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Abstract

Model checking is a technique used for the formal verification of concurrent systems. A
major hindrance to model checking is the so-called state space explosion problem where
the number of states in a model grows exponentially as variables are added. This means
even trivial systems can require millions of states to define and are often too large to feasibly
verify. Fortunately, models often exhibit underlying replication which can be exploited to aid
in verification. Exploiting this replication is known as symmetry reduction and has yielded
considerable success in non probabilistic verification.

The main contribution of this thesis is to show how symmetry reduction techniques can
be applied to explicit state probabilistic model checking. In probabilistic model checking
the need for such techniques is particularly acute since it requires not only an exhaustive
state-space exploration, but also a numerical solution phase to compute probabilities or other
quantitative values.

The approach we take enables the automated detection of arbitrary data and component sym-
metries from a probabilistic specification. We define new techniques to exploit the identified
symmetry and provide efficient generation of the quotient model. We prove the correctness
of our approach, and demonstrate its viability by implementing a tool to apply symmetry
reduction to an explicit state model checker.
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CHAPTER 1

Introduction

Model checking is a technique used in the formal verification of concurrent systems. To ver-
ify the correctness of a system, a model of the system is generated that contains all possible
behaviours. This set of system behaviours can then be checked against a set of properties to
ascertain if the system behaves as expected. Example properties include: “process 1 and pro-
cess 2 are never in their critical sections simultaneously” or “it is always possible to restart
the system”.

As the model checking process has became increasingly sophisticated, the range of systems
that can be described and verified has increased. One prevalent example is the description of
probabilistic systems. By extending a specification language to allow for transitions between
states to be labelled with the likelihood that they will occur, properties such as: “the message
will be delivered with probability 0.6” or “the probability of shutdown occurring is at most
0.02” can be verified. Probabilistic model checking has the advantage of providing efficient
and rigorous methods for evaluating a wide range of quantitative properties.

A major hindrance to model checking is the so-called state space explosion problem. Holz-
mann [58] explains that although verification algorithms have a linear run time complexity,
this is offset as the number of states in a model grows exponentially as variables are added.
This means that even trivial real-life systems can require millions of states to define their
behaviour.
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The reason that non-probabilistic model checking has been so successful in the real world
is that an enormous amount of work has been put into developing efficient implementation
techniques. These include state compression [57], partial order reduction [52, 85], symmetry
reduction [20] and symbolic storage, where states and transitions of a model are represented
symbolically (as opposed to explicitly) in order to save space [16]. These techniques have
allowed the verification of ever increasing complex systems and greatly enhanced the uptake
of model checking.

In the probabilistic domain, alleviating the state space explosion problem is an active re-
search area. Techniques including symbolic storage [6, 67], partial order reduction [7, 28]
and bisimulation minimisation [63] have been investigated. Furthermore, some steps have
been made in examining the application of probabilistic symmetry reduction to symbolically
stored state-spaces [68, 31].

Symmetry reduction is a technique concerned with exploiting underlying regularities in the
state space by only storing one representative of a class of states. If symmetry is known
to be present in a model then model checking of certain properties can be performed over a
quotient state-space. Importantly, symmetry reduction is implemented differently in explicit-
state and symbolic model checkers, each with their own research challenges.

In explicitly represented systems the exploitation of symmetry can be highly profitable in
terms of time and space. Recent work has focused on providing “push button” or automatic
symmetry detection [30] and reduction in addition to widening the set of systems to which
symmetry can be applied [94]. To our knowledge little work has been conducted on the
application of symmetry reduction to probabilistic explicit state model checking. Therefore,
we propose to investigate the application of symmetry reduction in probabilistic explicit state
model checking. To present the results of this investigation the rest of the thesis is structured
as follows:

We provide a review of model checking and symmetry reduction literature in Chapters 2
and 3 respectively and highlighted that no research has been conducted on the application of
symmetry reduction to explicit state probabilistic model checking.

Our contribution begins in Chapter 4 where we formally defined a new probabilistic model
specification language. The presented specification language is capable of exhibiting com-
plex symmetry groups while being simple enough to allow the correctness of our detection
and reduction techniques to be proved. We make use of the language in the remainder of the
thesis to aid in the presentation of our results.

In Chapter 5 we introduced the extended channel diagram approach, which is the first tech-
nique we know of that can detect arbitrary component and data symmetries directly from
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a probabilistic specification. The approach involves computing the symmetry group of the
specification and using the presented techniques determines a subgroup of these symmetries
which induces automorphisms of the underlying model that are valid for symmetry reduc-
tion.

In Chapter 6 we present a selection of new techniques to efficiently compute equivalence
class representatives for certain classes of symmetry groups. We present enhancements that
improve the average runtime of exhaustive search and where enumeration is infeasible, we
considers a tailored made local search algorithm. For symmetry groups possessing identifi-
able structural properties we provide efficient techniques that do not require the exhaustive
application of all elements in the symmetry group . We suggest techniques for the fully sym-
metric group, cyclic groups and groups that can be decomposed as an internal direct product
or as an internal semi direct product.

In Chapter 7 we consider how to combine our presented techniques to construct a smaller
quotient model directly from a probabilistic specification. Finally, in Chapter 8 we describe
our model checker which implements the presented specification language, detection and re-
duction techniques. The model checker is used to test the viability of applying our approach
of automated symmetry reduction to explicit state probabilistic model checking. For a va-
riety of symmetric specifications we show significant runtime and memory savings can be
made while performing probabilistic model checking.



CHAPTER 2

Model Checking

In this chapter we present established approaches to model checking. Section 2.1 introduces
the notion of formal verification and defines the model checking process. In Section 2.2
we cover some common types of models and in Section 2.3 we cover a selection of temporal
logics. Issues concerning underlying data structures and key algorithms are discussed in Sec-
tion 2.4 and Section 2.5 respectively. The chapter closes with a review of relevant currently
available model checkers and a discussion on the state space explosion problem.

2.1 Introduction

Computerised systems have become an integral part of our lives and technological pro-
gression has led to the scenario where these systems directly control safety critical appli-
cations. Systems of this type include aeroplane landing systems [80], nuclear reaction man-
agement [83] and medical systems [76]. In instances where human life is placed at direct
risk, it is essential that controlling software functions correctly. However, even after decades
of research, the best of traditional software development methodologies cannot guarantee a
bug free system [60]. Furthermore, these methodologies cannot provide enough confidence
to assert if a system correctly implements its requirements specification [12].

In software and hardware design of complex or safety critical systems, the majority of time

4



2.1. Introduction 5

and cost is spent on the verification phase. This motivates research into techniques that ease
verification, increasing both coverage and confidence. Formal methods is a technique that
offers these desired attributes. Subtle errors that remain hidden after emulation, testing and
simulation can potentially be revealed using formal methods.

One aspect of formal methods is system verification. System verification is the process of
establishing whether a design or system satisfies certain properties. A bug occurs when the
system does not satisfy one of the stated properties and the system is considered correct when
all properties are satisfied. An overview of the verification process is depicted in Figure 2.1.

System
Specification

�� &&
Design
Process

��

// Properties

��

Bug(s)
Found

Product or
Prototype

// Verification //

88

No Bugs
Found

Figure 2.1: Schematic of system verification as presented in [9].

Academic research has proposed and developed several approaches to formal verification [24].
Two major classifications are theorem proving [49] and model checking [23]. In theorem
proving the system specification and properties are described in terms of mathematical state-
ments. Verification is conducted by proving properties based on the system specification.
The proof is required to show how statements of the theorem are formally derived from ax-
ioms using inference rules. A powerful benefit of theorem proving is its ability to deal with
systems represented by an infinite state space. The alternative formal verification methodol-
ogy, model checking, is a completely automatic process that usually deals with finite state
spaces.

A model checker [25] accepts two inputs, a model specification P , described in a high level
formalism, and a set of testable properties, φ. The model checker generates and exhaustively
searches a finite state modelM(P) to confirm if a property holds, or alternatively, reports
it was in violation of the system specification. When a violation occurs, it is common for
model checkers to generate a counter-example illustrating precisely why the property was
invalid, Figure 2.2.

Bugs identified in the model of the system will hopefully reveal bugs in the system design.
However, care must be taken to ensure properties correctly define the desired behaviour [60].
This model checking process is repeated with a refined specification or property until φ
holds in all initial states ofM(P). When this occurs it is said thatM(P) satisfies φ, written
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System Design
or Code

��

Requirements

��
Finite State

Model

((

Set of Logical
Properties

ww

Refine System Design
or Requirements

Model
Checker Yes

//
No
oo

Figure 2.2: The model checking process.

M(P) |= φ. Therefore the model checking process can be stated; given a model specification
P and a property φ, doesM(P) |= φ ?

2.2 Types of Models

A modelM(P) describes in mathematical terms the behaviour of a system. A general set
of mathematical structures, based on directed graphs, are used to describe the possible be-
haviours of a system specification. In the graph, nodes contain information about the system
at an instant in time. These nodes are the states of the system, and transitions specify how
the system can evolve from one state to another. The accumulation of all possible states and
transitions is called the state space. In Section 2.2.1 we define a Kripke structure [15] as a
method of describing these systems.

An additional category of model checker is one that enables the specification and verification
of systems which exhibit random or probabilistic behaviour. This is achieved by labelling
transitions between states with information about the likelihood that they will occur. A math-
ematical structure capable of describing the evolution of this category of system is a Markov
Chain [65]. There are several Markov Chain variants, however we will only consider, Dis-
crete Time Markov Chains (DTMC) (Section 2.2.2) and Markov Decision Processes (MDP)
(Section 2.2.3) which extend the DTMC allowing for the specification of non-deterministic
behaviour.

2.2.1 Kripke Structures

A Kripke structure [15] is commonly used to describe a finite state model. Let V = {v1, v2,
. . ., vk} be a finite set of variables, where vi ranges over a finite non-empty set of possible
values Di. Then D = D1 × D2 . . .× Dk is the set of all possible system states.
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Definition. A Kripke structureM over D is a tupleM = (S, S0, R) where:
• S = D is a non-empty finite set of states.

• S0 ⊆ S is a set of initial states.

• R ⊆ S× S is a transition relation.

A path inM, commencing from s ∈ S is an infinite sequence of states π = s0, s1, s2, . . .
where s0 = s and for all i > 0, (si–1, si) ∈ R. It is common notation for a transition between
two states s and s′, to be written as s → s′. Therefore, a state s ∈ S is reachable if there is a
path s0, s1, . . ., s, . . . inM where s0 ∈ S0, and a transition s → s′ ∈ R is reachable if s is
a reachable state. Commonly, Kripke structures have a single initial state s0 ∈ S and in this
instance the Kripke structure isM = (S, s0, R)

To illustrate, consider the Kripke structure for the two process mutual exclusion specification
depicted in Figure 2.3. Each process has three local states N, T and C and a single state
variable, sti for i ∈ {1, 2}. Therefore, V = {st1, st2} and D1 = D2 = {N, T, C}. The values
N, T and C denote that a process is in a neutral, trying or critical state and the behaviour of the
model can be defined as follows. If process i is in the trying state and process j is not in the
critical state, process i may move into the critical state, it is not possible for both processes
to be simultaneously in the critical state and if a process requests access to a critical section,
it will eventually be granted.

��
N1, N2

%%yy
T1, N2

yy

��

N1, T2

��

%%
C1, N2

��

11

N2, C2

��

mm

T1, T2

yy %%
C1, T2

MM

T1, C2

RR

Figure 2.3: Kripke structure for the two process mutual exclusion specification.

2.2.2 Discrete Time Markov Chains (DTMC)

The simplest probabilistic models we consider are DTMCs [9]. This can be viewed as a
state transition system with the probability of making a transition from one state to another
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appended. As before, V = {v1, v2, . . . , vk} is the finite set of variables each ranging over a
domain Di and D = D1 × D2 . . . ×Dk is the set of all possible system states.

Definition. A Discrete Time Markov Chain D over D is a tupleM = (S, iinit, P) where:

• S = D is a non-empty finite set of states.

• iinit : S→ [0, 1] is an initial distribution, such that
∑

s∈S iinit(s) = 1.

• P : S× S→ [0, 1] is a transition probability matrix such that for all states s ∈ S∑
s′∈S

P(s, s′) = 1.

An entry in transition probability matrix P(s, s′) determines the probability of moving be-
tween state s and state s′. The states s′ for which P(s, s′) > 0 are possible successors to
s. Therefore,

∑
s′∈S P(s, s′) = 1 for all states s ∈ S. To meet the requirement,

∑
s′∈S P(s,

s′) = 1 for all states s ∈ S, all terminating states are appended with a transition to themselves
with probability 1. The value iinit(s) designates the probability of the system beginning in
state s. States s, with iinit(s) > 0 are the initial states of the system. Commonly DTMCs have
a single initial state s0 ∈ S and in this instance the DTMC is defined D = (S, s0, P)

A path π in D starting from s0 is a non-empty sequence of states s0, s1, s2, . . . where si ∈ S
and P(si, si+1) > 0 for all i≥ 0. The execution path π can be finite, πfin, or infinite, πinf, with
the ith state being denoted π(i). The notation Path(s) is the set of all path fragments initiating
from the state s. Possible evolutions of the system are represented by paths. Therefore,
to reason about the behaviour of the system, the probability that a path is taken must be
calculated. For each state s ∈ S a probability measure Probs on Path(s) is defined. To
facilitate this P(πfin) = 1 where πfin = s0 and P(πfin) = P(s0, s1) · P(s1, s2) · · · P(sn–1, sn)
where πfin = s0, s1, . . . , sn.

The cylinder set C(πfin) is the set of all paths with prefix πfin and
∑

s is the smallest σ-
algebra 1 on Path(s) containing all the sets C(πfin). The probability measure Probs on

∑
s is

the unique measure such that Probs(C(πfin)) = P(πfin). The probability of a system exhibiting
a specific behaviour can be calculated by identifying the set of paths satisfying the condition
and imposing upon them the measure Probs.

2.2.3 Markov Decision Processes (MDP)

MDPs [9] provide a mathematical framework for modelling decisions in situations where
outcomes are partly random and partly under the control of the decision maker. An MDP is

1A π-algebra is a pair (Outc, ε) where Outc is a nonempty set and ε ⊂ 2Outc a set consisting of subsets of
Outc that contains the empty set and is closed under complementation and countable unions.
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useful in the context of model checking as it allows the description of a number of probabilis-
tic systems operating in parallel. Furthermore, non-deterministic transitions can be specified
when the exact probability distribution is unknown, or irrelevant. , let V and D follow the
same definition as given for Kripke structures and DTMCs.

Definition. A Markov Decision ProcessM over D is a tupleM = (S, iinit, Steps) where:
• S = D is a non-empty finite set of states.

• iinit : S→ [0, 1] is an initial distribution, such that
∑

s∈S iinit(s) = 1.

• Steps : S→ 2Dist(s) is a transition function.

The definition is similar to that of a DTMC but transition probability matrix P is replaced
by Steps. For a state s ∈ S, Steps(s) is the set of non-deterministic choices available in
s. Specifically, Steps(s) is a function mapping states onto a finite, non-empty subset of
probability distributions and takes the form µ : S→ [0, 1] where

∑
s∈S µ(s) = 1.

An execution path through an MDP is a non-empty sequence s0
µ1–––→ s1

µ2–––→ . . . where
si ∈ S, µi+1 ∈ Steps(si) and µi+1(si+1) > 0 for all i ≥ 0. In keeping with the notation
presented for a DTMC, πfin is a finite execution path, πinf an infinite path and the ith state of
a path denoted π(i). The notation Path(s) is the set of all path fragments initiating from the
state s.

An execution path of an MDP requires both non-deterministic and probabilistic transitions
to be resolved. Non-deterministic choices are made by an adversary where the decision
is determined by the choices made in all previous runs. An adversary A can be defined
formally as a function that maps every finite path πfin in an MDP onto a distribution A(πfin) ∈
Steps(last(πfin)) where last(πfin) is the final state of the finite path. For convenience the subset
of Path(s) which corresponds to adversary A is denoted PathA(s).

The behaviour of the MDP for an adversary A is probabilistic in nature. It can therefore
be defined by a DTMC where the probability of non-deterministic transitions are given by
a probability distribution selected by A. Drawing conclusions about an MDP’s behaviour
for a given adversary is meaningless. Meaningful results, in the form of maximum and
minimum probabilities can be ascertained by computing over all possible adversaries. When
computing the maximum or minimum probability for an observed event it is often beneficial
to use adversaries with a notion of fairness. For example, in a non-deterministic scheduler
it is impossible to draw meaningful conclusions if every process does not eventually get a
chance to proceed. A path π is fair, if for states s occurring infinitely often in π each choice
µ ∈ Steps(s) is taken infinitely often. Additionally, an adversary A is fair if ProbA

s ({π ∈
PathA(s) π is fair}) = 1 for all s ∈ S.
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2.3 Temporal Logic

It is common for the set of testable properties φ to be expressed using a temporal logic. Tem-
poral logics provide a formal language to reason about the behavioural properties of parallel
programs and more generally reactive systems. Their application in Computing Science was
pioneered by Pnueli [87] who argued that existing techniques for verification were not ade-
quate for concurrent, reactive systems. Temporal logics alleviated this issue by allowing the
user to reason about related events at different moments in a system’s execution. Temporal
logic formalisms may be classified according to their particular view of time; Linear Time
where for every given path every state has a unique successor, and Branching Time, where
every state has several successors, Figure 2.4.
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Figure 2.4: Comparative views of time in temporal logics.

2.3.1 Linear Time Temporal Logic (LTL)

Linear Time Temporal Logic [87] allows the future behaviour of a system to be reasoned
about. A collection of paths represent the set of possible future behaviours, any one of which
might be the actual outcome of the systems execution. To aid in behavioural descriptions a
set of atoms, which state facts that may hold in a system are used. The choice of atoms is
dependent on the system being described but general examples include “Queue 4 is full” and
“Process 3 is active”.

Linear Time Temporal Logic, where φ is the formula and p is any propositional atom from a
set of atoms, has the following syntax in Backus Naur Form:

φ := > ⊥ p ¬φ φ ∧ φ φ ∨ φ φ→ φ X φ F φ G φ φ U φ φ W φ

φ R φ

The symbols X, F, G, U, R, and W are temporal connectives where X reasons about the next
state, F some future state and G all future states. Symbols U, R and W are known as Until,
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Release and Weak-until, respectively. Take a Kripke structureM and a path π = s0, s1, s2,
. . . . Whether π satisfies a LTL formula is defined by the satisfaction relation |=. For the path
π we define s0 as the first state in the path and, for all i ≥ 0, πi is the suffix of π starting from
state si. The relation |= is defied inductively below;

• π |= >.

• π 6|= ⊥.

• π |= p iff p is true in s0.

• π |= ¬φ iff π 6|= φ.

• π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2.

• π |= φ1 ∨ φ2 iff π |= φ1 or π |= φ2.

• π |= φ1 → φ2 iff π |= φ2 whenever π |= φ1.

• π |= X φ iff π1 |= φ.

• π |= G φ iff, for all i ≥ 1 πi |= φ.

• π |= F φ iff, there is some i ≥ 1 such that πi |= φ.

• π |= φ U ψ iff, there is some i ≥ 1 such that πi |= ψ and for all j = 1, . . . , i – 1 we have
πj |= φ.

• π |= φ W ψ iff, either there is some i ≥ 1 such that πi |= ψ and for all j = 1, . . . , i – 1
we have πj |= φ, or for all k ≥ 1 we have πk |= φ.

• π |= φ R ψ iff, either there is some i ≥ 1 such that πi |= φ and for all j = 1, . . . , i – 1
we have πj |= ψ, and for all k ≥ 1 we have πk |= ψ.

Therefore, take a Kripke structureM, s ∈ S and a LTL formula φ. We writeM,s |= φ. if,
for every execution path π ofM starting at s, we have π |= φ.

Example LTL Properties

Referring to the Kripke structure for the mutual exclusion problem defined in Figure 2.3 an
attempt to verify the correctness of the solution can be made by checking it against a set of
LTL properties:

• Safety: The requirement that only one process is in the critical section at any time
is expressible by the formula, G ¬(C1 ∧ C2). This condition is satisfied in the initial
state and all subsequent states. However, this alone does not prove the correctness of
the specification. A protocol that prevented any process from ever entering a critical
section would also satisfy the formula.

• Liveness: When a process requests entry to a critical section, the request will eventu-
ally be granted. The requirement is expressed as G (T1 → F (C1)). However, a counter
example can be generated to show this formula is not valid. Starting at the initial state
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there is a path where T1 becomes true but C1 remains false, N1, N2 → T1, N2 →
T1, T2 → T1, C2 → T1, N2 → . . . . This path arises as the state T1, T2, where both
processes are in a trying state gives a choice of which process moves to the critical
section. This problem can be alleviated by remodelling the system to allow the state
T1, T2 to appear twice in the transition system. Each occurrence implicitly indicating
which process will proceed to a critical state.

• Non-blocking: A process can always request entry to its critical section. For example,
in process one we would like to attest that for every state satisfying N1, there is a
successor satisfying T1. However, statements of this nature are not expressible in LTL
as the logic does not contain an existence quantifier on paths.

2.3.2 Computation Tree Logic (CTL)

Computation Tree Logic [19], is a branching-time logic, meaning that its model of time
is a tree-like structure in which the future is not determined. CTL provides the previously
covered LTL temporal operators U, F, G and X in addition to new quantifiers A and E. These
quantifiers express All paths, and Exists a path, respectively. This allows properties such as,
“there is a reachable state satisfying q” or “from all reachable states satisfying p, it is possible
to maintain p continuously until reaching a state satisfying q” to be expressed.

CTL, where φ is the state formula and p is any propositional atom from a set of Atoms, has
the following syntax in Backnus Naur Form:

φ := > ⊥ p ¬φ φ ∧ φ φ ∨ φ φ→ φ AX φ EX φ AF φ EF φ AG φ

EG φ A [φ U φ] E [φ U φ]

CTL temporal connectives are formed from a pair of symbols that are indivisible, the first
being either an A or E and the second being one of the connectives X, F, G, or U. The
symbols X, F, G and U cannot occur without being preceded by an A or an E and similarly,
every A or E must be accompanied by X, F, G and U.

For a Kripke structureM, a state s ∈ S and a CTL formula φ, the relationM, s |= φ can be
defined by structural induction on φ in the following manner:

• M,s |= >.

• M,s 6|= ⊥.

• M,s |= p if p is true in s.

• M,s |= ¬φ iffM, s 6|= φ.

• M,s |= φ1 ∧ φ2 iffM, s |= φ1 andM, s |= φ2.
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• M,s |= φ1 ∨ φ2 iffM, s |= φ1 orM, s |= φ2.

• M,s |= φ1 → φ2 iffM,s 6|= φ1 orM,s |= φ2.

• M,s |= AX φ iff for all s1 such that s→ s1 we haveM,s1 |= φ.

• M,s |= EX φ iff for some s1 such that s→ s1 we haveM,s1 |= φ.

• M,s |= AG φ iff for all paths s1 → s2 → s3 → ... where s1 equals s, and all si along
the path we haveM,si |= φ.

• M,s |= EG φ iff there is a path s1 → s2 → s3 → ... where s1 equals s, and for all si

along the path we haveM,si |= φ.

• M,s |= AF φ if for all paths s1 → s2 → ... where s1 equals s, there is some si, such
thatM,si |= φ.

• M,s |= EF φ iff there is a path s1 → s2 → s3 → ... where s1 equals s, and for all si

along the path we haveM,si |= φ.

• M,s |= A [ φ1 U φ2 ] iff for all path s1 → s2 → s3 → ... where s1 equals s, that path
satisfies φ1 U φ2.

• M,s |= E [ φ1 U φ2 ] iff there is a path s1 → s2 → s3 → ... where s1 equals s, and that
path satisfies φ1 U φ2.

Example CTL Properties

Referring to the Kripke structure for the mutual exclusion problem defined in Figure 2.2,
we can attempt to check the correctness of the solution by verifying it against a set of CTL
properties:

• Safety: The requirement that only one process is in the critical section at any time is
expressed by the formula, AG (¬(C1 ∧ C2)). This condition is satisfied in the initial
state and all subsequent states. As with LTL this formula does not cover a protocol
that prevents all processes from ever entering the critical section.

• Liveness: Having reached its trying region a process will eventually progress to its
critical section. For process one the formula AG (T1 → AF (C1))) would assert this
property. A counter example to this property would be, starting at the initial state, a
path where T1 is true and C1 is false, N1, N2→ T1, N2→ C1, N2→ N1, N2→ . . .

• Non-blocking: A final consideration is that a process can always request entry to its
critical section. For process one an appropriate formula would be AG (N1→ EX (T1)).

2.3.3 CTL?

The Computational tree logic [48] CTL?, combines the operators of both branching and
linear time logics. The expressive power of LTL and CTL is combined, by removing the
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constraint that temporal operators X, U, F and G have to be associated with path quantifiers
A and E. In fact path quantifiers can be associated with any possible combination of linear
operators. The syntax of CTL? involves two classes of formulae: state formulae, which are
evaluated in states where p is any atomic formulae and α any path formula

φ := > p ¬φ φ ∧ φ A[α] E[α]

and path formulae, which are evaluated along paths where φ is any state formula

α := φ ¬α α ∧ α α U α G α F α X α

CTL? is more expressive than LTL and CTL. It enables properties such as, “along all paths,
either p is true until r, or q is true until r” (A [(p U e) ∨ (q U r)]) to be expressed. Furthermore,
the logics of LTL and CTL are both subsets of CTL?. This may be surprising as LTL does
not include the path operators A and E. However, in LTL we implicitly consider all paths for
a given formula α and this is semantically equivalent to the CTL? formula A[α].

Expressive powers of LTL, CTL and CTL?.

Figure 2.5 shows the relationship between the expressive powers of LTL, CTL and CTL?.
There is a considerable amount of literature comparing Linear-Time and Branching-Time
logics [11, 70] and the question of which is better often arises. We have shown that the
expressive powers of CTL? is greater than either of them. However, its implementation is
computationally expensive and is therefore rarely used. The choice between LTL and CTL
depends on the application and personal preference.

CTL LTL

CTL?

Figure 2.5: Relationship between the expressive powers of LTL, CTL and CTL?.

CTL allows explicit quantification over paths. However, it does not allow a specific selection
of paths to be specified. For example, in LTL we can express that “all paths which have a p
in some state also have a q” (F (p)→ F (q)). It is not possible to write this in CTL because
of the constraint that every F has an associated A or E. However, both languages can in
some instances express the same formula. An example of this is the property that “any p is
eventually followed by a q” expressible in CTL as AG (p→ F (q)) and G (p→ AF (q)) in
LTL [61].

As mentioned previously, LTL formulae are evaluated on paths and properties that assert the
existence of a path are not expressible. In terms of verification this problem can be alleviated
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by considering the complement property [61]. However, a property that contains universal
and existential path quantifiers in general cannot be expressed using this approach.

2.3.4 Probabilistic Computational Tree Logic (PCTL)

Probabilistic temporal logics are required to reason about probabilistic models. PCTL [53],
is a probabilistic extension of CTL and therefore an example of Branching time logic. PCTL
formulae can be interpreted over a DTMC or an MDP and incorporates timing information
into properties. The syntax of PCTL where p is any propositional atom from a set of Atoms,
prob in [0, 1], k ∈ N and ./ is chosen from the set {≤, <, >, ≥} follows; 2

φ := > p ¬φ φ ∧ φ P./prob [ψ]
ψ := X φ φ U≤k φ φ U φ

In the syntax of PCTL a state s satisfies the probabilistic path formula P./prob [ψ] if the
probability of leaving s via a path satisfying ψ is in the interval specified by ./ prob. The
path formulae X φ is true if φ is satisfied in the next state; φ1 U φ2 is true if φ2 is satisfied
at some point in the future and φ1 is true until that point. Finally, φ1 U≤k φ2 is true if φ2 is
satisfied within k time-steps and φ1 is true until that point. The semantics of PCTL differs
over DTMCs and MDPs. The relevant semantics will be defined in the proceeding sections.

PCTL over DTMCs

A property of a model is always expressed as a state formula. Therefore, for a DTMC D, a
state s ∈ S and PCTL formula φ, we write D, s |= φ or s |= φ to say that φ holds in s. The
set of all states in which φ holds {s ∈ S s |= φ} is denoted Sat(φ). Similarly, we write
D, π |= ψ or π |= ψ if path formula ψ holds for path π. Finally, for a path φ and a state s ∈ S,
Ps(ψ) = Probs({π ∈ Path(s) D, π |= ψ}). Formally, the semantics of PCTL over DTMCs are
defined in the following manner:

• D, s |= >.

• D, s |= p if p is true in D, s.

• D, s |= ¬φ iff D, s 6|= φ.

• D, s |= φ1 ∧ φ2 iff D, s |= φ1 and D, s |= φ2.

• D, s |= P./prob [ψ] iff Ps(ψ) ./ prob.

• D, π |= X φ iff D, π1 |= φ.

• D, π |= φ U≤k ψ iff for some i ≤ k, D, πi |= ψ and D, πj |= φ for all 0 ≤ j < i.

• D, π |= φ U ψ iff for some k ≥ 0, D, π |= φ U≤k ψ.
2The existential and universal quantification in CTL are replaced by a single probabilistic operator

P./ prob[ψ] and the additional operators covered in CTL can be defined using only the presented PCTL op-
erators.
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PCTL over MDPs

In the instance of MDPs the semantic definition of a path formula is identical to that of
DTMCs. However, the probability of a set of paths differs as it can only be computed for
a specific adversary. Given an MDP M, the probability of a path from s satisfying path
formula ψ under adversary A is denoted PA

s (ψ) = ProbA
s ({π ∈ PathA(s)M, π |= ψ}). To

formally define the semantics of the PCTL formula P./prob [ψ] a set of adversaries Adv is
selected and quantified over. It follows that the satisfaction relation is parameterised by Adv.
Therefore, a state s satisfies the formula P./prob [ψ] if PA

s (ψ) ./ prob for all adversaries
A ∈ Adv. Formally the semantics of PCTL over MDPs are defined in the following manner:

• M, s |=Adv >.

• M, s |=Adv p if p is true inM, s.

• M, s |=Adv ¬φ iffM, s 6|=Adv φ.

• M, s |=Adv φ1 ∧ φ2 iffM, s |=Adv φ1 andM, s |=Adv φ2.

• M, s |= P./prob[ψ] iff PA
s (ψ) ./ prob for all A ∈ Adv.

• M, π |=Adv X φ iffM, π1 |=Adv φ.

• M, π |=Adv φ U≤k ψ iff for some i ≤ k, M, πi |=Adv ψ and D, πj |=Adv φ for all
0 ≤ j < i.

• M, π |=Adv φ U ψ iff for some k ≥ 0,M, π |=Adv φ U≤k ψ.

2.4 Storage Schemes

We have discussed the mathematics underlying models in Section 2.2. However the question
of how to generate and represent this underlying structure within computer memory remains.
The two major encoding schemes employed in model checking are explicit and symbolic
state representations.

2.4.1 Explicit State Model Checking

As the mathematical structures discussed in Section 2.2 are similar to a graph, it is sensible
to use well known graph data structures to encode them. To this end, early implementations
of model checkers used adjacency lists to represent transitions and a dictionary to look up
atomic propositions true in a state. This approach had a major disadvantage. Since all
possible system states must be pre-computed, an intractable state space is often generated
for even simple systems.
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Fortunately, it is often unnecessary to generate the entire state space. Given some initial state,
there is no need to consider unreachable states and in practice, the unreachable part of the
state space is significant. An improved methodology would be, given an initial state, compute
its successors based upon rules in the program specification. While generating the state
space in this manner, algorithms require some method of storing states encountered. Each
encountered state is encoded as a state vector and stored in a data structure, e.g., a hash table.
A technique where each state is represented explicitly in its own piece of memory is called
an explicit-state encoding. The standard algorithm for explicit state space exploration [58] is
outlined in Figure 2.6:

1. reached := unexplored := {s0}
2. While unexplored 6= ∅
3. {
4. remove a state s from unexplored
5. for each transition s→ s′
6. {
7. if s′ = error
8. {
9. stop and report error
10. }
11. if s′ 6∈ reached
12. {
13. add s′ to reached and unexplored
14. }
15. }
16. }

Figure 2.6: Standard algorithm for explicit state space exploration.

2.4.2 Symbolic Model Checking

The use of Binary Decision Diagrams (BDD) [4] as an alternative storage scheme can re-
sult in the verification of significantly larger systems. Model checking using BDDs is called
symbolic model checking. The name highlights the fact that individual states are not explic-
itly enumerated and stored. Alternatively, the sets of states which satisfy a formula being
checked are encoded symbolically.

Binary Decision Diagrams (BDD).

BDDs are a representation of Boolean functions and an alternate encoding of binary decision
trees. A binary decision tree is comprised of non-terminal nodes labelled with Boolean
variables x, y, z, . . . and terminal nodes labelled with values 0 or 1. Let T be a finite binary
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decision tree that defines a unique Boolean function of the variables in non-terminal nodes
as follows. Given an assignment of 0 and 1 to the Boolean variables occurring in T, start at
the root of the tree and at each node take the dashed line when the truth value of the variable
is 0. Alternately, exit via the solid line. The value of the reached terminal node gives the
truth value of the function. Figure 2.7 illustrates for the Boolean function f(x1, x2, x3) =
(x1x2 + x2x3 + x3x1).

x1

x2 x2

x3 x3 x3 x3

0 0 0 1 0 1 1 1

Figure 2.7: Representing Boolean function using BDDs.

Binary decision trees and truth tables are comparable in terms of size. Therefore, a function
depending on n Boolean variables will generate a binary decision tree with a minimum of
2n+1–1 nodes. Binary decision trees often contain redundancy in the form of duplication that
can be exploited to produce a more compact representation. Three approaches to reducing
the size of a binary decision tree are outlined below and illustrated in Figure 2.8:

(a) Remove Duplicate Terminals. Choose two representative terminal vertices, one for
constant 0 and the other for the constant 1. All arcs going to a 0 terminal are mapped to
the single representative terminal 0. Similarly all arcs to a 1 terminal are mapped to the
1 representative terminal.

(b) Remove Duplicate Nonterminals. If two distinct nodes in the tree are roots of identical
sub trees, then one of them can be removed and all its incoming edges are redirected to
the remaining instance.

(c) Remove Redundant Tests. If both outgoing edges of a node n point to the same node
m, then we eliminate that node n, sending all its incoming edges to m.

The exulting structures are examples of BDDs which are more general than binary decision
trees as they allow sharing of leaves.

Ordered Binary Decision Diagrams (OBDD)

BDDs can provide a compact representation of Boolean functions. However, a BDD may
have multiple occurrences of a Boolean variable along a path. This leads to the scenario
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x1

x2 x2

x3 x3 x3 x3

0 1
(a) Eliminate duplicate terminals

x1

x2 x2

x3 x3 x3

0 1
(b) Eliminate duplicate nonterminals

x1

x2 x2

x3

0 1
(c) Eliminate redundant tests

Figure 2.8: Reduction rules for BDDs [61].

where different diagrams can be produced for the same function. Therefore, testing equiv-
alence between two BDDs is NP hard [14]. This problem can be resolved by imposing an
ordering on the variables.

Let [x1, . . . , xn] be an ordered list of unique variables and let B be a BDD. B has ordering
[x1, . . . , xn] if all variables in B occur in the list and every occurrence of xi along any path
in B is followed by xj where i < j. Figure 2.7 has variable ordering [x1, x2, x3]. It follows
from the definition of an OBDD that multiple occurrences of any variable along a path are
not permitted.

The size and form of an OBDD representing a function is heavily dependent on the vari-
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able ordering. This is illustrated in Figure 2.9 which shows two OBDD for the function
(x1y1 + x2y2 + x3y3). Figure 2.9a implements the ordering [x1, y1, x2, y2, x3, y3] and results
in an OBDD with 8 vertices. Figure 2.9b implements ordering [x1, x2, x3, y1, y2, y3] and
yields an OBDD with 16 nodes. Although finding the optimal ordering is itself a compu-
tationally expensive problem, there are good heuristics which will usually produce a fairly
good ordering [41].

x1

y1

x2

y2

x3

y3

1 2
(a) Ordering x1, y1, x2,
y2, x3, y3

x1

x2 x2

x3 x3 x3 x3

y1 y1 y1 y1

y2 y2

y3

0 1
(b) Ordering x1, x2, x3, y1, y2, y3

Figure 2.9: OBDDs for the function (x1y1 + x2y2 + x3y3) [61]

The overhead of determining and imposing an ordering is deemed acceptable as a OBDD
representing a given function using a given ordering is unique. In other words, if B and B

′

represent the same Boolean function and during construction of the OBDD the same ordering
was imposed, the resulting structure will be identical. It follows that checking whether two
OBDDs represent the same function is simply a matter of checking whether they have the
same structure.

Representing Subsets of the Set of States

Now that OBDDs have been defined the question is how to use them to represent various
subsets of states. Let S be a finite set of states. Elements of S must be encoded as Boolean
values. This is achieved by assigning elements s ∈ S a unique vector of Boolean values (v1,
v2, . . . , vn) where each vi ∈ {0, 1}.

A subset T ⊂ S can be denoted by the Boolean function fT, mapping the characterising
function onto 1 if s ∈ T and 0 otherwise. There are 2n possible Boolean vectors of length
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n and so n should be chosen such that 2n – 1 < |S| ≤ 2n, where |S| is the number of
elements in S. For example the set P = {(0, 1, 0) (1, 0, 1)} has the characteristic function
fP = (¬v1 ∧ v2 ∧ ¬v3) ∨ (v1 ∧ ¬v2 ∧ v3).

When S represents the set of states of a transition system, a subset of atoms can be used to
provide a unique Boolean vector for each s ∈ S. Let P(Atoms) be a set of subsets of Atoms
with ordering x1, x2, . . . , xn, state s ∈ S can be represented by the the vector (v1, v2, . . . , vn),
where, for each i, vi equals 1 if the atom is valid in the state or 0 otherwise. Consequently
this state is represented by an OBDD for the Boolean function (l1 · l2 · · · ln) where li is 1
if xi is a valid atom and 0 otherwise. The set of states s1, s2, . . . , sm is represented by the
OBDD of the Boolean function (l11 · l12 · · · l1n + l21 · l22 · · · l2n + · · · + lm1 · lm2 · · · lmn).

Representing the Transition Relation

A transition relation is defined as R ⊆ S× S. In the section above it was shown that subsets
of a given finite set may be represented as OBDDs by considering the characteristic function
of a binary encoding. To encode a transition relation two copies of a Boolean vector are
required. Thus, the transition s → t is represented by the pair of Boolean vectors (v1, v2,
. . . , vn), (v′1, v′2, . . . , v′n). As an OBDD, the transition is represented by Boolean function (l1
· l2 · · · ln) · (l′1 · l′2 · · · l′n) and a set of transitions is the + of such formulae.

The key idea behind applying OBDDs to finite systems is to take a system specification and
synthesise the OBDD directly, without having to go via intermediate representations. For-
tunately, certain specification languages enforce updates to variable to be defined using the
variables current value [69, 25]. This type of variable update description can be compiled
into a set of Boolean functions. Therefore, given the OBDD for a set of states and the tran-
sition relation, one step successors and one step predecessors can be computed using BDD
symbolic based algorithms. This can be done repeatedly to explore all reachable states [4].

2.4.3 Probabilistic Representations

Discrete Time Markov Chains can be described as large sparse real-valued matrices where a
sparse matrix is one populated mostly by the value 0. The naive data structure for a matrix is
a two-dimensional array where entries can be accessed via two indices. To encode a m × n
matrix, memory is required to store all (m×n) entries even when the majority hold the value
0. Therefore, it is memory efficient to only store non-zero entries.

The most common scheme employed by model checkers is a row-major sparse matrix en-
coding [69, 17]. This data structure stores information on non zero entries using three arrays,
row, column and value. The value array stores the actual value of all entries in the matrix
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while row, stores the column index of each matrix entry. Both these arrays are row ordered.
The final array, row, provides a means of indexing into the column array that in turn reveals
the value of a desired element.

For example, an entry in position (r, c) is found by indexing into locations r and r + 1 in
row. The located values are used in turn to index into column positions column[row[r]] and
column[row[r+1]–1]. The values contained between and including these indices are checked
to see if they equal c. If the value c is not present, then (r, c) = 0. If it is present, then (r, c) is
non-zero and its value can be found by looking up the value at the same position in the value
array. An example of this encoding is outlined in Figure 2.10;

· 0.5 · 0.5
· · 1 ·

0.3 · · 0.7
1 · · ·


row 0 2 3 5 6

col 1 3 2 0 3 0
val 0.5 0.5 1 0.3 0.7 1

Figure 2.10: A four state DTMC and its sparse storage [82].

An MDP can be represented by a matrix where states that allow a non deterministic choice
between several probabilistic distributions are described using several rows. The row major
scheme can be modified to allow this encoding. As before, the data structure uses the three
arrays, row, column and value in addition to the array nc. The implementation of value and
column are identical. However, two levels of indexing are required to represent states and
available non-deterministic choices. This additional indexing is provided by the nc array. An
example of this encoding is outlined Figure 2.11.

1 · · ·
· 0.5 0.5 ·
· · 1 ·
· 1 · ·
· · · 1

0.8 · · 0.2


row 0 2 3 5 6

nc 0 1 3 4 5 6 6

col 0 1 2 2 1 3 0 3
val 1 0.5 0.5 1 1 1 0.8 0.2

Figure 2.11: A four state MDP and its sparse storage [82].

The row-major data structure facilitates a compact representation and quick access to matrix
elements. Its main downside is the expense involved in structure modifications. However,
the scheme is well suited for model checking as many of the desired matrix operations can
be performed efficiently [42].

The use of symbolic data structures for the probabilistic case are most commonly imple-
mented by extending BDD based representations to allow functions which can take any
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value, not just 0 or 1. This extension is termed Multiple Terminal Binary Decision Dia-
grams MTBDDs and allows a BDD with more than two terminal nodes. Furthermore, it
has been shown that MTBDDs can represent matrices over any finite set as well as imple-
menting standard matrix operations, such as scalar multiplication, matrix addition and matrix
multiplication [50].

2.5 Model Checking Algorithms

With the semantic definitions for LTL, CTL and PCTL presented in Section 2.3 and an
overview of representation schemes provided in Section 2.4, we will outline how the rep-
resentation schemes can be manipulated to provide answers to posed logical formulae.

2.5.1 CTL Model Checking

The CTL model checking algorithm [22] answers the questionM, s0 |= φ by returning all
states of M that satisfy condition φ. From the returned set of states it is easy to check if
M, s0 |= φ by verifying that the returned set contains s0. The model checking algorithm for
CTL is a labelling algorithm that marks states which satisfy sub-formulae of the formula to
be checked. Fortunately, the algorithm does not have to handle every CTL connective as any
formula can be reformulated using only ⊥, ¬ and ∧ and temporal connectives and AF , EU
and EX.

The CTL algorithm takes a model M and a CTL formula φ as input. Immediately, φ is
reformulated and states of M are labelled with sub formulae of φ that are satisfied in the
state. The algorithm begins with the smallest sub-formulae and works outwards towards φ.
Suppose ψ is a sub-formula of φ and states satisfying sub-formulae of ψ have already been
labelled. The states required to be labelled with ψ can be determined by a case analysis. If
ψ is:

• ⊥: then no states are labelled with ⊥.

• p: where p is an atom from the set of Atoms then label the state with p is true in the
state.

• ψ1 ∧ ψ1 : label s with ψ1 ∧ ψ1 if s is already labelled both with ψ1 and with ψ2 .

• ¬ψ1 : label s with ¬ψ1 if s is not already labelled with ψ1 .

• AF ψ1:
– If any state s is labelled with ψ1 , label it with AF ψ1.
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– Repeat: label any state with AF ψ1 if all successor states are labelled with AF ψ1

, until there is no change.

• E [ψ1 U ψ2 ]:
– If any state s is labelled with ψ2 , label it with E [ψ1 U ψ2 ].

– Repeat: label any state with E [ψ1 U ψ2 ] if it is labelled with ψ1 and at least one
of its successors is labelled with E [ψ1 U ψ2 ] , until there is no change.

• EX ψ: label any state with EX ψ if one of its successors is labelled with ψ.

Once all sub-formulae of φ including φ itself have been labelled to states, the set of states
labelled with φ are returned. The complexity of this algorithm is O(f · V · (V + E)), where
f is the number of formula connectives, V the number of states and E the number of transi-
tions [25].

2.5.2 LTL Model Checking

The state-labelling approach of CTL is not appropriate for LTL model checking as sub-
formulae are evaluated along paths of a system and not states. While numerous implemen-
tations of slightly different LTL model checking algorithm appear in the literature [54, 58],
nearly all follow the same strategy [61]. These algorithms take a modelM, a state s ∈ S and
a LTL formula φ as input and determine whetherM, s |= φ using the following steps:

1. Construct an automaton for the formula ¬φ, denoted A¬φ. A¬φ accepts a trace that is a
sequence of valuations of the propositional atoms. Thus, the automaton A¬φ encodes
all the traces satisfying the property A¬φ. A trace can be generated for any path.

2. Combine A¬φ and system modelM. This results in a new automaton that has all the
paths of A¬φ andM. In practice the new system is constructed by letting the system
modelM and the automaton for the formula A¬φ to take alternate progressing steps.

3. Attempt to find a path from the starting state to a set of final states defined by A¬φ.
If such a path is found it can be interpreted to mean that M, s 6|= φ. In this instance a
counterexample can be extracted from the located path.

The complexity of this algorithm is O(|S| + |R| · 2O(|φ|)) and is therefore exponential in the
length of the formula to be checked [58]. In the worst case this means that LTL model check-
ing is significantly more complex than CTL model checking. Fortunately, the worst case is
rarely achieved and in practice there is little run time difference between the algorithms.
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2.5.3 PCTL Model Checking

The PCTL model checking algorithm [53] is similar to the CTL model checking algorithm
detailed in Section 2.5.1. However, it is now necessary to compute relevant probabilities.
For model checking operator P./prob[ψ] applied to a DTMC the probability of a path leaving
each state s satisfying the path formula ψ must be computed. This may require a calculation
involving the operators Ps(X φ) , Ps(φ U≤k ψ) and Ps(φ U ψ). With this information it is
then possible to compute Sat(P./prob[ψ] as {s ∈ S Ps(ψ) ./ prob}.

The Next Operator

Observe that Ps(X φ) is the sum of the probabilities of reaching a state in the next transition
where φ holds i.e.

∑
s′∈Sat(φ) P(s, s′). Let φ be a vector indexed by states where φ(s) = 1 if

s |= φ and φ(s) = 0 if s 6|= φ. Vector P(X φ) of required probabilities can be calculated by the
matrix-vector multiplication P · φ.

The Bounded Until Operator

To perform the calculation associated with this operator the set of states are divided into the
three disjoint sets: Sno = S \ (Sat(φ1) ∪ Sat(φ2)), Syes = Sat(φ2) and S? = S \ (Sno ∪ Syes).
The sets Syes and Sno contain the states where Ps(φU≤kφ) equals 1 and 0 respectively and
S? contains all other states. For the set of states S?, we have

Ps(φ1U≤kφ2) =

{
0 if k = 0∑

s′∈S P(s, s′) · Ps(φ1U≤k–1φ2) if k ≥ 1

Let Ps(φ U≤k φ) be a state indexed vector and by defining the matrix P′ as follows

P′(s, s′) =


P′(s, s′) if ∈ S?

1 if s ∈ Syes and s = s′

0 if s ∈ Sno

the required probabilities can be computed in the following manner. If k = 0 and s ∈ Syes,
P0(s) = 1 and if s ∈ Sno, P0(s) = 0. In the instance where k ≥ 1 vector Ps(φ1U≤k–1 φ2) can
be calculated by k matrix-vector multiplication P′· Ps(φ1U≤k–1 φ2).

The Until Operator

As with the bounded until operator, all states are divided into the three disjoint sets, Syes,
Sno and S?. The sets are defined as above, however sets Syes, Sno are extended to contain all
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states for which Ps(φ1 U φ2) are respectively, 1 or 0. Set Sno is calculated by first computing
the set of states reachable with non-zero probability satisfying φ2 whose predecessors do
not satisfying φ1. Subtracting these states from set S, produces the set of states with 0
probability. Set Syes similarly calculates the set of states reachable with probability less than
1, that satisfy φ2 whose predecessors do not satisfy φ1. By subtracting these states from S,
the set of states satisfying the operator with probability 1 is determined.

The reason behind the pre-computation of Syes, Sno is that it ensures a unique solution to the
linear equation system and reduces the set of states in S?, for which probabilities must be
computed numerically. Furthermore, the model checking of qualitative properties where the
probability bound is 1 or 0 requires no further computation. The final set S? can be calculated
by solving the linear equation

Ps(φ1Uφ2) =


∑

s′∈S P(s, s′) · Ps(φ1Uφ2) if s ∈ S?

1 if s ∈ Syes

0 if s ∈ Sno

To reconstruct the problem in the form Ax = b. Let b be the state indexed vector where
b(s) = 1 if s ∈ Syes and b(s) = 0 if s ∈ Sno, and A = I – P′ where I is the the identity matrix
and matrix P′ is as defined below;

P′(s, s′) =


P(s, s′) if s ∈ S?

0 if s ∈ Syes

0 if s ∈ Sno

The linear equation system Ax = b can then be solved using direct methods, such as Gaussian
elimination, or iterative methods, such as Jacobi, Gauss-Seidel or the Power method [93].
In model checking it is common to have to manage large models and therefore iterative
methods are preferred. Gauss-Seidel typically outperforms Jacobi due to faster convergence
and has the added benefit of only needing to store a single solution vector. Both of these
methods usually outperform the Power method. However the Power method has guaranteed
convergence.

PCTL model checking over MDPs

For an MDP computing the probabilities of the PCTL operators: next, bounded until and
until differs as all adversaries A∈ Adv have to be accounted for. To determine if a probability
bound holds either the maximum or minimum probability for the PCTL formula is calculated
depending whether the relational operator defines an upper or lower bound. Furthermore, the
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calculation method for maximum and minimum probabilities changes depending whether
the set of all adversaries or just the set of fair adversaries is considered. In practice this
consideration only affects the until operator as fairness only places restrictions on the long-
run behaviour of the system.

The Next Operator

For the PCTL next operator two cases must be considered;

Pmax
s (X φ) = maxµ∈Steps(s) {

∑
s′∈Sat(φ) µ(s′)}

Pmin
s (X φ) = minµ∈Steps(s) {

∑
s′∈Sat(φ) µ(s′)}

Let m =
∑

s∈S |Steps(s)|, the total number of nondeterministic choices in all states of the
MDP. The function Steps can be represented as an m× |S| matrix. Let φ be a state-indexed
vector where φ(s) = 1 if s |= φ and φ(s) = 0 if s 6|= φ. The calculation of either Pmax

s (X φ) or
Pmin

s (X φ) can be carried out in two steps:

1. The matrix-vector multiplication Steps · φ results in a vector of length m.

2. From this vector select the maximum or minimum value given for each state depending
on the operator being calculated. The results in a new vector with length |S|.

Bounded Until Operator

As was the case in DTMCs the set of states is divided into the three disjoint subsets: Sno = S
\ (Sat(φ1)∪ Sat(φ2)), Syes = Sat(φ2) and S? = S \ (Sno ∪ Syes). Syes and Sno contain the set
of states for which Pmax

s = (φ1 U≤k φ2) or Pmin
s = (φ1 U≤k φ2) equal 1 or 0 respectively. S?

contains the remaining states and there are two cases;

Pmax
s (φ1U≤kφ2) =

{
0 if k = 0

maxµ∈Steps(s){
∑

s′∈S µ(s′) · Pmax
s (φ1U≤k–1φ2)} if k ≥ 1

Pmin
s (φ1U≤kφ2) =

{
0 if k = 0

minµ∈Steps(s){
∑

s′∈S µ(s′) · Pmin
s (φ1U≤k–1φ2)} if k ≥ 1

Using the same matrix representation as above the computation of Pmax
s (φ1 U≤k φ2) or Pmin

s
(φ1 U≤k φ2) can be carried out in k iterations. Every iteration comprises of one matrix-vector
multiplication and the selection of the maximum or minimum value.
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The Until Operator

For the PCTL operator until we must compute either Pmax
s = Pmax

s (φ1 U φ2) or Pmin
s =

Pmin
s (φ1 U φ2). Two cases must be considered, all adversaries and fair adversaries. For

clarity PA
s will be used to denote PA

s (φ1 U φ2). Beginning with the case for the set of all
adversaries the set of states are divided into the three disjoint subsets Sno = S \ (Sat(φ1) ∪
Sat(φ2)), Syes = Sat(φ2) and S? = S \ (Sno ∪ Syes).

For Pmax
s , Sno contains the set of states for which PA

s = 0 for every adversary A. The calcula-
tion of Pmax

s proceeds by first computing the set of states reachable with non-zero probability
under some adversary that satisfy φ2 and whose predecessors satisfied φ1. Removing these
states from set S produces the set of states with probability 0. For Pmin

s , Sno contains all
states for which PA

s = 0 for some adversary A and is computed in a similar fashion.

The algorithm for the computation of Pmax
s in the set Syes is more complex but works on the

same principle of calculating the states reachable with probability less than 1 and subtracting
from set S. The algorithm depends on two nested loops .The outer loop computes a set of
states R and by the end of its execution will contain all states where PA

s = 1 for some
adversary A. With each iteration of the outer loop, invalid states that were identified by the
inner loop are removed. They are determined as the states which can no longer reach a state
where Sat(φ2) without passing through a state not in Sat(φ1) or a previously removed state.
For pmin

s , Sno is assumed to be the set of states Sat(φ2) for which Pmin
s is trivially 1.

The minimum and maximum probabilities for the remaining states S? can either be com-
puted using value iteration or solved by reduction to a linear optimisation problem. Linear
optimisation problems can be solved using classic techniques such as the Simplex, Ellipsoid
method or Interior point method [72] that yield an exact solution in a finite number of steps.
However, these direct methods are not well suited to problems of the size commonly han-
dled. Therefore the problem must be reformed to allow an iterative approach to provide the
solution to Pmax

s and Pmin
s , where Pmax

s = limn→∞Pmax(n)
s :

Pmax(n)
s =


0 if s ∈ Sno

1 if s ∈ Syes

0 if s ∈ S? and n = 0

maxµ∈Steps(s){
∑

s′∈S µ(s′) · Pmax(n–1)
s } if s ∈ S? and n > 0

and where Pmin
s = limn→∞Pmin(n)

s :
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Pmin(n)
s =


0 if s ∈ Sno

1 if s ∈ Syes

0 if s ∈ S? and n = 0

minµ∈Steps(s){
∑

s′∈S µ(s′) · Pmin(n–1)
s } if s ∈ S? and n > 0

The values of Pmax and Pmin can be approximated by an iterative computation, stopping
when some convergence criteria has been satisfied. There is a strong similarity between
a single iteration of this method and one required for the bounded until operator. Hence,
assuming a similar representation scheme each iteration can be performed using one matrix-
vector multiplication and selection of the appropriate maximum or minimum value.

Until Operator (Fair Adversaries)

This section covers the calculation of Pmax and Pmin over fair adversaries for the PCTL op-
erator until. The process of computing Pmax remains unchanged. By considering a more re-
stricted class of adversaries, the maximum probability clearly cannot increase. Furthermore,
the probability does not decrease as fairness only places restrictions on infinite behaviour
and for a path to satisfy an until formula only some finite, initial portion of it is relevant.

When computing Pmin, the minimum probability over all fair adversaries can be higher than
the minimum for all adversaries. However, the new minimum probability can be ascertained
without much additional effort. By considering the probability that φ1 ∪ φ2 is not satisfied,
a maximal probability calculation is obtained. This allows the same method from the pre-
vious section to be used. The desired probabilities can then be obtained by subtracting the
calculated probabilities from 1 [10].

2.6 Model Checking Tools

SPIN is an open-source model checker developed at Bell Labs for the verification of non-
probabilistic concurrently executing processes [58]. Models are described in a high level
language called Promela that consists of global variables, channel declarations and process
type declarations, together with an initialisation process. Properties can be defined using
LTL, which in turn is translated into an automaton to provide an efficient verification imple-
mentation. Additionally, the option of hand constructing a more expressive property directly
as an automaton is available. The verifier can perform both depth and breadth first search
over the state-space to check for absence of deadlock, or satisfaction of safety properties. As
is traditional, if a property is violated a counter example is generated.
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The combination of the Promela language and SPIN verifier has been widely used in safety
critical systems. Examples including the verification of control algorithms for a movable
storm surge barrier where manual management was considered too high a risk [92]. A more
recent example is verification of the resource arbiter used to manage all motors on the Mars
Exploration Rovers [59].

Another example of an explicit-state model checker is Murφ [29]. The Murφ specification
language consists of infinitely executing guarded commands and unlike SPIN there is no
provision for temporal logics. The verifier can only check the state-space for absence of
deadlock, or satisfaction of assert statements. Murφ has seen most use in the design of cache
coherence algorithms and protocols.

For non-probabilistic symbolic model checkers Symbolic Model Verifier, SMV is the bench-
mark implementation [25]. SMV uses an OBDD based algorithm for the verification of CTL
properties against a specification written in the SMV language. The SMV language supports
finite data structures such as Booleans, scalars and fixed arrays. The primary purpose of the
language is the specification of the transition relation which in turn allows the generation
of the OBDD directly from the language description. Perhaps the most recognised appli-
cation of SMV is in the verification of the Cache Coherence Protocols for Distributed File
Systems [25].

In the probabilistic realm a tool for Qualitative and Quantitative Linear Time analysis of
Reactive Systems, LiQuor [17], was developed by the University of Bonn. LiQuor is a tool
for verifying probabilistic reactive systems specified in ProbMela, a probabilistic guarded
command language inspired by the modelling language Promela [8]. Like SPIN, LiQuor
relies on the automata-based approach to model check linear time properties. The underlying
data structure is explicit in nature and is used to encode an MDP. In design, LiQuor is an
amalgamation of many separate tools, the ProbMela compiler, Cocktail providing the user
interface and Appetizer for user driven simulation.

The Markov Reward Model Checker [64] provides model checking of CSL over CTMCs
and PCTL over DTMCs. Both Markov Chains are stored in explicit data structures such as
sparse matrices. The transition matrices for the DTMCs or CTMCs to be analysed are also
specified explicitly: the user provides a list of all the states and transitions which make up
the model. The format in which checker accepts information allows it to be easily integrated
with other tools.

Finally, the Probabilistic Symbolic Model Checker, PRISM [69], was developed at the Uni-
versity of Birmingham. It is a probabilistic model checker that employs automatic formal
verification techniques to enable the analysis of stochastic systems. PRISM provides support
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for three types of probabilistic models; DTMCs, MDPs and CTMCs. The basic underlying
data structures of PRISM are BDDs and MTBDDs. However, PRISM provides three distinct
engines. The first is a pure MTBDD implementation, the second is explicit, based on sparse
matrices; and the third uses a hybrid symbolic, explicit approach. Properties of models are
written in the PRISM property specification language, based on the three probabilistic tem-
poral logics PCTL and LTL for DTMCs, PCTL for MDPs, and CSL for CTMCs. Further,
analytical abilities include the power to enhance the richness of models, by the assignment
of costs and rewards to certain model behaviours, i.e transitions within the model. PRISM
also provides wide ranging support for the automated analysis of quantitative properties.

2.6.1 State Space Explosion

As mentioned in Section 2.1 a major problem which limits the application of model checking
is the of state-space explosion. Although verification algorithms usually have polynomial run
time complexity, this is offset as the number of states in a model grows exponentially with
the number of variables. This means that even trivial real-life systems can require many
millions of states to define their behaviour.

To illustrate this consider a system composed of ten identical processes that contain three
Boolean variables and five bounded integers in the range { 0, . . . , 9 } [9]. A system with
this arrangement will consists of 10 · 23 · 105 = 8, 000, 000 states. Now consider if an array
of 50 bit elements are added to the program. Now 800, 000, 000 · 250 states are required to
describe all behaviours of the system.

Three main approaches have been identified for tackling this problem:

1. Translation of a specification into a form that captures the same essential behaviour,
but results in a smaller model. This includes techniques such as design abstraction and
source code or communication structure optimisation.

2. Reducing the size of memory required to store a state. The most successful technique
of this kind is symbolic model checking; while state compression and supertrace veri-
fication have also proved useful in practice.

3. Minimise the number of states that must be checked to verify a property. Techniques
include on-the-fly model checking, partial-order reduction, symmetry reduction, ab-
straction and compositional reasoning.
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2.7 Summary

In this chapter we have provided a detailed account of current approaches to model check-
ing, starting with theory and working through to implementation. The chapter closes by
mentioning the state space explosion problem and the wide variety of techniques that have
been proposed to combat it. In the next chapter we will specifically focus on the state space
management technique of symmetry reduction.



CHAPTER 3

Symmetry Reduction

This chapter presents established approaches for the state space management technique of
Symmetry Reduction. Section 3.1 introduces the notion of Symmetry Reduction with Sec-
tion 3.2 providing a mathematical explanation for its application in the context of model
checking. Issues concerning the identification and application of symmetry are discussed
in Section 3.3 and Section 3.4 respectively. The chapter closes with a review of currently
available tools that implement an approach to symmetry reduction.

Concurrent systems often contain replication and as a result model checking algorithms may
spend a significant proportion of time searching over equivalent areas of the state space.
Consider a system comprised of numerous processes running the same program. The only
distinguishable difference between them is the process name. In this instance processes can
be viewed as interchangeable and any transformation that consistently swaps them through-
out the system will not impact the overall set of system behaviours. Once a symmetry has
been established the question becomes how to exploit the knowledge during verification.

Continuing the example, every system state does not have to be individually encountered and
stored, they can be collapsed into one representative state in a reduced system. Therefore,
given n processes, potentially n! original states can be collapsed and their behaviours rep-
resented by a single new state in a reduced system. Consider the mutual exclusion protocol
outlined in Figure 2.3. This example consists of 2 identical processes, excluding process
identifiers, and clearly demonstrates the existence of symmetry within a Kripke structure.

33
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Furthermore, the mutual exclusion property AG (¬(C1 ∧ C2)) holds for any state A, B and
B, A, where A and B take a value from the set {N, T, C}. If state A, B satisfies the mutual
exclusion property so does B, A.

3.1 Group Theory

Symmetries of a model structure form a group and the survey of symmetry reduction tech-
niques in this chapter, and the techniques develop throughout the thesis require some def-
initions and results from group theory. This section covers basic definitions [73, 56] and
provides a specific overview of Permutation and Symmetric Groups.

3.1.1 Groups, Subgroups and Homomorphisms

Definition. A group (G, ∗) contains a set S with a closed binary operation ∗ such that the
group axioms hold;

1. For every x, y, z ∈ G, we have (x ∗ y) ∗ z = x ∗ (y ∗ z).

2. There is an element e ∈ G such that for every x ∈ G, e ∗ x = x ∗ e = x.

3. For each x ∈ G there is an element x′ ∈ G such that x ∗ x′ = x′ ∗ x = e.

The number of distinct elements in a finite group G, is called the order of the group and is
denoted by |G|. The identity element is denoted by e or eG if ambiguous, and the inverse of
an element x of G is denoted by x–1 . Finally, the binary operation ∗, usually a composition
of mappings is written xy for x ∗ y.

Definition. A group is called abelian or commutative if it satisfies the additional property,
x ∗ y = y ∗ x for all elements xy ∈ G.

Definition. A subset H of a group G is called a subgroup of G if the following conditions
are satisfied:

1. eG ∈ H.

2. if x, y ∈ H then xy ∈ H.

3. if x ∈ H, then x–1 ∈ H.

If H is a subgroup of G it can be written H ≤ G. Additionally, a subgroup H is proper
subgroup if H 6= G and is written H < G.
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Definition. Let H be a subgroup of G and g ∈ G then the subset gH = {gh | h ∈ H} ⊆ G is
called the left coset of H. Similarly the subset Hg = {hg | h ∈ H} ⊆ G is the right coset of
H. The set of left cosets of H is denoted G/H and the set of right cosets H\G.

Definition. Let A be any subset of a group G. The subgroup of G generated by A, denoted
〈A〉, or 〈x1, x2 . . . , xn 〉 if A = {x1, x2, . . . , xn} is the intersection of all subgroups of G
containing A.

The group 〈A〉 is the smallest subgroup of G that contains A. It is often the case in compu-
tational applications that the generating set {x1, x2, . . . , xn} has an ordering that is defined
implicitly by the subscript of xi

Definition. Let (G, ∗) and (H, ◦) be groups. A function f : G→ H is a homomorphism if for
all a, b ∈ G ,

f(a ∗ b) = f(a) ◦ f(b)

A homomorphism σ is called a monomorphism, epimorphism or isomorphism if it is an
injection, surjection or bijection, respectively. Groups G and H are isomorphic if there is an
isomorphism σ : G→ H, denoted G ∼= H. Finally an isomorphism from group G onto itself
is called an automorphism.

3.1.2 Permutation Group

Definition. If X is a non empty set, a permutation of X is a bijection α : X → X The set of
all permutations of X is denoted SX

Let X be a set. The symmetric group, Sym(X), consists of all the bijections from X to X,
with map compositions as the group operator. A recurring special case is where X is finite,
consisting of the first n natural numbers. Under these conditions the symmetric group is
termed Sn.

Any bijection α can be denoted by two rows;

α =

(
1 2 . . . n
α1 α2 . . . αn

)
,

and the bottom row is a rearrangment of {1, 2, . . . , n}. If Γ is a set of size n, then there
is a bijection θ : Γ → {1, 2, . . . , n} which induces a mapping θ : Sym(Γ) → Sn via
(σ)θ = θ–1 ◦ σ ◦ θ for every σ ∈ Sym(Γ). For example the Symmetric group S3 is;
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(
1 2 3
1 2 3

)
,

(
1 2 3
3 2 1

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
3 1 2

)

The two rowed notation is not always convinent to work with or present. For this reason we
introduce an equivalent notation.

Definition. If x ∈ X and α ∈ SX, then α fixes x if α(x) = x and α moves x if α(x) 6= x.

Definition. Let i1, i2, . . . , ir be distinct integers between 1 and n. If α ∈ Sn fixes the
remaining n – r integers and if

α(i1) = i2, α(i2) = i3, . . . , α(ir–1) = ir, α(ir) = i1

then α is an r-cycle of length r. This is denoted (i1 i2 · · · ir)

For example the following permutation can be expressed as (015)(2)(364)

(
0 1 2 3 4 5 6
1 5 2 6 3 0 4

)

Every 1-cycle fixes every element of X. Therfore, all cycles of length one are equal to the
identity. Let α ∈ Sym(X). If α = identity then we write id for α as usual. A transposition is
an element of Sym(Ω) that exchanges two elements and fixes all the others, in other words
a cycle of length 2. Since any cycle can be written as a product of transpositions, it follows
that any permutation on set Ω can be written as a product of transpositions.

Definition. A permutation group G on the set X is a subgroup of Sym(X).

Definition. Let G act on the set Ω. The equivalence relation {∼ G} or ∼ if the context
is clear is defined on Ω by α ∼ β if and only if there exists a g ∈ G with β = αg. The
equivalence classes of ∼ are called the orbits of G on Ω. The orbit of a specific element
α ∈ Ω is denoted by αG

Definition. Let G act on the set Ω, α ∈ Ω and let ∆ ⊆ Ω

• The stabiliser of α ∈ G is, {g ∈ G αg = α} and is denoted by Gα.

• The setwise stabiliser {g ∈ G αg ∈ ∆ for all α ∈ ∆} of ∆ ∈ G is denoted by G∆.

• The pointwise stabiliser {g ∈ G αg = α for all α ∈ ∆} of ∆ ∈ G is denoted by G(∆).
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3.1.3 Group Actions

In the practical application of symmetry reduction, a fundamental idea is that a group of
permutations acting on a set induces a group of permutations acting on a different larger
set. In the context of model checking this takes the form of a group of process identifier
permutations inducing a group of permutations on a set of states.

Definition. A group G acts on the non-empty set X if to each α ∈ G and x ∈ X there
corresponds a unique element α(x) ∈ X and that, for all x ∈ X and α, β ∈ G, αβ(x) =
α(β(x)).

Let G act on X. Then to each α ∈ G there corresponds an element ρα ∈ Sym(X) defined by
ρα : x→ α(x), and the map ρ : G→ Sym(X) defined by ρ : α→ ρα is a homomorphism.

3.2 Symmetry in Model Checking

3.2.1 Symmetry in Kripke Structures

A system contains symmetries if its set of transitions remains invariant when individual or
groups of variables are interchanged by certain permutations. For a Kripke structure,M =
(S, s0, R), a permutation α : S → S that maintains the transition relation and initial state is
termed an automorphism ofM. An automorphism α satisfies the following conditions:

• For all s, t ∈ S, (s, t) ∈ R⇒ (α(s), α(t)) ∈ R.

• α(s0) = s0.

The set of all automorphisms of M forms a group, where the operator is a mapping, and
is denoted Aut(M). For G ≤ Aut(M), the orbits of S under G can be used to construct a
quotient Kripke structureMG. In the case where G is non trivial,MG will be smaller than
M.

Definition. LetM be a Kripke structure, and G an automorphism group ofM. The quotient
structure [77]MG = (SG, s0

G, RG) is defined as:

• SG = {repG(s) : s ∈ S}, where repG(s) is a unique representative of sG.

• s0
G = repG(s0).

• RG = {(repG(s), repG(t)) : (s, t) ∈ R}.

If a path π = s0, s1, . . . is found inM then π = repG(s0), repG(s1), . . . is a path inMG.
Furthermore, a path π = s0, s1, . . . inMG has a corresponding path inM, π′ = s′0, s′1, . . .
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such that s′0 = s0 and for all i ≥ 1, s′i ∈ sG
i . Proofs of these statements have been presented

and show a bidirectional correspondence between paths ofM and the quotient structureMG

for any group of automorphisms G ofM [77].

Therefore, for a modelM and its quotient model MG with respect to a group G, M, s |=
φ⇔MG, repG(s) |= φ for every symmetric CTL? formula. A CTL? formula φ is symmetric
if for each propositional subformula f, and for all α ∈ G, s |= f ⇔ α(s) |= f. It follows that
M |= φ⇔MG |= φ.

3.2.2 Symmetry in Discrete Time Markov Chains

For a DTMC, D = (S, s0, P), a permutation α : S → S that maintains the transition proba-
bilities and initial state is termed an automorphism of D. An automorphism α satisfies the
following conditions:

• For all s, t ∈ S, P(s, t) = P(α(s), α(t)).

• α(s0) = s0.

The set of all automorphisms of D forms a group where the operator is a mapping and is
denoted Aut(D). For G ≤ Aut(D), the orbits of S under G can be used to construct a
quotient DTMC DG

Definition. Let D be a DTMC, and G be an automorphism group of D. The quotient struc-
ture [77] DG = (SG, s0

G, PG) is defined as:

• SG = {repG(s) : s ∈ S}, where repG(s) is a unique representative of sG.

• s0
G = repG(s0).

• PG(repG(s), repG(t)) =
∑

x∈tG P(repG(s), x).

If a path π = s0, s1, . . . is found in D then π = repG(s0), repG(s1), . . . is a path in DG.
Furthermore, a path π = s0, s1, . . . in DG has a corresponding path in D, π′ = s′0, s′1, . . .
such that s′0 = s0 and for all i ≥ 1, s′i ∈ sG

i . Proofs of these statements have been presented
and show a bidirectional correspondence between paths of D and the quotient structure DG

for any group of automorphisms G of D [77].

Therefore for a model D and its quotient model DG with respect to a group G, D, s |= φ ⇔
DG, repG(s) |= φ for every symmetric PCTL formula. A PCTL formula φ is symmetric if
for each propositional subformula f, and for all α ∈ G, s |= f ⇔ α(s) |= f. It follows that
D |= φ⇔ DG |= φ.
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3.2.3 Symmetry in Markov Decision Process

For an MDP,M = (S, s0, Steps), a permutation α : S→ S that maintains the transition prob-
abilities and initial states is termed an automorphism of M. An automorphism α satisfies
the following conditions:

• For all s, t ∈ S for which there exists a µ ∈ Steps and µ(t) > 0, there exists µ′ ∈
(Steps(α(s))) such that µ′(α(t)) = µ(t).

• α(s0) = s0.

The set of all automorphisms ofM forms a group where the operator is a mapping and is
denoted Aut(M). For G ≤ Aut(M), the orbits of S under G can be used to construct a
quotient MDPMG.

Definition. LetM be a MDP, and G be an automorphism group ofM. The quotient struc-
ture [77]MG = (SG, s0

G, StepsG) is defined as:

• SG = {repG(s) : s ∈ S}, where repG(s) is a unique representative of sG .

• S0
G = repG(s0).

• for each repG(s) ∈ SG and µ ∈ Steps(repG(s)), StepsG(repG(s)) contains a distribution
µ ∈ Dist(SG) where, for repG(t) ∈ SG, µ(repG(t)) =

∑
x∈tG µ(x).

If a path π = s0
µ1–––→ s1,

µ2–––→ . . . is found inM then π = repG(s0)
µ1–––→ repG(s1)

µ2–––→ . . . is

a path inMG. Furthermore, a path π = s0
µ1–––→ s1

µ2–––→ . . . has a corresponding path inM,

π′ = s′0
µ′1–––→ s′1

µ′2–––→ . . . such that s′0 = s0, s′i ∈ sG
i . Proofs of these statements have been

presented and show a bidirectional correspondence between paths of M and the quotient
structureMG for any group of automorphisms G ofM [77].

Therefore for a modelM and its quotient modelMG with respect to a group G, M, s |= φ⇔
MG, repG(s) |= φ for every symmetric PCTL formula. It follows thatM |= φ⇔ MG |= φ.

3.3 Symmetry Reduction in Practice

The key idea of symmetry reduction is to exploit the underlying structure of the transition
system in an attempt to reduce the size of the state space. The state space exploration al-
gorithm, outlined in Figure 2.6, can be adapted to exploit equivalence between states. The
adapted algorithm, presented in Figure 3.1, allows a quotient state space to be incremen-
tally constructed if symmetries are known in advance. The major benefit of this approach is
that the quotient structure may be built even though the original structure is too large to be
explored.
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1. reached := unexplored := {rep(s0)}
2. While unexplored 6= ∅
3. {
4. remove a state s from unexplored
5. for each transition s→ s′
6. {
7. if s′ = error
8. {
9. stop and report error
10. }
11. if rep(s′) 6∈ reached
12. {
13. add rep(s′) to reached and unexplored
14. }
15. }
16. }

Figure 3.1: Standard algorithm for explicit state space exploration with symmetry reduction.

The algorithm begins by removing the initial state from unexplored and determining its suc-
cessors. For each successor state the algorithm computes the representative and checks if
it has been encountered before. In the case where the representative state has not been en-
countered it is added to the unexplored stack and reached hash table. Once the status of all
successor states has been determined the algorithm obtains the next state from the unexplored
stack. Once the unexplored stack is empty the state space has been fully explored.

This approach to the quotient structure construction poses two major questions:

1. How is symmetry identified?

2. How are equivalent states reduced to a representative state?

3.3.1 Identifying Symmetry

A simple method for the identification of symmetry is to take a model specification and
construct its Kripke structureM. By subjectingM to a standard symmetry detection algo-
rithm [27], the resulting information can be used in the construction of the quotient structure.
This naive approach has two flaws;

1. The state space explosion problem is the primary motivation for research into reduction
techniques. Therefore, the need to fully construct the state space in order to run the
algorithm is self defeating. If a model can be constructed, it is reasonable to assume the
state space is tractable and no reduction is required. Furthermore, once the state space



3.3. Symmetry Reduction in Practice 41

becomes intractable, symmetries can no longer be detected and a reduced structure
cannot be constructed.

2. The identification of automorphisms in a Kripke structure is as hard as solving the
graph isomorphism problem [81]. For a large state space this is a time consuming
processes.

To exploit the possible benefits of symmetry reduction other methods must be considered.

3.3.2 User Specification of Symmetry

The problems of the naive approach can be side-stepped by placing the burden of symmetry
detection on the user. The manual specification of symmetry groups requires no overhead
for detection and affords the specification of groups that would be potentially missed by the
detection algorithm. However, as with all manual specification techniques, this methodology
is prone to user error and requires expert knowledge of the domain.

A solution that requires no upfront detection or expert domain knowledge is to restrict the
specification language in a way that guarantees all generated models are symmetric. This
approach is taken by the symmetry based model checker, SMC [91]. All specifications are
required to be fully symmetric and this is achieved by forcing behaviour to be defined in a
single process that can in turn be instantiated multiple times.

Similarly, the Symmetric Probabilistic Specication Language (SPSL) [33] defines a subset
of the PRISM language designed to guarantee applicability of the generic representatives
approach (see Section 3.5). SPSL restrict specification to containing families of symmetric
processes whose behaviour can be defined using multiple local variables. The GRIP tool [32]
translates SPSL specifications into a generic reduced form, the semantics of which are iso-
morphic to the original specications symmetrically reduced model. Therefore, the generic
reduced specification can be used to model check symmetric properties of the original model.

3.3.3 The Scalarset Approach

An alternative approach to language restriction is the annotation of the system specification
with a data type known as a Scalarset [81]. A Scalarset acts as a documentation of the sym-
metry present in the model and loosens the requirement on the system being fully symmetric.

Definition. A scalarset is an integer sub-range with the following set of restricted operations:

1. A scalarset term is always a variable reference.
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2. Two scalarset variables of the same type can only be compared using the = operator.

3. A scalarset variable can only be assigned a value from another scalarset variable of the
same type.

4. If a scalarset variable is used in the index of a for statement, the result must not be
affected by the order of iteration execution.

5. An array with a scalarset index type can only be manipulated by a scalarset variable of
the same type.

This definition ensures that any values defined using the scalarset datatype can be consis-
tently permuted in all states in the state-space. Additionally, the definition is given in terms
of a generic language and can be adapted to any specific setting. The original implemen-
tation was provided in the Murφ description language [29], however, scalarsets have been
defined and extended for the Promela specification language [13]. These extensions are able
to handle queues as well as allowing multiple scalar sets to be defined in a single specifica-
tion.

A major benefit of the scalarset data types are that violations to the restricted set of operations
can be detected in polynomial time [13]. However, the definition only allows the description
of systems that exhibit total symmetries. For example, the data type could be utilised in the
description of a system of processes connected as a clique but not as a ring or tree. Exten-
sions to the core datatype have been proposed as a means of specifying systems with ring
structures, however, these have not been implemented. The scalarset datatype and extensions
all share the same downside. Inherently the user must identify symmetry in the model and
select an appropriate data type to specify their presence. This means that symmetry reduction
using scalarsets is not a “push button” reduction technique.

3.3.4 Automated Symmetry Detection

Consider a model of a system M that consists of a finite number of parallel executing
processes, identical up to renaming and communicating via shared variables. A subgroup
of Aut(M) can be automatically calculated from the communication structure of the pro-
gram [47]. The automatic computation of the subgroup is feasible as it is usually small
compared to Aut(M).

To construct the communication structure, let I be a set of finite numbers, {0, 1, 2, . . . n},
representing process identifiers. For a system specification P =‖i∈I pi, the communication
structure is an undirected graph CS = (I, E), where {i, j} ∈ E if and only if processes pi and
pj share a variable. Originally this approach only applied to systems where variables were



3.4. Exploiting Symmetry 43

shared by at most two processes of the same type. However, this restriction has since been
lifted by considering the coloured hypergraph of a shared variable program [47].

In the message-passing paradigm, where processes communicate by sending messages across
a data type known as a channel, structural symmetries of a model can be automatically ex-
tracted from program text in the form of a static channel diagram [40]. The static channel
diagram can be thought of as a static approximation of a specification’s communication struc-
ture. Communication arising from the dynamic passing of channel references is not consid-
ered. Furthermore, any edge in the diagram may be the direct result of updates which are
not executable in the final model. Currently this approach is implemented in SymmExtrac-
tor [30], an automatic symmetry detection tool for the Promela [58] specification language.

SymmExtractor takes a Promela specification as input and by analysing a subsequently con-
structed abstract syntax tree, generates a static channel diagram. This diagram provides input
to the Saucy [27] program, deriving its automorphisms. These generators are checked indi-
vidually against the specification to see if they induce valid automorphisms of the associated
model. Starting with the set of candidate generators which are valid, the largest possible
subgroup of candidate symmetries which are all valid is computed. In the worst case this can
be an algorithmically expensive operation.

This approach has the benefit of being able to detect arbitrary component symmetries arising
from the communication structure of a specification. The only requirement is that the spec-
ification satisfies certain restrictions that can be automatically checked, and are less strict
than those imposed by the scalarset data type or the SMC input language [91].

3.4 Exploiting Symmetry

The second problem is once symmetries have been identified, how are they then utilised to
check if the current state is equivalent to one already encountered. In general this involves
searching for a canonical state representation of the current state. This is known as the
constructive orbit problem and has been shown to be at least as hard as testing for graph
isomorphism for which currently no polynomial algorithms are known [47]. Furthermore,
this operation must be performed for every state encountered during exploration.

Definition. Let G be a group acting on the set {1, 2, . . . , n}. For two vectors x, y ∈ Zn

the orbit problem is the process of determining if there exists a permutation α ∈ G such that
y = α(x).

Despite these problems the orbit problem can be efficiently solved for certain symmetry



3.4. Exploiting Symmetry 44

groups [78] and directly avoided through the use of heuristics suited to the graph isomor-
phism problem [26]. A further way to alleviate the orbit problem is to lift the restriction on
mapping all equivalent states to a single representative. However, this requires a delicate
balance between speed and storage requirements.

3.4.1 Easy Classes of Symmetry

For the following classes of automorphism group G the orbit problem can be solved in poly-
nomial time [20] where n denoted the number of processes;

• A group whose order is polynomial in n. The representative state can be computed by
enumerating the orbits of the state. Examples include cyclic or dihedral groups

• The symmetric group Sn - a representative state in the form of the lexicographically
smallest element of the orbit can be obtained by sorting the state-vector.

• A group that is the disjoint product or wreath product of groups that themselves are
solvable in polynomial time. The representative can be found by solving the orbit
problem independently for each subgroup.

• A group generated by transpositions.

3.4.2 Multiple Representatives Approach

The requirement that every element of a given orbit sG is mapped to a single representative
ensures that symmetry reduction is optimal in terms of space. While permitting multiple
representatives per orbit may diminish potential reduction, it greatly reduces the complexity
involved in calculating a representative state [13]. This relaxation creates a quotient structure
that captures all system behaviours and is therefore a sound reduction technique. Therefore,
as long as the set of representatives remains small this approach to symmetry reduction is
viable.

By allowing multiple representatives, the selection of the minimal lexicographical represen-
tative of a state is no longer appropriate. Instead a representative function is chosen by a
normalisation function which maps all states to states no larger than themselves. A good
normalisation function is defined as one that maps a state to the minimum or close to the
minimal orbit representative. This normalisation function provides an approximate solution
to the orbit problem.



3.4. Exploiting Symmetry 45

3.4.3 Strategies for Symmetry Reduction

The simplest approach to calculating a representative state in an orbit is to construct all states
in the orbit and select the lexicographical minimum. If the group is small then this is a feasi-
ble strategy and provides an optimal symmetry reduction strategy. The Symmetric Spin [13]
package provides an enumeration strategy, however it optimises this approach by generat-
ing permutations incrementally by composing successive transpositions. The enumeration
strategy has also been generalised to apply to arbitrary groups using stabiliser chains [36].
The use of stabiliser chains enables faster calculation of α(s) and only requires the storage
of coset representatives. A variation on this strategy can be employed when a model checker
explores the state space using a depth-first search algorithm. Instead of calculating the lexi-
cographical minimum to be the representative the first element of an orbit encountered during
search is chosen [91].

In fully symmetric systems the minimum state representative can be easily obtained by sort-
ing the tuple lexicographically. Unfortunately, for some commonly occurring symmetry
groups this simple sorting strategy is not applicable. For example, in a client server specifi-
cation a group may permute server components along with their associated blocks of client
components. While permutations of server components are isomorphic to the symmetric
group Sn, a minimal ordering cannot be obtained by simply sorting the vector [47]. To solve
this problem a minimising set X that can be obtained from a larger group G is defined. The
minimal representative can be simply calculated by iterating over X until a fixed-point is
reached. This approach has been seen to be viable for a large class of groups which are
isomorphic to Sn.

Finally, certain kinds of symmetry groups can be decomposed as a product of subgroups.
For certain decompositions the orbit problem can be solved separately for each subgroup the
solutions being combined to provide a solution for the whole group. In the instance where
a group permutes disjoint sets of components the group can be described as the disjoint
product of the groups. If the symmetry group partitions the components into subsets for
which there is analogous symmetry, and symmetry between the subsets, then the group can
be described as the wreath product of the group. In [39] techniques capable of detecting,
before search, whether G can be decomposed have been presented and their viability shown
through implementation in the TopSpin tool.

If G is a large group and the strategies above prove infeasible an approximate symmetry
reduction strategy must be deployed. One approach to providing an approximate solution
is to split the state vector into two parts. Representatives of an orbit can be obtained by
lexicographically sorting the leftmost part of the vector relative to the splitting point. [13].
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The trade off between speed and reduction can be tuned by varying the split point. Approx-
imate solutions have also been provided through the use of heuristics such as hill-climbing
local search and their viability shown through the exploration of state spaces associated with
various configurations of a hypercube network [36].

3.5 Combining Symmetry Reduction with Symbolic Rep-
resentation

So far, all discussion on the application of symmetry have dealt with an explicit represen-
tation scheme. This is due to the inherent problems of combining symmetry reduction with
symbolic storage schemes. When using BDDs as a data structure, checking state equivalence
requires an increase in memory footprint. To implement equivalence checking symbolically,
a propositional formula must be defined that detects whether two arguments are symmetry-
equivalent. This formula has the form f(s1, . . . , sn, s′1, . . . , s′n) and evaluates to true if the
vector (s1, . . . , sn) is a permutation of the vector (s′1, . . . , s′n). For many symmetry groups
that commonly occur in model checking, the BDD of formula f is intractable in terms of
size [21].

One approach to alleviating this problem is to allow multiple representative states from each
orbit. To constrain the size increase of the model, representatives are selected based on a spe-
cific subset of automorphisms [44]. However, in practice allowing multiple representatives
still produces models of intractable size. An approach that directly avoids construction of
the orbit relation involves determining orbit representatives dynamically during fixed point
iterations. This is achieved by computing transition images from the unreduced structure
and mapping the new states to their representatives. However, the dynamic calculation of a
representative state is computationally infeasible for certain specification types [45].

When a specification defines a fully symmetric system, generic representatives [44] can be
used to avoid construction of the orbit relation by translating the specification into a reduced
specification. A generic representative indicates how many processes are in each local state.
For example, in a mutual exclusion specification with three processes the states (N, N, T), (T,
N, N) and (N, T, N) are all equivalent and expressed by the generic representative (2N 1T).
The semantics of the translated specification, that now uses sets of counters to generically
represent the state of processes, are isomorphic to the original specification symmetrically
reduced model. Therefore, the generic reduced specification can be used to model check
symmetric properties of the original model.
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3.6 Exploiting Symmetry in Less Symmetric Systems

In practice many systems are comprised of a set of similar but not identical processes, the
condition α(R) = R is not satisfied for all process permutations. Therefore, a partial sym-
metry system can be defined as, for most transitions r ∈ R and most permutations α, the
condition α(r) ∈ R holds. An example of a partially symmetric system is the readers-writers
problem [94], where reader and writer processes access a shared resource. Asymmetry is
introduced into the system as a writer process always has priority over a reader when both
are trying to access the shared resource. Therefore, readers can be permuted, writers can be
permuted, but readers cannot be interchanged with writers. However, the state graph is sym-
metric in every sense except for transitions from a state where two processes are attempting
to access the shared resource. To exploit similarity in partially symmetric systems differ-
ent classes of symmetry have been defined, these include near or rough symmetry [43] and
virtual symmetry [46].

In the case of near symmetry, letM be a system model and I its associated set of process
identifiers. A permutation α ∈ Sym(I) is defined to be a near automorphism if, for every
transition s → t in M, either α(s) → α(t) is a transition in M or s is totally symmetric
with respect to Aut(M). SystemM is nearly symmetric if a group of near automorphisms
Gn can be identified. In the case where Gr is a subgroup of Sym(I), M can be considered
roughly symmetric with respect to Gr, if for states s and s′ in the same orbit, any transition
from s is matched by a transition from s′ where the transition is initiated by a process with
a higher priority. Finally, ifM is a nearly (roughly) symmetric model with respect to group
Gn(Gr) then symmetry reduction with respect to Gn(Gr) preserves all symmetric CTL prop-
erties [43]. In the case of both near and rough symmetry it is unclear how to verify it on a
high-level system description

Virtual symmetry [46] subsumes the notion of both near and rough symmetry. Where rough
symmetries allow the specification of systems with static priorities, virtual symmetry affords
the specification of systems where resources are shared according to dynamic priorities.
Using the terminology of [46] the symmetrisation RG of a transition relation R by a group G
is defined by: RG = {α(s) → α(t) : α ∈ G and s →∈ R. Symmetrising a transition relation
involves adding the transitions missing due to asymmetry present in the system. A structure
M is therefore said to be virtually symmetric with respect to a group Gv acting on S if for
any s→ t ∈ RGv , there exists α ∈ Gv such that s→ α(t) ∈ R.

An additional approach to providing the reduction of a partially symmetric system is to
annotate each state with information about whether and how symmetry is violated along its
path. More precisely, the annotation is a partition of the set of all component indices: if the
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path to the state contains a transition that distinguishes two components, their indices are
put into different partition cells. Only components in the same cell can be permuted during
future explorations from the state. An algorithm that adapts to this state information has been
defined and produced a quotient structure that is not bisimulation equivalent to the original.
This allows the analysis of systems with respect to safety properties.

3.7 Tools for Symmetry Reduction

As previously mentioned the Murφ specification language [29] provided the first definition
and implementation of the scalarset data type. From the scalarset data type the automorphism
group for the state space is determined and the lexicographically smallest member of each
orbit is used as the representative. The viability of Murφ has been used to verify a number
of highly symmetric algorithms including Peterson’s n-process mutual exclusion algorithm
and a lock implementation for the Stanford DASH multiprocessor.

Continuing with explicit state implementations the symmetry based model checker SMC [91]
was created specifically for the specification and verification of highly symmetric systems.
Symmetry is easily detectable due to input language restriction and the first state of an orbit
encountered during search is selected as the representative. SMC has the major advantage of
being the only model checker that can be used to effectively verify liveness properties under
both strong and weak fairness assumptions. This is achieved by annotating the quotient
structures with additional information that not only allows the original structure M to be
retrieved from the quotient structure, but it is also possible to check properties expressed in
indexed CTL.

Symmetric SPIN [13] is a tool that brings symmetry reduction to the popular SPIN model
checker via the scalarset data type. Symmetric SPIN avoids direct modification of the
Promela language with the scalarset data type and requires all information to be outlined
in a separate user generated file. A script is then used to modify the generated verifier
adding a representative function that computes a lexicographical minimum representative
via a canonicalisation function or returns an approximate minimal representation via a nor-
malisation function. Experimental results [13] have shown that for certain models the factor
of reduction gained are close to the theoretical limit. Furthermore, it has been shown that
symmetry can be used in conjunction with the partial-order reduction.

TopSPIN [39]provides another symmetry reduction implementation to SPIN but differs from
other approaches by providing a means for automated symmetry detection. This is imple-
mented through the extraction of static channel diagrams directly from the specification. Ef-
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ficient reduction is achieved by the provision of four strategies termed: enumeration, local-
search, fast, and segmented. The selection of algorithm is based on the information pro-
vided by static channel diagram analysis. A current limitation of TopSPIN is its restriction
to verification of assertions, LTL properties cannot presently be verified.

The symbolic model checker, SMV [75] has received an implementation of symmetry re-
duction via the use of scalarsets. In addition, temporal case splitting is used to break a given
property down into a parameterised set of assertions in an attempt to avert the problems in-
herent with the combination of symmetry and symbolic storage schemes. However, this ap-
proach has its own problems, termed the case explosion. By declaring variables as scalarsets,
assertions can be sorted into equivalence classes and it can be shown that it is only neces-
sary to check a representative subset of assertions. Virtual symmetry has been successfully
combined with the generic representatives approach for the case where processes are fully
interchangeable with respect to virtual symmetry. This allows symmetry-reduced symbolic
model checking of partially symmetric systems, using the NuSMV [18] model checker. The
question of whether virtual symmetry can be verified efficiently is still an open question as
it seem to incur a cost proportional to the size of the unreduced Kripke structure

SYMM [20] is a symbolic model checker constructed with the intention of exploring sym-
metry reduction. SYMM utilises a small and simple specification language based on a shared
variable model of computation and allows the verification of CTL properties. Symmetries
are required to be input by the user and the explosion problem is avoided by allowing mul-
tiple orbit representatives approach. SYMM has been used to verify the IEEE Futurebus
arbiter protocol [20].

3.7.1 Symmetry Reduction for Probabilistic Model Checking

The PRISM-symm tool [68] has recently been integrated into the PRISM model checker [69].
This provides PRISM with inbuilt symmetry reduction capabilities, which are implemented
using ideas from dynamic symmetry reduction [45]. To operate, the tool requires users to
specify the number of modules that appear before and after a block of symmetric modules.
Therefore, reduction can only be provided when full symmetry is present between a series
of modules. Furthermore, PRISM does not check if the provided symmetries are correct and
consequently a degree of expert knowledge is required.

Case studies conducted using PRISM-symm have shown that a substantial decrease in the
number of reachable states can be achieved. However, in one instance the size of the MTBDD
was shown to increase by a factor of ten, but in other experiments it decreased by a factor
of more than two. Nevertheless, the results show that symmetry reduction can be effectively
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applied to probabilistic model checking. When considering highly symmetric systems, the
benefits of the reduced reachable states often outweigh any downside of the larger MTBDD.

PRISM can also be used to provide symmetry reduction by means of the GRIP tool [32]
(Generic Representatives in PRISM). The tool translates a restricted subset of the PRISM
language, called Symmetric Probabilistic Specification Language [33] to a reduced counter-
abstract form that can be subjected to analysis by PRISM. Case studies conducted using
GRIP have also yielded a substantial decrease in the number of reachable states. However,
as with PRISM-symm both smaller and larger MTBDD sizes have been observed.

When directly compared, GRIP is typically faster for models that contain a large number
of simple modules, whereas PRISM-symm performs better on models constructed from a
small number of more complex modules [33]. Furthermore, while GRIP only operates on a
subset of the PRISM language, and therefore cannot be applied to all of PRISM’s features,
any symmetry reduction provided by the tool is known to be correct. Therefore, these ap-
proaches have shown that symmetry reduction can be successfully applied to probabilistic
model checking. However, both techniques are restricted to operating on symmetric systems
and GRIP is further restricted to a operating on a subset of the PRISM language.

Finally, no research on the application of symmetry reduction to probabilistic explicit state
model checking could be identified. However, tools such as TopSPIN [39] have shown that
symmetry reduction can be effectively applied to systems that exhibit arbitrary component
symmetries. Therefore, the application of symmetry reduction to explicit state probabilistic
model checking, may not require the types of restrictions imposed by GRIP and PRISM-
symm.

3.8 Summary

If a concurrent system is comprised of many replicated processes then checking a model of
the system may involve redundant search over equivalent, or symmetric, areas of the state
space. Symmetry reduction is concerned with exploiting these underlying regularities by
only storing one representative of a structure. For highly symmetric systems, this can result
in a reduction factor exponential to the number of system components.

We have given an overview of symmetry reduction techniques for model checking and of the
currently available tools. The survey clearly identifies a lack of research into the application
of symmetry reduction techniques to explicit state probabilistic model checking. This issue
is the focus of the remainder of the thesis.



CHAPTER 4

Probabilistic Symmetric Systems Language

This chapter introduces a new probabilistic specification language: Probabilistic Symmetric
Systems Language, henceforth referred to as PSS. The motivation for defining a new speci-
fication language was driven by the absence of an existing language that meets our specific
requirements. Nevertheless, PSS is influenced by the PRISM [69] and ProbMela [8] specifi-
cation languages. It draws upon their syntax and language features to allow the specification
of probabilistic models that are naturally compatible with language level symmetry detection
techniques.

PSS is a small language and shares the following common features with ProbMela: param-
eterised processes, channels, arrays, reference types, global and local variables. However
it does not have some of the language features ProbMela inherited from Promela [58] such
as enumerated types and user defined record types [8]. ProbMela was not considered an
appropriate language for our purposes as its large set of language features would make the
rigorous proof of any symmetry detection technique infeasible. A potential solution would
be to restrict and consider a subset of ProbMela, an approach mirroring the definition of the
Promela-lite [37] specification language. However, the result of that would be a non-intuitive
specification language that hides information required by the symmetry detection technique
proposed in Chapter 5. For example, the type of a channel cannot be readily determined
from its declaration [34].

While PSS is similar to the PRISM language, it possesses additional features such as the
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previously mentioned channel and reference types. These data types are included as they
have been used in a previous approach to symmetry detection that was capable of capturing
arbitrary components symmetries [37]. As this thesis focuses on the application of symmetry
reduction to explicit state probabilistic model checking, the ability to capture arbitrary sym-
metry groups is desirable. Therefore, PSS is designed to include language features used in
the previous approach, as it will serve as a basis for our own symmetry detection techniques.

Furthermore, the Symmetric Probabilistic Specification Language [33], a subset of PRISM
defined to guarantee application of a generic representatives approach, is not appropriate
for our needs. The language is restricted to defining specifications that consist of multiple
families of identical processes. Therefore, specifications will not contain the more complex
forms of symmetries we desire to capture and exploit.

Section 4.1 provides an informal introduction to PSS by means of example, followed by
the formal definition of PSS grammar in Section 4.2. The chapter concludes in Section 4.3
with the semantics of PSS that define how a DTMC or MDP is constructed from a PSS
specification.

4.1 Informal Introduction to PSS

The major elements of a PSS specification are processes and variables, with every specifi-
cation containing a set of global variables and processes. In turn, each process possesses a
unique set of local variables that cannot be modified or read by another process. The state of
a process is determined by the current value of its local variables and the state of the model
is determined by the current value of global variables in conjunction with the state of the
processes.

The set of behaviours a model associated with a specification may exhibit is defined using
a set of commands located in every process. Each command consists of a guard and a set
of updates. The guard determines if the model is in an appropriate state for its updates to
be executed. An execution takes the form of a modification to at least one local or global
variable. By definition this transitions the model into a new state.

In the instance where multiple updates are available, only one is selected and executed to
create a new state. The probability with which an update is selected is given in the PSS
specification. Using a number of small examples, PSS language features will be presented
in the following sections.
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4.1.1 Six Sided Die Example

The PSS code in Figure 4.1 defines the 13 state DTMC that models the behaviour of a six
sided die using fair coins. In a PSS specification, a process contains the declaration of a local
variable set. A variable declaration consists of a type, name and initial value. This example
involves two variables, state and die of type integer initialised to the value 0. After the local
variable definitions is a set of guarded commands with the form:

guard→ p1 : u1 + p2 : u2 + . . . + pn : un;

where the pi are probabilities and the ui are updates, 1 ≤ i ≤ n. This form of command
directly follows the style of the PRISM specification language.

1. dtmc
2.
3. Process die()
4. {
5. int state := 0;
6. int die := 0;
7.
8. state == 0→ 0.5 : (state := 1) + 0.5 : (state := 2);
9. state == 1→ 0.5 : (state := 3) + 0.5 : (state := 4);
10. state == 2→ 0.5 : (state := 5) + 0.5 : (state := 6);
11. state == 3→ 0.5 : (state := 1) + 0.5 : (state := 7; dice := 1);
12. state == 4→ 0.5 : (state := 7; die := 2) + 0.5 : (state := 7; die := 3);
13. state == 5→ 0.5 : (state := 7; die := 4) + 0.5 : (state := 7; die := 5);
14. state == 6→ 0.5 : (state := 2) + 0.5 : (state := 7; die := 6);
15. state == 7→ (state := 7);
16. }

Figure 4.1: PSS code modelling the behaviour of a six sided die using fair coins [1].

A guard is a Boolean function of global and local variables. As line 1 of the PSS specifica-
tion in Figure 4.1 defines the model as a DTMC, all guards listed with the process must be
disjoint. Command updates describes changes that can occur to this set of global or local
variables, resulting in a transition between states. The first command in this PSS specifi-
cation is given on line 8 and describes the behaviours Process die() may exhibit when the
variable state has value 0.

state == 0→ 0.5 : (state := 1) + 0.5 : (state := 2);
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The possible behaviours given by the two updates are that the variable state become equal
to 1 or 2. In a command, each unique and independent ui is surrounded by brackets and
separated by the + character. When a choice is available between updates each is assigned
a probability that is required to sum to one. Therefore, when the integer variable state takes
the value 0, executing the guard will change its value to 1 with probability 0.5, or 2 with
probability 0.5.

Line 14 provides an example of a command consisting of a single update. In this instance
the probability is omitted and is assumed to equal 1.

state == 7→ (state := 7);

Furthermore, an update can change the value of more than one variable. In fact, an update
can change the value of all global variables and variables local to the current process. The
second update of the command given on line 12 gives an example in which the value of state
is changed to 7 and die to 1 in a single step. To indicate that updates are a single action they
are enclosed in brackets and separated by a semi colon.

s == 3→ 0.5 : (state := 1) + 0.5 : (state := 7; dice := 1);

4.1.2 Simple Mutual Example

The PSS code in Figure 4.2 models the behaviour of a simple mutual exclusion problem.
Although defining a different type of model, the layout of the specification is similar to that
given in Figure 4.1. The PSS specification begins with the mdp declaration immediately
followed by the declarations of a global variable set, containing the integer variables x and y
both initialised to 0, and two processes with no local variables.

Lines 9 and 16 give the first example of a guard whose boolean function accepts more then
one variable as input.

x == 1 ∧ y 6= 2→ (x := 2);
y == 1 ∧ x 6= 2→ (y := 2);

PSS allows a range of simple propositions to be defined using <, ≤, ¬, ==, ≥, > and
combined using the operators ∧ and ∨.

Similarly, updates can make use of arithmetic expressions that combine operators from the
set {+, –, ?, ÷ }, global variables and local variables from the same process. The second
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1. mdp
2.
3. int x := 0;
4. int y := 0;
5.
6. Process mexc1()
7. {
8. x == 0→ 0.8 : (x := 0) + 0.2 : (x := x + 1);
9. x == 1 ∧ y 6= 2→ (x := 2);
10. x == 2→ 0.5 : (x := 2) + 0.5 : (x := x - 2);
11. }
12
13. Process mexc2()
14. {
15. y == 0→ 0.8 : (y := 0) + 0.2 : (y := y + 1);
16. y == 1 ∧ x 6= 2→ (y := 2);
17. y == 2→ 0.5 : (y := 2) + 0.5 : (y := y - 2);
18. }

Figure 4.2: PSS code modelling the behaviour of a mutual exclusion problem [3].

update of the command given on line 17 is an example of an arithmetic operation being used
in an update.

y == 2→ 0.5 : (y := 2) + 0.5 : (y := y - 2);

The specification is for an MDP, as seen in line 1. In every state a single process must be
non-deterministically selected to execute a command. When global variables x and y both
equal 0, if Process mexc1() is selected the command given on line 8 will be executed and x
will be set to 1 with probability 0.8 or 0 with probability 0.2. On the other hand if Process
mexc2() is selected the command given on line 15 will be executed and y will be set to 1 with
probability 0.8 or 0 with probability 0.2. This PSS specification defines a non-deterministic
choice between two probability distributions when both variables x and y are equal to 0. This
non-deterministic choice is illustrated in the partial MDP depicted in Figure 4.3.

As in the PRISM specification language [69] PSS supports local nondeterminism. In this
case the requirement for all guards to be disjoint when specifying a DTMC is dropped. In
the example, suppose the command set of Process mexc1() is extended to include

x == 0→ 0.5 : (x := 1) + 0.5 : (y := 2);
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This PSS specification now contains a non-deterministic choice between three probability
distributions when both variables x and y are equal to 0. These are the the two previous
distributions and a new distribution in which x is set to 1 with probability 0.5 and y is set to
2 with probability 0.5. This three way non-deterministic choice is illustrated in the partial
MDP depicted in Figure 4.4.
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4.1.3 A Peer to Peer Network Example

To illustrate additional features of PSS we give a simple peer to peer (p2p) network specified
in PSS, see Figure 4.5. The specification defines 3 client processes that share a single transfer
medium and introduces 4 further language features:

• Personal Identification Types: - Variables declared with the type pid provide a natural
means of referencing other processes in the specification. To accommodate referenc-
ing, every process contains a predefined local variable of type pid, called pid that is
assigned a unique numerical value. The guard of the command given on line 13 of the
specification illustrates this feature
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distributions and a new distribution in which x is set to 1 with probability 0.5 and y is set to
2 with probability 0.5. This three way non-deterministic choice is illustrated in the partial
MDP depicted in Figure 4.4.
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1. mdp
2.
3. chan medium [3] of {pid, pid};
4. int[3] full;
5.
6. Process client(chan in)
7. {
8. int[3] message;
9. int from;
10. int to;
11.
12. len(in) > 0 ! (in?from,to);
13. too == pid ! (message[from] := 1);
14. pid == 0 ^ full[0] == 0 ^ full[1] == 0 ^ full[2] == 0 ! 0.5 : (in!1, pid) +

0.5 : (in!2, pid);
15. pid == 1 ^ full[0] == 0 ^ full[1] == 0 ^ full[2] == 0 ! 0.5 : (in!0, pid) +

0.5:(in!2, pid);
16. pid == 2 ^ full[0] == 0 ^ full[1] == 0 ^ full[2] == 0 ! 0.5 : (in!0, pid) +

0.5 : (in!1, pid);
17. message[0] + message[1] + message[2] == 3 ! (full[ pid] := 1);
18. }
19.
20. Initial{client(medium); client(medium); client(medium);}

Figure 4.5: PSS code modelling the behaviour of a simple peer to peer network.
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To illustrate additional features of PSS we give a simple peer to peer (p2p) network specified
in PSS, see Figure 4.5. The specification defines 3 client processes that share a single transfer
medium and introduces 4 further language features:

• Personal Identification Types: - Variables declared with the type pid provide a natural
means of referencing other processes in the specification. To accommodate referenc-
ing, every process contains a predefined local variable of type pid, called pid that is
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1. mdp
2.
3. chan medium [3] of {pid, pid};
4. int[3] full;
5.
6. Process client(chan in)
7. {
8. int[3] message;
9. int from;
10. int to;
11.
12. len(in) > 0→ (in?from,to);
13. too == pid→ (message[from] := 1);
14. pid == 0 ∧ full[0] == 0 ∧ full[1] == 0 ∧ full[2] == 0→ 0.5 : (in!1, pid) +

0.5 : (in!2, pid);
15. pid == 1 ∧ full[0] == 0 ∧ full[1] == 0 ∧ full[2] == 0→ 0.5 : (in!0, pid) +

0.5:(in!2, pid);
16. pid == 2 ∧ full[0] == 0 ∧ full[1] == 0 ∧ full[2] == 0→ 0.5 : (in!0, pid) +

0.5 : (in!1, pid);
17. message[0] + message[1] + message[2] == 3→ (full[ pid] := 1);
18. }
19.
20. Initial{client(medium); client(medium); client(medium);}

Figure 4.5: PSS code modelling the behaviour of a simple peer to peer network.

assigned a unique numerical value. The guard of the command given on line 13 of the
specification illustrates this feature

to == pid→ (message[from] := 1);

to determine whether the current value of the variable to is equal to the process’s unique
numerical reference.

• Arrays: - Line 4 of the specification shows the declaration of an array containing three
variables of type integer.

int[3] message;

As in most languages, PSS arrays are indexed from 0 with the number of elements
in an array specified at declaration with an integer constant. The language provides a
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simple and straightforward way to initialise arrays at declaration time by enclosing the
initial values in curly braces { }. The following command shows how to initialise an
array with message[0] == 1, message[1] == 2 and message[2] == 5.

int[3] message = {1, 2, 5};

If no initialising values are provided at the time of declaration, the variables contained
within the array automatically default to the initial value associated with their type.
In the p2p specification no initialising value is specified for the message[] array, con-
sequently the three integer variables it contains are initialised with the default value
0.

An example of the access and update of array elements is provided by the command
given on line 17. The guard of the command accesses every element in the message
array to determine if their accumulated value is equal to 3. If this is true, the process’s
unique pid value is used to index into a second array called full[] and set the value of
the variable at at this location to 1.

message[0] + message[1] + message[2] == 3→ (full[ pid] := 1);

• Channel Types: - Channels provide a natural means of modelling inter process com-
munication. A channel acts as a first-in first-out queue accepting messages of a specific
format. On line 3 a channel is constructed with three slots that accept messages con-
sisting of two fields of type pid.

chan medium [3] of {pid, pid};

Once declared channels can be written to and read from using the ! and ? operators
respectively. Data written to or read from a channel must be of the correct type. An
example of this can be seen on line 12 where the variables from and to, declared with
type pid, match the type format of the message.

len(in) > 0→ in?from,to;

This command checks if there is at least one message on the channel. If this is true,
the message at the head of the channel is removed and its values placed into the appro-
priately typed variables. Similarly, the update of the command given on line 14, takes
two appropriately typed variables and places their values in a message that is appended
to the tail of a channel queue.

· · · → 0.5 : (in!1, pid) + 0.5 : (in!2, pid);
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If the channel is full the command will not execute. If a user wants to guarantee that a
channel write update will execute when there is enough space on the channel to accept
a sequence of messages, a proposition of the following form can be added to the guard.

len(channel) < cap(channel) – required space

Similarly a user can specify the behaviour a model will exhibit when there is not
enough space on the channel by adding a proposition of the following form to the
guard.

len(channel) > cap(channel) – required space

• Initial: - The Initial operator allows a parameterised process to be instantiated multiple
times and passed any required parameter values to construct the initial state of the
system. The use of the initial operator can be seen on line 20

Initial {client(medium); client(medium); client(medium);}

where 3 client processes are created and passed the global channel medium. Line 6
of the PSS specification reveals that the channel variable in is an alias for the channel
variable medium.

Process client(chan in)

When reading the specification all occurrences of in can be directly replaced by medium.
As all the variable mentioned in the specification have a defined initial value, the first
state of the system can be constructed.

Now that the additional language features have been explained the behaviour of the PSS
specification given in Figure 4.5 can be described. Each of the 3 client processes holds a
unique segment of a message, the goal being to reconstruct the full message. Each client
transmits their data to one of the other clients, the destination client being determined proba-
bilistically. Message segments are transmitted via a shared channel medium and each client
periodically polls medium to determine if it is the intended recipient of any present segment.
If this is the case, the client reads the data, from medium and adds it to the appropriate mes-
sage slot. Once a client has reconstructed the full message it sets a flag and the program
terminates.
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4.2 Formal Definition of PSS

In order to specify the PSS language, we employ a context-free grammar (or Backus-Naur
Form) [79]. The specification of the PSS language is given in Figure 4.6. A context-free
grammar consists of the following four elements:

• A set of terminal symbols often referred to as tokens. Terminals are used to define
the base symbols of a language. Common base symbols are variable names, digits,
reserved language words and logical operations such as < or ≥. In the PSS language
definition (see Figure 4.6) boldface strings represent terminals.

• A set of non-terminal symbols often referred to as syntactic variables. Syntactic vari-
ables are used to define a set of terminal and further non-terminal symbols that can be
used to replace the variable. The way in which the variable can be replaced is given
by production rules. In Figure 4.6 italicised strings represent non-terminal symbols.

• A set of production rules. A production rule begins with a non-terminal symbol called
the head of the production, a separating arrow, and a sequence of terminals and/or non-
terminals called the body of the production. For notational convenience, terminal and
non-terminal symbols appearing in the body can be grouped together. These groupings
are called alternatives and are separated by the symbol |, which is read as ”or”.

head→ alternative1 | alternative2 | . . . | alternativen

A production rule states that the head must be replaced by one of the alternatives.

• A starting non-terminal symbol. In Figure 4.6, the head of the first production rule is
the starting non-terminal symbol.

Although not required by the definition of a context-free grammar, the provision of recursion
can be simplified through the use of the following symbol modifiers:

• ? : symbols appearing in the body of a production, or groups of symbols enclosed in
parenthesis, can be omitted or appear at most once. Note that ? appears as a superscript
symbol and should not be confused with our symbol for read.

• * : symbols appearing in the body of a production, or groups of symbols enclosed in
parenthesis, can be omitted or appear any number of times.

• + : symbols appearing in the body of a production, or groups of symbols enclosed in
parenthesis, must appear at least once. Note that + appears as a superscript symbol and
should not be confused with the separator of updates in PSS commands.

A context-free grammar definition gives a list of production rules that can be used to gen-
erate the set of all strings that are part of the language. Consequently, if a string cannot be
constructed using the available rules it is not a valid part of the language.
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specification→ (channel | variable | array)? process initial

channel → chan name = [ number ] of {(type | ichan) (, type | ichan)? };
variable → type name (:= number)? ;
array → (type | chan) [ number ] name = {number (, number)? };
type → int | pid
ichan → chan {( type | ichan) (, type | ichan)?}
process → Process name ((chan | type) name

(, (chan | type) name)? ) { body }
body → (channel | variable | array) statement

statement → guard→ update;
guard → expression logicop expression | !guard | guard && guard

| (guard || guard) | (guard)

update → probability : choice (; choice)? (+ probability choice (; choice)?)

choice → name := expression | name ? name (, name)? |
name ! name (, name)?

initial → Initial { name (argument, (argument)?);
(name (argument, (argument)?);)?

argument → name | number | null
expression → name | number | pid | null

len(name) | (expression) | expression mathop expression

logicop → == | != | ¡ | ¡= | ¿ | ¿=
mathop → + | – | ? | mod | /
name → an alpha numeric string that must start with a letter
number → an integer
probability → a decimal number between 0 and 1

Figure 4.6: Context free grammar definition of the PSS specification language.
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4.2.1 Variable Declarations

The PSS specification language supports two primitive data types, int and pid which repre-
sent integer and process identifiers respectively. Both integer and process identifier variable
declarations follow the same format: a keyword indicating the data type, followed by an
alphanumeric identifier and an optional initial value.

(int | pid) identifier (:= integer)?;

When no initial value is specified, variables are given the default value zero. Both integer
and process identifier types accept a finite range of values as this guarantees the construction
of a finite state space on which the model checking algorithms detailed in Section 2.5 can
operate. Integers use 4 bytes of storage to support values in the range of –2, 147, 483, 648 to
+2, 147, 483, 647 and process identifiers use 1 byte of storage to support values in the range
of 0 to 256. While being restricted to a finite state space is a clear limitation, the approach
still allows for the specification and verification of complex systems.

Channel variables provide a way to specify inter process communication. The PSS channel
syntax modifies the traditional style found in Promela to allow the structure of a message to
be determined solely from examination of the channel declaration. Channels are declared
using the reserved keyword chan followed by an alphanumeric identifier, a channel capacity
and the structure of the message accepted by the channel. This message structure takes the
form of a comma-separated list of type names. We refer to such a channel as chan{T}, where
T denotes a comma-separated list of types.

chan name = [integer] of { type-list };

The types which comprise T may themselves be channel types, in addition to primitive inte-
gers and pid types. From the syntax definition when T contains a channel type, the type-list
of the internal channel must be explicitly defined. For example, the channel declaration;

chan y [2] of {int, chan{int, int}, pid}

allows channels declared with the type-list {int, int} to be passed over it.

The reason for this verbose style of declaration will become clear in Chapter 5 when we
consider the automatic detection of symmetry directly from the specification. Furthermore,
this style allows for simplified type checking on channel read and write operations. Unlike
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Promela, channel operations of the wrong type are immediately obvious in the PSS specifi-
cation language and can be detected at compile time [34].

In a PSS specification c?msg and c!msg denote a read and write of a message from/to channel
c. Note that cap(c) returns the capacity of channel c. We use [m1, . . . , mk] (1 ≤ k ≤ cap(c))
to denote the queue of a channel containing k messages, [] an empty queue and c[k] the kth

message in c. The writing of a message m to a channel whose queue is currently [m1, . . . ,
mk] (and not already full) results in the queue [m1, . . . , mk, m] whereas reading a message
from said channel results in the queue [m2, . . . , mk]. If a channel queue is currently [m1,
. . . , mcap(c)] writing a message m will result in an unchanged queue [m1, . . . , mcap(c)].

The reserved keywords len and cap enable the current length and maximum length of a
channel queue to be determined. These two operators can be combined to construct a guard
that will allow a command to execute if a channel c has a specific capacity, see Figure 4.7.

Guard Meaning
len(c) > 0 c contains at least one message
len(c) < cap(c) c has at least one space
len(c) < cap(c) – n c has at least n spaces

Figure 4.7: Example uses of the cap and len operators.

An array declaration in PSS takes the form

type name [number];

where type ∈ {int, pid, chan}, name is a valid identifier and enclosed in square brackets [] is
the size of the array. The first element in an array always has index zero. An array in PSS is
not a type, its only job is to provide a simplified manner of creating and managing multiple
elements of the same type.

4.2.2 Language Definition

A PSS specification is composed from a set of global variables, Varglobal and a set of pro-
cesses {Proci|1 ≤ i ≤ n} for some n > 0 and a special operator Initial. Each process,
Proci, consists of a set of local variable declarations, Vari, and a set of commands Cdi. Let
Varproc = ∪iVari, then the set of all variables Var = Varproc ∪ Varglobal. Finally, for every
v ∈ Var, let v denote the initial value of v.

Process templates have the form Process name (param list) {body} and in the style of
Promela are initiated within a single operator, in our case Initial; i.e. Initial {name(param list);
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. . . }. The Initial operator determines the number of processes that comprise the final model
and passes any values required to ensure all local variables have an initial value. All pro-
cesses are created simultaneously in the first state, and each running process has a unique
non-negative process identifier. The value assigned to the identifier is based on the order the
processes appear in the Initial operator starting from 0. Each process can refer to its own
pid via the predefined local variable pid.

The behaviour of process Proci is determined by its associated set of commands Cdi. Each
command σ ∈ Cdi contains a guard g and a set of pairs (pj, uj) where pj ∈ R>0 and uj is
an update. A guard g is a boolean function taking input from the sets Varglobal and Vari and
each update uj consists of changes to these same sets. Finally, pj attaches a probability to
each update that determine the likelihood that an update will occur. It is required that, for
each j, pj ∈ (0, 1] and that

∑
j pj = 1.

4.2.3 Definition of Atomic Propositions

A set of atomic propositions AP for a PSS specification can now be defined. Let D represent
a finite data domain and x ∈ Var a variable with type pid or int. Then for each d ∈ D,
(x = d) ∈ AP.

Let c ∈ Var be a variable declared with type channel. Using the notation introduced in
Section 4.2.1, c = [m1, . . . , mk], (0 ≤ k ≤ cap(c)) denotes a channel queue containing k
messages where c[k] indexes the kth message. If c is a channel accepting a message of type
T, then for all 0 < k ≤ cap(c), (c[k] = msg) ∈ AP for all msg ∈ T.

4.2.4 States of a Model Associated with a PSS Specification

Let S be the set of potential states in a modelM associated with a PSS specification P . Then
S consists of every possible assignment of values to variables and channels declared in P .
As the range of values supported by int and pid is finite, S is finite. It follows that a state
s ∈ S of a specification P can be expressed using a set of atomic propositions.

Let Proci be a process in specification M. For x ∈ Vari, the notation p[i].x indicates the
local variable x of process Proci where i is the process’s unique pid value and p is its name.
For x ∈ Varglobal, x can be unambiguously referred to using only its name. Consider the
outline PSS specification given in Figure 4.8.

This skeleton specification contains three channels, A, B, C, and a global int variable called
count. Furthermore, the specification contains two instantiations of the user process. Placing
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1. dtmc
2.
3. chan A [2] of {pid, chan{int}};
4. chan B [1] of {int};
5. chan C [1] of {int};
6. int count;
7.
8. Process user (chan {pid, chan{int}} in; chan {int} out)
9. {
10. . . .
11. }
12.
13. Initial{user(A,B); user(A,C);}

Figure 4.8: Skeleton code of a potential PSS specification.

channels and global variables in the order they appear in the specification, and ordering the
local variables of user1 before user2, an example state s would be expressed as:

s = {(A[1] = [(1, B)]), (A[2] = null), (B[1] = [3]), (C[1] = [2]), (count = 1),
(user[1].in = A), (user[1].out = B), (user[1]. pid = 0),
(user[2].in = A), (user[2].out = C), (user[2]. pid = 1)}.

The initial state of the specification can be constructed from the initial values assigned to all
variables, and parameter values passed to process in the Initial process.

4.2.5 Expression Evaluation

In Figure 4.6, the syntax of expressions is given. This section shows how an expression is
evaluated in the context of a state s ∈ S. We adopt the same format as used in the description
of Promela-lite [37]. A function evalp,i (s, e) accepts an expression e and a state s and returns
the effect of evaluating e at state s ∈ S in the context of Proci. Let s ∈ S be a state in a PSS
specification P . If e is:

• x where (x = a) ∈ s, evalp,i(s, e) = a.

• p[i].x where ((p[i].x) = a) ∈ s, evalp,i(s, e) = a.

• len(c) where (c = [m1, . . . , mk]) ∈ s, (0 ≤ k ≤ cap(c)),
evalp,i(s, e) = k.
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• len(p[i].c) where (p[i].c = [m1, . . . , mk]) ∈ s, (0 ≤ k ≤ cap(p[i].c)),
evalp,i(s, e) = k.

• a where a ∈ Z, evalp,i(s, e) = a.

• pid, evalp,i(s, e) = i.

• (g) where g in an expression, evalp,i(s, e) = evalp,i(s, g).

• e1 ◦ e2 where ◦ ∈ {+, –, ?, ÷} and e1 and e2 only contain integer variables, evalp,i(s,
e) = evalp,i(s, e1) ◦ evalp,i(s, e2).

As variables of type int represent a finite range of values, expressions must handle the case
where they return a value outside this range. This scenario is handled in the same way as
implemented in the SPIN model checker [58]. Let min(int) and max(int) denote the minimum
and maximum values storable in an integer variable, where min(int) is a negative number. To
ensure the result of the expression e1 ◦ e2 falls outside of the accepted range, it is evaluated
as follows;

((evalp,i(s, e1) ◦ evalp,i(s, e2) + |min|) | (max – min)) – |min

The calculation of max(int) + 1 returns min(int). Variables of type pid cannot be evaluated as
part of an arithmetic expressions as they are strictly for process referencing.

4.2.6 Guard Evaluation

The syntax of guards is given in Figure 4.6. This section shows how a guard is evaluated in
the context of a state s ∈ S. The function evalp,i is used to determine whether a guard holds
in a given state. For a guard g appearing in the context of process p with pid value i, s |=p,i g
returns true if and only if g evaluated at s ∈ S in this context is satisfied. The relation |=p,i is
defined as follows:

• s |=p,i e1 ./ e2 is satisfied⇔ evalp,i(s, e1) ./ evalp,i(s, e2)
where ./ ∈ {==, 6=, <, ≤, >, ≥}.
• s |=p,i ¬g⇔ s 6|=p,i g.

• s |=p,i g1 && g2⇔ s |=p,i g1 and s |=p,i g2.

• s |=p,i g1 g2⇔ s |=p,i g1 or s |=p,i g2.

• s |=p,i (g)⇔ s |=p,i g.
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4.2.7 Effect of Updates

Let x ∈ Var represent either a global variable x or local variable p[i].x with type chan or
int that appears in a PSS specification P . In Figure 4.6, the syntax of possible updates is
given. For a subset of allowed updates u, the effect of executing u on a state s in the context
of process i is given by a function execp,i(s, u). The function execp,i(s, u) and the conditions
under which u can be applied is defined as follows:

• If x = a at s, e is an expression and u is an update of the form x := e, then execp,i(s, u)
is (s\ (x) = a) ) ∪ {x = evalp,i(s, e))}.
• If x = [m1, . . . , mn] at s and u is an update of the form x!e1, e2, . . . , ek, then execp,i(s,

u) when s |=pi len(x) < cap(x) is (s\{(c = [m1, . . . , mk]}) ∪ {(c = [m1, . . . , mn,
(evalp,i(s, e1), evalp,i(s, e2), . . . , evalp,i(s, ek))]}.
• If x = [m1, . . . , mn] at s, for an update u of the form x!e1, e2, . . . , ek, execp,i(s, u)

when s |=pi len(x) == cap(x) is (s).

• If x = [(a1,1, . . . , a1,k), . . . , mn] at s and u is an update of the form x?e1, e2, . . . ,
ek, then execp,i(s, u) when s |=pi len(x) > 0 and xj = yj at s for (1 ≤ j ≤ k) is
(s\{(x = [(a1,1, . . . , a1,k), . . . , mn], (x1 = y1), (x2 = y2), . . . , (xk = yk)} ∪ {(x = [a2,
. . . , am]), (x1 = a1,1), (x2 = a1,2), . . . , (xk = a1,k )}.
• If x = [] at s, for an update u of the form x?e1, e2,. . . , ek, execp,i(s, u) when s |=pi

len(x) == 0 is (s).

A common problem with language definitions is that they permit strings that lead to invalid
operations. A classic example is divisions by 0. The context free grammar definition of the
PSS language given in Figure 4.6 is no exception. It permits update strings that have no
defined update rule or expressions that cannot be evaluated.

Therefore, the thesis restricts itself to considering PSS specifications that have a constructible
initial state and all executable updates and guards match one of the rules given in the pro-
ceeding sections. In Chapter 8 we describe the implementation of the PSS model checker
and indicate ways in which malformed specifications are identified and reported to the user
before runtime.

4.3 Constructing the Discrete Time Markov Chain

Examining the definition of a DTMC given in Section 2.2.2, the construction of a DTMC
from an appropriate PSS requires the creation of a set of states S, an initial state and a
probability transition matrix P must be defined.
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Then the set of all states S consists of every possible assignment of values to variables and
channels declared in P . As covered in Section 4.2.4 an individual state s ∈ S can be ex-
pressed as a an ordered tuple of variables. With global variables ordered as they appear in
the specification and variables in process placed in instantiation order, a single state can be
defined s = (Varglobal ∪ Var1 ∪ . . . ∪ Varn) for n > 0. If Vari and Varglobal are sets of
variables {v1, . . . , vk } and {w1, . . . , wq } respectively, the initial state is so = (Varglobal ∪
Var1 ∪ . . . ∪ Varn).

To create P, the behaviour of each process Proci must be determined. For Proci consider a
command σ ∈ Cdi where σ = (g, (p1, u1), . . . , (pn, un)). As g is a predicate over the set of
variables Varglobal and Vari, it defines a subset of S hence referred to as Sg = {s ∈ S | s |= g}.
An update uj describes changes that occur to variable sets Varglobal and Vari. It follows that
uj can be thought of as a function from Sg to the set Snew of states created by applying the
update (see Section 4.2.7).

Using the pj value associated with each update uj, command σ defines, for each s ∈ Sg, a
function µ : Snew → R≥0 where for each ti ∈ Snew

µ(ti) =
∑

{j execp,i(s,uj)=ti}
pj

To determine the behaviour of Proci in every state, we combine this information for all
commands σ ∈ Cdi. We denote this by a function Pi,ind : S× Snew → [0, 1] where for each
s ∈ S and ti ∈ Snew

Pi,ind(s, ti) =

{
µ(ti) if s ∈ Sg for some σ ∈ Cdi

0 otherwise

As there is no synchronisation between processes a command in the specification corre-
sponds to a transition, or set of transitions, in the DTMC. We define the effect that process
Proci transitions have on the full model using the function Pi : S × S → [0, 1]. For states
s = (s1, . . . , sm) ∈ S and t = (t1, . . . , tm) ∈ S

Pi(s, t) =

{
Pi,ind(s, ti) if sj = tj for all 1 ≤ j 6= i ≤ m
0 otherwise

Finally, we define the probability transition matrix P of the overall model. In each global
state, some subset of the processes can independently make transitions. We assume a uniform
probability of each process being scheduled. Hence we define P : S × S → [0, 1] where ps

is the number of processes which can make a transition in state s as:
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P(s, t) = 1/ps(
m∑

i=1

Pi(s, t))

4.4 Construction of the Markov Decision Process

To construct an MDP from a PSS specification a similar approach is taken. Let the state
space S, a state s ∈ S, initial state s, a command c ∈ Cdi, the set Snew, the set Sg and
functions µ : Snew → R ≥ 0 be defined exactly as found in Section 4.3.

From the definition of a MDP, see Section 2.2.3, the set of guards in a process are not
necessarily disjoint and a set of probability distributions may be enabled in a single state.
To accommodate this a function Steps : S → 2Dist(S), maps each individual state s ∈ S to a
finite, non-empty subset of Dist(S). Therefore, each process Proci, has an associated function
Stepsi,ind : S → 2Dist(Snew) that links each state s ∈ S to a set of probability distributions
over the set Snew

Stepsi,ind(s) = {µ c ∈ Cdi and s ∈ Sg}

To generalise the function so it provides a probability distribution over the set of all states
S, let the variable sets for all other processes remain unchanged. Only the variable sets Vari

and Varg are modified. The required function is denoted Stepsi : S→ 2Dist(S).

Let s = (Varglobal ∪ Var1 ∪ . . . Varn) be a state s ∈ S then the function Stepsi(s) is de-
fined in the following manner. For each µi ∈ Stepsi,ind(s), Stepsi(s) is the set of probability
distribution µ ∈ Dist(S), where for any state t = (Varglobal ∪ Var1 ∪ . . . ∪ Varn) ∈ S:

µ(t) =

{
µi(ti) if sj = tj for all 1 ≤ j 6= i ≤ m
0 otherwise

To provide the function required by the definition Steps : S → 2Dist(S) the above functions
are combined for every process in the specification;

Steps(s) =
⋃m

i=1 Stepsi(s)

This is appropriate as scheduling between processes is non-deterministic.
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4.5 Summary

In order to allow for the development of our automated symmetry reduction techniques we
have introduced the Probabilistic Symmetric Systems Language. The grammar and full se-
mantics of PSS were presented in Section 4.2 and Section 4.3 respectively. We make ex-
tensive use of the PSS language in the remainder of the thesis to aid in the presentation and
proof of our results.



CHAPTER 5

Automated Symmetry Detection

This chapter introduces the Extended Channel Diagram (ECD) of a PSS specification P and
formally establishes a correspondence between automorphisms of an ECD of a PSS specifi-
cation P and automorphisms of the probabilistic models constructible from P . In contrast
to previous approaches to symmetry detection [47, 30, 13], the ECD approach is the first
technique we know of that can detect arbitrary component and data symmetries directly
from a specification. Therefore, it offers distinct advantages over techniques such as scalar
sets [13], which only captures data symmetries when all variables are interchangeable, and
the static channel diagram approach [30], which only captures arbitrary component symme-
tries. Therefore, the ECD approach has the potential to capture a larger group of symmetries,
and as a result the possibility of mapping more states to a single or smaller number of repre-
sentative states arrises.

Like previous techniques designed to detect arbitrary component symmetry [30] this ap-
proach can be fully automated and requires no additional information from the user. Fur-
thermore, we assert that capturing data and component symmetries enables a user to write
specifications in the way they desire. They are not forced to needlessly place information
within processes to take advantage of component symmetries.

To summarise, the ECD approach allows a set of potential automorphisms of a model as-
sociated with a PSS specification to be generated. Provided that the automorphisms meet a
small set of restrictions then they are valid for symmetry reduction. From the set of valid

71
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automorphisms we show how a potentially larger set of automorphisms valid for reduction
can be calculated.

5.1 Automated Detection

An approach capable of detecting arbitrary component symmetries directly from the channel
based specification language Promela-lite has previously been described [37]. This approach
generates a diagram, known as a static channel diagram, of communication that may poten-
tially occur between processes in the specification’s underlying Kripke structure. The auto-
morphisms of this potential communication diagram correspond to a set of Kripke structure
automorphisms, some of which may be valid for symmetry reduction. This set of potential
symmetries are subsequently narrowed to provide a set of automorphisms of the associated
Kripke structure guaranteed to be valid for symmetry reduction.

We now show how the static channel diagram approach can be applied to the PSS specifi-
cation language to detect potential symmetries valid for reduction in the underlying proba-
bilistic model. Here we note that, unlike Promela-lite, the PSS language does not support
communication arising from the dynamic passing of channel references [38]. Therefore,
all channels in PSS are static and henceforth we simply refer to the technique as a channel
diagram.

5.1.1 Channel Diagram Associated with a PSS Specification

Let P be a PSS specification with n > 0 processes and let VP = {1, 2, . . . , n} be the set
of process identifiers and VC the set of channel identifiers in P . For i ∈ VP let process(i)
denote the name of process i, and for c ∈ Vc let chan(c) denote the comma separated list of
types accepted by c (see Section 4.2.1).

Definition. The channel diagram associated with P is a coloured, bipartite digraph C(P) =
(V, E, C) where V, E and C are the sets of vertices, edges and colours and:

• V = VP ∪ VC

• For i ∈ VP and c ∈ VC
– (i, c) ∈ E if and only if process(i) has a statement involving an update that

includes a write operation to channel c;

– (c, i) ∈ E if and only if process(i) has a statement involving an update that
includes a read operation from channel c.
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• C is a colouring function that colours all vertices according to the type of the associated
processes and channels.

An automorphism of a channel diagram is a bijection α : V→ V which satisfies the follow-
ing three conditions:

• ∀ i, j ∈ V, (i, j) ∈ E⇒ (α(i), α(j) ∈ E)

• ∀ i ∈ V, C(i) = C(α(i))

The second condition ensure that only processes and channels of the same colouring can be
mapped to each other.

In the diagrammatic presentation, processes are represented by circles and channels by dou-
ble lined quadrilaterals. Either the name of a process (process(i)) or the comma separated
list of types accepted by the message of channel c (chan(c)) are used to label the vertices. As
the colouring function uses process(i) and chan(c) to determine the colour of a vertex, there
is a one to one correspondence between vertex labels and colours.

5.1.2 Examples of Channel Diagrams Associated with a PSS Specifica-
tion

This section illustrates the concept of a channel diagram by examining the C(P) for a variety
of PSS specifications P . In turn we discuss the set of automorphisms Aut(C(P)) and how
they relate to automorphisms in the associated probabilistic model.

Simple Mutual Exclusion Specification

The first example is the simple mutual exclusion specification P given in Figure 5.1. The
channel diagram C(P) contains two identically labeled vertices, one for each mex process.

mex
1

mex
2

Figure 5.1: Channel diagram for a two process mutual exclusion specification.

As specification P does not contain any channels C(P) does not contain any edges. Using
integer subscripts to uniquely identify each vertex, the automorphisms of the diagram are

Aut(C(P)) = {(1, 2)}.



5.1. Automated Detection 74

How a permutation α ∈ Aut(C(P) corresponds to a permutation of the associated prob-
abilistic model is formally defined later in this chapter. Here we note, in this instance a
permutation of the process indices in C(P) corresponds to a permutation of processes in the
states of the associated probabilistic model.

Figure 5.2 shows the general form of the channel diagram for an n process mutual exclu-
sion specification. For this diagram the automorphism group is Sn (i.e. all permutations of
processes).

mex
1

mex
2

mex
n

Figure 5.2: General form of the C(P) for a n process mutual exclusion specification.

Dining Philosophers Specification

The well known dining philosophers problem [71] provides a simple description of process
deadlock occurring in operating systems. A common description follows;

A group of N philosophers have congregated at a circular table to eat and discuss philoso-
phy. To eat, a philosopher needs two forks, but there is only a total of N forks at the table. A
deadlock would arise if every philosopher held a left fork and waited indefinitely for a right
fork. Conversely, holding a right fork and waiting for a left fork will also result in deadlock.
In general a deadlock is reached when there is a cycle of unwarranted requests. Philosopher
P1 is waiting for a fork grabbed by philosopher P2 who is waiting for the fork of philoso-
pher P3 and so on. The channel diagram C(P) for the PSS specification P containing three
philosophers is shown in Figure 5.3.

dphil
1

((vv{int}
4

77

ww

{int}
5

gg

''dphil
2

66

++ {int}
6 33kk

dphil
3

hh

ss

Figure 5.3: Channel diagram for a PSS dinning philosophers specification with three philoso-
phers.



5.1. Automated Detection 75

The channel diagram contains three identically coloured circular vertices, one for each philoso-
pher and three identically coloured double lined quadrilateral vertices, one for each channel.
Every philosopher can read and write from two channels and this is reflected by the edges
present in C(P). Using integer subscripts to uniquely identify each vertex, the automor-
phisms of the diagram are given by the group generators

Aut(C(P)) = {(1, 2)(5, 6), (2, 3)(4, 5)}.

As in the preceding example, a permutation of process indices in C(P) corresponds to a
permutation of the processes present in the states of the associated probabilistic model.
However, every permutation of process indices in C(P) is accompanied by a permutation
of channel names that leaves a process index attached to the same channel names. In a simi-
lar manner, permutations of channel names in C(P) correspond to a permutation of channel
variables present in the states of the associated probabilistic model.

The general form of the channel diagram associated with an n process dining philosophers
is isomorphic to the automorphism group Sn (i.e. all permutations of processes).

Network Infection Specification

Appendix A.3 gives the skeleton PSS specification describing the progress made by a com-
puter virus as it infects a network. The specification describes a network of computer nodes
arranged in an N × N grid. Computer nodes have a direct connection to nodes located to
their direct north, south, east or west. The nodes located at the border of the network are
only connected to two or three other nodes. This requires the specification to have three dif-
ferent descriptions for nodes, to accommodate how many connections the node has. In the
channel diagram, processes able to connect to two others will be coloured “C2”, processes
able to connect to three others will be coloured “C3” and processed able to connect to four
others will be coloured “C4” (see Figure 5.4).

C2

��

OO

C3

��

OO

oo C4

��

OO

//oo

Figure 5.4: Examples of computer process colourings.

The specification describes the scenario in which a computer virus is initially present in one
of the edge computer nodes. Once the ”inception node” is non-deterministically selected,
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the virus remains in this node and repeatedly attacks any neighbouring computer node that is
currently not infected. To infect a new computer node the virus must try first to pass through
the node’s firewall and if successful, try to infect the node. For both of these steps, there
is a probabilistically determined chance of success. The channel diagram C(P) for the PSS
specification P with a 3× 3 grid of computer nodes is shown in Figure 5.5.
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Figure 5.5: Channel diagram of a 3× 3 network infection specification.

The channel diagram contains 21 vertices. There are 9 circular processes each taking one of
the three available colours and 12 identically coloured channels. Every process vertex has
both an incoming and outgoing edge to their linked channel vertex. Intuitively this is because
each computer can be infected by or infect a neighbouring computer.

However, the computer that is initially infected will never read from any of the channels it
is connected to, it will only try to infect its neighbours. This illustrates an important point of
channel diagrams, they capture the potential communication allowed by the specification and
not the actual communication in the underlying probabilistic model. The automorphisms of
the diagram, using integer subscripts to uniquely identify each vertex, are given by the group
generators

Aut(C(P)) = {(1, 2)(6, 7)(3, 4)(10, 11)(12, 14)(15, 16)(17, 19)(20, 21),
(1, 3)(5, 8)(2, 4)(12, 17)(10, 20)(13, 18)(11, 21)(14 ,19),
(1, 3)(5, 6)(10, 17)(11, 12)(13, 15)(3, 4)(6, 8)(17 ,20)(12 ,21)(15 ,18)
(4, 2)(8, 7)(20, 19)(21, 14)(18, 16)(2, 1)(7, 5)(19 ,11)(14 ,10)(16 ,13)}
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It follows from Aut(C(P)) that any re-arrangement of processes and channels caused by flip-
ping the diagram on an x or y axis can be provided by a permutation α ∈ Aut(C(P). As
before, a permutation of process indices and channel names in C(P) correspond to a permu-
tation of process and channel variables present in the states of the associated probabilistic
model.

Finally, a regular polygon with n sides has 2n different symmetries: n rotational symmetries
and n reflectional symmetries. These rotations and reflections make up the dihedral group
Dn. Indeed, the general form of the channel diagram for an N × N specification is the
automorphism group D8.

5.1.3 Channel Diagrams and Data Symmetries

While this technique is well suited for detecting a set of candidate symmetries, it does not
consider any type of symmetry other than component symmetries. This is unfortunate as
specifications often contain large data structures and even when exploiting component sym-
metries it may be impossible to check that a property holds for every assignment of values.
As with potential component symmetries detected from a specification, potential data sym-
metries present within a specification’s data structures may also be detected. By capturing
any additional data symmetries the possibility of mapping more states to a single or smaller
number of representative states in the underlying model arises. Furthermore, capturing data
and component symmetries allows users to write specifications in a more natural manner.
They are not unduly forced to place data within either a process or channel to take advantage
of component symmetry.

Examining the simple mutual exclusion PSS specification presented in Figure 4.2, it is clear
that no data is stored within a process. Processes provide a list of commands and the data
is stored in the globally defined integer variables. It follows that the number of states in
the probabilistic model is determined by the values that can be assigned to these global
variables. Figure 5.1 shows the channel diagram for this specification and it was asserted in
Section 5.1.1 that a permutation of the channel diagram corresponded to a permutation of
processes present in the states of the probabilistic model. As processes do not determine the
number of states, the use of any component symmetries will not reduce the number of states
in the probabilistic model.
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5.1.4 Extended Channel Diagram Associated with a PSS Specification
P

To capture potential data and component symmetries, the definition of a channel diagram is
extended and an algorithm to extract the newly defined diagram from a PSS specification is
described in Figure 5.11. Furthermore, in Section 5.2 we define the correspondence between
automorphisms of an ECD extracted from a specification P and automorphisms of the as-
sociated probabilistic model. In addition, we prove that if a permutation α ∈ ECD meets a
small number of restrictions its corresponding probabilistic model permutation can be used
for symmetry reduction.

An ECD directly extends channel diagrams by including vertices for global variables and in
certain circumstances an edge between a process and global variable vertex is included. An
edge between a process and global variable vertex is included in the diagram if a process
can potentially update the variables value. Conversely an edge between a global variable
and process vertex is included if an update made by the process uses the value stored in
the variable. As an ECD is a direct extension of channel diagrams, the subsequent results
including the proof given in Section 5.2 are true for channel diagrams extracted from a PSS
specification.

Let P be a PSS specification with n > 0 processes, and let VP = {1, 2, . . . , n} be the
set of process identifiers, VC the set of channel identifiers and VG the set of global variable
identifiers in P . For i ∈ VP let process(i) denote the name of process i, for c ∈ Vc let chan(c)
denote the comma separated list of types accepted by c and for x ∈ VG let type(x) denote
the type of variable x (see Section 4.2.1).

Definition. The extended channel diagram associated with P is a coloured, tripartite digraph
ECD(P) = (V, E, C) where V, E and C are the sets of vertices, edges and colours and:
• V = VP ∪ VC ∪ VG

• For i ∈ VP and c ∈ VC
– (i, c) ∈ E if and only if process(i) has a statement involving an update that

includes a write operation to channel c;

– (c, i) ∈ E if and only if process(i) has a statement involving an update that
includes a read operation from channel c.

• For i ∈ VP, x ∈ VG

– (i, x) ∈ E if and only if process(i) has a statement involving an update that
includes an assignment to variable x

– (x, i) ∈ E if and only if process(i) has a statement involving an update that
includes changes to a variable via an expression involving x.
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• C is a colouring function that colours all vertices according to process(i), chan(c) and
type(x).

An automorphism of an ECD is a bijection α : V → V which satisfies the following four
conditions:

• ∀ i, j ∈ V, (i, j) ∈ E⇒ (α(i), α(j) ∈ E)

• ∀i ∈ V, C(i) = C(α(i))

The second condition ensure that only processes and channels of the same colouring can be
mapped to each other.

Like channel diagrams we present ECDs diagrammatically. As before, processes are rep-
resented by circles and channels by double lined quadrilaterals. In an ECD, single lined
quadrilaterals are used to depict a global variable. Either the name of a process (process(i)),
the comma separated list of types accepted by the message of channel c (chan(c)), or the
type of variable x (type(x)) are used to label the vertices. As seen in the channel diagram
examples there is a one to one correspondence between vertex labels and colours.

5.1.5 Examples of Extended Channel Diagrams Associated with a PSS
Specification

This section illustrates the concept of an ECD by examining the ECD(P) constructed from
a set of PSS specifications. In turn we discuss the set of automorphisms Aut(ECD(P)) and
how they relate to automorphisms in the associated probabilistic model.

Simple Mutual Exclusion Specification

The advantage of capturing potential data symmetries is made clear by re-examining the PSS
specification P describing a simple mutual exclusion problem, Figure 4.2. The ECD(P) for
a two process specification is shown in Figure 5.6.
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Figure 5.6: Extended channel diagram for a two process mutual exclusion specification.
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As in the channel diagram, the ECD(P) for this specification contains two identically coloured
vertices, one for each of the two identically typed processes. However, it now includes two
quadrilateral variable vertices and edges between process and variable vertices to indicate
the reading and writing of values to the variables in the specification. The automorphism
group of the diagram, using the integer subscripts to uniquely identify each vertex is

Aut(ECD(P)) = {(1, 2)(3, 4)}.

Any arrangement of process vertices that leaves the variable vertices it shares an edge with
attached can be provided with a permutation α ∈ Aut(ECD(P)). In contrast to simple chan-
nel diagrams, the corresponding model permutations now act on both process components
and data in the state tuple. As previously asserted, the size of the state space is defined by the
combination of values that global variables can take. The ECD has captured a potential sym-
metry that acts on these variables and consequently we have the possibility of constructing a
smaller quotient structure is provided.

Figure 5.7 shows the general form of the ECD for an n process mutual exclusion specifica-
tion. In contrast to channel diagrams the automorphism group is now isomorphic to Sn.
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Figure 5.7: General form of ECD(P) for an n process mutual exclusion specification.

Dining Philosophers Specification

Examples of dining philosophers specifications are commonly presented in literature using
global variables to model the state of the forks. One form of the specification in PSS is
presented in Appendix A.2 and the associated ECD is shown in Figure 5.8.

The resulting diagram is similar to the channel diagram example but variable vertices directly
replace the channel vertices. While the ECD has not captured a larger set of potential sym-
metries it has given the user the choice on how to formulate the specification. The burden
has been removed from the the user on where to place data.
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Figure 5.8: Extended channel diagram for a PSS dinning philosophers specification with
three philosophers.

Monty Hall Problem

A further advantage of capturing potential data symmetries is that symmetries valid for re-
duction can be obtained from a specification containing a single process. This is not possible
using channel diagrams as a specification with a single process will not contain any compo-
nent symmetries. An example of a problem that would naturally be modelled using a single
process would be the Monty Hall problem.

The Monty Hall problem can be stated as follows: There are three doors, behind two are
goats and behind the third is a car. A contestant is asked to select a door and their prize is
whatever lies behind it. Before the door is opened to reveal the prize, Monty Hall, who knows
what’s behind all the doors opens one of the other doors to reveal a goat. The contestant is
now given the option to change their selection to the other door or stick with their original
choice. The Monty Hall problem is to decide the optimal choice for the contestant.

The ECD(P) associated with specification P is shown in Figure 5.9.
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Figure 5.9: Extended channel diagram for a PSS monty hall specification.

As expected the ECD contains a single vertex for the command process and three identically
coloured vertices for the global integers that represent the doors. Edges between the process
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and variable vertices indicate the initial setting and subsequent revelation of what lies behind
the doors as the game progresses. Using integer subscripts to uniquely identify each vertex,
the automorphisms of the diagram are

Aut(ECD(P)) = {(2, 3)(3, 4)}.

Any arrangement of the variable vertices can be provided by a permutation α ∈ Aut(ECD(P)).
This corresponds to a permutation of the integer variables in the states of the underlying
probabilistic model. While the Monty Hall problem is commonly described using only three
doors the problem can be generalised to use any number of doors. In this general form the
automorphism group is isomorphic to Sn where n is the number of doors.

Here we note, as there is only one component, a user may legitimately declare all variables
within the scope of the process. This would invalidate the detection technique as vertices
are only present for global variables and processes. However, in a one process specification,
with no ill effect, all variables can be made global in the background. This allows the ECD
technique to be applied without prompting the user to restructure the specification.

In this and the previous examples, the data symmetries that have been identified could be ex-
pressed using scalarsets. However, the ECD technique can capture them automatically with
no user input. Furthermore, the ECD is capable of capturing data symmetries not expressible
using scalarsets. We show an example this in the following specification.

Resource Allocator Specification

A resource allocator accepts access requests from computers and can grant a single computer
the right to use the resource. Each client has a priority level, and when multiple requests oc-
cur the resource allocator grants access to the computer with the highest priority. If several
requests are made with the same priority the resource allocator chooses non- deterministi-
cally which to satisfy.

Communication between a computer and the resource allocator occurs over a channel, which
a computer can use to send an access request message to the allocator. When the allocator
decides which computer it will grant access to the resource it sends back a confirmation
message on the same channel. Once the computer finishes using the resource it sends a
finished message to the allocator. The allocator is then free to grant another computer access
to the resource.

To add further complexity some of the computers are able to share the resource, thus bypass-
ing the access decision made by the allocator. If computer i is configured to share with client
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j then on receiving an access granted message, client i uses the resource and when finished
gives the resource to client j. When client j finishes using the resource it sends it to another
client in the chain. This resource passing continues until the resource is returned to Client i,
which sends a finished message to the resource allocator

The inter communication between processes is modelled using global variables to pass the
resource around the chain of computers. The skeleton PSS specification P given in Ap-
pendix A.5 specifies 9 computers with the same priority level and three of the clients have
been set up to share the resource. The ECD(P) associated with specification P is shown in
Figure 5.10.
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Figure 5.10: Extended channel diagram for a PSS resource allocator specification with 9
computers with the same priority level and three of the clients have been set up to share the
resource.

The ECD contains 22 vertices. There are 9 identically coloured circular vertices for each
computer process and a single distinctly coloured circular vertex for the resource allocator.
Every process vertex has an incoming and outgoing edge to a channel vertex, caused by
the communication present in the specification. As specified, three of the clients have links
to global variable vertices that in the specification allows them to independently share the
resources. Using integer subscripts to uniquely identify each vertex, the automorphisms of
the diagram are given by the group generators
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Aut(C(P)) = {(2, 3)(11, 12), (3, 4)(12, 13), (4, 8)(13, 17), (8, 9)(17, 18),
(9, 10)(18, 19), (5, 6, 7)(20, 21, 22) }

Any arrangement of the process vertices with index values 2, 3, 4, 8, 9 and 10 that leaves a
process vertex with incoming and outgoing edges to the same channel vertex can be provided
by a permutation α ∈ Aut(ECD(P)). Due to the inclusion of three global variable vertices,
these process vertices cannot be permuted with the remaining process vertices in the ECD.
This is because there is now a cyclic relationship between computers 5, 6 and 7 due to the
configuration of the additional sharing functionality provided by the global variables. The
automorphism group captured by the ECD is describes as C3 × S6. It is not possible to
specify this product of symmetric and cyclic groups using scalarsets as cyclic symmetries
cannot be handled by either technique.

5.1.6 Comparison of Channel Diagrams and Extended Channel Dia-
grams

The ECD provides several distinct advantages over both channel diagrams and scalarsets:

• The technique allows users to write specifications in a more natural manner. The user
is not unduly forced to place data within a process or channel to take advantage of
component symmetry.

• When a specification contains a single process it exhibits no component symmetry. By
employing extended channel diagrams a large set of potential data symmetries may be
detected. In this instance |Aut(ECD(P))| ≥ |Aut(C(P))|.
• ECDs capture arbitrary potential data symmetries. This is a distinct advantage over a

technique such as scalar sets were any data symmetry must exhibit full symmetry.

• When directly comparing the techniques on a PSS specification P containing both
component and data symmetries the order of Aut(ECD(P)) and Aut(C(P)) may be
equal. In this instance a permutation α ∈ Aut(ECD(P)) may act on a larger number
of state components giving arise to the possibility of more states being mapped to a
single or smaller number of representative states.

• When directly comparing the techniques on a PSS specification P that contains only
component, symmetries, both techniques will return the same group of automorphisms.
The ECD(P) is a true extension of C(P) and no information is lost.

• When directly comparing the techniques on a PSS specification P that contains more
than one process, |Aut(C(P))| ≥ |Aut(ECD(P))|. This is due to the fact that for any



5.2. Correspondence Proof 85

set of n similarly typed processes the maximum size of the group of automorphisms
is Sn. The inclusion of variable or channel vertices can only restrict the number of
automorphisms.

The final point can be illustrated using the resource allocator example. Examining ECD as-
sociated with the specification (see Figure 5.10), the group of automorphisms was described
as C3 × S6. The channel diagram C(P) of the resource allocator specification would be
the same without the global variables and their incoming and outgoing edges. The auto-
morphism group captured by the channel diagram is describes as S9, as any arrangement of
computer vertices can be provided by a permutation α ∈ C(P).

As asserted the addition of variable edges cannot increase the number of ways a group of
similarly typed processes can be permuted. It is clear that |S9| ≥ |C3 × S6|. This leads to
the conclusion that all automorphisms captured by a channel diagram or extended channel
diagram are not necessarily valid for reduction. This is the topic of Section 5.2.

5.1.7 Deriving an Extended Static Channel Diagram

Given a PSS specificationP , Aut(ECD(P)) can be derived from a single pass ofP . The node
set and colouring can be immediately deduced from the inspection of variable declarations
and the creation of processes in the Initial process definition statement. Edges in the diagram
are generated using the algorithm presented in Figure 5.11.

The complexity of deriving ECD(P) from P is linear in the size of P . We now show how
the elements of Aut(ECD(P)) act on P , and on the probabilistic model generated by the
specification.

5.2 Correspondence Proof

This section contains the main result of the chapter and shows how automorphisms of an
ECD(P) extracted from a PSS specification P can be used to define an automorphism acting
on the set of states S of the associated DTMC D or MDP M. Provided that the automor-
phisms meet a small set of restrictions then they are valid for symmetry reduction.
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1. for all (g→ u) ∈ P
2. {
3. if u contains a statement referencing c ∈ VC
4. {
5. for all i ∈ VP
6. {
7. if u contains a channel write operation on c
8. {
9. E := E ∪ (i, c)
10. }
11. if u involves a channel read operation on c
12. {
13. E := E ∪ (c, i)
14. }
15. }
16. }
17. if u contains a statement referencing x ∈ VG
18. {
19. for all i ∈ VP
20. {
21. if u contains a statement of the form x := e for some expression e
22. {
23. E := E ∪ (i, x)
24. }
25. if u contains an update of the form y := e where expression e refers to global variable x
26. {
27. E := E ∪ (x, i)
28. }
29. }
30. }
31. }

Figure 5.11: Algorithm to extract an ECD from a PSS specification in a single pass.

5.2.1 Action of Aut(ECD(P)) on P

We now introduce the notion of equivalence between PSS specifications. Two PSS specifica-
tions P1 and P2 are equivalent, denoted P1 ≡ P2, if they are the same up to rearrangement of
updates in commands, and of process initiation statements within the Initial process. Equiv-
alent specifications define identical behaviour and it follows that the underlying probabilistic
model for equivalent programs is the same.

LetP be a PSS specification with extended channel diagram ECD(P) and let α ∈ Aut(ECD(P))
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be a permutation. To construct α(P) from P each channel name c and global variable name
x that occur in expression e is replaced by channel name α(c) and global variable name α(x)
respectively. However, if x is the name of an array, the desired location can be indexed by
another variable or by a value, val ∈ {1, . . . , n}. Let y be a variable of type int or pid,
then x[y] is replaced by α(x)[α(y)]. If array x is indexed by a val, then x[val] is replaced by
α(x)[α(val)].

Furthermore, assignment statements of the form x := val, Boolean expressions of the form
x == val or val == x, where x ∈ Var with type pid and val ∈ {1, . . . , n}, are replaced by
x := α(val), x == α(val) or α(val) == x respectively. Finally α acts on the order of statements
that appear in the Initial process, with a statement that appears in position i being moved to
position α(i).

Permutation α is said to be valid (for P) if α(P) ≡ P , and a subgroup H of Aut(ECD(P)) is
valid (for P ) if every α ∈ H is valid for P . It follows that if α is valid for P and σi = (g,
(prob1, u1), . . . , (probk, uk)) is a command associated with Proci in P , then σα(i) = (α(g),
(prob1, α(u1)), . . . , (probk, α(uk))) is a command associated with Procα(i) in α(P).

5.2.2 Action of Aut(ECD(P)) on D and M

For an element α ∈ Aut(ECD(P)) we define a corresponding mapping α* which is a permu-
tation of the DTMC D or MDPM constructed from P . In order to define the action of the
permutation on the states we first define the action of α on the set of atomic propositions:

• For (x = val) ∈ AP, with x ∈ VarGlobal and type int, α(x = val) = (α(x) = val).

• For (x = val) ∈ AP, with x ∈ VarGlobal and type pid, α(x = val) = (α(x) = α(val)).

• For (c[k] = msg) ∈ AP for some channel c ∈ Var, α(c[i] = msg) = (c[α(i)] = α(msg)).
Here α acts on msg by permuting the value of each field of msg.

• Let p[i].x denote local variable x of Proci and consider a proposition of the form
p[i].x = val. Since α preserves the colouring of processes according to their type
and name, process α(i) is also an instantiation of Proci and therefore the local variable
p[α(i)].x exists. Therefore:

– if x has type pid or chan, α(p[i].x = val) = (p[α(i)].x = α(val)).

– if x has type int, α(p[i].x = val) = (p[α(i)].x = val).

Since a state is uniquely defined by its labelling function, for any s ∈ S, α* permutes a state’s
labelling function in such away that L(α*(s)) = {α(ap) : ap ∈ L(s)}.
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Correspondence Proof

Theorem 5.1. Let P be a PSS specification with extended channel diagram ECD(P) and
associated DTMC structure D or MDP structure M. If α ∈ Aut(ECD(P)) is valid for P ,
then α* ∈ Aut(D) or α* ∈ Aut(M)

We first consider the action of α ∈ Aut(ECD(P)) on the guards of an PSS specification P .

Lemma 1. Let s ∈ S and g a guard of process Proci. If α ∈ Aut(ECD(P)), then g holds at s
if and only if α(g) holds at α*(s).

Proof of Lemma 1. If g = true then α(g) = true and the result holds. When g = ap for
ap ∈ AP, then α(g) = α(ap). From the definition of α*, ap ∈ L(s) ⇔ α(ap) ∈ L(α*(s)) and
the result holds. If g = ¬ap, α(g) = ¬α(ap)

¬ap ∈ L(s) ⇔ ap 6∈ L(s)
⇔ α(ap) /∈ L(α*(s))
⇔ ¬α(ap) ∈ L(α*(s))

and the result holds.

If g = a∨b or g = a∧b for propositional sub formulas a and b the proofs follow by structural
induction.

We now show that if executing an update ui ∈ Proci results in a transition from state s to state
t, executing α(ui) results in a transition from α*(s) to α*(t). This relationship is depicted in
Figure 5.12

s α? //

ui
��

α?(s)

α(ui)
��

t α? // α?(t)

Figure 5.12: Relationship been transitions and permutations in a DTMC or MDP.

Lemma 2. Let α ∈ Aut(C(P). If s → t is a transition associated with ui, and α*(s) → t′ is
the corresponding transition associated with update uα(i), then t′ = α*(t).

Proof of Lemma 2. Suppose that ui is a global int variable update of the form x := val′.
Consequently, (x = val) ∈ L(s), (x = val′) ∈ L(t) and L(t) = (L(s)\{(x = val)})∪{(x = val′)}.
Then uα(i) is a variable update α(x := val′) and α(x := val) ∈ L(α*(s)). Therefore
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L(t′) = (L(α*(s))\{α(x = val)}) ∪ {α(x = val′)}
= (L(α*(s))\{(α(x) = val)}) ∪ {(α(x) = val′)}
= (L(α*(t))

t′ = α*(t)

Let ui be a global pid variable update of the form x := val′. Consequently, (x = val) ∈ L(s),
(x = val′) ∈ L(t) and L(t) = (L(s)\{(x = val)})∪{(x = val′)}. Then uα(i) is a variable update
α(x := val′) and α(x = val) ∈ L(α*(s)). Therefore

L(t′) = (L(α*(s))\{α(x = val)}) ∪ {α(x = val′)}
= (L(α*(s))\{(α(x) = α(val))}) ∪ {(α(x) = α(val′)}
= (L(α*(t))

t′ = α*(t)

Let ui be a local int variable update of the form p[i].x := val′. Consequently, (p[i].x = val) ∈
L(s), (p[i].x = val′) ∈ L(t) and L(t) = (L(s)\{(p[i].x = val)}) ∪ {(p[i].x = val′)}. Then uα(i)

is a variable update α(p[i].x := val′) and α(p[i].x = val) ∈ L(α*(s)). Therefore

L(t′) = (L(α*(s))\{α(p[i].x = val)}) ∪ {α(p[i].x = val′)}
= (L(α*(s))\{(p[α(i)].x = val))}) ∪ {p[α(i)].x = val′)}
= (L(α*(t))

t′ = α*(t)

Let ui be a local pid variable update of the form p[i].x := val′. Consequently, (p[i].x = val) ∈
L(s), (p[i].x = val′) ∈ L(t) and L(t) = (L(s)\{(p[i].x = val)}) ∪ {(p[i].x = val′)}. Then uα(i)

is a variable update α(p[i].x := val′) and α(p[i].x = val) ∈ L(α*(s)). Therefore

L(t′) = (L(α*(s))\{α(p[i].x = α(val))}) ∪ {α(p[i].x = α(val′))}
= (L(α*(s))\{(p[α(i)].x = α(val))}) ∪ {p[α(i)].x = α(val′))}
= (L(α*(t))

t′ = α*(t)

Let ui be a channel variable update of the form cj!msg. Consequently, (cj = [msg1, . . . ,
msgk], len(cj) = k) ∈ L(s), (cj = [msg1, . . . , msgk, msgk+1], len(cj) = k + 1) ∈ L(t) and
L(t) = (L(s)\{(cj = [msg1, . . . , msgk]), len(cj = k)} ∪ {(α(cj = [msg1, . . . , msgk, msgk+1]),
len(α(cj) = k + 1)}. Then uα(i) is a channel write update α(cj!msg) and (α(cj = [msg1, . . . ,
msgk]), len(α(cj) = k) ∈ L(α*(s)). Therefore
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L(t′) = (L(α*(s))\{(α(cj = [msg1, . . . , msgk]), len(α(cj = k))})∪
{(α(cj = [msg1, . . . , msgk, msgk+1]), len(α(cj) = k + 1)}

L(t′) = (L(α*(s))\{(cα(j) = [α(msg1), . . . , α(msgk)]), len(cα(j) = k)})∪
{(cα(j) = [α(msg1), . . . , α(msgk), α(msgk+1)]), len(cα(j)) = k + 1)}

t′ = α*(t)

Let ui be a channel variable update of the form cj?msg. Consequently, (cj = [msg1, . . . ,
msgk], len(cj) = k) ∈ L(s), (cj = [msg1, . . . , msgk–1], len(cj) = k – 1) ∈ L(t) and L(t) =
(L(s)\{(cj = [msg1, . . . , msgk]), len(cj = k)} ∪ {(α(cj = [msg1, . . . , msgk–1]), len(α(cj) =
k – 1)}. Then uα(i) is a channel write update α(cj!msg) and (α(cj = [msg1, . . . , msgk]),
len(α(cj) = k) ∈ L(α*(s)). Therefore :

L(t′) = (L(α*(s))\{(α(cj = [msg1, . . . , msgk]), len(α(cj = k))})∪
{(α(cj = [msg1, . . . , msgk]), len(α(cj) = k – 1)}

L(t′) = (L(α*(s))\{(cα(j) = [α(msg1), . . . , α(msgk)]), len(cα(j) = k)})∪
{(cα(j) = [α(msg1), . . . , α(msgk)]), len(cα(j)) = k – 1)}

t′ = α*(t)

Finally if ui is a sequence of expressions they are all executed simultaneously and t′ = α*(t).

Proof of Theorem 5.1. We must show that s0 = α(s0) and ∀s, t ∈ S, P(s, t) = P(α(s), α(t)).

To begin, for a proposition (x = val) ∈ s0 we must also show that α((x = val)) ∈ s0. For
each variable x, (x = x0) ∈ s0, where x0 is the initial value assigned to x upon declaration.

• If x is of type int then we have α(x0) = x0 and α(x) must exist or α(P) 6≡ P). Therefore
(α(x = x0) = (α(x) = α(x0)) = (α(x) = (x0))) ∈ s0.

• If x is of type pid then α(x0) and α(x) must exist or α(P) 6≡ P). Therefore (α(x =
x0) = (α(x) = α(x0)) ∈ s0.

Furthermore, the initial state, all channels are empty, so for any channel c, the propositions
(c = []) and α((c = [])) = (α(c) = []) both belong to s0.

For the second requirement suppose that P(s, t) = 0. Then there is no command σ such that
g holds at s, and t is the result of applying an update u of σ to s. Suppose that P(α*(s),
α*(t)) > 0 then for some command σi = (g, (p1, u1), . . . , (pk, uk)) of Proci in P , g holds at
α*(s) and for some j, α*(t) is the result of applying uj to α*(s). But then, since α is valid, so
is α–1 and so α–1(σi) is a command of P . By Lemma 1, α–1(g) holds at s and t is the result
of applying α–1(uj) to s. Hence P(s, t) > 0, which is a contradiction.
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If P(s, t) = pi. then there is a command σ such that g holds at s, and t is the result of applying
an update u of σ to s. By Lemma 1, the guard α(g) holds at α?(s), and by Lemma 2, execution
of the updates of α(σ) lead to state α(t). Furthermore, pi is the result of an expression e
formed exclusively from global or local variables of type integer. By the rules presented in
Section 4.2.7, for a global or local integer y = val, α(y = val) = (α(y) = val)). It follows that
α(e = pi) = (α(e) = pi)). Therefore ∀s, t ∈ S, P(s, t) = P(α(s),α(t)).

5.3 Largest Valid Symmetry Group

The ECD(P) of a program is typically a small graph which can be easily extracted from
the PSS specification. Additionally, checking for a permutation α ∈ Aut(ECD(P)) whether
α(P) ≡ P can be implemented efficiently is the topic of Chapter 8. Thus, using Theorem 5.1,
it is possible to obtain a group of model automorphisms, that are valid for symmetry reduc-
tion.

However, this group of valid symmetries may not be as large as possible, this is easily con-
veyed by means of an example. Recall the resource allocator example. If its specification
were altered so the resource allocator blocked access from computers with pid value 3 and 8,
the automorphism generators of the ECD associated with the modified specification would
still be calculated as

Aut(C(P)) = { (2, 3)(11, 12), (3, 4)(12, 13), (4, 8)(13, 17), (8, 9)(17, 18),
(9, 10)(18, 19), (5, 6, 7)(20, 21, 22) }.

In this instance generators that do not fix Proc4 and Proc8 are not valid for symmetry re-
duction. Let α be such a generator, the declaration blockedclient = 4 in P is replaced with
blockedclient = α(4) which does not appear on the specification, thus α(P) 6≡ P . A similar
argument applies to the statement blockedclient = 8. The other generators are valid for P
and subsequently a valid group for reduction is

H = { (2, 3)(11, 12), (9, 10)(18, 19), (5, 6, 7)(20, 21, 22)}.

However, consider the group

G = {(2, 3)(11, 12), (3, 9)(12, 18), (9, 10)(18, 19), (5, 6, 7)(20, 21, 22) }.
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Every generator of G is valid in P and H ⊂ G. Therefore, G is not the largest valid subgroup
of Aut(ECD(P)).

5.3.1 Reconstructing the Largest Valid Symmetry Group

This problem of calculating a larger group valid for reduction has previously been tackled
using a group theoretic approach [30]. The algorithm for finding the largest valid subset starts
with a known valid subgroup H of Aut(ECD(P)) and adds valid coset representatives to the
generators of H to obtain successively larger valid subgroups. Once all coset representatives
of the group H have been checked the largest valid set will have been determined. The
algorithm performs badly [30] if the initial group H is small, and Aut(ECD(P)) is very large.
In such cases the number of right coset representatives to consider is, in the worst case,
|Aut(ECD(P))| / |H|.

We propose an alternative algorithm in which the behaviour is linked with the level of sym-
metry exhibited in the specification. To achieve this, our approach considers what actions
are permitted in the specification that later induce an invalid permutation α ∈ Aut(ECD(P)).
To prevent an invalid permutation α appearing in Aut(ECD(P)), the vertices it permutes can
no longer share the same colour. The affected vertices are recoloured by searching for valid
elements α ∈ Aut(ECD(P)) that permute at least one of the vertices with another whose
colour is already known. If a valid element is identified, the vertices it permutes are given
the known colour and if no such element is found, the unmatched vertices are each given
a unique colour. In regards to algorithmic behaviour, the more symmetric the specification,
the less vertex re-colourings will be required. Finally, once ECD(P) has been re-coloured,
Aut(ECD(P) is the largest valid symmetry.

Specification Statements that Lead to Invalid Symmetries

An element α ∈ Aut(ECD(P)) can fail to meet the requirement that α(P) ≡ P if:

• a variable has not been symmetrically initialised (e.g. the blockclient variable in Sec-
tion 5.3).

• process Proci contains an executable command σ while process Procα(i) cannot exe-
cute the command α(σ).

Consequently in a PSS specifications identically named processes may only be partially sym-
metric.
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5.3.2 Algorithm to Reconstruct the Largest Valid Symmetry Group

To account for partially symmetric processes the ECD has to be modified so vertices corre-
sponding to partially symmetric processes no longer share the same colour. This will result
in the transposition of the processes no longer being provided by a permutation in the graph
automorphism group. To achieve this we use the following algorithm.

Let Work be the the set of all process vertices vi ∈ ECD(P) (0 < i < |ECD(P|). Select
a process vertex pvi ∈ Work, remove it from the set and assign it a distinct colour. The
set of process vertices Xi that it can be transposed with is calculated using the generators
of Aut(ECD(P)). This facility is provided by the graph automorphism package GAP. Next
locate an element α ∈ Aut(ECD(P) that transposes vi with a vertex in xvi ∈ Xi. If applying
the permutation to the specification results in α(P) ≡ P then the processes are symmetric
and the vertices should share the same colour. On the other hand if α(p) 6≡ p then the process
are only partially symmetric and the vertices must have a distinct colour. If the process share
the same colour, then the process xvi is removed from the sets Xi and Work. If it must have a
different colour then it is only removed from the set Xi. An element α ∈ Aut(ECD(P)) that
permutes pvi with a vertex remaining in Xi is obtained. When Xi is empty all the vertices
that share the same colour as pvi have been determined. This process is repeated for every
vertices remaining in Work.

The final output of the algorithm are sets of vertices that must be identically coloured. No
finer colouring of the sets exists and consequently the automorphisms of the newly coloured
ECD is the largest valid symmetry.

Lemma 3. α is a valid permutation if and only if α–1 is valid.

Lemma 4. If α and β are valid permutations. The permutation αβ is valid.

Lemma 5. If α is a valid permutation and β is an invalid permutations. The permutation αβ
is invalid.

Proof. Let Zi (0 < i < |ECD(P|)) be a collection of sets with each set containing a set of
process vertices that share the same colour.

Let a1 be the first element in the set Z1. If Z1 contains more elements b1, c1 . . . , then a1

has been directly compared for validity with every other element in the set. Even though,
elements b1 and c1 have not been directly compared the permutation (b1, c1) = (b1, a)–1

1 (a1,
c1). By Lemma 3 and Lemma 4(b1, c1) is valid and the vertices corresponding to b1 and c1

share the same colour. A similar argument holds between any two elements in the set and it
follows that all elements in the set share the same colour.
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Let a2, b2, . . . be element in the set Z2. During the execution of the algorithm the permu-
tations that provided the transposition of vertices (a1, a2), (a1, b2), . . . were found to be
invalid. Any other element β ∈ Z1 can reach any element γ ∈ Z2 with the permutation
(β, γ) = (β, a1), (a1, γ) which is a valid permutation followed by an invalid permutation. By
Lemma 5 this is an invalid permutation and Lemma 3 shows the symmetric case is invalid.
Therefore, there is no valid permutation to transpose any vertex in Z1 and Z2. The vertices
in the two sets must share different colours and a similar argument holds between any two
sets and it follows that all sets must have a distinct colouring.

As there are no valid permutations that can transpose any two vertex in any two different
sets, the graph can have no finer colouring. The automorphisms of the diagram are therefore
the largest valid symmetry.

Example

Applying the algorithm to modified resource allocator specification splits the processes into
3 sets: Z1 ={2, 3, 9, 10}, Z2 = {4, 8}, Z3 ={5, 6, 7}. The result of using these sets to
recolour the ECD is shown in Figure 5.13. Using integer subscripts to uniquely identify each
vertex, the automorphisms of the diagram are given by the generators

Aut(C(P)) = {(2, 3)(11, 12), (3, 9)(12, 18), (9, 10)(18, 19),
(4, 8)(13, 17)(5, 6, 7)(20, 21, 22)}.

which is the largest valid symmetry group.

Complexity of the Algorithm

In the worst case the algorithm will execute its outer loop n times and require a total of n2

process comparisons. This behaviour is exhibited if there are n identically named processes
and in fact none of them are symmetric. Therefore, for each loop iteration only one pro-
cess is removed from the work set. As the symmetry between identically named processes
increases, the average number of vertices removed from the work set on each iteration will
also increase. It follows that a more symmetric specification will require on average a smaller
number of comparisons. In Section 8.2.4 experimental results are provided that detail the run
time performance of our symmetry detection techniques, including this algorithm, when ap-
plied to a variety of PSS specifications.
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Figure 5.13: A recoloured extended channel diagram for a PSS resource allocator specifica-
tion.

5.4 Summary

We have introduced the extended channel diagram approach, which is the first technique we
know of that can detect arbitrary component and data symmetries directly from a probabilis-
tic specification. To summarise, the ECD approach allows a set of potential automorphisms
of a model associated with a PSS specification to be generated. Provided that the automor-
phisms meet a small set of restrictions then they are valid for symmetry reduction. From the
set of valid automorphisms we show how a potentially larger set of automorphisms valid for
reduction can be calculated.



CHAPTER 6

Computing a Representative State

Once a set of symmetries viable for reduction has been deduced, they can be applied to a state
to transform it into another state in its orbit. A common approach to symmetry reduction is
to use a representative function, rep(s , G) that, given a state s and a permutation group G,
returns a state from the orbit of s. Clearly, if rep(s, G) = rep(t, G) then states s and t are
equivalent. The goal of a representative function is to always return the same or a small
number of states in a state orbit.

The single state scenario is depicted in Figure 6.1a and the multiple representatives scenario
in Figure 6.1b. Single or multiple representatives are shown as black disks and a single
state may be associated with multiple representatives. Permitting multiple representatives
per orbit is a cosmetic change that simplifies the orbit problem only to the extent that the
benefits of symmetry reduction are diminished.

(a) Single representative (b) Multiple representative

Figure 6.1

96
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In this chapter we present various strategies to calculate a representative state and begin with
a simple exhaustive calculation approach. An implementation enhancement that improves
the average runtime complexity of exhaustive search is presented in Section 6.2 and the
problem is explored from a new angle by mapping it to a constraint satisfaction problem
in Section 6.3. Section 6.4 covers groups where enumeration is infeasible and considers a
tailored made local search algorithm to map a state to a small number of representatives.
Finally the chapter considers exploiting structural properties of the group G to calculate a
state representative. We suggest techniques for the fully symmetric group, cyclic groups and
groups that can be decomposed as an internal direct product or as an internal semi direct
product.

In Chapter 5 we covered a technique to automatically calculate a set of valid symmetries from
a PSS specification. However, the techniques presented in the remainder of this chapter make
no assumption about the relationship between a state s and how the group G was calculated.

6.1 A Model of Computation Without References

To simplify the presentation of results a state s is presented as an array of integer variables.
Each integer corresponds to a single state component such as a process, global variable or
channel. Formally, a system of n components can be defined in terms of a set of n variables,
each with a finite domain L ⊂ Z.

Let V = {v1, v2, . . . , vl} be the set of variables in a state s, and Di the finite domain of vi

(1 ≤ i ≤ l). By letting m equal the largest domain value, m = max(|D1|, |D2|, . . . , |Dl|),
and with no loss of information Di = {1, 2,. . . , m}. Furthermore, V can be partitioned into
n subsets, V1, V2, . . . , Vn, for some n > 0, where each subset Vi contains variables that
constitute a single state component i. For 1 ≤ i ≤ n, Vi = {vi,1, vi,2, . . . , vi,li} and for some
vi,j ∈ V and li > 0,

∑n
i=1 li = l. It follows

• if state component i is a variable, the set Vi contains a single variable.

• if state component i is a buffered channel with capacity t, the set Vi contains t variables,
one for each buffer position.

• if state component i is a process then the set Vi contains all local variables declared
within that process. Then D =

∏n
i=1
∏li

j=1 D′i,j where D′i,j is the domain of vi,j, for
1 ≤ i ≤ n, 1 ≤ j ≤ li.

Let f be the size of the largest subset Vi, a map θi : D → 1, 2, . . . , mf can be defined for
all subsets in the following manner. For any state s = (d1,1, d1,2, . . . , d1,l, . . . , dn,1, dn,2,
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. . . , dn,l) ∈ D, θi(d) =
∑li

j=1 di,jmj–1. It follows that a state s can be defined as an array of
integers, θ(s) = (θ1(s), θ2(s), . . . , θn(s)).

Therefore, given an array of integers that represent state s = (x1, x2, . . . , xn) ∈ Ln, a group
G ≤ Sn and an element α ∈ G, the state α(s) can be defined as α(s) = (xα–1(1), xα–1(2), . . . ,
xα–1(n)).

Finally, as a state is mapped to a vector of integers, there is a natural lexicographical total
ordering on states. Throughout this chapter we use min[s]G to denote the lexicographical
minimal state in the orbit of state s under group G.

6.2 Full Enumeration

A straightforward and well known approach to computing the state min[s]G is to consider
every state in [s]G, and return the lexicographically smallest. This is achieved by obtaining
all elements α ∈ G and applying them in turn to state s to compute α(s). This results in the
computation of [s]G and from this set the state min[s]G can be returned as the representative
state. This strategy provides exact symmetry reduction but is only feasible if the number
of elements in G is small. An algorithm capable of performing this strategy is shown in
Figure 6.2.

1. Procedure minimise(State original, Group G)
2. {
3. State temp := null
4. minimum := original
5. for (Permutation α : G)
6. {
7. State temp := apply(original, α)
8. if (temp < minimum)
9. {
10. minimum := temp
11. }
12. }
13. return minimum
14.}

Figure 6.2: An algorithm to compute the lexicographical minimal state using full enumera-
tion.

This algorithm is well documented and implemented in several model checkers to provide
symmetry reduction [13]. By examining the literature and available source code the im-
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plementations do not exploit a known property of state space exploration. For all states,
excluding the initial state, the components updated between transitions are known. If an el-
ement α ∈ G does not transpose at least one of the updated components, the calculation of
α(s) is not required.

Example 1. Let state s = [1, 3, 5, 6] and state t = [1, 7, 5, 6] and assume that t can be reached
from s through an update to component s[2]. It is clear that state components t[1], t[3] and
t[4] are still in sorted order. For group G = S4, Figure 6.3 lists all elements in G and those
whose only action is to reorder sorted elements in state vector t are stricken through.

(), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4), (1,2,4,3), (1,2,4),
(1,3,2), (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), (1,4),
(1,4,2,3), (1,4)(2,3)

Figure 6.3: A list of elements in the Group S4. Stricken through elements are not applied to
the state.

To implement this amendment all elements in G are independently examined before state
space exploration. If α ∈ G transposes component i, it is placed in a set movedi. During
search if state t contains updated components indexed by values n, m and o, the elements
in the set movedn ∪ movedm ∪ movedo are applied to state t. The pre-calculation of the
sets movedi is feasible as the total number of elements in G is small. However, significant
savings can be made in the time taken for state space exploration as there is no correlation
between the order of |G| and the number of states in the state space.

6.2.1 Applying a Permutation to a State

Line 7 of the algorithm shown in Figure 6.2 makes use of a function apply(State, Permu-
tation) that applies a permutation α to a state s. Two ways in which this function can be
implemented are: as a series of transpositions, or as a single direct application of the permu-
tation α to the state.

Application as a Series of Transpositions

Several implementations apply permutations as a series of transpositions [13, 35], as any
permutation α ∈ Sn can be represented as a product of at most n – 1 transpositions [55].
Given such a representation for α, the state α(s) can be computed by applying a series of
transpositions in sequential order. This approach is illustrated in the algorithm presented in
Figure 6.4.
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1.Procedure apply(State original, Permutation permutation)
2.{
3. State result := original
4. int position := 0
5. while (position < permutation.length)
6. if (position 6= permutation[position])
7. {
8. swap(result, position, permutation[position])
9. swap(permutation, position, permutation[position])
10. } else
11. {
12. position++
13. }
14. }
15. return result
16.}

Figure 6.4: Algorithm to apply a permutation as a series of transpositions.

The algorithm covers the calculation of transpositions from a permutation and the application
of the transpositions to a given state. To apply the transposition the algorithm makes use of
a simple procedure that swaps two elements in an array. This is detailed in Figure 6.5 and
requires an overhead of O(1) additional space.

1.Procedure swap(Array original, int i, int j)
2.{
3. int temp = original[j]
4. vector[j] = vector[i]
5. vector[i] = temp
6.}

Figure 6.5: Algorithm to transpose two element in an array.

The apply(Array, Permutation) function assumes that a permutation and a state are given
as an array of integers. The function iterates over all elements in the permutation (line 5)
and determines if the indexed value is equal to the index (line 6). If this is true, the state
component is in the correct position and the algorithm moves to check the same condition
on the next index (line 12). In the case where the index and the indexed value are not equal
a transposition must be applied to both the state and permutation arrays (lines 8 and 9). The
elements to be transposed are: the element residing in the current index, and the element
indexed by this value in the permutation array.

After application of the swap(Array, int , int) procedure the algorithm checks if the value of
the current element is equals to its index (line 5). As before, if true the algorithm moves to
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the next index and if false another transposition must be applied. When the function reaches
the final index the permutation has been successfully applied as a series of transpositions.

Example 2. Let the state s = [5, 9, 2, 1, 3, 6] and the desired permutation of indices is p =
[5, 3, 2, 1, 0, 4].

• Starting from the initial position in the permutation vector, the index (0) is not equal
to the value it indexes (5). A transposition of the elements in positions 0 and 5 of the
state and permutation array is required. After application the element residing in index
5 has been placed in its final position.

p = [4, 3, 2, 1, 0, 5]
s = [6, 9, 2, 1, 3, 5]

• The function checks that the index (0) in the permutation vector is not equal to the
value it indexes (4). A transposition of the elements in positions 0 and 4 of the state
and permutation array is required. After application the element residing in index 4
has been placed in its final position.

p = [0, 3, 2, 1, 4, 5]
s = [3, 9, 2, 1, 6, 5]

• The function checks and the index (0) in the permutation vector is equal to the value it
indexes (0). The element residing in index 0 of the state array is in the correct position
and the algorithm moves to compare the next index.

• The function checks that the index (1) in the permutation array is not equal to the
value it indexes (3). A transposition of the elements in positions 1 and 3 of the state
and permutation vector is required. After application the element residing in index 3
has been placed in its final position.

p = [0, 1, 2, 3, 4, 5]
s = [3, 1, 2, 9, 6, 5]

• The function checks that the index (1) in the permutation array is equal to the value it
indexes (1). The element residing in index 1 of the state vector is in the correct position
and the algorithm moves to compare the next index.

• The procedure will terminate after checking all remaining permutation array indices
and concluding they equal the value of the element they index.

Upon termination it is clear that all elements in the state have been permuted to the correct
position by applying a series of transpositions. As each swap operation places at least one
component in the correct position, and the final swap places two components in the correct
position, the application of a permutation to a state requires no more than N–1 transpositions.
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1. Procedure apply(State original, Permutation permutation)
2. {
3. State result := State(original.length)
4. for (int i = 0; i < original.length; i++)
5. {
6. result[permutation[i]] := original[i]
7. }
8. return result
9.}

Figure 6.6: Application of a permutation directly to a state vector

Direct Application of a Permutation to a State

An alternative approach is to apply the permutation directly to a state. This approach is
illustrated in the apply(State, Permutation) procedure presented in Figure 6.6.

The apply(State, Permutation) procedure assumes that a permutation and a state are given
as an array of integers. The function generates a new result array with the same length as
the state array (line 3). Subsequently, the function iterates over all elements in the state
array (line 4) and copies the element directly to its final position in the copy array. The final
position of element i is determined by the value of the element i indexes in the permutation
array (line 6). The direct application of a permutation requires a single memory allocation
and n operations to copy each element to the correct position in the new result state.

Example 3. Let the state s = [5, 9, 2, 1, 3, 6] and the desired permutation of indices is p =
[5, 3, 2, 1, 0, 4].

• A new empty state array result = [null, null, null, null, null, null] is created with the
same length as state array s

• Index 0 indexes into the state array (5) and the permutation array (5). This determines
that the function copies the state component with value 5 into index 5 in the state array
result.

result = [null, null, null, null, null, 5]

• Index 1 indexes into the state array (9) and the permutation array (3). This determines
that the function copies the state component with value 9 into index 3 in the state array
result.

result = [null, null, null, 9, null, 5]
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• Index 2 indexes into the state array (2) and the permutation array (2). This determines
that the function copies the state component with value 2 into index 2 in the state array
result.

result = [null, null, 2, 9, null, 5]

• Index 3 indexes into the state array (1) and the permutation array (1). This determines
that the function copies the state component with value 1 into index 1 in the state array
result.

result = [null, 1, 2, 9, null, 5]

• Index 4 indexes into the state array (3) and the permutation array (0). This determines
that the function copies the state component with value 3 into index 0 in the state array
result.

result = [3, 1, 2, 9, null, 5]

• Index 4 indexes into the state array (6) and the permutation array (4). This determines
that the function copies the state component with value 6 into index 4 in the state array
result.

result = [3, 1, 2, 9, 6, 5]

Upon termination it is clear that all components in the state have been permuted to the correct
position by directly applying the permutation to the state array.

Comparision of Permutation Applications

Preliminary experiments indicated, that for sets of randomly generated states and permu-
tations, the direct application of elements becomes more efficient as the number of state
component increases. However, the number of components in a state exceeded 500 before
a statistically significant runtime difference was noted. This size of state is unrealistic in
model checking due to the state space explosions problem and in practice, there may be no
difference between the techniques. In Chapter 8 we repeat these experiments on a selection
of PSS specifications with elements generated form the specification symmetry group.



6.3. Full Enumeration as a Constraint Satisfaction Problem 104

6.3 Full Enumeration as a Constraint Satisfaction Problem

In this section we consider a novel approach to calculating min[s]G by mapping the problem
to a constraint satisfaction problem (CSP). This approach may yield runtime improvements
as min[s]G can be determined using search and propagation techniques common to the field
of constraint programming [90]. To begin, some basic definitions are introduced.

Definition. A constraint satisfaction problem consists of:
• a set of variables X = {x1, . . . , xn}.
• each variable xi has a finite domain Di of possible values.

• and a set of constraints restricting the values that variables can simultaneously take.

6.3.1 A Simple Mapping

From the definition, a CSP requires a set of variables each of which is associated with a
set of possible values. Given a state array of length n where n > 0 our mapping to a CSP
consists of a set of variables X = {x1, . . . , xn}. To determine the domain Di of variable xi,
all elements α ∈ G are examined. For every α(s) the state component residing in index i
(1 ≤ i ≤ n) is added to the domain Di of variable xi.

Example 4. Let the state s = [5, 9, 2, 1, 3, 6] and the group G contain the permutations [1,
0, 3, 2, 4, 5], [2, 1, 0, 3, 4, 5], [2, 3, 0, 1, 4, 5] and the identity permutation [0, 1, 2, 3, 4, 5].
Then the CSP contains the following set of variables and domains:

x0 = {2, 5, 9}, x1 = {1, 5, 9}, x2 = {1, 2, 5}, x3 = {1, 2, 5, 9}, x4 = {3}, x5 = {6}

Similarly, constraints are constructed by examining how elements in G act on the components
in a state s. If a permutation α ∈ G moves a component residing in position s[i] to position
α(s[i]) = s[j], then variable vj == s[i] under this permutation. This can be restated as
vj == α–1(s[j]).

It follows, that a permutation defines the values that variables may take. This information
can be used to construct a constraint stating, for all αi ∈ G (1 ≤ i ≤ |G|);

v0 == α–1
1 (s[0]) && v1 == α–1

1 (s[1]) && . . . && vn == α–1
1 (s[n])

v0 == α–1
2 (s[0]) && v1 == α–1

2 (s[1]) && . . . && vn == α–1
2 (s[n])

...
v0 == α–1

n (s[0]) && v1 == α–1
n (s[1]) && . . . && vn == α–1

n (s[n])
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Example 5. For a state s = [5, 9, 2, 1, 3, 6] and permutations [1, 0, 3, 2, 4, 5], [2, 1, 0, 3, 4, 5],
[2, 3, 0, 1, 4, 5] and [0, 1, 2, 3, 4, 5], the following constraint is created.

x0 == 9 && x1 == 5 && x2 == 1 && x3 == 2 && x4 == 3 && x5 == 6
x0 == 2 && x1 == 9 && x2 == 5 && x3 == 1 && x4 == 3 && x5 == 6
x0 == 2 && x1 == 1 && x2 == 5 && x3 == 9 && x4 == 3 && x5 == 6
x0 == 5 && x1 == 9 && x2 == 2 && x3 == 1 && x4 == 3 && x5 == 6

This constraint defines the set of values that variables can simultaneously take, and an as-
signment of variables that satisfy the constraint is equivalent to a state α(s). At this stage all
the elements required to map the calculation of S[G] into a CSP have been provided. A sim-
ple method of finding a solution to a CSP is depth-first search and in the field of constraint
programming this is called simple backtracking search. An outline of the algorithm is given
in Figure 6.7.

1. Select a variable that has not been assigned a value.
2. Assign it a value from its domain.
3. Test if the current partial solution satisfies all relevant constraints:

• if true, return to step 1.
• if false, choose another value from this variables domain; if there are no more

values, backtrack to a previous variable which still has values to be tried.

Figure 6.7: Outline of a simple backtracking search algorithm.

The backtracking search algorithm continues until all variable value assignments that satisfy
the set of constraints have been determined. These solutions can subsequently be compared
and the minimal lexicographical solution returned as the state min[s]G. For the variables and
domains given in Example 4 and the constraint calculated in Example 5, Figure 6.8 shows
the state space searched by the simple backtracking algorithm to provide all solutions of the
CSP.

6.3.2 Adding Further Constraints

As the ultimate goal is to calculate the state min[s]G, the variable v0 should never be assigned
any value other than the smallest value in its domain. This can be achieved by posting the
constraint

v1 = minimum(α–1
1 (vec1),α–1

2 (vec1) . . . α–1
n (vec1))
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2 //

��

2,1 //

��

2,1,5 // 2,1,5,9 // 2,1,5,9,3 // 2,1,5,9,3,6

2,5 //

��

2,5,1

2,9 // 2,9,1

��
2,9,5 // 2,9,5,1 // 2,9,5,1,3 // 2,9,5,1,3,6

5 //

��

5,1

��
5,9 // 5,9,1

��
5,9,2 // 5,9,2,1 // 5,9,2,1,3 // 5,9,2,1,3,6

9 // 9,1

��
9,5 // 9,5,1 //

��

9,5,1,2 // 9,5,1,2,3 // 9,5,1,2,3,6

9,5,2

Figure 6.8: The state space searched by the simple backtracking algorithm to provide all
solutions to the CSP. Where the value in the first position is assigned to variable x0, the value
in the second position is assigned to variable x1, . . .

or wiping all values, except the smallest, from the domain of v0.

For the variables and domains given in Example 4, the constraint calculated in Example 5
and when the domain of v0 has been modified to contain only the smallest value, Figure 6.9
show the state space searched by the simple backtracking algorithm. In this instance only
two solutions have to be compared to determine the lexicographical minimum state.

A problem with this simple update, is that a group G may not transpose the first component
to reside in an alternative position. In this instance the domain of v0 is a single value and
the size of the domain cannot be reduced. Therefore, the application of the update will not
reduce the required search effort. This problem can be solved by generalising the approach
to remove all values except the smallest from the first variable to have domain size greater
than one.
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2 // 2,1 //

��

2,1,5 // 2,1,5,9 // 2,1,5,9,3 // 2,1,5,9,3,6

2,5 //

��

2,5,1

2,9 // 2,9,1

��
2,9,5 // 2,9,5,1 // 2,9,5,1,3 // 2,9,5,1,3,6

Figure 6.9: The state space searched by the simple backtracking algorithm to provide all
solutions to the CSP. Where the value in the first position is assigned to variable x0, the value
in the second position is assigned to variable x1, . . .

As previously stated, only permutations that transpose state components updated during a
transition need be applied. This information can be incorporated into the CSP as follows. If
a component residing in position s[i] of the state array has been updated, then the constraint

vi 6= s[i]

requires any solution of the CSP to assign its current value to another variable. In other
words the component must be moved to a different position in the state.

If no valid solution is found, the current state must be the lexicographical minimum. In the
event that more than one component is updated, then for every updated component s[j], s[k]
. . . s[l] the following constraint is posted;

vk 6= s[k] || vj 6= s[j] || . . . || vl 6= s[l]

Therefore, at least one updated component must be moved to a different position in the state.
As before, if no valid solution is found the current state is the lexicographical minimum. In
Example 5 the lexicographical minimal solution was equivalent to the state [2, 1, 5, 9, 3, 6].
If a transition from this state updated component 2, creating state [2, 1, 7, 9, 3, 6], the CSP
would contain the following variables with domains;

x0 = {2}, x1 = {1, 7, 9}, x2 = {1, 2, 7}, x3 = {1, 2, 7, 9}, x4 = {3}, x5 = {6},

and constants;

• x0 == 9 && x1 == 7 && x2 == 1 && x3 == 2 && x4 == 3 && x5 == 6
x0 == 2 && x1 == 9 && x2 == 7 && x3 == 1 && x4 == 3 && x5 == 6
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x0 == 2 && x1 == 1 && x2 == 7 && x3 == 9 && x4 == 3 && x5 == 6
x0 == 7 && x1 == 9 && x2 == 2 && x3 == 1 && x4 == 3 && x5 == 6

• v2 6= 7

Figure 6.10 illustrates the state space searched by the simple backtracking algorithm to pro-
vide all solutions to the CSP. As no solution was found, the current state is the lexicographical
minimum.

2 // 2,1

��
2,9

Figure 6.10: The state space searched by the simple backtracking algorithm to provide all
solutions to the CSP. Where the value in the first position is assigned to variable x0, the value
in the second position is assigned to variable x1, . . .

6.4 A Representative Function for Large Groups

If a symmetry group G contains a large number of elements, full enumeration or strategies
based on this approach are no longer computationally feasible. This scenario requires the
use of a representative function that attempts to incrementally move a state towards the lexi-
cographical minimum using only a subset of element in G.

6.4.1 Local Search for Large Groups

Given a starting state s and a subset of elements in a group suitable for symmetry reduc-
tion, H ⊂ G. Figure 6.11 outlines a procedure that attempts to move a state towards the
lexicographical minimum.

The localSearch(State, Group) function operates by applying all available elements to the
current state and returning the minimal state from this set (line 6). This operation can be pro-
vided using the minimise(State, Group) function detailed in Figure 6.2. If a lexicographically
smaller state is calculated the operation is repeated using the new state. This continues until
the minimise(State, Group) function fails to return a state lexicographically smaller than the
current state (line 8).
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1. Procedure localSearch(State current, Group H)
2. {
3. State update := current;
4. do
5. {
6. current := update;
7. update := minimise(current, H)
8. } while (update 6= current)
9. return update
10.}

Figure 6.11: Local search of [s]G using elements in H ⊂ G.

Generating a Subset of Elements

Using GAP, a subset of element in a group G can be randomly generated and used to min-
imise the current state. However, all the generated elements are not equally likely to progress
a given state towards the lexicographical minimum. The logic behind this assertion is that an
element that transposes the two left most components in a state will make less progress than
an element that transposes a selection of components towards the left hand side of the state.

To justify this claim 100 elements were randomly generated from the group S10 and applied
to 100, 000 randomly generated states of length 10 using the localSearch(State, Group) func-
tion. During search the number of times the application of an element produced the update
state in line 7 of the function was tracked. Figure 6.12 provides an ordered plot showing how
many times a specific element was used.

It is clear that a small number of elements are used significantly more than the others. There-
fore, an improvement could potentially be made by replacing the less successful elements
with new ones as search progresses. Two approaches we consider to provide replacement
elements are:

• randomly select new elements from the group G.

• use the most successful elements to generate new elements.

We propose that after every ten thousand states, elements that produced a minimal state less
than the mean number of times are replaced. Replacing these elements with a new selection
of random elements is self explanatory and no further detail is provided.

In the second technique the remaining successful permutations are multiplied with random
elements from the group G until a total of a 100 elements are available. As these new
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Figure 6.12: Number of times an element is applied during local search.

elements contain some of the previously successful transpositions, it is hypothesised that
these elements will be better suited to mapping a state towards the lexicographical minimum.

To compare the two techniques, a set of 100 elements are created and both techniques are
applied to the same set of 1,000,000 randomly generated states. Upon termination both
techniques will have created a new set of 100 elements tailored to the problem instance.
Figure 6.13 provides an ordered plot showing how many times elements from both sets were
selected when applied to the set of 1,000,000 states.

While both techniques provide a more rounded set of elements compared to the initial set, it
is clear that using previously successful elements to generate new elements results in the most
general set of permutations. In this section we have focused on randomly generated instances
of the Constructive Orbit Problem (see Section 3.4), Chapter 8 covers the application of the
techniques to real models and shows that the more general sets produce smaller quotient
structures.

6.5 Exploiting The Structure of a Group

The previously presented techniques have been general and applicable for any group G.
However, information about the structure of G may allow specialised representative functions
to be designed that solve the COP faster than techniques based on full enumeration. We
now detail techniques that efficiently solve the COP when G is the fully symmetric group,
isomorphic to the fully symmetric group, a cyclic group or can be decomposed as an internal
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Figure 6.13: Comparing the number of times an element in the final set of 100 elements is
selected.

direct product or as an internal semi direct product.

6.5.1 Fully Symmetric Group

The first group we consider is the symmetric group of degree n which contains all permu-
tations of n symbols. In this instance the lexicographical minimum can be calculated by
sorting the state vector. As sorting can be performed in polynomial time an efficient solution
for the COP when G = Sn is known.

Example 6. For a system with four components, sorting equivalent states [3, 2, 1, 3] and [3,
3, 2, 1] yields the state [1, 2, 3, 3], which is clearly the smallest state in the orbit.

To improve upon this approach we introduce a new strategy which exploits the property that
components containing the same value after an update are in sorted order.

6.5.2 Exploiting Group Homomorphisms

For models that exhibit full symmetry between components, the smallest state in the orbit
can be efficiently computed using the techniques presented in Section 6.5.1. However, many
of the groups detailed in Chapter 4 and encountered in model checking are only isomorphic
to the symmetric group. In this instance the efficient approach outlined above cannot be
directly applied to a state.
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Consider the subgroup

H = {(1, 2)(4, 7)(5, 8)(6, 9), (2, 3)(7, 10)(8, 11)(9, 12)}

which permutes components 1, 2 and 3, with their linked blocks of components (see Fig-
ure 6.14). It is clear that H is isomorphic to S3, the symmetric group on 3 objects. Yet we
cannot compute the minimal representative of a state by sorting s since this is equivalent to
applying an element α ∈ S12 to s, which may not belong to the group H. Therefore, we
present an approach to efficiently solve the COP for groups isomorphic to the fully symmet-
ric group.

1

�� ����

2

�� ����

3

��   ~~
4 5 6 7 8 9 10 11 12

Figure 6.14: An example arrangment of component blocks.

A homomorphism between groups G1 and G2 has two important properties: it preserves the
binary operation of G1 and there is a one to one correspondence between the groups (see
Section 3.1.1). It follows that any action group G1 has on a state must be preserved by G2.

Theorem 6.1. If a homomorphism can be constructed between a Group G1 and G2 that
obeys a small number of restrictions, the lexicographical minimal state can be computed
without requiring the full enumeration of elements in G1. The set of restrictions follow:

1. Let the orbit of component x be denoted Gx, then ∀x ∈ S, |Gx| is the same.

2. Let n be the number components, then there are n/|Gx| distinct orbits.

3. G2 is the group S|Gx|.

4. Let Gi(1 ≤ i ≤ n/|Gx|) be a distinct orbit. Exactly one component from Gi is mapped
to a component in G2.

Proof of Theorem 6.1. Let G2 be the symmetric group Sn and G1 a group with y distinct
disjoint orbits Gi (1 ≤ i ≤ y). By restriction 4 only one component in Gi can be mapped to
a component of Sn. Therefore, all components that can be moved to the left most position in
s reside in separate component of Sn. Furthermore, by restrictions 2 and 3 all components in
Sn have one been mapped at most one component that can appear in the left most position.

Let Gi contain the component currently in the left most position of the state. A permutation
α ∈ Sn acts on s to permute one component in Gi to reside in the first position of the state.
The minimal state can be constructed by lexicographically sorting the components in Gi
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and applying an element α ∈ Sn to state s that provides this ordering of components. It
follows that for a group that is isomorphic to the symmetric group of size n, that meets our
restrictions, min[s]G can be calculated by sorting a set of n components and applying a single
element α ∈ G2.

It is easy to construct a mapping that meets our restrictions for a group isomorphic to Sn.
However, this does not guarantee that the mapping will be a homomorphism. To test if a
constructed mapping is a homomorphism we use GAP. It is important to note that testing
this property may be computationally inefficient and the literature provides no indication
of when poor performance may arise. In our implementation and testing, Chapter 8, the
performance was acceptable for groups commonly encountered during model checking.

Example 7. Recall group H given at the start of the section. Group H meets restriction 1 and
2 as it acts on a set of 12 components and has four distinct orbits of size 3. The 4 distinct
orbits are:

H1 = {1, 2, 3}
H2 = {4, 7, 10}
H3 = {5, 8, 11}
H4 = {6, 9, 12}.

It follows from restriction 3 that G2 is the symmetric group S3 and a mapping between the
groups that obeys restriction 4 is shown in Figure 6.15. The mapping has been tested using
GAP and is a homomorphism between H and S3.

For a state s = (6, 10, 3, 4, 5, 7, 8, 11, 9, 2, 1, 12) the components that can appear in the first
position of the state, indexed by orbit H1, are [6, 10, 3]. The lexicographical ordering is [3
,6, 10] and can be provided by the permutation (1, 2, 3) ∈ S3. Applying this permutation to
s results in s = (3, 6, 10, 2, 1, 12, 4, 5, 7, 8, 11, 9) which is verifiable as min[s]s3 . It is easy
to check that this state can be provided by the element (1, 2, 3)(4, 7, 10)(5, 8, 11)(6, 9, 12)
∈ H and using enumeration that min[s]H = (3, 6, 10, 2, 1, 12, 4, 5, 7, over other approaches
to probabilsitic symemtry reduction., 11, 9).

An added benefit of this technique is that when a new state is constructed, the minimum
representative need only be calculated if a component indexed by an orbit containing the left
most component has been updated.



6.5. Exploiting The Structure of a Group 114

1

��

��

2

��

��

3

>>

��

4

��

**5

��

// 1

��
6

��

44

2

��
7

��

44

3

``

8

��

99

9

��

==

10

BB

==

11

CC

BB

12

BB

DD

Figure 6.15: A mapping of components between groups that meets the set of restrictions.
One of the actions provided by G1 and G2 on their set of components is provided to show
the mapping is a homomorphism.

6.5.3 Cyclic Group

The elements of a cyclic group Cn act on a state by shifting all components to the left by a
certain distance. It follows that for a state acted upon by a cyclic permutation group, any one
of its components can be shifted to reside in the first position in the state. Furthermore, as all
components are shifted when applying a permutation, it will always require the application
of exactly N – 1 transpositions to calculate the new state.

As asserted, any component in the state can be shifted to occupy index 0. There is no need
to apply any permutation that does not shift a component with the smallest value to index 0.
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To identify the smallest component a simple algorithm is used to traverse the state and store
the set of indexes containing the smallest valued components, FigureZ6.16.

1.Procedure minElements(State original)
2.{
3. int min = original[0]
4. LinkedList result = null
5. for (int i = 0; i < original.length; i++)
6. {
7. if (original[i] = min)
8. add(result, i)
9. } elsif (original[i] < min)
10. result = null
11. add(result, i)
12. }
13. return result
14.}

Figure 6.16: An algorithm to compute the lexicographical minimal state when considering a
cylic group.

Once a set of indexes containing minimal components have been identified, a permutation
in Cn that shifts this component to index 0 can be applied. The resulting states are then
compared to determine which is the lexicographical minimum. In the worst case this could
still result in all elements in the cyclic group being applied to the state.

Example 8. For the state vector [1, 1, 1, 1] acted upon by the group C4 the algorithm will
return the set of all indices.

To prevent the need for the application of multiple elements from the cyclic group we add
some further restrictions. In other words, when multiple components in the state contain the
same value, we have to select a single one to be shifted to reside in position 0. This can be
achieved in part using the following restriction.

1. If consecutive components in the state vector contain the same value, then the compo-
nent at the start of the sequence will be selected as the minimal component.

Example 9. For the vector [2, 1, 1, 2] index 1 would contain the minimal component
to be shifted to position 0.

(a) For the purpose of this calculation the vector is treated as a cycle.

Example 10. For the vector [1, 1, 2, 1] index 3 would contain the minimal com-
ponent required to be shifted to position 0.
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(b) If all components in the state have the same value and the size of the cycle is the
same as the length of the state then the current state is the minimal representative.

However, even with this restriction the algorithm may still return multiple indexes. This
occurs if the state contains more than one sequence of minimal elements. Further restrictions
are therefore required.

Example 11. For the state [1, 1, 2, 1, 1, 3, 1, 1, 2] index 0, 3 and 6 would contain the minimal
components shifted to position 0 and compared.

1. If multiple minimal sequences are identified then return the index of the sequence with
the longest length.

Example 12. For the state [1, 2, 1, 1, 3, 1, 1, 2] index 3 and 6 would contain the mini-
mal element that would be shifted to position 0 and compared. This is an improvement
as index 0 is no longer checked.

2. When multiple indices are returned, it indicates that there are identical sequences of
identical length in the state. Let xi be the index of the component residing at the end
of a minimal sequence, then the components indexed by xi+1 are compared and the
index with the smallest component is returned. In the event that these two components
have the same value, the next two indices are continually compared until a minimal
component is found.

Example 13. For the vector [1, 2, 1, 1, 3, 1, 1, 2] index 5 would contain the minimal
components that would be shifted to position 0.

Example 14. For the vector [1, 1, 3, 4, 1, 1, 3, 5] index 0 would contain the minimal
component that would be shifted to position 0.

3. The only remaining case to consider is when the sequence of compared objects are
identical and the current components to be compared are in fact the first component
of the other sequence. In this instance more than one sequence is still viable and it is
irrelevant which index is returned.

Example 15. For the vector [1,1, 3, 4, 5 1, 1, 3, 4, 5] index 0 would contain the
minimal element that would be shifted to position 0.

By obeying these restrictions the application of only one permutation is required to map a
state to is minimum representative. However, the need for the application of this permutation
can be removed by a simple modification to the hashing function. This is covered in Chapter
8 where the implementation of the algorithms are discussed.
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6.5.4 Direct Product

It would be useful to start with a group G and break it down into a product of smaller groups.
When a group can be factored in a specific manner a representative state could be calculated
by applying elements from the smaller groups instead of the single larger group.

Definition. If H and K are groups, then their direct product, denoted by H×K, is the group
with elements all orders pairs (h, k) where h ∈ H and k ∈ K, and with operation

(h, k)(h′, k′) = (hh′, kk′).

The above definition shows how to multiply two groups together to form a single larger
group. However, we are interested in starting with a direct product and factoring it into a set
of smaller groups.

Theorem 6.2. Let G be a group with normal subgroups H and K. If HK = G and H∩K = 1,
then G ∼= H× K

If a group can be factored in accordance to Theorem 6.2 then it is hypothesised if G =
H1 × H2 × · · · × Hk then the min[s]G = min[. . .min[min[s]H1]H2 . . . ]Hk

Example 16. It is easy to show that the group K3 decomposes as the direct product K3 =
H1 × H2 × H3 where:

• K3 = {(1, 2)(3, 4)(5, 6)(7, 8), (1, 3)(2, 4)(5, 7)(6, 8), (1, 5)(2, 6)(3, 7)(4, 8)}
• H1 = {((1, 2)(3, 4)(5, 6)(7, 8)}
• H2 = {((1, 3)(2, 4)(5, 7)(6, 8)}
• H3 = {((1, 5)(2, 6)(3, 7)(4, 8)}.

Let s = (4, 3, 2, 4, 4, 5, 5, 1) and using enumeration we calculate the lexicographical minimal
state to be min[s]K3 = (1, 5, 5, 4, 4, 2, 3, 4). However, by independently considering the
subgroups min[min[min[s]Hi]Hj]Hk] = (3, 4, 4, 2, 5, 4, 1, 5) for any distinct i, j, k ∈ {1, 2,
3}.

This example illustrates that state s cannot be minimised by independently considering the
subgroups H1, H2 and H3, no matter the order of application. To proceed we examine how
the subgroups act on a state and attempt to identify an alternative representative that can
be calculated by the independent application of the subgroups. To achieve this requires the
introduction of further theorems and results from group theory.
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Theorem 6.3. If N C G, then the cosets of N in G form a group, denoted by G/N of order
[G : N]

As the internal direct product contains two normal subgroups, each can be used to form a
smaller group often referred to as a factor group. These factor groups can easily be con-
structed using Corollary 1.

Corollary 1. If N C G, then the function v : G → G/N is a surjective homomorphism with
kernel N.

Therefore, given a group G×H two subgroups of smaller order can be constructed: (G×H)/G
and (G × H)/H. To understand the structure of these groups and how they act on a state we
introduce two of the fundamental isomorphism theorems.

Theorem 6.4 (First Isomorphism Theorem). Let f : G→ H be a homomorphism with kernel
K. Then K is a normal subgroup of G and G/K ∼= imf.

The first isomorphism theorem shows there is no significant difference between a factor
group and a homomorphic image

Theorem 6.5 (Second Isomorphism Theorem). Let N and T be subgroups of G with N
normal. Then N ∪ T is normal in T and T/(N ∪ T) ∼= NT/N

The direct product contains two normal factor group and consequently;

Theorem 6.6. If ACH and BCK, then A×BCH×K and H×K/A×B ∼= (H/A)× (K/B)

It immediately follows if, N C H, then N× 1 C H× K and

Corollary 2. If G = H× K, then G/H× 1 ∼= G.

Corollary 2 asserts, given the group G×H, the groups (G×H)/G× 1 ∼= H and (G×H)/H×
1 ∼= G can be constructed. By the first isomorphism theorem these factor groups define
a homomorphism that collapses cosets with several elements into a single element. This
collapsing of elements partitions the set of state components into a set of mutual disjoint
component subsets. Where the components collapsed into each subset are those indexed by
cosets of the factor group. We refer to these disjoint subgroups as part of a partition.

Hence, (G × H)/G × 1 ∼= H permutes a partitions of components in state s defined by the
cosets of G and (G × H)/H × 1 ∼= G permutes a partitions of components in state s defined
by the cosets of G. Once the groups isomorphic to G or H sets an ordering of parts, no action
provided by the other group can alter this ordering.
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An Alternative Representative

Therefore, each subgroup partitions components in a state into a set of disjoint parts. Each
part consists of the set of components indexed by a coset that was collapsed into a single
element. A representative state could be calculated for every state in s[G×H], if subgroups
isomorphic to G and H could independently return the same ordering of parts. A simple and
effective way to lexicographically order parts is based on the sum of their components.

Here we note that components indexed by a part do not necessarily appear in consecutive
order in a state. As a result we define an ordering of parts based on the location of their left
most component. To illustrate, let a and b be parts, if a is ordered before part b then the left
most component indexed by part a appears before any component indexed by part b.

Example 17. Recall group K3, that decomposes as the direct product K3 = H1 × H2 × H3,
and state s = (4, 3, 2, 4, 4, 5, 5, 1).

Group H1 permutes two parts in state s. In Figure 6.17 the components in s indexed by the
part are highlighted by squares and components indexed by the second part by circles.

( 4 3 2 4 4 5 5 1 )

Figure 6.17: The partition of the components under the group H1

The sum of components in the “square” part is 15 while the sum of components in the “circle”
coset is 13. Using enumeration the lexicographical minimal part ordering for group H1 is
provided by state s = (3, 4, 4, 2, 5, 4, 1, 5).

Group H2 permutes two part in state s. In Figure 6.18 the components in s indexed by the
first part are highlighted by squares and components indexed by the second part by circles.

( 3 4 4 2 5 4 1 5 )

Figure 6.18: The partition of the components under the group H2

The sum of components in the “square” part is 16 while the sum of components in the “circle”
part is 12. Using enumeration the lexicographical minimal coset ordering for group H2 is
provided by state s = (4, 2, 3, 4, 1, 5, 5, 4).

The group H3 permutes two cosets in state s. In Figure 6.19 the components in state s
indexed by one coset are highlighted by squares and the the components indexed by the
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other in circles.

( 4 2 3 4 1 5 5 4 )

Figure 6.19: The partition of the components under the group H1

The sum of components in the “square” coset is 13 while the sum of components in the
“circle” coset is 15. Using enumeration the lexicographical minimal coset ordering for group
H3 is provided by state s = (1, 5, 5, 4, 4, 2, 3, 4).

Let cmin[s]G denote the lexicographical minimal coset ordered state in the orbit of state s
under group G. The example shows cmin[cmin[cmin[s]H3]H2]H1] = (1, 5, 5, 4, 4, 2, 3, 4)
and as required cmin[cmin[cmin[s]Hi]Hj]Hk] = (1, 5, 5, 4, 4, 2, 3, 4) for any distinct i, j, k ∈
{1, 2, 3}.

6.5.5 Semi Direct Product

In Section 6.5.4, we saw if G is the internal direct product of H and K, then a state representa-
tive could be efficiently computed. We now show a modification to calculate a representative
when the restriction of both subgroups being normal is lifted.

Definition. Let K be a (not necessarily normal) subgroup of G. Then a subgroup Q E G is a
compliment of K in G if K ∩ Q = 1 and KG = G

Definition. (Semi Direct Product) A group G is a semi direct product of K by Q, denoted by
G = K× Q, if K C G and K has a compliment Q1

∼= Q.

In what follows we denote elements of K by letters a, b, c in the first half of the alphabet, and
we denote elements of Q by letters x,y,z at the end of the alphabet. For elements x, y ∈ G,
x = a1z1 and y = a2z2 and it follows that xy = a1z1a2z2. If we were dealing with a direct
product, were elements commute, xy could be simply written as xy = a1a2z1z2. This was
one of the major reasons a representative can be computed from subgroups. An element xy
can always be reconstructed by applying elements of group K followed by Q. For our current
group if we tried to make the same swap of elements we get

xy = a1z1a2z–1
1 a–1

2 a2z1z2.

It is clear that z1z2 ∈ Q and in hope of applying a similar technique we must justify that
a1z1a2z–1

1 a–1
2 a2 ∈ K. By cancelling terms
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a1z1a2z–1
1 a–1

2 a2 = a1z1a2z–1
1

and since a1 ∈ K, a1z1a2z–1
1 ∈ K when z1a2z–1

1 ∈ K. Therefore, each element k of K gives
rise to an automorphism of H via conjugation:

µ(z) = zaz–1

So, the interaction of H and K is expressed by the homomorphism µ. If there is no inter-
action, the product is direct and the homomorphism is trivial. If, on the other hand, there
is interaction, the product is not direct, one of the two groups is not normal, they do not
commute with each other, and the homomorphism we have defined tells us exactly how the
group structure deviates from that of a direct product. With x = a1z1 and y = a2z2, as before
we have

xy = a1µz1(a2)z1z2

To formalise;

Lemma 6. If G is a semi direct product of K by Q, then there is a homomorphism θ : Q →
Aut(K), defined by θx = γx K; that is, for all x ∈ Q and a ∈ K,

θ1(a) = a and θx(θy(a)) = θxy(a)

Definition. Given a group Q and K and a homomorphism θ : Q → Aut(K), define G = KQ
to be the set of all orders pairs (a, x) ∈ X× Q equipped with the operation

(a, x)(b, y) = (aθx(b), xy)

Theorem 6.7. Given groups Q and K and a homomorphism θ : Q→ Aut(K), then G = KQ
is a semi direct product of K by Q that realises θ

Intuitively, realising θ is a way of describing how K is normal in G. Therefore, given a groups
isomorphic to G and K and a homomorphism θ : Q → Aut(K) a state can be representative
can be efficiently computed. In the worst case the representative calculation applies all ele-
ments of G, all elements of K and a single mapping to the state.
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6.5.6 Summary

In this chapter we present a selection of new techniques to efficiently compute equivalence
class representatives for certain classes of symmetry groups. We present enhancements that
improve the average runtime of exhaustive search and where enumeration is infeasible, we
consider a tailored local search algorithm. For symmetry groups possessing identifiable
structural properties we provide efficient techniques that do not require the exhaustive appli-
cation of all elements in the symmetry group . We suggest techniques for the fully symmetric
group, cyclic groups and groups that can be decomposed as an internal direct product or as
an internal semi direct product.



CHAPTER 7

Constructing the Probabilistic Model

In Chapter 4 we introduced the PSS language and with the presented semantics formally de-
fined how a specification P can be used to construct a DTMC or MDP. This was followed by
the introduction of the ECD where we established a correspondence between automorphisms
of an ECD generated from P and automorphisms of the probabilistic model constructible
from P . In addition, we proved that if the identified automorphisms met a small set of re-
strictions they were valid for symmetry reduction. In this Chapter we consider how to use P
and G to construct the probabilistic model directly from P .

As noted in Chapter 6, the construction of a quotient structure requires the use of a rep-
resentative function. For the discussion presented within this chapter we assume for any
state s ∈ S the representative function rep(s, G) always returns the same state in [s]G. For
convenience we denote this unique representative state as min[s]G.

Group G contains a set of permutations π : S → S which act on the state space while
preserving the transition function (see Section 3.2). To meet the definition of a quotient
DTMC (see Section 3.2.2) we require that P(π(s), π(t) = P(s, t) for all s, t ∈ S. In the case
of MDPs (see Section 3.2.3), for each s ∈ S and each distribution µ ∈ Steps(s), there must
be a distribution µ′ ∈ Steps(π(s)) such that µ′(π(s′)) = µ(s′) for all s′ ∈ S. Therefore, the
construction of a quotient DTMC and MDP can then be carried out in the following manner:

• For a DTMC (S, P) we build (SG, PG) and for each (min[s]G, min[t]G) ∈ SG
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PG(min[s]G, min[t]G) =
∑

t∈S|rep(t,G)=min[t]G

P(min[s]G, t) (7.1)

• For an MDP (S, Steps), the quotient model is (SG, StepsG). To meet this requirement
if min[s]G ∈ SG, then StepsG(min[s]G) contains a distribution µG if and only if there
exists µ ∈ Steps(min[s]G) such that for each min[t]G ∈ SG

µG(min[t]G)
∑

t∈S|rep(t,G)=min[t]G

µ(t) (7.2)

Constructing a probabilistic model in this manner results in a quotient model that is equiv-
alent to the original in the context of strong probabilistic bi simulation. In Section 7.1 we
detail an algorithm to construct the quotient probabilistic model directly from a PSS specifi-
cation. The algorithm makes use of two sets to traverse the state space and in Section 7.1.1
we consider several common implementations of the sets and assess their compatibility with
symmetry reduction techniques.

Finally, a PCTL formula made from a set of atomic propositions AP preserved by G performs
equivalently on the quotient DTMC and MDP. However, a user may desire to use a PCTL
formula where the set of atomic propositions AP are not preserved by G. In Section 7.2 we
address this issue by presenting a method to construct the smallest quotient model on which
a PCTL formula will perform equivalently.

7.1 Algorithm to Construct a Quotient Probabilistic Model

In this section we outline an algorithm to construct the quotient probabilistic model directly
from a PSS specification P . The algorithm is obtained by modifying graph traversal algo-
rithms commonly employed in model checking to explore the state space. Two of the most
common traversal algorithms are depth first search (DFS) and breadth first search (BFS) both
of which are based on the skeleton algorithm given in Figure 7.1.

As is common in the field of model checking the set R is implemented as a hash table and
U is either a stack or queue. If U is a stack then the algorithm performs a DFS traversal
of the state space and conversely, if U is a queue the algorithm performs a BFS traversal.
Intuitively the set R is the set of states that have been visited, while U keeps track of all
states that still have to be explored. Irrespective of the implementation of the set U, the
algorithm determines all states reachable from the starting state s0.

When a state s is removed from U, it is processed and all sub states in a single probabilistic
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1. List T := null
2. R := U := {rep(s0)}
3. While U 6= ∅
4. {
5. remove a state s from U
6. for each transition s→ s′
7. {
8. if s′ = error
9. {
10. stop and report error
11. }
12. if rep(s′, G) 6∈ R
13. {
14. add rep(s′, G) to R and U
15. }
16. add rep(s′, G) to T
17. }
18. storeTransitions(T)
19. }

Figure 7.1: Graph Reachability Analysis.

distribution are returned. If the algorithm is exploring a DTMC there is only one distribution
and consequently s is processed a single time. On the other hand, if the algorithm is exploring
an MDP, s may define multiple distributions. In this instance s is processed once for every
distribution it defines.

The function rep(t, G) is applied in turn to all sub states and the result, min[t]G, is stored in
a list T. In addition, if min[t]G is not in R then it is added to U to be explored in the future.
Once a representative state has been calculated for all sub states in a distribution, the function
storeTransition(List) is called with argument T, which has type List.

The storeTransition(List) removes a single state t from T and determines how many times a
state identical to t occurs in T. The matching occurrences are removed from T and the number
of matches are used to determine P(s, t), which is the calculation of (7.1) as required. The
calculation is repeated until T is empty. Furthermore, storeTransition(List) will be called
once for all probabilistic distributions defined by s, allowing for the calculation of (7.2).

Finally, the algorithm is guaranteed to terminate as each edge is taken only once. On termi-
nation, R contains all vertices that are reachable from s0 in the quotient graph.

Example 18. Figure 7.2a illustrates the DTMC constructible from the simple mutual ex-
clusion PSS specification given in Figure 4.2. The automorphism group G = {(1, 2)} was
calculated from the ECD associated with this specification (see Section 5.1.4) and it is easy
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to check that G is in fact the largest group valid for symmetry reduction. Using this infor-
mation the algorithm given in Figure 7.1 directly constructs the quotient DTMC presented
in Figure 7.2b.
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7.1.1 Implementation of Data Structures

As previously mentioned in the field of model checking the set R is implemented as a hash
table and U is either a stack or queue. Here we consider several common implementations
of the sets and assess their compatibility with symmetry reduction techniques.

Stack and Queue

In probabilistic model checking before any property can be checked, the full, or in our case
the quotient state space must be explored. When directly comparing the two traversal al-
gorithms, in terms of explicit state model checking, the DFS is more space efficient. On
average a DFS traversal requires less states to be held concurrently in memory.

In probabilistic model checking no benefit is gained by using a BFS to explore the state
space. The ability of a BFS to return the shortest path that violates a property does not
translate to the probabilistic domain. Therefore, we always choose to implement the set as a
stack.

The most common optimisation is to only store the state at the top of the stack in full. Every
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other state in the stack can be represented as a list detailing how it differs from the state stored
directly above it. This technique is called a ”state delta” and is routinely used in explicit state
model checkers. For the implementation of our algorithm in Chapter 8, we will implement
the set as a stack that uses state deltas to reduce its footprint in memory.

Hash Function

Hashing is a storage technique where data records are stored in a distributed manner over
a fixed address range. To retrieve a data record, a hashing function is used to compute
the address where the record may be located in memory. To achieve this behaviour a hash
function h accepts a parameter called a key k. The value h(k) is called a hash address and
indicates where a data record associated with key k may be located. A hash function h can
be defined

h : K→ {0, . . . , n}

which is not injective. Subsequently two distinct keys k and k′ may have the same hash
value, h(k) = h(k′).

Assuming a hash table contains a key k and a new key k′ is inserted where h(k) = h(k′), the
result is a hash collision and the key k′ must be stored in an alternative location as h(k′) is
occupied. A simple solution is to chain collided keys. This can be achieved by making each
element in the hash table the first node of a linked list containing collided keys. This is not
the only way to handle the key collision problem but in the context of model checking it is
an appropriate solution.

When using a chaining scheme, each record in a hash table requires r bytes to store and p
bytes to reference with a pointer. Therefore, the memory requirement for this scheme where
s is the number of states in the reachable state space and n is the size of the hash table is
given by the equation

Required Memory = (s× p) + ((r + p)× n)

Assuming a memory consumption of 1 KByte per state and a 64 bit addressing scheme, a
model of 1 million states would require approximately 1016MByte of storage space. Due to
these large memory requirements explicit state model checkers tend to provide this hashing
scheme as a user selected option and not as the default method. For our needs this simplistic
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scheme is not appropriate. In Chapter 8 we aim to analyse the viability of symmetry reduc-
tion in a probabilistic setting which requires models comprising of significantly more than
one million states. Therefore, a more space efficient hashing scheme must be considered.

A common scheme that provides a more space efficient approach is known as Bitstate hash-
ing. The key idea behind bit state hashing is to store a single bit that indicates if a state s has
been visited. Upon encountering a state s, if the value of the bit indexed by h(s) equals;

• 1, then state s may have been encountered.

• 0, then state s has not been encountered.

As the hash table no longer stores complete states, collisions cannot be resolved. Conse-
quently some states will be incorrectly dropped and in addition, their successor states will
not be explored if they are only reachable through the dropped state. To adequately guaran-
tee that a state space has been fully explored the probability of a collision occurring must be
small. Let n be the number of slots in the hash table, and as n/s→ 0 the number of conflicts
expected to occur tends to 0.

Therefore, to provide low collision rates, the hash table should be as large as possible even
though the majority of the slots will hold the value 0. This results in a waste of mem-
ory. Analysis has shown a hash table occupying 500 MByte of RAM would only allow the
exploration of approximately 29,032 states with a 0.9 probability that a collision has not oc-
curred [66]. While this scheme lifts the requirement of state storage, the memory required to
minimise conflicts to an acceptable level is infeasible.

A hashing scheme that attempts to alleviate this downside is Multiple Bit hashing, which
considers the application of k independent single bit hash functions. As before, a single bit
hash function calculates a position in the hash table that contains either a 0 or 1. However,
for a single function, h(s) = 1 does not indicate that state s may have been visited. In multi bit
hashing a state s may already have been encountered, if and only if for all k hash functions

H[h1(s)] = 1 ∧ H[h2(s)] = 1 ∧ · · · ∧ H[hk(s)] = 1.

As k hashing functions are applied to every state, the volume of wasted memory is lowered
and for an appropriate value of k the size of the hash table can be reduced. However, if k is
too large a value the hash table will quickly saturate, increasing the probability of collisions.
Conversely, if the value of k is too small, the hash table must be large in order to achieve a
low conflict probability.

Previous model checkers have used 2 and 20 independent hashing functions. However, anal-
ysis has shown for a modern computer architecture with a 64bit addressing scheme, the use
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of 30 hashing functions would be more appropriate. Under the suggested approach, a hash
table occupying 500 MByte of RAM would allow the exploration of 52.168 million states,
with a 0.9999 probability that a collision has not occurred [66].

This memory improvement is achieved at the cost of a substantially increased runtime. This
additional runtime results from the computation, comparison and toggling of multiple bit
positions per state. Symmetry reduction is already a CPU intensive operation and adding
the requirement of computing 30 hash functions for each state may lead to an unaccept-
able runtime. Even though this common hashing scheme has been implemented in several
model checkers, it may not be compatible with a model checker which provides symmetry
reduction.

Therefore, we examine the use of a hash compaction scheme that aims to simulate multi bit
hashing. In a hash compaction scheme each state s is mapped to a string of b bits by applying
a hash function h . The compressed state description of b bits is then hashed using a separate
function h′ and stored in the resultant location. Using this scheme two states si and sj can
produce a hash collision if their compressed state descriptions are equal i.e. h(si) = h(sj).
This will result in the identical descriptions being hashed to the same location in the table.
In cases where states collide on slots h′(h(si) = h′h((sj)), but h(si) 6= h(sj) a linked list of
chained state descriptions are used to resolve the conflict.

It is intuitively clear that this hash compaction scheme has a lower time complexity compared
to the 30 multiple bit scheme as only 2 hash functions are employed. On the other hand, b
bytes of memory are now required for every slot in the hash table. Fortunately, analysis of
this hashing scheme has shown that a hash table occupying 1024 MByte of RAM, with a
state descriptor of 9 bytes, would allow the exploration of approximately 97 million states
with a 0.9999 probability that a collision has not occurred.

We believe hash compaction is an appropriate scheme to be paired with a model checker that
provides symmetry reduction capabilities. While more advanced schemes could be consid-
ered, hash compaction will allow models in excess of 100 million states to be constructed
while not negatively impacting the runtime of the reduction techniques detailed in Chapter 6.
This enables us to draw informed conclusions about the viability of symmetry reduction in
the probabilistic domain.

7.2 PCTL Model Checking

Once a quotient probabilistic modelMG has been constructed using the algorithm given in
Figure 7.1 and if a PCTL formula φ is invariant with respect to G thenMG and φ can be used
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for probabilistic model checking. The result will be identical to that obtained by applying
probabilistic model checking toM and φ (see Section 3.2).

In Section 2.3.4 the syntax and semantics of PCTL were covered and all expressible prop-
erties were assertions that returned “yes” or “no” answers. An extension to PCTL, imple-
mented in the PRISM model checker [69], allows properties to take the form P= ?[ψ] that
returns the probability that some behaviour of a model is observed. We introduce this exten-
sions here as it adds clarity to the proceeding examples.

Consider the DTMC constructed from the two process mutual exclusion specification, Fig-
ure 7.2a. A simple PCTL property suitable for probabilistic model checking is P =?[G≤3

x = 3] which determines the probability that within 3 time steps process 1 will have been
in a critical state. Using probabilistic model checking the property is satisfied with 0.375
probability. A second PCTL formula P =?[G≤3 x = 3 & y = 3] determines the probability
that within 3 time steps process 1 or 2 will have been in a critical state. Probabilistic model
checking gives a 0.75 probability that the property will be satisfied.

Now consider the quotient DTMC constructed from the same specification, Figure 7.2b.
The property P =?[G≤3 x = 3] is not satisfied by any path in the quotient probabilistic
model. On the other hand, the property P =?[G≤3 x = 3 & y = 3] is satisfied with 0.75
probability, the same as in the unreduced probabilistic model. The key difference between
the two properties is that property one is not invariant under the group G used to construct
the quotient probabilistic model.

7.2.1 Determining if a PCTL Formula is Invariant Under a Group G

As we are concerned with providing an automated approach to symmetry reduction, the user
cannot be expected to provide a PCTL formula compatible with the quotient model. To check
if a formula is appropriate we introduce the notion of equivalence between PCTL formulas.
Two PCTL formula φ1 and φ2 are equivalent, denoted φ1 ≡ φ2, if they are the same up to
rearrangement of atoms in a maximal propositional sub formula. This requires we check that
for all α ∈ G, α(φ) ≡ φ. If this is true the formula φ can be posed to a quotient structure
created using the group G.

Action of G on φ

Group G is Aut(ECD(P)) and in Section 5.2.2 the action that an element α ∈ Aut(ECD(P))
has on the set of atomic propositions in a state was defined. As a PCTL formula is a set
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of state and path formula over a set of atoms (see Section 2.5.3), the formula α(φ) can be
constructed from φ by application of the rules given in Section 5.2.2.

7.2.2 Largest Valid Subgroup

If a PCTL formula φ is not appropriate for model checking using the quotient probabilistic
model, it may be invariant under a group H that is a subset of G. In other words (α(φ) ≡ φ)
for a set of elements α ∈ H ⊂ G and the group H can be used to construct a quotient structure
in which φ holds.

While H is valid for reduction it may not be the largest group valid in both the specification
and φ. Starting with the valid subgroup H the algorithm given in Figure 7.3 computes the
largest valid subgroup. The algorithm was developed to calculate the largest valid symmetry
in a Promela-lite specification and was implemented in the SymmExtactor tool [38]. Our
only modification appears on line 7 where we check the validity of the element against a
PSS specification and the given PCTL formula.

1. X := generators of Aut(ECD(P))
2. H := 〈{α ∈ X : α(P) ≡ P}〉
3. U := representatives of right cosets of H in Aut(ECD(P)) except H
4. while U 6= ∅
5. {
6. U := U\{α}
7. if (α(P) ≡ P && α(φ) ≡ φ)
8. {
9 H := 〈H⋃{α}
10. if |Aut(ECD(P))| / |H| < |U|
11. {
12. U := representatives of right cosets of H in Aut(ECD(P)) except H
13. }
14. }
15. }

Figure 7.3: Algorithm to calculate the largest valid subgroup.

The algorithm starts with a known valid subgroup H, and adds valid coset representatives,
computed using GAP, to the generators of H to obtain successively larger valid subgroup.
Once all coset representatives of the the group H have been checked the largest valid set will
have been determined.

It will often be the case that the user wishes to run multiple PCTL formulas in succession
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without reconstructing a probabilistic model. If this is the case the largest group that is
invariant under all formula and the specification must be calculated and used to construct
a quotient chain. This can be achieved using the Algorithm in Figure 7.3 to calculate the
largest valid group obtained from the specification against the first PCTL formula. The
resultant group can then be used to find the subgroup with respect to the next formula and so
on until the algorithm has been run against all formulas.

7.3 Summary

In this chapter we have combined our presented techniques to construct a smaller quotient
model directly from a probabilistic specification. In addition, we have ensured that the re-
duced model will be compatible with a set of PCTL formula when probabilistic model check-
ing is applied.



CHAPTER 8

Results and Comparison

In this chapter we describe the implementation of the Probabilistic Symmetric Systems sym-
metry reduction tool which we have developed. The PSS tool accepts two inputs: a PSS
specification (introduced in Chapter 4) and a set of PCTL properties. Using the automated
symmetry detection techniques detailed in Chapter 5, the strategies presented in Chapter 6
and the exploration algorithm of Chapter 7, the quotient probabilistic model is constructed.

An overview of the PSS tool implementation is provided in Section 8.1 and we discuss how
it integrates with GAP [51], bliss [62] and PRISM [69] to provide an automated approach
to probabilistic symmetry reduction. Section 8.2 focuses on the efficient implementation of
automated symmetry detection using the extended channel diagram techniques of Chapter 5.
In Section 8.3 we detail the implementation of the techniques described in Chapter 6 and
where appropriate provide experimental results to highlight their effectiveness. Finally, we
present experimental results which demonstrate how our techniques perform on a varied
selection of PSS specifications and compare them to other probabilistic symmetry reduction
techniques. All specification and properties used within this chapter, as well as source code
for a preliminary versions of our tool, can be found at [88].
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8.1 An Overview of the PSS Symmetry Reduction Tool

The PSS symmetry reduction tool is implemented primarily in the JAVA programming lan-
guage and interfaces with a selection of tools written in C++. An overview of the PSS sym-
metry reduction tools architecture and how it integrates with various other tools is illustrated
in Figure 8.1.

PSS
Specification

��

bliss 00
Symmetry
Detection

��

00
pp

GAP
pp

Probabilistic
Model

// PRISM

Figure 8.1: An overview of the PSS symmetry reduction tool’s architecture.

When a PSS specification P is passed as a command line argument, the specifications syntax
is checked for conformity against the PSS BNF given in Section 4.2.2 and its variables type
checked. The tokenizer, parser and abstract syntax tree representation of the input specifi-
cation required to check these restrictions were created with the aid of ANTLR [84]. These
are the only restrictions checked at compile time. If a PSS specification contains a command
with no associated rule (see Sections 4.2.5 – 4.2.7), the error will not be revealed until the
command is executed at runtime.

For a specification P that passes the compile time checks, the PSS tool extracts the extended
channel diagram ECD(P) and calculates the largest valid subgroup G ≤ Aut(ECD(P)) with
respect to P . The set of PCTL formula given as input is checked for invariance under G and
formulas that did not pass the test are used in conjunction with G to compute a new group
H ⊂ G that all PCTL formula are invariant under. The resultant group H is the largest group
valid for symmetry reduction with respect to P and the set of PCTL formula.

The structural properties of group H are analysed using GAP [51], which is a system for
computational discrete algebra, with particular emphasis on Computational Group Theory.
The results of the analysis determine which representative function will be selected. Once
the implementation of the rep(s, H) function has been finalised, the quotient state space is
constructed. Additionally, during exploration a flat file description of the probabilistic model
is generated. This flat file description and the set of PCTL formula are accepted as input
by the PRISM model checker [69] and using its explicit-state probabilistic model checking
library, implemented using sparse matrix data structures, probabilistic model checking is
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performed.

To allow the effectiveness of our techniques to be determined, the PSS symmetry reduction
tool can be forced to construct the unreduced probabilistic model associated with specifica-
tion P . In fact, any group G can be provided as input for symmetry reduction bypassing
the automated detection process. This may be desirable when the group G is known from a
previous calculation or an expert user has manually identified a larger symmetry that our tool
did not detect. Finally, the function rep(s, G) can be manually selected to facilitate a direct
comparison of techniques.

8.2 An Overview of Automated Symmetry Detection

Our automated symmetry detection technique requires the abstract syntax tree representa-
tion of the specification and the types of all channels, variables and processes in the spec-
ification. The extended channel diagram ECD(P) of specification P is extracted using the
algorithm given in Figure 5.11 and its automorphisms are calculated using bliss [62], an
open source tool for computing automorphism groups and canonical forms of graphs. If any
of the automorphisms are not valid with respect to P , the algorithm given in Section 5.3.2
re-colours ECD(P) and bliss[62] computes the automorphisms of the updated graph. The
result, Aut(ECD(P)) is the largest group valid for symmetry reduction with respect to spec-
ification P .

This automatic symmetry detection process is summarised in Figure 8.2 and in the remainder
of the section we discuss various aspects of the technique’s implementation.

Figure 8.2: The automated symmetry detection process.
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8.2.1 Computing Graph Automorphisms

A number of open source tools that calculate graph automorphism were considered for use in
our implementation. The three candidate tools were bliss [62], nauty [74], and saucy [27]. In
preliminary experiments, for the size and type of graphs we consider, no tool has a runtime
advantage. We ultimately selected bliss as it provides a Java language wrapper for its C++
interface. As a result, bliss was the easiest tool to program with and integrate into our Java
based symmetry reduction tool.

While the Java wrapper is more convenient to use than the C++ interface, it is not suited for
performance critical software. However, the graphs we present to bliss are not computation-
ally challenging and no impact on runtime performance was noted.

8.2.2 Checking the Validity of an Element

To check the validity of an element we must determine if α(P) ≡ P . The implementation of
this check requires the application of an element α to P and the ability to determine if two
specifications are equivalent.

To apply an element we create a copy of the abstract syntax tree representation of specifica-
tion P , which we denote P ′. The specification α(P ′) is obtained by performing an in order
traversal of the abstract syntax tree and replacing every channel name c and global variable
name x with α(c) and α(x) respectively. If val ∈ {1, . . . , n} is being assigned or compared to
a pid variable it is replaced by α(val). Finally α acts on the order of statements that appear in
the Initial process with a statement that appears in position i being moved to position α(i).

Once the specification α(P ′) has been obtained, checking whether α(P ′) ≡ P involves a
second in order traversal over both specification. Each specification is normalised into a
predictable form, by lexicographically sorting the operands in commutative operators, the
order of updates in a command and the order of statements in the Initial process. If after
normalisation α(P ′) ≡ P , element α is valid for symmetry reduction.

8.2.3 Calculating the Largest Valid Symmetry

In order to compute the largest subgroup of Aut(ECD(P)) valid for symmetry reduction
the algorithm given Section 5.3.2 is used. The algorithm uses bliss [62] to calculate graph
automorphisms and the implementation discussed in Section 8.2.2 to check the validity of
elements.
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A key part of the algorithm is the selection of an element in Aut(ECD(P)) that permutes
two process vertices. The simplest way to achieve this is to search through all the elements
in Aut(ECD(P)) until an element that performs the required permutation is identified. This
procedure is inefficient as it requires multiple searches of Aut(ECD(P)). Therefore, we
identify all vertices that a single process vertex must be permuted with and locate a set of
elements to perform the permutations in a single search of Aut(ECD(P)).

To determine if a set of PCTL formulas is invariant under the largest valid symmetry calcu-
lated from the specification, we use an implementation of the algorithm given in Figure 7.3.
We do not provide experimental results for this algorithm as its behaviour is well docu-
mented [37]. For our purpose, if the PCTL formulas are invariant under a group that shares
the majority of generators with the group calculated from the specification, the overhead of
the algorithm is negligible.

8.2.4 Experimental Results

We now present experimental data gathered from the application of our symmetry detection
techniques to a variety of probabilistic specifications. In addition, we extracted channel di-
agrams from each specification so any runtime costs incurred by our extensions could be
viewed. All experiments were conducted using a PC with a 2.4GHz Intel Core 2 Duo pro-
cessor and 8Gb of main memory, however, the experiments were restricted to running on
a single core. The experiments considered a simple mutual exclusion, dining philosophers,
resource allocator, three-tiered architecture and a network infection specification. Further-
more, the experiments were performed on several configurations of each specification. The
results are presented in Table 8.1

The simple mutual exclusion and dining philosopher specifications are based on the skeleton
PSS code presented in Appendix A.1 and Appendix A.2 respectively. For varying configu-
rations of the specification, n denotes the number of symmetric processes. The ECD for a
simple mutual exclusion specification where n = 2 was shown in Figure 5.6 and for a n = 3
dinning philosopher specification the associated ECD was shown in Figure 5.8.

The resource allocator specifications are based on the skeleton PSS code presented in Ap-
pendix A.5. For varying configurations of the specification, we give sets of processes that
share the same priority level and a final set denoting processes that can independently share
the resource. For example, the configuration {1, 2, 3}{4, 5, 6}{7, 8, 9}{} indicates a re-
source allocator specification with no sharing and three priority levels. The ECD of a re-
source allocator specification with configuration {1, 2, 3, 4, 5, 6, 7, 8, 9}{4, 5, 6} was shown
in Figure 5.10.
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The three-tiered architecture specifications are based on the skeleton PSS code presented in
Appendix A.6. For varying configurations of the specification, we present a list of numbers
indicating how many client processes are connected to a single server process. The con-
figuration 5–5–5 indicates a three-tiered architecture with 3 servers and 15 clients, where 5
clients are connected to each server.

Finally, network infection specifications are based on the skeleton PSS code presented in
Appendix A.3. For varying specification configurations, n×n denotes the layout of computer
processes in the network grid. The ECD of a specification with configuration 3×3 was shown
in Figure 5.5.

C(P) ECD(P)
Configuration P |Aut(C(P))| |G| |H| bliss largest |Aut(ECD(P))| |G| |H| bliss largest
Simple Mutual Exclusion
5 120 120 120 0.01 0.01 120 120 120 0.01 0.01
10 3.6× 106 3.6× 106 3.6× 106 0.01 0.1 3.6× 106 3.6× 106 3.6× 106 0.01 0.1
20 2.4× 1018 2.4× 1018 2.4× 1018 0.01 0.36 2.4× 1018 2.4× 1018 2.4× 1018 0.01 0.38
40 8.1× 1037 8.1× 1037 8.1× 1037 0.01 0.94 8.1× 1037 8.1× 1037 8.1× 1037 0.01 0.95
Dinning Philosophers
5 120 120 120 0.03 0.05 120 120 120 0.03 0.05
10 3.6× 106 3.6× 106 3.6× 106 0.03 0.17 3.6× 106 3.6× 106 3.6× 106 0.03 0.24
20 2.4× 1018 2.4× 1018 2.4× 1018 0.04 0.44 2.4× 1018 2.4× 1018 2.4× 1018 0.03 0.64
40 8.1× 1037 8.1× 1037 8.1× 1037 0.04 1.20 8.1× 1037 8.1× 1037 8.1× 1037 0.04 1.85
Three Tiered Architecture
2–2–2 48 48 48 0.01 0.04 48 48 48 0.01 0.04
3–3–3 1296 1296 1296 0.02 0.05 1296 1296 1296 0.02 0.05
4–4–4 82944 82944 82944 0.02 0.09 82944 82944 82944 0.02 0.09
5–5–5 2.0× 107 2.0× 107 2.0× 107 0.02 0.13 2.0× 107 2.0× 107 2.0× 107 0.02 0.13
5–5–4–4–3–3 2.3× 108 2.3× 108 2.3× 108 0.05 0.28 2.3× 108 2.3× 108 2.3× 108 0.05 0.38
5–5–5–5–5 2.9× 1011 2.9× 1011 2.9× 1011 0.07 0.72 2.9× 1011 2.9× 1011 2.9× 1011 0.07 1.15
Resource Allocator
{1,2,3}{4,5,6}{7,8,9}{} 362880 1296 1296 0.02 12.33 362880 1296 1296 0.02 12.67
{1,2}{3,4}{5,6}{7,8}{9}{} 326880 384 384 0.02 15.16 326880 384 384 0.02 15.14
{1}{2}{3}{4}{5}{6}{7}{8}{9}{} 362880 0 0 0.00 36.52 362880 0 0 0.00 36.10
{1,3,5,7,9}{2,4,6,8,10}{} 3.6× 106 0 14400 0.04 21.65 3.6× 106 0 14400 0.04 21.73
{1,2,3}{4,5,6}{7,8,9}{4,5,6} 362880 4 108 0.02 13.05 2160 108 108 0.01 4.96
{1,2,3}{4,5,6}{7,8,9}{2,5,8} 362880 0 8 0.02 16.21 2160 8 8 0.01 8.99
Network Infection
3× 3 4 4 4 0.01 0.01 4 4 4 0.01 0.01
4× 4 4 4 4 0.02 0.01 4 4 4 0.01 0.01
5× 5 4 4 4 0.03 0.02 4 4 4 0.02 0.02

Table 8.1: Experimental results showing that automated symmetry detection can be effi-
ciently implemented and that our data detection extensions do not result in a significant
computational overheard. Table headings provide the following measurements:
•••••••• Configuration – The specification from which the rows results are generated.
• |Aut(C(P))| – The size of the automorphism group of the channel diagram associated

with configuration P .
• |Aut(ECD(P))| – The size of the automorphism group of the extended channel diagram

associated with configuration P .
• |G| – The size of the subgroup generated by valid generators of either Aut(ECD(P))

or Aut(C(P)).
• |H| – The size of the largest valid subgroup of Aut(ECD(P)) or Aut(C(P)).
• bliss – The time taken in seconds for bliss to compute Aut(ECD(P)) or Aut(C(P)).
• largest – The time taken in seconds to compute |H| using our algorithm.

From Table 8.1, all configurations of the mutual exclusion specification highlight the effi-
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ciency of both automated detection techniques, when all generators are valid, irrespective of
specification size. For this family of specifications our data detection extensions are equally
efficient compared to channel diagrams and no impact on runtime is observed.

Configurations of the dining philosopher specification reveal a similar result. However, a
small increase in runtime is observed for calculation of the largest group valid for symmetry
reduction when using ECD(P). As the order of ECD(P) and C(P) are equal for all configu-
rations, the time taken to apply an element of ECD(P) must be measurably longer. Despite
this, the data extensions are still efficient and in this instance will provide greater levels of
reduction. In practice, for specifications that include data symmetries the extensions will pro-
vide greater levels of reduction. Nevertheless, it is possible to write contrived specifications
where this is not the case.

Configurations of the three-tiered architecture provide results for the application of our tech-
nique to specifications that do not exhibit full symmetry between processes. The results
confirm that our extensions can be efficiently applied when all generators of Aut(ECD(P))
are valid, irrespective of the type of symmetry exhibited by the specification. As before, a
small increase in runtime is incurred by our extensions when calculating the largest group
valid for symmetry reduction. However, even for the largest 5–5–5–5–5 configuration the
increased run time is negligible and the data extensions will provide more reduction.

For all configurations of the resource allocator specification, the order of G is less than the
order of Aut(ECD(P)) or Aut(C(P)), indicating that a re-colouring of the graph was required.
As asserted, the run time of the re-colouring algorithm (see Section 5.3.2) is linked with the
level of symmetry exhibited in the specification. As the level of symmetry is reduced over
the first 3 configurations the run time of the algorithm increases. However, the runtime of
the algorithm is acceptable and not increased by our data detection extensions. This result
is expected as these examples do not contain resource sharing, which is provided by global
variables.

A disparity between the order of ECD(P) and C(P) is provided by the final two configu-
rations. As the inclusion of data symmetries can only restrict the number of graph auto-
morphisms, the search effort required by our algorithm is reduced. Therefore, we find that
computing the largest valid symmetry is markedly quicker in the instance that out extensions
more accurately captured the actual symmetries present in the specification.

Finally the results given in network inspection reveal that increasing the size of a specifi-
cation does not necessarily increase the number of automorphisms in the captured group.
Nevertheless, the results reiterate the previous findings. Our automated approach to captur-
ing data and component symmetries can be efficiently applied to a probabilistic specification
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language. When compared to the original channel diagram approach, in the worst case a
small increase in runtime is observed. However, the small increase in runtime is justified by
a potential increase in state space reduction.

8.3 Computing State Representatives Experiments

In Chapter 6 the representative functions we proposed assumed that state components did
not hold references to other components. However, the PSS language supports referencing
through use of a pid variable. The inclusion of component referencing does not invalidate
the techniques presented in Chapter 6. However, when applied to a state generated from a
PSS specification, the returned state may not be the lexicographical minimum. To alleviate
this problem, we provide exact symmetry reduction by implementing the solution used in the
TopSPIN [38] symmetry reduction package.

Let I = {1, 2, . . . , n} be a set of component identifiers and assume a component can be split
into two disjoint sections. Using terminology adapted from SymmSpin [13] we refer to the
sections as either a control or reference section. A control section is comprised from the
values of local variables which are not references to other components and can be abstractly
represented as a single integer (see Section 6.1). Conversely, a reference section is comprised
from the value of local variables which reference other components i.e. pid values in the PSS
language. Hence, the set of control sections are identical to a model of computation without
references (see Section 6.1) and can be represented as an array of integers.

It follows that we can apply our representative strategy to control sections of a state and
obtain a state representative. In this representative state, the relative ordering of components
with equally valued control sections is irrelevant. However, these components may have
reference sections with different values. Therefore, to guarantee the representative function
returns the lexicographical minimum state, we must consider all orderings of components
with equally valued control sections. From this set of control equivalent states, we return the
lexicographical minimum with respect to reference sections.

The permutations required to generate the set of control equivalent states are obtained using
GAP. The set of elements are applied via enumeration and the lexicographical minimum state
with respect to reference sections is returned as the representative. In the remainder of this
section we present experiment data on the techniques described in Chapter 6 to assess their
effectiveness when applied to a model specification.
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8.3.1 Application of an Element

In Section 6.2.1 we detailed two strategies for applying a permutation α to a state s: as a
series of transpositions, or as a single direct application. Preliminary experiments indicated,
for sets of randomly generated states and permutations, the direct application of permutations
becomes more efficient as the number of state components increase.

To repeat the comparison in a realistic setting we use a basic full enumeration algorithm (see
Section 6.2) to explore the quotient state space associated with a selection of PSS specifi-
cations and configurations. The selected specifications are mutual exclusion, resource allo-
cator and three-tiered architecture, as each exhibits a distinct type of symmetry. The dining
philosopher specification is omitted as the symmetry it exhibits is almost identical to that
of the mutual exclusion specification and the results will be similar. In addition, results for
the network infection specification are not provided, as irrespective of configuration only 4
permutations are applied to each state.

To conduct the experiment we explore the quotient state space associated with each spec-
ification twice. The first time applying each element used by the enumeration algorithm
directly to a state, and the second time applying each element as a series of transpositions.
The time taken to explore the quotient state space using both techniques is provided in Ta-
ble 8.2. Verification attempts which exceed available resources, or do not terminate within
12 hours are indicated by -.

From Table 8.2, only for the smallest mutual exclusion configurations are the exploration
times similar. For all other models the direct application of permutations provides a consis-
tent slight increase in speed. The results suggest that the direct application of permutations is
a better approach, and for all proceeding experiments we apply permutations in this manner.
However, these results may be implementation specific and cannot be generalised. Never-
theless, they reveal that the application of a permutation as a series of transpositions cannot
be assumed as faster as it requires a maximum of n – 1 operations.

8.3.2 Enumeration

In Section 6.2 and Section 6.3 we considered two representative functions based on a full
enumeration strategy. The first representative function attempted to narrow the set of permu-
tations applied to each state and the second mapped the calculation to a constraint satisfaction
problem.

To provide a comparison between these representative functions, a base line time is set using
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Configuration States |H| Direct Transposition
Mutual Exclusion
5 12 120 0.10 0.10
10 22 3.6× 106 11364 12672
15 - 3.0× 1012 - -
20 - 2.4× 1018 - -
Resource Allocator
{1,2,3}{4,5,6}{} 1584 36 8.01 8.14
{1,3,5,7}{2,4,6,8}{} 3947 576 319 347
{1,2,3,4,5}{6,7,8,9,10}{} 8311 14400 15009 16511
Three-tiered Architecture
2–2–2 12884 48 89 90
3–3–3 48,737 1296 8867 8965
4–4–4 - 82944 - -
5–5–5 - 2.0× 107 - -

Table 8.2: Experimental results showing the direct application of permutations to a state pro-
vide a consistent slight increase in speed. Table headings give the following measurements:

•••••• Configuration – The specification from which the rows results are generated.
• States – The number of states in the quotient state space.
• |H| – The size of the largest group valid for symmetry reduction
• Direct – The time in seconds taken to generate the quotient state space when directly

applying permutations.
• Transposition – The time in seconds taken to generate the quotient state space when

applying permutations as a series of transpositions.

the basic full enumeration algorithm to explore the quotient state space associated with a
selection of PSS specifications P . The selected specifications are mutual exclusion, resource
allocator and three-tiered architecture, as each exhibits a distinct type of symmetry. Subse-
quently, we explore each quotient state space using the restriction of elements and the CSP
mapping to provide comparable times. The findings of the experimental results are provided
in Table 8.3. Verification attempts which exceed available resources, or do not terminate
within 12 hours, are indicated by -.

For configurations of the simple mutual exclusion model we observe that attempting to nar-
row the set of applied elements is a valid strategy that improves runtime by a constant factor.
A similar result is seen in the resource allocator model, however, as we alter configurations
to reduce the size of |H|, the runtime improvements rapidly diminish. For configurations of
the three-tiered architecture model, no runtime improvement is provided. The results sug-
gest that attempting to narrow the set of elements is profitable when the model exhibits full
symmetry between components. However, for models with this property a more efficient
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Configuration States |H| Direct Restrict CSP
Mutual Exclusion
5 12 120 0.10 0.7 0.16
10 22 3.6× 106 11364 8684 8517
15 - - - - -
20 - - - - -
Resource Allocator
{1,2,3}{4,5,6}{} 1584 36 8.01 7.61 7.59
{1,3,5,7}{2,4,6,8}{} 3947 576 319 255 211
{1,2,3,4,5}{6,7,8,9,10}{} 8311 14400 15009 11256 10373
Three-tiered Architecture
2–2–2 12884 48 89 89 81
3–3–3 48737 1296 8867 8867 8672
4–4–4 - 82944 - - -
5–5–5 - 2.0× 107 - - -

Table 8.3: Experimental results showing that the Restrict and CSP representative calculation
offer slight runtime improvements. Table headings give the following measurements:
••••••• Configuration – The specification from which the rows results are generated.
• States – The number of states in the quotient state space.
• |H| – The size of the largest group valid for symmetry reduction
• Direct – The time in seconds taken to generate the quotient state space when directly

applying permutations.
• Restrict – The time in seconds taken to generate the quotient state space when directly

applying a potentially narrowed set of permutations.
• CSP – The time in seconds taken to generate the quotient state space when applying

permutations as a CSP.

representative function can normally be generated (see Section 6.5.2).

In addition, our novel approach to solving full enumeration as a constraint satisfaction prob-
lem yields a slight runtime improvement across all specifications and configurations. How-
ever, this runtime improvement is not significant enough to allow for larger configurations of
any specification to be generated. Therefore, using information about the structure of G to
design representative functions is of vital importance.

8.3.3 Local Search

In Section 6.4 we hypothesised that improvements in the level of reduction could be obtained
by replacing unsuccessful elements during hill climbing local search. The two replacement
strategies we considered were:
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• randomly selecting new elements from the group G.

• using the most successful elements to generate new elements.

To provide a comparison between these techniques the smallest quotient state space asso-
ciated with a selection of PSS specifications P was generated using the full enumeration
algorithm. As before, the selected specifications are mutual exclusion, resource allocator
and three-tiered architecture, as each exhibits a distinct type of symmetry. Using the ele-
ment replacement conditions discussed in Section 6.4.1 we subsequently explore each state
space using hill climbing local search and both replacement strategies. The findings of the
experimental results are provided in Table 8.4, verification attempts which exceed available
resources, or do not terminate within 12 hours, are indicated by -.

Configuration States Random Successful
Mutual Exclusion
5 12 67 67
10 22 4117 4117
15 - 116947 97525
20 - 422169 374193
Resource Allocator
{1,2,3}{4,5,6}{} 1584 5562 5562
{1,3,5,7}{2,4,6,8}{} 3947 7134 7016
{1,2,3,4,5}{6,7,8,9}{} 8311 87352 77473
Three-tiered Architecture
2–2–2 12884 54646 54646
3–3–3 48737 107396 104399
4–4–4 - 274765 239662
5–5–5 - 446925 416429

Table 8.4: Experimental results showing that using successful elements to generate new
elements is a more effective approach. Table headings give the following measurements:
••••• Configuration – The specification from which the rows results are generated.
• States – The number of states in the quotient state space generated using the full enu-

meration algorithm.
• Random – The number of states in the quotient model when randomly selecting new

elements from the group G.
• Successful – The number of states in the quotient state space when using the most

successful elements to generate new elements.

As predicted, the results in Table 8.4 show that using previously successful elements to
generate new elements gives the largest level of reduction. Furthermore, while the level of
reduction is less than that obtained by full enumeration the technique is considerably faster
and was able to generate a quotient state space in cases where full enumeration failed.
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8.4 Probabilistic Model Checking

Here we present experimental results which demonstrate the effectiveness of applying our
symmetry reduction techniques to probabilistic model checking. Our experiments consid-
ered configurations of a simple mutual exclusion, dining philosophers, resource allocator,
three-tiered architecture and a network infection specification. Therefore, the performance
of the reduction techniques can be viewed across a varied selection of PSS specifications.

For each specification and configuration, we give the number of states and the time taken to
generate the unreduced state space. The number of states and the time taken to generate the
quotient state space when using full enumeration, and the representative function selected
from the analyses of group G are also provided. In addition, the time taken for the PRISM
model checkers explicit engine to verify a relevant PCTL property on the unreduced and
quotient state space is given to aid the comparison. The results are presented in Table 8.5
and verification attempts which exceed available resources, or do not terminate within 12
hours, are indicated by -.

When our reduction techniques are applied to the mutual exclusion specification, GAP de-
tects that the group of symmetries associated with all configurations are isomorphic to the
group Sn. Therefore, the selected representative function is a homomorphic mapping be-
tween these groups and the group Sn. For this family of specifications, limitations of full
enumeration are clear. For all configurations, the full enumeration approach takes longer
than simply exploring the full unreduced state space. Furthermore, for larger configurations,
full enumeration fails to generate the quotient state space within the experimental time limit.
However, homomorphic mappings exploit the structure G to provide an efficient approach
to symmetry reduction. For all configurations, the time taken to explore the quotient state
space is significantly less than the time required to explore the full unreduced state space.

Similarly, when our reduction techniques are applied to the dining philosophers specification,
GAP detects that the group of symmetries associated with all configurations are isomorphic
to the group Sn. Once again, the selected representative function is a homomorphic mapping
between these groups and the group Sn. Therefore, the conclusions that can be drawn from
this set of experiments are the same as the mutual exclusion set. However, they clearly
illustrate that even when applying symmetry reduction to a fully symmetric specification,
the quotient state space can quickly become intractable. Nevertheless, the selected technique
allows the quotient state space to be constructed for larger configurations.

For all considered configurations of the three-tiered architecture specification, GAP detects
that the group of symmetries associated with the specification are formed from the direct
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Configuration Full Enumeration Selected PRISM PCTL
States Time States Time States Time Full Quotient

Mutual Exclusion
5 113 0.08 12 0.16 12 0.01 0.01 0.01
10 6145 0.16 22 8517 22 0.03 0.34 0.01
15 278529 7 - - 32 0.04 8 0.01
20 1.2× 107 511 - - 42 0.04 818 0.01
Dining Philosophers
3 956 0.21 184 2 184 0.07 0.03 0.01
6 917424 11 - - 33304 134 12 5
9 - - - - 8.74× 106 3973 - 23
12 - - - - - - - -
Three-tiered Architecture
2–2–2 1.0× 106 37 12884 81 12884 64 8 0.1
3–3–3 2.5× 107 6544 48737 8672 48737 182 172 0.3
4–4–4 - - - - 1.3× 106 2642 - 6.3
Resource Allocator
{1,2,3,4,5,6} {} - - 86314 716 86314 18 - 0.71
{1,2,3}{4,5,6}{} 19511 0.1 1584 8 2134 3 0.42 0.23
{1,3,5,7}{2,4,6,8}{} 217395 3 3947 319 13947 15 0.51 0.03
{1,2,3,4,5}{6,7,8,9,10}{} 2.2× 106 17 8311 4009 332164 85 17 0.03
Network Infection
3× 3 1125 0.01 375 0.02 375 0.02 2 1
4× 4 103105 1 34369 1 34369 1 7 3
5× 5 - - - - - - - -

Table 8.5: Experimental results comparing several approaches to state probabilistic model
checking. Table headings give the following measurements:
•••••• Configuration – The specification from which the rows results are generated.
• Full – The number of states in the unreduced state space and the time taken in seconds

to construct it.
• Enumeration – The number of states in the quotient state space and the time taken in

seconds to construct it using a full enumeration strategy.
• Selected – The number of states in the quotient state space and the time taken in sec-

onds to construct it using a strategy selected by analysing the group of symmetries
present within the associated specification.
• PRISM PCTL – The time in seconds taken for the PRISM model checkers explicit

engine to verify a relevant PCTL property on the full and quotient state space.

product of various subgroups. While GAP is able to describe the structure of the group, it
cannot efficiently return the subgroups involved in the direct product. The only means we
are aware of is via a brute force factorisation to obtain all normal subgroups of G. For non
trivial groups this calculation can be time prohibitive and as a result we provide the group
decomposition by hand. This does not invalidate the technique, as an algorithm capable of
performing direct product decompositions in polynomial time is known [95] but not imple-
mented as part of the tool.
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As previously indicated, the full enumeration approach takes longer than simply exploring
the unreduced state space. However, the selected representative function shows the viability
of our symmetry reduction techniques, even when applied to specifications that do not exhibit
full symmetry between components. The reduction technique allows the quotient state space
to be constructed for the larger 4-4-4 configuration and for the 2-2-2 configuration, the time
required for state space exploration is notably reduced.

For resource allocator specification with configuration {1, 2, 3, 4, 5, 6}{}, GAP classifies
the symmetry group associated with the specification as isomorphic to Sn and a homomor-
phic mapping is generated. For the remainder of the configurations, GAP detects that the
associated symmetries are formed from a disjoint product. While our techniques could be
independently applied to the resultant subgroups, we have not implemented a disjoint de-
composition algorithm [37] and the local hill climbing search strategy is selected to provide
reduction. The results show that when no tailored representative function can be selected, the
heuristic approach provides significant run time benefits over the full enumeration approach.
However, the trade off is a larger state space.

Finally, when applying our techniques to the network infection specification, GAP detects
that the group of symmetries associated with all configurations are dihedral groups. As the
number of elements in dihedral groups are small, symmetry reduction is provided using full
enumeration. In this instance, the time taken to construct the unreduced and quotient state
space are similar. However, the resultant quotient structure contains significantly less states
and therefore, the computational effort required to solve PCTL properties will be reduced.

These results demonstrate the effectiveness of our symmetry reduction techniques. For all
specifications, except the resource allocator, the time taken to explore the quotient state space
using the selected method was similar or quicker than exploring the full state space. In ad-
dition, the probabilistic model checking provided by PRISM’s explicit engine was notably
faster when performed using the quotient state space. When comparing the combined time
of model construction and property checking, our symmetry reduction techniques provide a
substantial decrease in runtime. Furthermore, in some instances the application of our tech-
niques allowed probabilistic model checking to be performed on larger model configurations.

8.5 Comparison with PRISM, PRISM-symm and GRIP

In the previous sections we have provided experimental evidence that shows symmetry re-
duction can be effectively applied to probabilistic explicit state model checking. However,
in Section 3.7.1 of the literature review, we identified the tools PRISM-symm [68] and
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GRIP [32], which combine symmetry reduction and probabilistic symbolic model check-
ing techniques. Therefore, we provide a comparison between the techniques that aims to
uncover the strengths and weaknesses of the differing approaches.

The main challenge to conducting a fair comparison is overcoming the differences in input
languages. While PSS and PRISM are similar, they are not directly equivalent. Furthermore,
PRISM-symm and GRIP only operate on a subset of the PRISM language and all models
are required to be fully symmetric. To conduct the comparison, we have identified three
specifications: a randomised consensus protocol [5], Rabin’s mutual exclusion [89] and a
minimum space shared memory leader election protocol [86]. These specifications were
selected as they are available online [2], have been used in previous comparisons between
PRISM-symm and GRIP [33], and only require minor modifications to be translated into
valid PSS specifications.

To translate the specifications into valid PSS specifications, local variables declared within
PRISM modules are declared as global integer variables. The translation is required as the
PRISM language allows a command within a module to read the value of local variables
declared within other modules. This type of behaviour is prohibited in PSS, but declaring
the variable as a global integer allows its value to be read and does not hinder the application
of our symmetry detection and reduction techniques. All other changes are minor syntactical
modifications.

The results of the comparison are presented in Table 8.6 and verification attempts which
exceed available resources, or do not terminate within 12 hours, are indicated by -. For the
model building process, PRISM translates a specification into an MTBDD representation,
the set of all reachable states are computed and any state not reachable from the initial state
is removed. PRISM-symm follows the same construction process, but subsequently applies
symmetry reduction to the MTBDD representation. GRIP applies language-level symme-
try reduction to the given specification, resulting in a reduced generic specification which is
passed to PRISM for construction. The PSS tool starts from the equivalent PSS specification
and applies our symmetry detection techniques. As the mentioned specifications are isomor-
phic to the group Sn, the selected representative function is a homomorphic mapping. This
representative function is then utilised in the construction of the reduced model. Finally,
each constructed model is checked using PRISM and the fastest technique for each tool is
used.

The results show the time required by our techniques to construct the quotient model is sig-
nificantly longer than the time required by the other approaches. Furthermore, our technique
fails to construct the quotient state space when considering larger configurations. However,
model checking times are favourable. For the consensus and leader election protocols, the
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Configurations States Build Time Model Checking Time
Full Reduced PRISM PRISM-symm GRIP PSS PRISM PRISM-symm GRIP PSS

Consensus
12 1.2× 1011 339729 1 1 2 128 16993 8 5 0.63
14 5.0× 1012 747243 3 3 4 374 - 121 79 3
16 2.1× 1014 1.5× 106 7 9 7 - - 847 456 -
Rabin
4 201828 11130 1 2 7 236 0.5 0.12 0.6 0.03
6 1.3× 108 356592 4 10 28 681 0.29 0.39 0.32 0.12
8 4.5× 1010 4.1× 106 11 36 62 - 0.97 1 1 -
Leader
60 4.2× 1028 1891 2 12 1 11 47 3 0.03 0.01
100 5.2× 1047 5151 8 137 1 32 889 14 0.18 0.01
140 6.3× 1066 10011 26 897 1 60 4051 46 0.37 0.07
Three-tiered Architecture
2–2–2 430080 6 144 0.66 N/A N/A tf 307 N/A N/A 0.43
3–3–3 1.9× 106 26388 3 N/A N/A tf 3698 N/A N/A 2
4–4–4 1.0× 108 1.0× 106 27 N/A N/A tf - N/A N/A 6

Table 8.6: Experimental results showing a comparison between several approaches to prob-
abilistic symmetry reduction. Table headings give the following measurements:
••••• Configuration – The specification from which the rows results are generated.
• States – The number of states in the quotient and unreduced state space.
• Build Time – The time in seconds required by each technique to build the model.
• Model Check Time – The time taken in seconds for the PRISM model checker to verify

a relevant PCTL property against each model.

model checking times are either comparable or faster than GRIP, which in turn is faster than
PRISM-symm and PRISM. For configurations of Rabin’s mutual exclusion specification,
model checking times are similar for all techniques.

While results suggest that GRIP outperforms PRISM-symm, this is a miss leading result.
Typically, GRIP is faster for models that contain a large number of simple modules, whereas
PRISM-symm performs better on models constructed from a small number of more complex
modules [33]. This result is not shown, as our comparisons purposively avoid specifications
with complex modules to allow translation into PSS. Therefore, when considering fully sym-
metric specifications GRIP and PRISM-symm have the advantage of being able to verify
properties against larger models.

Nevertheless, a major advantage of our technique is its ability to be applied to specifications
that do not exhibit full symmetry. In the final experiment of Table 8.6, results from a sim-
plified three-tiered architecture specification are presented. In this instance, our techniques
enable model checking to be successfully performed in instances where PRISM’s sparse en-
gine failed and GRIP and PRISM-symm could not be applied. Therefore, when considering
specifications that exhibit more complex forms of symmetry, our approach offers a clear
advantage.
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8.6 Summary

In this chapter we have implemented the techniques discussed within the thesis and the re-
sulting tool is used to test the viability of our approach to automated symmetry reduction.
We find that our automated approach to capturing data and component symmetries can be
efficiently applied to a probabilistic specification language. Furthermore, for a variety of
symmetric specifications we show the significant runtime and memory savings can be made
while performing probabilistic model checking. Furthermore, when considering specifica-
tions that exhibit complex forms of symmetry, our approach offers a clear advantage.



CHAPTER 9

Conclusion and Future work

The main contribution of this thesis was to show how symmetry reduction techniques can
be applied to explicit state probabilistic model checking. We proved the correctness of our
approach, and demonstrated its viability by implementing our techniques in a symmetry
reduction tool.

Our contribution began in Chapter 4 where we formally defined the Probabilistic Symmetric
Systems Language, presenting a full language grammar and semantics. The language was
specifically designed to allow the creation of models exhibiting complex symmetry groups
while being simple enough to allow rigorous proof. Throughout the thesis the language
has been extensively used to specify the required models and prove the correctness of our
techniques.

In Chapter 5 we introduced an approach to symmetry detection that can automatically detect
arbitrary component and data symmetries directly from our probabilistic specification lan-
guage. Given a specification, this approach extracts a diagrammatic representation of com-
munication that may occur between components. Automorphisms of this diagram, which we
refer to as an extended channel diagram, were shown to correspond to automorphisms in the
underlying probabilistic model. Provided these automorphisms meet a small set of restric-
tions, they are valid for symmetry reduction. Finally, from this set of valid automorphisms
we showed how a potentially larger valid set could be be calculated.

151
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In Chapter 6 we presented new techniques to efficiently compute equivalence class represen-
tatives for certain classes of symmetry groups identified in Chapter 5. The presented tech-
niques included a novel mapping of exhaustive search to a constraint satisfaction problem
and a hill climbing local search algorithm. Additionally, we suggested efficient techniques
to handle fully symmetric groups, cyclic groups and groups that could be decomposed as an
internal direct product or as an internal semi direct product.

In Chapter 7 we outlined an algorithm to construct the quotient probabilistic model directly
from a PSS specification. The algorithm was obtained by modifying graph traversal algo-
rithms commonly employed in model checking. Several common implementations of data
structures were assessed to determine their compatibility with our symmetry reduction tech-
niques.

In Chapter 8 we implemented our techniques and tested their viability. Experimental re-
sults showed our automated approach to capturing data and component symmetries could be
efficiently applied to a wide family of probabilistic specifications. These included various
configurations of a simple mutual exclusion, dining philosophers, resource allocator, three-
tiered architecture and network infection specification. Furthermore, for the same specifica-
tions, we demonstrated significant runtime and state space gains by applying our symmetry
reduction techniques to probabilistic model checking. Finally, we compared our techniques
to other documented approaches to probabilistic symmetry reduction and conclude that when
considering specifications that exhibit complex forms of symmetry, our approach offered a
clear advantage.

9.1 Future Work

In Chapter 6 we illustrated that for groups decomposable as an internal direct or semi direct
product, a state representative can be obtained by considering their subgroups in isolation.
The main issue with this approach is how to efficiently obtaining the subgroups without re-
sorting to brute force factorisation. While a polynomial time algorithm is known for the
direct product, no such algorithm is available for a semi direct product. However, a possi-
ble decomposition may be indicated by examining the structure of the ECD. Being able to
quickly decompose the groups would greatly increase the practicality of the approach.

Furthermore, some symmetry reduction strategies are clearly parallelisable. If we have n
processor cores, group G could be split into n equally-sized disjoint subsets. Each core
could independently apply enumeration and the set of n potential representatives compared
to obtain the lexicographical minimum.
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However, more research is required into parallel algorithms that can exploit the structural
properties of a symmetry group. An ideal candidate would be the parallel application of the
subgroups obtained from a direct product decomposition. While we noted that the groups
could be considered in series, how they could be considered in parallel requires research.

Finally, probabilistic partial order reduction is an alternative reduction technique that has
been applied to probabilistic explicit state model checking. Partial order reduction attempts
to construct a reduced state space by removing redundancies in the transition system. There-
fore, partial order reduction reduction works on transitions while symmetry focuses on states.
The combination of these two techniques is theoretically possible and would provide a novel
extension to our current implementation.



APPENDIX A

Skeleton Code

In this appendix we provide skeleton example of the PSS specifications mentioned during the
course of the thesis. The presentation aims to highlight the component and data symmetries
present within the specifications structure.

A.1 Simple Mutual Exclusion

1. dtmc
2.
3. pid[3] full;
4.
5. Process mex()
6. {
7. }
8.
9. Initial{mex(); mex();}
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A.2 Dining Philosophers

1. mdp
2.
2. chan fork1 [1] of {int};
3. chan fork2 [1] of {int};
4. chan fork3 [1] of {int};
6.
7. Process dphil(chan left, chan right)
8. {
9. }
10.
11. Initial{dphil(fork3, fork1); dphil(fork1, fork2); dphil(fork2, fork3);}

1. mdp
2.
3. pid[3] fork;
6.
7. Process dphil()
8. {
9. }
10.
11. Initial{dphil(); dphil(); dphil();}
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A.3 Network Infection

1. mdp
2.
2. chan link1 [1] of {int};
3. chan link2 [1] of {int};
4. chan link3 [1] of {int};
5. chan link4 [1] of {int};
6. chan link5 [1] of {int};
7. chan link6 [1] of {int};
8. chan link7 [1] of {int};
9. chan link8 [1] of {int};
10. chan link9 [1] of {int};
11. chan link10 [1] of {int};
12. chan link11 [1] of {int};
13. chan link12 [1] of {int};
14.
15. Process C2(chan con1, chan con2)
16. {
17. }
18.
19. Process C3(chan con1, chan con2, chan con3)
20. {
21. }
22.
22. Process C4(chan con1, chan con2, chan con3, chan con4)
24. {
25. }
26.
27. Initial {C2(link1, link3); C2(link5, link2); C2(link8, link9);

C2(link12, link10); C3(link2, link4,link1);C3(link3, link6,link8);
C3(link10, link7, link5); C3(link11, link9, link12);
C4(link6, link4, link7, link9);}
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A.4 Monty Hall Problem

1. dtmc
2.
3. int[3] door;
4.
5. Process MontyHall()
6. {
7. }
8.
9. Initial{MontyHall();}
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A.5 Resource Allocator

1. mdp
2.
3. int[3] resource;
4. chan link1 [1] of {int};
5. chan link2 [1] of {int};
6. chan link3 [1] of {int};
7. chan link4 [1] of {int};
8. chan link5 [1] of {int};
9. chan link6 [1] of {int};
10. chan link7 [1] of {int};
11. chan link8 [1] of {int};
12. chan link9 [1] of {int};
13.
14. Process RA(chan con1, chan con2, chan con3,

chan con4, chan con5, chan con6,
chan con7, chan con8, chan con9)

15. {
16. }
17.
18. Process CP(chan con1)
19. {
20. }
21.
22. Process C4(chan con1, chan con2, chan con3, chan con4)
23. {
24. }
25.
26. Initial {CP(link1, link2, link3, link4, link5, link6, link7, link8, link9);

CP(link1); CP(link2); CP(link3); CP(link4); CP(link5);
CP(link6); CP(link7); CP(link8); CP(link9);}
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A.6 Three tiered architecture

1. mdp
2.
4. chan link1 [1] of {int};
5. chan link2 [1] of {int};
6. chan link3 [1] of {int};
7. chan link4 [1] of {int};
8. chan link5 [1] of {int};
9. chan link6 [1] of {int};
10.
11. Process DB(chan con1, chan con2)
12. {
13. }
14.
15. Process Server(chan con1, chan con2, chan con3)
16. {
17. }
18.
19. Process Client(chan con1)
20. {
21. }
22.
23. Initial {DB(link1, link2); Server(link1, link3, link4);Server(link2, link5, link6)

Client(link3); Client(link4); Client(link5); Client(link6)}
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