 0.200 (47.0%) 0.211 (4+12.8%)**
14 ’ P10 0.344 0.347 (+0.9%) 0.362 (+5.2%)**
15 MAP 0.186 0.201 (4+8.1%) 0.215 (4+15.6%)**
16 | Pt PRZ 1 pyg 0.340 | 0.359 (+5.6%) | 0.360 (+5.9%)**

Table 7.12: Retrieval performance with BM25 and PL2 for long queries (WT10G
and Disks 4&5).
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3. MAP versus P10: P10 seems to be affected from PIS; slightly less than
MAP is affected;

4. Disks 4&5 versus WT10G: retrieval performance with PIS; into the
model is better for WT10G than it is for Disks 4&5;

5. best overall performance: the best overall performance is always asso-
ciated with PIS;.

These five observations are generalised over both collections, retrieval models,
and retrieval measures. By generalised, we mean that they are mostly consistent,
with very few exceptions. Each observation is discussed next.

1. 1st versus 2nd integration of PIS; into the model The first ob-
servation from Tables 7.11 & 7.12 is that integrating PIS; into the output of the
matching process is better for retrieval than integrating it into the input of the
matching process. Specifically, the difference in retrieval precision between the
two integrations is noted. Regarding short queries:

e 1Ist integration: retrieval precision changes from -7.2% (Table 7.11, row
5, column 5) to +1.3% (Table 7.11, row 10, column 5);

e 2nd integration: retrieval precision varies from no change at all (Ta-
ble 7.11, rows 1,2,5, last column) up to +3.4% with a statistical significance
(Table 7.11, row 11, last column).

Regarding long queries:

e 1st integration: retrieval precision changes from -2.5% with a statistical
significance (Table 7.12, rows 1&5, column 5) to +20.4% with a strong
statistical significance (Table 7.12, row 11, column 5);

e 2nd integration: retrieval precision varies from +3.1% with a strong sta-
tistical significance (Table 7.12, row 2, last column) to +28.7% with a strong
statistical significance (Table 7.12, row 11, last column).

This difference in retrieval performance between the first and second integration
of PIS; into the retrieval model is not surprising: as discussed in Section 7.3.3.4.3,
the matching process is tailored to raw term frequencies, because it normalises
them according to document length. PIS; is not a raw frequency count, but a
probability, which does not have to be normalised according to document length.
Hence, integrating PIS; into the output of the matching process is preferred over
integrating it into the input of this process.
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2. short versus long queries The second observation from Tables 7.11
& 7.12 is that long queries benefit more from PIS; than short queries. Specifically,
the difference in retrieval precision between the two query types is noted:

e short queries: retrieval precision changes from -7.2% (Table 7.11, row 5,
column 5) to +3.4% with a statistical significance (Table 7.11, row 11, last
column);

e long queries: retrieval precision changes from -2.5% with a statistical
significance (Table 7.12, rows 1&5, column 5) to +28.7% with a strong
statistical significance (Table 7.12, row 11, last column).

This difference in retrieval performance between short and long queries is not
surprising: longer queries contain more words, which are not necessarily keywords.
Short queries tend to contain few words, which are mainly keywords. Keywords
are likely to be informative, hence the contribution of PIS; is small. Compared to
short queries, long queries tend to contain more terms, which are not necessarily
informative, hence the contribution of PIS; is bigger.

3. MAP versus P10 The third observation from Tables 7.11 & 7.12 is that
P10 seems to be affected from PIS; slightly less than MAP is affected. Specifically,
when retrieval with PIS; into the model hurts performance, the damage is more
for MAP than it is for P10, and also when retrieval with PIS; into the model
benefits performance, the gain is more for MAP than it is for P10.

When integrating PIS; into the model hurts retrieval performance, the differ-
ence between MAP and P10 is as follows:

e MAP: MAP is hurt from -7.2% (Table 7.11, row 5, column 5) to -1.0%
(Table 7.11, rows 11&15, column 5);

e P10: P10 is hurt from -2.3% (Table 7.11, row 6, column 5) to -0.9% (Ta-
ble 7.11, row 4, column 5).

When integrating PIS; into the model benefits retrieval performance, the differ-
ence between MAP and P10 is as follows:

e MAP: MAP improves from +0.5% (Table 7.11, row 9, last column) to
+28.7% with a strong statistical significance (Table 7.12, row 11, last col-
umn);
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e P10: P10 improves from +0.2% (Table 7.11, row 8, last column) to +12.5%
with a strong statistical significance (Table 7.12, row 12, last column).

Overall, P10 seems to be affected from PIS; slightly less than MAP is affected.
One reason for this could be that using PIS; alters the relevance ranking of
documents with respect to a query less at the top ranks (measured by P10), and
more at the lower ranks (measured by MAP). Hence, this could indicate that
PIS; benefits recall slightly more than it benefits precision. (Precision and recall
were introduced in Section 2.7.) However, the difference between MAP and P10
is not big enough to conclude that using PIS; for retrieval benefits recall more
than it does precision.

4. Disks 4&5 versus WT10G The fourth observation from Tables 7.11
& 7.12 is that retrieval performance with PIS; into the model is better for WT10G
than it is for Disks 4&5. Specifically, regarding short queries, the difference
between Disks 4&5 and WT10G is as follows:

e Disks 4&5: retrieval precision changes from -7.2% (Table 7.11, row 5,
column 5) to +1.2% (Table 7.11, row 3, last column);

e WTI10G: retrieval precision changes from -3.9% (Table 7.11, row 9, column
5) to +3.4% with a statistical significance (Table 7.11, row 11, last column).

Regarding long queries, the difference between Disks 4&5 and WT10G is as fol-
lows:

e Disks 4&5: retrieval precision changes from -2.5% with a statistical sig-
nificance (Table 7.12, rows 1&5, column 5) to +18.3% with a very strong
statistical significance (Table 7.12, row 3, last column);

e WTI10G: retrieval precision changes from +0.9% (Table 7.12, row 14, col-
umn 5) to +28.7% with a very strong statistical significance (Table 7.12,
row 11, last column).

This difference in retrieval performance between short and long queries could
be due to the fact that the baseline model (without PIS;) gave lower scores
for WT10G than it did for Disks 4&5, at all times. Hence, since the baseline
performed worse on WT10G, there was more room for improvement on this col-
lection, than there was in Disks 4&5. This improvement was made by using
PIS;. In addition, other parameters that could potentially affect the difference
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in retrieval performance between Disks 4&5 and WT10G could be the difference
in the number of queries used (250 for Disks 4&5 and 100 for WT10G), or the
difference in size between Disks 4&5 and WT10G. In particular, the difference in
size could affect the computation of PIS; because PIS; uses the collection statis-
tics, and larger collections might lead to more accurate computation. However,
both of these parameters are problematic: first, assuming that all queries are of
approximately equal difficulty, there is no reason why having more queries would
lead to worse retrieval performance; second, Section 6.5 showed that the compu-
tation of PIS; is not collection-dependent, hence collection size should not alter
PIS; accuracy.

5. Best overall performance The final observation from Tables 7.11
& 7.12 is that the best overall performance is always associated with PIS;. Specif-
ically, regarding average precision (MAP):

e short queries:

— Disks 4&5: the best overall MAP is 0.259, when PIS; is integrated
into the output of PL2, with both default and optimised settings (Ta-
ble 7.11, rows 3&7, last column);

— WTI10G: the best overall MAP is 0.218, when PIS; is integrated into
the output of PL2, with optimised settings (Table 7.11, row 15, last
column). This score is also statistically significant;

e long queries:

— Disks 4&5: the best overall MAP is 0.260, when PIS; is integrated
into the output of PL2, with optimised settings (Table 7.12, row 7,
last column). This score is also statistically very significant;

— WTI10G: the best overall MAP is 0.215, when PIS; is integrated into
the output of PL2, with optimised settings (Table 7.12, rows 11&15,
last column). These scores are also very statistically significant.

Regarding early precision (P10):
e short queries:

— Disks 4&5: the best overall P10 is 0.447, when PIS; is integrated
into the output of PL2, with both default and optimised settings (Ta-
ble 7.11, rows 4&8, last column);
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— WT10G: the best overall P10 is 0.337, when PIS; is integrated into
the output of BM25, with optimised settings (Table 7.11, row 14, last
column);

e long queries:

— Disks 4&5: the best overall P10 is 0.437, when PIS; is integrated into
the output of BM25 & PL2, with optimised settings (Table 7.12, rows
6&8, last column). These scores are also statistically very significant;

— WT10G: the best overall P10 is 0.362, when PIS; is integrated into
the output of BM25, with optimised settings (Table 7.12, row 14, last
column). This score is also statistically very significant.

The fact that using PIS; in retrieval gives the best retrieval performance at all
times confirms the validity of the hypothesis that the proposed non-topical in-
formation score, computed from POS n-grams, can be succesfully combined with
the topical information score, computed from frequency statistics, to enhance
retrieval performance.

From the above five observations, it is concluded that PIS; can help retrieval
performance. We suggest that integrating PIS; into the retrieval model at the
output of the matching process is one way of doing this.

The next section tests how robust is the use of PIS; to retrieval performance.

7.3.3.5.2 Retrieval robustness The previous section presented the effect of
integrating PIS; into retrieval for default and optimised settings. This effect was
measured in terms of retrieval precision (MAP and P10). This section looks at
the effect of integrating PIS; into retrieval upon retrieval robustness. The aim
is to see if PIS; affects retrieval performance in an accidental or consistent (i.e.
robust) way. For example, we want to test if the +28.7% improvement' in MAP
reported in Table 7.12, page 127, is a one-off, or a reliable indication of retrieval
improvement. This is done by looking at retrieval precision across the range of all
parameter values used, not only the default and optimal values presented in the
previous section. The resulting MAP and P10 scores are plotted in Figures 7.1 -
7.8, pages 134 - 141. Also, we look at the flatness of MAP and P10 distribution
across the range of parameter values, using the spread measure (Equation 7.9,
page 124). Smaller spread S indicates less sensitivity to parameter tuning, hence

Improvement in MAP for PL2 on default settings for long queries, Table 7.12, page 127.
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| Short Queries - Parameter Spread |

Disks 4&5

settings | measure | baseline | fi 4 x PIS] | wyq x PIS;
MAP 0.264 0.249 0.260
BM25 1 by 0.816 0.796 0.786
PL2 MAP 0.278 0.457 0.286
P10 0.388 0.500 0.326

WT10G

settings | measure | baseline | fi4 x PIS; | wyq x P15,
MAP 0.543 0.605 0.557
BM25 P10 0.916 0.896 0.896
PLY MAP 0.353 0.455 0.403
P10 0.388 0.500 0.326

Table 7.13: Robustness of retrieval performance for short queries.

| Long Queries - Parameter Spread |

Disks 4&5
settings | measure | baseline | fiq X P15 | wyq x P15,
. MAP 0.694 0.608 0.490
def. BM25 151 0.811 0.783 0.618
MAP 0.581 0.352 0.490
def. PL2 | by 0.814 0.409 0.526
WT10G
settings | measure | baseline | fiq x P15 | wyq x PIS;
MAP 0.541 0.484 0.342
def. BM25 1510 | g.820 0.600 0.660
MAP 0.497 0.296 0.273
def. PL2 1 p 0.740 0.420 0.370

Table 7.14: Robustness of retrieval performance for long queries.

more robust models. The spread results are presented in Tables 7.13 and 7.14.
For each row, smaller spread is printed in bold.

Figures 7.1 - 7.8 plot the parameter value (x axis) and the corresponding MAP
or P10 score (y axis), for all experiments in this section. These figures show that
the plots of the baseline and the two integrations are similar in shape. Also,
the second integration of PIS; (to the output of document-query matching) is
always better than the first integration of PIS; (to the input of document-query
matching), and also better than the baseline (no PIS; at all). This is consistent for
all collections. Hence, integrating PIS; into the retrieval process affects retrieval
performance in a generally consistent way:.

Tables 7.13 and 7.14 show the difference between the highest and lowest MAP
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Figure 7.1: Tuning parameters for MAP with and without PIS; for short queries.

134



7.3 Part of speech n-gram information score

BM25 short queries Disks 4-5
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Figure 7.2: Tuning parameters for P10 with and without PIS; for short queries.
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Figure 7.3: Tuning parameters for MAP with and without PIS; for short queries.
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Figure 7.4: Tuning parameters for P10 with and without PIS; for short queries.
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BM25 long queries Disks 4-5
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Figure 7.5: Tuning parameters for MAP with and without PIS; for long queries.
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BM25 long queries Disks 4-5
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Figure 7.6: Tuning parameters for P10 with and without PIS; for long queries.
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BM25 long queries WT10G
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Figure 7.8: Tuning parameters for P10 with and without PIS; for long queries.
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and P10 across the range of all parameters tried, for short and long queries
respectively. This difference corresponds to the highest and lowest peak of each
plot in Figures 7.1 - 7.8. The smaller this difference, the more robust the retrieval
performance. Overall, the spread values tend to be similar. For short queries,
the baseline has the most stable retrieval performance. For long queries, the
integration of PIS; into the output of the matching process (second integration)
has the most stable retrieval performance. These observations are consistent for
both collections and evaluation measures.

Overall, integrating PIS; into the retrieval model does not render the model
less robust and performs in a consistent way. The second integration, which was
shown to be most beneficial to retrieval precision in Section 7.3.3.5.1, also gives
the most robust performance (lowest spread scores). On the basis of this, it is
concluded that PIS; can benefit retrieval performance in a robust way.

7.3.3.6 Conclusion

Section 7.3.3 tested the hypothesis that PIS;, which is derived from POS n-
grams, can be combined with the topical content of terms, computed by typical
term weighting, to improve retrieval performance. Two ways were suggested for
integrating PIS; into the retrieval model that matched documents to queries, first
into the input of the model, and second into the output of the model. Experiments
with established and standard models and datasets showed that PIS; can improve
retrieval performance robustly across a range of default and optimised settings.

7.4 Summary

This chapter showed that the frequency of POS n-grams in a collection and
also the term information score (PIS) computed from POS n-grams can be used
successfully by IR systems. Four IR applications of POS n-gram frequency and
PIS were suggested. Section 7.2 showed that the frequency of POS n-grams in a
collection can be used to detect and remove content-poor text from queries and
documents, with benefits to IR performance. Section 7.3.2 showed that PIS is
comparable to the established inverse document frequency (IDF) term weight.
Section 7.3.3 suggested how PIS can enhance an already competitive retrieval
performance, in a robust way.

The next chapter summarises the contributions and conclusions of this thesis,
and suggests future research directions.
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Chapter 8

Conclusions

8.1 Contributions and conclusions

This thesis investigated the use of part of speech (POS) n-grams, as a represen-
tation of shallow grammatical and structural information in language, to Infor-
mation Retrieval (IR). Based on the empirical finding that there exists a relation
between POS n-gram frequency and informative content, a framework was intro-
duced for deriving a weight of non-topical informative content for words from POS
n-grams, which was called part of speech information score (PIS). Applications
of POS n-gram frequency and also of PIS to IR were presented.

This section summarises the conclusions and contributions of this thesis, and
suggests future research directions.

8.1.1 Contributions

The main contributions of this thesis are the following.

e [t used a linguistic theory for ranking parts of speech, namely Jespersen’s
Rank Theory, in IR. To our knowledge, this is the first time that this theory
is used in IR or any other automatic language processing technology.

e [t presented heuristical evidence suggesting that there exists an approxi-
mately directly proportional relationship between POS n-gram frequency
and informative content. This novel finding is the opposite of what is ob-
served with words, for which the relationship between frequency and infor-
mative content is approximately inversely proportional.
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e It introduced a framework for deriving an original term information score
exclusively from POS n-grams, based on the relationship between POS
n-gram frequency and informative content and also on Jespersen’s Rank
Theory.

e It used POS n-grams not as a feature for classification, neither to make
predictions about the occurrence of parts of speech/words, as has been
done so far, but as a feature of non-topical informative content. This is a
novel use of POS n-grams.

e [t examined the statistical properties of POS n-grams and of the proposed
term information score that is computed from them in a series of thorough
and unbiased experiments, which included five standard and established
collections of different size (totalling >32GB) and domain, three estab-
lished state of the art POS taggers, and a variation of the n-gram order
n between n= 1 - 100. Experimental evidence showed that POS n-grams
are distributed similarly in different collections, and that the POS n-gram
based term information score is positively correlated to inverse document
frequency.

e [t suggested four novel applications of POS n-grams to IR and evaluated
them on standard and established datasets, under default and competi-
tive settings. FExperimental evidence showed that retrieval performance
enhanced considerably.

8.1.2 Conclusions

This section discusses the achievements and conclusions of this thesis.

8.1.2.1 Part of speech n-grams and informative content

Traditionally, n-grams are extracted from contiguous sequences, hence they are
themselves contiguous subsequences. The ordering of their components has been
manipulated extensively, mainly to make predictions about the occurrence of a
component, or to characterise the sequences from which they were extracted. This
thesis uses POS n-grams in a different and novel way. Specifically, it manipulates
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e the linguistic properties of their components, namely parts of speech, for
which some basic hierarchy stands (Jespersen’s Rank Theory). This hierar-
chy is extended to indicate the presence or absence of non-topical content;

e the frequency of the n-grams in a large sample. Based on empirical evidence
that links POS n-gram frequency to informative content, POS n-gram fre-
quency is used to quantify informative content.

In a simple manner, this thesis combines these two facts, and looks at POS n-
grams in a different light: as strings of things for which we have some prior
knowledge. This is a novel representation, and this thesis shows that it is empir-
ically valid and also beneficial to IR applications.

In addition, this thesis presents empirical evidence which indicates that there
exists an approximately directly proportional relationship between the frequency
and informative content of POS n-grams, contrarily to words, for which frequency
and informative content are approximately inversely proportional. This novel
finding, combined with the fact that POS n-grams tend to be generally distributed
in a Zipfian manner and also similarly in different collections, have allowed for
the development of different and successful applications of POS n-grams to IR.

8.1.2.2 Non-topical term weight

One of the applications of POS n-grams to IR presented in this thesis is the
derivation of a non-topical term weight using exclusively POS n-grams, called PIS.
This term weight is novel both with respect to its derivation from POS evidence
only, and also because it is non-topical: more specifically, whereas conventional
IR systems retrieve information assumed to be relevant to some point of reference,
e.g., a query, and as such the rely on topical information, this thesis presents a
term weight of non-topical information, and shows that its combination to existing
topical term weights is useful to IR.

A general methodology is presented for computing this non-topical term weight
from POS n-grams, which makes use of a linguistic theory for ranking parts of
speech and is implemented using probabilistic approximations, but is not bounded
by them, i.e., different linguistic theories or mathematical approximations could
be used to produce further variants of this non-topical information score. This
point is discussed as a direction of future research in Section 8.2.

Finally, the non-topical term weight presented in this thesis is examined along-
side the established inverse document frequency (IDF) term weight, and a series
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of similarities and differences are found between the two. There are three main
differences between PIS and IDF:

e IDF approximates the power of a term in discriminating between docu-
ments, whereas PIS approximates the non-topical informative content in a
term, regardless of how many documents the term occurs in.

e IDF uses lexical statistics (word/document counts), whereas PIS uses shal-
low grammarical statistics (POS n-grams).

e IDF is a bag-of-words measure (because it does not consider term context),
whereas PIS considers the ‘part of speech context’ of a term.

There are two main similarities between PIS and IDF:

e It can be argued that both computations (for IDF and PIS) use similar
methodologies but different ingredients (term statistics in IDF, POS n-gram
statistics in PIS). On one hand, the intuition behind IDF is that a word
occurring in many documents is not likely to be very informative. On the
other hand, PIS looks at how many POS n-grams in a collection ‘contain’
a word - (‘contain’ = map to word n-grams that contain that word), on the
intuition that a word occurring in many and informative POS n-grams is
likely to be informative.

e The second similarity is that IDF and PIS are found to be correlated, and
also approximately equally beneficial to IR systems. This similarity is par-
ticularly noted for one of the two alternative computations of PIS proposed
in this thesis, namely PIS,, because PIS; uses a POS n-gram statistic which
resembles term frequency (which is used in IDF implicitly) very closely:
specifically, PIS, uses the frequency of POS n-grams which ‘contain’ a term
in a collection, and this frequency may be seen as an approximation of the
actual term frequency in the collection.

In light of the above differences and similarities, PIS may be seen as an ‘approx-
imation’ of IDF, from a completely different linguistic angle.

8.2 Future work

This section suggests how parts of this thesis can be extended in the future.
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8.2 Future work

8.2.1 Primary parts of speech

This thesis investigates the use of POS n-grams to IR, when using only the pri-
mary parts of speech of language, namely the 14 classes shown in Table 3.1,
page 40. This restriction of part of speech classes into 14 categories only has
been motivated by efficiency and scalability concerns, and has been shown to
be very successful for the applications to IR systems presented in this thesis.
Nevertheless, more part of speech categories can also be used, especially with ap-
plications that could benefit from the extra granularity in the linguistic analysis
introduced by more fine-grained distinctions between individual parts of speech.
For instance, in selective applications of query expansion or question answering,
it could be useful to distinguish between proper nouns and common nouns, espe-
cially as proper nouns are popular queries submitted by Web users to IR systems.
Additionally, domain-specific applications, for instance geographical IR or legal
IR, could benefit considerably from a classification that would distinguish be-
tween certain types of prepositions (e.g., when giving travelling directions, the
semantic difference between the prepositions from and to is of utmost impor-
tance; similarly, in legal IR, the semantic difference between the prepositions for
and against is very important.) Currently, such POS evidence is used in an
ad-hoc and mostly heuristical manner by domain-specific IR applications. This
thesis has introduced a general framework for using POS n-grams, in which such
POS evidence could be incorporated simply by adding another POS class to the
initial category of POS n-grams, or even by over-riding existing linguistic classifi-
cations of parts of speech and defining ‘new classes’ on demand (e.g., by creating
a special POS ‘tag’ for prepositions of interest to a domain, and by grouping
all other prepositions under a single category). The use of POS n-grams, where
such individual POS classes are properly defined is an interesting area of future
research which could benefit IR technology.

8.2.2 Informative content in part of speech n-grams

Section 5.2 presented heuristical evidence suggesting that there exists a rela-
tionship between the frequency and informative content of POS n-grams. The
informative content of POS n-grams was computed using heuristics, specifically
Algorithms 3 & 4, both of which produced a ‘score’ of informative content for
POS n-grams by:
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e rewarding the presence of content-rich individual parts of speech inside the
n-gram, and

e ignoring or penalising the presence of content-poor individual parts of speech
inside the n-gram.

Algorithms 3 & 4 are not the only way of estimating the informative content
of POS n-grams. Other variations can also be used, for instance to reward or
penalise parts of speech on an individual basis, not only according to Jespersen’s
Rank Theory as used in this thesis, but also according to more fine-grained rank-
ings of parts of speech that may be motivated from other linguistic theories (less
crude!, or which incorporate additional linguistic evidence, such as syntactic rules
or semantic ontologies). Alternatively, individual parts of speech can be rewarded
or penalised according to statistical evidence about their frequency and occur-
rence in a collection.

This is an interesting area of future investigation, in which there is not much
research at the moment. In fact, apart from the work described in this thesis,
there is no other literature -to our knowledge- which investigates the informa-
tive content of POS n-grams. Development in this line of work is interesting not
only to IR, where it would improve the applications presented in this thesis, but
also to other automatic language processing fields, like automatic summarisation
or extraction of text for instance, where more accurate approximations of the
informative content of POS n-grams could produce non-topical (hence fast) ap-
proximations of what are the most salient parts of some text. The width of these
parts could be easily tuned by varying the order of POS n-grams, in order to
customise the compression of the resulting summaries and extracts.

8.2.3 Part of speech probabilities from statistics

Chapter 5 computed the informative content for POS n-grams, from which a non-
topical content for words was then derived. This derivation was based on certain
assumptions, which, even though motivated from Jespersen’s Rank Theory, may
be seen as crude approximations, and hence could de further refined. One such ex-
plicit assumption was that closed class parts of speech are always non-informative,
and that open class parts of speech are always informative. Another assumption

IThe reason why Jespersen’s Rank Theory is considered crude was discussed in Section 3.3.
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was that verbs, adjectives and participles are always equally informative, and al-
ways less informative than nouns. These assumptions could be replaced by better
approximations, which either make more mathematically accurate computations
of informative content on the basis of POS statistics, or implement more refined
linguistic formalisms, such as the syntactic roles, discourse structure or semantic
ontologies corresponding to individual parts of speech. This line of work could
lead to further and more refined computations of non-topical term weights. Given
the success of the proposed non topical term weight to IR presented in this thesis,
it would be worth applying such more refined term weights to IR.

8.2.4 Alternative combinations of probabilities

Chapter 5 presented a methodology for computing the non-topical informative
content of terms from POS n-grams. The computation of this term score was
realised as a combination of probabilities, and, for this thesis, this combination
was realised linearly, by simple addition. Alternative combinations of probabili-
ties may also be used without affecting the general methodology for computing
the term score. Specifically, in Equation 5.13, an alternative way to the linear
combination of the probabilities P(inf|pos) inside a POS n-gram would be to
compute their product or sum their logarithms. Generally, these alternatives
are considered approximately equivalent. The linear combination was chosen for
simplicity in this thesis: Summation of probabilities is simpler, because mul-
tiplication would require smoothing', and summation of logarithms would be
computationally costly?. Another alternative to computing the probability of a
POS n-gram being informative would be to view the n-gram as a whole, instead
of considering its individual member POS tags. For instance, a POS n-gram
po S;-l—n—l
n-gram being informative can be computed by the probability of its individual

can be viewed as a set of pos; events, and the probability of the POS

POS events occurring in it. For example, using a multinomial model:

Jj+n—1 _
pos; = POSj, POSji1, .-y POSjin—1 (8.1)

and then

I'Without smoothing, a zero probability nullifies the product, and a probability of 1 does

not contribute to the product.

2Computing logarithms is considered a computationally expensive process.
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Jj+n— 1> P(posj+”_1|z'nf) (an)
P(pos”" 1)

_ P(pos;j, posji1..., posjsn_1linf)P(inf)

P(pos;, posji1..., POSjin—1)

P(in f|pos; (8.2)

(8.3)

Assuming a multinomial model and binary independence between two POS events
(pos; and pos;) inside a POS n-gram:

n—1

e P(pos;|in
(mf|posﬁr Y = P(inf) H 0|s /) (8.4)
+3 o Plposi)
n—1
= H P(inf|pos;) (8.5)
j=1

This alternative computation of considering the POS n-gram as a whole is
not used in this thesis, because it relies more on statistical information of part
of speech occurrence and less on linguistic divisions and ranks of parts of speech.
However, this computation is a mathematically attractive alternative, which
would be worth investigating in the future with expected benefits to retrieval
performance.

8.2.5 Alternative applications of part of speech n-grams

The frequency of POS n-grams and the non-topical term weight derived from
them presented in this thesis are not restricted to IR, but can be applied in nu-
merous ways to various applications. For instance, this thesis showed how the
proposed term weight can be integrated into retrieval models as another ingredi-
ent. Other integrations of this weight into the retrieval model are possible, using
language models to match document to queries, for example. Similarly, the pro-
posed term weight is not IR-specific; there is no reason why it cannot be applied
to other processing involving term weighting, e.g., automatic summarisation, as
discussed above.

Similarly, other applications which do not involve term weighting could also
benefit from the proposed term weight. For instance, in POS tagging, it would
be interesting to look at the PIS score of ambiguous terms or terms that are
consistently tagged erroneously, and see if there is a relation between terms that
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are often ambiguous or used in an ambiguous way and their non-topical informa-
tive content. However, for such an application, because computing PIS already
requires POS tagged text, different POS taggers would have to be used.

Another potential future application of PIS could be classification, where it
would be interesting to sum the PIS of all terms occurring in a document (‘doc-
ument PIS’), and use it as a classification feature or threshold. For example,
what is the average ‘document PIS’ of technical documents as opposed to Web
documents? ‘Document PIS’ could also be a feature of language comprehen-
sion and difficulty, such as the ones used in readability formulae for language
teaching (Mikk, 2001; Savicky & Hlavacova, 2002; Zubov, 2004). Furthermore,
in machine translation, it would be worth investigating whether PIS (of words or
documents) is consistent in parallel text. For instance, when/why does a high-
PIS English term translate into a low-PIS German term? Such questions could
cast light onto discourse or semantic aspects which are not always easy to handle
in machine translation. Finally, in emotion detection, it would be worth looking
into possible links between PIS with sentiment or opinion polarity, a popular
research area at the moment.
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Appendix A

Parts of speech

Tables A.1 & A.2 relate to Chapter 3, and specifically Section 3.2, Table 3.1,
page 40. Table A.1 displays the primary and secondary part of speech (POS)
categories of the original Penn TreeBank set (Marcus et al., 1993). Table A.2
displays the correspondence between the POS abbreviations of the original Penn
TreeBank set and those used in this thesis.
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TreeBank abbr. Thesis abbr. Part of Speech

JJ, JJR, JJS JJ adjective
RB,RBR,RBS RB adverb
CD, LS CD cardinal number
CC CcC conjunction
DT, WDT, PDT DT determiner

MD, VB, VBD, VBG, VBN,
VBP, VBZ, VH, VHD, MD auxiliary /modal verb
VHG, VHN, VHP, VHZ

NN, NNS, NP, NPS, FW NN noun

PP, WP, PP$, WP$, EX, WRB PP pronoun

IN, TO IN preposition
POS PO possessive ending

RP RP particle

SYM SY symbol
UH UH interjection
VV, VVD, VVG, VVN, VVP, VVZ VB main verb

Table A.2: Part of speech abbreviations in the Penn TreeBank and this thesis.
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Appendix B

Part of speech n-grams

Figures B.1 - B.10 relate to Chapter 6. Specifically, Figures B.1 - B.2 refer to
Section 6.3.2.2, Figures 6.1 - 6.2, pages 83 - 84, where the distribution of POS
n-grams is compared in five different collections. Figures B.3 - B.10 refer to
Section 6.3.3, Figure 6.3, page 86. Figures B.3 - B.10 display the plot of POS
n-gram frequency in the collection (x axis) versus POS n-gram frequency rank
(y axis) for POS n-grams extracted from the AP collection, and for n values
between 1 - 100. The AP collection has been presented in Section 6.3.2, Table 6.3,
page 80. The collection has been POS tagged with the TreeTagger, presented in
Section 3.4.3, page 45.
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Figure B.8: Distribution of POS n-grams, for n = 45, 50, 55, 60 (AP).
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Appendix C

Part of speech n-grams and

informative content

Figures C.1 - C.3 relate to Chapter 7, and specifically Section 7?7, Figures 5.1
- 5.3, pages 60 - 61. Figures C.1 - C.3 plot POS n-gram frequency against the
informative content of POS n-grams, for POS 5-grams, in five different collections.
The corresponding plots for POS 4-grams are displayed in Figures 5.1 - 5.3,
pages 60 - 61.
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Appendix D

Part of speech information score
(PIS) and inverse document

frequency (IDF)

Figures D.1 - D.17 relate to Chapter 6. Specifically, Figures D.1 - D.6 refer to
Section 6.5.1, Table 6.10, page 92, and Figures D.7 - D.17 refer to Section 6.5.2,
Table 6.11, page 95. The part of speech information score (PIS;) plotted in
these figures has been computed with Equation 5.21, page 73, using POS 4-
grams from the collection specified in each caption. The collections, which have
been presented in Section 6.3.2, Table 6.3, page 80, are POS tagged with the
TreeTagger, which has been presented in Section 3.4.3, page 45.
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Appendix E

Default and optimal parameter

values

Tables E.1 and E.2 relate to Chapter 7, and specifically Section 7.3.3.5, Ta-
bles 7.11 and 7.12, pages 126 - 127. Table E.1 displays the default and optimal
parameter values used in the experiments of Section 7.3.3.5, with short queries.
Table E.2 displays the default and optimal parameter values used in the experi-
ments of Section 7.3.3.5, with long queries.
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Default and optimal parameters for short queries
WT10G

model setting baseline fra x P1S; Wy g X PILS;
default MAP | b=0.75 | b=0.75, A=1.00, 0=0.30 | b=0.75, A=1.00, 0=0.30
P optimal MAP | $=0.25 | b=0.25, A=1.00, p=0.90 | b=0.25, A=1.00, 0=0.30
default P10 | 6=0.75 | b=0.75, A=1.00, 0=0.30 | b=0.75, A=1.00, 0=0.30
B2 optimal P10 | 6=0.35 | b=0.35, A=1.00, 0=0.70 | b6=0.25, A=1.00, 0=0.20
default MAP | ¢=7.00 | ¢=7.00, A=1.00, 0=0.90 | ¢=7.00, A=1.00, 0=0.30
i optimal MAP | ¢=12.0 | ¢=16.0, A=1.00, 0=0.90 | ¢=16.0, A=1.00, 0=0.20
default P10 | ¢=7.00 | ¢=7.00, A=1.00, p=0.30 | ¢=7.00, A=1.00, 0=0.30
o2 optimal P10 | ¢=12.0 | ¢=12.0, A=1.00, 0=0.70 | 6=0.25, A=1.00, 0=0.20

Disks 4&5

model setting baseline fra x P1S; wyq X PLS;
/ default MAP | 0=0.75 | b=0.75, A=1.00, 0=0.30 | b=0.75, A=1.00, p=0.30
P2 optimal MAP | 6=0.35 | b6=0.35, A=1.00, =0.90 | b=0.35, A=1.00, 0=0.90
default P10 | 6=0.75 | b6=0.75, A=1.00, p=0.30 | b=0.75, A=1.00, 0=0.30
P2 optimal P10 | $=0.35 | b=0.35, A=1.00, 0=0.90 | b=0.35, A=1.00, p=0.50
default MAP | ¢=7.00 | ¢=7.00, A=1.00, 0=0.30 | ¢=7.00, A=1.00, p=0.30
o2 optimal MAP | ¢=12.0 | ¢=12.0, A=1.00, p=0.50 | ¢=12.0, A=1.00, 0=0.50
default P10 | ¢=7.00 | ¢=7.00, A=1.00, p=0.30 | ¢=7.00, A=1.00, 0=0.30
L optimal P10 | ¢=12.0 | ¢=12.0, A=1.00, 0=0.50 | ¢=12.0, A=1.00, 0=0.50

Table E.1: Parameter values used in the experiments with short queries, reported

in Section 7.3.3.5.
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Default and optimal parameters for long queries
WT10G
model setting baseline fra x PIS; wyqg X P15,
default MAP | b=0.75 | b=0.75, A=1.00, 0=0.30 | b=0.75, A=1.00, 0=0.30
Pz optimal MAP | =0.55 | b6=0.45, A=1.00, p=0.40 | b=0.45, A=1.00, 0=0.10
default P10 | b=0.75 | b=0.75, A=1.00, 0=0.30 | b=0.75, A=1.00, 0=0.30
Pz optimal P10 | b=0.55 | b=0.25, A=1.00, 0=0.30 | b=0.25, A=1.00, p=0.20
default MAP | ¢=7.00 | ¢=7.00, A=1.00, 0=0.30 | ¢=7.00, A=1.00, 0=0.30
e optimal MAP | ¢=3.00 | ¢=8.00, A=1.00, 0=0.10 | ¢=4.00, A=1.00, 0=0.10
default P10 | ¢=7.00 | ¢=7.00, A=1.00, 0=0.30 | ¢=7.00, A=1.00, 0=0.30
e optimal P10 | ¢=2.00 | ¢=6.00, A=1.00, 0=0.10 | ¢=8.00, A=1.00, 0=0.20
model setting baseline fra x P1S; wyq X PIS;
default MAP | =0.75 | b=0.75, A=1.00, p=0.30 | b=0.75, A=1.00, p=0.30
Pz optimal MAP | $=0.65 | b=0.55, A=1.00, p=0.10 | b=0.55, A=1.00, 0=0.20
default P10 | b=0.75 | b=0.75, A=1.00, 0=0.30 | b=0.75, A=1.00, 0=0.30
P optimal P10 | 0=0.75 | b=0.55, A=1.00, 0=0.10 | b=0.45, A=1.00, p=0.10
default MAP | ¢=7.00 | ¢=7.00, A=1.00, p=0.30 | ¢=7.00, A=1.00, p=0.30
h2 optimal MAP | ¢=2.00 | ¢=6.00, A=1.00, p=0.30 | ¢=4.00, A=1.00, 0=0.10
default P10 | b=0.75 | b=0.75, A=1.00, 0=0.30 | b=0.75, A=1.00, 0=0.30
h2 optimal P10 | ¢=1.00 | ¢=6.00, A=1.00, 0=0.10 | ¢=4.00, A=1.00, p=0.10

Table E.2: Parameter values used in the experiments with long queries, reported

in Section 7.3.3.5.
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