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Abstract  

 

 

Early signs of intestinal cancer may be detected through variations in tissue 

autofluorescence (AF), however current endoscope-based AF systems are unable to inspect 

the small intestine. This thesis describes the design, fabrication, implantation, testing and 

packaging of a wireless pill capable of detecting the autofluorescence from cancerous cells, 

and able to reach parts of the gastrointestinal tract that are inaccessible to endoscopes. The 

pill exploits the fact that there is a significant difference in the intensity of 

autofluorescence emitted by normal and cancerous tissues when excited by a blue or ultra 

violet light source. The intensity differences are detected using very sensitive light 

detectors. The pill has been developed in two stages. The first stage starts with using an 

off-chip multi-pixel photon counter (MPPC) device as a light detector. In the second stage, the 

light detector is integrated into an application specific integrated circuit (ASIC). The pill 

comprises of an ASIC, optical filters, an information processing unit and a radio 

transmission unit, to transmit acquired data to an external base station. Two ASICs have 

been fabricated, the first stage of this work involved implementing an ASIC that contains 

two main blocks; the first block is capable of providing a variable DC voltage more than 72 V 

from a 3 V input to bias the MPPC device. The second main block is a front-end consisting of 

a high speed transimpedance amplifier (TIA) and voltage amplifiers to capture the very small 

current pulses produced by the MPPC. The second ASIC contains a high voltage charge 

pump up to (37.9 V) integrated with a single photon avalanche detector (SPAD). The 

charge pump is used to bias the SPAD above its breakdown voltage and therefore operate 

the device in Geiger mode. The SPAD was designed to operate in the visible region where 

its  photon detection efficiency (PDE) peaks at 465 nm, which is near to human tissues 

autofluorescence peaking region (520±10 nm). The use of the ultra low light detector to 

detect the autofluorescence permits a lower excitation light intensity and therefore lower 

overall power consumption. The two ASICs were fabricated using a commercial triple-well 

high-voltage CMOS process. The complete device  operates at 3V and draws an average of 

7.1mA, enabling up to 23 hours of continuous operation from two 165mAh SR44 batteries.  
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Chapter 1 Introduction 
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1.1 Motivation 

The realization and implementation of non-invasive devices for biomedical applications 

has become increasingly viable due to the advantages of low cost, low power consumption, 

high reliability and potential for large scale integration of electronic components. The 

Capsule Endoscope (CE) is one such device that has seen a rapid progress in its 

development since the advent of the first CE in 2000.  The development of CEs has 

dramatically changed the diagnosis and treatment method of many diseases that are found 

in the small intestine, such as obscure gastrointestinal bleeding, Crohn‟s disease, small 

bowel tumours and polyposis syndromes, amongst many others [1, 2]. The low-cost, and 

ease of use, coupled with increasing specificity, sensitivity and predictability, have enabled 

CE to become the gold standard for the diagnosis of most diseases of the small bowel [3, 

4]. Another type of swallowable pill has been also developed to allow in vivo telemetric 

studies of the GI tract such as measurements of temperature, pH or pressure [5]. The 

Microelectronic System (MST) Group at the University of Glasgow has developed 

swallowable pills (55mm in length and 16mm in diameter) for measurements of pH levels 

in the GI tract [5].     

 

Rapid advances and developments are also taking place to improve the conventional 

endoscopic instruments which are mainly used in the upper and the lower part of the 

gastrointestinal (GI) tract. The detection of cancerous tumours through autofluorescence is 

one such advance that has been adopted by conventional endoscopic instruments for the 

purpose of improving its sensitivity and predictability [6].  This method exploits the fact 

that the concentration of the indigenous fluorophores in living tissues varies depending on 

the health status of these tissues [7]. Cancerous tissues contain fewer of these fluorophores 

than those of the healthy ones. These fluorophores autofluorescence when excited by a 

blue light source. Depending on the concentration of these fluorophores, the intensity of 
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emitted autofluorescence varies, which can then be used to distinguish between healthy 

and non-healthy tissues [6, 8, 9].   

 

Based on this fact, autofluorescence imaging (AFI) has been developed and incorporated 

into a conventional endoscopic instrument. This technique has the potential for 

distinguishing between cancerous and healthy tissue and is able to provide qualitative and 

quantitative diagnostic information for early signs of cancer more effectively, and with 

higher sensitivity, than that of  white light imaging [6]. Olympus Corporation has 

employed this technique in one of their commercially available endoscopic systems [6]. 

However, this technique is still commercially confined to conventional endoscopic 

systems. The problem with these endoscopic systems is that they are limited to the upper 

and lower part of the GI tract. A part of the GI tract such as the small intestine is still 

inaccessible by these endoscopes. Thus, a diagnostic pill that has the AIF capability is 

required to cover the entire tract to exploit the potential of the AFI to its fullest.  In this 

research, our effort is focused on investigating an effective way of migrating the basic 

principle of AIF and thereafter implementing it into a swallowable miniaturized capsule 

that can be used to detect cancer in the small intestine.  

 

 

1.2  Aims and objectives 

The aims of this work are: 

 

To design, fabricate and characterise a swallowable endoscopic capsule (pill) for 

detecting cancer in the GI tract by measuring changes in the autofluorescence 

emissions of the GI tissue. 

  

The main objectives of this work are: 

 

 To design, fabricate and characterise a miniaturized prototype for an 

autofluorescence radiometric system in a pill format smaller than 50 mm in length 

and 16 mm in diameter. 

 To design, fabricate and characterise a pill that is capable of producing illumination 

in the band between 400nm - 500nm and to detect autofluorescence emission at 

wavelength 500nm - 700 nm. 
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 The detector to have high photon detection efficiency (PDE) of more than 20 % in 

the region above 510 nm (the most widely used detectors for autofluorescence are 

PMTs which have photon detection efficiency in the range of ~ 20%) [10, 11]. 

 The pill should be capable of exciting and detecting the weak autofluorescence 

from the human tissue (i.e the autofluorescence Quantum yield (Q) of a healthy 

human tissue is 0.00038). 

 The pill should be able to transmit wirelessly the acquired data to an external work 

station within a 1 meter radius  

 The pill should be able to operate using two SR44 (1.55 V, 165 mAh) watch 

batteries and operate for more than 9 hours; time typically required to traverse the 

human intestine. 

 

1.3  Thesis outline 

The rest of this thesis is organised as follow. Chapter 2 reviews the tissue fluorescence 

phenomenon and its characteristics including intensity, lifetime and its excitation and 

emission spectra. The behaviour of fluorescent substances is also presented which leads to 

a deep understanding on how the autofluorescence phenomenon is efficiently exploited in 

many applications. This chapter focuses on explaining how the indigenous fluorescent 

substances of living organisms is exploited to evaluate the health status of these organisms. 

This is followed by an overview of the essential components of the basic instrument that is 

used to measure fluorescence lifetime and intensity from fluorescent substances. 

Understanding the operating principle of this instrument will establish the main aim of this 

work which is to miniaturise this instrument into a swallowable capsule form that can take 

fluorescence measurements from within the human body‟s small intestine.  

 

Chapter 3 reviews design considerations for some existing diagnostic pills. The 

components and design parameters for a pill that is capable of detecting cancer in the small 

intestine are reviewed and accordingly a design proposal for the pill is presented. A key 

component of this pill is an ultra sensitive light detector. Based on a comparison of existing 

sensitive light detectors that are capable of detecting autofluorescence emission, the MPPC 

device was chosen to be incorporated into the pill. In order to operate the MPPC, an ASIC 

block diagram is proposed. This ASIC contains a high voltage charge pump that can 

generate more than 72 V and a TIA that is capable of capturing the 10 MHz pulses 

generated by the MPPC. A literature review of the two main blocks of the ASIC is 



22 

presented as an introduction to the design and implantation of the ASIC which is discussed 

in chapter 4 and chapter 5. 

 

Chapter 4 considers the design and fabrication of the very high voltage charge pump that 

can generate a variable high voltage greater than 72 V and to deliver a current greater than 

70 μA which is required to operate the MPPC device. The design aspects of the charge 

pump which consists of 5cells are discussed and presented in a way that justifies the design 

topology and the components that are used in the design. With the proposed topology of 

charge pump it will be seen that the charge pump has achieved high efficiency. It will be 

also seen that the charge pump was designed to be controlled by a single input clock which 

permits the generated voltage to be varied. The charge pump is characterised and its 

operation is evaluated and presented in a detailed manner. Its ability to deliver the required 

voltage and current to the MPPC is verified by directly biasing the MPPC to the output of 

the charge pump.     

 

Chapter 5 discusses the steps of designing and implementing the front-end that can work 

in conjunction with the MPPC device that has a very large capacitance of 37 pF. The 

front-end consists of a transimpedance amplifier (TIA) and a post-amplifier stage. The 

design of the TIA is based on a regulated cascode input stage (RGC). It will be seen that 

the proposed design helps to ease the relationship between the large input capacitance and 

the achieved bandwidth and input impedance. The front-end is laid out and fabricated in 

the same chip with the charge pump designed in chapter 4. The front-end is then tested and 

evaluated when working with the MPPC.  

Chapter 6 begins with a feasibility study into integrating a SPAD with a charge pump 

into a single chip by testing a SPAD that was fabricated by The University of Oxford and a 

component of the charge pump that was discussed in chapter 4. The designs of the two 

devices are integrated and fabricated into a single chip. Electrical and optical evaluation 

measurements of the SPAD, the charge pump and the two blocks are presented. This is 

followed by biological measurements that are conducted using a lamb‟s small intestines. 

The measurement verified the operation principal of the system and showed that the 

fabricated ASIC has met the design expectations. All the implemented components that 

were designed to be incorporated in to the capsules were fitted into a 

16mm (diameter) x 45mm (length) glass capsule to demonstrate the size viability. 

However, due to the manual nature of the final assembly, the relatively small capacitor 
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(0402 packaging) and the wire bonds to the ASIC, the final capsule in its final form could 

not be tested. 

Chapter 7 concludes the works from the previous chapters. Potential future work is also 

discussed. 
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2.1 Introduction   

This chapter goes on to introduce the fluorescence phenomenon and its characteristics such 

as its intensity, lifetime and its excitation and emission spectra. This introduction leads to a 

better understanding of the behaviour of fluorescence substances and therefore, 

understanding how they are exploited in an efficient way in many applications. This is 

followed by introducing some of the indigenous fluorescence substances in living 

organisms, which later will be referred as autofluorescence and how they are exploited to 

evaluate the health status of some organisms. Later on, it will be explained how the 

autofluorescence in the small bowel is being used to detect early signs of cancer, by means 

of detecting the intensity, or the lifetime of its indigenous fluorescence substances. This 

will be followed by a section which will have an overview of the essential components of 

the basic instrument which is used to measure the fluorescence lifetime and its intensity. 

This section will establish the main aim of this work, which is, to miniaturise this 

instrument into a swallowable capsule form that can take fluorescence measurements from 

within the small intestine in the body.  
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2.2  What is fluorescence? 

Fluorescence is a natural phenomenon exhibited by certain group of molecules. These 

molecules, sometimes referred to as fluorophores, absorb light at one wavelength and emit 

light back at another, typically longer, wavelength [12]. In general, the phenomenon where 

luminescence is generated through the excitation of a molecule by ultraviolet or visible 

light photons, is known as photoluminescence. This is divided into two 

categories, fluorescence and phosphorescence, depending upon the electronic configuration 

of the excited substance and the emission pathway. Mostly,  it can be said that the process 

of fluorescence and phosphorescence occurs in a similar manner, but with a much longer 

excited state lifetime in the case of the latter [13]. 

 

The phenomenon of fluorescence was first observed by Sir Frederich William Herschel in 

1845. Sir Frederich reported that quinine solution emitted fluorescence when exposed to 

sunlight [14]. His experiment can be repeated easily by exposing a glass of tonic water, 

which contains quinine, to sunlight, or to any blue light source, and observing the emitted 

light, at the right angle which is relative to the source light direction. Fluorescence is 

typically produced from substances that have aromatic molecules. Quinine, Rhodamine B 

and POPOS, are examples of typical fluorescence aromatic molecules, that can be 

encountered in our every day life. For example, trace quantities of Rhoamine can be found 

in antifreeze, which glows green-orange or Red when excited [14]. 

 

The process which describes how the molecules in fluorescent substances absorb and emit 

fluorescence, was first described by Professor Alexander Jabłoński in 1935. The molecular 

energy state diagram, often referred to as a Jabłoński Diagram, is shown in Figure 2.1 and 

illustrates this process in detail. The diagram shows how electrons in fluorophores are 

excited from the ground state, into higher electronic energy states, and the events that 

occur as these excited molecules emit photons and fall back into lower energy states. 
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Figure title: Jablonski Diagram. 

 

 

Figure 2.1 Jablonski Diagram: illustrates the luminescence process. 

 

The sequence of events that occurs during the illumination process, can be explained as 

follows:  Prior to excitation, the electronic configuration of the molecule is described as 

being in the ground state (S0). When a molecule is excited with radiation which has a 

wavelength ranging from the ultraviolet to the visible ranges (250 nm to 700 nm), as 

presented in Figure 2.1 (left-hand blue arrow), the molecule absorbs the excitation 

photon, an energetically excited state is formed, and then the electrons may be raised to a 

higher energy, and vibration levels of the (S1) or second level (S2) energy state. 

Immediately following this step, several processes will take place with varying 

probabilities, depending upon the exact nature of the fluorophore and its surroundings, the 

most likely will be relaxation to the lowest vibrational energy level, the first excited level 

(S1). This process is known as internal conversion or vibrational relaxation, (loss of energy 

in the absence of light emission) and generally occurs in picoseconds or less. If the excited 

molecule stays in the first level for long time (a period in time-scale of nano-seconds) 

before relaxing to the ground state, it will be accompanied by the emission of a photon, the 

process is formally labeled as fluorescence. 
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  Table 2.1 Timescale Range for Luminescence Processes [15]. 

 

 

Transition 

 

Process 

 

Timescale (Seconds) 

S0  → S1 or S2 Absorption (Excitation) 10
-15 

S2 → S1 Internal Conversion 10
-14

 to 10
-10

 

S1 → S1 Vibrational Relaxation 10
-12

 to 10
-10

 

S1 → S0 Fluorescence 10
-9

 to 10
-7

 

S1 → T1 Intersystem Crossing 10
-10

 to 10
-8

 

S1 → S0 
Non-Radiative Relaxation 

Quenching 
10

-7
 to 10

-5
 

T1 → S0 Phosphorescence 10
-3

 to 100 

T1 → S0 
Non-Radiative Relaxation 

Quenching 
10

-3
 to 100 

 

 

Excited fluorophores in high energy levels can take several other relaxation pathways that 

compete with the fluorescence emission process. The energy state can be dissipated non-

radiatively as heat to its surroundings (depicted by the cyan dashed arrow in Figure 2.1). 

It can also be also dissipated as non-radiative heat in a collision between the excited 

molecule and another molecule (as illustrated by the purple dashed arrow). This 

phenomenon is exploited in what is known as quenching technique, which is used to 

suppress any unwanted fluorescence in some biological experiments. This is achieved by 

adding some other molecules, this forces the unwanted fluorophores to dissipate their 

excited energy state into the non-radiative process rather than the florescence process 

which emits photons. Another event that can take place, although rarely occurs, is known 

as intersystem crossing to the lowest excited triplet state (depicted in blue dashed arrow). 

This event can result either in the emission of a photon through phosphorescence, or a 

transition back to the excited singlet state which yields delayed fluorescence. In 

Table 2.1, all the possible process that can take place during luminescence have been 

listed, along with typical timescales [15]. 
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2.3  Characteristics of fluorescence 

The unique characteristics of fluorescent substances have been exploited in a wide range of 

applications, varying from environmental, to biological and biomedical applications. This 

section will highlight the most important characteristics of fluorescence molecules, this 

will build a bigger picture of the behaviour and the properties of fluorescence emission. 

Mainly, there are three basic fluorescence observables, than can characterise the 

fluorescence emission of a certain fluorophore [16]. 

 

2.3.1 Quantum yield and fluorescence intensity 

The emission intensity of a fluorophore is perhaps the most important property which 

characterises a certain fluorophore. In this work, as we will discuss in the next chapter, we 

have adopted the intensity of the fluorescence, as a way in which we can distinguish 

between cancerous tissues and healthy ones. For fluorophore solutions, the fluorescence 

intensity can be accurately represented by the efficiency, which is known as quantum yield 

(Q). The quantum yield  is the mean ratio of the number of emitted photons, to the number 

absorbed, averaged over the entire fluorescence spectrum range [17]. Based on our 

discussion in the previous section, it has also become clear that not all excited molecules 

will relax to the ground state by fluorescence emission; alongside the fluorescence 

emission of photons there are two other process that can take place, non-radiative process 

energy loss and intersystem crossing through the triplet state, therefore the quantum yield 

is a function of the competing decay rates of these three process, this can be given by [17] 

xif

f

kkk

k
Q


                                                                 2.1 

 

Where Q is the quantum yield, kf  is the decay rate of the fluorescence emission, ki decay 

rate of the non-radiative process and kx  is the decay rate of the intersystem crossing.  The 

quantum yield of a fluorophore can be close to unity if ki + kx << kf. The closer the quantum 

yield to unity the brighter the fluorescence emission produced by the fluorophore [14].  

 

The quantum yield can be accurately determined in a controlled environment, where all 

photons in the excitation source are directed towards the fluorophore solution sample. 

Generally, in the case of fluorophore solutions where the quantum yield is high ( 0.05 to 1) 

[18], researchers resort to using a comparative method to measure the fluorescence 
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emission.  In this method, the targeted solution is compared to other solutions of a well-

known concentration, such as the quinine salt, and accordingly the quantum yield is 

determined. However, when dealing with biological samples, such as human tissue, 

accurately determining Q becomes impractical, due to the scattering problem, and due to 

the difficulty of estimating the concentration of the fluorophores and their surroundings 

[14]. The existence of many fluorophores in one sample at the same time also acts as a 

major obstacle. For example measurements of quantum yield (Q) obtained in vivo from a 

normal human cervix can vary greatly in the range between 6.1
-5

 to 0.0038 [19].   

Therefore, instead of using the quantum yield, as in the case of fluorophore solutions, the 

term intensity becomes the parameter of choice in biological or medical applications. In 

this work, the main goal is to measure the autofluorescence intensity from living tissues. 

Counting how many photons are emitted over a certain period of time is sufficient to 

provide an indictor of the intensity level of the autofluorescence emission from these 

tissues. This intensity is propositional to the spatial concentration and the quantum yield of 

each fluorophore which exists in the human tissue and therefore provides an indicator of 

whether the targeted tissue is a normal or a diseased tissue, as will be explained in more 

details in section 2.5 [6, 14].  

 

2.3.2 Fluorescence lifetime 

The lifetime of fluorescence is defined by the average time in which the molecule remains 

excited prior to returning to the ground state, which typically ranges from 10
 -9

 to 10 
-7 

seconds. The fact that different molecules have different lifetimes is employed to 

distinguish between different fluorophores, and can offer an alternative method of 

characterisation to that of measuring the quantum yield. However, the ultra short time that 

the molecule spends in the excitation state, requires more complicated instruments than 

that used to measure the intensity [20]. 

 

The standard way of measuring the fluorescence lifetime is by exciting a fluorophore 

solution with an ultra short laser pulse and then measuring exponential decay lifetime 

which can be given by [17] 

 

xif kkk 


1
                                                              2.2 

 

http://en.wikipedia.org/wiki/Quinine
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Where, τ is the decay lifetime of the fluorophore. Due to the random nature of the 

fluorescence emission, few molecules will emit their photons at exactly time = τ. 

Therefore, τ is measured several times, and the average of these measurements represents 

the lifetime of that specific fluorophore.  

 

2.3.3 Fluorescence excitation and emission spectra 

The aspect of fluorescence that makes it useful in many applications is the difference 

between the exciting and the emitting wavelengths. This phenomenon is known as Stokes‟ 

shift. This shift occurs as a result of the loss of vibrational energy when molecules go from 

an excited vibrational state to the ground state. The absorption and emission spectra are 

usually symmetrical curves, as shown in Figure 2.2.  The spectral characteristics of these 

curves are related to the size of the energy steps of the transitions from one level to 

another. When a photon is absorbed by a molecule in a fluorophore, all the energy 

possessed by that photon will be transferred to the molecule. This energy is inversely 

related to the photon‟s wavelength and is given by [17] 

 



hc
E                                                                    2.3 

 

Where h is Plank‟s constant, c is the speed of light and λ is the wavelength of the photon in 

a vacuum. If the photon‟s energy absorbed by the molecule is greater than energy needed 

to exactly move it from the ground state to the lowest energy level of S1, the molecule will 

move to a higher state S2. This indicates that the molecule can be excited and moved 

between energy levels by changing the energy of the incident photons, this can be achieved 

easily by changing the photon‟s wavelength. In Figure 2.2, the absorption and emission 

spectra of a common fluorophore known as (FITC), is sketched below the Jabłoński 

diagram to illustrate how the spectra is formed. Each vertical gray line aligns the spectra 

with the energy of the absorbed photons (arrows pointing up) or the energy of the emitted 

photons (arrows pointing down). The colours of the arrows represent the wavelengths. For 

example the purple arrow to the left, represents the energy of an ultra violet photon that 

caused a molecule to transition from the ground state to the second excited state. On the 

other side of the spectra, an orange arrow represents the lowest energy photon that can be 

emitted by this molecule, as it drops back from the lowest energy state of S1, to the highest 
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vibrational state of S0. The symmetry between the absorption and emission curves is 

attributed to the similarity of transitions to vibrational states in S0 and S1. 

 

Figure title: Absorption and emission spectra. 

 

 

 

Figure 2.2 Absorption and emission spectra of the common fluorophore FITC [17]. 

 

 

Maximum fluorescence intensity can be achieved when the fluorophore is excited at or 

near the peak of the excitation curve. The wavelength of both the absorption peak and the 

emission peak differs between one fluorophore and another [21].   

 

2.4  Autofluorescence in living organisms 

Fluorescence is widely used in biological and medical research to characterise and study 

cells and organisms. Most of this research focuses on the use of exogenous fluorescent 

molecular fluorophores (also referred to as „labels‟ or „probes‟). Introducing these probes 

into cells or tissues can give us information regarding spatial localization. This can be also 

be used to provide us with some information about different pH concentrations [22, 23]. 
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The use of such molecular probes in biological and medical fields has lead to significant 

advances in our understanding of the molecular biology of the cell. However, introducing 

these probes to a biological system can be toxic, or it can add a negative or unwanted effect 

to the biological system under investigation, and as a result, cellular viability and 

biological integrity can not  be relied upon [24]. For these reasons, endogenous fluorescent 

molecular fluorophores, or commonly known as autofluorescence which exists in 

biological systems have become of interest, since it can provide some information about 

the biological system without the need of adding any external influence. However, in 

fluorescence microscopy, cellular autofluorescence can also become a problem and cause 

an interference with other fluorescents of interest [25]. For this reason the quenching 

technique mentioned in section 2.2 is used to eliminate this interference by 

autofluorescence by using a wide variety of small molecules or ions that act as quenchers 

for unwanted autofluorescence [26]. 

 

Some examples of the endogenous fluorophores that can be found in human tissues of the 

GI tract are summarized in Table 2.2, with their optimal excitation wavelength and the 

peak autofluorescence emission. The main contributors of the autofluorescence emission 

spectra of the GI tract are mainly the endogenous intercellular small molecules such as 

flavins and vitamins, and extracellular matrices, such as collagen or elastin. 

 

Autofluorescence can be also found in plant tissues. As with human tissues, plants tissues 

have endogenous molecules that absorb light in many regions of the near-ultraviolet and 

visible light spectrum. One of the main contributors to autofluorescence emitted by plants 

is chlorophyll, other fluorophores such as lignins, carotenes, and xanthophylls also produce 

a significant level of fluorescence emission when excited with the proper wavelength. The 

autofluorescence intensities or its lifetime are used to identify plants and to characterize 

their state of health [27, 28].  
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Table 2.2 Example of endogenous fluorophores in human tissues of the GI 

tract. [8, 29]. 

 

Endogenous Fluorophore Optimal Excitation 

Wavelength (nm) 

Peak Autofluorescence 

Emission (nm) 

Amino acids   

Tryptophan 280 350 

Tyrosine 275 300 

Phenylalanine 260 280 

Structural proteins   

Collagen 330 390 

Elastin 360 410 

Enzymes and coenzymes   

NADH 340 450 

Flavins 450 520 

NADPH 336 464 

Vitamins   

Vitamin A 327 510 

Vitamin K 335 480 

Vitamin D 390 480 

Vitamin B6 compounds   

            Pyridoxine 332,340 400 

            Pyridoxamine 335 400 

            Pyridoxal 330 385 

            Pyridoxic acid 315 425 

Prydoxal 5-phosphotae 315 425 

Vitamin B12 275 305 

Lipids   

Phospholipids 436 540 

Lipofuscin 340-395 540,430-460 

Porphyrins 400-450 635, 690 
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2.5  Gastrointestinal cancer detection through autofluorescence 

The Gastrointestinal (GI) tract, including the oesophagus, stomach, small intestine, large 

intestine, and colon, is somewhere many types of cancers can occur. Most cancers start 

when abnormal cells grow out of control and form a tumour. The tumour can continue to 

grow such that cancer begins to spread to other parts of the body. The longer the tumour 

goes unnoticed, the greater the chance that the cancer has spread and become a life-

threatening disease. However, cancers are easier to be treated and cured if they are detected 

in early stages [30]. 

In the upper and lower part of the GI tract, autofluorescence visual endoscopy has been 

proven to be a highly effective approach, for detecting precancerous and early cancerous 

tissues when compared to the standard white-light endoscopy [3-8]. In this type of 

endoscopy, highly specific filters, sensor arrays and light sources are incorporated into the 

scanning probe of the device. The probe is capable of streaming video that show the 

distribution of the tiny amounts of autofluorescence light.  

Figure title: Cancer detection concept. 

 

 

Figure 2.3 Autofluorescence intensity varies between diseased regions and normal 

regions. 

 

 

 

 

 

 

http://www.google.co.uk/aclk?sa=L&ai=Cptfd_VQVTY_UCMS8hAfG8Zwm4YKj0gGHhNyHDPnkvyIQASDNpscMKANQ_KPB7Pv_____AWC7zsqD3ArIAQGqBBxP0NscUKA8rvpjNB3sEGVT0Uea-1L2FiWRumKBgAWQTg&num=2&sig=AGiWqty6m_Lo0PoUhqzMUkxYcOTyDAnRYw&adurl=http://www.righthealth.com/topic/Gastrointestinal_Cancer%3Fp%3Dl%26as%3Dgoog%26ac%3D404
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Figure title: Autofluorescence emission spectra 

 

a) 

 

b) 

 

Figure 2.4 Spectroscopic patterns of normal and diseased regions: a) patterns of 

normal and dysplastic oesophagus  [8] . b) Patterns of  normal mucosa and 

adenoma [6].  

 

Autofluorescence endoscopy exploits the natural autofluorescence phenomenon, where 

human living tissues emit green light (520 nm) when excited with a shorter wavelength 

blue light (380-500 nm). The amount of the emitted green light depends on the amount of 

endogenous fluorophores and this varies according to the health of the tissue.     
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Figure 2.3 illustrates the basic mechanism for detecting cancer through autofluorescence; 

when tissues are excited with same amount of blue light, diseased regions can give up to 

three times lower autofluorescence intensities than normal ones. This decrease in 

autofluorescence is due to the absorption and scattering of light, in the epithelium of 

mucosal membranes in cancerous tissue. This reduction can be mainly attributed to the 

lower concentration of endogenous fluorophores. The increased number of blood vessels 

that are usually developed in cancerous regions, reduce the spatial concentration of 

endogenous fluorophores, such as flavins, collagen and elastin [7].  

 

The intensity variation between the cancerous and healthy tissues has been widely 

investigated by several studies in-vivo and in-vitro [6, 8, 9, 31-35]. All the reported studies 

have concluded that there is a significant difference between the intensity of 

autofluorescence emitted by normal and cancerous tissues, over a wide range of excitation 

and emission wavelengths. 

Some of these studies have reported autofluorescence intensity measurements that were 

conducted on different parts of the GI tract, on cancerous and normal regions, and over 

different spectra ranges. Shown in Figure 2.4, some reported results from [6, 8, 9]  clearly 

show that the autofluorescence intensity of normal tissues are much higher than that of 

cancerous tissues, over the range (470-700nm). In [8] the measurements were conducted 

in-vivo on; normal squamous oesophagus; Barrett‟s metaplasia; and Barrett high-grade 

dysplasia. Figure 2.4.a, shows a spectral decay, especially around 580 nm, this decay is 

attributed mainly to haemoglobin absorption which is heavily present in the high-grade 

dysplasia than on other samples. Another in-vivo pilot study [6] has examined 

autofluorescence using the autofluorescence imaging system (AFI) from Olympus Medical 

Systems. In this study, spectroscopic patterns of normal colon mucosa and adenomatic 

mucosa, shown in Figure 2.4.b, confirm the same concept that other studies have 

concluded.  The overall intensity at the tumour, was almost three times lower than that of 

the normal mucosa, especially around 520 nm. This reduction in emission from 

endogenous tissue fluorophores, can be attributed to the changes in the concentration, or 

depth distribution, of these fluorophores [6]. 
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Figure title: Autofluorescence imaging and white light imaging. 

 

 

Figure 2.5 Endoscopic images of a small flat adenoma: (a) the lesion was detected 

by autofluorescence imaging as a purple area in green background. (b) On white 

light observation it was hard to see [6].   

 

The autofluorescence emitted by human tissues can be seen in the images reported by [6]. 

The reported images, shown in Figure 2.5 are for a section of the upper part of the GI 

tract that has flat lesions. When observing this region with white light, it was hard to notice 

any abnormality. However, the lesions were distinctively obvious from the surrounding 

regions when it was observed by AFI. 

 

Cancerous and healthy tissues can be also distinguished by lifetime measurement. The 

intensity difference can be obtained by a life time measurement of the emitted 

autofluorescence as we will see in next chapter. Work conducted in [36], has reported both 

visual results and data collected from measurements. Figure 2.6.a shows a white light 

image of a freshly resected bladder, containing a moderately differentiated squamous cell 

carcinoma in the left side. The other image (Figure 2.6.b) is of the same tissue, but with 

fluorescence lifetime imaging (FLIM). A histogram of a lifetime distribution is shown in 

part c. The intensity for the lifetime period of the autofluorescence at the normal part of the 

bladder is higher than that of the cancerous part of the bladder. This is also true for the 

absolute autofluorescence lifetime of the normal part, which is higher than that of the 

cancerous part [36]. 
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Figure title: White light imaging and autofluorescence lifetime imaging. 

 

a. 

 

b. 

 

c. 

 

 

Figure 2.6 (a) White light image of a specimen of freshly resected bladder (area of 

fluorescence imaging outlined). (b) Intensity-weighted false-colour FLIM image. (c) 

Histogram showing fluorescence lifetime distributions from normal and cancerous 

regions of interest [36]. 

 

2.6 Spectrofluorometer 

In general, there are two distinct approaches to fluorescence measurement, steady state and 

time-resolved measurements. The most common type of measurements are steady state 

measurements which are conducted using constant illumination and observation. The 

sample is excited with a continuous beam of light, and the intensity of the emitted 

fluorescence is recorded over a period of time, as shown in Figure 2.7.a. Whereas, the 

second type, illustrated in Figure 2.7.b, is conducted by measuring the intensity decays. 

For this type of measurement, the sample is excited by ultra-short laser pulses that are 

usually much shorter than the time decay of the fluorescence emission. The intensity decay 
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is sampled with a very high speed detection system, usually on a picosecond 

timescale [37]. 

 

Figure title: Concept of steady state and time resolved measurements. 

 

a. 

 

b. 

 

 

Figure 2.7 a.   Steady state: constant illumination and observation. The level of the 

fluorescence emission is function of the quantum yield of the targeted fluorophore.   

b.   Time resolved: pulsed excitation and high speed detection. 

 

Typically an instrument known as a spectrofluorometer is used for both types of 

measurement. A schematic of a general purpose spectrofluorometer is shown in 

Figure 2.8. Generally, spectrofluorometers use high intensity white light sources, with a 

monochromator which allows you to select a certain wavelength, so that the fluorescence 

sample is excited at the wavelength of interest. Another monochromator is used at the 

detection side to scan the emission spectra of the fluorescence sample. A precise excitation 

and emission spectra can be obtained with spectrofluorometers that have the following 

characteristics: 

 

 The light source must yield a constant photon output at any given wavelength. 

 The efficiency of the monochromator must be equal for all wavelengths. 

 The efficiency of the light detector must be equal at all wavelengths. 

 

 

 

 

http://en.wikipedia.org/wiki/Monochromator
http://en.wikipedia.org/wiki/Monochromator
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Figure title: Spectrofluorometer. 

 

 

Figure 2.8 Schematic diagram of a spectrofluorometer. 

 

The difference between the two types of measurements can be summarized by how the 

excitation light is controlled and how the yield output data is processed.   In the case of 

steady-state, the light is kept constant for a period of time,  usually a few seconds or more, 

while the emitted fluorescence is measured continuously. This measurement is repeated at 

different wavelengths. For time-resolved measurements, the light is replaced by an ultra-

short laser pulse generator, usually picoseconds. The detector, which is usually consists of 

an array of micro-detectors (pixels), detects the emitted fluorescence during an observation 

window, which is synchronized with the laser trigger. The emitted florescence is recorded 

using all pixels for a programmable gated number of times (N). Due to the random nature 

of the fluorescence emission, this measurement is repeated for several windows. At the end 

of a full measurement, it is possible to sketch a histogram reporting the intensity of 

fluorescence and the time constant of the fluorescence process, like the one shown in 

Figure 2.6.c [16]. If only one window is used, the sensor provides an average intensity 

measurement which is often satisfactory for many applications (e.g., DNA micro-

arrays) [37].  
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Figure title: Fluorescence detection instruments. 

 

a. 

 

b. 

 

 

Figure 2.9 a.  Fluorescence microscope.   b.  Endoscopic probe used with the  

Autofluorescence imaging system (AFI, Olympus Medical Systems). 

 

The spectrofluorometer has developed over many years, and has taken many forms and 

shapes, that can serve many purposes and applications, ranging from environmental 

applications, to in-vivo and biomedical applications. One of the most popular instruments 

is fluorescence microscope, shown in Figure 2.9.a, which is a combination of a 

spectrofluorometer and a microscope. The spectrofluorometer used in the microscope 

shown is equipped with a high sensitivity imager, instead of the single light detector used 

in conventional spectrofluorometer. In 2007, Olympus Corporation incorporated a 

spectrofluorometer into an endoscopy system that can be used in the medical field, to 

detect signs of cancerous tissues in the upper and lower part of the GI tract. The 

autofluorescence imaging system (AFI, Olympus Medical Systems) incorporates a 

spectrofluorometer into a conventional endoscope, which enables this system to perform 

autofluorescence imaging alongside white light imaging. However, The AFI endoscope 
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can not reach some parts of the GI tract as is the case with conventional endoscopes.  

Shown in Fig. 2.9.b, the AIF probe has an external diameter of 10 mm and is designed to 

be used in the upper and the lower part of the GI tract. For the 6 meter long small bowel, it 

is very necessary to have a more noninvasive device, with fluorescence measurement 

capability that can reach such regions. In this work, we propose a pill that can detect cancer 

through autofluorescence. 

 

2.7   Summary  

This chapter has reviewed the background theory of the fluorescence phenomenon. The 

mechanism of the fluorescence process and its characteristics that make it useful in many 

applications have been reviewed. This was followed by a detailed explanation of how 

indigenous fluorophores are exploited in detecting cancer and abnormalities in the small GI 

tract. It was also seen that the autofluorescence imaging (AFI) technique, has more 

capability to detect early signs of cancerous tissues than that of the white imaging 

techniques. The AIF technique is based on the autofluorescence intensity measurement 

which can be performed by a simpler instrument known as spectrofluorometer. This 

instrument is also used to perform other fluorescence measurements such as lifetime 

measurements. The two main autofluorescence measurement methods have been reviewed, 

and the detection techniques that are used in both measurements methods were explained. 

Finally, it was concluded that in order to perform intensity measurements inside the GI 

tract, the spectrofluorometer instrument needs to be miniaturized into a swallowable pill 

that can detect the autofluorescence intensity, and then transmit the results to a workstation 

terminal outside the body.       
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3.1  Introduction  

The autofluorescence potential for detecting cancer in the upper and lower part of the GI 

tract presents a substantial case to justify implanting a pill that can reach the small intestine 

part of the GI tract. This chapter starts with a review on the existing diagnostic pill 

technologies. This is followed by a section that reviews existing ultra sensitive light 

detectors in which a Multi-Pixel Photon Counter (MPPC) is chosen as a light detector for 

autofluorescence detection. Base on this, and other information from the previous chapter, 

a design diagram of a pill that is capable of autofluorescence measurements is proposed.  A 

key component of this design is an Application Specific Integrated Circuit (ASIC) that 

contains a high voltage charge pump and front-end block. A review of both building blokes 

of the ASIC is presented in this chapter.  

 

3.2   Pills for cancer detection 

The capsule endoscope (CE) is a swallowable wireless miniature camera that allows for 

noninvasive imaging of all regions of the GI tract. In 2000, for the first time in medical 

history, the Given Diagnostic Imaging System (Given Imaging Ltd., Norcross, Ga)  

became the first CE reported to be used  in literature, and it was approved by the Food and 
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Drug Administration (FDA) in August of the same year [38]. Given Imaging Ltd. 

manufactures the PillCam SB, which evaluates the small intestine, and PillCam ESO for 

the esophagus. Recently, several new types of capsule endoscope have been developed, 

such as the Olympus CE for the small bowel, PillCam ESO for investigation of esophageal 

diseases and PillCam COLON for detection of colonic neoplasias [12].  Biotelemetry 

capsules are also another type of swallowable pill that allows in vivo telemetric studies of 

the GI tract such as measurements of temperature, pH or pressure [5]. Shown in 

Figure 3.1.a is an example of a swallowable pill developed by the MST group at the 

University of Glasgow for measurements that including pH, temperature and dissolved 

oxygen.  

 

Figure title: Different types of capsules. 

 a.  

 

b. 

 

c. 

 

 

Figure 3.1 a) .  Pill developed by the MST group at the University of Glasgow for in 

situ measurements such as pH, conductivity temperature and dissolved oxygen.  b)  

Olympus CE for the small bowel c) The PillCam SB developed by Given Imaging Ltd  

for small bowel white imaging.     
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The reported systems consists of three basic parts: the first part is a capsule „„endoscope‟‟; 

the second part is a sensing system composed of sensing pads, a data recorder or 

transmitter, and a battery pack; and the third part is a personal computer workstation or 

pocket base station with  software that is able to review and interpret the collected data [1]. 

The capsules produced by Olympus and Given Imaging Ltd. are imaging capsules. The 

PillCam SB capsule (11 mm × 26 mm, 3.64 g) which is used for small bowel 

measurements consists of a complementary metal oxide silicon (CMOS) chip imager, a 

short focal length lens, six white-light-emitting diode illumination sources, two watch 

batteries and a UHF-band radio telemetry transmitter. Imaging features include a 140° field 

of view, 1 : 8 magnification, 1- 30mm depth of view and a minimum detection size of 

about 0.1 mm. The activated PillCam SB capsule captures images at a frequency of 2 

frames per second until the battery expires, after about 8 h, which enables the device to 

take up to 55000 still images (JPEG format). The CE developed by Olympus shown in 

Figure 3.1.b has similar features to that of PillCam SB which is shown in Figure 3.1.c. 

The difference between the Olympus CE and PillCam SB systems is that the Olympus 

capsule has a higher resolution CCD and an external real-time monitor [2, 39]. 

 

Some aspects of consideration for the CE have to be taken into account; one of the most 

important is the role of bowel preparation. Before the patient takes an endoscopic pill, the 

whole bowel has to be prepared, in order to have adequate visualization and reliable 

results. Dark fluid, debris, and bubbles in the lumen can obscure the mucosa and result in 

missed artifacts, therefore preparation liquids are used to clean the bowel prior to CE 

usage. Some studies have looked at oral sodium phosphate preparation and some have 

looked at polyethylene preparation, all studies have concluded that bowel cleansing has 

improved the quality of the images [40]. Another problem, known as regional transit 

abnormality where the capsule remains in a particular region of the small intestine for a 

period of more than 60 minutes, results in increasing the test time and as a result, the 

battery may run out of power before the test is complete. Patients with known gastroparesis 

or suspected small intestinal dysmotility are highly likely to encounter this problem. This 

problem can be overcome by using prokinetics prior to CE. A prokinetic is a type of drug 

that enhances gastrointestinal motility by increasing the frequency of contractions in 

the small intestine, this results in shortening of the small intestine transit time [41]. One of 

the most serious complications that can accompany the use of endoscopic capsules is 

known as capsule retention, which is defined as the presence of a capsule in any part of the 

GI tract for at least two weeks. Study [42] shown that 5 retation cases out of 100 patients in 

whom a CE was performed. In another study [43] the retation rate was 1.9%, in these cases 

http://en.wikipedia.org/wiki/Gastrointestinal
http://en.wikipedia.org/wiki/Motility
http://en.wikipedia.org/wiki/Contraction
http://en.wikipedia.org/wiki/Small_intestine
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surgical or endoscopic retrieval was required [38]. Both studies agreed that a high rate of 

the cases that had the retation problem occurred with patients with suspected bowel 

obstruction or confirmed Crohn‟s disease. 

 

CEs are mainly employed to detect  tumours and abnormal blood vessel formations in the 

small intestine, where conventional endoscopy devices are unable to reach [2, 44]. 

However, CE is not the only method of detecting cancer and other abnormalities in the 

small intestine. Methods such as radiological imaging and intraoperative endoscopy are 

also employed for the same purpose. Several studies have however demonstrated that 

capsule endoscopy helps detect more tumors than radiologic imaging. [40]  

 

In a comparative study conducted by [45], intraoperative endoscopy was regarded as the 

gold standard for complete small intestine evaluation. However, intraoperative endoscopy 

is always considered as a last option for evaluation of the small bowel [40] as it is usually 

performed in an operating room with the patient under general anesthetic. An endoscope is 

inserted into the bowel by the surgeon and passed through the small bowel manually, while 

the gastroenterologist views the image [46]. Therefore, when comparing with the methods 

mentioned above, CE is seen to be less invasive and therefore more appropriate as the first 

response for diagnosis of abnormal growth in the small intestine [45]. 

 

3.3  Pill for cancer detection through autofluorescence 

As was mentioned in previous chapter, autofluorescence detection techniques have been 

employed in upper endoscopy systems in order to enhance the performance of these 

devices and increase their capability of detecting abnormalities in the upper and the lower 

part of the GI tract. Therefore it is expected that introducing this feature and incorporating 

it into a CE will improve the capability of CEs in detecting cancer in its early stages. 

 

3.3.1 Operating wavelengths 

A difference between intensities of cancerous tissues and normal ones have been 

confirmed in several studies that were conducted in vivo as mentioned in the previous 

section. The main objective of our work is to incorporate a spectrofluorometer into a 

swallowable diagnostic pill capable of detecting these differences. The spectrofluorometer 

shown in Figure 2.8 can be used for general purpose tasks. However, our 
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spectrofluorometer will be an application specific one that will be dedicated to do a 

specific task. Limiting the operation of the spectrofluorometer to a specific task is 

accomplished by limiting the operation wavelengths to specific bands.  By applying this 

limitation, the proposed pill will lose some functionality but gain two advantages; the first 

one is the size, which will be smaller than a device that operates over the entire ultra-violet 

and visible bands. The second advantage is the power consumption, which will be reduced 

when operating at a specific band, rather than scanning the entire visible spectrum.    

 

Table 3.1 Summary of autofluorescence spectra obtained by different 

studies for healthy and cancerous tissues of the GI tracks. 

 

Study 

 

Excitation 

source band 

 

Collected 

autofluorescence 

range 

 

Wavelength where 

maximum 

fluorescence 

difference occurred 

 

 

Tissues 

with 

higher 

intensity 

 

Part of 

GI tract 

 

[35] 370nm± 

unknown 

400-700nm 470nm Normal 

tissues 

Colon in 

vivo 

[9] 425±52nm 470-700nm 520nm Normal 

tissues 

Stomach in 

vivo 

[34] 351± 40nm 400-550nm 445nm Cancerous 

cells 

Esophagus in 

vivo 

[31] 405±unknown 500-700nm 510nm and 630nm Normal 

tissues then 

cancerous 

cells 

respectively 

Colon in 

vivo 

[6] 557±67nm 470-870nm 520nm Normal 

tissues 

Colon in 

vivo 

[33] 425±52nm 470-700nm 520nm Normal 

tissues 

Colon in 

vivo 

[32] 425±52nm 470-700nm 520nm Normal 

tissues 

Esophagus in 

vivo 

 

In order to achieve the goals specified above, we must determine the best operational 

excitation source band and corresponding detection band. As explained in section 2.42.4, 
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every fluorophore has an optimal excitation wavelength at which it yields the maximum 

autofluorescence emission.  These optimal wavelengths are to be decided according to the 

information obtained from studies [6, 9, 31-35]. Table 3.1 lists the excitation light bands 

used in every study. It can be concluded from the wavelengths used to excite the tissues in 

most of the mentioned studies that the excitation source should ideally operate at 

wavelengths ranges between 390-470nm. Whereas, the optimal difference between the 

auto fluorescence intensity of the normal tissues and the cancerous one mostly occurred at 

520 nm. In order to allow the greatest separation between excitation and fluorescence 

wavelengths, we have therefore chosen 520 nm to be our detection wavelength.   

 

3.3.2 Autofluorescence detectors  

The most important part in the spectrofluorometer instrument illustrated in Figure 2.8 is 

the fluorescence detector which is simply a light detector that is capable of detecting 

photons with wavelengths in the range 470-700 nm. For detecting fluorescence sample of 

an exogenous fluorophores, a photodiode can be used [47, 48]. However, when detecting 

autofluorescence generated from living organisms such as human tissues, special practical 

considerations have to be taken into account; specifically that the autofluorescence 

emission is relatively weak compared to that emitted from exogenous fluorophores, which 

have to some extent been selected or designed to fluoresce efficiently[14]. Some 

exogenous fluorophore can have a quantum efficiency (QE) up to 1.0 whereas indigenous 

fluorophores in human tissues can have QE equal to 0.00038 [18, 19]. Therefore 

delectating autofluorescence requires a more sensitive light detector and a more powerful 

excitation light. Photomultiplier tubes (PMTs) have traditionally been  the device of choice 

for this due to their very high sensitivity [10, 49]. However, PMTs are usually expensive, 

and have limited photon detection efficiency, ranging from (2% to 20%). In our case, 

where the size of our CE device  is very critical, PMTs are not suitable due of their bulky 

size and the very high voltage required to operate them, typically in the region of  kV [14]. 

 

 The solid state alternative to MPT is Charged Couple Devices (CCDs). Measurements of 

autofluorescence emissions produced by human tissues reported by [6, 9, 31-35] used CCD 

imagers with high intensive light sources for excitation such as the 300 W short-arc xenon 

lamp (Storz GmbH, Tuttlingen, Germany) which were used on [9, 32, 33], Having such a 

powerful excitation source allowed the CCDs to detect the fluorescence emissions 

produced by heavily induced endogenous fluorophores. In the case of the Olympus 

endoscopy system, the excitation source is an array of  LEDs with moderate light intensity, 
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consequently in order to guarantee good detection with the moderate excitation offered by 

the LEDs, a newly developed CCDs with high sensitivity was incorporated into the end-

probe of the system. 

 

When developing a CE, power is a major issue and using a powerful excitation source for 

excitation becomes impractical if not possible. Based on the linear relationship between the 

excitation intensity and the autofluorescence emission, the lack of a high intensity light 

source can be compensated by using an ultra sensitive light detector to measure the weak 

autofluorescence emission.  A single Photon Avalanche Photodiode (SPAD) has the ability 

to detect light at photon level and they can be a suitable alternative to CCDs [50]. In 

addition, when compared to CCDs, SPADs consume much less power [51]. Another key 

advantage of SPADs over the CCD is that they can be fabricated in the commercially 

available CMOS technology, whereas CCDs require special silicon process which can not 

be cheaply realized [50, 52]. Fabricating in commercially standard CMOS offers a great 

opportunity for full integration of the detector, the analog and digital processing, and the 

control circuits on the same chip [53]. Furthermore, SPADs need no cooling and can 

operate at normal room temperature, whereas CCD‟s must be cooled due to their relatively 

high dark current [54].   

 

Photodiodes are another type of sensitive light detector which are compatible with CMOS 

process like SPADs. However, in comparison with SPAD which has high gain that can 

reach more than 10
6
, photodiodes do not have gain and therefore require an extra 

amplification process or an integrated current mode analogue to digital convertor 

(ADC) [18].  Furthermore, autofluorescence generated by endogenous fluorophores, such 

as NADH, FDA flavin and tryptophan, which are primary endogenous fluorophores, 

usually have very low biological concentration which can vary up to 135 μM (mole/L), 

301 nM and 98 μM, respectively. SPAD has been confirmed to be capable of detecting 

fluorescence generated by fluorophores with a concentration as low as 10 nM using 16x 4 

array of SPADs, whereas a 250x250 array of photodiodes is used  to detect the same 

concentration. [55-57]. With the advantage of the internal gain of the SPAD, and the 

higher sensitivity, SPADs are selected to be the detector of choice for this work. 

 

3.3.3 Single Photon Avalanche Diodes (SPADs) 

An avalanche photodiode (APD) is a highly sensitive semiconductor that can detect light at 

photon count level. The concept of photon counting techniques has been developed over 
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many years by exploiting the operation of MPTs [58]. This concept was exported to 

semiconductor technology and resulted in the development of single-photon avalanche 

photodiodes (SPADs).  Essentially, APDs are p-n junction diodes that are purposely made 

to operate at high electric field in order to achieve an internal gain [59]. When reverse 

biased, the electric field increases with the biased voltage, which causes the drift velocity 

and kinetic energy of charge carriers injected in the depletion region to increase. As a 

result, an electron (or a hole) can reach to an energy level that is high enough to break a 

bond when colliding with lattice atoms. This causes generation of a new electron-hole pair, 

and consequently loses part of its energy. This process is called impact ionization. Both the 

original carrier (electron or hole) and the secondary electron and hole will be accelerated 

by the electric field and participates in generating more electron-hole pairs.  This process 

triggers  generating events of a huge number of  carriers, hence the term avalanche [59]. 

 

An example of an APD in CMOS is shown in Figure 3.2.  APD can operate in two 

different ways depending on whether the bias voltage is below or above the breakdown 

point [60]. If the reverse bias is below the breakdown point of the APD, each absorbed 

photon creates on average a finite number M of electron–hole pairs. This mode of 

operation is called „linear‟ because the number of collected carriers is proportional (by a 

factor of M) to the number of absorbed photons, normally in the range between a few tens 

and a few hundreds [59]. 

 

Figure title: CMOS APD 

 

Figure 3.2 Cross section of CMOS APD. 

 

The second way of operation is achieved by biasing the APD above the breakdown point. 

This mode of operation is known as „Gieger mode‟ and in this case, the APD is called 

(SPAD). At this bias condition, the electric field is so high that a single carrier injected into 

the depletion region can trigger a self-sustaining avalanche. The current rises sharply to a 
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microampere level, sometimes into the milliampere range [58, 61]. The carrier initiating 

the avalanche can be either thermally generated (noise source of the device) or 

photogenerated (useful signal). If the carrier is photogenerated, the leading edge of that 

avalanche pulse marks the arrival time of a photon with a precision of a few picoseconds. 

The current keeps flowing until the avalanche is quenched and the biased voltage lowered 

down to or below the breakdown voltage VBreakdown, then the reverse bias returns to VBias by 

recharge, so Geiger mode operation can begin again and be ready to detect another photon. 

This is illustrated in Figure 3.3 [58]. 

 

Figure title: Geiger-mode operation principle 

 

 

Figure 3.3 Principle of Gieger mode APD operation summarised in three steps:  1) 

Discharging: the APD discharges when a photon hits the active area of the APD.  2) 

Quenching: when the current flows through the quenching resistor, the reverse 

voltage drops to VBreakdown. 3) Recharging: the reverse bias returns to VBias by 

recharge, so Geiger mode operation starts again [59]. 

 

 

In Gieger mode, when biased above the breakdown voltage, if the SPAD is connected 

directly to a voltage supply the avalanche process will be self-sustained. To create a system 

that can be used to detect single photons, the avalanche process initiated by each photon 

must be quenched by reducing the voltage across the photodiode whenever a photon is 

detected. This means that the photodiode must be connected to the high biasing voltage via 

a device that reduces the voltage across the photodiode whenever a charge pulse occurs.   
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Figure title: Quenching circuit 

 

a) 

 

 

b) 

 

 

Figure 3.4 a)  Basic Passive Quenching Circuit (PQC).   b) Equivalent circuit of the 

PQC. 

 

In order to quench the avalanche process, a suitable circuit, usually referred to as a 

quenching circuit, must be used. The most popular and simplest quenching circuit is 

known as a Passive Quenching Circuit (PQC), shown in Figure 3.4.a. Here, the SPAD is 

reverse-biased through a high ballast resistor RL. When no current is flowing (ID=0), the 

SPAD cathode is reverse-biased at VBias, therefore the diode bias voltage VD equals VBias 

(the total reverse bias). Once a photon strikes the active area of the SPAD, the 

multiplication process fires the avalanche and the current swiftly rises (in picoseconds 

time) to a few milliamperes at its peak which is given by [61] 

 

d

BreakdowmBias
Peak

R
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I


 )0(                                                        3.1 

 

where, VBias - VBreakdown  is the excess voltage (Vex) above the break down voltage and Rd is 

the diode resistance of the SPAD, which is in parallel with Cd  the junction capacitance 

(typically ~ 1pF), as shown in the equivalent circuit in Figure 3.4.b . This current 

discharges the parasitic capacitance (Cs)  at the cathode node, so the excess voltage 

decreases exponentially towards zero with a time constant given by [61]. 
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  dLSdQ RRCC //.                                                     3.2 

 

The overall bias voltage at the cathode of the SPAD never drops beyond the breakdown 

voltage, so the avalanche is not quenched and the current continues to flow through the 

SPAD. The final current value is given by [61]    
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If  If  is very small, the current intensity becomes slow and therefore the number of carriers 

that cross the avalanche region is so few that the multiplication process can not take place 

and the avalanche is said to be self-quenching. On the other hand if If is high enough, the 

presence of carriers is increased and the probability for the multiplication process to 

happen becomes high. In this case, it can be said that the avalanche is self-sustaining. This 

imposes a minimum value of RL that will be high enough to force the SPAD to be self 

quenched. For this value to be determined, a threshold value for If is often assumed to be 

(100 μA). This value is referred to as the “quenching threshold” [62]. When the SPAD is 

quenched, it recharges again to its initial bias voltage, hence is ready for the next photon to 

be detected. The time which is required for the SPAD to be ready to detect another photon 

can be calculated by equations 3.1 and 3.2. For an excess voltage VE equal to 5 V and for 

Ipeak equal to 200 μA, the Rd is 25 kΩ. Therefore, by using external RL equal to 100 kΩ and 

for large (Cd + Cs) equal to 10pF, the SPAD needs 400 ns to be ready to detect another 

photon after each quenching process. This 400 ns is considered as a dead time in which 

other photons hitting the active region can not initiate an avalanche process.    

SPADs are sometimes quenched using a technique called active quenching. The Active 

Quenching Circuit (AQC) exploits the steeped rising edge of the avalanche pulse and 

employs a circuit that senses the rising edge and acts to force the SPAD to quench 

immediately, therefore preparing the SPAD for another avalanche [58, 63]. This technique 

reduces the quenching time constant which results in increasing the dynamic range of the 

SPAD, reducing the power dissipation and allowing for very fast measurement to take 

place, such as the fluorescence lifetime measurements [37, 62]. 

 

The performance of any SPAD can mainly be characterised by three parameters:  
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a. photon detection efficiency 

 

The performance of a SPAD is primarily determined by its Photon Detection 

Efficiency (PDE). For a photon to be detected, it is not enough to hit the active area of 

the SPAD and generate a primary carrier (electron-hole pair), it is also very important 

for that carrier to trigger an avalanche. Increasing the excess bias voltage improves the 

detection efficiency as a photon is more likely to create an avalanche if the electric 

field is high [64]. 

 

b. dark-count rate 
 

Thermal generation affects the performance of SPAD by causing it to generate current 

pulses even in the absence of illumination. The Dark Count Rate (DCR) constitutes 

false counts and is a measure of how noisy the detector is. The larger the number of 

dark carriers, the larger the dark-count probability is. As is the case of the PDE, the 

DCR also increases at higher bias voltages, since the probability of a thermally 

generated carrier producing an avalanche increases [65]. 

 

c. Detection Probability 

 

As not all the incident photons will generate a pulse, the ratio of the generated pulses to 

the incident photons is referred to as the Photon Detection Probability (PDP). In the 

photon detection process, some photons are not absorbed, or if they are absorbed, they 

do not trigger an avalanche. The highest PDP  occurs when the SPAD is biased at 

certain voltage above the break down voltage [66]. 

 

The main limitation of an SPAD operating in the Geiger mode, whether with active 

quenching or passive quenching, is that the output pulse is independent of the number of 

photons that are hitting the active area. This is attributed to the dead time that is spent after 

each avalanche process. In order to partially overcome this limitation, an array of SPADs is 

connected in parallel to a single output. Each SPAD when hit by a photon, generates the 

same current response, so the output signal is the sum of all the signals and is proportional 

to the number of SPADs hit by photons. The dynamic range is limited by the number of 

SPADs in the device, and the probability that two or more photons hit the same SPAD 

depends on the size of the SPAD itself. This structure is called a Silicon Photo Multiplier 
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(SiPM) [60]. Using such devices offers a higher sensitivity to that offered by a single 

SPAD.  

 

3.3.4 Photon multiplier Multi-Pixel Photon Counter (MPPC) 

The MPPC (Multiple Pixel Photon Counter) newly developed by HAMAMATSU 

PHOTONICS K.K. is a commercial SiPM device that offers higher sensitivity to that of a 

single SPAD. The MPPC basically consists of multiple avalanche photo diode (APD) 

pixels connected in parallel and operating in Geiger mode [61]. The ability of the MPPC to 

detect extremely weak light at photon counting level makes it the best choice for our 

application. The device has: a very high gain (10
5
 to 10

6
); bias voltage operation  of 

<100V; room temperature operation; low dark count rate (<1MHz/mm
2
); high Photon 

Detection Efficiency (PDE) (as shown in Fig. 3.5); is not sensitive to magnetic field; 

low power consumption and mechanical robustness [67, 68]. 

The MPPC is a combination of an integrated Geiger-mode APD and quenching resistor. 

The quenching resistor value is typically a few hundred kΩ. The combination of Geiger 

mode APD and a resistor makes one pixel. Several pixels are connected together to make 

up the MPPC. 

Hamamatsu has produced three types of MPPC, with 100 pixels (S10362-11-100U), 

400 pixels (S10362-11-050U) and 1600 pixels (S10362-11-025U). The 100 pixel device 

has a fill factor of 78.5%, whereas for the 400 pixel device it is 61%, and 30.8% for the 

1600 pixel device. The high fill factor of the 100 pixel means it has the highest PDE 

among the family, as shown in Figure 3.5. The very high PDE offered by the 100 pixel 

MPPC is desirable for extremely low-light detection applications such as autofluorescence 

[67]. However, there is trade off between the PDE and the input dynamic range [20]. The 

MPPC device can give an indication of how many pixels have been hit, regardless of the 

number of photons that might hit a single pixel at the same time. Since all pixels are 

connected to one readout channel, the output pulses from the APD pixels overlap each 

other creating one large pulse. By measuring the height, or the electrical charge of this 

pulse, the number of photons detected by the MPPC can be estimated [67]. 

 

 

 

 



56 

Figure title: Photon detection efficiency 

 

Figure 3.5  Photon detection efficiency (PDE) for three types of MPPCs [67]. The 

MPPC (S10362-11-100U) has the highest PDE (60%) at 520nm. 

 

The capsule will incorporate the MPPC device with 100 pixels (S10362-11-100U) which 

has the highest PDE (60 %) at 520nm thus reducing the required excitation light as much 

as possible. The signal produced by the device when all the 100 pixels are hit by one or 

more photons should give a clear indication that the region being scanned is a normal 

region. If the device produced several weak signals, this should give an indication that the 

region being scanned is a cancerous region. Furthermore, the decision of determining 

whether the readings are accurate or not will also depend on parameters like the movement 

rate of the capsule, the average area of excitation coverage, the detection frequency and 

others. Such parameters must be investigated to ensure high accuracy of decision making. 

 

3.4  Proposed pill 

3.4.1 Application Specific Integrated Circuit (ASIC) 

In order for any diagnostic capsule to be used in the GI track, it has to have a reasonable 

size so that it can be swallowable. Therefore, the components to be incorporated into this 

capsule must each be as small as possible including the battery. This means they must also 

consumes very low power. Rapid developments in nano-technology enable us to achieve 

low-power and very small systems on a chip (SoC) and therefore design a miniaturised 

endoscopy capsule. 
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Figure title: System block diagram 

 

 

 

 

Figure 3.6 Block diagram of an autofluorescence cancer detection system using a 

MPPC as a light detector. 

 

The complete system is designed to acquire and process the signal provided by the MPPC 

device. The heart of this system is a microcontroller unit (MCU), which obtains and 

processes a digitised signal provided by an application-specific integrated circuit (ASIC). 

The ASIC has been designed according to the unique specifications of the MPPC and its 

operational requirements. The main building blocks of the system are illustrated in 

Figure 3.6. Basically, the ASIC consists of two main blocks; the first one is a variable 

high voltage DC-DC converter to provide the needed biasing voltage for the MPPC. The 

second main block is the front-end which will act as an interface between the MPPC the 

MCU. 

 

The AMS H35 process provided by Austriamicrosystems has been chosen for designing 

the ASIC, the main features of this process is its ability to combine the high voltage and 

standard devices in the same substrate. Most of the ASIC blocks were designed from 

transistor level, however some existing IP blocks provided by the AMS library were used 

whenever it was possible. 
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Figure title: Capsule layout 

 

 

 

Figure 3.7 Proposed capsule for cancer detection through autofluorescence using 

MPPC as a light detector. 

 

Based on the concept of the spectrofluorometer and the requirement of the ASIC, the 

capsule layout and its fundamental features are sketched in Figure 3.7. The capsule 

consists of six main parts; a Blue LED as an excitation source, a MPPC device, ASIC, 

microcontroller unit, transmitter and batteries.  

 

3.4.2  Scanning approach 

The proposed capsule was inspired by the autofluorescence Imaging (AFI) system from 

Olympus which could stream linear data to a workstation near to the patient being 

examined. This method is a labour-intensive surveillance strategy [69]. Instead of dealing 

with thousands of images for the entire 6-meter-long small-intestine, this capsule is 

designed to acquire intensity measurements which can be plotted into a single graph. 

Possible cancerous regions are determined if a significant drop below a certain threshold 

was measured. This strategy will reduce the complexity of the system to be incorporated 

into the capsule and therefore minimizes the size as well as the power consumption. 
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Most of the CEs which adopt this imaging strategy are equipped with imagers and light 

sources which are usually placed in the front-end of the CE. However, using the same 

approach to measure the ultra-weak autofluorescence emissions by placing the MPPC at 

the front-end of the capsule may result in faulty readings. For an ideal setup as we have 

discussed in Section 2.62.6, the MPPC should be placed consistently at the same 

distance away from the targeted sample to ensure that the 2 cm diameter of the intestine 

walls are induced by the excitation light uniformly [70]. This can be achieved by using a 

capsule with wide diameter, as close as possible to 2 cm diameter of the small intestine.  

 

Figure title: Autofluorescence detection principle 

 

 

Figure 3.8 Principle operation of the proposed capsule as it is making it way 

through the small intestine. 

 

To overcome this problem, our proposed capsule adopts a scanning approach in which two 

MPPCs and  LEDs are placed in the sides of the capsule, so that the MPPCs will be at the 

same distance away from the targeted sample throughout the small intestine. The same 

concept is applied to the LEDs which are situated next to the MPPCs and will be at the 

same distance from the intestinal wall all the time. Shown in Figure 3.8, an illustration of 

the capsule and the operation principle of the scanning approach that is adopted.  
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3.5  ASIC main building blocks: a review 

3.5.1  Charge pump: a review  

Since the discovery of electricity, generating a high voltage supply from an available low 

voltage supply has been desired for many applications. The first attempt to accomplish this 

was carried out by the British physicist and chemist Michael Faraday in 1831. For this 

purpose, he used electromagnetic induction and transformers [71].  This invention was 

later adopted by many scientists and inspired numerous techniques to improve the basic 

transformer design, and thus generate high voltages with high efficiency. However, a 

transform only works with an alternating input voltage source, whereas, quite often, 

electronic circuits require DC supply voltages. Therefore, the AC output voltage generated 

from the transformer is converted to a DC voltage using a rectifier circuit. However, 

generating a high DC voltage through use of a transformer and rectifier increases the 

complexity of the circuit and it can become very large, heavy and inefficient. This is 

especially inconvenient in applications where small size is important. Furthermore, for 

applications which use a DC voltage source as the primary supply ( i.e. battery), 

transformers are useless. This is also true for other kinds of transformers that requires an 

AC input supply such as piezoelectric transformers (PZT) [72].  

In this work, where the power supply is a DC source, a DC-DC converter is used to 

convert the DC input voltage (Vin = 3 V) to more than 72 V (DC), and to deliver more than 

70 μA which is required to operate the MPPC. As the power supply is limited, it is very 

critical for the DC-DC converter to achieve high efficiency as much as possible ; in a 

recent publication where Vout has a gain of 20, the converter has achieved more than 35% 

efficiency [73].  One type of  DC-DC convertor that can achieve high gain and high 

efficiency is  called a boost converter, which requires at least two semiconductor switches 

(a diode and a transistor) and at least one or two energy storage elements (inductors) for 

one stage to be implanted. However, for such device to be integrated in a CMOS chip, the 

breakdown limit imposed by the technology will dictate the number of stages required. 

Therefore, the number of inductors will increase as the number of stages increases. For this 

reason, boost DC-DC converters are usually implanted off chip especially for applications 

where there is no restrictions on space [74, 75]. Another type of DC-DC converter is 

known as a charge pump; in which a capacitor is used as a storage element. Unlike 

http://en.wikipedia.org/wiki/Semiconductor
http://en.wikipedia.org/wiki/Diode
http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/Inductor
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inductors that are used in the boost converters, capacitors uses less area whether 

implemented on chip or off chip which is a good advantage especially for the capsule 

application where area is very limited [76]. Therefore, the charge pump was adopted in this 

work to supply the high bias voltage for the MPPC.  

3.5.1.1 Dickson Charge pump 

The first type of charge pump was implemented by the Swiss physicist Heinrich 

Greinacher. He was the first to propose a circuit capable of converting a low DC input 

voltage to a high DC output voltage. This was achieved by cascading stages consisting of a 

diode and capacitor in series. This method was later adopted and used by Douglas 

Cockcroft and Ernest Thomas Walton to generate 800 kV volts. This high voltage was 

used by them to power their particle accelerator. They used this accelerator for 

investigations into subatomic physics and helped them, in 1951, to win the Noble Prize for 

Physics for their research entitled ”Transmutation of atomic nuclei by artificially 

accelerated atomic particles”. The 800 kV was generated by multiplying the 200 kV 

generated from a transformer by a voltage multiplier that used an elaborate stack of 

capacitors connected by diodes acting as switches [77]. 

 

Figure title: Cockcroft  Walton circuit 

 

 

Figure 3.9 Cockcroft  Walton multiplying circuit principle of operation. φ and φb  

correspond to the switch phases.   

 

The Cockcroft Walton multiplying circuit is shown in Figure 3.9. Three capacitors, CA, 

CB and CC are connected in series. Capacitor CA is connected to the supply voltage VDD. 

Capacitor C1 is connected to CA by a switch which can be practically implemented by a 

diode. When phase φ is on it is charged to voltage VDD. During phase φb, the charge in C1 

will be shared with CB and the same amount of charge, proportional to VDD/2, will be 
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stored in each capacito if they are equal. In the next cycle, C2 and CB share a charge 

proportional to VDD /4, while C1 is once again charged to VDD. If this operation is continued 

for several cycles, charge will transfer to all capacitors until the voltage at the output node 

reaches 3 VDD. This principle can be easily extended by adding more capacitors and 

switches so that any multiple of the supply voltage, VDD, may be achieved. 

 

A practical implementation of the Cockcroft Walton multiplier is shown in Figure 3.10. 

In this configuration it is very important to note that, because the coupling capacitors are 

connected in series, efficient multiplication will occur only if the coupling capacitors (C) 

are much greater than the stray capacitances (Cs). Therefore, this configuration is always 

implemented with discrete components, where sufficiently large capacitors can be 

employed. When implemented in monolithic integrated form, the Cockcroft Walton 

multiplier becomes somewhat inefficient due to the large (compared with the lumped 

capacitances) stray capacitance at the nodes of each stage. Consequently, the efficiency of 

the multiplier is degraded. Furthermore, the output impedance increases rapidly with the 

number of multiplying stages [77, 78]. 

 

Figure title: Implementation of Cockcroft  Walton circuit 

 

 

 

Figure 3.10 Implementation of Cockcroft  Walton multiplying circuit using diodes. 

 

To overcome these limitations, an alternative charge pump topology which is more suited 

to monolithic integration was proposed by John F. Dickson [78]. The introduction of the 

Dickson charge pump has made it possible for circuits that operate with both high and low 

supply voltages to be implemented on the same chip and to share the same primary power 

supply. Furthermore,  the continuous scaling down of IC technology has increased the 

demand for the charge pump to be employed in a vast variety of integrated systems such as 
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operational amplifiers, voltage regulators, switched capacitor circuits, SRAMs, LCD 

drivers, piezoelectric actuators, RF antenna switch controllers etc [79]. 

 

Figure title: Dickson charge pump. 

 

 

 

Figure 3.11 Implementation of the Dickson charge pump using diodes. 

 

Figure 3.11 shows the first implementation of the Dickson charge pump. It operates in 

the same manner as the Cockcroft Walton multiplier. However, unlike the Cockcroft- 

Walton multiplier, the coupling capacitors are connected in parallel to the diode nodes 

instead of in a series configuration. Capacitors in a parallel configuration have to withstand 

the full voltage at the end of each node which implies a limit to the maximum voltage 

equal to that imposed by the capacitor fabrication process.  

To understand the behaviour of the Dickson charge pump, let us first consider the ideal 

one-stage configuration shown in Figure 3.12 which consists of a boosting capacitance 

(C), two switches (S1 and S2) and a clock signal with an amplitude equal to the power 

supply VDD. During the first half period (0 to T/2), S1 is closed and S2 is open, therefore, C 

will be connected to the power supply (Vin) and is charged to VDD. In the second half 

period (T/2 to T), the switches change their positions and the charge stored in C will be 

transferred to the capacitive load, CL. Thus, the ideal output voltage is given by [79]  

 

L

DDout
CC

C
VV


 2                                                        3.4 

 

The presence of the load capacitor (CL) will reduce the amount of the output voltage. If a 

load resistance (RL) is added to the output, a ripple voltage VR will be generated at VOUT, 

as we will see later. 
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Figure title: Dickson charge pump. 

 

 

Figure 3.12 Ideal one-stage of a Dickson charge pump. 

 

Based on the explanation of the ideal charge pump, the operation and analysis of the 

Dickson charge pump is illustrated in Figure 3.13 [77, 80], which shows the typical 

waveforms of n-stage multiplier. The charge pump being illustrated is a practical 

implementation of the Dickson charge pump. The diodes are replaced by diode-

connected MOS transistors. The problem with using diodes is that in most semiconductor 

processes, isolated diodes are not available. Therefore, diode-connected  MOS transistors 

are used instead of diodes [78, 81].  

 

As we can see in Figure 3.13, φ and φb are non-overlapping clocks with amplitude Vφ 

and are coupled via capacitors. For optimum performance, the clocks have to be generated 

by a low impedance source. The voltage at subsequent nodes is increased by pumping 

charges during the first half of the clock cycle and then discharging during the next half of 

the clock cycle. The coupling capacitors along the chain of the diode-connected transistors 

build up the voltage potential at every successive stage of charge pump. The difference in 

the voltage potential of two successive nodes is given by [79] 

thnn VVVVV  

,

1                                                    33.5 

 

where, Vth is the threshold voltage of Tn, 
,

V  is the voltage swing at each node due to the 

capacitive coupling from the clock which can be given [79] 
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When the clock φ is low, and assuming clock period is sufficient enough to fully charge 

the coupling capacitors, the first transistor T0 is on and therefore the Capacitor C1 is 

charged up until the voltage potential at node 1 is settled at VDD - Vth. At the next cycle of 

the clock, when φ changes its state to high, the voltage potential at node 1 will increase to 

[79] 

 

 thDD VVVV 
,

1                                                         3.7 

 

 

Figure title: Dickson charge pump operation 

 

 

Figure 3.13 Internal waveforms of Dickson charge pump. 

 

 

During the time the clock is low, transistor T1 is off, and therefore the charge on C1 is 

transferred to C2 until the voltage potential at node two becomes [79] 
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  ththDD VVVVV 
,

2                                                   3.8 

 

After that, when the φ becomes high, the C2 is charged up by Vφ, and the voltage potential 

at node 2 is given by [79] 

 

 thDD VVVV 
,,

2 2                                                     3.9      

 

This operation continues for the N-stages. As the voltage rises at each stage, the maximum 

output voltage that the charge pump can achieve is limited by VDS,VBS of the transistor Tn 

and the dielectric breakdown voltage of the capacitor Cn. The value of these parameters   

varies according to the CMOS process used as we will see in next chapter. The final output 

voltage can be calculated as [79] 

 

 ththDDout VVnVVV 
,

                                                 3.10                                                    

 

This equation is for calculating the output voltage in an ideal situation when the charge 

pump is not connected to output load. However, when the charge pump is connected to a 

load, an output current Iout is delivered by the pump and a voltage drop Vdrop is developed 

at each stage  due to this current and is given by  [80, 82] 

 

  fCC

I
V

S

out
drop


                                                                3.11 

 

where, f is the frequency of the clocks φ and φb. The previous equation implies that the 

output voltage for N stages can be reduced by [79] 

 

  fCC

IN
V

S

out
drop




                                                             3.12 

 

The output voltage then can be rewritten as 
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where Vout is the maximum DC voltage at the last node, n. Using the equation above, we 

can start designing a charge pump that can specifically deliver the required 72 V output 

voltage at 70 µA current that are needed for biasing and operating the Multi-Pixel photon 

Counter (MPPC). 

 

The output voltage at the last node, where a capacitive load (CL) is connected, tends to 

experience a ripple effect once a resistive load (RL) is connected to the output node. This 

happens each time transistor Tn+1 is turned off when φb is low, and allows RL to discharge 

the load capacitor CL.  When φb goes high, Tn+1 is turned on and CL will be charged up 

again. The continuation of this operation will give a rise to a very important aspect of the 

charge pump known as charge pump ripple. This is denote as VR and can be represented as 

[79] 
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out
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out
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V





                                                      3.14 

 

The ripple is generally considered as noise which affects the operation of the loading 

circuit e.g. operational amplifiers, voltage regulators, switched capacitor circuits, SRAMs, 

LCD drivers and of course, the MPPC as in our case. Therefore, the amplitude of VR 

should be kept as small as possible. As can be seen from equation 3.14, the most 

straightforward way of keeping the ripple small is by increasing the clock frequency of the 

charge pump. Increasing the size of the capacitor also has a great impact on reducing the 

ripple. However, we should remember that the greater the load capacitor, the greater the 

drop voltage Vdrop at the output. Increasing the frequency also has an effect on the 

efficiency of the pump as we will see later in this chapter. Therefore, with a good balance 

between the size of the load capacitor and the clock frequency one can achieve a 

reasonable ripple. After all, the effect of the ripple depends on how sensitive the loading 

circuit is to variation in its DC supply. 
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3.5.1.2 Voltage doubler 

Another type of charge pumps is a crossed-coupled voltage doubler [83]. Shown in 

Figure 3.14 is a schematic of a voltage doubler that is capable of producing 2 VDD at the 

output node. The basic operation of the charge pump depends on the non-overlapping VDD 

peak to peak clocks φb and φ. The clocks charge the capacitors C1 and C2  successively to 

produce a shifted clock alternating between VDD and 2 VDD at nodes A and B. The two 

outputs of the voltage doubler are then passed by the two PMOS transistor (M3 and M4),  

which are finally accumulated at the load capacitor CL and generate a DC voltage equal to 

2 VDD. Despite the fact that NMOS transistors provide higher carrier speed than that 

offered by the same size PMOS transistors, the PMOS transistors are used mainly to avoid 

the Vth drop at each gate of the NMOS transistors [84]. 

Figure title: Voltage doubler 

 

 

Figure 3.14  Conventional configuration of a voltage doubler. 

 

 

In order to double the generated voltage by the voltage doubler, another voltage doubler is 

cascaded by directly connecting the output voltage of the first doubler to the input voltage 

of the second doubler. However, a different way of cascading the voltage doublers can be 

used to reduced the number of used components as shown in Figure 3.15 [85]. In this 

configuration the second voltage doubler inputs are connected to nodes VA and VB  of  
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Figure title: Two voltage doublers 

 

 

Figure 3.15 Area efficient dual voltage doubler. 

 

the first doubler. The capacitors of the second voltage doubler (C3 and C4) are charged by 

clocks alternating between 0 and 2 VDD from inv.3 and inv.4 and the 2 VDD clocks that are 

passed by M7 and M8. This generates voltages at node VC and VD that alternate between 

2 VDD and 4 VDD which are then passed to the load capacitance CL to generate a DC 

voltage equal to 4 VDD. 

 

3.5.2  Transimpedance amplifier (TIA) : a review 

In systems where photon sensing is taking place, the generated current from light detectors 

such as photodiodes and APD are generally small and most of the subsequent processing 

occurs in the voltage domain, thus it needs to be converted into voltage. MPPC as all other 

single-photon avalanche diodes (SPAD‟s) can operate in two modes: voltage-mode where 

voltage signals can be directly read out of the device, and as any photodetector device the 

MPPC can be operated in current mode where current signals needed to be converted to  
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Figure title: Current to voltage converter 

 

a. 

 

b. 

 

 

Figure 3.16 a. Simple resistive optical front-end for a photodetector device  b. 

equivalent circuit of configuration in a. 

 

voltage signals.  A disadvantage of the voltage mode output is that the timing performance 

is not fully exploited [58]. So, operating the SPAD in current-mode is preferred, especially 

if their avalanche current is very small such as the case of the MPPC. However, some 

SPADs do not require current to voltage conversion and can be operated directly in voltage 

mode where the timing performance is still preserved. Theses SPADs are usually biased 

with very high basing voltage as high as 400 V and with excess voltage more than 20 V 

can produce a significant avalanche current that can reach up to 100 mA [86]. For the 

MPPC it is recommended by the manufacturer to operate it in current mode. Operating in 

current mode requires a current to voltage converter, or as known as a Transimpedance 

amplifier (TIA) that is capable of converting and amplifying the avalanche current signals 

generated by the MPPC. The TIA should be capable of capturing and amplifying the 

10 MHz signal produced by the MPPC and produce a significantly large signal that can be 

processed afterwards.   

 

TIAs are widely used as a sensor interface unit in the front-end of many optical systems 

that require current sensing at the input and a useful voltage at the output. The simplest 

optical front end that can convert current to voltage can be achieved by a using a simple 

resistor which is connected to the anode of the photodetector, as shown in Figure 3.16.a. 

This circuit configuration has a Transimpedance gain equal to RL, and has a time constant 

equal to 
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dL CR                                                                  3.15 

 

where, RL is the resistance of the resistor connected and Cd is the terminal capacitance of 

the light detector. The small signal equivalent circuit of this configuration is depicted in 

Figure 3.16.b. The value of  τ is proportional to the bandwidth of the I-V convertor 

which is given by 

 

dL

db
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f



2

1
3                                                          3.16 

 

Having the terminal capacitor of the light detector fixed, the bandwidth of the TIA is 

therefore a trade-off with the gain of the TIA. In the case of the MPPC, where the terminal 

capacitance is equal to 37 pF, in order to achieve a gain of 2 kΩ, the bandwidth of the TIA 

will be restricted to 2.15 kHz which is clearly not sufficient to capture the 10 MHz pulses 

generated by the MPPC [67]. 

 

 

Figure title: Amplifier-based TIA 

 

 

 

Figure 3.17  Schematic of an amplifier-based TIA. 

 

Due to the incapability of the simple resistor I-V convertor to achieve higher bandwidth 

and high gain at the same time, the TIA is chosen to be used instead. Most of TIAs can be 

categorised into two main categories; a voltage amplifier-based TIA and a common gate 

input TIA. The voltage amplifier-based TIA shown in Figure 3.17 has been developed to 

relax the trade off relation between the gain and the band width that strongly exists when 
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using a simple resistor to convert the current to voltage. The use of an amplifier with a 

feedback resistor introduces the amplifier gain-bandwidth product (GBW) to the 

bandwidth equation, which can be given by[87]   
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f
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2
3                                                         3.17 

 

In addition to expanding the bandwidth, when integrated with digital processors, the 

amplifier-based TIA provides great immunity from power supply noise, substrate bounce 

and substrate coupling form adjacent digital circuitries [87].   

   

Alongside the challenges in having to achieve a wide bandwidth; designing a TIA involves 

challenges such as achieving high gain, wide input dynamic range and low noise. Theses 

factors are a trade off with the bandwidth of the TIA. Managing a high gain, low noise and 

high input dynamic range is always at the expense of the bandwidth of the TIA. This 

relation is clearly presented especially in CMOS technology which is inherently slower in 

speed and higher in noise when compared with other technologies such as GaAs, InP-based 

(Heterojunction Bipolar Transistors) HBT and High Electron Mobility Transistor (HEMT) 

[88, 89].  Designing a TIA for optical devices that have a large terminal capacitance can be 

especially difficult due to the effect of the capacitance on the bandwidth such as the 37 pF 

terminal capacitance of the MPPC. The terminal capacitance of devices optical devices can 

vary from one device to another and therefore the maximum Transimpedance gain and 

bandwidth will vary as well. Table 3.2 summarises a list of some recent work in literature, 

along with their terminal Ct, bandwidth and gain. It is seen that how the terminal 

capacitance of the optical devices affects the bandwidth of the TIA. 

  

Table 3.2 TIAs fabricated in different CMOS technologies 

 

Parameter  
 

[90] 

 

[91] 

 

[92] 

 

[93] 

Bandwidth 30.5 GHz 7 GHz 9 GHz 860 MHz 

Gain 51 dBΩ 55 dBΩ 54 dBΩ 58 dBΩ 

Optical device terminal 

capacitance  

50 fF 0.2pF 0.5pF 1pF 

CMOS Technology  0.18-μm 0.18-μm 0.18-μm BiCMOS 0.6-μm 
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Figure title: Common-gate TIA 

 

 

Figure 3.18 Configuration of a common-gate TIA. 

 

This problem can be solved or at least eased by further more expanding the bandwidth of 

the TIA, this is achieved by using the common gate input TIA shown in Figure 3.18. This 

type of TIA is designed to decouple the light detector terminal capacitance from the 

feedback resistor, and therefore decrease the influence of the terminal capacitance on the 

bandwidth of the TIA [87]. This concept is improved and expanded by using a regulated 

cascade (RGC) TIA which is an improved version of a common-gate configuration, with 

active feedback instead or passive feedback. This active feedback  provides an lower input 

impedance than the simple common-gate TIA does [91].  

 

Figure title: RGC TIA 

 

 

Figure 3.19 Regulated cascade (RGC) TIA. 
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In this work we propose a low impedance-high gain TIA which is developed based on the 

conventional RGC. It is capable of accommodating the 37 pF large capacitance of a MPPC 

while maintaining a relatively wide bandwidth and high gain at the same time. The RGC 

TIA configuration, shown in Figure 3.19 has been used in some TIAs design [91, 93, 94] 

and is used as a backbone for our TIA design that will be discussed in Chapter 5. The 

RGC configuration enhances the effectiveness of the small Transconductance gm of the 

MOS transistor which, results in reducing the input impedance that can make the amplifier 

at the input node sit at virtual ground. This relation between the impedance and the gm 

helps in relatively isolating the influence of the terminal capacitance of the MPPC from 

degrading the TIA bandwidth [87]. 

 

3.6  Summary  

This chapter has reviewed the design of existing diagnostic pills. A pill smaller than  

50 mm in length and 16 mm in diameter is estimated to host the  wireless sensor system 

that is capable of detecting autofluorescence emission variations. A key component of this 

pill is an ultra sensitive light detector. Based on a comparison of existing sensitive light 

detectors that are capable of detecting autofluorescence emission, the MPPC device was 

chosen to be incorporated into the pill. The MPPC has a high photon detection efficiency, 

~60% at 520 nm, which makes it suitable to detect the autofluorescence emission spectra 

(500-700 nm). The other main components of the pill were determined based on the MPPC 

requirements for operation. The MPPC device requires a very high voltage generator that 

can produce more than 72 V and deliver more than 70 µA. Based on a review of existing 

voltage converters, a Dickson charge pump voltage converter was chosen to convert the 

3 V (DC) which is supplied by two SR44 (1.55 V, 165 mAh) to more than 72 V. The other 

component that is required to operate the MPPC is a TIA that is capable of capturing the 

1μA peak-peak, 10 MHz pulses generated by the MPPC.  The charge pump and the TIA 

are to be integrated in the same AISC. In order for the pill to operate for 9 hours, which is 

the time required for the pill to traverse the small intestine, the maximum power 

consumption of the entire capsule has to be less than 28.4 mW. A literature review of the 

charge pump and the TIA was presented as an introduction to the design and implantation 

which is to be discussed in chapter 4 and 5. 
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4.1 Introduction  

Based on the literature review of the existing charge pump topologies that was presented in 

the previous chapter, the design of a very high voltage charge pump that can generate more 

than 72 V is discussed. This chapter begins with a section that contains: 1) the design the 

Dickson part of the charge pump, 2) the design of the high voltage clock generator part of 

the charge pump and 3) the design of the final charge pump which consists of 5-cell where 

each cell is a combination of a Dickson charge pump and a high voltage clock generator. 

This is followed by detailed evaluation measurements of the charge pump part of the 

ASIC.   

 

4.2  Designing a charge pump in AMS H35 process 

The first step towards designing a charge pump is to determine the technology that will be 

used. Since the first integration of the Dickson charge pump into a chip, CMOS technology 

has been the technology of choice for many designers. Depending on the targeted output 

voltage, designers will choose between standard CMOS technology [78, 82, 95] or High 

voltage CMOS technology [73]. Advanced technologies may have a capability greater than 

that of some commercially available technologies. However, choosing the most advanced 

technology is not always the best solution as the final product can be very costly to 

produce. In our case, we are interested in a commercially available CMOS technology that 

can handle and produce the desired very high voltage that is needed to bias the MPPC. For 

some considerations, that we will explain later in this chapter, the high voltage process 

AMS H35 provided by Austriamicrosystems has been chosen for designing the ASIC. 

Moreover, by using this technology, integrating the low voltage front end and the high 

voltage charge pump is possible.       
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According to the data sheet provided by Hamamatsu Co. the MPPC is best biased at 72 V 

for operation at 37 
o
C ambient temperature - which is the typical body temperature in 

which the capsule will be working. Using equation 4.7, and by assuming the ideal case 

where  
,

V  is equal to V  and Vth is neglected, the number of charge pump stages can be 

estimated. Thus, if we assume that the peak voltage swing of the clock is equal to 3 V, we 

need a charge pump that consists of 23 stages. 

 

Implementing these stages by using NMOS transistors in a standard CMOS technology 

encounters two main obstacles. The first one is the restriction on the maximum operating 

voltages of the transistors. In particular, the bulk source voltage VBS increases with each 

stage of the charge pump. This places a limit on the number of stages and the operating 

points which are possible. The second obstacle is the maximum  voltage the capacitors, in 

the particular CMOS technology used, can safely have applied across their plates [78]. 

Consequently, there is a limit on the voltage that can be generated using the standard 

Dickson topology with the standard CMOS technology. However, this limitation can be 

overcome by extending the breakdown limits beyond the standard values by means of a 

transistor stacking technique as described in [96] or by using extend-Drain NMOS as in 

[97] that extends the breakdown voltage limits by placing the N-type source/drain (NSD) 

implants inside larger N-well geometries. The N-well diffuses outward to produce a very 

lightly doped drain capable of withstanding high voltages. 

 

Another way to overcome the limitation of the breakdown voltage between the bulk and 

the source is by using diode connected PMOS transistors. In this way the bulk is connected 

to the source, and therefore the voltage potential between the two terminals is always zero 

[85]. The isolation provided by the n-well of the PMOS transistor confines the voltage bias 

that develops at the bulk terminal to the n-well of the PMOS, However, PMOS transistors 

are not a good choice to be used for charge transfer tasks. PMOS transistors make use of 

holes instead of electrons as the majority carriers. PMOS transistors are inherently slower 

because they rely on holes which have two to three times lower mobility than 

electrons [98]. Hence designers focus their efforts on designing charge pumps with diodes 

or diode-connected NMOS transistors [73, 99, 100]. However, these solutions can only 

extend the breakdown limitations by a few extra volts. Another solution that has been 

adopted in this work to overcome the VBS breakdown limitations is using the triple well 

CMOS process [100, 101]. The great advantage of the latter solution is to tie the bulk to 
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the source and thus set VBS always to zero while other breakdown limitations can be 

extended up to 400 V in some CMOS processes [102].  

 

The high voltage H35 process provided by AMS is one of these multi-well technologies. 

Therefore, it was chosen to design the ASIC that includes the charge pump. It has in its 

library a variety of isolated NMOS transistors that are suitable for our purpose. An 

NMOSIT20 (Isolated HV (20 V) Thin-oxide N-channel MOS ) has been chosen to be used 

as a diode-connected transistor. This transistor can withstand a potential voltage of up to 

22 V between the source and the drain. This will allow to use a very high voltage clocks 

and therefore increases the efficiency of the charge pump as we will see later in this 

chapter. The high voltage transistors in high voltage CMOS technologies are obtained by 

creating a diffused p-type channel in a low-doped n-type drain region. An example of such 

a transistor is the NMOSIT20. The source of the NMOSIT20 is implanted in RPWELL 

(shallow PWELL + deep PWELL) which is diffused in a low doped deep NWELL. The 

low doping in the drain side results in a large depletion region with a high breakdown 

voltage [96].  

Figure title: NMOSI20 diode characteristics 

 

 

Figure 4.1 I-V Characteristics of the internal diode of the NMOSIT20.  

 

The NMOSIT20 transistor is configured in a different way to that of the normal transistor 

to create a diode-connected transistor. In low voltage NMOS transistors, the gate is 

connected to the drain of the transistor to make a diode-connected configuration. However, 
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in the high voltage case, where the transistors are more bi-directional, the gate of the 

NMOSIT20 is connected to the source of the transistor and the source is connected to the 

bulk. This configuration has three advantages over the conventional configuration: 

 

 Connecting the source to the gate overcomes the VG-SB breakdown limit imposed 

by the technology - typically 3.6 V. 

  This configuration increases the current driveability of the charge pump when 

compared with low voltage diode-connected transistors-especially at high voltage 

biasing. The I-V characteristic of the diode-connected transistor when forward 

biased is shown in Figure 4.1. The diode thus formed is able to transfer very high 

current > 100 mA at 20 V bias. This diode like characteristic is attributed to the P-

N junction developed between the shallow p-well of the transistor and the deep- n-

well.  

 Connecting the source to the body eliminates the impact of the body effect on the 

Dickson charge pump. The threshold voltage of the diode-connected NMOS 

transistor is increased proportionally as the voltage developed between the source 

and the bulk increases at each stage. The threshold voltage of a NMOS transistor is 

represented as  

 

 sSBsthth VVV   0                                       4.1 

 

Where φs is the surface potential at the threshold, γ is the body effect coefficient 

and Vth0 is the zero-bias threshold voltage. When the body and the source 

terminals of the NMOS transistors are connected, the threshold voltage Vth is kept 

constant at Vth0  (see equation 4.1). On the other hand, if the bulk is connected to 

ground as is the case with single well CMOS processes, the value of the threshold 

voltage will grow as VBS grows which consequently increases the Body effect of 

the transistor and can seriously diminish the charge pump performance [80]. 
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Figure title: Dickson charge pump 

 

 

Figure 4.2 Implementation of Dickson charge pump using NMOSI20. 

 

The final implementation of the Dickson charge pump is shown in Figure 4.2. Based on 

the technology that has been chosen for implantation in this project and the transistor to be 

used as diode is known, equation 3.10 can be used to estimate the practical number of 

stages needed to produce the required 72 V can be estimated more accurately. From 

Figure 4.2, it can be found that the diode voltage VD is 0.46 V. Thus, the degradation of 

the transferred voltage caused by VD at each stage results in an overall loss of 10.6 V. The 

loss caused diode-connected NMOSI20 will henceforth be referred to as VD instead of Vth 

and the device will be referred to as diode. This can be related to the fact that we are 

actually using the internal diode that is formed between the shallow p-well of NMOSIT20 

and the deep- n-well when the device is configured as mentioned previously.    

Figure title: Dickson charge pump 

 

 

Figure 4.3 Simulated results of a 28 –stage Dickson charge pump. 
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Furthermore, another source of loss in the amount of transferred voltage at each stage is 

caused by the stray capacitors Cs. Unlike the loss caused by VD, this loss is difficult to 

estimate as the stray capacitors and their value varies depending on whether the coupling 

capacitors are integrated or off-chip  [77].  Therefore, in order to obtain a rough estimate of 

the number of stages needed to generate the 72 V, the loss caused by Cs will be neglected 

for the time being. In order to compensate for 10.6 V loss, 5 extra stages are added and the 

total number of stages is raised to 28. 

 

The charge pump shown in Figure 4.2 was implemented using 28-stages and then 

simulated using the Spectre tool provided by Cadence. The Spectre tool runs the AMS 72.0 

Hit-kit provided by Austriamicrosystems. This Hit-kit is the high voltage Hit-Kit that 

contains the BSIM4 model of the NMOSIT20. Using this advanced model of the 

NMOSIT20 device enables accurate simulations of the expected performance of the charge 

pump circuit. Furthermore, this hit-Kit has a vey important feature known as Safe 

Operation Area Check (SOAC). This feature helps the designer to make sure that that 

he/she is operating the high voltage devices in the safe operation. If the safe operating area 

is exceeded, warning messages are given. 

 

The simulated output voltage is shown in Figure 4.3. With no resistive load, the charge 

pump produces 69.6 V - which is close to the target value. The 2.4 V loss is mainly 

attributed to the parasitic resistance and capacitance in each transistor as defined by the 

BSIM4 model of the NMOSIT20 transistor which is provided by Austriamicrosystems 

(AMS).  

 

Figure title: Improved charge pump 

 

 

 

Figure 4.4 Charge pump with four-phase clock scheme.   
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The degradation caused by VD at each stage can be avoided using a common technique 

called four-phase clocking. In this technique a four-phase clock is used to cancel the VD 

effect and therefore allow full transfer of charge between stages. This can be achieved by 

introducing additional bootstrapping circuits on the gate of the diode connected transistor 

and clocking the whole circuit using a four clocking scheme instead of two as shown in 

Figure 4.4 [103]. However, adding extra circuitry to the design means additional routing 

area for new clocks and the new transistors which can result in doubling the size of the 

charge pump. This technique is more effective for low voltage charge pumps. 

 

The VD degradation problem can be overcome efficiently by reducing the stages needed to 

produce the 72 V. This solution is based on the concept of using a very high amplitude 

clock signal design. By increasing the amplitude of the clock, the number of stages 

required will decrease dramatically. More importantly, increasing the clock amplitude 

increases the efficiency of the charge pump.  

 

4.2.1 Dickson charge pump power efficiency 

The power efficiency of a charge pump is one of the important characteristics of the charge 

pump that should be taken into consideration when designing and implementing a charge 

pump. For efficiency purposes, the Dickson circuit can be modelled by the simple 

equivalent circuit shown in Figure 4.5. In addition to the losses caused by the diode 

voltage VD and the presence of the stray capacitors, the power efficiency of the charge 

pump is also affected by the losses of the output series resistance of the charge pump Rs.  

 

Figure title:  Charge pump model 

 

 

 

Figure 4.5 Equivalent representation of a single pump stage. 
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This loss can be calculated from equation 3.12 by dividing the drop voltage Vdrop at one 

stage by the output current delivered to RL. 
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Another source of loss which also appears when current is delivered to the load is 

attributed to the equivalent resistance of the diode. By adding this resistance to equation 

4.2, the series resistance, Rs becomes 
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Where, Req is the resistance between the source and the drain of the diode. A single stage 

of the charge pump can be represented as Rs connected with the boosting capacitor as 

illustrated in Figure 4.5. From the simulated I-V curve (Figure 4.1), the Req that 

represents the internal diode of the NMOSIT20 can be given by 
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For N stages, Rs becomes 
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By modifying equation 3.13 to add the extra loss which was introduced by  Req to Rs, the 

total output voltage is given by 
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The presence of Rs at each stage affects dramatically the efficiency performance of the 

Dickson charge pump. The greater the number of stages used, the greater the charge pump 

efficiency is degraded. This power efficiency  can be calculated as [84, 104] 
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Where,  
___

outV , 
___

oI ,  
___

DDV , 
___

inI , are the mean values of  Vout,  Io, VDD,   Iin.  The equation above 

has been used to calculate the efficiencies of the charge pump shown in Figure 4.2 for 

different numbers of stages. Figure 4.6 shows the results of simulations of power 

efficiency of the Dickson charge pump versus the number of the pumping stages and 

shows clearly that the power efficiency drops in proportion to the number of stages.  

 

Figure title:  Power efficiency 

 

 

Figure 4.6 Simulated Power efficiency of Dickson charge pump decreases 

proportionally as the number of pumping stages increases. 

 

By inspecting equation 4.3, we can see that three parameters can be used to reduce the 

value of Rs and, consequently, improve the efficiency of the charge pump.  The first 

parameter is the boosting capacitor C. the larger the capacitor the smaller is the value of Rs. 

This is also true for the stray capacitor. Ironically, according to equation 4.3 the larger 

the value of the stray capacitor, the more it contributes in improving the charge pump 
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efficiency. Nevertheless, it has the opposite effect with the amplitude of the clock signals 

as in equation 3.6. Therefore, it is always recommended the stray capacitances are kept 

as low as possible. The second parameter is clock frequency. As the clock frequency is 

increased, the series resistance, Rs, decreases. Another very important parameter, as 

discussed in the previous section, is the clock amplitude. Increasing the amplitude of the 

clocking signals φ and φb reduces the value Req of the diode. Req is inversely proportional 

to the value of VDS as in equation 4.4. In addition to decreasing the value of Rs, 

increasing the amplitude of the clocking signals will result in an overall  reduction in the 

number of pumping stages needed to generate the targeted high voltage which 

consequently yields a lower overall equivalent charge pump series resistance. Furthermore, 

a lesser number of stages yield a lower overall voltage drop.     

 

4.2.2  High Voltage non-overlapping voltage generator 

For optimum functioning, the charge pump requires a non-overlapping clock generator. 

For the two phases Dickson charge pump shown in Figure 4.2 two clocks generator is 

commonly used which is able to generate the two clocks form single clock input. In this 

type, one clock is used as a clock source and its inversion is used as another clock source. 

The non-overlapping clock generator is shown in Figure 4.7. The operation of this circuit 

is based on the fact that the falling edge of the input clock passes immediately through the 

NAND gate ND1. In contrast, the inverted clock in the other branch has to first pass 

through a passive delay element to the other NAND gate, ND2, and then to the delay 

elements. The passive delay element, consisting of a NMOS and PMOS transistor, is used 

to compensate for the delay that is caused by INV1, so that symmetric cocks are provided 

to ND1 and ND2.  The other delay elements consist of an even number of inverters.  

Figure title:  Clock generator 

 

 

Figure 4.7 Single-clocked clock generator.  
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It is essential for the clocks which operate the charge pump to non-overlap, so the charge 

transfer of the clock is even at each stage. Overlapping clocks will result in a truncated 

charge transfer in one stage and a longer period of transfer in the next one. This affects 

dramatically the charge pump efficiency - especially if clock time periods are short. The 

operation of this circuit has been simulated and the generated non-overlapping clocks are 

shown in Figure 4.8. 

 

Figure title:  Non-overlapping clock  

 

 

Figure 4.8  Simulated non-overlapping clocks. 

 

 

In order to increase the amplitude of the non-overlapping clock produced by the clock 

generator, a clock booster is required. The voltage doubler proposed by [83]  has been used 

for this purpose. As shown in Figure 4.9, a high voltage clock generator is based on a 

voltage doubler. This circuit consists of two cross-connected NMOS transistors. The use of 

NMOS transistors has two desirable features: the first is the higher carrier speed and the 

second advantage is that the NMOS transistors provide a an automatic reverse bias of the 

junctions [84]. Since the low voltage NMOS transistor can not be used due to its low VDS 

breakdown voltage, a high voltage transistor with high VDS break down voltage is used. 

Unfortunately, the NOMOSIT20 lacks the feature of the automatic reverse bias of the 

junctions that exists in normal voltage NMOS transistors. This means that the source and 

the drain of the transistor are not interchangeable. This feature is essential for cross 

connecting transistors to act like switches. Therefore, in order to overcome this obstacle a 

symmetrical high voltage transistor available in the AMS library NMOS20HS (HV (20V) 
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symmetrical Thick-oxide n-channel MOS) is used instead. However, it is important to note 

that the one-sided device has a significant size advantage over the symmetrical transistors 

[105]. The NMOS20HS demonstrates a symmetrical structure which gives it an advantage 

over the NMOSIT20 when it comes to using it as a switch. 

 

Figure title:  High voltage clock generator 

 

 

Figure 4.9 High voltage clock generator based on a voltage doubler [85]. 

 

 

The basic operation of the charge pump depends on the non-overlapping 3 V peak to peak 

clocks φ and φb generated by the clock generator shown in Figure 4.7 The clocks φ and 

φb charge the capacitors C1 and C2 successively to produce a shifted clock alternating 

between 3 and 6 V at nodes VA and VB. The two outputs of the voltage doubler are then 

connected as the power supply to inverters 1 and 2 in order to create a boosted clock that 

swings between 0 V and 6 V. 

The efficiency of the voltage doubler is mainly limited by the losses caused by the series 

resistance which develops at the sources of transistors M1 and M2 when current is delivered 

to the resistive load RL. From an efficiency perspective, the voltage doubler can be 

modelled as in Figure 4.10. Here, the effective series resistance of the voltage doubler, 

which will be denoted as R
‟
s in order to be distinguished from Rs of the Dickson charge 

pump, can be given by 
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Where C = C1 = C2 and The factor of 2 comes from adding the two capacitors in parallel. 

In the case when the boosting capacitors are integrated, the stray capacitor, Cs, is the total 

of the capacitance CTP that develops between the top plate of the boosting capacitor and the 

substrate in parallel with the capacitance CBP that develops between the bottom plate of the 

boosting capacitor and the ground. In the case of using external boosting capacitors, Cs is 

equal to output driver capacitance plus pads and board wiring parasitic capacitance. 

Figure title:  Voltage doubler model 

 

 

 

Figure 4.10 Voltage doubler equivalent circuit. 

 

The ON resistance that appears when the transistor is ON also contributes to the losses that 

can degrade the performance of the voltage doubler. The ON resistance is added to the 

series resistance thus 
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Where Ron is the resistance that appears between the drain and the source of the transistor 

when operating as a switch and is given by 
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Where μn is the charge-carrier effective mobility, W is the gate width,  L is the gate length 

and Cox is the gate oxide capacitance per unit area. By neglecting the effect of the high 

voltage inverters (inv. 3) and  (inv. 4) in Figure 4.9  which have insignificant drain 

capacitances,  the output voltages at nodes Hφ and Hφb according to the equivalent circuit in 

Figure 4.10, is given by 

 

 soutDDout RIVV '2                                               4.11         

 

                               

Accordingly, the smaller the series resistance R
‟
s, the more efficient is the voltage doubler. 

Therefore, in order to have an efficient voltage doubler, R
‟
s has to be kept as small as 

possible. As was the case with the Dickson charge pump, the main contributor to the losses 

is R
‟
s , as given by equation 4.8. This can be reduced by increasing the size of the 

boosting capacitor and the operating clock frequency. The more extended form of R
‟
s, 

which is given by equation 4.9 suggest that R‟s  can be also reduced by decreasing the 

value of Ron which is inversely proportional W/L ratio Ids of the device [106]. Therefore, 

small Ron is achieved by making the width W of M1 and M2 as large as possible. 

Furthermore, the value of Iout also determines the amount of voltage loss in the voltage 

doubler. As we will see in next section, for the 70 µA current to be delivered to the output 

load (Figure 4.13), the spectre simulator suggests that the width of the transistor should to 

be as large as 2000 µm with a length of 1.8 µm. 

Figure title:  Two stages high voltage clock generator 

 

 

Figure 4.11 Schematic of two stages high voltage clock generator. 
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Figure 4.12  Simulations of the non-overlapping high voltage clocks generated 

form two stages high voltage clock generator.  

 

The output voltage produced by the voltage doubler in Figure 4.9 can be furthermore 

doubled using another voltage doubler that can be cascaded with the previous one. A 

cascaded voltage doubler is shown in Figure 4.12. In this configuration the outputs of the 

first voltage doubler are connected to the bottom plate of C3 and C4. The supply voltage of 

this doubler is acquired by connecting the drains of M8 and M7 to the gates of M1 and M2 

respectively. Now, at this stage the cascaded voltage doubler can generate a voltage that 

alternates between 6 V and 12 V at top plate nodes of C3 and C4. These nodes are 

connected as supply voltage for the inverter (inv. 5) and inverter (inv. 6). The output of 

these inverters generates two non-overlapping clocks which alternate between 0 V and 

12 V in the ideal case. 
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From an efficiency point of view and according to equation 4.9, it can be noted that Ron 

at the second stage is less than that of the first. The decrease in Ron is attributed to the 

increase in the value of VGS. The threshold value VTH also contributes to the decrease in 

Ron through the body effect phenomenon mentioned earlier in this chapter. In addition, the 

increase in the value of VTH contributes in reducing the leakage current to the substrate - as 

will be shown later in this chapter.  

 

Based on the fact that Ron in the cascaded stage is less than that of the previous one, one 

can say that increasing the number of the cascaded stages will not greatly affect the 

efficiency as the number of stages grows. In fact the effect of that decrease in Ron 

becomes insignificant to the effect of the series resistance that is accumulated when more 

stages are added. The overall R
‟
s dramatically affects the efficiency performance of the 

charge pump. Therefore, this topology has been confined to two stages where it gives its 

best performance.  With no load at the output, the simulated output non-overlapping clocks 

generated from this topology are shown in Figure 4.13. The output clocks alternate 

between 0 and 9.42 V and can be calculated from  

 

 soutDDout RIVV '4                                              4.12 

 

Where R
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s becomes 
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Where, Ron (stage1) is the ON resistance of the high voltage transistors in the first stage and 

Ron (stage2) is the ON resistance of the high voltage transistors in the first stage of the 

cascaded high voltage generator. 

 

4.2.3  High voltage charge pump for MPPC biasing 

In previous sections we have discussed in detail the implementation of the Dickson charge 

pump and voltage doublers along with the efficiency issue that usually accompany 

designing any DC-DC converter. It has been seen that a high voltage non-overlapping 

clock generator is an option for improving the efficiency of the Dickson charge pump. In 
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this section we will discuss how we can implement an efficient very high voltage charge 

pump that is capable of biasing the MPPC.   

Figure title:  Single cell 

 

 

 

Figure 4.13 Proposed single cell which produces 9 VDD 

 

 

Up to this point, we have already decided on the topologies of the circuits to be used for 

our charge pump. The charge pump consists of two main parts; the high voltage clock 

generator that generates the non-overlapping clocks and Dickson charge pump that is 

responsible for the transference of the charge to the load. These two parts are connected to 

form a single unit which can be called a cell for convenience. The single cell is configured 

as shown in Figure 4.15 where the outputs of the high voltage generator at nodes Hφ and 

Hφb are connected to the bottom plates of the boosting capacitors C5 and C6 of the Dickson 

charge pump. 

Conventionally, if a voltage doubler is to be used as a charge pump by its own, two PMOS 

transistors are used to transfer the charge to the load as in Figure 3.17 [85]. In this work, 
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a different approach is proposed which uses a Dickson configuration for charge transfer 

purpose instead of the PMOS transistors. The configuration of this proposed topology is 

shown in Figure 4.13. This configuration has two main advantages over the conventional 

topology. This configuration offers more than twice the output voltage, ideally 9 VDD. The 

second advantage is that this configuration offers more than twice the output voltage using 

almost half the silicon area required if the conventional configuration is adopted. This is 

because, in order to produce 8 VDD, two cells have to be cascaded in such a way that the 

output of the first cell is used as a supply source for the second one which consequently 

doubles the area.  

 

The output of the single cell is given by substituting the output voltage of the high voltage 

clock generator in equation 4.12  into equation 4.6 which yields: 
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The operation principle of the entire proposed charge pump in Figure 4.13 can be 

summarised as follows:  when φ is low, M2  is on and C2 is charged to VDD. Then, when φ 

goes high, C2 retains some charge and the rest is shared with C4. During subsequent cycles, 

charge is redistributed from C2  to C4 and then to C6 . Eventually, the charge on C2 builds 

up and VB is elevated to 2 VDD. Then the alternating voltages VDD  and 2 VDD at VA. Nodes 

VA and VB can be thought of as supplies for the high voltage inverters (inv3) and (inv4). 

The outputs of these inverters are non-overlapping clocks that swing between 0 and 2 VDD. 

The same happens with the next voltage doubler. That is when φ high and φb is low, inv4 

charges C4 such that the voltage at node VD reaches 4 VDD. The complementary situation 

arises with the left part of the circuit but is delayed by one half of the clock period as the 

left hand and right hand outputs and inputs are cross connected. The generated outputs 

from the high voltage inverters (inv5) and (inv6) are non-overlapping voltages that swing 

between 0 and 4 VDD. The VDD connected to M13 will charge C5 to VDD. Then when Hφ is 

high, the voltage at C5 will rise to 5 VDD and be passed by M14 to C6. After that, when Hφb 

goes high, C6 will rise to 9 VDD which will be then passed to CL by M15. The final output 

then appears at the output node at CL and results in a 9 VDD.    
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a) 

 

 

b) 

 

c) 

 

 

d) 

 

 

Figure 4.14 Simulated node voltages of single cell charge pump.   a. Voltages at 

nodes VA0 and VA.     b. Voltages at nodes VC and VC0     c.  Voltages at nodes Hφ and 

VE   d. Voltage at output node of the single cell charge pump. 

 

The generated voltages at each node of the cell are simulated and shown in Figure 4.14. 

Because the voltage generator is a symmetrical circuit, only the nodes of the left hand side 

of the generator are shown. The simulated results are obtained with transistor dimensions 

as shown as in table 5.1 that lists the transistors along with their maximum operation 

voltages. At capacitive load CL is equal to 6.8 nF and at boosting capacitors C equal to 

2.2 nF each, the generated voltages at node VA0 which alternates between 0 and 3 V is 

boosted at node VA and swings between 1.9 and 4.53 V which is less than 2VDD as in 
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Figure 4.14.a. The 1.57 loss is attributed R
‟
s. Inv.4 make the voltage generated at node 

VA , swings between 0 and 4.63V at node VC which is boosted to alternate between 4.53V 

and 8.56V at node VE as shown in part b of Figure 4.14. The voltage at VE is made to 

swing between 0 and 8.56V using inv. 6 at node VG which passed to node VH and boosted 

to alternate between 10.85V and 20.9V as shown in Figure 4.14.c. This voltage is 

smoothed at the output node and settles at 20.5V as shown in Figure 4.14.d.  

Table 4.1 Dimensions of the transistors and the maximum operating 

voltages. 

Transistor name Type 

 

Dimensions 

W (µm)/L(µm)  

 

Max.  

VG-SB 

 

Max.  

VD-S 

 

Max. VD-Psub  

 

M1, M2, M8, M7 NMOS20HS 2000/1.8 20 20 50 

M4, M6, M10, M12 NMOS20HS 500/1.8 20 20 50 

M3, M5, M9, M11 PMOS20HS 1000/1.2 -20 -20 50 

M13, M14, M15 NMOSI20 200/0.7 1.2 20 50 

 

 

So far, the implementation of the two main topologies of charge pumps ( the Dickson 

charge pump and the voltage doubler) has been discussed. We have also elaborated on the 

reasons why using a Dickson charge pump or a voltage doubler on their own is not 

sufficient to deliver the desired high output voltage with a reasonable efficiency. 

Consequently, an improved design, referred to as a single cell, which is a combination of 

both and is capable of generating 20.6 V has been discussed. Therefore, in order to 

generate the 72 V that is needed to bias the MPPC, we have decided to use 5-cells of the 

proposed single cell and cascaded them as shown in Figure 4.15.  Here, the output of the 

first single cell at the drain of the diode-connected transistor is connected to the source-

gate node of the diode-connected transistor of the next cell. Unlike the first single cell, the 

following cascaded cells will contain just two diodes on the charge transfer Dickson part of 

the charge pump. The 5 cascaded cells, according to simulation results, produces 98.5 V 

with no resistive load.  Though this output voltage is more than what is actually required, 

nevertheless, the five cells are used so as to leave a margin for error and negate any sources 

of loss which only become apparent after fabrication. 
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Figure title:  5- cells charge pump 

 

 

 

Figure 4.15  Proposed  5-cells charge pump. 

 

 

The high voltage charge pump is configured to have a single input clock that is supplied by 

a microcontroller unit – as discussed in chapter three. Therefore, in order to be able to 

derive the entire charge pump using a single clock that is generated from a unit that has 

limited current capability such as microcontroller, each cell was designed to have its own 

control circuit that incorporates the low voltage non-overlapping generator in Figure 4.7. 

At the output of the clock generator, a chain of inverters forming a signal buffer is added 

and configured as shown in Figure 4.16. This buffer is responsible for driving the thick 

oxide gates of the high voltage transistors used on the high voltage clock generator. The 

signal driving buffer consists of four inverters that were scaled up starting with a small size 

inverter and doubled in size in the next one. Two rows of these buffers are used at each end 

of the non-overlapping clock generator. The buffer has an even number of inverters. Using 

the simulator, four inverters were found to be adequate to drive the thick oxide gates and 

still be capable of generating the required non-overlapping clocks up to 200 kHz.  The first 

inverter of the buffer geometries (W/L) of the NMOS is chosen be (0.4 µm /1.2 µm), 

(0.8 µm /2.2 µm) for the second inverter, (1.6 µm /4.4 µm) for the third inverter and the 

final one is (3.2 µm /48 µm). The PMOS transistor of each inverter has three times the size 

of NMOS transistors indicated above.  
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Figure title:  Control circuitry 

 

 

Figure 4.16 Schematic of control circuit used with each single cell of the charge 

pump.  

 

The control circuit adds another feature which enables switching on and off the charge 

pump and can therefore help in the power consumption management. This was achieved by 

adding a transmission gate which is controlled by a clock signal called the „gating signal‟. 

This transmission gate acts as a power switch which incorporates an NMOS and PMOS 

device. The sizes of these transistors are chosen to be (0.5/1500) µm and (0.5/3000) µm 

respectively. The reason that the size of these transmission gates are so big is that they are 

responsible for delivering the required current for operating each cell and it also allows for 

faster switching response, so that the rise and fall time of the overall generated output 

voltage is only dependent on the internal impedance of the charge pump output rather than 

the impedance of the power switching circuit.  In addition to the main task of the 

transmission gate, which is to cut-off the power supply from the main body of the single 

cell, the gating circuitry is configured in such a way that, even if there is still a running 

input clock at CLK, the signal at (Gating) input will switch off the clock generator, so there 

is no clock propagating through the rest of the circuit and, therefore, negligible power is 

consumed. 
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4.2.4 Layout 

Due to the large size of the power devices and the large number of capacitors which are 

usually needed to build a high voltage charge pump such as the one we have designed, 

special consideration has to be given to efficiently using the available silicon area [85, 

107]. In our case, 31 capacitors are needed to operate the five cells. The value of these 

capacitors and therefore their sizes will vary according to the required output current and 

clock frequency being used. According to simulations, the charge pump can drive an 

output resistive load equal to 10 MΩ and can sustain 95 V at the output node. This output 

voltage is achieved by using 31 capacitors of 2.2 nF each with a clock frequency of 

29 kHz. For two main reasons, laying out these capacitors is impractical. The first reason is 

that, in order to layout a capacitor using  CMOS technology, one has to use either a poly-

poly structure or a metal-insulator-metal structure (CMIM). If using a poly-poly, in order 

to layout a 2.2 nF capacitor, we need 2.5 mm
2
 of  silicon area. That is, for 31 capacitors we 

need a total area of 79 mm
2
. On the other hand, if using the CMIM structure, almost 4 mm

2
 

is required, which, for a 31 capacitors, equates to 11.5 mm x 11.5 mm of chip area. As 

previously stated, it is impractical to have a chip of this size because of cost and the 

restriction imposed by the size of the envisaged capsule. The second reason that on-chip 

capacitors are not practical is that the operational voltages of these capacitors are limited. 

For the poly-poly and CMIM capacitors the maximum terminal voltage that these 

capacitors can tolerate is 7 V which makes them unsuitable for use in our topology - which 

in some parts of the circuit needs capacitors that can tolerate up to 98 V.      

 

Based on the discussion above it was decided to use external capacitors. These capacitors 

will contribute greatly in minimizing the final size of the chip. Furthermore, having these 

capacitors as external components will give the additional benefit of allowing variation in 

the current drivability of the charge pump. Another great advantage that is gained when 

using external capacitors instead of on-chip capacitors is reducing the effect of the parasitic 

capacitors Cs which results in enhancing the overall efficiency of the charge pump. The 

only thing that can still contribute and can be considered as stray capacitance are the pad 

plus board wiring capacitances [84].   

 

Another aspect that has to be taken into consideration when laying out the charge pump is 

the current leakage problem which arises due to the continuous switching nature and the 

handling of high-voltage swings in the charge pump [77].  In this work the ASIC is 
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designed to contain other low voltage circuitry such as the front end (to be discussed in the 

next chapter), any leakage current to the substrate will affect the operation of the circuitry 

that shares the same substrate. This leakage current is injected to the substrate every time 

one of the parasitic elements in the high voltage MOS devices is turned on. One of these 

parasitic elements is the pnp bipolar structure that is formed between DPWELL, DNWELL 

and PSUB. Due to the high voltage swing, a voltage spike between the rising edges or 

falling edges of the clocks can turn on the parasitic device and consequently inject current 

into the substrate. The same thing can happen with the diode parasitic elements in the 

NMOSHS that is formed between the PSUB and the DNWELL of the drain and the source 

of the transistor. These diodes inject current into the substrate when forward biased.  In 

order to avoid the effect of these parasitic elements when turned on, each HV transistor has 

to be enclosed by a RPWELL or PDIFF. This ring has to be as close as possible to the 

active area of the transistor to ensure a very low substrate resistance that will ensure that 

the leaked current is collected efficiently by the ring[108, 109].   

 

Figure title:  Guard rings 

 

 

Figure 4.17 High voltage guard ring available in the H35 process. The width (W) and 

the length (L) of the transistors is varied according to table 4.1. 

 

In addition to the use of the guard ring of the high voltage transistor in collecting the 

leakage current, the guard ring has another more important use. Depending on the type of 

guard ring being used, the break down voltage limit of VB-Psub or the VD-sub can be extended 

from 9 V up to 120V. Shown in figure 5.1.26 the three guard rings types which are 
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available with the process. The PDIFF guard ring can support VB-Psub or VD-sub up to 9V, 

RPWELL can support up to 50 V and the final type which is a wide RPWELL guard ring 

with extended metal one area can support up to 120V. 

 

For our charge pump we have used the 50 V guard ring for all PMOS20HS to extend the 

VB-sup and therefore withstand the 4 VDD generated from the high voltage clock generator. 

However, For the NMOSI20 transistors we have used the 120 V guard ring because at the 

final stages of the Dickson part of the charge pump, VD-sub can reach up to 98 V according 

to the charge pump simulated output results. Based on the fact that VD-sub maximum limit is 

120 V, it can be said that our proposed charge pump configuration is limited to six stages 

and therefore the 120V is the maximum limit that our charge pump can reach.  

 

Figure title:  Charge pump layout 

 

 

Figure 4.18 Final layout of the 5-cells charge pump. 

 

The 5 cell charge pump has been laid out as shown in Figure 4.18 in a silicon area 

(5 mm x 3.2 mm) including the pads. For the 31 external capacitors the charge pump needs 

62 pads. The AMS library contains ready made pads that are equipped with electro-static 

discharge (ESD) circuitry. However these pads can only withstand up to 7V. Therefore, it 

was decided to only use these pads in places where an electrostatic charge can damage the 

charge pump. The places that are vulnerable to such discharges are the wire paths where it 

ends up connected to a gate of transistor such as the input gates of the clock generator. The 

rest of the pads are chosen to be naked pads without any electro-static discharge protection. 

These pads can withstand up to 120 V between the metal and the substrate. 
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4.3  Measurements 

Along with the front end part of the ASIC (which will be discussed in the next chapter), the 

charge pump layout, which passed the Layout Versus Schematic (LVS) test and the Design 

Rule Check (DRC) test, was sent for fabrication. A micrograph of a part of the chip which 

includes the 5-cells charge pump with its control circuitry is shown in Figure 4.19. Upon 

receiving the fabricated chips, the test bench shown in Figure 4.20 was fabricated in 

house for testing and evaluating the ASIC. A naked die sample was bonded to copper 

tracks that were soldered to pin heads used as sockets for capacitors. The use of these 

pinheads makes the test bench flexible to changes in the capacitor values and, therefore, 

changes in the current drivability of the charge pump. These tracks are extended and 

connected to mount terminals that are used as test points so the charge pump and its 

operation can be checked and debugged at each boosting node of the charge pump.   

 

Figure title:  Charge pump part of the chip 

 

 

Figure 4.19  A micrograph of the 5-cells charge pump with its control circuitry. 
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Figure title:  Test bench 

 

a. 

 

 

b. 

 

 

 

Figure 4.20 A. Front-side of the Test bench used for evaluation of the charge pump   

b.    back side of the test bench shows the bonded die covered by a plastic led to 

protect the wire bonding. 

 

4.3.1.1 Output Voltage  

In order to test the charge pump properly, 31 ceramic capacitors of value 2.2 nF are 

plugged into the allocated pin heads in the test bench one by one so as to make sure that 

every stage of any single cell is working properly. The non-overlapping clock generator 

was first constructed and tested.  The measured results of the non-overlapping clock 

generator indicate a 9.8 V peak to peak clock generated out of every high voltage clock 

generator as show in Figure 4.21. The two clocks of each high voltage clock generator 

were connected to the charge transfer Dickson part of the charge pump. The generated 

output voltage was measured at the output node of the fifth stage using an oscilloscope 

with a high voltage probe which has a 2.2 MΩ input resistance. As shown in Figure 4.22, 

the generated output voltage is 81.9 V at a clock frequency of 37.6 kHz. However, when 

compared to the simulation results, it is noted that there is more than 16 V difference 

between the simulated and measured results. This difference is attributed to the load that is 

imposed by the oscilloscope prop. When measured by a multimeter with a 10 MΩ load, the 

charge pump is capable of generating up to 95.5 V. the relationship between the output 

voltage, delivered current and the resistive load will be explained in detail in the next 
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section and chapter 6 where we will see how this complex relationship plays a crucial rule 

in the detection efficiency of the light detector. 

 

Figure title:  High voltage clocks 

 

 

 

Figure 4.21 Measured non-overlapping high voltage clocks. 

 

 

Figure title:  Output voltage 

 

 

 

Figure 4.22  Measured output voltage at 37.6 clock frequency, 2.2 MΩ, 2.2 nF 

boosting capacitors and 6.8 capacitive load. 
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Figure title:  Output ripple 

 

 

Figure 4.23 Measured output ripple voltage at 2.2 MΩ and 6.8 nF load. 

 

By using a 6.8 nF load capacitor, the charge pump takes 45 ms to settle at 81.9 V. The rise 

time was captured by the oscilloscope by exploiting the gating feature of the charge pump. 

The gating clock was set to 0.2 Hz, so the charge pump will be switched off every five 

seconds which is time enough to enable the capture and, thereafter, the measurement of the 

rise time of the charge pump output voltage - as shown in Figure 4.25. The rise time of 

the output voltage is a strong function of the capacitor value and can be reduced by 

reducing the capacitive load. However, in addition to the rise time, when a resistive load is 

added to the output node, the size of the capacitive load becomes important in determining 

the amount of ripple voltage that develops at the output. According to equation 3.14, the 

larger the output capacitive load, the smaller the ripple voltage.  At 6.8nF capacitive load 

and 2.2 MΩ resistive load, the output ripple is 155 mV as shown in Figure 4.23. The 

spacing between ripples depends on the clock frequency, that is at 28 kHz, at every 17.8 ns 

there will a ripple spike. This ripple can be reduced to 60 mV if CL is increased to 22 nF 

which in the other hand will increase the rise time to 64 ms. 

 

4.3.1.2 Delivered current  

In order to design a charge pump that is capable of operating the MPPC, some important 

parameters regarding the MPPC (which will become the loading circuit) have to be 

determined. An accurate determination of these parameters enables the design of an 

efficient charge pump that is capable of delivering the required current along with the 
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required voltage for our purpose. As we have seen in previous Section, the charge pump 

was able to generate 95.5 V at 10 MΩ. The 10 MΩ value load was derived from the I-V 

curve of the MPPC shown in Figure 4.24. According to this graph, the MPPC can be 

modelled as resistor that varies depending on the biasing voltage from 370 MΩ 

((68.6 V)/(185 nA)) to 35 MΩ ((71.1 V)/(1.85 μA)). Based on this information, a value of 

10 MΩ was used as a target load for the charge pump at the simulation stage – thus giving 

a good safety margin.   

Figure title:  I-V characteristic 

 

Figure 4.24  I-V characteristic curve of the MPPC. 

 

Figure title:  Charge pump characteristic 

 

 

Figure 4.25  Measured delivered current and voltage capability of the charge pump 

as function of resistive load. 
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According to simulation results and the promising measured results, we can conclude that 

if  the charge pump can drive a 10 MΩ while sustaining 95 V it can certainly drive the 

35 MΩ load presented by the MPPC at 72 V. The relationship between the resistive load 

Vs current drivability and resistive load Vs voltage is shown in Figure 4.25. This 

measurement was acquired by sweeping the resistive load from 500kΩ to 10 MΩ at fixed 

clock frequency equal to 28 kHz. The graph shows how the charge pump generated output 

voltage is proportional to the value of the resistive load. That is the lower the resistive load 

value, the lower the generated output voltage. This is can be attributed to the source 

impedance of the charge pump which is proportional to the delivered current. This means 

that if the delivered current increases, the output voltage will decreases. From this graph 

we can note that the MPPC can be driven by the charge pump even if the MPPC terminal 

resistance reaches as low as 1MΩ. This means that the charge pump can deliver current up 

to 75 μA while sustaining 73 V.  

Figure title:  Test setup 

 

 

 

Figure 4.26  MPPC circuit test configuration. 
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Figure title:  MPPC I-V characteristic 

 

 

Figure 4.27 Measured supply voltage and current by the charge pump to the MPPC. 

 

 

The charge pump capability of biasing the MPPC has been directly tested.  The test 

configuration is as shown in Figure 4.26, where an accurate multimeter is placed between 

the charge pump and the MPPC. The multimeter is used to measure the current delivered to 

the MPPC and RL as well as the capability of the charge pump to supply the MPPC with 

the required voltage (bias voltage + excess voltage).  The generated voltage of the charge 

pump stepped gradually up to the break down voltage of the MPPC by the means of 

increasing the clock frequency. In order to probably test the charge pump maximum 

capability of supplying the MPPC, the MPPC is exposed to high intensity light near to its 

saturation where the terminal resistor reaches low values. At a clock frequency equal to 

18.3 kHz, the charge pump can supply the MPPC by 72.5 V while supplying 68.4 μA 

current. This means, at high intensity light, the terminal resistivity of the MPPC drops to 

less than about 1.5 MΩ according to the measurements shown in Figure 4.25.  

 

To confirm its operation, the supplied voltage and current was measured at the same light 

intensity conditions, but this time was reversed biased by a bench-top power supply. The 

measured results in Figure 4.27 show that the MPPC gives the same response whether 

supplied by the charge pump or by a bench-top power supply. 
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4.3.1.3 Power consumption 

Power consumption can be categorised into two categories depending on the loading 

circuit: Capacitive load and resistive load. The charge pump drives the capacitive load until 

the output voltage is settled and then no dc current is drawn at the output node. If a 

resistive load is connected to the output node then a dc current is continuously supplied by 

the charge pump. The value of the supplied current depends on the value of the resistive 

load which consequently affects the power consumption of the charge pump. The overall 

power consumption of the charge pump including the control circuits is measured and 

plotted over a resistive load ranging from 500 kΩ to 10MΩ at a fixed clock frequency 

equal to 28 kHz. The measured results reported in Figure 4.28 show that the power 

consumption decreases with an increase in the value of resistive load. With high intensity 

light, the terminal resistivity of the MPPC reaches about 1.5 MΩ and the charge pump 

draws 3.35 mA from the power supply. 

 

Figure title:  Charge pump current consumption 

 

 

 

Figure 4.28 Measured current consumption of the 5-cells charge pump with its 

control circuits at different resistive load. 

 

4.3.1.4 Power efficiency  

The overall efficiency of the charge pump is evaluated and measured in this section. As is 

the case with the power consumption in the previous section, the efficiency of the charge 

pump is a function of the resistive load. The efficiency was measured at different resistive 
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loads using equation 4.7. Figure 4.32 shows the power efficiency along with the 

current at the output node of the charge pump. The power  

 

Figure title:  Power efficiency 

 

Figure 4.29 Measured power efficiency at different resistive load values along with 

the supplied current. 

 

efficiency of the charge pump reaches a peak of 46% when resistively loaded at 2.1 MΩ. 

At this value, it can supply an output current of 37 μA. The efficiency results were 

obtained at a fixed clock frequency equal 28 kHz in which the charge pump can generate 

its maximum voltage. At high light intensity, the charge pump efficiency is 37%. 

 

In comparison with the conventional Dickson charge pump and from an efficiency 

perspective,  it is very clear that the proposed charge pump has ramped up the efficiency of 

the Dickson charge pump from 4% at 69 V, as demonstrated in section 4.2.1, to an 

efficiency equal to 46% at 73 V. It is worth mentioning that this comparison is done 

between simulated results of the Dickson charge pump and measured results of the 

proposed charge pump. Due to time constrains it was not possible to do a simulation-

simulation comparison in the previous section. That is, in order to simulate the efficiency 

over the entire range of resistive loads for the charge pump, it may take several weeks to 

accomplish this operation. Running a single transient simulation for one second for the 5-

cell charge pump with their control circuits can take up to two days even when running the 

simulator in a liberal mode. Due to the Safe Operation Area Check that the high voltage hit 

kit is equipped with, the simulator has to check and sends warning for every time any of 

the parasitic devices mentioned in section 4.2.4 is turned on which dramatically slows 
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down the simulation time. For this reason it was more convenient to just run the 

simulations at one resistive load which was chosen to be 10MΩ. 

 

 

4.3.1.5 Programmable charge pump 

Designing an accurate charge pump that can deliver the exact voltage as intended is a very 

a difficult task if there is some ambiguity in the losses. Hence, from the design stage, a 

flexible design strategy was employed in order to allow compensation of any unexpected 

sources of loss. According to equation 4.14, there are three free parameters which can be 

used to change the output voltage. Under a fixed VDD value condition, these are boosting 

capacitors, output current and clock frequency. By fixing the boosting capacitor and the 

output current (which is determined mainly by the resistive load) the exact value of the 

desired output voltage can be then solely determined by the clock frequency of the charge 

pump. The 5-cell charge pump has been designed from the start to have a single input 

clock which makes it more convenient to change the generated voltage as desired. Without 

this feature and with fixed output DC-DC converters, the charge pump would need to be 

followed by Low drop output (LDO) circuit which is used to regulate the generated voltage 

to the desired voltage [110]. However, the proposed design does not need LDO, and the 

output voltage is regulated by using the clock frequency. 

 

Figure title:  Output voltage 

 

 

Figure 4.30 Measured Output voltage as function of clock frequency. 
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Figure title:  Bias voltage at different temperature points 

 

 

Figure 4.31 Typical bias voltages of the MPPC device at different temperature 

points  [67]. 

 

Figure title:  Bias voltages at different temperatures 

 

 

Figure 4.32 Measured Bias voltages at different temperatures. 

 

The relationship between the frequency and the output generated voltage is shown in 

Figure 4.30. The charge pump can generate a voltage that varies between 3 V at 95 Hz to 

95.5 V at 28 khz when loaded with 10 MΩ. However, when the charge pump is loaded 
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with 2.2 MΩ, it generates a maximum voltage equal to 81.9 V when clock frequency is set 

to 37.5 kHz. Accordingly, the required frequency needed to bias the MPPC at room 

temperature when exposed to high intensity light is 18.3 kHz. This value is extracted from 

the 2.2 MΩ trace at fig.5.1.40 which is close to the 2.1 MΩ that appears at the MPPC 

terminals under high intensity light conditions. This relation will be elaborated on in detail 

in chapter 6. 

 

The ability to control the generated output voltage by changing the clock frequency is 

exploited in programming the required biasing voltage which changes according to 

ambient temperature. As is the case with most Avalanche photon doctors, the MPPC 

breakdown voltage of the device is  temperature  dependent [111]. Figure 4.31, shows the 

relationship that describes the typical biasing value for the MPPC at different temperature 

points. Based on this graph, the MPPC was biased by the charge pump at different 

temperatures ranging from -20 
o
C to 50 

o
C while exposed to a high intensity light so that 

the charge pump is evaluated and its performance is tested to its maximum limits. The 

measured I-V curves of the MPPC at different temperature points are shown in Figure 

4.32 and indicate that the charge pump can efficiently bias the MPPC at different 

temperatures. However, at 50 
o
 C, the charge pump failed to deliver more than 10 μA to the  

 

 

Figure title:  Clock frequency different temperatures 

 

 

Figure 4.33 Charge pump clock frequency for different temperature points. 
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MPPC. This failure is attributed to the dark count pulses of the MPPC that increases 

dramatically at high temperature which, as a consequence, makes the MPPC require more 

current. Due to that rapid demand of current from the MPPC, the charge pump tries to 

compensate for that demand by giving up some of the generated voltage potential which as 

a result forces the voltage to drop below the brake down voltage every time it tries to do 

so.  

 

At body temperature (37 
o
 C), the charge pump is able to deliver the required bias voltage 

(73 V) and current the required by the MPPC at a clock frequency equal to 19.5 kHz. The 

data that forms the relationship between the charge pump‟s clock frequency and the MPPC 

ambient temperature is plotted in Figure 4.33. Using this figure, one can directly extract 

the clock frequency needed for the charge pump to correctly bias the MPPC at its typical 

biasing conditions according to the ambient temperature.   

 

 

4.4  Summary  

This chapter has considered the design and fabrication of a very high voltage charge pump 

that can generate a variable high voltage greater than 72 V which is required to bias the 

MPPC device. The charge pump consists of 5-cells where each cell is a combination of a 

Dickson charge pump and a high voltage clock generator. The 9.8 V high voltage clock 

generator was employed to increase the efficiency of the Dickson charge pump. The high 

voltage was achieved by in the Dickson part of the charge pump by configuring the 

isolated high voltage transistor in a way that it yields a high voltage diode. This 

configuration of the transistor eliminated the VGS breakdown limitation of the transistor as 

well as eliminating the body effect that grows as VBS increases with each added stage. The 

charge pump was designed to be controlled by a single input clock which accordingly the 

generated voltage is varied. The charge pump was characterised and its operation was 

evaluated and presented. Its capability of delivering the required voltage 72 V at 70 μA 

current to the MPPC was verified by directly biasing the MPPC to the output of the charge 

pump.     
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5.1  Introduction  

The Austriamicrosystems AMS H35 process which is compatible with the low voltage 

process, allows the low voltage circuits as well as the reuse of the IP block provided by 

AMS to be integrated in the same chip. This compatibility is exploited in the ASIC and 

allows the integration of the front-end amplifiers with the biasing part of the system into a 

single chip. This integration contributes greatly in the miniaturization process of the pill. In 

the previous chapter we have discussed the design and the implementation of the high 

voltage charge pump which is responsible for providing the required high DC voltage for 

biasing the MPPC. In this chapter we will discuss the design of the second main block of 

the ASIC that is responsible for acquiring and then amplifying the pulses from the MPPC. 

The designed TIA is required to have more than 120 dBΩ and more than 20 MHz 

bandwidth to amplify the 10 MHz current pulses.  

 

5.2  TIA design for MPPC read-out  

As mentioned earlier in section 3.5.2, the development of the low impedance, high gain 

TIA is based on the regulated cascode input stage (RGC) reported in [91]. The advantage 

in using this configuration is in its ability to ease the effect of the 37 pF terminal 

capacitance of the MPPC and therefore achieving high impedance, high gain and wide 

bandwidth. The design of the Proposed TIA shown in Figure 5.1 is an improved version 
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of the RGC input stage shown in Figure 3.19, where the gain was boosted by adding a 

cascode stage to the main branch of the RGC and the bandwidth was increased by adding a 

CS stage between the feedback stage and the main branch. 

 

We will consider the development of the TIA as a sequence of design steps. The proposed 

TIA shown in Figure 5.1 is built on a simple Common Source (CS) stage composed of 

transistor M2 and a resistive load, R2. The simulated open-loop gain of the CS amplifier is 

22 dB and the gain-bandwidth product is 4.2 GHz with a phase margin of 68°. At this stage 

in the design process it is very important that the bandwidth should be kept as wide as 

possible in order to realise a high speed TIA. A lower gain can therefore be tolerated at this 

point and will be compensated for as the design is further developed. 

 

Figure title:  Proposed TIA 

 

 

 

Figure 5.1 Proposed low impedance, high gain TIA. The shaded branches 

represent the regulated cascode. 

 

 

Now that the voltage amplifier is finalised, the TIA is formed by connecting a local 

feedback consisting of another CS of M1 and R1. These two stages form an RGC similar to 

that of Figure 3.19 which has an  input impedance given by [91]  
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where Co is the sum of the gate-drain capacitance (Cgd2) and the drain-body 

capacitance(Cdb2) of M2, Ci is the sum of the source-body capacitance (Csb2) of M2 and the 

gate-source capacitance (Cgs1) of M1, Ct is the MPPC terminal capacitance, gm1 is the 

tranconductance of M1 and  gm2 is the tranconductance of M2. Placing a source follower 

(SF) (M4) between the amplifier stage and the feedback stage will reduce the effect of Cgd2 

which will result in a lower input impedance. This is realized by connecting the output of 

the feedback to the input of the SF and then taking the output of the SF to the input gate of 

the CS amplifier. In order to ensure that the SF has unity gain and therefore avoid 

degrading the feedback CS gain, the input transistor of the SF is an isolated NMOS 

transistor (NMOSI). Taking advantage of working in a multi-well process (AMS H35), 

each of the NMOSI (M4 and M6) are implemented in their own deep-NWELL. The bulk-

connection for these NMOSI is connected to their source to eliminate the body-effect and 

yield a unity gain SF [112]. In fact this is applied to all other transistors that will be used in 

building the front end. The use of isolated transistors will add another feature to the design. 

In addition to reducing the body effect problem, these isolated transistors will ensure that 

the front end circuit is well isolated and protected against any substrate current that might 

be injected by the charge pump to the substrate. As  mentioned in section 4.2.4, due to 

the switching nature of the charge pump, the parasitic devices in high voltage transistors 

tend to inject current spikes into the substrate at each switching clock transition edge. 

These spike currents, especially if they are large in amplitude, can greatly affect the 

performance of the front end circuit.  

 

One of the consequences of reducing the input impedance, by reducing the effect of Cgd2, is 

in pushing the dominant pole towards higher frequencies to produce a -3 dB bandwidth 

which is given by [91] 

 

 
 it

mm
dB

CC

Rgg
f






2

1 112
3                                                     5.2       

 



116 

 

Figure title:  Gain  

 

 

Figure 5.2 Post-layout simulations of Gain characteristics at different bias 

currents. 

 

At this stage of the design, the TIA has a gain of 63 dBΩ and a -3 dB bandwidth equal to 

883 MHz. The gain of the TIA can be boosted further by replacing the CS amplifier with a 

cascode configuration. The cascode configuration provides an extra gain boost to the TIA. 

Simulations indicate that at the output node of the cascode stage, the total gain of the TIA 

can reach more than 86 dBΩ. This gain is also maintained and buffered from any 

capacitive load by connecting the output of the cascode stage at the drain of M3 to the input 

of NMOSI SF (M6).  

 

In order to establish more control over the various aspects of the design as we will see 

later, the source of the cascode amplifier transistor (M2) is connected to the output of the 

current mirror at the drain of M5. The junction between the source of (M2) and the drain of 

(M5) has two functions. The first is to establish a fixed voltage between the gate and the 

source (Vgs1) of M1 in the CS feedback stage, and the second is to control the bias current 

IDS5 in the cascode amplifier branch of the TIA. The value of IDS5 in the cascode branch 

determines the position of the dominant pole of the TIA as illustrated in Figure 5.2. The 

greatest 3 dB bandwidth is achieved for IDS5 = 55 µA. More current increases the voltage 

drop across R2 and consequently lowers Vgs1 at the gate of M1 to beneath the threshold 
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voltage, Vth. Any reduction of Vgs1 below Vth results in current starvation in M1, hence 

reduced bandwidth. Fixing Vgs1 to 650 mV, which is slightly more than the Vth of the 

NMOS transistors in the AMS 0.35 μm CMOS process (Vth = 0.6 V), ensures that wide 

bandwidth and low power consumption is achieved.  

 

Figure title:  Input impedance  

 

 

Figure 5.3 Post-layout simulation of the Input Impedance of the TIA: Input 

Impedance varies with bias current. 

 

Another aspect of the design is the trade off between the bandwidth and the input 

impedance of the TIA that can also be controlled by IDS5, as illustrated in Figure 5.3. The 

input impedance of the TIA decreases inversely with IDS5. Thus, decreasing input 

impedance is achieved by increasing IDS5. However, this causes the dominant pole to move 

towards lower frequencies. Therefore, by selecting IDS5 = 55 µA, the dominant pole can be 

maintained above 618 MHz with a moderately low input impedance of 75 Ω.  

 

From Figure 5.3 and equation 5.2 it can be seen that gm1 and gm2 are the primary factors 

in determining the input impedance of the TIA especially at low frequencies. The value of 

gm2 is controlled directly by  varying IDS5  and gm1 is varied indirectly via Vgs1.  
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Figure title:  Linearity  

 

 

Figure 5.4 Simulated Input-output characteristic of the TIA shows a linear relationship. 

 

The linearity of the TIA is determined by the Vgs value of the feedback transistor M1 which 

is determined by IDS5. As previously mentioned, Vgs1 is fixed at 650 mV which is greater 

than Vth for the NMOS devices. The relationship between Vgs and IDS is linear for Vgs1 > Vth. 

This relationship manifests itself as a linear relationship between the input current of the 

TIA and its output voltage.  As can be seen in Figure 5.4, the expected operation range of 

the MPPC‟s pulses (180 nA up to 2 µA peak-peak) are linear with the TIA outputs. If 

desired, the circuit could be modified to give a logarithmic input-output relationship by 

operating M1 in the sub-threshold region [89]. This would be done at the expense of both 

gain and bandwidth.   

 

The effect of the terminal capacitance, Ct, of the SPAD array on the 3 dB bandwidth of the 

TIA is shown in Figure 5.5. When Ct = 37 pF the expected 3 dB bandwidth exceeds 

59 MHz. With this wide bandwidth, the TIA is able to capture and amplify the 10 MHz 

signal produced by the MPPC. 
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Figure title:  Bandwidth 

 

 

 

Figure 5.5 Simulated frequency response of the TIA for various terminal 

capacitances. 

 

Figure title:  Output pulses 

 

 

Figure 5.6 Post layout simulation of the transient response of the TIA for a 10 MHz 

current pulse input signal.  

 

For simulation purposes, the MPPC was replaced by a current source in parallel with a 

40 pF input capacitance. The input capacitance represents the 37 pF terminal capacitance 

plus the pad capacitance which according to AMS documents is equal to 1.5 pF. The 

addition 1.5 pF represents any stray capacitors that might appear in the wiring and PCB 
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tracks. The TIA was simulated with and input square pluses at 10 MHz. The current pulses 

are 1 μA peak to peak which results in an output voltage equal to 20 mV Peak to peak as 

shown in Figure 5.6. It is very important to note that all the simulations regarding the 

characterisation of the TIA were performed at the post layout stage. At this stage all layout 

stray capacitors that may affect the speed or the impedance of the TIA are taken into 

consideration.   

 

Table 5.1: Optimized component values of the TIA. 

Component lable Type 

 
 

Gate 
dimensions 

W (μm)/L (μm) 

 
 
Design value 
 

M1 NMOSI 250/0.35   

R1 Poly2 56/1.05   3.5 kΩ 

M2 NMOSI 50/0.35   

R2 Poly2 320/1.05  20 kΩ 

M3 NMOSI 30/0.35   

M4 NMOSI 10/0.35  

M5 NMOSI 27/1.05   

M6 NMOSI 150/0.35  

M7 NMOSI 9/1.05   

M8 NMOSI 15/1.05   

M9 NMOSI 4.8/1.05  

M10 PMOS 20/0.35  

M11 PMOS 5/2  

M12 PMOS 5/2   

M13 PMOS 5/2   

M14 PMOS 5/2   

M15 NMOSI 20/2  

M16 NMOSI 5/2   

R2 Poly2 240/1.05  15 kΩ 

 

 

The TIA is biased by a transconductance biasing circuitry as shown in Figure 5.1. This 

circuit is used to fixe IDS5 at 55 μA and to bias the rest of the TIA branches at (M7, M9 and 
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M8). The transconductance biasing circuit offers a temperature and power-supply 

independent biasing source. Although temperature dependence is of little effect on the 

TIA, power supply variation can affect the gain and the bandwidth o the TIA.  Post layout 

simulation of the TIA along with its biasing circuitry shows that the TIA produces almost 

constant bandwidth and gain at power supply conditions ranging from (2.6 V to 3.3). 

  

Optimised values and dimensions of all the components that were used to design the TIA 

along with its biasing circuitry are summarised in Table 3.3. All the transistors are 

isolated low voltage devices as we have mentioned previously. All transistors have 

minimum length of 0.35 μm apart from M5, M7, M9 and M8 which have 1.05 μm and M11, 

M12, M13, M14, M15 and M16  of the biasing circuit which are equal to 2 μm. These 

transistors which are part of the biasing circuitry have wider length in order to offer more 

stability against temperature and process variations and therefore ensure stable biasing 

conditions. The width of the transistors and resistors are divided into fingers, so the TIA 

layout is as compact as possible.   

 

5.3  Post-amplifiers design 

As is the case with most TIAs, the output swing is very small, especially when 

amplifying very small current signals such as those produced by the MPPC. A post-

amplifier has therefore been employed to give further amplification. The post-amplifier 

consists of two cascaded differential amplifiers and is shown in Figure 5.7. The open loop 

gains of the differential amplifiers are 27 dB and 32 dB with 3 dB bandwidths of 55 MHz 

and 47 MHz, respectively. The post amplification process was carried out in two stages in 

order to maintain a wide bandwidth, which is achieved at the expense of the gain of the 

two amplifiers[113]. In addition to amplification, the differential amplifiers provide 

rejection of the common mode noise that might be introduced from the power supply [87].  

The input of the post-amplifiers stage was connected to the output of the TIA at the SF 

stage. In order to avoid the need for any DC biasing circuits at the input stage of the 

differential amplifier, the post amplifier topology is chosen to have a PMOS input stage 

rather than a NMOS one. Thus, the output of the TIA is passed via a first order high pass 

filter consisting of C1 and R3. This filter will remove the DC shift of the amplified signal 

shown in Figure 5.6 and will bring it back to operate between 0 and 20 mV rather than 

being operated between 2.065 V and 2.085 V. The current reference (Iref) for the current 
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mirrors in the post-amplifiers circuit is a constant-transconductance bias circuit, the same 

as the one that was used with the TIA. 

Figure title:  Post-amplifiers 

 

 

 

Figure 5.7 Schematic of the post-amplifiers stage. 

 

All the components of the front-end, including the TIA and post-amplifiers, were all laid 

out as a compact single block to avoid any parasitic capacitors that might appear due to 

long wiring paths and thus preserving the fast performance of the front-end. The front end 

layout passed the Design Rule Check (DRC) and the Layout Vs Schematic (LVS) test 

successfully. 

5.4  Measurements 

The front-end and the charge pump were fabricated in the same chip using a 0.35 μm high 

voltage CMOS (AMS H35) process. Figure 5.8 shows a microphotograph of the 

front-end that occupies an area of 0.6 mm
2 

of the ASIC. The front-end has been tested with 

the MPPC device in order to evaluate its capability to amplify the 10 MHz pulses produced 

by the MPPC. 
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Figure title:  Fabricated ASIC 

  

 

Figure 5.8 Microphotograph of the ASIC that includes the 5-cell charge pump block 

and the front-end block.   

 

Figure title:  Output pulses 

 

Figure 5.9 Measured front-end output pulses generated by the MPPC when 

moderately illuminated by a light source. The large pulse indicates that the MPPC 

was hit by several photons at the same time causing the TIA to saturate. 
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The MPPC is connected to the input port of the front-end and reverse biased by the charge 

pump at 72.5 V via a 10kΩ quenching resistor. Figure 5.9 shows the amplified output 

waveform generated by the MPPC when all the pixels in the 10 x 10 array are exposed to 

moderate illumination from a light source. Under these conditions we were able to measure 

a response time (90 % - 10 %) of 21 ns for a voltage swing of 1.64 V at the output of the 

post-amplifier. The front-end, which was designed to have separate power pads from the 

charge pump, is consuming 2.7 mW of power. In terms of speed, the front-end was capable 

of operating in conjunction with the large terminal capacitance of the MPPC, and was able 

to capture pulses of ~200ns. By setting the trigger level of the oscilloscope channel to 

900mV below the peak voltage of the SPAD, the oscilloscope can be used to count the 

number of photons detected in a known time.  

 

A green LED was used in a dark room to illuminate different intestines at the MPPC. 

Theoretically, at high illumination, the oscilloscope counter is expected to count up to 

10 Mega count pulse per second (Mcps). Unfortunately, measurements showed that the 

system failed to achieve this. This failure is attributed to the fact that during the design 

process we have overestimated the required gain to amplify the pulses produced by the 

MPPC. As result, the front-end suffers a saturation problem and therefore it was not able to 

amplify all the pulses generated by the MPPC. 

 

Due to the parallel configuration of the pixel array in the MPPC device, the generated 

pulse at the output node, is the sum of all pulses generated simultaneously at each pixel 

[67]. In dark light conditions, the MPPC produces dark pulses of up to 400 Kilo count per 

second (kcps) where it is very rare that many pixels will generate dark pulse at exactly the 

same time. However, when the MPPC is exposed to relatively high illumination (greater 

than 1400 nW) , many pixels will be hit by photons at exactly the same time, this results in 

a single pulse from every pixel. These pulses are summed at the output node of the MPPC, 

and give birth to a large current pulse with high amplitude that corresponds to the number 

of hit pixels. The large pulses cause the front-end to saturate and thus affect its ability to 

capture the successive pulses. This problem can be seen clearly in Figure 5.10.  This 

graph reports the reaction of the front-end and its effect on the final count of pulses when 

exposed to different light illuminations. At very low illumination (less than 1400 nW), the 

number of counted pulses increases proportionally with the increase in light intensity. 

However, when the illumination is increased, the number of large pulses starts to increase, 

and therefore causes the front end to saturate for several hundreds of nano-seconds. As a 
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result of this, the number of pulses counted is decreased until the front-end gives a flat 

response and no more pulses are amplified. 

 

Figure title:  MPPC count rate 

 

 

Figure 5.10 Count rate of the MPPC versus illumination power. 

 

 

Despite the saturation problem that arises at high illumination especially above 1400 nW 

and as will be seen in section 6.5, it can be said that MPPC can operate safely under low 

illumination such as that produced by autofluorescence. However, it was decided in this 

project to take the design one further step and integrate a CMOS SPAD in the same chip 

instead of using the off-chip light detector (MPPC). This integration has several 

advantages: firstly, COMS SPADs require low bias voltages less than 30 V which results 

in a smaller charge pump. Secondly, Integrating the SPAD with the charge pump in the 

same chip will reduce the size of the pill. Thirdly, the integration can open the opportunity 

for further development of the pill, so it can be upgraded to perform both steady-state 

autofluorescence imaging or life-time imaging.  
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5.5  Summary  

This chapter has discussed the steps of designing and implementing a front-end that can 

work in conjunction with the MPPC device that has a very large capacitance of 37 pF. The 

adaptation of the regulated cascode input stage (RGC) helps to minimize the effect of the 

input capacitance on the bandwidth and the input impedance of the TIA. It was also shown 

how the RGC gain was improved by adding a cascode stage and how the bandwidth was 

improved by adding source followers. The proposed TIA was able to achieve 75 Ω input 

impedance, 86 dB Ω gain and 3 dB bandwidth equal to 59 MHz. the TIA was cascaded to a 

post amplifier stage that consisted of two differential amplifiers in order to provide extra 

amplification. The front-end was fabricated in the same chip with the charge pump 

designed in chapter 4. Unfortunately, due to overestimating the required gain out of the 

front-end, it was noticed after testing the MPPC that the front-end was suffering from a 

saturation problem, especially at relatively high intensity illuminations (greater than 

1400 nW). However, under low illumination condition (less than 1400 nW), the MPPC is 

operating normally and therefore it is expected to cope with the weak autofluorescence 

emission. In the next chapter, the MPPC is replaced by an SPAD that is integrated with the 

charge pump which makes the design of the pill more compact and more efficient in terms 

of power consumption. As it will be seen in next chapter the integrated SPAD does not 

require a TIA to acquire the current pulses. Furthermore, the integrated SPAD requires 

only 22 V for biasing instead of the 72 V which is required by the MPPC.  
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6.1  Introduction  

This research project has been focused on the design, implementation, testing and 

experimental evaluation of an ASIC which was incorporated into a swallowable pill for 

detection of cancer through autofluorescence. In chapters 4 and 5 we have discussed the 

design and the implementation of the ASIC which includes a high voltage charge pump 

>72 V to bias the off chip MPPC and  front end circuitry to acquire the pulses produced by 

the MPPC. In this chapter the miniaturization process is taken a step further by integrating 

the light detector along with the biasing block and the front-end into a single chip. 

 

This chapter starts with section 6.2 which considers the feasibility integrating a SPAD and 

charge pump into an ASIC. In section 6.3, the design and implantation of the ASIC is 

described. This is followed by the measurement section that includes detailed evaluation 

measurements of the SPAD, charge pump both separately and in combination. The 

operation of the ASIC is verified using optical measurement and biological measurements 

with real lamb small intestine that shows the ability of the ASIC to measure 

autofluorescence.     
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6.2  Integration feasibility  

In this section as a first stage of developing a more integrated system for the diagnostic 

pill, the feasibility of using an integrated charge pump to bias a SPAD and the response of 

the resulting system has been investigated [114]. A CMOS SPAD that has been developed 

by the research group at the University of Oxford has been tested and with the charge 

pump whose development is described in chapter 4. 

6.2.1  CMOS SPAD in UMC 0.18 Process 

The SPAD that was developed by the Oxford group was fabricated in a CMOS 0.18μm 

triple-well technology. The cross section of the SPAD is shown in Figure 6.1. It is a 

10μm diameter P+/N-well junction that forms the active area of the device which is 

surrounded by a P-Well guard ring. Tests on these devices show that typically they have a 

breakdown voltage of 10.4V.  

Figure title:  SPAD Cross section using UMC technology 

 

Figure 6.1 A cross section through the centre of a circular SPAD showing the guard 

ring of low doped material used to reduce the electric field at the edges and 

corners. The active area is 10 µm diameter, and the overall SPAD area including 

guarding is 30µm diameter. 
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Figure title:  SPAD response 

 

 

Figure 6.2 The response of the SPAD to a single photon shown on a screen 

shot of an oscilloscope. Also shown on the left hand axis is a T marking the 

trigger level. 

 

To test the basic operation of the SPAD and its suitability for fluorescence detection, the 

SPAD was operated in Geiger mode using a 10 kΩ resistor as a quenching circuit. A green 

LED was used as light source and a regulated bench power supply was used a voltage 

source for biasing purposes. The response of the SPAD is shown in Figure 6.2. The 

produced pulses have a width of ~ 400ns and amplitude that can vary according to the 

supplied over-voltage.   

 

6.2.2 Half cell charge pump 

As we have seen from measurement results in chapter 4, the 5-cells charge pump can 

produce up to 98 V. This voltage can be varied and fixed at any desired voltage below the 

98 V by changing the frequency of the clock. However, the flexibility of the charge pump 

design and the use of external capacitors whose values may be changed has enabled us to 

break down the charge pump into smaller units and therefore generate exactly the required 

voltage. For the SPAD to be tested, it requires 10.8 V to be biased by 400 mV over 

voltage. This voltage can be achieved using just half of the cell in Figure 4.15.  This 

configuration is a combination of Dickson charge pump and a 6 V non-overlapping clock 

generator. The schematic of the half cell is shown Figure 6.3, where inside the dotted box 

is the clock voltage generator and the Dickson charge pump is formed by (M13, M14 and 

M15).  
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 The basic operation of the charge pump depends on the non-overlapping 3 V peak to peak 

clocks φ and φb. The clocks charge the capacitors C1 and C2 successively to produce a 

shifted clock alternating between 3 and 6 V at nodes A and B. The two outputs of the 

voltage doubler are then connected to form the power supply to inverters 3 and 4 in order 

to create a boosted clock that swings between 0 V and 6 V. The generated high voltage 

clocks charge the 10 nF capacitors C3 and C4 and are then passed by M8 and M9 along 

with VDD which is passed by M7 and finally accumulated at 100nF output capacitor CL. 

The measured output voltage of the charge pump when it is unloaded is 11.5 V with a rise 

time of 90 ms at capacitive load CL=100nF. 

Figure title:  Half cell charge pump 

 

 

Figure 6.3 Schematic of half cell high voltage generator.  

 

The behaviour of the charge pump over the expected region of operation has been 

investigated. According to the photon detection probability (PDP) measurements 

conducted with the SPAD it was found that the SPAD is best biased between 10.4 V and 

11.4V. Accordingly the charge pump behaviour at this region was investigated by using 

various load resistors. The measured results reported in Figure 6.4, shows that the charge 

pumps will be able to deliver 6 µA to the SPAD while sustaining 11.1V. However the 

output voltage will decreases as the resistive load is increased. With this reduction in 

output voltage, the output current increases up to 24 µA. More importantly, these results 
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show that this charge pump can generate voltages higher than 10.4 V whilst delivering 

currents of less than 20µA. 

 

Figure title:  charge pump output voltage and output current. 

 

Figure 6.4 Measured relationship between the output current and output voltage of 

the charge pump when the clock is 11 kHz. 

 

 

6.2.3  Combination 

The fabricated charge pump and the SPAD are shown in Figure 6.5. The fabricated 

charge pump has an area of approximately 900µm by 350µm. where the overall diameter 

of the SPAD is 30 µm. The charge pump and the SPAD are configured as in Figure 6.6 

where, the charge pump is used to bias the SPAD via a 10k quenching resistor. The 

operational behaviour of the combined circuit is investigated using a green LED, with a 

peak wavelength of 570nm and FWHM (Full Width Half Maximum) of 25nm installed at 

the entrance port of an integrating sphere to form a uniform illumination at the exit port. 

The SPAD was placed at the exit port of the integrating sphere.  

 

 



132 

Figure title:  Fabricated charge pump and SPAD. 

 

a. 

 

b. 

 

 

 

Figure 6.5 Micrograph of the charge pump cell (900µ × 350µ), (B) SPAD 10µm 

diameter active area and 30µm overall diameter including guard rings. 

 

 

Figure title: Configuration of the charge pump and the SPAD 

 

 

Figure 6.6 Block diagram showing the connection between the charge pump and 

the SPAD. 
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Figure title:  SPAD count rate responses 

 

 

Figure 6.7  The count rate of the SPAD versus illumination power, when the 

SPAD is biased by either a regulated bench power supply (●) or the charge 

pump (▲). The overvoltage at low light levels for both sets of data is 0.7V. 

 

The response of the SPAD to various light intensities has been tested when it is biased 

either from a regulated bench-top power supply or from the charge pump. In these 

experiments the illumination intensity was varied. For an ideal photon detector the number 

of photon counts per second should be proportional to the light intensity. However, the 

results in Figure 6.7 show that the SPAD count rate is not proportional to the illumination 

intensity. The origins of this effect can be understood by examining the temporal response 

of the SPAD, such as that shown in Figure 6.8. A photon is counted when the voltage 

increases through a trigger level following a sudden decrease caused by a photon. The first 

pulse in Figure 6.8 is the response to a single photon, which is counted successfully. 

However, this response shows that there is a delay of approximately 150ns between the 

photon and the time at which it is detected. If another photon is detected within this time 

window then the voltage will only cross the trigger level once and the system will count 

one rather than two photons. 
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Figure title:  SPAD generated pulses 

 

Figure 6.8 The response of a SPAD at a high illumination intensity shown on a 

screen shot. Also shown on the left hand axis is a T marking the trigger level.  

 

Figure title:  Over voltage Vs illumination 

 

 

Figure 6.9 The over voltage versus illumination intensity when the SPAD is 

biased by the charge pump. 

 

In Figure 6.8 the double peaked response in the centre of the figure corresponds to a 

situation in which the second photon has arrived before the first photon has been detected 

and so this first photon has not been counted. This effect explains the non-linear response 

obtained when the SPAD is biased using a bench top power supply [58, 115]. 



135 

Another effect of increasing the illumination intensity falling on the SPAD is that since it 

increases the average count rate it must increase the current flowing through the SPAD. 

This means that current drawn from the power supply increases when the light intensity 

increases. This effect is irrelevant when a bench top power supply is used but it is critical 

to the design of an integrated charge pump. This effect can be attributed to the source 

impedance of the charge pump and the diode resistance of the SPAD (Rd) which decreases 

inversely with the illumination. 

The ability of the charge pump to bias the SPAD whilst supplying the required current was 

also tested. The results in Figure 6.9 show that as the illumination intensity increases the 

increased current drawn from the charge pump causes a reduction in the bias voltage 

applied to the SPAD. 

The effect of the illumination dependant over voltage when using a charge pump can be 

determined by comparing the responses of the SPAD when it is biased by a bench top 

supply and by the charge pump. These two responses in Figure 6.7 show that once the 

count rate starts to exceed 500 kcps then the current drawn from the charge pump affects 

the overvoltage and hence the photon detection probability. However, at the low light 

levels that are relevant for fluorescence detection of cancer the charge pump is as effective 

as the bench top power supply. 

6.3  Integrated SPAD chip 

Measurements in previous section have shed light on some design issues that should be 

taken into consideration when integrating a SPAD with charge pump. Part of the 

previously designed charge pump was reused in the new ASIC which also incorporates a 

SPAD with its passive quenching circuitry. Unlike the previous ASIC, the CMOS 

integrated SPAD does not require any pre-amplification (i.e TIA) and requires lower bias 

voltage as we will see later in this section. The ASIC has been designed also in the 0.35µm 

AMS high voltage technology. Though low voltage charge pumps and SPADs can be 

realized in standard CMOS technologies [116], the AMS H35 technology which is a triple 

well process has been chosen in order to isolate the SPAD and its circuitry from any 

substrate noise that can be generated for the high voltage charge pump [77]. 
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6.3.1 2-cell Charge pump 

Depending on the implementation technology the breakdown voltage of an SPAD can 

ranges from 10 to 500 V [58]. However, SPADs realized in advanced CMOS technologies 

can yield lower breakdown voltages of < 20V. Recent literature has reported SPADs 

exhibiting breakdown at 10.4 V [117], 12.4 V [116], and 17.3 [118] which were fabricated 

in 90 nm CMOS, 130 nm CMOS, and 0.35 μm CMOS technologies respectively.   

Indicating that smaller feature size lead to  lower breakdown voltage. This is due to the fact 

that doping concentration is higher in the smaller CMOS technology nodes resulting in a 

smaller depletion area formed which decreases the breakdown voltage of the SPAD‟s p-n 

junction [96, 97]. Based on the breakdown measurements obtained by [118], it was decided 

to design a charge pump that can produce > 25 V for use in the H35 process. This being 

the sum of the voltage required to reach the breakdown point of the SPAD plus several 

times the excess voltage Vex. 

 

Figure title: Two cells charge pump 

 

 

Figure 6.10 Block diagram of  two cells charge pump. 

 

In chapter four, a charge pump which is consists of 5cells was designed and tested. The 

5cell charge pump was able to deliver 95.5 V into a 10 MΩ load. As we have seen in the 

previous section this charge pump can be broken down to smaller sections and therefore 

used to produce lower voltages. According to experimental results in section 4.2.3, one 

single cell ( shown in Figure 4.15 ) of this charge pump can produce a maximum of 

20.4 V. In order to reach the required 25 V another cell is needed.  Thus it was decided to 
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use two cells as shown in the block diagram in Figure 6.10. The charge pump capacitors 

are located off-chip to allow SPAD drive current to be readily adjusted through component 

value changes. 

 

6.3.2 Passive quenched SPAD 

Adjacent to the charge pump on the chip is an SPAD with passive quenching circuitry. The 

SPAD is the part of the ASIC that has been designed by the group from the University of 

Oxford and is a diffused guard ring SPAD in a CMOS process. As the CMOS process is a 

planar fabrication process, a pn junction has small curvature around its edges which results 

in higher electrical field at the edges of the pn junction than the main active area. As a 

result, in high electrical fields near to avalanche breakdown, the edges will breakdown at 

lower voltages than the main area. To avoid this premature breakdown, a guard ring of a 

lower doped material, the same as the anode, is diffused around the edges of the active 

area.  The lower doped material will reduce the electrical field at the edges hence 

preventing premature breakdown. Similarly, as the typical layout of a pn junction is 

rectangular, higher electrical fields occur in the corners. In order to avoid these high 

electrical in the corners, the SPAD has a circular layout creating a smooth edge hence 

generating a uniform electrical field across the active area ( Figure 6.11). 

 

Figure title: SPAD cross section 

 

 

 

Figure 6.11 A cross section through the centre of a circular SPAD showing the 

guard ring of low doped material used to reduce the electric field at the edges and 

corners. The active area is 10µm diameter, and the overall SPAD area including 

guarding is 30µm diameter. 
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As was explained in section 3.3.3, in order for the SPAD to be capable of acting as a 

photon counter, a quenching circuit has to be used. In this ASIC simple passive quenching 

is adequate for steady-state autofluorescence detection.  Therefore, a resistor can be used 

for this purpose.  This resistor could be placed on either the anode or cathode side of the 

SPAD. Similarly, the sensing node of the SPAD could be on the either side of the 

SPAD [62].  However, SPADs fabricated in planar technology are not symmetrical (the 

cathode terminal presents higher parasitic capacitance than the anode terminal of the 

device) [62]. Thus placing the resistor at the cathode terminal increases the recovery time 

of the SPAD,s pulses. Furthermore, the generated pulses which are sensed at the cathode 

terminal will be alternating between VBias (i.e. 22 V) and the break down voltage 

(i.e 19 V). In this case, in order for the generated pulses to be processed by following 

circuitry, the pulses have to be shifted down to operate between 0 and VDD. It is therefore 

more convenient to connect the quenching resistor to anode side. In this case, the resistor is 

used for two tasks: the first one, the resistor is used for the quenching process. The second 

task of the resistor is to be used as a current-voltage converter as shown in Figure 6.12.  

Unlike the MPPC which has a very large terminal capacitance ( 37 pF) for the 100 pixel, a 

single pixel silicon SPAD can have a very small diode capacitance Cd as low as 200 fF  

[62]. Small Cd accompanied by large avalanche current which can go as high as 1 mA 

makes a small resistor such as (10 kΩ) adequate to produce a 1 V voltage pulse. A simple 

I-V converter can have a bandwidth of 1/(2πRCd) equal to 79.6 MHz. Therefore, unlike the 

MPPC with the single pixel SPAD there is no need for a Transimpedance amplifier to 

convert the SPAD anode current to voltage.  

 

Figure title: Simple I-V converter 

 

Figure 6.12  I-V converter that uses resistor to convert the generated current pulses 

by the SPAD to voltage pulses.  
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The quenching resistor can be external or integrated. If an external resistor is used to 

quench the SPAD, the parasitic capacitance Cs in parallel with the SPAD‟s diode 

capacitance Cd can be large [119]. The parasitic capacitance has a significant impact on the 

SPAD operating as Cs is usually at least an order of magnitude larger than Cd. When the 

SPAD is in its idle mode, Cd is fully charged to the positive bias voltage VBias, and Cs is 

empty. When an avalanche occurs, in order to quench the SPAD, the anode voltage quickly 

rises to the excess voltage (Vex) hence discharging Cd to (VBias-Vex). This voltage rise will 

cause Cs to charge to Vex, forcing a current through the SPAD. As more electrons flow 

through the high filed region, the probability of trapping high-energy electrons and re-

triggering the avalanche will significantly increases. As a result, after-pulses may occur. If 

the charging current of Cs is too high and recovery time is too fast, the SPAD may never 

quench, and a sustained avalanche current will flow through the SPAD. Moreover, as Cs is 

much larger than Cd, the total charge transferred during the quenching and recovery 

process is equal to 

 

   exsd VCCQ                                                         6.1 

 

where the total capacitance is mostly dominated by Cs. Therefore, in order to reduce 

excesses power consumption, an internal on-chip quenching circuit is implemented. An 

integrated quenching resistor can result in a very small parasitic capacitance Cs, even down 

to 70fF as reported in [120].  

 

Figure title: Passive quenching circuit 

 

 

 

Figure 6.13 Schematic circuit diagram of the Passive quenching circuit. 



140 

 

Base on the previous discussion, the quenching resistor was decided to be integrated and to 

be placed at the anode terminal of the SPAD. Figure 6.13 shows the schematic of the 

implemented quenching circuit. In this circuit instead of a resistor, an NMOS device Mq, 

which is a voltage controlled current source that is used to limit the recharging current 

hence controlling the speed of the recovery by the means of varying the value of (q Bias).  

The recovery time is set long enough to ensure that the SPAD is quenched and to minimize 

the after pulses.  The shape of the pulse at the sensing node of the SPAD is similar to a 

triangular shape due to the very sharp avalanche pulse and the linear discharge by the 

NMOS device. In order to read out this voltage without interfering with SPAD operation, a 

high-impedance CMOS buffer with variable threshold level is implemented. This buffer is 

a two-stage inverter which the first stage is CMOS variable threshold inverting comparator 

consisting of M1 and M2. The Vtrig input to M2 controls the trigger voltage. The second 

stage is a CMOS push pull inverter (M3 and M4) with sufficient current gain to drive the 

transmission wire and the next stage is a digital output buffer which drives the pad 

capacitance and the input capacitance of the pulse counter. Although the output buffers 

consume large amount of power, they are not required if the next stage after the quenching 

circuit is implanted on the chip. 

 

As each SPADs pulse consumes a fixed amount charge given by equation (6). The SPAD 

total power consumption is then can be given by 

 

                           fVCCVP exTdA                                                  (7) 

 

where, VA is the high positive bias voltage and f is the count rate per second. Note that P 

does not depend on the speed of the recovery unless the count rate changes. In the our 

present case where steady-state fluorescence measurement is intended, it can be noted that 

current consumption of the SPAD and therefore the current to be drawn from the charge 

pump is heavily dependent on the count rate of detected pulses and the dark count rate of 

the SPAD.   

 

As not all the incident photons will generate a pulse, the ratio of the detected pulses to the 

incident photons are referred to as Photon Detection Probability (PDP). In the photo 

detection process, some photons are not absorbed, or if they are absorbed, they do not 

trigger an avalanche. PDP is product of Quantum Efficiency (QE) of the p-n junction and 
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avalanche probability. In the shallow junction CMOS process due to the low depth of the 

depletion region from the surface of the silicon, the resulting PDE is expected to be higher 

in shorter wavelengths of the spectrum close to the blue-green region. This characteristic 

make the CMOS SPAD more suitable for applications such as blue-green fluorescence 

detection due to the lower cost and availability of the CMOS SPAD compared with SPADs 

fabricated in dedicated processes.   

 

The SPAD with its circuitry was laid out next to the charge pump. As was the case with the 

charge pump, all the transistors used in the SPAD circuitry design were isolated transistors, 

namely NMOSI for MOS transistors and PMOSI for PMOS transistors. The use of isolated 

transistors gives the SPAD and its circuitry extra immunity against any leakages current 

injected by the charge pump to the substrate as we have mentioned earlier.  

 

6.4  Measurements 

A micrograph of the fabricated ASIC is shown in Figure 6.14. The silicon area occupied 

by the charge pump is 800μm x 1570μm. Where, the SPAD with its circuitry occupies and 

area of 45μmX45μm. The SPAD and charge pump were evaluated separately and in 

combination. 

 

Figure title: Fabricated ASIC 

 

 

Figure 6.14  Photograph of the 3 X 3 mm2 application specific integrated circuit 

chip.   
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6.4.1 Charge pump characterisation 

According to measurements, the 2-cell high voltage charge pump is capable of generating 

up to 37.9 V. At 10 MΩ resistive load RL, 10nF RL and 1.430 kHz clock frequency, the 

charge pump showed minimum ripple of 34 mV, rise time of 19 ms and can deliver 700 nA 

output current. The overall characterisation of the charge pump voltage generation 

capability alongside its current drive capability was tested by sweeping RL from 10 MΩ to 

50 kΩ. Figure 6.15 shows the output current and voltage in response to varying resistive 

load and the effect of the resistive load on the generated voltage and the delivered current 

to the output load.  At low resistive load value (50 kΩ), the charge pump generates only 

12.3 V whilst delivering a relatively high current of 298 μA. The measured relation 

between the delivered current and the output voltage of the charge pump can be used to 

estimate the source impedance (Rs) of the charge pump which is according to Figure 6.16 

can be given by 

 

L

out

L
s R

V

R
R 




9.37
                                                    (8) 

 

 

      

Figure title: Current and voltage characteristics of the charge pump 

 

 

 

Figure 6.15 Measured current driveability and voltage capability of the 

charge pump as function of resistive load RL. 
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Figure title: Charge pump equivalent circuit 

 

 

 

Figure 6.16 Two cells charge pump equivalent circuit 

 

The variation of output voltage with input clock frequency is shown in Figure 6.17. At 

0.9 MΩ load the maximum output voltage is equal to 33.2V for a 95 kHz clock. This curve 

changes according to the output resistive load value and the clock frequency. Hence the 

output voltage can be set for a known resistive load value by appropriate adjustment of 

clock frequency as will be seen in section 6.4.3. This is very important as the SPAD must 

be biased correctly for optimum photon detection efficiency.    

 

Figure title: Charge pump output voltage 

 

 

Figure 6.17 Measured output voltage of the charge pump as function of the clock 

frequency at resistive load equal to 0.9 MΩ. 

 

The efficiency of the charge pump was measured with respect to frequency. The power 

efficiency of the charge pump is calculated by dividing the mean value of the output power 
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by the mean value of the input power consumed by the charge pump [73]. Figure 6.18 

shows, the efficiency with a to 0.9 MΩ resistive load. The reason that the results in 

Figure 6.17 and Figure 6.18 were obtained at 0.9 MΩ load is because at this load value, 

the SPAD showed its best response as we will see in section 6.4.3 of this section. At this 

load the charge pump‟s power efficiency peak is 40.1% for a clock frequency of 35 kHz. 

(Figure 6.18), this mean that at this load the charge pump achieves its highest efficiency 

when generating 31.6 V.   

Figure title: Charge pump efficiency 

 

 

Figure 6.18  Measured efficiency of the charge pump against clock frequency at 

resistive load equal to 0.9 MΩ. 

 

6.4.2 SPAD characterisation  

The SPAD was tested independently. The SPAD experienced breakdown at 18.95 V. 

When biased with excess voltage vex equal to 3.1 V over and above the breakdown voltage, 

the dark count rate (DCR) of the SPAD measures about 4 kilocounts/sec (kcps).      

 

At the same excess voltage the power detection efficiency (PDE) of the SPAD was 

measured using a white light source attached to an integrating sphere to create a uniform 

illumination at the exit port of the sphere, where a monochromator was placed to sweep the 

light wavelength from 400nm to 800nm The SPAD was placed at the exact centre of the 

monochromator exit port in order to investigate the count rate against wavelength. Due to 

the non- uniform spectral distribution of the grating used in the monochromator, the 

obtained results were then remapped against the spectral response measurement obtained 
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from an off-shelf BX65 photo-diode. The SPAD‟s PDE shows that it has about 42.4% 

detection efficiency at 475 nm and 36.6% at 500nm (Figure 6.19).  

 

 

Figure title: Photon detection efficiency 

 

 

Figure 6.19 Photon detection efficiency of the SPAD peaks at 475nm which is 

suitable for detection of autofluorescence emission that lies at the end of the blue 

region and towards the green region. 

 

 

 

Figure title: Output pulses 

 

 

Figure 6.20  The response of a SPAD at the output of the second buffer to moderate 

light illumination shown on a screen shot of an oscilloscope. 
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The operation of the SPAD‟s circuitry including the buffers has been tested as well. The 

optimum response of the SPAD is achieved when current-sink transistor Mq is biased at 

1.24 V and Vtrig is set at 0.95 V. Biasing  Mq at 1.24 V produces a long enough recovery 

time to ensure that the SPAD is quenched properly and therefore the after pulse effect is 

low. However setting Mq‟s bias, and the resulting SPAD bias current, too high increases 

the pulse widths and consequently minimizes the input dynamic range of the SPAD.  

Figure 6.20 shows an example of the SPAD pulses generated at the second buffer which 

contains some narrow pulses and a wide pulse. The square narrow pulses are due to single 

avalanche pulses. Whereas, the wide square pulse are caused by an avalanche pulse with 

some after pulsing.  

 

At 3.1 V excess voltage, the threshold voltage of the first buffer at Vtrig is set to 0.95 V 

where the highest pulse count dynamic range is achieved. At high illumination the SPAD 

can reach up to 4108 kcps which is the highest pulse rate that can be achieved while 

maintaining relatively low after pulsing. In this work where steady state fluorescence 

measurement is intended, it is very important to have a wide dynamic range. The transient 

spectrum of the SPAD should be able to accommodate the DCR, useful pulses count rate 

( i.e detected autofluorescence emission) and count rates generated from background 

scattering light originating for the excitation source.  

 

6.4.3 ASIC evaluation 

The response of the SPAD to various light intensities has been tested when it is biased 

either from a regulated bench-top power supply or from the charge pump when loaded at 

different resistive values. The response has been measured using a green LED, with a peak 

wavelength of 570nm and FWHM (Full Width Half Maximum) of 25nm installed at the 

entrance port of an integrating sphere to provide uniform illumination at the exit port. The 

relationship between the voltage applied to the LED and the intensity of the light at the exit 

port was then determined using an Anritsu optical power meter. The SPAD was first biased 

using the charge pump at 22 V and clock frequency equal to 10.922kHz. The SPAD 

response was then measured against varying light intensity. An ideal photon detector‟s 

photon counts per second output should be proportional to the light intensity, however this 

is not the case for the SPAD as when the charge pump is loaded by a high resistance (i.e 

10 MΩ). This is attributed to the fact that the charge pump is delivering only about 360 nA 

to the load. At very low intensity the SPAD demands very low current for each pulse 

generated, however when the light intensity is increased more pulses are generated and 
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therefore more current is drawn from the charge pump. The charge pump then starts to 

respond to the high current demands from the SPAD by reducing some of its voltage 

potential generated at the output. As a result of this, the photon detection efficiency of the 

SPAD is greatly diminished. This effect is irrelevant when a bench top power supply is 

used but it is critical the SPAD is biased by a charge pump. Two solutions can be 

suggested to over come this problem by: 1) introducing a feed back control unit that senses 

any drop at the output of the charge pump below the 22 V and then responding by 

increasing a clock frequency of the charge pump. 2) By directly increasing the amount of 

current delivered to the output from nano amp scale to several tens of micro amps. The 

large amount of current ensures that any change in current demand by the SPAD will not 

cause any significant drop in the excess voltage and therefore maintains the SPAD biased 

point. Increasing the delivered current to the output node of the charge pump is achieved 

adding an additional resistive load in parallel with the SPAD - Rregulation - in order to 

regulate the delivered output current.   According to measurement in Figure 6.21 this can 

be achieved by using Rregulation  of 0.9 MΩ. At this load the SPAD shows a similar response 

when biased from a bench-top power supply or from the charge pump. 

 

Figure title: SPAD response at different regulation loads 

 

 

Figure 6.21 The count rate of the SPAD versus illumination power when biased by 

the charge pump at different resistive loads values and when biased by a bench-top 

voltage source. The excess voltage at low light levels for all sets of data is 2.7 V. 
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Figure title: Delivered current by the charge pump 

 

 

Figure 6.22 Delivered current by the charge pump as function of light 

illumination with Rregulation = 900 kΩ.  

 

 

 

Figure title: Bias voltage response to  illumination  

 

 
 

Figure 6.23 The bias voltage decreases when illumination intensity is increased by 

biasing the SPAD with the charge pump. This decrease is changes according to the 

regulation load used for the charge pump.  

 

In contrast with the first solution, the second option is very simple to implement. However, 

in terms of power consumption (and ignoring the power consumption of the feedback 
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circuit if implemented), using a 0.9 MΩ Rregulation increases the current consumption of the 

charge pump from 152 μA to 487 μA. Figure 6.22 shows the amount of current being 

delivered to the charge pump when 0.9 MΩ Rregulation is used. The actual amount of current 

that flows through the SPAD changes from 70 nA at 500 kcps to around 680 nA at 

4108 kcps. The effect of this change on the bias voltage generated by the charge pump is 

shown in Figure 6.23. It can be seen for this figure that the charge pump can sustain 

almost 21.5 V at high illumination when 0.9 MΩ Rregulation is used. However, when higher 

Rregulation is used (i.e 10 MΩ) is used, the charge pump voltage output drops from 22 V with 

no illumination to 20.42 V at illumination power equal to 11.27μW.   

 

6.5   Biological measurements 

Having evaluated the ASIC performance electrically and optically, in this section the 

ASIC‟s ability to measure autofluorescence emitted from living tissues is verified. This 

measurement was conducted in a small dark room measuring 80cmx50cmx50cm which 

isolated the system from ambient light. The ASIC was integrated into a test PCB, placed in 

the middle of the dark room and aligned next to a blue excitation source. All the evolution 

experiments in this section where conducted with the SPAD biased by the charge pump 

and at 22 V, 0.9 MΩ Rregulation and 10.922kHz clock frequency. 

 

 It is common for autofluorescence measurements to use white light followed by multi-

band optical filters in order to scan the region between 425±52nm [6, 9, 32]. However, due 

to capsule size and power constraints a blue LED is used instead. Choice of LED excitation 

wavelength was based on the findings in [8, 29] which describe the endogenous tissue 

fluorophores that can be found in human tissues in the upper part of the GI tract. However, 

as far as we are aware, there is no dedicated study that focuses on finding the exact 

endogenous fluorophores of the small intestine. Therefore, it was assumed that the GI tract 

contains more or less the same endogenous tissue fluorophores. By comparing the 

excitation wave lengths of the endogenous fluorophores and the excitation bands that were 

used in [6, 9, 32], it can be said that the later studies were targeting mainly Flavins 

fluorophores which has a peak excitation wave length at 450nm [8, 29]. Accordingly, the 

Avago Technologies HSMR-CL25 LED was used as an excitation source. The LED is an 

0603-size surface mount device with a peak wavelength of 465 nm and (Full Width Half 

Maximum) FWHM of 25nm.  
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Figure title: Filters characteristics  

 

 
 

Figure 6.24 The long pass filter has a cut-off wavelength at 515 nm and the band 

pass filter has a centre wavelength equal to 475nm and FWHM bandwidth equal to 

64nm. 

 

When Flavins fluorophores are excited at 450 nm, they fluoresce at 520nm [8, 29]. Based 

on this fact, a 4mm x 4mm witdh, 3.5 mm thickness Semrock long pass filter was placed 

on top of the SPAD in order to isolate the SPAD for the emission of the excitation source. 

As the excitation and emission bands are close, a 3mm x 3mm with 3 mm thickness 

Semrock band pass filter was also used on top of the LED. This filter which has very high 

optical density (OD) (greater than -7) strongly attenuates the LED‟s output above 507 nm. 

The spectrum characteristics of the two optical filters are shown in Figure 6.24. The cut-

off wavelength of the two filters was chosen to be close to each other to allow as much as 

possible for a wider excitation band and wider detection band.  

 

In complete darkness, the SPAD generated DRC of~ 4 kcps which is measured using the 

counter function available in the MSO6104A Agilent oscilloscope. However, when the 

excitation source is powered on, the SPAD detects photons that are originating from the 

excitation source with a correspondent count rate reaching up to 8.7 kcps when the LED is 

biased at 3 V. Count rate increases if a reflective object such as aluminium foil sheet is 

placed 2cm away from the SPAD in which case it rises up to 23 kcps. Clearly the SPAD 

optical filter fails to completely attenuate the proportion of photons from the LED which 

are reflected back from the intestinal wall. This is because the OD of these filters is still not 

high enough to completely block the blue light and the fact that the cut-offs of the two 
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filters are close to each other which causes interference between the filters. For incident 

light at 0 degrees these filters behave according to their measured characteristics and no 

interference between them is occurring. However, in the case of reflected light having 

different angles, the cut-off edge of the filter changes accordingly as shown in Figure 

6.24. It can be seen that when the light angle changes to 30 degree the cut-off wave length 

moves to lower wave lengths  <500nm which therefore causes an interference between 

excitation band and detection band. Minimizing the count rate of the background light can 

be achieved by: 1) increasing the OD of the band pass filter. 2) using a polarizer on top of 

the two filters [121]. However, filters with higher OD are too large to fit within the pill. 

The same can be said about the second option. There is not enough space to add a 

polarizer. Furthermore, a polarizer will reduce the amount of detected blue light as well as 

the amount of detected autofluorescence emission. Accordingly it was then decided to deal 

with any scattered background light as an additive dark count. The measurement conducted 

using aluminium foil, indicated that the maximum dark count rate is 27 kcps. Therefore, 

any count readings above this level is considered as autofluorescence emission. 

 

Autofluorescence measurements have been carried out using a piece of lamb small 

intestine placed 2cm from the SPAD. The intensity of the autofluorescence emission was 

measured at different excitation blue light intensities (Figure 6.24.a). This measurement 

was first conducted with plain intestine (Figure 6.24.b), where its internal side is placed 

facing the SPAD. The measured autofluorescence count is equal to 53.3 kcps when LED is 

biased at 3 V (6.6 mA). In order to mimic a cancerous region, a piece of an absorbent 

optical tape was place right at the region facing the SPAD. This material mimics a tumour 

formation in that it absorbs much of the excitation light and emits very weak 

autofluorescence according to stage and the size of the tumour. The tumour exhibits 

increased blood flow and correspondingly higher haemoglobin levels. Haemoglobin 

absorbs incoming photons which will result in substantially reduced autofluorescence 

which is a characteristic feature of a tumour [122]. When an 0.5cm x 0.5 cm piece of 

absorbent tape, as shown in Figure 6.24.c was used, the SPAD output fell to 30 kcps, and 

dropped to 21.9 kcps when 1cm x 1cm absorbent tape is used.  These results verify that the 

system is capable of effectively inducing and detecting autofluorescence in mammalian 

intestinal tissue in spite of the additive noise of dark count and reflection. It can be seen 

from Figure 6.24.a that the difference between autofluorescence measurements diverges 

as the excitation intensity is increased, hence the higher the excitation intensity the more 

accuracy is obtained in distinguishing between healthy tissues and non-healthy tissues. 

However, this issue is a trade-off with the effect of background scattering light. It is thus  



152 

Figure title: Autofluorescence from mammalian tissues  

 

a. 

 

 

b. 

 

c. 

 
 

 

Figure 6.25 (a) Autofluorescence emission intensities at different excitation levels. 

The autofluorescence is measured for a piece of plain lamb intestine as in (b) and 

for the intestine with light absorbing black-out material as in (c).  

 

 

important to note that eliminating the background scattering light effect will allow more 

accurate readings to take place at lower illumination and therefore reduce the LED power 

consumption. 

 

The LED is the main power consumer within the capsule At 3 V which is the highest 

voltage that can be supplied to the LED using two 1.5 V SR48 battery cells, the LED 

consumes 19.8 mW, corresponds to 6.6 mA as shown in figure 14.c.  In the other hand the 

ASIC only consumes 1.76 mW, corresponds to 487μA by the charge pump and 85μA by 
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the SPAD‟s buffers.   The controller and radio link discussed below combined consume an 

average of 50 µA at 3 V. 

 

 

6.6  Controller & Radio link 

After ASIC fabrication and testing the final system was assembled and tested. 

Figure 6.26 shows the complete block diagram of the system which consists of a battery 

pack, ASIC, LED, control unit, radio link and data logging software. The system operates 

as follows:  When the SPAD is biased above its breakdown voltage by the charge pump, it 

generates pulses that are proportional to the number of detected light photons, these pulses 

being counted over a fixed period by an off chip counter. An off chip state machine and 

timer controls the operation of the charge pump, LED and the transmitter. On completion 

of pulse counting the counter value is transmitted via UHF radio to the external receiver 

and data logger. This operation is repeated every second until the entire intestine is 

scanned.  At the receiving end, the gathered data is graphed against the travelling time of 

the capsule. 

 

Figure title: System block diagram 

 

 

Figure 6.26 Complete system block diagram illustrating the components of the pill 

and the radio link to the external base station. 

 

The radio link, controller and data logger was designed and fabricated by the School of 

Engineering, Microsystems technology group member, Dr. James Beeley. The design 

includes a pulse counter which counts pulses generated by the SPAD, controls data 
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transmission via radio to the external data logger and provides a clock for the SPAD 

(Figure 27). The controller was designed to provide the charge pump with the required 

clock frequency (10.922  kHz), count incoming pulses for the SPAD (up to 16 Mcps) and 

control the transmitter part of the pill. The transmitter was designed to send the 

information acquired by the counter to an external data logger within 1 meter radius.  

 

Figure title: System block diagram 

 

 

 

Figure 6.27 Pulse Counter and UHF Data Link. The counter counts pulses over a 

500ms period. The counter value is then read serially by a state machine, which 

transmits the counter value to an external logger via an 868 MHz ASK transmitter. A 

divider generates counter gate control and charge pump clock signals. 

 

Incoming pulses from the SPAD increment a 24-bit counter which rolls over to zero on 

reaching its maximum value of 2
24

-1. The counter input gate opens for 500ms in every 

second, the high portion of a 1 Hz 50% duty-cycle clock is used as the counter gate signal. 

At the end of the sampling period a control state machine activates an 868 MHz amplitude-

shift keyed (ASK) radio transmitter. The 24-bit counter value is transmitted serially and 

asynchronously over the radio link at 32.768 kbaud, and is enclosed by 2 start and 1 stop 

bits to form a 27-bit data packet. The transmitter requires 1 ms stabilisation time after 

being powered on, and 823µs to transmit the 27 data bits, and hence is active for only 

1.823 ms in every second, thus minimising power use. A UHF receiver passes the 
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incoming data packet to a microcontroller, in turn transferring the counter value to a PC via 

USB. PC software uses the two most recent count values to calculate and log the pulse rate 

per second. As the 24-bit counter gate is open for 500 ms in every second the maximum 

measurable frequency is 33.5 MHz, and resolution is 2 Hz.  

 

To verify the pill implantation feasibility, an off-the shelf ICs for: counter, controller and 

transmitter were used. A Xilinx XC2C64 Coolrunner II Complex Programmable Logic 

Device (CPLD) with 3V I/O and 1.8V core implements the 24-bit counter, the 24-to-1 

multiplexer used to read the counter value serially, the control state machine. The CPLD 

offers far lower power consumption than a Field-Programmable Gate Array (FPGA), and 

offers far greater pulse counting resolution and precision that a microcontroller. Dividers 

generating a 10.922  kHz charge pump control clock and a 1 Hz, 50% duty cycle counter 

gate control signal from the 32.768 kHz system clock are also implemented in this device. 

The design was specified in VHDL and synthesised and simulated via Xilinx ISE Webpack 

software. The 6 mm x 6 mm BGA-packaged device was the largest able to fit within the 

capsule, significant effort being required to fit the required functionality into the 64-

macrocell device. The CPLD, 32.768 kHz oscillator and voltage regulator are attached to a 

12mm diameter PCB. A tab on the side of the board with an appropriate connector permits 

in-circuit programming of the CPLD, and is cut off prior to assembly. 

 

An 868.3 MHz radio frequency was selected, this being the only legally permissible 

frequency within the 450-900 MHz range which finite-element simulations have shown to 

be effective for radio transmission through the human body [123].  The 433 MHz band, 

whilst also legally permissible and used in some medical devices, was avoided as it falls 

outside the optimum range indicated by simulation work and carries a risk of transmission 

being disrupted by interference as this frequency is also extensively used by car central 

locking remote control  systems and powerful amateur radio and military radio systems 

[124]. The Melexis TH72035 UHF transmitter IC is active for 1.8235 ms  per seccond in 

which it generates a 1 mW, 868.3 MHz carrier frequency by multiplying the output of a 

27.13438 MHz crystal oscillator via a phase-locked loop and amplifying the resulting 

signal. The carrier is amplitude-shift keyed - on in response to a logic “1” and off in 

response to a “0”. The RF output drives an omnidirectional helical antenna (Linx JJB) via 

an LC impedance matching/harmonic suppression network. The ground layer of the 

14mm-diameter transmitter PCB doubles as the antenna ground plane.  

 



156 

The external data logger‟s RF section is comprised of a Melexis TH71120 868 MHz 

receiver board and an end-fed dipole antenna.  Incoming data packets from the receiver are 

fed serially into a Microchip PIC18F14K50 embedded processor. Manufacturers 

developers boards were used in both cases to minimise design time and cost. The PIC 

recognises an incoming packet‟s start-bit pattern and utilises the radio receiver‟s received 

signal strength indicator connected to an on-board analogue-digital converter to avoid false 

triggering on noise in the absence of a transmitted radio signal. PIC code was written in 

“C” using the MPLAB development system. The received counter value is then passed via 

USB link to a logging PC running Windows XP. The logging software displays the count 

value and stores it for later analysis, and communicates with the USB microcontroller via 

Microchip USB libraries and the LibUSB device driver. The PC software was written in 

Microsoft Visual C++ 2010. 

 

The operation of the counter and the controller was tested and their operation was verified 

in conjunction with the ASIC. The implemented counter was able to count and incoming 

pulses form the SPAD as efficiently as the MSO6104A Agilent oscilloscope. The radio 

link‟s performance was also examined. The capsule, whose counter input was driven by a 

pulse signal generator, was placed against one side of the torso of one of the investigators, 

and the radio receiver against the other side in a variety of different positions and 

orientations. In all cases data was received reliably. This experiment was carried out in a 

radio frequency anechoic chamber, whose walls absorb RF energy and hence eliminate 

radio propagation by wall reflection. This suggests that the radio link operates reliably 

through human tissue regardless of the relative position of capsule and receiver and 

consequent antenna polarisation, and that the communication link would be capable of 

dependable operation from within a human. 

 

 

6.7   Packaging  

The components that are incorporated into the capsule are arranged in Figure 6.28. the 

capsule is intended to contain two channels, each consisting of an  ASIC and an excitation 

source (LED), such that the entire 360
o
 surface of the intestinal wall is covered by the 

detection part and the excitation part where in each channel there is an In this work for 

demonstration purposes a single channel was implemented in a capsule. 

 



157 

Figure title: Pill design layout 

 

 

 

Figure 6.28 Sketch of proposed pill illustration the arrangement of the pill 

components.    

 

In order to demonstrate the size feasibility of the capsule, a tube made of borosilicate glass 

which has a visible light transmission >92% was used to encase one channel of the system. 

The design used the following main components: 1) an 11 mm x10mm double-sided PCB 

board to host the ASIC, LED, optical filters and the charge pump‟s external capacitors 

(Figure 6.29.a)  2) a double-sided 12 mm diameter round PCB with implementing the 

counter and control unit and a double-sided 14 mm diameter round with that transmitter 

PCB (Figure 6.29.b). 3) 868 MHz radio transmitter and antenna 4) pack of two 

(SR48 battery cells). The final assembly of the prototype Pill is illustrated in Figure 6.30. 

The complete prototype was 16 x 45mm in size and weighted 12.01 g including the 

batteries.  
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Figure title: Main PCB , controller and transmitter PCBs 

 

a. 

 

b. 

 

 

 

 

Figure 6.29 .   a) The 11 mm x10mm double-sided PCB containing the ASIC, 

LED, the optical filters and the charge pump’s external capacitors (1 mm 

scale).   b) The CPLD controller/counter/divider (left) and 868 MHz 

transmitter (right) boards, scale is 0.5 mm. 

 

 

Figure title: Pill prototype 

 

 
 
 

Figure 6.30 Final prototype packaging of the proposed pill. From left to right are the 

battery pack, LED and ASIC on a horizontal-mounted PCB, vertical controller and 

transmitter PCBs, and UHF antenna. 
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6.8  Summary  

This chapter started with a feasibility study of integrating a SPAD with a charge pump into 

a single chip by testing a SPAD that was designed by The University of Oxford and a 

component of the charge pump that was discussed in chapter 4. A new ASIC was 

fabricated using AMS H35 process and contained the charge pump and the SPAD in the 

same chi. Electrical and optical evaluation measurements have been presented in section 

6.4. The measurement section included measurements and evaluation of the SPAD, the 

charge pump and the two blocks when operating together. The SPAD has high detection 

efficiency in the green-blue region with a peak of 42.4% achieved at 475 nm and 

experienced breakdown at 18.95 V. When biased at 22 V the dark count rate of the SPAD 

measures about 4 kcps. The SPAD was biased at 22 V using the 2-cells charge pump 

which was regulated by a 0.9 MΩ resistive load at 10.922 KHz clock frequency in order to 

overcome the problem introduce by the high source impedance of the charge pump. The 

resistive load is used to regulate the current delivered to the SPAD and therefore helps the 

charge pump to sustain the 22 V at high illumination. In order to verify the capability of 

the ASIC to measure different levels of autofluorescence emissions, biological 

measurements  were conducted using a lamb‟s small intestines. The measurement verified 

the operation principal of the system and showed that the fabricated ASIC can detect the 

changes in the level of the autofluorescence emission produces by the small intestine at 

different excitation intensities. In section 6.6, the control and radio link part of the capsule 

was design, implemented and its operation with ASIC was verified. In the final section, all 

the implemented components that were designed to be incorporated in to the capsules were 

fitted into a 16 x 45mm glass capsule to demonstrate the size viability. 
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Chapter 7 Conclusion and future 

work 

 

7.1  Conclusion  

In this work a prototype of a miniaturised, low-power pill sensor with integrated data 

transmission capable of detecting autofluorescence from mammalian small intestine tissue 

has been designed, implemented and characterized. The pill comprises an application 

specific integrated circuit (ASIC), implementing a single photon avalanche detector 

(SPAD) and a charge pump enabling the SPAD to operate from a 3V battery. The device 

also incorporates a digital pulse counter, controller, low power LED, optical filters and a 

radio transmitter. This offers the potential for automated early detection of cancer and 

other ailments of the small intestine. 

 

 Initial development of the pill used an off chip MPPC device as a light detector. The 

MPPC is an array of SPADs that has a photon detection efficiency of 60% at 520 nm. In 

order to operate the MPPC, an ASIC that contains a very high voltage charge pump and 

front-block was fabricated using the AMS high voltage 0.35µm process. The charge pump, 

which consists of 5-cells, was capable of delivering the 72 V with 70µA that is required to 

bias the MPPC. Each cell in the charge pump is constructed using two stages of a Dickson 

charge pump and a high voltage clock generator which generates 9.8 V non-overlapping 

clocks. The charge pump output voltage is a function of the clock frequency of the charge 

pump. This feature was exploited to control the charge pump and deliver the exact desired 

bias voltage to the MPPC. The front-end part of the ASIC contains a Transimpedance 

amplifier (TIA) and post amplification stage. The designed TIA has 75 Ω input impedance, 

86 dB Ω gain and -3 dB band-width equal to 59 MHz at the input capacitance (37 pF) of 

the MPPC. The experimental test of the MPPC operating with the TIA showed that the 

TIA can amplify the generated pulses in response to illumination up to 1400 nW. However, 

the TIA was suffering from a saturation problem when the MPPC was illuminated with 

higher light intensities which consequently reduced the input dynamic range of the MPPC. 

The overall ASIC consumes 9.45 mW. that is a  2.7 mW by the front end and 6.75 mW by 

the charge pump.  



161 

 

In order to increasing the compactness and reducing the power consumption of the pill, a 

second ASIC was fabricated and the MPPC was replaced by an integrated light detector (a 

single SPAD). The new ASIC consists mainly of a two cells charge pump and a SPAD 

with its passive quenching circuitry. The integrated SPAD reduced the size of the pill by 

5 mm which is the size of the MPPC device. Due to the lower breakdown voltages of 

SPADs fabricated in CMOS technologies, the size of the charge pump was reduced from 

five cells to two cells and therefore the power consumption of the charge pump was 

reduced form 6.75 mW to only 1.46 mW. Furthermore, in the new design and due to the 

low diode capacitance of the SPAD (typically 200fF), no TIA was required to convert the 

gendered current pulses to voltage and an active resistor was used instead. This eliminated 

the power consumption by the front-end. 

 

Being a multi-well process, the new (3mm x 3mm) ASIC was also fabricated in the AMS 

high voltage 0.35µm process to provide an isolation between the low voltage SPAD and 

the charge pump thus eliminating  any current leakage which arises due to the continuous 

switching nature of charge pumps which might affect the performance of the SPAD  [77]. 

Furthermore, designing a SPAD in this process yields lower dark count (DRC) (~ 4 kcps) 

noise in comparison to smaller nodes processes such as 130nm and 90nm [118] [116, 117]. 

 

The 2-cell high voltage charge pump is capable of generating up to 37.9 V. To get this 

voltage, a 10 MΩ resistive load, 10 nF capacitive load and 1.430 kHz clock frequency 

were used. At these conditions the charge pump showed minimum ripple of 34 mV, a start 

up time of 19 ms and can deliver 700 nA output current. The current delivered by the 

charge pump is varied according to the resistive loading at the output node of the charge 

pump. It can also be changed according to the boosting capacitors values, which were 

chosen to be off-chip. In order to generate the exact required biased voltage to the SPAD, 

the charge pump was designed to be operated using a single input clock where the output 

voltage can be varied accordingly. The single input clock feature is critical to deliver the 

exact desired voltage for biasing the SPAD and therefore eliminates the need for any 

regulating circuitry.  

 

Regarding to the SPAD operation, obtained experimental results showed that the SPAD 

has high detection efficiency in the green-blue region with a peak of 42.4% achieved at 

475 nm. The SPAD experienced breakdown at 18.95 V. When biased with excess voltage 
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of 3.05 V on top of the breakdown voltage, the dark count rate of the SPAD measures 

about 4 kcps. 

 

The SPAD was biased at 22 V using the 2-cells charge pump which is regulated using a 

0.9 MΩ resistive load at 10.922 KHz clock frequency in order to overcome the problem 

that is introduced by the high source impedance of the charge pump. The resistive load is 

used to regulate the current delivered to the SPAD and therefore helps the charge pump to 

sustain the 22 V at high illumination. If no resistive load is used for regulation, the output 

voltage generated by the charge pump can drop to 20.4 V due to high current demand of 

the SPAD; such a voltage drop diminishes the SPAD performance. When a regulating load 

is used the amount of current that is delivered to the output is increased to a point that the 

current consumption of the SPAD becomes insignificant to the total delivered current. 

Adopting this technique to regulate the output current of the charge pump however 

increases the power consumption from 0.48 mW to 1.46 mW when a regulation load is 

used.  

 

The capability of the ASIC to measure different levels of autofluorescence emission  

generated by biological tissue was verified using a small intestine of a lamb that was 

placed inside a dark box in front of the ASIC. The tissue was excited using a surface mount 

LED with a peak wavelength of 465 nm and full width half maximum (FWHM) of 25 nm. 

A long pass filter, with a cut-off wavelength equal to 513 nm, was used to block out light 

coming from the excitation source. Another band pass filter, with a central wavelength 

equal to 475 nm and FWHM equal to 64nm, was placed on top of the excitation source. 

Autofluorescence measurements were conducted on healthy lamb intestine in addition to 

intestine partially covered by light absorbing black-out material to mimic cancerous 

regions. This material mimics a tumour formation which absorbs much of the excitation 

light and emits very weak autofluorescence according to stage and the size of the tumour. 

The tumour exhibits increased blood flow and correspondingly higher haemoglobin levels. 

Haemoglobin absorbs incoming photons which will result in substantially reduced 

autofluorescence which is a characteristic feature of a tumour. Obtained pulse counts 

showed the healthy tissues emitted 53.3 kcps, whereas the tissues that mimicked cancerous 

regions (1cm x 1cm) emitted only 21.9 kcps, when both were excited by the LED biased at 

3 V (6.6 mA). These readings however are not pure autofluorescence. Amongst these count 

rates are detected photons that originate from light scattering of the excitation source. This 

is attributed to the fact that the optical density of the filters is not high enough to block out 

this unwanted light. Reducing such background scattered light will improve the 
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autofluorescence detection efficiency at even lower excitation levels and therefore can 

reduce the huge power consumption by the excitation source. 

A pill prototype was packaged in a glass tube of borosilicate glass which has a visible light 

transmission >92%. The design included the following components: an 11mm x10mm 

double-sided PCB board for the ASIC, LED, optical filters and charge pump capacitors; a 

double-sided 12mm diameter round PCB implementing the counter and control unit; 

double-sided 14 mm diameter round transmitter PCB; two SR48 batteries. The complete 

prototype is 16mm x 45mm in size and weighs 12g including batteries.  

 

The LED consumes 19.8mW, (6.6mA). The ASIC consumes 1.76mW (487μA) drawn by 

the charge pump and 255μW (85μA) by the SPAD buffer. The controller and radio link 

power requirement averages 150μW (50 µA). The total average current drawn is 7.137mA, 

hence the system was capable of operating from 165 mAh SR44 batteries for 23 hours, 

which is well in excess of the 9 hours typically required to traverse the human intestine. 

Given the compactness and low power consumption of this technology it is anticipated that 

it may be readily scaled to make an imaging array for wireless autofluorescence scanning. 

 

7.2  Future work 

The LED is the main power consumer in the pill,  it consumes 19.8 mW which is almost 10 

times more than the power consumed by the rest of the pill including the transmitter. 

Cutting down the LED power consumption can be achieved by upgrading the existing 

system so it can perform fluorescence time-resolved measurement instead of steady state 

measurements. A key component in time resolved measurements is a fast laser excitation 

source (pico-seconds) [36]. Incorporating a pulsed laser device into the pill is not practical 

due to their bulky and expensive drive electronics. Recently however micro-LED devices 

have been demonstrated to produce sub nano-second pulses which are suitable for 

fluorescence life time measurements [125] 

 

By using a micro-LED as an excitation source performing lifetime measurement in the 

small intestine is feasible.  For this to take place a new ASIC in AMS process can be 

designed (Figure 7.1) and can include the following:  
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- A charge pump that can produce up to 25 V. Having already designed the 

SPAD and therefore its exact breakdown voltage is known, the existing 

charge pump design can be re-customised so it produces the exact voltage 

and current required.  

- A SPAD array cell (i.e 10 x 10) where each cell includes a SPAD, an active 

quenching circuit, a comparator and local counter (LC).  

- A high speed micro-LED driving circuit and time gating circuitry to 

synchronized the excitation end-up time with the SPAD detection time.   

 

 

Figure 7.1 proposed ASIC for time resolved measurement that can be used 

for cancer detection through autofluorescence life-time measurements.  

 

The capability of capturing the life time fluorescence decay, which is usually a few 

hundred nano-seconds, depends on the SPAD ability to count as many photons as possible 

in this short time. This can be achieved by employing an active quenching circuit which is 

used to quench the avalanche process of the SPAD and therefore produce ultra short pulses 

(few nano-seconds). The generated short pulses are passed to the comparator and then to 

the local counters where the detected photons are counted after each excitation pulse. For 

example for a 300 ns fluorescence decay, using 2 ns quenched SPAD pulses, an 8-bit local 
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counter is needed for each cell. The counts of each cell is then passed to a processer where 

the data is processed and a histogram of the life-time fluorescence can be then obtained. 

Further improvement to the ASIC design can be achieved based on the existing 

measurement data. Having already measured the power consumption of the SPAD at 

different illuminations, it would advantageous for the pill miniaturisation to investigate the 

feasibility of integrating the charge pump‟s boosting capacitors. It is also important when 

designing the charge pump to determine roughly the amount of power that will be required 

by the 100-pixel array. Unlike the steady state measurement, the SPAD is only operated to 

detect pulses for several hundreds of nano-seconds, which is the decay lifetime of many 

fluorescent molecules. Pre-estimating the total required current by the array will determine 

whether it is efficient for the charge pump output current to be regulated by a resistive load 

or by employing a feedback system that controls the output voltage by setting the charge 

pump clock frequency.  

 

Based on the previous discussion about the new proposed ASIC, it can be said that the 

proposed ASIC design in this section is more complicated than the existing ASIC, however 

many advantages will be gained including: 

 

- With life-time measurements the power consumption of the LED, which is 

the main power consumer in the pill, will be reduced dramatically due to the 

ultra short operating periods (sub-nanosecond pulses).  

-  With life time-measurements there will be no need for optical filters as 

there is no over-lapping between the excitation time and detection time, thus 

a smaller size pill can be realised. 

- Having already designed and measured the SPAD operating conditions in 

the AMS high voltage 0.35µm process, redesigning a new ASIC using the 

same process would allow for more customised design of the charge pump 

to take place which will consequently improve the system power efficiency. 

 

Whilst lifetime measurements might offer potential advantages in terms of power 

consumption, the lifetime measurements‟ capability of distinguishing between cancerous 

and normal tissues is still not as validated as the steady state measurement is. Therefore, 

further research is required to be conducted before adopting this technique into the capsule 

format. 
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