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Abstract

A considerable industry has grown-up around genealogical inference from genetic

testing, supplementing more traditional genealogical techniques but with very

limited quantification of uncertainty. In many societies Y-chromosomes are co-

inherited with surnames and as such passed down from father to son. This thesis

seeks to explore what the correlation can say about ancestry. In particular it is

concerned with estimation of the time to the most recent common paternal an-

cestor (TMRCA) for pairs of males who are not known to be directly related but

share the same surname, based on the repeat number at short tandem repeat

(STR) markers on their Y-chromosomes.

We develop a model of TMRCA estimation based on the difference in repeat num-

bers in pairs of male haplotypes using a Bayesian framework and Markov-Chain

Monte-Carlo techniques, such as adaptive Metropolis-Hastings algorithm. The

model incorporates the process of STR discovery and the calibration of mutation

rates, which can differ across STRs. In simulation studies, we find that the esti-

mates of TMRCA are rather robust to the ascertainment process and the way in

which it is modelled. However, they are affected by the site-specific mutation rates

at the typed STRs. Indeed sequencing the fastest mutating STRs yields a lower

error in the estimated TMRCA than random STRs. In the British context, we

extend our model to include additional information such as the haplogroup status

(as determined from single nucleotide polymorphisms, SNPs) of the pair of males,

as well as the frequency and origin of the surname. In general, the effect of this

is to reduce estimates of the TMRCA for pairs of males with an older TMRCA,

typically outwith the period of surname establishment (about 500-700 years ago).

In the genealogical context, incorporating surname frequency (within the prior dis-

tribution) results in lower estimates of TMRCA for pairs of males who appear to

have diverged from a common male ancestor since the period of surname establish-

ment. In addition, we include uncertainty in the years per generation conversion

factor in our model.

Keywords: Y-chromosome, surname, most recent common ancestor, haplotype,

haplogroup, British, genealogy, short tandem repeat, generation.
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Chapter 1

Introduction

“Where do we come from?”

It is a question that has been asked throughout the ages whether on philosophical,

religious, scientific or even artistic grounds. Modern man seems no less interested

in this question, but may often seek a genealogical response in order to learn about

their ancestry. In many cultures there is a correlation between Y-chromosomes

with surnames allowing the inference of the time to a most recent common an-

cestor (TMRCA) for pairs of males. This thesis aims to develop a model for the

estimation of TMRCA and explore the factors which affect this parameter.

1.1 Context

1.1.1 Genetics

The genetic make-up of humans consists of 23 pairs of chromosomes (fig. 1.1);

22 pairs of homologous chromosomes called autosomes and a pair of sex chro-

mosomes which define the sex of an individual. Hence females possess two X

chromosomes (XX) whilst males have one X chromosome and one Y chromosome

(XY) thus making the Y-chromosome exclusively male. Additionally there are

organelles called mitochondria, which help provide energy for the cell they are

within. Their DNA is referred to as mitochondrial DNA (mtDNA). In contrast

to DNA from the Y-chromosome (Y-DNA), which is passed down the paternal

line, mtDNA is maternally inherited. Y-DNA will be the focus of this thesis.

1
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Figure 1.1: Karyotype of human male (Martin, 2003)

The double helix structure in

a single chromosome may be

represented by two rows (or

‘strands’) of the letters A,

C, G and T, respectively the

nucleotides adenine, cytosine,

guanine and thymine, with

the base pairs A with T al-

ways appearing together on

the two strands and also C

with G, i.e. the first row is

complementary to the second

row of letters. Note usually

only one strand of each chromosome is typed or sequenced and the other is known

due to the complementary base pairing. In figure 1.2 we use this representation

to depict a short length of Y-DNA from two different males and highlight two

types of markers, namely a microsatellite and a single nucleotide polymorphism

(SNP, pronounced as “snip”), which are both variable at the population level. The

SNP is the single position highlighted in blue in figure 1.2, i.e. a difference 10 bases

from the left where male 1 possesses A-T, whilst male 2 has G-C. SNPs are usually

bi-variate e.g. there are two forms (‘alleles’) A and G on the typed strand, which

due to the double helix structure are equivalent to T and C on the complementary

strand. The longer length microsatellite or short tandem repeat (STR) is shown

in red, with male 2 possessing seven repeats of TAG while male 1 only has five

repeats.

In general STRs are DNA sequences that involve up to 50 repeats of sequences of

length 2-6 base pairs, e.g. GATn would mean n repeats of the bases GAT. These

were discovered in humans in 1989, although identified as a subset of variable num-

ber of tandem repeats (VNTRs) found in 1985 (Butler, 2005; Jobling et al., 2004).

SNPs were also discovered during the 1980s as biallelic restriction fragment length

polymorphisms (RFLPs) (Collins et al., 1999). A SNP is simply a single base poly-

morphism due to a base substitution or the insertion or deletion of a single base

(Jobling et al., 2004). Crucially SNPs have a much lower average mutation rate
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Figure 1.2: DNA sequence with SNP and STR highlighted in Y-chromosome.
Adapted from Sharif (2007)

than STRs, 2.5×10−8 versus 2×10−3 mutations per marker per generation (Jobling

et al., 2004), an aspect that will be discussed and examined in depth in this thesis.

Figure 1.3: Non-recombining portion of the
Y-chromosome. Adapted from Sharif (2007)

The Y-chromosome is one

of the smallest chromosomes

composed of an average 60

million base pairs (Jobling

et al., 2004) which impor-

tantly contains a non-recombining

portion (NRY, fig. 1.3). To

appreciate the significance of

this it must be realised that,

of the two copies of each chromosome in humans, one has been transmitted

from the mother via her egg and the other from the father via his sperm. In

forming the egg and sperm cells, the parents’ normal cells undergo meioses dur-

ing which recombination may occur. It is essentially the process by which seg-

ments of DNA are exchanged between homologous pairs of chromosome and

also the sex chromosomes as shown in figure 1.4. This occurs in every gen-

eration and more often at certain places along chromosomes called recombi-

nation hotspots (Jobling et al., 2004). Importantly however in the case of
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males, recombination of the XY-chromosomes is limited to the pseudoautoso-

mal region on the tips (Cooke et al., 1985; Gusmão and Carracedo, 2003), thus

the Y-DNA in the NRY passed down from a father to his sons will largely

remain identical but for the variability of markers such as STRs or SNPs.

Figure 1.4: Recombination of the sex
chromosomes. Adapted from Sharif (2007)

The lack of recombination

means that Y-DNA is usu-

ally treated as being neu-

tral in population studies

but Jobling and Tyler-Smith

(2000) argue it may be posi-

tively selected due to its effect

on fecundity and conversely

negatively selected through

infertility.

SNP sites where data may

be collected from each male

are referred to as SNP loci

and sampled men can be sepa-

rated into two groups accord-

ing to the typed allele present

at a particular SNP locus.

Typing many SNPs can seg-

regate men with similar pro-

files into clusters referred to

as haplogroups. For example based on Y-DNA SNPs there are over 150 hap-

logroups: the major haplogroups/clades are shown in figure 1.5 (Karafet et al.,

2008). This is a phylogenetic tree i.e. a branching diagram of the inferred relat-

edness of the haplogroups based on commonly shared SNPs. It is analogous to a

family tree, thus the tips represent the descendants, whilst internal connections

(‘nodes’) are treated as the most recent common ancestor. In Europe the R1 hap-

logroup is common and its tree is shown in figure 1.6. In particular the haplogroup

R1b1 shows a gradient (‘cline’) across Europe with a relative frequency near one

(‘fixation’) in western Ireland (Hill et al., 2000). SNP profiling informs us of the

deep evolutionary ancestry of males ‘stretching back to tens of thousands of years’

(Pomery, 2007). On the other hand, STR profiles called haplotypes can describe
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Figure 1.5: Y-chromosome SNP tree (Karafet et al., 2008)

more recent ancestry. In addition it is possible to infer haplogroup membership

based on the haplotype for some populations (Moore et al., 2006). Both SNPs and

STRs are of potential use to those wishing to research their genealogy although the

latter are particularly informative for those researching their historical ancestry

to the 16th century (Heyer et al., 1997; Pomery, 2007).

1.1.2 Genetic typing of STRs

DNA typing involves the following steps:

1. Collection

2. Extraction

3. Quantification

4. Amplification

5. Separation

6. Detection
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Figure 1.6: Y-chromosome R1 haplogroup tree (Karafet et al., 2008)

Genetic testing involves the typing of DNA from cells, usually obtained by sweep-

ing a swab on the inside of the cheek (buccal swab) but also from samples of

blood, semen and saliva in a forensic context (Butler, 2005; Vermeulen et al.,

2009). The DNA may then be extracted from the samples by several methods: or-

ganic extraction, Chelex extraction, FTA (Fitzco/Flinder technology agreement)

or solid-phase extraction. The latter seems to be favoured due to the ease of

automation involved. The resultant DNA is then suitable for Polymerase Chain

Reaction (PCR) amplification, a method used to increase the amount of DNA

from a specific region. Prior to this, the DNA may undergo quantification in order

to determine the amount of useful DNA, particularly when dealing with forensic

samples, though for the purpose of lineage testing this may not be necessary. How-

ever due to the need for the amount of DNA to be within an optimum range some

commercial PCR methods have been developed that allow integral quantification

such as TaqMan (Butler, 2009).

PCR is an enzymatic process that requires many components and reagents which

cause sets of specially designed primers to bind onto the complementary non-

variable regions of DNA that flank an STR which are then replicated over and
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over (fig. 1.7; Butler (2009)). Usually labelled 3’ (pronounced “3 prime”) and

5’ for each end surrounding the marker, primers are typically of length 18-24

bases. Theoretically PCR can produce over 1 billion copies of the target DNA

by a number of cycles of rapid cooling and heating. Multiplex PCR involves

simultaneous amplification of several loci.

Figure 1.7: STR primer

The resulting PCR products may then be separated using either gel or capil-

lary electrophoresis. Electrophoresis essentially allows separation of different sized

PCR products by applying an electric field, which will pull shorter fragments

further along than longer fragments. Gel electrophoresis involves placing PCR

products along with a dye into loading wells contained on a gel slab which is cov-

ered in an electrophoresis buffer. Once the electric field is switched off, the samples

remain fixed and the dye allows the end result to be detected and photographed

although traditionally radioactive labels would have been used to produce images

such as figure 1.8.

Figure 1.8: Gel electropherogram
(Tucker, 2010)

Today, capillary electrophoresis (CE) is

widely used due to its automated collec-

tion of samples, ease of use and reduc-

tion in work due to cleaning and prepar-

ing gel slabs (Butler, 2009). Also un-

like using gels, CE measures the time

taken for a fluorescent dye-labelled sam-

ple to pass though the capillary to

the laser detection point. Often the dye is attached to the primers used

to amplify the region and different coloured dyes may be used to de-

tect carefully chosen multiplex PCR products (Butler et al., 2004). The
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data collected by laser is then processed by computer software which sep-

arates the data from different dyes (in the case of multiplex PCR) and

plots the spectrally resolved relative fluorescence intensity (RFU) against PCR

product size which has been converted from the measured time (fig. 1.9).

Figure 1.9: CE multiplex PCR results
(Contexo, 2009)

Importantly, both gel and CE re-

quires the use of allelic ladders:

the PCR results are compared to

those obtained from fragments of

known size to allow the number of

repeats in samples to be accurately

reported. Figure 1.10 shows the

Y allelic ladders for the Promega

PowerPlex R©. Sometimes results

may be reported that are outwith

the ladder or off-ladder, i.e. below-ladder, above-ladder or between-ladder, repre-

senting alleles that are not exact multiples of the length of the repeat unit (Butler,

2009). Given that the range of allelic ladders may differ across commercial com-

panies and laboratories, results reported as off-ladder by one company/lab may

be designated a specified repeat number by another. Also ‘stutters’ may also be

present in an electropherogram, which are essentially artefacts of PCR slippage

and typically appear to be one repeat length shorter than the true allele (Walsh

et al., 1996) but with only 10-20% the intensity/height of the true allele. Laborato-

ries usually apply universal stutter filters to allow results to be clearly interpreted

without masking the potential of mixed samples being detected (Butler, 2009).

Figure 1.10: Promega PowerPlex R©Y allelic ladder (Butler and McCord, 2006)
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In addition, the phenomenon of ‘null alleles’ may occur whereby samples fail to

amplify due to a mutation in the primer binding site, usually at the 3’ end which

may manifest itself as allele dropout, i.e. no result is reported (fig. 1.11). This

may be detected by use of alternative primers (Butler, 2009).

Figure 1.11: Null allele

Thus, in general, well-designed primers are key to the successful amplification of

STRs. In particular STRs may be classified into different categories based on the

results obtained by PCR and subsequent detection. Broadly speaking, STRs may

be defined as either single or multi-copy markers. A single result is reported for a

single-copy marker based on specific primers (fig. 1.12a). On the other hand, when

more than one repeat length is reported, this will be referred to as a multi-copy

marker(fig. 1.12b). In addition the lengths may not all involve the same repeating

unit. Consequently there may be the problem of locus assignment particularly

when the range of the repeat lengths reported overlap for different repeat units.

Figure 1.12: STR copy types: a. single copy marker b. Multi-copy marker

In addition, STRs may be classified as simple, complex or multiple complex mark-

ers based on the nature of the repeating unit. A simple marker is one which consists

of a single repeating unit with no interruptions and thus is easily interpreted. For
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example DYS388 consists simply of the repeating unit (ATT)n as shown in figure

1.13a (Gusmão et al., 2006). A complex (also referred to as ‘compound’ by Gunn

(2009)) marker also consists of a single repeating unit but it may contain another

repeat pattern or an interruption. DYS19 is an example of such a marker which

has the unit TAGA repeated three times with the interruption TAGG thereafter

the variable repeats of TAGA (fig. 1.13b).

Figure 1.13: Varying complexity of STRs

Multiple complex markers (referred to as ‘complex’ by Gunn (2009)), on the other

hand, consist of two of more repeating units which may or may not be interrupted

or contain another repeat pattern. In figure 1.13c DYS389II illustrates this type

of marker. Due to the complexity of this class of markers it may be difficult to

assign which reported lengths are associated with the various repeat units in the

marker without doing sequence analysis, particularly when the lengths reported

are the same for each repeat unit.

Many favour the use of commercial kits such as AmpFlSTR c©YfilerTM(Applied

Biosystems) which amplify 17 Y-STRs (DYS456, DYS389I, DYS390, DYS389II,

DYS458, DYS19, DYS385 a/b, DYS393, DYS391, DYS439, DYS635, DYS392, Y

GATA H4, DYS437, DYS438, DYS448) and PowerPlex Y system (Promega Cor-

poration) which amplifies the European minimal haplotype (DYS19, DYS385a/b,
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DYS389I/II, DYS390, DYS391, DYS392, DYS393: Kayser et al. (1997)) as well

as DYS437, DYS438 and DYS439.

However, there has been a trend to type simple single-copy Y-STRs recently (Lim

et al., 2007; Vermeulen et al., 2009), for several reasons: the structure of the mark-

ers are simple, only one result is reported per marker and the European minimal

haplotype is not as variable in other populations. Hence results are relatively

straightforward and easy to interpret.

1.1.3 Genealogy

Genealogy may be described as “the study of the history and lineage of families”

(Robinson and Davidson, 2003). Historically it has remained the domain of the

ruling classes or nobility usually for the purpose of the distribution of inheritance

or power. However by the late 20th century genealogy became of wider public

interest. The role of the World Wide Web in the last 20 years has been profound.

Figure 1.14: Graphical representation of a family tree (circle: female, square: male)

Traditional, genealogy involved reconstructing family trees of a living descen-

dent(s) back in time, such as that shown in figure 1.14, based on studying written

records such as a family Bible, parish records, wills, census returns, poll books

and electoral registers, often involving manual cross referencing of names along-

side dates and places of birth, marriage and death found in civil registers (Willis,

1970). Online genealogy operates in much the same way, with several benefits for

both genealogists and holders of public archives. The Internet is accessible by over

1.7 billion people today, having grown over a hundred fold since 1995 (Internet
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World Stats, 2010), making it an ideal conduit for the release of public archives

without the disadvantage of damage to primary sources. Crucially it provides

relatively easy and affordable access to a far wider audience without the need for

travel, which was almost a necessary feature of genealogy traditionally (Christian,

2009).

Genealogy online began as early as 1983 with the newsgroup nets.roots and the

mailing list ROOT-L in 1987 (Christian, 2009). Since the public launch of the

World Wide Web in 1991 (GENUKI, 2010), there has been a gradual increase in

the availability of information useful for genealogists largely due to commercial

efforts but also with pressure from governments for public access. For example the

1911 UK census saw an early release online (Powell, 2009). Despite having to pay

for access, these websites appear popular e.g. Ancestry.com, the market leader in

online family history allowing searchable access to e.g. census returns and birth,

marriage and death records, has almost a million subscribers worldwide, with nine

regional websites (Ancestry.com, 2010) and web traffic of over five million unique

visitors per month (Compete Inc., 2010). Furthermore Time magazine argues that

‘root seeking’ is as popular as searching ‘sex, finance and sports’ on the Internet

(Hornblower et al., 1999).

Yet the popularity of genealogy is not limited to the Internet. In the UK television

programmes such as the BBC’s “Who do you think you are?”, where celebrities are

on the quest to trace part of their ancestry, have proved popular with audiences

since 2004 (Rodgers, 2009) giving rise to various international versions including

one in the US (NBC, 2010).

1.1.4 Surnames

Patrilineal surnames are surnames passed down from a father to his children with

his sons then repeating this process and so on. In this respect surnames are

cultural markers akin to genetic markers on the Y-chromosome, indeed Manni

et al. (2005) argue that patrilineal surnames are like ‘neutral alleles of a gene’ on

the Y-chromosome. However not all surnames are passed down in this manner. For

example, in Iceland, surnames are based on the father’s forename (Jobling, 2001).

The establishment of surnames has varied across the world e.g. the Emperor Fu

Xi standardised surnames in China approximately 5000 years ago while in Turkey

surnames were legally imposed on its citizens as part of Ataturk’s reforms in 1934
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(Aslan, 2009). On the other hand in Japan only the ruling classes had surnames

which were adopted ∼800 years ago with the masses obtaining surnames ∼140

years ago (Jobling, 2001).

Surnames in Britain were introduced after 1066 following the Norman Conquest,

though the surnames were not necessarily hereditary, rather used as a means of

identification and referred to as by-names. In Normandy, surnames had only been

hereditary for a few generations prior to the Conquest and even then were limited

to the nobles. Thus surnames first spread through the wealthy in Britain and

by the mid 13th century most large and medium landowning families possessed

hereditary surnames largely derived from place names (McKinley, 1990). Often,

however, younger branches of such families may have established new surnames of

their own. In the other classes, although surnames were recorded between 1150-

1250, it was not till the mid 14th century that over 50% of the population had

surnames. By the 13/14th century surnames, which began as by-names started to

become hereditary. Thus, hereditary surnames were established in Britain between

500-700 years ago. The evolution of surnames prior to the 16th century was largely

traced through taxation lists, title deeds and manorial records which were much

more thorough in England than in Wales or Scotland. By 1538 parishes were

required to keep records of baptisms, marriages and burials by order of Thomas

Cromwell (Willis, 1970). It is important to note that since education was limited

in the 17th and 18th centuries few knew how to read or write and as a consequence

surnames were often written phonetically: for example ‘Willis’, ‘Willes’, ‘Wyllys’,

‘Willys’, ‘Wilis’, ‘Willowes’, ‘Willic’, ‘Wilice’ refer to the same name (Willis, 1970).

Indeed even by the early 19th century spellings of surnames were not standardised

(McKinley, 1990). Subsequently for those tracing a particular surname, variant

spellings need to be considered, but with caution: it is possible to confuse different

surnames as being derivatives when they are not (McKinley, 1990).

Britain has over 1.6 million surnames in current use (King and Jobling, 2009b)

though earlier research puts this figure at just over 800,000 (McElduff et al., 2008).

Nonetheless this is largely attributed to recent migrations with only 420,000 in use

at the time of the 1881 census (King and Jobling, 2009b). The origin of a surname

is said to be the most important factor influencing the geographic distribution

of a surname and by extension the frequency (Plant, 2009). Broadly speaking

surnames in Britain may be classified into six categories according to McKinley

(1990):
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• Locative surnames: These are based on place names e.g. London, Doncaster,

Kendal. Whilst some locative surnames may be from unique place names,

others may be based on the name of more than one locality, for example

Norton, Kirkby or Ashby. However a great many locative surnames are

based on the names of single places and are rare even today (McKinley,

1990).

• Topographical surnames: Surnames derived from natural or man-made land-

scape features. For example, the surnames Hill, Brooks and Marsh fall into

the former class whilst Fields, Styles and Bridge belong to the latter.

• Personal surnames: These are based on first names, such as Paul, Peter

and James, including their pet forms and diminutives. They also include

surnames based on male forenames i.e. patronymics. For example, those

surnames ending in ‘son’ or beginning with ‘Fitz’ or ‘Mac/Mc’. Welsh sur-

names beginning with ‘Pr’ such as Probert, Pritchard and Price also fall into

this class. Metronymics are also included here e.g. Maud, Eve and Marget-

son. Personal surnames tend to be rather common and are unlikely to have

originated from single families (McKinley, 1990).

• Occupational surnames: Usually based on crafts or trades e.g. Smith, Tay-

lor or Cooper, which are very common and early on had a rather dispersed

distribution across the country since every town/village would usually re-

quire at least one individual to fulfil such crafts or trades. Rank/ status or

office-based surnames are also included in this category e.g. Freeman, Squire,

Bailliff and Hayward. Names of those in high Church or state positions are

also incorporated here, surnames such as Bishop, Abbot or King. However

with the relative prevalence of such surnames, it is often difficult to decide

whether they were based on nicknames rather than official jobs.

• Nickname-based surnames: These are derived on either physical or moral

characteristics as well as expressions for example Long, Malvoisin (French:

‘Bad neighbour’) and Goodenough, respectively. This class also includes

those surnames based on terms for birds, mammals and fish e.g. Hawke, Fox

and Herring.

• Surnames of relationship: This minor category of surnames is based on fa-

milial relationships. Examples include, Cousins, Brothers or Fadder.

Importantly many surnames origins may be unknown or indeed may not fall into

any of the above categories.
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Surname studies are not just of interest to genealogists but also to linguists, his-

torians and more recently geneticists often in a genealogical setting though not

exclusively (Plant, 2009). Surnames are often population or geographically spe-

cific. As such in healthcare, marketing and epidemiological studies, surnames are

often used as an indicator of ethnic origin (King and Jobling, 2009b). In conjunc-

tion with Y-DNA, surnames aide in the study of historical migrations (Bedoya

et al., 2006; Hill et al., 2000; King et al., 2007), admixture (Bowden et al., 2008;

Manni et al., 2005) and non paternity rates (King and Jobling, 2009a; McEvoy and

Bradley, 2006; Sykes and Irven, 2000). In addition there is the potential forensic

application of the association between surname and Y-STRs (Jobling, 2001).

1.1.5 Surname-based Genetic Genealogy

Since patrilineal surnames in males are inherited in the same manner as Y-chromosomes,

from father to son, we expect there may be an association between surname and

DNA type (Jobling and Tyler-Smith, 1995).

Figure 1.15: Surname-haplotype transmission. Adapted from Jobling (2001)

To illustrate this we begin by assuming unique ancestral haplotypes have estab-

lished the surnames X, Y and Z. There will be a close relationship between the
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haplotypes profile of the descendants with each surname despite divergence from

the ancestral haplotypes profile due to mutations (fig. 1.15a). The presence of

particular SNPs may further clarify the origins of the descendants. Indeed this

may be the case for common surnames, e.g. those surnames based on occupations

may have multiple origins each with distinct descendant haplotype profiles which

may or may not overlap. In figure 1.15b we see that those from the first founder

will have the SNP of interest, whilst those descended from the other founders will

not. In this case the haplotype profiles across founders do not overlap. However

in practice they may overlap, even for different surnames despite initially unique

ancestral haplotypes due to the accumulation of mutations (fig. 1.15d). False pa-

ternity, where a child is given a surname other than that of his biological father

either through illegitimacy, adoption or in some cases where the mother’s surname

is passed down (perhaps due to the passing down of land or wealth (McKinley,

1990)), may results in the introduction of different haplotypes or haplogroups to

those of the founder of a surname (fig. 1.15c). The reality is often a combination

of the aforementioned scenarios, though, for rarer surnames, it may be easier to

discern the relationship between males since such surnames may only have a single

founder.

Thus the Y-DNA surname correlation may be affected by:

• Non-paternity transmissions (NPT) due to illegitimacy, adoption, deliberate

surname change or adoption of mother’s surname.

• More than one surname founder.

• Mutations (on STR markers in particular).

• Genetic drift which can result in increasing the frequency of some haplotypes

or equally causing others to become extinct.

In addition, Jobling and Tyler-Smith (2000) generalise that Y-chromosomes within

a population tend to be closely related as a consequence of sons usually living closer

to their parents than their daughters. Hence there may be both geographical and

social clustering of haplotypes.

This conjunction of shared surname with Y-DNA provides a powerful tool to ge-

netic genealogists and may often be used to complement conventional genealogical

techniques whereby genealogies may be extended further or even excluded by com-

parison of genes from male descendants. Statistical models have been developed

which aim to quantify the time to a most recent common ancestor (MRCA) for
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Figure 1.16: Graphical representation of the tracing of two male lineages to their
MRCA (circle: female, square: male)

pairs of males using Y-STRs particularly in the absence of genealogical informa-

tion. In a trivial example, in the family tree shown in figure 1.16 the extent of the

genetic relationship between the two male grandsons highlighted in blue could be

examined. This would reduce to the graphical representation in figure 1.17 and

the time to the MRCA is 2 generations.

Figure 1.17: Graphical representation of the time to MRCA

In order to quantify the time to the MRCA for pair of males, Y-STRs are typed

such that the data will be the absolute difference in the number of repeats of each

STR as shown in table 1.1. Here we see that both males have the same number of

repeats of DYS392 (14), whilst at DYS19 the males differ by 1 repeat. The data in

this instance is 0-1-0 for the three markers and in general the more closely matched

the markers are the higher chance of sharing a recent male common ancestor. Thus

in surname based genetic genealogy the time to the MRCA (TMRCA, t) is usually

the quantity of interest. Estimates of TMRCA can be affected by a number of

factors. For example, the number of markers typed, the rate at which mutations

occur and the number of surname founders.
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Table 1.1: STR data

DYS392 DYS19 DYS388

Repeats in male 1 14 16 13
Repeats in male 2 14 15 13

Difference in repeats 0 1 0

As a consequence of this novel use and the general popularity of recreational geneal-

ogy there has been a proliferation of genetic testing companies many specialising

in typing Y-DNA and examining its association with surnames; over 15 were re-

searched for the purpose of this thesis (see Cyndi’s List (2012); Herbert (2009) for

current comparisons/companies). A summary of the major companies at the start

of 2010 is given in table 1.2. Although the range of the number of markers typed

varies considerably e.g. African Ancestry only offers 8 Y-STRs (African Ancestry,

2010) whilst Genebase offers as many as 91 markers (Genebase, 2010), the average

number of Y-STRs tested is 32 (31.77) across the companies detailed. Some com-

panies only disclose which markers they type to customers, though most include

the European minimal haplotypes as well as those markers typed on commercial

Y-STR kits by either Applied Biosystems or Promega.

Of the five genetic testing companies listed that run surname projects, three pro-

vide some measure of TMRCA. DNA Heritage and GeneBase both appear to

provide estimates based on the research by Walsh (2001) which will be discussed

further in chapter 2. Family Tree DNA (FTDNA) is affiliated with both Bruce

Walsh and Michael Hammer (Family Tree DNA, 2010). Their TMRCA calculator,

FTDNATiP, operates using specific mutation rates for 37 markers whilst an aver-

age mutation rate is used for the remaining 22 markers. The specific rates have

been based on over 130,000 meioses. FTDNA claim to have just as powerful results

using only the 37 markers with specific mutation rate to using 56 markers with

an average mutation rate of 0.004 mutations per marker per generation or indeed

using 110 markers with average mutation rate of 0.002. In addition FTDNATiP

allows the user to specify genealogical information such as time in generations

when the earliest possible common ancestor may have lived.

In addition Ancestry.com provide estimates of TMRCA for their users based on

both the number of matches and an average mutation rate of 0.0028 across all

markers (Ancestry.com, 2010).
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Table 1.2: Y-chromosome testing companies

Genetic Testing Company No of Markers Cost
Surnames
Projects

Family Tree DNA
12 (inc. Family Finder) $299

Yes37 $169
67 $268

DNA Heritage
23 $137.77

Yes43 $199.00

’A la Carte’ min. 23 Markers
$5.99 per
marker

Oxford Ancestors 15 £180 Yes

African Ancestry 8 and YAP $ 299 No

Gene Tree DNA Testing Center
33 $149

No
46 $179

Ethnoancestry 27 plus SNPs $399 No

National Genographic Project 12 $99.95 +pp No

AncestrybyDNA 14 $99 No

iGENEA
12 129 Euro

Yes37 169 Euro
67 259 Euro

Genebase

20 $119

Yes
44 $ 199
67 $ 269
91 $ 339

Paternity Experts 17 $79 No

Roots for Real 11 £195 No

Cambridge DNA Services 11 £150 No

Ancestry.com
33 $99

No
46 $149

There is the potential for collaboration between recreational genealogy, with its

abundance of data, and academia. For example, Sims et al. (2009) made use of a

genetic genealogy database to refine the haplogroup G phylogeny. However sam-

pling bias may be inherent in the non-academic setting and, although commercial

Y-STR tests have a higher resolution, this is coupled with the increased chance of

typing errors and discovering mutations between close relatives (King and Jobling,

2009b). Downsides to the use of genetic genealogy particularly in a recreational

setting include the unwitting identification of anonymous DNA donors, of non-

paternity events (Williams, 2005), of infertility (King et al., 2005) and of erroneous

membership to historical Y-lineages (King and Jobling, 2009b).

A well-publicised case of a fifteen-year-old boy discovering the identity of his bi-

ological sperm donor father highlights the first drawback (Motluk, 2005). The

use of the donor father’s date and place of birth and college degree together with

finding same surname matches to his Y-DNA haplotype from a genetic genealogy

database led him to find his father. This use would be considered a violation of
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privacy especially in the US, where sperm donors are afforded anonymity. Indeed

this cross referencing of DNA haplotypes with public databases has also been used

to identify the surnames of DNA donors for genetic studies (Gitschier, 2009).

Deletions of part of the AZF gene on the Y-chromosome are associated with male

infertility. Since the AZFa region contains DYS434, DYS435, DYS388, DYS436

and the popularly typed STRs DYS389, DYS437, DYS438 and DYS439 infertility

may be inadvertently revealed to males returning a null allele at the given markers.

Tracing lineages to well-known historical individuals or populations is often a key

selling point by many Y-DNA testing companies which exploit academic inferences

about the DNA of, for example, Thomas Jefferson, Genghis Khan, the Irish Ui

Neill and the Jewish Cohanim (Foster et al., 1998; Moore et al., 2006; Thomas

et al., 1998; Zerjal et al., 2003). In order to ascertain the ancestral Y-DNA, STRs

are typed from putative living descendants typically, though typing STRs from

archaeological skeletal human remains has also proved fruitful in some contexts

(Gerstenberger et al., 1999; Marjanovic et al., 2009). This is however generally

disapproved of in the wider genealogical community.

1.2 Y-Chromosome Databases

Eight different Y-DNA databases were researched of which four were genealogi-

cal databases, three were forensic and one academic (table 1.3). There may be

some overlap in the databases: YMatch (YMatch, 2010) was developed under the

auspices of DNA-Fingerprint which is now a subsidiary of FamilyTree DNA and

the PowerPlex Y-Haplotype database maintained by Promega has been added to

the US National Y-STR haplotype database though the original database is still

available to search online. The forensic databases all return population group

affiliation. The only academic database (Y Chromosome Haplotype Reference

Database, 2008) has a multi-stage process for data inclusion, including that the

results are published academically. The database by Sorensen Molecular Geneal-

ogy Foundation (SMGF, 2010) has an inherent verification process for data to

be included. This requires DNA to be typed either by themselves via Sorensen

Genomics or through GeneTree, a genetic testing company. In addition they re-

quest participants to include a detailed family tree which they verify. SMGF also

provide TMRCA estimates which are based on the number of matches and does

not take into account the size of any mismatches. It also appears to incorporate
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site-specific mutation rates, though details of this are unclear. Access to their

database is restricted to registered users unlike all the other databases. All the

remaining genealogical databases allow unverified public submissions subject to

human error. In general all the genealogical databases have more markers avail-

able to search compared to the non-recreational databases which allow at most 17

Y-STRs.

In addition ancestry.com has a publicly searchable surname database with very

limited data. Members are afforded further information of matches and are allowed

to input DNA results obtained from elsewhere. A members-only database is also

available on Oxford Ancestors. Given the nature of the restricted access of these

databases it is difficult to assess their content clearly. Other genetic genealogy

websites may offer database access though this is not always clearly advertised.
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Table 1.3: Y-DNA databases

Name Affiliations/Sponsors No. of Y-STRs Typea Search Fieldsb Database Submissions Populationsc

YSearch FamilyTreeDNA 100 G S, Ht, Hg Unverified Public W
YBase DNAHeritage.com 49 G S, Ht, Unverified Public W

YMatch DNA-FingerPrint.com 99 G Ht, C, Hg Not available N
Y Chromosome Haplotype Reference Database 17 & 57 Y-SNPs A Ht, Hg, P, Ct Academic publications E

YFiler Applied BioSystems 17 F Ht Forensic W
PowerPlex Y Haplotype Database Promega 12 F Ht, P Forensic N

SMGF GeneTree.com 42 G S, Ht Verified via GeneTree W
US Y-STR Database 11-17 F Ht, P Verified Forensic Laboratories & Institutions US

aG: genealogical, A: academic, F: forensic
bS: surname, Ht: haplotype, Hg: haplogroup, C: country, P: population, Ct: contributor
cW: worldwide, E: primarily European, US: primarily US, N: not specified
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1.3 Bayesian Inference

At this stage it is important to outline the statistical framework in which we aim

to infer the parameters in the model we develop since it is employed throughout

this thesis.

Bayesian statistics requires forming a full probability model, which expresses the

joint probability distribution for the observed data (including effects arising from

how the data were collected) and unobserved parameters. From this we may derive

the conditional probability of the unobserved parameters given the observed data,

i.e. the posterior distribution (Gelman et al., 2004). We will use the following

notation to outline standard Bayesian theory:

• y: the vector of observed data

• θ: the vector of unobserved or unknown parameters

• p(θ): the prior or marginal distribution of θ

• p(y): the marginal distribution of y

• p(θ, y): the joint distribution of both θ and y

• p(y|θ): the sampling distribution, i.e. the conditional probability of y given

θ

• p(θ|y): the posterior distribution, i.e. the conditional probability of θ given

y

The joint probability of the data and parameters may be written as:

p(θ, y) = p(y|θ)p(θ). (1.1)

Bayes’ theorem allows the determination of the posterior distribution and may be

written as follows:

p(θ|y) = p(θ, y)

p(y)
=

p(y|θ)p(θ)
p(y)

∝ p(y|θ)p(θ). (1.2)

We aim to learn about the parameters of interest through p(θ|y). The observed

data may be modelled in terms of certain parameters, θ, which in turn are condi-

tional on further parameters, φ, so called hyperparameters (Gelman et al., 2004).

These have a separate prior distribution, p(φ), distinct from the prior on θ, which
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is conditioned on φ. The joint prior on θ and φ is:

p(φ, θ) = p(θ|φ)p(φ). (1.3)

The joint posterior distribution is written as:

p(φ, θ|y) ∝ p(y|θ, φ)p(φ, θ)
= p(y|θ)p(φ, θ). (1.4)

This may be naturally extended to include several levels in the hierarchy necessary

in hierarchical modelling.

Point estimates for the parameters in θ may be obtained by calculating the mean

or mode of the posterior distribution. In addition we may compute the credible

region or posterior standard deviation to quantify the uncertainty in the point

estimates.
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Background

2.1 Estimate of Time to the Most Recent Common

Ancestor

Walsh (2001) has been the main source cited amongst the genealogical circles to

estimate the time to the most recent common ancestor (TMRCA) for pairs of males

using microsatellite data (DNA Heritage, 2010; Family Tree DNA, 2010; Genebase,

2010). The author presents two different methodologies, which incorporate the

coalescent model, to estimate the time to the MRCA for haploid markers such as

those found on Y-DNA and mtDNA. Both methods assume that n loci are typed

on the pair of individuals who have diverged from a common ancestor t generations

ago (fig. 2.1).

Figure 2.1: The time to the most recent common ancestor

25
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The first model outlined is the infinite alleles model (IAM) which uses the following

notation:

• n total number of microsatellite loci,

• k total number of matches (such that k ≤ n),

• µ probability of a mutation (per generation per locus),

• t time to the MRCA.

The model considers only the number of matches and not the size of the difference

(in the number of repeats) between the pairs of markers that do not match and

importantly assumes that markers match only when there have been no mutations.

Consequently recurrent mutation such as parallel and back mutations are not

considered. Parallel mutations are mutations with the same size and direction

occurring on both lineages from the MRCA as shown in figure 2.2 where an increase

mutation occurs at a single marker on both lineages, which as a result have the

same repeat length once typed.

Figure 2.2: Parallel mutation

On the other hand, back mutations involve two mutations of the same size but

opposite direction occurring on a single lineage. For example, in figure 2.3, we see

that an increase mutation in lineage 2 is wiped out by a later decrease mutation. In

this case the typed marker on both lineages does not differ despite the mutations.

The number of mutations between the two males at one locus in the IAM, Y , is

distributed as a Poisson distribution with rate 2tµ:

P (Y = y) = e−2tµ (2tµ)
y

y!
.
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Figure 2.3: Back mutation on male 2 lineage

A marker matches when Y = 0, so that

P (match) = P (Y = 0) = e−2tµ (2tµ)
0

0!
= e−2tµ. (2.1)

Walsh (2001) models the number of matches k with a binomial distribution, i.e.

K ∼ Bi(n, e−2tµ). So

P (K = k|n, t) =
(
n

k

)
(e−2tµ)k(1− e−2tµ)n−k (2.2)

This is the likelihood of t. The maximum likelihood estimator (MLE) of t, t̂, is

t̂ = −2µ ln
k

n
(2.3)

The MLE of t does not appear to be very informative as it is upwardly biased,

has high variance and produces asymmetric confidence intervals around t̂. In

particular, k = n, the t̂ = 0. Hence Walsh employs a Bayesian approach to form

the full posterior distribution for t under the IAM.

Assuming the coalescent model, we have the following prior for t,

p(t|λ) = λe−λt, (2.4)

where λ = N−1
e and Ne is the effective population size (Hein et al., 2005).



Chapter 2. Background 28

So the posterior in this case is:

p(t|k) ∝ P (k|n, t)p(t|λ)
∝ e−2tµk(1− e−2tµk)n−kλe−λt (2.5)

from (2.2) and (2.4).

The normalised posterior density can be obtained by integration:

p(t|k, λ) =

n−k∏
i=0

[λ+ 2µ(n− i)]

2n−k(n− k)!µn−k

(1− e−2tµk)n−k

e(−2tµk+λ)t
. (2.6)

Walsh graphs the posteriors and tabulates summaries of the posteriors for n =

5, 10, 20, 50, 100 and various numbers (n− k) of mismatches, using µ = 0.002 (per

locus per generation) and a flat prior (λ = 0).

Next Walsh extends this model to allow for variable mutation rates across the n

loci where the data at the kth locus (k = 1 . . . n) are represented as:

xk =

{
1 match at kth locus,

0 mismatch at kth locus.

The likelihood of t is:

L(x1, . . . , xn|t) =
n∏

k=1

qk(t)
xk [1− qk(t)]

1−xk , (2.7)

where

qk(t) = (1− µk)
2t ≃ e−2tµk (2.8)

is the probability of a match at locus k. Substituting (2.8) into (2.7) gives:

L(x1, . . . , xn|t) = exp

[
−2t

n∑

k=1

µkxk

]
n∏

k=1

(
1− e−2tµk

)1−xk (2.9)

So that the posterior density using the prior (2.4) is

p(t|k) ∝ P (k|n, t)p(t|λ)

∝ exp

[
−t

(
λ+ 2

n∑

k=1

µkxk

)]
n∏

k=1

(
1− e−2tµk

)1−xk . (2.10)
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Now, since the IAM does not take into account mutations that are essentially

wiped out, the method will underestimate t for older times so Walsh determines

to what extent the IAM underestimates by using an alternative method based on

the stepwise mutation model (SMM) of Ohta and Kimura (1973). Rather than

modelling the data as having descended from the MRCA, this model assumes a

directionality in the formation of the mutations from one male to the other as

shown in figure 2.4, where this process occurs from male 1 to male 2. As such the

model treats mutations at STRs as a random walk with an equal probability of

increasing or decreasing the number of repeats. The notation used in this case is:

• µ probability of a mutation (per generation per locus)

• n+ total number of increase mutations

• n− total number of decrease mutations

• t time to the MRCA

Figure 2.4: Directionality of SMM

For example in the graphical representation in figure 2.5 we have observed data

for Male 1 of 15 repeats at a particular locus. Moving from male 1 to male 2, there

are in total 6 decrease mutations and 4 increase mutation resulting in 13 repeats

of the STR in Male 2.

Figure 2.5: Random walk of an STR from male 1 to male 2

In the SMM the probability of an increase mutation and the probability of a

decrease mutation are equal. So the transition probabilities are:

Pr (X(t+ 1) = i− 1|X(t) = i) = Pr (X(t+ 1) = i+ 1|X(t) = i) =
µ

2
,

Pr (X(t+ 1) = i|X(t) = i) = 1− µ,

Pr (|X(t+ 1)−X(t)| ≥ 2|X(t) = i) = 0, (2.11)
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where X(t) is the repeat length at time point t.

Next the probability of a match given that the MRCA lived t generations ago,

q(t), is derived. This would only be possible if an even number of mutations

occurred i.e. |n+ − n−| = 0 only when n+ + n− = 2m where m is an integer ≥ 0.

Supposing that X is the total number of n+ mutations then X ∼ Bi(2m, 1
2
). So

the probability of n+ = m is

P (X = m) =

(
2m

m

)
1

2

m
(
1− 1

2

)2m−m

=
1

22m
(2m)!

m!2
. (2.12)

In addition, since the probability of 2m mutations occurring in 2t generations is

distributed as a poisson with parameter 2tµ we have:

P (|n+ − n−| = 0|t) =
∞∑

m=0

Pr(|n+ − n−| = 0|2m) Pr(2m|t)

=
∞∑

m=0

(
1

22m
(2m)!

m!2

)(
(2tµ)2m

(2m)!

)
exp(−2tµ)

= exp(−2tµ)

(
∞∑

m=0

(µt)2m

m!2

)
. (2.13)

Given that
∞∑

k=0

x2k

k!2
= I0(2x), (2.14)

where I0 denotes the zero-order modified type I Bessel function (Olver, F. W. J.

and National Institute of Standards and Technology (U.S.), 2010). So, under the

SMM, the probability of a match between two individuals after τ = 2µt generations

at one marker is

q(τ) = exp(−τ)I0(τ). (2.15)

Walsh (2001) compares this match/mismatch SMM to the IAM already discussed

by computing the ratios of their posterior means and SDs for t̂. In general these

statistics are larger under the SMM. If λ is increased from 0 to 1
500

, the difference

decreases so the ratios tend to 1. This effect is explained as follows: increasing

λ essentially means decreasing the effective population size Ne. This reduces the

probability of multiple mutations since the time is reduced.
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The ratios also tend to 1 on increasing the number of markers typed from n = 5

to 100. Walsh argues that happens because under the SMM when there are no

mismatches there is still the possibility of 2 or more mutations having occurred in

one or more markers. The probability of 2 mutations in the same marker is only 1
n

so as n increases the probability of multiple markers being masked decreases since

the occurrence of 2 mutations in the same marker is less likely.

This match/mismatch version of the SMM is sufficient under short times to the

MRCA (t ≪ 1
2µ

) but for longer timescales the information of the size of the

difference at mismatched markers would provide additional information about the

time to the MRCA. Walsh extends the SMM model outlined by again considering

the probability of an even number of differences which will only occur when the

total number of mutations is even, i.e. |n+ − n−| = 2k only when n+ + n− = 2m,

where k and m are non-negative integers. For this to be satisfied n+ = m− k or

n+ = m+ k. So, suppose again that X is the total number of n+ mutations then

X ∼ Bi(2m, 1
2
) and

P (X = m− k) =

(
2m

m− k

)(
1

2

)m−k (
1− 1

2

)2m−(m−k)

=

(
2m

m− k

)(
1

2

)2m

(2.16)

and

P (X = m+ k) =

(
2m

m+ k

)(
1

2

)m+k (
1− 1

2

)2m−(m+k)

=

(
2m

m+ k

)(
1

2

)2m

.

(2.17)

Thus we have

Pr(|n+ − n−| = 2k|2m) = Pr(X = m− k or X = m+ k|m, k)

= 2
(2m)!

(m+ k)!(m− k)!

(
1

2

)2m

. (2.18)

Now in addition the total number of mutations Y = n+ + n− where Y ∼ Po(2tµ)

so that

Pr(Y = 2m|t) = e−2tµ (2tµ)
2m

(2m)!
. (2.19)
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The probability of a 2k difference given t is formed by combining (2.18) and (2.19),

i.e.

Pr(|n+ − n−| = 2k|t) =
∞∑

m=k

Pr(|n+ − n−| = 2k|2m) Pr(2m|t)

=

∞∑

m=k

2

(
2m

m− k

)(
1

2

)2m

e−2tµ (2tµ)
2m

(2m)!

= 2e−2tµ

∞∑

m−k=0

(tµ)2m

(m− k)!(m+ k)!
. (2.20)

Letting m′ = m− k, we can rewrite (2.20) as

Pr(|n+ − n−| = 2k|t) = 2e−2tµ

∞∑

m′=0

(tµ)2m
′+2k

Γ(m′ + 1)Γ(m′ + 2k + 1)
. (2.21)

The summation in 2.21 has the form of as a νth-order type I modified Bessel

function,

Iν(z) =
∞∑

s=0

(z/2)ν+2s

Γ(s+ 1)Γ(s+ ν + 1)
(2.22)

(Lebedev and Silverman, 1972; Olver, F. W. J. and National Institute of Standards

and Technology (U.S.), 2010).

Thus we can rewrite (2.21) as:

Pr(|n+ − n−| = 2k|t) = 2e−2tµI2k(2tµ). (2.23)

A similar argument can be made when |n+ −n−| is odd. Consequently the proba-

bility that at a particular locus the observed absolute difference in the number of

repeats, j, of the microsatellites between two individuals is given by

q(j)(2tµ) = 2e−2tµIj(2tµ) j ≥ 1. (2.24)

Given n loci, we redefine xj to be the number of times we observe j differences

across the n loci. Then the likelihood of t is

L(x0, . . . , xJ |t) =
n!

x0! . . . , xJ !

J∏

j=0

[
q(j)(2tµ)

]xj
, (2.25)

where J is the maximum number of differences observed.
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Applying an exponential prior to t, as before, gives the posterior distribution:

Pr(t|x0, . . . , xJ) ∝
J∏

j=0

[
q(j)(2tµ)

]xj
e−λt

∝
J∏

j=0

e−2tµxj [Ij(2tµ)]
xj e−λt

= e−(2µn+λ)t
J∏

j=0

[Ij(2tµ)]
xj . (2.26)

This model, along with the other two (IAM and match/mismatch SMM), are then

used to examine t̂, i.e. the posterior mode and median, of the modal haplotype

of the Lemba and Cohen from Thomas et al. (2000) employing µ = 0.00245 per

locus per generation and λ = 1/5000 per generation. As well as other markers, six

Y-STRs were typed: DYS19, DYS388, DYS390, DYS391, DYS392, and DYS393.

Four markers matched whilst two mismatched; one by 1 repeat another by 2

repeats. The posterior mean t̂ using (2.26) is 352.5 generations, a slightly lower

value than the match/mismatch SMM value of 394.4 generations. Nonetheless

both are much higher than the IAM t̂ of 124.8 generations which also has a much

narrower credible region (which overlaps with the credible regions for the other

two models).

Walsh (2001) cautions in using the normalised posterior (2.26) since evidence

exists to suggest µ increases as the STR repeat unit length increases. In addition

there may be also a bias to increasing the number of repeats and of mutations of

more than one repeat unit occurring. Finally there may be an interplay of many

molecular processes that will affect the overall mutation rate and the correction

that is required for multiple mutations. Potentially the SMM may introduce a bias

since it may wrongly overcorrect for multiple mutations. Walsh (2001) suggests

using the Fu and Chakraborty (1998) approach of minimising the chi-square for

estimation of the general SMM, which allows for multi-step mutation, as well as

allowing unequal probabilities for an increase and decrease mutation.

The results presented by Walsh (2001) suggest that the forensic use of STRs on

Y-DNA or mtDNA may be limited to exclusion purposes. Though for the latter

this may be extremely limited given the low number of STRs (pers. comm. Martin

B. Richards). Otherwise, a match at 10 markers between a suspect’s DNA and

sample DNA gives a 90% chance that the MRCA lived no more than 58 generations

ago, using (2.3), assuming a mutation rate per locus of 0.002 per generation. In
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order for this to be reduced to a time to MRCA of 1 generation, more the 580

markers would have to match. A 50% probability of a MRCA no more than 1

generation would need a complete match of around 340 markers.

The use of λ = 0 in the prior has little effect in the IAM unless Ne < 200 or

k/n ≪ 1. On the other hand, it has a bigger impact in the SMM, especially when

n is small and k/n ≪ 1. Increasing λ reduces the chance of t being high since Ne

is reduced.

There is also possible bias of t due to the ascertainment of markers, i.e. only us-

ing variable markers and ignoring the contribution of invariable or less variable

markers. Walsh (2001) argues this is more important and needs correcting when

estimating coalescent times for populations. However, in the case of estimating

parameters for pairs of individuals, Walsh argues that the methodology presented

innately corrects for this since it uses estimated mutation rates that have been

ascertained on polymorphic markers. For random STRs the author suggests re-

placing the mutation rate with cµ where c > 1 is an ascertainment correction

based on the process of how the markers were ascertained. Yet it may be possible

to explicitly model the ascertainment process rather than just scaling µ (Nicholson

et al., 2002).

The method may also be extended to SNP data by using the IAM for SNPs whilst

using the SMM for STRs. Another extension is comparing an individual’s DNA

to an ancestral haplotype (whether actual or inferred) by replacing 2t by t so that

in effect here only a single lineage descending from an ancestor, for example only

considering the Male 1’s lineage from the MRCA in figure 2.1.

Walsh outlines the various methods previously used for estimating the time to

MRCA of more than two individuals. In particular, we note the use of the Poisson

distribution for the number of segregating sites as opposed to the binomial which

is used in the methods presented. Walsh argues this is justified given that there is

roughly 1 STR for every 10Kb of DNA and that when n is large and µ small both

models should give the very similar t̂ (Poisson approximation to binomial). Walsh

motivates a model incorporating the mutational process by including a prior on

µ. So in the Bayesian framework we have:

P (t|λ,marker information) ∝
∫

L(t|marker information)p(λ)p(µ)dµ.
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However, Walsh stresses the need for a sensible prior on µ since a poorly chosen

prior may introduce even more bias than it corrects. This is only an issue when

the data itself is uninformative about µ.

Nordtvedt (2008) describes a method of estimating the TMRCA, t, for pairs of

males where they mismatch by only 1 step at n out of N markers and therefore

match at exactly N − n markers. The nature of the data means that males typed

will be quite similar to each other. In this paper Nordtvedt focuses on a model

which incorporates the frequency of the ancestral haplotypes arguing that pairs of

males with a similar haplotype to the most frequent ancestral haplotype, i.e. the

modal, may have a higher t than t̂ estimated simply on the basis of the similarity of

the male haplotypes to each other since time is required for the ancestral haplotype

to increase in frequency. The converse would also apply i.e. rare haplotypes

compared to the modal are probably more recent and pairs of males close to each

other and a rarer ancestral haplotype are likely to be more closely related. As

such t would be expected to be lower. The narrow restriction of only a one-step

mismatch at markers means that Nordtvedt’s model cannot be used for random

males, where the size of mismatches may be greater than one.

Howard (2009a) presents an alternative method of estimating the time to a MRCA

based on reducing the haplotypes of pairs of males to a single value. For each pair

of males the Pearson correlation coefficient between the repeat numbers at all

markers, r, is computed which is then rescaled to form the revised correlation

coefficient (RCC):

RCC =

(
1

r
− 1

)
× 10, 000.

Values of RCC close to zero would imply a close relationship between the pairs.

Arbitrary time slices or clusters can be constructed for the pairs of males within

RCCs of 0-5 (close relatives) and 0-10 (pedigree). Indeed this process can be

carried out to values up to the 1000s. Calibration of RCC with times to a MRCA

was also carried out using data from 363 pairs of males who fell into four known

pedigrees. The ratio of the two values was found to be skewed to higher values and

so the author used the Hodges Lehmann estimator to give the conversion of 1 RCC

to 43.3 years. In addition Howard outlines three methods of estimating the time

to a common ancestor (TCA) for a cluster of RCCs whose genealogy is unknown.

All the methods are based on various summary statistics of the pairwise RCC:

average RCC, the RCC standard deviation and point P, i.e. the point at which the
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histogram of the RCCs initially encounters base noise at high RCC. The following

estimators were derived by examining 273 pairs known to have descended from 7

known common ancestors:

T̂CA = 52.7× RCC,

T̂CA = 102.0SD× (RCC),

T̂CA = 26.4× Point P.

Each of these methods inherently utilizes the RCC-to-years conversion of 43.3

years. Next Howard compares the RCC to the mutation rates estimated by Chan-

dler (2006). Across 37 markers, the mutation rate is 0.00492 per locus per gen-

eration. Hence based on this method 1 RCC ≈ 46 years. Based on simulation

data the number of mutations is linear to the RCC in the range of 0-40/50 but

outside this range it is not. This work is extended further to consider surname

clusters by examining the histogram of RCC values where peaks possibly indicate

classification of clades or subclades within haplogroups (Howard, 2009b). For this

to be successful everyone included in the analysis must be a true descendant, i.e.

there must be no NPTs. Nonetheless, reliance on a single summary statistic, RCC,

is likely to lose information when estimating the TMRCA.

Several authors also propose methods of estimating the TMRCA for groups of

males usually belonging to the same haplogroup and based on STR data and these

are briefly mentioned. This includes the work of Wilson and Balding (1998) which

is an extension of the method proposed by Walsh (2001) but involves in addition

reconstructing a genealogy based on the data. They use the SMM and coalescent

theory in a Bayesian framework and implement the analysis using Markov-chain

Monte-Carlo techniques. Importantly the authors allow diffuse priors for the effec-

tive population size and mutation rate. They also introduce nuisance parameters

for the internal nodes and implement a branch-swapping algorithm to allow faster

movement through tree space. Klyosov (2009) on the other hand use first-order

kinetics on the basis of an inferred ancestral haplotype. Adamov and Karzhavin

(2010) present a method of estimating the time to a MRCA for groups which takes

into account the population size whilst allowing for population growth over time.
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2.2 Y-chromosome and Surnames

The use of surnames information to estimate some genetic variable is not a recent

phenomenon: in 1875 the son of Charles Darwin, George, estimated inbreeding rate

by the method of isonomy i.e. computing the frequency of individuals marrying

with the same surname. The earliest association between the Y-chromosome and

surnames began with ‘satellited’ Y chromosomes (Yqs) in 1973 (Jobling, 2001;

Schmid et al., 1984). In this case 17 out of 50 men sharing the same surname

possessed the same Yqs, an otherwise rare marker which arises when a detached

part of chromosome 15 or 22 is attached to the Y-Chromosome, i.e. a translocation

occurs. These males were found to have descended from the same French barrel

maker who emigrated to Canada in 1665. A later case involved four Colombian

families who shared the same Yqs (Giraldo et al., 1981). In this instance three

of the families had the same surname though they were not known to be related

despite living in the same city.

The discovery of binary polymorphisms and in-depth examination of STRs on

the NRY (Kayser et al., 1997) led to their initial use in determining male genetic

prehistory (Jobling, 2001). For example Thomas et al. (1998), typed six binary

polymorphisms and six Y-STRs (DYS19, DYS388, DYS390, DYS391, DYS392,

DYS393) to examine the ancestry of 106 Jewish men said to have patrilineal de-

scend from Moses’ brother Aaron and as such members of the priesthood (Co-

hanim). They were compared with 200 Levite males, since Moses was said to

be a member of the Levi tribe. Cohanim and Levite males should have different

haplotypes to other Jewish males and have a TMRCA no more recent than the

Temple period (3,000-2,000 years before present). They defined a Cohen modal

haplotype found to be much more frequent in the Cohen chromosomes (> 60%)

compared to the Levite chromosomes. Using the stepwise mutation model basis

the TMRCA of the Cohanim using the Y-STRs data excluding DYS388 (due to

possible violations of the SMM) was computed at 2,650 years before present (BP)

assuming a mutation rate of 0.0021 per marker per generation and a generation

time of 25 years per generation (ypg). Increasing this to 30 ypg the TMRCA

rose to 3,180 years BP. Importantly however the surnames of the Cohanim were

different, though many were named Cohen, Kahn or Kane (Jobling, 2001).

The subsequent paper by Foster et al. (1998), though not incorporating surnames,

aimed to examine genetically the historical debate that the third US president
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Thomas Jefferson fathered his slave Sally Hemings’ children. Descendants of

Thomas Woodson, Hemings’ first son, believe him to have been Jefferson’s son,

though no historical evidence exists for this. However there is oral tradition sug-

gesting that Hemings’ last son, Eston Hemings Jefferson, was fathered by a son

of Jefferson’s sister, either Samuel or Peter Carr. Thus Foster et al. typed 7

SNPs, one mini-satellite and 11 Y-STRs (DYS19, DYS388, DYS389I, DYS389II,

DYS389III, DYS389IV,DYS390, DYS391, DYS392, DYS393 and DXYS156Y) on

the descendants of interest. Since Jefferson did not have any surviving sons, DNA

was typed from his patriline namely descendants of his uncle Field Jefferson. The

results were surprising: Eston’s offspring appeared to match the Jefferson haplo-

type whilst the Woodson’s did not. The Woodson’s did however match each other

with one exception: a case of presumed illegitimacy due to mismatches at seven

of the 11 Y-STRs. The Carr descendants also closely matched each other though

not any of the other samples. This evidence led Foster et al. to conclude that

Jefferson did indeed father Sally Hemings’ son Eston.

A key paper to examine the association between Y-STRs and surnames in the ge-

nealogical setting was by Sykes and Irven (2000) involving only 4 Y-STRs: DYS19,

DYS390, DYS391 and DYS393. 48 males with the surname Sykes were sampled

along with two sets of controls: 21 ‘Neighbors’ recruited by the Sykes males and

139 ‘English’ natives. Linguistically the Sykes surname is suggested to have the

topographical origin of ‘spring’, ‘stream’ or ‘boundary ditch’, thus pointing to a

multiple founders surname establishment (Sykes and Irven, 2000). However a sin-

gle haplotype (15-23-11-14) and two one-step neighbour haplotypes were found in

over 52% of the Sykes males and only 5% of the controls (‘Neighbors’ and ‘English’

natives). Assuming the stepwise mutational model of Kimura and Ohta (1978),

there is little doubt that the two one-step neighbour haplotypes evolved from the

modal Sykes haplotype. Additionally, given that the remaining haplotypes are not

sufficiently frequent when compared to the controls, Sykes and Irven suggest that

these haplotypes have been introduced as non-paternity events rather than from

other ‘Sykes’ founders. Using all haplotypes different to the modal Sykes haplo-

type, the average non-paternity rate is calculated as 1.3% per generation assuming

23 generations have passed since the Sykes MRCA. Importantly the authors at-

tribute their findings to the relatively low frequency of Sykes in Britain, consistent

with there having been only one founder, and suggest that the Y-chromosome and

surname association could possibly extend to other rare surnames. This in turn

could lead to use in both a genealogical and forensic framework.
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In the Irish context, Hill et al. (2000) typed 7 SNPs and 6 STRs (DYS19, DYS389I,

DYS390, DYS391, DYS392, DYS393) in 221 Y-chromosomes, comparing those

with historical Irish and non-Irish surname roots. The SNPs defined nine distinct

haplogroups with one found to be most frequent in Ireland at 78.1%. In addi-

tion, the Irish surnames falling into this haplogroup, when segregated according

to their prehistoric geographical origin, gradually increased in frequency moving

westwards. Furthermore, the STR data from the Irish DNA suggest common an-

cestry for those in the most frequent haplogroup though this was not the case in

the other haplogroups.

Outwith the British Isles, Manni et al. (2005) apply the clustering method of

self-organizing maps (SOMs) to just under 10,000 distinct Dutch surnames (of

frequency greater than 40 in the population) from 226 sample locations in order

to find their geographic origin in the Netherlands. The SOMs for each surname

were grouped according to those with a similar geographic pattern. By inferring

the geographical origin of a given surname and sampling close to that locality it

is much more likely that one will sample living descendants of surname founder(s)

providing a sampling tool for population genetic studies. However given that as

few as 20% of the living descendants may remain in the area of origin, migration

is thought to have played a key role in altering the ancient genetic makeup of a

region. With this being the case even in the Netherlands which has a comparatively

recent surname establishment (from 1796 in the south to only 1811 in the north)

the effect of migration may be more extreme in other European countries including

Britain.

In King et al. (2006), a broad study of British surnames was carried out. It involved

initially recruiting a sample of 150 males of varying surnames. The surnames were

chosen to reflect the distribution of surnames of the English, Scottish and Welsh

amongst the population of Great Britain. Subsequently, a second sample of men

was recruited with matched surnames to the first sample. This resulted in 150

pairs of males with the same surname but chosen such that those with recent

name changes or origins out with Britain were excluded. Also patrilineal relatives

were excluded on the basis of a questionnaire. Each male was typed for 11 binary

markers and 17 STRs: DYS19, DYS388, DYS389I, DYS389II, DYS390, DYS391,

DYS392, DYS393, DYS434, DYS435, DYS436, DYS437, DYS438, DYS439, DYS460,

DYS461, DYS462. On the basis of the SNP profiles the male-pairs were partitioned
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into those sharing their haplogroup or not. The former had their TMRCA esti-

mated for each pair of males based on the method of Walsh (2001) using a mean

mutation rate of 0.002 per locus per generation and a mean generation time of

35 years. Although information on the frequency of each surname in 1996 was

available, the authors chose to examine a relationship between TMRCA estimates

and the frequency rank within the sample of the surnames. There appeared to be

a negative relationship between the variables with up to 24% of the sample pos-

sibly sharing common ancestry through surname on the basis of the 95% credible

regions lower bound overlapping the surname establishment period. The authors

discuss the potential for a surname based Y-chromosome database which may aide

in unsolved crimes concluding that it would be most successful for less common

surnames.

Based on the unusual findings of Hill et al. (2000) which suggest Irish history

is comparatively undisturbed by migration, Moore et al. (2006) sampled 796 Y-

chromosomes from Ireland, typing eleven binary polymorphisms and the same 17

Y-STRs as King et al. (2006) except that Moore et al. defined marker DYS389B

as the difference between the number of repeats between DYS389II and DYS389I.

STR analysis revealed an ‘Irish modal haplotype’ (IMH) in males belonging to

haplogroup R1b3, itself over 85% of the males studied. The IMH with its one

step neighbour (IMH + 1) accounted for 8.2% of the samples. Furthermore, the

frequency of IMH appears to increase unevenly across Ireland peaking to 16.9%

(21.5% for IMH + 1) in northwestern Ireland within the historical region of the

Ui Neill, a powerful royal lineage in ancient Gaelic Ireland. Comparison with

British data, Capelli et al. (2003), shows that the truncated IMH (6 Y-STRs) is

almost absent, except that in western and central parts of Scotland it reaches 7.3%

(16.7% for the truncated IMH +1). Furthermore, using 7 Y-STRs, the truncated

IMH is found at very low frequency (0.13%) across worldwide samples judging

from the YHRD website (YHRD, 2010). An additional 59 males with surnames

of Ui Neill origin were typed for the 17 Y-STRs. Haplogroup membership to

R1b3 or not was inferred from the haplotype profiles. Those in R1b3 showed

reduced mutational divergence patterns from the IMH compared to the R1b3

general Irish data. Furthermore the Ui Neill appeared to have had an impact

on the frequency distribution of the mutational steps away from the IMH for

the northwestern R1b3 Irish data, whose distribution is disrupted compared to

the smooth distribution observed for the general Irish R1b3 data. Indeed the

Ui Neill samples are significantly different to both a general R1b3 northwestern
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Irish sample (P < 0.001) and a subset of this excluding males with a surname of

Ui Neill origin (P = 0.006). The paper also applied a reduced median algorithm

before constructing median joining networks of the Ui Neill sample to reveal a large

cluster around the IMH. This cluster’s TMRCA of 1,730 years BP places it at the

early medieval period. It was computed from the ρ statistic using the mutation

rate from Zhivotovsky et al. (2004), i.e. 0.00069 per locus per generation, where a

generation is 25 years long. The later dating (1,090 years BP) of the corresponding

cluster for the northwestern samples fits with the conclusion that the IMH rose in

frequency due to social selection associated with the Ui Neill dynasty rather than

merely reflecting its general predominance in northwest Ireland.

McEvoy and Bradley (2006) also focus on Irish males extending the ideas devel-

oped by Sykes and Irven (2000). Surname establishment in Ireland began in the

early 10th century and typically involved patronymic surnames. The English con-

quest of Ireland from the late 12th century resulted in the change from Gaelic

Irish to the English language. 1,125 Irish males were typed for 6 binary polymor-

phisms and the same 17 STRs as typed by Moore et al. (2006), though DYS385A

and DYS385B were typed but excluded from any analysis. In addition, the 765

Irish chromosomes from Moore et al. (2006) acted as controls. R1b3 was the most

predominant haplogroup, 90%, consistent with previous work Hill et al. (2000);

Moore et al. (2006). The remaining largely belonged to IxI1b2. Thus only STRs

were used in the analysis including computing the match probability of two males

sharing the same surname. This was carried out only for those surnames with

≥ 50 samples. The average match probability across surnames was 8.15% com-

pared to only 0.2% for the controls. The match probability varied greatly, reaching

as much as 12.5% for ‘Ryan’ to 0.9% for ‘Kelly’. An analysis of molecular vari-

ance (AMOVA, Excoffier et al. (1992)) shows that 19.6% of variability was due

to between-surname differences with the remaining variation occurring between

bearers of the same surname for 43 surnames. Indeed the relationship between

surnames and paternal ancestry holds even when considering geographical sub-

structuring. For example, AMOVA analysis applied to surnames from the North

East showed higher between-surname variability at 30.6% compared to 20.4% for

surnames in the midlands of Ireland.

For the 11 surnames with samples ≥ 50, MJ networks were constructed. The

presence of a single descent cluster indicated a single founder for some surnames.
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Others, in line with historical evidence of multiple founders, e.g. due to An-

glicisation of Irish names such as McEvoy, showed two or more descent clusters.

However, on other occasions the STR data was contrary to documentary evidence.

For example, ‘McCarthy’ and ‘McGuinness’ have two descent clusters contrary to

historical sources suggesting a single founder. For the most common surnames,

‘Murphy’ and ‘Kelly’, historically with multiple founder origins, the data showed

a more diffuse network with more diversity as anticipated. Importantly, there was

no correlation between the match probabilities, used as a measure of the number

of ancestors, and the current numbers of bearers. Even though the genetic and

historical evidence suggests a monogenic origin for ‘O’Sullivan’, there are >40,000

bearers. Contrast this with similar rare surnames also with a single founder such as

‘O’Gara’ (<1000 bearers). This suggests that historical social power may have re-

sulted in the proliferation of particular surnames over others. McEvoy and Bradley

(2006) then estimate the TMRCA of the 15 major descent clusters based on the

MJ networks. They employ the same method as Moore et al. (2006) and use the

mutation rate of Zhivotovsky et al. (2004) with a generation time of 25 years. Al-

lowing for uncertainty in the point estimates of TMRCA, most clusters included

the Irish surname establishment period (900-1200CE) within their estimates bar a

cluster for ‘McCarthy’ which has a much earlier TMRCA. Even most convincing

monogenic surnames (‘Ryan’ and ‘O’Sullivan’) have only 50-55% bearers derived

from the single founder with McEvoy and Bradley citing the usual reasons for

generation of minor lineages in the MJ networks namely NPTs. In addition they

cite ‘horizontal absorption’ as another cause of minor linages. Historically, distinct

Gaelic surnames were anglicised into several forms. For example, ‘McGuinness’

is derived from the Gaelic ‘Mac Aonghusa’ and historically so have ‘McCreesh’,

‘Neeson’ and ‘McGarton’. The data from all of the anglicised surnames derived

from ‘Mac Aonghusa’ fall nicely into the original MJ network for ‘McGuinness’.

The authors end by computing a NPT rate of 1.6% per generation for ‘O’Sullivan’

on the basis of a 35 year generation time thus setting the surname establishment

30 generations ago. Importantly, the years per generation conversion used here is

much greater than that used to estimate the TMRCA of the cluster (25 years).

McEvoy et al. (2006) carry out admixture analysis on Irish males to examine the

extent of Viking influence, which is documented from ∼ 795 BCE, though there

are few linguistic remnants of this. Nonetheless, 47 males with 26 different sur-

names were recruited from areas historically associated with Viking settlements

in Ireland making up the Norse surname group (NSG). Six binary polymorphisms
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were examined and 13 Y-STRs typed: DYS19, DYS385 A/B, DYS388, DYS389I,

DYS389II, DYS390, DYS391, DYS392, DYS393, DYS460, DYS461 and DYS462.

The NSG was treated as an admixture of Irish and Scandinavian populations,

samples of DNA from which were obtained from other published work, and au-

thors considered comparisons with British data. The admixture coefficient was

computed using six different methods using either the haplogroup or haplotype

data. All indicated a large Irish contribution (>80%) except one estimate based

on the binary markers which estimated 49%. McEvoy et al. conclude that current

Irish DNA shows little Viking contribution through the effects of either genetic

drift, multiple surname founders, non paternity and indeed there may have been

English contribution.

In mainland Europe the work of Immel et al. (2006) used AMOVA (Excoffier et al.,

1992) to determine the extent of correlation between haplotypes and surname in

East Germany. 419 males were typed at 8 Y-STRS (DYS19, DYS385, DYS389I,

DYS389II, DYS390, DYS391, DYS392, DYS393) excluding DYS385 in the analysis

due to ambiguous allele assignment. The surnames of the males were divided into

three groups according to their origins, i.e. German (G), Slavic (S) or a mixture

of German and Slavic (M). Based on AMOVA analysis, the G and M groups were

virtually identical and were thus amalgamated into a single group (G+M) which

was significantly different to the S group. This result is attributed to recent (19th

century) integration of Slavs into Germany rather than the earlier migration from

950-1100CE.

The 2007 work of King et al. discovers the presence in Britain of a haplogroup

rarely found outwith Africa. Their initial study typed 11 binary markers in 421

males of native British origin discovering a potentially ‘African’ male. Typing an

additional two SNPs determined a A1 haplogroup for the male concerned who

knew of no genetic connection with Africa. Furthermore the male possessed a rare

locative surname (anonymyized as ‘R’) with only 121 bearers. This led the authors

to recruit 18 unrelated males bearing the same surname or a close variant. On these

males they typed 12 binary markers and 17 Y-STRs (DYS19, DYS388, DYS389I,

DYS389II, DYS390, DYS391, DYS392, DYS393, DYS434. DYS435, DYS436,

DYS437, DYS438, DYS439, DYS460, DYS461, DYS462). Seven of the males

carried haplogroup A1 and possessed close haplotypes. The estimated TMRCA

of the males was 440± 330 years based on the ρ statistic calculated from the MJ

network. This assumed a mutation rate of 0.002 per locus per generation and
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a generation time of 35 years. Genealogical research resolved the men into two

lineages with MRCAs born in 1788 and 1789. Typing a further 60 Y-STRs re-

vealed only one additional mismatch to the three already found. On the basis of 73

markers the TMRCA was estimated much more recently at 140±80 years. Adding

the average age of the subjects to this estimate gives 1734 CE as the estimated

date of coalescence for the seven males which overlaps with the initial estimate of

TMRCA but not the second.

A study of the Viking presence in England was carried out by Bowden et al. (2008).

They investigated by means of surname-based sampling and STR data the extent

of the genetic contribution of the Viking presence over a thousand years ago in

North West England. Linguistic evidence shows that there is a high presence of

place names of Scandinavian origin across the parts of England known to have

been under Viking control. In particular there is both archaeological and linguis-

tic evidence of the Vikings in Wirral and West Lancashire. It was anticipated

that simply typing a modern sample of residents would show a weak signal of

Scandinavian DNA. ‘Modern’ DNA (n = 149) was collected on the basis of a two-

generation residence typical of genetic studies whilst ‘medieval’ DNA (n = 79)

was collected on the basis of both this criterion and the possession of a surname

known to have existed prior to 1572, although possibly modernized since then.

13 binary markers and 6 Y-STRs (DYS19, DYS388, DYS390, DYS391, DYS392,

DYS393) were typed in these participants. Additional control data were also used

from previously published work (Capelli et al., 2003). Population differentiation

tests were significant for the ‘medieval’ and ‘modern’ data for both Wirral and

West Lancashire (p-value=0.032 and 0.006). Furthermore, the ‘medieval’ DNA

showed more haplogroup diversity. Comparison to various British and Scandi-

navian controls, using the SNPs only, indicated a higher proportion of Viking

DNA in the ‘medieval’ compared to the ‘modern’ samples. In addition admixture

analysis, where Norwegian and British/Irish DNA were considered the parental

populations, revealed a higher contribution from the Scandinavian DNA for the

‘medieval’ samples compared to the ‘modern’. The difference was more substantial

for Wirral (0.47 vs. 0.38) than for West Lancashire (0.51 vs. 0.48). Indeed further

subsampling of less frequent surnames (<20,000 bearers) within the ‘medieval’

slightly increased the Scandinavian proportion further (Wirral: 0.51; West Lan-

cashire: 0.53). Given that genetic drift will have played a key role in altering the

ancient genetic structure, ancient rather than modern parental populations should
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also be used in estimating admixture. This could be achieved by surname-based

sampling rather than random sampling of the modern-day populations.

The study of surnames and Y-chromosomes relationship is not limited to Europe.

For example Bedoya et al. (2006) typed 6 Y-STRs (DYS19, DYS388, DYS390,

DYS391, DYS392, DYS393) in males from Oriente, Colombia. The males pos-

sessed one of five currently common surnames each said to have originated from

a single Spanish founder. There was a clear relationship between haplotype pro-

files and surnames: for two surnames 94% and 85% of the males possessed the

‘surname modal haplotype’. Extending this to include one-step differences to the

modal haplotypes increased the percentage to 100 in both surnames. For the

remaining three surnames between 50-82% of males shared the same modal hap-

lotypes. This increased to between 73-91% when allowing for one-step differences.

For these surnames there were several cases of non-paternity since some males

had a three or more step difference to their surname modal haplotype. Hence an

NPT rate of 0.74 × 10−2 per generation was computed. This was on the basis

of an inferred mutation rate of 1.86 × 10−3 per locus per generation (using the

one-step differences across all surnames) and assuming a 25 year generation time

from the time of surname establishment in the mid 17th century. Contrast this

with the more recent work of Oliveira et al. (2008), who assessed the correlation of

Brazilian DNA with surnames with purported poor success. The study involved

55 matched surname pairs of males having 11 binary markers, the ALU YAP inser-

tion and 3 Y-STRs (DYS19, DYS391 and DYS393) typed. No correlation between

haplogroup and surname, was found though three pairs of males shared the same

haplotype. However, the authors do not discuss the frequency of surnames as a

confounding factor, the historical establishment of surnames in Brazil or take into

account the low haplotype resolution.

The more recent work of King and Jobling (2009a) focussed largely on less fre-

quent surnames. 40 surnames were examined each with ten or more samples and

the degree of coancestry within each surname was the primary quantity of interest.

As in King et al. (2006), an exclusion criterion on males with recent name changes,

non-UK origins and patrilineal relatives in the study was applied. A further 110

males with names different from each other and from the surnames under study

acted as controls. 17 binary markers were typed as well as 17 STRs (DYS19,

DYS388, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS434,

DYS435, DYS436, DYS437, DYS438, DYS439, DYS460, DYS461, DYS462). The
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origin of each surname was assigned to one of six categories: ambiguous/unknown,

locative, nickname, occupational, patronymic/matronymic and topographic. The

frequency of each surname based on the 1996 UK electoral register was also pro-

vided and this was the sum of all bearers of the surname and its variant spellings.

Based on the haplogroup distribution the authors found that 70% of surnames

were significantly different to the controls whilst common surnames such as Smith

were very similar to the controls. In addition, the distribution of haplotypes was

significantly different to the controls in 85% of the surnames, with haplotypes

being shared across variant spellings of the surname. MJ networks were formed

within each surname resulting in one or more descent cluster based on the two

sets of markers. The proportion of males within each surname falling into a clus-

ter was significantly correlated to the surname frequency rank. The TMRCAs of

descent clusters were calculated using the ρ statistic based on a 35-year genera-

tion time and a mean mutation rate of 0.0015 per locus per generation adding

on the mean age of males in the sample, 60 years. A high degree of common

ancestry was found with 65% of TMRCA estimates for clusters falling in the time

of surname establishment, increasing to 95% when considering the lower bound

of TMRCA (based on the standard deviation of the ρ statistic). Three surnames’

TMRCAs predate surname establishment completely, although this was for more

common surnames. Conversely, for some clusters within surnames, the TMRCA

upper limits were well below the time period where documentary evidence indi-

cates those names were in use. The authors argue that this would indicate strong

genetic drift, resulting in the MRCA of a descent cluster being considerably after

the founding of the surname. For surnames showing a single dominant descent

cluster the nonpaternity rate was estimated based on the assumption of a single

founder and by constructing extreme genealogies but with the caveat that multi-

ple founders would in fact result in a lower nonpaternity rate. A comparison of

surnames likely to have single founders versus those with multiple founders shows

that the two are not significantly different in the proportion of haplotypes lying

in the largest cluster. The authors also conclude that the number of founders is a

poor predictor of the number of descent clusters via a forward simulation study.

A comparison with similar data from Ireland (McEvoy and Bradley, 2006) reveals

stark differences to the British surnames. In particular several common surnames

show clear clusters and there appears to be no significant correlation between the

proportion of haplotypes in clusters and the frequency of the surname in the Irish

data. However the mean TMRCA of the clusters within the Irish surnames, ∼990
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years, is consistent with the time period of surname establishment in Ireland (∼900

years). Similarly, the mean TMRCA of the British clusters of ∼650 years lies in

the British surname establishment period. The high degree of coancestry in Irish

surnames compared to British surnames may be attributed to recent population

drift due to the “Great Hunger” of the 19th century in Ireland and/or the pro-

liferation of patrilineal dynasties in medieval Ireland. However it is important to

note that the Irish results are based on both a lower mutation rate (0.00069) and

years per generation conversion. The former would inflate estimates of TMRCA

whilst the latter results in lower estimates of TMRCA in years thus the direct

comparison with the British data may not be valid. The authors next justify fur-

ther their suggestion of a Y-chromosome surname database made in King et al.

(2006) based on a strong correlation in the study between the match probability

and surname frequency rank. For the less common surnames an average match

probability of 14.5% is achieved which increases to 23.5% and 28.5% when allow-

ing for one and two-step STR mutational step differences, respectively. The use

of public databases is also suggested as a potential resource though bias from self-

reporting and self-selection of males who may be closely related may affect results.

The authors end with the possible use of Y haplotyping combined with surnames

to identify males who share common ancestry at a time depth that is intermediate

between that of pedigrees and of the general population, to aid in the detection of

disease causing genes.

2.3 Estimation of STR Mutation Rates

It is clear from the review in section 2.1 that dating of the time to a most recent

common ancestor based on DNA will depend on the mutation rates of the loci.

Additionally these rates will affect forensic match probabilities (Holtkemper et al.,

2001) as well as other factors. As such, a thorough review of the literature on

calibrating Y-STR mutation rates was made. Although no conclusive evidence

exists, it is thought that STR mutations are due to DNA replication slippage

given the absence of recombination in the Y-chromosome (Butler, 2009; Jobling

et al., 2004).
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Mutation rates at Y-STRs may be estimated by several methods: examining

father-son pairs with known paternity, comparing males from deep rooting pedi-

grees of known ancestry and assessing samples of sperms from males. Figure 2.6

depicts the typing of an STR using the three methods mentioned.

Figure 2.6: Schematic of methods for estimating mutation rates

In the case of father-son pairs, the estimated mutation rate is simply the number

of mismatches divided by the total number of pairs examined, typically referred

to as the number of meioses. Based on the example in figure 2.6a the muta-

tion rate would be 1/39 = 0.0256 mutations per marker per generation. Since

mutation rates are rather low, in order to get precise mutation rate estimates, a

large number of meioses are required and therefore a large number of father-son

pairs. Typing data from pedigrees does exactly this. Although comparatively

fewer males may be typed, the number of meioses is equivalent to the number of
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links in the pedigree, greatly increasing the accuracy of mutation rate estimates.

It operates by inferring an ancestral haplotype based on the male descendants’

haplotypes and then computing the mutation rate by dividing the number of mu-

tations inferred to have occurred in the pedigree by the overall number of meioses,

for example giving a rate of 1/104 = 0.0096 in figure 2.6b. However such mutation

rates will be affected by any NPT (Kayser and Sajantila, 2001) and even in well

documented pedigrees, cases of non paternity do occur (Heyer et al., 1997) which

may artificially raise mutation rates. Furthermore within-pedigree differences may

be considered either germline or somatic mutations. Somatic mutations are not

passed down from parent to offspring in which case they should be excluded when

computing the mutation rate. Typing samples of sperm cells is a strategy which

also greatly increases the number of meioses. Figure 2.6c illustrates this and here

a single sperm shows a difference across the 63 sperms typed from a single male

giving a rate of 1/63 = 0.0159. This method is rarely employed (Holtkemper et al.,

2001), since single sperm typing is challenging.

In contrast to this there have been some estimates of evolutionary mutation rates

based on simulation studies, such as that of Zhivotovsky et al. (2004) at 0.00069

mutations per locus per generation, though many in the genealogical circles argue

that these rates are greatly underestimated (Athey, 2006; Chandler, 2006).

Three mutation rate reviews were carried out at various stages of the research.

Since the results presented in later chapters were based on a particular set of

mutation rate estimates, the three reviews are clearly detailed below.

2.3.1 Initial Mutation Rate Estimates

My first set of estimates for nine loci were taken directly from the online Y Chro-

mosome Haplotype Reference Database (YHRD; Y Chromosome Haplotype Ref-

erence Database (2008)), which was based on research from 12 published articles

and two unpublished sources (table 2.1). Heyer et al. (1997) based their estimates

on pedigree data from the Saguenay Region in Canada, whilst the remaining used

data from father-son pairs. No information was given on the methods of estima-

tion for the two unpublished papers. The resulting estimates for the nine STRs

are given in table 2.2.
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Table 2.1: Sources for initial mutation rate review

Author(s) Year of Publication

Heyer et al. 1997
Bianchi et al. 1998
Kayser et al. 2000
Dupuy et al. 2004

Kurihara et al. 2004
Ballard et al. 2005
Budowle et al. 2005
Gusmão et al. 2005
Hohoff et al. 2007

Domingues et al. 2007
Lee et al. 2007

Decker et al. 2008
Sergey Kravchenko N/A
Gerhard Baessler N/A

We compared the TMRCA results for the data from King et al. (2006) based on

these site-specific rates and on their average mutation rate of 0.002390 mutations

per locus per generation.

Table 2.2: Initial mutation rate estimates (per locus per generation)

STR Marker Mutation Rate (per locus per generation)

DYS19 0.002449
DYS389I 0.002370
DYS389II 0.003430
DYS390 0.002367
DYS391 0.002834
DYS392 0.000455
DYS393 0.000792
DYS438 0.000468
DYS439 0.006348

2.3.2 Intermediary Mutation Rate Estimates

The second set of estimates for 86 markers was based on research from 29 published

papers (table 2.3) and the two unpublished results from the YHRD mentioned

above. Of the published papers, only one employed sperm typing (Holtkemper

et al., 2001), four used data from deep rooting pedigrees (Bonné-Tamir et al., 2003;

Heyer et al., 1997; Toscanini et al., 2008; Vermeulen et al., 2009) whilst the remain-

ing 24 papers estimated mutation rates based on father-son pairs. Three additional

papers were considered but excluded from the review: data from de Souza Goes

et al. (2005) overlapped with Gusmão et al. (2005) (pers. comm. Gusmao); Kayser

et al. (1997) overlapped with Kayser et al. (2000); data from Liu et al. (2007) was

excluded as kinship could not be confirmed due to low LR values (pers. comm. Gus-

mao).
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Table 2.3: Sources for intermediary mutation rate review

Author(s) Year of Publication

Heyer et al. 1997
Bianchi et al. 1998

Lessig and Edelmann 1998
Pestoni et al. 1999

Schneider et al. 1998
Kayser et al. 2000
Dupuy et al. 2001

Holtkemper et al. 2001
Tsai et al. 2002

Bonné-Tamir et al. 2003
Dupuy et al. 2004

Kurihara et al. 2004
Ballard et al. 2005
Berger et al. 2005

Budowle et al. 2005
Gusmão et al. 2005
Turrina et al. 2006
Hohoff et al. 2007

Domingues et al. 2007
Lee et al. 2007

Pontes et al. 2007
Shi et al. 2007

Decker et al. 2008
Sanchez-Diz et al. 2008
Toscanini et al. 2008

Ge et al. 2009
Goedbloed et al. 2009

Kim et al. 2009
Vermeulen et al. 2009

Sergey Kravchenko N/A
Gerhard Baessler N/A

2.3.3 Final Mutation Rate Estimates

The final mutation rates review produced estimates for 94 Y-STRs based on the

intermediary rates and an additional ten published papers (table 2.4), a total of

41 sources. Inadvertently, the data from de Souza Goes et al. (2005) was included.

Table 2.4: Additional sources for final mutation rate review

Author(s) Year of Publication

Foster et al. 1998
de Souza Goes et al. 2005

Mulero et al. 2006
King et al. 2007

Padilla-Gutierrez et al. 2008
Pollin et al. 2008

Farfán and Prieto 2009
King and Jobling 2009a

Onofri et al. 2009
Vieira-Silva et al. 2009

In figure 2.7 the distribution of the mutation rates across all the markers is shown.

There is a right-skewed distribution with a peak at zero. A total of 620 mutations

out of 264,672 meioses were found in this review resulting in an average mutation
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rate of 0.002343 (per marker per generation) with a 95% CI of 0.002162 to 0.002534,

based on the Poisson approximation to the binomial.
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Figure 2.7: Histogram of mutation rates

In addition, the directionality of 516 mutations was known: 296 were increase

mutations, i.e. 57.36% of the mutations increased the number of repeats of the

STR. Applying a one proportion test of the null hypothesis that the proportion of

increase (ν+) and decrease (ν−) mutations are equal i.e. ν+ = ν− = 0.5 returns a

p-value lower than 0.05 at 0.001. Thus we can reject the null hypothesis and the

95% CI of the proportion of increase mutations lies between 0.530 and 0.617.

The empirical mutation rates at each STR is now detailed (table 2.5). For some

markers, e.g. DYS425, as few as 30 meioses were examined, whereas for more

commonly used markers, such DYS19 and DYS390, this figure was around 25,000.

The most mutable marker was DYS449 with a mutation rate estimate of 0.018970

(95% Poisson CI: 0.007627 to 0.039086). A graphical summary of the markers with

mutations in order of decreasing estimated mutation rate is given in figure 2.8. 49

markers had an estimated mutation rate of zero, based on no mutations observed

in a low number of meioses ranging from 1058 to only 30 in some instances.

Of the 45 markers which were found to be variable, only 26 had information on the

directionality of some of their mutations. A summary of the proportion of their
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Table 2.5: Final mutation rate estimates (per locus per generation)

STR Marker Mutations Meioses
Mutation Rate (per
site per generation)

Lower 95% CI Upper 95% CI

DYS449 7 369 0.018970 0.007627 0.039086
DYS576 9 573 0.015707 0.007182 0.029816
DYS570 7 573 0.012216 0.004912 0.025170
YCAIII 1 100 0.010000 0.000253 0.055716
DYS481 3 433 0.006928 0.001429 0.020248
DYS458 48 7181 0.006684 0.004928 0.008862

Y GATA A4 56 11078 0.005055 0.003819 0.006564
DYS508 2 433 0.004619 0.000559 0.016685
DYS565 2 433 0.004619 0.000559 0.016685
DYS573 2 433 0.004619 0.000559 0.016685
DYS640 2 433 0.004619 0.000559 0.016685

GATA A10 5 1145 0.004367 0.001418 0.010190
DYS447 3 688 0.004360 0.000899 0.012743
DYS456 31 7162 0.004328 0.002941 0.006144
DYS460 6 1582 0.003793 0.001392 0.008255

DYS389II 53 14699 0.003606 0.002700 0.004716
Y GATA C4 28 7932 0.003530 0.002346 0.005102

DYS533 2 573 0.003490 0.000422 0.012609
DYS464 5 1476 0.003388 0.001100 0.007905
DYS446 2 658 0.003040 0.000368 0.010980
DYS389I 40 14728 0.002716 0.001940 0.003698

Y GATA H4 22 8167 0.002694 0.001688 0.004078
DYS391 40 16869 0.002371 0.001694 0.003229
DYS461 3 1266 0.002370 0.000488 0.006925
DYS19 61 25811 0.002363 0.001808 0.003036
DYS485 1 433 0.002309 0.000058 0.012866
DYS487 1 433 0.002309 0.000058 0.012866
DYS497 1 433 0.002309 0.000058 0.012866
DYS511 1 433 0.002309 0.000058 0.012866
DYS537 1 433 0.002309 0.000058 0.012866
DYS554 1 433 0.002309 0.000058 0.012866
DYS572 1 433 0.002309 0.000058 0.012866
DYS575 1 433 0.002309 0.000058 0.012866
DYS636 1 433 0.002309 0.000058 0.012866
DYS638 1 433 0.002309 0.000058 0.012866

DYS385a,b 60 28159 0.002131 0.001626 0.002743
DYS390 52 24998 0.002080 0.001554 0.002728
DYS549 1 573 0.001745 0.000044 0.009724
DYS448 11 7324 0.001502 0.000750 0.002687
YCAII 3 2356 0.001273 0.000263 0.003721
DYS437 12 10864 0.001105 0.000570 0.001929
DYS393 15 14662 0.001023 0.000573 0.001687
DYS388 2 2865 0.000698 0.000085 0.002522
DYS392 9 16000 0.000563 0.000257 0.001068
DYS438 5 10963 0.000456 0.000148 0.001064

DXYS156 0 1058 0.000000 0.000000 0.003487
DYS643 0 573 0.000000 0.000000 0.006438
DYS522 0 543 0.000000 0.000000 0.006794
DYS531 0 513 0.000000 0.000000 0.007191
DYS435 0 435 0.000000 0.000000 0.008480
DYS472 0 433 0.000000 0.000000 0.008519
DYS476 0 433 0.000000 0.000000 0.008519
DYS480 0 433 0.000000 0.000000 0.008519
DYS488 0 433 0.000000 0.000000 0.008519
DYS490 0 433 0.000000 0.000000 0.008519
DYS491 0 433 0.000000 0.000000 0.008519
DYS492 0 433 0.000000 0.000000 0.008519
DYS494 0 433 0.000000 0.000000 0.008519
DYS495 0 433 0.000000 0.000000 0.008519
DYS505 0 433 0.000000 0.000000 0.008519
DYS525 0 433 0.000000 0.000000 0.008519
DYS530 0 433 0.000000 0.000000 0.008519
DYS540 0 433 0.000000 0.000000 0.008519
DYS556 0 433 0.000000 0.000000 0.008519
DYS567 0 433 0.000000 0.000000 0.008519
DYS568 0 433 0.000000 0.000000 0.008519
DYS569 0 433 0.000000 0.000000 0.008519
DYS578 0 433 0.000000 0.000000 0.008519
DYS579 0 433 0.000000 0.000000 0.008519
DYS580 0 433 0.000000 0.000000 0.008519
DYS583 0 433 0.000000 0.000000 0.008519
DYS589 0 433 0.000000 0.000000 0.008519
DYS590 0 433 0.000000 0.000000 0.008519
DYS594 0 433 0.000000 0.000000 0.008519
DYS617 0 433 0.000000 0.000000 0.008519
DYS618 0 433 0.000000 0.000000 0.008519
DYS641 0 433 0.000000 0.000000 0.008519
DYS434 0 274 0.000000 0.000000 0.013463
DYS436 0 274 0.000000 0.000000 0.013463
DYS462 0 274 0.000000 0.000000 0.013463
DYS426 0 169 0.000000 0.000000 0.021828
YCAI 0 150 0.000000 0.000000 0.024593

GGAATIB07 0 119 0.000000 0.000000 0.030999
DYS557 0 110 0.000000 0.000000 0.033535
DYS443 0 80 0.000000 0.000000 0.046111
DYS444 0 80 0.000000 0.000000 0.046111
DYS520 0 80 0.000000 0.000000 0.046111
DYS622 0 80 0.000000 0.000000 0.046111
DYS630 0 80 0.000000 0.000000 0.046111
DYS709 0 80 0.000000 0.000000 0.046111

DYF386SI 0 30 0.000000 0.000000 0.122963
DYF390SI 0 30 0.000000 0.000000 0.122963
DYF406SI 0 30 0.000000 0.000000 0.122963
DYS425 0 30 0.000000 0.000000 0.122963
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Figure 2.8: Estimated mutation rate (per locus per generation) vs. STR marker

increase mutations and associated one proportion p-values and 95% CI is given in

table 2.6.

Table 2.6: STR markers one proportion test results

STR Marker
Increase

Mutations
Total

Mutations

Proportion of
Increase

Mutations
P-value

Lower 95%

CI
Upper 95%

CI

DYS19 38 53 0.7167 0.0025 0.5744 0.8280
DYS385a,b 39 50 0.7800 0.0001 0.6367 0.8801
DYS388 0 1 0.0000 1.0000 0.0000 0.9454
DYS389I 14 33 0.4242 0.4862 0.2595 0.6061
DYS389II 22 45 0.4889 1.0000 0.3394 0.6402
DYS390 33 46 0.7174 0.0051 0.5632 0.8354
DYS391 24 39 0.6154 0.2002 0.4465 0.7619
DYS392 4 6 0.6667 0.6831 0.2411 0.9400
DYS393 8 15 0.5333 1.0000 0.2742 0.7772
DYS437 9 12 0.7500 0.1489 0.4284 0.9331
DYS438 1 2 0.5000 1.0000 0.0945 0.9055

Y GATA A4 24 53 0.4528 0.5827 0.3180 0.5945
DYS446 1 2 0.5000 1.0000 0.0945 0.9055
DYS447 0 3 0.0000 0.2482 0.0000 0.6900
DYS448 5 11 0.4545 1.0000 0.1814 0.7544
DYS449 5 7 0.7143 0.4497 0.3026 0.9489
DYS456 15 28 0.5357 0.8501 0.3421 0.7199
DYS458 25 45 0.5556 0.5510 0.4012 0.7005
DYS460 1 5 0.2000 0.3711 0.0105 0.7012
DYS461 2 3 0.6667 1.0000 0.1253 0.9823
DYS464 3 4 0.7500 0.6171 0.2194 0.9868
DYS576 1 1 1.0000 1.0000 0.0546 1.0000

Y GATA C4 9 23 0.3913 0.4042 0.2047 0.6122
GATA A10 2 5 0.4000 1.0000 0.0726 0.8296
Y GATA H4 10 21 0.4762 1.0000 0.2639 0.6966

YCAII 1 3 0.3333 1.0000 0.0177 0.8747

For these 26 markers, we plot their estimated mutation rates versus the proportion

of increase mutation (figure 2.9) to find that there may be a positive linear rela-

tionship between the variables. For example, DYS576 has both a high proportion

of increase mutations and a high estimated mutation rate. Conversely, DYS447

has a low proportion of increase mutations and a low mutation rate. Applying a
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linear regression results in the following fitted line:

µ̂ = 0.0005532 + 0.0062972× ν+, (2.27)

where µ̂ is the estimated, per locus per generation, mutation rate and ν+ is the pro-

portion of increase mutations. However, the explanatory variable is not significant

(p− value = 0.0925).

In addition the assumptions of constant variance and linearity are doubtful and

the normal Q-Q plot shows curvature indicating the violation of normality (data

not shown).
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Figure 2.9: Estimated mutation rate (per locus per generation) vs. proportion of
increase mutations

Next we looked for any relationship between the mutation rate across individual

markers and the length and complexity of the repeat sequence and also whether the

marker is a single or multi-copy (Burgarella and Navascues, 2011; Kayser et al.,

1997, 2004; Malaspina et al., 1997; Torres-Rodriguez et al., 2006; US National

Institute of Standards and Technology, 2009). This information is detailed in

table 2.7.

Just over 3% of the markers involved dinucleotide repeats, 21% were trinucleotide,

just under 65% were tetranucleotide markers, under 10% were pentanucleotide

markers and a little over 1% were hexanucleotide markers. In figure 2.10 there is
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Table 2.7: Summary of STR markers properties

STR Marker Repeat Unit Length Copy Type Complexity

DXYS156 5
DYF386SI 3 single simple
DYF390SI 4 single simple
DYF406SI 4 single simple

DYS19 4 single complex
DYS385a,b 4 multi complex
DYS388 4 single simple
DYS389I 4 single complex
DYS389II 4 single complex
DYS390 4 single complex
DYS391 4 single complex
DYS392 3 single complex
DYS393 4 single simple
DYS425 3 single simple
DYS426 3 single simple
DYS434 4 single simple
DYS435 4 single simple
DYS436 3 single simple
DYS437 4 single complex
DYS438 5 single simple

Y GATA A4 4 single complex
DYS443 4 multi complex
DYS444 4 single complex
DYS446 5 simple
DYS447 5 complex
DYS448 6 complex
DYS449 4 complex
DYS456 4 simple
DYS458 4 simple
DYS460 4 single simple
DYS461 4 single simple
DYS462 4 simple
DYS464 4
DYS472 3 single simple
DYS476 3 single simple
DYS480 3 single simple
DYS481 3 single simple
DYS485 3 single simple
DYS487 3 single simple
DYS488 3 single simple
DYS490 3 single simple
DYS491 3 single simple
DYS492 3 single simple
DYS494 3 single simple
DYS495 3 single simple
DYS497 3 single simple
DYS505 4 single simple
DYS508 4 single simple
DYS511 4 single simple
DYS520 4 single complex
DYS522 4 single simple
DYS525 4 single simple
DYS530 4 single simple
DYS531 4 single simple
DYS533 4 single simple
DYS537 4 single simple
DYS540 4 single simple
DYS549 4 single simple
DYS554 4 single simple
DYS556 4 single simple
DYS557 4 single complex
DYS565 4 single simple
DYS567 4 single simple
DYS568 4 single simple
DYS569 4 single simple
DYS570 4 single simple
DYS572 4 single simple
DYS573 4 single simple
DYS575 4 single simple
DYS576 4 single simple
DYS578 4 single simple
DYS579 4 single simple
DYS580 4 single simple
DYS583 4 single simple
DYS589 5 single simple
DYS590 5 single simple
DYS594 5 single simple
DYS617 3 single simple
DYS618 3 single simple
DYS622 4 single complex
DYS630 4 single complex

Y GATA C4 4 single complex
DYS636 4 single simple
DYS638 4 single simple
DYS640 4 single simple
DYS641 4 single simple
DYS643 5 single simple
DYS709 4 complex

GATA A10 4 single complex
GGAATIB07 5
Y GATA H4 4 single complex

YCAI 2
YCAII 2
YCAIII 2
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Figure 2.10: Estimated mutation rate by length of STR repeat unit

no clear relationship between the mutation rate and the length of the repetitive

unit within the STR. Applying a one-way ANOVA shows that the repeat unit

length is not a statistically significant predictor of the estimated mutation rate

(p− value = 0.2307), though with very questionable statistical assumptions (data

not shown).

Of the 94 STRs examined, 80 were classified either as single or multi-copy markers.

Of these only DYS385a,b and DYS443 were a multi-copy markers, thus 97.87% of

the classified markers were single copy markers. Given the low number of multi-

copy markers additional analysis was not carried out.

88 of the STRs were classified according to their complexity: 66 were simple and

22 were complex markers. For the simple markers 152 mutations occurred in

69992 meioses, whilst for the complex markers these figures were 459 and 189421

respectively. Histograms for mutation rate estimates for the two types of markers

(fig. 2.11) show right-skewed distributions for both. For the simple markers we

have an average mutation rate of 0.002171 (95% Poisson CI: 0.001840, 0.002546)

and a slightly higher rate for the complex markers of 0.002423 (95% Poisson CI:

0.002207, 0.002655). In order to test for differences in the average mutation rate

between the two types of complexities, we apply an Exact Rate Ratio test using

the function rateratio.test() in R (Lehmann, 1986). Here we test the null that

the two average mutation rates are equal, i.e. that µsimple/µcomplex = 1. In this
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Figure 2.11: Estimated mutation rate (per locus per generation) by STR complexity:

a. simple markers b. complex markers

case we produce a rate ratio of 0.8962 with a 95% CI of 0.7410 and 1.0789. We

cannot reject the null hypothesis that the average rates are equal.

Table 2.8: Multi-step mutations

STR Marker(s) Size Direction

DYS19 2 Decrease
DYS385 2 Increase
DYS385 2 Decrease
DYS390 2 Increase
DYS438 4 Decrease
DYS456 3 Decrease
DYS458 2 Decrease
YCAIII 2 Decrease

As have most studies on STR mutation rates, we found that single-step mutations

were predominant: only 8 mutations of the 620 mutations were multi-step muta-

tions i.e. 1.29% (95%CI 0.60 − 2.63%). Further details of the direction and size

of these mutations are given in table 2.8. Five of the multi-step mutations involve

reductions in the number of repeats of the STRs, suggesting a slightly higher pro-

portion of decrease multi step mutations. Subjectively, there is a positive linear

relationship between the average mutation rate at a given multi-step STR and the

nature of the multi-step marker (fig. 2.12). However, fitting a straight line to the

data show a negative linear relationship between the variables such that:

µ̂ = 0.0035087− 0.0003006smulti, (2.28)
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where µ̂ is the estimated, per locus per generation, mutation rate and smulti is the

size and direction of multi-step mutation, and albeit insignificant (P− value >

0.05) and with questionable model assumptions and indeed excluding all one-step

mutations. Next we excluded marker YCAIII (which has no data on the number
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Figure 2.12: Estimated mutation rate (per locus per generation) vs. size and direc-
tion of multi-step mutation

of increase and decrease mutations) and examined the relationship between the

proportion of increase mutations versus the size and direction of the multi-step

markers. In figure 2.13 we see a positive linear relationship between the variables.

Fitting a straight line in this context gives the fitted line:

ν̂+ = 0.67968− 0.03442smulti, (2.29)

where ν+ is the proportion of increase mutations. Although the regression is not

quite significant (P− value = 0.052). Here too we exclude all the one-step increase

and decrease mutations.

In summary, our final mutation rate review shows a right-skewed distribution for

the estimated mutation rate across 94 Y-STRs. The average estimated mutation

rate is 0.002534 (per locus per generation) and the percentage of increase mutations

was significantly higher at 57%. In addition, the majority of the mutations were

single rather than multi-step (> 98%). The length of the repeat unit, complexity
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Figure 2.13: Proportion of increase mutations vs. size and direction of multi-step
mutation

of marker and proportion of increase mutations were each not useful predictors of

the estimated mutation rate. This was also the case for the size and direction of

multi-step mutations.



Chapter 3

Maximum Likelihood Estimation of

TMRCA

This chapter begins with a preliminary examination of the data from King et al.

(2006), outlined in section 2.2, using the models developed by Walsh (2001).

Thereafter a detailed study of simulated STR profiles of pairs of males will used

to compare the competing models used to estimate the TMRCA.

3.1 Preliminary Analysis

In order to provide a foundation for subsequent analysis, this preliminary analysis

is concerned with evaluating the SMM and IAM estimates of TMRCA on real

data. Thus the methodology used is based on the work of Walsh (2001) and the

data is from King et al. (2006) which involved typing Y-STRs on pairs of males

who shared the same surname.

3.1.1 Materials and Methods

In this section we implemented two different models based on the stepwise mu-

tation model (SMM) of Walsh (2001) and his infinite alleles model (IAM) both

detailed in 2.1.

To recap, we suppose we have data for a pair of males across n loci, i.e. the number

of microsatellite repeats at each locus. Based on this data we aim to estimate the

61
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time t to a most recent common ancestor (MRCA). In the IAM, we simplify the

data to either a match or mismatch such that for i = 1, . . . , n:

xi =

{
1 match at ith locus;

0 mismatch at ith locus.

Since we are ignoring the possibility of parallel or back mutations, the probability

of a match is the probability that no mutations have occurred from the ancestor

to male 1, i.e. (1 − µi)
t, where µi is the mutation rate at the ith locus. Thus the

probability of a match after t generations at the ith locus across both lineages,

qi(t), is:

qi(t) = (1− µi)
2t. (3.1)

Unlike Walsh (2001), we do not approximate this probability with e−2tµi (which

is obtained when modelling the number of mutations as a Poisson distribution

with parameter 2tµi). So the match/mismatch at the ith locus is distributed as a

Bi(1, qi(t)) so

P (Xi = xi|µi, t) = qi(t)
xi
(
1− qi(t)

)1−xi . (3.2)

Thus the likelihood of t for the data across n loci can be written as:

L(x1, . . . , xn|t) =
n∏

i=1

(1− µi)
2txi
(
1− (1− µi)

2t
)1−xi (3.3)

and the posterior distribution with an exponential prior on t (of rate λ) as:

P (t|x1, . . . , xn) ∝ L(x1, . . . , xn|t)p(t)

∝ e−λt
n∏

i=1

(1− µi)
2txi
(
1− (1− µi)

2t
)1−xi. (3.4)

We also allow for different mutation rates at each locus in our SMM, which is

otherwise similar to Walsh’s. The microsatellite repeat counts in this case are

modelled as a random walk from male 1 to male 2 (fig. 2.5) and is summarised

again. The observed data are the differences of the number of repeats of the

microsatellites for each male, which are also the differences in the numbers of

increase mutations, n+, and decrease mutations, n−, i.e. |n+ − n−|. This may be
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either even or odd, i.e.

|n+ − n−| = 2b, or

|n+ − n−| = 2b+ 1, where b is a positive integer.

Because both increase and decrease mutations can occur, the observed difference

will not be equal in general to the actual number of total mutations that occur.

We now detail the likelihood for the even case. Since the observed difference is

even it follows that the sum of n+ and n− is even:

n+ + n− = 2a, where a is a positive integer.

Supposing that increase and decrease mutations are equally probable, n+ is dis-

tributed as Bi(2a, 1
2
) as is n− mutations. Thus we have:

P (|n+ − n−| = 2b|n+ + n− = 2a) = 2
(2a)!

(a+ b)!(a− b)!

(
1

2

)2a

. (3.5)

We also suppose that the total number of mutations n+ + n− is distributed as

Po(2tµ) and so:

P (n+ + n− = 2a|t) = e−2tµ (2tµ)
2a

(2a)!
. (3.6)

Hence

P (|n+ − n−| = 2b|t) =
∞∑

a=b

P (|n+ − n−| = 2b|n+ + n− = 2a)P (n+ + n− = 2a|t)

=
∞∑

a=b

2

(
2a

a− b

)(
1

2

)2a

e−2tµ (2tµ)
2a

(2a)!

= 2e−2tµ

∞∑

c=0

(2tµ/2)2c+2b

Γ(c+ 1)Γ(c+ 2b+ 1)
(3.7)

where c = a− b.

The summation in the last line is a modified type I Bessel function (Lebedev

and Silverman, 1972; Olver, F. W. J. and National Institute of Standards and

Technology (U.S.), 2010), so for the even case we have the likelihood at each

microsatellite:

P (|n+ − n−| = 2b|t) = 2e−2tµI2b(2tµ). (3.8)
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Similarly, for the odd case, the likelihood at each microsatellite is:

P (|n+ − n−| = 2b+ 1|t) = 2e−2tµI2b+1(2tµ). (3.9)

Since the microsatellites are independent we can take the product of the likeli-

hoods across microsatellites to get the overall likelihood and from it compute the

maximum likelihood estimate of t. It is this that is examined in the results for

some simulated data and also in some of the analysis of real data.

By applying an exponential prior of rate λ to TMRCA, we form the posterior

distribution across n microsatellites. Here we use the notation xj,i to refer to the

number of repeats of the ith microsatellite (i = 1, . . . , n) for the jth male (j = 1, 2)

and we also allow for site-specific mutation rates across microsatellites, i.e. µi.

Thus we can write the posterior as follows:

P (t|x1,1, . . . , x1,n, x2,1, . . . , x2,n) ∝ e−λt
n∏

i=1

e−2tµiI|x1,i−x2,i|(2tµi)

∝ exp

(
−t(λ+ 2

n∑

i=1

µi)

)
n∏

i=1

I|x1,i−x2,i|(2tµi).

(3.10)

Our analysis begins by comparing estimates of TMRCA using the stepwise mu-

tation model to those using the infinite alleles model for the data from King

et al. (2006). Recall that King et al. typed 17 STRs (DYS19, DYS388, DYS389I,

DYS389II, DYS390, DYS391, DYS392, DYS393, DYS434, DYS435, DYS436, DYS437,

DYS438, DYS439, DYS460, DYS461 and DYS462) in 150 pairs of males with each

pair sharing the same surname. The surnames covered a wide range of frequen-

cies, varying from common surnames to rarer ones, allowing the opportunity to

model TMRCA against some measure of the frequency of the surname. Despite

the availability of the raw frequency of surnames across Great Britain in 1996,

King et al. examined their estimates of TMRCA against the rank of the surnames

in the sample. Thus the most frequent surname was assigned 1 whilst the least

frequent was ranked 150. Any relationship based on sample rank is not ideal; any

new surname would not fit into this measure naturally and indeed the relationship

itself would be altered. So we wished to model the relation of t against the UK

frequency of the surnames or alternatively the rank of surnames in the UK popula-

tion, a measure which was not included in the supplementary information of King



Chapter 3. Maximum Likelihood Estimation of TMRCA 65

et al. (2006). Given the non-linear relationship between the frequency and popu-

lation rank (figure 2A in King et al., 2006), we wished to consider both measures

in our analysis. Professor Kevin Schurer, one of the contributing authors (King

et al., 2006), kindly provided us with UK surname rank information and granted

us permission to use it in this research (pers. comm. Schurer). This information

involved ranking the surnames by frequency based on information in the 1996 UK

electoral register covering those aged 18 or over, making up just under 44 million

people. We also consider dividing the data according to those pairs of males who

share the same haplogroup status and those who do not share haplogroup.

The posterior distribution in equations 3.10 and 3.4 for the SMM and IAM, respec-

tively, with a common mutation rate of 0.002 mutation per locus per generation

and λ = 0.0002 were maximised using the optimize() function in R for the King

et al. (2006) data.

Following the initial mutation rate review (section 2.3.1) we compared the results

using the SMM using a single average mutation rate, 0.002390, to using the site-

specific mutation rates in the SMM (with λ = 0.0002). This analysis examined

the results for nine of the available 17 Y-STRs, i.e. DYS19, DYS389I, DYS389II,

DYS390, DYS391, DYS392, DYS393, DYS438 and DYS439 in accordance with

the initial mutation review which was limited to these Y-STRs.

3.1.2 Preliminary Results

We begin by comparing t̂ using the SMM and IAM directly (fig. 3.1). For times

up to about 75 generations the points straddle the line of equality roughly equally

above and below suggesting there is not much difference in the SMM and IAM

estimates of TMRCA. However, thereafter, the SMM produces substantially higher

values than the IAM.

In figure 3.2, we plot the SMM and IAM estimates versus the reverse surname

frequency and find there is a difference in the estimates. In general it appears

that IAM produces lower estimates of TMRCA than SMM. Although this differ-

ence appears almost negligible under 100 generations, higher estimates of TMRCA

produce a greater difference between the estimates from the two models. The rea-

son for this more pronounced difference the further back in time is because more

mutations will have occurred, and as the IAM does not differentiate between a
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Figure 3.1: TMRCA estimates: SMM vs. IAM with the line of equality superimposed
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Figure 3.2: SMM and IAM: TMRCA estimates vs. log surname frequency

1-step mismatch or > 1-step one, it produces lower estimates than the SMM.

Nonetheless, we see that there may be some negative relationship between esti-

mated TMRCA and the reverse log surname frequency. Also the SMM models

mutations being hidden by increase and decrease mutations which IAM does not

model.
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Figure 3.3: SMM haplogroup status: TMRCA estimates vs. log surname frequency
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Figure 3.4: IAM haplogroup status: TMRCA estimates vs. log surname frequency

We next consider the haplogroup data for each model separately. In figure 3.3,

the estimated TMRCA using the SMM versus the log surname frequency, the

same haplogroup points lie lower than the different haplogroup ones ( versus #

respectively). The same haplogroup results show a much more obvious negative

relationship between the variables. This does not appear to be the case for the
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different haplogroup data; the estimates appear to have similar spread across the

range of log surname frequency and show little sign of decrease. A similar picture

emerges for the IAM (fig. 3.4).

0 100 200 300 400 500 600

0
20

0
40

0
60

0
80

0
10

00

Average Mutation Rate TMRCA (generations)

S
ite

−
S

pe
ci

fic
 M

ut
at

io
n 

R
at

e 
T

M
R

C
A

 (
ge

ne
ra

tio
ns

)

Figure 3.5: TMRCA estimates: site-specific rates vs. average rate with the line of
equality superimposed

Now we show the results when examining data from only nine STRs from King

et al. (2006) using site-specific mutation rates compared to their average mutation

rate in the SMM. Comparing the estimates of TMRCA directly in figure 3.5, we

see that there appears to be little difference between the estimates for estimated

TMRCA below 100 generations with the points lying close to the line of equality.

However for greater values of estimated TMRCA the points all lie above the line

of equality showing that the site-specific rates produce higher estimates than the

average rate and the spread of the difference appears to increase as time increases.

When plotting the results against the log surname frequency in figure 3.6, it is

also evident that the average rate produces lower values of t̂ than the site-specific

rate, ( versus # respectively). Although there appears to be little difference

in estimates under 200 years, there is a considerable difference in some higher

estimates. In addition there still appears to be a negative linear relationship

between estimated TMRCA and the reverse log surname frequency.

Decomposing the results according to the haplogroup status helps to accentuate

the linear relationship between t̂ and the log surname frequency. Figure 3.7 shows
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Figure 3.6: Site-specific and average mutation rates: TMRCA estimates vs. log
surname frequency
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Figure 3.7: Site-specific mutation rates haplogroup status: TMRCA estimates vs. log
surname frequency
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the site-specific mutation rate results. The same haplogroup estimates ( ) lie

much lower than the different haplogroup estimates (#) and form a negative linear

relationship between the variables which is not so clear for the different haplogroup

estimates. A similar picture emerges when employing the average mutation rate

in the SMM (data not shown).

3.1.3 Preliminary Conclusions

In summary, we find that the IAM produces lower estimates of TMRCA than the

SMM. In addition, when subdividing the data according to haplogroup status, both

models’ estimates show a negative linear relationship with the reverse log surname

frequency for the same haplogroup data, which does not appear as striking for the

different haplogroup data.

It also appears that using an average mutation rate produces a lower estimate of

TMRCA than using site-specific mutation rates particularly for times greater than

200 generations due to the effect of “hidden mutations”.

3.2 Development

From section 3.1, it is evident that the model used to analyse Y-STR data from

pairs of males who shared the same surname affected the estimates of TMRCA,

t. This was also the case when site-specific and average mutation rates were

employed. However in both comparisons we did not know which model or mutation

rates was better at estimating t. This required data where this parameter was

known. In the absence of real data of this kind, we examine simulated data where

t could be specified. This has the advantage that we can produce statistics such

as the mean squared error and the bias to compare the various estimators over

replicate data sets.

The aim of this analysis is to compare the use of site-specific mutation rates with

an average mutation rate both using the stepwise mutation model (SMM) and

initially the infinite alleles model (IAM). The validity of comparing the IAM to

the SMM was in doubt when using simulated data as the nature of the simulation

would presumably favour the model from which the data were simulated, in this
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case the SMM. Consequently we developed the infinite sites model (ISM) described

below to compare to the SMM under varying conditions such as the number of

loci (n) typed and the TMRCA, t, for a pair of Y-chromosomes.

3.3 Materials and Methods

The following notation will be used in this section:

• µ is the per locus per generation mutation rate. In general it will be indexed

by i referring to the ith locus;

• n+ is the total number of increase mutations. This may be indexed as n+,i

where i refers to the locus;

• n− is the total number of decrease mutations. This may be indexed as n−,i

where i refers to the locus;

• x1, x2 are the number of repeats of an STR for male 1 and 2, respectively.

These may be indexed xj,i where j = 1, 2 refers to which male and i refers

to the locus.

• m is the number of meioses used to calibrate the mutation rate. This may

also be indexed by i to indicate the locus.

3.3.1 Stepwise Mutational Model

This model has already been outlined in section 3.1. The likelihood can be written

as:

L(x1,1, . . . , x1,n, x2,1, . . . , x2,n|t) ∝
n∏

i=1

e−2tµiI|x1,i−x2,i|(2tµi). (3.11)

The MLE of t cannot be analytically derived given the use of the Bessel function.

As such we use the function optim() in R to find t̂ that maximises L, or rather its

logarithm. This function operates by searching for the maximum (or minimum)

of a function given lower and upper values of the parameter to be estimated.

3.3.2 Infinite Sites Model

We now outline the model which we call the infinite sites model (ISM) in which

we assume that no back mutations occur (fig. 2.3). In this case |x1 − x2| is the
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number of mutations at the locus of interest and is distributed as Po(2µt). Hence

the full likelihood is:

L(x1,1, . . . , x1,n, x2,1, . . . , x2,n|t) =
n∏

i=1

e−2tµ (2tµ)
|x1,i−x2,i|

|x1,i − x2,i|!
, (3.12)

which is maximised when:

t̂ =

n∑
i=1

|x1,i − x2,i|

2
n∑

i=1

µi

. (3.13)

Given the form of the MLE of t for the ISM, the average mutation rate will produce

the same result as the site-specific mutation rates.

3.3.3 Data Simulation

In the previous chapter we outlined various ways in which estimates of mutation

rates can be obtained by examining DNA. Typically this is achieved by examining

DNA from many father-son pairs or alternatively from DNA from several males

whose ancestry is known, i.e. deep-rooting pedigrees. In both cases the number of

meioses, i.e. the total number of times the Y-chromosome has been transmitted

from any father to his son, m, is counted along with the number of times the

number of repeats at each microsatellite differs, r. Thus in general at the ith

microsatellite the mutation rate can be estimated as µ̂i = ri/mi.

Now we could simply use these point estimates. However we can suppose that

these rates have an underlying distribution, which we would like to model. In this

case a gamma distribution, with shape α and scale β, is probably flexible enough.

The use of this distribution to model mutation rates has been well established (Nei

et al., 1976). In particular, it has been used to model the variation of autosomal

STRs (Xu et al., 2005). As such we also use the gamma distribution to model

the distribution of Y-STR mutations rates. The shape and scale parameters can

be estimated e.g. by the method of moments, equating the mean and variance of

the observed estimated mutation rates to the mean and variance of the gamma

distribution, and solving for α̂ and β̂.
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In the initial mutation rate review using the estimates at nine microsatellites in

section 2.3.1, we observed a mean mutation rate of 0.002390 per generation with

variance 0.000003368, for which α̂ = 1.697 and β̂ = 0.001409 per generation.

Alternatively maximum likelihood estimates of the parameters in the gamma dis-

tribution may be produced e.g. by using the optimize() function in R. These

are α̂ = 1.710 and β̂ = 0.001398 per generation. The gamma distribution of the

average of the two estimates is shown in figure 3.8 (black line). Using this gamma

distribution with α̂ = 1.703 and β̂ = 0.001404 per generation we can sample ran-

dom mutation rates. Next, we apply a combined ascertainment and calibration

step consisting of m simulated meioses. Only those microsatellites that are found

to be variable, i.e. for which µ̂ 6= 0 will be retained thus providing an empirical

estimate for the mutation rate which has been both ascertained and calibrated.

We end by simulating microsatellite data for a pair of Y-chromosomes given a

specified number of loci n and t.
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Figure 3.8: Three densities used to simulate mutation rates

The steps in the data simulation process can be summarised as follows assuming

we have n loci.

1. Generate mutation rates: µi ∼ Ga(α̂, β̂).

2. Simulate mutations in mi meioses: ri ∼ Bi(mi, µi).
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3. For ri 6= 0, compute the empirical mutation rate: µ̂i = ri/mi.

4. Generate the total number of mutations between two males: n+,i + n−,i ∼
Po(2tµi).

5. Generate the total number of increase mutations: n+,i ∼ Bi(n+,i+n−,i, 0.5).

6. Compute the total number of decrease mutations: n−,i.

7. Standardise male 1 as having zero STR repeats: x1,i = 0.

8. Compute the number of STR repeats for male 2 relative to male 1: x2,i =

n+,i − n−,i.

9. Compute the observed data, i.e. the absolute difference in the number of

STR repeats between males 1 and 2: |x1,i − x2,i| = |n−,i − n+,i|.

In our analysis we will simulate data for n = 50 calibrated mutation rates using

mi=10,000. The observed data are then generated for t=10, 25, 50, 100, 200,

400, 800, 1000 generations using the calibrated mutation rates 10,000 times. We

subsample from the n = 50 simulated loci in order to obtain data for n =5, 10, 20,

30, 40. Thereafter we compute the MLE of t under the SMM for each run using:

• the true mutation rates,

• the average of the true rates,

• the empirical rates, and

• the average of the empirical rates.

Each estimator’s mean squared error (MSE) is also computed. Recall that the

MSE of any estimator can be broken down as follows:

MSE = variance + bias2.

To allow a meaningful comparison across different t we compute the fractional

squared error (FSE), i.e. MSE/t2, comparing it for the four different mutation

rates used. Similarly the fractional variance (variance/t2) and the fractional bias

squared (bias2/t2) will be produced. Where possible when plotting the results,

the scales will be kept the same unless they prevent a clear interpretation of the

results. Furthermore, these statistics will be produced for estimates of t using the

ISM, based on the true mutation rates and the empirical rates.

We also examine how the underlying distribution from which the mutation rates

are drawn affects the estimation of TMRCA using the SMM and ISM by con-

sidering two rather extreme cases of the gamma distribution such that the mean
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mutation rate is fixed at 0.00239 per generation. The first case will involve mu-

tation rates generated from a very right-skewed distribution with α̂ = 0.05 and

β̂ = 0.04781. The second case will have α̂ = 30 and β̂ = 0.00008 where only a

narrow range of mutation rates can be drawn. These two distributions are shown

in figure 3.8 (red and blue lines, respectively). The three distributions have the

following variances:

• 0.0000034 (α̂ = 1.710 and β̂ = 0.001398, black line)

• 0.0001143 (α̂ = 0.05 and β̂ = 0.04781, red line)

• 0.0000002 (α̂ = 30 and β̂ = 0.00008, blue line)

The analysis will be followed by a discussion of possible bias due to the calibration

process and any other factors that affect the estimation of TMRCA.

3.4 Results

3.4.1 Mutation Rate Distribution 1

In this first set of results, we will examine the simulated data in which simulated

mutation rates are drawn from a Ga(1.703, 0.001404) which are calibrated with

10,000 meioses. The data considers all combinations of n=5, 10, 20, 30, 40, 50

with t=10, 25, 50, 100, 200, 400, 800, 1000 generations. For each combination of

n and t, 10,000 independent simulated datasets will be analysed.

3.4.1.1 Stepwise Mutation Model Analysis 1

We begin by analysing the data using the SMM. In figure 3.9 we plot the FSE of

the estimates of TMRCA, t̂, against the number of loci, n, at each value of t.

Note that in figure 3.9 the scale is different at each t. It is clear that increasing n

decreases the FSE of t̂ for each given t. This is true for all four types of mutation

rates used. Also as t increases the FSE decreases substantially. Moreover the true

average and site-specific rates (3 and #) produce consistently lower FSE values

than their empirical counterparts (3 and #).

However, surprisingly, for values of t less than 400 (figs. 3.9a-e), the average rates

(3 and 3) perform better than the site-specific rates (# and #) particularly when
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Figure 3.9: Fractional squared error and variance of t̂ vs. number of loci: a. t = 10,
b. t = 25, c. t = 50, d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000

(#/solid red line - FSE/FV of true rates, 3/dashed red line - FSE/FV of average of true rates, #/solid
blue line - FSE/FV of empirical rates, 3/dashed blue line - FSE/FV of average of empirical rates)

n ≤ 20. Nonetheless, the FSEs for all four rates converge for these five cases of t

as the number of loci increase. Additionally, the true and empirical averages (3

and 3) converge quickly, whilst the true and empirical site-specific rates (# and

#) converge more gradually with increasing n.

In figure 3.9f, for t = 400, the FSE for the true site-specific rates (#) is lowest

although this is clearest when n ≤ 20. Conversely, the FSE for the empirical

site-specific rates (#) is highest throughout. The FSEs for the average of the true

and empirical rates (3 and 3) are very similar even for low values of n. Despite

the initial differences at low value of n, all four rates FSEs converge quickly.

In contrast, in the case t = 800 (fig. 3.9g) the FSE for the true site-specific (#)

appears distinctly lower than the three other mutation rates (#, 3 and 3), which

all appear to have very similar FSE values. The difference decreases as n increases

but still remains evident at high n. This may imply a slower convergence between

the rates in comparison to lower values of t. For low n, at t = 1000, the true and

empirical site-specific rates have similar FSEs (# and #) although the former are

slightly lower (fig. 3.9h). However, as n increases, their FSEs gradually diverge,

with the true site-specific rates remaining lower. In contrast, although the average

of the true and empirical rates perform poorly for small n, they converge with the

empirical site-specific rates FSE with increasing n.
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Now we examine the fractional variance (FV) in the same cases. The FV of the

MLE estimates for the four types of mutation rates (fig. 3.9) appears to follow

the same pattern as the FSE. Again note that the FV scales are different across t.

The FV decreases as the number of loci increases with the four rates converging

by n = 50 at each t except t = 800 and 1000 (fig. 3.9gh) where the convergence is

slower.

The fractional bias squared (FBSQ) t̂ against the number of loci (n) at each value

of t is shown in figure 3.10. In general, the FBSQ is largest when sampling few

loci and it decreases with increasing n throughout for the true and empirical site-

specific rates (# and #). However, for the remaining two rates (3 and 3) this

is true for t = 10, 25 and 1000 (figs. 3.10abh). At other times, although the

FBSQ drops initially, it gradually increases as n increases further for the true and

empirical averages (3 and 3). For these cases, although they have lower FBSQ for

low n, they have much higher FBSQ values than their site-specific counterparts

at high n. This is also the case for the empirical site-specific rates at t = 800

(fig. 3.10g). Here the FBSQ is negligible at n = 5 yet it progressively increases as

n increases. A similar pattern exists for t = 1000 although there is decrease from

n = 5 − 10 in FBSQ (fig. 3.10h). Also for the true and empirical averages FBSQ

decreases as n increases.

In general, the true site-specific rates produce lower FBSQ when n is high. To

understand further the unusual behaviour for the average rates, we examine the

fractional bias (FB) of the corresponding results (fig. 3.11), where:

FB =
t̂− t

t
.

At t = 10 generations we have a straightforward result: as n increases the positive

FB for t̂ reduces by the four types of mutation rates. The true and empirical

averages (3 and 3) produce consistently lower positive FB than their site-specific

counterparts; they produce only a small positive FB when n is high.

At t = 25 (fig. 3.11b), although there is a decaying trend in FB in general, the

averages (3 and 3) produce an increasing negative FB after n = 30. The true

and empirical site-specific rates (# and #) continue with the trend of decreasing

positive FB as n increases. For these two rate, this behaviour continues throughout

t = 10 − 400 (figs. 3.11a-f). However, as t increases, the difference in their FB

also increases with the true site-specific remaining less biased throughout.
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Figure 3.10: Fractional bias squared of t̂ vs. number of loci: a. t = 10, b. t = 25,
c. t = 50, d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000

(# - true rates, 3 - average of true rates, # - empirical rates, 3 - average of empirical rates)
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Figure 3.11: Fractional bias of t̂ vs. number of loci: a. t = 10, b. t = 25, c. t = 50,
d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000
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For both the averages (3 and 3), increasing n continues to monotonically decrease

FB when t = 25 − 400 (figs. 3.11b-f). For small n, FB is positive but becomes

increasingly negative as n increases. There is little difference between the FB of

these two average rates for every t (figs. 3.11a-h). At t = 800 and 1000, they both

give a negative FB across n, which reduces as n increases.

In contrast, for the true site-specific rates (#) at t = 800, t̂ begins with a negative

FB, but this quickly (by n = 10) moves very close to zero (fig. 3.11g). This is also

the case when t = 1000 (fig. 3.11h) but the estimates become virtually unbiased

when n ≥ 20. At t=800 (fig. 3.11g), the empirical site-specific rates (#) produce

unbiased estimates for small n but a positive FB as n increases. This too is the case

for t=1000; however the estimates have an initial negative FB, which then become

unbiased around n = 10 and later remain positive (fig. 3.11h). Furthermore, there

appears to be a gradual increase in the absolute difference between the fractional

bias of these empirical site-specific rates and the true site-specific rates (#, #).

3.4.1.2 Infinite Sites Model Analysis 1

Now we look at the ISM results for the data described in section 3.4.1. Firstly,

we examine the FSE of the t̂ against the n for the true and empirical site-specific

rates where the scales are different across t (# and #, fig. 3.12). Note that these

results are identical to those obtained by using the corresponding average rates

due to the ISM estimator only depending on the average rate. We note that there

is little difference in the FSE between the true or empirical rates across t thus the

points are superimposed in most cases.

In figures 3.12a-f, there is a clear trend of decreasing FSE as n increases although

the amount of decrease reduces relative to the initial FSE as t increases. At t = 800

and 1000, there is little change in FSE as n increases (fig. 3.12gh). However, as t

increases, FSE decreases until t = 200, after which it begins to increase.

Turning to FV (fig. 3.12) again the lines are superimposed for both the true and

empirical rates. At low times (t = 10, 25, 50), there is little difference between FV

and FSE. However, the FV component of the FSE reduces as t increases further,

so much so that at t=1000, less than 7% of the FSE is contributed by the FV.

The form of the FBSQ is shown in figure 3.13. It shows an increase as t increases.

In addition, we find the FBSQ of both the empirical and true rates are virtually
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Figure 3.12: Fractional squared error and variance of t̂ vs. number of loci: a. t = 10,
b. t = 25, c. t = 50, d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000
(#/solid red line - FSE/FV of true rates, #/solid blue line - FSE/FV of empirical rates)

identical and that there is little change in FBSQ as n increases. In figure 3.14

the FB against n is plotted for each time. For all times there is a negative FB

indicating that the ISM underestimates t̂, and the magnitude of FB increases, as

t increases. Furthermore, at each time, FB is fairly constant as n increases.

3.4.2 Mutation Rate Distribution 2

This second set of results was obtained using data simulated using mutation rates

drawn from a Ga(0.05, 0.04781), which are estimated with 10,000 meioses. This

has significant mass at a wider range of mutation rates than those sampled in

section 3.4.1. The data were, otherwise, simulated as before.

3.4.2.1 Stepwise Mutation Model Analysis 2

As before we commence by analysing the data using the SMM. Figure 3.15 shows

FSE against n at each value of t. Note that the scales of FSE across t are not

identical. At each t, there is little difference in the FSE produced using the true

and empirical site-specific rates (# and #) with the latter overprinting the for-

mer in the figure and likewise for the true and empirical averages (3 and 3).

Furthermore, the FSE decreases both as n increases at each time and also as t
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Figure 3.13: Fractional bias squared of t̂ Estimates vs. number of loci: a. t = 10,
b. t = 25, c. t = 50, d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000

(# - true rates, # - empirical rates)
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Figure 3.14: Fractional bias of t̂ vs. number of loci: a. t = 10, b. t = 25, c. t = 50,
d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000

(# - true rates, # - empirical rates)
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Figure 3.15: Fractional squared error and variance of t̂ vs. number of loci: a. t = 10,
b. t = 25, c. t = 50, d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000

(#/solid red line - FSE/FV of true rates, 3/dashed red line - FSE/FV of average of true rates, #/solid
blue line - FSE/FV of empirical rates, 3/dashed blue line - FSE/FV of average of empirical rates)

increases. At t = 10 and 25, the average rates tend to lower FSE that their site-

specific counterparts, although the absolute difference between them decreases as

n increases (fig. 3.15ab). Indeed by n = 50, their FSEs appear to have converged.

In figure 3.15c, the averages’ FSEs are still lower than those for the site-specific

rates, although there appears to be quicker convergence (by n = 30) than at lower

times. Thereafter as n increases, there appears to be a slight divergence with the

site-specific rates giving a slightly lower FSE than the averages.

At the next time, t = 100, the averages’ FSE is lower only at n=5 (fig. 3.15d). By

n = 10 the FSE is indistinguishable for all four rates. For higher n, the site-specific

rates have lower FSE than the averages. Furthermore, the difference appears to

increase as n increases. In figure 3.15e, the absolute difference between the site-

specific rates and average rates appears constant across n with the exception of

n=5. The site-specific rates have lower FSE than the averages. This is also the

case for t = 400, 800 and 1000. Again there is almost constant absolute difference

between the averages and site-specific rates. Turning to the FV component, the

general trend is as before: FV has an inverse relationship to n. In addition, the

FV decreases as t increases. There is little difference in FV between the true and

empirical site-specific (solid red and blue lines) and similarly between the averages

(dashed red and blue lines). There is less FV in the estimates based on the average

rates for t = 10− 100 (figs. 3.15a-d) than for the site-specific rates. However, for
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Figure 3.16: Fractional bias squared of t̂ vs. number of loci: a. t = 10, b. t = 25,
c. t = 50, d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000

(# - true rates, 3 - average of true rates, # - empirical rates, 3 - average of empirical rates)
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Figure 3.17: Fractional bias of t̂ vs. number of loci: a. t = 10, b. t = 25, c. t = 50,
d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000

(# - true rates, 3 - average of true rates, # - empirical rates, 3 - average of empirical rates)

the remaining times, the reverse is true (figs. 3.15e-h). Furthermore there is much

less contribution of FV to the FSE for the averages (3 and 3) in particular for

t = 50−400 when n is high (figs. 3.15c-f), and a little less for high t (figs. 3.15gh).

For the true rates (# and #), there is little difference FV and FSE.

In figure 3.16, we focus on FBSQ, for which, as before, there is almost no difference

between the true and empirical site-specific rates or between the average rates and
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thus the empirical superimpose their true counterparts. We do find however that

whilst FBSQ for the site-specific rates decreases with increasing n, the reverse

holds true for the FBSQ for the average rates when t = 10 − 400 (figs. 3.16a-

f). In addition, the rate at which the FBSQ increases with n also increases as t

increases from 10 to 100, thereafter decreasing in these cases (figs. 3.16a-d). On

the other hand, for the site-specific rates whether true or empirical, the rate at

which the FBSQ decreases also increases with increasing time with the exception of

t=1000, where the FBSQ appears slightly higher. For t=800 and 1000, the FBSQ

produced using the averages decreases with increasing n. Furthermore, FBSQ is

less in general for the site-specific rates than for the average rates.

To complete this section we comment on the fractional bias of t̂ versus the number

of loci (figure 3.17). As there is little difference in FB between the true and empir-

ical rates, we will again refer simply to the site-specific rates and the average rates.

For the former (# and #), there is a positive FB which decreases, approaching

zero as n increases at each t = 10 − 400 (figs. 3.17a-f). The initial FB (n = 5)

also decreases, as time increases, as does the rate of convergence to zero. However,

although the average rates (3 and 3) follow a similar monotonically decreasing

trend, the FB becomes increasingly negative both as n increases and also as time

increases from 10-400. For t = 800 and 1000, the site-specific rates tend to a

negative FB for small n which increases quickly to zero, i.e. producing little bias

(figs. 3.17gh). There is slightly less FB for the true site-specific rates than the

empirical rates (# and #). For the average rates there is also a reduction in FB

as n increases. However, there is still a substantial negative bias compared to the

FB arising from the site-specific rates.

3.4.2.2 Infinite Sites Model Analysis 2

We now examine the simulated data described in section 3.4.2 using the ISM.

Firstly, we view the FSE of t̂ against n at each t using the true and empirical site-

specific mutation rates. As before the scales of FSE are different for each time.

In general, there is no difference in FSE between the true and empirical rates (#

and #). At t = 10 − 100 the FSE decreases with increasing n (figs. 3.18a-d).

Conversely, the FSE increases with increasing n for t = 200− 1000 (figs. 3.18e-h).

Furthermore, in those cases the overall FSE progressively increases with increasing

t.
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Figure 3.18: Fractional squared error and variance of t̂ vs. number of loci: a. t = 10,
b. t = 25, c. t = 50, d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000
(#/solid red line - FSE/FV of true rates, #/solid blue line - FSE/FV of empirical rates)

The FV component is overlaid on figure 3.18 also. There is virtually no difference

in FV using either the true or empirical rates, the latter (blue line) superimposes

the former. As n increases, FV decreases at each t. However the contribution

that FV makes to FSE decreases with increasing time. At t=10, almost all the

FSE is from the FV, but by t=1000 there is very little FV in the FSE. Figure

3.19 shows FBSQ versus the n at each t. Again the true and empirical rates have

indistinguishable FBSQ (# and #), which increases slowly as n increases. Also it

increases gradually from approximately 0.05 to over 0.7 as t increases.

The corresponding plot of fractional bias (FB) is shown in figure 3.20. Here we find

that both types of mutation rates produce negative FB, i.e. they underestimate of

t. The amount by which the rates underestimate increases as n increases at each

time and also as t increases.

3.4.3 Mutation Rate Distribution 3

In this final set of results, we analyse data simulated using mutation rates drawn

from a Ga(30, 0.00008). As before the mutation rates have been drawn using

10,000 meioses. This gamma distribution allows a narrower range of mutation

rates to be drawn compared to the distribution mentioned in section 3.4.1.
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Figure 3.19: Fractional bias squared of t̂ vs. number of loci: a. t = 10, b. t = 25,
c. t = 50, d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000

(# - true rates, # - empirical rates)
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Figure 3.20: Fractional bias of t̂ vs. number of loci: a. t = 10, b. t = 25, c. t = 50,
d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000

(# - true rates, # - empirical rates)
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3.4.3.1 Stepwise Mutation Model Analysis 3

In this section, we use the SMM to analyse the above data. Figure 3.21 is a plot

of FSE of t̂ against n for each t, using the four types of mutation rates described

in section 3.4.1. Note that the scale of FSE reduces as times increases.
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Figure 3.21: Fractional squared error and variance of t̂ vs. number of loci: a. t = 10,
b. t = 25, c. t = 50, d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000

(#/solid red line - FSE/FV of true rates, 3/dashed red line - FSE/FV of average of true rates, #/solid
blue line - FSE/FV of empirical rates, 3/dashed blue line - FSE/FV of average of empirical rates)

Here we find a decreasing trend of FSE as n increases at each time. Also, as t

increases, FSE decreases. Furthermore, there are only minor differences between

the four rates, with the empirical site-specific rates’ FSE (#) just slightly higher

than the other three rates’ FSEs (#, 3 and 3). In addition, at certain times,

e.g. t=100, 200 and 400, these empirical site-specific rates lie distinctly higher at

low values of n (figs. 3.21). Examining the FV component, it is clear that most of

the FSE is contributed by the FV across all times, which similarly has a decreasing

trend with increasing n and increasing t. The FBSQ is shown in figure 3.22. Here

we find that the FBSQ component is very small and, although there is a pattern

of increasing FBSQ as t increases from 10 to 50, it is still negligible compared to

the FSE (fig. 3.21). From t = 100 − 1000, FBSQ decreases. We find that the

true site-specific, true average and empirical averages rates (#, 3 and 3) have

very similar FBSQ throughout. From t = 10− 400, the absolute difference of the

FBSQ between them and the empirical site-specific rates increases (#, figs. 3.22a-

f). However the latter’s FBSQ appears to increase with n at t=800 (fig. 3.22g).
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Figure 3.22: Fractional bias squared of t̂ vs. number of loci: a. t = 10, b. t = 25,
c. t = 50, d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000

(# - true rates, 3 - average of true rates, # - empirical rates, 3 - average of empirical rates)
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Figure 3.23: Fractional bias of t̂ vs. number of loci: a. t = 10, b. t = 25, c. t = 50,
d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000

(# - true rates, 3 - average of true rates, # - empirical rates, 3 - average of empirical rates)
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At this time, the three remaining rates FBSQ appear constant as n increases.

At t=1000, these rates show a decreasing trend with increasing n and although

the empirical site-specific rates’ FBSQ initially decreases, it shows a very slight

increase as n increases further.

The final figure in this subsection is of FB of t̂ against the n for each t (fig. 3.23).

For t = 10−400, all four rates’ FB is positive (figs. 3.23a-f). It decreases in value as

n increases, approaching zero. However, as t increases, there is a greater difference

between the empirical site-specific rates (#) FB and those for the other rates (#,

3 and 3). At t = 800, these other rates have an initial negative bias which quickly

decreases in magnitude to near zero (fig. 3.23g). Although the empirical rates’ FB

increases, it is positive throughout (#). At t = 1000, the rates all exhibit a FB

which increases with n (fig. 3.23h). But whilst the empirical rates begins with a

negative FB which reaches zero and then remains positive, the FB for the three

other rates increases but remains negative or near zero.

3.4.3.2 Infinite Sites Model Analysis 3
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Figure 3.24: Fractional squared error and variance of t̂ vs. number of loci: a. t = 10,
b. t = 25, c. t = 50, d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000
(#/solid red line - FSE/FV of true rates, #/solid blue line - FSE/FV of empirical rates)

This section reanalyses the data outlined in section 3.4.3 using the ISM. Figure

3.24 shows the ISM estimates using the empirical and true rates against n. Firstly

there is virtually no difference between the FSE for either type of rates (# and

#). Secondly there is a strong decreasing trend in FSE as n increases for t < 400
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(figs. 3.24f-h). The rate of decrease as n increases is substantial for low t but

reduces as time increases. Also, with increasing time, although there is a decrease

in FSE from t = 10− 200 (figs. 3.24a-e), thereafter the overall FSE increases. For

t = 10 − 50, FV is the major component to FSE, but as time increases further,

the contribution reduces to a very small fraction.
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Figure 3.25: Fractional bias squared of t̂ vs. number of loci: a. t = 10, b. t = 25,
c. t = 50, d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000

(# - true rates, # - empirical rates)

The inverse relationship between FV and time is also evident between FBSQ and t

in figure 3.25. Here, as t increases so does FBSQ, although there is little difference

in FBSQ as n increases at each time. Conversely, we see that the FB of the ISM

estimates decrease as t increases (fig. 3.26). Again, the FB is roughly constant as

n increases but is consistently negative.
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Figure 3.26: Fractional bias of t̂ vs. number of loci: a. t = 10, b. t = 25, c. t = 50,
d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000

(# - true rates, # - empirical rates)

3.5 Discussion

In this discussion we will compare the results from the site-specific rates and the

average mutation rates using the SMM. Next the results for the different mutation

rate distributions will be compared. We will then discuss differences between the

SMM and the ISM. We will finish by examining three selected times to compare the

results using different mutation rate distributions and also the type of mutation

rates used, i.e. t = 10, 200 and 1000 generations.

For mutation rate distribution 1, the right-skewed distribution, at very short times

the estimates of t using average mutation rates (3 and 3) have lower FSE and FB

compared to their site-specific counterparts (# and #, fig 3.27a). This may seem

counterintuitive: site-specific rates should give more informative results. However

using site-specific rates, some of which are high, the SMM overcorrects for recurrent

mutation that essentially do not occur for small t, where the data is essentially

compatible with the ISM.

For higher times, for example t = 200 generations, although the average rate

produces a monotonically decreasing FB, that bias actually becomes negative.

Thus, at high n, the magnitude of the FB can be high. This is consistent with the

fact that for high t, the data are affected by repeat mutation. Since the correction
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Figure 3.27: Mutation rate distribution 1: fractional bias of t̂ vs. number of loci:
a. t = 10, b. t = 200, c. t = 1000

(# - true rates, 3 - average of true rates, # - empirical rates, 3 - average of empirical rates)
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Figure 3.28: Mutation rate distribution 2: fractional bias of t̂ vs. number of loci:
a. t = 10, b. t = 200, c. t = 1000

(# - true rates, 3 - average of true rates, # - empirical rates, 3 - average of empirical rates)
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Figure 3.29: Mutation rate distribution 3: fractional bias of t̂ vs. number of loci:
a. t = 10, b. t = 200, c. t = 1000

(# - true rates, 3 - average of true rates, # - empirical rates, 3 - average of empirical rates)



Chapter 3. Maximum Likelihood Estimation of TMRCA 93

for this depends on each marker’s rate, not the average, the average rate is not

adequate, to allow for recurrent mutation.

When we consider mutation rate distribution 2 (fig. 3.28), a very right-skewed

distribution, the magnitude of the difference in FB based on the site-specific and

average rates is much greater than for mutation rate distribution 1 (fig. 3.27). This

is consistent with there being more high rates generated in this case, for which

repeat mutation is more of an issue, and which cannot be corrected solely based

on the average rate.

Furthermore, considering mutation rate distribution 3, the narrow almost symmet-

ric distribution, we find in figure 3.29 there appears to be little or no difference

between FB when using the true site-specific rates or either of the average rates

(the difference in these and the empirical site-specific rates will be discussed later).

Given the low variance in marker rates, most rates are close to the mean rate. So

it is unsurprising that use of the average rate in estimation is as effective as having

all the individual rates.

In summary, as the variance of the mutation rates increases, the average becomes

less and less able to correct for the impact of repeat mutation at markers with a

high rate.

We focus next on the results from the SMM and the ISM, examining the FSE of

estimates using the true mutation rates and then the empirical mutation rates.

For mutation rate distribution 1, table 3.1 shows when the FSE for the ISM is

lower than that for the SMM for all combinations of n and t.

Table 3.1: Mutation rate distribution 1: ISM FSE < SMM FSE using true and
empirical site-specific mutation rates (T=true, F=false)

Parameters
t(generations)

10 25 50 100 200 400 800 1000

n

5 T T T T T T F F
10 T T T T T T F F
20 T T T T T/F1 F F F
30 T T T T F F F F
40 T T T T F F F F
50 T T T F F F F F

The ISM outperforms the SMM particularly at lower times (< 100 generations) for

mutation rate distribution 1, when there is very little repeat mutation to correct

1True/empirical site-specific mutation rate



Chapter 3. Maximum Likelihood Estimation of TMRCA 94

for. As the variance of the mutation rate distribution increases, the SMM tends

to outperform the ISM as demonstrated by mutation rate distribution 2 (table

3.2). The converse holds when the variance of the mutation rate distribution is

narrowed (table 3.3).

Table 3.2: Mutation rate distribution 2: ISM FSE < SMM FSE using True and
Empirical Site-Specific Mutation Rates (T=true, F=false)

Parameters
t(generations)

10 25 50 100 200 400 800 1000

n

5 T T T T T T F F
10 T T T T F F F F
20 T T F F F F F F
30 T T F F F F F F
40 T F F F F F F F
50 T F F F F F F F

Table 3.3: Mutation rate distribution 3: ISM FSE < SMM FSE using True and
Empirical Site-Specific Mutation Rates (T=true, F=false)

Parameters
t(generations)

10 25 50 100 200 400 800 1000

n

5 T T T T T T F F
10 T T T T T T F F
20 T T T T T/F2 F F F
30 T T T T F F F F
40 T T T T F F F F
50 T T T F F F F F

However, for every case of n and t and for all mutational distributions, the FV is

lower for the SMM estimates than for the ISM estimates (data not shown). Also,

the perceived success of the ISM falls into doubt when FB is considered.

It is clear (fig. 3.30) that the ISM systematically underestimates t. However it

does better at short times, when the differences in repeat number are almost the

total number of mutation, i.e. no wiping out of mutations occurs, consistent with

the ISM likelihood. However, once time increases, when the chance of mutations

being wiped out is increased, the model continues to underestimate t and the FB

does not reduce with additional information from more markers.

Next we consider the results of the SMM and ISM when using empirical mutation

rates for the three mutation rate distributions. As before, tables 3.1, 3.2 and

3.3 demonstrate the dependence of the performance of the ISM FSE according to

the mutation rate distribution. However the fractional variance is lower for the

2True/empirical site-specific mutation rate
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Figure 3.30: Fractional bias of true mutation rates t̂ vs. number of loci: a. t = 10,
b. t = 25, c. t = 50, d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000

#/#- SMM/ISM estimate mutation rate distribution 1, 3/3 - SMM/ISM estimate mutation rate
distribution 2, △/△- SMM/ISM estimate mutation rate distribution 3,
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Figure 3.31: Fractional bias of empirical mutation rates t̂ vs. number of loci: a. t =
10, b. t = 25, c. t = 50, d. t = 100, e. t = 200, f. t = 400, g. t = 800, h. t = 1000
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SMM than the ISM (data not shown). Examining the FB based on the empirical

mutation rates (fig. 3.31) similar conclusions can be drawn for the ISM estimates.

However, for the SMM, the FB for mutational distribution 2 (3) gradually diverges

from the FB of the other two distributions (# and △) as t increases. This is also

due to mutation rate distribution 2 having the highest variance.

We end by exploring the effect of the number of meioses for all three mutation rate

distributions using all four types of mutations rates when n = 50 and t = 1000,

this being the most pronounced case of the difference mentioned above using the

SMM. The number of meioses varies from 100-1,000,000 and for each number of

meioses 10,000 runs are simulated for each mutation rate distribution.
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Figure 3.32: Fractional squared error and variance of t̂ vs. number of meioses (log
scale) a. mutation rate distribution 2, b. mutation rate distribution 1, c. mutation rate

distribution 3
(#/solid red line - FSE/FV of true rates, 3/dashed red line - FSE/FV of average of true rates, #/solid
blue line - FSE/FV of empirical rates, 3/dashed blue line - FSE/FV of average of empirical rates)

Figure 3.32 shows the FSE and FV for the three distributions. Note that ordering

of the graphs is according to decreasing variance of the mutation rate distribution.

For mutational distribution 2, there is some difference in FSE at low numbers

of meioses between the four types of mutation rates. However, it reduces as the

number of meioses increases for the site-specific rates (# and #). The average

rates’ FSE (3 and 3) increases with increasing number of meioses with the former

being superimposed by the latter (fig. 3.32a). The FV is fairly close to the FSE

but contributes less for the average rates when there are more than 10,000 meioses.

For mutation rate distributions 1, in figure 3.32b, the empirical site-specific and

average rates (# and 3) have very high FSE with very low FV contribution at

low meioses with the former reducing a lot thereafter and the FV contributing

more. The true rates produce fairly similar FSE and fractional variance across

all meioses (# and 3). A similar picture emerges for mutation rate distribution
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3, although the FSE is slightly greater for the empirical rates (# and 3) at low

meioses (fig. 3.32c).
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Figure 3.33: Fractional bias of t̂ vs. number of meioses (log scale) a. mutation rate
distribution 2, b. mutation rate distribution 1, c. mutation rate distribution 3
(# - true rates, 3 - average of true rates, # - empirical rates, 3 - average of empirical rates)

The corresponding FB is show in figure 3.33. For mutational distribution 2 we

find the estimates based on the true rates are unbiased for few meioses whilst

those based on the empirical rates produce underestimates of t (fig. 3.33a). All

four rates’ FB converge before diverging into two groups (the site-specific rates

and the average rates) as the number of meioses increase. The latter have in-

creasing FB, whilst the former are unbiased. For mutation rate distribution 1, for

100 meioses, there is a considerable difference in FB between the true rates (#

and 3), which are approximately unbiased, and the empirical rates which produce

negative FB (# and 3, fig. 3.33b). The FB for the average rates converge as the

number of meioses increase but remain negative. On the other hand, the true

site-specific mutation rates’ FB (#) is approximately constant and unbiased with

increasing number of meioses. The empirical rates’ FB (#) is negative for few

meioses and thereafter produces positive values, reaching a maximum for 10,000

meioses, before approaching zero. A similar pattern in FB emerges with the em-

pirical rates for mutation rate distribution 3 (fig. 3.33c). However, the maximum

positive fractional bias occurs earlier, at 1,000 meioses. Furthermore all four rates’

FB converge by 1,000,000.

3.6 Conclusions

Preliminary assessment of real data demonstrated that estimates of TMRCA based

on the SMM were larger compared to the IAM, particularly for older TMRCAs.
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Both models were implemented in a Bayesian framework which did not incorporate

any underlying distribution for the mutation rates.

In order to assess the performance of the models we simulated replicate datasets

for a wide range of TMRCA values using only ascertained mutation rates drawn

from three different distributions. MLEs of TMRCA based on the SMM and ISM

were computed using four sets of mutation rates: true site-specific, true average,

empirical site-specific and empirical average.

The ISM performs better than the SMM at low values of TMRCA so long as

the distribution from which the mutation rates are drawn has a low variance.

Otherwise, the ISM systematically underestimates TMRCA, more and more as

the value of TMRCA increases.

Using the SMM, estimates of TMRCA based on site-specific mutation rates are

only affected by the variance of the mutation rate distribution for very old TMRCA,

i.e. for TMRCAs which predate the surname establishment period. In addition,

employing the average of the mutation rates results in less biased estimates of

TMRCA than using site-specific rates but crucially only for short TMRCA values,

provided the mutation rates are drawn from a distribution with a low variance.

Lastly, differences between estimates of TMRCA are negligible using the true or

empirical mutation rates again only when the TMRCA is small.

In summary, modelling the mutation rate distribution is necessary since its vari-

ance affects the estimates of TMRCA. The SMM, using site-specific mutation

rates, adequately accounts for hidden mutations, which are more likely to occur

for older MRCAs. In contrast the ISM does not and performs poorly when the

variance of the mutation rate distribution is high.



Chapter 4

Modelling Mutational Mechanisms

In this chapter, we cover several aspects of modelling the various processes in-

volving mutations rates. Firstly we consider the unequal stepwise mutation model

(USMM) where we alter the SMM (section 2.1) to allow for unequal probabilities

for the increase and decrease mutations.

We then develop a model which takes into account:

• the ascertainment of STRs, i.e. the initial discovery of variable loci at the

population level,

• the calibration process in which empirical estimates of the mutation rates

at each STR are derived typically by considering the number of mismatches

between father-son pairs, i.e. a number of meioses, and

• the underlying mutation rate distribution.

This model will then be analysed using real data and thereafter using simulated

data from the intermediary mutation rate review (section 2.3). In both we will

carry out a sensitivity analysis of the model by misspecifying key parameters.

4.1 Preliminary Analysis

Walsh (2001) outlined the stepwise mutation model in which the probability of

an increase and decrease mutation was equal, i.e. 0.5. However, in the mutation

rate reviews we carried out, it was evident that real data showed a difference in

the proportion of increase versus decrease mutations. We found that there was

99
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a higher proportion of increase mutations at 0.5736 (95% CI: 0.5296-0.6166) in

the final mutation rate review. This suggested that when a mutation occurs it

is more likely that the mutation would be an increase in the number of repeats.

Thus, in this section, we develop the unequal stepwise mutation model (USMM)

for estimating the TMRCA (t) which allows for an unequal probability of increase

and decrease mutations.

In figure 4.1 we depict the relationship between male 1 and male 2 under the

USMM. As in the SMM we consider the direction of the mutations going from

male 1 to male 2. Coupling this with the unequal probability of the two kinds

of mutations we require the MRCA to be defined. Thus we have four classes

of mutations; real increase, real decrease, pseudo increase and pseudo decrease

mutations. The pseudo mutations are so named since they were in fact actually

the opposite type of mutation generated in the lineage from the MRCA → Male

1, which become time-reversed when the flow of change is modelled from male 1

to male 2.

Figure 4.1: Schematic of USMM

We introduce the following notation:

• n+: the number of increase mutations when moving in the direction Male 1

→ MRCA → Male 2, i.e. the sum of the pseudo increase mutations and the

real increase mutations;

• n−: the number of decrease mutations when moving in the direction Male 1

→ MRCA → Male 2, i.e. the sum of the pseudo decrease mutations and the

real decrease mutations;

• φ+: the probability of a real increase mutation;

• φ−: the probability of a real decrease mutation;

• µ: the probability of any mutation, i.e. φ− + φ+

Consider the case n+ − n− = 2k, where k is an integer, i.e. the case where the

observed repeat count difference is even. Then it follows that the sum of mutations
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is also even, i.e. n+ + n− = 2m where m is a positive integer. Let X= n+, so

X ∼ Bi(2m, 1/2). Then X = m − k and we have two possibilities: 0 ≤ k ≤ m

and −m ≤ k ≤ 0. Considering the former, it follows that

P (X = m− k|n+ + n− = 2m) =

(
2m

m− k

)(
1

2

)2m

. (4.1)

Now let L = the number of real decrease mutations from MRCA → Male 1 in n+,

i.e. the number of pseudo increase mutations. Then

L|m, k, φ−, φ+ ∼ Bi(m− k, ν−), where ν− =
φ−

φ− + φ+

.

Also let R = the number of actual increase mutations from MRCA → Male 1 in

n−, i.e. the number of pseudo decrease mutations. Then

R|m, k, φ−, φ+ ∼ Bi(m+ k, ν+), where ν+ =
φ+

φ− + φ+

.

Thus

P (L = l, R = r|m, k) =

(
m− k

l

)
νl
−ν

m−k−l
+

(
m+ k

r

)
νr
+ν

m+k−r
−

=

(
m− k

l

)(
m+ k

r

)
νm+k−r+l
− νm−k−l+r

+ . (4.2)

Now let Y = the total number of mutations, n+ + n−. So then Y ∼ Po
(
2t(φ− +

φ+)
)
, i.e.

P (Y = 2m|t) = e−2t(φ−+φ+) [2t(φ− + φ+)]
2m

(2m)!
. (4.3)
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Combining (4.1),(4.2) and (4.3) we obtain

P (n+ − n− = 2k|t)
=

∑

n+,n−,l,r

s.t. n+−n−=2k

P (n+, n−, l, r|t)

=
∞∑

m=k

m+k∑

r=0

m−k∑

l=0

(2m)!

(m+ k)!(m− k)!

(
1

2

)2m
(m− k)!

(m− k − l)!l!

(m+ k)!

(m+ k − r)!r!
(

φ−

φ− + φ+

)m+k−r+l(
φ+

φ− + φ+

)m−k−l+r

e−2t(φ−+φ+) [2t(φ− + φ+)]
2m

(2m)!

= e−2t(φ−+φ+)

∞∑

m=k

m+k∑

r=0

m−k∑

l=0

t2m
φm+k−r+l
− φm−k+r−l

+

(m− k − l)!l!(m+ k − r)!r!
.

Introducing the change of variable m′ = m− k, we obtain

P (n+ − n− = 2k|t)

= e−2t(φ−+φ+)
∞∑

m′=0

m′+2k∑

r=0

m′∑

l=0

t2m
′+2k φm′+2k−r+l

− φm′+r−l
+

(m′ − l)!l!(m′ + 2k − r)!r!

= e−2t(φ−+φ+)

∞∑

m′=0

t2m
′+2k

m′∑

l=0

φm′−l
+ φl

−

(m′ − l)!l!
︸ ︷︷ ︸

a

m′+2k∑

r=0

φm′+2k−r
− φr

+

(m′ + 2k − r)!r!
︸ ︷︷ ︸

b

. (4.4)

Using the binomial theorem to simplify a and b, (4.4) reduces to

P (n+ − n− = 2k|t)

= e−2t(φ−+φ+)

∞∑

m′=0

t2m
′+2k (φ− + φ+)

m′

m′!

(φ− + φ+)
m′+2k

(m′ + 2k)!

= e−2t(φ−+φ+)
∞∑

m′=0

[(φ− + φ+)t]
2m′+2k

m′!(m′ + 2k)!
. (4.5)

The case with −m ≤ k ≤ 0 follows similarly. Combining the two cases, we have:

P (|n+ − n−| = 2k|t) =





e−2t(φ−+φ+)
∞∑

m′=0

[(φ− + φ+)t]
2m′+2k

m′!(m′ + 2k)!
k = 0;

2e−2t(φ−+φ+)
∞∑

m′=0

[(φ− + φ+)t]
2m′+2k

m′!(m′ + 2k)!
k ≥ 1;

0 k < 0.

(4.6)
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Note that if φ− + φ+ is replaced by µ we recover (3.7), i.e. the same result as for

the SMM. The case where n+ − n− is odd also follows in an analogous way.

4.1.1 Discussions

That the model accounting for the directionality of the mutation (4.6) reduced to

the SMM (3.7) was a surprise. On reflection, it is evident that the classification

of a mutation (as real or pseudo and as increase or decrease) depends entirely on

whether it is placed on the left or right of the MRCA when considering mutation

process as a random walk (fig. 4.1). Since the ancestral haplotype is unknown there

is additional symmetry which necessitates that the labelling of the descendants as

Male 1 or Male 2 is completely arbitrary. Hence the simplified result.

Nonetheless, we checked to ensure this was indeed the case by simulating data

allowing for unequal probabilities for an increase versus decrease mutation. In

addition to the notation already used, we now define:

• ν: the fraction of the total mutation rate which causes an increase in the

number of repeats of an STR, i.e. φ+

φ++φ−

;

• n1+: the number of real increase mutations from MRCA → Male 1, i.e. the

number of pseudo decrease mutations;

• n1−: the number of real decrease mutations from MRCA → Male 1, i.e. the

number of pseudo increase mutations;

• n2+: the number of real increase mutations from MRCA → Male 2;

• n2−: the number of real decrease mutations from MRCA → Male 2.

The data simulation was carried out as follows for n loci:

1. Assign mutation rates: µi (i = 1, . . . , n).

2. Generate the total number of mutations at each locus: n+ + n− ∼ Po(2tµi)

3. Generate the number of real increase and decrease mutations in going from

MRCA → Male 1 and MRCA → Male 2: n1+, n1−, n2+, n2− ∼ MN(n+ +

n−,
ν
2
, 1−ν

2
, ν
2
, 1−ν

2
).

4. Compute the absolute difference in the number of STR repeats between

males 1 and 2: |n1+ − n1− − n2+ + n2+| at each locus.

We then calculated the simulated absolute difference of the number of STR repeats

for two males 10,000 times with the parameters set as follows:
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• t = 50 generations,

• n = 50 loci,

• µi = 0.1 per locus per generation,

• ν = 0 and 0.5 the latter corresponding to the SMM.

The choice of a fairly high mutation rate was simply to allow mutation to ac-

cumulate. Histograms of the resulting data were then plotted and examined for

differences. In order to test formally whether the resultant distributions were

indeed drawn from the same distribution, we apply a two-sample Kolmogorov-

Smirnov test by using the R function ks.boot(). The null hypothesis in this case

is that the two sets of data are drawn from the same distribution.

Figure 4.2 shows the distribution of the absolute difference of the number of repeats

between two simulated male STR profiles, for ν = 0 and ν = 0.5. Subjectively

there appeared to be little difference between the two distributions. The p-value

from the Kolmogorov-Smirnov test was 0.92 was obtained. We conclude that there

is no statistically significant difference between the two distributions.
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Figure 4.2: Histogram of simulated absolute STR differences: a. ν = 0 b. ν = 0.5

Thus it was unnecessary to take into account the asymmetric proportion of increase

and decrease mutations.
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4.1.2 Conclusions

In this section we derived formulae for the likelihood assuming that the proba-

bility of an increase and a decrease mutation was unequal. Recall that this was

reflective of real data, both in the intermediary and final mutation rate reviews.

Our derivation led us back to the likelihood for the standard SMM, as outlined by

Walsh (2001). We carried out a simple simulation, which verified this result.

4.2 Introduction

This section will outline the development of the model that accounts for the mu-

tational process. Following on from the previous chapter, we again assume that

mutation rates are drawn from an underlying Gamma distribution. However the

model must also take into account that the loci typed when determining the

TMRCA are not drawn randomly. Indeed a process of locus ascertainment is

explicitly applied to ensure that the loci typed are variable at the population level

(Nicholson et al., 2002). Once ascertained, these loci are then calibrated, i.e. the

mutation rates estimated by examining the number of mismatches between an of-

ten large number of father-son pairs. The method by which the data is simulated

is outlined first, followed by the formation of the posterior distribution.

We will use the following notation in this section:

• µ: the, per locus per generation, mutation rate. This will usually be indexed

by i referring to the ith locus;

• α: the shape parameter in the Gamma distribution used to describe the

underlying mutation rate distribution;

• β: the scale parameter in the Gamma distribution used to describe the

underlying mutation rate distribution;

• Ne: the effective size of the population on which the loci were ascertained;

• L: the total branch length, in units of Ne generations, of the tree of Y-

chromosomes in the sample from which the loci were ascertained.
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4.3 Materials and Methods

4.3.1 Data Simulation

In the data simulation process we aim to simulate mutation rates across n loci

such as might be used in a Y-STR study to estimate TMRCA. This requires gen-

erating mutation rates, ascertaining whether the rates are variable and thereafter

calibrating them.

The steps for this three-stage process are outlined below, where each locus is

simulated identically and independently. Firstly:

µi ∼ Ga(α, β) for i = 1, . . . , n. (4.7)

The variability of a locus is determined by defining the ascertainment sample size,

nasc, which is typically 4 − 10 (Kayser et al., 2004) and assumed fixed across all

loci. By the coalescent theory (Wakeley, 2009) we have the following p.d.f. for L

fL(L) ∼
nasc − 1

2
e−L/2

(
1− e−L/2

)nasc−2
, (4.8)

in the ascertainment sample.

Sampling L directly from this distribution is not possible so we apply the prob-

ability integral transformation (DeGroot and Schervish, 2002). We sample from

this distribution via its c.d.f.

FL(s) =

∫ s

0

fL(s
′)ds′ =

(
1− e−s/2

)nasc−1
,

by introducing u ∼ Un[0, 1] and evaluating

s = F−1
L (u),

which is drawn from the distribution.

Hence,

s = −2 ln
(
1− u1/(nasc−1)

)
.
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The next step involves generating the effective population size:

Ne ∼ N(µNe
, σ2

Ne
). (4.9)

We use estimates of µNe
and σ2

Ne
based on the work of Thomson et al. (2000) who

examined three genes on the Y-chromosome: SMCY, DBY and DFFRY, covering

64,120 basepairs. They estimated the mutation rate to be 1.24 × 10−9 per site

per year. The authors obtain a mean effective population size of 6000 using the

software GENETREE to provide a maximum likelihood estimate of θ = 2Neµg,

where µg is a per gene per generation mutation rate. This was estimated at 24,

with a 95% probability interval of (6.7, 33.9). For our purpose we need the variance

of the distribution from which the effective population size is estimated.

Using a conversion of 25 years per generation we obtain a per generation mutation

rate of 0.00198772. Based on the point and interval estimate of θ we can estimate

the mean, lower and upper limits of the effective population size from N = θ/2µg.

So we have:

at θ = 6.7, Lower Ne = 1685.348,

at θ = 24, Mean Ne = 6037.068,

at θ = 33.9, Upper Ne = 8527.358.

Thus we use µNe
= 6037 and assuming that:

UpperNe − LowerNe = 2× 1.96× σ,

we estimate σNe
= 1745.

Next we model the ascertainment process. Let Ri = 1 if the locus is ascertained

(i.e. variable), otherwise let Ri = 0 the locus is not ascertained.

Ri ∼ Bi(1, 1− e−µiLNe) for i = 1, . . . , n. (4.10)

This is because, if we assume that the number of mutations, Y ∼ Po(µiLNe), the

probability that a mutation occurs is:

1− Po(Y = 0|L,Ne, µi) = 1− e−µiLNe.
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Suppose k loci are ascertained whilst n− k are not ascertained. For the former k

loci, we can calibrate their mutation rates by taking the number of mutations in

mi meioses:

ri ∼ Bi(mi, µi) for i = 1, . . . , k. (4.11)

We can estimate the parameters of interest at this stage, namely α, β, L, and Ne,

based on the simulated data, i.e. ri at each ascertained locus, i = 1, . . . , k, the

number of meioses, mi and the ascertainment sample size, nasc.

However we can alter the scenario slightly: whilst there may be a large number of

loci which are ascertained, it is more realistic that only a subset of them will be

calibrated (fig. 4.3).

Figure 4.3: Categories of markers in the mutational mechanisms model

Hence, suppose c loci are calibrated from within the ascertained loci, we will refer

to these as the calibrated loci. Hence k− c ascertained loci will not be calibrated.

For these the only information we have will be based on the ascertainment process

(4.10), whilst for those calibrated we will have this information as well as the

calibration data, i.e. we restrict (4.11) as follows:

ri ∼ Bi(mi, µi) for i = 1, . . . , c. (4.12)

It is on the basis of model that we estimate the parameters of interest by developing

a fully probabilistic model using Bayesian methodology.
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4.3.2 Bayesian Modelling

We now begin to derive the posterior distribution for inference of the mutational

processes using Bayesian statistics. The full joint density of parameters and data

is:

P ({µi}, L,Ne, α, β, {Ri}, {ri}, nasc, {mi})
= P ({ri}|{mi}, {µi}, {Ri})P ({Ri}|{µi}, L,Ne)P (L|nasc)P ({µi}|α, β)P (α)

× P (β)P (Ne) , (4.13)

where we have exploited the conditional independence of many of the parameters

in our hierarchical model.

Let the sets of indices corresponding to the calibrated, ascertained and non-

ascertained loci, respectively be C, A, N. Then this probability is:

= P ({ri : i ∈ C}|{mi}, {µi})P (Ri = 1 : i ∈ A|{µi}, L,Ne)

× P (Ri = 0 : i ∈ N|{µi}, L,Ne)

× P ({µi : i ∈ C ∪ A ∪N}|α, β)P (L|nasc)P (α)P (β)P (Ne) . (4.14)

From (4.10) and (4.12), we have:

P ({ri : i ∈ C}|{mi}, {µi})P ({Ri = 1 : i ∈ A}|{µi}, L,Ne)

× P ({Ri = 0 : i ∈ N}|{µi}, L,Ne)

=
c∏

i=1

P (ri|mi, µi)P (Ri = 1|µi, L,Ne)
k∏

i=c+1

P (Ri = 1|µi, L,Ne)

×
n∏

i=k+1

P (Ri = 0|µi, L,Ne)

=

c∏

i=1

(
mi

ri

)
µri
i (1− µi)

mi−ri
(
1− e−µiLNe

) k∏

i=c+1

(
1− e−µiLNe

) n∏

i=k+1

e−µiLNe.

(4.15)

From (4.7) and (4.8) we also have:

P ({µi}|α, β) =
n∏

i=1

µα−1
i e−µi/β

βαΓ(α)
(4.16)

P (L|nasc) =
nasc − 1

2
e−L/2

(
1− e−L/2

)nasc−2
. (4.17)
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The joint probability of the data and the unknown parameters may also be written

as:

P ({µi : i ∈ C ∪ A ∪N}, L,Ne, α, β, {Ri}, {ri}, nasc, {mi})
= P ({µi}, L,Ne, α, β, |nasc, {mi}, {Ri}, {ri})P (nasc, {mi}, {Ri}, {ri}). (4.18)

The last term, the probability of the data is constant (i.e. does not depend on the

parameters) so by Bayes’ theorem (1.2), we have:

P ({µi}, L,Ne, α, β, {Ri}, {ri}|nasc, {mi})
∝ P ({ri}|{mi}, {µi}, {Ri}, L,Ne, α, β, nasc)P ({µi}, {Ri}, L,Ne, α, β, nasc)

∝
c∏

i=1

(
mi

ri

)
µri
i (1− µi)

mi−ri
(
1− e−µiLNe

) k∏

i=c+1

(
1− e−µiLNe

) n∏

i=k+1

e−µiLNe

×
n∏

i=1

µα−1
i eµi/β

βαΓ(α)

× nasc − 1

2
e−L/2

(
1− e−L/2

)nasc−2

× P (α)P (β)P (Ne). (4.19)

Using exponential priors for α and β and the normal prior for Ne truncated at

zero we have the posterior distribution:

P ({µi}, L,Ne, α, β, {Ri}, {ri}|nasc, {mi})

∝
c∏

i=1

(
mi

ri

)
µri
i (1− µi)

mi−ri
(
1− e−µiLNe

) k∏

i=c+1

(
1− e−µiLNe

) n∏

i=k+1

e−µiLNe

×
n∏

i=1

µα−1
i e−µi/β

βαΓ(α)

× nasc − 1

2
e−L/2

(
1− e−L/2

)nasc−2

× e−λααe−λββ
1

σNe

√
2π

exp

(
−(Ne − µNe

)2

2σ2
Ne

)
(4.20)

4.3.3 Markov-Chain Monte-Carlo Sampling

MCMC allows simulation from a distribution of interest by making this distri-

bution the limiting distribution of a Markov chain. Once the chain has reached

equilibrium, it produces dependent draws from the target distribution, in this case,
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a posterior distribution (Gamerman, 1997). The Markov chain should be appro-

priately constructed and there are a large number of techniques available to do so

(see Gilks et al. (1998) or Gamerman (1997)).

We use an adaptive Metropolis algorithm to achieve the objective of sampling from

the posterior distribution of interest, which includes an automated procedure to

update the tuning parameters.

4.3.3.1 Metropolis-Hastings Algorithm

The M-H algorithm is a sampling technique introduced in a specific context by

Metropolis et al. (1953) and later developed in a general setting by Hastings (1970).

The notation used to describe the M-H algorithm is given below:

• x: the vector of parameters,

• p(x = z) = f(z): the posterior density of x,

• p(x = z∗|x = z) = g(z, z∗): - the proposal distribution for proposing a new

value of x = z∗ given the current value of x = z.

The algorithm samples from the posterior distribution as follows:

1. Start with some initial values of the parameters x0 and initialize the step

counter k = 0.

2. Depending on the current value, xk, select a new proposed value, xk+1, from

the proposal distribution p(xk+1 = z∗|xk = z) = g(z, z∗).

3. Calculate the Metropolis ratio:

R =
f(z∗)g(z∗, z)

f(z)g(z, z∗)
.

(Note: where the proposal distribution is symmetric, i.e. g(z, z∗) = g(z∗, z)

we calculate:

R =
f(z∗)

f(z)

This is often termed the Metropolis Algorithm.)

4. Generate S ∼ Un[0, 1] and compute the acceptance probability:

α(z, z∗) = min{1, R}.
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5. If S ≤ α we accept the proposed value, i.e. xk+1 = z∗, otherwise if S > α we

reject it (thus remaining at the current value, i.e. xk+1 = z).

6. Increment the step counter and repeat from step 2 until convergence is

reached.

7. Remove the ‘burn-in’ steps and thin as required.

8. Compute summary statistics for the vector of parameters.

Several aspects of the algorithm will now be expanded further. In terms of up-

dating vector x, it may be updated parameter by parameter (see section 4.3.3.2)

allowing flexibility in the order parameters are updated and how often, although

it is possible to update x as a whole.

Burn-in is required to discard the initial steps in the chain before the chain has

reached convergence, i.e. to remove the dependency of the chain on the initial

values, x0. Thinning, whilst not mandatory (Raferty and Lewis, 1998), is ideal if

we wish to reduce the number of draws stored from a single MCMC chain. This

involves saving only every mth step (m > 1). It may also be used to reduce the

correlation between steps from a chain, although this is often directly related to

the proposal distribution used. For example, if a proposal is close to the current

value, it is likely to be accepted making the chain highly correlated, whereas a

proposal far from the current value may be unlikely and therefore rejected. The

latter may mean the chains may not sample from the full space.

The aim is to have a fairly uncorrelated but well-mixed chain and several di-

agnostics exist to examine the effectiveness of the proposal distribution and/or

initial values. Firstly, plotting the accepted value at each step in the chain against

the step number may help identify common problems such as bad initial values,

slow mixing and insufficient chain length to sample from the distribution of in-

terest. Secondly, the acceptance rate, i.e. the average percentage of steps which

are accepted should be computed (Hastings, 1970). It has been suggested that

an acceptance rate of 20-50% reflects the optimum balance of acceptance/rejec-

tion of proposals (Gamerman, 1997). A further diagnostic is the ergodic average

(Gamerman, 1997):

x̄sim =
1

nsim

nsim∑

k=1

xk, (4.21)

where nsim is the total number of steps in the chain after burn-in. A plot of the

ergodic average against step number may be useful in monitoring the convergence
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of the chain. Further retrospective discussion of the methodology is provided in

Chapter 7.

4.3.3.2 Adaptive MCMC

Typically, the proposal distribution is a normal centred on the current value with

the user specifying the variance of the normal, g(z∗, z) ∼ N(z, σ2). Thus the

proposal distribution is symmetric, i.e. g(z∗, z) = g(z, z∗). The Metropolis ratio

may be straightforwardly calculated (step 3 in section 4.3.3.1).

Now, σ2 is determined by the user. If it is too large the acceptance rate will be

too low. Conversely if σ2 is too small most proposals will be accepted. Conse-

quently the acceptance rate will be too high and the chain will be highly correlated.

Roberts and Rosenthal (2009) propose an adaptive Metropolis algorithm as an au-

tomated method of choosing the value σ2. Define the log standard deviation of

the proposal distribution for the ith variable being updated in x as li. These li

are then adapted to ensure the acceptance rate is close to 0.44.

Specifically the algorithm involves:

1. Initialise li and the batch counter b = 0.

2. Implement a specified number of updates of the Metropolis algorithm (sec-

tion 4.3.3.1, with each parameter updated individually).

3. Compute the acceptance rate of the batch.

4. Compute

δ(b) = min
(
0.01, b−

1
2

)

5. Update li as follows: If the acceptance rate > 0.44,

li = li + δ(b).

If the acceptance rate ≤ 0.44

li = li − δ(b).

Conditioned on li lying in [−M,M ], where M is an integer

6. Increment the batch counter and repeat steps 2-5 as required.
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In order to compare the effectiveness of this adaptive algorithm, the autocorrela-

tion time of the updates in the chain may be calculated using the acf() function

in R. If the adaptive scheme is effective, it should reduce this time compared to a

non-adaptive approach. We also compute the average squared jumping distance of

the chains. Assuming there are r updates of each parameter, the average squared

jumping distance is computed as:

1

r − 1

r−1∑

i=1

(xi+1 − xi)
2 ,

and should be increased by an effective adaptive scheme.

4.3.3.3 Implementation: Modelling Mutational Mechanisms

In this section we implement the adaptive Metropolis algorithm to sample from

the posterior distribution of the parameters in the mutational processes model

(4.20)

In the algorithm the parameters, the components of

θ =




µ1

...

µk

µk+1

...

µn

L

Ne

α

β




, (4.22)

are updated one-by-one.

The proposal distribution for each element in θ is a normal centred at the current

value with the variance updated according to the adaptive scheme. As the proposal

distribution is symmetric in all cases, the Metropolis ratio is

R =
f(θ∗)

f(θ)
, (4.23)
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where θ∗ = θ for each component other than the one being updated and f(θ) is

the posterior distribution. Since R may be expensive to compute, we can simplify

it according to which parameter is being updated. For example, for L, the total

branch length, we have:

R =
P ({µi}, L∗, Ne, α, β, {Ri}, {ri}|nasc, {mi})
P ({µi}, L,Ne, α, β, {Ri}, {ri}|nasc, {mi})

=
P ({ri : i ∈ C}|{mi}, {µi})P ({Ri = 1 : i ∈ A}|{µi}, L∗, Ne)

P ({ri : i ∈ C}|{mi}, {µi})P ({Ri = 1 : i ∈ A}|{µi}, L,Ne)

× P ({Ri = 0 : i ∈ N}|{µi}, L∗, Ne)P ({µi}|α, β)P (L∗|nasc)P (α)P (β)P (Ne)

P ({Ri = 0 : i ∈ N}|{µi}, L,Ne)P ({µi}|α, β)P (L|nasc)P (α)P (β)P (Ne)

=

P (L∗|nasc)
k∏

i=1

P (Ri = 1|µi, L
∗, Ne)

n∏
i=k+1

P (Ri = 0|µi, L
∗, Ne)

P (L|nasc)
k∏

i=1

P (Ri = 1|µi, L,Ne)
n∏

i=k+1

P (Ri = 0|µi, L,Ne)

. (4.24)

This R is then used to either accept or reject the proposal, L∗. Similarly, we can

use a reduced form of R when updating the other parameters. So, for Ne, we have:

R =

P (N∗
e )

k∏
i=1

P (Ri = 1|µi, L,N
∗
e )

n∏
i=k+1

P (Ri = 0|µi, L,N
∗
e )

P (Ne)
k∏

i=1

P (Ri = 1|µi, L,Ne)
n∏

i=k+1

P (Ri = 0|µi, L,Ne)

; (4.25)

for updating α:

R =

P (α∗)
n∏

i=1

P ({µi}|α∗, β)

P (α)
n∏

i=1

P ({µi}|α, β)
; (4.26)

for updating β:

R =

P (β∗)
n∏

i=1

P ({µi}|α, β∗)

P (β)
n∏

i=1

P ({µi}|α, β)
; (4.27)
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for updating the mutation rate at each calibrated locus, i.e. µi where i = 1, . . . , c:

R =
P (ri|mi, µ

∗
i )P (Ri = 1|µ∗

i , L,Ne)P (µ∗
i |α, β)

P (ri|mi, µi)P (Ri = 1|µi, L,Ne)P (µi|α, β)
; (4.28)

for updating the mutation rate at each ascertained locus, i.e. µi where i = c +

1, . . . , k:

R =
P (Ri = 1|µ∗

i , L,Ne)P (µ∗
i |α, β)

P (Ri = 1|µi, L,Ne)P (µi|α, β)
; (4.29)

and for updating the mutation rate at each non-ascertained locus, i.e. µi where

i = k + 1, . . . , n:

R =
P (Ri = 0|µ∗

i , L,Ne)P (µ∗
i |α, β)

P (Ri = 0|µi, L,Ne)P (µi|α, β)
. (4.30)

The proposal will be rejected immediately if it is outwith the acceptable range for

the parameter e.g. if L∗ < 0 then R = 0. Otherwise we calculate R and generate

S ∼ Un[0, 1]. Thereafter we accept or reject the proposal as outlined in step 5 of

the M-H Algorithm (section 4.3.3.1).

4.3.4 Data Simulation and Analysis Program

The use of the function mumodel is detailed below:

Description

mumodel allows the user to simulate data from the mutational distribution underly-

ing the model by specifying the model parameters and sample size (see DETAILS

below). The data are then analysed using MCMC to provide estimates of the

mutation rates across all loci, α, β, Ne and L (in units of Ne and generations)

and the mean and variance of the distribution from which the mutation rates are

drawn. Several diagnostics are also produced to evaluate the performance of the

chain.

Usage

mumodel(BatchLen=50, TotBatch=1000, BinBatch= 10, AccRate=0.44,
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maxLSD, Loci, pCAL=0.211, Pnasc=NA, ascsamp=8, meioses=10000, L,

Ne, muNe=6037, sdNe=1745, alpha=1.703311,beta=0.001404, startL=3,

startNe=6037, startalpha=1.7, startbeta=0.00014, startTrue=T,

psdmu=0.002, psdL=0.5, psdNe=500, psdAlpha=0.05, psdBeta=0.06,

lambdaA=0, lambdaB=0, getdata=F, runs, method=2,

graph="graphres.eps")

Required Arguments

BatchLen: this is the number of runs within each batch before the log standard

deviation of the proposal distribution is adapted.

TotBatch: the total number of batches to run.

BinBatch: the total number of batches to remove as burn-in.

AccRate: the optimum acceptance rate.

MaxLSD: the boundary for proposed values of the log standard deviation of the

proposal distribution.

Loci: the number of STRs, n.

pCAL: the proportion of the ascertained loci that are calibrated.

Pnasc: assigns the percentage of non-ascertained loci in the analysis. It can be

set to a different value by choosing a value in the range (0, (1−ascCAL/Loci))

where ascCAL is the number of calibrated loci. When set to NA (default), the

true percentage of non-ascertained loci is passed to the MCMC sampler.

ascsamp: the ascertainment sample size.

meioses: the number of meioses used to calibrate the ascertained loci.

L: the total branch length in the Y-chromosome sample in which loci are ascer-

tained, in units of Ne generations.

Ne: the effective population size.

muNe: the prior mean effective Y-chromosome population size in the prior for

Ne.

sdNe: the standard deviation of the effective population size, in the prior for

Ne.

alpha: the shape parameter in the Gamma distribution used to sample mutation

rates.

beta: the scale parameter in the Gamma distribution used to sample mutation

rates.

startL: the initial value for the MCMC for L.
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startNe: the initial value for the MCMC for Ne.

startalpha: the initial value for the MCMC for α.

startbeta: the initial value for the MCMC for β.

startTrue: logical, if TRUE initialises the MCMC chains to start at the true

value for each parameter.

psdmu: the initial standard deviation for the proposal distribution of the muta-

tion rates.

psdL: the initial standard deviation for the proposal distribution of L.

psdNe: the initial standard deviation for the proposal distribution of Ne.

psdAlpha: the initial standard deviation for the proposal distribution of α.

psdBeta: the initial standard deviation for the proposal distribution of β.

lambdaA: the lambda value for α’s prior distribution.

lambdaB: the lambda value for β’s prior distribution.

getdata: logical, if TRUE the program will try to retrieve the data and param-

eters stored in a list named ‘results’.

runs: used to produce a graph of the mutation rate distribution with number

of draws equal to runs.

method: controls which posterior distribution is to be sampled from; 2 for the

distribution in (4.20), 1 for any competing posterior distribution.

graph: the name of the file that must end in “.eps” that any graphical diagnostics

will be saved to. If NA, no graphical diagnostics will be returned or saved.

Side Effects & Returns

The function returns a list of the true parameter values, MCMC mean, standard

deviation and credible regions for L (in both generations and Ne units), Ne, α,

β, mean of gamma, variance of gamma and L (generations). In addition the list

includes the acceptance rates for each parameter. Also included are details of the

mutation rates including the true values, MCMC means, standard deviations and

credible regions, the number of mutations and meioses for the calibrated rates as

well as their calibrated estimates. Additionally, the true proportion and number of

calibrated and non-ascertained loci with any misspecified values stated, along with

the total number of loci are given. Finally the list includes the mean and standard

deviation of the prior for Ne, as well as the number of simulated Y-chromosomes

used to determine the ascertained mutation rates.
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For graph=“graphres.eps”, a 3×6 plot of the chains for the first mutation rate

(an ascertained locus), the last mutation rate (a non-ascertained locus), L (units

of Ne generations), Ne, α and β are shown, with the true value indicated by a solid

grey line (fig. 4.6). The corresponding updates of the log of the standard devia-

tion of each of the parameters’ proposal distributions follow. The last row shows

the histogram of the MCMC samples, excluding burn-in, for the corresponding

parameters.

DETAILS

The program is entirely coded in the language R which simulates data according

to the steps outlined in section 4.3.1, creates the appropriate update vector and

passes this and other relevant parameters to the adaptive MCMC loop. This

generates a new proposal for the parameter being updated and either accepts or

rejects it on the basis of the posterior distribution (4.20).

After every BatchLen updates of all the parameters, the log standard deviation of

the proposal distribution is adapted according to section 4.3.3.2 and the specified

optimum acceptance rate. Once the chosen number of batches, i.e. TotBatch, has

been constructed for each parameter, the R code generates the summary statistics

followed by the graphical diagnostics (if specified) and returns the list specified in

Side Effects & Returns, above. Where getdata=T, the data must have been previ-

ously stored in a list named ‘results’. This is ideal for comparing different analyses

of the same data, for example when altering the amount of data or misspecifying

parameters.

4.3.5 Software

The software used to develop the mutational mechanisms model and related analy-

ses was R. The results presented in this chapter were obtained on a Linux platform.

4.3.6 Analysis

The first set of results is based on the intermediary mutation rate review (section

2.3.2). The aim is to estimate the parameters of interest based on the real data

so as to ensure the simulated data are generated from a plausible set of model

parameters.
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We will show the results obtained from the application of the model to estimates

of 86 Y-STR mutation rates obtained from the intermediary mutation rate re-

view. This will provide estimates of the mutation rates: the calibrated and non-

calibrated loci, as well as non-ascertained loci. Furthermore we can derive esti-

mates of the shape and scale parameters of the gamma distribution from which

the mutation rates are assumed to be drawn. Importantly within the framework

we have developed we must know the total number of STRs on the Y-chromosome

along with the number of ascertained loci and the subset of the loci which are

calibrated. In order to provide reasonable values for these necessary parameters

we reviewed the work of Kayser et al. (2004).

These authors carried out a survey of STRs on a single Y-chromosome. Now

although the authors define an STR or microsatellite to consist of repeats unit of

1-6 bp, the survey involved looking for repeat units of 3-6 bp and also having a

minimum of eight perfectly matching repeats. 475 STRs were counted as a result

of these criteria. Thereafter, Kayser et al. (2004) attempted to design primers

for each STR. However, this was unsuccessful for 149 of them. Additionally 45

were previously known STRs. In order to establish a male-specific protocol, the

281 new STRs’ underwent PCR-based optimization procedures in three males and

two females. 48 of these loci were not optimized and for an additional 67 STRs it

proved difficult to design protocols that did not lead to amplification in females.

Consequently, 194 STRs (166 new STRs and 28 previously known) were typed in

8 males, belonging to Y-SNP haplogroups R, I, B, A, J, C, E and K∗). 28 loci were

found to be non-variable across the eight Y-chromosomes. Thus 85.6% of the typed

loci were found to be variable. Applying this percentage to the total number of

Y-STRs (475), we obtain the theoretical value of 407 Y-STRs being variable in an

ascertainment sample size of 8. In addition, based on the intermediary mutation

rate review, 86 STRs comprise the ascertained and calibrated loci.

Based on this data, we applied our MCMC sampler with 5000 batches each of

length 50 updates. 10% of the batches were discarded as burn-in and the results

of this single run are given for the main parameters of interest, i.e. α, β, L, Ne, as

well as a calibrated (and hence ascertained locus) and non-ascertained locus.

In addition we examine the effect of varying the percentage of non-ascertained loci

on the parameters paying particular attention to α and β. In figure 4.3, this means

we vary the size of the last segment between k and n. In particular we allow the

percentage to vary as follows: 0%, 5%, 10%, 14.4% (the value estimated on the
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basis of Kayser et al. (2004)), 20%, 40%, 57.9%, 81.9% (since there are 18.1% (86)

calibrated loci, the maximum percentage of non-ascertained loci is 100− 18.1%).

The results have been obtained from a single run of the MCMC sampler with

1000 batches of 50 updates with 100 batches discarded as burn-in. Graphs of the

estimates of the main parameters (α, β, L in generations, Ne) are plotted against

the percentage of non-ascertained loci. We also examine the parameters of the

mutation rate distribution, i.e. the mean and variance of the gamma distribution

with shape α and scale β. The final summary of the real data is a plot of the

mean of the following sets of mutation rates:

• Low: the calibrated rates equal to zero;

• Intermediate: the calibrated rates less than 0.003 but greater than zero;

• High: the calibrated rates greater than 0.003;

• Non-calibrated loci: the ascertained loci which are not calibrated;

• Non-ascertained loci.

We then further examine varying the percentage of non-ascertained loci but on a

much narrower range between 10-20%, to explore the sensitivity of the parameters

in the mutation rate distribution. For each parameter, we plot the mean MCMC

estimate and the 95% credible region (CR).

On the basis of these parameter estimates and assuming there are 475 STRs with

21% of the ascertained loci being calibrated, we simulate data according to section

4.3.1 with the rate of each calibrated locus estimated from 10,000 meioses. We

begin by examining the effect on the parameters of varying the amount of infor-

mation, i.e. varying the proportion of the loci that are calibrated from within the

ascertained loci. In figure 4.3 we see this means the first segment is allowed to

vary with respect to a fixed overall segment for markers 1 to k. The percentage of

calibrated loci will vary as follows: 0%, 10%, 20% 40%, 60%, 80% and 100%.

For each parameter, we plot the MCMC mean and the 95% CR versus the percent-

age of calibrated loci within the ascertained loci, with the true value superimposed

as a straight dashed line.

Next we carry out a brief misspecification assessment by varying the percentage

of non-ascertained loci for a single data set. Due to the nature of the simulations,

the percentage ascertained and the percentage calibrated will be random variables;
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however, the percentage of non-ascertained loci will include 0%, 5%, 10%, true%,

20% 40%, 60%, 80% and 100− percentage of calibrated loci out of total loci.

The 95% CR along with the posterior mean MCMC estimate will be plotted for

each parameter, of interest versus the percentage of non-ascertained loci, with the

true parameter value superimposed as a dashed straight line. Also the average of

the MCMC estimates of the five sets of mutation rates mentioned above will be

plotted against the percentage of non-ascertained loci.

4.4 Results

4.4.1 Real Data

To begin with, we compare the empirical value of the mutation rates of the cali-

brated loci to those obtained from the Bayesian analysis.

In table 4.1, we see that the MCMC means are quite close to the empirical rates,

particularly when mutations have occurred and there is a large number of meioses.

In addition, for markers where no mutations have occurred, the Bayesian estimate

correlates negatively with the number of meioses. The results are shown graphi-

cally for the mutation rates that are empirically variable in figure 4.4 whilst those

that are empirically non-variable are in figure 4.5.
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Figure 4.4: Empirically variable mutation rates: Bayesian and empirical estimates
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Table 4.1: Empirical and Bayesian mutation rate estimates

STR Marker Mutations Meioses Empirical Rate MCMC Mean

DXYS156 0 1027 0.000000 0.000587
DYS19 57 24890 0.002290 0.002285

DYS385a,b 55 27019 0.002037 0.002035
DYS388 2 2533 0.000790 0.000932
DYS389I 36 13876 0.002594 0.002578
DYS389II 48 13847 0.003466 0.003429
DYS390 49 23950 0.002046 0.002044
DYS391 40 16094 0.002485 0.002474
DYS392 7 14955 0.000468 0.000505
DYS393 15 13801 0.001087 0.001105
DYS426 0 139 0.000000 0.001553
DYS435 0 161 0.000000 0.001464
DYS437 12 10050 0.001194 0.001214
DYS438 4 10151 0.000394 0.000451
DYS439 53 10264 0.005164 0.005066
DYS443 0 80 0.000000 0.001771
DYS444 0 80 0.000000 0.001754
DYS446 1 449 0.002227 0.002118
DYS447 2 450 0.004444 0.003435
DYS448 10 6567 0.001523 0.001536
DYS449 7 369 0.018970 0.011350
DYS456 29 6567 0.004416 0.004295
DYS458 43 6565 0.006550 0.006340
DYS460 5 1308 0.003823 0.003452
DYS461 3 992 0.003024 0.002765
DYS464 5 1476 0.003388 0.003120
DYS472 0 403 0.000000 0.001012
DYS476 0 403 0.000000 0.001024
DYS480 0 403 0.000000 0.001020
DYS481 3 403 0.007444 0.005064
DYS485 1 403 0.002481 0.002258
DYS487 1 403 0.002481 0.002256
DYS488 0 403 0.000000 0.001020
DYS490 0 403 0.000000 0.001011
DYS491 0 403 0.000000 0.000996
DYS492 0 403 0.000000 0.001012
DYS494 0 403 0.000000 0.001012
DYS495 0 403 0.000000 0.001013
DYS497 1 403 0.002481 0.002268
DYS505 0 403 0.000000 0.001018
DYS508 2 403 0.004963 0.003673
DYS511 1 403 0.002481 0.002245
DYS520 0 80 0.000000 0.001770
DYS522 0 543 0.000000 0.000879
DYS525 0 403 0.000000 0.001023
DYS530 0 403 0.000000 0.001003
DYS531 0 483 0.000000 0.000912
DYS533 2 543 0.003683 0.003073
DYS537 0 403 0.000000 0.001011
DYS540 0 403 0.000000 0.001013
DYS549 1 543 0.001842 0.001907
DYS554 1 403 0.002481 0.002260
DYS556 0 403 0.000000 0.001005
DYS557 0 80 0.000000 0.001744
DYS565 2 403 0.004963 0.003660
DYS567 0 403 0.000000 0.001027
DYS568 0 403 0.000000 0.001021
DYS569 0 403 0.000000 0.001015
DYS570 7 543 0.012891 0.009006
DYS572 1 403 0.002481 0.002244
DYS573 2 403 0.004963 0.003668
DYS575 1 403 0.002481 0.002261
DYS576 9 543 0.016575 0.011342
DYS578 0 403 0.000000 0.001006
DYS579 0 403 0.000000 0.001031
DYS580 0 403 0.000000 0.001005
DYS583 0 403 0.000000 0.001040
DYS589 0 403 0.000000 0.001008
DYS590 0 403 0.000000 0.001030
DYS594 0 403 0.000000 0.001006
DYS617 0 403 0.000000 0.001045
DYS618 0 403 0.000000 0.001024
DYS622 0 80 0.000000 0.001783
DYS630 0 80 0.000000 0.001764

DYS635/GATA C4 25 7533 0.003319 0.003260
DYS636 1 403 0.002481 0.002250
DYS638 1 403 0.002481 0.002251
DYS640 2 403 0.004963 0.003646
DYS641 0 403 0.000000 0.001023
DYS643 0 543 0.000000 0.000866
DYS709 0 80 0.000000 0.001738

GATA A10 5 1145 0.004367 0.003843
Y GATA H4 22 7738 0.002843 0.002806

YCAI 0 150 0.000000 0.001487
YCAII 3 2296 0.001307 0.001373
YCAIII 1 100 0.010000 0.003994
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Figure 4.5: Empirically non-variable mutation rates: Bayesian and empirical esti-
mates

In figure 4.6 the first column shows the output for the first locus, which is both

ascertained and calibrated. The chain for the rate appears to hit off the boundary

at zero, though otherwise mixes well. The log standard deviation of the proposal

distribution decreases through the run of the chain until it stabilizes. Overall the

mean of the calibrated loci rate estimates is 0.00223 which is comparable to the

mean for all the ascertained loci at 0.00222. For the non-ascertained loci, the mean

of the estimated rate is 7.33× 10−5, whilst the mean across all the loci is 0.00191.

For the last locus, the second column in figure 4.6, a non-ascertained locus, the

MCMC chain appears mix less well, reducing the spread as the run progresses.

The last row shows that the posterior distribution is very right-skewed. For

Table 4.2: Real data Bayesian parameter estimates

Parameter Mean St. Dev.
95% Credible Region
Lower Upper

L 3.01 1.49 1.03 6.75
Ne 4262 1828 939 7943
α 0.5872 0.1711 0.3910 0.9619
β 0.003483 0.001017 0.001796 0.005843

the total branch length L, the posterior mean is 3.01 (table 4.2) with a 95% CR

of 1.03-6.75. The MCMC chain (fig. 4.6, third column) mixes well and the log

standard deviation of the proposal distribution quickly stabilizes. Its posterior

distribution of updates is also right-skewed. Next we examine the output for Ne

(fig. 4.6, fourth column), where we see the chain also mixes well. This posterior
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Figure 4.6: MCMC graphical output using real data

for Ne shows an almost symmetric distribution with mean value 4262 (95% CR

939-7943, table 4.2).

The diagnostic and posterior summaries for α and β are summarised in figure 4.6

(last two columns) and table 4.2. Again mixing appears satisfactory.

Next we examine the results from varying the percentage of non-ascertained loci.

In figure 4.7a, we plot the posterior mean α and the 95% CR across each percentage

of non-ascertained loci. We see that, as the latter increases, the mean rapidly

decreases, thereafter increasing very slightly till the percentage of non-ascertained

loci reaches 81.9%. Conversely, β̂ increases until the percentage of non-ascertained

is 20%, thereafter gradually decreasing (fig. 4.7b). In terms of the mean and

variance of the gamma distribution from which the mutation rates are drawn, we

see, in figure 4.8a, that the mean appears to decrease at an almost constant rate

as the percentage of the non-ascertained loci increases. On the other hand, the

variance of the mutation rate distribution reaches its peak at 14.4%, though the

CR is widest at this point (fig. 4.8b).
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Figure 4.7: Posterior mean with credible region vs. percentage of non-ascertained
loci: a. α b. β

(Gray line - credible region, red line - credible region for true percentage of non-ascertained loci)
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Figure 4.8: Posterior mean with credible region vs. percentage of non-ascertained
loci: a. gamma mean b. gamma variance

(Gray line - credible region, red line - credible region for true percentage of non-ascertained loci)
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Figure 4.9: Posterior mean with credible region vs. percentage of non-ascertained
loci: a. L b. Ne

(Gray line - credible region, red line - credible region for true percentage of non-ascertained loci)
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For L, the posterior mean decreases quickly before reaching a plateau when the

percentage of non-ascertained is 40%. The CR is also short by this point (fig. 4.9a).

A similar picture emerges for the effective population size, Ne, which decreases as

the percentage increases. In addition, the range of the CR is fairly constant until

20%, thereafter decreasing to very little by 81.9% (fig. 4.9b).

As a summary, we plot the mean of the posterior means across the sets of mutation

rates outlined above in figure 4.10.
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Figure 4.10: Average posterior mean mutation rate vs. percentage of non-ascertained
loci

For the low calibrated rates (#), we find that the mean of the posterior means

decreases from around 0.0017 when the percentage of non-ascertained loci is zero

until to ≈ 0.001 at 20% thereafter increasing gradually to just over 0.0015. For the

intermediate calibrated mutation rates (△), the mean is roughly constant. For the

high calibrated rates (3), we see that the mean increases quickly from ≈ 0.0041

when there are no non-ascertained loci to just below 0.005. Subsequently, the

mean gradually reduces to about 0.004, when the percentage of non-ascertained

loci reaches 81.9%. The non-calibrated loci (+), always have a mean rate around

0.0022. Contrast this with the mean of the mutation rates for the non-ascertained

loci (×), which are only constant till 20%, thereafter increasing gradually to a rate

of ≈ 0.0008.
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We now focus on the effect of varying the proportion of non-ascertained loci in the

range 10-20%. A summary of this is given in table 4.3.

Table 4.3: Regression of posterior mean against percentage of non-ascertained loci

Parameter Intercept Slope P-Value for Slope

α 0.8041 -1.6204 0.0017
β 0.00279 0.00523 0.0038

Mean of Gamma 0.002264 -0.002445 0.0000
Variance of Gamma 0.00000679 0.00000118 0.4950
L (generations) 21464 -59535 0.0021

Ne 5701 -8531 0.0080

For α we have the results in figure 4.11a. There is a negative linear relationship

between the mean of α and the percentage of non-ascertained loci. In fact we find

that the slope of −1.6204 is found to be statistically significant (table 4.3). For

β, in figure 4.11b we see that there is a positive linear relationship between the

posterior mean and percentage. Here too we find that the slope is statistically

significant (table 4.3). For the mean and the variance of the gamma, we see

that, whilst the mean has a negative linear relationship, the variance appears

roughly constant (fig. 4.12). For the former, the slope estimated as −0.00214 is

significant. On the other hand, the latter has a non-significant. The estimates

of the final parameters, L and Ne, both show a negative linear relationship with

the percentage of non-ascertained loci (fig. 4.13). In addition the fitted lines both

have significant slopes.

4.4.2 Simulated Data Analysis

The results in this section are based on simulating data based on the estimates of

the parameters from the real data, i.e.

• the shape parameter, α̂ = 0.5871;

• the scale parameter, β̂ = 0.00348;

• the effective population size, N̂e = 4262;

• the total branch length, L̂ = 3.01;

• the number of loci, n = 475, and

• the percentage of calibrated loci within the ascertained loci, 21.1%.
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Figure 4.11: Posterior mean with credible region vs. percentage of non-ascertained
loci: a. α b. β

(Gray line - credible region, red line - credible region for true percentage of non-ascertained loci)
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Figure 4.12: Posterior mean with credible region vs. percentage of non-ascertained
loci: a. gamma mean b. gamma variance

(Gray line - credible region, red line - credible region for true percentage of non-ascertained loci)
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Figure 4.13: Posterior mean with credible region vs. percentage of non-ascertained
loci: a. L (generations) b. Ne

(Gray line - credible region, red line - credible region for true percentage of non-ascertained loci)
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4.4.2.1 Varying the Information

In this section, we examine the effect on the parameters of varying the proportion

of the loci that are calibrated from within the ascertained loci. The simulated

data set resulted in 414 ascertained loci so the percentage of calibrated loci varied

as follows: 0% (0 loci), 10% (41), 20% (83), 40% (166), 60% (248), 80% (331),

100% (414).

The estimates of α are shown in figure 4.14a, where we see that, when there are

no calibrated loci, α̂ is close to the true value although the CR is widest at this

point. As the percentage of calibrated loci increases, the CR narrows but the

point estimates lie below the true value. In this case, α̂ is underestimating. For

the estimates of β, we see a converse result (fig. 4.14b). The initial estimate at 0%

is close to the true value. The CR is very wide and unsymmetrical. The remaining

estimates all lie above the true value (dashed line), but their CRs appear to just

include the true value. In addition, the overestimation decreases as the percent-

age of calibrated loci increases. Next we check the estimate of the mean of the

gamma distribution from which the mutation rates are drawn (fig. 4.15a). When

there are no calibrated loci the mean is underestimated albeit with a wide CR.

As the percentage of calibrated loci increases, the posterior mean overestimates,

though the CRs include the true gamma mean. The range of the CRs decreases

with increasing proportion of calibrated loci. A similar result is produced for the

estimate of the variance of the gamma distribution, although in this case all the

posterior means are overestimates (fig. 4.15b). As the percentage of calibrated

loci increases, the estimates lie closer to the true value (dashed line) and the CRs

become narrower. The results for L are shown in figure 4.16a. Here the overesti-

mation reduces with the increasing number of calibrated loci. All the CRs include

the true value (dashed line). Similarly for N̂e, there is a decrease in the posterior

mean as the percentage of calibrated loci increases. The range of the CRs remains

fairly constant throughout (fig. 4.16b) and include the true value (dashed line).

4.4.2.2 Misspecification

We now investigate the effect of misspecification of the percentage of non-ascertained

loci on the parameters of the mutation rate distribution model. Here the percent-

age of non-ascertained loci will vary as follows: 0%, 5%, 10%, 10.5% (true%), 20%,

40%, 60% and 81.3% (100- percentage of calibrated out of total loci%).
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Figure 4.14: Posterior mean with credible region (gray line) vs. percentage of cali-
brated loci: a. α b. β
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Figure 4.15: Posterior mean with credible region (gray line) vs. percentage of cali-
brated loci: a. gamma mean b. gamma variance
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Figure 4.16: Posterior mean with credible region (gray line) vs. percentage of cali-
brated loci: a. L b. Ne
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For the mutation rate distribution shape and scale parameters, α and β, respec-

tively, the results are shown in figure 4.17. α̂ initially decreases sharply as the

percentage of non-ascertained loci increases, thereafter approaching an asymptote.

In addition, the range of the CR reduces. Comparing the points to the dashed line

indicating the true α shows that near the true percentage of non-ascertained loci α

is well estimated. However, at either extreme it is over- or underestimated. Indeed

the true α is well contained in the CR for 10% and 10.5% and only just contained

for 5% and 20%. For the remaining cases, the CR does not contain the true value.

For β̂ we find that it appears to have a maximum of ∼0.004 near 20%. This is

slightly higher than the true value. However, the CR does contain this value.

The CRs for the 0% and 81.3% estimates do not contain the true value, whilst

the others are wide enough to do so. When the percentage of non-ascertained

loci is close to the true value(10.5%), the posterior mean is close to the true β.

Reparameterising in terms of the mean and variance of the gamma distribution

produces the results in figure 4.18. Again the true mean and variance are indicated

by the dashed black line. For the mean, we see a reduction in the estimate when

the percentage of non-ascertained loci increases. The range of the CRs reduces

and for the first five points the CRs include the true mean. However, for the last

three points, this is not the case. At these points, the posterior means and CRs

all underestimate the true gamma mean (fig. 4.18a). For the gamma variance, we

see a parabolic form for the estimates as the percentage of non-ascertained loci

increases. The peak lies between 10% and 20%, where the variance is slightly

overestimated compared to the true value (dashed line). The remaining points are

all underestimates to a varying extent, though the CR for each point until 40%

contains the true variance. For 60% and 80% the CRs do not contain the true

value (fig. 4.18b). The branch length estimate of L (fig. 4.19a), declines as the

percentage of non-ascertained loci increases. It intersects the true L (dashed line)

at ∼10%. The CR is very wide initially but it decreases to a negligible amount by

40%. The CR includes the true value for the points between 5-20%. The results

for Ne are shown in figure 4.19b. It too shows a gradual decrease in the estimates

as the percentage of non-ascertained loci increases. Whilst the CRs are very wide

initially, the spread decreases to a very small amount by 81.3%. Between 5-40%

the CRs contain the true value (dashed line), otherwise they do not.

The last set of results discussed in this section are the average estimated mutation

rates in the various classes enumerated above. Superimposed onto the plot is the

true average of the various sets of loci as shown in the legend in figure 4.20.



Chapter 4. Modelling Mutational Mechanisms 133

0 20 40 60 80

0.
0

0.
4

0.
8

1.
2

a

Percentage of Non−Ascertained loci

M
ea

n 
M

C
M

C
 A

lp
ha

0 20 40 60 80

0.
00

0
0.

00
2

0.
00

4
0.

00
6

b

Percentage of Non−Ascertained loci

M
ea

n 
M

C
M

C
 B

et
a

Figure 4.17: Posterior mean with credible region vs. percentage of non-ascertained
loci: a. α b. β

(Gray line - credible region, red line - credible region for true percentage of non-ascertained loci)
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Figure 4.18: Posterior mean with credible region vs. percentage of non-ascertained
loci: a. gamma mean b. gamma variance

(Gray line - credible region, red line - credible region for true percentage of non-ascertained loci)
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Figure 4.19: Posterior mean with credible region vs. percentage of non-ascertained
loci: a. L b. Ne

(Gray line - credible region, red line - credible region for true percentage of non-ascertained loci)
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Figure 4.20: Simulated data: average posterior mean mutation rate vs. percentage
of non-ascertained loci

The low calibrated mutation rates (#) all lie close to the true value (red dashed

line). For the intermediate calibrated rates (△), the estimated averages lie parallel

to the true value (red dotted line). Hence they overestimate by approximately the

same amount. For the high calibrated rates (3), the average estimates all lie

below the red dotted-dashed line, thus slightly underestimating. Next we have

the non-calibrated loci (+), which all lie below the green dashed line and thus

are underestimated. Conversely the average estimates for the non-ascertained loci

(×) all lie above the blue dashed line, which indicates their true average, and they

overestimate by an amount which increases as the percentage of non-ascertained

loci increases.

4.5 Discussion

One of the key differences between the real and simulated analyses carried out in

the previous two sections was the average estimates of the five sets of mutation

rates. Comparing the results in figures 4.10 and 4.20 we see that, although the

intermediate calibrated (△), the non calibrated (+) and the non-ascertained (×)
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have very similar behaviour, this is not so for the high (3) and low (#) calibrated

mutation rates average.

Since the estimates of the mutation rates are directly affected by the number of

meioses used to calibrate, we examine this aspect. In the simulated dataset we

fixed the number of meioses to be 10,000 across the calibrated loci. Thus being

a rather large number implies the rates of low/intermediate and high calibrated

loci are rather accurately estimated. However this doesn’t correspond well to the

number of meioses used to estimate Y-STR rates in the intermediary mutation

rate review. In figure 4.21, we see the distribution of the number of meioses per

locus in this mutation rate review. The bulk of the loci have fewer than 10,000

meioses. Indeed the mean lies at 2880, though given the skewed distribution of the

data the mode of 403 emphasises the discrepancy between the real and simulated

data.
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Figure 4.21: Intermediary mutation rate review: histogram of the number of meioses
per locus

(Red line - 10,000 meioses)

Given this observation, we chose to reanalyse the data by sampling from the real

dataset’s meiosis numbers when calibrating the loci. That is, the mi in equation

4.12 are sampled with replacement for the loci that are calibrated in the simulation

from those mi in the real data. As before we simulated a single dataset and
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analysed the data varying the percentage of non-ascertained loci, i.e. 0%, 5%,

8.6% (true %), 10%, 20%, 40%, 60% and 91.4% (100 - percentage of calibrated

out of total loci%).
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Figure 4.22: Simulated data: average posterior mean mutation rate vs. percentage
of non-ascertained loci

The results for the average mutation rates in the five categories along with their

true averages are shown in figure 4.22. The low calibrated loci (#, red dashed

line) average is overestimated by almost 0.005 though the overestimation seems

least when the percentage of non-ascertained loci is closest to the true, i.e. 8.6%.

For the intermediate calibrated loci (△, red dotted line), the averages lie close

to their true value, though there is a slight underestimation from 20-60%. Con-

trast this with the high calibrated loci (3, red dotted-dashed line), which are

substantially underestimated ∼0.001. Again the underestimation is least when

near the true percentage of 8.6%. The non-calibrated mutation rates’ averages are

also underestimates (+, green dashed line), which increase as the percentage of

non-ascertained loci increases. The averages are roughly 0.0005 less than the true

value. Theses estimated average of the non-ascertained loci (×) lie close to the true

value (blue dashed line) initially but increase as the percentage of non-ascertained

loci increases, thus gradually increasing the amount by which it overestimates.
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Thus, using simulated data where the calibration of the mutation rates is based

on more realistic numbers of meioses produces results much more similar to those

produced for the real data. Yet compared to the simulated data, based on 10,000

meioses (fig. 4.20), a drastic underestimation of the high calibrated rates (3) and

the non-calibrated rates as well as overestimation in the case of the low calibrated

mutation rates occurred. This was clearly down to the effect of the number of

meioses, since the real values extended beyond the 10,000 used for the simulated

data.

Since it did not seem natural for any calibrated locus, particularly one with a low

true mutation rate, to have a very high number of meioses sampled, we developed a

multi-stage process to obtain estimates of the calibrated mutation rates. Hence we

initially calibrate selected loci using a few meioses, thereafter calibrating the most

variable again but with a greater number of meioses and so on. In fact we based

the calibration on the number of times we wished to repeat the process. Suppose

we define nc to be the number of calibration steps, then we specified the number

of loci to calibrate according the current step, i.e. at the ith step, the number of

loci to be calibrated was the following fraction of the total number specified to be

calibrated:
nc − i+ 1

nc

.

For example, if we wished to apply three calibration steps, the first step would

calibrate all the proportion of the ascertained loci chosen to be calibrated. The

next step (i = 2) would recalibrated only 2/3 of the fastest loci (based on the

mutations and meioses so far). In the final calibration loop (i = 3) only 1/3 would

be recalibrated. In addition, the number of meioses varies according to i:

• i = 1: meioses=[80-500]

• i > 1 and i < nc: meioses=[500-2500]

• i = nc: meioses=[5000-27000]

Based on this process we again simulated data according to the real data estimates

of α, β, L, Ne and analysed it for a range of values of the percentage of non-

ascertained loci, i.e. 0%, 5%, 9.9% (true %), 10%, 20%, 40%, 60% and 81.1%

(100− percentage of calibrated out of total loci%).
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A plot of the average of the posterior means for the five classes of mutation rates

are shown in figure 4.23. For the low calibrated rates (#, red dashed line), there

is a minimum in the averages at 10. However the values are all overestimates. On

the other hand, the intermediate calibrated mutation rate average (△, red dotted

line) are quite well estimated. The averages of the high calibrated loci (3, red

dotted-dashed line) lie straight line parallel to their true and underestimate by

over 0.001. The non calibrated mutation rates averages (+) also have a minimum

around the true percentage of the non-ascertained loci which lies just above its

true value (green dashed line). The averages of the non-ascertained loci (×, blue

dashed line) gradually increase in the amount by which they overestimate.
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Figure 4.23: Simulated data: average posterior mean mutation rate vs. percentage
of non-ascertained loci

The pattern in all the sets of mutation rate averages is rather similar to the

real data (fig. 4.10), except for the high calibrated mutation rate (3), which is

consistently underestimated in this simulation. Furthermore, there is clearer de-

marcation between averages of the non-calibrated (+) and intermediary calibrated

loci (△) when using the multi-stage calibration than by simply sampling from the

realistic number of meioses (fig. 4.22).
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4.6 Conclusions

Having established a framework for modelling the mutation mechanisms involved

in Y-STRs, we note that accounting for variable proportions of increase and de-

crease mutations is not necessary.

As such we focussed on a model for the mutation rate distribution which incor-

porated both ascertainment (through the introduction of the parameters Ne and

L) and calibration of Y-STRs markers. Application to the intermediary mutation

rate review data provided estimates of the parameters of the gamma mutation

rate distribution, along with the total branch length and effective population size.

In addition, we found that when the percentage of non-ascertained loci varies in

a narrow range (10-20%) the estimates of the parameters are fairly robust. How-

ever, varying the percentage of non-ascertained more drastically (0-80%) resulted

in considerable variation in the estimates of each parameter.

A simulation study showed that, whilst varying the percentage of calibrated loci

did not have much effect on the estimates of the parameters unless the percentage

fell below 20, varying the percentage of non-ascertained loci did. In addition,

we found that simply using a fixed and rather large number of meioses (10,000)

to simulate the calibration of Y-STR mutation rates did not reflect real data.

Consequently, we developed a multi-stage calibration process by which mutation

rates may be simulated.





Chapter 5

Modelling TMRCA

5.1 Introduction

In this chapter we will incorporate the methodology developed in Chapter 4, with

the model of estimating the time to the most recent common ancestor (TMRCA),

t, as outlined by Walsh (2001). The primary aim is to produce an estimate, t̂, of t

for two males who are not known to be closely related, on the basis of the absolute

difference in the number of STR repeats across a number of loci (fig. 5.1).

Figure 5.1: Estimation of the time to the MRCA

Furthermore, we will assess how factors such as the number of typed STRs and

the rate at which the STRs mutate affect t̂, as well as the other parameters. This

will involve a simulation study.

141
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5.2 Materials and Methods

5.2.1 Simulation Study

In this section, the process by which we simulate STR repeats for two contempora-

neous males will be outlined. This process firstly involves simulating appropriate

mutation rates as detailed in section 4.3.1. On the basis of these rates, STR repeats

from two males will be simulated in accordance with Walsh (2001).

Importantly, we must define various sets of mutation rates for the total number

of STRs, due to the nature of the mutation model we developed in chapter 4. In

figure 5.2 we see that there is a total of n loci. A subset, of size k, of these are the

ascertained loci, i.e. these are markers found to be variable at the population level,

whilst n− k are non-ascertained loci. Within the ascertained loci, we have c loci

which are calibrated, i.e. for these loci, mutation rates are empirically estimated,

typically by counting the number of mismatches between a large number of father-

son pairs . From within this set, s loci will be typed in the two males whose

TMRCA is being estimated. Thus we have the following constraints: k ≤ n,

c ≤ k, and s ≤ c. (In principal we could have the constraint s ≤ k instead of the

last, since potentially we could use markers that are known to be variable at the

population level but which have not been calibrated. However, this will not be the

case here.)

Figure 5.2: Categories of markers in the TMRCA model

In addition, we also have the sample size used to ascertain the loci, nasc, as well

as the number of meioses, mi, across each of the calibrated markers (1 = 1, . . . , c).
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The following notation will be used in this chapter:

• µ, the, per locus per generation, mutation rate. This will usually be indexed

by i referring to the ith locus;

• α, the shape parameter in the gamma distribution used to describe the

underlying mutation rate distribution;

• β, the scale parameter in the gamma distribution used to describe the un-

derlying mutation rate distribution;

• Ne, the effective size of the population in which the loci were ascertained;

• L, the total branch length, in units of Ne generations, of the sample in which

the loci were ascertained;

• R, the results from the ascertainment process, where R = 1 if ascertained

and R = 0 otherwise. This will usually be indexed by i;

• r, the per-locus mutation counts in the calibration process, usually indexed

bi i;

• n+, the total number of increase mutations when moving in the direction

Male 1 → MRCA → Male 2, at a locus;

• n−, the total number of decrease mutations when moving in the direction

Male 1 → MRCA → Male 2, at a locus;

• x1, x2, the number of repeats of an STR for male 1 and 2, respectively. These

may be indexed xj,i where j = 1, 2 refers to which male and i refers to the

locus;

• m, the number of meioses used to calibrate the mutation rate; this may also

be indexed by i;

• nc, the number of calibration steps used to provide empirical estimates of

the calibrated mutation rates.

A summary of the steps to simulate the data is given below:

1.

µi ∼ Ga(α, β) for i = 1, . . . , n. (5.1)

2.

L ∼ nasc − 1

2
e−L/2

(
1− e−L/2

)nasc−2
. (5.2)

3.

Ne ∼ N(µNe
, σ2

Ne
). (5.3)

4.

Ri ∼ Bi(1, 1− e−µiLNe) for i = 1, . . . , n. (5.4)
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5. For j = 1, . . . , nc we have:

ri ∼ Bi(mi, µi) for i = 1, . . . ,
(

nc−j+1
nc

)
c, (5.5)

where c ≤ k and the number of meioses is chosen according to j, i.e.

• j = 1: mi ∼ Un(80 − 500);

• j > 1 and j < nc: mi ∼ Un(500, 2500);

• j = nc: mi ∼ Un(5000− 27000).

6. Compute the empirical mutation rate for calibrated loci: µ̂i = ri/mi.

7. Generate the total number of mutations: n+,i + n−,i ∼ Po(2tµi).

8. Generate the total number of increase mutations: n+,i ∼ Bi(n+,i+n−,i, 0.5).

9. Compute the total number of decrease mutations: n−,i = (n+,i+n−,i)−n+,i.

10. Standardise male 1 as having zero STR repeats: x1,i = 0.

11. Compute the number of STR repeats for male 2 relative to male 1: x2,i =

n+,i − n−,i.

12. Compute the observed data, i.e. the absolute difference in the number of

STR repeats between males 1 and 2: |x1,i − x2,i|.

Data generated on the basis of this simulation will be used to estimate the param-

eters of interest by developing a fully probabilistic model using Bayesian method-

ology.

5.2.2 Bayesian Modelling

The joint distribution of the model parameters and the data is:

P ({µi}, t, L,Ne, α, β, {Ri}, {ri}, {x1,i}, {x2,i}, nasc, {mi})
= P ({x1,i}, {x2,i}|{µi}, t)P ({ri}|{mi}, {µi}, {Ri})P ({Ri}|{µi}, L,Ne)

× P (L|nasc)P (µi|α, β)P (α)P (β)P (Ne)P (t) , (5.6)

by repeated application of the product rule and exploiting the conditional inde-

pendence in the model. Here let the sets of indices corresponding to the typed,

calibrated, ascertained and non-ascertained loci, respectively, be T, C, A, N. Then
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this probability is:

P ({x1,i, x2,i : i ∈ T}|{µi}, t)P ({ri : i ∈ C}|{mi}, {µi})
× P ({Ri = 1 : i ∈ A}|{µi}, L,Ne)P ({Ri = 0 : i ∈ N}|{µi}, L,Ne)

× P ({µi : i ∈ T ∪ C ∪ A ∪N}|α, β)P (L|nasc)P (α)P (β)P (Ne)P (t) .

(5.7)
Using the SMM outlined in section 3.1 we have:

P ({x1,i, x2,i : i ∈ T}|{µi}, t) ∝
s∏

i=1

e−2tµiI|x1,i−x2,i|(2tµi) (5.8)

and using (5.4) and (5.5) we have:

P ({ri : i ∈ C}|{mi}, {µi})P ({Ri = 1 : i ∈ A}|{µi}, L,Ne)

× P ({Ri = 0 : i ∈ N}|{µi}, L,Ne)

=
c∏

i=1

P (ri|mi, µi)P (Ri = 1|µi, L,Ne)
k∏

i=c+1

P (Ri = 1|µi, L,Ne)

×
n∏

i=k+1

P (Ri = 0|µi, L,Ne)

=

c∏

i=1

(
mi

ri

)
µri
i (1− µi)

mi−ri
(
1− e−µiLNe

) k∏

i=c+1

(
1− e−µiLNe

) n∏

i=k+1

e−µiLNe.

(5.9)

From (5.1) and (5.2) we have:

P ({µi : i ∈ T ∪ C ∪ A ∪N}|α, β) =
n∑

i=1

µα−1
i e−µi/β

βαΓ(α)
, (5.10)

P (L|nasc) =
nasc − 1

2
e−L/2

(
1− e−L/2

)nasc−2
. (5.11)

An alternative way of writing the joint probability of the data and the unknown

parameters is:

P ({µi}, t, L,Ne, α, β, {Ri}, {ri}, {x1,i}, {x2,i}, nasc, {mi})
= P ({µi}, t, L,Ne, α, β|nasc, {mi}, {Ri}, {ri}, {x1,i}, {x2,i})

× P (nasc, {mi}, {Ri}, {ri}, {x1,i}, {x2,i}) . (5.12)
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Since the probability of the data is constant, we have:

P ({µi}, t, L,Ne, α, β|nasc, {mi}, {Ri}, {ri}, {x1,i}, {x2,i})

∝
s∏

i=1

e−2tµiI|x1,i−x2,i|(2tµi)

(
mi

ri

)
µri
i (1− µi)

mi−ri
(
1− e−µiLNe

)

×
c∏

i=s+1

(
mi

ri

)
µri
i (1− µi)

mi−ri
(
1− e−µiLNe

) k∏

i=c+1

(
1− e−µiLNe

) n∏

i=k+1

e−µiLNe

×
n∏

i=1

µα−1
i e−µi/β

βαΓ(α)

nasc − 1

2
e−L/2

(
1− e−L/2

)nasc−2
P (Ne)P (α)P (β)P (t) .

(5.13)

Using exponential priors for t, α and β and a normal prior for Ne truncated at

zero we have the posterior distribution:

P ({µi}, t, L,Ne, α, β|nasc, {mi}, {Ri}, {ri}, {x1,i}, {x2,i})

∝
s∏

i=1

e−2tµiI|x1,i−x2,i|(2tµi)

(
mi

ri

)
µri
i (1− µi)

mi−ri
(
1− e−µiLNe

)

×
c∏

i=s+1

(
mi

ri

)
µri
i (1− µi)

mi−ri
(
1− e−µiLNe

) k∏

i=c+1

(
1− e−µiLNe

) n∏

i=k+1

e−µiLNe

×
n∏

i=1

µα−1
i e−µi/β

βαΓ(α)

× nasc − 1

2
e−L/2

(
1− e−L/2

)nasc−2

× 1

σNe

√
2π

exp

(
−(Ne − µNe

)2

2σ2
Ne

)
e−λααe−λββe−λtt. (5.14)

5.2.3 Markov-Chain Monte-Carlo Sampling

As in chapter 4, we make use of Markov-chain Monte-Carlo (MCMC) in order to

sample from the posterior distribution (5.14). Again we use an adaptive Metropolis

algorithm to achieve this objective. This methodology was outlined in section

4.3.3.2.
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5.2.3.1 Implementation: TMRCA Model

All the model parameters are collected in a vector θ:

θ =




µ1

...

µk

µk+1

...

µn

L

Ne

α

β

t




. (5.15)

Each element in θ is updated according to a normal proposal distribution centred

at the current value of the element in θ. The variance of the update will be updated

according to the adaptive aspect of the algorithm. The proposal distribution is

symmetric and the Metropolis ratio is:

R =
f(θ∗)

f(θ)
, (5.16)

where θ∗ = θ for each component other than the one being updated and f(θ) is the

posterior distribution. Hence the Metropolis ratio may be simplified, as before,

for each parameter. For example for t we have:

R =

P (t∗)
s∏

i=1

P ({x1,i}, {x2,i}|{µi}, t∗)

P (t)
s∏

i=1

P ({x1,i}, {x2,i}|{µi}, t)
. (5.17)
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This form is then used to either accept or reject the proposal, t∗. Similarly we can

use a reduced form of R when updating the other parameters. For L we have:

R =

P (L∗|nasc)
k∏

i=1

P (Ri = 1|µi, L
∗, Ne)

n∏
i=k+1

P (Ri = 0|µi, L
∗, Ne)

P (L|nasc)
k∏

i=1

P (Ri = 1|µi, L,Ne)
n∏

i=k+1

P (Ri = 0|µi, L,Ne)

; (5.18)

for Ne:

R =

P (N∗
e )

k∏
i=1

P (Ri = 1|µi, L,N
∗
e )

n∏
i=k+1

P (Ri = 0|µi, L,N
∗
e )

P (Ne)
k∏

i=1

P (Ri = 1|µi, L,Ne)
n∏

i=k+1

P (Ri = 0|µi, L,Ne)

; (5.19)

for α:

R =

P (α∗)
n∏

i=1

P ({µi}|α∗, β)

P (α)
n∏

i=1

P ({µi}|α, β)
; (5.20)

for β:

R =

P (β∗)
n∏

i=1

P ({µi}|α, β∗)

P (β)
n∏

i=1

P ({µi}|α, β)
; (5.21)

for the mutation rate at each typed marker, i.e. µi where i = 1, . . . , s we have:

R =
P (x1,i, x2,i|µ∗

i , t)P (ri|mi, µ
∗
i )P (Ri = 1|µ∗

i , L,Ne)P (µ∗
i |α, β)

P (x1,i, x2,i|µi, t)P (ri|mi, µi)P (Ri = 1|µi, L,Ne)P (µi|α, β)
; (5.22)

for each of the remaining calibrated loci, i.e. µi where i = s+ 1, . . . , c:

R =
P (ri|mi, µ

∗
i )P (Ri = 1|µ∗

i , L,Ne)P (µ∗
i |α, β)

P (ri|mi, µi)P (Ri = 1|µi, L,Ne)P (µi|α, β)
; (5.23)

for each of the remaining ascertained loci, i.e. µi where i = c+ 1, . . . , k:

R =
P (Ri = 1|µ∗

i , L,Ne)P (µ∗
i |α, β)

P (Ri = 1|µi, L,Ne)P (µi|α, β)
; (5.24)
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and for the non-ascertained loci, i.e. µi where i = k + 1, . . . , n:

R =
P (Ri = 0|µ∗

i , L,Ne)P (µ∗
i |α, β)

P (Ri = 0|µi, L,Ne)P (µi|α, β)
. (5.25)

5.2.4 Data Simulation and Analysis Program

The use of the function tmodel is detailed below:

Description

tmodel allows the user to simulate data from pairs of males by specifying the

model parameters and sample size (see Details below). The data is then analysed

using MCMC to provide estimates of the mutation rates across all loci, t, α, β, L

(coalescent units) and Ne as well as L (generations) and the mean and variance

of the distribution from which the mutation rates are drawn, i.e. gamma(α, β).

Several diagnostics are also produced to evaluate the performance of the chains.

Usage

tmodel(BatchLen=50, TotBatch=1000, BinBatch=10, AccRate=0.44,

maxLSD, Loci, pCAL=0.211, Pnasc=NA, ptloci=0.5, t, ascsamp=8,

meioses=NA, cloops=3, sortCAL=F, L, Ne, muNe=6037, sdNe=1745,

alpha=1.70331, beta=0.001404, startL=3, startNe=6037,

startalpha=1.7, startbeta=0.00014, startTrue=F, psdmu=0.002,

psdL=0.5, psdNe=500, psdAlpha=0.05, psdBeta=0.06, psdT=3,

lambdaA=0, lambdaB=0, lambdaT=0, getdata=F, method=2,

graph="graphres.eps")

Required Arguments

BatchLen: this is the number of updates within each batch before the log stan-

dard deviation of the proposal distribution is adapted.

TotBatch: the total number of batches to run.

BinBatch: the total number of batches to remove as burn-in.

AccRate: the optimum acceptance rate.

MaxLSD: the boundary for proposed values of the log standard deviation of the

proposal distribution.
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Loci: the number of STRs, n.

pCAL: the proportion of the ascertained loci that are calibrated.

ptloci: the proportion of the calibrated loci that are typed in the male pairs.

Pnasc: assigns the percentage of non-ascertained loci in the analysis. It can be

set to a different value by choosing a value in the range (0, (1− ascCAL/loci))

where ascCAL is the number of calibrated loci. When set to NA (default), the

true percentage of non-ascertained loci is passed to the MCMC sampler.

ascsamp: the ascertainment sample size.

meioses: numeric (integer). The number of meioses used to calibrate the ascer-

tained loci to be calibrated. When set to NA (default), will use the multi-stage

calibration process.

cloops: numeric (integer). The number of cycles using the multi-stage calibra-

tion process to be carried on those loci to be calibrated when used in conjunction

with meioses=NA

t: the time to the most recent common ancestor for the two males.

L: the total branch length in the Y-chromosome sample in which loci are ascer-

tained, in units of Ne generations.

Ne: the effective Y-chromosome population size,

muNe: the mean effective population size, in the prior for Ne.

sdNe: the standard deviation of the effective population size, in the prior for

Ne.

alpha: the shape parameter in the Gamma distribution used to sample mutation

rates.

beta: the scale parameter in the Gamma distribution used to sample mutation

rates.

startL: the initial value for the MCMC for L.

startNe: the initial value for the MCMC for Ne.

startalpha: the initial value for the MCMC for α.

startbeta: the initial value for the MCMC for β.

startt: the initial value for the MCMC for t.

startTrue: logical, if TRUE initialises the MCMC chains to start at the true

value for each parameter.

psdmu: the initial standard deviation for the proposal distribution of the muta-

tion rates.

psdL: the initial standard deviation for the proposal distribution of L.
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psdNe: the initial standard deviation for the proposal distribution of Ne.

psdAlpha: the initial standard deviation for the proposal distribution of α.

psdBeta: the initial standard deviation for the proposal distribution of β.

psdT: the initial standard deviation for the proposal distribution of t.

lambdaA: the lambda value for α’s prior distribution.

lambdaB: the lambda value for β’s prior distribution.

lambdaT: the lambda value for t’s prior distribution.

SortCAL: logical, if TRUE sorts the calibrated loci according to calibrated rates,

in descending order.

getdata: logical, if TRUE the program will try to retrieve the data and param-

eters stored in a list named ‘results’.

method: controls which posterior distribution is to be sampled from; 2 is detailed

in equation 5.14, 1 is any competing posterior distribution.

graph: the name of the file that must end in “.eps” that any graphical diagnostics

will be saved as. If NA, no graphical diagnostics will be returned or saved

Side Effects & Returns

The function returns a list of the true parameter values, MCMC mean, standard

deviation and credible regions for t (generations), L (in both generations and

Ne units), Ne, α, β, mean of gamma, variance of gamma. In addition the list

includes the acceptance rates for each parameter. Also included are details of the

mutation rates including the true values, MCMC means, standard deviations and

credible regions, the number of mutations and meioses for the calibrated rates as

well as their calibrated estimates. Additionally, the true proportion and number of

calibrated and non-ascertained loci with any misspecified values stated, along with

the total number of loci are given. Finally the list includes the mean and standard

deviation of the prior for Ne, as well as the number of simulated Y-chromosomes

used to determine the ascertained mutation rates.

For graph=“graphres.eps”, a 3×6 plot of the chains for the first mutation rate

(a typed locus), a calibrated locus, an ascertained locus, the last mutation rate

(a non-ascertained locus), L (units of Ne generations), Ne, α, β and t are shown,

with the true value indicated by a solid grey line. The corresponding updates of

the log of the standard deviation of each of the parameters’ proposal distributions

follow.
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Details

The program is entirely coded in the R language which simulates data according

to the steps outlined in section 5.2.1, creates the appropriate update vector and

passes this and other relevant parameters to the adaptive MCMC loop. This

generates a new proposal for the parameter being updated and either accepts or

rejects it on the basis of the posterior distribution.

After every BatchLen updates of all the parameters, the log standard deviation of

the proposal distribution is adapted according to section 4.3.3.2 and the specified

optimum acceptance rate. Once the chosen number of batches, i.e. TotBatch, has

been constructed for each parameter, the R code generates the summary statistics

followed by the graphical diagnostics (if specified) and returns the list specified in

Side Effects & Returns, above. Where getdata=T, the data must have been previ-

ously stored in a list named ‘results’. This is ideal for comparing different analyses

of the same data, for example when altering the amount of data or misspecifying

parameters.

5.2.5 Software

The software used to develop the TMRCA model and related analyses was R. The

results presented in this chapter were obtained on a Linux platform.

5.2.6 Analysis

The results are based on the following choice of parameters, which are fixed

throughout the analysis: L = 3.01, Ne = 4262, α = 0.5872, β = 0.00348, n = 475

and nc = 3.

For each simulated dataset, we will obtain estimates of the parameters by applying

1000 batches (TotBatch) of length 50 (Batchlen) of the MCMC sampler with 100

batches (Binbatch) discarded as burn-in. The prior parameters; λα, λβ and λt,

are all zero, corresponding to uniform (improper) priors.

The first analysis involves simulating STR profiles for pairs of males with most

recent common ancestor at times t= 5, 10, 15, 20, 25, 50, 100 (generations) ago.

For each t, we generate 100 independent datasets, setting the percentage of typed
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loci to 100%. This means that the number of STRs typed in the simulated male

pairs is equal to the total number, c, of calibrated loci. Thereafter we subsample

the following percentages of typed loci from the initial datasets: 10%, 20%, 30%,

40%, 50%, 60%, 70%, 80% and 90%.

As a consequence, we have a total of 700 independent datasets across t. For each

combination of t and the percentage of typed loci, we will compute the MSE of

the posterior mean, as estimator of t. To scale out t to allow a direct comparison

across t we also compute the fractional squared error (FSE), fractional variance

and fractional bias squared, which are obtained by dividing, respectively, the MSE,

variance and squared bias by t2. The fractional bias is simply the bias divided by

t. For the other parameters, such as α, β, the mean and variance of the gamma

distribution with shape α and scale β, L, Ne, we compute the MSE, variance and

bias. For every parameter any plots will have the same scale unless this obscures

the results.

Following on from this, we will examine the effect of varying the percentage of

the fastest mutation rates on t̂. In this case, we will use the datasets generated

as described above. However, the calibrated mutation rates will be ordered ac-

cording to their empirical mutation rates, i.e. based on the simulated meioses and

mutations. Thereafter the percentage of the fastest typed loci will be varied as:

10%, 20%, 30%, 40%, 50%, 60%, and 70%.

Lastly we will conduct a misspecification study on the 100 original datasets at

each t by varying the percentage of non-ascertained loci away from the true value.

Given the random nature of the simulation the percentage of non-ascertained

loci will vary from one dataset to another. Nonetheless we examine the effect of

misspecifying this as follows: 5%, 10%, 15% and 20%.

5.3 Results

5.3.1 Varying the Proportion of Typed STRs

Figure 5.3 plots the FSE of t̂ against the percentage of typed loci for each time,

with the fractional variance (FV) superimposed in a solid red line. In general,

we find that the FSE is high when the percentage of typed loci is only 10% but

quickly decreases as the percentage increases. This is the case across all times.
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Figure 5.3: Fractional squared error and variance of t̂ vs. percentage of typed loci:
a. t = 5, b. t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100

(#/solid red line - FSE/FV)
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Figure 5.4: Fractional bias of t̂ vs. percentage of typed loci: a. t = 5, b. t = 10, c.
t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100

In addition, as t increases from 5-100 generations, the FSE for low values of the

percentage of typed loci reduces substantially. In figure 5.3a where t = 5, the

FV is about a quarter of the FSE at 10%. The remaining component is from

the fractional bias squared (FBSQ). As the percentage of typed loci increases, the

FV component increases, so there is less fractional bias. This is also the case for

t at 10, 15, 20 and 25 generations. However, at low percentages of typed loci,

at each of these times, the fractional variance component is increasingly greater
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(figs. 5.3b-e). At t = 50 and 100 generations, the main component of the FSE is

the FV across the entire range of the percentage of typed loci.

Next we examine the fractional bias (FB) of t̂ (fig. 5.4). For all t, the FB is positive

and it quickly decreases approaching an asymptote close to zero as the percentage

of typed loci increases. In addition, the rate at which the FB decreases reduces

as time increases. Consequently, at 10% for t = 100 (fig. 5.4g), the FB is ∼2,

whereas, for t = 5, it is ∼10 (fig. 5.4a).

For α̂ the MSE against the percentage of typed loci at t = 5−25 is approximately

constant at ∼0.006 (figs. 5.5a-e). This is also the case for t = 50 although the MSE

is slightly higher at ∼0.007. For t = 100, the MSEs of α̂ vary in an inconsistent

manner from 0.008-0.012 as the percentage on typed loci increase, possibly due to

poor mixing and convergence. The variance (solid red line) contributes just over

half of the MSE of α̂ and is roughly constant as the percentage of loci increases

from t = 5 to 25 (fig. 5.5a-e). However the contribution is greater at t = 50

and 100. The bias in α̂ is negative (fig. 5.6). α̂ is underestimating by a roughly

constant amount across the percentage of typed loci for all t, but at t = 100 the

bias is slightly less. The overall amount of bias does not vary across t = 5− 25 in

any consistent way, but, for t = 50 and 100 the bias is reduced compared to that

for other t.

Next we examine the MSE of β̂, which is roughly constant as the percentage of

typed loci increases for each t (fig. 5.7). However, the MSE is greatest when t = 5

and reduces until t = 20 (figs. 5.7ad). Thereafter, it increases till t = 50 (fig. 5.7e)

before reducing when t = 100((fig. 5.7g). For each t, the variance is approximately

constant as the percentage of typed loci increases (solid red line). Consequently,

we find that as t increases the contribution the variance component makes to the

MSE also increases. The bias in β̂ versus the percentage of typed loci is shown in

figure 5.8. Across each t, the bias is positive, so the method is overestimating β̂.

Also there is a trend of decreasing bias as the percentage of typed loci increases.

Furthermore the overall bias for t = 5−20 reduces relative to lower t (figs. 5.8a-d).

At t = 25 the bias increases relative to the shorter times, decreasing thereafter

(figs. 5.8e-g).

The MSE in the estimate of the mean of the gamma distribution from which the

mutation rates are drawn is shown in figure 5.9. The MSE is constant as the

percentage of typed loci increases, for each t. Additionally, the MSE is small
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Figure 5.5: Mean squared error and variance of α̂ vs. percentage of typed loci: a.
t = 5, b. t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100

(#/solid red line - MSE/variance)
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Figure 5.6: Bias of α̂ vs. percentage of typed loci: a. t = 5, b. t = 10, c. t = 15, d.
t = 20, e. t = 25, f. t = 50, g. t = 100
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Figure 5.7: Mean squared error and variance of β̂ vs. percentage of typed loci: a.
t = 5, b. t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100

(#/solid red line - MSE/variance)
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Figure 5.8: Bias of β̂ vs. percentage of typed loci: a. t = 5, b. t = 10, c. t = 15, d.
t = 20, e. t = 25, f. t = 50, g. t = 100
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Figure 5.9: Mean squared error and variance of gamma mean vs. percentage of typed
loci: a. t = 5, b. t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100

(#/solid red line - MSE/variance)
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Figure 5.10: Bias of gamma mean vs. percentage of typed loci: a. t = 5, b. t = 10,
c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100
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across t. The variance component in the MSE is shown in a solid red line and

forms the majority of the MSE for each t. The bias in this estimator is shown in

figure 5.10. Here we see that, for t = 5, 10, 50, the bias is positive (figs. 5.8abf)

and, for the remaining t, is it negative. Nonetheless, the bias is very small. In

addition varying the percentage of typed loci has little effect on the bias.

For the estimates of the variance of the gamma distribution, the MSE, with the

variance superimposed, is shown in figure 5.11. We see that there is a weak negative

relationship between the MSE and the percentage of typed loci particularly for

t = 5−25 (figs. 5.11a-e). For the other two cases, the MSEs do not appear to vary

systematically with increasing percentage of typed loci. In addition, we find that,

as t increases from 5 to 20, the MSE reduces overall. In contrast, this is not true

for t = 25−100. As with the MSE, the variance decreases slightly with increasing

percentage of typed loci for t = 5 − 25 (figs. 5.11a-e). Also, the contribution the

variance makes to the MSE increases as t increases. For the remaining cases (t = 50

and 100), the variance is roughly constant, yet the contribution the variance makes

to the MSE is proportionally greater for t = 100 than for t = 50 (figs. 5.11gf). The

bias in the estimates of the variance of the gamma distribution reduces slightly

with increasing percentage of typed loci though remains positive (fig. 5.12). This

is the case for each t. Furthermore the overall bias reduces as t increases.

For L̂, the MSE versus the varying percentage of typed loci is shown in figure

5.13. For each t, the MSE decreases slightly with the percentage of typed loci.

Moreover, the overall MSE reduces as t increases from 5-15 generations before

increasing to the overall maximum at t = 25 (fig. 5.13e) and then decreasing

again. The variance component (solid red line) is about a third of the MSE for

each t, with the exception of t = 100. As with the MSE for each t, the bias in L̂

reduces slightly with the percentage of typed loci. It remains positive throughout

(fig. 5.14). In addition, the overall bias decreases when t = 5 − 15, thereafter

increasing before decreasing when t = 50 and 100.

The last parameter to have its MSE examined for this set of analyses is N̂e

(fig. 5.15). Here we also find a weak negative relationship between the MSE and

the percentage of typed loci, for each value of t. The overall MSE reduces between

t = 5 − 15 (figs. 5.15a-c). Thereafter it increases until t = 25, before reducing

again. The variance component (solid red line) contributes approximately a fifth

of the MSE for lower t but slightly more at higher t. As for the bias in N̂e, we

find it is positive for each t and as the percentage of typed loci increases the bias
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Figure 5.11: Mean squared error and variance of gamma variance vs. percentage of
typed loci: a. t = 5, b. t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100

(#/solid red line - MSE/variance)
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Figure 5.12: Bias of gamma variance vs. percentage of typed loci: a. t = 5, b.
t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100
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Figure 5.13: Mean squared error and variance of L̂ vs. percentage of typed loci: a.
t = 5, b. t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100

(#/solid red line - MSE/variance)
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Figure 5.14: Bias of L̂ vs. percentage of typed loci: a. t = 5, b. t = 10, c. t = 15,
d. t = 20, e. t = 25, f. t = 50, g. t = 100
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Figure 5.15: Mean squared error and variance of N̂e vs. percentage of typed loci: a.
t = 5, b. t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100

(#/solid red line - MSE/variance)
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Figure 5.16: Bias of N̂e vs. percentage of typed loci: a. t = 5, b. t = 10, c. t = 15,
d. t = 20, e. t = 25, f. t = 50, g. t = 100
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drops very slightly (fig. 5.16). The overall bias is greatest at t = 25 (fig. 5.16e)

though for the other values of t it is not substantially less.

5.3.2 Use of Fast Mutating STRs
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Figure 5.17: Fractional squared error and variance of t̂ vs. percentage of typed loci:
a. t = 5, b. t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100

(#/solid red line - FSE/FV)
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Figure 5.18: Fractional bias of t̂ vs. percentage of typed loci: a. t = 5, b. t = 10, c.
t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100

Here we will examine the effect on t̂ only of using the fastest loci. Figure 5.17

is a plot of the FSE of t̂ versus the percentage of typed loci with the fractional

variance.
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For the fastest loci we find that there is a trend of reducing FSE with increasing

percentage of typed loci. This is the case for each t, but the reduction is most

apparent when t = 5, where the FSE is ∼ 9 at 10% and close to 1 by 40%. In

addition, its FV component forms the majority of the FSE throughout. The FB

of t̂ decreases as the percentage of the fast typed loci increases approaching zero

(fig. 5.18). Also the overall FB across the percentage of typed loci reduces as t

increases.

5.3.3 Misspecification of the Proportion of Non-Ascertained

Loci

In this section we examine the effect on the estimates of the main parameters

of varying the percentage of non-ascertained loci, starting with t̂. The FSE of

t̂ versus the percentage of non-ascertained loci is shown in figure 5.19, with the

FV (solid red line). In general, we find that both the FSE and FV are constant

as the percentage varies. This is the case for each t. However, the overall FSE

decreases as t increases. Yet the contribution the FV makes to the FSE increases

with increasing t. The FV makes up over half of the FSE at t = 5 and at 100

FV is the main component of the FSE (figs. 5.19ag). For the FB of t̂, we see that

there no change in it as the percentage of non-ascertained loci increases at each

t (fig. 5.20). In addition, the FB reduces as t increases though it remain positive

for each t.

Next, we examine the MSE of α̂ versus the percentage of non-ascertained loci

(fig. 5.21). Here, at each t, we find that the MSE has a minimum at around 10% of

the non-ascertained loci. In addition, for t = 5−50, we find that the variance has a

negative relationship with the percentage of non-ascertained loci. Combining this

with the parabolic form of the MSE means that the variance contributes the most

at 10% of non-ascertained loci. For the remaining percentages of non-ascertained

loci, the variance forms under half of the MSE. At t = 100, the variance has a

peak at 10% where it makes up almost all the MSE, but at the other percentages

only contributes less than a third to the MSE (fig. 5.21g). The bias in α̂ decreases

with increasing percentage of non-ascertained loci at each t. In addition, the bias

is positive at 5% and negative for the remaining percentages.
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Figure 5.19: Fractional squared error and variance of t̂ vs. percentage of non-
ascertained loci: a. t = 5, b. t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50,

g. t = 100
(#/solid red line - MSE/FV)
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Figure 5.20: Fractional bias of t̂ vs. percentage of non-ascertained loci: a. t = 5, b.
t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100

For β̂, the MSE increases at a rather linearly with increasing percentage of non-

ascertained loci. This is the case at each t (fig. 5.23). Similarly, the variance

increases but a lower rate (solid red line). At 5% the variance forms almost all the

MSE whilst at 20% this is much less at around half. The bias β̂ is shown in figure

5.24. It has a positive relationship with the percentage of non-ascertained loci at

each t. We find that the bias is positive at each percentage of non-ascertained loci

except 5%.
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Figure 5.21: Mean squared error and variance of α̂ vs. percentage of non-ascertained
loci: a. t = 5, b. t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100

(#/solid red line - MSE/variance)
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Figure 5.22: Bias of α̂ vs. percentage of non-ascertained loci: a. t = 5, b. t = 10, c.
t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100
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Figure 5.23: Mean squared error and variance of β̂ vs. percentage of non-ascertained
loci: a. t = 5, b. t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100

(#/solid red line - MSE/variance)
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Figure 5.24: Bias of β̂ vs. percentage of non-ascertained loci: a. t = 5, b. t = 10, c.
t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100
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Figure 5.25: Mean Squared Error and Variance of Gamma mean vs. percentage of
non-ascertained loci: a. t = 5, b. t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50, g.

t = 100
(#/solid red line - MSE/variance)
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Figure 5.26: Bias of Gamma mean vs. percentage of non-ascertained loci: a. t = 5,
b. t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100
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Now we examine the MSE of the estimates of the mean of the gamma distribution

from which the mutation rates are drawn. The MSEs form a parabola with a

minimum at 10% of the non-ascertained loci at each t (fig. 5.25). On the other

hand the variance (solid red line) is strictly decreasing with increasing percentage

of non-ascertained loci, contributing the bulk of the MSE at 10%. For the other

percentages the variance makes up half or more of the MSE. The bias in the

estimates of the mean decreases with increasing percentage of non-ascertained

loci, crossing zero close to 10% at each t (fig. 5.26).

For the MSE of the estimates of the variance of the gamma distribution, we see a

similar pattern as for the mean: the points form a parabola but with a maximum

around 10-15% (fig. 5.27). Also the bias in figure 5.28 is positive for all percentages

of non-ascertained loci. As t increases, there is no consistent change in the overall

bias. However, we find that the highest overall bias occurs at t = 5 and the lowest

when t = 100.

The results for the total branch length, L, are examined next. The MSE has a nega-

tive relationship with the percentage of non-ascertained loci for all t (fig. 5.29). The

variance component of the MSE decreases when the percentage of non-ascertained

loci increases. However, it does so at a much slower rate than the MSE. For exam-

ple at 5%, across each t, the variance forms only about a sixth of the MSE whilst at

20% it makes up the majority. The bias in L̂ decreases with increasing percentage

of non-ascertained loci, though it remains positive throughout as shown in figure

5.30. The pattern is consistent as t varies.

Lastly, for N̂e we see that its MSE decreases when the percentage of non-ascertained

loci increases for each t (fig. 5.31). Conversely, the variance component of the MSE

(solid red line) increases with the percentage of non-ascertained loci at each t. Thus

at 5% the variance contributes very little to the MSE whilst at 20% it forms the

bulk of it. The bias in N̂e reduces with increasing percentage of non-ascertained

loci for each t as shown in figure 5.32. Furthermore, the bias remains positive with

little difference in the values across t.
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Figure 5.27: Mean squared error and variance of gamma variance vs. percentage of
non-ascertained loci: a. t = 5, b. t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50, g.

t = 100
(#/solid red line - MSE/variance)
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Figure 5.28: Bias of gamma variance vs. percentage of non-ascertained loci: a.
t = 5, b. t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100
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Figure 5.29: Mean squared error and variance of L̂ vs. percentage of non-ascertained
loci: a. t = 5, b. t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100

(#/solid red line - MSE/variance)
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Figure 5.30: Bias of L̂ vs. percentage of non-ascertained loci: a. t = 5, b. t = 10, c.
t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100
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Figure 5.31: Mean squared error and variance of N̂e vs. percentage of non-
ascertained loci: a. t = 5, b. t = 10, c. t = 15, d. t = 20, e. t = 25, f. t = 50,

g. t = 100
(#/solid red line - MSE/variance)
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Figure 5.32: Bias of N̂e vs. percentage of non-ascertained loci: a. t = 5, b. t = 10,
c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100
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5.4 Discussion

On the basis of the first set of results, it is clear that varying the percentage of

typed loci affects the estimates of t greatly: increasing the amount of data reduces

the amount of (positive) bias in t̂. Also the estimates for β, the variance of the

gamma, L (gens) and Ne are all overestimates whilst for α our method produces

an underestimate. For the mean of the gamma the estimates are fairly accurately

estimated with a small bias. Yet none of these additional estimators’ biases are

affected by the percentage of typed loci.

In contrast misspecifying the percentage of non-ascertained loci affects all the

parameters estimates with the exception of t̂ whose bias is only affected by the

value of t. For α, β and the mean of the gamma, the percentage of non-ascertained

loci at which the bias is closest to zero is from 5-10%. Plotting histograms of the

actual percentage of non-ascertained loci across the 100 independent datasets at

each t reveals why this should be the case. In figure 5.33 we see that the range lies

between 0.07 and 0.15 for each t with a maximum lying at around 0.10-0.12. The

distributions all appear fairly symmetric. The means for each t are, respectively,

0.105, 0.105, 0.107, 0.104, 0.108, 0.105 and 0.108.
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Figure 5.33: Histogram of percentage of non-ascertained loci: a. t = 5, b. t = 10,
c. t = 15, d. t = 20, e. t = 25, f. t = 50, g. t = 100
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In particular, recap that the variance of the gamma the amount of bias has an

unusual pattern (fig. 5.28) and even with the true percentage of non-ascertained

loci the estimator is upwardly biased (fig. 5.12). This is also the case for L and Ne

although its bias appears reduced most when the percentage of non-ascertained

loci is greatest (figs. 5.30 and 5.32).
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Figure 5.34: Fractional squared error and variance of t̂ vs. percentage of typed loci:
a. t =5, b. t =100

(#/solid red line - FSE/FV of random loci, #/solid black line - FSE/FV of fast loci)
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Figure 5.35: Fractional bias of t̂ vs. percentage of typed loci: a. t =5, b. t =100
(# - random loci, # - fast loci)

Next recap, the FSE of t̂ when using the fast loci rather than random loci is

considerably lower (figs 5.17 and 5.3). Here, random loci refers to the original order

of the calibrated mutation rates whilst fast loci refers to the calibrated mutation

rates sorted in descending order according to their empirical rate. For example,

in the most extreme case when t = 5 we have an FSE of more than 120 for the

random markers compared to only ∼10 for the fast loci (fig. 5.34). For the highest

t = 100, this difference is much less; nonetheless the FSE for the random loci is
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still higher. This would suggest that using the fastest markers would produce less

biased results for t̂.

Indeed, when we examine a plot of the fractional bias in t̂ when t = 5, the value

for the fast loci is only about a fifth of that when employing the random loci

when only using 10% of the markers (fig. 5.35a). Indeed at least 20% more of the

random typed loci (hence 30% of the loci) must be used to produce the equivalent

level of fractional bias in t̂. This difference is less stark at t = 100 (fig. 5.35b).

Here the fractional bias for the random loci (#) at 10% is only about double that

when using the fast loci (#). Also less than 20% of the random loci are required

to produce the equivalent fractional bias at 10% for the fast loci.

5.5 Conclusions

Having developed a model for estimation of the TMRCA which incorporates the

mutation rate model developed in chapter 4, we carried out a simulation study

across a range of TMRCAs (5 − 100 generations). In addition, the percentage of

typed loci out of the total calibrated loci was varied. It was apparent that this

percentage affects the estimates of TMRCA. In general, and perhaps unsurpris-

ingly, increasing the number of markers reduces the overestimation, irrespective of

the true value of TMRCA. However for the remaining parameters, α, β, the mean

and variance of the gamma distribution with shape α and scale β, the total branch

length, L and the effective population size, Ne, varying the percentage of typed

loci had little effect on their estimates across the seven values of TMRCA. On the

other hand, estimates of TMRCA are not affected by misspecifying the percent-

age of non-ascertained loci, whilst the other parameters are affected to varying

degrees.

Our results also indicate that the nature of the typed markers as well as the

number of them affect the estimates of TMRCA for pairs of males. Typing fast

STRs whose rates have been empirically estimated using a large number of meioses

will reduce the amount of positive bias in TMRCA estimates when compared to

a random set of STRs.





Chapter 6

TMRCA Estimation: Real Data

Applications

6.1 Haplogroup- and Surname-Based Priors

The work of King et al. (2006) established that there is an inherent relation-

ship between TMRCA and some measure of the frequency of a British surname.

Specifically, King et al. highlighted that rare or less frequent surnames produced

on average lower estimates of TMRCA between pairs of males sharing the same

surname. This was in accordance with the historical evidence that rare surnames

may have a single founder at the time of surname establishment. It was also

clear that sharing the same haplogroup or not would entail a different relationship

with the TMRCA. In addition factors such as the surname origin were considered.

The aim of this section is to develop priors for TMRCA estimation based on the

presence or absence of haplogroup information as well as surname frequency and

surname origin information.

6.1.1 Materials and Methods

In order to incorporate a prior on TMRCA based on the surname frequency into

our model, we amalgamated data from King et al. (2006) and King and Jobling

(2009a), excluding in the former any surnames that overlap with the latter. For

King and Jobling (2009a), we paired the data within each surname using three

173
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sampling approaches, each without replacement. The first allowed random pairing

of males within each surname ignoring the haplogroup of the males. The second

strategy randomly paired those within the same haplogroup within each surnames.

The final pairing involved randomly pairing those in different haplogroups within

each surname. In particular for the different haplogroup sampling, sampling was

carried out to avoid over-sampling the most frequent haplogroup. This was carried

out by sampling within the haplogroup with the fewest samples, next randomly

choosing another haplogroup with equal probability, thereafter taking a random

sample within the chosen haplogroup. In total, the random haplogroup sampling

resulted in 829 pairs, the same haplogroup sampling in 785 pairs and the different

haplogroup sampling in 554 pairs.

It was necessary to include the earlier data from King et al. (2006) due to the fact

that King and Jobling (2009a) largely sampled less frequent surnames and devel-

opment of a prior based on the frequency of a surname would benefit from data

across the full range of surname frequencies. The origins of the surnames in King

et al. (2006) were researched and classified according to the categories described

in King and Jobling (2009a): ambiguous/unknown, locative, nickname, occupa-

tional, patronymic/matronymic and topographic (Cottle, 1978; Hanks et al., 1988;

Reaney and Wilson, 1997). The ambiguous/unknown category included any sur-

names with multiple origins of which several had both locative and topographic

origins. Where the researched origin conflicted with the origin specified in King

and Jobling (2009a), the latter origin was used. This was the case for four of the

surnames that overlapped with King and Jobling (2009a). The frequency of the

surnames was consistent with those reported in King et al. (2006). 39 of the sur-

names in King and Jobling (2009a) were also sampled in King et al. (2006), with

one of the surnames, Haythornthwaite, including the variant spellings ‘Hawthorn-

thwaite’ and ‘Haythorn’. A total of 40 pairs were excluded from the King et al.

(2006) data due to the potential overlap with samples in King and Jobling (2009a).

The remaining 110 pairs were added to random haplogroup data from King and

Jobling (2009a). Of these, 56 pairs shared the same haplogroup and were added

to the appropriate dataset sampled from King and Jobling (2009a). An analogous

strategy was employed for the 54 pairs which belonged to different haplogroups.

Thus, in total, the random haplogroup class consisted of 939 pairs, the same hap-

logroup class of 841 pairs and the different haplogroup class of 608 pairs.

Estimation of TMRCA was carried out using the method described in sections 5.2.2
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and 5.2.3 for each pair. In particular, n = 475, the percentage of non-ascertained

loci was 14.4% and the ascertainment sample size was eight in accordance with

Kayser et al. (2004). The empirical mutation rates were based on the final mu-

tation rate review in section 2.3.3. We applied 1000 batches of 50 updates with

10% burn-in of our MCMC sampler with uniform priors on the mutation rate dis-

tribution parameters and TMRCA to produces the estimates of TMRCA for each

pair.

For each data set (random/same/different haplogroup) an initial analysis of co-

variance (ANCOVA) was carried out for the estimates TMRCA, or some transfor-

mation of it (see below), the covariate being the natural logarithm of the surname

frequency and the grouping variable surname origin. Both interaction and main

effects models were examined. Where appropriate a regression model was used, as

well as a one-way analysis of variance (one-way ANOVA). Checking the assump-

tions of linearity, homoscedasticity (constant variance) and normality were carried

out by examining plots of standardized residuals versus fitted values and normal

Q-Q plots.

The resulting fitted models only provide point estimates for the TMRCA based

on the haplogroup information and/or surname frequency and surname origins.

As such we will first consider an exponential distribution with the scale parameter

equal to the fitted TMRCA for the prior on TMRCA.

The resulting prior should ideally have a standard deviation similar to the fitted

model and sample. To investigate this, random draws from the proposed exponen-

tial distribution were taken and compared to 10,000 simulated data points from

the fitted model and also of the sample. For the former, the variance of the er-

ror term was based on the fitted model’s σ̂2 and for the latter we computed the

standard deviation across variant spelling of surnames with more than one pair

of observations. Where the exponential’s standard deviation was not adequate, a

gamma distribution was also examined. In this situation the mean was the fitted

TMRCA and its variance reflected the variance of data simulated from the fitted

model. Alternatively, we may fit an exponential or gamma distribution to the raw

estimates of TMRCA by the method of moments.

Since King and Jobling (2009a) largely analysed surnames which are less common

it is possible that there is underrepresentation of more common surnames. Con-

sequently, it may be desirable to thin the data set from King and Jobling (2009a)
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since there is data on only one pair of males per surname from King et al. (2006).

Hence, for each unique surname we randomly sampled one pair of males and fitted

an appropriate distribution such as an exponential or gamma. This process was

carried out 1,000 times allowing statistics such as the mean and standard deviation

of the fitted parameters to be computed.

Where an exponential prior distribution has been fitted, to make the prior less

influential, we used a deflated rate, namely the mean rate minus two standard

deviations of the 1000 rates. Similarly, when fitting a gamma distribution, we

inflated variance. This was achieved by firstly computing the thinned means and

thinned variance which are based on the fitted shapes and rates for each thinned

data set. Thereafter the mean of the resultant gamma is put equal to the mean of

the thinned means whilst the variance is put equal to the mean variance plus two

standard deviation of the thinned variances. In addition if another distribution is

fitted, its variance will similarly be inflated.

Given the sampling of males within surnames, the assumption of independence

for linear models may be violated. As such ANCOVA permutation tests were

carried out to determine if any interaction models were indeed significant, based

on the concept of removing the functional relationship (Gail et al., 1988; Good,

2000). More specifically, this involved fitting only the main effects and saving the

residuals from this model. Supposing that the null hypothesis is true, i.e. the slope

parameters are the same across the groups, then there should be no structure left

in the residuals. To test this we fit another ANCOVA with the response the saved

residuals and the covariate and grouping variable as before. The group labels would

then be permuted 10,000 times, each time fitting a new ANCOVA and saving the

slope coefficients for each group. These values would then be compared to the slope

coefficients from the original main effect residuals to give a p-value for each group

assessing whether the slopes are significantly different to zero (Sundaresan et al.,

2007). The significance level is adjusted to allow for multiple comparisons using the

Bonferroni correction, i.e. for n comparisons, the αnew value would be α/n where

α is typically 0.05. The choice of using the individual slope coefficients as the test

statistic of choice rather than the F statistic as suggested by Edgington (1995)

was due to inconsistent results between the two. To validate this we carried out a

simulation study whereby we chose the regression lines in table 6.1 for six groups.

Note that group A has a different slope from the other groups. In addition all

the groups have different intercept parameters. We generated data by simulating
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Table 6.1: Model for validating ANCOVA permutation test

Group Intercept Slope coefficient

A 33.04 0.05
B 42.45 0.22
C 82.32 0.22
D 12.96 0.22
E 72.75 0.22
F 67.81 0.22

random normal noise. We then fitted an interaction ANCOVA, thereafter carried

out a permutation ANCOVA with 10,000 permutations saving the associated p-

value for each group’s slope coefficient as well as the F statistic. This process

was repeated 100 times and the p-value of the F statistic was compared to the

usual significance level whilst the slope p-values were compared to the Bonferroni

corrected significance level of 0.0083. The results were summarised by computing

the type I and II error rates where appropriate. Table 6.2 shows that the type

Table 6.2: Simulated data error rates

Parameter Type II Error

Slope A 0.46
F Statistic 0.77

II error rates. For group A the type II error rate was 0.46, but based on the F

statistic, it was even higher at 0.77.

Where a simple linear regression model was fitted, permutation tests were used

to determine whether a main effects ANCOVA model was significant. Here the

residuals from the linear regression model were permuted by group label 10,000

times and fitted to a one-way ANOVA. For each permutation, the F statistic was

recorded and compared to that obtained from a one-way ANOVA of the residuals

with the observed group labels. A p-value less than 0.05 would indicate that the

group effect was significant and hence a main effects ANCOVA more suitable.

In addition, a permutation simple linear regression was carried out to test the null

hypothesis that the slope equals zero. The underlying principle is that if the null

were true then the responses could have been observed in any order (Anderson,

2001; Legendre and Legendre, 1998). It involves permuting the response variables

and computing the Pearson correlation coefficient 10,000 times. The permuted

correlation coefficients are then compared to the observed coefficient in order to
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produce a p-value. In this case a p-value less than 0.05 would imply that the slope

is not equal to zero, so the simple linear regression is more appropriate.

Finally to test whether a one-way ANOVA model was significant, i.e. the null

hypothesis being that the groups means are not different, the group labels were

permuted and a one-way ANOVA was fitted (Anderson, 2001). The F statistic

was computed for 10,000 permutations and compared to the original F statistic to

obtain a p-value.

In instances where the raw data did not appear normal, the above analysis was

carried out using an appropriate transformation such as the (natural) logarithm

or Box-Cox. The latter has the form:

xλ − 1

λ
(6.1)

for a variable x where λ is referred to as the Box-Cox lambda. Its maximum

likelihood estimate was obtained using the R function boxcox().

6.1.2 Same haplogroup

6.1.2.1 Surname Origins and Frequency

For pairs of males sharing the same haplogroup, it was clear from the raw data that

to discern a meaningful relationship between the estimated TMRCA in generations

and the surname frequency some transformations were necessary. Thus as well as

the log of the surname frequency, a Box-Cox transformation of TMRCA with the

Box-Cox lambda equal to 0.0606 was applied. The resulting relationship between

the variables looks linear although this is somewhat obscured by the overlap of

points particularly at lower values of the Box-Cox TMRCA (figure 6.1). Taking

the mean value for each unique surname results in figure 6.2. A clear negative

linear relationship appears between the Box-Cox TMRCA and the reverse log

surname frequency, which is also apparent for some of the surname subtypes.

However it is important to note that many surnames were categorised into the

ambiguous/unknown category and therefore the relationship between the variables

in this case may be unreliable. Also there is a notable absence of surnames of

locative origin on the left side of figure 6.2, and there are only six unique surnames

of topographical origin, amounting to just over 4% of the same haplogroup data.
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Figure 6.1: Same haplogroup: Box-Cox TMRCA vs. log surname frequency
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Figure 6.2: Same haplogroup: mean Box-Cox TMRCA vs. log surname frequency
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Nonetheless a main effects and interaction ANCOVA for the response Box-Cox

TMRCA, covariate log surname frequency and grouping variable surname origins

was fitted. The interaction term for this model is significant (p-value = 0.00059)

and the resulting fitted model is:

t̂ =
(
0.0606[αi + βi log(Sf)] + 1

) 1
0.0606 , (6.2)

where Sf is the surname frequency and i = 1, . . . , 6 represents the surname ori-

gins ambiguous/unknown, locative, nickname, occupational, patronymic and to-

pographic, respectively, with the parameters as shown in table 6.3. For all but

Table 6.3: Same haplogroup: surname origin and frequency fitted model parameters

Surname Origin α β

Ambiguous/Unknown 3.599 0.211
Locative 6.085 -0.177
Nickname 0.904 0.565

Occupational 3.187 0.225
Patronymic 2.725 0.330
Topographic 1.914 0.326

one surname origin the estimated slope is positive resulting in a negative linear

relationship between the response and the reverse log surname frequency. For

surnames of locative origin the slope is negative. This appears to be counterin-

tuitive to the notion that rare surnames should have a lower TMRCA to reflect

the increased likelihood that those surnames have a single founder and that there

has not been enough time for the name to reach high frequency. The lack of high

frequency data in the locative surnames may be a factor in influencing this result,

which is unsurprising given that most locative surnames tend to be less common

(McKinley, 1990).

Furthermore, the assumptions of ANCOVA may be violated. In figure 6.3 we

see that constant variance may not hold for the residuals. The banding reflects

the nature of the data, i.e. the non-negative integer number of mutational steps

between the pairs of males, as well as the discrete values for the raw surname

frequency. In addition, the normal Q-Q plot show deviation from normality at the

extremes. Given the potential violations of the underlying modelling assumptions,

we carried out a permutation ANCOVA to examine if any of the slopes for the

different surname origins were indeed significant. The final fitted model is shown

in figure 6.4.
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Figure 6.3: Same haplogroup: a. residuals vs. fitted values b. normal Q-Q plot of
residuals

The results of the permutation test are given in table 6.4 which we compare to

the Bonferroni-corrected significance level of 0.0083. We find two surname origins,

locative and nickname, have slopes significantly different from zero, indicating that

an interaction model is most suitable for describing the same haplogroup data.

Next we consider the exponential prior for the TMRCA with its rate parameter

Table 6.4: Same haplogroup: surname origin and frequency permutation test p-
values

Surname Origin Permutation p-value

Ambiguous/Unknown 0.9429
Locative 0.0000
Nickname 0.0004

Occupational 0.8463
Patronymic 0.0397
Topographic 0.3584

derived from the fitted TMRCA based on the interaction ANCOVA. The standard

deviation appears lower than both the sample and fitted model standard deviations

in this case. This is the case across all the surname origins, and is illustrated in

figure 6.5 for the patronymic surnames. So instead a gamma prior for the TMRCA

was chosen (fig. 6.5). The final prior for pairs of males sharing the same haplogroup

where information on both surname frequency and origin are available will have

a gamma prior with the shape and rate parameters based on the fitted model as

show in equation 6.2 with parameters in table 6.3 and σ2 = 1.834, the estimated

error variance in the Box-Cox transformed TMRCA.
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Figure 6.4: Same haplogroup: surname origin and frequency fitted model
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6.1.2.2 Surname Frequency

For the same haplogroup data where surname origin information is lacking we used

regression to quantify the relationship between the Box-Cox transformed TMRCA

and log of surname frequency. The Box-Cox λ was 0.0606 as before and the final

fitted model is summarised below:

t̂ =
(
0.0606[3.316 + 0.231 log(Sf)] + 1

) 1
0.0606 , (6.3)

where Sf is the surname frequency.

The explanatory was statistically significant (p-value < 0.001). The assumption

of constant variance is doubtful although linearity is fine. However the residuals

seem to depart from normality more so than in section 6.1.2.1 (data not shown).

The final model is displayed in figure 6.6. A permutation test was also carried out

testing the null hypothesis that the slope equals zero. In this case the correlation

coefficient permutation p-value was equal to zero, so the slope is significantly

different to zero.
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Figure 6.6: Same haplogroup: surname frequency fitted model
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As with the previous prior, the prior was chosen as a gamma rather than as

exponential since the latter did not have sufficient spread (fig. 6.7). The scale

and shape parameters for the gamma were based on the fitted TMRCA (6.3) and

σ2 = 1.901.
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Figure 6.7: Same haplogroup: standard deviation for surname frequency prior

6.1.2.3 Surname Origins

In the context where two males share the same surname and haplogroup and we

only have access to their surname origin the following prior on TMRCA was devel-

oped. We initially examined the relationship of the Box-Cox transformed estimates

of TMRCA (Box-Cox λ = 0.0606) with surname origins (fig. 6.8). Here we note

that the data is divided into two groups: the locative and topographic surnames

have similarly right-skewed TMRCA estimates unlike the remaining surname ori-

gins which appear more symmetric and if anything left-skewed. The topographic

surnames have the lowest median Box-Cox TMRCA followed by the locative sur-

names, with the remaining surnames origins having a similar rather high value.
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Figure 6.8: Same haplogroup: boxplot of Box-Cox TMRCA by surname origin

Carrying out a one-way ANOVA results in a p-value less than 0.001: surname

origins are a statistically significant predictor of TMRCA. The assumption of con-

stant variance is reasonable but normality is questionable (data not shown). Tukey

multiple comparisons show that the significant differences in mean TMRCA oc-

cur between comparisons of either the locative or topographic surnames with the

other surname origins only (table 6.5). A permutation test of the surname origins

resulted in a significant p-value of 0.

Table 6.5: Same haplogroup: significant Tukey multiple Comparisons between sur-
name origin

Surname Origins 95% Confidence Interval of Difference
Adjusted p-value

Group 1 Group 2 Lower Upper

Nickname Topographic 0.087 1.750 0.0207
Ambiguous Topographic 0.391 1.844 0.0001

Occupational Topographic 0.295 1.979 0.0017
Patronymic Topographic 0.400 1.938 0.0002
Ambiguous Locative 0.167 0.852 0.0003
Patronymic Locative 0.133 0.991 0.0026

Having established the need to model each surname origin separately, we now de-

velop the prior in this case. We began by fitting an exponential and gamma based

on the ANOVA results, both of which were found to be rejected by a Kolmogorov-

Smirnov test of goodness of fit to the data across all surnames.

As such for each surname origin we fitted an exponential and gamma to the raw

TMRCA estimates using the method of moments. The resulting fitted parameters

are shown in tables 6.6 and 6.7 for the exponential and gamma respectively. In
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Table 6.6: Same haplogroup: exponential surname origin fitted model parameters

Surname Origin Rate K-S p-value

Ambiguous/Unknown 0.00650 0.0064
Locative 0.00878 0.0000
Nickname 0.00695 0.2554

Occupational 0.00593 0.2502
Patronymic 0.00551 0.0511
Topographic 0.01420 0.0555

the exponential case, the Kolmogorov-Smirnov null hypothesis is rejected for the

ambiguous and locative surnames only, whilst this is extended to include the topo-

graphic surnames for the gamma (tables 6.6 and 6.7). As such there is a preference

to fit an exponential despite the fact that the fitted exponential has a standard de-

viation greater than the sample standard deviation in only three surname classes.

It is possible that over sampling of rarer, e.g. topographic and locative, may be

Table 6.7: Same haplogroup: gamma surname origin fitted model parameters

Surname Origin Shape Rate K-S p-value

Ambiguous/Unknown 1.3386 0.00870 0.0035
Locative 0.8825 0.00775 0.0000
Nickname 0.9628 0.00670 0.2459

Occupational 1.1033 0.00654 0.1383
Patronymic 0.9040 0.00498 0.1104
Topographic 0.7637 0.01084 0.0099

having an effect. As such we thinned the data as described in section 6.1.1 to

generate 1000 thinned samples. To each, we fitted the exponential and gamma

distributions. Although the distributions of the fitted exponential rates are fairly

symmetric, there is a particularly unusual distribution for the topographic sur-

names (data not shown). Further examination showed that the same haplogroup

topographic data consist of only six unique surnames, of which four had only a

single observation each throughout the thinning process, and this was the cause

of the strange distribution. Since we wish our priors to be conservatively broad

the final rate parameter for all the surnames were deflated resulting in the values

shown in table 6.8. The number of times the Kolmogorov-Smirnov null hypothesis

is rejected across the 1000 thinned data sets is low for all surname origins.

Consequently for males who share the same haplogroup as well as the same sur-

name, we choose an exponential prior to model the TMRCA across each surname

origin with the rates shown in table 6.8.
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Table 6.8: Thinned same haplogroup: exponential surname origin fitted model pa-
rameters

Surname Origin Rate K-S Null Rejection

Ambiguous/Unknown 0.00492 10
Locative 0.00549 5
Nickname 0.00524 0

Occupational 0.00321 0
Patronymic 0.00560 0
Topographic 0.00656 0

6.1.2.4 No Frequency or Surname Origin

The final prior we develop in this section is in the context where we have no addi-

tional information aside from the shared haplogroup status and surname of pairs of

males. This involved modelling the TMRCA estimates alone. Initially, we exam-

ined a boxplot of the raw TMRCA (fig. 6.9a), finding an extremely right-skewed

distribution. Applying a natural log transformation results in a much more sym-

metric distribution(fig. 6.9b). However, a histogram of the logged TMRCAs shows

two modes (fig. 6.9c). As a consequence, we initially fitted both an exponential and

a gamma to the raw TMRCA, but both were rejected by a Kolmogorov-Smirnov

test.
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Figure 6.9: Same haplogroup: a. boxplot of TMRCA b. boxplot of log TMRCA
c. histogram of log TMRCA

Thereafter we fitted an exponential to the TMRCA from 1000 thinned data sets

with significant lack of fit for 452 by the Kolmogorov-Smirnov test. We also fitted

the gamma distribution to the thinned data sets. In this case, the Kolmogorov-

Smirnov goodness of fit null hypothesis was rejected less often (202 times). Thus

the gamma was overall a better fit than the exponential. However, the histograms

of the thinned data showed a rather half-normal appearance (as can be seen for

a subset of the thinned data sets in figure 6.10). As such we fitted a half normal



Chapter 6. TMRCA Estimation: Real Data Applications 188

1

TMRCA (generations)

D
en

si
ty

0 400 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

2

TMRCA (generations)

D
en

si
ty

0 400 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

3

TMRCA (generations)

D
en

si
ty

0 400 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

4

TMRCA (generations)

D
en

si
ty

0 400 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

5

TMRCA (generations)

D
en

si
ty

0 400 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

6

TMRCA (generations)

D
en

si
ty

0 400 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

7

TMRCA (generations)

D
en

si
ty

0 400 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

8

TMRCA (generations)

D
en

si
ty

0 400 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

9

TMRCA (generations)

D
en

si
ty

0 400 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

10

TMRCA (generations)

D
en

si
ty

0 400 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Figure 6.10: Ten thinned same haplogroup samples

to the full data which nonetheless rejected the Kolmogorov-Smirnov test (p-value

< 0.001). We proceeded to fit the half normal to 1000 thinned samples resulting

in a scale parameter of θ = 0.005731. Still, for 227 of the 1000 thinned samples,

the fit was rejected. The exponential and gamma distributions were also consid-
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Figure 6.11: Same haplogroup: comparison of exponential, gamma and half-normal
distributions

ered. Comparisons of the three priors together with a histogram of the TMRCAs

is shown in figure 6.11. The exponential and gamma have fairly similar distribu-

tions which do not give as much weight to intermediate values of TMRCA. On the

other hand, the half normal gives more weight to intermediate values and corre-

spondingly less weight to lower values of TMRCA. Nevertheless, we chose a half
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normal distribution to model the TMRCA for pairs of males who share both their

surname and haplogroup status and no additional information on their surnames

is available. In addition, results were not sensitive to the choice of the exponential

and gamma based on limited exploration.

6.1.3 Random/No Haplogroup

Where no haplogroup information is available when estimating the TMRCA for

pairs of males sharing the same surname, we have developed a prior based on

the data of King and Jobling (2009a) and King et al. (2006) by random pairing

of males within each surname as described in section 6.1.1. As with the same

haplogroup data a Box-Cox transformation of the response was necessary with

λ = 0.2626.

6.1.3.1 Surname Origin and Frequency
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Figure 6.12: Random haplogroup: mean Box-Cox estimated TMRCA vs. log sur-
name frequency
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Taking the mean estimated TMRCA for each unique surname shows that there is

a slightly negative linear relationship between the response and covariate (figure

6.12). There is also considerable overlap between the different surname origins.

Again we began by modelling the data by fitting a main effects and interaction

ANCOVA with the surname origin as the grouping variable. In this case the

interaction term was only just significant (p-value = 0.04259). Constant variance

holds as does linearity, but normality is doubtful (data not shown).

For this reason a permutation test was used to determine if the interaction is indeed

significant. In this case the resulting p-values for each surname origin are given in

table 6.9. All are above the adjusted Bonferroni multiple comparisons significance

level of 0.0083 suggesting that the interaction term is not necessary. As such the

Table 6.9: Random haplogroup: permutation test p-values

Surname Origin Permutation p-value

Ambiguous/Unknown 0.1771
Locative 0.0505
Nickname 0.4344

Occupational 0.1187
Patronymic 0.0598
Topographic 0.9478

main effects ANCOVA was fitted and both main effect were statistically significant

(p-values < 0.001). The resulting fitted model is:

t̂ =
(
0.2626[αi + 0.5375 log(Sf )] + 1

) 1
0.2626 , (6.4)

where Sf is the surname frequency and i = 1, . . . , 6 represents the surname ori-

gins ambiguous/unknown, locative, nickname, occupational, patronymic and to-

pographic, respectively, with the parameters as shown in table 6.10.

Table 6.10: Random haplogroup: fitted surname origin and frequency model pa-
rameters

Surname Origin Intercept

Ambiguous/Unknown 9.162
Locative 9.106
Nickname 8.503

Occupational 8.194
Patronymic 9.173
Topographic 6.958
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Figure 6.13 shows the fitted model for the raw TMRCA and this is the prior that

is used for t in the context where we have a pair of males of unknown haplogroup

but with the same surname and both surname origin and frequency are available.
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Figure 6.13: Random haplogroup: fitted surname origin and frequency main effects
model

6.1.3.2 Surname Frequency

Next we wished to develop a prior based solely on the log of surname frequency,

where no haplogroup information is available nor is the surname origin. We mod-

elled the TMRCA using regression and found that the predictor was significant

(p-value < 0.001). The modelling assumption of normality is however doubtful,

whilst constant variance and linearity appear to hold (fig. 6.14). The fitted model

is given by:

t̂ =
(
0.2626[7.7948 + 0.6470 log(Sf)] + 1

) 1
0.2626 , (6.5)
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Figure 6.14: Random haplogroup: a. residuals vs. fitted values b. normal Q-Q plot
of residuals

and shown in figure 6.15. A permutation test was carried out to check that the

slope in this case was significant, which turned out to be the case.
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Figure 6.15: Random haplogroup: surname frequency fitted model

As such the final prior for when no haplogroup information exists for pairs of

surname-sharing males where surname frequency is given is based on the fitted

model (6.5) with σ2 = 26.261. Although an exponential prior with scale equal
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Figure 6.16: Random haplogroup: standard deviation for surname frequency prior

to the fitted mean was considered, it did not have enough spread, so a gamma

distribution was chosen instead (fig. 6.16).

6.1.3.3 Surname Origins
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Figure 6.17: Random haplogroup: boxplot of Box-Cox TMRCA vs. surname origin
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We considered the modelling of TMRCA by surname origins alone for males shar-

ing the same surname with no haplogroup information. The distributions are

shown in boxplots of the Box-Cox TMRCA versus surname origins (fig. 6.17).

Here the distributions are fairly symmetric except for the topographic surnames

which is right-skewed. There is also substantial overlap across the groups.

The surname origin is found to be significant is a one-way ANOVA. In addition, a

permutation test also produces a significant result We find that significant differ-

ences in mean Box-Cox TMRCA only occur for the ambiguous and occupational

surnames when they are compared to either the locative or topographic surnames

(table 6.11). The last stage of development of the surname origins based prior in

Table 6.11: Random haplogroup: significant Tukey multiple comparisons between
surname origin

Surname Origins 95% Confidence Interval of Difference
Adjusted p-value

Group 1 Group 2 Lower Upper

Ambiguous Topographic 0.302 5.380 0.0180
Occupational Topographic 0.645 6.522 0.0069
Ambiguous Locative 0.448 2.875 0.0014

Occupational Locative 0.490 4.318 0.0047

this context involved fitting exponential and gamma distributions by the method

of moments to both the full data as well as 1000 thinned samples extracted from

the full data. The results are shown in tables 6.12 and 6.13. For the exponential

fits, the Kolmogorov-Smirnov goodness of fit test null is rejected for all but the

nickname surnames. Also we find that the standard deviation of data simulated

from the fitted exponentials is less than the sample standard deviation for the

locative and topographic surnames only. For the fitted gamma distribution, the

Table 6.12: Random haplogroup: exponential surname origin fitted model parame-
ters

Surname Origin Rate K-S p-value

Ambiguous/Unknown 0.00224 0.0000
Locative 0.00259 0.0000
Nickname 0.00213 0.0504

Occupational 0.00200 0.0016
Patronymic 0.002354 0.0167
Topographic 0.00310 0.0016

Kolmogorov-Smirnov p-value is less than 0.05 for all surname origins, although the

standard deviation of data generated from the fitted distribution is very close to

the sample standard deviation. It is possible that the distributions are not good
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Table 6.13: Random haplogroup: gamma surname origin fitted model parameters

Surname Origin Shape Rate K-S p-value

Ambiguous/Unknown 1.7984 0.00403 0.0001
Locative 0.8589 0.00222 0.0004
Nickname 1.3303 0.00284 0.0022

Occupational 2.3505 0.00470 0.0023
Patronymic 1.3455 0.00316 0.0011
Topographic 0.8183 0.00254 0.0012

fits to the data due to over representation of the low frequency surnames. So we

applied the exponential to 1000 thinned data sets and produced the deflated rate

parameters and the associated statistics shown in table 6.14. As in section 6.1.2.3,

the topographic surnames rate parameters were unusually distributed. We find

that in this case there are nine data points in each thinned sample of which only

two vary. The Kolmogorov-Smirnov test p-value is less than 0.05 for 29 of the

1000 ambiguous thinned samples. For the remaining surname origins no thinned

samples reject the goodness of fit null hypothesis.

Table 6.14: Thinned random haplogroup: exponential surname origin fitted model
parameters

Surname Origin Rate K-S Null Rejection

Ambiguous/Unknown 0.00165 29
Locative 0.00190 0
Nickname 0.00191 0

Occupational 0.00152 0
Patronymic 0.00222 0
Topographic 0.00185 0

6.1.3.4 No Frequency or Surname Origin

The prior when no haplogroup information is available for two males sharing the

same surname is based solely on the TMRCA estimates, a histogram is shown in

figure 6.18. There are two modes, one near t = 0 and another between 600-700

generations. Oversampling of low frequency surnames may have played a role in

this unusual distribution. Recall that the vast majority of the data was from King

and Jobling (2009a) which focussed on low frequency, surnames whilst King et al.

(2006) covered a broad range of surname frequencies but with only one sample

from each. We decided to analyse 1000 thinned data sets. Ten realisations are

shown in figure 6.19 in black solid lines. In each we may compare the density with

that of the full data (red dashed line). Although all the random densities have
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Figure 6.19: Random haplogroup: fitted densities of random samples (black dashed
line) with full data density (red dashed line)

two peaks, the intensity of the lower peak, in most cases, is markedly less than

the corresponding peak in the full data.

We fitted the exponential and gamma distributions to 1000 thinned samples. For

the former we reject the Kolmogorov-Smirnov goodness of fit test 65 times whilst
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for the latter this is much higher at 806. Thus the prior for TMRCA is an expo-

nential in the context where we have two males who share the same surname but

no additional information in terms of their haplogroups or surname frequency or

origin is known, with a deflated rate of 0.00207.

6.1.4 Different Haplogroup

6.1.4.1 Surname Origin and Frequency

In order to cover the various possibilities with respect to the haplogroup status

that may be encountered when wishing to estimate TMRCA, we end by developing

a prior for when the haplogroup differs between pairs of males. In this case no

transformation of TMRCA was necessary, although, as before, the logarithm of

the surname frequency was taken.

Firstly we wished to confirm that neither the surname origin nor frequency of

the surname were useful predictors of TMRCA. Given that both these variables

provide information on recent rather than ancient ancestry, we expect that the

differing haplogroup status between pairs of males would result in older estimates

of TMRCA which predate the period of surname establishment.

To this end, we began by fitting a main effects and interaction ANCOVA model

which produced a non-significant interaction term (p-value = 0.1072) with the as-

sumptions of normality holding although constant variance was questionable (data

not shown). Fitting a main effects model revealed that, whilst the surname origins

were significant (p-value < 0.001), log of surname frequency was not significant

(p-value = 0.5339).

6.1.4.2 Surname Origin

We next modelled TMRCA by the surname origins alone. Boxplots of the data

are given in figure 6.20. There does not appear to be much obvious difference

in the distributions of TMRCA across the surname origins. Applying a one-way

ANOVA shows that surname origin is statistically significant (p-value < 0.001).

A permutation test reinforces the one-way ANOVA results.
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Figure 6.20: Different haplogroup: boxplot of TMRCA by surname origin

In order to determine between which groups the differences lie, we produced Tukey

multiple comparisons which reveal that there are significant differences in mean

TMRCA between three pairs of surname origins: the locative and ambiguous

surnames, the nickname and ambiguous surnames and the nickname and occu-

pational surnames (table 6.15). The differences involving the ambiguous group

may be due to the ambiguous surnames being ill-defined. This shows that the

Table 6.15: Different haplogroup: significant Tukey multiple comparisons between
surname origin

Surname Origin 95% Confidence Interval of Difference
Adjusted p-value

Group 1 Group 2 Lower Upper

Locative Ambiguous 3.185 186.856 0.0377
Nickname Ambiguous 81.628298 328.700 0.0000
Nickname Occupational 36.615 354.489 0.0062

estimated TMRCA of male-pairs who share the same surname but do not share

the same haplogroup would be best modelled by surname origin alone.

6.1.5 Discussion

For the same haplogroup data we modelled the estimated TMRCA using an AN-

COVA model with explanatory variables surname frequency and origin. Here we

found the interaction significant and a positive slope for each surname origin ex-

cept the locative surnames. This would imply that as the frequency of the surname
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decreases the estimated TMRCA would increase. Given this peculiar result we ex-

cluded this surname group and re-examined the same haplogroup data in order to

assess how influential the locative surnames are on the fitted model. We began by

fitting a main effects and interaction ANCOVA model as before. Interestingly, we

find that the interaction term is not significant (p-value= 0.237887). However, log

surname frequency and the surname origin, are both significant when fitting the

main effects only. This suggests that a main effects model would also apply for

the full same haplogroup data, i.e. locative surnames are influencing the results.

Nonetheless, carrying out a permutation test produces a p-value of 0.0001 for the

slope for the nickname residuals (table 6.16), which is below the Bonferroni cor-

rected significance level of 0.01, thus indicating an interaction term may be neces-

sary after all even when locative surnames are excluded. In the case where we used

Table 6.16: Same haplogroup: permutation test p-values

Surname Origin Permutation p-value

Ambiguous/Unknown 0.1121
Nickname 0.0001

Occupational 0.6481
Patronymic 0.1719
Topographic 0.5664

the surname origin alone to model estimated TMRCA for the same haplogroup

data, we formed an exponential prior based on thinned data (section 6.1.2.3, table

6.8). We also fitted the gamma to the thinned data (table 6.17). The fits resulted

in Kolmogorov-Smirnov p-values less than 0.05. Importantly we note that the fit

was rejected for only five of the thinned locative data sets. Thus the gamma distri-

bution may also be considered a useful prior on TMRCA. However, for simplicity,

we chose the exponential prior.

Table 6.17: Thinned same haplogroup: gamma surname origin fitted model param-
eters

Surname Origin Shape Rate K-S Null Rejection

Ambiguous/Unknown 1.2219 0.00729 0
Locative 0.6509 0.00525 5
Nickname 0.6901 0.00514 0

Occupational 1.2134 0.00603 0
Patronymic 0.6551 0.00360 0
Topographic 1.5437 0.01307 0

For the random haplogroup data set, we found that a main effects model was sig-

nificant when modelling TMRCA by both surname frequency and origins (section
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6.1.3.1). However it was of interest to examine if this model for the random hap-

logroup data where surname origin data was included was preferred, in a permu-

tation test compared to a model ignoring the surname origin. Thus the surname

origin label for the residuals from the surname frequency linear model (section

6.1.3.2) were permutated resulting in a p-value of 0.1082. Thus, despite fitting a

main effects ANCOVA including both surname origins and log surname frequency,

a regression model, with explanatory log surname frequency only, would explain

the variability in estimated TMRCA in this case. As such for pairs of males who

share their surname but their haplogroups are unknown, we model the estimated

TMRCA by 6.5 even when the surname origin is known.
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Figure 6.21: Distribution of random haplogroup for same and different haplogroup
status

Also for the random haplogroup data, there was an unusual pattern in the distri-

bution of the estimated TMRCA both when it was modelled alone and also when it

was modelled according to the surname origin. We found two distinct peaks: one

close to 100 generations and another at around 700 generations. Although thinned

data sets showed a reduced second peak it still remained evident (fig. 6.19). It

may be argued that in addition to the oversampling of the low frequency surnames

there are far more low frequency surnames sampled overall than higher frequency

surnames. However, the data can be segregated according to the haplogroup sta-

tus, i.e. whether the pairs of males share the same haplogroup or not. Figure 6.21

shows the results of this segregation for the distribution of the estimated TMRCA.

We see that those male-pairs that have different haplogroups have an estimated

TMRCA that is centred around ∼700 generations, whilst those with the same
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haplogroup lie much closer to 0. Indeed this is also the case when modelling

the TMRCA by the surname origin (fig. 6.22). Again the different haplogroup

male-pairs have a rather symmetrically distributed estimated TMRCA centred at

around ∼ 700 generations. Although the haplogroup status would be unknown in

this context, it is clear that it affects the distribution of estimated TMRCA.
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Figure 6.22: Distribution of random haplogroup for same and different haplogroup
status within surname origin

In section 6.1.3.3 for the random haplogroup data, a thinned exponential was the

final choice of prior when the estimates of TMRCA were modelled by surname

origin based on table 6.14. However we also fitted the gamma distribution to the

thinned samples to produce the results in table 6.18. In addition the Kolmogorov-

Smirnov null is only rejected for three of the ambiguous surnames whilst not at all

for the remaining surnames. Nonetheless for simplicity we chose the exponential

as the prior in this context.

Table 6.18: Thinned random haplogroup: gamma surname origin fitted model pa-
rameters

Surname Origin Shape Rate K-S Null Rejection

Ambiguous/Unknown 1.5949 0.00296 3
Locative 0.6116 0.00157 0
Nickname 0.9180 0.00221 0

Occupational 5.1328 0.00547 0
Patronymic 1.8096 0.00340 0
Topographic 0.8578 0.00201 0
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Figure 6.23: Y-chromosome SNP tree

For the different haplogroup data, we found that the surname origin was a sta-

tistically significant explanatory. However it is intuitive that there may be more

information in the haplogroup of the male pairs rather than their surname origin

since their ancestry is likely to enormously predate surname origin. Recall the Y-

chromosome haplogroup tree (fig. 6.23). Here we have adapted the tree to include

labels for some of the internal nodes in accordance with the work of Karafet et al.

(2008). For each pair of males that belong to different haplogroups we can identify

the internal node from which they diverge. Thus we may model the dependency

of TMRCA on the ancestral node (fig. 6.24).

It is clear that those males converging at node AT (the deepest node) have a

much older estimated TMRCA than those pairs of males with other ancestral

nodes. Applying a one-way ANOVA shows that haplogroup node is a statistically

significant predictor of TMRCA (p-value < 0.001).

Consequently we wish to develop a prior for pairs of males who share the same

surname but do not share the same haplogroup based on the node on which their
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Figure 6.24: Different haplogroup: boxplot of TMRCA by haplogroup node

haplogroups converge. Although it is possible to form the prior based on the one-

way ANOVA results, crucially this excludes information from SNP data, on which

the haplogroup tree is based. Hence incorporating SNP information may provide

much more accurate estimates of TMRCA in this context. As such we propose a

series of priors based largely on the work of Karafet et al. (2008), which provides

selected estimates of TMRCA for males in different haplogroups based solely on

SNP mutations. There the authors use a model-free approach in order to estimate

the time of various nodes in the Y-chromosome haplogroup tree as shown in figure

6.23.

Karafet et al. (2008) begin by choosing to date the node CT (the calibration node,

see figure 6.23) consistent with the out-of-Africa which was 70,000 years BP. The

remaining labelled nodes are then estimated by examining the distribution of the

counts of mutations along the particular branch relative to the calibration node.

Importantly, the accuracy of the calibration node’s age is unknown, although the

method allows for confidence intervals (CI) to be produced for the other estimates

of age conditioned on the age of the calibration node. Additionally, in order

to avoid ascertainment bias only uniformly ascertained SNPs were used in the

estimation of ages (pers. comm. Mendez) and not all the SNPs identified in the Y

tree by Karafet et al. (2008).

The CIs of the ages of the other nodes in Karafet et al. (2008) do not take into

account the uncertainty of the age of the calibration node. For our purpose, we

propose a standard error (SE) of 10,000 years on the estimate of the age of the
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calibration node, CT, which we will then use to compute the SE of the other nodes

based on a SE derived from both their CI and the SE of the calibration node.

This was carried out as followed:

• Compute the ratio of the age estimate of the node relative to the age estimate

of the calibration node, i.e. z = Tnode

y
where y = Tcalibration = 70000 years.

• Compute the standard error of z on the basis that the length of Karafet

et al. CI is approximately 4 SE long, i.e. z = (Tupper−Tlower)/(2×1.96× y).

• Assuming independence of the parameters z and y, we may compute the SE

of each of the other nodes in Karafet et al. (2008) using the Delta method

as outlined in appendix A, i.e.

SE(Tnode) =

√
y2
(
SE(z)

)2
+ z2

(
SE(y)

)2

In addition, the age of node AT was needed due to the inclusion of haplogroup

A males in King and Jobling (2009a). With the addition of the age of node BT,

this would cover all major clades. However, this was not feasible based on the

Karafet et al. data due to the potential violation of uniform ascertainment for

data in these clades (pers. comm. Mendez). This was also the case if we wished

to resolve the tree further to include the ages of nodes such as R1a. Crucially any

estimates of the age of nodes AT and BT must be compatible with the work of

Karafet et al. (2008). Thus they must be greater that the age of the calibration

node. Since the accuracy of the age of this node is questionable, we would like to

have any estimates of the age of BT of at least as great as 70,000 years.

Three major papers in this area were examined: Thomson et al. (2000), Tang

et al. (2002) and Meligkotsidou and Fearnhead (2005). Several estimates based on

the literature were inconsistent with this criterion (table 6.19). Meligkotsidou and

Fearnhead (2005) is the only paper which provides age estimates for both nodes

whilst only one estimate in the paper of Thomson et al. (2000) is compatible

with Karafet et al. (2008). On the other hand, Tang et al. (2002) provide various

estimates of which several are well above 70,000 years. We therefore proposed the

values of 109,000 and 89,500 years for the ages of nodes AT and BT, respectively,

after careful consideration of the available literature. The SEs for both is set to

20,000 years reflecting the large uncertainty in the point estimates and assuming

that the CI for AT, in Tang et al. (2002), is approximately two standard deviations

wide. Given that all the estimated node ages were in years, we converted them
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Table 6.19: Published estimates of the ages of nodes AT and BT

Author (Publication Date) Details Node Estimates of TMRCA
(CI, x103 yrs)

Thomson et al. (2000)
Constant Ne AT 84 (55-149)

Exponential Ne growth AT 59 (40-140)
Model free approach AT 70 (SE=30)

Tang et al. (2002)

Constant Ne AT 117
Exponential Ne growth AT 75

30yrs/gen AT 109 (72-156)
25yrs/gen AT 91 (60-130)

Meligkotsidou and Fearnhead (2005)

Reduced data AT 63 (40-100)
Reduced data BT 45 (32-74)

Full data AT 56 (39-83)
Full data BT 36 (27-50)

into generations using the conversion rate of 31.93 years per generation with a

standard deviation of 8.06, based on the work of Helgason et al. (2003). The point

estimates could be directly converted by dividing by the rate, whilst the SEs in

generations were obtained using the Delta method. Consequently, we have the

Table 6.20: Different haplogroup: prior parameters

Node TMRCA Mean TMRCA SE
Gamma Parameters
Shape Rate

AT 109000 20000 29.69 0.00870
BT 89500 20000 20.02 0.00714
CT 70000 10000 48.93 0.02232
CF 68900 9935.283 48.02 0.02226
DE 65000 9577.714 45.99 0.02259
E 52500 8340.120 39.56 0.02406

E1b1 47500 7840.892 36.64 0.02463
F 48000 8113.426 34.95 0.02325
IJ 38500 6803.737 31.97 0.02651
I 22200 4911.258 20.39 0.02933
K 47400 7893.312 36.01 0.02425
P 34000 6151.936 30.49 0.02863
R 26800 5305.878 25.46 0.03034
R1 18500 4280.621 18.64 0.03217

results in table 6.20 for the nodes dated in Karafet et al. (2008) as well as nodes

AT and BT. The shape and rate parameter of the gamma priors here are obtained

by fitting via the method of moments and apply in the context where two males

share the same surname but not the same haplogroup status.

Now it is possible to use the gamma distributions above as direct priors on t.

However since the node is a maximum bound for the time to the MRCA for

male-pairs, it would seem more appropriate to use a uniform distribution with

lower bound 0 and upper bound TdHG which in turn is modelled by the gamma
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distributions described in table 6.20 or more generally TdHG ∼ Ga(kT , θT ). We

can include TdHG as a parameter in our Bayesian analysis.

In this context our posterior distribution would be altered slightly: using the

uniform prior for t, the gamma prior for TdHG, the exponential priors for α and β

and the normal prior for Ne (5.3) we have the posterior distribution:

P ({µi}, t, TdHG, L,Ne, α, β|nasc, {mi}, {Ri}, {ri}, {x1,i}, {x2,i})
∝ P ({x1,i, x2,i : i ∈ T}|{µi}, t)P ({ri : i ∈ C}|{mi}, {µi})

× P (Ri = 1 : i ∈ A|{µi}, L,Ne)P (Ri = 0 : i ∈ N|{µi}, L,Ne)

× P ({µi : i ∈ T ∪ C ∪ A ∪N}|α, β)P (L|nasc)

× P (α)P (β)P (Ne)P (t|TdHG)P (TdHG)

∝
s∏

i=1

e−2tµiI|x1,i−x2,i|(2tµi)

(
mi

ri

)
µri
i (1− µi)

mi−ri
(
1− e−µiLNe

)

×
c∏

i=s+1

(
mi

ri

)
µri
i (1− µi)

mi−ri
(
1− e−µiLNe

) k∏

i=c+1

(
1− e−µiLNe

) n∏

i=k+1

e−µiLNe

×
n∏

i=1

µα−1
i exp (−µi/β)

βαΓ(α)

× nasc − 1

2
e−L/2

(
1− e−L/2

)nasc−2

× 1

σNe

√
2π

exp

(
−(Ne − µNe

)2

σ2
Ne

)
e−λααe−λββ

1

TdHG

T kT−1
dHG exp

(
−TdHG

θT

)

θkTT Γ(kT )
.

(6.6)

The vector of parameters is augmented by TdHG. The Metropolis ratio does not

change for any of the parameters except t, where the prior is now uniformly dis-

tributed as described:

R =

s∏
i=1

P ({x1,i}, {x2,i}|{µi}, t∗)P (t∗|TdHG)

s∏
i=1

P ({x1,i}, {x2,i}|{µi}, t)P (t|TdHG)
. (6.7)

In addition, the Metropolis ratio for TdHG is:

R =
P (t|T ∗

dHG)P (T ∗
dHG)

P (t|TdHG)P (TdHG)
. (6.8)
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6.2 Additional Priors

6.2.1 Absence of Surname and Haplogroup Information

We have thus far formed priors for t in all scenarios except the situation where

we have typed STRs from two males on whom we have no surname or haplogroup

information, i.e. a random pair of males who do not necessarily share the same

surname. We also assume the males in question are not known to be recently

related. Here we use a prior motivated by the coalescent process (for a review, see

Wakeley (2009)), which states that in a population of constant ‘effective’ size, Ne,

the distribution of the TMRCA of two random Y-chromosomes is exponential:

P (t|Ne) =
1

Ne
exp

(−t

Ne

)
. (6.9)

The posterior distribution is amended only in this aspect. This will clearly neces-

sitate a new Metropolis ratio for updating t:

R =

s∏
i=1

P ({x1,i}, {x2,i}|{µi}, t∗)P (t∗|Ne)

s∏
i=1

P ({x1,i}, {x2,i}|{µi}, t)P (t|Ne)
. (6.10)

But, in addition, the Metropolis ratio for updating Ne is altered due to the depen-

dency of t on Ne:

R =

P (t|N∗
e )P (N∗

e )
k∏

i=1

P ({Ri = 1}|µi, L,N
∗
e )

n∏
i=k+1

P ({Ri = 0}|µi, L,N
∗
e )

P (t|Ne)P (Ne)
k∏

i=1

P ({Ri = 1}|µi, L,Ne)
n∏

i=k+1

P ({Ri = 0}|µi, L,Ne)

(6.11)

6.2.2 Generation Time in Years

In an academic context expressing times in generations is convenient. However

in the more populist genealogical context it would be more beneficial to express

the TMRCA is years. This requires a conversion factor. Simply using a point

estimate, such as 25 years per generation, would provide us with a crude estimate

of t, but without any measure of uncertainty in the conversion.



Chapter 6. TMRCA Estimation: Real Data Applications 208

However if have both the mean and standard error of the conversion factor, it is

possible to incorporate the conversion factor into our analysis as a further param-

eter that is updated in the MCMC. This involves modelling the conversion rate

using an appropriate distribution. Though the normal distribution may be one

such option, it allows the possibility of negative values. As such, instead we use a

gamma distribution.

Helgason et al. (2003) suggest the following conversion factors:

• 31.13 years per generation (SD=7.57);

• 31.93 years per generation (SD=8.06);

based on, respectively, 122,822 and 117,486 unique father-son pairs in the patri-

lineal coalescent genealogies of 8,275 and 1,859, respectively, Icelandic patrilines.

These estimates are close to the estimate of 33.9 years per generation for 2,221

French Canadian patrilines (Tremblay and Vezina, 2010), though both are slightly

less than the earlier work of (Tremblay and Vezina, 2000) which put this value at

35 years per generation based on only 87 patrilines. Neither of these works in-

cluded a clear measure of the uncertainty in their estimates. As such we focussed

on the conversion factors of Helgason et al. (2003). For the purpose of this thesis,

erring on the side of conservativeness, we will use the second rate of Helgason et al.

(2003), as it has a slightly higher SD to form the resulting gamma distribution.

We define Yg to be the years per generation conversion factor and estimate the

shape and scale parameters of the gamma using the method of moments, to give:

Yg ∼ Ga(kY = 15.693, θY = 2.0346). (6.12)

This prior distribution is depicted in figure 6.25.

The vector of parameters is augmented by Yg. For updating Yg, the Metropolis

ratio is trivially

R =
P (Y ∗

g )

P (Yg)
. (6.13)

The time in years can be found by simply multiplying the chains for t with Yg,

update by update and thereafter constructing a chain for time in years, ty. The

mean, standard deviation and credible region of the chain will then form the

posterior summaries of ty.
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Figure 6.25: Years per generation distribution: Ga(15.70, 2.035)

6.3 Assessment of Priors on TMRCA

In this section we will assess the effect the various priors on the TMRCA has

on our estimates compared to sections 6.1 and 6.2, which is based on the model

outlined in chapter 5.

6.3.1 Materials and Methods

A summary of the nine priors for the TMRCA formed on the basis of section 6.1

is given in table 6.21.

For priors 3 and 6, the parameters have the values shown in table 6.22. For priors

4, 7 and 8 the parameters of the gamma distribution are found by the method of

moments, i.e. from

kθ =
(
λ[α + βlog(Sf)] + 1

) 1
λ

and

kθ2 = Var
((

λ[α + βlog(Sf) + ε] + 1
) 1

λ

)

where ε ∼ N(0, σ2) and the values of the parameters are given in table 6.23. It

would have been ideal to examine new data with known ancestry (i.e. where the

TMRCA was known) to examine the effectiveness for both the original model used

to construct the priors as well as with the new priors. However given the lack of

access to such data, we chose to examine the data from King et al. (2006) using
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Table 6.21: TMRCA Priors for pairs of males

Prior Surname Status Haplogroup Status Surname Frequency Surname Origin Prior Details

1 Unknown NA NA NA t ∼ Ex(β = Ne) Ne is the scale parameter
2 Same Unknown Unknown Unknown t ∼ Ex(θ) θ = 0.002068961 is the rate pa-

rameter
3 Same Unknown Unknown So t ∼ Ex(θSo

) For θSo
see table 6.22

4 Same Unknown Sf Unknown/So t ∼ Ga(kSf
, θSf

) kSf
,θSf

are the shape and rate
parameters respectively

5 Same Same Unknown Unknown t ∼ HN(θ) θ = 0.005731699 is the scale pa-
rameter of the Half Normal

6 Same Same Unknown So t ∼ Ex(θSo
) For θSo

see table 6.22
7 Same Same Sf Unknown t ∼ Ga(kSf

, θSf
) kSf

, θSf
are the shape and rate

parameters, respectively
8 Same Same Sf So t ∼ Ga(kSf ,So

, θSf ,So
) kSf ,So

, θSf ,So
are the shape and

rate parameters respectively
9 Same Different Unknown/Sf Unknown/So t ∼ Un(0, TdHG) TdHG ∼ Ga(kTdHG

, θTdHG
) and

kTdHG
, θTdHG

are the shape and
rate parameters respectively
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Table 6.22: θSo
values for priors 3 and 6

Surname Origin θSo
Prior 3 Prior 6

Ambiguous θA 0.00165 0.00492
Locative θL 0.00190 0.00549
Nickname θN 0.00191 0.00524

Occupational θO 0.00152 0.00321
Patronymic θP 0.00222 0.005594
Topographic θT 0.00185 0.00656

Table 6.23: Parameter values for Priors 4, 7 and 8

Parameter Prior 4 Prior 7 Prior 8

λ 0.2626 0.0606 0.0606

α/αSo
7.795 3.316

A: 3.599
L: 6.085
N: 0.904
O: 3.187
P: 2.725
T: 1.914

β/βSo
0.647 0.231

A: 0.211
L: -0.177
N: 0.565
O: 0.225
P: 0.330
T: 0.326

σ 5.124 1.379 1.354

each of the priors, excluding the first prior which is only applicable for two random

males excluding any surname information. This is not ideal since the data used

for constructing the prior is being used for posterior analysis, but it would give an

idea of how the priors were performing. In addition, it was not possible to analyse

the complete dataset used to construct priors due to time constraints.

Consequently the STR differences from the 150 pairs of males from King et al.

(2006) formed what we will regard as the random haplogroup dataset. Of these

65 pairs shared the same haplogroup, the same haplogroup dataset. The different

haplogroup data comprised the 85 remaining pairs.

The random haplogroup data set is analysed using three different priors: priors 2-4

(table 6.21). The same haplogroup data set is analysed using priors 5-8 whilst the

different haplogroup data is only analysed once using prior 9. For each analysis, we

will examine plots of the mean of the MCMC chain for t in generations against the

means produced using the model outlined in chapter 5 referred as the ‘standard’

prior/model. Superimposing the line of equality will allow a direct comparison of

the effect of the alternate priors compared to the standard model.
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6.3.2 Same haplogroup

The t̂ obtained when applying the four priors to the same haplogroup data for pairs

of males sharing the same surname from King et al. (2006) are each compared to

the estimates from the standard prior model in figure 6.26, each with the line of

equality superimposed.
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Figure 6.26: Same haplogroup TMRCA (new prior) vs. TMRCA (standard prior):
a. prior 5 b. prior 6 c. prior 7 d. prior 8

Prior 5 (fig. 6.26a) does not include information on the surname frequency or

origin. For low values of TMRCA, the points lie on the line of equality. However,

as TMRCA increases, the difference between the two models’ estimates increases,

so much so that the last point has a t̂ ∼ 600 using the standard prior model and

only 330 when using prior 5. These results indicate that prior 5 produces lower

estimates of TMRCA than the standard model particularly for older TMRCA.

Incorporating surname origins into the prior produces the results for t̂ in figure

6.26b, where we find that for t̂ < 40 there is little difference in the estimates of

TMRCA from prior 6 and the standard prior. However, as the TMRCA increases,

the amount by which the points lie below the line of equality increases. This

demonstrates that using the prior 6 model produces lower estimates of TMRCA

than the standard prior particularly for older values of TMRCA.

Figure 6.26c, shows prior 7 estimates versus those for the standard prior. Here we

find that including only surname frequency results in all the points lying below
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the line of equality and the amount by which this occurs increases as TMRCA in-

creases. Thus using prior 7 produces lower estimates of TMRCA than the standard

model for all TMRCA though the reduction is greater for older times.

When using prior 8 (fig. 6.26d), which includes both surname frequency and origin,

the t̂s are again consistently less than those produced when using the standard

prior. As t̂ increases the difference between the estimates of the two models in-

creases.

6.3.3 Random Haplogroup

Figure 6.27 shows the results for t̂ when applying the alternative priors. Figure

6.27a compares the standard prior to the prior for pairs of males who share the

same surname but their haplogroups are unknown, i.e. they may or may not share

haplogroups. With additional information on the surname namely its origin, prior

3 may be employed and figure 6.27b compares the results from this to those of the

standard prior. Lastly we present the results for prior 4 compared to the standard

prior (fig. 6.27c). Here the alternative prior is applied to surname-sharing male-

pairs whose haplogroups are unknown but the surname frequency is given and the

surname origin may or may not be known.
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Figure 6.27: Random haplogroup TMRCA (new prior) vs. TMRCA (standard
prior): a. prior 1 b. prior 2/3 c. prior 4

In all three cases we find that the points generally lie on or below the line of equality

suggesting that the alternative priors produce estimates of TMRCA equal to or less

than the standard prior’s estimate of TMRCA. In fact for estimated TMRCA less

than 500 generations there is little difference between the two models. However, for

higher values of TMRCA, the difference between the estimates of the two models

increases gradually as the TMRCA increases. However, on closer inspection, when
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using prior 4, which includes surname frequency, all the points lie below the line

of equality, even for the lowest values of TMRCA (fig. 6.28).
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Figure 6.28: Random haplogroup TMRCA (prior 4) vs. TMRCA (standard prior):
range (0,500))

6.3.4 Different Haplogroup

Lastly the results from prior 9 are described. This prior is applied in the situation

where pairs of males share the same surname but do not share the same hap-

logroup. The estimated TMRCA of the different haplogroup data from King et al.

(2006) using this prior is compared to the standard prior (fig. 6.29). In addition,

each pair is labelled according to its ancestral node, i.e. the internal node that the

haplogroups of the pair of males diverge from. In this case, there are only four

ancestral nodes: F, R1, CT and K.

Consider the R1 estimates: these points (#) lie on the line of equality for TMRCA

less than 250 generations. For larger values, however, the points diverge to ap-

proach an asymptote at around 500 generations on the y-axis. This pattern is

also evident for the ancestral node F points (#), however the asymptote on the

y-axis is shifted further back in time to around 1,100 generations. On the other

hand for the remaining ancestral nodes K and CT this does not appear to be the

case. In these cases the points lie on or close to the line of equality suggesting

that both priors agree in their estimation of TMRCA. This may in part be due to

these points have a relatively lower estimated time based on the standard prior.
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Figure 6.29: Different Haplogroup: TMRCA (new prior) vs. TMRCA (standard
prior)

6.3.5 Discussion

The different haplogroup prior is conditioned on an upper bound of the age of

the ancestral node (TdHG) which may possibly explain the asymptotic trend of the

TMRCA estimates based on the different haplogroup prior compared to estimates

based on the standard model. Indeed this is found to be the case when we examine

a plot of the estimates of the age of the ancestral node versus the estimated of

TMRCA based on the different haplogroup model (fig. 6.30). The estimated age

of the R1 ancestral node is around 600 generations whilst the estimated age of F

is close to 1500.
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Figure 6.30: Different haplogroup: TMRCA ancestral node vs. TMRCA (prior 9)
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Figure 6.31: Different haplogroup TMRCA (new prior) vs. TMRCA (standard
prior): a. prior R1 b. prior R

To investigate further if indeed the age of the ancestral node was the reason for

the asymptotic trend we examined a subset of the different haplogroup data, i.e.

we reanalysed the pairs that had the R1 ancestral node but misspecified the older

node R as the ancestral node instead. Figure 6.31 shows the original results for

this subset of data next to the results when applying the misspecified ancestral

node. Both figures show the estimated TMRCA using the different haplogroup

model versus the standard model. It is clear that the points in figure 6.31b lie

higher up and closer to the line of equality than the points in figure 6.31a do,

particularly for large t̂

0 500 1000 1500 2000

0
50

0
10

00
15

00
20

00

Estimated TMRCA: Standard Prior

E
st

im
at

ed
 T

M
R

C
A

: D
iff

er
en

t H
ap

lo
gr

ou
p 

P
rio

r

F
R1
CT
K
AT
P
IJ

Figure 6.32: Different haplogroup (complete data): TMRCA (new prior)
vs. TMRCA (standard prior)

Furthermore, it was possible to apply the different haplogroup model to the com-

plete data set, n = 608, excluding any potential overlaps between King et al.

(2006) and King and Jobling (2009a), to examine if the asymptotic relationship

between the estimated TMRCA of the two models also applied. This comparison
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between the models is shown in figure 6.32 and indeed we find the asymptotic

trend. It is most obvious for the R1 ancestral node, which we can compare to the

dashed blue line which represents the mean estimated age of the R1 node.

6.4 Conclusions

In section 6.1, we developed three priors for the TMRCA for surname-sharing

pairs of males whose haplogroup is unknown, i.e. they may or may not share

the same haplogroup. Where no additional surname information is given, an

exponential prior is assigned to TMRCA. This is also the case when the origin

of the surname is known. In this case, we have a exponentials of different rates

according to the surname origin. However surname origin is not necessary in

addition to the frequency of the surname, which sufficiently explains the variability

of the estimated TMRCA using a gamma distribution with parameters depending

solely on the frequency. We have outlined four priors for the TMRCA of surname-

and haplogroup-sharing pairs of males. Where only this basic information is known

for the pairs, a half-normal distribution forms the prior on TMRCA. This gives

more weight to recent times than an exponential distribution. However this latter

distribution was an adequate prior on TMRCA when surname origin is included.

On the other hand, it is necessary to have a gamma prior on TMRCA when only

the frequency of the surname is known in addition to the males sharing the same

surname and haplogroup. This distribution also forms the prior when both the

surname origin and frequency are included. Finally, for surname-sharing pairs of

males who do not share the same haplogroup, we developed a uniform prior on

TMRCA with limits 0 to the age of the ancestral node. This is the age of the most

recent node in the SNP haplogroup tree to which the haplogroups of the males

converge. This age was included as an additional parameter in our model and it

was modelled using a gamma distribution.

We then implemented each of these priors on the relevant data from King et al.

(2006). Application of the random and same haplogroup priors showed the same

trend in their estimates of TMRCA when compared to the standard model in

chapter 5: there was little difference between the models in their estimates of lower

TMRCA values but, for higher TMRCA,the alternate prior on time produced lower

estimates than those using the standard model. We found that, when the frequency

of the surname was included into the prior on TMRCA (priors 4, 7 and 8), reduced
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estimates of TMRCA were produced across all times, suggesting that the surname

frequency was more informative for younger TMRCA than other information. The

prior applied in the different haplogroup case was strongly affected by the choice

and age of the ancestral node and in this case also, the estimates of TMRCA were

lower for older times than those based on the standard model.

However these results would only be determined conclusively by examining STR

data from males whose ancestry and, in particular, their TMRCA are known.

It may be possible to simulate such data. However, this would require careful

modelling of all factors that affect surname-haplotype transmission including the

number of founders, non-paternity events, genetic drift as well as the STR muta-

tion process.



Chapter 7

Discussion

This thesis has presented a comprehensive methodology for the estimation of

TMRCA in the genealogical context, demonstrating through the use of simula-

tion studies that factors such as the manner in which mutational mechanisms are

modelled and the mutation rate employed affect estimates of TMRCA. The con-

clusions may be compromised if the simulated data were not reflective of real data

or the application of the methodology is flawed.

In terms of the latter, the application of the MCMC developed in chapters 4 and

5 relied on visual diagnostics alone to assess the convergence of the chains for each

parameter. Importantly, given the large number of parameters it was not feasible

to check this for every parameter and it was indeed impractical to do so even for

the main parameters in the simulation studies. As such an objective measure of the

convergence should ideally be computed, e.g. the potential scale reduction factor

(PSRF). This involves running more than two chains with over-dispersed starting

values for each parameter in the MCMC, thereafter computing the PSRF based on

the between chain and within chain variances (Gelman and Rubin, 1992). Values

close to 1 would indicate that the correct posterior is being sampled from, provided

that the initialisations are indeed over-dispersed though this is not always the case

in practice. This is easily implemented in the absence of an adaptive scheme,

which itself may result in destroying convergence in some applications (Roberts

and Rosenthal, 2007). The adapted parameters (the log standard deviation for

each parameters proposal distribution) may indirectly influence the distribution

that is sampled in the MCMC, as such it may be argued that they too must have

reached convergence. However, the work of Roberts and Rosenthal (2007) argue

219
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Figure 7.1: Number of meioses vs. empirical mutation rate: a. intermediary mutation
rate review, b. Simulated Data (three calibration steps)

to the contrary provided the condition of diminishing adaptation holds, which is

the case for the scheme implemented. Nonetheless, applying the MCMC using

fixed values of the proposal distributions standard deviation based on the results

of the adaptive scheme might be a sensible approach.

For the former, it was of particular interest to compare the inferences drawn from

estimates of TMRCA based on simulated mutation rates using the multi-stage cal-

ibration process to those based on sampling the number of meioses from the real

data reported in the intermediate mutation rate review. Recall in chapter 4 that

simulated mutation rates were based on a fixed number of meioses (10,000). Cate-

gorising the markers as having a low, intermediate or high mutation rate (alongside

the non-ascertained and non-calibrated groups) showed that the simulated data

did not reflect the distribution of real-life STR mutation rates. Consequently we

developed a multi-stage calibration process within our simulation by which the

more mutable markers, as determined empirically, were estimated from a larger

number of meioses than used to estimate the less mutable markers. We compared

the relationship of the number of meioses and the empirical estimate of the muta-

tion rate for the simulated data (section 4.4.2.2) with that for the real data, based

on the intermediary mutation rate review (section 4.4.1), in order to examine the

effect, if any, of the multi-stage calibration process. This is shown in figure 7.1.

Here we can see that, for the real data, the spread of number of meioses is great-

est around 0.002 (fig. 7.1a). Contrast this with the simulated data, which has a

roughly equal spread of number of meioses between 0.004 and 0.012 (fig. 7.1b).

Now the results in chapter 5 involved simulating data using the layered calibration
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procedure to produce the empirical mutation rates. It was found to be advanta-

geous to use the fastest markers to estimate TMRCA of a pair of males rather

than a random set of markers. However, the layered process allows a much greater

number of meioses for the fastest markers, as determined empirically, which would

imply that these are far more accurately measured. Thus the benefit of using the

fastest markers may partly be due to their being both fast mutating and accu-

rately estimated. This may potentially cause bias in the estimates of TMRCA. For

example, markers which are seen as more mutable on the basis of a low number

of meioses will not be as accurately estimated as those based on many meioses.

There is a notable absence of high mutation rates estimated from a small number

of meioses in the simulated data, in contrast to real data (fig. 7.1ba).

In order to examine the effect of such mutation rates on estimates of TMRCA,

we again simulate data as outlined in chapter 5 for the case t = 5 using random

markers to estimate TMRCA for simulated STR profiles for 100 pairs of males.

Crucially, instead of using the layered process for deriving empirical estimates of

the mutation rates when generating the datasets, we sample from the number of

meioses obtained for the 86 STRs in the intermediary mutation rate review. We

vary the percentage of typed STRs from 10%-100%. Next we order the typed

STRs according to their empirical mutation rate from the most mutating to the

least. The markers at the start of the list are referred to as the fast markers.

Thereafter we analyse the simulated datasets once again, allowing the percentage

of fast markers to vary from 10% to 70%.

The fractional squared error (FSE) against the percentage of typed loci is shown

for the random markers (#) as well as the fast markers (#) alongside the same

case when using the layered process in chapter 5 (fig. 7.2ab). The use of samples

from the real number of meioses increases the FSE of both the random and fast

markers. For example, when only 10% of the typed loci are employed to estimate

the TMRCA, the FSE using the random markers is around 150 but only 12 for the

fast markers (fig. 7.2a). On the other hand, the FSE when simulating data using

the layered empirical number of meioses are 130 and 10, respectively (fig. 7.2b).

Similarly the fractional variance is slightly greater for both the random and fast

markers when using the real number of meioses compared to using the layered

approach. Nonetheless the benefit of using the fast markers is still evident.

This is also the case when examining the bias in the estimates of TMRCA across
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Figure 7.2: Fractional squared error and variance of t̂ estimates vs. percentage of
typed loci: a. real meioses b. multi-stage calibration meioses

(#/solid red line - FSE/FV of random loci, #/solid black line - FSE/FV of fast loci)

the 100 simulated datasets. In figure 7.3a, we show the real meioses’ results along-

side the layered meioses’ (fig. 7.3b). For the former we see that bias is considerably

less for the fast markers (#) particularly at lower percentage of typed loci than

the random markers (#). This was also the case for the latter. Comparing the

bias in the random markers across the two methodologies shows that using the

real number of meioses produces a slightly greater positive bias than the layered

approach (# in fig. 7.3ab). This is also true for the fast markers (# in fig. 7.3ab).

Importantly, we find that altering the manner in which empirical mutation rates

are simulated does not change the conclusions we drew.
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Figure 7.3: Bias of t̂ estimates vs. percentage of typed loci: a. real meioses, b. multi-
stage calibration meioses

(# - random loci, # - fast loci)

Next, recall that we simulated mutation rates from an underlying gamma distribu-

tion. In chapter 4 we produced estimates of the shape and scale of this distribution

using the data from our intermediary mutation rate review (section 2.3.2). The
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resulting distribution is shown in figure 7.4 alongside the three considered in the

simulation study in chapter 3. The MLEs of TMRCA suggested that the simpler

infinite sites model (ISM) outperformed the stepwise mutation model (SMM) for

short times with the caveat that the mutation rates were drawn from a gamma

distribution that did not have high variance (chapter 3). It is clear that the esti-

mated distribution (solid black line) is most similar to the distribution with the

highest variance (red dashed line). Therefore, it is conceivable that the ISM would

perform poorly for real data even if the TMRCA were low, though this model was

not directly compared to our final model of TMRCA which was based on the

SMM.
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Figure 7.4: Mutation rate distributions in chapter 3 and based on the intermediary
mutation rate review)

Valdes et al. (1993) argue that the SMM of Ohta and Kimura (1973) was based on

the notion that the allele frequencies followed a normal distribution, i.e. that there

would be a frequent allele flanked symmetrically by less common alleles. The 1,769

male haplotypes from King and Jobling (2009a) were examined in this respect. The

distributions of alleles for DYS389I, DYS393, DYS434, DYS435, DYS436, DYS438

and DYS461 are fairly symmetrical. On the other hand, the distributions for the

remaining ten markers are not (data not shown). Such deviations from normality

may undermine the use of the SMM.
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Even so, the final model of TMRCA was based on the SMM and it modelled mu-

tation rates by defining classes of markers, namely, ascertained, non-ascertained,

calibrated and typed. Estimates of TMRCA were insensitive to the percentage of

non-ascertained markers, though estimates of the remaining parameters were sen-

sitive to varying this. The total number of loci (n) was fixed at 475 on the basis of

the work of Kayser et al. (2004). Importantly, of the 45 known STRs ascertained

in their study, an additional eight previously known STRs were not ascertained.

As such the total number of loci may be greater than 475. Sensitivity of our in-

ferences to this value was not explored, though it is plausible that this may not

affect the estimates of TMRCA. This is because the increase in the total number

of loci is relatively small (< 2%) and varying the percentage of non-ascertained

loci did not affect the estimates of TMRCA. The number of non-ascertained loci

will be proportionately increased as a consequence of increasing the total number

of loci.

Our final mutation rate review produced an empirical average of 0.00234 mutations

per locus per generation. The simulation study in chapter 3 makes it clear that it

is not justifiable to use an average mutation rate for the estimation of TMRCA,

since it will not be able to correct for recurrent mutations particularly when the

true TMRCA is high. Our estimated empirical average is comparable to those

estimated in the recent works of Ballantyne et al. (2010); Burgarella and Navascues

(2011) (0.00263 and 0.00212, respectively). The former carried out a study of 186

Y-STRs in 1,966 father-son pairs, observing 924 mutations in 352,999 meioses,

albeit utilizing a Bayesian approach for estimating site-specific mutation rates.

On the other hand, Burgarella and Navascues (2011) carried out a meta-analysis

of 29 published studies providing empirical estimates of 80 Y-STRs, which were

modelled using binary logistic regression on the length of the STR repeat unit, the

STR complexity and the relative genetic diversity. The latter was estimated by

examining the variance of the STR repeat counts in the population, also based on

published sources. Burgarella and Navascues argued that this variability provides

information on the mutation rate. In this way, mutation rate estimates were

predicted for 30 Y-STRs with no direct information in a collection of meioses.

There is evidence for a higher mutation rate to be used in the genealogical context

(Athey, 2006; Chandler, 2006), although this is based on commonly typed STRs

and inferred ancestral haplotypes of individuals of surname-sharing pedigrees (Ker-

chner, 2009). Indeed, Ballantyne et al. (2010) identified a new set of 13 rapidly
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mutating (RM) Y-STRs with mutation rates of the order 0.01 (Ballantyne et al.,

2011). These may aide in discrimination of haplotypes, particularly in the forensic

setting, but may also be useful genealogically given that this research shows that

there is lower bias in estimates of TMRCA when using the most mutable markers.

In contrast, the estimated evolutionary mutation rate of Y-STRs is typically much

lower (Bianchi et al., 1998; Forster et al., 2000; Zhivotovsky et al., 2004). For ex-

ample, Zhivotovsky et al.’s rate of 0.0069 has been criticised for being far too

low for application to genealogical data (Athey, 2006; Chandler, 2006). This is

supported by extensive published studies of father-son meioses and pedigrees, as-

suming the absence of selection on the Y-chromosome. However, Tyler-Smith and

McVean (2003) argue that in the evolutionary context the Y-chromosome should

not be treated as being neutral due to the presence of a deletion in Y-DNA asso-

ciated with infertility in ∼ 2% of men across the world. Whilst the details of the

manner in which this selection operates are unclear, assuming that this mutation is

deleterious, it would be fair to argue that this would result in fewer mutations be-

ing observed on an evolutionary scale, resulting in comparatively lower estimated

mutation rates than in pedigrees where not enough time has passed for natural

selection to take effect.

Another, as yet ignored, source of information within pedigrees may come from

SNPs. Although SNPs are generally used to characterize ancient ancestry (e.g.

to identify haplogroups), there is no reason to suppose that there may not be

SNPs informative at the pedigree level. For example, Xue et al. (2009) found a

67 Y-STR match for 2 males separated by 13 generations but four single base

substitutions. As whole-genome sequencing becomes increasingly cheap, it does

not stretch the imagination to envisage it beginning to play a role in genealogical

investigations (Xue and Tyler-Smith, 2010), providing another tool for inferring

TMRCA for pairs of males.

A crucial aspect of estimating the TMRCA in a pedigree setting is the choice

of the years per generation conversion factor. Recall, we formed our prior on

the effective population size based on the work of Thomson et al. (2000) us-

ing a conversion factor of 25 years per generation, resulting in the prior Ne ∼
N(µNe

= 6037, σNe
= 1745) (chapter 4). Employing the conversion rate of 31.93

years per generation of Helgason et al. (2003), we would instead have the prior

Ne ∼ N(µNe
= 4727, σNe

= 1367), i.e. with a lower mean and variance. Indeed,

employing the conversion factor used by King et al. (2006), King et al. (2007) and
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Figure 7.5: Comparison of prior distributions on Ne with N̂e based on chapter 4

King and Jobling (2009a) of 35 years per generation, further shifts the distribution

left and reduces its standard deviation.

A comparison of these three distributions together with the estimated effective

population size, of 4,262, based on the intermediary mutation rate review is shown

in figure 7.5. Whilst the estimated Ne (solid black line) lies to the left of the original

prior, it lies closer to the centre of the prior as the year per generation is increased.

So although a lower year per generation was employed early on in this thesis, our

model has estimated Ne consistent with a prior constructed using a higher years

per generation conversion.

A brief literature review found that the earliest work of Tremblay and Vezina

(2000) estimated the years per generation at 35. This value is much closer to the

authors more recent estimate of 33.9 (Tremblay and Vezina, 2010) which is slightly

less than the estimates used to form the prior from the works of Helgason et al.

(2003) (31.13 and 31.93). However, many of the papers reviewed in chapter 2

estimated the TMRCA for Y-chromosomes utilising the conversion of 25 years per

generation (Bedoya et al., 2006; McEvoy and Bradley, 2006; Moore et al., 2006;

Thomas et al., 1998). This will clearly have the effect of increasing estimates of

the TMRCA in generations compared to using a higher conversion factor. In the

genealogical context, the conversion factor is particularly important. For example,

potential extension of family trees may be discounted if living descendants are
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presumed to have a common ancestor who lived prior to the period of surname

establishment, crucially based on an estimated TMRCA in years. In Britain,

surnames are thought to have been established around 500-700 years ago. Using 25

years per generation, this would set surname establishment to have occurred 20-28

generation ago. On the other hand, this would be much lower, 14-20 generations,

using the 35 years per generation conversion.

As such modelling of the conversion rate of years per generation is necessary when

estimating the TMRCA in years, particularly when applied to the genealogical

context. In our model, including the years per generation as an additional pa-

rameter to be inferred allows estimates of TMRCA to incorporate the uncertainty

in this conversion factor. Given the plentiful supply of historical records in the

period since surname establishment, one might propose that more effort be made

to estimate this vital parameter more precisely. Indeed it is straightforward to

specify alternate values in the prior for the years per generation conversion in our

model.

In the British context, priors on TMRCA were developed on the basis of the hap-

logroup status of pairs of males who share the same surname, which could be the

same, different or unknown haplogroups. Also in the genealogical framework, the

haplogroup of males is often inferred on the basis of their STR haplotype. Method-

ologies to do so have been developed in both genealogical and academic circles by

Athey (2007) and Schlecht et al. (2008), respectively. Application of these dif-

ferent methods to 119 Argentine males typed at 7 Y-STRs found that Schlecht

et al.’s classifier produced fewer false positives though ∼ 48% of males remained

unclassified (Muzzio et al., 2011). However both methods had a much higher pro-

portion of males classified in the R∗ haplogroup, reflecting the calibration of their

methods on European populations. Indeed this inference of haplogroup based on

haplotype has been particularly successful for Irish DNA where haplogroup R1b3

has a frequency of > 78% (Hill et al., 2000; Moore et al., 2006). However, the

use of inferred haplogroups in our TMRCA model may result in applying an in-

appropriate prior on TMRCA. In such instances it would be advisable to use the

unknown haplogroup priors rather than the same or different haplogroup priors.

This is justified on the basis of the unknown haplogroup being a mixture of the

other two statuses.

For male-pairs of unknown haplogroup or those sharing the same haplogroup we
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also incorporate surname frequency in the prior on TMRCA. In order for the sur-

name frequency to be adequately modelled it is necessary to compute this as the

sum of the number of bearers across variant spellings of a surname. It is important

to consider the alternative spellings carefully to avoid confusing different surnames

as being derivatives when in fact they are not (McKinley, 1990). It was also found

that pairs sharing the same haplogroup status on average coalesce around 100

generations ago (∼ 3, 500 years BP) whilst those not sharing haplogroups status

coalesced much later at around 500 generations (∼ 17, 500 years BP). This might

be evidence of the divergence of haplogroups following the last glacial maximum

or the coalescence of European haplogroups during the early settlement of Eu-

rope/Eurasia, or indeed an amalgamation of the two. Hence, that the surname

origin retained some explanatory power in this case was rather intriguing and

remains unclear. It is worth noting that two of the three significant differences

involved the ambiguous surnames (table 6.15). Since this is an amalgamation of

the other surnames it is possible for some systematic difference in their TMRCA

values. The last significant difference, between the occupational and nickname

surnames, may be down to the fact that occupational surnames are much more

widely dispersed geographically and thus male pairs in this group will not coalesce

to younger nodes on average. Exploration of the nodes that are coalesced to within

each surname origin may provide clearer explanation. Now the ages of the nodes

in the different haplogroup priors were largely based on the estimates of Karafet

et al. (2008), which assumed an out-of-Africa of 70,000 years BP. In the recent

work of Cruciani et al. (2011) this node was dated much younger (38,000), through

direct SNP sequencing of seven Y-chromosomes, whilst the node AT is potentially

older. In light of this, it is important to note it would be straightforward to specify

alternative priors (in terms of their means or SEs) in our model for any of the dif-

ferent haplogroup nodes. For random males the coalescent is the prior of choice,

which assumes constant effective population size. This is not realistic but was

used for simplicity. Indeed it is possible to incorporate alternative demographic

models such as exponential growth easily into our model.

On a broader scope, it may be useful to examine if the geographical proximity

of the pairs of male typed is a worthwhile explanatory of the TMRCA. In this

case a distance measure, based on the longitude and latitudes of the males, might

prove to be useful and thus incorporated as an additional prior in the model. In

conjunction with historical surname distribution maps, such as those developed
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by Steve Archer on the 1881 census returns (Archer, 2012), a complex spatio-

temporal model may be developed to improve estimates of TMRCA which takes

into account the spread of a surname through time as well as the surname frequency

and origin. This necessitates a multi-disciplinary approach combining the input of

linguists, historians, genealogists, geneticists and statisticians in order to develop

a multi-factorial model of the TMRCA of pairs of males.

In the wider background of genetic genealogy, claims by genetic testing companies

as to what they offer are not necessarily realistic often exploiting conventional no-

tions of ancestry and in some cases woven into mythology (Bandelt et al., 2008).

Nor are the techniques they use clearly specified along with the scientific con-

straints of their results (chapter 1). In such a setting, this thesis provides a trans-

parent framework for estimation of TMRCA with clear measures of uncertainty.





Chapter 8

Conclusions

In this thesis we have developed a comprehensive model to allow for the estimation

of the time to the most recent common paternal ancestor (TMRCA) for pairs of

males.

We began our analysis by comparing the posterior modes of the TMRCA of the

pairs from the data of King et al. (2006) using the stepwise mutation model (SMM)

and infinite alleles model of Walsh (2001). The former produced larger estimates

than the latter, particularly for older TMRCA. Implementing a simulation study

comparing the MLE of TMRCA based on the SMM to those obtained from the

infinite sites model (ISM) showed the latter performed well particularly when the

TMRCA was low provided that the distribution from which the mutation rates

were drawn had a low variance. Otherwise this model produced underestimates

of TMRCA since it did not take into account recurrent mutation. Increasing

the number of markers did not improve the estimates: in fact, in some cases it

increased the amount of bias. The converse held using the SMM. Use of average

mutation rates is only beneficial in the SMM when the mutation rates are drawn

from a distribution with low variance, otherwise the TMRCA is underestimated.

The model overestimated TMRCA when it was ≤ 400 generations but produced

underestimates for larger times. This model appears to overcorrect for recurrent

mutation for low values of TMRCA, when the effect is less likely to have occurred.

Since the variance of the mutation rate distribution was a key factor in influencing

the MLE of the TMRCA, we next developed a framework for modelling STR muta-

tional mechanisms in a Bayesian manner. Importantly, modelling the statistically

significant difference in the proportion of increase and decrease mutations found

231
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in our mutation rate review, was not necessary. Mutation rates were assumed

to be drawn from a gamma distribution and their ascertainment was explicitly

modelled using a coalescent argument depending on the total branch length, as-

certainment sample size and the effective population size. Using estimates of the

parameters based on the intermediate mutation rate review, the manner in which

STR haplotypes were simulated was altered so as to reflect more closely real data,

by introducing a multi-stage calibration process.

Thereafter we incorporated the SMM into our mutation rate model and carried

out an extensive simulation study. Here the percentage of typed markers was

allowed to vary for a range of TMRCA (5-100 generations). Whilst estimates of

TMRCA were affected by the percentage of typed markers within the calibrated

loci, the other parameters were not. Conversely, misspecifying the percentage of

non-ascertained loci affected the estimates of the total branch length, the effective

population size and the parameters of the mutation rate distribution, but not

estimates of TMRCA.

We concluded our analysis by developing priors for TMRCA using British data

from King et al. (2006); King and Jobling (2009a). This involved estimating the

TMRCA of pairs of males within each surname. Eight priors were formed for

males who share the same surname according to their haplogroup status: un-

known, same or different. Furthermore, for males falling in the first two of these

groups, additional information, such as the surname frequency or origin, could

be specified as part of the prior on TMRCA. For male-pairs with differing hap-

logroups, the prior was based on the age of the ancestral SNP node, i.e. the node

on the SNP tree from which the haplogroups diverge. The Bayesian estimates of

the TMRCA based on these priors were then compared to those from the standard

model outlined in chapter 5, using the data from King et al. (2006). The priors all

led to reduced estimates of higher TMRCAs compared to the standard model. In

addition, for pairs of males with the same or unknown haplogroup, priors based

on the surname frequency reduced estimates of lower TMRCA (below the time of

surname establishment). Also, in contrast to our earlier simulation study, which

showed that the TMRCA model will produce underestimates of larger TMRCA

values, the different haplogroup prior reduces the TMRCA estimates compared to

the standard model.

From these results it may be argued that our model outlined in chapter 5 ‘overcor-

rects’ for multiple mutations which are wiped out particularly when the TMRCA



Chapter 8. Conclusions 233

is older. The pattern and its explanation is clear. For large TMRCA (well outside

the range of genealogical interest), the information present in Y-STRs becomes

weak, as a result of recurrent mutation. As a result the likelihood is rather flat,

and posterior estimates become much more sensitive to prior assumptions. In

this situation, it is important to use any additional information such as surname

frequency or origin, but to use it carefully.

In summary this thesis has detailed a multi-faceted approach to modelling the

estimation of the time to the most recent paternal ancestor of pairs of males based

on their Y-STR haplotype with specific application to British surnames.





Appendix A

The Delta Method

The Delta method allows the appropriate computation of the variance of functions

of random variables whose variance are themselves known through use of Taylor’s

Theorem.

Suppose we have two random variables, X, and Y and we wish to compute the

variance of some function of these two variables, f(x, y).

We begin by expanding f by Taylor’s Theorem:

f ≈ f0 + x
∂f

∂x
+ y

∂f

∂y
.

So the variance of f is:

Var(f) ≈ Var

(
x
∂f

∂x
+ y

∂f

∂y

)

=

(
∂f

∂x

)2

Var(x) +

(
∂f

∂y

)2

Var(y) + 2
∂f

∂x

∂f

∂y
Cov (x, y) .

If x and y are independent then Cov (x, y) = 0. Hence

Var(f) ≈
(
∂f

∂x

)2

Var(x) +

(
∂f

∂y

)2

Var(y).

For example, if f(x, y) = xy, then

Var(f) ≈ y2Var(x) + x2Var(y).
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